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Abstract—Experimental fault injection is an essential tool in
the assessment and verification of fault-tolerance properties.
Often, in these experiments it is impossible to reasonably cover
the huge parameter space spanned by target state and fault
parameters, and compromises or restrictions must be made.
This is even more pronounced for asynchronous circuits where
a convenient discretization of time through a synchronous clock
is not possible. In this paper we present a fault-injection toolset
that allows for a very efficient injection and data processing,
thus bringing studies with many billions of meaningful injections
into asynchronous targets within reach. The key ingredients of
our solution are an auto-setup feature capable of optimizing
parameter values, seamless distribution of the simulation load to
many host computers, and efficient arrangement of the important
settings and readings in a database. We will use the example of
a comparative study of different asynchronous pipeline styles to
motivate the need for such an approach and illustrate its benefits.

Index Terms—asynchronous circuits, fault injection, fault-
tolerance assessment, tool chain

I. INTRODUCTION

Fault injection experiments can be considered the test of
fault-tolerance capabilities. By injecting faults into the running
system, the proper function of provisions intended to cope with
these faults can be verified and deficiencies be tracked (“fault
removal”). In addition, when injecting faults that are foreseen
to occur in the actual operating environment (like frequent
single-event upsets through particle hits in space), even if not
all of these can be handled, statistical predictions on the failure
rate of the target can be derived (“fault forecasting”). In both
cases the process is the same: Faults are injected into the
running system, and the reaction is observed and categorized.

Typically, fault injection studies suffer from two types of
problems: Firstly, for precisely targeting the injected faults it
is necessary to have access to nodes or transistors inside the
target. Similarly, a detailed observation of the target’s reaction
to a fault requires monitoring of internal signals. Secondly, the
parameter space that needs to be considered for a complete,
or at least representative picture is huge, since, ideally, all
conceivable types of faults shall be injected into all locations
inside the target during all states of the target.

The former problem can be largely solved by simulation-
based fault injection. This, however, aggravates the second
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issue, as experiments run significantly slower in simulation
than in real time. Hence a good coverage of the solution space
is even harder to attain within reasonable time limits. On top
of those issues that are common to most fault-injection studies,
our setting is different through a number of points that make
the experiments even more challenging:

o The fact that our targets are asynchronous (quasi delay-
insensitive (QDI)) circuits, requires us to have a con-
tinuous (i.e., non-discretized or cycle-based) view of
time. When checking for deviations from the expected
behavior, event traces must be compared irrespective of
their absolute timings (i.e., only with respect to the QDI
protocol). This stands in sharp contrast to synchronous
systems, where it is relatively easy to capture and to
compare states. For the same reason, the injection of
faults (injection time and fault duration) cannot simply
be aligned to clock cycles, but needs to be varied in
continuous time, again widening the fault space.

« While in synchronous circuits the clock alone determines
the speed of operation, the behavior of QDI circuits is
more intricate: A data source supplies data items (tokens)
with a certain speed, and a sink consumes the results,
again at its own pace. Due to the handshaking these
speeds are not uncorrelated and so there is a variety of
operating conditions for the circuit. It is already known
that these are relevant for its susceptibility to faults [1].

« In contrast to synchronous fault injection studies we do
not consider a single, fixed target circuit only. Asyn-
chronous design offers a variety of templates and we want
to compare these while also varying the function they
implement, and also the protection scheme they employ.
Again, this significantly blows up the parameter space.

In this paper we present the specific solutions we elaborated
to make experiments with sound statistical results feasible un-
der these challenging circumstances. Its structure is as follows:
Section II briefly introduces the concepts of asynchronous
circuits, to allow some basic understanding of the specific
challenges this poses for the toolset design. A more general
discussion of the envisioned experiment flow and the problems
that need to be addressed is given in Section III. Next,
Section IV presents the solution we propose for our toolset,
with a particular emphasis on the specific techniques we
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used to solve the mentioned challenges. Finally, some sample
results from our comparative study on asynchronous circuit
resilience are given in Section V to illustrate the capabilities
of our toolset, before the paper is concluded in Section VI.

II. BACKGROUND

Rather than using a rigid clock for synchronously coordinat-
ing the data transfer for all registers in a circuit, asynchronous
circuits employ individual handshakes between the respective
communication partners, which provides a very appealing
flexibility to adapt the timing to the specific conditions [2].

These handshakes are constituted by transitions of the
respective transmitting partner (source) and receiving partner
(sink) that obey some specific protocol. The protocols used
differ by the semantic interpretation of those transitions on
the ack and req signals. The 4-phase protocol only uses
the rising transitions to convey information, while the falling
transitions are (generally) just viewed as a “return to zero”
without semantic meaning.

While the ack is always a dedicated signal line, with
relatively uncritical timing, the req signal is different. It is used
to indicate that new data is available for the sink to consume
and therefore we need timing assumptions. An alternative
approach is to apply a suitable encoding to the data that allows
a so called completion detector (CD) at the sink to recognize
when a new valid token has arrived — by just looking at
the encoded data. These types of protocols are referred to as
delay-insensitive (DI). However for actual circuits using those
protocols the slightly stricter QDI timing model is used [3].

There are numerous DI encodings, but the most popular one
is a (4-phase) dual-rail encoding on the bit level: Each bit D
is represented by two rails (D.T', D.F’), and a logic HI on D
is expressed as (1,0), and a LO as (0,1). The (0,0) code is used
to express that the bit does not carry a value, the code (1,1) is
not used (and must not be reached during normal operation).
Words with all bits at either (1,0) or (0,1) are called DATA
tokens, while words with all bits at (0,0) are called NULL
tokens (return to zero). Figure 1 illustrates how a pipeline
stage based on 4-phase dual-rail protocol could look like.
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Fig. 1. QDI pipeline register with dual rail encoding and completion detector

The fault injection toolset presented in the following is
intended for experiments on a variety of 4-phase QDI cir-
cuits and templates. Specifically we will focus on pipelined
structures as they are very natural to use in the asynchronous
context, and generally very popular.

III. EXPERIMENT DESIGN AND REQUIREMENTS
A. Aims of the experiments

As outlined in Section II there are various QDI design
styles, all of which come with their pros and cons regarding
different aspects. Our focus is on resilience against transient
faults. In this context numerous studies have been published,
each focusing on a specific style, or a robustness improvement
thereof, and each coming with its own assessment [1], [4]-
[7]. One key aim of our research is to elaborate a like-for-like
comparison of the different design styles plus their proposed
improvements, with respect to robustness. Here the overall
strategy will be to implement a given function in those design
styles, with and without the proposed enhancements, subject
them to the same set of faults while operating under the same
conditions, and then compare the rate and types of erroneous
behavior. Initially this will allow a direct and fair comparison
of the robustness of the design styles, plus an assessment of the
benefits obtained through the enhancements. In a next step the
problematic cases can be identified and mitigation techniques
systematically developed, or existing ones refined.

The challenge is to create a setup that is at the same time
realistic enough to justify generalization of the results, simple
enough to allow for a detailed analysis of problematic cases,
fair in the sense of not introducing a bias in favor of any of
the considered styles, and feasible with respect to the number
of experiments and computational efforts required.

In addition we want to assess how certain parameters
influence the robustness. This understanding is useful for a
potential optimization of the operating conditions, but also
for projections of results obtained for one setting to another.
Examples of related research questions are:

« How does the speed of operation influence robustness?

« How does the balancing of the speed of input and output
influence robustness?

o Is the control path more sensitive to faults than the data
path?

o How does data width impact robustness?

o How does a timing skew among different data rails
influence robustness?

o Where and how do faults get masked?

Finally, for the purpose of our further analyses, we do not
only want to know, whether the circuit failed as a consequence
of an injected fault, but also how it failed. To this end we define
different failure categories, like deadlock, value fault (silent
data corruption), coding fault (appearance of the forbidden
(1,1) code word), timing fault (result arrives too late or too
early), token faults (the number of tokens received at the output
does not match the number of tokens put into the circuit).
This distinction is important for obtaining a first impression
of the root cause of the failure and hence devising appropriate
countermeasures. Also, it allows considering that different
types of failure may have consequences of different severity
in a given application, like, e.g., a deadlock may be perfectly
fine in a fail-stop application, while it is disastrous when a
fail-operational capability is required.



B. Experiment Layout

Our experiments are based on fault injection into a simu-
lation model of the target circuit during its operation. More
specifically we use a pre-layout digital circuit model with
annotated timing for gates in a Modelsim simulation. While
this may be considered less realistic, and also lead to longer
run times than injecting into a physical prototype, it allows
for a comprehensive access to all internal signals for manipu-
lation and observation. The flow of the simulation experiment
involves the following steps:

Definition of the parameter space: In a first phase it needs
to be decided which part of the parameter space shall be
covered by the planned experiment. This not only includes the
target and its configuration, but also the operating conditions
(e.g., workload). Here often a confined space is selected in
order to keep the focus on certain parameters or properties, as
a partitioning of the experiment is anyway desirable to have
better control in case of excessive run time, hang-up or data
loss. We will present more details on the parameters of interest
in the next subsection.

Golden run: Failures resulting from injected faults are
defined as a deviation from the desired behavior. In order to
have a reference for the latter, the target circuit is simulated
performing the same operation run as later during the fault
injection; this time, however, without any fault being injected.
In this way, a simulation trace can be obtained and saved that
constitutes a ground truth for the ideal behavior of the target
— the so called Golden run.

Fault injection run: The operation performed during the
Golden run is repeated, but now a randomly selected fault
is injected and the reaction is observed. While this sounds
simple, a lot of decisions need to be made that are crucial for
the quality of the results: The target should be in a “steady”
state; notably this is not the case right after reset, so some pre-
injection time must be waited before allowing the first fault
to be injected. Similarly, after injection of a fault, some post-
injection time, must still be left to allow for an propagation of
the fault. So the actual injection of faults must be confined to
a restricted interval, the fault injection window. With respect
to the fault location we consider every node of a given target
circuit (on the abstraction level of primitive logic gates, i.e.,
not within gate-internal nodes) a potential victim. Therefore
we need to make a lot of fault injection runs to cover all nodes
over the defined time window. Estimating the needed number
of injection runs is not a trivial task either.

Classification of behavior: By comparing the simulation
trace from each single injection run with that from the Golden
run we can, in principle, make a decision like “identical” or
“deviation”. However, not every deviation must be considered
a failure; in a delay-insensitive circuit a slightly delayed but
otherwise correct trace is perfectly fine. Furthermore, for the
sake of later analysis, it is extremely helpful to have more
information about the type of misbehavior. Therefore, after
studying the results of some preliminary experiment runs,
and also considering the related literature, we decided to

distinguish several types of reaction to the fault injections
(deadlock, value fault,...), as mentioned above already. Ob-
viously, considering the huge amount of faults to be injected,
this classification must be automated. Note that the failure
types as we defined them are not mutually exclusive; one can,
e.g., have an incorrect value followed by a deadlock. Avoiding
a reduction to a single symptom, like prioritizing the first or
the most severe one, allows for a more fine-grained diagnosis
and an unbiased statistics about each individual symptom.

Presentation of statistics: In a final step, statistics about
the occurrence rate of the different failure types are compiled,
and correlation with different parameter settings is analyzed,
in order to answer the research questions formulated above.
Finding the right way of correlating data and presenting the
relevant numbers in a way that supports the intuition and
allows drawing the desired conclusions is a challenge of its
own — but this is not within the focus of this paper.

Analysis of single cases: There are several reasons why a
single fault injection along with its consequences may need
to be analyzed in detail, i.e., the signal traces need to be
studied. One such case may be finding an explanation for some
unexpected type of behavior, to clarify whether it results from
a flaw in the setup or interpretation, or points to an actually
interesting insight into the circuit’s properties.

C. Requirements on the tools

The aims and the consequent setup of the experiments imply
a lot of challenges for the experiment toolset. While some
of these are known from other fault injection studies, our
envisioned study of various asynchronous design styles makes
the problem even harder, as already outlined in Section I,
especially through further blowing up the parameter space.
Figure 2 gives an overview of the parameter space we consider.
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Fig. 2. Illustration of the considered parameter space

In more detail we have the following set of parameters:

e Logic function: In order to make our results as general
as possible and useful for practical applications we have
selected several types of function that are often found in
a larger context: empty pipeline (FIFO), adder, infinite
impulse response filter (IIR), cyclic redundancy check
(CRC) generator, multiplier.

o Level of pipelining: A logic function can be realized in a
single pipeline stage, or be distributed over several stages.
Additionally it is often possible to implement a function
through iteration (non-linear pipeline with a loop).



o Bit width: The above functions can be implemented with
different data bit width.

e Pipeline style: There are techniques for robustness en-
hancement that we consider as own pipeline styles to
simplify the presentation. Without being able to go into
details about them here, we list the following styles as
our target: WCHB (plain [8] / with dual completion detec-
tion [7] / with deadlocking buffers [1] / with interlocking
buffers [1]), duplication and double checking [5], and
Mousetrap [9]. For details, please see the original papers.

o Logic implementation style: There are also several options
for implementing combinational logic in a QDI manner.
Here we include DIMS [10], NCLX [11] and NCL [12].

o Circuit delay parameters: In asynchronous circuits propa-
gation and interconnect delays directly impact the overall
timing behavior — unlike synchronous circuits where
those details are hidden behind the timing margins. In
particular, it has already been observed in literature, that
skew on the data buses has quite some influence on the
sensitivity to transient faults. So, in order to obtain results
with general validity these delay parameters need to be
varied — which spans a huge space.

e Load scenario: The operation — and fault susceptibility —
of a QDI circuit is not only determined by the supplied
input values, but notably by the relative and absolute
speed of its source and sink [1]. Consequently, variation
of these parameters is crucial.

o Fault location: In our simulation approach, transient
faults, in the shape of pulses that force the signal to a
certain logic level, can be applied to any signal of the
target circuit. Considering that signals are expected to
have largely different sensitivity to faults, an appropriate
choice of victim signals is crucial.

o Other fault parameters: The fault polarity (forcing to HI
or to LO), its duration, as well as the time of injection,
relative to the ongoing operation, are relevant for the
effect. As already mentioned, asynchronous circuits must
consider continuous time rather than discrete cycles, so
for all time-related parameters a dense grid is required.

Note that for some of the above parameters the choice is

discrete, which suggests a scan of all possible options, while
others are continuous, where random choices (within a given
range, possibly considering a given distribution) or a scan with
a relatively dense grid seem natural. For the target synthesis
we need flexible tooling to make it possible to automatically
generate target variations just by changing the relevant design
parameters on a high abstraction level. In summary, the param-
eter space is huge; in fact, covering all permutations of discrete
parameters plus obtaining a decent density for the continuous
parameters easily yields a requirement of billions of fault
injection runs. This, in turn causes three major challenges:

Firstly, performing billions of fault injections requires high

computational efforts. Therefore, availability of computing
power, as well as overall run time of the experiment series
need to be addressed in the design of our toolset.

Secondly, the data recorded throughout such an enormous

number of experiment runs tends to be unmanageable. There-
fore our toolset makes clever use of storage space and provides
efficient data organization to allow for reasonably fast data
post-processing and compilation of statistics.

And, finally, our first experiences with the experiments
showed, that often in retrospective, during the collection of
statistical parameters and their interpretation, one realizes that
other aspects of the behavior, most notably signal traces,
should have been recorded and stored as well. Therefore,
reducing the recordings to the bare minimum is risky and a
good balance must be found.

IV. PROPOSED TOOLSET

In this section we take a closer look at the toolset we already
used to generate a total of over 2200 variations of our target
circuits and coordinate a total of over one billion simulations.
We will first give an overview and then go into details on how
we solved the challenges formulated above.

A. Overview

As shown in Figure 3, everything is built around a central
database.
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Fig. 3. Overview of the toolset

In general we can divide the toolset into four main parts:

« Target synthesis: Dependent on given parameters, a target
circuit is synthesized and an appropriate test bench is
generated.

e Task generation: Controlled by parameter sets, target
variations are generated and added to the database as open
tasks.

o Simulation execution: All open tasks are executed and
the results are saved back into the database.

« Data extraction: A collection of routines is available to
visualize data from the results.

To conveniently describe asynchronous circuits, we devel-
oped a simple language specification and an accompanying
Python library and toolset. We based our circuit representation
on production rule sets (PRS), a common gate-level spec-
ification approach for asynchronous circuits. The developed
language and library allow us to efficiently design test circuits
for our analyses, easily change parameters (level of pipelining,
bit width), and even quickly switch between different QDI
pipeline and logic implementation styles. The library is also
able to generate VHDL code with timing annotation for sim-
ulation. The toolset also provides a parameterizable testbench
generator. In summary, all files necessary for simulation are
generated by our custom tools, and changing certain (circuit)
parameters is straight forward. Due to space restrictions, we
do not go into more detail about the target synthesis flow.



We inject only one fault per simulation run, and then reset
the target before injecting a next one. This is more time
consuming than allowing for an injection of multiple faults
per run, but mandatory for maintaining a correlation between
cause and effect. Without resetting the target in between two
fault injections F'1 and F'2, one could not determine whether
a failure observed after injecting F'2 was caused by F'1 or F'2.

B. Speeding up the simulation

The basic strategies we apply for reducing the run time of
the simulations are the following:

Full automation: In our planning of the toolset we took
great care to avoid the need for manual intervention. Once the
parameter space has been specified, the whole experiment is
running to completion fully automated. This not only avoids
the delays associated with user interaction, it also helps to
reduce the probability of human error.

Target generation: The simulation task generator and the
simulation workers are all controlled by a central target
configuration file. We use a YAML file here, as it is human
readable and can be easily generated and processed in Python.
Figure 4 shows a simplified but representative example:

1 | parameters:
2 CIRCUIT: PIPELINE

3 DATAWIDTH: 8

4 BUFFERSTYLE: WCHB

5 PULSDURATION: 10000

6 build:

7 th:

8 . test bench configuration .....

9 tb_prs: “pl.prs”

10 cmds :

11 — synthesize.py —w %DATAWIDTH% —s %BUFFERSTYLE%

12 — prscom.py —siglist —o pl.siglist —vhdl pl.prs

13 — prscom.py —e —o pl.vhd pl.prs —m

14 | vcom_args: ”—2008 —work work —suppress 1236 —novopt”

15 vsim_args: "—msgmode both™

16 simulation_time: —all

17 time_resolution: Ips

18 compile_files:

19 — pl.vhd

20 — tb.vhd

21 fault_injection:

22 victim: {mode: random, file: pl.siglist}

23 injection_value: {mode: random}

24 injection_time: {mode: random, range: [178473, 330910]}
25 injection_duration: {mode: fixed, value: "%PULSDURATION%"}
26 iterations: 200000

Fig. 4. Example configuration file

On line 1 the key parameters contains a dictionary which
includes all important parameters of a circuit. The idea behind
this is to have a parameter set which uniquely identifies a
circuit variation. This parameter set is also saved in a separate
table in the database to be accessible over SQL queries.
Additionally, to make it easier to modify the configuration
quickly, all the parameters are provided as variables in the
configuration file. To access a parameter value it is just
necessary to surround its name with %.

The synthesis instructions are defined in lines 6...13. On line
8 the configuration for generating the testbench is added. From
line 14...20 we define all necessary options for Modelsim to
compile and simulate our target circuit. All information about
our transient fault injections is specified on line 21...26.

To make the system more flexible we can use lists for our
parameters in brackets, like DATAWIDTH: [4,8]. In general the

different possible options for each parameter will be permuted.
Therefore is it possible to describe a lot of different target
variations with a single target configuration file.

Parallelization: The simulation runs for different circuit
parameters are completely independent of each other, so it is
easy to dispatch them to different computers (more generally,
we call them “simulation workers™) and just collect the indi-
vidual results in the database. Our approach is highly flexible:
A simulation worker just needs to have Python and Modelsim
installed, with Linux or Windows as OS, and be connected to
the database. Once started, it is looking periodically for open
tasks in the database and starts processing them if there are any
(for details on how these tasks are prepared, see below). For
each available processor core a Modelsim instance is started.

Avoiding overheads: In preliminary experiments it turned
out that restarting Modelsim takes up a lot of resources there-
fore running multiple simulations in one instance can speed up
the simulation process. The actual number is mainly dependent
on the complexity of the simulation itself; we empirically
determined that for our targets around 100 fault injection
simulation runs per instance are most suitable. If something
went wrong the simulation worker stops, which makes it
possible to retrace the problem and fix it. This provides some
safety against potential corruption of the database, at the cost
of missed computation time.

C. Managing the parameter space

We pursue the following strategies to confine the parameter
space without losing relevant information:

Parameter pre-selection: We performed preliminary ex-
periments to explore the influence of fault duration on the
results. As shown in Figure 5 it turned out that a fault duration
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Fig. 5. Fault injection duration experiment results for the multiplier

below a certain threshold (dependent on the circuit delays) is
masked by the inertial delay model we chose to use for our
implementations. This bounds the useful fault duration from
below. Similarly, fault duration beyond a certain threshold does
not yield any changes compared to shorter durations. This is
because QDI circuits simply stop operating if transitions that
are due to occur are blocked. This forms an upper limit for a
useful fault duration'. Based on these findings we decided to
use a single fault duration of 1.2 ns only — which eliminated
one dimension in the parameter space.

U1t should be noted here that for other target circuits the upper limit was
not always as clearly visible.



Auto-tuning of parameters: According to the requirements
formulated in Section III we do not want to start the fault
injection before the target is running in steady-state operation
after reset. Neither do we want to perform injections when no
further tokens are arriving anymore, as we want to allow the
fault effects to propagate. These conditions define lower and
upper boundary of the fault injection window. Additionally
the length of the injection window needs to cover relevant
activities in all interesting stages of the handshaking of all
components in the circuit.

Obviously, we cannot afford to choose these bounds too far
on the safe side, as increased simulation time will consume
costly computation resources. In order to approach the effec-
tive borders as close as possible, we performed exploration
experiments, based on whose outcome we empirically decided
to start the fault injection not before the first two tokens have
reached the output. For the injection duration we again wait for
two tokens at the output. This proved to give a good coverage
of all phases of pipeline operation. Experimentally determining
the end time of the simulation is more difficult, as the waiting
time depends on the number of tokens a circuit can contain.
To explore that, we run a simulation with extremely long sink
delay, and count the number of input tokens consumed by
the circuit until the first one reaches the output. On top of this
number we add one more token, and this defines the minimum
number of tokens that must be processed at the output to let
possible faults propagate to the output. In this manner the
injection window and simulation time are automatically tuned
to the respective circuit and load scenario. Figure 6 illustrates
this method.
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Fig. 6. Illustration of the fault injection window

Similarly, we have implemented an auto-set capability for
the load scenario. Its principle is as follows: In Figure 7 the
different phases of the handshake protocol are shown. In case
the sink has a long delay for generating the acknowledgment
signal to a data token it received, the next upstream buffer
cannot hand over the next token it may already hold, and this
backlog continues up to the source. Ultimately, the pipeline
will be filled with tokens and its speed will be determined
by the slow sink. This is called the bubble limited mode of
operation. In contrast, if the source is slow, then the previous
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Fig. 7. The four phases of a dual rail 4-phase handshake protocol

token it provided will have propagated through the whole
pipeline and been consumed by the sink before the source
issues the next one. In this token limited mode of operation
the pipeline is empty most of the time, and its speed dictated
by the source. Obviously, there is a whole range of possible
pipeline fill levels in between these two extremes. To quantify
that, we introduce the pipeline load factor (PLF):

waiting time for acknowledgment
waiting time for token

PLF =

If the PLF is greater than 1 we are mainly waiting for the
acknowledgment signal to arrive and therefore the pipeline is
in a bubble limited mode. And if the PLF is smaller than 1
we are in a token limited mode.

To measure the PLF we monitor the different handshaking
phases of every buffer’s input channel which is not directly
connected to the primary input. To make the measurement
more accurate we average over a run with 100 tokens. For
a linear pipeline we can fully control the PLF by setting the
sink and source timing of our testbench. Small and big values
for the PLF will increase the simulation time significantly, and
therefore also the injection window and space, which is costly.
Hence for our experiments we use the following PLFs: i, %
1, 2, 4. The PLF will be set by repeatedly running Golden
simulations and searching for the needed sink and source delay
through bisection.

Note that the above discussion applies to a linear pipeline
only. For the target variant with iterative computation, the PLF
is largely determined by the loop roundtrip time and several
other factors. Knowing that we have little control over the
PLF through source and sink delays here, we do not attempt
to attain a target PLF, but rather measure the PLF as is.

Automated (exhaustive) scanning of discrete parameters:
For many parameters we have a discrete list of possible
choices. This list can be specified by parameter sets (recall
Fig. 4). At the start of the experiment, the respective simulation
tasks are generated and saved in the database, where they
are then picked by the simulation workers. The parameter
pre-selection and the auto-tuning approaches explained above
ultimately also generate such lists and hence those parameters
are finally included in the same way.

Another somewhat discrete parameter is formed by the ac-
tual gate delays. First, circuits are always generated using fixed
delays for each of the used gate types. To check the circuit
under PVT variation we then vary those delays randomly by
up to 10% for each individual gate. For our experiments we
consider 3 circuit timing scenarios (see Figure 2).

Randomization plus coverage verification: Randomiza-
tion is used for the following parameters: (i) victim signal,
(i1) fault polarity, and (iii) start time of the injection (within
the injection window). Recall that time needs to be considered
continuous in context with QDI circuits. To get statistically
valid and meaningful results, we need to collect a sufficient
number of random samples in the space we want to cover.
However, the size of this space depends on other parameter
settings (most notably the size of the fault injection window),



so we need to adapt our requirements dynamically. This, again,
calls for auto-tuning of the sample size. In view of future
extension that we may want to add (e.g., a random injection
duration), it seems appropriate to avoid relying on any details
of the random parameter generation mechanism.

Therefore, we simply run the parameter generation process
(as a black box) multiple times and count the number of
generated identical parameter sets (“collisions”). While an
exact derivation is a tough combinatorial problem, we have
empirically determined that the coverage has a roughly linear
relation to the proportion of collisions (relative to the generated
set) observed. Specifically we have found that for a proportion
of 0.1% of collisions we obtain a good coverage of our
randomly selected space. This was verified by plots that
graphically illustrate the coverage over time and space (signal).

D. Managing the data

Our experiments produce a huge amount of data that must
then be scanned and evaluated to derive the trends and
conclusions, as desired. The problem of balancing the selection
of data to be stored in a way to keep the database size
reasonable while still enabling the detailed reproduction of
every single simulation, has already been mentioned. Our
solution encompasses the following methods:

« For the observed target behavior we store only simula-
tions that deviate from the golden run, which turned out
to allow considerable savings of space.

o For the generation of the random injection parameters
we use pseudo-random generation that is initialized with
a specific seed. Storing this seed in the database enables
us to reproduce every “random” experiment in detail.

« We do not store the complete timing waveforms but only
observed symptoms. If needed, the information stored can
be used to rerun any simulation.

E. Result Extraction

For analyzing the resulting database entries and extracting
insightful figures and statistics representation we mainly use
Jupyter notebooks, which provides an interactive execution
environment for Python and other languages. This makes it an
ideal solution for interacting with the database and visualizing
results. Additionally the internal memory management makes
it possible to temporarily cache results and therefore save time
waiting for the database to respond.

V. CASE STUDY

To illustrate the capabilities of our toolset and give evidence
for its suitability we present some sample results here that
we obtained by it. The results presented in this section are
taken from our first big scale experiment with over one
billion executed fault injection simulations. Figure 8 shows the
progress of the executed simulation on around 40 computers
over a time span of roughly one moth. There where some
initial problems, as can be observed in the graph, but in the
end everything was running reliable.
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Fig. 8. Simulation progress for over 1 billion simulations

Figure 9 shows the results we obtained for a pipelined 8-
bit multiplier circuit, implemented with six different buffer
types, showing one bar per observed effect class. The bars
going upward refer to the data path, while the downwards
growing bars refer the control signals. The scale on the y axis
shows the portion of simulation runs that lead to the particular
outcome. The right-most implementation style (DD WCHB)
is completely tolerant to single faults and thus shows now
effects (except for some timing deviations, which are however
fine in the case of QDI circuits). A detailed discussion would
go beyond the scope of the paper and the space limitations,
but it is clearly visible how the buffer types differ.
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Fig. 9. Example result showing the sensitivity of the different buffer types

The impact of the pipeline load factor can be observed
in Figure 10 where the occurrence of the different behavior
classes is drawn over the PLE. It is clearly visible that the
pipeline load factor has a strong influence on the resilience,
but there is no clear trend observable. Therefore further ex-
periments need to be conducted to get a better understanding.
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Fig. 10. Example result showing the impact of the load factor

It is also possible to look at the main source causing a
failure type. In Figure 11 we show a heatmap of the different



circuits and mitigation methods. If the color is mainly yellow
the main source of the failure is caused by injections into
data signals. For blue regions it is mainly caused by control
signals. In general one row includes all information presented
in Figure 9, but without the rate of occurrence. This can help
to better understand the weak points of a circuit and aid in

optimizing.
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Fig. 11. Example result showing the main source of the different failure types

VI. CONCLUSION

Attaining reasonable coverage of the parameter space is
a notorious problem encountered in fault injection studies.
The facts the asynchronous nature of our targets prohibits
us from restricting ourselves to a discrete (clocked) time
representation, and that there are many different styles for
implementing buffers and combinational logic substantially
aggravate this problem. We have presented a toolset that
addresses this issue through several techniques.

Among these are well-controlled randomization of parame-
ters, parallelization of the simulation tasks, and careful avoid-
ance of overheads. We specifically address adaptive perfor-
mance of asynchronous circuits through a novel, automated
method for tuning the pipeline load factor, and through tar-
geted pre-selection of the fault duration via preliminary anal-
yses we effectively eliminate one continuous-time parameter.
Our solution to the big variety of implementation templates
of asynchronous designs is full automation of the experiments
including generation of target circuits and testbenches.

Another key ingredient of our solution is the use of a central
database to configure and dispatch the individual simulation
tasks, collect the results and perform evaluations, which is key
to keeping an overview of the huge amount of simulation data.

In this context we have also presented approaches for
reducing the sheer amount of data, while still allowing a
reproduction of every single experiment in all detail — in spite
of parameter randomization.

As an illustrating example we have used our envisioned
experiments on a variety of asynchronous target circuits. This
is a hard problem, as, on top of the challenges commonly
encountered in fault injection experiments, our planned survey
and comparison entails that we have many different target
circuits plus enhancement techniques, which blows up the
parameter space further.

We have shown some sample results that give evidence for
the suitability of our toolset and illustrate the type of insights
one can obtain by using it.

Our future work will be dedicated to adding support for
more detailed analysis (like recording key indicators for the
status of the internal pipeline stages), decomposing the time
dimension into protocol phases (within which the exact time
of fault injection may be less relevant for the outcome),
and extending our synthesis tool to also handle bundled data
circuits and synchronous ones.
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