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Abstract—Asynchronous, specifically QDI circuits are known
to exhibit high resilience against faults affecting the timing. At
the same time, their event based operation principle makes them
susceptible to glitches. While synchronous circuits obtain high
resilience through temporal masking that is established through
the sampling of data by flip flops, asynchronous designs, by trying
to be flexible about the phases of data validity, often have lower
masking capabilities. Consequently, previous work has proposed
to narrow down the windows in which data changes are accepted,
in order to improve the temporal masking in QDI designs.

In this paper we study the natural resilience of different
QDI templates in more detail and quantitatively determine
the windows of vulnerability through extensive fault injection
experiments in simulation. To this end we propose a novel way
of visualizing and analyzing the sensitivity windows that aids in
identifying the key dependencies and vulnerabilities. In addition
we introduce and evaluate two low-cost extensions for the pipeline
registers which allow either to stall the operation in case a glitch
creates an illegal symbol, or to prevent the creation of an illegal
symbol in the first place.

I. INTRODUCTION

In contrast to synchronous circuits with their rigid time-
driven operation dictated by the clock, asynchronous circuits,
in particular Quasi Delay Insensitive (QDI) circuits, employ
a closed loop control, established by handshake protocols,
to adapt their speed of operation to the respective operating
conditions. This makes their timing very robust and hence
initially qualifies them for building resilient circuits. However,
to leverage that potential their behavior with respect to faults in
the value domain must be understood and optimized as well.
In synchronous circuits it is evident how flip flops provide
temporal masking and thus make the circuit immune against
transient faults during certain phases. QDI circuits, in contrast,
are deemed susceptible to transient faults in the value domain,
due to their transition-centric operation. Still, however, these
circuits also benefit from immanent masking effects, but these
are more difficult to identify, as they depend on implementa-
tion, pipeline fill level, path delays etc. For any experimental
assessment by physical or simulated fault injection this makes
the parameter space to be covered huge. In addition, rather
than just giving one or several key statistical descriptors for the
masking – like the size of the sensitive window relative to the
clock period in a synchronous design – it becomes important
to comprehend the relevant dependencies.

One contribution of this paper is a novel method for visu-
alizing fault sensitive windows that gives detailed information
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about the sensitivity of individual signals and its dependence
on pipeline fill level in a compact and intuitive way. A second
contribution is a thorough analysis of a Weak-Conditioned
Half Buffer (WCHB) based pipeline, along with an apples-to-
apples comparison of different methods proposed in literature
for enhancing its resilience, first in theory and then based on
our proposed experimental approach that is based on fault in-
jection simulations. Finally, as a third contribution, we present
two novel schemes that prevent the generation/propagation
of illegal codes, as they often result from faults in QDI
circuits, across (WCHB) pipeline stages, and thus contribute
to enhancing resilience in the value domain.

The paper is structured as follows: The next section gives a
brief introduction into the principles of asynchronous circuits.
Then Sec. III reviews existing literature about enhancing and
assessing their resilience. Sec. IV presents the design templates
and mechanisms we consider in our comparison and analyzes
their resilience from a theoretical point of view, followed by an
experimental analysis in Sec. V. Finally Sec. VI introduces our
novel enhancement schemes and assesses their effectiveness,
before Sec. VII concludes the paper.

II. BACKGROUND

Where synchronous circuits use the clock signal to control
data transfer between storage elements (e.g., pipeline stages),
asynchronous circuits use some form of closed-loop handshak-
ing protocol. This handshake mechanism (usually) involves
two signals, called request (req) and acknowledgment (ack).
The data source uses the req signal to indicate the availability
of new data to the sink, which then acknowledges the reception
using the ack signal1. Depending on the number of transitions
on these two wires for one complete handshaking cycle, the
protocol can be classified as 2-phase or 4-phase. A 4-phase
handshake is defined by the switching sequence req�, ack�,
req�, ack�, where the arrow symbols denote rising and falling
transitions, respectively. Hence, the handshake signals always
start and end the handshaking cycle with the same logic value.
In contrast to that, 2-phase protocols only use two transitions
and leave the handshake signals in the opposite logic state.
This means that e.g., req�, ack� or req�, ack� both constitute
complete 2-phase handshakes.

The described request mechanism does not need to be
implemented as a dedicated req wire. It is also possible to

1This explanation assumes push channels, pull channels will not be con-
sidered in this work.
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implicitly encode the request into the transmitted data using
some DI code [1], which leads to the class of QDI circuits
[2]. The sink then has to use a completion detector (CD)
to decide when the received data is complete (i.e., valid)
and can thus be consumed and acknowledged. QDI circuits
can also be implemented using 2-phase or 4-phase protocols.
However, for circuits that actually process data (in contrast
to just transmitting it, e.g., [3]), practically only the 4-phase
variant is relevant. Hence, in this paper we only focus on this
style. For the same reason we will only consider the dual-rail
(DR) data encoding as Delay-Insensitive (DI) code. The DR
code uses two rails (i.e., wires) for each bit, the true and false
rail. For a DR bit d, we denote these rails by d.t for the true
rail and d.f for the false rail. In every handshaking cycle all
data rails start out in a low state (spacer) and only one rail
of each DR bit can go high. After acknowledgment all rails
switch back to low and the whole process start over. Hence the
receiver can simply use an OR gate to check for completion on
each received DR bit. The individual phases of this protocol
are also referred to as null and data phase.

Fig. 1 shows an example timing diagram of the transmission
of two DR bits d0 and d1. The bit order of the transmitted
bits in the figure is given by (d1.t, d1.f, d0.t, d0.f). The
transmitted binary data (d1, d0) in the figure is given by (0, 0)
followed by (1, 0).

DI data

ack

Spacer cn Spacer cn+1

(0,0,0,0) (0,1,0,1) (0,0,0,0) (1,0,0,1)

Fig. 1. 4-phase Protocol

It is important to stress that the order in which the transitions
on the individual data rails arrive at the receiver does not
matter. Furthermore, the individual gate and wire delays in
a circuit can vary arbitrarily and the circuit is still guaranteed
to work correctly. The only restriction on the delays is the
so called isochronic fork constraint, which demands that for
certain wire forks the delays of the individual paths after the
fork must be equal. This is also the reason why this class of
circuits is referred to as “only” quasi DI.

This fundamental property of QDI circuits, with respect to
their delays, constitutes the key for obtaining tolerance against
PVT variations. The disadvantage that is associated with this
robustness is that a QDI circuit always entails a high area
overhead when compared to corresponding synchronous or
asynchronous bundled data circuits. The reason for this area
overhead is the additional cost associated with the DI code,
the required CDs and the more complex logic gates.

III. RELATED WORK

Our analysis will focus on transient faults, as these are
much more frequently encountered during different missions,
especially in the shape of single event transients (SETs),
i.e., short voltage pulses caused by radiation particle hits.
For synchronous designs, there is an abundance of literature
available for mitigating SETs and avoiding single event upsets

(SEUs) they cause in storage elements. These concepts cannot
be directly applied to asynchronous circuits for two reasons:
(i) The effects of SETs are different in asynchronous logic,
and (ii) most of the synchronous solutions rely on synchrony
assumptions between replica, which do not (naturally) hold in
asynchronous architectures [4]. In order to cope with (i), an
appropriate modeling of faults (propagation and masking) in
asynchronous logic is essential, which again differs from the
synchronous models like [5] or [6]. In an early approach [7]
built an automated verifier for speed independent circuits based
on trace theory, which is a very natural means for describing
the sequences of transitions relevant for the operation in
asynchronous circuits. Later, [8] also used trace theory (among
others) for modeling the correct (and incorrect) behavior of
asynchronous circuits, more specifically interfaces. In [9] the
authors perform a very thorough analysis of SET effects in a
selected QDI function block. Their focus is first on the gate
level and then on channels (with 4-phase/RTZ protocol), and
they use handshaking expansion notation (HSE) to describe
the circuit behavior. They identify deadlock, synchronization
failure, token generation and token consumption as possible
SET effects. In [10] a similar investigation has been conducted,
again by means of HSE notation. Here, the treatment of glitch
effects and their coverage is more formal, but also a validation
through transistor level simulation is given. In a relatively
informal case distinction [11] analyzes the consequences of
SETs in 4-phase QDI circuits, and concludes that possible
effects are blocking, filtering, delay fault and soft error. Based
on this analysis three hardening techniques are elaborated.
By means of signal transition graphs (STGs) [12] performs
a very comprehensive study of SEU (rather than SET) effects
in QDI circuits, while later [13] also uses STGs to inves-
tigate SETs in QDI network-on-chip links. They propose a
bundle of techniques to protect QDI communication links and
interfaces from glitches. Also with a focus on SEUs [14]
applies symbolic simulation for an exhaustive coverage of all
possible behaviors under faults. A more experimental approach
is pursued in [15]. Here a simulated gate level fault injection
study is performed to compare the sensitivity of synchronous
versus asynchronous logic blocks to transient faults and to
analyze the respective masking effects. In almost all these
approaches the assessment, if any, is limited to a study of
overheads. On the other hand, in those few publications where
actual fault injection into asynchronous logic has actually
been performed (in simulation or hardware), the focus is
very narrow [10], or those experiments serve a purpose other
than supporting a model [16]–[18]. This makes it difficult
to perform an apples-to-apples comparison of the different
resilience enhancement approaches proposed.

Fundamentally, the adverse effect of particle hits can be
largely mitigated by the use of specific rad hard technologies.
In their simplest form they provide just a design kit and library
with larger feature sizes, which results in higher capacitances
and higher critical charge, such that the charge induced by a
particle hit does not cause voltage pulses with considerable
amplitude [19]. Consequently, such libraries cannot leverage



the benefits of technology scaling, and hence their overheads
become progressively higher. A more scalable concept among
the measures for obtaining SET tolerance is, like in the
synchronous domain, full or partial [20] replication. There are,
however, two important differences: (a) Concurrent voting is
not straight¬forward, as each instance is running at its own,
self-timed, pace [4]; but (b) the control loop established by
the handshake allows to keep the faster instance waiting until
the slower has its result available as well. This fundamental
principle is outlined in [12] where a C gate performs this
synchronization task. This principle has been often adopted
and extended, like in [11], [18]. There are, however, two
fundamental problems: (1) Without further measures (that ulti-
mately imply undesired timing assumptions) a non-responding
instance (omission fault) can deadlock the whole redundant
architecture. (2) A short SET on the slower one of the redun-
dant paths may lead to early completion and ultimately cause
desynchronization of the replica. Beyond a mere replication
of function blocks, a clever mutual synchronization of similar
functions (like such applied to neighboring bits in a word)
or the reduction of the redundant function block to a lean
synchronization component are proposed (e.g., in [11]). In [21]
the authors use a combination of spatial redundancy and
guard gate to harden a controller against radiation. Detailed
knowledge about (legal and illegal) protocol states or tokens
has often been leveraged for error detection in internal and
external asynchronous links, like in [4], [10], [13], [22], [23]
and [24]. In [25] information redundancy is leveraged to make
a whole processor low power and asynchronous at the same
time. In particular, [26] relies on checking for an illegal state
of a bit’s DR representation before actually latching any of
the two rails, while the work in [27] is based on replication
of the cell plus DR conversion. A complete radiation-hard-by-
design QDI processor (DD1) has been presented in [18]. To
achieve SET tolerance it essentially relies on duplication and
cross coupling, as well as memory protection techniques.

IV. QDI DESIGN STYLES

For our analysis we primarily look into WCHB-based
design styles and some derivatives. Fig. 2 shows a single-bit
WCHB pipeline with three stages. The storage elements in
this buffer are C gates2

The operation principle of this circuit is quite simple.
Assume the input data rails and the input acknowledgment
(ackin) are zero, i.e., the circuit is in the null phase. Due
to the inverter the enable signals (en) are high, which arms
the C gates for rising transitions on the data rails. After
some input data arrives and one of the C gates (in the first
buffer) actually switches to one, the CD, i.e., the OR gate,
will eventually generate the output acknowledgment ackout.
At the same time this transition also travels through the whole
pipeline, setting the respective C gates in each stage, until

2The Muller C-element, or short C gate, is a fundamental gate in asyn-
chronous logic. Its function is to output the logic level seen at its inputs when
these match, and to retain the last valid output state otherwise. It can hence
also be viewed as an AND gate with hysteresis.

the data appears at the output of the pipeline. Since the input
data has been acknowledged by the fist stage, the input rails
may now enter the null phase again. This null phase will then
propagate through the pipeline as well. However, it will only
be able to reset the last stage in the pipeline if the output
data is acknowledged by a falling edge on ackin first. This
means a single WCHB will keep its stored value (or spacer)
until the succeeding pipeline stage acknowledges the data (or
spacer), by toggling the acknowledge input of the respective
stage (using its CD).

When implementing n-bit WCHBs, completion detection is
performed individually on each DR bit by an OR gate. The
outputs of these OR gates are then merged by an n-input C
gate to generate the output acknowledgment ackout
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Fig. 2. 3-stage single bit WCHB pipeline

A. Fault Effects and Sensitivity Windows

Fig. 3 shows a timing diagram of a multi-bit WCHB over a
single handshake cycle. The shown data signals correspond to
the data outputs of the buffer, i.e., the outputs of the C gates.
The DR bits d0 and dn symbolize the pair of data signals with
the largest skew between them (windows B-C and E-F).

As soon as the input acknowledgment ackin goes low (A)
a WCHB waits for the data-phase and thus all its C gates are
armed for rising transitions. The C gates are only disabled
when the next stage acknowledges the received data (D). This
leaves quite a large time window (A-D) where the buffer is
susceptible to faulty (rising) input transitions. We say that the
buffer is now in a (fault-)accumulating state, since all input
transitions (faulty and valid ones alike) will be captured into
the C gates. This is in stark contrast to e.g., synchronous
designs, where there is only a single point in time (i.e., the
clock edge) where data is captured by the storage elements.

A B C D E F G

d0.f

d0.t

. . .

dn.f

dn.t

ackin

Fig. 3. WCHB time windows

Depending on when exactly a fault strikes a data wire during
the data phase and erroneously sets a C gate, one can observe
vastly different effects. If a fault strikes a data wire that should



transition anyway, in the best case only the point in time when
this transition happens is shifted, which is completely tolerable
in the context of QDI circuits. However, given sufficient skew
between the data rails, in the worst case such a fault can
deadlock the whole circuit. Striking a data rail that should
remain zero a fault can (besides the deadlock) cause an invalid
output pattern for a DR bit (i.e., both rails set to one) or a
valid but incorrect data token, depending on whether the valid
transitions on the respective other DR signal arrives before the
buffer is closed.

After ackin has been asserted (D) to acknowledge the
received data the C gates in the buffer are again armed for
falling input transitions. Hence there is a time window (D-
G) where the buffer is susceptible to faulty (falling) input
transitions. However, since the null phase does not carry any
actual data, faults don’t affect the transmitted data but can
again lead to deadlocks.

Since the input acknowledgment signal ackin basically
represents the enable signal for all the C gates in a buffer,
faults affecting this signal can have severe consequences on
a circuits. These range from deadlocks to lost data items or
illegal output patterns. The ackin (or en) signal is vulnerable
during phases where the inputs to the C gates differ in their
logical value (i.e., the C gate is in state-holding mode). In such
a situation a single input change can flip the value of the C
gate. As Fig. 3 shows, at time (C) the output of the buffer is
complete, hence eventually the output acknowledgment ackout
would be asserted, which in turn leads to the deassertion of
all input data rails. However the output of the buffer must
not enter the null phase until ackin is asserted, which means
that there is a sensitive window for the acknowledgment signal
between (C) and (D). A similar situation arises during the null
phase between the points (F) and (G).

We see that although in general delays are not relevant for
the correct behavior of QDI circuits, the exact fault behavior
of such a circuit is highly dependent on the input skew, the
involved circuit delays, the speed of operation and the actual
data that is being processed. This means that the sensitivity
of a buffer cannot be evaluated completely statically but
must incorporate environmental conditions as well as concrete
circuit details.

B. Fault Mitigation Strategies

To address these fault sensitivity windows inherent to the
WCHB discussed in the previous section, several strategies
have been proposed in literature. Here, we present a selection
of these approaches, which will also be analyzed in more detail
in the following section.

Most WCHB modifications aim at shortening the time
windows in which the buffer stores input transitions. One way
to achieve this, is to use two CDs for every buffer, one for the
input data and another one for the output data. Consequently
we refer to this buffer as the Dual CD WCHB. The C gates of
the buffer are then only armed when there is actually data at
the input (point (C) in Fig. 3). This idea is presented in more
detail in [13], where it is referred to as normally closed latch.

Moreover, [13] further proposes another slightly different
approach, which uses asymmetric C gates as storage elements
for the buffer. These C gates have one additional (asymmetric)
input that must be asserted in order to set the C gate, but
does not need to be deasserted to reset it again, like a normal
input would have to be. The asymmetric input is then fed
by the inverted output of the buffer’s CD, which ensures
that the C gates are disarmed as soon all input transitions
arrived, effectively closing the sensitivity window at point
(C) in Fig. 3. In case of the DR code this can be done
on a per-bit basis by using the output of the individual
OR gates, which has the benefit of closing the C gate of
the respective other rails as soon as one transition arrived.
This approach prevents the capturing of the invalid DR state
(11). However, blindly capturing the first transition creates a
potential of forwarding a wrong value (50% when assuming
random faults). In that sense it operates similarly to a Mutex,
with the important difference that depending on the timing
of the feedback path, there may still be cases where both
outputs are set simultaneously. This buffer modification can be
beneficial in combination with an error correcting code (ECC)
on top of the DR code: It prevents the protocol from being
upset by an illegal DR state, while the potential corruption of
the data value it causes can be undone by the ECC. In this
paper we refer to this approach as the Locking WCHB.

Another approach to avoid the lasting consequence of a
faulty transition is to use different storage elements. For that
purpose a D latch based Mousetrap-style pipeline structure as
proposed in [3] can be used. Here a simple buffer control
circuit, consisting of just a single XOR gate, is responsible
to enable and disable the buffer’s D latches. When the D
latches are transparent, input glitches caused by SETs can
freely propagate thorough the latch to the output. Unless the
latch is closed in exactly this time instance, the latch will not
store the faulty value. Similar to the previous approach the
buffer is closed as soon as the CD detects the data phase.
Although strictly speaking this circuit is not QDI because it
introduces a small timing constraint, we still want to include it
in our survey since it should show quite a different behavior in
the analysis and will refer to it as MTDHB (Mousetrap-style
D Latch half buffer). Note, however that this buffer has not
been proposed to improve fault-tolerance.

Finally, we also want to mention a completely different
approach proposed by Jang and Martin in [12]. This is not
really a design or buffer style on its own, rather a technique
for hardening existing QDI designs. Here the original design is
duplicated and both copies are interlocked with C gates that
essentially vote on every intermediate signal of the circuit.
The authors formally show that this scheme is able to tolerate
(single) faults on any internal signal, which means that in our
analysis it should not show any erroneous behavior. However,
it is easy to see that this approach entails more than double the
area overhead of the original design. Moreover, the additional
logic for synchronization of the two replicas also results in
a slightly slower circuit. Following the terminology used in
[12] we refer to WCHB using the described technique as a



doubled-up double-checking (DD) WCHB.

V. EXPERIMENTAL ANALYSIS

To experimentally analyze what fault sensitive windows
the different QDI buffer styles have, we use a Questa based
simulation to inject SETs. Fig. 4 shows our fault-injection
simulation target: a 4 stage, 2 bit, DR QDI pipeline connected
to a data generator at its input and a checker at its output. The
pipeline was generated for each buffer style under evaluation
and uses inertial gate delays and no wire delays. The 4 data
rails between buffers 1 and 2 as well as the acknowledgment
input to buffer 2 were chosen as victim wires. Whether an
injected fault had an effect on the circuit was checked in both
the data generator and checker, which compared timing and
values to a reference run, as well as checking for protocol
and coding violations. Whenever a deviation from the undis-
turbed golden run was detected, the behavior was classified as
follows:

• Timing Deviation: A transition happened earlier or later
than expected. The circuit being DI, this is not a fault,
but rather an observation.

• Value Fault: A wrong data value was delivered to the
output.

• Code Fault: An invalid DI code word was observed at the
output (i.e., both rails of a DR bit high).

• Glitch: A signal changed its value twice during a protocol
phase. This includes protocol violations (e.g., acknowl-
edgment before data completion)

• Deadlock: The circuit reached a state where no further
transitions were possible.

For the depiction of the results, we consider these classes
to be ordered in ascending importance – whenever a fault
injection triggered faults from different classes, only the one
with the higher importance was plotted and counted towards
the results. An example would be a DR output expected to
change from the null phase (00) to a logical 1 (10) which,
as a result of a fault injection changes from (00) to a logical
0 (01) at an unexpected time, generating both a value fault
and a timing deviation event in the checker. If subsequently
the expected transition arrived causing a code fault (11) we
would consider the fault injection to yield a code fault and
disregard the value fault and timing deviation.

It is important to note that the effects of a fault injection
were only observed at the outputs of the pipeline with one
pipeline stage between the victim wires and the checker. The
motivation behind this choice was to let the additional pipeline
stages perform logical and temporal masking as it would occur
in a normal pipeline. Attaching the strict checker directly
to the buffer that was targeted in our fault injection would
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Fig. 4. Simulation Setup

show unnecessarily high fault rates when the often less strict
pipeline stage simply does not let many faults through to the
checker at the output. While allowing to get better results for
buffer styles that propagate fewer faults, this topology also
hides some internals that would allow us to differentiate even
better between the fault manifestations. When a data word
is erroneously removed from the pipeline due to the injected
fault, the checker would probably only see a timing deviation
and a value fault for some of the following words extracted
from the pipeline. The same holds true for spurious data items
injected into the pipeline during the null phase.

Fig. 5a shows a simulation trace for the original WCHB.
First, the simulation started with a pre-run, where it was
counting several rising transitions on the ackin wire to skip the
initial phase, where the pipeline only starts to fill up, which
is not visible in the figure. Afterwards, 400 ps pulses were
injected into the victim wires in 250 ps steps between 0 ns and
120 ns from the end of the pre-run (marked by the 0 ns point on
the x-axis). Markers indicate injection times of pulses that had
an observable effect on the pipeline, their colors representing
the classification of that effect.

As we have seen from the analysis in the previous section,
the timing of the input signals to a pipeline has a high
impact on the fault sensitivity windows. By operating the
circuit at a specific speed (i.e., handshake rate) the external
signals determine how much time the circuit spends in the
different protocol phases and hence in its sensitive windows.
This is again in stark contrast to a synchronous designs, where
the input signals simply don’t have that much “power” over
the circuit. Hence, a single simulation trace (Fig. 5a) alone
only yields very little information about fault behavior of a
circuit, since it only shows one specific operation point. For
that reason, an essential part of the simulation setup was the
possibility to choose delays of the source and sink when gen-
erating new input words and acknowledgments respectively. It
allowed us running the fault injection simulation of the same
pipeline with a variety of timing settings, gradually changing
its operation from token-limited (where the pipeline stages
mostly wait for valid data words to arrive) to bubble-limited
(where the pipeline stages receive valid data at their inputs,
but need to wait for the acknowledgment from the succeeding
stage before being allowed to store the new data word).

Fig. 5b shows the results of such a timing variation for
the same WCHB pipeline simulated in Fig. 5a: For each
signal, abutted horizontal stripes represent the results of 11
different simulation runs, in which the pipeline transitioned
from bubble-limited (top) to token-limited (bottom) operation.
A stripe is colored blue where the signal is low and orange
where it is high. Note that Fig. 5a shows the topmost WCHB
simulation stripe from Fig. 5b. In the same way the other sub-
graphs in Fig. 5 illustrate the behavior of the pipeline using the
alternative pipeline implementation styles presented in Sec. IV.
This representation style, that allows to pack a large amount of
information about the fault behavior of a buffer into a single
figure, is one of our key contributions of this work.

It allows us to see how the external interface timing affects



(a) Single trace of classic WCHB (b) Classic WCHB

(c) DD WCHB [12] (d) Locking WCHB [13]

(e) MTDHB [3] (f) Dual CD WCHB [13]

Fig. 5. Simulation Results

the sensitivity to faults of the different pipeline implemen-
tations when subject to SETs. The data rails for the classic
WCHB implementation show how the inactive rail is sensitive
to produce a code fault the entire time the receiving C gate is
accumulating, irrespective of whether the pipeline runs token-
or bubble-limited. The Locking WCHB significantly reduces
the sensitive windows by correctly preventing code faults in
bubble-limited operation after a transition on one of the two
rails was captured by a C gate. It only fails to prevent code
faults for a short time corresponding to the feedback delay
for locking. In token-limited operation, the injected pulse is
captured and the correct and expected transition on the other

data rail is prevented from turning the valid, albeit incorrect,
value into a code fault.

Unsurprisingly, the DD WCHB style proves to be insensitive
to SETs in all operation modes whereas the Dual CD WCHB
style brings little to no improvement to the sensitivity win-
dows. The MTDHB shows very narrow sensitivity windows on
the data rails while the enable signal (the signal that activated
the D latches of the buffer) is sensitive most of the time. Faults
on this signal also have a wide range of possible effects.

Fig. 6 shows the ratio of injected faults that had an ob-
servable effect other than a timing deviation to all injected
faults. Note that buffer styles which will be introduced in the



Fig. 6. The number of fault injection simulations with an observable effect
on the pipeline
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Fig. 7. Proposed WCHB modifications

following section are also included in this figure. To make a
fair comparison and prevent speed differences from influencing
the results, faults are only considered during one handshake
cycle between two rising edges of the acknowledgment wire.
For each considered buffer style, the 11 bars show the results
for the 11 simulations depicted in Fig. 5 and Fig. 8. It is
apparent that the robustness of the simulated pipelines clearly
depends on the external timing. By observing a sweep of
simulations with varying timing, one can qualitatively assess
the effectiveness of fault mitigation techniques like the locking
WCHB design instead of barely looking at numbers without
the knowledge of whether the circuit was simulated with
token- or bubble-limited timing. It could even happen, that
a developed fault mitigation technique which is not effective
in practice might appear to be advantageous in fault injection
simulations, where in fact, additional delay due to added
logic gates changed the circuit operation from token-limited to
balanced which in itself could bring a significant improvement
of fault sensitivity windows. The figure also shows that,
depending on the operation mode a circuit is actually used
in, it may not pay off to invest in very high overhead fault
mitigation strategies, because simple and comparatively cheap
approaches also yield quite good robustness.

VI. PROPOSED BUFFER ENHANCEMENTS

Fig. 7 shows two half-buffer designs (with compara-
tively low hardware overhead) that try to mitigate the fault-
accumulating behavior of the classical WCHB discussed in
Sec. IV-A. Both use cross-coupled asymmetric C gates, whose
outputs are fed back to the asymmetric input of the respective
other gate.

For the deadlocking WCHB the feedback inhibits the buffer
from entering the null phase if erroneously both C gates are
set, effectively causing a deadlock and preventing the circuit

Fig. 8. Simulation results for the proposed buffer (top: Deadlocking WCHB,
bottom: Interlocking WCHB)

from processing possibly faulty data. This can be useful in
applications where the correctness of the output is crucial,
while deadlocking is not harmful (fail stop). The interlocking
WCHB only allows the first transition at its input to propagate,
thus prohibiting the invalid DR (11). In this sense it is
similar to the locking WCHB design proposed in [13] and
discussed in Sec. IV-B. However, one important difference is
that their approach uses the output of the CD to deactivate the
corresponding C gates (i.e., prohibiting them from switching
to one) in the buffer. While this allows the use of arbitrary
DI codes, it also prolongs the feedback path by the delay of
the CD, which keeps the buffer open and thus susceptible to
SETs on its inputs for a longer time window. Another more
subtle difference to the approach in [13] is that in order to
prevent an erroneous input transition from setting a C gate,
after completion all C gates are switched to a state-holding
mode (i.e., the output is driven by the internal storage loop).
In our approach only the C gate connected to the rail that did
not transition to high is switched to the state-holding mode
(keeping its zero value).

Fig. 8 and Fig. 6 show the results of the analysis. It is
clearly visible how the deadlocking WCHB, as expected, turns
all code faults seen on the data rails in the classic WCHB
into deadlocks, albeit without changing the sensitive window.
The interlocking WCHB in turn significantly shortens the
sensitive windows, since in the bubble limited case the correct
transition appears early, and afterwards the interlocking closes
the sensitive window. The non-zero size of the remaining
window is due to the propagation delay for the locking to
become active. Note that these windows are slightly shorter



than those found for the approach from [13] in the previous
section, due to the shorter feedback path. In the token limited
case, there is a potential for faults on the non-switching rail
to arrive before the correct transition on the other rail and
thus lock the buffer in an incorrect (but valid) state. This is
indicated by the windows with value faults that match the size
of the sensitive windows in the original WCHB.

VII. CONCLUSION

We have analyzed the sensitivity of different variations of a
WCHB to transient faults. Given that this sensitivity strongly
depends on the speed of source and sink, our conclusion
was that a systematic analysis requires a visualization of
this dependence. Our proposed solution here is a graphical
representation of the sensitive windows for each relevant
signal, aggregated for different settings of source speed and
sink speed, and showing a color code for the observed effect
of a fault at the point corresponding to its injection. In
another type of visualization we have compiled the absolute
number of observed effects summed up over all relevant
signals of a given buffer implementation, again plotted as
a trend over various settings of sink and source speed (i.e.
going from bubble limited to token limited). The required
data for these plots are generated in extensive fault injection
experiments into a simulation model. Using these compact
representations we have identified the key vulnerability of the
classical WCHB and proposed two enhancements, namely an
interlocking buffer and a deadlocking buffer. For both we have
sketched a target use case and given evidence for their proper
operation through our graphical analysis.

On the long run, our approach aims at elaborating a generic
model of the sensitivity of a QDI block to SETs which allows
to correlate the types and rate of effects observed with design
parameters like pipeline style, protocol, latch implementation,
activity profile and others. Based on this knowledge, the
assessment of a specific circuit’s susceptibility to SETs should
be relatively straightforward.
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