Fyus._

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universitat Wien aufgestellt und

uB

http://www.ub.tuwien.ac.at
Universitatsbibliothek

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

TECHNISCHE
UNIVERSITAT
WIEN

Vienna University of Technology

DISSERTATION

Establishing and Verifying Authentic
Performances of Digital Objects: A
Framework and Process for Evaluating
Digital Preservation Actions

ausgefuhrt zum Zwecke der Erlangung des akademischen Grades eines Doktors

der technischen Wissenschaften
unter der Leitung von

ao.univ.Prof. Dr. Andreas Rauber
E188
Institut fir Softwaretechnik und Interaktive Systeme

eingereicht an der Technischen Universitat Wien
Fakultat fur Informatik
von

Dipl.-Ing. Mark Guttenbrunner
9325367
Tongasse 6/7, 1030 Wien

Wien, aml16. Februar 2014

Kurzfassung

Museen, Archive und Bibliotheken sehen sich immer ofter reit Aufgabe
konfrontiert, nicht nur analoge Daten auf Papier oder ggyg Kunstwerke zu
bewahren, sondern auch kulturelle Objekte in digitalemor ihren Sammlun-
gen auf viele Jahre bewahren zu missen. Dabei geht es nrdmum, dass diese
digitalen Daten gespeichert werden, sie missen auch infeonen wiedergegeben
konnen, die moglichst dem urspringlichen Zweck der Datdspeicht. Doch
nicht nur kulturelle Objekte missen bewahrt werden, audie#sablaufe und au-
tomatische Geschéaftsprozesse missen bewahrt werdene um spateren Zeit-
punkten zum Beispiel zur Beweisflihrung vor Gerichten wie#tévigren zu kon-
nen.

Es gibt prinzipiell zwei verschiedene Verfahren, um digitBaten tber einen
langen Zeitraum zuganglich zu halten. Entweder werden @&iauf immer
neue Formate migriert, um sie mittels aktueller Softwareeagen zu kdnnen,
oder es wird die Umgebung, mit der sie angezeigt werden, idlselle Umge-
bung erhalten. Dabei werden bestimmte Schichten, die maligesind um ein
Objekt anzuzeigen, ausgetauscht oder sogar neu eingefishikinn zum Beispiel
die Hardware eines Systems durch einen Emulator ersetziewgeider es er-
laubt, die Software, die notwendig ist ein Objekt anzuzejgeuf neuer Hard-
ware auszufihren. Doch unabhangig davon, ob ein digitatgskDauf ein neues
Format migriert wird oder ob ein Emulator eingesetzt winah das Objekt weit-
erhin anzuzeigen, ist es notwendig, das Ergebnis der Aktierausgefuhrt wird,
zu prufen. Es muss festgestellt werden, ob die Eigenschaftees Objekts das
angezeigt wird durch die Aktion verandert werden, und inclvein Ausmal3. Erst
wenn der Einfluss der Aktion auf die sogenannten signifikaiigenschaften
eines Objekts bekannt ist, kann man entscheiden, ob einerAkilassig ist, oder
die Darstellung eines Objekts in einer Art und Weise veréndée nicht akzep-
tabel ist.

Die Forschung konzentrierte sich bisher darauf, wie Vérhke zwischen mi-
grierten Objekten angestellt werden kénnen, um festdastadb bei einer Migra-
tion signifikante Eigenschaften eines Objekts verandertdem Die Notwendig-
keit, bei Emulation, bei der das Objekt nicht verandert yfergleiche zwischen
den dargestellten Objekten anzustellen, ist bekanntgdatigs gibt es keine Vorge-
hensmodelle, wie solche Vergleiche angestellt werdenédnn

Im Rahmen dieser Dissertation wird ein Vorgehensmodell Riaservation
Action Evaluation Framework) erstellt, das es erlaubt,@estellung eines Ob-
jekts in verschiedenen Umgebungen zu vergleichen. In esrsten Schritt wird
ausgefuhrt, dass es eigentlich keinen Unterschied mabrgjroObjekt migriert
wird, oder die Umgebung zur Darstellung eines Objekts egnulvird. In beiden
Fallen muss nicht das Objekt selbst sondern seine dargedtelrm verglichen

werden. Wir beschreiben, welche Informationen tber eirekthjnd seine Umge-
bung gesammelt werden mussen, und an welchen Stellen imesystem ein
Objekt verglichen werden kann. AnschlieBend zeigen wig @ie zur Darstel-
lung eines Objekts notwendige Umgebung neu aufgebaut wesalen, und was
notwendig ist, um Vergleiche anstellen zu kénnen. Wir besiblen welche ex-
ternen Einflisse auf die Ausfiihrung eines Objekts abgefange bei der neuer-
lichen Ausfihrung wieder zugefuhrt werden missen, um eeterohinistische
Ausfuihrung zu garantieren und Bedingungen zu erzeugeniragia ¥ergleich er-
lauben. Wir beschreiben weiters, wie das Framework in eitreservation Work-
flow eingebunden werden kann und in den verschiedenen Pdaseworkflows
zur Anwendung kommt.

Da eine automatische Evaluierung der Darstellung digitalgekte nur mog-
lich ist, wenn diese auch zu einem gewissen Grad von denlaesidien Umge-
bungen unterstitzt ist, zeigen wir auf, welche Funktionesealimplementieren
sollten, um sowohl den Datenaustausch zwischen dem Hase/8yund dem
Gast-System, als auch die Evaluierung zu erméglichen.

In weiterer Folge stellen wir einen obsoleten Heim-Compaiges den 80er
Jahren vor. Wir zeigen wie wir ein Programm entwickelters, esauns erlaubt, auf
Audiokassetten gespeicherte Daten ohne Verwendung dgsdlsystems auszule-
sen, und in nicht-obsoleten Formaten zu speichern. Daesthe@ser Daten allerd-
ings Programme sind, die nicht ohne weiteres migriert weidennen, entwick-
elten wir einen Emulator der diese Programme auf modernste®en lauffahig
macht. Die fur eine automatische Evaluierung notwendigemkftonen wurden
in den Emulator implementiert. Anschlie3end zeigen wig amhand des Frame-
works die Ausfuihrung von zwei Objekten im Emulator evalivenrde, und zwar
einem Geschaftsprozess und einem Videospiel. Fir zweemee@@bjekte auf an-
deren Systemen (einem Musikklassifizierungsprozess withldir Kunst) zeigen
wir die notwendigen Schritte einer Evaluierung im Framewor

Durch die erfolgreiche Evaluierung wurde die Validitat deameworks und
die praktische Umsetzbarkeit gezeigt. Zum Abschluss disten wir noch not-
wendige weitere Forschungsarbeit im Bereich der Evalugevon virtuellen Um-
gebungen.

Abstract

Museums, archive and libraries are often confronted wighctiallenge to pre-
serve not just analogue data, but also digital objects ®tdhg term. While one
challenge is to store the data for a long term, an even mofieuify one is to
keep it accessible. Digital objects have to be renderedose @s possible to how
they were originally used. But not only cultural objects oabsisiness processes
and scientific data have to be kept for future generatiotiseefor legal purposes
or to reproduce scientific experiments.

Two major strategies exist to keep digital objects useabde the long term.
Either a digital object is migrated from an obsolete fornmaatformat that can
be rendered using modern hardware and software, or therregdavironment
of the object is preserved by creating a virtual version eféhvironment. Vir-
tualizing an environment means replacing various layethenstack of software
and hardware rendering the object with different represtemnts of this layer. For
example, the hardware of a system can be replaced by a sefenarlator of this
hardware, allowing us to render the object in a new hardwaveament. Inde-
pendently of the strategy used to preserve a digital objleetactual preservation
action has to be evaluated. We have to determine, if thefgignt properties of
a digital object are changed by applying the preservatitio@cand to what de-
gree. Only if the influence of a preservation action on thaifigant properties
of an object is known, a preservation planner can decideiptieservation action
is valid, or if the properties are changed in a way that is moeptable for the
preservation purpose.

Previous research focussed on how to compare digital agbipsfore and af-
ter a migration action, concentrating on the propertiesestan the format of the
object. Frameworks for performing an evaluation of objeetslered in a virtual
environment do not exist. In this thesis we create a framlewlait allows the
comparison of renderings of a digital object in differemdering environments,
called the “Preservation Action Evaluation Framework'tsEiwe show that even
for migrated objects a comparison has to be done on the |étleé@bject being
rendered, as not only the object properties change, buitiaadly to an emulation
strategy, layers in the view-path used to render the objentge. We describe the
information that has to be collected about an object andritgnal environment.
We show the different forms of a rendered object that exist urtual environ-
ment, to determine when and where a digital object’s sigmitiproperties can be
compared. Next, we show the steps necessary to ensure ytdiffanences in the
rendering are caused by the rendering environment and nohdryged external
events influencing the rendering of the object. We also sl the frame-
work can be used in the different steps of a preservation flmvko evaluate the
rendering of an object in the plan, preserve and re-depl@ag@h As automatic
evaluation has to be supported by the rendering environtoestme degree, we

iv

show guidelines to be considered when developing a virtadt@ment, includ-
ing data exchange between a host and a guest system.

Next, we introduce an obsolete home computer used for videweg and busi-
ness processes. We show the implementation of a tool tleatsalls to migrate
data stored on audio tapes to non-obsolete formats witheeitoti the original
system. As some of this data are programs, we develop an emthat is able
to execute these programs, considering the guidelinesviuation and data-
exchange. We then show how the framework is used to evalu@teenhdering of
different objects in the emulator in the context of a preaton workflow. We also
discuss the framework’s application on two more more reobjécts, a scientific
process and a digital artwork.

The successful evaluation of the case studies shows trdityadf our frame-
work and its implementation in a virtual environment. Fipalve discuss current
and future work connected to the work shown in this thesis.

Acknowledgments

This thesis would not have seen the light of day without thepsut of my
friends, colleagues, and family.

A special thank you goes to my adviser Andreas Rauber. Hig,inpativation
and challenging questions continuously improved my wor#t helped making
this thesis a reality. My colleagues | worked with on the @as projects also
provided valuable input and were always a source of ingpirat

Thank you also to all my friends that supported me during timg lyears of
my studies. Without them pushing me to finish, | would propaibt have had
the motivation to keep going on. And thank you to my parentsefeerything,
but especially for giving me the possibility to study and poiing me in this
decision.

Part of this work was supported by the European Commissionaréth and
7th Framework Programs, IST, through the PLANETS projeattract 033789
and the TIMBUS project, contract ICT-269940, as well as the EINK1, FFG
- Austrian Research Promotion Agency. Without the discursswith partners in
and outside the projects, this work would not have been blassi

So long, and thanks for all the fish.

Contents

1

Introduction 1
1.1 Digital Preservation
1.2 Problems and Research Questions
1.3 OrganizationofthisThesis

Related Work 12
2.1 Introduction
22 View-Path
2.3 Digital Preservation
2.3.1 Threats to Objects on DifferentLevels
2.3.2 Countering the Threats by Preservation Actions 16
2.4 Migration 16
2.5 Emulation/ Virtual Environments
251 Levelsof Emulation
2.5.2 Emulation Technologies Used in Digital Preservation. 21
Keeping EmulatorsUseable
Modular Emulation 22
Universal Virtual Computer-UvC 23
KEEP Emulation Framework
Remote Emulation
2.5.3 Emulation in the Context of this Thesis
2.6 OAIS ReferenceModel
2.7 PreservationPlanning
2.8 Evaluation of Digital Preservation Actions 28
2.8.1 SignificantProperties,
2.8.2 Identification, Validation, and Characterization adial
Objects
2.8.3 Characterization Languages
2.9 TIMBUS Preservation Workflow
2.10 Projects on Preserving Complex Objects, Multimedia latet-
activeContent

CONTENTS vii

2.11 Summary ... e e e 39
3 Comparing Migration/Emulation Renderings 40
3.1 Introduction 40
3.2 Changing the View-Path Using Emulation 41
3.3 Changing the View-Path using Migration 42
3.4 Generalized View on the Performance of Digital Objects 44
35 Summary 45
4 Describing a Digital Artifact 49
4.1 Introduction 49
4.2 Describing the Digital Artifact 94
4.2.1 Determinism of the Digital Artifact 50
Deterministic Behavior 50
Non-Deterministic Behavior 51
Testing an Object for Determinism 55
4.2.2 Significant States of a Digital Artifact 65
TargetState 56
Seriesof States oL 57
Continuous Stream 57
4.3 Describing the Rendering Environment 57
4.3.1 Selecting the Reference Rendering Environment 58
4.3.2 Describing the View-path of a Digital Artifact 60
Hardware Configuration 60
Operating System and Configuration. 61
Secondary Digital Objects 61
Digital Artifacttobe Rendered 62
Additional Digital Objects not in the View-path 62
4.3.3 Identifying Levels to Extract A Rendered Form 62
Descriptive Form oL 62
Rendered ForminMemory 62
Rendered Form on the Output Interface 64
Rendered Form on QOutput Device 64
4.4 Collecting VerificationData 64
4.5 Summary e 66
5 Evaluating in Changed Environment 68
5.1 Introduction 68
5.2 Recreating the Rendering Environment. 68
5.2.1 RecreatingtheView-Path. 69

5.2.2 Reapplying ExternalData 69

CONTENTS viii

5.2.3 ComparingObjects 70
5.2.4 Identifying Levels of Comparing Rendered Forms 71
Descriptive Form L. 71
Rendered ForminMemory 72
Rendered Form in Host System Memory 72
Rendered Form on the Output Interface 72
Rendered Form on Output Device 73
5.2.5 Extracting Properties from the Rendering Environment 74
5.3 Steps for the Evaluation of Rendering Effects 76
5.4 PreservationWorkflow 78
5.4.1 Lifecycle of a Digital Object in a Preservation Workiflo. 78
5.4.2 Preservation Workflow Phases 79
55 Summary e 84
6 Design Guidelines 85
6.1 Introduction 85
6.2 Long Term Stability of Virtual Environments 85
6.2.1 Durable Virtual Environments 86
6.2.2 Flexible Virtual Environments 87
6.3 Requirements for Evaluation 87
6.3.1 Recording and Replaying External Events 87
6.3.2 Extraction of Significant Properties 88
Rendered Forms 88
Logging of the Rendering Process 89
6.3.3 Timing Requirements on the Virtual System 90
6.4 Data Exchange between Guest and Host System 1. 9
6.4.1 Virtual Environment Unaware Guest System 91
6.4.2 Virtual Environment Aware Guest System 92
Additional Tools 93
Virtualization Aware Operating System 93
6.5 Summary e e 94
7 Preserving an Obsolete System: The C7420 95
7.1 Introduction 95
7.2 The C7420 Home Computer Module for the Philips Videopac+
G7400 e 95
7.2.1 The Philips Videopac+ G7400 Video Game Console Systém 9
7.2.2 The Philips C7420 Home Computer Module 96
7.3 Extracting Data From Obsolete Media and Migrating It twnN
Obsolete Formats 98

7.3.1 Re-engineering the Waveform 99

CONTENTS X

7.3.2 Re-engineering FileFormats 100
7.3.3 Converting Waveform to Bitstream 101
7.3.4 MigrationTool 103
7.3.5 Evaluating the MigrationTool 104
7.3.6 Observations on the Migration Tasks 107
Reengineering of the System 107
Evaluated Tapes 108
Improvement of MigrationResults 108
MediaRefresh 108
Interpreting Results For Other Media Types 108
7.3.7 Information Lost Due to Migration. 109
7.4 Emulating the C7420 Rendering Environment 011
7.4.1 Program Execution on the Original System 110
7.4.2 Implementing the view-path in an Emulator 311
743 Datalnjection. 115
Keyboard, 116
Joysticks 118
Files. 118
7.4.4 Data Extraction for ApplicationUse 120
Files. 120
Clipboard 120
Screenshots 121
7.5 Implementing Evaluation Functionality 122
7.5.1 RecordingofEvents 124
Operating the Environment 125
ExtractionofData 125
InternalEventso 126
7.5.2 Automated Execution. oL 127
7.6 Discussion of Alternative Preservation Actions forftnalips Videopac
System. 128
7.6.1 HardwarelLevel 128
7.6.2 FunctionallLevel 129
7.6.3 Source Code Migration 129
7.7 SUMMAIY . . . e e s e e e e e e e 129
8 Evaluation Case Studies 131
8.1 Introduction 131
8.2 Evaluation of O2EM-Emulator 131
8.2.1 Business Process Example: Cassa 131
8.2.2 Video Game: Terrahawks 139
8.3 Re-running Scientific Experiments: Music Analysis Waywfl . . 141

CONTENTS X

8.4 Digital Art Example: First Finnish Underground 146
8.5 Summary 150
9 Conclusions and Outlook 152
9.1 Contributions 152
9.1.1 Challenges 152
9.1.2 Comparison of Rendering in Migration and Emulation . 3 15
9.1.3 Preservation Action Evaluation Framework 541
9.1.4 Preserving Processes in a Preservation Workflow . . 155.
9.1.5 Design Requirements for Virtual Environments 551
9.1.6 Preserving Digital Objects For An Obsolete Systeme- Th
C7420 e 156
9.1.7 Evaluated Case Studies 157
9.2 Achievements 158
9.3 Ongoing and Necessary Future Work 160
9.3.1 Characterization of Environments 160
9.3.2 Easeof Accessto Emulation 160
9.3.3 Strengthen Emulation as a Digital Preservation &jyat . 161
9.3.4 Connect Virtual Environment Authors and Digital Prese
vation Stakeholders Lo 162
9.3.5 Standardization oL 162
Bibliography 163
A Data Formats of C7420 Home Computer System 172
A.l Introduction 172
A2 FileFormats 172
A.3 FileHeaderand DataBlock. 173
A4 BasicProgram. 173
A5 Screenshot. 174
A5.1 Formatting 175
A.5.2 Foreground and Background Colors 175
A.5.3 Double Widthand Height 176
Doublewidth 177
Double height. 177
A5.4 BlinkandReverse 177
A6 Array e 177
A.6.1 StringArray 177
A.6.2 NumberArray 178
AT String e 178
A8 MemoryDump 178

CONTENTS Xi

B ASCII Table for C7420 Home Computer System 179
B.1 Introduction 179
B.2 Converting C7420 Character Setto ASCII 179
B.3 Converting ASCII Character Setto C7420 Characters 180
C Event Log for O2EM 183
C.1 Introduction 183
C.2 ImplementedEvents 183

C.3 ExampleLog e 184

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8

2.9

Generic view-path for rendering a digital object. 13
Different view-paths for displaying the same digitajead. 14
Layers of emulated environments for digital objects...... . . . 19
Functional entities of an OAIS archive [ISO, 2012]. 25
Preservation planning workflow [Becketral, 2009]. 27
Preservation planning integrated into the OAIS. 29

Screenshot of "Chessmaster 2100" running under DOS oefthe I

and the segmented screenshot showing significant areas aglih 33
Screenshot of original DOS-Version of "The Secret of Mgynk
Island" (left). Significant areas in the same screenshotrastat

of binarization and segmentation are shown on the right. . . . 34
Code snippet of XCDL enhancement for significant coordmat
ofidentifiedareas. 34

2.10 Process for Digital Preservation of Business Procg&®}in

3.1

3.2

3.3

3.4

TIMBUS. 35

Changing the view-path by emulating the application! bokes
show the emulated layer that changes, dashed boxes aadlition
layer(s) that need to be introduced. Shown are the origies-v
path (a) and view-paths emulating the application (b), {herat-

ing system (c), and the computer architecture (d). 42
Changing the view-path by migrating the digital object. x&®o
around the layers highlight the layers that change. Shoe/har
original view-path (a) and the changed view-path when the ob
ject is migrated (b), when a different application is usedetader

it (c), when a different operating system has to be used fer th
application (d), and when the computer architecture chaf(ge . 43

Sample layout region of a document in MS Word for Windows
97-2003 format rendered in MS Office 2007.. 46
Sample layout region of a document in MS Word for Windows
97-2003 format rendered in OpenOffice 3.4. 46

Xii

LIST OF FIGURES Xiii

3.5

3.6

4.1

5.1

5.2

7.1
7.2

7.3

7.4

7.5

7.6

Sample layout region of a document in MS Word for Windows
97-2003 format migrated to MS Word for Windows 2007 (docx)
format rendered in MS Office 2007.
Sample layout region of a document in MS Word for Windows
97-2003 format migrated to MS Word for Windows 2007 (docx)
format rendered in OpenOffice 3.4.

Different forms of a digital object in a system’s memoBn the
left the layers in an original system are shown, on the rigbt t
layers in a system hosting a virtualized view-path are shown . 63

Different evaluation steps for evaluating dynamic esimys and
their mapping to the preservation process phases.80
Environments used to extract data that is later usedéc(rdtmpar-
isons in different steps in the preservation process. (@pevison

of data between the original environment and different catds

for the preservation action, (b) comparison of data betwiben
original environment and the virtualized environment ferifi-
cation, (c) comparison of data between the virtual envirenim
before storage at time t and the future virtual environmetitree t'. 81

Philips Videopac+ G7400 game console system. 97
Philips Videopac+ C7420 Home computer cartridge: Caytrid
that plugs into the system in front, connected to the maie taet
holds the additional CPU and memory in the back. The connec-
tors for loading/saving data to an audio system (red, whiig a
black cables for microphone, headphones and remote cpateol
attachedtothemaincase.
Waveform of “Hello World” BASIC program (1: initial 6 kHz
lead-in tone; 2: 256 x OXFF as start of file-signature; 3: fdadter;

4: 128 x OXFF as header/data separator; 5: data block)99
Representation of one byte in the waveform (1 start bjt thata

bits (least significant first: 11010011b = D3h), 2.5 stop 3 . . 100
Interpretation of the wave signal using method 1. Valtaxis
shows the strength of the amplitude, horizontal axes thes jér

the sine wave interpreted as “signal” (1) or “no signal” (0). . . 102
Screenshot of the migration tool GUI with 7 BASIC progsam
imported from a WAV-file recorded from an original tape. The
import-log on the lower left shows events and errors durhmg t
import. Various import settings can be configured on the uppe
left and the imported programs are shown in tabs on the right. 104

47

98

LIST OF FIGURES Xiv

7.7 Tapes used for evaluation of migration tool, left uppener C10
computer cassette, left lower and right Philips FE-1 60 redrpo-
sitionaudiotapes. 105

7.8 Screenshot of a BASIC-program imported with errors froAy-
file. In the program listing on the right side incorrect argnts
for commands and line numbers out of order can be found. The
log on the left side shows error events that occurred duiieg t

IMPOrt. e e 107
7.9 Philips Videopac+ G7400 with plugged in Philips C7420 ldom
Computer cartridge. 111

7.10 Block diagram of C7420 Home Computer cartridge and Philips
Videopac+ G7400 system. Connection between cartridge and sy
tem is done using the cartridge connector. CPU - Central Pro-
cessing Unit, GPU - Graphics Processing Unit, RAM - Random

Access Memory, ROM - Read Only Memory. 112
7.11 Communication flow between G7400 system and C7420 agetriti13
7.12 view-path for program execution on G7400+C7420114

7.13 Start screen of C7420 Home Computer cartridge on O2EMatan il 16

7.14 Different renderings in the view path of the C7420 Home €om
puter cartridge. 123

7.15 Preservation actions for different layers of viewhpat 128

8.1 Screenshots of the program Cassa on the Philips Videop&0C7
home-computer. Interactive loading of the program on tliie le
final rendered dataontheright. 132
8.2 Workflow of the use-case of displaying data in the casphcagpion.134
8.3 Non-deterministic rendering of Terrahawks - resulhdfal record-

ing (leftyand re-run (right). 139
8.4 Musical genre classification workflow [Mayetral, 2012a] 142
8.5 Musical genre classification, including fetching ofajahodeled

in the Taverna workflow engine [Mayer and Rauber, 2012] . . .3 14
8.6 First Finnish Underground digital artwork (1995). @&idcreen

(left) and first interactive screen (right) are shown. 146

8.7 Tool for controlling of virtual environment execquMaln win-
dow is shown on the left. It allows to select a virtual machine
which will be controlled, specify the time interval betwessmeen-
shots, and the kind of events to be captured (mouse and/er key
board events). The screenshot comparison window is pegsent
on the right. It depicts differences detected between spoed-
ing screenshots (marked withred circles). 481

LIST OF FIGURES XV

Al
A2

B.1

B.2

B.3

Migrationtool with image loaded from wav-file. 175
Structure of byte used for formatting in Text Mode (topyllzGraph-

ics Mode (bottom). Lo 176
Characters mapped from the C7420 character set to ASCII char-
acterset. e 180
Characters mapped from the ASCII character set to C7420 char-
acterset: Ox23-0xD4 181

Characters mapped from the ASCII character set to C7420 char-
acter set: OxD5-OxFF oo 182

List of Tables

4.1

5.1

7.1
7.2

7.3

7.4
8.1

8.2

9.1

Al

Cl

Example digital objects and possible hardware / soéwautput
device combinations. L oo 58

Characteristics that can be extracted from renderingements. 75

File structure of the bitstream on the C7420 system. 100
Logical bitstream formats and corresponding commanshte
dataonthe C7420., 100

Comparison of expected (visual analysis of waveform)aaded

files (using different methods) on evaluated tapes comgiGi’420

data. 106
Data with and without errors as recognized using theatimn tool.106

Characteristics for testing the application Cassa withral (=lim-

ited) and unlimited speed. 136
Calculated versus measured key characteristics takem the
event-log of running Terrahawks in O2EM. 141
Case studies carried out with external events capturddren

applied on differentlevels. 158
Logical bitstream formats and corresponding commandatce
dataonthe C7420., 172
Events implemented in the O2ZEM EventLog. 184

XVi

Chapter 1

Introduction

Preserving cultural heritage has been a major task of ldgaarchives, and mu-
seums for centuries. Preservation methods for traditioaérials like books and
paper are well known and proven to work. The last few decdumsever, saw
an ever increasing amount of digital data. Digital objentsantrast to analogue
materials by nature require information technology systémexecute them. But
information technology systems are volatile. With the daghange in technology,
systems that are able to execute/render a digital objeai/tadl be obsolete to-
morrow, in many cases leaving the digital object unusabliture systems. For
static documents methods like printing the document to paygea possible solu-
tion, but when it comes to more complex digital objects, kegphe digital object
in a usable state is the only solution to preserve the obggduture use. There
are different reasons why a digital object might need to lesgnved for future
use. While the need of memory institutions to preserve calltoeritage is obvi-
ous, including complex objects like digital art or video gasnit is less obvious
that also processes have to be kept in a form that is exeeutaalfuture environ-
ment. These include business processes for legal purpsssentific processes
that allow future scientists to recreate experiments atrdge and reuse previ-
ous work. But also individuals will face the problem of digipaeservation, if
precious emails, letters or pictures can not be opened ctugefaystem.

Dealing with the challenge of keeping digital objects ast#s in an authentic
manner over a long term is the task of digital preservatiorseBeching a frame-
work and process for evaluating and validating the resudt digital preservation
action on the object to authentically preserve it is thedapithis thesis.

CHAPTER 1. INTRODUCTION 2

1.1 Digital Preservation

In [Rothenberg, 2000a] Rothenberg argues that meaningfitbjgreservation

implies that what is preserved is usable. This includestheadigital object can be

retrieved, accessed, deciphered, viewed, interpretetratood, and experienced

in a meaningful and valid, i.e., authentic, way. If the digbbject or information

entity is not usable in a meaningful and valid way, then itas preserved at all.
Digital objects are threatened on different levels:

¢ the physical layer, i.e., the bitstream of the digital objec

¢ the logical format and environment, i.e., the conceptugaias rendered
on the screen,

e the semantically conceived object and contextual knowdedeg., the in-
formation or knowledge transmitted by the object or the @druse of the
object.

While traditional archiving deals with data being copied ewnmedia and
refreshing bits on physical media to keep the data read#i#e;hallenge of the
logical layer is still a rather new and an in its severeneskergstimated problem.
To actually being able to keep the object available on theeptual layer, i.e.,
conceivable for a user, the object has to be interpretabtbetogical layer. With
hardware and software getting obsolete, we have two maiicehdo tackle the
problem. One choice is to keep migrating the digital objecatform that is
interpretable by information systems at the time of use. dther is to keep the
digital object in its original logical form and try to keepetlinformation system
alive in physical or virtual form. These two strategies aaled Migration and
Emulation (Note: For an analysis on their differences and identig €hapter
3)

Which strategy is chosen depends on the situation and alsdighal object
itself. While it might be a rather simple task to convert ang@é&rom one format
to another (with all the pitfalls involved like change in o, loss of information
if no lossless format is used as target format, etc.), it iigit be possible for
software, especially if the source code is not availabléhéncase of digital art or
video games interaction with the object plays an important jm the conception
of the object by the user. So whichever strategy is chosénintportant that the
conceptual layer of the digital object stays intact.

While certain loss might be acceptable depending on the demudience
(e.g., if only the textual information in a document is imiaart to a user group, it
might be acceptable to lose any formatting information fiket and page breaks,
as long as the information transmitted by the text is not comgsed) in most

CHAPTER 1. INTRODUCTION 3

cases it is important that the digital object’s renderiraystunchanged (though
usually, some loss will be acceptable). A major task in digireservation is
thus evaluating if and how a digital object’s conceptuaklaghanges when a
preservation action, be it migration or emulation, is aguplio the digital object.

Evaluation if a digital object can still be rendered suctidhsis usually done
by checking the properties of the object stored in the leigstr. While this is an
indication for a migrated object if all the properties (oe thignificant ones) are
still in the bitstream, it does not necessarily mean thatohject is rendered as
intended by the interpreting software. When dealing with latian, on the other
hand, the object’s bitstream stays unchanged on the loigigat, so any evalua-
tion necessarily has to be made after the object has beearsshdDealing with
the evaluation of this rendering brings us to the problentsrasearch questions
outlined in the next section.

In [Innocenti, 2012] Innocenti argues that digital art isngerendered as a
performance specific for the viewer of the artwork (espécial interactive art
where the viewer influences the behavior of the artwork).sé&mnang the per-
formance and thus the authenticity of the digital artworknscial to long term
digital preservation of digital art. In [Bonardi and Barth@éle 2008] examples
for the fragility of performance works based on electroninder the aspect of re-
performance are provided and the question is raised, howeagtee authenticity
when preserving the electronic material.

One of the core tasks of digital preservation is thus to make that a digital
preservation action preserves the digital object in a nmgdui and valid way,
i.e., evaluating if a future rendering will preserve thendligant properties of the
original rendering of the digital object.

1.2 Problems and Research Questions

e How can we determine if a digital preservation action change signifi-
cant properties of the digital object? — Digital objects by nature need an
environment to be rendered in. This is for one hardware sswledually ad-
ditional software, e.g., an operating system, a vieweriegipbn. Changing
any of the objects needed to render a digital object has apatenfluence
on the rendering of the object. To build trust that an object lse success-
fully redeployed and rendered in the future, every digitalsgrvation action
has to be evaluated against the original digital object.

For migration a common (and rather simplistic) method tdueua the sig-
nificant properties of a digital object is to compare theegoroperties of
the object before and after migration. The migration is deg¢mno be suc-
cessful if the significant properties are unchanged. Forl@mn strategies

CHAPTER 1. INTRODUCTION 4

the object stays unchanged and the environment changesa tbompari-
son of stored properties is not possible. Similarly, thedegimg software
and hardware for static documents can change as well asgltal dibject

(through migration). An authentic rendering of a staticutoent has to be
established and verified in this changed view-path. To &athése chal-
lenges, we need to devise a methodology to compare digijetitsbbased
on their rendered forms instead of the form stored in a leistr.

e How to handle interactive and dynamic objects?— If a static document
is rendered using the same software on the same hardwaregdihik is
usually equal for every rendering. The behavior of dynamid eomplex
digital objects, however, might depend on external dagudiser input, data
from a web service or even the current time. A successful eoispn of
two different renderings of a digital object depends on hgwhe object
render deterministically, i.e., it has to be the same foryevendering and
independent of the environment the object is rendered in.thiye need
to identify approaches to establish a deterministic randeasf dynamic ob-
jects to make sure that differences in the rendering areudt idglifferences
in the environment.

e What is the influence of external data on the successful exemon of a
digital object once re-deployed in a new environment?- External data
not only influences the deterministic rendering of a digithject but can
potentially also be necessary for a successful re-deployofethe object.
E.g., missing external data sources like web-services tmggtder a digital
object useless. Thus, we need to establish means to captlireapply the
data for evaluation, and to emulate or simulate missingeateata sources
for re-deployment.

e How can we extract significant properties from the rendered érms of

a digital object? — To extract rendered properties as opposed to extract
properties from the bitstream of a digital object we haveesghchoices of
where instances of the rendering can be found in the memottyeohost
system, a virtual system, or even on an output device. Depgruh the
object one or more of those instances have to be chosen f@cagh of

the properties. We have to identify the levels suitable foomparison for

a digital object.

e At what points in the rendering life cycle of a digital object do we need
to extract significant properties? — Not every state a digital object can be
in is deemed significant, e.g., internal states might notetevant for user

CHAPTER 1. INTRODUCTION 5

interactions. Thus we have to decide for a digital object latpoints in
the rendering life-cycle we need to compare the significamperties.

How does this evaluation need to be integrated into a preseation work-
flow? — A preservation workflow has a wider scope than just evaigati
how an object reacts to a digital preservation action at tineeat moment.
It includes the phase of planning for the preservation oféaliobject, the
actual preservation and the redeployment at the time cdetiig the object
from the digital archive. Evaluation steps have to be regzbat the differ-
ent phases of a preservation workflow to make sure that alhéloessary
components of a digital object are stored in the archive thatthe object
is correctly rendered in the future environment once it teegoyed.

In this thesis we will address a number of research questi@isgre based on
the above challenges, in particular:

RQ1:

RQ2:

How can we evaluate if a digital preservation action keeps th signifi-
cant properties of a digital object intact?

Checking if a digital preservation action can be considendzktsuccessful
contains the following questions:

a. Do we need to validate emulation actions differently thrgration ac-
tions?

b. How can we compare preservation actions on a digital objgsed on
the rendering of the object instead of on stored properties?

c. How can the evaluation of the rendering of a digital objeetauto-
mated?

d. How can we combine the necessary steps to an evaluatioe\irark
and process to follow for repeatable evaluation?

What do we need to know about a digital object and it's enviromment
to evaluate how a new rendering differs from the original rerdering?

To successfully rebuild the view-path of a digital objectimew environ-
ment, we need to describe both the digital object and it'ssddpncies as
well as the original environment, raising the following gtiens:

a. How can we make sure that a digital object behaves detistmiim
every rendering allowing us to compare the different remggsf?

b. What do we need to document about the digital artifact’saen and
appearance for a successful evaluation?

CHAPTER 1. INTRODUCTION 6

RQ3:

RQ4:

c. What are the significant states of a digital artifact we hax@ompare?

d. What data do we need to collect about a rendering environtoatiow

for repeatable comparison?
e. What environment should be used as a reference for futorpadsons?

f. What rendered forms of a digital object exist in a systemwahith of
those are suitable for the comparison of renderings of aadigbject?

g. How can we collect verification data to allow for a compamigo a
future rendering of the digital object?

How can the rendering of a digital object be made determinigt over
different rendering cycles and different environments?

A complex digital object’s behavior usually depends on datarces that
determine how the digital object is rendered. To deternhia¢ differences
in two potentially identical renderings of a digital objese caused by a
faulty environment, we have to ensure that the renderinggnafiact iden-

tical. This leads to the following questions:

a. How does the virtual environment influence the determiaisndering
of a digital object?

b. What external data sources influence the behavior of atiahject?

c. What locally available data influences the behavior of #aligbject?

d. How can these data sources be kept identical over diffeegering
cycles?

e. How can we keep the data that influences the behavior oftaldigject
consistent over different environments?

f. How can we capture and reapply external data for the viaidaand
verification of a digital object in its new environment?

g. How can we simulate external data sources for the re-gey@ot of a
digital object in a future environment?

How can the view-path of a digital object be recreated in a nevenvi-
ronment and a new rendering be compared to the original rendeng?
Once a digital object was successfully described and vatific data has
been collected, we need to re-create the view-path in a ngikoement
and compare the new rendering to the original renderings Tdises the
following questions:

a. How can the view-path of a digital object be recreated ievamrendering
environment?

CHAPTER 1. INTRODUCTION 7

RQ5:

RQG6:

b. How can external data that influences the digital objeetrglering be
applied to the environment?

c. On what level in the new environment can we find a renderad faf
the digital object corresponding to the original rende?ing

d. How can we compare the extracted data from the originalerng and
the new rendering?

e. What properties other than the rendered form of the dighigct can
we extract from the rendering environment that give evidesdaout the
rendering process?

How can the evaluation framework be integrated into a presevation
workflow?

The scope of a preservation workflow is usually wider tham jlns com-
parison of two renderings of digital objects, thus the fwllogy questions
arise when integrating evaluation steps into the workflow:

a. Which steps of the evaluation framework have to be perfdrime¢he
different phases of the workflow?

b. How can different preservation actions be compared imarphg phase
using the evaluation framework?

c. What data needs to be collected to validate the complet@i@sdigital
object when the object is being archived?

d. What data has to be stored for evaluation between the pesaad re-
deploy phases of the workflow?

e. What data needs to be collected during the validation ofji¢atiobject
and stored in an archive to enable the verification of an ¢imexfuture
environment?

f. How can the object’s proper rendering be verified in a fetenviron-
ment with the data collected before storage?

What design requirements do we have to virtual environmentso allow
for evaluation of renderings?

Virtual environments do not yet support the evaluation afliexings of dig-
ital objects and digital preservation requirements in gaind he following
guestions have to be answered to create guidelines forajeugl virtual
environments:

a. What are the requirements on the long term stability obi@ireénviron-
ments?

CHAPTER 1. INTRODUCTION 8

b. How can a virtual environment support the capturing aralnalying of
external data?

c. How can we export significant data about a digital objecctfmmparison
from a virtual environment?

d. What methods of data exchange between host and guest systéesh
and how can it be supported by the virtual environment?

In this thesis we introduce a framework for evaluating @ilgitreservation ac-
tion results by comparing the rendering before and aftelyappa digital preser-
vation action. We show the motivation for developing thefiework on specific
case studies with complex digital objects. We show why itasenough to com-
pare stored properties of the digital object, not only in Etion where the digital
object stays unchanged, but also for migration actions. Witbér explain how to
integrate the evaluation framework into a specific presemwavorkflow outlining
the necessary steps to be taken in the different phases wfttkflow. From the
actions that have to be performed in the framework, we demreus require-
ments to virtual environments, so that automated evaluagienabled.

On a real-world example of an obsolete system we then showtedevel-
oped tools to

1. Extract data from obsolete media without use of the oailggystem
2. Enhance an existing emulator with capabilities to remigelextracted data

3. Integrate testing capabilities into the emulator to shiogvvalidity of the
framework we developed

Work presented in this thesis has involved various collatmrs and project
partners, with my main contributions to the field being afofes:

1. | carried out a number of case studies evaluating the reamglef complex
digital objects [Guttenbrunnet al, 2010a] [Guttenbrunnest al., 2010Db].

2. | developed a framework for evaluating rendering envitents with clear
steps, outlining the necessary pre-conditions for an aatedevaluation
[Guttenbrunner and Rauber, 2012c].

3. In [Guttenbrunner and Rauber, 2012b] | showed that inddgrenof the
preservation action taken the rendering of a digital obgethat has to be
evaluated, it is not sufficient to look at stored object praps.

4. Integrating the evaluation framework into a preservatamrkflow, | out-
lined the steps to be taken in the different phases of animegipteservation
workflow (under review).

CHAPTER 1. INTRODUCTION 9

5. From the steps of the evaluation framework | derived megoents and de-
sign guidelines for virtual environments for digital pression to support
automated evaluation [Guttenbrunner and Rauber, 2011jt¢@Goitunner
and Rauber, 2012c].

6. For a not-well preserved system | led the development obhtb extract
and migrate data from obsolete media using audio analysigg¢@brunner
etal, 2011].

7. I enhanced an existing emulator to support executionegbtbgrams recov-
ered from the obsolete media using the developed guidetindoutlined
the design decisions that have to be taken during the impitatien of
an emulator for digital preservation purposes [Guttenbeurand Rauber,
2011].

8. lintegrated testing capabilities into the developedlatouto automatically
evaluate various different objects for the system [Guttenber and Rauber,
2012a].

1.3 Organization of this Thesis

This section outlines how this thesis is organized. It ltbs different chapters
and references to publications in which the main contrdmgito this thesis have
been published in peer reviewed journals or conferences.

¢ In Chapter 2 we will show the view-path of a digital object arngtdss the
digital preservation strategies to maintain the view-gatithe long term.
Migration and emulation as strategies for preserving digibjects are pre-
sented along with more related work on emulation. Preservgianning
for which evaluation of the digital preservation action isimnportant part
will be discussed [Beckest al., 2009]. We will present work on authentic-
ity that will explain why it is important that the renderingadigital object
stays unchanged with regards to the significant propewiestified. The
significant properties of digital objects as well as the masitechnologies
used in conjunction with emulation and digital preservatwill be pre-
sented along with projects dealing with preserving compligital objects.

e Chapter 3 argues why the evaluation of rendering is not jupbitant for
evaluating emulation strategies but also for evaluatingration strategies.
Comparing the properties stored in a digital object only gieertain indi-
cation about how a digital object should be rendered. Asiglddl in [Gut-
tenbrunner and Rauber, 2012b] we will show how the view-péathdigital

CHAPTER 1. INTRODUCTION 10

object changes not only using emulation but also using marathus mak-
ing it necessary to compare the rendering also for migrabgeicts. This
leads to the conclusion, that, from an evaluation and impexgpective, the
commonly distinct approaches of migration and emulati@ndentical.

¢ In Chapter 4 we will describe a framework for evaluating remagenviron-
ments [Guttenbrunner and Rauber, 2012c]. We will show thegueisites
to comparing renderings of a digital object in differentieorments. Based
on the significant properties of a digital object we will exipl where and
when to extract data from the rendering for comparison. \&a thill show
how external data can influence the rendering of a digitatabjmaking
it necessary to capture and replay that data for evaluawmwill explain
how to deal with these external dependencies for the veigitand discuss
their replacement for usage of the digital object in the epldyed environ-
ment.

e In Chapter 5 we then show how the data captured in Chapter 4 distase
verify the rendering of a digital object in a new environmgittenbrunner
and Rauber, 2012c]. We present how the evaluation framewankagrated
in an existing preservation workflow. We will show which oétsteps in the
framework have to be repeated in every phase of the framearmtlkwhat
data has to be stored in an archive to be able to validate fleetdiefore
storage and to verify the objects rendering once it is beeadaployed in a
new environment. Work in this chapter has been submittedefigew to a
journal.

e Chapter 6 shows the requirements of digital preservatioirtoal environ-
ments and how the evaluation framework should influence ¢lreldpment
of rendering environments for digital preservation. Loag stability re-
quirements of virtual environments and the transfer of bataveen the host
system and the guest system are shown, as well as technig@esaim-
plement transfer channels. We then discuss the requireméautomated
evaluation on virtual environments [Guttenbrunner and RawD11] [Gut-
tenbrunner and Rauber, 2012c].

e In Chapter 7 we present the preservation of an obsolete hometder-
system, the Philips C7420 Home-Computer cartridge for thia3hs7400
Videopac system. We first show how data from obsolete medizgtiacted
without use of the original system using digital archeolagy audio anal-
ysis and how it is migrated to non-obsolete formats [Guttenberet al,,
2009] [Guttenbrunneet al., 2011]. Next, we show how to implement an

CHAPTER 1. INTRODUCTION 11

emulator to render software extracted from the original imedVe dis-
cuss the design decisions that have to be taken to develop@ater with
digital preservation use in mind [Guttenbrunner and Raubetl]. Fi-
nally, the implementation of features to allow automateal@ation will be
shown [Guttenbrunner and Rauber, 2012a].

e Chapter 8 shows case studies for the evaluation of rendesing the eval-
uation framework. We first present the evaluation on the g@taraf the
obsolete, simple home computer system shown in Chapter 7febhdres
for automated evaluation implemented in the emulator aed t@ the eval-
uation of a business process example as well as of a video. gam¢hen
discuss the evaluation framework applied in the contexhefdreservation
workflow on two more complex examples. The first example is &imu
classification process as an example for a scientific workféow the sec-
ond example is a digital artwork.

¢ Finally, in Chapter 9 we present the conclusions of the worldoated over
the course of this thesis. Ongoing as well as necessaryefutork on mak-
ing virtual environments ready for digital preservatioml &me evaluation of
rendering results will be discussed.

Chapter 2
Related Work

2.1 Introduction

This section presents work related to this thesis. We walitstith explaining the
concept of the view-path, the objects needed to render tatlajject. Then this
section continues with related work on digital preservatibe importance of au-
thenticity, and emulation as a digital preservation sgatét continues with work
on preservation planning and the OAIS model before finishiitly a preservation
workflow used in this thesis.

2.2 View-Path

Different from analog objects like books every digital alij@eeds an environ-
ment to render it. Rothenberg argues, that “Digital Infoliorsl Entities are Exe-
cutable Programs” [Rothenberg, 2000a], i.e., that evenyadigbject is a program
that has to be interpreted by a process that knows how torpetfte commands
in the formal language (the format) the program is writtenTihis can be as sim-
ple as interpreting a string of ASCII character codes to makeman readable.
Most of these interpreters are software, but on the lowest the machine-code
is interpreted by hardware (i.e., the CPU of a system). Thisafled view-path is
thus the complete stack of objects needed to render thaldafpigect, or as defined
in [van Diessen, 2002]

“a full set of functionality for rendering the informatiorotained in
a digital object”

Diessen et. al. identified four basic layers needed to remaledigital object:
the data format layer defining the structure of the bit stré@hmformat of the dig-
ital object), the application layer that is able to intetghe format, the operating

12

CHAPTER 2. RELATED WORK 13

Digital Object

Application

Operating System

Hardware

Figure 2.1: Generic view-path for rendering a digital ohjec

system layer providing interfaces to the hardware and filaagament, and the
hardware layer needed to transform the digital object toysiphl presentation on
an output interface.

Rendering a digital object is not only rendering a preseomati the object on
a screen, but any action that results in a physical mantfestaf the digital object
on an output interface of the technical infrastructure useidterpret the digital
object, e.g., an acoustic representation through speasern actor starting a
water pump.

Even in the simple case of rendering a static document atdecepplication,
the operating system, and the hardware needed to run thatimgesystem will be
present in the view-path. An example would be a PDF-A 1.1 dwmnt rendered
using Adobe Acrobat Reader 10.1.3 on a Microsoft Windows faip® system
updated to a certain date/service pack and a specific seints fiostalled and
specific language settings on an x86-compatible worksta®G hardware with
a specific graphics card, sound chip etc. A generalized aversi this simple
view-path can be seen in Figure 2.1.

Depending on the digital object some of the layers in the ypath can be
missing or additional layers can be present. A computer gaowd usually run
directly on the operating system, i.e., using operatingesydibraries and function
calls (or on more ancient systems run directly on the harewathout supporting
operating system routines), while an application writtedava will additionally
have a specific Java Virtual Machine in its view-path, thas as an abstraction
layer between the application and the operating system.

At least one view-path, i.e., a technical infrastructurpatde of rendering
it, is associated with every digital object. Depending oa digital object more
than one view-path can be valid as shown in Figure 2.2. Orowarhardware-

CHAPTER 2. RELATED WORK 14

Original Object

7 ™

Application K Application M
Operating System X Operating System Y
Hardware A Hardware B

Figure 2.2: Different view-paths for displaying the samgitadil object.

configurations different operating systems (e.g., WinXiAuk) can be used to
run different applications (e.g., Word, Open Office) to renthe same digital
object (e.g., a Word-97 Document).

A change in the view-path on any of the layers will potenyialso change
the rendering of the digital object. E.g., using a differapplication to render a
document on the screen will in most cases result in a diffeneage presented to
the user. But not only functional changes may impact the nemgl®f a digital
object. On a hardware-level a slower storage can lead tetiodf issues in a
video. In a multi-threading environment a different loadtbe machine can lead
to a different rendering of the digital object. Faster haadsvmight render an
object faster and lead to changes in timing of events.

In this thesis we show how changes in the view-path affecténeering of
a digital object, and how we evaluate if the rendering of ajecttin a different
view-path preserves the significant properties of thataibje

2.3 Digital Preservation

The pace at which technology gets obsolete and is replacedwygenerations of
hardware and software poses a threat to the view-path oftaldipject shown in
Section 2.2. Whenever one of the layers in the view-path detslete we need to
perform some kind of action to provide access to the digitgct.

Digital Preservationaccording to the UNESCO Guidelines for the Preserva-

tion of the Digital Heritage [Webb, 2005] is the process oégarving data of
digital origin, i.e., making sure that a digital object ixassible over a long pe-
riod of time. Digital preservation is not the process of timjng non-digital data

CHAPTER 2. RELATED WORK 15

for archival, even though once digitized data will have tgbeserved digitally to
keep it accessible.

2.3.1 Threats to Objects on Different Levels

In these UNESCO guidelines four different layers are listaduhich a digital
object is being threatened, these are:

Physical Object The physical object is the actual physical manifestatiodaif
on a media. Media get obsolete in that reading devices use@dtbthe me-
dia are not supported or stop working. Also, media typich#g a life-span
of a few years and thus can't be read properly even if readawicds are
still available. Thus data has to be transferred from oneated different
media in an archival process. This process is called mefiestenent.

Logical Object Data, while stored on a physical media, does not necessirily
pend on a specific media but is once separated from the physedia a
logical bitstream that can be interpreted by a layer in teempath. This can
for example be a program being executed directly on the palysardware
(e.g., avideo game running on an old console system), agmogeing in-
terpreted by a virtual machine (e.g., a binary program ctedgor a JAVA
virtual machine), or a data format that is interpreted by@piiaation (e.qg.,
a PDF document). The threat on this level is that either thysiphl hard-
ware necessary to render a program, or the application wsexhtler the
data format is obsolete.

Conceptual Object The conceptual object is the object that actually has a mean-
ing to humans in that it is rendered in a physical form recoaiolie by a user.
This is for example a PDF document rendered on a screen adahiesby
a human being as opposed to the encoded form of the PDF dotumen
the bitstream (the logical object) and the bitstream of tBé¢ Flocument
stored on a CD (the physical object). The threats require t@ngreter or
environment to turn the logical object to a conceptual dbjec

Essential ElementsThe UNESCO guidelines describe the essential elements of
a digital object as a bundle of elements that embody mesgageose, or
features of the object describing the context in which it wakected for
preservation. This context is also called Metadata. In #@mple of the
PDF document information about the context in which the dosot was
created and information like author, version, preferreniwpath to render
the document could be recorded.

CHAPTER 2. RELATED WORK 16

The task of digital preservation is to counter these thi@atgppropriate preser-
vation actions, specifically on the logical level, makingesthe conceptual object
stays unchanged.

2.3.2 Countering the Threats by Preservation Actions

To counter the threats to a digital object on the differevele, we have to perform
preservation actions that make sure that the conceptuatiodipys accessible and
(using the essential elements) understandable in itsxionte

In the UNESCO guidelines various digital preservation sgegs are listed,
including

¢ the museum approach - preserving the original hardware@fhwlese used
to render the object

e converting the digital data to a non-digital format for winige already have
a comprehensive knowledge of how to preserve it

e using standard formats that are well defined, open, andylilcebe sup-
ported by future rendering applications

e making software backwards compatible to interpret oldesieas of data
e providing viewers for each new technology generation
e Mmigrating a digital object from an obsolete format to a ndasalete format

e emulating the functionality of a layer in the view-path gsapiece of soft-
ware that performs the functionality of the original layer

Currently the most common strategies used are migration andagon, as
those are deemed to be the most long term stable solutionsahde applied in
real-world environments dealing with a large number of diesobjects.

Changing the view-path of a digital object is a digital prgaéion action. We
show how this preservation action potentially effects thedering of a digital
object and how we evaluate and validate the rendering ofitatimpject against
the original rendering after applying the preservatiomnoact

2.4 Migration

Marcum uses in [Marcum, 1996] the term migration for the ftdhtinuum of
approaches between simply moving the bitstream of a digfttigct from medium
to medium and the full emulation of the rendering environhaé@ digital object.

CHAPTER 2. RELATED WORK 17

Digital Migration as defined by the OAIS [ISO, 2012] is thertséer of digital
information within the OAIS with the intention to preserteThis is distinguished
from mere transfer in that the focus is set on preserving wlenfformation in-
tended for preservation, that the migrated representegjglaces the original one,
and that the full control over all aspects of the migratiosides with the OAIS.
Migration in the sense of the OAIS is not only the change ofdiugtal object
itself, but also of context information needed to underdtiue digital object.

However, the usual understanding of migration in digitagarvation is the
technique to change the digital object on the logical layer, changing the bit-
stream of the digital object and thus the format. One priggpoblem of migra-
tion is that any change in the bitstream potentially can mesas of data. Once
lost, this data can never be restored in future migratigpsste

While migration can happen continuously in an archive to gveeep the
digital objects in a state that is accessible, it can alsodssl @&s migration on
request as described in [Mellet al, 2002], i.e., migrating an object to a non-
obsolete format used by the target audience once it is neatfede the format
in the archive stays unchanged, the migration tools areggwhto support new
formats needed for dissemination. This method has also lssshby Woods et.
al. in [Woods and Brown, 2008] as the primary strategy to aflembrowsing and
searching in document collections.

Migration is one of the actions changing the view-path ofgitdl object. In
Chapter 3 we show how the view-path of a digital object is cledrgy migrating
the object.

2.5 Emulation / Virtual Environments

Emulation is the concept of replacing a component in a syst@ma different
component that fulfills the same functionality. As compatedimulation the
difference is shown by Rothenberg et. al. in [Rothenberg, BDBDa simple
example - a flight simulator does not actually let you fly a plant only simulates
the process. A terminal emulation on the other hand lets ywaiaucommand
line interface for input and output for the same purpose aswould use a real
terminal to a computer system.

In this thesis the wor@Emulatoris used as defined in [Slats, 2003] as a pro-
gram that runs on one computer virtually recreating a diffieicomputer’s hard-
ware. We mainly concentrate on emulators emulating computhitectures, but
the concepts introduced in this thesis certainly have todesidered with the
different levels of emulation in mind and most can be appt@dther levels of
emulation as well, up to the evaluation of migration reswiithin an appropriate
rendering viewer environment.

CHAPTER 2. RELATED WORK 18

Rothenberg et.al. argue in [Rothenberg, 2000b] that allaligibcuments are
software dependent and as such essentially programs ede¢adbe interpreted in
a software environment or by hardware. Saving the entirevaoé environment
used to interpret a digital object we can thus save the viath-pf a digital ob-
ject. However, to physically preserve the hardware usecegoige the software
environment is not viable, using an emulator of the hardviaeevirtual way of
saving the hardware, allowing an execution of the softwavenment and thus
to render the digital object.

2.5.1 Levels of Emulation

Granger et.al. explain in [Granger, 2000] that emulation ba done on three
different levels - application, operating system, and hare platform.

The termEmulationin general refers to the capability of a device or software
to replicate the behavior of a different device or softwalteis possible to use
hardware to emulate hardware or software or to use softwaemtlate software
or hardware. While even a viewer of a document can be seen as lsoh of
emulation (if, e.g., fonts not stored in a document are glediby the viewer),
emulation usually is seen as recreating the hardware ofysiera the digital
object was initially rendered on and using the originalwafe (both the operating
system as well as the application) to display it. With aplmns distributed over
various systems in a network, it is also necessary to emulate than one system
to keep a digital object in a usable state. But also socialgit@s (subjective
properties not technically measurable) like input devimesven the environment
in which a system has been used can be necessary to receeatgthal look and
feel. The boundaries between the different kinds of enueadire usually blurred
and depend on the digital object that has to be preserved.

Environments for digital objects can thus be emulated ofertint levels as
shown in Figure 2.3. These layers can be defined as:

Application As described in Figure 2.1, an application is usually usednder a
digital object (if the digital object to be preserved is retif an application
(e.g., computer games, digital art, self-running docusienBy replacing
the application used to render a digital object the funetiioy of the origi-
nal application is emulated. A simple example is to repladel#e Acrobat
Readel! for rendering PDF documents by a different PDF-reader like N
tro PDF Readéf. The Nitro PDF Reader would serve as an emulator for
the functionality of the Adobe Acrobat PDF Reader in the vigath of the
PDF document.

(11 Adobe Acrobat PDF Readeht t p: / / www. adobe. cont pr oduct s/ r eader . ht ni
PINitro PDF Reader ht t p: / / www. ni t r or eader . coml

CHAPTER 2. RELATED WORK 19

Environment
o T TTTTEEEEEEEEEmEEEEmmmmEmEmmEmmmEEmmmEEmEmEE TN, N

Computer Architecture| Hardware Virtual

Operating System

\ [Application]) /

Figure 2.3: Layers of emulated environments for digitakchs.

Operating System On a modern computer system usually an operating system
between the application and the hardware (virtual or realiges function-
ality used by the application (e.g., access to display @svimput devices).
The operating system, in turn, heavily depends on the cagnputhitecture
itis running on and the application heavily depends on thegatng system.
By providing a middle-ware that acts like the original opemgssystem any
operating system calls in the application can be caught éyrtiddle-ware
and translated for the new environment, thus emulatinguhetionality of
the original operating system. An example for this would bied¥ that
allows the execution of programs running on Microsoft Wiwdmperating
systems to be executed in a Linux environment. In the vieth-paa Mi-
crosoft Word document rendered by Microsoft Word 95 this \ldauean
replacing the operating system layer Windows 95 by a Linwtridhution
operating system and using an additional Wine translaéigerlto allow for
operating system functions originally performed by MiafigVindows 95
be executed by the Linux operating system.

Computer Architecture As the functionality of hardware is usually better docu-
mented than software the most common level of emulatiorcieeding the
computer architecture. Computer architecture can eitheealehardware
(an actual physically existing system) or a system onlytegsvirtually,

a virtual machine like e.g., the Java VM. While virtual madsrare soft-

Blwine -ht t p: / / www. wi nehq. or g/

CHAPTER 2. RELATED WORK 20

ware that is usually running on top of the operating systedymmted into a
different environment, physical hardware can be emulasgguone of the
following approaches:

(a) Full Hardware Emulation The most common use of emulation is the
recreation of hardware components in software on a newsyssém.
The ,Emulator” in this case is, as defined in [Slats, 2003]raypm
that runs on one computer virtually recreating a differerhputer’s
hardware. It provides a layer between the host system anaritie
nally used software, replacing the functionality of thegoral physical
hardware used to execute this software. The whole systeabisli
in software and the original digital artifact is executethgshe orig-
inal software in this simulated hardware environment. Eplesare
emulators for proprietary hardware such as video game t®isys-
tems on a PC or emulators for PC hardware on virtual machags (
Dioscurf4).

(b) Virtualization An approach to create a virtual environment by using
either some or all of the hardware of the host system direstalled
virtualization. Code is directly executed on the physical GRifead
of being emulated. In reality the approach is usually a mixvieen
hardware emulation and virtualization as all virtualieatisolutions
emulate certain low-level instructions instead of runrtimgm directly
on the real CPU. Using the virtualization approach, softwainéch
is potentially able to run on the host system’s hardware fsinua
virtual machine hosted by the current operating systenrenment.
Examples for virtualization software are VirtualBdxand QEMU®!.
One use of virtualization is to have a host system runningapes-
ating system and create a virtualized environment runniddferent
operating system. Another one is to run different virtuedizom-
puter systems on the same physical hardware in parallel. |G
term use for digital preservation is obviously limited, asualization
only works if the physical system uses a CPU that is compaiiiiee
target system. As soon as the hardware becomes obsoletputssm
architecture emulation has to be done using hardware eionulatf
the

Interface Level Emulating a computer system on the interface level requaes
recreate the original means of input/output of the systemetoeate the

“IDioscuri -ht t p: / / di oscuri . sour cef or ge. net/
BlvirtualBox - ht t ps: / / www. vi rt ual box. or g/
BIQEMU -htt p: // wi ki . genu. or g/ Mai n_Page

CHAPTER 2. RELATED WORK 21

original communication experience with the system. Fortay commu-
nication we have to consider:

e Output-Devices: Using a mobile hand-held with a 3-inch soras an
output device as the original system has a different logeeiscom-
pared to the emulation of the same system on a PC-screen with 18
inches. An example is an emulator of a Nintendo DS with tweeas
on a PC with a normal LCD screen running a Microsoft Windows op-
erating system. Similarly, actual actuator output in a cmrgystem
is different to compare to a simulated actuator output they be as a
visual, acoustic or voltage level setting.

e Input-Devices: Using paddle-controllers to play the gamedris a
different feel-aspect than using a keyboard or even a mauserntrol
the same game in an emulated environment. This applies gt on
to human-computer interaction, e.g. in a control systenh also to
differences in sensitivity, drift or timing behavior fol &ind of sensor
input.

e Machine-to-Machine Communication: In distributed compgtthe
original interfaces to a machine are recreated or emulalbds can
for example be web-services that provide the expected aedacom-
munication interface.

Environment Playing a game of Space Invaders standing in front of an arcad
machine in a smoke-filled bar creates a different playingeernce than
the same arcade machine in a clinical museum environmemecfeate the
original experience the environment has to be emulated bhsase¢he focus
on such re-creations in simulator settings for e.g. safaipihgs shows.

When a system component is to be replaced by a different (éea)leompo-
nent, evaluations if the rendering is still unchanged aaadsdrd practice.

2.5.2 Emulation Technologies Used in Digital Preservation

In this section we will present some of the concepts and w@olgies used and
recommended for emulators in digital preservation. Inetudre technical recom-
mendations as well as concepts for digital preservationaons.

Keeping Emulators Useable

Emulators are, again, a piece of software that gets obsoletetime. To make
sure, that emulators developed today can be run on fututéoptes, different
technologies exist:

CHAPTER 2. RELATED WORK 22

Stacked Emulation Every emulator is written for a specific host platform. Once
the host platform gets obsolete, an emulator for the hotopia is created,
executing the emulators that used to exist on the host phatf@vith every
generation a layer in the emulation stack is added, leadirg ¢complex
view-path. Possible errors in the emulation processesgayegated.

Migrated Emulation Emulators existing on a host system are migrated to a new
host system every time a platform gets obsolete. With emrdagxisting
for a wide array of systems, the effort of migrating every &tar to a new
system are big.

Emulation Virtual Machine In[Rothenberg, 1998] Rothenberg proposes the Em-
ulation Virtual Machine (EVM) as a solution to stacked andyrated em-
ulation. A wide array of emulators are developed for oneugirimachine,
that is different from other virtual machines in that it ispterm stable, i.e.,
not changed over a long period of time. Once a platform gesslebe, not
all the emulators have to be ported to the new platform, dridyEVM. De-
velopment of an emulation virtual machine started in theopean project
KEEP (Keeping Emulation Environments Portable) as the KEtRial
Machine (KVM) [Bergmeyer, 2011].

Modular Emulation

Many components in a system are either off the shelf compgsrerused in dif-
ferent systems of the same time period (e.g., the MOS Teoggd@502 micro-
processdf! used in different home-computer systems from the 1980’shisRg
components that are proven to work is a common strategy iwacé develop-
ment. The same is true for developing an emulator. Reusindation code for
specific components of a system for the emulation of morejtstrone system is
thus self-evident.

Modular emulation as a concept for emulators is discusseal @nceptual
model by Van der Hoeven et. al. in [van der Hoeven and van \&gnden, 2005].
Instead of developing all the components of an emulatonfenesingle machine
configuration, components that are already proven to wor&niremulator are
used to create new system configurations by combing thereliffecomponents
to a new system. Each component is emulated by an encapbplatee of code
emulating the functional behavior of one hardware compbrigy interconnect-
ing the different components, an emulation process foruleystem is created.

['IMOS Technology 6502 -t t p: // en. wi ki pedi a. or g/ wi ki / MOS_Technol ogy_
6502

CHAPTER 2. RELATED WORK 23

The modular emulator is also suggested to run on a virtuahimmado make it
hardware independent as shown in Section 2.5.2.

The emulator Dioscufi, an emulator created specifically for digital preser-
vation purposes and based on the modular emulation apprsatéscribed in
[van der Hoeveret al, 2007]. It is written in Java and runs on the Java Virtual
Machine.

Other emulators following the modular concept are the MidtiArcade Ma-
chine Emulator (MAMEY! that uses configuration files to emulate arcade ma-
chine systems, as well as its sister project MESS (Multi Etaul Super Sys-
tem)*%, that uses the same code base to emulate a wide array of vioee g
systems, computer, and calculators.

Universal Virtual Computer - UVC

An approach for a Universal Virtual Machine is thimiversal Virtual Computer
(UVC) as developed by IBM ([van der Hoeven al, 2005]). The concept is to
design a virtual machine that while being simple enough tedsaly implemented
on a future system is still sufficient for the rendering ofitéibdata that has been
preserved. On the time of archiving a program is written fag UVC that is
capable of rendering the digital data in the UVC. This progiarstored in the
archive along with the digital data. Once the data is extGétom the archive,
an implementation of the UVC is done on a then current systéhe program
written on archival time is executed on the UVC implemewotatirendering the
digital data. The advantage of this approach is that thestates unchanged, and
arendering engine is created at a time when the originaltdbpesrendered in the
original environment, thus making sure that the rendernigue to the original.
Also, only one virtual machine has to be implemented on egstes generation
allowing the execution of all UVC programs. The disadvastagthat for every
format stored in the digital archive a rendering applicati@s to be created. A
proof of concept for this approach has been done on the angod JPG-images.

KEEP Emulation Framework

The Emulation Framework (EF) [Lohmatal, 2011] developed in the European
project KEEP provides an easy way for users to invoke enmranvironments
for users based on the object’s needs. It automates thefidainbn of an object
and selects the needed emulation environment, operatstgrsyapplication, and
configuration (the complete view-path necessary to rerftedigital object). In

BlDjoscuri —ht t p: / / di oscuri . sour cef or ge. net/
PIMultiple Arcade Machine Emulator (MAME) ht t p: / / mamedev. or g/
[10IMulti Emulator Super System (MESS)ht t p: / / www. mess. or g/

CHAPTER 2. RELATED WORK 24

the EF an Emulator Archive holds the available emulatorsoséhare connected
to a set of disk images containing the view-path. Throughketract model the
hardware configuration necessary for the digital objecbrgigured, and the dig-
ital object is provided in a disk image, and thus injected ithte emulation en-
vironment. The EF aims to provide an environment to accegsatiobjects in
emulation environments to be as easily accessible as mfjabin the digital ob-
ject.

Remote Emulation

While the aforementioned Emulation Framework invokes etotsalocally on
the user’s system, remote access to emulation tries toetdlokl complexity of
emulation environments and their setup by users a diffasagt By having the
emulators run on a different system and providing accessitjir a web interface,
the user does not need to install and maintain different atiaul environments on
his system. The remote access to emulation as describeddhgRet al., 2010]
and [von Suchodoletet al., 2011] provides an interface that allows users to se-
lect an environment, upload a digital object and interathwie object through a
web interface. Besides using the emulation environmentritdenedigital objects,
migration through emulation is also made possible, as tieeantion with the en-
vironment can be scripted on the server side, invoking tleessary applications
and converting the file to a non-obsolete format. The rasylile is then offered
for download to the user.

2.5.3 Emulation in the Context of this Thesis

In this thesis we show how emulation is comparable as a tjgieservation ac-
tion to migration from an evaluation view-point in ChapteM2e explain how the
rendering of a digital object is used for comparison of tlgmsicant properties
in different environments, and what functionality rendgrenvironments, specif-
ically emulators, have to have implemented to support edain of renderings.

2.6 OAIS Reference Model

One of the first ISO standards in digital preservation andrtbst common frame-
work used for archives is the reference model for an Openivatinformation
System (OAIS) [ISO, 2012]. The description of the OAIS stateat “An OAIS
is an Archive, consisting of an organization, which may be p&a larger orga-
nization, of people and systems that has accepted the Ebpity to preserve
information and make it available for a Designated Community

CHAPTER 2. RELATED WORK 25

_ Preservation Planning

P ! - C
Descriptive | : (Descrlptllve o

R . Information 1 Data ‘. Information q

o / Management \ Jaueries

D 1 1 qupry responses 5

U | Ingest ' : : Access | [orders U

: g \'\ﬁ‘ Archival L M

E 1 (AIP) Storage || Alp I = > E

| 1 1 " I R
R 1 i 1 i .
= - - - |
\——{ Administration i —

MANAGEMENT

Figure 2.4: Functional entities of an OAIS archive [ISO, 2D1

The OAIS is intended to establish minimum requirementsfiddAIS Archive
and provide a set of archival concepts, thus establishingnanwon framework
from which to view archival challenges related to digitdbimation. The OAIS
defines both the core components of an archive for digitagikation on a high
level as well as defines a standard terminology.

It also defines the different packages containing a dighigda that exist in an
archive during the ingest — archive — access life-cycle aflgact:

Submission Information Package (SIP)The digital object along with descrip-
tive meta-data and all accompanying elements as specifatiinterface to
the archive and provided by the producer.

Archival Information Package (AIP) The digital object along with descriptive
and additional information as permanently stored in thaiaec

Dissemination Information Package (DIP) The form in which the digital ob-
ject is provided on access to the consumer.

The different functional entities of the OAIS that manage different forms
of the digital object in the archive can be seen in Figure 2k functions of the
main entities are as follows:

Ingest provides services and functionalities to accept a subondsom the Pro-
ducer and convert the submission package to an archivahgacks stored
in the archive. Additionally quality control of the subneitt package is per-
formed.

CHAPTER 2. RELATED WORK 26

Archival Storage takes care of managing the archival packages in the arghive,
cluding media refreshment, error checking and providirgaithival pack-
age to the Access entity.

Data Management provides services and functions for accessing the deseipt
information of digital objects stored in the archive.

Administration are the services for the overall operation of the archive.

Preservation Planning is responsible for making sure that the digital informa-
tion remains accessible to the designated community by toramg the en-
vironment and providing recommendations and preservaliams.

Accessprovides services for accessing both meta data about tlee¢hied dig-
ital object as well as a representation of the object itse#f form ready for
dissemination to the user.

Making sure that information is preserved for a designatedraunity is the
main goal of an OAIS archive. It does so by providing funcélitres that evaluate
digital preservation actions to determine if the inforraatremains accessible for
the designated community, i.e., usable as described imo&ektl.

In this thesis we will explain what data needs to be encap=ailgith a digital
object for storage in an archive as an AIP to allow for latenifi@tion of the
object’s re-deployment in a new environment.

2.7 Preservation Planning

For digital preservation purposes it is necessary to coenhereffects of different
preservation actions on the significant properties of digibjects. In [Beckeet
al., 2009] we show a preservation planning workflow that alloassrépeatable
evaluation of preservation alternatives. This workflowlgsamplemented in the
preservation planning toéllato [Beckeret al., 2008a].

The workflow as shown in Figure 2.5 consists of four diffenginiases:

Define Requirementsin a first step the basis for the preservation are defined.
Along with the intended audience (designated communityhefpreserved
objects meaningful sample objects are chosen. The regeiresnior the
preserved digital objects (the significant properties)detned in a tree-
structure, breaking down the different requirements iategories and sub-
categories down to the leaves of the tree.

CHAPTER 2. RELATED WORK

E . \|
A’[Define basis HChoose records |—>| Identify !
| requirements)

! Evaluate alternatives

Define §
| alternatives |
| S

~
Develop . Evaluate
. Run experiment .
experiment experiment

T

- ~ N

Set importance Transform :

Analyse results :
factors) measured vaIuesJ i

Preservation Action
Recommendation

- Build presgrvation plan

Create executable Define Validate
preservation plan preservation plan preservation plan| :

Preservation Plan

Figure 2.5: Preservation planning workflow [Beclkial., 2009].

CHAPTER 2. RELATED WORK 28

Evaluate Alternatives Next, a set of different alternatives for preservation ac-
tions are selected. Based on the defined basis a Go/No-Gaoheftiseach
of the alternatives is taken (e.g., No-Go based on not ngbasic require-
ments defined in the basis). The different preservatioroadalternatives
are then run on the selected sample objects and evaluated.

Analyze Results The results of the preservation actions are then transfbtme
uniform scale by extracting the significant properties aaciding how well
they were preserved by the alternatives. By setting impoetdactors for
the different branches in the tree, a utility analyses isqgoared resulting
in a ranking of the different alternatives. The result of Hralysis is a
recommendation for one of the preservation action altemst

Build Preservation Plan Based on the recommended alternative, an executable
preservation plan is created, defined and validated, neguit a preserva-
tion plan.

Figure 2.6 shows how the preservation planning is intedratt® the OAIS.
By using the preservation planning approach shown in thissewe can evaluate
how well significant properties are preserved with différgreservation actions
and how well other constraints set by the preservation glaane met. In this
thesis we will show a framework and process that help in exalg the effects
of different preservation actions (migration and emulation the rendering of a
digital object.

2.8 Evaluation of Digital Preservation Actions

When performing a digital preservation action (or planniogdigital preserva-
tion actions on digital objects), it is necessary to evauétthe digital object
is properly represented in its new form, be it in an emulat@drenment or in
a migrated format. When migrating a digital object to a défgrformat, char-
acteristics of the object are usually extracted from both fiépresentations and
compared. But it should be noted that digital objects reprteisdormation ob-
jects, and are thus always used in a rendered form (which raagstbcomplex
as an entire business process, a system control applicatomteractive com-
plex media object or video game, a rendered office documentlbo a simple
XML file encoded in Unicode and rendered as readable charseter interpreted
as machine-readable content). Thus, evaluating any kirddgitel preservation
action needs to be based on the connecting point betweefargeand environ-
ment. In this sense, there is no formal, conceptual difiegdretween emulation

CHAPTER 2. RELATED WORK 29

AIP/SIP templates
AIP/SIP review
Migration packages

Customization advice Administrati
Preservaion Plan ministration
Recommendation Perfomrance info
Consumer comments
v (Develop Preservation Strategies
and Standards External data standards
New Collection ;rolotype results
Define req ents eports.
Approved standards Changed Collection i A 4 Em': g tandards
Profile Identity) rging
Mirgration goals [—————————p{ Define basis Cicosecon requirements
Change % J A

) Changed Objectives
Preidoic Review

(Develop Packaging Designs & Migration Plans

F’m Monitor
restlts Technology

<

Build preservation plan

Create executable Define preservation Validate preservation
preservation plan plan plan
7} L
\ 4 A Y 4 Prototype
A Prototype ~ Preservation A el | Reports |~ [requests

results requirements

o
(Setimportance Transform
Advice (Preservation i < =5 factors measured values

Action Recommendation) | |
r | | Conclusions
4

Reports

Experience

< J/,, Monitor

D
|(:0NSUMERi<Suweys > Communty |

Service requirements
Product technologies
Surveys
PRODUCER

Figure 2.6: Preservation planning integrated into the OfB8ckeret al., 2009].

and migration from an evaluation perspective, as even ngdrabjects need to be
evaluated within the new rendering environment as shown ap€in 3.

2.8.1 Significant Properties

A common way to compare a digital object before and afteryapgla digital
preservation action is to compare if the significant prapserof the digital object
are still intact. Properties of the digital object that aigngicant to a designated
community and a specific use case are usually defined durangrésservation
planning process.

To evaluate a digital preservation alternative it is thusassary to know the
properties of an object that are significant and that haveetprbserved. These
properties can be technical as well as social propertiepeding on the type of
object and the designated use the weighting of the impagtahmeeting specific
requirements can be different. A common way of structurivegdignificant prop-
erties of an object are the categories content, contexitsiie, appearance, and
behavior or functionality [Rothenberg and Bikson, 1999].

Evaluating the preservation of significant propertiesradigplying a digital
preservation action using standardized, repeatable gedtae methods was de-
veloped in a series of projects and tools. In [Rauch and Ra@bé4] Rauch et.
al. develop a preservation solution evaluation metric tase Utility Analysis.
This approach is combined with the Dutch Digital Preseorafiestbed ([Slats

CHAPTER 2. RELATED WORK 30

and Verdegem, 2004], [Hofmaat al., November 2004]) to the DELOS Testbed
for choosing a digital preservation strategy in [Stretlal, 2006]. In [Strodlet
al., 2007] Strodl et. al. present the PLANEfF$Preservation Planning approach,
which is based on the DELOS Testbed. The Planets Testbechshdwitken et
al., 2010] is derived from the same DELOS Testbed and uses aasiméthodol-
ogy to perform mass evaluations of digital objects as theoRieeservation plan-
ning tool shown in Section 2.7. In all these approaches tpafgiant properties
of a digital object are extracted before and after applylreggdreservation action.
A comparison of the extracted properties is performed ttuewa how well a dig-
ital preservation action preserved the significant progertA summary of tools
to extract these properties for different file formats isvehin Section 2.8.2.

The significant properties of static documents usuallyediffom those of dy-
namic and interactive content. While the appearance of teerfiakes it often
possible to migrate the contents to other formats, the taskare complex for
interactive content. Potential loss has to be investigegeg closely, as for exam-
ple loss of interaction can render a digital art object catedy useless. Visual
and audible properties as well as interaction with the dljjage to be preserved.
Even with the same significant properties for different g/p&complex content
the weighting of importance of these properties for prestgom can be different
depending on the type and the designated user community.

Significant properties of dynamic digital objects includeual and audible
properties. All kinds of interactive input possibilitieave to be considered. In
case of application software and dynamic documents these.gr, form fields,
icons, menus and mouse and keyboard for input. For video game digital art
this can be menus, icons on the user interface, the respadssugport of hard-
ware like gaming hardware, video cameras, sensors, mo#itatirs and mouse
and keyboard again. Functionality is an important part dfnsare preservation.
In case of processes the input data has to be processed aodtpl data has
to be rendered correctly. For video games and digital arpliagng experience,
response to input and audible/visual characteristicsnapeitant.

Comparing renderings of the same complex digital objectfierdint environ-
ments is usually done manually by a human observer. A caslg stucompare
different approaches to bpreserve video games, with ongeadpproaches being
emulation, was reported in [Guttenbrunmral., 2010a] on a human-observable
and thus to some extent subjective level.

Availability of source code is one of the significant propestof software that
allow us to migrate the software for preservation purpobstgthewset al., 2008].
For interpreted program languages like BASIC (compareddégnam languages
where source code is compiled to executable software) tivescode is equal to

MWhttp://www.planets-project.eu

CHAPTER 2. RELATED WORK 31

the executable software given the availability of a suéabterpreter.

Becker et. al. present in [Becket al., 2007] case studies on sample objects
of interactive multimedia art from the collection of the AEectronicd?. In-
teractivity is designed as one of the significant propeniethe art works, thus
requiring a comparison of successful preservation on aerémgl level. In [Gut-
tenbrunneeet al,, 2010a] we presented a case study on preserving console vide
games to evaluate existing emulators for their suitabdgydigital preservation
alternatives. This case studies also identifies signifipaoperties of complex
content, including the behavior while being rendered amrdititeractive aspects
of the games. It also compares different alternatives fesg@nving interactive
content such as migration and emulation strategies.

The INSPECT project [Gracet al,, 2009] used the Function-Behavior-Struc-
ture (FBS) framework designed to help create and re-engngegystems. It con-
siders the purpose of the object in the context of how it isllsethe stakeholders.
Focusing on the properties that are essential (significarithe stakeholders it al-
lows thus to concentrate on alternatives that preserve {hreperties best, similar
to the preservation planning workflow shown earlier ancbfe#d in this thesis.

2.8.2 ldentification, Validation, and Characterization of Digi-
tal Objects

Part of preservation planning is to automatically cham@memigrated objects.
Various tools to identify file formats and extract propestexist.

The standard UNIX todile uses a local database to identify files. Itis primar-
ily used in production environments to identify files, notassarily for digital
preservation purposes.

An approach for digital preservation purposes is taken b REM [Pettitt,
2003], maintained by the National Archives of the UK. PRON@M database
of technical information about file formats, but also a mati that encompasses
tools and services to support digital preservation fumstioOne of the tools us-
ing PRONOM as its database is Droid [Brown, 2008]. Droid iseatol batch-
identify files using internal signatures generated frorormfation recorded in the
PRONOM technical registry.

The JSTOR/Harvard Object Validation Environment (JHOVE¢ i three dif-
ferent functions for analyzing files. Besides the identifarabf an object’s for-
mat, it is also able to validate if the object conforms to tbenfat’'s technical
norms. As a third function it can also extract the technicapprties of the object
that are examined during validation either in plain textroan XML format [Don-
nelly, 2006].

2 http://www.aec.at

CHAPTER 2. RELATED WORK 32

Besides the aforementioned registries, other sources sxish as the Dig-
ital Formats Websit&!, that holds valuable sources of information for digital
preservation. Also the Global Digital Format Registry (GDERand the Uni-
fied Digital Format Registry (UDFRJ! can be used for identifying formats and
characterizing files.

A wrapper that uses some of the aforementioned tools and mdhe File
Information Tool Set (FITSY! developed by the Harvard University Library. It
identifies, validates and extracts technical meta data f@rigty of file formats
using the various tools and provides the output in a stamEtdormat.

To aggregate and analyze characteristics extracted by, Hi&Sool C3Pd”]
was developed [Petrov and Becker, 2012]. It creates a prdfileeacharacteristics
of the content of a whole collection and allows for a selectb datasets for the
planning purposes.

In [Huber-Morket al,, 2012] a case study is shown that allows quality assur-
ance in scanned images. Image comparison by creating a firigeof each page
allows the authors to detect duplicate images. A compaié@ound waves for
the sake of quality assurance is described in [Jurik andsBingl2012]. Audio files
migrated from WAV to MP3 are compared to assure that the corgeinchanged.

2.8.3 Characterization Languages

The significant properties of a digital object that are eoterd either from its bit-
stream or a rendered form have to be stored in a characterizanguage, to
allow for automated processing and comparison of diffevensions or render-
ings of an object.

A chracterization language designed for automatically gamnmg migration
results is the eXtensible Characterisation Languages (XBagkeret al., 2008b].
The original and migrated objects are hierarchically dgoosed and represented
in XML. The XCL consists of three components: an extensiblerabterization
definition language (XCDL) that is an abstract way to expriesstformation con-
tained in a digital object, a component that extracts tha teXCDL as defined
in an extensible characterization extraction language (XC&nhd a comparator
that is able to compare different XCDL extractions for egyaBy comparing the
XCDL extractions we can measure the effects of migration oigigadl object on
properties extracted from the object.

SIDjgital Formats Website -at t p: / / www. di gi t al preservati on. gov/ f or mat s/
i ndex. shtm

[14IGlobal Digital Format Registry ht t p: / / www. gdf r . i nf o/

[151Unified Digital Format Registry ht t p: / / www. udfr. or g/

BSIFITS —ht t p: / / code. googl e. com p/fits/

71C3PO -http://ifs.tuw en.ac. at/inp/c3po

CHAPTER 2. RELATED WORK 33

i
flberto

60:00; 18
1. e2-ed

(22|
2|
B

Figure 2.7: Screenshot of "Chessmaster 2100" running und& @Qhe left and
the segmented screenshot showing significant areas orgttte ri

For emulation environments however, the digital objecystanchanged, so
properties extracted from the bitstream will be unchangedell. Thus the com-
parison has to be done on the rendered object.

Thaller suggests in [Thaller, 2008] to separate the infélanaontained within
a file from the rendering of the information. Informationr&td in the file can, for
example, be the coordinates of text which leads to the remglelisplaying the
text on a specific point on the screen. This is described a®thes feelaspect
of an object.

As shown in [Guttenbrunnest al., 2010b] XCL was extended to be able to
describe significant points in the rendering of a digitakabj The central analysis
task of the method is to identify specific regions in the readeigital object,
which can - in a final step - be compared with the rendering efsdime object,
using another rendering environment. Those specific regieitect characteristic
layout properties: regions with a high frequency of pixélattcould refer to a
significant area. To identify and isolate such regions @mest in the prepared, cut
to size and binarized image, the image is segmented by thaedatfiGraph-Based
Image Segmentation Algorithm as presented in [Felzenszarmd Huttenlocher,
2004]. To facilitate comparison between two images, theeufgftmost pixel and
the bottom rightmost pixel of a layout-region in relationtb@ pixel dimensions
of the image by dividing both pixel values by the width, restpely the height,
of the processed image are calculated. These relativesral@eembedded into
XCDL files, which are connected to the screenshots, to enabtergarison of
the objects through the aforementioned XCL Comparator. Adicgifon that
accomplishes the described tasks was created as the XCL tRymzessor.

In [Guttenbrunneet al, 2010b] we performed case studies on various inter-
active objects to show the validity of the approach. Fig@&sand 2.8 show two
different images segmented to significant regions. Figl#sl2ows a code snippet
that describes the coordinates of a significant region imege.

CHAPTER 2. RELATED WORK 34

I want to bF apirate.

Figure 2.8: Screenshot of original DOS-Version of "The Seaf&onkey Island”
(left). Significant areas in the same screenshot as a resSbinarization and
segmentation are shown on the right.
<property id="pl5381" source="raw" ca t="descr" >
<name 1d="1d999%8">significantCoordinates</name>
<valueSet id="i il iZzxx sl 1">
<labValue>
<val>0.118727 0.113586 0.232558 0.335189</val>
<type>rational</type>
</labValue>

</valusSet>
</property>

Figure 2.9: Code snippet of XCDL enhancement for significamtrdinates of
identified areas.

2.9 TIMBUS Preservation Workflow

An object goes through different moments in its digital preation life cycle.
While being deployed in its original environment, planningthe preservation of
the object is performed. The digital object is then stored long term archive.
At some point in the future the digital object is taken outlod tarchive and rede-
ployed in a future environment.

These significant points in time were developed into a wovkftar the preser-
vation of business processes in the TIMBUS project [Steacll., 2012]. While
this workflow as shown in Figure 2.10 contains stages spédoifibusiness pro-
cesses, the actions that have to be taken are similar forigalaldobjects and
relevant for any evaluation of renderings of a digital objec

Plan In the plan phase the context of a digital object has to beucagtalong
with all legal implications of rendering the object at a fgp@int in time,
the necessary documentation and all other relevant data. risk of not
having the object available has to be assessed and managedaptured
context contains amongst other meta-data the view-pathisasssential to
know the requirements of rendering the digital object inw&a ravironment.
To accomplish the capturing the digital object has to beyereal along with

CHAPTER 2. RELATED WORK 35

Manage Enterprise Risk
Manage Legalities Lifecycle
Capture Context & Dependencies

Virtualise BP
Store BP
Validate BP

Figure 2.10: Process for Digital Preservation of Business&gses (BP) in TIM-
BUS.

CHAPTER 2. RELATED WORK 36

all its external dependencies influencing the renderingpefigital object.
Knowing these dependencies is necessary to create a detgrowender-
ing of the digital object, i.e., to make sure that the digabject can be
rendered identical under the same conditions and allowsig wlo a com-
parison between the different renderings. To then assesgudlity of a
preservation action, the preservation action is carrigdaouhe object and
the resultis compared to the original rendering, and a aecfer one of the
preservation candidates is taken. This first step of evialuaff the preser-
vation action is similar to the actual validation and vedtfion in the next
two phases described below.

Preserve In the actual preserve phase, the digital object is firstiglized. In this step
an additional layer is introduced in the view-path (e.g.jré&ual machine
or an emulator), allowing us to capture any communicatiotnwveen the
object’s environment and the outside world. This is for ameming data
that influences the rendering, e.g., data from a web semnvs=s,input, data
from sensors or through a network protocol. But it is also geitluced
by the rendering in any form (e.g., on the screen as infoondbr a user,
data sent to actors or the network). We can thus validateiti&ldobject
at the time of preservation to make sure that all the necgsisgrendencies
have been captured and will be stored along with the digibgdai. We
also capture the data used for the validation and the outpduped by the
rendering process to compare this data in a later verificgiase once the
object is re-deployed. Data being captured includes théegbas well as
log files, any test-data and properties of the renderingga®c

Re-deploy At a later point in time the digital object is re-deployed im@&w environ-
ment, e.g., an emulator existing at the time of re-deploym&he digital
object has to be integrated in a system where all the extele@nden-
cies necessary to render the digital object are providednmesform. An
example for this would be a web service that existed when tij@cowas
originally in use, but might not exist anymore once it is eplbyed. Once
the object has been re-deployed it is necessary to verifytiieafunction-
ality is still intact. Thus we provide the data that has besptared during
the verification phase to the new environment and captureutput of the
digital object. If this is done for various use cases, anddéa captured
matches, we have strong evidence that the rendering of gigldobject
is unchanged compared to the original rendering at the tif@reserva-
tion. Other data that will be provided to the new environmienensure
a deterministic rendering includes user input. To verifgtttine results of
the rendering process are unchanged to the original remgjéog files and

CHAPTER 2. RELATED WORK 37

properties captured during the rendering in the new enkent are com-
pared to the results stored in the preserve phase.

In this thesis we show how the framework for evaluating thedeging of
digital objects can be used in the TIMBUS preservation wovkfto verify and
validate rendering results of preserved digital objects.

2.10 Projects on Preserving Complex Objects, Mul-
timedia and Interactive Content

A number of projects that have been dedicated to preserangplex digital ob-
jects like video games, art, or processes have been starteed iast years.

The first European research project dedicated specifiea#iynulation was the
Keeping Emulation Environments Portable (KEEP) [Bergme28d.1] project.
Besides the aforementioned KEEP Virtual Machine and the KEBRilation
Framework, the project also did work on the KEEP Transferl Fmamework
to transfer complex digital objects from their original neechs well as on studies
researching the legal situation of emulation in Europe. &offithe legal issues
raised by KEEP also apply to the development of the emul&tows in this the-
sis.

The Preservation of Complex Objects Symposia (POE&Project deliv-
ered different symposia in the UK on issues of complex digitgects connected
to Visualizations and Simulations (e.g., visualizing 3Ddels of cultural heritage,
virtual museums), Software Art, and Gaming Environment ¥intual Worlds.
Besides the symposia, POCOS also published three books onréeedifferent
topics covered by the symposia.

The Preserving Virtual Worlds project [McDonougtal.,, 2010] was a project
on the preservation of video games and virtual worlds furigethe Library of
Congress. The goals of the project were to develop basic atdsdor virtual
world metadata and content representation, as well astigaéag preservation
issues by carrying out various case studies on early videwegand interactive
multi-player game environments. A second installment efgloject, Preserving
Virtual Worlds 2 (PVW?2), is currently underway, focusing agrsficant prop-
erties for a variety of games and providing a set of best mextfor preserving
materials through virtualization technologies and migrat

An approach to preserve complex multimedia art was undentbly the Gug-
genheim museum with the Variable Media Initiative. The oute was thé&/ari-
able Media Questionnairea questionnaire for artists and collectors of digital art

18IPOCOS -ht t p: / / www. pocos. or g/

CHAPTER 2. RELATED WORK 38

which included descriptive elements needed for recredtiegartwork. The re-
search concluded in théariable Media Networ&®. The variable media paradigm
includes the artists on the decision on a preservationegyatvith the available
options being storage, emulation, migration and reinetgtion.

A practical experiment on digital art preservation usingi&tion is presented
in [Jones, 2004]. The artwork “The Erl King” (1982-85) by Geane Weinbren
and Roberta Friedman consisted of obsolete and generic aerdmd software.
Different preservation actions were performed during theecstudy. An interac-
tive website as a re-interpretation of the original artwatks set up for visitors
of the museum website. For a setting inside the museum eomulaas used as a
strategy. The original software for the artwork was writtgnthe artist, so it was
a very high priority to also preserve the original code.

The Ars Electronicd” is a platform for digital art and media culture. Besides
a yearly festival on art, technology, and society, it mamga permanent media
center and museum for interactive digital art. Founded iA919t maintains a
wide array of digital artworks, many running on obsolete engric hardware and
software. In [Beckeet al, 2007] a case study on preservation planning on some
of the artworks in the collection is shown.

Recently, the Museum of Modern Art (MoMa) started acquirimdeo games
as artworks for their collection. The MoMa is acquiring natyothe game itself
but also as far as possible accompanying material like theceacode or design
documents. For games that are no longer running on origardiare, putting an
emulated version of the game on display for visitors to atewith is planneldt.

The European projedimeless Business Proces$@&dVIBUS)?? deals with
the preservation of resilient business processes. Besidés\gnsure that the
execution context of a process processing data stays #ueesSEMBUS also
concentrates on third party dependencies usually eskentender a process cor-
rectly. TIMBUS also aligns preservation actions with eptese risk management
(ERM) and business continuity management (BCM).

A project dealing with the challenges to preserve scienékiperiments in
data-intensive science is Workflow 4Ever (Wf4E¥&t) It defines models to de-
scribe scientific experiments by means of workflow-centegearch objects and
collects best practices for their creation and managemasntell as analyzes and
manages the decay in scientific workflows.

[1¥lVariable Media Network -at t p: / / var i abl enedi a. net /

[20Ars Electronica -ht t p: / / www. aec. at /

PlMoMa acquires video games ht t p: // www. nona. or g/ expl or e/ i nsi de_out /
2012/ 11/ 29/ vi deo- games- 14-in-the-col l ection-for-starters

PITIMBUS —ht t p: / / ti mbuspr oj ect . net/

[2SlWf4Ever —ht t p: / / www. W 4ever - pr oj ect . or g/

CHAPTER 2. RELATED WORK 39

Data and Software Preservation for Open Science (DASPO&)plores the
technical problems connected to the preservation of thesinedata sets of High
Energy Physics (HEP) experiment data. While the project eotnates on HEP
experiments, the goal is to create a template for preservaseful for different
disciplines.

A multitude of other projects exist, a survey of Europeatiatives is shown
in [Strodl et al,, 2011].

2.11 Summary

In this chapter we described some of the foundations for warkied out in this

thesis. Basic concepts for the view-path of a digital objastwell as different

strategies of how to preserve a digital object for the longnteere presented, with
a special focus on emulation. We showed different conceggd tn emulation as
a digital preservation strategy. Keeping the renderingdifdal object authentic
after applying a preservation action is crucial for the obje stay usable for the
designated community. Preservation planning as part dDi& ensures that the
best preservation action in a certain context is selectedluBting preservation
actions by characterizing the object is part of preseragiianning.

In this work we will show how the rendering of complex digitddjects can be
used for evaluation of preservation actions both in predem planning but also
in later phases in the preservation workflow presented sxa¢hapter. To put our
work in the context of the research field, we also introduaadesprojects doing
work on the preservation of complex digital objects.

RP4ADASPOS -ht t ps: / / daspos. cr c. nd. edu/

Chapter 3

Comparing Renderings of Migrated
and Emulated Digital Objects

3.1 Introduction

Emulation and migration as the main strategies in digitasprvation are usually
treated as entirely different strategies. While for evahgathe success of a mi-
gration action the object properties are compared to cHesafgnificant properties
of the object change, the rendering environments of thdaligbject (i.e., the
environment the object was originally rendered in and therenment it will be
rendered in after the migration) are quite frequently nk¢tainto account. With
emulation, on the other hand, the digital object does notgéaso only the ren-
dering of the digital object in the original environment ahe rendering in the
emulated environment are compared to see if the renderidgnsical.

What is usually not considered in the evaluation of a migra#iotion is that
every extraction of significant properties of an object ieatly a form of ren-
dering i.e. an interpretation of this object. Even thoughmexessarily directly
visible to the user, the object is rendered by the routines s extract the prop-
erties. The problem with this approach is that the prograendering” the object
is neither necessarily the program originally used to reitd®r the one that will
be used to render it and thus the results are not necessatfigrdic to the orig-
inal rendering once the object is rendered in a differentrenment. (Note that
"rendering” in this context is not restricted to the visu@play of an object. It
refers to all kind of interpretations of an object and theultasg effect on an envi-
ronment, be it visual, acoustic or effects on a system ditde,stored on media,
or communication/voltage levels on 1/O ports, etc.)

In this chapter we will show how migration and emulation &tgées affect the
view-path of a digital object on different levels. By applgia digital preservation

40

CHAPTER 3. COMPARING MIGRATION/EMULATION RENDERINGS 41

action the view-path is changed, both for emulation and atign actions. The
rendering using the new view-path has to be compared to tleetalendered in
the original view-path to evaluate changes of significanpprties of the object
when rendered in the new view-path. While this is common kedgé when
evaluating emulators this chapter will emphasize the sintiés in rendering of a
migrated object and the changes in the view-path.

We will show in this chapter that both the evaluation of a migm action and
an emulation action should thus always include the cominndietween object
and rendering environment using an evaluation strategyhasrsin the frame-
work in Chapters 4 and 5. Research shown in this chapter haspuistished
in [Guttenbrunner and Rauber, 2012b].

3.2 Changing the View-Path Using Emulation

Using emulation as a digital preservation strategy, we kiepbject unchanged.
This means we can replace three of the layers in the origieal-path shown
in Figure 2.1. Based on the different levels of emulation, \aeehthe following
possible resulting view-paths:

Application The most simple level on which we can change the rendering is b
replacing the application as seen in Figure 3.1b. An exarfoplenis would
be to use FreePDF instead of Adobe Acrobat Reader (or usinieaedit
version of Adobe Acrobat Reader) to render a PDF document. é/Viut
a long term strategy (as the hardware and operating systgnthe same),
this could be the case if an application gets obsolete andsriede replaced
by a different one.

Operating System The operating system is usually very closely tied to the unde
lying hardware. If we keep the original application in placéhe view-path
and use a translation layer emulating the originally usestang system,
we get an extra layer in the view-path as shown in Figure 3A%awith the
strategy of emulating on the application level, this is nédreg term strat-
egy, as the application would still need to be run on the saargware. This
strategy would be used if the operating system gets obsamtetaeeds to be
replaced by a different one, still running on a compatiblgsptal hardware.

Hardware Finally, we can replace the actual physical hardware by amaor
replacing its functionality. The original application atite operating sys-
tem used to run the application stay unchanged. Introdwasirgmulator for
the hardware means that usually two additional layers dreduaced into

CHAPTER 3. COMPARING MIGRATION/EMULATION RENDERINGS 42

Application Operating System Computer Architecture
Digital Object Digital Object Digital Object Digital Object
Application Application” Application Application

Operating System Operating System

(Emulated) Operating .
Operating System’ (Emulated) Hardware

Hardware Hardware

Hardware Operating System’

Hardware’

(a) (b) (c) (d)

Figure 3.1: Changing the view-path by emulating the appboat-ull boxes show
the emulated layer that changes, dashed boxes additigea(da that need to be
introduced. Shown are the original view-path (a) and viethp emulating the
application (b), the operating system (c), and the comprtghitecture (d).

the view-path as shown in Figure 3.1d: the emulator of thgirai hard-
ware and the operating system on which the emulator runke lémulator
is based on a virtual machine (e.g., Java VM), we get anottiéitianal
layer. As in this approach the physical hardware is repldnedoftware
that can be ported to new machines (the emulator), this i®ably also the
most promising approach for a digital preservation strateg

3.3 Changing the View-Path using Migration

If we use migration as a digital preservation strategy, ibeal object is changed.
Based on the view-path shown in Figure 2.1 we get the followiegy possible
view-path options.

Digital Object If only the digital object is changed, but the same applarats
used to render the digital object as shown in Figure 3.2breéh@ainder
of the view-path remains unchanged. An example would be tverd an
image in format BMP to PNG and use the same tool to view the image
The use as a strategy is limited as the motivation for a digiteservation
is usually that the application used to render the digitaéctbwould get

CHAPTER 3. COMPARING MIGRATION/EMULATION RENDERINGS 43

Digital Object

Application

Operating System

Hardware

(a)

Object

Application

Operating System

Computer Architecture

Digital Object’

Application

Operating System

Hardware

(b)

Digital Object’

Application’

Operating System

Hardware

(c)

Digital Object’

Application’

Operating System’

Hardware

(d)

Digital Object’

Application’

Operating System’

Hardware’

(e)

Figure 3.2: Changing the view-path by migrating the digitsjeat. Boxes around
the layers highlight the layers that change. Shown are tiggnaf view-path (a)
and the changed view-path when the object is migrated (b@nvehdifferent ap-
plication is used to render it (c), when a different ope@sgstem has to be used
for the application (d), and when the computer architecthianges (e).

obsolete, and not just the format of the digital object. Rert note that
while the application may formally remain unchanged (élge, same image
viewer application), a different functional componentivioié used within

the same application, thus actually constituting a difierendering engine.

Application In addition to changing the digital object we usually als@d¢o
change the application that is used to render the object.xample would
be to migrate all documents from Microsoft Word DOC-formaPioF-A
and using Adobe Acrobat Reader instead of Microsoft Word talee the
objects. On this level the operating system and the hardwaudd still be
unchanged as shown in Figure 3.2c. (Note that, strictlylspgaalso a new
version of an application basically constitutes a new @afibn that needs
to be verified as such.)

Operating System The operating system has to be replaced by a different one

once it gets obsolete as shown in Figure 3.2d. Using a nevatpgrsys-
tem means usually to replace the applications (at least watt versions)
as well. While it might still be possible to run it on the samedvaare,
this already changes 3 layers in the view-path. An exampleldvbe to
migrate the object from Microsoft Word 95 format to Micros@ord 2007
format, and at the same time change the application Micta§ofd 95 to
Microsoft Word 2007 and the operating system from Microstfhdows
95 to Microsoft Windows 7.

Hardware As hardware gets obsolete as well, we finally will have toaeplthe

CHAPTER 3. COMPARING MIGRATION/EMULATION RENDERINGS 44

actual physical hardware by a different one. The upgradaidvare usu-
ally involves an upgrade in the operating system with alllibéore men-
tioned steps. As can be seen in Figure 3.2(e) this involvésngally to
exchange all the layers in the view-path. Note, that we may dirsitua-
tion where we replace (part of) the underlying hardware gbestill able to
use, at least nominally, the same operating system. Ystugually needs
to be treated like a complete replacement of also the opegratistem, and
potentially any applications building on top of it as at let®e operating
system will usually not be identical: different drivers miag required to
access different hardware components, API's behave ity etc.

Other, more limited options, such as migrating only a spetafyer, keeping
those on top of it unchanged are, of course, possible as Wel.example, we
may replace (part of) the hardware configuration of the systanning the same
operating system on top of it (albeit likely with differeitidaries being used, thus
resulting effectively in a different operating system)m8arly, we might upgrade
an operating system e.g. to a new version, or only partiafiyapplying new
security patches, keeping the viewer application idehtita any case, we are
changing the view-path, thus requiring evaluation of thedexing performance
of an object in the new setting.

3.4 Generalized View on the Performance of Digital
Objects

Emulation strategies usually replace one layer in the \pewir or add an ad-
ditional layer as an interface between the emulated vieth-pad the new un-
derlying layers. This adds complexity to the rendering ofigital object, with
side-effects of the introduction of the new layers havind#¢oconsidered. For
evaluating the rendering we need to do a comparison betweerehdering in
the original view-path and the new view-path to judge whbesrendering differs
and if the digital preservation action is useful for the giwetting. Any change in
the view-path due to a layer getting obsolete has to lead ¢ésewvaluation of the
rendering.

For migration the view-path of the digital object stays otilg same if the
same application on the same system is used. In every otkertica view-path
changes and every lower layer frequently leads to one or tagess on top of it
being changed as well. As different code segments in the sppigation will be
used to render an object (e.g. a PNG library instead of a Jit@y) this should
actually be viewed as using a different application to rerie object in the new
format, even if the two rendering engines are "wrapped” assngle, unchanged

CHAPTER 3. COMPARING MIGRATION/EMULATION RENDERINGS 45

application. The potential side-effect is thus even bigfan when emulating
the original rendering environment of a digital object. Tidge if there are side-
effects due to the change in the rendering environment we taeompare the
new rendering to the original rendering, just as we would m@mn emulation
setting. As with an emulation action, any change in the neswypath has to
be re-evaluated. We need to keep in mind that it is not enoogloinpare the
migrated object in the current environment and assume hieateindering will be
the same in a future environment. If the digital object israigd while preserving
it for the long-term it has to be validated against the oagjrendering of the object
to be able to make a statement about the authenticity of tigerang.

As an example for the changes in object format and its infla@mche render-
ing a document in Microsoft Word for Windows 97-2003 (doanhat is rendered
using both Microsoft Office 2007 (Figure 3.3) and OpenOfficeé Figure 3.5),
both running on a PC using Windows 7 operating system. Whikdlgiifferences
in the rendering are visible (e.g. horizontal spacing, soh@ged word wrapping
in the “Instructions” part of the document), the propertiéshe document con-
sidered significant for most settings are unchanged. Nextlocument has been
migrated to Microsoft Word for Windows 2007 (docx) formathéldocument is
rendered exactly identical in Microsoft Word 2007 (Figuré)3so the significant
properties stored in the file (layout information, contengtadata, etc.) are still
present. However, in OpenOffice 3.4 the rendering looks det@ly different to
a state that is unusable for most applications (Figure 3.6).

Additionally to the observations made in the experimentghia chapter, it
should be noted, that the same file is identified differentiypn@ characterization
tools, thus different characteristics might be extractedding to differences in
the extracted significant properties on migrated files. brifdnt and Carr, 2012]
Tarrant et. al. show how PDF files are characterized and ifatehdifferently
over the course of a view month, using different characiion tools shown in
Section 2.8.2.

Thus, any object with preservation actions applied, wihetheulation or mi-
gration, must be evaluated in the context of its renderingyenment, as changes
to significant properties may occur that are not properlgceable from an anal-
ysis of the static object properties only. From this peripec migration and
emulation behave virtually identically.

3.5 Summary

In this chapter we showed how the digital preservation ejiat migration and
emulation on different levels affect the view-path of a tifjiobject. We then
compared the effects of the two strategies and showed #ahtimge in view-path

CHAPTER 3. COMPARING MIGRATION/EMULATION RENDERINGS 46

itasﬂdg;? FUWQJWS (Rev‘ AZA’BU) (EG) APPLICATION FOR 10-POINT

fice ot Personnel Management

FPM Supplement 296-33 o VETERAN PREFERENCE Form Approved:
FPM Chapter 211 (TO BE USED BY VETERANS & RELATIVES OF VETERANS) O.MB. Nn 3206-0001
PERSON APPLYING FOR PREFERENCE

1. Name (Last, First, Middle) 2. Name and Announcement Number of Civil Service or Postal Service Exam You

Have Applied For or Position Which You Currently Occupy

3. Home Address (Street Number, City, State and ZIP Code)

4. Social Security Number 5. Date Exam Was Held or Application Submitted

VETERAN INFORMATION (fo be provided b
6. Veteran's Name (Last, First, Middle) Exactly As It Appears on Service Records

7. Veteran's Periods of Service 8 Veteran's Social Security Number

Branch of Service From To Service Number

9. VA Claim Number, If Any

INSTRUCTIONS: Check the block which indicates the type of preference you are claiming. Answer all questions associated with that block. The “DOCUMENTATION REQUIRED" column refers you to the back of
this form for the documents you must submit to support your application. (PLEASE NOTE: Eligibility tor veterans' preference is govemed by 5 U.S.C. s 2108, 5 CFR Part 2| 1, and FPM chapter 211. All conditions
are not fully described in this form because of space restrictions. The office to which you apply can provide additional information. Instructions on how to apply for five point preference are on SF 171, Application for
Federal Employment, or PS Form 2591, Application for Employment (U-S. Postal Service Application)

DOCUMENTATION REQUIRED
(See reverse of this form.)
[] 10 VETERANS CLAM FOR PREFERENCE based on noncompemsable ~= ===~ ======-==-===------------o- > AandB
service-connected _ disabilty; award of the Purple Heart; or receipt of disabilty
nension under nublic laws administered bv the VA

Figure 3.3: Sample layout region of a document in MS Word fondgws 97-
2003 format rendered in MS Office 2007.

Standard Form 15 (Rev. 2/90) (EG) APPLICATION FOR 10-POINT

U'S. Office ot Personnel Management
FP Supplement 29633 VETERAN PREFERENCE Form Approved

FPM Chapter 211 (TO BE USED BY VETERANS & RELATIVES OF VETERANS) O.M.B. Nn 3206-000!
RSON APPLYING FOR PREFERENCE

1. Name (Last, First, Middle) 2. Name and Announcement Number of Civil Service or Postal Service Exam You
Have Applied For or Position Which You Currently Occupy

3. Home Address (Street Number, City, State and ZIP Code)

4. Social Security Number 5. Date Exam Was Held or Application Submitted

VETERAN INFORMATION (fo be provided b
6. Veteran's Name (Last, First, Middle) Exactly As It Appears on Service Records

7. Veteran's Periods of Service 8 Veteran's Social Security Number

Branch of Service From To Service Number

9. VA Claim Number, If Any

INSTRUGTIONS: Check the block which indicates the type of preference you are claiming. Answer all questions associated with that block. The “DOCUMENTATION REQUIRED" column refers you to the back of
this form for the documents you must submit to support your application. (PLEASE NOTE: Eligibilty tor veterans' preference is govemed by 5 U.S.C. s 2108, 5 CFR Part 2| 1, and FPM chapter 211. All conditions
are not fully described in this form because of space restrictions. The office to which you apply can provide additional information. Instructions on how to apply for five point preference are on SF 171, Application for
Federal Employment, or PS Form 2591, Application for Employment (U.S. Postal Service Application).

DOCUMENTATION REQUIRED
(See reverse of this form.)
[] 10 VETERANS CLAM FOR ~ PREFERENCE based on noncompensable == ====================---------- > AandB
service-connected _disabiity; award of the Purple Hear; or receipt of disabilty
pension under public laws administered by the VA

Figure 3.4: Sample layout region of a document in MS Word fondws 97-
2003 format rendered in OpenOffice 3.4.

CHAPTER 3. COMPARING MIGRATION/EMULATION RENDERINGS 47

ﬁ‘g”‘:;;d Fmtr;*ﬁ (Rev‘ IZA/ED)(EG) . APPLICATION FOR 10-POINT

FPM Su;:;\eume:{s Zean VETERAN PREFERENCE Form Approved
FPM Chapter 211 TO BE USED BY VETERANS & RELATIVES OF VETERANS O..B. Nn 3206-0001
PERSON APPLYING FOR PREFERENCE |

1. Name (Last, First, Middle) 2. Name and Announcement Number of Civil Servic e or Postal Service Exam You

Have Applied For or Pesition Which You Currently Occupy

3. Home Address (Street Number, Cly, State and ZIP Code)

4. Social Security Number 5. Date Exam Was Held or Application Submitted

VETERAN INFORMATION (to be provided by person applying for preference)

6. Veteran's Name (Last, First, Middle) Exactly As It Appears on Service Records

T Veteran's Periods of Service 8 Veteran's Social Security Number

Branch of Service: From To Service Number

9_VA Claim Number, If Any

INSTRUGTIONS: Check the block wich indicates the type of preference you are claiming. Answer llquestions assaciated wit that bock. The “DOCUMENTATION REQUIRED: columnrefers you to the back of
this form for the documents you must subrmit to support your application. (PLEASE NOTE: Eligibilty tor veterans' preference is governed by 5 U.S.C. 52108, 5 GFR Part 2| 1, and FPM chapter 211 All conditions are
ot fully described in this form because of space restrictions. The office to which you apply can provide additional information. Instructions on how to apply for five point preference are on SF 171, Application for
Federal Employment, or PS Form 2591, Application for Employment (U.S. Postal Service Application)

DOCUMENTATION REQUIRED
(See reverse of this form.)

[‘] 10. VETERAN'S CLAM FOR PREFERENCE based on noncompensable @ — — —— ——— ——————————— ¥ AandB

service-comnected disabilty, award of the Purple Heart or receipt of disabilty
pension under pubiic laws administered by the VA

Figure 3.5: Sample layout region of a document in MS Word fondbws 97-
2003 format migrated to MS Word for Windows 2007 (docx) fotmendered in
MS Office 2007.

APPLICATION
FOR 10-POINT
Standard Form 15 VETERAN
(Rev. 2/90) (EG)
U.S. Office of PREFERENCE
Personnel (TO BE USED
E‘S&ageme‘m 1296 BY VETERANS
Gy Supplement298- | g RELATIVES Fom
FPM Chapter 211 OF VETERANS) O.M.B. Nn
‘PERSON APPLYING FOR PREFERENCE ‘
1. Name (Last, First, 2. Name and Announcement Number of Civil Service or Postal Service Exam You
Middle) Have Applied For or Position Which You Currently Occupy

3 Home Address
(Street Number,
City, State and ZIP
Code)

4. Social Security
Number 5. Date Exam Was Held or Application Submitted

'\IETERAN INFORMATION (to be provided by person applying for preference) ‘

Figure 3.6: Sample layout region of a document in MS Word fondbws 97-
2003 format migrated to MS Word for Windows 2007 (docx) fotmendered in
OpenOffice 3.4.

CHAPTER 3. COMPARING MIGRATION/EMULATION RENDERINGS 48

makes it necessary to take the rendering environment irttoust when evaluat-
ing any digital preservation action, be it a migration or arukation action.

Based on these observations we showed that preservatiomngestrategies
have to be adapted when using migration as a digital presenvsirategy. To
ensure an authentic rendering it is necessary to take thetta@ndering environ-
ment after migration into account. Any change in the targetiering environment
(i.e., alayer in the view-path becoming obsolete) has td lea new preservation
planning iteration evaluating the changed environmergnef/the format of the
digital object stays unchanged. This makes the evaluatiocegs for migration
strategies essentially identical to the evaluation of etirh strategies.

In the next chapter we will show a framework to evaluate thedeging of
digital objects.

Chapter 4

Describing a Digital Artifact and its
Environment

4.1 Introduction

In Chapter 3 we showed that applying any digital preservatiion, be it migra-
tion or emulation, changes the view-path of the digital obgn at least one level.
This means that the renderings of the different view-pa#ive ho be compared for
an evaluation if the conceptual layer of the digital objsgbieserved accurately.

Knowing about the behavior of the digital artifacts undealeation is essen-
tial to determine whether the behavior is properly repreduby the rendering
environment. In this chapter we will explain some key cheeastics of a digital
object and its view-path, as well as influences on the objeetsvior that has
to be gathered to properly evaluate its rendering procelss.décisions on what
level and at which moments in time comparisons have to be rmashown and
used as a basis for a systematic evaluation of renderedidiijects. Parts of this
chapter have been published in [Guttenbrunner and RaulbE2cPO

4.2 Describing the Digital Artifact

It is necessary to explicitly document, which characterssof a digital object are
relevant for a given preservation scenario, i.e. which eséhconstitute significant
properties. The degree of preservation of these in a diffefiew-path ultimately
forms the basis for the evaluation and comparison of theopadnce of different
potential environments as part of the preservation planpnocess [Becker and
Rauber, 2011b]. These significant properties are collectquhe of the require-
ments analysis phase for a digital preservation endeawbmay be documented
e.g. in the form of an objective tree, grouped into differeategories. Several

49

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 50

possible preservation actions, such as different emul&iiwironments, may then
be used to render an object and evaluate its performancenge raf properties
usually need to be considered that can be structurally sigedi in Object and

Action specific properties, i.e. those pertaining to chemastics of the digital

object (e.g. reacts correctly to interaction, performguations identically to

the original, displays colors correctly) and those penmgjrio the action (emula-
tion or migration) applied (e.g. emulation environment [0 source, memaory
consumption, required hardware platform, licenses). (Beeker and Rauber,
2011a] for a detailed discussion and examples of such grepend means how
to measure their performance.)

In the following two subsections we want to focus on two obtaracteris-
tics that are particularly relevant for dynamic objects amdluation settings that
usually tend to call for emulation strategies as suitabés@rvation actions, but
are just as valid for migration strategies.

4.2.1 Determinism of the Digital Artifact

Before trying to evaluate the behavior of the digital artifeccoriginal form and

in a different view-path it is necessary to understand thgaicts of internal and
external events on the object’s behavior. For evaluatiagltfierences in behavior
of an object in the original environment and the new envirentt is necessary
to ensure that the object behaves the same under the sameaéxienditions.

Otherwise it is not possible to determine if changes in bemavre an effect of
changes in the view-path or due to seemingly random behaworchanges in
data influencing the object’s behavior.

Deterministic Behavior

Lamport et al. describe deterministic algorithms as “atgans in which the ac-
tions of each process are uniquely determined by its locaMedge” ([Lamport
and Lynch, 1990]). A deterministic algorithm is indepenidieom external influ-
ences like user input, hardware values, random valuesher abncurrent algo-
rithms modifying the same data as the algorithm. Based onwescan define
deterministic behavioas the behavior of an object that is influenced only by the
input that is applied to the object when it is invoked. Thedexing of the object
has to be independent from the factors listed above for tfecbto be considered
as having deterministic behavior.

Some digital objects can be rendered with a deterministi@aier. A spread-
sheet or database application will usually under the sarftwa®- and hardware-
conditions and after applying the same input show the sasdtse Replaying a
video or audio file has to produce the same results indepéfrdem the external

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 51

influences listed above. A comparison of preservation aaftects would in this
case be rather simple.

Non-Deterministic Behavior

If we try to preserve a single object for the long term, theeobjs usually self
contained, i.e. all the data specific for the object (and neated by interpreting
the object for the rendering) can be extracted from the dbjbidstream. On the
other hand, if the behavior of a digital object depends om irgut, hardware
or random values, or has the data it uses modified by otheegses, then it
is not deterministic. If the object’s rendering is not deteistic, i.e. relies on
external data that influences how the object is rendered,ave to make sure
that this data is provided to the rendering engine idenyidal each rendering.
This ensures that differences in the rendering are trighgbyedifferences in the
rendering environment, and not by changes in the exterrial da
To allow an automated comparison of two renderings of theesalpject it is

necessary to try to create a deterministic behavior. Thaemremg of the digital ob-
ject can be made semi-deterministic by identifying the mekevents influencing
the object’s behavior and equalizing the values for thesats\n the different en-
vironments. This external data can come from differentsesirit can be divided
into two different categories depending on where it oritgsa

e Locally controlled data:Some data can be locally controlled as it is exter-

nal data coming from the host system (e.g., real time clotds fitored on
the host system’s file system, random number generatorditfial object

is separated from its original environment, e.g., by viitiiag its environ-

ment, this data is under control of the new rendering enwram and can
thus be provided identically for every rendering cycle ofgitdl object, to

ensure deterministic rendering.

e Notlocally controlled dataSome data is provided to a digital object through
interfaces from other systems that are not local to thealigibject's host
system (e.g., data retrieved from web services, user iripes, stored on
the network). This kind of data may change with every remdgadycle of
the digital object and is thus much more difficult to keep ittt for de-
terministic execution. Additionally, as the service isdted remotely, it
can provide data in the form of a black box, i.e., the exactfionality of
the services may not be known. The list of possible intedam® which
data is fed into the system is practically endless and olslyodepends of
the technical characteristics and interfaces of the hamimahe view-path.
Some examples include human input through keyboard, moosstjcks,

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 52

microphones, but also external data supplied using seriphllel inter-
faces, network interfaces, any kind of USB devices, storagdia, MIDI
interfaces, etc.

For example, applying automated user input at the exact saoneent in the
rendering process can be used to eliminate differenceshaviie depending on
user input. Random number generators are usually initdiizéh values derived
from hardware values like system time or the position of #eter beam on the
screen. These external influences to the digital object eande predictable by
setting the system clock in the emulation environment tcstirae time as on the
original environment during execution of the digital olijaad by using a pixel-
exact emulation of the original system, i.e. updating eyéxgl on the screen with
the corresponding CPU cycles. Especially video games oraictige digital art
usually heavily depend on external or random elements. Aamgke of a video
game with unusual external events is metro-watdiver the Nintendo DS/Apple
iPhone which uses wireless-LAN-waves to create in-gameocid)

When a digital object is described for preservation, bothinkernal (locally
controlled data) and the external (not-locally controlleda) dependencies have
to be documented and captured for a comparison of the renperocess.

Ideally, a digital object is still deployed in its originah@ronment when it is
prepared for storage in an archive in a virtualized form, ekenit independent
of its original environment. Thus, as a first step, both Ilycebntrolled and not
locally controlled external data are captured when valdgthe proper execution
of a process (or other digital object) after being virtuaizo make sure that it
behaves as expected.

In an ideal case the data can be captured using the rendemwirgrement,
as the capturing can then be directly synchronized with xeewion of the pro-
cess, e.g., triggered by a specific number of processorshialdng been executed
in the virtual environment, or a specific amount of executiame passed in the
virtual environment. If the rendering environment does s\giport capturing of
external events, it can also be captured by processes akterthe virtual envi-
ronment, e.g., a listener that captures data from and to ssemice [Mikseet al,,
2013].

As one example for external events influencing interactivjeas we show
how to address human interaction with the environment. Tfierent methods
to capture (and later recreate) these events are listed hengrinciple human
interaction is similar to any other event that influencesréredering of a digital
object. The methods listed here can thus be seen as a terfiplaey kind of
event, with the same possibilities and problems discussed.

Hmetro-wardive for Nintendo DS/Apple iPhone — http://wwidsor.ch/wardive/

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 53

Depending on the type of digital artifact, it is more or leasotal to apply the
same input to get the same results. Input in this context ex@ayinteraction with
the environment, e.g., clicking a hyper-link on an HTML-pagressing a button
in an application, and using the mouse to control a charaterideo game, but
also system interactions such as polling for triggers in & \Bervice setting or
reacting to data feeds. While a few pixels and a few seconéeridig from the
interaction in the original system/environment may belévant when clicking
on a button in a Word-document viewing setting, it will makbuge difference
in a control system reacting on sensor input or a computeregaBut also for
automatically measuring the efficiency and effects of agmesdion action on the
rendered object it is essential to determine whether a tiffierence in events
occurs due to the preservation action and not due to delayexhction.

It is virtually impossible to manually apply the same int#ian twice to a
system, even if it is done shortly after the original intéi@t and side by side
with the original system. If interaction has to be appliedngeafter applying it
on the original system (e.g., to test the validity of newly@leped emulators), it
will be even harder. Some methods of applying automatedaatien to a digital
artifact are described below.

Use of Macros Recording a set of user actions along with the delay betwesn th
is one way of automating input to digital artifacts. One @ ttownsides is
the difference of recording on one system and replaying eother system,
which is a change in conditions under which the system isinghnBy
running a macro in the new environment a change in speed wotilafiect
the execution of the macro, as the software replaying theaoraso runs at
a changed execution rate.

The use of macros is only possible on operating systems wirecesses
can run parallel to the execution of the view-path of the otbjét would
not be possible for the preservation of games on video gamsoées or for
applications on most home computers or personal computarsng sim-
ple disc operating systems. In some cases the digital opjeetdes sup-
port for applying interactive options automatically eitktlerough a scripting
language or by recording macros. One example would be Modré&sxcel
which allows both the recording of macros and offers a scgptanguage
to automate input. Another example is the game Qdégkehich allows
the recording of user actions and is able to replay them igémee engine.
Note, that the granularity of timing is different for the tveaamples pre-
sented here: while differences in a few frames might not nsatliéference
for the automated input in Excel, it might make a differenmethie player’s

PlQuake by id Software — http://www.idsoftware.com/gamaakg/quake/

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 54

survival in Quake. Like in real-time systems, even a tickdzhgranularity
can be necessary.

Remote AccessBy using remote access to the original system as well as the
recreated system (e.g., at the time of evaluation during@sgpvation plan-
ning process) it would be possible to simulate the same itgphbth sys-
tems with the same amount of interference in both system® syktem
from which the remote access is established will replay #rmesinterac-
tion macro to both destination systems. The downside ofrttaghod is a
change in execution speed. If the new target system runsifi¢eedt speed
than the original system, the input will come either tooarltoo late.

Controller Applications One problem which arises by using macros is the po-
tential random (non-deterministic) behavior. While thisugially not an
issue with interactive software or interactive documeiitplays a major
role for most games and for interactive art. By using corgrapplications
that react to the digital object’s behavior (e.g., by analgzhe rendered
form of the digital object in the environment) it will to sore&tent be pos-
sible to apply automated input. A controller applicatiomseither in the
same environment or through remote access. It will han@engbut/output
communication with the digital artifact. This applicatican be used on
the original system as well as within a new view-path. Theaatkge is
that contrary to macro-based input, the output of the digitéfact can be
taken into account when having a controller applicationill, $he same
limitations as with macros apply. It is necessary to exethaeapplication
parallel to the view-path of the object that has to be preskranother dis-
advantage of a controller application is that it has to béaruied for each
type of digital object which has to be preserved and as sugphines a huge
effort compared to the benefits.

Recording and Applying Input on a Hardware Level The method of recording
and applying input with the least side-effects on the emrirent is at the
hardware level: recording the input directly from the indetices and ap-
plying this as an input-macro to the new environment. Thilkof input
macros contain the event (e.g., key X pressed, joystick &ftwell as a
time relative to elapsed process execution time betweesetbeents. One
advantage in the use of macros recorded from the input devideapplied
to the new environment is that they can be used on systemddimeit allow
parallel execution of processes (old home-computerspwdene consoles,
embedded systems). It is also possible for the new envirahtoeadjust
the timing of these input events depending on the speedeéiifte between
original environment and new environment. The disadvantaghat it is

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 55

not possible to use only software components but that ddemidware has
to be built to intercept the communication of the input degiand the target
system. A possible solution in software would be to use anl&muwhich
is known to work nearly perfectly and use an input recordeggdre of the
emulator to capture the input events. This feature and aatdized format
are one of the requirements that have to be researched twe femulators
as a digital preservation requirement. Ultimately, haral-tene system-
like behavior ([Liu, 2000]) is necessary to ensure perfeotess state level
execution of emulations.

Use of Software Buffers A method very similar to applying keys on an actual
hardware level is to use software buffers in the operatirsfiesy that hold,
e.g., key presses. This method can only be used, if the apgrststem
has a specified memory region that can be used for this purSoséarly
to the Hardware Level approach, this approach would alloverg ¢lose
control of extracting/inserting data from/to the buffepported by a virtual
layer (e.g., emulator) at the exact same time the data wag@asduring a
previous rendering cycle. The disadvantage over contragherhardware
level is that only one operating system (version) runningrenhardware
would be supported by this approach as opposed to all pessfg#rating
systems if the recording/applying is done on a lower level.

Testing an Object for Determinism

To give hints about the deterministic or non-determinibtbhavior of an object,
the same series of tests with the object (user input, othterred events) can be
applied to the object. For a deterministic object the rasgilbehavior has to be
reproducible. This process can be carried out automaticed test environment.

The methods described in this thesis to compare a digitalcoln different
rendering environments can also be used to test an objedeterminism. If the
behavior of the object in the same view-path is differentdifferent rendering
cycles, then external events influence the rendering. Byudapgtthe different
types of external events possible and reapplying thoseetoeihdering it is thus
possible to reduce the effects of external events untilralleader control of the
execution mechanism. For example, a digital artwork carebeered in its en-
vironment and re-rendered again under the same conditibtise results of the
rendering are exactly the same, then it is very likely thatdbject behaves de-
terministically. Otherwise external factors like randoomber generators based
on the rendering time can be eliminated by setting the same i the beginning
of every rendering cycle. Likewise human input can be madeistent over the
different rendering cycles.

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 56

4.2.2 Significant States of a Digital Artifact

When invoking a digital object, two entirely different siticms need to be con-
sidered, depending on the type of result to be evaluatedhdrfitst case, only
the target state of a digital object as result of a process e tevaluated, such as
running a calculation or displaying a static object. In teead, probably more
common case when emulation is chosen as a preservatioggsiratsequence of
states is essential, such as rendering dynamic objectem emulating interac-
tive processes.

With emulation and dynamic objects one can again have to w#hltwo
different situations, namely a sequence of target statélseobbject where it is
only necessary to capture the properties of the renderetiohiter some period
of emulation, and a continuously changing state of the ¢byglsich again may
be conceived as a series of designated states. It is negcéssitermine, which
states of the digital object are significant for the desigdaiser community of the
object types for which the rendering environment should $eduas usually not
all data created by the rendering process is significanteBe&pg on the digital
object’s rendering process, significant points in the rendehave to be defined.
Typical points are all the steps where an interaction beatvibe system and the
user or different systems takes place. E.g., when the rempgystem waits for a
user input, the rendered screen shown right before the ngat and prompting
the user for an action is significant. Also data transferredao interface to a
different system as a response to a request from that systsigmificant.

Target State

An example for rendering an object to a target state woulddysgem performing
some computations, e.g. loading an interactive spread,sg@ying some input
events which result in changes in the state of the spread.sfeee a defined
set of actions is applied to the spread-sheet a certain pigpmxpected. This
output can be considered as the target state and then be mam@ne possible
solution to a comparison is comparing a screenshot of tlyetatate. Another
option is to save a document after applying the input and topaoe the file

saved on the original system with the file saved in the emdlatwironment thus
evaluating the effects of handling the object in the emdlaevironment. This
way of comparing can be used if only the target state is censaisignificant and
not the states in between. The target state can also be teaest@ghed after the
emulated environment initially rendered the digital acifwithout applying any
input that influences the object’s behavior.

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 57

Series of States

In some cases not only a target state of a digital object icgrit neither is
perfect emulation of the entire sequence of steps requiBmmetimes, only a
subset of states in between is of interest for evaluatiothdfemulation process
in between is not of interest, single “snapshots” of theagestcan be taken and
compared (e.g., if the way how a series of images is compunedendered is not
important but only the resulting images are of interestiereévaluation, or states
reached during a simulation computation). By using staténmas describing the
states in between and a sliding window technology to applynaew for each of
the rendered versions of the digital object, comparisorbeatione for each state.
An example would be an image viewer application which svagchetween im-
ages on user input. It can take considerably longer in thdaedienvironment
to show pictures when using special hardware effects tachvinetween images
which are not supported by the emulation environment. Iy ¢hé rendered im-
ages are of interest for the emulation, then only the stasiate, the state before
applying input (when the image is fully shown on the screem a target state
have to be compared.

Continuous Stream

If a continuous stream of states has to be compared it cagr &&done by record-
ing the full output (e.g., image or sound stream) on the amdager (as will be
discussed in Section 4.3.3) and comparing the resultirgasts. Besides, e.g.,
aspect ratio, brightness settings, changes in color, dueljoency also the speed
factor has to be taken into account. Images on the streamtfremulated envi-
ronment can be slowed down or sped up, and not necessariliixaddactor over
the whole stream (e.g., more objects on the screen can @estow down the
emulation at some point). Advanced comparison mechaniswes o be used —
probably with human interaction — to link certain landmaviemets in the stream
(e.g., change in scenery in a video game from selection nemtdame graph-
iCS).

4.3 Describing the Rendering Environment

Not only the digital object, also the environment in whichsitexecuted has to
be documented to support for a faithful reproduction of #r@dering process. In
this section we describe the elements in the object’s viath-phat potentially
influence rendering results as well as methods to createramiinteraction that
has to be applied to an interactive digital object by a user.

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 58

Table 4.1: Example digital objects and possible hardwaddtysre / output de-
vice combinations.

Digital Software Hardware Output Devices Example Usage
Object Scenarios
Defender (no other soft-| Williams arcade| built-in screen and speak- no variations possible
ware required) machine ers
Super Mario | NES operating| Nintendo NES various TV screens small b/w CRT-TV, color
Bros. system CRT-TV,LCD TV
First Finnish | Microsoft Win- | Intel x86 PC | various output devices Museum setting with &
Underground | dows 95 (differ- | or compati- | (e.g. monitors, video| normal CRT screen, pre
(Interactive ent versions) ble systems| projectors) sentation in an auditoriun
Art) with different using a projector
resources/GPUs
Website Various different| Various hardware| all kinds of display devices Lynx text-based browse
browsers and op- platforms (e.g. monitors, mobile de{ on Unix system with ter-
erating systems vices, video projectors) minal output, Internet Ex-
plorer on Microsoft Win-
dows 95 PC with CRT
monitor
Signed PDF| Various PDF | Various hardware| all kinds of display devices PDF Reader on a mobilg
Document viewers platforms (e.g. monitors, mobile de{ phone, PDF Reader on a
Various operating vices, video projectors) PC and connected to a prg-
systems jector for a presentation

4.3.1 Selecting the Reference Rendering Environment

The view-path of a digital object contains the hardware ahdha secondary
digital objects needed to render an object along with thafiguration. It is pos-
sible to use different view-paths to display the same objécis practicable to
define one view-path out of all the possible ones to compareffiects of emula-
tion, even though different view-paths would be possibla. é&xample, the same
Microsoft Word-document can be rendered on the same haedarad the same
operating system with an identical set of fonts installethgislifferent versions
of Microsoft Word or using Open Office which all can give diféat rendered re-
sults for the same document. ldentifying the correct renddor a digital object
means that we have to determine what the desired renderingaweto compare
against actually is. A digital object can potentially be @xed in a wide vari-
ety of hardware and software platform combinations dependn various usage
scenarios and the resulting output can be played back oreatgity unlimited
number of output devices. That is, most objects will haveess\(equally au-
thentic) renderings usually targeted at specific desighadenmunities (different
users or usage scenarios). Some examples are shown in Thble 4

In the least complex case the digital object can be renderdom one hard-
ware platform with predetermined software and built-inpuitdevices. In the
most complex example a digital object can be rendered byiatyasf software
products running on different operating systems which in tan be used on dif-
ferent hardware configurations resulting in a variety dieadifferent information

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 59

objects. Depending on the usage scenario the correct iagaavironment of an
HTML page may be anything from a web browser via a simple HT&dlitor to
an entire content management system. A specific XML-datanfdlg be rendered
in an XML-editor, being used to drive an application as inponfiguration, or
used as basis for a visualization. The rendered output calalyed back on a
number of different output devices with different charaistecs (e.g. CRT-TV vs.
LCD-TV).

Determining which of those combinations will be used aRederence En-
vironmentis a core step in describing the digital artifact. It may eusciude
the definition of several reference environments satigfyifferent stakeholder
needs, which may be served by a single or multiple rendenkga@ments. In an
ideal case the rendering on these reference environmantseaased as @round
Truth to compare alternative rendering environments to. When idgfihe Ref-
erence Environment, the following factors should be takém account:

e hardware and software configuration typically used to retftedigital ob-
ject (e.g. configuration of a standardized office PC useddaterthe object).
A repository of highly standardized typical system confagions may be
helpful to minimize the effort in maintaining the renderiagvironments.
Yet, in some cases, the very specific configuration encoeahi@ra setting
will need to be defined as reference environment.

e play-back devices typically used to observe the digitakob{e.g. a CRT
TV used to render a video game from the 1980’s instead of a mddeD
screen with completely different display characteristgysthesized voice
output on contemporary mobile phone speaker system vs.iostueality
speakers in a museum setting)

e usage scenario, i.e. what purpose(s) the object is beirsgped for. As
different scenarios (e.g. simple replay, providing diietrviews on data, or
providing evidence in legal investigations) may requirféedent renderings
of an object, potentially multiple reference environmerdgsd to be defined.

Observing the digital object in its original environmenbisly possible if the
reference environment can be obtained in working ordergusia original hard-
ware, software and play-back devices. This is when an @igendering environ-
ment will still be available, and when — as part of the docutaton of the object
and its rendering environment — evidence for measuringigrefecant properties
of an object’s rendering in a potentially different envinoent has to be collected.
In cases where digital objects are unearthed at a later gtagethrough digital
archeology on obsolete media formats) the ground truth itfzereo be set empir-
ically by comparing either different rendering environrtgefor a system (e.g. if

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 60

five out of six emulators render an image in white/blue andé¢heered image are
clouds on a sky, then itis very likely that the colors are exed incorrectly on one
of the emulators) or by using other sources like softwarégdedocuments such
as use case scenarios, requirements specification, amésotesting as well as
video documentation.

4.3.2 Describing the View-path of a Digital Artifact

The resulting observable form of a digital object dependshenhardware and
software used to render it. Also, the configuration of bottdthare and software
plays a crucial role. To compare the results of renderingaibjin their original
environment and in emulated environments it is necessamlkect and document
as much information about the original environment as fessi

The information that has to be collected can be split intaWware configura-
tion and all the necessary software to render the digitaatbyith their respective
configuration. The following sections provide an overviguhe various elements
that need to be documented and recreated or standardizacemuwation setting
in order to facilitate proper evaluation. The focus of théscription is not to pro-
vide an exhaustive list, but to illustrate some core aspestsackground for the
evaluation framework presented in Chapters 4 and 5.

Hardware Configuration

Besides the obvious CPU type and configuration as well as mesix#yconfigu-
ration and speed, other hardware components influencernbeniag of an object
as well and have to be considered, e.g.:

Graphics-card, physics-card Especially for 3D-rendering the used graphics- and
physics cards are having a major influence on the resultmdgred images.
Also to be documented are the settings of device drivers.

Sound-card The sound-processor that is used for creating the audilpeibbas
an influence on the characteristics of the output audio signha

Input-Devices Special input devices may be necessary not only to recrbate t
original look & feel, they also may be capable of recordirigradut activity
to provide identical input sequences in the emulated enknent.

Output-Devices The output device plays an important role on the resulting im
age/sound just as much as the rendering does. Aspect ratidigplay
settings of an output device have to be considered if thdtnegwutput is
compared not after computing as a digital image, but aftsatang an actual
analogue or digital output.

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 61

Of course this list cannot be complete and depends on thevheedof the
system that has to be documented and emulated. For manuigctu control
application this can include sensors and actuators, om (fidene-) computers or
video game consoles it also includes additional processiitg (e.g., Sega 32X)
or memory expansion cards (e.g., Commodore Amiga, Atari.800)

On some platforms tools can assist in the description ofvarel properties
by determining hardware- and software settings.

Operating System and Configuration

The operating system type and the version including alkesysipdates have to be
documented. Usually, operating system settings will hawvefgect on rendering
as well. The screen resolution and color depth have the biggguence on ren-
dering. Other factors influencing the rendering are theltest fonts, appearance
settings, color schemes and certain installed utilitiesplications.

Secondary Digital Objects

Other digital objects besides the operating system aresaedlisplay the digital
artifact itself or for running the viewer- or editor appliman displaying the object.
Some examples of those are:

¢ Virtual Machine (e.g., Java Virtual Machine, .net)
e Database software (e.g., MySQL)
Libraries (e.g., DirectX, Allegrd)

Software device drivers (e.g., ODBC drivers)

Viewing- or editing-application (e.g., OpenOffice, PDFeWier)

Fonts (for documents where fonts are not stored inside e fil

Codecs (for decoding e.g., audio or video data streams)

For all these secondary digital objects, the version, &d ebnfiguration op-
tions have to be documented to allow the complete recreatian emulated en-
vironment. Depending on the operating system, informagibout the different
versions and libraries used on a system can potentially trect®d automatically
using data created by package managers. A format for desgtibis informa-
tion for package-based open source software is CUDF (Commgnadpability
Description Formaty.

[B1Allegro game programming library — http://alleg.souragi@.net/
“ICUDF —ht t p: / / www. mancoosi . or g/ cudf /

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 62

Digital Artifact to be Rendered

The actual digital artifact that has to be preserved is asbqd the view path. If

this artifact is software, then the options changed fromfaudesetting of a spe-
cific version have to be documented. Not only options thati@rfte the rendering
of the object (e.g., window size, font size, colours), bebadettings of the object
influencing the behavior have to be considered (e.g., natifins).

Additional Digital Objects not in the View-path

Besides the mentioned elements in the view-path of an ohjsannportant to be

aware of any other digital objects influencing the behavia computer system.
Processes running in the background (e.g., virus scan aatwemote desktop
software) can significantly affect the performance of aeyst The influence of
semi-random elements on the execution of the digital attdaon an application
rendering the digital artifact has to be reduced to an absahinimum to decrease
the complexity of the system under evaluation.

4.3.3 ldentifying Levels to Extract A Rendered Form

To extract a rendered object from its original environmérg essential to under-
stand the different incarnations of a digital object whas lieing rendered. These
forms of a digital object on different levels are shown onlgfein Figure 4.1. A
rendered representation of the digital object has to beaeted on (a) suitable
level(s). The significant properties of the object can therevrluated.

Descriptive Form

When using emulation as a digital preservation strategyotigenal binary object
is not changed like when using a migration strategy. Thuesd#scriptive infor-
mation used to render the object stays the same unlike wiearbjlct is migrated
to a new manifestation. In the case of migration, this ctutsts the first (and, al-
beit, frequently the only) level of comparison to evaludte guality of migration
actions. Yet, as the ultimate goal of digital preservat®naot the preservation of
the descriptive form of a digital object as a static file erembdh whichever way,
thorough evaluation will usually need to consider commanssat levels further up
the view-path hierarchy according to the given applicatoanario.

Rendered Form in Memory

The next level where an incarnation of the digital objecstxis as a rendered
form after being processed by the viewer-application (¢erabeing executed).

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 63

rendered form on output device rendered form on output device
(e.g. on monitor, hard disc, speakers, (e.g. on monitor, hard disc, speakers,
network, actuators) network, actuators)
outputting
< —
rendered form on the output interface rendered form on the output interface
(output of GFX-card, sound card, (output of GFX-card, sound card ,
network card, control port) network card, control port)
processing
< —

rendered form in host system memory
(e.g. in host video memory)

C o> —

rendered form in memory rendered form in emulator-memory (e.g.
(e.g. in video memory, sound chip, in allocated host memory region)
network buffer)

— —
application

descriptive form descriptive form
(e.g. as stored in file) (e.g. as stored in file)

Figure 4.1: Different forms of a digital object in a systemigmory. On the left
the layers in an original system are shown, on the right therfain a system
hosting a virtualized view-path are shown.

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 64

On this level, e.qg., the registers of the video hardware #esl for the memory
area for video output is filled with the data to be displayedoreen. The same
applies to other forms of object output, i.e., audio, pornawunication, or file
system interaction. Applications recording this data adystem can be used to
extract this data. An example would be a clipboard in an dperaystem. The
output of a digital object could be copied into the clipboandl extracted through
a defined interface.

Rendered Form on the Output Interface

The datain, e.g., the video memory is processed by the haedwsaverting it into
a suitable signal for the displaying unit. Similarly, fortwerked systems, data is
rendered on a network interface, or as instruction setsndyi& storage unit. The
data can then be captured on the output interface. While shi®mparatively
easy for one-way unencrypted communication, it gets mdfiewli for protocols
that are not open and that involve special replies from tmmeoted device (e.qg.,
HDMI protocol).

Rendered Form on Output Device

The final level on which a rendered form of the digital objectvailable is the
resulting output on the output device (e.g., the image disl on a screen, sound
emitted by a loudspeaker, voltage levels present at a pothjnary sequence
present on a storage medium). This has to be captured byedengécording the
signal after it is processed by the output-device (e.g.jrittege on a TV-Screen
with a camera or speakers by using microphones).

More systematically, each transition from one level to tegtmepresents in-
terfaces between systems, both on the original as well asraated view-path.
The properties of these systems and their effect on the vagtvtbus need to be
considered, both individually as well as on an integratedllep to the desired
representation level.

4.4 Collecting Verification Data

To be able to verify the performance of an object in an emdlata/ironment a
set of input-output data relationships has to be collecfBais can range from
static I/O data relationships via system reaction docuatemt for specific types
of input to complex documentation of system behaviors. Aeptél source for
this kind of information are system design documents suceisasase scenarios,
requirement specifications, or system testing documemntaik can also require

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 65

the capturing of system behavior in other documentary farohss video docu-
mentation.

In Section 4.2.1 we described how external data influent¢iageéndering can
be captured when executing a process and re-applied toum refthe rendering
process to ensure deterministic execution using eitheuoapand replay func-
tionality of the rendering environment or external toolsr B comparison of the
rendering processes we also need to extract data on sigmificaperties created
during the rendering process that allows us to evaluate iohadegree the ren-
dering process of a re-deployed object meets the requirtsnoérits designated
community. Similarly to the external data that is capturedrty the execution
of the rendering process, data created by the digital objet{provided to the in-
terfaces of the host system (e.g., the screen for rendexudio signals, network
data) can be captured for a comparison between differederemgs. Also, data
created for processing not available on the interfacesaddst system but only
internally in the virtualized system can be captured fronmoey regions of the
virtualized system.

In Figure 4.1 we described the levels on which data can bea&ed in a
system. On afirst level the descriptive form of the digitgkah i.e., the bitstream
as stored in a file is shown. As no rendering takes place ordwgd, it is not
usable for comparison for a successful rendering. Nextd#ta is rendered by
some kind of interpreting hard- or software. Extractingadah this level can
be done by using the interpreting application to export #graering result, e.g.,
processed data. Once the rendering environment is vizedlidata about the
rendering process is available on the virtual environmayed. Data on this level
can be compared between different renderings in virtuairemments, but not
against the original system. Initiating data extractioritos level is only possible
if the virtual environment supports extraction, e.g., bgyding screenshots or
log files about the rendering process. Both the original sysaad the virtual
system provide the data rendered on some kind of outpufacterDepending on
the digital object and the data that has to be extracted, cdatdor example be
captured using a listener watching specific network portsandware interfaces.
Finally, data is eventually rendered on an output deviag, @. display device,
or actuators set by the rendering process. Characteridtittee mutput device
influence the rendering, so a comparison on this level is diyneapturing the
rendered data after being rendered by the output device.

Depending on the significant properties of the digital obgesuitable level
for comparing the rendered data has to be chosen. For examptest cases the
rendered image as created on the host system can be compaedreenshot,
i.e., a video memory dump not considering screen charattey, of the original
system'’s rendering. In other situations the charactesisif the original output
device can be arelevant factor that has to be taken into atf@@hillips, 2010]. If

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 66

no output device influences the rendering, e.g., the prquéissout a data stream
that is not processed by an output interface but used as amh fiopa different
process, the curator can decide to use a listener that eaphe data stream for
comparison. To verify if an application renders the prodidata as expected in a
new environment, an export from the application itself carehough to compare
the rendering of the data. The curator has to decide whatghdisant properties
of a certain digital object are and depending on those stectuitable level for
comparison.

The actual capturing of the data is done analogous to howsigtglied to
the virtual environment is captured - either directly if poped by the virtual
environment (e.g., by using an option to create screen mgpat certain points
in the rendering process), or by using external tools thptura the results of
the rendering on the host system, e.g., by capturing theankttaffic created
by the virtual environment, or capturing the rendered stiméput of the virtual
environment at certain intervals.

A curator thus needs to identify the significant states oféimelering process,
i.e., if only the final state is of relevance (e.g., for a psxcthat calculates data
depending on its initial input and finishes once the datal@uated), if intermedi-
ary steps are relevant (e.g., for an interactive applioqtiar if the entire rendering
stream is relevant (e.g., for a rendered video stream).

The captured data then needs to be encapsulated along witicthal digi-
tal object in a package for storage in the archive. The in&tiom necessary to
separate the digital object from its original environmest, both the digital ob-
ject itself (e.g., a workflow-definition for a workflow enginas well as all the
elements in the view-path (for virtualization) or infornzat about how the object
has to be interpreted (for a migrated form) need to be incladewell.

4.5 Summary

In this chapter we presented a framework for capturing eslezvents influenc-
ing the rendering of a digital object and how and where toagettdata from the

rendering environment. We discussed the information thattb be documented
both for the digital object and its properties as well as tieswpath used to ren-
der the object and to make the rendering deterministic. Wwgert as one type of
external events was explained and methods described tg @pplthe rendering

environment to eliminate side-effects occurring due tonges in external data.
We showed the different levels on which rendered forms oftilgé¢al object are

available on a system as well as the stages at which data Hesdaptured for

evaluation.The concept of a reference environment actsng ground truth was
presented.

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 67

The major steps in the framework are to

e assess the determinism of a digital object,

e determine significant states, either the target state, @eseg of states or a
full stream,

e select a reference rendering environment,
e determine the levels on which to compare the renderings,

e collect verification data.

Following the framework shown in this chapter it is possifoielocument the
rendering process of a digital object and collect verifmatata that can be used
to verify the rendering of the object in a new environmentChmapter 5 we will
describe how a new view-path can be evaluated using the éatailed in this
chapter. We will show a set of steps to follow for the evaluats well as how to
apply the evaluation in a preservation workflow.

Chapter 5

Evaluating a Digital Object’s
Rendering in a Changed
Environment

5.1 Introduction

In Chapter 4 we showed what we need to document about a digiedtoand its
view-path to collect verification data necessary for a camspa of its rendering
in a new environment. In this chapter we will show how thisadatused in a com-
parison workflow to compare two renderings of the same olajetto different
view-paths. We will also show how the comparison can be useda different
stages of a preservation workflow. The “Preservation Acikealuation Frame-
work” formed by the framework shown in Chapter 4 and the stepg¥aluation
shown in this chapter have been published in [GuttenbruaneéiRauber, 2012c].

5.2 Recreating the Rendering Environment

Once the digital object, the influences on its behavior amrdethvironment in
which itis originally rendered are documented, it is neagsto faithfully recreate
these conditions in a rendered environment. In this seet®first describe how
the original view-path has to be restored. After recreategpriginal environment
in a rendering environment, we again discuss the rendereddba digital object
now in a new environment and for comparison.

68

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 69

5.2.1 Recreating the View-Path

Based on the documentation of the original rendering enment it is essen-
tial to recreate a new view-path which can replicate the @engd in the original
environment.

The new view-path is built depending on the digital objeal #me available
preservation actions. In a migration setting some of ther&yn the view-path
are replaced, while in the emulation setting a new layertr@@uced in the view-
path as shown in Chapter 3. As emulation is usually done ondwaae level,
the emulator used to create the setting has to support aonutstthe hardware-
components found in the original system. If the exact saméwere configura-
tion cannot be rebuilt in software, this has to be documeatetithe effects of
replacing various parts with alternative parts have to bsiclered when compar-
ing the results.

Recreating the view-path in the emulated environments hias ttone follow-
ing the documentation of the original system to ensure thadrgial differences
in the new environment are a result of the new rendering gaad not of side-
effects of a difference in the setting. One possiblity isreate a complete image
of the view-path on the original system, and to use this inrau&l environment
(e.g., floppy disc for home-computers containing the diserafing system and
the viewer-application, hard-disc-image containing aipstalled operating sys-
tem with all the necessary drivers and applications).

An example for the use of emulators that uses pre-configunedes to create
emulation environments for displaying digital objects RATE (Global Remote
Access to Emulation Services) presented in [von Sucharlatet van der Hoeven,
2008]. It is a framework which allows remote access to emuatunning hard-
disc-images and injection of a digital object into the erialaenvironment.

5.2.2 Reapplying External Data

After re-deploying the object in a new environment the datthen used to ver-
ify that the rendering process still behaves correctly. mée rendering engine
(e.g., a virtual environment) will supply the necessareaxal data that has been
collected during the documentation stage. If the new reangeamnvironment does
not provide the possibility to “simulate” data on all itsentaces to the outside
world, similarly to the capturing of the data external tothlat e.g., capture net-
work traffic and respond instead of a “real” web service with taptured data are
an option for replacing this functionality.

The data captured from the original environment is used tiythe proper
execution in the new environment, to make sure that no diéets through the
use of a different rendering environment exist. Once théaligbject is verified

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 70

to render correctly with the captured data, it may have tonbegrated in a dis-
tributed system again, to fulfill its original purpose. Thieans that the object
along with all the external dependencies has to behave ad ibhdhe original
system. It is very likely that not all external dependendgrest-locally controlled
data) will be available to the runtime environment in thaufat In this case these
services will have to be emulated (i.e., replaced by a serthat provides the
same functionality as the original service) or simulateel (replaced by a service
that reacts with valid data without replicating the oridiservice’s functionality).

An example for not locally controlled data would be a serviw provides the
current temperature on top of the Eiffel tower used in a pegegdectronic art. For
verification purposes we can capture requests to the saamiteesponses, ensur-
ing a deterministic execution as compared to the rendenitigg original environ-
ment. However, once the digital object is deployed in itsifetenvironment we
would expect to get proper answers from the service, and neetqeorded data.
To achieve this, the once existing service has to be replbgesl new service.
If the service is emulated, it will be replaced by a servicat #iso provides the
current temperature. If the service is simulated, a validevdor a temperature
is returned, but not necessarily the one that is actuallgtineent temperature, as
it could for example be derived from trained data (e.g.,rmetg random higher
values during day time and lower values during night timeaimilarly, a service
where the internal functionality is not exactly known wotlave to be replaced
by a service that appears to behave as the original sendda that valid (but not
necessarily correct) data is supplied by the simulateds®rv

The functionalities described in this section allow us taldeth all the exter-
nal dependencies that a digital object can have. While theéeramg of a digital
object in its original environment is still available, atualized environment can
be set up. The significant data influencing the renderingebtbject in the new
environment can be captured and stored in an archive alahghva digital object.
Once the digital object is re-deployed in a future environtnehe captured exter-
nal data influencing the rendering can be reapplied to theemswonment. Using
the same data we expect the object to behave deterministideally provide the
same data as in the original rendering.

5.2.3 Comparing Objects

Similarly to the external data that is captured during thecetion of the rendering
process, data created by the digital object and providefigartterfaces of the
host system (e.g., the screen for rendering, audio signatsyork data) can be
captured for a comparison between different renderingso Adlata created for
processing not available on the interfaces to the hostsybté only internally
in a virtualized system can be captured from memory regidriseovirtualized

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 71

system.

Note, that different characteristics of an object can besue=l at various lev-
els. Thus, comparison may be required at several levelstéordme how faithful
the rendering of an object ultimately is. We will now take &adled look at these
levels, their properties and specifically means for conmgaariginal and recre-
ated renderings with varying degrees of automation. Alse,nihat each level
in the hierarchy corresponds to some kind of computatiangiormation being
performed on an object. Thus, identity at some level doegmaly identity at the
ultimate rendering at the top level of final output devices, does the fact that
an object differs at a certain level mean that it cannot tes@n identical render-
ing at higher levels. For example, consider an object sttoedmulation. This
will usually be bitstream identical in its descriptive farget emulators or viewers
may render the object differently on the output interfacelewhereas different
output devices may result in further differences on the éopll Conversely, a mi-
grated object will be different in its descriptive form (eagTIFF version of a GIF
image), yet may result in an identical rendering on the autmerface. In some
cases it may be required to specifically produce an entiiéfgrent representation
at the output interface level in order to obtain a close tatidal rendering on the
actual output devices. See [Phillips, 2010] for an examptaeeffort required to
recreate the effects of the fluorescent behavior of analog $cRSens on modern
LCD screens.

5.2.4 Identifying Levels of Comparing Rendered Forms

In Section 4.3.3 we discussed the different incarnations digital object in its
original environment. For a comparison between the orlg@gnaironment and a
new environment we have to identify the same incarnatiorteemew environ-
ment. Figure 4.1 shows the levels in an original environnoenthe left and the
corresponding levels in a new environment on the right.

Descriptive Form

The descriptive form of a digital object is identical in th&ginal environment and
the new environment for emulation actions, but differentfdgration actions.
As shown in Chapter 3, a comparison has to be done on a highards\every
migration results in a change in the view-path and thus piaiénin the rendering
of the object.

— As the descriptive information of the object cannot be usezttdy to eval-
uate the rendering effects, an already rendered form oftifexbhas to be used.

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 72

Rendered Form in Memory

If the emulation of the original system is processing thepsied information
properly, then the rendered form in the memory area used éyéiw environ-
ment to store the rendered information has to be identicléaendering in the
same memory areas of the original environment. This is tBelfiyer on which
a comparison of rendering effects is possible. Screenshatieo memory dump
applications on the original system and in the view-path pribduce the same
output after executing the same actions on both systems.sadime applies to
other forms of object output, i.e., audio, port communmatior file system inter-
action.

— This rendered form of the digital object can be used to evealiee internal
processing of the object but not the ability of a potentialiadnal layer (e.g.,
an emulator) to translate the output of the original systenthe host systems
environment. It also is necessary to install applicatiamsing on the original
system and the host system that can capture the renderedfdne object (e.g.,
as dump of specific memory regions or in the form of memorye'snshots” taken
inside a virtual environment).

Rendered Form in Host System Memory

Using emulation as a preservation action, an additionalaitayer (the emulator)
is introduced in the view path. This layer has to convert graered form from
the virtual environment to a rendered form in the host systewironment. In this
step the layer has to, e.g., render the video output of thealisystem for display
on the host system. To do so, for example the resolution afithge may have to
be altered to fit either a resolution which can be displayetherhost system or
by adjusting the image to the size of a window on the host syske this step the
resulting image will already be radically different thanatit was on the original
system, even if it looks similar for a human observer.
— No direct comparison is possible at this layer as there ismdas infor-

mation in the original view-path.

Rendered Form on the Output Interface

This signal exists on both the original system as well as ieva view-path. The
resolution and type of the displaying unit are potentiallfedent, but using cap-
ture devices recording the input directly from this sournd aransforming them
to the same signals would be possible. An example is a videteadevice that
can take different kinds of inputs and displays them the semne on the host
system running the capturing software.

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 73

In the case of encrypted communication (e.g., HDMI) the eaiald have to
be captured in its encrypted form and provided by the new path similarly
to what the original system provided under the same comditwhen the digital
object was originally rendered.

— By recording the signal of the rendering in the new view-patt af the
rendering in the original system the results can then be eoetp The effects of
the rendering device on the signal have to be taken into ateaten comparing
the signals (e.g., reduction of frame rate, delay in prangs€nhancing of the
signal properties)

Rendered Form on Output Device

Capturing the signal directly as processed by an output d€eig., using micro-
phones to record processed sound or a video camera to capwnleo stream
from a monitor) the resulting representation in the reguydievice converts the
output to the same resolution.

— A comparison of the rendered object is possible at this laj/ee settings
of the output-devices have to be taken into account. For plalyy comparing
the resulting images from an original system connected t¢-&dreen and a host
system running a changed view-path of this system the asgtemtthe brightness
settings, contrast settings, etc. will usually not be thaesaln [Phillips, 2010]
the author describes the influence of the output device Gretise a CRT monitor
compared to a modern LCD flat panel) on the resulting imageel$that have
sharp edges on the LCD display were supposed to be display®#draied pixels
on the original screen due to technical characteristich®two different screen
technologies. Similarly, the audio quality offered by ditint speaker systems, or
the precision or logic of a storage media writing device maydifferent, result-
ing in a different rendering of an object in its environmewer if the underlying
system memory representations were identical.

Usually not all the significant properties of a digital olijean be measured au-
tomatically. In that case as many properties about the téjeehavior in the envi-
ronment as possible should be extracted from the rendenwvigp@ment, whereas
all the properties that are either social (e.g., conneddbéd feel aspect) or that
are too difficult to measure technically have to be evaluatadually.

By defining the properties of the digital object that has todyelered, measur-
ing and comparing them to the original reference system aettohg importance
factors (exact speed is probably an issue for a computer gatreot for an inter-
active spreadsheet), rendering alternatives can be cexhpad the best alterna-
tive for a certain scenario can be chosen as described odl®tral, 2007].

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 74

5.2.5 Extracting Properties from the Rendering Environment

Not only the resulting rendered form of the object can be caneqb, certain char-
acteristics of the environment also can be measured. Jd#adise characteristics
would have to be provided by the tool doing the rendering,ciwtéan be any
or every element in the view-path. While none of the availabledering envi-
ronments supports it at the moment, it would certainly makeuatomation of
the process of comparing emulation environments and tlggnatienvironments
easier (or enable it at all). First the characteristics amgpgrties of the origi-
nal system and the digital object have to be described or uneds Then these
same properties are extracted from the new environmentllydéne character-
istics should be described in a format usable for tools, Wwisen compare these
properties in an automated way. Using this approach theepsoof automating
preservation planning for using renderings to compareoctbjean be similar to
the one of automating preservation planning comparing gnas of migrated
objects currently.

Not only the system properties, but also screen shots or &Veg of events
happening on the system can be provided by the renderingoamvent. These
properties can be extracted continuously over the emulgirocess for either
a specified time or until an event occurs. Rendering proedre usually not
single-dimension like properties of most migrated objecd additional time
dimension has to be considered. The frame rate of a rendéjedt@an change
over time, as more objects can result in fewer frames pemskoa the output
device. Properties also can be extracted at one point inaftee applying all the
input events or after a certain amount of seconds, frames br y€les. Table
5.1 shows possible characteristics that can be extradten,usage and metrics.
The characteristics are divided in the possible categaniglsding the metrics
used to measure and compare between the different envirdam@®bviously,
the examples in the categories depend on the used environegn a frame
rate only makes sense if the view-path contains a displaiceéhat is refreshed
periodically (e.g., on a system acting as a web-servicdirgpato data input over
a network interface and reacting with output on the netwoté&rface a frame rate
will not give any information about the rendered object)

Not all of the properties make sense for deterministic anutaeterministic
behavior, e.g. a minimum frame-rate would make sense in ¢edhs whereas a
number of files opened can differ if the behavior of the obignobn-deterministic.

Analyzing the extracted events and their occurrence atifspéimes in the
rendering process lets us define meaningful key charatitsrisf the rendering
process:

Deterministic Rendering The most important characteristic of a rendering
environment is that the rendering process must be detestiginil his means that

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT

75

Table 5.1: Characteristics that can be extracted from r@mglenvironments.

external services

Category Example Char- | Metric Usage Extractable from levels
acteristics in the view-path

Input Events | Mouse clicks, | Number of events| Check for deterministic| every level in view-path
mouse moves, during a time pe-| behaviour, if the same
key presses,| riod number of events where
requests from triggered

addresses access

Input Data | Mouse interface,| Number of bytes| Check for deterministic| every levelin view-path
received network interface | during a time pe-| behaviour, if the same
riod amount of data was trans-
ferred from an 1/O device
Output Files on storage| Number of events| Check for deterministic| every level in view-path
Events unit accessed, during a time pe-| behaviour, if the same
Actors acti- | riod number of events where
vated, Network triggered

Output Data
sent

Data storage, nety
work interface

Number of bytes
during a time pe-
riod

Check for deterministic
behaviour, if the same

amount of data was trans-

ferred to an I/O device

every level in view-path

Timing char-
acteristics

Frame rate / CPU
cycles

Frames per sec
ond / Cycles per
second

Speed comparisons be-

tween the original and the
new rendering environ-

Every level that renders an
object on screen (for frame
rate) / hardware (for CPU

ment cycles)

the virtual environment has to perform the same renderinggss under the same
inputs. This is of crucial importance to the evaluation, aty@ deterministic
process lets us compare different renderings of the saneetadod the results of
it. Events occurring at the same point in the rendering meckiring different
renderings of the same digital object let us determine ifrém&lering process is
executed deterministically.

Cycles Executed vs. Time Elapse@nother characteristic we can extract
from the rendering log is how many CPU cycles have been exgaliteng the
course of the rendering process. If we compare these withytties that would
have been executed on the original system (using the knowck chte of the
original system), we can calculate the deviation in spedatie@fendering process
compared to the original system.

Executed Cycles per FrameBy measuring the cycles that are executed per
frame (unique consecutive image produced by the video reralof the system),
we can see if the timing is correct. As we know the clock raté @@ number
of frames drawn on the original system from the systems fpations, we can
evaluate any discrepancies to the original hardware.

Time Needed to Draw a FrameBy evaluating the time that is needed to draw
a frame and knowing how many frames are drawn per second lfasdhe time
the drawing of one frame should take) this characteristo alpports evaluating
the timing of the virtual environment.

Frames per SecondDetermining the frames per second we can see if the

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 76

rendering process is executed slower than it would have®orilginal system. If
the virtual environment is in fact not fast enough, we canfsm®a the event-log
which of the drawn frames took too long to calculate and wh&traeal events
happened during the slow frames.

Accessed External Source8y implementing events for all interfaces be-
tween the emulated and the host environment, we also knowhwéhiternal re-
sources (files, network, etc.) are used by a digital objectioBging the data that
is transferred, we can decouple and simulate externafates at a re-run of the
rendering process.

Using these key characteristics, we can evaluate a remgoenvironment, but
also draw conclusions on the rendering process - not onlgrel for the render-
ing environment, but for specific digital objects. Re-rurgnthe same automated
test in the virtual environment we can evaluate if the emnment works deter-
ministic. Re-running the automated test of a deterministic& environment on
a new version of the environment we can test if the enviroriragihworks cor-
rectly. Finally re-running the test in a different virtualvronment for the same
system, we can compare the results of these environments.

5.3 Steps for the Evaluation of Rendering Effects

To evaluate the degree to which the change of an originaf@mvient into a new
view-path preserves the original characteristics of ataligibject in comparison
to documentation of its behavior, the concepts presentéusrthesis lead to the
following evaluation steps:

1. Describe the original environment
The original system’s hardware and software components tabe doc-
umented along with all their settings to allow the recreaiio a changed
view-path as described in Section 5.2.1. To reduce the atplof the
system it is recommended to eliminate all unnecessary secprdigital
objects (software and hardware) in the view path (e.g., nas\scan soft-
ware or use of standardized minimum OS configurations).

2. Determine external events that influence the object'staeh
Only for objects with deterministic behavior it is possibdeensure that dif-
ferences in rendering compared to the original environnagatresults of
the changed view-path. To ensure deterministic behavidhefobject it
is necessary to investigate what external events influgadeehavior and
simulate those in the changed environment (e.g., set a nandober gen-

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 77

erator to the same seed to produce the same sequence of randdars).

3. Decide on what level to compare the digital object

As the digital object is available in various rendered foamshown in Sec-
tions 4.3.3 and 5.2.4, it is necessary to select the onesttbahost suitable
for the digital objects that have to be preserved and thesirele form of
representation. Depending on the original system only sofntiee various
techniques may be technically possible (e.g., on early homguter hard-
ware no operating system allows the execution of multipteesses, so no
screenshot applications can be installed).

4. Recreate the view-path
Next, a new view-path has to be configured to match the corafiigur of
the original environment. The view-path of the digital fatt has to be
recreated, ideally by using e.g., a hard-disc image cord@jtire same way
as on the original system. We recommend the use of a viewgsatlose to
the original as possible to reduce the side-effects of differenderings by
using different secondary objects.

5. Apply standardized input to both environments
Depending on the digital object the most suitable way toyapptomated
input has to be selected. Then, the external events to thealkiobject
have to be recorded and applied to the new environment. Tdsercthe
input is done to the hardware level (as described in Sectdi Yithe fewer
side-effects on the rendering of the object it will have.

6. Extract significant properties
Next, the significant properties of the rendered object havee extracted
both from the original as well as from the new environmentescdbed in
Sections 4.4 and 5.2.5. Depending on the digital object aitdeaches a
target state this has to be done once or in a continuous wayg, Aépending
on the deterministic or non-deterministic nature of thdtdigbject, only
certain properties make sense to be extracted.

7. Compare the significant properties
Finally, the significant properties that have been extchatgomatically as
well as those that were not measured automatically but atedumanually

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 78

have to be compared, evaluated and documented. This may agimput
to a preservation planning process, or serve as evidented@uthenticity
and faithfulness provided by the new view-path.

5.4 Preservation Workflow

The previously described framework and steps to compareréwderings of a
digital object using different view-paths can be used in@sprvation workflow
like the one shown in Section 2.9. In this section we desdtikbdlifferent steps
previously shown mapped to the stages in the workflow. We stiost data needs
to be captured and is stored along with the object in a digitelhive to enable a
curator to verify the rendering of a digital object once tlhgeot is retrieved from
the archive and redeployed in the new environment.

5.4.1 Lifecycle of a Digital Object in a Preservation Workflow

The digital object at one point in its life-cycle is sepacatem its original envi-
ronment and prepared for storage in an archive. At this @ogdamparison to the
digital object still deployed in its original environmerst performed to validate
that all necessary external dependencies have been dhpnlehe object’s ren-
dering in the new (virtual) environment is unchanged. Thguouin the defined
steps of this rendering process for validation has to berdecband stored in the
archive along with the digital object. Once the digital abjes extracted from
the archive and re-deployed in a future environment, theraat data influencing
the rendering as shown in Section 4.2.1 is applied to the mstvanment. The
output of the new rendering process is then captured at the dafined steps and
compared to the output of the rendering before storage imittieive. Ensuring
the deterministic execution of the digital object using shene locally controlled
and not-locally controlled data as described in Sectiori4rPboth executions we
expect the same results of the rendering, thus allowing egdluate if the render-
ing process is executed correctly and get indications onwweihthe significant
properties of the object are preserved.

The terms validation and verification are used in this cdni@xlescribe two
different evaluation steps of the rendering process. Iwvdtidation step we check
that all the data that is needed to re-execute a processiallgataptured after the
process is virtualized, to make sure that all external degecies are documented
and stored along with the process. In the verification stepuseethe external
data captured to verify, that the re-deployment of the digibject in the selected
environment was successful, by making sure that the resthieaendering pro-
cess is identical to results that have been recorded in fidatian step. The data

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 79

that is captured during the validation step and that is use@yaluation in the
verification step is referred to as “verification-data” imstthesis.

As described in Section 4.2.1, both locally controlled awd locally con-
trolled external data are captured when validating the grregecution of a pro-
cess (or other digital object) after being virtualized tdkemaure that it behaves as
expected.

The captured data then needs to be stored in the archive witinthe actual
digital object. The information necessary to separate thead object from its
original environment, i.e. both the digital object itsadfq., a workflow-definition
for a workflow engine) as well as all the elements in the viethp(for virtual-
ization) or information about how the object has to be intetgd (for a migrated
form) need to be stored as well.

The verification-data stored with the digital object in threhave is used to
verify the proper execution in the new environment as shaw®dction 5.2.2, to
make sure that no side-effects through the use of a diffeesigiering environment
exist.

5.4.2 Preservation Workflow Phases

In the previous sections we showed the different momentkerite-cycle of a
digital object. These phases (plan, preserve, re-depleyg weveloped into a
workflow for the preservation of business processes [S&bdl., 2012]. While
this process contains stages specific for business pra;ekseactions that have
to be taken are similar for all digital objects and relevamtany evaluation of ren-
derings of a digital object. Following the steps in the psscas described below
the rendering of any digital object can be captured and atditito be complete
and an accurate representation of the digital object iruitseait rendering.

The steps for evaluating a rendering shown in Section 5.3uasbared in
Figure 5.1 are mapped to the different phases in the workftoghawn below.

Plan In the plan phase the context of a digital object has to beucagt This
comprises both the technical (hardware, software), butiBpally also the
non-technical, such as an artist’s intentions, the goalswawtivation behind
a scientific experiment, the setting in which the artwork xpeximent was
being performed, along with all legal implications of reridg the object
at a later point in time, the necessary documentation anatfadir relevant
data. The risk of not having the object available has to beszesl and
managed. To accomplish the capturing, the digital objesttbabe ana-
lyzed along with all its external dependencies influenchgrendering of
the digital object. Knowing these dependencies is necgssareate a de-
terministic rendering of the digital object, i.e. to makeesthat the digital

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 80

(1) Describe the original environment

Plan

(2) Determine external events that influence the object's behavior

(3) Decide on what level to compare the digital object

(4) Virtualize the original environment
- capture verification-data
- capture the performance and extract significant properties

Preserve

(5) Apply verification-data for validation/verification to new environment

(6) Capturethe performance and extract significant properties

Re-deploy

(7) Compare the performance/significant properties

Figure 5.1: Different evaluation steps for evaluating dy@renderings and their
mapping to the preservation process phases.

object can be rendered identically under the same conditaifowing us
to do a comparison between the different renderings. To Veeifly the
suitability of the preservation action for the digital otijethe preservation
action is carried out on the object and the result is comperéue original
rendering, and a decision for one of the preservation cameldis taken.
This first phase of an evaluation of the preservation acgaimilar to the
actual validation and verification in the next two phasesdesd below.

During the plan phase all of the steps in the evaluation workthave to

be performed. The original environment is described (1) ondy the hard-
ware and software components, but also external deperegehave to be
documented along with the digital object itself. Part of dhgect properties
are defined as significant properties, i.e., the properteesomsider impor-
tant to be present in a future rendering of the digital obj@ttus we need
to make sure these properties stay unchanged by the priéseraation.

All the described information on the object is mapped in thietext model

in [Mayeret al, 2012b]. The technical dependencies of an object are ideall
extracted automatically from the system.

Next, the external events influencing the rendering of tiggaliobject are
determined (2) by capturing external dependencies eitinectty from the
original system (on already existing interfaces) or by ieusing the original
environment in a virtual layer able to record interactioas\®en the hosted
system and the infrastructure it is embedded in. Any dathaxged on
the interfaces between the abstracted and the host systesnosied as
described in Section 4.2.1 either by a virtual environmaniy external
tools. Not only the input data is recorded, but also data essdl by the

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 81

Virtual Environment
(a) Plan Candidate 1

Virtual Environment

Original Environment Candidate 2

Virtual Environment
Candidate n

(b) Preserve

Original Environment Virtual Environment t

(c) Re-deploy

Virtual Environment t Virtual Environment t‘

Figure 5.2: Environments used to extract data that is lated dor the compar-
isons in different steps in the preservation process. (@apeaovison of data between
the original environment and different candidates for tresprvation action, (b)
comparison of data between the original environment andvitttealized envi-
ronment for verification, (c) comparison of data betweenvin@al environment
before storage at time t and the future virtual environmetitree t'.

system. Depending on the relevant characteristics of thdered data a
suitable level according to Figure 4.1 is chosen for theagtion (3), either
recorded by the virtual environment itself, or by extermal$ capturing the
output of the virtual environment. Next, the original systes virtualized
in all preservation planning candidates (4). The recordedtidata is then
applied to all candidates, ensuring a deterministic belnavi the digital
object across the potential future environments (5). Data fall candidates
is extracted (6) and compared to the extracted significaegsties of the
rendering in the original environment (7). Finally a dearsis taken for one
of the options for which the preservation planning was pentd. Figure
5.2a illustrates that the original environment is compavét the different
possible virtual environments at the time of planning.

During the initial planning phase, i.e., the first presdoraplanning per-
formed for the object while the original environment islsaailable, the
data captured is the “ground truth” for subsequent re-ptaneteps once
the selected re-deploy environment gets obsolete. Subseggrplanning
is performed against the data captured as ground truth iatnoduce errors
in the data resulting in slight deviations of behavior of&trenvironments
from the original environment.

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 82

Preserve In the actual preserve phase, the digital object is firstiglized. In this step
an additional layer is introduced in the view-path (e.g.jreual machine
or an emulator), allowing us to capture any communicatiotwben the
object’s environment and the outside world. This is for ameming data
that influences the rendering, e.g., data from a web senvse,input, data
from sensors or through a network protocol. But it is also geitaiuced
by the rendering in any form (e.g., on the screen as infoondbr a user,
data sent to actors or the network). We can thus validateith&ldobject
at the time of preservation to make sure that all the necgsiefrendencies
have been captured and will be stored along with the digibgdct. We
also capture the data used for the validation and the outpduped by the
rendering process to compare this data in a later verificgtiase once the
object is re-deployed. Data being captured includes théegbas well as
log files, any verification-data and properties of the remdgprocess.

In the preserve phase only the virtual environment chossuoitable preser-
vation action during the planning phase is considered. Tdpsgor describ-
ing the original system have been performed and necessaisiates have
been taken during the planning stage (1,2,3). In the preggrase a more
extensive capturing of verification-data is performed be&ioring the dig-
ital object in the archive, to validate that the completeternof the digital
object necessary for evaluation has been captured. THisdies captur-
ing verification-data for all the external dependenciesngefiduring the
planning phase necessary both for verifying the digitakobpfter being
redeployed but also all dependencies necessary for actisatlg the object
successfully in its future environment. While the data ceggfuduring the
planning phase is partially reused, usually more exterdae is captured
during the preserve phase. For example, additional usesthat are more
interactive and capture a broader spectrum of possibleafises digital ob-
ject are captured, more fore-ground data for verificatiocoltected. Data
used as input to the digital object in its original enviromtis recorded and
reapplied to the object in the virtual environment (4,5gmgure a determin-
istic execution and thus validate that all necessary datebban captured.
Data is extracted in significant points of the rendering pssq6) as defined
in the planning stage to compare between the original artdatienviron-
ment as shown in Figure 5.2b (7) and thus evaluate that theoenvent is
a valid environment for the digital object. Both data usedvididating the
execution as well as results of the rendering process aredstothe archive
along with the digital object and all its dependencies anthrdata for later
verification once the object is extracted from the archive.

Re-deploy At a later point in time the digital object is re-deployed e thew environ-

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 83

ment selected during the planning step. The digital objasttb be inte-
grated in a system where all the external dependenciessayds render
the digital object are provided in some form. An example fos tvould

be a web service that existed when the object was originallyse, but
might not exist anymore once it is re-deployed. Once theatltjas been
re-deployed it is necessary to verify that the functiogasitstill intact. Thus
we provide the verification-data that has been captureadtine validation
in the preserve phase to the new environment and captureuthetof the

digital object. If this is done for various use cases, anddéa captured
matches, we have strong evidence that the rendering of gigldobject

is unchanged compared to the original rendering at the tifm@reserva-
tion. Other data that will be provided to the new environmgnéensure
a deterministic rendering includes user input. To verifgtttine results of
the rendering process are unchanged to the original remgjéog files and
properties captured during the rendering in the new enknent are com-
pared to the results stored in the preserve phase.

For the re-deploy phase only the comparison steps of theaah work-
flow have to be performed. The digital object is re-deployedhie new
environment. Then the data that has been captured duringxéaution
before storage has to be applied to the new environment (brensignif-
icant data is extracted on the significant points (6) definetthé preserva-
tion planning phase. This data is then compared to the sesafitured in
the original virtual environment during validation in theeperve phase as
shown in Figure 5.2c (7). If the results are identical, thedexing in the
new (future) environment has been verified against the ralgiendering
by evaluating against a virtual environment that has beatuated against
the original.

It should be noted, though, that if the digital object is eplbyed in the ac-
tual environment after evaluation, only external servites are still avail-
able or can be replaced by other identical services guagrtgper func-
tionality of the digital object beyond evaluation. If sexgs are simulated,
e.g., as in the Eiffel tower example in Section 4.2.1, thessdfunctionality
of the digital object can only be guaranteed for values thekaown to the
simulation, any requests outside the simulation boungariehe service
will result in unpredictable rendering results. Within $ledimits, the object
then is also open for new (unpredictable) user input thatfisrdnt from
the user input captured during the preserve-phase.

Using the evaluation workflow in the different preservatgmses we thus
can evaluate the rendering of a process in a new environmegit phases of

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 84

the preservation life-cycle of a digital object. By keepihg external data influ-
encing the process renderings identical in the differemirenments we ensure a
deterministic rendering of the object. Comparing the reedefata on the same
level in both environments lets us compare the renderingsesaluate potential
differences.

5.5 Summary

In this chapter we showed how the information described aptlced as shown in
Chapter 4 can be used to evaluate the rendering of the sante digject in a new
rendering environment (i.e., in a different view-path). fivst explained how the
view-path is recreated and the captured external data ntfing the rendering is
reapplied to the new rendering. We showed how the resultscan@ared and how
the different levels shown in the previous chapter are ugethfs comparison.

The description of the digital artifact, its external degencies and its view-
path as shown in Chapter 4 along with the steps for evaluat@gendering of a
digital object form the “Preservation Action EvaluatioraRrework” that allows
us to compare renderings of a digital object using two dffieiview-paths. The
framework supports institutions in taking an informed dem on a rendering en-
vironment in a preservation planning process. As one exa@mpldeo game mu-
seum can use the framework to select the best emulator fiairceligital objects
in its collection. In an industry setting the execution dfgsoftware components
of) a business process can be evaluated to ensure that therirenis authentic
with respect to the properties identified.

We then showed how the evaluation framework can be appliedoreserva-
tion workflow to make sure that the rendering of an object tharchived at one
point in its life-cycle and redeployed at a later stage casumzessfully verified
in the new environment.

With the concepts provided in this and the previous chapteould also be
possible to automate the process of evaluating emulatsme extent. However,
virtual environments today lack some of the features necgd®r supporting
automated evaluation, like the possibility to supply files &utomated input or
the extraction of significant properties of the environmemd the digital object.
In Chapter 6 we will show design requirements for virtual eswments to allow
standardization and to a certain extend automation of atialuof renderings.

The following chapters will then show how the preservatioorkilow and
the evaluation steps can be applied to real world exampledides for proper
evaluation of digital objects’ renderings for archivalrstge and re-deployment
for future use.

Chapter 6

Design Guidelines for Virtual
Environments for Digital
Preservation

6.1 Introduction

Based on the previous chapters showing a framework for ewadua render-

ing environment and how to integrate it in a preservationkfow, this chapter

will describe what functionality has to be provided by a remag environments
used for digital preservation to support an evaluation efréndering of digital

objects, both locally deterministic and rendering influsshd®y external events.
We first show the basic requirements on rendering envirotsni@nbe used in
digital preservation. Then we show what the requiremenévaduating these en-
vironments are. Finally, we show functionality that is galdor the usability of

rendering environments for digital preservation appiaa.

6.2 Long Term Stability of Virtual Environments

Depending on the intended use of a rendering environmentetuirements dur-
ing development are quite different. While a compromise ketwspeed and cor-
rectness of emulation (e.g. timing between CPU and outpupooents) usually
can be taken into consideration for office applications, @meloser alignment
between the internal components is necessary for video gaméators, with the
most demanding requirement on correctness being realdppécations. Ren-
dering environments thus have to be designed with the ietkmgbplication in
mind.
The emulatoDioscuri shown in Chapter 2 was the first emulator specifically

85

CHAPTER 6. DESIGN GUIDELINES 86

designed with digital preservation purposes in mind. Thirements that had
to be met during its development as defined in [van der Hoevah, 2007] were

durability and flexibility. We will briefly revisit these belv before expanding this
set of requirements based on the lessons learned from tlgnadshe evaluation
framework.

6.2.1 Durable Virtual Environments

Virtual environments used in digital preservation haveeaalarable as they have
to be sustainable for the long term. Developing the virtuslironment as plat-
form independent as possible allows for a use of the sameaVvienvironment
on different hardware and software platforms. Key requeets to developing
virtual environments thus are:

Open Source Keeping a virtual environments source code accessibleraltbe
archivist to have the emulator ported to new environmente dhe system
the emulator is running on (either hardware or operatintesysgets obso-
lete. Using closed source virtual environments poses shefiunavailabil-
ity once changes in the hardware / software environment ohstitution
become necessary.

Platform Independent Code If platform independent code is used for the devel-
opment of a virtual environment, it is much more likely tHze £nvironment
can be ported to a new underlying hardware or operating isystece the
original environment used gets obsolete. Examples forpiatierm inde-
pendent code include the use of machine language bound &cdisgro-
cessing architecture, use of operating system dependeatiés and pro-
prietary programming languages used for just once system.

Use of Virtual Machines as Intermediary Layers An additional virtual layer as
described in Section 2.5.2 would allow virtual machinesdaibable over a
longer period of time, as only the virtual layer would havdéoported to a
new platform, the virtual environment itself would not hawebe adapted.

Most current emulators (e.g., video game system or mobd&qrim emu-
lators) are generally developed for speed and immediatgeus@&hout keeping
long term stability in mind. Dioscuri fulfills all the listecequirements by being
open source, being developed in Java and using the JavaMifiachine as an
intermediary layer between the operating system and théagonu

CHAPTER 6. DESIGN GUIDELINES 87

6.2.2 Flexible Virtual Environments

Being able to use one virtual environment for different gusstems prevents
developing a new virtual environment whenever a single comept in a system
changes. The modular emulation concept shown in Sectio2 allbws the use of
one virtual environment for different guest systems by exging different mod-
ules for the different components in a system through cordigan. Ideally new
components can be integrated using a plug-in system wittifgggbinterfaces.

The re-use of modules for components that already are imusthér projects
(e.g., the same processors had been used in many differem@ bomputer sys-
tem in the 1980s) also allows for reduced development tinteisitess likely to
introduce emulation errors for these components.

Dioscuri was developed with this flexibility in mind to ensuseveral differ-
ent computer environments can be emulated with minimal gbsuby using the
modular concept.

6.3 Requirements for Evaluation

To support the workflow presented in Chapter 5 it is necessacyeate require-
ments for virtual environments that are to be used for digitaservation pur-
poses, as these requirements differ from those used fairggesmulators today
and the features they offer. The requirements which aressacgto support the
evaluation of emulators are:

6.3.1 Recording and Replaying External Events

As previously shown the rendering of a digital object in duat environment has
to be made deterministic. An object’s rendering is non-ueit@stic if it depends
on values that are external to the digital object itself,,ehgrdware events, user
input. Thus, for evaluating a virtual environment it is nesary to apply the same
values to the digital object for every repeated renderirgecy

The values locally known and not locally known are shown inti®a 4.2.1.
The virtual environment has to be enabled to capture angpbrall data avail-
able on external (i.e., not locally known) and internal haack (i.e., locally known)
interfaces, to enable a deterministic rendering. TheVotlg steps are thus nec-
essary when developing the rendering environment:

¢ |dentify all locally known and not-locally know interfacésr the system
(e.g., by studying the hardware schematics of the system)

CHAPTER 6. DESIGN GUIDELINES 88

e Provide functionality to capture and store the data on thetesfaces as
well as the moment it was applied to the execution of the aligibject

e Provide functionality to re-apply the data at the same tigithér absolute,
or relative to a variety of timing concepts such as absatlapsed time,
processor cycles, or frames) during execution to a subs¢geredering of
the digital object

Recording data and re-applying the same data to a later éxeaitthe same
digital object using the provided functionality thus all®for deterministic ren-
dering of the digital object.

The automated replay of external events not only eases atgdntesting but
also makes it possible to automate actions for users of shje@mulated envi-
ronments (e.g., booting a system and starting an applicatitomatically without
special knowledge of the handling of the environment on #ex-side).

6.3.2 Extraction of Significant Properties

Once the rendering of a digital object has been made detmstioinsignificant
properties of the rendering process have to be extracteahtpare different ren-
derings of the same digital object. These can be categdriate two different
kinds of data, the rendered form of the digital object itsetfd a log of the ren-
dering process.

Rendered Forms

As shown in Figure 4.1 a digital object’s rendering is ava#an different forms
on the system rendering the object. Some of these formsiagise the virtual
environment in different memory regions of the virtual gyst

e Random access memory (RAM) of the system
e Caches (e.g., processor cache, RAM cache)

e Hardware registers of output devices (e.g., video card mgmmztwork
buffer)

The available memory regions depend on the system beingtreba virtual
environment and can be found using the system’s schematitslaa sheets of
components (also needed for developing the virtual enxrnemnt).

The rendering environment also prepares renderings fohdisé system by
providing data on the interface between the host systemlandittual system,

CHAPTER 6. DESIGN GUIDELINES 89

e.g., a rendered form of the virtual system’s screen or the plassed along on
the network interface. The rendering environment thus bésoto be enabled to
extract data of the various rendered forms of a digital daéspecified times in
the rendering process (similarly to how the data influentimegrendering has to
be applied at certain times during the rendering).

The provided functionality is then used to compare the ekddh data over
different execution cycles of the same digital object. Tdomparison allows to
observe the following characteristics:

e Extracting data from the memory regions of the virtual systand com-
paring this data at the same points in time in a deterministiclering, we
can make sure, that the rendering process of the digitatbinj¢he virtual
system is correct.

e Rendered data captured on the interface between host systéwmirtual
system allows a comparison, if the virtual system corretttipsforms the
data calculated in the virtual system for use on the hosesyst

Logging of the Rendering Process

Some of the significant properties of the rendering that havee captured are
not properties of the object, but of the rendering proce$gesé& events occuring
during the rendering process depend on the system beingtexiein the virtual
environment. A list of categories and events are listed iéla.1.

The virtual environment has to provide functionality to libgse events for a
rendering of a digital object. A comparison of the timing bé&se characteristic
figures allows then conclusions about the timing of the airgystem compared
to the real system or a different virtual system. Virtualiemvments executing the
process either too fast or too slow can thus be detected.tidddily, an analysis
of accessed system resources can be used to detect if éxe=oarces are used
by the rendering, making it not deterministic.

The actual events that have to be logged depend on the hargwaerties of
the system being virtualized. Besides the events, the follpwarameters should
also be logged:

Executed CPU CyclesA system running in a virtual rendering environment
usually runs at a different clock speed than the host sysiéerefore, the number
of executed cycles of the virtual machine’s central proogssnit is the main
indicator of timing of when an event appears. This adds viéueutomated
testing, as during an unsupervised test the emulator cambeithout any speed
limits, thus reducing the time needed for testing.

CHAPTER 6. DESIGN GUIDELINES 90

Elapsed TimeAs an additional time measurement the actual elapsed time on
the host system since the rendering process started shewdtbrded in the log-
file. This measurement gives us an indication of how the a&lized system’s
speed is perceived by a user of the virtual environment andbeaised to nor-
malize for timed events driven by a clock-based system réitlaa a timing based
on CPU instructions executed.

Drawn Frame As an additional timing measurement for every event it sthoul
be recorded in which “frame” (unique consecutive image poed by the video
hardware of the system) the event was registered, as thectmmto a video re-
fresh rate is an established timing instrument in the dg@reknt of dynamic com-
puter software. Similar time-stamps my be required for othetput devices/ports
that operate with an independent, internal timing or preces

Recorded EventFor each event the type of event as a code and as full text
(for easier human readability) should be recorded.

Additional Information Additional data for the recorded event can be in-
cluded depending on the event logged, e.g. a key that hasibegsed, a file that
has been accessed etc.

The format the events are logged in can be either a struckivédfile or a
plain text file.

6.3.3 Timing Requirements on the Virtual System

Timing is a critical issue when executing systems in a virarvironment (es-
pecially for real-time systems). For evaluation, howetleg,issue is less critical.
Even when dealing with real-time systems, the system is tetedp under control
of the host system. The virtual environment software thuscegture and reapply
external data needed to make a process deterministic atyettaesame moment
in the rendering process. The time granularity of captuand reapplying events
has thus to take into account the guest system (or possikel gustems on the
platform the virtual environment covers).

The evaluation process of a virtual environment can be cetelyl decoupled
from the absolute time the original rendering process waswed in. If the host
system hardware is powerful enough, even an evaluationeridering in a much
shorter time than the original rendering process would iakeal time is possible.
The events have to be applied only in the correct relativenggnof the rendering
process.

CHAPTER 6. DESIGN GUIDELINES 91

6.4 Data Exchange between Guest and Host System

One requirement that is not directly connected to the long &ability or test-
ing of virtual environments but crucial for the usability emulators for digital
preservation is the exchange of data between the guestrsgsité the host sys-
tem. Virtual environments are enabled to use a data soureedbfrom, this is
either a file that is loaded into memory on start of the remapeinvironment (em-
ulating physical read-only-memory), or some kind of filestgym based structure.
But, currently, most emulators do not offer a possibility tpyg content from the
emulated environment to the host-environment during nueti Phelps et al. see
this as a major drawback for using emulators for digital ereation ([Phelps and
Watry, 2005]).

Usually it is necessary to be able to access documents asd tleel contents
of those documents in the host environment. The option ah¢al capture of
what is displayed on the screen as an image is usually notiguiffj as text or
other objects that exist on the guest system would have toasferred to the
host system to re-use them properly.

Two different strategies of exchanging data between thestgsystem in a
virtual environment and the host system running the vireralironment exist.
The guest system can either be aware of running in a virtunat@ment, or be
unaware of that fact.

6.4.1 Virtual Environment Unaware Guest System

In case of the guest system not being aware of running in aalignvironment,
the virtual environment has to provide an option to captw@drom a running
system on different levels:

Hardware Data can be directly captured on a level of emulated hardware
ports of the system that store data, like text-based videdesof display
hardware or memory dumps taken from the emulated memoryitidde
ally, data from the host system can also be provided on (eésd)laardware
ports of a guest-system by injecting data directly into tegdoard buffer
of the emulated system. While only primitive data types li&ettcan be
transferred using this method, the virtual environmentsdo& have to be
aware of the operating system being executed on the emuiateldvare.
The different possibilities of data that can be extractguede on the hard-
ware being emulated.

Operating System Another method of transferring data to the host system is ex-
tracting the data directly from the operating system of thes system.

CHAPTER 6. DESIGN GUIDELINES 92

Knowledge of the guest system being executed as well as tie giruc-

ture of the guest operating system is necessary to extrect@ae example
would be to access the clipboard of the operating system xinaicé data
that has been copied to the clipboard on the guest systenfoihat used
to store the data in the clipboard as well as the location@ttipboard in

the guest operating system have to be known by the virtuat@mment to

extract data.

Data Carriers One method currently used is the transfer of data using @aitea c
ers that can be mounted in the virtual environment (e.gk, dlises or hard
disks). In Section 2.5.2 remote access to emulation is thestrwhere
the object that will be used in the emulated environmentjecied into a
floppy disk image and mounted in the virtual environmenth# bbject is
migrated in the virtual environment, the resulting migdatdject is saved
to the floppy disk and later extracted from the disk image enhtbst sys-
tem. While the virtual environment not necessarily has towara of the
guest operating system being executed, the data carrimaterhave to be
accessible by the guest operating system (e.g., if a Windgstem is ex-
ecuted in the virtual environment, harddisks formated gisi.INUX file
system format will not be accessible, even if the carrierstamounted in
the virtual environment on a hardware level). When using datders the
virtual environment not necessarily has to be able to ifgettact the data,
as external tools can be used to prepare the disk image, smdoaéxtract
data stored on the data carrier by the guest system.

Remote Data Data can also be provided on other external interfaces thémn d
carriers. If the guest system is running a web service thatogiding data,
the host system can connect to the guest system over therketierface
and inject and extract data from the guest system. The gyssirs is
unaware in this case if the data it provides is sent to a resysem on the
network or a host system executing a virtual version of thesgaystem.

6.4.2 Virtual Environment Aware Guest System

Data can also be exchanged by the guest system and the hiesh sfythe guest
system is aware that it is running in a virtual environment] data used in the
guest system has to be provided to a host system. These ben leit done by
installing tools in the guest system that communicate witlost system or by
using an operating system that can be made aware of the &dit ik running

in a virtual environment. In both cases the view-path of aecttchanges more
than in a virtual environment unaware system, as by addilipimtroducing new

CHAPTER 6. DESIGN GUIDELINES 93

software or changing settings in the operating systemsyitive-path is altered
more severe than by only introducing an additional virtagkk.

Additional Tools

Tools being installed in a virtual environment allow the thagerating system to
access the clipboard of the guest operating system. Thekehave to be pro-
vided by the virtual environment manufacturer for all opigig systems running
as guest operating systems, and have to be installed in@dguest system. One
example for the virtualization software VMWdHeare the “VM Ware Tools”. For
the open source Oracle VM VirtualBBkthese tools are called “Guest Additions”.
Each of them provides these (or some of these) functioesliti

e File system folder sharing between host- and guest system

Data exchange between host- and guest system

Share the clipboard between host- and guest system

New drivers to improve the performance of the guest system

Access to statistics about the guest environment

Time synchronization between host- and guest system
e Soft power operations to pause the guest operating system

To accomplish the data exchange, a communication chantvedée the tools
installed in the guest system and virtual environment bekxeguted on the host
is established. This channel can be used by tools on both gidechange data.

Virtualization Aware Operating System

If an operating system is installed that is explicitely agvaf being run in a virtual
environment, this operating system has to explicitely bmmited to include the
necessary components. The operating system makes disgetrsgalls to the
hypervisor (i.e., the virtual layer between the hardward #re guest system)
and uses virtual registers provided by the virtual machimenot available on
the physical hardware (i.e., processor registers). Thisnelogy called “Para-
Virtualization” [Whitakeret al,, 2002] is mainly used to improve the performance
of the guest system(s) on a physical hardware.

[1vMWare —ht t p: / / waww. viwar e. cont
Ploracle VM VirtualBox — http://ww. oracl e. com us/technol ogi es/
virtualization/virtual box/ overvi ew i ndex. ht n

CHAPTER 6. DESIGN GUIDELINES 94

As the guest system is aware of the virtualization, the resarggools for ex-
changing data with the host system (and other functioealilisted in Section
6.4.2) are part of the operating system and do not have tofleksaly installed
in the guest system.

6.5 Summary

By following the design guidelines for emulators for digpaéservation purposes
as proposed in this chapter standardization and to a cestdénd automation
of evaluation of emulators will be possible. The functistyalor capturing and
re-applying of data as well as extraction of properties loaset included in the
virtual environments to allow for automated evaluation.e Quidelines for long
term stability should be followed to enable a dureable andile use of emula-
tors in digital preservation. Extraction of data as destdilm Section 6.4 should
be implemented to ease the use of virtual environments itatligreservation
application, to raise acceptance of emulation as a vial#eraltive to migration.

No standard for data provided to virtual environments exsst far. It is nec-
essary to develop a standard for handling of user input tahessame input def-
initions in the same format for all emulators that have to\mieated. The same
is true for extracted significant properties. As neithergsbeof properties nor a
format to extract it to is specified yet, it is necessary toycaut future research
in this field. Especially as this is a feature not yet suppbbig emulators a stan-
dard may be devised, that can be implemented by emulatedlajesrs to get the
properties in a unified format. One example of a charactegoizdanguage that
can be used is XC*L [Beckeet al., 2008b]. It is also necessary to develop a
measurement framework that supports the extraction ofgstigs from rendering
environments and the automated comparison of renderingises

The next chapter will show a case study on an obsolete sy#eremulator
for the system developed with the requirements presenttédsichapter in mind
will be presented and evaluated using the evaluation frarew

Chapter 7

Preserving an Obsolete System: The
C7420

7.1 Introduction

In this chapter we will show how digital objects for an obselaome computer
system can be preserved on the different threat levelsr Afteducing the sys-
tem we first show how data from original media is re-engingéened extracted
(preservation on the physical layer). We present a tool ihabt only able to
extract the data but also to convert simple objects (e.cqagém) to non-obsolete
formats using migration (logical layer). Next, we show threvelopment of an
emulator that is used to preserve the more complex objectsi®system (e.qg.,
software) on the logical layer. Research shown in this cdqate been published

in [Guttenbrunneet al, 2011], [Guttenbrunner and Rauber, 2011], and [Gutten-
brunner and Rauber, 2012a]

7.2 The C7420 Home Computer Module for the Phi-
lips Videopac+ G7400

For the case study we decided to use the Philips G#400riginally designed

as a video game system with a keyboard, it can be extendecttorizea home

computer with a Microsoft BASIC operating system using th&Z¥expansion

cartridge. This cartridge features three connector cdbtefata input, data output
and a remote controlling signal used to start and stop thi® aaple, if supported
by the tape player.

WPphilips G7400 on Wikipedia —http://en.w ki pedi a. org/w ki /Philips_
Vi deopac_\ %2B_Gr400

95

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 96

The system was chosen as itis already very hard to find spesimevorking
condition, so there is an imminent threat of losing the dated with this system
permanently. For the purpose of this case study we also chegstem that had
physical media that could be read by current hardware, snagase off-the-shelf
audio recorders, as standard compact cassettes couldd®ustrage purposes.

7.2.1 The Philips Videopac+ G7400 Video Game Console Sys-
tem

In 1968 Ralph Baer created the prototype for the first home vgdeoe called

Brown Box [Baer, 2005]. The American company Magnavox releésedystem

to the public in 1972 as the “Magnavox Odyssey”. The systead wsrtridges

that did not store any information but interconnected d#fe electronic parts to
create the desired built-in games. Only black/white outpas created and by
applying different overlays for every game on the TV the iegsion of color was
created.

In 1978 the successor to the Magnavox Odyssey, the Magnatgss®y, was
sold in America [Herman, 2001]. In Europe the system was splBhilips under
the name “Videopac G7000” [Forster, 2009]. This system wsethtel 8048H
CPU and the custom “VDC” (video display chip) Intel 8244 to dégpvarious
different on-screen objects.

Magnavox also started to develop a successor to the OdyskeyOdyssel
The system was equipped with a more powerful graphics cleipitis predecessor
but was made backwards compatible to the Odyssélywas never sold to the
public, even though some prototyfésvere found by video game collectors on
yard sales in the area of Magnavox’ head quarters in KnaxvilliN, USA. In
Europe the Videopac G7000 system was more successful tea@diisse¥ in
the US, so Philips released the Odyssapder the “Videopac+” brand as the
“Philips G7400” (shown in Figure 7.1) in Europe in 1983. Tlstem was able to
use all the cartridges for the original system, but also sadutional cartridges
only playable on the G7400 were released. As home compubéragre popular
during that time and the Philips Videopac systems were @egaipvith a keyboard
all along, an additional cartridge that converted the sygtea fully fledged home
computer was released.

7.2.2 The Philips C7420 Home Computer Module

In 1983, shortly after the release of the Philips G7400 gayseem, Philips re-
leased the Home Computer cartridge as an add-on to converttimsole system

Pl0dyssey Prototypes -ht t p: / / www. di et er koeni g. at/ ccc/ po/ s_po_03. ht m

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 97

Figure 7.1: Philips Videopac+ G7400 game console system.

to a full fledged home computer. As the built-in 8048 processts not powerful
enough for this task, the system itself was used for inputargut only and the
computing was done mainly by a Zilog Z80 micro processor mgat 3.754 Mhz
and stored in an extra case connected to the main systemr{shdwigure 7.2).
The home computer module had 18 Kbytes ROM inside the cgeriicrosoft
Basic was used as a programming language for the home conguldesn and
used up 8 Kbytes of these. 16 Kbyte RAM were also integratedamtodule of
which 14 Kbyte could be used for user programs.

To save and load programs to external storage, a micropheha headphone
connector were included which allowed the storage of dadgangrams utilizing
home audio equipment and standard audio-tapes.

Only very few programs for the system were released comaigran printed
form. Besides the manuals included with the cartridge, a lieakhing how to
program the system and including some example programsahessed in France
in 1984 [Bardon and de Merly, 1984] and a second book contgigemeric BA-
SIC programs adapted to the system was released in Italypfizbat and Grandis,
1985].

On this system BASIC was used as the main programming largusaurce
code is a significant property of software and can be necesarterpret the data
stored by applications and is also necessary if softwardgsated for preserva-
tion purposes [Matthewst al., 2008]. As the system is used as a video game
console as well, some of the programs are video games. Tongdes us with
a situation where migration would be a possible solutionreserve some video
games for the system [Guttenbrune¢il., 2010a].

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 98

Figure 7.2: Philips Videopac+ C7420 Home computer cartridgartridge that

plugs into the system in front, connected to the main cagédtiids the additional

CPU and memory in the back. The connectors for loading/saditg to an au-

dio system (red, white and black cables for microphone, bleagles and remote
control) are attached to the main case.

7.3 Extracting Data From Obsolete Media and Mi-
grating It to Non-Obsolete Formats

Audio tapes are magnetic tapes and are subject to varioestshon the physical
level as described in [Bhushan, 2000]. By converting the analaveforms to
digital waveforms and storing them as digital audio-filescanrent systems we
can avert the immediate threat on the physical layer.

To prevent loss of data on a logical level it is necessary tengineer the
encoding of digital bits in the analog audio signal. In [Rosd &ow, 1999] an
experiment with a Sinclair Spectrum is described, wherecadata was migrated
to a corresponding binary stream, which could then be intéed using an emu-
lator of the real system.

However, to separate the digital objects from their origgravironment the
bitstreams have to be interpreted in such a way as to extractanceptual object
from the logical bitstream. By extracting the content andrgavt to a format
which is not obsolete at the time of migration we can tramafdhe data to a
format that is accessible without the original hardware. eXpert is needed to
operate the original system as it is necessary with emula®a preservation

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 99

X|heloworid *| 1,0
Mono, 48000Hz
32-bit fioat

Mute | Solo

L R |l ng-
'......._...'@.' BN D‘E
1,0

05-

0.0-

a

Figure 7.3: Waveform of “Hello World” BASIC program (1: imal 6 kHz lead-in
tone; 2: 256 x OxFF as start of file-signature; 3: file headeri28 x OxFF as
header/data separator; 5: data block)

strategy.
The essential elements or meta data of the digital objectteanbe added on
ingest in an archival system.

7.3.1 Re-engineering the Waveform

Data on the system can be stored in various formats. The BA8Gramming
language variant that comes with the system supports sgwrimgyam listings,
screenshots, and storing and retrieving self-defined dgetagtrings and number
arrays) using various forms of the “CSAVE” instruction.

In order to start re-engineering the storage encoding, tiggnal machine’s
output was connected to the input of a PC’s sound card. Weedtast writing
some test programs on the original machine and recordingethigdting audio
files using Audacit{l. One resulting waveform can be seen in Figure 7.3. By
recording different test programs we were able to find out tiare is always a
2.77 second lead-in frequency of a 6 kHz sine wave. The datkli stored in a
4.8 kHz sine wave encoding bit set ('1’) as a tone and bit ele4i0’) as silence.
Every byte is encoded as one start bit (tone), followed 8 dasa(storing least
significant bits first) and 2.5 stop bits (silence) (Figuré)7The data is stored at
a rate of 1200 bits per second. Every file consists of dateshpta structure of a
file header and a data block as described in Table 7.1.

During our online-research we also found an active commgtdhthat is still
using and also programming this system. One of its members: Ran den En-
der®!, had written small programs that allowed BASIC programsatéransferred
between the original system and a PC. On request he providactogy of the

[BlAudacity —ht t p: / / audaci t y. sour cef or ge. net/
“lvideopac / OdysséyCommunity Forum -ht t p: / / vi deopac. nl / f or uml
BIRene’s VIDEOPAC page ht t p: / / home. kpn. nl / ~r ene_g7400/

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 100

NAANNANANANANS
\/lVl\/l OVOVl\/O 1 /1 OVV
A
01

Figure 7.4: Representation of one byte in the waveform (1 bibfl1), 8 data bits
(least significant first: 11010011b = D3h), 2.5 stop bits (0))

Table 7.1: File structure of the bitstream on the C7420 system

No. of Bytes

bf Code

bf Contained Information

256

OxFF

<start of file>-signature

32

file-header

128

OxFF

separate header / data

<variable size>

data-block

10

0x00

<end of file>-signature

source code of his programs which confirmed part of our rese@garding the
format and provided more details we had not figured out ajpbiist of our inves-
tigation.

7.3.2 Re-engineering File Formats

To understand the logical format of the data stored in theefzans it was neces
sary to reengineer the various formats that are possibl®te asing the C7420.
From the original user manual it became apparent that the Cig4&ble to store
the five different kinds of data shown in Table 7.2.

By writing small test programs storing the different formatsd analyzing
the resulting waveforms we were able to reengineer ther&ést of the different
formats. The discovered logical formats of the bitstreahtkedifferent file types

Table 7.2: Logical bitstream formats and correspondingroand to save data on
the C7420.

Logical bitstream format Command
BASIC Program CSAVE
Screenshot CSAVES
Array CSAVE*
String CSAVEX
Memory Dump CSAVEM

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 101

are described in detail in Appendix A.

7.3.3 Converting Waveform to Bitstream

In order to write a tool that is able to convert the waveforto msable data we had
to develop a method of interpreting the waveform prograncaly and detecting
the various stages in the signal.

In our tests the signal was sampled as a 48 kHz, 16 bit, momalsig\s the
C7420 outputs the signal at a rate of 1200 bits per second, weataulate the
number of samples per encoded bit (spb) using Equation 7.1.

spb = bp% (7.1)

where,

spb = samples per bit in the digitized audio stream
f = sample frequency of the waveform

bps = bits per second as output from the C7420

The signal output by the C7420 is a sine wave with a frequendyiHz, so
every bit is represented by 4 sine periods.

We implemented two different methods of interpreting ttgnal. Method 1
was taken from the sample programs we got from René van demERdeeach
sample we need to decide if it marks silence or signal. Therilgn scans the
sample stream of the digitized waveform until an absoluteevgreater than half
the maximum amplitude of the signal is found. High amplitisleiterpreted as
a signal and such as the start of a coded bit “1”. More sampiesubsequently
read and counted either as “signal” or “no signal”. If morarita pre-defined and
adjustable threshold of “no signal” samples are found, &sisumed that the end
of a coded “1” has been reached and a coded “0” starts. Foredcdd bit to be
properly recognized, half the number of samples over thataur of 4 sine waves
has to be interpreted as “signal”. Figure 7.5 shows a sampleform and the
values counted as “signal” (marked on the horizontal axid4§sand “no signal”
(marked as “0").

While we were able to read the original signal output by thesota system
without errors using this method, we encountered the fallgwproblems when
we tried to interpret the signal stored on audio tapes:

e Missing parts of a coded bit: As a certain threshold of “nanalyj was
defined as the beginning of a coded “0”, errors were encoedtehile
interpreting the signal if a small part of the bit had been ¢he to data loss
on the audio tape.

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 102

1 —

1.2

X ~ 1

Figure 7.5: Interpretation of the wave signal using methoWettical axis shows
the strength of the amplitude, horizontal axes the partseo$ine wave interpreted
as “signal” (1) or “no signal” (0).

¢ Noise in the signal: Most parts of the tapes contained noisiehwwas
incorrectly interpreted as signal.

¢ Differences in amplitude due to independent recordingshersame tape:
While we were able to adjust the level of the input signal usimegsoftware
for recording the signal from the audio source, changesersihnal over
various parts of one tape made parts of the tape unreadable.

To reduce the sensitivity of the algorithm that convertswhaeeform into a
bit stream we implemented a second method. For Method 2 wenigtooked
at single samples in the waveform but also calculated thedpiecewise linear
approximations of the amplitude, thus calculating the eangth of the sine wave
for silence and signal first. The arc length of a curve for dHat represents “1” is
longer than the arc length of a curve for a bit that repres#itdue to the higher
amplitude. To decide if a bit is set or cleared, a cut-off edbetween signal and
silence wave arc length is used.

For every sample in the signal, the samples before it are tasealculate the
arc length of the sine wave up to the sample. If the arc lersggéthove the cut-off
value then the sample is recognized as “1” otherwise it isgeized as “0”.

The algorithm is also able to adjust itself to changes inwv@wr noise, as the
threshold which decides if a bit is set or cleared is conbtaaljusted for every file
in an input stream in parts of the signal which are known toigeas or silence.
This way we are able to compensate for noise in the signal Assvéor changes
in volume. Missing parts of a signal bit have less influencthaarecognition as
not only the missing part, but also all parts before it arelusalecide the state of
the bit.

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 103

7.3.4 Migration Tool

Using the algorithms for converting the digitized wavefotona binary stream
native to the system, together with the information we gatti@bout file formats,
we developed a tool that is able to read the data containdxiwaveform. Both
described methods of interpreting the waveform were impleed.

The tool is written in JAVA. By using a virtual machine as a fdatn, the tool
is independent from actual hardware for better long terrnil#ha The tool and
demo files can be found on the project homeage

The following functions were implemented in the migratioolt

e Opening an audio stream and loading the contained filesefeitbom an
audio file (WAV or FLAC) or directly from an audio-in device)

e Opening files in the C7420-native file format (binary strearosverted
from WAV-file)

e Savingthe opened audio stream as a C7420-native file fornmairgkstream)

e Saving data in a non-obsolete format (screenshots as PM@;fr@grams
and arrays as text files, binary data as binary)

e Saving data as an audio stream (either to an audio file (WAVL&(H or
directly onto the standard audio-out device)

e Opening and saving compressed Zip-archives containingecton of mi-
grated files

e Creating new files of the different formats in the applicaijiorcluding syn-
tax highlighting for BASIC-programs)

All the data formats used by the C7420 as described in Sect® @re sup-
ported by the migration tool.

Every file is opened in a new tab inside the application in atoedhat is
linked to the file type. The information associated with tie dind stored in the
file header (native file name, address in memory to load topeagdited as well.
A screenshot of the migration tool can be seen in Figure 7.6.

(lHome Computer Audio Migration -http://wwv. ifs.tuw en. ac. at/dp/ hc_
audi o_m gration/

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 104

% Data manager for the Philips G7400 + C7420 BASIC module LE=R
File
Impart O Audia fie Close all tabs Pro 4 88t o = X I Pra 5 88el o
Pro 2 8¢l a - x Pro 3 88l a — x
[] Mol wma o - X
[J Poh e D % | % o7 w1 D x
Ignore unrecongnized blocks — 2
04220 IF KEY (0)=76 OR KEY(0)=110 THEN ERD i
[C]only import raw data 05000 REM sooocoBenertung 1oeschemonam
f e e eyl || 05100 FOR 5=0.70 108
. | WaveParserz (Arc length analysis) %
Demmoddlator, | ot e et QI
Signial cutoff: J 05130 HEXT 3

065140 FF=0: FG=0: FR=0

05150 GOTO 100

. | 08000 cuRSORX 1:CURSORY 4:PRINT CEHRS (158)
06010 CURSORY 4:RETURN

[o7000 REM sooxListenshende oo
§ ki 07030 CURSORY 3:7=0

Incorrectly, assuming silence

Fonrs] P oS Ly pis Gy s 7100 PRINT CHRS {157) : STORE: ZE=0

0x0, init data:, length: 0 07120 I=J+1

Parsing as RanData... 07150 IE=EE+1:STORE

Ignored unrecognized black AT TR (T SRR P G TS

Entered state 0 at position 12390675 PRINT 1:7 " : 5
Ertered state 2 at position 12454664 Hodn & TR0 DR,
07142 PRINT TR (7,1}

Erkered state 3 at position 12455131
Found “Pro 7": type: 0x20, address: 0x88cl, 07145 SCREEH:DISPLRY
~

linit data; . lenath; 4106 07150 IF ZE=1Z THEH ZE=0:GOSUB 7500

[¥] Clear log automatically Clear log 07165 IF 7=99 GOTO 100
v

LATLA0 GOTA_T120

Figure 7.6: Screenshot of the migration tool GUI with 7 BASitbgrams im-
ported from a WAV-file recorded from an original tape. The ortgog on the
lower left shows events and errors during the import. Vagimoport settings can
be configured on the upper left and the imported programshenersin tabs on
the right.

7.3.5 Evaluating the Migration Tool

To evaluate the usability of the migration tool, we recorditerent programs
and other data as output from the original system. The datare@orded as a
waveform using Audacity and then converted to user read#dike in the migra-
tion tool using both implemented methods for converting waveform. Then
the data was loaded back into the original system, both ftwrécorded audio
stream and from a stream reencoded using the migration tool.

The migration tool was able to restore all the data in the ¥eawe as output
from the original machine with both methods of converting signal. The origi-
nal stream outputted by the machine and the re-encodedrstrei the migration
tool, both gave the same results when the data was loadeddtekoriginal ma-
chine. For a clean signal that was not distorted due to agemiigration tool
perfectly read and wrote the data from and to the originalhimec

Additionally, we acquired three audio-tapes created vhthdriginal system
approximately 20 years ago from a private archive. Two oftdpes were stan-
dard Philips FE*I 60 normal position audio tapes as used éoprding music
while one was a C-10 computer cassette tape from manufaafespecially
manufactured for recording data (Figure 7.7). The source ieborded the tapes
and the contents was not known before we started the expasme

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 105

PHILIPS |

Figure 7.7: Tapes used for evaluation of migration toolt lgfper corner C10
computer cassette, left lower and right Philips FE-I 60 rarposition audio
tapes.

We used a standard HIFI-system as an audio player and tiveasefAudacity
to record the audio streams as 44 KHz, 16 bit mono digitaladigiThe audio
streams were saved as uncompressed WAV-files [Petermi@BB] Zontaining
the pulse code modulated (PCM) [Cattermole, 1969] raw audeakabit stream.
Two of the tapes had data recorded on both sides of the tapdjazhdata only on
side A. Five WAV-files were obtained, one per side and per.tape

Each file was then loaded using the migration tool. The regulnigrated
files were stored in a Zip-archive. For comparison the filesevedso loaded onto
the original system.

A visual check for the characteristic waveform was done gigindacity to
see how many files we expected the migration tool and thenaligystem to find.
A comparison between expected and loaded files can be fourabie 7.3 (first
column for each method shows recognized files, second shawsagnized files
and third shows false positives).

Some files on the C10 tape were recognized by the originalrayiste could
not be loaded due to a “Bad label” error (with the suggestiorefsition the
tape); while on the other 2 tapes no files were recognized.atNal files were
correctly recognized using method 1. All but one file weregggzed by method
2. Ten additional files recognized using method 2 were fatsgtiges that were
easily detectable in the user interface and recognitiodceven be suppressed

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 106

Table 7.3: Comparison of expected (visual analysis of wavefand loaded files
(using different methods) on evaluated tapes containing2Q tita.

tape-side visual C7420 method 1 method 2
C10-A 8 5 3 0 8 7 1 5
C10-B 2 1 1 0 2 2 0 0
Philips-1-A 6 0 6 0 6 6 0 3
Philips-2-A 6 0 6 0 6 6 0 2
Philips-2-B 1 0 1 0 1 1 0 0

[Total [23 [6 [17 Jo JO J[22 [1 [10 |

Table 7.4: Data with and without errors as recognized ugiegrigration tool.

tape-side loaded not recognized or wrong | with errors no errors
file format
C10-A 7 0 4 3
C10-B 2 0 2 0
Philips-1-A 6 1 5 0
Philips-2-A 6 1 5 0
Philips-2-B 1 1 0 0
[Total [22 [3 [16 [3]

by checking a check-box in the migration tool, allowing tlseuto ignore unrec-
ognized blocks of data (usually noise on the tape).

The files that were recognized contained BASIC-programs .h&alk the files
for validity we loaded them on the original system from tapd also loaded them
on the original system as output from the migration tool.

From the 23 files on the three tapes no file was readable andeusalthe
C7420. All the 6 files that were recognized on the tapes wekelbavith a “Bad
file” error message and were not usable due to missing linggaorrectly inter-
preted bytes. Thus the original system could not be usedatbtloe data from the
original tapes.

The results of recognized data in the loaded files using tlgeation tool can
be seen in Table 7.4.

3 of the 22 files loaded could be recognized without errors.fil&6 were
loaded with various warnings in the migration tool, indingtthat some bytes
could not be recognized or were misidentified (e.g. wrongcktiem, missing
bits in bytes). Three files were not recognized in the cofi@ohat and shown as
binary stream only.

Without manual pre-processing of the waveform or manuatposcessing of
the binary stream we were able to load 19 files opposed to jtiEstloaded by
the original system.

The files loaded with errors were in various states of corepkts. Some
files were missing various lines at the end of the file. Othegmm lines were
erroneous due to incorrectly identified bytes (an examptebmaseen in Figure
7.8). As the original data stored on the tapes was not avaifab comparison,

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 107

%! Data manager for the Philips G7400 + C7420 BASIC module =13

File

Import 0 Audio file it Hals . L L=t - &3 |

07680 wirEr qiEgEen = A
| | | eoozo REM HaucpLEmrasoTO

[| | 20798 *+vwz-+z. snerION

00069 GOSUB 3p00

00060 9!C!LC7RUNIGOSUB 1p00

00242 GOSUB S00043TRS mpal

09090 GOSUB EpDOLPRINTGOTD 7p

Ignore unrecangnized blocks

] @nly impart raw data

Demodulator: | waveParser2 (arc length analysis) % | || go262 STOP +%# 4z fy++4: pRUNERIGET
J 56624 PEEFURIGHTS STICKXATND
Signal cutaff: 00476 REM V2] ot 524
ey ——————————— e
Pre-amplification: j 26080 US0RY gDy
00352 PRINTALEFTF [DATAS,Z05> 3,3
Fﬂ“‘l"l‘“;"_‘a_‘:?-t 2 ‘EP‘IET““:;W :‘;.“;f‘ﬂ | |[00s20 ;5-~CURSORY 3zCURSORX ¥
x11cl, inil lata: [, length: . .
Hals = ; read 4886 bytes, expected 10004 90350 ER:LEFT0 (STONE, 2) ’f“"’
Hals ».: wrong checksum, expected 0x2255, 00370 ;=RUNONCURZORY gu
got Dxelab 00410 PRINT RIGHT (F§,-60SUB) {:LINE 313dc fzq
Parsing as BasicProgram. .. 00550 RIGHTS0!'H, Z[{
Warning: address mismatch at 19, 00440 ¢ :CURSORX ¥

expected: -32313

Warning: line number 20 lower than 00460 RIGHTE & 4 (LT 4, ZHIT{

previous line 7680 00460 CURSORY 4zCURS0RX RIGHTS
Warning: Tllegal byte 240 at address 28 00470 PRINT ‘RIGHTS (B$Y2Y;
Warning: Tllegal byte 230 at address 31 00992 G gzsiRg~

Warning: Illegal byte 239 at address 32

00490 YSRIGHTS (A%, zHOT; zLINEAG
wWarning: Illegal byte 221 at address 36 v # A5,z %
= — 00478 ¥X=8 RETURH

Clear log automatically Clear lag G508 CURSORY 3: CURSORX ¥
v |
i

0010 ER_IFV_ 5= L

Figure 7.8: Screenshot of a BASIC-program imported with rsrfoom a WAV-
file. In the program listing on the right side incorrect argunts for commands
and line numbers out of order can be found. The log on the ilgdt shows error
events that occurred during the import.

it is not possible to quantify the errors. But in general itrasghat only single
bytes were lost. As the data on the tapes consists of BASIGranas it should
be possible to correct the errors by re-engineering thevezed program sources
and thus reconstruct most of the data on the tapes.

7.3.6 Observations on the Migration Tasks

During the reengineering of the system and the creation efntigration tool
different observations about these tasks and the appliigabiother media types
were made as follows.

Reengineering of the System

While digital archeology and reengineering systems is ssemrather complex
task, this case study shows that the reengineering of timeafois easier while
having access to the original system, as this way test dat®egroduced. In-
terpreting the number format without seeing the effectdhefdchanged numbers
on the original machine would have been a rather difficulk.ta$ should also
be noted that non-commercial “retro gaming” communitidsworking with the

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 108

system can be an excellent source not only for emulatioralsotfor data arche-
ology on home computer systems.

The results of re-engineering the logical data can be usedtfer media as
well. Re-engineering file formats can either be done usingiral systems or
emulators, if available. Expert knowledge in handling tlgstem has to be at
hand to complete these tasks.

Evaluated Tapes

Examination of the data on tapes from a private archive stdiat the data was
no longer readable on the original machine. Using the mmmabol we were
able to retrieve most of the data with small errors. The et also showed
that it is necessary to act now and migrate data that wasdstorenagnetic tapes
20 years ago, as the lifetime of magnetic tapes is expectee saomaximum of 20
years (vanBogart:LifeExpectancy). Most of the data retiein the experiment
could not be extracted without errors.

Improvement of Migration Results

As shown in the evaluation not all of the programs stored erntdpes were read
without errors. A corrupted byte does not just change orterlet the command
as every BASIC command is encoded in one byte, but resultscongpletely
different command. Automatic correction of the files wouldg be only possible
by checking the BASIC programs for certain rules like comdsawhich allow or
enforce a certain number or types of arguments and pointhgonsistencies to
an expert doing the migration. He or she can then correctdbelts manually.
Possible automatic support could also be offered by shoaangmands with e.g.
a one bit difference in the encoded byte.

Media Refresh

Using the developed migration tool it is possible to refrdghmedia (audio cas-
settes) by reading and decoding the content, recodingat antvaveform and
recording it to the tape again without using the originakeys

Interpreting Results For Other Media Types

As audio tapes can be read using standard non-proprietdig aguipment, ac-
cess to the physical layer of data is not in immediate dan@#her magnetic
media like floppy discs cannot be read as easily. Even witipflajpives using the
same media size (851", 31") access to data written on non-compatible computer
systems is not possible.

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 109

7.3.7 Information Lost Due to Migration

Not only the information stored in the files which have beegnatied has to be
considered, but also how this information is rendered orstiheen, e.g. for image
formats. Thus it is necessary to characterize the potenitiakcts that have to be
migrated and look at their significant properties.

While most of the information that can be stored in files on thiéis Video-
pac+ G7400 can be migrated to non-obsolete formats usey, togidain restric-
tions apply:

ScreenshotsThe G7400 is able to render blinking information on screen. By
choosing PNG as a non-obsolete (static) format, this dyoamormation
of the data is lost. Additionally it is possible to define @mtcharacters
using the BASIC language. As these are not stored in the wawedvith
the screenshot data, a complete program with the definifidineocustom
characters would have to be stored and preserved to keepftrenation
available. To correctly render the characters again on agsystem either
the program containing the character definitions has to b/aed and in-
corporate that information as well when migrating to a newniat or the
program has to be executed in an emulated environment teatecthe orig-
inal rendering.

String Arrays As a string array contains only the addresses of the striogsds
in it and the strings themselves are each stored in sepdegetfie inter-
relation between these files is lost without the logic of thegpam that
establishes the link between them.

Program Results The data extracted from the tapes during evaluation was pro-
grams stored on the tapes. While the source code (i.e., theftire BASIC
program files) was successfully converted to a text file videvan a non-
obsolete system today, the programs can not actually beiedwithout
the proper rendering environment. While the functionalityhe programs
can be reengineered from the source code, the renderinitsrasd thus the
conceptual layer the programs were creating on screentis$asy migra-
tion.

For the listed data formats no adequate non-obsolete feramatavailable to
store the information necessary for the rendering procéssproperly recreate
the logical layer a rendering environment able to intergiretlogical formats had
to be created. With the possibility to save the data encadéuk waveform as a
system native binary stream, files can be stored for usageemalator. As there
were no emulators for the C7420 available, we show how aniegistmulator for

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 110

the Philips Videopac+ G7400 was extended to include enauldtr the C7420
home computer cartridge in Section 7.4.

7.4 Emulating the C7420 Rendering Environment

In this section we show how software extracted from obsaledelia was pre-
served on a logical level by developing an emulator. We explee reengineer-
ing work involved and the design decisions made in accomlamthe guidelines
shown in Section 6.2 as well as the options for data injedtimand extraction
from the emulated environment according to Section 6.4 &the emulator in
digital preservation applications. We also show how we anpgnted automated
capturing of events and extraction of significant propsrtee automated evalua-
tion as shown in Section 6.3.

In Section 7.3 we demonstrated how data and programs staraddo tapes
were extracted and the resulting audio files were transfdnmie digital objects
using bitstream preservation and migration. The objedtseved were mainly
programs, requiring a rendering environment to executsetpeograms. This can
either be done by migrating the programs to a current systeiiny using a vir-
tual environment for execution. As no emulator for the araisystem previously
existed, we here show how we implemented one. We first desthnid system
in more detail and explain the reengineering of the viewsgat the execution
of programs on the original system. We show how an existinglator for a
video game system was expanded by emulation capabilitrebdoview-path of
the home computer and how the different options for dataaxgé with the host
environment were implemented on different levels in thewpath. We explain
how differences in input and output formats and methodsentte the develop-
ment of an emulator and that, depending on the original systiee transfer of
data between the emulated environment and the host envéranemforces im-
plicit migration of the data to become usable.

7.4.1 Program Execution on the Original System

For identifying the elements needed for the execution dixsok on the original
system, we first have to determine the view-path of the soéwa

As shown in Section 2.2, in the most simple case the view-pidhdigital ob-
ject contains the digital object, the viewer used to renderabject, the operating
system to execute the viewer and the hardware to run the toppsystem. De-
pending on the digital object and the system used, some atsnmethe view-path
can be missing. E.g. if the digital object is software, thenally the software is

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 111

VIDECPAC -

Figure 7.9: Philips Videopac+ G7400 with plugged in Philips420 Home Com-
puter cartridge.

running directly “on top” of the operating system. In theea$ early computers,
the software runs directly on the hardware without the ussaiperating system.

To determine the view path on the original system, infororaéibout the hard-
ware and the software running (e.g. BIOS) has to be colledhts information
can be collected using different sources like the origimauit diagrams of the
system and the cartridge, disassembled code of the Z80 Bl@$hanterminal
software, and last but not least valuable information foandby other members
of a community still working actively with the original sysh (expert knowl-
edge).

The original system used to execute the digital objects isipB Videopac+
G7400 video game system, which is expanded to a home compsitay the
Philips C7420 Home Computer cartridge (Figure 7.9). UsingGi7d20 car-
tridge, the video game system was extended by an extra @arcgalog Z80),
more memory (RAM) and an extra operating system (ROM) implging the
programming language Microsoft BASIC480 Figure 7.10 shows a block dia-

["IMicrosoft BASIC - Wikipedia: http://en. wi ki pedi a. or g/ wi ki / M crosoft _
BASI C

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 112

]
: C7420 !
]]
i p| Input | e RAM i
: Latch :
: ‘ Z80 Tape :
: Terminal Program CPU Interface :
: l Output " BIOS :
y Latch N 1
I ROM !
: ‘ Cartridge Connector ‘ 1
|
e [
Fpe=Cc======= ---‘l
i Cartridge Connector G7400 :
| § i
]]
: < RAM Intel 8245 :
1| Keyboard [—1 [ntel GPU H
] ¢ . .]
) 8048h Video N Video H
: Joysticks |—» < Thomson | Encoder Connector :
H CPU ’ ROM Semiconducteurs H
! - EF9340/EF9341 H
| GPU :

Figure 7.10: Block diagram of C7420 Home Computer cartridge Rhiips
Videopac+ G7400 system. Connection between cartridge astémyis done
using the cartridge connector. CPU - Central Processing Gifit) - Graphics
Processing Unit, RAM - Random Access Memory, ROM - Read Only Mgmo

gram of important parts of both the C7420 cartridge and theOB Bystem.

The communication of the C7420 cartridge with the G7400 mgstesn is
done using a program running on the Intel 8048h processmigise G7400 that
serves as a terminal program by checking the system hardaranput (keyboard
and joysticks) and also issues the commands for output sentthe C7420 car-
tridge to the relevant registers of the Intel 8245 VDC (Vidasplay Control) chip
and the Thomson Semiconducteurs EF9340/EF9341 chip wdeithe G7400.
These 3 chips produce all the visible and audible output efsystem. Com-
munication between the software running on the Z80 processb the software
running on the 8048h processor is managed by using two &dpgters that serve
as a read and write latch. The Z80 processor writes infoondt the latch and
then sets an input line on the 8048h processor. By checkinghph line, the
8048h knows if information is available and proceeds regde latch. For the
other direction the 8048h writes to a different latch and adine that is connected
to the Interrupt line of the Z80 processor, thus triggeringrderrupt service rou-
tine on the Z80 that then can read the latch. Additionally8048h can send a
RESET signal to the Z80 to reset the processor. The commuond&w can be
seen in Figure 7.11.

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 113

\L Reset

Zilog Z80

Interrupt

| Data Bus C7420 |

Input Output
Latch Latch

| Data Bus G7400 |

Intel 8048h
|

Figure 7.11: Communication flow between G7400 system and C@&2fdge.

TO

The BIOS, which is run on the Z80 processor, executes BASICntamnas
either entered by the user or stored as a program with linebetsn Results of
operations are sent to the relevant registers on the G740 the described flow
of communication. Commands accepting input are receiviegréitevant input
data from the G7400. Additionally to the data exchange whth 7400, the
C7420 can store and retrieve data from an audio source cathéicectly to the
cartridge using microphone / headphone plugs.

The resulting view-path for the G7400 system with C7420 whyé& can be
seen in Figure 7.12. The digital object, in this case a BAStiy@m, is executed
by the BASIC interpreter of the operating system. The BASI€ripreter is run on
the Z80 CPU. Additionally, in this case a second branch of tee\path exists,
which handles the input and output. In parallel to the opegatystem running on
the Z80 processor, a terminal program for communicatioh tie Z80 is run on
the 8048h CPU, communicating input and output data betwee@ #1400 system
and the C7420 cartridge.

7.4.2 Implementing the view-path in an Emulator

As an emulator for the Philips G7400 had been in developnwrddveral years
aleady and was known to work well, we decided not to start@mganting a new
emulator and add the C7420 emulation from scratch. The egisipen source
emulator O2ENF! was used as a starting point for implementing the C7420 emu-

[BI02EM - Sourceforgeht t p: / / 02em sour cef or ge. net /

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 114

]
]
Basic Program Digital Object i
]
]

Communication

BASIC Interpreter
Program

Figure 7.12: view-path for program execution on G7400+C7420

lation. O2EM initially was written in 1997 as an emulator fbe video game sys-
tem Magnavox Odysséywhich is the American version of the Philips Videopac
G7000. It was later modified for supporting the differenteger timing of the
European system as well as the additional functionalityhefsuccessor of the
Philips G7000, the G7400. The emulator is written in the progming language
C, and is thus portable to different systems with minimal geanthus satisfying
some (but not all) the durability guidelines shown in Satto?.1.

To integrate C7420 emulation into O2EM we first have to integeanulation
for the Z80 processor that would run side by side to the caigd®48h emulation.
An existing emulator of the Zilog Z88 programmed by Marat Fayzullin is used.
Using a separate module for emulating the Z80 processor anemp also follows
the principle of modular emulation as described in Sectich26 By using a
Z80 processor emulation that is already proven to work ireo#mulators we
can make sure, that the development effort on our side iscestjuminimizing
also the risk of introducing erroneous emulation behawordbying on existing,
tested modules. Integration of the processor emulatiosistsbasically of the
following steps:

Z80 Memory Access and Interrupt After defining the 64 KByte memory of the
C7420 as an array, the BIOS for the C7420 is loaded into the fir@y3d6
of the memory. Function prototypes provided by the Z80 etoula access
the memory are filled with code to access the memory (fetahnistguctions
from the memory and reading and writing data). The protofiymetion
checking for interrupts has to be adapted to signal an ipeto the Z80 if
the 8048h emulation sets the corresponding variable.

PlMarat Fayzullin Emulation Resourcesw-t p: / / f ms. korrkon. or g/ EMUL8/

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 115

Z80 Input and Output Functions The Z80 processor has instructions for writ-
ing to output ports and also reading from them. These poddsed to
access the latches for communication of the Z80 procesgbrtiag 8048h
processor. The prototype functions are implemented to fread the latch
defined at port 0xCO and write to the latch defined at port OxE@vell as
setting the TO line of the 8048h.

18048h Instructions, Input and Output Functions The 8048h instructions used

to check the TO line were previously only implemented to supg differ-
ent kind of expansion for the G7400 system. These instmsti@ve to be
adapted in order to read the line that is set by the Z80 proceassl reset it
(to tell the Z80 processor that the 8048h recognized a wrlitge). Read-
ing and writing to external memory also has to be adaptedad i®m the
latch-register defined as external memory on address Ox@&te to the
latch register defined as external memory on address OxCOitiévwhlly,
the write-function to the output ports of the 8048h has to tepted, as
pulling the lower two bits of Port 1 to low is supposed to reketZ80 and
pulling just Bit 1 of Port 1 to low signals an interrupt on the(Z8

Execution of Z80 cyclesFinally, the emulation main loop has to be extended to

include the execution of Z80 instructions. The 8048h prscess running

at a clock rate of 0.394 MHz internally, while the Z80 proagss running

at a 3.547 MHz clock rate, which makes it roughly execute d@lctycles

for every 8048h clock cycle. Completely accurate cycle ekathg was
not a necessity, as the communication between Z80 and 884&ised on

a handshake protocol, so one waits until the other providesecessary
data. The main execution loop sets the counter of cyclesdout& to 10
and invokes the Z80 emulation.

To actually synchronize the emulation of the 8048h and the a&i&d imple-
ment the aforementioned steps, debug output of instrustdboth processors is
enabled and the log analyzed to find out exactly, which psmreis doing what
at a given point in time. By debugging through the assembktruntions of both
processors, the handshaking can be established and thatenssérts up with the
start screen of the C7420 Home Computer cartridge as showgume-v.13.

7.4.3 Data Injection

After establishing the emulation of the C7420 Home Computdridge, the next
step is to enter data into to the emulated environment emgléte user inter-
faces to the system. Three options for data input are alailad the original

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 116

.
2 02EM 12] [t

R R k) Y= 8 Aa=14a A1=141

Figure 7.13: Start screen of C7420 Home Computer cartridgeitMOemulator.

system. Below we describe these three options and the chaliehey present for
emulation.

Keyboard

An obvious method of data entry to the emulated environngeatkey press. The
previous implementation of the keyboard routine mappedykeay on the original
G7000 system keyboard to a key on a standard PC keyboardwakisufficient
for the currently emulated programs as the extra keys of #0G keyboard were
not used in any of the supported programs.

In a first step we correct the keyboard routine to support xtr@ éwo rows of
keys on the G7400'’s keyboard. This provides us with the pdggiof mapping
every key on the G7400 keyboard to a key on a modern keyboarfbriunately,
the differences between current keyboards and the ori@@dl00 keyboard are
quite significant. As an example, a special key providingnipg and closing
brackets (“[" and “]”) exists which is not directly to be fodron a modern key-
board but only reached through key combinations. Addifignzarious key com-
binations create different effects, for example the nunsiggr (“#”) is printed on
the G7400 keyboard as a combination of the SHIFT key and timebeu “0”,
whereas most modern keyboards have a key assigned to it.

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 117

The BIOS of the G7400 checks the keys by going through eveeydfrkeys
on the keyboard and reporting which key is pressed. Combimatf keys (e.g.
SHIFT and a number) are recognized in the terminal softwatleeoC7420 run-
ning on the 8048h processor. This software converts thespddsey to an ASCII
encoded character depending on the combination of keysquend sends the
ASCII code to the Z80 BIOS routine.

To improve the keyboard routine, we identify the followirgyéls where it
can be intercepted, the first two being an operating systeehdad the latter one
being on the hardware level:

Z80 BIOS Directly inserting key-presses into the keyboard routihéhe Z80.
The Z80 reads the keys received from the terminal programimngron the
8048h and writes them in a keyboard buffer. Keys read in AS@taat
from the host-keyboard can be directly written into the lefa buffer
(with the exception of characters that have a different coié¢he C7420
system). This would be a special routine only working for@vt20 BIOS,
as it uses specifics otherwise not found on the system. Ivadsid not be
compatible with the current keyboard routine.

Communication interface Alternatively, keys can be written to the memory of
the 8048h. As the keyboard routine in the terminal softwémeady con-
verts the key presses to ASCII, keys could be written as reddérom the
keyboard functions. This method like the previous one wdidda spe-
cial implementation for the C7420. The existing hardware latran would
have to be disabled to not interfere with the other routine.

Hardware level Adapting the keyboard routine on the hardware emulatioal lev
offers the most compatibility not only for the C7420 Home Cotepwar-
tridge but for all other software developed for the G740Qeaysas well.
Instead of the current implementation to have a one-to-elaionship be-
tween a key on the host keyboard and a key on the emulated asrdwith
the flaws described above, a new routine could do a mappingeoc&dtu-
ally entered character on the host system and set the apgiskeys in the
emulated environment to simulate key-presses correspgmnadithe entered
character.

The levels correspond to the description shown in Sectién&s the C7420
environment is a single process system, no additional toatsbe installed in
the environment, thus the data exchange has to be made withutst system
being unaware of the virtual environment it is executed irsing the operating
system level option, the emulator would have to be awareeobgierating system
being executed in the environment. Using the hardware lemeknowledge of
the executed program is necessary for the keyboard routine.

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 118

We decided to extend the keyboard routine on the hardwaed tewreach
the best compatibility for all programs running on the haadsv In a first step
we create a mapping for all useful key-presses on the G740 ¢embinations
like “CONTROL”, “SHIFT” and a character don’'t have any effext the C7420,
and even thought they could be theoretically read by repipttie G7400 BIOS
routines by a self-written routine, the ergonomics of themrheane keyboard make
it hard to press two keys at the same time). Next we replacediigne that
reads the state of the mapped keys by a routine that first thadsSCIl Code of
the entered character (considering modifier keys like SMif€ontrol), and sets
the corresponding keys on the G7400 emulation using a “hestgj strategy to
decide what the user actually wanted (e.g. entering “=" sigithe host keyboard
(using a combination of different keys on the host keybosrd)apped to pressing
the “=" key on the G7400 keyboard. Likewise entering “;” o thost keyboard
emulates a key press of the Clear key and the Shift key on th@@keyboard,
which - in the original system - produced the semi-colon. 8afthe keys had
to be emulated by non-obvious combinations, for examplekegeor creating a
character consisting of two dots, not available in ASCIl omamdern keyboard,
was simulated by entering “$”.

To test the validity of the keyboard routine, we wrote an agder routine
that reads out the pressed key and compared the results pfageam on the
real hardware and the emulator. Entering key-presses tenttutated C7420 en-
vironment also now creates the expected results. We alssketiessome samples
of other software running on the emulator to make sure traintw keyboard
routine did not break other software for the system.

Joysticks

The original system has two joysticks that are emulated bEND2ither using
actual joysticks connected to the host environment or kagdemulation for the
joysticks. The polled data is provided to the emulated @mrirent as soon as the
BIOS of the G7400 tries to read the hardware ports. It is thewléd over to the
BIOS running on C7420 and can be read using the corresponde®itBéom-
mands (e.g. STICK(0)). As the joysticks were already prgpenhulated by the
original emulator on a hardware level, no additional actibad to be performed.

Files

Besides data injection through control devices, the C742p@tpthe loading of
files from an audio signal connected through a microphonke gacing runtime.
In this section we will show different possibilities of laad a file into memaory,
both on a hardware level and on an operating system level.

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 119

Hardware Emulation On a hardware emulation level, the component for read-
ing data from the audio source, converting it to a digitahaigand providing
it on the input port of the Z80 is the most complex one. Basycalhen the
user tries to load a file using the 'CLOAD’ command, the bitsvted in
the audio stream are decoded, assembled to a byte and wdattee ap-
propriate memory location. By reengineering the original Blfdutine of
the 'CLOAD’ command and based on the format as described ireAgx
A we were able to create a routine that emulates that behaf/ibe origi-
nal tape interface and provides the correct data in the ciotireing to the
CPU. The original tape was simulated by providing a directoryhich the
different files are stored. Using 'CLOAD’ without a filenamedtis the file
first written into the directory, subsequent calls of 'CLOAIDad the next
file respectively. Using 'CLOAD’ with a filename loads the filatwthe
specified filename. 'CLOAD’ supports loading of every file tyqagported
by the C7420, i.e. BASIC programs, screenshots, data, andmeamps.

Direct Writing to Memory An alternative to the aforementioned method of hard-
ware emulation is to load a file into memory and directly wtfie loaded
bytes into the correct memory locations on an operatingegysével. For
this purpose the behavior of the original 'CLOAD’ has to bengieeered
even more to find out what all memory positions are affectegl (@ounter
for free memory). Using this method we implement a specigl tket
presents the user with a file-browser-dialog to select a fdaly BASIC
programs can be stored using the direct memory method.

Both of the aforementioned methods result in the same mentroigtgre when
loading a file, with writing directly into memory being mucaster (as the file is
instantly loaded) whereas the hardware emulation presehesoriginal timing
and thus needs a few minutes for programs with more than h@8.liusing the
hardware emulation it is possible to have programs load anelgata from within
the guest system using the original BIOS functions.

The data loaded from the tape interface is basically in tleetesame format
as written into memory (with the addition of leading andling bytes and some
start- and stop-bits to separate bytes). To provide bettepat for using the
emulator as a cross-programming-tool, we also implemeptiomh migration of
BASIC files in text format. Loading a text file containing hum@adable BASIC
source code is automatically detected and migrated badket@tiginal binary
format with encoded line numbers and encoded BASIC commasads can be
used again in the original environment, the C7420.

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 120

7.4.4 Data Extraction for Application Use

While data injection is an important issue to execute andastewith software

in the emulated environment, for most digital preservatipplications it is also
necessary to extract data from the emulated environmepedly if emulation

is used to access data stored in its original format and tkee ltks to be used
in the host environment, methods of copying data to one’sectirenvironment
have to be provided as shown in Section 6.4. The methods farek#raction we

implemented in the emulator are listed below.

Files

Using an emulator to modify data stored in an obsolete fomedes it necessary
to be able to save previously loaded files again. Again, tWergint methods are
implemented:

Hardware Emulation The BASIC command “CSAVE” for saving data is im-
plemented analogue to the command for loading files. We duaie to
reengineer the format by examining the code of the BIOS wriitteZ80
machine language to observe, what data is written to theubutperface.
The data stored by the BIOS is written to an array and saved tineldile-
name given with the command. “CSAVE” works for all possibleiaaons,
saving programs, data, screenshots and memory dumps.

Direct Read From Memory on Operating System Level As with “CLOAD” a
function to directly write a BASIC program from the operatisystem to
disk is provided. As the format of storing BASIC programshe bperating
system memory area of the C7420 was analyzed for creatinghiee file
functions, it was also possible to create a function to mtewa dialog to
the user to ask for a filename and directly dump the memoryercthrect
format to a file.

As with “CLOAD” the resulting file is the same in both cases,hniite hard-
ware emulation being compatible to all formats and the tliread from mem-
ory version being easier to use without expert knowledgebasiily considerably
faster. The choice of type of BASIC file (either in text fornfat easy readabil-
ity or in binary format as originally created by the systerah ®e specified as a
command line option for the emulator.

Clipboard

One feature hardly present in emulators today but cruciatteir use for dig-
ital preservation purposes is the possibility to extraadered text in machine-

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 121

readable form as separated characters from the emulat@édrenent for use in
the host environment. As the original environment in the @7d@es not support
marking regions of text on the screen, and putting it in aarimdl clipboard, we
decided to implement a function that copies the whole sareatent as characters
into the clipboard of the host system, so the text can be gasi@any application.
Two different hook points for extracting data from the C742® possible:

Operating System Level: Extraction from C7420 screen bufferThe operating
system of the C7420 Home Computer cartridge holds an inteepa¢sen-
tation of the screen buffer for manipulation through the 248Qhe Z80
memory area (RAM). Extracting the characters from there wdnd pos-
sible by reengineering the memory location the screen dagaved at, as
well as the format it is saved in. This would be the preferrptiom if the
data was not rendered in the hardware chip as text on thenscree

Hardware Level: Extraction from emulator screen buffer The G7400 uses a
teletext type of display chip for rendering graphics of the4@J. Thus a
representation of the screen data (the characters) had@de the video
screen buffer for rendering the image. By extracting datenftbe video
screen buffer we not only create the possibility of copyirgadfrom the
C7420 cartridge but also from all other software for the G7d8ihg the
video chip to render data.

We decided to go with the more generic version and extractidte directly
from the video memory of the emulator. Depending on the hpstating system
different routines for copying data to the clipboard haveéeéamplemented. The
data that is extracted is in ASCII format, so we can directlyitifor copying it to
the clipboard. The video chip is able to apply certain speffacts on the char-
acters (e.g. double size, blinking characters, underlohedacters). As we need
to get a text representation of the data for later usage ir @tpplications we de-
cided to ignore the format and just copy the actual charattethe clipboard. Not
all the characters have the same code representation agémicASCII format
table, so a conversion for certain characters is perforntatewopying the data.
The list of characters and the representation in ASCII foramak C7420 internal
format can be found in Appendix B.

Screenshots

Screenshots of the emulated environment can be used tadexnderings in the
virtual environment as images in documents on the hostsydiafferent built-in
features and external tools allow for extraction of rendesereens of the virtual
environment:

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 122

In the Emulated Environment Using the screenshot feature of the C7420 (the
'CSAVES’ BASIC command) the screenshot can be saved to a filean-
verted to a non-obsolete format using the tool we developg@uttenbrun-
neretal, 2011].

Inside the Emulator The emulator O2EM has a built-in feature that allows sav-
ing screenshots of the rendered environment. Using thisred is possible
to manually save screenshots at certain points in the eioilat

From the Host Environment Using a screenshot tool inside the host environ-
ment automatic screenshots at different time points caakentas well as
a video of the emulation.

All of the described data extracted from the virtual envim@mt can also be
used to evaluate emulation accuracy, e.g., to compare gonlasults with the
original environment. A more detailed description of egtiiag data for evalua-
tion purposes will be shown in Section 7.5.

7.5 Implementing Evaluation Functionality

As shown in Section 6, to automatically extract data of a iooious rendering
process, the virtual environment has to support the extracif properties of
these process. To implement the extraction of data in O2Ed&lhave to take a
look at the different levels inside emulated system on wiiehrendered forms
of a digital object exist. Figure 7.14 shows the differenels on which an im-
age is rendered inside the view-path of the C7420 Home Compaté&idge in

conjunction with the G7400 system.

In detail the levels on which we can compare the renderingjtseare:

Z80 Memory The BIOS running on the Z80 has an internal representatiameof t
screen memory that can be extracted using the screenshoef6@SAVES'.
Doing this on the original system and on the emulated systareceive
two files which can directly be compared. If the files are it then the
emulation of the Z80 CPU is correct (for the rendering of tret thgital
object). Yet, we cannot ascertain, that the actual rengextprovided by
the emulator matches the rendering of the original system.

Video Chip Memory Another representation of the rendered object exists in the
Memory of the video chip. This memory region is emulated me¢mulator
and can be read out. Unfortunately it cannot be read on tigenatisystem
without directly reading the signals from the hardware aedodling them
accordingly.

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 123

Basic Program

Communication
Program

Z80 Memory

(Original and Emulation)

Video Chip Memory

(Original and Emulation)

E Host System '
E BIOS/GFX Card
1
1

(Emulation only)

Display Device

(Original and Emulation) 1

Figure 7.14: Different renderings in the view path of the QY#&me Computer
cartridge.

Host System BIOS The emulator renders the image stored in the video chip reg-
isters. The image is rendered and saved either in the Hastnsyepresen-
tation of the screen content or directly in the video card mmObviously
this representation of the rendering exists only in the abedl rendering
environment. Using this representation (basically cngaéi screenshot of
the emulator’'s output) we can compare different renderimgrenments
running on a host system (e.g. emulator of architecturd,lbigh level em-
ulator). In [Guttenbrunnegt al., 2010b] we demonstrate how the rendering
results of different rendering environments can be contphyeusing the
characterization language XCL as described in [Be@hteal., 2008c] for
objectively comparing the significant properties of twoesgrshots.

Display Device Finally, a comparison on the level of the display device (eom
paring the output of the original system on a display deviith the output
of the emulator on a different or even the same output dezar)be per-
formed. This comparison is usually done manually and stligdyg by the
human preservation planner.

Not only the level of extraction of an image for comparisoreigvant, also the
time line is important. Usually, especially with interagtiand dynamic software,
we are not only interested in a screenshot at a certain poitinie, but either

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 124

a series of screenshots or a continuous extraction of a \wtteam, which also
allows the comparison of factors like timeliness and syootuity, e.g. with sound
output, compared to the original.

While the emulator supported already the extraction of sieets (activated
by pressing a key), a continuous extraction of images oaetitm of images after
a certain amount of elapsed time or executed machine cy@ssot supported.

In Section 7.4 we showed how we implemented features in thdatar to
make it usable for digital preservation purposes from a’'sipaint of view (e.g.
data exchange between the emulated and the host systenjtuatiyabe able to
use an emulator in a digital archive, however, we need thsilpidis/ to evaluate
the rendering process of digital objects more objectivalyia an automated way.
Based on the framework shown in Chapters 4 and 5, as well as signdguide-
lines derived from it shown in Chapter 6 we decided to implentlea following
features to aid automated evaluation:

Event-Log The original system can be controlled by using either thé&eayd
of the system or joysticks. In interactive applicationsdaspecially video games)
timeliness and type of input usually have a major influencehenbehavior and
thus resulting rendering of the digital object. Besides réicg the points and
type of input, we also wanted to log other events like file asdeeading / writing
to files in home-computer-mode) and the start of drawing agerframe (i.e. the
start of the Vertical Blank period on the original system@aflow us to make state-
ments about the correct timing of the emulator comparedeaotiginal system.
Additionally, we recorded user-driven events in the enaulatich as triggering a
screenshot or a memory dump.

Automated Input The previously created event-log was defined in a form that
is usable also as a command-file for the emulator, allowintplautomatically
apply input to the system as well as create screenshots antbmalumps at
specified times.

Memory Dumps We also implemented a feature to trigger memory dumps
of the different memory regions in the system, including hlaedware registers
of the Intel 8245 GPU shown in Figure 7.10. This allows us tbordy rely on
screenshots of the emulator or files saved in the home-canmade as a way
to extract data from the rendering process. This corresptmdhe level of the
rendered form in memory in Figure 4.1.

The next sections describe in detail the design decisidtentashen imple-
menting these features.

7.5.1 Recording of Events

As described in Section 6.3.2, information about eventsiwoty on the virtual-
ized system have to be logged to draw conclusions on the regderocess of

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 125

the rendered digital object. The timing parameters as vgeihformation about
the events have been implemented. When starting the emthatevent-log file
that should be created can be specified as an extra paraifeseasily import the
resulting file in spreadsheet applications for further pssing and analysis, as
well as for processing speed reasons we decided to use a ceapaeted value
(CSV) format escaping commas that form part of the input indle

We included the following different types of events for tlygstem emulated in
the emulator based on its hardware properties:

Operating the Environment

To be able to evaluate the rendering process reliably, we t@amake sure that
the rendering is always exactly the same under the sametwsdapplied to

the rendering environment, i.e. the emulator is determmis its behavior as
described in Section 4.2.1. For any object rendered in th@arment relying

on external input to the rendering environment (e.g. usautimetwork activity,

access to files on the host system) the type of input as wdlkeasdtual input data
have to be stored to be able to provide the same data on a fesremaluation

purposes.

The emulator O2EM (and the original system it emulates) suppuser input
in the form of key presses and joystick input. The hook-ptantecording these
events for the event-log is the interface in the emulatowbeh the emulated
environment and the host environment, i.e. when the emutitects that the
emulated process is trying to access the hardware regtbtrasually store the
input values and provides the host system input instead. &ydeng the exact
cycles already executed in the rendering when accessisgiformation, we are
able to provide the same information when re-running theeeng process.

Reading files in home-computer-mode as a different type ofigirtg exter-
nal data to the rendering environment was recorded in thetdweg, to let the
digital archivist know that for later evaluation of the emmar these files have to
be present besides the actual digital object, as they alemally influence the
rendering process.

Extraction of Data

As a basis for comparing the results of the emulation prodessnecessary to
extract not only the occurrence of an event but the actual thedt is read or
written as a result of the rendering. In Figure 4.1 we showffdrdnt levels
on which a rendered object exists during the rendering gocérom inside the
emulator we have access to two different forms of renderdration: the form
in the (emulated) memory of the system (e.g. hardware \agisf the multimedia

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 126

processor, usually triggering an output on the originatesyd as well as the form
that is already translated to the host system (e.g. a retidemeen based on
hardware registers of the emulated system’s video hardware

In O2EM a feature to save screenshots of the currently disdlanage was
already present. We enhanced this feature to create anlegeentry including
(as every log entry) the executed cycles up until the poirthexrendering the
screenshot was taken. Additionally, we implemented a feahat works similar
to saving screenshots that lets the user save the differariaéed memory regions
of the host system: memory internal to the processor, maitesymemory exter-
nal to the processor, multimedia hardware registers meiady if available, the
emulated home-computer-mode memory. Additionally, in Besomputer-mode
files can be stored externally, which also influences thea®ng process. The
process of writing these files was also recorded in the eognt-

Under the assumption that the emulator works as a deteftinipi®cess, ex-
tracting data under the same external conditions (e.g. xtaetesame input ap-
plied) at the same point in the rendering process shouldigeahe exact same
result files.

Internal Events

In addition to the events described above, we also definedthar special event
types for the log:

Vertical Blank The vertical blank is the period before the drawing of a new
frame is started. It was an important event used to syncheoewvents on the
screen to a fixed timing. We logged this event to let us dravitiatel conclusions
about how the number of cycles executed and the frames besgndelates to
the original system’s timing.

Emulation Start For O2EM we record information about the cartridge image
file that was rendered (filename and a checksum), as well as aach version
number of the emulator and the date and time the log was crebites meta-data
gives us additional information about the rendering predeswhich the log was
recorded.

Emulation Stop The information that the rendering process was stopped, the
total number of cycles executed, the number of frames dradrlee elapsed time
is recorded in the event-log.

The list of implemented events as well as the data recordededound in
Appendix C along with an example log file.

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 127

7.5.2 Automated Execution

Recording the events of a rendering process is only the fiegt ist validation
and verification of the digital preservation action. Esplgiif the rendering en-
vironment changes between execution of the digital preserv action and the
re-deployment of the digital object at a later point in tintés necessary to verify
the correct rendering of the object in the new environment.

To be able to compare the rendering between validation i the digital
preservation action was initially performed) and verificatve need to make sure
that the external conditions influencing the execution achanged. This means
that any manual input or external data applied to the rendemvironment has to
be the same as when the preservation action was initialigatald. By recording
these external events in a rendering environment and aqgpilgem at a later point
in time to the new environment, we can compare the outcombaeoféndering
process.

In the emulator O2EM we implemented a feature to use theeeattiscribed
event-logs as command files. All external events and tregydata export actions
recorded in the event-log file are automatically providetheoemulator using the
command file. Actions are read from the command file and aghpiche emu-
lator when the specified number of cycles have been execliteddeterministic
emulator this means that the relevant actions are applidteagame time in the
rendering process as they initially had been recorded.

In detail the following actions where implemented:

Operating the Environment The initially manually created and recorded in-
put events of keyboard and joystick are applied at the exanescycle count as
initially recorded. The action from the command file is (darly to the recording
of the input for the event-log) interpreted once the emuleieokes the interface
in which the emulated system tries to receive input from &t Bystem. In a de-
terministic emulator the number of cycles executed unid theck is performed
does not change between renderings of the same digitaltobjec

Extraction of Data The manually triggered extraction of screenshot and mem-
ory data that has been recorded in the event-log file is autcatig executed once
the executed cycles stated in the command file are reachelitidxdhl extractions
can be inserted manually. This way it is possible to extrath la screenshot and
all memory regions at the same point in the rendering process

Internal Events The initial event-log record of the emulation stop also stop
the emulation in the re-run once the action is encounterédercommand file.
This allows for automated and unattended testing of the atoul

By first recording external events and later applying the ele@mnas a com-
mand file for a new version of the emulator (or even a diffemulator) it is
possible to extract key characteristics of the renderinggss as shown in Sec-

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 128

]
]
Basic Program Migration E
]
]

]

Communication |

BASIC Interpreter Functional Emulation E
Program |

Figure 7.15: Preservation actions for different layersietwpath.

tion 5.2.5 and rendered forms of the digital object. Thigdatlon data can be
used to evaluate the performance and accuracy of the emulatbe resulting
data extracted at significant points in the rendering poe&lentical, we have a
strong indication that the rendering process is unchanged.

7.6 Discussion of Alternative Preservation Actions
for the Philips Videopac System

In the previous sections we showed a tool to migrate stajectdoriginally ren-
dered on the Philips Videopac C7420 system. We also showeddyoamic
objects (i.e., software) can be rendered using emulatigheobriginal hardware,
using the initial view-path used on the original system todex the objects. But
executing programs using emulation on a hardware levellisare of the differ-
ent alternatives that can be used for preserving softwaguré 7.15 shows the
different levels in the execution view-path of the C7420 alsd asts preservation
action strategies for each of the levels.

7.6.1 Hardware Level

On the hardware level the emulator that was implemented easéd to preserve
the system’s behavior and thus create a rendering envinainnwieere the original

operating system software (BIOS) can be used to executedlgegms. As shown

before, the reengineering effort necessary to implemeetauator is quite high,

even though this method is the most accurate one, as evényitataspect of the
system is replicated in the emulator.

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 129

7.6.2 Functional Level

Creating an emulator for the BASIC-programs not on a hardwewrel but on a
functional level would require to implement an interprefiar the BASIC-code,
that emulates the functions of the original BASIC-commarndstead of execut-
ing the underlying Z80 machine language code in the BIOS ¢f, @ “PRINT”
command is executed, the interpreter would emulate the/imtat the command,
i.e. printing characters on the screen. Data extractionigedtion is obviously
much less complex, as the rendering environment can belglireanipulated and
the behavior of each command is under control of the rengenvironment. As
the functional level is a higher level than the hardwarellewaly the functional-
ity of the C7420 basic interpreter would be emulated, whike¢mulation on the
hardware level allows other software for the Philips Videogame system to be
rendered as well.

7.6.3 Source Code Migration

A completely different strategy than emulating the systemadhardware level
or emulating the commands on a functional level is the migmnatdf the BASIC-

programs to a non-obsolete programming language. Runniraysempover the
programs and migrating every command to a representati@nrion-obsolete
programming language allows us to create stand-aloneovexrsif the programs
that can be run without the need of an emulator program. Wiiteesof the

commands would be quite easy to migrate (e.g. mathemaftpshtons), oth-
ers would involve more complex implementations (e.g.jrsgth different screen
mode, displaying characters on the screen). Another degstmovercome in the
special case of the C7420 is the flow of program executiongitdinget language
is a structured programming language instead of an unatestbne that is line-
based like the used Microsoft BASIC-80 language. Jumps ipttbgram between
line numbers (and even to calculated line numbers storedriales) have to be
converted to different types of control flow statements.(agps or choices). The
principal possibility of this conversion has already bekaven in [Ashcroft and

Manna, 1979].

7.7 Summary

In this chapter we showed how we created tools for the praenvof an obsolete
system on the physical and logical layer. We first preseriteddengineering of
the physical layer, and created a tool that allowed us t@ekthe bitstream of the
different file formats of the system without using the orajisystem but off-the-

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 130

shelf audio equipment. Next, the bitstream was migrate@imabsolete formats,
allowing us to render the logical layer on today’s infrastue. Finally, for all

the data formats that could not be properly migrated, wetedean emulator that
allowed us to render the bitstream extracted from the phaysiedia in a virtual

environment, thus recreating the logical layer even fotvgmfe for the original

system.

One important lesson learned while implementing the eroulats that the
input and output routines will most likely have to be adattthe time of dissem-
ination of archived data. A change in layout of keyboardslusstween archiving
the emulator and the data to be rendered will already enfarckange in the
keyboard routines of the emulator. If the method of entedata changes from
keyboard to something else (which is not an unlikely scengitien a time frame
of 50 to 100 years) the mapping of data input has to be coniplatiapted. Sim-
ilarly, the data extraction from the emulated environmenthie shown example
already enforced a change in certain character codes. @il@mger time frame
between archival and reuse of the archived emulator, theseok adaptions are
even more likely to be necessary, even if the environmentiferemulator (e.g.
an emulation virtual machine as described in Section 2.6&p& the emulator
executable.

Following the guidelines shown in Chapter 6 we also implemefinctional-
ity to support the evaluation of the emulator. We first introeld the event-log of
the rendering process with different properties that all®to re-run a rendering
in the same environment and potentially also in differerdsonWe showed the
different kinds of events that have to be recorded and that baen implemented
depending on the original system. The different types oémenl data that can
influence the rendering process have been explained assbk alifferent types
of data that can be exported from the rendering environnwerda tomparison of
different rendering processes. We then explained how thetdeg can be used
to automate the process of applying the same input data &ntléator to ensure
a deterministic rendering of the digital object.

In the next chapter we will show how this functionality wasdgo evalu-
ate the rendering of digital objects in O2EM. Finally, otlpeeservation action
alternatives for preserving software for the system weiegfligrdiscussed.

Chapter 8

Evaluation Case Studies

8.1 Introduction

In the Chapters 4 and 5 we showed the Preservation Action &vafuFramework
and how it can be integrated in a preservation workflow. Sttpijpo the frame-
work was implemented in an emulator in Chapter 7, following giiidelines out-
lined in Chapter 6. We first show an evaluation of the impleméeimulator using
the implemented functionality supporting automated est&un. Then, we apply
the framework to more complex examples, namely a musicititzgson process
as an example for a scientific workflow, and a digital artwakdered originally
in a now obsolete hardware and software environment.

Some of the research shown in this chapter has been pubirsf@dttenbrun-
ner and Rauber, 2012a].

8.2 Evaluation of O2EM-Emulator

In this section we describe two experiments we performed iffareint digital
objects suitable for the emulator we adapted in SectionWeldescribe the steps
undertaken and the results of the rendering processes kssitieé analysis of the
resulting event-log files.

8.2.1 Business Process Example: Cassa

As a first example we chose an application that runs in the haomguter mode
of the system. We chose an application that allowed us todateeto the external
tape drive and reload the data and render it during later use.

The progranCassdor the Philips Videopac C7420 home-computer is an early
program written in the programming language Microsoft BESO0. It was pub-

131

CHAPTER 8. EVALUATION CASE STUDIES 132

Figure 8.1: Screenshots of the program Cassa on the Philgeopac C7420
home-computer. Interactive loading of the program on thieflaal rendered data
on the right.

lished in Italy only as a manual supplement to the home-cden@dd-on of the
system. The program is a typical representation of what hooneputers were
used for at that time besides playing games. One could egtee of monthly
income and spendings, save the data to a tape using an attageerecorder and
display the saved data in various renderings at a later potithe (Figure 8.1).

We started the computer in home-computer mode, loaded tigegon, entered
various fictitious data and saved the data in the programthieécsctual evaluation
we recorded the following process in the event-log: stgrtip the emulator in
home-computer mode, loading the program (of which we tookraemshot as
seen on the left in Figure 8.1), loading the data into the @anogand displaying
the data as also shown on the right in Figure 8.1. So not oelydhorded user
input but actual data loaded from an external drive infludrtbe rendering (i.e.
what was shown on the screen).

Plan As a first step in the plan phase non-technical aspects likedmtext in
which the system and the program were used in, as well asitetlas-
pects like the environment and all dependencies of theadligitject have to
be captured. In a museum setting, the historical contexteobbject would
need to be captured to demonstrate one of the earliest ezamplhow
home computers were once used to manage household inconspemad
ing. The program Cassa shows how typical data input and @Bincesas
well as typical workflows of users working with a home compggstem
at the time the system was used in the early eighties. Thenaligetting
including the data carriers used to store the data (in thee stéandard au-
dio tapes) and other properties of the system (e.g., uizaf the home

CHAPTER 8. EVALUATION CASE STUDIES 133

TV system to use the computer instead of the dedicated gisplis used

today) are documented using pictures of typical set-upbs@ftystem in a
family’s living room. All the non-technical information aht the use of the
system and the program itself explain the context the etediyarocess was
running in at a later point in time.

Once the system itself is documented, the process runnirtheosystem
has to be documented as well and evaluated against a viejprasentation
of the process. As only one virtual environment (and emujascavailable
for the system, it was evaluated if this would work as a prgeservation
action. For our case study we picked one typical use casedingalata
from the tape and displaying it as a list.

The second step is to determine the events influencing thieriery of the
process. There are a series of external events and extetaabeing sup-
plied that need to be captured during this use case: Firgrfaieonment
is invoked (either by starting the original system or steytan emulator).
Then the program is loaded from tape and started by the useat fdlows

is a sequence of user actions (e.g. selections, confirnsteomd system
actions (e.g., loading data, rendering data) describetie@ntorkflow in

Figure 8.2.1. The program first shows an intro screen andahmeanu with
different options to the user. The user selects to load the fdlam tape.
Afterwards, the system returns to the menu and the usertsetedisplay
the data on screen.

If we run the emulator with the workflow described in 8.2.1,exent-log
is created where we can see the external files that have bagedoThese
include not only the application Cassa itself, but also tleeuded for storing
user entered data. This enables us to identify which ressumave been
accessed and keep (or simulate) the necessary data for edateation of
the rendering of the preserved application.

Next we have to decide what the significant points are on wivelwant
to compare the rendering and on what level of output we wanbiopare
as step three. To successfully repeat the process in a ahasggering en-
vironment, all the actions immediately happening beforeer interaction
have to show the same result as in the original environmegt, iEthe sys-
tem waits for the user to press the <RET>-key, then the scremmpiing
the user to do so has to be correctly rendered, so the userskwbat to
do. Also the final result of the process has to be the same dsea@riginal
environment. If the data displayed is not correctly rendetken the ren-
dering of the process is of no use to the user. Intermediapssin the other
hand might not always be relevant for the rendering of thegss. E.g., in

User

))))
C%e_ndering Prln_)(;argm Run Program Press < RET> Enter "2" Press <RET>
Environment "Cassa"

Cassa - Load Data and Display
System

/ AN O U
/[

R Display Display Display
Finished Display Display Menu Screen Finished Display
Search for Loading Intro Screen (ALY for Loading Load File Loading Menu Screen
File Screen Data Message
)

y

Display Start
Screen

[Display Da(aJ—.O

A%

Display 46
Loading
Screen Load File

A

External Data

=93 [==93
Program File Data File
CASSA NUDATA

Figure 8.2: Workflow of the use-case of displaying data indhgsa application.

S3IANLS 3FSYI NOILYNTvAT '8 431dVHO

veET

CHAPTER 8. EVALUATION CASE STUDIES 135

the Cassa-Example it will in most cases not be consideredfiseynt if the

intermediary step “Display Loading Screen”, that is folevby another
system action, and does not require user interaction or evevey valu-
able information to a user, is rendered correctly. Rendeoeectly in this

case means that the screen is rendered exactly as on theabsgstem, for
exactly the same time, or even rendered at all. The compaviss done
on the level of it being rendered on a physical display unitYaset the

original system was connected to vs. a computer monitor tesedsplay

the output of the virtual environment).

As a step four we virtualized the process to capture the eatevents and
the performance of the process. The data both from the tapiiong
the program as well as the tape containing the data was éraedfto the
host system of the emulator we were going to use as shown tro8ec3.
Next, in step five, the virtual environment was started, a#ipg the process
side-by-side to the original system.

As the original system used was a quite old and closed sysb¢allowing
for any automated extraction of data we had to compare thdtsewanu-
ally. Every output of the system deemed significant as defaiee was
compared to the same output on the original system afteyeygpthe same
input to both the original and the virtual system in step sid aeven of the
evaluation framework. Verifying thus that both intermegiateps as well
as the end-result of loading the data in the virtual envirentwas identi-
cal, the decision was taken that the emulator is a valid airtavironment
representing the output of the original system in a way thest usable for a
future user. Once this decision was taken and the emula®approved as
a valid reference environment, future preservation plagmrocesses will
be based on this decision and comparison of preservatiaonaatan be
done to the emulator, including automatic extraction oadedm the virtu-
alized system.

To test the emulator in home-computer mode for determinigemot only
recorded screenshots (as due to the missing random elemtbetapplica-
tion those would most probably be similar), but also saventeenory con-
tent of all different memory regions (RAM internal to the 804&ocessor,
RAM external to the 8048h processor, RAM connected to the Z80gssor
and registers of the video processor) along with an imagaetiisplayed
screen. As not the whole stream of displayed data was deegmticant,

but only the states in the workflow shown in Figure 8.2.1 weyoatorded
a series of states as described in Section 4.2.2. Duringusaacof the

program in O2EM screenshots have been saved on differeggssta the
workflow along with the user input and the data loaded. Scieets were

CHAPTER 8. EVALUATION CASE STUDIES 136

Characteristic limited no limit
total executed cycles | 49201503 49201503
total frames drawn 6778 6778
total emulation time 136.426s| 10.512s

Table 8.1: Characteristics for testing the application Castseoriginal (=limited)
and unlimited speed.

taken on every transition from data displayed (System) taction required
by the User in the workflow shown in Figure 8.2.1. Making stine wiser is
presented with the information allowing him to make the appiate choice
in the workflow. In the final state “Display Data” not only thereenshot
but also the described memory dumps where saved.

To evaluate if the emulator executed this process detestiaally, the pro-
cess was re-run, and the same data was captured as in thkrumti As the
data was equal to the data saved in the initial run of the gyaesing the
same input data provided automatically to the emulatorag asserted that
the emulator rendered the object deterministically.

We ran our test under two different settings in the emulditst, with speed
limited as a user would usually experience it, and a second without

speed limit, simulating a verification where the test shdaddperformed
as fast as possible. We compared all the exported data fitese(shot
and memory) with the result, that in all cases the files wheezitty the

same. Verifying thus that both intermediary steps as wethasnd-result
of loading the data in the virtual environment was similae tiecision was
taken that the emulator is a valid virtual environment repreing the output
of the original system in a way that was usable for a future.use

As for the timing of the different runs as shown in Table 8.&,aan see that
on our system the unlimited test executed the exact sammtesty 7.7%
of the time needed for a correctly timed emulation while trepthe same
results.

Preserve At the actual stage of preserving the system, the curretitsstd the tapes
were transferred again and the evaluation as explainedeirpldn phase
was repeated. In Section 7.5 we showed how we enhanced thHatemu
with abilities to record both external data of any kind pbksfor the sys-
tem (user input, data loaded from a tape drive), as well dstivé ability to
extract data in various forms, e.g., screenshots and megioonps. The vir-
tual environment was set up to record all external data, foenshots and
externally accessed data. Every output of the system wasded both in

CHAPTER 8. EVALUATION CASE STUDIES 137

screenshot and memory dump form, and again compared tortree@aput
on the original system. The result of the evaluation was afseigital ob-
jects (the program “Cassa”, the data file loaded by the progaawhthe files
created by the virtual environment (logfile of all eventsidgrthe process
including all external data, e.g., user input, applied ® vhrtual environ-
ment, but also the resulting memory dumps and screenslatisgxample,
for the process shown in Figure 8.2.1 and used in the plaregbas/aluate
the preservation action during preservation planningfalewing techni-
cal data for validation purposes was stored in a packageutimission to
an archive:

— the necessary external data (the program as well as thetdata $o
tape),

— the logfile containing both all the external events (i.eerusput and
external data applied to the process) as well as internateas shown
in Section 7.5,

— nine screenshots at the defined significant points in thesgsyc

— the state of the system after the process finished runniag if. the
state “Display Data” consisting of a memory dump of the in&r
memory of the system as well as the display memory).

The entire package of the technical data for validation eseaof about 15
Mega-Bytes, with the major part being the screenshots asasdtie logfile
and only some Kilo-Bytes being the program itself and the dtaieed by
the process.

For validation purposes the virtual environment was seggnrawith both
the digital objects and the recorded rendering results atedreal data. In
the second step of the validation the emulator was setupttoresically
process the recorded external data instead of reactingltexternal events.
It again captured the rendering results in memory and ondreen. This
step was performed to make sure that the rendering was deistin) i.e.,
all the data necessary for the rendering to be done idelyticadvery pro-
cess was locally known and thus the data can be stored farating the
process at a later point in time.

Usually during the preserve phase a series of use-casdarsimihe one
described in the plan-phase are carried out and all extexeaits and ren-
dering results are being recorded and stored along with ithtaldobject

(the actual program) in the archive. Using a wider array @&-cases the
validity of the virtualized process compared to the origjpracess running
on the actual hardware is ensured.

CHAPTER 8. EVALUATION CASE STUDIES 138

Re-deploy At a later point in time the program along with all the storedadwill be
extracted from the archive. The virtual environment vatithe time of re-
deployment is setup and a test is performed if the resulteeféndering
in the new virtual environment are identical to the resuftghe renderings
stored in the archive. For the prograassathis means that either a differ-
ent emulator for the original system or a different versiénhe emulator
used when preserving the process will be available. Thidaonwill allow
us to use the logfile created with all events as input and tlsasvall create
the screenshots and memory dumps as the current versior ehthlator
does. In this verification step we make sure at the time ofe@ayment,
that a future emulator will produce the same results as thecuversion
of the emulator - the results that have been compared to ip@alrsystem
at a time when the original system was still available.

As shown in the plan phase, this step can be automated, sa &ve@ num-
ber of stored processes and use-cases can be checked witdrowel| effort
and even in a much shorter time than real-time emulating yees1. We
thus can verify all the use-cases by applying the external aad compar-
ing the significant outputs of the processes, if necessay & different
virtual environments available at the time of re-deploytmen

Depending on the reason for re-deployment, the actuahgetfi the emu-

lator can vary. If new data-files for the process have beerodesed and
have to be rendered using the original program, the veiibicadllows us

to make sure, that the original data used for validation pced the same
results as in the original virtual environment. This is a8t indication

that even different external data unknown at the time ofgmexdion (i.e.,

different data revived from tapes) will render correctlytie re-deployed
virtual environment.

Only one virtual environment for the system was availabléhattime of
carrying out the case study. Thus, to simulate a re-deplag@for the case
study, the package used for submission to the archive was &kit would
be received from an archive at a later point in time. The wgirinviron-
ment was installed on a system with different hardware thenatiginal
system used to capture the data. By executing the capturedndyis
system, screenshots and memory dumps are created at thepeantsein
the execution process as during the capturing. The regud@ta was then
compared to the data captured for comparison. As the datadeascal,
the virtual environment was executed in the “new” environmdentically
to the original environment. The view-path for the progra@assa” was
thus successfully restored on a new environment.

CHAPTER 8. EVALUATION CASE STUDIES 139

004>+ % 977 0000 004>+ % 977 0000

Figure 8.3: Non-deterministic rendering of Terrahawkssuieof initial recording
(left) and re-run (right).

To summarize, the same external data has been providedacedif consecu-
tive renderings of the digital object to make the processrdanistic, thus ensur-
ing that differences in the rendering would originate ifieténces in the rendering
environment and not in differences of the behavior of thecdbjThe results were
compared to the original rendering as described in Secti:2 5thus verifying
that the virtualized process is an accurate representafitme original process.
Next, the resulting input-files, log-files and renderinguiesxports were stored
along with the necessary digital objects (the program CASSWell as the data
file) during the preserve phase. This lets us at a later poitime (the rede-
ployment phase described in Section 5.4.2) validate tleateétdeployed object’s
behavior is similar to the one stored in the preserve phase.néw environment
in which the object will be redeployed will be any environrhenwhich a view-
path able to render the digital objects Cassa with its extel®endencies (the
data file) can be restored.

8.2.2 Video Game: Terrahawks

During the case study for “Cassa” we determined, that the &mulvas able
to deterministically render a business process examplechtlse a video game
as a second example because those are usually the most sieriaijive objects
on the chosen hardware. We chose a video game running inahdasti mode
of the emulator emulating a Philips Videopac G7000 runnimguropean timing
mode (PAL video standard). We chose the gdieeahawkghat creates a random
impression using external events to change the game playayy execution, to
see if repeated execution of the game will produce the samseriag results,

CHAPTER 8. EVALUATION CASE STUDIES 140

i.e. if the rendering process can be made deterministic fsertiming sensitive
objects than business processes.

The process of planning for preservation is identical aifeexample “Cassa”.
Technical aspects of the system and non-technical aspects the setting of a
game played in the early eighties would have to be recordeslftuseum setting.

The use-case to be documented for Terrahawks was a typite! play work-
flow. External events influencing the rendering of Terrahanake input events
using joystick and keyboard. As first step the emulator wadest and the game
started by pressing the key “0”. One game was played usirggighyinput. Once
the player lost his life, keys were pressed to enter the pdayame for the high
score. A screenshot was taken after the game resulted inayerposing his life
and entering his name (at which point the game just restsintsying the new
highest score on the bottom). After entering the name, thstigk was moved
some more in the newly started game. A second screenshotakexs and fi-
nally the emulation environment was exited by pressing “€E'S The signifi-
cant events in the use-case were recorded in an event logrpesof the log are
shown in Section C.3.

In a second step the emulator was restarted with the evgrfiogiven as
a command-file to see if the emulator executes the rendeetgyrdinistically
and the same resulting screenshots are created if the spotasrapplied. The
previously recorded input was applied automatically dythe rendering process.
However the resulting screenshot taken at the same poingirendering process
as the original screenshot differed from the initial runhed emulator as shown in
Figure 8.3.

A closer look on the emulator source code revealed that theedion process
was not entirely deterministic (i.e. independent from exdéfactors), as the emu-
lation of one of the hardware components, a voice synthestiite, was actually
simulated using sound samples. A check in the emulated cbtlésocompo-
nent was connected to the actual completion of playing thepkaon the host
system, an event the emulated environment had no contral Byedeactivating
the voice component, the emulation process was made deistimand when the
experiment was repeated, the results were identical onreaan.

As timing in video games (especially action games) is cidoiathe game
experience, we used the rendering log to compare the tinfittgeaeal hardware
(known due to the original system’s schematics) to the \watneasured in the log
as described in Section 5.2.5. The measured values as wk# agpected values
calculated from the original system’s specification cand®nsn Table 8.2.

Based on these results it can be seen that due to the evallagiove de-
tected another error in the emulator. Even though the eprubads executed with
the timing set to European TV-standard PAL timing (50 frarpessecond), the
emulator was still rendering 60 frames per second as in thiéhMonerican TV

CHAPTER 8. EVALUATION CASE STUDIES 141

Characteristic Calculated Measured
executed cycles per7882 7259
frame

executed cycles per sec394100 | 435540
ond

frames per second 50 60
seconds per frame 0,02 0,0165

Table 8.2: Calculated versus measured key characteriaies from the event-
log of running Terrahawks in O2EM.

standard NTSC. The time taken for each frame was consisteigilyof a second,
which is correct based on NTSC timing. The emulator was mmifast enough
to render every frame in less time than the original systemaldvbave needed,
keeping the subjective feeling of speed for the user stekdythermore, it can
be seen in Table 8.2 that the timing inside the emulator ixyce-correct, thus
timing-sensitive applications would not run correctly.

The findings about the incorrect timing were used to fix thenaendering
error in O2EM and helped improving the timing in the emulaimrthe actual
calculated values, thus helping us to create a better rigrgdenvironment.

The further steps for Plan, Preserve and Re-Deploy phasdeamgadal to the
business process example shown in Section 8.2.1, as therimeg@nvironment
used is the same one.

8.3 Re-running Scientific Experiments: Music Anal-
ysis Workflow

While the case study for “Cassa” was carried out on a quite sirspstem with
very limited external dependencies, the second examplaeseass is a scientific
workflow described in detail in [Mayer and Rauber, 2012]. foolamost cases
papers are published presenting results of experimentsxidining the process
how data for the experiment was created and processed. Uallgctepeat a
scientific experiments though, the same process would lalse tarried out to
achieve the same results and ideally find methods to impilwwedsults of the
original paper by doing additional research. Re-runningiensific experiment
requires the original view-path of the process creatingocgssing the data. If an
experiment has to be repeated once the original systemstagailable anymore,
the view-path has to be recreated in a new environment amdhtdl against the
original behavior of the process. Using the methodologywhim this thesis we

CHAPTER 8. EVALUATION CASE STUDIES 142

Fetch Groundiruth

Figure 8.4: Musical genre classification workflow [Magral., 2012a]

thus show how a scientific experiment and its results candsepved for the long
term for validation purposes.

Plan In a first step the digital object and its context have to becilesd. The
workflow is a musical genre classification process from theiminfor-
mation retrieval research community that can be seen inr€igu. It
accepts a URL to a list of MP3 files as an input. The html-docuneen
retrieved and the MP3 files are extracted from the documewneryBVIP3
file is then fetched from its URL, encoded and sent to a featdraeion
web service. At the same time the ground truth file is fetchiethfa dif-
ferent web resource. The extracted features are mergedingla sector
and combined with the ground truth and converted into a WEKARFF
(Attribute-Relation File Format) format file. Finally theadsification is
performed using the machine learning tool WEKA and a clasgitia re-
port as well as the accuracy measure are provided as outfhut pfocess.
In [Mayer and Rauber, 2012] the context model for the proceshown in
detail.

The process has been modeled to run using the Ta¥ewwkflow engine
running on a current Linux system. The workflow definition denseen
in Figure 8.5. The system has then been virtualized to berran\irtual
Machine like VirtualBox.

To evaluate the process we follow the steps as defined in e pgtlase
in Section 5.4.2. After describing the process as a first, stepexternal
dependencies are determined using both the context maekeiecr for the
process, as well as by measuring the outputs on the intebieteeeen the
virtual machine and the host system in step two. The procsepart of a
distributed system. In the workflow shown in Figure 8.4 we whantify

HWEKA - ht t p: / / www. cs. wai kat 0. ac. nz/ m / weka/
Pl Taverna Workflow Management Systert-t p: / / www. t aver na. or g. uk/

CHAPTER 8. EVALUATION CASE STUDIES 143

Workflow input ports

[MP3URL ||vebServiceAuthenticationVouchd{GroundT ruthURL] A

-

4 tractMP3FileNamesFromHTMLDocumel

fetchMP3FromURL

“ Workfiow outputgorts

|Dem iledClassificatio nResuIt* |CIassificationA cccccc yi v

Figure 8.5: Musical genre classification, including fetchof data, modeled in
the Taverna workflow engine [Mayer and Rauber, 2012]

different steps where data is sent to external resourceseapdnses are re-
trieved: Fetching the MP3 file list (fetchMP3FileListingBuament), fetch-
ing each MP3 file on the list (fetchMP3FromURL), sending theosied
MP3 file to the web service and retrieving the features (fe&ixtraction-
REST), fetching the ground truth (fetchGroundTruthDocutheBimilarly
to the Cassa case study we have to make sure that the necegadrgaes
not change for evaluation. The list of MP3 files in a preserhase as
well as the ground truth fetched in this phase have to matlighand the
ground truth in a later re-deploy phase to be able to comperedsults.
The feature extraction web service also has to be still avkaland pro-
vide the same features for the same input. All the data tateg over the
network, i.e., transferred between external resourcestamgrocess, has
to be captured. Outgoing traffic is data rendered by the gsaacoming
traffic is external data as response to requests from thegso®y storing
the data exchanged between the process and the externaicesave can
make sure that the data stays constant. In step three treafes taken to
compare the process execution by comparing the resultitwgonie stream
created by the process. The process executes determinestienders the
same results that can be captured on the output ports of toegs (De-
tailedClassificationResults, ClassificationAccuracy) mtedi that the new
rendering environment behaves similar to the original one.

CHAPTER 8. EVALUATION CASE STUDIES 144

To actually capture the data exchanged between the proodsexéernal
resources we had different options:

Capturing by the rendering environment The rendering environment we
use for verifying the process after virtualization can captthe data
on the interface between the virtual and the host systenmualBox
is an open source software that has various hook points witete
could be integrated to capture data. A future emulator eéxaguhe
virtualized system would have to provide functionality itte apply
the captured data to the re-deployed process similar torthdagor
used for the Cassa case study.

Use a listener Using a listener to capture the requests to the webservite an
the response of the webservice and simulating the exteesalirces
for the evaluation is another option for providing idenkicssults on
every rerun of the process with the same parameters.

Use workflow engine specific functionality Taverna as a workflow engine
is able to record the data that is transmitted to and from iffiereint
steps. This data can also be used for a rerun to create detstimi
rendering of the process.

Contrary to the “Cassa” example we used a listener to capteréralffic
sent to the external resources and simulate the resounca&fter re-run of
the process. This decision was taken as the process acgegtsad inputs
from network resources and also provides its results asutsity the pro-
cess on the network. Implementing external listeners tbatal enforce a
change in the virtual environment (i.e., implementing capg / replaying
external data on a hardware emulation level inside thealiruachine) is
considerable less implementation effort and also makesltbsen solution
independent from the used virtual environment. The listersed is de-
scribed in [Miksaet al,, 2013]. The verification-data traffic (to and from the
web-service as network XML-stream) as well as the outpuhefgrocess
(also an XML-stream as transmitted as a result to a requeasisometwork)
are captured from the rendered form in memory accordingep f&ur in
the framework. Only the target state of the process is rateas the re-
sulting transferred XML-stream of the process has to betidabetween
different renderings using the same input data. Re-runmiagtocess with
the listener simulating the data provided to the procesg (8te) and again
capturing the process output (step six) and comparing ihéorésulting
data captured during the original run (i.e., checking if tegulting XML-
streams are identical given the same input conditionsp &een) we thus

CHAPTER 8. EVALUATION CASE STUDIES 145

ensure that the necessary external dependencies haveaptered and us-
ing the listeners is a viable solution to make the processratistic and
the virtual machine renders the process as intended.

Preserve Similar to the plan-phase the data exchanged between th& Moalysis
Workflow process and the different external dependencieggtired when
the process is preserved as described in step four durirad aureof the pro-
cess using the listeners capturing the network data. Fafatadn purposes
the process is then re-run with the captured validation pieteided by the
listener program instead of the real web-services (step. fiMee output of
the process (the XML-stream containing the classificatiwhaccuracy) is
captured (step six) and compared if it is identical to theddptured in step
four as a seventh and final step. This ensures that the regdsridentical
and all the data necessary for making the process rendeeitegneinistic
was successfully captured if the resulting data capturethglioth runs
matches. The digital objects (process definition, verificatiata captured
by the listener as well as resulting data of the process) eastdred in an
archive for later re-deployment.

Re-deploy When redeploying the process at a future point in time, théieation of
the then used virtual environment is done by applying théwed data
exchanged between the process and outside dependenejesiys) and
recapturing the rendering results of the process (step $ingtead of the
web-services used by the process, the data captured bysteedr is used
to verify that the process executes identically with the saesults in the
new environment. Re-deploying the listener is obviously allehge in
itself as most likely it either also has to be run in a virtuavieonment
as the original platform no longer exists. Alternativelyetlistener can be
reimplemented in the new environment to provide the vetificadata that
was stored in the archive with the process. By comparing theltseon
the output ports of the Music Analysis Workflow to the expdctesults
as stored in the archive along with the process (step seveman thus
verify that the process is running correctly in the new emvinent for the
verification-data.

In case the process is to be re-deployed and supposed to datathat has
not been recorded for evaluation, the web-services ofligimwoked can be
replaced either by the virtual environment supplying rededrdata or using
the listener that just replies to known requests with reedm@sponses. As it
is very likely that the necessary web-services are not gmirgist anymore
at this point in time, those either have to be virtualized esdeployed as
well or replaced by mock-up services providing valid datatifie process.

CHAPTER 8. EVALUATION CASE STUDIES 146

Figure 8.6: First Finnish Underground digital artwork (5%9Title screen (left)
and first interactive screen (right) are shown.

8.4 Digital Art Example: First Finnish Underground
(Karkkainen/Okkonen)

As a third example we discuss the preservation of a piecetefdative art from
1995 from the Ars Electroni¢® electronic art collection. The artwork is a Macro-
media Director interactive animation. The title screen tredentrance screen of
the artwork are shown in Figure 8.6. The consumer interadts thve artwork
by clicking on certain regions of the screen and gettinged#iht animations as
a result along with audio clips and movies. Some interagtieds require the
consumer to drag and drop items on the screen instead ofesitigking.

Plan Describing the digital object along with its dependencgagdain the first
step in the planning phase. The artwork’s original envirentrwas an In-
tel x86 PC, and the artwork is available as a Windows 95 exbtaitdong
with additional movie files that needs specific PC-hardwarg. (@ sound
card) in its view-path to work as intended. It reacts to us&raction as
part of the artwork and experience. External dependenceethas the user
interaction as well as the reaction of the digital object® $pecific inter-
action (step 2). Significant states for the artwork are ladlgi@ continuous
stream. To keep the consumer experience intact and theotpehce” of
the artwork as it was originally planned, every single pietalong with the
accompanying acoustics presented to the consumer has tesenpand
the reaction time of the artwork has to be as the original. ie®and ani-
mations played by the artwork have to be preserved as oliginéended.

[BlArs Electronica ht t p: / / www. aec. at

CHAPTER 8. EVALUATION CASE STUDIES 147

Thus a continuous comparison of renderings on the screerethssvthe
sound effects being played has to be done. A possible way dongari-
son is to record the performance in response to the user agpatmovie,
along with the consumer input and record another movie agatine vir-
tualized environment. If the movies are identical with tlaene consumer
input applied, the performance is reacting similarly to¢basumer in both
environments and thus is rendered correctly. No other eatelata is cre-
ated, so the comparison on a visual and acoustic level icmguiti(step 3).

To evaluate if the artwork behaves deterministic we havedtond user in-

put to the artwork as well as the result of the rendering ipoase to the
input (step 4). For proper validation we need to perform thees ren-

dering on both the original artwork (if still possible) and/@rsion that is

already separated from its original environment (e.g.ni@ or more virtual

environments emulating the original system on a hardware)l¢step 5)

and re-capture the renderings in the new environment (ted@mnparing

the significant properties of extracted data from the randsmwe can then
decide if a virtual environment preserves the original arks properties
sufficiently (step 7). Possible virtual environments irstbase could be ei-
ther a virtual machine running Windows 95 on an Intel x86 P(@iware or

an emulator that completely emulates the hardware of tlggnadi system.

Operating system emulation, e.g., Wine on a Linux systenujavalso be a
possible candidate.

Ideally both user input and artwork output can be recordethbyvirtual

environment used to render the artwork. If no direct recagdif the inter-
action and the artwork’s response is possible (i.e., no ety the ren-
dering environments), external tools that record and yepser input on a
Windows operating system and tools that capture screemibc#m be uti-
lized. By using external tools for capturing and replayingsiamer input
and for recording the performance the problem exists thatatitwork is
executed in a multi-threaded environment. Thus probablgxaztly deter-
ministic results can be achieved (depending on the seibgibithe artwork

to consumer input).

In our experiment we decided to virtualize the artwork’ggoral environ-
ment with a use of a virtual machine running Windows 95 on del x86
PC hardware. We implemented the tool “VirtualBox Record&Bkgk'™*!

shown in Figure 8.7 that runs on the host system and allows ta&ké con-
trol of the virtual system. Thus we were able to control theimmment

“lvirtualBox Record&Playback — http://sourceforge. net/projects/
vboxr ecpl ay/

CHAPTER 8. EVALUATION CASE STUDIES 148

]
Actions Scrsenshots
ncord Mo sics S Interval |1 1] sesonds
h Load -
Keyboa Recordpath C \Users tomek\Desktop et record
) | ' l | Playbackpath C\Users\tomek\Desidop test\playback

Figure 8.7: Tool for controlling of virtual environment exgion. Main window
is shown on the left. It allows to select a virtual machine ahwill be con-
trolled, specify the time interval between screenshotd, tae kind of events to
be captured (mouse and/or keyboard events). The screamhparison window
is presented on the right. It depicts differences detecttaiden corresponding
screenshots (marked with red circles).

externally by recording and replaying the user input, ad alcapturing

results of the renderings on the screen. Unfortunatelyysied virtual envi-

ronment was not capable of recording the rendering effecésa@ntinuous
stream (movie) and therefore a series of state comparisoresbieen used
instead. Our tool is able to take screenshots of the rendareidonment

at a given time interval while the original interaction i€oeded and also
while it is replayed to the virtualized system. The tool iscatapable of
comparing and detecting differences (if any exist) betweamesponding
screenshots (as shown on the right in Figure 8.7). It uslibe VirtualBox

API to perform its tasks.

During the course of the experiment we recorded and replsgeeral com-
binations of interaction with the artwork. Although the exinent was
conducted in a multi-threaded environment, for the most pathe art-
work’s performance this had no critical impact on the camess of record-
ing and replaying of mouse events. The tool was able to ciyregmic
the recorded scenario and to collect data for screenshdgsisma How-
ever, the screenshot analysis revealed that some parte @rtivork did
not react as expected to the applied user input but seemiagjom ele-
ments appeared on the screen resulting in differences tafitered screen-
shots. The source of the randomness can either be diffesémd¢lee input
that was due to it being an external program not exactly atkaet same
moment during the rendering as during the recording phasker@xter-

CHAPTER 8. EVALUATION CASE STUDIES 149

nal factors that could have been used to create randomnessaige not
recorded/replayed to the virtual system (e.g., real tinoelclof the host
system, hardware values like position of the electronierbea the screen).

Thus, we come to the conclusion that in this case controllegyactions
external to the virtual system is not enough to create a hétestic ren-

dering of the artwork. Capturing and replaying capabilif@sall external

influences to the virtual machine would have to be implengndesuc-

cessfully compare renderings between the artworks remglé@rithe virtual

system and in its original environment. Thus, we can onlydtlyetically

describe what would happen in the Preservation and Redeplayphases
of the preservation workflow.

Preserve In the preserve phase various typical user-interactiotisg@rtwork along
with data extracted from renderings of the artwork in resgeoto the user
interactions would be recorded (step 4). Capturing consumpeit and art-
work output is done as described in the plan phase, ideallhéyirtual
environment. The replay step will show, if the artwork rgddehaves deter-
ministic when using the same input (step 5) and recordin@titput of the
artwork again (step 6), comparing it to the previously releor rendering
(step 7). Once a deterministic rendering of the artwork \@itmecessary
auxiliary data is achieved, the data applied to the artwerwell as the re-
sponse (e.g. in the form of a continuous video recording efattwork)
are stored along with the artwork for a later verification®tioe artwork is
taken out of the archive.

Re-deploy If the artwork needs to be re-deployed in a future environnier., for an
exhibition), it will be executed in a virtual environmentreating the orig-
inal view-path. Using the different consumer-inputs releal and stored
along with the artwork in the preserve phase the artwork bhan be ren-
dered in the new environment (step 5). The rendering of theoak is
again recorded as a continuous stream (step 6) and compmatkd tata
of the original rendering that has been stored in the arcas/evell (step
7). Using this method we thus can verify that the artwork bghaves as it
did in its original environment. Once the artwork is re-ag@d in an ex-
hibition setting with random user interaction that is diéfet from the one
recorded in the preserve phase we can thus be confidentéretiork will
react to the user as the original artwork would have, thustcrg a similar
experience to the user (on a technical level).

The comparison described in this chapter was based on stapéuring on
the system hosting the artwork. Depending on the artistehtion of the
performance, the screen output might also have to be cochparthe level

CHAPTER 8. EVALUATION CASE STUDIES 150

taking the output device properties into account. When th&ogk was
created, CRT-output devices with output characteristitfereint to TFT-
displays usually used today have been in use, or even detiaesnight
be in use once the artwork is redeployed in a future environirf@ an
exhibition. Using a different display device might consalde change the
performance of an artwork experienced by a consumer. Whgectiange
might be acceptable (e.qg., if a performance closer to thggrad one is no
longer technically possible), it has to be a conscious d®tte accept aloss
of certain significant properties compared to not perfogrihre artwork at
all.

8.5 Summary

In this chapter we presented how the framework presented apt€h4 and the
preservation workflow shown in Chapter 5 can be applied taetalthe rendering
process of different types of digital objects.

We first evaluated two different digital objects in the enotaO2EM and
explained how the event-logs helped us to identify flaws érdndering process.
We rendered different objects in the emulator and analybedevent-log files,
which led us to the following conclusions:

Deterministic Emulation Automatically evaluating emulators by comparing
the rendering results at different points in the rendere@guires that the rendering
environment behaves the same provided with the same ekdataa In the case of
the game 'Terrahawks’ evaluated in Section 8.2.2 the emoulatas initially not
deterministic, leading to different results of the rendgrprocess, even though
the obvious external data (user input) was kept constanty ®nmaking the
rendering process deterministic, we could successfullypare the renderings in
consecutive executions of the emulator. This would alsohleebasis for later
comparison of the rendering to later emulator versions en@ther emulators.

External Data The external data needed to create a deterministic remgisrin
passed on the interfaces from the host environment to théaéeduenvironment.
By recording the data that is transferred on these interfagescan apply the
same data at the same point in the rendering process at ailageensuring a
deterministic rendering process. With the application ¥2asve showed that
the external events (file access and user input) can be trackide event-log.
External resources can then either be stored for a re-rumalatation purposes
or even simulated if the resources are no longer available @n external Web
services).

Key Characteristics Using the key characteristics about the rendering pro-
cess which we extracted from the event-log we were able to doamclusions on

CHAPTER 8. EVALUATION CASE STUDIES 151

the correctness of the emulation process. Especially tiengin handling the
timing in the emulator were detected, assisting the emu&atthors in improving
the rendering process. Obviously when extending the desticharacteristics to
more complex systems, additional characteristics couldied. Additionally to
the time needed to draw a frame on the screen, similar mesasatdd be cap-
tured for other output devices, e.g. port communications ethere the timing of
events needs to be captured, normalized and compared.

Automation of Evaluation Applying the external data to the rendering pro-
cess not only gives us a possibility of creating a deterrtimiendering, we can
also automate the process of evaluating a rendering emagnhby applying the
user input to a digital object automatically. This way imietive digital objects
could be tested automatically on re-deployment in a newenknent to see if the
rendering is the same as at the time they have been presaiedlso showed
that for this automated evaluation we not necessarily havert the rendering
process at the original system’s speed, as all the automiatizased not on time
passed but on CPU cycles executed in the rendering envirdnthes massively
speeding up the process of the validation.

Overall, we successfully implemented some of the concegstsribed in Chap-
ter 4, 5 and 6 in the existing emulator O2EM. This not onlya#d improving
the emulator for more accuracy, but also gave us a betterrstaddeling of the
evaluation of rendering environments in general. We shawatit is possible to
automate the process of evaluating interactive objectermbyhe manual testing
of emulators with human interaction.

We then showed two objects representing more complex sgstarmusic
classification workflow, and a digital artwork. We showed dmawvlevel render-
ings of the digital objects have to be extracted and what kindata should be
captured. We also discussed the emulation of external tatartfluences the
rendering of the two presented digital objects, web-sesvia case of the music
classification workflow, and user input in case of the intevadigital artwork.
The discussed methods for extracting data from the virteatiering environ-
ments require the implementation of functionality as diéscd in Chapter 6.

Chapter 9

Conclusions and Outlook

9.1 Contributions

9.1.1 Challenges

Every digital object needs an environment to be renderedi'ime stack of ob-
jects needed to render a digital object, i.e., the view-pmtlescribed in Section
2.2. Technical obsolescence is a threat to the view-pathdafital object, as the
secondary objects needed render a digital object get dbsole

Digital preservation is the process of making sure that #&aligbject is ac-
cessible over a long period of time. A digital object’s vipath is threatened on
various levels, besides the physical object or storagean#t logical object (the
format) of the digital object, and the conceptual objeet, the object that is ren-
dered in a physical form recognizable by a user. To keep atbhgcessible, we
have to make sure to retain a view-path that allows us to rehéeobject so that
all properties significant to the designated audience sti@gi. The main strate-
gies to preserve a digital object are commonly consider@agbemulation and
migration. Migration changes the digital object in it’s logl format and thus the
view-path used to render the new format. With emulation ¢igechl format of the
digital object stays unchanged, and only layers in the \pe\t are replaced.

Preservation planning is the process of making sure thaesepration ac-
tion changes the view-path in a way that keeps the signifiperperties of an
object intact. Traditionally the digital object is chamgted by extracting prop-
erties stored in the bitstream of the object and compare i&ttion changed those
when using migration as a strategy. Various characteozdtols and languages
allowing a comparison of extracted properties exist. Butamby the stored prop-
erties have to be compared, to make sure that the concefijeal stays intact,
an authentic rendering of the object is crucial. Presergomgplex and interactive
digital objects is the subject of various ongoing researolepts, so a methodol-

152

CHAPTER 9. CONCLUSIONS AND OUTLOOK 153

ogy to evaluate authentic rendering is required.

9.1.2 Comparison of Rendering in Migration and Emulation

Conventionally, emulation is seen as a distinct type of pxesi®n action, sig-
nificantly different from migration, standardization, aather approaches. It is
attributed with changing the environment rather than theaband due to its
characteristics frequently recommended for (inter)aatilgital objects.

Migration focuses on transforming the object from one filenfat or encod-
ing to another. Consequently, evaluation of migration sohst predominantly
focuses on the characteristics of the source and targettdipee, and in how far
these significant properties can be preserved. Yet, thisoapp to evaluation is
falling short of several of the key requirements of evahgthe authentic preser-
vation of digital objects. It basically views the digitaljebt solely in its encoded
form, rather than as intellectual object that only becomeh wvia interpretation
via some form of rendering process, e.g., opening in a spedgwer software or
running in a certain environment. However, as we have showhapter 3 this
view seems too limited.

In reality, when preservation actions are being evaluateakacterization tools
that analyze object structure and content are usually aoedbavith a visual eval-
uation when both source and target objects are opened ireviseftware and
verified visually. This corresponds to the evaluation apphopresented in this
thesis, focusing on a single target state. In fact, eveslledtual object in digital
form needs to be evaluated with its entire view path, evenmvthis may consist
of any of presumably interchangeable standard viewers ascdhdobe Acrobat
for PDF or any of the myriad of image viewers.

In Chapter 3 we showed how the generic view-path for the remglef a
digital object is composed. We took a look at the differemels on which emu-
lation can be performed and how the digital preservaticatejies migration and
emulation on the different levels affect the view-path ofigitdl object. We then
compared the effects of the two strategies and showed #ahtimge in view-path
makes it necessary to take the rendering environment irtiougt when evaluat-
ing any digital preservation action, be it a migration or aru&tion action.

We thus argue that the approach to evaluate renderings gftaldibject pre-
sented in this thesis is not only recommended for interactbntent and in combi-
nation with emulation and viewer approaches to presenvaltiot basically applies
to the evaluation of any preservation action taken.

CHAPTER 9. CONCLUSIONS AND OUTLOOK 154

9.1.3 Preservation Action Evaluation Framework

The most important task when evaluating virtual environteénto eliminate the

side-effects that occur not due to the emulation but due teereal events that are
different in the original and the emulated environment. &duce the influence
of these events on the rendering of a digital object, it isessary to document
the original system and its properties as precisely as Ipesand then recreate
the original setting on the host system using a virtual @mritent. To make the
behavior of the digital object as deterministic as possililenecessary to apply
user input in an automated form.

In Chapter 4 we showed the information we have to collect abodigital
artifact, its determinism and significant states, as wethas/iew-path originally
used to render the digital object. We showed the verificatiata that has to be
collected for the object to verify a rendering in a differgr@w-path.

We showed various methods on how to capture user input orrigiea sys-
tem and apply it to the emulated environment in Chapter 4. Ddipg on the
object and the technical possibilities it has to be decideitkvof the various ren-
dered manifestations of a digital object on the originatesysand in the emulated
environment have to be compared. The selection dependsmlde significant
properties of the object that has to be evaluated.

In Chapter 5 we then showed how the validation data is reappdiea new
rendering environment. The rendered forms of a digital dbgxisting in the
view-path are compared to the rendered forms in the origileal-path and char-
acteristics of the rendering process are extracted. Aflisteps for the evaluation
of rendering effects are shown, that form together with tbscdptions shown in
both chapters thBreservation Action Evaluation Framework

Using the Preservation Action Evaluation Framework shawthis thesis the
effects of rendering an object in an emulated environmentbeaevaluated. By
testing how the significant properties of the object arecadfe in different emula-
tion environments it is possible to choose the optimal smutor a preservation
planning case by comparing them using, e.g., the Planetemagion planning
approach [Beckeet al., 2009].

The Preservation Action Evaluation Framework describesetraluation of
rendering effects in emulated environments compared torigaal environment.
There will be cases where the original environment is nodoagailable or cannot
be accessed with reasonable effort (e.g., data archeolddng concepts shown
not only allow for a comparison between the original envin@mt and a changed
view-path, but also for a comparison between different nemwpaths. Usually,
it is possible to get an idea about the rendering in the aaigemvironment by
evaluating various emulated environments, even if theirmalgappearance is no
longer known. For example, if certain elements in a screanshone emulator

CHAPTER 9. CONCLUSIONS AND OUTLOOK 155

are visible but missing in a screenshot from a different exau) it is obvious that
one of the emulators lacks the ability to render these ofject

9.1.4 Preserving Processes in a Preservation Workflow

In Chapter 5 we also showed in which phases in a preservatidcflaw an eval-
uation of the rendering has to be performed according to dhidation workflow
we previously advised for evaluating the renderings oftdlgibjects.

We showed how the steps for evaluating a rendering can besdpplthe dif-
ferent phases of a preservation workflow. In the planningplvee describe the
object and environment as well as all of its constraintsluisiog external data
sources. Deciding on where to extract data from the systehimawhat intervals
helps us to compare the renderings of a digital object iredkfit environments
and create a preservation plan for the digital object. Oreang ready to preserve
the object, we have already all necessary information aibaentd need to collect
validation-data as well as extracted significant rendarimghich can be used for
a comparison once the object is taken out from the archiveresteployed in
its new environment. Following the preservation workflowngghe Preservation
Action Evaluation Framework allows us to validate at arahivme if all neces-
sary components of a digital object have been captured. slires that we can
successfully verify the digital object’s rendering in autg environment that is
currently unknown.

9.1.5 Design Requirements for Virtual Environments

Virtual environments used for digital preservation pugsbave to fulfill certain
requirements. In Chapter 6 we showed what these requireraents long term
stability considering both the durability and the flexityilof virtual environments.

Most importantly, the execution of all parts of the virtuaveonment has to
be made deterministic, i.e. independent from events on adystem and with
the ability to provide external data to the same renderirnggss over and over
creating the same rendering as a result. Information albeutendering process
has to be provided by the virtual environment. This inclugasonly the rendered
form of the digital object, i.e., data calculated in memaggions of the virtual
system and data transformed for interfaces to the hostrey&e., a rendered
image for display on the screen), but also information abfweitendering process
itself. The support for extracting characteristics abbetrendering process like
timing information and the occurrence of events have to beiged by the virtual
environment.

Not only functionality for evaluation has to be considerduew developing a
virtual environment for digital preservation purposesatitees like the possibility

CHAPTER 9. CONCLUSIONS AND OUTLOOK 156

to transfer data between the host system and the virtuarsyate essential for a
successful use of emulation as a digital preservation astestegy. We showed
different strategies to exchange data with virtual envinents aware of the guest
system running and guest systems being aware of the facthéwatare being
executed in a virtual environment.

9.1.6 Preserving Digital Objects For An Obsolete System — The
C7420

Based on the previous chapters we showed in Chapter 7 how desgho the data
stored for an obsolete system were tackled.

Data stored on audio tapes was extracted as shown in Sec8oBYy using
digital archeology to re-engineer the format of the encodigid on the physical
storage media we countered the threat of obsolescence phyk&al level. Us-
ing off-the-shelf audio hardware and decoding the audiocawave were then able
to transfer data without using the original system and exgroved the quality
of the data being read from the tapes. More data was suctgsstueved by our
approach than could be read using the original system.

To counter obsolescence on the logical level, the data wesdéel and con-
verted to non-obsolete formats where possible. Imagesextulal data stored on
the tapes were migrated to non-obsolete image formats anstteed in formats
readable on current systems. Programs stored on the taB#sSIC program-
ming language were also migrated to a readable text format.

The case study on migration proved that it is possible toaekgproprietary
data from an analog audio signal stored by a system with@viqus knowledge
of the format it is stored in. By having access to the origingtam to write
test programs we were able to reengineer the audio wavefenveh as all data
formats and write a tool to migrate the data to non-obsoletméts. Archives
or libraries that have or may receive audio tapes contaidatg for the Philips
G7400 can use the created tool to migrate digital data withocess to the origi-
nal system or knowledge of how to handle the system.

If reengineering actions are undertaken today, while tigaral systems still
work, it is possible to develop tools for the migration ofitedjobjects now. Once
the original systems do not work anymore, it will not be pbksto run code on
the original system, thus having to reengineer the systera omcuit-diagram
level and disassembling the BIOS source code, which will nthketask more
difficult and time consuming.

As the programs received from the tapes were readable ingbarce code
form, but not renderable to re-create the logical layer ohtégractive executable
program, an existing emulator for the system was extendetiaw for execution

CHAPTER 9. CONCLUSIONS AND OUTLOOK 157

of programs for the home computer add-on of the system in@e¢t4. We pre-
sented the reengineering work involved in enabling emutadif the system itself
as well as reengineering necessary for emulating save aadflmctions. The
emulation was implemented keeping digital preservatiguiegtions in mind, so
data injection and extraction with ease of use for usersowitlexpert knowledge
of the system was implemented. We described what challesngse while im-
plementing the emulation and what design decisions wesntakd why. We also
explained how the guidelines shown in Chapter 6 were coresiidehen imple-
menting certain features like extracting data from the estnuh environment.

The work performed for this emulator shows how complex ts& ta develop
an emulator is and what steps are involved especially fosgesywithout proper
and open documentation. It further shows that the actualeimentation of the
emulation of the C7420 Home Computer cartridge was in thisiapesse a com-
paratively less complex task, as a well documented anddiremulated Z80
processor was used as the central processing unit of the C74#0more time
intensive task was the reengineering of the components faseathta injection
and data extraction, on one hand the emulation of the C7420itagxface, and
on the other hand the proper emulation of keyboard input ata extraction to
the clipboard.

To support evaluation of the emulator we also implementedtfanality de-
scribed in Section 6.3.

9.1.7 Evaluated Case Studies

The case studies shown in Table 9.1 showed the differentraftéata that has to
be captured for evaluating the rendering of processes,ibtgtactive between a
user and a system as well as a system that is retrieving adatavarious external
sources. While in the first two case studies shown in Chapter Biter to capture
and replay the data was implemented in the emulator of thersysve showed
what would be necessary to implement it for the more compbgeense process
and virtual artwork on more recent systems. Virtualizing flystem helps us in
capturing the needed data. By inserting an abstraction lageveen the now
virtual system and a host system, we can implement listezidrer on the host
system or in the abstraction layer (the virtual machinegaoture the data on the
interface between the systems. For a complete monitorimgvatual system we
have to implement capturing and replay for all the interfabetween host and
target system. All the data fed into the system from extesnalces needs to be
captured, so by reapplying it at a later point in time the sgimd) can be made
deterministic. Similarly all significant data created by thystem and provided
to the host rendering environment on any interface (e.gees; network) has to
be captured to be used as ground truth when re-deployinglijeetan a new

CHAPTER 9. CONCLUSIONS AND OUTLOOK

158

Digital Object Virtualization | Capturing Comparison Level Successful Comparison
Level

Historic Business Process: Emulator Hardware Screenshots taken Yes (all seemingly random

Cassa O2EM emulation from emulation | events captured and re-
level environment played in Emulator)

Video Game: Emulator Hardware Screenshots taken Yes (all seemingly randorm|

Terrahawks O2EM emulation from emulation | events captured and re-
level environment played in Emulator)

Scientific Experiment: Virtual Final result| Captured network| Yes (no random events

Music Analysis Workflow | Machine files traffic influencing rendering be-

sides network data)

Digital Art: Virtual External tool | Screenshots takem No (random events influ-

First Finnish Underground Machine capturing from virtual machine | encing rendering besides
user input user input)

Table 9.1: Case studies carried out with external eventsiceghtand re-applied
on different levels.

environment at a future point in time.

9.2

Achievements

In the introduction chapter in this thesis we discussed soitiee research ques-
tions that arise from the need of evaluating a virtual emment. We will revisit
these questions below to see how they have been addressed.

RQ1:

RQ2:

How can we evaluate if a digital preservation action keeps t signifi-
cant properties of a digital object intact?

We showed that the effects of a digital preservation actaweho be evalu-
ated considering the rendering environment. We then exgdithe prereq-
uisites and what we need to document about the view-pathrendigital
object to recreate a similar view-path in a different ermiment. We also
showed the levels on which rendered forms of a digital olgeetfound on
a system hosting a virtual environment and how we can extinacsignif-
icant properties of the rendering process and the object.shgeved the
applicability of the approach in a case study for an obsdgstem. We
developed a framework to evaluate renderings of a digitpaib By fol-
lowing the steps defined in the framework, and taking thesiiges outlined
in the framework depending on the digital object’s natune,rendering of
a digital object can be evaluated against a defined grounid ¢ruother
rendering environments.

What do we need to know about a digital object and it's envirooment
to evaluate how a new rendering differs from the original rerdering?

CHAPTER 9. CONCLUSIONS AND OUTLOOK 159

RQ3:

RQ4:

RQ5:

RQG6:

We showed that we need to ensure a deterministic behaviordagital

object to compare different renderings. We explained thatsignificant
states of a digital object are either a target state, a sefissates or a
continuous stream, depending on the digital object. We slddwow we
have to describe the rendering environment to allow a rédoreaf the

view-path in a new rendering environment and on what levetsiered
forms of a digital object can be extracted.

How can the rendering of a digital object be made determinist over
different rendering cycles and different environments?

We document the different kinds of data influencing the reindeof a dig-
ital object. Some of those are locally known and are eithetrseugh the
rendering environment once the virtual environment is keebor stored
along with the digital object’s view-path. Other events exérnal to the
virtual environment and have to be applied consistently diféerent ren-
dering cycles.

How can the view-path of a digital object be recreated in a nevenvi-
ronment and a new rendering be compared to the original rendeng?

We explained how to recreate the view-path of a digital dbje@a new
environment. We showed the functionality necessary to euppe ap-
plication of external data and created a deterministic egnd using this
functionality in the emulator developed for the case study.

How can the evaluation framework be integrated into a presevation
workflow?

We outlined how the framework can be integrated into the wsdepe of
a preservation workflow. Explaining the data that has to pured and
archived along with the digital object for a successful fieation once the
object is redeployed we showed which steps of the evaluétaonework
have to be applied in which phases of the workflow.

What design requirements do we have to virtual environmentgo allow
for evaluation of renderings?

We outlined the requirements to virtual environments imof long term

stability and the necessary functionality for supportind automating eval-
uation of renderings of a digital object. We also outlined thethods for
data exchange between a host and the guest system for emhamneius-

ability of virtual environments for digital preservationnposes.

CHAPTER 9. CONCLUSIONS AND OUTLOOK 160

9.3 Ongoing and Necessary Future Work

The work presented in this thesis shows a framework for &tiiig rendering
results in virtual environments and how to integrate it ia thfferent phases of
a preservation workflow. We showed on a rather simple systmntt apply the
concepts presented in this work. However, future work orstligect is necessary
as outlined in the sections below.

9.3.1 Characterization of Environments

While the characterization of the bitstream of digital okgas well underway and
already implemented for a wide array of static objects likages, the necessary
work for extracting the properties of rendering environtsesmd the dependen-
cies of digital objects has just began. In [Mayral., 2012b] a context model
that is currently developed in the European research gréojdBUS is shown.
The context model describes hardware and software depeiedeas well as ex-
ternal dependencies of a digital object. Technical metaidalso available in the
Trustworthy Online Technical Environment Metadata (TOTER&gistryl. The
TOTEM registry makes complex hardware and software ralahips for digital
objects available for the digital preservation commurnipdersonret al,, 2010].

Describing the context is an important pre-requisite oteapg all the depen-
dencies of a digital object. It allows a reconstruction @ tibject’s view-path and
also for validating an object’s completeness for presermat

9.3.2 Ease of Access to Emulation

In Section 2.5.2 some technologies to ease the access tateonudoth locally and
via remote access have been shown. To make emulation deditatta broader
audience, these techniques have to be extended to hava digjiects accessible
in their original environment as easily as a migrated olpecthe user’s desktop.
The ongoing bwFla project (Baden-Wuerttemberg Functionalgterm Archiv-
ing and Acces$) aims to provide easy access to digital objects’ originalremnv
ments using remote access to emulation as described in jwomo8oletzet al,,
2011]. As setting up the object’s environment includindhaltdware and software
dependencies is a complex task, it is necessary to supmgoustr in identifying
and setting up all necessary secondary digital objectsateadthe view-path.
Rechert et. al. show a workflow for ingesting environmentscfamplex digital
objects [Recheret al,, 2012]. The view-path of a digital object is constructed by

HTOTEM —ht t p: / / ww. keep- t ot em co. uk/
PlpwFLA —htt p: // bwfl a. uni - frei burg. de/

CHAPTER 9. CONCLUSIONS AND OUTLOOK 161

recording the user input during installation of softwarenponents. By preserv-
ing the setup-process now when expert knowledge is stillabla, unattended
reconstruction of the same view-path is possible at a latirt jn time.

Only once invoking an emulation environment with the neagssiew-path
for a digital object is available for users without experbwhedge of the original
environment, emulation will be a viable solution for thedaerm.

9.3.3 Strengthen Emulation as a Digital Preservation Strategy

Emulation still is not considered as a strategy as impottadtigital preservation
as migration. Common arguments against emulation are itplesity both on
a system side for setup and necessary expert knowledgedas. usraditionally
static documents have been in the main focus of digital pvaien. With the
focus shifting to more complex, interactive objects andcpsses, migration as a
strategy is not always an option that can be followed. Alscsteown in Chapter
3, every migration changes the view-path of the digital obie a way similar to
how emulation changes the view-path. Evaluation of theéegras should be done
similarly.

On the 9th International Conference on Preservation of 8ligibjects (iPres)
2012 the workshop “Towards Practical Emulation Tools andt8gies - State of
the Art Research Meets Real-World Requirements” on the topeeraflation was
conducted [von Suchodolegt al,, 2013]. More than 50 participants showed that
the interest in emulation is growing in the digital preséiocommunity as the
objects that need to be preserved are getting more complewevér, the tools
and strategies existing today are mere prototypes andyhangltools usable for
productive deployment exist.

The number of projects on the subject of emulation and pvaien of com-
plex objects shown in Section 2.10 shows a growing reseateheist into solu-
tions for preserving complex objects. However, developgneétools still has to
be picked up by major commercial players in the domain. Witlulation grow-
ing to be a strategy complementing migration for objects ¢thanot be migrated,
this is likely to change. Considering the guidelines for diepig functionality
for virtual environments shown in this thesis, e.g., forieasxchange of data
between emulators and their host systems, will also lowebtrrier for use of
emulators in digital preservation applications.

CHAPTER 9. CONCLUSIONS AND OUTLOOK 162

9.3.4 Connect Virtual Environment Authors and Digital Preser-
vation Stakeholders

The design guidelines shown in Chapter 6 in this thesis altmwah automated
and systematic evaluation of renderings of digital objedtsvever, the necessary
functionality to ensure deterministic rendering of an abja the virtual environ-
ment is not available in virtual environments yet. Emulatand virtual environ-
ments like VirtualBoX! are not developed with digital preservation requirements
in mind, as the developers of these environments are usuatigware of digital
preservation.

A first step into raising awareness of digital preservatiaas wnade in the
KEEP workshop “Joining Forces. International expert whdgs about digital
preservation” [Lange, 2012]. Emulator authors were brotghether with prac-
titioners in digital preservation to discuss the requirete®f digital preservation
and the potential benefits for emulation authors.

9.3.5 Standardization

A pre-requisite for having wide support for automation afderings in rendering
environments is the existence of standards. Formats fat anpd output data have
to be defined that allow us to do comparisons over variousrdifft environments.
Virtual Environments have to be enabled to export rendesgd th this defined
format then and provide a log about what data was created ait tivhe, using
what input to the process.

Provided virtual environments are adapted to be preservatware, successful
automated evaluation over a variety of rendering envirarsis possible and will
aid in allowing the use of emulation as a major quality assdigital preservation
strategy.

BlvirtualBox —ht t p: / / www. vi rt ual box. or g

Bibliography

[Aitken et al, 2010] Brian Aitken, Seamus Ross, Andrew Lindley, Edith
Michaeler, Andrew Jackson, and Maurice Dobbelsteen. Taegts testbed.
In Mounia Lalmas, Joemon Jose, Andreas Rauber, FabriziosSaibia and
Ingo Frommbholz, editordResearch and Advanced Technology for Digital Li-
braries volume 6273 olecture Notes in Computer Sciengages 401-404.
Springer Berlin Heidelberg, 2010.

[Andersonet al, 2010] David Anderson, Janet Delve, and Dan Pinchbeck. To-
ward a workable emulation-based preservation strategyoiidé and techni-
cal metadataNew Review of Information Networkings(2):110-131, 2010.

[Ashcroft and Manna, 1979] Edward Ashcroft and Zohar Marifee translation
of 'go to’ programs to 'while’ programs. I€lassics in software engineering
pages 49-61. Yourdon Press, Upper Saddle River, NJ, USA, 1979

[Baer, 2005] Ralph H. BaeWideogames: in the beginningRolenta Press, 2005.

[Bardon and de Merly, 1984] Christophe Bardon and Benoit de Mdgdyx Sur
Philips C7420 Videopac+Edimicro, Paris, France, 1984.

[Becker and Rauber, 2011a] Christoph Becker and Andreas Raubasi@n cri-
teriain digital preservation: What to measure and himurnal of the American
Society for Information Science and Technology (JASI64(6):1009-1028,
June 2011.

[Becker and Rauber, 2011b] Christoph Becker and Andreas Raubeseria-
tion decisions: Terms and Conditions Apply. Challenges, klispptions and
Lessons Learned in Preservation PlanningPtaceedings of the ACM/IEEE
Joint Conference on Digital Libraries (JCDL 201 ages 6776, Ottawa, ON,
Canada, June 2011.

[Beckeret al,, 2007] Christoph Becker, Guenther Kolar, Josef Kueng, and An-
dreas Rauber. Preserving interactive multimedia art: A sas#y in preserva-
tion planning. InAsian Digital Libraries. Looking Back 10 Years and Forging

163

BIBLIOGRAPHY 164

New Frontiers. Proceedings of the Tenth Conference on AsigiteDLibraries
(ICADL'07), volume 4822/2007 ofecture Notes in Computer Sciengages
257-266, Hanoi, Vietnam, December 10-13 2007. SpringerrBtteidel-
berg.

[Beckeret al,, 2008a] Christoph Becker, Hannes Kulovits, Andreas Rauber, an
Hans Hofman. Plato: a service-oriented decision suppstesayfor preserva-
tion planning. InProceedings of the ACM/IEEE Joint Conference on Digital
Libraries (JCDL’'08) Pittsburgh, Pennsylvania, USA, June 2008. ACM.

[Beckeret al,, 2008b] Christoph Becker, Andreas Rauber, Volker Heydeggar, J
Schnasse, and Manfred Thaller. A generic XML language faratterising
objects to support digital preservation.Rroceedings of the 23rd Annual ACM
Symposium on Applied Computing (SAC,08)lume 1, pages 402-406, Fort-
aleza, Brazil, March 16-20 2008. ACM.

[Beckeret al,, 2008c] Christoph Becker, Andreas Rauber, Volker Heydeg-
ger, Jan Schnasse, and Manfred Thaller. Systematic chasact
tion of objects in digital preservation: The extensible relcterisa-
tion languages. Journal of Universal Computer Sciencd4(18):2936—
2952, 2008. http://ww. jucs.org/jucs_14 18/ systematic_
characterisation_of objects.

[Beckeret al,, 2009] Christoph Becker, Hannes Kulovits, Mark Guttenbrunne
Stephan Strodl, Andreas Rauber, and Hans Hofman. Systepiaticing for
digital preservation: Evaluating potential strategied aailding preservation
plans.International Journal on Digital Libraries10(4):133-157, 2009.

[Bergmeyer, 2011] Winfried Bergmeyer. The KEEP emulationmiesvork. In
Proceedings of the 1st International Workshop on Semarngddd Archives
pages 8-22, Berlin, Germany, September 29 2011.

[Bhushan, 2000] Bharat Bhushamechanics and Reliability of Flexible Mag-
netic Media Springer, 2000.

[Bonardi and Barthélemy, 2008] Alain Bonardi and Jérome Baethgl The
preservation, emulation, migration, and virtualizatidnliee electronics for
performing arts: An overview of musical and technical issudournal on
Computing and Cultural Heritagel (1):1-16, 2008.

[Brown, 2008] Adrian Brown. Automatic format identification sing
PRONOM and DROID. Digital Preservation Technical Paper ,1
2008. http://ww. nati onal ar chi ves. gov. uk/ about apps/
fileformat/pdf/automatic_format _identification. pdf.

BIBLIOGRAPHY 165

[Cattermole, 1969] Kenneth W. CattermoRrinciples of pulse code modulation
lliffe, 1969.

[Deconchat and Grandis, 1985] Jacques Deconchat and WaleGt Grandis.
102 Programmi per Philips C7420 Videopac-Editoriale per le scienze in-
formatiche, Milan, Italy, 1985.

[Donnelly, 2006] M Donnelly. JSTOR/Harvard object validati environment
(JHOVE). Digital Curation Centre Case Studies and Intervie®806.

[Felzenszwalb and Huttenlocher, 2004] Pedro F. Felzeribzaval Daniel P. Hut-
tenlocher. Efficient graph-based image segmentatiernational Journal of
Computer Vision59:2004, 2004.

[Forster, 2009] Winnie Forstemhe Encyclopedia of Game Machines: Consoles,
Handhelds and Home Computers 1972-20G&MEplan, 2009.

[Graceet al,, 2009] Stephen Grace, Gareth Knight, and Lynne Montaguesh
tigating the significant properties of electronic conteverdime (inspect): Fi-
nal report, 2009.ht t p: / / ww. si gni fi cant properties. org. uk/

I nspect-finalreport. pdf.

[Granger, 2000] Stewart Granger. Emulation as a digitatgmeation strategy.
D-Lib Magazine Vol. 6 (10), 2000. http://ww. dli b.org/dli b/
oct ober 00/ gr anger/ 10gr anger. ht i .

[Guttenbrunner and Rauber, 2011] Mark Guttenbrunner andrefasd Rauber.
Design decisions in emulator construction: A case study aneéhcomputer
software preservation. IRroceedings of the 8th International Conference
on Preservation of Digital Objects (iPRES 201fpages 171-180, Singapore,
November 2011.

[Guttenbrunner and Rauber, 2012a] Mark Guttenbrunner andré®s Rauber.
Evaluating an emulation environment: Automation and sigaint key charac-
teristics. InProceedings of the 9th International Conference on Digitader-
vation (IPRES 2012)pages 201-208, Toronto, Canada, October 1-5 2012.

[Guttenbrunner and Rauber, 2012b] Mark Guttenbrunner andréas Rauber.
Evaluating emulation and migration: Birds of a feather? Phoceedings of
the 14th Conference on Asian Digital Libraries (ICADL'1Pages 158-167,
Taipei, Taiwan, November 12-15 2012.

[Guttenbrunner and Rauber, 2012c] Mark Guttenbrunner andrees Rauber.
A measurement framework for evaluating emulators for digireservation.

BIBLIOGRAPHY 166

ACM Transactions on Information Systems (TOI®)(2):14:1-14:28, May
2012.

[Guttenbrunneet al, 2009] Mark Guttenbrunner, Mihai Ghete, Annu John,
Chrisanth Lederer, and Andreas Rauber. Digital archeologgoweing dig-
ital objects from audio waveforms. Rroceedings of the Sixth international
Conference on Preservation of Digital Objects (iPRES 20@@ges 90-97,
San Francisco, USA, October 2009.

[Guttenbrunneet al,, 2010a] Mark Guttenbrunner, Christoph Becker, and An-
dreas Rauber. Keeping the game alive: Evaluating stratémi¢ise preserva-
tion of console video gamemternational Journal of Digital Curation (IJDG)
5(1):64-90, 2010.

[Guttenbrunneet al, 2010b] Mark Guttenbrunner, J. Wieners, Andreas Rauber,
and Manfred Thaller. Same same but different - comparingegng envi-
ronments for interactive digital objects. EuroMed volume 6436 ol ecture
Notes in Computer Sciengeages 140-152. Springer, 2010.

[Guttenbrunneet al, 2011] Mark Guttenbrunner, Mihai Ghete, Annu John,
Chrisanth Lederer, and Andread Rauber. Migrating home caanpudio
waveforms to digital objects: A case study on digital arcihagy. Interna-
tional Journal of Digital Curation (1JDC)6(1):79-98, 2011.

[Herman, 2001] Leonard HermariPHOENIX The Fall & Rise of Videogames -
Third Edition Rolenta Press, 2001.

[Hofmanet al., November 2004] H. Hofman, R. Verdegem, M. Day, A. Rauber,
M. Thaller, and S. Ross. DELOS WP6 (deliverable d6.1.1) fraankvior
testbed for digital preservation experiments. Tech. ReRL @S Network of
Excellence, November 2004.

[Huber-Morket al,, 2012] Reinhold Huber-Maork, Alexander Schindler, and Sven
Schlarb. Duplicate detection for quality assurance of doent image collec-
tions. InProceedings of the 9th International Conference on Digite&derva-
tion (iPRES 2012)pages 187194, Toronto, Canada, October 1-5 2012.

[[EEE, 1987] IEEE. IEEE standard 754-1985 for binary floggooint arithmetic.
Reprinted in SIGPLAN22(2):9-25, 1987.

[Innocenti, 2012] Perla Innocenti. Rethinking authenyiait digital art preserva-
tion. In Proceedings of the 9th International Conference on Digitedderva-
tion (iPRES 2012)pages 62—-67, Toronto, Canada, October 1-5 2012.

BIBLIOGRAPHY 167

[ISO, 2012] 1SO. Space data and information transfer systems — Open archival
information system (OAIS — Reference model (ISO 14721)20022.

[Jones, 2004] Caitlin Jones. Seeing double: Emulation inrthand practice.
The Erl King case study. I&lectronic Media Group, Annual Meeting of the
American Institute for Conservation of Historic and ArttsiiVorks Variable
Media Network, Solomon R.Guggenheim Museum, 2004.

[Jurik and Nielsen, 2012] Bolette Ammitzbgll Jurik and Jespmdahl Nielsen.
Audio quality assurance: An application of cross correlatin Proceedings of
the 9th International Conference on Digital PreservatioARES 2012)pages
195-200, Toronto, Canada, October 1-5 2012.

[Lamport and Lynch, 1990] Leslie Lamport and Nancy Lynelandbook of The-
oretical Computer Science, Volume B: Formal Models and S&osarchap-
ter 18, pages 1157-1200. Elsevier Science Publishers BS0.1

[Lange, 2012] Andreas Lange. Results from the KEEP worksbiopng forces.
International expert workshop about digital preservatiofechnical report,
Computerspielemuseum, 2012t t p: // bw f | a. uni - fr ei bur g. de/
wp- upl oads/ bw fl a. uni -frei burg. de/ 2012/ 03/ strategy_
paper KEEP_expert wor kshop _Joi ni ng _Forces Berlin_
final.pdf.

[Liu, 2000] Jane W. S. W. Liu.Real-Time System<Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2000.

[Lohmanet al, 2011] Bram Lohman, Bart Kiers, and David Michel. Emulation
as a business solution: the emulation framework.Ptaceedings of the 8th
International Conference on Preservation of Digital Obge¢tPRES 2011)
pages 167-170, 11 2011.

[Marcum, 1996] Deanna B. Marcum. The preservation of digitérmation.
The Journal of Academic Librarianshig2(6):451 — 454, 1996.

[Matthewset al,, 2008] Brian Matthews, Brian Mcllwrath, David Giaretta,
and Esther Conway. The significant properties of software: téddys
JISC Study, 2008. http://ww. jisc. ac. uk/ medi a/ docunent s/
progranmes/ preservati on/ spsoftware_report _redacted.
pdf .

[Mayer and Rauber, 2012] Rudolf Mayer and Andreas Rauber. Tisvame-
resilient mir processes. IRroceedings of the 13th International Society for

BIBLIOGRAPHY 168

Music Information Retrieval Conference (ISMIR 2012) to app®orto, Por-
tugal, October 8-12 2012.

[Mayeret al, 2012a] Rudolf Mayer, Stefan Proell, and Andreas Rauber. &n th
applicability of workflow management systems for the presgon of busi-
ness processes. RFroceedings of the 9th International Conference on Digi-
tal Preservation (iPRES 2012pages 109-116, Toronto, Canada, October 1-5
2012.

[Mayeret al, 2012b] Rudolf Mayer, Andreas Rauber, Martin Alexander Neu-
mann, John Thomson, and Gongalo Antunes. Preserving dicigmbcesses
from design to publication. I®Proceedings of the 15th International Confer-
ence on Theory and Practice of Digital Libraries (TPDL 201@ages 113—
124, Cyprus, September 23—-29 2012. Springer.

[McDonoughet al, 2010] Jerome P. McDonough, Robert Olendorf, Matthew
Kirschenbaum, Kari Kraus, Doug Reside, Rachel Donahue, Anéheelps,
Christopher Egert, Henry Lowood, and Susan Rojo. Presentigal’worlds
final report. Technical report, University of Illinois, Umrsity of Maryland,
Rochester Institute of Technology, Stanford University @0

[Mellor et al, 2002] Phil Mellor, Paul Wheatley, and Derrek Sergeant. BHgr
tion on request, a practical technique for preservationPrbiteedings of the
6th European Conference on Digital Libraries (ECDL 200@ages 516-526.
Springer, 2002.

[Miksa et al., 2013] Tomasz Miksa, Rudolf Mayer, and Andreas Rauber. En-
suring sustainability of web services dependent processkgernational
Journal on Computational Science and Engineering (1JCS&)cepted for
publication):1-12, 2013.

[Petermichl, 2009] Karl Petermichl. Dateiformate fur Aadiln Handbuch der
Audiotechnikchapter 12. Springer Berlin Heidelberg, 2009.

[Petrov and Becker, 2012] Petar Petrov and Christoph Beckegekscale con-
tent profiling for preservation analysis. Rroceedings of the 9th International
Conference on Digital Preservation (iPRES 201P)ronto, Canada, October
1-52012.

[Pettitt, 2003] Jo Pettitt. PRONOM - field descriptioriBhe National Archives,
Digital Preservation Departmen2003.

[Phelps and Watry, 2005] Thomas A. Phelps and Paul B. Watry. 0A n
compromises architecture for digital document presemmatiln Proceedings

BIBLIOGRAPHY 169

of the 9th European Conference on Research and Advanceddlegkirfor
Digital Libraries (ECDL2005) pages 266-277, Vienna, Austria, 2005.

[Phillips, 2010] George Phillips. Simplicity betrayedCommunications of the
ACM, 53(6):52-58, 2010.

[Rauch and Rauber, 2004] Carl Rauch and Andreas Rauber. Presdigital
media: Towards a preservation solution evaluation mdtmiBigital Libraries:
International Collaboration and Cross-Fertilizatippages 203—-212, 2004.

[Rechertet al,, 2010] Klaus Rechert, Dirk von Suchodoletz, and Randolphé&Velt
Emulation based services in digital preservation.Pmceedings of the 10th
Annual Joint Conference on Digital librariedCDL 10, pages 365-368, Gold
Coast, Queensland, Australia, 2010.

[Rechertet al,, 2012] Klaus Rechert, Dirk von Suchodoletz, and Isgandar Val
izada. Future-proof preservation of complex software remmnents. [nPro-
ceedings of the 9th International Conference on Digital Breation (iPRES
2012) pages 179-182, Toronto, Canada, October 1-5 2012.

[Ross and Gow, 1999] Seamus Ross and Ann Gbugital Archaeology: Res-
cuing Neglected and Damaged Data Resources, a JISC/NPO Sttluy We
Electronic Libraries (eLib) Programme on the Preservatadiklectronic Mate-
rials. Electronic libraries programme studies. Library Infotioa Technology
Center, 1999.

[Rothenberg and Bikson, 1999] Jeff Rothenberg and Tora K. Bik<darrying
Authentic, Understandable and Usable Digital Records TigloTime: Report
to the Dutch National Archives and Ministry of the IntetriocRAND-Europe,
1999.

[Rothenberg, 1998] Jeff Rothenberg. Avoiding technologigatksand: Finding
a viable technical foundation for digital preservationcfeical report, Jan-
uary 1998.htt p: //www. cl i r. org/ pubs/reports/rothenberg/
contents. htm .

[Rothenberg, 2000a] Jeff RothenbeRyeserving Authentic Digital Informatigon
pages 51-68. Council on Library and Information Resourceshiigton,
D.C., USA, 2000.

[Rothenberg, 2000b] Jeff Rothenbeldsing Emulation to Preserve Digital Doc-
uments, Technical ReporKoninklijke Bibliotheek, 2000.

BIBLIOGRAPHY 170

[Slats and Verdegem, 2004] Jacqueline Slats and Remco \ardeg Practi-
cal experiences of the dutch digital preservation testbedINE (The
journal of information and knowledge management syste3d$2):56—65,
2004. http://ww. di gi tal eduurzaanmhei d. nl/ bi bl i ot heek/
docs/ Article_in_VINE 2004. pdf.

[Slats, 2003] Jacqueline Slats. Emulation: Context anceodistatus. Tech. Rep.,
2003. http://ww. di gi tal eduurzaanmhei d. nl/ bi bl i ot heek/
docs/ whi te_paper _enul ati e_EN. pdf.

[Strodlet al, 2006] Stephan Strodl, Andreas Rauber, Carl Rauch, Hans Hofman
Franca Debole, and Giuseppe Amato. The DELOS Testbed for <iigpa
Digital Preservation Strategy. Proceedings of the 9th International Confer-
ence on Asian Digital Librariegpages 323—-332, 2006.

[Strodlet al, 2007] Stephan Strodl, Christoph Becker, Robert Neumayer, and
Andreas Rauber. How to choose a digital preservation syratEegaluating
a preservation planning procedure.Rroceedings of the 7th ACM IEEE Joint
Conference on Digital Libraries (JCDL'07pages 29-38, June 2007.

[Strodlet al, 2011] Stephan Strodl, Petar Petrov, and Andreas RauberaiRbse
on digital preservation within projects co-funded by theogean union in the
ICT programme. Technical report, Vienna University of Tealogy, May
2011.

[Strodlet al, 2012] Stephan Strodl, Daniel Draws, Goncalo Antunes, and A
dreas Rauber. Business process preservation, how to cagagement &
evaluate. InProceedings of the 9th International Conference on Pred@ma
of Digital Objects (iPRES 2012Yoronto, Canada, October 2012.

[Tarrant and Carr, 2012] David Tarrant and Leslie Carr. LDS3#lying digital
preservation principals to linked data systemsPtaceedings of the 9th Inter-
national Conference on Digital Preservation (iPRES 2QI2yonto, Canada,
October 1-5 2012.

[Thaller, 2008] Manfred Thaller. Interaction testing bbknaark deliver-
able PC/2 - D6. Internal Deliverable, EU Project Planets2008.
http://planetarium hki . uni - koel n. de/ pl anets_cns/
sites/default/files/PC2D15_Cl M pdf.

[van der Hoeven and van Wijngaarden, 2005] Jeffrey van deveio and Hilde
van Wijngaarden. Modular emulation as a long-term presienvatrategy for
digital objects. In5th International Web Archiving Workshop (IWAW0S)-
enna, Austria, November 2005.

BIBLIOGRAPHY 171

[van der Hoeveret al., 2005] Jeffrey van der Hoeven, Raymond J. van der
Diessen, and Kerstin van der Meer. Development of a univendaal com-
puter (UVC) for long-term preservation of digital objecfeurnal of Informa-
tion Science31(3):196—-208, 2005.

[van der Hoevert al,, 2007] Jeffrey van der Hoeven, Bram Lohman, and Remco
Verdegem. Emulation for digital preservation in practitae resultsinterna-
tional Journal of Digital CurationVol. 2 (2):123-132, 2007.

[van Diessen, 2002] Raymond J. van Diessen. Preservatianreetents in a
deposit systemlBM/KB Long-Term Preservation Study Report Series Number
3 Chapter 32002.htt p: / / wwwww 05. i bm coni nl / di as/ r esour ce/
preservati on. pdf.

[von Suchodoletz and van der Hoeven, 2008] Dirk von Sucheidand Jeffrey
van der Hoeven. Emulation: From digital artefact to remotehdered envi-
ronments. InProceedings of the Fifth International Conference on Preaer
tion of Digital Objects (IPRES 2008pages 93-97, London, UK, September
2008.

[von Suchodoletet al, 2011] Dirk von Suchodoletz, Klaus Rechert, and Isgan-
dar Valizada. Remote emulation for migration services instrithuted preser-
vation framework. InProceedings of the 8th international Conference on
Preservation of Digital Objects (iPRES 201pgages 158-166, Singapore, 11
2011.

[von Suchodoletet al, 2013] Dirk von Suchodoletz, Mark Guttenbrunner, and
Klaus Rechert. Report on the first iPRES workshop on practicailamn
tools and strategie®-Lib Magazine Vol. 19 (3/4), 2013.

[Webb, 2005] Colin Webb. Guidelines for the Preservation of the Digi-
tal Heritage Information Society Division United Nations Educational
Scientific and Cultural Organization (UNESCO) — National kityr of
Australia, 2005. http://unesdoc. unesco. org/i mages/ 0013/
001300/ 130071e. pdf.

[Whitakeret al, 2002] Andrew Whitaker, Marianne Shaw, and Steven D. Grib-
ble. Denali: Lightweight virtual machines for distributedd networked ap-
plications. Inin Proceedings of the USENIX Annual Technical Conference
2002.

[Woods and Brown, 2008] Kam Woods and Geoffrey Brown. Migmafperfor-
mance for legacy data accessternational Journal of Digital Curation3(2),
2008.

Appendix A

Data Formats of C7420 Home
Computer System

A.1 Introduction

To fully understand the file formats of the system presemdthapter 7.2 we had
to reengineer the data formats. This appendix shows théetespecifications for
all possible formats supported by the system as documemtide ireengineering
process.

A.2 File Formats

To understand the logical format of the data stored in thesfeans it was nec-
essary to find out what kind of data the C7420 can store. Usm@tiginal user
manual it became apparent that the C7420 is able to store fieeedtit kinds of
logical bitstream formats with the commands shown in Tahle A

Table A.1: Logical bitstream formats and corresponding m@md to save data

on the C7420.
Logical bitstream format Command
BASIC Program CSAVE
Screenshot CSAVES
Array CSAVE*
String CSAVEX
Memory Dump CSAVEM

APPENDIXA. DATA FORMATS OF C7420 HOME COMPUTER SYSTEM3

A.3 File Header and Data Block

By saving different kinds of test data we were able to first itethe format of
the 32 byte file header, which is used for determining the &mhthe data block:

e 10 bytes OxD3

¢ 1 byte determining the format of the file, usually the chagafter “CSAVE”
(e.g. 'S’ for screenshot, 0x20 (Space) for BASIC program)

6 bytes for the program name

1 byte 0x00

5 bytes ASCII characters of the line number at which the execuf the
program should start (for BASIC programs only)

3 bytes 0x00

2 bytes start address in memory (Least Significant Byte (LSB) fir

2 bytes length of data block in bytes (excluding the first legdyte 0x00,
LSB first)

e 2 bytes checksum: all data bytes added up to a 16 bit value (irSB

The data block is separated from the file header by 128 byteE.Qkstarts
with Ox00 and continues, depending on the specified form#benfile header,
with the data for each format as specified in the followingises.

A.4 Basic Program

For BASIC programs, the data block is split up into lines whoontain the fol-
lowing information:

e 2 bytes RAM address of the next BASIC line (LSB first)
e 2 bytes line number (LSB first)
e The actual line with the BASIC commands

e 1 byte Ox00

APPENDIXA. DATA FORMATS OF C7420 HOME COMPUTER SYSTEM4

At the end of the BASIC program data block 2 bytes 0x00 aretevrit

Every BASIC command is encoded as a byte code between 0x80xitel
The byte codes for all other characters in a BASIC commared(ircluding white
space) are stored exactly as they are input in the program.

Example BASIC line and encoding:

10 PRINT “HELLO”

Bytes Representing

CF 88 0x88CF (address of next BASIC line in RAM
0A 00 0x000A = 10 (line number)

94 PRINT (encoded command)

20 22 <SPACE><QUOTATION MARK>
48454C4C4F HELLO

22 <QUOTATION MARK>

00 indicates end of line

A.5 Screenshot

The Philips G7400 using the C7420 Home Computer Module categismages
that are built up using 8x10 pixel characters. 23 of the 24&dldmn rows on
the screen can be used for graphics, the uppermost row isaskgplay internal
information such as cursor coordinates and cannot be astessg the standard
functions for loading and saving screenshots.

Users can change the representation (glyph) of the builtaptgcs and text
mode characters using the SETEG and SETET commands. Botlesd# tom-
mands have two parameters: the character code of the symbelreplaced and
a string consisting of twenty hexadecimal digits descgliime appearance of the
symbol. Each character uses an 8x10 pixel grid and is encasléallows:

e Two hexadecimal digits (one byte) are used for each row ogjtitk starting
with the topmost one.

e The n-th bit of such a byte, starting with the lowest signifiichit, corre-
sponds to the n-th pixel of the row from the right.

A screenshot data block contains character and formatttey \thich can be
used to fill 23 40-column rows on the screen and thus is 184€skgng. Only
the pointer to the used character and the formatting bytstared in a screenshot
file, user defined characters are lost if the program defimiegcharacters is not
stored together with the screenshot file.

APPENDIXA. DATA FORMATS OF C7420 HOME COMPUTER SYSTEMS5

& Data manager for the Philips G7400 + C7420 BASIC module
File

Inport O Auds fils Excetuts Closs all tabs + meg]

(]
[)

= | Character code o]
[JBlnk.
| Foreground: | MBiack v

[T &raphics mode:

| Background: | I Biack &
[] pouble width

] Dauble height
Pre-ampification: J

Using demodulator: WaveParser2 (Arc length
analy:

el 1638

Clear Iog auromatically Clear lag I

Figure A.1: Migrationtool with image loaded from wav-file.

The formatting of every 2 bytes of data for each screen mosi§ described
below, as well as how the formatting data for a byte influenthesendering of a
character on the screen. An example image loaded in the toigtaol shown in
Chapter 7 can be seenin Figure A.1.

A.5.1 Formatting

Each of the 40x23 characters is encoded using two bytes: yiecbntaining

the character code, followed by a byte containing formgttiata. A character
is displayed either in text mode or graphics mode - this isest@s part of the
formatting byte associated with it and determines the usagrical representa-
tion (glyph), as well as the meaning of the remaining foringttlata, as shown in
Figure A.2.

A.5.2 Foreground and Background Colors

There are eight possible colors, each being a combinatioadyfgreen and blue.
In the three bit representation used by the device, the feas{ significant bit
determines the amount of red, the second bit determinesibera of green and
the third bit determines the amount of blue. The resultingrsp ordered from 0
to 7 are: black, red, green, yellow, blue, magenta, cyan dntéw

In graphics mode, each character has its own foregroundasidjound color
as specified by the character’s formatting byte.

APPENDIXA. DATA FORMATS OF C7420 HOME COMPUTER SYSTEMG6

Format Byte Bit Usage in Text Mode:

+— o
=
9]
e}

-——- foreground color

e ——————— 'blink

f——_——————— double height
ol double width
4————————— reverse
e 0 (controls graphics mode)

Format Byte Bit Usage in Graphics Mode:

o blink

Figure A.2: Structure of byte used for formatting in Text Mqtop) and Graphics
Mode (bottom).

In text mode, each character has its own foreground colaydettin the for-
matting byte. The background color is “inherited” from tlzestl character pre-
viously encountered on the row that was either a graphicsencbaracter or a
text mode character with a code greater or equal to 128. Is¢bend case, the
background color is taken from the same bits as from a grapthiaracter (bits
4.5 and 6). This method is generally used for setting the ¢packnd color at the
beginning of a row and can be seen in screenshots originabngthe device -
the first column contains characters with code 128 and a fitimgdyte with both
hexadecimal digits set to the desired background colordohédine.

A.5.3 Double Width and Height

Text mode characters can be displayed in double width orhhei§ince glyph
sizes are fixed, two consecutive grid cells/glyphs are requio fully display
one double width or double height character, and a total of &ells/glyphs is
required for a double width, double height character. Sgttihe double width /
double height attribute for a single character results iy balf of it being shown
(or a quarter, if both attributes are set).

The same character code / format pair must yield 2 or 4 diftegg/phs, de-
pending on which part of the character needs to be drawn. Ules used to
determine which part to draw are as follows:

APPENDIXA. DATA FORMATS OF C7420 HOME COMPUTER SYSTEM7

Double width

Each occurrence of a double width character after a singlédweharacter (or after
a complete double width character) uses the first glyph (gleft of the character).
A double width character directly following the first glypkes the second glyph.

Double height

Each line is assigned either top glyphs or bottom glyphsné tiontaining double

height characters that comes after a line containing no shahacters uses top
glyphs, consecutive lines are assigned bottom and top glyplan alternating

fashion.

A.5.4 Blink and Reverse

The blink attribute makes a character blink on the screens- shown for one
second, then hidden for one second, then shown again, and so o

The reverse attribute reverses the background color aedrmund color of a
character. It also reverses the blinking phase for thatacher.

A.6 Array

The first byte of an array encodes the number of dimensiorigedatray. For each
dimension, two subsequent bytes encode the number of fieltdsidimension

(LSB first). Finally, for every entry in the array, 4 bytes arsed to express the
value in different formats, depending on whether the armaytains strings or

numbers.

A.6.1 String Array
e 1 byte length of the string in bytes

e 1 unused byte

e 2 bytes address of the string in memory

Note that the actual string data is not saved in the arrayhleustrings have to
be saved and loaded separately using the string save confQSMYEX".

APPENDIXA. DATA FORMATS OF C7420 HOME COMPUTER SYSTEMS8

A.6.2 Number Array

By saving number arrays on the original system, examiningréiselting byte
stream, changing values and re-loading the array onto tgmalsystem we were
able to find out that a floating point format is used to store Inewrs. The encod-
ing is similar to, but does not follow the IEEE 754 floating pistandard [IEEE,
1987], as that was released 2 years later than the C7420dgartrivith further

testing, the bits for mantissa, sign and exponent were m@ted. 4 bytes are
used to encode the number as a 32 bit floating point value (LSB, fivith the

following meaning of the bits:

bit 25-32 bit 24 bit 1-23
exponent sign mantissa
(exponent bias = 129) | (1 = negative)

So any number can be calculated using the following equation

number = sign X mantissa x 2Pt

where,

sign — (_1)<bit24>

mantissa = 1+ (< bitl — 23 > /2%3)
exponent =< bit25 — 32 > —129

A.7 String

Strings are stored as a stream of bytes using the ASCII eng@aliimber of bytes
according to the file header information).

A.8 Memory Dump

Memory dumps are stored as byte values (number of bytesdingato the file
header information).

Appendix B

ASCI| Table for C7420 Home
Computer System

B.1 Introduction

The C7420 Home Computer System uses numeric codes for charticae are
different from standardized ASCII character codes usedytotlae following list
shows the characters, their numeric codes in the C7420 syatenthe ASCII
character codes for the characters.

The lists shown in this appendix are used to convert both idaparted to
the C7420 rendering environment as well as data exported tlieranvironment
(either in file format or when copying data to the clipboard)he lists where
created using the C7420 character tables in Appendix D of tilgenal system’s
manual.

B.2 Converting C7420 Character Set to ASCII

Figure B.1 shows what character code used in the C7420 cartisdgapped to
what character in the Windows-1252 ASCII extended charaeterThe list shows
only characters that have different character codes in td@ CZharacter set than
in the ASCII character set, or that are characters that exigh® C7420 and not
in the ASCII character set. Every character in the C7420 sebbas mapped
to a character in the ASCII character set. If no correspongmngable ASCII
character exists, a textual description of the characterusad in the table. The
character mapping was performed by selecting characteneiASCII character
set that closest resemble the original character in the C@d&tacter set.

The conversion shown in this section is used whenever datégiated from
the C7420 environment to the host environment (i.e., copgorgen content to

APPENDIX B. ASCII TABLE FOR C7420 HOME COMPUTER SYSTEMO

the clipboard, saving file content in ASCII format).

Figure B.1: Characters mapped from the C7420 character set@dl ABaracter
set.

Code Character C7420 ASCll Code Character Code Character C7420 ASCII Code Character
C7420 CP-1252 AsCll C7420 CP-1252 AsCll

0x00 Inverted question mark 0xBF 0x16 OxFB

0x01 A 0xC2 A 0x17 0xEO a
0x02 E 0xC9 E 0x18 + OxF7 +
0x03 e 0xA3 i 0x19 e OxE8 e
0x04 S 0x24 5 0x1A e 0x9C o3
0x05 C 0xC7 C 0x1B é OxEA é
0x06 # 0x23 # 0x1C % 0xBC Y
0x07 A 0xCO A 0x1D % 0xBD %
0x08 V] 0xD9 u 0x1E % 0xBE %
0x09 E 0xC8 £ Ox1F o] 0xF4 o]
0x0A & 0x8C & 0x23 E 0xCB E
0x0B E 0xCA E 0x24 a 0xE2 E]
0x0C left arrow 0x3C < Ox5E i OxEE i
0x0D up arrow 0x5E @ 0x5F horicontal line bottom 0x5F _
0x0E right arrow 0x3E > 0x60 horizontal line center 0x97 =
0xOF down arrow 0x76 v 0x7B vertical line left 0x7B {
0x10 ° 0xBA ° 0x7C vertical line center 0x7C |
Ox11 + 0xB1 + 0x7D vertical line right 0x7D }
0x12 é OxE9 é 0x7E horizontal line top 0x97 —
0x13 & OxEB & Ox7F full block OxAQ <NBSP>
0x14 1 OxEF i OxFE - 0x85

0x15 c OxE7 ¢ OxFF n n

B.3 Converting ASCII Character Setto C7420 Char-
acters

To convert data from the Windows-1252 ASCII extended charas#t, the map-
ping shown in Figures B.2 and B.3 are used. Shown are againlmalgharacters
that have a different code in the two character sets or ex@té character set, but
not in the other. The ASCII extended character set used derti$ bit, while
for C7420 basically only 7 bits are used (with the two exceiOXFE and OxFF
shown in Figure B.1). By mapping a larger set of characters toaller set, some
of the characters in the C7420 set are reused for similar hgogiaracters in the
ASCII set. Control characters in the ASCII character set (03K0F) have not
been mapped.

The conversion shown in this section is used when data frerhdist environ-
ment is transferred to the C7420 environment (i.e., copyatg thto the keyboard
buffer of the C7420, loading file content from ASCII format).

APPENDIX B. ASCII TABLE FOR C7420 HOME COMPUTER SYSTEAMB1

Figure B.2: Characters mapped from the ASCII character set t@@@Haracter
set: 0x23-0xD4

ASCII Code Character C7420 Character C7420 ASCII Code Character 7420 aracter C7420
CP-1252 ASCII Code CP-1252 ASCII Code
0x06 # 0x92 " '

0x23 # 0x27
0x24 $ 0x04 $ 0x93 - 0x22 "
0x5E n OxFF n 0x94 " 0x22 "
0x60 N 0x27 ' 0x95 . ox10 s
0x7B { 0x7B vertical line left 0x96 _ 0x2D .
0x7C | 0x7C vertical line center 0x97 _ 0x60 _
0x7D } 0x7D vertical line right 0x98 = 0x2D .
0x7E ~ 0x2D = 0x99 ™ 0x74 t
0x80 € 0x45 E OX9A H 0x73 5
O0x82 5 0x2X B 0x9B J Ox3E >
0x83 f 0x66 f 0x9C ce 0x1A (03
0x84 " 0x22 " 0x9E b Ox5A z
0x85 OxFE = Ox9F ¥ 0x59 Y
0x86 1 0x2B + 0xAQ NBSP 0x20 space
0x87 3 0x2B + 0xA1 i 0x69 I
0x88 G OxFF n 0xA2 c 0x63 c
0x89 %o 0x25 % 0OxA4 £ 0x03 £
0x8A 5 0x53 S 0xA4 o ox10 =
0x8B ¢ 0x3C < 0xAS ¥ 0x59 Y
0x8C E 0x0A E 0xA6 1 0x7C |
0x8E Z 0x5A z OxAT § 0x24 g
0x91 ‘ 0x27 ' 0xA8 - OxFE =
CP-1252 AsCll Code CP-1252 AsCll Code
0xAQ © 0x63 c OxBF é 0x00 Inverted questionmark
OxAA B 0x61 a 0xC0 A 0x07 A
0xAB « 0x3C < 0xC1 A 0x07 A
0xAC - 0x2D = 0xC2 A 0x01 A
OxAD - 0x2D - 0xC3 A 0x01 A
OXAE o 0x52 R 0xC4 A 0x01 A
OxAF . Ox7E horizontal line top 0xC5 A 0x01 A
0xBO ¢ 0x10 ° 0xCo £ 0x41 A
0xB1 + 0x11 = 0xC7 [0x05 C
0xB2 3 0x32 2 0xC8 E 0x09 E
0xB3 E 0x33 3 0xC9 E 0x09 E
0xB4 ‘ 0x27 ' 0xCA E 0x0B E
0xB5 " 0x75 u 0xCB E 0x0B E
0xB6 1 0x50 P 0xCC i 0x49 I
0xB6 = 0x2E . 0xCD i 0x49 I
0xB8 . 0x2E 5 OxCE i 0x49 I
0xB9 ! 0x31 1 0xCF T 0x49 I
0xBA 2 0x10 ° 0xDO b 0x44 D
0xBB » 0x3E > 0xD1 N Ox4E N
0xBC Y 0x1C % 0xD2 0 Ox4F (t]
0xBD] 0x1D % 0xD3 o] 0x4F o
O0xBE % Ox1E % 0xD4 0 0x4F (o]

APPENDIX B. ASCII TABLE FOR C7420 HOME COMPUTER SYSTEMB2

Figure B.3: Characters mapped from the ASCII character set t@@@Haracter
set: 0xD5-0xFF

ASClI Code Character C7420 Character C7420 ASCII Code €7420 Character C7420
CP-1252 ASCll Code CP-1252 Code
o 0 & &

0xDS Ox4F OxEB 0x13

0xD6 o] Ox4F o OXEC i 0x69 i
0xD7 x 0x78 X OxED i 0x69 i
0xD8 4] 0x4F 0 OXEE i Ox5E i
0xD9 U 0x08 u OXEF i 0x14 i
0xDA U 0x08 U 0xFO 3 Ox6F o
0xDB 0 0x08 U 0xF1 fi 0x6E n
0xDC 0 0x08 v} OxF2 o Ox6F o
0xDD ¥ 0x59 Y OxF3) Ox6F o
OxDE b 0x50 P OxF4 8 OxBF o
OxDF B 0x53 S OxFS] Ox6F o
0xEQ 3 0x17 a 0xF6 B Ox6F o
0OxE1 E] 0x17 a OxF7 = 0x18 =
0xE2 a 0x17 a 0xF8] 0x6F o
OxE3 H 017 a 0xF9 it 0x16 i
OxE4 E] 0x17 L] OxXFA i 0x16 i
OxE5 4 0x17 4 OxFB il 0x16 il
0xE6 ® 0x61 a OxFC il 0x16 i
OxE7 ¢ 0x15 ¢ 0xFD v 0x79 ¥
OxE8 e 0x19 & OxFE b 0x70 p
0xE9 é 0x12 é OxFF v 0x79 y

OxEA Ox1B

Y
@

Appendix C
Event Log for O2EM

C.1 Introduction

To enable an automated evaluation of the emulator shown ipt€hd, a log was
implemented that contains important events in the rendegocess. The saved
log can also be used as a command file for the emulator oncertlening process
is repeated. In this chapter we show the various events thia Wwplemented for
logging in the event log as well as snippets from an examgle lo

C.2 Implemented Events

Table C.1 shows the events that have been implemented in OBBWhsin Sec-
tion 7.4. It shows the type of event, its usage, the code &dsddo the event, and
any additional data recorded.

Usage can be any of the following:

Log only an Event that is only logged, and not used when replayingatile
on a re-run of the rendering process

Log and Replay an Event that is also triggered again on a re-run of the rémgler
process at the same point in time

APPENDIX C. EVENT LOG FOR O2EM 184

Table C.1: Events implemented in the O2EM Event Log.

code event usage description additional data
0 Start Emulation Log Logs the time of the rendering pro- filename of cartridge/checksum af
only cess start cartridge file, emulator name, ver-
sion number and current date/time
1 Keypress Log and | Logs a key event in the emulator | key code and associated character
replay
2 Joystick Log and | Logs a joystick event joystick number (0 or 1) and the
replay joystick value read from the hardt
ware port
3 Screenshot Log and | Logs the event of a screenshot beingfilename of screenshot
replay taken in the emulator
4 Memory Save Log and | Logs the event of a memory regioh filename of memory dump and re-
replay being saved gion being saved (VDC = videq

processor registers, Z80 = C7420
RAM, EXTRAM / INTRAM =

RAM external / internal of Intel
8048h processor, VPP = second
video processor registers)

5 C7420 File loaded | Log Logs a read access to an exterrjafilename
only file (home computer cartridge em-
ulation only)
6 C7420 File saved | Log Logs a write access to an externalfilename
only file (home computer cartridge emy-
lation only)
254| Vfertical Blank Log Logs the occurrence of a vertical
only blank event (frame start)
255 Emulation Stop Log and | Logs the time the rendering process
replay was finished, also stops the render-

ing process on a replay

C.3 Example Log

The following snippets are taken from a log created duringradering of Ter-
rahawks during the evaluation shown in Section 8.2.2. Oalgvant parts of
the 3863 line long log taken over a period of 83,121 secondsshown, parts
containing only a logging of vertical blank events and jajksstnovements were
shortened/suppressed.

< Starting the rendering process >

0; 0, 000; 0; 0; Enul ati on started; D:/ Dat a/ Emu/ G7000/ 02entl20sr c/ bi n/ rons/ vi deopac/ vp_51p
. bin| 764894A1; O2EM v1. 21| 2012- 05- 02 21: 13: 42
5494; 0, 000; 0; 254; Vertical Bl ank;

12754; 0, 052; 1; 254; Vertical Bl ank;

20013; 0, 072; 2; 254; Vertical Bl ank;

27271; 0, 092; 3; 254; Vertical Bl ank;

34531; 0, 112; 4; 254; Vertical Bl ank;

41789; 0, 132; 5; 254; Verti cal Bl ank;

49048; 0, 152; 6; 254; Verti cal Bl ank;

56307; 0, 172; 7; 254; Verti cal Bl ank;

63566; 0, 192; 8; 254; Verti cal Bl ank;

70825; 0, 212; 9; 254; Vertical Bl ank;

78085; 0, 232; 10; 254; Verti cal Bl ank;

85344; 0, 252; 11; 254; Verti cal Bl ank;

APPENDIX C. EVENT LOG FOR O2EM

< Starting the gane by pressing the key '0° >
491847; 1, 372; 67; 254; Vertical Bl ank;

499106; 1, 392; 68; 254; Vertical Bl ank;

499190; 1, 392; 68; 1; Keypress; 48;’' 0

499197; 1, 392; 68; 1; Keypress; 48;’' 0

506365; 1, 412; 69; 254; Verti cal Bl ank;

513624; 1, 432; 70; 254; Verti cal Bl ank;

< Ganeplay (vertical blank and joystick novenent events) >

2524367; 6, 971; 347; 254; Ver ti cal Bl ank;
2531626; 6, 991; 348; 254; Verti cal Bl ank;
2535061; 7, 011; 349; 2; Joyst i ck; 0; 247
2538886; 7, 011; 349; 254; Verti cal Bl ank;
2542266; 7, 031; 350; 2; Joyst i ck; 0; 247
2546144; 7, 031; 350; 254; Verti cal Bl ank;
2549699; 7, 051; 351; 2; Joyst i ck; 0; 247
2553403; 7, 051; 351; 254; Ver ti cal Bl ank;
2557134; 7, 071; 352; 2; Joyst i ck; 0; 247
2560662; 7, 071; 352; 254; Ver ti cal Bl ank;

7862002; 21, 692; 1083; 2; Joysti ck; 0; 239
7866992; 21, 692; 1083; 254; Vertical Bl ank;
7869164; 21, 712; 1084; 2; Joysti ck; 0; 239
7874250; 21, 712; 1084; 254; Verti cal Bl ank;
7881510; 21, 732; 1085; 254; Verti cal Bl ank;

< Ganeplay finished, entering the name ’'nark’
8963100; 25, 210; 1234; 254; Vertical Bl ank;
8970359; 25, 230; 1235; 254; Verti cal Bl ank;
8971205; 25, 230; 1235; 1; Keypress; 109; ' m
8977619; 25, 250; 1236; 254; Verti cal Bl ank;
8978467; 25, 250; 1236; 1; Keypress; 109; ' m
8984878; 25, 270; 1237; 254; Verti cal Bl ank;
8992136; 25, 290; 1238; 254; Vertical Bl ank;
8993024, 25, 290; 1238; 1; Keypr ess; 109; ' m
8999396; 25, 310; 1239; 254; Verti cal Bl ank;
9006654; 25, 330; 1240; 254; Vertical Bl ank;
9007540; 25, 330; 1240; 1; Keypress; 109; ' m
9013913; 25, 350; 1241; 254; Vertical Bl ank;
9014801, 25, 350; 1241; 1; Keypress; 97; " a
9021172; 25, 370; 1242; 254; Vertical Bl ank;
9022060; 25, 370; 1242; 1; Keypress; 97; " a
9028432; 25, 390; 1243; 254; Vertical Bl ank;
9035690; 25, 410; 1244; 254; Vertical Bl ank;
9036578; 25, 410; 1244, 1; Keypress; 97; ' a
9042949; 25, 430; 1245; 254; Verti cal Bl ank;
9050209; 25, 450; 1246; 254; Verti cal Bl ank;
9051057; 25, 450; 1246; 1; Keypress; 97; ' a
9057467; 25, 470; 1247; 254; Verti cal Bl ank;
9064726; 25, 490; 1248; 254; Verti cal Bl ank;
9071986; 25, 510; 1249; 254; Vertical Bl ank;
9079244; 25, 530; 1250; 254; Verti cal Bl ank;
9086503; 25, 550; 1251; 254; Vertical Bl ank;
9093763; 25, 570; 1252; 254; Verti cal Bl ank;
9101022; 25, 590; 1253; 254; Verti cal Bl ank;
9108281; 25, 610; 1254; 254; Verti cal Bl ank;
9115539; 25, 630; 1255; 254; Vertical Bl ank;
9122799; 25, 650; 1256; 254; Vertical Bl ank;
9130058; 25, 670; 1257; 254; Verti cal Bl ank;
9137317; 25, 690; 1258; 254; Vertical Bl ank;
9144575; 25, 710; 1259; 254; Verti cal Bl ank;
9151835; 25, 730; 1260; 254; Vertical Bl ank;

for the high score >

185

APPENDIX C. EVENT LOG FOR O2EM 186

9159094; 25, 750; 1261; 254; Verti cal Bl ank;
9166352; 25, 770; 1262; 254; Verti cal Bl ank;
9173612; 25, 790; 1263; 254; Verti cal Bl ank;
9180871; 25, 810; 1264; 254; Verti cal Bl ank;
9188129; 25, 830; 1265; 254; Vertical Bl ank;
9195389; 25, 850; 1266; 254; Verti cal Bl ank;
9202648; 25, 870; 1267; 254; Vertical Bl ank;
9209906; 25, 890; 1268; 254; Verti cal Bl ank;
9217166; 25, 910; 1269; 254; Verti cal Bl ank;
9224425; 25, 930; 1270; 254; Verti cal Bl ank;
9231683; 25, 950; 1271; 254; Verti cal Bl ank;
9238943; 25, 970; 1272; 254; Vertical Bl ank;
9239757, 25, 970; 1272; 1; Keypress; 114; ' r’

9246202; 25, 990; 1273; 254; Vertical Bl ank;
9247018, 25, 990; 1273; 1; Keypress; 114; "' r’

9253460; 26, 010; 1274; 254; Verti cal Bl ank;
9260720; 26, 030; 1275; 254; Verti cal Bl ank;
9261609; 26, 030; 1275; 1; Keypress; 114; ' r’

9267979; 26, 050; 1276; 254; Verti cal Bl ank;
9275237; 26, 070; 1277; 254; Verti cal Bl ank;
9276126; 26, 070; 1277; 1; Keypress; 114; ' r’

9282496; 26, 090; 1278; 254; Verti cal Bl ank;
9289756; 26, 110; 1279; 254; Vertical Bl ank;
9290645; 26, 110; 1279; 1, Keypress; 107; ' k

9297014; 26, 130; 1280; 254; Vertical Bl ank;
9297901; 26, 130; 1280; 1; Keypress; 107; ' k

9304273; 26, 150; 1281; 254; Vertical Bl ank;
9311533; 26, 170; 1282; 254; Vertical Bl ank;
9312422; 26, 170; 1282; 1; Keypress; 107; ' k

9318791; 26, 190; 1283; 254; Vertical Bl ank;
9326050; 26, 210; 1284; 254; Verti cal Bl ank;
9326937; 26, 210; 1284; 1; Keypress; 107; ' k

9333309; 26, 230; 1285; 254; Verti cal Bl ank;
9340569; 26, 251; 1286; 254; Verti cal Bl ank;

< Ganepl ay of another game - joystick novenents and vertical blank events >
10001138; 28, 560; 1377; 254; Vertical Bl ank;

10008397, 28, 580; 1378; 254; Verti cal Bl ank;

10010238; 28, 600; 1379; 2; Joysti ck; 0; 253

10015655; 28, 600; 1379; 254; Verti cal Bl ank;

10019489; 28, 620; 1380; 2; Joyst i ck; 0; 253

10022915; 28, 620; 1380; 254; Verti cal Bl ank;

10026155; 28, 640; 1381; 2; Joyst i ck; 0; 253

10030173; 28, 640; 1381; 254; Vertical Bl ank;

10033416; 28, 660; 1382; 2; Joyst i ck; 0; 253

< Taking a screenshot of the currently displayed inage as file terral_1.bnp >
18936966; 53, 180; 2608; 254; Verti cal Bl ank;
18944226; 53, 200; 2609; 254; Ver ti cal Bl ank;
18944226; 64, 731; 2609; 3; Scr eenshot saved; bi n/ scshot/terral_1. bnp;
18951484; 65, 290; 2610; 254; Verti cal Bl ank;
18958744; 65, 310; 2611; 254; Verti cal Bl ank;
18966003; 65, 330; 2612; 254; Verti cal Bl ank;
18973262; 65, 350; 2613; 254; Verti cal Bl ank;
18980521; 65, 370; 2614; 254; Verti cal Bl ank;
18987779; 65, 390; 2615; 254; Verti cal Bl ank;
18995039; 65, 410; 2616; 254; Verti cal Bl ank;
19002297; 65, 430; 2617; 254; Vertical Bl ank;
19009557; 65, 450; 2618; 254; Verti cal Bl ank;
19016815; 65, 470; 2619; 254; Ver ti cal Bl ank;
19024075; 65, 490; 2620; 254; Verti cal Bl ank;
19031334; 65, 510; 2621; 254; Ver ti cal Bl ank;

APPENDIX C. EVENT LOG FOR O2EM 187

19038593; 65, 530; 2622; 254; Ver ti cal Bl ank;
19045852; 65, 550; 2623; 254; Verti cal Bl ank;
19053111; 65, 570; 2624; 254; Ver ti cal Bl ank;
19060370; 65, 590; 2625; 254; Verti cal Bl ank;
19067629; 65, 610; 2626; 254; Vertical Bl ank;
19074887; 65, 630; 2627; 254; Verti cal Bl ank;
19082147; 65, 650; 2628; 254; Vertical Bl ank;
19089405; 65, 670; 2629; 254; Verti cal Bl ank;
19091262; 65, 690; 2630; 2; Joyst i ck; 0; 247
19096664; 65, 690; 2630; 254; Verti cal Bl ank;
19100267; 65, 710; 2631; 2; Joyst i ck; 0; 247
19103924, 65, 710; 2631; 254; Vertical Bl ank;
19107574, 65, 730; 2632; 2; Joyst i ck; 0; 247
19111183; 65, 730; 2632; 254; Vertical Bl ank;
19113043; 65, 749; 2633; 2; Joyst i ck; 0; 247
19118442; 65, 750; 2633; 254; Ver ti cal Bl ank;
19121828; 65, 770; 2634; 2; Joyst i ck; 0; 247
19125700; 65, 770; 2634; 254; Verti cal Bl ank;
19129280; 65, 790; 2635; 2; Joyst i ck; 0; 247
19132959; 65, 790; 2635; 254; Verti cal Bl ank;
19134817, 65, 809; 2636; 2; Joyst i ck; 0; 247
19140218; 65, 810; 2636; 254; Verti cal Bl ank;
19143678; 65, 830; 2637; 2; Joyst i ck; 0; 247

< After sone nore action on screen and joystick novenments taking a second screenshot of the
currently displayed inmage as file terra2_!.bnp >

19989522; 68, 149; 2753; 254; Ver ti cal Bl ank;

19996781; 68, 169; 2754, 254; Verti cal Bl ank;

19996781, 81, 086; 2754; 3; Scr eenshot saved; bi n/ scshot/terra2_1. bnp
20004040; 81, 628; 2755; 254; Verti cal Bl ank;

20011298; 81, 648; 2756; 254; Verti cal Bl ank;

< Ending the emul ation process by pressing 'ESC to exit the enmulator >
20483133; 82, 948; 2821, 254; Verti cal Bl ank;
20490393; 82, 968; 2822; 254; Vertical Bl ank;

20491209; 83, 118; 2822; 1; Keypr ess; 15131; ' ESC

204912109; 83, 118; 2822; 1; Keypress; 15131; ' ESC

20491229; 83, 118; 2822; 1; Keypr ess; 15131; ' ESC

20491239; 83, 118; 2822; 1; Keypress; 15131; ' ESC

20491249; 83, 118; 2822; 1; Keypr ess; 15131; ' ESC

20492159; 83, 121; 2823; 255; Enul ati on st opped; ;

