
DISSERTATION

Establishing and Verifying Authentic
Performances of Digital Objects: A

Framework and Process for Evaluating
Digital Preservation Actions

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors
der technischen Wissenschaften

unter der Leitung von

ao.univ.Prof. Dr. Andreas Rauber
E188

Institut für Softwaretechnik und Interaktive Systeme

eingereicht an der Technischen Universität Wien
Fakultät für Informatik

von

Dipl.-Ing. Mark Guttenbrunner
9325367

Tongasse 6/7, 1030 Wien

Wien, am16. Februar 2014

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

i

Kurzfassung

Museen, Archive und Bibliotheken sehen sich immer öfter mit der Aufgabe
konfrontiert, nicht nur analoge Daten auf Papier oder physische Kunstwerke zu
bewahren, sondern auch kulturelle Objekte in digitaler Form in ihren Sammlun-
gen auf viele Jahre bewahren zu müssen. Dabei geht es nicht nur darum, dass diese
digitalen Daten gespeichert werden, sie müssen auch in einer Form wiedergegeben
können, die möglichst dem ursprünglichen Zweck der Daten entspricht. Doch
nicht nur kulturelle Objekte müssen bewahrt werden, auch Arbeitsabläufe und au-
tomatische Geschäftsprozesse müssen bewahrt werden, um sie zu späteren Zeit-
punkten zum Beispiel zur Beweisführung vor Gerichten wieder aktivieren zu kön-
nen.

Es gibt prinzipiell zwei verschiedene Verfahren, um digitale Daten über einen
langen Zeitraum zugänglich zu halten. Entweder werden die Daten auf immer
neue Formate migriert, um sie mittels aktueller Software anzeigen zu können,
oder es wird die Umgebung, mit der sie angezeigt werden, als virtuelle Umge-
bung erhalten. Dabei werden bestimmte Schichten, die notwendig sind um ein
Objekt anzuzeigen, ausgetauscht oder sogar neu eingeführt. So kann zum Beispiel
die Hardware eines Systems durch einen Emulator ersetzt werden, der es er-
laubt, die Software, die notwendig ist ein Objekt anzuzeigen, auf neuer Hard-
ware auszuführen. Doch unabhängig davon, ob ein digitales Objekt auf ein neues
Format migriert wird oder ob ein Emulator eingesetzt wird, um das Objekt weit-
erhin anzuzeigen, ist es notwendig, das Ergebnis der Aktion, die ausgeführt wird,
zu prüfen. Es muss festgestellt werden, ob die Eigenschaften eines Objekts das
angezeigt wird durch die Aktion verändert werden, und in welchem Ausmaß. Erst
wenn der Einfluss der Aktion auf die sogenannten signifikanten Eigenschaften
eines Objekts bekannt ist, kann man entscheiden, ob eine Aktion zulässig ist, oder
die Darstellung eines Objekts in einer Art und Weise verändert, die nicht akzep-
tabel ist.

Die Forschung konzentrierte sich bisher darauf, wie Vergleiche zwischen mi-
grierten Objekten angestellt werden können, um festzustellen, ob bei einer Migra-
tion signifikante Eigenschaften eines Objekts verändert wurden. Die Notwendig-
keit, bei Emulation, bei der das Objekt nicht verändert wird, Vergleiche zwischen
den dargestellten Objekten anzustellen, ist bekannt, allerdings gibt es keine Vorge-
hensmodelle, wie solche Vergleiche angestellt werden können.

Im Rahmen dieser Dissertation wird ein Vorgehensmodell (dasPreservation
Action Evaluation Framework) erstellt, das es erlaubt, dieDarstellung eines Ob-
jekts in verschiedenen Umgebungen zu vergleichen. In einemersten Schritt wird
ausgeführt, dass es eigentlich keinen Unterschied macht, ob ein Objekt migriert
wird, oder die Umgebung zur Darstellung eines Objekts emuliert wird. In beiden
Fällen muss nicht das Objekt selbst sondern seine dargestellte Form verglichen

ii

werden. Wir beschreiben, welche Informationen über ein Objekt und seine Umge-
bung gesammelt werden müssen, und an welchen Stellen in einem System ein
Objekt verglichen werden kann. Anschließend zeigen wir, wie die zur Darstel-
lung eines Objekts notwendige Umgebung neu aufgebaut werden kann, und was
notwendig ist, um Vergleiche anstellen zu können. Wir beschreiben welche ex-
ternen Einflüsse auf die Ausführung eines Objekts abgefangen und bei der neuer-
lichen Ausführung wieder zugeführt werden müssen, um eine deterministische
Ausführung zu garantieren und Bedingungen zu erzeugen, die einen Vergleich er-
lauben. Wir beschreiben weiters, wie das Framework in einenPreservation Work-
flow eingebunden werden kann und in den verschiedenen Phasendes Workflows
zur Anwendung kommt.

Da eine automatische Evaluierung der Darstellung digitaler Objekte nur mög-
lich ist, wenn diese auch zu einem gewissen Grad von den ausführenden Umge-
bungen unterstützt ist, zeigen wir auf, welche Funktionen diese implementieren
sollten, um sowohl den Datenaustausch zwischen dem Host-System und dem
Gast-System, als auch die Evaluierung zu ermöglichen.

In weiterer Folge stellen wir einen obsoleten Heim-Computeraus den 80er
Jahren vor. Wir zeigen wie wir ein Programm entwickelten, das es uns erlaubt, auf
Audiokassetten gespeicherte Daten ohne Verwendung des Orignalsystems auszule-
sen, und in nicht-obsoleten Formaten zu speichern. Da einige dieser Daten allerd-
ings Programme sind, die nicht ohne weiteres migriert werden können, entwick-
elten wir einen Emulator der diese Programme auf modernen Systemen lauffähig
macht. Die für eine automatische Evaluierung notwendigen Funktionen wurden
in den Emulator implementiert. Anschließend zeigen wir, wie anhand des Frame-
works die Ausführung von zwei Objekten im Emulator evaluiert wurde, und zwar
einem Geschäftsprozess und einem Videospiel. Für zwei weitere Objekte auf an-
deren Systemen (einem Musikklassifizierungsprozess und digitaler Kunst) zeigen
wir die notwendigen Schritte einer Evaluierung im Framework.

Durch die erfolgreiche Evaluierung wurde die Validität desFrameworks und
die praktische Umsetzbarkeit gezeigt. Zum Abschluss diskutieren wir noch not-
wendige weitere Forschungsarbeit im Bereich der Evaluierung von virtuellen Um-
gebungen.

iii

Abstract
Museums, archive and libraries are often confronted with the challenge to pre-

serve not just analogue data, but also digital objects for the long term. While one
challenge is to store the data for a long term, an even more difficultly one is to
keep it accessible. Digital objects have to be rendered as close as possible to how
they were originally used. But not only cultural objects, also business processes
and scientific data have to be kept for future generations, either for legal purposes
or to reproduce scientific experiments.

Two major strategies exist to keep digital objects useable over the long term.
Either a digital object is migrated from an obsolete format to a format that can
be rendered using modern hardware and software, or the rendering environment
of the object is preserved by creating a virtual version of the environment. Vir-
tualizing an environment means replacing various layers inthe stack of software
and hardware rendering the object with different representations of this layer. For
example, the hardware of a system can be replaced by a software emulator of this
hardware, allowing us to render the object in a new hardware environment. Inde-
pendently of the strategy used to preserve a digital object,the actual preservation
action has to be evaluated. We have to determine, if the significant properties of
a digital object are changed by applying the preservation action, and to what de-
gree. Only if the influence of a preservation action on the significant properties
of an object is known, a preservation planner can decide if the preservation action
is valid, or if the properties are changed in a way that is not acceptable for the
preservation purpose.

Previous research focussed on how to compare digital objects before and af-
ter a migration action, concentrating on the properties stored in the format of the
object. Frameworks for performing an evaluation of objectsrendered in a virtual
environment do not exist. In this thesis we create a framework that allows the
comparison of renderings of a digital object in different rendering environments,
called the “Preservation Action Evaluation Framework”. First, we show that even
for migrated objects a comparison has to be done on the level of the object being
rendered, as not only the object properties change, but, identically to an emulation
strategy, layers in the view-path used to render the object change. We describe the
information that has to be collected about an object and its original environment.
We show the different forms of a rendered object that exist ina virtual environ-
ment, to determine when and where a digital object’s significant properties can be
compared. Next, we show the steps necessary to ensure that any differences in the
rendering are caused by the rendering environment and not bychanged external
events influencing the rendering of the object. We also show,how the frame-
work can be used in the different steps of a preservation workflow to evaluate the
rendering of an object in the plan, preserve and re-deploy phase. As automatic
evaluation has to be supported by the rendering environmentto some degree, we

iv

show guidelines to be considered when developing a virtual environment, includ-
ing data exchange between a host and a guest system.

Next, we introduce an obsolete home computer used for video games and busi-
ness processes. We show the implementation of a tool that allows us to migrate
data stored on audio tapes to non-obsolete formats without use of the original
system. As some of this data are programs, we develop an emulator that is able
to execute these programs, considering the guidelines for evaluation and data-
exchange. We then show how the framework is used to evaluate the rendering of
different objects in the emulator in the context of a preservation workflow. We also
discuss the framework’s application on two more more recentobjects, a scientific
process and a digital artwork.

The successful evaluation of the case studies shows the validity of our frame-
work and its implementation in a virtual environment. Finally, we discuss current
and future work connected to the work shown in this thesis.

v

Acknowledgments

This thesis would not have seen the light of day without the support of my
friends, colleagues, and family.

A special thank you goes to my adviser Andreas Rauber. His input, motivation
and challenging questions continuously improved my work and helped making
this thesis a reality. My colleagues I worked with on the various projects also
provided valuable input and were always a source of inspiration.

Thank you also to all my friends that supported me during the long years of
my studies. Without them pushing me to finish, I would probably not have had
the motivation to keep going on. And thank you to my parents for everything,
but especially for giving me the possibility to study and supporting me in this
decision.

Part of this work was supported by the European Commission in the 6th and
7th Framework Programs, IST, through the PLANETS project, contract 033789
and the TIMBUS project, contract ICT-269940, as well as the COMET K1, FFG
- Austrian Research Promotion Agency. Without the discussions with partners in
and outside the projects, this work would not have been possible.

So long, and thanks for all the fish.

Contents

1 Introduction 1
1.1 Digital Preservation . 2
1.2 Problems and Research Questions 3
1.3 Organization of this Thesis . 9

2 Related Work 12
2.1 Introduction . 12
2.2 View-Path . 12
2.3 Digital Preservation . 14

2.3.1 Threats to Objects on Different Levels 15
2.3.2 Countering the Threats by Preservation Actions16

2.4 Migration . 16
2.5 Emulation / Virtual Environments 17

2.5.1 Levels of Emulation . 18
2.5.2 Emulation Technologies Used in Digital Preservation. . . 21

Keeping Emulators Useable 21
Modular Emulation . 22
Universal Virtual Computer - UVC 23
KEEP Emulation Framework 23
Remote Emulation . 24

2.5.3 Emulation in the Context of this Thesis 24
2.6 OAIS Reference Model . 24
2.7 Preservation Planning . 26
2.8 Evaluation of Digital Preservation Actions 28

2.8.1 Significant Properties . 29
2.8.2 Identification, Validation, and Characterization of Digital

Objects . 31
2.8.3 Characterization Languages 32

2.9 TIMBUS Preservation Workflow 34
2.10 Projects on Preserving Complex Objects, Multimedia andInter-

active Content . 37

vi

CONTENTS vii

2.11 Summary . 39

3 Comparing Migration/Emulation Renderings 40
3.1 Introduction . 40
3.2 Changing the View-Path Using Emulation 41
3.3 Changing the View-Path using Migration 42
3.4 Generalized View on the Performance of Digital Objects 44
3.5 Summary . 45

4 Describing a Digital Artifact 49
4.1 Introduction . 49
4.2 Describing the Digital Artifact 49

4.2.1 Determinism of the Digital Artifact 50
Deterministic Behavior 50
Non-Deterministic Behavior 51
Testing an Object for Determinism 55

4.2.2 Significant States of a Digital Artifact 56
Target State . 56
Series of States . 57
Continuous Stream . 57

4.3 Describing the Rendering Environment 57
4.3.1 Selecting the Reference Rendering Environment 58
4.3.2 Describing the View-path of a Digital Artifact 60

Hardware Configuration 60
Operating System and Configuration 61
Secondary Digital Objects 61
Digital Artifact to be Rendered 62
Additional Digital Objects not in the View-path 62

4.3.3 Identifying Levels to Extract A Rendered Form 62
Descriptive Form . 62
Rendered Form in Memory 62
Rendered Form on the Output Interface 64
Rendered Form on Output Device 64

4.4 Collecting Verification Data . 64
4.5 Summary . 66

5 Evaluating in Changed Environment 68
5.1 Introduction . 68
5.2 Recreating the Rendering Environment 68

5.2.1 Recreating the View-Path 69
5.2.2 Reapplying External Data 69

CONTENTS viii

5.2.3 Comparing Objects . 70
5.2.4 Identifying Levels of Comparing Rendered Forms 71

Descriptive Form . 71
Rendered Form in Memory 72
Rendered Form in Host System Memory 72
Rendered Form on the Output Interface 72
Rendered Form on Output Device 73

5.2.5 Extracting Properties from the Rendering Environment. . 74
5.3 Steps for the Evaluation of Rendering Effects 76
5.4 Preservation Workflow . 78

5.4.1 Lifecycle of a Digital Object in a Preservation Workflow . 78
5.4.2 Preservation Workflow Phases 79

5.5 Summary . 84

6 Design Guidelines 85
6.1 Introduction . 85
6.2 Long Term Stability of Virtual Environments 85

6.2.1 Durable Virtual Environments 86
6.2.2 Flexible Virtual Environments 87

6.3 Requirements for Evaluation . 87
6.3.1 Recording and Replaying External Events 87
6.3.2 Extraction of Significant Properties 88

Rendered Forms . 88
Logging of the Rendering Process 89

6.3.3 Timing Requirements on the Virtual System 90
6.4 Data Exchange between Guest and Host System 91

6.4.1 Virtual Environment Unaware Guest System 91
6.4.2 Virtual Environment Aware Guest System 92

Additional Tools . 93
Virtualization Aware Operating System 93

6.5 Summary . 94

7 Preserving an Obsolete System: The C7420 95
7.1 Introduction . 95
7.2 The C7420 Home Computer Module for the Philips Videopac+

G7400 . 95
7.2.1 The Philips Videopac+ G7400 Video Game Console System 96
7.2.2 The Philips C7420 Home Computer Module 96

7.3 Extracting Data From Obsolete Media and Migrating It to Non-
Obsolete Formats . 98
7.3.1 Re-engineering the Waveform 99

CONTENTS ix

7.3.2 Re-engineering File Formats 100
7.3.3 Converting Waveform to Bitstream 101
7.3.4 Migration Tool . 103
7.3.5 Evaluating the Migration Tool 104
7.3.6 Observations on the Migration Tasks 107

Reengineering of the System 107
Evaluated Tapes . 108
Improvement of Migration Results 108
Media Refresh . 108
Interpreting Results For Other Media Types 108

7.3.7 Information Lost Due to Migration 109
7.4 Emulating the C7420 Rendering Environment 110

7.4.1 Program Execution on the Original System 110
7.4.2 Implementing the view-path in an Emulator 113
7.4.3 Data Injection . 115

Keyboard . 116
Joysticks . 118
Files . 118

7.4.4 Data Extraction for Application Use 120
Files . 120
Clipboard . 120
Screenshots . 121

7.5 Implementing Evaluation Functionality 122
7.5.1 Recording of Events . 124

Operating the Environment 125
Extraction of Data . 125
Internal Events . 126

7.5.2 Automated Execution . 127
7.6 Discussion of Alternative Preservation Actions for thePhilips Videopac

System . 128
7.6.1 Hardware Level . 128
7.6.2 Functional Level . 129
7.6.3 Source Code Migration 129

7.7 Summary . 129

8 Evaluation Case Studies 131
8.1 Introduction . 131
8.2 Evaluation of O2EM-Emulator 131

8.2.1 Business Process Example: Cassa 131
8.2.2 Video Game: Terrahawks 139

8.3 Re-running Scientific Experiments: Music Analysis Workflow . . 141

CONTENTS x

8.4 Digital Art Example: First Finnish Underground 146
8.5 Summary . 150

9 Conclusions and Outlook 152
9.1 Contributions . 152

9.1.1 Challenges . 152
9.1.2 Comparison of Rendering in Migration and Emulation . . 153
9.1.3 Preservation Action Evaluation Framework 154
9.1.4 Preserving Processes in a Preservation Workflow155
9.1.5 Design Requirements for Virtual Environments 155
9.1.6 Preserving Digital Objects For An Obsolete System – The

C7420 . 156
9.1.7 Evaluated Case Studies 157

9.2 Achievements . 158
9.3 Ongoing and Necessary Future Work 160

9.3.1 Characterization of Environments 160
9.3.2 Ease of Access to Emulation 160
9.3.3 Strengthen Emulation as a Digital Preservation Strategy . 161
9.3.4 Connect Virtual Environment Authors and Digital Preser-

vation Stakeholders . 162
9.3.5 Standardization . 162

Bibliography 163

A Data Formats of C7420 Home Computer System 172
A.1 Introduction . 172
A.2 File Formats . 172
A.3 File Header and Data Block . 173
A.4 Basic Program . 173
A.5 Screenshot . 174

A.5.1 Formatting . 175
A.5.2 Foreground and Background Colors 175
A.5.3 Double Width and Height 176

Double width . 177
Double height . 177

A.5.4 Blink and Reverse . 177
A.6 Array . 177

A.6.1 String Array . 177
A.6.2 Number Array . 178

A.7 String . 178
A.8 Memory Dump . 178

CONTENTS xi

B ASCII Table for C7420 Home Computer System 179
B.1 Introduction . 179
B.2 Converting C7420 Character Set to ASCII 179
B.3 Converting ASCII Character Set to C7420 Characters 180

C Event Log for O2EM 183
C.1 Introduction . 183
C.2 Implemented Events . 183
C.3 Example Log . 184

List of Figures

2.1 Generic view-path for rendering a digital object. 13
2.2 Different view-paths for displaying the same digital object. 14
2.3 Layers of emulated environments for digital objects. 19
2.4 Functional entities of an OAIS archive [ISO, 2012]. 25
2.5 Preservation planning workflow [Beckeret al., 2009]. 27
2.6 Preservation planning integrated into the OAIS. 29
2.7 Screenshot of "Chessmaster 2100" running under DOS on the left

and the segmented screenshot showing significant areas on the right. 33
2.8 Screenshot of original DOS-Version of "The Secret of Monkey

Island" (left). Significant areas in the same screenshot as aresult
of binarization and segmentation are shown on the right. 34

2.9 Code snippet of XCDL enhancement for significant coordinates
of identified areas. 34

2.10 Process for Digital Preservation of Business Processes(BP) in
TIMBUS. 35

3.1 Changing the view-path by emulating the application. Full boxes
show the emulated layer that changes, dashed boxes additional
layer(s) that need to be introduced. Shown are the original view-
path (a) and view-paths emulating the application (b), the operat-
ing system (c), and the computer architecture (d). 42

3.2 Changing the view-path by migrating the digital object. Boxes
around the layers highlight the layers that change. Shown are the
original view-path (a) and the changed view-path when the ob-
ject is migrated (b), when a different application is used torender
it (c), when a different operating system has to be used for the
application (d), and when the computer architecture changes (e). . 43

3.3 Sample layout region of a document in MS Word for Windows
97-2003 format rendered in MS Office 2007. 46

3.4 Sample layout region of a document in MS Word for Windows
97-2003 format rendered in OpenOffice 3.4. 46

xii

LIST OF FIGURES xiii

3.5 Sample layout region of a document in MS Word for Windows
97-2003 format migrated to MS Word for Windows 2007 (docx)
format rendered in MS Office 2007. 47

3.6 Sample layout region of a document in MS Word for Windows
97-2003 format migrated to MS Word for Windows 2007 (docx)
format rendered in OpenOffice 3.4. 47

4.1 Different forms of a digital object in a system’s memory.On the
left the layers in an original system are shown, on the right the
layers in a system hosting a virtualized view-path are shown. . . . 63

5.1 Different evaluation steps for evaluating dynamic renderings and
their mapping to the preservation process phases. 80

5.2 Environments used to extract data that is later used for the compar-
isons in different steps in the preservation process. (a) comparison
of data between the original environment and different candidates
for the preservation action, (b) comparison of data betweenthe
original environment and the virtualized environment for verifi-
cation, (c) comparison of data between the virtual environment
before storage at time t and the future virtual environment at time t’. 81

7.1 Philips Videopac+ G7400 game console system. 97
7.2 Philips Videopac+ C7420 Home computer cartridge: Cartridge

that plugs into the system in front, connected to the main case that
holds the additional CPU and memory in the back. The connec-
tors for loading/saving data to an audio system (red, white and
black cables for microphone, headphones and remote control) are
attached to the main case. 98

7.3 Waveform of “Hello World” BASIC program (1: initial 6 kHz
lead-in tone; 2: 256 x 0xFF as start of file-signature; 3: file header;
4: 128 x 0xFF as header/data separator; 5: data block) 99

7.4 Representation of one byte in the waveform (1 start bit (1), 8 data
bits (least significant first: 11010011b = D3h), 2.5 stop bits(0)) . . 100

7.5 Interpretation of the wave signal using method 1. Vertical axis
shows the strength of the amplitude, horizontal axes the parts of
the sine wave interpreted as “signal” (1) or “no signal” (0).. . . . 102

7.6 Screenshot of the migration tool GUI with 7 BASIC programs
imported from a WAV-file recorded from an original tape. The
import-log on the lower left shows events and errors during the
import. Various import settings can be configured on the upper
left and the imported programs are shown in tabs on the right.. . . 104

LIST OF FIGURES xiv

7.7 Tapes used for evaluation of migration tool, left upper corner C10
computer cassette, left lower and right Philips FE-I 60 normal po-
sition audio tapes. 105

7.8 Screenshot of a BASIC-program imported with errors from aWAV-
file. In the program listing on the right side incorrect arguments
for commands and line numbers out of order can be found. The
log on the left side shows error events that occurred during the
import. 107

7.9 Philips Videopac+ G7400 with plugged in Philips C7420 Home
Computer cartridge. 111

7.10 Block diagram of C7420 Home Computer cartridge and Philips
Videopac+ G7400 system. Connection between cartridge and sys-
tem is done using the cartridge connector. CPU - Central Pro-
cessing Unit, GPU - Graphics Processing Unit, RAM - Random
Access Memory, ROM - Read Only Memory. 112

7.11 Communication flow between G7400 system and C7420 cartridge. 113
7.12 view-path for program execution on G7400+C7420 114
7.13 Start screen of C7420 Home Computer cartridge on O2EM emulator.116
7.14 Different renderings in the view path of the C7420 Home Com-

puter cartridge. 123
7.15 Preservation actions for different layers of view-path 128

8.1 Screenshots of the program Cassa on the Philips Videopac C7420
home-computer. Interactive loading of the program on the left,
final rendered data on the right. 132

8.2 Workflow of the use-case of displaying data in the cassa application.134
8.3 Non-deterministic rendering of Terrahawks - result of initial record-

ing (left) and re-run (right). 139
8.4 Musical genre classification workflow [Mayeret al., 2012a] 142
8.5 Musical genre classification, including fetching of data, modeled

in the Taverna workflow engine [Mayer and Rauber, 2012] 143
8.6 First Finnish Underground digital artwork (1995). Title screen

(left) and first interactive screen (right) are shown. 146
8.7 Tool for controlling of virtual environment execution.Main win-

dow is shown on the left. It allows to select a virtual machine
which will be controlled, specify the time interval betweenscreen-
shots, and the kind of events to be captured (mouse and/or key-
board events). The screenshot comparison window is presented
on the right. It depicts differences detected between correspond-
ing screenshots (marked with red circles). 148

LIST OF FIGURES xv

A.1 Migrationtool with image loaded from wav-file. 175
A.2 Structure of byte used for formatting in Text Mode (top) and Graph-

ics Mode (bottom). 176

B.1 Characters mapped from the C7420 character set to ASCII char-
acter set. 180

B.2 Characters mapped from the ASCII character set to C7420 char-
acter set: 0x23-0xD4 . 181

B.3 Characters mapped from the ASCII character set to C7420 char-
acter set: 0xD5-0xFF . 182

List of Tables

4.1 Example digital objects and possible hardware / software / output
device combinations. 58

5.1 Characteristics that can be extracted from rendering environments. 75

7.1 File structure of the bitstream on the C7420 system. 100
7.2 Logical bitstream formats and corresponding command tosave

data on the C7420. 100
7.3 Comparison of expected (visual analysis of waveform) andloaded

files (using different methods) on evaluated tapes containing C7420
data. 106

7.4 Data with and without errors as recognized using the migration tool.106

8.1 Characteristics for testing the application Cassa with original (=lim-
ited) and unlimited speed. 136

8.2 Calculated versus measured key characteristics taken from the
event-log of running Terrahawks in O2EM. 141

9.1 Case studies carried out with external events captured and re-
applied on different levels. 158

A.1 Logical bitstream formats and corresponding command tosave
data on the C7420. 172

C.1 Events implemented in the O2EM Event Log. 184

xvi

Chapter 1

Introduction

Preserving cultural heritage has been a major task of libraries, archives, and mu-
seums for centuries. Preservation methods for traditionalmaterials like books and
paper are well known and proven to work. The last few decades,however, saw
an ever increasing amount of digital data. Digital objects in contrast to analogue
materials by nature require information technology systems to execute them. But
information technology systems are volatile. With the rapid change in technology,
systems that are able to execute/render a digital object today will be obsolete to-
morrow, in many cases leaving the digital object unusable onfuture systems. For
static documents methods like printing the document to paper are a possible solu-
tion, but when it comes to more complex digital objects, keeping the digital object
in a usable state is the only solution to preserve the object for future use. There
are different reasons why a digital object might need to be preserved for future
use. While the need of memory institutions to preserve cultural heritage is obvi-
ous, including complex objects like digital art or video games, it is less obvious
that also processes have to be kept in a form that is executable in a future environ-
ment. These include business processes for legal purposes,or scientific processes
that allow future scientists to recreate experiments and retrace and reuse previ-
ous work. But also individuals will face the problem of digital preservation, if
precious emails, letters or pictures can not be opened on a future system.

Dealing with the challenge of keeping digital objects accessible in an authentic
manner over a long term is the task of digital preservation. Researching a frame-
work and process for evaluating and validating the result ofa digital preservation
action on the object to authentically preserve it is the topic of this thesis.

1

CHAPTER 1. INTRODUCTION 2

1.1 Digital Preservation

In [Rothenberg, 2000a] Rothenberg argues that meaningful digital preservation
implies that what is preserved is usable. This includes thatthe digital object can be
retrieved, accessed, deciphered, viewed, interpreted, understood, and experienced
in a meaningful and valid, i.e., authentic, way. If the digital object or information
entity is not usable in a meaningful and valid way, then it is not preserved at all.

Digital objects are threatened on different levels:

• the physical layer, i.e., the bitstream of the digital object,

• the logical format and environment, i.e., the conceptual object as rendered
on the screen,

• the semantically conceived object and contextual knowledge, i.e., the in-
formation or knowledge transmitted by the object or the correct use of the
object.

While traditional archiving deals with data being copied to new media and
refreshing bits on physical media to keep the data readable,the challenge of the
logical layer is still a rather new and an in its severeness underestimated problem.
To actually being able to keep the object available on the conceptual layer, i.e.,
conceivable for a user, the object has to be interpretable onthe logical layer. With
hardware and software getting obsolete, we have two main choices to tackle the
problem. One choice is to keep migrating the digital object to a form that is
interpretable by information systems at the time of use. Theother is to keep the
digital object in its original logical form and try to keep the information system
alive in physical or virtual form. These two strategies are called Migration and
Emulation. (Note: For an analysis on their differences and identity, see Chapter
3.)

Which strategy is chosen depends on the situation and also thedigital object
itself. While it might be a rather simple task to convert an image from one format
to another (with all the pitfalls involved like change in colors, loss of information
if no lossless format is used as target format, etc.), it might not be possible for
software, especially if the source code is not available. Inthe case of digital art or
video games interaction with the object plays an important part in the conception
of the object by the user. So whichever strategy is chosen, itis important that the
conceptual layer of the digital object stays intact.

While certain loss might be acceptable depending on the intended audience
(e.g., if only the textual information in a document is important to a user group, it
might be acceptable to lose any formatting information likefont and page breaks,
as long as the information transmitted by the text is not compromised) in most

CHAPTER 1. INTRODUCTION 3

cases it is important that the digital object’s rendering stays unchanged (though
usually, some loss will be acceptable). A major task in digital preservation is
thus evaluating if and how a digital object’s conceptual layer changes when a
preservation action, be it migration or emulation, is applied to the digital object.

Evaluation if a digital object can still be rendered successfully is usually done
by checking the properties of the object stored in the bitstream. While this is an
indication for a migrated object if all the properties (or the significant ones) are
still in the bitstream, it does not necessarily mean that theobject is rendered as
intended by the interpreting software. When dealing with emulation, on the other
hand, the object’s bitstream stays unchanged on the logicallayer, so any evalua-
tion necessarily has to be made after the object has been rendered. Dealing with
the evaluation of this rendering brings us to the problems and research questions
outlined in the next section.

In [Innocenti, 2012] Innocenti argues that digital art is being rendered as a
performance specific for the viewer of the artwork (especially in interactive art
where the viewer influences the behavior of the artwork). Preserving the per-
formance and thus the authenticity of the digital artwork iscrucial to long term
digital preservation of digital art. In [Bonardi and Barthélemy, 2008] examples
for the fragility of performance works based on electronicsunder the aspect of re-
performance are provided and the question is raised, how to guarantee authenticity
when preserving the electronic material.

One of the core tasks of digital preservation is thus to make sure that a digital
preservation action preserves the digital object in a meaningful and valid way,
i.e., evaluating if a future rendering will preserve the significant properties of the
original rendering of the digital object.

1.2 Problems and Research Questions

• How can we determine if a digital preservation action changed signifi-
cant properties of the digital object? – Digital objects by nature need an
environment to be rendered in. This is for one hardware and also usually ad-
ditional software, e.g., an operating system, a viewer application. Changing
any of the objects needed to render a digital object has a potential influence
on the rendering of the object. To build trust that an object can be success-
fully redeployed and rendered in the future, every digital preservation action
has to be evaluated against the original digital object.

For migration a common (and rather simplistic) method to evaluate the sig-
nificant properties of a digital object is to compare the stored properties of
the object before and after migration. The migration is deemed to be suc-
cessful if the significant properties are unchanged. For emulation strategies

CHAPTER 1. INTRODUCTION 4

the object stays unchanged and the environment changes, thus a compari-
son of stored properties is not possible. Similarly, the rendering software
and hardware for static documents can change as well as the digital object
(through migration). An authentic rendering of a static document has to be
established and verified in this changed view-path. To tackle these chal-
lenges, we need to devise a methodology to compare digital objects based
on their rendered forms instead of the form stored in a bitstream.

• How to handle interactive and dynamic objects?– If a static document
is rendered using the same software on the same hardware, theresult is
usually equal for every rendering. The behavior of dynamic and complex
digital objects, however, might depend on external data like user input, data
from a web service or even the current time. A successful comparison of
two different renderings of a digital object depends on having the object
render deterministically, i.e., it has to be the same for every rendering and
independent of the environment the object is rendered in. Wethus need
to identify approaches to establish a deterministic rendering of dynamic ob-
jects to make sure that differences in the rendering are a result of differences
in the environment.

• What is the influence of external data on the successful execution of a
digital object once re-deployed in a new environment?– External data
not only influences the deterministic rendering of a digitalobject but can
potentially also be necessary for a successful re-deployment of the object.
E.g., missing external data sources like web-services might render a digital
object useless. Thus, we need to establish means to capture and reapply the
data for evaluation, and to emulate or simulate missing external data sources
for re-deployment.

• How can we extract significant properties from the rendered forms of
a digital object? – To extract rendered properties as opposed to extract
properties from the bitstream of a digital object we have several choices of
where instances of the rendering can be found in the memory ofthe host
system, a virtual system, or even on an output device. Depending on the
object one or more of those instances have to be chosen for extraction of
the properties. We have to identify the levels suitable for acomparison for
a digital object.

• At what points in the rendering life cycle of a digital object do we need
to extract significant properties? – Not every state a digital object can be
in is deemed significant, e.g., internal states might not be relevant for user

CHAPTER 1. INTRODUCTION 5

interactions. Thus we have to decide for a digital object at what points in
the rendering life-cycle we need to compare the significant properties.

• How does this evaluation need to be integrated into a preservation work-
flow? – A preservation workflow has a wider scope than just evaluating
how an object reacts to a digital preservation action at the current moment.
It includes the phase of planning for the preservation of a digital object, the
actual preservation and the redeployment at the time of extracting the object
from the digital archive. Evaluation steps have to be repeated in the differ-
ent phases of a preservation workflow to make sure that all thenecessary
components of a digital object are stored in the archive, andthat the object
is correctly rendered in the future environment once it is redeployed.

In this thesis we will address a number of research questionsthat are based on
the above challenges, in particular:

RQ1: How can we evaluate if a digital preservation action keeps the signifi-
cant properties of a digital object intact?

Checking if a digital preservation action can be considered to be successful
contains the following questions:

a. Do we need to validate emulation actions differently thanmigration ac-
tions?

b. How can we compare preservation actions on a digital object based on
the rendering of the object instead of on stored properties?

c. How can the evaluation of the rendering of a digital objectbe auto-
mated?

d. How can we combine the necessary steps to an evaluation framework
and process to follow for repeatable evaluation?

RQ2: What do we need to know about a digital object and it’s environment
to evaluate how a new rendering differs from the original rendering?

To successfully rebuild the view-path of a digital object ina new environ-
ment, we need to describe both the digital object and it’s dependencies as
well as the original environment, raising the following questions:

a. How can we make sure that a digital object behaves deterministic in
every rendering allowing us to compare the different renderings?

b. What do we need to document about the digital artifact’s behavior and
appearance for a successful evaluation?

CHAPTER 1. INTRODUCTION 6

c. What are the significant states of a digital artifact we haveto compare?

d. What data do we need to collect about a rendering environment to allow
for repeatable comparison?

e. What environment should be used as a reference for future comparisons?

f. What rendered forms of a digital object exist in a system andwhich of
those are suitable for the comparison of renderings of a digital object?

g. How can we collect verification data to allow for a comparison to a
future rendering of the digital object?

RQ3: How can the rendering of a digital object be made deterministic over
different rendering cycles and different environments?

A complex digital object’s behavior usually depends on datasources that
determine how the digital object is rendered. To determine that differences
in two potentially identical renderings of a digital objectare caused by a
faulty environment, we have to ensure that the renderings are in fact iden-
tical. This leads to the following questions:

a. How does the virtual environment influence the deterministic rendering
of a digital object?

b. What external data sources influence the behavior of a digital object?

c. What locally available data influences the behavior of a digital object?

d. How can these data sources be kept identical over different rendering
cycles?

e. How can we keep the data that influences the behavior of a digital object
consistent over different environments?

f. How can we capture and reapply external data for the validation and
verification of a digital object in its new environment?

g. How can we simulate external data sources for the re-deployment of a
digital object in a future environment?

RQ4: How can the view-path of a digital object be recreated in a newenvi-
ronment and a new rendering be compared to the original rendering?

Once a digital object was successfully described and verification data has
been collected, we need to re-create the view-path in a new environment
and compare the new rendering to the original rendering. This raises the
following questions:

a. How can the view-path of a digital object be recreated in a new rendering
environment?

CHAPTER 1. INTRODUCTION 7

b. How can external data that influences the digital object’srendering be
applied to the environment?

c. On what level in the new environment can we find a rendered form of
the digital object corresponding to the original rendering?

d. How can we compare the extracted data from the original rendering and
the new rendering?

e. What properties other than the rendered form of the digitalobject can
we extract from the rendering environment that give evidence about the
rendering process?

RQ5: How can the evaluation framework be integrated into a preservation
workflow?

The scope of a preservation workflow is usually wider than just the com-
parison of two renderings of digital objects, thus the following questions
arise when integrating evaluation steps into the workflow:

a. Which steps of the evaluation framework have to be performed in the
different phases of the workflow?

b. How can different preservation actions be compared in a planning phase
using the evaluation framework?

c. What data needs to be collected to validate the completeness of a digital
object when the object is being archived?

d. What data has to be stored for evaluation between the preserve and re-
deploy phases of the workflow?

e. What data needs to be collected during the validation of a digital object
and stored in an archive to enable the verification of an object in a future
environment?

f. How can the object’s proper rendering be verified in a future environ-
ment with the data collected before storage?

RQ6: What design requirements do we have to virtual environmentsto allow
for evaluation of renderings?

Virtual environments do not yet support the evaluation of renderings of dig-
ital objects and digital preservation requirements in general. The following
questions have to be answered to create guidelines for developing virtual
environments:

a. What are the requirements on the long term stability of virtual environ-
ments?

CHAPTER 1. INTRODUCTION 8

b. How can a virtual environment support the capturing and re-applying of
external data?

c. How can we export significant data about a digital object for comparison
from a virtual environment?

d. What methods of data exchange between host and guest systems exist
and how can it be supported by the virtual environment?

In this thesis we introduce a framework for evaluating digital preservation ac-
tion results by comparing the rendering before and after applying a digital preser-
vation action. We show the motivation for developing this framework on specific
case studies with complex digital objects. We show why it is not enough to com-
pare stored properties of the digital object, not only in emulation where the digital
object stays unchanged, but also for migration actions. We further explain how to
integrate the evaluation framework into a specific preservation workflow outlining
the necessary steps to be taken in the different phases of theworkflow. From the
actions that have to be performed in the framework, we derivevarious require-
ments to virtual environments, so that automated evaluation is enabled.

On a real-world example of an obsolete system we then show howwe devel-
oped tools to

1. Extract data from obsolete media without use of the original system

2. Enhance an existing emulator with capabilities to renderthe extracted data

3. Integrate testing capabilities into the emulator to showthe validity of the
framework we developed

Work presented in this thesis has involved various collaborators and project
partners, with my main contributions to the field being as follows:

1. I carried out a number of case studies evaluating the rendering of complex
digital objects [Guttenbrunneret al., 2010a] [Guttenbrunneret al., 2010b].

2. I developed a framework for evaluating rendering environments with clear
steps, outlining the necessary pre-conditions for an automated evaluation
[Guttenbrunner and Rauber, 2012c].

3. In [Guttenbrunner and Rauber, 2012b] I showed that independent of the
preservation action taken the rendering of a digital objectis what has to be
evaluated, it is not sufficient to look at stored object properties.

4. Integrating the evaluation framework into a preservation workflow, I out-
lined the steps to be taken in the different phases of an existing preservation
workflow (under review).

CHAPTER 1. INTRODUCTION 9

5. From the steps of the evaluation framework I derived requirements and de-
sign guidelines for virtual environments for digital preservation to support
automated evaluation [Guttenbrunner and Rauber, 2011] [Guttenbrunner
and Rauber, 2012c].

6. For a not-well preserved system I led the development of a tool to extract
and migrate data from obsolete media using audio analysis [Guttenbrunner
et al., 2011].

7. I enhanced an existing emulator to support execution of the programs recov-
ered from the obsolete media using the developed guidelinesand outlined
the design decisions that have to be taken during the implementation of
an emulator for digital preservation purposes [Guttenbrunner and Rauber,
2011].

8. I integrated testing capabilities into the developed emulator to automatically
evaluate various different objects for the system [Guttenbrunner and Rauber,
2012a].

1.3 Organization of this Thesis

This section outlines how this thesis is organized. It liststhe different chapters
and references to publications in which the main contributions to this thesis have
been published in peer reviewed journals or conferences.

• In Chapter 2 we will show the view-path of a digital object and discuss the
digital preservation strategies to maintain the view-pathfor the long term.
Migration and emulation as strategies for preserving digital objects are pre-
sented along with more related work on emulation. Preservation planning
for which evaluation of the digital preservation action is an important part
will be discussed [Beckeret al., 2009]. We will present work on authentic-
ity that will explain why it is important that the rendering of a digital object
stays unchanged with regards to the significant properties identified. The
significant properties of digital objects as well as the various technologies
used in conjunction with emulation and digital preservation will be pre-
sented along with projects dealing with preserving complexdigital objects.

• Chapter 3 argues why the evaluation of rendering is not just important for
evaluating emulation strategies but also for evaluating migration strategies.
Comparing the properties stored in a digital object only givea certain indi-
cation about how a digital object should be rendered. As published in [Gut-
tenbrunner and Rauber, 2012b] we will show how the view-path of a digital

CHAPTER 1. INTRODUCTION 10

object changes not only using emulation but also using migration, thus mak-
ing it necessary to compare the rendering also for migrated objects. This
leads to the conclusion, that, from an evaluation and impactperspective, the
commonly distinct approaches of migration and emulation are identical.

• In Chapter 4 we will describe a framework for evaluating rendering environ-
ments [Guttenbrunner and Rauber, 2012c]. We will show the pre-requisites
to comparing renderings of a digital object in different environments. Based
on the significant properties of a digital object we will explain where and
when to extract data from the rendering for comparison. We then will show
how external data can influence the rendering of a digital object, making
it necessary to capture and replay that data for evaluation.We will explain
how to deal with these external dependencies for the verification and discuss
their replacement for usage of the digital object in the re-deployed environ-
ment.

• In Chapter 5 we then show how the data captured in Chapter 4 is used to
verify the rendering of a digital object in a new environment[Guttenbrunner
and Rauber, 2012c]. We present how the evaluation framework is integrated
in an existing preservation workflow. We will show which of the steps in the
framework have to be repeated in every phase of the frameworkand what
data has to be stored in an archive to be able to validate the object before
storage and to verify the objects rendering once it is being re-deployed in a
new environment. Work in this chapter has been submitted forreview to a
journal.

• Chapter 6 shows the requirements of digital preservation to virtual environ-
ments and how the evaluation framework should influence the development
of rendering environments for digital preservation. Long term stability re-
quirements of virtual environments and the transfer of databetween the host
system and the guest system are shown, as well as techniques used to im-
plement transfer channels. We then discuss the requirements of automated
evaluation on virtual environments [Guttenbrunner and Rauber, 2011] [Gut-
tenbrunner and Rauber, 2012c].

• In Chapter 7 we present the preservation of an obsolete home-computer-
system, the Philips C7420 Home-Computer cartridge for the Philips G7400
Videopac system. We first show how data from obsolete media isextracted
without use of the original system using digital archeologyand audio anal-
ysis and how it is migrated to non-obsolete formats [Guttenbrunneret al.,
2009] [Guttenbrunneret al., 2011]. Next, we show how to implement an

CHAPTER 1. INTRODUCTION 11

emulator to render software extracted from the original media. We dis-
cuss the design decisions that have to be taken to develop an emulator with
digital preservation use in mind [Guttenbrunner and Rauber,2011]. Fi-
nally, the implementation of features to allow automated evaluation will be
shown [Guttenbrunner and Rauber, 2012a].

• Chapter 8 shows case studies for the evaluation of rendering using the eval-
uation framework. We first present the evaluation on the example of the
obsolete, simple home computer system shown in Chapter 7. Thefeatures
for automated evaluation implemented in the emulator are used for the eval-
uation of a business process example as well as of a video game. We then
discuss the evaluation framework applied in the context of the preservation
workflow on two more complex examples. The first example is a music
classification process as an example for a scientific workflow, and the sec-
ond example is a digital artwork.

• Finally, in Chapter 9 we present the conclusions of the work conducted over
the course of this thesis. Ongoing as well as necessary future work on mak-
ing virtual environments ready for digital preservation and the evaluation of
rendering results will be discussed.

Chapter 2

Related Work

2.1 Introduction

This section presents work related to this thesis. We will start with explaining the
concept of the view-path, the objects needed to render a digital object. Then this
section continues with related work on digital preservation, the importance of au-
thenticity, and emulation as a digital preservation strategy. It continues with work
on preservation planning and the OAIS model before finishingwith a preservation
workflow used in this thesis.

2.2 View-Path

Different from analog objects like books every digital object needs an environ-
ment to render it. Rothenberg argues, that “Digital Informational Entities are Exe-
cutable Programs” [Rothenberg, 2000a], i.e., that every digital object is a program
that has to be interpreted by a process that knows how to perform the commands
in the formal language (the format) the program is written in. This can be as sim-
ple as interpreting a string of ASCII character codes to make it human readable.
Most of these interpreters are software, but on the lowest level the machine-code
is interpreted by hardware (i.e., the CPU of a system). This socalled view-path is
thus the complete stack of objects needed to render the digital object, or as defined
in [van Diessen, 2002]

“a full set of functionality for rendering the information contained in
a digital object”

Diessen et. al. identified four basic layers needed to renderany digital object:
the data format layer defining the structure of the bit stream(the format of the dig-
ital object), the application layer that is able to interpret the format, the operating

12

CHAPTER 2. RELATED WORK 13

Figure 2.1: Generic view-path for rendering a digital object.

system layer providing interfaces to the hardware and file management, and the
hardware layer needed to transform the digital object to a physical presentation on
an output interface.

Rendering a digital object is not only rendering a presentation of the object on
a screen, but any action that results in a physical manifestation of the digital object
on an output interface of the technical infrastructure usedto interpret the digital
object, e.g., an acoustic representation through speakers, or an actor starting a
water pump.

Even in the simple case of rendering a static document at least an application,
the operating system, and the hardware needed to run the operating system will be
present in the view-path. An example would be a PDF-A 1.1 document rendered
using Adobe Acrobat Reader 10.1.3 on a Microsoft Windows 7 operating system
updated to a certain date/service pack and a specific set of fonts installed and
specific language settings on an x86-compatible workstation PC hardware with
a specific graphics card, sound chip etc. A generalized version of this simple
view-path can be seen in Figure 2.1.

Depending on the digital object some of the layers in the view-path can be
missing or additional layers can be present. A computer gamewould usually run
directly on the operating system, i.e., using operating system libraries and function
calls (or on more ancient systems run directly on the hardware without supporting
operating system routines), while an application written in Java will additionally
have a specific Java Virtual Machine in its view-path, that acts as an abstraction
layer between the application and the operating system.

At least one view-path, i.e., a technical infrastructure capable of rendering
it, is associated with every digital object. Depending on the digital object more
than one view-path can be valid as shown in Figure 2.2. On various hardware-

CHAPTER 2. RELATED WORK 14

Figure 2.2: Different view-paths for displaying the same digital object.

configurations different operating systems (e.g., WinXP, Linux) can be used to
run different applications (e.g., Word, Open Office) to render the same digital
object (e.g., a Word-97 Document).

A change in the view-path on any of the layers will potentially also change
the rendering of the digital object. E.g., using a differentapplication to render a
document on the screen will in most cases result in a different image presented to
the user. But not only functional changes may impact the rendering of a digital
object. On a hardware-level a slower storage can lead to buffering issues in a
video. In a multi-threading environment a different load onthe machine can lead
to a different rendering of the digital object. Faster hardware might render an
object faster and lead to changes in timing of events.

In this thesis we show how changes in the view-path affect therendering of
a digital object, and how we evaluate if the rendering of an object in a different
view-path preserves the significant properties of that object.

2.3 Digital Preservation

The pace at which technology gets obsolete and is replaced bynew generations of
hardware and software poses a threat to the view-path of a digital object shown in
Section 2.2. Whenever one of the layers in the view-path gets obsolete we need to
perform some kind of action to provide access to the digital object.

Digital Preservationaccording to the UNESCO Guidelines for the Preserva-
tion of the Digital Heritage [Webb, 2005] is the process of preserving data of
digital origin, i.e., making sure that a digital object is accessible over a long pe-
riod of time. Digital preservation is not the process of digitizing non-digital data

CHAPTER 2. RELATED WORK 15

for archival, even though once digitized data will have to bepreserved digitally to
keep it accessible.

2.3.1 Threats to Objects on Different Levels

In these UNESCO guidelines four different layers are listed on which a digital
object is being threatened, these are:

Physical Object The physical object is the actual physical manifestation ofdata
on a media. Media get obsolete in that reading devices used toread the me-
dia are not supported or stop working. Also, media typicallyhas a life-span
of a few years and thus can’t be read properly even if reading devices are
still available. Thus data has to be transferred from one media to a different
media in an archival process. This process is called media refreshment.

Logical Object Data, while stored on a physical media, does not necessarilyde-
pend on a specific media but is once separated from the physical media a
logical bitstream that can be interpreted by a layer in the view-path. This can
for example be a program being executed directly on the physical hardware
(e.g., a video game running on an old console system), a program being in-
terpreted by a virtual machine (e.g., a binary program compiled for a JAVA
virtual machine), or a data format that is interpreted by an application (e.g.,
a PDF document). The threat on this level is that either the physical hard-
ware necessary to render a program, or the application used to render the
data format is obsolete.

Conceptual Object The conceptual object is the object that actually has a mean-
ing to humans in that it is rendered in a physical form recognizable by a user.
This is for example a PDF document rendered on a screen and readable by
a human being as opposed to the encoded form of the PDF document in
the bitstream (the logical object) and the bitstream of the PDF document
stored on a CD (the physical object). The threats require an interpreter or
environment to turn the logical object to a conceptual object.

Essential ElementsThe UNESCO guidelines describe the essential elements of
a digital object as a bundle of elements that embody message,purpose, or
features of the object describing the context in which it wasselected for
preservation. This context is also called Metadata. In the example of the
PDF document information about the context in which the document was
created and information like author, version, preferred view-path to render
the document could be recorded.

CHAPTER 2. RELATED WORK 16

The task of digital preservation is to counter these threatsby appropriate preser-
vation actions, specifically on the logical level, making sure the conceptual object
stays unchanged.

2.3.2 Countering the Threats by Preservation Actions

To counter the threats to a digital object on the different levels, we have to perform
preservation actions that make sure that the conceptual object stays accessible and
(using the essential elements) understandable in its context.

In the UNESCO guidelines various digital preservation strategies are listed,
including

• the museum approach - preserving the original hardware and software used
to render the object

• converting the digital data to a non-digital format for which we already have
a comprehensive knowledge of how to preserve it

• using standard formats that are well defined, open, and likely to be sup-
ported by future rendering applications

• making software backwards compatible to interpret older versions of data

• providing viewers for each new technology generation

• migrating a digital object from an obsolete format to a non-obsolete format

• emulating the functionality of a layer in the view-path using a piece of soft-
ware that performs the functionality of the original layer

Currently the most common strategies used are migration and emulation, as
those are deemed to be the most long term stable solutions that can be applied in
real-world environments dealing with a large number of diverse objects.

Changing the view-path of a digital object is a digital preservation action. We
show how this preservation action potentially effects the rendering of a digital
object and how we evaluate and validate the rendering of a digital object against
the original rendering after applying the preservation action.

2.4 Migration

Marcum uses in [Marcum, 1996] the term migration for the fullcontinuum of
approaches between simply moving the bitstream of a digitalobject from medium
to medium and the full emulation of the rendering environment of a digital object.

CHAPTER 2. RELATED WORK 17

Digital Migration as defined by the OAIS [ISO, 2012] is the transfer of digital
information within the OAIS with the intention to preserve it. This is distinguished
from mere transfer in that the focus is set on preserving the full information in-
tended for preservation, that the migrated representationreplaces the original one,
and that the full control over all aspects of the migration resides with the OAIS.
Migration in the sense of the OAIS is not only the change of thedigital object
itself, but also of context information needed to understand the digital object.

However, the usual understanding of migration in digital preservation is the
technique to change the digital object on the logical layer,i.e., changing the bit-
stream of the digital object and thus the format. One principal problem of migra-
tion is that any change in the bitstream potentially can meanloss of data. Once
lost, this data can never be restored in future migration steps.

While migration can happen continuously in an archive to always keep the
digital objects in a state that is accessible, it can also be used as migration on
request as described in [Melloret al., 2002], i.e., migrating an object to a non-
obsolete format used by the target audience once it is needed. While the format
in the archive stays unchanged, the migration tools are changed to support new
formats needed for dissemination. This method has also beenused by Woods et.
al. in [Woods and Brown, 2008] as the primary strategy to allowfor browsing and
searching in document collections.

Migration is one of the actions changing the view-path of a digital object. In
Chapter 3 we show how the view-path of a digital object is changed by migrating
the object.

2.5 Emulation / Virtual Environments

Emulation is the concept of replacing a component in a systemwith a different
component that fulfills the same functionality. As comparedto simulation the
difference is shown by Rothenberg et. al. in [Rothenberg, 2000b] in a simple
example - a flight simulator does not actually let you fly a plane but only simulates
the process. A terminal emulation on the other hand lets you use a command
line interface for input and output for the same purpose as you would use a real
terminal to a computer system.

In this thesis the wordEmulator is used as defined in [Slats, 2003] as a pro-
gram that runs on one computer virtually recreating a different computer’s hard-
ware. We mainly concentrate on emulators emulating computer architectures, but
the concepts introduced in this thesis certainly have to be considered with the
different levels of emulation in mind and most can be appliedto other levels of
emulation as well, up to the evaluation of migration resultswithin an appropriate
rendering viewer environment.

CHAPTER 2. RELATED WORK 18

Rothenberg et.al. argue in [Rothenberg, 2000b] that all digital documents are
software dependent and as such essentially programs intended to be interpreted in
a software environment or by hardware. Saving the entire software environment
used to interpret a digital object we can thus save the view-path of a digital ob-
ject. However, to physically preserve the hardware used to execute the software
environment is not viable, using an emulator of the hardwareis a virtual way of
saving the hardware, allowing an execution of the software environment and thus
to render the digital object.

2.5.1 Levels of Emulation

Granger et.al. explain in [Granger, 2000] that emulation can be done on three
different levels - application, operating system, and hardware platform.

The termEmulationin general refers to the capability of a device or software
to replicate the behavior of a different device or software.It is possible to use
hardware to emulate hardware or software or to use software to emulate software
or hardware. While even a viewer of a document can be seen as some kind of
emulation (if, e.g., fonts not stored in a document are provided by the viewer),
emulation usually is seen as recreating the hardware of the system the digital
object was initially rendered on and using the original software (both the operating
system as well as the application) to display it. With applications distributed over
various systems in a network, it is also necessary to emulatemore than one system
to keep a digital object in a usable state. But also social properties (subjective
properties not technically measurable) like input devicesor even the environment
in which a system has been used can be necessary to recreate the original look and
feel. The boundaries between the different kinds of emulation are usually blurred
and depend on the digital object that has to be preserved.

Environments for digital objects can thus be emulated on different levels as
shown in Figure 2.3. These layers can be defined as:

Application As described in Figure 2.1, an application is usually used torender a
digital object (if the digital object to be preserved is not itself an application
(e.g., computer games, digital art, self-running documents). By replacing
the application used to render a digital object the functionality of the origi-
nal application is emulated. A simple example is to replace Adobe Acrobat
Reader[1] for rendering PDF documents by a different PDF-reader like Ni-
tro PDF Reader[2]. The Nitro PDF Reader would serve as an emulator for
the functionality of the Adobe Acrobat PDF Reader in the view-path of the
PDF document.

[1]Adobe Acrobat PDF Reader -http://www.adobe.com/products/reader.html
[2]Nitro PDF Reader -http://www.nitroreader.com/

CHAPTER 2. RELATED WORK 19

Figure 2.3: Layers of emulated environments for digital objects.

Operating System On a modern computer system usually an operating system
between the application and the hardware (virtual or real) provides function-
ality used by the application (e.g., access to display devices, input devices).
The operating system, in turn, heavily depends on the computer architecture
it is running on and the application heavily depends on the operating system.
By providing a middle-ware that acts like the original operating system any
operating system calls in the application can be caught by the middle-ware
and translated for the new environment, thus emulating the functionality of
the original operating system. An example for this would be Wine[3] that
allows the execution of programs running on Microsoft Windows operating
systems to be executed in a Linux environment. In the view-path of a Mi-
crosoft Word document rendered by Microsoft Word 95 this would mean
replacing the operating system layer Windows 95 by a Linux distribution
operating system and using an additional Wine translation layer to allow for
operating system functions originally performed by Microsoft Windows 95
be executed by the Linux operating system.

Computer Architecture As the functionality of hardware is usually better docu-
mented than software the most common level of emulation is recreating the
computer architecture. Computer architecture can either bereal hardware
(an actual physically existing system) or a system only existing virtually,
a virtual machine like e.g., the Java VM. While virtual machines are soft-

[3]Wine -http://www.winehq.org/

CHAPTER 2. RELATED WORK 20

ware that is usually running on top of the operating system and ported into a
different environment, physical hardware can be emulated using one of the
following approaches:

(a) Full Hardware Emulation The most common use of emulation is the
recreation of hardware components in software on a new host-system.
The „Emulator” in this case is, as defined in [Slats, 2003], a program
that runs on one computer virtually recreating a different computer’s
hardware. It provides a layer between the host system and theorigi-
nally used software, replacing the functionality of the original physical
hardware used to execute this software. The whole system is rebuilt
in software and the original digital artifact is executed using the orig-
inal software in this simulated hardware environment. Examples are
emulators for proprietary hardware such as video game console sys-
tems on a PC or emulators for PC hardware on virtual machines (e.g.,
Dioscuri[4]).

(b) Virtualization An approach to create a virtual environment by using
either some or all of the hardware of the host system directlyis called
virtualization. Code is directly executed on the physical CPUinstead
of being emulated. In reality the approach is usually a mix between
hardware emulation and virtualization as all virtualization solutions
emulate certain low-level instructions instead of runningthem directly
on the real CPU. Using the virtualization approach, softwarewhich
is potentially able to run on the host system’s hardware is run in a
virtual machine hosted by the current operating system environment.
Examples for virtualization software are VirtualBox[5] and QEMU[6].
One use of virtualization is to have a host system running oneoper-
ating system and create a virtualized environment running adifferent
operating system. Another one is to run different virtualized com-
puter systems on the same physical hardware in parallel. Thelong
term use for digital preservation is obviously limited, as virtualization
only works if the physical system uses a CPU that is compatibleto the
target system. As soon as the hardware becomes obsolete, computer
architecture emulation has to be done using hardware emulation. If
the

Interface Level Emulating a computer system on the interface level requiresto
recreate the original means of input/output of the system torecreate the

[4]Dioscuri -http://dioscuri.sourceforge.net/
[5]VirtualBox - https://www.virtualbox.org/
[6]QEMU - http://wiki.qemu.org/Main_Page

CHAPTER 2. RELATED WORK 21

original communication experience with the system. For two-way commu-
nication we have to consider:

• Output-Devices: Using a mobile hand-held with a 3-inch screen as an
output device as the original system has a different look-aspect com-
pared to the emulation of the same system on a PC-screen with 18
inches. An example is an emulator of a Nintendo DS with two screens
on a PC with a normal LCD screen running a Microsoft Windows op-
erating system. Similarly, actual actuator output in a control system
is different to compare to a simulated actuator output that may be as a
visual, acoustic or voltage level setting.

• Input-Devices: Using paddle-controllers to play the game Pong is a
different feel-aspect than using a keyboard or even a mouse to control
the same game in an emulated environment. This applies not only
to human-computer interaction, e.g. in a control system, but also to
differences in sensitivity, drift or timing behavior for all kind of sensor
input.

• Machine-to-Machine Communication: In distributed computing the
original interfaces to a machine are recreated or emulated.This can
for example be web-services that provide the expected data on a com-
munication interface.

Environment Playing a game of Space Invaders standing in front of an arcade
machine in a smoke-filled bar creates a different playing-experience than
the same arcade machine in a clinical museum environment. Torecreate the
original experience the environment has to be emulated as well, as the focus
on such re-creations in simulator settings for e.g. safety trainings shows.

When a system component is to be replaced by a different (emulated) compo-
nent, evaluations if the rendering is still unchanged are standard practice.

2.5.2 Emulation Technologies Used in Digital Preservation

In this section we will present some of the concepts and technologies used and
recommended for emulators in digital preservation. Included are technical recom-
mendations as well as concepts for digital preservation emulators.

Keeping Emulators Useable

Emulators are, again, a piece of software that gets obsoleteover time. To make
sure, that emulators developed today can be run on future platforms, different
technologies exist:

CHAPTER 2. RELATED WORK 22

Stacked Emulation Every emulator is written for a specific host platform. Once
the host platform gets obsolete, an emulator for the host platform is created,
executing the emulators that used to exist on the host platform. With every
generation a layer in the emulation stack is added, leading to a complex
view-path. Possible errors in the emulation processes are aggregated.

Migrated Emulation Emulators existing on a host system are migrated to a new
host system every time a platform gets obsolete. With emulators existing
for a wide array of systems, the effort of migrating every emulator to a new
system are big.

Emulation Virtual Machine In [Rothenberg, 1998] Rothenberg proposes the Em-
ulation Virtual Machine (EVM) as a solution to stacked and migrated em-
ulation. A wide array of emulators are developed for one virtual machine,
that is different from other virtual machines in that it is long term stable, i.e.,
not changed over a long period of time. Once a platform gets obsolete, not
all the emulators have to be ported to the new platform, only the EVM. De-
velopment of an emulation virtual machine started in the European project
KEEP (Keeping Emulation Environments Portable) as the KEEPVirtual
Machine (KVM) [Bergmeyer, 2011].

Modular Emulation

Many components in a system are either off the shelf components or used in dif-
ferent systems of the same time period (e.g., the MOS Technology 6502 micro-
processor[7] used in different home-computer systems from the 1980’s). Reusing
components that are proven to work is a common strategy in software develop-
ment. The same is true for developing an emulator. Reusing emulation code for
specific components of a system for the emulation of more thanjust one system is
thus self-evident.

Modular emulation as a concept for emulators is discussed asa conceptual
model by Van der Hoeven et. al. in [van der Hoeven and van Wijngaarden, 2005].
Instead of developing all the components of an emulator for every single machine
configuration, components that are already proven to work inan emulator are
used to create new system configurations by combing the different components
to a new system. Each component is emulated by an encapsulated piece of code
emulating the functional behavior of one hardware component. By interconnect-
ing the different components, an emulation process for the full system is created.

[7]MOS Technology 6502 –http://en.wikipedia.org/wiki/MOS_Technology_
6502

CHAPTER 2. RELATED WORK 23

The modular emulator is also suggested to run on a virtual machine to make it
hardware independent as shown in Section 2.5.2.

The emulator Dioscuri[8], an emulator created specifically for digital preser-
vation purposes and based on the modular emulation approachis described in
[van der Hoevenet al., 2007]. It is written in Java and runs on the Java Virtual
Machine.

Other emulators following the modular concept are the Multiple Arcade Ma-
chine Emulator (MAME)[9] that uses configuration files to emulate arcade ma-
chine systems, as well as its sister project MESS (Multi Emulator Super Sys-
tem)[10], that uses the same code base to emulate a wide array of video game
systems, computer, and calculators.

Universal Virtual Computer - UVC

An approach for a Universal Virtual Machine is theUniversal Virtual Computer
(UVC) as developed by IBM ([van der Hoevenet al., 2005]). The concept is to
design a virtual machine that while being simple enough to beeasily implemented
on a future system is still sufficient for the rendering of digital data that has been
preserved. On the time of archiving a program is written for the UVC that is
capable of rendering the digital data in the UVC. This programis stored in the
archive along with the digital data. Once the data is extracted from the archive,
an implementation of the UVC is done on a then current system.The program
written on archival time is executed on the UVC implementation, rendering the
digital data. The advantage of this approach is that the datastays unchanged, and
a rendering engine is created at a time when the original can still be rendered in the
original environment, thus making sure that the rendering is true to the original.
Also, only one virtual machine has to be implemented on each system generation
allowing the execution of all UVC programs. The disadvantage is that for every
format stored in the digital archive a rendering application has to be created. A
proof of concept for this approach has been done on the archiving of JPG-images.

KEEP Emulation Framework

The Emulation Framework (EF) [Lohmanet al., 2011] developed in the European
project KEEP provides an easy way for users to invoke emulation environments
for users based on the object’s needs. It automates the identification of an object
and selects the needed emulation environment, operating system, application, and
configuration (the complete view-path necessary to render the digital object). In

[8]Dioscuri –http://dioscuri.sourceforge.net/
[9]Multiple Arcade Machine Emulator (MAME) –http://mamedev.org/

[10]Multi Emulator Super System (MESS) –http://www.mess.org/

CHAPTER 2. RELATED WORK 24

the EF an Emulator Archive holds the available emulators. Those are connected
to a set of disk images containing the view-path. Through an abstract model the
hardware configuration necessary for the digital object is configured, and the dig-
ital object is provided in a disk image, and thus injected into the emulation en-
vironment. The EF aims to provide an environment to access digital objects in
emulation environments to be as easily accessible as clicking on the digital ob-
ject.

Remote Emulation

While the aforementioned Emulation Framework invokes emulators locally on
the user’s system, remote access to emulation tries to tackle the complexity of
emulation environments and their setup by users a differentway. By having the
emulators run on a different system and providing access through a web interface,
the user does not need to install and maintain different emulation environments on
his system. The remote access to emulation as described in [Rechertet al., 2010]
and [von Suchodoletzet al., 2011] provides an interface that allows users to se-
lect an environment, upload a digital object and interact with the object through a
web interface. Besides using the emulation environment to render digital objects,
migration through emulation is also made possible, as the interaction with the en-
vironment can be scripted on the server side, invoking the necessary applications
and converting the file to a non-obsolete format. The resulting file is then offered
for download to the user.

2.5.3 Emulation in the Context of this Thesis

In this thesis we show how emulation is comparable as a digital preservation ac-
tion to migration from an evaluation view-point in Chapter 3.We explain how the
rendering of a digital object is used for comparison of the significant properties
in different environments, and what functionality rendering environments, specif-
ically emulators, have to have implemented to support evaluation of renderings.

2.6 OAIS Reference Model

One of the first ISO standards in digital preservation and themost common frame-
work used for archives is the reference model for an Open Archival Information
System (OAIS) [ISO, 2012]. The description of the OAIS states that “An OAIS
is an Archive, consisting of an organization, which may be part of a larger orga-
nization, of people and systems that has accepted the responsibility to preserve
information and make it available for a Designated Community.”.

CHAPTER 2. RELATED WORK 25

Figure 2.4: Functional entities of an OAIS archive [ISO, 2012].

The OAIS is intended to establish minimum requirements for an OAIS Archive
and provide a set of archival concepts, thus establishing a common framework
from which to view archival challenges related to digital information. The OAIS
defines both the core components of an archive for digital preservation on a high
level as well as defines a standard terminology.

It also defines the different packages containing a digital object that exist in an
archive during the ingest – archive – access life-cycle of anobject:

Submission Information Package (SIP)The digital object along with descrip-
tive meta-data and all accompanying elements as specified inan interface to
the archive and provided by the producer.

Archival Information Package (AIP) The digital object along with descriptive
and additional information as permanently stored in the archive.

Dissemination Information Package (DIP) The form in which the digital ob-
ject is provided on access to the consumer.

The different functional entities of the OAIS that manage the different forms
of the digital object in the archive can be seen in Figure 2.4.The functions of the
main entities are as follows:

Ingest provides services and functionalities to accept a submission from the Pro-
ducer and convert the submission package to an archival package as stored
in the archive. Additionally quality control of the submitted package is per-
formed.

CHAPTER 2. RELATED WORK 26

Archival Storage takes care of managing the archival packages in the archive,in-
cluding media refreshment, error checking and providing the archival pack-
age to the Access entity.

Data Management provides services and functions for accessing the descriptive
information of digital objects stored in the archive.

Administration are the services for the overall operation of the archive.

Preservation Planning is responsible for making sure that the digital informa-
tion remains accessible to the designated community by monitoring the en-
vironment and providing recommendations and preservationplans.

Accessprovides services for accessing both meta data about the thearchived dig-
ital object as well as a representation of the object itself in a form ready for
dissemination to the user.

Making sure that information is preserved for a designated community is the
main goal of an OAIS archive. It does so by providing functionalities that evaluate
digital preservation actions to determine if the information remains accessible for
the designated community, i.e., usable as described in Section 1.1.

In this thesis we will explain what data needs to be encapsulated with a digital
object for storage in an archive as an AIP to allow for later verification of the
object’s re-deployment in a new environment.

2.7 Preservation Planning

For digital preservation purposes it is necessary to compare the effects of different
preservation actions on the significant properties of digital objects. In [Beckeret
al., 2009] we show a preservation planning workflow that allows for repeatable
evaluation of preservation alternatives. This workflow is also implemented in the
preservation planning toolPlato [Beckeret al., 2008a].

The workflow as shown in Figure 2.5 consists of four differentphases:

Define Requirements In a first step the basis for the preservation are defined.
Along with the intended audience (designated community) ofthe preserved
objects meaningful sample objects are chosen. The requirements for the
preserved digital objects (the significant properties) aredefined in a tree-
structure, breaking down the different requirements into categories and sub-
categories down to the leaves of the tree.

CHAPTER 2. RELATED WORK 27

Figure 2.5: Preservation planning workflow [Beckeret al., 2009].

CHAPTER 2. RELATED WORK 28

Evaluate Alternatives Next, a set of different alternatives for preservation ac-
tions are selected. Based on the defined basis a Go/No-Go decision for each
of the alternatives is taken (e.g., No-Go based on not meeting basic require-
ments defined in the basis). The different preservation action alternatives
are then run on the selected sample objects and evaluated.

Analyze Results The results of the preservation actions are then transformed to a
uniform scale by extracting the significant properties and deciding how well
they were preserved by the alternatives. By setting importance factors for
the different branches in the tree, a utility analyses is performed resulting
in a ranking of the different alternatives. The result of theanalysis is a
recommendation for one of the preservation action alternatives.

Build Preservation Plan Based on the recommended alternative, an executable
preservation plan is created, defined and validated, resulting in a preserva-
tion plan.

Figure 2.6 shows how the preservation planning is integrated into the OAIS.
By using the preservation planning approach shown in this section we can evaluate
how well significant properties are preserved with different preservation actions
and how well other constraints set by the preservation planner are met. In this
thesis we will show a framework and process that help in evaluating the effects
of different preservation actions (migration and emulation) on the rendering of a
digital object.

2.8 Evaluation of Digital Preservation Actions

When performing a digital preservation action (or planning for digital preserva-
tion actions on digital objects), it is necessary to evaluate, if the digital object
is properly represented in its new form, be it in an emulated environment or in
a migrated format. When migrating a digital object to a different format, char-
acteristics of the object are usually extracted from both file representations and
compared. But it should be noted that digital objects represent information ob-
jects, and are thus always used in a rendered form (which may be as complex
as an entire business process, a system control application, an interactive com-
plex media object or video game, a rendered office document, but also a simple
XML file encoded in Unicode and rendered as readable character set or interpreted
as machine-readable content). Thus, evaluating any kind ofdigital preservation
action needs to be based on the connecting point between interface and environ-
ment. In this sense, there is no formal, conceptual difference between emulation

CHAPTER 2. RELATED WORK 29

Figure 2.6: Preservation planning integrated into the OAIS. [Beckeret al., 2009].

and migration from an evaluation perspective, as even migrated objects need to be
evaluated within the new rendering environment as shown in Chapter 3.

2.8.1 Significant Properties

A common way to compare a digital object before and after applying a digital
preservation action is to compare if the significant properties of the digital object
are still intact. Properties of the digital object that are significant to a designated
community and a specific use case are usually defined during the preservation
planning process.

To evaluate a digital preservation alternative it is thus necessary to know the
properties of an object that are significant and that have to be preserved. These
properties can be technical as well as social properties. Depending on the type of
object and the designated use the weighting of the importance of meeting specific
requirements can be different. A common way of structuring the significant prop-
erties of an object are the categories content, context, structure, appearance, and
behavior or functionality [Rothenberg and Bikson, 1999].

Evaluating the preservation of significant properties after applying a digital
preservation action using standardized, repeatable and objective methods was de-
veloped in a series of projects and tools. In [Rauch and Rauber,2004] Rauch et.
al. develop a preservation solution evaluation metric based on Utility Analysis.
This approach is combined with the Dutch Digital Preservation Testbed ([Slats

CHAPTER 2. RELATED WORK 30

and Verdegem, 2004], [Hofmanet al., November 2004]) to the DELOS Testbed
for choosing a digital preservation strategy in [Strodlet al., 2006]. In [Strodlet
al., 2007] Strodl et. al. present the PLANETS[11] Preservation Planning approach,
which is based on the DELOS Testbed. The Planets Testbed shown in [Aitken et
al., 2010] is derived from the same DELOS Testbed and uses a similar methodol-
ogy to perform mass evaluations of digital objects as the Plato preservation plan-
ning tool shown in Section 2.7. In all these approaches the significant properties
of a digital object are extracted before and after applying the preservation action.
A comparison of the extracted properties is performed to evaluate how well a dig-
ital preservation action preserved the significant properties. A summary of tools
to extract these properties for different file formats is shown in Section 2.8.2.

The significant properties of static documents usually differ from those of dy-
namic and interactive content. While the appearance of the first makes it often
possible to migrate the contents to other formats, the task is more complex for
interactive content. Potential loss has to be investigatedvery closely, as for exam-
ple loss of interaction can render a digital art object completely useless. Visual
and audible properties as well as interaction with the object have to be preserved.
Even with the same significant properties for different types of complex content
the weighting of importance of these properties for preservation can be different
depending on the type and the designated user community.

Significant properties of dynamic digital objects include visual and audible
properties. All kinds of interactive input possibilities have to be considered. In
case of application software and dynamic documents these are e.g., form fields,
icons, menus and mouse and keyboard for input. For video games and digital art
this can be menus, icons on the user interface, the response and support of hard-
ware like gaming hardware, video cameras, sensors, motion detectors and mouse
and keyboard again. Functionality is an important part of software preservation.
In case of processes the input data has to be processed and theoutput data has
to be rendered correctly. For video games and digital art theplaying experience,
response to input and audible/visual characteristics are important.

Comparing renderings of the same complex digital object in different environ-
ments is usually done manually by a human observer. A case study to compare
different approaches to bpreserve video games, with one of the approaches being
emulation, was reported in [Guttenbrunneret al., 2010a] on a human-observable
and thus to some extent subjective level.

Availability of source code is one of the significant properties of software that
allow us to migrate the software for preservation purposes [Matthewset al., 2008].
For interpreted program languages like BASIC (compared to program languages
where source code is compiled to executable software) the source code is equal to

[11]http://www.planets-project.eu

CHAPTER 2. RELATED WORK 31

the executable software given the availability of a suitable interpreter.
Becker et. al. present in [Beckeret al., 2007] case studies on sample objects

of interactive multimedia art from the collection of the ArsElectronica[12]. In-
teractivity is designed as one of the significant propertiesof the art works, thus
requiring a comparison of successful preservation on a rendering level. In [Gut-
tenbrunneret al., 2010a] we presented a case study on preserving console video
games to evaluate existing emulators for their suitabilityas digital preservation
alternatives. This case studies also identifies significantproperties of complex
content, including the behavior while being rendered and the interactive aspects
of the games. It also compares different alternatives for preserving interactive
content such as migration and emulation strategies.

The INSPECT project [Graceet al., 2009] used the Function-Behavior-Struc-
ture (FBS) framework designed to help create and re-engineering systems. It con-
siders the purpose of the object in the context of how it is used by the stakeholders.
Focusing on the properties that are essential (significant)to the stakeholders it al-
lows thus to concentrate on alternatives that preserve these properties best, similar
to the preservation planning workflow shown earlier and followed in this thesis.

2.8.2 Identification, Validation, and Characterization of Digi-
tal Objects

Part of preservation planning is to automatically characterize migrated objects.
Various tools to identify file formats and extract properties exist.

The standard UNIX toolfile uses a local database to identify files. It is primar-
ily used in production environments to identify files, not necessarily for digital
preservation purposes.

An approach for digital preservation purposes is taken by PRONOM [Pettitt,
2003], maintained by the National Archives of the UK. PRONOMis a database
of technical information about file formats, but also a platform that encompasses
tools and services to support digital preservation functions. One of the tools us-
ing PRONOM as its database is Droid [Brown, 2008]. Droid is able to batch-
identify files using internal signatures generated from information recorded in the
PRONOM technical registry.

The JSTOR/Harvard Object Validation Environment (JHOVE) offers three dif-
ferent functions for analyzing files. Besides the identification of an object’s for-
mat, it is also able to validate if the object conforms to the format’s technical
norms. As a third function it can also extract the technical properties of the object
that are examined during validation either in plain text or in an XML format [Don-
nelly, 2006].

[12]http://www.aec.at

CHAPTER 2. RELATED WORK 32

Besides the aforementioned registries, other sources exist, such as the Dig-
ital Formats Website[13], that holds valuable sources of information for digital
preservation. Also the Global Digital Format Registry (GDFR)[14] and the Uni-
fied Digital Format Registry (UDFR)[15] can be used for identifying formats and
characterizing files.

A wrapper that uses some of the aforementioned tools and moreis the File
Information Tool Set (FITS)[16] developed by the Harvard University Library. It
identifies, validates and extracts technical meta data for avariety of file formats
using the various tools and provides the output in a standardized format.

To aggregate and analyze characteristics extracted by FITS, the tool C3PO[17]

was developed [Petrov and Becker, 2012]. It creates a profile of the characteristics
of the content of a whole collection and allows for a selection of datasets for the
planning purposes.

In [Huber-Mörket al., 2012] a case study is shown that allows quality assur-
ance in scanned images. Image comparison by creating a fingerprint of each page
allows the authors to detect duplicate images. A comparisonof sound waves for
the sake of quality assurance is described in [Jurik and Nielsen, 2012]. Audio files
migrated from WAV to MP3 are compared to assure that the content is unchanged.

2.8.3 Characterization Languages

The significant properties of a digital object that are extracted either from its bit-
stream or a rendered form have to be stored in a characterization language, to
allow for automated processing and comparison of differentversions or render-
ings of an object.

A chracterization language designed for automatically comparing migration
results is the eXtensible Characterisation Languages (XCL) [Beckeret al., 2008b].
The original and migrated objects are hierarchically decomposed and represented
in XML. The XCL consists of three components: an extensible characterization
definition language (XCDL) that is an abstract way to express the information con-
tained in a digital object, a component that extracts the data in XCDL as defined
in an extensible characterization extraction language (XCEL), and a comparator
that is able to compare different XCDL extractions for equality. By comparing the
XCDL extractions we can measure the effects of migration on a digital object on
properties extracted from the object.

[13]Digital Formats Website –http://www.digitalpreservation.gov/formats/
index.shtml

[14]Global Digital Format Registry –http://www.gdfr.info/
[15]Unified Digital Format Registry –http://www.udfr.org/
[16]FITS –http://code.google.com/p/fits/
[17]C3PO –http://ifs.tuwien.ac.at/imp/c3po

CHAPTER 2. RELATED WORK 33

Figure 2.7: Screenshot of "Chessmaster 2100" running under DOS on the left and
the segmented screenshot showing significant areas on the right.

For emulation environments however, the digital object stays unchanged, so
properties extracted from the bitstream will be unchanged as well. Thus the com-
parison has to be done on the rendered object.

Thaller suggests in [Thaller, 2008] to separate the information contained within
a file from the rendering of the information. Information stored in the file can, for
example, be the coordinates of text which leads to the rendering displaying the
text on a specific point on the screen. This is described as thelook & feelaspect
of an object.

As shown in [Guttenbrunneret al., 2010b] XCL was extended to be able to
describe significant points in the rendering of a digital object. The central analysis
task of the method is to identify specific regions in the rendered digital object,
which can - in a final step - be compared with the rendering of the same object,
using another rendering environment. Those specific regions reflect characteristic
layout properties: regions with a high frequency of pixels that could refer to a
significant area. To identify and isolate such regions of interest in the prepared, cut
to size and binarized image, the image is segmented by the Efficient Graph-Based
Image Segmentation Algorithm as presented in [Felzenszwalb and Huttenlocher,
2004]. To facilitate comparison between two images, the upper leftmost pixel and
the bottom rightmost pixel of a layout-region in relation tothe pixel dimensions
of the image by dividing both pixel values by the width, respectively the height,
of the processed image are calculated. These relative values are embedded into
XCDL files, which are connected to the screenshots, to enable acomparison of
the objects through the aforementioned XCL Comparator. An application that
accomplishes the described tasks was created as the XCL Layout Processor.

In [Guttenbrunneret al., 2010b] we performed case studies on various inter-
active objects to show the validity of the approach. Figures2.7 and 2.8 show two
different images segmented to significant regions. Figure 2.9 shows a code snippet
that describes the coordinates of a significant region in an image.

CHAPTER 2. RELATED WORK 34

Figure 2.8: Screenshot of original DOS-Version of "The Secret of Monkey Island"
(left). Significant areas in the same screenshot as a result of binarization and
segmentation are shown on the right.

Figure 2.9: Code snippet of XCDL enhancement for significant coordinates of
identified areas.

2.9 TIMBUS Preservation Workflow

An object goes through different moments in its digital preservation life cycle.
While being deployed in its original environment, planning for the preservation of
the object is performed. The digital object is then stored ina long term archive.
At some point in the future the digital object is taken out of the archive and rede-
ployed in a future environment.

These significant points in time were developed into a workflow for the preser-
vation of business processes in the TIMBUS project [Strodlet al., 2012]. While
this workflow as shown in Figure 2.10 contains stages specificfor business pro-
cesses, the actions that have to be taken are similar for all digital objects and
relevant for any evaluation of renderings of a digital object.

Plan In the plan phase the context of a digital object has to be captured along
with all legal implications of rendering the object at a later point in time,
the necessary documentation and all other relevant data. The risk of not
having the object available has to be assessed and managed. The captured
context contains amongst other meta-data the view-path, asit is essential to
know the requirements of rendering the digital object in a new environment.
To accomplish the capturing the digital object has to be analyzed along with

CHAPTER 2. RELATED WORK 35

Figure 2.10: Process for Digital Preservation of Business Processes (BP) in TIM-
BUS.

CHAPTER 2. RELATED WORK 36

all its external dependencies influencing the rendering of the digital object.
Knowing these dependencies is necessary to create a deterministic render-
ing of the digital object, i.e., to make sure that the digitalobject can be
rendered identical under the same conditions and allowing us to do a com-
parison between the different renderings. To then assess the quality of a
preservation action, the preservation action is carried out on the object and
the result is compared to the original rendering, and a decision for one of the
preservation candidates is taken. This first step of evaluation of the preser-
vation action is similar to the actual validation and verification in the next
two phases described below.

Preserve In the actual preserve phase, the digital object is first virtualized. In this step
an additional layer is introduced in the view-path (e.g., a virtual machine
or an emulator), allowing us to capture any communication between the
object’s environment and the outside world. This is for one incoming data
that influences the rendering, e.g., data from a web service,user input, data
from sensors or through a network protocol. But it is also dataproduced
by the rendering in any form (e.g., on the screen as information for a user,
data sent to actors or the network). We can thus validate the digital object
at the time of preservation to make sure that all the necessary dependencies
have been captured and will be stored along with the digital object. We
also capture the data used for the validation and the output produced by the
rendering process to compare this data in a later verification phase once the
object is re-deployed. Data being captured includes the context as well as
log files, any test-data and properties of the rendering process.

Re-deploy At a later point in time the digital object is re-deployed in anew environ-
ment, e.g., an emulator existing at the time of re-deployment. The digital
object has to be integrated in a system where all the externaldependen-
cies necessary to render the digital object are provided in some form. An
example for this would be a web service that existed when the object was
originally in use, but might not exist anymore once it is re-deployed. Once
the object has been re-deployed it is necessary to verify that the function-
ality is still intact. Thus we provide the data that has been captured during
the verification phase to the new environment and capture theoutput of the
digital object. If this is done for various use cases, and thedata captured
matches, we have strong evidence that the rendering of the digital object
is unchanged compared to the original rendering at the time of preserva-
tion. Other data that will be provided to the new environmentto ensure
a deterministic rendering includes user input. To verify that the results of
the rendering process are unchanged to the original rendering, log files and

CHAPTER 2. RELATED WORK 37

properties captured during the rendering in the new environment are com-
pared to the results stored in the preserve phase.

In this thesis we show how the framework for evaluating the rendering of
digital objects can be used in the TIMBUS preservation workflow to verify and
validate rendering results of preserved digital objects.

2.10 Projects on Preserving Complex Objects, Mul-
timedia and Interactive Content

A number of projects that have been dedicated to preserving complex digital ob-
jects like video games, art, or processes have been started in the last years.

The first European research project dedicated specifically to emulation was the
Keeping Emulation Environments Portable (KEEP) [Bergmeyer, 2011] project.
Besides the aforementioned KEEP Virtual Machine and the KEEPEmulation
Framework, the project also did work on the KEEP Transfer Tool Framework
to transfer complex digital objects from their original media, as well as on studies
researching the legal situation of emulation in Europe. Some of the legal issues
raised by KEEP also apply to the development of the emulator shown in this the-
sis.

The Preservation of Complex Objects Symposia (POCOS)[18] project deliv-
ered different symposia in the UK on issues of complex digital objects connected
to Visualizations and Simulations (e.g., visualizing 3D models of cultural heritage,
virtual museums), Software Art, and Gaming Environments and Virtual Worlds.
Besides the symposia, POCOS also published three books on the three different
topics covered by the symposia.

The Preserving Virtual Worlds project [McDonoughet al., 2010] was a project
on the preservation of video games and virtual worlds fundedby the Library of
Congress. The goals of the project were to develop basic standards for virtual
world metadata and content representation, as well as investigating preservation
issues by carrying out various case studies on early video games and interactive
multi-player game environments. A second installment of the project, Preserving
Virtual Worlds 2 (PVW2), is currently underway, focusing on significant prop-
erties for a variety of games and providing a set of best practices for preserving
materials through virtualization technologies and migration.

An approach to preserve complex multimedia art was undertaken by the Gug-
genheim museum with the Variable Media Initiative. The outcome was theVari-
able Media Questionnaire, a questionnaire for artists and collectors of digital art

[18]POCOS –http://www.pocos.org/

CHAPTER 2. RELATED WORK 38

which included descriptive elements needed for recreatingthe artwork. The re-
search concluded in theVariable Media Network[19]. The variable media paradigm
includes the artists on the decision on a preservation strategy, with the available
options being storage, emulation, migration and reinterpretation.

A practical experiment on digital art preservation using emulation is presented
in [Jones, 2004]. The artwork “The Erl King” (1982-85) by Grahame Weinbren
and Roberta Friedman consisted of obsolete and generic hardware and software.
Different preservation actions were performed during the case study. An interac-
tive website as a re-interpretation of the original artworkwas set up for visitors
of the museum website. For a setting inside the museum emulation was used as a
strategy. The original software for the artwork was writtenby the artist, so it was
a very high priority to also preserve the original code.

The Ars Electronica[20] is a platform for digital art and media culture. Besides
a yearly festival on art, technology, and society, it maintains a permanent media
center and museum for interactive digital art. Founded in 1979, it maintains a
wide array of digital artworks, many running on obsolete or generic hardware and
software. In [Beckeret al., 2007] a case study on preservation planning on some
of the artworks in the collection is shown.

Recently, the Museum of Modern Art (MoMa) started acquiring video games
as artworks for their collection. The MoMa is acquiring not only the game itself
but also as far as possible accompanying material like the source code or design
documents. For games that are no longer running on original hardware, putting an
emulated version of the game on display for visitors to interact with is planned[21].

The European projectTimeless Business Processes(TIMBUS)[22] deals with
the preservation of resilient business processes. Besides making sure that the
execution context of a process processing data stays accessible, TIMBUS also
concentrates on third party dependencies usually essential to render a process cor-
rectly. TIMBUS also aligns preservation actions with enterprise risk management
(ERM) and business continuity management (BCM).

A project dealing with the challenges to preserve scientificexperiments in
data-intensive science is Workflow 4Ever (Wf4Ever)[23]. It defines models to de-
scribe scientific experiments by means of workflow-centric research objects and
collects best practices for their creation and management,as well as analyzes and
manages the decay in scientific workflows.

[19]Variable Media Network –http://variablemedia.net/
[20]Ars Electronica –http://www.aec.at/
[21]MoMa acquires video games –http://www.moma.org/explore/inside_out/
2012/11/29/video-games-14-in-the-collection-for-starters

[22]TIMBUS – http://timbusproject.net/
[23]Wf4Ever –http://www.wf4ever-project.org/

CHAPTER 2. RELATED WORK 39

Data and Software Preservation for Open Science (DASPOS)[24] explores the
technical problems connected to the preservation of the massive data sets of High
Energy Physics (HEP) experiment data. While the project concentrates on HEP
experiments, the goal is to create a template for preservation useful for different
disciplines.

A multitude of other projects exist, a survey of European initiatives is shown
in [Strodlet al., 2011].

2.11 Summary

In this chapter we described some of the foundations for workcarried out in this
thesis. Basic concepts for the view-path of a digital object,as well as different
strategies of how to preserve a digital object for the long term were presented, with
a special focus on emulation. We showed different concepts used in emulation as
a digital preservation strategy. Keeping the rendering of adigital object authentic
after applying a preservation action is crucial for the object to stay usable for the
designated community. Preservation planning as part of theOAIS ensures that the
best preservation action in a certain context is selected. Evaluating preservation
actions by characterizing the object is part of preservation planning.

In this work we will show how the rendering of complex digitalobjects can be
used for evaluation of preservation actions both in preservation planning but also
in later phases in the preservation workflow presented in this chapter. To put our
work in the context of the research field, we also introduced some projects doing
work on the preservation of complex digital objects.

[24]DASPOS –https://daspos.crc.nd.edu/

Chapter 3

Comparing Renderings of Migrated
and Emulated Digital Objects

3.1 Introduction

Emulation and migration as the main strategies in digital preservation are usually
treated as entirely different strategies. While for evaluating the success of a mi-
gration action the object properties are compared to check if significant properties
of the object change, the rendering environments of the digital object (i.e., the
environment the object was originally rendered in and the environment it will be
rendered in after the migration) are quite frequently not taken into account. With
emulation, on the other hand, the digital object does not change, so only the ren-
dering of the digital object in the original environment andthe rendering in the
emulated environment are compared to see if the rendering isidentical.

What is usually not considered in the evaluation of a migration action is that
every extraction of significant properties of an object is already a form of ren-
dering i.e. an interpretation of this object. Even though not necessarily directly
visible to the user, the object is rendered by the routines used to extract the prop-
erties. The problem with this approach is that the program ”rendering” the object
is neither necessarily the program originally used to render it nor the one that will
be used to render it and thus the results are not necessarily authentic to the orig-
inal rendering once the object is rendered in a different environment. (Note that
”rendering” in this context is not restricted to the visual display of an object. It
refers to all kind of interpretations of an object and the resulting effect on an envi-
ronment, be it visual, acoustic or effects on a system state,files stored on media,
or communication/voltage levels on I/O ports, etc.)

In this chapter we will show how migration and emulation strategies affect the
view-path of a digital object on different levels. By applying a digital preservation

40

CHAPTER 3. COMPARING MIGRATION/EMULATION RENDERINGS 41

action the view-path is changed, both for emulation and migration actions. The
rendering using the new view-path has to be compared to the object rendered in
the original view-path to evaluate changes of significant properties of the object
when rendered in the new view-path. While this is common knowledge when
evaluating emulators this chapter will emphasize the similarities in rendering of a
migrated object and the changes in the view-path.

We will show in this chapter that both the evaluation of a migration action and
an emulation action should thus always include the combination between object
and rendering environment using an evaluation strategy as shown in the frame-
work in Chapters 4 and 5. Research shown in this chapter has beenpublished
in [Guttenbrunner and Rauber, 2012b].

3.2 Changing the View-Path Using Emulation

Using emulation as a digital preservation strategy, we keepthe object unchanged.
This means we can replace three of the layers in the original view-path shown
in Figure 2.1. Based on the different levels of emulation, we have the following
possible resulting view-paths:

Application The most simple level on which we can change the rendering is by
replacing the application as seen in Figure 3.1b. An examplefor this would
be to use FreePDF instead of Adobe Acrobat Reader (or using a different
version of Adobe Acrobat Reader) to render a PDF document. While not
a long term strategy (as the hardware and operating system stay the same),
this could be the case if an application gets obsolete and needs to be replaced
by a different one.

Operating System The operating system is usually very closely tied to the under-
lying hardware. If we keep the original application in placein the view-path
and use a translation layer emulating the originally used operating system,
we get an extra layer in the view-path as shown in Figure 3.1c.As with the
strategy of emulating on the application level, this is not along term strat-
egy, as the application would still need to be run on the same hardware. This
strategy would be used if the operating system gets obsoleteand needs to be
replaced by a different one, still running on a compatible physical hardware.

Hardware Finally, we can replace the actual physical hardware by an emulator
replacing its functionality. The original application andthe operating sys-
tem used to run the application stay unchanged. Introducingan emulator for
the hardware means that usually two additional layers are introduced into

CHAPTER 3. COMPARING MIGRATION/EMULATION RENDERINGS 42

Figure 3.1: Changing the view-path by emulating the application. Full boxes show
the emulated layer that changes, dashed boxes additional layer(s) that need to be
introduced. Shown are the original view-path (a) and view-paths emulating the
application (b), the operating system (c), and the computerarchitecture (d).

the view-path as shown in Figure 3.1d: the emulator of the original hard-
ware and the operating system on which the emulator runs. If the emulator
is based on a virtual machine (e.g., Java VM), we get another additional
layer. As in this approach the physical hardware is replacedby software
that can be ported to new machines (the emulator), this is obviously also the
most promising approach for a digital preservation strategy.

3.3 Changing the View-Path using Migration

If we use migration as a digital preservation strategy, the digital object is changed.
Based on the view-path shown in Figure 2.1 we get the followingnew possible
view-path options.

Digital Object If only the digital object is changed, but the same application is
used to render the digital object as shown in Figure 3.2b, theremainder
of the view-path remains unchanged. An example would be to convert an
image in format BMP to PNG and use the same tool to view the image.
The use as a strategy is limited as the motivation for a digital preservation
is usually that the application used to render the digital object would get

CHAPTER 3. COMPARING MIGRATION/EMULATION RENDERINGS 43

Figure 3.2: Changing the view-path by migrating the digital object. Boxes around
the layers highlight the layers that change. Shown are the original view-path (a)
and the changed view-path when the object is migrated (b), when a different ap-
plication is used to render it (c), when a different operating system has to be used
for the application (d), and when the computer architecturechanges (e).

obsolete, and not just the format of the digital object. Further, note that
while the application may formally remain unchanged (e.g.,the same image
viewer application), a different functional component will be used within
the same application, thus actually constituting a different rendering engine.

Application In addition to changing the digital object we usually also need to
change the application that is used to render the object. An example would
be to migrate all documents from Microsoft Word DOC-format toPDF-A
and using Adobe Acrobat Reader instead of Microsoft Word to render the
objects. On this level the operating system and the hardwarewould still be
unchanged as shown in Figure 3.2c. (Note that, strictly speaking, also a new
version of an application basically constitutes a new application that needs
to be verified as such.)

Operating System The operating system has to be replaced by a different one
once it gets obsolete as shown in Figure 3.2d. Using a new operating sys-
tem means usually to replace the applications (at least withnew versions)
as well. While it might still be possible to run it on the same hardware,
this already changes 3 layers in the view-path. An example would be to
migrate the object from Microsoft Word 95 format to Microsoft Word 2007
format, and at the same time change the application Microsoft Word 95 to
Microsoft Word 2007 and the operating system from MicrosoftWindows
95 to Microsoft Windows 7.

Hardware As hardware gets obsolete as well, we finally will have to replace the

CHAPTER 3. COMPARING MIGRATION/EMULATION RENDERINGS 44

actual physical hardware by a different one. The upgrade in hardware usu-
ally involves an upgrade in the operating system with all thebefore men-
tioned steps. As can be seen in Figure 3.2(e) this involves potentially to
exchange all the layers in the view-path. Note, that we may find a situa-
tion where we replace (part of) the underlying hardware, butare still able to
use, at least nominally, the same operating system. Yet, this usually needs
to be treated like a complete replacement of also the operating system, and
potentially any applications building on top of it as at least the operating
system will usually not be identical: different drivers maybe required to
access different hardware components, API’s behave differently, etc.

Other, more limited options, such as migrating only a specific layer, keeping
those on top of it unchanged are, of course, possible as well.For example, we
may replace (part of) the hardware configuration of the system, running the same
operating system on top of it (albeit likely with different libraries being used, thus
resulting effectively in a different operating system). Similarly, we might upgrade
an operating system e.g. to a new version, or only partially by applying new
security patches, keeping the viewer application identical. In any case, we are
changing the view-path, thus requiring evaluation of the rendering performance
of an object in the new setting.

3.4 Generalized View on the Performance of Digital
Objects

Emulation strategies usually replace one layer in the view-path or add an ad-
ditional layer as an interface between the emulated view-path and the new un-
derlying layers. This adds complexity to the rendering of a digital object, with
side-effects of the introduction of the new layers having tobe considered. For
evaluating the rendering we need to do a comparison between the rendering in
the original view-path and the new view-path to judge where the rendering differs
and if the digital preservation action is useful for the given setting. Any change in
the view-path due to a layer getting obsolete has to lead to a re-evaluation of the
rendering.

For migration the view-path of the digital object stays onlythe same if the
same application on the same system is used. In every other case the view-path
changes and every lower layer frequently leads to one or morelayers on top of it
being changed as well. As different code segments in the sameapplication will be
used to render an object (e.g. a PNG library instead of a JPG library) this should
actually be viewed as using a different application to render the object in the new
format, even if the two rendering engines are ”wrapped” as one single, unchanged

CHAPTER 3. COMPARING MIGRATION/EMULATION RENDERINGS 45

application. The potential side-effect is thus even biggerthan when emulating
the original rendering environment of a digital object. To judge if there are side-
effects due to the change in the rendering environment we have to compare the
new rendering to the original rendering, just as we would do in an emulation
setting. As with an emulation action, any change in the new view-path has to
be re-evaluated. We need to keep in mind that it is not enough to compare the
migrated object in the current environment and assume that the rendering will be
the same in a future environment. If the digital object is migrated while preserving
it for the long-term it has to be validated against the original rendering of the object
to be able to make a statement about the authenticity of the rendering.

As an example for the changes in object format and its influence on the render-
ing a document in Microsoft Word for Windows 97-2003 (doc) format is rendered
using both Microsoft Office 2007 (Figure 3.3) and OpenOffice 3.4 (Figure 3.5),
both running on a PC using Windows 7 operating system. While small differences
in the rendering are visible (e.g. horizontal spacing, somechanged word wrapping
in the “Instructions” part of the document), the propertiesof the document con-
sidered significant for most settings are unchanged. Next, the document has been
migrated to Microsoft Word for Windows 2007 (docx) format. The document is
rendered exactly identical in Microsoft Word 2007 (Figure 3.4), so the significant
properties stored in the file (layout information, content,metadata, etc.) are still
present. However, in OpenOffice 3.4 the rendering looks completely different to
a state that is unusable for most applications (Figure 3.6).

Additionally to the observations made in the experiments inthis chapter, it
should be noted, that the same file is identified differently using characterization
tools, thus different characteristics might be extracted,leading to differences in
the extracted significant properties on migrated files. In [Tarrant and Carr, 2012]
Tarrant et. al. show how PDF files are characterized and identified differently
over the course of a view month, using different characterization tools shown in
Section 2.8.2.

Thus, any object with preservation actions applied, whether emulation or mi-
gration, must be evaluated in the context of its rendering environment, as changes
to significant properties may occur that are not properly detectable from an anal-
ysis of the static object properties only. From this perspective, migration and
emulation behave virtually identically.

3.5 Summary

In this chapter we showed how the digital preservation strategies migration and
emulation on different levels affect the view-path of a digital object. We then
compared the effects of the two strategies and showed that the change in view-path

CHAPTER 3. COMPARING MIGRATION/EMULATION RENDERINGS 46

Figure 3.3: Sample layout region of a document in MS Word for Windows 97-
2003 format rendered in MS Office 2007.

Figure 3.4: Sample layout region of a document in MS Word for Windows 97-
2003 format rendered in OpenOffice 3.4.

CHAPTER 3. COMPARING MIGRATION/EMULATION RENDERINGS 47

Figure 3.5: Sample layout region of a document in MS Word for Windows 97-
2003 format migrated to MS Word for Windows 2007 (docx) format rendered in
MS Office 2007.

Figure 3.6: Sample layout region of a document in MS Word for Windows 97-
2003 format migrated to MS Word for Windows 2007 (docx) format rendered in
OpenOffice 3.4.

CHAPTER 3. COMPARING MIGRATION/EMULATION RENDERINGS 48

makes it necessary to take the rendering environment into account when evaluat-
ing any digital preservation action, be it a migration or an emulation action.

Based on these observations we showed that preservation planning strategies
have to be adapted when using migration as a digital preservation strategy. To
ensure an authentic rendering it is necessary to take the target rendering environ-
ment after migration into account. Any change in the target rendering environment
(i.e., a layer in the view-path becoming obsolete) has to lead to a new preservation
planning iteration evaluating the changed environment, even if the format of the
digital object stays unchanged. This makes the evaluation process for migration
strategies essentially identical to the evaluation of emulation strategies.

In the next chapter we will show a framework to evaluate the rendering of
digital objects.

Chapter 4

Describing a Digital Artifact and its
Environment

4.1 Introduction

In Chapter 3 we showed that applying any digital preservationaction, be it migra-
tion or emulation, changes the view-path of the digital object on at least one level.
This means that the renderings of the different view-paths have to be compared for
an evaluation if the conceptual layer of the digital object is preserved accurately.

Knowing about the behavior of the digital artifacts under evaluation is essen-
tial to determine whether the behavior is properly reproduced by the rendering
environment. In this chapter we will explain some key characteristics of a digital
object and its view-path, as well as influences on the objectsbehavior that has
to be gathered to properly evaluate its rendering process. The decisions on what
level and at which moments in time comparisons have to be madeare shown and
used as a basis for a systematic evaluation of rendered digital objects. Parts of this
chapter have been published in [Guttenbrunner and Rauber, 2012c].

4.2 Describing the Digital Artifact

It is necessary to explicitly document, which characteristics of a digital object are
relevant for a given preservation scenario, i.e. which of these constitute significant
properties. The degree of preservation of these in a different view-path ultimately
forms the basis for the evaluation and comparison of the performance of different
potential environments as part of the preservation planning process [Becker and
Rauber, 2011b]. These significant properties are collected as part of the require-
ments analysis phase for a digital preservation endeavor and may be documented
e.g. in the form of an objective tree, grouped into differentcategories. Several

49

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 50

possible preservation actions, such as different emulation environments, may then
be used to render an object and evaluate its performance. A range of properties
usually need to be considered that can be structurally subdivided in Object and
Action specific properties, i.e. those pertaining to characteristics of the digital
object (e.g. reacts correctly to interaction, performs calculations identically to
the original, displays colors correctly) and those pertaining to the action (emula-
tion or migration) applied (e.g. emulation environment is open source, memory
consumption, required hardware platform, licenses). (See[Becker and Rauber,
2011a] for a detailed discussion and examples of such properties and means how
to measure their performance.)

In the following two subsections we want to focus on two object characteris-
tics that are particularly relevant for dynamic objects andevaluation settings that
usually tend to call for emulation strategies as suitable preservation actions, but
are just as valid for migration strategies.

4.2.1 Determinism of the Digital Artifact

Before trying to evaluate the behavior of the digital artifact in original form and
in a different view-path it is necessary to understand the impacts of internal and
external events on the object’s behavior. For evaluating the differences in behavior
of an object in the original environment and the new environment it is necessary
to ensure that the object behaves the same under the same external conditions.
Otherwise it is not possible to determine if changes in behavior are an effect of
changes in the view-path or due to seemingly random behavior, i.e. changes in
data influencing the object’s behavior.

Deterministic Behavior

Lamport et al. describe deterministic algorithms as “algorithms in which the ac-
tions of each process are uniquely determined by its local knowledge” ([Lamport
and Lynch, 1990]). A deterministic algorithm is independent from external influ-
ences like user input, hardware values, random values, or other concurrent algo-
rithms modifying the same data as the algorithm. Based on this, we can define
deterministic behavioras the behavior of an object that is influenced only by the
input that is applied to the object when it is invoked. The rendering of the object
has to be independent from the factors listed above for the object to be considered
as having deterministic behavior.

Some digital objects can be rendered with a deterministic behavior. A spread-
sheet or database application will usually under the same software- and hardware-
conditions and after applying the same input show the same results. Replaying a
video or audio file has to produce the same results independent from the external

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 51

influences listed above. A comparison of preservation action effects would in this
case be rather simple.

Non-Deterministic Behavior

If we try to preserve a single object for the long term, the object is usually self
contained, i.e. all the data specific for the object (and not created by interpreting
the object for the rendering) can be extracted from the object’s bitstream. On the
other hand, if the behavior of a digital object depends on user input, hardware
or random values, or has the data it uses modified by other processes, then it
is not deterministic. If the object’s rendering is not deterministic, i.e. relies on
external data that influences how the object is rendered, we have to make sure
that this data is provided to the rendering engine identically for each rendering.
This ensures that differences in the rendering are triggered by differences in the
rendering environment, and not by changes in the external data.

To allow an automated comparison of two renderings of the same object it is
necessary to try to create a deterministic behavior. The rendering of the digital ob-
ject can be made semi-deterministic by identifying the external events influencing
the object’s behavior and equalizing the values for these events in the different en-
vironments. This external data can come from different sources. It can be divided
into two different categories depending on where it originates.

• Locally controlled data:Some data can be locally controlled as it is exter-
nal data coming from the host system (e.g., real time clock, files stored on
the host system’s file system, random number generator). If adigital object
is separated from its original environment, e.g., by virtualizing its environ-
ment, this data is under control of the new rendering environment and can
thus be provided identically for every rendering cycle of a digital object, to
ensure deterministic rendering.

• Not locally controlled data:Some data is provided to a digital object through
interfaces from other systems that are not local to the digital object’s host
system (e.g., data retrieved from web services, user input,files stored on
the network). This kind of data may change with every rendering cycle of
the digital object and is thus much more difficult to keep identical for de-
terministic execution. Additionally, as the service is located remotely, it
can provide data in the form of a black box, i.e., the exact functionality of
the services may not be known. The list of possible interfaces on which
data is fed into the system is practically endless and obviously depends of
the technical characteristics and interfaces of the hardware in the view-path.
Some examples include human input through keyboard, mouse,joysticks,

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 52

microphones, but also external data supplied using serial or parallel inter-
faces, network interfaces, any kind of USB devices, storagemedia, MIDI
interfaces, etc.

For example, applying automated user input at the exact samemoment in the
rendering process can be used to eliminate differences in behavior depending on
user input. Random number generators are usually initialized with values derived
from hardware values like system time or the position of the raster beam on the
screen. These external influences to the digital object can be made predictable by
setting the system clock in the emulation environment to thesame time as on the
original environment during execution of the digital object and by using a pixel-
exact emulation of the original system, i.e. updating everypixel on the screen with
the corresponding CPU cycles. Especially video games or interactive digital art
usually heavily depend on external or random elements. An example of a video
game with unusual external events is metro-wardive[1] for the Nintendo DS/Apple
iPhone which uses wireless-LAN-waves to create in-game objects.

When a digital object is described for preservation, both theinternal (locally
controlled data) and the external (not-locally controlleddata) dependencies have
to be documented and captured for a comparison of the rendering process.

Ideally, a digital object is still deployed in its original environment when it is
prepared for storage in an archive in a virtualized form, to make it independent
of its original environment. Thus, as a first step, both locally controlled and not
locally controlled external data are captured when validating the proper execution
of a process (or other digital object) after being virtualized to make sure that it
behaves as expected.

In an ideal case the data can be captured using the rendering environment,
as the capturing can then be directly synchronized with the execution of the pro-
cess, e.g., triggered by a specific number of processor cycles having been executed
in the virtual environment, or a specific amount of executiontime passed in the
virtual environment. If the rendering environment does notsupport capturing of
external events, it can also be captured by processes external to the virtual envi-
ronment, e.g., a listener that captures data from and to a webservice [Miksaet al.,
2013].

As one example for external events influencing interactive objects we show
how to address human interaction with the environment. The different methods
to capture (and later recreate) these events are listed here. In principle human
interaction is similar to any other event that influences therendering of a digital
object. The methods listed here can thus be seen as a templatefor any kind of
event, with the same possibilities and problems discussed.

[1]metro-wardive for Nintendo DS/Apple iPhone — http://www.and-or.ch/wardive/

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 53

Depending on the type of digital artifact, it is more or less crucial to apply the
same input to get the same results. Input in this context means any interaction with
the environment, e.g., clicking a hyper-link on an HTML-page, pressing a button
in an application, and using the mouse to control a characterin a video game, but
also system interactions such as polling for triggers in a Web Service setting or
reacting to data feeds. While a few pixels and a few seconds differing from the
interaction in the original system/environment may be irrelevant when clicking
on a button in a Word-document viewing setting, it will make ahuge difference
in a control system reacting on sensor input or a computer game. But also for
automatically measuring the efficiency and effects of a preservation action on the
rendered object it is essential to determine whether a time-difference in events
occurs due to the preservation action and not due to delayed interaction.

It is virtually impossible to manually apply the same interaction twice to a
system, even if it is done shortly after the original interaction and side by side
with the original system. If interaction has to be applied years after applying it
on the original system (e.g., to test the validity of newly developed emulators), it
will be even harder. Some methods of applying automated interaction to a digital
artifact are described below.

Use of Macros Recording a set of user actions along with the delay between them
is one way of automating input to digital artifacts. One of the downsides is
the difference of recording on one system and replaying on the other system,
which is a change in conditions under which the system is running. By
running a macro in the new environment a change in speed will not affect
the execution of the macro, as the software replaying the macro also runs at
a changed execution rate.

The use of macros is only possible on operating systems whereprocesses
can run parallel to the execution of the view-path of the object. It would
not be possible for the preservation of games on video game consoles or for
applications on most home computers or personal computers running sim-
ple disc operating systems. In some cases the digital objectprovides sup-
port for applying interactive options automatically either through a scripting
language or by recording macros. One example would be Microsoft Excel
which allows both the recording of macros and offers a scripting language
to automate input. Another example is the game Quake[2], which allows
the recording of user actions and is able to replay them in thegame engine.
Note, that the granularity of timing is different for the twoexamples pre-
sented here: while differences in a few frames might not makea difference
for the automated input in Excel, it might make a difference for the player’s

[2]Quake by id Software — http://www.idsoftware.com/games/quake/quake/

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 54

survival in Quake. Like in real-time systems, even a tick-based granularity
can be necessary.

Remote AccessBy using remote access to the original system as well as the
recreated system (e.g., at the time of evaluation during a preservation plan-
ning process) it would be possible to simulate the same inputto both sys-
tems with the same amount of interference in both systems. The system
from which the remote access is established will replay the same interac-
tion macro to both destination systems. The downside of thismethod is a
change in execution speed. If the new target system runs at a different speed
than the original system, the input will come either too early or too late.

Controller Applications One problem which arises by using macros is the po-
tential random (non-deterministic) behavior. While this isusually not an
issue with interactive software or interactive documents,it plays a major
role for most games and for interactive art. By using controller applications
that react to the digital object’s behavior (e.g., by analyzing the rendered
form of the digital object in the environment) it will to someextent be pos-
sible to apply automated input. A controller application runs either in the
same environment or through remote access. It will handle the input/output
communication with the digital artifact. This applicationcan be used on
the original system as well as within a new view-path. The advantage is
that contrary to macro-based input, the output of the digital artifact can be
taken into account when having a controller application. Still, the same
limitations as with macros apply. It is necessary to executethe application
parallel to the view-path of the object that has to be preserved. Another dis-
advantage of a controller application is that it has to be customized for each
type of digital object which has to be preserved and as such requires a huge
effort compared to the benefits.

Recording and Applying Input on a Hardware Level The method of recording
and applying input with the least side-effects on the environment is at the
hardware level: recording the input directly from the inputdevices and ap-
plying this as an input-macro to the new environment. This kind of input
macros contain the event (e.g., key X pressed, joystick left) as well as a
time relative to elapsed process execution time between these events. One
advantage in the use of macros recorded from the input deviceand applied
to the new environment is that they can be used on systems thatdo not allow
parallel execution of processes (old home-computers, video game consoles,
embedded systems). It is also possible for the new environment to adjust
the timing of these input events depending on the speed difference between
original environment and new environment. The disadvantage is that it is

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 55

not possible to use only software components but that special hardware has
to be built to intercept the communication of the input devices and the target
system. A possible solution in software would be to use an emulator which
is known to work nearly perfectly and use an input recording feature of the
emulator to capture the input events. This feature and a standardized format
are one of the requirements that have to be researched for future emulators
as a digital preservation requirement. Ultimately, hard real-time system-
like behavior ([Liu, 2000]) is necessary to ensure perfect process state level
execution of emulations.

Use of Software Buffers A method very similar to applying keys on an actual
hardware level is to use software buffers in the operating system that hold,
e.g., key presses. This method can only be used, if the operating system
has a specified memory region that can be used for this purpose. Similarly
to the Hardware Level approach, this approach would allow a very close
control of extracting/inserting data from/to the buffer supported by a virtual
layer (e.g., emulator) at the exact same time the data was inserted during a
previous rendering cycle. The disadvantage over control onthe hardware
level is that only one operating system (version) running onthe hardware
would be supported by this approach as opposed to all possible operating
systems if the recording/applying is done on a lower level.

Testing an Object for Determinism

To give hints about the deterministic or non-deterministicbehavior of an object,
the same series of tests with the object (user input, other external events) can be
applied to the object. For a deterministic object the resulting behavior has to be
reproducible. This process can be carried out automatically in a test environment.

The methods described in this thesis to compare a digital object in different
rendering environments can also be used to test an object fordeterminism. If the
behavior of the object in the same view-path is different fordifferent rendering
cycles, then external events influence the rendering. By capturing the different
types of external events possible and reapplying those to the rendering it is thus
possible to reduce the effects of external events until all are under control of the
execution mechanism. For example, a digital artwork can be rendered in its en-
vironment and re-rendered again under the same conditions.If the results of the
rendering are exactly the same, then it is very likely that the object behaves de-
terministically. Otherwise external factors like random number generators based
on the rendering time can be eliminated by setting the same time at the beginning
of every rendering cycle. Likewise human input can be made consistent over the
different rendering cycles.

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 56

4.2.2 Significant States of a Digital Artifact

When invoking a digital object, two entirely different situations need to be con-
sidered, depending on the type of result to be evaluated: In the first case, only
the target state of a digital object as result of a process is to be evaluated, such as
running a calculation or displaying a static object. In the second, probably more
common case when emulation is chosen as a preservation strategy, a sequence of
states is essential, such as rendering dynamic objects, or when emulating interac-
tive processes.

With emulation and dynamic objects one can again have to dealwith two
different situations, namely a sequence of target states ofthe object where it is
only necessary to capture the properties of the rendered object after some period
of emulation, and a continuously changing state of the object, which again may
be conceived as a series of designated states. It is necessary to determine, which
states of the digital object are significant for the designated user community of the
object types for which the rendering environment should be used, as usually not
all data created by the rendering process is significant. Depending on the digital
object’s rendering process, significant points in the rendering have to be defined.
Typical points are all the steps where an interaction between the system and the
user or different systems takes place. E.g., when the rendering system waits for a
user input, the rendered screen shown right before the user input and prompting
the user for an action is significant. Also data transferred on an interface to a
different system as a response to a request from that system is significant.

Target State

An example for rendering an object to a target state would be asystem performing
some computations, e.g. loading an interactive spread sheet, applying some input
events which result in changes in the state of the spread sheet. Once a defined
set of actions is applied to the spread-sheet a certain output is expected. This
output can be considered as the target state and then be compared. One possible
solution to a comparison is comparing a screenshot of the target state. Another
option is to save a document after applying the input and to compare the file
saved on the original system with the file saved in the emulated environment thus
evaluating the effects of handling the object in the emulated environment. This
way of comparing can be used if only the target state is considered significant and
not the states in between. The target state can also be the state reached after the
emulated environment initially rendered the digital artifact without applying any
input that influences the object’s behavior.

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 57

Series of States

In some cases not only a target state of a digital object is sufficient neither is
perfect emulation of the entire sequence of steps required.Sometimes, only a
subset of states in between is of interest for evaluation. Ifthe emulation process
in between is not of interest, single “snapshots” of these states can be taken and
compared (e.g., if the way how a series of images is computed and rendered is not
important but only the resulting images are of interest for the evaluation, or states
reached during a simulation computation). By using state machines describing the
states in between and a sliding window technology to apply a window for each of
the rendered versions of the digital object, comparison canbe done for each state.
An example would be an image viewer application which switches between im-
ages on user input. It can take considerably longer in the emulated environment
to show pictures when using special hardware effects to switch between images
which are not supported by the emulation environment. If only the rendered im-
ages are of interest for the emulation, then only the starting state, the state before
applying input (when the image is fully shown on the screen) and a target state
have to be compared.

Continuous Stream

If a continuous stream of states has to be compared it can either be done by record-
ing the full output (e.g., image or sound stream) on the chosen layer (as will be
discussed in Section 4.3.3) and comparing the resulting streams. Besides, e.g.,
aspect ratio, brightness settings, changes in color, audiofrequency also the speed
factor has to be taken into account. Images on the stream fromthe emulated envi-
ronment can be slowed down or sped up, and not necessarily by afixed factor over
the whole stream (e.g., more objects on the screen can potentially slow down the
emulation at some point). Advanced comparison mechanisms have to be used —
probably with human interaction — to link certain landmark events in the stream
(e.g., change in scenery in a video game from selection menu to in-game graph-
ics).

4.3 Describing the Rendering Environment

Not only the digital object, also the environment in which itis executed has to
be documented to support for a faithful reproduction of the rendering process. In
this section we describe the elements in the object’s view-path that potentially
influence rendering results as well as methods to create uniform interaction that
has to be applied to an interactive digital object by a user.

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 58

Table 4.1: Example digital objects and possible hardware / software / output de-
vice combinations.

Digital
Object

Software Hardware Output Devices Example Usage
Scenarios

Defender (no other soft-
ware required)

Williams arcade
machine

built-in screen and speak-
ers

no variations possible

Super Mario
Bros.

NES operating
system

Nintendo NES various TV screens small b/w CRT-TV, color
CRT-TV, LCD TV

First Finnish
Underground
(Interactive
Art)

Microsoft Win-
dows 95 (differ-
ent versions)

Intel x86 PC
or compati-
ble systems
with different
resources/GPUs

various output devices
(e.g. monitors, video
projectors)

Museum setting with a
normal CRT screen, pre-
sentation in an auditorium
using a projector

Website Various different
browsers and op-
erating systems

Various hardware
platforms

all kinds of display devices
(e.g. monitors, mobile de-
vices, video projectors)

Lynx text-based browser
on Unix system with ter-
minal output, Internet Ex-
plorer on Microsoft Win-
dows 95 PC with CRT
monitor

Signed PDF
Document

Various PDF
viewers
Various operating
systems

Various hardware
platforms

all kinds of display devices
(e.g. monitors, mobile de-
vices, video projectors)

PDF Reader on a mobile
phone, PDF Reader on a
PC and connected to a pro-
jector for a presentation

4.3.1 Selecting the Reference Rendering Environment

The view-path of a digital object contains the hardware and all the secondary
digital objects needed to render an object along with their configuration. It is pos-
sible to use different view-paths to display the same object. It is practicable to
define one view-path out of all the possible ones to compare the effects of emula-
tion, even though different view-paths would be possible. For example, the same
Microsoft Word-document can be rendered on the same hardware and the same
operating system with an identical set of fonts installed using different versions
of Microsoft Word or using Open Office which all can give different rendered re-
sults for the same document. Identifying the correct rendering for a digital object
means that we have to determine what the desired rendering wewant to compare
against actually is. A digital object can potentially be executed in a wide vari-
ety of hardware and software platform combinations depending on various usage
scenarios and the resulting output can be played back on a potentially unlimited
number of output devices. That is, most objects will have several (equally au-
thentic) renderings usually targeted at specific designated communities (different
users or usage scenarios). Some examples are shown in Table 4.1.

In the least complex case the digital object can be rendered only on one hard-
ware platform with predetermined software and built-in output-devices. In the
most complex example a digital object can be rendered by a variety of software
products running on different operating systems which in turn can be used on dif-
ferent hardware configurations resulting in a variety of rather different information

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 59

objects. Depending on the usage scenario the correct rendering environment of an
HTML page may be anything from a web browser via a simple HTML-editor to
an entire content management system. A specific XML-data filemay be rendered
in an XML-editor, being used to drive an application as inputconfiguration, or
used as basis for a visualization. The rendered output can beplayed back on a
number of different output devices with different characteristics (e.g. CRT-TV vs.
LCD-TV).

Determining which of those combinations will be used as aReference En-
vironmentis a core step in describing the digital artifact. It may eveninclude
the definition of several reference environments satisfying different stakeholder
needs, which may be served by a single or multiple rendering environments. In an
ideal case the rendering on these reference environments can be used as aGround
Truth to compare alternative rendering environments to. When defining the Ref-
erence Environment, the following factors should be taken into account:

• hardware and software configuration typically used to render the digital ob-
ject (e.g. configuration of a standardized office PC used to create the object).
A repository of highly standardized typical system configurations may be
helpful to minimize the effort in maintaining the renderingenvironments.
Yet, in some cases, the very specific configuration encountered in a setting
will need to be defined as reference environment.

• play-back devices typically used to observe the digital object (e.g. a CRT
TV used to render a video game from the 1980’s instead of a modern LCD
screen with completely different display characteristics, synthesized voice
output on contemporary mobile phone speaker system vs. studio quality
speakers in a museum setting)

• usage scenario, i.e. what purpose(s) the object is being preserved for. As
different scenarios (e.g. simple replay, providing different views on data, or
providing evidence in legal investigations) may require different renderings
of an object, potentially multiple reference environmentsneed to be defined.

Observing the digital object in its original environment isonly possible if the
reference environment can be obtained in working order using the original hard-
ware, software and play-back devices. This is when an original rendering environ-
ment will still be available, and when — as part of the documentation of the object
and its rendering environment — evidence for measuring the significant properties
of an object’s rendering in a potentially different environment has to be collected.
In cases where digital objects are unearthed at a later stage(e.g. through digital
archeology on obsolete media formats) the ground truth has either to be set empir-
ically by comparing either different rendering environments for a system (e.g. if

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 60

five out of six emulators render an image in white/blue and therendered image are
clouds on a sky, then it is very likely that the colors are rendered incorrectly on one
of the emulators) or by using other sources like software design documents such
as use case scenarios, requirements specification, and software testing as well as
video documentation.

4.3.2 Describing the View-path of a Digital Artifact

The resulting observable form of a digital object depends onthe hardware and
software used to render it. Also, the configuration of both hardware and software
plays a crucial role. To compare the results of rendering objects in their original
environment and in emulated environments it is necessary tocollect and document
as much information about the original environment as possible.

The information that has to be collected can be split into hardware configura-
tion and all the necessary software to render the digital object with their respective
configuration. The following sections provide an overview of the various elements
that need to be documented and recreated or standardized in an emulation setting
in order to facilitate proper evaluation. The focus of this description is not to pro-
vide an exhaustive list, but to illustrate some core aspectsas background for the
evaluation framework presented in Chapters 4 and 5.

Hardware Configuration

Besides the obvious CPU type and configuration as well as memorysize, configu-
ration and speed, other hardware components influence the rendering of an object
as well and have to be considered, e.g.:

Graphics-card, physics-card Especially for 3D-rendering the used graphics- and
physics cards are having a major influence on the resulting rendered images.
Also to be documented are the settings of device drivers.

Sound-card The sound-processor that is used for creating the audible output has
an influence on the characteristics of the output audio signal.

Input-Devices Special input devices may be necessary not only to recreate the
original look & feel, they also may be capable of recording all input activity
to provide identical input sequences in the emulated environment.

Output-Devices The output device plays an important role on the resulting im-
age/sound just as much as the rendering does. Aspect ratio and display
settings of an output device have to be considered if the resulting output is
compared not after computing as a digital image, but after creating an actual
analogue or digital output.

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 61

Of course this list cannot be complete and depends on the hardware of the
system that has to be documented and emulated. For manufacturing or control
application this can include sensors and actuators, on older (home-) computers or
video game consoles it also includes additional processingunits (e.g., Sega 32X)
or memory expansion cards (e.g., Commodore Amiga, Atari 800).

On some platforms tools can assist in the description of hardware properties
by determining hardware- and software settings.

Operating System and Configuration

The operating system type and the version including all system-updates have to be
documented. Usually, operating system settings will have an effect on rendering
as well. The screen resolution and color depth have the biggest influence on ren-
dering. Other factors influencing the rendering are the installed fonts, appearance
settings, color schemes and certain installed utilities orapplications.

Secondary Digital Objects

Other digital objects besides the operating system are needed to display the digital
artifact itself or for running the viewer- or editor application displaying the object.
Some examples of those are:

• Virtual Machine (e.g., Java Virtual Machine, .net)

• Database software (e.g., MySQL)

• Libraries (e.g., DirectX, Allegro[3])

• Software device drivers (e.g., ODBC drivers)

• Viewing- or editing-application (e.g., OpenOffice, PDF-Viewer)

• Fonts (for documents where fonts are not stored inside the file)

• Codecs (for decoding e.g., audio or video data streams)

For all these secondary digital objects, the version, but also configuration op-
tions have to be documented to allow the complete recreationin an emulated en-
vironment. Depending on the operating system, informationabout the different
versions and libraries used on a system can potentially be extracted automatically
using data created by package managers. A format for describing this informa-
tion for package-based open source software is CUDF (Common Upgradeability
Description Format)[4].

[3]Allegro game programming library — http://alleg.sourceforge.net/
[4]CUDF –http://www.mancoosi.org/cudf/

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 62

Digital Artifact to be Rendered

The actual digital artifact that has to be preserved is also part of the view path. If
this artifact is software, then the options changed from a default setting of a spe-
cific version have to be documented. Not only options that influence the rendering
of the object (e.g., window size, font size, colours), but also settings of the object
influencing the behavior have to be considered (e.g., notifications).

Additional Digital Objects not in the View-path

Besides the mentioned elements in the view-path of an object it is important to be
aware of any other digital objects influencing the behavior of a computer system.
Processes running in the background (e.g., virus scan software, remote desktop
software) can significantly affect the performance of a system. The influence of
semi-random elements on the execution of the digital artifact or on an application
rendering the digital artifact has to be reduced to an absolute minimum to decrease
the complexity of the system under evaluation.

4.3.3 Identifying Levels to Extract A Rendered Form

To extract a rendered object from its original environment it is essential to under-
stand the different incarnations of a digital object when itis being rendered. These
forms of a digital object on different levels are shown on theleft in Figure 4.1. A
rendered representation of the digital object has to be extracted on (a) suitable
level(s). The significant properties of the object can then be evaluated.

Descriptive Form

When using emulation as a digital preservation strategy, theoriginal binary object
is not changed like when using a migration strategy. Thus, the descriptive infor-
mation used to render the object stays the same unlike when the object is migrated
to a new manifestation. In the case of migration, this constitutes the first (and, al-
beit, frequently the only) level of comparison to evaluate the quality of migration
actions. Yet, as the ultimate goal of digital preservation is not the preservation of
the descriptive form of a digital object as a static file encoded in whichever way,
thorough evaluation will usually need to consider comparisons at levels further up
the view-path hierarchy according to the given applicationscenario.

Rendered Form in Memory

The next level where an incarnation of the digital object exists is as a rendered
form after being processed by the viewer-application (or after being executed).

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 63

Figure 4.1: Different forms of a digital object in a system’smemory. On the left
the layers in an original system are shown, on the right the layers in a system
hosting a virtualized view-path are shown.

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 64

On this level, e.g., the registers of the video hardware are filled or the memory
area for video output is filled with the data to be displayed onscreen. The same
applies to other forms of object output, i.e., audio, port communication, or file
system interaction. Applications recording this data on the system can be used to
extract this data. An example would be a clipboard in an operating system. The
output of a digital object could be copied into the clipboardand extracted through
a defined interface.

Rendered Form on the Output Interface

The data in, e.g., the video memory is processed by the hardware converting it into
a suitable signal for the displaying unit. Similarly, for networked systems, data is
rendered on a network interface, or as instruction sets driving a storage unit. The
data can then be captured on the output interface. While this is comparatively
easy for one-way unencrypted communication, it gets more difficult for protocols
that are not open and that involve special replies from the connected device (e.g.,
HDMI protocol).

Rendered Form on Output Device

The final level on which a rendered form of the digital object is available is the
resulting output on the output device (e.g., the image displayed on a screen, sound
emitted by a loudspeaker, voltage levels present at a port, or binary sequence
present on a storage medium). This has to be captured by devices recording the
signal after it is processed by the output-device (e.g., theimage on a TV-Screen
with a camera or speakers by using microphones).

More systematically, each transition from one level to the next represents in-
terfaces between systems, both on the original as well as a recreated view-path.
The properties of these systems and their effect on the view path thus need to be
considered, both individually as well as on an integrated level up to the desired
representation level.

4.4 Collecting Verification Data

To be able to verify the performance of an object in an emulated environment a
set of input-output data relationships has to be collected.This can range from
static I/O data relationships via system reaction documentation for specific types
of input to complex documentation of system behaviors. A potential source for
this kind of information are system design documents such asuse case scenarios,
requirement specifications, or system testing documentation. It can also require

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 65

the capturing of system behavior in other documentary form such as video docu-
mentation.

In Section 4.2.1 we described how external data influencing the rendering can
be captured when executing a process and re-applied to a re-run of the rendering
process to ensure deterministic execution using either capture- and replay func-
tionality of the rendering environment or external tools. For a comparison of the
rendering processes we also need to extract data on significant properties created
during the rendering process that allows us to evaluate to which degree the ren-
dering process of a re-deployed object meets the requirements of its designated
community. Similarly to the external data that is captured during the execution
of the rendering process, data created by the digital objectand provided to the in-
terfaces of the host system (e.g., the screen for rendering,audio signals, network
data) can be captured for a comparison between different renderings. Also, data
created for processing not available on the interfaces to the host system but only
internally in the virtualized system can be captured from memory regions of the
virtualized system.

In Figure 4.1 we described the levels on which data can be extracted in a
system. On a first level the descriptive form of the digital object, i.e., the bitstream
as stored in a file is shown. As no rendering takes place on thislevel, it is not
usable for comparison for a successful rendering. Next, thedata is rendered by
some kind of interpreting hard- or software. Extracting data on this level can
be done by using the interpreting application to export the rendering result, e.g.,
processed data. Once the rendering environment is virtualized, data about the
rendering process is available on the virtual environment layer. Data on this level
can be compared between different renderings in virtual environments, but not
against the original system. Initiating data extraction onthis level is only possible
if the virtual environment supports extraction, e.g., by providing screenshots or
log files about the rendering process. Both the original system and the virtual
system provide the data rendered on some kind of output interface. Depending on
the digital object and the data that has to be extracted, datacan for example be
captured using a listener watching specific network ports orhardware interfaces.
Finally, data is eventually rendered on an output device, e.g., a display device,
or actuators set by the rendering process. Characteristics of the output device
influence the rendering, so a comparison on this level is doneby capturing the
rendered data after being rendered by the output device.

Depending on the significant properties of the digital object a suitable level
for comparing the rendered data has to be chosen. For example, in most cases the
rendered image as created on the host system can be compared to a screenshot,
i.e., a video memory dump not considering screen characteristics, of the original
system’s rendering. In other situations the characteristics of the original output
device can be a relevant factor that has to be taken into account [Phillips, 2010]. If

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 66

no output device influences the rendering, e.g., the processputs out a data stream
that is not processed by an output interface but used as an input for a different
process, the curator can decide to use a listener that captures the data stream for
comparison. To verify if an application renders the provided data as expected in a
new environment, an export from the application itself can be enough to compare
the rendering of the data. The curator has to decide what the significant properties
of a certain digital object are and depending on those selectthe suitable level for
comparison.

The actual capturing of the data is done analogous to how datasupplied to
the virtual environment is captured - either directly if supported by the virtual
environment (e.g., by using an option to create screen captures at certain points
in the rendering process), or by using external tools that capture the results of
the rendering on the host system, e.g., by capturing the network traffic created
by the virtual environment, or capturing the rendered screen output of the virtual
environment at certain intervals.

A curator thus needs to identify the significant states of therendering process,
i.e., if only the final state is of relevance (e.g., for a process that calculates data
depending on its initial input and finishes once the data is calculated), if intermedi-
ary steps are relevant (e.g., for an interactive application), or if the entire rendering
stream is relevant (e.g., for a rendered video stream).

The captured data then needs to be encapsulated along with the actual digi-
tal object in a package for storage in the archive. The information necessary to
separate the digital object from its original environment,i.e. both the digital ob-
ject itself (e.g., a workflow-definition for a workflow engine) as well as all the
elements in the view-path (for virtualization) or information about how the object
has to be interpreted (for a migrated form) need to be included as well.

4.5 Summary

In this chapter we presented a framework for capturing external events influenc-
ing the rendering of a digital object and how and where to extract data from the
rendering environment. We discussed the information that has to be documented
both for the digital object and its properties as well as the view-path used to ren-
der the object and to make the rendering deterministic. Userinput as one type of
external events was explained and methods described to apply it to the rendering
environment to eliminate side-effects occurring due to changes in external data.
We showed the different levels on which rendered forms of thedigital object are
available on a system as well as the stages at which data has tobe captured for
evaluation.The concept of a reference environment acting as a ground truth was
presented.

CHAPTER 4. DESCRIBING A DIGITAL ARTIFACT 67

The major steps in the framework are to

• assess the determinism of a digital object,

• determine significant states, either the target state, a sequence of states or a
full stream,

• select a reference rendering environment,

• determine the levels on which to compare the renderings,

• collect verification data.

Following the framework shown in this chapter it is possibleto document the
rendering process of a digital object and collect verification-data that can be used
to verify the rendering of the object in a new environment. InChapter 5 we will
describe how a new view-path can be evaluated using the data described in this
chapter. We will show a set of steps to follow for the evaluation as well as how to
apply the evaluation in a preservation workflow.

Chapter 5

Evaluating a Digital Object’s
Rendering in a Changed
Environment

5.1 Introduction

In Chapter 4 we showed what we need to document about a digital object and its
view-path to collect verification data necessary for a comparison of its rendering
in a new environment. In this chapter we will show how this data is used in a com-
parison workflow to compare two renderings of the same objectin two different
view-paths. We will also show how the comparison can be used in the different
stages of a preservation workflow. The “Preservation ActionEvaluation Frame-
work” formed by the framework shown in Chapter 4 and the steps for evaluation
shown in this chapter have been published in [Guttenbrunnerand Rauber, 2012c].

5.2 Recreating the Rendering Environment

Once the digital object, the influences on its behavior and the environment in
which it is originally rendered are documented, it is necessary to faithfully recreate
these conditions in a rendered environment. In this sectionwe first describe how
the original view-path has to be restored. After recreatingthe original environment
in a rendering environment, we again discuss the rendered form of a digital object
now in a new environment and for comparison.

68

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 69

5.2.1 Recreating the View-Path

Based on the documentation of the original rendering environment it is essen-
tial to recreate a new view-path which can replicate the rendering in the original
environment.

The new view-path is built depending on the digital object and the available
preservation actions. In a migration setting some of the layers in the view-path
are replaced, while in the emulation setting a new layer is introduced in the view-
path as shown in Chapter 3. As emulation is usually done on a hardware level,
the emulator used to create the setting has to support emulation of the hardware-
components found in the original system. If the exact same hardware configura-
tion cannot be rebuilt in software, this has to be documentedand the effects of
replacing various parts with alternative parts have to be considered when compar-
ing the results.

Recreating the view-path in the emulated environments has tobe done follow-
ing the documentation of the original system to ensure that potential differences
in the new environment are a result of the new rendering process and not of side-
effects of a difference in the setting. One possiblity is to create a complete image
of the view-path on the original system, and to use this in a virtual environment
(e.g., floppy disc for home-computers containing the disc operating system and
the viewer-application, hard-disc-image containing a pre-installed operating sys-
tem with all the necessary drivers and applications).

An example for the use of emulators that uses pre-configured images to create
emulation environments for displaying digital objects is GRATE (Global Remote
Access to Emulation Services) presented in [von Suchodoletz and van der Hoeven,
2008]. It is a framework which allows remote access to emulators running hard-
disc-images and injection of a digital object into the emulation environment.

5.2.2 Reapplying External Data

After re-deploying the object in a new environment the data is then used to ver-
ify that the rendering process still behaves correctly. Thenew rendering engine
(e.g., a virtual environment) will supply the necessary external data that has been
collected during the documentation stage. If the new rendering environment does
not provide the possibility to “simulate” data on all its interfaces to the outside
world, similarly to the capturing of the data external toolsthat e.g., capture net-
work traffic and respond instead of a “real” web service with the captured data are
an option for replacing this functionality.

The data captured from the original environment is used to verify the proper
execution in the new environment, to make sure that no side-effects through the
use of a different rendering environment exist. Once the digital object is verified

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 70

to render correctly with the captured data, it may have to be integrated in a dis-
tributed system again, to fulfill its original purpose. Thismeans that the object
along with all the external dependencies has to behave as it did in the original
system. It is very likely that not all external dependencies(not-locally controlled
data) will be available to the runtime environment in the future. In this case these
services will have to be emulated (i.e., replaced by a service that provides the
same functionality as the original service) or simulated (i.e., replaced by a service
that reacts with valid data without replicating the original service’s functionality).

An example for not locally controlled data would be a servicethat provides the
current temperature on top of the Eiffel tower used in a pieceof electronic art. For
verification purposes we can capture requests to the serviceand responses, ensur-
ing a deterministic execution as compared to the rendering in the original environ-
ment. However, once the digital object is deployed in its future environment we
would expect to get proper answers from the service, and not pre-recorded data.
To achieve this, the once existing service has to be replacedby a new service.
If the service is emulated, it will be replaced by a service that also provides the
current temperature. If the service is simulated, a valid value for a temperature
is returned, but not necessarily the one that is actually thecurrent temperature, as
it could for example be derived from trained data (e.g., returning random higher
values during day time and lower values during night time). Similarly, a service
where the internal functionality is not exactly known wouldhave to be replaced
by a service that appears to behave as the original service did in that valid (but not
necessarily correct) data is supplied by the simulated service.

The functionalities described in this section allow us to deal with all the exter-
nal dependencies that a digital object can have. While the rendering of a digital
object in its original environment is still available, a virtualized environment can
be set up. The significant data influencing the rendering of the object in the new
environment can be captured and stored in an archive along with the digital object.
Once the digital object is re-deployed in a future environment, the captured exter-
nal data influencing the rendering can be reapplied to the newenvironment. Using
the same data we expect the object to behave deterministic and ideally provide the
same data as in the original rendering.

5.2.3 Comparing Objects

Similarly to the external data that is captured during the execution of the rendering
process, data created by the digital object and provided to the interfaces of the
host system (e.g., the screen for rendering, audio signals,network data) can be
captured for a comparison between different renderings. Also, data created for
processing not available on the interfaces to the host system but only internally
in a virtualized system can be captured from memory regions of the virtualized

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 71

system.
Note, that different characteristics of an object can be measured at various lev-

els. Thus, comparison may be required at several levels to determine how faithful
the rendering of an object ultimately is. We will now take a detailed look at these
levels, their properties and specifically means for comparing original and recre-
ated renderings with varying degrees of automation. Also note, that each level
in the hierarchy corresponds to some kind of computation/transformation being
performed on an object. Thus, identity at some level does notimply identity at the
ultimate rendering at the top level of final output devices, nor does the fact that
an object differs at a certain level mean that it cannot result in an identical render-
ing at higher levels. For example, consider an object storedfor emulation. This
will usually be bitstream identical in its descriptive form, yet emulators or viewers
may render the object differently on the output interface level, whereas different
output devices may result in further differences on the top level. Conversely, a mi-
grated object will be different in its descriptive form (e.g. a TIFF version of a GIF
image), yet may result in an identical rendering on the output interface. In some
cases it may be required to specifically produce an entirely different representation
at the output interface level in order to obtain a close to identical rendering on the
actual output devices. See [Phillips, 2010] for an example of the effort required to
recreate the effects of the fluorescent behavior of analog CRTscreens on modern
LCD screens.

5.2.4 Identifying Levels of Comparing Rendered Forms

In Section 4.3.3 we discussed the different incarnations ofa digital object in its
original environment. For a comparison between the original environment and a
new environment we have to identify the same incarnations inthe new environ-
ment. Figure 4.1 shows the levels in an original environmenton the left and the
corresponding levels in a new environment on the right.

Descriptive Form

The descriptive form of a digital object is identical in the original environment and
the new environment for emulation actions, but different for migration actions.
As shown in Chapter 3, a comparison has to be done on a higher level as every
migration results in a change in the view-path and thus potentially in the rendering
of the object.

→ As the descriptive information of the object cannot be used directly to eval-
uate the rendering effects, an already rendered form of the object has to be used.

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 72

Rendered Form in Memory

If the emulation of the original system is processing the supplied information
properly, then the rendered form in the memory area used by the new environ-
ment to store the rendered information has to be identical tothe rendering in the
same memory areas of the original environment. This is the first layer on which
a comparison of rendering effects is possible. Screenshot or video memory dump
applications on the original system and in the view-path will produce the same
output after executing the same actions on both systems. Thesame applies to
other forms of object output, i.e., audio, port communication, or file system inter-
action.

→ This rendered form of the digital object can be used to evaluate the internal
processing of the object but not the ability of a potential additional layer (e.g.,
an emulator) to translate the output of the original system to the host systems
environment. It also is necessary to install applications running on the original
system and the host system that can capture the rendered formof the object (e.g.,
as dump of specific memory regions or in the form of memory “screenshots” taken
inside a virtual environment).

Rendered Form in Host System Memory

Using emulation as a preservation action, an additional virtual layer (the emulator)
is introduced in the view path. This layer has to convert the rendered form from
the virtual environment to a rendered form in the host systemenvironment. In this
step the layer has to, e.g., render the video output of the virtual system for display
on the host system. To do so, for example the resolution of theimage may have to
be altered to fit either a resolution which can be displayed onthe host system or
by adjusting the image to the size of a window on the host system. In this step the
resulting image will already be radically different than what it was on the original
system, even if it looks similar for a human observer.

→ No direct comparison is possible at this layer as there is no similar infor-
mation in the original view-path.

Rendered Form on the Output Interface

This signal exists on both the original system as well as in a new view-path. The
resolution and type of the displaying unit are potentially different, but using cap-
ture devices recording the input directly from this source and transforming them
to the same signals would be possible. An example is a video capture device that
can take different kinds of inputs and displays them the sameway on the host
system running the capturing software.

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 73

In the case of encrypted communication (e.g., HDMI) the datawould have to
be captured in its encrypted form and provided by the new view-path similarly
to what the original system provided under the same conditions when the digital
object was originally rendered.

→ By recording the signal of the rendering in the new view-path and of the
rendering in the original system the results can then be compared. The effects of
the rendering device on the signal have to be taken into account when comparing
the signals (e.g., reduction of frame rate, delay in processing, enhancing of the
signal properties)

Rendered Form on Output Device

Capturing the signal directly as processed by an output device (e.g., using micro-
phones to record processed sound or a video camera to capturea video stream
from a monitor) the resulting representation in the recording device converts the
output to the same resolution.

→ A comparison of the rendered object is possible at this layer. The settings
of the output-devices have to be taken into account. For example by comparing
the resulting images from an original system connected to a TV-Screen and a host
system running a changed view-path of this system the aspectratio, the brightness
settings, contrast settings, etc. will usually not be the same. In [Phillips, 2010]
the author describes the influence of the output device (in this case a CRT monitor
compared to a modern LCD flat panel) on the resulting image. Pixels that have
sharp edges on the LCD display were supposed to be displayed asblended pixels
on the original screen due to technical characteristics of the two different screen
technologies. Similarly, the audio quality offered by different speaker systems, or
the precision or logic of a storage media writing device may be different, result-
ing in a different rendering of an object in its environment even if the underlying
system memory representations were identical.

Usually not all the significant properties of a digital object can be measured au-
tomatically. In that case as many properties about the object’s behavior in the envi-
ronment as possible should be extracted from the rendering environment, whereas
all the properties that are either social (e.g., connected to the feel aspect) or that
are too difficult to measure technically have to be evaluatedmanually.

By defining the properties of the digital object that has to be rendered, measur-
ing and comparing them to the original reference system and setting importance
factors (exact speed is probably an issue for a computer gamebut not for an inter-
active spreadsheet), rendering alternatives can be compared and the best alterna-
tive for a certain scenario can be chosen as described in [Strodl et al., 2007].

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 74

5.2.5 Extracting Properties from the Rendering Environment

Not only the resulting rendered form of the object can be compared, certain char-
acteristics of the environment also can be measured. Ideally, these characteristics
would have to be provided by the tool doing the rendering, which can be any
or every element in the view-path. While none of the availablerendering envi-
ronments supports it at the moment, it would certainly make an automation of
the process of comparing emulation environments and the original environments
easier (or enable it at all). First the characteristics and properties of the origi-
nal system and the digital object have to be described or measured. Then these
same properties are extracted from the new environment. Ideally the character-
istics should be described in a format usable for tools, which can compare these
properties in an automated way. Using this approach the process of automating
preservation planning for using renderings to compare objects can be similar to
the one of automating preservation planning comparing properties of migrated
objects currently.

Not only the system properties, but also screen shots or evena log of events
happening on the system can be provided by the rendering environment. These
properties can be extracted continuously over the emulation process for either
a specified time or until an event occurs. Rendering properties are usually not
single-dimension like properties of most migrated objects. An additional time
dimension has to be considered. The frame rate of a rendered object can change
over time, as more objects can result in fewer frames per second on the output
device. Properties also can be extracted at one point in timeafter applying all the
input events or after a certain amount of seconds, frames or CPU cycles. Table
5.1 shows possible characteristics that can be extracted, their usage and metrics.
The characteristics are divided in the possible categoriesincluding the metrics
used to measure and compare between the different environments. Obviously,
the examples in the categories depend on the used environment, e.g., a frame
rate only makes sense if the view-path contains a display device that is refreshed
periodically (e.g., on a system acting as a web-service reacting to data input over
a network interface and reacting with output on the network interface a frame rate
will not give any information about the rendered object)

Not all of the properties make sense for deterministic and non-deterministic
behavior, e.g. a minimum frame-rate would make sense in bothcases whereas a
number of files opened can differ if the behavior of the objectis non-deterministic.

Analyzing the extracted events and their occurrence at specific times in the
rendering process lets us define meaningful key characteristics of the rendering
process:

Deterministic Rendering The most important characteristic of a rendering
environment is that the rendering process must be deterministic. This means that

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 75

Table 5.1: Characteristics that can be extracted from rendering environments.
Category Example Char-

acteristics
Metric Usage Extractable from levels

in the view-path
Input Events Mouse clicks,

mouse moves,
key presses,
requests from
external services

Number of events
during a time pe-
riod

Check for deterministic
behaviour, if the same
number of events where
triggered

every level in view-path

Input Data
received

Mouse interface,
network interface

Number of bytes
during a time pe-
riod

Check for deterministic
behaviour, if the same
amount of data was trans-
ferred from an I/O device

every level in view-path

Output
Events

Files on storage
unit accessed,
Actors acti-
vated, Network
addresses access

Number of events
during a time pe-
riod

Check for deterministic
behaviour, if the same
number of events where
triggered

every level in view-path

Output Data
sent

Data storage, net-
work interface

Number of bytes
during a time pe-
riod

Check for deterministic
behaviour, if the same
amount of data was trans-
ferred to an I/O device

every level in view-path

Timing char-
acteristics

Frame rate / CPU
cycles

Frames per sec-
ond / Cycles per
second

Speed comparisons be-
tween the original and the
new rendering environ-
ment

Every level that renders an
object on screen (for frame
rate) / hardware (for CPU
cycles)

the virtual environment has to perform the same rendering process under the same
inputs. This is of crucial importance to the evaluation, as only a deterministic
process lets us compare different renderings of the same object and the results of
it. Events occurring at the same point in the rendering process during different
renderings of the same digital object let us determine if therendering process is
executed deterministically.

Cycles Executed vs. Time ElapsedAnother characteristic we can extract
from the rendering log is how many CPU cycles have been executed during the
course of the rendering process. If we compare these with thecycles that would
have been executed on the original system (using the known clock rate of the
original system), we can calculate the deviation in speed ofthe rendering process
compared to the original system.

Executed Cycles per FrameBy measuring the cycles that are executed per
frame (unique consecutive image produced by the video hardware of the system),
we can see if the timing is correct. As we know the clock rate and the number
of frames drawn on the original system from the systems specifications, we can
evaluate any discrepancies to the original hardware.

Time Needed to Draw a FrameBy evaluating the time that is needed to draw
a frame and knowing how many frames are drawn per second (and thus the time
the drawing of one frame should take) this characteristic also supports evaluating
the timing of the virtual environment.

Frames per SecondDetermining the frames per second we can see if the

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 76

rendering process is executed slower than it would have on the original system. If
the virtual environment is in fact not fast enough, we can seefrom the event-log
which of the drawn frames took too long to calculate and what external events
happened during the slow frames.

Accessed External SourcesBy implementing events for all interfaces be-
tween the emulated and the host environment, we also know which external re-
sources (files, network, etc.) are used by a digital object. Bylogging the data that
is transferred, we can decouple and simulate external interfaces at a re-run of the
rendering process.

Using these key characteristics, we can evaluate a rendering environment, but
also draw conclusions on the rendering process - not only in general for the render-
ing environment, but for specific digital objects. Re-running the same automated
test in the virtual environment we can evaluate if the environment works deter-
ministic. Re-running the automated test of a deterministic virtual environment on
a new version of the environment we can test if the environment still works cor-
rectly. Finally re-running the test in a different virtual environment for the same
system, we can compare the results of these environments.

5.3 Steps for the Evaluation of Rendering Effects

To evaluate the degree to which the change of an original environment into a new
view-path preserves the original characteristics of a digital object in comparison
to documentation of its behavior, the concepts presented inthis thesis lead to the
following evaluation steps:

1. Describe the original environment
The original system’s hardware and software components have to be doc-
umented along with all their settings to allow the recreation in a changed
view-path as described in Section 5.2.1. To reduce the complexity of the
system it is recommended to eliminate all unnecessary secondary digital
objects (software and hardware) in the view path (e.g., no virus scan soft-
ware or use of standardized minimum OS configurations).

2. Determine external events that influence the object’s behavior
Only for objects with deterministic behavior it is possibleto ensure that dif-
ferences in rendering compared to the original environmentare results of
the changed view-path. To ensure deterministic behavior ofthe object it
is necessary to investigate what external events influence its behavior and
simulate those in the changed environment (e.g., set a random number gen-

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 77

erator to the same seed to produce the same sequence of randomnumbers).

3. Decide on what level to compare the digital object
As the digital object is available in various rendered formsas shown in Sec-
tions 4.3.3 and 5.2.4, it is necessary to select the ones thatare most suitable
for the digital objects that have to be preserved and their desired form of
representation. Depending on the original system only someof the various
techniques may be technically possible (e.g., on early homecomputer hard-
ware no operating system allows the execution of multiple processes, so no
screenshot applications can be installed).

4. Recreate the view-path
Next, a new view-path has to be configured to match the configuration of
the original environment. The view-path of the digital artifact has to be
recreated, ideally by using e.g., a hard-disc image configured the same way
as on the original system. We recommend the use of a view-pathas close to
the original as possible to reduce the side-effects of different renderings by
using different secondary objects.

5. Apply standardized input to both environments
Depending on the digital object the most suitable way to apply automated
input has to be selected. Then, the external events to the original object
have to be recorded and applied to the new environment. The closer the
input is done to the hardware level (as described in Section 4.2.1) the fewer
side-effects on the rendering of the object it will have.

6. Extract significant properties
Next, the significant properties of the rendered object haveto be extracted
both from the original as well as from the new environment as described in
Sections 4.4 and 5.2.5. Depending on the digital object and if it reaches a
target state this has to be done once or in a continuous way. Also, depending
on the deterministic or non-deterministic nature of the digital object, only
certain properties make sense to be extracted.

7. Compare the significant properties
Finally, the significant properties that have been extracted automatically as
well as those that were not measured automatically but evaluated manually

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 78

have to be compared, evaluated and documented. This may serve as input
to a preservation planning process, or serve as evidence forthe authenticity
and faithfulness provided by the new view-path.

5.4 Preservation Workflow

The previously described framework and steps to compare tworenderings of a
digital object using different view-paths can be used in a preservation workflow
like the one shown in Section 2.9. In this section we describethe different steps
previously shown mapped to the stages in the workflow. We showwhat data needs
to be captured and is stored along with the object in a digitalarchive to enable a
curator to verify the rendering of a digital object once the object is retrieved from
the archive and redeployed in the new environment.

5.4.1 Lifecycle of a Digital Object in a Preservation Workflow

The digital object at one point in its life-cycle is separated from its original envi-
ronment and prepared for storage in an archive. At this pointa comparison to the
digital object still deployed in its original environment is performed to validate
that all necessary external dependencies have been captured and the object’s ren-
dering in the new (virtual) environment is unchanged. The output in the defined
steps of this rendering process for validation has to be recorded and stored in the
archive along with the digital object. Once the digital object is extracted from
the archive and re-deployed in a future environment, the external data influencing
the rendering as shown in Section 4.2.1 is applied to the new environment. The
output of the new rendering process is then captured at the same defined steps and
compared to the output of the rendering before storage in thearchive. Ensuring
the deterministic execution of the digital object using thesame locally controlled
and not-locally controlled data as described in Section 4.2.1 in both executions we
expect the same results of the rendering, thus allowing us toevaluate if the render-
ing process is executed correctly and get indications on howwell the significant
properties of the object are preserved.

The terms validation and verification are used in this context to describe two
different evaluation steps of the rendering process. In thevalidation step we check
that all the data that is needed to re-execute a process is actually captured after the
process is virtualized, to make sure that all external dependencies are documented
and stored along with the process. In the verification step weuse the external
data captured to verify, that the re-deployment of the digital object in the selected
environment was successful, by making sure that the result of the rendering pro-
cess is identical to results that have been recorded in the validation step. The data

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 79

that is captured during the validation step and that is used for evaluation in the
verification step is referred to as “verification-data” in this thesis.

As described in Section 4.2.1, both locally controlled and not locally con-
trolled external data are captured when validating the proper execution of a pro-
cess (or other digital object) after being virtualized to make sure that it behaves as
expected.

The captured data then needs to be stored in the archive alongwith the actual
digital object. The information necessary to separate the digital object from its
original environment, i.e. both the digital object itself (e.g., a workflow-definition
for a workflow engine) as well as all the elements in the view-path (for virtual-
ization) or information about how the object has to be interpreted (for a migrated
form) need to be stored as well.

The verification-data stored with the digital object in the archive is used to
verify the proper execution in the new environment as shown in Section 5.2.2, to
make sure that no side-effects through the use of a differentrendering environment
exist.

5.4.2 Preservation Workflow Phases

In the previous sections we showed the different moments in the life-cycle of a
digital object. These phases (plan, preserve, re-deploy) were developed into a
workflow for the preservation of business processes [Strodlet al., 2012]. While
this process contains stages specific for business processes, the actions that have
to be taken are similar for all digital objects and relevant for any evaluation of ren-
derings of a digital object. Following the steps in the process as described below
the rendering of any digital object can be captured and validated to be complete
and an accurate representation of the digital object in its current rendering.

The steps for evaluating a rendering shown in Section 5.3 as numbered in
Figure 5.1 are mapped to the different phases in the workflow as shown below.

Plan In the plan phase the context of a digital object has to be captured. This
comprises both the technical (hardware, software), but specifically also the
non-technical, such as an artist’s intentions, the goals and motivation behind
a scientific experiment, the setting in which the artwork or experiment was
being performed, along with all legal implications of rendering the object
at a later point in time, the necessary documentation and allother relevant
data. The risk of not having the object available has to be assessed and
managed. To accomplish the capturing, the digital object has to be ana-
lyzed along with all its external dependencies influencing the rendering of
the digital object. Knowing these dependencies is necessary to create a de-
terministic rendering of the digital object, i.e. to make sure that the digital

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 80

Figure 5.1: Different evaluation steps for evaluating dynamic renderings and their
mapping to the preservation process phases.

object can be rendered identically under the same conditions, allowing us
to do a comparison between the different renderings. To thenverify the
suitability of the preservation action for the digital object, the preservation
action is carried out on the object and the result is comparedto the original
rendering, and a decision for one of the preservation candidates is taken.
This first phase of an evaluation of the preservation action is similar to the
actual validation and verification in the next two phases described below.

During the plan phase all of the steps in the evaluation workflow have to
be performed. The original environment is described (1), not only the hard-
ware and software components, but also external dependencies have to be
documented along with the digital object itself. Part of theobject properties
are defined as significant properties, i.e., the properties we consider impor-
tant to be present in a future rendering of the digital object. Thus we need
to make sure these properties stay unchanged by the preservation action.
All the described information on the object is mapped in the context model
in [Mayeret al., 2012b]. The technical dependencies of an object are ideally
extracted automatically from the system.

Next, the external events influencing the rendering of the digital object are
determined (2) by capturing external dependencies either directly from the
original system (on already existing interfaces) or by abstracting the original
environment in a virtual layer able to record interactions between the hosted
system and the infrastructure it is embedded in. Any data exchanged on
the interfaces between the abstracted and the host system isrecorded as
described in Section 4.2.1 either by a virtual environment or by external
tools. Not only the input data is recorded, but also data rendered by the

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 81

Figure 5.2: Environments used to extract data that is later used for the compar-
isons in different steps in the preservation process. (a) comparison of data between
the original environment and different candidates for the preservation action, (b)
comparison of data between the original environment and thevirtualized envi-
ronment for verification, (c) comparison of data between thevirtual environment
before storage at time t and the future virtual environment at time t’.

system. Depending on the relevant characteristics of the rendered data a
suitable level according to Figure 4.1 is chosen for the extraction (3), either
recorded by the virtual environment itself, or by external tools capturing the
output of the virtual environment. Next, the original system is virtualized
in all preservation planning candidates (4). The recorded input data is then
applied to all candidates, ensuring a deterministic behavior of the digital
object across the potential future environments (5). Data from all candidates
is extracted (6) and compared to the extracted significant properties of the
rendering in the original environment (7). Finally a decision is taken for one
of the options for which the preservation planning was performed. Figure
5.2a illustrates that the original environment is comparedwith the different
possible virtual environments at the time of planning.

During the initial planning phase, i.e., the first preservation planning per-
formed for the object while the original environment is still available, the
data captured is the “ground truth” for subsequent re-planning steps once
the selected re-deploy environment gets obsolete. Subsequent re-planning
is performed against the data captured as ground truth to notintroduce errors
in the data resulting in slight deviations of behavior of target environments
from the original environment.

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 82

Preserve In the actual preserve phase, the digital object is first virtualized. In this step
an additional layer is introduced in the view-path (e.g., a virtual machine
or an emulator), allowing us to capture any communication between the
object’s environment and the outside world. This is for one incoming data
that influences the rendering, e.g., data from a web service,user input, data
from sensors or through a network protocol. But it is also dataproduced
by the rendering in any form (e.g., on the screen as information for a user,
data sent to actors or the network). We can thus validate the digital object
at the time of preservation to make sure that all the necessary dependencies
have been captured and will be stored along with the digital object. We
also capture the data used for the validation and the output produced by the
rendering process to compare this data in a later verification phase once the
object is re-deployed. Data being captured includes the context as well as
log files, any verification-data and properties of the rendering process.

In the preserve phase only the virtual environment chosen assuitable preser-
vation action during the planning phase is considered. The steps for describ-
ing the original system have been performed and necessary decisions have
been taken during the planning stage (1,2,3). In the preserve phase a more
extensive capturing of verification-data is performed before storing the dig-
ital object in the archive, to validate that the complete context of the digital
object necessary for evaluation has been captured. This includes captur-
ing verification-data for all the external dependencies defined during the
planning phase necessary both for verifying the digital object after being
redeployed but also all dependencies necessary for actually using the object
successfully in its future environment. While the data captured during the
planning phase is partially reused, usually more extensivedata is captured
during the preserve phase. For example, additional use-cases that are more
interactive and capture a broader spectrum of possible usesof the digital ob-
ject are captured, more fore-ground data for verification iscollected. Data
used as input to the digital object in its original environment is recorded and
reapplied to the object in the virtual environment (4,5), toensure a determin-
istic execution and thus validate that all necessary data has been captured.
Data is extracted in significant points of the rendering process (6) as defined
in the planning stage to compare between the original and virtual environ-
ment as shown in Figure 5.2b (7) and thus evaluate that the environment is
a valid environment for the digital object. Both data used forvalidating the
execution as well as results of the rendering process are stored in the archive
along with the digital object and all its dependencies and meta-data for later
verification once the object is extracted from the archive.

Re-deploy At a later point in time the digital object is re-deployed in the new environ-

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 83

ment selected during the planning step. The digital object has to be inte-
grated in a system where all the external dependencies necessary to render
the digital object are provided in some form. An example for this would
be a web service that existed when the object was originally in use, but
might not exist anymore once it is re-deployed. Once the object has been
re-deployed it is necessary to verify that the functionality is still intact. Thus
we provide the verification-data that has been captured during the validation
in the preserve phase to the new environment and capture the output of the
digital object. If this is done for various use cases, and thedata captured
matches, we have strong evidence that the rendering of the digital object
is unchanged compared to the original rendering at the time of preserva-
tion. Other data that will be provided to the new environmentto ensure
a deterministic rendering includes user input. To verify that the results of
the rendering process are unchanged to the original rendering, log files and
properties captured during the rendering in the new environment are com-
pared to the results stored in the preserve phase.

For the re-deploy phase only the comparison steps of the evaluation work-
flow have to be performed. The digital object is re-deployed in the new
environment. Then the data that has been captured during theexecution
before storage has to be applied to the new environment (5) and the signif-
icant data is extracted on the significant points (6) defined in the preserva-
tion planning phase. This data is then compared to the results captured in
the original virtual environment during validation in the preserve phase as
shown in Figure 5.2c (7). If the results are identical, the rendering in the
new (future) environment has been verified against the original rendering
by evaluating against a virtual environment that has been evaluated against
the original.

It should be noted, though, that if the digital object is re-deployed in the ac-
tual environment after evaluation, only external servicesthat are still avail-
able or can be replaced by other identical services guarantee proper func-
tionality of the digital object beyond evaluation. If services are simulated,
e.g., as in the Eiffel tower example in Section 4.2.1, the correct functionality
of the digital object can only be guaranteed for values that are known to the
simulation, any requests outside the simulation boundaries of the service
will result in unpredictable rendering results. Within these limits, the object
then is also open for new (unpredictable) user input that is different from
the user input captured during the preserve-phase.

Using the evaluation workflow in the different preservationphases we thus
can evaluate the rendering of a process in a new environment in all phases of

CHAPTER 5. EVALUATING IN CHANGED ENVIRONMENT 84

the preservation life-cycle of a digital object. By keeping the external data influ-
encing the process renderings identical in the different environments we ensure a
deterministic rendering of the object. Comparing the rendered data on the same
level in both environments lets us compare the renderings and evaluate potential
differences.

5.5 Summary

In this chapter we showed how the information described and captured as shown in
Chapter 4 can be used to evaluate the rendering of the same digital object in a new
rendering environment (i.e., in a different view-path). Wefirst explained how the
view-path is recreated and the captured external data influencing the rendering is
reapplied to the new rendering. We showed how the results arecompared and how
the different levels shown in the previous chapter are used for this comparison.

The description of the digital artifact, its external dependencies and its view-
path as shown in Chapter 4 along with the steps for evaluating the rendering of a
digital object form the “Preservation Action Evaluation Framework” that allows
us to compare renderings of a digital object using two different view-paths. The
framework supports institutions in taking an informed decision on a rendering en-
vironment in a preservation planning process. As one example a video game mu-
seum can use the framework to select the best emulator for certain digital objects
in its collection. In an industry setting the execution of (the software components
of) a business process can be evaluated to ensure that the rendering is authentic
with respect to the properties identified.

We then showed how the evaluation framework can be applied ina preserva-
tion workflow to make sure that the rendering of an object thatis archived at one
point in its life-cycle and redeployed at a later stage can besuccessfully verified
in the new environment.

With the concepts provided in this and the previous chapter it would also be
possible to automate the process of evaluating emulators tosome extent. However,
virtual environments today lack some of the features necessary for supporting
automated evaluation, like the possibility to supply files for automated input or
the extraction of significant properties of the environmentand the digital object.
In Chapter 6 we will show design requirements for virtual environments to allow
standardization and to a certain extend automation of evaluation of renderings.

The following chapters will then show how the preservation workflow and
the evaluation steps can be applied to real world examples toallow for proper
evaluation of digital objects’ renderings for archival storage and re-deployment
for future use.

Chapter 6

Design Guidelines for Virtual
Environments for Digital
Preservation

6.1 Introduction

Based on the previous chapters showing a framework for evaluating a render-
ing environment and how to integrate it in a preservation workflow, this chapter
will describe what functionality has to be provided by a rendering environments
used for digital preservation to support an evaluation of the rendering of digital
objects, both locally deterministic and rendering influenced by external events.
We first show the basic requirements on rendering environments to be used in
digital preservation. Then we show what the requirements toevaluating these en-
vironments are. Finally, we show functionality that is crucial for the usability of
rendering environments for digital preservation applications.

6.2 Long Term Stability of Virtual Environments

Depending on the intended use of a rendering environment, the requirements dur-
ing development are quite different. While a compromise between speed and cor-
rectness of emulation (e.g. timing between CPU and output components) usually
can be taken into consideration for office applications, a much closer alignment
between the internal components is necessary for video gameemulators, with the
most demanding requirement on correctness being real-timeapplications. Ren-
dering environments thus have to be designed with the intended application in
mind.

The emulatorDioscuri shown in Chapter 2 was the first emulator specifically

85

CHAPTER 6. DESIGN GUIDELINES 86

designed with digital preservation purposes in mind. The requirements that had
to be met during its development as defined in [van der Hoevenet al., 2007] were
durability and flexibility. We will briefly revisit these below before expanding this
set of requirements based on the lessons learned from the design of the evaluation
framework.

6.2.1 Durable Virtual Environments

Virtual environments used in digital preservation have to be durable as they have
to be sustainable for the long term. Developing the virtual environment as plat-
form independent as possible allows for a use of the same virtual environment
on different hardware and software platforms. Key requirements to developing
virtual environments thus are:

Open Source Keeping a virtual environments source code accessible allows the
archivist to have the emulator ported to new environments once the system
the emulator is running on (either hardware or operating system) gets obso-
lete. Using closed source virtual environments poses the risk of unavailabil-
ity once changes in the hardware / software environment of aninstitution
become necessary.

Platform Independent Code If platform independent code is used for the devel-
opment of a virtual environment, it is much more likely that the environment
can be ported to a new underlying hardware or operating system once the
original environment used gets obsolete. Examples for non-platform inde-
pendent code include the use of machine language bound to a specific pro-
cessing architecture, use of operating system dependent libraries and pro-
prietary programming languages used for just once system.

Use of Virtual Machines as Intermediary Layers An additional virtual layer as
described in Section 2.5.2 would allow virtual machines to be usable over a
longer period of time, as only the virtual layer would have tobe ported to a
new platform, the virtual environment itself would not haveto be adapted.

Most current emulators (e.g., video game system or mobile platform emu-
lators) are generally developed for speed and immediate usage without keeping
long term stability in mind. Dioscuri fulfills all the listedrequirements by being
open source, being developed in Java and using the Java Virtual Machine as an
intermediary layer between the operating system and the emulator.

CHAPTER 6. DESIGN GUIDELINES 87

6.2.2 Flexible Virtual Environments

Being able to use one virtual environment for different guestsystems prevents
developing a new virtual environment whenever a single component in a system
changes. The modular emulation concept shown in Section 2.5.2 allows the use of
one virtual environment for different guest systems by exchanging different mod-
ules for the different components in a system through configuration. Ideally new
components can be integrated using a plug-in system with specified interfaces.

The re-use of modules for components that already are in use in other projects
(e.g., the same processors had been used in many different home computer sys-
tem in the 1980s) also allows for reduced development time and is less likely to
introduce emulation errors for these components.

Dioscuri was developed with this flexibility in mind to ensure several differ-
ent computer environments can be emulated with minimal changes by using the
modular concept.

6.3 Requirements for Evaluation

To support the workflow presented in Chapter 5 it is necessary to create require-
ments for virtual environments that are to be used for digital preservation pur-
poses, as these requirements differ from those used for creating emulators today
and the features they offer. The requirements which are necessary to support the
evaluation of emulators are:

6.3.1 Recording and Replaying External Events

As previously shown the rendering of a digital object in a virtual environment has
to be made deterministic. An object’s rendering is non-deterministic if it depends
on values that are external to the digital object itself, e.g., hardware events, user
input. Thus, for evaluating a virtual environment it is necessary to apply the same
values to the digital object for every repeated rendering cycle.

The values locally known and not locally known are shown in Section 4.2.1.
The virtual environment has to be enabled to capture and re-apply all data avail-
able on external (i.e., not locally known) and internal hardware (i.e., locally known)
interfaces, to enable a deterministic rendering. The following steps are thus nec-
essary when developing the rendering environment:

• Identify all locally known and not-locally know interfacesfor the system
(e.g., by studying the hardware schematics of the system)

CHAPTER 6. DESIGN GUIDELINES 88

• Provide functionality to capture and store the data on theseinterfaces as
well as the moment it was applied to the execution of the digital object

• Provide functionality to re-apply the data at the same time (either absolute,
or relative to a variety of timing concepts such as absolute/elapsed time,
processor cycles, or frames) during execution to a subsequent rendering of
the digital object

Recording data and re-applying the same data to a later execution of the same
digital object using the provided functionality thus allows for deterministic ren-
dering of the digital object.

The automated replay of external events not only eases automated testing but
also makes it possible to automate actions for users of objects in emulated envi-
ronments (e.g., booting a system and starting an application automatically without
special knowledge of the handling of the environment on the user-side).

6.3.2 Extraction of Significant Properties

Once the rendering of a digital object has been made deterministic, significant
properties of the rendering process have to be extracted to compare different ren-
derings of the same digital object. These can be categorizied into two different
kinds of data, the rendered form of the digital object itself, and a log of the ren-
dering process.

Rendered Forms

As shown in Figure 4.1 a digital object’s rendering is available in different forms
on the system rendering the object. Some of these forms existinside the virtual
environment in different memory regions of the virtual system:

• Random access memory (RAM) of the system

• Caches (e.g., processor cache, RAM cache)

• Hardware registers of output devices (e.g., video card memory, network
buffer)

The available memory regions depend on the system being rebuilt in a virtual
environment and can be found using the system’s schematics and data sheets of
components (also needed for developing the virtual environment).

The rendering environment also prepares renderings for thehost system by
providing data on the interface between the host system and the virtual system,

CHAPTER 6. DESIGN GUIDELINES 89

e.g., a rendered form of the virtual system’s screen or the data passed along on
the network interface. The rendering environment thus alsohas to be enabled to
extract data of the various rendered forms of a digital object at specified times in
the rendering process (similarly to how the data influencingthe rendering has to
be applied at certain times during the rendering).

The provided functionality is then used to compare the extracted data over
different execution cycles of the same digital object. Thiscomparison allows to
observe the following characteristics:

• Extracting data from the memory regions of the virtual system, and com-
paring this data at the same points in time in a deterministicrendering, we
can make sure, that the rendering process of the digital object in the virtual
system is correct.

• Rendered data captured on the interface between host system and virtual
system allows a comparison, if the virtual system correctlytransforms the
data calculated in the virtual system for use on the host system.

Logging of the Rendering Process

Some of the significant properties of the rendering that haveto be captured are
not properties of the object, but of the rendering process. These events occuring
during the rendering process depend on the system being executed in the virtual
environment. A list of categories and events are listed in Table 5.1.

The virtual environment has to provide functionality to logthose events for a
rendering of a digital object. A comparison of the timing of these characteristic
figures allows then conclusions about the timing of the virtual system compared
to the real system or a different virtual system. Virtual environments executing the
process either too fast or too slow can thus be detected. Additionally, an analysis
of accessed system resources can be used to detect if external resources are used
by the rendering, making it not deterministic.

The actual events that have to be logged depend on the hardware properties of
the system being virtualized. Besides the events, the following parameters should
also be logged:

Executed CPU CyclesA system running in a virtual rendering environment
usually runs at a different clock speed than the host system.Therefore, the number
of executed cycles of the virtual machine’s central processing unit is the main
indicator of timing of when an event appears. This adds valuefor automated
testing, as during an unsupervised test the emulator can be run without any speed
limits, thus reducing the time needed for testing.

CHAPTER 6. DESIGN GUIDELINES 90

Elapsed TimeAs an additional time measurement the actual elapsed time on
the host system since the rendering process started should be recorded in the log-
file. This measurement gives us an indication of how the virtualized system’s
speed is perceived by a user of the virtual environment and may be used to nor-
malize for timed events driven by a clock-based system rather than a timing based
on CPU instructions executed.

Drawn Frame As an additional timing measurement for every event it should
be recorded in which “frame” (unique consecutive image produced by the video
hardware of the system) the event was registered, as the connection to a video re-
fresh rate is an established timing instrument in the development of dynamic com-
puter software. Similar time-stamps my be required for other output devices/ports
that operate with an independent, internal timing or processor.

Recorded EventFor each event the type of event as a code and as full text
(for easier human readability) should be recorded.

Additional Information Additional data for the recorded event can be in-
cluded depending on the event logged, e.g. a key that has beenpressed, a file that
has been accessed etc.

The format the events are logged in can be either a structuredXML file or a
plain text file.

6.3.3 Timing Requirements on the Virtual System

Timing is a critical issue when executing systems in a virtual environment (es-
pecially for real-time systems). For evaluation, however,the issue is less critical.
Even when dealing with real-time systems, the system is completely under control
of the host system. The virtual environment software thus can capture and reapply
external data needed to make a process deterministic at exactly the same moment
in the rendering process. The time granularity of capturingand reapplying events
has thus to take into account the guest system (or possible guest systems on the
platform the virtual environment covers).

The evaluation process of a virtual environment can be completely decoupled
from the absolute time the original rendering process was executed in. If the host
system hardware is powerful enough, even an evaluation of a rendering in a much
shorter time than the original rendering process would takein real time is possible.
The events have to be applied only in the correct relative timing of the rendering
process.

CHAPTER 6. DESIGN GUIDELINES 91

6.4 Data Exchange between Guest and Host System

One requirement that is not directly connected to the long term stability or test-
ing of virtual environments but crucial for the usability ofemulators for digital
preservation is the exchange of data between the guest system and the host sys-
tem. Virtual environments are enabled to use a data source toboot from, this is
either a file that is loaded into memory on start of the rendering environment (em-
ulating physical read-only-memory), or some kind of file-system based structure.
But, currently, most emulators do not offer a possibility to copy content from the
emulated environment to the host-environment during runtime. Phelps et al. see
this as a major drawback for using emulators for digital preservation ([Phelps and
Watry, 2005]).

Usually it is necessary to be able to access documents and reuse the contents
of those documents in the host environment. The option of taking a capture of
what is displayed on the screen as an image is usually not sufficient, as text or
other objects that exist on the guest system would have to be transferred to the
host system to re-use them properly.

Two different strategies of exchanging data between the guest system in a
virtual environment and the host system running the virtualenvironment exist.
The guest system can either be aware of running in a virtual environment, or be
unaware of that fact.

6.4.1 Virtual Environment Unaware Guest System

In case of the guest system not being aware of running in a virtual environment,
the virtual environment has to provide an option to capture data from a running
system on different levels:

Hardware Data can be directly captured on a level of emulated hardware, i.e.,
ports of the system that store data, like text-based video modes of display
hardware or memory dumps taken from the emulated memory. Addition-
ally, data from the host system can also be provided on (emulated) hardware
ports of a guest-system by injecting data directly into the keyboard buffer
of the emulated system. While only primitive data types like text can be
transferred using this method, the virtual environment does not have to be
aware of the operating system being executed on the emulatedhardware.
The different possibilities of data that can be extracted depend on the hard-
ware being emulated.

Operating System Another method of transferring data to the host system is ex-
tracting the data directly from the operating system of the guest system.

CHAPTER 6. DESIGN GUIDELINES 92

Knowledge of the guest system being executed as well as the inner struc-
ture of the guest operating system is necessary to extract data. One example
would be to access the clipboard of the operating system and extract data
that has been copied to the clipboard on the guest system. Theformat used
to store the data in the clipboard as well as the location of the clipboard in
the guest operating system have to be known by the virtual environment to
extract data.

Data Carriers One method currently used is the transfer of data using data carri-
ers that can be mounted in the virtual environment (e.g., disk drives or hard
disks). In Section 2.5.2 remote access to emulation is described, where
the object that will be used in the emulated environment is injected into a
floppy disk image and mounted in the virtual environment. If the object is
migrated in the virtual environment, the resulting migrated object is saved
to the floppy disk and later extracted from the disk image on the host sys-
tem. While the virtual environment not necessarily has to be aware of the
guest operating system being executed, the data carrier formats have to be
accessible by the guest operating system (e.g., if a Windowssystem is ex-
ecuted in the virtual environment, harddisks formated using a LINUX file
system format will not be accessible, even if the carriers can be mounted in
the virtual environment on a hardware level). When using datacarriers the
virtual environment not necessarily has to be able to inject/extract the data,
as external tools can be used to prepare the disk image, and also to extract
data stored on the data carrier by the guest system.

Remote Data Data can also be provided on other external interfaces than data
carriers. If the guest system is running a web service that isproviding data,
the host system can connect to the guest system over the network interface
and inject and extract data from the guest system. The guest system is
unaware in this case if the data it provides is sent to a remotesystem on the
network or a host system executing a virtual version of the guest system.

6.4.2 Virtual Environment Aware Guest System

Data can also be exchanged by the guest system and the host system if the guest
system is aware that it is running in a virtual environment, and data used in the
guest system has to be provided to a host system. These can either be done by
installing tools in the guest system that communicate with ahost system or by
using an operating system that can be made aware of the fact that it is running
in a virtual environment. In both cases the view-path of an object changes more
than in a virtual environment unaware system, as by additionally introducing new

CHAPTER 6. DESIGN GUIDELINES 93

software or changing settings in the operating systems, theview-path is altered
more severe than by only introducing an additional virtual layer.

Additional Tools

Tools being installed in a virtual environment allow the host operating system to
access the clipboard of the guest operating system. These tools have to be pro-
vided by the virtual environment manufacturer for all operating systems running
as guest operating systems, and have to be installed inside the guest system. One
example for the virtualization software VMWare[1] are the “VM Ware Tools”. For
the open source Oracle VM VirtualBox[2] these tools are called “Guest Additions”.
Each of them provides these (or some of these) functionalities:

• File system folder sharing between host- and guest system

• Data exchange between host- and guest system

• Share the clipboard between host- and guest system

• New drivers to improve the performance of the guest system

• Access to statistics about the guest environment

• Time synchronization between host- and guest system

• Soft power operations to pause the guest operating system

To accomplish the data exchange, a communication channel between the tools
installed in the guest system and virtual environment beingexecuted on the host
is established. This channel can be used by tools on both sides to exchange data.

Virtualization Aware Operating System

If an operating system is installed that is explicitely aware of being run in a virtual
environment, this operating system has to explicitely be compiled to include the
necessary components. The operating system makes direct system calls to the
hypervisor (i.e., the virtual layer between the hardware and the guest system)
and uses virtual registers provided by the virtual machine but not available on
the physical hardware (i.e., processor registers). This technology called “Para-
Virtualization” [Whitakeret al., 2002] is mainly used to improve the performance
of the guest system(s) on a physical hardware.

[1]VMWare –http://www.vmware.com/
[2]Oracle VM VirtualBox – http://www.oracle.com/us/technologies/

virtualization/virtualbox/overview/index.html

CHAPTER 6. DESIGN GUIDELINES 94

As the guest system is aware of the virtualization, the necessary tools for ex-
changing data with the host system (and other functionalities listed in Section
6.4.2) are part of the operating system and do not have to be explicitely installed
in the guest system.

6.5 Summary

By following the design guidelines for emulators for digitalpreservation purposes
as proposed in this chapter standardization and to a certainextend automation
of evaluation of emulators will be possible. The functionality for capturing and
re-applying of data as well as extraction of properties has to be included in the
virtual environments to allow for automated evaluation. The guidelines for long
term stability should be followed to enable a dureable and flexible use of emula-
tors in digital preservation. Extraction of data as described in Section 6.4 should
be implemented to ease the use of virtual environments in digital preservation
application, to raise acceptance of emulation as a viable alternative to migration.

No standard for data provided to virtual environments exists so far. It is nec-
essary to develop a standard for handling of user input to usethe same input def-
initions in the same format for all emulators that have to be evaluated. The same
is true for extracted significant properties. As neither theset of properties nor a
format to extract it to is specified yet, it is necessary to carry out future research
in this field. Especially as this is a feature not yet supported by emulators a stan-
dard may be devised, that can be implemented by emulator-developers to get the
properties in a unified format. One example of a characterization language that
can be used is XC*L [Beckeret al., 2008b]. It is also necessary to develop a
measurement framework that supports the extraction of properties from rendering
environments and the automated comparison of rendering results.

The next chapter will show a case study on an obsolete system.An emulator
for the system developed with the requirements presented inthis chapter in mind
will be presented and evaluated using the evaluation framework.

Chapter 7

Preserving an Obsolete System: The
C7420

7.1 Introduction

In this chapter we will show how digital objects for an obsolete home computer
system can be preserved on the different threat levels. After introducing the sys-
tem we first show how data from original media is re-engineered and extracted
(preservation on the physical layer). We present a tool thatis not only able to
extract the data but also to convert simple objects (e.g., images) to non-obsolete
formats using migration (logical layer). Next, we show the development of an
emulator that is used to preserve the more complex objects onthis system (e.g.,
software) on the logical layer. Research shown in this chapter has been published
in [Guttenbrunneret al., 2011], [Guttenbrunner and Rauber, 2011], and [Gutten-
brunner and Rauber, 2012a]

7.2 The C7420 Home Computer Module for the Phi-
lips Videopac+ G7400

For the case study we decided to use the Philips G7400[1]. Originally designed
as a video game system with a keyboard, it can be extended to become a home
computer with a Microsoft BASIC operating system using the C7420 expansion
cartridge. This cartridge features three connector cablesfor data input, data output
and a remote controlling signal used to start and stop the audio tape, if supported
by the tape player.

[1]Philips G7400 on Wikipedia –http://en.wikipedia.org/wiki/Philips_
Videopac_\%2B_G7400

95

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 96

The system was chosen as it is already very hard to find specimens in working
condition, so there is an imminent threat of losing the data saved with this system
permanently. For the purpose of this case study we also chosea system that had
physical media that could be read by current hardware, in this case off-the-shelf
audio recorders, as standard compact cassettes could be used for storage purposes.

7.2.1 The Philips Videopac+ G7400 Video Game Console Sys-
tem

In 1968 Ralph Baer created the prototype for the first home videogame called
Brown Box [Baer, 2005]. The American company Magnavox releasedthe system
to the public in 1972 as the “Magnavox Odyssey”. The system used cartridges
that did not store any information but interconnected different electronic parts to
create the desired built-in games. Only black/white outputwas created and by
applying different overlays for every game on the TV the impression of color was
created.

In 1978 the successor to the Magnavox Odyssey, the Magnavox Odyssey2, was
sold in America [Herman, 2001]. In Europe the system was soldby Philips under
the name “Videopac G7000” [Forster, 2009]. This system usedan Intel 8048H
CPU and the custom “VDC” (video display chip) Intel 8244 to display various
different on-screen objects.

Magnavox also started to develop a successor to the Odyssey2, the Odyssey3.
The system was equipped with a more powerful graphics chip then its predecessor
but was made backwards compatible to the Odyssey2. It was never sold to the
public, even though some prototypes[2] were found by video game collectors on
yard sales in the area of Magnavox’ head quarters in Knoxville, TN, USA. In
Europe the Videopac G7000 system was more successful than the Odyssey2 in
the US, so Philips released the Odyssey3 under the “Videopac+” brand as the
“Philips G7400” (shown in Figure 7.1) in Europe in 1983. The system was able to
use all the cartridges for the original system, but also someadditional cartridges
only playable on the G7400 were released. As home computers got more popular
during that time and the Philips Videopac systems were equipped with a keyboard
all along, an additional cartridge that converted the system to a fully fledged home
computer was released.

7.2.2 The Philips C7420 Home Computer Module

In 1983, shortly after the release of the Philips G7400 game system, Philips re-
leased the Home Computer cartridge as an add-on to convert their console system

[2]Odyssey3 Prototypes –http://www.dieterkoenig.at/ccc/po/s_po_o3.htm

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 97

Figure 7.1: Philips Videopac+ G7400 game console system.

to a full fledged home computer. As the built-in 8048 processor was not powerful
enough for this task, the system itself was used for input andoutput only and the
computing was done mainly by a Zilog Z80 micro processor running at 3.754 Mhz
and stored in an extra case connected to the main system (shown in Figure 7.2).
The home computer module had 18 Kbytes ROM inside the cartridge. Microsoft
Basic was used as a programming language for the home computeradd-on and
used up 8 Kbytes of these. 16 Kbyte RAM were also integrated in the module of
which 14 Kbyte could be used for user programs.

To save and load programs to external storage, a microphone and a headphone
connector were included which allowed the storage of data and programs utilizing
home audio equipment and standard audio-tapes.

Only very few programs for the system were released commercially in printed
form. Besides the manuals included with the cartridge, a bookteaching how to
program the system and including some example programs was released in France
in 1984 [Bardon and de Merly, 1984] and a second book containing generic BA-
SIC programs adapted to the system was released in Italy [Deconchat and Grandis,
1985].

On this system BASIC was used as the main programming language. Source
code is a significant property of software and can be necessary to interpret the data
stored by applications and is also necessary if software is migrated for preserva-
tion purposes [Matthewset al., 2008]. As the system is used as a video game
console as well, some of the programs are video games. This provides us with
a situation where migration would be a possible solution to preserve some video
games for the system [Guttenbrunneret al., 2010a].

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 98

Figure 7.2: Philips Videopac+ C7420 Home computer cartridge: Cartridge that
plugs into the system in front, connected to the main case that holds the additional
CPU and memory in the back. The connectors for loading/savingdata to an au-
dio system (red, white and black cables for microphone, headphones and remote
control) are attached to the main case.

7.3 Extracting Data From Obsolete Media and Mi-
grating It to Non-Obsolete Formats

Audio tapes are magnetic tapes and are subject to various threats on the physical
level as described in [Bhushan, 2000]. By converting the analog waveforms to
digital waveforms and storing them as digital audio-files oncurrent systems we
can avert the immediate threat on the physical layer.

To prevent loss of data on a logical level it is necessary to re-engineer the
encoding of digital bits in the analog audio signal. In [Ross and Gow, 1999] an
experiment with a Sinclair Spectrum is described, where audio data was migrated
to a corresponding binary stream, which could then be interpreted using an emu-
lator of the real system.

However, to separate the digital objects from their original environment the
bitstreams have to be interpreted in such a way as to extract the conceptual object
from the logical bitstream. By extracting the content and saving it to a format
which is not obsolete at the time of migration we can transform the data to a
format that is accessible without the original hardware. Noexpert is needed to
operate the original system as it is necessary with emulation as a preservation

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 99

Figure 7.3: Waveform of “Hello World” BASIC program (1: initial 6 kHz lead-in
tone; 2: 256 x 0xFF as start of file-signature; 3: file header; 4: 128 x 0xFF as
header/data separator; 5: data block)

strategy.
The essential elements or meta data of the digital object canthen be added on

ingest in an archival system.

7.3.1 Re-engineering the Waveform

Data on the system can be stored in various formats. The BASICprogramming
language variant that comes with the system supports savingprogram listings,
screenshots, and storing and retrieving self-defined data (text strings and number
arrays) using various forms of the “CSAVE” instruction.

In order to start re-engineering the storage encoding, the original machine’s
output was connected to the input of a PC’s sound card. We started by writing
some test programs on the original machine and recording theresulting audio
files using Audacity[3]. One resulting waveform can be seen in Figure 7.3. By
recording different test programs we were able to find out that there is always a
2.77 second lead-in frequency of a 6 kHz sine wave. The data block is stored in a
4.8 kHz sine wave encoding bit set (’1’) as a tone and bit cleared (’0’) as silence.
Every byte is encoded as one start bit (tone), followed 8 databits (storing least
significant bits first) and 2.5 stop bits (silence) (Figure 7.4). The data is stored at
a rate of 1200 bits per second. Every file consists of data-bytes in a structure of a
file header and a data block as described in Table 7.1.

During our online-research we also found an active community[4] that is still
using and also programming this system. One of its members, René van den En-
den[5], had written small programs that allowed BASIC programs to be transferred
between the original system and a PC. On request he provided usa copy of the

[3]Audacity –http://audacity.sourceforge.net/
[4]Videopac / Odyssey2 Community Forum –http://videopac.nl/forum/
[5]Rene’s VIDEOPAC page –http://home.kpn.nl/~rene_g7400/

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 100

Figure 7.4: Representation of one byte in the waveform (1 start bit (1), 8 data bits
(least significant first: 11010011b = D3h), 2.5 stop bits (0))

Table 7.1: File structure of the bitstream on the C7420 system.
No. of Bytes bf Code bf Contained Information
256 0xFF <start of file>-signature
32 file-header
128 0xFF separate header / data
<variable size> data-block
10 0x00 <end of file>-signature

source code of his programs which confirmed part of our research regarding the
format and provided more details we had not figured out at thispoint of our inves-
tigation.

7.3.2 Re-engineering File Formats

To understand the logical format of the data stored in the waveforms it was neces-
sary to reengineer the various formats that are possible to store using the C7420.
From the original user manual it became apparent that the C7420 is able to store
the five different kinds of data shown in Table 7.2.

By writing small test programs storing the different formatsand analyzing
the resulting waveforms we were able to reengineer the bitstream of the different
formats. The discovered logical formats of the bitstreams of the different file types

Table 7.2: Logical bitstream formats and corresponding command to save data on
the C7420.

Logical bitstream format Command
BASIC Program CSAVE
Screenshot CSAVES
Array CSAVE*
String CSAVEX
Memory Dump CSAVEM

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 101

are described in detail in Appendix A.

7.3.3 Converting Waveform to Bitstream

In order to write a tool that is able to convert the waveform into usable data we had
to develop a method of interpreting the waveform programmatically and detecting
the various stages in the signal.

In our tests the signal was sampled as a 48 kHz, 16 bit, mono signal. As the
C7420 outputs the signal at a rate of 1200 bits per second, we can calculate the
number of samples per encoded bit (spb) using Equation 7.1.

spb =
f

bps
(7.1)

where,
spb = samples per bit in the digitized audio stream
f = sample frequency of the waveform
bps = bits per second as output from the C7420

The signal output by the C7420 is a sine wave with a frequency of4.8 kHz, so
every bit is represented by 4 sine periods.

We implemented two different methods of interpreting the signal. Method 1
was taken from the sample programs we got from René van den Enden. For each
sample we need to decide if it marks silence or signal. The algorithm scans the
sample stream of the digitized waveform until an absolute value greater than half
the maximum amplitude of the signal is found. High amplitudeis interpreted as
a signal and such as the start of a coded bit “1”. More samples are subsequently
read and counted either as “signal” or “no signal”. If more than a pre-defined and
adjustable threshold of “no signal” samples are found, it isassumed that the end
of a coded “1” has been reached and a coded “0” starts. For a coded “1” bit to be
properly recognized, half the number of samples over the duration of 4 sine waves
has to be interpreted as “signal”. Figure 7.5 shows a sample waveform and the
values counted as “signal” (marked on the horizontal axis as“1”) and “no signal”
(marked as “0”).

While we were able to read the original signal output by the console system
without errors using this method, we encountered the following problems when
we tried to interpret the signal stored on audio tapes:

• Missing parts of a coded bit: As a certain threshold of “no signal” was
defined as the beginning of a coded “0”, errors were encountered while
interpreting the signal if a small part of the bit had been lost due to data loss
on the audio tape.

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 102

Figure 7.5: Interpretation of the wave signal using method 1. Vertical axis shows
the strength of the amplitude, horizontal axes the parts of the sine wave interpreted
as “signal” (1) or “no signal” (0).

• Noise in the signal: Most parts of the tapes contained noise which was
incorrectly interpreted as signal.

• Differences in amplitude due to independent recordings on the same tape:
While we were able to adjust the level of the input signal usingthe software
for recording the signal from the audio source, changes in the signal over
various parts of one tape made parts of the tape unreadable.

To reduce the sensitivity of the algorithm that converts thewaveform into a
bit stream we implemented a second method. For Method 2 we notonly looked
at single samples in the waveform but also calculated the sumof piecewise linear
approximations of the amplitude, thus calculating the arc length of the sine wave
for silence and signal first. The arc length of a curve for a bitthat represents “1” is
longer than the arc length of a curve for a bit that represents“0” due to the higher
amplitude. To decide if a bit is set or cleared, a cut-off value between signal and
silence wave arc length is used.

For every sample in the signal, the samples before it are usedto calculate the
arc length of the sine wave up to the sample. If the arc length is above the cut-off
value then the sample is recognized as “1” otherwise it is recognized as “0”.

The algorithm is also able to adjust itself to changes in volume or noise, as the
threshold which decides if a bit is set or cleared is constantly adjusted for every file
in an input stream in parts of the signal which are known to be signal or silence.
This way we are able to compensate for noise in the signal as well as for changes
in volume. Missing parts of a signal bit have less influence inthe recognition as
not only the missing part, but also all parts before it are used to decide the state of
the bit.

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 103

7.3.4 Migration Tool

Using the algorithms for converting the digitized waveformto a binary stream
native to the system, together with the information we gathered about file formats,
we developed a tool that is able to read the data contained in the waveform. Both
described methods of interpreting the waveform were implemented.

The tool is written in JAVA. By using a virtual machine as a platform, the tool
is independent from actual hardware for better long term stability. The tool and
demo files can be found on the project homepage[6].

The following functions were implemented in the migration tool:

• Opening an audio stream and loading the contained files (either from an
audio file (WAV or FLAC) or directly from an audio-in device)

• Opening files in the C7420-native file format (binary streams converted
from WAV-file)

• Saving the opened audio stream as a C7420-native file format (binary stream)

• Saving data in a non-obsolete format (screenshots as PNG, basic-programs
and arrays as text files, binary data as binary)

• Saving data as an audio stream (either to an audio file (WAV or FLAC) or
directly onto the standard audio-out device)

• Opening and saving compressed Zip-archives containing a collection of mi-
grated files

• Creating new files of the different formats in the application(including syn-
tax highlighting for BASIC-programs)

All the data formats used by the C7420 as described in Section 7.3.2 are sup-
ported by the migration tool.

Every file is opened in a new tab inside the application in an editor that is
linked to the file type. The information associated with the file and stored in the
file header (native file name, address in memory to load to) canbe edited as well.
A screenshot of the migration tool can be seen in Figure 7.6.

[6]Home Computer Audio Migration –http://www.ifs.tuwien.ac.at/dp/hc_
audio_migration/

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 104

Figure 7.6: Screenshot of the migration tool GUI with 7 BASICprograms im-
ported from a WAV-file recorded from an original tape. The import-log on the
lower left shows events and errors during the import. Various import settings can
be configured on the upper left and the imported programs are shown in tabs on
the right.

7.3.5 Evaluating the Migration Tool

To evaluate the usability of the migration tool, we recordeddifferent programs
and other data as output from the original system. The data was recorded as a
waveform using Audacity and then converted to user readabledata in the migra-
tion tool using both implemented methods for converting thewaveform. Then
the data was loaded back into the original system, both from the recorded audio
stream and from a stream reencoded using the migration tool.

The migration tool was able to restore all the data in the waveform as output
from the original machine with both methods of converting the signal. The origi-
nal stream outputted by the machine and the re-encoded stream from the migration
tool, both gave the same results when the data was loaded backto the original ma-
chine. For a clean signal that was not distorted due to age, the migration tool
perfectly read and wrote the data from and to the original machine.

Additionally, we acquired three audio-tapes created with the original system
approximately 20 years ago from a private archive. Two of thetapes were stan-
dard Philips FE*I 60 normal position audio tapes as used for recording music
while one was a C-10 computer cassette tape from manufacturera11 specially
manufactured for recording data (Figure 7.7). The source who recorded the tapes
and the contents was not known before we started the experiments.

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 105

Figure 7.7: Tapes used for evaluation of migration tool, left upper corner C10
computer cassette, left lower and right Philips FE-I 60 normal position audio
tapes.

We used a standard HIFI-system as an audio player and the software Audacity
to record the audio streams as 44 KHz, 16 bit mono digital signal. The audio
streams were saved as uncompressed WAV-files [Petermichl, 2009] containing
the pulse code modulated (PCM) [Cattermole, 1969] raw audio data as bit stream.
Two of the tapes had data recorded on both sides of the tape; one had data only on
side A. Five WAV-files were obtained, one per side and per tape.

Each file was then loaded using the migration tool. The resulting migrated
files were stored in a Zip-archive. For comparison the files were also loaded onto
the original system.

A visual check for the characteristic waveform was done using Audacity to
see how many files we expected the migration tool and the original system to find.
A comparison between expected and loaded files can be found inTable 7.3 (first
column for each method shows recognized files, second shows unrecognized files
and third shows false positives).

Some files on the C10 tape were recognized by the original system but could
not be loaded due to a “Bad label” error (with the suggestion toreposition the
tape); while on the other 2 tapes no files were recognized at all. No files were
correctly recognized using method 1. All but one file were recognized by method
2. Ten additional files recognized using method 2 were false positives that were
easily detectable in the user interface and recognition could even be suppressed

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 106

Table 7.3: Comparison of expected (visual analysis of waveform) and loaded files
(using different methods) on evaluated tapes containing C7420 data.

tape-side visual C7420 method 1 method 2
C10-A 8 5 3 0 8 7 1 5
C10-B 2 1 1 0 2 2 0 0
Philips-1-A 6 0 6 0 6 6 0 3
Philips-2-A 6 0 6 0 6 6 0 2
Philips-2-B 1 0 1 0 1 1 0 0

Total 23 6 17 0 0 22 1 10

Table 7.4: Data with and without errors as recognized using the migration tool.
tape-side loaded not recognized or wrong

file format
with errors no errors

C10-A 7 0 4 3
C10-B 2 0 2 0
Philips-1-A 6 1 5 0
Philips-2-A 6 1 5 0
Philips-2-B 1 1 0 0

Total 22 3 16 3

by checking a check-box in the migration tool, allowing the user to ignore unrec-
ognized blocks of data (usually noise on the tape).

The files that were recognized contained BASIC-programs. To check the files
for validity we loaded them on the original system from tape and also loaded them
on the original system as output from the migration tool.

From the 23 files on the three tapes no file was readable and usable on the
C7420. All the 6 files that were recognized on the tapes were loaded with a “Bad
file” error message and were not usable due to missing lines and incorrectly inter-
preted bytes. Thus the original system could not be used to load the data from the
original tapes.

The results of recognized data in the loaded files using the migration tool can
be seen in Table 7.4.

3 of the 22 files loaded could be recognized without errors. 16files were
loaded with various warnings in the migration tool, indicating that some bytes
could not be recognized or were misidentified (e.g. wrong checksum, missing
bits in bytes). Three files were not recognized in the correctformat and shown as
binary stream only.

Without manual pre-processing of the waveform or manual post-processing of
the binary stream we were able to load 19 files opposed to just 6files loaded by
the original system.

The files loaded with errors were in various states of completeness. Some
files were missing various lines at the end of the file. Other program lines were
erroneous due to incorrectly identified bytes (an example can be seen in Figure
7.8). As the original data stored on the tapes was not available for comparison,

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 107

Figure 7.8: Screenshot of a BASIC-program imported with errors from a WAV-
file. In the program listing on the right side incorrect arguments for commands
and line numbers out of order can be found. The log on the left side shows error
events that occurred during the import.

it is not possible to quantify the errors. But in general it seems that only single
bytes were lost. As the data on the tapes consists of BASIC programs it should
be possible to correct the errors by re-engineering the recovered program sources
and thus reconstruct most of the data on the tapes.

7.3.6 Observations on the Migration Tasks

During the reengineering of the system and the creation of the migration tool
different observations about these tasks and the applicability to other media types
were made as follows.

Reengineering of the System

While digital archeology and reengineering systems is seen as a rather complex
task, this case study shows that the reengineering of the format is easier while
having access to the original system, as this way test data can be produced. In-
terpreting the number format without seeing the effects of the changed numbers
on the original machine would have been a rather difficult task. It should also
be noted that non-commercial “retro gaming” communities still working with the

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 108

system can be an excellent source not only for emulation, butalso for data arche-
ology on home computer systems.

The results of re-engineering the logical data can be used for other media as
well. Re-engineering file formats can either be done using original systems or
emulators, if available. Expert knowledge in handling the system has to be at
hand to complete these tasks.

Evaluated Tapes

Examination of the data on tapes from a private archive showed that the data was
no longer readable on the original machine. Using the migration tool we were
able to retrieve most of the data with small errors. The evaluation also showed
that it is necessary to act now and migrate data that was stored on magnetic tapes
20 years ago, as the lifetime of magnetic tapes is expected tobe a maximum of 20
years (vanBogart:LifeExpectancy). Most of the data retrieved in the experiment
could not be extracted without errors.

Improvement of Migration Results

As shown in the evaluation not all of the programs stored on the tapes were read
without errors. A corrupted byte does not just change one letter in the command
as every BASIC command is encoded in one byte, but results in acompletely
different command. Automatic correction of the files would thus be only possible
by checking the BASIC programs for certain rules like commands which allow or
enforce a certain number or types of arguments and point out inconsistencies to
an expert doing the migration. He or she can then correct the results manually.
Possible automatic support could also be offered by showingcommands with e.g.
a one bit difference in the encoded byte.

Media Refresh

Using the developed migration tool it is possible to refreshthe media (audio cas-
settes) by reading and decoding the content, recoding it into a waveform and
recording it to the tape again without using the original system.

Interpreting Results For Other Media Types

As audio tapes can be read using standard non-proprietary audio equipment, ac-
cess to the physical layer of data is not in immediate danger.Other magnetic
media like floppy discs cannot be read as easily. Even with floppy drives using the
same media size (8′′, 51

4

′′

, 31

2

′′

) access to data written on non-compatible computer
systems is not possible.

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 109

7.3.7 Information Lost Due to Migration

Not only the information stored in the files which have been migrated has to be
considered, but also how this information is rendered on thescreen, e.g. for image
formats. Thus it is necessary to characterize the potentialobjects that have to be
migrated and look at their significant properties.

While most of the information that can be stored in files on the Philips Video-
pac+ G7400 can be migrated to non-obsolete formats used today, certain restric-
tions apply:

ScreenshotsThe G7400 is able to render blinking information on screen. By
choosing PNG as a non-obsolete (static) format, this dynamic information
of the data is lost. Additionally it is possible to define custom characters
using the BASIC language. As these are not stored in the waveform with
the screenshot data, a complete program with the definition of the custom
characters would have to be stored and preserved to keep the information
available. To correctly render the characters again on a newsystem either
the program containing the character definitions has to be analyzed and in-
corporate that information as well when migrating to a new format or the
program has to be executed in an emulated environment to recreate the orig-
inal rendering.

String Arrays As a string array contains only the addresses of the strings stored
in it and the strings themselves are each stored in separate files, the inter-
relation between these files is lost without the logic of the program that
establishes the link between them.

Program Results The data extracted from the tapes during evaluation was pro-
grams stored on the tapes. While the source code (i.e., the text of the BASIC
program files) was successfully converted to a text file viewable on a non-
obsolete system today, the programs can not actually be executed without
the proper rendering environment. While the functionality of the programs
can be reengineered from the source code, the rendering results and thus the
conceptual layer the programs were creating on screen is lost using migra-
tion.

For the listed data formats no adequate non-obsolete formats are available to
store the information necessary for the rendering process.To properly recreate
the logical layer a rendering environment able to interpretthe logical formats had
to be created. With the possibility to save the data encoded in the waveform as a
system native binary stream, files can be stored for usage in an emulator. As there
were no emulators for the C7420 available, we show how an existing emulator for

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 110

the Philips Videopac+ G7400 was extended to include emulation for the C7420
home computer cartridge in Section 7.4.

7.4 Emulating the C7420 Rendering Environment

In this section we show how software extracted from obsoletemedia was pre-
served on a logical level by developing an emulator. We explain the reengineer-
ing work involved and the design decisions made in accordance to the guidelines
shown in Section 6.2 as well as the options for data injectioninto and extraction
from the emulated environment according to Section 6.4 to use the emulator in
digital preservation applications. We also show how we implemented automated
capturing of events and extraction of significant properties for automated evalua-
tion as shown in Section 6.3.

In Section 7.3 we demonstrated how data and programs stored on audio tapes
were extracted and the resulting audio files were transformed into digital objects
using bitstream preservation and migration. The objects retrieved were mainly
programs, requiring a rendering environment to execute these programs. This can
either be done by migrating the programs to a current system,or by using a vir-
tual environment for execution. As no emulator for the original system previously
existed, we here show how we implemented one. We first describe the system
in more detail and explain the reengineering of the view-path for the execution
of programs on the original system. We show how an existing emulator for a
video game system was expanded by emulation capabilities for the view-path of
the home computer and how the different options for data exchange with the host
environment were implemented on different levels in the view-path. We explain
how differences in input and output formats and methods influence the develop-
ment of an emulator and that, depending on the original system, the transfer of
data between the emulated environment and the host environment enforces im-
plicit migration of the data to become usable.

7.4.1 Program Execution on the Original System

For identifying the elements needed for the execution of software on the original
system, we first have to determine the view-path of the software.

As shown in Section 2.2, in the most simple case the view-pathof a digital ob-
ject contains the digital object, the viewer used to render the object, the operating
system to execute the viewer and the hardware to run the operating system. De-
pending on the digital object and the system used, some elements in the view-path
can be missing. E.g. if the digital object is software, then usually the software is

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 111

Figure 7.9: Philips Videopac+ G7400 with plugged in PhilipsC7420 Home Com-
puter cartridge.

running directly “on top” of the operating system. In the case of early computers,
the software runs directly on the hardware without the use ofan operating system.

To determine the view path on the original system, information about the hard-
ware and the software running (e.g. BIOS) has to be collected.This information
can be collected using different sources like the original circuit diagrams of the
system and the cartridge, disassembled code of the Z80 BIOS and the terminal
software, and last but not least valuable information foundout by other members
of a community still working actively with the original system (expert knowl-
edge).

The original system used to execute the digital objects is a Philips Videopac+
G7400 video game system, which is expanded to a home computerusing the
Philips C7420 Home Computer cartridge (Figure 7.9). Using theC7420 car-
tridge, the video game system was extended by an extra processor (Zilog Z80),
more memory (RAM) and an extra operating system (ROM) implementing the
programming language Microsoft BASIC-80[7]. Figure 7.10 shows a block dia-

[7]Microsoft BASIC - Wikipedia: http://en.wikipedia.org/wiki/Microsoft_
BASIC

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 112

Figure 7.10: Block diagram of C7420 Home Computer cartridge andPhilips
Videopac+ G7400 system. Connection between cartridge and system is done
using the cartridge connector. CPU - Central Processing Unit,GPU - Graphics
Processing Unit, RAM - Random Access Memory, ROM - Read Only Memory.

gram of important parts of both the C7420 cartridge and the G7400 System.
The communication of the C7420 cartridge with the G7400 main system is

done using a program running on the Intel 8048h processor inside the G7400 that
serves as a terminal program by checking the system hardwarefor input (keyboard
and joysticks) and also issues the commands for output sent from the C7420 car-
tridge to the relevant registers of the Intel 8245 VDC (VideoDisplay Control) chip
and the Thomson Semiconducteurs EF9340/EF9341 chip pair inside the G7400.
These 3 chips produce all the visible and audible output of the system. Com-
munication between the software running on the Z80 processor and the software
running on the 8048h processor is managed by using two 8-bit registers that serve
as a read and write latch. The Z80 processor writes information to the latch and
then sets an input line on the 8048h processor. By checking theinput line, the
8048h knows if information is available and proceeds reading the latch. For the
other direction the 8048h writes to a different latch and sets a line that is connected
to the Interrupt line of the Z80 processor, thus triggering an interrupt service rou-
tine on the Z80 that then can read the latch. Additionally the8048h can send a
RESET signal to the Z80 to reset the processor. The communication flow can be
seen in Figure 7.11.

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 113

Figure 7.11: Communication flow between G7400 system and C7420cartridge.

The BIOS, which is run on the Z80 processor, executes BASIC commands
either entered by the user or stored as a program with line numbers. Results of
operations are sent to the relevant registers on the G7400 using the described flow
of communication. Commands accepting input are receiving the relevant input
data from the G7400. Additionally to the data exchange with the G7400, the
C7420 can store and retrieve data from an audio source connected directly to the
cartridge using microphone / headphone plugs.

The resulting view-path for the G7400 system with C7420 cartridge can be
seen in Figure 7.12. The digital object, in this case a BASIC program, is executed
by the BASIC interpreter of the operating system. The BASIC interpreter is run on
the Z80 CPU. Additionally, in this case a second branch of the view-path exists,
which handles the input and output. In parallel to the operating system running on
the Z80 processor, a terminal program for communication with the Z80 is run on
the 8048h CPU, communicating input and output data between the G7400 system
and the C7420 cartridge.

7.4.2 Implementing the view-path in an Emulator

As an emulator for the Philips G7400 had been in development for several years
aleady and was known to work well, we decided not to start implementing a new
emulator and add the C7420 emulation from scratch. The existing open source
emulator O2EM[8] was used as a starting point for implementing the C7420 emu-

[8]O2EM - Sourceforge:http://o2em.sourceforge.net/

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 114

Figure 7.12: view-path for program execution on G7400+C7420.

lation. O2EM initially was written in 1997 as an emulator forthe video game sys-
tem Magnavox Odyssey2, which is the American version of the Philips Videopac
G7000. It was later modified for supporting the different screen timing of the
European system as well as the additional functionality of the successor of the
Philips G7000, the G7400. The emulator is written in the programming language
C, and is thus portable to different systems with minimal changes, thus satisfying
some (but not all) the durability guidelines shown in Section 6.2.1.

To integrate C7420 emulation into O2EM we first have to integrate emulation
for the Z80 processor that would run side by side to the original 8048h emulation.
An existing emulator of the Zilog Z80[9] programmed by Marat Fayzullin is used.
Using a separate module for emulating the Z80 processor component also follows
the principle of modular emulation as described in Section 6.2.2. By using a
Z80 processor emulation that is already proven to work in other emulators we
can make sure, that the development effort on our side is reduced, minimizing
also the risk of introducing erroneous emulation behavior by relying on existing,
tested modules. Integration of the processor emulation consists basically of the
following steps:

Z80 Memory Access and Interrupt After defining the 64 KByte memory of the
C7420 as an array, the BIOS for the C7420 is loaded into the first 8 KBytes
of the memory. Function prototypes provided by the Z80 emulator to access
the memory are filled with code to access the memory (fetchinginstructions
from the memory and reading and writing data). The prototypefunction
checking for interrupts has to be adapted to signal an interrupt to the Z80 if
the 8048h emulation sets the corresponding variable.

[9]Marat Fayzullin Emulation Resources –http://fms.komkon.org/EMUL8/

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 115

Z80 Input and Output Functions The Z80 processor has instructions for writ-
ing to output ports and also reading from them. These ports are used to
access the latches for communication of the Z80 processor with the 8048h
processor. The prototype functions are implemented to readfrom the latch
defined at port 0xC0 and write to the latch defined at port 0xE0, as well as
setting the T0 line of the 8048h.

I8048h Instructions, Input and Output Functions The 8048h instructions used
to check the T0 line were previously only implemented to support a differ-
ent kind of expansion for the G7400 system. These instructions have to be
adapted in order to read the line that is set by the Z80 processor and reset it
(to tell the Z80 processor that the 8048h recognized a written byte). Read-
ing and writing to external memory also has to be adapted to read from the
latch-register defined as external memory on address 0xE0 and write to the
latch register defined as external memory on address 0xC0. Additionally,
the write-function to the output ports of the 8048h has to be adapted, as
pulling the lower two bits of Port 1 to low is supposed to resetthe Z80 and
pulling just Bit 1 of Port 1 to low signals an interrupt on the Z80.

Execution of Z80 cyclesFinally, the emulation main loop has to be extended to
include the execution of Z80 instructions. The 8048h processor is running
at a clock rate of 0.394 MHz internally, while the Z80 processor is running
at a 3.547 MHz clock rate, which makes it roughly execute 10 clock cycles
for every 8048h clock cycle. Completely accurate cycle exacttiming was
not a necessity, as the communication between Z80 and 8048h is based on
a handshake protocol, so one waits until the other provides the necessary
data. The main execution loop sets the counter of cycles to execute to 10
and invokes the Z80 emulation.

To actually synchronize the emulation of the 8048h and the Z80 and imple-
ment the aforementioned steps, debug output of instructions of both processors is
enabled and the log analyzed to find out exactly, which processor is doing what
at a given point in time. By debugging through the assembler instructions of both
processors, the handshaking can be established and the emulator starts up with the
start screen of the C7420 Home Computer cartridge as shown in Figure 7.13.

7.4.3 Data Injection

After establishing the emulation of the C7420 Home Computer cartridge, the next
step is to enter data into to the emulated environment emulating the user inter-
faces to the system. Three options for data input are available on the original

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 116

Figure 7.13: Start screen of C7420 Home Computer cartridge on O2EM emulator.

system. Below we describe these three options and the challenges they present for
emulation.

Keyboard

An obvious method of data entry to the emulated environment is a key press. The
previous implementation of the keyboard routine mapped every key on the original
G7000 system keyboard to a key on a standard PC keyboard. Thiswas sufficient
for the currently emulated programs as the extra keys of the G7400 keyboard were
not used in any of the supported programs.

In a first step we correct the keyboard routine to support the extra two rows of
keys on the G7400’s keyboard. This provides us with the possibility of mapping
every key on the G7400 keyboard to a key on a modern keyboard. Unfortunately,
the differences between current keyboards and the originalG7400 keyboard are
quite significant. As an example, a special key providing opening and closing
brackets (“[” and “]”) exists which is not directly to be found on a modern key-
board but only reached through key combinations. Additionally, various key com-
binations create different effects, for example the numbersign (“#”) is printed on
the G7400 keyboard as a combination of the SHIFT key and the number “0”,
whereas most modern keyboards have a key assigned to it.

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 117

The BIOS of the G7400 checks the keys by going through every line of keys
on the keyboard and reporting which key is pressed. Combinations of keys (e.g.
SHIFT and a number) are recognized in the terminal software of the C7420 run-
ning on the 8048h processor. This software converts the pressed key to an ASCII
encoded character depending on the combination of keys pressed and sends the
ASCII code to the Z80 BIOS routine.

To improve the keyboard routine, we identify the following levels where it
can be intercepted, the first two being an operating system level and the latter one
being on the hardware level:

Z80 BIOS Directly inserting key-presses into the keyboard routine of the Z80.
The Z80 reads the keys received from the terminal program running on the
8048h and writes them in a keyboard buffer. Keys read in ASCII-format
from the host-keyboard can be directly written into the keyboard buffer
(with the exception of characters that have a different codeon the C7420
system). This would be a special routine only working for theC7420 BIOS,
as it uses specifics otherwise not found on the system. It alsowould not be
compatible with the current keyboard routine.

Communication interface Alternatively, keys can be written to the memory of
the 8048h. As the keyboard routine in the terminal software already con-
verts the key presses to ASCII, keys could be written as received from the
keyboard functions. This method like the previous one wouldbe a spe-
cial implementation for the C7420. The existing hardware emulation would
have to be disabled to not interfere with the other routine.

Hardware level Adapting the keyboard routine on the hardware emulation level
offers the most compatibility not only for the C7420 Home Computer car-
tridge but for all other software developed for the G7400 system as well.
Instead of the current implementation to have a one-to-one relationship be-
tween a key on the host keyboard and a key on the emulated hardware, with
the flaws described above, a new routine could do a mapping of the actu-
ally entered character on the host system and set the appropriate keys in the
emulated environment to simulate key-presses corresponding to the entered
character.

The levels correspond to the description shown in Section 6.4. As the C7420
environment is a single process system, no additional toolscan be installed in
the environment, thus the data exchange has to be made with the guest system
being unaware of the virtual environment it is executed in. Using the operating
system level option, the emulator would have to be aware of the operating system
being executed in the environment. Using the hardware level, no knowledge of
the executed program is necessary for the keyboard routine.

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 118

We decided to extend the keyboard routine on the hardware level to reach
the best compatibility for all programs running on the hardware. In a first step
we create a mapping for all useful key-presses on the G7400 (e.g. combinations
like “CONTROL”, “SHIFT” and a character don’t have any effecton the C7420,
and even thought they could be theoretically read by replacing the G7400 BIOS
routines by a self-written routine, the ergonomics of the membrane keyboard make
it hard to press two keys at the same time). Next we replace theroutine that
reads the state of the mapped keys by a routine that first readsthe ASCII Code of
the entered character (considering modifier keys like Shiftor Control), and sets
the corresponding keys on the G7400 emulation using a “best guess” strategy to
decide what the user actually wanted (e.g. entering “=” signon the host keyboard
(using a combination of different keys on the host keyboard)is mapped to pressing
the “=” key on the G7400 keyboard. Likewise entering “;” on the host keyboard
emulates a key press of the Clear key and the Shift key on the G7400 keyboard,
which - in the original system - produced the semi-colon. Some of the keys had
to be emulated by non-obvious combinations, for example onekey for creating a
character consisting of two dots, not available in ASCII or anmodern keyboard,
was simulated by entering “$”.

To test the validity of the keyboard routine, we wrote an assembler routine
that reads out the pressed key and compared the results of theprogram on the
real hardware and the emulator. Entering key-presses to theemulated C7420 en-
vironment also now creates the expected results. We also checked some samples
of other software running on the emulator to make sure that the new keyboard
routine did not break other software for the system.

Joysticks

The original system has two joysticks that are emulated by O2EM either using
actual joysticks connected to the host environment or keyboard emulation for the
joysticks. The polled data is provided to the emulated environment as soon as the
BIOS of the G7400 tries to read the hardware ports. It is then handed over to the
BIOS running on C7420 and can be read using the correspondent BASIC com-
mands (e.g. STICK(0)). As the joysticks were already properly emulated by the
original emulator on a hardware level, no additional actions had to be performed.

Files

Besides data injection through control devices, the C7420 supports the loading of
files from an audio signal connected through a microphone jack during runtime.
In this section we will show different possibilities of loading a file into memory,
both on a hardware level and on an operating system level.

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 119

Hardware Emulation On a hardware emulation level, the component for read-
ing data from the audio source, converting it to a digital signal and providing
it on the input port of the Z80 is the most complex one. Basically, when the
user tries to load a file using the ’CLOAD’ command, the bits provided in
the audio stream are decoded, assembled to a byte and writtento the ap-
propriate memory location. By reengineering the original BIOS routine of
the ’CLOAD’ command and based on the format as described in Appendix
A we were able to create a routine that emulates that behaviorof the origi-
nal tape interface and provides the correct data in the correct timing to the
CPU. The original tape was simulated by providing a directoryin which the
different files are stored. Using ’CLOAD’ without a filename loads the file
first written into the directory, subsequent calls of ’CLOAD’load the next
file respectively. Using ’CLOAD’ with a filename loads the file with the
specified filename. ’CLOAD’ supports loading of every file typesupported
by the C7420, i.e. BASIC programs, screenshots, data, and memory dumps.

Direct Writing to Memory An alternative to the aforementioned method of hard-
ware emulation is to load a file into memory and directly writethe loaded
bytes into the correct memory locations on an operating system level. For
this purpose the behavior of the original ’CLOAD’ has to be reengineered
even more to find out what all memory positions are affected (e.g. counter
for free memory). Using this method we implement a special key that
presents the user with a file-browser-dialog to select a file.Only BASIC
programs can be stored using the direct memory method.

Both of the aforementioned methods result in the same memory structure when
loading a file, with writing directly into memory being much faster (as the file is
instantly loaded) whereas the hardware emulation preserves the original timing
and thus needs a few minutes for programs with more than 100 lines. Using the
hardware emulation it is possible to have programs load and save data from within
the guest system using the original BIOS functions.

The data loaded from the tape interface is basically in the exact same format
as written into memory (with the addition of leading and trailing bytes and some
start- and stop-bits to separate bytes). To provide better support for using the
emulator as a cross-programming-tool, we also implement implicit migration of
BASIC files in text format. Loading a text file containing human readable BASIC
source code is automatically detected and migrated back to the original binary
format with encoded line numbers and encoded BASIC commands, so it can be
used again in the original environment, the C7420.

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 120

7.4.4 Data Extraction for Application Use

While data injection is an important issue to execute and interact with software
in the emulated environment, for most digital preservationapplications it is also
necessary to extract data from the emulated environment. Especially if emulation
is used to access data stored in its original format and the data has to be used
in the host environment, methods of copying data to one’s current environment
have to be provided as shown in Section 6.4. The methods for data extraction we
implemented in the emulator are listed below.

Files

Using an emulator to modify data stored in an obsolete formatmakes it necessary
to be able to save previously loaded files again. Again, two different methods are
implemented:

Hardware Emulation The BASIC command “CSAVE” for saving data is im-
plemented analogue to the command for loading files. We againhave to
reengineer the format by examining the code of the BIOS written in Z80
machine language to observe, what data is written to the output interface.
The data stored by the BIOS is written to an array and saved under the file-
name given with the command. “CSAVE” works for all possible variations,
saving programs, data, screenshots and memory dumps.

Direct Read From Memory on Operating System LevelAs with “CLOAD” a
function to directly write a BASIC program from the operating system to
disk is provided. As the format of storing BASIC programs in the operating
system memory area of the C7420 was analyzed for creating the other file
functions, it was also possible to create a function to provide a dialog to
the user to ask for a filename and directly dump the memory in the correct
format to a file.

As with “CLOAD” the resulting file is the same in both cases, with the hard-
ware emulation being compatible to all formats and the direct read from mem-
ory version being easier to use without expert knowledge andbeing considerably
faster. The choice of type of BASIC file (either in text formatfor easy readabil-
ity or in binary format as originally created by the system) can be specified as a
command line option for the emulator.

Clipboard

One feature hardly present in emulators today but crucial for their use for dig-
ital preservation purposes is the possibility to extract rendered text in machine-

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 121

readable form as separated characters from the emulated environment for use in
the host environment. As the original environment in the C7420 does not support
marking regions of text on the screen, and putting it in an internal clipboard, we
decided to implement a function that copies the whole screencontent as characters
into the clipboard of the host system, so the text can be pasted into any application.
Two different hook points for extracting data from the C7420 are possible:

Operating System Level: Extraction from C7420 screen bufferThe operating
system of the C7420 Home Computer cartridge holds an internal represen-
tation of the screen buffer for manipulation through the Z80in the Z80
memory area (RAM). Extracting the characters from there would be pos-
sible by reengineering the memory location the screen data is saved at, as
well as the format it is saved in. This would be the preferred option if the
data was not rendered in the hardware chip as text on the screen.

Hardware Level: Extraction from emulator screen buffer The G7400 uses a
teletext type of display chip for rendering graphics of the C7420. Thus a
representation of the screen data (the characters) has to beheld in the video
screen buffer for rendering the image. By extracting data from the video
screen buffer we not only create the possibility of copying data from the
C7420 cartridge but also from all other software for the G7400using the
video chip to render data.

We decided to go with the more generic version and extract thedata directly
from the video memory of the emulator. Depending on the host operating system
different routines for copying data to the clipboard have tobe implemented. The
data that is extracted is in ASCII format, so we can directly use it for copying it to
the clipboard. The video chip is able to apply certain special effects on the char-
acters (e.g. double size, blinking characters, underlinedcharacters). As we need
to get a text representation of the data for later usage in other applications we de-
cided to ignore the format and just copy the actual characters to the clipboard. Not
all the characters have the same code representation as in current ASCII format
table, so a conversion for certain characters is performed while copying the data.
The list of characters and the representation in ASCII formatand C7420 internal
format can be found in Appendix B.

Screenshots

Screenshots of the emulated environment can be used to include renderings in the
virtual environment as images in documents on the host system. Different built-in
features and external tools allow for extraction of rendered screens of the virtual
environment:

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 122

In the Emulated Environment Using the screenshot feature of the C7420 (the
’CSAVES’ BASIC command) the screenshot can be saved to a file and con-
verted to a non-obsolete format using the tool we developed in [Guttenbrun-
neret al., 2011].

Inside the Emulator The emulator O2EM has a built-in feature that allows sav-
ing screenshots of the rendered environment. Using this feature it is possible
to manually save screenshots at certain points in the emulation.

From the Host Environment Using a screenshot tool inside the host environ-
ment automatic screenshots at different time points can be taken as well as
a video of the emulation.

All of the described data extracted from the virtual environment can also be
used to evaluate emulation accuracy, e.g., to compare emulation results with the
original environment. A more detailed description of extracting data for evalua-
tion purposes will be shown in Section 7.5.

7.5 Implementing Evaluation Functionality

As shown in Section 6, to automatically extract data of a continuous rendering
process, the virtual environment has to support the extraction of properties of
these process. To implement the extraction of data in O2EM, we have to take a
look at the different levels inside emulated system on whichthe rendered forms
of a digital object exist. Figure 7.14 shows the different levels on which an im-
age is rendered inside the view-path of the C7420 Home Computercartridge in
conjunction with the G7400 system.

In detail the levels on which we can compare the rendering results are:

Z80 Memory The BIOS running on the Z80 has an internal representation of the
screen memory that can be extracted using the screenshot feature ’CSAVES’.
Doing this on the original system and on the emulated system,we receive
two files which can directly be compared. If the files are identical, then the
emulation of the Z80 CPU is correct (for the rendering of the test digital
object). Yet, we cannot ascertain, that the actual rendering as provided by
the emulator matches the rendering of the original system.

Video Chip Memory Another representation of the rendered object exists in the
Memory of the video chip. This memory region is emulated in the emulator
and can be read out. Unfortunately it cannot be read on the original system
without directly reading the signals from the hardware and decoding them
accordingly.

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 123

Figure 7.14: Different renderings in the view path of the C7420 Home Computer
cartridge.

Host System BIOS The emulator renders the image stored in the video chip reg-
isters. The image is rendered and saved either in the Host system represen-
tation of the screen content or directly in the video card memory. Obviously
this representation of the rendering exists only in the emulated rendering
environment. Using this representation (basically creating a screenshot of
the emulator’s output) we can compare different rendering environments
running on a host system (e.g. emulator of architecture level, high level em-
ulator). In [Guttenbrunneret al., 2010b] we demonstrate how the rendering
results of different rendering environments can be compared by using the
characterization language XCL as described in [Beckeret al., 2008c] for
objectively comparing the significant properties of two screenshots.

Display Device Finally, a comparison on the level of the display device (com-
paring the output of the original system on a display device with the output
of the emulator on a different or even the same output device)can be per-
formed. This comparison is usually done manually and subjectively by the
human preservation planner.

Not only the level of extraction of an image for comparison isrelevant, also the
time line is important. Usually, especially with interactive and dynamic software,
we are not only interested in a screenshot at a certain point in time, but either

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 124

a series of screenshots or a continuous extraction of a videostream, which also
allows the comparison of factors like timeliness and synchronicity, e.g. with sound
output, compared to the original.

While the emulator supported already the extraction of screenshots (activated
by pressing a key), a continuous extraction of images or extraction of images after
a certain amount of elapsed time or executed machine cycles was not supported.

In Section 7.4 we showed how we implemented features in the emulator to
make it usable for digital preservation purposes from a user’s point of view (e.g.
data exchange between the emulated and the host system). To actually be able to
use an emulator in a digital archive, however, we need the possibility to evaluate
the rendering process of digital objects more objectively and in an automated way.
Based on the framework shown in Chapters 4 and 5, as well as the design guide-
lines derived from it shown in Chapter 6 we decided to implement the following
features to aid automated evaluation:

Event-Log The original system can be controlled by using either the keyboard
of the system or joysticks. In interactive applications (and especially video games)
timeliness and type of input usually have a major influence onthe behavior and
thus resulting rendering of the digital object. Besides recording the points and
type of input, we also wanted to log other events like file access (reading / writing
to files in home-computer-mode) and the start of drawing an image frame (i.e. the
start of the Vertical Blank period on the original system), toallow us to make state-
ments about the correct timing of the emulator compared to the original system.
Additionally, we recorded user-driven events in the emulator such as triggering a
screenshot or a memory dump.

Automated Input The previously created event-log was defined in a form that
is usable also as a command-file for the emulator, allowing usto automatically
apply input to the system as well as create screenshots and memory dumps at
specified times.

Memory Dumps We also implemented a feature to trigger memory dumps
of the different memory regions in the system, including thehardware registers
of the Intel 8245 GPU shown in Figure 7.10. This allows us to not only rely on
screenshots of the emulator or files saved in the home-computer-mode as a way
to extract data from the rendering process. This corresponds to the level of the
rendered form in memory in Figure 4.1.

The next sections describe in detail the design decisions taken when imple-
menting these features.

7.5.1 Recording of Events

As described in Section 6.3.2, information about events occurring on the virtual-
ized system have to be logged to draw conclusions on the rendering process of

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 125

the rendered digital object. The timing parameters as well as information about
the events have been implemented. When starting the emulatorthe event-log file
that should be created can be specified as an extra parameter.To easily import the
resulting file in spreadsheet applications for further processing and analysis, as
well as for processing speed reasons we decided to use a commaseparated value
(CSV) format escaping commas that form part of the input in thelog.

We included the following different types of events for the system emulated in
the emulator based on its hardware properties:

Operating the Environment

To be able to evaluate the rendering process reliably, we have to make sure that
the rendering is always exactly the same under the same conditions applied to
the rendering environment, i.e. the emulator is deterministic in its behavior as
described in Section 4.2.1. For any object rendered in the environment relying
on external input to the rendering environment (e.g. user input, network activity,
access to files on the host system) the type of input as well as the actual input data
have to be stored to be able to provide the same data on a re-runfor evaluation
purposes.

The emulator O2EM (and the original system it emulates) supports user input
in the form of key presses and joystick input. The hook-pointfor recording these
events for the event-log is the interface in the emulator between the emulated
environment and the host environment, i.e. when the emulator detects that the
emulated process is trying to access the hardware registersthat usually store the
input values and provides the host system input instead. By recording the exact
cycles already executed in the rendering when accessing this information, we are
able to provide the same information when re-running the rendering process.

Reading files in home-computer-mode as a different type of providing exter-
nal data to the rendering environment was recorded in the event-log, to let the
digital archivist know that for later evaluation of the emulator these files have to
be present besides the actual digital object, as they also potentially influence the
rendering process.

Extraction of Data

As a basis for comparing the results of the emulation process, it is necessary to
extract not only the occurrence of an event but the actual data that is read or
written as a result of the rendering. In Figure 4.1 we showed different levels
on which a rendered object exists during the rendering process. From inside the
emulator we have access to two different forms of rendered information: the form
in the (emulated) memory of the system (e.g. hardware registers of the multimedia

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 126

processor, usually triggering an output on the original system) as well as the form
that is already translated to the host system (e.g. a rendered screen based on
hardware registers of the emulated system’s video hardware).

In O2EM a feature to save screenshots of the currently displayed image was
already present. We enhanced this feature to create an event-log entry including
(as every log entry) the executed cycles up until the point inthe rendering the
screenshot was taken. Additionally, we implemented a feature that works similar
to saving screenshots that lets the user save the different emulated memory regions
of the host system: memory internal to the processor, main system memory exter-
nal to the processor, multimedia hardware registers memoryand, if available, the
emulated home-computer-mode memory. Additionally, in home-computer-mode
files can be stored externally, which also influences the rendering process. The
process of writing these files was also recorded in the event-log.

Under the assumption that the emulator works as a deterministic process, ex-
tracting data under the same external conditions (e.g. the exact same input ap-
plied) at the same point in the rendering process should provide the exact same
result files.

Internal Events

In addition to the events described above, we also defined twoother special event
types for the log:

Vertical Blank The vertical blank is the period before the drawing of a new
frame is started. It was an important event used to synchronize events on the
screen to a fixed timing. We logged this event to let us draw additional conclusions
about how the number of cycles executed and the frames being drawn relates to
the original system’s timing.

Emulation Start For O2EM we record information about the cartridge image
file that was rendered (filename and a checksum), as well as name and version
number of the emulator and the date and time the log was created. This meta-data
gives us additional information about the rendering process for which the log was
recorded.

Emulation Stop The information that the rendering process was stopped, the
total number of cycles executed, the number of frames drawn and the elapsed time
is recorded in the event-log.

The list of implemented events as well as the data recorded can be found in
Appendix C along with an example log file.

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 127

7.5.2 Automated Execution

Recording the events of a rendering process is only the first step in validation
and verification of the digital preservation action. Especially if the rendering en-
vironment changes between execution of the digital preservation action and the
re-deployment of the digital object at a later point in time,it is necessary to verify
the correct rendering of the object in the new environment.

To be able to compare the rendering between validation (the time the digital
preservation action was initially performed) and verification we need to make sure
that the external conditions influencing the execution are unchanged. This means
that any manual input or external data applied to the rendering environment has to
be the same as when the preservation action was initially validated. By recording
these external events in a rendering environment and applying them at a later point
in time to the new environment, we can compare the outcome of the rendering
process.

In the emulator O2EM we implemented a feature to use the earlier described
event-logs as command files. All external events and triggered data export actions
recorded in the event-log file are automatically provided tothe emulator using the
command file. Actions are read from the command file and applied to the emu-
lator when the specified number of cycles have been executed.In a deterministic
emulator this means that the relevant actions are applied atthe same time in the
rendering process as they initially had been recorded.

In detail the following actions where implemented:
Operating the Environment The initially manually created and recorded in-

put events of keyboard and joystick are applied at the exact same cycle count as
initially recorded. The action from the command file is (similarly to the recording
of the input for the event-log) interpreted once the emulator invokes the interface
in which the emulated system tries to receive input from the host system. In a de-
terministic emulator the number of cycles executed until this check is performed
does not change between renderings of the same digital object.

Extraction of Data The manually triggered extraction of screenshot and mem-
ory data that has been recorded in the event-log file is automatically executed once
the executed cycles stated in the command file are reached. Additional extractions
can be inserted manually. This way it is possible to extract both a screenshot and
all memory regions at the same point in the rendering process.

Internal Events The initial event-log record of the emulation stop also stops
the emulation in the re-run once the action is encountered inthe command file.
This allows for automated and unattended testing of the emulator.

By first recording external events and later applying the event-log as a com-
mand file for a new version of the emulator (or even a differentemulator) it is
possible to extract key characteristics of the rendering process as shown in Sec-

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 128

Figure 7.15: Preservation actions for different layers of view-path.

tion 5.2.5 and rendered forms of the digital object. This validation data can be
used to evaluate the performance and accuracy of the emulator. If the resulting
data extracted at significant points in the rendering process is identical, we have a
strong indication that the rendering process is unchanged.

7.6 Discussion of Alternative Preservation Actions
for the Philips Videopac System

In the previous sections we showed a tool to migrate static objects originally ren-
dered on the Philips Videopac C7420 system. We also showed howdynamic
objects (i.e., software) can be rendered using emulation ofthe original hardware,
using the initial view-path used on the original system to render the objects. But
executing programs using emulation on a hardware level is only one of the differ-
ent alternatives that can be used for preserving software. Figure 7.15 shows the
different levels in the execution view-path of the C7420 and also lists preservation
action strategies for each of the levels.

7.6.1 Hardware Level

On the hardware level the emulator that was implemented can be used to preserve
the system’s behavior and thus create a rendering environment where the original
operating system software (BIOS) can be used to execute the programs. As shown
before, the reengineering effort necessary to implement anemulator is quite high,
even though this method is the most accurate one, as every technical aspect of the
system is replicated in the emulator.

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 129

7.6.2 Functional Level

Creating an emulator for the BASIC-programs not on a hardware level but on a
functional level would require to implement an interpreterfor the BASIC-code,
that emulates the functions of the original BASIC-commands.Instead of execut-
ing the underlying Z80 machine language code in the BIOS if, e.g., a “PRINT”
command is executed, the interpreter would emulate the behavior of the command,
i.e. printing characters on the screen. Data extraction andinjection is obviously
much less complex, as the rendering environment can be directly manipulated and
the behavior of each command is under control of the rendering environment. As
the functional level is a higher level than the hardware level, only the functional-
ity of the C7420 basic interpreter would be emulated, while the emulation on the
hardware level allows other software for the Philips Videopac game system to be
rendered as well.

7.6.3 Source Code Migration

A completely different strategy than emulating the system on a hardware level
or emulating the commands on a functional level is the migration of the BASIC-
programs to a non-obsolete programming language. Running a parser over the
programs and migrating every command to a representation ina non-obsolete
programming language allows us to create stand-alone versions of the programs
that can be run without the need of an emulator program. While some of the
commands would be quite easy to migrate (e.g. mathematical operations), oth-
ers would involve more complex implementations (e.g., setting a different screen
mode, displaying characters on the screen). Another obstacle to overcome in the
special case of the C7420 is the flow of program execution, if the target language
is a structured programming language instead of an unstructured one that is line-
based like the used Microsoft BASIC-80 language. Jumps in theprogram between
line numbers (and even to calculated line numbers stored in variables) have to be
converted to different types of control flow statements (e.g. loops or choices). The
principal possibility of this conversion has already been shown in [Ashcroft and
Manna, 1979].

7.7 Summary

In this chapter we showed how we created tools for the preservation of an obsolete
system on the physical and logical layer. We first presented the reengineering of
the physical layer, and created a tool that allowed us to extract the bitstream of the
different file formats of the system without using the original system but off-the-

CHAPTER 7. PRESERVING AN OBSOLETE SYSTEM: THE C7420 130

shelf audio equipment. Next, the bitstream was migrated to non-obsolete formats,
allowing us to render the logical layer on today’s infrastructure. Finally, for all
the data formats that could not be properly migrated, we created an emulator that
allowed us to render the bitstream extracted from the physical media in a virtual
environment, thus recreating the logical layer even for software for the original
system.

One important lesson learned while implementing the emulator was that the
input and output routines will most likely have to be adaptedat the time of dissem-
ination of archived data. A change in layout of keyboards used between archiving
the emulator and the data to be rendered will already enforcea change in the
keyboard routines of the emulator. If the method of enteringdata changes from
keyboard to something else (which is not an unlikely scenario given a time frame
of 50 to 100 years) the mapping of data input has to be completely adapted. Sim-
ilarly, the data extraction from the emulated environment in the shown example
already enforced a change in certain character codes. Givena longer time frame
between archival and reuse of the archived emulator, these kind of adaptions are
even more likely to be necessary, even if the environment forthe emulator (e.g.
an emulation virtual machine as described in Section 2.5.2 keeps the emulator
executable.

Following the guidelines shown in Chapter 6 we also implemented functional-
ity to support the evaluation of the emulator. We first introduced the event-log of
the rendering process with different properties that allowus to re-run a rendering
in the same environment and potentially also in different ones. We showed the
different kinds of events that have to be recorded and that have been implemented
depending on the original system. The different types of external data that can
influence the rendering process have been explained as well as the different types
of data that can be exported from the rendering environment for a comparison of
different rendering processes. We then explained how the event-log can be used
to automate the process of applying the same input data to theemulator to ensure
a deterministic rendering of the digital object.

In the next chapter we will show how this functionality was used to evalu-
ate the rendering of digital objects in O2EM. Finally, otherpreservation action
alternatives for preserving software for the system were briefly discussed.

Chapter 8

Evaluation Case Studies

8.1 Introduction

In the Chapters 4 and 5 we showed the Preservation Action Evaluation Framework
and how it can be integrated in a preservation workflow. Support for the frame-
work was implemented in an emulator in Chapter 7, following the guidelines out-
lined in Chapter 6. We first show an evaluation of the implemented emulator using
the implemented functionality supporting automated evaluation. Then, we apply
the framework to more complex examples, namely a music classification process
as an example for a scientific workflow, and a digital artwork rendered originally
in a now obsolete hardware and software environment.

Some of the research shown in this chapter has been publishedin [Guttenbrun-
ner and Rauber, 2012a].

8.2 Evaluation of O2EM-Emulator

In this section we describe two experiments we performed on different digital
objects suitable for the emulator we adapted in Section 7.4.We describe the steps
undertaken and the results of the rendering processes as well as the analysis of the
resulting event-log files.

8.2.1 Business Process Example: Cassa

As a first example we chose an application that runs in the home-computer mode
of the system. We chose an application that allowed us to savedata to the external
tape drive and reload the data and render it during later use.

The programCassafor the Philips Videopac C7420 home-computer is an early
program written in the programming language Microsoft BASIC-80. It was pub-

131

CHAPTER 8. EVALUATION CASE STUDIES 132

Figure 8.1: Screenshots of the program Cassa on the Philips Videopac C7420
home-computer. Interactive loading of the program on the left, final rendered data
on the right.

lished in Italy only as a manual supplement to the home-computer add-on of the
system. The program is a typical representation of what homecomputers were
used for at that time besides playing games. One could enter figures of monthly
income and spendings, save the data to a tape using an attached tape recorder and
display the saved data in various renderings at a later pointin time (Figure 8.1).

We started the computer in home-computer mode, loaded the program, entered
various fictitious data and saved the data in the program. Forthe actual evaluation
we recorded the following process in the event-log: starting up the emulator in
home-computer mode, loading the program (of which we took a screenshot as
seen on the left in Figure 8.1), loading the data into the program and displaying
the data as also shown on the right in Figure 8.1. So not only the recorded user
input but actual data loaded from an external drive influenced the rendering (i.e.
what was shown on the screen).

Plan As a first step in the plan phase non-technical aspects like the context in
which the system and the program were used in, as well as technical as-
pects like the environment and all dependencies of the digital object have to
be captured. In a museum setting, the historical context of the object would
need to be captured to demonstrate one of the earliest examples of how
home computers were once used to manage household income andspend-
ing. The program Cassa shows how typical data input and processing, as
well as typical workflows of users working with a home computer system
at the time the system was used in the early eighties. The original setting
including the data carriers used to store the data (in this case standard au-
dio tapes) and other properties of the system (e.g., utilization of the home

CHAPTER 8. EVALUATION CASE STUDIES 133

TV system to use the computer instead of the dedicated display units used
today) are documented using pictures of typical set-ups of the system in a
family’s living room. All the non-technical information about the use of the
system and the program itself explain the context the evaluated process was
running in at a later point in time.

Once the system itself is documented, the process running onthe system
has to be documented as well and evaluated against a virtual representation
of the process. As only one virtual environment (and emulator) is available
for the system, it was evaluated if this would work as a properpreservation
action. For our case study we picked one typical use case - loading data
from the tape and displaying it as a list.

The second step is to determine the events influencing the rendering of the
process. There are a series of external events and external data being sup-
plied that need to be captured during this use case: First theenvironment
is invoked (either by starting the original system or starting an emulator).
Then the program is loaded from tape and started by the user. What follows
is a sequence of user actions (e.g. selections, confirmations) and system
actions (e.g., loading data, rendering data) described in the workflow in
Figure 8.2.1. The program first shows an intro screen and thena menu with
different options to the user. The user selects to load the data from tape.
Afterwards, the system returns to the menu and the user selects to display
the data on screen.

If we run the emulator with the workflow described in 8.2.1, anevent-log
is created where we can see the external files that have been loaded. These
include not only the application Cassa itself, but also the file used for storing
user entered data. This enables us to identify which resources have been
accessed and keep (or simulate) the necessary data for a later verification of
the rendering of the preserved application.

Next we have to decide what the significant points are on whichwe want
to compare the rendering and on what level of output we want tocompare
as step three. To successfully repeat the process in a changed rendering en-
vironment, all the actions immediately happening before a user interaction
have to show the same result as in the original environment. E.g., if the sys-
tem waits for the user to press the <RET>-key, then the screen prompting
the user to do so has to be correctly rendered, so the user knows what to
do. Also the final result of the process has to be the same as on the original
environment. If the data displayed is not correctly rendered, then the ren-
dering of the process is of no use to the user. Intermediary steps on the other
hand might not always be relevant for the rendering of the process. E.g., in

C
H

A
P

T
E

R
8.

E
VA

LU
AT

IO
N

C
A

S
E

S
T

U
D

IE
S

134

Figure 8.2: Workflow of the use-case of displaying data in thecassa application.

CHAPTER 8. EVALUATION CASE STUDIES 135

the Cassa-Example it will in most cases not be considered significant if the
intermediary step “Display Loading Screen”, that is followed by another
system action, and does not require user interaction or evenconvey valu-
able information to a user, is rendered correctly. Rendered correctly in this
case means that the screen is rendered exactly as on the original system, for
exactly the same time, or even rendered at all. The comparison was done
on the level of it being rendered on a physical display unit (aTV set the
original system was connected to vs. a computer monitor usedto display
the output of the virtual environment).

As a step four we virtualized the process to capture the external events and
the performance of the process. The data both from the tape containing
the program as well as the tape containing the data was transferred to the
host system of the emulator we were going to use as shown in Section 7.3.
Next, in step five, the virtual environment was started, repeating the process
side-by-side to the original system.

As the original system used was a quite old and closed system not allowing
for any automated extraction of data we had to compare the results manu-
ally. Every output of the system deemed significant as definedabove was
compared to the same output on the original system after applying the same
input to both the original and the virtual system in step six and seven of the
evaluation framework. Verifying thus that both intermediary steps as well
as the end-result of loading the data in the virtual environment was identi-
cal, the decision was taken that the emulator is a valid virtual environment
representing the output of the original system in a way that was usable for a
future user. Once this decision was taken and the emulator was approved as
a valid reference environment, future preservation planning processes will
be based on this decision and comparison of preservation actions can be
done to the emulator, including automatic extraction of data from the virtu-
alized system.

To test the emulator in home-computer mode for determinism,we not only
recorded screenshots (as due to the missing random element in the applica-
tion those would most probably be similar), but also save thememory con-
tent of all different memory regions (RAM internal to the 8048h processor,
RAM external to the 8048h processor, RAM connected to the Z80 processor
and registers of the video processor) along with an image of the displayed
screen. As not the whole stream of displayed data was deemed significant,
but only the states in the workflow shown in Figure 8.2.1 we only recorded
a series of states as described in Section 4.2.2. During execution of the
program in O2EM screenshots have been saved on different stages in the
workflow along with the user input and the data loaded. Screenshots were

CHAPTER 8. EVALUATION CASE STUDIES 136

Characteristic limited no limit
total executed cycles 49201503 49201503
total frames drawn 6778 6778
total emulation time 136.426s 10.512s

Table 8.1: Characteristics for testing the application Cassawith original (=limited)
and unlimited speed.

taken on every transition from data displayed (System) to anaction required
by the User in the workflow shown in Figure 8.2.1. Making sure the user is
presented with the information allowing him to make the appropriate choice
in the workflow. In the final state “Display Data” not only the screenshot
but also the described memory dumps where saved.

To evaluate if the emulator executed this process deterministically, the pro-
cess was re-run, and the same data was captured as in the initial run. As the
data was equal to the data saved in the initial run of the process, using the
same input data provided automatically to the emulator, it was asserted that
the emulator rendered the object deterministically.

We ran our test under two different settings in the emulator,first with speed
limited as a user would usually experience it, and a second time without
speed limit, simulating a verification where the test shouldbe performed
as fast as possible. We compared all the exported data files (screenshot
and memory) with the result, that in all cases the files where exactly the
same. Verifying thus that both intermediary steps as well asthe end-result
of loading the data in the virtual environment was similar, the decision was
taken that the emulator is a valid virtual environment representing the output
of the original system in a way that was usable for a future user.

As for the timing of the different runs as shown in Table 8.1, we can see that
on our system the unlimited test executed the exact same testin only 7.7%
of the time needed for a correctly timed emulation while creating the same
results.

Preserve At the actual stage of preserving the system, the current status of the tapes
were transferred again and the evaluation as explained in the plan phase
was repeated. In Section 7.5 we showed how we enhanced the emulator
with abilities to record both external data of any kind possible for the sys-
tem (user input, data loaded from a tape drive), as well as with the ability to
extract data in various forms, e.g., screenshots and memorydumps. The vir-
tual environment was set up to record all external data, bothscreenshots and
externally accessed data. Every output of the system was recorded both in

CHAPTER 8. EVALUATION CASE STUDIES 137

screenshot and memory dump form, and again compared to the same output
on the original system. The result of the evaluation was a setof digital ob-
jects (the program “Cassa”, the data file loaded by the program) and the files
created by the virtual environment (logfile of all events during the process
including all external data, e.g., user input, applied to the virtual environ-
ment, but also the resulting memory dumps and screenshots).For example,
for the process shown in Figure 8.2.1 and used in the plan phase to evaluate
the preservation action during preservation planning, thefollowing techni-
cal data for validation purposes was stored in a package for submission to
an archive:

– the necessary external data (the program as well as the data stored to
tape),

– the logfile containing both all the external events (i.e., user input and
external data applied to the process) as well as internal events as shown
in Section 7.5,

– nine screenshots at the defined significant points in the process,

– the state of the system after the process finished running (i.e., in the
state “Display Data” consisting of a memory dump of the internal
memory of the system as well as the display memory).

The entire package of the technical data for validation has asize of about 15
Mega-Bytes, with the major part being the screenshots as wellas the logfile
and only some Kilo-Bytes being the program itself and the datastored by
the process.

For validation purposes the virtual environment was setup again with both
the digital objects and the recorded rendering results and external data. In
the second step of the validation the emulator was setup to automatically
process the recorded external data instead of reacting to real external events.
It again captured the rendering results in memory and on the screen. This
step was performed to make sure that the rendering was deterministic, i.e.,
all the data necessary for the rendering to be done identically in every pro-
cess was locally known and thus the data can be stored for recreating the
process at a later point in time.

Usually during the preserve phase a series of use-cases similar to the one
described in the plan-phase are carried out and all externalevents and ren-
dering results are being recorded and stored along with the digital object
(the actual program) in the archive. Using a wider array of use-cases the
validity of the virtualized process compared to the original process running
on the actual hardware is ensured.

CHAPTER 8. EVALUATION CASE STUDIES 138

Re-deploy At a later point in time the program along with all the stored data will be
extracted from the archive. The virtual environment valid at the time of re-
deployment is setup and a test is performed if the results of the rendering
in the new virtual environment are identical to the results of the renderings
stored in the archive. For the programCassathis means that either a differ-
ent emulator for the original system or a different version of the emulator
used when preserving the process will be available. This emulator will allow
us to use the logfile created with all events as input and thus also will create
the screenshots and memory dumps as the current version of the emulator
does. In this verification step we make sure at the time of re-deployment,
that a future emulator will produce the same results as the current version
of the emulator - the results that have been compared to the original system
at a time when the original system was still available.

As shown in the plan phase, this step can be automated, so evena large num-
ber of stored processes and use-cases can be checked withoutmanual effort
and even in a much shorter time than real-time emulating the system. We
thus can verify all the use-cases by applying the external data and compar-
ing the significant outputs of the processes, if necessary even for different
virtual environments available at the time of re-deployment.

Depending on the reason for re-deployment, the actual setting of the emu-
lator can vary. If new data-files for the process have been discovered and
have to be rendered using the original program, the verification allows us
to make sure, that the original data used for validation produces the same
results as in the original virtual environment. This is a strong indication
that even different external data unknown at the time of preservation (i.e.,
different data revived from tapes) will render correctly inthe re-deployed
virtual environment.

Only one virtual environment for the system was available atthe time of
carrying out the case study. Thus, to simulate a re-deploy phase for the case
study, the package used for submission to the archive was taken as it would
be received from an archive at a later point in time. The virtual environ-
ment was installed on a system with different hardware then the original
system used to capture the data. By executing the captured logon this
system, screenshots and memory dumps are created at the samepoints in
the execution process as during the capturing. The resulting data was then
compared to the data captured for comparison. As the data wasidentical,
the virtual environment was executed in the “new” environment identically
to the original environment. The view-path for the program “Cassa” was
thus successfully restored on a new environment.

CHAPTER 8. EVALUATION CASE STUDIES 139

Figure 8.3: Non-deterministic rendering of Terrahawks - result of initial recording
(left) and re-run (right).

To summarize, the same external data has been provided to different consecu-
tive renderings of the digital object to make the process deterministic, thus ensur-
ing that differences in the rendering would originate in differences in the rendering
environment and not in differences of the behavior of the object. The results were
compared to the original rendering as described in Section 5.4.2, thus verifying
that the virtualized process is an accurate representationof the original process.
Next, the resulting input-files, log-files and rendering result exports were stored
along with the necessary digital objects (the program CASSA as well as the data
file) during the preserve phase. This lets us at a later point in time (the rede-
ployment phase described in Section 5.4.2) validate that the redeployed object’s
behavior is similar to the one stored in the preserve phase. The new environment
in which the object will be redeployed will be any environment in which a view-
path able to render the digital objects Cassa with its external dependencies (the
data file) can be restored.

8.2.2 Video Game: Terrahawks

During the case study for “Cassa” we determined, that the emulator was able
to deterministically render a business process example. Wechose a video game
as a second example because those are usually the most timingsensitive objects
on the chosen hardware. We chose a video game running in the standard mode
of the emulator emulating a Philips Videopac G7000 running in European timing
mode (PAL video standard). We chose the gameTerrahawksthat creates a random
impression using external events to change the game play on every execution, to
see if repeated execution of the game will produce the same rendering results,

CHAPTER 8. EVALUATION CASE STUDIES 140

i.e. if the rendering process can be made deterministic for more timing sensitive
objects than business processes.

The process of planning for preservation is identical as forthe example “Cassa”.
Technical aspects of the system and non-technical aspects about the setting of a
game played in the early eighties would have to be recorded for a museum setting.

The use-case to be documented for Terrahawks was a typical game play work-
flow. External events influencing the rendering of Terrahawks are input events
using joystick and keyboard. As first step the emulator was started and the game
started by pressing the key “0”. One game was played using joystick input. Once
the player lost his life, keys were pressed to enter the players name for the high
score. A screenshot was taken after the game resulted in the player losing his life
and entering his name (at which point the game just restarts,showing the new
highest score on the bottom). After entering the name, the joystick was moved
some more in the newly started game. A second screenshot was taken and fi-
nally the emulation environment was exited by pressing “<ESC>”. The signifi-
cant events in the use-case were recorded in an event log, excerpts of the log are
shown in Section C.3.

In a second step the emulator was restarted with the event-log file given as
a command-file to see if the emulator executes the rendering deterministically
and the same resulting screenshots are created if the same input is applied. The
previously recorded input was applied automatically during the rendering process.
However the resulting screenshot taken at the same point in the rendering process
as the original screenshot differed from the initial run of the emulator as shown in
Figure 8.3.

A closer look on the emulator source code revealed that the emulation process
was not entirely deterministic (i.e. independent from external factors), as the emu-
lation of one of the hardware components, a voice synthesis module, was actually
simulated using sound samples. A check in the emulated code of this compo-
nent was connected to the actual completion of playing the sample on the host
system, an event the emulated environment had no control over. By deactivating
the voice component, the emulation process was made deterministic and when the
experiment was repeated, the results were identical on eachre-run.

As timing in video games (especially action games) is crucial for the game
experience, we used the rendering log to compare the timing of the real hardware
(known due to the original system’s schematics) to the values measured in the log
as described in Section 5.2.5. The measured values as well asthe expected values
calculated from the original system’s specification can be seen in Table 8.2.

Based on these results it can be seen that due to the evaluationlog we de-
tected another error in the emulator. Even though the emulator was executed with
the timing set to European TV-standard PAL timing (50 framesper second), the
emulator was still rendering 60 frames per second as in the North American TV

CHAPTER 8. EVALUATION CASE STUDIES 141

Characteristic CalculatedMeasured
executed cycles per
frame

7882 7259

executed cycles per sec-
ond

394100 435540

frames per second 50 60
seconds per frame 0,02 0,0165

Table 8.2: Calculated versus measured key characteristics taken from the event-
log of running Terrahawks in O2EM.

standard NTSC. The time taken for each frame was consistently1/60 of a second,
which is correct based on NTSC timing. The emulator was running fast enough
to render every frame in less time than the original system would have needed,
keeping the subjective feeling of speed for the user steady.Furthermore, it can
be seen in Table 8.2 that the timing inside the emulator is notcycle-correct, thus
timing-sensitive applications would not run correctly.

The findings about the incorrect timing were used to fix the frame rendering
error in O2EM and helped improving the timing in the emulatorto the actual
calculated values, thus helping us to create a better rendering environment.

The further steps for Plan, Preserve and Re-Deploy phase are identical to the
business process example shown in Section 8.2.1, as the rendering environment
used is the same one.

8.3 Re-running Scientific Experiments: Music Anal-
ysis Workflow

While the case study for “Cassa” was carried out on a quite simple system with
very limited external dependencies, the second example we discuss is a scientific
workflow described in detail in [Mayer and Rauber, 2012]. Today in most cases
papers are published presenting results of experiments andexplaining the process
how data for the experiment was created and processed. To actually repeat a
scientific experiments though, the same process would have to be carried out to
achieve the same results and ideally find methods to improve the results of the
original paper by doing additional research. Re-running a scientific experiment
requires the original view-path of the process creating or processing the data. If an
experiment has to be repeated once the original systems are not available anymore,
the view-path has to be recreated in a new environment and validated against the
original behavior of the process. Using the methodology shown in this thesis we

CHAPTER 8. EVALUATION CASE STUDIES 142

Figure 8.4: Musical genre classification workflow [Mayeret al., 2012a]

thus show how a scientific experiment and its results can be preserved for the long
term for validation purposes.

Plan In a first step the digital object and its context have to be described. The
workflow is a musical genre classification process from the music infor-
mation retrieval research community that can be seen in Figure 8.4. It
accepts a URL to a list of MP3 files as an input. The html-document is
retrieved and the MP3 files are extracted from the document. Every MP3
file is then fetched from its URL, encoded and sent to a feature extraction
web service. At the same time the ground truth file is fetched from a dif-
ferent web resource. The extracted features are merged to a single vector
and combined with the ground truth and converted into a WEKA[1] ARFF
(Attribute-Relation File Format) format file. Finally the classification is
performed using the machine learning tool WEKA and a classification re-
port as well as the accuracy measure are provided as output ofthe process.
In [Mayer and Rauber, 2012] the context model for the process is shown in
detail.

The process has been modeled to run using the Taverna[2] workflow engine
running on a current Linux system. The workflow definition canbe seen
in Figure 8.5. The system has then been virtualized to be run in a Virtual
Machine like VirtualBox.

To evaluate the process we follow the steps as defined in the Plan-phase
in Section 5.4.2. After describing the process as a first step, the external
dependencies are determined using both the context model created for the
process, as well as by measuring the outputs on the interfacebetween the
virtual machine and the host system in step two. The process is part of a
distributed system. In the workflow shown in Figure 8.4 we canidentify

[1]WEKA - http://www.cs.waikato.ac.nz/ml/weka/
[2]Taverna Workflow Management System -http://www.taverna.org.uk/

CHAPTER 8. EVALUATION CASE STUDIES 143

Figure 8.5: Musical genre classification, including fetching of data, modeled in
the Taverna workflow engine [Mayer and Rauber, 2012]

different steps where data is sent to external resources andresponses are re-
trieved: Fetching the MP3 file list (fetchMP3FileListingDocument), fetch-
ing each MP3 file on the list (fetchMP3FromURL), sending the encoded
MP3 file to the web service and retrieving the features (featureExtraction-
REST), fetching the ground truth (fetchGroundTruthDocument). Similarly
to the Cassa case study we have to make sure that the necessary input does
not change for evaluation. The list of MP3 files in a preserve phase as
well as the ground truth fetched in this phase have to match the list and the
ground truth in a later re-deploy phase to be able to compare the results.
The feature extraction web service also has to be still available and pro-
vide the same features for the same input. All the data transported over the
network, i.e., transferred between external resources andthe process, has
to be captured. Outgoing traffic is data rendered by the process, incoming
traffic is external data as response to requests from the process. By storing
the data exchanged between the process and the external resources we can
make sure that the data stays constant. In step three the decision is taken to
compare the process execution by comparing the resulting network stream
created by the process. The process executes deterministic, i.e. renders the
same results that can be captured on the output ports of the process (De-
tailedClassificationResults, ClassificationAccuracy) provided that the new
rendering environment behaves similar to the original one.

CHAPTER 8. EVALUATION CASE STUDIES 144

To actually capture the data exchanged between the process and external
resources we had different options:

Capturing by the rendering environment The rendering environment we
use for verifying the process after virtualization can capture the data
on the interface between the virtual and the host system. VirtualBox
is an open source software that has various hook points wherecode
could be integrated to capture data. A future emulator executing the
virtualized system would have to provide functionality then to apply
the captured data to the re-deployed process similar to the emulator
used for the Cassa case study.

Use a listener Using a listener to capture the requests to the webservice and
the response of the webservice and simulating the external resources
for the evaluation is another option for providing identical results on
every rerun of the process with the same parameters.

Use workflow engine specific functionalityTaverna as a workflow engine
is able to record the data that is transmitted to and from the different
steps. This data can also be used for a rerun to create deterministic
rendering of the process.

Contrary to the “Cassa” example we used a listener to capture the traffic
sent to the external resources and simulate the resources for a later re-run of
the process. This decision was taken as the process accepts external inputs
from network resources and also provides its results as outputs of the pro-
cess on the network. Implementing external listeners that do not enforce a
change in the virtual environment (i.e., implementing capturing / replaying
external data on a hardware emulation level inside the virtual machine) is
considerable less implementation effort and also makes thechosen solution
independent from the used virtual environment. The listener used is de-
scribed in [Miksaet al., 2013]. The verification-data traffic (to and from the
web-service as network XML-stream) as well as the output of the process
(also an XML-stream as transmitted as a result to a request onthe network)
are captured from the rendered form in memory according to step four in
the framework. Only the target state of the process is relevant, as the re-
sulting transferred XML-stream of the process has to be identical between
different renderings using the same input data. Re-running the process with
the listener simulating the data provided to the process (step five) and again
capturing the process output (step six) and comparing it to the resulting
data captured during the original run (i.e., checking if theresulting XML-
streams are identical given the same input conditions) (step seven) we thus

CHAPTER 8. EVALUATION CASE STUDIES 145

ensure that the necessary external dependencies have been captured and us-
ing the listeners is a viable solution to make the process deterministic and
the virtual machine renders the process as intended.

Preserve Similar to the plan-phase the data exchanged between the Music Analysis
Workflow process and the different external dependencies iscaptured when
the process is preserved as described in step four during a real run of the pro-
cess using the listeners capturing the network data. For validation purposes
the process is then re-run with the captured validation dataprovided by the
listener program instead of the real web-services (step five). The output of
the process (the XML-stream containing the classification and accuracy) is
captured (step six) and compared if it is identical to the filecaptured in step
four as a seventh and final step. This ensures that the rendering is identical
and all the data necessary for making the process rendering deterministic
was successfully captured if the resulting data captured during both runs
matches. The digital objects (process definition, verification-data captured
by the listener as well as resulting data of the process) can be stored in an
archive for later re-deployment.

Re-deploy When redeploying the process at a future point in time, the verification of
the then used virtual environment is done by applying the captured data
exchanged between the process and outside dependencies (step five) and
recapturing the rendering results of the process (step six). Instead of the
web-services used by the process, the data captured by the listener is used
to verify that the process executes identically with the same results in the
new environment. Re-deploying the listener is obviously a challenge in
itself as most likely it either also has to be run in a virtual environment
as the original platform no longer exists. Alternatively, the listener can be
reimplemented in the new environment to provide the verification-data that
was stored in the archive with the process. By comparing the results on
the output ports of the Music Analysis Workflow to the expected results
as stored in the archive along with the process (step seven) we can thus
verify that the process is running correctly in the new environment for the
verification-data.

In case the process is to be re-deployed and supposed to run ondata that has
not been recorded for evaluation, the web-services originally invoked can be
replaced either by the virtual environment supplying recorded data or using
the listener that just replies to known requests with recorded responses. As it
is very likely that the necessary web-services are not goingto exist anymore
at this point in time, those either have to be virtualized andre-deployed as
well or replaced by mock-up services providing valid data for the process.

CHAPTER 8. EVALUATION CASE STUDIES 146

Figure 8.6: First Finnish Underground digital artwork (1995). Title screen (left)
and first interactive screen (right) are shown.

8.4 Digital Art Example: First Finnish Underground
(Kärkkäinen/Okkonen)

As a third example we discuss the preservation of a piece of interactive art from
1995 from the Ars Electronica[3] electronic art collection. The artwork is a Macro-
media Director interactive animation. The title screen andthe entrance screen of
the artwork are shown in Figure 8.6. The consumer interacts with the artwork
by clicking on certain regions of the screen and getting different animations as
a result along with audio clips and movies. Some interactiveparts require the
consumer to drag and drop items on the screen instead of simple clicking.

Plan Describing the digital object along with its dependencies is again the first
step in the planning phase. The artwork’s original environment was an In-
tel x86 PC, and the artwork is available as a Windows 95 executable along
with additional movie files that needs specific PC-hardware (e.g., a sound
card) in its view-path to work as intended. It reacts to user interaction as
part of the artwork and experience. External dependencies are thus the user
interaction as well as the reaction of the digital object to the specific inter-
action (step 2). Significant states for the artwork are basically a continuous
stream. To keep the consumer experience intact and the “performance” of
the artwork as it was originally planned, every single picture along with the
accompanying acoustics presented to the consumer has to be present and
the reaction time of the artwork has to be as the original. Movies and ani-
mations played by the artwork have to be preserved as originally intended.

[3]Ars Electronica -http://www.aec.at

CHAPTER 8. EVALUATION CASE STUDIES 147

Thus a continuous comparison of renderings on the screen as well as the
sound effects being played has to be done. A possible way for acompari-
son is to record the performance in response to the user inputas a movie,
along with the consumer input and record another movie againin the vir-
tualized environment. If the movies are identical with the same consumer
input applied, the performance is reacting similarly to theconsumer in both
environments and thus is rendered correctly. No other external data is cre-
ated, so the comparison on a visual and acoustic level is sufficient (step 3).

To evaluate if the artwork behaves deterministic we have to record user in-
put to the artwork as well as the result of the rendering in response to the
input (step 4). For proper validation we need to perform the same ren-
dering on both the original artwork (if still possible) and aversion that is
already separated from its original environment (e.g., in one or more virtual
environments emulating the original system on a hardware level) (step 5)
and re-capture the renderings in the new environment (step 6). Comparing
the significant properties of extracted data from the renderings we can then
decide if a virtual environment preserves the original artworks properties
sufficiently (step 7). Possible virtual environments in this case could be ei-
ther a virtual machine running Windows 95 on an Intel x86 PC hardware or
an emulator that completely emulates the hardware of the original system.
Operating system emulation, e.g., Wine on a Linux system, would also be a
possible candidate.

Ideally both user input and artwork output can be recorded bythe virtual
environment used to render the artwork. If no direct recording of the inter-
action and the artwork’s response is possible (i.e., no support by the ren-
dering environments), external tools that record and replay user input on a
Windows operating system and tools that capture screen output can be uti-
lized. By using external tools for capturing and replaying consumer input
and for recording the performance the problem exists that the artwork is
executed in a multi-threaded environment. Thus probably noexactly deter-
ministic results can be achieved (depending on the sensitivity of the artwork
to consumer input).

In our experiment we decided to virtualize the artwork’s original environ-
ment with a use of a virtual machine running Windows 95 on an Intel x86
PC hardware. We implemented the tool “VirtualBox Record&Playback”[4]

shown in Figure 8.7 that runs on the host system and allows us to take con-
trol of the virtual system. Thus we were able to control the environment

[4]VirtualBox Record&Playback – http://sourceforge.net/projects/
vboxrecplay/

CHAPTER 8. EVALUATION CASE STUDIES 148

Figure 8.7: Tool for controlling of virtual environment execution. Main window
is shown on the left. It allows to select a virtual machine which will be con-
trolled, specify the time interval between screenshots, and the kind of events to
be captured (mouse and/or keyboard events). The screenshotcomparison window
is presented on the right. It depicts differences detected between corresponding
screenshots (marked with red circles).

externally by recording and replaying the user input, as well as capturing
results of the renderings on the screen. Unfortunately, theused virtual envi-
ronment was not capable of recording the rendering effects as a continuous
stream (movie) and therefore a series of state comparisons have been used
instead. Our tool is able to take screenshots of the renderedenvironment
at a given time interval while the original interaction is recorded and also
while it is replayed to the virtualized system. The tool is also capable of
comparing and detecting differences (if any exist) betweencorresponding
screenshots (as shown on the right in Figure 8.7). It utilizes the VirtualBox
API to perform its tasks.

During the course of the experiment we recorded and replayedseveral com-
binations of interaction with the artwork. Although the experiment was
conducted in a multi-threaded environment, for the most part of the art-
work’s performance this had no critical impact on the correctness of record-
ing and replaying of mouse events. The tool was able to correctly mimic
the recorded scenario and to collect data for screenshot analysis. How-
ever, the screenshot analysis revealed that some parts of the artwork did
not react as expected to the applied user input but seeminglyrandom ele-
ments appeared on the screen resulting in differences in thecaptured screen-
shots. The source of the randomness can either be differences in the input
that was due to it being an external program not exactly at theexact same
moment during the rendering as during the recording phase. Other exter-

CHAPTER 8. EVALUATION CASE STUDIES 149

nal factors that could have been used to create randomness were also not
recorded/replayed to the virtual system (e.g., real time clock of the host
system, hardware values like position of the electronic beam on the screen).

Thus, we come to the conclusion that in this case controllinginteractions
external to the virtual system is not enough to create a deterministic ren-
dering of the artwork. Capturing and replaying capabilitiesfor all external
influences to the virtual machine would have to be implemented to suc-
cessfully compare renderings between the artworks rendering in the virtual
system and in its original environment. Thus, we can only hypothetically
describe what would happen in the Preservation and Redeployment phases
of the preservation workflow.

Preserve In the preserve phase various typical user-interactions tothe artwork along
with data extracted from renderings of the artwork in response to the user
interactions would be recorded (step 4). Capturing consumerinput and art-
work output is done as described in the plan phase, ideally bythe virtual
environment. The replay step will show, if the artwork really behaves deter-
ministic when using the same input (step 5) and recording theoutput of the
artwork again (step 6), comparing it to the previously recorded rendering
(step 7). Once a deterministic rendering of the artwork withall necessary
auxiliary data is achieved, the data applied to the artwork as well as the re-
sponse (e.g. in the form of a continuous video recording of the artwork)
are stored along with the artwork for a later verification once the artwork is
taken out of the archive.

Re-deploy If the artwork needs to be re-deployed in a future environment (e.g., for an
exhibition), it will be executed in a virtual environment recreating the orig-
inal view-path. Using the different consumer-inputs recorded and stored
along with the artwork in the preserve phase the artwork can then be ren-
dered in the new environment (step 5). The rendering of the artwork is
again recorded as a continuous stream (step 6) and compared to the data
of the original rendering that has been stored in the archiveas well (step
7). Using this method we thus can verify that the artwork still behaves as it
did in its original environment. Once the artwork is re-deployed in an ex-
hibition setting with random user interaction that is different from the one
recorded in the preserve phase we can thus be confident that the artwork will
react to the user as the original artwork would have, thus creating a similar
experience to the user (on a technical level).

The comparison described in this chapter was based on screencapturing on
the system hosting the artwork. Depending on the artists’ intention of the
performance, the screen output might also have to be compared on the level

CHAPTER 8. EVALUATION CASE STUDIES 150

taking the output device properties into account. When the artwork was
created, CRT-output devices with output characteristics different to TFT-
displays usually used today have been in use, or even devicesthat might
be in use once the artwork is redeployed in a future environment for an
exhibition. Using a different display device might considerable change the
performance of an artwork experienced by a consumer. While this change
might be acceptable (e.g., if a performance closer to the original one is no
longer technically possible), it has to be a conscious decision to accept a loss
of certain significant properties compared to not performing the artwork at
all.

8.5 Summary

In this chapter we presented how the framework presented in Chapter 4 and the
preservation workflow shown in Chapter 5 can be applied to evaluate the rendering
process of different types of digital objects.

We first evaluated two different digital objects in the emulator O2EM and
explained how the event-logs helped us to identify flaws in the rendering process.
We rendered different objects in the emulator and analyzed the event-log files,
which led us to the following conclusions:

Deterministic Emulation Automatically evaluating emulators by comparing
the rendering results at different points in the rendering requires that the rendering
environment behaves the same provided with the same external data. In the case of
the game ’Terrahawks’ evaluated in Section 8.2.2 the emulation was initially not
deterministic, leading to different results of the rendering process, even though
the obvious external data (user input) was kept constant. Only by making the
rendering process deterministic, we could successfully compare the renderings in
consecutive executions of the emulator. This would also be the basis for later
comparison of the rendering to later emulator versions or even other emulators.

External Data The external data needed to create a deterministic rendering is
passed on the interfaces from the host environment to the emulated environment.
By recording the data that is transferred on these interfaces, we can apply the
same data at the same point in the rendering process at a latertime ensuring a
deterministic rendering process. With the application ’Cassa’ we showed that
the external events (file access and user input) can be tracked in the event-log.
External resources can then either be stored for a re-run forvalidation purposes
or even simulated if the resources are no longer available (e.g. an external Web
services).

Key Characteristics Using the key characteristics about the rendering pro-
cess which we extracted from the event-log we were able to draw conclusions on

CHAPTER 8. EVALUATION CASE STUDIES 151

the correctness of the emulation process. Especially deviations in handling the
timing in the emulator were detected, assisting the emulator authors in improving
the rendering process. Obviously when extending the described characteristics to
more complex systems, additional characteristics could befound. Additionally to
the time needed to draw a frame on the screen, similar measures could be cap-
tured for other output devices, e.g. port communications etc., where the timing of
events needs to be captured, normalized and compared.

Automation of Evaluation Applying the external data to the rendering pro-
cess not only gives us a possibility of creating a deterministic rendering, we can
also automate the process of evaluating a rendering environment by applying the
user input to a digital object automatically. This way interactive digital objects
could be tested automatically on re-deployment in a new environment to see if the
rendering is the same as at the time they have been preserved.We also showed
that for this automated evaluation we not necessarily have to run the rendering
process at the original system’s speed, as all the automation is based not on time
passed but on CPU cycles executed in the rendering environment, thus massively
speeding up the process of the validation.

Overall, we successfully implemented some of the concepts described in Chap-
ter 4, 5 and 6 in the existing emulator O2EM. This not only allowed improving
the emulator for more accuracy, but also gave us a better understanding of the
evaluation of rendering environments in general. We showedthat it is possible to
automate the process of evaluating interactive objects beyond the manual testing
of emulators with human interaction.

We then showed two objects representing more complex systems, a music
classification workflow, and a digital artwork. We showed on what level render-
ings of the digital objects have to be extracted and what kindof data should be
captured. We also discussed the emulation of external data that influences the
rendering of the two presented digital objects, web-services in case of the music
classification workflow, and user input in case of the interactive digital artwork.
The discussed methods for extracting data from the virtual rendering environ-
ments require the implementation of functionality as described in Chapter 6.

Chapter 9

Conclusions and Outlook

9.1 Contributions

9.1.1 Challenges

Every digital object needs an environment to be rendered in.The stack of ob-
jects needed to render a digital object, i.e., the view-pathis described in Section
2.2. Technical obsolescence is a threat to the view-path of adigital object, as the
secondary objects needed render a digital object get obsolete.

Digital preservation is the process of making sure that a digital object is ac-
cessible over a long period of time. A digital object’s view-path is threatened on
various levels, besides the physical object or storage media, the logical object (the
format) of the digital object, and the conceptual object, i.e., the object that is ren-
dered in a physical form recognizable by a user. To keep an object accessible, we
have to make sure to retain a view-path that allows us to render the object so that
all properties significant to the designated audience stay intact. The main strate-
gies to preserve a digital object are commonly considered being emulation and
migration. Migration changes the digital object in it’s logical format and thus the
view-path used to render the new format. With emulation the logical format of the
digital object stays unchanged, and only layers in the view-path are replaced.

Preservation planning is the process of making sure that a preservation ac-
tion changes the view-path in a way that keeps the significantproperties of an
object intact. Traditionally the digital object is characterized by extracting prop-
erties stored in the bitstream of the object and compare if the action changed those
when using migration as a strategy. Various characterization tools and languages
allowing a comparison of extracted properties exist. But notonly the stored prop-
erties have to be compared, to make sure that the conceptual object stays intact,
an authentic rendering of the object is crucial. Preservingcomplex and interactive
digital objects is the subject of various ongoing research projects, so a methodol-

152

CHAPTER 9. CONCLUSIONS AND OUTLOOK 153

ogy to evaluate authentic rendering is required.

9.1.2 Comparison of Rendering in Migration and Emulation

Conventionally, emulation is seen as a distinct type of preservation action, sig-
nificantly different from migration, standardization, andother approaches. It is
attributed with changing the environment rather than the object, and due to its
characteristics frequently recommended for (inter)active digital objects.

Migration focuses on transforming the object from one file format or encod-
ing to another. Consequently, evaluation of migration solutions predominantly
focuses on the characteristics of the source and target object type, and in how far
these significant properties can be preserved. Yet, this approach to evaluation is
falling short of several of the key requirements of evaluating the authentic preser-
vation of digital objects. It basically views the digital object solely in its encoded
form, rather than as intellectual object that only becomes such via interpretation
via some form of rendering process, e.g., opening in a specific viewer software or
running in a certain environment. However, as we have shown in Chapter 3 this
view seems too limited.

In reality, when preservation actions are being evaluated,characterization tools
that analyze object structure and content are usually combined with a visual eval-
uation when both source and target objects are opened in viewer software and
verified visually. This corresponds to the evaluation approach presented in this
thesis, focusing on a single target state. In fact, every intellectual object in digital
form needs to be evaluated with its entire view path, even when this may consist
of any of presumably interchangeable standard viewers suchas Adobe Acrobat
for PDF or any of the myriad of image viewers.

In Chapter 3 we showed how the generic view-path for the rendering of a
digital object is composed. We took a look at the different levels on which emu-
lation can be performed and how the digital preservation strategies migration and
emulation on the different levels affect the view-path of a digital object. We then
compared the effects of the two strategies and showed that the change in view-path
makes it necessary to take the rendering environment into account when evaluat-
ing any digital preservation action, be it a migration or an emulation action.

We thus argue that the approach to evaluate renderings of a digital object pre-
sented in this thesis is not only recommended for interactive content and in combi-
nation with emulation and viewer approaches to preservation, but basically applies
to the evaluation of any preservation action taken.

CHAPTER 9. CONCLUSIONS AND OUTLOOK 154

9.1.3 Preservation Action Evaluation Framework

The most important task when evaluating virtual environments is to eliminate the
side-effects that occur not due to the emulation but due to external events that are
different in the original and the emulated environment. To reduce the influence
of these events on the rendering of a digital object, it is necessary to document
the original system and its properties as precisely as possible and then recreate
the original setting on the host system using a virtual environment. To make the
behavior of the digital object as deterministic as possibleit is necessary to apply
user input in an automated form.

In Chapter 4 we showed the information we have to collect abouta digital
artifact, its determinism and significant states, as well asthe view-path originally
used to render the digital object. We showed the verificationdata that has to be
collected for the object to verify a rendering in a differentview-path.

We showed various methods on how to capture user input on the original sys-
tem and apply it to the emulated environment in Chapter 4. Depending on the
object and the technical possibilities it has to be decided which of the various ren-
dered manifestations of a digital object on the original system and in the emulated
environment have to be compared. The selection depends alsoon the significant
properties of the object that has to be evaluated.

In Chapter 5 we then showed how the validation data is reapplied to a new
rendering environment. The rendered forms of a digital object existing in the
view-path are compared to the rendered forms in the originalview-path and char-
acteristics of the rendering process are extracted. A list of steps for the evaluation
of rendering effects are shown, that form together with the descriptions shown in
both chapters thePreservation Action Evaluation Framework.

Using the Preservation Action Evaluation Framework shown in this thesis the
effects of rendering an object in an emulated environment can be evaluated. By
testing how the significant properties of the object are affected in different emula-
tion environments it is possible to choose the optimal solution for a preservation
planning case by comparing them using, e.g., the Planets preservation planning
approach [Beckeret al., 2009].

The Preservation Action Evaluation Framework describes the evaluation of
rendering effects in emulated environments compared to theoriginal environment.
There will be cases where the original environment is no longer available or cannot
be accessed with reasonable effort (e.g., data archeology). The concepts shown
not only allow for a comparison between the original environment and a changed
view-path, but also for a comparison between different new view-paths. Usually,
it is possible to get an idea about the rendering in the original environment by
evaluating various emulated environments, even if the original appearance is no
longer known. For example, if certain elements in a screenshot in one emulator

CHAPTER 9. CONCLUSIONS AND OUTLOOK 155

are visible but missing in a screenshot from a different emulator, it is obvious that
one of the emulators lacks the ability to render these objects.

9.1.4 Preserving Processes in a Preservation Workflow

In Chapter 5 we also showed in which phases in a preservation workflow an eval-
uation of the rendering has to be performed according to the validation workflow
we previously advised for evaluating the renderings of digital objects.

We showed how the steps for evaluating a rendering can be applied in the dif-
ferent phases of a preservation workflow. In the planning phase we describe the
object and environment as well as all of its constraints, including external data
sources. Deciding on where to extract data from the system and in what intervals
helps us to compare the renderings of a digital object in different environments
and create a preservation plan for the digital object. Once we are ready to preserve
the object, we have already all necessary information aboutit and need to collect
validation-data as well as extracted significant renderings, which can be used for
a comparison once the object is taken out from the archive andre-deployed in
its new environment. Following the preservation workflow using the Preservation
Action Evaluation Framework allows us to validate at archival time if all neces-
sary components of a digital object have been captured. It ensures that we can
successfully verify the digital object’s rendering in a future environment that is
currently unknown.

9.1.5 Design Requirements for Virtual Environments

Virtual environments used for digital preservation purposes have to fulfill certain
requirements. In Chapter 6 we showed what these requirementsare on long term
stability considering both the durability and the flexibility of virtual environments.

Most importantly, the execution of all parts of the virtual environment has to
be made deterministic, i.e. independent from events on a host system and with
the ability to provide external data to the same rendering process over and over
creating the same rendering as a result. Information about the rendering process
has to be provided by the virtual environment. This includesnot only the rendered
form of the digital object, i.e., data calculated in memory regions of the virtual
system and data transformed for interfaces to the host system (e.g., a rendered
image for display on the screen), but also information aboutthe rendering process
itself. The support for extracting characteristics about the rendering process like
timing information and the occurrence of events have to be provided by the virtual
environment.

Not only functionality for evaluation has to be considered when developing a
virtual environment for digital preservation purposes. Features like the possibility

CHAPTER 9. CONCLUSIONS AND OUTLOOK 156

to transfer data between the host system and the virtual system are essential for a
successful use of emulation as a digital preservation access strategy. We showed
different strategies to exchange data with virtual environments aware of the guest
system running and guest systems being aware of the fact thatthey are being
executed in a virtual environment.

9.1.6 Preserving Digital Objects For An Obsolete System – The
C7420

Based on the previous chapters we showed in Chapter 7 how the threats to the data
stored for an obsolete system were tackled.

Data stored on audio tapes was extracted as shown in Section 7.3. By using
digital archeology to re-engineer the format of the encodeddata on the physical
storage media we countered the threat of obsolescence on thephysical level. Us-
ing off-the-shelf audio hardware and decoding the audio waves we were then able
to transfer data without using the original system and even improved the quality
of the data being read from the tapes. More data was successfully retrieved by our
approach than could be read using the original system.

To counter obsolescence on the logical level, the data was decoded and con-
verted to non-obsolete formats where possible. Images and textual data stored on
the tapes were migrated to non-obsolete image formats and text stored in formats
readable on current systems. Programs stored on the tapes inBASIC program-
ming language were also migrated to a readable text format.

The case study on migration proved that it is possible to extract proprietary
data from an analog audio signal stored by a system without previous knowledge
of the format it is stored in. By having access to the original system to write
test programs we were able to reengineer the audio waveform as well as all data
formats and write a tool to migrate the data to non-obsolete formats. Archives
or libraries that have or may receive audio tapes containingdata for the Philips
G7400 can use the created tool to migrate digital data without access to the origi-
nal system or knowledge of how to handle the system.

If reengineering actions are undertaken today, while the original systems still
work, it is possible to develop tools for the migration of digital objects now. Once
the original systems do not work anymore, it will not be possible to run code on
the original system, thus having to reengineer the system ona circuit-diagram
level and disassembling the BIOS source code, which will makethe task more
difficult and time consuming.

As the programs received from the tapes were readable in their source code
form, but not renderable to re-create the logical layer of aninteractive executable
program, an existing emulator for the system was extended toallow for execution

CHAPTER 9. CONCLUSIONS AND OUTLOOK 157

of programs for the home computer add-on of the system in Section 7.4. We pre-
sented the reengineering work involved in enabling emulation of the system itself
as well as reengineering necessary for emulating save and load functions. The
emulation was implemented keeping digital preservation applications in mind, so
data injection and extraction with ease of use for users without expert knowledge
of the system was implemented. We described what challengesarose while im-
plementing the emulation and what design decisions were taken and why. We also
explained how the guidelines shown in Chapter 6 were considered when imple-
menting certain features like extracting data from the emulation environment.

The work performed for this emulator shows how complex the task to develop
an emulator is and what steps are involved especially for a system without proper
and open documentation. It further shows that the actual implementation of the
emulation of the C7420 Home Computer cartridge was in this special case a com-
paratively less complex task, as a well documented and already emulated Z80
processor was used as the central processing unit of the C7420. The more time
intensive task was the reengineering of the components usedfor data injection
and data extraction, on one hand the emulation of the C7420 tape interface, and
on the other hand the proper emulation of keyboard input and data extraction to
the clipboard.

To support evaluation of the emulator we also implemented functionality de-
scribed in Section 6.3.

9.1.7 Evaluated Case Studies

The case studies shown in Table 9.1 showed the different external data that has to
be captured for evaluating the rendering of processes, bothinteractive between a
user and a system as well as a system that is retrieving data from various external
sources. While in the first two case studies shown in Chapter 8 the layer to capture
and replay the data was implemented in the emulator of the system, we showed
what would be necessary to implement it for the more complex science process
and virtual artwork on more recent systems. Virtualizing the system helps us in
capturing the needed data. By inserting an abstraction layerbetween the now
virtual system and a host system, we can implement listenerseither on the host
system or in the abstraction layer (the virtual machine), tocapture the data on the
interface between the systems. For a complete monitoring ofa virtual system we
have to implement capturing and replay for all the interfaces between host and
target system. All the data fed into the system from externalsources needs to be
captured, so by reapplying it at a later point in time the rendering can be made
deterministic. Similarly all significant data created by the system and provided
to the host rendering environment on any interface (e.g., screen, network) has to
be captured to be used as ground truth when re-deploying the object in a new

CHAPTER 9. CONCLUSIONS AND OUTLOOK 158

Digital Object Virtualization Capturing
Level

Comparison Level Successful Comparison

Historic Business Process:
Cassa

Emulator
O2EM

Hardware
emulation
level

Screenshots taken
from emulation
environment

Yes (all seemingly random
events captured and re-
played in Emulator)

Video Game:
Terrahawks

Emulator
O2EM

Hardware
emulation
level

Screenshots taken
from emulation
environment

Yes (all seemingly random
events captured and re-
played in Emulator)

Scientific Experiment:
Music Analysis Workflow

Virtual
Machine

Final result
files

Captured network
traffic

Yes (no random events
influencing rendering be-
sides network data)

Digital Art:
First Finnish Underground

Virtual
Machine

External tool
capturing
user input

Screenshots taken
from virtual machine

No (random events influ-
encing rendering besides
user input)

Table 9.1: Case studies carried out with external events captured and re-applied
on different levels.

environment at a future point in time.

9.2 Achievements

In the introduction chapter in this thesis we discussed someof the research ques-
tions that arise from the need of evaluating a virtual environment. We will revisit
these questions below to see how they have been addressed.

RQ1: How can we evaluate if a digital preservation action keeps the signifi-
cant properties of a digital object intact?

We showed that the effects of a digital preservation action have to be evalu-
ated considering the rendering environment. We then explained the prereq-
uisites and what we need to document about the view-path and the digital
object to recreate a similar view-path in a different environment. We also
showed the levels on which rendered forms of a digital objectare found on
a system hosting a virtual environment and how we can extractthe signif-
icant properties of the rendering process and the object. Weshowed the
applicability of the approach in a case study for an obsoletesystem. We
developed a framework to evaluate renderings of a digital object. By fol-
lowing the steps defined in the framework, and taking the decisions outlined
in the framework depending on the digital object’s nature, the rendering of
a digital object can be evaluated against a defined ground truth or other
rendering environments.

RQ2: What do we need to know about a digital object and it’s environment
to evaluate how a new rendering differs from the original rendering?

CHAPTER 9. CONCLUSIONS AND OUTLOOK 159

We showed that we need to ensure a deterministic behavior of adigital
object to compare different renderings. We explained that the significant
states of a digital object are either a target state, a seriesof states or a
continuous stream, depending on the digital object. We showed how we
have to describe the rendering environment to allow a recreation of the
view-path in a new rendering environment and on what levels rendered
forms of a digital object can be extracted.

RQ3: How can the rendering of a digital object be made deterministic over
different rendering cycles and different environments?

We document the different kinds of data influencing the rendering of a dig-
ital object. Some of those are locally known and are either set through the
rendering environment once the virtual environment is invoked or stored
along with the digital object’s view-path. Other events areexternal to the
virtual environment and have to be applied consistently over different ren-
dering cycles.

RQ4: How can the view-path of a digital object be recreated in a newenvi-
ronment and a new rendering be compared to the original rendering?

We explained how to recreate the view-path of a digital object in a new
environment. We showed the functionality necessary to support the ap-
plication of external data and created a deterministic rendering using this
functionality in the emulator developed for the case study.

RQ5: How can the evaluation framework be integrated into a preservation
workflow?

We outlined how the framework can be integrated into the wider scope of
a preservation workflow. Explaining the data that has to be captured and
archived along with the digital object for a successful verification once the
object is redeployed we showed which steps of the evaluationframework
have to be applied in which phases of the workflow.

RQ6: What design requirements do we have to virtual environmentsto allow
for evaluation of renderings?

We outlined the requirements to virtual environments in terms of long term
stability and the necessary functionality for supporting and automating eval-
uation of renderings of a digital object. We also outlined the methods for
data exchange between a host and the guest system for enhancing the us-
ability of virtual environments for digital preservation purposes.

CHAPTER 9. CONCLUSIONS AND OUTLOOK 160

9.3 Ongoing and Necessary Future Work

The work presented in this thesis shows a framework for validating rendering
results in virtual environments and how to integrate it in the different phases of
a preservation workflow. We showed on a rather simple system how to apply the
concepts presented in this work. However, future work on thesubject is necessary
as outlined in the sections below.

9.3.1 Characterization of Environments

While the characterization of the bitstream of digital objects is well underway and
already implemented for a wide array of static objects like images, the necessary
work for extracting the properties of rendering environments and the dependen-
cies of digital objects has just began. In [Mayeret al., 2012b] a context model
that is currently developed in the European research project TIMBUS is shown.
The context model describes hardware and software dependencies as well as ex-
ternal dependencies of a digital object. Technical meta-data is also available in the
Trustworthy Online Technical Environment Metadata (TOTEM) Registry[1]. The
TOTEM registry makes complex hardware and software relationships for digital
objects available for the digital preservation community [Andersonet al., 2010].

Describing the context is an important pre-requisite of capturing all the depen-
dencies of a digital object. It allows a reconstruction of the object’s view-path and
also for validating an object’s completeness for preservation.

9.3.2 Ease of Access to Emulation

In Section 2.5.2 some technologies to ease the access to emulation both locally and
via remote access have been shown. To make emulation available for a broader
audience, these techniques have to be extended to have digital objects accessible
in their original environment as easily as a migrated objecton the user’s desktop.

The ongoing bwFla project (Baden-Wuerttemberg Functional Longterm Archiv-
ing and Access)[2] aims to provide easy access to digital objects’ original environ-
ments using remote access to emulation as described in [von Suchodoletzet al.,
2011]. As setting up the object’s environment including allhardware and software
dependencies is a complex task, it is necessary to support the user in identifying
and setting up all necessary secondary digital objects needed in the view-path.
Rechert et. al. show a workflow for ingesting environments forcomplex digital
objects [Rechertet al., 2012]. The view-path of a digital object is constructed by

[1]TOTEM –http://www.keep-totem.co.uk/
[2]bwFLA – http://bw-fla.uni-freiburg.de/

CHAPTER 9. CONCLUSIONS AND OUTLOOK 161

recording the user input during installation of software components. By preserv-
ing the setup-process now when expert knowledge is still available, unattended
reconstruction of the same view-path is possible at a later point in time.

Only once invoking an emulation environment with the necessary view-path
for a digital object is available for users without expert knowledge of the original
environment, emulation will be a viable solution for the long term.

9.3.3 Strengthen Emulation as a Digital Preservation Strategy

Emulation still is not considered as a strategy as importantto digital preservation
as migration. Common arguments against emulation are its complexity both on
a system side for setup and necessary expert knowledge for users. Traditionally
static documents have been in the main focus of digital preservation. With the
focus shifting to more complex, interactive objects and processes, migration as a
strategy is not always an option that can be followed. Also, as shown in Chapter
3, every migration changes the view-path of the digital object in a way similar to
how emulation changes the view-path. Evaluation of the strategies should be done
similarly.

On the 9th International Conference on Preservation of Digital Objects (iPres)
2012 the workshop “Towards Practical Emulation Tools and Strategies - State of
the Art Research Meets Real-World Requirements” on the topic ofemulation was
conducted [von Suchodoletzet al., 2013]. More than 50 participants showed that
the interest in emulation is growing in the digital preservation community as the
objects that need to be preserved are getting more complex. However, the tools
and strategies existing today are mere prototypes and hardly any tools usable for
productive deployment exist.

The number of projects on the subject of emulation and preservation of com-
plex objects shown in Section 2.10 shows a growing research interest into solu-
tions for preserving complex objects. However, development of tools still has to
be picked up by major commercial players in the domain. With emulation grow-
ing to be a strategy complementing migration for objects that cannot be migrated,
this is likely to change. Considering the guidelines for developing functionality
for virtual environments shown in this thesis, e.g., for easier exchange of data
between emulators and their host systems, will also lower the barrier for use of
emulators in digital preservation applications.

CHAPTER 9. CONCLUSIONS AND OUTLOOK 162

9.3.4 Connect Virtual Environment Authors and Digital Preser-
vation Stakeholders

The design guidelines shown in Chapter 6 in this thesis allow for an automated
and systematic evaluation of renderings of digital objects. However, the necessary
functionality to ensure deterministic rendering of an object in the virtual environ-
ment is not available in virtual environments yet. Emulators and virtual environ-
ments like VirtualBox[3] are not developed with digital preservation requirements
in mind, as the developers of these environments are usuallynot aware of digital
preservation.

A first step into raising awareness of digital preservation was made in the
KEEP workshop “Joining Forces. International expert workshop about digital
preservation” [Lange, 2012]. Emulator authors were brought together with prac-
titioners in digital preservation to discuss the requirements of digital preservation
and the potential benefits for emulation authors.

9.3.5 Standardization

A pre-requisite for having wide support for automation of renderings in rendering
environments is the existence of standards. Formats for input and output data have
to be defined that allow us to do comparisons over various different environments.
Virtual Environments have to be enabled to export rendered data in this defined
format then and provide a log about what data was created at what time, using
what input to the process.

Provided virtual environments are adapted to be preservation aware, successful
automated evaluation over a variety of rendering environments is possible and will
aid in allowing the use of emulation as a major quality assured digital preservation
strategy.

[3]VirtualBox –http://www.virtualbox.org

Bibliography

[Aitken et al., 2010] Brian Aitken, Seamus Ross, Andrew Lindley, Edith
Michaeler, Andrew Jackson, and Maurice Dobbelsteen. The planets testbed.
In Mounia Lalmas, Joemon Jose, Andreas Rauber, Fabrizio Sebastiani, and
Ingo Frommholz, editors,Research and Advanced Technology for Digital Li-
braries, volume 6273 ofLecture Notes in Computer Science, pages 401–404.
Springer Berlin Heidelberg, 2010.

[Andersonet al., 2010] David Anderson, Janet Delve, and Dan Pinchbeck. To-
ward a workable emulation-based preservation strategy: Rationale and techni-
cal metadata.New Review of Information Networking, 15(2):110–131, 2010.

[Ashcroft and Manna, 1979] Edward Ashcroft and Zohar Manna.The translation
of ’go to’ programs to ’while’ programs. InClassics in software engineering,
pages 49–61. Yourdon Press, Upper Saddle River, NJ, USA, 1979.

[Baer, 2005] Ralph H. Baer.Videogames: in the beginning. Rolenta Press, 2005.

[Bardon and de Merly, 1984] Christophe Bardon and Benoit de Merly. Jeux Sur
Philips C7420 Videopac+. Edimicro, Paris, France, 1984.

[Becker and Rauber, 2011a] Christoph Becker and Andreas Rauber. Decision cri-
teria in digital preservation: What to measure and how.Journal of the American
Society for Information Science and Technology (JASIST), 62(6):1009–1028,
June 2011.

[Becker and Rauber, 2011b] Christoph Becker and Andreas Rauber. Preserva-
tion decisions: Terms and Conditions Apply. Challenges, Misperceptions and
Lessons Learned in Preservation Planning. InProceedings of the ACM/IEEE
Joint Conference on Digital Libraries (JCDL 2011), pages 67–76, Ottawa, ON,
Canada, June 2011.

[Beckeret al., 2007] Christoph Becker, Guenther Kolar, Josef Kueng, and An-
dreas Rauber. Preserving interactive multimedia art: A casestudy in preserva-
tion planning. InAsian Digital Libraries. Looking Back 10 Years and Forging

163

BIBLIOGRAPHY 164

New Frontiers. Proceedings of the Tenth Conference on Asian Digital Libraries
(ICADL’07), volume 4822/2007 ofLecture Notes in Computer Science, pages
257–266, Hanoi, Vietnam, December 10-13 2007. Springer Berlin / Heidel-
berg.

[Beckeret al., 2008a] Christoph Becker, Hannes Kulovits, Andreas Rauber, and
Hans Hofman. Plato: a service-oriented decision support system for preserva-
tion planning. InProceedings of the ACM/IEEE Joint Conference on Digital
Libraries (JCDL’08), Pittsburgh, Pennsylvania, USA, June 2008. ACM.

[Beckeret al., 2008b] Christoph Becker, Andreas Rauber, Volker Heydegger, Jan
Schnasse, and Manfred Thaller. A generic XML language for characterising
objects to support digital preservation. InProceedings of the 23rd Annual ACM
Symposium on Applied Computing (SAC’08), volume 1, pages 402–406, Fort-
aleza, Brazil, March 16-20 2008. ACM.

[Beckeret al., 2008c] Christoph Becker, Andreas Rauber, Volker Heydeg-
ger, Jan Schnasse, and Manfred Thaller. Systematic characterisa-
tion of objects in digital preservation: The extensible characterisa-
tion languages. Journal of Universal Computer Science, 14(18):2936–
2952, 2008. http://www.jucs.org/jucs_14_18/systematic_
characterisation_of_objects.

[Beckeret al., 2009] Christoph Becker, Hannes Kulovits, Mark Guttenbrunner,
Stephan Strodl, Andreas Rauber, and Hans Hofman. Systematicplanning for
digital preservation: Evaluating potential strategies and building preservation
plans.International Journal on Digital Libraries, 10(4):133–157, 2009.

[Bergmeyer, 2011] Winfried Bergmeyer. The KEEP emulation framework. In
Proceedings of the 1st International Workshop on Semantic Digital Archives,
pages 8–22, Berlin, Germany, September 29 2011.

[Bhushan, 2000] Bharat Bhushan.Mechanics and Reliability of Flexible Mag-
netic Media. Springer, 2000.

[Bonardi and Barthélemy, 2008] Alain Bonardi and Jérome Barthélemy. The
preservation, emulation, migration, and virtualization of live electronics for
performing arts: An overview of musical and technical issues. Journal on
Computing and Cultural Heritage, 1(1):1–16, 2008.

[Brown, 2008] Adrian Brown. Automatic format identification using
PRONOM and DROID. Digital Preservation Technical Paper 1,
2008. http://www.nationalarchives.gov.uk/aboutapps/
fileformat/pdf/automatic_format_identification.pdf.

BIBLIOGRAPHY 165

[Cattermole, 1969] Kenneth W. Cattermole.Principles of pulse code modulation.
Iliffe, 1969.

[Deconchat and Grandis, 1985] Jacques Deconchat and Valentino C. Grandis.
102 Programmi per Philips C7420 Videopac+. Editoriale per le scienze in-
formatiche, Milan, Italy, 1985.

[Donnelly, 2006] M Donnelly. JSTOR/Harvard object validation environment
(JHOVE). Digital Curation Centre Case Studies and Interviews, 2006.

[Felzenszwalb and Huttenlocher, 2004] Pedro F. Felzenszwalb and Daniel P. Hut-
tenlocher. Efficient graph-based image segmentation.International Journal of
Computer Vision, 59:2004, 2004.

[Forster, 2009] Winnie Forster.The Encyclopedia of Game Machines: Consoles,
Handhelds and Home Computers 1972-2009. GAMEplan, 2009.

[Graceet al., 2009] Stephen Grace, Gareth Knight, and Lynne Montague. Inves-
tigating the significant properties of electronic content over time (inspect): Fi-
nal report, 2009.http://www.significantproperties.org.uk/
inspect-finalreport.pdf.

[Granger, 2000] Stewart Granger. Emulation as a digital preservation strategy.
D-Lib Magazine, Vol. 6 (10), 2000. http://www.dlib.org/dlib/
october00/granger/10granger.html.

[Guttenbrunner and Rauber, 2011] Mark Guttenbrunner and Andreas Rauber.
Design decisions in emulator construction: A case study on home computer
software preservation. InProceedings of the 8th International Conference
on Preservation of Digital Objects (iPRES 2011), pages 171–180, Singapore,
November 2011.

[Guttenbrunner and Rauber, 2012a] Mark Guttenbrunner and Andreas Rauber.
Evaluating an emulation environment: Automation and significant key charac-
teristics. InProceedings of the 9th International Conference on Digital Preser-
vation (iPRES 2012), pages 201–208, Toronto, Canada, October 1-5 2012.

[Guttenbrunner and Rauber, 2012b] Mark Guttenbrunner and Andreas Rauber.
Evaluating emulation and migration: Birds of a feather? InProceedings of
the 14th Conference on Asian Digital Libraries (ICADL’12), pages 158–167,
Taipei, Taiwan, November 12-15 2012.

[Guttenbrunner and Rauber, 2012c] Mark Guttenbrunner and Andreas Rauber.
A measurement framework for evaluating emulators for digital preservation.

BIBLIOGRAPHY 166

ACM Transactions on Information Systems (TOIS), 30(2):14:1–14:28, May
2012.

[Guttenbrunneret al., 2009] Mark Guttenbrunner, Mihai Ghete, Annu John,
Chrisanth Lederer, and Andreas Rauber. Digital archeology: Recovering dig-
ital objects from audio waveforms. InProceedings of the Sixth international
Conference on Preservation of Digital Objects (iPRES 2009), pages 90–97,
San Francisco, USA, October 2009.

[Guttenbrunneret al., 2010a] Mark Guttenbrunner, Christoph Becker, and An-
dreas Rauber. Keeping the game alive: Evaluating strategiesfor the preserva-
tion of console video games.International Journal of Digital Curation (IJDC),
5(1):64–90, 2010.

[Guttenbrunneret al., 2010b] Mark Guttenbrunner, J. Wieners, Andreas Rauber,
and Manfred Thaller. Same same but different - comparing rendering envi-
ronments for interactive digital objects. InEuroMed, volume 6436 ofLecture
Notes in Computer Science, pages 140–152. Springer, 2010.

[Guttenbrunneret al., 2011] Mark Guttenbrunner, Mihai Ghete, Annu John,
Chrisanth Lederer, and Andread Rauber. Migrating home computer audio
waveforms to digital objects: A case study on digital archaeology. Interna-
tional Journal of Digital Curation (IJDC), 6(1):79–98, 2011.

[Herman, 2001] Leonard Herman.PHOENIX The Fall & Rise of Videogames -
Third Edition. Rolenta Press, 2001.

[Hofmanet al., November 2004] H. Hofman, R. Verdegem, M. Day, A. Rauber,
M. Thaller, and S. Ross. DELOS WP6 (deliverable d6.1.1) framework for
testbed for digital preservation experiments. Tech. Rep., DELOS Network of
Excellence, November 2004.

[Huber-Mörket al., 2012] Reinhold Huber-Mörk, Alexander Schindler, and Sven
Schlarb. Duplicate detection for quality assurance of document image collec-
tions. InProceedings of the 9th International Conference on Digital Preserva-
tion (iPRES 2012), pages 187–194, Toronto, Canada, October 1-5 2012.

[IEEE, 1987] IEEE. IEEE standard 754-1985 for binary floating point arithmetic.
Reprinted in SIGPLAN, 22(2):9–25, 1987.

[Innocenti, 2012] Perla Innocenti. Rethinking authenticity in digital art preserva-
tion. In Proceedings of the 9th International Conference on Digital Preserva-
tion (iPRES 2012), pages 62–67, Toronto, Canada, October 1-5 2012.

BIBLIOGRAPHY 167

[ISO, 2012] ISO.Space data and information transfer systems – Open archival
information system (OAIS – Reference model (ISO 14721:2012), 2012.

[Jones, 2004] Caitlin Jones. Seeing double: Emulation in theory and practice.
The Erl King case study. InElectronic Media Group, Annual Meeting of the
American Institute for Conservation of Historic and Artistic Works. Variable
Media Network, Solomon R.Guggenheim Museum, 2004.

[Jurik and Nielsen, 2012] Bolette Ammitzbøll Jurik and Jesper Sindahl Nielsen.
Audio quality assurance: An application of cross correlation. InProceedings of
the 9th International Conference on Digital Preservation (iPRES 2012), pages
195–200, Toronto, Canada, October 1-5 2012.

[Lamport and Lynch, 1990] Leslie Lamport and Nancy Lynch.Handbook of The-
oretical Computer Science, Volume B: Formal Models and Semantics, chap-
ter 18, pages 1157–1200. Elsevier Science Publishers B.V., 1990.

[Lange, 2012] Andreas Lange. Results from the KEEP workshop joining forces.
International expert workshop about digital preservation. Technical report,
Computerspielemuseum, 2012.http://bw-fla.uni-freiburg.de/
wp-uploads/bw-fla.uni-freiburg.de/2012/03/strategy_
paper_KEEP_expert_workshop_Joining_Forces_Berlin_
final.pdf.

[Liu, 2000] Jane W. S. W. Liu.Real-Time Systems. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2000.

[Lohmanet al., 2011] Bram Lohman, Bart Kiers, and David Michel. Emulation
as a business solution: the emulation framework. InProceedings of the 8th
International Conference on Preservation of Digital Objects (iPRES 2011),
pages 167–170, 11 2011.

[Marcum, 1996] Deanna B. Marcum. The preservation of digitalinformation.
The Journal of Academic Librarianship, 22(6):451 – 454, 1996.

[Matthewset al., 2008] Brian Matthews, Brian McIlwrath, David Giaretta,
and Esther Conway. The significant properties of software: A study.
JISC Study, 2008. http://www.jisc.ac.uk/media/documents/
programmes/preservation/spsoftware_report_redacted.
pdf.

[Mayer and Rauber, 2012] Rudolf Mayer and Andreas Rauber. Towards time-
resilient mir processes. InProceedings of the 13th International Society for

BIBLIOGRAPHY 168

Music Information Retrieval Conference (ISMIR 2012) to appear, Porto, Por-
tugal, October 8-12 2012.

[Mayeret al., 2012a] Rudolf Mayer, Stefan Proell, and Andreas Rauber. On the
applicability of workflow management systems for the preservation of busi-
ness processes. InProceedings of the 9th International Conference on Digi-
tal Preservation (iPRES 2012), pages 109–116, Toronto, Canada, October 1-5
2012.

[Mayeret al., 2012b] Rudolf Mayer, Andreas Rauber, Martin Alexander Neu-
mann, John Thomson, and Gonçalo Antunes. Preserving scientific processes
from design to publication. InProceedings of the 15th International Confer-
ence on Theory and Practice of Digital Libraries (TPDL 2012), pages 113–
124, Cyprus, September 23–29 2012. Springer.

[McDonoughet al., 2010] Jerome P. McDonough, Robert Olendorf, Matthew
Kirschenbaum, Kari Kraus, Doug Reside, Rachel Donahue, Andrew Phelps,
Christopher Egert, Henry Lowood, and Susan Rojo. Preserving virtual worlds
final report. Technical report, University of Illinois, University of Maryland,
Rochester Institute of Technology, Stanford University, 2010.

[Mellor et al., 2002] Phil Mellor, Paul Wheatley, and Derrek Sergeant. Migra-
tion on request, a practical technique for preservation. InProceedings of the
6th European Conference on Digital Libraries (ECDL 2002), pages 516–526.
Springer, 2002.

[Miksa et al., 2013] Tomasz Miksa, Rudolf Mayer, and Andreas Rauber. En-
suring sustainability of web services dependent processes. International
Journal on Computational Science and Engineering (IJCSE), (accepted for
publication):1–12, 2013.

[Petermichl, 2009] Karl Petermichl. Dateiformate für Audio. In Handbuch der
Audiotechnik, chapter 12. Springer Berlin Heidelberg, 2009.

[Petrov and Becker, 2012] Petar Petrov and Christoph Becker. Large-scale con-
tent profiling for preservation analysis. InProceedings of the 9th International
Conference on Digital Preservation (iPRES 2012), Toronto, Canada, October
1-5 2012.

[Pettitt, 2003] Jo Pettitt. PRONOM - field descriptions.The National Archives,
Digital Preservation Department, 2003.

[Phelps and Watry, 2005] Thomas A. Phelps and Paul B. Watry. A no-
compromises architecture for digital document preservation. In Proceedings

BIBLIOGRAPHY 169

of the 9th European Conference on Research and Advanced Technology for
Digital Libraries (ECDL2005), pages 266–277, Vienna, Austria, 2005.

[Phillips, 2010] George Phillips. Simplicity betrayed.Communications of the
ACM, 53(6):52–58, 2010.

[Rauch and Rauber, 2004] Carl Rauch and Andreas Rauber. Preserving digital
media: Towards a preservation solution evaluation metric.In Digital Libraries:
International Collaboration and Cross-Fertilization, pages 203–212, 2004.

[Rechertet al., 2010] Klaus Rechert, Dirk von Suchodoletz, and Randolph Welte.
Emulation based services in digital preservation. InProceedings of the 10th
Annual Joint Conference on Digital libraries, JCDL ’10, pages 365–368, Gold
Coast, Queensland, Australia, 2010.

[Rechertet al., 2012] Klaus Rechert, Dirk von Suchodoletz, and Isgandar Val-
izada. Future-proof preservation of complex software environments. InPro-
ceedings of the 9th International Conference on Digital Preservation (iPRES
2012), pages 179–182, Toronto, Canada, October 1-5 2012.

[Ross and Gow, 1999] Seamus Ross and Ann Gow.Digital Archaeology: Res-
cuing Neglected and Damaged Data Resources, a JISC/NPO Study Within the
Electronic Libraries (eLib) Programme on the Preservationof Electronic Mate-
rials. Electronic libraries programme studies. Library Information Technology
Center, 1999.

[Rothenberg and Bikson, 1999] Jeff Rothenberg and Tora K. Bikson. Carrying
Authentic, Understandable and Usable Digital Records Through Time: Report
to the Dutch National Archives and Ministry of the Interior. RAND-Europe,
1999.

[Rothenberg, 1998] Jeff Rothenberg. Avoiding technologicalquicksand: Finding
a viable technical foundation for digital preservation. Technical report, Jan-
uary 1998.http://www.clir.org/pubs/reports/rothenberg/
contents.html.

[Rothenberg, 2000a] Jeff Rothenberg.Preserving Authentic Digital Information,
pages 51–68. Council on Library and Information Resources, Washington,
D.C., USA, 2000.

[Rothenberg, 2000b] Jeff Rothenberg.Using Emulation to Preserve Digital Doc-
uments, Technical Report. Koninklijke Bibliotheek, 2000.

BIBLIOGRAPHY 170

[Slats and Verdegem, 2004] Jacqueline Slats and Remco Verdegem. Practi-
cal experiences of the dutch digital preservation testbed.VINE (The
journal of information and knowledge management systems, 34(2):56–65,
2004. http://www.digitaleduurzaamheid.nl/bibliotheek/
docs/Article_in_VINE_2004.pdf.

[Slats, 2003] Jacqueline Slats. Emulation: Context and current status. Tech. Rep.,
2003. http://www.digitaleduurzaamheid.nl/bibliotheek/
docs/white_paper_emulatie_EN.pdf.

[Strodlet al., 2006] Stephan Strodl, Andreas Rauber, Carl Rauch, Hans Hofman,
Franca Debole, and Giuseppe Amato. The DELOS Testbed for Choosing a
Digital Preservation Strategy. InProceedings of the 9th International Confer-
ence on Asian Digital Libraries, pages 323–332, 2006.

[Strodlet al., 2007] Stephan Strodl, Christoph Becker, Robert Neumayer, and
Andreas Rauber. How to choose a digital preservation strategy: Evaluating
a preservation planning procedure. InProceedings of the 7th ACM IEEE Joint
Conference on Digital Libraries (JCDL’07), pages 29–38, June 2007.

[Strodlet al., 2011] Stephan Strodl, Petar Petrov, and Andreas Rauber. Research
on digital preservation within projects co-funded by the european union in the
ICT programme. Technical report, Vienna University of Technology, May
2011.

[Strodlet al., 2012] Stephan Strodl, Daniel Draws, Goncalo Antunes, and An-
dreas Rauber. Business process preservation, how to capture,document &
evaluate. InProceedings of the 9th International Conference on Preservation
of Digital Objects (iPRES 2012), Toronto, Canada, October 2012.

[Tarrant and Carr, 2012] David Tarrant and Leslie Carr. LDS3: applying digital
preservation principals to linked data systems. InProceedings of the 9th Inter-
national Conference on Digital Preservation (iPRES 2012), Toronto, Canada,
October 1-5 2012.

[Thaller, 2008] Manfred Thaller. Interaction testing benchmark deliver-
able PC/2 - D6. Internal Deliverable, EU Project Planets, 2008.
http://planetarium.hki.uni-koeln.de/planets_cms/
sites/default/files/PC2D15_CIM.pdf.

[van der Hoeven and van Wijngaarden, 2005] Jeffrey van der Hoeven and Hilde
van Wijngaarden. Modular emulation as a long-term preservation strategy for
digital objects. In5th International Web Archiving Workshop (IWAW05), Vi-
enna, Austria, November 2005.

BIBLIOGRAPHY 171

[van der Hoevenet al., 2005] Jeffrey van der Hoeven, Raymond J. van der
Diessen, and Kerstin van der Meer. Development of a universal virtual com-
puter (UVC) for long-term preservation of digital objects.Journal of Informa-
tion Science, 31(3):196–208, 2005.

[van der Hoevenet al., 2007] Jeffrey van der Hoeven, Bram Lohman, and Remco
Verdegem. Emulation for digital preservation in practice:The results.Interna-
tional Journal of Digital Curation, Vol. 2 (2):123–132, 2007.

[van Diessen, 2002] Raymond J. van Diessen. Preservation requirements in a
deposit system.IBM/KB Long-Term Preservation Study Report Series Number
3 Chapter 3, 2002.http://www-05.ibm.com/nl/dias/resource/
preservation.pdf.

[von Suchodoletz and van der Hoeven, 2008] Dirk von Suchodoletz and Jeffrey
van der Hoeven. Emulation: From digital artefact to remotely rendered envi-
ronments. InProceedings of the Fifth International Conference on Preserva-
tion of Digital Objects (iPRES 2008), pages 93–97, London, UK, September
2008.

[von Suchodoletzet al., 2011] Dirk von Suchodoletz, Klaus Rechert, and Isgan-
dar Valizada. Remote emulation for migration services in a distributed preser-
vation framework. InProceedings of the 8th international Conference on
Preservation of Digital Objects (iPRES 2011), pages 158–166, Singapore, 11
2011.

[von Suchodoletzet al., 2013] Dirk von Suchodoletz, Mark Guttenbrunner, and
Klaus Rechert. Report on the first iPRES workshop on practical emulation
tools and strategies.D-Lib Magazine, Vol. 19 (3/4), 2013.

[Webb, 2005] Colin Webb. Guidelines for the Preservation of the Digi-
tal Heritage. Information Society Division United Nations Educational,
Scientific and Cultural Organization (UNESCO) – National Library of
Australia, 2005. http://unesdoc.unesco.org/images/0013/
001300/130071e.pdf.

[Whitakeret al., 2002] Andrew Whitaker, Marianne Shaw, and Steven D. Grib-
ble. Denali: Lightweight virtual machines for distributedand networked ap-
plications. InIn Proceedings of the USENIX Annual Technical Conference,
2002.

[Woods and Brown, 2008] Kam Woods and Geoffrey Brown. Migration perfor-
mance for legacy data access.International Journal of Digital Curation, 3(2),
2008.

Appendix A

Data Formats of C7420 Home
Computer System

A.1 Introduction

To fully understand the file formats of the system presented in Chapter 7.2 we had
to reengineer the data formats. This appendix shows the detailed specifications for
all possible formats supported by the system as documented in the reengineering
process.

A.2 File Formats

To understand the logical format of the data stored in the waveforms it was nec-
essary to find out what kind of data the C7420 can store. Using the original user
manual it became apparent that the C7420 is able to store five different kinds of
logical bitstream formats with the commands shown in Table A.1.

Table A.1: Logical bitstream formats and corresponding command to save data
on the C7420.

Logical bitstream format Command
BASIC Program CSAVE
Screenshot CSAVES
Array CSAVE*
String CSAVEX
Memory Dump CSAVEM

APPENDIX A. DATA FORMATS OF C7420 HOME COMPUTER SYSTEM173

A.3 File Header and Data Block

By saving different kinds of test data we were able to first identify the format of
the 32 byte file header, which is used for determining the format of the data block:

• 10 bytes 0xD3

• 1 byte determining the format of the file, usually the character after “CSAVE”
(e.g. ’S’ for screenshot, 0x20 (Space) for BASIC program)

• 6 bytes for the program name

• 1 byte 0x00

• 5 bytes ASCII characters of the line number at which the execution of the
program should start (for BASIC programs only)

• 3 bytes 0x00

• 2 bytes start address in memory (Least Significant Byte (LSB) first)

• 2 bytes length of data block in bytes (excluding the first leading byte 0x00,
LSB first)

• 2 bytes checksum: all data bytes added up to a 16 bit value (LSBfirst)

The data block is separated from the file header by 128 bytes 0xFF. It starts
with 0x00 and continues, depending on the specified format inthe file header,
with the data for each format as specified in the following sections.

A.4 Basic Program

For BASIC programs, the data block is split up into lines which contain the fol-
lowing information:

• 2 bytes RAM address of the next BASIC line (LSB first)

• 2 bytes line number (LSB first)

• The actual line with the BASIC commands

• 1 byte 0x00

APPENDIX A. DATA FORMATS OF C7420 HOME COMPUTER SYSTEM174

At the end of the BASIC program data block 2 bytes 0x00 are written.
Every BASIC command is encoded as a byte code between 0x80 and0xDF.

The byte codes for all other characters in a BASIC command line (including white
space) are stored exactly as they are input in the program.

Example BASIC line and encoding:

10 PRINT “HELLO”

Bytes Representing
CF 88 0x88CF (address of next BASIC line in RAM)
0A 00 0x000A = 10 (line number)
94 PRINT (encoded command)
20 22 <SPACE><QUOTATION MARK>
48 45 4C 4C 4F H E L L O
22 <QUOTATION MARK>
00 indicates end of line

A.5 Screenshot

The Philips G7400 using the C7420 Home Computer Module can display images
that are built up using 8x10 pixel characters. 23 of the 24 40-column rows on
the screen can be used for graphics, the uppermost row is usedto display internal
information such as cursor coordinates and cannot be accessed using the standard
functions for loading and saving screenshots.

Users can change the representation (glyph) of the built in graphics and text
mode characters using the SETEG and SETET commands. Both of these com-
mands have two parameters: the character code of the symbol to be replaced and
a string consisting of twenty hexadecimal digits describing the appearance of the
symbol. Each character uses an 8x10 pixel grid and is encodedas follows:

• Two hexadecimal digits (one byte) are used for each row of thegrid, starting
with the topmost one.

• The n-th bit of such a byte, starting with the lowest significant bit, corre-
sponds to the n-th pixel of the row from the right.

A screenshot data block contains character and formatting data which can be
used to fill 23 40-column rows on the screen and thus is 1840 bytes long. Only
the pointer to the used character and the formatting byte arestored in a screenshot
file, user defined characters are lost if the program defining the characters is not
stored together with the screenshot file.

APPENDIX A. DATA FORMATS OF C7420 HOME COMPUTER SYSTEM175

Figure A.1: Migrationtool with image loaded from wav-file.

The formatting of every 2 bytes of data for each screen position is described
below, as well as how the formatting data for a byte influencesthe rendering of a
character on the screen. An example image loaded in the migration tool shown in
Chapter 7 can be seen in Figure A.1.

A.5.1 Formatting

Each of the 40x23 characters is encoded using two bytes: one byte containing
the character code, followed by a byte containing formatting data. A character
is displayed either in text mode or graphics mode - this is stored as part of the
formatting byte associated with it and determines the used graphical representa-
tion (glyph), as well as the meaning of the remaining formatting data, as shown in
Figure A.2.

A.5.2 Foreground and Background Colors

There are eight possible colors, each being a combination ofred, green and blue.
In the three bit representation used by the device, the first (least significant bit
determines the amount of red, the second bit determines the amount of green and
the third bit determines the amount of blue. The resulting colors, ordered from 0
to 7 are: black, red, green, yellow, blue, magenta, cyan and white.

In graphics mode, each character has its own foreground and background color
as specified by the character’s formatting byte.

APPENDIX A. DATA FORMATS OF C7420 HOME COMPUTER SYSTEM176

Figure A.2: Structure of byte used for formatting in Text Mode (top) and Graphics
Mode (bottom).

In text mode, each character has its own foreground color encoded in the for-
matting byte. The background color is “inherited” from the last character pre-
viously encountered on the row that was either a graphics mode character or a
text mode character with a code greater or equal to 128. In thesecond case, the
background color is taken from the same bits as from a graphics character (bits
4,5 and 6). This method is generally used for setting the background color at the
beginning of a row and can be seen in screenshots originatingfrom the device -
the first column contains characters with code 128 and a formatting byte with both
hexadecimal digits set to the desired background color for each line.

A.5.3 Double Width and Height

Text mode characters can be displayed in double width or height. Since glyph
sizes are fixed, two consecutive grid cells/glyphs are required to fully display
one double width or double height character, and a total of four cells/glyphs is
required for a double width, double height character. Setting the double width /
double height attribute for a single character results in only half of it being shown
(or a quarter, if both attributes are set).

The same character code / format pair must yield 2 or 4 different glyphs, de-
pending on which part of the character needs to be drawn. The rules used to
determine which part to draw are as follows:

APPENDIX A. DATA FORMATS OF C7420 HOME COMPUTER SYSTEM177

Double width

Each occurrence of a double width character after a single width character (or after
a complete double width character) uses the first glyph (leftpart of the character).
A double width character directly following the first glyph uses the second glyph.

Double height

Each line is assigned either top glyphs or bottom glyphs. A line containing double
height characters that comes after a line containing no suchcharacters uses top
glyphs, consecutive lines are assigned bottom and top glyphs in an alternating
fashion.

A.5.4 Blink and Reverse

The blink attribute makes a character blink on the screen - itis shown for one
second, then hidden for one second, then shown again, and so on.

The reverse attribute reverses the background color and foreground color of a
character. It also reverses the blinking phase for that character.

A.6 Array

The first byte of an array encodes the number of dimensions of the array. For each
dimension, two subsequent bytes encode the number of fields in the dimension
(LSB first). Finally, for every entry in the array, 4 bytes areused to express the
value in different formats, depending on whether the array contains strings or
numbers.

A.6.1 String Array

• 1 byte length of the string in bytes

• 1 unused byte

• 2 bytes address of the string in memory

Note that the actual string data is not saved in the array but the strings have to
be saved and loaded separately using the string save command“CSAVEX”.

APPENDIX A. DATA FORMATS OF C7420 HOME COMPUTER SYSTEM178

A.6.2 Number Array

By saving number arrays on the original system, examining theresulting byte
stream, changing values and re-loading the array onto the original system we were
able to find out that a floating point format is used to store numbers. The encod-
ing is similar to, but does not follow the IEEE 754 floating point standard [IEEE,
1987], as that was released 2 years later than the C7420 cartridge. With further
testing, the bits for mantissa, sign and exponent were determined. 4 bytes are
used to encode the number as a 32 bit floating point value (LSB first), with the
following meaning of the bits:

bit 25–32 bit 24 bit 1–23
exponent
(exponent bias = 129)

sign
(1 = negative)

mantissa

So any number can be calculated using the following equation:

number = sign×mantissa× 2exponent

where,
sign = (−1)<bit24>

mantissa = 1 + (< bit1− 23 > /223)
exponent =< bit25− 32 > −129

A.7 String

Strings are stored as a stream of bytes using the ASCII encoding (number of bytes
according to the file header information).

A.8 Memory Dump

Memory dumps are stored as byte values (number of bytes according to the file
header information).

Appendix B

ASCII Table for C7420 Home
Computer System

B.1 Introduction

The C7420 Home Computer System uses numeric codes for characters that are
different from standardized ASCII character codes used today. The following list
shows the characters, their numeric codes in the C7420 systemand the ASCII
character codes for the characters.

The lists shown in this appendix are used to convert both dataimported to
the C7420 rendering environment as well as data exported fromthe environment
(either in file format or when copying data to the clipboard).The lists where
created using the C7420 character tables in Appendix D of the original system’s
manual.

B.2 Converting C7420 Character Set to ASCII

Figure B.1 shows what character code used in the C7420 cartridge is mapped to
what character in the Windows-1252 ASCII extended characterset. The list shows
only characters that have different character codes in the C7420 character set than
in the ASCII character set, or that are characters that exist on the C7420 and not
in the ASCII character set. Every character in the C7420 set hasbeen mapped
to a character in the ASCII character set. If no correspondingprintable ASCII
character exists, a textual description of the character was used in the table. The
character mapping was performed by selecting characters inthe ASCII character
set that closest resemble the original character in the C7420character set.

The conversion shown in this section is used whenever data ismigrated from
the C7420 environment to the host environment (i.e., copyingscreen content to

APPENDIX B. ASCII TABLE FOR C7420 HOME COMPUTER SYSTEM180

the clipboard, saving file content in ASCII format).

Figure B.1: Characters mapped from the C7420 character set to ASCII character
set.

B.3 Converting ASCII Character Set to C7420 Char-
acters

To convert data from the Windows-1252 ASCII extended character set, the map-
ping shown in Figures B.2 and B.3 are used. Shown are again only the characters
that have a different code in the two character sets or exist in one character set, but
not in the other. The ASCII extended character set used consists of 8 bit, while
for C7420 basically only 7 bits are used (with the two exceptions 0xFE and 0xFF
shown in Figure B.1). By mapping a larger set of characters to a smaller set, some
of the characters in the C7420 set are reused for similar looking characters in the
ASCII set. Control characters in the ASCII character set (0x00-0x1F) have not
been mapped.

The conversion shown in this section is used when data from the host environ-
ment is transferred to the C7420 environment (i.e., copying data into the keyboard
buffer of the C7420, loading file content from ASCII format).

APPENDIX B. ASCII TABLE FOR C7420 HOME COMPUTER SYSTEM181

Figure B.2: Characters mapped from the ASCII character set to C7420 character
set: 0x23-0xD4

APPENDIX B. ASCII TABLE FOR C7420 HOME COMPUTER SYSTEM182

Figure B.3: Characters mapped from the ASCII character set to C7420 character
set: 0xD5-0xFF

Appendix C

Event Log for O2EM

C.1 Introduction

To enable an automated evaluation of the emulator shown in Chapter 7, a log was
implemented that contains important events in the rendering process. The saved
log can also be used as a command file for the emulator once the rendering process
is repeated. In this chapter we show the various events that were implemented for
logging in the event log as well as snippets from an example log.

C.2 Implemented Events

Table C.1 shows the events that have been implemented in O2EM shown in Sec-
tion 7.4. It shows the type of event, its usage, the code associated to the event, and
any additional data recorded.

Usage can be any of the following:

Log only an Event that is only logged, and not used when replaying the log-file
on a re-run of the rendering process

Log and Replay an Event that is also triggered again on a re-run of the rendering
process at the same point in time

APPENDIX C. EVENT LOG FOR O2EM 184

Table C.1: Events implemented in the O2EM Event Log.
code event usage description additional data
0 Start Emulation Log

only
Logs the time of the rendering pro-
cess start

filename of cartridge/checksum of
cartridge file, emulator name, ver-
sion number and current date/time

1 Keypress Log and
replay

Logs a key event in the emulator key code and associated character

2 Joystick Log and
replay

Logs a joystick event joystick number (0 or 1) and the
joystick value read from the hard-
ware port

3 Screenshot Log and
replay

Logs the event of a screenshot being
taken in the emulator

filename of screenshot

4 Memory Save Log and
replay

Logs the event of a memory region
being saved

filename of memory dump and re-
gion being saved (VDC = video
processor registers, Z80 = C7420
RAM, EXTRAM / INTRAM =
RAM external / internal of Intel
8048h processor, VPP = second
video processor registers)

5 C7420 File loaded Log
only

Logs a read access to an external
file (home computer cartridge em-
ulation only)

filename

6 C7420 File saved Log
only

Logs a write access to an external
file (home computer cartridge emu-
lation only)

filename

254 Vertical Blank Log
only

Logs the occurrence of a vertical
blank event (frame start)

255 Emulation Stop Log and
replay

Logs the time the rendering process
was finished, also stops the render-
ing process on a replay

C.3 Example Log

The following snippets are taken from a log created during a rendering of Ter-
rahawks during the evaluation shown in Section 8.2.2. Only relevant parts of
the 3863 line long log taken over a period of 83,121 seconds are shown, parts
containing only a logging of vertical blank events and joystick movements were
shortened/suppressed.

< Starting the rendering process >
0;0,000;0;0;Emulation started;D:/Data/Emu/G7000/o2em120src/bin/roms/videopac/vp_51pl
.bin|764894A1;O2EM v1.21|2012-05-02 21:13:42
5494;0,000;0;254;Vertical Blank;;
12754;0,052;1;254;Vertical Blank;;
20013;0,072;2;254;Vertical Blank;;
27271;0,092;3;254;Vertical Blank;;
34531;0,112;4;254;Vertical Blank;;
41789;0,132;5;254;Vertical Blank;;
49048;0,152;6;254;Vertical Blank;;
56307;0,172;7;254;Vertical Blank;;
63566;0,192;8;254;Vertical Blank;;
70825;0,212;9;254;Vertical Blank;;
78085;0,232;10;254;Vertical Blank;;
85344;0,252;11;254;Vertical Blank;;
...

APPENDIX C. EVENT LOG FOR O2EM 185

< Starting the game by pressing the key ’0’ >
491847;1,372;67;254;Vertical Blank;;
499106;1,392;68;254;Vertical Blank;;
499190;1,392;68;1;Keypress;48;’0’
499197;1,392;68;1;Keypress;48;’0’
506365;1,412;69;254;Vertical Blank;;
513624;1,432;70;254;Vertical Blank;;
...
< Gameplay (vertical blank and joystick movement events) >
2524367;6,971;347;254;Vertical Blank;;
2531626;6,991;348;254;Vertical Blank;;
2535061;7,011;349;2;Joystick;0;247
2538886;7,011;349;254;Vertical Blank;;
2542266;7,031;350;2;Joystick;0;247
2546144;7,031;350;254;Vertical Blank;;
2549699;7,051;351;2;Joystick;0;247
2553403;7,051;351;254;Vertical Blank;;
2557134;7,071;352;2;Joystick;0;247
2560662;7,071;352;254;Vertical Blank;;
...
7862002;21,692;1083;2;Joystick;0;239
7866992;21,692;1083;254;Vertical Blank;;
7869164;21,712;1084;2;Joystick;0;239
7874250;21,712;1084;254;Vertical Blank;;
7881510;21,732;1085;254;Vertical Blank;;
...
< Gameplay finished, entering the name ’mark’ for the high score >
8963100;25,210;1234;254;Vertical Blank;;
8970359;25,230;1235;254;Vertical Blank;;
8971205;25,230;1235;1;Keypress;109;’m’
8977619;25,250;1236;254;Vertical Blank;;
8978467;25,250;1236;1;Keypress;109;’m’
8984878;25,270;1237;254;Vertical Blank;;
8992136;25,290;1238;254;Vertical Blank;;
8993024;25,290;1238;1;Keypress;109;’m’
8999396;25,310;1239;254;Vertical Blank;;
9006654;25,330;1240;254;Vertical Blank;;
9007540;25,330;1240;1;Keypress;109;’m’
9013913;25,350;1241;254;Vertical Blank;;
9014801;25,350;1241;1;Keypress;97;’a’
9021172;25,370;1242;254;Vertical Blank;;
9022060;25,370;1242;1;Keypress;97;’a’
9028432;25,390;1243;254;Vertical Blank;;
9035690;25,410;1244;254;Vertical Blank;;
9036578;25,410;1244;1;Keypress;97;’a’
9042949;25,430;1245;254;Vertical Blank;;
9050209;25,450;1246;254;Vertical Blank;;
9051057;25,450;1246;1;Keypress;97;’a’
9057467;25,470;1247;254;Vertical Blank;;
9064726;25,490;1248;254;Vertical Blank;;
9071986;25,510;1249;254;Vertical Blank;;
9079244;25,530;1250;254;Vertical Blank;;
9086503;25,550;1251;254;Vertical Blank;;
9093763;25,570;1252;254;Vertical Blank;;
9101022;25,590;1253;254;Vertical Blank;;
9108281;25,610;1254;254;Vertical Blank;;
9115539;25,630;1255;254;Vertical Blank;;
9122799;25,650;1256;254;Vertical Blank;;
9130058;25,670;1257;254;Vertical Blank;;
9137317;25,690;1258;254;Vertical Blank;;
9144575;25,710;1259;254;Vertical Blank;;
9151835;25,730;1260;254;Vertical Blank;;

APPENDIX C. EVENT LOG FOR O2EM 186

9159094;25,750;1261;254;Vertical Blank;;
9166352;25,770;1262;254;Vertical Blank;;
9173612;25,790;1263;254;Vertical Blank;;
9180871;25,810;1264;254;Vertical Blank;;
9188129;25,830;1265;254;Vertical Blank;;
9195389;25,850;1266;254;Vertical Blank;;
9202648;25,870;1267;254;Vertical Blank;;
9209906;25,890;1268;254;Vertical Blank;;
9217166;25,910;1269;254;Vertical Blank;;
9224425;25,930;1270;254;Vertical Blank;;
9231683;25,950;1271;254;Vertical Blank;;
9238943;25,970;1272;254;Vertical Blank;;
9239757;25,970;1272;1;Keypress;114;’r’
9246202;25,990;1273;254;Vertical Blank;;
9247018;25,990;1273;1;Keypress;114;’r’
9253460;26,010;1274;254;Vertical Blank;;
9260720;26,030;1275;254;Vertical Blank;;
9261609;26,030;1275;1;Keypress;114;’r’
9267979;26,050;1276;254;Vertical Blank;;
9275237;26,070;1277;254;Vertical Blank;;
9276126;26,070;1277;1;Keypress;114;’r’
9282496;26,090;1278;254;Vertical Blank;;
9289756;26,110;1279;254;Vertical Blank;;
9290645;26,110;1279;1;Keypress;107;’k’
9297014;26,130;1280;254;Vertical Blank;;
9297901;26,130;1280;1;Keypress;107;’k’
9304273;26,150;1281;254;Vertical Blank;;
9311533;26,170;1282;254;Vertical Blank;;
9312422;26,170;1282;1;Keypress;107;’k’
9318791;26,190;1283;254;Vertical Blank;;
9326050;26,210;1284;254;Vertical Blank;;
9326937;26,210;1284;1;Keypress;107;’k’
9333309;26,230;1285;254;Vertical Blank;;
9340569;26,251;1286;254;Vertical Blank;;
...
< Gameplay of another game - joystick movements and vertical blank events >
10001138;28,560;1377;254;Vertical Blank;;
10008397;28,580;1378;254;Vertical Blank;;
10010238;28,600;1379;2;Joystick;0;253
10015655;28,600;1379;254;Vertical Blank;;
10019489;28,620;1380;2;Joystick;0;253
10022915;28,620;1380;254;Vertical Blank;;
10026155;28,640;1381;2;Joystick;0;253
10030173;28,640;1381;254;Vertical Blank;;
10033416;28,660;1382;2;Joystick;0;253
...
< Taking a screenshot of the currently displayed image as file terra1_1.bmp >
18936966;53,180;2608;254;Vertical Blank;;
18944226;53,200;2609;254;Vertical Blank;;
18944226;64,731;2609;3;Screenshot saved;bin/scshot/terra1_1.bmp;
18951484;65,290;2610;254;Vertical Blank;;
18958744;65,310;2611;254;Vertical Blank;;
18966003;65,330;2612;254;Vertical Blank;;
18973262;65,350;2613;254;Vertical Blank;;
18980521;65,370;2614;254;Vertical Blank;;
18987779;65,390;2615;254;Vertical Blank;;
18995039;65,410;2616;254;Vertical Blank;;
19002297;65,430;2617;254;Vertical Blank;;
19009557;65,450;2618;254;Vertical Blank;;
19016815;65,470;2619;254;Vertical Blank;;
19024075;65,490;2620;254;Vertical Blank;;
19031334;65,510;2621;254;Vertical Blank;;

APPENDIX C. EVENT LOG FOR O2EM 187

19038593;65,530;2622;254;Vertical Blank;;
19045852;65,550;2623;254;Vertical Blank;;
19053111;65,570;2624;254;Vertical Blank;;
19060370;65,590;2625;254;Vertical Blank;;
19067629;65,610;2626;254;Vertical Blank;;
19074887;65,630;2627;254;Vertical Blank;;
19082147;65,650;2628;254;Vertical Blank;;
19089405;65,670;2629;254;Vertical Blank;;
19091262;65,690;2630;2;Joystick;0;247
19096664;65,690;2630;254;Vertical Blank;;
19100267;65,710;2631;2;Joystick;0;247
19103924;65,710;2631;254;Vertical Blank;;
19107574;65,730;2632;2;Joystick;0;247
19111183;65,730;2632;254;Vertical Blank;;
19113043;65,749;2633;2;Joystick;0;247
19118442;65,750;2633;254;Vertical Blank;;
19121828;65,770;2634;2;Joystick;0;247
19125700;65,770;2634;254;Vertical Blank;;
19129280;65,790;2635;2;Joystick;0;247
19132959;65,790;2635;254;Vertical Blank;;
19134817;65,809;2636;2;Joystick;0;247
19140218;65,810;2636;254;Vertical Blank;;
19143678;65,830;2637;2;Joystick;0;247
...
< After some more action on screen and joystick movements taking a second screenshot of the
currently displayed image as file terra2_!.bmp >
19989522;68,149;2753;254;Vertical Blank;;
19996781;68,169;2754;254;Vertical Blank;;
19996781;81,086;2754;3;Screenshot saved;bin/scshot/terra2_1.bmp;
20004040;81,628;2755;254;Vertical Blank;;
20011298;81,648;2756;254;Vertical Blank;;
...
< Ending the emulation process by pressing ’ESC’ to exit the emulator >
20483133;82,948;2821;254;Vertical Blank;;
20490393;82,968;2822;254;Vertical Blank;;
20491209;83,118;2822;1;Keypress;15131;’ESC’
20491219;83,118;2822;1;Keypress;15131;’ESC’
20491229;83,118;2822;1;Keypress;15131;’ESC’
20491239;83,118;2822;1;Keypress;15131;’ESC’
20491249;83,118;2822;1;Keypress;15131;’ESC’
20492159;83,121;2823;255;Emulation stopped;;

