
Input/Output-Interlocking for Fault Mitigation in
QDI Pipelines

Zaheer Tabassam, Patrick Behal, Robert Najvirt, and Andreas Steininger
Institute for Computer Engineering, TU Wien, Vienna, Austria

{ztabassam,pbehal,rnajvirt,steininger}@ecs.tuwien.ac.at

Abstract—In asynchronous quasi delay-insensitive (QDI) cir-
cuits, temporal masking is a serious concern because of their
event-driven behavior, which makes them prone to environmental
effects: Data acceptance windows, e.g. are defined by transi-
tions (token/acknowledgement) alone, without temporal bounds,
therefore a glitch occurring anytime throughout such a window
cannot be distinguished from an expected, correct transition in
a straightforward manner and hence threatens data integrity.
Therefore, shortening that window is one proposed way in the
literature to enhance temporal masking in QDI designs.

We examine a variant of the Weak-Conditioned Half Buffer
(WCHB) called Interlocking WCHB (which wisely shortens
the transition window) because of its glitch filtering properties
and a low cost implementation as compared to other variants.
We propose modifications that enhance its dealing with illegal
token words specifically when waiting for acknowledgment signal
transitions in the so-called bubble limited operation mode. A very
strict triple-check input filter with a glitch filter preventing the
buffer from capturing an illegal state is used, which also enhances
the deadlocking rate of the circuitry.

I. INTRODUCTION

Due to the worsening delay variations caused by the ever
shrinking technology node sizes, industry is starting to shift
from synchronous designs, where the worst case timing of the
critical path limits the maximum clock speed, to asynchronous
designs where the throughput is mostly limited by the average
computation time. Additionally, the transient fault rate is also
increasing, and due to the less rigorous timing assumptions of
asynchronous QDI circuits compared to synchronous circuits
it is harder to mitigate them.

In the literature, there are many different approaches to
increase the resilience of asynchronous circuits with respect
to transient faults: comparison with duplication, triple modular
redundancy (TMR) and shortening of fault sensitivity windows
to name some. After thorough analyses of existing mecha-
nisms, we chose the Interlocking WCHB for its good filtering
properties as well as its very low area overhead.

We propose improvements to the Interlocking WCHB in
this paper for circuits in bubble-limited operation mode, where
faulty and valid data at the dual-rail (DR) inputs are latched
at the same time on the arrival of the acknowledgment
signal, which can generate an illegal token. As the original
interlocking mechanism only works after the first transition to
high on the DR output, an input filter is introduced to check
the validity without the dependency on the acknowledgment
signal. Another noticeable effect is that the modification also

This research was partially supported by the project ENROL (grant
I 3485-N31) of the Austrian Science Fund (FWF).

acts like a small glitch filter and therefore short pulses are
hindered from reaching the input of the latch at all.

II. RELATED WORK

The main focus of our research are transient faults in QDI
circuits, where we survey models, their effects and hardening
techniques for dealing with them. Synchronous systems are
inherently quite fault tolerant due to strict clock dependent
transitions and there are a lot of established techniques for
hardening, if required. Unfortunately, these techniques are
not easily applicable for asynchronous circuits and show
large overheads and constraints [1]. In [2], the sensitivity
to transient faults of asynchronous logic blocks is compared
to synchronous ones and the respective masking effects are
analyzed. In [3], different methods are modified for the asyn-
chronous domain. In general, some form of redundancy is
always required for error detection as in [4] and [5].

A prominent technique [6] is to cross check the results of
double up circuits to ensure SET tolerance. Based on this
method a hardened QDI processor has been presented in [7].

In [8], [9], [10] and [11] different types of redundancy
methods are introduced to also address fault issues. Also
focusing on the reduction of sensitive windows, more than
10 single event transient (SET) mitigation techniques are
presented in [12].

Using the WCHB as a reference and few notable imple-
mentations from [12], [13] and [6], authors in [14] perform
fault injection simulations with a special visualization method
to identify the fault sensitivity windows in several QDI logic
styles and compare their tolerance with two proposed half-
buffer designs.

III. ASYNCHRONOUS LOGIC

Asynchronous circuits are similar to synchronous ones with
respect to the data path, but the main difference is the use of
local handshakes for timing control instead of a global clock.
In this handshake process the sender (“source”) indicates the
validity of a new data word (“token”) by activating a request
(req), while the receiver (“sink”) confirms its reception by an
acknowledgement (ack).

The delay-insensitive (DI) class of asynchronous circuits
is the most flexible in timing, as data itself defines its own
validity (through DR encoding for each data bit) thus obviating
the need for a dedicated req signal along with its timing
assumptions. With their extra assumption of matching delays at

Andreas Steininger
Textfeld
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



some forks, QDI circuits represent a more practically realized
class of DI.

In the DR encoding a signal x is represented by two rails
(x.0, x.1), the data value x = HI being represented by (0, 1),
and x = LO by (1, 0).

The commonly used 4-phase handshake protocol demands
a null phase (0, 0) as a separation between any two such data
values. The pattern (1, 1) is unused and it represents an illegal
code word.

A. Fault Sensitivity Windows

The basic building block of asynchronous circuits is the
Muller C-element (MCE), which changes its output to the
logic value of its inputs if all inputs are equal. For the
commonly used 2-input MCE, this means that, starting from
two matching inputs, as soon as one input change arrived,
the element waits for the second input to transition as well,
and during this waiting time (sensitive window) it is prone to
any faulty transition which will erroneously flip the output.
Compare this to the synchronous register which samples its
input only at one instant, namely the active clock edge. In [14]
a comprehensive view of these fault sensitivity windows is pre-
sented. The authors also illustrate the behavior with variable
source and sink delays, to have the circuit operate in token and
bubble limited operation. In the former, the buffer stages are
mostly waiting for new data to arrive (they are empty) while in
the latter, they are waiting for the acknowledgement (holding
a valid data word). To measure the load of the circuit we use
the Pipeline load factor (PLF). A high PLF indicates that the
target operates in a bubble limited mode and, on the other
hand, a small PLF (< 1) indicates token limited operation.

IV. BASELINE BUFFER TEMPLATE

Asynchronous circuits are often split in small portions
which are pipelined to leverage concurrency for higher
throughput. Like the flip flops in synchronous pipelines,
buffers serve as temporary data storage in asynchronous
pipelines. From the numerous existing 4-phase QDI buffer
templates, we considered the simplest one, namely the WCHB
as our baseline. In [14], its fault sensitivity is assessed through
a visualization of its sensitive windows, i.e. the time intervals
when transient faults hitting a certain signal have an effect on
the output. The following effects are considered:

• Deadlock: The circuit stalls
• Glitch: A handshaking protocol violation is observed
• Value errors: The result value is wrong
• Code errors: An illegal code is observed
• Timing deviation: Timing is changed

These error types are discussed in [14] in more detail.
To reduce the sensitive window, the authors in [14] propose

circuit modifications like the Interlocking WCHB and Dead-
locking WCHB. In this publication, for further investigation,
the Interlocking WCHB variant of the WCHB serves as a
reference template.

+

C

+

C

IN.T

IN.F

OUT.T

OUT.F

OUT.ACKIN.ACK

Fig. 1. Interlocking WCHB: Relative to the basic WCHB the cross coupling
from one MCE output to the other MCE’s “+”-input is added

A. Interlocking WCHB

The Interlocking WCHB [14] is designed to prevent the
invalid (1, 1) DR code word to be stored in the buffer with
very little area and delay overhead. Its design principle is to
accept the first high transition on a pair of MCE outputs that
represent a DR bit, and to inhibit the same on the second MCE
through interlocking, as presented in Fig. 1. As a consequence,
only the first arriving transition is latched – which could be the
faulty one, but the illegal code word is not able to propagate.
Note however, that the interlocking does not work instantly;
there is some propagation delay involved in locking the input
of one MCE through the transition of the other.

In token limited operation, the ack transition arrives before
the valid token, so if any rail shows a transition first, it is
latched by the MCE and considered as valid. Therefore, the
circuit either masks the fault (if the correct transition arrives
first), or produces a value error, if the fault hits the rail
that should have remained low before the intended transition
arrives on the opposite rail. However, in the bubble limited
case, the ack transition lags behind the data tokens, and
therefore, both MCEs may try to fire at the same time (if both,
the valid and a faulty transition arrived before the ack), and
then the interlocking mechanism fails due to the mentioned
delay the interlocking needs to work. This not only generates
an illegal code word at the output of the buffer but also allows
the latched code to propagate further through the pipeline due
to the same reason. Therefore coding errors become more
frequent with higher pipeline load factor as visualized in Fig. 2
(with a pipelined ALU circuit (ALUPL) as the target).

V. PROPOSED MODIFICATIONS

The novel approach presented in this paper is the InOutIn-
terlock WCHB shown in Fig. 3 as an enhanced version of

¼ ½ 1 2 4
Pipeline load factor

0%

2%

4%

6%

Ap
pe

ar
an

ce
s

deadlocks
glitches

coding errors
value errors

timing errors

Fig. 2. Simulation results of ALUPL-4bit-DIMS using the Interlocking
WCHB buffer.



the Interlocking WCHB to prevent the discussed coding error
problem. The following modifications are applied:

• Asymmetric MCEs with one positive and one normal
input are added for a first validity check. A rising
transition on one rail on the normal input is only captured
if the other rail is low.

• NAND gates serving as glitch filters are added. The
input MCEs of the first check serving as delay elements,
short positive pulses having a lower pulse width than the
propagation delay of the MCEs are filtered from reaching
the output MCE.

• As the NAND gate inverts the logic, there is no need
for the acknowledgement signal inversion anymore. This
saves some transistors and therefore contributes to com-
pensate the area overhead of the additional input filter.

• Revision of the output MCE from two normal and one
positive inputs used in the Interlocking WCHB to a two
normal and one negative input to further reduce area
overhead.

A. Working Mechanism

The first high transition on any input rail disables the input
MCE of the other rail for a high transition similarly to the
interlocking done at the output. The advantage is that this
interlocking is done without any delay and therefore more
effectively filters illegal code words. This input filter passes
the token to the NAND gate glitch filter, which ensures that
any pulse at the input shorter than the propagation delay of the
input MCE is not propagated. Until the token is latched by the
output MCE, the direct input of the NAND gate provides the
possibility to flush a faulty transition latched by the input MCE
such that short pulses on data rails have no effect other than a
possible timing deviation, as they might temporarily block the
correct transition to propagate. Output interlocking minimizes
the probability of coding errors that may be generated due
to faults hitting a NAND output or faults with a pulse width
longer than the filtering threshold. As can be seen in Fig. 2,
the probability of coding errors in the Interlocking WCHB
grows with an increasing PLF. So, the proposed modifications
(InOutInterlock WCHB) are most effective in bubble-limited
mode (high PLF), as only the first transition is passed to the
output buffer and will then be latched when the acknowledge
signal arrives. In Fig. 4, the experimental results with the same
target and configuration show that the InOutInterlock WCHB
has better fault tolerance in most respects.

-

C

-

C

IN.T

IN.F

OUT.T

OUT.F

OUT.ACKIN.ACK

+
C

+

C

Fig. 3. InOutInterlock WCHB

¼ ½ 1 2 4
Pipeline load factor

0%

2%

4%

6%

Ap
pe

ar
an

ce
s

deadlocks
glitches

coding errors
value errors

timing errors

Fig. 4. Simulation results of ALUPL-4bit-DIMS using the InOutInterlock
WCHB buffer.

VI. RESULTS AND DISCUSSION

To validate the effectiveness of the new buffer style, we
conducted a total of over 200 million gate level simulations
on 5 different target circuits with a total of over 300 varia-
tions. In each simulation, one fault was injected by forcing
a randomly selected signal to a random value at a random
time for 1ns. The following target circuits were used: a basic
adder (ADDERPL), an ALU (ALUPL) a pipelined multiplier
(MULTPL), an IIR filter (IIR), and an iterative multiplier
(MULTIR). The following variations for each target were
applied:

• Data-width: 4 and 8 bits (the results will be averaged)
• Logic-style: Delay-Insensitive Minterm Synthesis

(DIMS) and NCLX [15]
• Buffer-style: WCHB, Interlocking WCHB and InOutIn-

terlock WCHB
• PLF: 1/4, 1/2, 1, 2 and 4
Fig. 5 presents a comprehensive comparison between the

baseline Interlocking WCHB and InOutInterlock WCHB with
WCHB as the main reference. For the iterative targets (where
a feedback in the data flow is used), it is not really possible
to control the PLF with external delays and therefore we just
show the results with bar graphs.

From the results the following observations can be made:
• In nearly all cases the InOutInterlock WCHB performs

better than the Interlocking WCHB and the WCHB, the
only exceptions being the MULTPL-NCLX for PLF of 1
where the deadlock performance is lower and ALUPL-
NCLX for PLF below 1 where the value error rate is
higher.

• In general for all experiments we see coding error rates
very close or equal to 0% especially for higher PLF
we can see potent improvement. This shows that the
InOutInterlock WCHB does work for a wide variety of
targets and conditions.

• Also for the value error category we can see a significant
improvement. This can be explained by the glitch filtering
capabilities of the InOutInterlock WCHB.

The error rates are only one part of the picture. We also
need to investigate the introduced overhead of the new buffer
style. In Fig. 6 the area overhead and the throughput reduction
are shown compared to the WCHB for the DIMS logic style.

We can see that the Interlocking WCHB has a negligible
area overhead compared to the WCHB, while the InOutIn-
terlock WCHB performs much worse in this category. For



0%

1%

deadlocks

ADDERPL
DIMS
WCHB

ADDERPL
NCLX

Inter
WCHB

ALUPL
DIMS
InOutInter
WCHB

ALUPL
NCLX

MULTPL
DIMS

MULTPL
NCLX IIR DI

M
S

IIR NC
LX

M
UL

TI
R

DI
M

S
M

UL
TI

R
NC

LX

0%

1%

glitches

0%

10%
coding
errors

¼ ½ 1 2 4
0%

10%
value
errors

¼ ½ 1 2 4 ¼ ½ 1 2 4 ¼ ½ 1 2 4
Pipeline load factor

¼ ½ 1 2 4 ¼ ½ 1 2 4

Ap
pe

ar
an

ce
s

Fig. 5. Comprehensive Comparison between WCHB, Interlocking and InOutInterlock WCHB

0%

25%

50%

Ar
ea

ov
er

he
ad

ADDERPL ALUPL
4 bit
8 bit

IIR MULTPL MULTIR

In
te

r
W

CH
B

In
Ou

t
In

te
r

W
CH

B

0%

5%

10%

Th
ro

ug
hp

ut
ov

er
he

ad

ADDERPL

In
te

r
W

CH
B

In
Ou

t
In

te
r

W
CH

B

ALUPL

In
te

r
W

CH
B

In
Ou

t
In

te
r

W
CH

B

IIR

In
te

r
W

CH
B

In
Ou

t
In

te
r

W
CH

B

MULTPL

In
te

r
W

CH
B

In
Ou

t
In

te
r

W
CH

B

MULTIR

Fig. 6. Area and Throughput overhead of Interlocking and InOutInterlock
WCHB

some circuits, where the improvement of fault tolerance over
the Interlocking WCHB is less significant, the InOutInterlock
WCHB might be considered too costly, but in general, an
overhead of around 25% seems fair and affordable. Also for
the throughput penalty over the WCHB, the InOutInterlock
WCHB is nearly twice as bad as the Interlocking WCHB, but
an absolute 5% increment is still relatively low.

VII. CONCLUSION

In this paper, we presented the InOutInterlock WCHB
buffer which adds an interlocked input filter coupled with
a glitch filter to the Interlocking WCHB buffer, correcting
the most common reasons for its interlocking to fail. We
could show that the additional filters significantly improved
the SET fault tolerance for a wide variety of circuits and
operating conditions. We also discussed the impact on area
and throughput the improved buffer has.

REFERENCES

[1] R. P. Bastos, Y. Monnet, G. Sicard, F. Kastensmidt, M. Renaudin,
and R. Reis, “Comparing transient-fault effects on synchronous and
on asynchronous circuits,” in 15th IEEE International On-Line Testing
Symposium, June 2009, pp. 29–34.

[2] T. Verdel and Y. Makris, “Duplication-based concurrent error detection
in asynchronous circuits: shortcomings and remedies,” in Proceedings of
the 17th IEEE International Symposium on Defect and Fault Tolerance
in VLSI Systems (DFT), 2002, pp. 345–353.

[3] F. A. Kuentzer and M. Krstic, “Soft Error Detection and Correction Ar-
chitecture for Asynchronous Bundled Data Designs,” IEEE Transactions
on Circuits and Systems I: Regular Papers, pp. 1–12, 2020.

[4] C. LaFrieda and R. Manohar, “Fault detection and isolation techniques
for quasi delay-insensitive circuits,” in International Conference on
Dependable Systems and Networks, 2004, June 2004, pp. 41–50.

[5] Y. Monnet, M. Renaudin, and R. Leveugle, “Hardening techniques
against transient faults for asynchronous circuits,” in 11th IEEE Inter-
national On-Line Testing Symposium, July 2005, pp. 129–134.

[6] W. Jang and A. J. Martin, “SEU-tolerant QDI circuits [quasi delay-
insensitive asynchronous circuits],” in 11th IEEE International Sympo-
sium on Asynchronous Circuits and Systems, March 2005, pp. 156–165.

[7] S. Keller, A. J. Martin, and C. Moore, “DD1: A QDI, Radiation-
Hard-by-Design, Near-Threshold 18uW/MIPS Microcontroller in 40nm
Bulk CMOS,” in 21st IEEE International Symposium on Asynchronous
Circuits and Systems, May 2015, pp. 37–44.

[8] F. A. Kuentzer, M. Herrera, O. Schrape, P. A. Beerel, and M. Krstic,
“Radiation Hardened Click Controllers for Soft Error Resilient Asyn-
chronous Architectures,” in 26th IEEE International Symposium on
Asynchronous Circuits and Systems (ASYNC), May 2020, pp. 78–85.

[9] M. Marshall and G. Russell, “A Low Power Information Redundant
Concurrent Error Detecting Asynchronous Processor,” in 10th Euromicro
Conference on Digital System Design Architectures, Methods and Tools
(DSD 2007), Aug 2007, pp. 649–656.

[10] K. T. Gardiner, A. Yakovlev, and A. Bystrov, “A C-element Latch
Scheme with Increased Transient Fault Tolerance for Asynchronous Cir-
cuits,” in 13th IEEE International On-Line Testing Symposium (IOLTS
2007), July 2007, pp. 223–230.

[11] S. Peng and R. Manohar, “Efficient failure detection in pipelined
asynchronous circuits,” in 20th IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems (DFT’05), 2005, pp. 484–493.

[12] W. J. Bainbridge and S. J. Salisbury, “Glitch Sensitivity and Defense
of Quasi Delay-Insensitive Network-on-Chip Links,” in 15th IEEE
Symposium on Asynchronous Circuits and Systems, May 2009, pp. 35–
44.

[13] P. McGee, M. Agyekum, M. Mohamed, and S. Nowick, “A Level-
Encoded Transition Signaling Protocol for High-Throughput Asyn-
chronous Global Communication,” in 14th IEEE International Sympo-
sium on Asynchronous Circuits and Systems, 2008, pp. 116–127.

[14] F. Huemer, R. Najvirt, and A. Steininger, “Identification and confinement
of fault sensitivity windows in qdi logic,” in 2020 Austrochip Workshop
on Microelectronics (Austrochip), Oct 2020, pp. 29–36.

[15] A. Kondratyev and K. Lwin, “Design of Asynchronous Circuits by
Synchronous CAD Tools,” in Proceedings 2002 Design Automation
Conference (IEEE Cat. No.02CH37324), June 2002, pp. 411–414.


	Introduction
	Related work
	Asynchronous logic
	Fault Sensitivity Windows

	Baseline Buffer Template
	Interlocking WCHB

	Proposed Modifications
	Working Mechanism

	Results and discussion
	Conclusion
	References



