FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Model-Driven Engineering for
Building Automation Systems

DIPLOMARBEIT
zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Technische Informatik
eingereicht von

Daniel Schachinger
Matrikelnummer 0825086

an der
Fakultat fir Informatik der Technischen Universitat Wien

Betreuung: Ao.Univ.Prof. Dr. Wolfgang Kastner
Mitwirkung: Dipl.-Ing. Markus Jung

Wien, 11.04.2014

(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Model-Driven Engineering for
Building Automation Systems

MASTER’S THESIS
submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Computer Engineering
by

Daniel Schachinger
Registration Number 0825086

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dr. Wolfgang Kastner
Assistance: Dipl.-Ing. Markus Jung

Vienna, 11.04.2014

(Signature of Author) (Signature of Advisor)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

Erklarung zur Verfassung der Arbeit

Daniel Schachinger
Bauernstraie 23, 4645 Griinau

Hiermit erklére ich, dass ich diese Arbeit selbstindig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollstindig angegeben habe und dass ich die Stellen der Arbeit -
einschlieBlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor, Wolfgang Kastner, for
his steady support throughout this thesis. He did not only give me the opportunity to write
my master’s thesis in the Automation Systems Group, but also supported me with respect to
all research- and writing-related topics. Likewise, I would like to thank Markus Jung for his
continuous help and the useful hints and advice. Both were always available for answering
questions and discussing relevant issues.

Moreover, my thanks go to my friends who were and are always there for me. I do not want
to specifically pick out anyone as they all are amazing and supportive. Of course, my fellow
students must not be left unmentioned as I have spent many great hours with them at university.

Last but not least, I would like to thank my parents, Theresia and Karl, as well as my brother
Benjamin. I owe my parents my deepest gratitude for supporting me mentally but also financially
throughout my life. Similarly, I can always rely on the support of my brother.

iii

Abstract

Integrating building automation systems (BASs) into the Internet is becoming increasingly im-
portant due to the upcoming Internet of Things (IoT) paradigm. Nonetheless, a lot of different
standards and technologies in the building automation (BA) sector have to be kept in mind.
An automated process needs to be defined in order to enable an efficient and common way of
integrating BA networks into the IoT. Gateway technologies, like Open Building Information
Exchange (oBIX), offering Web services (WSs) can be used as interfaces between BASs and
remote building management systems (BMSs). Model-Driven Engineering (MDE) provides a
model-centric solution to establish an automated integration process by defining appropriate
modeling languages and transformations.

In this underlying thesis, OMG’s MDE initiative, Model-Driven Architecture (MDA), is
utilized to introduce two modeling languages as metamodels. According to a four-layer archi-
tecture, these metamodels conform to the Meta Object Facility (MOF), their common meta-
metamodel. A metamodel provides concepts to create models that represent snapshots of sys-
tems. The BAS metamodel is used to define platform independent models (PIMs). In this case,
the BA network is mapped to abstract, technology independent models. On the other hand, the
oBIX metamodel defines platform specific models (PSMs). The taken approach uses oBIX as
target technology for the integration of BASs.

The transformation process, which comprises three phases, is specified based on the devel-
oped modeling languages. First, the BAS is mapped to a PIM. This step is either done manually
or automatically by means of available engineering data. The actual MDA workflow starts with
the existence of a PIM. Afterwards, the PIM is converted to a PSM via a model-to-model (M2M)
transformation, and finally, a model-to-text (M2T) transformation generates executable source
code for the target platform on the basis of the PSM.

Additionally, a proof of concept implementation, which is based on the Eclipse IDE and the
oBIX integration middleware [oTSyS, is presented. The Eclipse Modeling Framework (EMF)
and other MDA extensions for Eclipse (OCL Tools, Xpand, QVT Operational) are used for the
realization. The different parts of the model-driven approach (models, metamodels, transforma-
tions) are separated into various Eclipse projects to form a modular structure, and the imple-
mented concepts are evaluated by a case study. An experimental KNX network is integrated into
an oBIX gateway implementation to show the functionality of the proof of concept implementa-
tion. Modeling of the BAS with the help of configuration data of the Engineering Tool Software
4 (ETS4) is discussed, as well. The functional capability of the developed, model-driven ap-
proach is pointed out in the evaluation.

Kurzfassung

Die Integration von Building Automation Systems (BASs) in das Internet wird durch das auf-
strebende Konzept des Internet of Things (IoT) immer wichtiger. Es gibt jedoch eine Vielzahl
von Standards und Technologien im Building Automation (BA) Sektor, die beriicksichtigt wer-
den miissen. Ein automatisierter Prozess muss definiert werden, um eine effiziente Moglichkeit
zur Integration von BA-Netzwerken in das IoT zu schaffen. Gateway-Technologien wie Open
Building Information Exchange (oBIX) stellen Web Services (WSs) als Schnittstelle zwischen
BASs und Building Management Systems (BMSs) zur Verfiigung. Model-Driven Engineering
(MDE) bietet einen Modell-zentrischen Ansatz zur Erstellung eines automatisierten Integrati-
onsprozesses auf Basis von Modellierungssprachen und Transformationen.

In dieser Arbeit wird Model-Driven Architecture (MDA), eine MDE-Initiative der OMG,
eingesetzt, um zwei Modellierungssprachen in Form von Metamodellen zu entwickeln. Entspre-
chend einer Vier-Schichten-Architektur sind diese Metamodelle konform mit dem gemeinsamen
Meta-Metamodell Meta Object Facility (MOF). Ein Metamodell stellt Konzepte zur Erstellung
von Modellen zur Verfiigung, die wiederum Ausschnitte von Systemen repréasentieren. Das BAS
Metamodell wird zur Definition von Platform Independent Models (PIMs) verwendet. Hiermit
wird das BA-Netzwerk auf abstrakte, technologieunabhéngige Modelle abgebildet. Das oBIX
Metamodell definiert hingegen Platform Specific Models (PSMs). Der zugrundeliegende Ansatz
verwendet oBIX als Zieltechnologie fiir die Integration von BASs.

Der Transformationsprozess, bestehend aus drei Phasen, baut auf den entwickelten Model-
lierungssprachen auf. Zunichst wird das BAS auf ein PIM abgebildet, wobei dieser Schritt ent-
weder manuell oder automatisch durchgefiihrt werden kann. Der eigentliche MDA-Workflow
startet mit dem Vorliegen eines PIM. AnschlieBend wird das PIM durch eine Model-to-Model
(M2M) Transformation in ein PSM konvertiert. Zuletzt erzeugt eine Model-to-Text (M2T) Trans-
formation aus dem PSM den ausfiihrbaren Quellcode fiir die Zielplattform.

Zusitzlich wird eine Proof of Concept Implementierung vorgestellt, die auf der Entwick-
lungsumgebung Eclipse und der oBIX Integrations-Middleware I0TSyS basiert. Das Eclipse
Modeling Framework (EMF) und andere MDA-Erweiterungen fiir Eclipse (OCL Tools, Xpand,
QVT Operational) werden zur Realisierung verwendet. Die verschiedenen Teile des Modell-
getriebenen Ansatzes (Modelle, Metamodelle, Transformationen) werden in mehrere Eclipse-
Projekte aufgeteilt, um eine modulare Struktur zu erzeugen, und die implementierten Konzepte
werden in einer Fallstudie evaluiert. Um die Funktionsweise der Proof of Concept Implementie-
rung zu veranschaulichen, wird ein experimentelles KNX-Netzwerk in ein oBIX-Gateway inte-
griert. Zusitzlich wird das Modellieren des BAS mit den Daten der Engineering Tool Software
4 (ETS4) behandelt. Die Evaluierung verdeutlicht die Funktionsfahigkeit des Ansatzes.

vii

Contents

(I__Introduction| 1
L1 Motivation].« « o o e e e e 1
[L2 Problem statementl 2
13 Amofthethesis| 4
[1.4 Methodology| 5
(LS Structure of thethesislo oo oo 6

[2__State of the artl 7
2.1 Model-Driven Engineering| o 0o o000 7

RI1 Overviewl o oo e 7
212 TImoagvesl o 8
2.1.3 Principles| 9
214 Standards| 12
[2.1.5 'Tools and implementations| 13
[2.1.6 Relation to ontology development| 14
2.2 Web services-based interfaces] 15
R21 Overviewl o 15
[2.2.2 Open Building Information Exchange| 16
P23 BACnet/WS|. 18
224 Devices Profile for Web Servicesl. 18
225 OPC Unified Architecturel 18

3__Model architecturel 21
[3.1 Modelingstackl L 21
3.2 Meta-metamodell L oo 22

3.2.1 Composition] e e 22
[3.2.2 Implementation and application| 24
[3.3 Metamodel for building automation systems|o 27
[3.3.1 Construction of the modeling language{ 27
[3.3.2 Metamodel composition| 0oL 30
333 Modelcreationl 34
B4 MetamodelforoBIXI 36
[3.4.1 Adoption of the oBIX objectmodel| 37

iX

|4 Transformation process| 43
4.1 Workflow description| 43
4.2 Network modeling| 45

[4.2.1 Manualapproach| 45
4.2.2 Automatic approach| L L 45
4.3 Model transformationl o 46
4.3.1 Mapping of metamodels| 0000, 47
.32 Mappingofmodels| 51
4.4 Code generation|.o 55

|5 Implementation| 61

[5.1 Configuration| 61
[5.1.1 Development environment| 62
[5.1.2 Gateway implementation|, 65

5.2 Realization] 67
021 Metamodels|. L 70
522 Modelsl 73
B23 Modeltransformationl. 74
[5.2.4 Code generation], 79

5.3 Deployment| 82
5.3.1 Workflow sequence|.o o, 82
032 Codeexecutionl 84

6 Evaluation 85

6.1 Casestudy|. e 85
[6.1.1 Engineeringof KNX| 86
[6.1.2 Experimental setup| 88
[6.1.3 Mapping| 91
[6.1.4 Evaluationl 93

6.2 Relatedworkl 98

6.3 OpentopiCs| e e 100

[7__Conclusion| 101
..................................... 101
[[2 Futureworkl 102

[Cist of Acronyms| 105

List of Kigures 109

List of Listings 111

[List of Tables| 113

115

X1

CHAPTER

Introduction

1.1 Motivation

The term Internet of Things (IoT) is gaining more and more attention and a lot of research is
being done on this field. When reading this general term, a visionary might think about a world
where cars, houses, phones are active participants integrated into the information network to
simplify our everyday life [28]. Technologies like radio-frequency identification (RFID) were
launched to pioneer the realization of this vision [40]. Recently developed devices already pro-
vide the required interfaces for their use in the future Internet. Furthermore, another important
topic is the integration of already existing systems into the seminal concept of the IoT.
Building automation systems (BASs) are such systems which are mostly capsuled and are
poorly accessible via standardized interfaces. Corresponding to the three levels of BASs [33]],
the devices and datapoints on the field level and the control tasks on the automation level usually
communicate only with other devices in their network and with appropriate applications on the
management level. Additionally, there exist a lot of different technologies like KNX [36]], BAC-
net [S] or LonWorks [41] which make interoperability more difficult. Application developers
and system integrators must be aware of the particular physical characteristics and the commu-
nication protocols of the assembled technologies [65]]. Abstract and technology independent
applications on the management level will only be possible, if a universal interface is provided.
A present-day building management system (BMS) is not solely limited to local execution,
but needs to offer remote access more frequently. Therefore, the necessity and relevance of inte-
grating BASs into the 10T increases steadily. Local building automation (BA) networks should
be accessible from the outside via gateways to manage, monitor and control the underlying com-
ponents. While the advantages of BA technologies, e.g. KNX, on the two lower levels of BASs
(field level and automation level) should be kept, the management level should be extended by
further functionality. There are a lot of use cases where standardized access would be beneficial.
Possible scenarios could be remote control of buildings or energy analysis. Highly specialized
management software, e.g. for the optimization of energy saving, could be linked easily with

1

different control networks behind a well-defined interface. Cost efficiency and saving of devel-
opment time are only two aspects of such a concept.

Nowadays, the development of complex systems is more frequently done in a model-driven
way. This approach separates the abstract functionality and the concrete implementation [35]].
The Model-Driven Engineering (MDE) approach can be used to specify a common methodol-
ogy relating to the mapping and integration of BASs into a model-oriented environment. This
methodology will offer an independent construction of BASs and their automated transformation
into particular technologies.

The field of interest is tightly related to computer and software engineering. First, the in-
creasing significance of BASs, with their physical characteristics and low-level communication
protocols on the field level and accordingly the BMSs at the management level, is an integral
part of computer engineering. Second, the model-driven approach and the interfacing of BASs
are settled in the field of software engineering. Finally, the integration of BASs into the IoT
in the form of a transformation workflow can be seen as a combination of both computer and
software engineering.

1.2 Problem statement

Since more than twenty years many different standards for BASs have been developed by various
associations, organisations and companies. At present, the key players in the sector of home and
building automation are KNX [36]], BACnet [5] and LonWorks [41]. These standards differ
in many aspects and each of them has several advantages and disadvantages depending on their
field of application. Some technologies use twisted pair as communication medium, while others
send and receive their data via an ordinary power line or utilize wireless protocols. Furthermore,
these BAS standards vary in their topology structure, the addressing scheme or the software for
engineering of the network. On the whole, there is often more than one possible technology for
a certain area of application [635].

If two or more different BAS technologies are used, the BMS will have to deal with vari-
ous communication protocols and other technology specific issues. The development of such a
system might not only be very expensive but also time-consuming, and the resulting BMS can
only be used with the current setting or limited variations of it. Therefore, the given technolo-
gies cannot be simply replaced by others. Another problem is their interoperability within one
and the same application. Although technology-specific interfaces and gateways exist, there is
still the disadvantage of dependence on vendors and technologies [21]]. Hence, an interface is
needed, which permits the management of BAS in a technology independent way. This inter-
face has to provide an abstract view of the underlying network to enable technology independent
software development. Consequently, more complex and powerful applications can be imple-
mented. Due to the upcoming IoT, the interface should also provide standardized access to the
BAS via the Internet. For example, the integration of BASs could be done by Web services
(WSs) where again different technologies could be used. Open Building Information Exchange
(oBIX), OPC Unified Architecture (OPC UA) and Web Services for Building Automation and
Control Networks (BACnet/WS) are available and standardized ways to realize such an abstract
interface [32]. The WS gateway communicates with the different BASs via the particular pro-

2

tocol, and its services can be accessed by standardized Web protocols like Hypertext Transfer
Protocol (HTTP) or Constrained Application Protocol (CoAP).

In terms of implementing such an interface, the different automation technologies have to
be mapped into a common model. A standardized and unique representation of BASs is needed
in order to offer an independent and abstract access point for monitoring or control. Therefore,
the multifaceted structures and schemes need to be analyzed and tailored to fit into this general
model. Afterwards, the network representation in the common model can be transformed into
one or more appropriate, technology specific mappings which provide the described interface.

Current research findings already provide some integration approaches for BASs, but a re-
alization of an automated mapping from the network structure to basic WSs is still missing
(cf. [22134,/48]]). The available mappings are either implemented manually or they are focused
on high-level services. On the one hand, a holistic workflow from the BA network to the in-
terface technology is needed. This is necessary to gain access to the various BASs and provide
their interoperability. On the other hand, such a workflow has to be verifiable and expandable to
enable for further development. Hence, a suitable, model-driven approach is required to offer a
universal way of integrating BASs into the IoT.

The concept of MDE might be a method of resolution for such an approach, since it com-
bines both domain specific languages (DSLs) and transformation engines for these modeling
languages [60]. Model-Driven Architecture (MDA), the MDE initiative of the Object Manage-
ment Group (OMG), realizes this concept by supporting a four-layer modeling stack with one
single and unique meta-metamodel on top. The underlying metamodels, which define the spe-
cific modeling languages, are expressed in terms of this meta-metamodel, and therefore trans-
formations between their conforming models are supported [8]. Automatic validation and an
adequate tool support are further advantages of this process. Thus, the addressed workflow from
the initial modeling of the BA network to the code generation for the integration technology can
be implemented using the MDA approach.

In Figure[I.T] a brief overview illustrates the model-driven workflow and the involved com-
ponents. First, the network is generally represented by a platform independent model (PIM).
Subsequently, this model is transformed into a platform specific model (PSM). Finally, program
code is generated which is executed on a WS gateway. The modeling itself and the model trans-
formations are part of the MDA approach. The WS gateway provides access to the network
and interacts with remote clients by the use of various standardized exchange protocols and
information encodings.

To sum up, based on the mentioned problem statement two hypotheses can be assembled,
which are examined throughout this thesis.

Hypothesis 1 By the use of a common meta-metamodel, modeling languages or rather meta-
models can be derived to support transformations and interoperability among models of various
technologies and standards.

Hypothesis 2 [t is possible to build a fully automated transformation process for building au-
tomation systems relating to a seamless and transparent integration into a BAS technology in-
dependent interface.

~—— Model-Driven Architecture
Platform specific model

Platform independent model
Code generation

Model transformation

i

]
]
"
0
0
]
'

]
]
"
0
0
]
'

1)

Model-to-model transformation Model-to-text transformation
(e.g. QVT, ATLAS) (e.g. Xpand, Acceleo)

\/

~ WS gateway—

Network modeling

9BIX

— Building automation system
Network access

IP route

O OO

Devices

A

IN/T IN// [\

7

| Network

representation

INY I\ LN

\
~—— Remote access ~
Message exchange protocols (e.g. COAP, HTTP)
E=Em-
Client Information encodings
N\ J

Figure 1.1: Overview of the model-driven approach

1.3 Aim of the thesis

The overall aim of the thesis is to present an approach for a seamless and automated model-based
integration of traditional BAS into the IoT whereby this main goal can be divided into several

subordinated objectives.

4

One of the outcomes of the thesis is the definition of a workflow to map a BAS in a given
technology to a gateway technology, so that the system can be accessed via a standardized in-
terface. The workflow consists of a couple of steps. First, there is the transformation from
the actual network to an independent model. Second, the transformation from the abstract and
independent network representation to a representation that refers to a specific WS gateway tech-
nology is shown. Finally, the last workflow step is concerned with the generation of executable
code from this representation.

Additionally, a model-driven approach on top of the transformation workflow is described.
The aim is to realize a universal way of integration which is independent from the implementa-
tion. The dependencies and interactions between the levels in the modeling stack and between
the models within one level are stated. Moreover, the development and structure of the appro-
priate modeling languages or rather metamodels are pointed out.

A proof of concept implementation demonstrates the functionality of the above-named work-
flow and the model-driven approach. The realization of the individual components like meta-
models or transformation patterns is specified. In addition, the deployment of the proof of con-
cept implementation is demonstrated.

In the context of this master’s thesis, a KNX network is used as BAS in a case study. This
network is integrated into an oBIX gateway to provide access to the network via the Internet.
A sample project passes through the workflow. The generated code is tested on an instance of
an oBIX gateway implementation. Furthermore, a mapping of the most common KNX specific
elements like datapoint types to the oBIX gateway is discussed.

Finally, the thesis contains an overview of information technology (IT)-friendly solutions
and research projects to integrate BASs into the IoT as well as an overview of MDE approaches.
The related work in this field of interest is examined and compared to the results of the thesis.

1.4 Methodology

Relevant literature in the field of MDE and WSs-based interfaces is studied to illustrate the con-
cept of these areas. Based on this research, a model-based approach is designed in accordance to
the MDE standard MDA of the OMG [51]]. Thereby, the initial step is to outline the metamodels
for the PIM and the PSM, i.e. the oBIX object model. The metamodel for the platform indepen-
dent level has to be derived from schemes of existing BAS technologies. The greatest common
divisor has to be found and must be expanded by other relevant model elements in order to cover
the BAS specifications. Afterwards, the MDE tools are used to prepare the model-to-model
(M2M) and the model-to-text (M2T) transformations. The combination of these metamodels
and the corresponding transformations lay down the searched workflow for integration of BASs
into the IoT.

The proof of concept implementation and its evaluation are based on a KNX installation and
an already existing implementation of an oBIX gateway that is able to communicate with the
connected network via Calimero [[13]]. The gateway’s Web interface is accessible via standard
Internet protocols like HTTP or CoAP. At the beginning of the integration workflow, the Engi-
neering Tool Software 4 (ETS4) is used to export the engineering data of the network as multiple
Extensible Markup Language (XML) files. These XML files conform to a KNX XML Schema

5

and are converted into an independent model according to the previously constructed metamodel
by a mapping with Extensible Stylesheet Language Transformation (XSLT). Henceforward, the
network representation is transformed into a PSM. In this thesis, oBIX is chosen as platform
specific target technology. Finally, the oBIX model of the KNX network is transformed into
Java source code. The implementation contains the necessary information of network structure,
datapoints and devices. The source code is executed by an instance of the previously mentioned
oBIX gateway where the required libraries for the generated source code can be found. The mod-
els, metamodels and transformations are created with various modeling tools of Eclipse [18]].

In addition, the theoretical, model-based approach and the presented workflow implemen-
tation are reflected in terms of open topics, problems and constraints. Available related work
is linked with the outcomes of this thesis to offer a coherent view with respect to the field of
interest. Thus, the advantages of the elaborated approach are presented and the differences to
existing research are illustrated.

1.5 Structure of the thesis

This section serves as guidline for the structure of this thesis. In Chapter |2} the state of the
art concerning MDE is presented. After a short overview, the most popular initiatives of MDE
are discussed, its main principles are explained in detail and standards and implementations are
described. Furthermore, this chapter deals with Web services-based interfaces.

The main part of this thesis starts in Chapter 3] which shows the model architecture with the
modeling stack, the description of the meta-metamodel and the specified metamodels. Chap-
ter 4] contains the transformation process including a workflow description as well as the model
transformation and the code generation.

Consecutively, Chapter 5| deals with the proof of concept implementation where a BAS net-
work model is integrated into a WS gateway. First, the configuration of the used environment
is presented, and the software development environment as well as the oBIX gateway imple-
mentation are described. In the next part, the implementation with its metamodels, models and
transformation patterns is explained. Finally, the workflow sequence from the model creation
to the execution of the generated source code in the oBIX gateway is specified textually and
graphically. The source code of the implementation is available online [45].

In Chapter [6] the presented approach is critically reflected and compared to alternative con-
cepts. While a case study demonstrates the functionality of the presented model-based approach
by integrating a KNX network into an oBIX gateway, also open topics are discussed in this part
of the thesis.

Finally, the thesis is concluded with a summary and an outlook (Chapter|/).

CHAPTER

State of the art

The underlying chapter comprises the theoretical background and the basic principles neces-
sary for the development of the contemplated approach. As the thesis is concerned with the
integration of BASs into an independent interface based on a model-driven approach, the first
section examines Model-Driven Engineering (MDE) with an overview of underlying principles,
available initiatives, defined standards and actual tools and implementations. Afterwards, some
Web services-based interfaces are discussed whereby the main focus is on the Open Building
Information Exchange (oBIXﬂ standard.

2.1 Model-Driven Engineering

The software development methodology called MDE relies on the utilization of models instead
of traditional code-centric object-oriented technologies [64]]. The basic ideas behind this concept
are discussed in the following subsections.

2.1.1 Overview

In the past, the statement “Everything is an object” 9, p.171] has been the predominant principle
in developing object-oriented technologies. Within these technologies, classes and instances of
these classes (i.e. the objects) are the main elements. In addition, classes can inherit from other
classes [26]. MDE, on the other hand, can be seen as a shift towards a model-centric view
where the basic principle is “Everything is a model” 9, p.171]. In this approach, models are the
main concept as they head the whole development process [30]. They represent a (real) system,
and conform to a metamodel [26]. In [8]] and [9], Bézivin illustrates this relation as shown in
Figure 2.1} An advantage of MDE is the way of handling the increasing complexity of system
development. The abstraction level is raised with the introduction of models [64].

'OASIS has changed the notation from oBIX to OBIX in newer versions of the standard.

Conforms to—» Metamodel

System Represented by—>» Model

Figure 2.1: Basic notions in MDE [8}9]]

In the past, various efforts relating to hoist the abstraction level in software development
have been realized. Examples are Computer-Aided Software Engineering (CASE) or object-
oriented programming languages like Java or C#. However, platform complexity is still rising
which is the result of e.g. the appearance of new platforms and changes in existing ones. Thus,
MDE technologies are developed to address this complexity issue [[60]].

2.1.2 Initiatives

Two well-known initiatives, motivated by the MDE approach, exist. Both constitute applicable
methods based on the MDE principles. First, the Model-Driven Architecture (MDA) approach
is presented before an overview on the Eclipse Modeling Framework (EMF) is given.

2.1.2.1 Model-Driven Architecture

The Object Management Group (OMG) launched the MDA initiative by the end of 2000. One
of its purposes is the shift from code orientation to model orientation in software development.
The platform dependent implementations should be separated from the abstract business logic.
OMG’s Unified Modeling Language (UML) has driven the evolution of this approach. The con-
cept of metamodels, which provide modeling languages for the particular models, is expanded by
meta-metamodels. Thus, the independent development and evolution of non-compatible meta-
models is avoided. MDA defines a four-layer architecture. On top, the meta-metamodel (1),
which conforms to itself, defines the language for building metamodels (metamodeling lan-
guage). One level lower, metamodels (2) are located that are used by the subjacent models (3)
to create snapshots of the observed system (4). These systems are on the lowest level of the
architecture. More precisely, MDA has a 3+1 architecture because the three upper levels can be
defined as modeling world while the bottom level forms the real world [8]].

Another basic concept of MDA is the model transformation which originates from the
homonymous MDE principle (see Section 2.1.3). The first task in the MDA process is the
definition of a computation independent model (CIM). This model describes the system on an
abstract level [35]]. Subsequently, a platform independent model (PIM) is created which repre-
sents the developed system and its functionality. PIMs are independent of any technical detail
of the target platform. M2M transformations produce a platform specific model (PSM) on the
basis of the PIM. Finally, a M2T transformation generates code for a target platform from the
PSM [7]. In this context, a platform can be a closed software component or technology with a
clearly defined interface. The platform provides necessary services, but its implementation does
not need to be known [35]]. Figure [2.2]illustrates the transformation process. The idea of hav-
ing PIMs and PSMs has an important advantage. Only one PIM containing the abstract system
representation is needed to generate descriptions in the form of PSMs for various successive

8

PIM —M2M—> PSM ——M2T—» Code

Figure 2.2: MDA process [[7]

target platforms (vertical one-to-many model transformation) [44]. Specific metamodels for the
modeling of PIMs and PSMs conform to one distinct meta-metamodel [8]. Hence, the system
can be deployed more easily on more than one platform. If there are changes or new platform
technologies emerge, the underlying abstract system model does not need to be changed [43]].

It should be noted that MDA is more than a simple code generation methodology due to
the formalization in modeling software architectures and platforms [56]. MDA combines var-
ious standards like Object Constraint Language (OCL), Meta Object Facility (MOF) or XML
Metadata Interchange (XMI) [23]].

2.1.2.2 Eclipse Modeling Framework

The EMF offers a framework for modeling and code generation which runs on the open source
project Eclipse. 1t is part of the Eclipse Modeling Project and represents another initiative of
the MDE concept. Similar to MDA, the basis is a metamodeling language in the form of a
meta-metamodel called Ecore. This meta-metamodel is included in the core EMF. Individual
modeling languages can be defined based on Ecore in order to enable for the creation of domain
specific models. Finally, Java classes can be derived from these models. For this purpose, EMF
offers generator components. In addition, modeling editors can be created based on the de-
fined metamodels to enable the formation of models [63[]. Moreover, further projects have been
introduced to expand the model-driven functionality of Eclipse. These additional projects are
partially based on EMF [12]. The Ecore meta-metamodel and some tools and implementations
of the Eclipse Modeling Project will be presented in Section[2.1.5]

2.1.3 Principles

According to Brambilla et al. [12], the MDE intention can be expressed with the following equa-
tion: models + transformations = software. Therefore, the models and corresponding transfor-
mations can be identified as the main elements of model-driven approaches. Section [2.1.3.1
addresses the problem of metamodeling to define modeling languages. Transformation method-
ology is discussed in Section (M2M transformation) and Section (M2T transfor-
mation).

2.1.3.1 Metamodeling

In MDE, models are not only used for documentation purposes but also as formalized compo-
nents for computer-based development [9]]. In this context, metamodels form a concept for the
definition of modeling languages. They describe the available language constructs for the cre-
ation of models [[12]. Metamodels are not necessarily specified in a standardized way, but can

9

also be written in a natural language (e.g. English). Nonetheless, computer-aided processing of
models (e.g. validity checks and transformations) assumes a formalized definition of metamod-
els [26].

Regarding the syntax of a modeling language, it can be distinguished between the abstract
syntax and the concrete syntax. An abstract syntax is based on the metamodel of the language
and specifies the underlying elements and constructs. On the other hand, the concrete syntax
defines the appearance and the notation of the models. This is determined in less formal descrip-
tions and illustrations [56]].

The outcome of metamodeling are modeling languages which allow the definition of con-
crete models. These representations of a system of interest have to comply with the rules speci-
fied in the metamodel. In general, two types of modeling languages exist. While domain specific
languages (DSLs) are used to create models for a certain domain, general-purpose modeling lan-
guages (GPLs) are not limited to a specific domain, but can be used for any purpose. The most
popular example for a GPL is the UML [12].

The layered modeling architecture has already been mentioned in Section 2.1.2.1] Typi-
cally, the systems are mapped to models which conform to a modeling language or rather to
a metamodel. On top, a model for describing metamodels is defined which is called meta-
metamodel. Although further layers are possible, these four layers are usually sufficient. As the
meta-metamodel is defined by itself, the entire architecture is closed. By means of the meta-
modeling principle, the DSLs of an MDE approach can be developed to provide a basis for the
creation of models and their subsequent transformations [|12].

2.1.3.2 Model-to-model transformation

During an MDE development process, model transformations are used to generate new models
or executable program code [30]. Brambilla et al. define some operations that are implemented
as model transformations [12]]. Thus, models can be merged, aligned, refactored, refined or
translated. The transformations can be classified into model-to-model (M2M) transformations
and model-to-text (M2T) transformations [15]]. Although this section focuses on M2M transfor-
mations, the following paragraphs state the common characteristics of both types.

In general, a transformation converts input model(s) into output model(s) by executing spec-
ified transformation rules. Input models are called source models while output models are called
target models [26]. A transformation rule is made up of a left hand side (LHS) and a right
hand side (RHS). While the LHS represents the source model, the RHS corresponds to the target
model. Each side of a rule is composed of variables (e.g. elements from the source model), pat-
terns (e.g. model fragments) and logic (e.g. OCL queries) [[15]. Admittedly, transformations are
defined based on metamodels of the input and output model. However, they apply models con-
forming to these metamodels. The transformation itself conforms to its own metamodel which
defines the transformation language. Therefore, it is a kind of model, too [12].

There are some possible classifications of model transformations. First, they can differ in
their directionality. While bidirectional transformations can be used to run the transformation
in both directions, unidirectional transformations execute the transformation definition in one
direction only [[15]]. Another characteristic is the number of input and output models. There
are [-fo-1 transformations with one source model and one target model. A transformation of

10

one source model into multiple target models is called a /-fo-N transformation. The other way
around, they are called N-fo-I transformations. An M-fo-N transformation is the most univer-
sal case where multiple input models are converted to multiple output models [26]. If a more
abstract model is transformed into a more specific model, the process is called vertical trans-
formation. On the contrary, transformations performed between models of the same abstraction
level are known as horizontal |61]]. Finally, the transformation languages can either be declar-
ative or imperative. Declarative languages define relationships between source and target ele-
ments. While the execution order is not set in declarative transformation definitions, imperative
languages specify an explicit execution plan [26].

In M2M transformations, both the input and the output are models and not any kind of text
or code. Such transformations are used to generate intermediate models during the evolution
of a PIM to the final program code. Therefore, the abstraction gap between PIM and code is
shrinking, which enables for the easier optimization and maintenance of the transformations.
There exist some approaches for M2M transformations. The direct-manipulation approach pro-
vides an application programming interface (API) for manipulating models (e.g. Jamda). The
relational approaches are based on mathematical relations. Constraints are used to specify the
relations between source element types and target element types. An example for such trans-
formations is Query/View/Transformation (QVT). Graph-transformation-based approaches use
typed, labeled and attributed graphs to define the transformation (e.g. VIATRA). OptimalJ is
an example for structure-driven approaches which consist of two phases. First, the hierarchical
structure of the output model is created, and afterwards the attributes are set. Finally, also com-
binations of these four approaches exist (hybrid approaches). An example for this category is
ATLAS Transformation Language (ATL) [[15].

2.1.3.3 Model-to-text transformation

The aim of M2T transformations is the generation of documentation and other text documents
as well as the generation of executable source code. This corresponds with the overall goal of
MBDE to establish a running system on the basis of a platform independent application model.
Whereas compilers generate machine code out of source code, the code generation in MDE is
the transformation of a model into source code [12].

For M2T transformations three questions have to be answered. First, it has to be determined
how much code can be generated (full or partial generation). Second, the kind of source code
must be specified. APIs or high-level programming languages should be extensively used. Third,
a procedure for generating code is required, i.e. the transformation language ranging from DSLs
to GPLs needs to be defined [[12]].

Two approaches for M2T transformations exist. The visitor-based approach runs through
the model representation by means of a so called visitor mechanism. In the meantime, the final
code is written to a text stream. The second approach called template-based, which is used in
this thesis, combines target text and meta code. While target text is written directly into the
output file, the meta code enables access to the data of the source model [[15].

In the next sections, concrete standards and implementations of these principles and previ-
ously mentioned initiatives are discussed.

11

2.1.4 Standards

The OMG combines a set of standards within the scope of MDA. The following subsections
present standards for metamodeling, M2M transformations and M2T transformations.

2.1.4.1 Meta Object Facility

According to OMG’s MOF 2.0 Core Specification, this standard enables “the development and
interoperability of model and metadata driven systems” 52, p.5]. In MDA, MOF is one of
the central technologies as it defines the concepts of metamodels, PIMs and their mapping to
platforms. The standard consists of the two meta-metamodels Essential MOF (EMOF) and
Complete MOF (CMOF). While EMOF is used to specify simple metamodels by means of
simple concepts, CMOF is more complicated but also more expressive [[52[]. The composition
of MOF respectively EMOF is discussed in Section

MOF enables the definition of modeling languages. Thus, the meta-metamodel represents
a metamodeling language [[12]], while the meta-metamodel itself is defined by using its own
language concepts [26]. In the four-layer architecture of MDA, the metamodels on the second
highest layer are defined by the MOF language. Both semantics and structure are determined in
the MOF standard. All in all, an advantage of this common framework is the interchangeability
between models or metamodels conforming to MOF. Furthermore, the systematic integration of
metamodels and models is simplified [57].

2.1.4.2 MOF Query/View/Transformation

Another standard of the MDA initiative is Query/View/Transformation (QVT) which is pub-
lished by OMG, as well. The architecture of this model transformation standard consists of
three DSLs. First, the Relations language defines relationships between models. QVT Rela-
tions is based on the Core language which is as powerful but smaller. While both Relations
and Core are declarative languages, Operational Mappings is imperative [54]. Transformations
written in this language are unidirectional, and their syntax is comparable to other imperative
languages [6]]. Hence, QVT constitutes a hybrid language which is limited to M2M transforma-
tions [26].

Besides these languages, QVT offers an additional, useful feature: Black Box Implementa-
tions. They enable the possibility to link the transformation with implementations and libraries
written in other languages. In the transformation definition, the signatures of the operations are
sufficient [54]. Therefore, the implementation can be seen as a black box. The expressiveness
of other programming languages can be utilized to implement e.g. complex algorithms [6].

2.1.4.3 MOF Model to Text Transformation Language

M2T transformations are standardized by the OMG in the MOF Model to Text Transformation
Language (Mof2Text). In general, the standard describes how a model can be transformed into
text. Examples for generated text representations are deployment specifications, reports or doc-
umentations as well as source code. Mof2Text follows the template-based approach of M2T
transformations [53]].

12

The construction of templates is introduced in the specification. Besides target text, the
templates contain meta code which is a kind of placeholder for model information. Values in
the source model can be accessed via expressions and queries. Furthermore, transformations
can be organized as modules. A special part of a template is the file block which defines the
final location of the generated text. Here, the most important parameter is a Uniform Resource
Identifier (URI) representing the name of the output file. Further information regarding this
standard can be found in the corresponding specification [53]].

2.1.5 Tools and implementations

In this subsection, some available tools and implementations of the previously mentioned stan-
dards are listed. The focus lies on technologies that are used throughout this thesis. Descriptions
are kept concisely to give a rough overview. More details can be found in the underlying litera-
ture and in the following chapters.

Ecore is the meta-metamodel of the EMF, and therefore provides a metamodeling language for
specifying modeling languages. This language is a main difference between EMF and
MDA where MOF is defined as meta-metamodel on the topmost level of the modeling
architecture [26]. Ecore arises from MOF and is similar to the slim structure of EMOF. A
kernel of four classes is supported by additional language concepts [63]]. The Ecore kernel
is examined in Section[3.2.21

QVT Operational (QVTO) is part of the Eclipse Modeling Project. Instead of implementing
the full QVT standard, QVTO enables for the definition of transformations in the Opera-
tional Mappings language [[17]]. The transformations are allowed to contain concepts like
loops and conditions as QVTO is an imperative language [26]]. This Eclipse component is
used for the M2M transformation in the model-driven approach of this thesis.

ATLAS Transformation Language (ATL) is another technology for M2M transformations.
The transformation definition is a model conforming to the MOF-based ATL metamodel.
In contrast to QVTO, this language is both declarative and imperative. As a hybrid
approach, it is useful in cases where neither a pure declarative nor an imperative solu-
tion is constructive. In addition, ATL transformations generate write-only target models
from read-only source models. Due to their unidirectionality, two transformations will be
needed for a bidirectional mapping [31].

Xpand is one of the components of openArchitectureWare (0AW), which are now part of the
Eclipse Modeling Project [[18}|55]]. The template-based technology is used to transform
models into text (e.g. source code, documentation). For this purpose, the Eclipse compo-
nent provides an editor for the creation of templates. In this thesis, Xpand has been se-
lected as M2T transformation language. Samples of Xpand transformations can be found
in Section 4.4 as well as online [43].

Acceleo is an alternative implementation of the Mof2Text standard. Its aim is to generate source
code for various platforms based on models. Besides Xpand, it is also part of the M2T

13

category within the Eclipse Modeling Project [[18]. As this technology is not used in this
present thesis, further details are omitted.

2.1.6 Relation to ontology development

An ontology can be described as a methodology to represent and organize knowledge. In addi-
tion, ontologies provide the possibility to generate new information by reasoning on the available
data. In the context of the Semantic Web, ontologies play a major role. Examples for ontology
description languages are the Resource Description Framework Schema (RDF Schema) and the
Web Ontology Language (OWL). There are some advantages when using ontologies for the rep-
resentation of heterogeneous BASs. First, the BA networks can be configured in a central repos-
itory. Second, the machine-readable representation of the ontology can be used as access point
by associated systems. Third, the reasoning enables the automatic generation of configuration
data for gateways, which integrate the various BASs. New BA technologies can be incorporated
into a network of existing BASs by implementing just one mapping for the ontology [58]].

Besides MDA, ontology development is also a modeling approach. Both have some features
and characteristics in common. Thus, it is possible to combine these approaches. GaSevic et
al. present a mapping from OWL to MDA which is depicted in Figure 2.3 [26]]. The possibility
to model ontologies within the MDA concept is shown. On the one hand, there is the RDF
Schema modeling space as part of the Semantic Web technical space. On the other hand, there
is the MOF modeling space in the MDA technical space. MOF represents the topmost layer
in the MDA architecture. Beneath this meta-metamodel, a metamodel for ontologies called
Ontology Definition Metamodel (ODM) has to be built. Based on OWL, it contains the general
ontology concepts. In addition, an ontology UML profile is created to enable UML notation for
the definition of ontologies. Mappings between the UML profile and the ODM are introduced.
In the Semantic Web space, the top layer of the architecture is formed by the RDF Schema.
The ontology definition language OWL is subjacent on the same layer as the MDA metamodel
ODM. Horizontal mappings in both directions between OWL and ODM must be implemented.
These introduce a bridge between the MOF and the RDF Schema metamodeling concepts.

Admittedly, the ontology concept seems quite similar to the MDA approach. BASs can be
integrated seamlessly and the reasoning mechanism can be used effectively [58|]. However, the
approach in this thesis is based on the model-driven approach or rather MDA because of some
advantages [26]:

e New ontology languages can be integrated easily by implementing a pair of transforma-
tions between the Ontology Definition Metamodel (ODM) and the particular technology.
Otherwise, two transformations per existing ontology language have to be created. If the
ontology concept is included in an MDA approach, the development is more flexible. Ad-
ditional technologies can be integrated in both the ontology and the MDA space more
easily. Modeling and representing of data is more abstract than direct modeling in an
ontology language.

e Ontologies can be validated regarding the ODM in the MDA approach. This is important
when transforming models between different modeling or ontology languages.

14

..

N
.

¢ MDA technical space
.'"Semantic Web technical space \‘. '
./ RDFS modeling space ' /~ MOF modeling space o
RDQ : Bridge > MD
Y :
: Ontology | :
5 OWL <9 ODM UML | i UML 5
E E 7 profile | i
[ontology Ontology)| ontology |:
: model / ! :
E - : V2R ; J :

L Sy S SRR SRR ————

Figure 2.3: Bridging RDF Schema and MOF [26]

e ODM can be used as central metamodel for the representation of ontologies. In combina-
tion with the BAS metamodel introduced in the following chapter, this forms a common
base for further processing and development.

2.2 Web services-based interfaces

As the idea of an Internet of Things (IoT) is on the edge of becoming reality, technologies for
integrating heterogeneous BASs have to be found. Thus, Web services (WSs)-based interfaces
could be a possible solution. After a short overview about these interfaces and the IoT paradigm,
this section explains some concrete technologies in this field of application.

2.2.1 Overview

The concept of IoT claims the establishment of interconnections and interactions of things like
sensors, actuators or mobile phones. The underlying aim is to combine these objects in order to
implement enhanced functionality. Their cooperation can be used to realize common objectives.
However, the accompanying security risks should not be disregarded when integrating things of
everyday life in a pervasive network [4].

The IoT is the intersection of three visions. First, the Things oriented view targets (mostly)
low-level communication devices. Second, Internet oriented visions include concepts for a net-
work oriented view of the IoT. And last but not least, the Semantic oriented perspective covers

15

the issues of a unique addressing scheme for the integrated objects as well as the reasonable rep-
resentation of information. A lot of possible scenarios and application domains for the IoT exist,
e.g. transportation and logistics (assisted driving, augmented maps), healthcare (data collection,
identification) or smart environments (comfortable homes) [4]].

Middleware approaches are needed for the integration of legacy systems and the develop-
ment of high-level services [4]. Here, protocols on the basis of WSs are on the rise. The choice
is between WSs according to the Representational State Transfer (REST) paradigm (see Sec-
tion [2.2.2.3) or Simple Object Access Protocol (SOAP) services [32]]. Such WS technologies
for the integration of BASs are Open Building Information Exchange (oBIX), BACnet/WS, De-
vices Profile for Web Services (DPWS) and OPC Unified Architecture (OPC UA), which are
examined in the following sections.

2.2.2 Open Building Information Exchange

The oBIX standard has been published by the Organization for the Advancement of Structured
Information Standards (OASIS). In order to avoid the use of low-level protocols while integrat-
ing embedded systems, this standard provides an IT-friendly interface using standard technolo-
gies. In the following subsections, key elements of the oBIX architecture are presented, while
additional information can be found in the oBIX specification [49].

2.2.2.1 Object model

In the oBIX technology, the concise object model defines the structure of objects which can be
instantiated. According to [49], Figure shows the class diagram of this object model. The
base class is Ob j containing all common properties (e.g. name, writable, href). Derived
objects for integers, strings, floating-point numbers or even lists and operations exist below this
root object. Any complex, compound object can be created with this small set of basic objects.
The attribute obj in Ob7j is an association which enables the creation of object hierarchies.
Thus, each object can contain other objects. For example, an instance of the class Int can
contain a St ring object and a Real object. Details about the various derived types and their
attributes can be found in the oBIX specification [49].

Objects are identified via their name within a composite object. On the other hand, an object
is referenced via its unique URI when making a request over the network. The URI is set in the
href attribute of Ob j [48]]. Data types of the attributes are based on XML types [66].

2.2.2.2 Contracts

A key concept in oBIX is the definition of contracts which introduce inheritance. Contracts
are used as templates to specify oBIX types and their semantic interpretation [32]]. Since every
oBIX element is an object, also contracts are (composite) objects. If an object is inherited from
a contract, the subobjects are inherited as well. Similar to multiple inheritance in programming
languages, references to multiple contracts are possible. Hence, contracts bear analogy to Java
interfaces [48|].

16

List Obj Bool
+max : int +display : string ___|+range :anyURI
+min : Int +displayName : string +val : boolean = false
+of : contract = obix:obj [+href : anyURI

D +icon : anyURI j
+is : contract
+name : NMTOKEN Int
Op -
+null : boolean +max : int
+in : contract = obix:Nil +obj : Obj[0..*] +min :int
+out : contract = obix:Nil [+status : status = ok | |+unit : anyURI
+writable : boolean = false +val :int=0
Feed] A
+in : contract = obix:Nil Date «enumeration» Real
+of : contract = obix:obj +max : date status —+max : double
+min : date +disabled +min : double
+val : date +fault +precision : int
Ref +down +unit : anyURI
+unackedAlarm +val : double =0
] N +alarm
AbsTime
+unacked
+max : dateTime +overridden
+min : dateTime +ok Str
Err +tz : string +max : string
+val : dateTime ——{+min : string
+val : string=""
RelTime Time
Uri - -
+max : duration +max : time Enum
+val :anyURlI |— +min : duration +min : time |__|+range :anyURI
+val : duration = PTOS +val : time +val : NMTOKEN

Figure 2.4: oBIX object model [49]

Contracts offer a machine readable format which can be processed automatically by clients.
In addition, the flexibility and the simplicity are advantages of this concept. It can be distin-
guished between explicit and implicit contracts. While the explicit contract specifies the object
structure, the implicit contract is focused on the semantics. In general, objects are derived from
contracts by setting the value of the i s attribute to the URI of the contract. The type of a List
object is set in the o f attribute, and the input and output parameters of an Op object are specified
in its in and out attribute. Moreover, lists of contracts can be assigned where the contracts are
separated by a blank. The default values of the subobjects of the contract are inherited unless the
instantiated object defines a child object with the same name. Then, the attributes are overridden
by the new values. Furthermore, the oBIX specification introduces a core contract library (e.g.
unit, range) [49].

17

2.2.2.3 REST paradigm

REST is an architectural style for WSs. The key characteristic is its resource orientation. A small
set of operations is available to access resources. This approach is comparable to the concept
of the World Wide Web (WWW) [48]]. A resource, which is an oBIX object, is accessed via its
specified URI. Mainly, three operations (verbs) are used to work with all oBIX resources. While
a read request is applicable to any object, write is only for writable objects. The former is the
counterpart to the HTTP GET whereas the latter is mapped to HTTP PUT. Operations can be
executed by an invoke request similar to HTTP POST. In addition, there exists a fourth REST
verb called delete [49]].

2.2.3 BACnet/WS

BACnet/WS is an amendment to the BACnet standard published by the American Society of
Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) [2]]. The aim is the specifi-
cation of a WS interface and an appropriate model to integrate BASs in enterprise BMSs. The
interface is designed in accordance to the service-oriented architecture (SOA) principle. BA
technology independent services for managing data use XML in connection with SOAP based
on HTTP. The available services can be grouped in reading and writing services [34].

The main element of the BACnet/WS data model is the node. Nodes can build hierarchical
structures, and contain attributes. Attributes are categorized in primitive, enumerated and array
attributes. The paths for identifying nodes and attributes consist of a node part and an attribute
part. Nodes are linked by references. Here, loops and self referencing is forbidden. In fact, the
data model is simple but not extensible [34]].

2.2.4 Devices Profile for Web Services

Another SOA protocol especially for embedded devices is the DPWS. As successor of Universal
Plug and Play (UPnP), it is independent of BA technologies, as well. Various protocols are
utilized by this profile. Examples are HTTP, XML or SOAP [|62]. Windows Vista and Windows
7 already include DPWS [14]).

The DPWS middleware provides WSs for the integrated devices and their hosted services
which enable access to the device’s functionality. In addition to the hosted services, DPWS
specifies some core protocols. For the dynamic discovery of devices, the WS-Discovery is es-
tablished. WS-Addressing is used to pack address information into the SOAP header of the
messages. Services for metadata exchange provide WS metadata e.g. in the form of XML
Schema definitions (WS-MetadataExchange). By means of the WS-Eventing services, devices
can subscribe for receiving event notification messages from other devices. Additionally, DPWS
defines WS-Policy and WS-Security to specify WS policies, and guarantee a secure message ex-
change [14,(62]].

2.2.5 OPC Unified Architecture

The predecessor of OPC UA, OLE for Process Control (OPC), was published in the 1990s by
the OPC Foundation. Admittedly, the interoperability between different technologies in BASs

18

was simplified. Vendors implement drivers to interact with the OPC API. The API of OPC was
based on Microsoft Component Object Model (COM) or Distributed COM (DCOM). However,
the dependency on this proprietary technologies and the resulting commitment with Microsoft
Windows were restrictions. Hence, OPC UA has been published to replace OPC. Now, a SOA
in the form of WSs is used as data transport technology to reach platform independence [22].
The loose connectivity in SOA offers an expanded applicability. Standard WS tools can be used
to access an OPC UA server. Security and reliability are also part of OPC UA [_27].

The available server objects are located in the so called address space which standardizes
the representation of objects. This address space can be constructed by means of OPC UA in-
formation models [27]]. In contrast to OPC, OPC UA enables the modeling of semantics besides
the representation of process data. Application specific information models can be created on
the same base model. Complex data can be interpreted by clients via the semantics contained
in the information models. Vendor specific extensions of the base information model are also
possible [22].

SOA provides a set of services for the interaction of servers and clients. The OPC UA
specification groups the services in profiles which are implemented by the server [27]. The
service definition is independent of any platform or protocol. Examples for available service
sets are the Discovery service set or the View service set. Attributes of nodes are accessed via
services from the Attribute service set including the Read and Write service [22].

19

CHAPTER

Model architecture

This chapter contains the structure of the MDA approach including the concept of the different
modeling layers as well as the composition and utilization of the developed metamodels.

3.1 Modeling stack

An appropriate hierarchy of levels, a so called modeling stack, has to be defined when initiating
an MDE implementation. In its standards, the OMG refers to a four-layer modeling infrastruc-
ture [3}/8]]. Nonetheless, the number of used stack levels is not fixed and always depends on the
intended use [[52]]. Although any number of layers can be handled, the model-driven approach
in this thesis comprises of a standard, four-layer modeling architecture which is illustrated in
Figure Compared to some other representations of the OMG metamodel architecture, the
numeration starts with O on the lowest level, and increments bottom up.

The language for defining metamodels is located in level M3, on top of the stack. This
common language, encoded in the form of a meta-metamodel, enables an interoperability of the
underlying metamodels. As we already know from Section [2.1] the meta-metamodel is defined
by itself. Therefore, this hierarchy is closed and no level exists above M3. Level My contains
all necessary metamodels for the establishment of BASs. These metamodels are described in
detail in the upcoming Sections [3.3|and [3.4] In general, metamodels are defined in terms of the
overlying meta-metamodel and are introduced to determine DSLs, which describe a particular
domain of interest. The models can be found on level M; in the modeling stack. Each model
conforms to one of the defined metamodels on level Ms. Thus, they can be validated with regard
to syntactical correctness and compliance with specified semantical constraints [8]].

Instances of the models respectively the modeled parts of the real world are located in the
lowest level, My. The BAS and the execution of generated program code belong to this level
whereas the representation of a system, e.g. a BAS model, forms a part of level M; [10].

The BAS in layer M) is predefined as well as the meta-metamodel on layer M3 that defines
a kind of meta language. The intermediary levels have to be elaborated. All metamodels con-

21

Meta- M3

metamodel
Metamodel M,
Model M,
Model instance My

Figure 3.1: Modeling stack [S]]

form to one unique meta-metamodel, and all models of one modeling language conform to the
corresponding metamodel.

3.2 Meta-metamodel

As already noted, the meta-metamodel defines a meta language which is used to specify mod-
eling languages. In OMG’s MDA, this meta-metamodel on level M3 of the predefined model-
ing stack is specified by the Meta Object Facility (MOF) standard [52]. This section gives an
overview of the composition and the usage of this framework. Thereby, the focus is on the Es-
sential MOF (EMOF) which is only a subset of the MOF 2.0 standard. Additionally, MOF 2.0
defines the Complete MOF (CMOF). In this thesis, the Ecore meta-metamodel of the EMF is
used as implementation of MOF [63]].

Ecore and EMOF are sufficient for the underlying model-driven approach as all elements of
the MOF standard necessary to build the metamodels and transformations for BASs are included.
Moreover, no notable implementation of CMOF exists which provides such a wide-ranging tool
chain as the Eclipse Modeling Project.

3.2.1 Composition

According to [52]], EMOF comprises simple concepts to build simple metamodels. First, the
core classes of EMOF are illustrated in Figure [3.2]in order to start pointing out the principles of
this meta-metamodel. These core classes and the subsequent figures are taken from the EMOF
part of the MOF 2.0 specification [52]]. Available modeling elements for the definition of the
meta language are classes, properties and operations to describe the classes, and associations
between the classes including inheritance and containment. The core set of classes enables
for the modeling of domain specific classes (C1lass) that contain properties (Property) and

22

MultiplicityElement

- %

Property
+isID : Boolean
+isReadOnly : Boolean = false
rclass rownedAttribute ﬁsCorr)posnte : Boolean = false
+isDerived : Boolean = false
Class &> +default : String
+isAbstract : Boolean = false 0.1 0..* 1
’ +opposite 0.1
+superClass | 0.* 0.1 | wclass MultiplicityElement
MultiplicityElement
+ownedOperation Operation +operation +ownedParameter Parameter
>
0.* 1 0.*
0“*
+raisedException Type
0.*

Figure 3.2: EMOF core classes [52]

operations (Operation). The classes can exist in an inheritance hierarchy modeled by the
superClass association. Operations contain parameters (Parameter) and raise exceptions
which are of the abstract type Type. In the subsequent figures, other EMOF structures are
pointed out.

Relations between classes are modeled by means of properties. Each property has an at-
tribute t ype derived from its superclasses MultiplicityElement and TypedElement
in which the referenced type can be specified (see Figure [3.4). In contrast, CMOF defines a
separate class for associations [52].

Figure3.3]shows the composition of types and data types. EMOF defines four primitive data
types (Integer, Boolean, String, UnlimitedNatural). Moreover, it supports the
creation of custom enumerations (Enumeration and EnumerationLiteral) and further
primitive types (PrimitiveType).

The topmost superclass in EMOF is the class Element which is depicted in Figure
Class Ob ject is inherited from it and defines some fundamental operations. Named elements
(NamedElement) are derived from Object and pass their properties (e.g. name) on to a
set of subclasses (e.g. types, typed elements and enumeration literals). In addition, Figure 3.4]
also introduces the multiplicity element (MultiplicityElement), which is the superclass
of parameters, operations and properties. Therewith, the lower and upper bounds of an object’s
multiplicity can be modeled.

23

«datatype»
Integer Type
+islnstance()
«datatype»
Boolean
NamedElement
DataType +name : String
«datatype»
String % %
«datatype» PrimitiveType Enumeration +enumeration +ownedLiteral EnumerationLiteral
UnlimitedNatural &
0.1 0.*
Figure 3.3: EMOF data types [|52]]
Element
Type
+type 0.1 jk
. Object
MultiplicityElement
+isOrdered : Boolean = false TypedElement NamedElement +getMetaClass() : Class
+isUnique : Boolean = true I> I: — +container() : Object
+lower : Integer *+name : String D +equals(in element : Element) : Boolean
+upper : UnlimitedNatural +get(in property : Property) : Element
+set(in property : Property, in element : Element)
+isSet(in property : Property) : Boolean
+unset()

Figure 3.4: EMOF types [52]

Finally, all subclasses of the class Type (e.g. classes, data types, enumerations) can be
capsuled in nested packages, and each package (Package) is a subclass of NamedElement.
The corresponding class diagram can be found in Figure [3.5]

3.2.2 Implementation and application

The introduction of a meta-metamodel is beneficial. One of these benefits is outlined in Hy-
pothesis] (see Chapter [I). If all metamodels in an MDA project conform to one unique meta-
metamodel, these metamodels can be seen as instances of one and the same meta language.
Therefore, elements and concepts in each metamodel are expressed in terms of the superor-
dinated meta-metamodel. Admittedly, it is not compulsory to establish modeling languages
derived from a common meta-metamodel. It is also possible to create transformations between
instances (models) of almost independent languages. However, comparability of these meta-

24

NamedElement

+name : String

+package +ownedType
0.1 Package (@ Type
———@{+uri : String 0.1 o
nestingPackage

+nestedPackage 0.*

Figure 3.5: EMOF packages [52]]

models and homogeneous handling are definitely advantages of implementing an appropriate
modeling stack with one meta-metamodel. And these properties can be achieved by already
available standards unified in OMG’s MDA initiative.

The EMF for Java provides a native implementation of the EMOF meta-metamodel called
Ecore. By using this framework, it is possible to create custom metamodels for the definition
of DSLs. Based on these language specifications, it is possible to generate models representing
snapshots of the real world. However, a mapping from MOF to EMF is needed [16]. The
kernel of the Ecore meta-metamodel with its four main elements is presented in the following
itemization [|63]]:

e EClass is the EMF equivalent to MOF’s Class. Classes can contain multiple attributes
and references. They support inheritance by the relation eSuperTypes. The value of
the attribute name is the unique identifier of a class.

e FEAttribute represents attributes which are components of classes. An attribute has a
type and an identifying name.

e EDataType can be used to define types which are linked with primitive Java data types
or Java classes (complex data types).

e EReference enables for the modeling of associations between available classes. A class
can have multiple references and each reference has a referenced type which is a class
again. For bidirectional associations, a second reference has to be established, since one
reference navigates only in one direction. A reference can also be defined as containment
(strong association).

The Ecore kernel is depicted in Figure [3.6] It should be noted that this figure visual-
izes only the core of EMF’s meta-metamodel. Besides the four kernel elements, Ecore cov-
ers packages (EPackage), enumerations (EEnum and EEnumLiteral), operations with pa-
rameters (EOperation and EParameter) and some abstract classes like named elements

25

EAttribute +eAttributeType EDataType

+eAttributes

+name : String +name : String
+eSuperTypes EClass
+name : String 0% !
0“*
+eReferences
+eReferenceType 1 EReference
+name : String 0.1
0..* +containment : Boolean
+lowerBound : Integer
+upperBound : Integer +eOpposite
|

Figure 3.6: Ecore kernel [[63]]

Ecore data type \ Java class or primitive type

EBoolean boolean
EChar char
EDouble double
EFloat float
Elnt int

EByteObject java.lang.Byte
EBigDecimal java.math.BigDecimal

EBigInteger java.math.BigInteger
EDate java.util.Date
EJavaObject java.lang.Object
EString java.lang.String

Table 3.1: Ecore data type mapping [63]]

(ENamedElement) or typed elements (ETypedElement) in addition [63]]. Only a subset of
the available elements is used for modeling the metamodels in this thesis. As EMF is a Java
framework, the Ecore data types have to be mapped to corresponding Java types. Table[3.1]lists
the mapping of the most important data types.

To sum up, the structure of the MDA meta-metamodeling standard MOF or rather its subset
EMOF, and how this standard is implemented by the EMF and its meta-metamodel Ecore has
been described in detail. As already mentioned, this meta-metamodel can be used as the lan-
guage description to define languages for a specific domain in the form of metamodels. Just as a
UML class diagram, which represents an instance of the UML language description, metamod-
els use the aforesaid elements of meta-metamodels to create e.g. classes, operations, attributes
or associations between classes. In the subsequent sections, the developed metamodels for the
integration workflow of BASs are outlined in detail.

26

3.3 Metamodel for building automation systems

In the underlying, model-driven approach, the metamodel for BASs defines a language for PIMs
in terms of OMG’s MDA. As we know from Section [2.1.2.1] the PIM represents a snapshot of
a system in an abstract, technology independent way. The following subsections document the
development process of the BAS metamodel, its final structure and the possibilities to create
models based on this metamodel.

3.3.1 Construction of the modeling language

The first step to build a metamodel for BASs is to establish the structure, the features and the
dynamic properties of such a system. In a BA network, various sensors and actuators are linked
in a specific topology. These links are realized via diverse media types, such as twisted pair,
power line or radio frequency. Such a kind of network contains a set of devices that send and
receive data over a wired or a wireless link. On the other hand, devices consist of one or multiple
input/output (I/O) points, e.g. a temperature value or binary value of a light switch. These I/O
points, the so called datapoints, are the basis for providing the behavioral aspects of devices.
They are linked to other datapoints via a virtual connection based on the physical links between
the devices. The semantical interpretation of exchanged messages is supported by a set of meta-
data. Data types, encodings of status values, units or the scaling of numeric values are examples
of semantics in BASs.

Figure [3.7)illustrates a sample BA network with a few actuators and sensors. The solid line
represents the physical link, while the sum of all links, devices and routing devices is the entire
topology. The dotted lines visualize the virtual links between datapoints of the devices. On top
of the network’s field and automation level, a BMS manages and monitors the system.

Based on these physical connections, the network can be examined by different views. Vary-
ing classifications of the devices and datapoints result in four distinct views. Depending on the
intended use, a network can be categorized in terms of

e the topology structure,
o the related domains,
e the actual location in a building or building part and

o the functionality of the devices and their datapoints.

Besides this static structure and the various views, a BAS is characterized by its dynamic
message exchange. Devices send and receive data by the use of a predefined communication
protocol. As the dynamic portion of a BAS technology is not as necessary as the physical com-
position for modeling such a system, it is omitted in this thesis. If the network is finally modeled
and a generated code is running on a gateway server, the data exchange and the communication
protocol will come to the fore again. Then, the gateway must be able to communicate with the
connected network, but the user (machine or human) behind the interface is only faced with the
datapoints, devices and their different views. Therefore, the consideration of dynamic behavior
is out of focus.

27

Management level

N
Building management system |N\S
o

S

Backbone

Automation level

HVAC controller

Switching actuator

N Switching actuator Switch panel L
\ Humidity sensor | |
Temperature sensor

Field level

S e e e e e e e e e e e e o e e s e o e e e = = =)

Figure 3.7: Sample automation network

Although the constructed metamodel for BASs (BAS metamodel) should be as general and
abstract as possible to enable the mapping of lots of different BAS technologies and standards,
the construction of this metamodel is inspired by the KNX technology. However, the expressive-
ness and universality of the defined modeling language should not be restricted. This approach
combines the concept of KNX with general and abstract considerations about the fundamental
structure of BA networks.

Since it is known, what has to be modeled, it has to be decided, ~ow a metamodel for this
model can be defined. The metamodel must include the network with all its relevant information
in addition to the concepts for modeling metadata (e.g. types and units).

3.3.1.1 Network structure

The network itself is the root element of the entire model. Therefore, it is also the main class
in the metamodel. The network comprises a list of devices and each device contains several
datapoints. In terms of generalization, these two lists of devices and of datapoints are included
separately. Thus, the metamodeling concept enables the modeling of datapoints in a system
representation without providing information about the hosting devices. The link between a
device and its datapoints is realized by a reference from a device to a datapoint. Although the
definition of devices is universally applicable, the more generalized term entity is used from now
on. Entity is a more abstract denomination than device.

After adapting the metamodel to integrate entities and corresponding datapoints within a
network, the actual ropology can be modeled. In KNX, the top element of the topology is a

28

backbone line which can contain up to 15 areas of which each one can be composed of one main
line and up to 15 lines. The lines can include 255 devices besides the coupler [37]. Thus, the
topology is hierarchically structured. This hierarchy of areas, lines and devices is generalized in
this approach. The topology structure consists of areas. Each area can consist of subareas in a
recursive manner. Hence, all possible, tree based and bus based structures can be modeled due
to this notion. Entities can be linked with every area on every hierarchy level of the topology. In
comparison to KNX, there are no limitations regarding the number of areas or linked entities in
the BAS metamodel.

With respect to the used functionality in management level applications, the network and
its components can be seen in different ways. One possibility is the categorization in domains.
Again, domains can construct a hierarchy of subdomains and each domain (e.g. a lighting do-
main) can contain a list of references to already existing entities. Thus, it is possible to combine
entities within a domain which belong together in terms of a common field of application. An-
other type of categorization is the separation into buildings and building parts. Thereby, the
entities (e.g. devices) can be organized by linking them with elements of an actual building
structure. Each (building) part has a type for characterization (e.g. building, floor, room). The
construction of buildings is the same as the construction of domains. A building part can contain
subparts, and these subparts can have subordinated parts.

All these views are focused on devices respectively entities, but the functionality in a BAS
is based on datapoints and their message exchange for reading and writing values of sensors and
actuators. Thus, the last view, which comes in mind when thinking of BA networks, is based on
the functional behavior. Similar to the other views, there exists one main structuring element,
the group, which can be used to form a hierarchical structure of multiple levels of groups. The
difference to the previous views is that groups contain a list of datapoints and not a list of
entities. An example is the group of lights and light switches in a room. It covers the particular
datapoints of lighting while other groups may contain the datapoints for heating, ventilation and
air conditioning (HVAC).

To sum up, these views in combination with the list of entities and the list of datapoints are
sufficient to support a wide range of management activities to control a particular network.

As the elements of a network contain textual descriptions, names of vendors or other texts,
a redundancy and possible inconsistency can arise. To avoid the multiple storage of the same
text, the metamodel should provide classes for storing texts only once in a set of references.
Afterwards, other elements (e.g. entities) can refer to these texts. By means of multilingual
applications, the modeling of translations is also required. A translation belongs to a single ele-
ment (e.g. naming of a datapoint) and is specified by a language (e.g. German, English). KNX
supports multilingual texts for datapoints, devices and some metadata like units and enumeration
literals. The BAS metamodel provides the modeling of translations not only for these elements,
but for a lot of other elements (e.g. areas, parts, groups) as well.

3.3.1.2 Metadata modeling

Besides the definition of modeling elements for the BA network, the metamodel has to support
the modeling of (data) types. These types are used to link raw data of the datapoints’ message
exchange with an appropriate semantic interpretation. A datapoint is supposed to have exactly

29

one type. Otherwise, it might lead to inconsistent interpretations. Two approaches for the defi-
nition of a type concept in the metamodel exist. An inheritance hierarchy can be introduced to
create even more specialized types derived from general ones. However, this approach limits the
possibility to expand the available range of types. Hence, it has to be thought of another solution
that enables for more flexibility. Therefore, a type can be defined as a container of individual
properties like an integer value, a date or a binary value. Thus, any complex data type can be
created on the model level without changing the metamodel as long as the type contains only
the available properties. The expressiveness of this concept is further examined in Section[3.3.2]
Another advantage of this second, more flexible approach is the definition of complex param-
eters as input and output types of operations. Otherwise, these parameters would be limited to
the metamodel types, as well.

Some of the type properties like an integer or real value need a unit. The raw value of
a datapoint is useless without a unit. Otherwise, it is not known whether this value is e.g.
a temperature in K or a distance in m. Therefore, units have to be defined in the modeling
language of BASs. They contain an offset value, a scaling and a dimension (e.g. m?).

The meta-metamodel already enables the definition of enumerations on the metamodel layer,
but this definition will not be available in the models on level M;. Thus, classes for enumerations
have to be created in the metamodel corresponding to them in the meta-metamodel.

3.3.2 Metamodel composition

The previously mentioned considerations result in a metamodel which is presented in detail
in this section. The metamodel is designed to model BASs independent from a specific BAS
technology and a subsequent integration technology. The complete metamodel is illustrated in
Figure The whole set of classes can be roughly grouped in a few main parts.

The figure shows a flat inheritance hierarchy with the class element as superclass. The
attributes id, name and description are needed in many classes throughout the model.
Therefore, these attributes are merged in an abstract superclass. Derived classes can be iden-
tified by the attribute id. For multilingual support the class element refers to the class
translation. Thus, a translation text for the attributes name and description can be
stored for different languages.

One of the derived classes of element is unit with the additional attributes symbol,
offset and scale. Modeled units are a form of metadata to provide semantic information
for some type properties. Each unit is expressed in terms of the International System of Units
(SI) to enable conversions between various units. The seven SI units are integer attributes of
the class dimension whereby the values of these integers represent the exponents of the SI
units in this particular BAS unit. A current scalar value in a given unit can be normalized by the
equation Tpormal = Teurrent * Scale + offset [49]. Additionally, a unit can contain translations
since it is an ordinary element.

The diagram defines a few enumerations which can be used as attribute types in the meta-
model. Additionally, it provides classes for designing custom enumerations. The former are
listed on the right hand side of the figure. Translations need the enumeration enumLanguage,
which specifies the supported languages, and enumTranslation, which defines the trans-
lated attribute of an element. The others are discussed later on in this section. On the other

30

BAIRal —
puas -

0323ULOOWNUR 5|
< <uonesswnua> >

pauyepun —
SHOMUOT —
PUdVE -
XNX =

plepuelswinus =

< <uoneIBWNUS > >

piepuUBISWINUS © pIepuess &

Homisu 7

10123UUODWINUS © J0}BUUD &

dnoigssuelsul

surewiop

SUlEWop s
ulewop

ewo| o
ulewop .0 sannus

aouesul

0
[]
ewogadueisul 7

JU[3 : ssaippe g,

esiyadueIstl B [vegeduesul

fnua

uondinsap —
sweu _

pajqesip -
pajqeus -

pajqeuzwnus
< <uonessWNUD> >

Ruongwnus &

l< <uonessWNUS > >|

pjeoguonnquisiqg -
10pLIo) —

wooy -
Remueys —

Hequinue 5,

<<uonessWNUd> >

Ny ni—
Yo~
INT -
Maep -
I5As -
ONqu -
arp! -
RERVE
S37se
igiie
snud -
N3 us —
3q°p -

sbenbueTwinus =

< <uonesswnua > >|

adA eipaw
saduaIajal

Anua Anua

Anua

uonouny

julodeiep

Jainpejnuew

0

| buis3 : IBqUINNIBPIO o

fnvs

1 170 syuiodejep

S

pajqeu3wnua : ajqerepdn
pajqeuIWNUS : d|qeIIWSURL
pajqeuzwnua : ajqepeal
pajqeuIwNua : 3|qelm
pajgeuzwWnUB : UOHEJIUNWWIOD
Aoudwnua : Auoud

0-00-0 00

Juioderep

syuiodeiep F

Ju@Eienes 5 | 0

Jesay|

BuriS3 - anjen

Juiodejep B

juiodelep

juaied

i

uoneisdo [

20 Buins3 - uondisap = ————
uole|sueI[WNUS : dINqLne & Buis3 : sweu I
aBenbuetwnua : abenbue| 3, | UOHEISUS TBuns3 i s | vonemp g |

1S3 1Pl
uonejsuen g wewap B
3|gnog3 : xew %,
a|anogs : uw &
ur3 : ypbusy &
= SuBWNU M3 - bRl 4
=
= 1o 160133 935 =
| uoneawnus [| = 120|431 13540 o JUE XeW «H_
o | uoisuawip 5 W[E L uw
= Jebayul {
=
uolsusawip m

uonesawnua

BAS metamodel

Figure 3.8

31

[Y S

N O R W N =

hand, custom enumerations (enumeration) contain a list of literals (1iteral), and each
literal has an integer value which links the textual description with a machine readable value.
In addition, an OCL invariant is introduced to enforce nonambiguous literal values. Listing[3.1]
shows this invariant in lines 4 and 5.

class enumeration extends element
{
property literal : literal[*] { ordered composes };
invariant unique_literals:
self . literal —>forAll(el, e2 | (el <> e2) implies (el.value <> e2.value));

Listing 3.1: OCL invariant for enumeration literals

In the upper left corner of the diagram the classes for defining data types are located. The
class type has an association to itself which enables the creation of type hierarchies. The OCL
invariant in Listing [3.2] prevents a type from self-referencing. As many other classes in this
metamodel, a type is derived from the class element. It is a container for various properties,
so that any complex data type can be designed by this language construct. Property is an
abstract class with a name and has many subclasses representing various concrete property
types. This set of special properties is approved by the KNX datapoint types. Any datapoint
type of the KNX specification can be mapped to this concept. It would be also possible to use
an enumeration attribute in the class property to define the type of the property. But this would
not allow individual attributes in particular properties, e.g. the attribute 1ength in the property
class text. A special case is the property class operation which can contain references to
input and output parameters (in and out). Besides a few simple property classes, there exists
the class encoding which contains a reference to an enumeration. Based on this, data types
can be linked with enumerations, e.g. to specify the semantics of a status byte or the meaning of
a binary value (e.g. literal on corresponds with binary value true). Last but not least, the classes
integer and numeric define a permitted range via the attributes min and max, and they
refer to the class unit.

class type extends element
{
property parent : typel[?];
property property : property[x] { ordered composes };
invariant self_parent:
self . parent <> self;

Listing 3.2: OCL invariant for type hierarchy

The key elements of the BAS metamodel are the network itself, datapoints, entities and
the other views. Initially, the root element of every BAS is represented by the class network.
Again, a network is inherited from el ement. Additionally, it provides the attribute standard

32

of the type enumStandard to define the BAS technology of the current network. The network
refers to further BAS classes. First, the class datapoints contains a list of datapoints due
to an association to the class datapoint. This is the main entry point for functionality of
a BA network. Each datapoint refers to a type and is inherited from the class element. The
following enumeration lists the attributes of a datapoint. The given flags are mostly derived from
the KNX communication flags [25]], but can be applied to other particular technologies or to a
more general BA network.

e Priority states the communication priority with the available values 1ow, high and
alert which are defined in enumPriority.

e Communication is used as the main flag for activating or deactivating the communica-
tion to and from the observed datapoint. All following flags, including this one, are of the
type enumEnabled, and thus they allow the values enabled and disabled.

e Writable enables for changing of datapoint values by receiving appropriate messages.
e Readable, on the other hand, allows reading of datapoint values.

e Transmittable is used to permit the datapoint to send messages on the communica-
tion medium.

e Updatable will be set (i.e. enabled), if the datapoint has to react to responses on read
requests of other communication partners.

Furthermore, the network contains a list of all integrated entities accessible via the class
entities which is a container of instances of the class entity. The specific information
for entities is located within this class (e.g. orderNumber) or is linked by associations (e.g.
manufacturer). Each entity can relate to a number of datapoints. In addition to the list of
datapoints and entities, the network includes four other views. First, the view domains com-
prises of a hierarchy of domains and subdomains realized by the class domain and a contain-
ment association to itself. Besides this hierarchical structuring into various areas of application
(e.g. HVAC, lighting), every domain on every level of this tree can contain one or more in-
stances (instanceDomain) which refer to an entity. Second, the building view is hosted in
the class building and its subordinated class part. Similarly to the domains view, hierarchi-
cal structures can be composed of parts and each part can have instances referring to an entity
(instancePart). This view represents the location of the entities (e.g. devices) within a
building. Building parts are characterized by the attribute t ype which allows values from the
enumeration enumPart (e.g. building, floor, room). Third, the network topology is illustrated
by the view topology. As it can be seen in the metamodel figure, a tree structure can be com-
posed by means of the class area. A necessary property of an area is its physical subaddress
(address) relating to its integration in the topology hierarchy. The class instanceArea
embodies the instances of areas which contain an address and are linked to entities. Fourth,
the categorization of the network in functional terms is covered by the view functional.
The structuring element is the group, but unlike the other three views, instances of groups

33

(instanceGroup) refer to a datapoint and not to entities. In order to provide functional ac-
cess to the network already at the group level, a reference to a datapoint (function) has to
be embedded in a group. In addition, the attribute connector of type enumConnector de-
scribes the type of participation of a datapoint in a group, i.e. it is a sink of the group (receive)
or a source (send).

Besides these already mentioned views and lists, the network comprises the references.
This class contains a list of reference. Thus, textual information can be stored consistently
and free of redundancy. Other classes can have links to a reference like the manufacturer infor-
mation of an entity.

To avoid restrictions to the design process of a BA network, this metamodel refrains from
creating additional OCL constraints. Therefore, a high level of abstract and universal modeling
is provided.

3.3.3 Model creation

The BAS metamodel on layer My of OMG’s modeling stack defines the modeling language
for the creation of BAS models on the next lower level. This section shows a few examples
how the BAS metamodel can be used to build different models in order to map an entire BA
network. Before a network can be successfully modeled, the relevant meta information has
to be constructed. A real network needs elements like units, data types, parameter types or
enumerations. Appropriate units and enumerations support the implementation of complex and
extensive types.

First, Listing [3.3] illustrates an XMI serialized model of a BAS unit which is also used in
the implementation and evaluation part of this thesis. This textual representation facilitates a
standardized information exchange while graphical visualizations offer a much easier interface
for editing such models. Units are multilingual elements that contain an optional dimension
expressed in SI units. The stated example shows a unit for degree Celsius values with the SI
unit Kelvin and an offset value of —273.15 refering to the basic unit. Moreover, the unit has
a German translation for the attribute name. The translation tag does not show an attribute
for the language and the translated attribute because de_DFE and name are the default values of
their particular enumeration. Thus, the default value of an enumeration is the topmost literal.
The namespace reference http://auto.tuwien.ac.at/bas links the model to the BAS
metamodel.

<?xml version="1.0" encoding="UTF-8"?>
<bas:unit xmlns:bas="http://auto.tuwien.ac.at/bas" id="celsius"
name="temperature (°C)" description="" symbol="°C" offset="-273.15">

<translation value="Temperatur (°C)"/>
<dimension K="1"/>
</bas:unit>

Listing 3.3: BAS unit model

Second, an example of an enumeration is examined in Listing [3.4] It is important to distin-
guish between an enumeration of the metamodel and an enumeration on the model layer which

34

is based on the metamodel’s class enumeration. This example describes the possible types
of a building part, i.e. each literal represents a permitted characteristic. Alongside, every literal
has a unique integer value given in the correspondent attribute.

<?xml version="1.0" encoding="UTF-8"?>
<bas:enumeration xmlns:bas="http://auto.tuwien.ac.at/bas" id="part"
name="Part">
<literal id="building" name="Building" value="0"/>
<literal id="buildingpart" name="Building Part" value="1"/>
<literal id="floor" name="Floor" value="2"/>
<literal id="stairway" name="Stairway" value="3"/>
<literal id="room" name="Room" value="4"/>
<literal id="corridor" name="Corridor" value="5"/>
<literal id="distributionboard" name="Distribution Board" value="6"/>
</bas:enumeration>

Listing 3.4: BAS enumeration model

Third, Listing [3.5] shows a data type example. Here, the KNX datapoint type DPST-9-1 for
temperature values is modeled in terms of the BAS metamodel. As outlined in the previous
section, data types are hierarchically organized, and therefore this example type has the KNX
parent type DPT-9 which is located in a separate model in the file dpt_9.bas. As the type
is used for temperature values, only one property of the type numeric is needed to cover the
necessary functionality. The already presented Celsius unit is linked with this property via the
attribute unit. Additionally, the range of the value and a proper name can be modeled.

<?xml version="1.0" encoding="UTF-8"7>
<bas:type xmlns:xsi="http: //www.w3.0rg/2001/XMLSchema—instance"

xmlns:bas="http: //auto.tuwien.ac.at/bas" id="DPST—9—1" name="Value Temp"
parent="dpt_9.bas#DPT-9">
<property xsi:type="bas:numeric" name="value" min="-273.0" max="670760.0"
unit="../../ library/unit/celsius.bas#celsius"/>

</bas:type>

Listing 3.5: BAS type model

Finally, a network can be built using the evaluated metamodel and the introduced models for
meta information. Figure[3.9)visualizes the BA network Office with its child nodes for the views,
the list of entities and the list of datapoints. The functional view is exemplarily expanded to show
the feasible construction of groups and subgroups. Entity instances can be seen as leaves of the
group Light on/off. Subsequently, Listing gives an excerpt of the network model, showing
an entity with two associated datapoints (datapoints) as XMI serialization.

All in all, the metamodel allows the construction of a huge set of models including libraries
for meta information or various networks of BASs.

35

4 < network Office
. == datapoints
. 4y entities
4 < functional
4 < group All component
< group Sun Blind
4 < group Light
a4 < group Light on/off
<+ instance Group send
4= instance Group send
» <= group Light Dimming
» < group Light on/off Dimmer
» <= group Light Status
+ <4 group Temperature
» == group Other
» == group Buttons
» 4 topology
- 4 building
== domains
. 4= references

Figure 3.9: BAS network model

<entity id="P—-0341—-0_DI—11" name="Temperature Sensor N 258/02"
description="Productinfo — see file: 2581ab02_tpi_e.pdf"
orderNumber="5WGl 258—1AB02" manufacturer="#M-0001"
datapoints="#5F/E_O—-0_R-2 #5F7E_O—-1_R-3">
<translation language="de_DE" attribute="name" value="

Temperatursensor N 258/02"/>
<translation language="de DE" attribute="description" value="
Produktinfo — siehe Datei: 1258 ab02_tpi.pdf"/>
</entity>

34

The concept of MDA introduces a PSM besides the PIM. In this thesis, oBIX is used as target
technology for the integration of BASs. Therefore, the metamodel for the platform specific
language is designed in accordance with the oBIX concept. The subsequent section describes
the modifications of to the 0BIX object model in order to achieve the requirements of the already

36

Listing 3.6: BAS entity model

Metamodel for oBIX

introduced BAS metamodel. Similar to the metamodel for the PIMs, the correct use of the oBIX
metamodel is examined in Section[3.4.2)

3.4.1 Adoption of the oBIX object model

In Section [2.2.2] the oBIX standard and its underlying object model launched by the OASIS
were introduced. The approach of this thesis is based on the Committee Specification Draft
02 of oBIX version 1.1 from December 2013 [49]] which is shipped with an XML Schema as
machine readable documentation. While integrating this object model in the MDA scheme, a
few changes have to be made. For instance, the standard XML data types used for specifying the
attributes of the various classes are not applicable anymore. The following itemization describes
each implemented modification of the original object model:

Additional attributes for the class Ob 7 have to be created. These attributes are readable,
transmittable and updatable which correspond to the flags of a datapoint in the
BAS metamodel together with the already existing flag writable. If these attributes do
not exist in the intermediate platform specific metamodel, information will be lost on the
model layer between the PIM and the final program code. Although it is possible to add
these extra flags as child objects of type Boo1l, they are attached as attributes to be in line
with the flag writable.

Renaming is necessary for the attribute href in Ob j, as the validation mechanism of the EMF
tools is not able to distinguish between the XML attribute and the homonymous attribute
of the oBIX object model. Attempts to add an explicit namespace information indicating
the particular attribute have failed, and thus it is indispensable to rename hre £. Therefore,
the name uri is chosen.

Data types in XML are not the same as in the used MDA tool chain. Hence, these types have to
be mapped to available simple or complex data types. For instance, the type duration
has to be replaced by the custom type EDuration. More details relating to these data
type changes are extensively discussed in Chapter 3]

Naming of classes is slightly modified. AbsTime and RelTime are written in camel case,
but the used oBIX gateway implementation needs Abst ime and Relt ime as notation.
However, this is just a marginal change and does not influence the functionality of the
MDA approach in any case.

Missing attributes are the result of some inconsistency in the oBIX specification. While the
class diagram and the XML Schema omit the attribute tz for the time zone in Time
and Date, the textual description and former versions of the specification mention this
attribute. Similarly, the attribute of in class Re f, which specifies the type of the objects
contained in a referenced list, have been lost in this specification. In order to provide a
complete metamodel, these attributes are integrated in the oBIX metamodel.

37

Besides these adaptions the object model is directly transferred to a metamodel conforming
to the MOF meta-metamodel. The result is shown in Figure [3.10] As it can be observed, the
similarity to the object model from Section[2.2.2.1]is obvious.

The overall superclass Obj defines a set of attributes for its identification and additional
description. The attribute name in combination with uri is used to allocate an object inside
a set of oBIX objects. Additionally, the contract respectively the list of contracts is stated in
the attribute is (see Section [2.2.2.2). Human readable descriptions are given in the attributes
display and displayName corresponding to the attributes name and description of
the BAS metamodel. The meaning and use of further attributes can be found in the oBIX speci-
fication [49]. Last but not least, the class Ob j has a containment association back to itself which
enables the creation of a hierarchy of objects.

All other classes are derived from this superclass, and thus inherit its properties. Alongside
the previously listed modifications, no further changes are made to these subclasses. Their
descriptions can be found in the oBIX specification, as well. In the upper left corner of the
oBIX metamodel, the enumeration status with all possible status values is modeled. This
enumeration is implemented in accordance with the underlying object model. Right next to it,
six custom data types are introduced to cover the XML data types from the original object model.
As a matter of fact, simple data types from the MDA implementation’s tool chain can be used
instead, but custom types provide more flexibility for additional functionality or restrictions. For
example, the type EUr1i is the counterpart of XML’s anyURT to store a URI. In most cases,
a simple character string would be fine. However, with the custom type, it is possible to check
the correctness of a given URI or to guarantee the uniqueness of such an identifier. Similar
considerations are the reasons for the remaining types.

Whereas the BAS metamodel is specifically tailored for BASs to model BA networks, the
oBIX metamodel defines a very general modeling language. While the former has separate
classes for the different views, entities and datapoints, the latter combines them into a small
set of common classes. The focus of the oBIX object model respectively its metamodel lies
on the uniform integration of heterogeneous information in a gateway technology to provide
easy access to the resources. As the name already says, a PSM conforming to an appropriate
metamodel focuses on the final target technology.

3.4.2 Metamodel utilization

Within this section, the creation of models based on the o0BIX metamodel with the main focus on
BA networks is discussed. There are multiple ways of modeling the same information in 0BIX.
It is the designer’s decision which object structure is the most suitable for a certain purpose.
In this thesis, the structure of the PIMs based on the BAS metamodel is retained as much as
possible. Therefore, the PSMs can be generated much easier. The following listings give brief
clippings in XMI of an oBIX model which has been generated from a PIM.

First, the root of a BA network is shown in Listing[3.7] It corresponds to the class network
of the BAS metamodel and contains the same information as its platform independent coun-
terpart. Due to the limitations of oBIX, attributes become separate objects (e.g. standard).
Likewise, associations and containments cannot be modeled directly, but need the concept of
oBIX references. Such a reference of the type Re £ is the link to the list of entities (entities).

38

uN3:a o
QW] XeW =
CIUTE RIS

suil g

EIECNE]
N3z o
awialeds : Xew =
awijajedy U o

sunsqy

21ed3: [eA o
un3in o
91eQ3 I XeW o
P1egy i ulW o

91ed B

buis3 i en o
[T Xew o
Wi U =

ues|00gl : [eA o
N3 : abues o

e

1008 £

s|qnoQ3: [eA o

UA3 HUN o W [eA o

uoneindy: |eAn o 3 : uoispaud = un3 1 uun o

uoneingy : Xew = bumsy:|eA o s|qnoQ3 : xew = I3 Xew =

uonein@gy: U = HN3eA = N3 : 9buel o a|qnoQ3 : Ul = W[EUW o

SWnPY 0 4n H wnu3 g =G| WIE
1DeIU0DT 0 o
1OBIUO0DT 1IN0 o [T Xew = 1DBIU0DI 1 J0 o
1PRIUODT Ul o W[E W o ﬂ 1PBIU0DT IO o 1enuody :
do g ISlE] [B | G P34 H
[TTTT
MMM
uesjoog] : a|qelepdn o USPPLISAO —
ues|oog] : d|qenIwsuRl) o payeun -
1189|0083 - dqepes! = - SEAT uoneingadArxiqo <<ssepeael>>| wiee -
ues|00g3y : d|geIIM — N'2dAYXiqo < <ssepoenel> >| oull]91eQ'adAYXIqO <<ssepeAel> 2 - . wiejypasyoeun —
SN1LISWINUS : SNJRIS = un3a g 191ed3 & voneindi & umop —
ueajoogy : |INu o <<adferep> > <<adfieiep>> <<adferep>> yney -
bulnsy : sweu o pajqesip —
PeRUODI ISl =) auwi]adAYXiqo <<ssepeael>>| 91e@2dArXIqo <<ssepeAel> 10e1U0)2dAYXIqo < <ssepeael> > A0 -
U3 D Uod! = EIER=! BCER=! Penuod3 g snieswnue z
un3 i un o <<adferep> > <<adAerep> > <<adAerep> > <<uonesdwnua> >
burinsy : sweNAe(dsip o 0
o

bulinsy : Aejdsip

lao B

Figure 3.10: oBIX metamodel

39

—_

8]

—_

o

w

oo 3

By following the relative or absolute URI of a reference (attribute ur i), the actual object can be
addressed.

<Obj uri="/networks/office" displayName="Office" is="bas:Network"
name="P—-0341">
<Obj xsi:type="obix:Enum" uri="standard" name="standard"
range="/enums/standard" val="knx"/>
<Obj xsi:type="obix:Ref" uri="datapoints" is="bas:Datapoints"
name="datapoints" />
<Obj xsi:type="obix:Ref" uri="entities" is="bas:Entities" name="entities"/>
<Obj xsi:type="obix:Ref" uri="functional" is="bas:Functional"
name="functional "/>
<Obj xsi:type="obix:Ref" uri="topology" is="bas:Topology" name="topology"/>
<Obj xsi:type="obix:Ref" uri="building" is="bas:Building" name="building"/>
<0Obj xsi:type="obix:Ref" uri="domains" is="bas:Domains" name="domains"/>
</Obj>

Listing 3.7: oBIX network model

Second, Listing [3.8] illustrates a model of an entity. Here, the entity is a temperature sen-
sor with two child objects of type St r defining the manufacturer name and the order number.
Moreover, the entity contains a list of datapoint references indicated by the list’s of attribute
(obix:ref bas:Datapoint). These references are of type Ref and point at real datapoint objects
which reside under the given URL.

<Obj uri="/networks/office/entities/temperature_sensor_n_258_02/1"
displayName="Temperature Sensor N 258/02" is="bas:Entity"
name="P—0341—-0_DI—-11">
<Obj xsi:type="obix:Str" uri="manufacturer" name="manufacturer"
val="Siemens" />
<Obj xsi:type="obix:Str" uri="orderNumber" name="orderNumber"
val="5WGl 258—-1AB02" />
<Obj xsi:type="obix:List" uri="datapoints" name="datapoints"
of="obix:ref bas:Datapoint">
<Obj xsi:type="obix:Ref" displayName="Temperature , Channel A"
uri="/networks/office/datapoints/temperature_channel_a/l" is="
bas:Datapoint" name="P—-0341-0_DI—-11_M—-0001_A—-9814—01-5F7E_O—0_R—-2"/>
<Obj xsi:type="obix:Ref" displayName="Temperature , Channel B"
uri="/networks/office/datapoints/temperature_channel_b/1" is="
bas:Datapoint”" name="P—0341—-0_DI—11_M—-0001_A—-9814—01—-5F7E_O—1_R-3"/>
</Obj>
</Obj>

Listing 3.8: oBIX entity model

Finally, the modeling of a datapoint is examined in Listing[3.9] As already known, datapoints
host the device functionality of a BAS. In the PIM, a datapoint has a type which is linked to the
datapoint by a reference. On the contrary, the oBIX model includes the properties of the type as
child objects directly in the datapoint object (value, encoding). The is attribute shows a

40

—_

W N

~

list of contracts representing the inheritance hierarchy of this particular datapoint. At this point,
it should be noted that the contract prefix bas has nothing in common with the namespace of
the BAS metamodel, but should clarify the type of the object as an element of BASs.

<Obj uri="/networks/office/datapoints/switch_channel_a/l1" display="On/Off"
displayName="Switch, Channel A" is="bas:DPST—-1-1 bas:DPT—1 bas:Datapoint"
name="P—0341—-0_DI-3_ M—0001_A—9803—03—3F77_0O—3_R—4" writable="true"
transmittable="true" updatable="true">
<Obj xsi:type="obix:Bool" uri="value" name="value" null="true"/>
<Obj xsi:type="obix:Enum" uri="encoding" range="/encodings/onoff"
name="encoding" null="true" />
</ Obj>

Listing 3.9: oBIX datapoint model

41

CHAPTER

Transformation process

The following chapter deals with the horizontal interaction of the individual models on the sec-
ond lowest layer of the modeling stack, M; (see Section [3.1)). In short, it describes the process
from modeling of the BAS to the final generation of executable program code.

4.1 Workflow description

While the previous chapter outlines the static aspects of MDE, the following sections discuss the
dynamic issues, i.e. the workflow steps between the particular MDA models and metamodels.
The approach considers three distinguishable phases:

1. The network modeling represents the stage of mapping the BAS to a machine readable
model. Whether this step is executed automatically by using data from a BAS engineering
tool, or the system integrator builds the model by hand, does not matter. The important
thing is the resulting BAS model.

2. The model transformation translates the PIM into a PSM. In contrast to the network
modeling, this step is realized by the support of MDA mechanisms.

3. The step code generation converts the PSM into executable program code. Again, the
generation is not done manually. Instead, the available MDA tools are utilized for imple-
mentation and execution.

These three steps are highlighted in Figure 4.1| which depicts a cutout of the overview from
the introduction (see Chapter[I)). Admittedly, it would be possible to develop a transformation
in one step. For instance, the data from the BAS engineering tool are transformed directly into
source code. However, this will amongst others dramatically limit transparency, extensibility and
reusability. Section already pointed out the advantages of a model-driven approach. More-
over, it has already been outlined why a separation between PIM and PSM is highly preferable.
Therefore, a transformation process conforming to the MDA initiative is chosen.

43

~——— Model-Driven Architecture ~N

(2) Mmodel transformation (3) code generation

- |

. ' J
(1) Network modeling \J

Figure 4.1: Transformation workflow

Each process step describes a set of rules and operations to convert input into desired output.
The workflow is located in layer M; of the modeling stack. Transformations are performed in
horizontal direction between models written in different modeling languages. Due to the taken
approach, intermediary results exist before the final program code is generated. These inter-
mediaries are both output of the previous transformation and input for the subsequent process
step. Thus, the workflow represents a chain of single steps from the initial BA network to the
executable source code. Except for network modeling, the other workflow steps can be realized
in accordance with the MDA concept. As soon as the BAS exists as PIM, it can be automatically
processed until it is finally integrated into a WS gateway. The network modeling depends on the
available BAS engineering tool and the preferences of the system designer.

All in all, the developed MDA approach substantiates Hypothesis [2] (see Chapter [I)), as it
can be read in detail in the following sections. The BAS as the workflow’s input is transformed
stepwise. Finally, the network is integrated into a WS gateway. The theoretical concepts in this
chapter are supplemented by an implementation in Chapter [5

44

4.2 Network modeling

The initial position can be described as a combination of various sensors, actuators and other
components that form a BAS. In most cases, access to the system is considerably restricted,
hence it is only possible to manage the network with special (proprietary) software tools. Based
on this existing, local network, the overall objective of this thesis is to enable remote access via
an interfacing technology. The BAS services should be available via a general interface, and
modeling of the network is the first step to integrate it into a model-driven approach for further
processing. In short, the BAS is the input of this step while its representation as model is the
desired output. The transformation can be realized either by manual modeling or by a tool based,
automatic generation. Both approaches are discussed in the following two subsections.

4.2.1 Manual approach

The whole MDA process is based on DSLs and the overlying meta-metamodel. For manual
modeling of the network, the starting point is the BAS metamodel. The instances of this meta-
model, the PIMs, are technology independent representations of the real BAS. A designer’s task
is the constitution of the network topology and all its connected devices in the form of such a
PIM. In this case, this is done manually. Therefore, the designer uses a visual editor or a text edi-
tor to create the model objects. This way of network modeling is chosen, if no machine readable
data of the underlying network are available.

Within the limits of the metamodel, the designer has a lot of options for mapping the BA
network. The focus of the successive BMS largely influences which elements of the actual
network are represented in the model. For instance, if a remote BMS does not need information
about the partitioning of the building in different parts, recording of the building view in the PIM
will not be required. On the other hand, if the BMS provides a service for measuring the energy
consumption of a particular domain (e.g. lighting), the relevant view should be implemented.
In Section[3.3.3] it was already outlined how modeling by means of the BAS metamodel can be
achieved.

4.2.2 Automatic approach

Besides manual implementation of a PIM, an automatic approach via a computer-based trans-
formation can be chosen. In this case, machine readable information about the network structure
and its components needs to be available. One way of receiving relevant information is the uti-
lization of data from a BAS engineering tool. If this software offers an export interface, network
information can be extracted and processed.

For example, KNX systems can be constructed by means of the Engineering Tool Software 4
(ETS4) [[19]]. This application exports the BAS data as XML files that conform to a given XML
Schema. As already pointed out, this thesis relies on a KNX network to evaluate the developed
model-driven approach (see Chapter [6). In this context, an automatic transformation script for
network modeling has been built based on the BAS metamodel and the KNX XML Schema.
Available information is mapped to a model conforming to the BAS metamodel by the use of
XSLT.

45

Conforms to

[

Meta-metamodel
M;
£ ™~
————————— Conforms to- — — — Conforms to- — — — Conformsto- ————————— — — — —
Metamodel

oBIX M,

- — -Conforms to- — — — Based on— — —Conforms to— — —Based on — — — — Conformsto— — — — — — —
Model

oBIX M,

Input — — — - Executed— — — — Output-——————————— — — — — —

Figure 4.2: Model transformation from BAS to oBIX

It seems that only automatic realization of the network modeling is consistent with Hypoth-
esis [2] which speaks about a fully automated transformation process. However, this first step is
only the initial activity while the actual MDA approach starts more or less with the existence of
a PIM. Thus, manual modeling of the network does not refute the stated hypothesis.

4.3 Model transformation

The second step in the integration workflow is the transformation from the PIM to the PSM. In
terms of MDA this is also called M2M transformation [7]. As already outlined (see Section [3.3),
the PIM is the model conforming to the BAS metamodel. On the other hand, the PSM is the
model conforming to the 0BIX metamodel. According to Jouault et al. [30], Figure }.2] visu-
alizes the involved process components. In the figure, these are embedded in the well-known
modeling stack, whereas the transformation and its metamodel are located between the source
(BAS models and metamodel) and the target (0BIX models and metamodel). The execution on
layer My has a BAS model as input. The transformation rules of layer M7, which conform to the
transformation metamodel, modify the input data and create an output model. In this workflow,
the output model represents a BA network in terms of the oBIX modeling language.

46

The aim of this process step is the translation of information from a platform independent
representation into a technology specific syntax for further processing. MDA enables the op-
portunity to change the target platform by simply replacing the transformation’s output model.
For instance, OPC UA can be chosen. Therefore, the transformation must generate an OPC UA
model of the BA network. These changes will not affect the original PIM due to the separation
of the workflow into distinct phases. In summary, this M2M transformation creates platform
specific objects of the underlying BAS by means of appropriate transformation rules.

The following subsections outline the addressed transformation in detail. First, the devel-
oped conversions are discussed in a general way (transformation rules) relating to the M layer
of the modeling stack that contains the metamodels. Each visualization shows a cutout of the
BAS metamodel on the left hand side and the corresponding part of the oBIX metamodel on
the right hand side. Second, the concrete transformation of a BAS model into an oBIX model
(transformation execution) is presented. The execution utilizes models on the M; layer of the
stack as input and output whereby the focus is on the actual BA network parts. Therefore, the
transformation of library models (e.g. data types, units) and other meta information is mostly
omitted in the next two subsections.

4.3.1 Mapping of metamodels

In this section, various rules for converting a BAS model to an oBIX model are shown in terms
of the metamodels’ language concepts. These rules are aggregated in the item Transformation
in Figure #.2] In order to understand the first diagram, a few basic rules for translating elements
from the BAS metamodel (source metamodel) to the oBIX metamodel (target metamodel) need
to be established:

o Attributes of a class in the source metamodel are converted into child objects of the par-
ticular object in the target metamodel, if no adequate attributes in the target class exist.

e Containment associations are often resolved as a list of child objects. The subordinated
objects can be either encapsulated in an intermediate List object or added directly to the
parent object. Nonetheless, exceptions to this rule exist which are discussed later on.

e Standard associations in the source metamodel usually become Re £ objects in oBIX. In
some cases, containments are resolved as references, as well. Due to a better structure of
the overall model, the subsidiary objects are located in separate oBIX objects. They are
linked to the original parent object by an oBIX reference object.

e Abstract source classes are not directly mapped to target classes. The attributes of such
abstract classes are included during transformation of the derived classes that are not ab-
stract.

The first visualization of a transformation rule can be observed in Figure[4.3] The left hand
side displays a set of classes of the BAS metamodel as the source of the transformation while
the right hand side illustrates the needed classes of the oBIX metamodel as the target of the
transformation. Here, the transformation of element and translation is displayed. As

47

Obj ‘

element sl Obj
d EString § ._._._._._,..:.-‘.-‘3.’:55.‘_‘;wdisplay : EString
‘name : EString =" | “yrdisplayName : EString
-description : EString @ ok _Turi:EUN
| - icon : EUri
| -is : EContract
| -name : EString
0.* -null : EBoolean
7 . I___.__-_.-_.:-::-?”'"".‘ Str -status : enumStatus
____________ :_-::—-‘T -min : EInt -writable : EBoolean
-language : enumLanguage e-[.--2>-*" | -max : EInt | M.readable : EBoolean
-attribute : ?numTF?P_S_latiﬁﬁ o | -val : EString -transmittable : EBoolean
-value : EString e~ I -updatable : EBoolean
|

Figure 4.3: Mapping of element and translation

element is an abstract class, it is not transformed into an 0BIX object. However, its attributes
are needed while transforming the derived classes (e.g. datapoints). The dotted arcs demon-
strate which part of the source metamodel becomes which part of the target metamodel. Thus,
the value of the attribute id is mapped to the attribute name of Obj. Likewise, name and
description are converted to displayName and display. A special case is the oBIX
attribute uri. In dependence of the source class, this attribute is composed of 1d, name or both
attributes. The class t ranslation becomes an Ob j with three child objects of type St r due
to its three attributes. Generally, child objects are linked via the containment association of Ob j
to the parental object. At this point it has to be noted, that the value of attribute is comes from
the particular source class and is not considered explicitly in the shown figures. For instance, the
source class translation leads to the contract bas:Translation in the i s attribute.

Translations are one of the exceptions (cf. basic rule for containment associations above)
as they are not linked with the superordinated element in the oBIX model. Hence, they are
integrated completely autonomously. Subsequent transformation steps use the translation’s value
of the name attribute to establish a link between an object and its translations.

Figure 4.4 represents the mapping of the BAS’ main element, the network, and the as-
sociations to the network’s various views. A network is converted to an Obj. The attributes
display, displayName and name are filled by the attributes of element as network is
derived from element. The attribute standard becomes an Enum object in oBIX at which
the attribute range will refer to an enumeration corresponding to the enumeration of the BAS
metamodel (enumStandard). All associated views are added to the network object as Ref
objects. The class references is not included in the transformation, and therefore it is omit-
ted in the figure. The uri attributes of the Ref objects refer to the actual view objects in the
oBIX model. Consequently, a network has seven child elements, i.e. a Ref for each view and
an additional Enum to store the technology of the BA network. The Re f objects cannot be en-
capsulated in one single list because they refer to different types (contracts), and an integration
into separate lists is not necessary as the associations are only of cardinality 1:0..1. If a view

48

network ----"T[TTTTTTTTTTTT | ---------------------------------- ‘
~standard : enumStandard o - I Obj = Obj
S j -display : EString
| el -displayName : EString
0.1\/ 0.1\ | ’ ~ ~|-uri : EUri
functional| | |datapoints . 0- -icon : EUri
...) — o | ' é Enum -is : EContract
__________________ | _range : EUri -name : EString
0.1\/ 0.1\/ B _val :gEString -null : EBoolean
building_) topology n —{>-status : enumStatus
o -writable : EBoolean
_________ -readable : EBoolean
0.1\/ 0.1/ e e I ® Ref —{>f-transmittable : EBoolean
domains |..|-entities |.--- | -of : EContract -updatable : EBoolean
[g [s |

Figure 4.4: Mapping of network

does not exist in the network model, it will not be generated during the transformation.

One of the mentioned views is the plain list of available datapoints. Within the oBIX object
of the network, the class datapoints is mapped to the class Re f£. In addition, the list of data-
points exists as a separate oBIX object in the form of a Li st object. The of attribute’s value is
set to obix:ref bas:Datapoint because this list contains references to datapoints. Figure #.5]illus-
trates this mapping. Similarly, the transformation of the entities list uses the same pattern.
Entities become a List object containing one Re f object per entity. Thus, this transformation
part is not displayed separately.

The views building, topology, domains and functional possess a very similar structure. Espe-
cially, the three former concepts differ only in the naming of classes and some attributes within
these classes. In contrast, the functional view does not refer to entities on the instance level, but
links the groups and instances with datapoints. Figure 4.6]displays the considerations taken into
account when transforming the functional view to its oBIX equivalent.

First, the classes functional, group and instanceGroup are mapped to the standard
class Obj. Then, the two containment associations to create a tree structure of groups and
subgroups as well as the containment association for the instances are transformed to child
objects of type List. In addition, a group gets a child object for the attribute address which
is mapped to Int. Likewise, connector becomes an Enum with a URI (range) to the oBIX
equivalent of the enumeration enumConnector. Both a group and a group’s instances refer
to a datapoint. These associations are mapped by means of a Ref object. The datapoints are
located somewhere else in the model, but the references provide a link to them. The remaining
views are not illustrated as the mapping is similar. Links to the entities are also realized by a
Ref object. Moreover, the fundamental structure, i.e. a hierarchy of different levels of building
parts, areas or domains with instances on each level, is unchanged.

Generally, entities are containers for datapoints. If a container is physically existent, it will
be usually a device with an order number and a manufacturer. In Figure the mapping of

49

.

_____ Obj Obj
~~~~~~~~~~~~~~ -display : EString
e -displayName : EString
I datapoint - N -.uri EUn .
0.* 0 -icon : EUri
¢ List -is : EContract

I
.|
I
datapoint e-.___ | -min : EInt -name : EStrin
- | > g
I
I
I

datapoints e

-priority : enumPriority -max : EInt -null : EBoolean
-communication : enumEnabled -of : EContract -status : enumStatus
-writable : enumEnabled -writable : EBoolean
-readable : enumEnabled _ -readable : EBoolean
-transmittable : enumEnabled ® Ref —{>-transmittable : EBoolean
-updatable : enumEnabled -of : EContract -updatable : EBoolean

Figure 4.5: Mapping of datapoints view

such an entity to oBIX classes is visualized. First, the ent ity class becomes an Obj. Next,
the attribute orderNumber and the manufacturer name, which is stored in an instance of the
class reference (accessible via the association manufacturer), are converted to the class
Str. The references are used as redundancy-free storage for repeatedly occurring texts. Instead
of being directly transformed to a specific platform technology, the particular texts are inserted
when resolving an association to such a reference during the mapping process. Hence, the PSM
is not necessarily free of redundancy regarding text values. Finally, a Re f object is created for
each referenced datapoint. The set of references is integrated into a List.

Mapping of a datapoint is one of the most relevant parts in this context. The behavior of
a device is defined by its datapoints. Therefore, a comprehensive yet simple representation for
a datapoint in the PSM has to be found. The transformation rules applied in this thesis are
depicted in Figure As summarized in Section [3.3] a datapoint in the BAS metamodel has
one unique type. Initially the class datapoint is converted into an Obj. The values of the
flags writable, readable, transmittable and updatable of the enumeration type
enumEnabled are converted into the corresponding boolean attributes of the class Obj. In
the context of this thesis, the attributes priority and communication are not used in the
oBIX model although they can provide beneficial information for other applications.

Now, the properties of the assigned type must be added to this oBIX datapoint object. The
abstract class property has an attribute name which becomes the name of the datapoint’s
child object. The types of these objects are defined by the respective property class. For in-
stance, an operation is mapped to the Op class in which the input and output parameters are
derived from the associations in and out. The oBIX equivalent for the class bool is the class
Bool. Encoding is mapped to Enum in which the range is determined by the associated
enumeration. While integers are converted to Int, floating-point numbers (numeric)
become an instance of class Real. The attribute unit of these classes is set to the referenced
unit. As the other property classes are not used within this thesis, they are omitted in the figure.
However, Table {.T| summarizes the mapping of all property classes.

50



functionale{--="""""""" 1 -z :=;;;h.'“‘-z3‘ ‘

JI —————— % Obj
o Obj —d!splay : EString .
? | -displayName : EString
aroup aroun I o >-uri : EUri
% List -icon : EUri
p——— | min : Elnt -is EContra.ct
- o p _max : EInt - -name : EString
. -address : Eln ) I -of : EContract -null : EBoolean
0.. | —>|-status : enumStatus
T | -writable : EBoolean
instance Int -readable : EBoolean
o " |function | -min : EInt -transmittable : EBoolean
I |-max:Elnt -updatable : EBoolean
instanceGroup ¢ | -unit : EUri
-connector : enumConnector ®f-1.__ | -val : Eint
o, -“'1
o... . Ss
datapoint | "Tte. RS * Enum
01 Tl l -range : EUri
1 . -val : EString
datapoint X
-communication : enumEnabled 3 Ref
-writable : enumEnabled

-of : EContract [—

-readable : enumEnabled
-transmittable : enumEnabled
-updatable : enumEnabled

-priority : enumPriority I[ "
|
|
I

Figure 4.6: Mapping of functional view

4.3.2 Mapping of models

The general transformation rules of the metamodel classes in the previous subsection can be
applied to any BAS model on the M; layer of the modeling stack. Input models are instances
of the BAS metamodel. They represent a real BA network and are expressed in terms of the
modeling language defined by the metamodel. The output of this transformation is an instance
of the oBIX metamodel. General and platform independent information of the BAS model is
converted into platform specific terminology of oBIX. The transformation of a concrete model
is located in Execution of layer My (see Figure @) in which the transformation model (i.e. the
rules) is executed.

Similar to the last subsection, the focus is on the transformation of a BA network (e.g. data-
points, views) and not necessarily on its meta information (e.g. types, units). For simplification,
only a few examples are given to demonstrate the application of the transformation rules. The
examples are visualized similarly to the previous ones of Section4.3.1} However, the upper half
of the examples shows pieces of a BAS model whereas the lower half of the diagrams illustrates
the resulting oBIX elements as output of the transformation execution. Thus, the horizontal line

51



-of : EContract

entity e------- {
-orderNumber : EString I ° Obj
| obj [display : EString
| -displayName : EString
manufacturer | 0% -uri : EUri
-icon : EUri
! -is : EContract
| -name : EString
reference | -null : EBoolean
| -status : enumStatus
0-1 -writable : EBoolean
! -readable : EBoolean
| -transmittable : EBoolean
| -updatable : EBoolean
| r
datapoints I Str
P L | -min : Elnt
__________________ | -max : EInt
~~~~~~~~~~~~~~ l -val : EString
datapoint | —
-priority : enumPriority | o List
-communication : enumEnabled | -min : Ent
%-writable : enumEnabled | -max : Eint
ox [readable : enumEnabled | -of : EContract
-transmittable : enumEnabled |
-updatable : enumEnabled |
I Ref

Figure 4.7: Mapping of entity

can be seen as execution engine between input and output model.

First, the transformation of a network is examined. The example network Office is used for
this purpose as it represents a small KNX network. The evaluation in Chapter [6] discusses this
KNX network in detail because it is also part of the thesis’ proof of concept implementation.
The various conversion steps can be seen in Figure 4.9

In the BAS modeling language, a network is an instance of the class network and has at
most seven child elements. The class network is mapped to the class Obj. Thus, the net-
work instance becomes an oBIX Ob j. The child elements are converted into subordinated Re £
elements, but the element references is not converted into the oBIX model. Each Ref ob-
ject points to the instance of the particular view or list, e.g. the reference entities refers
to the actual list of entities. The table of properties, which is connected with the network in-
stance by the blue arrow, lists all available attributes of the Office network. While the attributes
description, name and id are inherited from the class element, the property standard
is defined in the class network. Attributes of BAS classes with corresponding attributes in the
oBIX counterpart are mapped directly. For instance, the value Office of name is transferred

52

property

-name : EString®

AN

datapoint

-priority : enumPriority
-communication : enumEnabled

.

Obj

-display : EString
-displayName : EString

-writable : enumEnabled
-readable : enumEnabled
-transmittable : enumEnabled
-updatable : enumEnabled

1
in .9
type TN operation
_’
T out -
0.1

encoding®|

enumeration

enumeration
integer o-
-min : EInte-|
-max : Elnte
unit

-offset : EFloat
-scale : EFloat

-symbol : EString

unit

numeric o~

-max : EDoublee|

-min : EDouble o

bool -

Figure 4.8: Mapping of datapoint

“bin : EContract

-uri : EUri
-icon : EUri
-is : EContract

¢-name : EString

-null : EBoolean

-status : enumStatus
-writable : EBoolean
-readable : EBoolean
~transmittable : EBoolean
-updatable : EBoolean

e Op JAN

pout : EContract

" Enum

prange : EUri
-val : EString

min : EInt

"o Int

»max : Eint
punit : EUri
-val : EInt

“&min : EDouble
‘®max : EDouble

“» Real

-precision : EInt
sunit : EUri
-val : EDouble

“e Bool
-range : EUri
-val : EBoolean

53

BAS metamodel (source) \ oBIX metamodel (target) ‘

bool Bool
date Date
datetime Abstime
duration Reltime
encoding Enum
integer Int
numeric Real
operation Op

text Str

time Time

Table 4.1: Mapping of type properties

to