
Classification of Space Based
Computing Systems

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Wirtschaftsingenieurwesen Informatik

eingereicht von

Marion Altschach
Matrikelnummer 0225184

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: A.o. Univ. Prof. Dr. Dipl.-Ing. Eva Kühn
Mitwirkung: Dipl.-Ing. Thomas Scheller

Wien, 31.03.2016
(Unterschrift Verfasserin) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Classification of Space Based
Computing Systems

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Business Engineering and Computer Science

by

Marion Altschach
Registration Number 0225184

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: A.o. Univ. Prof. Dr. Dipl.-Ing. Eva Kühn
Assistance: Dipl.-Ing. Thomas Scheller

Vienna, 31.03.2016
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Marion Altschach
Attemsgasse 5/1/107 1220 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Acknowledgements

Any attempt to list all the brilliant people who have helped me on my journey through university
and to writing this thesis would be like trying to count the stars in the heavens.Yet among these
stand four individuals whose profound impact deserves special acknowledgement and to whom
I would like to dedicate this thesis.

First and foremost I offer my sincerest gratitude to my supervisor, A.o. Univ. Prof. Dr. Dipl.-
Ing. Eva Kühn, who has supported me thoughout this thesis with her incredible patience and
knowledge whilst allowing me the room to work in my own way. Without her encouragement
and effort this thesis would not have been written or completed. One simply could not wish for
a better or friendlier supervisor.

Special thanks to Dipl. Ing. Thomas Scheller for his support, guidance and helpful suggestions.
His guidance has served me well and I owe him my heartfelt appreciation.

And my partner, Felipe Juan-Hofer, who has given me his unequivocal support throughout, as
always, for which my mere expression of thanks likewise does not suffice. Above all, I would
like to thank my mother, Renate Altschach, for her personal support and great patience at all
times .

For any errors or inadequacies that may remain in this work, of course, the responsibility is
entirely my own.

iii

Abstract

Space based computing systems have seen an increase in popularity since their first appearance
in the mid-eighties. Hence, it is no wonder that what started with Linda, which is commonly
regarded as the forbearer of this concept, has led to over one hundred modified, extended, en-
hanced or even to completely new shared data space implementations until 2016. Unfortunately,
little effort has been made in classifying and organizing the collection of space based computing
systems with the result that it is hard to know what’s out there and how one can use them for
certain requirements. This thesis introduces the most important approaches in this field with the
aim to analyze, classify and compare these shared data space implementations in the hope of
making the state-of-the-art visible.

In order to present the various space based computing systems a top-down approach has been
chosen, which will start with a high-level overview of shared data space implementations and
then work it’s way through to increasingly detailed classifications of space families and classifi-
cations after certain use cases and features.

The principal conclusion of this survey was that there is not one space based computing system
which solves all the issues like availability, transactions, asynchrony, near-time event notifica-
tion, scalability, or security equally well. But of course, it can be argued that knowing about
the various strengths and options of the single systems can help to better focus on development
and progress in order to come one step closer to the perfect “reference”space based computing
system.

v

Kurzfassung

Space based computing Systems haben seit ihren Anfängen, Mitte der achtziger Jahre, stark an
Popularität zugenommen. Daher ist es auch nicht verwunderlich, dass seit Linda, welches ge-
meinhin als die Mutter dieses Konzeptes gilt, mehr als hundert, veränderte, erweiterte oder sogar
zu völlig neue Shared data space Implementierungen bis 2016 entstanden sind. Leider wurde bis
dato wenig Aufwand in Klassifizierung und Organisation dieser Space based computing Syste-
me gesteckt, mit dem Ergebnis, dass man nicht wirklich weiß, welche Möglichkeiten es auf dem
Markt gibt und wie diese effizient für gewisse Zwecke einzusetzen sind. Diese Diplomarbeit
stellt die wichtigsten Ansätze auf diesem Gebiet vor, mit dem Ziel die unterschiedlichen Shared
data space Implementierungen zu analysieren, zu klassifizieren und zu vergleichen, in der Hoff-
nung den jetzigen Stand der Technik sichtbarer zu machen.

Um die unterschiedlichen Space based Computing Systeme in geeigneter Form vorzustellen,
wurde ein Top-down Ansatz gewählt, welcher mit einem high-level Überblick beginnt und sich
dann nach und nach detaillierteren Klassifikation nach Space Familien und Eigenschaften wid-
met.

Die Resultate dieser Arbeit zeigen, dass es im Moment nicht ein alleiniges Space based com-
puting System gibt, welches sämtliche Thematiken wie Verfügbarkeit, Transaktionen, Asyn-
chronität, zeitnahe Event-Benachrichtigung, Skalierbarkeit, oder Sicherheit in ihrer Gesamtheit
optimal abbildet. Man kann jedoch argumentieren, dass das Wissen über die unterschiedlichen
Stärken und Möglichkeiten der einzelnen Systeme, dabei helfen kann besser auf die Entwicklung
und den Fortschritt zu fokussieren, um langfristig auf das bestmögliche Space based computing
“Referenz” System hinzuarbeiten.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 2
1.3 Aim of the work . 3
1.4 Methodological approach . 3
1.5 Structure of work . 4

2 Fundamentals 5
2.1 Explanation of concepts and terms . 5

2.1.1 Distributed systems . 5
2.1.2 Space based computing . 7
2.1.3 Virtual shared memory paradigm . 7

2.2 Historical background . 8
2.2.1 Historical evolution of space based computing implementations 8
2.2.2 Historical evolution of space based computing implementations in context 12

2.3 Space based computing implementations . 20
2.3.1 Linda . 20
2.3.2 JavaSpaces . 22
2.3.3 LIME . 25
2.3.4 Triple Space Communication . 29
2.3.5 TuCSoN . 32
2.3.6 XVSM . 35

3 Application scenarios 41
3.1 Scenarios focusing on near-time-data distribution 41
3.2 Scenarios focusing on database replication . 43
3.3 Scenarios focusing on information sharing . 45
3.4 Scenarios focusing on mobility . 47
3.5 Scenarios focusing on security . 51

4 Classification of space based computing systems 55
4.1 Classification methodology . 55

4.1.1 Classification Challenges . 55

ix

x CONTENTS

4.1.2 Classification methodology and criteria catalogue 56
4.2 Classification by family . 58

4.2.1 Paradigms and visions . 59
4.2.2 Technology and standards . 64
4.2.3 Implementations, products and systems in the context of space based

computing systems . 65
4.3 Classification by operations . 71

4.3.1 Basic operations . 71
4.3.2 Extended operations . 80
4.3.3 Notifications . 83
4.3.4 Transactions . 83
4.3.5 Summary . 84

4.4 Classification by coordination concept . 87
4.4.1 Linda coordination . 88
4.4.2 First in first out . 88
4.4.3 Last in first out . 88
4.4.4 Random . 89
4.4.5 Key Coordinator . 90
4.4.6 Coordination with hashtables . 90
4.4.7 Summary . 90

4.5 Classification by substructures . 95
4.6 Classification by data type . 97
4.7 Classification by extensibility . 99
4.8 Classification by security . 104

4.8.1 Summary . 109
4.9 Classification by life cycle management . 110

5 Conclusion 115
5.1 Summary . 115
5.2 Latest developments in the area of space based computing systems 120

A Glossary 125
A.1 Apache River . 125
A.2 AspectKE* . 125
A.3 AutoevoSpaces . 126
A.4 B-Linda . 126
A.5 BaLinda K . 127
A.6 BaLinda Lisp . 127
A.7 Bauhaus Linda . 128
A.8 BISSA . 128
A.9 Blitz . 129
A.10 Blossom . 130
A.11 Bonita . 130
A.12 C-Linda . 131

CONTENTS xi

A.13 C++ Linda . 131
A.14 Comet . 132
A.15 Corso . 133
A.16 Crudlet . 133
A.17 D-Tuples . 134
A.18 DepSpace . 134
A.19 dRuby and Rinda . 135
A.20 EgoSpaces . 135
A.21 Eiffel Linda . 136
A.22 eLinda . 136
A.23 Encrypted Shared Data Spaces . 136
A.24 Entangled . 137
A.25 Erlinda . 137
A.26 Fly Object Space . 138
A.27 Forth-Linda . 138
A.28 Gaia . 139
A.29 Geo-Linda . 139
A.30 GigaSpaces . 140
A.31 GLinda . 140
A.32 Globe . 140
A.33 Grinda . 141
A.34 Gruple . 141
A.35 GSpace . 141
A.36 Helios Tuple Space . 142
A.37 Heterocera . 142
A.38 HTML Page Spaces . 142
A.39 Info Spaces . 143
A.40 Jada . 143
A.41 JavaSpaces . 143
A.42 Jedi . 144
A.43 Jini . 145
A.44 JION . 145
A.45 Joyce Linda . 146
A.46 JParadise . 146
A.47 JXTA Spaces . 147
A.48 Kernel Linda . 147
A.49 Klava . 148
A.50 L2imbo . 148
A.51 Lacios . 149
A.52 Lana . 149
A.53 Law-Governed Infrasturcture . 149
A.54 Law-Governed Linda . 150
A.55 LighTS . 150

xii CONTENTS

A.56 Ligia . 150
A.57 Limbo . 151
A.58 LIME . 151
A.59 LIME II . 152
A.60 Limone . 152
A.61 Linda . 153
A.62 Lindacap . 153
A.63 Linearizable Byzantine Tuple Space . 154
A.64 LinqSpace . 154
A.65 Linux Tuples . 155
A.66 LuaTs . 155
A.67 LuCe . 156
A.68 MARS/Moon . 156
A.69 Melinda . 156
A.70 MobiS . 157
A.71 Network Spaces . 157
A.72 Open Spaces . 158

A.72.1 Open Spaces by Giga Spaces . 158
A.72.2 Open Spaces . 158

A.73 Open Wings . 158
A.74 P-Linda . 159
A.75 P4 Linda . 159
A.76 PadSpace . 160

A.76.1 PadSpace . 160
A.76.2 PadlogSpace and PadlogSpace . 160

A.77 PoliS . 160
A.78 Prolog-D-Linda v2 . 161
A.79 PyBrenda . 161
A.80 PyLinda . 161
A.81 Ruple . 161
A.82 Semantic Tuple Spaces . 162
A.83 SecOS . 162
A.84 SecSpaces . 163

A.84.1 SecSpaces . 163
A.84.2 WSSecSpaces . 163

A.85 SemiSpace . 163
A.86 SmallSpaces . 164
A.87 SQLSpaces . 164
A.88 Swarm Linda . 164
A.89 Tagged sets . 165
A.90 T-Spaces . 165
A.91 TCP Linda . 166
A.92 TeenyLIME . 166

CONTENTS xiii

A.93 TIBCO ActiveSpaces . 167
A.94 The KLAIM family . 167
A.95 TinyLIME . 168
A.96 Triple Space Communication . 169
A.97 TuCSoN . 170
A.98 UML Spaces . 170
A.99 VLOS . 170
A.100Xcoordination Application Space and Xcoordination Coordination Space . . . 171

A.100.1Xcoordination Application Space . 171
A.100.2Xcoordination Coordination Space . 172

A.101XMIDDLE . 172
A.102XML Spaces . 172
A.103XVSM . 173

B List of Figures 175

C Acronyms 177

Bibliography 181

CHAPTER 1
Introduction

1.1 Motivation

Parallelism, is one way to solve problems fast. Actually, it is the way.1 These wise words, by
Nicholas Carriereo2 and David Gelernter3, can be seen as one piece of the wholy grail when it
comes to the big number of challenges programmers face nowadays.
Parallel and Distributed Computing (PDC) penetrates most computing activities in 2016 - ef-
fecting not only enterprises and academia but also the common user who all of a sudden is
dependent on parallel processing. Just imagine how much fun a multi-user game would be with-
out parallal processing. The answer to that question is easy. No fun at all. We are strongly
dependent on parallelism in order to fulfill our present and future needs, e.g. software for high
performance computing.
The past has also shown us that distribution and parallelism brings advantages like a decrease in
computing time, an increase in precision of computations, the ability to solve larger and more
complex problems, the possibility to take advantage of non-local resources, cost savings and
much more.
There are many ways to build working parallel programs and David Gelernter and Nicholas
Carriero introduced one of them, which also represents the beginning of what we now refer to
as space based computing: The coordination language called Linda [Gel85].
Since that moment in the mid-eighties space based computing implementations have seen an
increase in popularity. Hence, it is no wonder that what started with Linda, which is commonly
regarded as the forbearer of this concept, has led to over one hundred modified, extended, en-
hanced or even to completely new shared data space implementations until 2016. Unfortunately,

1 [CG90] page 7.
2Nicholas Carriero’s is a Senior Research Scientist of Computer Science at Yale and his research centers on system
issues in the development and deployment of software tools for parallelism. Information found under http:
//www.cs.yale.edu/people/carriero.html.

3David Hillel Gelernter was born in March 1955 and is an artist, writer, and professor of computer science at Yale
University. Information found under http://en.wikipedia.org/wiki/David_Gelernter.

1

http://www.cs.yale.edu/people/carriero.html
http://www.cs.yale.edu/people/carriero.html
http://en.wikipedia.org/wiki/David_Gelernter

2 CHAPTER 1. INTRODUCTION

the few surveys out there have always focused on comparing just a small selection of space
based computing systems. As a result software developers and researchers often not really know
what’s out there and how they can use them for their own requirements. This thesis introduces
approaches in this field with the aim to analyze, classify and compare these shared data space
implementations in the hope of making the state-of-the-art visible. The goal is to draw a picture
that is as complete as possible to the best of my knowledge.

1.2 Problem statement

Section 1.1 already made us aware of the problem that today we face over one hundred shared
data space implementations which we have no real overview of. If you are interested in the
basic concepts of shared data space implementations, Linda might be the best solution to start
with whereas if you are interested in using space based implementations for commercial rea-
sons Apache River4, Blitz5, GigaSpaces6, JXTA Spaces [Li01] or TCP Linda7might be better
suited for your needs. But there are also solutions coming from the scientific field which of-
ten have a scientific significance but are also designed for commercial use. C-Linda [Gel85],
Corso8, dRuby and Rinda [Sek09], TripleSpace Communication9, TuCSoN [OZ98a] and XVSM
[KRJ05] can be seen as such solutions, to name just a few of them. Finally, one should not forget
all the implementations which tackle specific issues such as security, mobility or near-time-data
distribution.
Figure 1.1 gives an overview about the different use cases showing that 45% of all space based
computing solutions considered for this survey (103 in total) have stayed in the scientific field
and are therefore only available to a relatively small group of potential users. Figure 1.1 also
shows us that 27% of all space based computing solutions taken into account for this survey, are
only represented through one or two papers and don’t offer a package which could be used nei-
ther for private nor for commercial reasons. Nevertheless these solutions have to be taken into
account because they often offer new and interesting approaches which address relevant prob-
lems such as security or mobility. Good representatives for this group are Encrypted Shared Data
Spaces [RDD+08], Limbo [DWFB97], LinqSpace [Gel11] and Swarm Linda [GMT08]. With
15% space based computing solutions with a sheer commercial focus show that not all concepts
and implementations manage to reach a wider public. 13% of all space computing solutions in
this survey represent a combination of solutions which are used as well in the scientific field as
on an industry level.
This first rough classification aims to show that we deal with an inhomogeneous set of space
based computing implementations which are often hard to compare with each other. Not only
because of the different amount of information provided but because of their different back-
grounds and focuses.

4http://river.apache.org/doc/spec-index.html
5http://www.dancres.org/blitz
6http://www.gigaspaces.com/
7http://lindaspaces.com/downloads/evaluation.html
8 http://www.complang.tuwien.ac.at/eva/researchpublications.html
9http://www.tripcom.org

 http://river.apache.org/doc/spec-index.html
http://www.dancres.org/blitz
http://www.gigaspaces.com/
 http://lindaspaces.com/downloads/evaluation.html
 http://www.complang.tuwien.ac.at/eva/researchpublications.html
http://www.tripcom.org

1.3. AIM OF THE WORK 3

Figure 1.1: Use Breakdown in Percent

The main two challenges of this thesis can be described as follows:

• Find the right methodologies which allow bringing the diverse space based computing
implementations into a relevant context with possible application scenarios and features
of interest.

• Find the best visual models to present the huge amount of data gathered in an easy-to-
understand way.

1.3 Aim of the work

The purpose of this thesis is to present a classification matrix of the 103 space computing systems
that I have looked at. This matrix will give an overview of the most important approaches,
present relevant features and use case scenarios. The main goal is to give software developers
and researches a fast overview of what is out there and for what it can be used.

1.4 Methodological approach

The methodology chosen follows a top-down approach, which starts with an high-level overview
of shared data space systems. After that the 103 space computing systems will be classified after
families, application scenarios and different features.
Since a lot of the information has to be extracted from diverse literature and information from
various websites, firstly it has to be processed in spreadsheets and then the findings will be
presented through diagrams, visuals and tables.

4 CHAPTER 1. INTRODUCTION

1.5 Structure of work

This thesis is composed of five chapters and a comprehensive appendix. Chapter 1 gives an
overview about this thesis including motivation, problem statement, aim, methodologies used
and its structure.
Chapter 2 sets the scene for this thesis discussing fundamental terms and concepts in order to
create a common understanding. Chapter 2 also includes a historical background and looks into
the development of the space based computing paradigm over the course of time. Finally Linda,
the forbearer of space based computing implementations is presented in detail along side with
other interesting space based computing implementations.
Five application scenarios of interest will be described in chapter 3 before the actual classifica-
tion process.
Chapter 4 focuses on the classification of space based computing implementations starting with
classification in space families and application scenarios. After that the spaces will be classified
into standard features and more special topics like transactions, notifications, persistency, scal-
ability, security, remote access, life cycle management et cetera. One feature after the other is
presented and then the space based implementations which adress this feature are presented and
brought into system.
Chapter 5 summarizes the findings of the analysis and discusses where there is still room for
adjustment, improvement and further development. As a consequence it makes sense to look at
the latest research and developments of 2015 and 2016.
The appendix is structured into five sections:

• A glossary which presents all investigated space based computing systems in as much
detail as necessary and gives information on literature.

• A list of figures.

• A list of tables.

• Acronyms.

• Bibliography.

CHAPTER 2
Fundamentals

2.1 Explanation of concepts and terms

Since a few terms and concepts are used repeatedly throughout this thesis it makes sense to
explain them to reach a common understanding and offer the reader a quick reference if needed
so.

2.1.1 Distributed systems

Today one can find distributed systems in various everyday services and a wide field of applica-
tion domains as shown in figure 2.11. The most popular one is probably the Internet. But also
mobile phone networks, corporate networks, factory networks, campus networks, home net-
works et cetera [CDKB11] share characteristics which make them part of a family commonly
known as distributed systems.
Literature shows that there is considerable disagreement about how to define a distributed sys-
tem. Taking this into account it is helpful to define a few other things first in order to make the
final definition of a distributed system easier to understand. 2

• A program is the code you write.

• A process is an instance of this program that is being executed.

• A program needs a processor in order to be executed.

• A message is used to communicate between processes.

• A network is the infrastructure that links computers, workstations, terminals, servers et
cetera.

1 [CDKB11] page 4.
2http://code.google.com/edu/parallel/dsd-tutorial.html

5

http://code.google.com/edu/parallel/dsd-tutorial.html

6 CHAPTER 2. FUNDAMENTALS

Figure 2.1: Selected Application Domains For Distributed Systems

Having defined these terms, we can now give a classical definition of a distributed system pro-
posed by [BST89] that most people might agree on:
A distributed computing system consists of multiple autonomous processors that do not share
primary memory, but cooperate by sending messages over a communications network.3

Two main advantages of distributed systems are obviously an improved performance through
the use of parallelism – as already stated in the introduction - and an increased availability and
reliability through the exploitation of redundancy.
But there are also challenges when constructing distributed systems like heterogeneity of their
components, openness, security, scalability, failure handling, concurrency of components, trans-
parency and providing quality of service.4

Modern distributed applications like multiplayer online games, financial trading systems or dis-
tributed multimedia systems [CDKB11] demand for new and effective solutions to address these
challenges. In the next section an innovative and powerful concept is presented. Space based
computing.
3 [BST89] page 263.
4 [CDKB11] page 1.

2.1. EXPLANATION OF CONCEPTS AND TERMS 7

2.1.2 Space based computing

Chapter 2.1.1 already pointed out that we expect modern distributed systems to be reliable,
scalable, simple and reasonably priced. But reality shows that distributed systems often are
unreliable, not scalable, hard to manage and costly [Kue11].
The Space-Based Computing5 paradigm, based on David Gelernter’s publication Generative
communication in Linda [Gel85], addresses this contradiction through decoupling interaction in
the following three dimensions [Kue11]:

• Time: Applications can read and write data whenever they want to.6

• Space: A space is used as communication medium for all applications.

• Reference: Applications do not need to know each other in order to communicate.

The best way to define space based computing is to follow the definition given in the space-
basedcomputing.org manifest [EK07]:
Space based computing is based on the notion of a common, abstract space connecting dis-
tributed processing entities over a network. Instead of explicitly exchanging messages between
individual processes or performing remote procedure calls, processes communicate and coordi-
nate themselves by simply reading and writing distributed data structures in a shared space.7

A main advantage of space based computing lies in the high level abstraction it offers and there-
fore the application code can stay simple whilst a lot of functions are implemented by the space
itself. This allows a shorter and less costly development for distributed applications.

2.1.3 Virtual shared memory paradigm

A virtual shared memory8 implements a shared-memory programming model in a distributed-
memory environment.9 Once more Linda serves as an example because its tuple space can be
seen as a virtual shared associative memory.
Diverse applications can interact with each other through this shared virtual data space. The
interaction is coordinated in a structured and secure way10 where finding the relevant data is
possible without knowing its specific location.
[Kue98] states that although much research has been undertaken in this field, virtual shared

memory solutions failed to reach a status where one would refer to them as standard.
5SBC
6 [Kue11] page 5.
7 [EK07] page 3.
8VSM
9 [BS99] page 13.
10http://www.complang.tuwien.ac.at/eva/SBC-Group/sbcGroupIndex.html

http://www.complang.tuwien.ac.at/eva/SBC-Group/sbcGroupIndex.html

8 CHAPTER 2. FUNDAMENTALS

2.2 Historical background

This section focuses on the historical background of space based computing implementations.
In a first step it will be illustrated which spaces have been introduced over the course of time,
how long they are respectively were active and when they had their peak-periods.
In a second step we bring the appearance of these space based computing implementations into
context with certain industry needs and technological mile stones.

2.2.1 Historical evolution of space based computing implementations

Everything started in 1985 with a paper by David Gelernter and his colleagues from Yale Uni-
versity. The paper was called Generative communication in Linda [Gel85] and marked the
beginning of a concept to which we now refer to as tuple spaces.
The Linda programming language supports the concept of global object coordination11 and
can be seen as the forbearer of all subsequent space based computing implementations and is
therefore of particular interest. The main concept in Linda is that of a tuple space which can be
seen as an a logically shared associative memory12 that contains tuples and allows processes to
communicate with each other by writing and reading or reading and removing these tuples in
and out of the shared tuple space.
In the mid-eighties and early nineties the Linda model received a lot of initial interest [Wel05]
and early successor implementations like BaLinda Lisp [YW90], Eiffel Linda [Jel90], Kernel
Linda [Haz93], Klava [BDNP01] and Lana [BR02] followed inter alia.
From the moment Linda has been introduced, Gelernter has envisioned multiple tuple spaces
to enhance Lindas possibilities. [Gel89]. Melinda13 [Hup90] which was also developed at Yale
focused as well on multiple tuple spaces and can be seen as the forbearer of the concept of
multiple tuple spaces.
Although it became quieter about the concept of tuple spaces a lot has happened in the mid-
nineties. The research at Yale has led to the establishment of the Scientific Computing Asso-
ciates, Inc.14 which in the late nineties has presented JParadise

TM
[Ass99], TCP Linda15 and

NetWorkSpaces
TM16. Also Bauhaus Linda [CGH97], Law-Governed Linda [ML95], PyLinda17

and PyBrenda18 have been presented amongst others in the mid-nineties.
In the late nineties the concept of the Linda tuple space was able to arouse the interest of com-
panies which started to offer commercial implementations of Linda. This marked a milestone
for the concept of tuple spaces because a wider public was reached and not only the scien-
tific community. JavaSpaces was introduced as a component of the Jini19 system by Sun Mi-
11http://en.wikipedia.org/wiki/Tuple_space
12 [OG02] page 344.
13Linda with multiple tuple spaces
14http://www.lindaspaces.com
15http://lindaspaces.com/downloads/evaluation.html
16http://www.lindaspaces.com/products/NWS_overview.html
17http://code.google.com/p/pylinda/
18http://wiki.python.org/moin/PyBrenda
19http://river.apache.org/

 http://en.wikipedia.org/wiki/Tuple_space
http://www.lindaspaces.com
 http://lindaspaces.com/downloads/evaluation.html
http://www.lindaspaces.com/products/NWS_overview.html
http://code.google.com/p/pylinda/
http://wiki.python.org/moin/PyBrenda
http://river.apache.org/

2.2. HISTORICAL BACKGROUND 9

crosystems20 [Wel05] and was able to secure itself a place under the best known space based
computing implementations. Other Java based implementations with an commercial aim pre-
sented in the late nineties were Autoevospaces by IntaMission, TSpaces [WMLF98] by IBM
and GigaSpaces21 by GigaSpaces Technologies with the latter of particular importance. In 2016
GigaSpaces offers a wide set of services and is a professional space-based computing imple-
mentation.
Also the scientific community actively developed new features for the existing implementations
and also addressed new use cases mainly lying in the sector of mobility, security and the topic of
garbage collection. Such space based computing systems are amongst others Blossom [GSW97],
Lime [PMR99], Limone [FRH04], Swarm Linda [GMT08] and TucSon [OZ98a]. Especially
TucSon shows that the scientific community tried not only to extend the classical Linda concept
anymore but also to alter its ideas effectively. TucSon differs from Linda because it focuses
on tuple centres (instead of tuple spaces), which allow to define and tailor the communication
channel to the respective use case.
Between 2000 and the end 2015 we can see the presentation of quite a few systems, that are
often presented through only one paper or a not well maintained website. Nevertheless, they
often address niche use cases or rare features and therefore also contribute to the successful
evolution of space based computing systems. Representatives for this group are Crudlet22, D-
Tuples [JXJY06], eLinda [Wel05], Glinda [KA07], LinqSpace [Gel11], PadSpace [LT09] and
Tagged sets [OH05]. In the course of this thesisl refer to them as independent systems.
From 2005 on space based computing implementations often represent a hybrid form where in-
novation is driven in the scientific community but the focus lies as well on scientific topics as the
commercial side. Good examples for such hybrid forms are Corso23, dRuby and Rinda [Sek09],
Klaim [DNFP98], TinyLime [CGG+05c], Triple Space Communication24, TucSon [OZ98a],
Xcoordination Application Space25 and XVSM [KRJ05]. The Space Based Computing Group
of the Vienna University of Technology is involved in the development of Corso, Triple Space
Communication, Xcoordination Application Space and XVSM.
Figure 2.2 visualizes the distribution of space based computing implementations per aim from
1985 until the end of 2015. Due to space reasons the years 2012 to 2015 will be displayed in one
column in all figures. In case specific information for this period is available it will be adressed
in the text. The information on the figure underscores the evolution of space based computing
implementations showing that space based computing implementations saw a continuous rise in
popularity between 1999 and 2007. After 2008 many independent space based computing solu-
tions have disappeared from the screen and the trend goes towards the improvement of already
stable solutions like XVSM. This explains why in 2015 only twenty nine implementations are
active whereas in 2007 and 2008 fourty solutions were active.
Implementations with a sheer scientific aim have been dominant between 2000 and 2008 but
have been overtaken by implementations which combine a scientific and commercial aim in
20http://en.wikipedia.org/wiki/Sun_Microsystems
21http://www.gigaspaces.com/
22 http://javaspaces.homestead.com/files/javaspaces.html
23 http://www.complang.tuwien.ac.at/eva/researchpublications.html
24 http://www.tripcom.org
25http://www.xcoordination.org/home

 http://en.wikipedia.org/wiki/Sun_Microsystems
http://www.gigaspaces.com/
http://javaspaces.homestead.com/files/javaspaces.html
 http://www.complang.tuwien.ac.at/eva/researchpublications.html
http://www.tripcom.org
http://www.xcoordination.org/home

10 CHAPTER 2. FUNDAMENTALS

2015. Implementations with a commercial aim have started to enter the market in the late
nineties and can be considered relatively stable since 2007 with ten implementations on the
market. The independent space based computing systems always represented the minority.

Figure 2.2: Distribution of Space Based Computing Implementations per Year and Aim

Figures 2.3 represents a detailed historical overview of space based computing implementations
adding information on the respective aim of the implementations. Due to layout issues the legend
for 2.3 underlies the same colour code as shown in figure 2.2. A big representation of this figure
can be found in the appendix of this thesis under section B.
No information on the life span of HTML Page spaces [CR02], SemiSpaces 26 and Small-
Spaces27 could be found and is marked in both figures with the remark not available.
Both Linda and C-Linda are marked as active over the entire time horizon because although the
original Linda implementations are certainly not state-of-the-art anymore, a lot of Linda-derived
or at least influenced systems are still up and running in 2016.
26http://www.theserverside.com/news/thread.tss?thread_id=55069
27http://en.wikipedia.org/wiki/Tuple_space

 http://www.theserverside.com/news/thread.tss?thread_id=55069
http://en.wikipedia.org/wiki/Tuple_space

2.2. HISTORICAL BACKGROUND 11

Figure 2.3: Detailed Historical Overview of Space Based Computing Implementations per Aim

12 CHAPTER 2. FUNDAMENTALS

2.2.2 Historical evolution of space based computing implementations in context

This section brings certain trends in the field of space based computing in context with techno-
logical milestones and industry needs.
Distributed computing has truly become a part of our everyday life and is undergoing continu-
ous change since its appearance in the nineteen-sixties. Now in the 21st century we often use
distributed systems in scenarios- e.g. online-shopping, online-banking or data sharing - that
depend crucially on security.28 For a very long time security was mostly of interest for the
government and the military but when distributed systems started to get used by the industry in
the mid-nineties a wider public started to be affected by this topic. Topics like cryptography,
authentication and access control were discussed not only by the scientific community but also
by the commercial world. Figure 2.4 shows that the topic of security reached the space based
computing world with a little delay at the beginning of the twentyfirst century introducing imple-
mentations like SecOS [VBO03], SecSpaces [BGLZ02] VLOS [MCW02] and Law-Gowerned
Linda [NBCdSFCL07].
In 2008 Encrypted Shared Data Spaces [RDD+08] and Lacios [ZBS09] were introduced at the
peak of space based computing implementation focusing on security. Other implementations
focus as well on security aspects but are more versatile than the solutions presented above.
XVSM is such an example [KC12].

Figure 2.4: Distribution of SBC Implementations per Year Supporting Security

Scalability in distributed systems has always been a topic of big interest as well in the scientific
community as in the industry. We call a distributed system scalable if it can be economically
deployed at a range of scales, in both small and large configurations.29 This might sound pretty
easy but in fact it poses a few challenges30:
28 [CDKB11] page 469.
29 [JWM00] page 1.
30 [CDKB11] page 20, ff.

2.2. HISTORICAL BACKGROUND 13

• The costs of physical resources are not easy to control as the demand for a resource grows.

• A growing system often struggles to keep its performance at a constant level.

• The bigger the system the more likely it is that you have to deal with performance bottle-
necks.

• The system and application software should not need to be changed when the scale of the
system increases.

Figure 2.5 shows that the topic of scalability for space based computing implementations really
took off in the mid-nineties and this can be brought in context with the rapid growth of the in-
ternet31 during this time. The numbers of space based computing implementations dealing with
scalability were steadily growing until 2007 and are now stabilizing because implementations
are exiting the market. But nevertheless scalability is one of the most important topics when it
comes to distributed systems and various tactics have been presented to deal with it in an effec-
tive way. At the moment further details on the different approaches will be neglected but chapter
4.12 will discuss them in detail.
Space based computing implementations addressing the topic of scalability are amongst others
Apache River32, BISSA [WWF+10], Comet [LP05], GigaSpaces33, Globe [LS02], Java Spaces
[PTW01], Linda [MTW01], OpenWings34, Swarm Linda [GMT08], T-Spaces [WMLF98], Triple
Space Communication [FKS+07], Xcoordination Application Space35 and XVSM [Lwe10].
Looking at this enumeration of space based computing implementations one can come to the
conclusion that implementations with a commercial aim have a strong incentive to deal effec-
tively with the topic of scalability. 56 % of all commercial space based computing systems
adress the issue of scalability, including Apache River, Fly Object Space, GigaSpaces, Java
Spaces, JParadise, Network Spaces, Open Wings, TCP Linda and TIBCO ActiveSpaces.
31http://en.wikipedia.org/wiki/History_of_the_Internet
32http://river.apache.org/doc/spec-index.html
33http://www.gigaspaces.com/
34http://www.openwings.org
35 urlhttp://xcoappspace.codeplex.com/

http://en.wikipedia.org/wiki/History_of_the_Internet
http://river.apache.org/doc/spec-index.html
http://www.gigaspaces.com/
http://www.openwings.org

14 CHAPTER 2. FUNDAMENTALS

Figure 2.5: Distribution of SBC Implementations per Year supporting Scalability

Garbage collection is a critical problem for administratively decentralized distributed systems
which manage distributed objects.36

A lot of research has been done in order to enable modern distributed systems to effectively deal
with complex life cycle management tasks [PS95] which should not be handled by users in order
to avoid errors. Hence, it is surprisingly that only a few space based computing implementations
deal with this topic. One possible explanation for that might be that other topics like security or
scalability seemed more relevant in the short term.
Figure 2.6 shows that the topic of life cycle management in space based computing implemen-
tations first appeared in the late nineties and since then only a few implementations are seriously
dealing with this topic although it will be of great significance in the future when we have to
manage even more data than we have to manage now. Representatives for such implementations
are for example Ligia [MW98], Lindacap [UDI09], PyLinda37 and XVSM [KRML08a].
36http://www.objs.com/workshops/ws9801/papers/paper015.html
37 http://mail.python.org/pipermail/python-announce-list/2004-April/003054.
htmland

 http://www.objs.com/workshops/ws9801/papers/paper015.html
http://mail.python.org/pipermail/python-announce-list/2004-April/003054.htmland
http://mail.python.org/pipermail/python-announce-list/2004-April/003054.htmland

2.2. HISTORICAL BACKGROUND 15

Figure 2.6: Distribution of SBC Implementations per Year supporting Life Cycle Management

Extensibility is not only a nice-to-have feature it is a must when a distributed system wants to
be successful on the commercial market. Let’s define extensibility in context with space based
computing systems as the possibility of expanding or adding features to a system taking into
account the level of effort required to implement such an extension. The second part of this
defintion is of great importance since it prevents the assumption that just by changing the source
code of a space based computing system it can be called extensible. What counts is the quality
that features, modules or components can be used when needed and be switched off if not.
Chapter 4.7 will discuss extensibility in more detail.
Extensibility in space based computing implementations has become a real topic in the late
nineties where different use cases all off a sudden demanded different functionalities of the
implementation. Figure 2.7 illustrates this trend which is still of importance in 2015. Com-
mercial implementations like GigaSpaces and T-Spaces offer a certain degree of extensibility
as well as implementations like Corso, Kernel-Linda [Haz93], LighTS [PB05], Semantic Tuple
Spaces [TN04] or XVSM with the latter of particular importance for this topic.

16 CHAPTER 2. FUNDAMENTALS

Figure 2.7: Distribution of SBC Implementations per Year Focusing on Extensibility

Now we have seen that in the nineteen-eighties the research of distributed system mainly fo-
cused on topics like remote communication, fault tolerance, high availability or security. In the
nineteen-nineties a new trend called mobile computing entered the stage. Researchers started to
deal with topics like mobile networking, mobile information access, support for adaptive appli-
cations and location sensitivity.
This development is clearly reflected in figure 2.8 which shows that the first space based com-
puting implementations focusing on mobility were introduced in the late nineties as a reaction
to trends like mobility, ubiquitous computing [Wei91] or hand-held computing. A few examples
for such space based computing implementations are Jini38 as well as the entire LIME family in-
cluding LIME [PMR00], Teeny Lime [CMMP06], Tiny Lime [CGG+05c] or TOTA39 [MZ04].
Figure 2.8 shows also that from the late nineties to 2008 the number of space based computing
implementations supporting mobility saw a constant rise.
38http://river.apache.org/
39TOTA has not been included in the overall survey but will be discussed later in the closer context of mobility.

http://river.apache.org/

2.2. HISTORICAL BACKGROUND 17

Figure 2.8: Distribution of SBC Implementations per Year supporting Mobility

In chapter 1.2 it was already stated that I found 103 space based computing systems when I
started the thesis in 2013. On the other hand side over 2.500 documented programming lan-
guages exist40. Hence, it is no wonder that over the course of time a lot of programming
languages integrated the ideas of Space Based Computing systems. Figure 2.9 shows the dis-
tribution of approaches combining the concept of Space Based Computing with programming
languages over the course of time. Representatives are marked in figure 2.11.

Figure 2.9: Distribution of SBC Implementations per Year supporting Programming Languages

40oreilly.com/news/graphics/prog_lang_poster.pdf

oreilly.com/news/graphics/prog_lang_poster.pdf

18 CHAPTER 2. FUNDAMENTALS

Figure 2.10 illustrates the different focus groups of space based computing implementations,
which were discussed before separately, in comparison with each other. Looking just at the
respective peaks what gets clear is that topics like scalability and mobility are the leading areas of
interest followed by extensibility and security. Combining the ideas of Space Based Computing
with different programming languages has been always of stable interest but does not seem as
important as the focus groups before. The bottom of the table is represented by space based
computing implementation focusing on life cycle management.

Figure 2.10: Distribution of SBC Implementations per Year and Focus Group

Figure 2.11 gives a detailed overview on what topics the particular implementations focus. Im-
plementations can focus on more than one aspect.

2.2. HISTORICAL BACKGROUND 19

Figure 2.11: Overview of SBC Implementations and Focus Groups

20 CHAPTER 2. FUNDAMENTALS

2.3 Space based computing implementations

In this section a selection of space based computing implementations is presented in detail in
order to better understand the general concepts of space based computing implementations as
well as their specialties. The main focus lies on the presentation of the general concepts.

2.3.1 Linda

Chapter 2.1.1 already introduced Linda41 as the forbearer of all space based computing imple-
mentations. Hence, it makes sense to present Linda as the first implementation in this section to
better understand the concept of space based computing.
David Gelernter and Nicolas Carriero explained in [CG90] that the main idea of Linda is based
on the concept of generative communication which attempts to unify the concepts of process
creation and communication.42 Furthermore they presented a set of key facts which characterize
Linda:

• Linda is not a programming language but a coordination language that defines a commu-
nication and synchronization model.

• In order to execute parallel processes Linda needs to be combined with a programming
language, e.g. C, Java or Eiffel. The respective programming language provides the
semantics for computation while Linda provides the semantics for concurrency and com-
putation.43

• Linda is fully distributed in space and distributed in time.44

The Linda model uses the concept of tuple spaces. A tuple space is comprised of tuples. Linda
uses a set of simple operations which allow the manipulation of the tuples in the tuple space
[Kro00].
A tuple is a finite ordered sequence of typed fields where each field contains either a typed value
or a process [EZCdrei92], i.e (“name“, 3, 1.5) is a tuple representing a sequence of the following
values: A string “name“, an integer 3 and a floating point value 1.5. Such a tuple is called
passive tuple because it only contains values.
Tuples which at least contain one process are called active tuples. An example for an active tuple
is, i.e (“name“, 3, sin(x)) with sin(x) representing the process. Tuples which not only contain
values (referred to as “actuals“) but also contain place-holders (referred to as “formals“) are
called templates. A formal is prefixed with a question mark.45 For example, (“name“, ?a, 3, ?b).
The first and the third field are actuals and the second and the forth field are formals. Anti-tuples
cannot contain processes because of restrictions imposed by the read and removal operations
provided by Linda.
Linda provides 4 basic and 2 additional operations for accessing the tuple space:
41A trademark of the Associative Scientific Computing Associates
42 [EZCdrei92] page 47.
43 [EZCdrei92] page 47.
44 [Gel85] page 1.
45 [CG90] page 47.

2.3. SPACE BASED COMPUTING IMPLEMENTATIONS 21

• out (t): adds a tuple t to the tuple space (non-blocking).

• in (t): gets and removes a matching tuple t from the tuple space, blocks until a match-
ing tuple is found.

• rd (t): reads a matching tuple t from the tuple space, blocks until a matching tuple is
found.

• eval (t): places an active tuple in the tuple space, copied from the template. When
a process completes, it replaces itself within its respective tuple with the value resulting
from its computation. When all processes within a tuple replace themselves with values,
the formerly active tuple becomes passive.46

• rdp (t): Is like rd (t) but does not block, attempts to locate a matching tuple and
returns 0 if it fails otherwise it returns 1 and reads the tuple.

• inp (t): Is like in (t) but does not block, attempts to locate a matching tuple and
returns 0 if it fails otherwise it returns 1 and removes the tuple.

Since tuples in Linda have neither a physical nor a virtual address the in (t) or rd (t)
operations use associative matching to select a suitable tuple [EZCdrei92]. The next example
shows how the operations in (t) and rd (t) work. We are looking for a tuple which
matches with the following requirements:

• in (’name’, 3, ?a)

• with a being of type integer

This means suitable tuples must contain the string “’name”’ in the first field, the value 3 in the
second field and any integer in the third field, e.g. (’name’, 3, 7), (’name’, 3, 367), (’name’, 3,
1000). In case there is more than one matching tuple the final choice is made arbitrarily out of
the set of suitable matches. The main difference between in (t) and read (t)is that in
(t) removes the tuple from the tuple space and rd (t) leaves a copy of the tuple in the tuple
space.
The next example illustrates what the operation out (2, ?a) does in detail, with a being of
type integer again. In a first step the output (2, ?a) is placed into the tuple space and then can
be taken by any in (t) operation which has an actual of type integer in place of the formal47

a. A suitable example would be (2, 4) or (?b, 7), if b is of type integer.
The eval (t) operation is very similar to the operation out (t) with the difference that
eval (t) creates an active tuple in tuple space. This can be illustrated at the following exam-
ple:
eval (X (), Y ()) creates two processes X () and Y () which are [...] evaluated con-
currently.48 This means that the tuple is unavailable for matching as long as the two processes X
46 [CG90] page 48.
47 [EZCdrei92] page 49.
48 [EZCdrei92] page 48.

22 CHAPTER 2. FUNDAMENTALS

() and Y () are being evaluated. As soon as the evaluation of the two processes has finished,
and a result is returned - for example two integer values 1 and 2 - the active tuple turns into the
passive tuple (1, 2). eval creates new processes. This is how parallelism is created in Linda and
from where the term generative communication is derived.
The two additional operations inp (t) and rdp (t) are the non-blocking versions of their
counterparts in (t) and rd (t) [FP96]. If inp (t) and rdp (t) do not find a match in
the tuple space they return the value false. If a match is found the value true is returned and then
they execute like in (t) and rd (t) would do.
In his theoretical paper [Gel85] about Linda, Gelernter wrote that the technique developed has
attractive properties relative to other possibilities49 This is because Linda appears quite simple
but at the same time it offers conceptually powerful possibilities to the programmer.
Although the Linda model was certainly not the solution to all the problems related to parallel
programming, it was widely used and well accepted in the scientific community. Today Linda
might not be state-of-the-art any more but its many successors illustrate the importance of the
Linda model very well. During the classifaction process in chapter 4 we will also see where
Linda has its weaknesses.

2.3.2 JavaSpaces

As explained in the previous section Linda was developed with the goal to be integrated in
another host-language like C or Fortran. After its first appearance in the middle eighties, the
concept of Linda fell more or less into disuse in the 1990s [Sch07]. However, with the devel-
opment of the programming language Java50, the growing importance of distributed systems
and the need to communicate over networks, Linda gained in importance again. Hence it is no
wonder that soon the idea arose to combine Java and Linda.
The result is called JavaSpaces51 and it was developed by Sun Microsystems52 based on the ideas
of Linda. JavaSpaces is a part of the Jini53, intended to simplify the networking of heterogeneous
systems.54

In order to better understand JavaSpaces it is best to start with the explanation of the term entry.
A space stores entries.55 Basically an entry can be seen as the counterpart of a tuple in Linda.
An entry is a typed group of object references represented by a class in the Java platform that
implements the Entry interface as defined in the Jini Entry Specification56. Once an entry57

49 [Gel85] page 108.
50 http://www.java.com/en/
51http://river.apache.org/doc/specs/html/js-spec.html
52Sun Microsystems was bought by Oracle in 2010.
53Jini is a service orientated network architecture for the construction of distributed systems. It was introduced in

1998 by Sun and was transferred to Apache under the project name River in 2007.
54 [WCC04] page 3.
55http://www2.sys-con.com/itsg/virtualcd/java/archives/0509/mahapatra/index.html
56http://river.apache.org/doc/specs/html/entry-spec.html
57The requirements each entry class must meet are described in detail in the Jini Entry specification under http:
//river.apache.org/doc/specs/html/entry-spec.html and are therefore not presented at this
stage.

 http://river.apache.org/doc/specs/html/entry-spec.html
 http://river.apache.org/doc/specs/html/entry-spec.html

2.3. SPACE BASED COMPUTING IMPLEMENTATIONS 23

is created, different operations can be performed to interact with the space. Subsequently, the
seven main operations will be presented in detail [Son03]:
The operations write, read and take can be seen as the basic operations in JavaSpaces and
they can be compared to the operations out (t), rd (t) and in (t) in Linda. The three
operations are described below:

• write: Puts a copy of an entry into the space.

• read: Returns a copy of an entry matching a particular template(equivalent to anti-tuple).
Read blocks in case a matching entry is not available.

• take: Returns and removes a matching entry from the space. Take blocks in case a
matching entry is not available.

The operations readIfExists and takeIfExists are the non-blocking version of read
and take. In fact readIfExists and takeIfExists work like the operations read and
take with the difference that they return immediately returning a zero value except in cases
when a matching value exists within a transaction.58 Then they wait for the matching entry until
it has finished the transaction or the timeout of the operations expires.
The operation notify is used to register interest in the arrival of an entry in the space that
matches a specified template.59 As soon as an entry has arrived that matches the template the
caller gets notified by the space. In order to make this possible Jini introduces three entities: the
event source, the remote event object and the remote event listener. In JavaSpaces the space acts
as the event source that fires events when entries are written into it and notifies processes that
have registered interest in entries that match specified templates.60 This process is described in
detail in the Jini Distributed Event Specification61.
JavaSpaces also introduces the operation snapshot in order to reduce unnecessary overhead
when the same entry is used over and over without modification [FAH99]. For instance, it
is common to use the same template multiple times in take or read operations, say within in
a loop.62 In order to adress this issue the operation snapshot returns a snapshotted version of
the original entry, which can be used in other operations to avoid unnecessary serialization63

Although this is an extremly handy operation, two things have to be borne in mind when using
the operation snapshot:

• Any changes to the orignal template do not affect the snapshot.

• A snapshot is only guaranteed to work with the space that created it.64

58http://www2.sys-con.com/itsg/virtualcd/java/archives/0509/mahapatra/index.html
59http://www2.sys-con.com/itsg/virtualcd/java/archives/0509/mahapatra/index.html
60http://www2.sys-con.com/itsg/virtualcd/java/archives/0509/mahapatra/index.html
61http://river.apache.org/doc/specs/html/event-spec.html
62 [FAH99] page 48.
63 [FAH99] page 48.
64 [FAH99] page 49.

24 CHAPTER 2. FUNDAMENTALS

JavaSpaces not only provides more operations than Linda it also extends the Linda model in
order to address some of the existing limitations of Linda. The main enhancements can be
seen in the introduction of new operations (notify and snapshot), the concept of leasing and
transactions via Jini. A downside one could argue is that JavaSpaces does not have an eval
operation like Linda.
Leasing is a concept that allows resources to reserve entries in the space for a specified period
of time [Sch07]. All resources in Jini have a lease. Every entry in the space is tied to a lease
which means after its lease has expired or has been revoked the entry is deleted from the space.
In a distributed environment, the use of leases is beneficial as unnecessary or orphaned entries
are deleted after a certain time and do not block unneeded resources. When writing an entry in
the space a parameter which states the requested lease time is assigned to the entry in order to
specify how long the entry shall be stored in the space, e.g. write (anEntry, null, 1000). In this
example the entry shall be stored for 1000 milliseconds in the space before it gets deleted. The
write operation actually returns a lease object representing the lease time granted by the space,
which may be less than the requested lease time.65 In case that the granted lease time is too
short, the lease time can be extended before its expiry. The responsibility for renewing the lease
time of an entry lies with the process who owns the entry. Again the space decides for how much
time longer an entry can stay in the space which can lead to several renewal operations in order
to obtain the desired lease time. In order to make sure that an entry stays in the space for an
infinite lease time one can use the constant Lease.FOREVER. Lease times can also be applied
to transactions. The concept of leasing is described in detail in the Jini Distributed Leasing
Specification66.
Transactions play an essential role in JavaSpaces which provides a distributed transaction ser-
vice through the Jini transaction model which is described in detail in the Jini Distributed Trans-
action Specification67. Chapter 4.8.3 will describe in more detail why transactions are an essen-
tial tool for all distributed systems which need to operate safely and correctly in the presence of
partial failure.68 The main idea of transactions is that a set of single operations can be grouped
together in a way that they can be executed together. Once being grouped such a transaction
is only performed atomically which means either all operations complete or none of them. 69

In case a process wants to carry out a transaction it asks a transaction manager to create a
transaction and manage it for a specified lease time.70 As soon as the process has obtained the
transaction from the transaction manager it passes the transaction to each operation that should
be part of it. After having successfully grouped all operations the process commits or aborts the
transactions which results in the completion of all operations.
JavaSpaces has a significant number of implementations including amongst others Blitz71 and
GigaSpaces72. A detailed comparison of different implementations within the Java family can
65 http://www2.sys-con.com/itsg/virtualcd/java/archives/0509/mahapatra/index.html
66 http://river.apache.org/doc/specs/html/lease-spec.html
67http://river.apache.org/doc/specs/html/txn-spec.html.
68http://www.javaworld.com/jw-04-2000/jw-0421-jiniology.html?page=6
69http://www.javaworld.com/jw-04-2000/jw-0421-jiniology.html
70http://www.javaworld.com/jw-04-2000/jw-0421-jiniology.htm
71http://www.dancres.org/blitz
72http://www.gigaspaces.com/

http://www.dancres.org/blitz
http://www.gigaspaces.com/

2.3. SPACE BASED COMPUTING IMPLEMENTATIONS 25

be found in chapter 4.2.2.

2.3.3 LIME

LIME73 [PMR99] is based on the Linda model and implemented in Java. We have already
learned that Linda supports decoupling in space, time and reference which makes Linda also
interesting for highly dynamic environments. Such environments have to deal with dynamic
communities where changes in connectivity among hosts are a normal occurrence as compo-
nents move in and out of range of one another74. The content in such a community is composed
of the data, available at a certain time, of all individual members of the community [PTW02].
LIME is capable to adress both the challenges of logical and physical mobility.
Before we start to look into the details of LIME it is important to explain a few terms and key
facts:

• Lime agents are the only active entities in Lime and they can roam across mobile hosts.
Every agent owns its own Lime tuple space which is permanently connected to the agent
and refered to as interface tuple space (ITS).

• Mobile hosts serve as containers for the agents and can roam across a physical space.

• Lime has not a persistent tuple space.75

• In order to support a scenario based on mobility, LIME divides the tuple space into differ-
ent tuple spaces which are associated permanently with mobile agents [Col01]. These sin-
gle tuple spaces form when they are merged, a federated transiently shared tuple space76,
which creates the illusion of one single tuple space containing the tuples of all agents on
the different hosts77.

Figure 2.12 summarizes the key facts given before and brings them into context. Agents run on
mobile hosts where each agent has access to its personal interface tuple space that is permanently
associated with that agent and transferred along with it when movement occurs.78. Of course
agents can have more than one tuple space (public and private ones e.g.). The interface tuple
space contains the tuples which the agent wants to share with other agents and allows each agent
to carry out operations which are identical to those presented in Linda with the difference that
LIME does not have an eval operation.
73Linda in a Mobile Environment
74http://lime.sourceforge.net/Lime/nutshell.html
75http://lime.sourceforge.net/Lime/nutshell.html
76Transient, because the content of the tuple space varies depending on the migration of the agents in and out of the

tuple space
77http://lime.sourceforge.net/Lime/nutshell.html
78 [PM99] page 370.

 http://lime.sourceforge.net/Lime/nutshell.html
 http://lime.sourceforge.net/Lime/nutshell.html
 http://lime.sourceforge.net/Lime/nutshell.html

26 CHAPTER 2. FUNDAMENTALS

Figure 2.12: Linda in a Mobile Environment - Main Components

A published tuple space has depending on its status access to the corresponding host-level tuple
space or federated transiently shared tuple space [Pri02]. The agent is aware of the scope of its
environment, e.g. the number of hosts and agents, and can carry out its operations transparently.
The concept of transiently shared atomic tuple spaces entails that the content of a tuple spaces
from the perspective of an agent changes dynamically.
The processes of growing and shrinking the federated transiently shared tuple space are referred
to as engagement and disengagement [PMR00]. Both processes occur as transactions. Figure
2.13 illustrates this processes with the help of a simple example in three steps. Firstly four
mobile hosts within reach establish connectivity and engage with each other. All four mobile
hosts have now access to the public spaces of the other mobile hosts which is shown in step
two. One mobile host (bottom right) leaves the federated transiently shared tuple space through
disengagement. After the disengagement this mobile host has only access to its own tuple space
as shown in step three.

2.3. SPACE BASED COMPUTING IMPLEMENTATIONS 27

Figure 2.13: Engagement and Disengagement Process

Besides the standard Linda operations LIME introduces two other concepts which will be dis-
cussed separately hereinafter:

• tuple locations

• reactions

Tuple locations. An agent can be identified through its so called location which is composed
of the network address of the host and a global unique ID for the host [Pri02]. Without adding
a location parameter to an operation, LIME will take all tuples of all agents in the federated
transiently shared tuple space into account for the respective operation. This fact allows LIME
to be not dependent on the knowledge of the location of its agents which can be seen as an
advantage. However, adding such a location parameter the scope of tuple space operations will
be restricted to the location [CVV04].
The following example79, accompanied by figure 2.14, illustrates the mode of operation of the
location parameter. To write a tuple in a particular tuple space of another agent the operation
out[λ] (t) can be used, which extends the basic out (t) operation to the parameter λ.
The parameter λ indicates the target location. The operation out[λ] (t) is executed in a
two step process:

• In a first step the tuple t will be placed in the private tuple space of the executing agent
ω. The tuple t carries now the information of two locations: Its current location ω and its
destination location λ.

• If the agent λ is available, the tuple t is moved from ω to λ. This process can be executed
also with a delay if agent λ is not available immediately.

79 [Pri02] page 5.

28 CHAPTER 2. FUNDAMENTALS

Figure 2.14: Process Flow of The Operation out[λ, ω] (t)

Apart from the out[λ] (t) operation LIME also allows to add location parameters to the
operations in[λ] (t), inp[λ] (t), rd[λ] (t) and rdp[λ] (t).
Reactive programming. LIME is able to respond to certain events, such as the arrival or de-
parture of a mobile agent and the connection or disconnection of a mobile host e.g. [Col01].
The operations in (t) and rd (t) already allow responding to some of these events but as
both operations block a thread per event this is neither a cheap nor efficient solution. In or-
der to address this problem LIME introduces reactions. A reaction R (s, p) is bound to a
code fragment s, which is executed in case that template p is found in the corresponding tuple
space [PTW02]. Each time an operation is executed on a tuple space all the associated reactions
for this tuple space are checked for matching templates p in no particular order. In case a suit-
able p is found, the code fragment s is executed. In case a reaction refers to an entire federated
transiently shared tuple space, resources to carry out a reaction are normally very high (depend-
ing on the size of the federated tuple space). In order to enhance performance LIME offers two
types of reactions:

• Weak reactions: Operations are not performed atomically. Atomicity in this context de-
scribes the ability to perform multiple operations on a diverse set of hosts in a single

2.3. SPACE BASED COMPUTING IMPLEMENTATIONS 29

atomic step.

• Strong reactions: The operation is performed atomically, i.e., even if some of the reactions
become suddenly enabled by the current state of the tuple space, none can fire until all
of them have been registered. The reactions must have current and destination location
fields.80

Chapter 4.3.4 will discuss the strengths and weaknesses of LIME in context to other solutions in
more detail.

2.3.4 Triple Space Communication

This chapter presents Triple Space Communication which plays a special role amongst space
based computing implementations. It can be seen as a visionary approach in the field of space
based computing implementations because it combines several technologies in order to create a
network that connects applications based on machine-processable semantics of data.81. In other
words Triple Space Communication aims to become the web for machines as the web based on
HTML became the Web for humans.82

Triple Space Communication was a strategic research project which was funded by the European
Commission between 2006 and 2009. The project was supported by partners from academia83

and industry84.
Before we look in more detail at Triple Space Communication itself it makes sense to explain
its general concept. Triple Space Communication combines three basic technologies:

• tuple space computing: In the case of the Triple Space Communication the tuple space
technology provides a virtual shared memory which ensures the persistent communication
process. The data is presented in atomic units called triplets85.

• semantic web: The semantic web component helps to add machine-processable semantics
to data. The computer can “understand” the information and therefore process it on
behalf of the human user.86

• web services: Web services87 in Triple Space Communication really follow the web
paradigm of ‘persistently publish and read’ [Bus05] which means that data can be pub-
lished at any time, at any location and without knowing who is going to read the data in

80http://lime.sourceforge.net/Lime/api/lime/LimeTupleSpace.html
81ftp://ftp.cordis.europa.eu/pub/ist/docs/kct/tripcom-pr-poster-jun06_en.pdf
82 http://www.tripcom.org/description.php
83Leopold Franzens University Innsbruck, National University of Ireland, Galway, University of Stuttgart, Vienna

University of Technology and the Free University of Berlin.
84Ontotext Lab, Sirma Group Corp., Profium OY, CEFRIEL SCRL. and Telefonica I+D.
85Normally tuples.
86 [Fen04] page 43.
87Normally web services follow a synchronous communication where the sender and receiver have to know each

other in order to exchange data.

 http://lime.sourceforge.net/Lime/api/lime/LimeTupleSpace.html
 ftp://ftp.cordis.europa.eu/pub/ist/docs/kct/tripcom-pr-poster-jun06_en.pdf
http://www.tripcom.org/description.php

30 CHAPTER 2. FUNDAMENTALS

the future. In the case of Triple Space Communication, web services help to display the
heterogenous components into an unified way.88

So Triple Space Communication is a way to help machines to communicate with each other.
Once this topic is completely explored Triple Space Communication will be a fast, efficient and
secure service adressing a big variety of use cases. A very interesting use case for Triple Space
Computing could be in the sector of eHealth for the European Patient Summaries which is shown
in [CVF+07].
After having looked at the general vision and the concept of Triple Space Communication, the
next part will focus on more technical aspects.
Triple spaces share a lot of characteristics with tuple spaces. At the beginning triple spaces are
empty. The data in the triple space is presented through RDF89 triples. RDF triples can be ex-
plained as tuples with three fields, called triples, which have the following form <subject,
predicate, object> [NCV+07]. Each field of the triple contains an URI90. The reason
for chosing the RDF triples over the standard tuples is that graphs are used as the main data
structure for communication91 which offers a more expressive data model. The following oper-
ations are offered by Triple Space Communication [NCV+07], [TN08]:

• void out(Triple t, URI space): A triple is written into the addressed triple
space.

• set<Triple> rda(Template t, URI space, integer timeout): One triple
which matches the template t and lies within the specified space is returned. The timeout
obviates too long blocking periods.

• set<Triple> rda(Template t, integer timeout): One triple which matches
the template t is returned. The template t can lie in any triple space. Therefore a lot of
different answers are possible.

• set<Triple> rd(Template t, URI space, integer timeout): An ar-
bitrary number of triples which match the template t are returned. The other specifications
are the same as for the operation rda.

• set<Triple> rdg(Template t, URI space, integer timeout): Returns
the entire content of a named graph that contains a matching triple.92

• set<Triple> ina(Template t, URI space, integer timeout): Like
rda with the difference that it destroys the matching triple.

• set<Triple> in(Template t, URI space, integer timeout): Like rd
with the difference that it destroys the returned triples.

88ftp://ftp.cordis.europa.eu/pub/ist/docs/kct/tripcom-pr-poster-jun06_en.pdf
89Resource Description Framework
90Universal Resource Identifiers
91 [NCV+07] page 2.
92 [NCV+07] page 3.

ftp://ftp.cordis.europa.eu/pub/ist/docs/kct/tripcom-pr-poster-jun06_en.pdf

2.3. SPACE BASED COMPUTING IMPLEMENTATIONS 31

• set<Triple> ing(Template t, URI space, integer timeout): Like
rdg with the difference that it destroys the entire content of the returned graph.

• set<Triple> subscribe(Template t, URI space): A process can subscribe
to a particular type of information by providing a template and will be notified as soon as
a matching triple is put into the specified space.

• set<Triple> unsubscribe(Template t, URI space): This operation can-
cels a subscription.

• boolean: create(URI space, [URI parent, URI transaction]): This
operation creates a new space, as child of its parent space.

• boolean: destroy(URI space, [URI transaction]): This operation de-
stroys the specified space with all its subspaces and all contained triples.93

To bring the idea of Triple Space Communication into life, three main components need to be
introduced, that operate together in a Triple Space [Bus05]:

• The first system which will be introduced are Triple Space Clients. Clients can read and
write triples.

• Clients communicate with the different triple spaces through the so called Triple Space
Transfer Protocol94.

• Triple Spaces lie on a triple space server that can host any number of triple spaces.

Looking at the big picture the Internet allows an arbitrary number of triple space servers whereas
each of them can host hundreds of triple spaces.95 Figure 2.1596 illustrates the system elements
and boundaries.
93 [NCV+07] page 3.
94TSTP
95 [Bus05] page 6.
96 [Bus05] page 6.

32 CHAPTER 2. FUNDAMENTALS

Figure 2.15: Triple Space Communication - System Elements and Boundaries

The triple space architecture as outlined above is a very basic one which aims to illustrate how
asynchronous communication for machine-to-machine communication can look like. The im-
portant aspect of triple space communication is that is able to be autonomous in time, space,
reference, and data schema.97 The big advantage though is that writers can persistently publish
data and readers can read the available data without knowing the writer.

2.3.5 TuCSoN

The concept of TuCSon98 is quite similar to the concept of LIME [Sau08], which has already
been presented in section 2.3.3. TuCSoN allows to distribute tuples and share them between
different tuple spaces. TuCSoN, as defined on its website, is a Java-based99 model for the
coordination of distributed processes, as well as autonomous, intelligent and mobile agents.100

The major innovation is the introduction of the ReSpecT101 language, which allows to define
the behaviour of tuple centres in response to different communication events [Omi06]. But
97 [Bus05] page 12.
98Tuple Centres Spread over Networks
99also Prolog-based
100http://apice.unibo.it/xwiki/bin/view/TuCSoN/
101Reaction Specifcation Tuples

http://apice.unibo.it/xwiki/bin/view/TuCSoN/

2.3. SPACE BASED COMPUTING IMPLEMENTATIONS 33

before these specifics are discussed in detail, a general overview of of the basic infrastructure
and features of TuCSoN is given.
I will start with a definition of the most relevant entities which are relevant to understand the
ideas and functionalities of TuCSoN:

• Tuple centres. Instead of tuple spaces, as introduced by Linda, TuCSoN uses so called
tuple centres as coordination medium [COZ00]. A tuple centre has exactly the same
characteristics as a tuple space, with the only difference that a tuple centre offers the
possiblity to program its behaviour in response to interactions events.102

• Agents. Agents are the coordinatables103 which means they take part in the coordination
process. In other words basic TuCSoN agents have the ability to access the TuCSoN
infrastructure. Besides the basic TuCSoN agents other agents like IDE agents, GUI agents
and the Inspector agents exist [ROD01]. They are used for deployment, debugging and
monitoring purposes.

• Nodes. Each tuple centre is associated to a node104, which corresponds to Internet hosts
or servers connected over the network [Omi06]. A node can contain an arbitrary number
of tuple centres. One can distinguish between two types of nodes [NOVS11]:

– Gateways. A gateway node offers agents the possibility to access other nodes and
their tuple centres.105 The role of gateways is fundamental to support and control
the execution of the agents moving along the network or remotely accessing places.
Each gateway can authenticate agents on behalf of its associated domain, by verify-
ing agents’ identity and by propagating it by default to all domain’s places and sub-
gateways. More precisely, agent authentication must be performed by each gateway
receiving an agent request from an external source, as usual in Internet applications
with security requirements.106

– Places. A place node hosts tuple centres for the specific applications / systems, e.g
coordination activities.

• Domains. A domain is composed of gateway and place nodes.

Agents as well as tuple centres are spread over the network [OM12]. The agents can move
across the network whereas tuple centres are bound107 to the device that they run on. Now one
can connect the different components and see that TuCSoN creates a system where (possibly
mobile) agents and (possibly mobile) tuple centres are coordinating in a (possibly) distributed
set of nodes.108 Figure 2.16 visualizes this system view.
102 [Omi06] page 5.
103 [OM12] slide 6.
104 [AD99] page 3.
105 [COZ00] page 5.
106 [COZ00] page 80.
107In case the device is a mobile one the tuple centres inherit this mobile quality.
108 [OM12] slide 8.

34 CHAPTER 2. FUNDAMENTALS

Figure 2.16: TuCSoN - System Overview

Another aspect which figure 2.16 shows is that by connecting the gateway nodes in a tree-like
way, it makes it easy to provide different security characteristics for different domains. Another
key-characteristc of TuCSon is that all agents, nodes and tuple centres have unique identities
which helps to adress them easily [OM13]:

• Nodes are identified through the following two parameters - their network ID109 and their
port number. <NetworkID, PortNo>.

• Every tuple centre has a unique name that identifies it. In order to adress/identify a tuple
centre one has to know the exact node <NetworkID, PortNo> the tuple centre is on and
the name of the tuple centre itself.

• Agents are identified through their name and a UUID110 which is assigend to the agent
when it first enters a TuCSon system.

TuCSoN, as Linda or LIME, offers a set of primitives which agents can use in order to interact
with the different tuple centres. A few basic operations are already known from Linda and
therefore not discussed in this section. Additional operations are described and illustrated for
better understanding.
New operations in TuCSoN are described below [NOVS11]:
109Either IP adress or DNS entry of the hosting device
110Universally Unique Identifier

2.3. SPACE BASED COMPUTING IMPLEMENTATIONS 35

• no (TupleTemplate) looks for a tuple t matching tuple template in the target tu-
ple space and if no matching tuple is found when the operation is served, the execution
succeeds, and the tuple template is returned. Otherwise, the execution is suspended to be
resumed and successfully completed when no matching tuples can any longer be found in
the target tuple space, then the tuple template is returned.

• nop (TupleTemplate) is the predicative version of no (TupleTemplate). If a
matching tuple t is found the execution fails and t is returned.

• get () reads all the tuples in the specified tuple centre and returns them as a list. If no
tuple occurs in the specified tuple centre at execution time, the empty list is returned and
the execution succeeds anyway.

• set (Tuples) overwrites the specified tuple center with tuples on the list (which has
been derived from a get () operation). When the execution is completed, the list of
tuples is successfully returned.

After having having discussed the basic model and operations it is time to focus on a key feature
which distinguish TuCSoN from Linda, namely its programmability [NOVS11].
Programmability. It has been already pointed out that one key strength of TuCSoN is that tuple
centres are programmable, in other words they can react to incoming/outgoing communication
events111. Programmability is achieved through so called reactions which can access and mod-
ify the involved tuple centre as well as its tuples during an event [OZ98b]. An important fact
is that a reaction is a sequence of logic operations which either succeeds if all its reaction op-
erations succeed, and fails otherwise. Reactions are executed sequentially with a transactional
semantics: so, a failed reaction has no effect on the state of a tuple centre.112

In the case of TuCSoN this transaction is handled with the first-order logic language ReSpecT
that is responsible for making tuple centres programmable. ReSpecT allows events to be asso-
ciated to certain reactions through the introduction of so called specification tuples, of the form
reaction (E,G,R). E stands for a communication event that is associated with a reaction R in case
all conditions G are satisfied [NOVS11].
Since TuCSoN is one of the long-living space based computing implementations113 in the market
it is pretty clear that it has been improved and enhanced over the years. TuCSoN adresses
amongst others topics like access control [COZ00] and semantic support [NVP10], [NCOA10].
Later chapters especially 4.10.1 and 4.12 will adress these topics in more detail.

2.3.6 XVSM

XVSM114 [KRJ05] is a space-based middleware developed by the Space Based Computing
Group of the Institute of Computer Languages at the Vienna University of Technology. It com-
bines the idea of tuple spaces with additional, flexible functionalities, called aspects, in order
111 [NOVS11] page 4.
112http://alice.unibo.it/xwiki/bin/view/ReSpecT/Overview
113TuCSoN was introduced in the late 90s.
114eXtensible Virtual Shared Memory

http://alice.unibo.it/xwiki/bin/view/ReSpecT/Overview

36 CHAPTER 2. FUNDAMENTALS

to provide exactly the functionality the user needs. XVSM allows processes to collaborate with
each other in an easy way [KC12]. Another speciality of XVSM is that these processes can ex-
change information through different coordination mechanisms [Win11]. Later in this chapter,
aspects as well as the different coordination mechanisms will be discussed in more detail, but
for now the very basics of XVSM are presented.
An XVSM space is typically composed of the following components [Bar10]:

• The main component of the XVSM space is the so called XVSM Core. Every machine in
the space has its own core115. A core manages and contains so called containers.

• Containers hold entries, which are managed by one or more coordinators. One can distin-
guish between local and remote containers. Each container can be adressed or accessed
by an unique URL.

• Coordinators offer different types of coordination patterns, e.g. Linda, FIFO116, Index,
Key et cetera.

• Entries are the representation of user-objects in the space117 and can be compared to
tuples in Linda.

Figure 2.17 gives an example of how such a XVSM space could look like. It also shows how
users can access remote respectively local containers.
115Note that also several cores on one machine are possible.
116First In First Out
117 [Bar10] page 6.

2.3. SPACE BASED COMPUTING IMPLEMENTATIONS 37

Figure 2.17: Overview - Components within the XVSM Space

In order to make interaction as shown in figure 2.17 possible, XVSM provides a set of basic op-
erations on containers (create, publish and destroy) and on entries (read, take, write and destroy).
XVSM offers two other interesting features in context with operations. First of all containers in
XVSM support bulk operations, so that it is possible to insert multiple entries into a container
respectively to retrieve/remove multiple entries out of it within one operation.118 Secondly,
XVSM operations are not responsible for blocking mechanisms. Whether an operation blocks
depends only on the used coordinator [Mor10].
One of the main differentiators of XVSM over other space based computing implementations
is the focus on the extensibility of the coordination [Pro08]. The entries in the containers are
organized by coordinators, which are attached the respective containers. As a matter of fact the
coordinators in the containers are able to deal with different coordination types and can manage
a lot of tasks, e.g. provide explicit and direct access to entries via keys or labels.119 The XVSM
system can be extended by user defined coordinators can be always extended through different
coordination mechanisms which offers good flexibility.
118 [Mor10] page 72.
119 [Pro08] page 16.

38 CHAPTER 2. FUNDAMENTALS

XVSM provides amongst others the following built-in coordinators120 121 which are described
consecutively [Pro08]. Chapter 4.4 will describe these coordination concepts in more detail:

• Key Coordinator: The coordination type key allows to define a key for every entry.
Typically the keys are strings. In order adress a specific entry you have to use the matching
key.

• FIFO Coordinator: The FIFO coordination can be compared with a queue. FIFO stands
for a first-in, first-out coordination mechanism which means that the entries are retrieved
in the same order as they were written to the container.

• LIFO Coordinator: LIFO stands for last-in, first-out and shows exactly the opposite
behaviour than FIFO. The entry which was last written to the space is taken out first.

• Linda Coordinator: The Linda Coordinator uses the Linda template matching mecha-
nism to retrieve entries out of a container. A template is compared against all the entries
(tuples) within the container and suitable matches are returned.

• Label Coordinator: With the Label-Coordinator, entries are accessible by labels. This
approach is quite similar to the Key-Coordinator, however, labels do not have to be unique,
in contrast to keys. This allows multiple entries to have the same label. [Bar10]

Aspects. The behaviour of a container can be extended through aspects122 which react on certain
events when an operation is carried out on the container [KMG+09]. Aspects as shown in figure
2.18123 extend the core in a flexible way and address topics like encryption, authentication,
monitoring, lifecycle management, messaging, replication or persistency.
120http://www.complang.tuwien.ac.at/xvsm/1.0-alpha/docs/api/org/xvsm/
interfaces/ICoordinator.html

121http://www.complang.tuwien.ac.at/xvsm/1.0-alpha/docs/tutorial/MozartSpaces_
Tutorial.pdf

122Aspects are basically code fragements.
123http://www.complang.tuwien.ac.at/eva/SBC-Group/sbcGroupIndex.html

http://www.complang.tuwien.ac.at/xvsm/1.0-alpha/docs/api/org/xvsm/interfaces/ICoordinator.html
http://www.complang.tuwien.ac.at/xvsm/1.0-alpha/docs/api/org/xvsm/interfaces/ICoordinator.html
http://www.complang.tuwien.ac.at/xvsm/1.0-alpha/docs/tutorial/MozartSpaces_Tutorial.pdf
http://www.complang.tuwien.ac.at/xvsm/1.0-alpha/docs/tutorial/MozartSpaces_Tutorial.pdf
http://www.complang.tuwien.ac.at/eva/SBC-Group/sbcGroupIndex.html

2.3. SPACE BASED COMPUTING IMPLEMENTATIONS 39

Figure 2.18: Overview - Aspects within The XVSM Space - Image taken from the SBC-Course

XVSM has been implemented in different programming languages [Mor10]. On the one hand
it has been implemented using Java and is called MozartSpaces124 [Pro08], [Sch08c]. The .Net
implementation is called XCoSpaces125 ([Sch08b], [Kar09]). A new descendent of XVSM is
LinqSpace [Gel11] which extends the XVSM middleware solution with the .NET environment
LINQ126 with the aim to enrich XVSM with uniform and versatile query capabilities.127

Chapter will show that XVSM is an implementation which is continuously improved, e.g. [KRML08b]
and information and publications on it can be found on the project website128 which offers also
publications.

124http://www.mozartspaces.org
125http://www.xcoordination.org
126 Language Integrated Query
127 [Gel11] page 3.
128http://www.xvsm.org

http://www.mozartspaces.org
http://www.xcoordination.org
http://www.xvsm.org

CHAPTER 3
Application scenarios

Chapter 3 presents possible application scenarios for space based computing implementations.
Although the application scenarios have been divided into different categories it is important to
understand that the application scenarios presented might overlap. The presented application
scenarios have been choosen because the used literature has been focusing on these application
scenarios as well.

3.1 Scenarios focusing on near-time-data distribution

Having the right data at the right time is important for a lot of applications, e.g. data ware-
houses, stock trading platforms [KBM05] or communication via satellite. The latter one is
especially challenging [WG06] since we expect working broadband communication even if we
are in moving trains, airplanes or in a jeep in the Sahara. Fullfilling this expectation is hard since
we move, want to connect to an possibly unreliable network and the distance between us and the
next satellite is not within a stone’s throw. For the sake of simplicity we will focus on a more
down to earth application scenario in this chapter.
In the case of data warehouses, enterprises want to be able to respond to near-time business
events as they occur [TKA10]. But still many enterprises struggle to get the right information
fast enough and even worse the information is often inconsistent. This problem is mainly caused
by the fact that in large industry companies or organizations there is no such thing as a single
data-warehouse which represents the single-point of truth. Instead it is more likely that one is
confronted with various databases of all sorts, producers and ages. And as if this would not be
worse enough the different databases are most likely arbitrarily distributed over the heterogenous
entities of the enterprise [Kue03].
Imagine you are a car manufacturer and you have discovered that one of your production lines
is working slower than it should do. It is only normal that you want to check why this can
happen and you might want to look at relevant numbers to get to the roots of the problem.
Now you have to rely on your data warehouse which needs to give you appropriate information

41

42 CHAPTER 3. APPLICATION SCENARIOS

without long data latencies. Also you want to be sure that the information provided is consistent
because otherwise you may not find the cause of the problem or are most likely to make a wrong
decision. Consequently near-time data distribution has become a critical component of strategic
and operational decision-making during the last years.1

[Kue03] presents a business scenario for an Austrian bank which wants to synchronize data
between subsidiaries based in different countries and in compliance with Basel 2. To realize
this scenario [Kue03] introduces GONG23 which is based on the CORSO middleware.4 In this
example the main data warehouse is located in Austria and the subsidiaries in Italy, Germany
and Hungary. The main advantages of GONG are that there are no additional hardware costs
and even more importantly that it supports the publish/subscribe pattern which allows every
subsidiary to define which data they want to publish and/or subscribe. Furthermore subsidiaries
can decide how often they want to synchronize the respective data, e.g. in real-time, as batch or
whenever the data is needed. Figure 3.15 illustrates the concept.

Figure 3.1: Synchronization with GONG

To finalize this chapter, it is important to understand that near-time data distribution or real-time
data distribution [LPKL04] is although still sometimes a challenge alaready a standard we are
used to. Therefore near-time data distribution in space based computing implementations is
1http://www.martinsights.com/?p=147
2General Database Notification Gateway
3GONG is a product by tecco Software Entwicklung AG.
4 [Kue03] page 3.
5 [Kue03] page 5.

http://www.martinsights.com/?p=147

3.2. SCENARIOS FOCUSING ON DATABASE REPLICATION 43

often interlinked with other application scenarios which focus on other topics but still demand
near-time data distribution.

3.2 Scenarios focusing on database replication

Every enterprise wants to be in full control over its data. However, within the last years an
unprecedented growth in data could be denoted which subsequently led enterprises to the point
where they lost full control of it [Daw12]. But why is control over data so important? Having
control over data allows enterprises to better understand their business and make reasonable
decisions based on the available data.
Apart from having control over their data, enterprises have quite a number of additional require-
ments when it comes to their systems. For example, scalability and availability are always of
great interest for enterprises because both topics stand in direct concjunction with costs and the
quality of service. In the area of mobility enterprises might also want to exchange data with mo-
bile users. In some business fields e-commerce solutions are a must-have and represent a strong
interface to the world of the customer. But how can an enterprise make sure that it systems scale
well, are available at any given time and are fault tolerant? In this context database replication,
which simply means that the same data is available at multiple physical locations [Ran10], is of
great importance. The replicated data is also referred to as replicas. Being able to replicate data
has two major advantages [Pla06]:

• Users can access the data as well locally as remotely which on the one side leads to a better
fault-tolerance where problems are hidden from the user because the user can just address
another copy if the local copy can not be accessed. This in turn increases the availability.

• Since users can access data locally and more bandwidth is available the performance can
be increased as well.

Admittedly, these advantages do not come without a cost.6 In order to introduce replicas an
enterprise needs more storage and without efficient replication strategies the management of the
different replicas will need a lot of computing and the error rate caused through inconsistency is
very likely to rise.
Chapters 4.3.2 and 5 will allude the topic of replication strategies in more detail. Subsequently
we will introduce a few space based computing implementations which address the replication
of data and finally we will introduce an application scenario in more detail.
[Gar02] introduces an extended version of TSpace, called Enterprise TSpaces which aims to

enhance fault-tolerance. ETS offers the possibility to choose between different replication possi-
bilities in order to adress different application scenarios in the best possible way. Fault-tolerance
in Linda was already a topic of interest in 1995 when [BS95] published an article on supporting
fault-tolerant parallel programming in Linda and introduced FT-Linda. FT-Linda allows dif-
ferent recovery processes after a failure through specific transactions [RCVS05]. However, this
6http://publib.boulder.ibm.com/infocenter/idshelp/v10/index.jsp?topic=/com.
ibm.admin.doc/admin622.htm

http://publib.boulder.ibm.com/infocenter/idshelp/v10/index.jsp?topic=/com.ibm.admin.doc/admin622.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v10/index.jsp?topic=/com.ibm.admin.doc/admin622.htm

44 CHAPTER 3. APPLICATION SCENARIOS

solution is not ideal because tasks like removing faulty replicas have to be done specifically by
the programmers.
Other space based computing implementations focusing on enhancing fault-tolerance through
replication are amongst others DEPSPACE [BACF08], JADE [Li04], Linearizable Byzantine
fault-tolerant Tuple Space [NBCdSFCL07] and [Bes06], S/Net Linda Kernel [CG86] and TIBCO
ActiveSpaces7.
The last paragraph strengthens the impression that data replication typically aims to improve
fault-tolerance or access time to tuples, while preserving a consistent view of the tuple space.8

The application scenario, which will be presented next, has a slightly different aim and can be
seen as an approach combining replication and mobility.
In chapter 2.3.3 we already have introduced LIME which is a space based computing imple-
mentation for MANETs and based on the ideas of Linda. [MP06] now enhances the classical
LIME implementation with replication strategies in order to improve availability in MANETs
among hosts.9 Since hosts are not always connected to the federated tuple space it is desirable
to still have certain information available when needed. The application scenario has been first
presented in [MP04] and is called Tuling. Tuling is an application which aims to support the ex-
ploration of geographical areas, e.g. after a natural catastrophy10. Mobile users can explore the
area and share location based information - e.g. pictures - with others through the esablishment
of near-time wireless connections. The medium for doing so can be all sorts of mobile devices.
Sharing Information efficiently in mobile ad hoc networks is not a trivial problem let alone in-
troducing replicas - since replication happens on the application level therefore does not enable
further sharing of the information acquired.11 In order to make this possible an additional layer
has been built on top of the LIME middleware and now allows to replicate data to different hosts.
The replication process is illustrated in figure 3.212.
By adding replication to LIME, information can be made available even though a host is not
connected to the federated tuple space. Compared to other application scenarios the focus at
Tuling was less put on the consistency of replicas but more on making replication possible in the
first place.
7https://www.tibcommunity.com/blogs/activespaces
8 [MP06] page 17.
9 [MP06] page 1.
10Chapter 3.4 will present another application scenario in the context of mobility which focuses on the support in

emergency areas.
11 [MP06] page 7.
12 [MP06] page 8.

https://www.tibcommunity.com/blogs/activespaces

3.3. SCENARIOS FOCUSING ON INFORMATION SHARING 45

Figure 3.2: Replication Process in Tuling

3.3 Scenarios focusing on information sharing

Information is a valuable resource. In 2016 the information we are confronted with on an every-
day basis can probably be compared to bulleting down a super-highway.13 Therefore the process
of information sharing has gained dramatically in importance. And it is no longer about writing
emails, participating in conference calls or posting things on facebook. It’s about finding, orga-
nizing, streamlining all the information we need in our private and professional life with the aim
to make the most out of it.
On the professional level information sharing is a big topic in many areas just think about all the
solutions focusing on collaboration, file sharing or optimizing processes in a supply chain. Man-
aging information intelligently can even create business advantages. The application scenarios
can range from strictly business focused solutions to military applications or social networks.
Neglecting information can cause all sort of problems. Just imagine if you have to make de-
cisions in realtime, and are not sure if you have up-to-date information. Bottom line the way
information is shared and structured can decide between success or failure.
Such a time and safety critical application scenario is presented in [Mor10]. The SWIS14

project15 was created with the aim to guarantee high-availability and correctness of informa-
tion in the aviation sector [Bar10] where a big number of inhomogeneous services [MMMB09]
have to interact with each other in a coordinated way and new services can be integrated more
13http://www.huffingtonpost.com/jalees-rehman/do-we-need-another-inform_b_
1777985.html

14System Wide Information Sharing
15The SWIS project was developed fom Frequentis AG, Austro Control, and the Institute of Information and Software

Engineering Group at the Vienna University of Technology.

http://www.huffingtonpost.com/jalees-rehman/do-we-need-another-inform_b_1777985.html
http://www.huffingtonpost.com/jalees-rehman/do-we-need-another-inform_b_1777985.html

46 CHAPTER 3. APPLICATION SCENARIOS

easily to the network. The project was realized with a XVSM space which helped to strenghten
the coordination between the different services and enhance the fault tolerance of the system.
Another application scenario which will gain a lot of importance in the near and distant future
can be found in the healtcare sector where clinical and administrative information needs to be
shared effectively within the same and across different entities [For08]. As [For08] identifies in
its study, healthcare organizations are willing to invest more money in clinical systems in order
to improve patient care and increase access to critical patient information.16

Figure 3.317 illustrates different information sharing types between the different organizations,
enterprises and care settings. It is important to understand that different types of information
sharing pose different challenges. It is comprehensible that exchanging data between different
stations of the same hospital is easier than exchanging data between regional health information
organizations18, e.g. a group of hospitals.

Figure 3.3: Different Information Types Across Organizations and Care Settings

The following application scenario was presented in [For08] and shows that by optimzing the
information sharing process the quality of care and patient safety can be enhanced while costs
can be reduced. The Ann Arbor Area Health Information Exchange is comprised of four primary
16 [For08] page 18.
17 [For08] page 4.
18RHIO

3.4. SCENARIOS FOCUSING ON MOBILITY 47

care and speciality practices19 which minister about 400.000 patients and therefore have estab-
lished a community health portal which automatically gathers the information about the patient
- e.g. patient demographic information, medications, allergies, and current problem - into a co-
ordinated clinical record. Through sharing this information with each other all practices get a
better and more complete view on the patient.
Also space based computing implemations are focusing on application scenarios within the e-
health sector, e.g. [NOVS11] and [CVF+07]. Another important fact is that when looking at
e-health scenarios also topics like mobilty and security are of importance and need to be taken
into consideration.

3.4 Scenarios focusing on mobility

People now more than ever want to enjoy the benefits of their computers - anywhere, at any time
and without any bothersome wires. Mobile computing has not only become a big part of our
private lifes it also has gained dramatically in importance in the corporate sector. Looking at
the success of smartphones and tablet computers it is easy to see that mobile computing is more
than just a trend.
While mobile computing is an exciting discipline with a lot of possibilities and good progess
is made continuously [Jon12] there are still a lot of challenges that programmers face in this
specific research area [Sat96]. Mobile elements often do not offer enough space to be resource-
effective and they strongly depend on finite energy sources.20

When reading about mobile computing one often comes across terms like ubiquitous comput-
ing, nomadic computing, pervasive computing, mobile devices, mobile applications, wireless
networks and mobile ad hoc networking [Ber04]. Each of these terms represents a concept or
technology within the field of mobile computing. Before a few of the countless application sce-
narios are presented, it seems wise to explain the most important terms and definitions within
the context of mobile computing.

• Ubiquitous computing is the method of enhancing computer use by making many comput-
ers available throughout the physical environment, but making them effectively invisible
to the user.21

• Pervasive computing differs from ubiquitous computing in the sense that pervasive com-
puting integrates devices like mobile or smartphones in our daily life but does not want to
hide their presence.

• Nomadic computing refers to the system support needed to provide all sorts of computing
services to the mobile user who can move freely in his/her environment, e.g. home, work,
public [BCKP95].

• Mobile devices allow people to access data, services and information from where ever
they are, e.g. mobile phones and portable devices.

19 [For08] page 8.
20 [Sat96] page 1.
21 [Wei93] page 1.

48 CHAPTER 3. APPLICATION SCENARIOS

• Mobile applications are better known as mobile apps and represent differnt types of ap-
plication software designed to run on mobile devices. Mobile applications have started out
as individual smaller software units with limited functions22 due to the limited hardware
resources available on early mobile devices. Today apps already are a big part of our every
day life and offer various services in all sectors, e.g. work, education, entertainment and
networking.

• Wireless networks are all computer networks that are not connected by cables. Wire-
less networks transport information between the various computer devices with the help
of radio waves which makes it possible to read e-mails, browse web pages, connect to a
business network, see videos, talk with friends on social networks or connect to a mo-
bile app regardless of your location. One can distinguish between WLANs23, WPANS24,
WMANS25 and WWANS 26.

• Mobile ad hoc networks27 as described in [Per08], [Joh94] are wireless, mobile net-
works that do not need any fixed or preexisting infrastructure, e.g the Internet. All the
administration and support normally performed by a conventional network is carried by
the partizipating mobile nodes of a temporarilly formed ad hoc network.

• In the area of mobile computing nodes can be described as devices that are capable of
connecting to a network from different entry-points.

Application Scenarios. There is a huge number of areas in which mobile computing applica-
tions can add value to our work, enhance the flow of information, or solve application scenarios
that without mobility could not be realized. Application areas can be found amongst others in
the arceological field [ADG99], retailing [NPS03], tourism [BC03] and in industry28.
Mobile computing also offers a lot of interesting application scenarios for emergency services
and transport. Subsequently two application scenarios realized with the help of space based
computing implementations will be presented in more detail.
Emergency services. In [MQZ06] the reader is introduced to a first aid response scenario after
a natural disaster, e.g. an earthquake. In such an environment wired or wireless networks are
most likely only conditionally operational. Therefore [MQZ06] proposes to use RFID29 tags to
overcome this hindrance. The RFID tags could help to mark already explored areas, provide
information about the accessibility for ambulance cars, get aware of injured people and treat
them efficiently or send important information to the hospital before the patients arrive there.
Figure 3.5 [MQZ06] illustrates a possible application first aid scenario for patients using RFID
22http://www.techopedia.com/definition/2953/mobile-application-mobile-app
23Wireless Local Area Network
24Wireless Personal Area Network
25Wireless Metropolitan Area Network
26Wireless Wide Area Network
27MANETs
28http://www.mobilise-europe.mobi/fileadmin/user_upload/EMMIA_PLP_1st_Summary_
Report/EMMIA__PLP__wrap_up_BD_jv_21_06_12_KDK_at_2762012.pdf

29Radio Frequency Identification

http://www.techopedia.com/definition/2953/mobile-application-mobile-app
http://www.mobilise-europe.mobi/fileadmin/user_upload/EMMIA_PLP_1st_Summary_Report/EMMIA__PLP__wrap_up_BD_jv_21_06_12_KDK_at_2762012.pdf
http://www.mobilise-europe.mobi/fileadmin/user_upload/EMMIA_PLP_1st_Summary_Report/EMMIA__PLP__wrap_up_BD_jv_21_06_12_KDK_at_2762012.pdf

3.4. SCENARIOS FOCUSING ON MOBILITY 49

tags and tuple spaces. In the scenario overview two patients are in the area. Patient A is already
RFID tagged by a first aid rescuer and waits for a doctor to examine him. The RFID tag includes
information which is important for the following process steps, e.g. the type of injury or the type
of transport. In this example patient B is not registered by a first aid rescuer at the beginning
but in the second process step this happens and she gets an RFID tag which will tell doctors
that this patient needs examination. In the second process step patient A is examined by a
doctor who writes new information to the RFID tag, namely that patient A has a broken leg and
that transportation is needed and that ambulances can access this area. In the last of this three
process steps one can see that patient A is in the ambulance now and will be transported to the
next hospital or health center. The status is not closed because patient A will be cleared in the
hospital once the treatment is finished. Patient B has more luck and is just under a small shock,
the doctor clears her immediately and her status is closed.
This example showed that RFID tags can add real value to such an application scenario and
enforce pervasive tuple-based coordination activities.30 Nevertheless there are still issues like
privacy, security or realibility which need to be adressed in the future.
There are several application scenarios focusing on emergency servicses, e.g. [CMMP] focuses
on emergency control in buildings, e.g. in the case of fire or [LKHK05] introducing a mobile
patient assistance system for adolescents with cancer.
30 [MQZ06] page 6.

50 CHAPTER 3. APPLICATION SCENARIOS

Figure 3.4: RFID Tags and Tuple Spaces Help to Treat Injured People Efficiently

3.5. SCENARIOS FOCUSING ON SECURITY 51

Transport services. Transportation and field services31 can be seen as key sectors of mobile
computing. Countries all over the world and an armada of enterprises are exploring ITS32 tech-
nologies to solve all sorts of traffic problems [SHBHDR11]. Topics like fleet management and
asset monitoring, traffic monitoring, collision avoidance systems, traffic signal control systems,
parking availability systems or traffic enforcement cameras are of special interst because they
can smooth traffic operations, enhance security and most importantly save money.
An interesting application scenario in this field is the RealSafe33 project which aims to provide
real-time information to car and driver34 with the overall goal to make roads safer and their use
more efficient. Therefore the streets are equipped with so-called Road Side Units35 which are
connected in a mesh wired broadband network36 and share informations within their network
but most importantly with the cars on the road, e.g. information on traffic jams, road works or
accidents. In this project XVSM and Distributed Hash Tables37 were used in one middleware to
enhance the coordination in the network [Bar10].
Another application scenario focusing on transportation is presented in [ZBS09] and falls into
the category of traveler information systems. Travelers can connect to ATIS38 and can request
relevant information for their journey. Agents in the system hold the relevant information, e.g.
traffic jams, delayed trains etc., which they either give after a specific request or send it actively
to the traveler. This type of communication is not easy since its asynchronous and the agents
do not know what kind of information the travelers will ask for. This application scenario is
e.g. realized with LACIOS 39 which extends Linda and is a data-oriented coordination language
which focuses on the design and implementation of multi agent systems. In LACIOS agents can
publish or update their status and even condition their interaction with the environment which is
of great use in transportation applications like presented above.

3.5 Scenarios focusing on security

Albert Einstein noticed once that the world is a dangerous place to live.4041 In the case of
distributed systems this is even more true considering the huge amount of threats vulnerable
distributed systems have to face. Hosts can be attacked by malware, trojan horses, spyware,
worms and viruses. Plus hosts have to struggle with topics like eavesdropping, masquerading,
message tampering, resource starvation and all sorts of unauthorized access issues. And as if
31http://developer.att.com/home/community/conference/Tablets.pdf
32Intelligent Transportation Services
33http://www.ftw.at/projects/realsafe
34 [Bar10] page 18.
35RSU
36 [BFK+11] page 5.
37DHT
38Agent Traveler Information Server
39 Language for Agent Contextual Interaction in Open Systems
40http://www.brainyquote.com/quotes/quotes/a/alberteins143096.html
41Full Quote: The world is a dangerous place to live; not because of the people who are evil, but because of the

people who don’t do anything about it.

http://developer.att.com/home/community/conference/Tablets.pdf
http://www.ftw.at/projects/realsafe
http://www.brainyquote.com/quotes/quotes/a/alberteins143096.html

52 CHAPTER 3. APPLICATION SCENARIOS

this would not be enough, threats can occur on infrastructure-, application- and service-level as
well.
Under these aspects it is only normal that developers must adress such security issues when
they develop distributed systems. A few well known security terms in distributed systems are
explained subsequently [BCP+]:

• Authentication is the process of confirming the identity of a user/agent/computer/entity.

• Authorization helps to define the type of access a user/agent/computer/entity is granted.
Certain operations or the system parts which need to be accessed are denied or permitted.

• Availability can be defined as the knowledge that information is available to authorized
users/agents/computers/entities at any given time.

• Confidentiality refers to the process that restricts access to confidential information. It is
crucial that information is shared only among authorised persons/entities. A good example
is not to tell anyone the login information to your bank account.

• Data Integrity refers to maintaining and assuring the accuracy and consistency of data
over its entire life-cycle.42

• Privacy can be seen as an umbrella term43 which guarantees any user/agent/computer/entity
the right to keep information about themselves from others, revealing selectively.44

One sector which is especially reliant on security in distributed systems is the financial sector. An
application scenario is presented in [HJP02] presenting a (simplified) global banking system.45

The banking system is realized through multiple JavaSpaces and one goal is to enhance the
integrity of the system, e.g. ensuring that no money leaks from the system or that transfers are
executed correctly and completely. In order to do so [HJP02] has experimented with multi-phase
locking and optimistic concurrency control.46

Other application scenarios are often related to the topic of mobility which was presented in
section 3.4. Section 3.4 has pointed out that application scenarios focusing on mobility are
already a big part of our every day life and that they add value to it. A survey by Dimensional
Research47 showed that more and more people connect not only company owned but also their
personal mobile devices to corporate networks [Res12]. Figure 3.648 displays this ratio and
shows that 65 percent of all enterprises allow their employees to connect both personal and
company owned mobile devices to the corporate network. Among those companies which allow
personal mobile devices a dramatic rise can be noted. 78 percent saying more than twice as
42http://en.wikipedia.org/wiki/Data_integrity
43http://www.it.cornell.edu/policies/infoprivacy/definition.cfm
44 [BCP+] page 46.
45 [HJP02] page 3.
46 [HJP02] page 10.
47http://www.dimensionalresearch.com/
48 [Res12] page 2.

http://en.wikipedia.org/wiki/Data_integrity
http://www.it.cornell.edu/policies/infoprivacy/definition.cfm
http://www.dimensionalresearch.com/

3.5. SCENARIOS FOCUSING ON SECURITY 53

many personal devices are used at work compared to two years ago.49 This numbers are also
displayed in Figure 3.6.

Figure 3.5: Mobile Devices in Corporate Networks

Bearing in mind that many mobile devices store sensitive customer and business data this is a
worrying trend. McAffe50 stated that mobile platforms have become increasingly attractive to
cybercriminals as people extensively use smartphones and tablets, often without being aware of
the risks. Another problem stressed in McAffes’ report is the fact that malicious apps are often
integrated into trusted sources such as Google Play.51 So one could argue that one of the biggest
threats to security is caused by the user her/himself.
Another lack of security in the context of mobility is certainly caused by the mobile agents
themselves. Since we can find mobile agents in a great number of distributed application scenar-
ios [HB01], e.g. E-commerce, parallel processing or entertainment, it is important to understand
its impact on security. Although mobile agents show good perfomance and can execute certain
tasks automatically [HB01], they can wreak havoc, if they are malicious.Which means that hosts
and agents can be equally hurt.
Two interesting application scenarios have been presented by Lorenzo Bettini in [BDN02] and
[Bet05]. Both implementations are based on Klava which is written in Java. The speciality of
both application scenarios is the fact that they use cryptographic primitives that enable encryp-
tion and decryption of tuple fields.52 The first application scenario presented is an encrypted chat
system which allows to exchange encrypted messages, if wanted to [BDN02]. The second ap-
plication scenario encrypts the data which the agent carries and therefore protects the integrity
of the mobile agent. This allows the agent to travel to different sites and collect data for its
owner [Bet05]. The agent uses a public key to encrypt all its data while it is roaming from site
to site and once finished its owner can use the private key to decrypt the data.
49 [Res12] page 2.
50http://www.mcafee.com
51http://www.arnnet.com.au/article/454220/mobile_platforms_attractive_
cybercriminals_mcafee_/

52 [BDN02] page 1.

http://www.mcafee.com
http://www.arnnet.com.au/article/454220/mobile_platforms_attractive_cybercriminals_mcafee_/
http://www.arnnet.com.au/article/454220/mobile_platforms_attractive_cybercriminals_mcafee_/

54 CHAPTER 3. APPLICATION SCENARIOS

Of course, there are other application scenarios focusing on different security features like pro-
tection mechanisms in order to enter a tuple space or protecting tuple fields from malicious at-
tacks. An example for an ad hoc application scenario where the tuple space is protected through
a password is given in [HR03] with a wireless dashboard application that allows drivers to carry
out electronic payments at a tollbooth.
To sum it up security is a key feature of almost every distributed system and therefore the appli-
cation scenarios can be found in a lot of areas. Chapters 4.3.5 and 4.9 will look in more detail
into this topic in context with space based computing implementations.

CHAPTER 4
Classification of space based

computing systems

4.1 Classification methodology

4.1.1 Classification Challenges

Chapters 2 and 3 have already shown that the number of space based computing systems and
their diversity make it hard to draw an overall picture. The classification process itself posed
two major challenges for me:

• The first hurdle which needs to be taken is the division of the entire set of space based
computing systems to reasonable subsets which can be actually compared with each other.
This is not completely straight forward since every space based computing systems has
different focus areas and does not fit into every classification scheme. On the other hand it
is important to look at the totality of space computing systems in order to draw the overall
picture.

• The second and probably bigger challenge for me was to define suitable classification
criteria for the space based computing systems. Here, various considerations have to be
taken into account to develop a reasonable criteria catalogue, which is applicable to the
space based computing systems but still offers the granularity to elaborate the distinctive
features of every space based computing system. For example, [Sch08a] already stated
that in the context of space based computing systems it is wise to choose classification
criteria which allow to classify systems without an actual implementation since this is an
often found phenomenon in the academic environment.

55

56 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

4.1.2 Classification methodology and criteria catalogue

The first step is to establish a criteria catalogue which defines suitable criteria for this survey.
Good reference points for suitable criteria can be found amongst others in [ATS04], [CTZ02],
[NSKMR08], [EFGK03] and [Sch08a]. Subsequently the chosen classification criteria is pre-
sented whilst giving a short overview of the structure of this chapter.
For the classification process of the various space based computing systems a top-down approach
has been chosen, which starts with a high-level classification after families in section 4.2.
After that I will go one level deeper and have a look at the operations in section 4.3 which space
based computing systems can support. In chapter 2 a few systems have been already presented
in more detail and in this context basic operations as well as the general ideas of notifications,
transactions have been introduced to a certain extent. To complete the picture I will also write
about flow control and its importance for space based computing systems.
Section 4.4 will focus on the topic of coordination types. A wide range of coordination types,
e.g. Linda coordination, coordination with lists, arrays or hashtables will be used as criteria to
survey the space based computing systems.
Section 4.5 and 4.6 round off the picture which we started to paint in section 4.4 addressing the
topics of how the data within the space can be structured and what types of data can be stored in
the space.
The next group focuses on qualitative criterias. The decision to put the topics of extensibility,
security and life cycle management in one group was made by me because I believe that these
topics are hard to measure but can influence thw quality of a space based computing systems.
In section 4.7 spaces are classified after their extensebility. This is a relatively important criteria
since it defines how flexible a space based computing system is and how easy it is customisable
to the wishes and needs of developers and application scenarios.
Section 4.8 and 4.9 focus on two very specific but absolutely relevant topics, namely on secu-
rity and life cycle management. Focusing on security the space based computing systems will
be classified after their authentication and authorization mechanisms. Also the topics of data
encryption and data signing are elaborated. In section 4.9 I will discuss the topic of garbage
collection in context of space based computing systems.
Both scalabilty and and performance can be seen as quantitative indicators. Since quite a few
space based computing systems only exist on paper it makes no sense to classify them all. We
will discuss a quantitative approach presented by [Lwe10] but also focus on fault-tolerance and
availability in the context of performance.

4.1. CLASSIFICATION METHODOLOGY 57

Figure 4.1: Criteria Catalogue for Classification of Space Based Computing Implementations

Figure 4.1 gives a visual overview of the main criteria catalogue. similar color schemes represent
similar areas of criteria. Classification after families, application scenarios1 and operations can
1Classification after application scenarios was already discussed in detail in chapter 3 - a detailed overview can be

58 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

be seen as basic classification criteria which are a good background to understand the ideas of
space based computing systems.
When looking at a certain criterion I will always start with the complete set of space based
computing systems and discuss the main issues a space based computing system has to fulfill to
meet the specific criterion. Thereby we immidiately generate subsets: a set which fullfills the
criterion completely, partly or not at all. For further discussion I only will take those subsets
into account which fullfill the criterion at least partly. However, in the summary for each criteria
section the specific criterion matrix for all space based computing systems is presented.
Chapter 5, the conclusion will present the entire criteria matrix in order to give a complete
overview.

4.2 Classification by family

Before starting with the classification process a short description of the used methodology is
given. In order to classify space based computing systems by family one has to understand that
they are influenced by different visions and paradigms. In the case of space based computing
systems three paradigms are worth mentioning:

• The semantic web paradigm.

• The space based computing paradigm.

• The P2P2 and grid computing paradigm.

Since the vision of space based computing has already been discussed in more detail in chapters
2 and 3, only a short summary will be given and then the focus will be put on the semantic web
as well as on P2P and grid computing.
In a next step I will discuss main technologies and standards in this field, how they interact with
each other and which paradigms they follow. In this context Linda, Java spaces, JXTA3, and
XVSM will be discussed amongst others.
In a last step I will put the space based computing systems into context with the presented
paradigms and technology standards.
Figure 4.24 represents the result of the classification process of space based computing systems
by family. To show the results upfront will help to align the information given subsequently with
the overall picture.

found in the entire criteria matrix in chapter 5.
2Peer-to-Peer
3Juxtapose
4Figure 4.2 is partly influenced from http://www.complang.tuwien.ac.at/eva/fileadmin/user_
upload/teaching_material/SBC/SS2010/Teil-I.pdf slide 29.

http://www.complang.tuwien.ac.at/eva/fileadmin/user_upload/teaching_material/SBC/SS2010/Teil-I.pdf
http://www.complang.tuwien.ac.at/eva/fileadmin/user_upload/teaching_material/SBC/SS2010/Teil-I.pdf

4.2. CLASSIFICATION BY FAMILY 59

Figure 4.2: Classification of Space Based Computing Systems by Family

4.2.1 Paradigms and visions

Looking at figure 4.2 immediately will make you notice one thing: The systems mainly influ-
enced by the pure space base computing paradigm dominate the picture.

60 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

The P2P and grid computing paradigm

Peer-to-Peer. The term P2P was coined in the year 2000 [Ora01]. A music-sharing application
called Napster showed that Internet has more to offer than the client/server model5. So Napster
can be seen as the mother of the P2P trend although it is not a pure P2P system6, since a central
database server manages all incoming queries [SF02]. As soon as a peer logs into the Napster
network, the server registeres all the files the user wants to share with other peers. Search
queries return a list of peers that fullfill the search requirements. The user than can establish a
direct connection with one of the peers and download the desired file. Figure 4.3 illustrates how
Napster works.

Figure 4.3: How Napster Works

The workflow represented in figure 4.3 describes the four major steps in the operating mode of
Napster7:

1. A user that is connected to the Napster network sends a request for specific file (e.g. a
song).

2. The Napster server checks with its database if the requested file is available on another
peer in the network.

5Funny enough, the Internet was designed as a P2P system initially.
6Napster is more an extension of the classical client/server model.
7http://ntrg.cs.tcd.ie/undergrad/4ba2.01/group10/napster.html

http://ntrg.cs.tcd.ie/undergrad/4ba2.01/group10/napster.html

4.2. CLASSIFICATION BY FAMILY 61

3. The in figure 4.3 requested file is found on the peer called C.

4. The user and peer C can now establish a direct connection where peer C sends the re-
quested file without further detours to the user.

It’s easy to see that Napster offers quite a few advantages8:

• An easy to control structure.

• The big amount of data is handled by the peers and not the server.

These advantages are accompanied by the subsequently described disadvantages:

• The server represents the single point of failure.

• Private data is stored on an external server9.

• The Napster server can not scale.

After presenting Napster I will talk about real P2P systems in general. [MKL+03] defined P2P
as follows:
The term “peer-to-peer” refers to a class of systems and applications that employ distributed
resources to perform a function in a decentralized manner.10

P2P networks can be used for different application scenarios [Ji04], e.g. file sharing, collabora-
tion or distributed computing amongst others. P2P models can be classified into two catogeries,
namely structured or unstructured P2P models [HD05].
Peers in unstructured P2P systems do not hold any information about the resources of other peers
which makes a well-directed query impossible. Later examples will show that in unstructured
P2P systems a request is forwarded as long as a suitable match is found or the lifespan of the
query expires. Peers in structured P2P systems have knowledge of the resources of other peers
which allows a target-orientated search. However managing this additional information leads to
higher operating expenses.
Unstructured P2P models can be further divided according to their structure into centralised,
pure and hybrid P2P models. Figure 4.411 illustrates the difference between these three types.
8http://www.complang.tuwien.ac.at/eva/fileadmin/user_upload/teaching_
material/SBC/SS2010/Teil-I.pdf slide 21.

9In the year 2000 this was definitely seen as a drawback and one of the main reasons why Napster was sued.
10 [MKL+03] page 1.
11Influenced by [Ji04] page 6.

http://www.complang.tuwien.ac.at/eva/fileadmin/user_upload/teaching_material/SBC/SS2010/Teil-I.pdf
http://www.complang.tuwien.ac.at/eva/fileadmin/user_upload/teaching_material/SBC/SS2010/Teil-I.pdf

62 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

Figure 4.4: Difference between Centralised, Pure and Hybrid P2P Networks

They main difference between these three types is their routing behavior of queries [ESZK04].
Centalised P2P models like Napster need a centralised server in order to function. Hybrid P2P
networks always includes dynamic server peers which function as central entities and therefore
can optimize the routing behaviour. The advantage of hybrid over centralised P2P networks lies
in the fact that the loss of one of the server peers does not bring the entire system to a halt.
Pure P2P networks [Sch01] are missing such server peers and work completely without central
entities. Examples for unstructured P2P systems are amongst others:

• I already discussed Napster which belongs to the family of centralised P2P systems. The
main drawbacks of these P2P systems are that they represent a single point of failure and
that they are vulnerable to performance bottlenecks. Another member in this family is for
example BitTorrent12.

• Gnutella 0.413 is a representative of a P2P network and it works completely without cen-
tral entities. Therefore it is fault resistant but its unstructured network architecture can
not assure that the requested information can be found in reasonable time which leads to
a considerably high operating costs. Another risk can be seen in the fact that if one peer
leaves the network the entire system could decompose into sections that can not commu-
nicate with each other. Freenet14 also belongs in the category of P2P systems.

• Hybrid P2P systems like KaZaA15 and Gnutella 0.616 are part of the hybrid P2P systems
family. Here the server peers also called supernodes hold information about the resources
of their children (leaf peers). It’s obvious that searching in hybrid P2P systems is a lot
easier than in pure P2P systems.

12http://www.bittorrent.com/
13http://en.wikipedia.org/wiki/Gnutella
14https://freenetproject.org/
15http://en.wikipedia.org/wiki/Kazaa
16http://en.wikipedia.org/wiki/Gnutella2

http://www.bittorrent.com/
http://en.wikipedia.org/wiki/Gnutella
https://freenetproject.org/
http://en.wikipedia.org/wiki/Kazaa
http://en.wikipedia.org/wiki/Gnutella2

4.2. CLASSIFICATION BY FAMILY 63

As written already structured P2P networks hold infomation about the resources of other peers.
Most of the structured P2P systems like CAN17 [RFH+01] or Chord18 are based on distributed
hash tables19 [ESZK04]. DHT make it easy to find information, because only the appropriate
key and value is needed to execute a target orientated search. Furthermore every peer has only to
know about its assigned part in the hash table and a few distinctive neighbours20 Disadvantages
of structured P2P systems can be seen in the complicated management of peers which dynami-
cally enter or leave the network and the fact that only exact matches can be found.

Grid Computing. Grid Computing can be seen as a way to unite resources from many comput-
ers within a network in order to solve a single problem21. The perfect grid computing scenario
would turn a set of simple peers within a computer network into one supercomputer. Although
grid computing itself is a huge topic to tackle, I will stick to a simple definition in order to reduce
complexity. The three major pillars that define a grid are [Fos02]:

• A grid must coordinate resources that are not subject to centralized control.

• A grid must use standard, open, general-purpose protocols and interfaces.

• A grid must deliver nontrivial qualities of service (e.g., relating to response time, through-
put, availability, and security) for coallocating multiple resource types to meet complex
user demands.22

The qualities of the space based computing paradigm and the P2P and grid computing paradigm
interlock really well and can enrich each other when it comes to topics like the efficient use of
resources, coordination and search techniques.

The semantic web paradigm

A very good informal definition23 of the term semantic web reads as follows: The Semantic Web
is an extension of the current web in which information is given well-defined meaning, better
enabling computers and people to work in cooperation.24

Until the article of Bernes-Lee, the World Wide Web25 was seen as an extensive collection
of documents which accommodates an unbelievable amount of information which can be only
interpreted by human beings. Therefore the main goal was to create a web in which machines
can interpret data and by adding semantics to it can actually create knowledge [Wei11].
17Content-Addressable Network
18https://github.com/sit/dht/wiki
19DHT
20http://www.complang.tuwien.ac.at/eva/fileadmin/user_upload/teaching_
material/SBC/SS2010/Teil-I.pdf slide 25.

21http://www.howstuffworks.com/grid-computing.htm
22 [Fos02] page 2-3.
23http://www.w3.org/RDF/Metalog/docs/sw-easy
24 [BLHL01] page 34.
25WWW

https://github.com/sit/dht/wiki
http://www.complang.tuwien.ac.at/eva/fileadmin/user_upload/teaching_material/SBC/SS2010/Teil-I.pdf
http://www.complang.tuwien.ac.at/eva/fileadmin/user_upload/teaching_material/SBC/SS2010/Teil-I.pdf
http://www.howstuffworks.com/grid-computing.htm
http://www.w3.org/RDF/Metalog/docs/sw-easy

64 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

In 2012 the Semantic Web is used in a big number of fields although it is still in its infancy.
Nevertheless the semantic web paradigm can support the ideas of space based computing and
vice-versa, which can be seen amongst others in [NAP+07], [CVF+07] and [NSKMR08]. At
the moment the semantic web paradigm influences just a few space based computing systems
but it is obvious that the more mature it becomes the more it will influence other areas.

4.2.2 Technology and standards

Figure 4.2 also shows that there are a few technologies and standards which are so dominat
that most of the space based computing systems follow them in one or the other way. Looking
at these technologies and standards will also show that one standard can combine more than
one paradigm. In the following subsections I will introduce the most important standards and
technologies shortly, if they have not been introduced in chapter 2.3 already. The easiest way to
classify these technologies is to to relate them to the paradigms they follow.

Technology and standards following the space based computing paradigm

The main two standards in this field are Linda and Java Spaces, which is a direct derivative
of Linda. Both space based computing systems were described in in chapter 2.3. Linda as
the mother of space based computing is the main influencer for most space based computing
implementations (52 of all 103 analysed space based computing systems are directly influenced
by the ideas of Linda.). Java Spaces one of the many children of Linda also gained a lot of interest
within the community and soon won several imitators due to its charm and close connection to
the Java world. Two other standards which are directly influenced by Linda are LIME and
KLAIM. Both, LIME and KLAIM pay particular attention to the topic of mobility, choosing
different approaches to address certain problems in this context. LIME was already described in
chapter 2.3 and KLAIM will be described in more detail in later parts of this chapter.
The ideas of a virtual shared memory can be compared to Linda, which also can be seen as an
example of a virtual shared memory. That is also the reason why VSM is placed beside Linda in
figure 4.2. The advantage of such a virtual shared memory approach is that diverse applications
can interact with each other through a shared virtual data space. The interaction is coordinated
in a structured and secure way26 where finding the relevant data is possible without knowing
its specific location. Although much research has been undertaken in this field, virtual shared
memory solutions failed to reach a status where one would refer to them as standard [Kue98]
but for the sake of completeness it is important to classify it. A derivative of such a virtual
shared memory is Corso27 which extends Linda through a virtual shared memory space of Java
objects and has been presented in 2001 by the tecco Software Entwicklung AG, a spin-off of
the Technical University of Vienna at the institute for computer languages. Corso offers the
following features [Ang03] like transactional security, notifications, automatic garbage collec-
tion, authorization mechanisms, support for various computer languages and the possibility for
parallel process execution.
26http://www.complang.tuwien.ac.at/eva/SBC-Group/sbcGroupIndex.html
27Coordinated Shared Objects

http://www.complang.tuwien.ac.at/eva/SBC-Group/sbcGroupIndex.html

4.2. CLASSIFICATION BY FAMILY 65

Corso can be seen as the predecessor of XVSM (also described in chapter 2.3) which is influ-
enced not only by the space base computing paradigm but also by the P2P and grid computing
paradigm as well as Java Spaces and Corso.

Technology and standards following the P2P and grid computing paradigm

In the context of P2P JXTA can be seen as a relevant standard28. JXTA itself is open source and
initially developed by Sun Microsystems in 2001. JXTA is composed of peer-to-peer networking
protocols that allow any connected device on the network - e.g. servers, PCs, PDAs or mobile
phones - to communicate with each other. Another advantage is that JXTA supports various
languages, operating systems, hardware and transport protocols due to the fact that it is based
on protocols29. This flexibility can be quite interesting for programmers. JXTA has received
a lot of attention in the past but in November 2010, Oracle announced its withdrawal from
the JXTA projects and since 2011 no information about the future of JXTA has been given.
http://jxta.kenai.com/ offers still information about JXTA.
The main standard in the context of grid computing is Globus30 which was first introduced by
the Globus Alliance in 1995. On the Globus website all information on the Globus Toolkit can
be found. The Globus Toolkit allows to build grids for different application scenarios. The
Globus Toolkit mainly acts as middleware in a grid network. It provides the infrastructure to
install grid services, it coordinates the access to resources, it provides a security structure and
specific protocols such as GridFTP [BO05].

Technology and standards following the semantic web paradigm

The Triple Space combines the ideas of the semantic web, XVSM and therefore P2P with each
other. There are other space based computing systems which integrate the ideas of the semantic
web. Such space based computing systems will be discussed later in chapter 4.

4.2.3 Implementations, products and systems in the context of space based
computing systems

Looking at figure 4.2 one can divide between two kind of space based computing systems:

• Space based computing systems which are directly influenced by a certain technology or
standard.

• Space based computing systems which can not be directly attached to one of the technolo-
gies or standards mentioned above but still can be classified as space based computing
systems.

Most of the space based computing systems (about 76 percent of all analyzed space based com-
puting systems) are directly influenced by the above presented standards and technologies. The
28http://en.wikipedia.org/wiki/JXTA
29http://www.webopedia.com/TERM/J/JXTA.html
30http://www.globus.org

http://jxta.kenai.com/
http://en.wikipedia.org/wiki/JXTA
http://www.webopedia.com/TERM/J/JXTA.html
http://www.globus.org

66 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

other 24 percent can be seen as more or less independent and are marked with the number 5 in
figure 4.2.

Space based computing systems mainly influenced by the space based computing
paradigm

46 of all 103 space based computing systems are direct derivatives of Linda. Many of these
systems extend the ideas of Linda simply with an another programming language, e.g. BaLinda
Lisp [YW90], C-Linda [Gel85], C++ Linda [DF96a], Eiffel Linda [Jel90] or LuaTS [LR03]
among others.
Other space based computing systems in this category have developed their own children, such
as BaLindaLisp which can be seen as the parent of BaLinda K [YF96] or Law-Governed Linda
[ML95] which is the predecessor of Law-Governed Infrastructure [MMU01].
Figure 4.2 also shows as the children of KLAIM and LIME. Both standards have a relevant
number of children in 2015. The children of LIME - LighTS [PB05], LIME II [AAHC09],
TeenyLIME [CMMP06] and TinyLIME [CGG+05c] - can be seen as the systems with a more
practical approach since all of them posess full implementations whereas the children of KLAIM31

[BBDN+03] - cKLAIM, HOTKLAIM32, METAKLAIM or O’KLAIM amongst others - offer
theoratical approaches since no source code is available.
Since Java Spaces can be seen as one of the most well known standards when it comes to space
based computing it is no wonder that it has quite a lot of derivatives like Outrigger, GigaSpaces or
Blitz amongst others. Most of the space based computing systems which are influenced by Java
Space have full implementations. Under the direct Java Spaces derivatives only the Semantic
Tuple Spaces [KLF04] combine the space based computing paradigm with the semantic web
paradigm. The sTuples system extends Outrigger, the reference implementation of Java Spaces
to support the intelligent matching process of tuples. One of the more famous commercial space
based computing systems is GigaSpaces which still is very popular in 2015.
XVSM has been improved continously over the years and already has quite a few derivatives.
Mainly one can to distinguish between two different implementations:

• MozartSpaces: This is the open source Java implementation, where documentation and
the source can be found on the project website under http://www.mozartspaces.
org.

• Xcoordination Application Space and Xcoordination Coordination Space: is the .NET
version which exist as a commercial and open source version.

All children of XVSM have implementations which are continuously improved, e.g. [KRML08b]
and information on it can be found on the project website33 which offers also publications et
cetera. One of the newer space based computing systems extending XVSM is called Linq Space
and was presented by [Gel11].
31Kernel Language for Agents Interaction and Mobility
32Higher-Order Typed KLAIM
33http://www.complang.tuwien.ac.at/eva/research/researchpublications.html

 http://www.mozartspaces.org
 http://www.mozartspaces.org
http://www.complang.tuwien.ac.at/eva/research/researchpublications.html

4.2. CLASSIFICATION BY FAMILY 67

Many of the space computing systems which are not directly linked to a certain standard or
technology still follow the ideas of Linda, e.g. BISSA [WWF+10] which can be seen as a
combination of the ideas of Linda, Java Spaces and P2P. Another interesting free space based
computing system which can be related to the ideas of Linda is called Geo-Linda [PCBB07].
Geo-Linda focuses on a very specific application scenario which differentiates it from other
space based computing systems. Geo-Linda addresses the problem of detecting different kind of
movement patterns of devices34, e.g. the insertion of a product in a shopping cart, the loading
of containers in trucks or boats or helping visually impaired people to take the bus. One could
see certain parallels to LIME but Geo-Linda uses different operations which sets it apart. Of
course there are many other free space based computing implementations to discuss them all
would go beyond the scope of this section. The main message when talking about free based
computing implementations is that they either combine different technologies and paradigms or
have different approaches and aims which makes it hard to relate them to just one standard or
paradigm.

Space based computing systems mainly influenced by the P2P, grid computing and the
semantic web paradigm

Figure 4.2 shows that only 4 space based computing systems can be found in the section mainly
focusing on P2P and grid computing. When it comes to systems which are mainly influenced
by P2P Comet [LP05], Info Spaces [BMSV] and JXTA Spaces [Li01] are the one to name - all
three are based on JXTA with strong influences from Linda which also shows how the paradigms
interlock with each other. In the context of Grid computing one has to name Grinda35 [CM08b]
which is a tuple space implementation for the Globus Toolkit 4 and can be used to coordinate
distributed tasks without knowing host identities and network topology.
Space based computing systems directly influenced by the semantic web paradigm are even rarer
to find. TripCom36 combines technologies like tuple spaces, web services and the semantic web.
Chapter 2.3.4 already discussed Triple Space Communication in more detail. [NSKMR08] pre-
sented two more space based computing systems in the context of the semantic web paradigm:

• Conceptual Spaces37 which was meant to extend Triple Space Communication with more
features.

• Semantic Web Spaces [TN04] is a middleware for the Semantic Web, enabling clients
using Semantic Web data to access and process knowledge to coordinate their interdepen-
dent activities.38

Those two space based computing systems have not been part in the classification process since
Conceptual Spaces can be seen as an extension to Triple Space Communication and Seman-
34 [PCBB07] page 3.
35Grid + Linda
36Triple Space Communication
37CSpaces
38 [NSKMR08] page 196.

68 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

tic Web Spaces can be seen as an extension of XML Spaces. Nevertheless when appropriate
Semantic Web Spaces will be included in the classification process.

Independent space based computing systems

Independent space based computing systems can not be associated straight forward to Linda
or any other of the before presented standards or technologies. Nevertheless they use the idea
of a commonly shared space for their coordination. A representative space based computing
system for the family of independent space based systems is TuCSon, which was introduced
in chapter 2.3.5 earlier on. Although TuCSon is a Java-based39 model for the coordination of
distributed processes, as well as autonomous, intelligent and mobile agents.40 and it shares a few
basic operations with Linda but it is different in so many other ways that the word independent
is probably the right one to describe it. One of this major differences is that TuCSoN offers
programmable tuple centres , which can react to incoming or outgoing communication events41.
The main message which the reader should bear in mind is that a space based computing system
is classified as independent because it uses only a small notion of the common ideas and brings
some completely different ideas or technologies to its approaches.

Summary

Two other aspects which were not discussed yet but also shown in figure 4.2 are if a space based
computing system belongs to the commercial or open source family and if an implementation
is available or not. In case no implementation is available the degree of the information on the
source code given in papers is indicated. To find information on a single space based computing
system faster figure 4.5 - figure 4.7, a summary matrix of the classification of space based com-
puting systems by family, is introduced. Here again connections to paradigms and technologies
are displayed as well as the information if a system belongs to the open source or commercial
family. The information if a system has an implementation is given in 25 % steps displaying the
different states for no implementation, sufficient, good, excellent information and implementa-
tion available. 0 % stand for no implementation and 100 % for implementation available.
An interesting aspect is that nearly 50 % of all space based computing systems actually have an
implementation. From this 50 % percent only about 12 % belong only to the commercial family
and 14 % offer an open source solution as well as a commercial one. 74 % of this 50 % are open
source.
39also Prolog-based
40http://apice.unibo.it/xwiki/bin/view/TuCSoN/
41 [NOVS11] page 4.

http://apice.unibo.it/xwiki/bin/view/TuCSoN/

4.2. CLASSIFICATION BY FAMILY 69

Figure 4.5: Summary Classification of Space Based Computing Systems by Family A-J

70 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

Figure 4.6: Summary Classification of Space Based Computing Systems by Family K-S

4.3. CLASSIFICATION BY OPERATIONS 71

Figure 4.7: Summary Classification of Space Based Computing Systems by Family T-X

4.3 Classification by operations

In [Car89] it is already explained why Linda is a simple, powerful and quite elegant model. This
is also due to the fact that Linda consists of only a few simple operations that combined with
any programming language add up to a strong parallel programming dialect.
In this section I will present the most basic operations but also interesting extensions in this
area. Furthermore I will talk about operations in the context of space based computing families.
Further sections will discuss the topic of transactions and notifications in greater detail.
The last part of this section will provide a summary and an overview of the operations available
per space based computing implementation.

4.3.1 Basic operations

Since Linda is the origin of all space based computing implementations it is no wonder that also
the basic operations derive from Linda.

72 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

As written in an earlier chapter Linda provides four basic and two additional operations for
accessing the tuple space. During the classification process it has become clear that three of
these six operations proposed by Linda can be actually seen as the basic operations which are
taken on by most of the space based computing implementations analysed in this thesis. These
three operations are:

• out (t): adds a tuple t to the tuple space and terminates. (non-blocking)

• in (t): finds and removes a matching tuplet from the tuple space and terminates.
(blocking)

• rd (t): finds and reads a tuple t in the tuple space and terminates. (blocking)

The terms out (t), in (t) and rd (t) are often used by space based computing systems
which are directly connected to Linda or at least strongly influenced by it. However, there is
another commonly used terminology which originates from Java Spaces.

• write: writes a tuple t to the tuple space and terminates. (non-blocking)

• take: finds and takes a matching tuple t from the tuple space and terminates. (blocking)

• read: finds and reads a tuple t in the tuple space and terminates. (blocking)

The traditional in (t) and rd (t) operations are blocking operations, which means that
if an in (t) or rd (t) operation is executed, the operation blocks until it can be fulfilled
[Sch08a]. Imagine the following example: An agent wants to carry out an in (t) operation
but currently there are no entries in the space that are matching its search criteria. As a result the
operation blocks until a matching tuple enters the tuple space and the operation can execute. One
can already see that this behaviour is not always ideal and can cause a lot of blocked operations
which at worst case, never unblock. Later we will see that there are operations that adress this
issue.
After having discussed the three basic operations, the figures 4.8 and 4.9 show the space based
computing implementations which are supporting these three basic operations. 4.8 shows all the
space based computing implementations stongly connected to or at least influenced by the Linda
family wheras figure 4.9 shows space computing systems following other families.
A great majority of the space based computing systems support these three basic operations,
nevertheless there are a few spaces which do not support them at all, only partly or have certain
specialities. Subsequently I will present these exceptions in a little more detail:

• XVSM supports all three basic operations but can be seen as a speciality since its opera-
tions work on container-level and not for the entire space, plus it offers the possibility of
extensions. [Sch08a]

• LACIOS 42 [ZBS09] extends Linda and is a data-oriented coordination language which
focuses on the design and implementation of multi agent systems used for transportation

42 Language for Agent Contextual Interaction in Open Systems

4.3. CLASSIFICATION BY OPERATIONS 73

applications. LACIOS disposes of four operations (spawn, add, update and look).
The add operation works similar to the out (t) operation and adds a tuple to the tuple
space. The look operation however, enables agents for both the perception and retrieval
of objects43 and therfore represents a compination of the in (t) and rd (t) operations
proposed by Linda.

• Linearizable Byzantine Tuple Space 44 [NBCdSFCL07], [Bes06] offers a solution for
ad hoc networks and mobile agents where simple operations use simple quorum-based
protocols and more complicated operations use consensus-based protocols. The distinc-
tive feature of the Linearizable Byzantine Tuple Space spaces lies in the fact that it only
supports non-blocking in (t) and rd (t) operations.

• Corso45 [Neu03] extends Linda through a virtual shared memory space of Java objects
and has been presented in 2001 by the tecco Software Entwicklung AG, a spin-off of the
Technical University of Vienna at the institute for computer languages. One can create
and destroy objects. At creation time one has to decide if an object is of constant or
variable nature. A constant object has only one fixed value whereas the value of a variable
object can be overwritten. Most importantly CORSO allows the writing and reading
of objects within one transaction. Objects can also be replicated and allow an OID.

• InfoSpaces [BMSV] addresses the problem of the interaction between ubiquitous devices
by using tuple spaces at user level. The following simple drag-and-drop operations are
supported: copy out, move out, copy in and move in. The main idea is to
move and copy information between ubiquitious devices. Every device can decide which
information is private and which information can be shared. The main difference to the
basic operations proposed by Linda is that the out (t) operation is split into two oper-
ations, namely move out and copy out.

43 [ZBH09] page 3.
44LBTS
45Coordinated Shared Objects

74 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

Figure 4.8: Support for Basic Operations - Part I

4.3. CLASSIFICATION BY OPERATIONS 75

Figure 4.9: Support for Basic Operations - Part II

As written before the in (t) and rd (t) operations are blocking operations. Sometimes it

76 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

might be of interest that instead of blocking the operation a value is returned to the agent that
no matching tuple could be found. Figure 4.10 shows all the space based computing imple-
mentations that support non-blocking operations. One can see that about half of all space based
computing implementations support non-blocking operations.

4.3. CLASSIFICATION BY OPERATIONS 77

Figure 4.10: Support for Non Blocking Linda Operations

Like the out (t) operation the eval (t) operation can be seen as an output operation

78 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

because it places a tuple in the tuple space. Although the eval (t) operation is very similar
to the operation out (t) it is different due to the fact that eval (t) creates an active tuple
in the tuple space. This can be illustrated at the following basic example:
eval (X (), Y ()) creates two processes X () and Y () which are placed in the tuple
space and are evaluated concurrently.46 This means that the tuple is unavailable for matching
as long as the two processes X () and Y () are being evaluated. As soon as the evaluation
of the two processes has finished, and a result is returned for example two integer values 1 and
2, the active tuple turns into the passive tuple (1, 2). eval then creates new processes and
this is how parallelism is created in Linda and from where the term generative communication
is derived. Figure 4.11 shows all space based computings systems. Here it can be seen that
the eval operation is nearly exclusively used by systems that are strongly connected to Linda.
Only Java Spaces and Erlinda also support the eval operation.
46 [EZCdrei92] page 48.

4.3. CLASSIFICATION BY OPERATIONS 79

Figure 4.11: Support for The Eval Operation

80 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

4.3.2 Extended operations

In section 4.3.1 the basic operations were introduced but of course there are other interesting op-
erations which are provided by spaces based computing systems in order to support certain ap-
plication scenarios. Bulk operations are widely-used amongst space based computing systems,
e.g Bonita [Row97], Giga Spaces47, Grinda [CM08b], JXTA Spaces [Li01], Ruple [KLF04]
or LIME48 . These bulk-operations can range from writing, reading or taking multi-
ple tuples to respectively from the tuple space [Sch08a]. Since a greater number of operations
also means more possibilities T Spaces introduced an add handler() operator which allows
developers to introduce new operators according to their needs. 49 The Helios Tuple Space
library [CM08b] enhances the Linda model through additional library calls in the C Language,
e.g. program termination, jobs can be split in portions and be given to free workers or mutual
exclusion. Other implementations offer cache, create, destroy or update functionality,
e.g. JavaSpaces, GigaSpaces, Helios Tuple Spaces or XVSM. Also copy and move opera-
tors can be found often, e.g. in Blossom or PyBrenda. Figure 4.12 shows which space based
computing implementations offer extended primitives.
47http://www.gigaspaces.com/
48http://lime.sourceforge.net/api/lime/LimeTupleSpace.html
49http://almaden.ibm.com/cs/TSpaces/papers/Cluster.pdf page 5.

http://www.gigaspaces.com/
http://lime.sourceforge.net/api/lime/LimeTupleSpace.html
http://almaden.ibm.com/cs/TSpaces/papers/Cluster.pdf

4.3. CLASSIFICATION BY OPERATIONS 81

Figure 4.12: Support for Extended Operations

Figure 4.13 shows which extensions are supported by these space based computing implemen-
tations.

82 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

Figure 4.13: Extended Operations in Detail

4.3. CLASSIFICATION BY OPERATIONS 83

4.3.3 Notifications

Having certain information without waiting all the time is without a doubt a very attractive
feature. Application scenarios focusing on information monitoring or collaborative computing
certainly rely on fast event notifications. Nearly half of all the space based computing imple-
mentations provide notification mechanisms, e.g. XVSM, UML Spaces [AR01], JavaSpaces, T
Spaces, Apache River and Corso amongst others.
Members of the JavaSpaces family like Blitz, GigaSpaces, Apache River and JavaSpaces itself
are working in general with event handlers. An agent can register to a certain event which is
normally represented by a template. The operation notify is used to register interest in the
arrival of an entry into the space that matches a specified template.50 As soon as an entry has
arrived that matches the template the caller gets notified by the space. In order to make this
possible Jini introduces three entities: the event source, the remote event object and the remote
event listener. In JavaSpaces the space acts as the event source that fires events when entries are
written into it and notifies processes that have registered interest in entries that match specified
templates.51 This process is described in detail in the Jini Distributed Event Specification52. As
soon as the event has occured and the process has been notified, the operation notify acts like
the operations read or take in the sense that it either leaves the entry in the tuple space or
takes it from the tuple space.
Corso also offers the possibility of notifications but does not work with an event handler. There-
fore it can be seen as less suitable when it comes to scenarios where notifications are of impor-
tance.
Also XVSM offers notification services, which can listen on various operations in one container
and be called back if such an operation is performed. Allowed values are write,shift, read,
take and destroy.
In the summary section an overview of all the space based computing implementations offering
notification services will be provided.

4.3.4 Transactions

The last sections have shown the variaty of operations which are available for space based com-
puting systems. It is also obvious that these operations need to be structured in some way since
the complexity of programmes and application scenarios is increasing steadily. Transactions
offer an option to control such a complexity [JV04].
A transaction normally is composed of several operations which need all to be executed sucess-
fully so that they actually have an effect on the space. If one operation cann’t be terminated
sucessfully - the entire transaction is rolled back and the space remains unchanged. This be-
haviour fullfills the ideas of ACID properties53:

• Atomicity: Each transaction runs to completion or has no effect at all.
50http://www2.sys-con.com/itsg/virtualcd/java/archives/0509/mahapatra/index.html
51http://www2.sys-con.com/itsg/virtualcd/java/archives/0509/mahapatra/index.html
52http://river.apache.org/doc/specs/html/event-spec.html
53http://itu.dk/people/pagh/idb11/KBL13.pdf

http://itu.dk/people/pagh/idb11/KBL13.pdf

84 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

• Consistency: After a transaction completes, the integrity constraints are satisfied.

• Isolation: Transactions executed in parallel have the same effect as if they were executed
sequentially.

• Durability: The effect of a committed transaction remains in the database even if the
computer crashes.

Spaces like Java-Spaces, TSpaces and many others try to integrate the ideas of space based
computing with transactions. One can distinguish between two types of transactions: pessimistic
transactions and optimistic transactions54.
A pessimistic transaction locks all operations that are part of the transaction. This assures that no
other transactions can access these resources until the transaction is either committed or rolled
back.55 Pessimistic transactions can lead to deadlocks. To handle this problem transactions
are normally rolled back after a certain time if they do not have completed sucessfully after
a certain time. Examples for pessimistic transactions are Blitz, BISSA, Erlinda, JION, Joyce
Linda, GigaSpaces, P-Linda, SQL-Spaces and XVSM.
Optimistic transactions do not lock the operations involved in the transaction but check after the
commit if all the operations were really available and not taken by another transaction. If an
operation was not available an exception will be thrown. One may argue that optimistic trans-
actions are more error-prone than pessimistic transactions when under pressure but the better
performance, scalability, and lower risk of hanging due to deadlock56 are clear advantages.
Corso for example uses optimistic transactions and TIBCO Active Spaces allows the use of both
optimistic and pessimistic transactions.
LIME for example supports distributed transactions which are allowing transactions over the
entire network. Also Blitz and Corso amongst others support distributed transactions [Sch08a].
In the summary all the space based computing systems supporting transactions are shown sepa-
rately.

4.3.5 Summary

The figures 4.14 to 4.16 summarize all the operation types used by the different spaces and
give an overview about all the spaces which support notifications and transactions. Forty of all
space based computing implementations support transactions and 43 notifications. This shows
although space based comuting systems aim to be simple and straight forward more and more
complex application scenarios make it necessary to add additional features.
54http://openjpa.apache.org/builds/1.2.3/apache-openjpa/docs/jpa_overview_
trans.html

55 [Sch08a] page 14.
56http://openjpa.apache.org/builds/1.2.3/apache-openjpa/docs/jpa_overview_
trans.html

http://openjpa.apache.org/builds/1.2.3/apache-openjpa/docs/jpa_overview_trans.html
http://openjpa.apache.org/builds/1.2.3/apache-openjpa/docs/jpa_overview_trans.html
http://openjpa.apache.org/builds/1.2.3/apache-openjpa/docs/jpa_overview_trans.html
http://openjpa.apache.org/builds/1.2.3/apache-openjpa/docs/jpa_overview_trans.html

4.3. CLASSIFICATION BY OPERATIONS 85

Figure 4.14: Summary Classification of Space Based Computing Systems by Operations A-J

86 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

Figure 4.15: Summary Classification of Space Based Computing Systems by Operations K-S

4.4. CLASSIFICATION BY COORDINATION CONCEPT 87

Figure 4.16: Summary Classification of Space Based Computing Systems by Family T-X

4.4 Classification by coordination concept

When talking about classification concepts for spaced based computing systems, the first ques-
tions which comes into mind is: Isn’t Linda the main coordination concept for space based
computing systems? This is quite true but the following section will show that there are applica-
tion scenarios which are more efficient when using other coordination concepts like FIFO57 or
hashtables e.g.
I will start to introduce the specific coordination types, writing about their mode of operation as
well as their advantages and disadvantages. In the summary section of this chapter I will classify
the space based computing systems by the coordination concepts they support.
57First-In-First-Out

88 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

4.4.1 Linda coordination

Linda coordination was already discussed in detail in chapters 2.3.1 and 2.3.6 since it can be seen
as the key coordination type for nearly all space based computing systems. Elements (tuples)
are written to the space in a complete unordered way. To retrieve a suitable element a template
is defined which is compared with all the elements in the space and only suitable matches are
returned.
The advantage of this behaviour is that the space can handle multiple operations at the same
time [Bar10].

4.4.2 First in first out

The FIFO58 coordinator structures the elements within the space like a queue which makes
it interesting for application scenarios where you want to read the first written element first.
Producer/consumer-like scenarios where data should be processed in the order it is written into
the space59 can benefiit a lot from such an coordination type. Figure 4.17 illustrates how the
FIFO concept works on a space.

Figure 4.17: First In First Out

A possible disadvantage of using a FIFO coordinator can be seen in the fact that the right order
of the elements has to be preserved under all circumstances [Bar10]. As a consequence if an
element is blocked the operation is blocked and one might have to deal with long waiting times.

4.4.3 Last in first out

The LIFO60 can be compared to a stack, which means that the element which entered the space
last is taken out first. The advantages and disadvantages are quite similar to the FIFO coordina-
58first-in-first-out
59 [Sch08a] page 9.
60Last-In-First-Out

4.4. CLASSIFICATION BY COORDINATION CONCEPT 89

tor. Figure 4.18 gives an overview over this coordination type.

Figure 4.18: Last In First Out

4.4.4 Random

When using a random coordinator one does not want a predictable result because the random
coordinator just sorts the elements in the space randomly before returning an element [Doe11].
[Doe11] also introduces the any operator which returns elements without a specific order without
resorting them before. Figure 4.19 shows how the random coordinator works.

Figure 4.19: Random

90 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

4.4.5 Key Coordinator

The key coordinator is an explicit coordinator which assigns an unique key to an entry61. Figure
4.20 illustrates the behaviour of the key coordinator.

Figure 4.20: Key Coordinator

A good example for such a key are personnel Ids in a company e.g. When writing a new element
to the space a key is automatically assigned to the element. As a result one can search elements
quite easy because they all have an unique key one can refer to. A quite similar coordination
type is the label coordinator which assigns a label to an element but not asking for uniqueness
like the key coordinator [Bar10].

4.4.6 Coordination with hashtables

Adressing elements in an explicit way can also be achieved through hashtables62. Hashtables are
not used very often by space based computing systems. This statement will be underlinded by
the detailed classification in the summary section. [Sch08a] writes that this might be due to the
fact that this coordination type is not so easily used with the Linda coordination. However when
intelligently combined with space based computing system this solution can be quite powerful
as for example shown in [BFK+11].

4.4.7 Summary

The last section has shown that there are several coordination types worth mentioning and con-
sidering in context with space based computing systems. A few coordination types like least
recently used, FILO, or vector coordination amongst others have not been discribed in closer
detail because they followed similar ideas like the cordination types presented. It is quite ev-
ident that most of the space based computing systems are supporting the Linda coordination
61http://www.mozartspaces.org/2.2-SNAPSHOT/docs/MozartSpaces_Tutorial.pdf page

18.
62http://en.wikipedia.org/wiki/Hash_table

http://www.mozartspaces.org/2.2-SNAPSHOT/docs/MozartSpaces_Tutorial.pdf
http://en.wikipedia.org/wiki/Hash_table

4.4. CLASSIFICATION BY COORDINATION CONCEPT 91

type, namely 71 % of all space based computing systems. Apart from that one can say that other
coordination types are not supported on a regular basis. This can be seen when looking at figure
4.21. The FIFO coordinator is the second frequently supported with thirteen percent followed
by the key coordinator and hashtable coordinator with both six percent. Subsequently a detailed
classification of all space based computing systems is shown in the figures 4.22 to 4.23:

Figure 4.21: Distribution of Different Coordination Types in Percent

92 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

Figure 4.22: Summary Classification of Space Based Computing Systems by Coordination Types A-J

4.4. CLASSIFICATION BY COORDINATION CONCEPT 93

Figure 4.23: Summary Classification of Space Based Computing Systems by Coordination Types K-S

94 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

Figure 4.24: Summary Classification of Space Based Computing Systems by Coordination Types T-X

The summary shows that without a doubt XVSM is the most versatile space based computing
system when it comes to coordination types. This is due to the fact that it works with con-
tainers which allow these different coordinators and therefore guarantee more freedom for the
developer. It suppports all of the above mentioned coordination types.
Many space based computing systems influenced by JavaSpaces support a FIFO ordering for the
entries in the space [Sch08a], e.g. Blitz63, Apache River64 or GigaSpaces65 amongst others.
Hashtable or key coordinators are rarely used. Entangled is a distributed hash table (DHT)
based on Kademlia, as well as a peer-to-peer tuple space implementation.66 Also GigaSpaces
offers the possibility to use the space like a has table, through defining a key scheller1.
Coordination types like LIFO or RANDOM are only supported by XVSM which leads to the
conclusion that they are nice to have coordinators but not a must.
63http://www.dancres.org/blitz/
64http://river.apache.org/
65http://www.gigaspaces.com/xap/overview
66http://entangled.sourceforge.net/

http://www.dancres.org/blitz/
http://river.apache.org/
http://www.gigaspaces.com/xap/overview
http://entangled.sourceforge.net/

4.5. CLASSIFICATION BY SUBSTRUCTURES 95

When it comes to space based computing systems that focus on security aspects key coordinators
are used more frequently, e.g. in VLOS [CM03] or SecOS [VBO03].
Corso once more follows a totally different approach. Objects in Corso have a unique identifier
which can be addressed directly. The function is quite similar to a hashtable but a bit more
straight forward [Ang03], [Sch08a].
Another space based computing system which might be interesting in this context is Swarm-
Linda [TM03]. Although following Linda coordination to a certain extent SwarmLinda also
shows that organized behavior (here following the behavior of ants) can be implemented based
on a few simple rules. Which leads to tuples ordered after there contence and after certain rules.

4.5 Classification by substructures

Deciding to classify space based computing system by substructures was not an obvious choice
from the beginning. The reason for that is that on a first glance you might say that apart from
a few space based computing systems not many use substructures but looking deeper into this
subject, there are more space based computing systems that make use of substructures than one
might think.
First of all lets define what is meant by substructure in context with this thesis. A substructure
can be seen as a sub unit of a space which however is bigger than a single data element, e.g. a
tuple [Sch08a]. So substructures could be spaces within the main space or we could think of an
hierachical structure in a space where entities are ordered in some kind of way.
Concerning substructures XVSM is one of the few space computing system that uses real sub-
structures, namely containers [Sch08a]. Containers can also refer to each other and are therfore
capable to create hierachies. In contrast to XVSM, Corso does not work with containers but
uses so called identifiers. These identifiers can be stored in various shared objects and so again
hierachical dependencies can be created.
Another space based computing system which works with substructures is Ligia [MW98]. Ligia
focuses mainly on the topic of garbage collection and also uses a structure mechanism to effi-
ciently work. Ligia uses so called handles which represent nothing else than the names of the
tuple space. This handles can be stored in another tuple spaces and so one is able to build a de-
pendency structure between the different spaces. The dependencies are shown through directed
arcs (called bridges) which are connecting the handles to graphes. This graphes facilitate the
process of garbage collection because now one can see if one can really delete a tuple space
without unknowingly destroying valid entities.
Also Lindacap [UDI09] uses references in order two build up a hierachy between the entities in
order to realize a garbage collection mechanism.

96 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

Figure 4.25: Summary Classification of Space Based Computing Systems by Substructures

The idea of using multiple tuples spaces has been adressed by various space based comput-
ing systems in order to address issues of performance, partitioning and scalability67. L2imbo
67 [DFBW98] page 5.

4.6. CLASSIFICATION BY DATA TYPE 97

[DFBW98], Limbo [DWFB97], Limonelimone, GSpaces [RCVS04], BISSA [WWF+10] and
Comet [LP05] amongst others. In this context also MobiS is very intersting since it works with
multiple tuple spaces which are ordered in a tree structure. The tuple spaces are free to move
and so their position within the tree can move. Also Xmiddle [MCZE02] focuses on the hier-
achical concept by using a tree structure to order data on mobile devices. The mobile devices
can exchange data by addressing certain parts of this tree structure.
TinyLIME [CGG+05a] as well as the other members of its family(LIME [MPR01],TeenyLIME
[CMP+09]) make use of tuple spaces within tuple spaces. The main space would be the fed-
erated tuple space which allows mobile devices in reach from each other to communicate. The
agents on a mobile device also share one tuple space with each other and every host has its own
private tuple space. This helps to keep a reasonable communication in a mobile environment
alive.
Space based computing implementations like Blitz [Unk12], GigaSpaces [Pap05] or OpenWings
[Bie12] are able to create an inheritance structure through using the subclasses provided by
JavaSpaces [FAH99] [Sch08a]. This means simply spoken that searching for one class would
also return available sublclasse if they are in the same space.
Figure 4.25 shows which spaces support substructures. Those that have only one point are
basically focusing on ordering the elements within in the space and those which have two
points really use some kind of substructure within the space, e.g. containers or other spaces.
Those marked with three points support substructures and some kind of ordering mechanism,
e.g. XVSM.

4.6 Classification by data type

Space based computing systems are nothing without the data they manage. Therefore it is also an
interesting question which kind of data can be stored within in the space and in which structure
the data needs to have. Although tuples are of course the main data type there are are also other
data types. Subsequently I will present the following data types which are relevant in the context
of space based computing systems:

• Primitive Types, e.g. character, integer, floating-point number, fixed-point number, string,
boolean or references.

• Tuples

• Objects

[Sch08a] has stated in his paper that different space base computing systems have rather dif-
ferent approaches, which is quite true although one can say that the basic ideas behind the used
data types are often quite similar.
Figure 4.26 shows which spaces support which data types. Each space based computing system
is classified after the data types it supports. T stands for tuples, O stands for objects, P for
primitives and S for special data types solutions.

98 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

Figure 4.26: Summary Classification of Space Based Computing Systems by Data Types

In most of the space based computing systems data is stored in tuples. A tuple is an ordered
set of values. The separator for each value is often a comma (depending on the rules of the
particular language). Common uses for the tuple as a data type are:

4.7. CLASSIFICATION BY EXTENSIBILITY 99

• Passing a string of parameters from one program to another:

• Representing a set of value attributes in a relational database.68

Since tuples can contain a mixture of other data types they can be used in different shapes. That
might also be the reason why over 70 % of the analyzed space based computing systems use tu-
ples as data types. Of course Linda makes use of tuples as data types. Many direct Linda descen-
dants, like Melinda [Hup90], Pylinda [Wil12], EiffelLinda [Jel90] or Bauhaus Linda [CGZ95]
amongst others, make use of tuples.
A space based computing system that uses primitives as data types instead of tuples is Corso
[JV04]. The primitives supported are: integer, character, string, raw, OID, structure and stream.
JavaSpaces uses so called entries as data types. The Jini Entry Specification defines entries as
follows: Entries are designed to be used in distributed algorithms for which exact-match lookup
semantics are useful. An entry is a typed set of objects, each of which may be tested for exact
match with a template.69. Jada [CR97] also uses objects as data types reffered to as items. Other
space based computing systems using objects are Blitz70, Erlinda71 and Openwings72.
Other space based computings systems allow more flexibility. XVSM for example is not con-
strained to specific data types. Restrictions are only given when using tuple matching, or when
interoperability is needed.73 CPP LINDA allows to develop own data types apart from sup-
porting the common ones [DF96b]. GigaSpaces uses annotations which make it possible to
decide which fields are entered into the data space. Also interoperabilty between programming
language is possible because of the annotations.

4.7 Classification by extensibility

If a space based computing system supports extensibility or not cannot be answered easiliy and
the truth is, in some cases the answer to this question lies more in the eyes of the beholder than
anything else. Therefore it is wise to start with a definition of extensibilty in the context of space
based computing systems. This definition is meant to help during the qualification process but
does not try to be exhaustive since this would go beyond the scope of this thesis.
Subsequently I will write in more detail about the space based computing systems which support
extensibility in one or the other way. Figure 4.27 shows which space based computing systems
are taken into consideration.
68http://searchcio-midmarket.techtarget.com/definition/tuple
69http://river.apache.org/doc/specs/html/entry-spec.html
70http://www.dancres.org/blitz/
71code.google.com/p/erlinda/
72http://www.openwings.org/
73 [Sch08a] page 12.

http://searchcio-midmarket.techtarget.com/definition/tuple
http://river.apache.org/doc/specs/html/entry-spec.html
http://www.dancres.org/blitz/
code.google.com/p/erlinda/
http://www.openwings.org/

100 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

Figure 4.27: Spaces Supporting Extensibility

What can be seen at a glance is that one hardly can classify extensibility into equally distributed
groups. Every system classified focuses on a different topic which is strongly influenced by the
application scenario of the patricular space based computing system.
Four space based computing systems focus on offering extensibility to coordinational topics.
The pioneer in this area is XVSM which not for nothing stands for eXtensible Virtual Shared
Memory. Chapter 2.3.6 already introduced XVSM and talked in detail about the containers used
within the tuple space. These containers provide all sorts of different coordination types and
therfore every container can behave exactly like the developer wants the entries in the container
to behave. Another space based computing system which addresses this topic is Erlinda74. Er-
linda offers different ways to deal with coordination, e.g. the master slave paradigm, message
queues or the classical Linda model amongst others. Having said this, Erlinda is not as flexible
as the other space base computing systems in this category. Also the Xcoordination Application
Space75 which belongs to the XVSM family offers the possibility of costumizable communi-
cation channels. The forth space based computing system is called LighTS [BCP05] and has
a framework which allows to extend the tuple space in many ways, including changing the
back-end implementation, redefining the matching semantics, and providing new constructs.76

Programmers can implement their own tuple classes since the space itself just works with the
ITuple interface [Sch08a].
74http://code.google.com/p/erlinda/
75http://www.xcoordination.org/application_space
76 [BCP05] page 1.

http://code.google.com/p/erlinda/
http://www.xcoordination.org/application_space

4.7. CLASSIFICATION BY EXTENSIBILITY 101

There are also other ways to extend a space based computing system. Subsequently all the other
space based computing systems presented in figure 4.27 are presented shortly and it is explained
why one could argue that this systems support extensibility.
GSpace [RCVS04] is a distributed shared data space that supports a variety of distribution poli-
cies. And in this sense it is also extensible since it supports different replication policies the
developer can choose from.
Openwings77 is a set of open system specifications for a framework that enables the devel-
opment of highly available, secure, distributed systems for mission critical applications where
systems are likely to come and go in an ad-hoc fashion. Openwings is an abstraction on top of
various service discovery mechanisms, including Jini and provides a component framework for
Service-Oriented Programming78:

• Container services addresses the need for process lifecycle management, clustering/load
balancing, security, handling of mobile code and overall service availability in a dis-
tributed environment.79

• Component services provide the mechanism to publish services as well as discover and
use services that have been created and published by others.80

• Connector services support component to component communication.

• Install services

• Context services

• Management services

• Security services

All this services can be used or not which leads to the conclusion that Openwings supports
extensibilty. Also when using XVSM the developer can configure its own system by adding or
unadding pluggable components (lifecycle management, monitoring, encryption etc.).
The L2imbo, as presented in [DFWB98a] and in [DFWB98b] extends the classical Linda model.
One of the extensions made to L2imbo are the so called system agents which offer a variation of
different services. Since this services can be choosen from, one might this also call extensibility.
GigaSpaces scales very well and focuses on its extensibilty in general. It tries to enable the
partitioning of data into self-contained processing units which nearly can handle any load and
dynamically allocate resources for optimized utilization.81.
77http://www.openwings.org
78SOP
79http://www.openwings.org/openwings-11/tutorial/Trail_Introduction/04_
Container_Services.html

80http://www.openwings.org/openwings-11/tutorial/Trail_Introduction/03_
Component_Services.html

81http://www.gigaspaces.com/xap-high-availability-load-balancing/how-it-works

http://www.openwings.org
http://www.openwings.org/openwings-11/tutorial/Trail_Introduction/04_Container_Services.html
http://www.openwings.org/openwings-11/tutorial/Trail_Introduction/04_Container_Services.html
http://www.openwings.org/openwings-11/tutorial/Trail_Introduction/03_Component_Services.html
http://www.openwings.org/openwings-11/tutorial/Trail_Introduction/03_Component_Services.html
http://www.gigaspaces.com/xap-high-availability-load-balancing/how-it-works

102 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

TCP’s Linda architecture is modular and its semantics are the same as in Linda and an content-
addressable tuple space, + makes it easier to build applications. One could argue that a modular
architecture means that extensibilty is supported to a certain degree.
KLAIM82 is a space-based computing implementation designed to program distributed sys-
tems consisting of several mobile components that interact through multiple distributed tuple
spaces.83 The development of KLAIM has been mainly influenced by process calculus (π-
calculus) and the Linda coordination model with the aim to improve issues like scalability and
modularity. Over the time various KLAIM implementations and extensions to it have been pre-
sented. Since there are so many extensions to Klaim itself which can be all intermingled with
each other one could say that is extensibilty too.
XMLSpaces.NET implements the Linda concept as a middleware for XML documents on the
.NET platform and it is extensible in that it supports a hierarchy of matching relations on tuples
and an open set of matching amongst data, documents and objects.84

SQL85Spaces combine the idea of the tuple spaces concept with a relational database that can
be seen as the backbone of the implementation but can hardly be noticed by the developer be-
cause of the features, e.g. notifications, expiration, versioning and extended query mechanisms,
which are offered by the tuple spaces. The different query mechanisms could been described as
extensibility but this is not straight forward.
Last but not least we close this section with XVSM and the topic of aspects. An Aspect in
XVSM allows to implement an extension to the existing XVSM functionality86. Many features
can be implemented using aspects, e.g. logging or notifications amongst others. The basic
trick is to integrate code before and after each space operation which is executed. The code is
executed automatically and extend the functionality of any operation executed. This of course is
exetensibility.
Subsequently an overview of all space based computing systems is given in the context of ex-
tensibility. Figure 4.28.
82Kernel Language for Agents Interaction and Mobility
83 [BBDN+03] page 88.
84 [TLN04] page 1.
85Structured Query Language
86http://www.mozartspaces.org/2.0/docs/MozartSpaces_Tutorial.pdf

http://www.mozartspaces.org/2.0/docs/MozartSpaces_Tutorial.pdf

4.7. CLASSIFICATION BY EXTENSIBILITY 103

Figure 4.28: Summary Classification of Space Based Computing Systems by Extensibility

104 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

4.8 Classification by security

In 2016 one will have a hard time trying to argue that security in a connected world is of no
importance. Companies have to ask questions like

• What kind of data do I have to secure?

• From whom needs my data to be secured?

• How can I secure data?

Most of the time the first two questions are pretty straight forward but the answer to the third
question is a little bit more tricky to give. This is mainly due to the fact that technologies
advance and so solutions normally change over time. Having said this, the commonly accepted
approach to secure information involves three key-processes: authentication, authorization, and
encryption87. Those three processes also find acceptence in the world of space based computing
systems and are therefore explained before we start the actual classification process.

• Authentication can be simply described as the process of identifying an individual, usu-
ally based on a username and password.

• Authorization on the other hand enables individuals to access to systems and data based
on their identity.

• Encryption is the process of transforming data so that it is unreadable by anyone who
does not have a fitting decryption key. Commonly known encryption methods are amongst
others RSA88,PGP89 or SSL90encryption.

Figure 4.29 shows which space based computing systems are of interest. They are discussed in
the context of security subsequently. Those which are not adressed specifically will be given
notice in the summary.
87http://www.bu.edu/tech/security/resources/bestpractice/auth/
88RSA stands for Ron Rivest, Adi Shamir and Leonard Adleman.
89PrettyGoodPrivacy
90Secure Socket Layer

http://www.bu.edu/tech/security/resources/bestpractice/auth/

4.8. CLASSIFICATION BY SECURITY 105

Figure 4.29: Space Based Computing Systems Focusing on Security

AspectKE* [YMA+10] uses aspects to implement different access control policies which focus
on the behavior of executing processes. The aspects decide based on their set of rules if a
process gets executed or not. Although aspects offer the developer quite a big deal of flexibility
the drawback of AspectKE* is that it only can monitor processes and nothing else.
Apache River91 uses the net.jini.security package to manage the diverse security aspects. The
package allows to check if external entities can be trusted and if proxies are authorized to enter
a client. In addition the package provides mechanisms to check if code integrity can be granted.
Blossom [GSW97] aims to make tuple spaces more efficient and safer. In short Blossom tries to
improve the program performance and the security, in the sense that the likelihood of program-
91http://river.apache.org/doc/specs/api/net/jini/security/package-summary.html

http://river.apache.org/doc/specs/api/net/jini/security/package-summary.html

106 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

ming errors is reduced.92 In order to reach this goal Blossom uses strongly typed tuple spaces
meaning that each tuple space is created with a specification that gives the number, order and
type of each field of the tuples legally allowed.93 In terms of security Blossom offers support for
the following topics:

• Blossom uses field access patterns, where tuple fields can only be retrieved by specifying
a value, or allowing a wild card variable.

• Blossom also applies access patterns to tuple spaces.

• Blossom allows users to look into tuple spaces, which is referred to as tuple space asser-
tions.

[GSW97] shows that the proposed enhancements help to detect or eliminate parallel program-
ming errors, however there are no performance tests, which indicate how much the user can gain
through these measures.
Comet [LP05] offers a global virtual shared-space that can be associatively accessed by all
system peers. Such peer groups provide a secure environment where only member peers can
access the services available in the respective tuple space. Unsecure peers are connected to the
coordinating space via a Proxy (Request Handler). Apart from that there are no other security
features.
Corso for example supports authorization mechanisms94. In order to access an object a certain
authorization process has to be run through. A process has to know the reference to an object
in order to act on it. In order to know the reference of an object the process normally owns
the object or has to know a password for example. [Sch08a] also explained that users can be
managed in a configuration file which defines trusted and allowed users. Trusted users can act
as administratos in the space whereas allowed users only can access specified objects.
DepSpaces are also supporting authorization mechanisms [BACF08]. A tuple space in DepSpaces
has a single access policy. Whenever a process wants to act on the space it is checked if the pro-
cess has enough rights - this is done in the so called policy enforcement layer. DepSpace even
is said to even work in Byzantine-prone environments.
Encrypted shared data spaces [RDD+08] use encryption schemes, RSA95 and discrete loga-
rithms, that ensure confidentiality of the data space content in open, possibly hostile, environ-
ments.
The big asset of an encrypted shared data space is that it supports tuple matching even over
the encrypted data space. The data space does not need to decrypt tuples to perform the search
which keeps real content safe from nosey hosts.96 The key management is handled by a fully
trusted server which is responsible for all the key-related operations.
92[GSW97] page 2.
93[GSW97] page 6.
94http://www.sti-innsbruck.at/sites/default/files/D1.2_0.pdf
95Rivest, Shamir and Adleman
96 [RDD+08] page 15.

http://www.sti-innsbruck.at/sites/default/files/D1.2_0.pdf

4.8. CLASSIFICATION BY SECURITY 107

The encrypted shared data space itself is used for storing and retrieving plaintext, partially en-
crypted or completely encrypted tuples. In addition it also performs encrypted searching opera-
tions, authenticates valid clients, and safely stores encryption and decryption keys.
The encrypted shared data space offers a different approach to other security mechanisms in
space-based computing systems because it does not focus on access control alone.
Erlinda is a parallel computing framework for Erlang. It states that it supports security mecha-
nisms but no specifics can be found in the source.
GigaSpaces is a well-established name in the industry. Therfore it is no suprise that it deals in
a professional manner with the topic of security and tries to offer solid and extensible versions.
GigaSpaces adresses topics like authentication and authorization. Before even considering if
an user is allowed to perform an action upon the space, the user firstly has to undergo the au-
thentication process which is handled by a so called authentication manager. Once an user is
cleared the authorization decision manager decides if an user is authorized to execute operations
on specific data and services.
GigaSpaces also offers the possibilty of creating an entire authority role model throughout the
different system components. Both the authentication layer and the authorization layer offer
default implementations, which can be customizedt to he customers needs.97

LACIOS 98 [ZBS09] extends Linda and is a data-oriented coordination language which focuses
on the design and implementation of multi agent systems used for transportation applications. It
also deals with security issues since it wants to guarantee that all agents can exchange data with
each other on a global level. In order to do so two levels of security are provided:

• The global level is used by the developer who can define a set of rules that are checked
when an agent wants to execute any kind of action. Such a rule is normally a boolean
expression which can either terminate true or false. If the output is false the request of the
agent is rejected.

• The local level lets the agents themselves decide if an object poses any kind of threat to
them. The agents themselves can define their set of rules which is executed on the locall
level.

This mechanisms make it possible to control insertion, perception and retrieval of objects.
Lana [BR02] is based on Java and the Linda tuple space model. One big focus lies on security,
specifically on message quality which in a connected world is definitely relevant. Lana uses a so
called TrustedZone in order to implement all trusted zone functionality. The trusted zone is the
link between the operation system and the device hardware. This class is used by clients for key
operations on the trusted zone, e.g., to set a new profile (setProfile), to specify the evidence re-
quired for an incoming message to be validated (setRequiredEvidence), as well as to specify the
profile certificates required when validating message quality (addRequiredCertificate).99 This
possibilities definitely offers quite an advantage when agents move through the web.
97http://wiki.gigaspaces.com/wiki/display/XAP9/Security
98 Language for Agent Contextual Interaction in Open Systems
99 [BR02] page 77.

http://wiki.gigaspaces.com/wiki/display/XAP9/Security

108 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

Law-Governed Linda100 [ML95] extends the Linda model with law-governed architectures in
order to enhance the security of tuple spaces. To reach this goal Law-Governed Linda forces
all processes to adopt a set of specific rules which are monitored by a controller who has a
copy of the law that applies to the specific tuple/tuple space. Only if a process fulfills all the
laws it can execute operations on the tuple/tuple space. A relative of LGL is Law-Governed
Infrastructure101 [MMU01]. It allows agents and processes to communicate with each other
under a certain policy, which is called the law of the group. Policies exist for security issues as
well as for coordination issues.
LGI characteristics are:

• Laws under LGI are sensitive to the content of the tuples being handled.

• Laws are sensitive to the state of agents.

• Enforcement of laws can occur at either the client, the server, or anywhere in the network.

• LGI supports different levels of security.

Every agent can join an arbitrary number of groups and follows their different law as necessary.
A law in LGI can be described as a reactive rule which executes an operation on a certain event.
Like in LGL, a controller monitors everything to secure that policies are fulfilled. At the moment
no cryptographic techniques are used to enhance security which can be seen as a drawback.
Secure Object Spaces102 [VBO03], [BDN02] extends Linda with fine-grained access control
based on locking in order to strengthen the security of space-based computing systems without
being too restrictive. A lock can be seen as a specific value that represents the key to a given
tuple. SecOS offers a set of different variants for the locking process:

• Symmetric key locking: One key locks and unlocks the tuple.

• Asymmetric key locking: A public key locks the tuple and a private key can unlock it.

• Fine grained access control at fields and tuple level.

Ideas of SecOS have influenced also SecSpaces [BGLZ02], which is a Linda-like coordination
model that supports secure data-driven coordination in open environments.
SecSpaces introduces two new fields which can both add value to the coordination model:

• Partitioning fields: The tuple space partitioning is achieved through the introduction of a
partition field in the tuples. An agent can only enter the field if it knows the name of the
partition. This partitioning mechanism avoids all agents having the same view on the data
contained in a tuple space.

100LGL
101LGI
102SecOS

4.8. CLASSIFICATION BY SECURITY 109

• Cryptographic fields: The cryptographic fields can distinguish between agents who can
only execute read operations and those who can only execute take operations through the
use of asymmetric cryptography.

SecSpaces offer a good approach to secure tuple spaces and tuple fields and therefore they are
quite popular in the scientific community.
Tagged sets [OH05] are a virtual shared memory approach that relies on tags based on propo-
sitional logic to lock and select values103 with the aim to support scenarios like shared data
repositories, message passing or publish/subscribe algorithms. Tagged sets provide good secu-
rity because tags are usually associated with a key that defines the protection grade and only if a
user presents his key he is allowed to execute an operation on the tag.
VLOS104 is presented in [MCW02] and [CM03] and can be described as a distributed operating
system based on tuple spaces. Security in VLOS is granted through a capability-based approach.
Capabilities in VLOS normally consist of a unique identifier, the object type and the name of
the tuple space with which the object is associated as well as of a set of rights, a cryptographic
and a hash function [UWJ07].
In the previous section the use of aspects in XVSM has been already discussed - since aspects
give the programmer the freedom to extend the space with own code sniplets they are also
interesting in the context of security, where they can be used for implementing authentication
and monitoring processes amongst others [Bar10].
Another interesting space based computing system which was not part of the entire qualification
process is CryptoKlava which provides the cryptography which can be used in the combina-
tion with Klava [BDNP01]. CryptoKlava uses the Java Cryptography Extension105, a set of
packages that provide a framework and implementations for encryption, key generation and key
agreement, and Message Authentication Code (MAC) algorithms.

4.8.1 Summary

Figure 4.30 summarizes this section. What can be seen is that only a few space based computing
systems are focusing on cryptograpic topics whereas quite a few focus on authentication and
authorization methodologies. GigaSpaces is probably the most technically mature space based
computing system in terms of security but there are other interesting space based computing
systems like XVSM an AspectKE* which make use of the aspects which offers great versatility
to the developer. The Klaim family has also different approaches dealing with security as well as
Linearizable byzantine fault-tolerant tuple space 106 [NBCdSFCL07], [Bes06] which use simple
quorum-based protocols and more complicated operations use consensus-based protocols to en-
hance fault-tolerance. Summing up this topic, one can also see that in this area more needs to be
done, since only one fifth of all space based computing systems is dealing with security matters.
103 [OH05] page 15.
104Virtually Linda Operating System
105JCE
106LBTS

110 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

Figure 4.30: Summary Classification of Space Based Computing Systems by Security

4.9 Classification by life cycle management

The efficient management of data has become more important to businesses in the last years,
since organizations must deal not only with bigger amounts of data but also have to handle some

4.9. CLASSIFICATION BY LIFE CYCLE MANAGEMENT 111

information in a special107 way. Therefore efficient life cycle management should manage data
from its creation and initial storage to the time when it becomes obsolete and is deleted.108

When it comes to space based computing systems especially the last part is of importance since
it keeps the amount of data within the spaces on an acceptable level and prevents the space from
growing too big for no reason.
In 1997 [MW97] already explained in their paper why garbage collection is needed in space
based computing systems. They also describe the process of garbage collection as a two-step
process, namely searching data which can be deleted and after that the actual deleting process.
One can use different alghorithms in order to decide if certain data in a space is still useful.
Subsequently I will write about two simple garbage collection algorithms [JHM11] to give a
better understanding of the topic itself.
The mark-and-sweep garbage collection algorithm was the first garbage collection algorithm to
be developed by John McCarthy around 1959. The mark-and-sweep algorithm is a so called a
tracing garbage collector because it runs through every object/data that is somehow connected
with the space. Data that can be entered directly is a so called root and represents the starting
point for every search. All objects that are somehow accesible from a root are a marked as alive
and are considered as no garbage. On the other hand all objects that can not be reached are
considered as garbage and therefore can be thrown away. Figure 4. 33109 illustrates how the
mark and sweep alghoritm works.
Before the garbage collection process we see six objects all not marked yet, and one root. The
arrows show the graphs that connects the objects. In the mark phase of the algorithm all lobjects
that could have been reached from the root are marked TRUE. In this case the objects 1,2,3, and
6. After the sweep phase the objects 4 and 5 have been deleted since they have not been marked
before.
107E.g. employee relevant data has to be stored seven years in Austria
108http://searchstorage.techtarget.com/definition/data-life-cycle-management
109http://www.brpreiss.com/books/opus5/html/page424.html

http://searchstorage.techtarget.com/definition/data-life-cycle-management
http://www.brpreiss.com/books/opus5/html/page424.html

112 CHAPTER 4. CLASSIFICATION OF SPACE BASED COMPUTING SYSTEMS

Figure 4.31: Mark and Sweep Algorithm

Another way to identify garbage/unused objects is reference counting. Every object is given a
reference count, which indicates the number of other objects pointing to this object [MW97].
As long as the object’s reference count is higher than zero, other objects are pointing to it and it
is classified as no garbage. When the object count reaches zero it can safely be deleted.
[MW97] shows that the mark and sweep algorithm can be used also in tuple spaces to mark

unused processes, data or tuple spaces.
Since that time a lot has happened in life cycle management but only a few space based comput-
ing implementations are seriously dealing with this topic. Subsequently the most relevant space
based computing systems with the focus on garbage collection will be discussed.
Ligia [MW98] extends the Linda tuple space and is a Java-based implementation which includes
garbage collection of tuple spaces and agents. Garbage collection is done with a mark and sweep
algorithm that once starts at the root to mark agents/tuplespaces as active and a second time the

4.9. CLASSIFICATION BY LIFE CYCLE MANAGEMENT 113

algorithm starts at the end of marked agents/tuplespaces to see if it is possible to reach the root.
Only agents/tuplespaces that have not been marked in neither of the two phases are considered
as garbage and therfore can be deleted. In order to make garbage collection possible in the first
place, the server needs to be aware of the agents. In Ligia this is done by two simple methods.
The moment an agents wants to create an object it has to interact with the server who adds an
unique name to the agent which can be monitored. When an agent leaves it has to do it with
the leave method provided by Ligia so that the server knows that the agent is no longer active.
However if the user is sloppy and does not use this method the server will consider the agent
as activ although it is not. This of course makes it difficult for the garbage collector to work
efficiently. However, the big issue with Ligia is that one can only delete tuple spaces or agents
but no tuples. [UWJ07] stated that the main problem in introducing garbage collection for tuples
is the lack of suffcient information about the tuples themselves,e.g. how they are connected with
each other and if they are active or not.The reason for that is that whilst tuple spaces have unique
IDs which can be referenced tuples are normally addressed by the values they are holding.
Lindacap uses multicapabilities to overcome this issue. Such a multicapability consists of a
unique tag to differentiate between different capabilities for the same template [UWJ07]. And
now it is possible to understand which agent knows about which tuples. In Lindacap garbage
collection is only done under specific circumstances, e.g. if there is not enough memory space
available. Garbage collection mainly is not a routine process because it comes at the price of
needing quite a bit of system resources.
Also XVSM and TSC support garbage collection. The Triple Space API for example acts as a
garbage collector, removing ”hanging” operations or checking for finished operations that might
be of no use anymore. Since these three space based computing systems are of the same family
- they follow more or less the same ideas.
Another space based computing system which claims to support garbage collection is PyLinda110

but no closer information in how it supports it could be found.
To sum up this chapter one has to say that not much information can be found concerning
garbage collection although it is of some importance for an efficient and optimized space based
computing system.

110http://code.google.com/p/pylinda/

http://code.google.com/p/pylinda/

CHAPTER 5
Conclusion

5.1 Summary

This thesis has tried to bring a certain amount of structure to the different space based com-
puting systems, with the aim to bring transparancy to their general focus points, strenghts and
weaknesses.
Analysing the different space based computing systems has shown that the variety and the dif-
ferent stages of development of the single space based computing systems make it difficult to
compare them with each other. However, the thesis can give the reader an overview of the
individual systems as well as their focus areas.
Figure 5.1 at the end of this chapter will show a complete overview of the gathered results.
Before that I will summarize what has been done in this paper. In chapter 2 I have focused on the
historical aspects of space based computing systems, when they have been first introduced and
how long they have been of relevance. Also a first overview of their main focus areas has been
given. After that a few space based computing systems like Linda, XVSM, TuCSoN, LIME
et cetera have been presented in more detail to give the reader a general understanding about
how space based computing systems work. After that different application scenarios for space
based computing systems have been introduced in chapter 3, in order to give the reader an idea
why this field of research could be of importance. Chapter 4 focused on the main classification
process and it has been possible to classify the 103 space based computing systems after the
following themes: families, operations, coordination concepts, space substructures, data types,
extensibility, security and life cycle management. Since life cycle management is not a very
popular topic in space based computing systems and most programming lanuages offer already
possibilities for garbage collection, this section of chapter 4 seems relatively unfinished since
one might think there is more to write about. However, understanding that garbage collection in
space based computing systems is not trivial only a few space based computing systems really
took a closer look at this problem.

115

116 CHAPTER 5. CONCLUSION

Three topics have been left out in the classification process: architecture1, scalability and per-
formance. This decision was made due to various reasons.
Classifying space based computing systems after their system architecture would mean that one
has to classify space based computing systems into two groups: in spaces based computing
systems that are embedded2 and in those which are standalone3 [Sch08a]. Since embedded
systems can also function as standalone systems it didn’t make much sense to write in detail
about this topic, since the system architecture probably is not the key criteria that a developer
uses when deciding which space to use. Having said this, it is important to know that embedded
systems like XVSM are lighter and normally easier to use because they are hidden within the
application. Also network architecture did not seem to have the importance to be classified
in all detail. Most space based computing systems have a centralized structure whereas the
smaller group is decentralized. Also a few spaces support no remote communication at all. The
information about system and network architecture however is represented in figure 5.1.
Scalability and performance are not included in the classification process since these two parts
can be seen as quantitative indicators and since not all space based computing systems have a
proper implementation to compare them with each other in a fair way, they have been excluded
from this classifcation. However [Lwe10] and [OG02] have done intersting research in this field.
Figure 5.1 includes a classification section on those spaces which say that they aim for scalabilty.
However, these sections might not be complete.
In my opinion there is no such a thing as the perfect space based computing system. However,
there are certain space based computing systems which are more advanced than others when it
comes to certain needs.
When it comes to flexibility, ease of use and possibilities offered to the developer XVSM and its
family members are in my opinion hard to beat. It offers much more possibilities than any other
system, which is mainly because of its containers which allow for different coordination types
and the use of aspects which easily can integrate topics like security, replication or anything the
developer would like to add.
However if a company would like to use a space based computing system, I immediately would
suggest to go for GigaSpaces which is a solid commercial solution that guarantess updates,
support and the steady development of the system itself. Academic solutions often pose a risk
since a company can not be sure how long support for the space based computing system can be
assured.
If I would have an application scenario that focuses on mobility either a member of the LIME
family or TuCSoN would be top on my list, since they are well tested, well described and pretty
easy to use. And although a member of the Klaim family would be probably as good if not even
better, the only drawback is that Klaim at the beginnig is not so easy to understand and not as
well described as the other two options.
When it comes to security XVSM is a good solution since it does not only focus on this one
aspect, neglecting all the other important issues on the other hand GigaSpaces also offers solid
solutions for security issues. So here the price would be probably the key criteria for a decision.
1system as well as network architecture
2The space based computing system is directly integrated in the application.
3The space based computing system runs completely on its own

5.1. SUMMARY 117

This part of the conclusion consolidates all the found information in figure 5.1. In the glossary
all the 103 space based computing systems of the survey are described shortly and references to
useful papers and websites are given. The second part of the conclusion will focus on the most
recent developments which have not been included in the survey because their release was too
late for inclusion.

118 CHAPTER 5. CONCLUSION

Figure 5.1: Classification of Space Based Computing Systems A-J

5.1. SUMMARY 119

Figure 5.2: Classification of Space Based Computing Systems K-S

120 CHAPTER 5. CONCLUSION

Figure 5.3: Classification of Space Based Computing Systems T-X

5.2 Latest developments in the area of space based computing
systems

The second part of the conclusion presents space based computing systems that have not been
included in the survey because their release was too late for inclusion.
I started to work on this thesis in 2013 and had found 103 space based computing systems by
2014. During the time I was working on the classification process between 2014 and 2015,
already existing space based computing systems have been extended or improved and new space
based computing systems have been introduced.
Being aware of this fact I always planned to go back where I started in the beginning and look
at the most recent developments. I always felt that getting as much unbiased information as
possible is an important factor also for developers because it helps them to facilate the actual
knowledge building.
So the final part of this thesis will present a completely new space based computing system as
well as extions of already existing systems.

5.2. LATEST DEVELOPMENTS IN THE AREA OF SPACE BASED COMPUTING
SYSTEMS 121

MELON4 is a practical approach for distributed communication in MANET applications written
in Ruby and was introduced by [CB14]. It provides persistent messages, reliable FIFO-ordered
multicast, effcient bulk retrieval, and simple message streaming.5 In his PhD thesis [Col14]
gives an in detail description of MELON with detailed examples and benchmarks. MELON
uses the idea of a distributed shared tuple space, and enhances it with the following specifics:

• MELON divides the messages within the space in two groups: a remove-only groupl,
and a read-only group. Remove-only messages can only be retrieved once and must be
removed when retrieved. Read-only messages may never be explicitly removed, only be
copied from the message store.

• Messages can be implemented as any structure which can be matched by a template.

• MELON adresses the storage limitations of mobile devices by allowing messages to be
automatically garbage collected.

• In MELON all retrieval operations are limited to a best effort approach.

For me the it was very interesting that also had problems to compare MELON in a quantitative
manner:
We found most projects were based on traditional distributed computing paradigms, but it was
not possible to assert any conclusions regarding the underlying paradigms, since the project im-
plementations compared used differen languages and were of varying quality. In order to study
the paradigms performance in a quantitative manner, we implemented our own versions of three
commonly-used paradigms (publish/subscribe, RPC, and tuple spaces) with as much shared
code as possible. This allowed us to fairly compare the paradigms using real applications.6

It is the same hurdle that I found when I was thinking over methodolgies on how one could
classify quantitive aspects of the diverse space based computing systems. I also came to the
conclusion that you would have to create similar conditions to make the space based computing
systems comparable. In my opinion this can not not be done in a general way but has do be done
in a more specific way, where you take application scenarios and expectations on what goal you
want to achieve into account.
When I looked at the newer material I found a few ideas that actually where combining already
existing space based computing implementations with other technologies. Buzz [PLBB15], a
programming language for heterogeneous robot swarms, is such an idea. The main idea is
that Buzz offers primitives to define swarm behaviors both from the perspective of the single
robot and of the overall swarm.7 In order to enable virtual stigmergy8 a distributed tuple space
analogous to Linda is used. With Buzz a second representative after SWARMLINDA shows that
space based computing systems can facilitate swarm behaviour.
4Message Exchange Language Over the Network
5 [CB14] page 1.
6 [Col14] page 118.
7 [BDL+14] page 1.
8Virtual stigmergy is a data structure that allows a swarm of robots to share data globally.

122 CHAPTER 5. CONCLUSION

A completely different application scenario is adressed by Cwmwl [FW14]. Cwmwl is a Platform-
as-a-Service cloud environment that combines the LINDA coordination language, an in-memory
key-value store, with functional programming to facilitate efficient execution of tenant plugins
and applications. In the implementation a tuple space plays a central role in introducing deter-
ministic services for basic parallel programming, including message passing, persistent infinite
message pools and transactions. [FW14] show in their paper that using a tuple space can enhance
the capability of a PaaS framwork.
What I also found out during my most recent research is that space based computing implemen-
tations that are already well established focus on constantly developing new features or try to
explore new application scenarios. The Peer Model which is described in [KCH14] and [Rau14]
is a good example. The Peer Model enables scalability, compsability, the separation of coordi-
nation and business logic. It adresses that fact space-based frameworks have a reputation to be
hard-to-use which often leads developers to decide against them.
The Peer Model is a programming model for the design of coordination strategies among mul-
tiple nodes, aiming to bridge design and implementation.9 [KCH14] presents an application
scenario from the railway domain in which embedded nodes detect approaching trains and route
this information over several forwarder nodes to the level crossing. In order to secure a good
scalability and decoupling a space based computing middleware is used where communication
is handled through the space. The Peer Model is compared with other spaced based comput-
ing systems such as TeenyLime or LINC and shows good results in the sectors of flexibilty and
extensibility. The Peer model offers a good abstraction for communication and coordination.
Furthermore it generates source code automatically. In the long term these qualities can help to
enhance the development process of embedded systems.
[Rau14] presents a PeerSpace.NET framework that is based on the Peer Model, is implemented
in .NET and based on Xcoordination AppSpace. The implementation focuses on an usable API
and advanced error handling possibilities. The thesis of [Rau14] also shows that the usability of
the PeerSpace’s API is much better than the usability of the WCF’s API.
Also a few interesting thesis written from students of the Space Based Computing Group of
the Institute of Computer Languages at the Vienna University of Technology have been pre-
sented in 2014 and 2015. [Wat14] introduced different lifecycle and memory management ideas
for MozartSpaces, the Java reference implementation of eXtensible Virtual Shared Memory
(XVSM). [Wat14] introduces an event-driven architecture which also provides time-based events,
as well as an additional extensibility mechanism - jobs, which will support the execution of ar-
bitrary code in reaction to events. Building on these two mechanisms, a leasing mechanism for
managing the lifetime and validity of data in the space is implemented.10 The leasing mecha-
nism removes expired entries and frees up space. The results of this thesis show that a small
overhead is produced by the Jobs perform slightly slower than aspects, however the advantage
of the jobs is that they execute after tasks.
Also [Kla14] extends XVSM. Semantic XVSM enables the use of semantic models and knowl-
edge inside the XVSM space. The introduction of these Semantic Web technolog, offers pow-
erful query capabilities for selecting communications items and their enrichment with implicit
9 [KCH14] page 64.
10 [Wat14] page 1.

5.2. LATEST DEVELOPMENTS IN THE AREA OF SPACE BASED COMPUTING
SYSTEMS 123

information. The coordination logic of Semantic XVSM is platform independent, can use stan-
dardized languages, and manages the logic at run time by using standard operations of XVSM.
TuCSoN has been extended in [UOdlT+14] with security mechanisms for a P2P agent coor-
dination framework used by heterogeneous health organisations to exchange Electronic Health
Records of patients.The main aim is to secure the interactions within the P2P network so that
different health organisations can freely search data in other health organisations without prior
integration among them. TuCSoN has been extended with asymmetric key cryptography mod-
els in order to reach this goal. Future work will focus on defining policies that can detect if
the emerging behaviour of the actors performing the queries is that expected within the system.
Furthermore detailed logging features will be developed in order to track back all the access to
documents and subscriptions to different types of events will be developed in the future.
Also KLAIM has been extended in [ADNL15]. RepliKlaim enriches Klaim with primitives for
replica-aware coordination. The main aim is is to offer suitable solutions to the problems of
data distribution and locality in large-scale high performance computing. RepliKlaim offers the
possibility to specify and coordinate the replication of shared data items and the desired con-
sistency properties so to obtain better performances in large-scale high performance computing
applications. 11

An interesting application scenario was presented in [BDL+14] and focuses on energy optimisa-
tion in the context of lifts management. Here a distributed optimisation strategy aims to reduce
the electricity bill. In order to achieve this goal [BDL+14] uses LINC which is based on the
ideas of Linda. The main challenge is to find the right balance between grid and stored energy.
So fare this application scenario has only been simulated but there are plans to test this strategy
on a real lift.
So one can see that space based computing systems are constantly improved in order to fit new
application scenarios or the adress topics like security, mobilty, life cycle management, usability,
extensibilty or scalability amongst others. Since the information on the space based computing
systems is sometimes scattered it is important to understand that I might have simply not found
a few space based computing systems. Therefore this thesis is probably a good start in order
to get a good overview of what is out there but of course it’s probably not an entirely complete
picture.
Future work could focus on the quantitative classification process of the introduced space based
computing systems but one would need to think about a framework that makes the spaces really
comparable to each other.

11 [ADNL15] page 14.

APPENDIX A
Glossary

Although not all space-based computing solutions were mentioned explicitly in this thesis, it still
makes sense, to introduce all of them shortly to give the interested reader, a complete picture,
including references and links. The space-based computing solutions are presented in a not too
technical way in order to reduce complexity.
If any space-based computing solutions are missing, this is unintentional and simply due to the
sheer volume of solutions available.

A.1 Apache River

In 2007, Sun’s Jini contribution was accepted into the Apache incubator with the project name
’River’ to improve visibility of the Jini development. The Apache River project website1 gives
a decent overview of the project including concepts, source code, a community area and much
more. Since Jini is still the better known name in the community, further details can be found in
the glossary section under Jini.

A.2 AspectKE*

AspectKE* [YMA+10] is a member of the KLAIM family and presents a programming lan-
guage which offers an aspect extension to Klava [BDNP01]. The main focus of AspectKE* is
to enforce security aspects in an untrusted environment.
The main characteristics of AspectKE* can be described as follows:

• AspectKE* can express a large set of security policies, especially those based on future
behavior of executing processes.2

1http://river.apache.org/doc/spec-index.html
2 [YMA+10] page 31.

125

http://river.apache.org/doc/spec-index.html

126 APPENDIX A. GLOSSARY

• AspectKE* offers a high-level program analysis.

• AspectKE* combines load-time static analysis and runtime checking, which enhances the
performance.

• AspectKE* can express dynamic properties of an executing process in combination with
static properties.3

At the moment AspectKE* can only monitor processes and command the processes to break
or proceed from its advice4 so further research has to be undertaken to make it useable for a
wider range of scenarios to expand the range of useability. Source code or project websites are
currently not available.

A.3 AutoevoSpaces

IntaMission’s AutevoSpaces had been presented in 2003 on the company’s website, which no
longer exists. AutoevoSpaces SSI by IntaMission was the first commercially available product
to provide semantic consistency with Sun’s JavaSpaces, ensuring the correctness and flexibility
of large distributed mission-critical applications.
A free trial used to be offered by Sun but, once again, the provied link is no longer active. The
main features of AutoevoSpaces are:

• Building a common data model to deliver improved collaboration and service reliability,
while simplifying the underlying infrastructure.

• Allowing service providers to consolidate and migrate complex systems in a way that
reduces risk and drives down the cost of change.

• Monitoring services end-to-end across the domain from a single point, allowing the busi-
ness to drive down support costs while boosting the quality of service.

• Enabling grid computing through Autevo-processing power is spread across your entire
network, maximizing the use of your existing hardware.

Since no source or literature is available on this topic, it’s hard to say what the strength and
weaknesses of IntaMission’s AutevoSpaces are.

A.4 B-Linda

Linda with bound types - or in short B-Linda - extends the basic Linda model with the aim
to supply Linda with a better tolerance to programming errors and unwanted interactions in
open context. It was introduced in 2002 by Alain Gibaud and Philippe Thomin [GT02]. The
3 [YMA+10] page 31.
4 [YMA+10] page 31.

A.5. BALINDA K 127

main difference to the basic Linda model is that tuples are characterized by a b-type and not
only by their structures. B-types are defined by Gibaud and Thomin as a triple (Ste, Se,
Sc) in which Ste represents the structure of the tuple, Se its semantics and Sc its scope.5 It
also introduces two new operators in addition to the classical operators out, in, rd and eval,
namely the definetype (st, se) operator (allows the dynamic creation of a b-type) and
the undefined operator (allows a process to remove itself from the scope of the b-type
bt).
The model avoids false matching. First of all it allows dynamic partitioning of the tuple space
and secondly, the partitions built are homogenous because they contain information sharing the
same structure and the same semantics, used in the same context.6 This aspect can be seen as
the main advantage compared to Linda.
This space based computing solution is a solid option with a theoretical approach but it also ex-
ists as an implementation, presented and tested in C. Unfortunately the only literature concerning
this topic is provided by Philipp Tomin and Alain Gibaud themselves and only two other works
have cited their article.

A.5 BaLinda K

BaLinda K represents a further development of BaLinda Lisp and is presented in [YF96] by
C.K. Yuen and M.D. Feng. The “K” stands for “hard C” because the language of the K version
superficially resembles C. BaLinda K is especially useful for the construction of I/O interfaces
and execution control mechanisms and has potential as a tool for system program implementa-
tions.7 On top of this, any inheritance anomaly can be handled effectively with Balinda K and
its active objects. The paper provided by C.K. Yuen presents a lot of practical examples but no
source code for practical testing is made available.

A.6 BaLinda Lisp

BaLinda (Biddle and Linda) Lisp, is a parallel execution of Lisp which was first presented by
C.K. Yuen and W.F. Wong in 1990 [YW90]. The language was created due to the following two
requirements: Firstly, to execute parallel threads and secondly, to allow these parallel threads to
communicate with each other, including task-blocking to wait for a condition to arise. BaLinda
Lisp omits a lot of the classical Lisp features and it also only uses the in, rd and out operations
of Linda, neglecting the eval operation.
In [YW90] Yuen and Feng present the fork-and-join and construct in more detail which marks
two threads as parallel and shows where the two threads merge back into one. The paper also
discusses the idea of speculative parallelism, first presented in [YFY93] in more detail. This idea
is of relevance when it comes to topic of performance improvements. Theoretical material as
well as practical implementations are provided by the authors. The authors have presented a lot
5[GT02] page 833.
6[GT02] page 834.
7[YP96] page 438.

128 APPENDIX A. GLOSSARY

of code examples, to help understand the principle of operation of this space based computing
implementation. Unfortunately no source for personal testing is available.

A.7 Bauhaus Linda

Bauhaus Linda [CGH97]was developed by N. Carriero D. Gelernter and S. Hupfer with the aim
to improve groupware systems. Bauhaus derived from Linda and offers a framework which
facilitates the common Linda framework through the following measures:

• elimination of the distinction between Linda tuples and tuple spaces. Instead Bauhaus
Linda introduces the construct multiset (mset).8

• elimination of the distinction between Linda tuples and ani-tuples.9

• reduction of the distinction between passive data-objects and passive data-objects. The
eval operation in Linda loses its relevance in Bauhaus Linda, where the out operation
creates processes and passive data elements.10

At the same time Bauhaus Linda is more powerful than Linda because it can handle more than
one tuple space but a hierarchy of “agent interaction spaces”.11

In this paper the authors present a number of groupware implementations which allow a better
understanding of how Bauhaus Linda can be used effectively. As a matter of fact, Bauhaus Linda
supports both synchronous and asynchronous interactions, both human and software agents and
both messaging and shared memory communication.12

The paper has been cited in many successive works and can be considered influential in the sector
of space-based computing technologies. No source has been provided for personal testing.

A.8 BISSA

BISSA owes his name to a storage place where old Sri Lankan farmers used to store their har-
vest. This space-based computing implementation is relatively new and a good introduction was
presented by [WWF+10] in 2010. On their project website the BISSA-team states that BISSA is
a scalable and distributed tuple space implementation which can be used as a decoupled , easy
to program distributed shared memory abstraction for distributed applications.13 Bissa has a
two level architecture which consists of the following:

• A peer to peer scalable implementation of a tuple space which can be used as a java
library.14

8[CGH97] page 312.
9[CGH97] page 312.
10[CGH97] page 312.
11[CGH97] page 312.
12[CGH97] page 319.
13http://bissa.sourceforge.net/about.html
14http://bissa.sourceforge.net/about.html

http://bissa.sourceforge.net/about.html
http://bissa.sourceforge.net/about.html

A.9. BLITZ 129

• An in-browser tuple space implementation which can be used as a tuple space for java
script applications.15

Both can either act as standalone implementations or collaborate with each other.16 BISSA sup-
ports the standard operations read, write and take but also a subscription mechanism
based on tuple templates.
The BISSA-Team presents a very complete picture of BISSA and the source is also available for
testing. It seems, however, that not many have cited the idea of BISSA in their own work and
so one has to question the relevance of BISSA. That being said, it is certainly a big step for the
empowerment of web gadget communication.
Further information can be found under the following link.17

A.9 Blitz

Blitz18 is an open source implementation implementing the JavaSpaces spec. The project is
meant to provide a basis for JavaSpaces-compliant Jini-services and to be installed easily with
an installation package. The key features of Blitz JavaSpaces (Pure Java Edition) 2.1.6 are
described on the website19 as follows:

• Pure Java - no native libraries required

• No External Database Requirement - just configure and go

• JINI 2.1 support - with backward compatibility to JINI 2.0.x

• JavaSpace 05 support

Besides implementing the classical JavaSpaces, Blitz allows to configure three different persis-
tence profiles. They are currently20:

• Persistent - Blitz behaves like a fully persistent JavaSpace.

• Transient - (de setting) causes Blitz to act like a disk-backed cache. No logging is per-
formed and, when Blitz is restarted, all state (including Join state etc.) is lost.

• TimeBarrierPersistent - provides a performance versus persistence QoS21 tradeoff. In this
mode, changes made more than a certain number of milliseconds ago are guaranteed to
be persistent. More recent changes are not guaranteed persistent but may be persistent.
This mode provides the developer with a means of balancing persistence needs against
performance.

15http://bissa.sourceforge.net/about.html
16[WWF+10] page 1.
17http://bissa.sourceforge.net/doclist.html.
18http://www.dancres.org/blitz
19http://www.dancres.org/blitz/blitz_js.html
20http://www.dancres.org/bjspj/docs/docs/install_guide.html
21Quality of Service

http://bissa.sourceforge.net/about.html
http://bissa.sourceforge.net/doclist.html.
http://www.dancres.org/blitz
http://www.dancres.org/blitz/blitz_js.html
http://www.dancres.org/bjspj/docs/docs/install_guide.html

130 APPENDIX A. GLOSSARY

A very useful characteristic of Blitz is that it offers various tools, including amongst others a
dashboard, which provides graphic access statistics such as memory usage, instance counts and
a number of active transactions.
Although the project website supports the reader with a lot of detailed information, no theoretical
in detail papers are available.

A.10 Blossom

Blossom is a C++ version of Linda with extensions and is presented in [GSW97]. The main
motivation for the introduction of Blossom was to make tuple spaces, as known in 1997, more
efficient and safer. In short Blossom tries to improve the program performance and the security,
in the sense that the likelihood of programming errors is reduced.22 Blossom suggests four
enhancements to the classical Linda model in order to reach this goal:

• Blossom uses strongly typed tuple spaces meaning that each tuple space is created with
a specification that gives the number, order and type of each field of the tuples legally
allowed.23

• Blossom uses field access patterns, where tuple fields can only be retrieved by specifying
a value, or allowing a wild card variable.

• Blossom also applies access patterns to tuple spaces.

• Blossom allows users to look into tuple spaces, which is referred to as tuple space asser-
tions.

[GSW97] shows that the proposed enhancements help to detect or eliminate parallel program-
ming errors, however there are no performance tests, which indicate how much the user can gain
through these measures. In the paper the authors also state that they are hoping to add addi-
tional performance enhancements, but no literature has been found on whether or not they have
realized their plans.
[GSW97] is cited in other works, but there are no further appearances of Blossom itself, neither
in publications nor on the web.

A.11 Bonita

Bonita is described in [Row97], [RW97] and proposes new primitives - Bonita primitives - that
use the same template matching and tuple space concept as the Linda primitives but provide
asynchronous access to tuple spaces, which avoids long waiting times for primitives that are
blocked most of the time.
The following primitives are introduced:
22[GSW97] page 2.
23[GSW97] page 6.

A.12. C-LINDA 131

• rqid = dispatch (ts, tuple | template, destructive | nondestructive)

The rqid primitive can be seen as a copy-collect and collect functionality. It returns
the requestidentifier rqid that can be subsequently used with other Bonita primitives to
count the number of copied or moved tuples.

• arrived (rqid)

arrived (rqid) is a non-blocking primitive which can return the values t true or f
false to show if the tuple has arrived or not. An invalid rqid returns the value false.

• obtain (rqid)

obtain(rquid) is a blocking primitive which waits until the tuple or result specified
by the rqid argument is available.

[Row97] shows that BONITA has a better performance than C Linda because BONITA pipelines
access to the tuple space24 which means a performance gain in the majority of times. This also
leads to the conclusion that BONITA is better suited to the type of co-ordination required in
agent systems.25

[Row97] and [RW97] are often cited in literature and have shown that performance can be
improved using simple measures. No source for testing has been found on the internet.

A.12 C-Linda

The C-Linda [Gel85] programming language is the combination of the C and the Linda lan-
guages. C-Linda provides the tools and the environment necessary to combine distinct processes
into a complete parallel program.
The parallel operations in C-Linda are orthogonal to C, providing complementary capabilities
necessary to parallel programs. C-Linda programs make full use of standard C for computation
and other non-parallel tasks; C-Linda enables these sequential operations to be divided among
the available processors. Since C-Linda is implemented as a precompiler, C-Linda programs
are essentially independent of the particular (native) C compiler used for final compilation and
linking.26

C-Linda, along with Fortran, can be seen as the oldest of all Linda-like implementations and a
lot of articles about it have been published. Nevertheless, in 2012 other programming languages
have evolved that support the aims of Linda even better.

A.13 C++ Linda

In [DF96a] R. Drucker and A. Frank present C++ Linda which combines the ideas of Linda tuple
spaces and the C++ object orientated programming language. The idea is to take a C++ program
24[RW97b] page 3.
25[RW97b] page 4.
26 [Sci05] page 10.

132 APPENDIX A. GLOSSARY

and transparently replace its data storage mechanism with that of the tuple space. Distributed
C++ variables are automatically stored as unique tuples in the tuple space rather than being
allocated storage in internal memory (on a stack or in a heap).27

Also [Gal97] offers a solution in C++ Linda, with the aim to handle large tuples efficiently.
One can see that more research on this topic has been carried out already, with the last bachelor
of science thesis having been published by [Slu07] in 2007. In this work we get a very detailed
overview of the possibilities of C++ Linda, and the source is also available under http://
sourceforge.net/projects/cpplinda/files/cpplinda/.
By embedding Linda and its primitives in C++ language, one obtains a new, parallel version of
the C++ language. An object-oriented language like C++ definitely has its advantages compared
to C. The object-oriented aspects in C++ enable aspects such as inheritance, encapsulation and
reuse. However, one has to bear in mind that the use of object-oriented language can also have
disadvantages.

A.14 Comet

Comet [LP05] is a scalable peer-to-peer content-based coordination space, which has been im-
plemented on the JXTA project28 with the aim to support wide-area P2P environments, which
require rich data expressibility, flexible matching, and scalable performance.29

Comet offers a global virtual shared-space that can be associatively accessed by all system peers.
Such peer groups provide a secure environment where only member peers can access the services
available in the respective tuple space. Peers can belong to several spaces and an application can
dynamically switch between coordination services associated with these spaces.
Comet operates on mainly two phases:

• Bootstrap phase: peer nodes try to join other peers and in doing so they construct a routing
table of available peer nodes.

• In the Running phase 2 modes are executed:

- Stabilization mode: peer nodes respond to queries issued by other peers.

- User mode: peer nodes provide coordination services.

Comet has been cited quite often in 2005 when it was first presented, but it seems that not many
new developments have been added to the original system since. A comet cloud is presented
under http://nsfcac.rutgers.edu/content/comet-cloud, but it can’t be con-
firmed how many of the ideas in Comet have been used in it.
27[DF96] page 31.
28http://www.jxta.org.
29 [LP05] page 1.

http://sourceforge.net/projects/cpplinda/files/cpplinda/
http://sourceforge.net/projects/cpplinda/files/cpplinda/
http://nsfcac.rutgers.edu/content/comet-cloud
 http://www.jxta.org.

A.15. CORSO 133

A.15 Corso

Corso30 extends Linda through a virtual shared memory space of Java objects and has been
presented in 2001 by the tecco Software Entwicklung AG, a spin-off of the Technical University
of Vienna at the institute for computer languages.
Corso offers the following features [Ang03]:

• Every object has a single identifier.

• The caching behavior can be defined by the developer.

• Transactional security is provided.

• Various recovery scenarios are possible.

• Notifications.

• Automatic garbage collection.

• Authorization mechanisms.

• Support of C++, Java and .Net.

• Process control allows components to start processes which allows a parallel execution.

Corso has had a great deal of attention from both industry and academia with numerous articles
published. An overview can be found under. http://www.complang.tuwien.ac.at/
eva/researchpublications.html
Corso represents the predecessor of XVSM31 which is a development of the Space Based Com-
puting Group at the Technical University of Vienna and will be described in more detail under
appendix point 103.

A.16 Crudlet

Crudlet32 is an event based architecture for connecting XML based interface structures to Jini
service layers and was introduced in 2001.
In 2001 Crudlet, which also followed the concept of tuple spaces, was praised for its purity of
separation of powers between the front end design layer (XSL/XML), the business logic layer
(JavaBeans), the backend messaging layer (JavaSpace and agents) and database layer (JDBC).
In 2016 the Crudlet project site is no longer available and although the Java package org.crudlet.
can still be found on some websites, not much information is available on it. Some information
can be found on the following two websites:
30Coordinated Shared Objects
31 eXtensible Virtual Shared Memory
32 creation, retrieval, updating, deletion, scheduling of life cycle activity, existence checking, and generic templating

of various objects in the context of business rules

 http://www.complang.tuwien.ac.at/eva/researchpublications.html
 http://www.complang.tuwien.ac.at/eva/researchpublications.html

134 APPENDIX A. GLOSSARY

• http://www.infolets.com/1006361585/

• http://javaspaces.homestead.com/files/javaspaces.html

A.17 D-Tuples

DTuples [JXJY06] are a Linda like peer-to-peer tuple space middleware built on top of dis-
tributed hash tables with the aim to simplify the development of distributed cooperation and
coordination tasks. The higher layer abstraction supports this aim
In the application level, the DTuples can be used instead of the publish/subscribe model and
messagepassing model.33

The tuples in the DTuples are stored in distributed hash table based peer-to-peer tuple storage
and support the following operations:

• in ()

• rd ()

• out ()

• copy-collect (): In Linda the multiple rd () is a problem, but the copy-collect(ts1,ts2,template)
primitive copies all available tuples that match the given template from one specified tuple
space (ts1) to another specified tuple space (ts2).34

DTuples is an efficient way of improving peer-to-peer networks, however apart from this paper
no other works or sources could be found.

A.18 DepSpace

DEPSPACE [BACF08] is implemented as a secure, fault-tolerant and intrusion-tolerant tuple
space in Java. The main objective of the system is to provide an extended tuple space abstraction
that can be used to implement Byzantine fault tolerant applications.35 DEPSPACE is covering
the following topics:

• Replication

• Confidentiality offers three protection types for tuple fields:

- public: the field is not encrypted

- comparable: encrypted field but comparisons are possible through a stored hash

- private: the field is encrypted
33 [JXJY06] page 1.
34 [JXJY06] page 1.
35http://www.navigators.di.fc.ul.pt/software/depspace/

http://www.infolets.com/1006361585/
http://javaspaces.homestead.com/files/javaspaces.html
 http://www.navigators.di.fc.ul.pt/software/depspace/

A.19. DRUBY AND RINDA 135

• Access Control

• Policy Enforcement

The source can be found under http://www.navigators.di.fc.ul.pt/software/
depspace/ and there seems to be ongoing research towards this topic, although [BACF08] is
still the only paper available at the moment.

A.19 dRuby and Rinda

dRuby and Rinda were presented in [Sek09] as the distributed object environment and shared
tuplespace implementation for the Ruby language and are included as part of Ruby’s standard
library.
dRuby is one of several RMI libraries for Ruby and its aim is to extend Ruby method calls to
other processes and other machines. It might be important to know that dRuby is exclusively for
Ruby and written purely in Ruby.36

Rinda implements tuple spaces in Ruby and allows multiple Ruby processes to easily share data.
This is accomplished by using the Ring server which allows the following operations:

• read

• read_all

• write

• take

• notify

Although Rinda has a lot of advantages like its simple parallelizable programming model for
Ruby it’s only well suited for non-critical tasks because it doesn’t scale very well and it is not
persistent, meaning that if it crashes while there are tuples in the space they are all lost.
dRuby and Rinda have quite a big community, there are a lot of blogs on the web with advice
and hands-on information concerning this topic. But only a few useful theoretical papers exist
besides [Sek09], e.g. [JYM08] and [TS90]. A lot of information can be found on http://
www.druby.org.

A.20 EgoSpaces

EgoSpaces [JR06] is a coordination model and middleware for ad hoc mobile environments.
EgoSpaces’s fundamental concept is the view abstraction. A view is a collection of relevant
data (or context) items that are defined by meta data, the software agents that own the data, the
hosts on which those agents are located, and the network paths that connect the application in
36 [Sek09] page 3.

http://www.navigators.di.fc.ul.pt/software/depspace/
http://www.navigators.di.fc.ul.pt/software/depspace/
http://www.druby.org
http://www.druby.org

136 APPENDIX A. GLOSSARY

question to the hosts holding the data items. The key novel aspect of the view abstraction is its
provision of asymmetric coordination.37

[JR06] also presents three use cases, namely a subscription music service, an agent registration
and migration service and a collaborative puzzle game in detail.
The EgoSpaces prototype implementation and further useful documentation are available on
http://www.ece.utexas.edu/~julien/egospaces.html

A.21 Eiffel Linda

Eiffel Linda [Jel90] combines the programming language Eiffel and the Linda model. In Eiffel
Linda tuples are defined as objects and the class tuples implement all the operations we know
from basic Linda (out, in, rd, eval).
The advantage of treating tuples as objects lies in the fact that tuples can be assigned to variables,
passed to procedures and stored inside other tuples.38

Eiffel Linda has been cited quite often in other works, but apart from this paper no further work
on Eiffel Linda could be found.

A.22 eLinda

eLinda, as described in [Wel05] and [WCC01], is an extended version of Linda in Java. The
main aim is to simplify the development of distributed applications and to enhance the efficiency
of communication in a distributed memory environment.39

Three major key extensions have been introduced in eLinda:

• A Programmable Matching Engine40 allows efficient searching algorithms.

• Two output operations are offered, a point-to-point operation and a broadcast
operation, which use replicated data.

• eLinda supports Multimedia data.

The work of George Wells seems to be generally well cited and eLinda introduces some inter-
sting features which were missing in Linda. Unfortunately no source could be found on the
internet.

A.23 Encrypted Shared Data Spaces

Encrypted shared data spaces [RDD+08] use encryption schemes, RSA41 and discrete loga-
rithms, that ensure confidentiality of the data space content in open, possibly hostile, environ-
ments.
37http://users.ece.utexas.edu/~julien/egospaces.html
38 [Jel90] page 79.
39 [WCC01] page 1.
40PME
41Rivest, Shamir and Adleman

http://www.ece.utexas.edu/~julien/egospaces.html
 http://users.ece.utexas.edu/~julien/egospaces.html

A.24. ENTANGLED 137

The big asset of an encrypted shared data space is that it supports tuple matching even over
the encrypted data space. The data space does not need to decrypt tuples to perform the search
which keeps real content safe from nosey hosts.42

The key management in encrypted shared data spaces is quite easy because agents do not have
to share keys for reading and writing tuples. The key management is handled by a fully trusted
server which is responsible for all the key-related operations.
The encrypted shared data space itself is used for storing and retrieving plaintext, partially en-
crypted or completely encrypted tuples. In addition it also performs encrypted searching opera-
tions, authenticates valid clients, and safely stores encryption and decryption keys.
The encrypted shared data space offers a different approach to other security mechanisms in
space-based computing implementations because it does not focus on access control alone. No
source code or project website is available.

A.24 Entangled

Entangled is a distributed hash table (DHT) based on Kademlia43, as well as a peer-to-peer
tuple space implementation with the aim to create peer-to-peer network applications that require
synchronization and event handling.
Entangled is written in Phyton and makes use of the following operations:

• publish

• search

• remove

In addition a very simple user interface is available. The source code can be downloaded from
http://sourceforge.net/projects/entangled/files/

A.25 Erlinda

Erlinda is a parallel computing framework for Erlang. Information as well as the source can be
found on the Erlinda project website.44 Erlinda supports a number of abstractions for creating
parallel applications such as:45

• Tuple Space model based on Linda memory model (JavaSpaces)

• MPI like APIs for communication (Scatter/Gather)

• Map/Reduce

• Master/Slave (Computing Farm)
42 [RDD+08] page 15.
43http://xlattice.sourceforge.net/components/protocol/kademlia/specs.html
44http://code.google.com/p/erlinda/
45http://erlang.wikidot.com/cn\protect\kern+.2222em\relaxerlinda#toc3

http://sourceforge.net/projects/entangled/files/
 http://xlattice.sourceforge.net/components/protocol/kademlia/specs.html
 http://code.google.com/p/erlinda/
http://erlang.wikidot.com/cn\protect \kern +.2222em\relax erlinda#toc3

138 APPENDIX A. GLOSSARY

• Service oriented (OTP)

• Clustering

• Agents and Mobililty

• Messaging oriented (Queues/Topics)

• Service/Resource discovery mechanism (similar to JINI)

• Integration with other languages and middlewares

• Code Server (similar to JINI/RMI)

• Security

No detailed description is available but the source code is documented well, therefore testing
shouldn’t be too difficult.

A.26 Fly Object Space

Fly46 is a lightweight object space that can distribute and coordinate information on clusters of
computers in the form of objects.
One advantage of Fly is the generalized object server which means that it supports Java, Ruby
and Scala for space clients. Fly implements the same core operations (write,read,take) as JavaS-
paces, but doesn’t implement garbage collection which leads to an increase in performance.
The Fly Object website can be found under http://www.flyobjectspace.com/ and
supports the reader with the source code, documentation and videos. Fly offers a commercial as
well as a free version.

A.27 Forth-Linda

A detailed description of Forth-Linda was presented in 1991 under http://www.ultratechnology.
com/4thlinda.html. Forth-Linda extends the Forth Language. Forth-Linda was intended
to support homogeneous environments with a single network protocol.
Forth-Linda implements the following five operations:

• eval

• rd

• out

• rm: read and remove tuple from description

• rq: request an active tuple to execute
46http://www.flyobjectspace.com/

 http://www.flyobjectspace.com/
http://www.ultratechnology.com/4thlinda.html
http://www.ultratechnology.com/4thlinda.html
 http://www.flyobjectspace.com/

A.28. GAIA 139

Apart from the website47 no other Forth-Linda references could be found, implicating that in
2012 Forth-Linda is not considered state-of-the-art anymore.

A.28 Gaia

GAIA [RHCN02] introduces Active Spaces as immersive computing environments for context-
aware applications. It provides services for location, context, events and repositories with infor-
mation about the active space.48

The main application area of GAIA can be seen in the teaching or in the work environment, and
it serves as a platform to explore the various aspects of ubiquitous computing.
User data and applications are abstracted into a user virtual space and can be mapped dynam-
ically to the resources located in the current environment.49 Therefore, users can move from one
active space to another, seamlessly integrating into new spaces.
GAIA functions best in small networked environments where the available resources in the space
can be centrally managed by a kernel.
A fair number of articles have been published on this topic and the work of Román has been
cited often in literature.

A.29 Geo-Linda

Geo-Linda presented in [PCBB07], addresses the problem of detecting different kind of move-
ment patterns of devices.50 In other words it addresses use cases like the insertion of a product in
a shopping cart, the loading of containers in trucks or boats or helping visually impaired people
to take the bus.
In order to support such use cases Geo-Linda has introduced the following innovations:

• Geometric addressing helps to precisely detect moving patterns.

• A readOnce (s,p) operation is introduced, which returns a new tuple that matches
the pattern p and whose shape intersects the addressing shapes.51

• A lostOne (s,p) operation is introduced, which returns a tuple that matches the
pattern p. The shape of the returned tuple intersects the addressing shape s and has
disappeared from the visible tuple space.52 This operation is only viable when the tuple
has used the readOnce (s,p) operation before.

Implementations have shown that Geo-Linda can support such use cases but besides [PCBB07]
no information precisely dealing with Geo-Linda could be found. Never-the-less [PCBB07] has
been cited quite often.
47http://www.ultratechnology.com/4thlinda.html
48 [RHCN02] page 4.
49 [RHCN02] page 15.
50 [PCBB07] page 3.
51 [PCBB07] page 4.
52 [PCBB07] page 4.

http://www.ultratechnology.com/4thlinda.html

140 APPENDIX A. GLOSSARY

A.30 GigaSpaces

GigaSpaces53 is a commercial implementation of JavaSpaces with the goal to support high scal-
able applications and was presented in 1999. It provides tightly coupled caching, parallel pro-
cessing, database and applications access, and Java Messaging Service54 support. The infras-
tructure can store objects in distributed in-memory caches and supports clustering, replication,
failover, load balancing and security.
GigaSpaces also offers a free Lite version that can be downloaded under
http://www.gigaspaces.com/LatestProductVersion with a subset of features.
In 2012 it offers a wide set of services and is a professional space-based computing implemen-
tation.

A.31 GLinda

GLinda [KA07], developed in Prolog, is a local desktop grid environment extended with the
Linda model and was developed with the aim to support communication that offers associative
content-based messaging between hosts without having information about their physical loca-
tion.
Communication and synchronization is carried out through the GLinda server using the coordi-
nation model of Linda. The Linda operations are implemented as Prolog database operations.
Further, in Prolog variables are untyped so GLinda tuples are untyped, avoiding multiple prob-
lems in tuple description and matching.55

All threads within the same process share a common tuple space which is why the changes
made on the tuple space by a thread are immediately visible to all the threads. Typical GLinda
commands are:

• glup: upload

• glbcast: broadcast

• glrun: execution

• glclean: delete

GLinda also leaves room for improvement such as the availability of multiple tuple spaces.
Unfortunately there is no source for testing on hand and this is the only paper available.

A.32 Globe

GLOBE [LS02] is a distributed and replicated tuple space that provides high availability and
high scalability for large-scale Internet based systems. The level of availability and scalability
53http://www.gigaspaces.com/
54 JMS
55 [KA07] page 2.

http://www.gigaspaces.com/LatestProductVersion
http://www.gigaspaces.com/

A.33. GRINDA 141

of the tuple space is adjustable through the number of defined replicas and partitions in the
system.
[LS02] has been cited often in literature but no source for testing is available.

A.33 Grinda

Grinda56 has been presented amongst others in [CM08b] and in [CM08a]. It is a tuple space
implementation for the Globus Toolkit 457 and can be used to coordinate distributed tasks without
knowing host identities and network topology.
Grinda has two modules58:

• A client-side module that allows client applications to access Grinda operations.

• A server-side module that is deployed on the Globus Toolkit and represents a Grinda
service.

Clients use the service to store and retrieve tuples. The services are connected to one another
and can communicate to distribute or search tuples. The distribution is either based on past
experience or on a master slave strategy. The source code is available under http://grinda.
sourceforge.net/doc/index.html and the last updates have been presented in 2007.

A.34 Gruple

Gruple59 extends Groovy in order to provide a simple abstraction for coordination and syn-
chronization of threads and processes. Information about Groovy and its source can be found
under http://gruple.codehaus.org/TuplespaceUsage Gruple supports the fol-
lowing operations:

• put - insert a tuple into the space

• get - read a tuple from the space (non-destructively)

• take - take a tuple from the space (a destructive read)

Further development for Gruple is needed to be truly useful, e.g. transactions or distribution.

A.35 GSpace

GSpace [RCVS04] is a distributed shared data space that supports a variety of distribution poli-
cies. With this idea a few requirements have to be fulfilled:
56Grid + Linda
57http://www.globus.org/toolkit/
58http://grinda.sourceforge.net/doc/index.html
59Groovy + tuple

http://grinda.sourceforge.net/doc/index.html
http://grinda.sourceforge.net/doc/index.html
 http://gruple.codehaus.org/TuplespaceUsage
http://www.globus.org/toolkit/
http://grinda.sourceforge.net/doc/index.html

142 APPENDIX A. GLOSSARY

• Tuple distribution requirements are declared separately from the application code.

• A set of different distribution policies are embedded that can be used to tailor the behavior
of different applications.

• New distribution policies can be added easily.

[RCVS04] also measured the performances of several distribution policies with the result that
every application usage pattern requires a different distribution policy.
GSpace differs from other systems because its flexibility is extendable60.
Whilst a few papers are available on this topic, there is no source code for this interesting ap-
proach.

A.36 Helios Tuple Space

The Helios Tuple Space library [CM08b] enhances the Linda model through additional library
calls in the C Language, e.g. program termination, jobs can be split in portions and be given to
free workers or mutual exclusion.
These measures add more flexibility to the Helios Tuple Space Library, also good performance
has been proven by tests presented in [CM08b].
No source code is available.

A.37 Heterocera

Heterocera is a sinatra61 based associative memory system by David ten Have with all infor-
mation uploaded on https://github.com/dave5/heterocera-server in 2011 or
2012.
Heterocera is an implementation of an associative memory system and is inspired by Linda
with the aim to simplify and decouple communications between a range of systems of varying
capability.62 Therefore the memory space is seen as a web server and address locations are
URLs63. No additional information about Heterocera apart from this website could be found.

A.38 HTML Page Spaces

A reference about HTML Page Spaces was found on http://c2.com/cgi/wiki?TupleSpace
but the link provided is no longer active and no other references could be found. Therefore no
closer description is possible.
60 [RCVS04] page 12.
61http://www.sinatrarb.com/
62https://github.com/dave5/heterocera-server
63 Uniform Resource Locator

 https://github.com/dave5/heterocera-server
http://c2.com/cgi/wiki?TupleSpace
http://www.sinatrarb.com/
https://github.com/dave5/heterocera-server

A.39. INFO SPACES 143

A.39 Info Spaces

InfoSpaces [BMSV] addresses the problem of the interaction between ubiquitous devices by
using tuple spaces at user level. The following simple drag-and-drop operations are supported:

• copy out

• move out

• copy in

• move in

Possible use cases include information kiosk applications, control applications and wireless data
collection applications. JXTA is used to implement InfoSpaces and a few papers have been
presented but the source is not available.

A.40 Jada

Jada [CR97] has been developed on the basis of the PageSpace project [CR02] and is a com-
bination of Linda and allows Java applications and respectively threads to enter a shared object
space using operations like

• read

• in

• out

Applications can access as many object spaces as they like and each object space can be either
local or remote (local object spaces can be shared between threads; remote tuple spaces can be
shared between java application or applets).64

Jada was a solid solution back in 1996 combining the ideas of tuple spaces and Java. The source
code is available under http://www.cs.unibo.it/~rossi/jada/.

A.41 JavaSpaces

JavaSpaces is a distributed shared memory that provides a high-level means of creating collabo-
rative and distributed applications. It is a core Jini service but can be used alone as well. JavaS-
paces orientates itself to Linda with the difference being that JavaSpaces runs on a Java Virtual
Machine65 and therefore can operate easily on many different platforms. Tuples in JavaSpaces
are Java objects and JavaSpaces provides the following operations on them:

• write: puts a new entry in the space.
64http://www.cs.unibo.it/~rossi/jada/
65JVM

http://www.cs.unibo.it/~rossi/jada/
http://www.cs.unibo.it/~rossi/jada/

144 APPENDIX A. GLOSSARY

• read: returns a copy of an entry matching a particular template.

• take: removes an entry matching a particular template from the space and returns it to
the caller.

• notify: notifies the caller whenever entries that match the template are added to the
space.

• snapshot: minimizes the serialization that occurs whenever entries or templates are
used.

Since its release in 1998, JavaSpaces has seen many ups-and-downs as well as a set of quite
similar solutions. Much is known about JavaSpaces and therefore it’s still an interesting solution.

A.42 Jedi

JEDI66 was presented in [CDNF01] and was developed with the aim to support the development
and operation of event-based systems. JEDI supports the following operations:

• open: opens the connection with the event dispatcher.

• close: closes the connection with the event dispatcher.

• subscribe: subscribes the object.

• unsubscribe: unsubscribes the object.

• dispatch: allows the object to generate an event notification.

• getEvent: retrieves the event address from the object.

• hasEvents: checks if any of the subscribed events has events.

• moveOut: disconnects temporarily from the event dispatcher.

• moveIn: reconnects to the event dispatcher after a moveOut.

• move: moves objects to other location.

[CDNF01] also gives an implementation example, the OPSS workflow management system67

and shows how much such a system can benefit from JEDI.
The advantages of JEDI lie in the easy re-configurability of the system, the easy distribu-
tion/replication of components and the easy plug & play of components.
A few papers dealing with JEDI are available but no source code can be found.
66Java event-based distributed infrastructure
67WFMS

A.43. JINI 145

A.43 Jini

Jini68 is a service orientated network architecture for the construction of distributed systems. It
was introduced in 1998 by Sun and was transferred to Apache69 under the project name River
in 2007. The purpose of Jini is to allow groups of services and users to participate into a single,
dynamic distributed system that offers:

• Simple access

• Easy administration

• Easy sharing mechanisms

• Spontaneous interactions

• Self-healing mechanisms

• Security

• Code mobility

The main operations in Jini are:

• discovery: find a lookup service.

• join: register your service with a lookup service.

• lookup: find a service in the lookup service.

• invoke: use the local object to call the service.

Because Jini is implemented in Java, many applications require a Java virtual machine to be
present. In 2016 information as well as source code can be found under http://river.
apache.org/.

A.44 JION

JION70 [BLG12] is a middleware based on JavaSpaces that supports the development and the
communication in D-MANETs71 through the centralization of all services.
JION supports:

• Event logging

• Tuple matching
68Jini = the devil in Swahili
69http://river.apache.org/
70JavaSpaces Implemetation for Opportunistic Networks
71 Disconnected mobile ad hoc networks

http://river.apache.org/
http://river.apache.org/
http://river.apache.org/

146 APPENDIX A. GLOSSARY

• The classiscal JavaSpaces operations

JION is distributed under the terms of the GNU General Public License and downloads as
well as further information can be found on the project website under http://www-irisa.
univ-ubs.fr/Abdulkader.Benchi/JION.html.

A.45 Joyce Linda

Joyce Linda [McD92], [PM91] is derived from the Joyce programming language [Han02] and
the Linda model. The traditional use of Linda’s eval primitive is subsumed by Joyce/Linda’s
concurrent instantiation of agents, though agent termination does not result in the creation of a
data tuple unless explicitly coded.72

Joyce Linda uses capabilities to provide secure inter-process communication between agents
having a common ancestor. Every agent possesses two capabilities with unique values, called
self and caller.
All required concurrency is implicitly defined in the semantics of Joyce/Linda and its compilers
need not infer concurrency or vectorize statements. The granularity of parallelism is the agent,
not the statement.73

Joyce Linda was used by McDonald [McD92] to add practical examples to courses which were
meant to teach concurrent programming. Joyce Linda has been mentioned often in literature but
apart from the papers provided by McDonald and Pinakis no other sources are available.

A.46 JParadise

JParadiseTM 74 is an implementation of the Linda model by the Scientific Computing Associates,
Inc., specifically designed for distributed computing environments. JParadiseTM supports

• the communication between completely different applications running at potentially dif-
ferent times.

• persistent tuple spaces.

• multi tuple spaces.

JParadiseTM and Linda can be used together which leads to applications that are both parallel
and distributed. JParadiseTM can be used for financial and risk analysis, computational chem-
istry and biology, seismic analysis, EDA and fluid dynamics.
A lot of information can be found under http://www.lindaspaces.com/products/
paradise_overview.html

72http://ccnuma.anu.edu.au/cap/cap/reports/report94/Joyce.html
73http://ccnuma.anu.edu.au/cap/cap/reports/report94/Joyce.html
74http://www.lindaspaces.com/products/paradise.html

 http://www-irisa.univ-ubs.fr/Abdulkader.Benchi/JION.html
 http://www-irisa.univ-ubs.fr/Abdulkader.Benchi/JION.html
http://www.lindaspaces.com/products/paradise_overview.html
http://www.lindaspaces.com/products/paradise_overview.html
 http://ccnuma.anu.edu.au/cap/cap/reports/report94/Joyce.html
 http://ccnuma.anu.edu.au/cap/cap/reports/report94/Joyce.html
http://www.lindaspaces.com/products/paradise.html

A.47. JXTA SPACES 147

A.47 JXTA Spaces

JXTA75 was introduced by Sun as an open source protocol in 2001 with the aim to support
peer-to-peer communication [Li01]. Napster76 and Gnutella 77 did use this concept of commu-
nication.
Although JXTA is not based on the idea of tuple spaces its still an approach that needs to be
presented to better understand space-based computing implementations.
JXTA is based upon a set of open XML protocols and implementations are available for Java SE,
C/C++, C# and Java ME. JXTA peers create a virtual overlay network which allows a peer to
interact with other peers through firewalls and NATs78. Each peer has a constant identification
number and can be identified even if it changes location.
JXTA offers two types of peers:

• edge peers: are transient and have a low bandwidth network connectivity.

• super-peers: are divided into:

– rendezvous peers: coordinates the peers in the JXTA network.

– relay peers: helps peers behind firewalls or NATs to take part in the JXTA network.

Peers in JXTA can locate each other and have communications with each other through Pipes.
JXTA is not bound to any platform. JXTA has received a lot of attention in the past but in
November 2010, Oracle announced its withdrawal from the JXTA projects and since 2011 no
information about the future of JXTA has been given. http://jxta.kenai.com/ offers
still information about JXTA.

A.48 Kernel Linda

Kernel Linda is an extension of Linda and designed to support programming at the system level79

with the goal to be hardware independent. Kernel Linda is used for different use-cases, e.g.
target tracking, pattern recognition and speech processing.80

[Haz93] and [Lel90] give a short introduction to Kernel Linda. The main characteristics of
Kernel Linda are that it supports

• the communication between operating processes and user processes,

• the implementation of multiple tuple spaces,

• a mixed language environment, because it provides a set of language-independent data-
types and

75Juxtapose
76http://www.napster.com/
77http://www.gnutellaforums.com/
78Network Address Translation
79 [Haz93] page 16.
80 [Haz93] page 17.

http://jxta.kenai.com/
 http://www.napster.com/
 http://www.gnutellaforums.com/

148 APPENDIX A. GLOSSARY

• asynchronous communication.

In comparison to the classical Linda, Kernel Linda doesn’t make use of the eval function but still
makes use of an environment-based process model.

A.49 Klava

Klava81 [BDNP01] is the implementation of KLAIM [DNFP98] in Java and it is used for im-
plementing distributed applications that can exploit mobile code and run over a heterogeneous
network environment.82

Klava supports the following operations:

• in

• out

• read

• eval: creates a new process on a local or remote node

• newloc:creates a new remote node

Klava has been first presented in 1998 and since then it has been enhanced continuously, e.g.
with improved security features [BDN02]. The project website can be found under http:
//klava.sourceforge.net/ and includes all available papers and the link to the source
code http://klava.git.sourceforge.net.

A.50 L2imbo

The L2imbo, as presented in [DFWB98a] and in [DFWB98b] extends the classical Linda model.
The following extensions have been made to improve multicast and undirected communications:

• Bonita primitives allow the clients to access tuple spaces asynchronously.

• Multiple tuple spaces support performance, partitioning and scale issues.

• System agents offer a variation of different services.

• Deadline based operations are supported.

• Tuple typing is supported.

The website given in [DFWB98a] didn’t work anymore and no further information on the web
could be found.
81KLAIM in Java
82http://klava.sourceforge.net/

http://klava.sourceforge.net/
http://klava.sourceforge.net/
http://klava.git.sourceforge.net
http://klava.sourceforge.net/

A.51. LACIOS 149

A.51 Lacios

LACIOS 83 [ZBS09] extends Linda and is a data-oriented coordination language which focuses
on the design and implementation of multi agent systems used for transportation applications.
In LACIOS agents can publish or update their status and even condition their interaction with
the environment which is of great use in transportation applications.
[ZBH10] enhances LACIOS with security features that make sure objects are not fraudulent

and only agents with access rights to the object can execute operations on them.
LACIOS is a good solution for transportation applications and use cases have been presented
in [ZBS09] but no source code is available. Since LACIOS is a relatively new approach it is
likely that more enhancements are going to be developed.

A.52 Lana

Lana [BR02] is based on Java and the Linda tuple space model that includes concepts for com-
munication, mobility, security and connection recovery in order to support autonomy.84

Lana supports autonomy through asynchronous method calling, protection domains, an asso-
ciative message board for communication by value and an event model that allows programs to
securely delegate the handling of events to others.85

Events are deposited into the tuple space and retrieved immediately, later or never by the corre-
sponding agent.
Lana has been of interest when it comes to security and it follows, like many others, a capability-
based security policy.
No project website or newer papers are available.

A.53 Law-Governed Infrasturcture

Law-Governed Infrastructure86 [MMU01] is a coordination model that is related with Law-
Governed Linda without changing the Linda model at all. It allows agents and processes to
communicate with each other under a certain policy, which is called the law of the group. Poli-
cies exist for security issues as well as for coordination issues.
LGI characteristics are:

• Laws under LGI are sensitive to the content of the tuples being handled.

• Laws are sensitive to the state of agents.

• Enforcement of laws can occur at either the client, the server, or anywhere in the network.

• LGI supports different levels of security.
83 Language for Agent Contextual Interaction in Open Systems
84 [BR02] page 1.
85 [BR02] page 26.
86LGI

150 APPENDIX A. GLOSSARY

Every agent can join an arbitrary number of groups and follows their different law as necessary.
A law in LGI can be described as a reactive rule which executes an operation on a certain event.
Like in LGL, a controller monitors everything to secure that policies are fulfilled.
At the moment no cryptographic techniques are used to enhance security which can be seen as a
drawback.
LGI has found approval in the scientific community but like with LGL not enough new research
results are available.

A.54 Law-Governed Linda

Law-Governed Linda87 [ML95] extends the Linda model with law-governed architectures in
order to enhance the security of tuple spaces. To reach this goal Law-Governed Linda forces all
processes to adopt a set of specific rules which are monitored by a controller who has a copy of
the law that applies to the specific tuple/tuple space. oOnly if a process fulfills all the laws it can
execute operations on the tuple/tuple space.
Law-Gowerned Linda has been cited often in the literature but no source code or project website
are available.

A.55 LighTS

LighTS [PB05] is a Java-based implementation of the Linda tuple space and was originally
developed as the core of LIME. The main idea was to develop a very light core, which hardly
wastes any resources, and still allows to easily extend features like persistency, security, or
remote access.88

LighTS also offers an adaptation layer that has the same interface of the tuple space imple-
mentation provided in LighTS but allows for loading different implementations of the adapters
at startup, each converting the operations provided by the LighTS interface into those of other
tuple space implementations.89

LighTS is quite flexible and easy to extend and a lot of suitable information is provided in
literature such as in [BCP05] as well as on the project website. Also the source code is available
for testing.

A.56 Ligia

Ligia [MW98] extends the Linda tuple space and is a Java-based implementation which includes
garbage collection of tuple spaces and agents.
The garbage collection mechanism in Ligia collects unnecessary tuple-spaces using a graph,
where the reference information is maintained. However, tuples within the tuple space cannot
be garbage collected selectively. But taking into account that Ligia was presented 1998 it is
87LGL
88http://lights.sourceforge.net/
89http://lights.sourceforge.net/

http://lights.sourceforge.net/
http://lights.sourceforge.net/

A.57. LIMBO 151

a very good implementation and shows how garbage collection can positively contribute to a
space-based computing implementation.
Only this paper was found on the internet but the work was cited in quite a few articles and is
certainly relevant.

A.57 Limbo

Limbo extends the Linda model and is described in [DWFB97]. The aim of Limbo is to provide
a better support for adaptive mobile applications.90

The following extensions have been made to the Linda model:

• Multiple tuple spaces can be used to enhance consistency, security or performance.

• An explicit tuple type hierarchy is introduced.

• Tuples with explicit QoS91 attributes are introduced.92

• A set of system agents are introduced that provide services like monitoring, the creation
of new tuple spaces and the propagation of tuples between the spaces.

This is the only article that can be found concerning Limbo and also no sources are found on the
internet. Therefore one has to come to the conclusion that Limbo can simplify the implementa-
tion of various mobile applications but does not present the state of the art.

A.58 LIME

LIME93 a Java-based middleware adopts ideas of the Linda model and converts them to a mobile
environment. It was first presented in [PMR99] and further publications followed, including
amongst others in [PMR00], [MPR01] and [MPR06].
The main three measures to adapt the Linda model for mobile requirements are:

• transiently shared tuple spaces – where each agent has access to an interface tuple space
that is permanently associated with that agent and transferred along with it when move-
ment occurs.94 The Its95 can be shared with other agents which creates a transient tuple
space because its content changes according to the migration of agents.96

• the tuple location has to be controlled continously.
90[DWFB97] page 5.
91Quality of Service
92[DWFB97] page 5.
93Linda in a Mobile Environment
94[PMR99] page 3.
95Interface tuple space
96[PMR99] page 3.

152 APPENDIX A. GLOSSARY

• the reaction to events has to happen as quickly as possible since the situation in a mo-
bile environment changes all the time. The run-time support, often a stationary agent ,
continuously monitors the underlying layers for system events.97

LIME has been refined since 1999 and also led other programmers to further enhancements, e.g.
a SecureLIME [HR03]. Also TinyLIME and TeenyLIME have been created out of the LIME
middleware.
A source, detailed documentation and other information is available on the project website. 98

A.59 LIME II

The LIME II middleware is presented in [AAHC09] and can be seen as a complete reengineer-
ing of the classical LIME package. The aim of LIME II is to support use cases in dynamic
environments where distributed transactions are not practical and unannounced disconnections
are frequent events.99

The implementation presented can be seen as a MANET100 and was realized with commercial
pocket PCs. The main strength of this solution is that the transportation to far away nodes does
not cause a big challenge, because the message is sent from one space to another with a simple
routing algorithm.
[AAHC09] also presents a power analysis in their paper which shows that LIME II can run

continuously for about 128 minutes on a fully charged battery. .101

LIME II is relatively new and shows that the idea of LIME has a lot of relevance for the mobile
challenges. So far the source code is not available and no further extensions to LIME II have
been presented.

A.60 Limone

Limone [FRH04] is a lightweight coordination middleware for wireless ad hoc networks that
consists of logically mobile agents and physically mobile hosts.102 The main concepts of Limone
are:

• Limone presents an asymmetric coordination style where agents only communicate with
agents that satisfy their self-set acquaintance policy. In the case this acquaintance policy
is fulfilled the agents remember these agents by storing them on a so called acquaintance
list.

• Limone eliminates remote blocking and complex group operations.103

97[PMR99] page 7.
98http://lime.sourceforge.net/Lime/papers.html
99[AAHC09] page 53.
100Mobile Ad Hoc Network
101[AAHC09] page 58.
102http://mobilab.cse.wustl.edu/projects/limone/
103http://mobilab.cse.wustl.edu/projects/limone/

http://lime.sourceforge.net/Lime/papers.html
 http://mobilab.cse.wustl.edu/projects/limone/
 http://mobilab.cse.wustl.edu/projects/limone/

A.61. LINDA 153

• Limone provides timeouts for all distributed operations and reactions.

This very high grade of security increases the communication under the agents and this leads
amongst others to fast response times in a changing environment. The source of Limone can be
downloaded under http://mobilab.cse.wustl.edu/projects/limone/. Limone
is an interesting approach which has also been developed further in [DNG10].

A.61 Linda

Linda104 [Gel85] is a model for communication and co-ordination of parallel processes and can
be seen as the mother of all space-based computing implementations.
The main concept in Linda is that of a tuple space, an abstraction via which processes can
communicate. A tuple space can be seen as a bag of tuples, a tuple being an ordered sequence
of heterogeneously typed objects. Linda also supports templates which are different from tuples
because a field of a template may be typed, but have no value.105

The main operations, for manipulating tuple spaces, supported by Linda are:

• out (t): adds tuple t to the tuple space. Non-blocking.

• in (t): either, removes any tuple t that matches template s and, assigns values of
actuals in t to variables in s or, blocks.

• Rd (t):like in (t) but the tuple is not removed from the tuple space.

• Eval (t): like out (t), but t must be evaluated.

Linda was originally implemented in C and Fortran, but due to its simplicity it had found a wide
community which added a big number of extensions in various programming languages to the
original. But Linda doesn’t only have supporters but has also received criticism [ZEN92].
Today the original Linda model is not prepared to deal with all the demands developers and
industry make from a space-based computing implementation but it has still provided - and will
provide - the basis for many new successors.
A good and complete user manual of the commercial version of Linda is provided by the Scien-
tific Computing Associates, Inc. the under http://www.lindaspaces.com/downloads/
lindamanual.pdf.

A.62 Lindacap

Lindacap [UDI09], [UWJ07] extends Linda with a capability-based control mechanism to pro-
vide a more refined control for open distributed systems without losing the flexibility of Linda.106

Capabilities can provide all sorts of information on objects, including which methods can be
executed on the objects.
104Linda is named for Linda Lovelace who was an actress in the porn movie Deep Throat
105 [DWR95] page 126.
106 [UDI09] page 105.

http://mobilab.cse.wustl.edu/projects/limone/
http://www.lindaspaces.com/downloads/lindamanual.pdf
http://www.lindaspaces.com/downloads/lindamanual.pdf

154 APPENDIX A. GLOSSARY

The basic input/output primitives in Lindacap extend the basic primitives of Linda with multica-
pabilities as additional parameters.107

The additional information, provided by the capabilities given to the agents, leads to better
control and more efficiency in distributed systems.
Lindacap has been cited often in literature, especially in the context of garbage collection
[UDI09]. No source code is available.

A.63 Linearizable Byzantine Tuple Space

Linearizable byzantine fault-tolerant tuple space 108 [NBCdSFCL07], [Bes06] offers a solution
for ad hoc networks and mobile agents where simple operations use simple quorum-based pro-
tocols and more complicated operations use consensus-based protocols.
In LBTS write (out) and read (rdp) operations can be implemented using quorum-based proto-
cols and consensus is needed for read-remove (inp) operations.
The overall system model is based on a set of servers from which less than a fourth may be
faulty and on an unlimited number of client processes, from which arbitrarily many can also be
faulty.109 This is extremely useful when it comes to non-trusted processes in dynamic distributed
systems.
LBTS offers the following advantages:

• It is wait-free.

• It is faultolerant.

• It is linearizable.

• It is reliable and available.

[NBCdSFCL07] and [Bes06] have been cited quite often in literature but no source code or
project website is available.

A.64 LinqSpace

Linqspace [Gel11] extends the XVSM110 middleware solution with the .NET environment LINQ111

with the aim to enrich XVSM with uniform and versatile query capabilities.112

LinqSpace is still a prototype which has a final architecture, core functionality (read, write, take),
a relational database for storage and [Gel11] offers considerations how to improve LinqSpace in
the future.
107 [UWJ07] page 16
108LBTS
109 [NBCdSFCL07] page 11.
110eXtensible Virtual Shared Memory
111 Language Integrated Query
112 [Gel11] page 3.

A.65. LINUX TUPLES 155

A.65 Linux Tuples

LinuxTuples113 is an open-source implementation by Will Ware that extends the concept of tuple
spaces, designed to run on a networked cluster of Linuxmachines. LinuxTuples support the
following operations:

• PUT

• GET

• READ

• GET_NB: A non-blocking version of GET.114

• READ_NB: a non-blocking version of READ.115

• DUMP: creates a list of the tuples currently in the space.

• LOG: creates a logfile of the tuple server.

More information about LinuxTuples and the source code are available under http://linuxtuples.
sourceforge.net/ and http://sourceforge.net/projects/linuxtuples/.
The source code was last updated in 2009.

A.66 LuaTs

LuaTS is a reactive event-driven tuple space, and was first presented in [LR03] and implemented
in Lua116. As many other implementations it extends the original Linda model with the aim to
improve the use in wide area network-based applications, where most implementations struggle
due to their synchronous behavior when it comes to accessing the tuple space.
LuaTS only provides asynchronous calls, offers a strong mechanism for retrieving tuples, sup-
ports code mobility and includes a reactive layer through which the programmer can adapt the
behavior of the basic system calls 117 Besides that LuaTS offers a reasonable access control.
Only [LR03] has been presented so far and only little information can be found on the Lua
website118.
113http://linuxtuples.sourceforge.net/
114http://linuxtuples.sourceforge.net/
115http://linuxtuples.sourceforge.net/
116http://www.lua.org/
117[LR03] page 731.
118http://www.lua.org/

http://linuxtuples.sourceforge.net/
http://linuxtuples.sourceforge.net/
http://sourceforge.net/projects/linuxtuples/
http://linuxtuples.sourceforge.net/
 http://linuxtuples.sourceforge.net/
 http://linuxtuples.sourceforge.net/
 http://www.lua.org/
 http://www.lua.org/

156 APPENDIX A. GLOSSARY

A.67 LuCe

LuCe [DOLA99], [DOT00] and [DO01], combines the ideas of Java, Prolog and tuple centers
in order to support Internet-based multi-agent systems.
The main difference of LuCe is that it makes use of tuple centers. What makes a tuple center
different from a tuple space is the notion of behavior specification, which defines how a tuple
center reacts to an incoming/ outgoing communication event.119

LuCe agents can interact by exchanging logic tuples through these tuple centers and can use the
same operations as known from Linda (out, in, rd, inp, rdp).
LuCe is presented in a set of papers but no source code is available.

A.68 MARS/Moon

MARS [CLZ00] is a coordination architecture based on Linda and implemented in Java with the
aim to enable agents to coordinate with other entities. The tuples are Java objects, and agents
can retrieve or store them with the following operations:

• read

• take

• write

Agents can also associate reactions to the operations made on the space. Topics like security or
garbage collection are not addressed at the moment.
MARS offers a graphical interface with which one can write tuples into the local tuple space,
install and de-install reaction and launch agents.120 [CLZ00] as well as the source code are
available under http://www.agentgroup.unimo.it/MOON/MARS/index.html.

A.69 Melinda

Melinda121 can be seen as the first implementation provided by Yale that addresses the problem
of multiple tuple spaces and that really offers a distributed environment [Hup90].
The key idea of Melinda is that it treats processes as well as tuples as first class objects which
allows Melinda to adapt much better to aspects like mobility or failure resistance. The com-
munication procedures are very much the same as in Linda and therefore of no new scientific
importance.
Apart from [Hup90] no one explicitly works with Melinda although multiple tuple spaces are an
important part of research since its technical report which has been cited often in the academic
community.
119 [DOT00] page 2.
120http://www.agentgroup.unimo.it/MOON/MARS/index.html
121Linda with multiple tuple spaces

 http://www.agentgroup.unimo.it/MOON/MARS/index.html
 http://www.agentgroup.unimo.it/MOON/MARS/index.html

A.70. MOBIS 157

A.70 MobiS

MobiS [Mas99] is an extended version of PoliS [Cia91], which is a specification language based
on multiple tuple spaces. MobiS offers a hierarchical structured system which can be described
as a tree where spaces are presented as nodes and change over the course of time. Spaces are
first class entities, can move and contain three types of tuples:

• ordinary tuples present sequences of values

• program tuples can be seen as agents

• space tuples are containing subspaces.

Communication is handled by putting tuples that represent messages in the same space. Mobility
is modelled by the consumption and production of space tuples by rules [NIS10].
However, MobiS does not provide an explicit primitive for locations. It uses spaces both to model
components and locations.122

MobiS definitely has its place in literature and has been cited often but it seems as if the planned
extensions, e.g. the development of security features for the model, have not been implemented
so far.

A.71 Network Spaces

NetWorkSpaces
TM

is a product of the Scientific Computing Associates, Inc. and was created
to use clusters from within scripting languages like Matlab, Python, and R. NetWorkSpaces

TM

offers amongst others the following features:

• Uses script-compatible globally shared workspaces to develop and run distributed/parallel
script applications.

• Enables script processes to share data across networks.

• Network script processes can run either uncoupled or coordinated.123

NetWorkSpaces
TM

is available as open source code as in a professional version which has to
be licensed. A lot of information, e.g. user manuals, source code, can be found under http:
//www.lindaspaces.com/products/NWS_overview.html.
122 [NIS10] page 42.
123http://www.lindaspaces.com/products/NWS_overview.html

http://www.lindaspaces.com/products/NWS_overview.html
http://www.lindaspaces.com/products/NWS_overview.html
http://www.lindaspaces.com/products/NWS_overview.html

158 APPENDIX A. GLOSSARY

A.72 Open Spaces

A.72.1 Open Spaces by Giga Spaces

OpenSpaces124 is an open source initiative from GigaSpaces125, designed to enable scaling out
of stateful applications in a simple way using Spring. It is built around GigaSpaces’ eXtreme
Application Platform (XAP).
The forum is a way for GigaSpaces to stay in contact with the community, the website http:
//www.openspaces.org offers documentation, a wiki, the source code, extensions made
by other developers et cetera.

A.72.2 Open Spaces

Another implementation which is also called OpenSpaces is described in [DHN00]. It is an
object-oriented framework that supports static configurability as well as dynamic configurability
of policies with the aim to introduce a space-based computing solution for various use cases.
There is no source code available for further testing and no other papers concerning OpenSpaces
could be found.

A.73 Open Wings

Openwings126was developed by General Dynamics Decision Systems (formerly Motorola IISG)
and Sun in 1999 as a set of open systems specifications for a framework that enables the devel-
opment of highly available, secure, distributed systems for mission critical applications where
systems are likely to come and go in an ad-hoc fashion. Openwings is an abstraction on top of
various service discovery mechanisms, including Jini and provides a component framework for
Service-Oriented Programming127:

• Container services addresses the need for process lifecycle management, clustering/load
balancing, security, handling of mobile code and overall service availability in a dis-
tributed environment.128

• Component services provide the mechanism to publish services as well as discover and
use services that have been created and published by others.129

• Connector services support component to component communication.

• Install services
124http://www.openspaces.org
125http://www.gigaspaces.com/
126http://www.openwings.org
127SOP
128http://www.openwings.org/openwings-11/tutorial/Trail_Introduction/04_
Container_Services.html

129http://www.openwings.org/openwings-11/tutorial/Trail_Introduction/03_
Component_Services.html

http://www.openspaces.org
http://www.openspaces.org
http://www.openspaces.org
http://www.gigaspaces.com/
http://www.openwings.org
http://www.openwings.org/openwings-11/tutorial/Trail_Introduction/04_Container_Services.html
http://www.openwings.org/openwings-11/tutorial/Trail_Introduction/04_Container_Services.html
http://www.openwings.org/openwings-11/tutorial/Trail_Introduction/03_Component_Services.html
http://www.openwings.org/openwings-11/tutorial/Trail_Introduction/03_Component_Services.html

A.74. P-LINDA 159

• Context services

• Management services

• Security services

The website http://www.openwings.org offers a detailed description on OpenWings
including source code and tutorials. Most documents have been last updated in 2003. Since
January 2013 the website is no longer available.

A.74 P-Linda

PLinda130 [AS91] is an extension of Linda with the aim to create a model powerful enough
for persistent data storage in addition to distributing computing without losing the simplicity,
expressiveness, and universality131 of Linda.
Persistent Linda extends Linda through:

• the qualities of transactions , e.g. serialize-ability, crash recovery, and persistence.132

• extended tuple patterns and relational database join semantics.

• in-place updates

• hints (pragmas) to be supplied by the programmer so that data organization and process
scheduling is more efficient.133

Most of the classical Linda operations were refined and new operations were added and are
explained in the user manual134 on the project website135. The source code as well as articles
are also available under http://www.cs.nyu.edu/~binli/plinda.

A.75 P4 Linda

P4-Linda [BLL93]consists of two implementations of the Linda programming model and the p4
parallel programming system136, using both shared-memory and distributed-memory models for
the underlying hardware.
One implementation is strictly a shared-memory implementation and uses monitors as the syn-
chronization primitive whereas the other implementation is based on message-passing.137

130Persistent Linda
131 [AS91] page 16.
132 [AS91] page 3.
133 [AS91] page 3.
134http://www.cs.nyu.edu/~binli/plinda/manual.ps
135http://www.cs.nyu.edu/~binli/plinda/
136no longer supported
137http://heather.cs.ucdavis.edu/~matloff/LLinda/P4-Linda/tmp/p4-linda/README

http://www.openwings.org
http://www.cs.nyu.edu/~binli/plinda
http://www.cs.nyu.edu/~binli/plinda/manual.ps
http://www.cs.nyu.edu/~binli/plinda/
 http://heather.cs.ucdavis.edu/~matloff/LLinda/P4-Linda/tmp/p4-linda/README

160 APPENDIX A. GLOSSARY

Both implementations were prototypes in and have not been developed any further. Informa-
tion and program code can be still found under http://heather.cs.ucdavis.edu/
~matloff/LLinda/P4-Linda/NotesP4-Linda.html

A.76 PadSpace

A.76.1 PadSpace

PadSpace [LT09] uses an XML space based on the ideas of the Linda coordination model with
the aim to support the cooperation of Web applications, Web services and end users’ local re-
sources. In a PadSpace, users can directly manipulate pads, visual components, and can create
new components.
Pad Space enables end users to interactively register their resources (mostly web-resources) into
the XML-tuples pace, and to interactively use those shared resources as visual components in
combination with their own local visual functional resources through the automatic matching
between function providers and function requesters.138

A.76.2 PadlogSpace and PadlogSpace

PadlogSpace [LT10] is a further development of PadSpace and extends the service registration
function and the service matching function of PadSpace with the goal to provide a semantic
rule-definition mechanism for the service composition development.

A.77 PoliS

PoliS139 is a coordination language written in Prolog that extends Linda with multiple tuple
spaces with the aim to offer controlling coordination of distributed systems, for space and time
computations [Cia91], [Cia94]. PoliS works with trees of nested spaces which can evolve dy-
namically in time. A space can contain:

• other spaces

• ordinary tuples: a structured data object that is a sequence of values

• program tuples: contain coordination rules to manage local activities

both other spaces and tuples of two types: ordinary
Agents perform Linda-like operations on tuples, spaces and places with the latter being a multiset
of tuples.
It is a very well described implementation that shows a solid approach and has gained much
respect in the academic field. Papers are available but no project website could be found.
138 [LT09] page 8.
139 Poli Spaces

http://heather.cs.ucdavis.edu/~matloff/LLinda/P4-Linda/NotesP4-Linda.html
http://heather.cs.ucdavis.edu/~matloff/LLinda/P4-Linda/NotesP4-Linda.html

A.78. PROLOG-D-LINDA V2 161

A.78 Prolog-D-Linda v2

Prolog-D140-Linda v2 [Sut93] is the last version of five embeddings of the Linda model into
Prolog. The first version was called muProlog [SP89] and allowed a single processor to run all
the application processes and the centralized tuple space.
Prolog-D-Linda v2 supports applications running over an internet of processors with a dis-
tributed tuple space. This implementation of Prolog-D-Linda runs on SICStus Prolog.141 Prolog-
D-Linda v2 supports the eval operator, has a distributed tuple space, and provides i/o facilities
for all processes in the system.
http://www.cs.miami.edu/~geoff/ResearchProjects/PDL/ provides a down-
load of Prolog-D-Linda v2 and several papers that describe predecessor versions.

A.79 PyBrenda

ByBrenda extends the Linda model, using Python. It is quite similar to C-Linda and uses also
the same operations as such.
The source can be downloaded under http://wiki.python.org/moin/PyBrenda but
the links to the project website are no longer active.

A.80 PyLinda

PyLinda extends the Linda model through

• multiple tuple spaces

• garbage collection

• sane non-blocking primitives

• bulk tuple operations

The former project website http://www-users.cs.york.ac.uk/~aw/pylinda/ does
not exist anymore.

A.81 Ruple

Ruple, an internet shared memory space, has been introduced by Rogue Wave Software142 in
[Tho02]. Ruple is a distributed computing technology built on an Internet tuple space for XML
documents, providing a loosely coupled asynchronous and anonymous link between multiple
senders and receivers.143 The main difference to other space-based implementation is that Ruple
140distributed
141http://www.cs.miami.edu/~geoff/ResearchProjects/PDL/
142http://www.roguewave.com/
143http://xml.coverpages.org/ni2002-03-01-a.html

http://www.cs.miami.edu/~geoff/ResearchProjects/PDL/
http://wiki.python.org/moin/PyBrenda
http://www-users.cs.york.ac.uk/~aw/pylinda/
 http://www.cs.miami.edu/~geoff/ResearchProjects/PDL/
 http://www.roguewave.com/
http://xml.coverpages.org/ni2002-03-01-a.html

162 APPENDIX A. GLOSSARY

uses a document-centric approach where XML documents are stored on the space and retrieved
using XML query syntax (XQL).144

Ruple can write robust, loosely coupled, collaborative multiway applications over the Inter-
net.145

Ruple had quite a lot of attention back in 2002 but now all the weblinks on the Rogue Wave
Software website are dead and only a few articles can be found on the internet.

A.82 Semantic Tuple Spaces

Semantic Web Spaces [TN04] is a Linda-based coordination platform which allows the rep-
resentation and management of Semantic Web information by extending the classical Linda
model146:

• The tuplespace holds data and knowledge

• The classical operations are defined to operate upon the tuples as data147

• Operations upon agent scope, namely - addscope, rmscope are added

• To add or remove tuples as knowledge operations - claim, retract are added

• To query tuples as knowledge semantic matching relations through the operation- rdiftrue
are added

In 2008 [NSKMR08] presented a survey showing the state of the art focusing on that topic,
which shows that semantic web spaces are a very interesting topic. Even though there is no
source code available there are, quite a few papers which show the development over the years
quite well.

A.83 SecOS

Secure Object Spaces148 [VBO03], [BDN02] extends Linda with fine-grained access control
based on locking in order to strengthen the security of space-based computing systems without
being too restrictive. A lock can be seen as a specific value that represents the key to a given
tuple. SecOS offers a set of different variants for the locking process:

• Symmetric key locking: One key locks and unlocks the tuple.

• Asymmetric key locking: A public key locks the tuple and a private key can unlock it.

• Fine grained access control at fields and tuple level.
144 [KLF04] page 2.
145 [Tho02] page 12.
146http://www.ag-nbi.de/research/semanticwebspaces/index.html
147http://www.ag-nbi.de/research/semanticwebspaces/index.html
148SecOS

 http://www.ag-nbi.de/research/semanticwebspaces/index.html
 http://www.ag-nbi.de/research/semanticwebspaces/index.html

A.84. SECSPACES 163

Ideas of SecOS have influenced SecSpaces [BGLZ02]. More research regarding cryptographic
protection for objects exchanged over the Internet needs be done to enhance SecOS for this use
case.
No project website or source code is available.

A.84 SecSpaces

A.84.1 SecSpaces

SecSpaces [BGLZ02], which is quite similar to SecOS, is a Linda-like coordination model that
supports secure data-driven coordination in open environments.
SecSpaces introduces two new fields which can both add value to the coordination model:

• Partitioning fields: The tuple space partitioning is achieved through the introduction of a
partition field in the tuples. An agent can only enter the field if he knows the name of the
partition. This partitioning mechanism avoids all agents having the same view on the data
contained in a tuple space.

• Cryptographic fields: The cryptographic fields can distinguish between agents who can
only execute read operations and those who can only execute take operations through the
use of asymmetric cryptography.

SecSpaces offer a good approach to secure tuple spaces and tuple fields and therefore they are
quite popular in the scientific community, but no source code is provided.

A.84.2 WSSecSpaces

WSSecSpaces extends the coordination primitives of SecSpaces in order to use Web services.
WSSecSpaces supports a secure coordination, the integration of Linda with Web technologies
and the loose coordination of Web Services. The security of data transmitted on the channel is
preserved by HTTPS transfer protocols used in the SOAP service invocation protocol.
More research, e.g. on other cryptographic solutions or the quality of service, can be done to
improve WSSecSpaces. No source code is available.

A.85 SemiSpace

SemiSpace is a light weight open source interpretation of tuple spaces based on ideas from
JavaSpaces149 with clustering built using Terracotta150.
SemiSpace was said to be non-intrusive, easy to configure and integrate. Unfortunately the
SemiSpace website is down and so no further information about SemiSpace can be given.
149http://www.theserverside.com/news/thread.tss?thread_id=55069
150http://terracotta.org/

 http://www.theserverside.com/news/thread.tss?thread_id=55069
 http://terracotta.org/

164 APPENDIX A. GLOSSARY

A.86 SmallSpaces

SmallSpaces are open source implementations of the Linda/Tuplespace programming model.
A reference of SmallSpaces can be found under ,http://en.wikipedia.org/wiki/
Tuple_space but the link provided there is no longer active and no other references could
be found.

A.87 SQLSpaces

SQLSpaces were developed by the Collide Research Group at the University of Duisburg-Essen,
Germany and a wide range of information on it can be found under the project website http:
//sqlspaces.collide.info/ which also includes the SQLSpaces downloads.
SQL151Spaces combine the idea of the tuple spaces concept with a relational database that can
be seen as the backbone of the implementation but can hardly be noticed by the programmer
because of the features, e.g. notifications, expiration, versioning and extended query mecha-
nisms, which are offered by the tuple spaces. SQL supports a lot of different programming
languages. In order to use SQLSpaces efficiently either MySQL152 or the free Java database
system HSQLDB153 needs to be installed on your system.
On the 23th of August 2012 the latest version of SQLSpaces was published with JSON as the
new message format. However, XML is also still supported.
Furthermore, a web workbench is presented that has a live view on the spaces where tuples
can be changed, created et cetera. The SQLSpaces already have a rich user group in academia
as well as in enterprise, mainly because it offers continuous improvement to make SQLSpaces
more flexible.
A lot of papers have been presented concerning this topic including [WGH07].

A.88 Swarm Linda

SwarmLinda bases on the ideas of swarm intelligence implemented in a Linda-based system.
The concept of SwarmLinda is presented in [GMT08], [CMT04], [TM03] and in [MT03].
SwarmLinda takes three major principles from swarm systems in nature and transfers them to
feasible algorithms in the Linda world:

• Simplicity: SwarmLinda only uses a simple set of rules, which hence leads to a small
resource usage.

• Dynamism: SwarmLinda reacts to a dynamic changing environment and does not expect
that things stay static.

151Structured Query Language
152 http://www.mysql.com
153http://hsqldb.org/

http://en.wikipedia.org/wiki/Tuple_space
http://en.wikipedia.org/wiki/Tuple_space
http://sqlspaces.collide.info/
http://sqlspaces.collide.info/
http://www.mysql.com
 http://hsqldb.org/

A.89. TAGGED SETS 165

• Locality: Entities in SwarmLinda only observe their neighbor entities and make decisions
based on their local view.154

Following this rules SwarmLinda achieves desired characteristics such as scalability, adaptive-
ness and fault-tolerance.
[GMT08] has made performance tests with SwarmLinda and shown that SwarmLinda demon-

strates self-organized characteristics while allowing an easy visualization tool of the behavior
of SwarmLinda.155

There is no project website and concepts like LIME seem to have found a bigger acceptation
with programmers: That being said, SwarmLinda still offers a good approach to bringing Linda
to a mobile environment.

A.89 Tagged sets

Tagged sets [OH05]are a virtual shared memory approach that relies on tags based on propo-
sitional logic to lock and select values156 with the aim to support scenarios like shared data
repositories, message passing or publish/subscribe algorithms.
Each element in the virtual shared memory is a value with an associated tag, and values are
read or removed from the virtual shared memory by matching the tag.
Tags are implemented as propositional logic formulae, and selection as logical implication, so
the resulting system is quite powerful.157

Tagged sets provide good security because tags are usually associated with a key that defines the
protection grade and only if a user presents his key he is allowed to execute an operation on the
tag.
Apart from [OH05] no other works related to tagged sets could be found.

A.90 T-Spaces

TSpaces [WMLF98], [LMW99] and [LCX+01] have been introduced by IBM in 1998. TSpaces
is a combination of tuple spaces, databases and Java with the aim to generate a platform indepen-
dent repository that connects heterogeneous systems in to one common computing platform.158

The tuple operators as well as the matching algorithms are enhanced compared to the classic
Linda model. The database layer offers additional stability and durability whereas Java brings
portability to this implementation.
Advantage of TSpaces are that it offers

• asynchronous messaging

• database functionality
154[TM03] page 4.
155[GMT08] page 2716.
156 [OH05] page 15.
157 [OH05] page 1.
158 [LMW99] page 1-2.

166 APPENDIX A. GLOSSARY

• XML support

• all kinds of different use cases

Negative aspects are that TSpaces are incompatible with lower versions and the lack of security
provided.
TSpaces is a probably one of the most thought through tuple space implementation for Java out
there. It can be downloaded under http://www.almaden.ibm.com/cs/TSpaces/. On
this site one can also find a lot of information and documentation. Apart from the download an
Enterprise Suite is also available.
The last update in the paper section http://www.almaden.ibm.com/cs/TSpaces/
papers.html was made in 2003.

A.91 TCP Linda

TCP Linda is a product of the Scientific Computing Associates and it is based on Linda and
TCP159.
TCP’s Linda architecture is modular and its semantics are the same as in Linda and an content-
addressable tuple space, which makes it easier to build applications. One well known use case
of TCP Linda is Gaussian 03160.
TCP Linda can be seen as the earliest commercial version and one of the most widespread
implementations of a virtual shared memory for supercomputers and clustered systems.
Information and free trials for TCP Linda for Linux and Mac OS X can be found under http:
//lindaspaces.com/downloads/evaluation.html.

A.92 TeenyLIME

TeenyLIME is a model and middleware for Wireless Sensor Networks and has so far been pre-
sented in [CMMP06], [CMMP07], [CMP+09] and [CCD+11]. The aim of TeenyLIME is to
support applications where sensing and acting devices themselves drive the network behavior161

without relying on an external base station.
TeenyLIME is an extension of LIME and therefore the coordination operations are basically the
same. The big difference to LIME is that the TeenyLIME tuple spaces are physically located
on each and every device and that the communication is only granted with one-hop neighbors.
In addition each device has a different set of one-hop neighbors and therefore each device has
a different view of the tuple space. This set-up can display a variety of useful coordination
scenarios, when it comes to collaborative tasks.
Interesting use cases of TeenyLIME are described in [CMP+09] and [CCD+11], which shows
that TeenyLIME can be best used in real-world Wireless Sensor Networks, such as the monitor-
ing of heritage buildings or the adaptive lighting in road tunnels. The source code and a wiki for
further questions are available under http://teenylime.sourceforge.net/
159 Transmission Control Protocol
160computational chemistry program, http://www.gaussian.com
161[CMMP06] page 1.

http://www.almaden.ibm.com/cs/TSpaces/
http://www.almaden.ibm.com/cs/TSpaces/papers.html
http://www.almaden.ibm.com/cs/TSpaces/papers.html
 http://lindaspaces.com/downloads/evaluation.html
 http://lindaspaces.com/downloads/evaluation.html
 http://teenylime.sourceforge.net/
 http://www.gaussian.com

A.93. TIBCO ACTIVESPACES 167

A.93 TIBCO ActiveSpaces

TIBCO ActiveSpaces is a distributed peer-to-peer in-memory data grid that enables heteroge-
neous applications to share, exchange, and process data in real time.
This approach means the capacity of the space scales automatically as nodes join and leave.
Replication assures fault tolerance from node failure as the space autonomously re-replicates
and redistributes lost data.162

Programming APIs are available in Java and C. TIBCO offers a designated blog which focuses
on the development of ActiveSpaces163 which is up to date and one can see that efforts are made
to constantly improve TIBCO ActiveSpaces.
Since this is a commercial solution good product information is available.

A.94 The KLAIM family

KLAIM164 is a space-based computing implementation designed to program distributed sys-
tems consisting of several mobile components that interact through multiple distributed tuple
spaces.165

KLAIM has been presented in many papers, amongst others in [DNFP98], [BdNPF98], [DNL00]
and [BBDN+03].
The development of KLAIM has been mainly influenced by process calculus (π-calculus) and
the Linda coordination model with the aim to improve issues like scalability and modularity.
Over the time various KLAIM implementations have been presented:

• cKLAIM166 can be regarded as a variant of the π-calculus, which can be characterized by
features such as process mobility and asynchronous communication via so-called locali-
ties (instead of channel-based communication). In simple words, KLAIM allows agents
to move to the location of the tuple space they want to communicate with.

KLAIM can

- create processes

- create variables

- create localities

- create nodes

- move processes between nodes

For those who want to read about the syntax and the semantic of KLAIM in more detail,
further information can be found in [BBDN+03].

162http://www.tibco.com/products/soa/in-memory-computing/
activespaces-enterprise-edition/default.jsp

163https://www.tibcommunity.com/blogs/activespaces
164Kernel Language for Agents Interaction and Mobility
165 [BBDN+03] page 88.
166coreKLAIM

http://www.tibco.com/products/soa/in-memory-computing/activespaces-enterprise-edition/default.jsp
http://www.tibco.com/products/soa/in-memory-computing/activespaces-enterprise-edition/default.jsp
https://www.tibcommunity.com/blogs/activespaces

168 APPENDIX A. GLOSSARY

• µKLAIM167 extends cKLAIM with tuples and pattern-matching.

• OPENKLAIM is an extension which is designed to enable users to give more realistic
accounts of open systems.168 This is reached through equipping KLAIM with mechanisms
to dynamically update allocation environments and to handle node connectivity.169

• HOTKLAIM170

• METAKLAIM

• O’KLAIM171 adds object-oriented features to KLAIM

• X-KLAIM172 exends KLAIM with a high level syntax for processes: it provides variable
declarations, enriched assignments, conditionals, sequential and iterative process com-
position173 X-KLAIM is based on the Java middleware KLAVA [BDNP01].

KLAIM is quite popular and there are a lot of papers concerning this topic and many extensions
to cKLAIM are presented.

A.95 TinyLIME

TinyLIME is an extension of Lime and has been presented in [CGG+05c], [CGG+05b] as well
as on the TinyLIME website174. The operational setting in which TinyLIME operates assumes
that sensors are distributed sparsely throughout a region, and need not be able to communicate
with one another. The monitoring application is deployed on a set of mobile hosts, intercon-
nected through ad hoc wireless links. Some hosts are only clients, without direct access to
sensors and others are equipped with a sensor base station, which however enables access only
to sensors within one hop, therefore naturally providing a contextual view of the sensor sub-
system.175 This operational setting can be found useful in disaster recovery areas and military
settings.
Technically TinyLIME is implemented as a layer on top of LIME with specialized components
deployed on sensors and base stations.176 TinyLIME works with a transiently shared tuple
space, which stores tuples containing the sensed data. Another change is that TinyLIME works
with motes, which are distributed loosely in the environment and communicate only with the
base station, when the base station is in their reach. These motes are only shown by TinyLime
if they are connected to a base station. For accessing sensor data TinyLIME agents make use of
167Micro-Klaim
168 [BBDN+03] page 100.
169 [BBDN+03] page 100.
170Higher-Order Typed KLAIM
171Object Orientated KLAIM
172eXtended KLAIM
173 [BBDN+03] page 135.
174http://lime.sourceforge.net/tinyLime/index.html
175[CGG+05a] page 5.
176[CGG+05a] page 26.

http://lime.sourceforge.net/tinyLime/index.html

A.96. TRIPLE SPACE COMMUNICATION 169

the same operations as proposed by LIME, but only read operations are available (rd, rdp and
rdg).
Reactions also work as in LIME, with two extensions:

• It can be decided how frequently the data received through a reaction can be refreshed.177

• Conditions are accepted by the reactions, e.g. to react only between a certain temperature
range.

TinyLIME is very well described both on the website as in papers. A source code of this open
source solution is also available on the website.

A.96 Triple Space Communication

TripCom178, a research project with international partners from academia and industry and
funded by the European Commission, represents a new form of network-based communication
which aims to provide a platform which allows coordinated access to distributed semantic data.
TripCom combines technologies like tuple spaces, web services and the semantic web with the
aim to:

• allow many different clients to interact with each other, giving each client the possibility
to publish data with different semantics into the space.

• allow the usage of different semantic data formats (such as the Resource Description
Framework179).

• allow coordinated access to data through an extended Linda coordination model.180

• provide a scalable communication infrastructure for (Semantic) Web services.

• allow easy data distribution and access control.

• improve fault tolerance.

The goal of the project is to provide an infrastructure for the web of machines based on the
principles of the web for humans.181

The source and a great deal of information can be found on the project website under http:
//www.tripcom.org. TripCom is possibly one of the most innovative approaches of all
space based computing implementations which will need just a little more developement in
order to become a standard.
177[CGG+05b] page 5.
178Triple Space Communication
179RDF
180http://www.tripcom.org/faq.php#tripcom4
181http://www.tripcom.org/faq.php

http://www.tripcom.org
http://www.tripcom.org
http://www.tripcom.org/faq.php#tripcom4
http://www.tripcom.org/faq.php

170 APPENDIX A. GLOSSARY

A.97 TuCSoN

TuCSoN182 [OZ98a], [RO02], [NVCO10], [ORRV03] is a hybrid coordination model which
aims to support the design and development of information-oriented applications based on mo-
bile agents.183

TuCSon differs from Linda because it focuses on tuple centres (instead of tuple spaces), which
allow to define and tailor the communication channel to the respective use case. In easy words,
tuple centers are programmable tuple spaces.184 The language to programme the tuple spaces is
called ReSpecT. Tuple centers act in the same way as the common tuple space but their behavior
can be enriched so as to encapsulate the coordination rules.
Those tuple centres are spread on network nodes (Internet nodes) and identified by their IP (or
logic) addresses. A node can host an arbitrary number of tuple centres, called coordination
context.
To access a TuCSoN coordination context, agents must negotiate their entrance after the concept
of ACC185.
TuCSon supports Java and tuProlog, and can be downloaded under http://alice.unibo.
it/xwiki/bin/view/TuCSoN/Download. TuCSoN is a very complete solution which
has been under current development since 1998 and has been tested in all kinds of use cases and
a fair number of papers have focused on it. The project website is http://alice.unibo.
it/xwiki/bin/view/TuCSoN/.

A.98 UML Spaces

UML-Spaces implement tuple spaces using UML186 and have been introduced out of the moti-
vation that UML is one of the most commonly used notations for software systems.
In order to implement UML-Spaces only a few adaptions within UML have been necessary ac-
cording to [AR01]. For the programmer it might be useful to know that the operations read, take
and write can only be used synchronously. Additionally the newly introduced «use» associates
processes with the tuple spaces they use.
[AR01] shows in his paper that already a good amount of research has been conducted in this

area, e.g. [LKG+99]. Nevertheless there are still a lot of topics which seem worth researching,
for example bringing UML-Spaces to distributed systems with logical and physical mobility.187

A.99 VLOS

VLOS188 is presented in [MCW02] and [CM03] and can be described as a distributed operating
system based on tuple spaces.
182Tuple Centres Spread over the Network
183 [OZ98a] page 3.
184http://www.lia.deis.unibo.it/phd/materials/courses/
185 Agent Coordination Context
186Unified Modelling Language
187 [AR01] page 134.
188Virtually Linda Operating System

http://alice.unibo.it/xwiki/bin/view/TuCSoN/Download
http://alice.unibo.it/xwiki/bin/view/TuCSoN/Download
http://alice.unibo.it/xwiki/bin/view/TuCSoN/
http://alice.unibo.it/xwiki/bin/view/TuCSoN/
http://www.lia.deis.unibo.it/phd/materials/courses/

A.100. XCOORDINATION APPLICATION SPACE AND XCOORDINATION
COORDINATION SPACE 171

In VLOS tuple spaces are created without anything associated with it, except some basic types
and capabilities.
Security in VLOS is granted through a capability-based approach. Capabilities in VLOS nor-
mally consist of a unique identifier, the object type and the name of the tuple space with which
the object is associated as well as of a set of rights, a cryptographic and a hash function [UWJ07].
In order to even better customize tuple field matching expressions [CM03] introduces the Min-
iMe matching expression language. MiniMe allows the specification of new field matching
expressions but is still in its infancy.
VLOS has received some attention from the scientific community but no research results have
been presented recently.

A.100 Xcoordination Application Space and Xcoordination
Coordination Space

A.100.1 Xcoordination Application Space

The Xcoordination Application Space, also called AppSpace, is a .Net based implementation by
Xcoordination189 which aims to make writing asynchronous and distributed applications easier
by combining a set of existing technologies:

• CCR190: handles asynchronous communication by defining asynchronous components,
called workers, and make them as easily usable as synchronous components.

• WCF191: optional possibility to handle communication

• XMPP192: optional possibility to handle communication

The concept of workers introduced in application space is crucial since the space is just made up
of workers which asynchronously communicate via a channel:

• Asynchronous workers

• Synchronous workers

• Local workers

• Distributed workers

Features like the puplish/subscribe pattern, asynchronous timed actions, basic security features,
different transport services et cetera are supported by Xcoordination Application Space.
The Xcoordination Application Space is available as a free as well as a commercial version.
The free version of AppSpace V1.3 can be downloaded under http://xcoappspace.
codeplex.com/.
189http://www.xcoordination.org/home
190Microsoft Concurrency Coordination Runtime
191Windows Communication Foundation
192 Extensible Messaging and Presence Protocol

http://xcoappspace.codeplex.com/
http://xcoappspace.codeplex.com/
http://www.xcoordination.org/home

172 APPENDIX A. GLOSSARY

The Xcoordination Application Space is a very well described, up-to-date and under current
development with the aim to continuously improve it and add new features.

A.100.2 Xcoordination Coordination Space

The Xcoordination Coordination Space193 can be seen as a complementation to the Xcoordina-
tion Application Space because it minimizes the traffic between workers in the space.
Communication and synchronization is carried out by simply writing, reading and taking shared,
structured, synchronized data, as if they were collections of local data.194

A.101 XMIDDLE

XMIDDLE [MCE01], [MCZE02] is a middleware for mobile computing and allows applica-
tions the transparent sharing of XML documents with other hosts without any fixed network
infrastructure lying underneath. XMIDDLE allows the on-line and off-line access to data and
provides all hosts with consistent data.
XMIDDLE manages its data through trees that are described by means of XML documents and
it supports the following primitives:

• link: This primitive links a tree to a remote host. When linked and connected to a remote
client host, the server host records the name of the client host, the branch it is linking to,
and the linking point in the LinkedBy table.195

• unlink: The unlink primitive changes the local LinkedFrom table and unlinks the not
needed part of the tree branch.

• connect: The connect primitive first searches for remote hosts and their branches they
are linked with and then connects them so that the required data can be provided.

• disconnect: The disconnect primitive allows a hosts to work off-line

XMIDDLE is a solid and well elaborated space-based computing implementation where pa-
pers, documentation as well as the source code are available on the project website http:
//xmiddle.sourceforge.net/.

A.102 XML Spaces

XML196Spaces [TG01b], [TG01a] extends the Linda model with the aim to support web-based
applications.
It uses XML documents in addition to ordinary tuple fields in order to coordinate entities with
the Linda-primitives. The following enhancements have been made to improve the Linda model:
193http://www.xcoordination.org/coordination_space
194http://www.xcoordination.org/coordination_space
195 [MCZE02] page 94.
196Extensible Markup Language

http://xmiddle.sourceforge.net/
http://xmiddle.sourceforge.net/
 http://www.xcoordination.org/coordination_space
 http://www.xcoordination.org/coordination_space

A.103. XVSM 173

• Tuple fields can carry XML documents.

• Multiple matching relations on XML documents are supported.

• XMLSpaces represents multiple dataspace servers, at different locations, as one logic
dataspace.

• Distributed events are supported.

XMLSpaces is a well-described space-based computing implementation and has been extended
also to the .NET platform [TLN04] which offers a bigger matching flexibility and is completely
XML based. The project website can be found under http://user.cs.tu-berlin.de/
~tolk/xmlspaces but only papers on XML spaces are available and not a source code.

A.103 XVSM

XVSM197 [KRJ05], developed by the Space Based Computing Group of the Institute of Com-
puter Languages at the Vienna University of Technology, combines the idea of tuple spaces with
additional, flexible functionalities, called aspects, in order to provide exactly the functionality
the user needs. Two different implementations are available:

• MozartSpaces: This is the open source Java implementation, where documentation and
the source can be found on the project website under http://www.mozartspaces.
org.

• XcoSpaces: is the .NET version which at the moment is available for students of the Space
Based Computing Group of the Institute of Computer Languages at the Vienna University
of Technology.

Important differentiation criteria to other implementations are [Sch08a]:

• XVSM offers the possibility (defining a dedicated server is also possible) to build the
server out of the participating clients which share the entire data in the space amongst
them.

• The communication protocol is independent in order to allow different applications to
collaborate with each other without problems

• Additional features can be added into the space at runtime without being forced to restart
the system.

• Elements can be ordered in the space through the use of coordinated data structures, e.g.
queues or stacks.

XVSM is a very stable implementation which is continuously improved, e.g. [KRML08b] and
information on it can be found on the project website198 which offers also publications et cetera.
197eXtensible Virtual Shared Memory
198http://www.complang.tuwien.ac.at/eva/research/researchpublications.html

http://user.cs.tu-berlin.de/~tolk/xmlspaces
http://user.cs.tu-berlin.de/~tolk/xmlspaces
 http://www.mozartspaces.org
 http://www.mozartspaces.org
http://www.complang.tuwien.ac.at/eva/research/researchpublications.html

APPENDIX B
List of Figures

1.1 Use Breakdown in Percent . 3

2.1 Selected Application Domains For Distributed Systems 6
2.2 Distribution of Space Based Computing Implementations per Year and Aim 10
2.3 Detailed Historical Overview of Space Based Computing Implementations per Aim 11
2.4 Distribution of SBC Implementations per Year Supporting Security 12
2.5 Distribution of SBC Implementations per Year supporting Scalability 14
2.6 Distribution of SBC Implementations per Year supporting Life Cycle Management 15
2.7 Distribution of SBC Implementations per Year Focusing on Extensibility 16
2.8 Distribution of SBC Implementations per Year supporting Mobility 17
2.9 Distribution of SBC Implementations per Year supporting Programming Languages 17
2.10 Distribution of SBC Implementations per Year and Focus Group 18
2.11 Overview of SBC Implementations and Focus Groups 19
2.12 Linda in a Mobile Environment - Main Components 26
2.13 Engagement and Disengagement Process . 27
2.14 Process Flow of The Operation out[λ, ω] (t) . 28
2.15 Triple Space Communication - System Elements and Boundaries 32
2.16 TuCSoN - System Overview . 34
2.17 Overview - Components within the XVSM Space 37
2.18 Overview - Aspects within The XVSM Space - Image taken from the SBC-Course 39

3.1 Synchronization with GONG . 42
3.2 Replication Process in Tuling . 45
3.3 Different Information Types Across Organizations and Care Settings 46
3.4 RFID Tags and Tuple Spaces Help to Treat Injured People Efficiently 50
3.5 Mobile Devices in Corporate Networks . 53

4.1 Criteria Catalogue for Classification of Space Based Computing Implementations . 57

175

176 APPENDIX B. LIST OF FIGURES

4.2 Classification of Space Based Computing Systems by Family 59
4.3 How Napster Works . 60
4.4 Difference between Centralised, Pure and Hybrid P2P Networks 62
4.5 Summary Classification of Space Based Computing Systems by Family A-J 69
4.6 Summary Classification of Space Based Computing Systems by Family K-S 70
4.7 Summary Classification of Space Based Computing Systems by Family T-X 71
4.8 Support for Basic Operations - Part I . 74
4.9 Support for Basic Operations - Part II . 75
4.10 Support for Non Blocking Linda Operations . 77
4.11 Support for The Eval Operation . 79
4.12 Support for Extended Operations . 81
4.13 Extended Operations in Detail . 82
4.14 Summary Classification of Space Based Computing Systems by Operations A-J . . 85
4.15 Summary Classification of Space Based Computing Systems by Operations K-S . . 86
4.16 Summary Classification of Space Based Computing Systems by Family T-X 87
4.17 First In First Out . 88
4.18 Last In First Out . 89
4.19 Random . 89
4.20 Key Coordinator . 90
4.21 Distribution of Different Coordination Types in Percent 91
4.22 Summary Classification of Space Based Computing Systems by Coordination Types

A-J . 92
4.23 Summary Classification of Space Based Computing Systems by Coordination Types

K-S . 93
4.24 Summary Classification of Space Based Computing Systems by Coordination Types

T-X . 94
4.25 Summary Classification of Space Based Computing Systems by Substructures . . . 96
4.26 Summary Classification of Space Based Computing Systems by Data Types 98
4.27 Spaces Supporting Extensibility . 100
4.28 Summary Classification of Space Based Computing Systems by Extensibility . . . 103
4.29 Space Based Computing Systems Focusing on Security 105
4.30 Summary Classification of Space Based Computing Systems by Security 110
4.31 Mark and Sweep Algorithm . 112

5.1 Classification of Space Based Computing Systems A-J 118
5.2 Classification of Space Based Computing Systems K-S 119
5.3 Classification of Space Based Computing Systems T-X 120

APPENDIX C
Acronyms

ACC Agent Coordination Context

API Application Programming Interface

ATIS Agent Traveler Information Server

CAN Content-Addressable Network

CCR Microsoft Concurrency Coordination Runtime

Corso Coordinated Shared Objects

Crudlet creation, retrieval, updating, deletion, scheduling of life cycle activity,
existence checking and generic templating of various objects in the context of business rules

DHT Distibuted Hash Table

D-MANET Disconnected Mobile Ad Hoc Networks

FIFO First-In, First-Out

GONG General Database Notification Gateway

Grinda Grid and Linda

Gruple Groovy and tuple

177

178 APPENDIX C. ACRONYMS

HTTPS Hypertext Transfer Protocol Secure

ITS Interface Tuple Space

ITS Intelligent Transportation Services

JDBC Java Database Connectivity

JEDI Java Event-based Distributed Infrastructure

JION JavaSpaces Implementation for Opportunistic Networks

JVM Java Virtual Machine

JXTA Juxtapose

KLAIM Kernel Language for Agents Interaction and Mobility

KLAVA Klaim in Java

LACIOS Language for Agent Contextual Interaction in Open Systems

LBTS Linearizable Byzantine Tuple Space

LGI Law-Governed Infrastructure

LGL Law-Governed Linda

LIFO Last-In, First-Out

LIME Linda in a Mobile Environmen

LINQ Language Integrated Query

MANET Mobile Ad Hoc Network

Melinda Linda with multiple tuple spaces

MPI Message Passing Interface

NAT Network Address Translation

OTP Open Telecom Platform

179

P2P Peer-to-Peer

PDC Parallel and Distributed Computing

P-Linda Persistent Linda

PME Programmable Matching Engine

PoliS Poli Spaces

QoS Quality of Service

RDF Resource Description Framework

ReSpecT Reaction Specification Tuples

RFID Radio Frequency Identification

RHIO Regional Health Information Organizations

RMI Remote Method Invocation

RSA Rivest, Shamir and Adleman

RSU Road Side Units

SBC Space Based Computing

SecOS Secure Object Spaces

SOAP Simple Object Access Protocol

SOP Service-Orientated Programming

SQL Structured Query Language

TCP Transmission Control Protocol

TripCom Triple Space Communication

TSTP Triple Space Transfer Protocol

180 APPENDIX C. ACRONYMS

TuCSon Tuple Centres Spread over the Network

UML Unified Modelling Language

URI Universal Resource Identifier

URL Uniform Resource Locator

UUID Universally Unique Identifier

VLOS Virtually Linda Operating System

VSM Virtual Shared Memory

WCF Windows Communication Foundation

WFMS Worklflow Management System

WLAN Wireless Local Area Network

WMAN Wireless Metropolitan Area Networks

WPAN Wireless Personal Area Network

WWAN Wireless Wide Area Network

WWW World Wide Web

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

XQL XML Query Language

XSL Extensible Stylesheet Language

XVSM eXtensible Virtual Shared Memory

Bibliography

[AAHC09] H. Artail, F. Al-Halabi, and A. Chehab. The design and implementation of
an ad hoc network of mobile devices using the lime ii tuple-space framework.
Wireless Communications, IEEE, 16(3):52 –59, 2009.

[AD99] Omicini; A. and L. Deis. Tuple centres for the coordination of internet agents.
In In Proc. of the 1999 ACM Symp. on Applied Computing (SAC 00, pages
183–190. ACM Press, 1999.

[ADG99] M. Ancona, G. Dodero, and V. Gianuzzi. Ramses: A mobile computing system
for field archaeology. volume 1707 of Lecture Notes in Computer Science,
pages 222–233. Springer, 1999.

[ADNL15] Marina Andrić, Rocco De Nicola, and AlbertoLluch Lafuente. Replica-based
high-performance tuple space computing. In Tom Holvoet and Mirko Viroli,
editors, Coordination Models and Languages, volume 9037 of Lecture Notes
in Computer Science, pages 3–18. Springer International Publishing, 2015.

[Ang03] W. Angleitner. Design und Implementierung eines graphischen Tools zur Vi-
sualisierung verteilter Datenstrukturen in CORSO-Spaces. Master’s thesis,
Fachhochschule Hagenberg, 2003.

[AR01] E. Astesiano and G. Reggio. Uml-spaces: a uml profile for distributed systems
coordinated via tuple spaces. In Autonomous Decentralized Systems, pages
127–134, 2001.

[AS91] B. Anderson and D. Shasha. Persistent linda: Linda + transactions + query
processing, 1991.

[Ass99] Scientific Computing Associates. Scientific Computing Associates: Virtual
shared memory and the Paradise sys- tem for distributed computing. Technical
report, 1999.

[ATS04] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of peer-
to-peer content distribution technologies. ACM Comput. Surv., 36(4):335–371,
December 2004.

181

182 BIBLIOGRAPHY

[BACF08] A.N. Bessani, E.P. Alchieri, M. Correia, and S. Fraga. DepSpace : A Byzan-
tine Fault-Tolerant Coordination Service. Security, pages 163–176, 2008.

[Bar10] M.S. Barisits. Design and Implementation of the next Generation XVSM
Framework Operations , Coordination and Transactions. Master’s thesis, Tech-
nical University of Vienna, 2010.

[BBDN+03] L. Bettini, V. Bono, R. De Nicola, G. Ferrari, D. Gorla, M. Loreti, Moggi.
E., R. Pugliese, E. Tuosto, and B. Venneri. The klaim project: Theory and
practice. In GLOBAL COMPUTING: PROGRAMMING ENVIRONMENTS,
LANGUAGES, SECURITY AND ANALYSIS OF SYSTEMS, VOLUME 2874
OF LNCS, pages 88–150. Springer-Verlag, 2003.

[BC03] B. Brown and M. Chalmers. Tourism and mobile technology. In Proceedings
of the eighth conference on European Conference on Computer Supported Co-
operative Work, ECSCW’03, pages 335–354. Kluwer Academic Publishers,
2003.

[BCKP95] R. Bagrodia, W. W. Chu, L. Kleinrock, and G. Popek. Vision, issues, and
architecture for nomadic computing. IEEE Personal Communications, 2:14–
27, 1995.

[BCP+] A. Belapurkar, A. Chakrabarti, H. Ponnapalli, N. Varadarajan, S. Padmanab-
huni, and publisher = Sundarrajan, S. Distributed systems security : issues,
processes, and solutions.

[BCP05] D. Balzarotti, P. Costa, and G.P. Picco. The lights tuple space frawework and
its customization for context-aware applications, 2005.

[BDL+14] V. Boutin, C. Desdouits, M. Louvel, F. Pacull, M.I. Vergara-Gallego, O. Yaak-
oubi, C. Chomel, Q. Crignon, C. Duhoux, D. Genon-Catalot, L. Lefevre,
Thanh Hung Pham, and Van Thang Pham. Energy optimisation using ana-
lytics and coordination, the example of lifts. In Emerging Technology and
Factory Automation (ETFA), 2014 IEEE, pages 1–8, Sept 2014.

[BDN02] L. Bettini and R. De Nicola. A middleware for secure distributed tuple spaces,
2002.

[BDNP01] L. Bettini, R. De Nicola, and R. Pugliese. Klava: a java framework for dis-
tributed and mobile applications. In Software Practice and Experience, pages
32–1365, 2001.

[BdNPF98] L. Bettini, R. de Nicola, R. Pugliese, and G.L. Ferrari. Interactive mobile
agents in x-klaim. In Enabling Technologies: Infrastructure for Collaborative
Enterprises, pages 110–115, 1998.

BIBLIOGRAPHY 183

[Ber04] T. Bernoulli. BEACON-LESS ROUTING IN MOBILE AD HOC NET-
WORKS. Master’s thesis, Philosophisch-naturwissenschaftlichen Fakultät der
Universität Bern, 2004.

[Bes06] A.N. Bessani. Bts: A byzantine fault-tolerant tuple space. In Proceedings of
the 21st ACM Symposium on Applied Computing - SAC 2006, pages 429–433,
2006.

[Bet05] L. Bettini. Data Privacy in Tuple Space Based Mobile Agent Systems. Elec-
tronic Notes in Theoretical Computer Science, 128(5):3–16, 2005.

[BFK+11] S. Bessler, A. Fischer, E. Kühn, R. Mordinyi, and S. Tomic. Using tuple-
spaces to manage the storage and dissemination of spatial–temporal content.
Journal of Computer and System Sciences, 77(2):322–331, March 2011.

[BGLZ02] N. Busi, R. Gorrieri, R. Lucchi, and G. Zavattaro. Secspaces: a data-driven
coordination model for environments open to untrusted agents. In Electronic
Notes in Theoretical Computer Science, 2002.

[Bie12] G. Bieber. Openwings. last visited: 02.08.2012.

[BLG12] A. Benchi, P. Launay, and F. Guidec. JION: A JavaSpaces Implementation
for Opportunistic Networks. In The Fourth International Conference on Fu-
ture Computational Technologies and Applications (FUTURE COMPUTING
2012), pages 49–54, 2012.

[BLHL01] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific
American, (5):34–43, 2001.

[BLL93] R.M. Butler, A.L. Leveton, and E.L. Lusk. p4-linda: a portable implemen-
tation of linda. In High Performance Distributed Computing, pages 50–58,
1993.

[BMSV] J. Brehm, C. Mueller-Schloer, and S. Voigt. An infospace paradigm for ad-hoc
peer-to-peer communication.

[BO05] R. Beintner and H. Osius. Untersuchung des globus toolkit als grid computing
middleware, 2005.

[BR02] C. Bryce and M. Razafimahefa, Ch.and Pawlak. Lana: An approach to pro-
gramming autonomous systems. In Proceedings of the 16th European Con-
ference on Object-Oriented Programming, pages 281–308. Springer-Verlag,
2002.

[BS95] D.E. Bakken and R.D. Schlichting. Supporting fault-tolerant parallel pro-
gramming in Linda. IEEE Transactions on Parallel and Distributed Systems,
6(3):287–302, 1995.

184 BIBLIOGRAPHY

[BS99] R. Buyya and LM SILVA. Parallel programming models and paradigms. High
Performance Cluster Computing: programming and applications. Melbourne:
Pretince Hall, 2:4–27, 1999.

[BST89] Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum. Programming
languages for distributed computing systems. ACM Computing Surveys, pages
32–2, 1989.

[Bus05] Ch. Bussler. A minimal triple space computing architecture. In In Proceedings
of the 2nd WSMO Implementation Workshop, 2005.

[Car89] N. Carriero. Linda in context. Communications of the ACM, 32(4):pp. 444–
458, 1989.

[CB14] Justin Collins and Rajive Bagrodia. Mobile application development with
melon. In Song Guo, Jaime Lloret, Pietro Manzoni, and Stefan Ruehrup, edi-
tors, Ad-hoc, Mobile, and Wireless Networks, volume 8487 of Lecture Notes in
Computer Science, pages 265–278. Springer International Publishing, 2014.

[CCD+11] M. Ceriotti, M. Corra, L. D’Orazio, R. Doriguzzi, D. Facchin, S.T. Guna, G.P.
Jesi, R.L. Cigno, L. Mottola, A.L. Murphy, M. Pescalli, G.P. Picco, D. Pregno-
lato, and C. Torghele. Is there light at the ends of the tunnel? wireless sensor
networks for adaptive lighting in road tunnels. In Information Processing in
Sensor Networks (IPSN), pages 187–198, 2011.

[CDKB11] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair. Distributed Systems:
Concepts and Design (5th Edition). Addison Wesley, 5 edition, May 2011.

[CDNF01] G. Cugola, E. Di Nitto, and A. Fuggetta. The jedi event-based infrastructure
and its application to the development of the opss wfms. Software Engineer-
ing, 27(9):827–850, 2001.

[CG86] N. Carriero and D. Gelernter. The S/Net’s Linda kernel. ACM Transactions
on Computer Systems, 4(2):110–129, 1986.

[CG90] N. Carriero and D. Gelernter. How to write parallel programs: a first course.
MIT Press, Cambridge, MA, USA, 1990.

[CGG+05a] C. Curino, M. Giani, M. Giorgetta, A. Giusti, P. Milano, A.L. Murphy, and
G.P. Picco. TinyLIME : Bridging Mobile and Sensor Networks through Mid-
dleware. Communications, (PerCom), 2005.

[CGG+05b] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. Murphy, and G. Picco. Mo-
bile data collection in sensor networks: The TinyLime middleware. Pervasive
and Mobile Computing, 1(4):446–469, 2005.

BIBLIOGRAPHY 185

[CGG+05c] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A.L. Murphy, and G.P. Picco.
Tinylime: bridging mobile and sensor networks through middleware. In Pro-
ceedings of the Third IEEE International Conference on Pervasive Computing
and Communications, pages 61–72, 2005.

[CGH97] N. Carriero, D. Gelernter, and S. Hupfer. Collaborative applications experi-
ence with the bauhaus coordination language. In Proceedings of the Thirtieth
Hawaii International Conference on System Sciences, volume 1, pages 310–
319, 1997.

[CGZ95] N. Carriero, D. Gelernter, and L. Zuck. Bauhaus Linda. In ObjectBased Mod-
els and Languages for Concurrent Systems, volume 924 of LNCS, pages 66–
76. Springer-Verlag, 1995.

[Cia91] P. Ciancarini. POLIS: A Programming Model for Multiple Tuple Spaces. In
Proceedings of the 6th International Workshop on Software Specification and
Design, pages 44–51, 1991.

[Cia94] P. Ciancarini. Distributed programming with logic tuple spaces. New Genera-
tion Computing, 12:251–284, 1994.

[CLZ00] G. Cabri, L. Leonardi, and F. Zambonelli. Mars: a programmable coordination
architecture for mobile agents, 2000.

[CM03] V.L. Chung and Ch. Mcdonald. Towards customisable tuple field matching in
vlos, 2003.

[CM08a] S. Capizzi and A. Messina. Grinda: A tuple space service for the globus
toolkit. In Proceedings of the 8th international conference on Algorithms and
Architectures for Parallel Processing, pages 265–268. Springer-Verlag, 2008.

[CM08b] S. Capizzi and A. Messina. A tuple space service for large scale infrastruc-
tures. In Proceedings of the Workshop on Enabling Technologies: Infrastruc-
ture for Collaborative Enterprises, pages 182–187, 2008.

[CMMP] P. Costa, L. Mottola, A.L. Murphy, and G.P. Picco. Tuple space middleware
for wireless networks.

[CMMP06] P. Costa, L. Mottola, A.L. Murphy, and G.P. Picco. TeenyLIME: transiently
shared tuple space middleware for wireless sensor networks. In Proceedings of
the international workshop on Middleware for sensor networks, pages 43–48.
ACM, 2006.

[CMMP07] P. Costa, L. Mottola, A.L. Murphy, and G.P. Picco. Programming Wireless
Sensor Networks with the TeenyL IME Middleware. In Proceedings of the
8th ACMIFIPUSENIX International Middleware Conference, volume 4834 of
Lecture Notes in Computer Science, pages 429–449. Springer, 2007.

186 BIBLIOGRAPHY

[CMP+09] M. Ceriotti, L. Mottola, G.P. Picco, A.L. Murphy, S. Guna, M. Corra,
M. Pozzi, D. Zonta, and P. Zanon. Monitoring heritage buildings with wireless
sensor networks: The torre aquila deployment. In Information Processing in
Sensor Networks, pages 277–288, 2009.

[CMT04] A. Charles, R. Menezes, and R. Tolksdorf. On the Implementation of Swarm-
Linda A Linda System Based on Swarm Intelligence (Extended Version).
2004.

[Col01] P. Colot. Klava : un package java pour programmer des applications dis-
tribuées avec mobilité de code, 2001.

[Col14] J. Collins. Communication Paradigms for Mobile Ad Hoc Networks. PhD
thesis, UCLA, 2014.

[COZ00] M. Cremonini, A. Omicini, and F. Zambonelli. Coordination and Access Con-
trol in Open Distributed Agent Systems: The TuCSoN Approach. Coordina-
tion Languages and Models, 1906:99–114, 2000.

[CR97] P. Ciancarini and D. Rossi. Jada: coordination and communication for java
agents. In Mobile Object Systems: Towards the Programmable Internet, pages
213–228. Springer-Verlag, 1997.

[CR02] P. Ciancarini and D. Rossi. Pagespace report f: Coordinating distributed ap-
plets with shade/java, 2002.

[CTZ02] P. Ciancarini, R. Tolksdorf, and F. Zambonelli. A Survey on Coordination
Middleware for XML-centric Applications. October, 2002.

[CVF+07] D. Cerizza, E. Della Valle, D. Foxvog, R. Krummenacher, M. Murth, and
Cefriel Politecnico Di Milano. Towards european patient summaries based on
triple space computing, 2007.

[CVV04] B. Carbunar, M. T. Valente, and J. Vitek. Coordination and mobility in core-
lime. Mathematical. Structures in Comp. Sci., 14:397–419, 2004.

[Daw12] M. Dawson. How enterprise will win back data control in 2013, 2012.

[DF96a] R. Drucker and A. Frank. A c++/linda model for distributed objects. In Pro-
ceedings of the Seventh Israeli Conference on Computer Systems and Software
Engineering, pages 30–37, 1996.

[DF96b] R. Drucker and A. Frank. C++/Linda Model for Distributed Objects. iccsse,
pages 30–37, 1996.

[DFBW98] N. Davies, A. Friday, G.S. Blair, and S. Wade. L2imbo: A Distributed Sys-
tems Platform for Mobile Computing. Mobile Networks and Applications,
3(2):143–156, 1998.

BIBLIOGRAPHY 187

[DFWB98a] N. Davies, A. Friday, S.P. Wade, and G.S. Blair. An asynchronous distributed
systems platform for heterogeneous environments. In In Proceedings of the
8th ACM SIGOPS European, pages 66–73. ACM Press, 1998.

[DFWB98b] N. Davies, A. Friday, S.P. Wade, and G.S. Blair. Limbo: A distributed systems
platform for mobile computing. In ACM Mobile Networks and Applications
(MONET) - Special Issue on Protocols and Software Paradigms of Mobile
Networks, pages 143–156, 1998.

[DHN00] S. Ducasse, T. Hofmann, and O. Nierstrasz. OpenSpaces: An Object-Oriented
Framework For Reconfigurable Coordination Spaces. In Coordination Lan-
guages and Models, volume 1906 of LNCS, pages 1–19, 2000.

[DNFP98] R. De Nicola, G.L. Ferrari, and R. Pugliese. Klaim: a kernel language for
agents interaction and mobility. IEEE Transactions on Software Engineering,
24(5):315–330, 1998.

[DNG10] S. De, S. Nandi, and D. Goswami. On performance improvement issues in
unordered tuple space based mobile middleware. In Proceedings of the India
Conference (INDICON), pages 1–5, 2010.

[DNL00] R. De Nicola and M. Loreti. A modal logic for klaim, 2000.

[DO01] E. Denti and A. Omicini. Luce: A tuple-based coordination infrastructure for
prolog and java agents. Autonomous Agents and Multi-Agent Systems, 4(1-
2):139–141, 2001.

[Doe11] T. Doenz. Design and Implementation of the next Generation XVSM Frame-
work Runtime, Protocol and API. Master’s thesis, Technical University of
Vienna, 2011.

[DOLA99] E. Denti, A. Omicini, L. Laboratorio, and I. Avanzata. Engineering multi-
agent systems in luce. In Proceedings of the ICLP 99 International Workshop
on Multi-Agent Systems in Logic Programming (MAS 99), 1999.

[DOT00] E. Denti, A. Omicini, and V. Toschi. The luce coordination technology for mas
design and development on the internet. In Porto and Roman, pages 305–310,
2000.

[DWFB97] N. Davies, S.P. Wade, A. Friday, and G.S. Blair. Limbo: A tuple space
based platform for adaptive mobile applications. In Proceedings of the Inter-
national Conference on Open Distributed Processing/Distributed Platforms,
pages 291–302, 1997.

[DWR95] A. Douglas, A. Wood, and A. Rowstron. Linda implementation revisited. In
Proceedings of the 18th World Occam and Transputer User Group, pages 125–
138. IOS Press, 1995.

188 BIBLIOGRAPHY

[EFGK03] P.Th. Eugster, P.A. Felber, R. Guerraoui, and A. Kermarrec. The many faces
of publish/subscribe. ACM Computing Surveys, 35(2):114–131, 2003.

[EK07] M. Murth J. Riemer F. Schmied E. Kühn, G.Joskowicz. Spacebasedcomput-
ing.org manifest. pages 1–12, 2007.

[ESZK04] J. Eberspächer, R. Schollmeier, St. Zöls, and G. Kunzmann. Structured p2p
networks in mobile and fixed environments. In IN PROC. OF THE INTER-
NATIONAL WORKING CONFERENCE ON PERFORMANCE MODELING
AND EVALUATION OF HETEROGENEOUS NETWORKS, 2004.

[EZCdrei92] St. Ericsson-ZENITH, ENSMP CRI, and Centre de recherche en informatique.
Les philosophies sur l’interaction des processus. ENSMP, Fontainebleau,
1992.

[FAH99] E. Freeman, K. Arnold, and S. Hupfer. JavaSpaces Principles, Patterns, and
Practice. Addison-Wesley Longman Ltd., Essex, UK, UK, 1st edition, 1999.

[Fen04] D. Fensel. Triple-space computing: Semantic web services based on persis-
tent publication of information. In In IFIP Internationall Conference on Intel-
ligence in Communication Systems, pages 43–53. Springer-Verlag, 2004.

[FKS+07] D. Fensel, R. Krummenacher, O. Shafiq, E. Kühn, J. Riemer, Y. Ding, and
B. Draxler. Tsc – triple space computing. e & i Elektrotechnik und Informa-
tionstechnik, 124:31–38, 2007.

[For08] HIMSS EHR Implementation Toolkit Task Force. Building Enterprise Infor-
mation Sharing: A Collection of Case Studies. Technical report, 2008.

[Fos02] I. Foster. What is the grid? a three point checklist, 2002.

[FP96] J.B.Jr. Fenwick and L.L. Pollock. Issues and experiences in implementing a
distributed tuplespace, 1996.

[FRH04] Ch.L. Fok, G.C. Roman, and G. Hackmann. A lightweight coordination mid-
dleware for mobile computing. In Proceedings of the 6th international confer-
ence on coordination models and languages, pages 135–151. Springer-Verlag,
2004.

[FW14] Joerg Fritsch and Coral Walker. A novel weighted centroid localization algo-
rithm based onrssi for an outdoor environment. pages 286–298, 2014.

[Gal97] O. Galibert. Ylc, a c++ linda system on top of pvm. In Recent Advances in
Parallel Virtual Machine and Message Passing Interface, volume 1332 of Lec-
ture Notes in Computer Science, pages 99–106. Springer Berlin / Heidelberg,
1997.

[Gar02] A.F. Garcia. Fault-Tolerance in Distributed Tuplespaces. pages 1–20, 2002.

BIBLIOGRAPHY 189

[Gel85] D. Gelernter. Generative communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1):80–112, 1985.

[Gel89] D. Gelernter. Multiple tuple spaces in Linda. Science, 365:20–27, 1989.

[Gel11] W. Gelbmann. Design and Implementation of LinqSpace. Master’s thesis,
Technical University of Vienna, 2011.

[GMT08] D. Graff, R. Menezes, and R. Tolksdorf. On the performance of swarm-based
tuple organization in linda systems. In Proceedings on the IEEE Congress on
Evolutionary Computation, pages 2709–2716, 2008.

[GSW97] R. Van Der Goot, J. Schae, and G.V. Wilson. Safer Tuple Spaces, 1997.

[GT02] A. Gibaud and P. Thomin. Communications directed by bound types in Linda:
presentation and formal model. IEEE Transactions on Parallel and Distributed
Systems, 13(8):828–843, 2002.

[Han02] P.B. Hansen. The origin of concurrent programming. chapter Joyce: a pro-
gramming language for distributed systems, pages 464–492. Springer-Verlag
New York, Inc., 2002.

[Haz93] T.K. Hazra. Occam channels and kernel linda. Potentials, IEEE, 12(1):15 –17,
1993.

[HB01] Mohamed Hefeeda and Bharat Bhargava. On mobile code security. Technical
report, 2001.

[HD05] Manfred Hauswirth and Schahram Dustdar. Peer-to-peer: Grundlagen und
architektur. Datenbank-Spektrum, 13:5–13, 2005.

[HJP02] K. A. Hawick, H. A. James, and L. H. Pritchard. Tuple-space based middle-
ware for distributed computing, 2002.

[HR03] R. Handorean and G.C. Roman. Secure sharing of tuple spaces in ad hoc
settings. 2003.

[Hup90] S.C. Hupfer. Melinda: Linda with multiple tuple spaces. Technical Report
YALEU /DCS/RR-766 Yale University, 1990.

[Jel90] R. Jellinghaus. Eiffel linda: an object-oriented linda dialect. SIGPLAN Not.,
25(12):70–84, 1990.

[JHM11] R. Jones, A. Hosking, and E. Moss. The Garbage Collection Handbook: The
Art of Automatic Memory Management. Chapman & Hall/CRC, 1st edition,
2011.

[Ji04] L. Ji. Coordination and P2P Computing. Master’s thesis, University of
Saskatchewan, 2004.

190 BIBLIOGRAPHY

[Joh94] D.B. Johnson. Routing in ad hoc networks of mobile hosts. In Mobile Com-
puting Systems and Applications, 1994. Proceedings., Workshop on, pages 158
–163, dec 1994.

[Jon12] N. Jones. Top 10 mobile technologies for 2012 and 2013, 2012.

[JR06] C. Julien and G.C. Roman. Egospaces: facilitating rapid development of
context-aware mobile applications. IEEE Transactions on Software Engineer-
ing,, 32(5):281–298, 2006.

[JV04] S. Jagannathan and J. Vitek. Optimistic concurrency semantics for transac-
tions in coordination languages. In Rocco Nicola, Gian-Luigi Ferrari, and
Greg Meredith, editors, Coordination Models and Languages, volume 2949
of Lecture Notes in Computer Science, pages 183–198. Springer Berlin Hei-
delberg, 2004.

[JWM00] P. Jogalekar, M. Woodside, and Senior Member. Evaluating the scalability of
distributed systems. IEEE Transactions on Parallel and Distributed Systems,
11:589–603, 2000.

[JXJY06] Y. Jiang, G. Xue, Z. Jia, and J. You. Dtuples: A distributed hash table based
tuple space service for distributed coordination. In Proceedings of the Fifth
International Conference on Grid and Cooperative Computing, pages 101–
106, 2006.

[JYM08] A. Jaiantilal, J. Yifei, and S. Mishra. An evaluation of java rmi/javaspaces and
ruby drb/rinda. In Proceedings of the Performance, Computing and Commu-
nications Conference, pages 127–134, 2008.

[KA07] M. Kinga and C. Adrian. Glinda - grid-based distributed linda system. In
Proceedings of the International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing, pages 349–352, 2007.

[Kar09] M. Karolus. Design and Implementation of XcoSpaces, the .Net Reference
Implementation of XVSM - Coordination, Transactions and Communication.
Master’s thesis, Vienna University of Technology/Space-based Computing
Group, 2009.

[KBM05] E. Kühn, M. Beinhart, and M. Murth. Improving data quality of mobile inter-
net applications with an extensible virtual shared memory approach. In IADIS
International Conference on WWW/Internet 2005. IADIS, 2005.

[KC12] E. Kühn and St. Craß. A coordination-based access control model for space-
based computing. In Proceedings of the 27th Annual ACM Symposium on
Applied Computing, SAC ’12, pages 1560–1562, 2012.

BIBLIOGRAPHY 191

[KCH14] E. Kuhn, S. Crass, and T. Hambock. Approaching coordination in distributed
embedded applications with the peer model dsl. In Software Engineering
and Advanced Applications (SEAA), 2014 40th EUROMICRO Conference on,
pages 64–68, Aug 2014.

[Kla14] L. Klausner. Semantic xvsm design and implementation. Master’s thesis,
Technical University of Vienna, 2014.

[KLF04] D. Khushraj, O. Lassila, and T. Finin. stuples: semantic tuple spaces. In Pro-
ceedings of The First Annual International Conference on Mobile and Ubiq-
uitous Systems: Networking and Services, pages 268–277, 2004.

[KMG+09] E. Kühn, R. Mordinyi, H.D. Goiss, T. Moser, S. Bessler, and S. Tomic. In-
tegration of shareable containers with distributed hash tables for storage of
structured and dynamic data. In CISIS, pages 866–871. IEEE Computer Soci-
ety, 2009.

[KRJ05] E. Kühn, J. Riemer, and G. Joskowicz. Xvsm (extensible virtual shared mem-
ory) architecture and application, 2005.

[KRML08a] E. Kühn, J. Riemer, R. Mordinyi, and L. Lechner. Integration of XVSM spaces
with the web to meet the challenging interaction demands in pervasive scenar-
ios. Ubiquitous Computing And Communication Journal (UbiCC), special
issue on Coordination in Pervasive Environments, 3, 2008.

[KRML08b] E. Kühn, J. Riemer, R. Mordinyi, and L. Lechner. Integration of XVSM spaces
with the web to meet the challenging interaction demands in pervasive scenar-
ios. Ubiquitous Computing And Communication Journal (UbiCC), special
issue on Coordination in Pervasive Environments, 2008.

[Kro00] E. Kropf. Introduction à linda, 2000.

[Kue98] E. Kuehhn. How to approach the virtual shared memory paradigm, 1998.

[Kue03] E. Kuehn. The zero-delay data warehouse: mobilizing heterogeneous
database. In Proceedings of the 29th international conference on Very large
data bases-Volume 29, pages 1035–1040. VLDB Endowment, 2003.

[Kue11] E. Kuehn. Slide presentation of space based computing paradigm. pages 1–24,
2011.

[LCX+01] T.J. Lehman, A. Cozzi, Y. Xiong, J. Gottschalk, V. Vasudevan, S. Landis,
P. Davis, B. Khavar, and P. Bowman. Hitting the distributed computing sweet
spot with TSpaces. Computer Networks, 35(4):457–472, 2001.

[Lel90] W. Leler. Linda meets unix. Computer, 23(2):43–54, 1990.

192 BIBLIOGRAPHY

[Li01] S. Li. Early Adopter JXTA: Peer-to-Peer Computing with Java. Wrox Press
Ltd., 2001.

[Li04] Y. Li. Reactive tuple space for a mobile agent platform. 2004.

[LKG+99] J.S. Lee, T.H. Kim, Yoon; G.S., J.E. Hong, S.D. Cha, and D.H. Bae. De-
veloping distributed software systems by incorporating meta-object protocol
(dimop) with unified modeling language (uml). In Proceedings of The Fourth
International Symposium on Autonomous Decentralized Systems, pages 65–
72, 1999.

[LKHK05] J.M. Leimeister, H. Krcmar, A. Horsch, and K. Kuhn. Mobile IT-Systeme
im Gesundheitswesen, mobile Systeme für Patienten. HMD – Praxis der
Wirtschaftsinformatik, 244:74–85, August 2005.

[LMW99] T.J. Lehman, S.W. McLaughry, and P. Wyckoff. T spaces: the next wave. In
Proceedings of the 32nd Annual Hawaii International Conference on System
Sciences, 1999.

[LP05] Z. Li and M. Parashar. Comet: A scalable coordination space for decentralized
distributed environments. In In Proceedings of the 2nd International Work-
shop on Hot Topics in Peer-to-Peer Systems, pages 104–112. IEEE Computer
Society Press, 2005.

[LPKL04] M. J. Lee, J. H. Park, S. J. Kang, and J. B. Lee. Multi-agent based home net-
work management system with extended real-time tuple space. In Proceedings
of the 17th international conference on Innovations in applied artificial intel-
ligence, IEA/AIE’2004, pages 188–198. Springer Springer Verlag Inc, 2004.

[LR03] M. Leal and N.L.R. Rodriguez. LuaTS - A Reactive Event-Driven Tuple
Space. J. UCS, 9(8):730–744, 2003.

[LS02] J.E. Larsen and S.H. Spring. GLOBE, volume 4863, pages 1–15. 2002.

[LT09] D. Lkhamsuren and Y. Tanaka. Padspace: A software architecture for the
ad hoc federation of distributed visual components and web resources. In
Proceedings of the International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery, pages 113–120, 2009.

[LT10] D. Lkhamsuren and Y. Tanaka. Padlogspace: A prolog-based new software
architecture for the service federation of web resources. In Proceedings of the
2010 IET International Conference onFrontier Computing Theory, Technolo-
gies and Applications, pages 390–395, 2010.

[Lwe10] B. Lwenstein. Benchmarking of Middleware Systems: Evaluating and Com-
paring the Performance and Scalability of XVSM (MozartSpaces), JavaSpaces
(GigaSpaces XAP) and J2EE (JBoss AS). VDM Verlag, 2010.

BIBLIOGRAPHY 193

[Mas99] C. Mascolo. Mobis: A specification language for mobile systems, 1999.

[McD92] Ch. McDonald. Teaching concurrency with joyce and linda. SIGCSE Bull.,
24(1):46–52, 1992.

[MCE01] C. Mascolo, L. Capra, and W. Emmerich. An xml-based middleware for peer-
to-peer computing. In Proceedings of the First International Conference on
Peer-to-Peer Computing, pages 69–, 2001.

[MCW02] Ch. Mcdonald, V.L. Chung, and C. Wa. The development of a distributed
capability system for vlos. In Proceedings of the 7th Asia-Pacific Conference
on Computer Systems Architecture - Volume 6, Conferences in Research and
Practice in Information Technology Series, 2002.

[MCZE02] C. Mascolo, L. Capra, St. Zachariadis, and W. Emmerich. Xmiddle: A data-
sharing middleware for mobile computing, 2002.

[MKL+03] D.S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard,
S. Rollins, and Z. Xu. Peer-to-peer computing. Technical report, 2003.

[ML95] N. Minsky and J. Leichter. Law-governed linda communication model. In
Object-based Models and Languages for Concurrent Systems, pages 125–146.
Springer, 1995.

[MMMB09] Thomas Moser, Richard Mordinyi, A Mikula, and Stefan Biffl. Making expert
knowledge explicit to facilitate tool support for integrating complex informa-
tion systems in the atm domain. In Intl. Conf. on Complex, Intelligent and
Software Intensive Systems (CISIS 2009), pages 90–97, 2009. Vortrag: Intl.
Conf. on Complex, Intelligent and Software Intensive Systems (CISIS 2009),
Fukuoka, Japan; 2009-03-16 – 2009-03-19.

[MMU01] N. Minsky, Y.M. Minsky, and V. Ungureanu. Safe tuplespace-based coordina-
tion in multi agent systems, 2001.

[Mor10] R. Mordinyi. Managing Complex and Dynamic Software Systems with Space-
Based Computing. PhD thesis, Vienna University of Technology/Space-based
Computing Group, June 2010.

[MP04] A.L. Murphy and G.P. Picco. Using coordination middleware for location-
aware computing: A lime case study. In in Proc. of the 6 th Int. Conf. on
Coordination Models and Languages (COORD04), LNCS 2949, pages 263–
278. Springer, 2004.

[MP06] A.L. Murphy and G.P. Picco. Using lime to support replication for availability
in mobile ad hoc networks. In In Proceedings of the 8 th International Confer-
ence on Coordination Models and Languages (COORDINATION 2006). Num-
ber 4038 in Lecture Notes on Computer Science. Springer, 2006.

194 BIBLIOGRAPHY

[MPR01] A.L. Murphy, G.P. Picco, and G.C. Roman. Lime: a middleware for physical
and logical mobility. In Proceedings of the 21st International Conference on
Distributed Computing Systems, pages 524–533, 2001.

[MPR06] A.L. Murphy, G.P. Picco, and G.C. Roman. LIME: A coordination model and
middleware supporting mobility of hosts and agents. ACM Transactions on
Software Engineering and Methodology, 15(3):279–328, 2006.

[MQZ06] M. Mamei, R. Quaglieri, and F. Zambonelli. Making tuple spaces physical
with rfid tags. In Proceedings of the 2006 ACM symposium on Applied com-
puting, SAC ’06, pages 434–439, 2006.

[MT03] R. Menezes and R. Tolksdorf. A New Approach to Scalable Linda-systems
Based on Swarms. SAC, pages 375–379, 2003.

[MTW01] R. Menezes, R. Tolksdorf, and A.M. Wood. Coordination of internet
agents. chapter Scalability in Linda-like coordination systems, pages 299–
319. Springer-Verlag, London, UK, UK, 2001.

[MW97] R. Menezes and A. Wood. Garbage collection in open distributed tuple space
systems. In In Proc. 15 th Brazilian Computer Networks Symposium —
SBRC’97, pages 525–543, 1997.

[MW98] R. Menezes and A. Wood. Ligia: A java based linda-like run-time system with
garbage collection of tuple spaces. Technical report, 1998.

[MZ04] M. Mamei and F. Zambonelli. Programming pervasive and mobile computing
applications with the tota middleware. In Proceedings of the Second IEEE
Annual Conference on PerCom 2004, pages 263–273, 2004.

[NAP+07] Lyndon Nixon, Olena Antonechko, Elena Paslaru, Bontas Simperl, and Robert
Tolksdorf. Towards semantic tuplespace computing: The semantic web spaces
system. In In 22nd ACM Symposium on Applied Computing, 2007.

[NBCdSFCL07] A. Neves-Bessani, M. Correia, J. da Silva Fraga, and L. Cheuk Lung. An
efficient byzantine-resilient tuple space, 2007.

[NCOA10] E. Nardini, M. Casadei, A. Omicini, and A.L. Ater. A Self-Organising In-
frastructure for Chemical-Semantic Coordination : Experiments in TuCSoN.
In Andrea Omicini and Mirko Viroli, editors, WOA 2010 Eleventh National
Workshop From Objects to Agents, volume 621 of CEUR Workshop Proceed-
ings, pages 117–125. Sun SITE Central Europe, RWTH Aachen University,
2010.

[NCV+07] L.J. B. Nixon, D. Cerizza, E. Della Valle, E. Simperl, R. Krummenacher, and
Reto. Enabling collaborative ehealth through triplespace computing. In Pro-
ceedings of the 16th IEEE International Workshops on Enabling Technolo-

BIBLIOGRAPHY 195

gies: Infrastructure for Collaborative Enterprises, WETICE ’07, pages 80–
85, Washington, DC, USA, 2007. IEEE Computer Society.

[Neu03] R. Neubauer. Skalierbarkeit und Ausfallsicherheit für CORBA. Master’s the-
sis, Technical University of Vienna, 2003.

[NIS10] A. Nour, R. Isidro, and C. Solís. Ambient-prisma: Ambients in mobile aspect-
oriented software architecture. J. Syst. Softw., 83(6):937–958, 2010.

[NOVS11] E. Nardini, A. Omicini, M. Viroli, and M.I. Schumacher. Coordinating e-
health systems with tucson semantic tuple centres. SIGAPP Appl. Comput.
Rev., 11(2):43–53, 2011.

[NPS03] E. Newcomb, T. Pashley, and J. Stasko. Mobile computing in the retail arena.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’03, pages 337–344. ACM, 2003.

[NSKMR08] L.J.B. Nixon, E. Simperl, R. Krummenacher, and F. Martin-Recuerda.
Tuplespace-based computing for the Semantic Web: a survey of the state-of-
the-art. The Knowledge Engineering Review, 23(02):181–212, 2008.

[NVCO10] E. Nardini, M. Viroli, M. Casadei, and A. Omicini. A self-organising infras-
tructure for chemical-semantic coordination: Experiments in tucson, 2010.

[NVP10] E. Nardini, M. Viroli, and E. Panzavolta. Coordination in open and dynamic
environments with TuCSoN semantic tuple centres. Proceedings of the 2010
ACM Symposium on Applied Computing SAC 10, page 2037, 2010.

[OG02] P. Obreiter and G. Graef. Towards scalability in tuple spaces. In Proceedings
of the 2002 Symposium on Applied Computing, pages 344–350. ACM, 2002.

[OH05] M. Oriol and M. Hicks. Tagged sets: A secure and transparent coordination
medium. In Proceedings of the 7th Int. Conf. on Coordination Models and
Languages, pages 252–267. Springer-Verlag, 2005.

[OM12] A. Omicini and St. Mariani. Tucson: Tuple centres spread over the network
basics, 2012.

[OM13] A. Omicini and St. Mariani. The tucson coordination model & technology - a
guide, 2013.

[Omi06] A. Omicini. Formal respect in the a&a perspective. In University of Málaga,
Spain. Proceedings. Post-proceedings, 2006.

[Ora01] A. Oram, editor. Peer-to-Peer: Harnessing the Power of Disruptive Technolo-
gies. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2001.

[ORRV03] A. Omicini, A. Ricci, G. Rimassa, and M. Viroli. Integrating objective and
subjective coordination in fipa: A roadmap to tucson, 2003.

196 BIBLIOGRAPHY

[OZ98a] A. Omicini and F. Zambonelli. Tucson: a coordination model for mobile in-
formation agents. In Proceedings of the 1st workshop on innovative internet
innovation systems, pages 177–187, 1998.

[OZ98b] A. Omicini and F. Zambonelli. Tucson: a coordination model for mobile in-
formation agents. In IN PROCEEDINGS OF THE 1ST WORKSHOP ON IN-
NOVATIVE INTERNET INFORMATION SYSTEMS, pages 177–187, 1998.

[Pap05] White Paper. GigaSpaces Data Grid - Caching. Design, pages 1–14, 2005.

[PB05] G.P. Picco and D. Balzarotti. Lights: A lightweight, customizable tuple space
supporting context-aware applications. In Proceedings of the 20 the ACM
Symposium on Applied Computing. ACM Press, 2005.

[PCBB07] J. Pauty, P. Couderc, M. Banatre, and Y. Berbers. Geo-linda: a geometry aware
distributed tuple space. In Proceedings of the 21st International Conference on
Advanced Information Networking and Applications, pages 370–377, 2007.

[Per08] Ch. E. Perkins. Ad Hoc Networking. Addison-Wesley Professional, 1 edition,
2008.

[Pla06] C. Plattner. Ganymed: A Platform for Database Replication. ETH, 2006.

[PLBB15] Carlo Pinciroli, Adam Lee-Brown, and Giovanni Beltrame. Buzz: An Ex-
tensible Programming Language for Self-Organizing Heterogeneous Robot
Swarms, 2015.

[PM91] J.N. Pinakis and C.S. McDonald. The inclusion of the linda tuple space op-
erations in a pascal-based concurrent language. In Proceedings of the 14th
Australian Computer Science Conference, pages 1–11. 1991.

[PM99] GP Picco and AL Murphy. LIME: Linda meets mobility. Proceedings of the
21st, 1999.

[PMR99] G.P. Picco, A.L. Murphy, and G.C. Roman. Lime: Linda meets mobility. In
Proceedings of the 1999 International Conference on Software Engineering,
pages 368–377, 1999.

[PMR00] G.P. Picco, A.L. Murphy, and G.C. Roman. Developing mobile computing
applications with lime. In Proceedings of the 2000 International Conference
on Software Engineering, pages 766 –769, 2000.

[Pri02] Ch. Wachenfeld St. Prinzleve, S. Tepper. Verteilte programmierung eines
agentensystems mit lime - evaluationsbericht, 2002.

[Pro08] M. Prostler. Design and Implementation of MozartSpaces , the Java Reference
Implemention of XVSM Timeout Handling , Notifications and Aspects. Mas-
ter’s thesis, Vienna University of Technology/Space-based Computing Group,
2008.

BIBLIOGRAPHY 197

[PS95] D. Plainfosse and M. Shapiro. A survey of distributed garbage collection tech-
niques, 1995.

[PTW01] S. Prinzleve, Ch. Tepper, and St. Wachenfeld. Adaptive cluster computing
using javaspaces, 2001.

[PTW02] S. Prinzleve, Ch. Tepper, and St. Wachenfeld. Verteilte programmierung eines
agentensystems mit lime evaluationsbericht, 2002.

[Ran10] P. Rantanen. Database replication an overview of replication techniques in
common database systems, 2010.

[Rau14] D. Rauch. Peerspace.net implementing and evaluating the peer model with
focus on api usability. Master’s thesis, Technical University of Vienna, 2014.

[RCVS04] G. Russello, M. Chaudron, and M. Van Steen. Gspace: Tailorable data distri-
bution in shared data space system. Technical report, 2004.

[RCVS05] G. Russello, M. Chaudron, and M. Van Steen. Dynamically adapting tuple
replication for managing availability in a shared data space. In In Coordina-
tion Model and Languages - COORDINATION 05), volume 3454 of LNCS.
Springer, 2005.

[RDD+08] G. Russello, Ch. Dong, N. Dulay, M. Chaudron, and M. Van Steen. Encrypted
shared data spaces. In Proceedings of the 10th international conference on Co-
ordination models and languages, COORDINATION 08, Berlin, Heidelberg,
2008. Springer-Verlag.

[Res12] Dimensional Research. The impact of mobile devices on information security:
A survey of it professionals, 2012.

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable
content-addressable network. In IN PROC. ACM SIGCOMM 2001, pages
161–172, 2001.

[RHCN02] M. Roman, C. Hess, R. Cerqueira, and K. Nahrstedt. Gaia: A middleware
infrastructure to enable active spaces. IEEE Pervasive Computing, 1:74–83,
2002.

[RO02] A. Ricci and A. Omicini. Agent coordination contexts: Experiments in tucson,
2002.

[ROD01] A. Ricci, A. Omicini, and E. Denti. Enlightened agents in tucson, 2001.

[Row97] A. Rowstron. Using asynchronous tuple-space access primitives (BONITA
primitives) for process co-ordination. Coordination Languages and Models,
pages 426–429, 1997.

198 BIBLIOGRAPHY

[RW97] A.I.T. Rowstron and A.M. Wood. Bonita: a set of tuple space primitives for
distributed coordination. In Proceedings of the Thirtieth Hawaii International
Conference on System Sciences, volume 1, pages 379–388, 1997.

[Sat96] M. Satyanarayanan. Fundamental challenges in mobile computing. In In Fif-
teenth ACM Symposium on Principles of Distributed Computing, pages 1–7,
1996.

[Sau08] J. Saunier. Les communications multi-parties et leur régulation dans les
systèmes multi-agents : modèle et support. PhD thesis, Université Paris-
Dauphine, 2008.

[Sch01] R. Schollmeier. A definition of peer-to-peer networking for the classification
of peer-to-peer architectures and applications. In Peer-to-Peer Computing,
2001. Proceedings. First International Conference on, pages 101–102, 2001.

[Sch07] A. Schwind. Space-based web services: Konzepte und prototypische imple-
mentierung mit linda-spaces. Master’s thesis, University of Stuttgart, 2007.

[Sch08a] T. Scheller. Classification of Space Based Computing Systems, 2008.

[Sch08b] T. Scheller. Design and Implementation of XcoSpaces, the .Net Reference
Implementation of XVSM - Core Architecture and Aspects. Master’s thesis,
Vienna University of Technology/Space-based Computing Group, 2008.

[Sch08c] Ch. Schreiber. Design and Implementation of MozartSpaces, the Java Refer-
ence Implementation of XVSM Custom Coordinators, Transactions and XML
protocol. Master’s thesis, Vienna University of Technology/Space-based Com-
puting Group, 2008.

[Sci05] Scientific Computing Associates Inc. Linda User Guide, 2005.

[Sek09] M. Seki. druby and rinda: Implementation and application of distributed ruby
and its parallel coordination mechanism. International Journal of Parallel
Programming, 37(1):37–57, 2009.

[SF02] D. Schoder and K. Fischbach. Peer-to-peer anwendungsbereiche und heraus-
forderungen, 2002.

[SHBHDR11] A. Sheng-Hai, L. Byung-Hyug, and S. Dong-Ryeol. A survey of intelligent
transportation systems. In Computational Intelligence, Communication Sys-
tems and Networks (CICSyN), 2011 Third International Conference on, pages
332 –337, july 2011.

[Slu07] T.A. Sluga. Modern c++ implementation of the linda coordination language
for distributed applications. pages 1 – 69, 2007.

BIBLIOGRAPHY 199

[Son03] K. Song. Analyzing transactions on jini and javaspace. Master’s thesis, Ari-
zona State University, 2003.

[SP89] G. Sutcliffe and J. Pinakis. Prolog-linda : An embedding of linda in muprolog,
1989.

[Sut93] G. Sutcliffe. Prolog-d-linda v2 : A new embedding of linda in sicstus prolog.
In Proceedings of the Workshop on Blackboard-based Logic Programming,
pages 105–117, 1993.

[TG01a] R. Tolksdorf and D. Glaubitz. Coordinating web-based systems with docu-
ments in xmlspaces. In Proceedings of the Sixth IFCIS International Con-
ference on Cooperative Information Systems (CoopIS 2001), number LNCS
2172, pages 356–370. Springer Verlag, 2001.

[TG01b] R. Tolksdorf and D. Glaubitz. Xmlspaces for coordination in web-based
systems. In Proceedings of the 10th IEEE International Workshops on En-
abling Technologies: Infrastructure for Collaborative Enterprises, WETICE
’01, pages 322–327, Washington, DC, USA, 2001. IEEE Computer Society.

[Tho02] P. Thompson. Ruple: an xml space implementation. 2002.

[TKA10] S. Tyagi, M. A. Khan, and A.Q Ansari. RFID Data Management, Radio Fre-
quency Identification Fundamentals and Applications Bringing Research to
Practice. 2010.

[TLN04] R. Tolksdorf, F. Liebsch, and D. Nguyen. Xmlspaces.net: An extensi-
ble tuplespace as xml middleware. In In Report B 03-08, Free Univer-
sity Berlin, ftp://ftp.inf.fu-berlin.de/pub/reports/tr-b-0308.pdf, 2003. Open Re-
search Questions in SOA 5-25 and Loose Coupling in Service Oriented Archi-
tectures, 2004.

[TM03] R. Tolksdorf and R. Menezes. Using swarm intelligence in linda systems. In
Proceedings of the Fourth International Workshop Engineering Societies in
the Agents World ESAW03. Springer Verlag, 2003.

[TN04] R. Tolksdorf and L.J.B. Nixon. Semantic web spaces: A concrete use case and
implementation requirements. 2004.

[TN08] K. Teymourian and L.J.B. Nixon. Efficient content location in massively dis-
tributed triplespaces. In Robert Meersman, Zahir Tari, and Pilar Herrero, ed-
itors, On the Move to Meaningful Internet Systems: OTM 2008 Workshops,
OTM Confederated International Workshops and Posters, ADI, AWeSoMe,
COMBEK, EI2N, IWSSA, MONET, OnToContent + QSI, ORM, PerSys, RDDS,
SEMELS, and SWWS 2008, Monterrey, Mexico, November 9-14,, volume 5333
of Lecture Notes in Computer Science, pages 947–956. Springer, 2008.

200 BIBLIOGRAPHY

[TS90] H. Takeda and T. Satoh. An accelerating processor for relational operations.
In Proceedings of the International Conference on Databases, Parallel Archi-
tectures and Their Applications, page 559, 1990.

[UDI09] N.I. Udzir, S. Demesie, and H. Ibrahim. Garbage collection in lindacap. In
Proceedings of the 11th International Conference on Information Integration
and Web-based Applications & Services, pages 104–112. ACM, 2009.

[Unk12] Unknown. Blitz project. last visited: 02.08.2012.

[UOdlT+14] Visara Urovi, Alex C. Olivieri, Albert Brugués de la Torre, Stefano Bromuri,
Nicoletta Fornara, and Michael Schumacher. Secure p2p cross-community
health record exchange in ihe compatible systems. International Journal on
Artificial Intelligence Tools, 23(01):1440006, 2014.

[UWJ07] N.I. Udzir, A.M. Wood, and J.L. Jacob. Coordination with multicapabilities.
Sci. Comput. Program., 64(2):205–222, 2007.

[VBO03] J. Vitek, B. Bryce, and M. Oriol. Coordinating processes with secure spaces,
2003.

[Wat14] H. Watzke. Lifecycle and memory management for extensible virtual shared
memory (xvsm). Master’s thesis, Technical University of Vienna, 2014.

[WCC01] G. Wells, P. Clayton, and A. Chalmers. Extending linda to simplify application
development. pages 108–114, 2001.

[WCC04] G. C. Wells, A. G. Chalmers, and P. G. Clayton. Linda implementations in java
for concurrent systems: Research articles. Concurr. Comput. : Pract. Exper.,
16(10):1005–1022, August 2004.

[Wei91] M. Weiser. The Computer for the 21st Century. Scientific American, 1991.

[Wei93] M. Weiser. Some computer science issues in ubiquitous computing. Commun.
ACM, 36(7):75–84, July 1993.

[Wei11] M. Weitzel. Einsatzmöglichkeiten für Technologien des Semantic Web
im Rahmen der strategischen Planung intermodaler Seehafenhinterland-
Transport-Ketten. Master’s thesis, Universität Rostock Fakultät für Informatik
und Elektrotechnik Institut für Informatik, 2011.

[Wel05] G. Wells. Coordination languages: Back to the future with linda. In Proceed-
ings of WCAT05, pages 87–98, 2005.

[WG06] V. Weerackody and L. Gonzalez. Performance of satellite communications on
the move systems in the presence of antenna pointing errors. In Proceedings of
the 2006 IEEE conference on Military communications, MILCOM’06, pages
3145–3151, Piscataway, NJ, USA, 2006. IEEE Press.

BIBLIOGRAPHY 201

[WGH07] S. Weinbrenner, A. Giemza, and H.U. Hoppe. Engineering heterogeneous dis-
tributed learning environments using tuple spaces as an architectural platform.
In Proceedings on the Seventh IEEE International Conference on Advanced
Learning Technologies, pages 434–436, 2007.

[Wil12] A. Wilkinson. Pylinda. last visited: 02.08.2012.

[Win11] M. Winkler. XIDS An XVSM-Based Collaborative Intrusion Detection Sys-
tem. Master’s thesis, Technical University of Vienna, 2011.

[WMLF98] P. Wyckoff, S.W. McLaughry, T.J. Lehman, and D.A. Ford. T spaces. IBM
Systems Journal, 37(3):454 –474, 1998.

[WWF+10] U. Wickramasinghe, C. Wickramarachchi, P. Fernando, D. Sumanasena,
S. Perera, and S. Weerawarana. Bissa: Empowering web gadget commu-
nication with tuple spaces. In Gateway Computing Environments Workshop
(GCE), 2010, pages 1–8, 2010.

[YF96] C.K. Yuen and M.D. Feng. Use of active objects in balinda k for system
programming. In Proceedings of the Second International Conference on the
Algorithms and Architectures for Parallel Processing, pages 438–445, 1996.

[YFY93] C.K. Yuen, M.D. Feng, and J.J. Yee. Speculative parallelism in balinda lisp.
In Proceedings of the Fifth International Conference on Computing and Infor-
mation, pages 261–265, 1993.

[YMA+10] F. Yang, H. Masuhara, T. Aotani, F. Nielson, and H.R. Nielson. Aspectke*:
Security aspects with program analysis for distributed systems, 2010.

[YW90] C.K. Yuen and W.F. Wong. Balinda lisp: a parallel list-processing language. In
Proceedings of the 2nd International IEEE Conference on Tools for Artificial
Intelligence, pages 618–624, 1990.

[ZBH09] M. Zargayouna, F. Balbo, and S. Haddad. Agents secure interaction in data
driven languages. In Proceedings of the Second Multi-Agent Logics, Lan-
guages, and Organisations Federated Workshops, pages 1–8. Springer-Verlag,
2009.

[ZBH10] M. Zargayouna, F. Balbo, and S. Haddad. Data driven language for agents
secure interaction. In Proceedings of the Second international conference on
Languages, Methodologies, and Development Tools for Multi-Agent Systems,
pages 72–91. Springer-Verlag, 2010.

[ZBS09] M. Zargayouna, F. Balbo, and G. Scémama. A data-oriented coordination lan-
guage for distributed transportation applications. In Proceedings of the Third
KES International Symposium on Agent and Multi-Agent Systems: Technolo-
gies and Applications, pages 283–292. Springer-Verlag, 2009.

202 BIBLIOGRAPHY

[ZEN92] S.E. ZENITH. A rationale for programming with ease. In Research Directions
in High-Level Parallel Programming Languages, pages 147–156. Springer-
Verlag, 1992.

	Introduction
	Motivation
	Problem statement
	Aim of the work
	Methodological approach
	Structure of work

	Fundamentals
	Explanation of concepts and terms
	Distributed systems
	Space based computing
	Virtual shared memory paradigm

	Historical background
	Historical evolution of space based computing implementations
	Historical evolution of space based computing implementations in context

	Space based computing implementations
	Linda
	JavaSpaces
	LIME
	Triple Space Communication
	TuCSoN
	XVSM

	Application scenarios
	Scenarios focusing on near-time-data distribution
	Scenarios focusing on database replication
	Scenarios focusing on information sharing
	Scenarios focusing on mobility
	Scenarios focusing on security

	Classification of space based computing systems
	Classification methodology
	Classification Challenges
	Classification methodology and criteria catalogue

	Classification by family
	Paradigms and visions
	Technology and standards
	Implementations, products and systems in the context of space based computing systems

	Classification by operations
	Basic operations
	Extended operations
	Notifications
	Transactions
	Summary

	Classification by coordination concept
	Linda coordination
	First in first out
	Last in first out
	Random
	Key Coordinator
	Coordination with hashtables
	Summary

	Classification by substructures
	Classification by data type
	Classification by extensibility
	Classification by security
	Summary

	Classification by life cycle management

	Conclusion
	Summary
	Latest developments in the area of space based computing systems

	Glossary
	Apache River
	AspectKE*
	AutoevoSpaces
	B-Linda
	BaLinda K
	BaLinda Lisp
	Bauhaus Linda
	BISSA
	Blitz
	Blossom
	Bonita
	C-Linda
	C++ Linda
	Comet
	Corso
	Crudlet
	D-Tuples
	DepSpace
	dRuby and Rinda
	EgoSpaces
	Eiffel Linda
	eLinda
	Encrypted Shared Data Spaces
	Entangled
	Erlinda
	Fly Object Space
	Forth-Linda
	Gaia
	Geo-Linda
	GigaSpaces
	GLinda
	Globe
	Grinda
	Gruple
	GSpace
	Helios Tuple Space
	Heterocera
	HTML Page Spaces
	Info Spaces
	Jada
	JavaSpaces
	Jedi
	Jini
	JION
	Joyce Linda
	JParadise
	JXTA Spaces
	Kernel Linda
	Klava
	L2imbo
	Lacios
	Lana
	Law-Governed Infrasturcture
	Law-Governed Linda
	LighTS
	Ligia
	Limbo
	LIME
	LIME II
	Limone
	Linda
	Lindacap
	Linearizable Byzantine Tuple Space
	LinqSpace
	Linux Tuples
	LuaTs
	LuCe
	MARS/Moon
	Melinda
	MobiS
	Network Spaces
	Open Spaces
	Open Spaces by Giga Spaces
	Open Spaces

	Open Wings
	P-Linda
	P4 Linda
	PadSpace
	PadSpace
	 PadlogSpace and PadlogSpace

	PoliS
	Prolog-D-Linda v2
	PyBrenda
	PyLinda
	Ruple
	Semantic Tuple Spaces
	SecOS
	SecSpaces
	SecSpaces
	WSSecSpaces

	SemiSpace
	SmallSpaces
	SQLSpaces
	Swarm Linda
	Tagged sets
	T-Spaces
	TCP Linda
	TeenyLIME
	TIBCO ActiveSpaces
	The KLAIM family
	TinyLIME
	Triple Space Communication
	TuCSoN
	UML Spaces
	VLOS
	 Xcoordination Application Space and Xcoordination Coordination Space
	Xcoordination Application Space
	Xcoordination Coordination Space

	 XMIDDLE
	 XML Spaces
	 XVSM

	List of Figures
	Acronyms
	Bibliography

