
Complexity of well-designed
SPARQL

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Alexander Svozil, Bsc.
Matrikelnummer 1026213

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Mag.rer.nat. Dr.techn. Reinhard Pichler
Mitwirkung: Univ.Ass. Dipl.-Ing. Dr.techn. Sebastian Skritek

Univ.Ass. Dipl.-Ing. Markus Kröll

Wien, 13. Juni 2016
Alexander Svozil Reinhard Pichler

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Complexity of well-designed
SPARQL

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computational Intelligence

by

Alexander Svozil, Bsc.
Registration Number 1026213

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Univ.Prof. Mag.rer.nat. Dr.techn. Reinhard Pichler
Assistance: Univ.Ass. Dipl.-Ing. Dr.techn. Sebastian Skritek

Univ.Ass. Dipl.-Ing. Markus Kröll

Vienna, 13th June, 2016
Alexander Svozil Reinhard Pichler

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Alexander Svozil, Bsc.
Wasnergasse 13/20, Wien 1200

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 13. Juni 2016
Alexander Svozil

v

Acknowledgements

First of all I want to thank my advisor, Prof. Dr. Reinhard Pichler not only for his
guidance, support and patience but also for opening up this topic for me. I would also
like to thank him for introducing me to his team at the database institute; in particular,
Dr. Sebastian Skritek and Dipl.-Ing. Markus Kröll. I would like to thank them all for
letting me participate in their discourse and their valuable input. In particular I would
like to thank Dr. Sebastian Skritek as he spent a great amount of time discussing and
improving the proofs in the thesis with me.

Last I would like to thank my family and my friends. My parents Karl and Karin for
not only making my academic studies possible but also for encouraging me to pursue my
goals. I would like to especially thank my dad for always sharing a cup of coffee with me
when I needed it the most. I would also like to thank my friends Mihail and Chris for
making studying at the TU Wien one of the best experiences in my life.

vii

Kurzfassung

SPARQL Protocol and RDF Query Language (SPARQL) ist eine standardisierte Mög-
lichkeit um Resource Description Framework (RDF) Daten aus dem Internet abzufragen.
Ein Feature von SPARQL 1.0 ist der GRAPH Operator, der es erlaubt, mehrere lokale
RDF Graphen in einer einzigen SPARQL Query zu verwenden. Mit der Zeit tauchten
immer mehr SPARQL Schnittstellen im Internet auf und um jene auch ansprechen zu
können, wurde der SERVICE Operator in der SPARQL 1.1 Federated Query extension
eingeführt. Mit dem SERVICE Operator kann man, ähnlich dem GRAPH Operator,
mehrere SPARQL Endpoints in einer Query benützen. Sowohl der GRAPH Operator
als auch der SERVICE Operator werfen neue Probleme in der Komplexitätsanalyse
von SPARQL auf. Die beiden Operatoren wurden bis jetzt noch nicht analysiert. Weil
die Evaluierung von allgemeinen SPARQL Queries PSPACE-complete ist, beschränken
wir unsere Beobachtungen auf well-designed SPARQL, wo das Evaluierungsproblem
coNP-complete ist. Wenn man das well-designed SPARQL Fragment mit SERVICE und
GRAPH erweitert, erhält man ein neues SPARQL Fragment welches eine gute Basis für
unsere Komplexitätsanalyse darstellt. Wenn man allgemeines SPARQL um die beiden
Operatoren erweitern würde, könnte es sein, dass die Komplexität der beiden Operatoren
von diesem Fragment überschattet würden. Wir werden zeigen, dass die Komplexität des
Evaluierungsproblems im well-designed Fragment, welches mit den Operatoren GRAPH
und SERVICE erweitert wurde, coNP-complete ist. Wenn man den SERVICE operator
in der Praxis benutzt, löst dieser neue Schwierigkeiten aus, die mit der Einführung
mehrerer Notationen gelöst wurden. Der Unterschied dieser Notationen wurde bis jetzt
noch nicht wirklich erforscht. Nachdem wir die Notationen eingeführt haben, werden wir
sie diskutieren. Wir werden auch das Fragment weakly well-designed SPARQL behandeln.
Es ist ein auf well-designed SPARQL basierendes Fragment, welches allerdings mächtiger
ist, weil es einige Bedingungen des well-designed SPARQL Fragments schwächt.

ix

Abstract

The SPARQL Protocol and RDF Query Language (SPARQL) presents a standardized
way to query the growing amount of Resource Description Framework (RDF) data on
the internet. A feature of SPARQL 1.0 is the GRAPH operator which is able to query
multiple local RDF graphs in only a single query. To access the growing amounts of
SPARQL endpoints available on the internet, the SERVICE operator was introduced in
the SPARQL 1.1 Federated Query extension. The SERVICE operator is used to query
several SPARQL endpoints in only a single query, similar to the GRAPH operator. Both
the SERVICE and the GRAPH operator pose new problems in the complexity analysis
of SPARQL, as the two operators have not yet been analyzed. Because the evaluation
of general SPARQL patterns is PSPACE-complete we restrict our considerations to
well-designed SPARQL, where the evaluation problem is coNP-complete. Extending the
well-designed fragment of SPARQL with the SERVICE and GRAPH operators yields
a new SPARQL fragment which is a good basis for a complexity analysis, as general
SPARQL would cloud the complexity of the SERVICE and GRAPH operators. It is shown
that the evaluation problem in this fragment is coNP-complete. Using the SERVICE
operator in practice elicits difficulties which were resolved by introducing various notions.
The subtle difference between those notions has not yet been fully explored. After defining
the notions the differences between them will be discussed. Building upon well-designed
SPARQL we will also cover weakly well-designed SPARQL which renders a powerful
fragment by relaxing constraints of well-designed SPARQL.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1

2 Preliminaries 5
2.1 Conjunctive Queries, RDF, SPARQL . 5
2.2 The Semantics of the SERVICE and GRAPH Operator 9

3 Well-Designed SPARQL 11
3.1 Introduction to well-designed SPARQL . 11
3.2 Decidable Containment . 17
3.3 Undecidable Containment . 25
3.4 Equivalence . 28

4 Complexity of well-designed SPARQL with GRAPH and SERVICE 31
4.1 Translations to well-designed pattern forests 33
4.2 The complexity of evaluating patterns in Pwdgs 39

5 The SERVICE-operator in Practice 41
5.1 The four different ways to bind the destination of a SERVICE-operator . 42
5.2 Boundedness and strong boundedness . 48

6 Beyond well-designed SPARQL 49
6.1 OPT-FILTER-Normal Form and Constraint Pattern Trees 51
6.2 Evaluation of wwd-Patterns . 53
6.3 Expressivity of wwd-Patterns and their Extensions 56
6.4 Static Analysis of wwd-Patterns . 58

7 Conclusion 61
7.1 Future Work . 61

xiii

List of Figures 63

List of Tables 63

List of Algorithms 65

Bibliography 67

Appendix 73

CHAPTER 1
Introduction

Within the last years an increasing number of Resource Description Framework (RDF)
[LS98] data has been published on the web. RDF is an integral part of the semantic
web concept [BLHL+01] because one can express relationships between resources similar
to class diagrams. Like basic grammar, RDF allows to make statements in the form
of subject-predicate-object expressions. These expressions are called “triples” in RDF
terminology and are stored in so called RDF graphs, the RDF databases. One of the
most cited and important publisher of RDF data is DBPedia, a large-scale, multilingual
knowledge base extracted from Wikipedia [LIJ+15]. Other important initiatives which
use RDF as a core technology are Open Linked Data [CTL, BL] and Open Government
Data [data, datb]. Several research efforts have been pursued towards understanding RDF
and developing specific techniques to efficiently use it in practice [AMMH07, WKB08,
SGK+08, SHK+08, NW10, GHM04, HAMP14].

The standardized way to query RDF data on the internet is the SPARQL Protocol And
RDF Query Language (SPARQL). SPARQL is standardized by the RDF Data Access
Working Group of the World Wide Web Consortium (W3C) [SHa] and is a key technology
for the semantic web which can be witnessed by the active development of SPARQL
query engines. Some examples for these systems are AllegroGraph [all], Apache Jena [jen],
Sesame[ses] and OpenLink Virtuoso [vir].

A peculiarity of SPARQL is the optional matching feature which allows to construct
queries where can specify some part of the queried data which is mandatory to be
returned and some optional data which is optionally returned if it is available. An
example would be a phone book where some people decide to only to put their name
and telephone number but not all of them put their address. If we want to query for
maximum information in this database, we could ask for the name, the telephone number
and put the address into the optional part. When only the name and telephone number
of a person are specified our query will not fail to give an answer but just return the
provided (incomplete) information. This feature is sought-after when querying data in the

1

1. Introduction

semantic web because everybody has their own policy on how to publish their data. A lot
of work has already been done studying SPARQL and especially regarding the complexity
of the optional matching feature [AG08, PAG06, PAG09, SML10, AP11, KK16, KG14].
Two of the main results of this analysis are, that evaluating general SPARQL is PSPACE-
complete [PAG06] and equally expressive as relational calculus [AG08, Pol07]. Thus a
new fragment where the evaluation problem is only coNP-complete called well-designed
SPARQL [PAG09] was established. It was also found out that the SPARQL query
containment and query equivalence problems are undecidable in the general SPARQL
fragment. Static query analysis of SPARQL, i.e., query containment and query equivalence
is used to optimize queries. Optimizing a query can be done by replacing a given query
by an equivalent one which possesses superior computational properties. Obviously this
requires a procedure to decide whether two queries are equivalent. Several papers have
been published regarding query containment and query equivalence for intrinsic fragments
of SPARQL and optimization [SKCT05, WEGL12, LPPS12, LPPS13, SML10, CEGL11,
SSB+08, BKPR14]. The most thorough analysis of the containment and equivalence
problems over well-designed SPARQL was done in [PS14].

The GRAPH operator, which is a feature of SPARQL 1.0, can be used to query multiple
local RDF graphs in a single query. Lately the number of SPARQL endpoints on the
internet grew and with this growth the need for federated SPARQL queries also rose.
This led to the introduction of the SPARQL 1.1 Federated Query extension [AS]. The
Federated Query Extension extension brought up the SERVICE operator. Similar to the
GRAPH operator, the SERVICE operator is used to query multiple SPARQL endpoints
on the internet in a single query. A big effort has already been put into analyzing the
operators, benchmarking implementations of federated query processing and querying
distributed RDF data sources with SPARQL in general [BAACP13, SHH+11, QL08,
BAP14, MSMMV15, SNP+13, AVL+11, GS11, HS12, BAPU14] but the complexity
analysis of the GRAPH and SERVICE operators remains an open question.

Using the SERVICE operator in practice elicits a lot of new difficulties. As described
the SERVICE operator allows to evaluate a query over multiple endpoints in the web
in just a single query. An example for a SPARQL graph pattern using the SERVICE
operator would be Q = (SERVICE u P1). The symbol u could be a variable or a Uniform
Resource Identifier (URI), which is a string used to identify a resource. The symbol
P1 stands for another SPARQL query. The SERVICE operator is supposed to evaluate
the query P1 over the SPARQL endpoint defined by u. If u is a URI, the endpoint the
query P1 gets evaluated over is the one identified by the URI u. If u is a variable the
semantic of the query Q is not defined by the W3C standard [SHb]. Obviously the query
cannot be evaluated over all the possible endpoints on the internet, so we need to bind
the variable to finitely many URIs. In [BAACP13] two notations called boundedness
and strong boundedness are used to cope with this problem. Deciding boundedness of a
variable in a query is undecidable whereas deciding strong boundedness of a variable in a
query is doable in polynomial time. Even though these two notions have been brought
up for practical use, the difference of the two remains unknown.

2

We will analyze the evaluation problem of SPARQL with the SERVICE and GRAPH
operator but we will restrict ourselves to well-designed SPARQL. The reason for this
restriction is that we don’t want the complexity of full SPARQL to cloud the complexity
of the SERVICE and GRAPH operators. We will thus extend the well-designed SPARQL
fragment to a new fragment which additionally allows the free use of the SERVICE
and GRAPH operator. Then we will analyze the complexity of the evaluation problem
in this fragment. We will also discuss the difference between boundedness and strong
boundedness and provided an example of a query where a variable is bounded but not
strongly bounded. We will also conjecture how a procedure to decide boundedness could
look like. Even though it was shown in [BAACP13] that deciding if a variable is bounded
in a pattern is undecidable for general SPARQL it might be decidable for fragments of
SPARQL where the query equivalence problem is not undecidable.

While writing the thesis another interesting fragment was published, namely weakly
well-designed SPARQL, which further extends well-designed SPARQL by relaxing several
restrictions without increasing the complexity [KK16]. We will also look into weakly
well-designed SPARQL.

After the introduction, Chapter 2 provides the most important basic definitions (like
conjunctive queries, RDF and SPARQL). In the second part of Chapter 2 we will discuss
the peculiarities of the semantics of the SERVICE operator. In Chapter 3 well-designed
SPARQL is introduced and we look into the results of [PS14]. The proofs of the results
in [PS14] provide useful methods for proving the complexity results with GRAPH and
SERVICE. Following up in Chapter 4 we analyse the evaluation problem of well-designed
SPARQL which includes the GRAPH and SERVICE operator. In Chapter 5 we study
how SERVICE queries could be evaluated in practice. The second part of Chapter 5
discusses the difference of boundedness and strong boundedness. In Chapter 6 we will
look at weakly well-designed SPARQL which was introduced in [KK16].

3

CHAPTER 2
Preliminaries

We will introduce conjunctive queries first and then proceed with RDF and SPARQL.
After defining these three concepts we will discuss the semantics of the GRAPH and
SERVICE operator in SPARQL.

2.1 Conjunctive Queries, RDF, SPARQL
We will start out with the definition of a relational schema, database and conjunctive
query.

A relational name describes the name and arity of a relation.

Definition 1 (Relational Schema). A relational schema is a nonempty finite set of
relational names.

Following up we have the definition of a database and relational atom over a schema..

Definition 2 (Database and relational atom). Let σ be a relational schema, U be an
infinite set of constants and V an infinite set of variables. A relational atom over σ is
an expression of the form R(v) where R is a relational name with arity n over σ and v
is an n-tuple over U ∪V.

A database D over σ is a set of relational atoms over σ and each n-tuple is in U.

After defining database and schema we are ready to define conjunctive queries.

Definition 3 (Conjunctive Queries). Let σ be a relational schema. A conjunctive query
(CQ) q over σ is a rule of the form:

X ← R1(~v1), . . . , Rm(~vm).

5

2. Preliminaries

Each Ri(~vi)(1 ≤ i ≤ m) is a relational atom over σ and X is a subset of the set of
variables that appear in the ~vis.

In order to evaluate a CQ given a database over a relational schema, we need to define
the semantics which is given in terms of homomorphisms.

Definition 4 (Semantics of Conjunctive Queries). Let D be a database over schema
σ. A homomorphism from a CQ Q to D is a partial mapping h : X → U such that
Ri(h(~vi)) ∈ D, for 1 ≤ i ≤ m. h|X is the restriction of h to the variables in X. The
evaluation Q(D) is the set of all mappings of the form h|X , such that h is a homomorphism
from q to D.

We will now define a simplified but absolutely (for our purposes) sufficient version of
the original formalisation of the RDF W3C-recommendation [LS98]: URI stands for
Uniform Resource Identifier and is a string which is used to identify abstract and physical
resources in the web. We will focus on ground RDF graphs which means that we assume
them to be composed of URIs only. Usually RDF graphs would also support the usage
of blank nodes, which work like existential variables (see [HAMP14] for details).

Definition 5 (RDF). Let U is the infinite set of URIs. An RDF triple is a tuple in
U ×U ×U, whereas an RDF graph is a finite set of RDF triples. Let G be an RDF
graph. Then dom(G) ⊆ U is the set of URIs actually appearing in G.

RDF is the data format and SPARQL will be our query language. To use SPARQL we
need to define the SPARQL syntax and semantics.

Definition 6 (SPARQL Syntax [BAACP13, PAG06]). Again U is an infinite set of
URIs. V is an infinite set of variables with U∩V = ∅. We will denote Variables in V with
the letters x, y, z, x′, y′, z′, . . . and symbols which are in V ∪U with u, v, w, u′, v′, w′, . . .
and symbols which are in U with a, b, c, d, e, f, a′, b′, c′, d′, e′, f ′,

Filter constraints are conditions of the following form:

1. >, x = a, x = y, or bound(x) (atomic constraints),

2. If R1, R2 are filter constraints, then ¬R1, R1 ∧R2, or R1 ∨R2 are filter constraints.

A SPARQL triple pattern is a tuple in (U ∪V)× (U ∪V)× (U ∪V). SPARQL graph
patterns are recursively defined as follows:

1. A triple pattern is a graph pattern.

2. If P1 and P2 are graph patterns, then (P1 ◦ P2) for ◦ ∈ {AND,OPT,UNION} is a
graph pattern.

6

2.1. Conjunctive Queries, RDF, SPARQL

3. If P is a graph pattern and R a filter constraint, then (P FILTER R) is a graph
pattern.

4. If P is a graph pattern and u ∈ (U ∪V), then (GRAPH u P) is a graph pattern.

5. If P is a graph pattern and u ∈ (U ∪V), then (SERVICE u P) is a graph pattern.

If P is a graph pattern, vars(P) denotes the set of variables occurring in P .

We proceed by defining the semantics of SPARQL. To begin with, we need to define what
mappings are:

Definition 7 (Mapping [PAG06]). A mapping is a function µ : A→ U for some A ⊂ V.

For a triple pattern t with vars(t) ⊆ dom(µ), we write µ(t) to denote the triple after
replacing the variables in t by the corresponding URIs according to µ.

We can then proceed to define when two mappings are compatible.

Definition 8 (Compatible Mappings [PAG06]). Two mappings µ1 and µ2 are called
compatible (denoted µ1 ∼ µ2) if µ1(x) = µ2(x) for all x ∈ dom(µ1) ∩ dom(µ2).

We denote µ∅ as the mapping with empty domain. This means it is compatible with any
other mapping.

A given pattern is subsumed by another pattern if we can “extend” the original pattern
to the other pattern.

Definition 9 ([PAG06]). A mapping µ1 is subsumed by µ2 (written µ1 v µ2) if µ1 ∼ µ2
and dom(µ1) ⊆ dom(µ2). µ2 is then called “extension” of µ1.

We proceed with the definition of a dataset.

Definition 10 ([BAACP13, PAG06]). A dataset is a set DS = {(def,G), (g1, G1), . . . , (gk, Gk)},
with k ≥ 0. It contains pairs of URIs and graphs, where the default graph G is identified
by the special symbol def /∈ U and the remaining so-called “named” graphs (Gi) are
identified by URIs (gi ∈ U).

We assume that any query is evaluated over a fixed dataset DS and that any SPARQL
endpoint that is identified by an URI c ∈ U evaluates its queries against its own fixed
dataset DSc = {(def,Gc), (gc,1, Gc,1), . . . , (gc,k, Gc,k)}.

The functions graph, names and ep are further assumed to define the semantics of
SPARQL.

7

2. Preliminaries

Definition 11 (The functions graph, names and ep [BAACP13, PAG06]). We assume
a function graph(g,DS) which, given a Dataset DS = {(def,G), (g1, G1), . . . , (gk, Gk)}
and a graph name g as input returns the graph corresponding to the symbol g. The
function names(DS) returns the set of names of the input dataset DS: For example
names(DS) = {g1, g2, . . . , gk}. We also assume a partial function ep : U → DS, such
that for every c ∈ U, if ep(c) is defined, then ep(c) = DSc, i.e., the dataset associated
with the endpoint accessible via the URI c.

Finally we proceed to define the evaluation given a graph pattern, a dataset and a graph.

Definition 12 (SPARQL Semantics [BAACP13, PAG06]). The evaluation of graph
patterns over an RDF Graph G and Dataset DS, where (g1, G) ∈ DS for g1 ∈ U∪ {def}
is formalized as a function J·KDSG , which, given a SPARQL graph pattern returns a set of
mappings. For a graph pattern P , it is defined recursively:

1. JtKDSG = {µ | dom(µ) = vars(t) and µ(t) ∈ G} for a triple pattern t.

2. JP1 AND P2KDSG = {µ1 ∪ µ2 | µ1 ∈ JP1KDSG , µ2 ∈ JP2KDSG and µ1 ∼ µ2}.

3. JP1 OPT P2KDSG = JP1 AND P2KDSG ∪ {µ1 ∈ JP1KDSG | ∀µ2 ∈ JP2KDSG : µ1 6∼ µ2}.

4. JP1 UNION P2KDSG = JP1KDSG ∪ JP2KDSG .

5. JGRAPH u P1KDSG =


JP1KDSgraph(u,DS) if u ∈ names(DS)
{} if u ∈ U\names(DS)
∗ if u ∈ V

∗ = {µ ∪ [u→ s] | s ∈ names(DS), µ ∈ JP1KDSgraph(s,DS) ∧ [u→ s] ∼ µ}
for u ∈ U ∪V.

6. JSERVICE u P1KDSG =


JP1K

ep(u)
graph(def,ep(u)) if u ∈ dom(ep)

{µ∅} if u ∈ U\dom(ep)
∗′ = if u ∈ V

∗′ = {µ ∪ [u→ s] | s ∈ dom(ep), µ ∈ JP1K
ep(s)
graph(def,ep(s)) ∧ [u→ s] ∼ µ}

for u ∈ U ∪V.

7. J(P ′ FILTER R)KG = {µ | µ ∈ JP ′KG and µ |= R},

where µ satisfies a filter constraint R, denoted µ |= R, if one of the following holds:

1. R is >;

2. R is x = a, x ∈ dom(µ) and µ(x) = a;

3. R is x = y, {x, y} ⊆ dom(µ) and µ(x) = µ(y);

8

2.2. The Semantics of the SERVICE and GRAPH Operator

4. R is bound(x) and x ∈ dom(µ);

5. R is a boolean combination of filter constraints evaluating to true under the usual
interpretation of ¬,∧ and ∨.

When we don’t use the SERVICE or GRAPH operators and assume a graph G we will
implicitly assume a dataset DS = {(def,G)} and we will denote the evaluation function
with J·KG instead of J·KDSG .

We often use the term “destination” of a subquery containing the SERVICE or GRAPH
operator in the top level. The destination refers to the URI or variable in between the
graph pattern and the GRAPH or SERVICE operator.

Definition 13 (Destination of a SERVICE- or GRAPH-operator). Given a pattern P
of the form P = (SERVICE u P1) or P = (GRAPH u P1) we call u the destination of
the pattern P .

2.2 The Semantics of the SERVICE and GRAPH
Operator

We were introduced to the GRAPH and SERVICE operators by [SHa] but in the first
formalization of it by Buil-Aranda et al. [BAACP13] the definition varied from the
standard. We tweaked their definitions so it reflected the standard. Conversely to our
semantic definition of the GRAPH operator in Definition 12, they provided the following
definition for GRAPH (note the difference in the second case):

1. JGRAPH u P1KDSG =


JP1KDSgraph(i,DS) if u ∈ names(DS)
{µ∅} if u ∈ U\names(DS)
∗ if u ∈ V

∗{µ ∪ [u→ s] | ∃s ∈ names(DS), µ ∈ JP1KDSgraph(s,DS) ∧ [u→ s] ∼ µ
}

for u ∈ U ∪V.

Consider the following example:

Example 1. DS = {(def,G0), (a,G1)} where G0 = {(c, k, g), (a, k, g)}, G1 is arbitrary
and Q = (GRAPH x (GRAPH c P1)) AND (x, k, g).

Evaluating the first part of the query, namely J(GRAPH x (GRAPH c P1))KDSG0
where P1

could be any arbitrary pattern yields an interesting result. Because c /∈ names(DS) and
thus J(GRAPH c P1)KDSG1

= µ∅ we obtain x→ a (µ∅ is compatible with every mapping).
This seems unintuitive because it affects the rest of the query. If we would evaluate the
right side of the AND we would obtain the following: J(x, k, g)KDSG0

= {(x→ a), (x→ c)}
considering the left part of the AND-Operator we get the result of the query: {(x→ a)}.

9

2. Preliminaries

Note that even though the graph with the URI c does not exist and we are not able
to evaluate pattern P1 over it, we are able to somehow receive results using the AND
operator. This syntax might be fitting for the SERVICE operator where we query
SPARQL endpoints in the web which might be currently unavailable, but for the GRAPH
operator where we query different graphs within a reachable endpoint this semantics is
not needed.

Considering containment/equivalence of two queries which just use the GRAPH Operator,
there are specific instances where it is not obvious if one query is contained in the other
query even though it should be intuitively.

Example 2. Q1 = (GRAPH x (GRAPH c (GRAPH y) P1)),
Q2 = (GRAPH y (GRAPH c (GRAPH x) P1))
?X, ?Y /∈ P1.

Approaching this example intuitively, one could say that JQ1KDSG = JQ2KDSG for all datasets
DS and graphs G in DS because x and y get bound to every variable in the dataset
because neither x nor y occur in P1, the triple pattern at the end of the query is the
same and also the graph queried second is the same. To show the opposite, just consider
the following dataset: DS = {(def,G), (a,G1)}. Note that the URI c does not occur in
the dataset. But this means that JQ1KDSG = {x → a} and JQ2KDSG = {y → a}. In the
W3C-recommendation[SHa] the following definition can be found:

Algorithm 2.1: W3C-recommendation on evaluating the GRAPH operator
1 if IRI is a graph name in D
2 eval(D(G), Graph(IRI,P)) = eval(D(D[IRI]), P)
3 if IRI is not a graph name in D
4 eval(D(G), Graph(IRI,P)) = the empty multiset
5 eval(D(G), Graph(var,P)) =
6 Let R be the empty multiset
7 foreach IRI i in D
8 R := Union(R, Join(eval(D(D[i]), P) , Ω(?var->i))
9 the result is R

If we look at the second case, we can see that the empty multiset (because the definition
goes with bag semantics) is returned if the URI is not a graph name in the Dataset
resulting in our original definition of SPARQL semantics.

However remembering the definition of the SERVICE operator in Definition 12, we
emphasize that the second case of the SERVICE-operator (if c ∈ U\dom(ep) return
µ∅) is intended and correct. It makes sure that if a SPARQL endpoint is temporarily
unavailable the query does not fail.

10

CHAPTER 3
Well-Designed SPARQL

We will start out the section with defining well-designed SPARQL. Then we will study the
results of [PS14], in three seperate sections namely decidable containment, undecidable
containment and equivalence.

3.1 Introduction to well-designed SPARQL

Well-designed SPARQL is a good fundamental basis for complexity analysis because the
evaluation problem is only coNP-complete in contrast to general SPARQL where it is
PSPACE-complete [PAG09].

Definition 14 (Well-designed SPARQL [PAG09]). A graph pattern P built only from
AND and OPT is well-designed if there does not exist a subpattern P ′ = (P1 OPT P2) of
P and a variable x ∈ vars(P2) that occurs in P outside P ′, but not in P1.

A graph pattern P = P1 UNION . . . UNION Pn is well-designed if each subpattern Pi
is UNION-free and well-designed.

In [LPPS13] it was shown that every well-designed graph pattern can be transformed
into OPT normal form in polynomial time.

Definition 15 (OPT normal form). A graph pattern containing only the operators AND
and OPT is in OPT normal form if the OPT operator never occurs in the scope of an
AND operator.

Graph Patterns in OPT normal form can be displayed in a natural tree representation,
formalized by so-called well-designed pattern trees. But before defining the well-designed
pattern trees we need some basic notation about pattern trees.

11

3. Well-Designed SPARQL

Definition 16 (Pattern Tree). A pattern tree (PT) T is a pair (T, P) where T = (V,E, r)
is a rooted, unordered tree and P = (Pn)n∈V is a labelling of the nodes in V , so that Pn
is a non-empty set of triple patterns for every n ∈ V .

In Example 3 we can see how a pattern in OPT normal form is transformed into a pattern
tree.

Example 3 ([PS14]). Consider the graph pattern

P =
((

(x, name, y) AND (x, email, z)
)
OPT (x,web, x′)

)
OPT

(
(x, phone, x′′) OPT (x, fax, x′′′)

)
and the corresponding pattern tree:

{(x, name, y), (x, email, z)}

{(x,web, x′)} {(x, phone, x′′)}

{(x, fax, x′′′)}

We will now define further details of a pattern tree and after that proceed with defining
well-designed pattern trees.

Definition 17 (Components of a pattern tree [PS14]). Let T = ((V,E, r), P) be a pattern
tree.

• We call the pattern tree T ′ = ((V ′, E′, r′), (Pn)n∈V ′) a subtree of T if (V ′, E′, r′) is
a subtree of T .

• An extension of T̂ ′ of a subtree T ′ of T is a subtree T̂ ′ of T , so that T ′ is in turn a
subtree of T̂ ′. A subtree or extension is proper if some node of the bigger tree is
missing in the smaller tree.

• Given T , we write V (T) to denote the set V of vertices.

• We denote with pat(T) the set
⋃
n∈V (T) Pn and write vars(T) as an abbreviation

for vars(pat(T)).

• Given a node n ∈ V (T), we define branch(n) = n1, . . . , nk with n1 = r and nk = n
as the unique sequence of nodes from the root r to n.

12

3.1. Introduction to well-designed SPARQL

• For nodes n, n̂ ∈ V (T), so that n̂ is the parent of n, let
newvars(n) = vars(n)\vars(branch(n̂)).

• A node n is a child of a PT T if n /∈ V (T) and n is the child of some node
n′ ∈ V (T).

After thoroughly describing notions of pattern trees we will use later on, we are now
ready to look at the definition of well-designed pattern trees(wdPTs).

Definition 18 (Well-designed pattern tree (wdPT) [PS14]). A well-designed pattern
tree (wdPT) is a pattern tree T = (T, P) where for every variable x ∈ V (T), the nodes
{n ∈ V (T) | x ∈ vars(n)} induce a connected subgraph of T .

We can observe that the pattern tree in Example 3 is well-designed. The restriction of
pattern trees to to well-designed pattern trees has two important effects [PS14]:

1. The natural translation from a wdPT to a graph pattern yields a well-designed
graph pattern.

2. Every PT derived from a well-designed graph pattern in OPT normal form yields a
wdPT.

We can now in polynomial time transform a wdPT into an equivalent well-designed
pattern and vice versa. There are two important properties of wdPTs that need to be
mentioned. The first property says that we can transform every wdPT into NR normal
form. The second property says that there is a unique node in a wdPT where a variable
occurs first.

Proposition 1 ([LPPS12, PS14]).

1. Let T be a wdPT. If newvars(n) 6= ∅ for every n ∈ V (T) we say that T is in NR
normal form. Every wdPT T can be transformed efficiently into NR normal form.
From now on we assume w.l.o.g. that all wdPTs are in NR normal form.

2. For every variable x ∈ vars(T), there is a unique node n ∈ V (T), s.t. x ∈
newvars(n) and all other nodes n′ ∈ V (T) with x ∈ vars(n′) are descendants of n.

We denote the results of evaluating a wdPT T over some RDF graph G by JT KG.

Lemma 1 describes a characterization which decides whether a mapping µ ∈ JT KG in
terms of maximal subtrees of a wdPT T .

Lemma 1 (Semantics of pattern trees [LPPS12]). Let T be a wdPT in NR normal form
and G an RDF graph. Then µ ∈ JT KG iff there exists a subtree T ′ of T , s.t.

1. dom(µ) = vars(T ′), and

13

3. Well-Designed SPARQL

2. T ′ is the maximal subtree of T , s.t. µ v Jpat(T ′)KG.

We can transform this characterization into Algorithm 3.1. The evaluation problem of
well-designed SPARQL can be shown to be coNP-complete using Algorithm 3.1: Step 2
and step 3 of Algorithm 3.1 are doable in polynomial time. Step 4 of Algorithm 3.1 is in
coNP because each check if a subtree is maximal is in coNP. There are linearly many
nodes to check and thus the overall runtime is coNP.

Algorithm 3.1: co-NP algorithm for EVAL in the well designed fragment [LPPS12]
1 INPUT: A well-designed pattern P in OPT-normal form, a graph G and a
mapping µ.

2 Transform the well-designed pattern P into a wdPT T in NR normal form.
3 Look for a subtree T ′ of T including the root of T where the variables of the triples
in T ′ are equal to the variables in dom(µ). When we now use the mapping µ on all
the triples, the triples must be in the graph G. If such a T ′ exists, T ′ witnesses
that µ is at least part of a solution in G.

4 Check if the subtree T ′ is maximal. If we can extend T ′ with a child of T ′ so that
the mapping µ maps all the triples into G, the subtree T ′ was not maximal. If it is
maximal µ ∈ JT KG holds.

Projection is interpreted as a top level operator on top of a graph pattern.

Definition 19 (Projection of a mapping). For a mapping µ and a set X of variables we
denote µ|X as the projection of µ to the variables in X, call it µ′. dom(µ′) := X ∩dom(µ)
and µ′(x) := µ(x) for all x ∈ dom(µ′).

We are now ready to define projected well-designed trees: A projected well-designed tree
(pwdPT) is a pair (T,X) where T is a wdPT and X a set of variables.

Definition 20 (Result of pwdPTs [PS14]). Let G be a RDF graph. Then J(T,X)KG =
{µ|X | µ ∈ JT KG}.

In a projected wdPT there are free variables and existential variables.

Definition 21 (Free and existential variables [PS14]). Let (T,X) be a pwdPT. Then
the free variables of (T,X) are defined as fvars(T) = vars(T) ∩ X and the existential
variables of (T,X) are defined as vars(T)\fvars(T). Analogously, we write fvars(n) and
evars(n), respectively, for nodes n ∈ V (T).

In [LPPS13] it was shown that a similar characterization of solution as in Lemma 1 exists.
A pwdPT (T,X) is in NR normal form if T is. W.l.o.g., we assume that existential
variables when we look at more than one pwdPT are always renamed apart.

14

3.1. Introduction to well-designed SPARQL

Lemma 2 ([LPPS13]). Let (T,X) be a pwdPT in NR normal form, G an RDF graph
and µ a mapping with dom(µ) ⊆ X. Then µ ∈ J(T,X)KG iff there exists a subtree T ′ of
T , s.t.

1. dom(µ) = fvars(T ′) and

2. there exists a mapping λ : evars(T ′) 7→ dom(G), s.t. µ ∪ λ ∈ JT KG.

The last outgrowth of pwdPTs we will consider are unions of well-designed pattern trees.
Unions of well-designed patterns correspond to the usage of the UNION operator on top
level, i.e., P = P1 UNION . . . UNION Pk where P1, . . . Pk are well-designed. They can
be considered as a set {T1, . . . , Tk} of wdPTs. Such a set is called well-designed pattern
forest (wdPF) F . We can analogously define projected well-designed pattern forests
(pwdPFs) as a tuple (F ′, X) where F ′ = {(T1, X), . . . , (Tk, X)}.

Definition 22 (Result of wdPFs and pwdPF [PS14]). Let G be a RDF graph. Then
JF KG =

⋃
T∈F

JT KG and J(F ′, X)KG =
⋃

(T,X)∈F ′
J(T,X)KG.

A subforest of a forest F is a set of subtrees of F . We can extend pat(·) to wdPFs: Let
F be a wdPF then pat(F) =

⋃
T∈F

pat(T) and analogously vars(F).

In [PS14] query containment and query equivalence of well designed SPARQL were
studied. As we want to analyse the complexity of the SERVICE-operator it is crucial to
understand the work that was previously done regarding the fragment of well-designed
graph patterns. Research in query containment and query equivalence is very important
in the context of static query analysis and optimization: Optimization of queries can
be done by replacing a query with a new query which possesses better computational
properties. Replacing queries preserving the meaning of the original meaning can only
be done by checking if the replaced query is equivalent to the original query. Also, later
on in Chapter 5, when we analyse boundedness of the destination variable of the service
operator, we will see that equivalence plays a role whether a query is feasible to be
evaluated. In [PS14] a fine grained analysis of well-designed SPARQL by dividing it into
several fragments was done. The fragments are distinguished by the operators used. All
fragments contain triple patterns and the AND-operator. This fragment corresponds
to conjunctive queries regarding complexity [LPPS13] and is denoted with {∅}. Adding
the UNION-operator yields the fragment denoted by {∪}. Adding projection yields the
fragment denoted by {π} and adding both the UNION-operator and projection yields
the fragment denoted by {π,∪}.

In order to define the problems CONTAINMENT, EQUIVALENCE and SUB-
SUMPTION which we will investigate over the fragments that we mentioned above,
we need to define what containment, equivalence and subsumption mean in the SPARQL
language.

15

3. Well-Designed SPARQL

Definition 23 (Containment). P1 is contained in P2 (P1 ⊆ P2) if JP1KG ⊆ JP2KG for
every RDF Graph G.

If a graph pattern P1 is contained by a graph pattern P2, all solutions of P1 are solutions
of P2 regardless of the graph they are evaluated over.

Definition 24 (Equivalence). Given two graph patterns P1 and P2 they are equivalent
(written as P1 ≡ P2) if JP1KG = JP2KG for every RDF Graph G.

Equivalence between two graph patterns P1, P2 means that regardless of the graph they
get evaluated over, they always have the same solutions.

Definition 25 (Subsumption). P1 is subsumed by P2 (denoted P1 v P2 if for every
µ ∈ JP1KG there exists a µ′ ∈ JP2KG, s.t. µ v µ′.

If a graph pattern P1 is subsumed by the graph pattern P2 all the solutions of P1 can
be extended to a solution of P2. This means that if we add additional mappings to a
solution of P1 we can “build” a solution of P2.

After reading the definitions of containment, equivalence and subsumption the following
computational problems arise:

CONTAINMENT[S1, S2]
INPUT: Graph pattern P1 from wd-SPARQL[S1], graph pattern P2 from wd-
SPARQL[S2]
QUESTION: Does P1 ⊆ P2 hold?

EQUIVALENCE[S1, S2]
INPUT: Graph pattern P1 from wd-SPARQL[S1], graph pattern P2 from wd-
SPARQL[S2]
QUESTION: Does P1 ≡ P2 hold?

SUBSUMPTION[S1, S2]
INPUT: Graph pattern P1 from wd-SPARQL[S1], graph pattern P2 from wd-
SPARQL[S2]
QUESTION: Does P1 v P2 hold?

S1 and S2 always denote a fragment of well-designed SPARQL for example {∪, π}. The
main results of [PS14] are nearly all the solutions to CONTAINMENT[S1, S2] and

16

3.2. Decidable Containment

↓ S1\S2 → {∅} {∪} {π} {∪, π}
{∅} NP-c. ΠP

2 − c. undec. undec.
{π} NP-c. ΠP

2 − c. undec. undec.
{∪} NP-c. ΠP

2 − c. undec. undec.
{∪, π} NP-c. ΠP

2 − c. undec. undec.

Table 3.1: Containment[S1, S2] [PS14]

↓ S1\S2 → {∅} {∪} {π} {∪, π}
{∅} NP-c. - - -
{π} ΠP

2 − c. ΠP
2 − c. - -

{∪} ΠP
2 − c. ΠP

2 − h. undec. -
{∪, π} ΠP

2 − c. undec. undec. undec.

Table 3.2: Equivalence[S1, S2] [PS14]

EQUIVALENCE[S1, S2] where S1, S2 are any of the well designed SPARQL fragments
mentioned before. The results are best represented by Table 3.1 and Table 3.2.

3.2 Decidable Containment
First the decidable cases of Table 3.1 are proven, i.e., S1 is an arbitrary subset of {∪, π}
and S2 doesn’t contain π. In order to minimize the number of proofs a well known
strategy is applied: When membership of a general case is shown, the more specific
case is implied and when showing hardness for a more specific case, the more general
cases are implied. Showing the following results fill in the first two columns of the
Containment[S1, S2] table:

• NP-membership of CONTAINMENT[{∪, π}, ∅]

• ΠP
2 -membership of CONTAINMENT[{∪, π}, {∪}]

• ΠP
2 -hardness of CONTAINMENT[∅, {∪}]

NP-hardness of CONTAINMENT[∅, ∅] follows immediately from the NP-hardness of
EQUIVALENCE[∅, ∅] which was shown in [LPPS13].

For the NP-membership of CONTAINMENT[{∪, π}, ∅], firstCONTAINMENT[{π}, ∅]
is shown and extended to CONTAINMENT[{∪, π}, ∅]. We notice that we deal with
both pwdPTs and wdPTs as S1 contains projection. Theorem 1 provides a necessary and
sufficient criterion to decide (T1, X) ⊆ T2.

Theorem 1. [PS14] Let (T1, X) be a pwdPT and let T2 be a wdPT. Then (T1, X) ⊆ T2
iff for every subtree T ′1 of T1,

17

3. Well-Designed SPARQL

1. either there exists a child node n of T ′1 and a homomorphism h : pat(n)→ pat(T ′1)
with h(x) = x for all x ∈ vars(n) ∩ vars(T ′1),

2. or there exists a subtree T ′2 of T2, s.t.

a) fvars(T ′1) = vars(T ′2)
b) pat(T ′2) ⊆ pat(T ′1), and

c) for all extensions T̂ ′2 of T ′2 there exists an extension T̂ ′1 of T ′1 and a homomor-
phism h : pat(T̂ ′1) 7→ pat(T ′1) ∪ pat(T̂ ′2) with h(x) = x for all x ∈ vars(T ′1).

Proof Idea. Let G be an arbitrary RDF graph. Let T ′1 be an arbitrary subtree of T1.
Let σ be a mapping s.t. dom(σ) = vars(T ′1) and σ ∈ JT1KG. We need to show that
σ|X ∈ JT2KG.

The first case of the theorem captures the case where we have a subtree which is not
maximal. For this subtree we could take any σ ∈ JT ′1KG and extend it with the variables
in n because h : pat(n) → pat(T ′1) with h(x) = x for all x ∈ vars(n) ∩ vars(T ′1) holds.
But such a mapping σ can not be in JT1KG. Thus the subset relation is obviously fulfilled.

The second case captures solutions σ with dom(σ) = vars(T ′1). It remains to check if
µ = σ|X is in JT2KG. The first two conditions make sure that µ also maps T ′2 into G. To
make it a solution for T2 it remains to show that there is no extension µ′ of µ so that
µ′ ∈ JT2KG. Property (2c) makes sure that if µ′ exists, we can find an extension σ′ such
that it binds more variables than σ. But then σ is no solution. �

To visualize the procedure consider Example 4.

Example 4 ([PS14]). Assume a pwdPT (T1, X) with X = {x1, x2, x3} and wdPT T2 as
shown below.

r1: {x1, b, x1), (y1, c, y1), (y1, d, y1)}

n1 : {(x1, e, x1), (x2, f, x2)} n′1 : {(x3, c, x3), (x3, d, x3)}

r2: {x1, b, x1), (x3, c, x3), (x3, d, x3)}

n2 : {(x2, f, x2)}

We will now use the criteria in Theorem 1 to check if (T1, X) ⊆ T2 holds. Consider all the
subtrees of T1: {r1}, {r1, n1}, {r1, n

′
1}, {r1, n1, n

′
1} and check if either of the two properties

in Theorem 1 hold. Consider the subtree {r1, n
′
1} and property (2): We can easily see that

18

3.2. Decidable Containment

the properties (2a) and (2b) are satisfied by the subtree of T2 that contains only r2. It
remains to check (2c) and this is where the problem occurs: The required homomorphism
from pat(n1) into pat(r1)∪ pat(n′1)∪ pat(r2)∪ pat(n2) doesn’t exist. We can also provide
the following counterexample: G = {(gx1, b, gx1), (hy1, c, hy1), (hy1, d, hy1), (jx2, f, jx2)}.
Clearly µ ∪ λ ∈ JT1Kg for µ(x1) = gx1, µ(x3) = hy1 and λ(y1) = hy1 and thus µ ∈
J(T1, X)KG. However µ 6∈ JT2KG because µ′ an extension of µ can be created with µ′(x2) =
jx2 and µ′(pat(n2)) ⊆ G and thus (T1, x) 6⊆ T2. We could change pat(n2) to get (T1, x) ⊆
T2: Let pat(n2) = {(x2, f, x2, x1, e, x1)} and observe that a homomorphism h for property
(2c) of Theorem 1 exists if we define h as the identity. In fact, then (T1, X) ⊆ T2.

It is easy to see that Theorem 1 can be transformed into a ΠP
2 -algorithm 3.2.

Algorithm 3.2: ΠP
2 -algorithm for CONTAINMENT[{π}, ∅] from Theorem 1

1 INPUT: A pwdPT (T1, X), a wdPT T2
2 For all subtrees T ′1 of T1
3 guess the subtree T ′2 of T2 which produces the same mappings as T ′1.
4 If no such tree exists return false.
5 If the property holds for all T ′1 of T1 return true.

On the other hand it is far from obvious, that the problem is not ΠP
2 -hard: One can in

fact get rid of one source of complexity and push the complexity of the
CONTAINMENT[{π}, ∅] problem down to NP-completeness. The crucial idea is, that
we don’t need to look at all the subtrees T ′1 of T1 but polynomially many. The subtrees
of interest can be described by defining the closure of a variable.

It is easy to test if vars(T2) = fvars(T1) by traversing the trees once, so we assume
w.l.o.g. that this property holds. Also, we know that vars(T2) = fvars(T1) must hold
for (T1, X) ⊆ T2 to be true as this is an immediate consequence from Theorem 1 (just
consider T ′1 = T1).

Definition 26 (Closure (C1(x), C2(x)) of a variable [PS14]). Let (T1, X) be a pwdPT
and let T2 be a wdPT with vars(T2) = fvars(T1). Consider x ∈ fvars(T1). The closure of
x in (T1, X) and T2 is the pair (C1(x), C2(x)) where Ci(x) (for i ∈ {1, 2}) is a subtree of
Ti such that the following conditions are met:

1. branch(new-nodeT1(x)) ⊆ V (C1(x)),

2. r2 ∈ V (C2(x)),

3. fvars(C1(x)) = vars(C2(x)), and

4. C1(x) and C2(x) are minimal with regard to properties 1-3.

19

3. Well-Designed SPARQL

Minimality in (4) means that for all subtrees D1 of T1 and D2 of T2, if D1 and D2 satisfy
conditions 1-3, then V (C1) ⊆ V (D1) and V (C2) ⊆ V (D2) meaning the nodes for the
subtrees V (C1) and V (C2) are minimized.

Because we assumed vars(T2) = fvars(T1) we can easily see that the closure always exists.

Proposition 2 ([PS14]). Let (T1, X) be a pwdPT and let T2 be a wdPT with fvars(T1) =
vars(T2). Then the closure (C1(x), C2(x)) exists and can be efficiently computed.

Proof Idea. The algorithm chooses a not yet chosen variable x ∈ fvars(T1) and
initializes the trees C1(x) and C2(x) by setting C1(x) = branch(new-nodeT1) and
C2(x) = V (C2(x)) = {r2} where r2 is the root of T2. It remains to fulfill the con-
dition fvars(C1(x)) = vars(C2(x)) in such a way that C1(X) and C2(X) are minimal
with regard to the number of vertices. We either have one of the following cases:

1. fvars(C1(x)) = vars(C2(x)): This means we are done and have successfully com-
puted the closure (C1(x), C2(x))

2. fvars(C1(x)) ⊃ vars(C2(x)): This means we miss the variables
fvars(C1(x))\vars(C2(x)). By iteratively adding branch(new-nodeT2(y)) to C2(x)
for all variables
y ∈ fvars(C1(x))\vars(C2(x)) all the missing variables are now in C2(x).

3. fvars(C1(x)) ⊂ vars(C2(x)): This means we miss the variables
vars(C2(x))\fvars(C1(x)). By iteratively adding branch(new-nodeT1(y)) to C1(x)
for all variables y ∈ vars(C2(x))\fvars(C1(x)), all the missing variables are now in
C1(x).

By the assumed condition fvars(T1) = vars(T2), the procedure will eventually reach a
fixpoint. �

Using the closure of the variable is inspired by the following idea: Assume µ is a solution
mapping of (T1, X) and y is part of µ, i.e., a free variable. Now we need to show that
µ is also part of T2, i.e., µ must bind all the variables that occur in T2 on the branch
from the root to the node n where y is introduced. If again an additional variable z is
introduced in this path in tree of T2, µ must bind all the free variables in (T1, X) along
the branch from the root to the first occurrence of z. Using the idea of the closure allows
us to formulate an alternative characterization of (T1, X) ⊆ T2. The improvement is that
we only need to check polynomially many closures and not exponentially many subtrees
of (T1, X).

Theorem 2 ([PS14]). Let (T1, X) be a pwdPT and let T2 be a wdPT. Then (T1, X) ⊆ T2
if and only if fvars(T1) = vars(T2) and for every x ∈ fvars(T1)

1. pat(C2(x)) ⊆ pat(C1(x))

20

3.2. Decidable Containment

2. for every n ∈ V (C1(x)) branch(new-nodeT1(x)), there exists a homomorphism
h1 : pat(n) 7→ pat(branch(n̂)) ∪ pat(branch(new-nodeT1(x))) (where n̂ is the parent
node of n in T1) with h1(x) = x for all x ∈ vars(n) ∩ (vars(branch(∩n)) ∪
vars(branch(new-nodeT1(x)))), and

3. for every child node m of C2(x), and for every variable y ∈ newvars(m), the
following property holds: let n ∈ branch(new-nodeT1(y)). Then there exists a
homomorphism h2 : pat(n) 7→ pat(C1(x)) ∪ pat(m) ∪ pat(branch(n̂)) (where n̂
is the parent node of n) with h2(x) = x for all x ∈ vars(n) ∩ (vars(C1(x)) ∪
vars(branch(n̂))).

Proof Idea. The first property is the most obvious one: every mapping σ which is a
solution for C1(x) assuming G as our arbitrary graph, results in µ = σ|X also being a
solution for C2(x). The second condition makes sure that when x is in the domain of
the solution mapping σ all of C1(x) was used when retrieving the mapping σ from G.
The last condition is similar to the condition (2c) in the Theorem1: When µ = σ|X with
dom(µ) = vars(C2(x)) is not a solution for T2 because C2(x) could have been extended
with some child of C2(x) it must be that it is possible to extend σ to some child of C1(x).
�

In the actual proof of Theorem 2, Theorem 1 is used to show that the conditions of
Theorem 2 are also sufficient.

Theorem 3 ([PS14]). CONTAINMENT[{∪, π}, ∅] is in NP.

Proof. Similarly to Theorem 1 we can construct a procedure using Theorem 2 which
is in NP. Let (F,X) be a well designed pattern forest (pwdPF) and let T be a wdPT .
Consider now every pwdPT F ′ in the forest (F,X) and use our procedure to decide
(F ′, X) ⊆ T . Formally we get (F,X) ⊆ T iff. (Ti, X) ⊇ T for every (Ti, X) ∈ (F,X).

The next problem that we tackle is CONTAINMENT[{∪, π}, {∪}]: First a necessary
and sufficient condition for containment is given and then turned into an algorithm. For
this formulation the definition of a renamed proper extension of a wdPF is important.

Definition 27 (renamed proper extension [PS14]). Let F = {Ti | with 1 ≤ i ≤ k} be a
wdPF, F ′ a subforest of F . For every Ti ∈ F , an injective renaming function ρi with
dom(ρi) = vars(Ti), s.t.

1. ρi(x) = x for all x ∈ vars(F ′),

2. ρi(x) 6= ρj(y) for every x ∈ vars(Ti)\vars(F ′), i 6= j ∈ {1, . . . , k} and y ∈ dom(ρj).
Finally let F̂ be the wdPF {ρi(Ti) | 1 ≤ i ≤ k}.

Then a renamed proper extension of F ′ is a subforest of F̂ , call it F̂ ′ that has F ′ as a
proper subforest, i.e., F̂ ′ is not equal to F ′.

21

3. Well-Designed SPARQL

After the definition of renamed proper extensions we are ready to present the characteri-
zation for CONTAINMENT[{∪, π}, {∪}].

Theorem 4 ([PS14]). Let (T1, X) be a pwdPT and let F2 be a wdPF. Then (T1, X) ⊆ F2
iff for every subtree T ′1 of (T1, X):

1. either there exists a child node n of T ′1 s.t. there is a homomorphism h : path(n) 7→
pat(T ′1) with h(x) = x for all x ∈ varS(n) ∩ vars(T ′1)

2. or there exists a subtree T ′2 of F2 with vars(T ′2) = fvars(T ′1) and pat(T ′2) ⊇ pat(T ′1)
s.t. every renamed proper extension F ′2 of {T ′2} in F2 satisfies one of the following
properties:

a) there exists a proper renamed extension F̂ ′2 of F ′2 (i.e. a bigger extension than
F ′2 nodewise), and a homomorphism ha : pat(F̂ ′2) 7→ pat(F ′2) with h(x) = x for
all x ∈ vars(F̂ ′2) ∩ (vars(F ′2) ∪ vars(T ′1)), or

b) there exists an extension T̂ ′1 of T ′1 and a homomorphism hb : pat(T̂ ′1) 7→
pat(F ′2) ∪ pat(T ′1) with h(x) = x for all x ∈ vars(T ′1), or

c) case (2a) does not apply and there exists a tree T ∈ F ′2 with vars(T) =
fvars(T ′1).

Proof Idea. The conditions presented in Theorem 4 are similar to those presented in
Theorem 1: First we choose an arbitrary subtree T ′1 of (T1, X) and inspect the mappings
σ that T ′1 induces assuming an arbitrary Graph G:

• Either σ can be extended to some child node of T ′1 but then again σ is not a solution
of (T1, X) over G

• or σ|X ∈ JF2KG.

Condition (1) takes care of subtrees for which σ could be extended to some additional
child node of the subtree. This would mean that the subtree is not a valid solution for
(T1, X). Condition (2) extends condition (2) from Theorem1: It is easy to see that we
fulfill condition (2a) and condition (2b) from Theorem 1 similarly by saying that the
subtree T ′2 of F2 with vars(T ′2) = fvars(T ′1) and pat(T ′2) ⊆ pat(T ′1). The condition(2c) of
Theorem 1 was used to make sure that any extension µ′ of µ for which µ′ ∈ JT2KG holds
would result in σ being no solution of T1 over G. To extend condition (2c) of Theorem 1
the notion of proper renamed extension comes into use. This is due to the fact that we
now have a pattern forest and µ might still be a solution of another tree in F2. This means
that all subtrees in F2 with vars(T ′2) = fvars(T ′1) and pat(T ′2) ⊆ pat(T ′1) must be eligible
to be extended to show that µ is indeed not a solution of F2 but extensions of µ are
solutions. Condition (2a) forces a certain maximality condition onto the proper renamed
extensions of T ′2, i.e., we cant have more nodes in the proper renamed extension F ′2
without having a pattern mismatch in the proper renamed extension F ′2 and the extension

22

3.2. Decidable Containment

F̂ ′2 of it. A pattern mismatch means that the homomorphism ha : pat(F̂ ′2) 7→ pat(F ′2) does
not exist. Condition (2c) makes sure that the proper renamed extension F ′2 extends all the
relevant subtrees of F2, i.e. a relevant subtree is a tree T ∈ F ′2 where vars(T) = fvars(T ′1).
Condition (2b) checks for the existence of a homomorphism hb that maps pat(T̂ ′1) into
the patterns of the renamed proper extension pat(F2) ∪ pat(T ′1). �

The characterization in Theorem 4 yields a more or less straightforward ΣP
2 -algorithm

for testing (T1, X) 6⊆ F2.

Algorithm 3.3: ΠP
2 -algorithm for CONTAINMENT[{∪, π}, {∪}] from Theo-

rem 4
1 INPUT: A pwdPF (F1, X) and a wdPF F2
2 Check (Ti, X) ⊆ F2 for every (Ti, X) ∈ (F1, X):
3 Guess T ′ and the proper renamed extension F̂ ′2
4 Use a coNP-oracle to check that there does not exist a child node n and
homomorphism h as described by property (2b).

The hardness proof of CONTAINMENT[∅, {∪}] is done by a reduction from the well
known ΠP

2 -complete problem 3-QSAT∀,2 [GJ79].

3-QSAT∀,2
INPUT: A formula φ = ∀~x∃~yψ,
where ψ is a Boolean formula in CNF over the variables ~x ∪ ~y.

QUESTION: Can every assignment I on the variables in ~x be extended to an
assignment J on ~y, s.t. J |= ψ?

Theorem 5 ([PS14]). CONTAINMENT[∅, {∪}] is ΠP
2 -hard.

Proof Idea. Assume an arbitrary instance of 3-QSAT∀,2 and construct an instance of
CONTAINMENT[∅, {∪}] as follows: The wdPT T1 consists of the root and two child
nodes: ni, n′i for every variables xi ∈ ~x. In this way we are able to model the assignment
I of the 3-QSAT∀,2 problem in form of subtrees of T1. Additionally we have a child node
n0 containing the variables in ~y and an encoding of the formula ψ.

It remains to deal with the “unintended” subtrees of T1 where given an i either both ni
and n′i, or neither ni and n′i are in the subtree. This is done by adding certain wdPTs to
F2 which take care of the two problems. The last wdPT added to the forest F2 contains
the triples encoding the formula ψ in its root plus the child nodes ni, n′i. This wdPT
produces the solutions of all “intended” subtrees of T ′1 if and only if every assignment I
on the variables in ~x can be extended to an assignment J on ~y, s.t. J |= ψ. �

The section dealing with decidable containment closes with settling the complexity of
SUBSUMPTION[S1, S2] problem for every S1, S2 ⊆ {∪, π}. In prior work [LPPS12]

23

3. Well-Designed SPARQL

it was shown, that the simple case S1 = S2 = ∅ is ΠP
2 -complete. Later on in [LPPS13]

the ΠP
2 -membership was extended to the case where S1 = S2 = {π} holds. To establish

the ΠP
2 -completeness to arbitrary S1, S2 ⊆ {∪, π}, it obviously suffices to show the

ΠP
2 -membership for the most general case.

Theorem 6 ([PS14]). SUBSUMPTION[{∪, π}, {∪, π}] is in ΠP
2 .

Proof Idea. Let (F1, X) and (F2, X) be two pwdPFs. The main proofidea is that the
following criteria for subsumption was found: (F1, X) v (F2, X) iff for every subtree T ′1
of F1, there exists a subtree T ′2 of F2, s.t.

1. fvars(T ′1) ⊆ fvars(T ′2) and

2. there exists a homomorphism h : pat(T ′2) 7→ pat(T ′1) with h(x) = x for all x ∈
fvars(T ′1).

Consider now the following procedure: For all subtrees T ′1 of F1 check that there exists a
subtree T ′2 of F2 together with a homomorphism of the desired property. This procedure
can be executed in ΠP

2 because we have need to check all subtrees for a property which
would be in co-NP, but then the property is a homomorphism check which is in NP. So
we have a co-NPNP runtime. �

In [LPPS12] the authors noticed an interesting feature of subsumption in SPARQL: In
the fragment of wd-SPARQL[∅] subsumption is able to characterize equivalence. Assume
graph patterns P1, P2 ∈ wd-SPARQL[∅]. Then P1 ≡ P2 iff P1 v P2 and P2 v P1.
In [LPPS13] the authors were able to find a counterexample for wd-SPARQL[π]. Now
in [PS14] the result is strengthened: Assuming one pattern P1 in wd-SPARQL[∅] and one
pattern P2 in either wd-SPARQL[{π}] or wd-SPARQL[{∪}] one can show that P1 6≡ P2
but P1 v P2 and P2 v P1.

Proposition 3 ([PS14]). There exist pairs P1, P2 of graph patterns P1 from wd-SPARQL[∅]
and P2 from either wd-SPARQL[{π}] wd-SPARQL[{∪}], s.t. P1 v P2 and P2 v P1 hold
but P1 6≡ P2.

Proof. It is an easy observation that we need two counterexamples to prove the proposi-
tion.

1. At first we consider the case where P1 ∈ wd-SPARQL[∅] and P2 ∈ wd-SPARQL[{∪}].
Let P1 = (t1 OPT t2) and P2 = (t1 UNION (t1 AND t2)). The patterns t1 and t2
are assumed to be distinct. P1 v P2 can be easily seen because P2 imitates the
semantics of the OPT operator. P2 v P1 Also holds because again the semantics
of the OPT operator are projected into P2. But P1 v P2 does obviously not hold
since P2 always has mappings which are solely created by t1.

24

3.3. Undecidable Containment

2. Now for the second counterexample where P1 ∈ wd-SPARQL[∅] and P2 ∈ wd-
SPARQL[{π}].

Let P1 = (x1, a, x2) OPT ((x3, a, x2) AND (x3, a, x3)),
P2 = ((x1, a, x2) AND (y1, a, Y2)) OPT ((x3, a, x2) AND (x3, a, x3)

AND (y3, a, y2) AND (y3, a, y3))
and X = {x1, x2, x3}.

It remains to show that P1 v (P2, X) and (P2, X) v P1 but P1 6≡ (P2, X). Towards
this goal we observe that the triple patterns in P1 are contained in P2. Also,
P2 contains triple patterns with existential variables. We can easily see that
there is a homomorphism mapping the triple patterns containing the existential
variables into the patterns of P1. Thus P1 v (P2, X) holds. Also (P2, X) v P1
holds, but in general (P2, X) 6⊆ P1 since one can provide a graph G and an
appropriate instantiation of the existential variables y1, y2 in the root of P2 that
block the extension of mapping to the child node. Consider the following RDF
graph G = {a(1, 1), a(2, 3)}. Then µ = {x1 7→ 1, x2 7→ 1} ∈ J(T2, X)KG, because of
the mapping λ = µ ∪ {y1 7→ 2, y2 7→ 3} ∈ JT2KG which cannot be extended to the
child node of r2. However µ /∈ JT1KG since µ can be extended to the child node of
r1 by adding [x3 7→ 1].

3.3 Undecidable Containment
We can see in Table 3.1 that CONTAINMENT[S1, S2] is undecidable, if π ∈ S2. Again
we don’t need to show the undecidability for every entry in the table, as we can just
show it for the most specific entry, i.e., CONTAINMENT[∅, {π}]. We do this proof
by reducing from the conjunctive query answering problem under integrity constraints
in form of tuple generating dependencies (abbr. tgds) [JK84, CGK08]. This problem is
well known to be undecidable [JK84, CGK08]. We are not going to reduce the original
problem but a modified version of it to our problem. Three changes need to be made, to
make the problem suitable for us:

1. The undecidability results for the problem refer to arbitrary databases, which would
include infinite databases. Our RDF graphs however are a finite set of triples.

2. The problem allows predicates of arbitrary length but our RDF graphs contains
only triples.

3. Finally, for the problem reduction in the end, it turns out to be convenient to
restrict the problem from a set of tgds to a single tgd.

Before doing the first step, it is crucial to define tuple generating dependencies and the
undecidable problem, namely CQ-UNDER-TGDs.

25

3. Well-Designed SPARQL

Definition 28 (tuple generating dependency). Let φ(x) and ψ(x, y) be conjunctive
queries. Also, let all variables x occur in φ(x). A tuple generating dependency (tgd) is a
first-order formula of the form ∀x

(
φ(x)→ ∃yψ(x, y)

)
.

To simplify the notation of a tgd, the ∀-quantifiers are omitted. Let I be a database
instance and τ be a tgd. Then we define I |= τ using homomorphisms. This is feasible,
because a tgd is an implication: For every homomorphism h : φ(x) 7→ I (mapping
constants to themselves), which is responsible for the antecedent of the implication, there
must be an extension h′ of h, for which h′ : ψ(x, y) 7→ I holds. It is then natural to define
satisfaction for a set of tgds: Let Σ be a set of tgds. Then I |= Σ iff. I |= τ for every
τ ∈ Σ. Let Q be conjunctive query. For a set Σ of tgds, a database instance I and a
BCQ Q, we say that I,Σ |= Q holds, if for every (possible infinite) database instance M ,
s.t. M |= Σ and I ⊆M , we also have M |= Q. We write I,Σ |=f Q if only finite models
M are allowed.

Consider now the two problems:

CQ-UNDER-TGDs
INPUT: A set Σ of tgds, a database instance I and a CQ Q.
QUESTION: Does Σ, I |= Q hold?

FINITE-CQ-UNDER-TGDs
INPUT: A set Σ of tgds, a database instance I and a CQ Q.
QUESTION: Does Σ, I |=f Q hold?

We proceed with step one procedure: By [CGK08] CQ-UNDER-TGDS is undecidable.
The proof in [CGK08] will be changed so that FINITE-CQ-UNDER-TGDs remains
undecidable even though |Σ| = 1. Examining the undecidability proof of BCQ-UNDER-
TGDs in [CGK08], a reduction from the HALTING problem to BCQ-UNDER-
TGDs is given: The initial configuration of the Turing machine is encoded into the
instance I and several tgds are used to describe the transitions of the TM . The query
Q describes the halting condition. It is then shown that the Turing Machine halts iff
Σ, I |= Q holds. When the machine doesn’t halt, one can construct a counter-model M
for Σ, I |= Q. For this model M |= Σ and I ⊆ M but M 6|= Q. This construction is
defined by the straightforwards encoding of the infinite run of the TM . Even though the
same proof cannot be used to prove FINITE-BCQ-UNDER-TGDs undecidable the
following theorem was established:

Theorem 7. [PS14] FINITE-BCQ-UNDER-TGDs is undecidable.

Proof Idea. The main idea is that co-HALTING is reduced to FINITE-CQ-UNDER-
TGDs. The initial configuration of the TM is encoded in the instance I and the

26

3.3. Undecidable Containment

transitions of the TM are encoded by the tgds. The atoms state(x, q), cursor(x, p) and
contains(x, y, s) are used to represent a configuration of the turing machine. Using the
mentioned atoms one can express that at some time instant x, the TM is in state q, the
cursor is in position p and the tape content of tape cell y is s. The successor relation
next(x, x′) is defined that can be applied to time instants and tape positions. Now back
to the adaption from the original transformation:

1. A relation smaller(·, ·) is introduced and used to encode the transitive closure of
next(·, ·).

2. The query Q, remember, this was prior used to encode the halting condition, now
asks for smaller(x, x), i.e., if there exists some “loop” in the time instants.

I,Σ |=f Q holds iff the TM does not halt can be shown. Assuming the TM halts, a
simple countermodel M in form of the natural encoding of the halting run of the TM
can be found. Suppose that the TM does not halt. Then every model M of I,Σ contains
an encoding of the infinite number of steps in the non-halting run of the TM. Now we
use our assumption that M is finite and every step is identified by some time instant.
Thus at least one symbol a is used to encode more than one time instant (which results
in the loop). Thus smaller(a, a) ∈M . If smaller(x, x) occurs we have a (non-halting)
run of the TM. Since each step(state, cursor position and cell content) is identified by
some time instant and M is finite. �

For completing step two and three of our procedure, we need to strengthen the undecid-
ability result from 7 to atoms with arity two and restrict the set of tgds in FINITE-
CQ-UNDER-TGDs to a singleton. Notice that atoms of arity two are just a different
representation of triples. p(s, o) ∼ (s, p, o).

Theorem 8. [PS14] FINITE-BCQ-UNDER-TGDs is undecidable, even if the arity
of every relation symbol is at most two and even if Σ consits of a single tgd.

Proof Idea. To construct a single tgd τ from Σ all antecedents of the tgds in Σ are
combined into one antecedent in τ . The variables of the various antecedents are renamed.
The same is done for the consequent of τ . The implication is additionally modified:
Switches are introduced such that for every tgd τi ∈ Σ. If the i-th switch is turned-on,
every switch j 6= i, may be turned off which means that τj is trivially satisfied. This
switch idea models the various implications in only implication.

To only use binary atoms, every atom of arity k > 2 is replaced by k binary atoms such
that a chain of equivalences hold: for any such binary atom in the tgd or query, there
exists a homomorphism into an instance I iff the homomorphism can be extended to
map all k atoms into I iff this homomorphism is also a homomorphism in the original
non-binary case. �

Having the strenghtened version of FINITE-CQ-UNDER-TGDs we can now prove
that CONTAINMENT[∅, {π}] is undecidable.

27

3. Well-Designed SPARQL

Theorem 9. [PS14] CONTAINMENT[∅, {π}] is undecidable.

Proof Idea. Assume an arbitrary instance of FINITE-CQ-UNDER-TGDs containing
only a single tgd. We construct our instance of CONTAINMENT[∅, {π}] in the
following way: Let T1 be a wdPT and T2 be a pwdPT (T2, X) each consisting of a root
node, with one child node. Both root nodes contains the antecedent of the single tgd τ
and the instance I. The root r2 of T2 contains in addition another copy of the antecedent
of τ , such that the variables in the antecedent are realized by existential variables in
evars(r2). The consequent of the tgd is contained in the child nodes n1, n2 of r1 and r2.
The child node n1 in T1 contains the query. The child node n2 in T2 contains in addition
another copy of the consequent of τ realized by existential variables in evars(n2). There
are auxiliary graph patterns in r1 and n1 which deal with the lack of projection. The
construction ensures that T1 v (T2, X) holds. Hence the only reason for T1 6⊆ (T2, X) is
that for some RDF graph G, we have the following situation: Some solution µ ∈ JT1KG
sends the root into G but cannot be extended to n1, while in (T2, X) every extension of
µ can be further extended to the existential variables in the root to send also the child
node n2 into G. The following three facts are deduced:

1. Q is not satisfied by G: indeed, n2 consists of triples from n1 plus the triples
encoding the CQ Q. Since n2 can be mapped into G by an extension of µ this is
also true for all triple patterns in n1 excpets for those encoding Q.

2. G satisfies τ : indeed, recall that T2 uses existential variables to encode a copy of the
antecedent of tau in the root and a copy of the consequent of tau in n2 respectively.
We are assuming that every mapping on vars(r2) that maps the root into G can
be extended to the existential variables in n2 s.t. n2 is mapped into G. Hence, G
satisfies τ by the homomorphism criterion.

3. I must be contained in G, since we are assuming that µ sends the root of both, T1
and T2 into G.

It can be shown that G provides a countermodel for I, τ |=f Q. �

3.4 Equivalence
When looking at the equivalence table 3.2, it is not easy to distinguish the decidable
cases from the undecidable ones: Even though CONTAINMENT[S1, S2] becomes
undecidable iff π ∈ S2, EQUIVALENCE[{π,∪}, ∅] is decidable. To keep the number
of proofs to an absolute minimum, the fact that membership results propagate to the
more special cases and the hardness results to the more general cases is made use of. The
following results are proven:

• ΠP
2 -membership of EQUIVALENCE[{∪, π}, ∅]

28

3.4. Equivalence

• ΠP
2 -hardness of EQUIVALENCE[{∪}, ∅]

• ΠP
2 -hardness of EQUIVALENCE[{π}, ∅]

• Undecidability of EQUIVALENCE[{π,∪}, {∪}]

• Undecidability of EQUIVALENCE[{π}, {π}]

After the completion of the above proofs we can conclude all the complexity results in
the cells of table 3.2 except two:

1. EQUIVALENCE[∅, ∅]: This result was shown in [LPPS12].

2. EQUIVALENCE[∪,∪] follows immediately from the ΠP
2 -membership of the

CONTAINMENT[{∪}, {∪}] problem and the ΠP
2 -hardness of EQUIVALENCE[{∪}, ∅]

to be shown.

Completeness for EQUIVALENCE[π,∪] is not established. The hardness result carries
over from the proof of EQUIVALENCE[{π}, ∅] and EQUIVALENCE[{∪}, ∅].

We begin with a proof for ΠP
2 -membership of EQUIVALENCE[{∪, π}, ∅].

Theorem 10. [PS14] Let T be a wdPT and (F,X) be a pwdPF. Then T ≡ (F,X) iff.

1. T v (F,X) and

2. (F,X) ⊆ T .

Proof. It is obvious that both properties are necessary for equivalence because T ⊆ (F,X)
implies T v (F,X) and if T ⊆ (F,X) and T ⊇ (F,X) are assumed then T ≡ (F,X)
holds by definition of equivalence.

It thus remains to show that under assumption of (F,X) ⊆ T , T v (F,X) iff. T ⊆ (F,X)
holds. The “only if” direction is trivial as mentioned before. We now sketch the proof
of the if direction: Assume (F,X) ⊆ T and T v (F,X). Now proceed with a proof by
contradiction: Assume T ⊆ (F,X) doesn’t hold. Thus there exists a graph G, where
some solution µ of T is not a solution of F (, X) over G. But there we can find some
extension µ′ of µ which is a solution of (F,X). But then µ′ must include mappings µ
didn’t, and is thus a proper extension of µ. But then again by condition (2), µ′ is a also
a solution of T . But this cannot be true because a mapping and its proper extension are
both solutions to a wdPT.

We can easily see that the characterization in Theorem 10 can be transformed into an
algorithm which yields the membership proof for EQUIVALENCE[∅, {∪, π}].

Theorem 11. [PS14] EQUIVALENCE[∅, {∪, π}] is in ΠP
2 .

29

3. Well-Designed SPARQL

Proof. By Theorem3 deciding the second property is NP-complete and by Theorem6
deciding the first property is ΠP

2 -complete rendering the complexity of the algorithm
ΠP

2 -complete.

Following up we have the hardness result of
EQUIVALENCE[∅, {∪}] and EQUIVALENCE[∅, {π}].

Theorem 12. [PS14] EQUIVALENCE[∅, {∪}] is ΠP
2 -hard

Proof Idea. The same construction as in Theorem 5 can be used to prove the desired result:
The same reduction from 3-QSAT∀,2 is used. Remembering that in this construction a
wdPT T1 and a wdPF F2 such that φ is valid iff T1 ⊆ F2 holds is constructed. One can
not only show T1 ⊆ F2 but also T1 ⊇ F2 (iff φ is valid of course). This argumentation
yields the desired result. �

Theorem 13. [PS14] EQUIVALENCE[∅, {π}] is ΠP
2 -hard

Proof Idea. A reducion from 3-QSAT∀,2 to EQUIVALENCE[∅, {π}] is needed to
obtain the desired result. �

The following two theorems are proven by adapting the reduction from FINITE-BCQ-
UNDER-TGDs to CONTAINMENT[∅, {π}] in the proof of Theorem 9.

Theorem 14. [PS14] EQUIVALENCE[{∪, π}, {∪}] is undecidable.

Theorem 15. [PS14] EQUIVALENCE[{π}, {π}] is undecidable.

30

CHAPTER 4
Complexity of well-designed
SPARQL with GRAPH and

SERVICE

We will introduce an equivalent definition of wdPTs in this section. The main structural
difference to Definition 16 is that the nodes in the tree are labelled with a set of relational
atoms over a schema instead of a set of triples. We will also define the fragment Pwdgs
which is crucial for proving the complexity results. Pwdgs is a fragment which allows the
arbitrary use of the GRAPH and SERVICE operator in any part of the query.

Definition 29 (Pwdgs). A pattern Q is in Pwdgs if there does not exist a subpattern
Q′ = (Q1 OPT Q2) of Q and a variable x ∈ vars(Q2) that occurs in Q outside Q′ but
not in Q1 and it adheres to the following grammar:

Q ::= Y | (Y OPT R) | B
Y ::= (Y AND Y) | (SERVICE u Y) | (GRAPH u Y) | B
R ::= (R OPT R) | (GRAPH u R) | (SERVICE u R) | B
B ::= (u, v, w)

where u, v, w ∈ U ∪V. In the first layer we separate the pattern into an AND-part and
an OPT-part. In the AND- and OPT-part we can use SERVICE and GRAPH freely.

We will now proceed to define wdPTs where the nodes are labelled with a set of relational
atoms.

Definition 30 (wdPTs [BPS15]). A wdPT over a relational schema σ is a tuple (T, λ, x)
such that the following holds:

31

4. Complexity of well-designed SPARQL with GRAPH and SERVICE

1. T is a tree rooted in a distinguished node r, the root and λ maps each node t in T
to a set of relational atoms over σ.

2. For every variable y that appears in T , the set of nodes of T where y is mentioned
is connected.

3. We have that x is a tuple of distinct variables occurring in T . They are the free
variables of the wdPT.

Definition 31. A wdPT (T, λ, x) is called projection-free if x contains all variables
mentioned in T .

Definition 32. Assume p = (T, λ, x) is a wdPT over σ. We write r to denote the
root of T . Given a subtree T ′ of T rooted in r we define qT ′ to be the CQ Y ←
R1(v1), . . . , Rm(vm), where the Ri(vi)’s are the reational atoms that label the nodes of
T ′, i.e.,

{R1(v1), . . . , Rm(vm)} =
⋃
t∈T ′

λ(t)

and y are all the variables that are mentioned in T ′.

The main idea of this equivalent but different semantics of a wdPT is to look at each
subtree T ′ of T rooted in r. As mentioned above, each of them describes a pattern, i.e.,
the conjunctive query CQ q′T . A mapping h satisfies (T, λ) over a database D if h satisfies
the pattern defined by a subtree T ′ and there is no subtree T ′′ which is bigger than T ′
and h can be extended to satisfy T ′′.

Definition 33 (Semantics of wdPTs [BPS15]). Let p = (T, λ, x) be a wdPT and D a
database over σ.

1. A homomorphism from p to D is a partial mapping h : X → U , where X is an
infinite set of a variables and U an infinite set of constants, for which it is the case
that there is a subtree T ′ of T rooted in r such that h ∈ qT ′(D).

2. The homomorphism h is maximal if there is no homomorphism h′ from p to D
such that h @ h′.

The evaluation of wdPT p = (T, λ, x) over D denoted p(D), corresponds to all mappings
of the form hx, such that h is a maximal homomorphism from p to D.

It is important to notice that wdPTs properly extend CQs. Given a CQ q(x) of the
form X ← R1(v1), . . . , Rm(vm) it is easy to see that q(x) is equivalent to the wdPT
p = (T, λ, x), where T consists of a single node r and λ(r) = {R1(v1), . . . , Rm(vm)}.
In other words, q(D) = p(D) for each database D. Further on we will not distinguish

32

4.1. Translations to well-designed pattern forests

between a CQ and the single node wdPT that represents it. wdPTs can on the other hand
represent interesting properties that cannot be expressed as CQs, namely the optional
matching feature.

To capture the UNION operator the definition of well-designed pattern trees need to be
modified.

Definition 34 (Unions of wdPTs or well-designed pattern Forests (wdPF)). A Union
of wdPTs is an expression φ of the form

⋃
1≤i≤n pi, where each pi is a wdPT over σ.

We denote ϕ(D) as the evaluation of φ over database D. It corresponds to the set⋃
1≤i≤n pi(D). Unions of wdPTs are also called well-designed pattern forests(WDPF).

First we are going to show an easy example of how to translate a graph pattern only
using AND and triple patterns to a conjunctive query. Then we propose a polynomial
time translation from a graph pattern P ∈ Pwdgs to Q ∈ Pwd. For this translation we
need to construct a special database and a wdPT depending on the original query. After
we established the translation we prove the equivalence of P and Q in Theorem 16. The
last section deals with the problem EVAL(Pwdgs.

4.1 Translations to well-designed pattern forests
It is an easy observation that if we restrict SPARQL to the AND operator, we simply
get conjunctive queries without existentially quantified variables. We will illustrate this
in Example 5.

Example 5. Consider the following SPARQL default Graph G in a dataset DS with the
query Q in SPARQL[∧]

G = {(a, a, a), (b, c, c), (b, c, a)}
Q = (x, y, a) AND (z, c, c) AND (x, c, y)

Let T be a 3-ary relation, D = {T} be the following database and CQ be the following
conjunctive query:

T = {(a, a, a), (b, c, c), (b, c, a)}
CQ = ans(x, y, z)← T (x, y, a), T (z, c, c), T (x, c, y)

It is easy to see that the mappings in CQ(D) are the same as in JQKDSG .

Similar to Example 5 we are going to transform the dataset and query not into conjunctive
queries but an extension of them: well-designed pattern trees. We will define a polynomial
time translation from a graph pattern P ∈ Pwdgs to a well-designed pattern tree. This
enables us to use well known algorithms for which the computational complexity is
known.

33

4. Complexity of well-designed SPARQL with GRAPH and SERVICE

4.1.1 Creating the database

We first describe the function data which transforms a dataset into the database.

Consider the function data : DS 7→ D, where DS is a dataset and D is a database. data
then is defined as follows: Let DS be an arbitrary dataset and uDS the URI such that
ep(uDS) = DS.

DS = {(def,G), (u1, G1), . . . , (un, Gn)}

The output of data is the database D = {T, LOC} where T is a 5-ary relation containing
all the triples of a graph, the corresponding graph URI and the dataset URI. The binary
relation LOC captures all graph URIs and their corresponding dataset URI. For our
dataset this would mean, assuming

G = {(x1, y1, z1), . . . , (xa, ya, za)},
G1 = {(x11, y11, z11), . . . , (x1b, y1b, z1b)}, . . . ,
Gn = {(xn1, yn1, zn1), . . . , (xnc, ync, znc)}

that we construct our output database D as follows:

D = {T (uDS , def, x1, y1, z1), T (uDS , def, xa, ya, za), . . . , T (uDS , u1, x11, y11, z11), . . . ,
T (uDS , u1, x1b, y1b, z1b), . . . , T (uDS , un, xn1, yn1, zn1), . . . T (uDS , un, xnc, ync, znc),

LOC(uDS , def), LOC(uDS , u1), . . . LOC(uDS , un)}.

4.1.2 Transforming the pattern to a wdPT

We proceed in defining the function trans which will in polynomial time transform a graph
pattern in Pwdgs into an equivalent well-designed pattern tree without the SERVICE and
GRAPH operators. Lemma 3 concludes that the output pattern and the input pattern
are equivalent.

The transformation function trans : P ×U ∪ {V} ×U ∪ {def} ∪ {V} 7→ Q takes three
parameters as input: P is a graph pattern in OPT normal form which allows the usage of
AND, OPT, GRAPH, SERVICE and UNION, U ∪V is the infinite set of URIs with the
infinite set of variables and U ∪ {def} ∪V is the infinite set of URIs containing the def
identifier conjoined with the infinite set of variables. The output Q is a well-designed
pattern tree.

Assume the input (P, ds, g) and let each of the parameters be arbitrary.

1. If P is a triple pattern (u, v, w),

trans(P, ds, g) = vars(ds, g, u, v, w)← T (ds, g, u, v, w).

34

4.1. Translations to well-designed pattern forests

2. If P is (P1 AND P2), let

O1 ← q1 = trans(P1, ds, g),
O2 ← q2 = trans(P2, ds, g),
trans(P, ds, g) = O1 ∪O2 ← q1, q2.

3. If P is (P1 OPT P2), let

(T1, λ1, x1) = trans(P1, ds, g) and
(T2, λ2, x2) = trans(P2, ds, g).

trans(P, ds, g) = (T, λ, x) for which T = T1 ∪ T2 ∪ (r1, r2) where r1, r2 are the roots
of T1, T2 respectively, λ = λ1 ∪ λ2 and x = x1 ∪ x2.

4. If P is (GRAPH u P1), let
(T1, λ, x1) = trans(P1, ds, u). Assuming r1 is the root of T1, and λ(r1) = q1 we
define

λ′(x) =
{
q1, LOC(u, ds), LOC(g, ds) if x = r1

λ(x) otherwise

and trans(P, ds, g) = (T1, λ
′, x1).

5. P is of the form (SERVICE u P1). Case distinction:

a) If u ∈ U and u /∈ dom(ep): trans(P, ds, g) = {} ←.
b) Otherwise let (T1, λ, x1) = trans(P1, u, def). Assuming r1 is the root of T1,

and λ(r1) = q1 we define

λ′(x) =
{
q1, LOC(def, u), LOC(g, ds) if x = r1

λ(x) otherwise

and trans(P, ds, g) = (T1, λ
′, x1).

Observe that the function is well-defined since only patterns Pwdgs are considered: This
allows us to argue over conjunctive queries for the case P is P1 AND P2 as the AND-
operator may not occur in the scope of an OPT-operator in the fragment Pwdgs.
We need to prove Lemma 3 first towards our goal to show that for all datasetsDS identified
by URI ds and graph patterns P the following property holds: Let Q = trans(P, def, ds)
and D =

⋃
c∈dom(ep)

data(ep(c)). Then Q(D) = JP KDSgraph(def,DS).

Lemma 3. Let P ∈ Pwdgs, DS a dataset so that ep(ds) = DS and G a graph in the
dataset DS so that (g,G) ∈ DS. Let D =

⋃
c∈dom(ep)

data(ep(c)). Let Q = trans(P, g, ds).

35

4. Complexity of well-designed SPARQL with GRAPH and SERVICE

Then

Q(D) =



JP Kep(ds)
graph(g,ep(ds)) if g ∈ U, ds ∈ U⋃

ds′∈dom(ep)
{µ ∪ [ds 7→ ds′] |

µ ∈ JP Kep(ds′)
graph(g,ep(ds)), µ ∼ [ds 7→ ds′]} if g ∈ U, ds ∈ V⋃

g′∈names(ep(ds))
{µ ∪ [g 7→ g′] |

µ ∈ JP Kep(ds)
graph(g′,ep(ds)), µ ∼ [g 7→ g′]} if g ∈ V, ds ∈ U⋃

ds′∈dom(ep),g′∈names(ep(ds′))

{
µ ∪ {[ds 7→ ds′], [g 7→ g′]} |

µ ∈ JP Kep(ds′)
graph(g′,ep(ds′)), µ ∼ {[ds 7→ ds′], [g 7→ g′]}

}
if g ∈ V, ds ∈ V

holds.

Proof Idea. The four different cases in the lemma are needed to distinguish if we are
currently inside a GRAPH pattern, inside a SERVICE pattern or inside both a GRAPH
and a SERVICE pattern where the destination was a variable. The evaluation operator
of SPARQL, assuming P is a graph pattern, JP KDSG only allows DS to be a dataset and
G to be a graph in the dataset DS, we take the union of the mappings to simulate the
evaluation of P over all possible datasets and their respective graphs if we are inside both
a GRAPH and a SERVICE operator. If the pattern is only inside a GRAPH operator
the evaluation of P over all the graphs in the current dataset is simulated. If the pattern
is only inside a SERVICE operator the evaluation of P over all datasets in range(ep) is
simulated. After receiving each result mapping of P over the corresponding dataset and
graph we add an additional mapping to the result mapping, depending again if we are
inside a SERVICE operator, a GRAPH operator or inside both: This mapping has the
variable(s) of either the GRAPH operator or SERVICE operator or both in the domain.
The variable(s) map(s) to the current URI(s) the union operator is looking at. This again
could be the URI of a dataset, a graph or both. If this mapping is compatible with our
result mapping the union of both mappings is added to the results.

The statement is shown with an induction over the structure of a graph pattern. Because
of the construction of Pwdgs, which doesn’t allow that an OPT operator occurs in the
scope of an AND operator we are able to argue over conjunctive queries in the cases
where P is a triple pattern or P is of the form P = (P1 AND P2). In all the other cases
we need to argue over well-designed pattern trees. In all cases we need to distinguish
if we are inside a GRAPH operator, a SERVICE operator, in both or in none. These
distinction lead to the big number of case distinctions we need to consider. The cases
were P is a triple pattern or a pattern of the form P = (P1 AND P2) are described in
Example5. The only difference is that we now have to consider the cases where we are
inside a GRAPH operator, a SERVICE operator or both. For this reason we are using

36

4.1. Translations to well-designed pattern forests

5-tuples in our T relation of our database, where the first two positions of the tuple
describe the dataset we are currently in and the graph of the dataset we want to evaluate
the tuple over. For the case that P is (P1 OPT P2) we merge the wdPT of P1 and the
wdPT of P2 so that the roots of the two wdPTs are connected. We then use the semantics
of wdPTs to show that this “joining” of trees models the semantics of OPT. The GRAPH
and the SERVICE operators are similarly designed: The query P1 inside the GRAPH or
SERVICE operator is evaluated by trans(P1, ds, u) for GRAPH (ds is the current dataset
URI) and trans(P1, u, def) for SERVICE to a wdPT Q1. We add two relational atoms
to the root of Q1: For the GRAPH operator LOC(u, ds) and LOC(g, ds) are added and
needed in the proof to justify that if u and ds are URIs there is a dataset ds so that
ds ∈ dom(ep) and u ∈ names(ds). LOC(g, ds) is needed in the case that g is a variable
and we have a nested occurrence of GRAPH (e.g. (GRAPH g (GRAPH u P1)). The
mapping of µ(g) would otherwise be lost in the query. The same arguments hold for the
two relational atoms added in the case of a SERVICE operator except by semantics of
the SERVICE operator LOC(def, u) is needed because SERVICE always changes to the
default graph of a dataset. The only real difference in GRAPH and SERVICE is that
again by semantics of SERVICE we need to return the empty mapping instead of the
empty set when an endpoint is not reachable or it doesn’t exist, which is modelled by
u /∈ dom(ep). We thus need to check the ep function if the URI is in the domain of ep
and if it isn’t return {} ←. �

The full proof of Lemma 3 can be found in the Appendix.

The next step is to show that the result of the trans function is indeed a pattern tree, as
it was defined by Definition 30.

Lemma 4. Let ds ∈ dom(ep), g ∈ names(ep(ds)) and P ∈ Pwdgs be a SPARQL pattern.
Then Q = trans(P, ds, g) is a well-designed pattern tree.

Proof. We prove each property of Definition 30 separately:

1. T is rooted in a distinguished node r, the root and maps each node t in T to a set
of relational atoms over σ: This is easy to see as we only use LOC and T in our
construction. Also T always has a distinguished node r as root because the only step
of trans that changes the structure of T is if a subpattern of the form (P1 OPT P2)
occurs: Q1 = (T1, λ1, x1) = trans(P1, ds, g), Q2 = (T2, λ2, x2) = trans(P2, ds, g).
It connects the roots of T1 and T2, call them r1, r2 with an edge (r1, r2) making r1
the new root.

2. For every variable x that appears in T , the tree of the wdPT, the set of nodes of T
where x is mentioned is connected. It is important to remember that we assumed
that our inputpattern P ∈ Pwdgs and is well-designed. The induction will be over
the structure of the subpatterns P̂ of P .

a) Basecase: If P̂ is a triple pattern we only return one node, so there can’t be
any violation of the property.

37

4. Complexity of well-designed SPARQL with GRAPH and SERVICE

b) Induction Step: If P̂ is (P1 AND P2) there can also never be a violation of
the property because we assumed that P is in Pwdgs and thus OPT never
occurs in the scope of AND. We thus also only return a single node making a
violation impossible.

c) Induction Step: If P̂ is (P1 OPT P2): By induction hypothesisQ1 = trans(P1, ds, g)
and Q2 = trans(P2, ds, g) fulfill the property and P ∈ Pwdgs and is a well-
designed SPARQL pattern by assumption.
Assume that making T2 a child of the root of T1 results in a wdPT Q which does
not fulfill the well-designedness property. There must thus be a variable x in T
(the roots of T1 and T2 get connected) which appears in two different subgraphs
of T . This two subgraphs can only be situated in T1 and T2 respectively by
induction hypothesis. Because these subgraphs are not connected by our
assumption we proceed by case distinction and assume

i. T1 contains a subgraph containing x but the root r1 does not contain
the variable x. There must be a subpattern of P1 by our construction
(P ′ OPT P ′′) where P ′′ contains x but P ′ doesn’t. As (P ′ OPT P ′′) is part
of P1 and we have (P1 OPT P2) and P2 contains x we have a contradiction
to the assumption that P is a well-designed SPARQL patterns.

ii. T2 contains a subgraph containing x but the root r2 does not contain the
variable x. This can be shown analogously.

d) Induction Step: If P̂ is (GRAPH u P1): We know that trans(P1, ds, u) =
(T, λ, x) is part of the end result Q and by induction hypothesis, we know
that (T, λ, x) fulfills the property. Let r1 be the root of T . trans(·) adds
the conjunct LOC(u, ds) and LOC(g, ds) to r1. W.l.o.g. assume u,g and
ds are variables. For every of those three variables it remains to prove that
the property holds. Let x ∈ {u, g, ds} and assume that our resulting wdPT
Q is not fulfilling the property. There must thus be a node n1 in Q which
doesn’t contain x and a node n2 for which n1 is a parent which again contains
x creating the conflict. By the definition of the function trans(·) we know
that there must have been a subpattern (P ′OPTP ′′) and both n1, n2 must
have been created by this subpattern. But this again means, that P ′ did not
contain x and P ′′ did contain x. Depending on whether x = u, x = g or
x = ds we have a contradiction:

i. Let x = u. Because we assumed P̂ = (GRAPH u P1) we know that P is
not well-designed because P1 contains the subpattern (P ′ OPT P ′′).

ii. Let x = g. This means that we are inside a graph pattern (GRAPH g P∼)
and thus P is not well-designed because P1 contains the subpattern
(P ′ OPT P ′′).

iii. Let x = ds. This means that we are inside a SERVICE pattern
(SERVICE g P∼) and thus P is not well-designed because P1 contains
the subpattern (P ′ OPT P ′′).

38

4.2. The complexity of evaluating patterns in Pwdgs

e) Induction Step: If P̂ is (SERVICE u P1): The proof is analogously to case
where P̂ is (GRAPHu P1).

3. The last property is that x is a tuple of distinct variables occurring in T . As we
don’t use projection and use set operations to merge our free variables in the OPT
case, this is an obvious observation.

We will now write our final result: When we have a graph pattern P in Pwdgs with a
dataset DS and a function ep we want to transform it into a wdPT Q and database D
with our function trans so that JP KDSdef = Q(D).

Theorem 16. Let P be a graph pattern in Pwdgs, DS a dataset and G a graph in DS. Let
DS = ep(ds) and G = graph(g,DS). Let Q = trans(P, ds, g) and D =

⋃
c∈dom(ep)

data(c).

Then JP KDSG = Q(D).

Proof. The database D is the same database that is created in Lemma 3. Use Lemma 3:
DS = ep(ds) and G = graph(g,DS) hold and thus ds, g ∈ U: JP KDSG = Q(D) follows.

4.2 The complexity of evaluating patterns in Pwdgs

The fragments Uwdgs and Swdgs describe extension to the fragment Pwdgs.

Definition 35 (Uwdgs and Swdgs). Uwdgs extends the fragment Pwdgs with top level union.
Swdgs extends the fragment Uwdgs with projection over the top level union expression.

We will now look at the complexity results we receive as corollaries from Theorem 16.

Corollary 1. The problem EVAL(Pwdgs) is coNP-complete.

Proof. The problem EVAL is defined in the following way:

EVAL(L)
INPUT: Dataset DS, graph pattern P ∈ L and a mapping µ.
QUESTION: Is µ in JP KDSdef .

Hardness of the problem follows immediately from the hardness of EVAL(Pwd). Assume
ds = ep−1(DS). For the membership we propose the following procedure: Use the
transformation function on the input graph pattern P to obtain a wdPT Q, and the
data function to obtain the database D. More formally: Q = trans(P, ds, def) and
D =

⋃
c∈dom(ep)

data(ep(c)). This transformation is obviously possible in polynomial time

if we assume dom(ep) to be finite. We know by Theorem 16 that JP KDSdef = Q(D). For

39

4. Complexity of well-designed SPARQL with GRAPH and SERVICE

EVAL(Pwdgs) we can use the results in [PAG09], i.e., that the evaluation problem for
well-designed pattern trees without projection is coNP-complete and conclude a coNP
runtime to check if µ ∈ Q(D).

Corollary 2. The problem EVAL(Uwdgs) is coNP-complete.

Proof. Hardness of the problem follows immediately from the hardness of EVAL(Uwd).
Assume ds = ep−1(DS). For the membership we propose the following procedure: If
we have top-level union in the input graph pattern P = P1 UNION · · · UNION Pn use
the transformation function on all the graph patterns of P , i.e., P1, . . . , Pn to obtain
a wdPF. More formally:

⋃
i=1,...,n

Qi = trans(Pi, ds, def) and D =
⋃

c∈dom(ep)
data(ep(c)).

This transformation is obviously possible in polynomial time if we assume dom(ep) to
be finite. We know by Theorem 16 that JP KDSdef = Q(D). For EVAL(Uwdgs) we can
use the results in [PAG09], i.e., that the evaluation problem for well-designed pattern
trees without projection is coNP-complete and conclude a coNP runtime to check if
µ ∈ Q(D).

Corollary 3. The problem EVAL(Swdgs) is ΠP
2 -complete.

Proof. Hardness of the problem follows immediately from the hardness of EVAL(Swd).
Assume ds = ep−1(DS). For the membership we propose the following procedure:
If we have top-level projection of the input graph pattern P we use the transfor-
mation function on the wdPT. More formally:

⋃
i=1,...,n

Qi = trans(Pi, ds, def) and

D =
⋃

c∈dom(ep)
data(ep(c)). This transformation is obviously possible in polynomial

time if we assume dom(ep) to be finite. We know by Theorem 16 that JP KDSdef = Q(D).
For EVAL(Swdgs) we can use the results in [LPPS13], i.e., that the evaluation problem for
well-designed pattern trees with projection is ΠP

2 -complete and conclude a ΠP
2 runtime

to check if µ ∈ Q(D).

40

CHAPTER 5
The SERVICE-operator in

Practice

The first part of this chapter is a summary of [BAACP13, p. 4-7]. In the second part
of this chapter we discuss the difference of the notions we introduced in the first part.
In order to get a deeper understanding of the SERVICE operator it is mandatory to
understand which problems occur when evaluating the SERVICE operator. A direct
implementation of the SERVICE operator based of the semantics is infeasible in practice.
Given (SERVICE x P1), if x is not restricted to a finite set, we would have to evaluate
P1 over every possible SPARQL endpoint in dom(ep). This is obviously impossible. To
ensure that P1 only gets evaluated over a finite set of URIs, x needs to be limited to
exactly those. In the W3C standard only indications are provided on how to evaluate the
service operator [SHb] when the location is a variable and not an URI. In [BAACP13]
the authors deal with this issue by providing a notion of boundedness. In order to
demonstrate how one could evaluate a service operator using a variable to evaluate a
query over more than one endpoint the following example is given:

Example 6 ([BAACP13]). Let G be an RDF graph that uses triples of the form
(a, service_address, b) with the intention to express that b is a SPARQL endpoint URI
with name a. Then we consider the following query P over the graph G in the dataset
DS:

P = ((x, service_address, y) AND (SERVICE y (zn, email, ze)))

It is easy to see that P is used to compute the list of names and email addresses that
can be retrieved from the SPARQL endpoints stored in the RDF graph G through the
service_address triple. The whole point of this example is to point out that there
is a simple practical way to evaluate P over G that is also feasible: By evaluating
J(x, service_address, y)KDSG first and then for every mapping µ in this set we further
evaluate J(SERVICE a (zn, email, ze)KDSG , where a = µ(y).

41

5. The SERVICE-operator in Practice

Throughout the chapter we will provide four different definitions on how the destinations
of a SERVICE-operator can be bounded within a graph pattern if the destination is a
variable. Those definitions were first introduced in [BAACP13].

1. Boundedness: Boundedness is a naïve semantic approach to the problem. After
formally defining the property, we will show that deciding whether a variable is
bounded in a graph pattern is undecidable and thus not feasible for practical use.

2. Strong boundedness: Strong boundedness is a syntactical approach to the problem.
We will, by defining the property provide a recursive procedure on how to decide
which variables in a graph pattern are strongly bounded. It will also be shown that
if a variable is strongly bounded, it is bounded aswell. Although this procedure
would be feasible for practical use complexity-wise, it is not able to decide whether
a graph pattern can be evaluated in practice. We will provide an example in form
of a graph pattern which is feasible to be evaluated in practice but not strongly
bounded.

3. Service-boundedness: Service-boundedness would be the optimal solution for de-
ciding which graph patterns can be evaluated in practice. If a pattern is service-
bounded, it can be evaluated in practice. The problem however is, that the
definition builds on the definition of boundedness which is undecidable. Therefore
service-boundedness is not feasible for practical use.

4. Service-safeness: The definition of service-safeness builds on the definition of strong
boundedness. service-safeness is easy to decide and we will show that if a pattern
is service-safe, it is also service-bounded. This solution should be used in practice
for the original problem.

In the last section we will discuss the difference of boundedness and strong boundedness
(and thus service-boundedness and service-safeness because the latter definitions build
on former definitions).

5.1 The four different ways to bind the destination of a
SERVICE-operator

To describe boundedness we need three definitions namely the domain of a graph, a
dataset and a graph pattern.

Definition 36 (Domain of a graph, a dataset and a graph pattern,[BAACP13]). The
domain of a graph G denoted dom(G) is defined as dom(G) =

⋃
(u,v,w)∈G

vars(u, v, w). The

domain of a dataset DS, denoted dom(DS) is defined as dom(DS) =
⋃

G∈names(DS)
dom(G).

The domain of a graph pattern P is denoted dom(P) and refers to the set of URIs that
are mentioned in P .

42

5.1. The four different ways to bind the destination of a SERVICE-operator

Boundedness of a variable x in a graph pattern P makes sure that the variable is always
in the domain of every solution µ and the image µ(x) is either in the domain of the
dataset P gets evaluated over, it is a graph name or it is in the domain of the pattern.

Definition 37 (Boundedness,[BAACP13]). Let P be a graph pattern and x ∈ var(P).
Then x is bounded in P if the following condition holds: For every dataset DS, every
graph G in DS and every µ ∈ JP KDSG :

x ∈ dom(µ) and µ(x) ∈ (dom(DS) ∪ names(DS) ∪ dom(P)).

Resulting from this definition a very naive way to ensure that a graph pattern P can
be evaluated in practice seems to arise: Assuming we want to evaluate a subpattern
(SERVICE x P1) of P we require x to be bounded in P . We can then define the problem
for deciding if a variable is bounded in a graph pattern P :

BOUND IN PATTERN
INPUT: A graph pattern P and a variable x ∈ var(P).
QUESTION: Is x bounded in P?

Unfortunately BOUND IN PATTERN is undecidable which can be shown by reducing
from SPARQL SAT to BOUND IN PATTERN.

SPARQL SAT
INPUT: A graph pattern P .
QUESTION: Does a dataset DS and a graph G in DS exist such that JP KDSG ?

It is a well known result that SPARQL SAT is undecidable [AG08].

Theorem 17 ([BAACP13]). BOUND IN PATTERN is undecidable.

Proof. By providing a reduction from the SPARQL SAT problem to the VARIABLE
BOUND IN PATTERN Problem we will be able to prove the theorem. Let P be a
graph pattern, i.e., an arbitrary instance of SPARQL SAT and x, y, z variables not
mentioned in P . Then define the graph pattern Q, i.e. the instance of VARIABLE
BOUND IN GRAPH pattern as follows: Q = ((x, y, z) UNION P) and choose x to
be the potentially bounded variable. It remains to show that x is bounded in Q if and
only if P is not satisfiable.
(⇒):
Assume now that the variable x is bounded in Q, i.e., for every RDF graph G in DS and
every µ ∈ JQKDSG : x ∈ dom(µ) and µ(x) ∈ (dom(DS)∪ names(DS)∪ dom(P)). Let DS
be an arbitrary dataset and let G be an arbitrary graph in DS. Distinguish the following
two cases:

43

5. The SERVICE-operator in Practice

1. JQKDSG = ∅. Because of JQKDSG = ∅, we can instantly see that P is unsatisfiable.

2. JQKDSG 6= ∅.
Let µ ∈ JQKDSG be arbitrary. We can instantly see that x ∈ dom(µ) must hold.
Because by construction P doesn’t contain x, µ /∈ JP KDSG . Thus P is unsatisfiable.

(⇐):
Assume now that P is not satisfiable. Let DS be an arbitrary dataset and let G be
an arbitrary graph in DS. Because of our initial assumption JP KDSG = ∅. We will now
further distinguish between two cases:

1. JQKDSG = ∅. Then x is trivially bounded in Q.

2. JQKDSG 6= ∅.
Let µ ∈ JQKDSG be arbitrary. We can instantly see by construction of Q that
x ∈ dom(µ) must hold. By SPARQL semantics µ(x) ∈ dom(DS). Thus x is
bounded in Q.

As deciding boundedness for a variable is undecidable the notion of strong boundedness
is introduced, which is a syntactic condition and efficiently verifiable.

Definition 38 (Strong Boundedness [BAACP13]). Let P be a graph pattern. Then
the set of strongly bounded variables in P , denoted by SB(P), is recursively defined as
follows.

• if P = t, where t is a triple pattern, then SB(P) = vars(t);

• if P = (P1 AND P2), then SB(P) = SB(P1) ∪ SB(P2)

• if P = (P1 UNION P2), then SB(P) = SB(P1) ∩ SB(P2)

• if P = (P1 OPT P2), then SB(P) = SB(P1)

• if P = (GRAPH u P1), with u ∈ U ∪ V , then

SB(P) =
{
SB(P1) u ∈ U
SB(P1) ∪ {u} u ∈ V

• if P = (SERV ICE u P1), with u ∈ U ∪ V , then SB(P) = ∅.

It is a simple observation that this recursive definition collects a set of variables that are
guaranteed to be bounded in P . The following proposition documents this observation.

Proposition 4 ([BAACP13]). For every graph pattern P and a variable x ∈ var(P), if
x ∈ SB(P), then x is bounded in P .

44

5.1. The four different ways to bind the destination of a SERVICE-operator

The proof is a very straight forward induction and can be found in [BAACP13, Appendix
A].

We notice that this proposition is not an if and only if statement and hence we may be
able to provide a pattern P where variables x ∈ vars(P) exist, which are bounded but
not strongly bounded. Furthermore another example is provided which makes things
more complicated. In Example 7 we provide a graph pattern P where a variable in
the destination of a SERVICE-operator occurs which is neither bounded nor strongly
bounded. We will then provide a plan on how to evaluate P and thus show that the
definition of neither boundedness nor strongly boundedness is sufficient for practical
usage.

Example 7. Consider the following graph pattern:

P1 = [(x, service_description, z) UNION ((x, service_address, y) AND
(SERVICE y (xn, email, xe)))]

The variables x and z store the name of a SPARQL endpoint and a description of its
functionalities through the service_description triple. The variables x and y store the
name of a SPARQL endpoint and the URI where it is located through the service_address
triple. The problem is, that variable y is neither bounded nor strongly bounded in P1.
However we can still easily evaluate the pattern by assuming a dataset DS and an RDF
graph G in DS:
Compute J(x, service_description, z)KDSG , then compute
J(x, service_addres, y)KDSG and finally for every µ ∈ J(x, service_addres, y)KDSG , com-
pute J(SERVICE a (xn, email, xe))KDSG with a = µ(y). We can easily see that y is bounded
and strongly bounded in the subpattern
((x, service_address, y) AND (SERVICE y (xn, email, xe))) of P1 and thus the evalua-
tion is possible.

To describe a condition that ensures all SPARQL queries containing the SERVICE
operator can be evaluated in practice, the definition of Service-Boundedness is introduced.
The definition of service-boundedness uses a parse tree to make sure that our evaluation
takes bounded subpatterns into account.

Example 8. [[BAACP13]] Parse tree T (Q) for the graph pattern
Q = ((y, a, z) UNION ((x, b, c) AND (SERVICE x (y, a, z)))).

45

5. The SERVICE-operator in Practice

u1: ((y, a, z) UNION ((x, b, c) AND (SERVICE x (y, a, z))))

u2: (y, a, z) u3: ((x, b, c) AND (SERVICE x (y, a, z)))

u4: (x, b, c) u5: (SERVICE x (y, a, z))

u6: (y, a, z)

Definition 39 (Parse Tree, [BAACP13]). A parse tree of a graph pattern P , T (P) is a
tree where each node is a sub-pattern of P . Each node has an identifier. In the parse tree
the child relation is used to store the structure of the sub-patterns of the graph pattern.
The root of the parse tree contains the pattern P . Then, in the child(ren) of P the pattern
is split up into the respective sub-pattern(s). This is done recursively until a node contains
only a triple.

In Example 8 a parse tree can be found

Using the definition of a Parse Tree, Service-Boundedness can be defined.

Definition 40 ([BAACP13]). A graph pattern P is service-bounded if for every node u
of T (P) with label (SERV ICE x P1), it holds that

1. there exists a node v of T (P) with label P2 such that v is an ancestor of u in T (P)
and x is bounded in P2,

2. P1 is service-bounded.

Corresponding to this definition we will introduce the SERVICE BOUND problem:

SERVICE BOUND
INPUT: A graph pattern P .
QUESTION: Is P service-bounded?

Intuitively one can already imagine that deciding the SERVICE BOUND problem is
undecidable because it uses boundedness in it.

Theorem 18 ([BAACP13]). SERVICE BOUND is undecidable.

46

5.1. The four different ways to bind the destination of a SERVICE-operator

Proof. By providing a reduction from the SPARQL SAT problem to the SERVICE
BOUND problem we will be able to show undecidability. Let P be a graph pattern, i.e.,
an arbitrary instance of SPARQL SAT and x, y, z, x′, y′, z′ variables not mentioned in
P . Also assume that P does not mention the operator SERVICE which is not required
to make the SPARQL satisfiability problem undecidable. Then define the graph pattern
Q, i.e., the instance of SERVICE BOUND as:

Q = (((x, y, z) UNION P) AND (SERVICE x (x′, y′, z′))).

It remains to show that Q is service-bounded if and only if P is not satisfiable.

(⇐) If P is not satisfiable, then Q is equivalent to the pattern:

Q′ = ((x, y, z)) AND (SERVICE x (x′, y′, z′)).

But Q′ is service bounded because x is bounded in Q′: Assume an arbitrary dataset
DS, let G be in DS. Then for any µ ∈ JQ′KDSG , x ∈ dom(µ) and for sure µ(x) ∈
(dom(DS)∪ names(DS)∪ dom(P)) by semantics of SPARQL and the fact that x occurs
in the triple pattern (x, y, z).

(⇒) Assume that P is satisfiable. Then we know that variable x 6∈ vars(P) and thus
we have that x is not a bounded variable in Q, and thus because x occurs in a service
operator, Q is not service bounded.

As the problem of undecidability prevails with the definition of service-boundedness,
we can again use the syntactic condition, i.e., strong boundedness to define service-
safeness which is the same as service-boundedness but uses strong boundedness instead
of boundedness. We know from Definition 38 that evaluating if a variable is strongly
bounded in a graph pattern can be done efficiently.

Definition 41 (Service Safeness [BAACP13]). A graph pattern P is service-safe if for
every node u of T (P) with label (SERV ICE x P1) it holds that:

1. there exists a node v of T (P) with label P2 such that v is an ancestor of u in T (P)
and x ∈ SB(P2).

2. P1 is service safe.

As corollary to Proposition 1, the following proposition is obtained:

Proposition 5 ([BAACP13]). If a graph pattern P is service-safe, then P is service-
bounded.

47

5. The SERVICE-operator in Practice

5.2 Boundedness and strong boundedness
An interesting question is stirred up through introducing the notions of boundedness
and strong boundedness: What is the difference between the two notions? Because
boundedness is not equivalent to strong boundedness, there must be patterns which
are bounded but not strongly bounded. The following problem could arise: Assume a
pattern is bounded but not strongly bounded. Then it is feasible to be evaluated, but
the proposed algorithm returns that it is not.

Example 9.

P = ((x, a, b) OPT (x, a, y)).

We can see that y is bounded in P because for every RDF graph G in DS and every
µ ∈ JP KDSG we have that y ∈ dom(µ) and µ(y) ∈ (dom(DS)): Assume we have a
µ ∈ JP KDSG . Then x ∈ dom(µ) by semantics of OPT. Assume w.l.o.g. µ(x) = c. Then
(c, a, b) ∈ G. But then the mapping {x 7→ c, y 7→ b} ∈ JP KDSG . The set of strongly bounded
variables, i.e., SB(P) = {x} by Definition 38 contains only x.

Example 9 shows that there are patterns which are bounded but not strongly bounded.
One could easily resolve the problem of Example 9 and make y strongly bounded again:
It is easy to see that ((x, a, b) OPT (x, a, y)) ≡ ((x, a, b) AND (x, a, y)) holds. Thus we
replace the graph pattern P with the graph pattern Q = ((x, a, b) AND (x, a, y)). While
preserving the meaning of P , Q also makes sure that y is now strongly bound in Q, i.e.,
SB(Q) = {x, y}.

Example 9 also elicits a new question: Could deciding boundedness be feasible in fragments
of SPARQL where the problem EQUIVALENCE is decidable? An idea for a decision
procedure of BOUND IN PATTERN is illustrated in Algorithm 5.1. This procedure
would not contradict the results of Theorem 17 because in Theorem 17 general SPARQL
is considered and it is a well known result that EQUIVALENCE is undecidable in
general SPARQL.

Algorithm 5.1: BSB
1 INPUT: pattern P and x ∈ vars(P)
2 If x ∈ SB(P) return true;
3 For all subpatterns (P1 OPT P2) of P :
4 If (P1 OPT P2) ≡ (P1 AND P2) holds, replace (P1 OPT P2) with (P1 AND P2) in
P .

5 Call the resulting graph pattern Q.
6 If (x ∈ SB(Q)) return true;
7 else return false;

48

CHAPTER 6
Beyond well-designed SPARQL

Although well-designed SPARQL is a fragment that covers a lot of practical SPARQL
queries, (50% of the queries over DBpedia that use the OPT-operator [PV11]) many prac-
tical queries are not well designed and need to be analyzed. Kaminski and Kostylev found
another interesting fragment of SPARQL called weakly well-designed fragment [KK16].
This fragment captures 99% of the queries over DBpedia that use the OPT-operator.
There are mainly two use cases of queries that are not well-designed but used in practice.

1. The first practical use of non well-designed patterns are the so called preference
patterns: Consider the following example:

Example 10 (Preference Pattern [KK16]).

P1 = SELECT x, y WHERE ((x, type, person)
OPT (x,name, y))

OPT (x, v_card : name, y)

It is obvious that the pattern P in Example 10 is not well-designed because variable
y does occur in two unrelated OPT parts of P . The intuitive meaning might seem
unclear at the first moment, but looking at the semantics of OPT sheds light on it:
If the first OPT-operator does not bind the variable y through the triple (x,name, y)
and only then, y is bound through the triple (x, v_card : name, y). This could
be used when we have two relations, in this case name and v_card : name, which
connect a name to an identifier but we prefer the relation name over v_card : name.

2. The second practical use of non well-designed patterns are top level FILTER
expressions. For this usage consider the following query:

49

6. Beyond well-designed SPARQL

Example 11 (Top level Filter [KK16]).

P2 = SELECT x, y WHERE ((x, type, person)
OPT (x,name, y))

FILTER (¬bound(y) ∨ ¬(y = Ana)).

The query P2 is not well-designed because the FILTER constraint mentions the
variable y, which occurs only in the optional part. The practical intention of the
query is to filter for people where the name is not ’Ana’ or do only have an id which
is bound by variable x.

To capture the two use-cases mentioned in Example 10 and Example 11, well-designed
SPARQL is extended to weakly well-designed SPARQL. This new fragment subsumes
well-designed queries and it was shown in [KK16] that it has the same complexity of query
evaluation as well-designed queries. Also, 99% of the practical queries over DBPedia
containing OPT are captured by the weakly-well designed fragment of SPARQL and thus
proven to be efficient to evaluate. To define the fragment of weakly well-designed pattern
we need to define what it means for a subpattern to be dominated by another subpattern:

Definition 42 ([KK16]). Given a graph pattern P , an occurrence i1 in P dominates
another occurrence i2 if there exists a OPT-pattern such that i1 is inside the left argument
of the OPT-pattern and i2 is inside the right argument of the OPT-pattern.

Now we can proceed to define weakly well-designed patterns.

Definition 43 (Weakly well-designed patterns [KK16]). A pattern P is weakly well-
designed (wwd-pattern) if each occurrence i of an OPT-subpattern (P1 OPT P2) variables
in vars(P2)\vars(P1) appear outside i only in

• subpatterns whose occurrences are dominated by i, and

• constraints of top-level occurrences of FILTER-patterns.

Checking if a pattern is wwd is very easy computationally:

Proposition 6 ([KK16]). Checking whether a pattern P belongs to the fragment Pwwd
can be done in time O(|P |2), where |P | is the length of the string representation of P .

Proof Idea. In a simple recursive procedure, the top-level occurrences of filters are
removed. Then in yet another recursive procedure the first condition of weakly well-
designed patterns is checked. �

50

6.1. OPT-FILTER-Normal Form and Constraint Pattern Trees

6.1 OPT-FILTER-Normal Form and Constraint Pattern
Trees

When used wd-patterns we can convert them to the so-called OPT-normal form. In
the OPT-normal form, all AND- and FILTER- subpatterns are OPT-free and most
importantly the pattern can then be naturally represented as a tree. The resulting tree
can be used to visualize how to evaluate and optimize the original pattern [LPPS13, PS14].
The tree notation can be generalised to wwd-patterns.

Definition 44 (OPT-FILTER-normal form [KK16]). A pattern P is in OPT-FILTER-
normal form (or OF-normal form) if the following grammar can be tested positively:

P ::= F | (P FILTER R) | (P OPT S), S ::= F | (S OPT S),
F ::= (B FILTER R)

where B is a set of triple patterns and R is a filter constraint.

As we can see from Definition 44, each triple pattern has a FILTER expression. This
is no restriction because one can easily insert a dummy FILTER expression by letting
R = >. The sets of triple patterns with FILTER expressions form the bottom layer. On
top of the bottom layer there is a combination of OPT and FILTER. The layers cause
that each occurrence of a FILTER-pattern in the top layer is top-level. The normal form
is AND-free: all conjunctions are expressed via a set of triple patterns.

Definition 45 (Constraint pattern tree (CPT) [KK16]). A constraint pattern tree (CPT)
T (P) of a pattern P in OF-normal form is the directed ordered labelled rooted tree, which
can be recursively constructed as follows:

1. if B is a set of triple patterns then T (B FILTER R) is a single node v labelled by
the pair (B,R);

2. if P ′ is not a set of triple patterns then T (P ′ FILTER R) is obtained by adding a
special node labelled by R as the last child of the root of T (P ′);

3. T (P1 OPT P2) is the tree obtained from T (P1) and T (P2) by adding the root of
T (P2) as the last child of the root of T (P1).

Looking at Definition 45 one can see the similarity of CPTs and patterns in OF-normal
form: A CPT displays the semantic structure of OPT and FILTER nesting. The next
step is to prove that every wwd-pattern can be converted to OF-normal form and can
be represented by a CPT, analogously to wd-patterns, which can be transformed into
OPT-normal form and thus pattern trees. Towards this goal, the following equivalence is
needed:

51

6. Beyond well-designed SPARQL

Proposition 7 ([KK16]). Let P1, P2, P3 be patterns and R a filter constraint such that
vars(P2)∩ vars(P3) ⊆ vars(P1) and vars(P2)∩ vars(R) ⊆ vars(P1). Then the following
equivalences hold:

(P1 OPT P2) AND P3 ≡ (P1 AND P3) OPT P2,

(P1 OPT P2) FILTER R ≡ (P1 FILTER R) OPT P2.

Using the two equivalences we can achieve our goal stated in Proposition 8.

Proposition 8 ([KK16]). Each wwd-pattern P is equivalent to a wwd-pattern in OF -
normal form of size O(|P |).

Let ≺ be a relation which contains the topological sorting of the nodes in T (P) computed
by a depth first search traversal. v ≺ u holds if v is visited before u in the search process.
Assuming such a relation ≺, Proposition 9 provides a condition to decide whether a
pattern is weakly well-designed looking at its CPT.

Proposition 9 ([KK16]). A pattern P in OF-normal form is weakly well-designed iff.
for each edge (v, u) in its CPT T (P) every variable x ∈ vars(u)\vars(v) occurs only in
nodes w such that v ≺ w. The pattern is well-designed iff for every variable x in P the
set of all nodes v in T (P) with x ∈ vars(v) is connected.

In [KK16] a unique property, which applies only for wwd-patterns was found: Each
wwd-pattern is semantically equivalent to a pattern whose corresponding CPT has depth
one.

Definition 46 ([KK16]). A pattern P is in depth-one normal form if it has the structure

(· · · ((B op1 S1) op2 S2) · · ·) opn Sn,

where B is a set of triple patterns and each opiSi, 1 ≤ i ≤ n is either OPT (Bi FILTER Ri)
with Bi a basic pattern and Ri a filter constraint, or just FILTER Ri.

Towards our goal to show that every wwd-pattern can be brought to the depth-one
normal form the following equivalence can be used.

Proposition 10 ([KK16]). For patterns P1, P2, P3 with vars(P1)∩ vars(P3) ⊆ vars(P2)
it holds that

P1 OPT (P2 OPT P3) ≡ (P1 OPT P2) OPT (P2 AND P3).

OPT operators in pattern can be nested in two different ways:

1. (P1 OPT (P2 OPT P3)) (OPT-R)

52

6.2. Evaluation of wwd-Patterns

(1)

B1

B2

B3 (2)

B1

B2 B3

Figure 6.1: (1) is the CPT of (B1 OPT (B2 OPT B3)) and (2) the CPT of
((B1 OPT B2) OPT B3)

2. ((P1 OPT P2) OPT P3) (OPT-L)

When we then use CPTs to display this patterns using triple patterns we get the following
result:

Using the equivalence from left to right keeps the pattern weak well-designed and
transforms a weakly well-designed OPT nesting of type (OPT-R) to a nesting type
(OPT-L). Looking at the Figure 6.1 we can see that this step reduces the depth by one.

Corollary 4 ([KK16]). Every wwd-pattern is equivalent to a wwd-pattern in depth-one
normal form.

The regular structure of the depth-one normal form might prove attractive in practice
but using the equivalence results in an exponential blowup in the size of the pattern.
This can be seen in Proposition 10: P2 gets copied twice in every application of the
equivalence.

6.2 Evaluation of wwd-Patterns
The next step is to look at the complexity of the evaluation problem for wwd-patterns
and the extensions with union and projection. The goal is to show that in all three
cases complexity doesn’t change in comparison to wd-patterns. Consider first the formal
evaluation problem for a given SPARQL fragment L:

EVAL(L)
INPUT: Graph G, query Q ∈ L and a mapping µ.
QUESTION: Is µ in JQKG.

The fragment of general SPARQL graph patterns is denoted with U and it is a well
known result that EVAL(U) is PSPACE-complete [PAG09]. For the fragment of general

53

6. Beyond well-designed SPARQL

queries extended with projection (i.e., S) it was shown that EVAL(S) is PSPACE-
complete [LPPS13].

Similar to Algorithm 3.1, an algorithm for wwd-patterns exists. We first define the
potential partial solutions. We know from the previous section that we can transform
any wwd-pattern P to a pattern in OF-normal form. This pattern P ′ in OF-normal
corresponds to some CPT. An r-subtree of T (P ′) is a subtree containing the root of T (P ′)
and all its special children. Every r-subtree obviously corresponds to some wwd-pattern
which is obtained by dropping the rightmost arguments of some OPT-subpatterns.

Definition 47 ([KK16]). Let P be a wwd-pattern and P ′ the corresponding pattern in
OF-normal form. A mapping µ is a potential partial solution (or pp-solution for short)
to a wwd-pattern P over a graph G if there is an r-subtree T (P ′) of T (P) such that
dom(µ) = vars(P ′), µ(pat(P ′)) ⊆ G and µ |= R for the constraint R of any ordinary
node in T (P ′).

It could happen that several r-subtrees correspond to the same mapping µ for a pattern
P over G. We then take the union of all the nodes in exactly those r-subtrees as they are
a subtree as well. (They are all connected by the root). From this observation we can
see that there exists a unique maximal r-subtree corresponding to a mapping µ which
we will from now on denote with T (Pµ), as this subtree corresponds to a wwd-pattern
Pµ. The big difference to partial solutions for wd-patterns is that not every pp-solution
can be extended to a real solution. A real solution may not only extend the domain of
a pp-solution with previously undefined variables but it might also extend T (Pµ) to a
child that is smaller in the order ≺ than some other node which was already in T (Pµ).
But this means that variables bindings might get overridden. The next difference are
non-well-designed top-level filters. pp-solutions ignore top-level filters as it would be too
restrictive as real solutions do not satisfy them either.

Example 12 ([KK16]). Consider the graph G = {(1, a, 1), (3, a, 3)} and the wwd-pattern:

P = (((x, a, 1) OPT (y, a, 2)) FILTER ¬bound(y)) OPT (y, a, 3).

Obviously ¬bound(y) is a top level filter and the whole pattern is not well designed as y
occurs in the top level filter. Also, the mapping µ = {?X 7→ 1, ?Y 7→ 3} is a solution in
JP KG, but we can see, that µ 6|= ¬bound(y).

The following characterisation takes care of the two difficulties and describes solutions.

Definition 48 ([KK16]). Given a wwd-pattern P , a node v ∈ T (P), a graph G and a
pp-solution µ of P over G, let µ|v be the projection µ|X of µ to the set X of all variables
appearing in nodes u of T (Pµ) such that u ≺ v.

µ|v is in other words the mapping T (Pµ) until the node v could be considered in the
order ≺ would traverse the tree T (P).

54

6.2. Evaluation of wwd-Patterns

Lemma 5 ([KK16]). A mapping µ is a solution to a wwd-pattern P over a graph G iff.

1. µ is a pp-solution to P over G.

2. for any child v of T (Pµ) labelled with (B,R) there is no µ′ such that µ|v @ µ′,
µ′ |= R, and µ′(B) ⊆ G;

3. µ|s |= R for any special node s in T (P) labelled with R.

Intuitively we can conclude the following from the lemma: (1) is obvious and as mentioned
before, each solution needs to be a pp-solution of P over G. (2) makes sure that every
node v which is not added to T (Pµ) is not addable to the tree “until” that node v
“appears” (i.e. in order of ≺) first. If it is addable it would mean, that one could use the
mapping bound up to node v (looking at ≺, this is µ|v) to create a new mapping µ′ which
uses the node v. There are two ways of mapping µ′ differently to the original mapping µ:
Either dom(µ) is extended, or some variables are assigned differently because ≺ visits
some node first which contains the variable in a different triple resulting in a different
assignment. (3) makes sure that the mapping fulfills the top-level filter at exactly the
time point where the traversal reaches the corresponding special node s, which is denoted
by µ|s.

Theorem 19 ([KK16]). EVAL(Pwwd) is coNP-complete.

Proof Idea. We can easily transform the characterisation in Lemma 5 to an algorithm
which is in coNP: Compute the maximal tree for µ, T (Pµ). This is doable in polynomial
time. Now it remains to check that this tree is not extendible to linearly many of its
children. As we then have to do a homomorphism check against G, this is in coNP. The
checks for top-level filters are polynomial again. �

This result can easily be carried over to top level unions of wdd-patterns. The fragment
is called Uwwd. The fragment where also projection is done over unions of wdd-patterns
is calles Swdd.

Corollary 5 ([KK16]). EVAL(Uwwd) is coNP-complete and EVAL(Swwd) is ΣP
2 -

complete.

Proof Idea. The coNP-algorithm for Uwwd applies the algorithm for EVAL(Pwwd) for
every part of the top level UNION. And if the mapping µ is the solution for any of the
patterns we return true. Hardness follows by the coNP-completeness of EVAL(Pwwd).
It is a well known results that EVAL(Swd) is ΣP

2 -complete [LPPS13], thus ΣP
2 -hardness

of EVAL(Swdd) follows. For the ΣP
2 -membership of EVAL(Swdd) apply the following

algorithm: Guess the values of the existential variables and then call a coNP-oracle for
Uwwd on the resulting mapping. This yields a ΣP

2 algorithm. �

55

6. Beyond well-designed SPARQL

6.3 Expressivity of wwd-Patterns and their Extensions
In [KK16] Kaminski et al. established that one has a greater set of tools available if
one uses weakly-well designed SPARQL instead of well-designed SPARQL. Even though
this fact may seem to be of obvious nature it must be proven mathematically. This
characteristic of a SPARQL fragment (or language) is called expressive power.

Definition 49 (Expressive power of languages [KK16]). A language L1 has the same
expressive power as language L2, denoted by L1 ∼ L2, if for every query Q1 ∈ L1 there
is a query Q2 ∈ L2 such that Q1 ≡ Q2 and for every query Q2 ∈ L2 there is a query
Q1 ∈ L1 such that Q1 ≡ Q2 holds. We write L2 < L1 if we can only find a query Q1 ∈ L1
for every query Q2 ∈ L2 but not vice versa.

The goal for this section is to show the following results:

1. Pwd < Pwwd < P

2. Uwd < Uwwd < U

3. Swwd ∼ S

To prove the first item on the list we need the definition of “weakly monotone”. This
characteristic was already used by Arenas and Perez in [AP11] to prove that Pwd < P .
They showed that unlike P the fragment Pwd is weakly monotone and hence Pwd < P .

Definition 50 ([KK16]). A query Q is weakly monotone if JQKG1 v JQKG2 for any two
graphs G1 and G2 with G1 ⊆ G2. A fragment L is called weakly monotone if it contains
only weakly monotone queries.

Now we are ready to establish our desired result.

Theorem 20 ([KK16]). It holds that Pwd < Pwwd.

Proof. We show the desired result by observing that Pwwd is not weakly monotone.
Consider the pattern

Q = ((x, type, person) OPT (x,name, y))
OPT (x, v_card : name, y)

and the two graphs

G1 ={(P1 , type, person)(P1, v_card : name,Anastasia)} and
G2 ={(P1 , type, person), (P1, v_card : name,Anastasia),

(P1 ,name,Ana)}.

56

6.3. Expressivity of wwd-Patterns and their Extensions

Clearly G1 ⊆ G2. Let µ1 = {x 7→ P1, y 7→ Anastasia} and let µ2 = {x 7→ P1, y 7→ Ana}.
It is also clear considering that Q is a priority pattern that µ1 ∈ JQKG1 and µ2 ∈ JQKG2 .
But we cannot extend µ1 to µ2. Thus µ1 6v µ2 and thus Pwd < Pwwd follows from the
fact that Pwd is weakly monotone and the fact that Pwd ⊆ Pwwd.

Definition 51 ([KK16]). A query Q is non-reducing if for any two graphs G1, G2 such
that G1 ⊆ G2 and any mapping µ1 ∈ JQKG1, there is no µ2 ∈ JQKG2 such that µ2 @ µ1
(i.e.µ2 @ µ1 and µ2 6= µ1). A fragment L is non-reducing if it contains only non-reducing
queries.

If a query is non-reducing it can happen that previously bound variable will get unbound.
It is easy to see that wwd-patterns are non-reducing as we can only replace prior bindings
but not erase them.

Theorem 21 ([KK16]). It holds that Pwwd < P .

Proof. Let

P = (x, a, 1) OPT ((y, a, 2) OPT (x, a, 3)),

G1 = {(1, a, 1), (2, a, 2)} and G2 = G1 ∪ {(3, a, 3)}.

Then µ1 = {x 7→ 1, y 7→ 2} is the only mapping in JP KG1 while µ2 = {x 7→ 1} is the
only mapping in JP KG2 . Hence JP KG2 @ JP KG1 even though G1 ⊆ G2. As we already
mentioned wwd-patterns are non-reducing but this pattern is not non-reducing. Thus
the desired result follows.

The next step is to inspect the fragments Uwd, Uwwd and U . It is easy to see that Uwd
inherits weak monotonicity from Pwd. Thus we can see that Uwd < Uwwd. Unfortunately
we cannot use non-reducibility as it doesn’t propagate to unions. Therefore a new
condition is defined, namely extension-witnessing.

Definition 52. A query Q is extension-witnessing if for any two graphs G1 ⊆ G2 and
mapping µ ∈ JQKG2 such that µ 6∈ JQKG1 there is a triple t in Q such that vars(t) ⊆
dom(µ) and µ(t) ∈ G2\G1. A fragment is extension-witnessing if all its queries are
extension-witnessing.

With this new condition, we can show that unions of wwd-patterns are e-witnessing.

Theorem 22 ([KK16]). It holds that Uwd < Uwwd < U .

Proof. Again consider the counterexample from before:

P = (x, a, 1) OPT ((y, a, 2) OPT (x, a, 3)),

57

6. Beyond well-designed SPARQL

G1 = {(1, a, 1), (2, a, 2)} and G2 = G1 ∪ {(3, a, 3)}.

Then µ1 = {x 7→ 1, y 7→ 2} is the only mapping in JP KG1 while µ2 = {x 7→ 1} is the only
mapping in JP KG2 . This is clearly not e-witnessing.

Queries over unions of wwd-patterns are as expressive as full SPARQL.

Theorem 23 ([KK16]). It holds that Swwd ∼ S.

Proof Idea. The Tr-normal form can be described by the following grammar:

S ::= T FILTER R T ::= B | T OPT B

B is a set of triple patterns and R is a filter condition. A pattern P is called Tr-normal
if P is a union of patterns S described in the grammar. Every Tr-normal pattern is
contained in Uwwd. Let Q be a graph pattern of the form
SELECT X WHERE UNION U . Where U = {P1, . . . , Pn} is a set of UNION-free
patterns and UNION U stands for (. . . (P1 UNION P2) UNION . . .) UNION Pn. Tr(Q)
describes the graph pattern SELECT X WHERE UNION {TrX(P) | P ∈ U}. A
UNION-normal pattern is a graph pattern of the form (P1 UNION P2 UNION P3
UNION · · · UNION Pn), where each Pi (1 ≤ i ≤ n) is UNION-free.

Assume a pattern P from general SPARQL which is UNION-free. The authors in [KK16]
developed a recursive procedure called TrS(·) which transforms a graph pattern into
a graph pattern in a special form. The following facts could be shown for TrS(·):
P |S ≡ TrS(P)|S for any finite set S which means that Trs(·) preserves the meaning of
projection. Tr(P) has been shown to have a result of the form UNIONU where every
pattern P ′ ∈ U is weakly well-designed. Additionally it has been shown that Tr(P) is
Tr-normal and hence in Uwwd. For any UNION-normal pattern Q, it follows immediately
that Q ≡ Tr(Q). And as every query is equivalent to a UNION-normal pattern we are
done [PAG09].

�

6.4 Static Analysis of wwd-Patterns

The following results technically imply some of the results in Section 3.2 but the results
in the Section 3.2 were also of algorithmical interest because one could derive an “out
of the box” procedure to decide the problems. The proof in this section is technically
correct but doesn’t go into detail about the witnessing mapping that would allow for
such procedure.

Theorem 24 ([KK16]). The problems EQUIVALENCE(L), CONTAINMENT(L)
and SUBSUMPTION(L) are ΠP

2 -complete for any L ∈ {Pwwd, Uwwd}.

58

6.4. Static Analysis of wwd-Patterns

Proof Idea. The membership result for CONTAINMENT(Uwwd) follows from the
following counterexample property: if P 6⊆ P ′ for some P, P ′ ∈ Uwwd, then there
is a witnessing mapping of size O(|P | + |P ′|). Consider the following ΠP

2 -algorithm:
Guess a mapping µ and a graph G of linear size and check that µ /∈ JP ′KG and then
call a coNP oracle for checking if µ ∈ JP KG. Using this result we can show that
EQUIVALENCE(Uwwd) and SUBSUMPTION(Uwwd) are also in ΠP

2 . The hardness
proofs for SUBSUMPTION(Pwwd) and
EQUIVALENCE(Pwwd) are by reduction from 3−QSAT∀,2.
CONTAINMENT(Pwwd) is Πp

2-hard by the results from [PS14]. �

59

CHAPTER 7
Conclusion

In this thesis we presented an extension of the work of Perez et al. [PAG09]: In [PAG09]
well-designed SPARQL was analyzed and we extended the well-designed fragment with
two SPARQL operators, namely GRAPH and SERVICE. We then analyzed the evaluation
problem of this fragment. This was done by transforming well-designed patterns with
GRAPH and SERVICE to a well-designed pattern tree for which the complexity of
the evaluation problem is well known. Our results showed that the complexity of the
evaluation problem did not increase even though we added the GRAPH and SERVICE
operator to the well-designed SPARQL fragment.

We also investigated the difference between boundedness and strong boundedness, two
notions which were introduced by [BAACP13] to evaluate SERVICE queries which gather
information from several endpoints at once. In [BAACP13] we learned that deciding if
a variable is bounded in a graph pattern is undecidable and that deciding if a variable
in a graph pattern is strongly bounded is easily decidable. After comparing the two
definitions we found an example of a pattern where a variable was bound but not strongly
bound. We also conjectured that deciding if a variable is bound in pattern might be
decidable in fragments of SPARQL where the problem EQUIVALENCE is feasible.

7.1 Future Work

There is still work to do on the theoretical side: Most importantly we did not do a static
analysis of the well-designed fragment of SPARQL which allows the usage of the GRAPH
and SERVICE operator. The problems CONTAINMENT, SUBSUMPTION and
EQUIVALENCE still need to be analyzed in this fragment. One could use our
translation described in Section 4.1 as a foundation for this work, even though one would
likely need to modify it for this purpose.

61

7. Conclusion

The results for our fragment Pwdgs can be extended to weakly well-designed SPARQL.
As 99% of all queries containing OPT are covered by the weakly-well designed SPARQL
fragment we shall have this fragment also support the GRAPH and SERVICE operators.

When evaluating the SERVICE operator with a variable as destination, semantics and
algorithms for evaluation are still needed. There are more problems than just binding the
destination variables: The limited bandwidth of the servers hosting RDF data demands
specialized semantics and algorithms. Another situation where adapted algorithms are
needed is when RDF data is distributed among several servers.

The conjecture that deciding if a variable is bound is decidable in fragments of SPARQL
where the problem EQUIVALENCE is feasible needs to be proven. This could be
achieved by proving the correctness of Algorithm 5.1.

62

List of Figures

6.1 (1) is the CPT of (B1 OPT (B2 OPT B3)) and (2) the CPT of ((B1 OPT B2) OPT B3) 53

List of Tables

3.1 Containment[S1, S2] [PS14] . 17
3.2 Equivalence[S1, S2] [PS14] . 17

63

List of Algorithms

2.1 W3C-recommendation on evaluating the GRAPH operator 10

3.1 co-NP algorithm for EVAL in the well designed fragment [LPPS12] 14

3.2 ΠP
2 -algorithm for CONTAINMENT[{π}, ∅] from Theorem 1 19

3.3 ΠP
2 -algorithm for CONTAINMENT[{∪, π}, {∪}] from Theorem 4 23

5.1 BSB . 48

65

Bibliography

[AG08] Renzo Angles and Claudio Gutierrez. The expressive power of SPARQL.
Springer, 2008.

[all] http://franz.com/agraph/allegrograph.

[AMMH07] Daniel J Abadi, Adam Marcus, Samuel R Madden, and Kate Hollenbach.
Scalable semantic web data management using vertical partitioning. In
Proceedings of the 33rd international conference on Very large data bases,
pages 411–422. VLDB Endowment, 2007.

[AP11] Marcelo Arenas and Jorge Pérez. Querying semantic web data with sparql.
In Proceedings of the thirtieth ACM SIGMOD-SIGACT-SIGART sympo-
sium on Principles of database systems, pages 305–316. ACM, 2011.

[AS] Carlos Buil-Aranda Axel Polleres Lee Feigenbaum Gregory Todd Williams
Andy Seaborne, Eric Prud’hommeaux. Rdf dataset, sparql 1.1 federated
query. https://www.w3.org/TR/sparql11-federated-query.

[AVL+11] Maribel Acosta, Maria-Esther Vidal, Tomas Lampo, Julio Castillo, and
Edna Ruckhaus. Anapsid: An adaptive query processing engine for sparql
endpoints. In The Semantic Web–ISWC 2011, pages 18–34. Springer, 2011.

[BAACP13] Carlos Buil-Aranda, Marcelo Arenas, Oscar Corcho, and Axel Polleres.
Federating queries in sparql 1.1: Syntax, semantics and evaluation. Web
Semantics: Science, Services and Agents on the World Wide Web, 18(1):1 –
17, 2013. Special Section on the Semantic and Social Web.

[BAP14] Carlos Buil-Aranda and Axel Polleres. Towards equivalences for federated
sparql queries. 2014.

[BAPU14] Carlos Buil-Aranda, Axel Polleres, and Jürgen Umbrich. Strategies for
executing federated queries in sparql1. 1. In The Semantic Web–ISWC
2014, pages 390–405. Springer, 2014.

[BKPR14] Stefan Bischof, Markus Krötzsch, Axel Polleres, and Sebastian Rudolph.
Schema-agnostic query rewriting in sparql 1.1. In The Semantic Web–ISWC
2014, pages 584–600. Springer, 2014.

67

http://franz.com/agraph/allegrograph
https://www.w3.org/TR/sparql11-federated-query

[BL] T. Berners-Lee. Linked data - design issues. http://www.w3.org/
DesignIssues/LinkedData.html.

[BLHL+01] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web.
2001.

[BPS15] Pablo Barceló, Reinhard Pichler, and Sebastian Skritek. Efficient evaluation
of well-designed pattern trees. In Alberto Mendelzon International Workshop
on Foundations of Data Management, page 18, 2015.

[CEGL11] Melisachew Wudage Chekol, Jérôme Euzenat, Pierre Genevès, and Nabil
Layaïda. Psparql query containment. 2011.

[CGK08] Andrea Calı, Georg Gottlob, and Michael Kifer. Taming the infinite chase:
Query answering under expressive relational constraints. 2008.

[CTL] T. Heath C.Bizer and T.Berners-Lee. Linked data - the story so far.

[data] http://data.gov.

[datb] http://data.gov.uk.

[GHM04] Claudio Gutierrez, Carlos Hurtado, and Alberto O Mendelzon. Founda-
tions of semantic web databases. In Proceedings of the twenty-third ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pages 95–106. ACM, 2004.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New
York, NY, USA, 1979.

[GS11] Olaf Görlitz and Steffen Staab. Splendid: Sparql endpoint federation
exploiting void descriptions. COLD, 782, 2011.

[HAMP14] Aidan Hogan, Marcelo Arenas, Alejandro Mallea, and Axel Polleres. Ev-
erything you always wanted to know about blank nodes. Web Semantics:
Science, Services and Agents on the World Wide Web, 27:42–69, 2014.

[HS12] Katja Hose and Ralf Schenkel. Towards benefit-based rdf source selection
for sparql queries. In Proceedings of the 4th International Workshop on
Semantic Web Information Management, page 2. ACM, 2012.

[jen] http://jena.apache.org.

[JK84] D.S. Johnson and A. Klug. Testing containment of conjunctive queries
under functional and inclusion dependencies. Journal of Computer and
System Sciences, 28(1):167 – 189, 1984.

68

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://data.gov
http://data.gov.uk
http://jena.apache.org

[KG14] Egor V Kostylev and Bernardo Cuenca Grau. On the semantics of sparql
queries with optional matching under entailment regimes. In The Semantic
Web–ISWC 2014, pages 374–389. Springer, 2014.

[KK16] Mark Kaminski and Egor V. Kostylev. Beyond Well-designed SPARQL. In
Wim Martens and Thomas Zeume, editors, 19th International Conference
on Database Theory (ICDT 2016), volume 48 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 5:1–5:18, Dagstuhl, Germany,
2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[LIJ+15] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kon-
tokostas, Pablo N Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick
van Kleef, Sören Auer, et al. Dbpedia–a large-scale, multilingual knowledge
base extracted from wikipedia. Semantic Web, 6(2):167–195, 2015.

[LPPS12] Andrés Letelier, Jorge Pérez, Reinhard Pichler, and Sebastian Skritek.
Static analysis and optimization of semantic web queries. In PODS, pages
89–100, 2012.

[LPPS13] Andrés Letelier, Jorge Pérez, Reinhard Pichler, and Sebastian Skritek.
Static analysis and optimization of semantic web queries. ACM Transactions
on Database Systems (TODS), 38(4):25, 2013.

[LS98] Ora Lassila and Ralph R. Swick. Resource description framework (rdf)
model and syntax specification, 1998.

[MSMMV15] Gabriela Montoya, Hala Skaf-Molli, Pascal Molli, and Maria-Esther Vidal.
Federated sparql queries processing with replicated fragments. In The
Semantic Web-ISWC 2015, pages 36–51. Springer, 2015.

[NW10] Thomas Neumann and Gerhard Weikum. The rdf-3x engine for scalable
management of rdf data. The VLDB Journal, 19(1):91–113, 2010.

[PAG06] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and
complexity of sparql. In International semantic web conference, volume
4273, pages 30–43. Springer, 2006.

[PAG09] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and
complexity of sparql. ACM Transactions on Database Systems (TODS),
34(3):16, 2009.

[Pol07] Axel Polleres. From sparql to rules (and back). In Proceedings of the 16th
international conference on World Wide Web, pages 787–796. ACM, 2007.

[PS14] Reinhard Pichler and Sebastian Skritek. Containment and equivalence of
well-designed sparql. 2014.

69

[PV11] Francois Picalausa and Stijn Vansummeren. What are real sparql queries
like? In Proceedings of the International Workshop on Semantic Web
Information Management, SWIM ’11, pages 7:1–7:6, New York, NY, USA,
2011. ACM.

[QL08] Bastian Quilitz and Ulf Leser. Querying distributed RDF data sources with
SPARQL. Springer, 2008.

[ses] http://rdf4j.org.

[SGK+08] Lefteris Sidirourgos, Romulo Goncalves, Martin Kersten, Niels Nes, and
Stefan Manegold. Column-store support for rdf data management: not all
swans are white. Proceedings of the VLDB Endowment, 1(2):1553–1563,
2008.

[SHa] Eric Prud’hommeaux Steve Harris, Andy Seaborne. Rdf dataset, sparql
1.1 query language w3c recommendation. http://www.w3.org/TR/
sparql11-query/#rdfDataset.

[SHb] Eric Prud’hommeaux Steve Harris, Andy Seaborne. Service variables,
sparql 1.1 query language w3c recommendation. https://www.w3.org/
TR/2012/PR-sparql11-federated-query-20121108/diff#
variableService.

[SHH+11] Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael
Schmidt. Fedx: Optimization techniques for federated query processing on
linked data. In The Semantic Web–ISWC 2011, pages 601–616. Springer,
2011.

[SHK+08] Michael Schmidt, Thomas Hornung, Norbert Küchlin, Georg Lausen, and
Christoph Pinkel. An experimental comparison of RDF data management
approaches in a SPARQL benchmark scenario. Springer, 2008.

[SKCT05] Giorgos Serfiotis, Ioanna Koffina, Vassilis Christophides, and Val Tannen.
Containment and minimization of rdf/s query patterns. In The Semantic
Web–ISWC 2005, pages 607–623. Springer, 2005.

[SML10] Michael Schmidt, Michael Meier, and Georg Lausen. Foundations of sparql
query optimization. In Proceedings of the 13th International Conference
on Database Theory, pages 4–33. ACM, 2010.

[SNP+13] Muhammad Saleem, Axel-Cyrille Ngonga Ngomo, Josiane Xavier Parreira,
Helena F Deus, and Manfred Hauswirth. Daw: Duplicate-aware federated
query processing over the web of data. In The Semantic Web–ISWC 2013,
pages 574–590. Springer, 2013.

70

http://rdf4j.org
http://www.w3.org/TR/sparql11-query/#rdfDataset
http://www.w3.org/TR/sparql11-query/#rdfDataset
https://www.w3.org/TR/2012/PR-sparql11-federated-query-20121108/diff#variableService
https://www.w3.org/TR/2012/PR-sparql11-federated-query-20121108/diff#variableService
https://www.w3.org/TR/2012/PR-sparql11-federated-query-20121108/diff#variableService

[SSB+08] Markus Stocker, Andy Seaborne, Abraham Bernstein, Christoph Kiefer, and
Dave Reynolds. Sparql basic graph pattern optimization using selectivity
estimation. In Proceedings of the 17th international conference on World
Wide Web, pages 595–604. ACM, 2008.

[vir] virtuoso.openlinksw.com.

[WEGL12] Melisachew Wudage, Jérôme Euzenat, Pierre Genevès, and Nabil Layaıda.
Sparql query containment under shi axioms. In Proceedings 26th AAAI
Conference, pages 10–16, 2012.

[WKB08] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. Hexastore:
sextuple indexing for semantic web data management. Proceedings of the
VLDB Endowment, 1(1):1008–1019, 2008.

71

virtuoso.openlinksw.com

Appendix

Lemma 6. Let P ∈ Pwdgs, DS a dataset so that ep(ds) = DS and G a graph in the
dataset DS so that (g,G) ∈ DS. Let D =

⋃
c∈dom(ep)

data(ep(c)). Let Q = trans(P, g, ds).

Then

Q(D) =



JP Kep(ds)
graph(g,ep(ds)) if g ∈ U, ds ∈ U⋃

ds′∈dom(ep)
{µ ∪ [ds 7→ ds′] |

µ ∈ JP Kep(ds′)
graph(g,ep(ds)), µ ∼ [ds 7→ ds′]} if g ∈ U, ds ∈ V⋃

g′∈names(ep(ds))
{µ ∪ [g 7→ g′] |

µ ∈ JP Kep(ds)
graph(g′,ep(ds)), µ ∼ [g 7→ g′]} if g ∈ V, ds ∈ U⋃

ds′∈dom(ep),g′∈names(ep(ds′))

{
µ ∪ {[ds 7→ ds′], [g 7→ g′]} |

µ ∈ JP Kep(ds′)
graph(g′,ep(ds′)), µ ∼ {[ds 7→ ds′], [g 7→ g′]}

}
if g ∈ V, ds ∈ V

holds.

Proof. We proceed to prove the statement using structural induction on P .

1. For the base case we assume that P = (u, v, w) is a triple pattern:
By construction we have that Q : vars(ds, g, u, v, w)← T (ds, g, u, v, w).
⊆:
Let ds, g ∈ U. LetDS = ep(ds) andG = graph(g,DS). Let µ ∈ JP KDSG be arbitrary.
Then dom(µ) = vars(P) and µ(P) ∈ G by SPARQL semantics. Because we have
µ(P) ∈ G and our database D contains by construction T (ds, g, µ(x), µ(y), µ(z))
we have that µ ∈ Q(D).

Let ds ∈ V and g ∈ U. Because ds is a variable we have to show that
⋃

ds′∈dom(ep)
{µ∪

[ds 7→ ds′] | µ ∈ JP Kep(ds′)
graph(g,ep(ds′)), µ ∼ [ds 7→ ds′]} ⊆ Q(D). Let ds′ ∈ dom(ep)

73

be arbitrary, let µ ∈ JP Kep(ds′)
graph(g,ep(ds′)) where µ ∼ [ds 7→ ds′]. Because we have

µ(P) ∈ graph(g, ep(ds′)) by SPARQL semantics and our database D contains by
construction
T (ds′, g, µ(x), µ(y), µ(z)) we have that µ ∪ [ds→ ds′] ∈ Q(D).

Let ds ∈ U and g ∈ V. Let DS = ep(ds). Because g is a variable we have to show
that

⋃
g′∈names(ep(ds))

{µ ∪ [g 7→ g′] | µ ∈ JP KDSgraph(g′,DS), µ ∼ [g 7→ g′]} ⊆ Q(D). Let

g′ ∈ names(DS) be arbitrary, let µ ∈ JP KDSgraph(g′,DS) where µ ∼ [g 7→ g′]. Because
we have µ(P) ∈ graph(g′, DS) by SPARQL semantics and our database D contains
by construction
T (ds, g′, µ(x), µ(y), µ(z)) we have that µ ∪ [g → g′] ∈ Q(D).

Let ds, g ∈ V. Because ds and g are variables we have to show that⋃
g′∈names(ds′),ds′∈dom(ep)

{µ∪{[ds 7→ ds′][g 7→ g′]} | µ ∈ JP Kep(ds′)
graph(g′,ep(ds′)), µ ∼ {[ds 7→

ds′][g 7→ g′]}} ⊆ Q(D). Let ds′ ∈ dom(ep), g′ ∈ names(ep(ds′)) be arbitrary,
let µ ∈ JP Kep(ds′)

graph(g′,ep(ds′)) where µ ∼ {[ds 7→ ds′][g 7→ g′]}. Because we have
µ(P) ∈ graph(g′, ep(ds′)) by SPARQL semantics and our database D contains by
construction
T (ds′, g′, µ(x), µ(y), µ(z)) we have that µ ∪ {[g → g′][ds→ ds′]} ∈ Q(D). This can
be done because µ ∼ {[ds→ ds′][g → g′]} was assumed.

⊇:
Let ds, g ∈ U. Let DS = ep(ds) and G = graph(g,DS). Let µ ∈ Q(D) be
arbitrary. We thus have a mapping µ from the variables in vars(P) to constants
s.t. T (ds, g, µ(u), µ(v), µ(w)) ∈ D. But by construction of D this means that
(µ(u), µ(v), µ(w)) ∈ G and obviously dom(µ) = vars(P) thus µ ∈ JP KDSG .

Let ds ∈ V, g ∈ U. Because ds is a variable we have to show that
⋃

ds′∈dom(ep)
{µ ∪

[ds 7→ ds′] | µ ∈ JP Kep(ds′)
graph(g,ep(ds′)), µ ∼ [ds 7→ ds′]} ⊇ Q(D). Let σ ∈ Q(D) be

arbitrary. We thus have a mapping σ from the variables in vars(ds, g, u, v, w) to
constants s.t.
T (σ(ds), g, σ(u), σ(v), σ(w))) ∈ D. Because σ ∈ Q(D) and ds ∈ V, we have σ(ds) =
ds′, s.t. by construction ds′ ∈ dom(ep). Let µ = σ\[ds 7→ ds′]. By construction this
means that (µ(u), µ(v), µ(w)) ∈ graph(g, ep(ds′)) and obviously dom(µ) = vars(P).
Thus µ ∈ JP Kep(ds′)

graph(g,ep(ds′)) holds. It remains to show that µ ∼ [ds 7→ ds′] but this
is obvious because σ contains [ds 7→ ds′] and µ = σ\[ds 7→ ds′].

Let ds ∈ U, g ∈ V. Let DS = ep(ds). Because g is a variable we have to
show that

⋃
g′∈names(ep(a))

{µ ∪ [g 7→ g′] | µ ∈ JP KDSgraph(g,DS), µ ∼ [g 7→ g′]} ⊇ Q(D).

74

Let σ ∈ Q(D) be arbitrary. We thus have a mapping σ from the variables in
vars(ds, g, u, v, w) to constants s.t.
T (ds, σ(g), σ(u), σ(v), σ(w))) ∈ D. Because σ ∈ Q(D) and g ∈ V, we have σ(g) =
g′, s.t. by construction g′ ∈ names(ds). Let µ = σ\[g 7→ g′] be a mapping.
By construction this means that (µ(u), µ(v), µ(w) ∈ graph(g′, DS) and obviously
dom(µ) = vars(P). Thus µ ∈ JP KDSgraph(g′,DS) holds. It remains to show that
µ ∼ [g 7→ g′] but this is obvious because σ contains [g 7→ g′] and µ = σ\[g 7→ g′].

Let ds ∈ V, g ∈ V. Because ds, g are variables we have to show that⋃
ds′∈dom(ep),g′∈names(ep(ds′))

{µ ∪ {[g 7→ g′][ds 7→ ds′]}

| µ ∈ JP Kep(ds′)
graph(g′,ep(ds′)), µ ∼ {[ds 7→ ds′], [g 7→ g′]}} ⊇ Q(D). Let σ ∈ Q(D) be

arbitrary. We thus have a mapping σ from the variables in vars(ds, g, u, v, w)
to constants s.t. T (σ(ds), σ(g), σ(u), σ(v), σ(w)) ∈ D. Because σ ∈ Q(D) and
g ∈ V, ds ∈ V, we have σ(g) = g′, σ(ds) = ds′, s.t. by construction g′ ∈ names(ds)
and ds ∈ dom(ep). Let µ = σ\{[g 7→ g′], [ds 7→ ds′]}. By construction this means
that µ(u), µ(v), µ(w) ∈ graph(g′, ep(ds′)) and obviously dom(µ) = vars(P). Thus
µ ∈ JP Kep(ds′)

graph(g′,ep(ds′)) holds. It remains to show that µ ∼ {[ds 7→ ds′], [g 7→ g′]} but
this is obvious because σ ⊇ {[ds 7→ d′], [g 7→ g′]} and µ = σ\{[ds 7→ ds′], [g 7→ g′]}.

2. Consider the case where P is a graph pattern (P1 AND P2).
By construction we have Q = O1 ∪O2 ← q1, q2.
⊆:
ds, g ∈ U: Let DS = ep(ds) and G = graph(g,DS). Let µ ∈ JP KDSG be arbitrary.
By induction hypothesis we know that JP1KDSG = Q1(D) and JP2KDSG = Q2(D)
hold. By semantics of SPARQL and µ ∈ JP KDSG we know that µ ∈ {µ1 ∪ µ2 | µ1 ∈
JP1KDSG , µ2 ∈ JP2KDSG and µ1 ∼ µ2}. That means that there is a µ1 ∈ JP1KDSG and
a µ2 ∈ JP2KDSG such that µ = µ1 ∪ µ2. By induction hypothesis µ1 ∈ Q1(D) and
µ2 ∈ Q2(D) hold. Because µ1 ∼ µ2 holds we know that µ ∈ Q(D) holds.

ds ∈ V, g ∈ U: Let ds′ be an arbitrary URI in dom(ep). Let µ ∈ JP Kep(ds)
graph(g,ep(ds))

be arbitrary. By induction hypothesis we know that
⋃

ds′∈dom(ep)
{µi∪[ds 7→ ds′] | µi ∈

JPiK
ep(ds′)
graph(g,ep(ds′)), µ ∼ [ds 7→ ds′]} = Qi(D) for i = 1, 2. By semantics of SPARQL

and µ ∈ JP Kep(ds′)
graph(g,ep(ds′)) we know that µ ∈ {µ1 ∪ µ2 | µ1 ∈ JP1K

ep(ds′)
graph(g,ep(ds′), µ2 ∈

JP2K
ep(ds′)
graph(g,ds′)

and µ1 ∼ µ2}. That means that there is a µ1 ∈ JP1K
ep(ds′)
graph(g,ep(ds′)) and a µ2 ∈

JP2K
ep(ds′)
graph(g,ep(ds′)) such that µ = µ1 ∪ µ2. Let µ′1 = µ1 ∪ [ds 7→ ds′] and µ′2 =

µ2 ∪ [ds 7→ d′].By induction hypothesis we have a µ′1 ∈ Q1(D) and a µ′2 ∈ Q2(D).
Because µ1 ∼ µ2 and µ1 ∼ [ds 7→ ds′] and µ2 ∼ [ds 7→ ds′] we have µ∪ [ds 7→ ds′] ∈
Q(D).

75

ds ∈ U, g ∈ V: Let DS = ep(ds). Let g′ be an arbitrary URI in names(ep(a)).
Let µ ∈ JP Kep(ds)

graph(g′,ds) be arbitrary. By induction hypothesis we know that⋃
g′∈names(DS)

{µi ∪ [g 7→ g′] | µi ∈ JPiKDSgraph(g′,DS), µ ∼ [g 7→ g′]} = Qi(D) for

i = 1, 2. By semantics of SPARQL and µ ∈ JP KDSgraph(g′,DS) we know that µ ∈
{µ1 ∪ µ2 | µ1 ∈ JP1KDSgraph(g′,DS), µ2 ∈ JP2KDSgraph(g′,DS)
and µ1 ∼ µ2}. That means that there is a µ1 ∈ JP1KDSgraph(g′,DS) and a µ2 ∈

JP2KDSgraph(g′,DS) such that µ = µ1∪µ2. Let µ′1 = µ1∪ [g 7→ g′] and µ′2 = µ2∪ [g 7→ g′].
By induction hypothesis we have a µ′1 ∈ Q1(D) and a µ′2 ∈ Q2(D). Because µ1 ∼ µ2
and µ1 ∼ [g 7→ g′] and µ2 ∼ [g 7→ g′] we have µ ∪ [g 7→ g′] ∈ Q(D).

ds, g ∈ V: Let ds′ be an arbitrary URI in dom(ep). Let g′ be an arbitrary
URI in names(ep(d)). Let µ ∈ JP Kep(ds′)

graph(g′,ep(ds′)) be arbitrary. By induction
hypothesis we know that

⋃
ds′∈dom(ep),g′∈names(ep(ds′))

{µi ∪ {[g 7→ g′], [ds 7→ ds′]} |

µi ∈ JPiK
ep(ds′)
graph(g′,ep(ds′)), µ ∼ {[g 7→ g′], [ds 7→ ds′]}} ⊆ Qi(D) for i = 1, 2. By

semantics of SPARQL and µ ∈ JP Kep(ds′)
graph(g′,ep(ds′)) we know that µ ∈ {µ1 ∪ µ2 | µ1 ∈

JP1K
ep(ds′)
graph(g′,ep(ds′)), µ2 ∈ JP2K

ep(ds′)
graph(g′,ep(ds′))

and µ1 ∼ µ2}. That means that there is a µ1 ∈ JP1K
ep(ds′)
graph(g′,ep(ds′)) and a µ2 ∈

JP2K
ep(ds′)
graph(g′,ep(ds′) such that µ = µ1 ∪ µ2. Let µ′1 = µ1 ∪ {[ds 7→ ds′], [g 7→ g′]} and

µ′2 = µ2 ∪ {[g 7→ g′], [ds 7→ ds′]}. By induction hypothesis we have a µ′1 ∈ Q1(D)
and a µ′2 ∈ Q2(D). Because µ1 ∼ µ2 and µ1 ∼ {[ds 7→ ds′], [g 7→ g′]} and
µ2 ∼ {[ds 7→ ds′], [g 7→ g′]} we have µ ∪ {[g 7→ g′], [ds 7→ ds′]} ∈ Q(D).

⊇:
ds, g ∈ U. Let µ ∈ Q(D) be arbitrary. Let DS = ep(ds) and G = graph(g, ep(ds)).
By induction hypothesis we know that JP1KDSG = Q1(D) and JP2KDSG = Q2(D) hold.
Thus there must be some µ1 ∈ Q1(D), µ2 ∈ Q2(D) where µ = µ1 ∪ µ2 holds by
construction of Q. But thus µ1 ∈ JP1KDSG and µ2 ∈ JP2KDSG by induction hypothesis.
By semantics of AND we know that µ ∈ JP KDSG .

ds ∈ V, g ∈ U. We want to show⋃
ds′∈dom(ep)

{µ ∪ [ds 7→ ds′] | µ ∈ JP Kep(ds′)
graph(g,ep(ds′)), µ ∼ [ds 7→ ds′]} ⊇ Q(D). Let

µ ∈ Q(D) be arbitrary. By induction hypothesis we know that
⋃

ds′∈dom(ep)
{µ∪ [ds 7→

ds′] | µ ∈ JPiK
ep(ds)
graph(g′,ep(ds)), µ ∼ [ds 7→ ds′]} = Qi(D) for i ∈ {1, 2}. Thus there

must be some µ1 ∈ Q1(D), µ2 ∈ Q2(D) where µ = µ1 ∪ µ2 holds by construction
of Q. By induction hypothesis we know that µi(ds) = ds′ for some ds′ ∈ dom(ep)
for i ∈ {1, 2}. Again by i.h. µi\{[ds 7→ ds′]} ∈ JPiK

ep(ds)
graph(g,ep(ds′)) for i ∈ {1, 2}.

76

By semantics of AND we know that µ\{[ds 7→ ds′]} ∈ JP Kep(ds′)
graph(g,ep(ds′)) and by

induction hypothesis we know that we have µ ∼ {[ds 7→ ds′]}.

ds ∈ U, g ∈ V. LetDS = ep(ds). We want to show
⋃

g′∈names(DS)
{µ∪{[g 7→ g′]} | µ ∈

JP KDSgraph(g′,DS), µ ∼ {[g 7→ g′]}} ⊇ Q(D). Let µ ∈ Q(D) be arbitrary. By induction
hypothesis we know that

⋃
g′∈names(DS)

{µ ∪ {[g 7→ g′]} | µ ∈ JPiKDSgraph(g′,DS), µ ∼

{[g 7→ g′]}} = Qi(D) for i = 1, 2. Thus there must be some µ1 ∈ Q1(D), µ2 ∈ Q2(D)
where µ = µ1 ∪ µ2 construction of Q. By induction hypothesis we know that
µi(g) = g′ for some g′ ∈ names(ds) for i ∈ {1, 2}. Again by i.h. µi\{[g 7→ g′]} ∈
JPiKDSgraph(g′,DS) i ∈ {1, 2} by induction hypothesis. By semantics of AND we know
that µ\{[g 7→ g′]} ∈ JP KDSgraph(g′,DS) and by induction hypothesis we know that we
have µ ∼ {[g 7→ g′]}.

ds, g ∈ V. We want to show
⋃

ds∈dom(ep),g′∈names(ep(ds′))
{µ ∪ {[ds 7→ ds′], [g 7→ g′]} |

µ ∈ JP Kep(ds′)
graph(g′,ep(ds′)), µ ∼ {[ds 7→ ds′], [g 7→ g′]}} ⊇ Q(D). Let µ ∈ Q(D) be

arbitrary. By induction hypothesis we know that
⋃

ds′∈dom(ep),g′∈names(ep(ds′))
{µ ∪

{[ds 7→ ds′], [g 7→ g′]} |
µ ∈ JPiK

ep(ds′)
graph(g′,ep(ds)), µ ∼ {[ds 7→ ds′], [g 7→ g′]}} = Qi(D) for i = 1, 2. Thus there

must be some µ1 ∈ Q1(D), µ2 ∈ Q2(D) where µ = µ1 ∪ µ2 holds by semantics of
∧ and construction of Q. By induction hypothesis we know that µi(ds) = ds′ for
some ds′ ∈ dom(ep) and µi(g) = g′ for some g′ ∈ names(ds′) for i ∈ {1, 2}. By
induction hypothesis µi\{[ds 7→ ds′], [g 7→ g′]} ∈ JPiK

ep(ds′)
graph(g′,ep(ds′)) for i ∈ {1, 2}.

By semantics of AND we know that µ\{[ds 7→ ds′], [g 7→ g′]} ∈ JP Kep(ds′)
graph(g,ep(ds′))

and by induction hypothesis we know that we have µ ∼ {[ds 7→ ds′], [g 7→ g′]}.

3. Consider the case where P is a graph pattern (P1 OPT P2).
By construction we have that Q1 = trans(P1, ds, g) = (T1, λ1, x1),
Q2 = trans(P2, ds, g) = (T2, λ2, x2) and Q = trans(P, ds, g) = (T, λ, x) for which
T = T1 ∪ T2 ∪ (r1, r2) where r1, r2 are the roots of T1, T2 respectively, λ = λ1 ∪ λ2
and x = x1 ∪ x2.

⊆:
Let ds, g ∈ U: Let DS = ep(ds) and G = graph(g,DS). Let µ ∈ JP KDSG be
arbitrary. By semantics of OPT we have that µ ∈ JP1 AND P2KDSG or µ ∈

{
µ1 ∈

JP1KDSG | ∀µ2 ∈ JP2KDSG : µ1 6∼ µ2
}
. We thus proceed by case distinction:

a) Assume µ ∈ JP1 AND P2KDSG . By induction hypothesis and semantics of AND,
we thus have some µ1 ∈ Q1(D) and some µ2 ∈ Q2(D) so that µ = µ1 ∪ µ2.
Because µi ∈ Qi(D) we have by semantics of wdPTs (recall Definition 32)

77

that µi ∈ Qi,T ′
i
so that T ′i ⊆ Ti for i ∈ {1, 2}. Let T ′ = T ′1 ∪ T ′2. Because

we have µ = µ1 ∪ µ2 we know that µ ∈ Q′T . It remains to show that this
homomorphism is maximal: assume there was a bigger subtree T̂ which would
allow a mapping µ′ A µ. Then the node which was put additionally to T must
either be in T1 or T2. But then either µ1 or µ2 were not maximal defying the
assumption that µ1 ∈ Q1 and µ2 ∈ Q2. Thus µ ∈ Q(D).

b) Assume µ ∈
{
µ1 ∈ JP1KDSG | ∀µ2 ∈ JP2KDSG : µ1 6∼ µ2

}
.

Because of our assumption µ = µ1 for some µ1 ∈ JP1KDSG . We know that
µ1 ∈ Q1(D) by induction hypothesis. Thus µ1 ∈ Q1,T ′

1
for some T ′1 ⊂ T1 by

semantics of wdPTs. µ ∈ QT ′
1
(D) follows. It remains to show that there is

no µ′ A µ. Because of our assumption we know there is no mapping µ2 ∈ Q2
which would be compatible with µ. Thus µ could only be enlarged by a bigger
mapping in Q1(D) but this defies the assumption that µ1 ∈ Q1(D).

Let ds ∈ V and g ∈ U: We want to show
⋃

ds′∈dom(ep)
{µ ∪ [ds 7→ ds′] | µ ∈

JP Kep(ds′)
graph(g,ep(ds′)), µ ∼ [ds 7→ ds′]} ⊆ Q(D). Let ds′ be an arbitrary URI in dom(ep).

Let µ ∈ JP Kep(ds′)
graph(g,ds′) be arbitrary. By semantics of OPT we have that µ ∈

JP1 AND P2K
ep(ds′)
graph(g,ds′) or µ ∈

{
µ1 ∈ JP1K

ep(ds′)
graph(g,ds′) | ∀µ2 ∈ JP2K

ep(ds′)
graph(g,ds′) : µ1 6∼

µ2
}
. We thus proceed by case distinction:

a) Assume µ ∈ JP1 AND P2K
ep(ds′)
graph(g,ds′). By induction hypothesis we have

⋃
ds′∈dom(ep)

{µ∪

[ds 7→ ds′] | µ ∈ JPiK
ep(ds′)
graph(g,ep(ds′)), µi ∼ [ds 7→ ds′]} ⊆ Qi(D) for i ∈ {1, 2}.

By semantics of SPARQL and µ ∈ JP Kep(ds′)
graph(g,ds′) we know that µ ∈ {µ1 ∪ µ2 |

µ1 ∈ JP1K
ep(ds′)
graph(g,ds′), µ2 ∈ JP2K

ep(ds′)
graph(g,ds′) and µ1 ∼ µ2}. Thus there is a

µ1 ∈ JP1K
ep(ds′)
graph(g,ds′) and a µ2 ∈ JP2K

ep(ds′)
graph(g,ds′) such that µ = µ1 ∪ µ2. Let

µ′i = µi ∪ [ds 7→ ds′] for i ∈ {1, 2}. Because µi ∈ Qi(D) we have a T ′i ⊆ Ti
such that µ′i ∈ Qi,T ′

i
(D) for i ∈ {1, 2}. Let T ′ = T ′1 ∪ T ′2. Because µ1 ∼ µ2

and µ1 ∼ [ds 7→ ds′] and µ2 ∼ [ds 7→ ds′] we have µ ∪ [ds 7→ ds′] ∈ Q′T (D). It
remains to show that this homomorphism µ ∪ [ds 7→ ds′] is maximal: assume
there was a bigger subtree T̂ which would allow a mapping µ′ A (µ∪[ds 7→ ds′]).
Then the node which was put additionally to T must either be in T1 or T2.
But then either µ′1 or µ′2 were not maximal defying the assumption that
µ′1 ∈ Q1(D) and µ′2 ∈ Q2(D). Thus µ ∪ [ds 7→ ds′] ∈ Q(D).

b) Assume µ ∈
{
µ1 ∈ JP1K

ep(ds′)
graph(g,ds′) | ∀µ2 ∈ JP2K

ep(ds′)
graph(g,ds′) : µ1 6∼ µ2

}
. By

induction hypothesis we have⋃
ds′∈dom(ep)

{µ1 ∪ [ds 7→ ds′] | µ1 ∈ JP1K
ep(ds′)
graph(g,ep(ds′)), µ ∼ [ds 7→ ds′]} = Q1(D).

Because µ1 ∈ JP1K
ep(ds′)
graph(g,ds′) we have µ ∪ [ds 7→ ds′] ∈ QT ′

1
(D), where T ′1 ⊆ T1

78

by wdPT semantics. It remains to show that there is no µ′ A µ. But because
we have {µ1 6∼ µ2 | ∀µ2 ∈ JP2K

ep(ds′)
graph(g,ds′)}, we know there is no mapping of

µ2 of Q2 which would be compatible with µ. Thus µ could only be a bigger
mapping µ′ ∈ Q1(D) but this defies the assumption that µ1 ∈ Q1(D) and thus
we are done.

Let ds ∈ U and g ∈ V: Let DS = ep(ds). We want to show
⋃

g′∈names(DS)
{µ ∪ [g 7→

g′] | µ ∈ JP KDSgraph(g′,DS), µ ∼ [g 7→ g′]} ⊆ Q(D) Let g′ be an arbitrary graph in
names(DS). Let µ ∈ JP KDSgraph(g′,DS) be arbitrary. By semantics of OPT we have that
µ ∈ JP1 AND P2KDSgraph(g′,DS) or µ ∈

{
µ1 ∈ JP1KDSgraph(g′,DS) | ∀µ2 ∈ JP2KDSgraph(g′,DS) :

µ1 6∼ µ2
}
. We proceed by case distinction:

a) Assume µ ∈ JP1 AND P2KDSgraph(g′,DS). By induction hypothesis we have⋃
g′∈names(DS)

{µ ∪ [g 7→ g′] | µ ∈ JPiKDSgraph(g′,DS), µi ∼ [g 7→ g′]} = Qi(D) and

i = 1, 2. By semantics of SPARQL and µ ∈ JP KDSgraph(g′,DS) we know that
µ ∈ {µ1 ∪ µ2 | µ1 ∈ JP1KDSgraph(g′,DS), µ2 ∈ JP2KDSgraph(g′,DS) and µ1 ∼ µ2}. Thus
there is a µ1 ∈ JP1K

ep(ds)
graph(g′,ds) and a µ2 ∈ JP2K

ep(ds)
graph(g′,ds) such that µ = µ1 ∪µ2.

Let µ′i = µi ∪ [g 7→ g′] for i ∈ {1, 2}. Because µi ∈ Qi(D) we have a T ′i ⊆ Ti
such that µ′i ∈ Qi,T ′

i
(D) for i ∈ {1, 2}. Let T ′ = T ′1 ∪ T ′2. Because µ1 ∼ µ2 and

µ1 ∼ [g 7→ g′] and µ2 ∼ [g 7→ g′] we have µ ∪ [g 7→ g′] ∈ Q′T (D). It remains to
show that this homomorphism µ ∪ [g 7→ g′] is maximal: assume there was a
bigger subtree T̂ which would allow a mapping µ′ A (µ ∪ [g 7→ g′]). Then the
node which was put additionally to T must either be in T1 or T2. But then
either µ′1 or µ′2 were not maximal defying the assumption that µ′1 ∈ Q1(D)
and µ′2 ∈ Q2(D). Thus µ ∪ [g 7→ g′] ∈ Q(D).

b) Assume µ ∈
{
µ1 ∈ JP1KDSgraph(g′,DS) | ∀µ2 ∈ JP2KDSgraph(g′,DS) : µ1 6∼ µ2

}
. By

induction hypothesis we have⋃
g′∈names(DS)

{µ1 ∪ [g 7→ g′] | µ1 ∈ JP1KDSgraph(g′,DS), µ ∼ [g 7→ g′]} = Q1(D).

Because µ1 ∈ JP1K
ep(ds)
graph(g′,ds) we have µ ∪ [g 7→ g′] ∈ QT ′

1
(D), where T ′1 ⊆ T1

by wdPT semantics. It remains to show that there is no µ′ A µ. But because
we have {µ1 6∼ µ2 | ∀µ2 ∈ JP2K

ep(ds)
graph(g′,ds)}, we know there is no mapping of

µ2 of Q2 which would be compatible with µ. Thus µ could only be a bigger
mapping µ′ ∈ Q1(D) but this defies the assumption that µ1 ∈ Q1(D) and thus
we are done.

Let ds, g ∈ V: We want to show
⋃

ds′∈dom(ep),g′∈names(ep(d))
{µ ∪ {[ds 7→ ds′], [g 7→

g′]} | µ ∈ JP Kep(ds′)
graph(g′,ep(ds′)), µ ∼ {[ds 7→ ds′], [g 7→ g′]}} ⊇ Q(D). Let ds′ be

79

an arbitrary URI in dom(ep), and g′ be an arbitrary URI in names(ep(d)). Let
µ ∈ JP Kep(ds′)

graph(g′,ep(ds′)) be arbitrary. By semantics of OPT we have that µ ∈
JP1 AND P2K

ep(ds′)
graph(g′,ep(ds′)) or

µ ∈
{
µ1 ∈ JP1K

ep(ds′)
graph(g′,ep(ds′)) | ∀µ2 ∈ JP2K

ep(ds′)
graph(g′,ep(ds′)) : µ1 6∼ µ2

}
. We thus

proceed by case distinction:

a) Assume µ ∈ JP1 AND P2K
ep(ds′)
graph(g′,ep(ds′)). By induction hypothesis we thus

have ⋃
ds′∈dom(ep),g′∈names(ep(d))

{µ∪{[ds 7→ ds′][g 7→ g′]} | µ ∈ JPiK
ep(ds′)
graph(g′,ep(ds′)), µi ∼

{[g 7→ g′], [ds 7→ ds′]}} = Qi(D) and i = 1, 2. By semantics of SPARQL and
µ ∈ JP Kep(ds′)

graph(g′,ep(ds′)) we know that µ ∈ {µ1∪µ2 | µ1 ∈ JP1K
ep(ds′)
graph(g′,ep(ds′)), µ2 ∈

JP2K
ep(ds′)
graph(g′,ep(ds′)) and µ1 ∼ µ2}. Thus there is a µ1 ∈ JP1K

ep(ds′)
graph(g′,ep(ds′)) and

a µ2 ∈ JP2K
ep(ds′)
graph(g′,ep(ds′)) such that µ = µ1 ∪ µ2. Let µ′i = µi ∪ {[ds 7→

ds′][g 7→ g′]} for i ∈ {1, 2}. Because µi ∈ Qi(D) we have a T ′i ⊆ Ti such
that µ′i ∈ Qi,T ′

i
(D) for i ∈ {1, 2}. Let T ′ = T ′1 ∪ T ′2. Because µ1 ∼ µ2 and

µi ∼ {[g 7→ g′], [ds 7→ ds′]} for i ∈ {1, 2}, we have µ ∪ [g 7→ g′] ∈ Q′T (D). It
remains to show that the mapping µ∪{[ds 7→ ds′], [g 7→ g′]} is maximal: assume
there was a bigger subtree T̂ which would allow a mapping µ′ A (µ ∪ {[ds 7→
ds′], [g 7→ g′]}). Then the node which was put additionally to T must either be
in T1 or T2. But then either µ′1 or µ′2 were not maximal defying the assumption
that µ′1 ∈ Q1(D) and µ′2 ∈ Q2(D). Thus µ ∪ {[g 7→ g′], [ds 7→ ds′]} ∈ Q(D).

b) Assume µ ∈
{
µ1 ∈ JP1K

ep(ds′)
graph(g′,ep(ds′)) | ∀µ2 ∈ JP2K

ep(ds′)
graph(g′,ep(ds′)) : µ1 6∼

µ2
}
. By induction hypothesis we have

⋃
ds′∈dom(ep),g′∈names(ep(ds′))

{µ1 ∪ {[ds′ 7→

ds][g 7→ g′]} | µ1 ∈ JP1K
ep(ds′)
graph(g′,ep(ds′)), µ ∼ {[ds 7→ ds′], [g 7→ g′]} = Q1(D).

Because µ1 ∈ JP1K
ep(ds)
graph(g′,ds) we have µ ∪ {[ds 7→ ds′], [g 7→ g′]} ∈ QT ′

1
(D),

where T ′1 ⊆ T1 by wdPT semantics. It remains to show that there is no µ′ A µ.
But because we have {µ1 6∼ µ2 | ∀µ2 ∈ JP2K

ep(ds′)
graph(g′,ds′)}, we know there is no

mapping of µ2 of Q2 which would be compatible with µ. Thus µ could only be
a bigger mapping µ′ ∈ Q1(D) but this defies the assumption that µ1 ∈ Q1(D)
and thus we are done.

⊇:
Because of the construction of Q, a solution, call it µ must either adhere µ ∈ QT ′(D)
for T ′ ⊆ T . We will further distinguish two cases:

a) µ ∈ QT ′(D) for some T ′ ⊆ T1

b) µ ∈ QT ′(D) for some T ′ = T ′1 ∪ T ′2 where T ′1 ⊆ T1 and T ′2 ⊆ T2.

80

Let ds, g ∈ U. Let DS = ep(ds) and G = graph(g,DS). Let µ ∈ Q(D) be arbitrary.
Case distinction:

a) µ ∈ QT ′
1
(D): Thus µ ∈ Q1(D) and by i.h. µ ∈ JP1KDSG and then also

{µ 6∼ µ2 | ∀µ2 ∈ JP2KDSG } by assumption. Thus µ ∈ JP KDSG .
b) If µ ∈ QT ′(D) we then have µ|vars(Q1) ∈ Q1(D) (restricted to the variables in

Q1) and µ|vars(Q2) ∈ Q2(D)(restricted to the variables in Q2). Thus by i.h.
and semantics of AND we have µ ∈ JP1 AND P2KDSG and µ ∈ JP KDSG .

Let ds ∈ V, g ∈ U. We want to prove
⋃

ds′∈dom(ep)
{µ ∪ [ds 7→ ds′] |

µ ∈ JP Kep(ds′)
graph(g,ep(ds′)), µ ∼ [ds 7→ ds′]} ⊇ Q(D). Let σ ∈ Q(D) be arbitrary.

Because σ ∈ Q(D) and ds ∈ V we have that σ(ds) = ds′ for some ds′ ∈ dom(ep).
Case distinction:

a) σ ∈ QT ′
1
(D): Because the assumption implies σ ∈ Q1(D) we can then use the

induction hypothesis
⋃

ds′∈dom(ep)
{µ ∪ [ds 7→ ds′] | µ ∈ JP1K

ep(ds′)
graph(g,ep(ds′)), µ ∼

[ds 7→ ds′]} = Q1(D). Let µ = σ\[ds 7→ ds′]. Thus µ ∈ JP1K
ep(ds′)
graph(g,ep(ds′)) and

we also have {µ 6∼ µ2 | ∀µ2 ∈ JP2K
ep(ds′)
graph(g,ep(ds′))} because of our assumption.

Thus µ ∈ JP Kep(ds′)
graph(g,ep(ds′) and µ ∼ [ds 7→ ds′] by induction hypothesis.

b) If σ ∈ QT ′(D) we can use the induction hypothesis twice:⋃
ds′∈dom(ep)

{µi ∪ [ds 7→ ds′] | µi ∈ JPiK
ep(ds′)
graph(g,ep(ds′)), µi ∼ [ds 7→ ds′]} = Qi(D)

for i = 1, 2.
Let µ = σ\[ds 7→ ds′]. Because σ ∈ QT ′(D) we have µ = µ1 ∪ µ2 for
some µ1|vars(Q1) ∪ [ds 7→ ds′] ∈ Q1(D) (restricted to the variables in Q1) and
µ2|vars(Q2) ∪ [ds 7→ ds′] ∈ Q2(D) (restricted to the variables in Q2). Thus
µ ∈ JP1 AND P2K

ep(ds′)
graph(ds′,g) and µ ∈ JP Kep(ds′)

graph(g,ds′). Also µ ∼ [ds 7→ ds′] holds
by induction hypothesis.

Let ds ∈ U, g ∈ V. Let DS = ep(ds). We want to prove
⋃

g′∈names(DS)
{µ ∪ [g 7→

g′] | µ ∈ JP KDSgraph(g,DS), µ ∼ [b 7→ g]} ⊇ Q(D). Let σ ∈ Q(D) be arbitrary. Because
σ ∈ QD and g ∈ V we have that σ(g) = g′ for some g′ ∈ names(DS). Case
distinction:

a) σ ∈ QT1(D): Because the assumption implies σ ∈ Q1(D) we can then use
the induction hypothesis

⋃
g∈names(DS)

{µ ∪ [g 7→ g′] | µ ∈ JP1KDSgraph(g′,DS), µ ∼

[g 7→ g′]} = Q1(D). Let µ = σ\[g 7→ g′]. Thus µ ∈ JP1KDSgraph(g′,DS) and we
also have {µ 6∼ µ2 | ∀µ2 ∈ JP2KDSgraph(g′,DS)} because of our assumption. Thus
µ ∈ JP KDSgraph(g′,DS) and µ ∼ [g 7→ g′] by induction hypothesis.

81

b) If σ ∈ QT ′(D) we can use the induction hypothesis twice:⋃
g∈names(DS)

{µi ∪ [g 7→ g′] | µi ∈ JPiK
ep(ds)
graph(g′,ep(ds)), µi ∼ [g 7→ g′]} = Qi(D) for

i = 1, 2.
Let µ = σ\[g 7→ g′]. Because σ ∈ QT ′(D) we have µ = µ1 ∪ µ2 for
some µ1|vars(Q1) ∪ [g 7→ g′] ∈ Q1(D) (restricted to the variables in Q1) and
µ2|vars(Q2) ∪ [g 7→ g′] ∈ Q2(D) (restricted to the variables in Q2). Thus
µ ∈ JP1 AND P2K

ep(ds)
graph(ds,g′) and µ ∈ JP Kep(ds)

graph(g′,ds). Also µ ∼ [g 7→ g′] holds
by induction hypothesis.

Let ds, g ∈ V We want to prove
⋃

g′∈names(ep(ds′)),ds′∈dom(ep)
{µ ∪ {[ds 7→ ds′][g 7→

g′]} | µ ∈ JP Kep(ds′)
graph(g′,ep(ds′)), µ ∼ {[ds 7→ ds′][g 7→ g′]}} ⊇ Q(D). Let σ ∈ Q(D) be

arbitrary. Because σ ∈ QD and ds, g ∈ V we have that σ(g) = g′ and σ(ds) = ds′

for some g′ ∈ names(DS) and ds′ ∈ dom(ep).
Case distinction:

a) σ ∈ QT1(D): we can then use the induction hypothesis⋃
ds′∈dom(ep),g′∈names(ep(d))

{µ∪{[ds 7→ ds′][g 7→ g′]} | µ ∈ JP1K
ep(ds′)
graph(g′,ep(ds′)), µ ∼

{[ds 7→ ds′][g 7→ g′]}} = Q1(D).
Thus µ ∈ JP1K

ep(ds′)
graph(g′,ep(ds′)) and we also have

{µ 6∼ µ2 | ∀µ2 ∈ JP2K
ep(ds′)
graph(g′,ep(ds′))} because of our assumption. Thus µ ∈

JP Kep(ds′)
graph(g′,ep(ds′)) and µ ∼ {[ds′ 7→ ds], [g′ 7→ g′]} by induction hypothesis.

b) If σ ∈ QT (D) we can use the induction hypothesis twice:⋃
ds′∈dom(ep),g′∈names(ep(ds′))

{µi ∪ {[ds 7→ ds′][g 7→ g′} |

µi ∈ JPiK
ep(ds′)
graph(g′,ep(ds′)), µi ∼ {[ds 7→ ds′][g 7→ g′]}} = Qi(D) for i = 1, 2.

Let µ = σ\{[ds 7→ ds′][g 7→ g′]}. Because σ ∈ QT ′(D) we have µ = µ1 ∪ µ2
for some µ1|vars(Q1) ∪ {[ds 7→ ds′][g 7→ g′]}(restricted to the variables in Q1)
and µ1|vars(Q1){[ds 7→ ds′][g 7→ g′]}(restricted to the variables in Q2). Thus
µ ∈ JP1 AND P2K

ep(ds′)
graph(g′,ep(ds′)) and µ ∈ JP Kep(ds′)

graph(g,ep(ds′)). Also µ ∼ {[ds 7→
ds′][g 7→ g′]} holds by induction hypothesis.

4. Consider the case where P is a graph pattern (GRAPH u P1).
Our outputquery is constructed as follows: Let Q1 = trans(P1, u, g). Assuming r1
is the root of T1 and λ(r1) = q1 we define

λ′(x) =
{
q1, LOC(u, ds), LOC(g, ds) if x = r1

λ(x) otherwise

and trans(P, ds, g) = (T1, λ
′, x1).

82

⊆:
ds, g ∈ U :
Let DS = ep(ds) and G = graph(g,DS). Let µ ∈ JP KDSG be arbitrary. Proceed by
case distinction:

a) u ∈ names(DS): We have µ ∈ JP1KDSgraph(u,DS) by SPARQL semantics and
assumption. By i.h. we have Q1(D) = JP1KDSgraph(u,DS) and thus µ ∈ Q1(D).
By construction of our query Q we see that µ ∈ Q(D).

b) u ∈ U\names(DS): Then JP1KDSgraph(u,DS) = {} by SPARQL semantics. But
then Q(D) = {} because we added LOC(u, ds) to the root of our query Q.

c) u ∈ V : Then µ ∈ S1 where

S1 =
{
µ1 ∪ [u → s] | s ∈ names(DS), µ1 ∈ JP1KDSgraph(s,DS), [u → s] ∼ µ1

}
.

By induction hypothesis we know that for Q1 = trans(P1, ds, u) we have⋃
g′∈names(DS)

{µ1 ∪ [u 7→ g′] | µ1 ∈ JP1KDSgraph(g′,DS), µ1 ∼ [u 7→ g′]} = Q1(D).

Because µ ∈ S1 there is an s ∈ names(DS) such that there is a µ1 ∈
JP1KDSgraph(s,DS), µ = µ1 ∪ [u → s] and µ1 ∼ [u 7→ s]. By induction hy-
pothesis we get that µ ∈ Q1(D). Looking at the construction of Q we get
µ ∈ Q(D).

ds ∈ V, g ∈ U :
We need to show

⋃
ds′∈dom(ep)

{µ ∪ [ds 7→ ds′] | µ ∈ JP Kep(ds′)
graph(g,ep(ds′)), µ ∼ [ds 7→

ds′]} ⊆ Q(D). Let ds′ ∈ dom(ep) be arbitrary. Let µ ∈ JP Kep(ds′)
graph(g,ds′) where

µ ∼ [ds 7→ ds′] holds be arbitrary. Proceed by case distinction:

a) u ∈ names(ep(ds′)) : We have µ ∈ JP1K
ep(ds′)
graph(u,ep(ds′)) by SPARQL semantics.

The induction hypothesis
⋃

ds′∈dom(ep)
{µ∪[ds 7→ ds′] | µ ∈ JP1K

ep(ds′)
graph(u,ep(ds′)), µ ∼

[ds 7→ ds′]} = Q1(D) yields µ ∪ [ds 7→ ds′] ∈ Q1(D). By construction of our
query Q we see that µ ∪ [ds 7→ ds′] ∈ Q(D).

b) u ∈ U\names(ep(d)): Then JP1K
ep(ds′)
graph(u,ep(ds′)) = {}. But then Q(D) = {}

because we added LOC(u, ds) to the root of our query Q.

c) u ∈ V : then µ ∈ S1 where S1 =
{
µ1 ∪ [u→ s] | s ∈ names(ep(ds′)),

µ1 ∈ JP1K
ep(ds′)
graph(s,ep(ds′)) ∧ [u → s] ∼ µ1

}
. By induction hypothesis we know

that we receive a wdPT Q1 = trans(P1, ds, u) for which⋃
g′∈names(ep(ds′)),ds′∈dom(ep)

{µ1 ∪ {[u 7→ g′], [ds 7→ ds′]} |

µ1 ∈ JP1K
ep(ds′)
graph(g′,ep(ds′)), µ1 ∼ {[u 7→ g′], [ds 7→ ds′]} = Q1(D) holds. Be-

cause µ ∈ S1 there is an s ∈ names(ep(ds′)) such that there is a µ1 ∈

83

JP1K
ep(ds′)
graph(s,ep(ds′)), µ = µ1 ∪ {[u→ s]}. We get that µ ∈ Q1(D) by induction

hypothesis. Also we have that µ∪ [ds→ ds′] ∈ Q(D) because we conjunctively
added LOC(g, ds) to the root of Q and we assumed µ ∼ [ds ∼ ds′] .

ds ∈ U, g ∈ V :
Let DS = ep(ds). We need to show⋃
g′∈names(DS)

{µ ∪ [g 7→ g′] | µ ∈ JP KDSgraph(g′,DS), µ ∼ [g 7→ g′]} ⊆ Q(D). Let

g′ ∈ names(ep(ds)) be arbitrary. Let µ ∈ JP KDSgraph(g′,DS) where µ ∼ [g 7→ g′] holds
be arbitrary. Proceed by case distinction:

a) u ∈ names(DS): By SPARQL semantics we have that µ ∈ JP1KDSgraph(u,DS).
We know that we receive a wdPT Q1 = trans(P1, ds, u) for which by i.h.
JP1KDSgraph(u,DS) = Q1(D) holds. Thus µ ∈ Q1(D). Because of the construction
of our query and especially the conjunct LOC(g, ds) in the root of Q we have
that µ ∪ [g 7→ g′] ∈ Q1(D).

b) u ∈ U\names(ep(ds)): then JP1KDSgraph(u,DS) = {}. But then Q(D) = {}
because we added LOC(u, ds) to the root of our query Q.

c) u ∈ V : then µ ∈ S1 where S1 =
{
µ1 ∪ [u → s] | s ∈ names(DS), µ1 ∈

JP1KDSgraph(s,DS) ∧ [u → s] ∼ µ1

}
. By induction hypothesis we know that we

receive a wdPT Q1 = trans(P1, ds, u) for which⋃
g′∈names(DS)

{µ1 ∪ {[u 7→ g′]} | µ1 ∈ JP1KDSgraph(g′,DS), µ1 ∼ {[u 7→ g′]}} = Q1(D)

holds. Because µ ∈ S1 there is an s ∈ names(DS) such that there is a
µ1 ∈ JP1KDSgraph(s,DS), µ = µ1 ∪{[u→ s]}. We get that µ ∈ Q1(D) by induction
hypothesis. We thus get that µ ∪ [g 7→ g′] ∈ Q(D) because we conjunctively
added LOC(g, ds) to root of Q and we asssumed µ ∼ [g 7→ g′].

ds, g ∈ V :
We need to show

⋃
g′∈names(ep(ds′)),ds′∈dom(ep)

{µ ∪ {[g 7→ g′], [ds 7→ ds′]} | µ ∈

JP Kep(ds′)
graph(g′,ep(ds′)), µ ∼ {[ds 7→ ds′][g 7→ g′]}} ⊆ Q(D). Let ds′ ∈ dom(ep) and

g′ ∈ names(ep(ds′)) be arbitrary. Let µ ∈ JP Kep(ds′)
graph(g′,ep(ds′)) where µ ∼ {[ds 7→

ds′], [g 7→ g′]} holds be arbitrary. Proceed by case distinction:

a) u ∈ names(ep(ds)):
By SPARQL semantics we have µ ∈ JP1KDSgraph(u,DS). We know that we
receive a wdPT Q1 = trans(P1, ds

′, u) for which by i.h.
⋃

ds′∈dom(ep)
{µ ∪ [ds 7→

ds′] | µ ∈ JP1K
ep(ds′)
graph(u,ep(ds′)), µ ∼ [ds 7→ ds′]} = Q1(D) holds. Thus µ ∪ [ds 7→

84

ds′] ∈ Q1(D). By construction of our query and especially the conjunct in the
root of Q, i.e., LOC(g, ds) we have that µ ∪ {[ds 7→ ds′], [g 7→ g′]} ∈ Q(D).

b) u ∈ U\names(ep(ds′)) then JP1K
ep(ds′)
graph(u,ep(ds′)) = {}. But then Q(D) = {}

because we added LOC(u, ds) to the root of our query.

c) u ∈ V : then µ ∈ S1 where S1 =
{
µ1 ∪ [u→ s] | s ∈ names(ep(ds′)),

µ1 ∈ JP1K
ep(ds′)
graph(s,ep(ds′)) ∧ [u → s] ∼ µ1

}
. By induction hypothesis we know

that we receive a wdPT Q1 = trans(P1, ds
′, u) for which⋃

ds′∈dom(ep),g′∈names(ep(ds′))
{µ ∪ {[ds 7→ ds′], [u 7→ g′]} |

µ ∈ JP Kep(ds′)
graph(g′,ep(ds′)), µ ∼ {[ds 7→ ds′], [g 7→ g′]}} = Q1(D) holds. Be-

cause µ ∈ S1 there is an s ∈ names(ep(ds′)) such that there is a µ1 ∈
JP1K

ep(ds′)
graph(s,ep(ds′)), µ = µ1 ∪ {[u → s]} and µ1 ∼ {[u 7→ s]} by induction hy-

pothesis. We thus get that µ ∪ {[g 7→ g′], [ds 7→ ds′]} ∈ Q(D) because we con-
junctively added LOC(g, ds) to Q and we assumed µ ∼ {[g 7→ g′], [ds 7→ ds′]}.

⊇:
ds, g ∈ U
Let µ ∈ Q(D) be arbitrary.

a) u is a constant: Because µ ∈ Q(D) a part of µ must also satisfy Q1(D) by
construction of Q. We have by induction hypothesis that Q1(D) = JP1K

ep(ds)
u .

And thus by SPARQL semantics µ ∈ JP Kep(ds)
g holds.

b) u is a variable: By induction hypothesis
⋃

g′∈names(ep(ds))
{µ1 ∪ [u 7→ g′] | µ1 ∈

JP1K
ep(ds)
graph(g′,ep(ds)), µ1 ∼ [u 7→ g′]} = Q1(D) holds. By the fact that µ ∈ Q(D)

and both g and ds are URIs we know that µ ∈ Q1(D) by construction
of Q. By induction hypothesis we have µ = µ1 ∪ [u 7→ g′] for some g′ ∈
names(ep(ds)). We know that µ1 ∈ JP1K

ep(ds)
graph(g′,ep(ds)) and µ1 ∼ [u 7→ g′] by

induction hypothesis. But this means by semantics of the GRAPH operator
that µ ∈ JP Kep(ds)

graph(g,ep(ds)).

ds ∈ V, g ∈ U
We want to show

⋃
ds′∈dom(ep)

{µ ∪ [ds 7→ ds′] | µ ∈ JP Kep(ds′)
graph(g,ep(ds′)), µ ∼ [ds 7→

ds′]} ⊇ Q(D).
Let σ ∈ Q(D) be arbitrary:

a) u is a constant: We have by induction hypothesis that
⋃

ds′∈dom(ep)
{µ ∪ [ds 7→

ds′] | µ ∈ JP1K
ep(ds′)
graph(u,ep(ds′)), µ ∼ [ds 7→ ds′]} ⊇ Q1(D). A part of σ, call it µ

85

must fulfill Q1 because of the construction of Q. Thus µ ∈ JP1K
ep(ds′)
graph(u,ep(ds′))

and by SPARQL semantics µ ∈ JP1K
ep(ds′)
graph(g,ep(ds′)) hold. Looking at the con-

struction of Q we see that σ = µ ∪ [ds 7→ ds′] for some ds′ ∈ dom(ep) thus
µ ∼ [ds 7→ ds′] .

b) u is a variable: By induction hypothesis
⋃

ds′∈dom(ep),g′∈names(ep(ds′))
{µ1∪{[ds 7→

ds′], [u 7→ g′]} | µ1 ∈ JP1K
ep(ds)
graph(g′,ep(ds)), µ1 ∼ {[ds 7→ ds′], [u 7→ g′]}} = Q1(D)

holds. Some submapping of σ must fulfill Q1(D) by construction of Q and
σ ∈ Q(D). Call it µ. By the fact that µ ∈ Q1(D) we thus know by induction
hypothesis that µ = µ1 ∪ {[u 7→ g′], [ds 7→ ds′]} for some g′ ∈ names(ep(ds′))
and some ds′ ∈ dom(ep). Also, we know that µ1 ∈ JP1K

ep(ds′)
graph(g′,ep(ds′)) and

µ1 ∼ [u 7→ g′]. But this means by semantics of the GRAPH operator that
(µ1 ∪ [u 7→ ds]) ∈ JP Kep(ds′)

graph(g,ep(ds′)). Because µ ∈ Q1(D) and µ = µ1 ∪ {[ds 7→
ds′], [u 7→ g′]} implies (µ1 ∪ {u 7→ g′}) ∼ [ds 7→ ds′] we are done.

ds ∈ U, g ∈ V: Let DS = ep(ds). Let σ(g) = f . By construction of Q and D we
get that f ∈ names(ep(ds)).
We want to show

⋃
f∈names(DS)

{µ∪[g 7→ f] | µ ∈ JP KDSgraph(f,DS), µ ∼ [g 7→ f]} ⊇ Q(D).

Let σ ∈ Q(D) be arbitrary.

a) By induction hypothesis we know that Q1(D) = JP1KDSu . Looking at our
mapping σ we know that there is a part of σ, call it µ for which µ ∈ Q1(D)
and thus µ ∈ JP1KDSu and by SPARQL semantics µ ∈ JP1KDSf hold. We have
µ ∼ [g 7→ f] for some f ∈ names(DS) because of the conjunct LOC(g, ds) in
the root of Q and σ = µ ∪ [g 7→ f].

b) If u is a variable then consider Q1 = trans(P1, ds, u). By induction hypothesis⋃
g′∈names(DS)

{µ1 ∪ [u 7→ g′] | µ1 ∈ JP1KDSgraph(g′,DS), µ1 ∼ [u 7→ g′]} = Q1(D)

holds. Some part of σ must satisfy Q1 by the construction of Q and σ ∈ Q(D),
call it µ. We first show that µ ∈ JP KDSgraph(f,DS): This means, we need to show
that µ ∈ JP1KDSgraph(s,DS for s ∈ names(DS) and [u 7→ s] ∼ µ. By our i.h. and
µ ∈ Q1(D) we know that µ = µ1 ∪ {[u 7→ s]}, for some s ∈ names(DS). We
know again by i.h. that µ1 ∈ JP1KDSgraph(s,DS) and µ1 ∼ [u 7→ s′]. But this
means by semantics of the GRAPH operator that µ1∪ [u 7→ s] ∈ JP KDSgraph(f,DS)
It remains to show that µ ∼ [g 7→ f]. Looking at the construction of the query
we know that LOC(g, ds) must be fulfilled by σ. Thus µ ∼ [g 7→ f] because µ
is a part of σ.

ds, g ∈ V:
We want to show

⋃
ds′∈dom(ep),f∈names(ep(ds′))

{µ ∪ {[ds 7→ ds′], [g 7→ f]} | µ ∈

86

JP Kep(ds′)
graph(g′,ep(ds′)), µ ∼ {[ds 7→ ds′], [g 7→ f]}} ⊇ Q(D) Let σ ∈ Q(D) be arbitrary.

Let σ(ds) = ds′ and σ(g) = f . By the construction of Q and D, ds′ ∈ dom(ep) and
f ∈ names(ep(ds′)).

a) u is a constant:
By induction hypothesis we know that

⋃
ds′∈dom(ep)

{µ ∪ [ds 7→ ds′] | µ ∈

JP1K
ep(ds′)
graph(g,ep(ds′)), µ ∼ [ds 7→ ds′]} = Q1(D). Looking at our mapping σ

we know that there is a part of σ, call it µ for which µ ∈ Q1(D) and thus
µ\[ds 7→ ds′] ∈ JP1K

ep(ds′)
u . By semantics of graph we have µ\[ds 7→ ds′] ∈

JP1K
ep(ds′)
f . We have µ\[ds 7→ ds′] ∼ [g 7→ f] and µ ∼ [ds 7→ ds′] because

µ\[ds 7→ ds′] ⊆ σ, σ ∈ Q(D) and because of the conjunct LOC(g, ds) in the
root of Q.

b) u is a variable: By induction hypothesis
⋃

ds′∈dom(ep),g′∈names(ep(ds′))
{µ∪ {[ds 7→

ds′], [u 7→ g′]} | µ ∈ JP1K
ep(ds′)
graph(g′,ep(ds′)), µ ∼ {[ds 7→ ds′], [u 7→ g′]}} = Q1(D)

holds. Some part of σ must satisfy Q1 by the construction of Q and σ ∈ Q(D),
call it µ. Let µ(u) = g′ for some g′ ∈ names(ds′). Because µ ∈ Q1(D)
we can use the induction hypothesis: This means µ\{[ds 7→ ds′], [u 7→ g′]} ∈
JP1K

ep(ds′)
graph(g′,ep(ds′)). Obviously µ\{[ds 7→ ds′]} ∼ [u 7→ g′]}. From the semantics

of the GRAPH operator we get µ\{[ds 7→ ds′]} ∈ JP1K
ep(ds′)
graph(f,ep(ds′)). It remains

to show that µ ∼ [g 7→ f] and µ ∼ [ds 7→ ds′]. Looking at the construction of
the query we know that LOC(g, ds) must be fulfilled by σ. Thus µ ∼ [g 7→ f]
because µ is a part of σ the same arguments hold for µ ∼ [ds 7→ ds′].

5. Consider the case where P is a graph pattern of the form (SERVICE u P1). trans
checks if u ∈ U and u /∈ dom(ep). If this is the case Q : {} →. Otherwise we let
Q = trans(P1, u, g) and add LOC(u, ds) and LOC(g, ds) to the root of Q.
⊆:
Let ds, g ∈ U . Let DS = ep(ds) and G = ep(g,DS). Let µ ∈ JP KDSG be arbitrary.

a) u ∈ dom(ep): that means that µ ∈ JP1K
ep(u)
graph(def,ep(u)) but by i.h. we know

that JP1K
ep(u)
graph(def,ep(u)) = Q1(D). By construction of Q we have µ ∈ Q(D).

b) u ∈ U\dom(ep): Thus µ = µ∅ which is the empty mapping. This is the same
mapping our query {} ← returns and we are done.

c) u ∈ V: Thus µ ∈ {µ1 ∪ [u→ s] | s ∈ dom(ep), µ1 ∈ JP1K
ep(s)
graph(def,ep(s)) ∧ [u→

s] ∼ µ1} by semantics. Assume µ(u) = s. By induction hypothesis we know
that

⋃
ds′∈dom(ep)

{µ1 ∪ [u 7→ ds′] | µ1 ∈ JP1K
ep(ds′)
graph(def,ep(ds′)), µ1 ∼ [u 7→ ds′]} =

Q1(D). By semantics of SPARQL µ = µ1∪ [u 7→ s] for µ1 ∈ JP1K
ep(s)
graph(def,ep(s)).

By induction hypothesis we can conclude µ ∈ Q1(D). By construction of Q
we have have µ = (µ1 ∪ [u 7→ s]) ∈ Q(D).

87

Let ds ∈ V, g ∈ U. We want to show⋃
ds′∈dom(ep)

{µ ∪ [ds 7→ ds′] | µ ∈ JP Kep(ds′)
graph(g,ep(ds′)), µ ∼ [ds 7→ ds′]} ⊆ Q(D). Let

ds′ ∈ dom(ep) be arbitrary. Let µ ∈ JP Kep(ds′)
graph(g,ds′) so that µ ∼ [ds 7→ ds′].

a) u ∈ dom(ep): µ ∈ JP1K
ep(u)
graph(def,ep(u)) by semantics. By i.h. we know that

JP1K
ep(u)
graph(def,ep(u)) = Q1(D). By construction of q and especially the conjunct

LOC(ds, g) in the root, we get µ ∪ [ds 7→ ds′] ∈ Q.

b) u ∈ I\dom(ep): By semantics µ = µ∅ which is the empty mapping. This is
the same mapping our query {} ← returns and we are done.

c) u ∈ V:
By semantics µ ∈ {µ1 ∪ [u → s] | s ∈ dom(ep), µ1 ∈ JP1K

ep(s)
graph(def,ep(s)) ∧

[u → s] ∼ µ1}. Assume µ(u) = s. By induction hypothesis we know that⋃
ds′∈dom(ep)

{µ1∪ [u 7→ ds′] | µ1 ∈ JP1K
ep(ds′)
graph(def,ep(ds′)), µ1 ∼ [u 7→ ds′]} = Q1(D).

By semantics of SPARQL µ = µ1 ∪ [u 7→ s] for µ1 ∈ JP1K
ep(s)
graph(def,ep(s)). By

induction hypothesis we can conclude µ ∈ Q1(D). By construction of Q and
especially the conjunct LOC(ds, g) in the root, we have µ ∪ [ds 7→ ds′] =
(µ1 ∪ [u 7→ s] ∪ [ds 7→ ds′]) ∈ Q(D).

Let ds ∈ U, g ∈ V. We want to show
⋃

g′∈names(ep(ds))
{µ ∪ [g 7→ g′] | µ ∈

JP Kep(ds)
graph(g′,ep(ds)), µ ∼ [g 7→ g′]} ⊆ Q(D). Let g ∈ names(ep(ds)) be arbitrary.

Let µ ∈ JP Kep(ds)
graph(g′,ep(ds)) so that µ ∼ [g 7→ g′].

a) u ∈ dom(ep): By semantics µ ∈ JP1K
ep(u)
graph(def,ep(u)) and by i.h. we know that

JP1K
ep(u)
graph(def,ep(u)) = Q1(D). By construction of Q and especially the conjunct

LOC(ds, g) in the root of Q we have that µ ∪ [g 7→ g′] ∈ Q.

b) u ∈ U\dom(ep): By semantics µ = µ∅ which is the empty mapping. This is
the same mapping our query {} ← returns and we are done.

c) u ∈ V: By semantics µ ∈ {µ1∪[u→ s] | s ∈ dom(ep), µ1 ∈ JP1K
ep(s)
graph(def,ep(s))∧

[u → s] ∼ µ1}. Assume µ(u) = s. By induction hypothesis we know that⋃
ds′∈dom(ep)

{µ1∪ [u 7→ ds′] | µ1 ∈ JP1K
ep(ds′)
graph(def,ep(ds′)), µ1 ∼ [u 7→ ds′]} = Q1(D).

By semantics of SPARQL µ = µ1 ∪ [u 7→ s] for µ1 ∈ JP1K
ep(s)
graph(def,ep(s)). By

induction hypothesis we can conclude µ ∈ Q1(D). By construction of Q and
especially the conjunct LOC(ds, g) we have (µ ∪ [g 7→ g′]) = (µ1 ∪ [u 7→
s] ∪ [g 7→ g′]) ∈ Q(D).

88

Let ds, g ∈ V. We want to show
⋃

ds′∈dom(ep),g′∈names(ep(ds′))
{µ ∪ {[ds 7→ ds′], [g 7→

g′]} | µ ∈ JP Kep(ds′)
graph(g′,ep(ds′)), µ ∼ {[ds 7→ ds′], [g 7→ g′]}} = Q(D). Let ds′ ∈ dom(ep)

and g′ ∈ nameS(ep(ds′)) be arbitrary. Let µ ∈ JP Kep(ds′)
graph(g,g′) so that µ ∼ [ds 7→ ds′].

a) u ∈ dom(ep): By semantics µ ∈ JP1K
ep(u)
graph(def,ep(u)) but by i.h. we know that

JP1K
ep(u)
graph(def,ep(u)) = Q1(D). By construction of Q and especially the conjunct

LOC(ds, g in the root of Q we have that µ ∪ {[ds 7→ ds′][g 7→ g′]} ∈ Q.

b) u ∈ U\dom(ep): By semantics µ = µ∅ which is the empty mapping. This is
the same mapping our query {} ← returns and we are done.

c) u ∈ V:
By semantics µ ∈ {µ1 ∪ [u→ s] | s ∈ dom(ep), µ1 ∈ JP1K

ep(s)
graph(def,ep(s)) ∧ [u→

s] ∼ µ1}. Assume µ(u) = s. We know that s ∈ dom(ep). By induction hypoth-
esis we know that

⋃
ds′∈dom(ep)

{µ1 ∪ [u 7→ ds′] | µ1 ∈ JP1K
ep(ds′)
graph(def,ep(ds′)), µ1 ∼

[u 7→ ds′]} = Q1(D). By semantics of SPARQL µ = µ1 ∪ [u 7→ s] for
µ1 ∈ JP1K

ep(s)
graph(def,ep(s)). By induction hypothesis we can conclude µ ∈ Q1(D).

By construction of Q and especially its conjunct in the root LOC(ds, g) we
have (µ ∪ {[ds 7→ ds′][g 7→ g′]}) = µ1 ∪ {[ds 7→ ds′][g 7→ g′], [u 7→ s]} ∈ Q(D).

⊇:
Let ds, g ∈ U and µ ∈ Q(D) be arbitrary.

a) Assume u is an URI. By i.h. we know that JP1K
ep(u)
graph(def,ep(u)) = Q1(D)

and thus by construction of the query Q and the fact that µ ∈ Q(D), µ ∈
JP Kep(ds)

graph(g,ep(ds))

b) Assume u is a variable. By induction hypothesis we know that
⋃

ds′∈dom(ep)
{µ1∪

[u 7→ ds′] | µ1 ∈ JP1K
ep(ds′)
graph(def,ep(ds′)), µ1 ∼ [u 7→ ds′]} = Q1(D). Assume

w.l.o.g. µ(u) = s. µ1 = µ\[u 7→ s]. By induction hypothesis we know
that µ1 ∈ JP1K

ep(s)
graph(def,ep(s)). By construction of Q especially the conjunct

LOC(u, g), s ∈ dom(ep) and by our induction hypothesis µ1 ∼ [u 7→ s] holds.
By semantics µ ∈ JP Kdsgraph(g,ep(ds)) follows.

Let ds ∈ V, g ∈ U and σ ∈ Q(D) be arbitrary. We need to show
⋃

ds′∈dom(ep)
{µ ∪

[ds 7→ ds′] | µ ∈ JP Kep(ds′)
graph(g,ep(ds′)), µ ∼ [ds 7→ ds′]} ⊇ Q(D). Assume that σ(ds) =

ds′, because of the conjunct LOC(ds, g) we have that ds′ ∈ dom(ep).

89

a) Assume u is an URI. By i.h. we know that JP1K
ep(u)
graph(def,ep(u)) = Q1(D). By

the fact that σ ∈ Q(D) and the construction of Q we can deduce that for a
part of σ, call it µ, µ ∈ Q1(D) holds. By i.h. we get µ ∈ JP1K

ep(u)
graph(def,ep(u)).

From this we can deduce µ ∈ JP1K
ep(ds′)
graph(g,ep(ds′)). Because [ds 7→ ds′] ∈ σ and

µ ⊆ σ we have µ ∼ [ds 7→ ds′].
b) Assume u is a variable. By induction hypothesis we know that

⋃
ds′∈dom(ep)

{µ1∪

[u 7→ ds′] | µ1 ∈ JP1K
ep(ds′)
graph(def,ep(ds′)), µ1 ∼ [u 7→ ds′]} = Q1(D). Let µ =

σ\[ds 7→ ds′]. We can see that µ ∈ JP Kep(ds′)
graph(g,ep(ds′)) for some ds′ ∈ dom(ep):

Assume w.l.o.g. µ(u) = s. µ1 = µ\[u 7→ s]. By induction hypothesis we
know that µ1 ∈ JP1K

ep(s)
graph(def,ep(s)). By our construction s ∈ dom(ep) and

µ1 ∼ [u 7→ s] holds. It remains to show that µ ∼ [ds 7→ ds′] which follows
from the construction of the query Q, i.e., the conjunct LOC(ds, g) in the
root of Q and the fact that σ ∈ Q(D).

Let ds ∈ U, g ∈ V and σ ∈ Q(D) be arbitrary. We need to show
⋃

g′∈names(ep(ds))
{µ∪

[g 7→ g′] | µ ∈ JP Kep(ds)
graph(g′,ep(ds)), µ ∼ [g 7→ g′]} ⊇ Q(D). Assume that σ(g) = g′,

because of the conjunct LOC(ds, g) we have that g′ ∈ names(ep(ds)).

a) Assume u is an URI. By i.h. we know that JP1K
ep(u)
graph(def,ep(u)) = Q1(D). By

the fact that σ ∈ Q(D) and the construction of Q we can deduce that for a
part of σ, call it µ, µ ∈ Q1(D) holds. By i.h. we get µ ∈ JP1K

ep(u)
graph(def,ep(u)).

From this we can deduce µ ∈ JP1K
ep(ds′)
graph(g,ep(ds′)). Because [g 7→ g′] ∈ σ and

µ ⊆ σ we have µ ∼ [g 7→ g′].
b) Assume u is a variable. By induction hypothesis we know that

⋃
ds′∈dom(ep)

{µ1∪

[u 7→ ds′] | µ1 ∈ JP1K
ep(ds′)
graph(def,ep(ds′)), µ1 ∼ [u 7→ ds′]} = Q1(D). Let µ =

σ\[g 7→ g′]. We can see that µ ∈ JP Kep(ds)
graph(g′,ep(ds)): Assume w.l.o.g. µ(u) = s.

µ1 = µ\[u 7→ s]. By induction hypothesis we know that µ1 ∈ JP1K
ep(s)
graph(def,ep(s)).

By our construction s ∈ dom(ep) and by our induction hypothesis µ1 ∼ [u 7→ s]
holds. It remains to show that µ ∼ [g 7→ g′] which follows from the construction
of the query Q, i.e., the conjunct LOC(ds, g) and the fact that σ ∈ Q(D).

Let ds, g ∈ V and σ ∈ Q(D) be arbitrary. We need to show⋃
ds′∈dom(ep),g′∈names(ep(d))

{µ ∪ {[ds 7→ ds′], [g 7→ g′]} |

µ ∈ JP Kep(ds′)
graph(g′,ep(ds′)), µ ∼ {[ds 7→ ds′], [g 7→ g′]}} ⊇ Q(D). Assume that σ(ds) =

ds′ and σ(g) = g′, because of the conjunct LOC(ds, g) we have that ds′ ∈ dom(ep)
and g′ ∈ names(ep(ds′)).

90

a) Assume u is an URI. By i.h. we know that JP1K
ep(u)
graph(def,ep(u)) = Q1(D). By the

fact that σ ∈ Q(D) and the construction of Q we can deduce that for a part
of σ, call it µ, µ ∈ Q1(D) holds. By i.h. we get µ ∈ JP1K

ep(u)
graph(def,ep(u)). From

this we can deduce µ ∈ JP1K
ep(ds′)
graph(g,ep(ds′)). Because {[ds 7→ ds′], [g 7→ g′]} ∈ σ

and µ ⊆ σ we have µ ∼ {[ds 7→ ds′], [g 7→ g′]}.
b) Assume u is a variable. By induction hypothesis we know that

⋃
ds′∈dom(ep)

{µ1∪

[u 7→ ds′] | µ1 ∈ JP1K
ep(ds′)
graph(def,ep(ds′)), µ1 ∼ [u 7→ ds′]} = Q1(D). Let µ =

σ\{[g 7→ g′][ds 7→ ds′]}. We can see that µ ∈ JP Kep(ds′)
graph(g′,ep(ds′)) for some

ds′ ∈ dom(ep) and g′ ∈ names(ep(ds′)): Assume w.l.o.g. µ(u) = s. µ1 =
µ\[u 7→ s]. By induction hypothesis we know that µ1 ∈ JP1K

ep(s)
graph(def,ep(s)). By

our construction s ∈ dom(ep) and by our induction hypothesis µ1 ∼ [u 7→ s]
holds. It remains to show that µ ∼ {[ds 7→ ds′][g 7→ g′]} which follows from
the construction of the query Q, i.e., the conjunct LOC(ds, g) and the fact
that σ ∈ Q(D).

91

	Kurzfassung
	Abstract
	Contents
	Introduction
	Preliminaries
	Conjunctive Queries, RDF, SPARQL
	The Semantics of the SERVICE and GRAPH Operator

	Well-Designed SPARQL
	Introduction to well-designed SPARQL
	Decidable Containment
	Undecidable Containment
	Equivalence

	Complexity of well-designed SPARQL with GRAPH and SERVICE
	Translations to well-designed pattern forests
	The complexity of evaluating patterns in Pwdgs

	The SERVICE-operator in Practice
	The four different ways to bind the destination of a SERVICE-operator
	Boundedness and strong boundedness

	Beyond well-designed SPARQL
	OPT-FILTER-Normal Form and Constraint Pattern Trees
	Evaluation of wwd-Patterns
	Expressivity of wwd-Patterns and their Extensions
	Static Analysis of wwd-Patterns

	Conclusion
	Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography
	Appendix

