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Referent: Assoc. Prof. Priv.-Doz. Dipl.-Ing. Dr. techn. Bernhard Pichler
Institut für Mechanik der Werkstoffe und Strukturen
Technische Universität Wien

Karlsplatz 13, 1040 Wien, Österreich
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Abstract

Cementitious materials – such as cement pastes, mortars, and concretes –
are not only highly creep active at early ages, but also their microstructure
is continuously changing because of the ongoing chemical reaction between
cement clinker and water, and the correspondingly increasing amount of so-
called hydration products. The central idea of the present thesis is to decouple
the phenomena of early age creep and hydration, in the context of a combined
experimental-theoretical approach.

The goal of the experimental activities is to characterize early-age evolutions
of Young’s elastic modulus and of non-aging creep properties of ordinary Port-
land cement pastes, mortars, and concretes conditioned at 20 ◦C. Using an
innovative early-age creep testing protocol, we perform a series of 168 three
minute-long uniaxial macroscopic creep tests on the aging materials, with one
such test per hour and with corresponding material ages spanning from 21
hours to approximately eight days. In this way, it is guaranteed that the ma-
terial microstructure remains virtually unaltered during each individual creep
test, while subsequent creep tests refer to different microstructures. In order to
minimize possible material damage, the compressive loads are restricted to at
most 15% of the uniaxial compressive strength reached at the time of testing.
The loading protocol consists of quasi-instantaneous compressive loading and
unloading steps as well as a three minutes long holding period in between.

As for experiments on cement pastes, three different material compositions are
investigated, defined in terms of initial water-to-cement mass ratios amount-
ing to 0.42, 0.45, and 0.50, respectively. Precise representation of the mea-
sured compliances by means of a power-law expression including elastic and
creep moduli, as well as a creep exponent, while requiring the elastic and
creep strains to be compressive at all times, yields concavely increasing time
evolutions of elastic and creep moduli, as well as slightly decreasing or quasi-
constant evolutions of the creep exponent. Combination of these results with
calorimetry-based evolutions of the degree of hydration yields linear elasticity-
hydration degree and over-linear creep modulus-hydration degree relations,
while the creep exponents slightly decrease with ongoing hydration. Notably,
the herein quasi-statically determined elastic moduli agree very well with those
determined ultrasonically on the same cement pastes. This impressively under-
lines the fundamental characteristics of the elastic properties being related to
an energy potential, independently of loading paths and corresponding strain
rates. Conclusively, Young’s moduli which are either determined from loading
or unloading paths only, may not exclusively refer to elastic material behavior,
but also to dissipative phenomena.

The measured creep properties of cement pastes result from the viscoelastic be-
havior of the hydration products. We here identify a corresponding single iso-
choric creep function characterizing well-saturated Portland cement hydrates,
through downscaling of 500 different non-aging creep functions obtained from
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the aforementioned three minute-long tests on differently old cement pastes
with three different initial water-to-cement mass ratios. A two-scale microme-
chanics representation of cement paste is used for downscaling. At a scale
of 700 microns, spherical clinker inclusions are embedded in a continuous hy-
drate foam matrix. The latter is resolved, at the smaller scale of 20 microns,
as a highly disordered arrangement of isotropically oriented hydrate needles,
which are interacting with spherical water and air pores. Homogenization
of viscoelastic properties is based on the correspondence principle, involving
transformation of the time-dependent multiscale problem to Laplace-Carson
space, followed by quasi-elastic upscaling and numerical back-transformation.
With water, air, and clinker behaving elastically according to well accepted
published data, the hydrates indeed show one single power law-type creep be-
havior with a creep exponent being surprisingly close to those found for the
different cement pastes tested. The general validity of the identified hydrate
creep properties is further corroborated by using them for predicting the creep
performance of a 30 years old cement paste in a 30 days long creep test: the re-
spective model predictions agree very well with results from creep experiments
published in the open literature.

Focusing finally on predicting the mechanical properties of mortars and con-
cretes, it is important to note that customary micromechanics models for the
poroelasticity, creep, and strength of concrete restrict the domain affected by
the hydration reaction, to the cement paste volume; considering the latter as
thermodynamically closed system with respect to the chemically inert aggre-
gates. Accordingly, such micromechanical models typically rely on the famous
Powers hydration model, in order to quantify volume fractions of clinker, ce-
ment, water, and aggregates, as functions of the hydration degree. The situ-
ation changes once internal curing occurs, i.e. once part of the present water
is absorbed initially by the aggregates, and then soaked “back” to the cement
paste during the hydration reaction. For this case, we here develop an ex-
tended hydration model, introducing water uptake capacity of the aggregates
on the one hand, and paste void filling extent on the other, as additional
quantities. Based on constant values for just these two new quantities, and
on experimentally determined creep properties of cement pastes as functions
of an effective water-to-cement mass ratio (i.e. that associated to the cement
paste domain, rather than to the entire concrete volume), a series of three
minute creep tests on different mortars and concretes can indeed be very sat-
isfactorily predicted by a standard micro-viscoelastic two-scale model. This
further extends the applicability range of micromechanics modeling in cement
and concrete research, and it concludes the present thesis which combines in-
novative macroscopic material testing and state-of-the-art multiscale modeling
from sub-micrometric hydrate needles to decimeter-sized specimens of mortars
and concretes.
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Chapter1
Introduction

1.1 Motivation

Concrete is the most used man-made material in the world. More than 20 bil-
lion tons of concrete are produced every year, and this corresponds to nearly
three tons per capita and year. The benefits of concrete provided to our soci-
eties are immense, considering that concrete is used to build our schools, hospi-
tals, apartment blocks, bridges, tunnels, dams, sewerage systems, pavements,
runways, roads, and more. Concrete is produced by mixing cement, water,
and aggregates. Therefore, concrete is an environmentally friendly material,
making it a natural choice for sustainable construction. The effectiveness,
price, and performance, of concrete is much better compared to other mate-
rials. Twice as much concrete is used around the world than the total of all
other building materials, including wood, steel, plastic, and aluminum. None
of these other materials can replace concrete, rendering concrete indispensable
for construction (WBCSD 2013). The Cement Sustainability Index (CSI) rec-
ognizes that in an increasingly urbanized population, concrete and cement will
keep playing a vital part in our daily lives, through many diverse applications
and usages. At the same time, the CSI believes that it is essential to prop-
erly measure the externalities of cement and concrete. This enables a better
understanding of general impacts and helps in appropriate decision making.
Due to the extensive use of concrete, there has been always the need to get
more detailed insight into its behavior. Even nowadays, many areas need to
be explored using innovative experimental techniques and new modeling ap-
proaches, especially multiscale material modeling and poromechanics.

Concrete exhibits creep, i.e. the material deforms progressively under, and
induced by, a constant sustained load (Neville 1971). In material science,
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creep is more generally understood as the tendency of a solid material to move
slowly or deform permanently under the influence of mechanical stresses. Since
the first publication on the creep of reinforced concrete in 1907 (Hatt 1907),
the subject has been studied intensively, but the fundamental mechanisms of
creep is still not fully understood, for several reasons. Firstly, due to the
fact that cement and concrete are multi-scale heterogeneous materials. Creep
can be observed at different scales ranging from that of concrete down to
the one of individual hydration products. Secondly, creep is sensitive to a
variety of parameters: moisture, temperature, stress level, curing conditions,
and mix design (i.e. water-to-cement ratio, admixtures, aggregates), see Neville
(1971). Thirdly, cementitious materials, such as cement pastes, mortars, and
concretes, are obtained by hydration of binders, and the hydration lasts months
to decades. As a consequence, the microstructures of cementitious materials
evolve with time and the creep properties depend on the maturity at which a
given material is tested. Therefore, the phenomenon of creep is still far from
being fully understood (Bažant 2001; Bazant and Li 2008).

State-of-the-art testing and modeling of concrete creep are typically of macro-
scopic and of phenomenological nature (Hanson and Laboratories 1953; Keeton
1965; Brooks and Neville 1975; Bažant et al. 1976; Bažant and Panula 1978;
Bažant and Chern 1985; Sakata and Shimomura 2004; Tamtsia et al. 2004).
Results from many creep experiments were collected and tabulated in large
databases (Bazant and Li 2008), like the RILEM database (RILEM 1995),
and the one of the Japanese society of civil engineering (JSCE 2000). These
databases helped to develop a number of creep models for codes, e.g. ACI-
209 (ACI 1992), including models for different types of concrete like (i) normal
strength concrete by Bažant (2001) and Baweja et al. (1998), and (ii) high
performance concrete by Le Roy et al. (1996) as well as by Dilger and Wang
(1995). Researchers have particularly focused on creep properties for hardened
concrete (Mazloom 2008; Shariq et al. 2016), and nowadays there is plenty of
evidence that long term creep of concrete finally becomes linear at logarithmic
time-scale (Bažant et al. 2011; Zhang et al. 2014). Few researchers have per-
formed tests at load levels up to 80% of the compressive strength which may
induce damage in the material resulting in non-linear creep (Rossi et al. 1994,
2011). Many researchers reported challenges in performing and standardizing
creep experiments, e.g. creep compliances found in different databases exhibit
significant dispersion, underlining that the problem is not yet solved in a sat-
isfactory fashion. Additionally, in order to gain reliable insight into long-term
creep, creep testing on concrete is recommended to be carried out over hun-
dreds of days (Le Roy et al. 1996; Havláek and Jirásek 2012), and this requires
not only the availability of testing facilities over long periods of time, but it is
also difficult to control experimental parameters as temperature, applied load,
and moisture distribution within the sample.

Creep of concrete significantly influences the performance and durability of
civil engineering infrastructure, both at early ages and during long-term ser-
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vice. Therefore, in addition to mechanical properties such as modulus of
elasticity, as well as tensile and compressive strength, the time dependent
properties of concrete must be considered for evaluating the performance of
structures (Schutter and Taerwe 1996; Bažant 2001; Atrushi 2003; Nehdi and
Soliman 2011). The creep contribution to differential axial shortening of high-
rise buildings, for instance, is becoming significant with increasing stresses
on the structural elements. It is also well known that time-dependent de-
formations cause loss of prestress (Youakim 2006) and increase of deforma-
tions (Ghali et al. 2006), reducing the durability of structures. At the same
time, time-dependent deformations can be beneficial in the form of redistribu-
tion of stresses caused by imposed deformations or loads, and also the reduc-
tion of undesirable stresses, particularly in early age concrete (Neville 1971;
Bažant 2001; Atrushi 2003) and in shotcrete tunneling (Hellmich et al. 2000,
2001; Ullah et al. 2010, 2012, 2013) . However, stress redistribution might
increase the probability of cracking in new structures, and even overstressing
that might lead to structural collapse of old structures (Binda et al. 1992;
Bažant 2001; Shrive et al. 2001). Furthermore, creep can produce permanent
displacements in large and thin arch dams up to 30 or 40 years after dam
completion (Hachem and Schleiss 2011; Erpicum et al. 2013). Turning finally
to early ages, cement-based construction materials exhibit significant develop-
ments of heat of hydration and autogenous deformation (Bažant et al. 1976;
Tamtsia et al. 2004; Nehdi and Soliman 2011; Briffaut et al. 2012; Boulay et al.
2014; Jiang et al. 2014; Sellier et al. 2016). This results in generation of in-
ternal stresses, because internal and external restraints nearly always prevail
in structural concrete elements. While the viscoelastic behavior of young con-
crete reduces these stresses to lower magnitudes (Schutter and Taerwe 1996;
Voigt et al. 2003; Gu et al. 2006), the risk of larger internal stresses is larger in
case of mass concreting like in dams, barrage floors, silos, and concrete domes
around nuclear reactors (Smith 1991; Hilaire et al. 2014; Shariq et al. 2016;
Bažant and Chern 1985; Kovler 1994; Boumiz et al. 1996; Delsaute et al. 2011).
Improving the properties of concrete at early-ages contributes to improving its
long term durability.

Focusing on early-age creep of cementitious materials, it turns out that test-
ing and modeling are very challenging tasks because of the coupling between
creep and hydration. The typical duration of a macroscopic creep experi-
ment ranges from hours to several days (Bažant et al. 1976; Tamtsia et al.
2004; Rossi et al. 2011), weeks (Laplante 2003; Tamtsia and Beaudoin 2000;
Atrushi 2003; Briffaut et al. 2012), months (Rossi et al. 1994; Zhang et al.
2014), or even years (Bažant et al. 2011, 2012; Zhang et al. 2014), and this is
of the same order of magnitude or even larger than the characteristic time of
the chemical hydration reaction at early ages. Consequently, early-age creep
tests as referred to above, do not refer to one and the same microstructure
which would stay unaltered during such as test. This qualifies standardly
performed early-age experiments as aging creep tests. The described lack of
separated time-scales renders also the mathematical description of early-age
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creep as very challenging. In particular in the context of multiscale modeling
approaches (Scheiner and Hellmich 2009; Sanahuja 2013b), the time-dependent
behavior of the elementary constituents needs to be quantified, together with
the temporal evolution of microstructures built up by these constituents (Pich-
ler and Lackner 2008; Scheiner and Hellmich 2009; Sanahuja and Dormieux
2010; Jiang et al. 2014; Hilaire et al. 2014). At the same time shrinkage
strains and thermal strains are also developed in the materials starting at the
level of hydrates (Němeček 2009; Nguyen et al. 2014; Vandamme and Ulm
2013; Königsberger et al. 2016). These microstructural processes are respon-
sible for the macroscopically observed behavior. Summarizing, separation of
different microstructural processes and phenomena is challenging but desir-
able, see e.g. (Zhao 1990; Smith 1991; Kovler 1994; Schutter and Taerwe 1996;
Yuan and Wan 2002). As for decoupling creep from hydration at early-ages,
short term non-aging creep testing is well suited and already used, see the
work of Vandamme and Ulm (2009); Boulay et al. (2012); Vandamme and
Ulm (2013); Delsaute et al. (2011); Delsaute and Staquet (2011); Zhang et al.
(2014). Decoupling creep from the hydration is also the key idea of the present
thesis.

1.2 Objectives and scope of the research

This thesis is devoted to early-age stiffness characterization of cementitious
materials, such as cement pastes, mortars, and concretes. Experimental activ-
ities aim at decoupling creep from hydration. The corresponding test eval-
uation strategy aims at separating instantaneous elastic deformation from
time-dependent creep deformation. Subsequent multiscale exploitation of ex-
perimental results aims at (i) identification of “universal” creep properties of
(sub)micron-sized cement hydrates, and (ii) prediction of non-aging creep prop-
erties of mortars and concretes. These overall objectives are sub-structured
into the following points.

• Decoupling the time-dependent phenomena creep and hydration is
achieved by performing ultra short creep experiments. Three-minute
creep tests, namely, are so short that the hydration reaction does not
make significant progress, i.e. that the tested microstructure is prac-
tically the same throughout the test. This qualifies ultra short creep
experiments as non-aging tests.

• Deformation histories measured during an ultra short creep test are de-
composed very carefully into (i) the instantaneous elastic part and (ii)
the time-dependent creep part. This allows for quantifying the elastic
material stiffness in terms of the instantaneous Young’s modulus, and
the time-dependent material compliance in terms of the uniaxial creep
function.
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• In order to quantify the early-age evolutions of elastic stiffness and non-
aging creep properties, ultra short creep experiment are performed once
every hour, starting 21 hours after production and continuing up to ma-
terial ages of eight days.

• The described testing and evaluation strategies are applied to macro-
scopic specimens of cement pastes, mortars, and concretes. The tested
materials differ in composition, i.e. in terms of the initial water-to-cement
mass ratio, the initial aggregate-to-cement mass ratio, the aggregate
size distribution, and the aggregate type, resulting in a comprehensive
database of experimental results.

• Multiscale exploitation of experimental results starts with top-down iden-
tification of universal creep properties of (sub)micron-sized cement hy-
drates. This aims at explaining the deformation histories measured in
more than 500 ultra short creep tests on cement pastes based on only 1
set of universal creep properties of (sub)micron-sized and needle-shaped
hydrates.

• The universality of the identified hydrate creep properties is validated by
(i) predicting the evolution of creep deformations for a 30 days lasting
creep test on a cement paste that cured for 30 years under water, and
(ii) by comparing model predictions with experimental data taken from
the literature.

• Multiscale exploitation of experimental results continues with bottom-up
prediction of creep of mortars and concretes. This aims at showing that
“internal curing” does not only happen with light-weight aggregates, but
also with oven-dried regular aggregates, because (i) aggregates take up a
certain mass of water during mixing of raw materials, and (ii) this water
mass is soaked “back” into the hydrating cement paste matrix, driven
by autogeneous shrinkage.

• The analysis of “internal curing” results in the development of a new
hydration model which considers hydrating cement paste to be a ther-
modynamically open system relative to the surface porosity of the aggre-
gates. The effective water-to-cement ratio of the cement paste matrix is
shown to increase linearly with increasing hydration degree. This result
could be achieved, only because of the comprehensive test database from
hourly testing of cement pastes, mortars, and concretes levels.
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1.3 Methodology and key results

1.3.1 Chapter 2

This chapter is based on the joint publication of Muhammad Irfan-ul-Hassan,
Roland Reihsner, Bernhard Pichler, and Christian Hellmich published in the
Elsevier Journal of Cement and Concrete Research (CCR), 2016, vol. 80, pp.
36–49.

Bernhard Pichler and Christian Hellmich set up the overall strategies for ex-
perimental testing and evaluation of measurements, using (i) the principle of
separation of time scales to decouple creep from hydration and (ii) the physi-
cal requirement that time-dependent deformation under uniaxial compression
must result in a shortening of the tested specimen. They supervised the re-
search progress, checked key results, and supported the documentation process.
Muhammad Irfan-ul-Hassan produced the cement paste specimens and carried
out hourly-repeated three-minute creep experiments, supported by the tech-
nical staff of the laboratory. He developed Matlab codes for the evaluation of
test data and documented the research results. Roland Reihsner contributed
to the discussion processes and operated the testing machine as well as the
deformation measurement equipment.

DIGEST:

Cement pastes are highly creep active materials at early ages. We here charac-
terize both the elastic stiffness and the creep properties of ordinary Portland
cement pastes conditioned at 20 degrees Celsius. Three different composi-
tions are investigated, defined in terms of initial water-to-cement mass ratios
amounting to 0.42, 0.45, and 0.50, respectively. Implementing a new early-age
creep testing protocol, we perform a series of 168 three minutes long uniaxial
macroscopic creep tests on the aging materials, with one such test per hour and
corresponding material ages spanning from 21 hours to approximately eight
days. In this way, it is guaranteed that the material microstructure remains
virtually unaltered during each individual creep test, while subsequent creep
tests refer to clearly different microstructures. In order to minimize material
damage, the compressive loads are restricted to at most 15 percent of the uni-
axial compressive strength reached at the time of testing. The loading protocol
consists of quasi-instantaneous compressive loading and unloading steps as well
as a three minutes long holding period in between. Representing the measured
compliances very precisely by means of a power-law expression including elastic
and creep moduli, as well as a creep exponent, while requiring the elastic and
creep strains to be compressive at all times, yields concavely increasing time
evolutions of elastic and creep moduli, as well as slightly decreasing or quasi-
constant evolutions of the creep exponent. Combination of these results with
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calorimetry-based evolutions of the degree of hydration yields linear elasticity-
hydration degree and over-linear creep modulus-hydration degree relations,
while the creep exponents (slightly) decrease with ongoing hydration. The
herein quasi-statically determined elastic moduli agree very well with those
determined ultrasonically on the same cement pastes. This impressively un-
derlines the fundamental characteristics of elastic properties being related to
an energy potential, independently of loading paths and corresponding strain
rates.

1.3.2 Chapter 3

This chapter is based on the joint publication of Markus Königsberger,
Muhammad Irfan-ul-Hassan, Christian Hellmich, and Bernhard Pichler ac-
cepted for publication in the Journal of Engineering Mechanics (ASCE).

Christian Hellmich and Bernhard Pichler set up the overall strategy for top-
down identification of hydrate creep properties by means of three-scale creep
homogenization of cement pastes. They supervised the research progress,
checked key results, and supported the documentation process. Markus
Königsberger developed a Maple code for three-scale creep homogenization
of cement pastes, identified universal creep properties of (sub)micron-sized
needle-shaped cement hydrates, carried out model validation based on data he
found in the open literature, and documented the research results. Muhammad
Irfan-ul-Hassan provided his experimental data in suitable numerical formats,
contributed to the discussion processes, and helped proof reading the paper.

DIGEST:

Creep of cementitious materials results from the viscoelastic behavior of the
reaction products of cement and water, called hydrates. In the present pa-
per, a single isochoric creep function characterizing well-saturated Portland
cement hydrates is identified through downscaling of 500 different non-aging
creep functions derived from three minute-long tests on differently old cement
pastes with three different initial water-to-cement mass ratios. A two-scale
micromechanics representation of cement paste is used for downscaling. At a
scale of 700 microns, spherical clinker inclusions are embedded in a continuous
hydrate foam matrix. The latter is resolved, at the smaller scale of 20 microns,
as a highly disordered arrangement of isotropically oriented hydrate needles,
which are interacting with spherical water and air pores. Homogenization
of viscoelastic properties is based on the correspondence principle, involving
transformation of the time-dependent multiscale problem to Laplace-Carson
space, followed by quasi-elastic upscaling and numerical back-transformation.
With water, air, and clinker behaving elastically according to well-accepted
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published data, the hydrates indeed show one single power law-type creep be-
havior with a creep exponent being surprisingly close to those found for the
different cement pastes tested. The general validity of the identified hydrate
creep properties is further corroborated by using them for predicting the creep
performance of a 30 years old cement paste in a 30 day-lasting creep test: the
respective model predictions agree very well with results from creep experi-
ments published in the open literature.

1.3.3 Chapter 4

This chapter is based on the joint publication of Muhammad Irfan-ul-
Hassan, Markus Königsberger, Roland Reihsner, Christian Hellmich, and
Bernhard Pichler submitted to the Journal of Nanomechanics and Microme-
chanics (ASCE).

Bernhard Pichler and Christian Hellmich set up the overall strategy for
bottom-up prediction of creep properties of mortars and concretes, based on
a new hydration model considering (i) initial water uptake by aggregates and
(ii) autogeneous shrinkage-driven suction of water “back” to the cement paste
matrix. They supervised the research progress, checked key results, and sup-
ported the documentation process. Muhammad Irfan-ul-Hassan produced the
mortar and concrete specimens and carried out hourly-repeated three-minute
creep experiments supported by the technical staff of the laboratory. He in-
corporated the new hydration model into a Maple code for two-scale creep
homogenization of mortars and concretes. He used the code for identifica-
tion (i) of the water uptake capacity of the used aggregates, and (ii) of the
filling extent of shrinkage-induced voids by water. He carried out model vali-
dation and documented the research results. Markus Königsberger developed
the Maple code for creep homogenization, contributed to both the discussion
processes and the documentation of research results, and helped proof reading
the paper. Roland Reihsner operated the testing machine and the deformation
measurement equipment.

DIGEST:

Customary micromechanics models for the poroelasticity, creep, and strength
of concrete restrict the domain affected by the hydration reaction, to the ce-
ment paste volume; considering the latter as thermodynamically closed system
with respect to the (chemically inert) aggregates. Accordingly, the famous
Powers hydration model appears as a natural choice for the determination
of clinker, cement, water, and aggregates volume fractions entering such mi-
cromechanical models. The situation changes once internal curing occurs, i.e.
once part of the present water is absorbed initially by the aggregates, and
then soaked “back” to the cement paste during the hydration reaction. For
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this case, we here develop an extended hydration model, introducing water up-
take capacity of the aggregates on the one hand, and paste void filling extent
on the other, as additional quantities. Based on constant values for just these
two new quantities, and on previously determined creep properties of cement
pastes as functions of an effective water-to-cement mass ratio (i.e. that associ-
ated to the cement paste domain, rather than to the entire concrete volume),
a series of ultrashort-term creep tests on different mortars and concretes can
indeed be very satisfactorily predicted by a standard micro-viscoelastic mathe-
matical model. This further extends the applicability range of micromechanics
modeling in cement and concrete research.

1.3.4 Chapter 5

This chapter illustrates the comprehensive databases obtained from early-age
non-aging short term creep testing of cement pastes, mortars, and concretes,
summing up to some four thousand five hundred quasi-static creep tests. As for
displaying the results, measured creep histories are normalized by the plateau
stress, and the resulting quantities are plotted over the duration of the three-
minute tests.



Chapter2
Elastic and creep properties of

young cement paste, as

determined from hourly

repeated minutes-long

quasi-static tests

2.1 Introduction

Creep characterization of cementitious materials poses great challenges at
early-ages, because the typical duration of a macroscopic creep experiment
ranges from hours to several days (Tamtsia et al. 2004; Bažant et al. 1976;
Rossi et al. 2011), weeks (Tamtsia and Beaudoin 2000; Briffaut et al. 2012;
Atrushi 2003; Laplante 2003), months (Zhang et al. 2014; Rossi et al. 1994), or
even years (Zhang et al. 2014; Bažant et al. 2011, 2012), and this is of the same
order of magnitude or even larger than the characteristic time of the chemical
hydration reaction at early ages. Consequently, early-age creep tests as re-
ferred to above, do not refer to one and the same microstructure which would
stay unaltered during such as test. The described lack of separated time-scales
renders the mathematical description of early-age creep as very challenging. In
particular in the context of multiscale modeling approaches (Sanahuja 2013b;
Scheiner and Hellmich 2009), the time-dependent behavior of the elementary
constituents needs to be quantified, together with the temporal evolution of
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microstructures built up by these constituents (Scheiner and Hellmich 2009;
Sanahuja and Dormieux 2010; Jiang et al. 2014; Hilaire et al. 2014; Pichler
and Lackner 2008). This calls for development of novel, improved experimen-
tal protocols for cement pastes and concretes, and the present contribution is
devoted to exactly such developments.

More precisely, we here provide insight into early-age creep properties of ce-
ment pastes, separating the effect of the time-dependent deformation behavior
of the hydrates, from the evolution of the overall microstructure due to ongo-
ing chemical hydration. In more detail, we report on minutes-long creep tests
on cement pastes carried out during the second, third, fourth, fifth, sixth, sev-
enth, and eighth day after production. The duration of our tests is so short
that the microstructure of the tested materials remains practically the same
throughout each individual creep test. On the other hand, since one creep
test is performed every hour and given that the investigated cement pastes
are younger than one week, two subsequent tests already refer to different mi-
crostructures. This allows us to characterize the evolution of creep properties
of specific cement pastes, throughout the first week after their production.

It is very important for our repeated testing approach that the characterized
cement pastes remain undamaged during the individual creep tests. There-
fore, we subject the specimens to maximum compressive forces amounting to
only 15 percent of the compressive strength at the time instant of testing. In
this context, we quantify the temporal evolution of the compressive strength
of cement pastes by means of a validated multiscale strength model (Pichler
et al. 2013; Pichler and Hellmich 2011) combined with results from isothermal
differential calorimetry (Karte et al. 2015).

This paper is organized as follows. At first, we describe (i) the chosen test
setup which is inspired by the one previously developed for quantification of
unloading moduli (Karte et al. 2015), and (ii) the creep test protocol, see
Section 2. Test evaluation includes a new approach for the identification of
(elastic) Young’s modulus and for quantification of power-law creep properties,
see Section 3. Results are presented both as functions of material age and as
functions of hydration degree, obtained from the calorimetry, see Section 4.
Finally, the results are discussed in the light of existing early-age test data
from cement paste, and of the fundamentals of elasticity theory and material
thermodynamics.

2.2 Materials and Experimental Methods

Herein, we characterize early-age elastic stiffness and creep of three cement
pastes made from a commercial cement of type CEM I 42.5 N and distilled
water. They differ in compositions, as defined in terms of initial water-to-
cement ratios w/c amounting to 0.42, 0.45, and 0.50, respectively.
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2.2.1 Test Preparation

Cylindrical specimens with a diameter of 70 mm and a height of 300 mm are
produced, through a specific hollow cylindrical plastic mold. After mixing,
placement, and compaction, the opening of the mold is sealed by several layers
of food preservation foil, in order to avoid water evaporation. Bleeding was not
observed. The specimens are stored in a climate chamber at 20 degrees Cel-
sius. The core temperature of the specimens increased during the first 10 hours
up to ≈ 26 ◦C, followed by a smooth reduction down to 20 ◦C, reached after
45 hours. Such temperature differences at very early ages are expected to leave
the samples undamaged. At an age of 20 hours, the specimens are demolded,
and both circular end faces are shaved with a Stanley knife, in order to min-
imize possible inhomogeneities resulting from production and/or storage, and
to achieve coplanarity of the two faces (Fischer et al. 2014; Karte et al. 2015;
Pichler et al. 2014). Preliminary samples were crushed for inspection of the
fracture surfaces. This allowed for a successful visual check of the homogeneity
of the samples.

The used test setup for uniaxial compression is very similar to the one recently
developed for early-age stiffness characterization of cement pastes (Karte et al.
2015). As for achieving a central load application, we use a serial arrangement
of the specimen with two metal cylinders. The latter were equipped by so-
called cylindrical bottlenecks, see Fig. A.1. The bottlenecks exhibit diameters
of 30 mm, and this is by a factor of 2.3 smaller than the diameter of the sample.

Also during testing, the samples are kept at 20 degrees Celsius. To this end,
the described test setup is placed inside an insulated temperature chamber,
equipped with a temperature control unit Lauda RK8 KP. In addition, the
specimens are covered by several layers of food preservation foil, in order to
minimize loss of water via evaporation.

Deformations of the samples are quantified by means of five Linear Variable
Differential Transducers (LVDTs) of type “Solartron”. The latter give access
to the relative displacements between two aluminum rings, which are fixed to
the specimens by means of three screws each. Thereby, the rings are posi-
tioned at a mutual distance of 164 mm, each of them 70 mm distant from the
interfaces between specimen and metal cylinders; see Fig. A.1. In this way,
the top and bottom 70 mm of the specimens are part of the load application
system, and this is very effective in achieving shear-free stress and strain states
in the central measurement region. Undesired shear stresses, resulting from
inevitable discrepancies of Poisson’s ratio of the specimen and the attached
metal cylinders, namely, decay with increasing distance from the specimen
metal interface, such that they are practically negligible in a distance being
equal to the diameter of the sample (Karte et al. 2015). The five LVDTs are
evenly distributed around the perimeter of the specimen, i.e. at a spacing of
72◦. Using five rather than the minimum of three required LVDTs, increases
the measurement accuracy by 29 % (Karte et al. 2015).
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The described setup is installed in an electromechanical universal testing ma-
chine of type Walter and Bai LFM 150. Before the actual testing, the position
of the specimen is iteratively improved in order to come close to a central load
application. This is done based on the LVDT readings obtained in short-term
preliminary loading-unloading tests with a load of 3 kN. The position of the
specimen is accepted, once the largest of the LVDT readings is not larger than
twice the smallest reading.
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Figure 2.1: Test setup consisting of the cement paste specimen, metal cylinders

with bottleneck, and two aluminum rings holding five LVDTs (a) schematic

illustration of symmetric upper half of the test setup, (b) actual test setup

inside climate chamber containing two temperature sensors and copper pipes

filled with conditioning fluid

2.2.2 Creep Testing

One specific loading-unloading test with a characteristic creep duration of three
minutes is performed every hour. During the remaining 57 minutes of every
hour, a permanent compressive force amounting to 0.2 kN ensures that the
whole setup (including the sample and the bottlenecks) stays in an upright
position without tipping over. The creep strain rates resulting from this small
loading decay quickly, such that they can be neglected with respect to the
significantly larger creep strain rates measured during the following three-
minutes creep tests.

Infinitely fast loading would be desirable for a creep test, but this is impossible
in a real experiment. Herein, loading is carried out under force control, with a
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prescribed force-rate amounting to 7.697 kN/s, corresponding to a specimen-
related stress rate amounting to 2 MPa/s, see Fig. A.2. This fast loading speed
ensures that the duration of the loading phase is by two orders of magnitude
smaller compared to the following creep test, where the load was held constant
for 180 seconds. Unloading is again carried out under load control with a force-
rate amounting to 3.849 kN/s which is equivalent to a specimen-related stress
rate amounting to 1 MPa/s. This ensures that the prescribed loading speed is
reliably reached after an initial acceleration and before the final deceleration
of the piston.

0 100 200 300
0

10

20

30

testing time t [s]

a
p
p
li
ed

fo
rc
e
F

[k
N
]

10%

loading

force plateau

5%

quantifying
used for

unloading
part of

85%

modulus
unloading

unloading

Figure 2.2: Typical force readings captured during a three-minutes creep test

Moreover, a trade-off between non-destructive testing and reliable deformation
measurements needed to be found. On the one hand, load levels smaller than or
equal to 15 % of the compressive strength are believed to stay within the elastic
limit of the material, because they stay out of the so called non-linear creep
regime (Ruiz et al. 2007) which would result in damage of the material (Rossi
et al. 2011; Fischer et al. 2014). On the other hand, such load levels turned out
to result in creep deformations which are large enough for obtaining reliable
LVDT readings. Still, this approach requires knowledge on the compressive
strength of cement paste which increases significantly during the first week
after production.

A validated continuum micromechanics model (Pichler et al. 2013; Pichler
and Hellmich 2011) is used to quantify the composition-specific evolution of
compressive strength as a function of hydration degree, see Fig. A.3(a). Quasi-
isothermal calorimetry carried out at 20 degrees Celsius (for all three types of
cement pastes w/c = 0.42, w/c = 0.45, and w/c = 0.50, respectively) allows
us to establish a relation between age of the material and the hydration de-
gree ξ, see Fig. A.3(b). Hydration degree ξ is determined as the ratio of the
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accumulated specific heat release Q(t) and the latent heat of ordinary Port-

land cement amounting to 500 J/g: ξ(t) = Q(t)
500 J/g

. Combining the relationship
between the compressive strength and hydration degree, with the relation-
ship between hydration degree and age of the materials, and multiplying the
resulting temporal evolution of compressive strength by 15 percent, delivers
maximum load levels for our creep testing campaigns, see Fig. A.4.
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Figure 2.3: (a) Prediction of compressive strength based on validated multi-

scale model (Pichler and Hellmich 2011; Pichler et al. 2013) as a function of
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Figure 2.4: Load plateau values prescribed during creep testing of cement

pastes with (a) w/c = 0.42, (b) w/c = 0.45, and (c) w/c = 0.50

During the second, third, and fourth day after specimen production, the max-
imum load applied in our test was repeatedly updated during regular working
hours, such that the specimens were kept at a load level related to 15 % of
the model-predicted strength, see Fig. A.4. During the night and over the
weekend, in turn, the load levels remained invariant, for safety reasons. In this
way, the effectively applied loads always ranged between 10 % and 15 % of the
compressive strength.

The digital measurement equipment Orbit of Solartron Metrology is used for
storing the measured data in terms of Excel sheets. This includes displacement
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measurement signals of the five LVDTs, the signal from the force measurement
unit of the universal testing machine, and the signals of two quality assuring
temperature sensors. A Visual BASIC script automatically controls the mea-
surement frequency: The maximum data acquisition rate is used during the
creep test, resulting in approximately 75 individual readings per second; and
between two successive creep tests, when the specimen is subjected to the per-
manent load level, the measurement frequency is reduced to one reading every
two seconds. Displacement readings measured from five LVDTs, as well as the
mean of these readings, are exemplarily shown in the Fig. A.5.
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Figure 2.5: Length-changes measured during a creep test on a cement paste

specimen with w/c= 0.42, subjected at an age of 70 h to a force amounting to

22.79 kN: (a) five individual LVDT readings, (b) mean of five LVDT readings

2.3 Test Evaluation

From each three-minutes creep test, the (elastic) Young’s modulus and the
creep properties were derived. This is based on force readings, see Fig. A.2,
and averaged LVDT readings, see Fig. A.5(b).

2.3.1 Quantification of Young’s Modulus

Unloading modulus is determined from point-wisely defined stress-strain di-
agrams (Karte et al. 2015). They are derived from the central parts of the
unloading events, where the desired unloading speed of 1.0 MPa/s was actu-
ally realized. To this end, the top 10 % and bottom 5 % of the unloading paths
are cut away, see Fig. A.2. Stress ordinates are calculated by dividing the
remaining force readings by the crosssectional area of cylindrical specimens,
which is equal to A = 3848.5 mm2. Corresponding strain ordinates follow



Chapter-2 17

from dividing the averaged LVDT readings by the measurement length, i.e.
by 164 mm, being equal to the distance of the two aluminum rings holding
the LVDTs. Each point-wisely defined stress-strain diagram is very reliably
approximated by a straight line, as quantified by quadratic correlation coef-
ficients typically amounting to r2 = 99.7 %. The slope of the straight line
represents the sought unloading modulus, see Fig. A.6.
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The unloading modulus is an estimate for the (elastic) Young’s modulus be-
cause unloading allows for efficient mechanical recovery of energy which was
previously stored in the compressed material sample (Coussy 2004; Salençon
2001; Luczynski et al. 2013, 2015). However, since the material creeps, two
addition effects need to be considered: (i) the strain response measured during
unloading may be partially due to delayed deformations resulting from the
load level prescribed before the unloading process; (ii) also during unloading,
the strain response may include viscoelastic phenomena with characteristic
times in the range of seconds. This calls for an improved estimate for the elas-
tic Young’s modulus, as described next: From the total strains (= averaged
LVDT readings divided by measured length 164 mm) the elastic strains are
subtracted in order to extract the creep strains. Thereby, the elastic strains
are computed as the stress (= force readings divided by the crosssectional area
A = 3848.5 mm2) divided by the estimated elastic Young’s modulus:

εcreep(t) = εtotal(t)− εelastic(t) =
1

5 `o

5∑
i=1

∆`i(t)−
σ(t)

E

When computing the creep strain evolution (62) based on the unloading modu-
lus E = Eu, the result does not comply with the expectation that creep strains
are compressive throughout both the loading phase and the subsequent three-
minutes creep test. Instead, tensile creep strains are obtained at the very
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beginning of the loading phase, see Fig. A.7(a), and this nonphysical result
is a consequence of the fact that unloading modulus slightly underestimates
the Young’s modulus. Increasing the Young’s modulus value which is used to
evaluate Eq. (1), namely, reduces the described tensile strains. This provides
a possibility to determine an improved estimate of Young’s modulus.

Starting with unloading modulus, progressively larger estimates of Young’s
modulus are inserted into Eq. (1), until the computed creep strains exhibit the
expected property of being compressive everywhere. In more detail, progressive
increase of Young’s modulus values has converged towards an improved value
of Young’s modulus, once the creep strain evolution does no longer undershoot
the measurement noise-related scatter-bandwidth of creep strains observed in
the last seconds before the loading event, see Fig. A.7(b). This correction
procedure delivers improved estimates of the (elastic) Young’s moduli, which
are typically by 3 % to 4 % larger than the unloading moduli.
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Figure 2.7: Creep strains evolutions computed according to Eq. (1) for ce-

ment paste with w/c = 0.42 subjected at an age of 70 h to a force amounting

to 22.79 kN: (a) unloading modulus (13.633 GPa) results in nonphysical ten-

sile undershooting, (b) improved estimate of Young’s modulus (13.995 GPa)

delivers a qualitatively plausible creep strain evolution without tensile under-

shooting, and (c) overall creep strain evolution obtained with the improved

estimate of the (elastic) Young’s modulus
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2.3.2 Quantification of Creep Properties

As for the quantification of the creep properties from the derived creep strain
evolution is concerned, we follow Tamtsia and Beaudoin (Tamtsia et al. 2004)
and use a power-law type creep function. This choice is appealing because it
limits the number of fitting parameters to two only. Tamtsia and Beaudoin
introduced the creep compliance rate as (Tamtsia et al. 2004)

dJ(t)

dt
= C

(
t− t0
tref

)γ
(2.1)

where tref = 1 d = 86400 s is a constant, t0 denotes the time instant of sudden
loading, C the creep compliance rate at time t = t0 + tref , as follows from
specification of Eq. (63) for t − t0 = tref , and γ represents a dimensionless
power-law exponent.

The elementary creep answer for sudden loading at time instant t0 up to stress
level σ0 which is kept constant thereafter follows as

εmodtotal(t) =
σ0
E

+

t∫
t0

σ0C

(
τ − t0
tref

)γ
dτ t ≥ t0 (2.2)

where σ0/E denotes the elastic answer of the material at time t0. The solution
of Eq. (2) reads as

εmodtotal(t) =
σ0
E

+
σ0
Ec

(
t− t0
tref

)β
t ≥ t0 (2.3)

where Ec = (γ + 1)/(C tref ) denotes the creep modulus at time t = t0 + tref ,
as follows from specification of Eq. (65) for t− t0 = tref , and β = γ+ 1 stands,
by analogy to γ in Eq. (63), for a dimensionless power-law exponent.

The creep evolution derived from our experiments indicates a significant devel-
opment of creep strains already during the loading phase. Therefore, the force
history is subdivided into a sequence of many small load steps, and Eq. (65)
is considered in the framework of Boltzmann’s superposition principle (Boltz-
mann 1878):

εmodtotal(t) =
n∑
i=1

F (ti)− F (ti−1)

A

[
1

E
+

1

Ec

(
t− ti
tref

)β]
tn ≤ t ≤ tn+1 (2.4)

with F (t0) = 0.2 kN representing the permanent load level. Notably, t in
Eq. (66) resolves the three-minutes duration of our creep tests. During such
a short period of time, the material properties E, Ec, and β in Eq. (66) are
virtually constant. Namely, they are functions of the microstructure of cement
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paste, the changes of which are driven by the hydration process, and the char-
acteristic time of the latter largely exceeds three minutes. Creep strains follow
from the total strains (66) when the elastic contribution is removed, i.e.

εmodcreep(t) =
n∑
i=1

F (ti)− F (ti−1)

A

1

Ec

(
t− ti
tref

)β
tn ≤ t ≤ tn+1 (2.5)

For each test, creep modulus Ec and power-law exponent β are identified such
that the square root of sum of squares error, ESRSS, quantifying the difference
between creep strains evolution εcreep(t) derived from the experiments, see
Eq. (62), and modeled creep strains evolution εmodcreep(t), see Eq. (2.5), attains a
minimum:

ESRSS(Ec, β) =

√√√√ 1

N

N∑
i=1

[
εcreep(ti)− εmodcreep(ti)

]2
→ min (2.6)

where N is the total number of experimental readings considered for test eval-
uation during loading and the subsequent load plateau, typically amounting
to N ≈ 5400.

Optimization problem (2.6) is solved iteratively. At first, intervals are defined
for the creep modulus Ec and power-law exponent β. These intervals are
subdivided such that 7 equidistant values are obtained for both variables to
be optimized. For all 7× 7 = 49 combinations, representing a “testing grid”as
shown in Fig. 2.8(a), the error function (2.6) is evaluated, see Fig. 2.8(a). The
combination of values for Ec and β, which results in the smallest error value,
is treated as a first estimate of the optimum solution. It represents the basis
for defining improved optimization intervals and corresponding testing grids,
as described next.

• If the variable estimate lies on the boundary of the corresponding opti-
mization interval (as is the case for the creep modulus in Fig. 2.8(a)),
the interval is shifted by moving its center to the aforementioned variable
estimate (as is seen for the creep modulus in Fig. 2.8(b)).

• If the variable does not lie on the boundary of the corresponding
optimization interval (as is the case for the power-law exponent in
Fig. 2.8(a)), the latter is again shifted so as to take the aforementioned
variable estimate as center, but at the same time, the interval is also
shrunk to half of its original size, thereby refining its internal “resolu-
tion” (see Fig. 2.8(b) for the testing grid shrunk in ordinate direction
with respect to its original size seen in Fig. 2.8(a)).

As before, the new optimization intervals are subdivided so as to define 7
equidistant values, and the error function ESRSS is evaluated for all 49 param-
eter combinations. After 15 rounds of shifting and refining the optimization
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Figure 2.8: Contour plot of the error function (2.6) showing shifting and refine-

ment of search intervals: (a) “old”testing grid with corresponding estimate for

optimum solution, in terms of variable combination for Ec and power-law ex-

ponent β; and (b) “new”testing grid for the next iteration of the optimization

procedure

intervals, the optimized values are determined up to a precision of 4 signifi-
cant digits, and the optimization process is stopped. In order to reduce the
time required for this optimization procedure to a reasonable minimum, we
consider only every fifth data point. This results in an effective measurement
frequency of 15 Hz, such that 180 seconds are covered by some 2700 equally
spaced readings.

2.4 Results

Evaluation of our test data allows for quantifying the temporal evolution
of elastic stiffness and creep properties of cement pastes with w/c = 0.42,
w/c = 0.45, and w/c = 0.50, respectively. For each of these compositions,
we have tested two different specimens, resulting in virtually the same eval-
uation results. This underlines the repeatability of the test protocol and the
significance of the results discussed next.

2.4.1 Elastic Young’s modulus

The temporal evolution of the (elastic) Young’s modulus increases mono-
tonously and under-linearly with increasing age of the materials. In addition
the elastic stiffness is the larger the smaller the initial water-to-cement mass
ratio w/c, see Fig. 2.9.
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Figure 2.9: Evolution of elastic Young’s modulus for cement paste with (a)

w/c = 0.42, (b) w/c = 0.45, and (c) w/c = 0.50

The smooth evolution of Young’s modulus strongly supports the evaluation
strategy described in Section 3.1. Unloading modulus, namely, does not in-
crease monotonously with increasing age of the materials, but it drops slightly
every time the load level is updated, i.e. increased, for being kept close to 15 %
of the compressive strength, see Fig. 2.10.
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Figure 2.10: Evolution of unloading modulus for cement paste with (a) w/c =

0.42, (b) w/c = 0.45, and (c) w/c = 0.50

2.4.2 Temporal evolution of creep modulus and power-

law exponent

The modeled creep strain history (66) allows for an almost perfect fit (see
Fig. 2.11) of our measured data in the sense that the strains derived from our
experiments fluctuate only slightly around the model predicted strains, and
these fluctuations stem practically speaking from the measurement noise, as
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quantified by the relative prediction error

Erel(Ec, β) =

1

N

N∑
i=1

[
| εmodcreep(ti) |− | εcreep(ti) |

]
1

N

N∑
i=1

| εcreep(ti) |
(2.7)

which is typically as small as 1 %. In addition, the determined optimal values
of creep modulus Ec and power-law exponent β represent unique solutions, as
can be seen from the evaluation of error value (2.6) (ESRSS ≤ 0.1µm) over wide
intervals of the two optimization variables, see Fig. 2.11 and Fig. 2.12.
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Figure 2.11: Comparison of model predicted strain evolution, see Eq. (66),

and measured strain evolution for cement paste with w/c = 0.42 subjected

at an age of 70 h to a force amounting to 22.79 kN: (a) comparison of total

strains, (b) comparison of creep strains; optimal values of Ec and β read as

Ec = 29.94 GPa and β = 0.22

Creep moduli increase monotonously and under-linearly with increasing age
of materials. In addition, creep moduli are the larger the smaller the initial
water-to-cement mass ratio w/c, see Fig. 2.13. Notably, creep moduli Ec are
by a factor of 2 to 3 larger than the corresponding (elastic) Young’s moduli;
compare Fig. 2.9 with Fig. 2.13. As the creep modulus Ec refers to tref = 1 day,
the aforementioned comparison implies that after a 1-day constant loading of
an invariant microstructure, the creep strains would be by a factor of 2 to 3
smaller than the elastic strains.

Power-law exponent β decreases monotonously and over-linearly with increas-
ing age of the materials, see Fig. 2.14. In contrast to the (elastic) Young’s
moduli and creep moduli, power-law exponent shows only a minor sensitivity
with respect to the composition of the cement paste, in the investigated w/c
interval from 0.42 to 0.50.
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Figure 2.12: Computed error between measured and modeled strain for

w/c = 0.42: (a) absolute error ESRSS according to Eq. (2.6), (b) relative er-

ror Erel according to Eq. (2.7)
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Figure 2.13: Evolution of creep modulus Ec for cement paste with (a) w/c =

0.42, (b) w/c = 0.45, and (c) w/c = 0.50

2.4.3 Evolution of Young’s modulus, creep modulus,

and power-law exponent as functions of degree of

hydration

“Degree of hydration”is clearly preferable over “age of the material”when it
comes to selecting a suitable maturity parameter (Ulm and Coussy 1995), be-
cause the speed of the chemical reaction between cement clinker and water
increases with increasing temperature. This is the motivation for illustrating
the evolutions of elastic and creep properties as functions of hydration de-
gree, simply by combining the temporal evolutions of the identified mechanical
properties (Young’s modulus, see Fig. 2.9, creep modulus, see Fig. 2.13, and
power-law exponent, see Fig. 2.14) with the relationships between hydration
degree and age of the tested cement pastes, see Fig. A.3(b).

The (elastic) Young’s modulus increases in very good approximation linearly
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Figure 2.14: Evolution of power-law exponent β in standard optimization over

Tamtsia model for cement paste with (a) w/c = 0.42, (b) w/c = 0.45, and (c)

w/c = 0.50

with increasing hydration degree in the studied interval ranging from 30 %
to 65 %, see Fig. 2.15. For a given hydration degree, Young’s modulus is
the larger, the smaller the initial water-to-cement mass ratio. Creep modu-
lus increases over-linearly with increasing hydration degree, see Fig. 2.16. For
a given hydration degree, creep modulus is the larger, the smaller the initial
water-to-cement mass ratio. The power-law exponent slightly decreases – in an
apparently linear fashion – with increasing hydration degree, see Fig. 2.17. In-
terestingly, different compositions in terms of different initial water-to-cement
mass ratios do not exhibit a significant influence of the absolute values of the
power-law exponent, at least in the investigated composition interval ranging
from w/c = 0.42 to w/c = 0.50.
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Figure 2.15: Elastic Young’s modulus E as a function of hydration degree, for

cement paste with (a) w/c = 0.42, (b) w/c = 0.45, and (c) w/c = 0.50
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Figure 2.16: Creep modulus Ec as a function of hydration degree, for cement

paste with (a) w/c = 0.42, (b) w/c = 0.45, and (c) w/c = 0.50
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Figure 2.17: Power law exponent β as a function of hydration degree, for

cement paste with (a) w/c = 0.42, (b) w/c = 0.45, and (c) w/c = 0.50
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2.5 Discussion

We here discuss the non-aging and non-damaging aspects of the new creep
testing protocol (Subsection 2.5.1), the role of self-desiccation and the associ-
ated reduction of internal relative humidity (Subsection 2.5.2), alternatives to
the here-used test evaluation strategy (Subsection 2.5.3), we address the ques-
tion regarding the difference between static and dynamic elastic stiffness by
comparing the statically obtained Young’s moduli with results from ultrason-
ics testing on the same materials (Subsection 2.5.4), we discuss the transition
from initially power law-type creep to logarithmic creep (Subsection 2.5.5),
we check extrapolation of creep properties from three-minutes non-aging creep
tests to two-days aging creep tests (Subsection 2.5.6), and we close with a
future outlook regarding testing of microstructurally-designed materials (Sub-
section 2.5.7).

2.5.1 Non-aging, non-damaging creep tests

Our individual creep tests last for three minutes, and this is so short that the
microstructure of cement paste remains in very good approximation the same,
although hydration continues during each creep test. Two subsequent creep
tests, in turn, are separated by a characteristic duration of one hour. This time
span is large enough that two subsequent tests provide access to properties of
two already different microstructures.

The prescribed creep loads are smaller than or equal to 15 % of the uniaxial
compressive strength predicted by a validated multiscale strength model for
cement pastes (Pichler et al. 2013; Pichler and Hellmich 2011). These load
levels are small enough for allowing damage-free mechanical testing of the in-
vestigated specimens. At the same time, they are large enough for provoking
length changes within the measurement region of the tested specimens, which
are large enough as to ensure reliable readings of the used displacement sen-
sors. Deformation readings taken within the first few minutes right after the
completion of the creep test provide valuable experimental insight into the two
aspects discussed above. Notably, our specimens return to the configuration
before the creep test (Fig. 2.18), up to resolution being equal to the measure-
ment accuracy of our displacement sensors, which amounts to approximately
0.1µm, (Karte et al. 2015). This practically complete recovery of spontaneous
elastic and delayed creep deformation underlines (i) the effectiveness of the
chosen strategy in preventing damage of the tested materials, and (ii) that the
microstructure has practically not changed during the test.



Chapter-2 28

0 1000 2000 3000 4000

0

200

400

600

testing time t [s]

to
ta
l
st
ra
in

ε
to
ta
l
[×

1
0
−
6
]

measured strain
model predicted strain

Figure 2.18: Strain evolution of a specimen loaded, at an age of 70 h, to a

force of 22.79 kN for three minutes; and being without load thereafter: mea-

surements and predictions according to Eq. (66)

2.5.2 Self-desiccation and reduction of internal relative

humidity

Hourly repeated creep tests on young cement pastes provide access to
hydration-induced evolutions (i) of elastic properties in terms of Young’s mod-
ulus E and (ii) of creep properties in terms of creep modulus Ec and power-law
exponent β. The significant increase of creep modulus during the observed in-
terval of material age can be explained from a microstructural viewpoint. At
microstructural scales, hydration consumes water and cement clinker for the
production of cement hydrates. This implies, on the one hand, that capillary
porosity decreases with increasing hydration, reducing the stress concentration
into the creeping hydrates and, hence, reducing the overall creep activity. On
the other hand, the water content of cement paste decreases because of hy-
dration, and this self-desiccation process (Chen et al. 2013) is also known to
reduce the creep activity of the material (Jiang et al. 2014; Bažant and Chern
1985). In order to avoid loss of water through drying, our specimens were
sealed against the ambient air, from right after production until the end of the
testing activity. In this context, it is interesting to note that measurements of
relative humidity on sealed cement pastes with initial water-to-cement ratios
ranging from 0.22 to 0.35, revealed a humidity decrease from initially 100 %
down to about 90 %, see Wyrzykowski and Lura (Wyrzykowski and Lura 2014).
While humidity was not monitored in the present study, similar evolutions will
have probably taken place inside the specimens investigated here.

In order to provide more insight into the question whether (i) stress concen-
tration into hydrates or (ii) self-desiccation and decrease of relative humidity
is more important for early-age creep of cement paste, we study the evolution
of the creep compliance 1/Ec as a function of the gel-space ratio γg (Freyssinet
1933). This maturity parameter combines both composition in terms of the ini-
tial water-to-cement mass ratio w/c and the hydration degree ξ, see, e.g. (Pich-
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ler et al. 2013)

γg =
43.15 ξ

20 ξ + 63w/c
(2.8)

Creep compliance values identified based on six tested specimens (two for each
of the considered compositions in terms of w/c = 0.42, w/c = 0.45, and
w/c = 0.50, respectively; see Fig. 2.16) form a quite dense data cloud, when
plotted as a function of gel-space ratio, see Fig. 2.19. Notably, also early-age
uniaxial compressive strength of cement pastes with different compositions is
– in good approximation – a universal function of gel-space ratio (Pichler et al.
2013), and this opens the door to the following interpretation of similarities
between compressive strength and creep compliance. As regards strength, hy-
drates hold together cement paste microstructures, such that the microscopic
load carrying capacity of hydrates triggers the macroscopic strength of cement
paste. A universal relationship between strength and gel-space ratio indicates
that differently composed cement pastes exhibiting the same gel-space ratio
show the same stress concentration from macroscopic loading imposed on a ce-
ment paste specimen down to stresses of microscopic hydrates. Therefore, the
“pseudo-universal”relationship between creep compliance and gel-space ratio
(Fig. 2.19) suggests that also creep of young cement pastes is mainly triggered
by stress concentration from macro-loading down to stresses in microscopic hy-
drates, at least in the investigated range of gel-space ratios ranging from 35 to
more than 60 %. This motivates further investment into multiscale creep mod-
eling of cement pastes (Sanahuja 2013b; Scheiner and Hellmich 2009; Sanahuja
and Dormieux 2010).
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Figure 2.19: Creep compliance 1
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2.5.3 Test evaluation strategy

Identification of elastic and creep properties represents an optimization prob-
lem, and this raises the question regarding a suitable solution method. No-
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tably, the error surface defined through (2.6) exhibits several local minima
resulting from the measurement noise (see Fig. 2.8). Gradient descend meth-
ods, such as, e.g., the Levenberg-Marquardt method, would identify a local
minimum, rather than the sought global minimum. This raises the need for
an optimization algorithm checking the error surface also in the vicinity of a
detected near-optimum solution. The optimization approach used here pro-
vides a satisfactory solution to this problem. Namely, several numerical tests
provided evidence that this approach indeed identifies the global minimum of
the underlying error surfaces.

We here identified elastic and creep properties by means of a two-step strat-
egy. At first, we identified the elastic Young’s modulus from a stress strain
relation obtained via unloading (see Fig. A.6), while forbiding tensile creep
strains during a compressive creep test. After that, the identification of creep
modulus and power-law exponent requires the solution of a two-dimensional
optimization problem. An alternative strategy would have been to identify all
three quantities simultaneously. Notably, this three-dimensional optimization
problem is challenging because the sensitivity of modeled strains with respect
to changes in Young’s modulus is, by orders of magnitude, larger than the
sensitivity with respect to changes in creep modulus and power-law exponent.
This would imply that the ”optimal Young’s modulus” were even smaller than
the unloading modulus, and that the ”optimal creep strains” would again im-
ply non-physical tensile creep strains under compressive loading. Hence, the
proposed mechanics-based, staggered, identification strategy is clearly prefer-
able over identification strategies which are merely motivated by mathematical
formalisms alone.

The idea that, due to viscoelastic deformations, the unloading modulus is not
necessarily equal to the elastic modulus, is not new. E. g. in the context of
indentation experiments, Feng and Ngan (Feng and Ngan 2002) have proposed
to determine the elastic modulus from the indentation rate right before before
initiation of unloading and the force rate right at the beginning of the unloading
phase. Translated into the present context of macroscopic material testing, the
aforementioned “correction strategy” would read as

1

E
=

1

Eu
− ε̇(t−u )

σ̇(t+u )
with ε̇(t−u ) = lim

ε→0+
ε̇(tu − ε) and σ̇(t+u ) = lim

ε→0+
σ̇(tu + ε)

(2.9)
where tu denotes the time instant when unloading starts. In Eq. (2.9), ε̇(t−u )
and σ̇(t+u ), respectively, denote the strain rate right before unloading and the
stress rate right at the beginning of the unloading phase. However, the “correc-
tion strategy” (2.9) cannot be implemented in the present context of macro-
scopic experiments, because the acceleration capabilities of the piston of a
spindle-based electromechanical testing machine are much more limited than
those of a nanoindentation tip. While nanoindentation devices typically allow
for quasi-immediate prescription of a desired unloading force rate, macroscopic
mechanical test devices do not allow for such an option: Strictly speaking, the
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macroscopic unloading stress rate vanishes at the beginning of the unloading
phase. As a remedy, one could evaluate Eq. (2.9) based on the average stress
rate during unloading rather than based on the stress rate right at the be-
ginning of the unloading phase, but this would result in an “improved” value
for Young’s modulus, which would still be related to significant tensile creep
strains at the beginning of the loading phase. Hence, we conclude that the ap-
proach of Feng and Ngan cannot be straightforwardly adapted for our present
experimental set-up.

2.5.4 Static versus dynamic stiffness

It is interesting to compare the elastic Young’s moduli, as they were herein
determined from a quasi-static test protocol, with ultrasonic experimental re-
sults of (Karte et al. 2015) on the same cement pastes (identical raw materials
and compositions w/c = 0.42 and w/c = 0.50); i.e. with Young’s moduli
derived from a dynamic test protocol. Remarkably, they are essentially the
same, see Fig. 2.20. While this somewhat contradicts the tale of the “differ-
ence between quasi-static and dynamic Young’s moduli” (Kolias and Williams
1980), it is perfectly in line with the energetic and thermodynamic definition
of elasticity (Coussy 2004; Salençon 2001): Elasticity is path-independent, and
therefore, also independent on the velocities and rates experienced along the
evolution of whatever path. Accordingly, any “moduli” derived from stress-
strain protocols exhibiting strain rate-dependencies, relate (at least partially)
to dissipative phenomena: This concerns potentially visco-elasto-viscoplastic
loading moduli (often, but still confusingly, termed “quasi-static Young’s mod-
uli” (Kolias and Williams 1980)) as well as potentially visco-elastic unloading
moduli (as recently documented by Karte et al (Karte et al. 2015)), which
in light of the present results, would also reflect delayed dissipation-related
phenomena.

It is also interesting to discuss the possible activation of loading-induced pore
pressures. Macroscopic compressive loading of cement paste leads to a re-
duction of the macroscopic specimen volume, and this manifests itself at the
microscale in a volume reduction of the solid constituents and of the pore
space. The reduction of porosity is a driving force for water transport from
water-filled into air-filled pores. Water transport counteracts the build-up of
pore water pressure, but is limited by the size of the channels which connect
neighboring pores. Therefore, the faster the macroscopic loading is increased,
the less effective can transport processes counteract the build-up of pore water
pressure. The latter, in turn, increases the macroscopic apparent stiffness of
the material. Hence, one would expect that the apparent macroscopic stiffness
of a porous material increases with increasing loading speed. In this context,
it is noteworthy that ultrasonics (exhibiting extremely fast loading speed) and
the present quasi-static experiments delivered virtually identical elastic stiff-
nesses. This result strongly suggests that both types of tests activate the same
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Figure 2.20: Comparison between the static Young’s modulus identified herein,

with the dynamic Young’s modulus reported by Karte et al. (Karte et al. 2015).

Very remarkably they turn out to be essentially the same, (a) w/c = 0.42, and

(b) w/c = 0.50

types of pore pressures. One could speculate that significant pore pressures
are activated in isolated (non-connected) gel pores, while no significant pore
pressures are activated in well-connected capillary pores. Clarification requires
future research combining experiments with microporomechanical theories, as
the ones described by Dormieux et al. (Dormieux et al. 2006).

2.5.5 Macroscopic testing versus microindentation test-

ing: Power-law creep versus logarithmic creep?

It is interesting to compare our minutes-long macroscopic creep tests with
minutes-long microindentation creep tests into cement paste (Vandamme and
Ulm 2013; Jones and Grasley 2011; Zhang 2014) and with minutes-long nanoin-
dentation creep tests into low-density C-S-H (Vandamme and Ulm 2013). The
three methods deliver similar results in the sense that they all indicate non-
asymptotic creep behavior. However, there are also significant qualitative dif-
ferences. Nano- and microindentation yield – after an initial transition phase
– so-called logarithmic creep, which is expressed by a linear relation between
creep deformation and the logarithm of time, i.e. an by underlinear relation
between the logarithm of creep deformation and the logarithm of time. Our
macroscopic tests, in turn, yield power law-type creep, which is expressed by
an overlinear relation between creep deformation and the logarithm of time,
i.e. by a linear relation between the logarithm of creep deformation and the
logarithm of time. Together, these two observations suggest that creep of ce-
ment paste starts with power-law creep rates and ends, after an intermediate
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transition phase, with logarithmic creep rates. This is underlined by non-aging
macroscopic creep tests on mature cement pastes with characteristic durations
of more than 75 days, see Zhang et al. (Zhang et al. 2014). The initial part
of the measured creep functions can be represented very reliably by means of
power laws (Fig. 2.21). The final part of the measured creep functions, in turn,
can be represented very reliably by means of a logarithmic function of the form
J(t) = (1/C)× ln(t/τ + 1), with C and τ as fitting parameters. This suggests
that the transition from initial power law-type creep to subsequent logarithmic
creep takes place between 20 and 45 days after the start of the creep test. Also,
it may be possible, in the future, to perform two three-minutes creep tests –
one macroscopic test such as described herein, and one microindentation test
such as described in (Zhang et al. 2014) –, in order to characterize the complete
creep function of a non-aging cement paste.
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Figure 2.21: Transition from power law-type to logarithmic creep behavior,

shown by example of creep experiments reported by Zhang et al. (Zhang et al.

2014) for mature cement pastes which were tested longer than 75 days: creep

functions plotted over (a) linear and (b) logarithmic time scale

2.5.6 Extrapolation from three-minutes non-aging

creep tests to two-days aging creep tests

Next, we discuss potential and limitation regarding the estimation of the aging
creep strain development over two days, from data obtained during a three
minute non-aging creep test. To this end, we subjected cement paste with
w/c = 0.42, at an age of 24 hours, to a load of 9.5 kN, and we kept this
load constant for the following 48 hours, see Fig. 2.22 for the measured strain
evolution. In this context, we note that significant autogeneous shrinkage
develops during the second and third day after production. Therefore, we
consider the measured strains to be a superposition of elastic strains, creep
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strains, and autogeneous shrinkage strains

εtotal(t) = εelastic(t) + εcreep(t) + εshrinkage(t) (2.10)

Autogeneous shrinkage strains are discussed next.
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Figure 2.22: Extrapolation from three-minutes non-aging creep tests to two-

days aging creep tests of cement paste with w/c = 0.42: measured creep

strains during two-days creep tests starting at 24 hours age, see dashed curves;

and 99 % confidence interval of extrapolated creep strain evolution, see shaded

domain; corresponding material properties are collected in Table 2.1

Hydration of cement pastes is associated with autogeneous shrinkage. Dur-
ing a three-minutes creep test, hydration progresses only insignificantly, such
that newly developing autogeneous shrinkage strains are negligibly small with
respect to the (by order of magnitude larger) elastic and creep strains in-
duced by the mechanical loading. Therefore, it is sufficient to focus on strain
changes when it comes to identification of elastic and creep properties from
three-minutes creep tests, and this is facilitated when setting the strains at
the beginning of each three-minutes creep test formally equal to zero. During
a time span of hours and days, however, the hydration process does exhibit a
significant progress, and this leads to considerable autogeneous shrinkage. In
this context, (i) we emphasize that the herein reported quasi-static (elastic)
Young’s moduli agree extremely well with the ultrasonics results of Karte et
al. (Karte et al. 2015), and (ii) we note that ultrasound is well-known to leave
specimens undamaged. This suggests that repeated creep testing left our spec-
imens undamaged, and that creep strains are completely recovered after each
test, see, e.g., Fig. 2.18. Therefore, the small difference of absolute strains
measured right before two successive creep tests can be used to quantify the
evolution of autogeneous shrinkage strains, see Fig. 2.23. These evolutions are
considered in Eq. (2.10).

As for the comparison of creep strains extrapolated, from a three-minutes test,
to a two-days test, we note that three-minutes tests provide virtually non-aging
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Figure 2.23: Shrinkage strain evolution quantified as the difference of absolute

strains measured right before two successive creep tests, for w/c = 0.42

properties, while two-days tests refer to an aging microstructure (because of
ongoing hydration). Still, we check the potential relevance of such an extrap-
olation, by means of the following statistical exercise. We consider (elastic)
Young’s modulus E, creep modulus Ec, and power-law exponent β to be ran-
dom variables characterized by a lognormal distribution, and we determine
99 % confidence intervals of the corresponding expected values, for mathemat-
ical details see, e.g., (Pichler et al. 2005). The confidence intervals consider
the rather small statistical sample size amounting to n = 4. Namely, two
specimens were tested and evaluated as described in Sections 2.2 and 2.3, and
another two specimens were subjected to two-days creep tests, whereby the
first three minutes can be evaluated as described in Section 2.3, see Table 2.1.
The determined confidence intervals of E, Ec, and β are related to a confi-
dence interval of extrapolated creep strains, see Fig. 2.22. Albeit the large
extrapolation distance – two days are by a factor of 960 larger than three min-
utes –, the confidence interval of extrapolated creep strains encloses the two
measured aging strain evolutions. This further corroborates the significance
of the herein reported test results. We also conclude that the microstructure
which is present at the time instant of loading, plays also an important role
for aging creep tests; and this is consistent with recent modeling approaches,
see (Sanahuja 2013a,c).

2.5.7 Future outlook to microstructurally-designed ma-

terials

In the future, it will be interesting to combine the herein described creep test-
ing protocol with ”microstructurally designed” cement pastes. As for their
production, a certain part of the clinker is replaced by chemically inert par-
ticles of similar size and stiffness, see (Termkhajornkit et al. 2015; Di Bella
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Table 2.1: (Elastic) Young’s modulus, creep modulus, and power-law exponent

of four samples with w/c = 0.42, subjected to three-minutes creep tests, 24

hours after their production; and 99 % confidence intervals of expected values

of lognormal distributions

E Ec β

properties of sample #1 9.21 GPa 10.9 GPa 0.282

properties of sample #2 9.28 GPa 12.9 GPa 0.240

properties of sample #3 8.90 GPa 9.93 GPa 0.280

properties of sample #4 8.82 GPa 8.99 GPa 0.286

upper limit of 99 % confidence interval of expected value 9.74 GPa 16.7 GPa 0.344

lower limit of 99 % confidence interval of expected value 8.41 GPa 6.74 GPa 0.214

et al. 2015). Complete hydration results in a material which is representative
of an early-age microstructure, because the inert particles take over the role
of unhydrated clinker. Thanks to the chemically inert nature of such “mi-
crostructurally designed” cement pastes, they may provide insights which are
not accessible through test campaigns on hydrating materials, e.g. (i) repeated
tests in order to gain very detailed insight into strain recovery, and (ii) test
series with increasing load levels, in order to study the transition from linear
creep to non-linear creep.

2.6 Conclusions

The following conclusions are drawn:

• The new testing protocol consisting of hourly repeated three-minutes
creep tests, with compressive force levels smaller or equal to 15 % of the
compressive strength of the material, provides valuable insight into the
evolution of elastic and creep properties of hydrating cement pastes.

• Ensuring that creep strains are compressive throughout the entire creep
test, and this includes in particular the initial phase of loading, allows for
identifying a static Young’s modulus which is in very good approximation
equal to the dynamic Young’s modulus identified from ultrasonics.

• Any “moduli” derived from stress-strain protocols exhibiting strain
rate-dependencies, relate (at least partially) to dissipative phenomena:
This concerns potentially visco-elasto-viscoplastic loading moduli (often,
but still confusingly, termed “quasi-static Young’s moduli” (Kolias and
Williams 1980)) as well as potentially visco-elastic unloading moduli (as
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recently documented by Karte et al (Karte et al. 2015)), which in light
of the present results, would also reflect delayed dissipation-related phe-
nomena.
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Nomenclature

Nomenclature

A — cross-sectional area of sample
C-S-H — Calcium Silicate Hydrates
C — creep compliance
E — Young’s modulus
Ec — creep modulus
Eu — unloading modulus
F — compressive force
`o — measurement length
LVDTs — Linear Variable Differential Transducers
Q — specific heat release
t — time
t0 — time instant at start of loading
tref — reference time
w/c — initial water-to-cement mass ratio
β — power-law exponent
∆`i — length change measured by i-th LVDT
∆`model — change of length computed by creep model
∆`total — total change of measurement length
∆`creep — creep contribution to ∆`total
∆`elastic — elastic contribution to ∆`total
∆σ — incremental stress change (positive if compressive)
ESRSS — “square root of sum of squares”- error
Erel — relative prediction error
γ — dimensionless power-law exponent
γg — gel-space ratio
ε — strain
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εtotal — total strain
εelastic — elastic strain
εcreep — creep strain
εmodcreep — modeled creep strain
εul — strain during unloading
σ — compressive stress
σ0 — stress at time t0
σul — stress during unloading
τ — characteristic creep time
ξ — degree of hydration



Chapter3
Downscaling-based identification

of non-aging power-law creep of

cement hydrates

3.1 Introduction

It is well accepted in the cement and concrete research community that the
creep properties of cementitious materials stem from the viscoelastic nature of
the reaction products between cement and water, called hydrates; while the
remaining solid material constituents, namely unhydrated clinker grains and
aggregates, do not exhibit delayed deformations under time-invariant stresses
(Neville 1964; Bažant and Prasannan 1989a,b; Acker 2001). It is also a widely
acknowledged idea that the aging, i.e. time variant, creep properties of concrete
are due to the hydration process, i.e. the subsequent formation of increasingly
many hydrates, while the hydrates themselves may actually exhibit non-aging,
i.e. time-invariant, creep properties (Bažant and Prasannan 1989a,b; Scheiner
and Hellmich 2009). However, quantification of such non-aging hydrate creep
properties, both short and long term, remains an unsettled challenge – and this
challenge is tackled in the present contribution. In this context, ultra-short
term creep tests are of interest (Delsaute et al. 2012, 2016), and we here build
upon a very recent experimental campaign consisting of three minute-long
creep tests on ordinary Portland cement pastes with different water-to-cement
ratios and different maturity degrees (Irfan-ul-Hassan et al. 2016). Over this
short creep measuring time, the pastes virtually do not age at all, and their
creep behavior is almost perfectly represented (see Fig. 3.1) by a uniaxial
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power-law creep function of the form

Jexpcp (t− τ) = Jexpe,cp + Jexpv,cp(t− τ) =
1

Eexp
cp

+
1

Eexp
c,cp

(
t− τ
tref

)βexpcp

, (3.1)

with t as chronological time, τ as time instant of loading, and tref = 1 d =
86 400 s as a fixed reference time (Irfan-ul-Hassan et al. 2016); with Eexp

cp de-
noting the Young’s elastic modulus, Eexp

c,cp denoting the Young’s creep modulus,
and βexpcp representing a dimensionless power-law exponent. Notably, the lat-
ter three quantities depend on the microstructural composition of the cement
paste encountered at the time instant of loading, τ .
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Figure 3.1: Experimentally measured temporal evolutions of viscous creep

strains (divided by the applied stress at the loading plateau) and corre-

sponding power-law fits according to Eq. (3.1) for 35 h old cement paste

with w/c ∈ {0.42, 0.45, 0.50}; quadratic correlation coefficients amount to

R2 = {99.7%, 99.6%, 99.5%}; see (Irfan-ul-Hassan et al. 2016) for details

In the remainder of the present paper, we will test whether the maturity- and
composition-dependent parameters Eexp

c,cp and βexpcp reported by Irfan-ul-Hassan
et al. (2016) may actually be traced back to only one “universal” Portland
cement-related, isochoric hydrate creep tensor function

Jhyd(t− τ) =
1

3 khyd
Ivol +

1

2

[
1

µhyd
+

1

µc,hyd

(
t− τ
tref

)βhyd]
Idev , (3.2)

with the (elastic) bulk and shear modulus of the hydrates denoted as khyd
and µhyd, and with the shear creep modulus and the power-law creep ex-
ponent of hydrates denoted as µc,hyd and βhyd. Ivol and Idev are the volu-
metric and deviatoric parts of the fourth-order identity tensor I, defined as
Iijkl = 1/2(δikδjl + δilδjk), Ivol = 1/3(1 ⊗ 1), and Idev = I − Ivol, respec-
tively, whereby 1 denotes the second-order identity tensor with components
equal to the Kronecker delta δij, namely δij = 1 for i=j, and 0 otherwise. For
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“downscaling” from the cement paste to the hydrate level, we use the microme-
chanical representation of cement paste as developed by Pichler and Hellmich
(2011), in combination with the theory of viscoelastic homogenization (Laws
and McLaughlin 1978; Scheiner and Hellmich 2009; Sanahuja and Dormieux
2010).

The present paper is organized as follows: after a review of micromechan-
ics and viscoelastic scale transitions, mixture-independent hydrate creep is
back-analyzed from the aforementioned three minute test campaign over var-
ious mixtures. The resulting hydrate creep function is then further validated
through Tamtsia and Beaudoin’s classical test on very old cement paste (Tamt-
sia and Beaudoin 2000). Corresponding results are carefully discussed there-
after, followed by concluding remarks.

3.2 Micromechanics of creeping cement pastes

3.2.1 Micromechanical representation of cement pastes

Cement pastes are microheterogeneous materials exhibiting a scale-separated
hierarchical organization. In agreement with our focus on creep of cement
paste, we here account for four quasi-homogeneous constituents (or material
phases), namely for cement clinker, water, hydration products, and air. Their
characteristic sizes, their characteristic phase shapes, and their specific modes
of mutual interaction motivate the two-scale representation of cement pastes
according to Pichler and Hellmich (2011), sketched in Fig. 3.2.

• At the scale of a few tens of microns, we envision a representative vol-
ume element (RVE) of hydrate foam, consisting of single micron-sized or
even smaller spherical water and air phases, as well as of similarly thick
hydrate needles oriented uniformly in all space directions. All three ma-
terial phases are in direct mutual interaction, i.e. they are arranged in a
polycrystalline fashion.

• At the significantly larger scale of several hundreds of microns, we en-
vision a representative volume element of cement paste, consisting of a
quasi-homogeneous hydrate foam matrix and a spherical cement clinker
phase. Their interaction is the one typically encountered in matrix-
inclusion composites.

3.2.2 Homogenization of hydrate foam properties

The RVE of Fig. 3.2 (b) is subjected to homogeneous (“macroscopic”) strains
εhf , in terms of “microscopic” displacements ξ(x, t) fulfilling

ξ(x, t) = εhf (t) · x , (3.3)



Chapter-3 42

<
20

µ
m

<
0.
7
m
m

clinker

(a) cement paste (b) hydrate foam

hydrate foam matrix hydratecapillary pore

Figure 3.2: Micromechanical representation of cement paste by means of the

two-step homogenization scheme of Pichler and Hellmich (2011): (a) RVE of

matrix-inclusion composite “cement paste” where a spherical clinker phase is

embedded in a hydrate foam matrix [modeled by means of a Mori-Tanaka

scheme (Mori and Tanaka 1973; Benveniste 1987; Bernard et al. 2003b)]; (b)

polycrystalline RVE of “hydrate foam” built up of spherical capillary porosity

(water and air phases), as well as of needle-shaped hydrate phases oriented

uniformly in all space directions [modeled by means of a self-consistent scheme

(Hershey 1954; Hill 1965; Fritsch et al. 2006)]; all schematic 2D sketches refer

to 3D volume elements

with x labeling positions inside as well as at the boundary of the RVE. Bound-
ary condition (3.3) and compatibility of the microstrains inside the RVE, read-
ing as

ε(x, t) =
1

2

[
∇ξ(x, t) + ∇T ξ(x, t)

]
, (3.4)

imply the so-called strain average rule (Hashin 1983; Zaoui 2002)

εhf (t) =
1

Vhf

∫
Vhf

ε(x, t) dV , (3.5)

with Vhf as the volume of the RVE. Moreover, these deformations provoke trac-
tion forces T at the boundary ∂Vhf of the RVE, and equilibrated microstresses
σ throughout the RVE. They fulfill

T (x, t) = σ(x, t) · n(x) and divσ(x, t) = 0 , (3.6)

with n as the normal to the surface ∂Vhf of the RVE. The (external) work
density done by these traction forces reads as

W ext
hf (t) =

1

Vhf

∫
∂Vhf

T (x, t) · ξ(x, t) dS

=
1

Vhf

∫
∂Vhf

[εhf (x, t) · x] · [σ(x, t) · n(x)] dS = εhf (t) :
1

Vhf

∫
Vhf

σ(x, t) dV .

(3.7)
Hence, the force quantity doing work on the macroscopic strains εhf is the
spatial average over the microscopic stresses. Thus, this average qualifies as
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the macroscopic stress, i.e. here as the stress tensor σhf related to the hydrate
foam,

σhf (t) =
1

Vhf

∫
Vhf

σ(x, t) dV . (3.8)

Given the morphological representation of the hydrate foam RVE [see
Fig. 3.2 (b)], the strain average rule (3.5) takes the particular form

εhf (t) = fhfporεpor(t) + fhfhyd

2π∫
0

π∫
0

εhyd(ϕ, ϑ, t)
sinϑ

4π
dϑ dϕ . (3.9)

In Eq. (3.9), fhfpor, and fhfhyd denote the volume fractions of capillary pores and of
the hydrates, within the RVE of hydrate foam. εpor is the microstrain averaged
over the RVE-subvolume Vpor = Vair + VH2O, occupied by the capillary pores,
namely

εpor(t) =
1

Vpor

∫
Vpor

ε(x, t) dV , (3.10)

and εhyd(ϕ, ϑ) relates to the average strains in the needle-shaped hydrate phase
oriented in ϕ,ϑ-direction,

εhyd(ϕ, ϑ, t) =
1

`(ϕ, ϑ)

∫
`(ϕ,ϑ)

ε(x, t) ds , (3.11)

with `(ϕ, ϑ) as the length of all needle-shaped hydrates oriented in ϕ, ϑ-
direction. Analogously, the stress average rule (3.8) specifies to

σhf (t) = fhfporσpor(t) + fhfhyd

2π∫
0

π∫
0

σhyd(ϕ, ϑ, t)
sinϑ

4π
dϑ dϕ . (3.12)

The hydrates exhibit viscoelastic behavior (Acker 2001),

σhyd(t) =

∫ t

−∞
Rhyd(t−τ) :

∂εhyd(τ)

∂τ
dτ , εhyd(t) =

∫ t

−∞
Jhyd(t−τ) :

∂σhyd(τ)

∂τ
dτ ,

(3.13)
where the creep and relaxation tensor functions, Jhyd and Rhyd, fulfill the
convolution condition (Schwarzl and Struik 1968)∫ t

−∞
Jhyd(t− τ) : Rhyd(τ) dτ =

∫ t

−∞
Rhyd(t− τ) : Jhyd(τ) dτ = t I , (3.14)

and where the hydrate creep function has the format of Eq. (3.2). On the
other hand, the capillary pore phase behaves elastically,

σpor(t) = Cpor : εpor(t) , (3.15)
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with the stiffness tensors Cpor playing the role of time-invariant (constant)
relaxation “functions”,

Cpor = Rpor(t− τ) = 3 kporIvol + 2µporIdev (3.16)

whereby kpor = 0 and µpor = 0 denote the vanishing (elastic) bulk and shear
modulus of the pores, i.e. we consider, from a poromechanical viewpoint,
drained pores.

Upscaling of this material behavior, up to the level of the hydrate foam, is
particularly easily done in the Laplace-Carson (rather than the time) domain.
The Laplace-Carson (LC) transform f ∗(p) of any time-dependent function f(t)
is defined as

f ∗(p) = pf̂(p) = p

∞∫
0

f(t)e−ptdt , (3.17)

where p is the complex variable in the Laplace-Carson domain, and f̂(p) is
the Laplace transform of f(t). Applying the transformation rule (47) to the
viscoelastic behavior of the hydrates (3.13) as well as to the elastic behavior
of air and water (46) yields algebraic constitutive equations in the LC space,
reading as (Gurtin and Sternberg 1962)

ε∗j(p) = J∗j(p) : σ∗j(p) , σ∗j(p) = R∗j(p) : ε∗j(p) ∀j ∈ {por, hyd} , (3.18)

whereby, interestingly, the convolution condition (43) is transformed into a
simple inversion rule,

R∗j(p) =
[
J∗j(p)

]−1
. (3.19)

Hence, LC transformation (47) of the creep function (3.2), followed by inser-
tion of the respective result for J∗hyd(p) into (49), yields the LC-transformed
relaxation function of the hydrates as

R∗hyd(p) = 3 khydI
vol + 2µ∗hyd(p)I

vol

= 3 khydI
vol + 2

[
1

µhyd
+

1

µc,hyd

(
1

tref

)βhyd
Γ (βhyd + 1) p−βhyd

]−1
Idev .

(3.20)
Note that Eqs. (48) are formally identical to the relations encountered with
linear elasticity homogenization. Thus, upscaling of viscoelastic properties to
the hydrate foam can be done as quasi-elastic homogenization in the LC space
[this is referred to as the correspondence principle (Read 1950, 1951; Laws and
McLaughlin 1978; Beurthey and Zaoui 2000)]. This process is based on the
LC-transformed average rules (3.9) and (3.12) reading as

ε∗hf (p) = fhfporε
∗
por(p) + fhfhyd

2π∫
0

π∫
0

ε∗hyd(ϕ, ϑ, p)
sinϑ

4π
dϑ dϕ , (3.21)

σ∗hf (p) = fhfporσ
∗
por(p) + fhfhyd

2π∫
0

π∫
0

σ∗hyd(ϕ, ϑ, p)
sinϑ

4π
dϑ dϕ . (3.22)
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Linearity of the problem defined by (11), (3.6), and (48) implies a linear
strain concentration rule from the LC-transformed macrostrains to the LC-
transformed microstrains in phase j, reading as

ε∗j(p) = A∗j(p) : ε∗hf (p) ∀j ∈ {por, hyd} , (3.23)

whereA∗j denotes the LC-transformed phase strain concentration tensor, which
can be accessed from classical Eshelby-type matrix inclusion problems (Eshelby
1957; Laws 1977; Benveniste 1987; Zaoui 2002), while considering the polycrys-
talline morphology of the hydrate foam by means of the self-consistent scheme
(Hershey 1954; Kröner 1958). This results in

A∗j(p) =
{
I+ P

hf,∗
j (p) :

[
R∗j(p)−R∗hf (p)

]}−1
:fhfpor {I+ P

hf,∗
sph (p) :

[
R∗por(p)−R∗hf (p)

]}−1

+fhfhyd

2π∫
0

π∫
0

{
I+ P

hf,∗
cyl (p, ϕ, ϑ) :

[
R∗hyd(p)−R∗hf (p)

]}−1 sinϑ

4π
dϑ dϕ

−1
∀j ∈ {por, hyd} .

(3.24)
In Eq. (54), Phf,∗j denotes the LC transform of the fourth-order Hill ten-
sor, which accounts for the shape of phase j embedded in a fictitious ma-
trix with “stiffness” R∗hf . Pores are considered to be spherical inclusions,
hydrates are cylindrical (needle-shaped), see Fig. 3.2, and the corresponding
LC-transformed Hill tensors read as Phf,∗sph , and Phf,∗cyl , see the Appendix for
corresponding mathematical details. Insertion of the macro-to-micro strain
concentration relation (53) and of the constitutive behavior (48)2, into the
LC-transformed stress average rule (52) leads, after comparison to the LC-
transformed constitutive law at hydrate foam level, σ∗hf (p) = R∗hf (p) : ε∗hf (p),
to an implicit expression for the LC-transformed homogenized relaxation ten-
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sor of the hydrate foam, R∗hf , reading as

R∗hf (p) =
∑
j

fjR
∗
j(p) : A∗j(p)

=

fhfporR∗por(p) :
{
I+ P

hf,∗
sph (p) :

[
R∗por(p)−R∗hf (p)

]}−1

+fhfhydR
∗
hyd(p) :

2π∫
0

π∫
0

{
I+ P

hf,∗
cyl (p, ϕ, ϑ) :

[
R∗hyd(p)−R∗hf (p)

]}−1 sinϑ

4π
dϑ dϕ

 :

fhfpor {I+ P
hf,∗
sph (p) :

[
R∗por(p)−R∗hf (p)

]}−1

+fhfhyd

2π∫
0

π∫
0

{
I+ P

hf,∗
cyl (p, ϕ, ϑ) :

[
R∗hyd(p)−R∗hf (p)

]}−1 sinϑ

4π
dϑ dϕ

−1 .
(3.25)

3.2.3 Homogenization of cement paste properties

We are left with homogenization of the RVE of cement paste. Given the
matrix-inclusion type morphology of the RVE, the Mori-Tanaka scheme (Mori
and Tanaka 1973; Benveniste 1987) is appropriate to account for phase inter-
actions. Accordingly, the LC-transformed relaxation function of the infinite
matrix in the corresponding matrix-inclusion problems is set equal to the LC-
transformed homogenized relaxation function of the hydrate foam. This results
in an explicit expression for the LC-transformed relaxation function of cement
paste, R∗cp, reading, by analogy to (55), as

R∗cp(p) =

(
{1− f cpclin}R∗hf (p) + f cpclinR

∗
clin(p) :

{
I+ P

hf,∗
sph (p) :

[
R∗clin(p)−R∗hf (p)

]}−1)
:(

{1− f cpclin} I+ f cpclin

{
I+ P

hf,∗
sph (p) :

[
R∗clin(p)−R∗hf (p)

]}−1)−1
.

(3.26)

This relaxation function, as well as its creep analogue, J∗cp(p) =
[
R∗cp(p)

]−1
,

is then back-transformed from the LC domain, back to the time domain.
This is done by means of the Gaver-Wynn-Rho algorithm (Abate and Valkó
2004; Valkó and Abate 2004), which allows for reliable numerical back-
transformation, provided that the quantities in the LC space are available
in a multiprecision number format. In more detail, the approximation accu-
racy of the back-transformation increases with the “order of approximation”
quantified by the even integer M , see (Scheiner and Hellmich 2009) for de-
tails. Herein, M = 10 is chosen, which requires all computations in the LC
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space to be done with a precision higher than 21 digits (Abate and Valkó 2004;
Valkó and Abate 2004). In this way, the implicit equation (55) is solved itera-
tively, and the calculation is stopped once subsequent homogenized relaxation
functions differ by a value smaller than 10−25 GPa.

3.3 Identification of power-law creep proper-

ties of well-saturated cement hydrates

3.3.1 Downscaling minute-long creep test data from ce-

ment paste to hydrate level

We here identify the viscous behavior of the only creeping phase, the hydrate
phase, by minimizing the error between the experimental creep functions (3.1)
resulting from three minute-long creep tests, and corresponding model predic-
tions according to Eq. (3.26). The aforementioned creep tests were conducted
in parallel to the hydration process of ordinary Portland cement paste exhibit-
ing compositions of w/c ∈ {0.42, 0.45, 0.50} and material ages ranging from
approximately 1 to 8 days, see (Irfan-ul-Hassan et al. 2016) for details on the
test protocol. As the combination of the creep experiments with unloading
tests allowed for determination of the (elastic) Young’s moduli (as was con-
firmed by ultrasonic tests, see (Irfan-ul-Hassan et al. 2016) for details), we
isolate the elastic strains from the overall creep strains and restrict the mini-
mization process to the viscous part of the creep function, which can be almost
exactly fitted with a power-law function Jexpv,cp reading as (Irfan-ul-Hassan et al.
2016)

Jexpv,cp(t− τ) =
1

Eexp
c,cp

(
t− τ
tref

)βexpcp

, (3.27)

with Eexp
c,cp denoting the creep modulus and βexpcp representing a dimensionless

power-law exponent. Both parameters are functions of the initial water-to-
cement mass ratio w/c and of the (calorimetry-based) hydration degree ξ, the
latter being defined as the hydrated clinker volume divided by the initial clinker
volume (Irfan-ul-Hassan et al. 2016).

As concerns the aforementioned model predictions, the elastic phase properties
are given in Table 3.1, and the volume fractions occurring in (55) and (3.26)
are determined from the famous Powers’ model (Powers and Brownyard 1947;
Powers 1958). Accordingly, the cement paste-related phase volume fractions of
clinker f cpclin, of capillary pores f cppor, and of hydrates f cphyd, and read as (Pichler
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Table 3.1: Isotropic elastic phase properties from Pichler and Hellmich (2011);

corresponding phase stiffness tensors read as Cj = 3 kjI
vol + 2µjI

dev

Phase j Bulk modulus Shear modulus

kj [GPa] µj [GPa]

Air kair = 0 µair = 0

Water kH2O = 0 µH2O = 0

Hydrates khyd = 18.69 µhyd = 11.76

Clinker kcem = 116.7 µcem = 53.80

and Hellmich 2011):

f cpclin =
20 (1− ξ)

20 + 63w/c
≥ 0 ,

f cppor =
63 (w/c− 0.367 ξ)

20 + 63w/c
≥ 0 ,

f cphyd =
43.15 ξ

20 + 63w/c
.

(3.28)

Given the two-scale representation of cement paste (see Fig. 3.2), we also need
access to hydrate foam-related volume fractions of capillary pores and hydrates
(fhfpor and fhfhyd). They follow from dividing the cement paste-related volume
fractions by the total hydrate foam volume, (1− f cpclin), according to

fhfj =
f cpj

1− f cpclin
∀j ∈ {por, hyd} . (3.29)

Given the substantial computational effort associated with the inversion of the
LC transformation, it is more efficient to compare the model-predicted and
experimentally measured creep function in the LC space. This requires the LC
transformation (47) of Jexpv,cp, in order to obtain an experimentally determined
LC-transformed viscous creep function Jexp,∗v,cp in the form

Jexp,∗v,cp (p) =
1

Eexp
c,cp

(
1

tref

)βexpcp

Γ
(
βexpcp + 1

)
p−β

exp
cp , (3.30)

with Γ denoting the gamma function. The model-predicted (homoge-
nized) counterpart Jmod,∗v,cp is the 1111-component of the fourth-order tensor

Jmod,∗v,cp (p) =
[
R∗cp(p)

]−1 − [Ccp]−1, see (3.26); whereby Ccp = Rcp(t= 0) is the
homogenized elastic stiffness of cement paste. Conclusively, we are minimizing
the error between the model-predicted viscous part of the uniaxial creep func-
tion in the LC space, Jmod,∗v,cp (p), and its experimentally measured counterpart,
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Jexp,∗v,cp (p); in mathematical terms,

nw/c∑
i=1

nξ∑
j=1

np∑
k=1

[
Jmod,∗v,cp (p)− Jexp,∗v,cp (p)

]2 → min . (3.31)

In Eq. (3.31), the sum over nw/c = 3 indicates that three different cement paste
mixes exhibiting w/c ∈ {0.42, 0.45, 0.50} are tested, the sum over nξ = 167
indicates that 167 creep tests were performed on each cement composition for
different maturity states, and the sum over np = 20 indicates that 20 complex
LC “time” values p ∈ [10−6, 10−4] are considered. The optimization problem
(3.31) is solved in MATLAB (2013), by means of a quasi-Newtonian solver,
and this provides the optimal creep parameters for well-saturated hydrates as

µc,hyd = 20.93 GPa , βhyd = 0.251 . (3.32)

These optimal hydrate creep parameters indeed allow for satisfactory repre-
sentation of the experimental results in the time domain, see Fig. 3.3. The
agreement between model prediction and experiment is quantified through the
mean error, defined as the sum of the absolute values of the difference between
model-predicted and experimentally measured uniaxial viscous creep function,
resolved for nt = 180 steps within the three minute-long creep tests tk∈ [1, 180],
and averaged with respect to the number of creep tests (nw/c nξ ≈ 500) and
the number of time steps nt, reading as

ε =

∑nw/c
i=1

∑nξ
j=1

∑nt
k=1

∣∣Jmodv,cp (tk)− Jexpv,cp(tk)
∣∣

nw/c nξ nt
. (3.33)

This error amounts to 0.768 10−6/MPa. This supports the idea that the (visco-
)elastic properties of well-saturated hydrates neither change during the aging of
cement paste nor upon composition change of the cement paste. Accordingly,
the varying creep potential of cement pastes arises solely from varying volume
dosages of the hydrates, as predicted by Powers’ hydration model.

3.3.2 Confirmation of hydrate creep properties by data

from weeks-long creep test on 30 year-old cement

paste

The question arises whether the intrinsic (i.e. mixture- and maturity-
independent) creep properties of well-saturated hydrates as identified here
from three minute creep tests on different early-age cement pastes, may be
also relevant for longer creep durations, and for more mature pastes. In this
context, we consider the results of Tamtsia and Beaudoin (2000), who per-
formed 30 day-long uniaxial compressive creep tests on 30 year-old Portland
cement paste samples with w/c=0.5, stored continuously under water. Given
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Figure 3.3: Comparison of the experimentally determined and model-predicted

viscous strains of cement pastes aged 30, 40, 60, and 144 hours, respectively;

the relation between material age and hydration degree is taken from Irfan-ul-

Hassan et al. (2016)
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their age, the samples can be considered to be completely hydrated; thus, also
in this case, it is appropriate to consider aging effects as negligible during
the test period. An estimate for the hydration degree which corresponds to
full hydration of cement paste, can be obtained from the empirical relation-
ship of Lin and Meyer (2009). Accordingly, a water-to-cement mass ratio of
w/c = 0.50 and a typical Blaine fineness of 340 m2/kg (Tamtsia et al. 2004)
relate to a final hydration degree of ξ = 0.87. The corresponding model-
predicted creep function, i.e. that relating to w/c = 0.50, ξ = 0.87, and to
the hydrate properties according to (3.2) and (3.32), agrees remarkably well
with the aforementioned experimental results, see Fig. 3.4. This result shows
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Figure 3.4: Comparison of experimental data (Tamtsia and Beaudoin 2000)

for (total) creep functions of 30 year-old cement paste samples with w/c=0.5,

with corresponding model predictions

that it is the intrinsic viscous behavior of the hydrate needles, which drives
the basic creep of cement paste for time intervals ranging from a few seconds,
up to several weeks. Moreover, this corroborates that the viscous behavior of
well-saturated hydrates does not change.

3.4 General characteristics of the creep of

well-saturated hydrates

The good agreements in Figs. 3.3 to 3.4 motivate deeper study of the features
of the homogenized creep behavior of cement paste. Therefore, we represent
the viscous part of the model-predicted uniaxial creep functions of cement
paste very accurately, see Fig. 3.5, by means of a power function,

Jmodv,cp (t− τ) =
1

Emod
c,cp

(
t− τ
tref

)βmodcp

, (3.34)
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with Emod
c,cp denoting the model-predicted creep modulus, and βmodcp representing

the model-predicted creep exponent. Notably, the total model-predicted creep
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Figure 3.5: Viscous part of the uniaxial creep function of 40 h old cement paste

with w/c ∈ {0.42, 0.45, 0.50}: point-wisely obtained model predictions and cor-

responding power-law fits according to Eq. (3.27), with quadratic correlations

coefficients R2 > 99.9%

function then reads as Jmodcp = Jmodv,cp + 1/Emod
cp with Emod

cp denoting the model-
predicted Young’s elastic modulus. It turns out that the elastic and creep
modulus are strongly composition-dependent; they increase with increasing ξ
and decreasing w/c, see Fig. 3.6. In contrast, the creep exponent appears
as virtually composition- and maturity-independent quantity, being constant
around β ≈ 0.252 for w/c ∈ [0.2, 1] and ξ ∈ [0, 1]. This value is even close
to the hydrate creep exponent of Eq. (3.32); i.e. it is hardly effected by the
upscaling scheme.

3.5 Discussion and conclusion

Concerning the invariant hydrate creep properties, expressed by Eq. (3.32)
and Figs. 3.3-3.4, it is important to note that the herein investigated cement
samples were all characterized by w/c ≥ 0.42, that they were tested within
the first week after production, and that they were continuously covered, in
order to avoid drying. Consequently, these samples (and the hydrates within
them) were well saturated, and our statement on the invariance of hydrate
creep properties is valid for well saturated hydrates.

Change of this saturated state, i.e. drying, is known to significantly influence
the macroscopic creep behavior of cement paste (Acker and Ulm 2001; Tamt-
sia and Beaudoin 2000), and of other hydrated nanolayered material systems,
such as clay (Carrier et al. 2016). It is very probable that drying also changes
the hydrate creep behavior itself, e.g. through reduction of so-called creep
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Figure 3.6: Model-predicted elastic and creep properties for hydrating cement

pastes with hydration degrees ξ ∈ [0, 1] and exhibiting water-to-cement mass

ratios w/c ∈ [0.2, 1]: (a) Young’s elastic modulus, (b) Young’s creep modulus,

(c) dimensionless creep exponent
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sites within the hydrate phases (Thomas and Jennings 2006). The same au-
thors report NMR studies which show that even under constant hydro-thermal
conditions, the polymerization state within the hydrates changes, and they
propose that this so-called “chemical aging of C-S-H” might also change the
hydrate creep properties. More recent research results, however, seem to rela-
tivize this proposition: indeed, polymerization leads to an enlargement of the
non-spherical nanoscaled solid elements within the hydrates, while the actual
source of hydrate creep lies in the layered (confined) water sheets between these
solid elements (Manzano et al. 2012, 2013; Shahidi et al. 2014, 2015b). Hence,
as long as the amount of the latter “creep sites” does not change, it makes
sense to expect invariant creep properties of the hydrate phases as introduced
in Fig. 3.2 (b).

Fig. 3.6 and Eq. (3.34) illustrate that upscaling of a power-law creep func-
tion from needle-shaped hydrates up to the scale of cement paste results in a
power-law creep function. In other words, the herein performed scale transi-
tions do not alter the shape of the creep function, a fact that was also found
for upscaling the asymptotically reached creep rates “seen” in nano- and mi-
croindentation tests (Vandamme and Ulm 2013; Zhang et al. 2014). Pursuing
this argument to the scale of concrete, one will also end up with a creep func-
tion which virtually follows a power function. However, concrete creep tests
or monitoring activities spanning over time periods of years, have revealed a
transition to a logarithmic creep behavior (Bažant et al. 2011). Conclusively,
the validity range of the hydrate creep properties identified through Eq. (3.2)
and (3.32) is constrained to creep periods of weeks to months (see Fig. 3.4).
During such time periods, creep of cement paste indeed follows a power-law
function (Tamtsia and Beaudoin 2000; Irfan-ul-Hassan et al. 2016). Extension
of the formulation (3.1) towards ultralong creep periods is beyond the scope
of the present manuscript.

The quantification of the hydrate creep function according to (3.26) and (3.28)-
(3.31) rests on the assumption of isochoric creep according to (3.2), implying
that creeping hydrates would exhibit a time-invariant volume. This assump-
tion is motivated by a suggestion of Bernard et al. (2003a), by results of an
earlier creep micromechanics model (Scheiner and Hellmich 2009), and by the-
oretical considerations concerning the upscaling of sliding processes of viscous
interfaces within hydrated calcium silicate (Shahidi et al. 2014, 2015a, 2016,
2015b). These viscous interfaces are located within the hydrate nanoparticles,
such as solid C-S-H, see Fig. 3.7 (c). The needle-shaped hydrate phases consid-
ered in the present work are defined at a level well above the aforementioned
nanoparticles: our hydrate phases are actually built up by these nanoparticles
as well as by the gel porosity in between. Such nanocomposites are also re-
ferred to as “C-S-H gel” (Sanahuja and Dormieux 2010; Manzano et al. 2013).
Accordingly, the isochoric creep function of the nanoparticles would actually
scale up to a hydrate gel-related creep function also including volumetric creep
strains (Sanahuja and Dormieux 2010). Hence, the question arises whether
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Figure 3.7: Nanoscopic downscaling from hydrate foam microstructure intro-

duced in Fig. 3.2 (b): (a) Hybrid Molecular Dynamics - Grand Canonical

Monte Carlo simulations suggest emergence of elongated morphological fea-

tures at the level of the hydrate foam (a); these needles, represented by the

needle-shaped hydrate phases shown in Fig. 3.2 (b), are made up of hydrate

gel (b), consisting itself of gel pores and solid hydrates (c); the latter are built

from calcium silicate layers separated or covered by films of confined water

consideration of such volumetric creep strains occurring at the level of hydrate
gel [i.e. that of the needle-shaped hydrate phases in Fig. 3.2 (b)] would have a
remarkable effect on the results of the downscaling-based hydrate creep iden-
tification process described further above. In order to answer this question,
we here repeat this process, but now based on the popular concept of a con-
stant (elastic and creep) Poisson’s ratio as proposed by Bažant and L’Hermite
(1988). Accordingly, we consider

Jhyd(t− τ) =

[
1− 2 νhyd
Ehyd

+
1− 2 νhyd
Ec,hyd

(
t− τ
tref

)βhyd]
Ivol

+

[
1 + νhyd
Ehyd

+
1 + νhyd
Ec,hyd

(
t− τ
tref

)βhyd]
Idev

(3.35)

whereby Ehyd denotes Young’s elastic modulus, Ec,hyd denotes Young’s creep
modulus, and νhyd denotes Poisson’s ratio. The latter follows from the elastic
bulk and shear moduli of isotropic hydrates (see also Table 3.1), as νhyd = 0.24.
The alternative hydrate creep tensor function (3.35) is then upscaled to the
level of cement paste, as described in Section “Micromechanics of creeping
cement pastes”. Thereafter, the hydrate creep properties Ec,hyd and βhyd are
identified by means of minimizing Eq. (3.31). The resulting prediction error ε
according to Eq. (3.33) is, in good approximation, equal to the one obtained un-
der the assumption of isochoric creep, see Table 3.2. Very remarkably, virtually
the same Young’s creep modulus of hydrates, and the same power-law creep
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Table 3.2: Comparison of hydrate creep properties of Eq. (3.2) and (3.35),

identified by means of downscaling 500 macroscopic creep tests on cement

pastes: isochoric creep vs. creep at constant Poisson’s ratio; prediction error ε

according to Eq. (3.33)

assumption Ec,hyd [GPa] βhyd ε [10−6/MPa]

isochoric 62.8a 0.251 0.768

constant Poisson’s ratio 62.4 0.250 0.765
aThe Young’s creep modulus Ec,hyd follows from the shear creep

modulus identified in Eq. (3.32) as Ec,hyd = 3µc,hyd

exponent of hydrates are obtained, irrespective of whether isochoric creep or
creep at constant Poisson’s ratio is considered. The underlying reason seems
to lie in the elongated (non-spherical) shape of the hydrate phases building
up kind of a “framework”, with the capillary porosity playing the role of the
“free spaces” in between. In such a “framework”, the individual needles (or
“beams”) are predominantly loaded in terms of uniaxial stress states, irre-
spective of potential lateral deformations which remain insignificant for the
overall load carrying behavior. A very similar result has been obtained in
the context of homogenizing the elastic properties of various types of ceramic
porous polycrystals with non-spherical (needle- or disc-shaped) solid phases
(Fritsch et al. 2013), as was confirmed by very many experiments as well as by
full 3D Finite Element simulations of corresponding microstructures (Sanahuja
et al. 2010). In this context, we note that the morphology with non-spherical
hydrate phase shapes, as depicted in Fig. 3.2 (b), was validated by various
experimental sources (Pichler and Lackner 2009; Pichler and Hellmich 2011;
Pichler et al. 2013). Moreover, this morphology has been, only very recently,
further confirmed by a hybrid Molecular Dynamics – Grand Canonical Monte
Carlo simulation (MD-GCMC) scheme (Ioannidou et al. 2016), see Fig. 3.7 (a).

Nomenclature

The following symbols are used in this paper:
A∗,vol∞,j , A∗,dev∞,j = LC-transformed volumetric and deviatoric components of Es-
helby problem-related strain concentration tensor of phase j;
A∗j = LC transform of strain concentration tensor of phase j;
Cj = elastic stiffness tensor of phase j;
clin = cement clinker;
cp = cement paste;
cyl = cylindrical (needle-shaped);
div = divergence operator;
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Eexp
cp = experimentally determined Young’s elastic modulus of cement paste;

Eexp
c,cp, E

mod
c,cp = experimentally determined and model-predicted Young’s creep

modulus of cement paste;
Ehyd = Young’s elastic modulus of the hydrates;
Ec,hyd = Young’s creep modulus of the hydrates;
exp = experimentally determined;
F = auxiliary anisotropic fourth-order tensor;
fhfj = hydrate foam-related volume fraction of phase j, j ∈ {air,H2O, hyd};
f cpj = cement paste-related volume fraction of phase j, j ∈ {clin, hf};
G = auxiliary isotropic fourth-order tensor;
Gvol, Gdev = volumetric and deviatoric components of G;
H2O = water;
hf = hydrate foam;
hyd = hydrates;
I = fourth-order identity tensor;
Ivol, Idev = volumetric and deviatoric parts of fourth-order identity tensor;
Jj = uniaxial creep function of phase j;
Jexpcp , Jmodcp = experimentally determined and model-predicted uniaxial creep
function of cement paste;
Jexpe,cp = elastic part of Jexpcp ;
Jexpv,cp, J

mod
v,cp = viscous parts of Jexpcp and Jmodcp ;

Jhyd = uniaxial elastic creep function of cement paste;
Je,hyd = elastic part of Jhyd;
Jv,hyd = viscous part of Jhyd;
Jj = fourth-order creep tensor function of phase j;
Jmod,∗v,cp = model-predicted viscous part of the creep tensor function of cement
paste in the LC space;
kj = bulk modulus of phase j;
` = length of needle-shaped hydrates;
M = number of precision digits for computations in the LC space;
mod = model-predicted;
n = unit normal vector perpendicular to ∂Vhf ;
np, nw/c, nξ = numbers over which sums in the optimization problem (3.31)
extend;
P
hf,∗
j = LC-transformed Hill tensor of an inclusion with shape j, embedded in

an infinite hydrate foam matrix, j ∈ {sph, cyl};
p = complex variable in the LC domain;
pore = pores;
Rj = fourth-order relaxation tensor function of phase j;

S
hf,∗
j = LC-transformed Eshelby tensor of an inclusion with shape j embedded

in an infinite hydrate foam matrix, j ∈ {sph, cyl};
Shf,∗,volj , Shf,∗,devj = volumetric and deviatoric components of Shf,∗j ;
sph = spherical;
T = traction vector acting at ∂Vhf ;
t = chronological time;
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tref = reference time, tref =1 d=86 400 s;
Vhf = volume of RVE of hydrate foam;
∂Vhf = boundary of RVE of hydrate foam;
W ext
hf = external work density, done on the boundary of the RVE of hydrate

foam;
w/c = initial water-to-cement mass ratio;
x = position vector labeling positions inside Vhf as well as at the boundary
∂Vhf ;
βexpcp , β

mod
cp = experimentally determined and model-predicted power-law expo-

nent in the creep function of cement paste;
βhyd = power-law exponent of hydrates;
δij = Kronecker delta;
Γ(.) = gamma function of real quantity (.);
ε = Mean error between model-predicted and experimentally measured uniax-
ial viscous creep functions;
ε = second-order strain tensor;
εj = second-order strain tensor of phase j;
εc,cp = viscous cement paste strain component in loading direction;
ϑ = zenith angle;
µj = shear modulus of phase j;
µc,hyd = shear creep modulus of the hydrates;
νhyd = Poisson’s ratio of the hydrates;
ξ = hydration degree;
ξ = displacement vector;
σ = second-order stress tensor;
σj = second-order stress tensor of phase j;
σcp = cement paste stress component in loading direction;
σplatcp = applied uniaxial stress in creep experiment;
τ = time instant of loading;
ϕ = azimuth angle;
1 = second-order identity tensor;
(.)∗ = Laplace-Carson transform of quantity (.);

(̂.) = Laplace transform of quantity (.);
· = inner product;
: = second-order tensor contraction;
⊗ = dyadic product;
∇ = nabla operator.



Chapter4
How water-aggregate

interactions affect concrete

creep: a multiscale analysis

4.1 Introduction

Concrete hydration is generally regarded as a process from which the aggre-
gates, being chemically inert, are fully excluded, and which is therefore taking
place exclusively in the cement paste, where water reacts with cement grains,
so as to form hydrates. Correspondingly, concrete hydration models such as
the famous Powers-Acker model (Powers and Brownyard 1946; Acker and Ulm
2001) are typically built on evolving volume fractions of cement clinker, water,
and hydrates in the cement paste; and considering the cement paste compart-
ment as a thermodynamically closed system, all these volume fractions can
be traced back to the hydration degree and to the (initial) water-to-cement
mass ratio. By contrast, the volume fractions of cement paste and aggregates
remain constant at the hierarchical level of concrete. Besides other applica-
tions, such hydration models have been a particularly appropriate basis for
the development of multiscale mechanics models for concrete, be they related
to elasticity (Bernard et al. 2003b; Hellmich and Mang 2005; Sanahuja et al.
2007) to poroelasticity (Ulm and Heukamp 2004; Ghabezloo 2010) to viscoelas-
ticity (Scheiner and Hellmich 2009) or to strength (Pichler and Hellmich 2011;
Pichler et al. 2013).

All these models have been experimentally validated up to different levels of
precision, so that on the one hand, multiscale continuum mechanics has be-



Chapter-4 60

come a well accepted theoretical tool in cement and concrete research; while
on the other hand, the field is still open for improvements. The latter is true in
particular for the very challenging topic of concrete creep, which spans several
orders of time magnitude, starting from the scale of minutes (Vandamme and
Ulm 2009; Delsaute et al. 2012; Boulay et al. 2012; Vandamme and Ulm 2013;
Zhang et al. 2014; Irfan-ul-Hassan et al. 2016) to that of several days (Bažant
et al. 1976; Tamtsia et al. 2004; Rossi et al. 2011), weeks (Tamtsia and Beau-
doin 2000; Laplante 2003; Atrushi 2003; Briffaut et al. 2012), months (Rossi
et al. 1994; Zhang et al. 2014), or even years (Bažant et al. 2011, 2012; Zhang
et al. 2014).

In the present paper, we show that the challenge in the multiscale modeling
of concrete creep probably does not lie so much in finding the appropriate
micromechanical representation of the material, but rather in the reliable es-
timation of the evolving volume fractions of the material constituents, enter-
ing the corresponding micromechanics models as input. In this context, we
abandon the aforementioned assumption of the cement paste being a thermo-
dynamically closed system, and we explicitly introduce water migration from
the inter-aggregates spaces into the aggregates, as well as back-suction of wa-
ter from the aggregates into the hydrating (and therefore water-consuming)
cement paste.

Accordingly, the paper is organized as follows: A simple mathematical model
for water migration into and from the aggregates is formulated in Section 2.
Based on the initial water-to-cement mass ratio, on the hydration degree, and
on two newly introduced quantities, namely the water uptake capacity of the
aggregates and the water filling extent of the cement paste voids, this models
provides the volume fractions of water, cement clinker, hydrates, and aggre-
gates within concretes and mortars with water-absorbing aggregates. These
volume fractions then enter a micromechanical model for mortar and concrete
creep, upscaling cement paste behavior, as quantified in the recent ultrashort-
term tests of Irfan-ul-Hassan et al. (2016), to the mortar and concrete level, as
detailed in Section 3. Corresponding micromechanical model predictions are
then compared to a total of 32 newly performed ultrashort-term creep tests at
two different mortars (made from aggregates type I - ,,Normensand Quartz”)
and two different concretes (made from aggregates type II - ,,Pannonia Kies”),
which are all made from the same cement, but differ in water-to-cement and
aggregate-to-cement mass ratios, see Section 4. It is checked whether this
comparison would allow for identification of one value each for (i) the water
uptake capacity of aggregates; and (ii) the cement-specific void filling extent
by water soaked out from the aggregates. Also, air entrapment between ag-
gregates and cement paste is considered. Thereafter, the paper is terminated
by a conclusion section.
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4.2 Modeling hydration-dependent water mi-

gration to and from the aggregates

We consider that during the mixing of concrete or mortar, i.e. before the
hydration reaction, a significant amount of water may be taken up by the
aggregates. This is the case with oven-dried quartz aggregates, on which we
focus throughout the present paper. Accordingly, we decompose the total mass
of water, w, into that of the water residing inside the cement paste, wcp, and
that which is absorbed within the open porosity of quartz, wa,

w = wcp(ξ) + wa(ξ) . (4.1)

During the hydration reaction, however, part of the water which has been ini-
tially absorbed into the aggregates, is soaked back into the inter-aggregates
space, which is then occupied by the cement paste. This is because the hy-
dration products fill less volume than their unreacted counterparts. In more
detail, the volume reduction during cement paste hydration [also called auto-
geneous shrinkage (Powers and Brownyard 1946; Acker and Ulm 2001)] leads
to the formation of air voids, which are partially refilled by the additional wa-
ter extracted from the aggregates. Such a process driven by water supply from
the aggregates is sometimes called internal curing (Bentz et al. 2005; Jensen
and Lura 2006; Wyrzykowski et al. 2011; Zhutovsky and Kovler 2012; Justs
et al. 2015). Maintaining the philosophy of the Powers model to identify lin-
ear relations between chemical reactants and products on the one hand, and
the degree of hydration on the other hand, we envision that the amount of
aggregate-extracted water increases (linearly) with the volume of voids. The
latter increases (linearly) with the mass of hydrates formed, which then in-
creases, again linearly, with the degree of hydration. Hence, the water content
in the cement paste is linearly linked to the hydration degree as well, which is
mathematically expressed as follows

wcp(ξ)

c
= d+ k ξ (4.2)

In this context, it needs to be emphasized that wcp(ξ) comprises the mass of
all the water in the cement paste in the most general understanding, i.e. both
the unreacted water and that which is chemically combined to the cement
clinker; in the same sense, c denotes the total mass of cement, including both
the unreacted cement and that which is chemically combined to water. The
material constants in (4.2), d and k, are the initial value of the water-to-cement
mass ratio which is effective at the cement paste level, and the hydration-
dependent (linear) increase of this effective mass ratio. The former constant
can be linked to the water mass which is initially uptaken by the aggregates,
wa(0). This quantity is normalized by the mass of the aggregates, a, yielding
the initial water-to-aggregate mass ratio in the form wa(0)/a. Namely, when
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splitting the (nominal) water-to-cement mass ratio into a cement paste-specific
and an aggregate-specific portion, the respective mathematical expression can
be readily solved for d, according to

w

c
=
wcp(0)

c
+
wa(0)

a

a

c
⇒ d =

wcp(0)

c
= (w/c)− wa(0)

a
(a/c) (4.3)

Concerning the soaking of water, from the aggregates back to the inter-
aggregate spaces, then occupied by cement paste, we introduce a cement-
specific void-filling extent α between 0 and 1, with zero referring to no water
filling of air voids formed during autogeneous shrinkage of the cement paste,
while 1 relates to complete filling of the air voids by water. Thereby, the voids
themselves evolve linearly with the hydration degree, as seen in Fig. 4.1. This
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Figure 4.1: Hydration-driven evolution of volume fractions of cement paste

constituents (cement, water, hydrates, and voids) according to Powers-Acker’s

hydration model: (a) complete phase volume evolution diagram according

to (Powers and Brownyard 1946; Acker and Ulm 2001); (b) detail illustrat-

ing void filling extent α, concerning partial void filling by water that is soaked

from the open porosity of quartz into the cement paste matrix

void filling extent α can be related to the back-soaking-related parameter k,
by deriving an expression for the hydration-dependent water mass which was
soaked into the cement paste, through combination of Eqs. (4.2) and (4.3),
yielding

wcp(ξ)− wcp(0) = c k ξ (4.4)

and by expressing this mass as the volume of voids, times the void filling extent
α, times the mass density of water, yielding

c k ξ = Vvoid α ρH2O (4.5)

We are left with relating the void volume Vvoid to the initial composition of
the cement paste and to the hydration degree. To this end, the void volume is
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considered to be equal to the volume of cement paste, Vcp, times the cement
paste-related volume fraction of voids, f cpvoid

Vvoid = Vcp f
cp
void (4.6)

The volume of cement paste is equal to the initial volumes of cement and
water, i.e. Vc and Vw, which can be expressed by the masses of cement and
water as well as by the related mass densities as

Vcp = Vc + Vw =
c

ρclin
+
wcp(0)

ρH2O

(4.7)

Finally, the volume fraction of shrinkage-induced voids in cement paste is
considered to increase proportionally to the hydration degree, as quantified
through the Powers-Acker hydration model (Powers and Brownyard 1946;
Acker and Ulm 2001), evaluated for the effective initial composition of the ce-
ment paste matrix, quantified in terms of the effective initial water-to-cement
mass fraction wcp(0)/c, compare Eq. (15.4) of (Pichler and Lackner 2009):

f cpvoid =

(
1 + 0.42 ρclin

ρH2O
− 1.42 ρclin

ρhyd

)
ξ

1 + ρclin
ρH2O

(wcp(0)/c)
=

3.31 ξ

20 + 63 wcp(0)

c

(4.8)

with ρclin = 3.150 kg/dm3 (Acker 2001),
ρH2O = 1.000 kg/dm3, and ρhyd = 2.073 kg/dm3

(Barthélémy and Dormieux 2003), denoting the mass densities of ce-
ment clinker grains, water, and hydrates, respectively. The sought relation
between the constant k and the void filling extent by water, α, follows from
specialization of Eq. (4.5) for Eqs. (4.6), (4.7), and (4.8), as well as from
solving the resulting expression for k, yielding

k =

[
ρH2O

ρclin
+
wcp(0)

c

]
3.31α

20 + 63 wcp(0)

c

(4.9)

Eq. (4.9) underlines that k, the hydration degree-related rate of the effective
water-to-cement mass fraction of the cement paste matrix, see Eq. (4.2), is
directly proportional to α, the extent up to which the shrinkage-induced voids
in the cement paste are filled by water.

With respect to the classical Powers-Acker model, the herein developed hy-
dration model which considers also internal curing, contains two additional
quantities: (i) the water uptake capacity of the aggregates, wa(0)/a, and (ii)
the void filling extent by water, α. The former quantity is involved in the
expression for the initial value of the effective water-to-cement mass fraction,
see Eq. (4.3), while α is involved in the mathematical expression for the evolu-
tion of the water-to-cement mass ratio which is effective in the cement paste;
and this expression is obtained by specializing Eq. (4.2) for d and k according
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to (4.3) and (4.9), respectively, and from consideration of the mass densities
ρclin = 3.150 kg/dm3 and ρH2O = 1.000 kg/dm3, as

wcp(ξ)

c
= (w/c)− wa(0)

a
(a/c) +

([
ρH2O

ρclin
+
wcp(0)

c

]
3.31α

20 + 63 wcp(0)

c

)
ξ

= (w/c)− wa(0)

a
(a/c) +

[
1.051 + 3.31 [(w/c)− wa(0)

a
(a/c)]

20 + 63 [(w/c)− wa(0)
a

(a/c)]

]
α ξ

(4.10)
This is the water-to-cement mass ratio which is effective at the cement paste
level, and which governs the hydration reaction taking place there.

Its initial value needs to be considered when quantifying the volume fractions
of cement paste and aggregates in a material volume of concrete or mortar
with water absorbing aggregates; except for the use of this effective water-to-
cement mass ratio, the latter quantification follows the standard relation given
in (Bernard et al. 2003b; Pichler and Lackner 2009) , which finally yields

fno−aircp =

ρagg
ρclin

+ ρagg
ρH2O

(wcp(0)/c)
ρagg
ρclin

+ ρagg
ρH2O

(wcp(0)/c) + (a/c)
=

0.8406 + 2.648 [(w/c)− wa(0)
a

(a/c)]

0.8406 + 2.648 [(w/c)− wa(0)
a

(a/c)] + (a/c)

fno−airagg =
(a/c)

ρagg
ρclin

+ ρagg
ρH2O

(wcp(0)/c) + (a/c)
=

(a/c)

0.8406 + 2.648 [(w/c)− wa(0)
a

(a/c)] + (a/c)

(4.11)
with ρagg = 2.648 kg/dm3 as the mass density of quartz aggregates, considered
throughout the present paper. However, it often occurs during mixing that
small amounts of air get entrapped into the cement paste matrix as well.
Denoting the corresponding air volume fraction by fair, the volume fractions
at the concrete or mortar level can be derived from the relations

fcp + fagg + fair = 1
fcp
fagg

=
fno−aircp

fno−airagg

(4.12)

which imply that

fcp =
1− fair

1 + fno−airagg /fno−aircp

, fagg =
1− fair

1 + fno−aircp /fno−airagg

, (4.13)

The relevance of this new water migration model and its effect on concrete
composition will now be tested through a creep upscaling analysis from the
cement paste level to the concrete or mortar level.

4.3 Creep homogenization of mortars and con-

cretes

The relevance of the effective water-to-cement mass ratio according to
Eq. (4.10) and of the cement paste and aggregates volume fractions according
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to Eq. (4.11) and (4.13), both depending on the void filling extent α and the
water uptake capacity of the aggregates, wa(0)/a, will now be checked by us-
ing Eq. (4.10), (4.11), and (4.13) and the quantities appearing therein, within
a creep upscaling analysis from the cement paste to the mortar and concrete
level.

Thereby, the question is tackled whether the experimental results of numerous
creep tests performed at the level of cement paste made from only one type of
cement, and at the level of mortars and concretes made from the same type
of cement, but with two different types of aggregates, can be predicted by
a micromechanical model, which is based on only one value for the cement-
specific void filling capacity α, and of only two aggregate-specific values for
the water absorption capacity wa(0)/a.

The creep tests considered in this context all follow the protocol recently re-
ported by Irfan-ul-Hassan et al. (2016): Accordingly, three-minute creep tests
on the same cement paste, mortar, or concrete samples are hourly repeated.
The key idea behind this protocol is that three minutes are short enough
for the microstructure to remain practically invariant throughout each indi-
vidual test. Within one hour, on the other hand, the hydration process in
early-age cementitious systems goes on in a significant manner, such that two
subsequent three-minute long creep tests refer to already remarkably differ-
ent microstructures. Hence, an upscaling analysis concerning cement paste,
mortar, and concrete samples tested according to the aforementioned protocol
can be performed in the theoretical framework of classical, non-aging micro-
viscoelasticity (Read 1950, 1951; Laws and McLaughlin 1978; Beurthey and
Zaoui 2000).

Choosing, in this context, a standard micromechanical representation for mor-
tar and concrete (Scheiner and Hellmich 2009; Baweja et al. 1998; Bernard
et al. 2003b; Hellmich and Mang 2005), namely that of a composite material
consisting of a (viscoelastic) cement paste matrix with (elastic) aggregate in-
clusions and with (potentially occurring) air inclusions, as seen in Fig. 4.2, the
(homogenized) relaxation tensor at the concrete/mortar scale, Rhom, follow
from those at the cement paste scale, Rcp, as well as from the volume fractions
of cement paste, of aggregates, and of (potentially occurring) air, as (Scheiner
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cement paste matrix

air voids

     aggregates

Figure 4.2: Micromechanical representation of mortar and concrete: 2D sketch

of 3D matrix-inclusion composites comprising a continuous cement paste ma-

trix with embedded spherical inclusions representing quartz aggregates and air

pores

and Hellmich 2009)

R∗hom(p) = 3 k∗hom(p) Ivol + 2µ∗hom(p) Idev =(
fcpR

∗
cp + faggR

∗
agg :

{
I+ P∗sph(p) :

[
R∗agg −R∗cp(p)

] }−1
+ fairR

∗
air :

{
I+ P∗sph(p) :

[
R∗air −R∗cp(p)

] }−1)

:

(
fcp I+ fagg

{
I+ P∗sph(p) :

[
R∗agg −R∗cp(p)

] }−1
+ fair

{
I+ P∗sph(p) :

[
R∗air −R∗cp(p)

] }−1)−1
(4.14)

where the star-indicated properties refer to the Laplace Carson (LC) trans-
forms of the originally time-dependent quantities occurring in the standard
convolution integrals of linear viscoelasticity [“correspondence principle” (Read
1950, 1951; Laws and McLaughlin 1978; Beurthey and Zaoui 2000)]

f ∗(p) = pf̂(p) = p

∞∫
0

f(t) exp(−pt) dt , (4.15)

and back-transformation of (55) from the Laplace Carson domain back to the
time domain may be performed by the Gaver-Wynn-Rho algorithm (Scheiner
and Hellmich 2009; Gaver 1966). Mathematical details on the LC-transformed
homogenized bulk and shear moduli, k∗hom and µ∗hom, on the fourth-order unity
tensor I with its volumetric and deviatoric parts, Ivol and Idev, and on the
morphology tensor P∗sph can be found in the Appendix. The relaxation tensors
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R∗cp correspond to a power-law-type creep behavior characterized by an elastic
modulus Ecp, a Poisson’s ratio νcp, a creep modulus Ec,cp, and a creep exponent
βcp; hence they read as

R∗cp(p) = 3 k∗cp(p)Ivol + 2µ∗cp(p)Idev

=

[
1− 2 νcp
Ecp

+
1− 2 νcp
Ec,cp

(
1

tref

)βcp
Γ (βcp + 1) p−βcp

]−1
Ivol(4.16)

+

[
1 + νcp
Ecp

+
1 + νcp
Ec,cp

(
1

tref

)βcp
Γ (βcp + 1) p−βcp

]−1
Idev .

The aforementioned material characteristics at the cement paste level all de-
pend on the (here effective) water-to-cement mass ratio and the hydration
degree, as identified in the more than 500 creep tests on cement paste reported
by Irfan-ul-Hassan et al. (2016), see Fig. 4.3. For considering (effective) water-
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Figure 4.3: Results from hourly-repeated three-minute creep testing on cement

pastes with initial water-to-cement mass ratios amounting to 0.42, 0.45, and

0.50, respectively: (a) elastic modulus Ecp, (b) creep modulus Ec,cp, and (c)

creep exponent βcp; as functions of hydration degree, see (Irfan-ul-Hassan et al.

2016)

to-cement mass ratios between those which were explicitly tested, we resort
to quadratic interpolation, as exemplified in Fig. 4.4. For the quantification
of Poisson’s ratio, we use a validated multiscale model (Pichler and Lackner
2008; Pichler and Hellmich 2011) for establishment of a relation between the
latter and the elastic modulus, see Fig. 4.5.

Our present study is devoted to aggregates consisting of quartz, with elastic
bulk and shear moduli amounting to (Bass 2013),

kagg = 37.8 GPa , µagg = 44.3 GPa ⇒ R∗agg = 3 kagg Ivol+2µagg Idev
(4.17)

while the air inclusions (if existing) dispose over only negligible elastic stiffness,

kair = µair = 0 GPa , ⇒ R∗air = 0. (4.18)
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Figure 4.4: Quantification of effective viscoelastic properties of the cement

paste matrix as a function of the effective water-to-cement mass fraction wcp/c,

by means of quadratic interpolation between creep test results on plain cement

pastes with w/c ∈ [ 0.42, 0.45, 0.50 ]: (a) elastic modulus Ecp, (b) creep modulus

Ec,cp, and (c) creep exponent βcp; at degree of hydration ξ = 0.40
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4.4 Comparison of ultrashort creep experi-

ments and corresponding micromechanics

predictions - identification of water ab-

sorption capacities of quartz aggregates

and of paste void filling extent

Experimental campaign on the mortar/concrete level

In order to assess the relevance of the newly introduced quantities, the paste
void filling extent α and the water absorption capacity of aggregates, wa(0)/a,
expressed in corresponding creep homogenization results as described in the
previous section, the latter results need to be compared to experimental data
at the level of mortar and concrete. To this end, a series of three minute-long
creep tests on two mortars and two concretes was performed:

Thereby, all four materials exhibited the same nominal volume fractions of
quartz aggregates and of cement paste, respectively, namely amounting to
0.58 and to 0.42, respectively, see Table 4.1. Mortar #1 and Concrete #1
exhibited the same nominal composition in terms of w/c = 0.50 and a/c = 3.0.
Mortar #2 and Concrete #2, in turn, exhibited w/c = 0.42 and a/c = 2.7. All
four materials were produced from a commercial cement of type CEM I 42.5 N
and distilled water, i.e. with the same raw materials that were also used for
the production of the cement pastes discussed in Irfan-ul-Hassan et al. (2016).
In addition, we used oven-dried aggregates made of quartz. The two mortars
contain standard sand of the company “Normensand” as per standard DIN
EN-196-1, consisting of rounded sand grains with diameters being smaller or
equal to dmax = 2 mm. The two concretes contain aggregates of the Austrian
company “Pannonia Kies”, consisting of quartz gravels with diameters being
smaller or equal to dmax = 8 mm.

Table 4.1: Nominal composition of tested mortars and concretes

Material w/c a/c fnomcp fnomagg dmax

Mortar #1 0.50 3.0 0.42 0.58 2 mm

Mortar #2 0.42 2.7 0.42 0.58 2 mm

Concrete #1 0.50 3.0 0.42 0.58 8 mm

Concrete #2 0.42 2.7 0.42 0.58 8 mm

The early-age testing protocol is identical to the one used to characterize ce-
ment paste [see Irfan-ul-Hassan et al. (2016)], i.e. the mortar and concrete
specimens with dimensions (70 mm diameter and 300 mm height) were hourly
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subjected to three-minute long creep tests under uniaxial stress conditions, see
Fig. 4.6 (a) for the stress history in a specific three-minute long creep test. For
each test, the load plateau was selected such that induced compressive stresses
were smaller than 15 % of the expected compressive strength, see Fig. 4.6 (b).
Using the calorimetry results described by Irfan-ul-Hassan et al. (2016), sample
ages were “translated” into equivalent hydration degrees.

0 100 200 300

0

2

4

6

8

10

plateau stress Σplatplateau stress Σplat

τ0τ0

stress ramp withstress ramp with
rate of 2MPa/srate of 2MPa/s

Loading time instant τ [s]

A
p
p
li
ed

st
re
ss

Σ
[M

P
a
]

0 20 40 60 80 100120140160180200
0

3

6

9

12

15

18

21

24

27

30

Age of sample [h]

P
la
te
a
u
fo
rc
e
F
p
la
t
[k
N
]

0 20 40 60 80 100120140160180200
0

0.78

1.56

2.34

3.12

3.9

4.68

5.46

6.24

7.02

7.8

P
la
te
a
u
st
re
ss

Σ
p
la
t
[M

P
a
]

(a) (b)

Figure 4.6: Three-minute creep tests on mortars and concretes: (a) force his-

tory during creep testing carried out at an age of 100 h on Mortar #1; and

(b) prescribed load levels chosen to be smaller than or equal to 15 % of the

expected compressive strength

Each tested specimen was subjected to 168 three-minute creep tests. Out of
this database, we focus on the tests carried out at hydration degrees amounting
to

ξ ∈ [ 0.32 , 0.35 , 0.40 , 0.45 , 0.50 , 0.55 , 0.60 , 0.63 ] (4.19)

The plateau stresses of Fig. 4.6, which correspond to the hydration degrees of
Eq. (4.19), were

Σplat = [ 2.08 , 2.32 , 3.0 , 3.0 , 4.37 , 4.83 , 6.25 , 6.25 ] MPa (4.20)

The correspondingly measured normal strains in loading direction, E(t), were
divided by the applied plateau stress Σplat, see Fig. 4.6, so as to arrive at a
convenient illustration of the test results, as shown in Fig. 4.7

Micromechanical predictions of experimental data

For micromechanically predicting the creep test results of Fig. 4.7, the relax-
ation functions of Eq. (55) are transformed to creep functions according to

J∗hom(p) = R∗hom(p)−1

E∗(p) = J∗hom(p) : Σ∗(p)
(4.21)
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Figure 4.7: Plateau stress-normalized strains obtained from three minute-

long creep tests on mortars and concretes, at the hydration degrees given

in Eq. (4.19), and the corresponding load plateaus according to Eq. (4.20):

(a) Mortar #1: w/c = 0.50, a/c = 3.00, (b) Mortar #2: w/c = 0.42,

a/c = 2.70, (c) Concrete #1: w/c = 0.50, a/c = 3.00, (d) Concrete #2:

w/c = 0.42, a/c = 2.70

and this result is then back-transformed into the time-domain, yielding

E(ξ, t) =

t∫
0

Jhom(ξ, t− τ) : Σ̇(τ)dτ (4.22)

This Boltzmann convolution integral is then evaluated for the volume fractions
of Eqs. (4.11) and (4.13), for the cement paste properties of Fig. 4.4, and for the
loading history of Fig. 4.6. These evaluations comprise two quantities which
are not known a priori, but which are identified from a series of creep results
at the concrete and mortar levels. This is described next.

Also, it needs to be emphasized that consideration of the load history of Fig. 4.6
as a continuous function, rather than as a step function, and corresponding
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use of the continuous form of the Boltzmann integral (4.22), is mandatory for
arriving at reliable results. This is because a ramp loading as indicated in
Fig. 4.6, does not only provoke elastic, but also viscoelastic strains, as was
explicitly evidenced by Irfan-ul-Hassan et al. (2016).

Identification of water uptake capacity of “Normensand”

quartz aggregates and of the paste void filling extent,

from experimental data concerning Mortar #1

The water uptake capacity of quartz, wa(0)/a, and the paste void filling extent
α, are identified from a very large set of numerical values making up the
following ”search intervals”

wa(0)/a ∈ [0.000 , 0.0001 , 0.0002 , . . . 0.0199 , 0.0200]
α ∈ [0.000 , 0.001 , 0.002 , . . . 0.999 , 1.000].

(4.23)

For all data pairs [wa(0)/a, α] composed from the values given in Eq. (4.23),
the micromechanics model of Eqs. (55)–(4.18), together with Eqs. (4.3), (4.10),
and (4.11) evaluated for w/c = 0.50 and a/c = 3.0, see Table 4.1, with the in-
terpolation scheme of Fig. 4.4, and with the loading history of Fig. 4.6 entering
Eq. (4.22), is used to predict the creep functions arising from the eight creep
tests conducted on Mortar #1, as seen in Fig. 4.7(a). Eight hydration degree-
specific model predictions of the normal strain histories Epred, represented by
180 discrete values each, are compared to the corresponding experimentally
determined strains normalized by plateau stress Eexp; and the corresponding
prediction error is quantified through

E =
1

8× 180

8∑
i=1

1

Σplat(ξi)

180∑
j=1

∣∣Epred(ξi, tj)− Eexp(ξi, tj)
∣∣ (4.24)

whereby all strain values were normalized with respect to the plateau stresses
Σplat. The smallest prediction error E = 1.55 × 10−7 MPa−1 (see Table 4.2) is

Table 4.2: Prediction Errors E ( MPa−1) according to Eq. (4.24)

Material E with nominal composition E obtained with water migration model

Mortar #1 4.50 × 10−6 1.55 × 10−7

Mortar #2 1.50 × 10−6 2.90 × 10−7

Concrete #1 5.50 × 10−6 1.50 × 10−7

Concrete #2 1.23 × 10−6 1.30 × 10−7
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obtained for the following values of the water uptake capacity of quartz and
of the water filling extent of shrinkage-induced voids:

wa(0)

a
= 0.0099 α = 0.603 (4.25)

see Fig. 4.8 (a) for the comparison of measured and modeled creep functions.
The identified material constants (4.25) imply (i) that 1 kilogram of quartz
takes up 9.9 gram of water during mixing of the raw materials, and (ii) that
shrinkage-induced voids of the cement paste matrix soak water from the open
porosity of quartz such that these voids are water-filled to an extent of 60.3
percent.

The identified material constants (4.25) provide access to the effective com-
position of the cement paste of Mortar #1. The initial value of the effective
water-to-cement mass fraction of the cement paste matrix, for instance, follows
from specialization of Eq. (4.3) for wa(0)/a from (4.25) and for the mix-related
water-to-cement and quartz-to-cement mass ratios w/c = 0.50 and a/c = 3.0
as:

wcp(0)

c
= 0.4703 (4.26)

This is remarkably smaller than the (nominal) mix-related water-to-cement
mass ratio w/c = 0.50. The evolution of the effective water-to-cement mass
fraction of the cement paste matrix follows from specialization of Eq. (4.10)
for (4.25), w/c = 0.50, and a/c = 3.0 as

wcp(ξ)

c
= 0.4703 + 0.0317 ξ (4.27)

see also Fig. 4.8 (b). The actual volume fractions of the cement paste matrix
and of quartz follow from specialization of Eqs. (4.11) for Eq. (4.26), w/c =
0.50, and a/c = 3.0 as

fcp = 0.4101 , fagg = 0.5899 . (4.28)

Confirmation of the water uptake capacity of ”Normen-

sand” quartz aggregates and of the paste void filling ex-

tent, through experimental data concerning Mortar #2

Since Mortar #1 and Mortar #2 are produced with the same raw materials,
the identified material constants given in Eqs. (4.25) are not only valid for
Mortar #1, but they must also hold for Mortar #2, i.e. the strain evolutions
measured during creep testing of Mortar #2 must be predictable, and this is
checked next. To this end, the initial value of the effective water-to-cement
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Figure 4.8: Application of the water migration model according to Eq. (4.10)

to Mortar #1, with a mix-related (nominal) composition given through w/c =

0.50 and a/c = 3.0, as well as water uptake capacity of quartz and void

water-filling extent according to Eq. (4.25): (a) Comparison of experimentally-

determined and model-predicted plateau stress-normalized strains, at the hy-

dration degrees given in Eq. (4.19) and the corresponding load plateaus accord-

ing to Eq. (4.20); (b) evolution of the effective water-to-cement mass fraction of

the cement paste matrix, as a function of degree of hydration; for the complete

set of material properties of cement paste, see Table 4.3

Table 4.3: Input quantities for creep homogenization of Mortar #1 with mix-

related (nominal) composition quantified through w/c = 0.50 and a/c = 3.0:

effective water-to-cement mass fractions of the cement paste matrix according

to Eqs. (4.10) and (4.25), as well as corresponding viscoelastic properties of

the cement paste matrix found by means of interpolation (see Fig. 4.4), for

hydration degrees listed in Eq. (4.19)

ξ [-] wcp (ξ)/c [-] Ecp [GPa] νcp [-] Ec,cp [GPa] βcp [-]

0.32 0.480 6.529 0.205 9.218 0.269

0.35 0.481 7.041 0.206 8.562 0.267

0.40 0.483 8.223 0.210 13.220 0.242

0.45 0.484 9.172 0.214 15.775 0.228

0.50 0.486 10.236 0.217 19.270 0.219

0.55 0.487 11.274 0.221 23.640 0.210

0.60 0.489 12.442 0.225 29.012 0.209

0.63 0.490 12.843 0.226 30.774 0.208
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mass fraction of the cement paste matrix follows from specialization of Eq. (4.3)
for wa(0)/a from (4.25) and for the mix-related water-to-cement and quartz-
to-cement mass ratios w/c = 0.42 and a/c = 2.7 as:

wcp(0)

c
= 0.3933 (4.29)

This is significantly smaller than the mix-related water-to-cement mass ratio
w/c = 0.42. The evolution of the effective water-to-cement mass fraction of
the cement paste matrix follows from specialization of Eq. (4.10) for (4.25),
w/c = 0.42, and a/c = 2.7 as

wcp(ξ)

c
= 0.3933 + 0.0317 ξ (4.30)

see also Fig. 4.9 (b). The actual volume fractions of the cement paste matrix
and of quartz follow from specialization of Eq. (4.11) for Eq. (4.29), w/c = 0.42,
and a/c = 2.7 as

fcp = 0.4107 , fagg = 0.5893 . (4.31)

Viscoelastic properties of the cement paste matrix – valid for effective water-
to-cement mass fractions from Eq. (4.30), evaluated for all hydration degrees
of interest given in Eq. (4.19) – are quantified by means of interpolation; as
described in the previous subsection, see also Fig. 4.4.

Model-predicted creep functions for Mortar #2 agree well with measured creep
functions, as quantified by prediction error E = 2.90 × 10−7 MPa−1 (see Ta-
ble 4.2) evaluated according to Eq. (4.24), see also Fig. 4.9 (a). This underlines
not only the satisfactory predictive capabilities of the developed water migra-
tion model, see Eq. (4.10), but also the significance of the identified values of
the water uptake capacity of quartz and of the water filling extent of shrinkage-
induced voids, see Eqs. (4.25).

Identification of water uptake capacity of ”Pannonia

Kies” aggregates and of entrapped air content, from ex-

perimental data concerning Concrete #1

When it comes to model prediction of the creep strain evolutions measured in
three-minutes creep tests on Concrete #1, it is important to emphasize that
both concretes were produced with quartz gravel of type “Pannonia Kies”, i.e.
the corresponding water-uptake capacity is unknown and needs to be identi-
fied. Notably, this is not enough for obtaining a satisfactory agreement between
model-predicted and measured creep functions, because the model-predicted
creep functions turn out to underestimate the measured creep functions, par-
ticularly because the elastic stiffness is overestimated. In order to improve
the situation, we consider that air was mixed into concrete during production.
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Figure 4.9: Application of the water migration model according to Eq. (4.10)

to Mortar #2, with a mix-related (nominal) composition given through w/c =

0.42 and a/c = 2.7, as well as water uptake capacity of quartz and void

water-filling extent according to Eq. (4.25): (a) Comparison of experimentally-

determined and model-predicted plateau stress-normalized strains, at the hy-

dration degrees given in Eq. 4.19) and the corresponding load plateaus accord-

ing to Eq. (4.20); (b) evolution of effective water-to-cement mass fraction of

the cement paste matrix, as a function of degree of hydration; for the complete

set of material properties of cement paste, see Table 4.4

Table 4.4: Input quantities for creep homogenization of Mortar #2 with mix-

related (nominal) composition quantified through w/c = 0.42 and a/c = 2.7:

effective water-to-cement mass fractions of the cement paste matrix according

to Eqs. (4.10) and (4.25), as well as corresponding viscoelastic properties of

the cement paste matrix found by means of interpolation (see Fig. 4.4), for

hydration degrees listed in Eq. (4.19)

ξ [-] wcp (ξ)/c [-] Ecp [GPa] νcp [-] Ec,cp [GPa] βcp [-]

0.32 0.403 8.623 0.211 9.719 0.322

0.35 0.404 9.864 0.215 11.857 0.290

0.40 0.405 10.693 0.218 14.872 0.270

0.45 0.407 12.175 0.222 19.312 0.260

0.50 0.409 13.189 0.225 23.055 0.244

0.55 0.410 14.369 0.229 30.780 0.222

0.60 0.412 15.417 0.232 38.460 0.196

0.62 0.413 16.146 0.234 44.927 0.192
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Since all eight considered creep tests were carried out on the same specimen,
just one entrapped air content, as appearing in Eq. (4.13) needs to be identi-
fied.

Similar to the identification process described for Mortar #1, the water uptake
capacity of “Pannonia Kies” quartz and the entrapped air content are identified
from the following search intervals:

wa(0)/a ∈ [0.000 , 0.0001 , 0.0002 , . . . 0.0199 , 0.0200]
fair ∈ [0.000 , 0.001 , 0.002 , . . . 0.049 , 0.050]

(4.32)

The identified void filling extent α according to Eq. (4.25), in turn, is treated
as being also applicable to both concretes.

Accordingly, for all data pairs [wa/a(0), fair] composed from the values given
in Eq. (4.32), the micromechanics model of Eqs. (55)–(4.18), together with
Eqs. (4.3), (4.10), and (4.11) evaluated for α = 0.603, as well as for w/c = 0.50
and a/c = 3.0, see Table 4.1, with the interpolation scheme of Fig. 4.4 and
with the loading history of Fig. 4.6 entering Eq. (4.22), is used to predict
the creep functions arising from the eight creep tests conducted on Con-
crete #1, as seen in Fig. 4.7 (c). Model-predicted creep functions are com-
pared to measured creep functions, and model prediction errors are quan-
tified according to Eq. (4.24). The smallest prediction error amounts to
E = 1.5 × 10−7 MPa−1 (see Table 4.2), and the corresponding values of the
water uptake capacity and of the air volume fraction read as

wa(0)

a
= 0.0089 fair = 0.026 (4.33)

see Fig. 4.10 (a) for the comparison of measured and model-predicted creep
functions. The identified water uptake capacity given in (4.33) implies that 1
kilogram of “Pannonia Kies” quartz takes up 8.9 gram of water during mixing
of the raw materials. The corresponding initial value of the effective water-to-
cement mass fraction of the cement paste matrix follows from specialization of
Eq. (4.3) for wa(0)/a from (4.33) and for the mix-related water-to-cement and
quartz-to-cement mass ratios w/c = 0.50 and a/c = 3.0 as:

wcp(0)

c
= 0.4733 (4.34)

This is significantly smaller than the mix-related water-to-cement mass ratio
w/c = 0.50. The evolution of the effective water-to-cement mass fraction of
the cement paste matrix follows from specialization of Eq. (4.10) for α from
(4.25), for wa(0)/a from (4.33), for w/c = 0.50, and for a/c = 3.0, as

wcp(ξ)

c
= 0.4733 + 0.0317 ξ (4.35)

see also Fig. 4.10 (b). Finally, the actual volume fractions of the cement paste
matrix and of quartz follow from Eqs. (4.33), (4.34), w/c = 0.50, a/c = 3.0,
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(4.11), and (4.13) as:

fcp = 0.4004 , fagg = 0.5736 . (4.36)

The satisfactory agreement between between model-predicted and measured
creep functions further corroborates the developed water migration model, see
Eq. (4.10), and the void water-filling extent α given in Eq. (4.25).
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Figure 4.10: Application of the water migration model according to Eq. (4.10)

to Concrete #1, with a mix-related (nominal) composition given through

w/c = 0.50 and a/c = 3.0, with void water-filling extent according to

Eqs. (4.25), as well as with water uptake capacity of quartz and entrapped air

volume fraction according to Eq. (4.33): (a) Comparison of experimentally-

determined and model-predicted plateau stress-normalized strains, at the hy-

dration degrees given in Eq. (4.19) and the corresponding load plateaus accord-

ing to Eq. (4.20); (b) evolution of effective water-to-cement mass fraction of

the cement paste matrix, as a function of degree of hydration; for the complete

set of material properties of cement paste, see Table 4.5

Confirmation of water uptake capacity of ”Pannonia

Kies” aggregates, through experimental data concerning

Concrete #2

Since Concretes #1 and #2 were produced with the same quartz gravel, the
water uptake capacity is already known, see Eq. (4.33). Also, the void water-
filling ratio α is already identified, see Eq. (4.25). However, Concrete #2 was
tested on a specific specimen, and the related air volume fraction is to be
identified. By analogy to the previously described identification processes, the
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Table 4.5: Input quantities for creep homogenization of Concrete #1 with mix-

related (nominal) composition quantified through w/c = 0.50 and a/c = 3.0:

effective water-to-cement mass fractions of the cement paste matrix according

to Eqs. (4.10), with void water-filling extent according to Eq. (4.25), and with

water uptake capacity of quartz and entrapped air volume fraction according to

Eq. (4.33), as well as corresponding viscoelastic properties of the cement paste

matrix found by means of interpolation (see Fig. 4.4), for hydration degrees

listed in Eq. (4.19)

ξ [-] wcp (ξ)/c [-] Ecp [GPa] νcp [-] Ec,cp [GPa] βcp [-]

0.33 0.484 6.720 0.205 9.096 0.262

0.35 0.4845 6.927 0.206 9.531 0.257

0.40 0.486 7.966 0.210 12.332 0.244

0.44 0.487 8.900 0.213 15.582 0.240

0.50 0.489 9.940 0.216 18.548 0.232

0.55 0.490 10.884 0.219 21.911 0.227

0.60 0.492 12.115 0.224 27.777 0.215

0.63 0.493 12.569 0.225 30.116 0.218

entrapped air volume fraction is found as

fair = 0.027 (4.37)

The initial value of the effective water-to-cement mass fraction of the cement
paste matrix follows from specialization of Eq. (4.3) for wa(0)/a from (4.33) and
for the mix-related water-to-cement and quartz-to-cement mass ratios w/c =
0.42 and a/c = 2.7 as:

wcp(0)

c
= 0.3960 (4.38)

This is significantly smaller than the mix-related water-to-cement mass ratio
w/c = 0.42. The evolution of the effective water-to-cement mass fraction of
the cement paste matrix follows from specialization of Eq. (4.10) for α from
(4.25), for wa(0)/a from (4.33), for w/c = 0.42, and for a/c = 2.7, as

wcp(ξ)

c
= 0.3960 + 0.0317 ξ (4.39)

see also Fig. 4.11 (b). Finally, the actual volume fractions of the cement paste
matrix and of quartz follow from Eqs. (4.33), (4.38), w/c = 0.42, a/c = 2.7,
(4.11), and (4.13) as:

fcp = 0.4005 , fagg = 0.5725 . (4.40)
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The satisfactory agreement between between model-predicted and measured
creep functions, as quantified by prediction error E = 1.30 × 10−7 MPa−1

(see Table 4.2) further corroborates the developed water migration model, see
Eq. (4.10), evaluated according to Eq. (4.24) the void water-filling extent α
given in Eq. (4.25), and the water uptake capacity wa(0)/a given in Eqs. (4.33).
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Figure 4.11: Application of the water migration model according to Eq. (4.10)

to Concrete #2, with a mix-related (nominal) composition given through

w/c = 0.42 and a/c = 2.7, with void water-filling extent according to

Eq. (4.25), with water uptake capacity of quartz according to Eqs. (4.33) and

with entrapped air volume fraction according to Eq. (4.37): (a) Comparison

of experimentally-determined and model-predicted plateau stress-normalized

strains, at the hydration degrees given in Eq. (4.19) and the corresponding load

plateaus according to Eq. (4.20); (b) evolution of effective water-to-cement

mass fraction of the cement paste matrix, as a function of degree of hydration;

for the complete set of material properties of cement paste, see Table 4.6

4.5 Conclusions

We here presented an extension of the classical Powers hydration model with
respect to internal curing, and checked the relevance of the latter through
micromechanical upscaling of effective water-to-cement mass ratio-dependent
cement paste creep functions, up to the levels of mortar/concrete. Remarkably,
internal curing can be considered in terms of only two additional quantities:
an aggregate-specific uptake capacity, and a cement-paste specific void filling
extent. Identifying these quantities herein for two types of oven-dried quartz
aggregates, and for one type of cement, allowed for satisfactory prediction
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Table 4.6: Input quantities for creep homogenization of Concrete #2 with mix-

related (nominal) composition quantified through w/c = 0.42 and a/c = 2.7:

effective water-to-cement mass fractions of the cement paste matrix according

to Eq. (4.10), with void water-filling extent according to Eq. (4.25), with water

uptake capacity of quartz according to Eqs. (4.33), and with entrapped air

volume fraction according to Eq. (4.37), as well as corresponding viscoelastic

properties of the cement paste matrix found by means of interpolation (see

Fig. 4.4), for hydration degrees listed in Eq. (4.19)

ξ [-] wcp (ξ)/c [-] Ecp [GPa] νcp [-] Ec,cp [GPa] βcp [-]

0.33 0.406 8.519 0.211 9.597 0.312

0.35 0.407 9.268 0.213 10.701 0.286

0.40 0.408 10.477 0.217 14.669 0.265

0.45 0.410 11.921 0.221 19.020 0.255

0.50 0.411 12.791 0.224 22.434 0.238

0.55 0.413 13.940 0.228 29.692 0.218

0.60 0.415 15.153 0.231 38.407 0.195

0.62 0.415 15.672 0.233 43.084 0.191

of numerous ultrashort-term creep tests on two mortars and two concretes,
see Figs. 4.8 to 4.11. Such creep tests directly deliver the hydration-dependent
(non-aging) creep properties, also valid for medium-term creep tests on very old
pastes, see (Irfan-ul-Hassan et al. 2016). Neglecting internal curing effects, i.e.
initial water uptake through the aggregates followed by ”back-soaking” of this
water from the aggregates domain to that of the maturing cement paste, would
clearly not allow for satisfactory micromechanical prediction of the creep prop-
erties at the mortar and concrete level, as is quantified in Table 4.2 and illus-
trated in Fig. 4.12, showing predictions based on wa(0)/a = α = fair = 0, while
keeping all other input variables as defined earlier in this paper. Obviously,
the creep response predicted by the micromechanical model of Fig. 4.2 would
be too soft under these conditions. It is also illustrative to quantify the degree
of hydration when the “back-suction” of water from aggregates to the cement
paste is finished, simply because no water is left any more in the aggregates. To
this end, wcp(ξ)/c in Eq. (4.10) is set equal to w/c, and the resulting expression
is solved for hydration degree ξ. This delivers

ξ∗ =

wa(0)
a

(a/c)
{

20 + 63
[
w/c− wa(0)

a
(a/c)

]}
α
{

1.051 + 3.31
[
w/c− wa(0)

a
(a/c)

]} (4.41)

Notably, the creep tests which were analyzed herein refer to hydration degrees
smaller than ξ∗, see Figs. 4.8 (b), 4.9 (b), 4.10 (b), and 4.11 (b).
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Figure 4.12: Comparison of experimentally-determined and model-predicted

plateau stress-normalized strains, using nominal compositions as input, see

Table 4.1, at the hydration degrees given in Eq. (4.19) and the corresponding

load plateaus according to Eq. (4.20); For (a) Mortar #1, (b) Mortar #2, (c)

Concrete #1, and (d) Concrete #2: Model predicted strains overestimate the

experimentally measured strains; see also Table 4.2

The method described herein, showing how to integrate internal curing events
into micromechanical modeling of concrete, in particular concerning creep, can
be straightforwardly extended to aging creep behavior, based on earlier con-
tributions such as those of Scheiner and Hellmich (2009) or Sanahuja (2013b).

Another obvious extension concerns the deeper reasons for the dependencies
of the creep properties of cement paste, on the water-to-cement mass ratio
as depicted in Fig. 4.4, which may be deciphered through micromechanical
resolution down to the level of the hydrates (Königsberger et al. 2016), or
even, down to the level of lubricating water layers between calcium silicate
sheets, (Pellenq et al. 2009; Sanahuja and Dormieux 2010; Shahidi et al. 2014,
2015a; Vandamme et al. 2015; Shahidi et al. 2016).
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Nomenclature

Symbols:
A∗,vol∞,agg LC-transformed volumetric component of Eshelby problem-

related strain concentration tensor of aggregates
A∗,dev∞,agg LC-transformed deviatoric component of Eshelby problem-related

strain concentration tensor of aggregates

A∗,vol∞,air LC-transformed volumetric component of Eshelby problem-
related strain concentration tensor of air

A∗,dev∞,air LC-transformed deviatoric component of Eshelby problem-related
strain concentration tensor of air

a mass of aggregates
a/c aggregate-to-cement mass ratio
α water filling extent of shrinkage induced voids in cement paste
βcp power-law creep exponent for cement paste
c mass of cement paste
d a material constant equal to wcp(0)/c
dmax maximum diameter of aggregates
δij Kronecker delta
E macroscopic uniaxial strain
E macroscopic strain tensor
Eexp experimentally-determined macroscopic uniaxial strain
Epred model-predicted macroscopic uniaxial strain
Ecp Young’s elastic modulus of cement paste
Ec,cp Young’s creep modulus of cement paste
E prediction error
Fplat plateau force
fcp volume fraction of the cement paste
fagg volume fraction of the aggregates
fair volume fraction of the air
fno−airagg volume fraction of aggregates without entrapped air
fno−aircp volume fraction of cement paste without entrapped air
f cpvoid cement paste-related volume fraction of voids
G auxiliary isotropic fourth-order tensor
Gvol, Gdev volumetric and deviatoric components of G
I fourth-order identity tensor
1 second-order identity tensor
Ivol, Idev volumetric and deviatoric parts of I
Jhom homogenized fourth-order tensorial creep function
k a material constant equal to rate of wcp/c
kagg bulk modulus of aggregates
kair bulk modulus of air
kcp bulk modulus of cement paste
khom bulk modulus of mortar or concrete
LC Laplace-Carson
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µagg shear modulus of aggregates
µair shear modulus of air
µcp shear modulus of cement paste
µhom shear modulus of mortar or concrete
νcp Poisson’s ratio of cement paste
p complex variable in the LC domain
P∗sph LC-transformed Hill tensor of spherical inclusions, embedded in

an infinite cement paste matrix
R∗agg LC-transformed fourth-order relaxation tensor function of aggre-

gates
R∗air LC-transformed fourth-order relaxation tensor function of air
R∗cp LC-transformed fourth-order relaxation tensor function of cement

paste
R∗hom LC-transformed fourth-order relaxation tensor function of mortar

or concrete
ρagg mass density of aggregates
ρclin mass density of cement clinker
ρH2O mass density of water
ρhyd mass density of hydrates
Σ macroscopic stress tensor
Σplat plateau stress
S∗sph LC-transformed Eshelby tensor of spherical inclusion, embedded

in an infinite cement paste matrix

S∗,volsph , S
∗,dev
sph volumetric and deviatoric components of S∗sph

t chronological time
τ time instant during creep test
τ0 time instant at start of the loading ramp
tref reference time, tref =1 d=86 400 s
Vc volume of cement
Vcp volume of cement paste
Vvoid volume of voids
Vw volume of water
w total water mass
wa water absorbed into the aggregates
wa(0)/a initial water-to-aggregate mass ratio
wcp water residing inside the cement paste
wcp/c effective water-to-cement mass ratio
wcp(0)/c initial value of the effective water-to-cement mass ratio
w/c (nominal) water-to-cement mass ratio
ξ hydration degree
ξ∗ hydration degree at which all aggregates-absorbed water is soaked

to cement paste
Operators:
(.)∗ Laplace-Carson transform of quantity (.)
· inner product
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(̂.) Laplace transform of quantity (.)
× multiplication
: second-order tensor contraction
Γ(.) gamma function of real quantity (.)
˙(.) time derivative of quantity (.)



Chapter5
Creep testing database: results

from hourly-repeated

three-minute creep tests on

cement pastes, mortars, and

concretes

This chapter contains the collection of results from all creep tests on cement
pastes, mortars, and concretes, which were carried out according to the test
protocol described in Chapter 2. All tested materials were produced from
the same sources, i.e. from one commercial cement of type CEM I 42.5 N, from
distilled water, and – as far as mortars and concretes are concerned – from
quartz, i.e. either from “Normensand” of from “Pannonia Kies”, with max-
imum grain sizes amounting to 2 mm and to 8 mm, respectively. Material
compositions were defined in terms of the mixing-related water-to-cement and
aggregate-to-cement mass ratios, see Table 5.1. Cylindrical specimens exhib-
ited a diameter of 70 mm and a central displacement measurement length of
164 mm. Specimens were tested inside a temperature chamber with air tem-
perature controlled to 20 ◦C. In order to study the influence of ambient air
temperature on the evolution of non-aging stiffness and creep properties of
cement pastes, specific specimens were also tested at 30 ◦C and at 10 ◦C, re-
spectively (Table 5.1). In order to underline the very satisfactory repeatability
of the testing approach, every test was repeated, i.e. results from two nominally
identical specimens are available for each type of test, labeled as “S-1”and “S-
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2”. As for illustration of measurement results, the evaluated strain evolution
is normalized with respect to the plateau stress, and this quantity is plotted
over the time since start of loading.

Table 5.1: Mix composition and testing temperature of characterized cement

pastes, mortars, and concretes

Materials Sample ID w/c a/c fnomcp fnomagg dmax Temp. ◦C

CP-1 0.42 - 1.00 - - 20

Cement pastes CP-2 0.45 - 1.00 - - 20

CP-3 0.50 - 1.00 - - 20

Cement pastes CP-4 0.42 - 1 - - 30

CP-5 0.42 - 1 - - 10

M-1 0.42 2.7 0.42 0.58 2 mm 20

M-2 0.45 2.8 0.45 0.58 2 mm 20

Mortars M-3 0.50 3.0 0.42 0.58 2 mm 20

M-4 0.42 1.35 0.42 0.58 2 mm 20

M-5 0.45 1.50 0.45 0.58 2 mm 20

Concretes C-1 0.42 2.7 0.42 0.58 8 mm 20

C-2 0.50 3.0 0.42 0.58 8 mm 20

During three-minute creep testing of cement pastes, specimens were subjected

to uniaxial compressive stress states ranging from 10 to 15 percent of the

uniaxial compressive strength at the time of testing, see Fig. 5.1. Similar load

intensities were used for three-minute creep testing of mortars and concretes,

see Fig. 5.2.
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Figure 5.1: Force and stress values prescribed during loading plateau for creep

testing of cement pastes; (a) CP-1, w/c = 0.42, (b) CP-2, w/c = 0.45, and (c)

CP-3, w/c = 0.50
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Figure 5.2: Force and stress values prescribed during loading plateau for creep

testing of mortars and concretes

5.1 Results from characterization of cement

pastes at different temperatures
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5.1.1 Water-cement ratio = 0.42, Temperature = 20 ◦C
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Figure 5.3: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.42; ambient air temperature = 20 ◦C; ID = “CP-1 S-1”, see Table 5.1;

as for load levels, see Fig. 5.1(a)
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Figure 5.4: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.42; ambient air temperature = 20 ◦C; ID = “CP-1 S-1”, see Table 5.1;

as for load levels, see Fig. 5.1(a)
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Figure 5.5: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.42; ambient air temperature = 20 ◦C; ID = “CP-1 S-1”, see Table 5.1;

as for load levels, see Fig. 5.1(a)
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Figure 5.6: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.42; ambient air temperature = 20 ◦C; ID = “CP-1 S-1”, see Table 5.1;

as for load levels, see Fig. 5.1(a)
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Figure 5.7: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.42; ambient air temperature = 20 ◦C; ID = “CP-1 S-2”, see Table 5.1;

as for load levels, see Fig. 5.1(a)
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Figure 5.8: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.42; ambient air temperature = 20 ◦C; ID = “CP-1 S-2”, see Table 5.1;

as for load levels, see Fig. 5.1(a)
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Figure 5.9: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.42; ambient air temperature = 20 ◦C; ID = “CP-1 S-2”, see Table 5.1;

as for load levels, see Fig. 5.1(a)
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Figure 5.10: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.42; ambient air temperature = 20 ◦C; ID = “CP-1 S-2”, see Table 5.1;

as for load levels, see Fig. 5.1(a)
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5.1.2 Water-cement ratio = 0.45, Temperature = 20 ◦C
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Figure 5.11: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.45; ambient air temperature = 20 ◦C; ID = “CP-2 S-1”, see Table 5.1;

as for load levels, see Fig. 5.1(b)
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Figure 5.12: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.45; ambient air temperature = 20 ◦C; ID = “CP-2 S-1”, see Table 5.1;

as for load levels, see Fig. 5.1(b)
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Figure 5.13: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.45; ambient air temperature = 20 ◦C; ID = “CP-2 S-1”, see Table 5.1;

as for load levels, see Fig. 5.1(b)
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Figure 5.14: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.45; ambient air temperature = 20 ◦C; ID = “CP-2 S-1”, see Table 5.1;

as for load levels, see Fig. 5.1(b)
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Figure 5.15: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.45; ambient air temperature = 20 ◦C; ID = “CP-2 S-2”, see Table 5.1;

as for load levels, see Fig. 5.1(b)
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Figure 5.16: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.45; ambient air temperature = 20 ◦C; ID = “CP-2 S-2”, see Table 5.1;

as for load levels, see Fig. 5.1(b)
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Figure 5.17: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.45; ambient air temperature = 20 ◦C; ID = “CP-2 S-2”, see Table 5.1;

as for load levels, see Fig. 5.1(b)
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Figure 5.18: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.45; ambient air temperature = 20 ◦C; ID = “CP-2 S-2”, see Table 5.1;

as for load levels, see Fig. 5.1(b)
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Figure 5.19: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.50; ambient air temperature = 20 ◦C; ID = “CP-3 S-1”, see Table 5.1;

as for load levels, see Fig. 5.1(c)
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Figure 5.20: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.50; ambient air temperature = 20 ◦C; ID = “CP-3 S-1”, see Table 5.1;

as for load levels, see Fig. 5.1(c)
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Figure 5.21: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.50; ambient air temperature = 20 ◦C; ID = “CP-3 S-1”, see Table 5.1;

as for load levels, see Fig. 5.1(c)
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Figure 5.22: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.50; ambient air temperature = 20 ◦C; ID = “CP-3 S-1”, see Table 5.1;

as for load levels, see Fig. 5.1(c)
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Figure 5.23: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.50; ambient air temperature = 20 ◦C; ID = “CP-3 S-2”, see Table 5.1;

as for load levels, see Fig. 5.1(c)
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Figure 5.24: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.50; ambient air temperature = 20 ◦C; ID = “CP-3 S-2”, see Table 5.1;

as for load levels, see Fig. 5.1(c)
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Figure 5.25: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.50; ambient air temperature = 20 ◦C; ID = “CP-3 S-2”, see Table 5.1;

as for load levels, see Fig. 5.1(c)
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Figure 5.26: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.50; ambient air temperature = 20 ◦C; ID = “CP-3 S-2”, see Table 5.1;

as for load levels, see Fig. 5.1(c)
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Figure 5.27: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.42; ambient air temperature = 30 ◦C; ID = “CP-4 S-1”, see Table 5.1;

as for load levels, see Fig. 5.1(a)
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Figure 5.28: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.42; ambient air temperature = 30 ◦C; ID = “CP-4 S-1”, see Table 5.1;

as for load levels, see Fig. 5.1(a)
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Figure 5.29: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.42; ambient air temperature = 30 ◦C; ID = “CP-4 S-1”, see Table 5.1;

as for load levels, see Fig. 5.1(a)
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Figure 5.30: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.42; ambient air temperature = 30 ◦C; ID = “CP-4 S-1”, see Table 5.1;

as for load levels, see Fig. 5.1(a)
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Figure 5.31: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.42; ambient air temperature = 30 ◦C; ID = “CP-4 S-2”, see Table 5.1;

as for load levels, see Fig. 5.1(a)
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Figure 5.32: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.42; ambient air temperature = 30 ◦C; ID = “CP-4 S-2”, see Table 5.1;

as for load levels, see Fig. 5.1(a)
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Figure 5.33: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.42; ambient air temperature = 30 ◦C; ID = “CP-4 S-2”, see Table 5.1;

as for load levels, see Fig. 5.1(a)
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Figure 5.34: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.50; ambient air temperature = 30 ◦C; ID = “CP-4 S-2”, see Table 5.1;

as for load levels, see Fig. 5.1(a)
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5.1.5 Water-cement ratio = 0.42, Temperature = 10 ◦C
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Figure 5.35: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.42; ambient air temperature = 10 ◦C; ID = “CP-5 S-1”, see Table 5.1;

as for load levels, see Fig. 5.1(a)
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Figure 5.36: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.42; ambient air temperature = 10 ◦C; ID = “CP-5 S-1”, see Table 5.1;

as for load levels, see Fig. 5.1(a)
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Figure 5.37: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.42; ambient air temperature = 10 ◦C; ID = “CP-5 S-1”, see Table 5.1;

as for load levels, see Fig. 5.1(a)
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Figure 5.38: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.42; ambient air temperature = 10 ◦C; ID = “CP-5 S-1”, see Table 5.1;

as for load levels, see Fig. 5.1(a)
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Figure 5.39: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.42; ambient air temperature = 10 ◦C; ID = “CP-5 S-2”, see Table 5.1;

as for load levels, see Fig. 5.1(a)
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Figure 5.40: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.42; ambient air temperature = 10 ◦C; ID = “CP-5 S-2”, see Table 5.1;

as for load levels, see Fig. 5.1(a)
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Figure 5.41: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.42; ambient air temperature = 10 ◦C; ID = “CP-5 S-2”, see Table 5.1;

as for load levels, see Fig. 5.1(a)
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Figure 5.42: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.42; ambient air temperature = 10 ◦C; ID = “CP-5 S-2”, see Table 5.1;

as for load levels, see Fig. 5.1(a)
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5.2 Identified elastic and creep properties of

cement pastes
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Figure 5.43: Evolution of (a) elastic Young’s modulus Ecp (b) creep modulus

Ec,cp (c) power-law exponent βcp, for cement paste CP-1
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Figure 5.44: Evolution of (a) elastic Young’s modulus Ecp (b) creep modulus

Ec,cp (c) power-law exponent βcp, for cement paste CP-2
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Figure 5.45: Evolution of (a) elastic Young’s modulus Ecp (b) creep modulus

Ec,cp (c) power-law exponent βcp, for cement paste CP-3
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Figure 5.46: Evolution of (a) elastic Young’s modulus Ecp (b) creep modulus

Ec,cp (c) power-law exponent βcp, for cement paste CP-4

0 50 100 150 200
0

5

10

15

20

Age of sample [h]

Y
o
u
n
g
’s

m
o
d
u
lu
s
E

c
p
[G

P
a
] CP-5

S-1
S-2

(a)

0 50 100 150 200
0

10

20

30

40

50

Age of sample [h]

cr
ee
p
m
o
d
u
lu
s
E

c,
cp

[G
P
a
] CP-5

S-1
S-2

(b)

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

Age of sample [h]
p
o
w
er
-l
a
w

ex
p
o
n
en

t
β
c
p
[-
] CP-5

S-1
S-2

(c)

Figure 5.47: Evolution of (a) elastic Young’s modulus Ecp (b) creep modulus

Ec,cp (c) power-law exponent βcp, for cement paste CP-5

5.3 Results from characterization of mortars

and concretes at 20 ◦C
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5.3.1 Mortar: w/c = 0.42, a/c = 2.70
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Figure 5.48: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.42, a/c = 2.70; ambient air temperature = 20 ◦C; ID = “M-1 S-1”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.49: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.42, a/c = 2.70; ambient air temperature = 20 ◦C; ID = “M-1 S-1”, see

Table 5.1; as for load levels, see Fig. 5.2



Chapter-5 134

0 50 100 150 200
25

30

35

40

33 h

57 h

81 h

105 h
129 h141 h

177 h

Time since loading, t− τ0 [s]

E
(t
−

τ
0
)/
Σ

p
la
t(
ξ
)
[1

0
−
6
M
P
a
−
1
]

M-1 S-1

(a)

0 50 100 150 200
25

30

35

40

34 h

58 h

82 h

106 h
130 h141 h

178 h

Time since loading, t− τ0 [s]

E
(t
−

τ
0
)/
Σ

p
la
t(
ξ
)
[1

0
−
6
M
P
a
−
1
]

M-1 S-1

(b)

0 50 100 150 200
25

30

35

40

35 h

59 h

83 h
107 h

131 h141 h

179 h

Time since loading, t− τ0 [s]

E
(t
−

τ
0
)/
Σ

p
la
t(
ξ
)
[1

0
−
6
M
P
a
−
1
]

M-1 S-1

(c)

0 50 100 150 200
25

30

35

40

36 h

60 h

84 h
108 h

132 h141 h

180 h

Time since loading, t− τ0 [s]

E
(t
−

τ
0
)/
Σ

p
la
t(
ξ
)
[1

0
−
6
M
P
a
−
1
]

M-1 S-1

(d)

0 50 100 150 200
25

30

35

40

37 h

61 h

85 h
109 h

133 h141 h

181 h

Time since loading, t− τ0 [s]

E
(t
−

τ
0
)/
Σ

p
la
t(
ξ
)
[1

0
−
6
M
P
a
−
1
]

M-1 S-1

(e)

0 50 100 150 200
25

30

35

40

38 h

62 h

86 h
110 h

134 h141 h

182 h

Time since loading, t− τ0 [s]

E
(t
−

τ
0
)/
Σ

p
la
t(
ξ
)
[1

0
−
6
M
P
a
−
1
]

M-1 S-1

(f)

Figure 5.50: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: cement paste with

w/c = 0.42, a/c = 2.70; ambient air temperature = 20 ◦C; ID = “M-1 S-1”,

see Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.51: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.42, a/c = 2.70; ambient air temperature = 20 ◦C; ID = “M-1 S-1”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.52: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.42, a/c = 2.70; ambient air temperature = 20 ◦C; ID = “M-1 S-2”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.53: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.42, a/c = 2.70; ambient air temperature = 20 ◦C; ID = “M-1 S-2”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.54: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.42, a/c = 2.70; ambient air temperature = 20 ◦C; ID = “M-1 S-2”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.55: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.42, a/c = 2.70; ambient air temperature = 20 ◦C; ID = “M-1 S-2”, see

Table 5.1; as for load levels, see Fig. 5.2
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5.3.2 Mortar: w/c = 0.45, a/c = 2.80
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Figure 5.56: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.45, a/c = 2.80; ambient air temperature = 20 ◦C; ID = “M-2 S-1”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.57: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.45, a/c = 2.80; ambient air temperature = 20 ◦C; ID = “M-2 S-1”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.58: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.45, a/c = 2.80; ambient air temperature = 20 ◦C; ID = “M-2 S-1”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.59: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.45, a/c = 2.80; ambient air temperature = 20 ◦C; ID = “M-2 S-1”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.60: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.45, a/c = 2.80; ambient air temperature = 20 ◦C; ID = “M-2 S-2”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.61: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.45, a/c = 2.80; ambient air temperature = 20 ◦C; ID = “M-2 S-2”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.62: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.45, a/c = 2.80; ambient air temperature = 20 ◦C; ID = “M-2 S-2”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.63: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.45, a/c = 2.80; ambient air temperature = 20 ◦C; ID = “M-2 S-2”, see

Table 5.1; as for load levels, see Fig. 5.2
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5.3.3 Mortar: w/c = 0.50, a/c = 3.0
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Figure 5.64: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.50, a/c = 3.0; ambient air temperature = 20 ◦C; ID = “M-3 S-1”, see Ta-

ble 5.1; as for load levels, see Fig. 5.2
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Figure 5.65: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.50, a/c = 3.0; ambient air temperature = 20 ◦C; ID = “M-3 S-1”, see Ta-

ble 5.1; as for load levels, see Fig. 5.2
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Figure 5.66: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.50, a/c = 3.0; ambient air temperature = 20 ◦C; ID = “M-3 S-1”, see Ta-

ble 5.1; as for load levels, see Fig. 5.2
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Figure 5.67: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.50, a/c = 3.0; ambient air temperature = 20 ◦C; ID = “M-3 S-1”, see Ta-

ble 5.1; as for load levels, see Fig. 5.2
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Figure 5.68: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.50, a/c = 3.0; ambient air temperature = 20 ◦C; ID = “M-3 S-2”, see Ta-

ble 5.1; as for load levels, see Fig. 5.2
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Figure 5.69: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.50, a/c = 3.0; ambient air temperature = 20 ◦C; ID = “M-3 S-2”, see Ta-

ble 5.1; as for load levels, see Fig. 5.2
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Figure 5.70: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.50, a/c = 3.0; ambient air temperature = 20 ◦C; ID = “M-3 S-2”, see Ta-

ble 5.1; as for load levels, see Fig. 5.2
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Figure 5.71: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.50, a/c = 3.0; ambient air temperature = 20 ◦C; ID = “M-3 S-2”, see Ta-

ble 5.1; as for load levels, see Fig. 5.2
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5.3.4 Mortar: w/c = 0.42, a/c = 1.35
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Figure 5.72: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.42, a/c = 1.35; ambient air temperature = 20 ◦C; ID = “M-4 S-1”, see

Table 5.1; as for load levels, see Fig. 5.2



Chapter-5 157

0 50 100 150 200
35

40

45

50

55

60

65

27 h

51 h

99 h
123 h141 h171 h

Time since loading, t− τ0 [s]

E
(t
−

τ
0
)/
Σ

p
la
t(
ξ
)
[1

0
−
6
M
P
a
−
1
]

M-4 S-1

(a)

0 50 100 150 200
35

40

45

50

55

60

65

28 h

52 h

100 h
124 h141 h172 h

Time since loading, t− τ0 [s]

E
(t
−

τ
0
)/
Σ

p
la
t(
ξ
)
[1

0
−
6
M
P
a
−
1
]

M-4 S-1

(b)

0 50 100 150 200
35

40

45

50

55

60

65

29 h

53 h

101 h
125 h141 h173 h

Time since loading, t− τ0 [s]

E
(t
−

τ
0
)/
Σ

p
la
t(
ξ
)
[1

0
−
6
M
P
a
−
1
]

M-4 S-1

(c)

0 50 100 150 200
35

40

45

50

55

60

65

30 h

54 h

102 h
126 h141 h174 h

Time since loading, t− τ0 [s]

E
(t
−

τ
0
)/
Σ

p
la
t(
ξ
)
[1

0
−
6
M
P
a
−
1
]

M-4 S-1

(d)

0 50 100 150 200
35

40

45

50

55

60

65

31 h

55 h

103 h
127 h141 h175 h

Time since loading, t− τ0 [s]

E
(t
−

τ
0
)/
Σ

p
la
t(
ξ
)
[1

0
−
6
M
P
a
−
1
]

M-4 S-1

(e)

0 50 100 150 200
35

40

45

50

55

60

65

32 h

56 h

104 h
128 h141 h176 h

Time since loading, t− τ0 [s]

E
(t
−

τ
0
)/
Σ

p
la
t(
ξ
)
[1

0
−
6
M
P
a
−
1
]

M-4 S-1

(f)

Figure 5.73: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.42, a/c = 1.35; ambient air temperature = 20 ◦C; ID = “M-4 S-1”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.74: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.42, a/c = 1.35; ambient air temperature = 20 ◦C; ID = “M-4 S-1”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.75: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.42, a/c = 1.35; ambient air temperature = 20 ◦C; ID = “M-4 S-1”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.76: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.42, a/c = 1.35; ambient air temperature = 20 ◦C; ID = “M-4 S-2”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.77: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.42, a/c = 1.35; ambient air temperature = 20 ◦C; ID = “M-4 S-2”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.78: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.42, a/c = 1.35; ambient air temperature = 20 ◦C; ID = “M-4 S-2”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.79: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.42, a/c = 1.35; ambient air temperature = 20 ◦C; ID = “M-4 S-2”, see

Table 5.1; as for load levels, see Fig. 5.2
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5.3.5 Mortar: w/c = 0.50, a/c = 1.50
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Figure 5.80: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.50, a/c = 1.50; ambient air temperature = 20 ◦C; ID = “M-5 S-1”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.81: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.50, a/c = 1.50; ambient air temperature = 20 ◦C; ID = “M-5 S-1”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.82: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.50, a/c = 1.50; ambient air temperature = 20 ◦C; ID = “M-5 S-1”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.83: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.50, a/c = 1.50; ambient air temperature = 20 ◦C; ID = “M-5 S-1”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.84: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.50, a/c = 1.50; ambient air temperature = 20 ◦C; ID = “M-5 S-2”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.85: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.50, a/c = 1.50; ambient air temperature = 20 ◦C; ID = “M-5 S-2”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.86: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.50, a/c = 1.50; ambient air temperature = 20 ◦C; ID = “M-5 S-2”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.87: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: mortar with w/c =

0.50, a/c = 1.50; ambient air temperature = 20 ◦C; ID = “M-5 S-2”, see

Table 5.1; as for load levels, see Fig. 5.2
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5.3.6 Concrete: w/c = 0.42, a/c = 2.70
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Figure 5.88: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: concrete with w/c =

0.42, a/c = 2.70; ambient air temperature = 20 ◦C; ID = “C-1 S-1”, see Ta-

ble 5.1; as for load levels, see Fig. 5.2
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Figure 5.89: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: concrete with w/c =

0.42, a/c = 2.70; ambient air temperature = 20 ◦C; ID = “C-1 S-1”, see Ta-

ble 5.1; as for load levels, see Fig. 5.2
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Figure 5.90: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: concrete with w/c =

0.42, a/c = 2.70; ambient air temperature = 20 ◦C; ID = “C-1 S-1”, see Ta-

ble 5.1; as for load levels, see Fig. 5.2
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Figure 5.91: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: concrete with w/c =

0.42, a/c = 2.70; ambient air temperature = 20 ◦C; ID = “C-1 S-1”, see Ta-

ble 5.1; as for load levels, see Fig. 5.2
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Figure 5.92: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: concrete with w/c =

0.42, a/c = 2.70; ambient air temperature = 20 ◦C; ID = “C-1 S-2”, see Ta-

ble 5.1; as for load levels, see Fig. 5.2
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Figure 5.93: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: concrete with w/c =

0.42, a/c = 2.70; ambient air temperature = 20 ◦C; ID = “C-1 S-2”, see Ta-

ble 5.1; as for load levels, see Fig. 5.2
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Figure 5.94: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: concrete with w/c =

0.42, a/c = 2.70; ambient air temperature = 20 ◦C; ID = “C-1 S-2”, see Ta-

ble 5.1; as for load levels, see Fig. 5.2
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Figure 5.95: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: concrete with w/c =

0.42, a/c = 2.70; ambient air temperature = 20 ◦C; ID = “C1 S-2”, see Ta-

ble 5.1; as for load levels, see Fig. 5.2
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5.3.7 Concrete: w/c = 0.50, a/c = 3.0
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Figure 5.96: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: concrete with w/c =

0.50, a/c = 3.0; ambient air temperature = 20 ◦C; ID = “C-2 S-1”, see Ta-

ble 5.1; as for load levels, see Fig. 5.2
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Figure 5.97: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: concrete with w/c =

0.50, a/c = 3.0; ambient air temperature = 20 ◦C; ID = “C-2 S-1”, see Ta-

ble 5.1; as for load levels, see Fig. 5.2
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Figure 5.98: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: concrete with w/c =

0.50, a/c = 3.0; ambient air temperature = 20 ◦C; ID = “C-2 S-1”, see Ta-

ble 5.1; as for load levels, see Fig. 5.2
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Figure 5.99: Measured strain evolution normalized with respect to the plateau

stress as a function of the time since start of loading: concrete with w/c =

0.50, a/c = 3.0; ambient air temperature = 20 ◦C; ID = “C-2 S-1”, see Ta-

ble 5.1; as for load levels, see Fig. 5.2
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Figure 5.100: Measured strain evolution normalized with respect to the

plateau stress as a function of the time since start of loading: concrete with

w/c = 0.50, a/c = 3.0; ambient air temperature = 20 ◦C; ID = “C-2 S-2”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.101: Measured strain evolution normalized with respect to the

plateau stress as a function of the time since start of loading: concrete with

w/c = 0.50, a/c = 3.0; ambient air temperature = 20 ◦C; ID = “C-2 S-2”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.102: Measured strain evolution normalized with respect to the

plateau stress as a function of the time since start of loading: concrete with

w/c = 0.50, a/c = 3.0; ambient air temperature = 20 ◦C; ID = “C-2 S-2”, see

Table 5.1; as for load levels, see Fig. 5.2
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Figure 5.103: Measured strain evolution normalized with respect to the

plateau stress as a function of the time since start of loading: concrete with

w/c = 0.50, a/c = 3.0; ambient air temperature = 20 ◦C; ID = “C2 S-2”, see

Table 5.1; as for load levels, see Fig. 5.2
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Conclusions

As for decoupling the time-dependent phenomena of creep and hydration as

well as for carefully subdividing total deformation measurements into an in-

stantaneous elastic part and a time-dependent creep contribution, the following

conclusions are drawn:

• Decoupling the time-dependent phenomena of creep and hydration is

possible by performing ultra short creep tests. Their duration must be

so short that the ongoing chemical hydration reaction does not make a

significant progress. This implies that the microstructure of the tested

cementitious materials is virtually constant throughout the creep test.

Therefore, ultra short creep experiments qualify as non-aging tests.

• The elastic Young’s modulus is accessible by considering that creep

strains are compressive throughout a compressive creep test – and this

includes also the very initial phase of loading.

• The statically determined elastic Young’s modulus is equal to the dy-

namically determined elastic Young’s modulus, whereby the latter is,

e.g., accessible by means of ultrasound characterization. This implies

that the thermodynamic definition of elasticity applies also to cemen-

titious materials, i.e. that elastic stiffness is independent of the loading

rate.

• Secant Young’s moduli, loading Young’s moduli, and unloading Young’s

moduli shall not be misinterpreted as elastic Young’s moduli, because
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cementitious materials exhibit ultra fast creep. Deformation measure-

ments exhibiting a strain rate-dependency must be expected to contain

also contributions from dissipative phenomena, i.e. they shall not be

treated as being purely elastic.

• The elastic Young’s modulus allows for extracting time-dependent strains

from total strains developing during a creep test.

• Significant creep strains develop already during the loading phase of a

quasi-static test, and they need to be considered when it comes to reliable

identification of creep functions of cementitious materials.

• The initial part of creep functions of hydrating cementitious materials,

covering the first few minutes after sudden loading, can be described

reliably by means of power laws.

• Early-age evolutions of elastic stiffness and of non-aging creep properties

can be characterized by performing ultra short creep experiments once

every hour, e.g. starting 21 hours after production and continuing up to

material ages of eight days.

As for the microscopic origin of macroscopically observed creep, the microstruc-

ture of cementitious materials was resolved down to (sub)micron-sized needle-

shaped hydrates; and this has delivered the following conclusions:

• Universal creep properties of (sub)micron-sized, needle-shaped, and well-

saturated cement hydrates allow for explaining the deformation histories

measured in more than 500 ultra short creep test on cement pastes,

carried out during the first week after their production.

• The same creep properties of cement hydrates also allow for predicting

the creep performance of a cement paste which was cured for 30 years

under water, and which was subjected thereafter to a 30 days long creep

test.

• This underlines that non-aging creep of well-saturated cement pastes can

be predicted as a function of material composition (in terms of the initial

water-to-cement mass ratio) and maturity (in terms of the hydration

degree).
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• It was also found that the macroscopic uniaxial creep functions of cement

pastes are practically independent of the Poisson’s ratio of the creeping

hydrate needles.

As for predicting creep of mortars and concretes, the following conclusions are

drawn:

• Creep prediction of mortars and concretes produced with oven-dried reg-

ular aggregates requires consideration of “internal curing”, reminiscent

of the situation encountered with lightweight aggregates.

• Aggregates with an open surface porosity may take up a significant mass

of water during mixing of raw materials, and this water mass is later

soaked “back” into the hydrating cement paste.

• Suction of water – from the open porosity of aggregates into the sur-

rounding cement paste matrix – is driven by autogeneous shrinkage. 60

percent of shrinkage-induced voids were found to be filled by water com-

ing from the open porosity of aggregates.

• Reliable prediction of creep of mortars and concretes requires the intro-

duction of a new hydration model, envisioning that hydrating cement

paste is a thermodynamically open system to the surface porosity of the

aggregates. This requires introduction of a hydration-effective water-to-

cement mass ratio of the cement paste matrix, and this effective w/c

ratio is linearly increasing with increasing hydration degree.

Future outlook

The achieved research results motivate the following future outlook:

• It will be interesting to compare the herein described creep testing results

with corresponding measurements from creep tests on ”microstructurally

designed” cement pastes, such as studied by Termkhajornkit et al. (2015)

and by Di Bella et al. (2015). As for their production, a certain part of

the clinker is replaced by chemically inert particles of similar size and

stiffness. Complete hydration results in a material which is representative

of an early-age microstructure, because the inert particles take over the

role of unhydrated clinker.
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• The identified non-aging creep properties will serve as the logic basis for

developing multiscale aging creep models, because (i) the very first phase

of an aging creep test is clearly of non-aging nature, and (ii) hydrate

needles produced after the time instant of loading do also exhibit the

same universal creep behavior as the hydrate needles which exist already

at the time of loading. Existing non-aging creep formulations represent

an interesting basis for these future developments, see the models by

Scheiner and Hellmich (2009) and by Sanahuja (2013b).

• It will be also interesting to further resolve the microstructure of needle-

shaped cement hydrates down to the even finer scales of calcium-silicate-

hydrates and gel pores, where creep may origin from shear dislocations of

interfaces which are filled by adsorbed water layers (Pellenq et al. 2009;

Sanahuja and Dormieux 2010; Shahidi et al. 2014, 2015a; Vandamme

et al. 2015; Shahidi et al. 2016).

• Finally, it will be interesting to apply the herein developed research

methodologies also to blended cementitious materials, where part of ce-

ment clinker is replaced by locally available replacement materials, i.e.

either by supplementary cementitious materials such as the waste prod-

ucts fly ash and slag, or by very fine-ground inert particles such as quartz

or limestone fillers.
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Appendix-A

Analytical expressions facilitating upscaling in

LC space

Upscaling of the hydrate creep behavior, up to the larger scales of the hydrate

foam and of the cement paste, respectively, is performed in the LC space, ac-

cording to the analytical formulae described next. Thereby, we consider that

an isotropic fourth-order tensor, G, can be decomposed into a volumetric part

and a deviatoric part as G = GvolIvol +GdevIdev, where Gvol and Gdev, respec-

tively, are the (scalar) volumetric and deviatoric components of the fourth-

order tensor G, and where Ivol and Idev are the volumetric and deviatoric parts

of the symmetric fourth-order identity tensor. They satisfy Ivol : Ivol = Ivol,

Idev : Idev = Idev, and Ivol : Idev = Idev : Ivol = O. In addition, the isotropic

average of a transversally isotropic tensor F can be written as (Torquato 2013;

Sadowski et al. 2015)

2π∫
0

π∫
0

F(ϕ, ϑ)
sinϑ

4π
dϑ dϕ =

3∑
i=1

3∑
j=1

[
1

3
FiijjI

vol +
1

5

(
Fijij −

1

3
Fiijj

)
Idev
]
,

(1)

provided that the tensor F exhibits the symmetries Fijkl=Fjikl=Fijlk.

We start our collection of analytical formulae with the LC-transformed Hill

tensors occurring in concentration and stiffness expressions of Eqs. (54)-(3.26).

Given the organization of cement paste according to Fig. 3.2, the inclusions in

the corresponding Eshelby problems are all embedded in an infinite hydrate

foam matrix with quasi-elastic “stiffness” R∗hf . For material phases with spher-

ical shape (j=sph), i.e. for air, water, and cement clinker, and for cylindrical

hydrates (j=cyl) the Hill tensor reads as

P
hf,∗
j (p) = S

hf,∗
j (p) :

[
R∗hf (p)

]−1 ∀j ∈ {sph, cyl} , (2)

whereby Shf,∗j denotes the LC-transformed Eshelby tensor. As for a spherical

inclusion embedded in an infinite hydrate foam matrix, the LC-transformed

Eshelby tensor Shf,∗sph is isotropic, and its volumetric and deviatoric components

read as (Zaoui 2002)

Shf,∗,volsph (p) =
3 k∗hf (p)

3 k∗hf (p) + 4µ∗hf (p)
, Shf,∗,devsph (p) =

6

5

k∗hf (p) + 2µ∗hf (p)

3 k∗hf (p) + 4µ∗hf (p)
.

(3)
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As for a cylindrical hydrate orientated in e3-direction and embedded in an

infinite hydrate foam matrix, the non-zero components of the LC-transformed

Eshelby tensor Shf,∗cyl read as (Eshelby 1957; Hellmich et al. 2004)

Shf,∗cyl,1111(p) = Shf,∗cyl,2222(p) =
9

4

k∗hf (p) + µ∗hf (p)

3 k∗hf (p) + 4µ∗hf (p)
,

Shf,∗cyl,1122(p) = Shf,∗cyl,2211(p) =
1

4

3 k∗hf (p)− 5µ∗hf (p)

3 k∗hf (p) + 4µ∗hf (p)
,

Shf,∗cyl,1133(p) = Shf,∗cyl,2233(p) =
1

2

3 k∗hf (p)− 2µ∗hf (p)

3 k∗hf (p) + 4µ∗hf (p)
,

Shf,∗cyl,1212(p) =
1

4

3 k∗hf (p) + 7µ∗hf (p)

3 k∗hf (p) + 4µ∗hf (p)
,

Shf,∗cyl,1313 = Shf,∗cyl,2323 =
1

4
,

(4)

whereby Shf,∗cyl exhibits symmetries Shf,∗cyl,ijkl = Shf,∗cyl,jikl = Shf,∗cyl,jilk.

Next, we discuss the expressions for the homogenized quasi-elastic “stiffness”

tensor R∗hf , see Section “Homogenization of cement paste properties”. As

for hydrate foam, insertion of the LC-transformed Eshelby tensor expressions

(57) and (4) into (56), and further insertion of the thus obtained Hill tensors,

together with the vanishing quasi-elastic “stiffnesses” of air and water (see

Table 3.1) and the quasi-elastic “stiffness” of hydrates (50), into the expression

for the quasi-elastic “stiffness” of the homogenized hydrate foam (55), yields

scalar expressions for the LC-transformed bulk and shear moduli, reading as

k∗hf (p) = fhfhydkhydA
∗,vol
∞,hyd(p)

[(
fhfair + fhfH2O

)
A∗,vol∞,por(p) + fhfhydA

∗,vol
∞,hyd(p)

]−1
,

µ∗hf (p) = fhfhydµ
∗
hyd(p)A

∗,dev
∞,hyd(p)

[(
fhfair + fhfH2O

)
A∗,dev∞,por(p) + fhfhydA

∗,vol
∞,dev(p)

]−1
,

(5)

with A∗,vol∞,por, A
∗,dev
∞,por, A

∗,vol
∞,hyd, and A∗,dev∞,hyd denoting the LC-transformed volu-

metric and deviatoric components of the Eshelby problem-related strain con-

centration tensors for the pores (air and water) and for the hydrates, reading

as

A∗,vol∞,pore(p) =
[
1− Shf,∗,volsph (p)

]−1
,

A∗,dev∞,pore(p) =
[
1− Shf,∗,devsph (p)

]−1
,

(6)
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so that, according to (1), we finally have

A∗,vol∞,hyd(p) =
3 k∗hf (p) + µ∗hyd(p) + 3µ∗hf (p)

3 khyd + µ∗hyd(p) + 3µ∗hf (p)
,

A∗,dev∞,hyd(p) =
{

9 khyd
[
µ∗hyd(p)

]2
k∗hf (p) + 64

[
µ∗hf (p)

]4
+[

63 khyd + 84 k∗hf (p) + 184µ∗hyd(p)
] [
µ∗hf (p)

]3
+[

156 khyd µ
∗
hyd(p) + 120 k∗hf (p)µhyd + 72

[
µ∗hyd(p)

]2
+ 81 khyd k

∗
hf (p)

] [
µ∗hf (p)

]2
+[

36 k∗hf (p)
[
µ∗hyd(p)

]2
+ 21 khyd

[
µ∗hyd(p)

]2
+ 90 k∗hf (p) khyd µ

∗
hyd(p)

]
µ∗hf (p)

}
(

5
{[
µ∗hf (p)

]2
+
[
(7µ∗hyd(p) + 3 k∗hf (p)

]
µ∗hf (p) + 3 k∗hf (p)µ

∗
hyd(p)

}
[
µ∗hf (p) + µ∗hyd(p)

] [
3 khyd + µ∗hyd(p) + 3µ∗hf (p)

] )−1
.

(7)

As for cement paste, insertion of LC-transformed Eshelby tensor expression

(57) into (56), and further insertion of the thus obtained Hill tensor, to-

gether with the quasi-elastic “stiffnesses” of cement clinker (see Table 3.1)

and of hydrate foam (58), into the expression for the quasi-elastic “stiffness”

of the homogenized cement paste (3.26), yields scalar expressions for the LC-

transformed bulk and shear moduli, reading as

k∗cp(p) =
[
f cphfk

∗
hf (p) + f cpclinkclinA

∗,vol
∞,clin(p)

] [
f cphf + f cpclinA

∗,vol
∞,clin(p)

]−1
,

µ∗cp(p) =
[
f cphfµ

∗
hf (p) + f cpclinµclinA

∗,dev
∞,clin(p)

] [
f cphf + f cpclinA

∗,dev
∞,clin(p)

]−1
,

(8)

with A∗,vol∞,clin, A∗,dev∞,clin denoting the LC-transformed volumetric and deviatoric

components of the Eshelby problem-related strain concentration tensor for

clinker inclusions, reading as

A∗,vol∞,clin(p) =

[
1 + Shf,∗,volsph (p)

kclin − k∗hf (p)
k∗hf (p)

]−1
,

A∗,dev∞,clin(p) =

[
1 + Shf,∗,devsph (p)

µclin − µ∗hf (p)
µ∗hf (p)

]−1
.

(9)
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Appendix-B1

Multiscale material modeling: Elasticity Ho-

mogenization

Consider a representative volume element (RVE) of mortar or concrete

(Fig. 4.2) to be subjected spatially homogeneous (“macroscopic”) stress Σ,

imposed at the boundary of the material in terms of “microscopic” traction

vectors T (x) fulfilling Cauchy’s formula

T (x) = Σ · n(x) (10)

with x as the position vector and n as the unit normal vector to the surface of

the RVE. Boundary condition (10) together with equilibrium of the microscopic

stress field i.e.

divσ(x) = 0 (11)

implies the so-called stress average rule (Hashin 1983; Zaoui 2002)

Σ =
1

V

∫
V

σ(x) dV , (12)

with V as the volume of the RVE. Moreover, stresses σ(x) provoke strains

ε(x) which are geometrically compatible with micro-displacements ξ(x) i.e.

they satisfy the definition of the linearized strain tensor

ε(x) =
1

2

[
∇ξ(x) + t∇ξ(x)

]
(13)

The external work density done by the traction vectors in (10) along the dis-

placement ξ in (13) reads as (Germain et al. 1983)

W ext =
1

V

∫
∂V

T (x) · ξ(x) dS

=
1

V

∫
∂V

[Σ(x) · n(x)] · [ε(x) · x] dS = Σ :

[
1

V

∫
V

ε(x) dV

] (14)

Eq. (14) clarifies that the macroscopic stress Σ does work on the spatial average

over the microscopic strain. Thus, this average qualifies as the macroscopic

strain tensor E related to mortar or concrete (Hashin 1983),

E =
1

V

∫
V

ε(x) dV . (15)
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Considering linear elastic material behavior

σ(x) = C(x) : ε(x) (16)

and exploiting that the field equations are linear delivered the strain concen-

tration rule

ε(x) = A(x) : E (17)

where A(x) denotes the strain concentration tensor field. Introducing the

phase strain average

εi =
1

Vi

∫
Vi

ε(x) dV (18)

and considering the strain concentration rule (17) delivers

εi =
1

Vi

∫
Vi

A(x) : E dV

=
1

Vi

∫
Vi

A(x) dV : E

εi = Ai : E (19)

where Ai is the strain concentration tensor

Ai =
1

Vi

∫
Vi

A(x) dV (20)

Combination of (18) with phase elasticity law σi = Ci : εi and the stress

average rule formulated in average phase stresses σi

Σ =
n∑
i=1

fiσi (21)

where fi denotes the phase volume fraction, delivers

Σ =
n∑
i=1

fiCi : Ai : E

such that the homogenized elastic stiffness follows as

Chom =
n∑
i=1

fiCi : Ai . (22)

Eq.(22) represents the homogenized stiffness of the microheterogeneous mate-

rial. Clarifying that knowledge of phase strain concentration tensor, allows
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for elasticity upscaling. Also the knowledge of the phase concentration tensors

Ai with i = 1, 2, . . . , n) allows for the scale transition from the macrostrain to

microstrain as

εi = Ai : E(t)

Consideration of the strain average rule formulated in average phase strains

E =
n∑
i=1

fiεi (23)

delivers

E =

[
n∑
i=1

fiAi

]
: E (24)

such that I =
∑n

i=1 fiAi with I as a symmetric fourth order identity

tensor, defined as

Iijkl =
1

2
(δihδjl + δilδjh). (25)

To estimate the phase strain concentration tensors, which are functions of

volume fractions of material phases, phase stiffnesses, phase shapes, and inter-

action of material phases, we use here concept of Zaoui (Zaoui 2002) which is

based on matrix-inclusion problems studied by Eshelby (Eshelby 1957). Con-

sider an infinite three dimensional solid with one single ellipsoidal inclusion

with uniform strain boundary conditions ξ = E∞ : x. The strain inside the

inclusion is spatially constant

εinc = [I+ Pinc : (Cinc − C∞]−1 : E∞ (26)

here tensor Pinc accounts for the shape of the inclusion, spherical for aggregates

and air while needle shaped for the hydrates.

Lets us apply this approach to concrete comprised of two material phases,

namely, cement paste and aggregates, in this case the strain average rule read

as

E = fcpεcp + faggεagg (27)

The microstress in the both phases can be written as

εcp = Acp : E

εagg = Aagg : E

(28)
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where Acp and Aagg are sought strain concentration tensors. Formation of two

Eshelby problems are for cement pastes, and for aggregates, delivers

εcp = [I+ Pcp : (Ccp − C∞]−1 : E∞

εagg = [I+ Pagg : (Cagg − C∞]−1 : E∞.

(29)

We assume that εcp and εagg in (29) are estimates for average phase strain in

the real material, we are left with establishing reasonable links between

• C∞ and stiffness property of the real material

• E∞ and E

As for the link between E∞ to E(t), we rewrite (29) in the form

εcp = Acp∞ : E∞

εagg = Aagg∞ : E∞

(30)

and we insert these equations into the strain average rule (27)

E = fcpεcp + faggεagg

This delivers

E = [fcpAcp∞ + faggAagg∞ ] : E∞ (31)

E∞ = [fcpAcp∞ + faggAagg∞ ]−1 : E (32)

Insertion of (32) into (30) finally delivers

Acp = Acp∞ : [fcpAcp∞ + faggAagg∞ ]−1

Aagg = Aagg∞ : [fcpAcp∞ + faggAagg∞ ]−1

(33)

For general n phase composites, the concentration tensors read as (Zaoui 2002)

Ai = [I+ Pi : (Ci − C∞]−1 :

[
n∑
j=1

fj [I+ Pj : (Cj − C∞]−1
]−1

. (34)

Inserting (34) into the definition of the homogenized stiffness

Chom =
n∑
i=1

fiCi : Ai
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delivers

Chom =
n∑
i=1

fiCi [I+ Pi : (Ci − C∞]−1 :

[
n∑
j=1

fj [I+ Pj : (Cj − C∞]−1
]−1
(35)

As for the link between C∞ and a stiffness quantity of the material, there are

two possibilities

• C∞ = Chom in case of a polycrystalline arrangement of material phase,

delivering a self consistent scheme.

• C∞ = CRV Ematrix in case of a matrix inclusion morphology (like concrete),

delivering Mori-Tanaka scheme (Mori and Tanaka 1973)

In the present work, all considered phases exhibit isotropic elastic properties,

such that their stiffness tensor can be expressed by a superposition of a volu-

metric and deviatoric part

Ci = 3kiIvol + 2µiIdev (36)

C−1i =
1

3ki
Ivol +

1

2µi
Idev (37)

where Ivol + Idev = I, and where ki and µi denote the bulk modulus and

shear modulus of the phase i. Bulk and shear moduli can also be expressed as

functions of elastic Young’s modulus Ei: and Poisson’s ratio νi:

ki =
Ei

3(1− 2νi)
µi =

Ei
2(1 + νi)

(38)

Finally the Hill tensors P (Hill 1965) for inclusions with spherical shapes reads

as

Psph = Ssph(ν∞) : C−1∞ (39)

where Eshelby tensors Ssph can be expressed as

Ssph = αsph(ν∞)Ivol + βsph(ν∞)Idev (40)

where αsph and βsph are functions of Poisson’s ratio ν∞ of the infinite matrix:

In (40)

αsph =
3k∞

3k∞ + 4µ∞
=

1 + ν∞
3(1− ν∞)

βsph =
6(k∞ + 2µ∞)

5(3k∞ + 4µ∞)
=

2(4− 5ν∞)

15(1− ν∞)
(41)
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Appendix-B2

Micromechanics involved in creep homogeniza-

tion for upscaling from Cement paste to Con-

crete level

Cement pastes exhibit viscoelastic material behavior (Irfan-ul-Hassan et al.

2016),

σcp(t) =

∫ t

−∞
Rcp(t−τ) :

∂εcp(τ)

∂τ
dτ , εcp(t) =

∫ t

−∞
Jcp(t−τ) :

∂σcp(τ)

∂τ
dτ ,

(42)

where the creep and relaxation tensor functions, Jcp and Rcp, fulfill the con-

volution condition (Schwarzl and Struik 1968)∫ t

−∞
Jcp(t− τ) : Rcp(τ) dτ =

∫ t

−∞
Rcp(t− τ) : Jcp(τ) dτ = t I , (43)

and where the cement paste creep function has following format

Jcp(ξ, t− τ) =

[
1− 2νcp(ξ)

Ecp(ξ)
+

1− 2νcp(ξ)

Ec,cp(ξ)

(
t− τ
tref

)βcp(ξ)]
Ivol

+

[
1 + νcp(ξ)

Ecp(ξ)
+

1 + νcp(ξ)

Ec,cp(ξ)

(
t− τ
tref

)βcp(ξ)]
Idev

(44)

On the other hand, the quartz aggregates and air phases exhibit elastic material

behavior,

σj(t) = Cj : εj(t) ∀j ∈ {q, air} , (45)

see Eqs. (4.17) to (4.18), which refer to elastic properties of quartz aggregates

and air, respectively. In Eq. (45) the stiffness tensors Cj play the role of time-

invariant (constant) relaxation “functions”,

Cj = Rj(t− τ) = 3 kjIvol + 2µjIdev ∀j ∈ {q, air} , (46)

whereby kj and µj denote the (elastic) bulk and shear modulus of phase j.

Upscaling of this material behavior, up to the level of mortar and concrete, is

particularly easily done in the Laplace-Carson (rather than the time) domain.
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The Laplace-Carson (LC) transform f ∗(p) of any time-dependent function f(t)

is defined as

f ∗(p) = pf̂(p) = p

∞∫
0

f(t)e−ptdt , (47)

where p is the complex variable in the Laplace-Carson domain, and f̂(p) is

the Laplace transform of f(t). Applying the transformation rule (47) to the

viscoelastic behavior of the cement paste (42) as well as to the elastic behavior

of quartz aggregates and air (46) yields algebraic constitutive equations in the

LC space, reading as (Gurtin and Sternberg 1962)

ε∗j(p) = J∗j(p) : σ∗j(p) , σ∗j(p) = R∗j(p) : ε∗j(p) ∀j ∈ {cp, q, air} , (48)

whereby the convolution condition (43) is transformed into a simple inversion

rule,

R∗j(p) =
[
J∗j(p)

]−1
. (49)

Hence, LC transformation (47) of the cement paste creep function (44), fol-

lowed by insertion of the respective result for J∗cp(p) into (49), yields the LC-

transformed relaxation function of cement paste as

R∗cp(p) = 3 k∗cp(p)Ivol + 2µ∗cp(p)Idev

=

[
1− 2 νcp
Ecp

+
1− 2 νcp
Ec,cp

(
1

tref

)βcp
Γ (βcp + 1) p−βcp

]−1
Ivol (50)

+

[
1 + νcp
Ecp

+
1 + νcp
Ec,cp

(
1

tref

)βcp
Γ (βcp + 1) p−βcp

]−1
Idev .

Because Eqs. (48) are formally identical to the relations encountered with

linear elasticity homogenization, upscaling of viscoelastic properties to mortar

or concrete can be done as quasi-elastic homogenization in the LC space. This

is referred to as the correspondence principle (Read 1950, 1951; Laws and

McLaughlin 1978; Beurthey and Zaoui 2000; Scheiner and Hellmich 2009).

Upscaling is based on the LC-transformed average rules (”the strain average

rule E(t) = fcp εcp(t) + fq εq(t) + fair εair(t) ”) and (”stress average rule as

Σ(t) = fcp σcp(t) + fq σq(t) + fair σair(t) ”)which takes the form in this case as

E∗(p) = fcp ε
∗
cp(p) + fq ε

∗
q(p) + fair ε

∗
air(p) (51)

Σ∗(p) = fcp σ
∗
cp(p) + fq σ

∗
q(p) + fair σ

∗
air(p) (52)
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Linearity of the problem defined by (11), (13), and (48) implies a linear

strain concentration rule from the LC-transformed macrostrains to the LC-

transformed microstrains in phase j, reading as

ε∗j(p) = A∗j(p) : E∗(p) ∀j ∈ {cp, q, air} , (53)

whereA∗j denotes the LC-transformed phase strain concentration tensor, which

can be accessed from classical Eshelby-type matrix inclusion problems (Eshelby

1957; Laws and McLaughlin 1978; Benveniste 1987; Zaoui 2002), while consid-

ering the matrix-inclusion morphology of mortar and concrete by means of the

Mori-Tanaka scheme (Mori and Tanaka 1973; Benveniste 1987). This results

in

A∗j(p) =
{
I+ P∗sph(p) :

[
R∗j(p)−R∗cp(p)

] }−1
:(

fcp I+ fq

{
I+ P∗sph(p) :

[
R∗q(p)−R∗cp(p)

] }−1
+ fair

{
I+ P∗sph(p) :

[
R∗air(p)−R∗cp(p)

] }−1)−1
∀j ∈ {cp, q, air}

(54)

In Eq. (54), P∗sph denotes the LC transform of the fourth-order Hill tensor which

accounts for the spherical shape of the inclusion phases j embedded in the

matrix with “stiffness” R∗cp, see the Appendix for corresponding mathematical

details. Insertion of the macro-to-micro strain concentration relation (53) and

of the constitutive behavior (48)2, into the LC-transformed stress average rule

(52) leads, after comparison to the LC-transformed constitutive law at mortar

and concrete level, Σ∗(p) = R∗hom(p) : E∗(p), to the following expression for

the LC-transformed homogenized relaxation tensor of mortar and concrete,

R∗hom, reading as

R∗hom(p) =
∑
j

fj R
∗
j(p) : A∗j(p)

=

(
fcpR

∗
cp + fqR

∗
q(p) :

{
I+ P∗sph(p) :

[
R∗q(p)−R∗cp(p)

] }−1
+ fairR

∗
air(p) :

{
I+ P∗sph(p) :

[
R∗air(p)−R∗cp(p)

] }−1)

:

(
fcp I+ fq

{
I+ P∗sph(p) :

[
R∗q(p)−R∗cp(p)

] }−1
+ fair

{
I+ P∗sph(p) :

[
R∗air(p)−R∗cp(p)

] }−1)−1
.

(55)
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Back transformation to time domain is done numerically, by means of the

Gaver-Wynn-Rho algorithm (Scheiner and Hellmich 2009; Gaver 1966).

Analytical expressions facilitating upscaling in LC space

Upscaling of the creep behavior, up to the larger scales of mortar or concrete, is

performed in the LC space, according to the analytical formulae described next.

Thereby, we consider that an isotropic fourth-order tensor, G, can be decom-

posed into a volumetric part and a deviatoric part as G = GvolIvol +GdevIdev,

where Gvol and Gdev, respectively, are the (scalar) volumetric and deviatoric

components of the tensor. Ivol and Idev are the volumetric and deviatoric parts

of the fourth-order identity tensor I, defined as Iijkl = 1/2(δikδjl + δilδjk),

Ivol = 1/3(1 ⊗ 1), and Idev = I − Ivol, respectively, whereby 1 denotes the

second-order identity tensor with components equal to the Kronecker delta

δij, namely δij = 1 for i= j, and 0 otherwise. They satisfy Ivol : Ivol = Ivol,

Idev : Idev = Idev, and Ivol : Idev = Idev : Ivol = 0.

We start our collection of analytical formulae with the LC-transformed Hill

tensors for spherical inclusions embedded in an infinite cement matrix with

quasi-elastic “stiffness” R∗cp, occurring in concentration and stiffness expres-

sions of (55). The Hill tensor reads as

P∗sph(p) = S∗sph(p) :
[
R∗cp(p)

]−1
(56)

In Eq. (56), S∗sph denotes the LC-transformed Eshelby tensor of a spherical

inclusion embedded in an infinite cement paste matrix. The LC-transformed

Eshelby tensor S∗sph is isotropic, and its volumetric and deviatoric components

read as (Zaoui 2002; Hellmich et al. 2004)

S∗,volsph (p) =
3 k∗cp(p)

3 k∗cp(p) + 4µ∗cp(p)
, S∗,devsph (p) =

6

5

k∗cp(p) + 2µ∗cp(p)

3 k∗cp(p) + 4µ∗cp(p)
. (57)

Next, we discuss the expressions for the homogenized quasi-elastic “stiffness”

tensor R∗hom. As for mortar or concrete, insertion of the LC-transformed Es-

helby tensor expressions (57) into (56), and further insertion of the obtained

Hill tensor, together with the vanishing quasi-elastic “stiffnesses” of air and

the available quasi-elastic “stiffness” of quartz (50), into the expression for

the quasi-elastic “stiffness” of the homogenized mortar or concrete (55), yields
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scalar expressions for the LC-transformed bulk and shear moduli, reading as

k∗hom(p) = [fcpk
∗
cp(p) + faggA

∗,vol
∞,agg(p)]

[
fcpI+ faggA

∗,vol
∞,agg(p) + fairA

∗,vol
∞,air(p)

]−1
,

µ∗hom(p) = [fcpµ
∗
cp(p) + faggµaggA

∗,dev
∞,agg(p)]

[
fcpI+ faggA

∗,dev
∞,agg(p) + fairA

∗,dev
∞,air(p)

]−1
,

(58)

with A∗,vol∞,agg, A
∗,dev
∞,agg, A

∗,vol
∞,air, and A∗,dev∞,air denoting the LC-transformed volumet-

ric and deviatoric components of the Eshelby problem-related strain concen-

tration tensors for quartz aggregates and air. As for air, the volumetric and

deviatoric components of the strain concentration tensor can be written as

A∗,vol∞,air(p) =
[
1− S∗,volsph (p)

]−1
,

A∗,dev∞,air(p) =
[
1− S∗,devsph (p)

]−1
,

(59)

As for quartz, they read as

A∗,vol∞,agg(p) =

[
1 + S∗,volsph (p)

kagg − k∗cp(p)
k∗cp(p)

]−1
,

A∗,dev∞,agg(p) =

[
1 + S∗,devsph (p)

µagg − µ∗cp(p)
µ∗cp(p)

]−1
.

(60)
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PROCEEDINGS OF CONCREEP 10 PUBLISHED BY ASCE:

Mechanics and Physics of Creep, Shrinkage, and Durability of Con-

crete and Concrete Structures

Minutes-long creep tests on young cement

pastes provide access to creep properties rele-

vant for ageing creep with a duration of 2 days

ABSTRACT

Cementitious materials are particularly creep active at early ages. We here

perform an ageing creep test on a cement paste sample exhibiting an initial

water-to-cement mass ratio amounting to w/c = 0.50. The sample is condi-

tioned to 20 ◦C. The creep test is started 24 hours after production and runs for

48 hours. The loading amounts to 15 % of the uniaxial compressive strength of

the material at the time instant of loading. Inspired by a recently developed

new testing protocol consisting of hourly-repeated three-minutes long creep

tests Irfan-ul Hassan et al. (2015), we exploit force and deformation readings

recorded during the first three minutes of our 2-days creep test, i.e. we identify

Young’s modulus and power-law creep properties. Given that the chemical

hydration process does not progress significantly during the analyzed three

minutes, the identified creep properties refer to non-ageing creep. The iden-

tified properties are combined with measurements of autogenous shrinkage,

in order to predict the strain evolution over the entire 2-days runtime of our

ageing creep test. When fitting of the creep function targets, through an ap-

propriately chosen weight functions, the end of three minutes creep interval,

in terms of both absolute creep strain and creep strain rate, then the resulting

creep function remarkably well predicts creep up to a time period of 2 days.

INTRODUCTION

Cementitious materials are known to be creep active Jones and Grasley (2011);

Tamtsia and Beaudoin (2000); Briffaut et al. (2012); Zhang et al. (2014); Rossi

et al. (1994); Bažant et al. (2011, 2012), in particular at early ages Tamtsia

et al. (2004); Bažant et al. (1976). In order to study early-age basic creep



Appendix-C 206

of cement pastes, mortars, and concretes, we have developed a new testing

protocol involving nondestructive, hourly repeated, three minutes long creep

tests Irfan-ul Hassan et al. (2015). Three minutes are so short that the ongoing

hydration process does not make a significant progress, i.e. our individual creep

tests provide quantitative insight into the creep properties of specific (non-

ageing) microstructures of cementitious materials. This raises the question,

whether or not it is possible to extrapolate, based on observations carried out

during three-minutes creep tests, the strain evolution of the material in much

longer creep tests, say with a duration of two days. Herein, this question

is exemplary answered based on creep test data obtained from cement paste

testing. At first, we describe the tested material and the used test method.

Then, characteristic results are presented, followed by identification of Young’s

modulus and creep properties, based on the measurements obtained during the

first three minutes, and the assessment of the extrapolation capabilities. The

paper closes with a discussion and conclusions.

MATERIALS AND METHODS

Materials

Raw materials used for production of cement paste are a commercial cement of

type CEM I 42.5 N and distilled water. The investigated cement paste exhibits

an initial water-to-cement mass ratio amounting to w/c = 0.50. We cast

cylindrical specimens with a diameter of 70 mm and a height of 300 mm. Right

after production, the specimens are sealed against the ambient environment,

in order to prevent them from drying. The specimens are stored in a climate

chamber conditioned to 20 ◦C.

Methods

The compression tests are carried out using an electromechanical universal

testing machine of type Walter and Bai LFM 150. The used test setup is

strongly inspired by the one recently developed for early-age stiffness charac-

terization of cement pastes, see Karte et al. (2015). In more detail, the tested

specimen is covered with several layers of a food preservation foil, in order to

avoid significant drying. The entire test setup is placed inside an insulated

temperature chamber conditioned to 20 ◦C, see Fig. A.1 a. The specimen is
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the central part of a serial arrangement described next. Bottlenecked steel

(a)
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Figure A.1: (a) Test setup consisting of the cement paste specimen, metal

cylinders with bottlenecks, two aluminum rings holding five Linear Variable

Differential Transducers (LVDTs): view into a climate chamber conditioned to

20 degrees Centigrade, and (b) force history prescribed during the 2-days creep

test

cylinders are attached to the top and to the bottom of the specimens, respec-

tively, in order to facilitate a central load application. The force acting on the

serial arrangement is measured by means of a force sensor integrated into the

testing machine. Deformations of the specimen are measured with five Linear

Variable Differential Transducers (LVDTs). To this end, two aluminum rings

are attached to the central part of the specimen, by means of three screws per

ring. The distance between the two rings amounts to 164 mm. The LVDTs

are equally distributed around the specimen, i.e. the spacing amounts to 72◦.

This setting allows for realization of virtually purely uniaxial stress states in

the monitored central part of the specimen - as undesired shear stresses which

result from unavoidable friction in the interfaces between steel cylinders and

specimen, have decayed to a negligible amount towards this central part Karte

et al. (2015).

The 2-days creep tests was started 24 hours after the production of the speci-

men. Using a loading speed of 7.697 kN/s, corresponding to a specimen-related

stress-rate amounting to 2 MPa/s, the loading of the specimen was increased up

to 7.15 kN, corresponding to a compressive stress of 1.81 MPa. This amounts

to 15 % of the uniaxial compressive strength of the material, predicted by a

validated multiscale model for uniaxial compressive strength of cement pastes

Pichler and Hellmich (2011); Pichler et al. (2013) combined with the hydration
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degree evolution determined by quasi-isothermal calorimetry. The force was

held constant for 48 hours, such that the test ended once the specimen had

reached at an age of three days, see Fig. A.1 b.

RESULTS

The five individual LVDT readings are averaged in order to compute the

mean change of length between the two aluminum rings. Specimen strains are

computed by dividing the mean change of length between the two aluminum

rings by the distance of the two aluminum rings, amounting to 164 mm, see

Fig. A.2 a.
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Figure A.2: (a) Strains measured during the 2-days creep test on cement paste

with w/c = 0.50, subjected at an age of 24 h to a force amounting to 7.15 kN,

and (b) shrinkage strain evolution, measured on independent specimens

During the second and third day after production, the chemical hydration

reaction progresses significantly, such that significant autogenous shrinkage

strains are expected to develop. They were measured in parallel to the 3-

minutes creep testing activities described in Irfan-ul Hassan et al. (2015), see

Fig. A.2 b.
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IDENTIFICATION OF YOUNG’S MODU-

LUS AND CREEP PROPERTIES DURING

THE FIRST 3-MINUTES

Following the procedure for Young’s modulus identification given in Irfan-ul

Hassan et al. (2015), the Young’s modulus is determined from the 3 minutes

creep test as

E = 6.3 GPa (61)

Based on the identified Young’s modulus, and considering that no significant

shrinkage happens within three minutes, it is straightforward to extract from

the total strain evolution, see Fig. A.2 a, the creep strain evolution:

εcreep(t) = εtotal(t)− εelastic(t) = εtotal(t)−
F (t)

EA
(62)

where F (t) is the measured force history, see Fig. A.1 b and A = 3848.50 mm2

stands for the cross-sectional area of the tested specimen, see also Fig. A.3.
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Figure A.3: Creep strains developing during the first three minutes of the

2-days creep test

Power-law creep model

As for identification of creep properties, we follow Tamtsia and Beaudoin Tamt-

sia et al. (2004) who introduced a power-law model for the creep compliance

rate:
dJ(t)

dt
= C

(
t− t0
tref

)γ
(63)

Considering a theoretical creep test, where the loading is (i) suddenly in-

creased, at time t0, to the the stress level σ0, and (ii) held constant thereafter,
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the creep strain evolution reads as Irfan-ul Hassan et al. (2015)

εmodcreep(t) =
σ0
Ec

(
t− t0
tref

)β
t ≥ t0 (64)

where Ec = (γ+1)/(C tref ) denotes the creep modulus at time t = t0+tref and

β = γ + 1 stands, by analogy to γ in Eq. (63), for a dimensionless power-law

exponent.

The creep strain evolution derived from our experiments indicates a signifi-

cant development of creep strains already during the loading phase. This is

the motivation to model the force history as a superposition of many small

load increments, and to consider Eq. (4) in the framework of Boltzmann’s su-

perposition principle Boltzmann (1878).

εmodcreep(t) =
n∑
i=1

F (ti)− F (ti−1)

A

[
1

Ec

(
t− ti
tref

)β]
tn ≤ t ≤ tn+1 (65)

FITTING OF CREEP EVOLUTION OVER 3-

MINUTES - AND EXTRAPOLATION CAPA-

BILITIES TO 2-DAYS

Creep modulus Ec and power-law exponent β are identified such that the

square root of sum of squares error, ESRSS, attains a minimum. It quanti-

fies the difference between creep strains evolution εcreep(t) derived from the

experiments, see Fig. A.3, and modeled creep strains evolution εmodcreep(t), see

Eq. (65),

ESRSS(Ec, β) =

√√√√ 1

N

N∑
i=1

[
εcreep(ti)− εmodcreep(ti)

]2
→ min (66)

where N = 5400 is the total number of experimental readings collected dur-

ing the first three minutes of the creep test. Optimization problem (66) is

solved numerically. At first, intervals are defined for the creep modulus Ec

and power-law exponent β. These intervals are subdivided into 7 equidistant

values. For all 7× 7 = 49 combinations, error function (66) is evaluated. The

parameter combination associated with the smallest error value is treated as a

close-to-optimum solution and serves as the basis for the definition of refined
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search intervals for the next iteration step Irfan-ul Hassan et al. (2015). This

procedure converges towards the following solution,

Ec = 9.72 GPa and β = 0.23 (67)

see also Fig. A.6 for the comparison of measured and model-predicted creep

strain evolutions as well as for a contour plot of error function (66).
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Figure A.4: Illustration of creep property identification: (a) comparison of

measured and modeled creep strain evolution, and (b) contour plot of error

function (66) as a function of creep modulus and power-law exponent; the

marked point refers to the optimal solution (67)

Young’s modulus, see (61), and creep properties (67), which were identified

from measurements captured during the first three minutes of the 2-days creep

test, together with the measured shrinkage strain evolution εsh, see Fig. A.2 b,

are now used to predict the total strain evolution for a 2-days creep test

εmodtotal(t) =
F (t)

EA
+

n∑
i=1

F (ti)− F (ti−1)

A

[
1

Ec

(
t− ti
tref

)β]
+ εsh(t)

tn ≤ t ≤ tn+1 (68)

The predicted strain evolution is of the same order of magnitude as the actu-

ally measured strain evolution. Typical prediction errors amount to 14 %, see

Fig. A.7. The reason for this difference is twofold

1. Non-ageing creep properties, valid for the microstructure formed

24 hours after production, are used for predicting the ageing creep strain

evolution measured during the second and third day after production.
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Figure A.5: Comparison of extrapolated strain evolution, see (68) as well as

(61) and (67), with measured strain evolution, see Fig. A.3 b

2. Error function (66) is designed to identify a creep modulus and a power-

law exponent which explain the measured creep strain evolution in an

overall optimal fashion, i.e. emphasis is neither layed on the absolute

strain values nor on the creep strain rate at the end of the 3-minutes

interval.

FITTING OF CREEP EVOLUTION TAR-

GETING THE END OF THE 3-MINUTES

PERIOD - AND EXTRAPOLATION CAPA-

BILITIES TO 2-DAYS

In order to improve the quality of extrapolation, we now re-formulate the error

function (66) such that the optimization process puts emphasis on the absolute

strain values and on the creep strain rate at the end of the 3-minutes interval.

To this end, we introduce a weight function w(t) which monotonously increases

from the beginning to the end of the three minutes time interval

ESRSS(Ec, β, w) =

√√√√√√√√√
N∑
i=1

[
εcreep(ti)− εmodcreep(ti)

]2
w(ti)

N∑
i=1

w(ti)

→ min (69)

Herein, we use an exponential for the weight function w(ti)

w(ti) = exp

[
ln(maxw)

ti − t1
tN − t1

]
∈ [ 1 ; maxw ] (70)
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The optimization problem (69) is solved for increasing values of maxw, starting

with maxw = 1. With increasing value of maxw, the optimal value of the

creep modulus is decreasing, and the optimal value of the power-law exponent

is increasing, until maxw amount to one million:

maxw = 106 (71)

Further increase of maxw has no influence on the optimal values of creep

modulus and power-law exponent, i.e. a stationary solution is reached:

maxw ≥ 106 : Ec = 7.36 GPa and β = 0.25 (72)

see also Fig. A.6 for the comparison of measured and model-predicted creep

strain evolutions as well as for a contour plot of error function (69) with weight

function w(ti) according to (70) and (71).
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Figure A.6: Illustration of creep property identification (a) comparison of mea-

sured and modeled creep strain evolution, and (b) contour plot of error func-

tion (69), see also (70) and (71), as a function of creep modulus and power-law

exponent; the marked point refers to the optimal solution (72)

Young’s modulus, see (61), and creep properties (72), which were identified

from measurements captured during the first three minutes of the 2-days creep

test, together with the measured shrinkage strain evolution, see Fig. A.2 b, are

now used to predict the total strain evolution for a 2-days creep test according

to Eq. (68). The predicted strain evolution is closer to the measured strain

evolution than before, as quantified by the typical prediction errors which is

reduced to 4.5 %, see Fig. A.7.
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Figure A.7: Comparison of extrapolated strain evolution, see (68) as well as

(61) and (72), with measured strain evolution, see Fig. A.2 a

DISCUSSION AND CONCLUSIONS

Herein, we have identified non-ageing creep properties of cement paste with

w/c = 0.50 which cured at 20 ◦C for 24 hours. To this end, we have exploited

measurements taken in the first three minutes of a 2-days creep test. Together

with independent shrinkage measurements, we have used the non-ageing creep

properties for predicting the strain that evolves during the entire duration of

the 2-days ageing creep test. Extrapolation quality is satisfactory, and this is

very remarkable, because three minutes are by a factor of 960 shorter than two

days, i.e. the extrapolation distance is very large.

Contour plots of the here-studied error functions (66) and (69), exhibit a valley-

shaped structure, see Fig. A.4 b and and Fig. A.6 b, respectively. Pairs of values

of the creep modulus and the power-law exponent referring to the bottom of

the valleys allow for an overall reliable explanation of the creep strain evolution

measured in the first three minutes. In order to achieve an optimal extrapo-

lation quality, it is of great importance to identify – among all the parameter

combinations referring to the aforementioned valleys – the one parameter com-

bination which explains the absolute strain values and the creep strain rate at

the end of the three-minutes interval as good as possible.

The satisfactory extrapolation quality underlines that the microstructure

formed at the time instant of loading plays an important role for ageing creep

tests. In the future, it will be interesting to confront available multiscale mod-

els for ageing creep of cement paste Scheiner and Hellmich (2009); Sanahuja

(2013b,c) with the experimental data reported herein, and with similar data

stemming from tests on cement pastes with different compositions.
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Bažant, Z., Yu, Q., and Li, G. (2012). Excessive long-time deflections of

prestressed box girders. I: Record-span bridge in Palau and other paradigms.

Journal of Structural Engineering, 138(6):676 – 686.
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Valkó, P. and Abate, J. (2004). Comparison of sequence accelerators for the

Gaver method of numerical Laplace transform inversion. Computers & Math-

ematics with Applications, 48(3):629 – 636.
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