
Univ. Prof. Ansgar Jüngel

D I P L O M A R B E I T

N O N L I N E A R P O I S S O N - N E R N S T- P L A N C K
E Q U AT I O N S F O R I O N F L U X T H R O U G H C O N F I N E D

C H A N N E L S

Ausgeführt am
institute for analysis

and scientific computing

der
technische universität wien

unter der Anleitung von
univ. prof . ansgar jüngel

dipl . ing . anita gerstenmayer

durch
christian aumayr , bsc .

Mahlergasse 4, 3100 St. Pölten

Wien, August 2016 Christian Aumayr

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 



Christian Aumayr: Nonlinear Poisson-Nernst-Planck equations for ion flux
through confined channels, Master Thesis, © August 2016

supervisors:
Univ. Prof. Ansgar Jüngel
Dipl. Ing. Anita Gerstenmayer

location:
Wien

time frame:
März 2016 - August 2016



Mathematics is the language
in which God has written the universe.

— Galileo Galilei 1564-1642





A B S T R A C T

In recent years mathematical models for ion flux through confined
channels have become of broad interest with various applications in
biophysics, biochemistry and physiology. While the standard models,
one of them being the Poisson-Nernst-Planck (PNP) model, for these
problems deal very well with the electrostatic interactions, effects on
the flux due to crowding inside the channel are widely neglected. For
channel dimensions much larger than the ion size it can be argued
that such an approach is reasonable, but with decreasing channel
size crowding effects due to volume exclusion in the channel have
to be taken into consideration. In a recent paper M. Burger et al. in-
troduced a modified PNP-model with nonlinear mobility to include
such effects. In this Thesis we show the derivation of said model from
a self consistent random walk model and investigate transformation
into entropy variables and existence for stationary solutions. Further-
more we showcase a reduction in dimension for faster computing
speed and implement it in Matlab. In the last chapter we verify the
derived results, by conducting a series of tests and comparing them
to literature.
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K U R Z FA S S U N G

Die Beschreibung von Ionenflüssen durch enge Ionenkanäle ist ein
aktuelles Forschungsgebiet in diversen naturwissenschaftlichen Berei-
chen wie etwa Biophysik, Biochemie und Physiologie. Die mathema-
tischen Standardmodelle in diesem Bereich, z.B. das Poisson-Nernst-
Planck Model, sind für die elektrostatischen Wechselwirkungen in
besagten Vorgängen bereits sehr gut entwickelt, vernachlässigen je-
doch jegliche Effekte die durch Volumenverdrängung in sehr engen
Kanälen entstehen. Dieser Zugang liefert gute Ergebnisse solange der
Durchmesser der Ionen relativ "klein" im Vergleich zu den Dimen-
sionen des Kanals ist. Bei sehr kleinen Ionenkanälen müssen diese
Effekte berücksichtigt werden. In einer aktuellen Publikation stellen
M. Burger et al. ein Model mit nichtlinearer Mobilität vor, das diese
Volumenverdrängung berücksichtigt. In dieser Diplomarbeit führen
wir die Herleitung dieses Modelles und einen Existenzbeweis für
stationäre Lösungen, durch geschickte Transformation in sogenan-
nte Entropievariablen vor. Außerdem wird eine Dimensionsreduktion
auf des Problems 1D durchgeführt und diese als Matlab Code im-
plementiert. Im letzten Kapitel verifizieren wir die damit erhaltenen
Ergebnisse durch eine Reihe von Testrechnungen und Vergleich mit
entsprechenden Literaturergebnissen.
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., .
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function spaces :
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Part I

M O D E L I N G

In the first part of the thesis we will introduce the reader
to the standard linear PNP-Model and discuss why and
when there might be a need for a modified model. We
will derive such a model from a 1D hopping model and
investigate transformation to so called entropy variables.
Finally we will work on a reduction of dimension for our
problem for easier implementation and faster computing
speed.





1
I N T R O D U C T I O N

Selective transport of atomic or molecular ions through nano-sized
channels or pores is currently of broad interest in different scientific
fields. Transport mechanisms are expected to change dramatically if
the pore dimension is reduced to the nanometer scale and becomes
comparable to molecular dimensions [2]. A better understanding of
the selectivity of ion transport through nano channels might lead to
new applications and devices like molecular sieves [3], ultrafilters [4]
or biosensors [5].

This work is concerned with modeling the transport of ions through
confined geometries in particular ion channels. Due to the limited
space and the amount of particles involved, crowding effects due to
the actual particle size have to be taken into consideration. As a start-
ing point we work with a model introduced in [6] and recap some
results established in [7]. Then we implement a 1D reduction of the
model in Matlab and verify our numerical results by a series of tests
as well as comparison to existing simulations.

1.1 ion channels

The movement of ions through confined ion channels is an interesting
problem investigated by physicists, chemists and biologists alike. The
most popular application are being presented by living cells them-
selves. Being enveloped by lipid membranes nearly impermeable to
physiological ions (e.g. Na+, K+, Ca2+, Cl− ), ion exchange almost
only happens through so called open ion channels, proteins embed-
ded in the membrane that form ion-selective pores [8]. These ion
channels control many vital functions in biology like the forward-
ing of action potentials in nerve fibers, the contraction of muscles, the
regulation of blood pressure to name just a few.

1.2 classical poisson-nernst-planck model

Walther Nernst was a German physicist, chemist and nobel prize win-
ner in the late 19th to the early 20th century who among other things
was one of the first to research the role of ion channels in physiolog-
ical processes [9–11]. He was also the one who together with Max
Plank formulated the Nernst-Plank equations [12], a basic model for
electro diffusion

∂tci = ∇ ·
(
Di(∇ci + µici(ezi∇V +∇W0

i ))
)
,

3



4 introduction

in some domainΩwhere ci denotes the ion concentration, i = 1 . . .M,
with M being the number of different ions with charges zi, diffusion
coefficients Di and mobilities µi. V is the electrical and W0

i the exter-
nal potential and e denotes the elementary charge [6]. Together with
the Poisson equation

−∇ · (ε∇V) = e(
∑
j

zjcj + f),

where ε and f denote the permittivity and a charge density respec-
tively [6], the so called PNP-Model (Poisson-Nernst-Planck) becomes
a self consistent and widely used electro-diffusion model that can be
used to describe ion flux through single ion channels. This model
however treats ions as point particles without volume, which works
well with "large" channels and "small" ions. If however the channel di-
mensions become comparable to the particle size, the results of said
model become questionable as crowding effects inside the channel
are unaccounted for [7].

1.3 organization of this thesis

The remainder of this thesis is organized as follows:

In Chapter 2, we derive a modified nonlinear PNP-Model from a 1D
hopping model, that is effected by volume exclusion and crowding ef-
fects. We also investigate scaling as well as transformation to so called
entropy variables which we will need in Chapter 4.

In Chapter 3, we introduce a dimensional reduction of our modified
PNP-Model to 1D, for easier computing.

In Chapter 4, we outline an existence proof for our stationary modi-
fied model.

In Chapter 5, we describe our numerical implementation of the modi-
fied model

In Chapter 6, we validate our numerical implementation by compari-
son to other results and performing a series of tests Then we give an
outlook on possible future extensions of the model.



2
D E R I VAT I O N O F T H E M O D I F I E D P N P M O D E L

A frequently used model to describe ion flow through narrow pores
is the standard PNP model with linear mobility (cf [13]). As already
stated in chapter 1 the validity of such a model is at least doubtful
for very large volume densities, since one would expect saturation
because of volume filling. In the following chapter we will derive a
modified PNP model with nonlinear mobilities from a microscopic
lattice-based model with volume exclusion which we have adapted
from [7]. This model will be the basis for our further investigations.

2.1 1d hopping model

Let Th denote an equidistant 1 dimensional grid of element size h.
Every point on the grid can only be occupied by a single particle at a
given time t. Let further ci(x, t) be the probability of finding a particle
of species i and charge zi at time t at location x

ci(x, t) = P(particle of species i is at time t at position x).

We assume that particles of species i evolve according to diffusion
and a scaled potential Wi(x, t). The transition rates

Π̃+
ci
(x, t)

=P(particle of species i jumps from position x to x+ h in (t, t+∆t)),

Π̃−
ci
(x, t)

=P(particle of species i jumps from position x to x− h in (t, t+∆t))

accordingly become

Π̃+
ci
(x, t) = αi exp(−β(Wi(x+ h) −Wi(x))),

Π̃−
ci
(x, t) = αi exp(−β(Wi(x− h) −Wi(x))),

where β denotes the mobility constant and αi denote the normaliza-
tion constants for the probability density [7]. Now considering the
goal of this model to include volume exclusion we take into account
that the neighboring sites might be occupied. This assumption is in-
cluded in the model by

Π+
ci
(x, t) = Π̃+

ci
(x, t) ·P(position x+ h is at time t not occupied),

Π−
ci
(x, t) = Π̃−

ci
(x, t) ·P(position x− h is at time t not occupied).

The closure assumption that a site is free is

P(position x is at time t not occupied) = 1−
∑
i

ci(x, t).

5



6 derivation of the modified pnp model

which corresponds to rigorous results for a single species [14]. The
probability to find a particle of species i at position x at time t+∆t is
given by the probability of a particle being there at time t subtracted
by the chance of said particle moving away in the given time and
adding the probability of a particle of said species moving toward
position x in ∆t

ci(x, t+∆t) = ci(x, t)(1−Π+
ci
(x, t) −Π−

ci
(x, t))

+ci(x+ h, t)Π−
ci
(x+ h, t) + ci(x− h, t)Π+

ci
(x− h, t).

This transforms after small manipulation into

ci(x, t+∆t) − ci(x, t) =

ci(x, t)
(
Π+
ci
(x− h, t) +Π−

ci
(x+ h, t) −Π+

ci
(x, t) −Π−

ci
(x, t)

)
+(ci(x+ h, t) − ci(x, t))Π−

ci
(x+ h, t)

+ (ci(x− h, t) − ci(x, t))Π+
ci
(x− h, t).

Taylor expansions of ci(x+h, t)− ci(x, t), ci(x−h, t)− ci(x, t) as well
as Π+

ci
(x− h, t) +Π−

ci
(x+ h, t) in h up to second order at h = 0 yields

ci(x, t+∆t) − ci(x, t) =

ci(x, t)
(
h · ∂x

(
Π−
ci
(x, t) −Π+

ci
(x, t)

)︸ ︷︷ ︸
1

+
h2

2
· ∂xx

(
Π+
ci
(x, t) +Π−

ci
(x, t)

)︸ ︷︷ ︸
2

)

+h · ∂xci(x, t)
(
Π−
ci
(x+ h) −Π+

ci
(x− h, t)

)︸ ︷︷ ︸
3

+
h2

2
· ∂xxci(x, t)

(
Π−
ci
(x+ h, t) +Π+

ci
(x− h, t)

)︸ ︷︷ ︸
4

+O(h3). (1)

In order to evaluate 1 , 2 , 3 and 4 we are going to use Taylor’s
expansion once again on the transition rates

Π+
ci
(x, t) = αi

(
1−
∑
j

cj(x, t)
)

−h
(
βi∂xWi(x, t)

(
1−
∑
j

cj(x, t)
)
+αi

∑
j

∂xcj(x, t)
)

+O(h2),

Π−
ci
(x, t) = αi

(
1−
∑
j

cj(x, t)
)

+h
(
βi∂xWi(x, t)

(
1−
∑
j

cj(x, t)
)
+αi

∑
j

∂xcj(x, t)
)

+O(h2),
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Π−
ci
(x+ h, t) = αi

(
1−
∑
j

cj(x, t)
)

−hβi∂xWi(x, t)
(
1−
∑
j

cj(x, t)
)
+O(h2),

Π+
ci
(x− h, t) = αi

(
1−
∑
j

cj(x, t)
)

+hβi∂xWi(x, t)(1−
∑
j

cj(x, t)
)
+O(h2),

with βi := αi ·β. Now we have

1 : ∂xΠ
−
ci
(x, t) − ∂xΠ+

ci
(x, t) = 2hβi∂x

(
∂xWi(x, t)

(
1−
∑
j

cj(x, t)
))

+2hαi
∑
j

∂xxcj(x, t) +O(h2),

2 : ∂xxΠ
+
ci
(x, t) + ∂xxΠ−

ci
(x, t) = −2αi

∑
j

∂xxcj(x, t) +O(h2),

3 : Π−
ci
(x+ h, t) −Π+

ci
(x− h, t) = 2hβi∂xWi(x, t)

(
1−
∑
j

cj(x, t)
)

+O(h2),

4 : Π−
ci
(x+ h, t) +Π+

ci
(x− h, t) = 2αi

(
1−
∑
j

cj(x, t)
)
+O(h2).

Putting those expressions into equation (1) we get

ci(x, t+∆t) − ci(x, t) = 2h2βici(x, t)∂x
(
∂xWi(x, t)

(
1−
∑
j

cj(x, t)
))

+h2αici(x, t)
∑
j

∂xxcj(x, t) + h2αi∂xxci(x, t)
(
1−
∑
j

cj(x, t)
)

+2h2βi∂xci(x, t)∂xWi(x, t)
(
1−
∑
j

cj(x, t)
)
+O(h3)

which can be further simplified using the product rule into

ci(x, t+∆t) − ci(x, t) =

h2αi∂x

((
1−
∑
j

cj(x, t)
)
∂xci(x, t) + ci(x, t)

∑
j

∂xcj(x, t)
)

+2h2βi∂x

(
ci(x, t)

(
1−
∑
j

cj(x, t)
)
∂xWi(x, t)

)
+O(h3)

With appropriate scaling αi
2 ≈ Di (Di being the diffusion coefficient

of species i), µ = 2βi
αi

= 2β and time step ∆t = 2h2, letting t go to
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zero and evaluating all expressions at (x, t) if not further specified the
resulting system of differential equations becomes

∂tci = Di∂x

((
1−
∑
j

cj
)
∂xci + ci

∑
j

∂xcj + µci
(
1−
∑
j

cj
)
∂xWi

)
(2)

A multidimensional derivation can be done analogously [6]. Further
denoting the volume density

∑
j cj(x, t) by ρ this reads

∂tci = Di∇
(
(1− ρ)∇ci + ci∇ρ+ µci(1− ρ)∇Wi

)
. (3)

2.2 entropy

The entropy E(x, t) of (3) is defined via

E(x, t) =
∫∑
i

(
ci(x, t) log(ci(x, t)

)
+ (1− ρ(x, t)) log(1− ρ(x, t))

+
∑
i

µici(x, t)Wi(x, t)dx

[7]. For further investigation of the time evolution of the entropy we
first introduce so called entropy variables (cf [15, 16] and chapter 2.4)

ui(x, t) = ∂ciE(x, t) + const.,

where ∂ci has to be interpreted as the variational derivative of E(x, t)
w.r.t. ci. For any eligible ξ the first variation of E(x, t) w.r.t. ci in
direction of ξ is given by

δE(ci, ξ) =
d

dε

∫
Ω

∑
i

(
ci + εξ) log(ci + εξ) + µi(ci + εξ)Wi

)
+(1− ρ− εξ) log(1− ρ− εξ)dx

∣∣∣∣
ε=0

=

∫
Ω

ξ log(ci + εξ) − ξ log(1− ρ− εξ) + ξµiWi dx
∣∣∣∣
ε=0

=

∫
Ω

(
log(ci) − log(1− ρ) + µiWi

)
· ξdx

The entropy variables therefore become

ui = log(ci) − log(1− ρ) + µiWi. (4)
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Now we look at the time derivative of E(x,t) under the assumption
that ∂tWi(x, t) = 0.

∂tE =

∫
Ω

∑
i

(
(∂tci) log(ci) + ∂tci

)
−(∂tρ) log(1− ρ) − ∂tρ+

∑
i

(∂tci)µiWi dx

=

∫
Ω

∑
i

(
(∂tci) log(ci) − (∂tci)log(1− ρ) + (∂tci)µiWi

)
dx

=

∫
Ω

∑
i

(∂tci)ui dx

Using equation (3) and the fact that

Dici(1− ρ)∇ui = Di(1− ρ)∇ci +Dici∇ρ+Dici(1− ρ)µi∇Wi

we further get

∂tE =

∫
Ω

∑
i

∇ ·
(
Dici(1− ρ)∇ui

)
ui dx.

Under the reasonable assumption of no-flux boundary conditions, i.e.
when investigating a closed system this can be further transformed
into

∂tE = −

∫
Ω

∑
i

(
Dici(1− ρ)|∇ui|2

)
dx.

Since 0 6 ci 6 1, 0 < Di and 0 6 ρ 6 1 we can conclude that in
a closed system the entropy decreases in time as is expected from
a model that describes physical phenomena. Similar arguments are
true if ∂tWi 6= 0, but satisfies the Poisson equation [7, 17], i.e. in our
modified PNP-Modell if W0

i = 0 (cf. chapter 2.3).

2.3 modified pnp model

Following the motivation for our modified Nernst-Planck equation,
we supplement it with the Poisson equation in order to obtain a
self-consistent model. It is used to calculate the potential V(x, t) for
charged particles [6]

−ε∂xxV(x, t) = e
(∑
j

zjcj(x, t) + f(x)
)
. (5)

where ε and e denote the permittivity and elementary charge re-
spectively, while f denotes the permanent charge density and zi the
ion charge. In addition to the electrostatic potential, an external po-
tential W0

i is used to model any external forces. With Wi(x, t) =
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zieV(x, t)+W0
i (x, t) our modified PNP Model (suppressing (x, t)) be-

comes

−ε∆V = e
(∑
j

zjcj + f
)

(6)

∂tci = ∇ ·
(
Di
(
(1− ρ)∇ci + ci∇ρ+ eziµici(1− ρ)∇V

+µici(1− ρ)∇W0
i

))
(7)

2.3.1 Scaling

Before investigating any properties of those equations we transform
them into appropriately scaled and dimensionless versions. Given a
typical length L̃, voltage V̄ and ion concentration c̃, we define our
new variables as

x = L̃xs, V = ṼVs, ci = c̃cis, f = c̃fs t =
L2

D̃
ts and

Di = D̃Dis.

Plugging this into our model (6) and (7) we get (suppressing the sub-
script s) the following dimensionless formulation of our model

−λ2∆V =
∑
j

zjcj + f (8)

∂tci = ∇ · Ji , (9)

Ji = Di((1− ρ)∇ci + ci∇ρ+ ηizici(1− ρ)∇V + ci(1− ρ)∇W0
i )

with some appropriately scaled external potential W0
i and

λ2 =
εṼ

eL̃2c̃
and ηi = eṼµi.

Ji is called the flow of the ion species i.

2.3.2 Boundary conditions

The investigated geometry Ω will be some subset of Rn with locally
Lipschitz continuous boundaries. The model itself will resemble an
experimental setup known as the patch-clamp method (cf. [18]). In
that setup there are certain parts were no-flux boundary conditions
apply and others where Dirichlet conditions apply i.e. the left and
right baths that are used to control the concentration, cf. 1. This can
be modelled via:

ci(x, t) = γi(x) x ∈ ΓB, (10)

Ji(x, t) ·n = 0 x ∈ ∂Ω\ΓB (11)
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Figure 1: Experimental Setup (figure taken from [6])

We also want to ensure that for the bath concentrations restrictions of
charge neutrality apply, i.e.∑

j

zjγj(x) = 0 (12)

For the Potential we assume that it is only influenced via an applied
potential between 2 electrodes, on the remaining parts of ∂Ω also no
flux boundary conditions apply

V(x, t) = VD(x) x ∈ ΓE, (13)

∇V(x, t) ·n = 0 x ∈ ∂Ω\ΓE (14)

Furthermore we will from now on use the following convention

H10ΓB(Ω) := {u ∈ H1(Ω) | u|ΓB = 0} (15)

2.4 transformation to entropy variables

From now on we shall focus mainly on the stationary problem, which
is of great interest for computing flow characteristics, e.g. current volt-
age relations [6]. We remember the scaled stationary problem is given
by

−λ2∆V =
∑
j

zjcj + f (16)

0 = ∇ ·
(
Di((1− ρ)∇ci + ci∇ρ+ ηizici(1− ρ)∇V

+ ci(1− ρ)∇W0
i )
)

(17)

with the boundary conditions (10), (11), (13) and (14). The natural
formulation of the problem in concentration variables may not be the
best formulation in terms of analysis and computing. In the standard
PNP model there are two common transformations, namely the one
into entropy variables and the one into so called Slotboom variables
[6]. We can now try to apply the former onto our modified problem.
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Remembering equation (4) we know that the entropy variables look
like this:

ui = ∂ciE+ const = log ci − log(1− ρ) + ηiziV +W0
i .

To obtain an explicit inversion of this form we first take the exponen-
tial form

ci
1− ρ

= exp(ui − ηiziV −W0
i )

and use the following identity for 1− ρ

1

1+
∑
j exp(uj − ηjzjV −W0

j )
=

1

1+
∑
j
cj
1−ρ

=
1

1−ρ+ρ
1−ρ

= 1− ρ

and therefore get

ci =
exp(ui − ηiziV −W0

i )

1+
∑
j exp(uj − ηjzjV −W0

j )
.

Our stationary model (16) and (17) can now be rewritten into

−λ2∆V −

∑
k zk exp(uk − ηkzkV −W0

k)

1+
∑
j exp(uj − ηjzjV −W0

j )
= f (18)

∇ ·
(
Di

exp(ui − ηiziV −W0
i )

(1+
∑
j exp(uj − ηjzjV −W0

j ))
2
∇ui) = 0 (19)

One of the attractive features of this transformation is the elimination
of cross diffusion, the coupling only occurs in the diffusion coeffi-
cients. Hence a maximum principle holds for ui, cf. [7] and chap-
ter4, obtaining the maximum and minimum at ΓB with transformed
boundary conditions

ui = u
D
i := logγi − log

(
1−
∑
j

γj
)
+ ηiziVD +W0

i x ∈ ΓB, (20)

∇ui ·n = 0 x ∈ ∂Ω\ΓB (21)



3
R E D U C T I O N T O 1 D

Since the cross section of an ion channel filter is a lot smaller than the
length of the actual channel it is reasonable to try to approximate the
three dimensional model by a one dimensional one. Such a model is
obviously faster to compute and easier to implement. Again this is an
adaptation of similar work in [7].

3.1 model assumptions

Unless otherwise specified the following assumptions hold for the
rest of this chapter as well as chapter 5 and 6. We consider an L-type
calcium selective ion channel. Its geometry is modeled by a cylinder
with radius rc and length lc embedded in 2 baths with the shape of
truncated cones with length lb and outer radius rb. The boundary is
split into 2 parts: ΓB = ΓE = ΓL ∪ ΓR and ΓN = ∂Ω \ (ΓL ∪ ΓR) see figure
2. For our dimension reduction to work we also have to assume that
the boundary conditions are constant in y and z directions on ΓL and
ΓR. We also assume that the external potential W0

i is zero.

Figure 2: Scetch of the channel (figure taken from [6])

3.2 reduction to one dimension

We model our domain the following way, cf. figure 2:

Ωε =
{
(x, rε(x) cos(Θ), rε(x) sin(Θ)) ∈ R3∣∣ x ∈ [−L,L], 0 6 rε(x) 6 εr0, Θ ∈ [0, 2π)

}
with r0 being the typical radius. Now we rescale the dimensional
variables yε = εy, zε = εz, as well as the potential Vε(x,yε, zε) =

Ṽε(x,y, z), densities cεi (x,yε, zε) = c̃εi (x,y, z) and transformed densi-
ties uεi (x,yε, zε) = ũεi (x,y, z). From the existence proof in chapter 4

we get the following solutions to (18) and (19)

Vε(x,yε, zε), cεi (x,yε, zε), uεi (x,yε, zε) ∈ H1(Ωε)∩ L∞(Ωε)

13
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bounded in L∞(Ω) uniformly in ε and fulfilling the following equa-
tions

λ2
∫ ∫ ∫

Ωε
∂xV

ε∂xφ+ ∂yεV
ε∂yεφ+ ∂zεV

ε∂zεφdxdyεdzε

=

∫ ∫ ∫
Ωε

(∑
j

zjc
ε
j + f

)
φdxdyεdzε, (22)

∫ ∫ ∫
Ωε
Di

exp(uεi − ηkzkV
ε)

(1+
∑
j exp(uεj − ηjzjVε))2

∇uεi∇φdxdyεdzε = 0 (23)

with φ ∈ H10(Ω) and also fulfilling the boundary conditions (20), (21),
(13) and (14). First we look at the Poisson equation (22), substituting
y for yε and z for zε. We obtain

λ2ε2
∫ ∫ ∫

Ω1
∂xṼ

ε∂xφ̃+
1

ε2
∂yṼ

ε∂yφ̃+
1

ε2
∂zṼ

ε∂zφ̃dxdydz

= ε2
∫ ∫ ∫

Ω1

(∑
j

zjc̃
ε
j + f

)
φ̃dxdydz. (24)

Taking the special test function φ̃(x,y, z) = Ṽε(x,y, z) − g(x) with
g(x) being a linear function of x in [−L,L] so that φ̃ vanishes at x = ±L,
we get

λ2
∫ ∫ ∫

Ω1
∂xṼ

ε∂x(Ṽ
ε − g) +

1

ε2
|∂yṼ

ε|2 +
1

ε2
|∂zṼ

ε|2 dxdydz

=

∫ ∫ ∫
Ω1

(∑
j

zjc̃
ε
j + f

)
(Ṽε − g)dxdydz

6
(∑
j

|zj|‖c̃εj ‖L∞(Ω1) + ‖f‖L∞(Ω1)
)
‖Ṽε − g‖L∞(Ω1)|Ω

1| 6 k.

with some constant k. Furthermore

λ2
∫ ∫ ∫

Ω

∂xṼ
ε∂xgdxdydz

=
g(L) − g(−L)

2L

∫ ∫
Ṽε(L,y, z) − Ṽε(−L,y, z)dydz

and therefore

λ2
∫ ∫ ∫

Ω1

(∂xṼ
ε)2 +

1

ε2
(∂yṼ

ε)2 +
1

ε2
(∂zṼ

ε)2)dxdydz 6 k1

for some other constant k1 independent of ε. Thus∫ ∫ ∫
Ω1

(∂yṼ
ε)2 dxdydz 6 ε2k1 and

∫ ∫ ∫
Ω1

(∂zṼ
ε)2 dxdydz 6 ε2k1

as well as ∫ ∫ ∫
Ω1

(∂xṼ
ε)2 dxdydz 6 k1. (25)



3.2 reduction to one dimension 15

Now for ε→ 0 we get

‖∂yṼε‖L2(Ω1) → 0 and ‖∂zṼε‖L2(Ω1) → 0

and an overall uniform boundedness of ∇Ṽε in L2(Ω) and with
Poincaré’s inequality A.7 also inH1(Ω1). With the theorem of Eberlein-
Šmulian A.1 we get weak convergence along a subsequence Ṽε(x,y, z) ⇀
V0(x,y, z) in H1(Ω1) for ε → 0. Our strong L2 convergence of ∂yṼε

and ∂zṼε implies also weak convergence and the uniqueness of the
limit directly translates into ∂yV0(x,y, z) = 0 and ∂zV0(x,y, z) = 0

or Ṽε(x,y, z) ⇀ V0(x) in H1(Ω1) which implies ∂xṼε(x,y, z) ⇀

∂xV
0(x) in L2(Ω1).

Now we will try to get a similar result for ũεi and c̃εi using the
Nernst-Planck equation (23). Transforming again from yε, zε to y
and z we obtain

∫ ∫ ∫
Ω1

Di
exp(ũεi − ηiziṼ

ε)(
1+
∑
j exp(ũεj − ηjzjṼε)

)2
·
(
∂xũ

ε
i ∂xφ̃+

1

ε2
∂yũ

ε
i ∂yφ̃+

1

ε2
∂zũ

ε
i ∂zφ̃

)
ε2 dxdydz = 0. (26)

Next we can use the uniform boundedness of Ṽε and ũε to deduce
that

0 < k2 6 c̃
ε
i =

exp(ũεi − ηiziṼ
ε)(

1+
∑
j exp(ũεj − ηjzjṼε)

)
6

exp(ũεi − ηiziṼ
ε)(

1+
∑
j exp(ũεj − ηjzjṼε)

)2 6 k3. (27)

With test function φ(x,y, z) = ũεi − g(x), with g(x) again being the
linear interpolator of ũε in the vertices x = ±L we now have∫ ∫ ∫

Ω1
Dik2

(
∂xũ

ε
i ∂x(ũ

ε
i − g) +

1

ε2
(∂yũ

ε
i )
2 +

1

ε2
(∂zũ

ε
i )
2
)
6 0∫ ∫ ∫

Ω1
Dik2

(
(∂xũ

ε
i )
2 +

1

ε2
(∂yũ

ε
i )
2 +

1

ε2
(∂zũ

ε
i )
2
)

6
g(L) − g(−L)

2L

∫ ∫
Ω1
ũεi (L,y, z) − ũε(−L,y, z)dydz 6 k4.

We can now see that for ε→ 0 we again get

‖∂yũεi ‖L2(Ω1) → 0 and ‖∂zũεi ‖L2(Ω1) → 0

as well as uniform boundedness of ũεi in H10(Ω) and using the same
arguments as for Ṽε we thus get

ũεi (x,y, z) ⇀ u0i (x) in H1(Ω1)
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along a subsequence. This leads to strong convergence in L2(Ω), point
wise convergence a.e. and remembering (27) and the dominated con-
vergence theorem A.2 to strong L2(Ω) convergence of c̃εi (x,y, z) →
c(x)0i . We can now go back to reducing the dimension of our equa-
tion. Taking (24), choosing a test function φ̃(x,y, z) = φ̃(x) and letting
ε go to zero we have for the left side of the equation

lim
ε→0

λ2
∫ ∫ ∫

Ω1
∂xṼ

ε(x,y, z)∂xφ̃(x)dxdydz = lim
ε→0

λ2
(
∂xṼ

ε,∂xφ̃(x)
)
L2(Ω1)

= λ2
(
∂xV

0,∂xφ̃(x)
)
L2(Ω1)

= λ2
L∫

−L

∂xV
0(x)∂xφ̃(x)

∫ ∫
dydz︸ ︷︷ ︸

=a(x)

dx

where a(x) is defined as the area of the cross section of Ω1 at x. For
the right hand side we get

lim
ε→0

∫ ∫ ∫
Ω1

(∑
j

zjc̃
ε
j + f(x)

)
φ̃(x)dxdydz

= lim
ε→0

(∑
j

zjc̃
ε
j (x,y, z) + f(x), φ̃(x)

)
L2(Ω1)

=
(∑
j

zjc
0
j (x) + f(x), φ̃(x)

)
L2(Ω1)

=

L∫
−L

(∑
j

zjc
0
j (x) + f(x)

)
φ̃(x)

∫ ∫
dydz︸ ︷︷ ︸

=a(x)

dx.

Going back to a strong formulation we get the full one dimensional
Poisson equation (surpressing any index 0)

−λ2∂x
(
a(x)∂xV(x)

)
= a(x)

(∑
j

zjcj(x) + f(x)
)
. (28)

For the Nernst-Planck equation (26) we proceed in a similar manner.
Using a test function φ̃(x,y, z) := φ̃(x) ∈ W1,∞(Ω) ∩H10(Ω) in equa-
tion (26) we obtain∫ ∫ ∫

Ω1

exp(ũεi − ηiziṼ
ε)(

1+
∑
j exp(ũεj − ηjzjṼε)

)2︸ ︷︷ ︸
=:αi(ũε,Ṽε)

∂xũ
ε
i ∂xφ̃dxdydz = 0.

We know that ũε and Ṽε converge weakly in H1(Ω) and therefore
strongly in L2(Ω) and hence point wise a.e. to u and V respectively.
We can therefore conclude that αi(ũε, Ṽε) converges point wise to
αi(u,V). We further know that αi(ũε, Ṽε) 6 k3 is uniformly bounded
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in ε therefore converges, with the dominated convergence theorem
A.2, also strongly in L2(Ω). We thus get∣∣∣∣ ∫ ∫ ∫

Ω1

(
αi(ũ

ε, Ṽε)∂xũεi −αi(u
0,V0)∂xu0i

)
∂xφ̃dxdydz

∣∣∣∣
6

∣∣∣∣ ∫ ∫ ∫
Ω1
αi(ũ

ε, Ṽε)∂xũεi −αi(ũ
ε, Ṽε)∂xu0i

+ αi(ũ
ε, Ṽε)∂xu0i −αi(u

0,V0)∂xu0i dxdydz
∣∣∣∣ · ||∂xφ̃||L∞(Ω)

=

∣∣∣∣ ∫ ∫ ∫
Ω1
αi(ũ

ε, Ṽε)(∂xũεi − ∂xu
0
i )

+ ∂xu
0
i (αi(ũ

ε, Ṽε) −αi(u0,V0))dxdydz
∣∣∣∣ · ||∂xφ̃||L∞(Ω)

6 ||∂xφ̃||L∞(Ω)

( ∣∣(∂xũεi − ∂xu0i ,αi(ũε, Ṽε))L2(Ω)

∣∣︸ ︷︷ ︸
→0

+ ||αi(ũ
ε, Ṽε) −αi(u0,V0)||L2(Ω)︸ ︷︷ ︸

→0

||∂xu
0
i ||L2(Ω)

)
.

The former because ũεi converges weakly in H1(Ω) and therefore
∂xũ

ε
i converges weakly in L2(Ω). Therefore

0 =

∫ ∫ ∫
Ω1
αi(ũ

ε, Ṽε)∂xũεi ∂xφ̃dxdydz

→
∫ ∫ ∫

Ω1
αi(u

0,V0)∂xu0i∂xφ̃dxdydz ∀φ̃ ∈W1,∞(Ω)∩H10(Ω)

and since W1,∞(Ω) is dense in H10(Ω) we conclude that

0 =

∫L
−L
αi(u

0,V0)∂xu0i∂xφ̃dx
∫ ∫

dydz︸ ︷︷ ︸
a(x)

∀φ̃ ∈ H10(Ω).

Going back to strong formulation we have the full one dimensional
Nernst-Planck equation given by (again suppressing any index 0)

∂x
(
a(x)Di

exp(ui − ηiziV)
(1+

∑
j exp(uj − ηjzjV))2

∂xui
)
= 0. (29)





Part II

A N A LY S I S

The second part of this thesis will be mainly concerned
with the analytic properties of the modified PNP-Model.
We will work step by step towards an existence proof
for the stationary problem, based on a fixed point equa-
tion and application of Schauder’s theorem. This existence
proof will be the main result of this part.





4
E X I S T E N C E P R O O F

Following the motivation and introduction of our modified model we
will now try to verify the existence of weak solutions ui ∈ H1(Ω) ∩
L∞(Ω) and V ∈ H1(Ω) ∩ L∞(Ω), with Ω being a Lipschitz domain.
The prove presented in the following chapter is based on the work of
[6], again more interim steps are shown in addition and some points
are derived in a more rigorous way. If we hope to succeed in this
endeavor some sort of regularity assumptions have to be made. The
following seem reasonable enough and shall be valid until the end of
this chapter.

(A) f ∈ L∞(Ω), W0
i ∈ L∞(Ω)∩H1(Ω)

(B) VD ∈ H
1
2 (ΓE)∩ L∞(ΓE), uDi ∈ H 1

2 (ΓB)∩ L∞(ΓB)
The general idea for this prove is to construct a fixed point equation
and then apply Schauder’s theorem A.3 on

M = {(u1, . . . ,uM) ∈ L2(Ω)M
∣∣ a 6 ui 6 b a.e. }

with

a = min
i

inf
x∈ΓB

uDi (x), b = max
i

sup
x∈ΓB

uDi (x).

W.l.o.g. we set ηi = 1 throughout this section, but the results are true
for arbitrary ηi. The corresponding fixpoint operator F will be split
and discussed in two parts F = F2 ◦F1, where F1 is defined by

F1 :
L2(Ω)M → L2(Ω)M ×H1(Ω)

(u1, . . . ,uM) 7→ (u1, . . . ,uM,V)

where V is the unique solution (cf. step 3) of

−λ2∆V =
∑
k

zk
exp(uk − zkV −W0

k)

1+
∑
j exp(uj − zjV −W0

j )
+ f (30)

with boundary conditions (13) and (14). F2 is defined by

F2 :
F1(L

2(Ω)M) ⊂ L2(Ω)M ×H1(Ω)→ L2(Ω)M

(u1, . . . ,uM,V) 7→ (v1, . . . , vM)

where vi are the unique weak solutions to the linear equations

∇ ·

(
Di

exp(ui − ziV −W0
i )

(1+
∑
j exp(uj − zjV −W0

j ))
2
∇vi

)
= 0, i = 1 . . .M

21
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with boundary conditions

vi = u
D
i x ∈ ΓB and

∂vi
∂n

= 0 x ∈ ∂Ω\ΓB. (31)

To use Schauder’s Theorem we first need to verify certain properties
of M and F. We will do this in a step by step manor.

step 1 : M is convex
It is very basic to see that for any u, v ∈ L2(Ω) with a 6 u, v 6 b also
w := λu+ (1− λ)v, with λ ∈ [0, 1], is in L2(Ω) and a 6 w 6 b.

step 2 : M is closed
Moreover it is obvious that for any convergent sequence in M the
limit is also in M and therefore M is closed.

step 3 : F1 is well defined
First we will show that the functional

J(V) =

∫
Ω

λ2

2
|∇V |2 + log

(
1+
∑
j

exp(uj − zjV −W0
j )
)
− fV dx (32)

has a unique minimizer in

N = {V ∈ H1(Ω)
∣∣ V(x) = VD(x) ∀x ∈ ΓE,

∇V(x) ·n = 0 ∀x ∈ ∂Ω\ΓE} (33)

and then that said unique minimizer is also a unique solution to
(30),(13) and (14). To prove the former we want to use theorem A.5
and therefore need coercivity A.4 and uniform convexity of J(V) in
∇V .

Using Young’s inequality A.6 and Poincaré’s inequality A.7 we de-
rive

J(V) >
λ2

2
||∇V ||2L2(Ω) −

∫
Ω

fV dx

>
λ2

2
||∇V ||2L2(Ω) −

ε

2

∫
Ω

f2 dx−
1

2ε

∫
Ω

V2 dx

=
λ2

2
||∇V ||2L2(Ω) −

ε

2

∫
Ω

f2 dx−
1

2ε
||V ||2L2(Ω)

>
λ2

2
||∇V ||2L2(Ω) −

ε

2

∫
Ω

f2 dx−
1

2ε
C2F

(
||∇V ||2L2(Ω) + ||VD||

2

H
1
2 (Ω)

)
=
(λ2
2

−
C2F
2ε

)
||∇V ||2L2(Ω) −

ε

2

∫
Ω

f2 dx−
C2F
2ε

||VD||
H
1
2 (Ω)

.

Now choosing ε in order that
(
λ2

2 −
C2F
2ε

)
> 0 we get coercivity for J(V)

with a :=
(
λ2

2 −
C2F
2ε

)
and β := ε

2

∫
Ω f

2 dx+ C2F
2ε ||VD||H

1
2 (Ω)

.
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We obtain convexity in p of j(V ,p) := λ2

2 |p|
2 + log(1 +

∑
j exp(uj −

zjV −W0
j )) − fV by looking at the Hessian Matrix. It is easy to see

that

∂2j(V ,p)
∂pipj

= 0 ∀i 6= j and
∂2j(V ,p)
∂p2i

= λ2 > 0

which makes the Hessian Matrix positive definite and therefore j(V ,p)
uniformly convex in p. With theorem A.5 we now get a unique mini-
mizer for (32) in (33).

Finally we show that this unique minimizer is also the unique solu-
tion of F1 by looking at the first variation of J(V) that by definition is
zero in any direction ξ ∈ H10,ΓE(Ω) := {ξ ∈ H1(Ω)

∣∣ ξ(x) = 0 ∀x ∈ ΓE}
if and only if V is said unique minimizer. Therefore

0 = δJ(V , ξ)

= λ2
∫
Ω

∇V∇ξdx−
∫
Ω

∑
k zk exp(uk − zkV −W0

k)

1+
∑
j exp(uj − zjV −W0

j )
ξdx−

∫
Ω

fξdx,

which is exactly the weak formulation of (30), (13) and (14).

step 4 : V is bounded in H1(Ω) and L∞(Ω) independent of u
To show this we will first introduce

R(V ,u) =
∑
k zk exp(uk − zkV −W0

k)

1+
∑
j exp(uj − zjV −W0

j )

for easier notation. It is obvious that R(V ,u) is bounded in L∞, as

||R(V ,u)||L∞(Ω) 6
∑
k

|zk| · ||
exp(uk − zkV −W0

k)

1+ exp(uk − zkV −W0
k)︸ ︷︷ ︸
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||L∞(Ω) 6
∑
k

|zk|

It also holds R(V ,u) > R(Ṽ ,u) for V < Ṽ for any x ∈ R3, which we
will use in Step 5, because

∂R(V ,u)
∂V

=
(−
∑
k z
2
ke
uk−zkV−W0

k)(1+
∑
j e
uj−zjV−W0

j ) + (
∑
k zke

uk−zkV−W0
k)2

(1+
∑
j e
uj−zjV−W0

j )2

and

(−
∑
k

z2ke
uk−zkV−W0

k)(1+
∑
j

euj−zjV−W0
j ) + (

∑
k

zke
uk−zkV−W0

k)2 6 0

as

(
∑
k

zke
uk−zkV−W0

k)2 6
(∑
k

z2ke
uk−zkV−W0

i
)(∑

k

euk−zkV−W0
i
)
.
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We used Cauchy Schwarz for the last inequality A.9. From the weak
formulation of (30) we know

λ2
∫
Ω

∇V∇ξdx =
∫
Ω

R(V ,u)ξdx+
∫
Ω

fξdx.

Taking the test function ξ := (V −M)+ where (.)+ = max(., 0) and M
is any sufficiently large constant so that ξ ∈ H10,ΓE(Ω), i.e. M >M0 :=

||VD||L∞(ΓE).

λ2
∫
Ω

∇V∇(V −M)+ dx =
∫
Ω

R(V ,u)(V −M)+ dx+
∫
Ω

f(V −M)+ dx

6 (||f||L∞(Ω) +
∑
k

|zk|)

∫
Ω

(V −M)+ dx.

From the Stampacchia theorem A.12 we know
∫
Ω∇V∇(V−M)+ dx =∫

Ω(∇(V −M)+)2 dx and therefore for some constant C1∫
Ω

(∇(V −M)+)2 dx 6 C1
∫
Ω

(V −M)+ dx

6 C1||(V −M)+||Lp(Ω)meas(V > M)
1
q .

The last inequality is done by employing Hölder’s inequality A.8 and
p, q fulfilling the condition 1

p + 1
q = 1. From Kondrachov’s embed-

ding theorem A.11, Poincare’s inequality A.7 and again Hölder’s in-
equality we obtain

||(V −M)+||2Lp(Ω) 6 C2||(V −M)+||2H1(Ω) 6 C3||∇(V −M)+||2L2(Ω)

6 C4||(V −M)+||Lp(Ω)meas(V > M)
1
q

for some other constants C2,C3 and C4, or after canceling ||(V −

M)+||Lp(Ω)

||(V −M)+||Lp(Ω) 6 C4meas(V > M)
1
q . (34)

We also know that for any constant H > M

||(V −M)+||p
Lp(Ω) =

∫
(V>M)

((V −M)+)p d > x
∫

(V>H)

((V −M)+)p dx

>
∫

(V>H)

(H−M)p dx = (H−M)p ·meas(V > H).

Applied to (34) this yields

meas(V > H) 6
C
p
4

(H−M)p
meas(V > M) ∀H > M >M0

Now using the Lemma of Stampacchia A.13 we get that there is a H0
so that for any H > H0 we have meas(V > H) = 0 or in other words
||V ||L∞(Ω) 6 H independent of u



existence proof 25

Furthermore using Poincaré’s inequality A.7 yields

||V ||2H1(Ω) = ||V ||2L2(Ω) + ||∇V ||2L2(Ω)

6 C2F(||∇V ||L2(Ω) + ||VD||
H
1
2 (ΓD)

)2 + ||∇V ||2L2(Ω)

6 2C2F(||∇V ||2L2(Ω) + ||VD||
2

H
1
2 (ΓD)

) + ||∇V ||2L2(Ω)

6 C̃(||∇V ||2L2(Ω) + ||VD||
2

H
1
2 (ΓD)

)

and using (32) provides

||V ||2H1(Ω) 6 C̃
2

λ2
J(V) + C̃||VD||

2

H
1
2 (ΓD)

6 C̃
2

λ2
J(Ṽ) + C̃||VD||

2

H
1
2 (ΓD)

6 C̃
2

λ2
J̃(Ṽ) + C̃||VD||

2

H
1
2 (ΓD)

where Ṽ is an arbitrary element of N and J̃ being defined as

J̃(V) =

∫
Ω

λ2

2
|∇V |2 + log

(
1+
∑
j

exp(bj − zjV −W0
j )
)
− fV dx.

V is therefore bounded in H1 independently of u.

step 5 : F1 is continuous
F1 is even Lipschitz continuous. For 2 weak solutions V and Ṽ corre-
sponding to u and ũ we subtract the weak formulations∫
Ω

λ2∇(V−Ṽ)∇φdx =
∫
Ω

(R(V ,u) −R(Ṽ , ũ))φdx

=

∫
Ω

(R(Ṽ ,u) −R(Ṽ , ũ))φdx+
∫
Ω

(R(V ,u) −R(Ṽ ,u))φdx

Now using the test function φ := V − Ṽ , the monotony of R in V and
again Cauchy Schwarz A.9 we obtain

λ2||∇(V − Ṽ)||2L2(Ω) =

∫
Ω

(R(Ṽ ,u) −R(Ṽ , ũ)(V − Ṽ)dx

+

∫
Ω

(R(V ,u) −R(Ṽ ,u)(V − Ṽ)︸ ︷︷ ︸
60

dx

6 ||V − Ṽ ||L2(Ω)||R(Ṽ ,u) −R(Ṽ , ũ)||L2(Ω).

V and Ṽ satisfy the same boundary conditions therefore V − Ṽ ∈
H10(Ω) and we can use Poincare’s inequality A.7 to gain

||V − Ṽ ||H1(Ω) 6 C||∇(V − Ṽ)||L2(Ω)

for some constant C. Therefore altogether

||V − Ṽ ||H1(Ω) 6
C

λ2
||R(Ṽ ,u) −R(Ṽ , ũ)||L2(Ω)
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We know that and R is differentiable in u and the derivative is bounded,
as u, ũ,V and Ṽ are bounded. Therefore R is Lipschitz continuous in
u and

||V − Ṽ ||H1(Ω) 6
C̃

λ2
||u− ũ||L2(Ω)

holds.

step 6 : F2 is well defined on F1(M)

The standard theory for elliptic equations [19, 20] implies the exis-
tence and uniqueness of a weak solution vi ∈ H1(Ω) to

∇ · (Ai∇vi) = 0 in Ω

with boundary conditions (31) and

Ai := Di
exp(ui − ziV −W0

i )

(1+
∑
j exp(uj − zjV −W0

j ))
2

,

as

0 < Di
ea−|zi|||V ||L∞(Ω)−||W0

i ||L∞(Ω)(
1+
∑
j e
b−|zj|||V ||L∞(Ω)−||W0

j ||L∞(Ω)
)2 6 Ai 6 Di. (35)

Now we need to verify that a 6 vi 6 b still holds true. To do that we
take a test function ξ := (vi−bi)

+ and have for our weak formulation∫
Ω

Ai∇vi∇(vi − bi)+ dx = 0.

With (35), the theorem of Stampacchia A.12 and Poincare’s Inequality
A.7 we can show

0 =

∫
Ω

Ai∇vi∇(vi − bi)+ dx > C6
∫
Ω

∇vi∇(vi − bi)+ dx

= C6

∫
Ω

(∇(vi − bi)+)2 dx > C7
∫
Ω

((vi − bi)
+)2 dx > 0

for some constants C6,C7. We therefore know meas(vi > bi) = 0 and
repeating the above trick with the test function ξ := (vi − ai)

− :=

(−(vi − ai))
+ also meas(vi < ai) = 0.

From Relich-Kondrachov’s embedding theorem A.11 we know that
the embeddingH1(Ω) ↪→ L2(Ω) is compact and therefore that F2(F1(M))

is precompact and part of M. Which gives us

step 7 : F2(F1(M)) ∈M is precompact in L2(Ω)

Note that any fixed point ui ∈ L2(Ω) of F2 ◦ F1(M) is therefore also
in H1(Ω)
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step 8 : F2 is continuous
Consider the sequences Vk → V in H1(Ω) and uki → ui in L2(Ω),
then Aki is bounded uniformly in k as in (35) and therefore again
with the dominated convergence theorem A.2 Aki → Ai in L2(Ω). Let
now vki be the unique weak solutions to

∇(Aki∇vki ) = 0

and the given boundary conditions. As Aki is bounded and all vki
fulfill the same boundary conditions we know from the standard the-
ory of elliptic PDEs [20] that vki is bounded in H1(Ω) uniformly in k.
With the theorem of Eberlein-Šmulian A.1 we have weak convergence
vkli ⇀ vi in H1(Ω) along a subsequence. This however implies strong
and weak convergence of vkli ⇀ vi in L2(Ω) and also more impor-
tantly weak convergence of ∇vkli ⇀ ∇vi in L2(Ω). Now for any test
function φ ∈W1,∞(Ω)∩H10(Ω)∣∣∣∣ ∫
Ω

(Akli ∇vkli − Ai∇vi)∇φdx
∣∣∣∣

=

∣∣∣∣ ∫
Ω

(Akli ∇vkli −Ai∇vkli +Ai∇vkli −Ai∇vi)∇φdx
∣∣∣∣

6 ||∇φ||L∞(Ω)

∫
Ω

∣∣(Akli −Ai)∇vkli −Ai(∇vkli −∇vi)
∣∣dx

6 ||∇φ||L∞(Ω)

(
||Akli −Ai||L2(Ω)︸ ︷︷ ︸

→0

||∇vkli ||L2(Ω)︸ ︷︷ ︸
6C

+ |
(
∇vkli −∇vi,Ai

)
L2(Ω)

|︸ ︷︷ ︸
→0

)
.

Therefore

0 =

∫
Ω

Akli ∇vkli ∇φ→
∫
Ω

Ai∇vi∇φdx ∀φ ∈W1,∞(Ω)∩H10(Ω)

and since W1,∞(Ω) is dense in H10(Ω) we can conclude that

0 =

∫
Ω

Ai∇vi∇φdx ∀φ ∈ H10(Ω).

Because of the linearity and continuity of he trace operator we know
that it is weak sequentially continuous and therefore that vi fulfills
the boundary conditions (31). Because of the uniqueness of this solu-
tion we can use A.10 to show that not only vkli → vi in L2(Ω) but also
vki → vi in L2(Ω).

step 9 : Application of Schauder’s theorem
We can now use Schauder’s fixed point theorem A.3 to show the
existence of a fixed point u ∈M of F2 ◦F1(M).
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step 10 : By transforming back into our original variables ciwe get
the following result

Theorem 4.1 (Global Existence): Let Ω ⊂ Rn be an open Lipschitz do-
main and assumptions (A) and (B) be satisfied, then there exists a weak
solution

(V ,u1, . . . ,un) ∈ H1(Ω)M+1 ∩ L∞(Ω)M+1

of our problem

−λ2∆V =
∑
k

zk
exp(uk − zkV −W0

k)

1+
∑
j exp(uj − zjV −W0

j )
+ f (36)

∇ ·

(
Di

exp(ui − ziV −W0
i )

(1+
∑
j exp(uj − zjV −W0

j ))
2
∇ui

)
= 0, i = 1 . . .M (37)

with boundary conditions (31), (13) and (14).



Part III

N U M E R I C S

In this part we will describe our approach of an imple-
mentation of the one dimensionalised nonlinear Poisson-
Nernst-Planck Equations, as well as comparisons to other
results and numerical tests as to why our implementation
makes sense. In the end a small outlook will be given on
future areas of investigations and applications.





5
N U M E R I C A L I M P L E M E N TAT I O N

In this chapter we want to present a simple implementation for the
system of one dimensional equations established in chapter 3.2

∂x
(
a(x)Di

exp(ui − ηiziV)
(1+

∑
j exp(uj − ηjzjV))2

∂xui
)
= 0 (38)

−λ2∂x
(
a(x)∂xV(x)

)
= a(x)

(∑
k zk exp(uk − ηkzkV)

1+
∑
j exp(uj − ηjzjV)

+ f(x)
)
. (39)

in Ω = [0, 1] and boundary conditions ui(0) = uDi (0), ui(1) = u
D
i (1),

V(0) = VD(0) andV(1) = VD(1), where

uDi := log cDi − log
(
1−
∑
j

cDj
)
+ ηiziV

D x ∈ {0, 1}.

5.1 further model assumptions

We remember the assumptions made in chapter 3.1, see also figure
2. The length and radius of our cylinder are rc = 0.4 nm and lc = 1

nm. The length and outer radius of our 2 baths are lb = 2 nm and
rb = 2.4 nm respectively. This makes for a total length of L̃ = 5nm

for our model. For the dimension of the particles we assume parti-
cle radius of 0.15 nm for all particles and according to that a typical
maximal concentration of 61.5 mol/l [6] or 3.7037 · 1025 N/l where
N denotes the number of particles. In Table 1 we outline the most
important physical constants used for our simulations.
Our typical properties for scaling will be L̃ = 5nm for length and
Ṽ = 100V for voltage and we also assume µi = 1

kBT
[7] and a temper-

ature of 300K. This obviously gives

λ2 =
ε0εrṼ

eL̃2c̃
= 4.68× 10−4 and η =

eṼ

kBT
= 3.87.

To summarize see table 2. In the baths we assume 3 species Ca2+,
Na+ and Cl− their concentration given by c1, c2, c3 or their trans-
formed concentration u1,u2,u3, as well as a stationary species O− 1

2

(describing a 0−2 molecule) that only resides inside the channel given
by cO−1/2 . This concentration is assumed to be known and therefore
does not have to be transformed into entropy variables. It in fact can-
not even be transformed as it is 0 on the boarder. This slightly changes
the equations calculated in chapter 3.1 into

31
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Meaning Value Unit

Boltzmann constant kB 1.3806504× 10−23 J/K

Avogadros constant 6.02214179× 1023 N/mol

Vacuum permittivity ε0 8.854187817× 10−12 F/m

Relative permittivity εr 78.4

Elementary charge e 1.602176× 10−19 C

Particle Radius 0.15 nm

Ion charge Ca2+ z1 2

Ion charge Na+ z2 1

Ion charge Cl− z3 −1

Ion charge O− 1
2 zO −12

Table 1: Physical parameters cf. [7]

Meaning Value Unit

Scaling length L̃ 5 nm

Scaling voltage Ṽ 100 V

Temperature T 300 K

λ2 4.68× 10−4

η 3.87

Table 2: Model assumptions cf. [7]

0 = ∂x
(
a(x)Di

exp(ui − ηiziV)(1− cO−1/2)2

(1+
∑
j exp(uj − ηjzjV))2

∂xui
)

(40)

−λ2 ∂x
(
a(x)∂xV(x)

)
= a(x)

(∑
k

zk
exp(uk − ηkzkV)(1− cO−1/2)2

1+
∑
j exp(uj − ηjzjV)

+ f(x)
)
. (41)

This can be easily verified by applying the transformation to entropy
variables done in chapter 2.4 onto all but one concentration variable
cO−1/2 . The permanent charge density in our model is given by f(x) =
zO · cO−1/2(x) and the area function a(x) gives the scaled area of the
cross section of our geometry, cf. figure 2.

5.2 solving method

We solve (40) and (41) in an iterative manner, comparable to the way
the fixed point iteration in the existence proof worked.
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step 1 : Given some Value V and vi we solve a linearized equation

0 = ∂x
(
a(x)Di

exp(vi − ηiziV)(1− cO−1/2)2

(1+
∑
j exp(vj − ηjzjV))2

∂xui
)

using standard 1D FEM [1] discretization on some meshM := {x1, . . . , xN}.

step 2 : We use the resulting ui to calculate a new solution for V
out of (41) using Newton iteration to solve the non linear system of
equations resulting from using standard FDM [1] on M.

step 3 : Goto Step 1 until convergence.
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R E S U LT S , T E S T S A N D O U T L O O K

In this chapter several results and tests of the method introduced in
chapter 5 will be outlined as well as compared to other results from
literature. All calculations were done in Matlab R2015b on a MacBook
Air 13-inch Mid 2012 Edition.

6.1 sample calculation

Our boundary conditions are chosen according to [8]. For the un-
scaled and untransformed numbers cf. table 3.

Quantity/Species Variable Value

Concentration Ca2+ ũD1 (0) 5× 10−3 mol/l
ũD1 (1) 10−1 mol/l

Concentration Na+ ũD2 (0) 10−1 mol/l

ũD2 (1) 10−1 mol/l

Concentration Cl− ũD3 (0) 1.1× 10−1 mol/l
ũD3 (1) 3× 10−1 mol/l

Potential ṼD(0) 5× 10−2 V
ṼD(1) 0 V

Table 3: Unscaled and untransformed boundary conditions

Our oxygen concentration will have a maximum concentration of
55mol/l in the channel and 0mol/l outside. For the transition we in-
vestigated several options ranging from a non continuous step transi-
tion, linear interpolation to smoother interpolations with very similar
results. In figure 3 you can see as an example the unscaled oxygen
concentration with linear interpolation.

The resulting concentration profiles for the Calzium, Sodium and
Chloride ions as well as the potential profile can be seen in figure 4

and 5 respectively. The profiles are in excellent agreement with the
results given in [6] and [7]. What’s more important is the desired ef-
fect of the modified PNP-Model to prevent overcrowding inside the
channel which can clearly be seen in figure 6 and which generally
is not the case in the standard linear PNP-Model [6]. The crowding
effects leads to a significant reduction in ion concentration inside the
channel compared to similar linear results in [6]. The channel is also
ion selective. In figure 4 we can see that for chloride c3 = 0 and also
∂xc3 = 0 inside the channel which results in the flow of chloride, cf.

35
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Figure 3: Oxygen profile with linear interpolation

(9), being zero. For now the ion selectivity in our model is solely de-
pendent on the charge and not the radii of the ion. It would however
be fairly simple to adapt it to differently sized particles, cf. 6.3.

6.2 several tests

To further make our results plausible, we conducted a series of com-
mon numerical tests. The first one was a numerical convergence test,
the second one a residual error test and for the last one we looked at
the peaks in figure 4, especially Ca2+ and Na+ and wanted to know
whether they converge with increasing gradient in the oxygen profile.

6.2.1 Numerical convergence test

In a convergence test ideally what we would want to see is the calcu-
lated solutions converge to the exact solution with decreasing mesh
size h in some kind of order O(hα). Unfortunately that exact solution
is almost never known so instead a numerical one is used with at least
4 times smaller mesh size than the smallest one you want to compare.
In figure 7 you can see in a sample test with equidistant mesh that
convergence occurs with α ≈ 1.2. For sufficiently smooth data one
might expect O(h2) [21]. This discrepancy is very likely caused by
the mixture of the FEM- and FD-method described in chapter 5.2 and
could probably be avoided by a full FEM implementation of both
equations. Tests with different kinds of meshes or different kinds of
model assumptions and boundary conditions all yielded similar re-
sults.
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Figure 4: Unscaled concentration profiles

6.2.2 Residual error test

The idea of this test is to investigate the behavior of the Residuum,
i.e. our numerical solution inserted into our original equations, with
decreasing mesh size. E.g. for (40)

R(uNi )w =

∫
Ω

a(x)Di
exp(uNi − ηiziV

N)(1− cO−1/2)2

(1+
∑
j exp(uNj − ηjzjVN))2︸ ︷︷ ︸
Ai(uN)

∂xu
N
i ∂xwdx

for w ∈ H10(Ω) and uN, VN in the appropriate finite dimensional sub-
space HN ⊂ H1(Ω) according to some mesh. To evaluate ||R(uN)||H1∗
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Figure 6: Crowding effects inside the channel

we used the estimation shown in [22] and adapted it to our problem,
to get

||R(uN)||H1∗0
6 C

√∑
T∈T

h2T ||RT (u
N)||L2(T) +

∑
e∈E0

|Re(uN)|2,

for some unknown C. With

RT (u
N) = ∂(Ai(u

N)∂uN)|T

Re(u
N) = Ai(u

N(e))
(
∂xu

N(e+) − ∂xu
N(e−)

)
and T being the set of elements and E0 being the set of inner nodes.
As seen in figure 8, ||R(uN)||H1∗0 = O(h

1
2 ).

6.2.3 Peak maximum

The peaks on the outside of the channel in the calcium and sodium
concentration, see figure 4, can, in a biological sense, very plausibly
be explained by a congestion due to the volume exclusion inside the
channel. To make sure it is not a relic of the numerical calculation
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Figure 7: Estimated numerical errors

resulting from, for example, an amplification of the un-smoothness
of the oxygen concentration in this area we wanted to investigate
whether the peak grows with increasing gradient of the oxygen con-
centration. To do this we took an oxygen profile like in 9 and de-
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Figure 8: Estimated residuals

creased ε in every calculation. In Figures 11 and 12 you can see the
results of such a test with element size h ≈ 10−3. Obviously the peak
will not grow further if the grid can no longer distinguish between a
piecewise linear 9 and a piecewise constant 10 Oxygen profile. Never-
theless it can be assumed that the peeks are indeed bounded by some
value for even higher resolutions. The shrinking of the peak for very
low gradient is a result of the simplicity of the test, as the plot does
actually shows the max value of C, which for low gradients is not
necessarily assumed at the entrance of the channel.
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Figure 9: Sketch of piecewise
linear oxygen profile

Figure 10: Sketch of piecewise
constant oxygen profile
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Figure 11: Semilogplot for peak size over the maximal gradient in the oxy-
gen concentration in Ca2+
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Figure 12: Semilogplot for peak size over the maximal gradient in the oxy-
gen concentration in Na+
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6.3 summary and outlook

The standard PNP-Model is one of the most common ways to de-
scribe ion transport through biological or synthetic channels. Its ap-
plication in confined geometries is however highly questionable as
the effects of volume exclusion are not taken into consideration. This
effect becomes relevant if the channel dimensions become compara-
ble to the ion size.

The nonlinear model investigated can describe these phenomena more
realistically, as it detects crowding inside the channel and reduces the
flow of ions in the channel accordingly. Furthermore it is able to rep-
resent the ion selectivity of the channels, as depending on the perma-
nent charge density inside the channel some ions pass through more
easily than others.

The existence proof from chapter 4 showcases that it is indeed pos-
sible to find solutions to said model and also indicates a way of im-
plementing it.

The dimension reduction in chapter 3 is a fast and simple way to
calculate our model and in our simulation chapter 5 we have shown
a way to successfully implement this in Matlab. The tests and com-
parisons done in chapter 6 make our calculations plausible.

In the future it would be interesting to modify the implementation
for different particle sizes and investigate the resulting selectivity of
the ion channels. Another obvious way forward would be a 2D or
even 3D implementation of the modified PNP-Model to be able to
treat even more realistic cases.
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A
T H E O R E M S A N D D E F I N I T I O N S

Theorem A.1 (Eberlein-Šmulian): A Banach Space is reflexive if and only
if every bound sequence has a weak convergent subsequence.[23]

Theorem A.2 (Lebesgue’s Dominated Convergence Theorem): Let fn
be sequence of measurable functions on a measure space M(Ω,Σ,µ) converg-
ing a.e. to a function f and let g be a measurable function with

∫
Ω |g|dµ <∞ and |fn| 6 g| then fn and f are integrable and

lim
n

∫
Ω

fn dµ =

∫
Ω

fdµ.

[24]

Theorem A.3 (Schauder fixed point theorem): Let X be a Banach space
and K a non empty convex subspace of X. Let further F : K → K be a
continuous map. If either

• K is compact or

• K is closed and F(K) is relative compact

then F has at least one fixed point in K [25].

For the next theorem we first need the concept of coercivity

Definition A.4 (Coercivity): A functional F(u) =
∫
Ω F(x,u,p)dx with

p = ∇u is called coercive if ∃α > 0, β > 0 so that

F(u) > α||p||q
Lq(Ω) −β.

Theorem A.5: Let U := {u ∈W1,q(Ω)| fullfilling (42) and (43)}

u(x) = g ∀x ∈ ΓD ⊆ ∂Ω g : ΓD → R (42)
∂u

∂n
= 0 ∀x ∈ ΓN = ∂Ω\ΓD (43)

and let further be F : U→ R

F(u) =

∫
Ω

F(x,u,p)dx

If F further be coercive and F smooth and uniformly convex in p and U 6= {}

then there exists a unique minimizer of F in U.

Proof. The proof in [26] can be adapted to our modified boundary
conditions, as the theorem of Mazur used in step 3 can still be applied
to an accordingly modified W1,q

0 (Ω).

45
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Theorem A.6 (Young’s inequality): For any real a, b and ε > 0

ab 6
a2

2ε
+
εb2

2

Proof.

0 6 (a
√
ε−

b√
ε
)2 = a2ε− 2ab+

b2

ε

ab 6
a2ε

2
+
b2

2ε

Next we need two different forms of the Poincaré inequality.

Theorem A.7 (Poincaré inequality):

• Let Ω be a bounded domain
||v||L2(Ω) 6 C1||∇v||L2(Ω) ∀v ∈ H10(Ω) [27].

• Let Ω also be a Lipschitz domain with ∅ 6= ΓD ⊂ ∂Ω
||v||L2(Ω) 6 C2

(
||∇v||L2(Ω) + ||vD||

H
1
2 (ΓD)

)
[1].

Theorem A.8 (Hölder’s inequality): Let p and q with 1
p + 1

q = 1 or
p = 1 and q =∞ then

||fg||L1(Ω) 6 ||f||Lp(Ω)||g||Lq(Ω)

[24].

A special case of the Hölder’s inequality with p = q = 2 is the
Cauchy-Schwarz inequality

Theorem A.9 (Cauchy-Schwarz inequality):

||fg||L1(Ω) 6 ||f||L2(Ω)||g||L2(Ω).

Theorem A.10: Let X be a Banach space and an be a sequence in X. If for
any subsequence ank of an there exists a subsequence anki that converges
against a ∈ X then an also converges against a.

Proof. Assume an does not converge against a. Then ∀ε > 0, ∃ subse-
quence ank with

||ank − a||X > ε ∀nk

Therefore no subsequence of ank converges to a.
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Theorem A.11 (Kondrachov embedding theorem): Let Ω be an open
bounded Lipschitz domain and 1 6 p < n then W1,p(Ω) is compactly
embedded in Lq(Ω) for each 1 6 q < p∗ and p∗ := np

n−p [28].

Theorem A.12 (Stampacchia): Let Ω ⊂ Rn(n 6 1) be a bounded, 1 6
p <∞ and u ∈W1,p(Ω). Then u+ = max{u, 0} ∈W1,p(Ω) and

∇u+ = ξu>0∇u

with ξu>0 being the characteristic Function on {u > 0} = {x ∈ Ω : u(x) >

0}. Furthermore ∇u = 0 a.e. in {u = 0} = {x ∈ Ω : u(x) = 0}[29].

Lemma A.13 (Stampacchia): Let C > 0,α > 0,β > 1 ∈ R and F be a
function from R→ R. Let further F fulfill the following inequality for some
k0

F(h) 6
Cα

(h− k)α
F(k)β ∀h > k > k0.

Then F(h) = 0 for h > k0 + k∗ with k∗ := C2
β
β−1 F(k0)

β−1
α [30].
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