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1 Abstra
t

In this work, we address two di�erent topi
s, whi
h are dis
ussed in the following main


hapters.

The �rst part of the master thesis deals with the limits of validity of 
ertain mathemati-


al models from the area of spa
e�based a
quisition, pointing, and tra
king (APT) laser

systems, written as systems of ordinary di�erential equations (ODEs). The interest in

the analysis and numeri
al solution of these models was strongly motivated from the in-

ternational 
ooperation with Professor Jose Maria Gambi from the Charles III University

of Madrid, Spain.

Our main goal was to demonstrate the 
onsiderable improvement that 
an be a
hieved by

appropriately 
orre
ting the standard equations. This investigation was 
arried out for

three di�erent types of satellites and a number of di�erent 
ombinations of parameters.

For the numeri
al solution of the respe
tive model equations, the standardMatlab 
ode

ode45 was used.

In the se
ond part of the work, we 
onsidered a dis
retisation of the stationary ε�
dependent Wigner-Equation, whi
h for ε = 0 turns out to be an Index-2 di�erential

algebrai
 equation (DAE). This a
tivity was developed within the 
ooperation with Pro-

fessor Anton Arnold from the Vienna University of Te
hnology, Vienna, Austria. Main

aim here was to �nd information about the solutions behaviour, in the limit ε → 0, to
support the analysis of the original, 
ontinuous problem.

To numeri
ally simulate this 
lass of problems, we used a spe
ial version of the 
ollo
ation

method implemented in the Matlab 
ode bvpsuite and embedded into the least�

squares minimization algorithm [26℄.
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2 Spa
e-Based A
quisition, Pointing, and Tra
king Laser

Systems

2.1 Introdu
tion

The need of in
reasing the a

ura
y, parti
ularly in spa
e 
ommuni
ations and surveil-

lan
e, re
ognized in the last de
ade, made the implementation of in
reasingly a

urate

spa
e inertial-guided APT laser systems a very relevant s
ienti�
 issue [1℄-[2℄. Nowadays,

systems with laser te
hnology gain a lot of attention in other s
enarios, su
h as in spa
e

debris removal, due to the fa
t that this te
hnology has matured substantially in re
ent

years [3℄-[5℄.

In fa
t, some laser systems 
an already be designed to have sub-mi
roradian divergen
es

[6℄, whi
h means that a laser system with an output beam diameter of one meter 
an

readily have a 0.1 mi
roradian beam divergen
e, expanding to only about 10 
entimeters

after traveling 1000 kilometres [7℄.

The post�Newtonian framework of the Earth surrounding spa
e is the framework that

meets the present needs in a

urate spa
e geodesy, positioning, and navigation. Thus,

this is the framework presently used to syn
hronize the atomi
 
lo
ks on board the GPS

satellites, so as to determine the round�trip time taken by a laser beam in satellite�to�

satellite laser ranging [8℄-[12℄.

Likewise, it is within this framework where some latest geolo
ation models have been

proposed to lo
ate passive, i.e. non�
ooperative, radio transmitters pla
ed on the Earth

surfa
e or in the vi
inity of the Earth [13℄-[18℄.

However, this framework is not used yet in satellite�to�satellite laser 
ommuni
ations,

where in
reasing the a

ura
y of the present tra
king pro
edures for systems endowed

with very narrow laser beams is needed [19℄, nor in a
tive spa
e debris removal, where

in
reasing the a

ura
y is even more ne
essary, taking into a

ount that the average size

of the near 17000 debris obje
ts ranges between 1 
m to 10 
m, a

ording to the 
atalogue

of the US Spa
e Surveillan
e Network (SSN) [20℄.

Now, sin
e this fa
t is not due to the la
k of a

ura
y of the modern APT hardware, we

may 
on
lude that this is due to the di�
ulty for the present pro
edures to a

ount in

real time for the variations of the tidal e�e
ts of the Earth between the orbital position

of the destination obje
t and that of the APT system. Or, in post�Newtonian terms, it

may be due to the di�
ulty to a

ount in real time for the variations of the 
urvature

of the Earth surrounding spa
e between the positions of the destination obje
t and the

positions of the system.

In summary, the sub�mi
roradian divergen
es of a

urate laser beams make us to fa
e

the 
hallenge of pointing an APT system at a designated target, whether this is a 
om-

muni
ation satellite, a radio transmitter, or a pie
e of debris. Hen
e, the issue to tra
k
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the target is to a

urately predi
t its position in order to know where to point the beam

to rea
h the target at the desired instants.

The purpose of this work is twofold: (i) to numeri
ally simulate the solutions of systems

of post�Newtonian equations, linear and nonlinear, for the orbital relative motion, and

(ii) to analyze the validity of these solutions by 
omparing them to the solutions of

the respe
tive Newtonian equations (dire
tly and by means of the solutions of post�

Newtonian equations for the Earth Centered Inertial (ECI) orbital motions of the APT

system and the target). The equations have been derived by the group of the Gregorio

Millan Institute of the Charles III University of Madrid, Spain, led by Professor Jose

Maria Gambi, and are the resent development in a wide a
tivity in this area [21℄-[22℄.

In the analysis, we deal with the equations for ECI orbital and for relative motions di-

vided in two groups. The �rst group 
ontains the equations for the ECI orbital motion

of the APT system, whi
h will be denoted by S1, and those of the destination obje
t,

whi
h will be denoted by S2. The essential assumptions are spe
i�ed in the following way:

(i) The geometri
al stru
ture of the spa
e�time around the Earth 
orresponds to the weak

approximation to the exterior S
hwarzs
hild �eld generated by the Earth, whi
h in ECI


oordinates (xα
, t), α=1,2,3, is given by

ΦS = gijdx
idxj =

[(

δαβ +
2mxαxβ

r3

)

dxαdxβ +

(

−1 +
2m

r

)

dt2
]

, (1)

where m is the mass of the Earth and r2 = xαxα
, both measured in se
onds.

(ii) The world�lines of S1 and S2 are time�like geodesi
s in the S
hwarzs
hild �eld. As

in (1), from now on, Latin indi
es range from 1 to 4.

The se
ond group 
ontains the equations of pra
ti
al interest a

ording to our aim, that

is, the equations of the relative motion of S2 with respe
t to S1, whi
h in the 
omplete

version are nonlinear. The equations in this group have been derived from Synge's equa-

tions for the geodesi
s 
orresponding to a Fermi frame that is 
o�moving with S1 [23℄.

They are written in lo
al Cartesian 
oordinates Xα
, α=1,2,3.

The post�Newtonian equations for the ECI absolute motions derived a

ording to (i) and

(ii), appear to be natural generalizations of the Newtonian orbital equations, sin
e the

post�Newtonian terms 
an be 
onsidered as perturbations that produ
e small os
illations

about the Newtonian motions, due to the geometri
al stru
ture about the Earth, see e.g.

Figures in Se
tion 2.3. The reason is that this stru
ture 
orresponds to (1), so that,

negle
ting the se
ond order terms in (1), we have

ΦC =
[

dxαdxα − dt2
]

,

whose spa
e part, as 
an be seen, is Eu
lidean.

Note that the Newtonian equations for the relative motion of S2 with respe
t to S1 are

simply the di�eren
e of the ECI Newtonian orbital equations of S2 and S1. Therefore, one

3



should investigate whether the se
ond post�Newtonian equations for the relative motion

of S2 with respe
t to S1 produ
e predi
tions signi�
antly di�erent from those produ
ed

by the �rst group of equations, i.e., by taking the di�eren
e of the post�Newtonian ECI

orbital motions of S1 and S2, as it is made within the Newtonian framework.

The justi�
ation for this analysis is that the stru
ture of the spa
e�time around S1 is

given by [23℄,

ΦF = g(ij)dX
(i)dX(j) =

(

δαβ + 2h(α1β1)

)

dX(α)dX(β)

+
(

−1 + 2h(4141) + 2h(4142)

)

dX(4)dX(4), (2)

so that its prin
ipal part is

ΦC = dX(α)dX(α) − dX(4)dX(4),

whi
h 
ontains the stru
ture of the Eu
lidean spa
e in lo
al Cartesian 
oordinates as

viewed by S1. The terms h(α1β2), h(4141), and h(4142) in (2) are given by

h(α1β2) =
3

2
σ−3X(µ)X(ν)

∫ σ

0

(σ − u)uS(αβµν)du,

h(4141) =
3

2
σ−3X(µ)X(ν)

∫ σ

0

(σ − u)2S(44µν)du,

h(4142) =
3

2
σ−3X(µ)X(ν)

∫ σ

0

(σ − u)uS(44µν)du,

where S(abcd) = −1
3

(

R(acbd) +R(adbc)

)

and R(abcd) are the 
omponents of the Riemann

tensor, Rijkm, of the metri
 (1) with respe
t to the tetrads λi
(a) Eu
lidean�parallel along

the segment S1�S2 to the tetrad λi1
(a) that materializes the Fermi frame 
o�moving with

S1. Hen
e, if s1 is the proper time of S1, we have R(abcd) = Rijkmλ
i
(a)λ

j
(b)λ

k
(c)λ

m
(d), where

λµ1

(α) = δµα, λ
41
(α) = vα1 = dxα1/ds1, λ

µ1

(4) = vµ1 = dxµ1/ds1,
dt

ds1
= λ41

(4) = 1+
m

r
+
1

2
(vα1vα1),

whi
h in our 
ase redu
e to

λµ1

(α) = δµα, λ41
(α) = 0, λµ1

(4) = 0,
dt

ds1
= λ41

(4) = 1,

so that the spa
e 
omponents of λi1
(a) be
ome the 
lassi
al 
omponents of the inertial�

guided referen
e frame 
o�moving with S1 that is parallel to the ECI referen
e frame.

To test the 
onje
ture formulated above, we assume that S1 and S2 are in equatorial


ir
ular orbits around the Earth at typi
al distan
es from the Earth. This allows us to

simplify the equations, as well as the notation, sin
e we may 
onsider systems of only two

equations, so that the spa
e ECI 
oordinates of S1 and S2 
an be denoted by (x1, y1) and
(x2, y2) respe
tively, and the 
oordinates of the relative position of S2 with respe
t to S1

for the se
ond equations by (X, Y ). In addition, the number of s
enarios 
an be redu
ed

to six, and the number of parameters needed to study the solutions for ea
h s
enario 
an

be redu
ed to two.

4



The equations for the ECI post�Newtonian motions are

d2x

dt2
=

−m

((x)2 + (y)2)3/2

[

1− 2m

(x)2 + (y)2
+

( −3(x)2

(x)2 + (y)2
+ 1

)(

dx

dt

)2

− 6xy

(x)2 + (y)2
dx

dt

dy

dt
+

( −3(y)2

(x)2 + (y)2
+ 1

)(

dx

dt

)2
]

x,

d2y

dt2
=

−m

((x)2 + (y)2)3/2

[

1− 2m

(x)2 + (y)2
+

( −3(x)2

(x)2 + (y)2
+ 1

)(

dx

dt

)2

− 6xy

(x)2 + (y)2
dx

dt

dy

dt
+

( −3(y)2

(x)2 + (y)2
+ 1

)(

dy

dt

)2
]

y.

The equations for the linear approximation to the post�Newtonian relative motion are

d2X

dt2
=

mX

∫ 1

0

(

3(x1)
2(1− u)2 + 6x1x2(1− u)u+ 3(x2)

2u2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]5/2

− 1

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]3/2

)

·

(1− 2u+ 3u2)du

+mY

∫ 1

0

(

3x1y1(1− u)2 + 3(1− u)u (x1y2 + y1x2) + 3x2y2u
2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2) u2]5/2

)

·

(1− 2u+ 3u2)du,

5



d2Y

dt2
=

mX

∫ 1

0

(

3x1y1(1− u)2 + 3(1− u)u (x1y2 + y1x2) + 3x2y2u
2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]5/2

)

·

(1− 2u+ 3u2)du

+mY

∫ 1

0

(

3(y1)
2(1− u)2 + 6y1y2(1− u)u+ 3(y2)

2u2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2) u2]5/2

− 1

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]3/2

)

·

(1− 2u+ 3u2)du,

and the nonlinear equations are

6



d2X

dt2
=

mX

∫ 1

0

(

3(x1)
2(1− u)2 + 6x1x2(1− u)u+ 3(x2)

2u2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]5/2

− 1

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]3/2

)

·

(1− 2u+ 3u2)du

+mY

∫ 1

0

(

3x1y1(1− u)2 + 3(1− u)u (x1y2 + y1x2) + 3x2y2u
2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2) u2]5/2

)

·

(1− 2u+ 3u2)du

+3mX2

∫ 1

0

[

(

x1(1− u) + x2u
)

·

(

5(x1)
2(1− u)2 + 10(1− u)ux1x2 + 5(x2)

2u2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]7/2

− 3

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]5/2

)]

(1− u)u2du

+6mXY

∫ 1

0

[

(

y1(1− u) + y2u
)

·

(

5(x1)
2(1− u)2 + 10(1− u)ux1x2 + 5(x2)

2u2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]7/2

− 1

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]5/2

)]

(1− u)u2du

+3mY 2

∫ 1

0

[

(

x1(1− u) + x2u
)

·

(

5(y1)
2(1− u)2 + 10(1− u)uy1y2 + 5y22u

2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]7/2

− 1

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]5/2

)]

(1− u)u2du,
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d2Y

dt2
=

mX

∫ 1

0

(

3x1y1(1− u)2 + 3(1− u)u (x1y2 + y1x2) + 3x2y2u
2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]5/2

)

·

(1− 2u+ 3u2)du

+mY

∫ 1

0

(

3(y1)
2(1− u)2 + 6y1y2(1− u)u+ 3(y2)

2u2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2) u2]5/2

− 1

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]3/2

)

·

(1− 2u+ 3u2)du

+3mX2

∫ 1

0

[

(

y1(1− u) + y2u
)

·

(

5(x1)
2(1− u)2 + 10(1− u)ux1x2 + 5(x2)

2u2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]7/2

− 1

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]5/2

)]

(1− u)u2du

+6mXY

∫ 1

0

[

(

x1(1− u) + x2u
)

·

(

5(y1)
2(1− u)2 + 10(1− u)uy1y2 + 5(y2)

2u2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]7/2

− 1

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]5/2

)]

(1− u)u2du

+3mY 2

∫ 1

0

[

(

y1(1− u) + y2u
)

·

(

5(y1)
2(1− u)2 + 10(1− u)uy1y2 + 5(y2)

2u2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]7/2

− 3

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]5/2

)]

(1− u)u2du.
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2.2 Methodology

Before showing the results of the numeri
al simulations, let us �rst des
ribe the method-

ology and all the di�erent test 
ases we 
onsidered.

First of all, there were three di�erent kind of satellites we simulated, they di�er in the

distan
e of their orbits to the Earth. First, we dis
ussed the geostationary satellites, or

in short, GEO satellites, whi
h orbit the Earth at around 42.200 kilometres from the ECI


enter. The se
ond type are the medium earth orbit (MEO) satellites, with distan
es to

the ECI 
enter ranging between 8.000 and 42.000 kilometres, and �nally, we 
onsidered

representatives of low earth orbit (LEO) satellites, whi
h are typi
ally of military use and

for observation e.g. of other satellites and spa
e debris, whi
h orbit the earth at distan
es

smaller than 8.000 kilometres.

For ea
h of the above satellite types, we studied two situations. These are: S2 
loser to

the Earth than S1, and vi
e versa. The de�ning parameters for ea
h of the test 
ases are

the initial distan
e between S1 and S2, whi
h is denoted by d, and the time interval for

the integration, denoted by t.

The di�erent parameter 
hoi
es were motivated by trying to push the values for d and

t as far as possible, while still staying in a realisti
 
ontext, allowing to show how the

Newtonian equations 
an be improved. Additionally, preliminary results are obtained for

small values for d and t, just to show how the solutions behave.

The experiments 
orrespond to three di�erent parameter 
ombinations for ea
h of the

satellites types. In order to draw valid 
on
lusions, a variety of plots has been provided.

Spe
ial fo
us is on �gures where the distan
e between the Newtonian and post�Newtonian

relative positions of S2 with respe
t to S1 are 
ompared to the diameter of the spots of

a laser beam with submi
roradian divergen
e.

2.3 Results

2.3.1 GEO satellites with S2 being 
loser to the Earth than S1

2.3.1.1 Case 1

In this test, we display the solution for small parameter values, d = 5 kilometers and

t = 5 days.

9



−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

x 10
7

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

7

x1

x2

 

 

Newtonian
linear post−Newtonian
nonlinear post−Newtonian

Figure 1: Case 1 for GEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 5 days: Relative motion of S2 with respe
t to S1.
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Figure 2: Case 1 for GEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible to see

the di�eren
e between solutions from di�erent formulations.
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Figure 3: Case 1 for GEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 5 days: Absolute distan
e between S1 and S2.
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Figure 4: Case 1 for GEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible to see

di�eren
es between solutions from di�erent formulations.
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nonlinear post−Newtonian correction
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Figure 5: Case 1 for GEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 5 days: Corre
tion provided from the nonlinear post�Newtonian equations


ompared to the laser beam.
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Figure 6: Case 1 for GEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 5 days: The distan
e between the ECI positions of the Newtonian and

the nonlinear post�Newtonian solutions, both for S1 and S2, whi
h almost 
ompletely

overlap.
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Figure 7: Case 1 for GEO satellites with S2 being 
loser to the earth than S1, d =
5 kilometres, t = 5 days: Di�eren
e in distan
es to the 
enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 8: Case 1 for GEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 5 days, and nonlinear post�Newtonian formulation: Distan
e between

ECI positions of S2 and S1 and the relative position of S2 with respe
t to S1.
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Figure 9: Case 1 for GEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 5 days, and nonlinear post�Newtonian formulation: This plot, similar to

the above one, shows the di�eren
e in distan
es to the ECI 
enter.
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2.3.1.2 Case 2

In this experiment, the goal was to in
rease the value of d as mu
h as possible. The

parameters used for this test are d = 25 kilometres and t = 5 days.
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Figure 10: Case 2 for GEO satellites with S2 being 
loser to the earth than S1, d = 25
kilometres, t = 5 days: Relative motion of S2 with respe
t to S1.
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Figure 11: Case 2 for GEO satellites with S2 being 
loser to the earth than S1, d = 25
kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible to see

the di�eren
e between solutions from di�erent formulations.
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Figure 12: Case 2 for GEO satellites with S2 being 
loser to the earth than S1, d = 25
kilometres, t = 5 days: Absolute distan
e between S1 and S2.
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Figure 13: Case 2 for GEO satellites with S2 being 
loser to the earth than S1, d = 25
kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible to see

di�eren
es between solutions from di�erent formulations.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

0

5

10

15

20

25

30

35

40

45

50

t (sec)

D
 (

cm
)

 

 

nonlinear post−Newtonian correction
diameter laser beam spot

Figure 14: Case 2 for GEO satellites with S2 being 
loser to the earth than S1, d = 25
kilometres, t = 5 days: Corre
tion provided from the nonlinear post�Newtonian equations


ompared to the laser beam.
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Figure 15: Case 2 for GEO satellites with S2 being 
loser to the earth than S1, d = 25
kilometres, t = 5 days: The distan
e between the ECI positions of the Newtonian and

the nonlinear post�Newtonian solutions, both for S1 and S2, whi
h almost 
ompletely

overlap.
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Figure 16: Case 2 for GEO satellites with S2 being 
loser to the earth than S1, d =
25 kilometres, t = 5 days: Di�eren
e in distan
es to the 
enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 17: Case 2 for GEO satellites with S2 being 
loser to the earth than S1, d = 25
kilometres, t = 5 days, and nonlinear post�Newtonian formulation: Distan
e between

ECI positions of S2 and S1 and the relative position of S2 with respe
t to S1.
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Figure 18: Case 2 for GEO satellites with S2 being 
loser to the earth than S1, d = 25
kilometres, t = 5 days, and nonlinear post�Newtonian formulation: This plot, similar to

the above one, shows the di�eren
e in distan
es to the ECI 
enter.
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2.3.1.3 Case 3

For this test, the goal was to in
rease the value of t as mu
h as possible.

The parameters used for this test are d = 5 kilometres and t = 20 days.
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Figure 19: Case 3 for GEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 20 days: Relative motion of S2 with respe
t to S1.
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Figure 20: Case 3 for GEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 20 days: Zoomed in version of the previous plot. It is now possible to see

the di�eren
e between solutions from di�erent formulations.
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Figure 21: Case 3 for GEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 20 days: Absolute distan
e between S1 and S2.
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Figure 22: Case 3 for GEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 20 days: Zoomed in version of the previous plot. It is now possible to see

di�eren
es between solutions from di�erent formulations.
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Figure 23: Case 3 for GEO satellites with S2 being 
loser to the earth than S1, d = 5 kilo-
metres, t = 20 days: Corre
tion provided from the nonlinear post�Newtonian equations


ompared to the laser beam.
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Figure 24: Case 3 for GEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 20 days: The distan
e between the ECI positions of the Newtonian and

the nonlinear post�Newtonian solutions, both for S1 and S2, whi
h almost 
ompletely

overlap.
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Figure 25: Case 3 for GEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 20 days: Di�eren
e in distan
es to the 
enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 26: Case 3 for GEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 20 days, and nonlinear post�Newtonian formulation: Distan
e between

ECI positions of S2 and S1 and the relative position of S2 with respe
t to S1.
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Figure 27: Case 3 for GEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 20 days, and nonlinear post�Newtonian formulation: This plot, similar

to the above one, shows the di�eren
e in distan
es to the ECI 
enter.
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2.3.2 GEO satellites with S2 being farther away from the Earth than S1

2.3.2.1 Case 1

In this test we show
ase the solution for small values in both parameters.

The parameters used for this test are d = 5 kilometres and t = 5 days.
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Figure 28: Case 1 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: Relative motion of S2 with respe
t to S1.
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Figure 29: Case 1 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible

to see the di�eren
e between solutions from di�erent formulations.
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Figure 30: Case 1 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: Absolute distan
e between S1 and S2.
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Figure 31: Case 1 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible

to see di�eren
es between solutions from di�erent formulations.
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Figure 32: Case 1 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: Corre
tion provided from the nonlinear post�Newtonian

equations 
ompared to the laser beam.
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Figure 33: Case 1 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: The distan
e between the ECI positions of the Newtonian

and the nonlinear post�Newtonian solutions, both for S1 and S2, whi
h almost 
ompletely

overlap.
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Figure 34: Case 1 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: Di�eren
e in distan
es to the 
enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 35: Case 1 for GEO satellites with S2 being farther away from the earth than

S1, d = 5 kilometres, t = 5 days, and nonlinear post�Newtonian formulation: Distan
e

between ECI positions of S2 and S1 and the relative position of S2 with respe
t to S1.
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Figure 36: Case 1 for GEO satellites with S2 being farther away from the earth than

S1, d = 5 kilometres, t = 5 days, and nonlinear post�Newtonian formulation: This plot,

similar to the above one, shows the di�eren
e in distan
es to the ECI 
enter.
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2.3.2.2 Case 2

For this test, the goal was to in
rease the value of d as mu
h as possible.

The parameters used for this test are d = 20 kilometres and t = 5 days.
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Figure 37: Case 2 for GEO satellites with S2 being farther away from the earth than S1,

d = 20 kilometres, t = 5 days: Relative motion of S2 with respe
t to S1.
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Figure 38: Case 2 for GEO satellites with S2 being farther away from the earth than S1,

d = 20 kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible

to see the di�eren
e between solutions from di�erent formulations.
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Figure 39: Case 2 for GEO satellites with S2 being farther away from the earth than S1,

d = 20 kilometres, t = 5 days: Absolute distan
e between S1 and S2.
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Figure 40: Case 2 for GEO satellites with S2 being farther away from the earth than S1,

d = 20 kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible

to see di�eren
es between solutions from di�erent formulations.
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Figure 41: Case 2 for GEO satellites with S2 being farther away from the earth than S1,

d = 20 kilometres, t = 5 days: Corre
tion provided from the nonlinear post�Newtonian

equations 
ompared to the laser beam.
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Figure 42: Case 2 for GEO satellites with S2 being farther away from the earth than S1,

d = 20 kilometres, t = 5 days: The distan
e between the ECI positions of the Newtonian

and the nonlinear post�Newtonian solutions, both for S1 and S2, whi
h almost 
ompletely

overlap.
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Figure 43: Case 2 for GEO satellites with S2 being farther away from the earth than S1,

d = 20 kilometres, t = 5 days: Di�eren
e in distan
es to the 
enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 44: Case 2 for GEO satellites with S2 being farther away from the earth than

S1, d = 20 kilometres, t = 5 days, and nonlinear post�Newtonian formulation: Distan
e

between ECI positions of S2 and S1 and the relative position of S2 with respe
t to S1.
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Figure 45: Case 2 for GEO satellites with S2 being farther away from the earth than S1,

d = 20 kilometres, t = 5 days, and nonlinear post�Newtonian formulation: This plot,

similar to the above one, shows the di�eren
e in distan
es to the ECI 
enter.
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2.3.2.3 Case 3

For this test, the goal was to in
rease the value of t as mu
h as possible.

The parameters used for this test are d = 5 kilometres and t = 25 days.
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Figure 46: Case 3 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 25 days: Relative motion of S2 with respe
t to S1.
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Figure 47: Case 3 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 25 days: Zoomed in version of the previous plot. It is now possible

to see the di�eren
e between solutions from di�erent formulations.
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Figure 48: Case 3 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 25 days: Absolute distan
e between S1 and S2.
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Figure 49: Case 3 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 25 days: Zoomed in version of the previous plot. It is now possible

to see di�eren
es between solutions from di�erent formulations.
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Figure 50: Case 3 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 25 days: Corre
tion provided from the nonlinear post�Newtonian

equations 
ompared to the laser beam.
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Figure 51: Case 3 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 25 days: The distan
e between the ECI positions of the Newtonian

and the nonlinear post�Newtonian solutions, both for S1 and S2, whi
h almost 
ompletely

overlap.
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Figure 52: Case 3 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 25 days: Di�eren
e in distan
es to the 
enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 53: Case 3 for GEO satellites with S2 being farther away from the earth than

S1, d = 5 kilometres, t = 25 days, and nonlinear post�Newtonian formulation: Distan
e

between ECI positions of S2 and S1 and the relative position of S2 with respe
t to S1.
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Figure 54: Case 3 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 25 days, and nonlinear post�Newtonian formulation: This plot,

similar to the above one, shows the di�eren
e in distan
es to the ECI 
enter.
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2.3.3 MEO satellites with S2 being 
loser to the Earth than S1

2.3.3.1 Case 1

In this test we show
ase the solution for small values in both parameters.

The parameters used for this test are d = 5 kilometres and t = 5 days.
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Figure 55: Case 1 for MEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 5 days: Relative motion of S2 with respe
t to S1.
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Figure 56: Case 1 for MEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible to see

the di�eren
e between solutions from di�erent formulations.
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Figure 57: Case 1 for MEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 5 days: Absolute distan
e between S1 and S2.
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Figure 58: Case 1 for MEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible to see

di�eren
es between solutions from di�erent formulations.
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Figure 59: Case 1 for MEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 5 days: Corre
tion provided from the nonlinear post�Newtonian equations


ompared to the laser beam.
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Figure 60: Case 1 for MEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 5 days: The distan
e between the ECI positions of the Newtonian and

the nonlinear post�Newtonian solutions, both for S1 and S2, whi
h almost 
ompletely

overlap.
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Figure 61: Case 1 for MEO satellites with S2 being 
loser to the earth than S1, d =
5 kilometres, t = 5 days: Di�eren
e in distan
es to the 
enter of the Earth between

Newtonian and nonlinear post�Newtonian.

43



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

0

50

100

150

200

250

t (sec)

d 
(c

m
)

Figure 62: Case 1 for MEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 5 days, and nonlinear post�Newtonian formulation: Distan
e between

ECI positions of S2 and S1 and the relative position of S2 with respe
t to S1.
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Figure 63: Case 1 for MEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 5 days, and nonlinear post�Newtonian formulation: This plot, similar to

the above one, shows the di�eren
e in distan
es to the ECI 
enter.
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2.3.3.2 Case 2

For this test, the goal was to in
rease the value of d as mu
h as possible.

The parameters used for this test are d = 40 kilometres and t = 2 days.
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Figure 64: Case 2 for MEO satellites with S2 being 
loser to the earth than S1, d = 40
kilometres, t = 2 days: Relative motion of S2 with respe
t to S1.
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Figure 65: Case 2 for MEO satellites with S2 being 
loser to the earth than S1, d = 40
kilometres, t = 2 days: Zoomed in version of the previous plot. It is now possible to see

the di�eren
e between solutions from di�erent formulations.
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Figure 66: Case 2 for MEO satellites with S2 being 
loser to the earth than S1, d = 40
kilometres, t = 2 days: Absolute distan
e between S1 and S2.
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Figure 67: Case 2 for MEO satellites with S2 being 
loser to the earth than S1, d = 40
kilometres, t = 2 days: Zoomed in version of the previous plot. It is now possible to see

di�eren
es between solutions from di�erent formulations.
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Figure 68: Case 2 for MEO satellites with S2 being 
loser to the earth than S1, d = 40
kilometres, t = 2 days: Corre
tion provided from the nonlinear post�Newtonian equations


ompared to the laser beam.
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Figure 69: Case 2 for MEO satellites with S2 being 
loser to the earth than S1, d = 40
kilometres, t = 2 days: The distan
e between the ECI positions of the Newtonian and

the nonlinear post�Newtonian solutions, both for S1 and S2, whi
h almost 
ompletely

overlap.
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Figure 70: Case 2 for MEO satellites with S2 being 
loser to the earth than S1, d =
40 kilometres, t = 2 days: Di�eren
e in distan
es to the 
enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 71: Case 2 for MEO satellites with S2 being 
loser to the earth than S1, d = 40
kilometres, t = 2 days, and nonlinear post�Newtonian formulation: Distan
e between

ECI positions of S2 and S1 and the relative position of S2 with respe
t to S1.
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Figure 72: Case 2 for MEO satellites with S2 being 
loser to the earth than S1, d = 40
kilometres, t = 2 days, and nonlinear post�Newtonian formulation: This plot, similar to

the above one, shows the di�eren
e in distan
es to the ECI 
enter.
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2.3.3.3 Case 3

For this test, the goal was to in
rease the value of t as mu
h as possible.

The parameters used for this test are d = 2 kilometres and t = 15 days.
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Figure 73: Case 3 for MEO satellites with S2 being 
loser to the earth than S1, d = 2
kilometres, t = 15 days: Relative motion of S2 with respe
t to S1.
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Figure 74: Case 3 for MEO satellites with S2 being 
loser to the earth than S1, d = 2
kilometres, t = 15 days: Zoomed in version of the previous plot. It is now possible to see

the di�eren
e between solutions from di�erent formulations.
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Figure 75: Case 3 for MEO satellites with S2 being 
loser to the earth than S1, d = 2
kilometres, t = 15 days: Absolute distan
e between S1 and S2.
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Figure 76: Case 3 for MEO satellites with S2 being 
loser to the earth than S1, d = 2
kilometres, t = 15 days: Zoomed in version of the previous plot. It is now possible to see

di�eren
es between solutions from di�erent formulations.
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Figure 77: Case 3 for MEO satellites with S2 being 
loser to the earth than S1, d = 2 kilo-
metres, t = 15 days: Corre
tion provided from the nonlinear post�Newtonian equations


ompared to the laser beam.
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Figure 78: Case 3 for MEO satellites with S2 being 
loser to the earth than S1, d = 2
kilometres, t = 15 days: The distan
e between the ECI positions of the Newtonian and

the nonlinear post�Newtonian solutions, both for S1 and S2, whi
h almost 
ompletely

overlap.
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Figure 79: Case 3 for MEO satellites with S2 being 
loser to the earth than S1, d = 2
kilometres, t = 15 days: Di�eren
e in distan
es to the 
enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 80: Case 3 for MEO satellites with S2 being 
loser to the earth than S1, d = 2
kilometres, t = 15 days, and nonlinear post�Newtonian formulation: Distan
e between

ECI positions of S2 and S1 and the relative position of S2 with respe
t to S1.
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Figure 81: Case 3 for MEO satellites with S2 being 
loser to the earth than S1, d = 2
kilometres, t = 15 days, and nonlinear post�Newtonian formulation: This plot, similar

to the above one, shows the di�eren
e in distan
es to the ECI 
enter.
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2.3.4 MEO satellites with S2 being farther away from the Earth than S1

2.3.4.1 Case 1

In this test we show
ase the solution for small values in both parameters.

The parameters used for this test are d = 5 kilometres and t = 5 days.
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Figure 82: Case 1 for MEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: Relative motion of S2 with respe
t to S1.
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Figure 83: Case 1 for MEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible

to see the di�eren
e between solutions from di�erent formulations.
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Figure 84: Case 1 for MEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: Absolute distan
e between S1 and S2.
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Figure 85: Case 1 for MEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible

to see di�eren
es between solutions from di�erent formulations.
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Figure 86: Case 1 for MEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: Corre
tion provided from the nonlinear post�Newtonian

equations 
ompared to the laser beam.
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Figure 87: Case 1 for MEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: The distan
e between the ECI positions of the Newtonian

and the nonlinear post�Newtonian solutions, both for S1 and S2, whi
h almost 
ompletely

overlap.
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Figure 88: Case 1 for MEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: Di�eren
e in distan
es to the 
enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 89: Case 1 for MEO satellites with S2 being farther away from the earth than

S1, d = 5 kilometres, t = 5 days, and nonlinear post�Newtonian formulation: Distan
e

between ECI positions of S2 and S1 and the relative position of S2 with respe
t to S1.
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Figure 90: Case 1 for MEO satellites with S2 being farther away from the earth than

S1, d = 5 kilometres, t = 5 days, and nonlinear post�Newtonian formulation: This plot,

similar to the above one, shows the di�eren
e in distan
es to the ECI 
enter.
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2.3.4.2 Case 2

For this test, the goal was to in
rease the value of d as mu
h as possible.

The parameters used for this test are d = 18 kilometres and t = 2 days.
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Figure 91: Case 2 for MEO satellites with S2 being farther away from the earth than S1,

d = 18 kilometres, t = 2 days: Relative motion of S2 with respe
t to S1.
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Figure 92: Case 2 for MEO satellites with S2 being farther away from the earth than S1,

d = 18 kilometres, t = 2 days: Zoomed in version of the previous plot. It is now possible

to see the di�eren
e between solutions from di�erent formulations.
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Figure 93: Case 2 for MEO satellites with S2 being farther away from the earth than S1,

d = 18 kilometres, t = 2 days: Absolute distan
e between S1 and S2.
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Figure 94: Case 2 for MEO satellites with S2 being farther away from the earth than S1,

d = 18 kilometres, t = 2 days: Zoomed in version of the previous plot. It is now possible

to see di�eren
es between solutions from di�erent formulations.
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Figure 95: Case 2 for MEO satellites with S2 being farther away from the earth than S1,

d = 18 kilometres, t = 2 days: Corre
tion provided from the nonlinear post�Newtonian

equations 
ompared to the laser beam.
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Figure 96: Case 2 for MEO satellites with S2 being farther away from the earth than S1,

d = 18 kilometres, t = 2 days: The distan
e between the ECI positions of the Newtonian

and the nonlinear post�Newtonian solutions, both for S1 and S2, whi
h almost 
ompletely

overlap.
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Figure 97: Case 2 for MEO satellites with S2 being farther away from the earth than S1,

d = 18 kilometres, t = 2 days: Di�eren
e in distan
es to the 
enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 98: Case 2 for MEO satellites with S2 being farther away from the earth than

S1, d = 18 kilometres, t = 2 days, and nonlinear post�Newtonian formulation: Distan
e

between ECI positions of S2 and S1 and the relative position of S2 with respe
t to S1.
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Figure 99: Case 2 for MEO satellites with S2 being farther away from the earth than

S1, d = 18 kilometres, t = 2 days, and nonlinear post�Newtonian formulation: This plot,

similar to the above one, shows the di�eren
e in distan
es to the ECI 
enter.
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2.3.4.3 Case 3

For this test, the goal was to in
rease the value of t as mu
h as possible.

The parameters used for this test are d = 2 kilometres and t = 20 days.
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Figure 100: Case 3 for MEO satellites with S2 being farther away from the earth than

S1, d = 2 kilometres, t = 20 days: Relative motion of S2 with respe
t to S1.
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Figure 101: Case 3 for MEO satellites with S2 being farther away from the earth than

S1, d = 2 kilometres, t = 20 days: Zoomed in version of the previous plot. It is now

possible to see the di�eren
e between solutions from di�erent formulations.
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Figure 102: Case 3 for MEO satellites with S2 being farther away from the earth than

S1, d = 2 kilometres, t = 20 days: Absolute distan
e between S1 and S2.
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Figure 103: Case 3 for MEO satellites with S2 being farther away from the earth than

S1, d = 2 kilometres, t = 20 days: Zoomed in version of the previous plot. It is now

possible to see di�eren
es between solutions from di�erent formulations.
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Figure 104: Case 3 for MEO satellites with S2 being farther away from the earth than S1,

d = 2 kilometres, t = 20 days: Corre
tion provided from the nonlinear post�Newtonian

equations 
ompared to the laser beam.
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Figure 105: Case 3 for MEO satellites with S2 being farther away from the earth than S1,

d = 2 kilometres, t = 20 days: The distan
e between the ECI positions of the Newtonian

and the nonlinear post�Newtonian solutions, both for S1 and S2, whi
h almost 
ompletely

overlap.
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Figure 106: Case 3 for MEO satellites with S2 being farther away from the earth than S1,

d = 2 kilometres, t = 20 days: Di�eren
e in distan
es to the 
enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 107: Case 3 for MEO satellites with S2 being farther away from the earth than

S1, d = 2 kilometres, t = 20 days, and nonlinear post�Newtonian formulation: Distan
e

between ECI positions of S2 and S1 and the relative position of S2 with respe
t to S1.
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Figure 108: Case 3 for MEO satellites with S2 being farther away from the earth than

S1, d = 2 kilometres, t = 20 days, and nonlinear post�Newtonian formulation: This plot,

similar to the above one, shows the di�eren
e in distan
es to the ECI 
enter.
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2.3.5 LEO satellites with S2 being 
loser to the Earth than S1

2.3.5.1 Case 1

In this test we show
ase the solution for small values in both parameters.

The parameters used for this test are d = 5 kilometres and t = 5 hours.
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Figure 109: Case 1 for LEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 5 hours: Relative motion of S2 with respe
t to S1.
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Figure 110: Case 1 for LEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 5 hours: Zoomed in version of the previous plot. It is now possible to see

the di�eren
e between solutions from di�erent formulations.
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Figure 111: Case 1 for LEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 5 hours: Absolute distan
e between S1 and S2.
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Figure 112: Case 1 for LEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 5 hours: Zoomed in version of the previous plot. It is now possible to see

di�eren
es between solutions from di�erent formulations.
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Figure 113: Case 1 for LEO satellites with S2 being 
loser to the earth than S1, d = 5 kilo-
metres, t = 5 hours: Corre
tion provided from the nonlinear post�Newtonian equations


ompared to the laser beam.
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Figure 114: Case 1 for LEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 5 hours: The distan
e between the ECI positions of the Newtonian and

the nonlinear post�Newtonian solutions, both for S1 and S2, whi
h almost 
ompletely

overlap.
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Figure 115: Case 1 for LEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 5 hours: Di�eren
e in distan
es to the 
enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 116: Case 1 for LEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 5 hours, and nonlinear post�Newtonian formulation: Distan
e between

ECI positions of S2 and S1 and the relative position of S2 with respe
t to S1.
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Figure 117: Case 1 for LEO satellites with S2 being 
loser to the earth than S1, d = 5
kilometres, t = 5 hours, and nonlinear post�Newtonian formulation: This plot, similar to

the above one, shows the di�eren
e in distan
es to the ECI 
enter.
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2.3.5.2 Case 2

For this test, the goal was to in
rease the value of d as mu
h as possible.

The parameters used for this test are d = 25 kilometres and t = 3 hours.
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Figure 118: Case 2 for LEO satellites with S2 being 
loser to the earth than S1, d = 25
kilometres, t = 3 hours: Relative motion of S2 with respe
t to S1.
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Figure 119: Case 2 for LEO satellites with S2 being 
loser to the earth than S1, d = 25
kilometres, t = 3 hours: Zoomed in version of the previous plot. It is now possible to see

the di�eren
e between solutions from di�erent formulations.
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Figure 120: Case 2 for LEO satellites with S2 being 
loser to the earth than S1, d = 25
kilometres, t = 3 hours: Absolute distan
e between S1 and S2.
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Figure 121: Case 2 for LEO satellites with S2 being 
loser to the earth than S1, d = 25
kilometres, t = 3 hours: Zoomed in version of the previous plot. It is now possible to see

di�eren
es between solutions from di�erent formulations.
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Figure 122: Case 2 for LEO satellites with S2 being 
loser to the earth than S1, d =
25 kilometres, t = 3 hours: Corre
tion provided from the nonlinear post�Newtonian

equations 
ompared to the laser beam.
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Figure 123: Case 2 for LEO satellites with S2 being 
loser to the earth than S1, d = 25
kilometres, t = 3 hours: The distan
e between the ECI positions of the Newtonian and

the nonlinear post�Newtonian solutions, both for S1 and S2, whi
h almost 
ompletely

overlap.
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Figure 124: Case 2 for LEO satellites with S2 being 
loser to the earth than S1, d = 25
kilometres, t = 3 hours: Di�eren
e in distan
es to the 
enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 125: Case 2 for LEO satellites with S2 being 
loser to the earth than S1, d = 25
kilometres, t = 3 hours, and nonlinear post�Newtonian formulation: Distan
e between

ECI positions of S2 and S1 and the relative position of S2 with respe
t to S1.
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Figure 126: Case 2 for LEO satellites with S2 being 
loser to the earth than S1, d = 25
kilometres, t = 3 hours, and nonlinear post�Newtonian formulation: This plot, similar to

the above one, shows the di�eren
e in distan
es to the ECI 
enter.
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2.3.5.3 Case 3

For this test, the goal was to in
rease the value of t as mu
h as possible.

The parameters used for this test are d = 3 kilometres and t = 72 hours.
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Figure 127: Case 3 for LEO satellites with S2 being 
loser to the earth than S1, d = 3
kilometres, t = 72 hours: Relative motion of S2 with respe
t to S1.
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Figure 128: Case 3 for LEO satellites with S2 being 
loser to the earth than S1, d = 3
kilometres, t = 72 hours: Zoomed in version of the previous plot. It is now possible to

see the di�eren
e between solutions from di�erent formulations.
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Figure 129: Case 3 for LEO satellites with S2 being 
loser to the earth than S1, d = 3
kilometres, t = 72 hours: Absolute distan
e between S1 and S2.
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Figure 130: Case 3 for LEO satellites with S2 being 
loser to the earth than S1, d = 3
kilometres, t = 72 hours: Zoomed in version of the previous plot. It is now possible to

see di�eren
es between solutions from di�erent formulations.

0 0.5 1 1.5 2 2.5 3

x 10
5

0

2

4

6

8

10

12

14

16
x 10

4

t (sec)

D
 (

cm
)

 

 

nonlinear post−Newtonian correction
diameter laser beam spot

Figure 131: Case 3 for LEO satellites with S2 being 
loser to the earth than S1, d =
3 kilometres, t = 72 hours: Corre
tion provided from the nonlinear post�Newtonian

equations 
ompared to the laser beam.
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Figure 132: Case 3 for LEO satellites with S2 being 
loser to the earth than S1, d = 3
kilometres, t = 72 hours: The distan
e between the ECI positions of the Newtonian and

the nonlinear post�Newtonian solutions, both for S1 and S2, whi
h almost 
ompletely

overlap.
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Figure 133: Case 3 for LEO satellites with S2 being 
loser to the earth than S1, d = 3
kilometres, t = 72 hours: Di�eren
e in distan
es to the 
enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 134: Case 3 for LEO satellites with S2 being 
loser to the earth than S1, d = 3
kilometres, t = 72 hours, and nonlinear post�Newtonian formulation: Distan
e between

ECI positions of S2 and S1 and the relative position of S2 with respe
t to S1.
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Figure 135: Case 3 for LEO satellites with S2 being 
loser to the earth than S1, d = 3
kilometres, t = 72 hours, and nonlinear post�Newtonian formulation: This plot, similar

to the above one, shows the di�eren
e in distan
es to the ECI 
enter.
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2.3.6 LEO satellites with S2 being farther away from the Earth than S1

2.3.6.1 Case 1

In this test we show
ase the solution for small values in both parameters.

The parameters used for this test are d = 5 kilometres and t = 5 hours.
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Figure 136: Case 1 for LEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 hours: Relative motion of S2 with respe
t to S1.
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Figure 137: Case 1 for LEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 hours: Zoomed in version of the previous plot. It is now possible

to see the di�eren
e between solutions from di�erent formulations.
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Figure 138: Case 1 for LEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 hours: Absolute distan
e between S1 and S2.
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Figure 139: Case 1 for LEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 hours: Zoomed in version of the previous plot. It is now possible

to see di�eren
es between solutions from di�erent formulations.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

5

10

15

20

25

t (sec)

D
 (

cm
)

 

 

nonlinear post−Newtonian correction
diameter laser beam spot

Figure 140: Case 1 for LEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 hours: Corre
tion provided from the nonlinear post�Newtonian

equations 
ompared to the laser beam.
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Figure 141: Case 1 for LEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 hours: The distan
e between the ECI positions of the Newtonian

and the nonlinear post�Newtonian solutions, both for S1 and S2, whi
h almost 
ompletely

overlap.
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Figure 142: Case 1 for LEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 hours: Di�eren
e in distan
es to the 
enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 143: Case 1 for LEO satellites with S2 being farther away from the earth than

S1, d = 5 kilometres, t = 5 hours, and nonlinear post�Newtonian formulation: Distan
e

between ECI positions of S2 and S1 and the relative position of S2 with respe
t to S1.
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Figure 144: Case 1 for LEO satellites with S2 being farther away from the earth than

S1, d = 5 kilometres, t = 5 hours, and nonlinear post�Newtonian formulation: This plot,

similar to the above one, shows the di�eren
e in distan
es to the ECI 
enter.
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2.3.6.2 Case 2

For this test, the goal was to in
rease the value of d as mu
h as possible.

The parameters used for this test are d = 22 kilometres and t = 3 hours.
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Figure 145: Case 2 for LEO satellites with S2 being farther away from the earth than S1,

d = 22 kilometres, t = 3 hours: Relative motion of S2 with respe
t to S1.
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Figure 146: Case 2 for LEO satellites with S2 being farther away from the earth than

S1, d = 22 kilometres, t = 3 hours: Zoomed in version of the previous plot. It is now

possible to see the di�eren
e between solutions from di�erent formulations.
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Figure 147: Case 2 for LEO satellites with S2 being farther away from the earth than S1,

d = 22 kilometres, t = 3 hours: Absolute distan
e between S1 and S2.

91



1.0789 1.0789 1.0789 1.0789 1.0789 1.0789 1.0789

x 10
4

3.1388

3.1388

3.1388

3.1388

3.1388

3.1388

3.1388

3.1388

3.1388

3.1388

3.1388

x 10
7

t (sec)

D
 (

cm
)

 

 

Newtonian
nonlinear post−Newtonian

Figure 148: Case 2 for LEO satellites with S2 being farther away from the earth than

S1, d = 22 kilometres, t = 3 hours: Zoomed in version of the previous plot. It is now

possible to see di�eren
es between solutions from di�erent formulations.

0 2000 4000 6000 8000 10000 12000
0

2

4

6

8

10

12

14

t (sec)

D
 (

cm
)

 

 

nonlinear post−Newtonian correction
diameter laser beam spot

Figure 149: Case 2 for LEO satellites with S2 being farther away from the earth than S1,

d = 22 kilometres, t = 3 hours: Corre
tion provided from the nonlinear post�Newtonian

equations 
ompared to the laser beam.
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Figure 150: Case 2 for LEO satellites with S2 being farther away from the earth than S1,

d = 22 kilometres, t = 3 hours: The distan
e between the ECI positions of the Newtonian

and the nonlinear post�Newtonian solutions, both for S1 and S2, whi
h almost 
ompletely

overlap.
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Figure 151: Case 2 for LEO satellites with S2 being farther away from the earth than

S1, d = 22 kilometres, t = 3 hours: Di�eren
e in distan
es to the 
enter of the Earth

between Newtonian and nonlinear post�Newtonian.

93



0 2000 4000 6000 8000 10000 12000
0

2

4

6

8

10

12

t (sec)

d 
(c

m
)

Figure 152: Case 2 for LEO satellites with S2 being farther away from the earth than

S1, d = 22 kilometres, t = 3 hours, and nonlinear post�Newtonian formulation: Distan
e

between ECI positions of S2 and S1 and the relative position of S2 with respe
t to S1.
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Figure 153: Case 2 for LEO satellites with S2 being farther away from the earth than S1,

d = 22 kilometres, t = 3 hours, and nonlinear post�Newtonian formulation: This plot,

similar to the above one, shows the di�eren
e in distan
es to the ECI 
enter.
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2.3.6.3 Case 3

For this test, the goal was to in
rease the value of t as mu
h as possible.

The parameters used for this test are d = 3 kilometres and t = 36 hours.
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Figure 154: Case 3 for LEO satellites with S2 being farther away from the earth than S1,

d = 3 kilometres, t = 36 hours: Relative motion of S2 with respe
t to S1.
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Figure 155: Case 3 for LEO satellites with S2 being farther away from the earth than

S1, d = 3 kilometres, t = 36 hours: Zoomed in version of the previous plot. It is now

possible to see the di�eren
e between solutions from di�erent formulations.
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Figure 156: Case 3 for LEO satellites with S2 being farther away from the earth than S1,

d = 3 kilometres, t = 36 hours: Absolute distan
e between S1 and S2.
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Figure 157: Case 3 for LEO satellites with S2 being farther away from the earth than

S1, d = 3 kilometres, t = 36 hours: Zoomed in version of the previous plot. It is now

possible to see di�eren
es between solutions from di�erent formulations.
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Figure 158: Case 3 for LEO satellites with S2 being farther away from the earth than S1,

d = 3 kilometres, t = 36 hours: Corre
tion provided from the nonlinear post�Newtonian

equations 
ompared to the laser beam.
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Figure 159: Case 3 for LEO satellites with S2 being farther away from the earth than S1,

d = 3 kilometres, t = 36 hours: The distan
e between the ECI positions of the Newtonian

and the nonlinear post�Newtonian solutions, both for S1 and S2, whi
h almost 
ompletely

overlap.
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Figure 160: Case 3 for LEO satellites with S2 being farther away from the earth than

S1, d = 3 kilometres, t = 36 hours: Di�eren
e in distan
es to the 
enter of the Earth

between Newtonian and nonlinear post�Newtonian.
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Figure 161: Case 3 for LEO satellites with S2 being farther away from the earth than

S1, d = 3 kilometres, t = 36 hours, and nonlinear post�Newtonian formulation: Distan
e

between ECI positions of S2 and S1 and the relative position of S2 with respe
t to S1.
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Figure 162: Case 3 for LEO satellites with S2 being farther away from the earth than S1,

d = 3 kilometres, t = 36 hours, and nonlinear post�Newtonian formulation: This plot,

similar to the above one, shows the di�eren
e in distan
es to the ECI 
enter.
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2.4 Con
lusions

The simulations 
arried out in the present work, suggest to 
on
lude that in all 
onsidered

s
enarios, where GEO, MEO and LEO satellites are involved, the post�Newtonian linear

equations for the relative motion are not appropriate to model the two�way laser links

from the APT systems to the destination obje
ts at pra
ti
ally any instant. The reason

is that the absen
e of the nonlinear terms modi�es the behaviour of the solutions signi�-


antly, even at the early stages of the integrations, 
f. Figures 1�2, 10�11, 19�20, 28�29,

37�38, 46�47, 55�56, 64�65, 73�74, 82�83, 91�92, 100�101, 109�110, 118�119, 127�128,

136�137, 145�146, and 154�155.

In fa
t, the solutions of the nonlinear equations appear to be more reliable than those of

the linear equations when 
omputing the post�Newtonian 
orre
tions to the Newtonian

solutions, be
ause their size �ts rather well with the size of the gravitational 
orre
tions

in
luded in the post�Newtonian approximation of the S
hwarzs
hild �eld for the neigh-

borhood of the Earth (1). On the other hand, the 
ontributions of the nonlinear terms

amount to quantities that in
rease, along with the distan
e from the APT systems to

the targets, as the integration time in
reases. In fa
t, these quantities are measurable at

pra
ti
ally any instant pre�xed to perform the link pro
edure, so that they are sus
ep-

tible of being taken into a

ount, at least within the intervals 
onsidered for d in ea
h


ase. The reason is that the diameter of the spot of the laser beam supposedly used by

the systems stays smaller than the size of the 
orre
tions from instants very 
lose to the

initial integration instant, see Figures 5, 14, 23, 32, 41, 50, 59, 68, 77, 86, 95, 104, 113,

122, 131, 140, 149, and 158.

Finally, it is 
lear that the 
urved stru
ture of spa
e around the Earth des
ribed by the

post�Newtonian model in (1) manifests itself in the post�Newtonian nonlinear equations

for the relative motion. In fa
t, unlike for the Newtonian equations, there are signi�
ant

di�eren
es in all the s
enarios 
onsidered here between the predi
tions obtained with these

equations and those predi
ted by taking the di�eren
es between the post�Newtonian ECI

orbital equations for the destination obje
ts and the APT systems, see Figures 8�9, 17�

18, 26�27, 35�36, 44�45, 53�54, 62�63, 71�72, 80�81, 89�90, 98�99, 107�108, 116�117,

125�126, 134�135, 143�144, 152�153, and 161�162.
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3 Stationary Wigner Equation

3.1 Introdu
tion

This part of the thesis is dedi
ated to the numeri
al simulation of the stationary Wigner

equation, in a kineti
 formulation from quantum me
hani
s.

The problem in its standard form is an Index-2 di�erential algebrai
 equation (DAE).

Here, standard form means that v = 0 is one of the dis
rete velo
ities and the aim is to

�nd the asso
iated solution. If v 6= 0, the problem be
omes an easily solvable ordinary

di�erential equation (ODE).

For the numeri
al tests, we therefore, introdu
e the parameter v := ε, whi
h will deviate

the problem away from the standard form. By letting ε → 0, we shall observe how the

solution of the ODE 
onverges to the limit solution of a DAE.

After the �rst series of tests, we will introdu
e an additional parameter, µ, and simulate

the problem again. The purpose of the se
ond simulation is to understand the preliminary

results and validate the 
on
lusions drawn from the �rst series of tests. Although, we


ould gain some inside in the problem stru
ture, further investigations are still required.

3.2 Analyti
al problem and its dis
retization

The 
ontinuous equation has the following form [24℄:

vwx(x, v)−Θ[V ]w(x, v) = 0, 0 < x < L, v ∈ R,

where

Θ[V ]w(x, v) =
1√
2π

∫

R

δV (x, η)ŵ(x, η) exp(ivη)dη,

δV (x, η) = i
[

V
(

x+
η

2

)

− V
(

x− η

2

)]

,

ŵ(x, η) =
1√
2π

∫

R

w(x, v) exp(−ivη)dv.

In the �rst step, we dis
retize the operator Θ and obtain

(A(x)w)j =
∑

k∈Z

wkaj−k(x), j ∈ Z,

where

aj(x) =
1

2η0

∫ η0

−η0

δV (x, η) exp

(

iπjη

η0

)

dη.

The parameter η0 spe
i�es the �nite support of the potential V , whi
h we fo
us on

next. In Figure 163, one 
an see the potential V (x) = v0χ[−l, l] whi
h was 
hosen for the

numeri
al simulation. Sin
e η0 is the bandwidth of the potential, it follows that η0 = 2l.
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Figure 163: Image of the potential V used for the numeri
al tests.

This potential results in δV of the form

δV = iv0

[

χ[−l, l]

(

x+
η

2

)

− χ[−l, l]

(

x− η

2

)]

.

From the above de�nitions, after few simplifying steps, we obtain the following represen-

tation for aj ,

aj(x) =
v0
j







cos
[

jπ
(

1 + 2x
η0

)]

− (−1)j , 0 < x < η0,

− cos
[

jπ
(

1 + 2x
η0

)]

+ (−1)j, −η0 < x ≤ 0.
(3)

This result allows us to reformulate the original problem, with L = η0 = 2l. The new

equation is

Twx(x, v)− A(x)w(x, v) = 0, −L < x < L, (4)

with w(x) being now a ve
tor valued fun
tion. The length of this ve
tor is de�ned by

the set J , whi
h in our simulations is either J = {−1, 0, 1, 2} or J = {−2,−1, 0, 1, 2, 3}.
In Figure 164, the dis
retization of w is shown, The arrows indi
ate where the boundary


onditions are formulated.
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Figure 164: Dis
retization of w for J = {−1, 0, 1, 2}.

Clearly, after �xing J , we obtain either

w(x) =















w−1(x),
w0(x),
w1(x),
w2(x),

or w(x) =































w−2(x),
w−1(x),
w0(x),
w1(x),
w2(x),
w3(x),

where the matrix T is de�ned as

T = diag(vj)j∈J ∈ R
|J |×|J |, vj =

(j − ε)π

L
.

Here, one 
an see how the parameter ε, mentioned in the introdu
tion, enters the system.

As already said, for ε = 0 the problem is a system of DAEs, while for ε > 0 it is a system
of ODEs, linear in ea
h 
ase.

The matrix A, a dis
retization of Θ, is a skew-symmetri
, Toeplitz matrix, whi
h means

ajk(x) = aj−k(x). The values for aj(x) are given in (3).

To summarize all this, we will show how the 
omplete system looks for the two 
ases of J .
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First, J = {−1, 0, 1, 2}















(−1−ε)π
η0

0 0 0

0 −επ
η0

0 0

0 0 (1−ε)π
η0

0

0 0 0 (2−ε)π
η0



























dw
−1

dx

dw0

dx

dw1

dx

dw2

dx













−













a0(x) a−1(x) a−2(x) a−3(x)

a1(x) a0(x) a−1(x) a−2(x)

a2(x) a1(x) a0(x) a−1(x)

a3(x) a2(x) a1(x) a0(x)

























w−1

w0

w1

w2













= 0,

and for J = {−2,−1, 0, 1, 2, 3}



























(−2−ε)π
η0

0 0 0 0 0

0 (−1−ε)π
η0

0 0 0 0

0 0 −επ
η0

0 0 0

0 0 0 (1−ε)π
η0

0 0

0 0 0 0 (2−ε)π
η0

0

0 0 0 0 0 (3−ε)π
η0



















































dw
−2

dx

dw
−1

dx

dw0

dx

dw1

dx

dw2

dx

dw3

dx

























−























a0(x) a−1(x) a−2(x) a−3(x) a−4(x) a−5(x)

a1(x) a0(x) a−1(x) a−2(x) a−3(x) a−4(x)

a2(x) a1(x) a0(x) a−1(x) a−2(x) a−3(x)

a3(x) a2(x) a1(x) a0(x) a−1(x) a−2(x)

a4(x) a3(x) a2(x) a1(x) a0(x) a−1(x)

a5(x) a4(x) a3(x) a2(x) a1(x) a0(x)













































w−2

w−1

w0

w1

w2

w3























= 0.

Finally, we spe
ify the boundary 
onditions,

wj(−L) = 0, j ≥ 0, wj(L) = 1, j < 0.

3.3 Numeri
al algorithm

In this se
tion, we spe
ify the solution algorithm, whi
h is a standard polynomial 
ollo-


ation methods known from the ODE 
ontext, and its modi�
ation suitable to deal with

higher index DAEs.
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3.3.1 Collo
ation method for systems of ODEs

In order to spe
ify the 
ollo
ation method [25℄, we �rst introdu
e a mesh

π := {a = t0 < t1 < . . . < ti < ti+1 < . . . < tN = b},

with the step sizes hi := ti+1− ti, i = 0, . . . , N −1. In ea
h subinterval [ti, ti+1], we insert
m 
ollo
ation points τik := ti+hiρk, k = 1, . . . , m, using m values 0 ≤ ρ1 < . . . < ρm ≤ 1,
see Figure 165.

Figure 165: Computational grid, in
luding all mesh and 
ollo
ation points.

As a solution ansatz, we 
hoose a globally 
ontinuous pie
ewise polynomial fun
tion whi
h

redu
es to a polynomial of the degree ≤ m in ea
h subinterval of the mesh. In order to


al
ulate the 
oe�
ients in the ansatz, we require that the ODE system is exa
tly (up to

the round-o� errors) satis�ed in ea
h 
ollo
ation point and satis�es the initial/boundary


onditions.

3.3.2 Least Square Collo
ation method for DAEs

Sin
e, we intend to solve an Index-2 DAE system whi
h is ill-posed, the above standard


ollo
ation is not a method of 
hoi
e, sin
e it shows a divergent behaviour in general.

Therefore, we designed a variant of the 
ollo
ation [26℄, whi
h shows a 
onvergent be-

haviour for higher index DAEs. The idea of this modi�
ation is as follows: In addition

to the 
ollo
ation points spe
i�ed by the set {ρi}si=1, we introdu
e new 
ollo
ation points

de�ned by {σi}qi=1 ∈ [0, 1] and we require the DAE system to be satis�ed exa
tly at those

additional points as well. Clearly, the resulting dis
rete system is overdetermined and

will be solved in the least squares sense.
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a = τ τ1 τ2 τi τi + 1 τN 1 τN = b

τi τi + 1
ti ,1 ti ,m

0 ρj + 1 1ρj

σj + 1

ρ1 ρm

σ1 σm+ 1

si ,1 si ,m + 1

ti ,j + 1

si ,j + 1

ti ,j

Figure 166: Standard 
ollo
ation points and additional points for the least squares variant

of the 
ollo
ation.

The 
hoi
e of the parameters {σi}qi=1 ∈ [0, 1] is somewhat free and so, we de
ided for the

the following: q = m+ 1,

σi :=











ρ1
2
, i = 1,

ρi+ρi+1

2
, 1 < i ≤ m,

ρm+1
2

, i = m+ 1.

3.4 First results

The results do
umented in this 
hapter were 
al
ulated with N = 200 equidistant grid

points and m = 5 Gaussian 
ollo
ation points. Our aim here is to observe how the

solution 
hanges when ε → 0.
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3.4.1 J = {−2,−1, 0, 1, 2, 3}
3.4.1.1 Solution 
omponent w−2
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Figure 167: Solution 
omponent w−2 for ε varying between 1e− 1 and 1e− 3.
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Figure 168: Solution 
omponent w−2 for ε varying between 1e− 3 and 1e− 5.
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Figure 169: Solution 
omponent w−2 for ε varying between 1e− 5 and 1e− 7.
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Figure 170: Solution 
omponent w−2 for ε varying between 1e− 7 and 1e− 9.
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Figure 171: Solution 
omponent w−2 for ε varying between 1e− 9 and 1e− 11.
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Figure 172: Solution 
omponent w−2 for ε varying between 1e− 11 and 1e− 13.
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Figure 173: Solution 
omponent w−2 for ε varying between 1e− 13 and 0.
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3.4.1.2 Solution 
omponent w−1
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Figure 174: Solution 
omponent w−1 for ε varying between 1e− 1 and 1e− 3.
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Figure 175: Solution 
omponent w−1 for ε varying between 1e− 3 and 1e− 5.
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Figure 176: Solution 
omponent w−1 for ε varying between 1e− 5 and 1e− 7.
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Figure 177: Solution 
omponent w−1 for ε varying between 1e− 7 and 1e− 9.
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Figure 178: Solution 
omponent w−1 for ε varying between 1e− 9 and 1e− 11.
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Figure 179: Solution 
omponent w−1 for ε varying between 1e− 11 and 1e− 13.
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Figure 180: Solution 
omponent w−1 for ε varying between 1e− 13 and 0.
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3.4.1.3 Solution 
omponent w0
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Figure 181: Solution 
omponent w0 for ε varying between 1e− 1 and 1e− 3.
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Figure 182: Solution 
omponent w0 for ε varying between 1e− 3 and 1e− 5.
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Figure 183: Solution 
omponent w0 for ε varying between 1e− 5 and 1e− 7.
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Figure 184: Solution 
omponent w0 for ε varying between 1e− 7 and 1e− 9.
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Figure 185: Solution 
omponent w0 for ε varying between 1e− 9 and 1e− 11.
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Figure 186: Solution 
omponent w0 for ε varying between 1e− 11 and 1e− 13.
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Figure 187: Solution 
omponent w0 for ε varying between 1e− 13 and 0.
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3.4.1.4 Solution 
omponent w1
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Figure 188: Solution 
omponent w1 for ε varying between 1e− 1 and 1e− 3.
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Figure 189: Solution 
omponent w1 for ε varying between 1e− 3 and 1e− 5.
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Figure 190: Solution 
omponent w1 for ε varying between 1e− 5 and 1e− 7.
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Figure 191: Solution 
omponent w1 for ε varying between 1e− 7 and 1e− 9.
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Figure 192: Solution 
omponent w1 for ε varying between 1e− 9 and 1e− 11.

121



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

2

4

6

8

w
1
− ε = 1e−11

ε

ε/2

ε/4

ε/8

ε/15

ε/30

ε/60

ε/100

Figure 193: Solution 
omponent w1 for ε varying between 1e− 11 and 1e− 13.
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Figure 194: Solution 
omponent w1 for ε varying between 1e− 13 and 0.
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3.4.1.5 Solution 
omponent w2
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Figure 195: Solution 
omponent w2 for ε varying between 1e− 1 and 1e− 3.
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Figure 196: Solution 
omponent w2 for ε varying between 1e− 3 and 1e− 5.
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Figure 197: Solution 
omponent w2 for ε varying between 1e− 5 and 1e− 7.
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Figure 198: Solution 
omponent w2 for ε varying between 1e− 7 and 1e− 9.
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Figure 199: Solution 
omponent w2 for ε varying between 1e− 9 and 1e− 11.
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Figure 200: Solution 
omponent w2 for ε varying between 1e− 11 and 1e− 13.
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Figure 201: Solution 
omponent w2 for ε varying between 1e− 13 and 0.
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3.4.1.6 Solution 
omponent w3
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Figure 202: Solution 
omponent w3 for ε varying between 1e− 1 and 1e− 3.
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Figure 203: Solution 
omponent w3 for ε varying between 1e− 3 and 1e− 5.
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Figure 204: Solution 
omponent w3 for ε varying between 1e− 5 and 1e− 7.
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Figure 205: Solution 
omponent w3 for ε varying between 1e− 7 and 1e− 9.
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Figure 206: Solution 
omponent w3 for ε varying between 1e− 9 and 1e− 11.
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Figure 207: Solution 
omponent w3 for ε varying between 1e− 11 and 1e− 13.
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Figure 208: Solution 
omponent w3 for ε varying between 1e− 13 and 0.
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3.4.2 J = {−1, 0, 1, 2}
3.4.2.1 Solution 
omponent w−1
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Figure 209: Solution 
omponent w−1 for ε varying between 1e− 1 and 1e− 3.
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Figure 210: Solution 
omponent w−1 for ε varying between 1e− 3 and 1e− 5.
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Figure 211: Solution 
omponent w−1 for ε varying between 1e− 5 and 1e− 7.
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Figure 212: Solution 
omponent w−1 for ε varying between 1e− 7 and 1e− 9.
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Figure 213: Solution 
omponent w−1 for ε varying between 1e− 9 and 1e− 11.
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Figure 214: Solution 
omponent w−1 for ε varying between 1e− 11 and 0.
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3.4.2.2 Solution 
omponent w0
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Figure 215: Solution 
omponent w0 for ε varying between 1e− 1 and 1e− 3.
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Figure 216: Solution 
omponent w0 for ε varying between 1e− 3 and 1e− 5.
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Figure 217: Solution 
omponent w0 for ε varying between 1e− 5 and 1e− 7.
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Figure 218: Solution 
omponent w0 for ε varying between 1e− 7 and 1e− 9.
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Figure 219: Solution 
omponent w0 for ε varying between 1e− 9 and 1e− 11.
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Figure 220: Solution 
omponent w0 for ε varying between 1e− 11 and 0.
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3.4.2.3 Solution 
omponent w1
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Figure 221: Solution 
omponent w1 for ε varying between 1e− 1 and 1e− 3.
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Figure 222: Solution 
omponent w1 for ε varying between 1e− 3 and 1e− 5.

−1 −0.8 −0.6 −0.5 −0.4 −0.2 0 0.2 0.4 0.5 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

w
1
− ε = 1e−5

ε

ε/2

ε/4

ε/8

ε/15

ε/30

ε/60

ε/100

Figure 223: Solution 
omponent w1 for ε varying between 1e− 5 and 1e− 7.
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Figure 224: Solution 
omponent w1 for ε varying between 1e− 7 and 1e− 9.
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Figure 225: Solution 
omponent w1 for ε varying between 1e− 9 and 1e− 11.
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Figure 226: Solution 
omponent w1 for ε varying between 1e− 11 and 0.
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3.4.2.4 Solution 
omponent w2
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Figure 227: Solution 
omponent w2 for ε varying between 1e− 1 and 1e− 3.
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Figure 228: Solution 
omponent w2 for ε varying between 1e− 3 and 1e− 5.
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Figure 229: Solution 
omponent w2 for ε varying between 1e− 5 and 1e− 7.
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Figure 230: Solution 
omponent w2 for ε varying between 1e− 7 and 1e− 9.
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Figure 231: Solution 
omponent w2 for ε varying between 1e− 9 and 1e− 11.
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Figure 232: Solution 
omponent w2 for ε varying between 1e− 11 and 0.

3.5 First observations

Generally, we see that the solution behavior as a fun
tion of ε is kind of 
haoti
. First,

when ε be
omes very small, we observe 
ontinuous 
hanges in the solution behavior, 
f.

the respe
tive �gures.

For these tiny values of ε, we are also able to observe that w−j = wj whi
h is supported

by the theory. However, the more relevant solution property are the peaks whi
h are


learly visible in all plots for ε very 
lose to zero. Interestingly, these peaks o

ur at

somewhat �xed x-values.

• For J = {−2,−1, 0, 1, 2, 3}, they o

ur at x = −2
3
, −1

3
, 1

3
, and

2
3
;

• For J = {−1, 0, 1, 2}, they o

ur at x = −1
2
and

1
2
.

To more pre
isely investigate and possibly explain this solution behavior, we design

another series of tests, see following 
hapter.
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3.6 Analyti
al results

Let us again 
onsider the system (4),

Twx(x, v)− A(x)w(x, v) = 0, 0 < x < L,

where w(x, v) = (wj(x, v), j ∈ J)⊤. For the analyti
al ba
kground see Chapter 4 [24℄.

The DAE system (4) is 
alled tra
table or solvable if the determinant

det(λT − A)

does not vanish identi
ally in λ ∈ C. Whether this 
ondition holds, 
ru
ially depends on

J and on the potential V . Con
erning solvability, two situations 
an o

ur:

(a) If the DAE is not tra
table/solvable, its solutions are not unique.

(b) If the DAE is tra
table/solvable, we still have a di�
ult situation. This is due to

too many boundary 
onditions, whi
h makes the BVP not solvable, in general.

Let us assume that the DAE is tra
table. The problem with too many boundary 
ondi-

tions does formally not 
onstitute any di�
ulty, sin
e the algorithm whi
h we apply is

solving the resulting dis
rete system in the least square sense.

We now 
al
ulate det(λT −A) for J = {−1, 0, 1, 2} to �nd out when it is not vanishing,

det(λT − A) =

∣

∣

∣

∣

∣

∣

∣

∣

λv−1 a1(x) a2(x) a3(x)
−a1(x) 0 a1(x) a2(x)
−a2(x) −a1(x) λv1 a1(x)
−a3(x) −a2(x) −a1(x) λv2

∣

∣

∣

∣

∣

∣

∣

∣

.

After some simpli�
ations, we obtain

det(λT − A) =− λ2a2(x)
2v21 + a1(x)

4 + a2(x)
4 − 2a1(x)

2a2(x)
2

+ a1(x)
2a3(x)

2 + 2a1(x)
3a3(x)− 2a1(x)a2(x)

2a3(x).

For a2(x) 6= 0, the above expression does not vanish identi
ally in λ ∈ C.

Let us also try a di�erent approa
h � �nd out index of the problem. This is done by

di�erentiating the algebrai
 
onstraint as long as ne
essary to obtain an expli
it expression

for w0. The algebrai
 
onstraint reads:

0 =a2(x)w2(x) + a1(x)w1(x)− a1(x)w−1(x)

and after one di�erentiation, we have

0 =a′2(x)w2(x) + a2(x)w
′
2(x) + a′1(x)w1(x) + a1(x)w

′
1(x)− a′1(x)w−1(x)− a1(x)w

′
−1(x).

(5)

Now, we rewrite the other equations,

2w′
2(x) + a1(x)w1(x) + a2(x)w0(x) + a3(x)w−1(x) = 0,

w′
1(x) − a1(x)w2(x) + a1(x)w0(x) + a2(x)w−1(x) = 0,

−w′
−1(x) − a3(x)w2(x) − a2(x)w1(x) − a1(x)w0(x) = 0,

∣

∣

∣

∣

∣

∣

∣

·(−a2(x)
2

)

·(−a1(x))

·(−a1(x))
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and use them to simplify (5),

a2(x)
2w0(x)

2
= (a′2(x) + a1(x)a3(x) + a1(x)

2)w2(x) +

(

a′1(x) +
a1(x)a2(x)

2

)

w1(x)

−
(

a′1(x) + a1(x)a2(x) +
a2(x)a3(x)

2

)

w−1(x).

Sin
e this is an expli
it form for w0(x), the DAE system is an Index-2 problem (we have

di�erentiated one time). Note, that this only holds for a2(x) 6= 0

These 
onsiderations motivate to 
loser investigate the properties of a2(x). Let us begin
by plotting this fun
tion, 
f. Figure 233.
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Figure 233: Plot of the fu
tion a2(x).

First, we note that a2(x) is zero at exa
tly those points where we observed peaks in the

�rst series of results. This observation motivated the design of the se
ond series of test

runs, see next se
tion.

3.7 Se
ond results

Our aim was to eliminate the solution peaks, by manually removing the zeros of a2(x).
This 
an be easily done by introdu
ing a new parameter, µ, whi
h we use to modify the
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fun
tion a2(x):

aµ2 (x) = a2(x) + µx.

As we 
an see in the following plot, where µ = 1, fun
tion aµ2 has no zeros, ex
ept the

one at x = 0.
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Figure 234: Plot of the fun
tion aµ2(x), µ = 1.

Clearly, for µ = 1 we 
an see a large 
hange in a2(x), but as before for ε, we will 
onsider
µ → 0. The values for µ were 
hosen as µ = 1, 0.1, 0.01, 0.001, 0.0001, and ε were

varying between 1e− 9 and 0.
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3.7.1 Solution for µ = 1
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Figure 235: µ = 1: Solution 
omponent w−1 for ε varying from 1e− 9 and 1e− 11.
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Figure 236: µ = 1: Solution 
omponent w−1 for ε varying from 1e− 11 to 0.
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Figure 237: µ = 1: Solution 
omponent w0 for ε varying from 1e− 9 to 1e− 11.
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Figure 238: µ = 1: Solution 
omponent w0 for ε varying from 1e− 11 to 0.
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Figure 239: µ = 1: Solution 
omponent w1 for ε varying from 1e− 9 to 1e− 11.
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Figure 240: µ = 1: Solution 
omponent w1 for ε varying from 1e− 11 to 0.
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Figure 241: µ = 1: Solution 
omponent w2 for ε varying from 1e− 9 to 1e− 11.
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Figure 242: µ = 1: Solution 
omponent w2 for ε varying from 1e− 11 to 0.
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3.7.2 Solution for µ = 0.1
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Figure 243: µ = 0.1: Solution 
omponent w−1 for ε varying from 1e− 9 to 1e− 11.
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Figure 244: µ = 0.1: Solution 
omponent w−1 for ε varying from 1e− 11 to 0.
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Figure 245: µ = 0.1: Solution 
omponent w0 for ε varying from 1e− 9 to 1e− 11.
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Figure 246: µ = 0.1: Solution 
omponent w0 for ε varying from 1e− 11 to 0.
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Figure 247: µ = 0.1: Solution 
omponent w1 for ε varying from 1e− 9 to 1e− 11.
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Figure 248: µ = 0.1: Solution 
omponent w1 for ε varying from 1e− 11 to 0.
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Figure 249: µ = 0.1: Solution 
omponent w2 for ε varying from 1e− 9 to 1e− 11.
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Figure 250: µ = 0.1: Solution 
omponent w2 for ε varying from 1e− 11 to 0.
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3.7.3 Solution for µ = 0.01
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Figure 251: µ = 0.01: Solution 
omponent w−1 for ε varying from 1e− 9 to 1e− 11.
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Figure 252: µ = 0.01: Solution 
omponent w−1 for ε varying from 1e− 11 to 0.
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Figure 253: µ = 0.01: Solution 
omponent w0 for ε varying from 1e− 9 to 1e− 11.
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Figure 254: µ = 0.01: Solution 
omponent w0 for ε varying from 1e− 11 to 0.
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Figure 255: µ = 0.01: Solution 
omponent w1 for ε varying from 1e− 9 to 1e− 11.
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Figure 256: µ = 0.01: Solution 
omponent w1 for ε varying from 1e− 11 to 0.
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Figure 257: µ = 0.01: Solution 
omponent w2 for ε varying from 1e− 9 to 1e− 11.
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Figure 258: µ = 0.01: Solution 
omponent w2 for ε varying from 1e− 11 to 0.
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3.7.4 Solution for µ = 0.001
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Figure 259: µ = 0.001: Solution 
omponent w−1 for ε varying from 1e− 9 to 1e− 11.
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Figure 260: µ = 0.001: Solution 
omponent w−1 for ε varying from 1e− 11 to 0.
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Figure 261: µ = 0.001: Solution 
omponent w0 for ε varying from 1e− 9 to 1e− 11.
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Figure 262: µ = 0.001: Solution 
omponent w0 for ε varying from 1e− 11 to 0.
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Figure 263: µ = 0.001: Solution 
omponent w1 for ε varying from 1e− 9 to 1e− 11.
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Figure 264: µ = 0.001: Solution 
omponent w1 for ε varying from 1e− 11 to 0.
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Figure 265: µ = 0.001: Solution 
omponent w2 for ε varying from 1e− 9 to 1e− 11.
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Figure 266: µ = 0.001: Solution 
omponent w2 for ε varying from 1e− 11 to 0.
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3.7.5 Solution for µ = 0.0001
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Figure 267: µ = 0.0001: Solution 
omponent w−1 for ε varying from 1e− 9 to 1e− 11.

−1 −0.8 −0.6 −0.5 −0.4 −0.2 0 0.2 0.4 0.5 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

w
−1
− ε = 1e−11 − µ = 0.0001

ε

ε/2

ε/4

ε/8

ε/15

ε/30

ε/60

0

Figure 268: µ = 0.0001: Solution 
omponent w−1 for ε varying from 1e− 11 to 0.
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Figure 269: µ = 0.0001: Solution 
omponent w0 for ε varying from 1e− 9 to 1e− 11.
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Figure 270: µ = 0.0001: Solution 
omponent w0 for ε varying from 1e− 11 to 0.
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Figure 271: µ = 0.0001: Solution 
omponent w1 for ε varying from 1e− 9 to 1e− 11.
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Figure 272: µ = 0.0001: Solution 
omponent w1 for ε varying from 1e− 11 to 0.
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Figure 273: µ = 0.0001: Solution 
omponent w2 for ε varying from 1e− 9 to 1e− 11.
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Figure 274: µ = 0.0001: Solution 
omponent w2 for ε varying from 1e− 11 to 0.
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3.8 Con
lusions

Obviously, although the behaviour of the solutions slightly 
hanged after introdu
ing the

µ parameter, their fundamental stru
ture, espe
ially the peaks, did not alter mu
h. Sin
e

the analyti
al insights are still being developed, we have to refer to future studies aiming

at explaining the observations made in the experimental preliminary phase do
umented

here.
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