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1 Abstract

In this work, we address two different topics, which are discussed in the following main
chapters.

The first part of the master thesis deals with the limits of validity of certain mathemati-
cal models from the area of space-based acquisition, pointing, and tracking (APT) laser
systems, written as systems of ordinary differential equations (ODEs). The interest in
the analysis and numerical solution of these models was strongly motivated from the in-
ternational cooperation with Professor Jose Maria Gambi from the Charles I1I University
of Madrid, Spain.

Our main goal was to demonstrate the considerable improvement that can be achieved by
appropriately correcting the standard equations. This investigation was carried out for
three different types of satellites and a number of different combinations of parameters.
For the numerical solution of the respective model equations, the standard MATLAB code
ode45 was used.

In the second part of the work, we considered a discretisation of the stationary e—
dependent Wigner-Equation, which for ¢ = 0 turns out to be an Index-2 differential
algebraic equation (DAE). This activity was developed within the cooperation with Pro-
fessor Anton Arnold from the Vienna University of Technology, Vienna, Austria. Main
aim here was to find information about the solutions behaviour, in the limit ¢ — 0, to
support the analysis of the original, continuous problem.

To numerically simulate this class of problems, we used a special version of the collocation
method implemented in the MATLAB code bvpsuite and embedded into the least—
squares minimization algorithm [26].



2 Space-Based Acquisition, Pointing, and Tracking Laser
Systems

2.1 Introduction

The need of increasing the accuracy, particularly in space communications and surveil-
lance, recognized in the last decade, made the implementation of increasingly accurate
space inertial-guided APT laser systems a very relevant scientific issue [I]-[2]. Nowadays,
systems with laser technology gain a lot of attention in other scenarios, such as in space
debris removal, due to the fact that this technology has matured substantially in recent
years [3]-[5].

In fact, some laser systems can already be designed to have sub-microradian divergences
[6], which means that a laser system with an output beam diameter of one meter can
readily have a 0.1 microradian beam divergence, expanding to only about 10 centimeters
after traveling 1000 kilometres [7].

The post—Newtonian framework of the Earth surrounding space is the framework that
meets the present needs in accurate space geodesy, positioning, and navigation. Thus,
this is the framework presently used to synchronize the atomic clocks on board the GPS
satellites, so as to determine the round—trip time taken by a laser beam in satellite—to—
satellite laser ranging [8]-[12].

Likewise, it is within this framework where some latest geolocation models have been
proposed to locate passive, i.e. non—cooperative, radio transmitters placed on the Earth
surface or in the vicinity of the Earth [13]-[18].

However, this framework is not used yet in satellite—to—satellite laser communications,
where increasing the accuracy of the present tracking procedures for systems endowed
with very narrow laser beams is needed [19], nor in active space debris removal, where
increasing the accuracy is even more necessary, taking into account that the average size
of the near 17000 debris objects ranges between 1 cm to 10 cm, according to the catalogue
of the US Space Surveillance Network (SSN) [20].

Now, since this fact is not due to the lack of accuracy of the modern APT hardware, we
may conclude that this is due to the difficulty for the present procedures to account in
real time for the variations of the tidal effects of the Earth between the orbital position
of the destination object and that of the APT system. Or, in post-Newtonian terms, it
may be due to the difficulty to account in real time for the variations of the curvature
of the Earth surrounding space between the positions of the destination object and the
positions of the system.

In summary, the sub-microradian divergences of accurate laser beams make us to face
the challenge of pointing an APT system at a designated target, whether this is a com-
munication satellite, a radio transmitter, or a piece of debris. Hence, the issue to track



the target is to accurately predict its position in order to know where to point the beam
to reach the target at the desired instants.

The purpose of this work is twofold: (i) to numerically simulate the solutions of systems
of post—Newtonian equations, linear and nonlinear, for the orbital relative motion, and
(ii) to analyze the validity of these solutions by comparing them to the solutions of
the respective Newtonian equations (directly and by means of the solutions of post—
Newtonian equations for the Earth Centered Inertial (ECI) orbital motions of the APT
system and the target). The equations have been derived by the group of the Gregorio
Millan Institute of the Charles IIT University of Madrid, Spain, led by Professor Jose
Maria Gambi, and are the resent development in a wide activity in this area [21]-[22].

In the analysis, we deal with the equations for ECI orbital and for relative motions di-
vided in two groups. The first group contains the equations for the ECI orbital motion
of the APT system, which will be denoted by S1, and those of the destination object,
which will be denoted by S2. The essential assumptions are specified in the following way:

(i) The geometrical structure of the space-time around the Earth corresponds to the weak
approximation to the exterior Schwarzschild field generated by the Earth, which in ECI
coordinates (2%, t), «=1,2,3, is given by

. . 2 a6 9
Ps = gijda'dr’ = Kaaﬁ + Lsx) dotdo + (_1 + _m> dtQ} ; (1)
r T
where m is the mass of the Earth and 72 = 2®2“, both measured in seconds.

(ii) The world-lines of S1 and S2 are time-like geodesics in the Schwarzschild field. As
in (), from now on, Latin indices range from 1 to 4.

The second group contains the equations of practical interest according to our aim, that
is, the equations of the relative motion of S2 with respect to S1, which in the complete
version are nonlinear. The equations in this group have been derived from Synge’s equa-
tions for the geodesics corresponding to a Fermi frame that is co-moving with S1 [23].
They are written in local Cartesian coordinates X<, a=1,2,3.

The post—-Newtonian equations for the ECI absolute motions derived according to (i) and
(ii), appear to be natural generalizations of the Newtonian orbital equations, since the
post—-Newtonian terms can be considered as perturbations that produce small oscillations
about the Newtonian motions, due to the geometrical structure about the Earth, see e.g.
Figures in Section 23l The reason is that this structure corresponds to (), so that,
neglecting the second order terms in (), we have

o = [d:po‘dxo‘ — dtz} ,
whose space part, as can be seen, is Euclidean.

Note that the Newtonian equations for the relative motion of S2 with respect to S1 are
simply the difference of the ECI Newtonian orbital equations of S2 and S1. Therefore, one



should investigate whether the second post-Newtonian equations for the relative motion
of S2 with respect to S1 produce predictions significantly different from those produced
by the first group of equations, i.e., by taking the difference of the post-Newtonian ECI
orbital motions of S1 and S2, as it is made within the Newtonian framework.

The justification for this analysis is that the structure of the space-time around S1 is
given by [23],

Op = gujdXDdXD = (5u5 + 2h(arp)) dX DX P
+ (=1 + 2Ry + 2Ry 10)) AXPdXW), (2)
so that its principal part is
Po = dXDgx@ — gxHgx®,
which contains the structure of the Euclidean space in local Cartesian coordinates as

viewed by S1. The terms h(q,,), M4,4,), and h(a,4,) in () are given by

3 a7
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where Siped) = —% (R(acbd) + R(adbc)) and Rpeq) are the components of the Riemann
tensor, R;jkm, of the metric (Il) with respect to the tetrads )\’@ Euclidean—parallel along
the segment S1-S2 to the tetrad )\@) that materializes the Fermi frame co-moving with

S1. Hence, if s; is the proper time of S1, we have Rpeq) = Rijkm)\éa) )\{b) )\’gc))\’g}l), where

“ « dt m 1 (7 o
Nay = 0ar Ay = v = da™ [dsy, Xy = o = da [dsy, 7 = Ny = 1+2 45 (0% 0™),
which in our case reduce to
dt
M1 SH 47 wo_ VT
Nay =% Ay =00 Xy =0 7= =Xg =1,

so that the space components of )\i; become the classical components of the inertial—
guided reference frame co-moving with S1 that is parallel to the ECI reference frame.

To test the conjecture formulated above, we assume that S1 and S2 are in equatorial
circular orbits around the Earth at typical distances from the Earth. This allows us to
simplify the equations, as well as the notation, since we may consider systems of only two
equations, so that the space ECI coordinates of S1 and S2 can be denoted by (z1,y;) and
(22, yo) respectively, and the coordinates of the relative position of S2 with respect to S1
for the second equations by (X,Y’). In addition, the number of scenarios can be reduced
to six, and the number of parameters needed to study the solutions for each scenario can
be reduced to two.



The equations for the ECI post-Newtonian motions are

- G aEt ((z)ffgzj)? ’ 1) <Ccl7f)
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The equations for the linear approximation to the post-Newtonian relative motion are
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d*Y

dr?
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and the nonlinear equations are
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2.2 Methodology

Before showing the results of the numerical simulations, let us first describe the method-
ology and all the different test cases we considered.

First of all, there were three different kind of satellites we simulated, they differ in the
distance of their orbits to the Earth. First, we discussed the geostationary satellites, or
in short, GEO satellites, which orbit the Earth at around 42.200 kilometres from the ECI
center. The second type are the medium earth orbit (MEO) satellites, with distances to
the ECI center ranging between 8.000 and 42.000 kilometres, and finally, we considered
representatives of low earth orbit (LEO) satellites, which are typically of military use and
for observation e.g. of other satellites and space debris, which orbit the earth at distances
smaller than 8.000 kilometres.

For each of the above satellite types, we studied two situations. These are: S2 closer to
the Earth than S1, and vice versa. The defining parameters for each of the test cases are
the initial distance between S1 and S2, which is denoted by d, and the time interval for
the integration, denoted by t.

The different parameter choices were motivated by trying to push the values for d and
t as far as possible, while still staying in a realistic context, allowing to show how the
Newtonian equations can be improved. Additionally, preliminary results are obtained for
small values for d and t, just to show how the solutions behave.

The experiments correspond to three different parameter combinations for each of the
satellites types. In order to draw valid conclusions, a variety of plots has been provided.
Special focus is on figures where the distance between the Newtonian and post—-Newtonian
relative positions of S2 with respect to S1 are compared to the diameter of the spots of
a laser beam with submicroradian divergence.

2.3 Results
2.3.1 GEO satellites with S2 being closer to the Earth than S1
2.3.1.1 Case 1l

In this test, we display the solution for small parameter values, d = 5 kilometers and
t =5 days.
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Figure 1: Case 1 for GEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, t = 5 days: Relative motion of S2 with respect to S1.
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Figure 2: Case 1 for GEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible to see
the difference between solutions from different formulations.
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Figure 3: Case 1 for GEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, ¢t = 5 days: Absolute distance between S1 and S2.
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Figure 4: Case 1 for GEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible to see
differences between solutions from different formulations.
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Figure 5: Case 1 for GEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, t = 5 days: Correction provided from the nonlinear post-Newtonian equations
compared to the laser beam.
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Figure 6: Case 1 for GEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, ¢ = 5 days: The distance between the ECI positions of the Newtonian and
the nonlinear post—Newtonian solutions, both for S1 and S2, which almost completely
overlap.
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Figure 7: Case 1 for GEO satellites with S2 being closer to the earth than S1, d =
5 kilometres, ¢t = 5 days: Difference in distances to the center of the Earth between
Newtonian and nonlinear post—Newtonian.
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Figure 8: Case 1 for GEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, t = 5 days, and nonlinear post—Newtonian formulation: Distance between
ECI positions of S2 and S1 and the relative position of S2 with respect to S1.
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Figure 9: Case 1 for GEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, t = 5 days, and nonlinear post-Newtonian formulation: This plot, similar to
the above one, shows the difference in distances to the ECI center.
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2.3.1.2 Case 2

In this experiment, the goal was to increase the value of d as much as possible. The
parameters used for this test are d = 25 kilometres and ¢t = 5 days.
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Figure 10: Case 2 for GEO satellites with S2 being closer to the earth than S1, d = 25
kilometres, ¢t = 5 days: Relative motion of S2 with respect to S1.
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Figure 11: Case 2 for GEO satellites with S2 being closer to the earth than S1, d = 25
kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible to see
the difference between solutions from different formulations.
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Figure 12: Case 2 for GEO satellites with S2 being closer to the earth than S1, d = 25
kilometres, ¢t = 5 days: Absolute distance between S1 and S2.
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Figure 13: Case 2 for GEO satellites with S2 being closer to the earth than S1, d = 25
kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible to see
differences between solutions from different formulations.
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Figure 14: Case 2 for GEO satellites with S2 being closer to the earth than S1, d = 25
kilometres, t = 5 days: Correction provided from the nonlinear post-Newtonian equations
compared to the laser beam.
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Figure 15: Case 2 for GEO satellites with S2 being closer to the earth than S1, d = 25
kilometres, ¢ = 5 days: The distance between the ECI positions of the Newtonian and
the nonlinear post—Newtonian solutions, both for S1 and S2, which almost completely
overlap.
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Figure 16: Case 2 for GEO satellites with S2 being closer to the earth than S1, d =
25 kilometres, ¢ = 5 days: Difference in distances to the center of the Earth between
Newtonian and nonlinear post—Newtonian.
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Figure 17: Case 2 for GEO satellites with S2 being closer to the earth than S1, d = 25
kilometres, t = 5 days, and nonlinear post—Newtonian formulation: Distance between
ECI positions of S2 and S1 and the relative position of S2 with respect to S1.
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Figure 18: Case 2 for GEO satellites with S2 being closer to the earth than S1, d = 25
kilometres, t = 5 days, and nonlinear post-Newtonian formulation: This plot, similar to
the above one, shows the difference in distances to the ECI center.
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2.3.1.3 Case 3

For this test, the goal was to increase the value of ¢ as much as possible.
The parameters used for this test are d = 5 kilometres and ¢ = 20 days.
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Figure 19: Case 3 for GEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, t = 20 days: Relative motion of S2 with respect to S1.
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Figure 20: Case 3 for GEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, t = 20 days: Zoomed in version of the previous plot. It is now possible to see
the difference between solutions from different formulations.
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Figure 21: Case 3 for GEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, ¢t = 20 days: Absolute distance between S1 and S2.
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Figure 22: Case 3 for GEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, t = 20 days: Zoomed in version of the previous plot. It is now possible to see
differences between solutions from different formulations.
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Figure 23: Case 3 for GEO satellites with S2 being closer to the earth than S1, d = 5 kilo-
metres, t = 20 days: Correction provided from the nonlinear post-Newtonian equations
compared to the laser beam.
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Figure 24: Case 3 for GEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, t = 20 days: The distance between the ECI positions of the Newtonian and
the nonlinear post—Newtonian solutions, both for S1 and S2, which almost completely
overlap.

09 :

08— —

0.7 =

06— —

05— =

d (cm)

0.4 -

0.3 *

0.2 -

01 | ! | | ! | ! !
0 2 4 6 8 10 12 14 16 18

t (sec) x10°

Figure 25: Case 3 for GEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, ¢ = 20 days: Difference in distances to the center of the Earth between
Newtonian and nonlinear post—Newtonian.
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Figure 26: Case 3 for GEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, ¢ = 20 days, and nonlinear post—Newtonian formulation: Distance between
ECI positions of S2 and S1 and the relative position of S2 with respect to S1.
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Figure 27: Case 3 for GEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, ¢ = 20 days, and nonlinear post-Newtonian formulation: This plot, similar
to the above one, shows the difference in distances to the ECI center.
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2.3.2 GEO satellites with S2 being farther away from the Earth than S1
2.3.2.1 Casel

In this test we showcase the solution for small values in both parameters.
The parameters used for this test are d = 5 kilometres and ¢t = 5 days.
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Figure 28: Case 1 for GEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 5 days: Relative motion of S2 with respect to S1.
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Figure 29: Case 1 for GEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible
to see the difference between solutions from different formulations.
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Figure 30: Case 1 for GEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 5 days: Absolute distance between S1 and S2.
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Figure 31: Case 1 for GEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible
to see differences between solutions from different formulations.
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Figure 32: Case 1 for GEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 5 days: Correction provided from the nonlinear post—Newtonian
equations compared to the laser beam.
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Figure 33: Case 1 for GEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 5 days: The distance between the ECI positions of the Newtonian
and the nonlinear post—Newtonian solutions, both for S1 and S2, which almost completely
overlap.
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Figure 34: Case 1 for GEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 5 days: Difference in distances to the center of the Earth between
Newtonian and nonlinear post—Newtonian.
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Figure 35: Case 1 for GEO satellites with S2 being farther away from the earth than
S1, d = 5 kilometres, t = 5 days, and nonlinear post—Newtonian formulation: Distance
between ECI positions of S2 and S1 and the relative position of S2 with respect to S1.
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Figure 36: Case 1 for GEO satellites with S2 being farther away from the earth than
S1, d = 5 kilometres, ¢t = 5 days, and nonlinear post-Newtonian formulation: This plot,
similar to the above one, shows the difference in distances to the ECI center.
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2.3.2.2 Case 2

For this test, the goal was to increase the value of d as much as possible.
The parameters used for this test are d = 20 kilometres and t = 5 days.

x10°
1 T

— Newtonian
— linear post-Newtonian
——nonlinear post-Newtonian

0.8

X2
o
T
1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 37: Case 2 for GEO satellites with S2 being farther away from the earth than S1,
d = 20 kilometres, t = 5 days: Relative motion of S2 with respect to S1.
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Figure 38: Case 2 for GEO satellites with S2 being farther away from the earth than S1,
d = 20 kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible
to see the difference between solutions from different formulations.
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Figure 39: Case 2 for GEO satellites with S2 being farther away from the earth than S1,
d = 20 kilometres, t = 5 days: Absolute distance between S1 and S2.
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Figure 40: Case 2 for GEO satellites with S2 being farther away from the earth than S1,
d = 20 kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible
to see differences between solutions from different formulations.
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Figure 41: Case 2 for GEO satellites with S2 being farther away from the earth than S1,
d = 20 kilometres, t = 5 days: Correction provided from the nonlinear post—Newtonian
equations compared to the laser beam.
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Figure 42: Case 2 for GEO satellites with S2 being farther away from the earth than S1,
d = 20 kilometres, t = 5 days: The distance between the ECI positions of the Newtonian
and the nonlinear post—Newtonian solutions, both for S1 and S2, which almost completely
overlap.
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Figure 43: Case 2 for GEO satellites with S2 being farther away from the earth than S1,
d = 20 kilometres, t = 5 days: Difference in distances to the center of the Earth between
Newtonian and nonlinear post—Newtonian.
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Figure 44: Case 2 for GEO satellites with S2 being farther away from the earth than
S1, d = 20 kilometres, t = 5 days, and nonlinear post—Newtonian formulation: Distance
between ECI positions of S2 and S1 and the relative position of S2 with respect to SI.
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Figure 45: Case 2 for GEO satellites with S2 being farther away from the earth than S1,
d = 20 kilometres, t = 5 days, and nonlinear post—Newtonian formulation: This plot,
similar to the above one, shows the difference in distances to the ECI center.
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2.3.2.3 Case 3

For this test, the goal was to increase the value of ¢ as much as possible.
The parameters used for this test are d = 5 kilometres and ¢ = 25 days.
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Figure 46: Case 3 for GEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 25 days: Relative motion of S2 with respect to S1.
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Figure 47: Case 3 for GEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 25 days: Zoomed in version of the previous plot. It is now possible
to see the difference between solutions from different formulations.
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Figure 48: Case 3 for GEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 25 days: Absolute distance between S1 and S2.
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Figure 49: Case 3 for GEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 25 days: Zoomed in version of the previous plot. It is now possible
to see differences between solutions from different formulations.
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Figure 50: Case 3 for GEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 25 days: Correction provided from the nonlinear post—Newtonian
equations compared to the laser beam.
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Figure 51: Case 3 for GEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 25 days: The distance between the ECI positions of the Newtonian
and the nonlinear post—Newtonian solutions, both for S1 and S2, which almost completely
overlap.
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Figure 52: Case 3 for GEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, ¢t = 25 days: Difference in distances to the center of the Earth between
Newtonian and nonlinear post—Newtonian.
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Figure 53: Case 3 for GEO satellites with S2 being farther away from the earth than
S1, d = 5 kilometres, t = 25 days, and nonlinear post—Newtonian formulation: Distance
between ECI positions of S2 and S1 and the relative position of S2 with respect to SI.
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Figure 54: Case 3 for GEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, ¢ = 25 days, and nonlinear post—Newtonian formulation: This plot,
similar to the above one, shows the difference in distances to the ECI center.
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2.3.3 MEDO satellites with S2 being closer to the Earth than S1
2.3.3.1 Casel

In this test we showcase the solution for small values in both parameters.
The parameters used for this test are d = 5 kilometres and ¢t = 5 days.
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Figure 55: Case 1 for MEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, ¢t = 5 days: Relative motion of S2 with respect to S1.
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Figure 56: Case 1 for MEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible to see
the difference between solutions from different formulations.
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Figure 57: Case 1 for MEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, ¢t = 5 days: Absolute distance between S1 and S2.
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Figure 58: Case 1 for MEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible to see
differences between solutions from different formulations.
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Figure 59: Case 1 for MEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, t = 5 days: Correction provided from the nonlinear post-Newtonian equations
compared to the laser beam.
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Figure 60: Case 1 for MEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, ¢ = 5 days: The distance between the ECI positions of the Newtonian and
the nonlinear post—Newtonian solutions, both for S1 and S2, which almost completely
overlap.
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Figure 61: Case 1 for MEO satellites with S2 being closer to the earth than S1, d =
5 kilometres, ¢t = 5 days: Difference in distances to the center of the Earth between
Newtonian and nonlinear post—Newtonian.
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Figure 62: Case 1 for MEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, t = 5 days, and nonlinear post—Newtonian formulation: Distance between
ECI positions of S2 and S1 and the relative position of S2 with respect to S1.
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Figure 63: Case 1 for MEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, t = 5 days, and nonlinear post-Newtonian formulation: This plot, similar to
the above one, shows the difference in distances to the ECI center.
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2.3.3.2 Case 2

For this test, the goal was to increase the value of d as much as possible.
The parameters used for this test are d = 40 kilometres and ¢t = 2 days.
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Figure 64: Case 2 for MEO satellites with S2 being closer to the earth than S1, d = 40
kilometres, t = 2 days: Relative motion of S2 with respect to S1.
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Figure 65: Case 2 for MEO satellites with S2 being closer to the earth than S1, d = 40
kilometres, t = 2 days: Zoomed in version of the previous plot. It is now possible to see
the difference between solutions from different formulations.
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Figure 66: Case 2 for MEO satellites with S2 being closer to the earth than S1, d = 40
kilometres, ¢t = 2 days: Absolute distance between S1 and S2.
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Figure 67: Case 2 for MEO satellites with S2 being closer to the earth than S1, d = 40
kilometres, t = 2 days: Zoomed in version of the previous plot. It is now possible to see
differences between solutions from different formulations.
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Figure 68: Case 2 for MEO satellites with S2 being closer to the earth than S1, d = 40
kilometres, t = 2 days: Correction provided from the nonlinear post-Newtonian equations
compared to the laser beam.
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Figure 69: Case 2 for MEO satellites with S2 being closer to the earth than S1, d = 40
kilometres, ¢ = 2 days: The distance between the ECI positions of the Newtonian and
the nonlinear post—Newtonian solutions, both for S1 and S2, which almost completely

overlap.
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Figure 70: Case 2 for MEO satellites with S2 being closer to the earth than S1, d =
40 kilometres, ¢ = 2 days: Difference in distances to the center of the Earth between
Newtonian and nonlinear post—Newtonian.
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Figure 71: Case 2 for MEO satellites with S2 being closer to the earth than S1, d = 40
kilometres, t = 2 days, and nonlinear post—Newtonian formulation: Distance between
ECI positions of S2 and S1 and the relative position of S2 with respect to S1.
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Figure 72: Case 2 for MEO satellites with S2 being closer to the earth than S1, d = 40
kilometres, ¢t = 2 days, and nonlinear post-Newtonian formulation: This plot, similar to
the above one, shows the difference in distances to the ECI center.
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2.3.3.3 Case 3

For this test, the goal was to increase the value of ¢ as much as possible.
The parameters used for this test are d = 2 kilometres and ¢ = 15 days.
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Figure 73: Case 3 for MEO satellites with S2 being closer to the earth than S1, d = 2
kilometres, t = 15 days: Relative motion of S2 with respect to S1.
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Figure 74: Case 3 for MEO satellites with S2 being closer to the earth than S1, d = 2
kilometres, t = 15 days: Zoomed in version of the previous plot. It is now possible to see
the difference between solutions from different formulations.
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Figure 75: Case 3 for MEO satellites with S2 being closer to the earth than S1, d = 2
kilometres, ¢t = 15 days: Absolute distance between S1 and S2.
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Figure 76: Case 3 for MEO satellites with S2 being closer to the earth than S1, d = 2
kilometres, t = 15 days: Zoomed in version of the previous plot. It is now possible to see
differences between solutions from different formulations.
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Figure 77: Case 3 for MEO satellites with S2 being closer to the earth than S1, d = 2 kilo-
metres, t = 15 days: Correction provided from the nonlinear post-Newtonian equations
compared to the laser beam.
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Figure 78: Case 3 for MEO satellites with S2 being closer to the earth than S1, d = 2
kilometres, t = 15 days: The distance between the ECI positions of the Newtonian and
the nonlinear post—Newtonian solutions, both for S1 and S2, which almost completely
overlap.
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Figure 79: Case 3 for MEO satellites with S2 being closer to the earth than S1, d = 2
kilometres, ¢ = 15 days: Difference in distances to the center of the Earth between
Newtonian and nonlinear post—Newtonian.
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Figure 80: Case 3 for MEO satellites with S2 being closer to the earth than S1, d = 2
kilometres, ¢ = 15 days, and nonlinear post—Newtonian formulation: Distance between
ECI positions of S2 and S1 and the relative position of S2 with respect to S1.
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Figure 81: Case 3 for MEO satellites with S2 being closer to the earth than S1, d = 2
kilometres, ¢ = 15 days, and nonlinear post-Newtonian formulation: This plot, similar
to the above one, shows the difference in distances to the ECI center.
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2.3.4 MEO satellites with S2 being farther away from the Earth than S1
2.3.4.1 Casel

In this test we showcase the solution for small values in both parameters.
The parameters used for this test are d = 5 kilometres and ¢t = 5 days.
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Figure 82: Case 1 for MEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 5 days: Relative motion of S2 with respect to S1.
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Figure 83: Case 1 for MEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible
to see the difference between solutions from different formulations.
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Figure 84: Case 1 for MEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 5 days: Absolute distance between S1 and S2.
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Figure 85: Case 1 for MEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible
to see differences between solutions from different formulations.
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Figure 86: Case 1 for MEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 5 days: Correction provided from the nonlinear post—Newtonian
equations compared to the laser beam.
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Figure 87: Case 1 for MEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 5 days: The distance between the ECI positions of the Newtonian
and the nonlinear post—Newtonian solutions, both for S1 and S2, which almost completely
overlap.
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Figure 88: Case 1 for MEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 5 days: Difference in distances to the center of the Earth between
Newtonian and nonlinear post—Newtonian.
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Figure 89: Case 1 for MEO satellites with S2 being farther away from the earth than
S1, d = 5 kilometres, t = 5 days, and nonlinear post—Newtonian formulation: Distance
between ECI positions of S2 and S1 and the relative position of S2 with respect to S1.
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Figure 90: Case 1 for MEO satellites with S2 being farther away from the earth than
S1, d = 5 kilometres, ¢t = 5 days, and nonlinear post-Newtonian formulation: This plot,
similar to the above one, shows the difference in distances to the ECI center.
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2.3.4.2 Case 2

For this test, the goal was to increase the value of d as much as possible.
The parameters used for this test are d = 18 kilometres and ¢t = 2 days.
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Figure 91: Case 2 for MEO satellites with S2 being farther away from the earth than S1,
d = 18 kilometres, t = 2 days: Relative motion of S2 with respect to S1.
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Figure 92: Case 2 for MEO satellites with S2 being farther away from the earth than S1,
d = 18 kilometres, t = 2 days: Zoomed in version of the previous plot. It is now possible
to see the difference between solutions from different formulations.
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Figure 93: Case 2 for MEO satellites with S2 being farther away from the earth than S1,
d = 18 kilometres, t = 2 days: Absolute distance between S1 and S2.
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Figure 94: Case 2 for MEO satellites with S2 being farther away from the earth than S1,

d = 18 kilometres, t = 2 days: Zoomed in version of the previous plot. It is now possible
to see differences between solutions from different formulations.

40

T T T
—— nonlinear post-Newtonian correction
—— diameter laser beam spot

35

L L
4 6

L
8 10 12
t (sec)

Figure 95: Case 2 for MEO satellites with S2 being farther away from the earth than S1,

d = 18 kilometres, t = 2 days: Correction provided from the nonlinear post—Newtonian
equations compared to the laser beam.
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Figure 96: Case 2 for MEO satellites with S2 being farther away from the earth than S1,
d = 18 kilometres, t = 2 days: The distance between the ECI positions of the Newtonian
and the nonlinear post—Newtonian solutions, both for S1 and S2, which almost completely
overlap.
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Figure 97: Case 2 for MEO satellites with S2 being farther away from the earth than S1,
d = 18 kilometres, t = 2 days: Difference in distances to the center of the Earth between
Newtonian and nonlinear post—Newtonian.
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Figure 98: Case 2 for MEO satellites with S2 being farther away from the earth than
S1, d = 18 kilometres, t = 2 days, and nonlinear post—Newtonian formulation: Distance
between ECI positions of S2 and S1 and the relative position of S2 with respect to SI.
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Figure 99: Case 2 for MEO satellites with S2 being farther away from the earth than
S1, d = 18 kilometres, t = 2 days, and nonlinear post-Newtonian formulation: This plot,
similar to the above one, shows the difference in distances to the ECI center.
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2.3.4.3 Case 3

For this test, the goal was to increase the value of ¢ as much as possible.
The parameters used for this test are d = 2 kilometres and ¢ = 20 days.
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Figure 100: Case 3 for MEO satellites with S2 being farther away from the earth than
S1, d = 2 kilometres, t = 20 days: Relative motion of S2 with respect to S1.
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Figure 101: Case 3 for MEO satellites with S2 being farther away from the earth than
S1, d = 2 kilometres, t = 20 days: Zoomed in version of the previous plot. It is now
possible to see the difference between solutions from different formulations.
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Figure 102: Case 3 for MEO satellites with S2 being farther away from the earth than
S1, d = 2 kilometres, t = 20 days: Absolute distance between S1 and S2.
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Figure 103: Case 3 for MEO satellites with S2 being farther away from the earth than
S1, d = 2 kilometres, t = 20 days: Zoomed in version of the previous plot. It is now

possible to see differences between solutions from different formulations.
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Figure 104: Case 3 for MEO satellites with S2 being farther away from the earth than S1,
d = 2 kilometres, t = 20 days: Correction provided from the nonlinear post—Newtonian

equations compared to the laser beam.
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Figure 105: Case 3 for MEO satellites with S2 being farther away from the earth than S1,
d = 2 kilometres, t = 20 days: The distance between the ECI positions of the Newtonian
and the nonlinear post—Newtonian solutions, both for S1 and S2, which almost completely
overlap.
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Figure 106: Case 3 for MEO satellites with S2 being farther away from the earth than S1,
d = 2 kilometres, ¢t = 20 days: Difference in distances to the center of the Earth between
Newtonian and nonlinear post—Newtonian.
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Figure 107: Case 3 for MEO satellites with S2 being farther away from the earth than
S1, d = 2 kilometres, t = 20 days, and nonlinear post—Newtonian formulation: Distance
between ECI positions of S2 and S1 and the relative position of S2 with respect to SI.
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Figure 108: Case 3 for MEO satellites with S2 being farther away from the earth than
S1, d = 2 kilometres, t = 20 days, and nonlinear post-Newtonian formulation: This plot,
similar to the above one, shows the difference in distances to the ECI center.
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2.3.5 LEO satellites with S2 being closer to the Earth than S1
2.3.5.1 Casel

In this test we showcase the solution for small values in both parameters.
The parameters used for this test are d = 5 kilometres and ¢ = 5 hours.
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Figure 109: Case 1 for LEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, ¢t = 5 hours: Relative motion of S2 with respect to S1.
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Figure 110: Case 1 for LEO satellites with S2 being closer to the earth than S1, d =5
kilometres, ¢ = 5 hours: Zoomed in version of the previous plot. It is now possible to see
the difference between solutions from different formulations.
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Figure 111: Case 1 for LEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, ¢ = 5 hours: Absolute distance between S1 and S2.
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Figure 112: Case 1 for LEO satellites with S2 being closer to the earth than S1, d =5
kilometres, ¢ = 5 hours: Zoomed in version of the previous plot. It is now possible to see
differences between solutions from different formulations.
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Figure 113: Case 1 for LEO satellites with S2 being closer to the earth than S1, d = 5 kilo-
metres, t = 5 hours: Correction provided from the nonlinear post-Newtonian equations
compared to the laser beam.
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Figure 114: Case 1 for LEO satellites with S2 being closer to the earth than S1, d =5
kilometres, t = 5 hours: The distance between the ECI positions of the Newtonian and
the nonlinear post—Newtonian solutions, both for S1 and S2, which almost completely

overlap.
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Figure 115: Case 1 for LEO satellites with S2 being closer to the earth than S1, d =5
kilometres, ¢ = 5 hours: Difference in distances to the center of the Earth between

Newtonian and nonlinear post—Newtonian.
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Figure 116: Case 1 for LEO satellites with S2 being closer to the earth than S1, d =5
kilometres, ¢t = 5 hours, and nonlinear post—Newtonian formulation: Distance between

ECI positions of S2 and S1 and the relative position of S2 with respect to S1.
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Figure 117: Case 1 for LEO satellites with S2 being closer to the earth than S1, d = 5
kilometres, ¢ = 5 hours, and nonlinear post—Newtonian formulation: This plot, similar to

the above one, shows the difference in distances to the ECI center.
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2.3.5.2 Case 2

For this test, the goal was to increase the value of d as much as possible.
The parameters used for this test are d = 25 kilometres and ¢ = 3 hours.
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Figure 118: Case 2 for LEO satellites with S2 being closer to the earth than S1, d = 25
kilometres, t = 3 hours: Relative motion of S2 with respect to S1.
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Figure 119: Case 2 for LEO satellites with S2 being closer to the earth than S1, d = 25
kilometres, ¢ = 3 hours: Zoomed in version of the previous plot. It is now possible to see
the difference between solutions from different formulations.
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Figure 120: Case 2 for LEO satellites with S2 being closer to the earth than S1, d = 25
kilometres, ¢t = 3 hours: Absolute distance between S1 and S2.
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Figure 121: Case 2 for LEO satellites with S2 being closer to the earth than S1, d = 25
kilometres, ¢ = 3 hours: Zoomed in version of the previous plot. It is now possible to see
differences between solutions from different formulations.
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Figure 122: Case 2 for LEO satellites with S2 being closer to the earth than S1, d =
25 kilometres, t = 3 hours: Correction provided from the nonlinear post—Newtonian
equations compared to the laser beam.
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Figure 123: Case 2 for LEO satellites with S2 being closer to the earth than S1, d = 25
kilometres, t = 3 hours: The distance between the ECI positions of the Newtonian and
the nonlinear post—Newtonian solutions, both for S1 and S2, which almost completely
overlap.
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Figure 124: Case 2 for LEO satellites with S2 being closer to the earth than S1, d = 25
kilometres, ¢ = 3 hours: Difference in distances to the center of the Earth between
Newtonian and nonlinear post—Newtonian.

78



d (cm)

1 1 1 1
0 2000 4000 6000 8000 10000 12000
t (sec)

Figure 125: Case 2 for LEO satellites with S2 being closer to the earth than S1, d = 25
kilometres, ¢t = 3 hours, and nonlinear post—Newtonian formulation: Distance between
ECI positions of S2 and S1 and the relative position of S2 with respect to S1.
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Figure 126: Case 2 for LEO satellites with S2 being closer to the earth than S1, d = 25
kilometres, ¢ = 3 hours, and nonlinear post—Newtonian formulation: This plot, similar to
the above one, shows the difference in distances to the ECI center.
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2.3.5.3 Case 3

For this test, the goal was to increase the value of ¢ as much as possible.
The parameters used for this test are d = 3 kilometres and ¢ = 72 hours.
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Figure 127: Case 3 for LEO satellites with S2 being closer to the earth than S1, d = 3
kilometres, t = 72 hours: Relative motion of S2 with respect to S1.
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Figure 128: Case 3 for LEO satellites with S2 being closer to the earth than S1, d = 3
kilometres, t = 72 hours: Zoomed in version of the previous plot. It is now possible to
see the difference between solutions from different formulations.
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Figure 129: Case 3 for LEO satellites with S2 being closer to the earth than S1, d = 3
kilometres, ¢t = 72 hours: Absolute distance between S1 and S2.

81



x 10°
;
— Newtonian
10311 —— nonlinear post-Newtonian 7
1.029 — — —
-
-
-
///
—
///
///
1.028 - B
-
-
-
///
—
— —
£ -
L _—
0 1.027 ~ —
-
-
-
-
-
-
-
///
1.026 _ B
_
~
///
//
1025 B
1.024 | | | | L
2.582 2.583 2.584 2.585 2.586 2.587 2.588 2.589 2.59 2.591
t (sec) X 10°
earth than S1, d = 3

Figure 130: Case 3 for LEO satellites with S2 being closer to the
kilometres, t = 72 hours: Zoomed in version of the previous plot. It is now possible to

see differences between solutions from different formulations.
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Figure 131: Case 3 for LEO satellites with S2 being closer to the earth than S1, d =
3 kilometres, ¢ = 72 hours: Correction provided from the nonlinear post—Newtonian

equations compared to the laser beam.
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Figure 132: Case 3 for LEO satellites with S2 being closer to the earth than S1, d = 3
kilometres, ¢t = 72 hours: The distance between the ECI positions of the Newtonian and
the nonlinear post—Newtonian solutions, both for S1 and S2, which almost completely
overlap.
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Figure 133: Case 3 for LEO satellites with S2 being closer to the earth than S1, d = 3
kilometres, ¢ = 72 hours: Difference in distances to the center of the Earth between
Newtonian and nonlinear post—Newtonian.
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Figure 134: Case 3 for LEO satellites with S2 being closer to the earth than S1, d = 3
kilometres, t = 72 hours, and nonlinear post—-Newtonian formulation: Distance between
ECI positions of S2 and S1 and the relative position of S2 with respect to S1.
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Figure 135: Case 3 for LEO satellites with S2 being closer to the earth than S1, d = 3
kilometres, t = 72 hours, and nonlinear post-Newtonian formulation: This plot, similar
to the above one, shows the difference in distances to the ECI center.
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2.3.6 LEO satellites with S2 being farther away from the Earth than S1
2.3.6.1 Casel

In this test we showcase the solution for small values in both parameters.
The parameters used for this test are d = 5 kilometres and ¢ = 5 hours.

x10"

T

Newtonian

linear post—Newtonian
——nonlinear post-Newtonian

05—

X2

Figure 136: Case 1 for LEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 5 hours: Relative motion of S2 with respect to S1.
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Figure 137: Case 1 for LEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 5 hours: Zoomed in version of the previous plot. It is now possible
to see the difference between solutions from different formulations.
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Figure 138: Case 1 for LEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, ¢ = 5 hours: Absolute distance between S1 and S2.
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Figure 139: Case 1 for LEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 5 hours: Zoomed in version of the previous plot. It is now possible
to see differences between solutions from different formulations.
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Figure 140: Case 1 for LEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 5 hours: Correction provided from the nonlinear post—Newtonian
equations compared to the laser beam.
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Figure 141: Case 1 for LEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 5 hours: The distance between the ECI positions of the Newtonian
and the nonlinear post—Newtonian solutions, both for S1 and S2, which almost completely

overlap.
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Figure 142: Case 1 for LEO satellites with S2 being farther away from the earth than S1,
d = 5 kilometres, t = 5 hours: Difference in distances to the center of the Earth between

Newtonian and nonlinear post—Newtonian.

88



25

d (cm)

18000

14000 16000

0 2000 4000 6000 8000 10000 12000
t (sec)

Figure 143: Case 1 for LEO satellites with S2 being farther away from the earth than
S1, d = 5 kilometres, t = 5 hours, and nonlinear post—Newtonian formulation: Distance
between ECI positions of S2 and S1 and the relative position of S2 with respect to S1.
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Figure 144: Case 1 for LEO satellites with S2 being farther away from the earth than
S1, d = 5 kilometres, t = 5 hours, and nonlinear post-Newtonian formulation: This plot,

similar to the above one, shows the difference in distances to the ECI center.
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2.3.6.2 Case 2

For this test, the goal was to increase the value of d as much as possible.
The parameters used for this test are d = 22 kilometres and ¢ = 3 hours.
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Figure 145: Case 2 for LEO satellites with S2 being farther away from the earth than S1,
d = 22 kilometres, t = 3 hours: Relative motion of S2 with respect to S1.
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Figure 146: Case 2 for LEO satellites with S2 being farther away from the
S1, d = 22 kilometres, t = 3 hours: Zoomed in version of the previous plot.
possible to see the difference between solutions from different formulations.
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Figure 147: Case 2 for LEO satellites with S2 being farther away from the earth than S1,

d = 22 kilometres, t = 3 hours: Absolute distance between S1 and S2.

91



x 10’
3.1388 W

:
— Newtonian
—nonlinear post-Newtonian

3.1388 — -

3.1388 — -

3.1388 — —

3.1388 — —

3.1388 .

D (cm)

3.1388 — i

3.1388 — — —

3.1388 — _— -

3.1388 — *

3.1388 = | 1 1 1 1 1 1 |
1.0789 1.0789 1.0789 1.0789 1.0789 1.0789 1.0789
t (sec) x 10"

Figure 148: Case 2 for LEO satellites with S2 being farther away from the earth than
S1, d = 22 kilometres, t = 3 hours: Zoomed in version of the previous plot. It is now
possible to see differences between solutions from different formulations.
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Figure 149: Case 2 for LEO satellites with S2 being farther away from the earth than S1,
d = 22 kilometres, t = 3 hours: Correction provided from the nonlinear post—Newtonian
equations compared to the laser beam.

92



—8S1
—S2

L L L L L
0
0 2000 4000 6000 8000 10000 12000
t (sec)

Figure 150: Case 2 for LEO satellites with S2 being farther away from the earth than S1,
d = 22 kilometres, t = 3 hours: The distance between the ECI positions of the Newtonian
and the nonlinear post—Newtonian solutions, both for S1 and S2, which almost completely

overlap.
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Figure 151: Case 2 for LEO satellites with S2 being farther away from the earth than
S1, d = 22 kilometres, t = 3 hours: Difference in distances to the center of the Earth

between Newtonian and nonlinear post—Newtonian.
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Figure 152: Case 2 for LEO satellites with S2 being farther away from the earth than
S1, d = 22 kilometres, t = 3 hours, and nonlinear post—-Newtonian formulation: Distance
between ECI positions of S2 and S1 and the relative position of S2 with respect to S1.
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Figure 153: Case 2 for LEO satellites with S2 being farther away from the earth than S1,
d = 22 kilometres, t = 3 hours, and nonlinear post-Newtonian formulation: This plot,
similar to the above one, shows the difference in distances to the ECI center.
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2.3.6.3 Case 3

For this test, the goal was to increase the value of ¢ as much as possible.
The parameters used for this test are d = 3 kilometres and ¢ = 36 hours.
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Figure 154: Case 3 for LEO satellites with S2 being farther away from the earth than S1,
d = 3 kilometres, t = 36 hours: Relative motion of S2 with respect to S1.
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Figure 155: Case 3 for LEO satellites with S2 being farther away from the earth than
S1, d = 3 kilometres, ¢ = 36 hours: Zoomed in version of the previous plot. It is now
possible to see the difference between solutions from different formulations.
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Figure 156: Case 3 for LEO satellites with S2 being farther away from the earth than S1,
d = 3 kilometres, ¢ = 36 hours: Absolute distance between S1 and S2.
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Figure 157: Case 3 for LEO satellites with S2 being farther away from the earth than
S1, d = 3 kilometres, ¢ = 36 hours: Zoomed in version of the previous plot. It is now
possible to see differences between solutions from different formulations.
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Figure 158: Case 3 for LEO satellites with S2 being farther away from the earth than S1,
d = 3 kilometres, t = 36 hours: Correction provided from the nonlinear post—Newtonian
equations compared to the laser beam.
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Figure 159: Case 3 for LEO satellites with S2 being farther away from the earth than S1,
d = 3 kilometres, t = 36 hours: The distance between the ECI positions of the Newtonian
and the nonlinear post—Newtonian solutions, both for S1 and S2, which almost completely
overlap.
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Figure 160: Case 3 for LEO satellites with S2 being farther away from the earth than
S1, d = 3 kilometres, t = 36 hours: Difference in distances to the center of the Earth
between Newtonian and nonlinear post—Newtonian.
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Figure 161: Case 3 for LEO satellites with S2 being farther away from the earth than
S1, d = 3 kilometres, t = 36 hours, and nonlinear post—-Newtonian formulation: Distance
between ECI positions of S2 and S1 and the relative position of S2 with respect to S1.
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Figure 162: Case 3 for LEO satellites with S2 being farther away from the earth than S1,
d = 3 kilometres, t = 36 hours, and nonlinear post—Newtonian formulation: This plot,
similar to the above one, shows the difference in distances to the ECI center.
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2.4 Conclusions

The simulations carried out in the present work, suggest to conclude that in all considered
scenarios, where GEO, MEO and LEO satellites are involved, the post-Newtonian linear
equations for the relative motion are not appropriate to model the two—way laser links
from the APT systems to the destination objects at practically any instant. The reason
is that the absence of the nonlinear terms modifies the behaviour of the solutions signifi-
cantly, even at the early stages of the integrations, cf. Figures 1-2, 10-11, 19-20, 28-29,
37-38, 46-47, 55-56, 64-65, 73-74, 82-83, 91-92, 100-101, 109-110, 118-119, 127-128,
136-137, 145-146, and 154-155.

In fact, the solutions of the nonlinear equations appear to be more reliable than those of
the linear equations when computing the post—Newtonian corrections to the Newtonian
solutions, because their size fits rather well with the size of the gravitational corrections
included in the post-Newtonian approximation of the Schwarzschild field for the neigh-
borhood of the Earth (). On the other hand, the contributions of the nonlinear terms
amount to quantities that increase, along with the distance from the APT systems to
the targets, as the integration time increases. In fact, these quantities are measurable at
practically any instant prefixed to perform the link procedure, so that they are suscep-
tible of being taken into account, at least within the intervals considered for d in each
case. The reason is that the diameter of the spot of the laser beam supposedly used by
the systems stays smaller than the size of the corrections from instants very close to the
initial integration instant, see Figures 5, 14, 23, 32, 41, 50, 59, 68, 77, 86, 95, 104, 113,
122, 131, 140, 149, and 158.

Finally, it is clear that the curved structure of space around the Earth described by the
post—-Newtonian model in (IJ) manifests itself in the post-Newtonian nonlinear equations
for the relative motion. In fact, unlike for the Newtonian equations, there are significant
differences in all the scenarios considered here between the predictions obtained with these
equations and those predicted by taking the differences between the post-Newtonian ECI
orbital equations for the destination objects and the APT systems, see Figures 8-9, 17—
18, 26-27, 35-36, 44-45, 53-54, 62-63, 71-72, 80-81, 89-90, 98-99, 107-108, 116-117,
125-126, 134-135, 143-144, 152-153, and 161-162.
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3 Stationary Wigner Equation

3.1 Introduction

This part of the thesis is dedicated to the numerical simulation of the stationary Wigner
equation, in a kinetic formulation from quantum mechanics.

The problem in its standard form is an Index-2 differential algebraic equation (DAE).
Here, standard form means that v = 0 is one of the discrete velocities and the aim is to
find the associated solution. If v # 0, the problem becomes an easily solvable ordinary
differential equation (ODE).

For the numerical tests, we therefore, introduce the parameter v := ¢, which will deviate
the problem away from the standard form. By letting ¢ — 0, we shall observe how the
solution of the ODE converges to the limit solution of a DAE.

After the first series of tests, we will introduce an additional parameter, i, and simulate
the problem again. The purpose of the second simulation is to understand the preliminary
results and validate the conclusions drawn from the first series of tests. Although, we
could gain some inside in the problem structure, further investigations are still required.

3.2 Analytical problem and its discretization
The continuous equation has the following form [24]:

vwg(z,v) — OV]w(z,v) =0, 0<z<L, veR,

where
OV]w(z,v) /(W:L’n (x,n) exp(ivn)dn,

oV (x,m) =i [V (:c—l—g) —V(az—gﬂ,

. 1 :
w(x,n) = Nt /Rw(:c,v) exp(—ivn)dv.

In the first step, we discretize the operator © and obtain

= wpa; k(x), jEZ,

keZ

where

TN
a;(x oV (x,n)ex d
i) 2770/ ) p( o ) "’

The parameter 7, specifies the finite support of the potential V', which we focus on
next. In Figure [[63] one can see the potential V(z) = voX[-1,7) which was chosen for the
numerical simulation. Since 7y is the bandwidth of the potential, it follows that ny = 21.
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Figure 163: Image of the potential V' used for the numerical tests.

This potential results in V" of the form

=0 a0 (++2) e (o 2)]

From the above definitions, after few simplifying steps, we obtain the following represen-
tation for a;,

aj(a:):7 —cos[jw(l—i-;];)}—i-(—l)j, —no < x < 0. )

7o

o cos [jw <1+2—x>} — (=1, 0<x<n;,

This result allows us to reformulate the original problem, with L = 1y = 2[. The new
equation is

Tw,(z,v) — A(x)w(z,v) =0, —L<zx<lL, (4)

with w(z) being now a vector valued function. The length of this vector is defined by
the set J, which in our simulations is either J = {-1,0,1,2} or J = {—2,-1,0,1, 2, 3}.
In Figure 164, the discretization of w is shown, The arrows indicate where the boundary
conditions are formulated.
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Figure 164: Discretization of w for J = {—1,0,1,2}.

Clearly, after fixing J, we obtain either

(

’w72(.’17),

w_1(x), w_q(x),

_ wo(l‘), _ wo(l‘),

w(z) = wi (z), or w(z)= w (z),

wa(z), wa(z),

\ U}3(.T),

where the matrix T is defined as

T = diag(v;)je; € RV oy = @

Here, one can see how the parameter £, mentioned in the introduction, enters the system.
As already said, for e = 0 the problem is a system of DAEs, while for € > 0 it is a system
of ODEs, linear in each case.

The matrix A, a discretization of ©, is a skew-symmetric, Toeplitz matrix, which means
ajk(x) = aj_(z). The values for a;(z) are given in (3]).

To summarize all this, we will show how the complete system looks for the two cases of J.
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First, J = {—1,0,1,2}

(=l-g)m 0 0 0 dw_1
10 dx
0 == 0 duy
10 dx .
(175)7‘— dw1
0 0 " 0 o
(2—e)m dwa
0 0 0 = e
ap(xz) a_1(x) a_o(z) a_sz(x) w_q
ai(z) ag(z) a_1(x) a_s(x) wo 0
as(z) ai(z) ag(r) a_i(x) w1 ’
az(x) as(x) ai(x) ao(x) Wy
and for J = {-2,-1,0,1,2,3}
E2r 9 00 0 0 duw_s
10 dx
e 0 0 oy
70 dx
0 0 —< 0 0 duwg
10 dx .
0 o 0o &g 0 dwy
1o dx
0 0o 0 o0 &I duy
o dz
0 0 0 0 0o B e
0

Finally, we specify the boundary conditions,

3.3 Numerical algorithm

In this section, we specify the solution algorithm, which is a standard polynomial collo-
cation methods known from the ODE context, and its modification suitable to deal with
higher index DAEs.
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3.3.1 Collocation method for systems of ODEs
In order to specify the collocation method [25], we first introduce a mesh
mi={a=ty <ty <...<t; <ty <...<ty=>b},

with the step sizes h; :=t;;1 —t;, i =0,..., N —1. In each subinterval [t;,t;,1], we insert
m collocation points 7, :=t;+h;pr, k=1,...,m,using m values 0 < p; < ... < p,, < 1,
see Figure [163]

Tik
| I T T R R |
| | I I 1 1 | |
a =ty t; tig1 b=tn
hy

Figure 165: Computational grid, including all mesh and collocation points.

As a solution ansatz, we choose a globally continuous piecewise polynomial function which
reduces to a polynomial of the degree < m in each subinterval of the mesh. In order to
calculate the coefficients in the ansatz, we require that the ODE system is exactly (up to
the round-off errors) satisfied in each collocation point and satisfies the initial /boundary
conditions.

3.3.2 Least Square Collocation method for DAEs

Since, we intend to solve an Index-2 DAE system which is ill-posed, the above standard
collocation is not a method of choice, since it shows a divergent behaviour in general.
Therefore, we designed a variant of the collocation [26], which shows a convergent be-
haviour for higher index DAEs. The idea of this modification is as follows: In addition
to the collocation points specified by the set {p;}7_;, we introduce new collocation points
defined by {o;}7_; € [0, 1] and we require the DAE system to be satisfied exactly at those
additional points as well. Clearly, the resulting discrete system is overdetermined and
will be solved in the least squares sense.
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Figure 166: Standard collocation points and additional points for the least squares variant

of the collocation.

The choice of the parameters {o;}7_; € [0, 1] is somewhat free and so, we decided for the

the following: ¢ = m + 1,

p1 L
DR 'L—l,
o; = %, 1<i<m,
1 .
—p’”2+, i=m+ 1.

3.4 First results

The results documented in this chapter were calculated with N = 200 equidistant grid
points and m = 5 Gaussian collocation points. Our aim here is to observe how the

solution changes when ¢ — 0.
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341 J={-2-1,0,1,2 3}

3.4.1.1 Solution component w_,
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Figure 167: Solution component w_5 for € varying between le — 1 and le — 3.
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Figure 169: Solution component w_, for € varying between le — 5 and le — 7.
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Figure 170: Solution component w_5 for € varying between le — 7 and le — 9.

25
€
—
€4
— 8
—— 15
30
20 g60
€100
15
4
05
0
05 | | | | | | | | | J
21 08 —06 04 0.2 0 02 04 06 08 1

Figure 171: Solution component w_, for € varying between le — 9 and le — 11.
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Figure 173: Solution component w_5 for € varying between le — 13 and 0.
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3.4.1.2 Solution component w_;
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Figure 174: Solution component w_; for € varying between le — 1 and le — 3.
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Figure 175: Solution component w_; for € varying between le — 3 and le — 5.
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Figure 176: Solution component w_; for € varying between le — 5 and le — 7.
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Figure 177: Solution component w_; for € varying between le — 7 and le — 9.
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Figure 178: Solution component w_; for € varying between le — 9 and le — 11.
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Figure 180: Solution component w_; for € varying between le — 13 and 0.
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3.4.1.3 Solution component w
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Figure 181: Solution component wy for € varying between le — 1 and le — 3.
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Figure 182: Solution component wy for € varying between le — 3 and le — 5.
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Figure 183: Solution component wy for € varying between le — 5 and le — 7.
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Figure 184: Solution component wq for € varying between le — 7 and le — 9.
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Figure 185: Solution

component wy for € varying between le — 9 and le — 11.
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Figure 186: Solution component wq for € varying between le — 11 and le — 13.
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Figure 187: Solution component wy for € varying between le — 13 and 0.
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3.4.1.4 Solution component w;
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Figure 188: Solution component w; for € varying between le — 1 and le — 3.
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Figure 189: Solution component w; for € varying between le — 3 and le — 5.
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Figure 190: Solution component w; for € varying between le — 5 and le — 7.
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Figure 191: Solution component w; for € varying between le — 7 and le — 9.
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Figure 192: Solution component w; for € varying between le — 9 and le — 11.
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Figure 194: Solution component w; for € varying between le — 13 and 0.
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3.4.1.5 Solution component w,
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Figure 195: Solution component wy for € varying between le — 1 and le — 3.
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Figure 197: Solution component wy for € varying between le — 5 and le — 7.
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Figure 198: Solution component wy for € varying between le — 7 and le — 9.
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Figure 199: Solution component wy for € varying between le — 9 and le — 11.
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Figure 201: Solution component wy for € varying between le — 13 and 0.
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3.4.1.6 Solution component ws
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Figure 202: Solution component w3 for € varying between le — 1 and le — 3.
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Figure 203: Solution component w3 for € varying between le — 3 and le — 5.
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Figure 204: Solution component ws for € varying between le — 5 and le — 7.

128



02—

o - I S S
_02b
_04l
_osL
_o8l
e
{
-12F
€
—
—— o4
—— 8
R T \
—— 30 \
——— 60
€100
L gle— | | | | | | | |
=1 -0.8 -0.6 -0.4 -0.2 0 02 0.4 06 08 1

Figure 205: Solution component w3 for € varying between le — 7 and le — 9.
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Figure 206: Solution

component ws for € varying between le — 9 and le — 11.
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Figure 207: Solution component ws for € varying between le — 11 and le — 13.
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Figure 208: Solution component ws for € varying between le — 13 and 0.
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342 J={-1,01,2}

3.4.2.1 Solution component w_;
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Figure 209: Solution component w_; for € varying between le — 1 and le — 3.
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Figure 211: Solution component w_; for € varying between le — 5 and le — 7.
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Figure 213: Solution component w_; for € varying between le — 9 and le — 11.
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Figure 214: Solution component w_; for € varying between le — 11 and 0.
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3.4.2.2 Solution component w
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Figure 215: Solution component wy for € varying between le — 1 and le — 3.
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Figure 216: Solution component wq for € varying between le — 3 and le — 5.
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Figure 217: Solution component wy for € varying between le — 5 and le — 7.
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Figure 218: Solution component wy for € varying between le — 7 and le — 9.
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Figure 219: Solution component wq for € varying between le — 9 and le — 11.
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Figure 220: Solution component wq for € varying between le — 11 and 0.
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3.4.2.3 Solution component w;
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Figure 221: Solution component w; for € varying between le — 1 and le — 3.
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Figure 222: Solution component w; for € varying between le — 3 and le — 5.
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Figure 223: Solution component w; for € varying between le — 5 and le — 7.
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: Solution component w; for € varying between le — 7 and le — 9.
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Figure 225: Solution component w; for € varying between le — 9 and le — 11.
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Figure 226: Solution component w; for € varying between le — 11 and 0.
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3.4.2.4 Solution component w,
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Figure 227: Solution component wy for € varying between le — 1 and le — 3.
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Figure 228: Solution component wy for € varying between le — 3 and le — 5.
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Figure 229: Solution component wy for € varying between le — 5 and le — 7.
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Figure 230: Solution component wy for € varying between le — 7 and le — 9.
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Figure 231: Solution component wy for € varying between le — 9 and le — 11.
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Figure 232: Solution component wy for € varying between le — 11 and 0.

3.5 First observations

Generally, we see that the solution behavior as a function of ¢ is kind of chaotic. First,

when e becomes very small, we observe continuous changes in the solution behavior, cf.
the respective figures.

For these tiny values of €, we are also able to observe that w_; = w; which is supported
by the theory. However, the more relevant solution property are the peaks which are
clearly visible in all plots for € very close to zero. Interestingly, these peaks occur at
somewhat fixed z-values.

e For J={-2,-1,0,1,2,3}, they occur at = = —%, —=, =, and Z;
e For J ={-1,0,1,2}, they occur at z = —3 and

To more precisely investigate and possibly explain this solution behavior, we design
another series of tests, see following chapter.
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3.6 Analytical results
Let us again consider the system (),
Tw,(z,v) — A(x)w(z,v) =0, 0<z<L,

where w(z,v) = (wj(x,v),j € J)T. For the analytical background see Chapter 4 [24].
The DAE system () is called tractable or solvable if the determinant

det(A\T — A)

does not vanish identically in A € C. Whether this condition holds, crucially depends on
J and on the potential V. Concerning solvability, two situations can occur:

(a) If the DAE is not tractable/solvable, its solutions are not unique.

(b) If the DAE is tractable/solvable, we still have a difficult situation. This is due to
too many boundary conditions, which makes the BVP not solvable, in general.

Let us assume that the DAE is tractable. The problem with too many boundary condi-
tions does formally not constitute any difficulty, since the algorithm which we apply is
solving the resulting discrete system in the least square sense.

We now calculate det(A\T" — A) for J ={—1,0, 1,2} to find out when it is not vanishing,

A_y ai(x)  as(z)  az(x)
—ay () 0 aj(x) aq(x)
—as(z) —ar(x) Ay a(x)]
—az(z) —as(x) —ai(z) vy

det(\T — A) =

After some simplifications, we obtain

det(A\T — A) = — XNay(2)?v? + ay(2)* + ag(2)? — 2a1(2)%as(x)?
+ ay(z)%as(2)? + 20, (z)*as(x) — 2a1(x)ay(x)*as(z).

For ay(x) # 0, the above expression does not vanish identically in A € C.

Let us also try a different approach — find out index of the problem. This is done by
differentiating the algebraic constraint as long as necessary to obtain an explicit expression
for wy. The algebraic constraint reads:

0 =as(x)ws(z) + ay(z)wy(x) — ar(x)w_1(x)
and after one differentiation, we have

0 =a3(z)ws() + a(w)wy(w) + @y (x)wr(x) + ar (v)w' (z) — ay ()w-1(x) — ar(z)w’(2).

Now, we rewrite the other equations,

2wh(x) +ai(z)wi(z) +ax(x)wo(r) +as(r)w_i(z) =0, (=
wi(z)  —ai(z)w(z) +ai(z)wo(z) +az(@)w_i(z) =0, |-(—
—wy(z) —az()wa(x) —ax(x)wi(zr) —ai(z)wo(x) =0, |(—
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and use them to simplify (),

a2($)2w0($)

2

— (ah() + a1 (@)ag (x) + ax (2)2)ws() + ( (2) + w) w (=)

- (ag () + a1 (z)as(z) + M) w_i(2).

Since this is an explicit form for wg(x), the DAE system is an Index-2 problem (we have
differentiated one time). Note, that this only holds for ay(x) # 0

These considerations motivate to closer investigate the properties of as(z). Let us begin
by plotting this function, cf. Figure 233
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Figure 233: Plot of the fuction as(x).

First, we note that as(x) is zero at exactly those points where we observed peaks in the
first series of results. This observation motivated the design of the second series of test
runs, see next section.

3.7 Second results

Our aim was to eliminate the solution peaks, by manually removing the zeros of ay(x).
This can be easily done by introducing a new parameter, ;, which we use to modify the
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function as(z):
ay(x) = as(z) + p.

As we can see in the following plot, where p = 1, function af has no zeros, except the
one at x = 0.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 234: Plot of the function ab(x), p = 1.

Clearly, for ;1 = 1 we can see a large change in ay(x), but as before for e, we will consider
i — 0. The values for p were chosen as p = 1, 0.1, 0.01, 0.001, 0.0001, and ¢ were
varying between le — 9 and 0.
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3.7.1 Solution for =1
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Figure 235: p = 1: Solution component w_; for € varying from le — 9 and le — 11.
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Figure 236: p = 1: Solution component w_; for € varying from le — 11 to 0.
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Figure 237: ;o = 1: Solution component wy for € varying from le — 9 to le — 11.
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Figure 238: ;o = 1: Solution component wy for € varying from le — 11 to 0.
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Figure 239: ;= 1: Solution component w; for € varying from le — 9 to le — 11.
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Figure 240: ;= 1: Solution component w; for € varying from le — 11 to 0.
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Figure 241: = 1: Solution component wy for € varying from le — 9 to le — 11.
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Figure 242: ;4 = 1: Solution component wy for € varying from le — 11 to 0.
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3.7.2 Solution for ;= 0.1
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Figure 243: p = 0.1: Solution component w_; for £ varying from le — 9 to le — 11.
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Figure 244: y = 0.1: Solution component w_; for ¢ varying from le — 11 to 0.
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Figure 245: = 0.1: Solution component wy for € varying from le — 9 to le — 11.
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Figure 246: ;= 0.1: Solution component wy for € varying from le — 11 to 0.
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Figure 247: = 0.1: Solution component w; for € varying from le — 9 to le — 11.

12
€
—e2
— 4
——eB
———#15
11 ——e30
€60
0
081
06—
041
021
0 _ _
-0.2 | | | | | | | | | |
=1 -0.8 -0.6 -05 -04 -0.2 0 0.2 04 05 06 0.8 1

Figure 248: ;1 = 0.1: Solution component w; for € varying from le — 11 to 0.
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Figure 250: = 0.1: Solution component wy for € varying from le — 11 to 0.
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3.7.3 Solution for ;= 0.01
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Figure 252: p = 0.01: Solution component w_; for € varying from le — 11 to 0.

158



e
s
—— 8
g5
250 @30 \
) ‘
2100 ‘

I
201 |

A

-1 -0.8 -06 -05 -04 -0.2 0 0.2 0.4 0.5 0.6 0.8 1

Figure 253: = 0.01: Solution component wy for € varying from le — 9 to le — 11.
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Figure 254: p = 0.01: Solution component w, for € varying from le — 11 to 0.
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Figure 256: p = 0.01: Solution component w; for € varying from le — 11 to 0.
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Figure 258: = 0.01: Solution

component wy for € varying from le — 11 to 0.
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3.7.4 Solution for ;= 0.001
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Figure 259: = 0.001: Solution component w_; for ¢ varying from le — 9 to 1le — 11.
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Figure 260: p = 0.001: Solution component w_; for € varying from le — 11 to 0.
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Figure 261: p = 0.001: Solution component wy for € varying from le — 9 to le — 11.
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Figure 262: ;= 0.001: Solution component wy for € varying from le — 11 to 0.
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Figure 263: = 0.001: Solution component w; for € varying from le — 9 to le — 11.
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Figure 264: ;= 0.001: Solution component w; for € varying from le — 11 to 0.
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Figure 265: p = 0.001: Solution component ws for € varying from le — 9 to le — 11.
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Figure 266: 1 = 0.001: Solution component ws for € varying from le — 11 to 0.
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3.7.5 Solution for ;= 0.0001
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Figure 267: p = 0.0001: Solution component w_; for ¢ varying from le — 9 to le — 11.
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Figure 268: = 0.0001: Solution component w_; for £ varying from le — 11 to 0.
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Figure 269: = 0.0001: Solution component wq for € varying from le — 9 to le — 11.
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Figure 270: p = 0.0001: Solution component wy for € varying from le — 11 to 0.
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Figure 271: p = 0.0001: Solution component w; for € varying from le — 9 to le — 11.
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Figure 272: = 0.0001: Solution component w; for € varying from le — 11 to 0.
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Figure 273: = 0.0001: Solution component wy for € varying from le — 9 to le — 11.
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Figure 274: = 0.0001: Solution component wy for € varying from le — 11 to 0.
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3.8 Conclusions

Obviously, although the behaviour of the solutions slightly changed after introducing the
1 parameter, their fundamental structure, especially the peaks, did not alter much. Since
the analytical insights are still being developed, we have to refer to future studies aiming
at explaining the observations made in the experimental preliminary phase documented

here.
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