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Abstract
Mass balancing is a widely used tool for data quality control in wastewater treatment. It can effectively detect 
systematic errors in data. To overcome the limitations of the mean balancing error as a measure of data quality
a well established method for statistical process control (the CUSUM chart) is adopted for application on the 
error vector of balancing data. Two examples show how time periods with stable low mass balancing errors 
can be detected by the method. The detectability of such time periods depends on the variability of the 
balancing error which is an important measure for the precision of the data.
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INTRODUCTION
On  wastewater  treatment  plants  (WWTP)  data  is  routinely  collected  for  reasons  of  treatment
performance evaluation as well  as process monitoring and control.  The collected data can be a
valuable  source of  information for  process  redesign,  treatment  plant  extension or  simulation.  It
usually provides a long term record of the plant performance and is readily available to the engineer.
Typically, concentrations of in- and effluents are measured in 24h composite samples and flows are
recorded as daily sums. The advantage of routine data is their availability for long time periods at no
extra  cost.  In  contrast,  dedicated  measurement  campaigns  might  provide  a  higher  sampling
frequency but are costly in terms of time and labor and can only cover a comparably short period of
time.

To serve as a basis for further engineering tasks, the quality of the routine collected data has to be
controlled. Simple or advanced plausibility tests as well as mass balancing are generally applied to
meet this requirement (Rieger et al., 2010). Plausibility testing is necessary but not sufficient in
terms of redundancy. Plausible values can still be (systematically) wrong and sometimes right values
might  not be plausible.  Redundant verification is  therefore necessary.  Mass balancing can often
effectively detect systematic errors in data. Thomann Haller (2002) showed a possibility of testing
the significance of the mean balancing error.

Basics of mass balancing
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Typical compounds for mass balancing include water H2O (as flow), and elemental fluxes such as
chemical  oxygen demand (COD),  total  phosphorus  (P),  total  nitrogen (N)  and iron  (Fe).  Other
compounds can  be  balanced over  systems in  which  they  are  not  subject  to  reactions,  e.g.  total
suspended solids (TSS) in dewatering stages.

The mass balance over a system for one compound and for a time period of n days is calculated from
all mean fluxes F̅ entering (positive) or leaving (negative) the system (Figure 1). It yields the mean
balancing error  ē for the particular  time period.  If  accumulation (storage  ΔS) of the compound
occurs in the system, it has to be considered, too (1a,b).
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Figure 1. Simple balancing layout. Several fluxes may enter or leave a system, accumulation (ΔS) is
possible.

It is easily understood that the mean balancing error ē can be calculated in two distinct ways due to
the distributive property of the mean:

i. as sum of vector means
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ii. as mean of a vector of sums
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In (1a) the means of all single time series of fluxes F in and out of the system as well as the mean
accumulation are computed and than added. In (1b) however, balances are calculated for each time
step (usually 1 day) thus giving a vector e of (daily) balancing errors of length n, the error vector,
the mean of which is calculated at the end to give ē.

From  ē,  the relative mean balancing error  ērel is computed by normalization with the mean flux
through the system. As a matter of common agreement, the mean influent flux is chosen.
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Measures for data quality
Accuracy and precision are the quality criteria for good data. They correspond to systematic and
random errors, respectively. Although mass balancing has been accepted as a method of choice for
redundant data quality control in the field of wastewater treatment (with a focus on accuracy), little
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has been said about decision criteria.

The mean balancing error  ē is  mainly perceived as most important  decision variable.  Thomann
Haller (2002) also focused on this measure and showed how to find a confidence interval for ē to test
its significance. However, an insignificant difference between  ē and zero does not determine high
data quality alone. A small (relative) mean balancing error can still be significantly different from
zero if the precision of the single measurements is high. Low precision might accordingly yield a
large confidence interval for ē thus leading to the misinterpretation of a large ērel as not significantly
different  from zero.  Acceptability  of  a  certain  mean  relative  error  therefore  seems  to  be  more
important than significance. The level of acceptability depends on the task that is addressed using
the data.
Another aspect is dynamic variability. While a large ērel certainly signals low data quality (or poor
system description), a low ērel could still have been calculated from an error vector  e that drifts in
time from unacceptably high to unacceptably low values. If data quality is checked relying only on
the  mean,  not  much  can  be  said  about  the  data  quality  in  the  time  series.  This  is  of  special
importance, when historic data is to be used as input for simulation.

The  CUSUM  method  is  suggested  to  approach  the  dynamic  behavior  of  the  error  vector.  In
literature, only Zaher and Vanrolleghem (2003) are known to have used this method in the same
context, however without explicitly investigating it. Among other control charts, CUSUM is one of
the more sensitive. EWMA charts (exponentially weighted moving average), another sensitive type
of  control  chart,  had  been investigated,  too,  but  didn't  yield results  of  comparable  quality.  The
detectability of changes of the balancing error by the CUSUM method depends on the variability of
the error vector and therefore on the precision of the data. This will become clear in the course of
this paper.

THE CUSUM CHART
CUSUM charts, introduced by Page (1954), are used widely in statistical process control to detect
small changes (e.g. shifts or drifts) in the mean µ (the target value) of a monitored process variable
(Montgomery, 2009). Small in this context means changes of less than one standard deviation.

CUSUM charts are designed to detect one-sided changes (increase or decrease) of the monitored
variable  X.  For the two-sided case (increase and decrease),  one upper  (positive)  and one lower
(negative) CUSUM chart have to be combined. For convenience, data is normalized to zero mean
and standard deviation one. The CUSUM is a modified cumulative sum of a process variable  X,
consecutively  adding  up  the  values  xt,  t=1,…,n where  n is  the  length  of  vector  X.  The  two
modifications are:

i. The upper (positive) CUSUM may not drop below zero, the lower (negative) CUSUM may
not rise above zero.

ii. A  smoothing  parameter  (reference  value  k) restricts  the  sensitivity  of  the  method  by
constantly drawing the CUSUM series towards the target value (zero for normalized data).

The two-sided CUSUM for normalized data may be defined as:
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The CUSUM series signals an undesired shift Δµ of the process mean by exceeding a chosen control
limit (+h or -h). Thus, the reference value k and the control limit  h are the two parameters which
determine the behavior of the CUSUM chart. The optimal value of  k is  Δµ/2, half the size of the
shift to detect (Lucas and Crosier, 1982). The control limit h may then be chosen according to the
desired average run length ARL0 of the CUSUM series (Montgomery, 2009).

The average run length ARL0 is the average number of time steps (i.e. data points) after which the
CUSUM series will give a signal even though the true shift of the mean is zero (false alarm). Indeed,
due to  the probabilistic  nature of the data (random errors),  a  long enough CUSUM series  will
eventually exceed any control limit. This corresponds to the type I error (false positive) in statistical
tests.  Therefore,  a compromise has  to be made. In the past,  ARL0 was chosen as 370 which is
equivalent to a 3σ control limit on a Shewart control chart (Montgomery, 2009).
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When k and h have been chosen, the average run length ARLΔµ (for detection of a true shift Δµ of the
mean) can be calculated  (Knoth,  2009).  ARLΔµ increases with decreasing values of  k (when  h is
adjusted to keep a constant ARL0) and therefore with smaller shifts Δµ. In statistical process control
a fast response, i.e. low ARLΔµ is desirable.

Synthetic example
Figure 2 depicts data of a synthetic example on its left side. The time series has length 200. At
intervals [1:40] and [91:140] the random data is N(0,1) distributed. In the interval [41:90] the target
value (mean) was changed to  +0.5. From data point 141 to the end of the series, the mean drifts
from 0 to  -1. On the right side the results of a CUSUM chart applied to the data are shown. The
reference value k was chosen to 0.25 for optimal detection of a shift of ±0.5.  ARL0 is kept at 370
with a control limit h of ±8.01  The crucial parts of the CUSUM series are those, where it moves
away from zero crossing the control limit. In the example the faulty periods would be interpreted as
occurring in intervals [45:100] and [165:200].

Figure 2. Left: Synthetic N(0,1) data including a shift and a drift and its 7-day moving average.
Right: CUSUM chart of the data. Plotted slopes indicate interpreted faulty periods.

Application of the CUSUM method to the error vector of a mass balance
When applying the CUSUM method for the analysis of the error vector of a mass balance, several
special characteristics have to be considered:

i. Historic  data  is  being  used.  The  fastest  possible  detection  of  a  change  of  the  target  is
therefore not  crucial.  This allows for a trial  and error  approach at specifying the design
parameters k and h and for more sensitive detection.

ii. The length of the CUSUM series is  determined by data availability.  This  influences the
possible average run length before detection of a true change.

iii. The CUSUM series does not stop or cause corrective action upon a signal. Therefore, the
behavior of the series after a signal is of interest, too (as in the synthetic example).

iv. The process mean (target) is known a priori. The expected value of the error vector of a mass
balance is always zero.
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The ratio between the standard deviation  se of the error vector before normalization and the total
mean input into the system will be shown to be an important indicator for the setup of the CUSUM
chart. If the standard deviation of the error vector is relatively high, the data lacks precision. A small
shift in the mean of the error vector of less than 0.5se (which is hard to detect) might then already
mean a considerable change in one of the fluxes associated with the balance. Therefore, a small
reference value  k has to be selected. A smaller reference value at constant  ARL0 causes a higher
ARLΔµ.

The CUSUM method can be applied quite straightforwardly to flow data. The application becomes
more challenging, when daily changes in storage have to be considered, too. This is the case with all
other measured variables, i.e elemental flux balances. Since storage is strongly coupled with TSS
concentrations, reliable and representative measurement of this variable are important.

RESULTS OF APPLICATION TO REAL DATA
The CUSUM method was applied to existing routine data of a large WWTP (170.000 PE). The plant
has 6 influents. The two major influents are one municipal and one industrial (refinery). Another
two influents stem from the nearby airport (wastewater and surface water). The industrial wastewater
(about  half  of  the  influent  flow)  is  pretreated  in  a  high-load  aerobic  stage  before  joining  the
aerobic/anoxic treatment for nutrient removal. Because flow Q is the basis for the calculation of
fluxes the examples given are 1) a flow balance over the entire treatment plant and 2) a flow balance
over the anaerobic digester. Unfortunately, it was not possible to include a phosphorus balance as
well due to missing data in some fluxes.

The error vectors were calculated from daily flow balances over the two systems for a time period of
n=366 days.  Table 1 gives the absolute and relative mean flow balance errors and the standard
deviation of the error vectors. Figure 3 illustrates the error vectors themselves.

Table 1. Influent and effluent flow sums for the two examples, absolute and relative mean balancing 
error and standard deviation of the balancing error.

Whole Plant
flow balance

Anaerobic Digester
flow balance

mean influent flow ΣFi,in 24,648 m³/d 139.6 m³/d
mean effluent flow ΣFj,out - 25,237 m³/d 146.9 m³/d
mean balancing error ē = ΣFi,in + ΣFj,out -      589 m³/d -     7.3 m³/d
relative mean balancing error ērel = ē / ΣFi,in -  2.4 % -     5.3 %
standard deviation se  848 m³/d  74.2 m³/d

Both  balances  have  relatively  small  mean  errors  of  2.4% and  5.3%,  respectively.  The  ratio  of
standard deviation se to total mean influent flow, however, is relatively small for the flow balance
over the whole WWTP (3.4%) but large for the flow balance over the anaerobic digester (53%).
Therefore,  the  reference  value  k was  chosen  differently  for  each  of  the  two  examples.  Table 2
illustrates the steps for the setup of the CUSUM chart.

For the whole plant flow balance  k was chosen for optimal detection of a shift  in the mean of
Δµ=±1.0 se (k=0.5). For the flow balance over the anaerobic digester a more sensitive choice was
necessary. The reference value was chosen as k=0.15 in order to optimally detect shifts in the mean
of Δµ=±0.3 se. Note that the detectable relative mass balance errors (i.e. optimally detectable shifts,
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step 5 in Table 2) are very different. Even though the example of the anaerobic digester was set up
for more sensitive detection only balancing errors of about 16% can be optimally detected.
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Figure 3. Error vector e and its 7-day moving average for the two examples

The control limits h were chosen to give an ARL0 of 370. The resulting ARLΔµ are ARL1.0=9.2 and
ARL0.3 = 51 (Knoth, 2009). For the flow balance over the anaerobic digester, a “design shift” would
be detected approximately 51 data points after its occurrence. Given the length of the error vector
(366 data points) this seems to be a reasonable compromise between detectability and run length for
detection.

Figure 4 shows the CUSUM graphs for both balances. For the whole WWTP two time periods of
worse than average balancing performance can be distinguished. Those are the intervals [20:135]
and  [280:366].  In  these  time  periods  the  relative  mean balancing  errors  are  -3.0% and  -4.1%,
respectively. Between these two time periods, the mean balancing error drops to -0.3%.

As shown in the synthetic example, the faulty time periods were approximated by following back the
slopes of the CUSUM chart. For the anaerobic digester the relative mean balancing error is largest in
the  time  period  [120:225]  amounting  to  -28%.  At  data  point  269 the  CUSUM series  shows a
considerable jump, suggesting a major single erroneous data point. Excluding data point 269, the
mean relative error for the anaerobic digester in the time period [226:366] is +2.3%.

Table 2. Steps for setup of CUSUM charts for the two examples (for N(0,1) normalized data se = 1).
Step Whole Plant

flow balance
Anaerobic Digester
flow balance

0. consideration of ratio se/ΣF̅i,in se,rel = 3.4 % se,rel = 53 %
1. choice of optimally detectable shift Δµ Δµ = 1.0 se Δµ =   0.30 se

2. reference value k = Δµ/2 k = 0.5 se k =   0.15 se

3. calculation of control limit h to give desired ARL0 h = 4.77 se h = 11.0 se

4. verification of ARLΔµ ARL1.0 = 9.2 d ARL0.3 = 51 d
5. calculation of relative optimally

detectable mass balance error Δµ/ΣF̅i = ± 3.4 % Δµ/ΣF̅i = ±16 %
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Figure 4. Two-sided (positive and negative) CUSUM charts for the two examples

DISCUSSION
The flow balance over the anaerobic digester obviously contains an error that cannot be neglected.
Following the analysis, it was possible to diagnose the source of this error. Interviews with staff
pointed to a faulty flow meter in the effluent of the digester. Data from an alternative flow meter was
available.  Its  analysis  showed considerably  less  systematic  error  (Figure  5).  While  the  standard
deviation of the error vector stays at 74.7 m³/d, the relative mean balancing error drops to as little as
+0.2% and is constant throughout the entire time period. For the balance over the whole plant, the
error apparently stays small enough to be neglected in any practical application of the data. It might
for example be due to minor miscalibration of the flow sensors.

Figure 5. Error vector and two-sided CUSUM chart for the corrected Q balance over the anaerobic
digester. Control limits h for the CUSUM chart are outside the visible range of the y-axis at ±11.
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From the two examples it becomes obvious that the calculation of the mean balancing error is not
sufficient for determining the quality of routine data from WWTP. In both examples the overall
mean balancing error seems relatively small and therefore acceptable at first sight. The application
of the CUSUM method clearly showed time periods of varying performance of the error vector. In
example 2 (anaerobic digester) a relative mean error of -28% over almost one third of the entire time
series was disguised by the rest of the data.

A  7-day  moving  average  (Figure  3)  may  already  give  a  good  idea  about  intervals  of  different
performance  of  the  error  vector.  The  CUSUM  method  however  has  the  advantage  of  freely
selectable control limits and gives a clearer picture. Additionally, the selection of the parameters for
the CUSUM method allows for the calculation of the optimally detectable mass balance error.

The actually detected mass balance error can still be smaller than the optimally detectable mass
balance error. This is the case in the first faulty period in example 1 (whole WWTP). The optimally
detectable mass balance error is not a strict limit for detectability but does give a good idea to the
user. This reflects the probabilistic nature of random errors which do have a certain unpredictable
influence on the performance of the CUSUM method.

When applying the CUSUM method to elemental flux balances, it becomes necessary to consider
storage  in  the  balances,  too.  This  will  mostly  be done using daily  TSS data  and known ratios
between the balanced element and TSS. However, representative measurement of TSS is not easily
achieved and the resulting error vector might show too high variability. Smoothing of TSS data, i.e.
by means of a moving average might solve this problem. Research in this respect is still going on.

CONCLUSIONS
When mass balances are used to determine the quality of routine data from WWTP and to search
for systematic errors it is also necessary to consider the error vector of the balance rather than the
mean balancing error alone. It has been shown that the CUSUM method can be applied to determine
time periods of good balancing performance and to calculate the detectability limits for errors. The
variability of the balancing error vector, preferably expressed as ratio between standard deviation
and total mean input load into a system, is an important indicator for these detectability limits. 
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