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Deutsche Kurzfassung
Die vorliegende Diplomarbeit befasst sich mit starken elektronischen Korrelationen in Mate-

rialien, sowie Modellen und Methoden welche diese effektiv beschreiben. Materialien mit star-

ken Korrelationen zeigen unterschiedlichste Phänomene, wie zum Beispiel den Mott Metall-

Isolator-Übergang, Supraleitung oder riesige Massen in Schwere-Fermionen-Verbindungen.

Aufgrund des wissenschaftlichen Fortschritts der letzten Zeit ist die Hoffnung gewachsen, dass

eines Tages die derzeit vorhandenen Technologien (Halbleiterphysik etc.) durch Anwendungen

ersetzt oder verbessert werden können, welche die genannten Korrelationseffekte ausnutzen.

Die vielversprechendste Materialgruppe in diesem Zusammenhang sind die sogenannten Über-

gangsmetalloxide, welche ein zentrales Thema dieser Arbeit sind.

Um die dazu relevante Physik zu beschreiben, wird im ersten Teil dieser Arbeit der Übergang

vom Vielteilchenproblem in erster Quantisierung zum Formalismus der Greenschen Funktio-

nen gebildet. Mit der dadurch entstehenden Methode der Feynman-Diagramme ist man in der

Lage die moderne Elektronenstrukturmethode Dichtefunktional-Theorie (DFT) + Dynamische

Molekularfeld-Theorie (DMFT) einzuführen. Diese ermöglicht es lokale Korrelationseffekte zu

beschreiben. Diese Lokalität ist eines der Merkmale von DFT+DMFT. Effekte nicht-lokaler

Korrelationen spielen jedoch eine wichtige Rolle in zweidimensionalen Strukturen (z.B. in dün-

nen Schichten) oder in der Nähe von Phasenübergängen. Zu diesem Zweck wurden in den ver-

gangen Jahren mehrere Theorien und Methoden entwickelt, um DFT+DMFT formell zu er-

weitern. Diese Erweiterungen erlauben es sowohl lokale als auch nicht-lokale Korrelationen zu

beschreiben. Die Dynamische Vertex Approximation (DΓA) ist eine dieser Methoden, welche

DMFT diagrammatisch erweitert, und bildet den Schwerpunkt dieser Arbeit.

Im zweiten Teil dieser Arbeit wird mit DΓA ein Standardbeispiel stark korrelierter Materia-

lien, Strontium-Vanadat (SrVO3), untersucht. Genauer wird der Einfluss der Temperatur und

nicht-lokaler Wechselwirkungen in „bulk“ SrVO3, als auch die Effekte von reduzierter Dimen-

sionalität, untersucht. Letzteres basiert auf jüngsten experimentellen und theoretischen Unter-

suchungen von zweilagigem SrVO3 auf einem Strontium-Titanat (SrTiO3) Substrat, das po-

tenziell als ein sogenannter „Mott Transistor“ verwendet werden kann. Der beteiligte Mott

Metall-Isolator-Übergang kann durch unterschiedliche externe Einflüsse, wie zum Beispiel ei-

ner Gate-Spannung, Druck oder Temperatur ausgelöst werden. Die DΓA Ergebnisse für bulk

SrVO3 zeigen, dass die nicht-lokalen Effekte der Symmetrie der Fermi-Fläche folgen. Die viel-

versprechenden Ergebnisse für das genannte Schichtsystem können als Grundlage für zukünfti-

ge Untersuchungen von dünnen Schichten oder Heterostrukturen verwendet werden. Die diver-

gierenden Suszeptibilitäten indizieren einen Übergang in eine geordnete Phase im isolierenden

Bereich.



Abstract
Strong electronic correlations have been in the focus of solid state research for quite some time.

Many interesting phenomena such as the Mott metal-to-insulator transition, superconductivity

(both conventional and unconventional) or heavy-fermion systems can only be explained when

taking correlation effects into account. In this regard there has always been the hope that appli-

cations exploiting these correlation effects will one day replace or enhance current technologies.

One of the most promising group of materials with respect to applicability are transition metal

oxides which are at the center of this thesis.

In order to be able to describe the involved physics we will, in the first part of this thesis,

construct the bridge from the many-body problem in first quantization to the Green’s func-

tion formalism and subsequently Feynman diagrammatic. With this formalism we are able to

introduce the state-of-the-art density functional theory (DFT) + dynamical mean-field theory

(DMFT) approach both from a physical point of view and, more importantly, diagrammatically.

This technique allows for an accurate description of genuine (local) correlation effects. How-

ever due to the underlying mean-field approach in the spatial domain non-local effects are out

of its reach. These non-local correlations play an essential role in two-dimensional structures

(e.g. ultra-thin films) or near phase transitions. For this reason many theories and techniques

have been developed which extend DMFT to capture both the local correlations of DMFT and

non-local correlations beyond. The dynamical vertex approximation (DΓA) represents one of

the diagrammatic extensions of DMFT and will be our main focus point in this thesis.

With it, in the second part of this thesis, we will further investigate a common testbed material

used in electronic structure calculations, namely strontium vanadate (SrVO3). More specifically

we will study the effects of temperature and non-local interactions in bulk SrVO3 as well as the

effects of the previously mentioned reduced dimensionality. The latter is based on recent find-

ings that two-layered SrVO3 on a substrate of strontium titanate (SrTiO3) could be potentially

used as a so-called ‘Mott transistor’ where the involved Mott metal-to-insulator transition can

be triggered via different external perturbations, such as a gate voltage, pressure or temperature.
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Introduction
Scope

In recent history massive progress has been made to further the understanding of many puzzles

in the area of solid state physics. Many theories, most of which are already taken for granted

today, were just developed over the last 60 years. BCS-theory was for example conceived by

Bardeen, Cooper and Schrieffer in 1957 [1] (Nobel prize in physics in 1972). The Fermi-liquid

theory was first developed by Landau in the same year [2] and first applied by Abrikosov and

Khalatnikov in 1959 in the context of liquid 3He [3]. Hohenberg and Kohn invented the building

blocks of density functional theory (DFT) in 1964 [4] which was further developed by Kohn and

Sham one year later in 1965 [5] (Nobel prize in chemistry in 1998). Kohn-Sham DFT was able

to describe many of the until then deemed impossible problems and nowadays builds the de facto

working horse of almost all of today’s electronic structure calculations. Due to its effective one-

particle nature (see chapter 1.2) DFT works well for most main group elements, however it is not

equipped to describe electronic correlation effects found in many side group elements. These are

composed of partially filled d- or f -orbitals (see Fig. 1) which are naturally more localized, thus

exhibiting correlation effects.1 Around 1990 the dynamical mean-field theory (DMFT) [6, 7]

was developed which is capable to solve many problems for which DFT fails, most prominently

the Mott metal-to-insulator transition (MIT). However while highly successful, the increasing

amount of computational power nowadays allows to even overcome the limits of DMFT, by

including non-local correlations. Again the mean-field approach (this time only in the spatial

domain) is a too strong simplification in specific cases, e.g. for low-dimensions or near second

order phase transitions. Presently many theoreticians try to overcome DMFT’s problems by

formally extending it. Cluster formulations [8, 9] allow the inclusion of short-range spatial

correlation effects, while extensions on a diagrammatic level [10, 11] allow the inclusion of

correlation effects on all length scales. These diagrammatic extensions, more specifically the

application of the dynamical vertex approximation (DΓA), will be the focus of the present thesis.

1 The locality of, e.g., the 3d or 4 f elements originates from the involved l = 3 and l = 4 orbitals respectively.
The orthogonality to all fully occupied orbitals (aufbau principle) is assumed by the azimuthal quantum number,
allowing the radial part of the orbital to be nodeless and thus more localized.
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Motivation

Over the last couple of years metal oxides, metal oxide heterostructures as well as ultra-thin

metal oxide films were a major focus point in both theoretical and experimental research. These

materials, which include e.g. SrVO3, SrRuO3, CaTiO3, etc., have been studied extensively and

showed a wide variety of interesting effects. Colossal magnetoresistance (CMR) in manganese

oxide compounds [12], thermoelectric effects in perovskite structures [13], the description of

quantum spin liquids [14], superconducting states as found in bismuth strontium calcium copper

oxides (BSSCO) [15], the creation of a two-dimensional electron gas with high mobility at the

interface of two band insulators, LaAlO3 and SrTiO3 [16], thin VO2 films which ‘intelligently‘

regulate and utilize solar radiation [17], LaVO3 as efficient solar cell [18, 19], etc., to only

name a few effects and examples. So far however non-local correlations were neglected in the

theoretical description of most of these effects.2 These possible non-local corrections in turn

represent our starting point. Proceeding from [20] we will further investigate bulk SrVO3 as

well as study non-local effects in ultra-thin SrVO3 films consisting only of two layers. The

latter represents a way to confound electronics with the physics of metal oxides via the help of

the already mentioned Mott metal-to-insulator transition [21].

Outline

For that matter, in chapter 1, we will start from the ab initio solid state description, namely the

many-body Hamiltonian in first quantization. Based on the Born-Oppenheimer approximation,

DFT will be discussed in a more technical manner from which the bridge to DMFT will be

constructed with the help of model Hamiltonians. The formalism necessary to describe DMFT

and all its extensions will be discussed in chapter 2, where we introduce the DΓA approach

including its implementations, namely parquetDΓA and ladderDΓA. Based on the ladderDΓA

approach present in AbinitioDΓA [20, 22, 23, 24], we will discuss results for the well-known

testbed material SrVO3 (shown in Fig. 2). To this end calculations for bulk SrVO3 will be

illustrated in chapter 3 while calculations for two-layered SrVO3 on top of a SrTiO3 substrate

will be illustrated in chapter 4. Finally in chapter 5, a summarized discussion with an outlook

on future development and applications will be presented.

2 Superconductivity, described by BCS-theory, obviously being the major exception where one deals with macro-
scopically sized non-local effects (Cooper pairs).
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Figure 1: Periodic table with elements containing partially filled d- and f - orbitals highlighted
in green and pink, respectively. The former are usually denoted as transition metals (elements)
which originates from the fact that each row in the block can be seen as a transition series of
elements which, according to their position, gain an increasing number of d-electrons (e.g. scan-
dium [Ar]3d14s2 to zinc [Ar]3d104s2). Vanadium 51

23V ([Ar]3d34s2), as it is the central character
of this thesis, is additionally highlighted in red. Adapted and modified from [25].

Figure 2: Perovskite crystal structure of the transition metal oxide strontium vanadate (SrVO3).
The name perovskite originates from calcium titanate (CaTiO3) which lends its name to all
other crystals with the same kind of structure [26]. The spheres placed on the implied cubic grid
represent vanadium (orange) which together with oxygen (purple) and strontium (green) build
the characteristic perovskite structure. Adapted from [27].
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1 Basics of solid state physics

1.1 Many-body Hamiltonian

Solving the full description of an interacting electron system within a realistic environment is

an utopian endeavor. In first quantization this problem reads [28]

Ĥtot = −

Nn∑
α

~2∆α

2Mα
+

1
2

∑
α,α′

ZαZα′e2

|Rα − Rα′ |︸                                   ︷︷                                   ︸
Ĥn

−
∑
α,µ

Zαe2∣∣∣Rα − rµ
∣∣∣︸             ︷︷             ︸

V̂ne

−

Ne∑
µ

~2∆µ

2m
+

1
2

∑
µ,µ′

e2∣∣∣rµ − rµ′
∣∣∣︸                                ︷︷                                ︸

Ĥe

. (1.1)

This equation, in combination with lowest-order relativistic corrections (introduction of spin

and therefore magnetism), represents the (complete) theory of atomic and condensed-matter

physics, as well as chemistry. Solving Eq. (1.1) within typical three dimensional crystals , which

consist of approximately 1023 electrons per cubic centimeter, is however impossible. In order to

transform this impossible task into a possible one, we have to introduce major simplifications

and techniques which allow us to extract the information we are interested in. The latter is

important because even if we had access to the exact solution, i.e. the many-body wave function,

we would not be able to extract the information we desire. The first of many simplifications of

this so-called many-body-problem is the Born-Oppenheimer approximation [29]. It is based on

the fact that the masses of the particles in our system vary immensely. This results in different

time scales for the electrons and nuclei involved. Due to their lower mass ( mP
me
≈ 1836) electrons

are much more agile and we are, in a good approximation, allowed to decouple the nuclei part

Ĥn of Eq. (1.1) from the rest. We thus arrive at the electronic Hamiltonian

Ĥe,tot = Ĥe + V̂ne. (1.2)

Here we interpret the nuclei-electron interaction V̂ne as static external potential leaving us ‘only’

with an effective electron-electron Hamiltonian.3 In this thesis we will restrict ourselves to this

electronic part. The nuclei part however is far from boring and contains fascinating physics as

well. It describes phonon excitations and their interactions with each other and the electrons

involved. These processes are often required to get a satisfying model description of materials

used in recent (theoretical and experimental) research.4

3 This also means that the involved wave functions decouple, i.e. |Ψfull〉 = |Φelectrons〉 × |ηnuclei〉.
4 Conventional superconductivity is for example described by an attractive, effective electron-electron interaction

mediated by phonons.
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1.2 Density functional theory

Due to the complexity of the remaining terms nothing else can be done but to introduce fur-

ther simplifications. Typical introductory procedures include ignoring interactions altogether

(Fermi gas) or implementing a rather simple self-consistent mean-field approach (Hartree or

Hartree-Fock approximation) [30] where plane waves, products of one-electron wavefunctions,

or antisymmetrized products of one-electron wavefunctions are used, respectively. However

when trying to describe real materials this is not good enough. A major breakthrough in this

regard was achieved by Hohenberg and Kohn in 1964 [4]. They were able to formulate theo-

rems that create a one-to-one mapping between the ground state of an interacting system and a

general density function. The theorems read as follows:

Theorem 1: The ground state energy of a system of N indistinguishable particles in an external

potential is a unique functional of the particle density ρ(r)

E0 = min {E[ρ(r)]} = E[ρ0(r)] (1.3)

Theorem 2: This functional has its minimum with respect to a variation δρ(r) of the particle

density at the ground state density.

δE[ρ(r)]
δρ(r)

∣∣∣∣∣
ρ(r)=ρ0(r)

= 0 (1.4)

These theorems represent the building blocks of density functional theory (DFT). The basic idea

within DFT is to separate the total energy functional in more simple terms which we are able to

evaluate, namely

E[ρ] = T [ρ]︸︷︷︸
kinetic energy

+ EH[ρ]︸︷︷︸
Hartree energy

+ Vext[ρ]︸ ︷︷ ︸
external potential

+ Exc[ρ].︸ ︷︷ ︸
exchange−correlation energy

(1.5)

There exist several methods that try to approach this functional with varying degrees of success.

Orbital-free DFT for example tries to approximate the DFT energy functional and in particular

the kinetic energy directly from the electron density using, e.g., the properties of a homogeneous

electron gas (Thomas-Fermi approximation [31]). However even with further improvements

(Thomas-Fermi-Dirac or von Weizsäcker approximation) the results are still too inaccurate for

most applications. The major problems of orbital-free DFT were solved with Kohn-Sham DFT.

Here an artificial non-interacting electron system is constructed whose ground-state density

equals the one of the real interacting system. The density of this new system can simply be

expressed by

ρ(r) =

N∑
i

Φ∗i (r)Φi(r), (1.6)
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where Φi represent the eigenstates. Due to the simplicity of a non-interacting system we can

evaluate the three largest contributions (kinetic energy, electro-static energy (Hartree energy)

and energy of electrons in the external potential) explicitly. The rest, i.e. the energy from ex-

change and correlation effects, however must still be approximated. The most commonly used

exchange-correlation potentials include the local density approximation (LDA)

ELDA
xc =

∫
d3r ρ(r)εLDA

xc (ρ(r)) , (1.7)

and the general gradient approximation (GGA)

EGGA
xc =

∫
d3r ρ(r)εGGA

xc (ρ(r),∇ρ(r)) , (1.8)

in various parametrizations, such as PW91 [32] or PBE [33]. Other approximations which

include, e.g., hybrid functionals such as B3LYP [34, 35], nonetheless also gained increasing

popularity over the past. By minimizing the total energy functional with the constraint of or-

thogonal wave functions one arrives at the Kohn Sham equations [5] which have to be solved

self-consistently: [
−
~2

2m
∆i + vext + e2

∫
ρ(r′)
|ri − r′|

d3r′ +
δεxc

δρ(r)

]
Φi(r) = εiΦi(r) (1.9)

The solution of such an approach [36, 37, 38] provides the total energy of the system in the

ground state. The individual eigenstate energies on the other hand are often interpreted as the

electronic band-structure of our initial problem. However one has to keep in mind that these

energies are, in fact, only auxiliary solutions of the converged eigenvalue equations and must

therefore be treated with caution.

1.3 Wannierization

DFT, despite its many successes, still remains ‘just’ a more elaborate mean-field approach, at

least, with the exchange-correlation potentials available. Due to the nature of such approaches

they are not equipped to deal with effects of strong correlations, found in most of the more

interesting materials. One of the biggest unsolved problems within DFT remained the Mott

metal-to-insulator transition (MIT) [39, 40]. The effects responsible for such a behavior are be-

yond a static mean-field description and must therefore be dealt with through other techniques,

more specifically many-body model Hamiltonians [41]. The typical Hubbard model used to

describe these strong correlation effects reads

ĤHubbard = −t
∑
〈i, j〉σ

ĉ†jσĉiσ + U
∑

i

ni↑ni↓ − µ
∑
iσ

niσ. (1.10)
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The first term describes electrons moving on a lattice (with the hopping parameter t) while the

second term describes the on-site Coulomb interaction between two electrons, necessarily of

opposite spins because of the Pauli principle. The last term originates from the grand canonical

ensemble and allows the variation of the number of particles in the system via the chemical

potential µ. The competition between delocalization (hopping) and localization (on-site interac-

tion) allows this model to have deeply fascinating physics. To apply Hubbard type of models in

the context of real materials one has to start off by rewriting Eq. (1.1) into its second quantization

form. This reads

Ĥ =
∑
σ

∫
d3rψ̂†σ(r)

[
−
~2

2m
∆ + V(r)

]
ψ̂σ(r) +

1
2

∑
σ,σ′

∫
d3rd3r′ψ̂†σ(r)ψ̂†σ′(r

′)
e2

|r − r′|
ψ̂σ′(r′)ψ̂σ(r),

(1.11)

where ψ̂(†)
σ (r) annihilates (creates) an electron at position r with spin σ. These field operator are

built from the corresponding Bloch wave functions

ψk,n(r) = eikruk,n(r) (1.12)

via

ψ̂(†)
σ (r) =

V
(2π)3

∫
BZ

d3k
∑

n

ψ(∗)
k,n(r) ĉ(†)

k,n,σ. (1.13)

Here ĉ(†) annihilates (creates) an electron with crystal momentum k, spin σ and orbital n. The

integration is done over the whole Brillouin zone (BZ) and the summation is done over all

bands n. In order to get a description that is feasible in DMFT one has to introduce the so-called

Wannier basis, as one has to define locality. The main idea is to do a basis transformation of an

energetically localized basis (Bloch basis) obtained from DFT to a spatially localized Wannier

basis. The transformation is done via

|Rn〉 =
V

(2π)3

∫
BZ

d3ke−ik·R
J∑

m=1

U(k)
mn |ψmk〉 (1.14a)

wnR(r) = 〈r|Rn〉 (1.14b)

and the momentum-dependent unitary transformation matrices Uk
mn are, e.g., adjusted in order

to minimize the functional [42]

Ω =
∑

n

[
〈0n| r2 |0n〉 − 〈0n| r |0n〉

]
, (1.15)
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which estimates the spatial spread of the Wannier functions. This new basis allows us then to

rewrite Eq. (1.11) into

Ĥ = −
∑

R1,R2
lm
σ

tlm(R1,R2)ĉ†R1lσĉR2mσ +
1
2

∑
R1R2R3R4

ll′mm′
σ1σ2σ3σ4

Ufull
lm′ml′ (R1,R2,R3,R4) ĉ†R3m′σ3

ĉ†R1lσ1
ĉR2mσ2

ĉR4l′σ4

(1.16)

with

tlm(R1,R2) = −

∫
d3rw∗lR1

(r)
[
−
~2

2m
∆ + V(r)

]
wmR2(r) (1.17a)

Ufull
lm′ml′ (R1,R2,R3,R4) =

∫
d3rd3r′w∗m′R3

(r)w∗lR1
(r′)

e2

|r − r′|
wmR2(r

′)wl′R4(r). (1.17b)

The matrix tlm (describing both hopping processes (l , m) and energy levels (l = m)) can now

be simply obtained by using the previous Wannier transformation matrices and applying them

onto the correlated energy states. Doing the same procedure directly for the Coulomb interac-

tion Ufull
lm′ml′ however leads to too large interaction values. Because we only concentrate on a

subspace of the, for our purposes, interesting bands we implicitly neglect screening effects from

other bands. Therefore other techniques are first required to get a properly screened interaction,

e.g. the constrained random phase approximation (cRPA) [43, 44, 45] or the constrained local

density approximation (cLDA) [46]. Instead of the bare interaction e2

|r−r′ | we obtain a partially

screened interaction

Ufull
lm′ml′ (R,R, 0, 0, ω) =

∫
d3rd3r′w∗m′0(r)w∗lR(r′)Wr(r, r′, ω)wmR(r′)wl′0(r), (1.18)

where we additionally assumed the interaction to be dependent only on one spatial coordinate

R. On the other hand this new interaction now depends on the frequency ω.5

1.4 Dynamical mean-field theory

For Hamiltonians such as the one in Eq. (1.10) exact solutions only exist for special cases, e.g.

for one dimension [47], for infinite dimensions [48], for the atomic limit (t → 0) or for the

non-interacting case (U → 0). In order to obtain a solution for our general problem, further

approximations are therefore required. This is where dynamical mean-field theory (DMFT)

comes into play (the full details of the necessary Green’s function description will be discussed

in chapter 2). DMFT uses the notion that a single site in a solid can be locally interpreted

as an effective atom that can exchange particles with a bath/reservoir mimicking all the other
5 Screening processes are inherently frequency-dependent. In many post-DFT methods, however, this frequency

dependence is neglected and only the value at ω = 0 is used.
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electrons via a hybridization function ∆. In this context DMFT maps the Hubbard model onto

a more accessible auxiliary problem, namely the Anderson impurity model (AIM). For a finite

number of bath sites N and a single orbital, the AIM Hamiltonian reads, e.g.

ĤAIM =
∑
σ

ε0d†σdσ + Ud†
↑
d
↑
d†
↓
d
↓

+

N∑
σ

k=1

Vkc†kσd
σ

+ V∗k d†
σ

ckσ +

N∑
σ

k=1

εkc†kσckσ. (1.19)

Here the local site is described by operators dσ which interact via the hybridization term Vk with

the bath described by operators ckσ. The hybridization function ∆ and the hybridization term Vk

are connected via

∆(ν) =
∑

k

|Vk|
2

ν + µ − εk + i0+
. (1.20)

In the case of such a discretized bath this problem can then be solved with different methods

including exact diagonalization (ED). A more general method are continuous time quantum

monte carlo (CTQMC) simulations [7, 49, 50]. The prescription is identical for all methods:

The local projection of the lattice Green’s function G is identified with the impurity Green’s

function. The DMFT approximation is performed when computing the lattice Green’s function

using the impurity self-energy, i.e.

Σlattice(k, ν) ≈ Σimpurity(ν). (1.21)

Hence, because of the local impurity problem, the self-energy is assumed to be momentum (k)

independent. This relation becomes exact in infinite dimensions and appears to be a very good

approximation for typical three materials. Solving Gimp = Gloc iteratively thus yields a self-

consistent hybridization function ∆(ν) (self-energy Σ(ν)). The DMFT mapping and the role of

the self-energy Σ is sketched in Fig. 1.1.

Figure 1.1: DMFT maps the lattice problem to a local impurity problem. The local interactions
U (a) are ‘replaced’ by the self-energy Σ everywhere except the local site under consideration
(b). Reproduced from [51].
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2 Correlations beyond DFT

2.1 One-particle diagrams

In order to provide a more technical description of DMFT and all other post-DMFT methods

we have to introduce the usual quantum-field theoretical description. This is done via so-called

Feynman diagrams [52, 53, 54] where we start off by defining the n-particle Green’s function in

imaginary time τ

Gi1,i2,...,i2n−1,i2n (τ1, τ2, . . . , τ2n−1, τ2n) = (−1)n
〈
T

[
ci1(τ1)c†i2(τ2) · · · ci2n−1(τ2n−1)c†i2n

(τ2n)
]〉
. (2.1)

This represents a correlation function for adding and removing particles. The time ordering op-

erator T orders the fermionic operators ĉ(†) from left to right according to their time arguments

τi so that after its application the outer left operator holds the largest and the outer right operator

the smallest time argument. This reordering is accompanied with factors of (−1) for each swap

of two operators. The notation used here and throughout the rest of this thesis is identical to

the one used in AbinitioDΓA as well as all its associated publications. For a more detailed

description please refer to Appendix B. Please note the difference in notation found in, e.g. [55]

or [56]. There, in the particle-hole notation, a different frequency (momentum) transformation

is employed while simultaneously using a Green’s function arrow convention which is reversed

compared to AbinitioDΓA. Contrary, the particle-particle frequency notation is identical.

The (proper) self-energy Σ is described via the Dyson equation and connects the interacting

Green’s function G with its non-interacting counter-part G0.

G = G0 + G0ΣG0 + G0ΣG0ΣG0 + · · ·

= G0 + G0ΣG
(2.2)

Here G is described by the usual infinite series of interaction processes of arbitrary complexity

connecting non-interacting propagators. In order to include all possible diagrams and to avoid

double-counting, the self-energy Σ must be defined as the summation over all one-particle ir-

reducible diagrams. Reducibility in this context means that by cutting one connecting line the

diagram falls apart into two valid diagrams. The basic building blocks for these diagrams are

shown in Fig. 2.1 while the one-particle reducibility and the definition of the self-energy Σ is

displayed in Fig. 2.2.
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Figure 2.1: The bare propagator G0 (left) and the local interaction U (right) represent the di-
agrammatic building blocks of perturbation theories for all models with local U. In our case
they are mainly used for the description of the Anderson impurity model (and therefore DMFT).
Reproduced from [55].

Figure 2.2: Examples for irreducible (a) and reducible (b) self-energy diagrams. Diagram (b)
can be cut at the red dashed line and falls apart into two irreducible diagrams of type (a). The
proper DMFT self-energy Σ is defined by the summation of all local irreducible diagrams (c).
Reproduced from [55].

In the same vein we can diagrammatically represent the Dyson equation (2.2) which is displayed

in Fig. 2.3.

Figure 2.3: Diagrammatic representation of the Dyson equation (2.2). The interacting Green’s
functions G are represented as continuous lines instead of the dashed non-interacting Green’s
functions G0. Reproduced from [55].

The analytical expressions for the Green’s function can be obtained by exploiting the Heisen-

berg equation of motion (see Eq. (A.7)) and a Fourier transform to Matsubara frequencies [57].
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In conjunction with the Dyson equation we get (see Appendix G for the multi-orbital lattice

derivation and Ref. [55] for a non-interacting AIM derivation)

Glattice (iν,k) =
[
(iν + µ) δmm′ − Hk

mm′ − Σk
mm′ (iν)

]−1
(2.3)

GAIM (iν) =
[
(iν + µ) δmm′ − ∆mm′ (iν) − Σmm′ (iν)

]−1 , (2.4)

where m,m′ represent the involved orbitals, iν the fermionic Matsubara frequencies, µ the chem-

ical potential, Hk
mm′ the Wannier Hamiltonian and ∆mm′ (iν) the hybridization function defined

by

∆mm′(iν) =
∑

l

V∗mlVlm′

iν + µ − εl
. (2.5)

2.2 Local correlations: dynamical mean-field theory

The mapping between the two different models – the original Hubbard model and the effec-

tive AIM – is now done via a self-consistent cycle. We start off with an arbitrary initial non-

interacting local Green’s function G0 (e.g. the local projection of the non-interacting solution∑
k G0(iν,k)). The next steps are then iterated until convergence is reached.

1. Compute the hybridization function:

∆(iν) = G−1
0 (iν) − iν − µ.

2. Compute the impurity Green’s function Gimp(iν) of the AIM, defined by ∆(iν), via an

impurity solver.

3. Extract the self-energy of the impurity problem:

Σimp(iν) = G−1
0 (iν) −G−1

imp(iν).

4. Identify the DMFT lattice self-energy with the impurity self-energy:

Σlattice(k, iν) = Σimp(iν).

5. Compute the local projection of the lattice Green’s function:

Glattice,loc (iν) =
∑

k
[
iν + µ − Hk − Σlattice (iν)

]−1
,

and adjust µ to find the requested particle number.

6. Apply the DMFT self-consistency condition Gimp = Glattice,loc and use this relation to

calculate a new non-interacting impurity Green’s function:

G−1
0,new(iν) = G−1

imp,loc(iν) + Σimp(iν).
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Due to the simplicity of the Dyson equation (2.2), the computationally most expensive part is

calculating the impurity Green’s function. In our case this is done by means of a CTQMC solver

which works in imaginary times (w2dynamics [50]). Once converged, the impurity will thus

‘feel’ as if it were a site on our initial lattice. The resulting solution is mean-field like in spatial

coordinates and dynamical in time and can therefore describe genuine correlation effects (see

e.g. [58]).

Since all formulations described so far are on the imaginary time axis or in Matsubara frequen-

cies we can extract only a limited amount of information, and need to do a continuation to

real frequencies for physically analyzing the dynamics of our system. By following a Fermi-

liquid low-energy expansion of the self-energy and taking into account that the real part of the

self-energy is even while the imaginary part is odd we get in Matsubara frequencies

Σ(iν) ≈ <Σ(iν→ 0+) + i=Σ(iν→ 0+)︸          ︷︷          ︸
−γ

+
∂=Σ(iν)
∂iν

∣∣∣∣∣∣
iν→0+︸           ︷︷           ︸

1 − Z−1

iν + O(ν2). (2.6)

From this we can extract the scattering rate γ and the quasi-particle weight Z = me
me f f

. From

imaginary time, directly calculated by w2dynmamics [50], we can approximate the spectral

function

A(ν) ≡ −
1
π
=G(ν) (2.7)

around the Fermi level (see e.g. [59]):

G(τ) =

∫ ∞

−∞

dωA(ω)
e−τω

1 + e−βω
(2.8a)

G
(
β

2

)
=

∫ ∞

−∞

dωA(ω)
1

2 cosh(βω/2)
(2.8b)

A(ω = 0) ≈ G
(
β

2

)
·
β

π
(2.8c)

This is a good approximation for A(ω = 0) for large enough inverse temperatures β.6 If these

quantities (Eqs. (2.6) and (2.8c)) are not sufficient we ultimately have to transform the full

spectral function to the real frequency space. This is done via a technique called analytical con-

tinuation where one can employ different techniques such as the maximum entropy algorithm

(MaxEnt) [60] or routines relying on Padé approximants [61].
6 The limit β→ ∞ leads to the exact relation

lim
β→∞

∫ ∞

−∞

dωA(ω)
1

2 cosh(βω/2)
β

π
=

∫ ∞

−∞

dωA(ω) · δ(ω) = A(0). (2.9)
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2.3 Two-particle diagrams

DMFT works well for a wide range of materials but due to the mapping onto a local impurity

it is inherently unable to capture non-local correlations. These non-local effects are especially

prominent in low dimensional systems, where the DMFT approximation begins to crumble,

or near phase transitions where correlation lengths even diverge. First attempts to treat these

problems were done by extending DMFT to a cluster formulation (e.g. cellular DMFT [9] or

dynamical cluster approximation [8, 62]). While short-ranged correlation effects can be de-

scribed by these theories, long-ranged effects are still only considered on a mean-field level.

For that reason a wide range of theories were developed over the last years which try to include

non-local correlations on all length scales. The one we will focus on over the course of this

thesis is the so-called dynamical vertex approximation DΓA [10]. The main idea behind DΓA is

to push the assumption of locality from the one-particle level to the two-particle level. However

before diving straight into its details we have to start off by classifying the two-particle diagrams

involved. While all possible two-particle diagrams are irreducible on the one-particle level7, on

the two-particle level they can be categorized into two groups

– Two-particle irreducible.

– Two-particle reducible in one specific channel r.

Similarly to the one-particle reducibility, two-particle reducibility means that by cutting a dia-

gram along a given channel (i.e. cutting 2 lines) we get two new valid two-particle diagrams.

This cutting procedure can be performed in three different ways, resulting in three channels

r ∈ ph, ph, pp (particle-hole (longitudinal), particle-hole transversal, particle-particle). We can

then express this classification in form of the equation

F︸︷︷︸
1PI

= Λ︸︷︷︸
2PI

+ Φpp + Φph + Φph︸              ︷︷              ︸
2PR

. (2.10)

The one-particle irreducible full vertex F (describing all possible two-particle interactions) thus

consists of all two-particle irreducible diagrams, coined Λ, and all other diagrams which can be

reducible –at most– in one out of the three previously mentioned channels. This classification

along with exemplary diagrams is illustrated in Fig. 2.4.

Another way to express this equation is with the help of the two-particle irreducibility in a given

channel r. In this vein a diagram can exclusively be either reducible (Φr) or irreducible (Γr) in

7 A one-particle reducible two-particle diagram would violate the conservation of particles and thus cannot exist.
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one specific channel. As a consequence all reducible diagrams can then be constructed via a so-

called ladder, i.e. we build an infinite series of irreducible diagrams connected with each other

by their appropriate propagators (akin to how the interacting Green’s function was constructed).

These so-called Bethe-Salpeter equations (BSE) read

F = Γr + Φr

= Γr +

∫
Γr (GG)r Γr +

∫
Γr (GG)r Γr (GG)r Γr + · · ·

= Γr +

∫
Γr (GG)r F.

(2.11)

With this knowledge we can combine all four equations (three BSEs and the classification) into

the so-called parquet equations

Φph =

∫
Γph (GG)ph F =

∫ (
F − Φph

)
(GG)ph F

=

∫ (
Λ + Φph + Φpp

)
(GG)ph F

(2.12a)

Φph =

∫
Γph (GG)ph F =

∫ (
F − Φph

)
(GG)ph F

=

∫ (
Λ + Φph + Φpp

)
(GG)ph F

(2.12b)

Φpp =

∫
Γpp (GG)pp F =

∫ (
F − Φpp

)
(GG)pp F

=

∫ (
Λ + Φph + Φph

)
(GG)pp F

(2.12c)

F = Λ + Φpp + Φph + Φph. (2.12d)

Figure 2.4: Classification of the full vertex in its separate parts according to Eq. (2.10). The
indicated diagrams also show the two-particle reducibility in the three different channels. Re-
produced from [63].



CHAPTER 2: Correlations beyond DFT 25

In order to actually obtain the numerical data for these kind of diagrams one once again makes

use of an impurity solver. The local two-particle Green’s function G(2) can be calculated (sam-

pled in the case of a QMC solver) in a similar fashion as the one-particle Green’s function G.

E.g. in the particle-hole channel the local full vertex F is connected to the two-particle Green’s

function and the generalized susceptibility χ with the help of the bare susceptibility

χνν
′ω

0 = −βGνGν′−ωδν,ν′ (2.13)

via

G(2) νν′ω = βGνGν′δω,0 + χνν
′ω

0 +

Gcon ν,ν′ ,ω︷             ︸︸             ︷
χννω0 Fνν′ωχν

′ν′ω
0︸                       ︷︷                       ︸

χνν′ω

. (2.14)

Diagrammatically this connection is illustrated in Fig. 2.5 where the so-called disconnected

terms are represented by two Green’s function which are not connected to each other (the full

details are discussed in Appendices C and E).

Gqkk′
lmm′l′

F qkk′

l, k

m, k − q m′, k′ − q

l′, k′ l

k, σ

m

l′

m′

k′, σ′
k, σ

k − q, σ

l

m
= −

+

l.k

m, k − q m′, k′ − q

l′, k′

σ σ′
l′

m′

σ σ′χqkk
0 χqk′k′

0

Figure 2.5: Diagrammatic representation of the separation of the two-particle Green’s function
Gqkk′

σσ′,lmm′l′ into its disconnected and connected terms. The connected Green’s function contains
the full vertex F while the disconnected parts are represented by 2 separate Green’s functions.

Subsequently we have to subtract the disconnected terms from G(2) and then divide (amputate)

the remaining four Green’s function of the so-called connected part Gcon in order to obtain the

full vertex F.
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2.4 Non-local correlations: parquet dynamical vertex approximation

Up until now the two-particle description was exact, i.e. we just rearranged diagrams into their

respective groups and formed coupled expressions. In order to solve Equations (2.12) one needs

to know the fully irreducible vertex Λ0. Here, the dynamical vertex approximation (DΓA) comes

into play. DΓA makes the assumption that the two-particle irreducible vertex Λ is local.8 In that

sense it represents the most natural extension of DMFT: The locality is pushed from the one-

particle level (self-energy Σ) to the two-particle level

Λqkk′ → Λωνν′ = Λloc. (2.15)

The DΓA flow usually starts with the previously described DMFT solution, i.e. we get a self-

consistently solved local bath propagator G0 / hybridization function ∆ from DMFT. After that

the following steps have to be carried out:

1. Compute the impurity Green’s function Gimp(iν) and the impurity two-particle Green’s

function G(2)
imp(iν, iν′, iω) (or the generalized susceptibility χ) via an impurity solver.

2. Calculate the local full vertex F loc by removing the disconnected terms and amputating

the four legs.

3. Calculate the local irreducible vertices Γr via an inversion of the local BSE:

Γloc
r = F loc

[
1 + (GG)loc

r F loc
]−1

4. Calculate the local two-particle irreducible vertex Λloc:

Λloc = F loc −
∑

r

(
F loc − Γloc

r

)
5. Calculate the non-local full vertex F via the non-local BSE9:

F = [1 − Γr (GG)r]
−1 Γr

6. Recalculate the two-particle irreducible vertices Γr via the parquet equations:

F,G,Λloc → Φr → Γr

7. Iterate step 5 and 6 until convergence.

8. After convergence is reached, calculate the non-local self-energy ΣDΓA(k, iν) via the equa-

tion of motion (see Appendix G for a typical derivation).

8 In the parquet approximation one, e.g., uses the bare interaction U as Λ.
9 In the first iteration the non-locality from the full vertex F is created only from the non-local propagators. All

following iterations will use non-local irreducible vertices Γr.
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9. Calculate a new Green’s function via the Dyson equation:

G =
[
G−1

0,lattice − ΣDΓA

]−1

10. Return to step 5 and iterate steps 5 to 9 until convergence.

11. Calculate a new non-interacting impurity Green’s function Gnew
0 . This can, e.g., be de-

termined by solving the impurity problem until the unknown Gnew
0 reproduces the local

projection of the DΓA Green’s function from step 9:

Gnew
0

imp
←→

∑
k G(k, iν)

12. Iterate steps 1 to 11 until convergence.10

The apparent complexity of this procedure makes it clear that it is only really feasible for small

problems (i.e. one band calculation). In addition to that it was shown that the full parquet

algorithm only converges in the weak-coupling regime [64]. For these reasons a more simplified

approach is needed if one wants to do calculations for larger problems (i.e. real materials).

2.5 Non-local correlations: ladder dynamical vertex approximation

LadderDΓA represents this simplified version of parquetDΓA. The main motivation behind this

approach is that one usually does not need all possible channels to describe the physics involved.

The obvious disadvantage is therefore the required knowledge of channels in which instabilities

are expected. LadderDΓA can be formulated in two different ways: Either the locality of the

particle-particle reducible diagrams

Λqkk′ → Λωνν′ = Λloc

Φ
qkk′
pp → Φωνν′

pp = Φloc
pp ,

(2.16)

or the locality of the particle-hole-transversal reducible diagrams is assumed

Λqkk′ → Λωνν′ = Λloc

Φ
qkk′

ph
→ Φωνν′

ph
= Φloc

ph
.

(2.17)

Since most problems we are interested in are reasonably well described by local particle-particle

diagrams (superconducting fluctuations are expected to be small) we will stick from now on to

the former description. In this case the ladderDΓA flow starts identical to parquetDΓA with

a converged DMFT solution, i.e. a hybridization function ∆. The major difference is that we

do not use the parquet equations to recalculate new irreducible vertices and handle the whole

procedure without any self-consistent cycles. This reads
10 The full iteration of the whole process is usually not done.
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1. Compute the impurity Green’s function Gimp(iν) and the impurity two-particle Green’s

function G(2)
imp(iν, iν′, iω) (or the generalized susceptibility χ) via an impurity solver.

2. Calculate the local full vertex F loc by removing the disconnected terms and amputating

the four legs.

3. Calculate the local irreducible vertices Γr in the specific channels under consideration via

an inversion of the local BSE:

Γloc
r = F loc

[
1 + (GG)loc

r F loc
]−1

4. Calculate the non-local full vertex F via the non-local BSE:

F =
[
1 − Γloc

r (GG)r

]−1
Γloc

r

5. Calculate the non-local self-energy ΣDΓA(k, iν) via the equation of motion.

6. Calculate a new Green’s function via the Dyson equation:

GDΓA =
[
G−1

0,lattice − ΣDΓA

]−1

This easier approach allows us to do calculations for more complex materials (i.e. multi-orbital

problems). For a complete derivation and implementation details of the ladderDΓA approach

used in AbinitioDΓA [20, 24], which is used for all following calculations, please refer to

Appendices D–I. There the ladder, as suggested in point 4, is not only built with the purely local

irreducible vertex, but one is able to supplement this vertex with ‘ab initio’ non-local interactions

(hence the name). This is done with the so-called interaction vertex Vqkk′
lmm′l′
σσ′

and reads

Γ
qkk′

lmm′l′
σσ′
≡ Γωνν

′

lmm′l′
σσ′

+ Vqkk′
lmm′l′
σσ′

(2.18)

Vqkk′
lmm′l′
σσ′
≡ β−2

[
Vq

lm′ml′ − δσσ′V
k′−k
m′lml′

]
. (2.19)

The connection between local and non-local irreducible vertex is illustrated in Fig. 2.6.

= σ

l,k

m,k− q m′,k′ − q

l′,k′

σ′ −

l′,k′m′,k′ − q

l,km,k− q

σ

σ

V q

V k′−kΓqkk′
lmm′l′σ σ′ Γωνν ′

lmm′l′σ σ′+

Figure 2.6: Diagrammatic representation of the supplementation of the local irreducible vertex
Γωνν

′

lm′ml′ with non-local interactions V(q).
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3 AbinitioDΓA for bulk SrVO3

As a first step we will start by revisiting the results in the initial publications of the AbinitioDΓA

project [20, 22, 23, 24]. Strontium vanadate SrVO3, a common strongly correlated testbed ma-

terial, crystallizes into a perovskite structure (see Fig. 2) with a lattice constant of a = 3.8Å.

This crystallization is achieved by means of electron transfer, namely

Sr + V(3d34s2) + O3 −→ Sr2+ + V(3d1) + O2−
3 , (3.1)

resulting in an ionic compound with (in an ideal picture) fully filled oxygen 2p bands, empty

Strontium 5s bands and one d-electron in the vanadium t2g-space.

According to photoemission spectra [65], as well as specific heat measurements [66], the t2g

orbitals display a mass enhancement of Z−1 ≈ 2. This property can numerically be recovered by

using the state-of-the-art DFT+DMFT approach. Starting from DFT in the GGA approximation

(within Wien2K [36]) we realize the transformation to the Wannier basis for the energetically

well separated 3d t2g orbitals via Wien2Wannier [67]. The resulting band-structure is illustrated

in Fig. 3.1.

̀ X M ̀ R
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Figure 3.1: DFT band-structure of SrVO3 calculated within GGA. The three vanadium t2g bands
around the Fermi level are well separated from the lower lying oxygen and higher lying vana-
dium 3d eg bands (outside of the energy window displayed). The splitting of the t2g and eg bands
is caused by the cubic crystal field originating from the characteristics of the involved orbitals
(see e.g. [68]).

The interaction parameters U (intra-orbital), U′ (inter-orbital) and J (Hund’s exchange) can be

calculated via cLDA and result in U = 5eV, U′ = 3.5eV and J = 0.75eV which recover the
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mass enhancement from experiments in DFT+DMFT [65], which also displays a kink [69]. We

employ a SU(2) symmetric interaction parametrization, namely the Kanamori interaction [70]

Ûfull
Kanamori = U

∑
m

nm↑nm↓

︸          ︷︷          ︸
intra−orbital density−density

+
1
2

∑
m,m′
σσ′

[
U′ − δσσ′ J

]
nmσnm′σ′

︸                               ︷︷                               ︸
inter−orbital density−density

+ J
∑

m,m′

[
ĉ†m↑ĉ

†

m′↓ĉm↓ĉm′↑︸            ︷︷            ︸
spin−flip

+ ĉ†m↑ĉ
†

m↓ĉm′↓ĉm′↑︸            ︷︷            ︸
pair−hopping

]
.

(3.2)

It can be easily shown that these terms can be recovered by a generalized sum (employed in

AbinitioDΓA) of the form

Ûfull =
1
2

∑
ll′mm′
σσ′

Ulm′ml′ ĉ
†

m′σĉ†lσ′ ĉmσ′ ĉl′σ (3.3)

and the mapping
Ummmm = U

Umm′mm′ = U′

Umm′m′m = J

Ummm′m′ = J,

(3.4)

where we can distinctly identify the last term as the pair-hopping contribution while the second

to last term recovers both the spin-flip contribution (non-density-density part) as well as the

Hund’s exchange term in the inter-orbital density-density contribution (density-density part).

Due to this inseparability the density-density interaction breaks SU(2) ∀J > 0. We stress that

our ladderDΓA implementation requires a SU(2) symmetric interaction.11

Furthermore in cubic crystals, such as SrVO3, one usually applies the relation U = U′ + 2J

between the local intra- (U) and inter-orbital (U′) parameter. This relation however only holds

exactly for spherical symmetry [71] whereas in a cubic crystal structure the total symmetries

are reduced to the cubic point symmetries. Nonetheless it was shown that using this spherical

relation for screened interactions in the case of 3d orbitals provides a good approximation [72].

Consequently we will employ this relation in all the following calculations.

11 A more generalized, i.e. momentum-dependent, interaction with an identical notation is used in the AbinitioDΓA
derivation found in Appendix D.
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3.1 Effects of temperature

The results [20] we want to expand on were done for an inverse temperature β = 10eV−1.

There the local two-particle vertex (χωνν
′

) was sampled within w2dynamics [50] where ±60

frequencies for all three frequency dependencies were extracted. With the definition of the

asymptotic region [73]

ν1ν2ν3ν4
β4

π4 > l4
∣∣∣δν1ν2 + δν1ν4 − δν1ν2δν1ν4

∣∣∣4 (3.5)

and a replacement parameter of l = 15 one is subsequently able to show that the vertex re-

gion is smaller than the calculated size. This therefore allows the substitution of the QMC

noise outside the vertex area with the much less noisy, purely asymptotic part (sampled sep-

arately). Additionally one can exploit this asymptotic vertex further and extend the original

vertex to higher frequencies (for an introduction to multi-orbital vertex asymptotics please re-

fer to [73]). This is helpful because our CTQMC solver works in imaginary times and must

therefore apply a Fourier transform after sampling. This three-dimensional transform is rather

memory-demanding and one is therefore limited in the number of frequencies one can calculate.

In order to minimize box size effects the vertex is thus extended from ±60 to ±200 through its

asymptotics. The results for the purely local Kanamori interaction with the values given at the

beginning of this chapter are then analyzed via the k-dependent version of Eq. (2.6)

Σ(k, iν) ≈ <Σ(k, iν→ 0+) + i=Σ(k, iν→ 0+) +
∂=Σ(k, iν)

∂iν

∣∣∣∣∣∣
iν→0+

iν + O(ν2)

= <Σ(k, iν→ 0+) − iγk +

(
1 −

1
Zk

)
iν + O(ν2).

(3.6)

The imaginary part of the DΓA self-energy (illustrated in Fig. 3.2) is only marginally affected

where the quasi-particle weight Zk varies less than 2% in the Brillouin zone. In the same vein

the momentum-resolved scattering rate γk shows only slight adjustments towards larger values

of the order of 5 − 15% (one must be careful about the absolute values since they are strongly

dependent on the fit). In contrast, the real part displays the largest non-local effects within DΓA

(see lower panel of Fig. 3.2). The first fermionic frequency iν0 varies more than 200meV and

shows a similar pattern compared to the scattering rate. The direction in which this adjustment

takes place can be best seen in Fig. 3.2, where the occupied states (lower lying energy levels) are

shifted downwards while the unoccupied states (higher lying energy levels) are shifted upwards.

This occupation-dependent splitting can be concluded from the band-structure in Fig. 3.1 and

further confirms this point as, e.g., at the X-point the energies are split up more than 100meV.
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The effects of high temperature (T ≈ 1000K) can be seen as the Fermi surface can only be

roughly surmised in the plots of Fig. 3.3.

0 2 4 6 8 10
iν

−0.9

−0.7

−0.5

−0.3

Im
[Σ
̀iν

)]

Z=0. 49, γ=0. 38
Z=0. 49, γ=0. 36

Γ= ̀0, 0, 0)

̀MFT
dxy,dxz,dyz

0 2 4 6 8 10
iν

−0.9

−0.7

−0.5

−0.3
Z=0. 50, γ=0. 38
Z=0. 50, γ=0. 40

X=̀0,̀, 0)

dxy,dyz
dxz

0 2 4 6 8 10
iν

−0.9

−0.7

−0.5

−0.3
Z=0. 50, γ=0. 42
Z=0. 50, γ=0. 40

̀=̀̀,̀, 0)

dxz,dyz
dxy

0 2 4 6 8 10
iν

−0.9

−0.7

−0.5

−0.3 Z=0. 50, γ=0. 42

̀=̀̀,̀,̀)

dxy,dxz,dyz

0 2 4 6 8 10
iν

2.0

2.2

2.4

2.6

2.8

Re
[Σ
̀iν

)] ̀MFT
dxy,dxz,dyz

0 2 4 6 8 10
iν

2.0

2.2

2.4

2.6

2.8

dxy,dyz
dxz

0 2 4 6 8 10
iν

2.0

2.2

2.4

2.6

2.8

dxz,dyz
dxy

0 2 4 6 8 10
iν

2.0

2.2

2.4

2.6

2.8

dxy,dxz,dyz

Figure 3.2: Real and imaginary parts of the DΓA self-energy for bulk SrVO3 at the high sym-
metry points Γ, X, M and R calculated at β = 10eV−1. The, locally, orbital symmetric DMFT
self-energy is shown as dashed grey line while the DΓA self-energies are shown in color and
split up depending on the k-dependent symmetry.
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Figure 3.3: (a) Real and (b) imaginary parts of the DΓA self-energy at the first fermionic fre-
quency iν0. (c) Scattering rate γk and (d) quasi-particle weight Zk according to Eq (3.6). The
values were extracted in the kz = 0 plane for only the xy-orbital, from which the symmetry
originates, and interpolated from 20 × 20 to 100 × 100 k-points.12

12 The polynomial was determined according to a least-squares fit (numpy.polynomial.polynomial.polyfit) while the
interpolation was done with cubic splines (scipy.interpolate.interp2d). The fit was done via a third order polynomial
at the first five frequencies.
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To investigate the temperature dependence, similar calculations are performed at room temper-

ature β = 38eV−1 (T ≈ 300K). We expected to find a more pronounced Fermi surface as well

as larger non-local signatures. The reasoning being, that the DMFT approximation works best

at high temperatures as here the thermal fluctuations dominate and suppress non-local correla-

tions. Since the starting point changes, a new converged DMFT self-energy as well as a new

vertex have to be calculated. Due to the lower temperature the CTQMC solver requires more

computational time in order to obtain the same accuracy (the one- and two-particle Green’s

function have to be sampled in the interval τ ∈ [0, β)) which fortunately remained feasible. The

largest computational penalty is retained by the calculation of the new local two-particle vertex.

Due to current implementation and memory limitations we are still restricted to ±60 frequencies

for all three dependencies. This however is not a crucial factor since the non-asymptotic vertex

domain, with the help of Eq. (3.5), can be shown to be already fully contained in it. We observe

that, compared to the β = 10eV−1 vertex, this domain scales with approximately β which sug-

gests that only the absolute frequency values tend to matter in this respect. For all the following

results the vertex is extended from ±60 to ±240 frequencies for all three dependencies. An ex-

emplary replacement technique, following Eq. (3.5), is illustrated in Fig. 3.4. There, the areas

with clearly visible QMC noise (corners of the left panels) are replaced by their corresponding

asymptotic areas (middle panels). The resulting vertices (right panels) are then used for the

calculations.

The imaginary parts of the DΓA self-energy (shown in Fig. 3.5) show again qualitatively little

momentum dependence. The quasi-particle weight variation doubled to around 4% in the kz = 0

plane compared to β = 10eV−1 calculations. The scattering rate γk implies a rather large differ-

ence between the occupied and unoccupied states where the largest values can be found in the

vicinity of the Fermi surface (see Figures 3.6 and 3.7). Also the real part shows again a similar

behaviour as for the higher temperature, but now the Fermi surface is much more pronounced.

One however has to be careful when comparing the absolute values at the lowest Matsubara

frequency. The first frequency for β = 38eV−1 is effectively four times closer to the zero point

than for β = 10eV−1 and we are always bound to introduce systematic errors when performing a

polynomial fit. Nonetheless we see a trend towards non-locality with a well pronounced Fermi

surface which in fact confirms our expectations.
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Figure 3.4: Two-particle vertex F1111 in the density channel at iω = 0 and β = 38eV−1 for the
(a) full QMC data, (b) purely asymptotic data and (c) with the vertex used in the calculations
(i.e. the inner non-asymptotic vertex domain from the full QMC data and the asymptotic domain
from the asymptotic data). (d)-(f) same as (a) - (c) but for the magnetic channel. We show here
all ±60 fermionic frequencies ν and ν′ as sampled by CTQMC. The characteristic diagonal lines
(from bottom left to top right) appear because here the interacting particles possess the same
energy and thus they can interact without energy transfer.
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Figure 3.5: Real and imaginary parts of the DΓA self-energy for bulk SrVO3 at the same high
symmetry points as in Fig. 3.2 for β = 38eV−1.
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Figure 3.6: (a) Real and (b) imaginary parts of the SrVO3 DΓA self-energy at the first fermionic
frequency iν0 as a function of momentum kx and ky. (c) Scattering rate γk and (d) quasi-particle
weight Zk according to Eq (3.6). The data here is shown in the kz = 0 plane with the calculation
performed for β = 38eV−1.
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Figure 3.7: Same data as shown in Fig. 3.6 but with the LDA Fermi surface drawn on top of it
(the black lines are drawn where the expression Hll(k) − µLDA = 0 is fulfilled).
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For completion, we also show here the (real part of the) momentum-dependent DMFT sus-

ceptibilities which one basically gets for free when solving the Schwinger-Dyson equation in

AbinitioDΓA (see Appendix H). These, still orbital-dependent, density and magnetic suscep-

tibilities (Figures 3.9 and 3.10) are displayed in form of a matrix. That is, e.g., the plot in

the top right corner represents the entry 13 and thus is the data for χ1133. In order to obtain

experimentally measurable susceptibilities we have to sum over all orbital combinations

χD ≡
∑
lm

χllmm
D

(3.7a)

χM ≡ 2
∑
lm

χllmm
M
. (3.7b)

Here the factor 2 has to be introduced because of the missing gyromagnetic ratio ge. By taking

the off-diagonal elements into consideration (which are negative in the density susceptibilities)

one can clearly see that the magnetic susceptibilities dominate the density susceptibilities in

terms of size. The diagonal elements contribute the most while also having the largest momen-

tum dependence. This is summarized in Fig. 3.8.
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Figure 3.8: Physical density (a) and magnetic (b) susceptibility for bulk SrVO3 at β = 38eV−1 in
the qz = 0 plane. The data is obtained by applying Equations (3.7) onto the orbital-resolved sus-
ceptibilities from Figures 3.9 and 3.10. The magnetic susceptibility shows a strong momentum-
dependence while also being orders of magnitude larger than its density counterpart.
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Figure 3.9: Real part of the orbital-resolved density susceptibilities χD llmm for bulk SrVO3 at
β = 38eV−1 in the qz = 0 plane at ω = 0. The matrix position implicitly determines the involved
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Figure 3.10: Same as Fig. 3.9 but now for the magnetic susceptibilities χM llmm .
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3.2 Effects of non-local interactions

Up to this point our description consisted of purely local interactions and therefore all non-local

signatures we obtained originated from the (non-local) lattice propagators in the construction

of the non-local Bethe-Salpeter equations. AbinitioDΓA however is derived in a way that

allows the inclusion of non-local interactions on the level of the two-particle irreducible vertex

Γ (see chapter 2.5 and Appendix F). Without these interactions the equation for the DΓA self-

energy (Eq. (G.35)) simplifies and does not explicitly require the local boson-fermion vertex

γωνr obtained via a frequency summation of χ0F:13

γωνlmm′l′
r
≡

∑
ν′

n′h′

χων
′ν′

0,lmn′h′F
ων′ν
h′n′m′l′

r
(3.8)

By avoiding this object (it is still implicitly contained in the other two boson-fermion vertices

γ
qν
r and ηqν

r ) we were also able to avoid most of the box size problems stemming from it.14 Cal-

culations with prominent non-local interactions make it essential to have data which ultimately

has little to no box-size effects. The simplest and most obvious way to achieve this is by includ-

ing as many frequencies as possible and hoping that the summation is converged. It turns out

that this not optimal since a massive amount of frequencies is required for convergence and one

would be furthermore restricted to high temperatures (only the absolute frequency size matters

in the vertex domain thus requiring more frequencies at lower temperatures). A way out of

this dilemma can be achieved by measuring this local boson-fermion vertex (coined P(3)) [73]

directly within CTQMC to replace χ0F. The measurement is similar to the two-particle vertex

measurement, yet one has to set two operators to an equal imaginary time. The required γωνr is

then tightly connected to the result of this measurement (which is also required for the calcu-

lation of the kernel-2 function K(2)ph νω, necessary in the construction of the asymptotic vertex

[73]) and one theoretically obtains an object with no box-size effects at all. Unfortunately this

solution is not as perfect as it sounds since one ultimately exchanges box-size effects with QMC

noise. Improvements in this regard could be further achieved by including asymptotic data of

these K(2) objects and thus allowing us to go to higher frequencies. This is however currently

not yet implemented and we have to be content with the data without further asymptotic, thus

being restricted to a relatively small box N = 60.

13 Due to this summation and the nature of the involved object it inherently displays the largest box size effects.
14 The previous results for box sizes of ±60, ±120 and ±240 lie basically on top of each other. Only the first few

frequencies are slightly affected by it leading to a slight deviation of Zk and γk.
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In the following we show first calculations with this measured three-leg vertex γωνr at β =

10eV−1 and the non-local interactions V(q) shown in Fig. 3.11. The effects of the non-local

interactions are clearly visible in the imaginary part of the DΓA self-energy in Fig. 3.12, where

we see a trend towards less correlation (increasing Z; illustrated in Fig. 3.13). The quasi-particle

weight now varies around 10% in the BZ with a maximum at the Γ point. The scattering rate

is generally increased compared to the purely local results in chapter 3.1. A similar behaviour

akin to the room temperature calculation can be observed: The Fermi surface of, in this case,

just the xy-orbital looks to be well pronounced. Furthermore, we see a qualitatively different

imaginary self-energy in all k-points where the values in Fig. 3.12, starting from iν = 2eV, are

pushed upwards. Before commenting on the real part of the self-energy we have to mention that,

compared to the previous calculation, it has to be evaluated in a slightly different manner. Due

to the, now existing, non-local Hartree-Fock terms (see last line in Eq. (G.35)) we get massive

shifts (up to 50eV mainly caused by the large value at V(q = 0)) purely in the real part. We

circumvent this problem by adding these terms and subtracting the Brillouin zone mean

Σ(k, iν) = Σno HF(k, iν) + Σnon−local HF(k) −
∑
k∈BZ

Σnon−local HF(k). (3.9)

By doing this we get real parts that are approximately centered where they were before adding

these terms (ultimately absorbing them into the chemical potential to obtain a consistent occu-

pation). The values at the first fermionic frequencies are consequently much wider spread with

a maximum difference of more than 450meV. The trend is equivalent to the previous findings in

that the occupied states are again pushed downwards and the unoccupied states are pushed up-

wards. In contrast to the imaginary part, the Fermi surface in Fig. 3.13 is much less pronounced

leaving us with qualitatively the same pattern as in chapter 3.1.
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Figure 3.11: Exemplary purely non-local interaction V(q) (
∑

q V(q) = 0) for the band-
combination 1111 (only the xy-orbital is involved) in SrVO3. The V(q) data is obtained by
performing a Fourier transform onto U(r) data, calculated within cRPA.
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Figure 3.12: Real and imaginary parts of the DΓA self-energy of bulk SrVO3 with included
non-local interaction V(q) at β = 10eV−1.
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Figure 3.13: (a) Real and (b) imaginary parts of the DΓA self-energy at the first fermionic
frequency iν0. (c) Scattering rate γk and (d) quasi-particle weight Zk according to Eq. (3.6). The
calculation was performed at β = 10eV−1 with the inclusion of non-local interactions.

As a final point in this chapter we will take a closer look at the box-size effects discussed at the

beginning of this chapter. For comparison, calculations are shown for the box-sizes ±60, ±100,

±200 as well as the previously shown results using γων. For clarification: In Figures 3.14 and

3.15 the panels in the bottom rows simply illustrate the data of the top rows at lower frequencies.

The high-frequency box-size effects are best visible in the imaginary part of the self-energy in

Fig. 3.14 where for all high-symmetry points the smaller boxes display unphysical behaviour.15

15 The data for the N = 200 box extends much further which is why it looks almost unaffected.
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In the top panels we can see that the external γω3 does not improve the internal summation in the

high frequency range much. It is additionally being affected by the previously mentioned QMC

noise suggesting that this phenomena originates from the bosonic box-size (see Eq. (G.35)).

This ultimately makes larger boxes for this boson-fermion vertex a necessity. Unfortunately

these box sizes are at this moment not yet available due to the missing implementation of the

asymptotic behaviour of these vertices themselves. Nonetheless the calculation with external

γων shows qualitatively better low-frequency behaviour (see bottom panels of Fig. 3.14) with-

out any kinks as seen in the other calculations. Here we we see that, for all four high symmetry

points, especially the value of the second frequency (around iν = 0.94) differs the most between

the calculation with γω and the rest. The most glaring discrepancy can be seen at the Γ-point

(q = (0, 0, 0)). This behaviour can be explained by the already mentioned large V(q = 0) value

(see Fig. 3.11). Due to the relatively coarse k-mesh we might have implicitly given this point

too much weight. This problem could be either solved by sampling the Brillouin zone in a more

refined mesh or by keeping the old k-mesh and only replacing this one problematic value by an

average of the Γ-vicinity. Due to the already quite fine mesh (20× 20× 20) the second variation

is preferable.

The real part on the other hand looks to be much less affected by these summation effects. Here

in the top panels of Fig. 3.15 the different calculations are only differing slightly. The QMC

noise in the calculation with γων is similar to the imaginary part while being largest at the prob-

lematic Γ-point. In the low-frequency range increasing box-sizes show a trend which we have

already seen before. That is, at the occupied states (X, M, R) the curves trend upwards while

at the unoccupied state (Γ) the curves trend downwards (we are only referring to the xy-orbital

here).

All in all, the low frequency convergence discrepancy (calculations with increasing box size

do not converge towards the result with γων) remains a problem which has to be investigated

in greater detail in the future in order to achieve the best possible description with the cur-

rent AbinitioDΓA implementation. We suggest that implementing proper γων asymptotics will

bring the best results where we especially would target large bosonic frequency boxes and opti-

mize k-meshes for the V(q) calculation.
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Ǹ200

0 10 20 30 40 50 60 70 80
iν

−1.0

−0.8

−0.6

−0.4

−0.2

0.0 ̀̀̀0,̀, 0)

0 10 20 30 40 50 60 70 80
iν

−1.0

−0.8

−0.6

−0.4

−0.2

0.0 ̀̀̀̀,̀, 0)

0 10 20 30 40 50 60 70 80
iν

−1.0

−0.8

−0.6

−0.4

−0.2

0.0 ̀̀̀̀,̀,̀)

0 1 2 3 4 5 6
iν

−1.0

−0.8

−0.6

−0.4

Im
Σ̀
k,
iν
)

0 1 2 3 4 5 6
iν

−1.0

−0.8

−0.6

−0.4

0 1 2 3 4 5 6
iν

−1.0

−0.8

−0.6

−0.4

0 1 2 3 4 5 6
iν

−1.0

−0.8

−0.6

−0.4

Figure 3.14: Influence of box size on the imaginary part of the DΓA self-energy at the high
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3 calculations use a vertex which is summed up internally. This summation is consequently
restricted to the stated box-size thus showing different degrees of box-size effects.
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Figure 3.15: Same as Fig. 3.14 but now for the real part of the DΓA self-energy.
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4 AbinitioDΓA for ultra-thin SrVO3

As a starting point for the investigation of dimensionality effects in SrVO3 we will resort to

a previously published paper by Zhong et al. [74], which among others, is based on recent

experimental findings which investigated the behaviour of ultra-thin SrVO3 films [75]. In their

experiments two-layered SrVO3 has been found to be insulating which was further confirmed by

Masaki et al. [76]. In [74] realistic DFT+DMFT calculations were performed which pinpointed

the origin of this behaviour, namely the energy splitting caused by the broken local orbital

symmetry. It was further concluded that by a manipulation of the interaction parameters, or by

applying a potential, a Mott metal-to-insulator transition can be triggered which is unique for

the bilayer case. While for three or more layers the system becomes more and more metallic

and moves towards the bulk state, for one layer the system is purely insulating [74, 76].

4.1 DFT results

We reproduce their findings by doing similar DFT+DMFT calculations for a heterostructure

consisting out of two SrVO3 layers on top of a SrTiO3 substrate. The insulating substrate

is constructed out of five unit cells of SrTiO3 together with a sufficiently large vacuum layer

(around 8Å thick). The lattice equilibrium can be found by minimizing the DFT ground-state

energy via a variation of the lattice constants involved in the Hamiltonian. This is expressed by

the Hellmann-Feynman theorem and states

dEλ

dλ
=

〈
ψλ

∣∣∣∣∣∣dĤλ

dλ

∣∣∣∣∣∣ψλ
〉
, (4.1)

where λ is an arbitrary parameter. This minimization determines a vertical lattice constant

(perpendicular to the layer) between the two vanadium atoms of aSrVO3 = 3.83Å and a gradually

increase of the titanium spacing in the SrTiO3 substrate starting from aSrTiO3 = 3.94Å right

below the vanadium layer up to aSrTiO3 = 4.00Å above the vacuum. Compared to the SrVO3

bulk lattice constant of a = 3.8Å we already see the mutual influence of the two respective

crystals. The DFT calculation is analogously done with Wien2K [36] using linear augmented

plane waves and the general gradient approximation (GGA). The maximally localized Wannier

functions are prepared via Wien2Wannier [67] and the resulting Hamiltonian is created by

projecting onto the three t2g orbitals of both layers (see Fig. 4.1). With the AbinitioDΓA post-

processing in mind a much finer k-mesh is chosen consisting out of 80 × 80 × 1 k-points. The

confinement in the z-direction by the vacuum at one end and the insulating SrTiO3 at the other

leads to a cut-off of neighbor hopping for both the xz- and yz-orbitals while having almost no
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effect on the xy-orbital. This in turn means that the two affected xz- and yz-orbitals become

more 1-dimensional leading to a crystal-field splitting ∆ between the xy- and both the xz/yz-

orbitals. In the top SrVO3 layer this results in ∆ = 0.22eV while in the bottom SrVO3 layer it is

reduced to around ∆ = 0.07eV where in both layers the xz/yz orbitals are energetically pushed

higher. This can be seen, e.g., at the Γ-point when comparing both the bulk and two-layer band-

structure in Figs. 3.1 and 4.1. To summarize the DFT result we illustrate the resulting k-resolved

Hamiltonian in form of a band-structure striding through all high symmetry points.16

̀ X M ̀−1.0

−0.5

0.0

0.5

1.0

1.5

E
[e

V]

top layer
bottom layer

Figure 4.1: DFT band-structure of the SrVO3 bilayer Hamiltonian calculated within GGA. The
lowest bands at the Γ-point represent the xy orbitals while the highest bands at the X-point
represent the yz orbitals.

4.2 DMFT results

Continuing from the DFT result we perform DMFT calculations with w2dynamics in the

continuous-time hybridization expansion (CT-HYB) [50]. Supplementing the Hamiltonian with

a Kanamori interaction and, identical to bulk SrVO3, using a Hund’s exchange of J = 0.75eV

we perform all following calculations at room temperature (β = 38eV−1). Instead of working

with a fixed intra- and inter-band interaction parameter we vary them while still fulfilling the

quasi-symmetry condition U = U′ + 2J. In this context we start our initial calculations with

U′ = 2.8eV (U′ = 3.8eV). Subsequent calculations are done with the previously converged

endpoint used as starting point while simultaneously increasing (decreasing) the interaction by

∆U′ = 0.1eV. This is repeated 10 times so that we arrive at each others initial starting points

U′ = 3.8eV (U′ = 2.8eV). All in all we have to properly converge 22 DMFT calculations from

16 The two-dimensional cubic crystal structure shares the same symmetry points with the three-dimensional cubic
crystal with the exception of R = (π, π, π).
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which we then can extract the required information.

Figure 4.2 illustrates the Mott metal-to-insulator transition where we extract the spectral func-

tion at the Fermi level via G(τ =
β
2 ), the orbital occupation ni↑ =

〈
ĉ†i↑ĉi↑

〉
17 as well as the (not

normalized) double occupation Di =
〈
ĉ†i↑ĉi↑ĉ

†

i↓ĉi↓

〉
. In Fig. 4.3 we additionally show the impurity

occupations defined by

nimp =
∑
i,σ

niσ. (4.2)

Figure 4.2: Spectral function at the Fermi edge18(top panels), orbital occupation (middle panels)
and double occupation (bottom panels) for the top layer (left panels) and the bottom layer (right
panels) of (SrVO3)2/(SrTiO3)4 as obtained by DFT+DMFT. The graph with increasing (decreas-
ing) U′ is marked with triangles pointing upwards (downwards). The first order MIT transition
(marked with a gray background) is accompanied by a depopulation of the xz/yz-orbitals in the
top SrVO3 layer (middle left panel) which creates a half-filled xy-orbital.

17 The calculations are done in the paramagnetic phase, thus the orbital occupations here do not depend on the
involved spin: ni↑ ≡ ni↓.
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Figure 4.3: Impurity occupation of the top and bottom impurity with increasing and decreasing
U′. The marker convention is identical to Fig. 4.2. In the metallic domain the impurity in the
bottom layer holds 10% more population, whereas both layers host one electron per V-atom in
the insulating state.

The top panels of Fig. 4.2 display the transition between metal (finite A(0) ≈ G(τ = β/2)) and

insulator (A(0) = G(τ = β/2) = 0). This transition is taking place simultaneously in the top and

the bottom layer where both remain insulating at inter-orbital interaction values of U′ ≥ 3.3eV.19

Due to the DMFT feedback this is however not surprising since they both mutually influence

each other, which, as we see, results in common conducting and insulating regions. The orbital

occupations in the middle panels further confirm the transition where a depopulation of the

energetically higher lying xz/yz orbitals in the top layer takes place which is accompanied by

a decrease of double occupations (bottom panels). This transfer of population to the xy-orbital

creates an effectively half-filled single orbital, In this case the interaction U is already strong

enough to create a Mott insulator. Essentially the same, albeit less pronounced, features can be

seen in the bottom layer as well.20 Here just a slight shift in population occurs where in the

conducting domain all orbitals are approximately equally filled while in the insulating domain

the xy-orbital contains 75% of the impurity population.

One additional feature, which has not been discussed in the original publication [74], can be

observed in Fig. 4.3. In the insulating domain the population is (almost) equally distributed

between the two impurities while in the conducting domain a major imbalance occurs. Here the

bottom layer impurity holds 10% more population which is transferred to the top layer impurity

when the MIT is triggered.

18 To be exact we would need to multiply these values by β

π
≈ 12 to get the actual spectral function A(ω = 0).

19 The hysteresis previously found in [21] is shifted by 0.2eV to the left compared to our results. This is possibly due
to a mistake made in [21] where a Hund’s coupling of J = 0.65eV instead of J = 0.75eV was used. In conjunction
with the employed relation U = U′ + 2J, this would exactly explain this discrepancy.

20 The features seen in the top panels of Fig. 4.2 at values of U′ ≥ 3.4eV do not have a physical origin and are
just artifacts of DMFT problems in the insulating phase. They surprisingly only occurred when transitioning from
higher to lower values of U′ and remain even with worm-sampling [77].



CHAPTER 4: AbinitioDΓA for ultra-thin SrVO3 47

As final points, in Fig. 4.4 we show two characteristic Green’s functions, as sampled by CTQMC

as well as the DMFT band-structure calculated via analytical continuations in Fig. 4.5. The

former illustrates the metal-to-insulator transition from a more technical point of view. In the

conducting region all orbitals have finite, positive values at all imaginary times τ. By increasing

the interaction these curves are pushed towards the horizontal axis, creating an insulating system

once the values around τ = β/2 are identical to 0.
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Figure 4.4: CTQMC sampled Green’s function in imaginary times within the characteristic
conducting and insulating phase. The xy-orbitals are drawn as solid lines while the xz(yz)-
orbitals are drawn as dash-dotted lines. The top panel represents a characteristic conducting
phase (U′ = 2.8eV with finite values of A(0)), while the bottom panel represents a characteristic
insulating phase (U′ = 3.5eV with A(0) = 0).
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Figure 4.5: DMFT band-structure of (SrVO3)2/(SrTiO3)4 in the conducting phase (U′ = 2.8eV)
illustrated as heat plot constructed from analytically continued DMFT Green’s functions. Each
continuation is represented by a single vertical line A(k, ·) and was obtained for every k-point
from their corresponding DMFT Green’s functions using MaxEnt [60]. More specifically, we
employ the so-called classic [78] variant using singular value decomposition to reduce the di-
mensionality of the search space. This data was provided by Josef Kaufmann.

4.3 DΓA results

The illustrated points in Fig. 4.4 were ultimately chosen to be further addressed by

AbinitioDΓA. These exact two points are chosen because a) they represent the two charac-

teristic domains, b) are symmetric around the hysteresis and c) include the value (U′ = 3.5eV)

found in cRPA or cLDA. Contrary to bulk SrVO3 we expect much larger non-local correlation

effects. This is well-founded, because the DMFT mapping to a local impurity surrounded by

a bath, is an approximation for finitely many dimensions d which becomes exact in the limit

d → ∞. This approximation nonetheless works quite well for three dimensional materials but

is much less reliable when going to two dimensions, which is the case here.

In order to apply the ladderDΓA approach implemented in AbinitioDΓA [20, 22, 23, 24] for

the case under consideration, it first had to be extended to support inequivalent impurities. This

extension was furthermore generalized so calculations with non-correlated p-orbitals are sup-
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ported as well. The method at this point is however still restricted to orbital-diagonal hybridiza-

tion functions (and thus impurity/local self-energies and one-particle Green’s functions). Due to

this non-mixing between orbitals and the two independent impurities, the computational effort,

fortunately, only scales by a factor of 2 compared to bulk SrVO3. We ‘simply’ have to calculate

two separate effective 3-band models instead of the much more complex 6-band model.21 This

simplification however does not hold in AbinitioDΓA where, in terms of computational effort,

there is no difference between these two cases. Despite the complex problem, as well as the low

temperature under consideration, the AbinitioDΓA treatment, fortunately, remains feasible.

4.3.1 Conducting regime

In the following figures we treat the conducting point (U = 4.3eV) with N ± 60 vertex

frequencies in all directions; we did not extend the vertex via its asymptotic. For this specific

case the vertex calculation remained the bottleneck of the treatment where for a full calculation

(DFT+DMFT+AbinitioDΓA) a total of around 300, 000 CPU hours have to be invested (of

which two thirds are solely used for the sampling of the vertex and asymptotic).22 Extending

the vertex to larger frequency boxes would shift the bottleneck back to AbinitioDΓA due to its

more challenging frequency scaling.23

Figures 4.7 and 4.8 illustrate the properties of the (most important) xy-orbital of the impurity in

the top layer while Figures 4.10 and 4.11 illustrate them for the bottom layer. Please note that

due to the low hybridization between both the xy-orbitals and the rest (see Fig. 4.12) we are

allowed to extract Zk via ∂=Σ(k,iν)
∂iν

∣∣∣∣
iν→0+

=
(
1 − Z−1

k

)
, identical to bulk SrVO3. For the xz- and

yz-orbitals this is not the case anymore and an eigenvalue decomposition would be required.

In the impurity of the top layer we observe a comparably large momentum dependence in the

quasi-particle weight Zk of around 15% (bulk: 4%) The structure here, in a way, resembles the

Fermi surface, which however is not quite at the point as we saw in bulk SrVO3 at the same

temperature (β = 38eV−1) in Fig. 3.7. Nonetheless we see the same trend, i.e. Zk is largest

around the Fermi surface and smallest at the M-point (unoccupied states). The scattering rate

looks to be similarly affected where we even find areas with γk ≈ 0 (around the Γ-point).

We furthermore observe in Fig. 4.8 that γk also massively changes on the Fermi surface

21 In the Kanamori parametrization the number of band-spin combinations that have to be sampled for the vertex
scales with N =

[
3n2

dim − 2ndim

]
× 6.

22 The calculations are done on the VSC-3 which is equipped with Intel Xeon E5-2650v2, 2.6 GHz processors.
23 The involved matrices, which have to be inverted, are of size n2

dim × 2νmax. Doubling the number of frequencies
(via asymptotic) thus leads to approximately 10 times the required core-hours. [24]
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(corresponding to the top layer) itself. The Fermi surface scattering rate positioned on the

Γ − M path is around 3 times larger compared to the point on the Γ − X path which is an

indication of an emerging of a so-called ‘pseudogap’. The values of the self-energy at the

first frequency shown in (a) and (b) of Fig. 4.7 can be best explained via Fig. 4.6. There we

illustrate the real and imaginary parts of the DΓA self-energies at the high-symmetry points Γ,

X and M, compared to the DFT+DMFT result (dashed lines). Due to the broken symmetry

in the z-direction, the local DMFT self-energies are in turn orbital dependent and therefore

show a different xy (dashed black) and yz/xz (dashed gray) contribution. The previously almost

unaffected imaginary part shows, for the xy-orbital, a major momentum dependence where for

all k-points the non-local corrections push all values downwards. At the M-point this effect

is maximal with a difference at the peak of more than 200meV compared to DMFT. On the

contrary the real-part shows a similar behaviour to bulk where we, yet again, see the same

tendency regarding the (un-)occupied states. When previously the real-part split was around

200meV, we see here triple that, namely more than 600meV.
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Figure 4.6: Imaginary (top panels) and real (bottom panels) part of the DΓA self-energies at
the high symmetry points Γ, X and M in the top layer. The local (i.e. momentum independent)
DMFT self-energies are illustrated as dashed black (xy-orbital) and dashed gray (xz/yz-orbitals)
lines. The non-local DΓA self-energies split up depending on the k-point and are illustrated with
different colors.
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Figure 4.7: (a) Real and (b) imaginary parts of the momentum-dependent self-energy Σ at the
first fermionic frequency iν0. (c) Scattering rate γk and (d) quasi-particle weight Zk. The data
shown here represents the xy-orbital of the impurity of the top layer of (SrVO3)2/(SrTiO3)4
calculated at room temperature by AbinitioDΓA.
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Figure 4.8: Same data as in Fig. 4.7 but with the LDA Fermi surface drawn on top of it. The
outer ring represents the Fermi surface of the impurity of the top layer while the inner ring and
the structure around k = (0, 0, 0) originate from the impurity of the bottom layer.

The impurity of the bottom layer shows overall less non-local effects where we see a trend

towards bulk. This can be already seen in the DMFT results where the self-energy of the

xy- and xz/yz-orbitals in Fig. 4.9 are almost identical (dashed black and gray lines respec-

tively). Nonetheless the quasi-particle weight still shows a rather large momentum dependence

of around 10% in the Brillouin zone. Compared to the top layer impurity the scattering rate is

around three times smaller and shows quite a different structure which is however in somewhat

of an agreement with the Fermi surface. The previously described pseudogap onset in the top

layer can not be identified here. By again considering the full self-energies shown in Fig. 4.9 we

see a surprisingly close result compared to bulk SrVO3. The real part shows the same splitting

of 200meV while the imaginary part also remains quite bulk-like.

Besides the already mentioned small hybridization between the two xy orbitals (shown in Fig.

4.12) we see a non-negligible hybridization between the other orbitals. The corresponding self-

energies are considerably smaller with observed peak values of around −6meV. The comparably
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large hybridization between the xz/yz orbitals of top and bottom layer can be easily explained

by the characteristic of the involved Wannier functions. While the xz/yz-orbitals point towards

the other layer and thus overlap, the xy-orbital lies flat inside the layer and thus the overlap is

almost non-existent.
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Figure 4.9: Imaginary (top panels) and real (bottom panels) of the DΓA self-energies in compar-
ison to the DMFT self-energies. The color convention is identical to Fig. 4.6. Due to the more
bulk-like behaviour of the bottom layer the two (xy - xz/yz) DMFT self-energies are almost
identical. This furthermore also affects the DΓA self-energies resulting in less k-dependence.
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Figure 4.10: Same as Fig. 4.7 but for the xy-orbital of the impurity of the bottom layer.
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Figure 4.11: Same data as in Fig. 4.10 with the LDA Fermi surface drawn on top of it which is
identical to the one illustrated in Fig. 4.8.
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Figure 4.12: Imaginary (top panels) and real (bottom panels) part of the top-bottom layer
off-diagonal self-energies. Shown here are only the non-vanishing contributions, i.e. the hy-
bridization between equivalent orbitals between the top and bottom impurity. Similar to the
previous Figures at Γ- and M-point the dxz(top) : dxz(bottom) contribution is identical to
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For completion we show here the orbital-resolved momentum-dependent susceptibilities. The

data is extracted at the bosonic frequency iω = 0. We exploit the already described symmetry

(i.e. χ1122 = χ2211) and only show the upper triangle in Fig. 4.14 and 4.15. The orbitals are

numbered xy(t) → xz(t) → yz(t) → xy(b) → xz(b) → yz(b) and thus the diagrams in the

top left corner represent the top layer, the bottom right corner the bottom layer and the top

right corner the off-impurity elements. Since the local full vertex F is sampled in CTQMC
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which at the moment treats the impurities independently we only get small vertex contributions

via the non-local Bethe-Salpeter equations (ladder construction with lattice propagators).

For that reason they are considerably smaller compared to their diagonal counterparts. We

see that the magnetic susceptibilities again dominate the density susceptibilities in terms of

size which is further enhanced by the negative (positive) valued off-diagonal elements in

the density (magnetic) channel. The largest contribution in the magnetic channel originates

from the xy-orbital in the top layer where the other diagonal elements are by a factor of 3–9

smaller. In the density channel, on the contrary, the diagonal elements are much more evenly

distributed. The physical susceptibilities, in comparison to bulk SrVO3 are illustrated in Fig.

4.13. Each impurity, of either bulk or layered SrVO3 (left three columns), shows comparably

sized susceptibility values, albeit with vastly different momentum dependence. Here the bottom

layer, despite its bulk-like self-energy behavior, has a mirrored structure compared to bulk. The

off-impurity susceptibilities (forth column in Fig. 4.13) have non-vanishing contributions only

in the magnetic channel where they even reach sizes which are comparable to bulk.
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Figure 4.13: Comparison of the real parts of the physical density (top panels) and mag-
netic (bottom panels) susceptibilities between bulk SrVO3 (first column) from chapter 3.1 and
(SrVO3)2/(SrTiO3)4 (second to forth column) at β = 38eV−1. The bulk susceptibilities are shown
in the qz = 0 plane. Here the second column represents the contribution of the top SrVO3 layer
(summation indices l,m ∈ top impurity according to Eqs. (3.7)), the third column the contribu-
tion of the bottom SrVO3 layer and the fourth column the off-impurity contribution (summation
index l ∈ top impurity; m ∈ bottom impurity).
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Figure 4.14: Orbital-resolved density susceptibilities χD llmm at iω = 0 vs qx and qy momentum
illustrated in form of a matrix for the six orbitals and two layers. The lower triangle is not shown
since it is symmetric in comparison to the upper triangle. Due to the way the orbital counting is
done, the top left (cut-off) 3 × 3 block represents the impurity of the top layer while the bottom
right (cut-off) 3×3 block represents the impurity of the bottom layer. The remaining 3×3 block
in top right illustrates the off-impurity susceptibilities which on the local level inherently do not
contain any vertex contributions (the local full vertex F is diagonal with respect to the layers).
Note that the susceptibilities are plotted on different scales.
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Figure 4.15: Same as Fig. 4.14 but now for the magnetic susceptibilities χM llmm.
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4.3.2 Insulating regime

In the insulating regime at U = 5eV the self-energy results are unfortunately found to be not

utilizable. This behavior is illustrated in Figures 4.16 and 4.17. The xy-orbital in both the top

and bottom layer are majorly affected. The top layer shows a self-energy reduction of approx-

imately a factor of 3 − 4 while the bottom layer shows an amplification of a factor of up to 5.

Furthermore the real part of the bottom layer shows signs of a divergence at the lowest frequen-

cies.

The diverged susceptibilities shown in Figs. 4.18, 4.19 and 4.20 suggest that we are in an or-

dered regime (most likely anti-ferromagnetism) in which our DΓA approach for the momentum-

dependent self-energies ceases to work. These divergences are illustrated as small rings around

the M-point (π − π − 0) which appear everywhere except for a few orbital combinations.

For a more detailed consideration we show both the density (left panels) and magnetic (right

panels) at the diagonal contributions in Fig. 4.20 (for symmetry reasons we do not show the

contributions 3333 and 6666). While in most panels the typical divergent characteristic is shown

the initially suggested divergence-free components also display problems. In χD 2222 we observe

a small kink around the typical divergence line which is more pronounced in χM 5555. The only

seemingly unaffected contribution is χM 4444. However because of its size we can not be certain

whether or not a similar kink appears (we would need a much finer k-mesh).

This result in turn suggests that, if we allowed for it, we would have probably already obtained

antiferromagnetism in DMFT.24

24 In all DMFT calculations done throughout this thesis we enforce paramagnetism.
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Figure 4.16: Imaginary (top panels) and real (bottom panels) part of the DΓA self-energies in
the insulating phase at the top layer of (SrVO3)2/(SrTiO3)4. The colored graphs represent the
DΓA self-energies which are compared to the DMFT solution (black (xy) and gray (xz/yz)).
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Figure 4.17: Same as 4.16 but now for the bottom layer.
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Figure 4.18: Orbital-resolved density susceptibilities χD llmm at iω = 0 illustrated in form of a
matrix. In this insulating phase we mostly observe susceptibilities with a diverged characteristic
(rings around the M-point (π − π − 0)). Same format as in Fig. 4.14.
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Figure 4.19: Same as Fig. 4.18 but now for the magnetic susceptibilities.
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Figure 4.20: Diagonal contributions of the density and magnetic susceptibilities χllll in the
insulating phase. For brevity we do not show the symmetric cases. The diverged characteristic
as well as the negative susceptibilities (e.g. in the top right panel) suggest an ordered phase.
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5 Summary and outlook

5.1 Summary

Starting from the many-body-problem in first quantization we bridged all the way to the state-

of-the-art DFT+DMFT approach. This was mainly done by means of the introduced Green’s

functions formalism and Feynman diagrams. With the properties of one- and two-particle di-

agrams we reviewed the so-called dynamical vertex approximation (DΓA) and the, over the

course of this thesis, used and furthered ladderDΓA implementation.

By extending the existing AbinitioDΓA project we were able to investigate bulk strontium

vanadate (SrVO3) with non-local interactions as well as study dimensionality effects in ultra-

thin SrVO3. We revisited the results from high temperature calculations for bulk SrVO3 which

showed a quasi-particle variation of around 2% in the Brillouin zone and a consistently larger

scattering rate throughout. The main phenomena shown was the splitting of the real part of the

self-energy where the occupied states were pushed energetically lower while the unoccupied

states were pushed higher. At the first fermionic Matsubara frequency we saw a split of more

than 200meV. This behavior looked to be unaffected by a major decrease in temperature where

the size of the energy split almost remained identical. The main effect of this decrease was a

sharpening of features near the Fermi-surface in all shown quantities. The quasi-particle weight,

although exhibiting a larger momentum variation of 4%, remained quasi-local. This is consis-

tent with current understanding, i.e. lower temperatures lead to less dominant local correlation

effects. As a final point first calculations were performed with ‘ab initio’ non-local interactions

V(q). First evaluations showed that the quasi-particle weight was pushed towards less correla-

tion (higher Zk). The real part showed a consistent trend where, again, unoccupied (occupied)

states were pushed energetically higher (lower). Overall the results looked promising however

there still remain problems regarding frequency box-size and k-mesh effects.

As a starting point for the study of dimensionality, we revisited (and replicated) the DFT+DMFT

calculations for two-layered SrVO3 on top of a SrTiO3 substrate. We were able to confirm these

recent findings and then chose to perform DΓA calculation for two characteristic points in the

conducting and insulating regime. In the conducting regime (U = 4.3eV) we saw an increase of

the quasi-particle weight Zk variation w.r.t. bulk SrVO3. This variation of around 15% (almost

four times the size of bulk) is in particular more prominent on a relative scale due to the gener-

ally lower Z value found in the top layer. On the contrary, despite its ‘bulk-like’ behaviour, the

bottom layer showed a similar momentum variation of 10% in Z. The largest non-local effect
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remained in the real part of the DΓA self-energy. Compared to bulk SrVO3 the energy split

increased from 200meV to over 600meV. These observed effects in our system were only seen

in the xy-orbitals with the xz/yz-orbitals remaining almost unaffected.

As a final point we attempted calculations for the insulating regime. However it was quickly

discovered that the involved susceptibilities diverge, suggesting an ordered phase. As a conse-

quence the resulting DΓA self-energies were not physical. The algorithm and the used channel

decompositions used in the AbinitioDΓA formalism breaks down in such a phase.

5.2 Outlook

The ladderDΓA implementation present in AbinitioDΓA and the corresponding applications

are at the frontier of material science. Results produced thus far look promising. However the

implementation itself is still quite restricted. Due to the, already quite high computational effort

(vertex sampling, asymptotic sampling, ladderDΓA) it is rather difficult to pinpoint future de-

velopment directions without sacrificing applicability. Nonetheless we try to give some starting

points regarding implementation generalizations and possible investigation areas.

Non-local interactions: The, in this context, for the first time used non-local interactions

showed promising results (chapter 3.2). However there still remain many unanswered questions.

The investigation of all involved box sizes, mesh and non-convergence effects may be a focus

point in the near future to provide the best possible description. In this regard improvements

of the CTQMC solver might be additionally necessary. Especially solutions for memory-bound

problems such as the necessary Fourier transforms or improvements of the asymptotic vertices

might come a long way.

Frequency-dependent interactions: One important piece missing from an ‘ab initio’ descrip-

tion are frequency dependent interaction, akin to GW descriptions [79, 80, 81]. So far they have

been completely left out in AbinitioDΓA and are indeed necessary for a complete descrip-

tion of the involved interactions. To achieve such a description one would have to modify the

interaction term used in the AbinitioDΓA derivation (Appendix D):

Ûfull (τ) =
1
2

∑
qkk′

ll′mm′
σσ′

Uqkk′
lm′ml′ ĉ

†

k′−q,m′σ(0)ĉ†klσ′(τ)ĉk−q,mσ′(τ)ĉk′l′σ(0) × δmlδm′l′ (5.1)

With these (imaginary) time dependencies retarded density-density interactions would be sup-

ported giving access to even more phenomena. An even even greater generalization with re-
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tarded Kanamori interactions in all three time arguments would however be preferable

Ûfull (τ1, τ2, τ3) =
1
2

∑
qkk′

ll′mm′
σσ′

Uqkk′
lm′ml′ ĉ

†

k′−q,m′σ(τ1)ĉ†klσ′(τ2)ĉk−q,mσ′(τ3)ĉk′l′σ(0). (5.2)

At this moment in time we however suspect that this would result in too much computational

effort since hitherto only efficient CTQMC algorithms for Eq. (5.1) exist that use the segment

code (see e.g. [49] for a segment algorithm description). Another route would be to include

the frequency dependence only as a bare interaction vertex precisely the same way as we treat

non-local correlations.

Moriyaesque λ-corrections or self-consistency: In order to conserve the occupation in the

considered system and therefore retain a correct self-energy asymptotic, one would need to

either implement so-called λ-corrections [55, 82] or use a self-consistency cycle (where one

would need to update the chemical potential µ). Due to computational effort, the latter is only

realistically possible for high temperatures and a low number of bands. The former could be

applied on the same level as the non-local interaction vertex, i.e. in its most trivial case

Γ
qkk′

lmm′l′
σσ′
≡ Γωνν

′

lmm′l′
σσ′

+ Vqkk′
lmm′l′
σσ′

+ λ. (5.3)

However even if λ were orbital/spin/frequency/momentum-independent, finding the correct λ

value would not be straight forward.

Non-diagonal hybridization functions: In the current AbinitioDΓA implementation all

DMFT Green’s functions and self-energies must be orbital diagonal. Recent implementations of

non-diagonal hybridization functions in w2dynamics [50] give access to more generalized data.

In bulk SrVO3 (chapter 3) this would have no effect. Albeit in other systems, e.g. the ultra-thin

SrVO3 films used in this thesis, orbital hybridization already on the DMFT level could have

major effects on the DΓA results.

Investigation of near-phase transitions: In chapter 4 we already came across a first order phase

transition and our calculations showed that in its equilibrium state, ultra-thin SrVO3 suggests

an ordered state. From there it is principally straight-forward to investigate proximity effects

of near-phase transitions in combination with dimensionality effects. One would have to either

perform calculation in the area of the hysteresis (movement along the hysteresis via the inter-

action parameter U′) or perform calculations with variable temperature. Since the insulating

regime can be described by an effective one-band model we could possibly also make excellent

connections to other (one-band) model calculations.





APPENDIX A: Quantum mechanic representations 67

Appendix A Quantum mechanic
representations

As a basic quantum mechanics introduction we revise the most commonly used representations

in literature as well as in this thesis.

Schrödinger representation: The system is described with time dependent wave functions

and, generally, time independent operators. The exception is, of course, the explicitly time

dependent time evolution operator Û = e
−iĤt
~ . The Schrödinger equation in this representation

can be written in its famous form as

Ĥ |ψ(t)〉 = E |ψ(t)〉 = i~
d
dt
|ψ(t)〉 , (A.1)

with a general expectation value A calculated via

〈A(t)〉 = 〈ψS (t)| AS |ψS (t)〉 (A.2)

and the time dependent wave function calculated with the above mentioned unitary time evolu-

tion operator

|ψS (t)〉 = Û |ψS (0)〉 = e−
i
~ Ĥt |ψS (0)〉 . (A.3)

Heisenberg representation: Any expectation value can theoretically be measured and therefore

must not depend on the representation used to calculate it:

〈A(t)〉 = 〈ψS (t)| AS |ψS (t)〉

= 〈ψS (t)| ÛÛ†AS ÛÛ† |ψS (t)〉

= 〈ψS (0)| Û†AS Û |ψS (0)〉

= 〈ψH | AH(t) |ψH〉

(A.4)

By inserting the identity UU† = 1, we were able to change our representation and got the

Heisenberg wave function and operator

|ψH〉 ≡ Û† |ψS (t)〉 = |ψS (0)〉 (A.5)

AH(t) ≡ Û†AS Û, (A.6)

where we transferred the time dependence from the wave functions to the operators. This time
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dependence is now characterized by an equation of motion

d
dt

AH(t) =
d
dt

U†AS (t)U

=
d
dt

(
Û†

)
AS Û + Û†AS

d
dt

(
Û

)
+ Û†

d
dt

(AS ) Û

=
i
~

ĤÛ†AS Û − Û†AS
i
~

ĤÛ +
∂

∂t
AH(t)

=
i
~

Û†
[
Ĥ, AS

]
Û +

∂

∂t
AH(t)

=
1
i~

Û†
[
AS , Ĥ

]
Û +

∂

∂t
AH(t),

(A.7)

where the last term is only present in case of an explicitly time dependent operator AS (t). In

this context one can perform a Wick rotation t → −iτ, sets ~ = 1 and assumes no explicit time

dependence of the Schrödinger operator AS (t) = AS (0). This way we get a slightly different

equation of motion often used throughout this thesis.

d
d(−iτ)

AH(τ) =
1
i
eτĤ[AS , Ĥ]e−τĤ

d
dτ

AH(τ) = eτĤ[Ĥ, AS ]e−τĤ .

(A.8)

Interaction representation: As a third representation we introduce the interaction representa-

tion. It is a mixture of both the Schrödinger and the Heisenberg representation, often used in

time dependent perturbation theory and scattering theory. We split the Hamiltonian in a time

independent and a time dependent part

Ĥ = Ĥ0 + V(t). (A.9)

A derivation similar to the one we did in the Heisenberg representation yields

〈A〉 = 〈ψS (t)| AS |ψS (t)〉

= 〈ψS (t)| Û0Û†0 AS Û0Û†0 |ψS (t)〉

= 〈ψI(t)| Û
†

0 AS Û0 |ψI(t)〉

= 〈ψI(t)| AI(t) |ψI(t)〉 ,

(A.10)

with

|ψI(t)〉 ≡ Û†0 |ψS (t)〉 (A.11)

AI(t) ≡ Û†0 AS (t)Û0. (A.12)
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Here Û0 is the time evolution operator of the time independent part of the Hamiltonian Ĥ0. The

equation of motion is then given by

d
dt

AI(t) =
1
i~

Û†0
[
AS , Ĥ0

]
Û0 +

∂

∂t
AI(t) (A.13)

and the time evolution of the interaction wave functions can be derived by

i~∂t |ψS (t)〉 = Ĥ |ψS (t)〉

i~∂tÛ0 |ψI(t)〉 = ĤÛ0 |ψI(t)〉

Ĥ0Û0 |ψI(t)〉 + i~Û0∂t |ψI(t)〉 = Ĥ0Û0 |ψI(t)〉 + V(t)Û0 |ψI(t)〉

i~∂t |ψI(t)〉 = Û†0VS (t)Û0 |ψI(t)〉 = VI(t) |ψI(t)〉 .

(A.14)
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Appendix B Matsubara Green’s functions
B.1 Definition

We define the general n-particle Green’s function in imaginary time as

Gn
i1,...,i2n

(τ1, . . . , τ2n) = (−1)n
〈
T

[
ĉi1

(τ1)ĉ†i2(τ2) . . . ĉi2n−1
(τ2n−1)ĉ†i2n

(τ2n)
]〉
, (B.1)

with time dependent fermionic annihilation / creation (Heisenberg) operators defined in Ap-

pendix A

ĉ(†)(t) = Û†ĉ(†)Û = eiĤtĉ(†)e−iĤt (B.2)

ĉ(†)(τ) = Û†ĉ(†)Û = eĤτĉ(†)e−Ĥτ. (B.3)

For normal time arguments one would only need to define either the annihilation or the creation

operator since

ĉ†(t) = (ĉ(t))† , (B.4)

however for imaginary times this statement does not hold anymore and both definitions are

required (e±τĤ is not unitary anymore)

ĉ† (τ) , (ĉ (τ))† . (B.5)

Additionally we used the grand canonical expectation value25

〈· · · 〉 = Tr 〈ρ · · · 〉 =
1
Z

Tr
(
e−βĤ · · ·

)
=

1
Z

∑
n

〈n| e−βĤ · · · |n〉 . (B.6)

with ρ as the density matrix and Z as the partition function defined by

Z =
∑

n

〈n| e−βĤ |n〉 = Tr
(
e−βĤ

)
. (B.7)

Here |n〉 and En represent the eigenstates and eigenvalues of the operator Ĥ − µN̂ (written as Ĥ)

so that

Ĥ |n〉 = En |n〉 . (B.8)

Finally, the time ordering operator T orders the operators from left to right according to their

imaginary time argument (from largest to smallest)

T
[
c(†)

1 (τ1)c(†)
2 (τ2)

]
=

[
c(†)

1 (τ1)c(†)
2 (τ2)

]
Θ(τ1 − τ2) −

[
c(†)

2 (τ2)c(†)
1 (τ1)

]
Θ(τ2 − τ1). (B.9)

This ordering is done by switching operator positions which is accompanied by an additional

(−1) for each exchange.
25 In the grand canonical ensemble the weighting factor is e−β(Ĥ−µN̂) and not e−βĤ . In order to be more concise we

implicitly mean Ĥ − µN̂ when writing Ĥ from now on.
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B.2 Boundaries

Without loss of generality we can assume that the operators are ordered from largest to smallest

imaginary time.

Gn
i1,...,i2n

(τ1, . . . , τ2n) =
(−1)n

Z

∑
m

〈m| e−βĤ ĉi1
(τ1)ĉ†i2(τ2) . . . ĉi2n−1

(τ2n−1)ĉ†i2n
(τ2n) |m〉

=
(−1)n

Z

∑
m

e(−β+τ1−τ2n)Em 〈m| ĉi1
e−Ĥτ1 ĉ†i2(τ2) . . . ĉi2n−1

(τ2n−1)eĤτ2n ĉ†i2n
|m〉

(B.10)

After evaluating the outermost operators we arrived at a prefactor of e(−β+τ1−τ2n)Em . Since for an

infinitely large system the eigenvalues Em can also become infinitely large we have to ensure

that this prefactor is of suppressing nature. This way we always get a sum that is convergent.

− β + τ1 − τ2n < 0 (B.11)

Taking into account our first assumption of time ordered operators we can rewrite this into

τ2n + β > τ1 > . . . > τ2n, (B.12)

which expresses that all time arguments have to be within an interval of the length of β. Us-

ing the cyclic property of the trace ( Tr [ABCD] = Tr [DABC] = · · · ) we can impose further

restrictions:

Gn
i1,...,i2n

(τ1, . . . , τ2n) =
(−1)n

Z

∑
m

〈m| e−βĤ ĉi1
(τ1)ĉ†i2(τ2) . . . ĉi2n−1

(τ2n−1)ĉ†i2n
(τ2n) |m〉

=
(−1)n

Z

∑
m

〈m| e−βĤ ĉ†i2(τ2) . . . ĉ†i2n
(τ2n)e−βĤ ĉi1

(τ1)eβĤ |m〉

=
(−1)n

Z

∑
m

〈m| e−βĤ ĉ†i2(τ2) . . . ĉ†i2n
(τ2n)ĉi1

(τ1 − β) |m〉

= −
(−1)n

Z

∑
m

〈m| e−βĤ ĉi1
(τ1 − β)ĉ†i2(τ2) . . . ĉi2n−1

(τ2n−1)ĉ†i2n
(τ2n) |m〉

= −Gn
i1,...,i2n

(τ1 − β, . . . , τ2n)

(B.13)
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Gn
i1,...,i2n

(τ1, . . . , τ2n) =
(−1)n

Z

∑
m

〈m| e−βĤ ĉi1
(τ1)ĉ†i2(τ2) . . . ĉi2n−1

(τ2n−1)ĉ†i2n
(τ2n) |m〉

=
(−1)n

Z

∑
m

〈m| e−βĤeβĤ ĉ†i2n
(τ2n)e−βĤ ĉi1

(τ1) . . . ĉi2n−1
(τ2n−1) |m〉

=
(−1)n

Z

∑
m

〈m| e−βĤ ĉ†i2n
(τ2n + β)ĉi1

(τ1) . . . ĉi2n−1
(τ2n−1) |m〉

= −
(−1)n

Z

∑
m

〈m| e−βĤ ĉi1
(τ1)ĉ†i2(τ2) . . . ĉi2n−1

(τ2n−1)ĉ†i2n
(τ2n + β) |m〉

= −Gn
i1,...,i2n

(τ1, . . . , τ2n + β)

(B.14)

Here we used (2n−1) operator exchanges leading to an additional (−1) and arrived at the Kubo-

Martin-Schwinger (KMS) boundary conditions. It is important to note here that this derivation

was done with already time ordered operators (i.e. τ1 is the largest and τ2n is the smallest imag-

inary time) which means that the KMS conditions only apply to exactly these properties. Other

starting configurations could possibly mean that we end up outside the domain of the definition

of the Green’s function.

B.3 Crossing and swapping symmetry

Besides the time- and space translational symmetry, which lead to energy and momentum con-

servation respectively, two of the most often used symmetries in this thesis are the crossing

and the swapping symmetry. By exchanging a pair of annihilation or creation operators in the

general n-particle Green’s function

Gn
i1,...,i2n

(τ1, . . . , τ2n) = (−1)n
〈
T

[
ĉi1

(τ1)ĉ†i2(τ2) . . . ĉi2n−1
(τ2n−1)ĉ†i2n

(τ2n)
]〉
, (B.15)

we have to perform (2k − 1) swapping operations resulting in an additional factor (−1). Subse-

quently we get

Gn
i1,...,ii,...,i j,...,i2n

(τ1, . . . , τi, . . . , τ j, . . . , τ2n) CR
= −Gn

i1,...,i j,...,ii,...,i2n
(τ1, . . . , τ j, . . . , τi, . . . , τ2n). (B.16)

Swapping symmetry on the other hand is often used in the context of two-particle Green’s func-

tion. By applying crossing symmetry on both the incoming and outgoing particles, accompanied

with (−1)2, we get

G2
i1,i2,i3,i4(τ1, τ2, τ3, τ4) SW

= G2
i3,i4,i1,i2(τ3, τ4, τ1, τ2). (B.17)

Thus these symmetries are more properties of the fermionic annihilation/creation operators

rather than pure symmetries themselves.
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B.4 Properties of the one-particle Green’s function

The one-particle Green’s function presents the simplest one while also displaying some inter-

esting features. G1
i1,i2

(τ) is defined in the time interval (−β, β) while the negative arguments can

be restored via the KMS condition of Eq. (B.13)

G1
i1,i2(τ − β) = −G1

i1,i2(τ) (B.18)

with τ ∈ [0, β). The function takes, depending on the involved spin band indices, a step of 1

when τ changes from negative to positive.

G1
i1,i2(0

+) = −
〈
T

[
ĉi1

(0+)ĉ†i2(0)
]〉

= −
〈
ĉi1

(0)ĉ†i2(0)
〉

= ni2,i1 − δi1,i2

G1
i1,i2(0

−) = −
〈
T

[
ĉi1

(0−)ĉ†i2(0)
]〉

=
〈
ĉ†i2(0)ĉi1

(0)
〉

= ni2,i1

(B.19)

G1
i1,i2(0

−) −G1
i1,i2(0

+) = δi1,i2 (B.20)

B.5 Matsubara frequencies

In order to to get a more convenient notation we exploit the KMS boundary conditions further.

Since G(τ) is restricted to an interval of the size β it can be represented in terms of a Fourier

series [57]

Gn
i1,...,i2n

(τ1, . . . , τ2n) =
1
β2n

∑
{νi}

ei(−ν1τ1+ν2τ2−···+ν2nτ2n)Gn
i1,...,i2n

(ν1, . . . , ν2n). (B.21)

The frequency representation Gn
i1,...,i2n

(ν1, . . . , ν2n) therefore reproduces our original time depen-

dent Green’s function and the associated properties. Consequently we get this representation by

performing the Fourier transform

Gn
i1,...,i2n

(ν1, . . . , ν2n) =

∫ β

0
dτ1 · · ·

∫ β

0
dτ2n ei(ν1τ1−ν2τ2+···−ν2nτ2n)Gn

i1,...,i2n
(τ1, . . . , τ2n). (B.22)

Due to the antiperiodicity26 we get the so-called (fermionic) Matsubara frequencies of the form

νi =
(2ni + 1)π

β
. (B.23)

Alongside this definition one usually also defines the bosonic variant obtained via a periodic

function

ωi =
2niπ

β
. (B.24)

26 A general antiperiodic function fulfills the condition − f (x) = f (x + np) with n = 1, 3, . . . and the periodicity p.
This property is created by the KMS boundaries with an explicit periodicity of p = β.
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Appendix C Frequency notations

As shown in Appendix B.5 we are now able to represent a general two-particle Green’s func-

tion in the more convenient frequency notation by performing a Fourier transform from the

(imaginary) time space into the frequency space. This transformation reads

Gν1ν2ν3ν4
i jkl =

∫
dτ1dτ2dτ3dτ4 Gi jkl (τ1, τ2, τ3, τ4) eiν1τ1e−iν2τ2eiν3τ3e−iν4τ4 . (C.1)

Due to time translational symmetry not all times are independent from each other: We can

translate the Green’s function by τ4 so that the last time argument is 0. Subsequent substitutions

τ′i = τi − τ4 i = 1, 2, 3

and an integration over τ4 gives27

Gν1ν2ν3ν4
i jkl =

∫
dτ1dτ2dτ3dτ4 Gi jkl (τ1 − τ4, τ2 − τ4, τ3 − τ4, 0) eiν1τ1e−iν2τ2eiν3τ3e−iν4τ4

=

∫
dτ′1dτ′2dτ′3dτ4 Gi jkl

(
τ′1, τ

′
2, τ
′
3, 0

)
eiν1τ

′
1e−iν2τ

′
2eiν3τ

′
3ei(ν1−ν2+ν3−ν4)τ4

=

∫
dτ′1dτ′2dτ′3 Gi jkl

(
τ′1, τ

′
2, τ
′
3, 0

)
eiν1τ

′
1e−iν2τ

′
2eiν3τ

′
3︸                                                           ︷︷                                                           ︸

≡ Gν1ν2ν3
i jkl

∫
dτ4 ei(ν1−ν2+ν3−ν4)τ4︸                      ︷︷                      ︸
βδ(ν1−ν2+ν3−ν4),0

,

(C.2)

which is just the conservation of energy

ν1 − ν2 + ν3 − ν4 = 0. (C.3)

We now have two ways to classify these three frequencies: three independent fermionic fre-

quencies or two fermionic together with one bosonic frequency. In recent literature one usually

uses the latter which leads to the following ph, ph and pp notation, illustrated in Fig. C.1.

27 The substitution also shift the integral interval from [0, β] to [−τ4, β−τ4]. However, for fermions, both the prefactor
eiν jτ j and the Green’s function itself is antiperiodic with respect to τ j. This in turn means that the combined function
is periodic and consequently that any integral of the length β is equal to the integral from 0 to β.
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νph ν ′ph

ν ′ph − ωphνph − ωph

νph

ν ′
ph

ν ′
ph

− ωph

νph − ωph

νpp ν ′pp

ωpp − ν ′ppωpp − νpp

PH

PH

PP

Figure C.1: The three different frequency notations: In the top panel the particle-hole (PH)
notation, in the middle panel the particle-hole transversal (PH) notation and in the bottom panel
the particle-particle (PP) notation. These notations naturally appear when considering the Bethe-
Salpeter equations in the PH, PH and PP channel. Of course a two-particle Green’s function can
be presented in all three frequency notations.

ν1 = νph = νph = νpp (C.4)

ν2 = νph − ωph = ν′
ph

= ωpp − ν
′
pp (C.5)

ν3 = ν′ph − ωph = ν′
ph
− ωph = ωpp − νpp (C.6)

ν4 = ν′ph = νph − ωph = ν′pp (C.7)
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Appendix D Hamiltonian in AbinitioDΓA
We start by setting up a general two-particle Hamiltonian

Ĥ = Ĥ0 + Ûfull. (D.1)

Ĥ0 contains all one-particle contributions and is e.g. calculated via DFT and represented in

reciprocal (momentum) space. Ûfull on the other hand contains all two-particle interactions

which we, at first, represent in real space.

Ĥ =
∑

k
lm
σ

εklmĉ†klσĉkmσ +
1
2

∑
R1R2R3R4

ll′mm′
σ1σ2σ3σ4

Ufull
lm′ml′ (R1,R2,R3,R4) ĉ†R3m′σ3

ĉ†R1lσ1
ĉR2mσ2

ĉR4l′σ4
. (D.2)

For reasons which become later clear we will restrict ourselves to interactions which fulfill

SU(2) symmetry. Part of this symmetry is the conservation of incoming and outgoing spins

σ1 + σ3︸   ︷︷   ︸
Sz of outgoing Particles

= σ2 + σ4.︸    ︷︷    ︸
Sz of incoming Particles

(D.3)

This property simplifies the spin dependence of our interaction for which the relation

ĉ†R3m′σĉ†R1lσ′ ĉR2mσ′ ĉR4l′σ = ĉ†R1lσ′ ĉ
†

R3m′σĉR4l′σĉR2mσ′

=⇒ Ufull
lm′ml′ (R1,R2,R3,R4) = Ufull

m′ll′m (R3,R4,R1,R2) .
(D.4)

applies, which is known as swapping symmetry (SW). By performing a general Fourier trans-

form of the fermionic operators we can further simplify the full Hamiltonian.

ĉ†R3m′σĉ†R1lσ′ ĉR2mσ′ ĉR4l′σ =
∑

k1,k2,k3,k4

eik1R1e−ik2R2eik3R3e−ik4R4 ĉ†k3m′σĉ†k1lσ′ ĉk2mσ′ ĉk4l′σ (D.5)

with ∑
R

eikRĉRlσ = ĉklσ

∑
R

e−ikRĉ†Rlσ = ĉ†klσ∑∫
k∈BZ

e−ikRĉklσ = ĉRlσ

∑∫
k∈BZ

eikRĉ†klσ = ĉ†Rlσ

(D.6)

Similar to Appendix C we are now able to exploit space translational invariance. By adopting

the particle-hole equivalent notation for momenta

k1 = k

k2 = k − q

k3 = k′ − q

k4 = k′.

(D.7)
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we can now rewrite the two-particle part of the Hamiltonian:

Ûfull =
1
2

∑
R1R2R3
ll′mm′
σσ′

Ufull
lm′ml′ (R1,R2,R3) ĉ†R3m′σĉ†R1lσ′ ĉR2mσ′ ĉ0l′σ

=
1
2

∑
qkk′

ll′mm′
σσ′

Uqkk′
lm′ml′ ĉ

†

k′−q,m′σĉ†klσ′ ĉk−q,mσ′ ĉk′l′σ

(D.8)

with

Uqkk′
lm′ml′ =

∑
R1,R2,R3

eikR1e−i(k−q)R2ei(k′−q)R3Ufull
lm′ml′ (R1,R2,R3) . (D.9)

The momentum dependencies of these objects can be further simplified if the overlap between

adjacent unit cells is neglected [20]. The creation and annihilation operators can then be paired

up at site 0 and R which motivates the definition

Ulm′ml′ ≡ Ufull
lm′ml′ (0, 0, 0) (D.10)

and

Vq
lm′ml′ ≡

∑
R,0

eiRqUfull
lm′ml′ (R,R, 0) , (D.11)

which represent a purely local (U) and a purely non-local (
∑

q Vq = 0) interaction, respectively.

Applying the previously mentioned space translational symmetry (momentum conservation) to

Eq. (D.4) leaves us with

Ufull
lm′ml′ (R1,R2,R3) = Ufull

m′ll′m (R3 − R2,−R2,R1 − R2) , (D.12)

which can be used to apply crossing and swapping symmetry to these new U and Vq objects:

Ulm′ml′ = Ufull
lm′ml′ (0, 0, 0)

CR
= −Ufull

lm′l′m (0, 0, 0) = −Ulm′l′m

(D.13)

Ulm′ml′ = Ufull
lm′ml′ (0, 0, 0)

SW
= Ufull

m′ll′m (0, 0, 0) = Um′ll′m

(D.14)

Vq
lm′ml′ =

∑
R,0

eiRqUfull
lm′ml′ (R,R, 0)

SW
=

∑
R,0

eiRqUfull
m′ll′m (−R,−R, 0)

=
∑
R,0

e−iRqUfull
m′ll′m (R,R, 0) = V−q

m′ll′m

(D.15)
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Appendix E One- and two-particle Green’s
functions in AbinitioDΓA

In AbinitioDΓAwe restrict ourselves to two kind of Green’s functions, namely the one-particle

and two-particle ones. The explicit application of time translational symmetry (energy conser-

vation) allows one to write

Gk
lm
σ

(τ) ≡ −
〈
T

[
ĉklσ(τ)ĉ†kmσ(0)

]〉
(E.1)

Gqkk′
lmm′l′

σ1σ2σ3σ4

(τ1, τ2, τ3) ≡
〈
T

[
ĉklσ1

(τ1)ĉ†k−q,mσ2
(τ2)ĉk′−q,m′σ3

(τ3)ĉ†k′l′σ4
(0)

]〉
. (E.2)

The already mentioned assumed spin conservation allows us to have only six different spin

combinations

σ1σ2σ3σ4 =


↑↑↑↑ ↓↓↓↓

↑↑↓↓ ↓↓↑↑

↑↓↓↑ ↓↑↑↓

(E.3)

in the two-particle Green’s function. This restriction in turn allows us to abbreviate the notation

to
Gσσ′ ≡ Gσσσ′σ′

Gσσ′ ≡ Gσσ′σ′σ

(E.4)

Applying a SU(2) transformation in form of a rotation about the y-axis with a rotation angle of

ϕ = π we get [55]
Gσσ′ = G(−σ)(−σ′) = Gσ′σ

Gσσ′ = G(−σ)(−σ′) = Gσ′σ,
(E.5)

while a rotation angle of ϕ = π
2 results in

Gσσ = Gσ(−σ) + Gσ(−σ). (E.6)

The SU(2) symmetry further allows us to decompose the Green’s function into the so-called spin

diagonalized representation [64]. Therewith the spin degrees of freedom in the Green’s function

(and later on also the vertices) can be separated into the so-called density and magnetic channels

(in literature these are oftentimes referred to as charge and spin channels, respectively):

GD ≡ G↑↑ + G↑↓ (E.7)

GM ≡ G↑↑ −G↑↓
SU(2)
= G

↑↓
(E.8)



80

In our case this relation is numerically implemented as

GD =
1
2

[
G↑↑ + G↓↓ + G↑↓ + G↓↑

]
GM =

1
4

[
G↑↑ + G↓↓ −G↑↓ −G↓↑ + G

↑↓
+ G

↓↑

]
.

The discontinuities contained in the two-particle Green’s function (coming from equal time ar-

guments of the disconnected terms shown in Appendix B.4) can be canceled if one subtracts the

disconnected pairs. These pairs of one-particle Green’s functions arise from the 0th expansion

order and can be separated by applying Wick’s theorem

G0
1234 =

〈
T

[
ĉ1(τ1)ĉ†2(τ2)ĉ3(τ3)ĉ†4(τ4)

]〉
0

=
〈
T

[
ĉ1(τ1)ĉ†2(τ2)

]〉
0

〈
T

[
ĉ3(τ3)ĉ†4(τ4)

]〉
0

+
〈
T

[
ĉ1(τ1)ĉ†4(τ4)

]〉
0

〈
T

[
ĉ†2(τ2)ĉ3(τ3)

]〉
0

=
〈
T

[
ĉ1(τ1)ĉ†2(τ2)

]〉
0

〈
T

[
ĉ3(τ3)ĉ†4(τ4)

]〉
0
−

〈
T

[
ĉ1(τ1)ĉ†4(τ4)

]〉
0

〈
T

[
ĉ3(τ3)ĉ†2(τ2)

]〉
0

= G0
12G0

34 −G0
14G0

32.

(E.9)

By dressing these disconnected terms with self-energies and aggregating the rest into the so-

called connected term we get

Gqkk′
lmm′l′
σσ′

(τ1, τ2, τ3) = δq0Gk
lm
σ

(τ1 − τ2)Gk′
m′l′
σ′

(τ3)

− δkk′δσσ′Gk
ll′
σ

(τ1)Gk′−q
m′m
σ′

(τ2 − τ3)

+ Gqkk′con
lmm′l′
σσ′

(τ1, τ2, τ3).

(E.10)

We now can define the Fourier transform with respect to the imaginary time arguments τi by

Gqkk′con
lmm′l′
σσ′

=

∫ β

0

∫ β

0

∫ β

0
dτ1dτ2dτ3 eiντ1e−i(ν−ω)τ2ei(ν′−ω)τ3Gqkk′con

lmm′l′
σσ′

(τ1, τ2, τ3), (E.11)

where we absorbed the bosonic and fermionic frequencies ω, ν, ν′ into the compound index

q = (q, ω), k = (k, ν), k′ = (k′, ν′) respectively. The relation between the full vertex and the

connected Green’s function is shown in Figure E.1 and explicitly reads

Gqkk′con
lmm′l′
σσ′

=
∑

nhh′n′
k′′k′′′

χqkk′′

0,lmnhFqk′′k′′′

hnn′h′
σσ′

χqk′′′k′

0,h′n′m′l′ (E.12)

where we used the bare susceptibility

χqkk′

0,lmm′l′ ≡ −βδkk′Gk
ll′G

k′−q
m′m . (E.13)
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Gqkk′
lmm′l′

F qkk′

l, k

m, k − q m′, k′ − q

l′, k′ l

k, σ

m

l′

m′

k′, σ′
k, σ

k − q, σ

l

m
= −

+

l.k

m, k − q m′, k′ − q

l′, k′

σ σ′
l′

m′

σ σ′χqkk
0 χqk′k′

0

Figure E.1: Diagrammatic representation of the separation of the two-particle Green’s function
Gqkk′

σσ′,lmm′l′ into its disconnected and connected terms.

Most of the symmetries applied in the previous chapter can be similarly applied here: Time

reversal symmetry leads, with the definition of q = (−q, ω) and similarly for k and k′, to

Gqkk′

lmm′l′
σσ′

TR
= Gqk′k

l′m′ml
σ′σ

. (E.14)

Crossing symmetry (CR) leads to

Gqkk′

lmm′l′
σσ′

CR
= −G(k′−k)(k′−q)k′

m′mll′
σ′σ

(E.15)

CR
= −G(k−k′)k(k−q)

ll′m′m
σσ′

, (E.16)

while swapping symmetry (SW) leads to

Gqkk′

lmm′l′
σσ′

SW
= G−q(k′−q)(k−q)

m′l′lm
σ′σ

. (E.17)

Please note here, that the same relations are also valid for the full vertex F.
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m′, k′ − q

l′, k′l, k

m, k − q

Gqkk′
lmm′l′ σ′σ′ =

TR

l, k

σ

m, k − q m′, k′ − q

σ

l′, k′

Gqk′k
l′m′ml

m, k − q

σ′

m′, k′ − q

l′, k′ l, k

σ=

TGqkk′
lmm′l′

Figure E.2: Diagrammatic representation of the time-reversal symmetry applied to the two-
particle Green’s function Gqkk′

σσ′,lmm′l′ . In the first step the time is reversed via the operator T and
in the second step the operators are reordered to provide a valid two-particle Green’s function
according to (E.2).

l, k

l′, k′m′, k′ − q

m, k − q

Gqkk′

lmm′l′

σ

σ′ =
CR

l, k

σ

m, k − q

G
(k′−k)(k′−q)k′

m′mll′

m′, k′ − q

σ′l′, k′

−

G
(k−k′)k(k−q)
ll′m′m

m′, k′ − qσ′
l′, k′

l, k m, k − qσ

m′, k′ − q

l′, k′ l, k

m, k − q

σσ′ G
−q(k′−q)(k−q)
m′l′lm

=
CR

=
SW

−

Figure E.3: Diagrammatic representation of the crossing and swapping symmetry applied to
the two-particle Green’s function Gqkk′

σσ′,lmm′l′ .
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Appendix F Diagrammatic extension
in AbinitioDΓA

F.1 Dynamical vertex approximation

The full vertex F already mentioned in the context of connected Green’s function can be clas-

sified into different subsets of diagrams. Λ represents the collection of fully two-particle irre-

ducible diagrams, Φx represents diagrams which are reducible in channel x. Γx represents the

counterpart to Φx and therefore represents diagrams which are irreducible in the given channel.

All diagrams can either be reducible in exactly one channel or be completely irreducible.

F = Λ + Φph + Φph + Φpp

= Γph + Φph

= Γph + Φph

= Γpp + Φpp

(F.1)

The basic assumption of the DΓA approach is the locality of the fully irreducible vertex Λ

[10], contrary to DMFT where the self-energy Σ is assumed to be local. That means that the

assumption of locality is moved from the one-particle level to the two-particle level.

Λqkk′ → Λωνν′ (F.2)

One further simplification is introduced in the ladderDΓA approach employed in AbinitioDΓA,

namely locality of the particle-particle reducible diagrams

Λqkk′ → Λωνν′

Φ
qkk′
pp → Φωνν′

pp

(F.3)
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F.2 Local Bethe-Salpeter equation

The starting point of our derivation is the local full vertex F. F is directly contained in the full

two-particle Green’s function and according to the above mentioned classification we can ex-

plicitly write the local Bethe-Salpeter equations (BSE). In the spin diagonalized representation

F explicitly reads

Fωνν′

lmm′l′
r

= Γωνν
′

lmm′l′
r

+ Φωνν′

lmm′l′
r
. (F.4)

The reducible diagrams can be constructed via the usual ladder

Φωνν′

lmm′l′
r

=
∑

nn′hh′
ν′′

Γωνν
′′

lmhn
r
χων

′′ν′′

0,nhh′n′F
ων′′ν′

n′h′m′l′
r

. (F.5)

The building block of ladderDΓA calculations is the irreducible vertex Γ. We can extract this

vertex from a QMC measurement of χ and by using the ladder above:

χωνν
′

lmm′l′
r

= χωνν
′

0,lmm′l′δνν′ +
∑

nhh′n′
χωνν0,lmnhFωνν′

hnn′h′
r
χων

′ν′

0,h′n′m′l′

χωνν
′

lmm′l′
r

= χωνν
′

0,lmm′l′δνν′ +
∑

nhh′n′
χωνν0,lmnhΓωνν

′

hnn′h′
r
χων

′ν′

0,h′n′m′l′

+
∑

nhh′n′,t′s′st
ν′′

χωνν0,lmnhΓωνν
′′

hnn′h′
r
χων

′′ν′′

0,h′n′s′t′Γ
ων′′ν′

t′s′st
r
χων

′ν′

0,tsm′l′ + . . .

χωνν
′

lmm′l′
r

= χωνν
′

0,lmm′l′δνν′ +
∑

nhh′n′
χωνν0,lmnhΓωνν

′′

hnn′h′
r
χων

′′ν′

h′n′m′l′
r

(F.6)

Due to the spin diagonalization (r ∈ (D,M)) the bare susceptibility only exists for the spin

combination σσσσ and is therefore independent of the channel (hence we do not have any

subscripts). The crossing and swapping symmetry behaves somewhat different if applied to

either the irreducible or reducible parts of F. By applying crossing symmetry to a particle-hole

reducible diagram one gets a particle-hole transversal reducible diagram (and the other way

around). Because of this we have to be careful about our subscripts. Crossing symmetry (CR)

leads to

Φωνν′

ph,lmm′l′
σσ′

CR
= −Φ

(ν′−ν)(ν′−ω)ν′

ph,m′mll′

σ′σ

(F.7a)

CR
= −Φ

(ν−ν′)ν(ν−ω)
ph,ll′m′m
σσ′

, (F.7b)

while swapping symmetry retains the diagram type

Φωνν′

ph,lmm′l′
σσ′

SW
= Φ

(−ω)(ν′−ω)(ν−ω)
ph,m′l′lm
σ′σ

. (F.8)
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Φωνν′
ph lmm′l′ = −

l, ν l′, ν ′

m, ν − ω m′, ν ′ − ω

=
CR

m, ν − ω l, ν

l′, ν ′

= Φ
(ν′−ν)(ν′−ω)ν′
ph m′mll′=−

m′, ν ′ − ω

l, ν

m, ν − ω m′, ν ′ − ω

l′, ν ′

−

Figure F.1: Diagrammatic representation of change from a particle-hole reducible diagram to a
particle-hole transversal reducible diagram. This exemplary diagram represents Equation (F.7a).

With these relations we can derive the crossing symmetry for the density and the magnetic

channel (we will need these relations later on):

Φωνν′

lmm′l′

ph,D

= Φωνν′

lmm′l′

ph,↑↑

+ Φωνν′

lmm′l′

ph,↑↓
CR
= −Φ

(ν′−ν)(ν′−ω)ν′

m′mll′

ph,↑↑

− Φ
(ν′−ν)(ν′−ω)ν′

m′mll′

ph,↓↑
SU(2)
= −Φ

(ν′−ν)(ν′−ω)ν′

m′mll′
ph,↑↑

− Φ
(ν′−ν)(ν′−ω)ν′

m′mll′
ph,↓↓

+ Φ
(ν′−ν)(ν′−ω)ν′

m′mll′
ph,↓↑

=
1
2

−Φ
(ν′−ν)(ν′−ω)ν′

m′mll′
ph,↑↑

− Φ
(ν′−ν)(ν′−ω)ν′

m′mll′
ph,↑↓

 +
3
2

−Φ
(ν′−ν)(ν′−ω)ν′

m′mll′
ph,↑↑

+ Φ
(ν′−ν)(ν′−ω)ν′

m′mll′
ph,↑↓


= −

1
2

Φ
(ν′−ν)(ν′−ω)ν′

m′mll′
D

−
3
2

Φ
(ν′−ν)(ν′−ω)ν′

m′mll′
M

(F.9a)

Φωνν′

lmm′l′

ph,M

= Φωνν′

lmm′l′

ph,↑↑

− Φωνν′

lmm′l′

ph,↑↓
CR
= −Φ

(ν′−ν)(ν′−ω)ν′

m′mll′

ph,↑↑

+ Φ
(ν′−ν)(ν′−ω)ν′

m′mll′

ph,↓↑
SU(2)
= −Φ

(ν′−ν)(ν′−ω)ν′

m′mll′
ph,↑↑

+ Φ
(ν′−ν)(ν′−ω)ν′

m′mll′
ph,↓↓

− Φ
(ν′−ν)(ν′−ω)ν′

m′mll′
ph,↓↑

=
1
2

−Φ
(ν′−ν)(ν′−ω)ν′

m′mll′
ph,↑↑

− Φ
(ν′−ν)(ν′−ω)ν′

m′mll′
ph,↑↓

 +
1
2

Φ(ν′−ν)(ν′−ω)ν′

m′mll′
ph,↑↑

− Φ
(ν′−ν)(ν′−ω)ν′

m′mll′
ph,↑↓


= −

1
2

Φ
(ν′−ν)(ν′−ω)ν′

m′mll′
D

+
1
2

Φ
(ν′−ν)(ν′−ω)ν′

m′mll′
M

(F.9b)
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F.3 Non-local Bethe-Salpeter equation

Once the irreducible vertex is extracted from the QMC data we can build the ladders with

non-local propagators χ0. However before doing that we supplement this vertex with the non-

local interaction Vqkk′ . The rationale behind this is that Γ is to lowest order equal to the local

interaction U. Since we assume frequency independent interactions only we can write28

Γ
qkk′

lmm′l′
σσ′
≡ Γωνν

′

lmm′l′
σσ′

+ Vqkk′
lmm′l′
σσ′

(F.10)

Vqkk′
lmm′l′
σσ′
≡ β−2

[
Vq

lm′ml′ − δσσ′V
k′−k
m′lml′

]
. (F.11)

Vqkk′
σσ′,lmm′l′ = σ

l,k

m,k− q m′,k′ − q

l′,k′

σ′ −

l′,k′m′,k′ − q

l,km,k− q

σ

σ

V q

V k′−k

Figure F.2: Diagrammatic representation of the interaction vertex Vqkk′
lm′ml′ .

A considerable simplification can be achieved by neglecting the term depending on k′ − k. By

doing that we get

Γ
qνν′

lmm′l′
r

= Γωνν
′

lmm′l′
r

+ Vq
lmm′l′

r

= Γωνν
′

lmm′l′
r

+ δr,d2β−2Vq
lm′ml′ ,

(F.12)

and the non-local BSE reads

Fqkk′

lmm′l′
r

= Γ
qνν′

lmm′l′
r

+
∑

nn′hh′
k′′

Γ
qνν′′

lmhn
r
χqk′′k′′

0,nhh′n′F
qk′′k′

n′h′m′l′
r

. (F.13)

Since F is now built from k and k′ independent objects, F is naturally also independent from

28 Please note the difference in index subsets between the interaction vertex and the interaction itself. The vertex
has to have the same index order as the irreducible vertex (i.e. ĉklσĉ†k−q,mσĉk′−q,m′σ′ ĉ

†

k′l′σ′ ), while the interaction
must have a general two-particle interaction order. Additionally we have to interpret the interaction as Feynman
diagram, thus the roles of the annihilation and creation operators have to be reversed. With this in mind we can
swap the operators order to ĉ†k′−q,m′σ′ ĉ

†

klσĉk−q,mσĉk′l′σ′ which corresponds to the interaction Vq
lm′ml′ . The second

interaction term on the other hand is generated from the first one via crossing symmetry.
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these and we can therefore perform the k-sum explicitly. This yields (with Fqνν′ =
∑

kk′ Fqkk′)

Fqνν′

lmm′l′
r

= Γ
qνν′

lmm′l′
r

+
∑

nn′hh′
ν′′

Γ
qνν′′

lmhn
r
χqν′′ν′′

0,nhh′n′F
qν′′ν′

n′h′m′l′
r

= Γ
qνν′

lmm′l′
r

+ Φ
qνν′

lmm′l′
r

(F.14)

with

χqνν
0,lmm′l′ =

∑
k

χqkk
0,lmm′l′ . (F.15)

The ladder is only built up in the particle-hole channel and as already mentioned we hence do

not recover a crossing symmetric non-local vertex Fqνν′ . We can however restore this symmetry

by taking the corresponding diagrams in the particle-hole transversal channel into account as

well. In order to do this we have to set up the parquet equation and use the crossing symmetric

properties shown previously. (Here we only derive the formulas for the density channel. The

formulation in the magnetic channel is not necessary since it will not appear in any future

derivation.)

Fqkk′

D = Λωνν′

D + Φωνν′

D,pp + Φ
qνν′

D,ph + Φ
qkk′

D,ph
+ Vqkk′

D

= Λωνν′

D + Φωνν′

D,pp + Φωνν′

D,ph + Φωνν′

D,ph
+

(
Φ

qνν′

D,ph − Φωνν′

D,ph

)
+

(
Φ

qkk′

D,ph
− Φωνν′

D,ph

)
+ Vqkk′

D

= Fωνν′

D +
(
Φ

qνν′

D,ph − Φωνν′

D,ph

)
+

(
Φ

qkk′

D,ph
− Φωνν′

D,ph

)
+ Vqkk′

D

(F.16)

To be concise we drop the orbital indices (which are lmm′l′ for each term). We use the

ladderDΓA approximation and assume Λ and Φpp to be purely local. This means that in Eq.

(F.16) Λ and Φpp are purely local and Φ
qνν′

D,ph and Φ
qkk′

D,ph
are calculated from local Bethe-Salpeter

ladders with a local vertex Γ as discussed in the following. Since the non-local interaction Vqkk′

is neither part of Φph nor Φph nor Fωνν′ it has to be added explicitly and we have to ensure that

it is crossing symmetric on its own.

Vqkk′
lmm′l′
σσ′

= β−2
(
Vq

lm′ml′ − δσσ′V
k′−k
m′lml′

)
CR
= β−2

(
−Vk′−k

m′lml′δσσ′ + Vq
lm′ml′

) (F.17)

In the density channel we get

Vqkk′
lmm′l′

D
= Vqkk′

lmm′l′
↑↑

+ Vqkk′
lmm′l′
↑↓

= 2β−2Vq
lm′ml′ − β

−2Vk′−k
m′lml′ .

(F.18)

With the help of

Fqνν′,nl
lmm′l′

r
≡ Fqνν′

lmm′l′
r
− Fωνν′

lmm′l′
r

(F.19)
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and the non-local version of the crossing symmetric relations

Φ
qkk′

lmm′l′

ph,D

= −
1
2

Φ
(k′−k)(k′−q)k′

m′mll′
D

−
3
2

Φ
(k′−k)(k′−q)k′

m′mll′
M

(F.20a)

Φ
qkk′

lmm′l′

ph,M

= −
1
2

Φ
(k′−k)(k′−q)k′

m′mll′
D

+
1
2

Φ
(k′−k)(k′−q)k′

m′mll′
M

, (F.20b)

we get

Φ
qνν′

lmm′l′
D,ph
− Φωνν′

lmm′l′
D,ph

=

Fqνν′

lmm′l′
D,ph
− Γ

qνν′

lmm′l′
D,ph

 − (
Fωνν′

lmm′l′
D,ph
− Γωνν

′

lmm′l′
D,ph

)
= Fqνν′,nl

lmm′l′
D,ph

− 2β−2Vq
lm′ml′ ,

(F.21)

and

Φ
qkk′

lmm′l′

D,ph

− Φωνν′

lmm′l′

D,ph

= −
1
2

Φ
(k′−k)(k′−q)k′

m′mll′
D,ph

−
3
2

Φ
(k′−k)(k′−q)k′

m′mll′
M,ph

+
1
2

Φ
(ν′−ν)(ν′−ω)ν′

m′mll′
D,ph

+
3
2

Φ
(ν′−ν)(ν′−ω)ν′

m′mll′
M,ph

= −
1
2

F(k′−k)(k′−q)k′

m′mll′
D,ph

− Γ
(k′−k)(k′−q)k′

m′mll′
D,ph

 − 3
2

F(k′−k)(k′−q)k′

m′mll′
M,ph

− Γ
(k′−k)(k′−q)k′

m′mll′
M,ph


+

1
2

F(ν′−ν)(ν′−ω)ν′

m′mll′
D,ph

− Γ
(ν′−ν)(ν′−ω)ν′

m′mll′
D,ph

 +
3
2

F(ν′−ν)(ν′−ω)ν′

m′mll′
M,ph

− Γ
(ν′−ν)(ν′−ω)ν′

m′mll′
M,ph


= −

1
2

F(k′−k)(ν′−ω)ν′,nl
m′mll′
D,ph

−
3
2

F(k′−k)(ν′−ω)ν′,nl
m′mll′
M,ph

+ β−2Vk′−k
m′lml′ .

(F.22)

With these two expressions we see that the non-local interaction vertex cancels out and we

finally get the fully crossing symmetric non-local full vertex

Fqkk′

lmm′l′
D

= Fωνν′

lmm′l′
D

+ Fqνν′,nl
lmm′l′
D,ph

−
1
2

F(k′−k)(ν′−ω)ν′,nl
m′mll′
D,ph

−
3
2

F(k′−k)(ν′−ω)ν′,nl
m′mll′
M,ph︸                                                     ︷︷                                                     ︸

built with non-local ph ladder

, (F.23)

taking into account both the ph and ph ladder. As a final and very important step we have to

make sure when inverting and building the local and non-local ladders that we avoid the local

irreducible vertex Γ. This is necessary because it recently was shown that this quantity contains

an infinite set of diverging components [83]. The non-local ladder is built via

Fq
r = Γ

q
r + Φ

q
r

= Γ
q
r + Γ

q
rχ

q
0Fq

r

=
(
1 − Γ

q
rχ

q
0

)−1
Γ

q
r

=

[(
Γ

q
r

)−1 (
1 − Γ

q
rχ

q
0

)]−1

=

[(
Γ

q
r

)−1
− χq

0

]−1
.

(F.24)
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Instead of supplying the non-local irreducible vertex Γ
q
r directly we have to perform some alge-

braic tricks instead:

Fq
M =

[(
Γ

q
M

)−1
− χq

0

]−1

=
[(

ΓωM
)−1
− χq

0

]−1

=

[(
Fω

M

(
1 + χω0 Fω

M

)−1
)−1
− χq

0

]−1

=
[(

1 + χω0 Fω
M

) (
Fω

M
)−1
− χq

0

]−1

=
[(

Fω
M
)−1

+ χω0 − χ
q
0

]−1

=
[(

Fω
M
)−1
− χq,nl

0

]−1

=
[(

1 − χq,nl
0 Fω

M

) (
Fω

M
)−1

]−1

= Fω
M

[
1 − χq,nl

0 Fω
M

]−1

(F.25a)

Fq
D =

[(
Γ

q
D

)−1
− χq

0

]−1

=

[(
ΓωD + 2β−2Vq

)−1
− χq

0

]−1

=

{[
Fω

D

(
1 + χω0 Fω

D

)−1
+ 2β−2Vq

]−1
− χq

0

}−1

=

({[
Fω

D + 2β−2Vq
(
1 + χω0 Fω

D

)] [
1 + χω0 Fω

D

]}−1
− χq

0

)−1

=

{[
1 + χω0 Fω

D

] [
Fω

D + 2β−2Vq
(
1 + χω0 Fω

D

)]−1
− χq

0

}−1

=

({
1 + χω0 Fω

D − χ
q
0

[
Fω

D + 2β−2Vq
(
1 + χω0 Fω

D

)]} {
Fω

D + 2β−2Vq
[
1 + χω0 Fω

D

]}−1
)−1

=
[
Fω

D + 2β−2Vq
(
1 + χω0 Fω

D

)] [
1 − χq,nlFω

D − 2β−2χq
0Vq

(
1 + χω0 Fω

D

)]−1

(F.25b)

where we used the definition

χq,nl
0 ≡ χq

0 − χ
ω
0 , (F.26)

and again dropped all fermionic frequencies and orbital indices to be more concise. By com-

bining the extraction of the local irreducible vertex and the construction of the non-local full

vertex we were able to completely avoid the previously mentioned problems. Furthermore we

were able to reformulate the final expression so only one inversion is required. This massively

improves the numerical implementation since matrix inversions represent the bottleneck of this

algorithm.
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Appendix G Equation of motion in AbinitioDΓA

G.1 Non-interacting Green’s function

The AbinitioDΓA self-energy is derived via the equation of motion (EOM). The result is com-

monly known as Schwinger-Dyson equation and is based on the derivative of the Green’s func-

tion with respect to the first imaginary time argument τ. This procedure explicitly reads:

d
dτ

Gk
mm′
σ

(τ) = −
d
dτ

〈
T

[
ĉkmσ(τ)ĉ†km′σ(0)

]〉
= −

d
dτ

[
Θ(τ)

〈
ĉkmσ(τ)ĉ†km′σ(0)

〉
− Θ(−τ)

〈
ĉ†km′σ(0)ĉkmσ(τ)

〉]
= −δ(τ)

〈
ĉkmσ(τ)ĉ†km′σ(0)

〉
− Θ(τ)

〈[
Ĥ, ĉkmσ(τ)

]
ĉ†km′σ(0)

〉
− δ(τ)

〈
ĉ†km′σ(0)ĉkmσ(τ)

〉
+ Θ(−τ)

〈
ĉ†km′σ(0)

[
Ĥ, ĉkmσ(τ)

]〉
= −δ(τ)δmm′ −

〈
T

[[
Ĥ, ĉkmσ(τ)

]
ĉ†km′σ(0)

]〉
= −δ(τ)δmm′ −

〈
T

[[
Ĥ0, ĉkmσ(τ)

]
ĉ†km′σ(0)

]〉
−

〈
T

[[
Û f ull, ĉkmσ(τ)

]
ĉ†km′σ(0)

]〉︸                                 ︷︷                                 ︸
[ΣG]k

mm′
σ

(G.1)

With the general (anti-)commutator rules

[AB,C] = A [B,C] + [A,C] B (G.2a)

= A {B,C} − {A,C} B, (G.2b)

we obtain the two emerging commutator expressions

[
ĉ†1ĉ2, ĉ3

]
= ĉ†1

{
ĉ2, ĉ3

}
−

{
ĉ†1, ĉ3

}
ĉ2

= −δ1,3ĉ2

(G.3)

and

[
ĉ†1ĉ†2ĉ3ĉ4, ĉ5

]
= −

{
ĉ5, ĉ

†

1

}
ĉ†2ĉ3ĉ4 + ĉ†1

{
ĉ5, ĉ

†

2

}
ĉ3ĉ4 − ĉ†1ĉ†2

{
ĉ5, ĉ3

}
ĉ4 + ĉ†1ĉ†2ĉ3

{
ĉ5, ĉ4

}
= −δ5,1ĉ†2ĉ3ĉ4 + ĉ†1δ5,2ĉ3ĉ4.

(G.4)
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We can therefore calculate the commutator with H0 from Eq. (G.1)[
Ĥ0, ĉkmσ(τ)

]
=

∑
a
xy
ρ

εaxy

[
ĉ†a,xρĉayρ, ĉkmσ (τ)

]

= −
∑

a
xy
ρ

εkxy

(
δa,kδx,mδρ,σĉayρ

)
(τ)

= −
∑

y

εkmy

(
ĉkyσ

)
(τ) .

(G.5)

Inserting this relation back in (G.1) we get

d
dτ

Gk
mm′
σ

(τ) = −δ(τ)δmm′ −
〈
T

[[
Ĥ0, ĉkmσ(τ)

]
ĉ†km′σ(0)

]〉
= −δ(τ)δmm′ +

∑
y

εkmy

〈
T

[
ĉkyσ (τ) ĉ†km′σ(0)

]〉
= −δ(τ)δmm′ −

∑
y

εkmyGk
ym′
σ

(τ).

(G.6)

Applying the Fourier transform with respect to the imaginary time τ to both sides of the equation

we can get to an explicit expression for the Green’s function. The derivative is transformed

elegantly by

F

[
d
dτ

Gk
mm′
σ

(τ)
]

=

∫ β

0
eiντ d

dτ

(
Gk

mm′
σ

(τ)
)

dτ

=

[
eiντGk

mm′
σ

(τ)
]β

0
−

∫ β

0

d
dτ

(
eiντ

)
Gk

mm′
σ

(τ) dτ

= −Gk
mm′
σ

(β) −Gk
mm′
σ

(0)︸                     ︷︷                     ︸
≡ 0 (KMS)

−iν
∫ β

0
eiντGk

mm′
σ

(τ) dτ

= −iν F
[
Gk

mm′
σ

(τ)
]

= −iν Gk
mm′
σ

(G.7)

and we finally arrive at

−iν Gk
mm′
σ

= −δmm′ −
∑

y

εkmyGk
ym′
σ

=⇒
∑

y

[
(iν + µ) δmy − εkmy

]
Gk

ym′
σ

= δmm′ .
(G.8)

We expanded εkmy → εkmy − µδmy in conformance with the abbreviated grand canonical form

of Ĥ → Ĥ − µN̂ and arrived at the non-interacting Green’s function G0 in the orbital basis. For
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illustration this matrix equation reads for two orbitals
iν + µ 0

0 iν + µ

 −
εk11 εk12

εk21 εk22


 ×

Gk
11 Gk

12

Gk
21 Gk

22

 =

1 0

0 1

 . (G.9)

G.2 Interacting Green’s function

From the Dyson equation
G = G0 + G0ΣG

=⇒ G−1 = G−1
0 − Σ

(G.10)

we can deduct that the (until now) ignored interaction term represents the indicated self-energy

contribution [ΣG]k
mm′
σ

−iν Gk
mm′
σ

= −δmm′ −
∑

y

εkmyGk
ym′
σ

− [ΣG]k
mm′
σ︸   ︷︷   ︸

from Ûfull commutator

=⇒
∑

y

[
(iν + µ) δmy − εkmy − Σk

my
σ

]
Gk

ym′
σ

= δmm′ .

(G.11)

Let us now explicitly calculate this contribution:[
Ûfull, ĉkmσ(τ)

]
=

1
2

∑
abb′
xx′yy′
ρρ′

Uabb′
xy′yx′

[
ĉ†b′−a,y′ρĉ

†

bxρ′ ĉb−a,yρ′ ĉb′x′ρ, ĉkmσ (τ)
]

(G.12)

The first term of Eq. (G.4) results in

−
1
2

∑
abb′
xx′yy′
ρρ′

Uabb′
xy′yx′

(
δb′−a,kδy′,mδρ,σĉ†bxρ′ ĉb−a,yρ′ ĉb′x′ρ

)
(τ)

= −
1
2

∑
ab

xx′y
ρ′

Uab(k+a)
xmyx′

(
ĉ†bxρ′ ĉb−a,yρ′ ĉk+a,x′σ

)
(τ)

= −
1
2

∑
qk′
lhn
σ′

U−q(k′−q)(k−q)
lmnh

(
ĉ†k′−q,lσ′ ĉk′nσ′ ĉk−q,hσ

)
(τ)

SW
= −

1
2

∑
qk′
lhn
σ′

Uqkk′
mlhn

(
ĉ†k′−q′,lσ′ ĉk′nσ′ ĉk−q,hσ

)
(τ)

=
1
2

∑
qk′
lhn
σ′

(
Umlhn + Vq

mlhn

) (
ĉ†k′−q′,lσ′ ĉk−q,hσĉk′nσ′

)
(τ) ,

(G.13)
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where we renamed x → l, y → n, x′ → h, a → −q, b → k′ − q and ρ′ → σ′ in the third

line. Please note that summing over −q is identical to summing over q since we go through the

whole Brillouin zone in both cases (the same applies for k′ − q). The second term of Eq. (G.4)

results in

1
2

∑
abb′
xx′yy′
ρρ′

Uabb′
xy′yx′

(
ĉ†b′−a,y′ρδb,kδx,mδρ′,σĉb−a,yρ′ ĉb′x′ρ

)
(τ)

=
1
2

∑
ab′

x′yy′
ρ

Uakb′
my′yx′

(
ĉ†b′−a,y′ρĉk−a,yσĉb′x′ρ

)
(τ)

=
1
2

∑
qk′
lhn
σ′

Uqkk′
mlhn

(
ĉ†k′−q,lσ′ ĉk−q,hσĉk′nσ′

)
(τ)

=
1
2

∑
qk′
lhn
σ′

(
Umlhn + Vq

mlhn

) (
ĉ†k′−q,lσ′ ĉk−q,hσĉk′nσ′

)
(τ) ,

(G.14)

where we renamed a→ q, b′ → k′, y′ → l, y→ h, x′ → n and ρ→ σ′ in the second to last line.

By these renaming procedures we get two identical terms which we can directly supplement in

our initial equation

[ΣG]k
mm′
σ

(τ) =
∑
qk′
lhn
σ′

(
Umlhn + Vq

mlhn

) 〈
T

[
ĉ†k′−q′,lσ′ (τ) ĉk−q,hσ (τ) ĉk′nσ′ (τ) ĉ†km′σ(0)

]〉

=
∑
qk′
lhn
σ′

(
Umlhn + Vq

mlhn

) 〈
T

[
ĉk′nσ′ (τ) ĉ†k′−q′,lσ′ (τ) ĉk−q,hσ (τ) ĉ†km′σ(0)

]〉

= lim
τ′→τ+

∑
qk′
lhn
σ′

(
Umlhn + Vq

mlhn

)
Gqk′k

nlhm′
σ′σ

(
τ, τ′, τ

)
.

(G.15)



APPENDIX G: Equation of motion in AbinitioDΓA 95

The introduction of the limit is necessary if we want to separately evaluate the disconnected

terms. This is done via

[ΣG]k
mm′
σ

(τ) = lim
τ′→τ+

∑
qk′
lhn
σ′

(
Umlhn + Vq

mlhn

)

×

[
Gqk′kcon

nlhm′
σ′σ

(
τ, τ′, τ

)
+ δq0Gk′

nl
σ′

(τ − τ′)Gk
hm′
σ

(τ) − δkk′δσσ′Gk′
nm′
σ

(τ)Gk−q
hl
σ′

(τ − τ′)
]

=
∑
qk′
lhn
σ′

(
Umlhn + Vq

mlhn

)

×

[
Gqk′kcon

nlhm′
σ′σ

(τ, τ, τ) + δq0nk′
ln
σ′

Gk
hm′
σ

(τ) − δkk′δσσ′Gk′
nm′
σ

(τ)nk−q
lh
σ′

]
(G.16)

where we used the relation

lim
τ′→τ+

Gk′
nl
σ′

(τ − τ′) = − lim
τ′→τ+

〈
T

[
ĉk′nσ′(τ)ĉ†k′lσ′(τ

′)
]〉

= lim
τ′→τ+

〈
ĉ†k′lσ′(τ

′)ĉk′nσ′(τ)
〉

= nk′
ln
σ′
.

(G.17)

When applying the Fourier transform to both sides of the equation we exploit the fact that

transforming the equal-time object is equivalent to a summation over one fermionic and the

bosonic frequency. ∫ β

0
dτeiντGqk′kcon

nlhm′
σ′σ

(τ, τ, τ) = Gqk′kcon
nlhm′
σ′σ

=
1
β2

∑
ων′

Gqk′kcon
nlhm′
σ′σ

. (G.18)

Thus we get the expression

[ΣG]k
mm′
σ

=
1
β2

∑
qk′
lhn
σ′

[
Umlhn + Vq

mlhn

]
Gqk′kcon

nlhm′
σ′σ

+
∑
qk′
lhn
σ′

[
Umlhn + Vq

mlhn

] [
δq0nk′

ln
σ′

Gk
hm′
σ

− δkk′δσσ′Gk
nm′
σ

nk−q
lh
σ′

]
,

(G.19)

from which we can extract the connected (first line) and the Hartree-Fock self-energy contribu-

tion (second line) by dividing off the right hand Green’s function (the term ‘connected’ origi-

nates from the connected part of the two-particle Green’s function which might be misleading

at first glance)
Σk

mm′
σ

=
∑

l′
[ΣG]k

ml′
σ

[
G−1

]k
l′m′
σ

= Σkcon
mm′
σ

+ ΣkHF
mm′
σ
.

(G.20)
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ΣkHF
mm′
σ

=
∑
qk′
l′lhn
σ′

[
Umlhn + Vq

mlhn

] [
δq0nk′

ln
σ′

Gk
hl′
σ

− δkk′δσσ′Gk
nl′
σ

nk−q
lh
σ′

] [
G−1

]k
l′m′
σ

=
∑
qk′
l′lhn
σ′

[
Umlhn + Vq

mlhn

]
δq0nk′

ln
σ′

Gk
hl′
σ

[
G−1

]k
l′m′
σ︸         ︷︷         ︸
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︸                           ︷︷                           ︸
Fock

(G.21)

Σk H
mm′ =

m, k

m′, k

U + V 0

l, k′

n, k′

σ′

Figure G.1: Diagrammatic representation of the Hartree contribution to the self-energy. The
occupation nln is represented by a fermionic loop from vertex n to l.

Σk F
mm′ =

m, k m′, k

U + V q

−
k − q

lh

Figure G.2: Diagrammatic representation of the Fock contribution to the self-energy. Due to
spin conservation the propagator k − q must have the same spin as the implied incoming and
outgoing propagators.



APPENDIX G: Equation of motion in AbinitioDΓA 97
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=
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∑
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σ
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∑
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σ
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σ
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∑
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σ

]
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∑
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[
Umlhn + Vq

mlhn

] [
χqk′k′

0,nlsrFqk′k
rstm′

D
Gk−q

ht
σ

]

(G.22)

Σk con
mm′ =

m, k

m′, k

U + V q

h

k′

k′ − q

k − q

l

n
F qk′k
rstm′

r

s t

D

Figure G.3: Diagrammatic representation of the connected contribution to the self-energy con-
taining the full vertex Fqk′k

D .

In order to get the final DΓA self-energy we have now to insert the crossing symmetric non-local

full vertex derived in Appendix F

Fqkk′

lmm′l′
D

= Fωνν′

lmm′l′
D

+ Fqνν′,nl
lmm′l′
D,ph

−
1
2

F(k′−k)(ν′−ω)ν′,nl
m′mll′
D,ph

−
3
2

F(k′−k)(ν′−ω)ν′,nl
m′mll′
M,ph

.
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By dropping the ‘ph’ label for clarity we can extract the different contributions

Σkcon = Σk,Uloc + Σk,Vloc + Σk,ph + Σk,Uph + Σk,Vph

Σk,Uloc = −
1
β

∑
qν′

lhn,rst

[Umlhn]
[
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0,nlsrFων′ν
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D
Gk−q

ht
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]
(G.23a)
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1
β

∑
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[
Vq
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] [
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D
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]
(G.23b)
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∑
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]
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(
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2
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D
+
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M
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+
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)
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(G.23d)

Σk,Vph = −
1
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∑
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D
−

3
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)
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]

relabelling
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mlnh
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(
1
2

Fqν′ν,nl
rstm′

D
+
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2

Fqν′ν,nl
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M

)
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σ

]

=
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∑
qk′

lhn,rst

[
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(
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2
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D
+
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rstm′

M

)
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]
(G.23e)

where we we introduced the tilde objects for convenience in the implementation by

Umlnh ≡ Ũmlhn

Vk−k′
mlnh ≡ Ṽk−k′

mlhn .
(G.24)

The transformation marked with ‘relabelling’ is diagrammatically illustrated for the full con-

nected self-energy contribution in Fig. G.4 and allows us to transform to a, for us, much more

convenient frequency and momentum notation. Please note that this has nothing to do with

crossing symmetry (thus no additional (−1) factors).
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m, k

m′, k

U + V q

h

k′

k′ − q

k − q

l

n
F qk′k
rstm′

r

s t

D

=

n

m, k m′, k
k − q

k′ − q

k′

l

h

U
+
V

k
−k

′

F
(k−k′)(k−q)k
tsrm′
D

t

rs

Figure G.4: Diagrammatic representation of the relabelling procedure exploited in (G.23d),
(G.23e) and (G.33). By flipping both the interaction and the vertex we get the same diagram
with different frequency and momentum dependencies.

By introducing so-called three-leg (boson-fermion) vertices we can simplify these equations

(the fully local three-leg γωνr is illustrated in Fig. G.5).

γωνlmm′l′
r
≡

∑
ν′

n′h′

χων
′ν′

0,lmn′h′F
ων′ν
h′n′m′l′

r
(G.25)

γ
qν
lmm′l′

r
≡

∑
ν′

n′h′

χqν′ν′,nl
0,lmn′h′F

ων′ν
h′n′m′l′

r
(G.26)

η
qν
lmm′l′

r
≡

∑
ν′

n′h′

χqν′ν′

0,lmn′h′F
qν′ν
h′n′m′l′

r
−

∑
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χων
′ν′

0,lmn′h′F
ων′ν
h′n′m′l′

r

=
∑
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n′h′

χqν′ν′

0,lmn′h′F
qν′ν
h′n′m′l′

r
− γωνlmm′l′

r

(G.27)

F ων ′ν
h′n′m′l′
r

γων
r,lmm′l′ =

l

m

h′ l′, ν

n′ m′, ν − ω

ν ′

ν ′ − ω

Figure G.5: Diagrammatic representation of the construction of a so-called three-leg vertex. By
summing over one fermionic Matsubara frequency we ‘close’ the diagram. The resulting vertex
thus has one less frequency dependence while retaining its full orbital dependencies.
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For the first four terms this leads to

Σk,Uloc = −
1
β

∑
qν′

lhn,rst

[Umlhn]
[
χων
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0,nlsrFων′ν
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∑
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] (G.28)

Σk,Vloc = −
1
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∑
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∑
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(G.29)

Σk,ph = −
1
β

∑
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(G.30)
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+
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(G.31)
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In order to simplify this last expression further, we have to first expand the two γr vertices

1
β
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Ũmlhn
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(G.32)

Now we separate the q-dependent bare susceptibilities from the local ones. This is necessary

because the application of symmetry operations onto the full vertices described above require

that all ‘edges’ have the same type of Green’s function connected to it.
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(G.33)

The crossing symmetry transformation is done with the help of Eq. (F.9). The ‘relabelling’

transformation is done via relabelling the interaction and the vertex which we already exploited

previously and is shown in Fig. G.4.
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Gathering all terms with the exception of Σk,Vph (in order to stay consistent with the assumption

of no explicit k and k′ dependence within the non-local interactions) we arrive at the full DΓA

self-energy description.
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∑
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∑
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(G.34)

Canceling the local Hartree-Fock terms with Σ
U,loc
HF (we only derived the connected part of the

DMFT self-energy in Σk,Uloc) and further simplifying the rest we get the final expression
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(G.35)
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Appendix H Momentum-dependent
susceptibilities in AbinitioDΓA

As in the derivation of the AbinitioDΓA diagrammatic, our full vertex F is not dependent

on the momenta k or k′. We can therefore define the momentum q-dependent susceptibilities

generalized to three frequencies, independent of k,k′ (see Fig. H.1)
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∑
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∑
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F qνν ′
nhh′n′
r

χqνν′
r,lmm′l′ =

l

m m′

l′ν

ν − q
+

l l′

m m′

n n′

h h′

ν

ν − q

ν ′

ν ′ − q

Figure H.1: Diagrammatic representation of the generalized susceptibilities. The implied fre-
quency dependent propagators are obtained via a k-sum where the q dependence is preserved.

The usual 1
β

factors which accompany each fermionic frequency sum are already contained in

the first equation. The physical susceptibilities can be obtained now by summing over both

independent fermionic frequencies, i.e. closing the diagrams on both sides, see Fig. H.2.
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h h′

ν

ν − q

ν ′
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Figure H.2: Diagrammatic representation of the physical susceptibilities. The summation over
the fermionic frequencies on the left- (ν) and the right-hand side (ν′) is represented by the closure
of the diagram.
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Appendix I Three-leg implementation
in AbinitioDΓA

By implementing a consistent orbital compound index structure in all objects as shown in

[24, 22], we generally do not have to worry about them anymore when doing internal linear

algebra operations. The orbital summations used throughout the text are recovered by matrix

multiplications of these objects and because of that, and for clarity, we will completely drop

them in this section.

With the help of two kind of unity matrices in the compound index

1νν
′

≡ 1νν
′

lmm′l′ = δνν′δll′δmm′ (I.1a)

~1ν
′

≡
∑
ν

1νν
′

= δll′δmm′ (I.1b)

we can derive a matrix implementation of the three-leg vertices. The completely local three-leg

γωr can be calculated via

χων
′ν

r = χων
′ν′

0 + χων
′ν′

0 Fων′ν
r χωνν0

χων
′ν

r

[
χωνν0

]−1
= 1ν

′ν + χων
′ν′

0 Fων′ν
r

χων
′ν

r

[
χωνν0

]−1
− 1ν

′ν = χων
′ν′

0 Fων′ν
r∑

ν′

[
χων

′ν
r

[
χωνν0

]−1
− 1ν

′ν
]

=
∑
ν′

χων
′ν′

0 Fων′ν
r = γωνr .

(I.2)

One ‘non-local level’ above that is the three-leg γq
r which can be calculated similarly via

γ
qν
r =

∑
ν′

χqν′ν′,nl
0 Fων′ν

r

=
∑
ν′

[
χqν′ν′

0 − χων
′ν′

0

]
Fων′ν

r

=
∑
ν′

[
χqν′ν′

0

[
χων

′ν′

0

]−1
χων

′ν′

0 − χων
′ν′

0

]
Fων′ν

r

=
∑
ν′

[
χqν′ν′

0

[
χων

′ν′

0

]−1
− 1ν

′ν′
]
χων

′ν′

0 Fων′ν
r .

(I.3)
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The completely non-local, and most complex, three-leg ηq
r can be derived by

η
qν
r =

∑
ν′

χqν′ν′

0 Fqν′ν
r −

∑
ν′

χων
′ν′

0 Fων′ν
r

=
∑
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χqν′ν′

0

∑
ν′′

Fων′ν′′

r +
∑
ν′′′
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(
1ν
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′′′ν′′′
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r
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δr,D

qν′ν′′


1ν′′ν − χqν′′ν′′,nl

0 Fων′′ν
r − 2β−2

∑
ν′′′

χqν′′ν′′

0 Vqν′′ν′′′
(
1ν
′′′ν + χων

′′′ν′′′

0 Fων′′′ν
r

)
δr,D

−1
qν′′ν

− γωνr

=
∑
ν′

χqν′ν′

0

∑
ν′′

[
Fων′ν′′

r + 2β−2Vqν′
(
~1ν
′′

+ γων
′′

r

)
δr,D

]qν′ν′′

[[
1ν
′′ν − χqν′′ν′′,nl

0 Fων′′ν
r − 2β−2χqν′′ν′′

0 Vqν′′
(
~1ν + γωνr

)
δr,D

]−1
]qν′′ν

− γωνr

=
∑
ν′,ν′′

[
χων

′ν′

0 Fων′ν′′

r

]ων′ν′′ [[
1ν
′′ν − χqν′′ν′′,nl

0 Fων′′ν
r − 2β−2χqν′′ν′′

0 Vqν′′
(
~1ν + γωνr

)
δr,D

]−1
]qν′′ν

+
∑
ν′,ν′′

[
χqν′ν′,nl

0 Fων′ν′′

r + 2β−2χqν′ν′

0 Vqν′
(
~1ν
′′

+ γων
′′

r

)
δr,D

]qν′ν′′

[[
1ν
′′ν − χqν′′ν′′,nl

0 Fων′′ν
r − 2β−2χqν′′ν′′

0 Vqν′′
(
~1ν + γωνr

)
δr,D

]−1
]qν′′ν

− γωνr

=
∑
ν′,ν′′

[
χων

′ν′

0 Fων′ν′′

r

]ων′ν′′ [[
1ν
′′ν − χqν′′ν′′,nl

0 Fων′′ν
r − 2β−2χqν′′ν′′

0 Vqν′′
(
~1ν + γωνr

)
δr,D

]−1
]qν′′ν

+
∑
ν′

[[
1ν
′ν − χqν′ν′,nl

0 Fων′ν
r − 2β−2χqν′ν′

0 Vqν′
(
~1ν + γωνr

)
δr,D

]−1
− 1ν

′ν
]qν′ν
− γωνr

=
∑
ν′′

γων
′′

r

[[
1ν
′′ν − χqν′′ν′′,nl

0 Fων′′ν
r − 2β−2χqν′′ν′′

0 Vqν′′
(
~1ν + γωνr

)
δr,D

]−1
]qν′′ν

+
∑
ν′′

[
~1ν
′′
] [[

1ν
′′ν − χqν′′ν′′,nl

0 Fων′′ν
r − 2β−2χqν′′ν′′

0 Vqν′′
(
~1ν + γωνr

)
δr,D

]−1
− 1ν

′′ν
]qν′′ν

− γωνr

=
∑
ν′′

[
~1ν
′′

+ γων
′′

r

] [[
1ν
′′ν − χqν′′ν′′,nl

0 Fων′′ν
r − 2β−2χqν′′ν′′

0 Vqν′′
(
~1ν + γωνr

)
δr,D

]−1
− 1ν

′′ν
]qν′′ν

.

(I.4)
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where in the second to last equation we used∑
ν′

Aν′ν =
∑
ν′ν′′

1ν
′ν′′Aν′′ν =

∑
ν′′

~1ν
′′

Aν′′ν (I.5)

and ∑
ν′′

γων
′′

r 1ν
′′ν = γωνr . (I.6)

Summarized, out of the six three-leg vertices (r ∈ [M,D])

γωνr =
∑
ν′

[
χων

′ν
r

[
χωνν0

]−1
− 1ν

′ν
]

γ
qν
r =

∑
ν′

[
χqν′ν′

0

[
χων

′ν′

0

]−1
− 1ν

′ν′
]
χων

′ν′

0 Fων′ν
r

η
qν
r =

∑
ν′′

[
~1ν
′′

+ γων
′′

r

] [[
1ν
′′ν − χqν′′ν′′,nl

0 Fων′′ν
r − 2β−2χqν′′ν′′

0 Vqν′′
(
~1ν + γωνr

)
δr,D

]−1
− 1ν

′′ν
]
,

we have to construct five for a self-energy calculation (all except γqν
M ) or four for a susceptibility

calculation (all except γqν
M , γ

qν
D ).
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