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Abstract
We investigate the local magnetic susceptibilities of prototypical iron based superconductors.
In particular we are interested to understand the impact of strong electronic correlations on
the time-resolved dynamics of the local magnetic moment. We therefore study five materials
(LaFeAsO, BaFe2As2, LiFeAs, KFe2As2, FeTe), all known to be Hund’s metals, which
strongly differ in their respective degree of correlation. The theoretical calculations are based
on ab-initio DFT+DMFT calculations using maximally localized Wannier projections, both
on the d− as well as the dp−model. The corresponding interaction parameters have been de-
termined through constraint random phase approximation (cRPA). From our results we are
able to identify and explain a material- and therefore correlation- dependent trend of the mag-
netic susceptibility. Our analysis of the time-resolved spin-correlation function provides the key
to qualitatively disentangle different mechanisms governing the local spin dynamics of these
systems. Moreover, our findings for the investigated compounds help to understand the ori-
gin of the mismatch between inelastic neutron scattering (INS) experiments and the ab-initio
theoretical calculations.

Abstrakt in deutscher Fassung
Wir untersuchen die lokale magnetische Suszeptibilität von prototypischen eisenhaltigen Supraleit-
ern. Dabei sind wir vor allem an dem Einfluss von starken Korrelationen auf die zeit-aufgelöste
Dynamik des lokalen magnetischen Momentes interessiert. Darum haben wir fünf Materialien
untersucht (LaFeAsO, BaFe2As2, LiFeAs, KFe2As2, FeTe), welche sich bekanntermaße als
Hund-Metalle verhalten, und deren Korrelationsgrad stark materialabhängig ist. Die theoretis-
chen Rechnungen basieren auf einer ab-initio lokale Dichteapproximation kombiniert mit einer
dynamischen Molekularfeldtheorie (DFT+DMFT) Rechnung. Wobei sowohl maximal lokalisiert
Wannier-Projektionen im d- als auch im dp−/dpp−Modell verwendet wurden. Die entsprechen-
den Wechselwirkungsparameter wurden durch eine (cRPA) Rechnung ermittelt. Ausgehend von
unseren Resultaten waren wir in der Lage den material- und daher korrelations- abhängigen
Trend der magnetischen Suszeptibilität zu identifizieren. Unsere Analyse der zeit-aufgelösten
Spin-Korrelationsfunktion lieferte essentielle Informationen, um die Mechanismen hinter der
Spindynamik qualitative zu entwirren. Unsere Erkenntnisse können außerdem dazu verwendet
werden um den Unterschied zwischen den inellastischen Neutronen Streuexperimenten (INS)
und ab-initio Rechnungen besser zu verstehen.
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Chapter 1

Introduction:

Superconductivity (SC) is one of the most interesting phenomena in solid-state physics. Since
its discovery in Hg at 4.183K by Heike Kamerlingh Owens in 1911 [1], it has been the dream
of physicist to increase the superconductivity transition temperature, ideally towards the limit
of room-temperature. Shortly after the initial discovery a vast number of other compounds we
also found to be superconducting at very low-temperatures with Tc < 30K. The microscopic
mechanism behind this phenomena of "conventional" superconductivity was explained, more
than 40 years later, in 1957 by Bardeen, Cooper and Schrieffer (BCS) [2] in terms of an retarded
electron-phonon coupling.

The discovery of superconductivity in cuprates in 1986 has unveiled a new class of superconduc-
tors [3] for which the theoretical explanation still remains highly controversial. In fact, while
the BSC-theory, being a mean-field theory, can only be at a first glance "safely" applied to
weakly correlated materials, the cuprates, are strongly correlated electron systems, challenge
many of the theory and experimental old paradigms. posed a new challenge to theorist and
experimentalists alike. Perhaps with an equally great surprise came with the discovery of un-
conventional SC in iron-based superconductors (Fe-SC) in 2006 [4]. This discovery was again
breaking the common the common wisdom (or more correctly the one of the "Matthias rule
"[5]) that magnetism was an antagonist of superconductivity: Especially compounds containing
elements with large local magnetic moments, like Fe, were not to expected to experience SC.

While the phase-diagram of the iron-based SC looks strikingly similar to the cuprate phase
diagram (see Fig. 1.1), it is quite unclear whether the physical origin of superconductivity is
similar[6].

5
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Figure 1.1: Generic phase diagrams for the cuprates [7] (left) and Fe−SC [8] (right).

In the case of the cuprates, SC appears when doping a Mott-insulating parent compound (ver-
tical x = 0 line in the phase-diagrams above). For the materials of interest to this thesis, the
Fe−SC, the situation is different: Superconductivity appears from doping an metallic spin-
density-wave (SDW) parent-compound upon the superconducting regime. Above their Néel-
temperature both classes of materials are paramagnetic. This clearly indicates an overall lower
correlation level than the cuprates, which could have been associated to an easier theoretical
treatment This not the case, however, because of the pronounced multi-orbital nature of the
Fe−based SC1. The interplay of the (somewhat reduced) correlation process makes the the
theoretical description nevertheless rather challenging. In particular correlation effects might
appear different at the one- and two-particle level. And, in fact, this poses theoretical and
numerical challenges. At the one-particle level experimental evidence suggested that the local
density approximation (LDA), is not completely off in describing the electronic structure of
several Fe-SC. Nonetheless, angular-resolved-photo-emission spectroscopy (ARPES) measure-
ments measurements found a mass-enhance, for LaFeAsO, of about a factor of 2 compared to the
LDA values. Correlation effects appear, however, much more strongly at the two-particle (2P)
level. The spin-spin-susceptibility Imχ(ω) measured in an inelastic neutron scattering (INS)
experiment differs drastically from the values obtained by local (spin) density approximation
L(S)DA. At the same time the spin-spin-susceptibility is, especially for the Fe−SC, a very
important quantity. While unconventional high-temperature SC is (presently) not understood,
it was pointed out that in Fe−SC, spin-excitations may be responsible for electron paring and
superconductivity [9].

The work of this master thesis is inspired by earlier calculations [10], where the spin-spin-
susceptibility and the local magnetic moment was calculated for LaFeAsO with an ab-initio
local density approximation (LDA) plus dynamical mean field theory (DMFT) calculation. As
it can be seen from Imχ(ω) in their work, reproduce in Fig. 1.2, a large peak appears in Imχ(ω)
at ω ≈ 0.2eV. The presence of such a peak was associated to the formation of a local, strongly
fluctuating magnetic moment in an itinerant background, well described by the term Hund’s
metal[11].

1For example in LaFeAsO one of the prototypical Fe−SC, 4 of the 5 d−orbitals are close to the Fermi-energy
and and very close in energies (with an overall crystal-field of few meVs).
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Figure 1.2: Local magnetic spin-susceptibility for LaFeAsO (LDA+DMFT calculation). The
graph is reproduced from [10].

In this earlier work, however, many additional approximations were made (consistently with
the state of the art of algorithmic developments) a simplified 4-orbital model was used for the
Wannier-projections[12], with density-density-type interaction for the DMFT part. This had
limited the previous analysis to the less correlated case of LaFeAsO, where these approxima-
tions could be somewhat justified. In the meantime, Quantum Monte Carlo (QMC) solvers for
DMFT problems have have improved drastically. This allows us to extend the previous works to
more complicated models (5-orbitals) and interaction Hamiltonians (SU(2) symmetric). These
algorithmic improvements allow to study not only LaFeAsO, but also prototypical examples for
the different classes ("families") of Fe−SC.

The families of Fe-based SC: Although a vast number of Fe−SC is known today, their
parent compounds can be classified by only seven types of crystalline structures (description
and classification from [8]). We refer to them in the following as families of Fe−SC.

• 1111-type materials (LnFePnO, Ln: lanthanide, AeFeAsF , Ae: alkaline earth, Pn: P ,
As)

• 122-type materials (AEFe2Pn2 , AE: alkaline earth (alkali metal, Eu))

• 111-type materials (AFePn, A: alkali metal)

• 11-type materials (Fe1+xCh, Ch: Se, Te)

• Materials with thick blocking layer (32522-type (AE3M2O5Fe2Pn2 , M: Al, Sc)) (42622-
type (AE4M2O6Fe2Pn2 , M: Sc, V , Cr)) (homologous type (Can+1ScnOyFe2As2 : n=3,
4, 5))

• Materials containing additional arsenic (Ca1−xLaxFeAs2 ) (Ca10(M4As8)(Fe2As2)5 ,
(M: Pr, Ir))
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• 245-type materials (A1−xFe2−ySe2 : A=K, Cs, Rb, T l)

In this thesis we will focus especially on the first four families, since more experimental data
is available for these classes. We chose for out theoretical analysis representative candidates
from these four families. From the 1111-family we chose consistent with the previous work,
LaFeAsO, the prototypical 1111-material. From the 122-family we chose BaFe2As2 and
KFe2As2. Notice that later is technical not a parent compound, but a 122-material with
100% doping of K. For the 111-family we chose LiFeAs and for the 11-family, the simplest
latices structure, we chose FeTe. The choice of BaFe2As2 from the 122-family is especially
promising with respect to a comparison to experiment, since the local-spin-susceptibility has
been measured by means of INS experiments up to 400meV[13].

Quantum fluctuations and the big moment puzzle: While for the other materials no
INS-experiments up to a comparable energy-ranges are currently available, measurements of
the local magnetic moment are given in there literature. The results depending on the material
in question, ranging from 0.3-0.6 µB (LaFeAs0)[14][15] via 0.9 µB (BaFe2As2)[16] up to 2.2µB
(FeTe)[14]. These are in contrast to LSDA predictions of ≈ 2µB , almost independent from the
material[10]. A solution for this "big moment puzzle" was put forward in [10], for LaFeAsO in
terms of quantum dynamical screening of the local moment on Fe. It was, however, not possible
at the time to verify if the proposed solution could really work, because the calculations were
limited to LaFeAsO. The study presented in this master-thesis, extending the DFT+DMFT
calculations of one- and two- particle properties to several families of Fe-based SC, aims to
demonstrate the applicability of the proposed interpretation, by analyzing the different material
trends. In addition to that, extended calculations will also allow to examine more qualitative the
somewhat heuristic explanation of the quantum dynamical screening of the moment, through
a precise quantification of the time-scales controlling the spin dynamics in all the materials
considered.



Chapter 2

Theory and methods:

In chapter 2.1 we first give a brief overview of some of the quantum field theoretical (QFT)
methods used in this thesis. This it is mainly intended as an introduction to the notation used
in the following chapters, rather than a thorough review. For a more detailed discussion of the
application of QFT to solid state physics we refer to [17]. In chapter 2.2, we provide a brief
description of the ab-initio DFT+DMFT.

In chapter 2.3.1 we illustrate some of the basic relations of bosonic diagonal correlation
functions, to which the spin-spin respons function belongs, in greater detail. We will focus
especially on the connection between "imaginary-time-" and the dissipative part of a correlation
function, because these kind of relations are of significant importance for the interpretation of
our numerical results (chapter 4 and 5). Eventually, we devote section 2.4 to provide a brief
introduction to the methods of analytical continuation used in this thesis.

2.1 Quantum Field Theory in the context of Solid-State-
Physics

It may seem, at a first sight, surprising that an intrinsically non-relativistic theory (Notice that
we always use the Schrödinger- rather than the Dirac-equation) requires concepts of Quantum
Field Theory (QFT). The main reason is that solving the Schrödinger equation for a system with
O(1023) (interacting) particles is a hopeless endeavor. In solid-state physics, one is, however,
mainly interested in expectation values and correlation functions, for which a systematic way
of computation exists in QFT even in the presence of infinite degrees of freedom.

The central quantity in thermal quantum field theory in the context of solid-state-physics
is the imaginary1 time Green’s function

Gi1,i2(τ1, τ2) = (−1) 〈T ĉi1(τ1)ĉ†i2(τ2)〉 . (2.1)

The operators ĉi/ĉ
†
i annihilate/ create particles with quantum-numbers i. The expectation-

vales 〈...〉 is understood as a trace over the (grand-canonical density-matrix. The time-ordering

1For computational reasons it is favorable to do as many calculations in imaginary- rather than in real time,
as possible. The translation of imaginary-time- to real-time-quantities will be discussed in more detail in section
2.3.1 and 2.4.

9
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operator T orders operators chronologically from left to right

T Â(τ1)B̂(τ2) = θ(τ1 − τ2)Â(τ1)B̂(τ2) + εθ(τ2 − τ1)B̂(τ2)Â(τ1),

with ε = −(/+) for fermionic (/bosonic) Â and B̂. Due to time-translation symmetryG(τ1, τ2) =
G(τ1 − τ2) ≡ G(τ). In general, it is more convenient to perform computations in imaginary
frequencies, so called Matsuabra-frequencies (iωn), rather than in imaginary time. We use the
convention

G(τ) = 1
β

∑∞
n=−∞ e−iωnτG(iωn)

G(iωn) =
∫ β

0
dτ eiωnτG(τ).

(2.2)

Another important quantity in QFT, as well as in quantum many-body theory, is the self-energy
Σ. It is related to the full Green’s function G and the non-interacting Green’s function G0 via
the Dyson equation

Σ(iωn) = G−1
0 (iωn)−G−1(iωn).

and describes the changes of the propagation of one added/removed particle due to the electron-
electron interaction. An analogous relation holds in real frequencies.

Connection to Fermi-liquid theory:

The surprising fact that some properties of a system of interacting fermions can be qualitatively
described by a non-interacting theory, albeit with renormalized parameters can be understood
rigorously from a diagrammatic point of view. While a full derivation is beyond the the scope of
this thesis and can be found in Abrikosov ’s textbook[17], we only give here approximations for
quasi-particle excitation life-times, mass-renormalization and energy-shifts here. These relations
are used extensively for the analysis of the numerical data given in chapter 4 and 5.

We start by recalling that the spectral function A(ω) gives a direct link between theory and
(ARPES/IARPES)-experiments. It is related to the full Green’s function via

A(ω,~k) = − 1

π
ImGR(ω,~k) = − 1

π
ImG(iωn → ω + i0+,~k).

Where GR(ω,~k) is the retarded Green’s function. Inserting the Dyson-equation we get2

A(ω,~k) =
−1

π

Im Σ(ω,~k)(
ω − ε~k − Re Σ

)2
+ (Im Σ(ω))

2

Excitations close to the Fermi-energy εF (usually set to zero) can be understood by a Taylor-
expansion of Σ(ω) around εF . Since, in this work we only apply these relations to (local) DMFT
results only, we neglect the ~k dependence.

Σ(ω) u

≡−iγ+Re Σ︷︸︸︷
Σ(0) +ω

(
∂
∂ωΣ(ω)

) ∣∣∣∣
ω=0

. (2.3)

We should keep in mind, nonetheless, that a DMFT-calculation, as many other other many-
body algorithms, give as a result the self-energy in Matsubara-frequencies Σ(z = iωn) and not
the needed real frequency object Σ(z = ω). In practice, one often needs to extract the Fermi-
liquid parameters by fitting a polynomial function through the first few Matsubara- frequencies.

2Assuming that Im Σ 6= 0. Else-wise additional i0+ terms need to be considered explicitly.
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While the value at ω = 0 can then be directly plugged into Eq. 2.3, the derivatives need to be
transformed by the Cauchy-Riemann differential equation

∂
∂ωn

Im Σ(iωn) = ∂
∂ωRe Σ(ω) ≡ −α

∂
∂ωn

Re Σ(iωn) = − ∂
∂ω Im Σ(ω).

(2.4)

By symmetry considerations (not shown here) the second equation gives zero at ω = 0. The
first is related to the renormalization factor Z by

Z =
1

1 + α
.
Inserting Eq.2.3 into the spectral function gives

A(ω) =
Z

π

Zγ

[ω − Z (ε+ Re Σ(0))]
2

+ Z2γ2
.

This shows that Re Σ(iωn = 0) "shifts" energy-levels. Im Σ(iω = 0) leads to a finite width
of the spectral function and thus to finite quasi-particle excitation life-times. The derivative
∂
∂ωn

Im Σ(ωn), which enters in the definition of Z, renormalizes the spectral weight and rescales
the (new) energies, which correspond to an effective renormalization of the electron-mass.

2.2 Ab initio calculations: DFT + DMFT
In this subsection, we give a very brief introduction of density-functional-theory and dynamical
mean-filed theory. Parts of the DFT section are based on the PhD thesis of N. Parragh[18],
one of the key-developers of "w2dynamics"[19], the QMC-program we used. The DFT data was
generated with "VASP"[20] and "wannier90"[12] by our colleagues in Würzburg. The cRPA-
results used for the DMFT calculation were taken from [21]. More details can be found in the
given references.

DFT+DMFT is an ab-initio way of tackling one of the most interesting and difficult problems
in contemporary physics, namely the electronic properties of materials, in which the kinetic and
interaction energy-scales are of the same order of magnitude[22]. The first method, density-
functional theory has achieved great success in calculating electronic orbital-structures for a
wide class of materials. DFT is based on the Hohenberg-Kohn theorem, which states that an
external potential and thus the total energy and all ground-state properties of a system are
a unique functional of the density ρ. While the existence of such a (universal) functional is
proven, its explicit form is unknown. To make this more clear we go through all terms one by
one.

E[ρ] = Ekin[ρ] + Eion[ρ] + EH[ρ] + Exc[ρ].

The Hartree-functional EH[ρ] as well as the ionic energy functional Eion[ρ] can be explicitly
written as

EH[ρ] =
1

2

∫
d~r

∫
d~r′Vee(~r, ~r′)ρ(~r)ρ(~r′)

and
Eion[ρ] =

∫
d~rVion(~r)ρ(~r).
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On the other hand, the kinetic part, Ekin[ρ] is intrinsically unknown. This is due to Ekin ∝
|∇ψ|2, the kinetic energy depends on the phase of the wave-function whereas the density ρ ∝ |ψ|2
does not. The question "Given a density ρ, what is its kinetic energy?" is therefore impossible
to answer. Kohn and Sham (KS), however, made some progress by realizing that the question
"Given a density ρ, that can be split up into one particle auxiliary wave-functions φi, what is its
kinetic energy?" has a definite answer. The KS-density then fulfills ρ =

∑
i |φi(~r)|. A variation

of the functional E
[
ρ[φi]

]
with respect to the one particle axiliary wave-functions φi(~r), under

the equality constraint of normalized wave-functions leads to the KS-equations

[
− 1

2me
∇2 + Vion(~r) +

∫
d~r′Vee(~r − ~r′)ρ(~r′) +

δEex[ρ]

δρ(~r)

]
φi(~r) = εiφi(~r).

The Lagrange-multipliers {εi} are, in the solid-state community, established as "energies" of
the KS-orbitals.

The only remaining problem is the choice of the so called exchange-correlation potential Eex[ρ].
The exchange-part comes from the Fock-term (anti-symmetrization of the wave-function), which
needs to be included in Eex[ρ]. The correlation-part comes from all other interaction terms that
go beyond the already included Hartree-term. Eex[ρ] is not known. Some of the widely used
ones in the solid-state theory community (like LDA) have the jellium model a starting point.
The jellium model, which assumes that the charge in a system is homogeneously spread (like
jelly) is, however, not ideal for strongly-localized orbitals, like 3d− and 4f− orbitals. The
dynamical mean field theory (DMFT) on the other hand captures the local part of interactions
fully, but at a cost of significantly higher numerical effort. A combination of DFT with DMFT
might therefore be useful a realistic treatment of electronic calculations in theses classes of
materials.

DMFT was developed by the model-Hamiltonian community to solve the Hubbard-model[23]
in non-perturbative parameter-regimes, i.e. where the hopping amplitude t and local interaction
energy U are of the same order of magnitude. It can be formally be derived by rescaling the
hopping in the limit of infinite dimensions (or equivalently the number of neighbors) in such a
way that the competition between the terms of the Hamiltonian remains non-trivial[24]. The
second important step, which made DMFT so successful, came from mapping the Hubbard-
Model in this limit onto the Anderson impurity model (AIM)[25]. It can be achieved by imposing
the equality of the (local) self energy, or equivalently the (local) Green’s function. For the AIM
a number of efficient solvers are available ike the Hirsch-Fye continuous time Quantum Monte-
Carlo Method3, Exact Diagonalization, ...). The DMFT-self-consistency cycle is sketched in
Fig.2.1

3For all the calculations the Continues-time Quantum Monte-Carlo (CT-QMC) Method in Hybridization-
expansion was used within this thesis[19].
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Figure 2.1: Illustration of the self-consistency cycle of the dynamical mean field theory. The
bottleneck of the algorithm is the solution of the Anderson impurity model which is needed in every
cycle. For all results in the DMFT results in this thesis a continues time Quantum Monte-Carlo in
Hybridization expansion (QMC)[26] solver was used as an impurity solver. (Figure reproduced from
[27])

.

We briefly recall here the definitions of the local Green’s-function Gσ(iωn), the dynamical mean
field Gσ(iωn) and the local self-energy Σσ(iωn) (e.g. from [22])

Giσ(iωn) = 〈ciσ(iωn)ci †σ (iωn)〉A[G] (2.5)

Σσ(iωn) = Gσ(iωn)−1 −Gσ(iωn)−1 (2.6)

Gσ(iωn) =
1

Nk

1.BZ∑
~k

1

iωn + µ− µDC −Σσ(iωn)−H~k

(2.7)

The bold notation indicates matrices in the orbital-space. Eq. 2.5 denotes the determination
of the impurity Green’s function, by creating/annihilating particles on the impurity of the
auxiliary AIM associated to the DMFT cycle, where the quantum-statistical mechanics are
governed by the action A, which is a functional of the Weiss-field G. The self-consistency is
imposed in the following way:
First we start with some initial conditions for the dynamical mean field G. By solving (2.5)
with CT-QMC-HYB we obtain the local (impurity) Green’s function. Then, by using the
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Dyson equation (2.6), we calculate the self energy from the impurity Green’s function G and
the dynamical mean fieldG. Finally, we use the self-consistency equation (2.7) to calculate the
’new’ Green’s function of the material under consideration and by applying the Dyson equation
(2.6) again to get the ’new’ dynamical mean field. The procedure repeats until convergence is
reached.

Combining the two methods:

A crucial step when combing the DFT- with the DMFT-calculation is transforming the DFT-
basis functions into the local DMFT-orbitals. To capture the majority of the Coulomb inter-
action, by a purely local term, strongly localized orbitals are necessary. One therefore uses
a maximally localized linear combination of the DFT-orbitals, known as maximally localized
Wannier-functions (MLWF). As a localization criteria one can use

min
∑
n

[
〈~0n| r̂2 |~0n〉 − 〈~0n| r̂ |~0n〉2

]
,

where |~R, n〉 are (to be determined) maximally localized Wannier-functions (MLWF), centered
around ~R, form the chosen target orbitals close to the Fermi-level. The (hopping-terms) are
then extracted via the corresponding KS-Hamiltonian HKS as

tmn(~R) = 〈~0m|HKS |~Rn〉 . (2.8)

It is clear, that the definition of an effective one-particle Hamiltonian in the Wannier ba-
sis is not sufficient for performing a DMFT calculation. A consistent determination of the
corresponding interaction parameters is also essential. In practice, effective interaction param-
eters are often approximated by a constraint random phase (cRPA) calculation, by calculating
overlap integrals between the MLFW and the cRPA interaction operator Wr(~r, ~r′, ω) at zero
frequency. The constraint being that the target manifold’s contribution is cut out to avoid
double counting.
The effective orbital dependent Coulomb- interaction (U) and exchange parameters (J) are
given by

Uml(~R) = 〈~0m| 〈~0m| Ŵr |~Rn〉 |~Rn〉
Jml(~R) = 〈~0m| 〈~0n| Ŵr |~Rn〉 |~Rm〉 .

(2.9)

Details about the cRPA calculation for the materials in this thesis can be found in [21]. For a
general review on cRPA in the context of DFT+DMFT we refer to [22].

2.2.1 Model-Hamiltonians in this thesis

Once the interaction terms (e.g. from an cRPA calculation) and the hopping terms are known
one can turn to solving the corresponding Hubbard model. Another important step is the
extraction of the already in the DFT-calculation included interactions (for the target orbitals).
While this is still an extensively debated problem several (approximate) solutions have been
proposed. We will come back to this problem, and the solutions we chose for the Fe-based
SC in Chapter 3. Before turning to the explicit Hamiltonians we used in this mater thesis, we
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would like to take a look at a generic multi-orbital Hubbard-Hamiltonian with particle number
conserving local two-particle interaction:

H =
∑
iljm tilmjmĉ

†
ilĉjm +

∑
ilmno Ui,lmnoĉ

†
ilĉ
†
imĉinĉio

= ĤDFT −
∑
i,l µ

DC
il n̂il +

∑
ilmno Ui,lmnoĉ

†
ilĉ
†
imĉinĉio.

(2.10)

It indices i, j give he position of a lattice-site. The others (lmno) correspond to the orbitals.
The DC-correction term is denoted as µDCil . To make a connection with the matrix-notation in
the previous paragraph (for ~R = 0) we note that

Ui,mm′mm′ = Umm′

Ui,mm′m′m = Jmm′ for m 6= m′.
(2.11)

The full interaction term given in Eq. 2.10 is, however, rarely used for DFT+DMFT calculations.
The main reason being that efficient and stable4 impurity-solves exist for simplified models
where the orbital dependence is neglected. For the calculations in this thesis we have exploited
the following three interaction Hamiltonians for the 5 Fe-d−orbitals:

Ĥd−d
avg = U

∑5
m=1 n̂m↓n̂m↑ +

∑
m 6=m′(V − Jδσσ′)n̂mσn̂m′σ′

ĤK
avg = U

∑5
m=1 n̂m↓n̂m↑ +

∑
m 6=m′(V − Jδσσ′)n̂mσn̂m′σ′

−J
∑
m 6=m′ c

†
m↑c

†
m↓cm′↓cm′↑ + c†m↑c

†
m↓cm′↓cm′↑

Ĥf = 1
2

∑
lmno Ulmno

∑
σσ′ ĉ

†
lσ ĉ
†
mσ′ ĉ

†
nσ′ ĉ

†
oσ

(2.12)

The first one, known as density-density-interaction, conserves the total particle number N ,
the total spin in z-direction Sz and occupation numbers nmσ. The second is the Kanamori-
Hamiltonian. It conserves N , Sz and the pseudo-spin quantum-number PS[28]. The difference
to Ĥd−d is the inclusion of spin-flips and pair-hopping, which restore the SU(2) symmetry of
the interaction term. Both are shown, and used in this thesis, with averaged U and J values.

U = 1
(2l+1)

∑
i

Uii

J = 1
2l(2l+1)

∑
ij
i 6=j

Jij

U = U − 2J.

(2.13)

The third Hamiltonian Ĥf , which is in principle more realistic, is refereed to in this thesis
as "full U ". It only conserves N and Sz. Density-density- and Kanamori-interactions can be
regarded as are all special (approximate) cases of full U interaction.

4E.g. on can show that for a Segment solver (for dens.-dens.- interaction) no sign-problem can occur.
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2.3 Properties of Correlation-functions
In this section we will show some basic properties of correlation functions "diagonal" in the
bosonic operators Â, because the spin-spin correlation function which is of interest in this work
belongs to this class.
First, we show that χAA(τ) in imaginary time is real-valued, positive and concave, before us-
ing these properties to show that χAA(iωn) ∈ R+. We then discuss fundamental properties of
the susceptibilities on the real time-axis, namely the Kubo-Martin-Schwinger-relation and the
Fluctuation-Dissipation theorem. These basic properties are then used to derive the connection
between χAA(τ) and χav./ret.

AA (ω). Further, we show a more general relation between χAA(τ) and
χ

av./ret.
AA (ω) to be used if χ(τ) is known only numerically. To get familiar with the derived rela-

tions, we discuss some model cases, namely the "Atomic Limit" and the "Harmonic-oscillator".
These will make it easier to interpret the obtained DFT+DMFT for the Fe-based SC in chapter
4 and 5 .

2.3.1 Properties in imaginary time and Matsubara frequencies
"Time"-translation symmetry:

For a time independent Hamiltonian invariance of the trace under cyclical permutations yields
〈Â(t)B̂(0)〉 = 〈Â(0)B̂(−t)〉.
For imaginary time τ , one can derive instead

〈Â(τ)B̂〉 = 1
ZTr e−βĤ

(
eτĤÂe−τĤ

)
B̂

= 1
ZTr e−βĤeτĤÂ

(
e−τĤB̂eτĤ

)
e−τĤ

= 1
ZTr e−βĤÂ

(
e−τĤB̂eτĤ

)
= 〈ÂB̂(−τ)〉 ,

(2.14)

where we inserted a 1 = e+τĤe−τĤ in the second line, used cyclicity of the trace in the third
line ad the obvious fact that

[
Ĥ, Ĥ

]
= 0 in the fourth line. This shows that time-translation

symmetry holds for real time as well as imaginary times. One can even combine the two as

〈Â(t+ iτ)B̂(0)〉 = 〈Â(0)B̂(−t− iτ)〉 ,

for β > τ > −β.

Periodicity in β:

Defining a general susceptibility in imaginary time as

χAB(τ) = 〈T Â(τ)B̂(0)〉 = θ(τ) 〈Â(τ)B̂(0)〉+ θ(−τ) 〈B̂(0)Â(τ)〉 (2.15)

with β > τ > −β one can use the invariance of the trace under cyclical permutations to show
for τ > 0 that

χAB(τ − β) = 〈T Â(

<0︷ ︸︸ ︷
τ − β)B̂〉 = 〈B̂Â(τ − β)〉 = 1

ZTr e−βĤB̂e(τ−β)ĤÂe−(τ−β)Ĥ

= 1
ZTr e−βĤeτĤÂe−τĤB̂

= 〈Â(τ)B̂(0)〉 = χAB(τ).

(2.16)
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One can therefore restrict the imaginary time-domain to 0 ≤ τ ≤ β.

Positiveness and real valuedness:

This property only hold for certain choices of Â and B̂, e.g. for Â = B̂. We therefore refer to it
as a property of "diagonal" correlation-functions. Writing down a general diagonal susceptibility
(for τ > 0) in a matrix-element representation5 we get

χAA(τ > 0) = 1
ZTr e−βĤÂ(τ)Â(0)

= 1
Z

∑
n 〈n| e−βĤÂ(τ)

∑
m |m〉 〈m| Â(0) |n〉

= 1
Z

∑
n,m e−βEneτ(En−Em) 〈n| Â |m〉 〈m| Â |n〉

= 1
Z

∑
n,m e−βEneτ(En−Em)| 〈n| Â |m〉 |2

(2.17)

Since everything on the right-hand side of the above equation is real-valued and positive we
have shown that χAA(τ) ∈ R+.

Mirror-symmetry around β/2:

Again this property only holds for Â = B̂. To see this symmetry it is convenient to start from
Eq. 2.17 by inserting τ = β/2 + ∆τ .

χAA(τ = β/2 + ∆τ) = 1
Z

∑
n,m e−βEne(β/2+∆τ)(En−Em)| 〈n| Â |m〉 |2

= 1
Z

∑
n,m e−β/2(En+Em)e∆τ(En−Em)| 〈n| Â |m〉 |2 (n↔ m)

= 1
Z

∑
n,m e−β/2(En+Em)e−∆τ)(En−Em)| 〈n| Â |m〉 |2

= χAA(τ = β/2−∆τ),
(2.18)

where we have exchanged the (dummy-)indices n and m in the second line of Eq. 2.18. The
last property follows from observing that the second line is the same as the third line, but for
negative ∆τ .

Moreover combining the mirror-symmetry around β/2 with the above shown periodicity,
implies a symetry around τ = 0 χ(−τ) = χ(τ), which can also be directly derived from
(imaginary-) time-translation symmetry.

Concavity:

Differentiating Eq. 2.17 twice gives

d2

d2τ χAA(τ) = 1
Z

∑
n,m e−βEn (En − Em)

2
eτ(En−Em)| 〈n| Â |m〉 |2, (2.19)

which is evidently greater or equal to 0. From this, we can immediately deduce that (unless
χ(τ)=const.) there is at most one minimum (in the region from 0 to β, which is located at
τ = β/2.

5Unless mentioned otherwise we use the notation that |n〉 is an eigenvektor of Ĥ. Because Ĥ is Hermitian
{|n〉} are complete

∑dim Ĥ
i=1 |n〉 〈n| = 1
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Fourier-series and Matsubara frequencies:

Since χAB(τ) is an integrable periodic function, it can be represented by a Fourier series. One
must keep in mind that χAB(τ) is not necessarily defined for |τ | > β. The infinite Fourier-series
is then built on periodically continued function for |τ | > β. The Fourier-components of χAB(τ)
are usually denoted as χAB(iωn) and are related to χAB(τ) by

χAB(τ) =
1

β

∞∑
n=−∞

χAB(iωn)e−iωn . (2.20)

The symmetry χ(τ + β) = χ(τ) imposes e−iωnβ = 1, and therefore the only frequencies allowed
are

ωn =
2πn

β
.

These are known as bosonic Matsuabra frequencies. The inverse transformation is:

χAB(iωn) =

∫ β

0

dτ χAB(τ) eiτωn (2.21)

χAA(iωn) is real valued

One can show:

ImχAA(iωn) =
∫ β

0
dτ χAA(τ) sin(ωnτ)

=
(∫ β/2

0
dτ χAA(τ) sin(ωnτ) +

∫ β
β/2

dτ χAA(τ) sin(ωnτ)
)

= 0.
(2.22)

The second term in the bracket cancels the first. To show this we substitute (and rename)
τ → β − τ in the second term which leads (via dτ → −dτ and after changing the boundaries
accordingly) to

−
∫ 0

β/2

dτ

χAA(τ)︷ ︸︸ ︷
χAA(β − τ)

−sin(ωnτ)︷ ︸︸ ︷
sin(ωnβ − ωnτ) = −

∫ β/2

0

dτ χAA(τ) sin(ωnτ). (2.23)

and thus
ImχAA(iωn) = 0.

χ(iωn) is positive:

To show this we first use the fact that due to the symmetry around β/2 the Fourier-integral
reduces to

χAA(iωn) =

∫ β

0

dτ χAA(τ)eiωnτ = 2

∫ β/2

0

dτ χAA(τ) cosωnτ .

Second, we need to remember that χAA(τ) is a concarve, positive function with exactly one
minimum at β/2 and therefore monotonically decreasing in the region 0 < τ < β/2. We then
slice the integral into n regions6 (visualized for n = 3 and n = 4 in Fig. 2.2) as

6For n ≥ 1. For n = 0 positivity is trivial.
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χAA(iωn) = 2

(∫ β/2
n

0
dτ χAA(τ) cosωnτ +

∫ 2
β/2
n

β/2
n

dτ χAA(τ) cosωnτ + ...+
∫ β/2

(n−1)β/2
n

dτ χAA(τ) cosωnτ

)
≡ 2 (

∑n
m=1 am) .

(2.24)

0
1

n

β/2
2

n

β/2 β/2

τ

χAA (τ)

n=3

0
1

n

β/2
2

n

β/2
3

n

β/2 β/2

τ

χAA (τ)

n=4

1

n

β/2
2

n

β/2 β/2

τ

Cos (τ ωn)

n=3

1

n

β/2
2

n

β/2
3

n

β/2 β/2

τ

Cos (τ ωn)

n=4

Figure 2.2: Visualization of the integrals for χ(iωn=3) (left) and χ(iωn=4) (right). The top figures
show a representation of a real-valued positive concave function in the region 0 < τ < β split up in
the regions needed for Eq. 2.24. The sub-figures at the bottom show the second part of the integral
in Eq. 2.24 split up into the appropriate regions.

The implicitly defined ai’s fulfill

(i) a1 > 0
(ii) sign(am) = (−1)m+1

(iii) |am| > |am+1|.
(2.25)

Property (i), (ii) and (iii) follow from the fact that χAA(τ) is strictly decreasing and positive
and that cos(ωn

mβ/2
n ) = − cos(ωn

(m+1)β/2
n ).

This shows that if n is even

χAA(iωn) = 2

 >0︷ ︸︸ ︷
a1 + a2 +

>0︷ ︸︸ ︷
a3 + a5 +...+

>0︷ ︸︸ ︷
an−1 + an

 > 0, (2.26)
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and if n is odd

χAA(iωn) = 2

 >0︷ ︸︸ ︷
a1 + a2 +

>0︷ ︸︸ ︷
a3 + a5 +...+

>0︷︸︸︷
an

 > 0. (2.27)

Thus
χAA(iωn) ∈ R+. (2.28)

We can check this by looking at Fig. 2.2. An integral over (a multiplication of the two functions)
of the blue region plus an integral over the yellow region is greater than zero. And the same is
true for any consecutive regions after. If n is odd the last region (green for the n = 3 case) we
get another positive contribution.

Lehmann representation in Matsuabra frequencies

A very useful expression to show basic properties of correlation functions is the Lehmann-
representation. Specifically we will use it to show the connection between χ(iωn) and χ(ω),
which can be used if an analytic expression is known, and the connection between χ(τ) and
χ(ω), if no analytical expression is known. All methods of analytical continuation of QMC-
data (like MaxEnt, SpM, ... ) are based on these relations. Moreover, we show some possible
simplifications for diagonal correlation functions in the next sub-chapter.

For τ > 0 one can write χ(τ) as

χAB(τ) = 〈Â(τ)B̂〉 = 1
Z

∑
n,m 〈n| e−βĤeτĤÂe−τĤ |m〉 〈m| B̂ |n〉

= 1
Z

∑
n,m e−βEneτ

≡ωnm︷ ︸︸ ︷
(En − Em)anmbmn,

(2.29)

where we inserted a complete 1 =
∑
m |m〉 〈m| in the first line and used the abbreviations

anm = 〈n| Â |m〉. Fourier-transforming the above equation gives

χAB(iωn) = 1
Z

∑
n,m(1− e−βωmn)e−βEnanmbmn

1
ωmn−iωn

=
∫∞
−∞ dω

′ S(ω
′
)

ω′−iωn

(2.30)

where we used the spectral function

S(ω) = 1
Z

(
1− e−βω

)∑
n,m anmbmne−βEnδ(ω − ωmn) . (2.31)

Eq. 2.30 is known as the Lehmann-representation. We will later show that χ(ω) can be expressed
by a similar integral over the same spectral function S(ω). This will allow us to show the
relation between χ(iω) and Imχ(ω) for an analytically known χ(τ). To show the other relation,
which can also be used if χ(τ) is not analytically known, we needs to transform the Lehmann-
representation of χ(iωn) back into imaginary time

χAB(τ) = 1
β

∑
n e−iωnτχAB(iωn)

=
∫∞
−∞ dω S(ω)

(
1
β

∑
n

e−τωn

ω−iωn

)
=

∫∞
−∞ dω S(ω) e−ωτ

1−e−βω
.

(2.32)

In the first second line of Eq. 2.32 we inserted the Lehmann-representation and exchanged
integration and summation. Moreover, we used that
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1

β

∑
n

e−τωn

ω − iωn
=

e−τω

1− e−βω
,

since ∮
dz

1

z − ε
e−τz

1− e−zβ
= 0 = 2πi

(∑
n

1

β

e−τωn

iωn − ε
+

e−ετ

1− e−βε

)
,

by the residual theorem.
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2.3.2 Properties in real time and real frequencies
Kubo-Martin-Schwinger (KMS) relation

Before turning to the Lehman-representation of χR/A(ω) we will briefly derive another very use-
ful theorem, the KMS relation. When deriving the Lehman-representation, or the Fluctuation
Dissipation theorem one can derives the KMS-relation without additional effort. We start from
the spectral representation of the two elementary constituents of any (two-point-) correlation
function, which are the D> and D< functions and defined as

D>(t) ≡ 〈Â(t)B̂(0)〉 = 1
Z

∑
n,m e−βEn 〈n| eiĤtÂ(0)e−iĤt |m〉 〈m| B̂(0) |n〉

D<(t) ≡ 〈B̂(0)Â(t)〉 = 1
Z

∑
n,m e−βEn 〈n| B̂(0) |m〉 〈m| eiĤtÂ(0)e−iĤt |n〉 .

(2.33)

Using the abbreviations

ωmn ≡ (Em − En)

amn ≡ 〈m| Â |n〉
bmn ≡ 〈m| B̂ |n〉

(2.34)

and renaming the dummy-indices (n� m) in the second equation we get

D>(t) = 1
Z

∑
n,m e−βEne−iωmntanmbmn

D<(t) = 1
Z

∑
n,m e−βEme−iωmntanmbmn.

(2.35)

Fourier-transforming leads to

D>(ω) = 2π
Z

∑
n,m e−βEnδ(ω − ωmn)amnbmn

D<(ω) = 2π
Z

∑
n,m e−βEmδ(ω − ωmn)amnbmn,

. (2.36)

where we used:

F
(
e−itωmn

)
=

∫∞
−∞ dt e−itωmneitω = 2πδ(ω − ωmn) (2.37)

From Eq. 2.36 one can immediately identify the so called Kubo-Martin-Schwinger relation

D<(ω) = D>(ω)e−βω. (2.38)

It should be stressed that the KMS relation is only valid in equilibrium. Out of equilibrium
the deviation of D<(ω)

D>(ω) from e−βω provides instead a measure how far the system is from
thermalizing.
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Lehmann-representation of χR(ω) and χA(ω)

The Lehmann representation is a very general expression of two-point correlation functions in
QFT. We will derive it briefly from Eq.2.36 and the definitions

χ(t) ≡ i 〈[Â(t), B̂(0)]〉 ∈ R
χR(t) ≡ θ(t)χ(t)
χA(t) ≡ −θ(−t)χ(t)

. (2.39)

Going to frequency-space each product with a θ function becomes a convolution. The Fourier-
transforms of the θ-functions are

θ̃+(ω) ≡
(
Ft(θ(t))

)
(ω) = i

ω+i0+

θ̃−(ω) ≡
(
Ft(θ(−t))

)
(ω)

= −i
ω−i0+ .

(2.40)

Which leads to

χR/A(ω) = ±i
2π θ̃
± ∗ (D> −D<)

= −1
Z

∑
n,m

(
e−βEn − e−βEm

)
anmbmn

∫
dω′ 1

ω′±i0+ δ(ω − ωmn − ω′)
= −1

Z

∑
n,m

(
e−βEn − e−βEm

)
anmbmn

1
ω−ωmn±i0+ ,

(2.41)

where we used standard-notation and denoted the convolution as ∗. Eq. 2.41 can be rewritten
as

χR/A(ω) =
∫∞
−∞ dω′ S(ω′)

ω′−ω∓i0+ . , (2.42)

with the spectral function

S(ω) = 1
Z

(
1− e−βω

)∑
n,m anmbmne−βEnδ(ω − ωmn) . (2.43)

Eq. 2.42 is the corresponding Lehmann-representation. Notice that the excitation-energies give
the location of the poles of χR/A and that has no poles in the upper/(lower) half plane. Eq. 2.43
is exactly the same expressions as in Eq. 2.31. Q.E.D.

Thus if an analytical expression for χ(iωn) is known one can get χR/A by simply replacing
iωn by ω ± i0+

χR/A(ω) = χ(iωn → ω ± i0+).

S can be real-valued for a certain choice of A and B, but it doesn’t need to be. If it is, we find
the property

χR(ω) =
(
χA(ω)

)∗
.

For Â = B̂ this is fulfilled since
(
〈n| Â |m〉 〈m| Â |n〉

)∗
=
(
〈n| Â |m〉 〈m| Â |n〉

)
. We may then

extract the imaginary part of Eq. 2.41 after using the Plemelj-Sokhotskii formula [29] as

Im χR/A(ω) = ±π
Z

∑
n,m

(
e−βEn − e−βEm

)
anmbmn δ(ω − ωmn)

= ±πS(ω)
. (2.44)

We should stress that this formula is only correct for certain choices of Â and B̂.
By comparing χ(ω) with the S(ω) we find the general relation

χ(ω) = i2π S(ω) = i
(
ImχR(ω)− ReχA(ω)

)
.
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So if the spectral function is real the (full) susceptibility (in ω) is purely imaginary. This is
equivalent to a anti-symmetric susceptibility in real time. The retarded and advanced fulfill for
this (special) case

χ(ω) = ±2i Im χR/A(ω). . (2.45)

These expressions show that if we know the spectral function of a system we have access to the
full information abouts the corresponding correlation properties.

Relation between i 〈[Â(t), B̂(0)]〉
R
and 〈{Â(t), B̂(0)}〉

A quite reasonable measure of fluctuations is given by the anti-commutator-correlation-function

F (t) ≡ 1
2 〈{Â(t), B̂(0)}〉 ∈ R . (2.46)

To get its Fourier-transform we can use Eq. 2.36

F (ω) = D> +D<

= π
Z

∑
n,m

(
e−βEn + e−βEm

)
anmbmn δ(ω − ωmn)

=
(
1 + e−βω

)
π
Z

∑
n,m e−βEnanmbmn δ(ω − ωmn)

(2.47)

Comparing Eqn 2.47 to

χ(ω) = i(D> +D<)
= 2iπ

Z

∑
n,m

(
e−βEn − e−βEm

)
anmbmn δ(ω − ωmn)

= 2i
(
1− e−βω

)
π
Z

∑
n,m e−βEnanmbmn δ(ω − ωmn),

(2.48)

we find
F (ω)

−iχ(ω)
=

1

2
coth(β/2ω), (2.49)

or

F (ω) =
1

2
coth(β/2ω)(−i)χ(ω). (2.50)

For certain choices of Â and B̂, e.g. Â = B̂ this reduces to

F (ω) = coth(β/2ω)ImχR(ω). (2.51)

For these cases one can calculate F (t) as

F (t) = 1
π

∫∞
0

dω cos(ωt) coth(β/2ω) ImχR(ω)
=

∫∞
0

dω cos(ωt) coth(β/2ω)S(ω).
(2.52)

Kramers Kronig-relations

We will only briefly state them for later reference. Let f(t) = θ(t)f(t) ∈ R be a real-valued
retarded function with an existing and sufficiently fast decaying Fourier-transform. Then f(ω)
fulfills

Re f(ω) = 1
πP
∫∞
−∞ dω

′ Im f(ω
′
)

ω′−ω

Im f(ω) = −1
π P

∫∞
−∞ dω

′ Re f(ω
′
)

ω′−ω

. (2.53)
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Sign of SAA(ω):

SAA(ω) = 1
Z

(
1− e−βω

)∑
n,m |anm|2e−βEnδ(ω − ωmn) . (2.54)

In the expression above we find all terms to be positive except for those in the bracket. But we
notice that (

1− e−βω
)
> 0 if ω > 0(

1− e−βω
)
< 0 if ω < 0.

(2.55)

So we find
ωSAA(ω) > 0. (2.56)

Eq. 2.56 has very important physical interpretation. It means that dissipation is always positive
in a system. In the context of analytical continuation via MaxEnt it, moreover, allows us to
interpret ωS(ω) as a probability density, after proper normalization.
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2.3.3 Special properties: Limiting cases

Atomic Limit

In the atomic limit the Hubbard model reduces to

Ĥ =
∑
i

∑
αβγδ,σσ′

Uσσ
′,αβγδ

i ĉi†α,σ ĉ
i†
β,σ′ ĉ

i
γ,σ′ ĉ

i
δ,σ

Where the orbitals are labeled by α, β, γ, δ, and the atoms by i.
If, moreover, one assumes an interaction term of density-density-type, one finds find the particle
number operators for each orbital to commute with the Hamiltonian

[
n̂i, Ĥ

]
= 0 .

Therefore, the particle number is a conserved quantity for all orbitals and the density-density
correlation function becomes independent of τ . One can explicitly perform the trace to obtain

N σσ′

ij,αβ = 〈n̂σi (τ)n̂σ
′

j (0)〉 = 〈n̂σi (0)n̂σ
′

j (0)〉

= δσσ′δijδαβ
e−βU

3+e−βU
+ (1− δσσ′δijδαβ)

(1+e−βU)
2

(3+e−βU )2
.

(2.57)

And for the local spin-spin susceptibility:

χtot(τ) =
∑
α,β N

↑↑
ii,αβ +N ↓↓ii,αβ −N

↑↓
ii,αβ −N

↓↑
ii,αβ = const. ≡ C

χdiag(τ) =
∑
αN

↑↑
ii,αα +N ↓↓ii,αα −N

↑↓
ii,αα −N

↓↑
ii,αα = const.

(2.58)

To establish the connection between χ(τ) and S(ω) we can use Eq. 2.32 (shown again for better
readability):

χtot(τ) =
∫∞
−∞ dω S(ω) e−ωτ

1−e−βω
. (2.59)

χ(ω) can not have any contributions for finite frequencies. If it had some e.g. at ε > 0 this
would lead to a χ(τ) ∝ e−ετ 6= const.. Thus the only possible form is

S(ω) = βωδ(ω).

Transforming χ(ω) onto the real time-axis leads to

χtot(t) = 2θ(t)
∫∞
−∞ dω sin(ωt)S(ω) = 0, (2.60)

and
F (t) = 1

2

∫∞
−∞ dω cos(ωt) coth(β/2ω)S(ω) = C. (2.61)

This is an important result. The formation of a local magnetic moment corresponds to a delta
peak at ω = 0. While the susceptibility in real time is zero for this limiting case, as an effect of
the commutator in its definition, the anti-commutator F (t) better reflects the infinite life-time
of the local spin.

A note of caution: For this limiting case different ways of analytical continuation give
different results. One could for example calculate the Fourier-series

χtot(iωn) = δn0C β.
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Making a branch cut at the real axis and inverting the argument we get an expression with
only one limit point:

f(z =
1

iω
) ≡ χ(iω)

The limit point being at z = 0, (or equivalently iω → ∞). By the identity theorem for holo-
morphic functions, f(z) has an unique analytical continuation. To find the explicit form, one
can calculate (all) derivatives at the limit point. By analyticity they exist, and the function’s
Laurent-series converges. For our case, all derivatives are zero. Therefore the analytical con-
tinuation is zero everywhere where it is defined. One may then be tempted to continue the
function to the real axis and get χR(ω) = 0. The problem could be related to the fact that we
preformed a branch-cut precisely there.

The harmonic oscillator

We finish this subsection by taking a look one of the a physicists favorite toys: The harmonic
oscillator.
The differential equation for a damped harmonic oscillator under a time-dependent force f(t)
is

ẍ+ 2γẋ+ ω2
0x = f(t)

Fourier-transforming the differential equation leads to(
ω2

0 − 2iγω − ω2
)
x(ω) = f(ω)

or
x(ω) = f(ω)

1

(ω2
0 − 2iγω − ω2)x(ω)

≡ f(ω)χ(ω).

Where we defined the susceptibility of the harmonic oscillator. The roots of the denominator
are at

ω± = −iγ ±
√
ω0 − γ2.

Since all poles are in the lower-half-pane we know that χ a retarded susceptibility. It’s imaginary
part can be used as a model for the spectral function

Imχ(ω) =
2γω

(ω0 − ω2)
2

+ 4γ2ω2
. (2.62)

We will see in chapter 4 how well some the spin-spin-susceptibility can be represented by this
model. Transforming χ(ω) back to time can be easily Cauchy’s integral theorem.

χ(t) =


e−γt√
ω2

0−γ2
sin(

√
ω2

0 − γ2t)θ(t) if ω2
0 > γ2

e−γt√
γ2−ω2

0

sinh(
√
γ2 − ω2

0t)θ(t) if ω2
0 < γ2

The two different solutions are usually referred to a s the under- and over-damped regime. The
decay life-times are tγ = ~/γ for ω2

0 < γ2, and tγ̃ = ~/(γ −
√
γ2 − ω2

0) for ω2
0 > γ2.
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χ(t) is due to its antisymmetry, i.e. the commutator of the operator in its definition, inconve-
nient to see the quantum-dynamical fluctuation-effects. The anti-commutator-correlation func-
tion F , instead can be expressed in ω by the fluctuation dissipation theorem and transformed
into time via

F (t) = 1
π

∫∞
0

dω cos(ωt) coth(β/2ω)χR′′(ω)

= 1
2π

∫∞
−∞ dω cos(ωt) coth(β/2ω) 2γω

(ω0−ω2)2+4γ2ω2 .
(2.63)

Performing this integral not so simple7. However, by using Cauchy’s residue theorem, it can
be solved. We close the contour-integration in a semicircle with infinite radius, referred to
as "Hilfsweg", either above (for t > 0) or below (for t > 0). The "Hilfsweg" does not give a
contribution to the integral. Fist we notice that the denominator can not be zero for real valued
ω. Therefore the roots fulfill a mirror-symmetry at the imaginary and the real axis

χi(z) =
2γz

(z − Z) (z + Z) (z − Z∗) (z + Z∗)
,

where we introduced a new function name to point out that while χi(ω) = Imχ(ω) it can also
be imaginary valued in the complex plane. (It is the analytical continuation of Imχ(ω) in the
complex planw. But since taking the imaginary part of a function is not an analytical mapping,
it does not have a obvious connection to χ(z)).

The mirror-symmetry of the poles comes from F (t) = F (−t). For t > zero we close the circle
above„ for t < 0 we close it below, but due to F (t) = F (−t) the result will not change. For
convenience we define Z = Ω + iΓ and close the circle above. We then have two poles enclosed
from χ, but infinity many from coth(β/2z). The poles come from the Bose-Einstein-distribution
and are located at z = iωn.

F (t) = Re
[

1
2π

∮
dz cos(zt) coth(β/2z)χi(z)

]
= Re

[
1

2π2πi
∑∞
n=1 Resn + Resχ

] (2.64)

Resn can be expressed as

Resn =
1

β
ei(iωn)tχi(iωn),

and Resχ (after some calculation) as

Resχ = γ
4ΓΩ

(
coth(β/2Z)eiZt − coth(−β/2Z∗)e−iZ∗t

)
= γ

2ΓΩ

cos(Ωt) sin(βΩ) + sin(Ωt) sinh(Γβ)

cosh(Γβ)− cos(βΩ)
e−Γt.

(2.65)

Inserting both in Eq. 2.64 we get as a final expression

F (t) = 1
β

∑∞
n=1 e−ωntiχi(iωn) + γ

2ΓΩ

cos(Ωt) sin(βΩ) + sin(Ωt) sinh(Γβ)

cosh(Γβ)− cos(βΩ)
e−Γt, (2.66)

with
iχi(iωn) =

−2γωn
(ω2

0 + ω2
n)2 − 4γ2ω2

n

.

7Actually a standard algebra program (Mathematica) claims that it does not converge.



2.3. PROPERTIES OF CORRELATION-FUNCTIONS 29

From the above expressions one realizes that the life-time estimates for F (t) is more complicated
than for χ(t).

Of course one can might perform the numerical calculation instead. Rough estimates are
given for the second term by ~/Γ. The first term would have as a leading order term an energy-
scale t = ~/ωñ. Where ωñ is the Matsubara-frequency closest to the maximum of iχi(iωn)

which is at ωn =

√
2γ2+2

√
γ4−γ2ω0

2+ω0
4−ω0

2

√
3

.
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2.4 Analytical continuation
We already derived the formula relating susceptibilities in imaginary time χ(τ) with their
spectral function S(ω) at lengths. For better readability we will repeat it here.

χ(τ) =
∫∞
−∞ dω e−τω

1−e−βω
S(ω)

=
∫∞
−∞ dω e−τω

1−e−βω

[
1

2πiχ(ω)
]
.

(2.67)

If one assumes that S(ω) is real valued (see discussion in the previous chapter) one obtains

χ(τ) =
∫∞
−∞ dω e−τω

1−e−βω

(
1
π ImχR(ω)

)
. (2.68)

For the rest of this chapter, we will assume that Â and B̂ we chosen in a way that S(ω) is real
valued.

Treating the singularity at ω = 0 and other elementary manipulations:

An obvious problem when applying Eq. 2.67 to numerical data is the singularity at ω = 0. We
know, however, that the antisymmetric function S must (at least) behave as limω→0 S(ω) ∝ ω.
If it wouldn’t, the measurable quantity χ(τ = 0) = 〈ÂB̂〉 would diverge. One can therefore
recast Eq. 2.67 into

χ(τ) =
∫∞
−∞ dω

(
e−τω

1−e−βω
ω
) ≡A(ω)︷ ︸︸ ︷(

S(ω)

ω

)
.

(2.69)

Now both brackets are well-behaved at ω = 0. Symmetrizing the left bracket leads to

χ(τ) =
∫∞
−∞ dω

(
1
2

e−τω+e−(β−τ)ω

1−e−βω
ω
)
A(ω)

=
∫∞

0
dω
(

e−τω+e−(β−τ)ω

1−e−βω
ω
)
A(ω).

. (2.70)

To apply Eq. 2.70 to numerical data one needs to define a (not necessarily uniform) grid,

χi ≡ χ(τi)
Aj ≡ A(ωj),

. (2.71)

which then automatically transforms Eq. 2.70 into a matrix-equation8

χ(τi) u
∑
j

(
∆ωj

e−τωj+e−(β−τi)ωj

1−e−βωj
ωj

)
A(ωj).

χi u
∑
j KijAj .

. (2.72)

As mentioned in the first chapter, numerical calculations are usually done either in imaginary
time τ or in Matsuabra frequencies iωn via a QMC-simulation. This means that χ(τi) =
χexact(τi)+χerror(τi) is not known exactly, but deviates from its true value by an error χerror(τi).
Inverting the integral 2.67 numerically is not possible since it is an ill-posed problem. This means
that K has no inverse (e.g. detK = 0 .)9 Inverting Eq. 2.72 is equivalent to a numerically
inversion of the Laplace-transformation, which is known to be an ill-defined problem.[30]

8We applied here a simple Riemann-sum. Generalizations to more sophisticated numerical integrations are
straightforward.

9For an equal number of τ− and ω−grind-points
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2.4.1 A first attempt

The usual approach, taught in elementary statistics lectures, to handle noisy incomplete data
is to apply a χ2-fit. One assumes that at each point τi the data χi is centered around its
true value by Gaussian distribution with mean zero and standard-deviation of σi. (Thus,
assuming uncorrelated noise for different τi. If this is not the case one should diagonalize the
covariance-matrix, transform data and spectral-function into this basis before continuing.[30])
A straightforward attempt to solve this problem might be to minimize the quadratic difference
between

χi = KijAj ,

and the data χi

χ2 =
∑
i

|χi − χi|2

σ2
i

.

Determining the spectral function A(ω) by minimizing χ2 would work, however, rather poorly
for a reasonably large number of ωj ’s. In general, if the number of fitting-parameters (number
of Aj ’s) is of the same order of magnitude as the number of data-points (number of χi’s) a
fitting procedure will over-fit. Usually, the necessary number frequency-points will be larger
than the number of data-points, since a (possibly quite spiky-function) on an interval from zero
to infinity needs to be represented rather than (a smooth convex function on ) an interval from
zero to β/2. Nonetheless, if one has a very specific idea about the A(ω) (e.g. an model to
extract effective lifetimes of spin-excitations) with few free parameters, minimizing χ2 can still
be an reasonable approach.

2.4.2 Maximum entropy method:

In this subsection we follow closely the derivations ot the work by Jarrell[30].

A number of more general methods for preventing over-fitting have been developed. The
Maximum-Entropy method, which is probably the best established method for analytical con-
tinuation of QMC data, maximizes (instead of minimizing χ2) the functional F [α,A,m]

F [A,m,α] = αS[A,m]− 1
2χ

2[A]

δF
δA

∣∣∣∣
Aopt

= 0.
(2.73)

Here S is the generalized Shannon-Janynes entropy

S[A,m] =

∫
dω

(
A(ω)−m(ω)−A(ω) ln

(
A(ω)

m(ω)

))
. (2.74)

The model functionm(ω) incorporates prior knowledge. Notice, that in the absence of data, the
maximum of F is at A(ω) = m(ω). It should be remarked that explicit form of the entropy term
S is based on information theory incorporating the knowledge that A(ω) is a positive additive
distribution. The functional F can be derived from maximizing the conditional probability
P (A|χ).
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The most probable parameter α̂ is determined for the classical MaxEnt (in the terminology of
[30]) via probabilistic arguments. In Bryan’s approach (in the terminology of [31]) a spectral
function A[χ, α] for each α−value is calculated, as well as a probability for each α value P (α).
The final spectrum is then computed as

A[χ] =

∫
dαP (α)A[χ, α].

Since P (α) is usually sharply peaked around α̂ (just one parameter determined by a large
number of data) Bryan’s approach and classic MaxEnt agree usually very well with one another.

Normalization:

MaxEnt interprets A(ω) as a probability density. This requires besides positivity (which is
givens since ω S(ω) > 0) normalization. Normalization can be achieved by using the KK-
relation

∫∞
−∞ dωA(ω) =

∫∞
−∞ dω S(ω)

ω

=
∫∞
−∞ dω

1
π ImχR(ω)

ω

= ReχR(0)
= χ(iωn = 0)

=
∫ β

0
dτ χ(τ).

(2.75)

It is therefore sufficient to normalize the data χ(τ).
As a very simple check, one my apply this to the previously discussed atomic limit

∫∞
−∞

S(ω)
ω =∫∞

−∞
Cβωδ(ω)

ω = Cβ = χ(iω = 0). It is reassuring to find Eq. 2.75 to be valid also in this
pathological case. However, one should be careful. E.g., when performing the KK-relation
integrals and limits can not be exchanged. For example if we would attempt to calculate (in the
atomic limit) ReχR(0) = lim

ω→0
ReχR(ω) = lim

ω→0
0 = 0, this would yield a wrong renormalization.

2.4.3 "Kink" selection criteria for α

In this subsection we introduce an alternative way of determining the parameter α. The main
reason for using this technique (scaling-invariance of the error) will be motivated and explained
in detail.
In the previous section we mentioned that in the absence of data MaxEnt would simply give
the model m(ω) as a result. Since no data is equivalent to α� 1

2
χ2

S , we see that for large α the
data would be under-fitted. For α � 1

2
χ2

S , instead, MaxEnt would reduce to a simple χ2 fit,
which would over-fit the data. The main question, then, is how to determine the appropriate
α. Fig. 2.3 shows χ2(α) in a log-log-plot. The main-feature of interest is the region where the
(logarithmic) slope of χ2 changes drastically. In this region, we find the under-fitting to stop,
and the data to be taken into account appropriately. The corresponding "optimal" α can be
extracted by re-plotting the function as shown on the right side of Fig 2.3.
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Figure 2.3: Log-log-plot of the quadratic difference between the data and the fit χ2 over the
parameter α.

Since the optimal α is selected by determining the "kink" in the log-log-plot of χ2(α) we refer
to it as "kink" selection criteria.
This is especially useful when facing a problem where the standard-errors σi are only known
up to a scaling-factor s. The fact that the resulting spectral-function is invariant from the
scaling-factor s, can be seen from

F [A,m, s, α] = −
∫

dτ
(χ(τ)−

∫
dωK(τ,ω)A(ω))2

(s σ(τ))2
+ αS[A]

= 1
s2

− ∫ dτ
(χ(τ)−

∫
dωK(τ,ω)A(ω))2

(σ(τ))2
+ αs2︸︷︷︸

α̃

S[A]

 .
= 1

s2F [A,m, α̃]

(2.76)

So As(ω) (which one would determine from δ
δAF [A, s,m] = 0) is the same as A(ω) for α→ α̃.

However, α is not a free parameter, so As(ω) = A(ω). In practice, slight deviations between
As(ω) and A(ω) can occur due to discretized α, ω, and τ .
We have used the "Kink" selection-criteria for the analytical continuation of the spin-spin-
susceptibilities.
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Figure 2.4: QMC-bins (connected gray lines) and average values (blue/black) for G3z2−r2(τ) (left)
and χtot(τ) (right). Each "bin" corresponds to a mesurment of χ(τ) on a separate processor-core
with the same parameters. The data is taken from our DFT+DMFT calculation, for FeTe in the
d−only model with full U interaction and FLL DCC. (See sec. 3). Only 12 bins are shown. In the
real calculation 64 were used for the bootstrap procedure.

Fig. 2.4 shows QMC-bins (gray) and average values (red) and standard-errors for G(τ) (left
panel) and χ(τ) (right panel). in the left panel (G) the assumption of independent G(τi)
measurements for each bin is a reasonable (each gray line-crosses the red line several times).
While the same does not apply to the right panel (χ). For completely independent measurements
(and locally constant χ)10 a gray line should have a 50% chance of crossing the average. We
find most of the bins to never cross the average. Each curve, however, is reasonably smooth.
Calculating an a error-estimate (e.g. by a bootstrap-algorithm) would give a value that is
significantly too large. This would be an example where the error is not known only up to a
scaling factor s, and the "kink"-selection criteria may have advantages.

10Which is reasonably well fulfilled for a small distance between neighboring τi’s.
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2.4.4 Sparse modeling
This section is adapted from [32] to out notation. One of the newer methods for the analytical
continuation of imaginary-time data is sparse-modeling[32]. It starts by applying a singular
value decomposition (SVD) of the matrix K (after proper discretization in ω and τ) into a
diagonal matrix S and two orthogonal matrices

K = USV t.

U and V define automatically a basis in τ and ω. Transforming the data χ as well as the
spectral function A into this basis yields

χ′ = U tχ
A′ = V tA

(2.77)

Instead of finding the minimum of the functional Eq. 2.73 the function

F (A′) =
1

2
||χ′ − SA′||22 + λ||A′||1,

where || ||1 denotes the L1 ("taxicab") norm . The positive parameter λ„ which takes the role
of α, can be determined by the kink-method. The main advantage of this method is that the
additional term makes F convex. So one can find the minimum of F without difficulty. The
resulting function, however, will not be the most probable spectral function for a given the
dataset. The L1 regularization leads to very efficient basis that approximately describes the
physical problem.
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Figure 2.5: Comparison of Imχtot(ω) obtained via SpM .

In our numerical analysis, we find the SpM approach to have problems if a peak is located
below ≈50meV. (See Fig. 2.5). We think that basis-elements corresponding to a low-energy
peak are particularly targeted by the L1 regularization. If this is correct, it would mean that
SpM is not capable of describing the formation of a local magnetic moment.
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Chapter 3

Parameters and Assumtions for
DFT+DMFT

In this chapter we will discuss the general setup and the underlying assumptions of our study.
In particular we will illustrate the ab-initio input of our DMFT calculation, namely the DFT
and cRPA data obtained by the Würzburg group. Our own DMFT results are shown in the
next chapter while the comparison between the different parent compounds, representative of the
most important families of Fe-based SC, is given in chapter 5.
The first step of a DFT+DMFT calculation is defining the low-energy (target) orbital manifold,
which will be considered for the d/dp DMFT treatment. Once this choice is made the main
parameters in the Hamiltonian are the total number of electrons in the target-orbital manifold
(n0), the (DFT) dispersion relation εi(~k), the Coulomb-overlap integrals for all orbitals (U , J
and V ) an appropriate double-counting correction µDCC and the inverse temperature β. We
will discuss the values for the different parameters and the underlying assumptions in detail in
the following sections.

3.1 Target orbitals εi(~k)

The target-orbital manifold for DMFT calculation are naturally the most correlated ones clos-
est to the Fermi-energy. For all the Fe-SC materials under consideration in this work the
3d−orbitals of iron are the ones of interest. However, the p−manifold of the corresponding
pnictogene-/ chalcogen- element(s) might also display a not negigible hybridization with the
five 3d−orbitals of Fe. This poses the question of the most appropriate choice of target space
for these compounds. At a first glance it might seem evident to prefer a larger Wannier-
basis-set, which includes also the corresponding pnictogene-/ chalcogen p−orbitals, known as
dp−/dpp−model, over a Wannier-basis set containing only the Fe d-orbitals, known as d−model
since it being closer to the solid-state Hamiltonian. However, to take the p−manifold fully into
account is computationally unfeasible, at DMFT/ Cluster-DMFT level, since the dimension
of the Hilbert-space scales exponentially with the number of orbitals. Thus, it is (at the mo-
ment) only possible to take the Fe d−orbital fully (at the level of a Hubbard Hamiltonian)
into account. The p−orbitals, whose complete inclusion would require non-local interactions
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beyond the simple DMFT-level1, are usually considered at the DFT level, which hence will be
reflected, in the appearance of the DMFT Hamiltonian, at the corresponding orbital-dependent
dispersion relation εi(~k), where i is the orbital index. As for the cRPA estimate of the interac-
tion, one should also keep in mind that, a larger number of target-orbitals will also reduce the
screening, and thus enhance U, J and V values of the Hubbard-interaction with respect to the
corresponding d−only models.
Hence, in general, how to choose the "optimal" target space (e.g. d− vs dp − /dpp) for a
DFT+DMFT calculation of a specific material can become a very hard question to answer.
(For a general discussion of this problem, we refer to[33][34]).

To address this question in the specific cases of interest we calculated all of the materials
considered in this work with both models.

The DFT-orbital structure for all our materials was obtained ba Martin Edelmann (Würzburg
group) via Vienna Ab initio simulation package (VASP) [20] (green in the following figures)
and later fitted to the maximally localized function (of d− or dp − /dpp− type) via the soft-
ware package wannier90 (red in the following figures). These maximally localized orbitals are
assumed to build the local basis for the subsequent DMFT treatment.

Figure 3.1: Comparison of the orbital fit of the electronic dispersion for the d−model (left) and
the dpp−model (right) for LaFeAsO.

In Fig. 3.1 we see that the d−bands for LaFeAsO of Fe are reasonably well separated from the
p−manifolds of arsenic and oxygen. The p bands are located (accordingly of an DFT calcu-
lation) well below the Fermi-energy which is set to zero. The d−model seems to fit the total
orbital structure already very well. This would suggest that using the d−model is well justified
for LaFeAsO. If one, however, wants to go beyond the d−model, additional features must be
considered. The oxygen p−bands are not well separated from the arsenic p−bands. Including
only one of them (e.g. only the arsenic 4p-bands) would lead to wrong results. One needs to
include either both p− manifolds, resulting in the so called dpp−model, or none of them.

In figure 3.2 we see that the d−bands for LiFeAs of Fe are not as well separated as for
LaFeAsO. We also find that the dp−model improves the matching of the electronic-structure.
See e.g. that the difference between the green and the red curve at the proximity of k=3.2.

1Moreover at the DMFT level non-local interactions are reduced to the Hartree-contribution which are already
included in DFT.
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Figure 3.2: Comparison of the orbital fit of the electronic dispersion for the d−model (left) and
the dp−model (right) for LiFeAs.

-6

-5

-4

-3

-2

-1

 0

 1

 2

 0  1  2  3  4  5

E

k

w90
VASP

-6

-5

-4

-3

-2

-1

 0

 1

 2

 0  1  2  3  4  5

E

k

w90
VASP

Figure 3.3: Comparison of the orbital fit of the electronic dispersion for the d−model (left) for
BaFe2As2.

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 0  1  2  3  4  5

E

k

w90
VASP

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 0  1  2  3  4  5

E

k

w90
VASP

Figure 3.4: Comparison of the orbital fit of the electronic dispersion for the d−model (left) for
KFe2As2.
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Figure 3.5: Comparison of the orbital fit of the electronic dispersion for the d−model (left) for
FeTe.

In figure 3.5 we see that the d−bands (for FeTe) of Fe are reasonably well reproduced close
in the proximity of the Fermi-energy. Close to the Γ-point (k=0) there is an overlap between
the Fe d−bands and the Te p−bands. Moreover, we find one band to be very flat slightly below
the to the Fermi-energy, which suggest a very large DOS at this energy ( −0.2eV ).

Comparing the left panel of Fig. 3.5 to the right panel we find that the dp−/dpp−model fits
the orbital-structure better in the proximity of the Fermi-energy. This is due to the increased
number of fitting parameters (more bands).

For the Fe-SC calculations considered the d−manifold always belongs to the Fe whereas the
p−manifold(s) correspond to different elements of the pnictogene-/ chalcoge- group. While one
could in principle also determine the crystal-structure, including the lattice parameters, from a
more sophisticated DFT calculation (applying the Hellman-Feynman-theorem to find the total
energetic minimum) in our cases the experimentally found crystal-structures given in Tab. 3.1
have been used as input for the DFT calculation.

Material Crystal structure

LaFeAsO ZrCuSiAs-type
LiFeAs PbFCl-type tetragonal
BaFe2As2 ThCr2Si2-type
KFe2As2 ThCr2Si2-type
FeTe PbO-type

Table 3.1: Crystal structures for all materials under consideration[35][8].

3.1.1 Filling n0:

An extremely important parameter for the DMFT calculation is the total number of electrons
per correlated iron atom. While the electrons can be redistributed between the different orbitals
during the DMFT calculation, the sum over all orbitals is a constant value. As a starting point
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of our discussion, the atomic orbital configuration as well as the electronegativity of the atomic
consistence of our Fe-SC is given in table 3.2. From the atomic-orbitals and the electronegativity,
we can extract a fist rough estimate of the number of electrons per iron atom to be considered.

Name Chemical element Atomic orbital configuration Electronegativity

Iron Fe [Ar]3d64s2 1.64
Oxygen O [He]2s22p4 3.50
Arsenic As [Ar]3d104s24p3 2.20
Tellurium Te [Kr]4d105s25p4 2.01
Lanthanum La [Xe]5d16s2 1.10
Barium Ba [Xe]6s2 0.97
Lithium Li [Xe]5d16s2 0.97
Potassium K [Ar]4s1 0.91

Table 3.2: Chemical elements, atomic orbital configuration and electronegativity for the con-
stituents of the considered materials. For the electronegativity the Allred-Rochow-values are given.

LaFeAsO: Oxygen has by far the highest electronegativity. Thus it will attract two electrons
it to it’s 2p shell. Arsenic has the second highest electronegativity so it will also try to fill
its 2p−shell, for which it needs three electrons. Lanthanum, on the other hand, has a high
tendency to donate its three electrons, hence remaining in a stable [Xe] configuration. Thus,
on average each iron atom will give away two electrons. These will come from the energetically
unfavorable 4s shell. So each iron atom will have approximately 6 electrons in its d−shell. This
will be reflected in the following choice for the total filling of the corresponding d − (dpp−)

calculation: nd-model
0 = 6 and ndpp-model

0 = nd-model
0 + nOxygen

2p−shell + nArsenic4p−shell = 6 + 6 + 6 = 18.

LiFeAs: Lithium has a small electronegativity and thus a strong tendency to donate one
electron. Arsenic on the other hand has a high electronegativiy and three orbital-slots to
occupy. One will come from arsenic and the other two electrons will be donated by the Fe
4s2 shell. So iron will have again approximately 6 electrons in its d−shell on average. Thus
nd-model

0 = 6 and ndp-model
0 = nd-model

0 + nArsenic4p−shell = 6 + 6 = 12.

BaFe2As2: Barium will donate its two s−electrons, whereas arsenic will try to fill its 4p orbital
fully. Keeping in mind that there are two As and Fe atoms per unit-cell we get nd-model

0 = 6

and ndp-model
0 = nd-model

0 + nArsenic4p−shell = 6 + 6 = 12.

KFe2As2: The argument for KFe2As2 is very similar as for BaFe2As2. However, potassium
has one electron less to donate than barium. This leads to half an electron less on average per
iron atom. We get thus nd-model

0 = 5.5 and ndp-model
0 = nd-model

0 + nArsenic4p−shell = 5.5 + 6 = 11.5
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FeTe: Tellurium has a higher eletronegativiy than iron. Therefore one can assume that its
5p shell will get two electrons from the 4s shell of iron. This leaves again 6 electrons in the 3d
shell of iron. Thus nd-model

0 = 6 and ndp-model
0 = nd-model

0 + nTellurium5p−shell = 6 + 6 = 12 again.

It is important to keep in mind that the above estimates for the number of electrons are quite
rough. However, while a fully self-consistent determination of the charge per Fe atom would in
principle be possible (E.g. by charge self-consistent DFT+DMFT [36] or via fully self-consistent
GW approximation [37]), it is beyond the scope of this thesis.

3.2 Coulomb-overlap integrals (cRPA)
The results of the cRPA calculation are taken from Miyake, et al [21]. We will only show the
relevant parameters for the DMFT calculation. While we give a brief discussion of the physical
interpretation we must refer for a more detailed discussion to Ref. [21].
In Tab. 3.3 we show the effective local Coulomb interaction U as well as the local exchange
interaction terms (Hund’s coupling) J for the d-model. Table 3.4 shows the same quantities for
the dp−/dpp−model. Comparing the two tables we find (for the same material), especially the
local Coulomb interaction U , to be significantly larger for the dp/dpp−case. This is due to two
effects somewhat related effects. First, the maximally localized Wannier orbitals are in general
narrower for the dp − /dpp−model due to the larger number of available fitting parameters
(larger number of KS-orbitals). Evidently, a stronger localization will lead to larger Hubbard-
U -terms. The second effect is the number of available screening channels. The cRPA calculation
is constricted in the sense that the target-orbitals must not contribute to the screening to avoid
double-counting2. This smaller number of screening channels for the dp−/dpp−case is another
reason for the increase of the local Coulomb interaction.
Another important feature is the orbital-dependence of the U−values. We find the that for
the d−model the orbital-dependence is significantly larger than for the dp − /dpp−model (for
example the ratio between the largest and the smallest Uii−value ranges for the d−model from
1.26 to 1.59, but for the d−model only between 1.05 and 1.17). This can again be understood
from broader Wannier-functions in the d−model. A broader spread of the Wannier-functions
leads to a stronger hybridization and thus to strongly orbital-dependent parameters. This is
very important to answer the question whether using average U, V and J values is justified.
In this context, it would be more justified for the dpp−model, but not for the d−model. At
the same time, if we look at the exchange-terms J we find them to be much less affected to
the models. Since the exchange terms J are dipole-terms rather than monopole-terms they
are -in general- less sensitive to screening. The ratio of the largest to the smallest J value
is approximately 2, which suggests that taking the average values would result indeed in a
non-negligible error.

2In the context of RPA. The double counting of DFT still needs to be corrected separately within the
DFT+DMFT algorithm. See following subsection.
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LaFeAsO U J

3z2 − r2 xz yz x2 − y2 xy 3z2 − r2 xz yz x2 − y2 xy

3z2 − r2 2.84 1.97 1.97 1.51 1.78 3z2 − r2 0.33 0.33 0.42 0.57
xz 1.97 2.43 1.62 1.52 1.8 xz 0.33 0.37 0.35 0.46
yz 1.97 1.62 2.43 1.52 1.8 yz 0.33 0.37 0.35 0.46
x2 − y2 1.51 1.52 1.52 1.91 1.91 x2 − y2 0.42 0.35 0.35 0.23
xy 1.78 1.8 1.8 1.91 3.03 xy 0.57 0.46 0.46 0.23

BaFe2As2 U J

3z2 − r2 xz yz x2 − y2 xy 3z2 − r2 xz yz x2 − y2 xy

3z2 − r2 3.28 2.21 2.21 1.77 1.99 3z2 − r2 0.36 0.36 0.5 0.6
xz 2.21 2.64 1.77 1.72 1.94 xz 0.36 0.4 0.41 0.48
yz 2.21 1.77 2.64 1.72 1.94 yz 0.36 0.4 0.41 0.48
x2 − y2 1.77 1.72 1.72 2.29 2.16 x2 − y2 0.5 0.41 0.41 0.26
xy 1.99 1.94 1.94 2.16 3.18 xy 0.6 0.48 0.48 0.26

LiFeAs U J

3z2 − r2 xz yz x2 − y2 xy 3z2 − r2 xz yz x2 − y2 xy

3z2 − r2 3.58 2.52 2.52 2.15 2.27 3z2 − r2 0.36 0.36 0.54 0.6
xz 2.52 2.96 2.08 2.11 2.23 xz 0.36 0.39 0.44 0.47
yz 2.52 2.08 2.96 2.11 2.23 yz 0.36 0.39 0.44 0.47
x2 − y2 2.15 2.11 2.11 2.85 2.54 x2 − y2 0.54 0.44 0.44 0.28
xy 2.27 2.23 2.23 2.54 3.39 xy 0.6 0.47 0.47 0.28

U J

FeTe 3z2 − r2 xz yz x2 − y2 xy 3z2 − r2 xz yz x2 − y2 xy

3z2 − r2 3.84 2.57 2.56 2.44 2.5 3z2 − r2 0.37 0.37 0.66 0.68
xz 2.57 2.88 2.03 2.29 2.34 xz 0.37 0.37 0.49 0.49
yz 2.56 2.03 2.88 2.29 2.34 yz 0.37 0.37 0.49 0.49
x2 − y2 2.44 2.29 2.29 3.59 3.04 x2 − y2 0.66 0.49 0.49 0.34
xy 2.5 2.34 2.34 3.04 3.84 xy 0.68 0.49 0.49 0.34

Table 3.3: Effective on-site Coulomb (U)exchange (J) interactions between two electrons on the
same iron site in the d model for all combinations of Fe-3d orbital (in eV) (from [21] but reordered)
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LaFeAsO U J

3z2 − r2 xz yz x2 − y2 xy 3z2 − r2 xz yz x2 − y2 xy

3z2 − r2 4.33 3.31 3.31 2.81 2.99 3z2 − r2 0.45 0.45 0.67 0.74
xz 3.31 4.08 2.9 2.91 3.09 xz 0.45 0.56 0.59 0.63
yz 3.31 2.9 4.08 2.91 3.09 yz 0.45 0.56 0.59 0.63
x2 − y2 2.81 2.91 2.91 3.98 3.57 x2 − y2 0.67 0.59 0.59 0.37
xy 2.99 3.09 3.09 3.57 4.66 xy 0.74 0.63 0.63 0.37

BaFe2As2 U J

3z2 − r2 xz yz x2 − y2 xy 3z2 − r2 xz yz x2 − y2 xy

3z2 − r2 5.45 4.33 4.33 3.71 3.84 3z2 − r2 0.49 0.49 0.75 0.78
xz 4.33 5.19 3.86 3.81 3.95 xz 0.49 0.64 0.66 0.68
yz 4.33 3.86 5.19 3.81 3.95 yz 0.49 0.64 0.66 0.68
x2 − y2 3.71 3.81 3.81 4.97 4.4 x2 − y2 0.75 0.66 0.66 0.39
xy 3.84 3.95 3.95 4.4 5.4 xy 0.78 0.68 0.68 0.39

LiFeAs U J

3z2 − r2 xz yz x2 − y2 xy 3z2 − r2 xz yz x2 − y2 xy

3z2 − r2 4.33 3.31 3.31 2.81 2.99 3z2 − r2 0.45 0.45 0.67 0.74
xz 3.31 4.08 2.9 2.91 3.09 xz 0.45 0.56 0.59 0.63
yz 3.31 2.9 4.08 2.91 3.09 yz 0.45 0.56 0.59 0.63
x2 − y2 2.81 2.91 2.91 3.98 3.57 x2 − y2 0.67 0.59 0.59 0.37
xy 2.99 3.09 3.09 3.57 4.66 xy 0.74 0.63 0.63 0.37

FeTe U J

3z2 − r2 xz yz x2 − y2 xy 3z2 − r2 xz yz x2 − y2 xy

3z2 − r2 6.18 5.23 5.23 4.69 4.6 3z2 − r2 0.5 0.5 0.81 0.78
xz 5.23 6.29 4.85 4.91 4.81 xz 0.5 0.69 0.72 0.69
yz 5.23 4.85 6.29 4.91 4.81 yz 0.5 0.69 0.72 0.69
x2 − y2 4.69 4.91 4.91 6.37 5.42 x2 − y2 0.81 0.72 0.72 0.41
xy 4.6 4.81 4.81 5.42 6.09 xy 0.78 0.69 0.69 0.41

Table 3.4: Effective on-site Coulomb (U)exchange (J) interactions between two electrons on the
same iron site in the dp− /dpp model (in eV) (from [21] but reordered)
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3.2.1 Average U , J and V

It is very appealing to use averaged interaction terms for several reasons. First the model be-
comes simpler, not only from a conceptional point of view, but also by means of computation.
If for example one assumes orbital-independent (for the same angular momentum quantum-
number) U, V and J values and moreover the spherical symmetry relation V = U − 2J the
frequently used Kanamori-Hamiltonian has full U(1)C ⊗ SU(2)C ⊗ SO(3)O symmetry for the
charge C, spin S and the orbitals O (see e.g. [18]). Since the Hamiltonian is block diagonal with
respect to the corresponding quantum numbers, the computational power needed is decreased
by orders of magnitude3. Another very important aspect is the DCC. If (due to some symmetry
reason, for instance) in the d−model, all d−orbitals have the same interaction parameters one
can absorb the, usually very problematic, DCC into the chemical potential. The chemical po-
tential, however, is no external parameter, but determined within in the DMFT self-consistency
cycle. Thus, for these cases there would be no DCC problem. For these reasons averaged U, V
and J values are widely used for the calculation of iron-based SC. Their usage, however, can
not be justified fro all cases. We will come back to this point in the next two chapter where we
will compare DFT+DMFT results for averaged and non-averaged interaction terms.
The averaged local Coulomb interactions can be computed as4

U = 1
(2l+1)

∑
i

Uii

J = 1
2l(2l+1)

∑
ij
i 6=j

Jij

V = U − 2J.

(3.1)

After applying Eq. 3.1 to all materials we get:

d−model dp− /dpp−model

U J V U J V

LaFeAsO 2.53 0.39 1.75 4.23 0.57 3.09
BaFe2As2 2.81 0.43 1.95 5.24 0.62 4.00
KFe2As2 2.81 0.43 1.95 5.24 0.62 4.00
LiFeAs 3.15 0.43 2.29 5.94 0.62 4.7
FeTe 3.41 0.48 2.45 6.24 0.65 4.94

Table 3.5: Average effective on-site Coulomb (U)exchange (J) interactions between two electrons
on the same iron site in the d− and dp − /dpp− model (in eV). Regarding KFe2As2 we must
remark that these are not given in [21]. Due to a similar crystal-structure as BaFe2As2 we have
assumed the interaction terms to be identical.

3For example for the density-density interaction the particle number-operator commutes with Hint which
significantly simplifies the problem. Moreover very efficient QMC-solvers (segment-code for this specific example)
have been developed for these cases.

4for spherical (atomic) symmetry these would be equivalent to the Kanamori-averages.
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3.3 Double Counting Correction (DCC)

One of the most severe problem of DFT+DMFT calculations is arguably the so called "double-
counting". It arises from the interaction effects already included at the level of the DFT
calculation. This part of the interaction (Harteee-interaction and others depending on the
exchange-correlation functional) must be subtracted in the DMFT calculation5. This is, how-
ever, not a trivial task since DFT is a non-diagrammatic method whereas DMFT is. Therefore
coupling these two methods neat-less together is rather involved task.

While there are several correction terms and recipes published, the most commonly used
are the around-mean-field (AMF) approximation and the fully-localized limit (FLL). Both are
strictly valid only for limiting cases and naturally give better results if the physical situation
under consideration is at least close to one of these limiting cases.

The AMF approximation works well whenever the mean-field approximation is well justi-
fied. This is, for example in normal metals the case. For other materials, like isolators, it gives
wrong results, there it is better to use the opposite limiting case, the FLL.6

For the iron-pnictide/-chalcogenide-SC, it is not immediately clear which DCC should be pre-
ferred. Completely separated Hubbard-orbitals, as we would get for very larger U terms, would
be better described by FLL-DCC, whereas iron, being a metal, the use of AMF DCC. It was,
however, shown by [38] that for LaFeAsO FLL gives better results than AMF. This is espe-
cially interesting since LaFeAsO has the smallest U , V and J values7. Thus for LaFeAsO an
AMF-treatment would actually be more justified than for the others. So if FLL-DCC is well
justified for LaFeAsO it should also be well justified for our other materials. Therefore we chose
FLL-DCC for all our materials. To see the effect of DCC we decided to calculate the AMF case
for one of our intermediately correlated materials (BaFe2As2) as well.
As mentioned before, using average U and J values are, especially in the d−model, not always
justified. For orbital dependent interactions the DCC also becomes orbital dependent. They
can be calculated as (See supplementary material of [39]):

µAMF
DC (i) = n0

(∑
j Uij +

∑
j,j 6=i(Uij − Jij)

)
µFLLDC (i) = µFLLDC (i) + 1

4

(
n0 − 1

2

) (∑
j(Uij − Jij)

)
,

(3.2)

where

n0 =
1

2(2l + 1)

∑
i,σ

ni,σ (3.3)

is the DFT filling. This gives Tab. 3.6. and can be entered in int w2dynamics[19] as

dc = -9.5295, -8.9790, ... ,

where is is important to compensate for the unusual sign-convention in w2dynamics.

5Except for specific cases where the DCC can be absorbed in the chemical potential (see previous section)
6Notice that choosing the DCC according to the material removes the ab-initio-character of the DFT+DMFT

method.
7Not only in absolute values, but also with respect to the conduction-electron bandwidth.
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LaFeAsO BaFe2As2

µAMF
DC µFLLDC µAMF

DC µFLLDC

3z2 − r2 9.3900 9.5295 10.6920 10.8510
xz 8.8440 8.9790 9.7620 9.9117
yz 8.8440 8.9790 9.7620 9.9117
x2 − y2 8.0880 8.2157 9.2700 9.4147
xy 9.5340 9.6732 10.4520 10.6073

LiFeAs KFe2As2

µAMF
DC µFLLDC µAMF

DC µFLLDC

3z2 − r2 12.3840 12.5740 9.8010 9.8805
xz 11.5080 11.6900 8.9485 9.0234
yz 11.5080 11.6900 8.9485 9.0234
x2 − y2 11.3820 11.5623 8.4975 8.5699
xy 12.0660 12.2523 9.5810 9.6586

FeTe

µAMF
DC µFLLDC

3z2 − r2 13.1400 13.3397
xz 11.7720 11.9597
yz 11.7720 11.9597
x2 − y2 13.0380 13.2400
xy 13.3680 13.5735

Table 3.6: Orbital dependent double counting correction (DCC) for the d−model. The difference
between BaFe2As2 and KFe2As2 is exclusively due to the different filling n0.

3.4 Temperature
To accurately compare the influence of the degree of correlation upon the formation and screen-
ing of a local magnetic moment with respect to the materials, we have chosen the same temper-
ature for all calculations in this thesis. We decided to use β = 50 eV−1, for which all materials
are still in the paramagnetic phase. This corresponds to 232.1 K.
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Chapter 4

Results: DMFT

In this chapter we present the DMFT-results for all the families of the Fe-based supercon-
ductors considered. In particular, we will proceed by considering in separate subsections all
compounds representative of the different families one by one, where their order reflects ap-
proximately their "degree of correlation". We start with the least correlated one LaFeAsO,
then proceed with moderately correlated ones BaFe2As2 and LiFeAs and terminate with the
strongly correlated ones: KFe2As2 and FeTe. In each material-section we first show the one-
particle properties (self-energy and Green’s function in Matsubara-frequencies) for all considered
interaction-Hamiltonians and models, before focusing on the two-particle-properties (spin-spin-
susceptibilities).

The comparison between different families of the Fe-based superconductors will be examined
thoroughly in the subsequent chapters.

4.1 LaFeAsO

4.1.1 One-particle-properties in the d-model

In figure 4.1 we report the self-energy as well as the Green’s function for a density-density type
interaction in the d-model only. Figure 4.2 show the same for a Kanamori-type interaction. For
which the full SU(2) spin-symmetry of the Hubbard-interaction was restored. In both cases we
used the averaged values of the Coulomb-overlap integrals (U, J and V ). This assumption was
lifted for computing the data of Fig. 4.3 where we used the full-orbital dependence regarding
the interaction terms. In this case DFT+DMFT calculation hsa been performed with the full
Coulomb-interaction1, hence we refer to this approach as "full U".

1at the level of cRPA
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Figure 4.1: DFT+DMFT results for LaFeAsO in the d-only-model with orbital averaged Coulomb
interactions used for a density-density-type interaction.

Comparing figure 4.1 with 4.2 we find the inclusion of the full SU(2) symmetry not to change
the physics drastically. From the lim

iωn→0
ImΣ and from lim

iωn→0
ImG we find the Kanamori-case

to be more metallic. For both interaction types the 3z2 − r2 orbital was shifted up whereas
the x2 − y2 and xy-orbitals were shifted down slightly as can be inferred from ReΣ (upper left
figures). A similar trend for the shift of the orbitals is found also in the full-U calculations.
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Figure 4.2: DFT+DMFT results of the single-particle properties of LaFeAsO in the d-only-model
with orbital averaged Coulomb interactions used for a Kanamori-type interaction.
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Figure 4.3: DFT+DMFT results of the single-particle properties of LaFeAsO in the d-only-model
with "full U" interaction.
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Comparing the two cases with orbital-averaged iteration-terms with the orbital-resolved U-term
case we find that the roles of the orbitals have changed significantly. This is especially true
for the eg-orbitals. The 3z2 − r2-orbital gets a larger contribution at the Fermi-surface and an
overall more metallic character. The x2 − y2-orbitals gets less weight and is significantly less
metallic. The t2g−orbitals are less affected by non-averaged interaction terms.

The general trend is that all orbitals show a metallic character and large quasi-particle
excitation life-times.

4.1.2 One-particle-properties in the dpp-model

Fig. 4.4 and Fig. 4.5 show the self-energies and Green’s functions in Matsubara frequencies
for density-density- as well as for Kanamori interaction. In both cases the U, V and J values
were averaged over all orbitals.
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Figure 4.4: DFT+DMFT results of the single-particle properties of LaFeAsO, computed for the
dpp-model with orbital-averaged Coulomb interaction in density-density-type interaction. We used
the FLL for the DCC.



4.1. LAFEASO 53

-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1

 0  2  4  6  8  10

R
e[
Σ

)]
 -

 µ
 -

 µ
D

C
 

ωn

LaFeAs0, dpp-model, <U>, Hamiltonian = Kanamori

3z2-r2
xz/ yz
x2-y2

xy

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0  2  4  6  8  10

Im
[Σ

]

ωn

LaFeAs0, dpp-model, <U>, Hamiltonian = Kanamori

3z2-r2
xz/ yz
x2-y2

xy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2  2.5  3  3.5  4

R
e[

G
]

ωn

LaFeAs0, dpp-model, <U>, Hamiltonian = Kanamori

3z2-r2
xz/ yz
x2-y2

xy

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  0.5  1  1.5  2  2.5  3  3.5  4
Im

[G
]

ωn

LaFeAs0, dpp-model, <U>, Hamiltonian = Kanamori

3z2-r2
xz/ yz
x2-y2

xy

Figure 4.5: DFT+DMFT results of the single-particle properties of LaFeAsO, computed for the
dpp-model with orbital-averaged Coulomb interaction in Kanamori-type interaction. We used the
FLL for the DCC.

The two sets of figures show an overall similar behavior. From the imaginary part of the self-
energy. one can just deduce a slightly larger quasi-particle excitation lifetime for the density-
density case. The imaginary part of the Green’s function is almost exactly on top, regarding
these two interaction types. From the real part of the self energy we find the trend that
ReΣKanamori

i > ReΣDensity
i . This means that for a Kanamori-interaction, the orbitals are slightly

more shifted to higher energies.
The comparison to the d−model full-U case shows a very different picture. This is mostly

due to the different filling. Which is exactly 6.00 for the d−only-model, but ranges between
7.29 (Kan.) to 7.32 (dens) in the dpp−model. This can (and does on our cases) lead to a
smaller spectral weight at ω = 0 for the dpp−model than in the d−model. A smaller spectral
weight at the Fermi energy means that fewer quasi-particles can be exited into a conducting
state at zero-energy cost. One can see this for example my comparing the first few Matsubara
frequencies of the bottom right figures of Fig. 4.3 to Fig. 4.5. This effect is especially significant
for the 3z2 − r2−orbital (green), which has the largest spectral weight for the full-U case,
whereas for the averaged U dpp−model it has a much small spectral weight and hardly any
distinctive features regarding the other orbitals. This is rather due to the choice of model (d−
vs dpp−) than due to the orbital-averaged interaction values or H int choice, as can be seen by
a comparison to Fig. 4.1 and Fig. 4.2.



54 CHAPTER 4. RESULTS: DMFT

4.1.3 Model comparison of the two-particle-properties: Spin-spin sus-
ceptibilities

In this subsection we compare the spin-spin-susceptibility χ computed with different models
and interaction terms for LaFeAsO. We will focus our attention in particular to the difference
between the χtot and χdiag, which is entirely due to vertex corrections. First the QMC-data
are shown (in imaginary time in Fig. 4.6 and in Matsubara frequencies in Fig. 4.7). Second,
the analytically continued data (in real frequencies) have been computed. From these we
can extracted the different time-scales of the spin-dynamics of the system. Third, we show
the Fourier transformed susceptibilities in real frequencies. From the fluctuation-dissipation
theorem we also extract the symmetric anti-commutator-correlation function F (t), which is
better suited to study the quantum-mechanical spin-screening effects.

Susceptibilities in imaginary time/ frequency
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Figure 4.6: LaFeAsO: Spin-spin-susceptibility in imaginary time computed for the different models
and interaction-types.
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Figure 4.7: LaFeAsO: Spin-spin-susceptibility in Matsubara frequencies computed for the different
models and interaction-types.

An interesting feature in Fig. 4.6 is that for the d−model the Kanamori-interaction with aver-
aged U−terms gives almost exactly the same results as the d−model with full U interaction.
This is rather remarkable since it could not be expected on the basis of the one-particle prop-
erties above. One may interpret it as a posteriori justification of the averaged procedure, if a
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quantity is computed which sums over all orbital-indices. The role of each individual orbital
has changed.

Comparing the left and right sub-figures of Fig. 4.6, we see that, especially for the density-
density interaction, in the d−model a significant contribution comes from vertex corrections.
(With the obvious exception of the U = 0 case, where χtot = χdiag.) Furthermore we find
the dpp−cases to be closer to the U = 0 case. This can be understood from the filling. In
the dpp−cases the d−orbitals are are further away from half-filling and thus effectively less
interacting.

Susceptibilities in real frequencies

In Fig. 4.8 and in Fig. 4.10 analytically continued spin-spin-susceptibilities via two different
methods are shown. To obtain Fig. 4.8 we use the Maximum-Entropy-method (more specifi-
cally [40] with an additional selection criterion discussed in section 2.4.3), which is well estab-
lished. Whereas for Fig. 4.10, we have used a newer method named Sparse-Modeling. (More
specifically we used a program supplied by the authors of the method[32].)
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Figure 4.8: LaFeAsO: MaxEnt Spin-spin-susceptibility in real frequencies computed for the dif-
ferent models and interaction-types.

The non-interacting case (purple) shows a very featureless broad absorption spectrum extended
roughly on the whole non-interacting bandbwidth. . As expected χtot equals χdiag, since there
are no vertex corrections for U = J = V = 0. In all the other models and Hamiltonians low
energy peak appears, instead. The position of the peak depends on the choice of the model
as well as the Hamiltonian. It ranges from 72 meV (d−model dens. dens. int.) to 284 meV
(dpp−model Kan. int.).

The most reliable of the d−model is probably the full − U case, since we used a general
orbital-dependent U−matrix as H int. It has its peak-maximum of 0.249 eV. For this case we
fitted the following model spectral function to the data.

Imχtot(ω) =
2aγω

4γ2ω2 + (ω2 − ω0
2)

2

The fit was performed via minimizing the quadratic difference between the model and the data
at the data-points. It is important to remark that the data-points are more dense at smaller
energies (due to a Lorentzian energy mash). This can be justified by the fact that the singular
values of the kernel (connecting χ(τ) with χ(ω)) decay fast with respect to the energy. Thus
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χ(ω) is better "supported" by the data at smaller frequencies than at higher frequencies. One
should therefore "weigh" χ(ω) at smaller frequencies more than at higher frequencies. This
allows us to extract model parameters as

Estimate Standard Error t-Statistic P-Value

a 1.4273 0.0105749 134.971 2.012 10−746

ω0 0.342307 0.00104806 326.609 3.080 10−1210

γ 0.282543 0.00212606 132.895 1.4183 10−738

Figure 4.9: LaFeAsO: Comparison between the fitted model an the MaxEnt data.

Since the damping-parameter γ is smaller than the undamped-frequency ω0 we are in the
underdamped regime. The Fourier-transform of the model reads (in natural units) as

χtot(t) = θ(t) 7.38596 e−0.282543t sin(0.193245t).

However since the γ and ω0 are not that different from each other a better life-time estimate
can be extracted from the Fourier-transformed data (in real time).
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Figure 4.10: LaFeAsO: SpM Spin-spin-susceptibility in real frequencies computed for the different
models and interaction-types. (For LaFeAsO SpM and MaxEnt agree reasonably well with one
another.)
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We find the two analytical continuation procedures to agree rather well with one another.
As can be seen by comparing Fig. 4.8 with 4.10. It should, however, be remarked that LaFeAsO
is the least correlated of the materials under consideration in this thesis.

Susceptibilities in real time

The Fourier-transform can be easily carried out and from the fluctuation-dissipation-theorem
one can also calculate the anti-commutator-correlator F (t) without any difficulty. The result
with restored SI-units are shown in Fig. 4.11 and Fig. 4.12. We only show them for t > 0 since
χ(t) is zero for t < 0 and F (t) is symmetric with respect to time.
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Figure 4.11: LaFeAsO: Spin-spin-susceptibility in real time computed for the different models and
interaction-types.

We find χ(t) to decay on an approximate time-scale of 2 − 20fs depending upon the choice of
model an Hamiltonian. F (t) decays more rapidly on a time-scale of approximately 0.5 − 8fs.
Comparing this with the model-time-scales (for full U MaxEnt)

tγ = ~
γ = 2.33fs

tω = ~√
ω0

2−γ2
= 3.41fs, (4.1)

we find a damping time-scale of 2.33fs and a resonating time-scale of 3.41fs. Thus the damping
is the more relevant effect for LaFeAsO (in full U in the d−model).
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Figure 4.12: LaFeAsO: Spin-spin-anti-commutator correlation function in real time computed for
the different models and interaction-types.

Cutoff dependence of the full integral

m2
loc,t=0 =

3

π
lim

Ω→∞

∫ Ω

−Ω

∫
BZ

Imχ(~q, ω)b(ω)d~qdω∫
BZ

d~q
=

3

π
lim

Ω→∞

∫ Ω

−Ω

Imχ(loc, ω)b(ω)dω (4.2)

In Fig. 4.13 the energy cut-off dependence of the full (square) local magnetic moment is shown.
The vertical doted line marks a experimentally typical energy scale (for INS-measurements) of
100meV. Our results show that only 5% (for dpp) to 20% (for d dens.dens int.) of the full local
magnetic-moment would show for such a cut-off value. For the full U case (very similar to the
d−model Kan. int. case) one would make an 90% error.



4.1. LAFEASO 59

 0

 20

 40

 60

 80

 100

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5
100 meV

 %
 o

f t
he

 fu
ll 

in
te

gr
al

Ω [eV]

LaFeAsO

d,    dens.
d,     Kan.

dpp,    dens.
dpp,     Kan.

d, "U = 0"
d,   full U

Figure 4.13: LaFeAsO: Cutoff dependency (finite Ω) of the squared local magnetic moment
estimate 〈m2〉 (full integral in (Eq. 4.2) ) computed for the different models and interaction-types.

4.1.4 Occupations and local magnetic momentum

In Tab. 4.1 we report the average occupations and double-occupations with the same spin
while in Fig. 4.2 the average double-occupations with different spin are shown. Since we are in
the paramagnetic phase the occupations can be deduced via symmetry ( 〈ni↑〉 = 〈ni↓〉). By
comparing the two Tables once can also compute Cniσnjσ′ ≡ 〈niσnjσ′〉 − 〈niσ〉 〈njσ′〉 which
measures the "degree of correlation".
We find LaFeAsO not to be particularly correlated. For example, by analyzing the results for
orbital 1 (in full U), which has the largest U value, we get

Cn1↑n1↓ = 〈n1↑n1↓〉 − 〈n1↑〉 〈n1↓〉 = 0.34− 0.652 = 0.34− 0.4225 = −0.0825.

This orbital is, however not the most correlated one (with respect to the same orbital-index)
in spite of having the the largest U−value. For example Cn2↑n2↓ = −0.0881 which shows that
the (orbital-dependent) U−value alone is not a good estimate for the degree of correlation.

The orbital-dependent role of Hund’s exchange, on the other hand, can be estimated by
comparing hij ≡ 〈ni↑nj↑〉 − 〈ni↑nj↓〉. Applying this to our Tables (again for the full U case)
we get h14 = h24 = h34 = 0.05, whereas all the other hij = 0.04. Thus we conclude that the
x2 − y2 orbital has the largest Hund’s coupling effect, though it is not very different from the
other orbitals.

Comparing the occupation numbers with respect to the different models and Hamiltonians
(considering the columns) we observe only minor changes with respect to the interaction Hamil-
tonians, but qualitatively different results with respect to the different Wannier-projections (d
vs dpp). In fact, this is ascribed to the considerably different filling of the d−manifold: In the
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d−model the filling of the d−orbital manifold was fixed to 6 electrons on 10 available places,
for the dpp−model this represents a free parameter. In the later case we have assumed that
the number of electrons of the Wannier basis-set considered the d−manifold together with the
two p−manifolds is 18. The reasons for arriving at these numbers were laid out in the previous
chapter. It should therefore not be assumed that the dpp−results are automatically more valid
than the d−ones[33].

At the same time, from the disagreement between the d− and the dpp−model, one can not
answer the question which one is, more or less, correct.

Eventually, the squared local magnetic moment (total as well as diagonal contribution) is
shown on the table. (χtot(τ = 0) and χdiag(τ = 0)). A more detailed discussion of this particular
result will be given in the next chapter.

d-model dpp-model with FLL DCC

HD
U

HK
U

H fullU
FLL HD

U
HK
U

〈n1↑〉 0.69 0.68 0.65 0.81 0.81

〈n1↑n2↑〉 0.44 0.41 0.39 0.58 0.57

〈n1↑n3↑〉 0.44 0.41 0.39 0.58 0.57

〈n1↑n4↑〉 0.41 0.38 0.39 0.58 0.57

〈n1↑n5↑〉 0.44 0.42 0.41 0.57 0.57

〈n2↑〉 0.59 0.59 0.59 0.72 0.71

〈n2↑n3↑〉 0.39 0.36 0.36 0.52 0.51

〈n2↑n4↑〉 0.37 0.33 0.35 0.52 0.51

〈n2↑n5↑〉 0.39 0.37 0.37 0.51 0.50

〈n3↑〉 0.59 0.59 0.59 0.72 0.71

〈n3↑n4↑〉 0.37 0.33 0.35 0.52 0.51

〈n3↑n5↑〉 0.39 0.37 0.37 0.51 0.50

〈n4↑〉 0.53 0.53 0.56 0.71 0.71

〈n4↑n5↑〉 0.36 0.34 0.35 0.51 0.50

〈n5↑〉 0.61 0.61 0.61 0.71 0.71

∑
i,σ

〈ni,σ〉 6.00 6.00 6.00 7.32 7.29

χtot(τ = 0) 7.01 5.06 5.01 3.60 3.17

χdiag(τ = 0) 3.19 3.22 3.22 2.37 2.39

Table 4.1: Comparison of orbital occupations of the same spin dependent on the interaction class
as well as the model for LaFeAsO.
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d-model dpp-model with FLL DCC

HD
U

HK
U

H fullU
FLL HD

U
HK
U

〈n1↑n1↓〉 0.41 0.40 0.34 0.63 0.63

〈n1↑n2↓〉 0.35 0.37 0.35 0.56 0.56

〈n1↑n3↓〉 0.35 0.37 0.35 0.56 0.56

〈n1↑n4↓〉 0.30 0.33 0.34 0.55 0.55

〈n1↑n5↓〉 0.38 0.39 0.37 0.55 0.55

〈n2↑n2↓〉 0.26 0.26 0.26 0.47 0.46

〈n2↑n3↓〉 0.29 0.31 0.32 0.49 0.49

〈n2↑n4↓〉 0.24 0.28 0.30 0.48 0.48

〈n2↑n5↓〉 0.31 0.33 0.33 0.48 0.48

〈n3↑n3↓〉 0.26 0.26 0.26 0.47 0.46

〈n3↑n4↓〉 0.24 0.27 0.30 0.48 0.48

〈n3↑n5↓〉 0.31 0.33 0.33 0.48 0.48

〈n4↑n4↓〉 0.16 0.16 0.23 0.45 0.44

〈n4↑n5↓〉 0.27 0.29 0.31 0.47 0.48

〈n5↑n5↓〉 0.31 0.31 0.30 0.46 0.46

Table 4.2: Comparison of orbital occupations with different spin dependent on the interaction class
as well as the model for LaFeAsO.
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4.2 Ba2Fe2As

4.2.1 One-particle-properties in the d-model

In Fig. 4.14 we show the self-energy as well as the Green’s function for a density-density type
interaction in the d-only model. Fig- 4.15 show the same for a Kanamori-type interaction. In
both cases, we have used the averaged values of the Coulomb-overlap integrals (U, J and V ).
The latter assumption was then removed, when preforming the full U calculation (shown in
Fig. 4.16).
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Figure 4.14: DFT+DMFT results of the single-particle properties of BaFe2As2 in the d-only-
model with orbital averaged Coulomb interactions used for a density-density-type interaction.

From Fig. 4.14 we find that all orbitals have a metallic character, but with finite quasi-
particle excitations lifetimes. Thus the interaction strength is not strong enough to drive the
material towards the Mott-insulating phase. From ReΣ (upper left figure) we find that the
xy−orbital is shifted considerably lower energies (by more than 0.25eV) while the other are all
shifted to higher energies. From the imaginary part of the Green’s function (lower left subfigure
in Fig. 4.14), we see that the xy−orbital has considerably less spectral weight at the Fermi-level
than the other orbitals.
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Figure 4.15: DFT+DMFT results of the single-particle properties of BaFe2As2 in the d-only-
model with orbital averaged Coulomb interactions used for a Kanamori-type interaction.

The results for a Kanamori-Hamiltonian show overall similar results as for density-density
interaction. However, also some fine differences can be noted. From ReΣ, we see that the shift
of the orbitals is less severe in magnitude for 3z2 − r2- and xy−orbital, and the xz/yz as well
as the x2 − y2-orbital are hardly shifted at all.

As for the imaginary part of the Green’s function, this can not as easily interpreted as
for LaFeAsO: We find more spectral weight at εF for some orbitals (xz/yz and x2 − y2),
but significantly less for others (3z2 − r2− and xy). In this respect, more insight can be
gained by analyzing the data-sets for ImΣ (upper left subfigures): On finds that lim

iωn→0
|ImΣ| is

smaller for all orbitals. Thus, quasi-particle excitations in all orbitals have a longer lifetime for
a Kanamori-Hamiltonian than for a density-density-Hamiltonian. One can therefore conclude
that the Kanamori-interaction (instead of the dens.-dens.-int.) lead to a more metallic behavior
in the paramagnetic phase.
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Figure 4.16: DFT+DMFT results of the single-particle properties of BaFe2As2 in the d-only-
model with "full U" interaction.

In Fig. 4.16 an overall comparison of that data of full U calculations have been shown. We
find that while all the orbitals overall still show a metallic character, the role of the individual
orbitals has changed. This is specially significant for the 3z2−r2-orbital which has significantly
less spectral weight at the Fermi-level compared to the previous cases. The orbital-dependence
of the excitation live-times has changed, slightly, depending on the orbital-index, but overall
similar lifetimes as for Kanamori were extracted. The orbital dependent energy-shift has a
stronger magnitude for full U than for Kanamori (see ReΣ).
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4.2.2 One-particle-properties in the dp-model

Double counting correction: When performing a dp−calculation in DMFT, an important
role is always played by the double counting corrections (DCC), whose role will be explicitly
analyzed in this subsection. Although we have good reasons to believe that FLL DCC is
a better choice than AMF for all compounds under consideration 2, we want to check for
an intermediately correlated material (among the class of Fe-SC). Since BaFe2As2 is more
correlated that LaFeAsO, but less correlated than FeTe, we selected this material as a testbed
to check how much of a difference the DCC choice makes.

In Fig 4.17 we show the one-particle-properties of BaFe2As2 for a dp−model. We computed
both commonly used DCC for a density-density-interaction type. We find that the shift of the
orbitals (corrected by the chemical potentials as well as the µDC−values) is almost exactly the
same for both DCC choices (see Re Σ). From Im Σ (top left) we find a general trend that
|Im ΣAFM(iωn)| < |Im ΣFLL(iωn)|. Hence the quasi-particle lifetime are smaller for the FLL.
This shift in Im Σ is, however, not big enough to affect significantly the spectral weight at the
Fermi-level, as ImG appears quite unaffected.
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Figure 4.17: DFT+DMFT results of the single-particle properties of BaFe2As2, computed for the
dp-model with orbital-averaged Coulomb interaction in density-density-type interaction. We used
both common DCC: FLL (points) and AMF (lines). For the solid lines, clearly, only the values at
the Matsubara-frequencies have physical meaning.

2see previous chapter for a detailed discussion
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Figure 4.18: DFT+DMFT results of the single-particle properties of BaFe2As2, computed for the
dp-model with orbital-averaged Coulomb interaction in Kanamori-type interaction. We used FLL
for the DCC.

In Fig 4.18 we show the one-particle-properties of a Kanamori-type-interaction (forBaFe2As2

in the dp−model). The Green’s function as well as the self-energy are very similar as in Fig. 4.17
(dens. int. with same model). By comparing to the d−only model we find, a very small trend of
lim

iωn→0
Im |Σd model(iωn)| > lim

iωn→0
|Im Σdp model(iωn)| and moreover lim

iωn→0
| ∂
∂iωn

Im Σd model(iωn)| <
∂

∂iωn
lim

iωn→0
|Im Σdp model(iωn)|. Therefore the quasi-particle lifetimes are slightly shorter in the

d−model and the Fermi-liquid weight-factor (Z =
(
1 + |∂Im Σ

∂iω |
)−1

is slightly smaller, which
leads to an mass-enhancement. Overall BaFe2As2 shows metallic behavior for all models and
interaction Hamiltonians. From the one-particle properties alone this Fe-SC parent compound
could be understood as a Fermi-liquid. The two-particle properties are shown in the next
subsection.
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4.2.3 Model comparison of the two-particle-properties: Spin-spin sus-
ceptibilities

In this subsection, we compare the spin-spin-susceptibility χ computed with different models
and interaction terms for BaFe2As2. We will focus our attention in particular to the difference
between the χtot and χdiag, which is entirely induced by the electronic interaction, and mainly
by the to vertex corrections.

First, the QMC-data are shown (in imaginary time in Fig. 4.6 and in Matsubara frequencies
in Fig. 4.7). Second, the analytically continued data (in real frequencies) have been computed.
From these we could extract the different time-scales of the spin-dynamics of the system. Third,
we show the Fourier transformed susceptibilities in real frequencies. From the fluctuation-
dissipation theorem we also extract the symmetric anti-commutator-correlation function F (t),
which is better suited to study the quantum-mechanical spin-screening effects.

Susceptibilities in imaginary time/ frequency
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Figure 4.19: BaFe2As2:Comparison of the spin-spin-susceptibility in imaginary time computed for
the different models and interaction-types.
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Figure 4.20: BaFe2As2:Comparison of spin-spin-susceptibility in Matsubara frequencies computed
for the different models and interaction-types.
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We find in Fig. 4.6 (again) that the d−model the Kanamori-interaction with averaged U−terms
gives almost exactly the same spin-spin-correlation function as the d−model with full U inter-
action. This is remarkable since it could hardly be expected on the basis of the one-particle
properties discussed before. One may interpret it as a "posteriori" justification of the averag-
ing procedure, if a quantity is computed which sums over all orbital-indices. The role of each
individual orbital has changed.

Comparing the left and right sub-figures of Fig. 4.6, we see that, especially for the density-
density interaction, in the d−model a significant contribution comes from vertex corrections.
(with the obvious exception of the U = 0 case, where χtot = χdiag). Furthermore we find the
dp−cases to be closer to the U = 0 case. This can be related to the significantly enhance filling of
the d−orbitals. Similar to LaFeAsO the filling is roughly 7.2 for BaFe2As2 in the dpp−model
(see Tab. 4.3). Regarding the comparison between FLL and AMF (dpp−model) we find a
different magnitude of 〈m2〉 (see χ(τ = 0)) but similar screening behavior (χFLL(τ)/χFLL(0) u
χAMF(τ)/χAMF(0)). For a more quantitative analysis the analytical continuation is needed.

Susceptibilities in real frequencies

In Fig. 4.21 and in Fig. 4.23 analytically continued spin-spin-susceptibilities via two different
methods are shown. To obtain Fig. 4.21 we use the Maximum-Entropy-method (more specifi-
cally [40] with an additional selection criterion discussed in section 2.4.3). While for Fig. 4.23,
we have used a newer method named Sparse-Modeling (more specifically we used a program
supplied by the authors of the method[32].)
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Figure 4.21: BaFe2As2: MaxEnt Spin-spin-susceptibility in real frequencies computed for the
different models and interaction-types.

As for the results, the non-interacting case (purple) displays a rather featureless broad
absorption spectrum extended roughly on the whole non-interacting bandwidth. . As expected
χtot equals χdiag, since there are no vertex corrections for U = J = V = 0. In all the other
models and Hamiltonians, instead structures appear at low energy. The position of the peak
depends on the choice of the model as well as the Hamiltonian. It ranges from 15.7 meV
(d−model dens. dens. int.) to 250 meV (dpp−model Kan. int.).

The most reliable among the d−model is probably the full−U case, where we used a general
orbital-dependent U−matrix as H int. It has a peak-maximum at 157.4 meV. For this case, we
have also fitted the following model spectral function to the data:
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Imχtot(ω) =
2aγω

4γ2ω2 + (ω2 − ω2
0)

2

The fit was performed via minimizing the quadratic difference between the model and the
data at the data-points. Smaller frequencies were weighed comparably more 3.

This allows us to extract model parameters as

Estimate Standard Error t-Statistic P-Value

a 1.1296 0.00649518 173.913 1.00 10−876

ω0 0.264915 0.00065306 405.651 1.64 10−1326

γ 0.251685 0.00147634 170.479 2.33 10−866

Notice that γ u ω0.

Figure 4.22: BaFe2As2: Comparison between the fitted model an the MaxEnt data.

Since the damping-parameter γ is slightly larger than the undamped-frequency ω0 we are
(barely) in the underdamped regime. The Fourier-transform of the model reads (in natural
units) as

χtot(t) = θ(t)13.6638e−0.251685t sin(0.0826706t).

However, since the difference between γ and ω0 is only marginal a better life-time estimate
needs a more careful analysis based on the Fourier-transformed data in real time (see below).

3See Ch. 4.1.3 for a justification
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Figure 4.23: BaFe2As2 SpM: Spin-spin-susceptibility in real frequencies computed for the different
models and interaction-types. The analytical continuation was done with sparse-modeling. The total
susceptibility (left) is very similar in shape to the diagonal contribution only (right), but about a
factor 4 larger. The peaks are in general broader than for MaxEnt. (We decided to use the results
obtained by the more established MaxEnt-method for the further analysis.)

Susceptibilities in real time

The Fourier-transform can be easily carried out and from the fluctuation-dissipation-theorem
one can also calculate the anti-commutator-correlator F (t) without any difficulty. The results
are shown in Fig. 4.24 and Fig. 4.25. We only show the correlation functions for t > 0 since χ(t)
is zero for t < 0 and F (t) is symmetric with respect to time.
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Figure 4.24: BaFe2As2: Spin-spin-susceptibility in real time computed for the different models
and interaction-types.
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We find χ(t) to decay (for cases exept d, dens.) on an approximate time-scale of 2 − 20fs
depending upon the choice of model an Hamiltonian. For d dens.-type-interaction the timescales
are very different (more than by 100fs). Since we could already predict this behavior (roughly)
from χ(τ) and we checked them against a variety of different MaxEnt models as well as error-
scales, it can be assumed that this effect is already present at the level of QMC. While an
sizable effect on the dynamic of spin-fluctuations can be expected from the inclusion of spin-
flip and pair-hopping terms in the interaction, the size of changes observed for the d−model
data of BaFe2As2 is quite surprising, and probably requires further investigation. On the
other hand, the difference in the results could also be an indication of the inapplicability of the
approximations made to this family (see section 5).

However, why the neglection of pair-hopping and spin-flips has such a severe effect on the
life-time of spin-excitations in BaFe2As2 is unclear.

F (t) decays more rapidly on a time-scale of approximately 0.5 − 10fs. (and approximately
75fs for d,dens. int.) Comparing this with the model-time-scales (for full U MaxEnt)

tγ = ~
γ = 2.48fs

tω = ~√
ω0

2−γ2
= 7.96fs, (4.3)

we find a damping time-scale of 2.48fs and an oscillation frequency of 7.96fs.
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Figure 4.25: BaFe2As2: Spin-spin-anti-commutator correlation function in real time computed
for the different models and interaction-types.

Cutoff dependence of the full integral

In Fig. 4.13 the energy cut-off dependence of the full (square) local magnetic moment is shown.
The vertical doted line marks a experimentally typical energy scale (for INS-measurements)
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of 100meV. Our results show that only 5% (for dpp) to 20% (for d Kan int.) of the full local
magnetic-moment would be captured within such a cut-off value for all cases except d−dens.
For the d−model case with a density-density-type interaction one would already capture 50%
of the total 〈m2〉. For the full U case (very similar to the d−model Kan. int. case) one would
make approximately up to an 85% error.

m2
loc,t=0 =

3

π
lim

Ω→∞

∫ Ω

−Ω

∫
BZ

Imχ(~q, ω)b(ω)d~qdω∫
BZ

d~q
=

3

π
lim

Ω→∞

∫ Ω

−Ω

Imχ(loc, ω)b(ω)dω (4.4)
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Figure 4.26: BaFe2As2: Cutoff dependency (finite Ω) of the squared local magnetic moment
estimate 〈m2〉 (full integral in (Eq. 4.4) ) computed for the different models and interaction-types.

4.2.4 Occupations and local magnetic momentum

We believe the disagreement between the results for the two different choices of Wannier-basis
sets (d− vs. dp−model) is largely due to the different filling of the d−orbitals. While it is fixed
to exactly 6 in the d−model we find

∑
σ,i 〈niσ〉 ranging from 7.18 (dens., AMF) over 7.31 (Kan.,

FLL) to 7.34 (dens., FLL) (under the assumption that nd0 + np0 = 12 see previous chapter for
details).

In Tab. 4.3 we report the average occupations and double-occupations with the same spin
while in Fig. 4.4 the average double-occupations with different spin are shown. Since we are in
the paramagnetic phase the occupations can be deduced via symmetry ( 〈ni↑〉 = 〈ni↓〉). By
comparing the two Tables once can also compute Cniσnjσ′ ≡ 〈niσnjσ′〉 − 〈niσ〉 〈njσ′〉 which
measures the "degree of correlation".
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We find LaFeAsO not to be particularly correlated. For example, by analyzing the results for
t he 3z2 − r2orbital (in full U), which has the largest U value, we get

Cn1↑n1↓ = 〈n1↑n1↓〉 − 〈n1↑〉 〈n1↓〉 = 0.64− 0.332 = −0.0796.

This orbital is, however not the most correlated one (with respect to the same orbital-index)
in spite of having the the largest U−value. For example Cn4↑n4↓ = −0.1049 which shows that
the (orbital-dependent) U−value alone is not a good estimate for the degree of correlation.

The orbital-dependent role of Hund’s exchange, on the other hand, can be estimated by
comparing hij ≡ 〈ni↑nj↑〉− 〈ni↑nj↓〉. Applying this to our Tables (again for the full U case) we
get h14 = 0.06, h45 = 0.04 and for all others hij = 0.05.

Comparing the occupation numbers with respect to the different models and Hamiltonians
(considering the columns) we observe only minor changes with respect to the interaction Hamil-
tonians, but qualitatively different results with respect to the different Wannier-projections (d
vs dp). In fact, this is ascribed to the considerably different filling of the d−manifold: In the
d−model the filling of the d−orbital manifold was fixed to 6 electrons on 10 available places,
for the dpp−model this represents a free parameter. In the later case we have assumed that
the number of electrons of the Wannier basis-set considered the d−manifold together with the
two p−manifolds is 12. The reasons for arriving at these numbers were laid out in the previous
chapter. It should therefore not be assumed that the dp−results are automatically more valid
than the d−ones.

At the same time, from the disagreement between the d− and the dp−model, one can not
answer the question which one is, more or less, correct.

Eventually, the squared local magnetic moment (total as well as diagonal contribution) is
shown on the table. (χtot(τ = 0) and χdiag(τ = 0)). A more detailed discussion of this particular
result will be given in the next chapter.
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d-model dp-model

HD
U

HK
U

H fullU
FLL HD

UFLL
HD
U,AMF

HK
U

〈n1↑〉 0.66 0.67 0.64 0.80 0.79 0.80

〈n1↑n2↑〉 0.45 0.41 0.39 0.58 0.56 0.57

〈n1↑n3↑〉 0.45 0.41 0.39 0.58 0.56 0.57

〈n1↑n4↑〉 0.44 0.38 0.39 0.57 0.55 0.56

〈n1↑n5↑〉 0.47 0.42 0.42 0.58 0.57 0.57

〈n2↑〉 0.58 0.58 0.58 0.72 0.70 0.72

〈n2↑n3↑〉 0.43 0.36 0.36 0.53 0.51 0.51

〈n2↑n4↑〉 0.42 0.34 0.35 0.52 0.51 0.51

〈n2↑n5↑〉 0.43 0.37 0.38 0.52 0.51 0.52

〈n3↑〉 0.58 0.58 0.58 0.72 0.70 0.72

〈n3↑n4↑〉 0.42 0.34 0.35 0.52 0.51 0.51

〈n3↑n5↑〉 0.43 0.37 0.38 0.52 0.51 0.52

〈n4↑〉 0.54 0.54 0.57 0.71 0.69 0.71

〈n4↑n5↑〉 0.42 0.35 0.36 0.52 0.51 0.51

〈n5↑〉 0.64 0.62 0.62 0.72 0.72 0.72

∑
i,σ

〈ni,σ〉 6.00 6.00 6.00 7.34 7.18 7.31

χtot(τ = 0) 10.01 5.30 5.27 3.81 4.63 3.24

χdiag(τ = 0) 3.45 3.29 3.29 2.39 2.55 2.41

Table 4.3: Comparison of orbital occupations of the same spin dependent on the interaction class
as well as the model for BaFe2As2
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d-model dp-model

HD
U

HK
U

H fullU
FLL HD

U,FLL
HD
U,AMF

HK
U

〈n1↑n1↓〉 0.36 0.39 0.33 0.61 0.59 0.61

〈n1↑n2↓〉 0.30 0.36 0.34 0.55 0.52 0.55

〈n1↑n3↓〉 0.30 0.36 0.34 0.55 0.52 0.55

〈n1↑n4↓〉 0.26 0.33 0.33 0.54 0.51 0.54

〈n1↑n5↓〉 0.36 0.39 0.37 0.56 0.54 0.56

〈n2↑n2↓〉 0.22 0.24 0.25 0.47 0.43 0.46

〈n2↑n3↓〉 0.24 0.30 0.31 0.48 0.45 0.49

〈n2↑n4↓〉 0.19 0.28 0.30 0.47 0.43 0.48

〈n2↑n5↓〉 0.30 0.33 0.33 0.49 0.47 0.49

〈n3↑n3↓〉 0.22 0.24 0.25 0.47 0.43 0.46

〈n3↑n4↓〉 0.19 0.28 0.30 0.47 0.43 0.48

〈n3↑n5↓〉 0.30 0.33 0.33 0.49 0.47 0.49

〈n4↑n4↓〉 0.13 0.17 0.22 0.44 0.40 0.44

〈n4↑n5↓〉 0.26 0.30 0.32 0.48 0.45 0.49

〈n5↑n5↓〉 0.34 0.32 0.31 0.48 0.47 0.48

Table 4.4: Comparison of orbital occupations with different spin dependent on the interaction class
as well as the model for BaFe2As2
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4.3 LiFeAs

4.3.1 One-particle-properties in the d-model
In figure 4.27 we show the self-energy as well as the Green’s function of LiFeAs for a density-
density type interaction in the d-model only. Figure 4.28 show the corresponding data for a,
full SU(2) symmetric Kanamori-type interaction. In both cases we used the averaged values
of the Coulomb-overlap integrals (U, J and V ). For the data shown in Figure 4.29 instead this
assumption was lifted as we used the full-orbital dependence regarding the interaction terms.

〈U〉, 〈J〉 and 〈V 〉: Averaged Coulomb interaction
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Figure 4.27: DFT+DMFT results of the single-particle properties of LiFeAs in the d-only-model
with orbital averaged Coulomb interactions used for a density-density-type interaction calculation.

Comparing figure 4.27 with 4.28 we find the inclusion of the full SU(2) symmetry does change
the physics for LiFeAs. This is in contrast to weaker correlated materials (e.g. LaFeAsO) where
Kanamori- and density-type-interaction yielded similar results for the d−calcifications. From
the lim

iωn→0
ImΣ and lim

iωn→0
ImG we find the Kanamori-case to be more metallic. For example

the x2 − y2−orbital has an Im Σ(0) u −0.8 for for the dens. case, but u −0.05 − 0.1 in the
Kanamori case. Therefore the x2 − y2 orbital will have for, the dens.-dens.-case, a significantly
more broadened spectral function Ax2−y2

(ω) close to the Fermi-level. For the xz/yz-orbitals
similar differences are observed. For both interaction types the 3z2 − r2- and x2 − y2-orbitals
are shifted to higher energies whereas the xy-orbital is shifted downwards (although the shift
magnitudes is different for the two cases) as it can be inferred from ReΣ (upper left figures). A
similar trend for the shift of the orbitals is found also in the full-U calculations.
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Figure 4.28: DFT+DMFT results of the single-particle properties of LiFeAs in the d-only-model
with orbital averaged Coulomb interactions used for a Kanamori-type interaction calculation.
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Figure 4.29: DFT+DMFT results of the single-particle properties of LiFeAs in the d-only-model
with "full U" interaction calculation.
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At the same time, comparing the two cases with orbital-averaged iteration-terms with the
orbital-resolved U-term case we find that the roles of the orbitals have changed significantly.
This is especially true for the "eg"-orbitals: The 3z2 − r2- and x2 − y2−orbitals have a larger
spectral weight at the Fermi-surface, and the x2−y2-orbitals is more metallic for the full U -case.
The "t2g"-orbitals are less affected by non-averaged interaction terms. Overall, for LiFeAs in
the d−model, the differences between den.-int. and the others (Kan. and full U) are more
severe than between Kan. int. and full U .

The qualitatively the general trend is that all orbitals show a metallic character and large
quasi-particle excitation life-times in the d−only model.

4.3.2 One-particle-properties in the dpp-model

Fig. 4.30 and Fig. 4.31 show the self-energies and Green’s functions in Matsubara frequencies
for density-density- as well as for Kanamori interaction computed with the dp−Wannier basis
set for LiFeAs. In both cases the U, V and J values were averaged over all orbitals.
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Figure 4.30: DFT+DMFT results of the single-particle properties of LiFeAs, computed for the
dp-model with orbital-averaged Coulomb interaction in density-density-type interaction. We used
the FLL for the DCC
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Kanamori interaction:
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Figure 4.31: DFT+DMFT results of the single-particle properties of LiFeAs, computed for the
dp-model with orbital-averaged Coulomb interaction in Kanamori-type interaction. We used the
FLL for the DCC

The two sets of figures show an overall similar behavior. From the imaginary part of the self-
energy. one can just deduce a slightly larger quasi-particle excitation lifetime for the density-
density case since |Im ΣKan.(iωn)| < |Im Σdens.(iωn)|. However, the differences are not large
enough to result in a major difference in ImG. The imaginary part of the Green’s functions
almost identical, regarding these two interaction types. From the real part of the self energy
we find the trend that ReΣKanamori

i > ReΣDensity
i , but again the differences are very small.

The comparison to the d−model full-U case shows a very different picture. This is mostly
due to the changed number of electrons in the 3d bands of iron. Which is exactly 6.00 for
the d−only-model, but ranges between 7.25 (Kan.) to 7.27 (dens) in the dpp−model. The
different physics can be seen from the imaginary part of the self-energy. For full U Im Σ
goes more rapid to zero (slope), corresponding to a larger mass-renormalization. However,
|Im ΣfullU(iω1)| > |Im Σdp(iω1)|. It is not immediately clear which of the two models experiences
longer quasi-particle- life-times. The major difference in ImG(iωn) is the increased spectral
weight at ω = 0 for full U in the 3z2 − r2-orbital.
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4.3.3 Model comparison of the two-particle-properties: Spin-spin sus-
ceptibilities

In this subsection we compare the spin-spin-susceptibility χ computed with different models
and interaction terms for LiFeAs. We will focus our attention in particular to the difference
between the χtot and χdiag, is entirely due to vertex corrections. First the QMC-data are
shown (in imaginary time in Fig. 4.32 and in Matsubara frequencies in Fig. 4.33). Second,
the analytically continued data (in real frequencies) have been computed. From these we could
extract the different time-scales of the spin-dynamics of the system. Third, we show the Fourier
transformed susceptibilities in real frequencies. From the fluctuation-dissipation theorem we
also computed the symmetric anti-commutator-correlation function F (t), which is better suited
to study the quantum-mechanical spin-screening effects.

Susceptibilities in imaginary time/ frequency
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Figure 4.32: LiFeAs: Spin-spin-susceptibility in imaginary time computed for the different models
and interaction-types.
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Figure 4.33: LiFeAs: Spin-spin-susceptibility in Matsubara frequencies computed for the different
models and interaction-types.



4.3. LIFEAS 81

An interesting feature in Fig. 4.32 is that for the d−model the Kanamori-interaction with av-
eraged U−terms gives almost exactly the same results as the d−model with full U interaction.
This is rather remarkable since it could not be expected on the basis of the one-particle prop-
erties above. One may interpret it as a posteriori justification of the averaged procedure, to be
applied for calculations of orbital summed physical quantities.

Comparing the left and right sub-figures of Fig. 4.32, we see that, especially for the density-
density interaction, in the d−model a significant contribution comes from vertex corrections.
(With the obvious exception of the U = 0 case, where χtot = χdiag). Furthermore, we find the
dp−calculation to yield, overall, a smaller local magnetic moment than the d−only.

Susceptibilities in real frequencies

In Fig. 4.34 and in Fig. 4.36 the analytically continued spin-spin-susceptibilities via two differ-
ent methods are shown. To obtain Fig. 4.34, we used the Maximum-Entropy-method (more
specifically [40] with an additional selection criterion discussed in section 2.4.3). Whereas for
Fig. 4.36, we have used Sparse-Modeling[32].

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  0.5  1  1.5  2  2.5  3  3.5  4

1
/π

 Im
χ

to
t  [

µ B
2 e

V
-1

/F
e]

ω [eV]

LiFeAs

d,    dens.
d,     Kan.

dp,    dens.
dp,     Kan.

d, "U = 0"
d,   full U

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  0.02  0.04  0.06

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  0.5  1  1.5  2  2.5  3  3.5  4

1
/π

 Im
χ

di
ag

 [µ
B

2 e
V

-1
/F

e]

ω [eV]

LiFeAs

d,    dens.
d,     Kan.

dp,    dens.
dp,     Kan.

d, "U = 0"
d,   full U

Figure 4.34: LiFeAs: MaxEnt Spin-spin-susceptibility in real frequencies computed for the dif-
ferent models and interaction-types.

The non-interacting case (purple) shows a very featureless broad absorption spectrum ex-
tended roughly on the whole non-interacting bandwidth. As expected χtot equals χdiag, since
there are no vertex corrections for U = J = V = 0.

In all the other models and Hamiltonians low energy peak appears, instead. The position of the
peak depends strongly on the choice of the model as well as the Hamiltonian. Its peak-location
(maximum) ranges from 15 meV (d−model dens. dens. int.) to 138 meV (dpp−model Kan.
int.).

The most reliable of the d−model is probably the full − U case, since it exploits a general
orbital-dependent U−matrix as H int. In that calculation, the peak-maximum is found at 75.1
meV. For this case we hace fitted the following model spectral function to the data.

Imχtot(ω) =
2aγω

4γ2ω2 + (ω2 − ω0
2)

2
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The fit was performed via minimizing the quadratic difference between the model and the
data at the data-points. Smaller frequencies were taken more into account4.

This allows us to extract model parameters as

Estimate Standard Error t-Statistic P-Value

a 1.35122 0.0157477 85.8045 1.60 10−525

ω0 0.245857 0.00135745 181.117 7.20 10−898

γ 0.455235 0.00521214 87.3415 9.13 10−534

Figure 4.35: LiFeAs: Comparison between the fitted model an the MaxEnt data.

Since the damping-parameter γ is larger than the undamped-frequency ω0 we are in the
overdamped regime. The Fourier-transform of the model reads (in natural units) as

χtot(t) = θ(t)3.52674e−0.455235t sinh(0.383137t).

For a more qualitative analysis of the time-scales we Fourier-transformed our data to real
time (under consideration of the KK-relation).
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Figure 4.36: LiFeAs: SpM Spin-spin-susceptibility in real frequencies computed for the different
models and interaction-types.

4See Ch. 4.1.3 for a justification
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Susceptibilities in real time

The Fourier-transform can be easily carried out and from the fluctuation-dissipation-theorem
one can also calculate the anti-commutator-correlator F (t) without any difficulty. The result
with restored SI-units are shown in Fig. 4.37 and Fig. 4.38. We only show them for t > 0 since
χ(t) is zero for t < 0 and F (t) is symmetric with respect to time.
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Figure 4.37: LiFeAs: Spin-spin-susceptibility in real time compared with respect to the different
models and interaction-types.

We find χ(t) to decay on an approximate time-scale of 10 (full U/Kan. d.) to 80 fs (dens. d.)
depending upon the choice of model an Hamiltonian. F (t) decays more rapidly on a time-scale
of approximately 4− 60fs. Comparing this with the time-scales from the previously presented
full U MaxEnt

tγ = ~
γ = 2.67721fs

tω = ~√
|ω0

2−γ2|
= 1.71796fs,

tγ̃ = ~
γ−ω = 9.129fs,

(4.5)

we find an effective damping time-scale of 9.129 fs which is in good agreement with the numerical
results (shown in Fig. 4.37)
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Figure 4.38: LiFeAs: Spin-spin-anti-commutator correlation function in real time computed for
the different models and interaction-types.

Cutoff dependence of the full integral

m2
loc,t=0 =

3

π
lim

Ω→∞

∫ Ω

−Ω

∫
BZ

Imχ(~q, ω)b(ω)d~qdω∫
BZ

d~q
=

3

π
lim

Ω→∞

∫ Ω

−Ω

Imχloc(ω)b(ω)dω (4.6)

In Fig. 4.39 the energy cut-off dependence of the full (square) local magnetic moment is
shown. The vertical doted line marks a experimentally typical energy scale (for INS-measurements)
of 100meV. Our results show that only 5% (for dp) to 45% (for d dens.dens int.) of the full
local magnetic-moment would be inside such a cut-off value. For the full U case (very similar
to the d−model Kan. int. case) one would make, then, an 75% error.



4.3. LIFEAS 85

 0

 20

 40

 60

 80

 100

 0  0.5  1  1.5  2  2.5  3  3.5  4
100 meV

 %
 o

f t
he

 fu
ll 

in
te

gr
al

Ω [eV]

LiFeAs

d,    dens.
d,     Kan.

dp,    dens.
dp,     Kan.

d, "U = 0"
d,   full U

Figure 4.39: LiFAs: Cutoff dependency (finite Ω) of the squared local magnetic moment estimate
〈m2〉 (full integral in (Eq. 4.6) ) computed for the different models and interaction-types.

4.3.4 Occupations and local magnetic momentum

In Tab. 4.5 we report the average occupations and double-occupations with the same spin
while in Fig. 4.6 the average double-occupations with different spin are shown. Since we are in
the paramagnetic phase the occupations can be deduced via symmetry ( 〈ni↑〉 = 〈ni↓〉). By
comparing the two Tables once can also compute Cniσnjσ′ ≡ 〈niσnjσ′〉 − 〈niσ〉 〈njσ′〉 which
measures the "degree of correlation".
We find LiFeAs to be slightly more correlated than BaFe2As2. For example, by analyzing the
results for orbital 5 (in full U), which has the largest U value, we get

Cn5↑n5↓ = 〈n5↑n5↓〉 − 〈n5↑〉 〈n5↓〉 = −0.0744

This orbital is, however not the most correlated one (with respect to the same orbital-index)
in spite of having the the largest U−value. For example Cn4↑n4↓ = −0.1364 which shows that
the (orbital-dependent) U−value alone is not a good estimate for the degree of correlation.

The orbital-dependent role of Hund’s exchange, on the other hand, can be estimated by
comparing hij ≡ 〈ni↑nj↑〉 − 〈ni↑nj↓〉. Applying this to our Tables (again for the full U case)
we get h14 = h24 = h34 = 0.06, h23 = h45 = 0.05 whereas all the other hij = 0.04. Thus we
conclude that the x2 − y2 orbital (4) has the largest Hund’s coupling effect.

Comparing the occupation numbers with respect to the different models and Hamiltonians
(considering the columns) we observe only minor changes with respect to the interaction Hamil-
tonians, but qualitatively different results with respect to the different Wannier-projections (d
vs dp). In fact, this is ascribed to the considerably different filling of the d−manifold: In the
d−model the filling of the d−orbital manifold was fixed to 6 electrons on 10 available places,
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for the dp−model this represents a free parameter. In the later case we have assumed that the
number of electrons of the Wannier basis-set considered the d−manifold together with the two
p−manifolds is 12. The reasons for arriving at these numbers were laid out in the previous chap-
ter. We also observe | 〈niσ〉den.,d−〈niσ〉Kan.,d | < | 〈niσnjσ′〉den.,d−〈niσnjσ′〉Kan.,d | ∀σ, σ′ ∀i 6= j,
showing the broken SU(2) symmetry of the density-density interaction.

At the same time, from the disagreement between the d− and the dp−model, one can not
answer the question which one is, more or less, correct.

Eventually, the squared local magnetic moment (total as well as diagonal contribution) is
shown on the table. (χtot(τ = 0) and χdiag(τ = 0)). A more detailed discussion of this particular
result will be given in the next chapter.

d-model dpp-model with FLL DCC

HD
U

HK
U

H fullU
FLL HD

U
HK
U

〈n1↑〉 0.70 0.70 0.68 0.80 0.80

〈n1↑n2↑〉 0.44 0.41 0.39 0.57 0.56

〈n1↑n3↑〉 0.44 0.41 0.39 0.57 0.56

〈n1↑n4↑〉 0.46 0.41 0.42 0.56 0.54

〈n1↑n5↑〉 0.46 0.43 0.43 0.59 0.58

〈n2↑〉 0.57 0.56 0.56 0.71 0.71

〈n2↑n3↑〉 0.39 0.34 0.34 0.51 0.50

〈n2↑n4↑〉 0.42 0.35 0.35 0.50 0.49

〈n2↑n5↑〉 0.39 0.35 0.36 0.53 0.52

〈n3↑〉 0.57 0.56 0.57 0.71 0.71

〈n3↑n4↑〉 0.42 0.35 0.35 0.50 0.49

〈n3↑n5↑〉 0.39 0.35 0.36 0.53 0.52

〈n4↑〉 0.55 0.56 0.58 0.68 0.68

〈n4↑n5↑〉 0.40 0.36 0.37 0.51 0.50

〈n5↑〉 0.62 0.61 0.62 0.74 0.74

∑
i,σ

〈ni,σ〉 6.00 6.00 6.00 7.27 7.25

χtot(τ = 0) 9.04 5.27 5.32 4.02 3.34

χdiag(τ = 0) 3.38 3.29 3.31 2.45 2.47

Table 4.5: Comparison of orbital occupations of the same spin dependent on the interaction class
as well as the model for LiFeAs
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d-model dpp-model with FLL DCC

HD
U

HK
U

H fullU
FLL HD

U
HK
U

〈n1↑n1↓〉 0.43 0.44 0.38 0.62 0.61

〈n1↑n2↓〉 0.33 0.37 0.35 0.54 0.55

〈n1↑n3↓〉 0.33 0.37 0.35 0.54 0.55

〈n1↑n4↓〉 0.31 0.36 0.36 0.52 0.52

〈n1↑n5↓〉 0.38 0.40 0.39 0.57 0.57

〈n2↑n2↓〉 0.21 0.22 0.22 0.45 0.45

〈n2↑n3↓〉 0.23 0.28 0.29 0.47 0.47

〈n2↑n4↓〉 0.20 0.27 0.29 0.44 0.45

〈n2↑n5↓〉 0.29 0.31 0.32 0.49 0.50

〈n3↑n3↓〉 0.21 0.22 0.22 0.45 0.45

〈n3↑n4↓〉 0.20 0.27 0.29 0.44 0.45

〈n3↑n5↓〉 0.29 0.31 0.32 0.49 0.50

〈n4↑n4↓〉 0.14 0.17 0.20 0.39 0.38

〈n4↑n5↓〉 0.26 0.31 0.32 0.47 0.48

〈n5↑n5↓〉 0.31 0.31 0.31 0.51 0.51

Table 4.6: Comparison of orbital occupations with different spin dependent on the interaction class
as well as the model for LiFeAs
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4.4 KFe2As2

4.4.1 One-particle-properties in the d-model

In figure 4.40 we show the self-energy as well as the Green’s function of KFe2As2 for a density-
density type interaction in the d-model only. Figure 4.41 show the corresponding data for a,
full SU(2) symmetric Kanamori-type interaction. In both cases we used the averaged values
of the Coulomb-overlap integrals (U, J and V ). For the data shown in Figure 4.42 instead this
assumption was lifted as we used the full-orbital dependence regarding the interaction terms.
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Figure 4.40: DFT+DMFT results of the single-particle properties of KFe2As2 in the d-only-model
with orbital averaged Coulomb interactions used for a density-density-type interaction.

Comparing figure 4.40 with 4.41 we find the inclusion of the full SU(2) symmetry changes
the physics drastically. From the lim

iωn→0
ImΣ and from lim

iωn→0
ImG we find the Kanamori-case to

be much more metallic. For example, the x2 − y2 and the xz/yz-orbitals are almost insulating
for a dens.-type interaction, whereas Im ΣKan.(0) ≈ 0.

For both interaction types the 3z2 − r2 orbital was shifted upwards in energy. The most
severe difference in Re Σ involves the x2 − y2-orbital: while it is shifted slightly down for
Kanamori (by about 0.1eV) it is shifted up for dens.-dens.-interaction by about 2eV!. This
leads to an almost insulating solution for the 3z2 − r2-orbital in dens. int., whereas the Kan.
int. case has a large peak in the analytically continued spectral function centered almost at εF .
(For the analytically continued spectral function we refer to Fig.5.1 int the next chapter).
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Figure 4.41: DFT+DMFT results of the single-particle properties of KFe2As2 in the d-only-model
with orbital averaged Coulomb interactions used for a Kanamori-type interaction.

-0.4

-0.2

 0

 0.2

 0.4

 0  2  4  6  8  10

R
e[
Σ

] -
 µ

 - 
µ D

C
C

(i)

ωn

KFe2As2  d-model, <U>, Hamiltonian = full U  

3z2-r2
xz/ yz
x2-y2

xy

-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0

 0  2  4  6  8  10

Im
[Σ

]

ωn

KFe2As2 d-model, <U>, Hamiltonian = full U 

3z2-r2
xz/ yz
x2-y2

xy

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.5  1  1.5  2  2.5  3  3.5  4

R
e[

G
]

ωn

KFe2As2 d-model, <U>, Hamiltonian = full U 

3z2-r2
xz/ yz
x2-y2

xy

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  0.5  1  1.5  2  2.5  3  3.5  4

Im
[G

]

ωn

KFe2As2 d-model, <U>, Hamiltonian = full U 

3z2-r2
xz/ yz
x2-y2

xy

Figure 4.42: DFT+DMFT results for KFe2As2 in the d-only-model with "full U" interaction.
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Comparing the two cases with orbital-averaged iteration-terms with the orbital-resolved U-
term case, we find still a metallic solution, but with changed roles for the different orbitals. In
particular the lifetimes- of the quasi-particle excitations of the 3z2 − r2-orbital have decreased,
whereas those of the x2 − y2-orbital have increased. The spectral weight at εF similar between
these two cases.

The general trend is in KFe2As2 a (bad) metallic character remains, however, with shorter
quasi-particle excitation life-times than in the previously analyzed materials.

4.4.2 One-particle-properties in the dpp-model

Fig. 4.43 and Fig. 4.44 show the self-energies and Green’s functions in Matsubara frequencies
for density-density- as well as for Kanamori interaction. In both cases the U, V and J values
were averaged over all orbitals. The two sets of figures show an overall similar behavior. From
the imaginary part of the self-energy. one can just deduce a slightly smaller quasi-particle
excitation lifetime for the density-density case. The imaginary part of the Green’s function is
(again) almost exactly on top, regarding these two interaction types. From the real part of the
self energy we find the trend that ReΣKanamori

i u ReΣDensity
i + 0.025eV (for ωn ≤ 2eV). This

means that for a Kanamori-interaction, the orbitals are slightly more shifted to higher energies.
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Figure 4.43: DFT+DMFT results of the single-particle properties of KFe2As2, computed for the
dp-model with orbital-averaged Coulomb interaction in density-density-type interaction. We used
the FLL as DCC.
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Figure 4.44: DFT+DMFT results of the single-particle properties of KFe2As2, computed for the
dp-model with orbital-averaged Coulomb interaction in Kanamori-type-interaction. We used the
FLL for the DCC.

The comparison to the d−model full-U case shows a very different picture. It is probably
in part also related to the different filling. One can see this for example my comparing the first
few Matsubara frequencies of the bottom right figures of Fig. 4.42 to Fig. 4.44. This effect is
(again) especially significant for the 3z2 − r2−orbital (green), which has the largest spectral
weight for the full-U case, whereas for the averaged U dpp−model it has a much small spectral
weight. This is rather due to the choice of model (d− vs dpp−) than due to the orbital-averaged
interaction values or H int choice, as can be seen by a comparison to Fig. 4.44 and Fig. 4.43.



92 CHAPTER 4. RESULTS: DMFT

4.4.3 Model comparison of the two-particle-properties: Spin-spin sus-
ceptibilities

In this subsection we compare the spin-spin-susceptibility χ computed with different models
and interaction terms for KFe2As2. We will focus our attention in particular to the differ-
ence between the χtot and χdiag, entirely due to vertex corrections. First, out QMC-data are
shown (in imaginary time in Fig. 4.45 and in Matsubara frequencies in Fig. 4.46). Second, the
analytically continued data (in real frequencies) will be presented. From these we extracted
the different time-scales of the spin-dynamics of the system. Third, we show the Fourier trans-
formed susceptibilities in real frequencies. From the fluctuation-dissipation theorem we also
analyzed the symmetric anti-commutator-correlation function F (t), which is better suited to
study the quantum-mechanical spin-screening effects.

Susceptibilities in imaginary time/ frequency
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Figure 4.45: KFe2As2: Spin-spin-susceptibility in imaginary time computed for the different
models and interaction-types.
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Figure 4.46: KFe2As2: Spin-spin-susceptibility in Matsubara frequencies computed for the differ-
ent models and interaction-types.
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An interesting feature in Fig. 4.45 is that for the d−model the Kanamori-interaction with av-
eraged U−terms gives almost exactly the same results as the d−model with full U interaction.
This may be interpreted as a posteriori justification of the averaged procedure, for physical
quantities via sums over all orbital-indices. The role of each individual orbital has changed.
The density-density d-only case shows very different results than the other cases. Moreover by
comparing the left and right sub-figures of Fig. 4.45, we see that, for all cases a significant con-
tribution comes from vertex corrections (with the obvious exception of the U = 0 case, where
χtot = χdiag). Furthermore, we find the dp−cases to be closer to the U = 0 case. This can be
related to the higher filling in the d−manifold. As for an interpretation, one can already qual-
itatively estimate the significantly increased lifetime of spin-excitations from the QMC-data,
one needs to do the analytical continuation to make quantitative predictions (see below).

Susceptibilities in real frequencies

In Fig. 4.47 and in Fig. 4.49 analytically continued spin-spin-susceptibilities via two different
methods are shown. To obtain Fig. 4.47 we use the Maximum-Entropy-method (more specifi-
cally [40] with an additional selection criterion discussed in section 2.4.3), which is well estab-
lished. For Fig. 4.49, we have instead used SpM [32].
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Figure 4.47: KFe2As2: MaxEnt Spin-spin-susceptibility in real frequencies computed for the
different models and interaction-types.

The non-interacting case (purple) shows a very featureless broad absorption spectrum ex-
tended roughly on the whole non-interacting bandbwidth. . As expected χtot equals χdiag, since
there are no vertex corrections for U = J = V = 0. In all the other models and Hamiltonians a
low energy peak appears, instead. The position of the peak depends on the choice of the model
as well as the Hamiltonian. It ranges from 2.66 meV (d−model dens.-dens. int.) to 138 meV
(dpp−model Kan. int.).

The most reliable of the d−model is probably the full−U case, for which we used a general
orbital-dependent U−matrix as H int. The corresponding spectrum displays a peak-maximum
at 62.2 meV. For this case we, fitted the following model spectral function to the data

Imχtot(ω) =
2aγω

4γ2ω2 + (ω2 − ω0
2)

2
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The fit was performed via minimizing the quadratic difference between the model and the
data at the data-points. Smaller frequencies were taken more into account5.

This allows us to extract model parameters as

Estimate Standard Error t-Statistic P-Value

a 3.36362 0.12472 26.9694 1.40 10−126

ω0 0.35741 0.00649794 55.0036 9.50 10−336

γ 1.2059 0.0437882 27.5393 8.19 10−131

Figure 4.48: KFe2As2: Comparison between the fitted model an the MaxEnt data.

Since the damping-parameter γ is larger than the undamped-frequency ω0 we are in the
overdamped regime. The Fourier-transform of the model reads (in natural units) as

χtot(t) = θ(t) 2.92054 e−1.2059t sinh(1.15171t).

To analyze these r life-time estimates more quantitatively we Fourier-transformed the data
to real time (under consideration of the KK-relation).

5See Ch. 4.1.3 for a justification
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Figure 4.49: KFe2As2: SpM Spin-spin-susceptibility in real frequencies computed for the different
models and interaction-types. The results differ considerably from MaxEnt. Especially the low-
energy peak. (Formation of local magnetic moment.) A possible reason for this failure is given next
to Fig. 2.5

Susceptibilities in real time

The Fourier-transform can be easily carried out and from the fluctuation-dissipation-theorem
one can also calculate the anti-commutator-correlator F (t) without any difficulty. The result
with restored SI-units are shown in Fig. 4.50 and Fig. 4.51. We only show them for t > 0 since
χ(t) is zero for t < 0 and F (t) is symmetric with respect to time.
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Figure 4.50: KFe2As2 Spin-spin-susceptibility in real time computed for different models and
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We find χ(t) to decay on an approximate time-scale of 2− 15 fs depending upon the choice
of model an Hamiltonian. F (t) decays more rapidly on a time-scale of approximately 2 − 5 fs,
with the only exception of d−only dens. int. (light green) which has a significantly longer
time-scale. (Though this might be a signal of th non-applicability of such an approximation
in the paramagnetic phase. See Sec. 5. Comparing this with the model-time-scales (for full U
MaxEnt)

tγ = ~
γ = 0.54582fs

tω = ~√
ω0

2−γ2
= 0.571507fs

tγ̃ = ~
γ−ω = 12.14637fs,

(4.7)

we find an effective damping time-scale of 12.14 fs agreeing well with the black curve in Fig. 4.50.
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Figure 4.51: FeTe: Spin-spin-anti-commutator correlation function in real time computed for the
different models and interaction-types.

Cutoff dependence of the full integral

m2
loc,t=0 =

3

π
lim

Ω→∞

∫ Ω

−Ω

∫
BZ

Imχ(~q, ω)b(ω)d~qdω∫
BZ

d~q
=

3

π
lim

Ω→∞

∫ Ω

−Ω

Imχ(loc, ω)b(ω)dω (4.8)

In Fig. 4.52 the energy cut-off dependence of the full (square) local magnetic moment is
shown. The vertical doted line marks a experimentally typical energy scale (for INS-measurements)
of 100meV. Our results show that only 10% (for dp) to 30% (for d dens.dens int.) of the full
local magnetic-moment would be captured by for such a cut-off value. For the full U case (very
similar to the d−model Kan. int. case) one would make an 75% error.
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Figure 4.52: KFe2As2: Cutoff dependency (finite Ω) of the squared local magnetic moment
estimate 〈m2〉 (full integral in (Eq. 4.8) ) computed for the different models and interaction-types.

4.4.4 Occupations and local magnetic momentum

In Tab. 4.7 we report the average occupations and double-occupations with the same spin
while in Fig. 4.8 the average double-occupations with different spin are shown. Since we are in
the paramagnetic phase the occupations can be deduced via symmetry ( 〈ni↑〉 = 〈ni↓〉). By
comparing the two Tables once can also compute Cniσnjσ′ ≡ 〈niσnjσ′〉 − 〈niσ〉 〈njσ′〉 which
measures the "degree of correlation".
We find KFe2As2 to be more correlated that the previous materials. For example, by analyzing
the results for orbital 1 (in full U), which has the largest U value, we get

Cn1↑n1↓ = 〈n1↑n1↓〉 − 〈n1↑〉 〈n1↓〉 = −0.12

This orbital is, the most correlated one (with respect to the same orbital-index). The orbital-
dependent role of Hund’s exchange, on the other hand, can be estimated by comparing hij ≡
〈ni↑nj↑〉 − 〈ni↑nj↓〉. Applying this to our Tables (again for the full U case) we get h14 = 0.07,
h12 = h13 = h24 = h34 = 0.06 whereas all the other hij = 0.05. Thus we conclude that the
3z2 − r2 orbital has the largest Hund’s coupling effect, though it is not very different from the
other orbitals.

Comparing the occupation numbers with respect to the different models and Hamiltonians
(considering the columns) we observe only minor changes with respect to the interaction Hamil-
tonians, but qualitatively different results with respect to the different Wannier-projections
(d vs dp). In fact, this is ascribed to the considerably different filling of the d−manifold:
In the d−model the filling of the d−orbital manifold was fixed to 6 electrons on 10 avail-
able places, for the dp−model this represents a free parameter. In the later case we have
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assumed that the number of electrons of the Wannier basis-set considered the d−manifold
together with the two p−manifolds is 12. The reasons for arriving at these numbers were
laid out in the previous chapter. It should not be assumed that the dp−results are au-
tomatically more valid than the d−ones[33]. We also observe | 〈niσ〉den.,d − 〈niσ〉Kan.,d | <
| 〈niσnjσ′〉den.,d − 〈niσnjσ′〉Kan.,d | ∀σ, σ′ ∀i 6= j, showing the broken SU(2) symmetry of the
density-density interaction.

At the same time, from the disagreement between the d− and the dp−model, one can not
answer the question which one is, more or less, correct.

Eventually, the squared local magnetic moment (total as well as diagonal contribution) is
shown on the table. (χtot(τ = 0) and χdiag(τ = 0)). A more detailed discussion of this particular
result will be given in the next chapter.

d-model dpp-model with FLL DCC

HD
U

HK
U

H fullU
FLL HD

U
HK
U

〈n1↑〉 0.58 0.61 0.60 0.78 0.77

〈n1↑n2↑〉 0.43 0.34 0.33 0.53 0.52

〈n1↑n3↑〉 0.43 0.34 0.33 0.53 0.52

〈n1↑n4↑〉 0.45 0.34 0.34 0.53 0.52

〈n1↑n5↑〉 0.44 0.38 0.38 0.57 0.56

〈n2↑〉 0.52 0.52 0.52 0.68 0.56

〈n2↑n3↑〉 0.40 0.29 0.29 0.47 0.46

〈n2↑n4↑〉 0.42 0.29 0.29 0.47 0.46

〈n2↑n5↑〉 0.41 0.32 0.33 0.50 0.49

〈n3↑〉 0.52 0.52 0.52 0.68 0.67

〈n3↑n4↑〉 0.42 0.29 0.29 0.47 0.46

〈n3↑n5↑〉 0.41 0.32 0.33 0.50 0.49

〈n4↑〉 0.51 0.50 0.51 0.67 0.67

〈n4↑n5↑〉 0.42 0.32 0.32 0.50 0.49

〈n5↑〉 0.62 0.60 0.60 0.73 0.73

∑
i,σ

〈ni,σ〉 5.50 5.50 5.50 7.06 7.04

χtot(τ = 0) 13.72 5.87 5.73 4.40 3.58

χdiag(τ = 0) 3.87 3.49 3.47 2.58 2.60

Table 4.7: Comparison of orbital occupations of the same spin dependent on the interaction class
as well as the model for KFe2As2
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d-model dpp-model with FLL DCC

HD
U

HK
U

H fullU
FLL HD

U
HK
U

〈n1↑n1↓〉 0.19 0.28 0.24 0.57 0.57

〈n1↑n2↓〉 0.16 0.28 0.27 0.50 0.50

〈n1↑n3↓〉 0.16 0.28 0.27 0.50 0.50

〈n1↑n4↓〉 0.13 0.27 0.27 0.49 0.49

〈n1↑n5↓〉 0.26 0.34 0.33 0.55 0.55

〈n2↑n2↓〉 0.13 0.16 0.17 0.40 0.40

〈n2↑n3↓〉 0.14 0.23 0.24 0.42 0.43

〈n2↑n4↓〉 0.11 0.22 0.23 0.41 0.42

〈n2↑n5↓〉 0.23 0.28 0.28 0.46 0.47

〈n3↑n3↓〉 0.13 0.16 0.17 0.40 0.40

〈n3↑n4↓〉 0.11 0.22 0.23 0.41 0.42

〈n3↑n5↓〉 0.23 0.28 0.28 0.46 0.47

〈n4↑n4↓〉 0.06 0.11 0.15 0.37 0.37

〈n4↑n5↓〉 0.21 0.27 0.27 0.46 0.46

〈n5↑n5↓〉 0.31 0.29 0.29 0.50 0.49

Table 4.8: Comparison of orbital occupations with different spin dependent on the interaction class
as well as the model for KFe2As2
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4.5 FeTe

4.5.1 One-particle-properties in the d-model

In figure 4.53 we show the self-energy as well as the Green’s function of FeTe for a density-
density type interaction in the d-model only. Figure 4.54 show the corresponding data for a,
full SU(2) symmetric Kanamori-type interaction. In both cases we used the averaged values
of the Coulomb-overlap integrals (U, J and V ). For the data shown in Figure 4.29 instead this
assumption was lifted as we used the full-orbital dependence regarding the interaction terms.
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Figure 4.53: DFT+DMFT results of the single-particle properties of FeTe in the d-only-model
with orbital averaged Coulomb interactions used for a density-density-type interaction.

Comparing figure 4.53 with 4.54 we find the inclusion of the full SU(2) symmetry lead to
different results. From the lim

iωn→0
ImΣ and from lim

iωn→0
ImG we find the Kanamori-case to be

more metallic. We moreover observe that ReΣdens. > Re ΣKan. for all orbitals. So dens.-type-
int. has shifted all orbitals to higher energies. By extrapolating ImG(iωn) to ω = 0 shows
no definite trend. While the 3z2 − r2- and the xz/yz−orbitals have more spectral weight at
ω = 0 for a dens.-dens- int. that for Kan. int., the x2 − y2−orbital has less spectral weight for
dens.-dens- int. than for Kan. interaction.
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Figure 4.54: DFT+DMFT results of the single-particle properties of FeTe in the d-only-model
with orbital averaged Coulomb interactions used for a Kanamori-type interaction.
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Figure 4.55: DFT+DMFT results for FeTe in the d-only-model with "full U" interaction.



102 CHAPTER 4. RESULTS: DMFT

Comparing the two cases with orbital-averaged iteration-terms with the orbital-resolved
U-term case we find that the roles of the orbitals have changed significantly. This is espe-
cially true x2 − y2− and the xz/yz−orbitals. We find lim

iωn→0
Im Σfull U

x2−y2 < lim
iωn→0

Im ΣKan.
x2−y2 , but

lim
iωn→0

Im Σfull U
xz/yz > lim

iωn→0
Im ΣKan.

xz/yz. How this will effect the (total) one-particle spectrum A(ω)

is not immediately clear. The one-particle spectral function, continued to the real frequency
axis via MaxEnt, is given in Chapter 5.

4.5.2 One-particle-properties in the dpp-model

Fig. 4.56 and Fig. 4.57 show the self-energies and Green’s functions in Matsubara frequencies
for density-density- as well as for Kanamori interaction. In both cases the U, V and J values
were averaged over all orbitals.

-1.5

-1

-0.5

 0

 0.5

 1

 0  2  4  6  8  10

R
e[
Σ

] -
 µ

 - 
µ D

C
 

ωn

FeTe, dp-model, <U>, Hamiltonian = Density 

3z2-r2
xz/ yz
x2-y2

xy

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0  2  4  6  8  10

Im
[Σ

]

ωn

FeTe, dp-model, <U>, Hamiltonian = Density 

3z2-r2
xz/ yz
x2-y2

xy

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.5  1  1.5  2  2.5  3  3.5  4

R
e[

G
]

ωn

FeTe, dp-model, <U>, Hamiltonian = Density 

3z2-r2
xz/ yz
x2-y2

xy

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  0.5  1  1.5  2  2.5  3  3.5  4

Im
[G

]

ωn

FeTe, dp-model, <U>, Hamiltonian = Density 

3z2-r2
xz/ yz
x2-y2

xy

Figure 4.56: DFT+DMFT results of the single-particle properties of FeTe, computed for the dp-
model with orbital-averaged Coulomb interaction in density-density-type interaction. We used the
FLL scheme for the DCC
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Figure 4.57: DFT+DMFT results of the single-particle properties of FeTe, computed for the dp-
model with orbital-averaged Coulomb interaction in Kanamori-type interaction. We used the FLL
scheme for the DCC.

The two sets of figures show an overall similar behavior. From the imaginary part of the self-
energy one can just deduce a smaller quasi-particle excitation lifetime for the density-density
case. Moreover the slope of the self-energy is smaller for Kanamori-interaction. The imaginary
part of the Green’s function shows complementary behavior.

The comparison to the d−model full-U case shows a very different picture. The full U
d−model shows smaller quasi-particle excitation lifetime as both dp−cases.

This is probably related to the different filling. Which is exactly 6.00 for the d−only-model,
but 7.07 in the dp−model. This is rather due to the choice of model (d− vs dp−) than due
to the orbital-averaged interaction values or H int choice, as can be seen by a comparison to
Fig. 4.53 and Fig. 4.54.

Qualitatively we find a (bad) metallic behavior for FeTe.
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4.5.3 Model comparison of the two-particle-properties: Spin-spin sus-
ceptibilities

In this subsection we compare the spin-spin-susceptibility χ computed with different models
and interaction terms for FeTe. We will focus our attention in particular to the difference
between the χtot and χdiag, which is entirely due to vertex corrections. First the QMC-data are
shown (in imaginary time in Fig. 4.58 and in Matsubara frequencies in Fig. 4.59). Second, the
analytically continued data (in real frequencies) have been computed. From these we have ex-
tracted the different time-scales of the spin-dynamics of the system. Third, we show the Fourier
transformed susceptibilities in real frequencies. From the fluctuation-dissipation theorem we
have also computed the symmetric anti-commutator-correlation function F (t), which is better
suited to study the quantum-mechanical spin-screening effects.

Susceptibilities in imaginary time/ frequency
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Figure 4.58: FeTe: Spin-spin-susceptibility in imaginary time computed for the different models
and interaction-types.
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Figure 4.59: FeTe: Spin-spin-susceptibility in Matsubara frequencies computed for the different
models and interaction-types.
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An interesting feature in Fig. 4.58 is that for the d−model the Kanamori-interaction with aver-
aged U−terms as well as dp−model in dens. int. gives almost exactly the same results as the
d−model with full U interaction. The density-density d-only case shows very different results
represents an outlier with respect to the other cases. Comparing the left and right sub-figures of
Fig. 4.6, we see that for all cases, a significant contribution comes from vertex corrections (with
the obvious exception of the U = 0 case). As for an interpretation, one can already qualitatively
estimate the significantly increased lifetime of spin-excitations from the QMC-data, one needs
to do the analytical continuation to make quantitative predictions (see below).

Susceptibilities in real frequencies

In Fig. 4.60 and in Fig. 4.61 analytically continued spin-spin-susceptibilities via two different
methods are shown. To obtain Fig. 4.60 we use the Maximum-Entropy-method (more specif-
ically [40] with an additional selection criterion discussed in section 2.4.3). Whereas for Fig.
4.61 used SpM[32].
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Figure 4.60: FeTe: MaxEnt Spin-spin-susceptibility in real frequencies computed for the different
models and interaction-types.
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Figure 4.61: FeTe: SpM Spin-spin-susceptibility in real frequencies computed for the different
models and interaction-types. The results differ considerably from MaxEnt. Especially the low-
energy peak. (Formation of local magnetic moment.) A possible reason for this failure is given next
to Fig. 2.5

The non-interacting case (purple) shows a rather featureless broad absorption spectrum
extended roughly on the whole non-interacting bandwidth . As expected χtot equals χdiag,
since there are no vertex corrections for U = J = V = 0. In all the other models and
Hamiltonians a spectral peak-like structure appears at low energies, instead. The position of
the first peak depends on the choice of the model as well as the Hamiltonian. It ranges from
1.69 meV (d−model dens. dens. int.) to 34.2 meV (dp−model Kan. int.).

The most reliable of the d−model is probably the full − U case, for which we used a
general orbital-dependent U−matrix as H int. The corresponding spectrum display their first
peak-maxima at 24.4, 322.8 and 1713.4 meV. We tried to fit a three peak model (on the whole
MaxEnt-data), but it did not converge. Then we tried a two-peak model of the form

Imχtot(ω) =
2 a1 γ1 ω

4γ2
1ω

2 +
(
ω2 − ω2

01

)2 +
2 a2 γ2 ω

4γ2
2ω

2 +
(
ω2 − ω2

02

)2 .
For the two-peak model the fitting procedure converged. The fit was performed via minimizing
the quadratic difference between the model and the data at the data-points. It is important
to remark that the data-points are more dense at smaller energies (due to a Lorentzian energy
mash). This can be justified by the fact that the singular values of the kernel (connecting χ(τ)
with χ(ω)) decay fast with respect to the energy. Thus χ(ω) is better "supported" by the data
at smaller frequencies than at higher frequencies. One should therefore "weigh" χ(ω) at smaller
frequencies more than at higher frequencies.

This procedure allowed us to extract the model parameters as

If one fits a Single-peak model locally (by truncating the data) to the third peak at around
1.72eV one finds a3 = 1.2549, ω03 = 1.84785 and γ3 = 0.835419. The corresponding timescales
are, thus, negligible in comparison to the first two peaks and they will not be further considered
here.
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Estimate Standard Error t-Statistic P-Value

a1 0.0762308 0.000300206 253.928 9.10 10−1071

a2 0.36391 0.00548836 66.3058 7.34 10−410

ω01 0.0347013 0.0000569195 609.656 7.91 10−1538

ω02 0.357901 0.0013751 260.272 8.43 10−1084

γ1 0.0274941 0.000120823 227.558 5.23 10−1013

γ2 0.11116 0.00207659 53.5299 1.51 10−324

Figure 4.62: FeTe: Comparison between the fitted model an the MaxEnt data.

Since both damping-parameters γi (i=1,2) are smaller than their corresponding undamped-
frequencies ω0i we are in the underdamped regime. The Fourier-transform of the model reads
(in natural units) as

χtot(t) = θ(t)
(
3.60055 e−0.0274941t sin(0.021172t) + 1.06969 e−0.11116t sin(0.3402t)

)
.

To improve the discussion of our life-time estimates we performed the numerical Fourier-
transform to real time (under consideration of the KK-relation). (See below)

Susceptibilities in real time

The Fourier-transform can be easily carried out and from the fluctuation-dissipation-theorem
one can also calculate the anti-commutator-correlator F (t) without any difficulty. The result
with restored SI-units are shown in Fig. 4.63 and Fig. 4.64. We only show them for t > 0 since
χ(t) is zero for t < 0 and F (t) is symmetric with respect to time.
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Figure 4.63: FeTe: Spin-spin-susceptibility in real time computed for the different models and
interaction-types.

We find χ(t) the numerical data in Fig.4.63 to decay for full U on an approximate time-
scale of 50 fs. This is in disagreement with the fitted model. Where the damping-timescale
is 23.9 fs. Comparing the fitted model we see that the fit slightly overestimates the width,
and thus underestimates the time-scale. A possible reason might be that first peak in the data
actually consists of several peaks (narrow) peaks, which can not be resolved. Several narrow
peaks would lead longer life-times. Another (related) explanation would be that the harmonic
oscillator model is not ideal for FeTe.

Both Kanamori and full U show similar lifetimes. For the d−only, dens. int. we find a
lifetime of almost 1ns, which is very different to the other cases. The strong oscillations at the
beginning originate from the second peak. Transforming the model-parameters into life-times

tγ1 = ~
γ = 23.9401fs

tω1
= ~√

ω01
2−γ2

1

= 31.0888fs

tγ2 = ~
γ2

= 5.92131fs

tω2
= ~√

ω02
2−γ2

2

= 1.93478fs,

(4.9)

we find tγ1 < tω1
, but tγ2 > tω2

. The first peak dominates (in the model) for timescales larger
than 6fs. This fact is in agreement with the data. The first peak, however, was not ideally
captured by the model.
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Figure 4.64: FeTe: Spin-spin-anti-commutator correlation function in real time computed for the
different models and interaction-types.

Cutoff dependence of the full integral

m2
loc,t=0 =

3

π
lim

Ω→∞

∫ Ω

−Ω

∫
BZ

Imχ(~q, ω)b(ω)d~qdω∫
BZ

d~q
=

3

π
lim

Ω→∞

∫ Ω

−Ω

Imχ(loc, ω)b(ω)dω (4.10)

In Fig. 4.65 the energy cut-off dependence of the full (square) local magnetic moment is
shown. The vertical doted line marks a experimentally typical energy scale (for INS-measurements)
of 100meV. Our results show that only 30% (for dp Kan.) to 50% (for d Kan. int.) of the full
local magnetic-moment would show for such a cut-off value. For the full U case (very similar to
the d−model Kan. int. case) one would make an 50% error, i.e. lower than in all other cases.
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Figure 4.65: FeTe: Cutoff dependency (finite Ω) of the squared local magnetic moment estimate
〈m2〉 (full integral in (Eq. 4.10) ) computed for the different models and interaction-types.

4.5.4 Occupations and local magnetic momentum

In Tab. 4.9 we report the average occupations and double-occupations with the same spin
while in Fig. 4.10 the average double-occupations with different spin are shown. Since we are
in the paramagnetic phase the occupations can be deduced via symmetry ( 〈ni↑〉 = 〈ni↓〉). By
comparing the two Tables once can also compute Cniσnjσ′ ≡ 〈niσnjσ′〉 − 〈niσ〉 〈njσ′〉 which
measures the "degree of correlation".
We find FeTe to be the most correlated material. For example, by analyzing the results for
orbital 4 (in full U), which has the largest U value, we get

Cn4↑n4↓ = 〈n4↑n4↓〉 − 〈n4↑〉 〈n4↓〉 = −0.2016

This orbital x2 − y2 is the most correlated. The orbital-dependent role of Hund’s exchange, on
the other hand, can be estimated by comparing hij ≡ 〈ni↑nj↑〉 − 〈ni↑nj↓〉. Applying this to
our Tables (again for the full U case) we get h24 = h24 = 0.1, h25 = 0.09, h23 = h45 = 0.08,
h12 = h13 = 0.07 and h15 = h25 = h35 = 0.06.

Comparing the occupation numbers with respect to the different models and Hamiltonians
(considering the columns) we observe only minor changes with respect to the interaction Hamil-
tonians, but qualitatively different results with respect to the different Wannier-projections
(d vs dp). In fact, this is ascribed to the considerably different filling of the d−manifold:
In the d−model the filling of the d−orbital manifold was fixed to 6 electrons on 10 avail-
able places, for the dp−model this represents a free parameter. In the later case we have
assumed that the number of electrons of the Wannier basis-set considered the d−manifold
together with the two p−manifolds is 12. The reasons for arriving at these numbers were
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laid out in the previous chapter. It should not be assumed that the dp−results are au-
tomatically more valid than the d−ones[33]. We also observe | 〈niσ〉den.,d − 〈niσ〉Kan.,d | <
| 〈niσnjσ′〉den.,d − 〈niσnjσ′〉Kan.,d | ∀σ, σ′ ∀i 6= j, showing the broken SU(2) symmetry of the
density-density interaction.

At the same time, from the disagreement between the d− and the dp−model, one can not
answer the question which one is, more or less, correct.

Eventually, the squared local magnetic moment (total as well as diagonal contribution) is
shown on the table. (χtot(τ = 0) and χdiag(τ = 0)). A more detailed discussion of this particular
result will be given in the next chapter.

d-model dpp-model with FLL DCC

HD
U

HK
U

H fullU
FLL HD

U
HK
U

〈n1↑〉 0.72 0.71 0.64 0.80 0.80

〈n1↑n2↑〉 0.48 0.41 0.40 0.56 0.54

〈n1↑n3↑〉 0.48 0.42 0.40 0.56 0.54

〈n1↑n4↑〉 0.48 0.41 0.39 0.53 0.51

〈n1↑n5↑〉 0.52 0.47 0.45 0.62 0.60

〈n2↑〉 0.54 0.55 0.58 0.67 0.68

〈n2↑n3↑〉 0.46 0.35 0.37 0.51 0.47

〈n2↑n4↑〉 0.47 0.35 0.36 0.50 0.44

〈n2↑n5↑〉 0.46 0.39 0.40 0.54 0.52

〈n3↑〉 0.54 0.55 0.58 0.67 0.68

〈n3↑n4↑〉 0.47 0.35 0.36 0.50 0.44

〈n3↑n5↑〉 0.46 0.39 0.41 0.54 0.52

〈n4↑〉 0.53 0.54 0.54 0.61 0.62

〈n4↑n5↑〉 0.46 0.39 0.39 0.51 0.48

〈n5↑〉 0.67 0.66 0.66 0.77 0.76

∑
i,σ

〈ni,σ〉 6.00 6.00 6.00 7.07 7.07

χtot(τ = 0) 13.43 6.86 6.83 6.53 4.15

χdiag(τ = 0) 3.75 3.70 3.69 2.77 2.74

Table 4.9: Comparison of orbital occupations of the same spin dependent on the interaction class
as well as the model for FeTe
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d-model dpp-model with FLL DCC

HD
U

HK
U

H fullU
FLL HD

U
HK
U

〈n1↑n1↓〉 0.46 0.44 0.31 0.62 0.61

〈n1↑n2↓〉 0.29 0.35 0.33 0.50 0.52

〈n1↑n3↓〉 0.29 0.35 0.33 0.50 0.52

〈n1↑n4↓〉 0.27 0.34 0.30 0.44 0.47

〈n1↑n5↓〉 0.42 0.43 0.39 0.59 0.59

〈n2↑n2↓〉 0.12 0.14 0.20 0.37 0.38

〈n2↑n3↓〉 0.12 0.25 0.29 0.38 0.42

〈n2↑n4↓〉 0.10 0.23 0.26 0.32 0.38

〈n2↑n5↓〉 0.25 0.32 0.34 0.47 0.49

〈n3↑n3↓〉 0.12 0.14 0.21 0.37 0.38

〈n3↑n4↓〉 0.10 0.23 0.26 0.32 0.38

〈n3↑n5↓〉 0.25 0.32 0.35 0.47 0.49

〈n4↑n4↓〉 0.06 0.09 0.09 0.24 0.26

〈n4↑n5↓〉 0.23 0.31 0.31 0.41 0.45

〈n5↑n5↓〉 0.37 0.35 0.35 0.55 0.54

Table 4.10: Comparison of orbital occupations with different spin dependent on the interaction
class as well as the model for FeTe



Chapter 5

Results: Comparison and discussion
of Materials and Models

This chapter is devoted to an overall comparison of the one- and two-particle spectral properties
obtained for the different families of Fe-based superconductors and to the discussion of the role
played by the local magnetic moment in the different case. In particular, we will first show
the one-particle spectral-functions of the materials under consideration before moving on to the
spin-spin-correlation functions, whose investigation represents the main focus of this thesis.
In this respect, our findings confirm the expectations for the trend of spin absorption spectra
(in the different families, responsible for the mismatch between earlier LSDA calculations and
experiments)

More in details we start by showing the spin susceptibility in imaginary time, the direct
output of our QMC calculations. Then, we illustrate our analytical continuation-results (on the
real frequency axis) and, finally, we transform our results to real-time. These will allow us to
analyze the quantum-dynamical screening effect (and there respective time-scales) providing a
deeper insights into the different local magnetic moments of these materials.

113
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Spectral function Fig. 5.1 shows the DFT+DMFT spectral function on the real frequency-
axis. The contributions of all (analytically continued) orbitals were summed up. Each sub-
plot shows one model-/ Hamiltonian-case. For the dp − /dpp−model the spectral function for
Kanamori and for density-density- interaction agree well with one another for all materials ex-
cept FeTe (sub-figures at the bottom). For FeTe, which is the most correlated of the materials,
we find a small peak at ω = 0 for Kanamori, which was missing in the density-density case. This
would support the approximation of using a density-density- interaction for all materials in the
dp − /dpp−model except FeTe. In the d−model the situation is quite different. For averaged
interaction terms with a Kanamori-interaction all materials show a spectral-peak slightly below
the Fermi-level. The size of the peak decreases for larger U−values. This is in contrast to the
density-density case (mid left subfigure) where the spectral functions are almost structureless
in this region (except for LaFeAsO where the two interaction cases still agree reasonably well).
We observe that the choice of H int changes the result significantly for the d−model. In the full
U case the structures in the spectral function are more pronounced. This is partially due to the
different MaxEnt-selection criteria we applied. For full U we used Bryan′s MaxEnt (Averag-
ing over all spectra, weighed by their posteriori probability). For the other cases we used the
Kink-selection criteria discussed in section 2.4.3 . The later smears out the spectral function
and is responsible for the loss of the sharp energy-features. However, we find large differences
to severe to be ascribed as a mere fact of the MaxEnt selection criteria. For example, while
the peaks below the Fermi-level are present for Kanamori- as well as for full U−interaction,
their magnitudes and their positions are quite different. This difference is especially surprising
in comparison to the similarity of the corresponding spin-spin-correlation function. (See next
paragraph.)
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Figure 5.1: Comparison of the spectral functions on the real frequency-axis for the different mate-
rials considered. The analytical continuation of the QMC data has been performed with MaxEnt.

In Fig. 5.2 the orbital-resolved DFT+DMFT spectral function for the full−U is shown in
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comparison to the DFT-DOS. The DFT+DMFT results (shown as solid lines) were obtained
with Bryan’s MaxEnt [40] whereas the DFT+DMFT DOS was extracted directly from the
DFT dispersion relation. As expected the DMFT-calculation changed the d−orbitals quite
considerably. While this trend is found for all materials it is especially pronounced for FeTe
(bottom right subfigure), which can be regarded, in fact, as the most correlated one. More
specifically we find that spectral weight at ω = εF = 0 of the xy−orbital for all materials
except FeTe to be almost negligible in comparison to the other orbitals. The others all display
a peak with its maximum slightly below the Fermi-energy. Further for all materials except FeTe
the 3z2 − r2 orbital yields the largest contribution to this peak. (The spectral weight at the
Fermi-level is, however, not necessarily dominated by this peak.)
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Figure 5.2: Comparison of the orbital-resolved spectral function on the real frequency-axis for the
different materials. The plots show beside the d−model in full U (solid lines) also the corresponding
DFT-results in the corresponding Wannier basis (dashed lines).
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Figure 5.3: Comparison of the total spin-spin-susceptibility in imaginary time for the different
materials considered. Note the different scales for "U=0" (top-left figure) and "Density-density,
d-model" (mid-left figure).

Spin-spin-susceptibility In Fig. 5.3 the total spin-spin-susceptibility in imaginary time is
shown. Fig. 5.4 shows the diagonal-contribution as a comparison. The "U=J=V=0" case shows
a rapid decay of χ(τ) (almost) independent of the material. The total contribution equals the
diagonal contribution due to the absence of vertex corrections for U = 0. For the other five
cases, where the rRPA results were used for the interaction terms, we find qualitatively an
ordering of (the shape of the) curves as

χFeTe(τ)

χFeTe(0)
>
χKFe2As2(τ)

χKFe2As2(0)
>
χLiFeAs(τ)

χLiFeAs(0)
>
χBaFe2As2(τ)

χBaFe2As2(0)
>
χLaFeAsO(τ)

χLaFeAsO(0)
.
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This order can be regarded as a rough estimate of the "degree of correlation" of the respective
materials and is (almost) independent of the modelization (d vs dp/dpp) of the Wannier-basis
and the used interaction-Hamiltonian. Qualitatively the effects of spin-screening can already be
inferred from the decay of χ(τ). In particular, we find more correlated electrons to exhibit longer
spin-excitation life-times. For a more detailed analysis an analytical continuation is necessary
(see Fig. 5.5 and following). Further by comparing the χtot(τ) (Fig. 5.3) with χdiag(τ) (Fig.
5.4), we find the 20 off-diagonal contributions to outweigh the 5 diagonal ones for τ & 2.
This is a clear effect of the Hund’s coupling. We must also note that while the spin-spin-
susceptibility must fulfill d2

d2τ χ
diag(τ) ≥ 0 and d2

d2τ χ
tot(τ) ≥ 0 there is no convex/concave-

requirement for the off-diagonal terms (see sec. 2.3.1), except d2

d2τ χ
offdiag(τ) ≥ − d2

d2τ χ
diag(τ) of

course. For small τ the diagonal contribution outweighs the off-diagonal on for Kanamori- and
full-U -interaction. For density-density-type-interaction the situation appears, in some cases,
reversed. Moreover, in this case, the off-diagonal contribution seems to be less τ−dependent
in general. Since a constant χ(τ) would correspond to a renormalized delta-peak at ω = 0
(which would again correspond to an magnetic moment with infinite life-time; see sec. 2.3.3)
one may assume that the off-diagonal-terms, are to a large extent responsible for the formation
of a local magnetic moment. The importance of the off-diagonal terms hints, moreover, that
the parent-compounds of Fe-based superconductors are J−dominated. This is further evidence
that they are Hunds−metals.
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Figure 5.4: Comparison of the spin-spin-susceptibility in imaginary time for the different materials
under consideration. Note the different scale for "U=0" (top-left figure) and "Density-density,
d-model" (mid-left figure).

In Fig. 5.5 we see a comparison of Imχtot(ω) on the real frequency-axis (after the analytical
continuation). It is not surprising that the "non-interacting case" displays a rather featureless
spread out over the whole bandbwidth (approximately 4eV). At the same time, if the interaction
is included, we find the formation of local magnetic momentum features. More specifically a
low-frequency peak forms. The more correlated a material is the more narrow the peak seems
to be. Moreover, the location of the peak follows a definite trend, moving to smaller energies
for more correlated materials. Regrading the different models and interactions we find "full U"
to agree well with Kanamori (both in the d−model). The results for FeTe in density-density-
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interaction don’t agree very well with the Kanamori-results, neither in the d−model nor in the
dp − /dpp−model, with a difference much more severe than for the other materials.While the
overall functions, in some case, display also separated high energy peaks, we believe these are
most likely an artifact of the MEM procedure. For example for FeTe with Kanamori-interaction
in the dp−model the second peak at 0.35meV, separated from the first one by a large gap, is
unphysical.
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Figure 5.5: Comparison of the spin-spin-susceptibility in real frequencies with respect to the ma-
terials. (Obtained via MaxEnt)

The position as well as the with of the peaks in χ(ω) correspond to time-scales of the spin-
spin-correlation function. It is, however, not clear which one is dominant for each material.
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To answer this question we have fitted a model to the peaks of the full U calculation to
extract more quantitative results regrading the time scales. The results of this extra analysis
are summarized in Tab. 5.1. Details regrading the fitting procedure can be found in the previous
chapter (e.g. section 4.1.3).

As additional information for the fit we note that there are two qualitative different solutions
of the Fourier-transform for the fitted model (under consideration of the KK-relation) depending
on the relation between ω0 and γ:

• underdamped regime:
χ(t) = aθ(t) e−γt√

ω2
0−γ2

sin(t
√
ω2

0 − γ2) for ω2
0 > γ2 (↔ tω0

< tγ)

• overdamped regime:
χ(t) = aθ(t) e−γt√

γ2−ω2
0

sinh(t
√
γ2 − ω2

0) for ω2
0 < γ2 (↔ tω0 > tγ)

(5.1)

To highlight the relevant damping time-scale we used a bold font in Tab. 5.1. As seen from
the above equations, χ(t) does not oscillate with ω0, but with an oscillation-frequency of ω =√
|ω2

0 − γ2|. If the system is in the overdamped regime, observes thus an effective time-scale:

χ(t) = aθ(t)
e−γt√
γ2 − ω2

0

sinh(t
√
γ2 − ω2

0) ∝ e−t (γ−
√
γ2−ω2

0) ≡ e−t/tγ̃ . (5.2)

In the overdamped regime, this timescale is always the most relevant one for large times . One
should also be aware of the relation between tγ and tω. If tω < tγ the fluctuations could be
misinterpreted as a damping. For example see Fig. 5.7 for LiFeAs and for KFe2As2 (for full
U) there is a rapid decay at the beginning, but they get damped over a significantly longer
timescale that the first few femtoseconds would suggest. E.g. for LiFeAs fluctuations occur at
a time-scale of ≈ 1.7fs, whereas the damping is on a timescale of ≈ 9.1fs. Evidently, the shorter
timescale should be considered when interpreting the results of an experimental spectroscopic
probe with different time/energy resolutions. In Fig. 5.6 the retarded spin-spin-commutation
correlation function is shown.
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Figure 5.6: Comparison of the spin-spin-susceptibility in real time with respect to the materials.
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Figure 5.7: Comparison of the spin-spin-susceptibility in real time with respect to the materials.

Since in the linear response theory χ(t = 0) = 0, per construction, the spin-screening
processes (oscillation and damping) can be better visualized in the correlation function F (t),
which is symmetric with respect to time (due to time-translation invariance 〈Ôi(t)Ôj(0)〉 =

〈Ôi(0)Ôj(−t)〉).1
Comparing the fitted time-scales to the Fig. 5.7, we find good agreement regarding tγ . The other
time-scales are less easily estimated from the F (t) data, but nonetheless, an overall qualitative
agreement can be notices. The progressive shift of the peaks (more correlated materials have
their Imχ(ω) peak at lower frequencies) is rather evident from the first row in Tab. 5.1. The
corresponding timescale tmax peak = ~/ωmax peak) is given in the second column. This timescale

1Proves of the symmetries are given in sec. 2.3.1.
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LaFeAsO BaFe2As2 LiFeAs KFe2As2 FeTe

ωmax peak1
[meV] 248.83 157.42 75.15 56.25 24.46

tmax peak1
[fs] 2.64 4.18 8.75 11.70 26.90

tγ1 [fs] 2.32 2.61 - - 23.94
tω1 [fs] 3.40 7.96 1.71 0.571 31.08
tγ̃1 [fs] - - 9.13 12.14 -

ωmax peak2
[eV] - - - - 322.76

tmax peak2
[fs] - - - - 2.03

tγ2 [fs] - - - - 5.92
tω2 [fs] - - - - 1.93
tγ̃2 [fs] - - - - -

Table 5.1: Peak-locations of the MaxEnt data and timescales of the fits for all considered materials
with full U -interaction in the d−model. The subscript 1/2 corresponds to the fist/second peak.

tmax peak is been sometimes used as an rough estimate for the spin-excitation lifetime tγ . Our
detailed analysis shows that tγ sometimes agrees well with tmax peak, but not always. E.g., for
BaFe2As2 the difference is about 60 %. It is unclear why we get reasonably good agreement
between tγ and tmax peak for the other material. The expected material trend is, however, never

In the full U case, we find an interesting behavior. While some materials are in the over-
damped regime (LiFeAs and KFe2As2) the others are not. While in the underdamped regime
the oscillation-timescale is always larger than the damping-timescale, the ratio tω/tγ varies
considerably. In fact, from the table of timescales (Tab. 5.1) and consistent with the numerical
Fourier-transformed results ( Fig. 5.6 and 5.7) we find that damping (width of the peaks) to
be more important than the oscillation frequencies. This reflects the physical situation where
only a small number of oscillations can take place before χ(t) and F (t) are damped completely.
Only on a very short timescales (for some of the materials less than 2 fs in F (t)) a large local
magnetic moment is present.

Another important result, in the view of comparison to experiments, is the estimation of
the local magnetic moment. Since we are in the paramagnetic phase we can assume isotropy in
all directions. In fact, we recall that m = g

√
〈S2
x〉+ 〈S2

y〉+ 〈S2
z 〉 =

√
3 〈S2

z 〉 =
√

3χtot(τ = 0).

However, looking at Tab. 5.2 we observe something peculiar occurs for several materials. The
maximum value of an effective spin in Fe with 6 d−electrons is Smax

eff = 2. This would give
an upper bound to the local magnetic moment of mmax

loc = g
√
Smax

eff (Smax
eff + 1)µB = 2

√
6µB u

4.9µB . In the table, however, the left column (HD
U
) there are values greater than this upper

bound. It should, however, be taken into account that isotropy is actually only given for a
SU(2) symmetric Hamiltonian. For our density-density calculations this symmetry is broken.
In a density-density calculation not all directions are equally treated on, contrary to what
we would expect for a material in the paramagnetic phase. For the least correlated material,
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m=
√

3χ(0) d-model dp-/ dpp-model with FLL DCC Experiment

[µB ] HD
U

HK
U

H fullU
FLL HD

U
HK
U

LaFeAsO 3.88 3.89 3.88 3.29 3.08 0.3-0.6
BaFe2As2 5.48 3.99 3.97 3.72 3.12 0.89

LiFeAs 5.21 3.98 3.99 3.47 3.16 0.9
KFe2As2 6.42 4.20 4.15 3.63 3.28 -

FeTe 6.35 4.53 4.53 4.43 3.52 2.2

Table 5.2: Local magnetic moment m for all materials, models and Hamiltonians in units of µB .
The experimental values shown in the right column are from [14],[15],[16] and[41]. For KFe2As2

no data was found.

LaFeAsO, this issue can be safely neglected since the SU(2) symmetric Kanamori-results are
almost identical to the density-density-results. In fact the difference between the magnetic
moment estimates is minimal: 3.88 instead of 3.89. This posteriori justifies the usage of a
density-density-interaction term for LaFeAsO in the d−only model. Comparing the value for
LaFeAsO to the previous results for a 4-orbital calculation[10], we find a good agreement
(3.68µB vs. 3.88-3.89 µB). For all the other materials considered, however, we extract an
unphysically large local magnetic moment. We must conclude, then, that for these materials
the usage of a density-density interaction was not justified.

In the dp−/dpp−model, the differences between Kanamori- and density-density-interaction
are less severe. No unphysical results occur there, and by comparing the second- with the
third column in Tab. 5.2, we find full U to agree very well with Kanamori-calculations in
the d−model. The dp − /dpp−model gives in general smaller values for the local magnetic
moment that the d−model. This is also consistent with the increased filling in the d−orbitals.
The estimated filling of all materials in the dp−models were larger than 7 electrons, which
correspond, for a perfect (Hund’s) alignment to a maximum spin configuration of Smax = 3/2,
whereas for in the d−only model the filling is 6 electrons, corresponding to Smax = 2.

The last remaining step is the comparison to experiments. Experimentally reported values
for the local magnetic moment for different sources (references in the capture of Tab. 5.2) are
shown. They don’t agree with our results, but our analysis can justify this disagreement. In
fact, on basis of our findings we relate this to the limited energy-range Ω of the INS experiments.
Typical experimental bounds are Ω = 100meV. The rigorous determination of a local magnetic
moment would require instead the integration, not up to 100eV, but up to infinity:

mloc = g

√
3

∫ ∞
−∞

dω
1

π

Imχ(ω)

1− e−βω

This energy limitation is the cause for the difference between our calculated values and the
experimentally found local magnetic moment. Moreover, looking at Tab. 5.2 we find another
interesting feature missing in the previous studies[10]. The relative disagreement between the
experiment and the calculated values decreases the more correlated a material is.

We can explain this by the shift of the peaks: The more correlated a material is, the fur-
ther its spin-excitation peak "move" to lower energies. (see Fig. 5.5). Thus, the more spectral
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weight (of the spin-susceptibility) is shifted into the observational window available to exper-
iments. Our results show that from an qualitative point of view the experimental trend can
be undermined. Moreover, one can now compare our quantitative results Imχ(ω) to the INS
measurements for a further close comparison of the experimental results all materials with the
theoretical calculation up to a finite-cutoff frequency.
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Chapter 6

Conclusions and outlook

Calculating one- and two-particle properties for strongly correlated materials in an ab-initio
approach is a challenging but also valuable task. In fact, especially, in the case of realistic
(multi-orbital) systems, the correlation effects may appear very different at the one- and two-
particle level. This also applies to the systems of interest in this work, the Fe-SC, for which
a full understanding of their unconventional superconductivity and the interplay between spin
and orbital degrees of freedom appears particularly rich and interesting. In factt, especially
In this Master thesis, we first discuss, our DFT+DMFT results for the self-energies Σ(iωn)
and the one-particle spectral function A(ω) which for all the analyzed Fe-based SC (parent
compounds) show a (moderately corrected) metallic behavior. At the two-particle level, on the
other hand, we found the formation of a large local magnetic moment for all materials subject to
dynamically screening processes of different intensities. Comparing the χoff-diag(τ) to χdiag(τ)
we found that the of diagonal terms outweigh the diagonal ones, indicating the importance of
the Hund’s coupling J . This reflects the facts that the physics of the parent compounds of all of
the considered families are well described by a local magnetic moment in a metallic background
of incineration electrons (Hund’s metals)[42].

By analyzing the family-dependent spin-spin susceptibility Imχ(ω) we found the major spectral
weight (of Imχ(ω)) to be located at smaller energies for more correlated materials. Qualita-
tively, this matches very well the proposed solution [10][43][44] for the big moment puzzle (See
section 5) and represents one of the main results of this master thesis. For a more qualitative
analysis, of the underlying physics, we extracted the time-scales from the dissipative part of
the spin-spin-susceptibility. We found that the "damping-timescale" tγ , corresponding to the
peak-width, dominates over the oscillation frequency tω. We showed, moreover, that while
some materials are in the oscillating "underdamped" parameter regime, others are in the "over-
damped" parameter regime, where not even a full spin-oscillation period can be completed.
This would suggest that the picture of a strongly fluctuation long-lived magnetic excitation
should be replaced by a short-lived weakly oscillating magnetic excitation.

The present results evidentially call for an cooperative reexamination of the INS-measurements
for all the Fe-SC and an extension of the measurements of the spin-susceptibility to larger
energy windows.
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