
Efficient Algorithms and Tools for
Practical Combinatorial Testing

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Kristoffer Kleine, BSc.
Matrikelnummer 01226240

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Lektor Dr. Dimitris E. Simos
Mitwirkung: Privatdoz. Dipl.-Ing. Mag. Dr. Edgar Weippl

Wien, 23. Mai 2018
Kristoffer Kleine Dimitris E. Simos

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Efficient Algorithms and Tools for
Practical Combinatorial Testing

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Kristoffer Kleine, BSc.
Registration Number 01226240

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Lektor Dr. Dimitris E. Simos
Assistance: Privatdoz. Dipl.-Ing. Mag. Dr. Edgar Weippl

Vienna, 23rd May, 2018
Kristoffer Kleine Dimitris E. Simos

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Kristoffer Kleine, BSc.
Lindenstraße 3/5, 3071 Böheimkirchen

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 23. Mai 2018
Kristoffer Kleine

v

Danksagung

Mein größter Dank geht an meine Eltern, Karen-Bodil und Michael, für deren immer
präsente Unterstützing. Ohne sie wäre nichts von dem möglich gewesen. Ich war die ganze
Studienzeit in einer sehr priviligierten Position, welche es mir erlaubte sorgenfrei und
konzentriert zu studieren. Dafür werde ich auf immer dankbar sein.

Dimitris Simos verdanke ich meine ganze bisherige wissenschaftliche Karriere. Sein
exzellentes Mentoring und seine Supervision während meiner Transition zu meinem
derzeitigen Forschungsfeld hat ein neues Interesse entfacht mich mit neunen, coolen und
interessanten “Sachen” zu beschäftigen.

Weiters möchte ich meinen großartigen Kollegen Bernhard Garn, Ludwig Kampel und
Manuel Leithner für die vielen aufschlussreichen Diskussionen, immer präsente Hilfsbe-
reitschaft und Freundlichket bedanken.

Schlussendlich möchte ich mich auch bei allen ehemaligen und derzeitigen Kollegen bei
SBA Research bedanken neben denen ich die Freude hatte zu arbeiten. Insbesondere
bei Manuel Wiesinger und Sebastian Neuner für die vielen ausgedehnten Mittage und
interessanten (mehr oder weniger arbeitsrelevanten) Diskussionen.

vii

Acknowledgements

My deepest gratitude goes towards my parents, Karen-Bodil and Michael, for their
life-long support and presence. Without them, none of what I have achieved would have
been possible. Due to them I was in a very privileged position which allowed me to study
care-free and to that I am eternally thankful.

To Dimtris Simos I owe my entire scientific career so far. The excellent mentoring and
supervision of the transition to my current research topics have been crucial in sparking
fresh curiosity in pursuing research into all kinds of new, cool and yet unknown “stuff”.

Furthermore, I want to thank my great colleagues Bernhard Garn, Ludwig Kampel and
Manuel Leithner for many insightful discussions and always being helpful and also nice.

Finally, I would like to thank former and present colleagues at SBA Research with whom
I have had the pleasure of working beside, most notably Manuel Wiesinger and Sebastian
Neuner for many extended lunches and interesting (more or less on-topic) discussions.

ix

Kurzfassung

Kombinatorisches Testen ist eine effektive Teststrategie, welche zunehmend im Software-
testing Bereich Einzug findet. Als eine Black-Box-Test Technik geht es darum, Testfälle
zu erzeugen die in der Lage sind, eine mathematische Garantie der Abdeckung des
Eingaberaumes bereitzustellen während gleichzeitig die Anzahl der Testfälle niedrig
bleibt.

Es wird angenommen, dass die Erzeugung optimaler kombinatorischer Testsätze ein
hartes Optimierungsproblem darstellt. Das hat die Entwicklung von mehreren “Greedy”
Algorithmen angespornt, die Optimalität für Geschwindigkeit eintauschen. Einer der
beliebtesten Vertreter davon ist die In-Parameter-Order Familie von Algorithmen. Diese
Klasse von Algorithmen hat eine breite Akzeptanz im Bereich von Software-, Hardware-
und Sicherheitstesting gefunden, da sie Testsätze für die meisten Instanzen erstellen
können, die in der Praxis auftreten.

In dieser Arbeit wird ein effizientes Design der In-Parameter-Order Algorithmen vorge-
stellt, welches die Zeit und den erforderlichen Speicher drastisch reduziert, um kombi-
natorische Testsätze zu berechnen Das verbesserte theoretische Design wird in einem
Prototypen implementiert und einem Benchmark unterzogen. Außerdem werden die
Algorithmen in einem universellen Test Tool integriert, das für diese Arbeit entwickelt
wird und offen und frei für jedermann zugänglich ist. Die Arbeit untersucht weiters
auch die Auswirkungen von Tie-Breaking, Parameterreihenfolge und Tuplenumerations-
reihenfolge auf die resultierenden Testsätze. Eine umfangreiche experimentelle Studie
zeigt, dass verschiedene Tie-Breaker im Durchschnitt keine signifikanten Auswirkungen
haben und die Ordnung von Parametern in absteigender Domänengröße zu drastischen
Verbesserungen führen können.

xi

Abstract

Combinatorial Testing (CT) is an effective testing strategy which has seen increased
adoption in the field of software testing. As a black-box testing technique it concerns
itself with generating input test cases able to provide mathematical input-space coverage
guarantees while keeping the number of test cases low.

Generating optimal combinatorial test sets is believed to be a hard optimization problem
which has spurred the development of several greedy algorithms which trade-off optimality
for speed. One of the most popular representatives is the In-Parameter-Order family
of algorithms. This class of algorithms has seen a wide adoption in including software,
hardware and security testing as they are able to construct test sets for most instances
occurring in practice.

In this thesis, an efficient design of the In-Parameter-Order algorithms is presented
which drastically reduces the time and required memory to compute combinatorial test
sets. The improved theoretical design is implemented in a prototype and benchmarked
against the state of the art implementation. Furthermore, the algorithms are made
available in a general purpose test generation tool developed for this thesis which is
open and free to use by anyone. The thesis also studies the impact of tie-breaking,
parameter ordering and tuple enumeration order on the resulting test sets. An extensive
experimental study shows that different tie-breakers have no significant impact on average
and that ordering parameters in order of descending domain size can lead to drastically
smaller test sets.

xiii

Publications arisen from this
Thesis

During the work conducted as part of this Master Thesis, the following scientific publica-
tions have been published in the field of Algorithms for Combinatorial Testing:

1. Kristoffer Kleine and Dimitris E. Simos, “An efficient Design and Implementation
of the In-Parameter-Order Algorithm”, in Mathematics in Computer Science,
12(1), pp. 51-67, 2018.

2. Kristoffer Kleine, Ilias Kotsireas, and Dimitris E. Simos, “Evaluation of Tie-breaking
and Parameter ordering for the IPO Family of Algorithms used in Covering Array
Generation”, in IWOCA 2018: 29th International Workshop on Combina-
tional Algorithms, to appear.

xv

Contents

Kurzfassung xi

Abstract xiii

Publications arisen from this Thesis xv

Contents xvii

1 Introduction 1

I The In-Parameter-Order Algorithm 5

2 Background 7
2.1 Preliminaries . 7
2.2 Covering Array Generation Methods 8
2.3 IPO Family of Algorithms . 12

3 Algorithmic Engineering 17
3.1 Algorithmic Design . 17
3.2 Optimizations for the Algorithmic Design of IPOG 21
3.3 Implementation-level Optimizations 24
3.4 Evaluation . 25

4 Algorithm Variations 35
4.1 Tie-Breaking . 35
4.2 Orderings of Parameter and Tuple Enumeration 37
4.3 Evaluation . 38

II A New Tool for Combinatorial Test Set Generation 45

5 Architecture and Design 47
5.1 Core Algorithms . 48
5.2 Command Line Interface . 51

xvii

5.3 Web Frontend . 51

6 Evaluation 59
6.1 Related Combinatorial Testing Tools 59
6.2 Comparison . 61
6.3 Conclusion . 63

7 Conclusion of the Thesis 65

List of Figures 67

List of Tables 69

List of Algorithms 71

Bibliography 73

CHAPTER 1
Introduction

As technology continues to advance and the number of connected devices keeps growing
at a rapid pace [Gar17], so too does the potential for errors in these systems and their
software. A study conducted about the state of the US software industry [Tas02] from
2002 estimates that faults in software incur a cost of tens of billions of dollars (about one
percent of the country’s GDP). Since then, as software has become even more ubiquitous
and its complexity has further increased, this cost has grown as well: in a recent study
by Tricentis, the estimated sum of damages caused by high-impact software faults is
reported to be at least 1.7 trillion USD [Tri18]. This enormous economic incentive has
driven research to provide better means and methods to adequately test these systems.

Many different software testing strategies have been devised through the years [ND12]
and they can roughly be categorized into white-box and black-box testing techniques. The
former, sometimes also called structural testing, bases its testing on the available source
code and aims to cover data and control flows to ensure a sufficient level of confidence
in the quality of the tested software. Black-box testing on the other hand considers the
test subject to have no internal structure and just exercises inputs to the system and
observes its output to determine whether it behaves correctly.

Black-box testing is thus mostly concerned with modelling the input space of the program
and deciding if a test case is considered passing or failing based on the systems behavior
or output. The basis for all black-box testing approaches is a suitable input parameter
model (IPM) [GO07]. Such a model discretizes the input space of the system into separate
parameters and associated values. A test case then constitutes a selection of one value
for each parameter from that parameter’s domain.

One of the main challenges of black-box testing is to derive an effective test set or test
suite. Effective in this instances means to generate test cases which exercise a wide
variety of system states and provide a satisfying coverage of all possible behaviors. The
simplest test generation method is to generate an exhaustive test set, i.e., test all possible

1

1. Introduction

combinations of parameters and their values. However, the number of test cases grows
exponentially with the number of parameters and this method quickly becomes infeasible
in practice.

A simple, yet effective test generation scheme is known as random testing [DN84]. Values
for each parameter in a test case are randomly drawn from the parameters domain. The
domain can either be modelled by the software tester to include domain knowledge (e.g.,
values from real-world data or exemplary invalid values) or be only constrained by the
parameters type (e.g., a signed integer parameter can take values between ´231 and
231´1). Adaptive random testing (ART) [CKMT10] extends random testing by exploring
a more diverse set of test cases by constructing new tests based on their distance (as
defined by some metric) to previously executed test cases. Anti-random testing [Mal95]
constructs test sets such that each new test has the maximum distance to all previous
tests. Each-choice testing [GOA05] ensures that each value of each parameter is used
in at least one test. Base-choice testing [AO94] first defines a base test which contains
default values. These default values are selected by the tester and can be interpreted
as values which result in a normal (expected) system behavior. Further test cases then
vary the value of one parameter while keeping the values of the base test for the other
parameters. Failures in a test case can then most likely be linked to the parameter which
diverges from the base test.

In recent years, combinatorial testing (CT) [KKL13] has emerged as a black-box testing
strategy which can provide mathematical input-space coverage guarantees while keeping
the number of tests low. At its base lies the observation that only a limited number of
parameters of a given system (e.g., a software system) are responsible for triggering a
fault in that system [KWG04]. This means, that if only the interaction of t out of k
(t ăă k) parameters cause a failure, then a test set which covers all t-way interactions
has the same fault detection capabilities as an exhaustive test set. Furthermore, such test
sets, called combinatorial test sets or t-way test sets, increase in size only logarithmically
in relation to the number of parameters.

Consider the artificial example given in Listing 1.1. In this case, a fault is only triggered
by the interaction of the two parameters month and is_leap_year. Other parameters
of the system are not relevant for this failure and exercising those will not provide any
testing benefit.

1 if month == "feb" && is_leap_year {
2 // fault
3 }

Listing 1.1: Fault caused by the interaction of two parameters

Faults caused by the interaction of t parameters are called t-way interaction faults. In
the case of t “ 2, this testing strategy is often called “pair-wise”, “all-pairs” or “2-way
interaction” testing.

2

Browser Adblocker Transport-Security
Firefox true None
Firefox false TLS 1.2
Firefox true TLS 1.3
Chrome false None
Chrome true TLS 1.2
Chrome false TLS 1.3
Edge true None
Edge false TLS 1.2
Edge true TLS 1.3
Safari true None
Safari false TLS 1.2
Safari false TLS 1.3

Table 1.1: Pair-wise (2-way) test set for an end-to-end test of a website

Consider now an end-to-end test of a website. This test requires the tester to manually
access the site via a browser and perform some pre-defined test and verify that the website
works as expected. This kind of testing is often necessary to make sure that the whole
system acts as intended and is hard to automatize since many non-functional observations
(performance, usability, responsiveness, etc.) are needed to judge the functionality of
the tested system. This makes this kind of test very expensive to perform. In addition,
it is desirable to test as many system configurations as possible, at the very least test
some configurations which are used by a significant fraction of the actual user base. In
this fictitious example, such a configuration might include the browser (Firefox, Chrome,
Edge or Safari), whether an ad-blocker is being used and if the website is accessed over a
secure transport link. From this model, a combinatorial test set can be constructed which
consists of 12 tests. See Table 1.1 for a listing of such a test set. This is a significant
reduction from the exhaustive test set (i.e., testing all combinations of parameters) which
would contain 24 tests. In practice, the reduction in the number of tests can be in the
orders of magnitude [KSTJV15].

Motivation

Combinatorial test sets can lead to a significant test set size reduction which decreases
the time needed to test a system since fewer tests need to be executed. Research
into combinatorial test set generation methods (see Section 2.2) has mainly focused on
optimizing the size of produced test sets. Having fewer tests to execute will reduce the
duration of the overall testing cycle. However, more often than not, test execution is fast
enough to not impact overall testing time very much. In these cases, reducing the test set
by a couple of tests will barely be noticeable during testing. Instead, optimizing test sets
can be very costly as test generation time can become the dominating factor [KSTJV15],
[KS17].

3

1. Introduction

The In-Parameter-Order (IPO) family of algorithms, often referred to as IPO strategy,
is a class of algorithms in the field of combinatorial testing which yield combinatorial
test sets whose sizes are competitive with most other approaches. They furthermore
exhibit comparable or lower test set generation times. Research on algorithms in the
IPO family has mainly focused on minimizing the generated test set sizes, but there has
been a distinct lack of work towards on improving test generation efficiency itself.

In this thesis, we describe existing efforts to implement the IPO strategy and propose
significant improvements to the state of the art. These improvements do not influence
the resulting combinatorial test sets while yielding major performance improvements.
These improvements can enable testers to lower total time of testing without sacrificing
benefits that combinatorial testing provides.

Structure of the Work

This thesis is structured as follows: Chapter 2 will give preliminary definitions and
mathematical notation used in the remainder of the thesis. Furthermore, an in-depth
overview and survey of related literature in the field of combinatorial test generation
algorithms as well as a detailed introduction to the In-Parameter-Order family of
algorithms will be given. Chapter 3 describes the implementation aspects of IPO in
general and will propose novel optimizations to the algorithm. Their effectiveness will be
evaluated in an experimental setting. In Chapter 4, design choices of IPO will be discussed
and their influence on the resulting test sets will be evaluated. Chapter 5 presents a new
tool for combinatorial test case generation based on the optimized algorithms described
in this thesis. Its architecture and design will evaluated in Chapter 6. Finally, the thesis
is concluded in Chapter 7.

4

Part I

The In-Parameter-Order
Algorithm

5

CHAPTER 2
Background

The main property of combinatorial test sets, i.e., providing at least one test for each
t-way interaction of parameters, can be translated to the world of mathematics via a
structure called covering array. Each combinatorial test set represents the translation
of a covering array to a useful software testing artifact. One and the same covering
array can be used in multiple testing scenarios, if the systems have the same number
of parameters and values. Thus, it makes sense to abstract this translation away for
the purpose of generating the arrays. In the following chapters, we will mostly concern
ourselves with covering arrays directly with the knowledge that a combinatorial test set
can easily be derived via a simple translation.

2.1 Preliminaries
A covering array (CA) is a mathematical object defined by four positive integers and
denoted as CApN ; t, k, vq. It is an N ˆ k matrix where N is the number of rows, k the
number of columns (often referred to as parameters), t the size of interactions that are
covered and v is the size of the alphabet. The entries of the array are integers from the
set V “ t0, . . . , v ´ 1u. A covering array is defined by its t-covering property:

Definition (t-covering property). For any t-selection of columns, all vt t-tuples between
the selected columns occur at least once in the array.

The parameter t is also called the strength of the CA. Table 2.1 shows an example of a
CAp4; 2, 3, 2q on the left. On the right it can be seen that all 2-tuples are present in the
array.

A mixed-level covering array (MCA) is a generalization of a CA where each column i
has its own alphabet size vi. An MCA is denoted as MCApN ; t, k, pv0, . . . , vk´1qq. The
alphabet for column i is defined as Vi “ t0, . . . , vi ´ 1u. The tuple pt, k, pv0, . . . , vk´1qq

7

2. Background

a b c (a, b) (b, c) (a, c)
0 0 0 (0, 0) (0, 0) (0, 0)
0 1 1 (0, 1) (1, 1) (0, 1)
1 0 1 (1, 0) (0, 1) (1, 1)
1 1 0 (1, 1) (1, 0) (1, 0)

Table 2.1: CAp4; 2, 3, 2q (left) covering all pairs of columns (right)

is referred to as the configuration of an MCA. Note that t ď k and vi ą 0, 0 ď i ă k.
From this point forward, we will use the term CA and MCA interchangeably, if the
distinction is clear from the context.

For a given configuration pt, k, pv0, . . . , vk´1qq there always exists a covering array: the
cross-product between the domains of all k columns is trivially a covering array. Further-
more, there exists an infinite number of covering arrays for any given configuration as any
MCA can be extended with additional rows without destroying its t-covering property.

Definition (Optimal Mixed-level Covering Array). For a configuration pt, k, pv0, . . . , vk´1qq,
an optimal MCA is an MCApN ; t, k, pv0, . . . , vk´1qq which has the minimal number of
rows N . The minimum N is denoted as MCANpt, k, pv0, . . . , vk´1qq.

It has been shown that the size of an optimal covering array has an upper bound which
grows logarithmically in the number of parameters k [Col04]. This is one of the main
benefits that combinatorial testing offers over exhaustive testing where test set sizes grow
exponentially in k.

2.2 Covering Array Generation Methods
The general problem of constructing optimal covering arrays is believed to be a hard
combinatorial optimization problem [Har05],[HR04] as it is tightly coupled with NP-hard
problems [Che07]. As a result, there has been a lot of effort on developing and improving
algorithmic approaches for covering array generation. This section will give an overview of
these methods. The categorization is based on a survey [TJIM13] which studies different
algorithms for CA construction.

Exact Methods

Algorithms knows as exact methods are able to find optimal solutions for a given covering
array configuration. They usually involve a specification of the search space together with
an algorithm to fully explore it. This naturally results in the discovery of the optimal
solution. Since the search space can be very large, these methods are only suitable for
small instances.

In [HPS`04], the authors present a constraint programming (CP) encoding which models
the values of each entry in the array (for a fixed N). If a CA for the given N exists,

8

2.2. Covering Array Generation Methods

the solver will return a solution. Solving a series of such problems with decreasing
N can determine the MCAN for that instance. This work introduces several mod-
elling techniques able to handle MCAs, partial coverage and user-specified constraints.
Symmetry-breaking constraints as well as SAT-encodings of the CP model are presented
and evaluated. [YZ06] base their model on this SAT-encoding and apply a tool to
further break symmetries in the SAT clauses. Additionally, they present an exhaustive
backtracking search technique. They also model the array as an N ˆ k matrix using
constraints and apply several techniques such as symmetry-breaking, tree-search pruning
and constraint propagation to improve the performance. A branch-and-bound technique
for binary (v “ 2) covering arrays is presented in [BRTJRT09]. It also restricts the search
to non-isomorphic (i.e., asymmetric) covering arrays to significantly reduce the search
space. This algorithm is constructive and builds the CA column-by-column.

Further SAT encoding strategies are presented in [LETJRTRV08] and [BMTI10].

Greedy Methods

Greedy methods for constructing covering arrays are among the most popular algorithms
in practice. Due to their heuristic nature, they provide no guarantee for finding optimal
CAs, but their predominant use in practice suggests that the produced quality of test
sets is sufficient in most cases. The greedy methods can roughly be divided into one-test-
at-a-time and one-column-at-a-time algorithms.

One of the first one-test-at-a-time algorithms is the Automatic Efficient Test Generator
(AETG) [CDKP94],[CDFP97]. An important result of this work is a proof that there
exists a greedy algorithm which can construct covering arrays with asymptotic upper
bounds on the number of rows N . In particular, it was shown that N grows at most
logarithmically in k (number of columns) and quadratically in v. The results were shown
for strength t “ 2, however they have been generalized to arbitrary strengths in [BC09].
In [KS] this proof is generalized to mixed-level covering arrays. This algorithm constructs
the covering array one row at a time. In each step, the new row is chosen such that
it covers the most new and so far uncovered tuples. However, the problem of finding
such an optimal row has been shown to be NP-complete [Col04]. In practice, this search
quickly becomes infeasible, since the number of possible rows is equal to vk. Instead, a
candidate set of M rows is generated and best one (i.e., one which covers the most new
tuples) is chosen. The candidate rows are generated by a randomized greedy algorithm
which selects entries for each position in the row such that the greatest number of new
tuples is covered.

One drawback of AETG is that it does not provide a logarithmic upper bound on the
test set size (for increasing k) since the algorithm does not make optimal decisions
in each extension step. Furthermore, the algorithm is randomized which results in a
non-reproducible test set generation.

The deterministic density algorithm (DDA) [BC07],[BC09] is a deterministic one-test-
at-a-time algorithm which is able to provide a logarithmic worst-case guarantee on the

9

2. Background

number of rows generated. The main result of these works is that it is not necessary
to find a new row which covers the most new tuples. Instead, it suffices to find a new
row which covers the average number of uncovered tuples. Finding such a test can be
implemented by computing local density values for each column which are then used to
select a value for each entry in the row. This process is completely deterministic as it
requires no randomization.

The TCG (Test Case Generator) [TA00] algorithm works similar to AETG but uses a
deterministic approach to generate candidate tests.

In [BCC05], the authors propose a general framework for one-test-at-a-time greedy
construction algorithms. Concrete ways to instantiate the framework to obtain generalized
versions of greedy one-test-at-a-time algorithms are discussed and the influence of the
framework’s parameters on the resulting performance is analyzed.

The In-Parameter-Order (IPO) strategy is an one-column-at-a-time greedy construction
algorithm and was first proposed in [LT98]. An initial array of the first t columns is
created and subsequently extended by adding the remaining columns. Each extension is
divided into a horizontal and an optional vertical extension. We discuss the algorithm in
greater detail in Section 2.3.

While the original algorithm was limited to arrays of strength 2 (pair-wise), subse-
quent works have generalized the algorithm to allow the generation of higher strength
arrays [LKK`07] (IPOG) as well as integrated constraint handling in [YLN`13] and
[YDL`15]. In [FLL`08], the authors propose variants of the IPO strategy, namely
IPOG-F, IPOG-F2, by extending the search space in the horizontal extension. In
[LKK`08], the IPOG-D variant is presented which includes a recursive construction
method aimed at reducing the number of combinations to be enumerated.

In [CG09], the IPO strategy is enhanced with a coverage inheritance step which copies an
existing column into the place of a newly added column. This ensures coverage with all
preceding but one column. The missing tuples are then added to complete the covering
array.

Many works have been dedicated to improving parts of the IPO algorithms in order to
minimize covering arrays sizes. In [DLY`15] a graph-coloring scheme integrated into
the vertical extension is proposed to reduce the resulting array sizes. [YZ11] modify
IPOG with additional optimizations aimed at reducing don’t-care values in order to
minimize the number of rows. [GLD`14] and [GLD`15] discuss and evaluate the impact
of tie-breaking on the generated arrays and propose a new tie-breaker which reduces the
generated array sizes.

TConfig [Wil00] constructs larger covering arrays from small seed covering arrays by
concatenation.

10

2.2. Covering Array Generation Methods

Metaheuristic Methods

Metaheuristic algorithms for covering array construction do, similarly to greedy methods,
not provide a guarantee to find an optimal solution, but they often are able to find
approximate solutions close to the optimum.

In his Master’s Thesis [Sta01], Stardom presents Simulated Annealing (SA), Tabu Search
(TS) and Genetic Algorithm (GA) methods for constructing covering arrays. Fundamental
to all of them is a built-in binary search for the minimum N of rows for which a feasible
solution can be found. Initially, the algorithms start with a given upper bound (available
through theory or some other means) and the known lower bound (in this case v2) and
choose N to be the midway point between these two. The binary search executes the
Metaheuristic and adapts the bounds based on the result. The procedure terminates as
soon as both bounds converge.

In [TJRT12], the authors improve the simulated annealing approach by using an efficient
method to construct initial solution whose columns contain a balanced distribution of
values as well as a composed neighborhood function. Three different parallelization
techniques for SA are explored by [AGTJH12b]. First, an independent search runs the
SA algorithm in parallel starting from the same initial solution. At the end, the best
among all local optima is selected. Second, a semi-independent approach exchanges
local information across parallel runs, such that all runs collectively converge towards a
better solution. Lastly, a cooperative search uses asynchronous communication to access
the global search state which can reduce idle times between runs. These parallelization
techniques are further studied by [AGTJH12a]. Several improvements to covering array
construction using SA are presented in [GCD09] and [GCD11].

In [Nur04], the author presents a tabu search approach which starts with a random array
and uses the number of uncovered t-tuples as the cost function. Moves are defined as a
single change to the array which covers an uncovered tuple. The procedure terminates
when a zero-cost solution is found. In that case, the search may be started again,
starting from a smaller array in order to achieve an optimization of the number of rows.
[GHRVTJ12] report different ways to adapt the tabu search procedure such as initial
solution selection, tabu list length and different neighborhood functions and evaluate
them in a case study.

Algebraic Methods

Algebraic methods use mathematical properties of certain sub-classes of covering arrays
or other mathematical structures such as groups or finite fields to construct covering
arrays. Usually these are direct constructions which have the drawback to only exist for a
certain limited number of configurations. Some constructions can also lead to suboptimal
array sizes.

A few examples of such constructions include Roux-type constructions [Slo93],[CK02]
which use small covering arrays as seeds to construct larger covering arrays and Bush’s

11

2. Background

construction [Bus52] for configurations where v is a prime power and k “ v`1. In [GS17],
the authors present an algebraic modelling technique for binary covering arrays which
relies on linear and commutative algebra.

2.3 IPO Family of Algorithms

The In-Parameter-Order (IPO) strategy is a family of algorithms for generating covering
arrays. It was first introduced by [LT98] for generating covering arrays of strength 2
(pair-wise). The basic strategy is depicted in Algorithm 1.

The only input for the algorithm is the configuration of the desired array, i.e., a
triple pt, k, pv0, . . . , vk´1qq, where t denotes the strength, k the number of columns and
pv0, . . . , vk´1q represents the alphabet size of each column. Let the alphabet for each
column be defined as Vi “ t0, . . . , vi ´ 1u. In the case of CAs all columns share the same
alphabet in which case the alphabet size is referred to as just v.

The algorithm incrementally constructs a covering array by extending an intermediate
covering array for a subset of columns (which was obtained in a previous iteration of the
algorithm) with a new column. This process is repeated until every column has been
added. The initial covering array is obtained by computing the cross-product of the first
t columns which is a trivial covering array.

Extending an array by a new column i works by enumerating all t-tuples where one entry
is for the new column i. At first, all tuples are marked as uncovered. In two separate
extension steps, these tuples are added to the array. First, an horizontal extension assigns
values for the new column and second, an optional vertical extensions adds new rows if
the horizontal extension was not able to cover all tuples.

Algorithm 1 IPO Strategy
procedure IPO(t, k, pv0, . . . , vk´1q)

Array Ð cross-product of first t columns
for iÐ t, . . . , k do

HorizontalExtension(i)
if there are uncovered tuples then

VerticalExtension(i)

While the originally proposed IPO strategy was limited to pair-wise covering arrays,
further work has produced variations of the algorithm which are able to generate covering
arrays for arbitrary strengths. The three most prominent representatives of the IPO family
are IPOG, IPOG-F and IPOG-F2. They all employ the same two-dimensional growth
strategy and vertical extension mechanism. The only difference lies in the horizontal
extension step. These differences are further discussed in Section 2.3.1, Section 2.3.2 and
Section 2.3.3.

12

2.3. IPO Family of Algorithms

Algorithm 2 Vertical Extension
procedure VerticalExtension(i)

for all uncovered tuples tuple do
if Drow such that its entries match tuple then

add tuple to Arrayrrows
mark new tuples in row as covered

else
add new row to Array containing only don’t-care values
add tuple to new row

In all three algorithms, after the horizontal extension step, there might still be tuples left
uncovered. In the vertical extension (see Algorithm 2) all remaining uncovered tuples
are added to the array to ensure that the first i columns form a covering array. Tuples
can either be added by appending a new row to the array that contains the tuple or
by finding an already existing row which can fit the tuple. The latter case is possible
since don’t-care values can occur in the array and may be overwritten by a tuple without
destroying the t-covering property. In this case, additional tuples might be covered in
the row to which the tuple is added.

Remark (IPO Extension Mode). Due to its design, IPO is optimally suited to extend
existing covering arrays with additional columns which is not as easily possible with
one-test-at-a-time type algorithms.

2.3.1 IPOG

The IPO strategy has become popular with its instantiation in the IPOG (In-Parameter-
Order-General) [LKK`07] algorithm which is able to generate covering arrays for arbitrary
strengths. It features a top-to-bottom horizontal extension, i.e., the new column is
extended row-by-row from top to bottom. The procedure is depicted in Algorithm 3.

Algorithm 3 Horizontal Extension (IPOG)
procedure HorizontalExtension-IPOG(i)

for row Ð 0, . . . ,Array.rows do
v Ð select value with highest coverage gain
if multiple candidate values then

break tie
Arrayrrowsris Ð v
Mark new tuples as covered
if all tuples are covered then return

For each already existing row in the array, a new value is assigned to column i. Values
are chosen from the columns domain Vi and in each step the coverage gain for all values

13

2. Background

c0 c1 c2 c3

0 0 0 0
0 1 1 1
1 0 1 0
1 1 0

(a) During Horizontal Extension

c0 c1 c2 c3

0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 1
* 0 * 1
* 1 * 0

(b) After Vertical Extension

Figure 2.1: Extending a CAp4; 2, 3, 2q to a CAp6; 2, 4, 2q with new column c3

is computed. Coverage gain refers to the number of tuples that are marked as uncovered
that would be covered should v be chosen for this particular row. The new value is
then chosen such that it has maximal coverage gain. The extension ends when either
all rows have been assigned a value or all tuples have been covered. In the latter case
the extension terminates without having assigned a value to all rows which are left as
don’t-care values as their specific value does not change the t-covering property of the
array. We will denote the presence of don’t-care values with the symbol ˚.

In cases where multiple values provide equal, maximum coverage gain, a strategy must
be chosen to break ties. This is studied in detail in chapter 4.

Example

To illustrate IPOG on an example, consider the generation of a covering array of strength
2 with 4 binary columns shown in Figure 2.1. Assume the algorithm has already generated
a covering array for the first 3 columns and, in the process of extending the array by c3,
has already assigned a value to the first three rows during the horizontal extension. Next,
a value is selected for the fourth row. The coverage gains are computed for each possible
binary value: 0 has a coverage gain of 1 new tuple pc1 “ 1, c3 “ 0q while 1 covers two
tuples, pc0 “ 1, c3 “ 1q and pc2 “ 0, c3 “ 1q and is chosen for the fourth row. Now, as
each existing row has been assigned a value and there are still tuples left which are not
covered by the array, the vertical extension adds the remaining tuples by appending two
new rows containing those tuples. In this case, don’t-care values arise in the columns c0
and c2 since the newly added tuples are only between c1 and c3.

2.3.2 IPOG-F

In contrast to IPOG, IPOG-F [FLL`08] does not assign values to rows from top to
bottom. Instead, it adds an additional dimension to the search space and searches for the
optimal row as well as the optimal value for that row to assign such that the achieved
coverage gain is maximal. This variant has the potential to find smaller covering arrays,
since it has more degrees of freedom when constructing the new column. However, due
to the extended search space and the fact that the array can have many rows, it also

14

2.3. IPO Family of Algorithms

incurs additional complexity. The algorithm can however be implemented more efficiently
using dynamic programming techniques as shown next. The algorithm is depicted in
Algorithm 4. A naive approach would calculate the newly gained coverage for each row
and value pair. This requires to examine all tuples in each row and checking their coverage
status. This requires OpN ˆ

`

i´1
t´1

˘

ˆ viq time. These checks can be completely eliminated
by the following observation: Each row covers exactly

`

i´1
t´1

˘

tuples after extension step
i. During the extension when a row is assigned a value in the new column i, then the
coverage gain is

`

i´1
t´1

˘

´ tc where tc denotes the number of tuples present in the row which
have already been covered previously. Since

`

i´1
t´1

˘

is a constant, it suffices to maintain
the number of covered tuples tc for each row and value combination and we can compute
the best prow, valueq pair in OpN ˆ viq, where N is the number of rows in the array.
tc only needs to be updated when a prow, valueq pair has been selected. This is done
by comparing common tuples between the selected row and all other unassigned rows
and increasing the amount of covered tuples by the amount of shared and newly covered
tuples.

Algorithm 4 Horizontal Extension (IPOG-F)
procedure HorizontalExtension-IPOG-F(i)

Tcrrow, vs Ð 0,@row, v
while D unassigned row do

row, v Ð unassigned-row, value, s.t. tn “
`

i´1
t´1

˘

´ Tcrrow, vs is a maximum
if tn “ 0 then return
Arrayrrowsris Ð v
for all unassigned rows r do

S Ð set of columns where the values for row and r match
for all t´ 1 combinations Λ between columns in S do

if Λ uncovered then
Tcrr, vs Ð Tcrr, vs ` 1

Mark new tuples covered in row as covered

2.3.3 IPOG-F2

While IPOG-F considers the actual coverage to decide on the best value, IPOG-F2
[FLL`08] tries only to estimate the amount of covered tuples. This is an optimization
which allows for a faster implementation compared to IPOG-F, but it sacrifices accuracy.
The estimation is achieved by keeping an estimated value of covered tuples in an array
for each row and value. When a value v is chosen for a row, the estimator is incremented
by the number of shared tuples between that row and all other unassigned rows s. This
is a simplification which assumes that all tuples shared between two rows have previously
not been covered. The pseudo-code for the horizontal extension of IPOG-F2 is shown in
Algorithm 5.

15

2. Background

Algorithm 5 Horizontal Extension (IPOG-F2)
procedure HorizontalExtension-IPOG-F2(i)

Tcrrow, vs Ð 0,@row, v
while D unassigned row do

row, v Ð unassigned-row, value, s.t. tn “
`

k´1
t´1

˘

´ Tcrrow, vs is a maximum
if tn “ 0 then return
Arrayrrowsris Ð v
for all unassigned rows r do

S Ð set of columns where the values for row and r match
Tcrr, vs Ð Tcrr, vs `

`

|S|
t´1

˘

Mark new tuples covered in row as covered

16

CHAPTER 3
Algorithmic Engineering

This chapter will expand on the high-level algorithm descriptions given in Section 2.3
and present algorithms and data structures necessary to implement the IPO strategy.
First, techniques will be described as they are presented in the literature and afterwards
optimizations to them will be proposed. As all three main representatives of the IPO
strategy (IPOG, IPOG-F and IPOG-F2) share most of their implementation characteris-
tics, this chapter will focus on IPOG, but all presented techniques are also applicable to
the other two variants.

3.1 Algorithmic Design
This section describes important aspects and sub-procedures used in IPOG that were
only described from a high-level point of view previously. These techniques have been
described by [LKK`07] and [FLL`08], however, we will give some additional insights
into the subject as a deeper understanding will help motivate the optimizations presented
in Section 3.2.

3.1.1 Tuple Enumeration

Consider a CA with i´ 1 columns already constructed. In extension step i, all t-tuples
between t ´ 1 column selections for the first i ´ 1 columns together with the to be
constructed column i are considered. As the first i´ 1 columns already form a covering
array it is not necessary to consider them in this step. Thus, there are

`

i´1
t´1

˘

t-column
selections which include column i where each selection has as tuples the cross-product of
the individual domains to be covered.

To keep track of all tuples and their meta data, a two-level data structure was proposed
by [LKK`07]. A specific example is depicted in Figure 3.1. For the remaining chapters,
we will refer to the data structure as coverage-map. Note, that the layout of the depicted

17

3. Algorithmic Engineering

data structure differs from the design of [LKK`07] as it relates to how it is stored in
memory, but this difference does not impact the algorithm in any way.

This data structure stores all
`

i´1
t´1

˘

column selections (combinations) in its first level
and each combination points into the second level where all its associated tuples are
stored. The column selections are explicitly enumerated in the beginning of each column
extension.

Tuples are only stored implicitly by means of associating each t-tuple with one bit
of information indicating its coverage status. The tuple itself is implicitly encoded
in the index of the coverage bit. We define this concept mentioned informally in
literature [LKK`07] as a bijective function pack which maps tuples to an index. The
inverse function can be used to instantiate a tuple from a given index. Let the set
of possible tuples for a given column selection ti1, . . . , itu be given by Γ “

Ś

1ďjďt Vij .
pack : Γ Ñ |Γ| is then defined as

packppxi1 , . . . , xitqq “
ÿ

1ďjďt

pxij ¨
ź

1ďlăt´j

vil
q

where vil
refers to the domain size of column il. An example of the mapping between

indices and tuples can be found in Figure 3.1: Each entry in the coverage bit-vector
is labelled by an index which is (implicitly) reset for each new column selection. The
corresponding t-tuple is shown below the index as a column vector of length t.

Not having to store the actual tuples has the main advantage of storing only a constant
amount of memory per tuple (i.e., one bit), regardless of the tuple size t.

3.1.2 Heuristic Value Selection

In the horizontal extension, values for the new column i are selected row-by-row from
top to bottom. IPOG maximizes the coverage gain in each step and selects a value
v P Vi which will cover the most not-yet covered tuples. The algorithm is depicted in
Algorithm 6. For each value v, all possible

`

i´1
t´1

˘

tuples are enumerated and their index
is computed. This index is then checked in the coverage-map and if that tuple is not
marked as covered, the coverage gain is incremented by one. The value with the highest
gain will then be selected for the row. Enumerating all tuples works by iterating over
each column selection in the first level of the coverage-map. The values for the tuple are
then looked up in the corresponding column in the array and are immediately used to
compute the index (Line 6).

After the value with the highest gain is selected, it is assigned to the current row in
column i and the covered tuples are marked in the coverage-map. See Figure 3.2 for an
illustration.

18

3.1. Algorithmic Design

c0 c1 c2 c3 c4 c5

0 0 0 0 0
0 1 1 1 1
1 0 1 0 1
1 1 0 1 0
* 0 0 1 1
* 1 1 0 0

pc0, c5q pc1, c5q pc2, c5q pc3, c5q pc4, c5q

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0
0

0
1

1
0

1
1

0
0

0
1

1
0

1
1

0
0

0
1

1
0

1
1

0
0

0
1

1
0

1
1

0
0

0
1

1
0

1
1

+

t-selections

u coverage bits

)

t-tuples

Figure 3.1: Initial coverage-map for a CApN ; 2, 5, 2q being extended by a sixth binary
column. All coverage bits are zero as no tuples have been covered yet. Items in the
dashed box are only stored implicitly and do not take up any space.

Algorithm 6 Select-Best-Value
1: procedure Select-Best(row)
2: bestÐ undefined
3: for v Ð Vi do
4: gainÐ 0
5: for all column selections tj0, . . . , jt´1u of the first i´ 1 columns do
6: indexÐ packppArrayrrowsrj0s, . . . , Arrayrrowsrjt´1s, vqq
7: if tuple at index is not marked as covered in coverage-map then
8: gainÐ gain` 1
9: if gain higher than previous best or best is undefined then

10: bestÐ vreturn best

19

3. Algorithmic Engineering

c0 c1 c2 c3 c4 c5

0 0 0 0 0 0
0 1 1 1 1 1
1 0 1 0 1 0
1 1 0 1 0 1
* 0 0 1 1
* 1 1 0 0

pc0, c5q pc1, c5q pc2, c5q pc3, c5q pc4, c5q

1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0
0

0
1

1
0

1
1

0
0

0
1

1
0

1
1

0
0

0
1

1
0

1
1

0
0

0
1

1
0

1
1

0
0

0
1

1
0

1
1

Figure 3.2: State of the coverage-map after the first four rows have been assigned a value
for column c5.

3.1.3 Suitable Row Selection

After the horizontal extension, it might be the case that there are still uncovered tuples
left which trigger a vertical extension. This step covers the remaining tuples by appending
new rows to the array. It is important to add as few new rows as possible in order to
obtain small arrays. To facilitate this, IPOG tries to find existing rows in the array which
are able to include uncovered tuples. We introduce the notion of a suitable row to be a
row which can include a tuple without overwriting any entry with a different value, i.e.,
each entry in the tuple is only allowed to overwrite a value in the row if the value at that
position is equal or a don’t-care value.

For each new tuple to be added in the vertical extension, the algorithm will try to find
an existing, suitable row. A naive solution will just check each row in the array and
verify if the row is suitable for the given tuple by comparing each of its entries with the
corresponding entry in the row.

However, we can limit the search to only those rows which contain at least one don’t-care
value since a tuple, which is added in the vertical extension step, does not, by construction
of the algorithm, occur anywhere else in the array. Thus, it can only be added to an
existing row if it overrides at least one don’t-care value. Before the vertical extension,
the array is scanned for rows which contain don’t-care values and these rows will then be
used to check for suitability.

20

3.2. Optimizations for the Algorithmic Design of IPOG

c0 c1 c2

0 1 0
0 * 1
* 1 1
* 0 0

(a) Suitable row candidates

c0 c1 c2

0 1 0
0 * 1
* 1 1
1 0 0

(b) Tuple pc0 “ 1, c2 “ 0q covered in existing row

Figure 3.3: Excerpt from a partial CA during construction.

Please refer to Figure 3.3 for an illustration of these concepts: Figure 3.3a highlights the
candidate rows containing don’t-care values which are able to include uncovered tuples.
Figure 3.3b shows the result after the previously uncovered tuple pc0 “ 1, c2 “ 0q has
been added to the array.

3.2 Optimizations for the Algorithmic Design of IPOG
In this section we will present various optimizations to the IPOG algorithm. The
common trait among these optimizations is that they reduce the amount of unnecessary
computations by taking advantage of different properties inherent in the algorithm or
the data structures it employs. As such, the application of these optimizations does not
change the observable behaviour in any way, i.e., the generated (M)CAs are identical to
the ones produced by the original, non-optimized version of the algorithm.

3.2.1 Simultaneous Coverage Gain Computation for Same-Prefix
Tuples

Recall the implementation of selecting the next best value to cover a given row during the
horizontal extension which was detailed in Algorithm 6. It will compute the coverage gain
for value v P Vi separately and choose the one which maximizes that gain. However, this
algorithm does not take advantage of the fact that the first i´ 1 columns of the array are
constant throughout the horizontal extension. Consider a tuple pxi1 , . . . , xit´1 , xiq for a
t-selection of columns ti1, . . . , it´1, iu. Note that each column selection considered during
the horizontal extension contains the currently being extended column i. As the prefix
pxi1 , . . . , xit´1q is constant for a given row, computing the indices packppxi1 , . . . , xit´1 , vqq
for all possible tuples pxi1 , . . . , xit´1 , vq where v P Vi will result in multiple identical
computations for the first t´ 1 elements.

A more efficient implementation is detailed in Algorithm 7. Here, we take advantage of
the fact that tuples are stored in lexicographically increasing order in the coverage-map.
This implies that tuples with the same t ´ 1-prefix, of which there are vi, are always
located next to each other.

It then suffices to calculate a base index b “ packppxi1 , . . . , xit´1qq of the t´ 1-prefix and
then check the coverage bits b, . . . , b ` vi ´ 1 and increase the coverage gain for those

21

3. Algorithmic Engineering

values where the bit is not set.

Complexity Analysis

In [LKK`07], the authors asses the complexity of determining the value with maximum
coverage gain (Algorithm 6) as Op

`

k
t´1

˘

ˆ vq. However, this ignores the complexity of
packing tuples to their index. As this is feasible in linear time with respect to the
tuple size t, Op

`

k
t´1

˘

ˆ v ˆ tq would constitute a more accurate bound. This algorithm,
however, will perform many redundant index computations for the t´ 1-prefix of each
column selection it considers. Since the first i´ 1 columns are constant throughout the
horizontal extension, the proposed improvement in Algorithm 7 can avoid recomputations
and minimize the time spent on calculating indices by reusing the base index for the
t´ 1-prefix. The complexity is thus lowered to Op

`

k
t´1

˘

ˆ pv ` tqq.

Algorithm 7 Improved-Select-Best-Value
procedure Improved-Select-Best(row)

for v P Vi do
gainv Ð 0

for all column selections tj0, . . . , jt´1u of the first i´ 1 columns do
base_indexÐ packppArow,j0 , . . . , Arow,jt´1qq

for v P Vi do
indexÐ base_index` v
if tuple at index is not marked as covered in coverage-map then

gainv Ð gainv ` 1
return v such that gainv is maximal

3.2.2 t-column selection level search space pruning

We now turn to another optimization in the horizontal extension which enables the
algorithm to skip fully covered portions of the coverage-map. In Algorithm 7, each
column selection is considered once in order to compute coverage gains. However, if such
a column selection is already fully covered, i.e., all of its associated tuples already have
been added to the array, then this column selection will not contribute to the coverage
gain. All such column selections can safely be skipped without changing the outcome of
the horizontal extension.

In order to be able to skip fully covered column selections, we need to keep fine-grained
information about each selection in the coverage map: For each selection in the first level
of the coverage-map we store an integer which holds the number of already covered tuples
for this column selection. Initially this count is zero. Each time we cover a new tuple for
this column selection, the count is increased by one. To check whether a column selection
is fully covered and can be skipped, it suffices to check that the count is equal to the
total number of tuples belonging to this selection.

An example for the state of the enhanced coverage-map can be found in Figure 3.4.

22

3.2. Optimizations for the Algorithmic Design of IPOG

c0 c1 c2 c3 c4 c5

0 0 0 0 0 0
0 1 1 1 1 1
1 0 1 0 1 0
1 1 0 1 0 1
* 0 0 1 1
* 1 1 0 0

pc0, c5q
covered: 4

pc1, c5q
covered: 2

pc2, c5q
covered: 4

pc3, c5q
covered: 2

pc4, c5q
covered: 4

1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0
0

0
1

1
0

1
1

0
0

0
1

1
0

1
1

0
0

0
1

1
0

1
1

0
0

0
1

1
0

1
1

0
0

0
1

1
0

1
1

Figure 3.4: Coverage-map with fine-grained column-selection coverage information during
the extension of column c5. Patterned parts of the map are not consider in future steps
of the algorithm.

3.2.3 Partitioning of Suitability Checks

This section presents an optimization in the search for suitable rows for which a simple
approach was previously described in Section 3.1.3. A key insight into the problem here
is that each tuple considered in extension step i contains exactly one entry for the new
column i, i.e., the entry for column i is defined in every tuple. Checking rows which differ
in position i from the tuple to be added will always result in a non-match.

Leveraging this property, a partition of all candidate rows (i.e. rows with at least one
don’t-care value) can be computed such that each set in the partition contains those rows
which have the same value in column i. By testing only those rows for suitability which
have the same matching value for column i as the to be added tuple, a large amount of
trivial non-matches can be avoided and the total number of suitability checks can be
reduced drastically. This partition can be computed once at the beginning of the vertical
extension. See Figure 3.5 for an example of this partitioning.

The effect of this optimization will become more prominent for instances with growing vi

(1 ď i ď k) as there are always vi partitions.

23

3. Algorithmic Engineering

c0 c1 c2

0 1 0
0 * 1
* 1 1
* 0 0

(a) Candidate rows with c2 “ 0

c0 c1 c2

0 1 0
0 * 1
* 1 1
* 0 0

(b) Candidate rows with c2 “ 1

Figure 3.5: Suitable row candidates, partitioned by the value of c2

3.3 Implementation-level Optimizations

This section describes design considerations aimed at improving the efficiency of any
implementation of IPOG. These optimizations do not change the algorithm, but allow
for better performance by minimizing utilized memory and allocations of the resulting
covering array. Also, a technique is discussed which promotes the parameter t of a
covering array configuration to a compile-time constant.

3.3.1 Memory Optimizations

Optimizing the memory usage is of much importance when dealing with combinatorial
problems [KS98]. Covering array generation is no exception and IPOG, as well as many
other combinatorial algorithms, suffers from increasing memory demands as instance
sizes increase. It is therefore important to manage the available space efficiently.

Memory usage in IPOG is dominated by two data structures, namely the coverage-map
and the actual covering array. Considerations regarding the latter will be discussed in
Section 3.3.2. Some memory saving techniques related to the coverage-map were discussed
in previous sections, most importantly the implicit storage of t-tuples and their coverage
representation by just one bit per tuple. Another possible optimization is to omit the
explicit storage of the currently extended column i in the enumerated column selections.
As column i is part of every column selection in extension step i, the first level of the
coverage-map does not need to store it explicitly in each selection.

From a practical point of view, one key observation is that the number of columns and
their associated domain sizes are usually small and seldom exceed 28 “ 256 [KBD`15].
This allows an implementation to use a single unsigned byte value to store the information.
A fallback to a two-byte representation can easily be provided, should an instance require
more columns or larger domain sizes.

Lastly, an important aspect in the design of data structures is their layout in memory
and how they are accessed. The presented coverage-map uses two contiguous arrays,
i.e., all column selections and tuples are stored adjacent in memory. As both arrays are
accessed sequentially, this yields good spatial and temporal memory locality.

24

3.4. Evaluation

3.3.2 Array Representation

Although IPOG incrementally adds one column at a time it does not make sense to
allocate new space for a column in each extension as it comes as an additional run-time
cost. It is known from the beginning that the resulting array will consist of rows each
having k entries. Therefore, the entire array can efficiently be stored as an N ˆ k matrix
where tests are stored row-wise. Row j then spans from the index j ˆ k to pj ` 1q ˆ k.

As k is fixed new rows can easily be added at the end of the array by allocating space
for k new values. Initially, all values will be set to don’t-care values. As IPOG considers
adding one column at a time, columns beyond the i-th column (i.e. the one currently
being added) will just be ignored by the algorithm at that stage.

3.3.3 Compile-time Specialization

A useful observation about the generation of covering arrays is that in practice the desired
strength is a small integer [KWG04] as the size of the array grows exponentially with t.
We can leverage this fact by parametrizing the implementation by a compile-time integer
representing the strength. The compiler will then generate a specialized version of the
algorithm for all strengths that are chosen to be supported. At run-time, the concrete
specialized implementation for the selected strength is chosen. This optimization allows
the compiler to treat the strength as a constant and can allow additional optimizations.
As an added benefit, the amount of space required to store a column selection can be
determined at compile-time enabling the implementation to use fixed-sized arrays instead
of dynamically sized lists with the benefit of the compiler knowing the exact size to
reserve for each column selection.

3.4 Evaluation
In order to compare and evaluate the proposed optimizations we conducted a set of
experiments aimed at assessing the performance gain each optimization is able to achieve
as well as the impact when all are combined together. Furthermore, we compare the
results against one of the most widely used IPOG implementations, ACTS [YLKK13].

We implemented our algorithmic design of IPOG in Rust, a fast and safe systems-level
programming language. We will refer to our implementation of IPOG as FIPOG (Fast
In-Parameter-Order) for the remainder of this work. The Rust implementation will
further be described in Chapter 5.

We created a baseline implementation, FIPOG-Baseline, which implements IPOG with-
out any of the optimizations proposed in Section 3.2. It does however apply the
implementation-level optimizations discussed in Section 3.3. The baseline and the
IPOG implementation of ACTS are roughly comparable, but note that since ACTS is
implemented in Java it becomes hard to isolate the cause of performance differences
as they can either stem from the choice of language, the compiler and runtime, or the
implementation.

25

3. Algorithmic Engineering

FIPOG
Optimization Base Simult. Skip Partitioned All

Simultaneous Coverage Gain Computation 3 3

t-column selection level search space pruning 3 3

Partitioning of Suitability Checks 3 3

Table 3.1: Test Subject Configurations.

From the baseline implementation, we constructed four additional versions of FIPOG.
FIPOG-Simultaneous, FIPOG-Skip and FIPOG-Partitioned each including one of the
proposed optimizations but not the other two while FIPOG-All includes all three optimiza-
tions. An overview of the configuration of each FIPOG version and which optimization is
applied to which can be found in Table 3.1.

Each of the benchmark subjects as well as ACTS produce exactly the same covering
arrays and thus there is no trade-off between performance and resulting arrays.

3.4.1 Experimental Setup

We selected a diverse set of test instances to assess the performance of each implementation.
These test instances are categorized into two separate sets and are summarized in Table 3.2.
The last column N contains the size of the produced arrays. The first set, CA, is a set
of covering array instances where two of the three parameters of the configuration are
fixed and either v or k is varied. The selection of these instances is aimed at showing the
performance behaviour of the implementations as one parameter grows larger. Selecting
from a wide range of possible values for v and k was done in order to ensure that
the performance for large and small instances of covering arrays can be determined.
The second set, MCA, is a set of mixed-level covering array instances. These present
configurations for MCA instances which have been applied in real-world testing scenarios
to test X.509 certificates [KS17] and cross-site scripting vulnerabilities [BGSW15]. Here,
we test each instance for increasing strength t.

The experiments were performed on a machine with an Intel Core i7-4770 CPU clocked
at 3.40GHz with 24GB of RAM. Our implementations were compiled with Rust version
1.17 and ACTS was executed using Java version 1.8.0_121. We measured the elapsed
time and maximum resident set size (RSS) using the Unix tool time.

3.4.2 Results and Evaluation

In Table 3.3, the results for the instance CApN ; 3, 6, vq with v P t20, 30, 40, 50, 60u are
shown. The first section of the table shows the measured time in seconds it took each
implementation to generate the requested covering array. The second half of the table
shows the speed-up factor of each implementation relative to the FIPOG-Baseline. A
larger factor indicates faster generation time. The speed-up is furthermore visualized in

26

3.4. Evaluation

Group Name Configuration pMqCApN ; t, k, vq N

CA

CApN ; 3, 6, vq

CApN ; 3, 6, 20q 12,602
CApN ; 3, 6, 30q 41,323
CApN ; 3, 6, 40q 96,121
CApN ; 3, 6, 50q 184,904
CApN ; 3, 6, 60q 315,516

CApN ; 4, k, 8q

CApN ; 4, 10, 8q 12,224
CApN ; 4, 20, 8q 20,014
CApN ; 4, 30, 8q 24,805
CApN ; 4, 40, 8q 28,301

CApN ; 5, k, 2q

CApN ; 5, 20, 2q 160
CApN ; 5, 40, 2q 234
CApN ; 5, 60, 2q 279
CApN ; 5, 80, 2q 310

MCA

Coveringcerts
MCApN ; 4, 33, p223384151qq 456
MCApN ; 5, 33, p223384151qq 1,636
MCApN ; 6, 33, p223384151qq 5,385

XSS

MCApN ; 3, 11, p3691111141151231qq 5,626
MCApN ; 4, 11, p3691111141151231qq 60,651
MCApN ; 5, 11, p3691111141151231qq 510,156
MCApN ; 6, 11, p3691111141151231qq 1,850,808

Table 3.2: Benchmark instances

Figure 3.6. The results show that the suitability partition optimization speeds up the
generation the most compared to the other two optimizations and gives a performance
improvement by up to a factor of 6. Keeping track of column selection coverage and
skipping fully covered ones seems to incur a small overhead and yields slightly worse
generation times compared to the baseline. When all three optimizations are combined,
however, the performance gain increases considerably, by up to a factor of 9.6. As these
instances have a large value for v (compared to k and t) the results are explained by
the partition of the search space for suitability checks. The larger v grows the more
partitions exist which cut down the amount of time spent searching for suitable rows.
Furthermore, the speed-up of the baseline implementation over ACTS is almost constant
across different values of v, suggesting that an implementation in Rust instead of Java
will give a performance benefit limited by a constant factor only.

Table 3.4 and Figure 3.7 display the results for the experiments performed for instances
of CApN ; 4, k, 8q with k P t10, 20, 30, 40u. The FIPOG-Simultaneous implementation
improves performance the most by up to a factor of 1.58. The other two optimizations are
either neutral or deteriorate the generation time by almost 20%. Taken in combination,
this leads to an overall slightly worse performance gain than when just run with FIPOG-

27

3. Algorithmic Engineering

FIPOG
Metric v IPOG-ACTS Baseline Simultaneous Skip Partitioned All

Time (s)

20 0.68 0.05 0.04 0.05 0.03 0.02
30 2.90 0.35 0.33 0.36 0.14 0.09
40 10.72 1.44 1.41 1.48 0.42 0.27
50 35.99 4.82 4.71 4.94 1.05 0.65
60 98.60 12.77 12.43 12.99 2.13 1.33

Speedup

20 0.07 1.00 1.25 1.00 1.67 2.50
30 0.12 1.00 1.06 0.97 2.50 3.89
40 0.13 1.00 1.02 0.97 3.43 5.33
50 0.13 1.00 1.02 0.98 4.59 7.42
60 0.13 1.00 1.03 0.98 6.00 9.60

Table 3.3: Results for CApN ; 3, 6, vq

	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

	10

20 30 40 50 60

Sp
ee

du
p	

(la
rg

er
	is

	b
et

te
r)

v

IPOG-ACTS
FIPOG-Baseline
FIPOG-Simultaneous
FIPOG-Skip
FIPOG-Partitioned
FIPOG-All

Figure 3.6: CApN ; 3, 6, vq: speedups relative to baseline

Simultaneous. This is due to the negative performance impact of the FIPOG-Skip
optimization that performs extra work to keep track of covered column selections which
does not translate into an improvement of generation time in this particular instance.

The benchmark results for the instances CApN ; 5, k, 2q with k P t20, 40, 60, 80u are
summarized in Table 3.5 and depicted in Figure 3.8. The test generation times for these
instances improve with both the FIPOG-Simultaneous and FIPOG-Skip implementations.
The latter improves the time by up to 25% while the former achieves up to 18% decreased

28

3.4. Evaluation

FIPOG
Metric k IPOG-ACTS Baseline Simultaneous Skip Partitioned All

Time (s)

10 1.20 0.19 0.16 0.20 0.12 0.09
20 19.99 4.31 2.98 4.99 4.14 2.98
30 148.56 31.52 21.10 38.17 31.08 22.05
40 544.78 125.18 79.02 153.17 124.67 83.16

Speedup

10 0.16 1.00 1.19 0.95 1.58 2.11
20 0.22 1.00 1.45 0.86 1.04 1.45
30 0.21 1.00 1.49 0.83 1.01 1.43
40 0.23 1.00 1.58 0.82 1.00 1.51

Table 3.4: Results for CApN ; 4, k, 8q

	0

	0.2

	0.4

	0.6

	0.8

	1

	1.2

	1.4

	1.6

	1.8

	2

	2.2

10 20 30 40

Sp
ee
du
p	
(la
rg
er
	is
	b
et
te
r)

k

IPOG-ACTS
FIPOG-Baseline

FIPOG-Simultaneous
FIPOG-Skip

FIPOG-Partitioned
FIPOG-All

Figure 3.7: CApN ; 4, k, 8q: speedups relative to baseline

generation times. Furthermore, combined the results show an even larger performance
gain by a factor of at most 1.63. As the strength t and the number of columns k are
quite high in this benchmark (compared to the others), there are up to

`80
5
˘

« 2.4 ¨ 107

column selections to consider. The optimizations which benefit the performance in this
case are both aimed at improving the performance of the horizontal extension which
is dominated by the amount of column selections. Thus, the improved complexity as

29

3. Algorithmic Engineering

FIPOG
Metric k IPOG-ACTS Baseline Simultaneous Skip Partitioned All

Time (s)

20 0.25 0.03 0.03 0.03 0.04 0.03
40 14.20 2.12 1.82 1.81 2.13 1.41
60 119.82 20.37 17.61 16.41 20.42 12.65
80 636.25 100.90 85.79 81.39 100.57 61.93

Speedup

20 0.12 1.00 1.00 1.00 0.75 1.00
40 0.15 1.00 1.16 1.17 1.00 1.50
60 0.17 1.00 1.16 1.24 1.00 1.61
80 0.16 1.00 1.18 1.24 1.00 1.63

Table 3.5: Results for CApN ; 5, k, 2q

described in Section 3.2.1 and the skipping of already covered column selections yield
better results as the number of column selections grow.

	0

	0.2

	0.4

	0.6

	0.8

	1

	1.2

	1.4

	1.6

	1.8

20 40 60 80

Sp
ee

du
p	
(la

rg
er
	is
	b
et
te
r)

k

IPOG-ACTS
FIPOG-Baseline
FIPOG-Simultaneous
FIPOG-Skip
FIPOG-Partitioned
FIPOG-All

Figure 3.8: CApN ; 5, k, 2q: speedups relative to baseline

The result for the Coveringcert and XSS instances can be found in Table 3.6, Figure 3.9a,
Table 3.7 and Figure 3.9b respectively. In the case of XSS there is no result for ACTS at
strength 6 since the benchmark was not finished after being allowed to run for over 24
hours. As these instances represent combinatorial test models used to test real-world
software, it is of particular interest to compare the applicability in the testing cycle. In
many reported combinatorial testing scenarios, ACTS has been used to generate the
test sets (i.e., mixed-level covering arrays). However, as can be seen in the benchmark
results, test generation time can quickly become very large and inhibit fast iteration

30

3.4. Evaluation

FIPOG
Metric t IPOG-ACTS Baseline Simultaneous Skip Partitioned All

Time (s)
4 0.96 0.14 0.11 0.17 0.14 0.13
5 48.61 3.14 2.37 3.49 3.13 2.32
6 1953.59 85.31 53.84 63.51 85.24 38.42

Speedup
4 0.15 1.00 1.27 0.82 1.00 1.08
5 0.06 1.00 1.32 0.90 1.00 1.35
6 0.04 1.00 1.58 1.34 1.00 2.22

Table 3.6: Results for Coveringcerts

FIPOG
Metric t IPOG-ACTS Baseline Simultaneous Skip Partitioned All

Time (s)

3 0.90 0.06 0.07 0.07 0.02 0.02
4 61.30 8.35 8.23 7.81 1.44 1.33
5 5927.00 539.30 540.36 541.09 41.81 40.36
6 N/A 24956.00 24518.00 25705.00 3970.00 2446.66

Speedup

3 0.07 1.00 0.86 0.86 3.00 3.00
4 0.14 1.00 1.01 1.07 5.80 6.28
5 0.09 1.00 1.00 1.00 12.90 13.36
6 N/A 1.00 1.02 0.97 6.29 10.20

Table 3.7: Results for XSS

times, especially when t increases. All versions of FIPOG improve the time to generate a
certain covering array by a very large factor and can even generate a covering array of
strength t` 1 faster than ACTS manages to do for an array with just strength t.

We furthermore measured the peak memory utilization for each implementation and
benchmark and the results are summarized in Table 3.8. The FIPOG implementations
have a similar memory usage profile in most benchmarks which is to be expected as they
differ only in small parts with regards to the data structures they employ. There are
however two cases where a significant difference can be observed. First, the benchmark
CApN ; 5, 80, 2q shows that the additional coverage tracking counters present in the
FIPOG-Skip and FIPOG-All implementations can contribute to the overall memory
usage. Second, the FIPOG-Partitioned and FIPOG-All implementations exhibit a
larger memory footprint in the MCApN ; 6, 11, p3691111141151231qq (XSS) benchmark,
compared to the rest. As this instance produces especially large arrays, it is explained by
the fact, that storing the partition of suitable rows requires more memory than the naive
approach, as some rows may occur in all partitions if they contain a don’t-care value in
the extended column i.

All FIPOG implementations use significantly less memory compared to ACTS, reducing
the amount of allocated memory by up to a factor of 250.

31

3. Algorithmic Engineering

	0

	0.5

	1

	1.5

	2

	2.5

4 5 6

Sp
ee

du
p	
(la

rg
er
	is
	b
et
te
r)

t

IPOG-ACTS
FIPOG-Baseline
FIPOG-Simultaneous
FIPOG-Skip
FIPOG-Partitioned
FIPOG-All

(a) Coveringcerts

	0

	2

	4

	6

	8

	10

	12

	14

3 4 5 6

Sp
ee

du
p	
(la

rg
er
	is
	b
et
te
r)

t

IPOG-ACTS
FIPOG-Baseline
FIPOG-Simultaneous
FIPOG-Skip
FIPOG-Partitioned
FIPOG-All

(b) XSS

Figure 3.9: Speedups relative to baseline

FIPOG
Benchmark IPOG-ACTS Baseline Simult. Skip Partitioned All

CApN ; 3, 6, 60q 2006.72 8.23 8.17 8.22 10.25 10.05
CApN ; 4, 40, 8q 2109.15 12.21 12.27 12.08 12.27 12.25
CApN ; 5, 80, 2q 2633.47 29.79 28.65 38.77 28.83 38.74

Coveringcerts, t “ 6 1636.17 18.69 18.71 18.34 18.74 18.52
XSS, t “ 6 N/A 56.12 56.17 56.16 83.18 79.82

Table 3.8: Peak memory utilization in megabytes for selected benchmarks.

In summary, FIPOG outperforms the IPOG implementation of ACTS in all of our
benchmarks and improves test generation times by up to a factor of 146. On average,
the optimizations improve test generation times by a factor of 3.5 compared to the
FIPOG baseline or 17.5 times compared to ACTS. The average speed-ups are depicted in
Figure 3.10. Additionally, FIPOG saves large amounts of memory compared to ACTS and
lowers the peak memory usage by more than two orders of magnitude on our benchmarks.
It should furthermore be highlighted that all tested implementations produce exactly the
same covering arrays, so there is no trade-off between quality of generated arrays and
performance.

32

3.4. Evaluation

	0

	0.5

	1

	1.5

	2

	2.5

	3

	3.5

	4

Sp
ee

du
p	
(la

rg
er
	is
	b
et
te
r)

IPOG-ACTS
FIPOG-Baseline

FIPOG-Simultaneous
FIPOG-Skip

FIPOG-Partitioned
FIPOG-All

Figure 3.10: Average speed-up for different optimizations

33

CHAPTER 4
Algorithm Variations

This chapter will expand on so-far ignored design choices of the IPO strategy which
can influence the generated covering arrays. Since the algorithms in the IPO family are
greedy, they provide no guarantee that the generated test sets are optimal. Nonetheless,
it is of interest to study and understand the behavior of IPO and optimize parameters to
the algorithm such that better test sets are produced by the algorithms.

The IPO strategy has no explicitly tunable parameters, but the algorithm design itself
can be instantiated in a few different ways which have an impact on the resulting test
sets. In the next sections, we will explore different means of tie-breaking, and study
the impact of the order in which tuples are enumerated as well as the order of column
extensions.

4.1 Tie-Breaking
During the horizontal extension (see Algorithm 3), tie-breaking may be necessary in the
case that two or more values for a row in the new column provide the same, maximum
coverage gain, i.e., cover the most new t-tuples. We will refer to these equally-well suited
values as candidates. Figure 4.1 illustrates the general problem: the heuristic has only
limited local information, i.e., how many new t-tuples each possible value covers in this
row. If the primary heuristic selection criterion is unique (i.e., only one value provides
the best coverage gain) then the algorithm can proceed. Otherwise, a choice must be
made about which of the possible candidates to chose. This selection might have an
influence on future decisions where inferior tie-breaking decisions from previous rows
reduce the potential to cover new tuples at a later stage of the algorithm.

As it would be too costly to try all possible tie-breaking choices (i.e., a tree search
where nodes are tie-breaking decision points), tie-breaking can also only be performed
heuristically. In the following, we will give an overview into possible tie-breaking strategies.

35

4. Algorithm Variations

a b c
0 0 -
0 1 -
1 0 -
1 1 -

a b c
0 0 0
0 1 -
1 0 -
1 1 -

a b c
0 0 1
0 1 -
1 0 -
1 1 -

Brea
k tie w

ith 0

Break tie with 1

Figure 4.1: Tie-breaking possibilities for a binary array. Both values provide equal
coverage gain.

Random Tie-Breaker

The simplest approach is to choose one value out of all candidates at random. This can
be implemented efficiently but it will introduce non-determinism to algorithm and the
generated covering arrays will possibly differ on subsequent runs of the algorithm. This
tie-breaker is oblivious to the previous history of the extension.

Deterministically-seeded Random Tie-Breaker

This is a variant of the random tie-breaker. Here, ties are still broken randomly with the
help of a pseudo-random generator, but the generator is seeded with a constant at the
beginning which results in a deterministic behaviour of the algorithm.

Lexicographic Tie-Breaker

This tie-breaker will always prefer the (lexicographically) smallest candidate if multiple
are available. This can of course introduce a bias towards smaller values in the new
column.

Cyclic Tie-Breaker

This tie-breaker builds upon the lexicographic tie-breaker, but maintains the last chosen
value and starts the search from this one instead of the first. The aim is to remove bias
towards smaller values, however the last chosen value is more likely to be picked again in
the next iteration.

36

4.2. Orderings of Parameter and Tuple Enumeration

Cyclic-next Tie-Breaker

This tie-breaker works exactly as the cyclic tie-breaker, but will start from the next
value following the last chosen value. This tie-breaker was first proposed in [GLD`14]
and [GLD`15].

Value-balanced Tie-Breaker

This tie-breaker keeps track of how many times a value has been used so far in the
extended column. In an optimal situation, each value for the new column occurs exactly
the same amount of times and the aim of this tie-breaker is to mimic this behaviour by
balancing the occurrences of these values. Values are preferred when they so far have
occurred less frequently than other candidate values.

α-balanced Tie-Breaker

This tie-breaker builds upon the value-balanced tie-breaker by not only considering the
balance of values in the new column, but the balance of lower-strength tuples involving
the new parameter. This is based on the notion of α-balance which was introduced
by [KS16] and functions as a tie-breaker in the following way: first, the number of
would-be-covered t´ 1 tuples are compared for each candidate. If there still is a tie, the
next lower strength is tried and so on. If at t “ 1 there still exists a tie, then the smallest
value will be preferred.

4.2 Orderings of Parameter and Tuple Enumeration

4.2.1 Tuple Enumeration Order

In the vertical extension, uncovered tuples are added one-by-one to the array. So far it
has not been studied, if different enumeration orders of these tuples have any impact
on the resulting arrays. We propose, besides the common lexicographically-ascending
(tuples of small lexicographical order first) order, the reverse, i.e., from lexicographically
largest to smallest. Furthermore, switching between the orderings every other vertical
extension could prove beneficial to achieve smaller arrays.

4.2.2 Parameter Ordering

One simple option to influence the covering array generation is the order in which columns
are extended. Since the covering property is not affected by column permutations one
can permute the configuration before starting the generation and apply the reverse
permutation afterwards. Note that this is only useful for mixed-level covering arrays.
Informal consensus is that the IPO strategy generates smaller arrays when columns are
sorted by decreasing alphabet size, but, to the best of our knowledge, this has so far not
been subject to an experimental evaluation.

37

4. Algorithm Variations

While the number of column permutations in general is too large in practice, we propose
to investigate the following:

Ascending Sort columns with increasing alphabet size from smallest to largest

Descending Sort columns with decreasing alphabet size from largest to smallest

Alternating Intersperse large and small columns and switch between large and small
columns from one extension to the next. We propose two variants. The first starts
with the smallest, followed by the largest and thirdly the second-smallest, etc. The
second starts with the largest, followed by the smallest and so on.

4.3 Evaluation

4.3.1 Setup

To evaluate the different algorithm configurations we chose a set of (M)CA instances based
upon the benchmarks used in [BCC05] to study the behaviour of greedy, one-test-at-a-time
MCA generation algorithms. The instances are summarized in Figure 4.2a.

Instances
104

340

34

64

34, 45

66, 55, 34

78, 220

51, 38, 22

510, 210

82, 72, 62, 52

101, 91, 81, 71, 61, 51, 41, 31, 21, 11

(a) Set of benchmark (M)CA instances

Tie Breakers Tuple Orders Parameter Orders
Alpha-Balanced Alternating Alternating-large
Cyclic Ascending Alternating-small
Cyclic-next Descending Ascending
Deterministic Descending
Lexicographic
Random
Value-Balanced

(b) Configuration options for IPO

Figure 4.2: Benchmark Setup

We implemented all IPO variants in Rust which is further described in Chapter 5. The
particular algorithm as well as the tie-breaker, tuple order and parameter ordering are
selectable via a configuration option at runtime. This results in 63 distinct algorithm
configurations for CA generation and 252 distinct configurations for MCA generation.
The configuration options are summarized in Figure 4.2b.

Each algorithm configuration was used to generate (M)CAs for the selected benchmark
instances for strengths between 2 and 4. The experiments were conducted on the Graham

38

4.3. Evaluation

IPOG IPOG-F IPOG-F2
Tie Breaker

Alpha-balanced 1.0128 ˘0.0759 0.9632 ˘0.0619 1.0572 ˘0.0662

Cyclic 1.0175 ˘0.1394 0.9461 ˘0.0678 1.0379 ˘0.0867

Cyclic-next 0.9721 ˘0.0858 0.9403 ˘0.0799 1.0296 ˘0.1012

Deterministic 0.9920 ˘0.0429 0.9560 ˘0.0539 1.0500 ˘0.0664

Lexicographic 1.0140 ˘0.0764 0.9651 ˘0.0687 1.0580 ˘0.0673

Random 0.9933 ˘0.0465 0.9548 ˘0.0545 1.0497 ˘0.0673

Value-balanced 0.9951 ˘0.0630 0.9590 ˘0.0563 1.0549 ˘0.0645

Tuple Order

Alternating 0.9950 ˘0.0656 0.9533 ˘0.0580 1.0454 ˘0.0681

Ascending 0.9987 ˘0.0663 0.9582 ˘0.0626 1.0584 ˘0.0794

Descending 0.9944 ˘0.0630 0.9530 ˘0.0561 1.0432 ˘0.0644

Parameter Order

Alternating-large 0.9962 ˘0.0309 0.9529 ˘0.0268 1.0503 ˘0.0510

Alternating-small 1.0082 ˘0.0374 0.9667 ˘0.0336 1.0763 ˘0.0525

Ascending 1.0285 ˘0.0443 1.0006 ˘0.0440 1.0870 ˘0.0519

Descending 0.9463 ˘0.0791 0.8910 ˘0.0442 0.9952 ˘0.0793

Table 4.1: Relative improvement for different configurations compared to the mean

cluster of the Shared Hierarchical Academic Research Computing Network (SHARCNET).
In the following, we discuss selected and aggregated results, but we provide the full data
set as well as visualizations on a dedicated website1 for the interested reader.

4.3.2 Results

In order to meaningfully compare different configurations options across instances we
first normalized the computed covering array sizes to a relative measure representing the
deviation of the mean. We computed the mean for each instance and based on the result
computed the relative improvement or degradation for each individual run. This value
shows how much better or worse one configuration performs in comparison to the other
ones. The results are summarized in Table 4.1 and are visualized in Figures 4.3a and
4.3b.

In general, IPOG-F produces the smallest arrays, followed by IPOG and IPOG-F2.
Comparing the results for the different tie-breakers, no one choice seems to impact array
sizes significantly, however, the Cyclic-next tie-breaker overall yields the best results.
It, together with the Cyclic tie-breaker is able to generate some arrays with up to 50%
less rows. However, the Cyclic tie-breaker exhibits extreme results in the other direction

1https://matris.sba-research.org/data/iwoca2018

39

https://matris.sba-research.org/data/iwoca2018

4. Algorithm Variations

and in corner-cases with array sizes exceeding 50% larger than the mean are produced.
This is also the case for the Alpha-balanced and Lexicographic tie-breaker.

Judging from the results in Table 4.1, the order in which tuples are enumerated does not
seem to affect the resulting covering array size in any significant way.

The largest impact can be attributed to the sorting order of columns. Sorting in descending
order of alphabet size leads to significantly smaller covering arrays, especially in the case
of IPOG-F. Alternating between large and small columns has some impact and is better
than sorting columns in ascending order.

0.5

1.0

1.5

IPOG IPOG−F IPOG−F2
Algorithm

R
el

at
iv

e
si

ze
 c

om
pa

re
d

to
 m

ea
n

tie.breaker Alpha−balanced
Cyclic

Cyclic−next
Deterministic

Lexicographic
Random

Value−balanced

(a) Tie-breakers

0.5

1.0

1.5

IPOG IPOG−F IPOG−F2
Algorithm

R
el

at
iv

e
si

ze
 c

om
pa

re
d

to
 m

ea
n

parameter.order Alternating−large Alternating−small Ascending Descending

(b) Parameter orders

Figure 4.3: Relative improvement compared to the mean

Selected benchmark results. Aside from the general performance, for specific in-
stances the various configuration options can have differing impact. In the following, we
discuss some results for selected instances. In order to meaningfully analyze the results
we have grouped the results by both the algorithm (i.e., IPOG, IPOG-F or IPOG-F2)
and one of either tie-breaker, tuple-order or parameter-order. Inside each group we have
computed the mean and the standard deviation. The results show absolute values instead
of relative difference.

340 (t “ 3)

The results of this experiment are summarized in Table 4.2 and the generated covering
array sizes per tie-breaker are visualized in Figure 4.4a. IPOG-F produces the smallest
arrays and shows very low variance when comparing different tie-breakers. In contrast,
the results for IPOG are much more dependent on the tie-breaker. Here, the best results
are obtained with the Value-balanced tie-breaker which produces arrays 16% smaller
than when using the Alpha-balanced tie-breaker. IPOG-F2 shows no significantly
differing behavior with different tie-breakers. Furthermore, the order in which tuples are
enumerated have no major impact.

40

4.3. Evaluation

●

●

120

130

140

150

160

IPOG IPOG−F IPOG−F2
Algorithm

C
ov

er
in

g
A

rr
ay

 S
iz

e
(N

)

tie.breaker
Alpha−balanced

Cyclic

Cyclic−next

Deterministic

Lexicographic

Random

Value−balanced

3^40 t=3 − Tie−breaker

(a) 340 (t “ 3)

●●

1000

1100

1200

1300

IPOG IPOG−F IPOG−F2
Algorithm

C
ov

er
in

g
A

rr
ay

 S
iz

e
(N

)

tie.breaker
Alpha−balanced

Cyclic

Cyclic−next

Deterministic

Lexicographic

Random

Value−balanced

10^4 t=3 − Tie−breaker

(b) 104 (t “ 3)

Figure 4.4: Results for different tie-breakers

340 t “ 3 104 t “ 3
IPOG IPOG-F IPOG-F2 IPOG IPOG-F IPOG-F2

Tie Breaker

Alpha-balanced 140.0 ˘3.5 116.7 ˘0.6 151.3 ˘4.9 1193.0 ˘8.7 1145.3 ˘2.9 1146.7 ˘4.0
Cyclic 135.0 ˘2.0 116.7 ˘0.6 147.3 ˘4.2 1000.0 ˘0.0 1000.0 ˘0.0 1000.0 ˘0.0

Cyclic-next 123.3 ˘0.6 115.7 ˘1.2 149.7 ˘3.8 1000.0 ˘0.0 1000.0 ˘0.0 1000.0 ˘0.0
Deterministic 126.7 ˘0.6 115.3 ˘0.6 150.3 ˘3.8 1135.3 ˘1.2 1102.3 ˘0.6 1102.3 ˘0.6
Lexicographic 140.7 ˘2.9 116.3 ˘0.6 154.0 ˘5.3 1228.0 ˘0.0 1288.0 ˘0.0 1288.0 ˘0.0

Random 125.9 ˘1.3 116.4 ˘1.0 148.9 ˘2.7 1136.2 ˘7.0 1101.4 ˘4.3 1102.2 ˘3.7
Value-balanced 122.3 ˘1.5 116.0 ˘1.7 148.7 ˘4.5 1186.0 ˘3.5 1085.7 ˘0.6 1085.7 ˘0.6

Tuple Order

Alternating 127.6 ˘5.7 116.2 ˘0.9 147.4 ˘2.3 1130.0 ˘58.2 1102.4 ˘62.1 1103.7 ˘62.1
Ascending 128.7 ˘6.4 116.5 ˘1.0 152.6 ˘3.0 1131.9 ˘59.2 1102.1 ˘61.9 1102.1 ˘61.9

Descending 127.6 ˘4.8 116.1 ˘1.0 148.3 ˘2.5 1132.6 ˘58.2 1102.1 ˘62.0 1102.6 ˘62.2

Table 4.2: Results for CA experiments

104 (t “ 3)

The results for this experiment can be found in Table 4.2 and a comparison of the
tie breakers can be found in Figure 4.4b. Here, the configurations which use either
the Cyclic or Resuming tie-breakers manage to generate an orthogonal array (since
the size is equal to vt) for the three algorithms. Interestingly, the Lexicographic
tie-breaker, although similar to the other two, performs the worst in all cases with almost
30% larger array sizes. As before, in this case the tuple order has no real impact.

41

4. Algorithm Variations

●

●

●

●

●
●

●

●●

●

●

●

450

500

550

IPOG IPOG−F IPOG−F2
Algorithm

C
ov

er
in

g
A

rr
ay

 S
iz

e
(N

)
parameter.order Alternating−large Alternating−small Ascending Descending

6^6,5^5,3^4 t=3 −

(a) 665534 (t “ 3)

●

●
●
●

●

●
●
●

●●

●

●●

●

●

●

●

●

●●●
●
●●

●

●

●

●
●

●

●

300

320

340

360

380

IPOG IPOG−F IPOG−F2
Algorithm

C
ov

er
in

g
A

rr
ay

 S
iz

e
(N

)

tuple.order Alternating Ascending Descending

5^10,2^10 t=3 − Tuple−order

(b) 510210 (t “ 3)

Figure 4.5: Results for different parameter orders (left) and tuple orders (right)

665534 (t “ 3)

For this instance (see Table 4.3), there is no large variance when comparing different
tie-breakers. IPOG-F produces the smallest arrays, while IPOG-F2 produces the largest.
Here, the parameter order has a measurable impact and ordering the parameters by
descending size can improve array sizes by up to 5% in this case. These results are
visualized in Figure 4.5a.

510210 (t “ 3)

The results for this instance are described in Table 4.3 and a comparison of different
tuple orders is visualized in Figure 4.5b. The tuple order seems to only make a difference
for IPOG-F2, where both the Alternating and Descending order outperform the
Ascending order. This is also the case in instance 665534 (t “ 3).

42

4.3. Evaluation

665534t “ 3 510210t “ 3
IPOG IPOG-F IPOG-F2 IPOG IPOG-F IPOG-F2

Tie Breaker

Alpha-balanced 470.5 ˘13.6 441.9 ˘17.1 533.8 ˘18.2 316.0 ˘5.2 305.5 ˘5.4 353.5 ˘7.8
Cyclic 465.8 ˘14.1 443.9 ˘16.3 532.3 ˘16.4 331.1 ˘20.7 308.2 ˘1.6 344.2 ˘14.0

Cyclic-next 464.7 ˘12.3 444.0 ˘18.1 529.0 ˘23.8 316.3 ˘4.4 307.6 ˘3.9 352.0 ˘11.8
Deterministic 465.2 ˘13.9 442.8 ˘20.0 532.1 ˘15.8 316.2 ˘3.5 304.1 ˘6.0 355.0 ˘7.7
Lexicographic 471.6 ˘9.8 442.3 ˘17.2 525.5 ˘26.1 316.9 ˘4.0 306.2 ˘7.0 355.0 ˘8.3

Random 465.2 ˘13.2 443.5 ˘17.3 533.8 ˘16.9 315.4 ˘4.1 304.6 ˘5.5 353.8 ˘8.5
Value-balanced 462.9 ˘14.2 443.7 ˘19.3 530.8 ˘16.1 314.6 ˘4.3 304.8 ˘5.7 352.5 ˘6.6

Tuple Order

Alternating 466.2 ˘14.0 442.5 ˘17.9 527.6 ˘18.7 316.6 ˘7.9 304.7 ˘5.6 349.8 ˘6.6
Ascending 466.3 ˘14.8 444.6 ˘19.1 542.5 ˘20.2 317.0 ˘7.0 305.4 ˘5.5 359.9 ˘10.2

Descending 464.9 ˘10.3 443.0 ˘14.9 527.7 ˘8.0 316.0 ˘7.4 305.3 ˘5.3 349.7 ˘6.1

Parameter Order

Alternating-large 465.1 ˘5.1 440.4 ˘2.6 522.5 ˘8.0 317.8 ˘2.4 307.2 ˘2.4 348.3 ˘3.7
Alternating-small 467.0 ˘3.4 442.9 ˘3.0 534.7 ˘7.9 317.7 ˘2.2 308.1 ˘2.2 353.2 ˘5.1

Ascending 482.8 ˘6.3 468.8 ˘5.4 550.8 ˘20.7 317.6 ˘2.6 307.5 ˘2.5 360.4 ˘9.3
Descending 448.4 ˘4.1 421.4 ˘3.6 522.4 ˘13.9 313.2 ˘13.8 297.7 ˘5.4 350.7 ˘11.4

Table 4.3: Results for MCA experiments

43

Part II

A New Tool for Combinatorial
Test Set Generation

45

CHAPTER 5
Architecture and Design

Having fast and efficient algorithms available for combinatorial test set generation is only
one precursor for an adoption by the wider software testing community. It is almost
equally important to provide a user-friendly and accessible interface to the underlying
algorithms in order to make them easy to use and lower the entry barrier.

This chapter introduces CAgen, a new tool for combinatorial test set generation, built on
top of the Fast-In-Parameter-Order algorithm (FIPO) implementations presented
in the previous chapters. We will give an overview into the design decisions and present
the technical architecture of the tool.

Several considerations relating to the architecture are based on shortcomings of existing
combinatorial testing tools. In the following, the key problems and potential solutions
will be discussed. In Chapter 6 these design choices will be compared to existing tools in
this area.

The first major decision is that of software distribution: at the end of the software
development cycle a method of how to deliver the software artifacts to the end-user must
be chosen. Three of the most common approaches are to directly provide the source code,
pre-compiled binaries or offer a service over the internet. The first option has the benefit
of being the simplest for the developers since the source code is already available as part
of the project and must just be made accessible to the user. The drawback to this is that
the user needs to have enough technical expertise to download and build the runnable
software artifacts and this is not useful for a wide range of users with insufficient technical
background. The second option is to provide binary or otherwise directly executable
artifacts of the software which can easily be installed by any user for the targeted
platforms. Popular examples are downloads via app-stores or package repositories used
in many Linux distributions. This method requires more work from the developer as
each targeted platform may need different preparations to package the software artifact.
For example, supporting multiple Linux distributions requires the developer to prepare

47

5. Architecture and Design

the software in different package formats depending on the distribution. For instance,
a Debian package is not directly suitable to run on a Redhat-based distribution. The
last option, to offer a service reachable over the internet, has seen wide-spread adoption
in the last decade. Here, a server provides an accessible interface which can be used by
clients (often website-based, accessible via the browser). This has several advantages:
most importantly it becomes easier to perform updates, as the server is usually under
the control of the vendor and the source code or binary executable is not exposed to the
user which might be preferable due to copyright considerations. One disadvantage is
that server resources need to be provided which incur operation costs such as the cost
for server operation and maintenance.

Another consideration is that of user privacy. As the targeted audience are software
testers who might be testing internal services and software, care must be taken that
intellectual property rights are not violated by testers using CAgen. Test models used
to derive combinatorial test sets might contain sensitive information and it should not
leave the testers device.

Lastly, for any tool to be useful, it must be user-friendly and allow the user to do its
intended task without unnecessary hurdles.

5.1 Core Algorithms

This section will outline some concrete design decisions of the core FIPO algorithms.

The choice of the programming language for implementing the algorithms was guided by
the need for a high-performance solution which keeps the memory footprint low. For this
purpose, Rust1 was chosen since it provides several key properties.

The main advantage is that Rust’s focus on systems-level programming gives the developer
fine-grained control over data structure layout in memory. This control is safe-guarded
by the compiler which enforces memory safety and thus prevents errors often occurring
in languages such as C and C++. Compared to other memory-safe languages, the
enforcement happens entirely at compile-time such that it incurs no additional run-time
overhead. The control over the memory layout allows for a faithful implementation of
the coverage-map data structure as described in Figure 3.4.

The Rust project is structured into three main parts. Figure 5.1 shows the relationships
of the different modules. The top-level crate (i.e., a Rust package) is a library named
fipo-core and contains the implementation of the FIPO algorithms and the necessary
data structures. The crate is further structured into modules. The base is the model
module, which contains common data types used by all other modules such as represen-
tations for the Parameter and Value types. The parser module provides parsers for
common input formats used by other combinatorial testing tools. The coverage-map
module provides implementations for the coverage-map data structure which in turn is

1https://www.rust-lang.org/en-US/

48

https://www.rust-lang.org/en-US/

5.1. Core Algorithms

main

algorithm coverage-map

model

parser

fipo-core
lib

fipo-cli
wasm

fipo-wasm

Figure 5.1: Rust project structure of CAgen tool

used by the algorithm module to implement the actual algorithm. The lib module is
the public interface of the crate.

Listing 5.1 depicts the interface of the core FIPO algorithm. It provides two methods
for the horizontal and vertical extension which each are implemented by specific imple-
mentations (FIPOG, FIPOG-F, etc.). Note that both are parameterized by T which is
a type-level representation of the strength. Since test set sizes grow exponentially as
the strength increases, the parameter t is usually a small integer. We can utilize this
and specialize the algorithm for a subset of integers such that the compiler can treat the
strength as a constant. This allows for additional optimizations which can be beneficial to
the algorithms performance. Some optimizations enabled by this representation include:

1. Compile-time sized t-selections: selections take up a constant amount of space
in memory and can be tightly packed in memory without necessary meta-data to
store the size

2. Constant iteration bounds: The loop computing indices for tuples (see definition
of pack in Section 3.1.1) can be unrolled, eliminating the inner-most loop of the
algorithm altogether

49

5. Architecture and Design

The compiler will provide a monomorph instantiation of each method tailored specifically
to the choice of strength t. Initially the non-generic method generate_array is called,
which takes the strength as a normal parameter. Then, the specialized implementation is
dynamically selected based on t which now becomes part of the type.

1 trait CoreIpoAlgorithm {
2 fn extend_horizontal<T>(&mut self, column: usize)
3 where T: Unsigned;
4

5 fn extend_vertical<T>(&mut self, column: usize)
6 where T: Unsigned;
7

8 // non-generic
9 fn generate_array(&mut self, strength: usize) {

10 // select implementation with given strength
11 // -> strength becomes part of the type
12 match strength {
13 1 => self.generate_with_strength::<U1>(),
14 2 => self.generate_with_strength::<U2>(),
15 [..]
16 _ => panic!(
17 format!("t={} not implemented", strength)
18),
19 };
20 }
21

22 fn generate_with_strength<T>(&mut self)
23 where T: Unsigned
24 {
25 // from here on, the strength is part of the type
26 }
27 }

Listing 5.1: Core IPO trait (interface) specification

Since Rust (at the time of writing) does not support compile-time integers, we must fall
back to type-level encodings. The typenum2 crate is one popular implementation of
this scheme. The Unsigned type is the main type defined by this crate for unsigned
type-level integers and U1 and U2 are types representing 1 and 2 respectively.

2https://crates.io/crates/typenum

50

https://crates.io/crates/typenum

5.2. Command Line Interface

Usage: fipo-cli

Options:
-h, --help print help
-t, --strength Strength
-i, --instance Instance to generate an array for. Can be a

path to a ACTS configuration file or a text
representation in either linear form
(e.g., 2,2,3,2,4,5) or exponential notation
(e.g., 2^3,3,4,5)

-a, --algorithm Values: ipog, ipog-f, ipog-f2
-p, --print Print CA
-q, --quiet Print nothing except size
-r, --header Output a header row

Figure 5.2: Command-line arguments for fipo-cli

5.2 Command Line Interface

A separate crate (fipo-cli) is built on top of fipo-core. It provides a simple
command-line interface to the FIPO test generation algorithms. As shown in Figure 5.1,
fipo-cli only consists of a main module. This module is responsible for parsing
command line arguments, reading input files and invoking the correct test generation
functions. After test generation, the test set is printed to “stdout” according to the
formatting options provided by the users. Figure 5.2 shows the available command line
arguments of fipo-cli.

In Figure 5.3 an example run of the tool is shown.

The main use-case for the command-line interface is to use it as a test generation service
which can be embedded into a larger testing work-flow. The interface is kept simple
and only allows for the generation of mixed-level covering arrays (MCAs). As such, no
explicit test translation (i.e., using model values from an IPM) is provided by fipo-cli,
but this is trivial to implement by any simple substitution. As test translation often
requires additional steps to convert abstract (CA-level) test sets into concrete test sets it
makes sense to separate these two parts.

5.3 Web Frontend

This section introduces CAgen, a new tool for combinatorial test set generation. It is a
web frontend for the core FIPO algorithms described previously. The general architecture
can be seen in Figure 5.4. The main distinguishing architectural feature is the complete
lack of a backend service. The application runs entirely on the client side (i.e., in the
user’s browser) and only needs a web-server capable of serving static files. The advantages

51

5. Architecture and Design

$ fipo-cli --instance 2^4,3,4 --strength 2 --print --header
p0,p1,p2,p3,p4,p5
0,0,0,0,0,0
1,1,1,1,1,0
1,0,1,0,2,0
0,1,0,1,0,1
0,0,1,0,1,1
1,1,0,1,2,1
1,1,1,0,0,2
0,0,0,1,1,2
0,*,*,*,2,2
1,1,1,0,0,3
0,0,0,1,1,3

,,*,*,2,3

Figure 5.3: Example output of fipo-cli for a CAp12; 2, 6, p24, 31, 41qq

Application State
(Vuex)

fipo-wasm
(WebAssembly)

WebWorkerfipo-js-interface

Handle async calls
Manage request queue

generate
parse

worker-ready
result-ready

Layout

Vue.js
SemanticUI

Figure 5.4: Architectural overview of CAgen

of this design will be discussed further in the next chapter. The tool is available for free
for anyone to use at https://matris.sba-research.org/tools/cagen.

The web frontend is designed as a single-page application utilizing the Vue.js3 Javascript
framework. The layout of the application is written in SemanticUI4 which provides a
wide range of layout options and user interface elements. The application uses Vuex5 to
manage the central application state. The general work-flow is based around a global

3https://vuejs.org/
4https://semantic-ui.com/
5https://vuex.vuejs.org/en/intro.html

52

https://matris.sba-research.org/tools/cagen
https://vuejs.org/
https://semantic-ui.com/
https://vuex.vuejs.org/en/intro.html

5.3. Web Frontend

Figure 5.5: Navigation sidebar of CAgen

state object which is mutated via pre-defined actions (mutations). These state changes
then trigger an update to the current view. This way, presentation and data manipulation
can be cleanly separated. In CAgen, the central state revolves around the management of
“workspaces” which are encapsulations of user-defined input parameter models (IPMs).

Users can define new, edit existing and upload IPMs from existing files using a Drag&Drop
mechanism. Figures 5.6 and 5.7 show screenshots of these parts of the tool. Parameters
can easily be added to the current IPM and different frequently used types are available
such as boolean, enumerative and ranged parameters. Additionally, multiple parameters
can be added at once by just supplying the number and their domain sizes in exponential
notation which is often used for specifying the configuration of an MCA. For example,
“24, 3, 62” represents four binary parameter, one ternary parameter and two parameters
with six possible values.

Calling Rust via WebAssembly

Rust has support for WebAssembly compilation in its nightly compiler via the “wasm32-
unknown-unknown” compilation target. WebAssembly is a standardized binary format
for executable code supported by all major browsers. It is intended to be a common
compilation target for a variety of source languages such that programs written in them
can then directly be executed in the browser. This of course limits the programs being
compiled to does which do not rely on platform specific APIs (e.g., access to the file
system). In the case of FIPO, this is no limitation and as illustrated in Figure 5.1, we

53

5. Architecture and Design

Figure 5.6: Workspaces encapsulate different input parameter models

Figure 5.7: Parameters can be added, edited, and deleted

54

5.3. Web Frontend

simply provide a dedicated crate which exposes an interface to the fipo-core library
for the web-application. The fipo-wasm crate is then compiled to WebAssembly. The
crate uses the std-web6 crate which handles serialization of inputs and de-serialization of
outputs to and from the fipo-core crate. This results in a binary “fipo-wasm.wasm”
file and a correspondingly generated Javascript runtime which takes care of parsing of
arguments and results as well as some general purpose initializations.

In the web-application, the exposed wasm functions are wrapped in a WebWorker which
allows us to execute the test generation algorithms in the background. This is necessary,
since test generation can take up a lot of time and the user interface should not be blocked
during the computation. A Javascript interface abstracts over the communication with
the WebWorker (which is based on message-passing) in order to provide a usable API to
the web-application. The interface handles test generation request asynchronously and
queues additional request.

Test Generation

The test generation feature is CAgen is shown in Figure 5.8, 5.9, 5.10 and 5.11.

The user can request the generation of arrays of any strength (t ď k) and choose the
desired algorithm. Once a test set is generated it is shown in a table. The view of the test
set can be customized depending on the use-case. For example, one can toggle between
viewing the underlying MCA or choose to translate the entries with the values from the
IPM. Don’t-care values can optionally be randomized in order to select a concrete value
instead of a wildcard. Test sets can also be exported, currently there is support for CSV
and Matlab since they are two of the most common used means for further processing.
The test sets can be downloaded as a file or be copied into the clipboard.

6https://docs.rs/stdweb/*/stdweb/

55

https://docs.rs/stdweb/*/stdweb/

5. Architecture and Design

Figure 5.8: Arrays can generated with configurable strength and algorithm

Figure 5.9: Array is manipulatable after generation

56

5.3. Web Frontend

Figure 5.10: Generated MCA (with no translated model values)

Figure 5.11: Same array, but with model values

57

CHAPTER 6
Evaluation

This chapter will evaluate and discuss the design of CAgen presented in the last chapter.
A comparison with other testing tools in this area provides context and justifications for
the architecture.

6.1 Related Combinatorial Testing Tools

There exist a wide variety of combinatorial testing tools1, however most of them are not
suitable for wide-spread use as they are either only available commercially or are limited
in their feature-set. Many tools only support pair-wise test set generation which is often
not enough for thorough combinatorial testing.

In this evaluation, we will focus on a free tool called ACTS which is the most well-
known implementation of the IPO family of algorithms and a recent effort of bringing
combinatorial testing to the web named CTWedge.

One of the most widely used combinatorial testing tools2 is ACTS (Automated Combi-
natorial Testing for Software) [YLKK13] with more than 3000 users as of 2018. ACTS
is written in Java and provides a GUI as well as a command line interface. It is freely
available upon request from the authors. It was first released in 2006 and supports many
test generation algorithms. Most importantly, ACTS implements IPOG, IPOG-F and
IPOG-F2. Additionally, implementations of IPOG-D, base-choice testing and PaintBall,
a random test generation algorithm, are provided. ACTS furthermore supports user-
specified constraints and generation of mixed-strength arrays. These arrays can have
varying interaction coverage between explicitly defined relations of parameters. This
can be used to designate more “important” sets of parameters which can be tested at a

1http://www.pairwise.org/tools.asp
2https://csrc.nist.gov/Projects/Automated-Combinatorial-Testing-for-Software

59

http://www.pairwise.org/tools.asp
https://csrc.nist.gov/Projects/Automated-Combinatorial-Testing-for-Software

6. Evaluation

Figure 6.1: Screenshot of ACTS (GUI)

higher strength than the rest of the system. Figure 6.1 shows the main test generation
window of ACTS.

Recently, the authors in [GR18] surveyed existing combinatorial test generation tools
available as web applications. Their analysis shows that available solutions leave a lot of
room for improvement. Specifically, three out of the surveyed five tools only offer pair-wise
test generation, one supports of to 3-way and one up to 6-way coverage. Furthermore,
all but two of the tools are freely available since the others are commercialized and
require a subscription or license. To address these shortcomings, the authors present
CTWedge3 (Combinatorial Testing Web EDiting and GEneration), a tool built as a
System as a Service (SaaS) solution. It provides a web frontend for input parameter model
editing using Xtext and Ace (a Javascript-based editor). Figure 6.2 shows a screenshot
of CTWedge. The editor provides syntax highlighting as well as auto completion and
points out errors in the model. Syntax-level errors are detected and additional semantic
validation routines check for errors such as invalid range specifications or duplicate
parameter values. The frontend is supported by a REST service which handles auto
completion and test set generation. The test generation is provided by external tools. In

3http://foselab.unibg.it/ctwedge/

60

http://foselab.unibg.it/ctwedge/

6.2. Comparison

Figure 6.2: Screenshot of CTWedge

its current version CTWedge supports test generation using the ACTS and CASA tools.
The REST service handles requests to generate a test set by synchronously invoking the
corresponding tool and returning the resulting test set. Currently, the algorithm used by
ACTS is fixed and can not be configured. IPOG is used when ACTS is selected as test
generation backend.

6.2 Comparison
All three tools presented in the previous sections (ACTS, CTWedge and CAgen)
support the same basic use-case. Given an input parameter model and strength t, all
generate a combinatorial test set. There are however differences which will be discussed
in the following paragraphs.

In Table 6.1, the main features provided by all tools are listed together with an overview
of which tool supports which subset. ACTS supports the generation of test sets only
up to strength 6. This is mainly a limitation in the GUI as the command-line version
supports arbitrary strengths. CTWedge and CAgen don’t impose any limits on the
strength, however, CTWedge allows to choose a strength larger than the number of
parameters k which does not make sense since t “ k results in the exhaustive test set.

ACTS and CAgen both provide an IPM editor which is based on GUI elements such as
tables and buttons while CTWedge uses an interactive text editor. All tools support
the test set export as comma-separated values (CSV) files, while ACTS also allows to

61

6. Evaluation

Feature ACTS CTWedge CAgen
Max t 6 unlimited unlimited

IPM editor GUI Text Editor GUI
Constraints 3 3 7

Mixed-strength 3 7 7

Show MCA 7 7 3

Export format CSV, NIST, Excel CSV CSV, Matlab

Technology Java Java & JS Rust, WebAssembly & JS
Distribution Binary SaaS Client-side
Privacy 3 7 3

Table 6.1: Feature support

export in the so-called NIST format and as an Excel file. CAgen additionally allows
direct export to Matlab compatible matrices.

CAgen is missing some features compared to ACTS such as support for constraints. This
is due to the tool being in an early stage of development and are set to be implemented
at a later time.

Performance

The main difference between the three tools is the test generation time. Since CAgen
uses the FIPO algorithms described in Chapter 3 and 5, the performance comparison
to ACTS of Section 3.4 also applies here: Test generation times are drastically lower
(sometimes by orders of magnitude) and also the memory footprint is kept small which is
an important consideration when running in the browser.

CTWedge uses ACTS as a backend, so it automatically inherits the same performance
characteristics in that case.

Distribution

A big difference lies in the manner in which the tools are distributed. ACTS is only
available as a packaged binary (.jar file) and requires a locally installed Java run-time
environment. CTWedge is available through any web-browser, but requires the vendor
to provide sufficient server resources to handle test generation requests. Since generation
times can be in the order of hours or even days (e.g., when using ACTS as a backend for
large models), it is infeasible to host this service for an extended user base. CAgen does
not suffer from this problem since the application is entirely client-side. The user itself
is providing the computing capabilities to generate the test sets and can influence the
performance by using a more powerful machine. Such scaling is not possible when using
a SaaS-backed solution.

62

6.3. Conclusion

Privacy

Privacy in this context of software testing refers to the way in which details about the
testing process are exposed to third-parties. If the system under test is modelled such
that internal details are inferable from it, the tester might prefer to use tools which do
not require handing over of these details. Some companies might even require that only
local tools are used which do not communicate with external services due to legal issues
or copyright considerations.

ACTS and CAgen both run locally and the processed input models are not send to any
external service. Although CAgen can be hosted as an internet-accessible website it is
strictly client-side and could just as well be hosted locally on the testers machine.

Due to its design, CTWedge however requires to send the IPM to the server such that
a test set can be generated.

6.3 Conclusion
As shown in the preceding comparison, the client-side computation model supported
by WebAssembly has major benefits compared to existing approaches. Since any user
with a web-browser can access the tool, accessibility is drastically improved. By not
requiring additional computing resources compared to SaaS-based solutions, the costs for
the vendor can essentially be eliminated and it furthermore offers favorable properties
regarding user privacy.

Since high-performance implementations written in Rust can be reused without rewriting
the core library in JavaScript (formerly the only supported language in all browsers), this
architecture also imposes minimal overhead in terms of development. Since the result is
a static website, the cost of server monitoring and maintenance is eliminated completely.

63

CHAPTER 7
Conclusion of the Thesis

This thesis has explored the field of combinatorial testing, specifically the challenges of
combinatorial test generation using the In-Parameter-Order family of algorithms.
The motivation for combinatorial testing methods was grounded in the need for effective
and efficient test sets. Having such test sets available which offer input-space coverage
guarantees can help to provide better software quality by reducing the risk that remains
after testing resulting from untested parts of the input-space. One particular family of
algorithms for generating these test sets, namely the In-Parameter-Order family,
was examined from both a high-level (to aid understanding of its general workings) as
well as from a low-level view. The latter analyzed the necessary data structures and
sub-procedures needed to implement the algorithms.

The main part examined in detail how to design an efficient implementation of the In-
Parameter-Order family. To this end, a central data structure named coverage-map
was introduced which allows for memory-efficient tuple enumeration and coverage-tracking.
Then, several novel optimizations were presented which exploit structural properties of
covering arrays to prune the search space and avoid unnecessary work.

The presented optimizations to the algorithms in general improve the performance greatly
with up to 13 times faster generation times compared to the baseline. Furthermore,
the developed FIPOG implementation represents a significant improvement in terms of
performance over ACTS, one of the most widely used IPO implementations, with test
generation time reductions of up to a factor of 145. As part of the optimization work,
the complexity of selecting the best value to cover as part of the horizontal extension
was improved upon compared to the previously reported result. The presented data
structures succeeds at keeping memory demands low, even for sizeable instances where
many tuples need to be enumerated and the resulting arrays become large.

These results are promising also for practical applications in the field of combinatorial
testing. Reduced test generation time can lead to much reduced testing cycles allowing

65

7. Conclusion of the Thesis

faster and better quality assurance as both iteration time during development and response
time of testing a production system can be lowered significantly. These improvements
are all achieved with no sacrifice of the quality of produced covering arrays as the results
remain unchanged by the optimizations.

Additionally, we have studied the impact of tie-breaking, parameter ordering and tuple
enumeration order in the IPO family of algorithms. We have compared their effectiveness
in terms of their ability to reduce covering array sizes in a large case study. In summary,
IPOG-F overall manages to produce the smallest arrays compared to IPOG and IPOG-F2.
The most surprising result is that the choice of tie-breaker seems to not matter a great
deal when averaging over all instances. While some tie-breakers perform better than
others on specific instances, there is none which is strictly better to a significant degree.
This is contrary to previous work in the field which concluded the opposite albeit judging
from a limited set of benchmark instances. In the case of MCA generation, we measured
the largest reduction in array size when ordering columns by decreasing alphabet size,
with up to 12% reduction in size compared to the mean.

Lastly, we presented a new tool for combinatorial test set generation based upon the
efficiently implemented algorithms. The tool is available for free for anyone to use as it
can run standalone as a client-side web application. The novelty lies in its ease of use,
accessibility as well as its speed. This tool can assist software testers to quickly iterate
on their models to improve overall testing quality.

Future Work

As future work we envision three main areas. The first is to extend the core algorithms
with additional features such as support for constraints. Constraints in the IPM are very
common when applied in real-world testing and it will be important to implement this
feature with degrading performance more than absolutely necessary. The second area is
about improving the CAgen tool even further with features that help software testers
successfully apply combinatorial testing. The entry barrier should be as low as possible
in order to further establish CT as an accepted testing technique. Additional features
include the possibility to extend existing test sets to combinatorial test sets as well as
a simple constraint editor which visualizes the model such that interactions between
multiple constraints are clearly communicated to the user. As the third and last area
we want to explore the applicability of our improvements to the IPO family to other
covering array generation algorithms such as AETG.

66

List of Figures

2.1 Extending a CAp4; 2, 3, 2q to a CAp6; 2, 4, 2q with new column c3 14

3.1 Initial coverage-map for a CApN ; 2, 5, 2q being extended by a sixth binary
column. All coverage bits are zero as no tuples have been covered yet. Items
in the dashed box are only stored implicitly and do not take up any space. 19

3.2 State of the coverage-map after the first four rows have been assigned a value
for column c5. 20

3.3 Excerpt from a partial CA during construction. 21
3.4 Coverage-map with fine-grained column-selection coverage information during

the extension of column c5. Patterned parts of the map are not consider in
future steps of the algorithm. 23

3.5 Suitable row candidates, partitioned by the value of c2 24
3.6 CApN ; 3, 6, vq: speedups relative to baseline 28
3.7 CApN ; 4, k, 8q: speedups relative to baseline 29
3.8 CApN ; 5, k, 2q: speedups relative to baseline 30
3.9 Speedups relative to baseline . 32
3.10 Average speed-up for different optimizations 33

4.1 Tie-breaking possibilities for a binary array. Both values provide equal
coverage gain. 36

4.2 Benchmark Setup . 38
4.3 Relative improvement compared to the mean 40
4.4 Results for different tie-breakers . 41
4.5 Results for different parameter orders (left) and tuple orders (right) . . . 42

5.1 Rust project structure of CAgen tool . 49
5.2 Command-line arguments for fipo-cli . 51
5.3 Example output of fipo-cli for a CAp12; 2, 6, p24, 31, 41qq 52
5.4 Architectural overview of CAgen . 52
5.5 Navigation sidebar of CAgen . 53
5.6 Workspaces encapsulate different input parameter models 54
5.7 Parameters can be added, edited, and deleted 54
5.8 Arrays can generated with configurable strength and algorithm 56
5.9 Array is manipulatable after generation 56

67

5.10 Generated MCA (with no translated model values) 57
5.11 Same array, but with model values . 57

6.1 Screenshot of ACTS (GUI) . 60
6.2 Screenshot of CTWedge . 61

68

List of Tables

1.1 Pair-wise (2-way) test set for an end-to-end test of a website 3

2.1 CAp4; 2, 3, 2q (left) covering all pairs of columns (right) 8

3.1 Test Subject Configurations. 26
3.2 Benchmark instances . 27
3.3 Results for CApN ; 3, 6, vq . 28
3.4 Results for CApN ; 4, k, 8q . 29
3.5 Results for CApN ; 5, k, 2q . 30
3.6 Results for Coveringcerts . 31
3.7 Results for XSS . 31
3.8 Peak memory utilization in megabytes for selected benchmarks. 32

4.1 Relative improvement for different configurations compared to the mean . 39
4.2 Results for CA experiments . 41
4.3 Results for MCA experiments . 43

6.1 Feature support . 62

69

List of Algorithms

1 IPO Strategy . 12
2 Vertical Extension . 13
3 Horizontal Extension (IPOG) . 13
4 Horizontal Extension (IPOG-F) . 15
5 Horizontal Extension (IPOG-F2) . 16
6 Select-Best-Value . 19
7 Improved-Select-Best-Value . 22

71

Bibliography

[AGTJH12a] Himer Avila-George, Jose Torres-Jimenez, and Vicente Hernández. New
bounds for ternary covering arrays using a parallel simulated annealing.
Mathematical Problems in Engineering, 2012, 2012.

[AGTJH12b] Himer Avila-George, Jose Torres-Jimenez, and Vicente Hernández. Par-
allel simulated annealing for the covering arrays construction problem. In
Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA), pages 1–7, 2012.

[AO94] P. Ammann and J. Offutt. Using formal methods to derive test frames
in category-partition testing. In Computer Assurance, 1994. COMPASS
’94 Safety, Reliability, Fault Tolerance, Concurrency and Real Time,
Security. Proceedings of the Ninth Annual Conference on, pages 69–79,
1994.

[BC07] Renée C Bryce and Charles J Colbourn. The density algorithm for
pairwise interaction testing. Software Testing Verification and Reliability,
17(3):159–182, 2007.

[BC09] Renée C Bryce and Charles J Colbourn. A density-based greedy algo-
rithm for higher strength covering arrays. Software Testing, Verification
and Reliability, 19(1):37–53, 2009.

[BCC05] Renée C. Bryce, Charles J. Colbourn, and Myra B. Cohen. A framework
of greedy methods for constructing interaction test suites. In Proceedings
of the 27th International Conference on Software Engineering, ICSE ’05,
pages 146–155. ACM, 2005.

[BGSW15] Josip Bozic, Bernhard Garn, Dimitris E Simos, and Franz Wotawa.
Evaluation of the ipo-family algorithms for test case generation in web
security testing. In 2015 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), pages 1–10.
IEEE, 2015.

[BMTI10] Mutsunori Banbara, Haruki Matsunaka, Naoyuki Tamura, and Katsumi
Inoue. Generating combinatorial test cases by efficient sat encodings

73

suitable for cdcl sat solvers. In Logic for Programming, Artificial In-
telligence, and Reasoning, pages 112–126. Springer Berlin Heidelberg,
2010.

[BRTJRT09] Josue Bracho-Rios, Jose Torres-Jimenez, and Eduardo Rodriguez-Tello.
A new backtracking algorithm for constructing binary covering arrays of
variable strength. In MICAI 2009: Advances in Artificial Intelligence,
pages 397–407. Springer Berlin Heidelberg, 2009.

[Bus52] Kenneth A Bush. Orthogonal arrays of index unity. The Annals of
Mathematical Statistics, pages 426–434, 1952.

[CDFP97] David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gard-
ner C. Patton. The aetg system: An approach to testing based on
combinatorial design. IEEE Transactions on Software Engineering,
23(7):437–444, 1997.

[CDKP94] D. M. Cohen, S. R. Dalal, A. Kajla, and G. C. Patton. The automatic
efficient test generator (aetg) system. In Proceedings of 1994 IEEE
International Symposium on Software Reliability Engineering, pages
303–309, 1994.

[CG09] A. Calvagna and A. Gargantini. Ipo-s: Incremental generation of com-
binatorial interaction test data based on symmetries of covering arrays.
In 2009 International Conference on Software Testing, Verification, and
Validation Workshops, pages 10–18, 2009.

[Che07] Christine T. Cheng. The test suite generation problem: Opti-
mal instances and their implications. Discrete Applied Mathematics,
155(15):1943 – 1957, 2007.

[CK02] M Chateauneuf and Donald L Kreher. On the state of strength-three
covering arrays. Journal of Combinatorial Designs, 10(4):217–238, 2002.

[CKMT10] Tsong Yueh Chen, Fei-Ching Kuo, Robert G Merkel, and TH Tse.
Adaptive random testing: The art of test case diversity. Journal of
Systems and Software, 83(1):60–66, 2010.

[Col04] Charles J. Colbourn. Combinatorial aspects of covering arrays. Le
Mathematiche, LIX(I-II):125–172, 2004.

[DLY`15] Feng Duan, Yu Lei, Linbin Yu, Raghu N Kacker, and D Richard Kuhn.
Improving ipog’s vertical growth based on a graph coloring scheme. In
2015 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), pages 1–8. IEEE, 2015.

[DN84] J. W. Duran and S. C. Ntafos. An evaluation of random testing. IEEE
Transactions on Software Engineering, SE-10(4):438–444, 1984.

74

[FLL`08] Michael Forbes, Jim Lawrence, Yu Lei, Raghu N Kacker, and D Richard
Kuhn. Refining the in-parameter-order strategy for constructing covering
arrays. Journal of Research of the National Institute of Standards and
Technology, 113(5):287, 2008.

[Gar17] Inc. Garnter. Leading the IoT. https://www.gartner.com/
imagesrv/books/iot/iotEbook_digital.pdf, 2017. Accessed:
2018-04-22.

[GCD09] Brady J Garvin, Myra B Cohen, and Matthew B Dwyer. An improved
meta-heuristic search for constrained interaction testing. In Search
Based Software Engineering, 2009 1st International Symposium on,
pages 13–22. IEEE, 2009.

[GCD11] Brady J Garvin, Myra B Cohen, and Matthew B Dwyer. Evaluating
improvements to a meta-heuristic search for constrained interaction
testing. Empirical Software Engineering, 16(1):61–102, 2011.

[GHRVTJ12] Loreto Gonzalez-Hernandez, Nelson Rangel-Valdez, and Jose Torres-
Jimenez. Construction of mixed covering arrays of strengths 2 through
6 using a tabu search approach. Discrete Mathematics, Algorithms and
Applications, 4(03):1250033, 2012.

[GLD`14] Shiwei Gao, Jianghua Lv, Binglei Du, Yaruo Jiang, and Shilong Ma.
General optimization strategies for refining the in-parameter-order algo-
rithm. In Quality Software (QSIC), 2014 14th International Conference
on, pages 21–26. IEEE, 2014.

[GLD`15] Shi-Wei Gao, Jiang-Hua Lv, Bing-Lei Du, Charles J Colbourn, and Shi-
Long Ma. Balancing frequencies and fault detection in the in-parameter-
order algorithm. Journal of Computer Science and Technology, 30(5):957–
968, 2015.

[GO07] Mats Grindal and Jeff Offutt. Input parameter modeling for combi-
nation strategies. In Proceedings of the 25th conference on IASTED
International Multi-Conference: Software Engineering, pages 255–260.
ACTA Press, 2007.

[GOA05] Mats Grindal, Jeff Offutt, and Sten F Andler. Combination testing
strategies: a survey. Software Testing, Verification and Reliability,
15(3):167–199, 2005.

[GR18] Angelo Gargantini and Marco Radavelli. Migrating combinatorial in-
teraction test modeling and generation to the web. In 2018 IEEE
International Conference on Software Testing, Verification and Valida-
tion Workshops (ICSTW). IEEE, 2018. to appear.

75

https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf
https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf

[GS17] Bernhard Garn and Dimitris E. Simos. Algebraic modelling of covering
arrays. In Applications of Computer Algebra, pages 149–170. Springer
International Publishing, 2017.

[Har05] Alan Hartman. Software and hardware testing using combinatorial cov-
ering suites. In MartinCharles Golumbic and IrithBen-Arroyo Hartman,
editors, Graph Theory, Combinatorics and Algorithms, volume 34 of
Operations Research/Computer Science Interfaces Series, pages 237–266.
Springer US, 2005.

[HPS`04] Brahim Hnich, Steven Prestwich, Evgeny Selensky, et al. Modeling
the covering test problem. In CSCLP 2004: Joint Annual Workshop
of ERCIM/CoLogNet on Constraint Solving and Constraint Logic Pro-
gramming, 2004.

[HR04] Alan Hartman and Leonid Raskin. Problems and algorithms for covering
arrays. Discrete Mathematics, 284(1):149–156, 2004.

[KBD`15] D Richard Kuhn, Renee Bryce, Feng Duan, Laleh Sh Ghandehari,
Yu Lei, and Raghu N Kacker. Combinatorial testing: Theory and
practice. Advances in Computers, 99:1–66, 2015.

[KKL13] D Richard Kuhn, Raghu N Kacker, and Yu Lei. Introduction to combi-
natorial testing. CRC press, 2013.

[KS] Ludwig Kampel and Dimitris E. Simos. A survey on the state of the
art of complexity problems for covering arrays. under review.

[KS98] Donald L Kreher and Douglas R Stinson. Combinatorial algorithms:
generation, enumeration, and search, volume 7. CRC press, 1998.

[KS16] Ludwig Kampel and Dimitris E. Simos. Set-based algorithms for combi-
natorial test set generation. In Franz Wotawa, Mihai Nica, and Natalia
Kushik, editors, Testing Software and Systems, pages 231–240. Springer
International Publishing, 2016.

[KS17] Kristoffer Kleine and Dimitris E Simos. Coveringcerts: Combinatorial
methods for x. 509 certificate testing. In 2017 IEEE International
Conference on Software Testing, Verification and Validation (ICST),
pages 69–79. IEEE, 2017.

[KSTJV15] Paris Kitsos, Dimitris E Simos, Jose Torres-Jimenez, and Artemios G
Voyiatzis. Exciting fpga cryptographic trojans using combinatorial
testing. In Software Reliability Engineering (ISSRE), 2015 IEEE 26th
International Symposium on, pages 69–76. IEEE, 2015.

76

[KWG04] D Richard Kuhn, Dolores R Wallace, and Albert M Gallo. Software fault
interactions and implications for software testing. IEEE transactions
on software engineering, 30(6):418–421, 2004.

[LETJRTRV08] Daniel Lopez-Escogido, Jose Torres-Jimenez, Eduardo Rodriguez-Tello,
and Nelson Rangel-Valdez. Strength two covering arrays construction
using a sat representation. In Mexican International Conference on
Artificial Intelligence, pages 44–53. Springer, 2008.

[LKK`07] Yu Lei, Raghu Kacker, D Richard Kuhn, Vadim Okun, and James
Lawrence. Ipog: A general strategy for t-way software testing. In
Engineering of Computer-Based Systems, 2007. ECBS’07. 14th Annual
IEEE International Conference and Workshops on the, pages 549–556.
IEEE, 2007.

[LKK`08] Yu Lei, Raghu Kacker, D Richard Kuhn, Vadim Okun, and James
Lawrence. Ipog/ipog-d: efficient test generation for multi-way combina-
torial testing. Software Testing, Verification and Reliability, 18(3):125–
148, 2008.

[LT98] Yu Lei and Kuo-Chung Tai. In-parameter-order: A test generation
strategy for pairwise testing. In High-Assurance Systems Engineering
Symposium, 1998. Proceedings. Third IEEE International, pages 254–261.
IEEE, 1998.

[Mal95] Y.K. Malaiya. Antirandom testing: getting the most out of black-box
testing. In Software Reliability Engineering, 1995. Proceedings., Sixth
International Symposium on, pages 86–95, Oct 1995.

[ND12] Srinivas Nidhra and Jagruthi Dondeti. Black box and white box test-
ing techniques-a literature review. International Journal of Embedded
Systems and Applications (IJESA), 2(2):29–50, 2012.

[Nur04] Kari J. Nurmela. Upper bounds for covering arrays by tabu search.
Discrete Applied Mathematics, 138(1):143 – 152, 2004.

[Slo93] Neil JA Sloane. Covering arrays and intersecting codes. Journal of
combinatorial designs, 1(1):51–63, 1993.

[Sta01] John Stardom. Metaheuristics and the search for covering and packing
arrays. Master’s thesis, 2001.

[TA00] Yu-Wen Tung and W. S. Aldiwan. Automating test case generation for
the new generation mission software system. In 2000 IEEE Aerospace
Conference. Proceedings (Cat. No.00TH8484), volume 1, pages 431–437,
2000.

77

[Tas02] G. Tassey. The economic impacts of inadequate infrastructure for soft-
ware testing. National Institute of Standards and Technology, 2002.

[TJIM13] Jose Torres-Jimenez and Idelfonso Izquierdo-Marquez. Survey of covering
arrays. In Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC), 2013 15th International Symposium on, pages 20–27. IEEE,
2013.

[TJRT12] Jose Torres-Jimenez and Eduardo Rodriguez-Tello. New bounds for
binary covering arrays using simulated annealing. Information Sciences,
185(1):137 – 152, 2012.

[Tri18] Tricentis. Software Fail Watch 5th Edition. https://www.
tricentis.com/software-fail-watch/, 2018. Accessed: 2018-
04-23.

[Wil00] Alan W. Williams. Determination of Test Configurations for Pair-Wise
Interaction Coverage, pages 59–74. Springer US, Boston, MA, 2000.

[YDL`15] L. Yu, F. Duan, Y. Lei, R. N. Kacker, and D. R. Kuhn. Constraint
handling in combinatorial test generation using forbidden tuples. In
2015 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), pages 1–9, 2015.

[YLKK13] Linbin Yu, Yu Lei, Raghu N Kacker, and D Richard Kuhn. Acts: A
combinatorial test generation tool. In 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation, pages 370–
375. IEEE, 2013.

[YLN`13] L. Yu, Y. Lei, M. Nourozborazjany, R. N. Kacker, and D. R. Kuhn.
An efficient algorithm for constraint handling in combinatorial test
generation. In 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation, pages 242–251, 2013.

[YZ06] J. Yan and J. Zhang. Backtracking algorithms and search heuristics to
generate test suites for combinatorial testing. In 30th Annual Interna-
tional Computer Software and Applications Conference (COMPSAC’06),
volume 1, pages 385–394, 2006.

[YZ11] Mohammed I Younis and Kamal Z Zamli. Mipog-an efficient t-way
minimization strategy for combinatorial testing. International Journal
of Computer Theory and Engineering, 3(3):388, 2011.

78

https://www.tricentis.com/software-fail-watch/
https://www.tricentis.com/software-fail-watch/

	Kurzfassung
	Abstract
	Publications arisen from this Thesis
	Contents
	Introduction
	The In-Parameter-Order Algorithm
	Background
	Preliminaries
	Covering Array Generation Methods
	IPO Family of Algorithms

	Algorithmic Engineering
	Algorithmic Design
	Optimizations for the Algorithmic Design of IPOG
	Implementation-level Optimizations
	Evaluation

	Algorithm Variations
	Tie-Breaking
	Orderings of Parameter and Tuple Enumeration
	Evaluation

	A New Tool for Combinatorial Test Set Generation
	Architecture and Design
	Core Algorithms
	Command Line Interface
	Web Frontend

	Evaluation
	Related Combinatorial Testing Tools
	Comparison
	Conclusion

	Conclusion of the Thesis
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

