
Electric Vehicles Recharge
Scheduling with Time Windows

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Damir Bučar
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Abstract

The problem of scheduling the recharge operations of electric vehicles (EVs) is one we will
inevitably face in the near future. An important aspect to consider is the impact that increasing
number of EVs, with their frequent need for recharge, would have on the current electric grid
infrastructure and how we can avoid overloading the grid at certain periods of the day.

The EV recharge scheduling task is a part of the system developed within the FFG1-funded
KOFLA project, which has the goal of helping EV users to find the best opportunity for recharg-
ing (nearby, cheap and fast).

The optimization problem identified in this work as Electric Vehicles Recharge Schedul-
ing with Time Windows (EVRSTW) is closely related to the resource allocation and resource-
constrained scheduling problems. EVRSTW, in its special case, belongs to the class of NP-
complete problems, meaning that exact methods are usually unable to cope with large problem
instances in reasonable time, and display unpredictable runtimes. In order to build a real world
dynamic system based on user requests and almost immediate system responses, we need to find
methods which can operate within a short, bounded execution time.

This thesis investigates possible heuristic approaches to solving the EVRSTW problem. We
first model a greedy heuristic, to simulate a ”dumb”, plugin-and-charge-immediately, approach.
Since it performs poorly, we turn to the local ratio technique, tailored to our problem specifica-
tion. This method still rejects some of the activities (EV recharge requests) which need to be
scheduled, so we search for a new approach. Finally, we design a local search method based on
the min-conflicts heuristic, along with defining an appropriate neighborhood relation.

We evaluate the three heuristic methods on a set of generic problem instances, according
to multiple evaluation criteria, such as total profit, runtime, and number of unscheduled activi-
ties. The experiments show that only the MCH manages to generate feasible solutions, i.e. to
schedule all of the activities. We analyze its performance on two different EV models and in two
running modes of the system: a) offline, where all activities are presented at once and the sched-
ule is built ”from scratch”; and b) online, where activities arrive one by one and the schedule is
built incrementally.

Comparing the min-conflicts heuristic against the exact method (CPLEX solver), we find
that its runtimes are significantly shorter — in terms of less than 200 milliseconds versus 25+
minutes in the extreme case, with an acceptable solution quality of 75% to 93% of the optima.
This makes the MCH a good candidate for application in the online environment, which we turn
into reality by incorporating it within a charging station controller. We evaluate its performance

1The Austrian Research Promotion Agency (FFG), https://www.ffg.at/en
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in this new setting and show that the parking period prediction error has a significant impact on
the solution quality.



Kurzfassung

Die Ladeoptimierung Elektroautos wird in der nahen Zukunft ein immer wichtigeres Problem,
wegen der hohen Energiemengen die in kürzester Zeit über das Stromnetz fliessen müssen. Ohne
die Flexibilität bei der Aufladung zu nutzen besteht die Gefahr die vorhandene Netzinfrastruktur
zu bestimmten Tageszeiten (Spitzenlast) zu überlasten.

Das in dieser Arbeit behandelte Ladeoptimierungsproblem ist ein Teil des Systems, das in-
nerhalb des KOFLA-Projektes entwickelt und von FFG2 finanziert wurde. Ziel des Projekts ist
die Benutzer von Elektrofahrzeugen zu unterstützen, die besten öffentlichen Ladestationen zu
finden (in der Nähe, günstig und schnell).

Das Optimierungsproblem, das in dieser Arbeit als Electric Vehicles Recharge Scheduling
with Time Windows (EVRSTW) bezeichnet wird, ist eng mit den Problemen der Ablaufobtimie-
rung (scheduling) mit Ressourcen-Restriktionen verbunden.

EVRSTW gehört der Klasse von NP-kompletten Problemen, was bedeutet, dass die exakten
Methoden nicht in der Lage sind große Probleminstanzen in vernünftiger Zeit zu lösen. In einer
realen Umgebung, in der der Benutzer sofort wissen muß, ob seine Ladeanforderung akzep-
tiert wird, sollten Algorithmen mit begrenzter Laufzeit eine (auch suboptimale) Lösung liefern
können.

Diese Diplomarbeit untersucht die möglichen heuristischen Ansätze für das
EVRSTW–Problem. Zuerst definieren wir die greedy Heuristik, welche eine sofortige
Aufladung nach plug-in bewirkt. Da diese Heuristik schlechte Ergebnisse nachweist widmen
wir uns der local ratio Technik, welche der Natur unseres Problems angepasst wird. Da diese
Methode immer noch viele Ladeanforderungen ablehnt, suchen wir nach weiteren Heuristiken.
Basierend auf der lokalen Suche, wählen wir schließlich die min-conflicts Heuristik (MCH) und
definieren eine passende Nachbarschaftsrelation zwischen Lösungen.

Wir vergleichen die drei heuristischen Methoden nach den vielfältigen Kriterien der Evaluie-
rung, wie z. B. nach dem gesamten Profit, der Laufzeit und Anzahl der abgelehnten Aktivitäten.
Die Experimente werden mit einem Satz von generischen Probleminstanzen geführt. Diese zei-
gen, dass nur die MCH Methode es schafft, zulässige Lösungen zu generieren, indem sie die
sämtlichen Aktivitäten erfolgreich einplant. Wir analysieren ihre Performanz und Qualität der
Lösungen sowohl in dem offline Modus, wenn alle Aktivitäten auf einmal bekannt werden, und
in online Modus, wenn die Aktivitäten als Ereignisse einzeln eintreffen und der Ablaufplan in
der Zeit gerollt und permanent aktualisiert wird.

2The Austrian Research Promotion Agency (FFG), https://www.ffg.at/en
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Im Vergleich mit der exakten Methode (CPLEX Solver) zeigen wir, dass die Laufzeiten der
MCH Methode bedeutsam kurzer sind —– weniger als 200 Millisekunden gegen 25+ Minuten
im Extremfall, und das bei einer akzeptabler Lösungsqualität von 75% bis 93% vom Optimum.
Dadurch ist die MCH Methode ein guter Kandidat für die Anwendung in Onlinemodus, und
kann im Ladestation-Controller eingebaut werden. Schließlich untersuchen wir den Einfluss von
Fehlern bei der Abschätzung der Parkdauer und zeigen dass diese die Lösungsqualität ziemlich
verschlechtern.
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CHAPTER 1
Introduction

Electric vehicles (EVs) appear to have a bright future, since they promise, among other benefits,
greenhouse gas emission reduction and independence from fossil fuels. However, their range
is still quite limited and recharge facilities quite scarce in comparison to those of conventional
vehicles. Additionally, the battery charging process is significantly longer (up to several hours)
than what it takes a conventional internal combustion engine (ICE) vehicle to refuel. Thus,
an important aspect to consider is their efficient recharge under the constraints imposed by the
electric grid.

The focus of this thesis will be on the problem of controlled EV recharge scheduling at
public charging stations, where the energy demands of EVs (activities) need to be satisfied, con-
sidering the constraints of the number of charging points (machines) and available power. The
work described here was conducted within the KOFLA project [14], [7] at Forschungszentrum
Telekommunikation Wien (FTW), funded by the Austrian Research Promotion Agency (FFG)
under the ”ways2go” programme. Its goal is to model an intelligent online brokerage system
between users that need a battery charging service and a network of public charging stations
that can supply that service. The study conducted in this thesis does not go into detail about
electric vehicles’ batteries and their behavior from the chemistry or electronics points of view
— the accent is put solely on the recharge scheduling problem from the perspective of computer
science.

The core scenario can be described as follows: An EV charging station contains charging
slots (machines) for several vehicles. Its owner maintains data about a collection of vehicles,
already parked or on the way. Each vehicle is associated with a planned parking time window
and its battery’s energy demand that needs to be satisfied. We will denote this data entity as an
activity. The available power constraint dictates that not all vehicles can be charged voluntarily,
but their charging needs to be planned within the given time frame. The owner’s goal is to
generate a schedule which would maximize his profit function, while keeping the customers as
satisfied as possible.

We denote this problem as ELECTRIC VEHICLE RECHARGE SCHEDULING WITH TIME

WINDOWS (EVRSTW) [7]. It is closely related with the resource allocation problem (RAP)
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[2], [3], [10], [12], which is often regarded as bandwidth allocation problem (BAP); but also
with interval scheduling [19] and resource-constrained scheduling [24] problems.

An additional requirement KOFLA framework has imposed is to have the scheduling al-
gorithm perform in a dynamic, online manner, i.e. in real time, which requires maintenance
of some sort of a rolling schedule, as well as swift performance (in terms of seconds, or even
milliseconds).

Multiple EVRSTW problem parameters to consider: the planning time horizon, available
power constraint imposed by the electric network, time windows defined by the parking duration
of the vehicles, multi-valued energy demands to fulfill, different charging rates etc. make the
decision variant of the problem NP-complete (it contains as a special case an instance of the 0–1
knapsack problem, which is NP-complete) [7], [12]. Therefore, exact methods (e.g. CPLEX
solver on MIP [7], [7]) are usually unable to find solutions to problem instances of increasing
size in reasonable time. Using the CPLEX solver also entails unpredictable runtimes — for the
same problem size the execution can take from a few seconds to tens of minutes [7]. In order to
build a real-world dynamic system based on requests and almost immediate decisions, we need
to employ methods running within a short, bounded response time.

According to [20], smart charging techniques would allow for increase of EV penetration
without investments into current infrastructure. IHS [26] believes that fast and efficient charging
is a necessary step to promote higher adoption of EVs, but there will need to also be better
consumer education regarding behavioral changes that may need to happen when owning an
electric vehicle — such as charging overnight or at work. It is therefore worth exploring this
issue here, as it could be of great importance in the near future.

1.1 Objectives

The objectives of this thesis are:

• Exploring the aspects of the novel EVRSTW problem and its subproblems. Define its
model and constraints.

• Designing a scheduling heuristic which can provide feasible solutions of acceptable qual-
ity in short execution time (especially for larger problem instances, for which exact meth-
ods, such as CPLEX, run for too long).

• Experimental evaluation of our solution approaches, as opposed to the exact method, by
the use of a generic set of problem instances.

• Enabling the real-world, online application of the scheduling algorithm, within the wider
framework of the KOFLA routing, reservation and scheduling system.

1.2 Main Results

The main results obtained by this work are:

• A detailed description and analysis of the EVRSTW problem, and a study of related work.
Models of the electric vehicle, the charging station and the charging schedule.

2



• Design and implementation of a greedy heuristic to simulate ”dumb” charging (but keep-
ing the available power constraint satisfied). Implementation of the local ratio technique
according to guidelines from [2], [3], tailored to our specific resource-constrained schedul-
ing problem.

• Design and implementation of a new local search method based on the min-conflicts
heuristic, which is expected to perform well on larger problem instances in reasonable
time. In order to apply it successfully, we propose an appropriate neighborhood relation
and investigate the impact of random noise.

• Performance evaluation of the three solution approaches — the greedy heuristic, the local
ratio technique, and the min-conflicts heuristic — in a steady-state, offline mode, com-
pared to the optimal results of the exact CPLEX solver [7], [9], on a generic set of problem
instances. Successful application of the min-conflicts heuristic to the EVRSTW problem,
which reaches up to 93% of the optimal solution profit (offline mode). Our heuristic man-
aged to solve problem instances up to the size of 200 (not tested further) activities in less
than 200ms.

• Design and implementation of a charging station controller, enabling the MCH to per-
form in an online, dynamic mode, within the KOFLA routing, reservation and recharge
scheduling system. We identified the main issues and dealt with them successfully. We
also discovered that the parking period prediction error has the greatest impact on the
solution quality.

Parts of this work were presented in a MISTA conference paper [9].

1.3 Organization

Chapter 2 gives the EVRSTW problem formulation and describes its environment within the
KOFLA system. This is followed by an overview of literature related to the problem itself,
but also to a bit broader EV environment, including a case study on a real world Belgian EV
charging system.

In Chapter 3 multiple solution approaches are proposed, describing in detail the simple
greedy heuristic, the local ratio technique, and the min-conflicts heuristic, all tailored to the
model of the problem at hand. Additionally, adaptations necessary to perform the transition into
a dynamic environment are described.

Chapter 4 offers performance evaluation of the developed solution approaches, accompanied
by a brief insight into the system’s online behavior.

Finally, Chapter 5 contains the summary and discussion about possible future work.
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CHAPTER 2
The EVRSTW Problem

In this chapter we describe the problem of the Electric Vehicles Recharge Scheduling with Time
Windows (EVRSTW) and provide its formal definition.

We define the models of the electric vehicle, of the charging station with its machines and of
the charging schedule. Then we discuss the evaluation (profit) function and show the formulation
of the problem as a mixed integer program (MIP), based on [7] and [9].

In the final section we provide a thorough overview of work related to the EVRSTW problem
and its wider environment.

2.1 Problem Statement

We first give a brief overview of the problem’s broader environment within the KOFLA frame-
work, and then continue to describe EVRSTW problem from a practical point of view. The
formal, mathematical model of the problem is given in Section 2.2.

2.1.1 KOFLA Framework

Project KOFLA, carried out at Forschungszentrum Telekommunikation Wien, deals with the
issues related to the new concept of personal mobility using electric vehicles (EV). The project,
finalized in 2012, was funded by the Austrian Research Promotion Agency (FFG) under the
”ways2go” programme.

Since recharging the EV battery can take up to several hours, and potential users still suffer
from range anxiety 1, the EV adoption has not yet reached significant levels. Multiple poten-
tial options for recharge locations — parking lots, gas stations, shopping malls etc. — would
quickly become unmanageable if handled independently. EV users would therefore need assis-
tance in order to find the ”best” charging station, and some kind of a centralized infrastructure
management system would certainly allow for better utilization of the electric grid.

1Range anxiety is the fear that a vehicle has insufficient range to reach its destination and would thus strand the
vehicle’s occupants. [13]
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The main goal of the KOFLA project was to model an intelligent online brokerage system
between users that need a battery charging service and a network of public charging stations that
can supply that service. Not only do the users’ energy demands need to be satisfied, but also the
electric grid limitations have to be taken into account.

The three main components of the KOFLA framework are:

• A (multimodal) routing and reservation system, which interacts with the users and the
grid, balances the energy load flow between multiple charging stations and directs the
users towards the ”best” of them.

• An online charging scheduler, employed at each of the charging stations, dealing with
the reservation requests and employing optimization algorithms for the charging schedule
generation, while taking the grid constraints into consideration.

• An e-mobility simulator, integrating the above.

The focus of this thesis is on the second point — we will deal with controlled charging
schedule optimization at individual public charging stations.

Figure 2.1 depicts the high-level architecture of the KOFLA framework, alongside a typical
reservation and routing scenario within the system [14], [7].
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Figure 2.1: KOFLA high-level architecture and reservation and routing scenario

2.1.2 The EVRSTW Problem

The problem considered in this thesis, Electric Vehicle Recharge Scheduling with Time Windows
(EVRSTW), has first been proposed as an essential part of the KOFLA project [14], [7].

Looking from the application point of view, the problem of scheduling the EV charging
can be described as follows: An EV charging station (CS) contains charging points (machines)
to accommodate several vehicles. The service provider maintains data about a collection of
vehicles, already parked or on the way. Each vehicle is associated with a planned parking period
and its battery’s energy demand that needs to be satisfied. This EV data entity will further be
denoted as an activity. The fixed number of machines limits the number of vehicles which can be
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concurrently parked at the CS. The available power constraint dictates that not all vehicles can
be charged voluntarily, but their charging needs to be planned within the planning time horizon.
The service provider’s goal is to generate a schedule which would maximize his profit function,
while at the same time serving as many users as possible, and optimally utilizing the available
power throughout the day, without causing congestion. Customers should be served fair and get
their vehicles’ energy demands satisfied as much as possible.

The machines are able to operate at different charging rates, i.e. they can deliver less or
more power into batteries, leading to longer or shorter charging durations, respectively. Once
decided upon, the charging rates are constant over time — once the charging has started, it has to
be completed at the determined rate. Another important note is that the scheduling of charging
plans is non-preemptive, i.e. once the charging process has initiated, it can not be interrupted —
the charging periods are necessarily contiguous.

Two resources are to be recognized here: the parking resource during the EV’s parking
period, and the power resource during its charging period. These immediately impose the con-
straints on the problem: we operate with a fixed number of machines, each being able to ac-
commodate only one activity at the time; and with available power (fixed or variable over time)
defined during the planning time horizon, which must not be exceeded at any point in time.

Under the assumption of identical machines (i.e. each one supporting all of the different
charging rates), the EVRSTW problem can be split into two subproblems (which can be solved
separately), according to the two resources:

1. MACHINE ALLOCATION — Assignment of the activities (EVs) to one of multiple ma-
chines (charging points). This problem is analogous to the one of Interval Scheduling [19]
on multiple machines. Intuitively, at most one activity can be scheduled on a single ma-
chine at any given time. Intervals are defined by the arrival-departure time window and
can not be shifted. This problem can be solved optimally by a greedy method, assigning
activities to machines in the increasing order of arrival time. Solving this subproblem suc-
cessfully allows us to address the second one separately, effectively as a single machine
problem.

2. CHARGING PLANS ASSIGNMENT — Distribution of the available power throughout the
activities by selecting appropriate charging plans, i.e. scheduling the parked EVs’ charg-
ing periods within their parking periods. Here we need to select the start time, rate of
charging and completion degree, which together determine the charging duration and the
profit. The goal is to maximize the total profit induced by all scheduled charging plan
instances. This problem is similar to the Resource Allocation Problem [10], [12] with
time windows, often regarded as Bandwidth Allocation Problem; and very close to the
Resource-Constrained Scheduling Problem [24]. Because of the problem’s NP-complete
nature, we will need to employ heuristic methods to efficiently solve larger problem in-
stances.

The problem split is visualized in Figure 2.2.
The case of non-identical machines renders the problem even more complex, when in the

most general case the problem split is not possible, and charging plan instances have to be created
for each individual machine. The rest of the described work assumes identical machines.
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Figure 2.2: Two phases of solving the EVRSTW problem

Activities (parked EVs) define a fixed parking time window within which charging should
take place. For each activity we can consider multiple charging plans, each determined by its
charging rate, start time and the amount of energy demand it satisfies. Intuitively, only one
charging plan can be assigned to each activity.

Several EVRSTW problem parameters to consider — multiple machines and activities,
available power constraint imposed by the electric network, various energy demands to fulfill,
different charging rates etc. — make the problem (more precise, the second subproblem, if we
assume identical machines), in its decision form, NP-complete. It contains as a special case an
instance of the 0-1 knapsack problem [7], [12], which is known to be NP-complete. If we let
the parking period intervals to be identical for all activities, and assume different profits of their
charging plans, we can recognize the classical 0–1 knapsack problem, of choosing the set of
charging plan instances of greatest profit, given the ”capacity” in terms of available power con-
straint. One must take care of covering all of the activities, and only one charging plan instance
can be selected for each of them.

Thus, exact methods (e.g. CPLEX MIP solver) are unable to find solutions to larger problem
instances in reasonable time. We will therefore attempt to apply heuristic strategies to attack the
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problem, and obtain solutions that are ”good enough” for our evaluation criteria.

2.2 Modeling the System

As we have mentioned earlier, the EVRSTW problem can be split (assuming identical machines)
into two subproblems:

1. The machine allocation problem, of assigning activities (”jobs” with fixed start and end
times) to multiple machines; analogous to interval scheduling

2. The charging plans assignment problem, of selecting a charging plan for each activity,
with the goal of maximum total profit; analogous to problems of resource constrained
scheduling (RCSP) and resource allocation (RAP) with time windows)

The first one can be efficiently (and optimally) solved in a preprocessing phase by the use of
a greedy method, which will be presented in Section 3.1. The second subproblem will be solved
by heuristic methods which we model in Section 3.3, with the use of the charging plan instance
generation strategy designed in Section 3.2.

Table 2.1 provides an overview of the notation we will use.

Symbol Meaning
T discretized time horizon with time slots t ∈ {0, 1, ..., T − 1}, T = |T |
A set of activities (electric vehicles)
M set of machines (charging points)
R set of charging rates machines can deliver (kW)
C set of possible completion degrees (used only in combination with da)
I charging plan instances generated from activities in A
Ia charging plan instances generated from activity a ∈ A
ea, la earliest and latest defining the parking time window of activity a ∈ A
si, fi charging start and finish time of charging plan instance i ∈ I
da energy demand (kWh) of activity a (used in combination with C)

dmin,a, dmax,a minimum and maximum energy demands (kWh) of activity a
ri charging rate of instance i
kr cost for charging at rate r
pi calculated profit for instance i
xi variable depicting whether i is chosen into the schedule, xi ∈ {0, 1}
ai activity that charging plan instance i was generated from
P (t) total available power during time slot t ∈ T
vti variable depicting whether t ∈ [eai , lai), vti ∈ {0, 1}
mi machine at which charging plan instance i takes place

Table 2.1: Notation Overview

The planning time horizon T is divided into discrete time slots of fixed length (in our setting
they are 15 minutes each, like in [11] and [31]). This was done to be able to handle the real time
more efficiently. The rest of the notation will be described further in this chapter.
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Next we present the models of the elements essential to our system — the electric vehicle,
the charging station with its charging points and the charging schedule we want to generate,
along with the evaluation (profit) function we will use.

At the end of this section we present the formulation of the EVRSTW problem as a mixed
integer program (MIP), based on [7], [9].

2.2.1 Electric Vehicle

Each electric vehicle is represented by an activity a ∈ A with the following attributes:

• parking time window [ea, la), ea, la ∈ T within which the non-interrupted charging pe-
riod can be planned, i.e. the vehicle’s arrival and departure time

• requested energy demand, which can be of two forms:

MinMax model Minimum and maximum energy demands dmin,a and dmax,a, where the
minimum has to be satisfied, and the maximum is the amount required to completely
charge the battery.

SingleDemand model Single-valued energy demand da, used in conjunction with the
predetermined set of completion degrees C, which allows the fulfillment of prespec-
ified amounts of the energy demand. In our setting these are 50%, 75% and 100%,
where it can be observed that the analogy with the MinMax model is: dmax,a = da,
dmin,a = da/2.

Note that the end of the parking time window is exclusive, i.e. charging can not be planned
during la (details concerning discretization of time). The energy demand is determined either
automatically by the battery’s state of charge (SoC), or selected voluntarily by the EV owner
(e.g. defining he wants to drive for at least 50km more).

The MinMax model offers more flexibility, but also introduces more complexity into the
solution space, since more charging plan instances can be generated per activity. The single-
valued demand and set C = {0.5, 0.75, 1.0} combined allow for at most 3 possible values of
satisfied demand, while dmin,a and dmax,a allow for ”any” value in between (depending on the
charging rate selected, as we are about to see).

2.2.2 Charging Station

The first subproblem (interval scheduling) is the one of assigning activities to one of the charging
points (machines) m ∈ M, by the method which will be described in Section 3.1. These
charging points can deliver power at charging rates from R, which in our setting are R =
{3.7, 8.0, 11.0} (kW).

We further assume the machines are all identical, i.e. all of them are able to operate at all of
the charging rates. Each of those can, intuitively, accommodate at most one EV at every point
in time.

Except for the parking resource, the charging station is also constrained by the available
power curve, externally imposed by the electric grid. Available power is, analogous to time,
discretized, with P (t) representing the total power available at time slot t ∈ T .
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2.2.3 Charging Schedule

Here we will have a look at the charging schedule generation formalities and the profit of indi-
vidual charging plan instances.

Charging Schedule Generation

Once the EVs have been allocated to their charging points, the next step is to solve the second
subproblem — to devise a charging plan for each of the allocated activities. Charging should take
place within the time window defined by activity’s arrival and departure times. Each charging
plan is determined by its charging rate, start time and the amount of energy demand it satisfies.

Charging takes place in the period [si, fi), si, fi ∈ T , i.e. charging does not include the
time slot fi. The duration of a charging plan instance i is then duri = fi − si.

To deal with multiple resources and variables (e.g. charging rates), we follow the approach
of Bar-Noy et al. [2] who propose creating an ”instance” for each combination of the variables
for the considered activity. The problem is solved when a valid subset of instances is selected.

We simplify the problem by assuming identical machines and assigning activities to them in
the first, preprocessing phase. This allows us to not consider machines when creating instances
in the second phase, which reduces the search space significantly. The set of instances I is
generated by creating an instance i(a, r, dur, s) for each combination of the variables:

• a ∈ A— activity

• r ∈ R— charging rate

• dur(da, r) or dur(dmin,a, dmax,a, r) — charging duration, depending on the activity’s
energy demand(s) and the selected charging rate

• s ∈ [ea, la − dur] — charging start time, which has to respect the parking time window

In case the machines are non-identical, we would have to include a variable m ∈M into the
generating function as well.

Charging Plan Instance Profit

Further on, for each instance we calculate the profit pi, defined as a weighted sum of the two
factors:

• completion degree ci — the ratio between the energy charged and the energy requested

• battery lifetime preservation factor kri = k
ri

— here we assume the cost of charging at a
certain rate is inversely proportional to the charging rate

The profit of a charging plan instance is then defined as

pi = α ci + (1− α) kri , 0 ≤ α ≤ 1 (2.1)

The charging duration duri and completion degree ci calculations depend on the EV energy
demand model selected, as we will see next.
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MinMax Model The charging duration for this model is calculated based on the activity’s
minimum and maximum energy demands, and on the charging rate the machine provides. The
(discrete valued) charging duration is then:

duri ∈ [durmin,i, durmax,i] (2.2)

where

durmin,i =

⌈
dmin,ai

r

⌉
, ∀r ∈ R (2.3)

durmax,i =

⌈
dmax,ai

r

⌉
, ∀r ∈ R (2.4)

The charging completion degree is then calculated as:

ci =
duri

durmax,i
(2.5)

SingleDemand Model When the energy demand is single-valued, the set of completion per-
centages C = {0.5, 0.75, 1.0} is used to determine the different possible charging durations.
Effectively, this yields at most 3 different duration values (in our setting) for each of the charg-
ing rates.

The possible charging durations for this model are obtained by:

duri =

⌈
dai · c
r

⌉
∀c ∈ C,∀r ∈ R (2.6)

Naturally, only those charging plan instances that fit into the parking time window [eai , lai)
are allowed.

Figure 2.3 illustrates the relationship between the activity and its charging plan instance,
along with their respective attributes.

… …

𝑒𝑎 𝑙𝑎
𝑠𝑖 𝑓𝑖

𝑟𝑖 (𝑐𝑖, 𝑝𝑖)𝑑𝑎 or 𝑑𝑚𝑖𝑛,𝑎 , 𝑑𝑚𝑎𝑥,𝑎

𝑎 𝑖

Figure 2.3: Activity (a) versus the charging plan instance (i) and their attributes
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2.2.4 Evaluation Function

The total profit of the generated schedule is determined by the profits of each individual activity’s
selected charging plan instance — it is the sum of their profits (xi = 1 depicts that instance i is
included in the schedule):

Z =
∑
i∈I

pixi (2.7)

As we have seen, profits pi depend on the fulfilled energy demand of the battery and on the
chosen charging rate (following the slower is better principle for the battery health).

Additionally, we will evaluate schedules according to the number of EVs accomodated. This
means not only the total induced profit is important, but a fair ruler policy is considered as well:

It is more fair to accomodate more customers with potentially lower total profit,
than it is to satisfy less of their requests with higher total profit.

Therefore, rejected activities (unsatisfied demands) will be considered an indicator of an
undesired solution.

Other than that, we will also track the running times of different methods, as this will be of
essential importance to the response time of the entire online system.

2.2.5 Mixed Integer Programming Formulation

The following MIP formulation we present is based on [7] and [9].
After generating the set of charging plan instances I, the problem reduces to finding a set of

binary decision variables xi ∈ {0, 1}, i ∈ I of maximum profit. xi = 1 depicts that instance i
was chosen as part of the charging schedule. We can now define the mixed integer programming
(MIP) formulation for the EVRSTW problem, as follows:

Z = max
∑
i∈I

pixi (2.8)

s.t.
∑
i∈I
ai=j

xi = 1, ∀j ∈ A (2.9)

∑
i∈I

t∈[si,fi)

rixi ≤ P (t), ∀t ∈ T (2.10)

xi ∈ {0, 1}, ∀i ∈ I (2.11)

The objective is to maximize the total profit (Eq. 2.8). By equality (Eq. 2.9) we ensure
that exactly one charging plan instance is chosen for each activity. In case of infeasible problem
instances this should be turned into an inequality, as not all activities’ demands would have been
satisfiable. The inequality (Eq. 2.10) constrains the total power consumption per time slot to the
available power.
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In case the machines are non-identical, when we have to cope with the problem without being
able to preprocess it (by solving the subproblem of allocating activities to machines separately),
an additional constraint is needed (vti = 1 if time slot t is part of ai’s parking time window,
otherwise 0): ∑

i∈I
mi=m

vtixi ≤ 1, ∀m ∈M,∀t ∈ T (2.12)

Recall that in this case the instances are generated for all machines inM. This constraint ensures
that two vehicles are not parked at the same parking place (occupying the same charging point,
i.e. machine) m in the same time slot.

The described MIP formulation was fed into the CPLEX solver and provided optimal solu-
tion benchmarks for our heuristics [7], [9].

2.3 Related Work

Here we thoroughly investigate the literature related to the EVRSTW problem at hand, with
its wider environment being the general job (interval) scheduling, resource allocation and EV
systems, including smart grid. A concise case study on a real world Belgian EV charging system,
BeCharged, is also included.

Even though EVRSTW as depicted here has not been investigated before, similar problems,
namely the ones contained within as its subproblems (see Section 2.1), do appear in literature.

The overview begins with the general job scheduling approaches, and continues with studies
related to resource allocation. As local ratio technique offers good approximation algorithms for
these problems, we have a brief note on it as well. Next, we take a look into known methods to
schedule EV charging and also explore its wider environment embodied in EV systems. Finally,
we provide a short analysis of the investigated literature, in relation to our EVRSTW problem.

2.3.1 Job (Interval) Scheduling

Arkin and Silverberg [1] analyzed scheduling of jobs with fixed start and end times back in 1985,
mentored by Christos Papadimitriou. Their model does not allow for preemption, i.e. once the
processing of a job has started, it can not be interrupted. Each job has an associated value, and
the goal is to maximize the value of jobs completed by k identical machines. The algorithm they
propose, based on the properties of interval graphs coloring problem and the reformulation as
an instance of minimum cost flow problem, runs in O(n2 logn) time, where n is the number of
jobs. If the problem is further constrained by restricting each job to only a subset of machines
on which it can be processed (i.e. non-identical machines), it becomes NP-complete. For this
instance, given that the number of machines k is fixed, they propose anO(nk+1) time algorithm.

Gabrel [15] analyzed the problem of scheduling non-preemptive jobs on k identical parallel
machines. For each job, a subset of machines on which it can be scheduled is defined. Two
cases have been studied: (i) each job has to be completed at fixed start and end times (Fixed job
Scheduling Problem, FSP) and (ii) each job can be completed within a time window larger than
its processing time (Variable job Scheduling Problem, VSP). A new model and heuristics, based
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on graph theory, independent set and partition into clique concepts, are proposed to solve the
two NP-complete problems.

He [16] studied the problem of scheduling non-preemptive jobs with time windows on a set
of parallel, non-homogeneous machines. Every job has the following attributes: processing time,
priority, machine subset satisfying its processing demands and multiple machine-dependent time
windows during which it can be processed. The work presents an algorithm integrating con-
straint programming (used to check the validity of discovered solutions and to determine the
values of constrained variables) and tabu search metaheuristic (which performs the neighbor-
hood search process).

Kolen et al. [19] also focused on interval scheduling, a problem appearing in fields from
crew scheduling to telecommunications. Here, not only the jobs’ processing times, but also their
starting times, are given. This case corresponds to the fixed start (and end) times setting of [1]
and [15] (FSP case), with the distinct notion of multiple non-identical machines. An analogy is
drawn between interval scheduling and dynamic resource allocation problem, with the machines
being a resource whose allocation changes over time. The writing offers an overview of work on
interval scheduling and then presents algorithmic results for two specific problem variants. In
one setting, the difference between machines is presented by given availability intervals for each
of them. In another one, the machines are continuously available, but ordered, with each job
being given a ”maximal” machine by which it can be processed. Algorithms based on circular
arc graph coloring are provided. For the variant of ordered machine types (hierarchical interval
scheduling), they show that the case of two machine types can be efficiently solved, whereas the
problem for three machine types is NP-complete. Of special interest is the mentionedO(n logn)
left-edge algorithm for optimal basic interval scheduling (as opposed to O(n2) complexity of
Ford & Fulkerson’s staircase rule), which minimizes the number of machines used. It assigns
jobs to machines in order of nondecreasing starting times, using a machine used before whenever
possible.

2.3.2 Resource Allocation

Phillips et al. [24] considered a class of difficult to approximate (NP) problems of non-
preemptive scheduling of jobs with release and due dates, with the objective being maximiza-
tion of the (weighted) number of on-time jobs. With the relaxed notion of approximation, they
propose a pseudopolynomial-time algorithm that, given an instance of n jobs whose optimal
schedule has value OPT , schedules a constant fraction of the n jobs within a constant fac-
tor times OPT (in many cases it can also be turned into a proper polynomial-time algorithm).
The key idea of their fractional schedule setting is a novel α-point, which depicts the earli-
est point in time at which a cumulative α-fraction of the job has been scheduled up to. The
algorithms’ evaluation is based on the fraction of jobs scheduled, but they also explore the pos-
sibilities of getting ”good schedules” where all the jobs are scheduled. While majority of the
paper focuses on single machine scheduling, they do consider a problem of relevance to the
thesis — the Resource-constrained scheduling problem, for which they propose first constant
factor approximation algorithms (pseudopolynomial-time 4-approximation and polynomial-time
6-approximation), based on the framework of Bar-Noy et al. [2].
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Darmann et al. [12] studied the resource allocation problem (RAP), where each job con-
sumes some quantity of a bounded resource during a certain time interval (between start time
and end time) and induces a given profit. This case, as opposed to the EVRSTW and the general-
ization in [24], does not allow for scheduling within a time interval larger than the job processing
time. The goal here is to schedule a subset of jobs with maximal total profit such that the re-
source constraint remains non-violated. In general case the problem is NP-hard. Given the
uniform resource consumptions, the problem turns into the interval scheduling problem, which
is polynomially solvable. Main result of the paper is the proven NP-hardness even of the case
when the profit values are uniform and the intervals proper, where the goal is to maximize the
number of performed jobs. The method is based on proper interval graphs, cliques and ordered
partition problem (NP-hard). They also give a deterministic (1/2− ε)-approximation algorithm
for the general problem on proper intervals, improving on the previously known 1/3 ratio for
general intervals. The 1/2-approximation greedy algorithm offered in the end requires both
proper intervals and uniform profits to run in O(n logn) time.

Calinescu et al. [10] study the problem of finding a most profitable subset of n given tasks,
each with a fixed start and finish time, a profit and a resource requirement that must not surpass
the fixed quantity of available resource at all times. Three algorithms for restricted versions of
RAP are presented, namely Large Tasks Algorithm (via dynamic programming), Small Tasks
Algorithm (via randomized rounding) and List Algorithm. Suitably combined, these yield ap-
proximation algorithms for the general case. They propose a method of (1/2−ε)-approximation
(using LTA and STA) in polynomial time for this NP-hard RAP. In addition, a simple and fast
1/3-approximation (using LA and an O(n logn) algorithm for maximum weight independent
set in interval graphs [2]) is given.

2.3.3 Local Ratio Technique

Bar-Noy et al. [2] presented a general framework for solving resource allocation and scheduling
problems. Their algorithms approximate maximum throughput or minimum loss by a constant
factor for several resource-constrained problems, some of which are closely related to ours, such
as job scheduling on parallel machines, resource allocation and bandwidth allocation for ses-
sions in communication networks. Some other problems that fit into the framework are general
caching, dynamic storage allocation and finding a maximum weight independent set in interval
graphs. Models used combine time and resource constraints in a novel manner, and for some
of the problems they offer the first constant factor approximation algorithms. These are simple,
efficient and based on the local ratio technique (LRT), which is to be applied to our problem
as well. The Maximization problems and scheduling applications chapter in [2] is of special
interest to the thesis. Some of the EVRSTW notation has been taken over from this work. We
will describe the details of the LRT in Section 3.3, where it has been tailored to our problem.

Bar-Yehuda et al. [3] further demonstrated LRT use in design and analysis of algorithms for
various minimization and maximization problems (including covering, packing and scheduling
problems). They also introduced the idea of the fractional local ratio paradigm.
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2.3.4 EV Charging Strategies

Sugii et al. [29] proposed a genetic algorithm based scheduling method of charging electric
vehicles. It manages to determine a sub-optimal charging timetable which satisfies the given
electric load curve under the structural constraints of their system. The charging facility consists
of several charging bays which offer multiple connectors to vehicles, but of which only one can
be actively charging at a time. An ideal load curve is defined as a step function in order to make
use of the late-night off-peak electricity prices. Problem is split into two: (i) connecting problem
(selecting a charger to which the EV should connect) and (ii) scheduling problem (determine the
starting time of charging). The genetic algorithm is applied to the latter, with the goal off fitting
the total charging load curve to the ideal load curve. Individual evaluation is based on the
sum of the squares of difference between the ideal load value and the total charging load value
at each sampling time. They simulate several battery charge state settings on 20 EVs and 10
chargers with 2 connectors. The results show that controlled charging manages to level off the
electric load as well as to reduce the capacity and cost of charging equipment, as opposed to the
uncontrolled one.

Hutson et al. [18] proposed an intelligent binary particle swarm optimization (BPSO) based
approach to schedule the usage of available energy storage capacity from EVs. Next to the
vehicles being able to take power from the grid and charge the batteries, they introduce an idea
of also providing power to the grid when parked, so called vehicle-to-grid (V2G) concept. A
scalable parking lot model, with the objective of maximizing profit for the operator, is developed.
BPSO is applied to schedule whether each vehicle should buy, sell, or hold at every time step
it is parked. This general setting renders the charging periods as preemptive (i.e. charging
periods are not necessarily contiguous). Each vehicle’s SoC is expected to be at 60%, which is
to be satisfied even in the case of early departure. A day is split into 1 hour intervals (to match
the hourly prices), and an infinitely large connection to the grid is assigned to each parking
lot, meaning they do not consider available power as a resource. Two case studies have been
conducted. The first one takes the price curve and determines the best (maximum) selling and
best (minimum) buying price — this way only one transaction occurs for each vehicle. This
results in lower profit potential but the schedule is easy to determine. The second case study
considers multiple transactions throughout the parking duration. This allows for higher profits
but greatly increases the scheduling difficulty. However, the problem is separable, since there
are no common constraints and the solution can be found for each vehicle individually, which
greatly reduces its dimensionality. The results show that multiple transactions result not only in
significantly higher profits, but also reduce the net power out to the grid.

Clement et al. [11] mention several kinds of alternative vehicles: hybrid electric vehicls
(HEV), fuel-cell electric vehicle (FCEV) and plug-in hybrid electric vehicle (PHEV), but focus
on the last one, stating that PHEVs might take up to 5% of total electrical consumption in Bel-
gium and up to 30% of the market share by 2030. The model, in which the PHEVs charge at
home, defines four essential charging periods for a residential radial network. Daily (winter and
summer) load profiles are selected from available historical data, and given on a 15 minute time
base. First they describe uncoordinated charging, where the vehicles are charged (at constant
power of 4 kW) immediately when plugged in or after a fixed start delay, which leads to grid
problems. Next proposed is coordinated charging which computes the optimal PHEV charge
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profile (at variable charge rate) by minimizing the power losses. EV owners are now only al-
lowed to define a point in time when the battery must be fully charged. The starting time of
charging is determined by the sequential quadratic optimization program. This approach man-
ages to decrease the power losses for all charging periods and seasons. They also make use of
stochastic programming to forecast the daily load profile, which introduces an efficiency loss
(as the charge profiles are no longer optimal for the specific daily load profile, i.e. the stochastic
optimum differs from the deterministic one).

Sundström and Binding [30] compare two different approaches to optimize EV battery
charging behavior with the goal of minimizing charging costs, achieving satisfactory state-of-
charge (SoC) levels and optimal power balancing. The first one is based on a linear approxi-
mation, whereas the second one uses a quadratic approximation. The battery’s non-linear and
state-dependent model is used to evaluate the obtained solutions. They do mention the V2G
concept, but do not apply it in their setting. The driving pattern prediction (vehicle arrivals,
departures and energy requirements) is assumed to be available. The difference between the two
methods turn to be minor and they conclude that a linear approximation is sufficient, as the re-
sulting violations of the battery boundaries are less than 2% (however, in a perfect, deterministic
setting).
They continue their work in [31] by proposing a method of planning the individual charging
schedules of a large EV fleet while respecting the constrained low-voltage distribution grid. It
has been tested in a simulation environment in which the movement and charging of individ-
ual EVs are simulated simultaneously. Here, the planning period is represented by 96 slots of
15 minutes (as in [11]) and the charging spots are rated at 16 kW. A centralized fleet operator
is assumed, which handles data storage, trip forecasting (here assumed perfect), optimization,
customer relationship and billing information, and communication. Three different charging
schemes are compared: (i) Eager charging (connect and charge), (ii) Price-based charging (un-
constrained grid, minimizing only the total cost of electricity used for the fleet) and (iii) Grid-
aware price based charging (respecting the grid capacity as well). For (iii) they clearly separate
the grid congestion evaluation and charging schedules optimization phase, using the concepts of
load flow network, maximum flow problem solving and linear programming, while iteratively
updating the grid constraints. Results show that both for eager and pure price-based charging, the
grid is significantly overloaded. Including the grid constraints reduces the overload (however,
with still present peaks), but slightly increases the total cost.

Sánchez-Martin and Sánchez [27] focus on the electric power management at parking
garages, as new potential high concentrated electric consumption nodes. By exploring the ben-
efits of implementing a consumption management control (CMC) in a 50 plug-in vehicles case
study, they analyze power capacity requirements and costs, savings on energy consumption and
penalties for non-supplied energy. The vehicles are modeled as EV and PHEV entitites with spe-
cific attributes, such as maximum battery charge (23 kWh and 7.2 kWh), charging rate (3.8 kW
and 2.2 kW), arrival time, stay duration, and initial and final SoC. At the parking garage, power
capacity is considered an actual parking resource, next to the several parking zones managing
different charging status of the vehicles: waiting, charging and resting (FIFO queues). Vehicle
arrivals are modeled as a Poisson process [17] with a different arrival rate for each hour of the
day. The CMC attempts to avoid excesses over the total power capacity and to minimize the total
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energy cost, based on three charging time frames: two valleys (0:00 – 3:00; 3:00 – 6:00) and
off-valley (6:00 – 0:00). Simulations show that implementing the CMC: (i) delays a significant
percentage of the supply energy to a period of lower energy prices, (ii) avoids overcoming the
power capacity, (iii) reduces the contracted power capacity, and (iv) reduces the non-supplied
energy levels. Total cost savings are rated at 34% to 50% when CMC is employed. Next, they
state that the optimal installed power capacity for their 50 vehicles case study, given different
PHEV-EV scenarios, is 40-50 kW per garage (from purely economical perspective). A ”rule of
thumb” is also established, saying that 1 kW per plug-in vehicle is a reasonable rate to set an
installed power capacity.

Verzijlbergh et al. [32] investigate the impact of electric vehicle charging on residential low-
voltage (LV) networks. Their approach is different from other studies in that the analysis is
based on a large data set of real life driving patterns and electricity networks in Netherlands,
allowing construction of realistic load profiles (as opposed to those generated by probabilistic
methods). By comparing uncontrolled and controlled charging scenarios, they aim to answer
to what extent will the future transformers and cable loadings change in case of large scale EV
adoption. Two charging scenarios are examined: uncontrolled charging with fixed rate (3 kW or
10 kW) and controlled charging (with variable charge speed). The latter shifts the charging away
from household profile peak. First experiments show that there seems to be enough capacity in
current LV networks to charge all EVs, even up to penetration degree of 100% (assuming all EV
charging can be controlled). Next they focus on year 2040, when the EV market is supposed
to be saturated. They calculate future cables and transformers loadings, results of which show
that most problems could be expected with transformers rather than with cables or voltages.
Controlled charging is shown to be able to reduce the number of overloaded transformers and
cables with approximately 25% and 8%, respectively.

Xu and Pan [34] consider a stochastic dynamic system with a finite number of PHEVs and an
underlying power grid, in which the PHEV battery charging is scheduled to maximize the over-
all social welfare — derived from total customer utility, electricity cost and the non-completion
penalty for unsatisfied PHEV’s charging requests. They bring the EV charging problem in re-
lation to deadline scheduling problems, but also state the important differences: (i) the cost is
stochastic (due to uncertain future loads and renewable generation) and (ii) there are multiple
charging facilities able to charge PHEVs simultaneously. They formulate it as an infinite-horizon
Markov desicion process (MDP), which, unlike previous examples, allows for preemption. The
model incorporates an exogenous source of uncertainty — the state of the power grid; and the
stohasticity in the PHEV arrival process through a Markov chain. Main result of the paper is
the novel Less Laxity and Longer remaining Processing time (LLLP) principle: priority should
be given to vehicles that have less laxity (maximum number of non-charging states a vehicle
can tolerate before its departure time; i.e. remaining parking time minus remaining charging
time) and longer remaining processing times, if the non-completion penalty is convex, and if
the operator does not discount future cost. They compare the performances of three station-
ary heuristic policies: Earliest Deadline First, Least Laxity and Shorter remaining Processing
time, and LLLP. Results show that the LLLP principle can only reduce the expected cost, and its
violation may result in significant losses of social welfare.

Zhang et al. [36] studied delay-optimal charging scheduling of EVs at a charging station
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with multiple charging points. In their setting, the charging station is equipped with renewable
energy (RE) generation devices and can also buy energy from power grid into its storage battery.
An interesting point is noted, stating that local RE sources are the ones that should be used
at least partially, to achieve real environmental advantages of EVs, compared to conventional
vehicles. As in [34], an MDP framework is proposed, modeling the uncertainty of EV arrival,
intermittence of renewable energy and the grid power price variations as independent Markov
processes. The goal is to minimize the mean waiting time under the long term cost constraint.
Queue mapping is proposed, converting the EV queue to the charge demand queue, along with
the proof of equivalence between the average length minimization of the two queues. They
derive two necessary conditions of the two-dimensional optimal policy of the formulated MDP,
and finally investigate two specific stationary policies — radical and conservative.

2.3.5 EV systems

The following works offer insight into a somewhat wider framework of EV domain, including
comprehensive EV systems, charging station selection, routing and reservation. Some of them
delve into the recharge scheduling at individual stations as well.

Peças Lopes et al. [20] presented a conceptual framework of EV integration into electric
power systems, covering two different domains: the grid technical operation and the electric-
ity markets environment. Along with describing in detail all of the involved parties and their
activities, several simulations are performed in order to illustrate potential impacts and benefits
of EV integration, comprising steady-state and dynamic behavior analysis. In this work, they
consider slow charging at home and in public charging points in residential areas, for about
12700 EVs of different types. Two case studies, in order to prove the efficiency of suggested
framework, are presented: uncontrolled charging and advanced control EV charging strategies.
Dumb charging approach limits the EV penetration level to 10%. Two smart charging tech-
niques are implemented: a simple dual tariff policy (DTP) and a complex smart charging (SC)
mechanism. The allowable share of EVs that could be integrated into the network has risen to
14% with DTP, and 52% with SC, which shifted around 50% of EV charging periods from peak
to valley hours. They also model the EV’s grid interface, which offers a local level of control.
The work shows that adoption of advanced centralized EV charging control strategies allows for
highest EV penetration level, without the need of grid reinforcements. Smart charging results in
improved voltage profiles and lower congestion levels of the network.

Bessler and Groenbaek [7] address the efficient operation of public charging stations by
proposing a routing (CS search and reservation) service, the work which has been conducted
within the KOFLA project. Charging schedule optimization is considered as well, performed
independently at each CS. The routing service is designed to serve a geographical region and
represents a broker between EV users and energy providers. The planned communication proto-
cols run over wireless channels available in current cellular networks. Users provide a parking
time window and the energy demand requests, while the decentralized CS architecture and the
routing server provide feedback. Routing reachability simulations with different EV penetration
levels are run on Vienna region for three schemes: (i) direct drive (no charging), (ii) charging
in destination vicinity (walking distance allowed) and (iii) multimodal routing (including public
means of transport in the CS vicinity). Multimodal routing, as expected, offers a significant
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improvement in terms of CS reachability. Regarding controlled charging at individual charging
stations, a new problem is introduced as Electric Vehicles Recharge Scheduling with Time Win-
dows, which is the topic of this thesis, and will be discussed in detail in the following chapters.
Here, an integer programming approach is evaluated against a heuristic based on the local ratio
technique.

Mal et al. [21] present a comprehensive system leveraging mobile and RFID technologies,
aggregation middleware, and an aggregated charge scheduling algorithm, that effectively man-
ages charging and V2G operations for cost savings and peak load reduction. A wide system
architecture is given, detailing the parking garage access gate, charging station equipment and
activities, an EV command portal application, and parking garage aggregation middleware. The
Aggregated Charge Scheduler (ACS) optimizes charge scheduling for electricity price, which is
also implicitly optimized for electricity demand. Its task is to charge the EV from initial SoC to
final SoC within the time window defined by time of arrival and time of departure (including a
buffer time). In case the charging demand can not be satisfied, the plan is rejected and the EV
owner gets notified. 24 hour period of day is quantized into smaller time intervals, as well as the
electricity price curve. As in [18], V2G operations are utilized to incur additional profits, given
that an EV owner has opted to participate. Simulations are run for a hypothetical parking garage
with 10 chargers delivering 6.6 kW and 30 vehicles, and cost and power usage results are com-
pared with those of unmanaged charging. Charging gets scheduled during the cheapest intervals
an EV is parked, while most of the discharge happens when the electricity price and demand
are highest. Managed charging provides cost savings of 7-10%, and reduces peak demand load
by 46-56%. V2G services, which can be used to incentivize EV owners, have shown to be able
to generate a net profit of 5.6-11.7 cents per vehicle. The proposed implementation would be
best suited for an enterprise environment, allowing for aggregation of large number of EVs. The
system is in many ways similar to KOFLA. However, there is no mention of the available power
constraint when scheduling.

Qin and Zhang [25] aim to minimize charging waiting time through intelligently scheduling
charging activities, temporally and spatially. A theoretical study deals with formulating the
waiting time minimized charging scheduling problem and deriving the performance upper bound.
A practical distributed scheme is proposed as well, whose simulation results show that its design
can achieve a waiting time near the theoretical lower bound. The main idea is a system-wide
balanced distribution of charging demands, which should result in minimized overall waiting
times. This is to be approximated by balancing the distribution of charging demands locally in
every small portion of the system. A highway road system is considered — a 300 km by 300
km grid road network with 100 charging stations (CS) randomly deployed at entrances/exits.
Five types of EV are randomly generated following the Poisson process at each entrance. A
distributed, reservation-based scheduling scheme is introduced, where the CSs are networked
and collaborate via Internet. Stations estimate waiting times in a dynamic environment and
exchange their waiting time information with each other (and with the EVs). Success probability
of a reservation is quantified by reservation stability, which is calculated based on historical
records. Queuing time estimation at individual stations is done by simulating charging behaviors
on a FIFO reservation queue. The work focuses on improving the driving comfort, rather than
cost, by reducing the charging waiting times. In addition, no driver intervention is required. The
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paper deals mostly with the CS selection, rather than detailing recharge scheduling at individual
charging stations.

Yang et al. [35] study the problem of searching and selecting charging stations on a Taiwan
national highway. Two approaches are proposed — first one utilizing only local information of
the vehicle; while the second, global one, makes use of a Global CS-selection Server (GCS)
through mobile computing, which provides info on the waiting times at available CSs. The
highway is 372.7 km long and equipped with six intermediate service areas distanced 30-70 km,
each of them comprising one CS. Three local CS selection algorithms — shortest-first, random
and longest-first — have an issue of not being able to estimate the workload of a specific station
(thus, the waiting time as well). Two global algorithms are proposed, distinguished by the timing
of CS selection. The simulation model defines several objects and event types, EV arrivals being
once again generated by Poisson process. Average waiting time, number of visited CSs and
number of exchanged messages are used for performance evaluation of the proposed algorithms.
As expected, global algorithms perform better than the local ones, with their advantage being
even more noticeable given larger numbers of EV arrivals.

Barth and Todd [4] developed a shared vehicle system (SVS) simulation model, applied to
a resort community in Southern California. SVS typically consists of a fleet of vehicles used
several times each day by different users, and its main advantage being the reduction of number
of vehicles required to meet total travel demand. A detailed analysis of the SVS concept is
given, mentioning two types of SVS: (i) round-trip SVS and (ii) multiple station SVS (requiring
relocation mechanisms), an instance of which is the model proposed here. The model deals
with issues such as vehicle availability, vehicle distribution and energy management. Electric
vehicles recharge when they are idle at the stations, according to a battery recharge algorithm
(not described in detail). Simulations have shown that the most effective number of vehicles
(in terms of satisfying the waiting time, addressing the vehicle availability issue) is in the range
of 3-6 vehicles per 100 trips. If the number of relocations is to be minimized as well, the
number grows to 18-24 vehicles per 100 trips. The SVS is most sensitive to the vehicle-to-trip
ratio, the relocation algorithm used and the charging scheme employed. A preliminary cost
analysis is performed as well, showing that such a system can be very competitive with present
transportation systems (e.g. rental cars, taxis).

2.3.6 Analysis and Comparison

Interval Scheduling and Resource Allocation

The first subproblem of EVRSTW is analogous to interval scheduling, where the machines
(charging slots), to which we allocate jobs (activities, vehicles), can be considered a resource
[19]. This is equivalent to parking the vehicle to its assigned parking spot. Approaches consid-
ered here do not allow for preemption, which is reasonable in our setting as well — the parking
periods are contiguous. The fixed start and end times of jobs to schedule, present in all of the
works, are equivalent to arrival and departure times of our electric vehicles. Only Gabrel [15]
mentions the variable job scheduling problem (VSP), where each job can be completed within a
time window larger than its processing time. Our charging periods (present in the second sub-
problem) fall into this case, as they can be scheduled anywhere within the parking period. The
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assumption we took is the one of identical machines, but Arkin and Silverberg [1], He [16] and
Gabrel [15] do consider the non-identical ones too, allowing job assignment to only a subset
of machines. (Note: Gabrel’s work introduces some contradiction regarding identical machines
along with their subsets when assigning jobs, but we will consider this case as non-identical).
This variant brings the interval scheduling problem into the NP-complete domain. Kolen et
al. [19] mention the O(n logn) left-edge algorithm for optimal basic interval scheduling, whose
principles are analogous to our approach to solving the first subproblem.

The second subproblem of EVRSTW considers another resource — the available power.
This one is analogous to resource allocation problems. The resource in all of the literature
considered here is fixed, while in our setting the available power curve can vary over time. As
we mentioned in Subsection 2.1.2, we can observe this subproblem as a single machine problem,
just as Phillips et al. [24] did. The most similar setting to ours is the resource-constrained
scheduling problem therein, which allows for fixed length tasks to ”slide” within a larger time
window. As opposed, Darmann et al. [12] and Calinescu et al. [10] consider only jobs of fixed
start and end times.

Both interval scheduling and resource allocation problems deal with ”jobs”. The concept of
a job differs in the two subproblems of EVRSTW. If we look through the first subproblem’s point
of view, our jobs to schedule are activities (parking periods of the EVs) with fixed start and end
times. In the second subproblem, the jobs are charging plans, which are to be scheduled within
the time intervals (parking periods) potentially larger than the jobs’ processing times. For each
activity we consider multiple charging plan instances, each having determined its own charging
rate, start time and the amount of energy demand satisfied. This implies that all jobs belonging
to one activity need to be mutually exclusive — each activity can be assigned only one charging
plan. Yet the third view is that a ”job” is the one of satisfying the EV’s energy demand. Here,
an issue of defining its processing time occurs, which depends on the charging rate selected and
the energy demand fulfilled, i.e. on the instance assigned during the charging plan selection.

From this point on, we will consider that the activities define a fixed time window (parking
period) within which the job (charging period) has to be scheduled, satisfying a certain amount
of EV’s energy demand at the specified charging rate. Detailed charging plan instance generation
will be discussed in Chapter 3.

EV Charging and Systems

Clement et al. [11] and Sundström and Binding [31] talk about splitting time into discrete 15
minute intervals, the idea which we will also use when dealing with real time. Sugii et al.
[29], Sánchez-Martin and Sánchez [27] and Sundström and Binding [31] consider both load
and price curve when optimizing the charging schedules, while we focus only on satisfying the
available power constraint, whereas Mal et al. [21] take the available power for granted and do
not consider it at all. Just as us, Sugii et al. [29] split the problem into two subproblems —
allocating the vehicles to charging points first, and then scheduling the charging process.

Hutson et al. [18] and Mal et al. [21] include an interesting smart grid element of the vehicle-
to-grid (V2G) concept, where the energy exchange can go both ways, with EVs serving as energy
storage and even inducing profits for both the service providers and the users. We will not deal
with this concept in our work.
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Sánchez-Martin and Sánchez [27] and Sundström and Binding [31] emphasize the need
for a centralized EV management system. The former focuses on parking garages as charging
facilities, and even establishes a ”rule of thumb”, saying that at each station 1 kW per plug-in
vehicle is enough to satisfy the energy demands.

Of all the studies, only Verzijlbergh et al. [32] base their findings on realistic driving patterns
and electric networks, while the data of the rest are stochastically generated.

Qin and Zhang [25] focus on improving the driving comfort, rather than cost, by reducing
the charging waiting times. They focus not so much on the charging schedule at the charging
station, but on charging station selection; just as Yang et al. [35].

All of the studies prove that using controlled charging is only beneficial, as it enables cost
savings, grid load balancing and higher EV penetration levels.

2.3.7 BeCharged Case Study

BeCharged [5], a belgian company, is a regional electric mobility market pioneer since 2009.
They develop and distribute charging stations for electric vehicles (cars, scooters, bicycles, etc.)
and contribute to the development of a smart, user-friendly and affordable network infrastructure
in preparation for the imminent mass production of electric vehicles.

Their charging stations are mostly situated in the Benelux region, but they also actively
expand their reach in Europe (France, Switzerland, Germany, Luxembourg) and Asia. They
supply company and underground car parks, shopping malls’ parking lots, private homes etc.

Services

BeCharged acts as a service provider to both the charging station owners (hosts) and the electric
vehicle owners (users). Their MyBeCharged management and billing platform is accessible
through the web browser and a smartphone application.

Hosts can manage, monitor and control their charging stations using the MyBeCharged back
office management system. They can overview the charging stations’ status and usage, monitor
the financial transactions, adjust settings such as prices, user groups, zones, lighting, duration
of charging sessions, etc. The host can also apply a price differentiation for use (AC/hour) and/or
consumption (AC/kWh) via the web interface geographically, periodically and via user groups.
The rates are notified to the users on the web platform, on the interactive display and/or the
printout of the charging station. Financial transactions between users and hosts are carried out
by BeCharged.

Their advanced software technology is in line with the smart grid concept, the ”intelligent
electricity network”. This new electricity grid is envisioned as interactive — customers can
generate and sell energy to the grid, instead of only consume it. They can decide when they
wish to purchase or sell energy, and at what rate. This allows the hosts to time the replenishment
of their station’s electric supplies to ensure the lowest cost and the greatest efficiency, as well as
to sell the energy stored in the battery back to the grid when it is most profitable.

BeCharged’s charging stations ensure efficient charging cycles at the local level. Charging
sessions can be set to preset time periods, when for example, more solar energy is generated
locally, or when the local industrial grid has less load.
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Corporate or personal users can recharge their vehicles at private and public charging sta-
tions, the usage of the latter requiring appropriate activation. Public charging stations can be
activated in various ways — RFID cards, mobile phones, NFC (Near Field Communication)
chips, debit cards or via SMS. A prerequisite is an online registration at MyBeCharged platform,
where users can also request their personal RFID cards, manage their financial transactions,
receive status information about the charging stations and make reservations.

The smartphone application allows users to locate charging stations in the area and make a
reservation to ensure availability upon arrival. Reservations last for 15 minutes. It also enables
them to remotely activate or deactivate charging sessions and follow the energy consumption.

The National Railway Company of Belgium (NMBS/SNCB) wants to provide 34 stations
with electric charging points by October 2014. Currently, 7 Belgian cities host the service at
their main train stations. Each of these stations provides 6 charging points for cars, 6 charging
points for bicycles and 6 charging points for motorcycles. NMBS wants to further extend the
station in Brugge and turn it into a mobility centre: drivers who use their car in a smaller radius
could leave their vehicle here to charge and continue their journey by train.

Controlled Charging

Of special interest to the thesis is how does BeCharged plan the EV charging at individual
stations. They named their applied algorithm smart-grid (not to be confused with the widely
recognized, more general term smart grid, the modernized electrical grid).

On 2 July 2013 they implemented the first Belgian smart-grid application at the charging-
enabled parking lots of several large train stations. This application distributes the currently
available power among electric vehicles while taking into account each vehicle’s priority, esti-
mated battery capacity and departure time. It prevents a grid overload during peak hours and it
plans ahead to shift most power consumption to off-peak hours to make sure the cars are fully
charged by the time they leave. At these charging stations they operate with 6 sockets, each
providing about 21 kW.

They allow for immediate reservations within a 30 km radius, and only for 15 minutes.
The driver checks her smartphone for stations nearby to reserve one. In larger stations, there
is a central device on which the user can activate his socket. When the smart-grid algorithm is
active, the user will be requested to enter his vehicle data, desired battery charge percentage and
departure information.

The scheduling is performed in presence of a reschedule event, initiating the division of the
available power among plugged-in cars. These events are either induced by a timer every 5
minutes, or triggered when a new session starts or stops, or the available power changes. The
algorithm plans the whole process until the last car is set to depart. At the next reschedule,
it does the whole planning again but with updated information from the energy meters. The
charging normally starts immediately with the minimum required power, so the driver feels
more comfortable, as he can see his car charging before he leaves.

In contrast to our setting, their rescheduling allows for variable charging rates over the charg-
ing period. Also, the charging periods are interruptible (preemptive) — if there is not enough
power, they shut down the sockets with the lowest priority, and possibly start them up again later.

25



Several ideas can be recognized as shared among the KOFLA project and the services pro-
vided by BeCharged. Reservations by users is one of the essential use cases in KOFLA, though
not limited to only 15 minutes in advance as here. The concept of Brugge station as a mobility
center — enabling users to leave their vehicles charging and continue commuting via train — is
in line with KOFLA’s multimodal routing concept, which considers the usage of public transport
when proposing charging stations to the user.

The method by which controlled charging is performed at BeCharged, however, differenti-
ates from the one proposed in this thesis. This will be described in the following chapter.
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CHAPTER 3
Solving the EVRSTW Problem

In this chapter we describe the solution approaches to the EVRSTW problem developed under
the course of this thesis.

First we will have a look at the common parts to all of the applied methods: i) solving the first
subproblem of allocating activities to machines, and ii) generating the charging plan instances.

Next we continue with presenting the three heuristic methods to solve the second subprob-
lem, of finding the best charging plan instances for activities allocated to machines. These are the
greedy heuristic (GH), the local ratio technique (LRT) and the min-conflicts heuristic (MCH).

Finally we discuss the modifications necessary to provide an interface to the real-world
online planning system, by integrating the scheduler into the KOFLA framework via a charging
station controller.

3.1 Allocation of Activities to Machines

The first phase of solving the EVRSTW — allocating the activities to machines — is a prepro-
cessing step, shared by all of the methods dealing with the second subproblem. We will therefore
describe it up front, and then see how to solve the second subproblem in Section 3.3.

This step is possible only in the case of identical machines (all able to charge at all rates in
R), which we do assume. When the machines would not be identical, this step could not be used
and the charging plan instance generation would have to include all of the available machines.

The proposed algorithm is in line with the one of Kolen et al. [19], the so called left-edge
algorithm running in O(n logn) time. It is a greedy algorithm providing optimal solutions to
the basic interval scheduling — the problem present as our first subproblem. It is optimal in the
sense that it uses the minimum number of machines to accommodate the presented jobs (in our
case — activities).

The procedure first sorts the activities in A according to their earliest (ea) time in non-
decreasing order. It then iterates over the sorted activities, finds the first machine free at that
point in time, and allocates the activity to it. The machines are checked in a fixed order, i.e.
considered a list, not a set. The method is outlined in Algorithm 3.1.
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Algorithm 3.1: Allocation of Activities to Machines
Input: List of activities A
Output: Optimal activities-to-machines allocation

1 sort activities A by non-decreasing order of ea
2 for a ∈ A do
3 for m ∈M do
4 if m not busy at ea then
5 assign a to m
6 break
7 end
8 end
9 end

This yields an optimal solution to the interval scheduling problem. We are now ready to
proceed with solving the second subproblem of EVRSTW — the charging plans assignment.
But first, we will explore how to generate the feasible charging plan instances for our activities.

3.2 Charging Plan Instances Generation

Before we describe our solution approaches to the second subproblem of assigning the ”best”
valid charging plan instances, we will have a look at another common aspect of all the proposed
methods — the charging plan instances generation for our activities. The formalities have been
described in Subsection 2.2.3, so we will now have a look at the outline of the algorithm.

As mentioned, the charging plan instances for a certain activity are generated for all the
combinations of the charging rates r ∈ R, charging durations dur (determined by r ∈ R and
c ∈ C) and start times s. Of course, only the feasible plans that satisfy the constraint of the
parking time window [ea, la) are accepted into the generated set.

The local ratio technique requires that set I consists of all charging plan instances of all the
activities in A. On the other hand, the min-conflicts and greedy heuristics only need instance
sets of a single activity at a time — we depict these as Ia. We will show how to obtain the
individual sets Ia, since I can be easily achieved from individual Ia sets by a set union:

I =
⋃
a∈A
Ia

The approach to calculating the charging duration and completion degree of a charging plan
differs between the two energy demand models. Algorithm 3.2 outlines the charging plan in-
stance generation for the MinMax model. We see that the charging duration has to be deter-
mined (according to the chosen charging rate) before the completion degree (Eq. 2.2 — 2.5).
Only then can we calculate the profit of an instance. Since the charging duration, and thus the
completion degree, can possibly take more values than in the case of the SingleDemand model,
we can expect to have more instances generated.
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Algorithm 3.2: MinMax Model Instance Generation
Input: Activity a
Output: Set of valid charging plan instances for the activity a

1 Ia ← ∅
2 for r ∈ R do
3 durmin ←

⌈
dmin,a

r

⌉
4 durmax ←

⌈
dmax,a

r

⌉
5 for dur← durmin to durmax do
6 if dur ≤ la − ea then
7 for s← ea to la − dur do
8 c← dur

durmax
// completion degree

9 calculate p based on c and r // profit
10 i← inst(s, dur, c, r, p)
11 Ia ← Ia ∪ {i}
12 end
13 end
14 end
15 end
16 return Ia

On the other hand, the completion degrees are predefined by set C in the SingleDemand
model. Charging durations are therefore calculated only after one of those has been selected, as
seen in Algorithm 3.3.

Algorithm 3.3: SingleDemand Model Instance Generation
Input: Activity a
Output: Set of valid charging plan instances for the activity a

1 Ia ← ∅
2 for c ∈ C do
3 for r ∈ R do
4 dur←

⌈
c·da

r

⌉
5 if dur ≤ la − ea then
6 for s← ea to la − dur do
7 calculate p based on c and r
8 i← inst(s, dur, c, r, p)
9 Ia ← Ia ∪ {i}

10 end
11 end
12 end
13 end
14 return Ia
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Greedy Instances

We will be using a special subset of the charging plan instances for the greedy heuristic. De-
nominated as a set of greedy instances, it is comprised of charging plan instances having their:

a) charging rate fixed at the lowest charging rate ri = rmin = minR

b) charging start time fixed at the beginning of the parking time window si = eai

These will be incorporated into the greedy heuristic, to simulate the uncontrolled (un-
planned) EV charging environment. Generation of these instances is simplified, requiring no
loops over the charging rates nor possible starting times, but only over the possible completion
degrees, resulting in much smaller size of sets Ia (and I).

3.3 Heuristic Methods to Solve the Charging Plans Assignment
Problem

Here we describe the three solution approaches to solving the second subproblem of EVRSTW
— the one of assigning the ”best” charging plans to all allocated activities, under the imposed
available power constraint, with the goal of achieving maximum profit.

First we introduce the greedy heuristic, which should simulate the uncontrolled (”dumb”)
charging. Next we have a look at the local ratio technique [2], [3], adapted to our problem
at hand. Finally we propose an algorithm based on the min-conflicts heuristic, which should
improve on the two former approaches’ results.

3.3.1 Greedy Heuristic

The greedy heuristic (GH) was designed to simulate ”dumb”, plugin-and-charge behaviour. But
it is not an entirely ”dumb” approach, since it is designed to preserve the available power con-
straint satisfied — it rejects the charging plans (and activities) whose addition to the schedule
would overshoot the available power.

GH considers only those charging plan instances generated by the minimum charging rate
(ri = rmin) and starting at the beginning of the activity’s parking time window (si = eai), i.e.
the greedy instances. The instances for a single activity are trialled in the order of the highest
profit first. Since the charging rate is fixed, we can deduce (from Eq. 2.1) that profit is directly
proportional to the completion degree of the charging plan instance.

This approach is outlined in Algorithm 3.4.
We can notice that the activity (which passed through the preprocessing phase, i.e. there was

room for its parking) can be rejected from the schedule in two cases:

1. Parking too short. The evidence of this case is that no greedy instances (those charging
at the slowest rate and starting at the beginning of the parking time window) could be
generated.
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Algorithm 3.4: Greedy Heuristic
Input: Set of allocated activities A
Output: Charging schedule consisting of activities with assigned charging plan instances

1 for a ∈ A do
2 Ia ← ”greedy” instances for a
3 if Ia is empty then // parking too short
4 increment the unscheduled counter
5 continue
6 end
7 sort Ia by decreasing profit
8 schedFlag← False
9 for i ∈ Ia do

10 if i does not violate the available power constraint then
11 assign i to a
12 add a to the schedule
13 schedFlag← True
14 break
15 end
16 end
17 if not schedFlag then
18 increment the unscheduled counter // no power for this activity
19 end
20 end

2. Not enough power. Even after testing all the possible greedy instances for the activity,
none of them exist which do not violate the available power constraint during their charg-
ing period.

For these two cases we increment the counter and report the total number of unscheduled (in the
manner that no charging plan has been devised for them) activities at the end.

This approach, as expected, performs poorly. The first issue is the activity’s time window:
if it is too short, the greedy instance set will be empty. This happens when even the minimum
energy demand of the activity can not be satisfied by the charging rate rmin within the parking
duration. The second issue is a common trait of greedy algorithms: if the current charging plan
instance can not fit into the schedule, it gets thrown away and never observed afterwards. These
two factors result in many activities not being scheduled at all. We look forward to improve that
with the following approaches.

3.3.2 Local Ratio Technique

The local ratio technique belongs to a class of stack based heuristics [8], and has been proposed
in packing, resource allocation and scheduling problems to, among other uses, maximize band-
width throughput [2], [3]. This technique, adapted to our problem in [7], where the bandwidth
corresponds to the available power, is described next. For this type of problems, the algorithm
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can achieve a 1/3 approximation, which gets better as the ratio between the charging rate of
individual activities and the total available power is smaller.

LRT General Framework

In the local ratio general framework the input consists of a set of activities, each requiring the
utilization of a given limited resource. The amount of resource available is usually fixed over
time, but the authors allow for generalization to the case where the amount of available resource
may change over time.

The activities are specified as a collection of sets Ia1 . . . Ian , each representing all possible
instances of a single activity. An instance i ∈ Iak is defined by the following parameters:

1. A half-open time interval [si, fi) during which the activity will be executed. The si and fi
are called the start-time and end-time of the instance. In our problem, the ”execution” of
the activity depicts that the charging plan is being realized.

2. The amount of resource required for the activity, referred to as the width of the instance
and denoted wi (the terminology inspired by bandwidth allocation problems). Naturally,
0 < wi ≤ 1. In the context of the EVRSTW problem, the ”width” is the share of the
charging rate in total available power, wi = ri

P .

3. The profit pi ≥ 0 gained by scheduling this specific instance of the activity.

Different instances of the same activity may have different parameters of duration, width, or
profit. A schedule is then a collection of instances. It is feasible if: a) it contains at most one
instance of every activity; and b) for all time instants t, the total width of the instances in the
schedule whose time interval contains t does not exceed 1.

In the throughput maximization problems we are asked to find a feasible schedule that max-
imizes the total profit accrued by instances in the schedule. In the loss minimization problems
we seek a feasible schedule of minimum penalty, where the penalty of a schedule is defined as
the total profit of activities not in the schedule. Each activity is restricted to be assigned a single
instance and the profit of an activity is then the profit of its instance. Our EVRSTW problem
maps perfectly into the framework, under the niche of throughput maximization.

LRT Algorithm

The iterative LRT algorithm works as follows: the charging plan instances I are first sorted in
non-decreasing order of their end-times (fi). The process is then split into two phases:

Phase One We iteratively select an instance ĩ with minimum end-time and decrease the profits
of all instances that a) belong to the same activity; and b) overlap with the selected in-
stance. All encountered instances with non-positive profits are deleted, and the instance ĩ
is pushed onto a stack. When all of the instances have been considered, we proceed to the
second phase.

Phase Two We construct the schedule by popping the instances from the stack and adding to
the current schedule those which do not violate the total power constraint (Eq. 2.10).
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To introduce some additional notation, let Iai denote the set of all possible instances belong-
ing to the same activity as i, and I ′(i) the set of instances overlapping instance i but belonging
to activities other than ai. We consider the ”overlapping instances” as those whose activities (i.e.
parking periods) overlap, not just themselves (charging periods).

The profit of the instances is updated according to the rule:

pi = pi − pĩ ·


1 i ∈ Iaĩ \ {̃i}
β · wi i ∈ I ′(̃i)
0 otherwise

(3.1)

We set β = 2, as our setting corresponds to ”narrow” instances [3] (wi ≤ 1/2,∀i ∈ I) - meaning
more than one instance can be scheduled to execute simultaneously .

Rather than using a stack, whose sole purpose is to revert the order in which we consider
the instances, we implemented the sweep-line approach from [2], which reduces the worst case
time complexity to O(n logn). The analogy to the stack is reached by sorting the instances in a
list and traversing it in both directions.

Here, the time interval of each instance has two endpoints (start-time and end-time, or si
and fi in our notation). i(t) denotes the instance which endpoint t belongs to. We sort the 2n
endpoints of the instances in a list 〈t1, t2, . . . , t2n〉 such that k < l if tk < tl or if tk = tl and
tk is the end-time of i(tk) and tl is the start-time of i(tl). We then consider the endpoints in
order, reducing profits as we go along and deleting an instance whenever its profit is found to
be non-positive. The pseudo-code of the first phase is shown in Algorithm 3.5. πi denotes the
”current” profit of an instance.

Notice the application of the profit update rule (Eq. 3.1) in lines 10-15.
Once the first phase is completed, we traverse the surviving endpoints in the reverse order

and construct the schedule S. We maintain the variable W with the following invariant: when
endpoint t is reached, W holds the total width of the instances containing t which have been
added to S . Algorithm 3.6 outlines the second phase.

The amount of resource used at any point has to satisfy 0 ≤ W ≤ 1, and thus 0 ≤ wi ≤ 1.
We scale the instance’s resource consumption to this range by setting wi = ri

P . This is fairly
simple when the amount of resource is fixed over time.

The problem arises if the available resource (power) varies over time (as can be expected in
the real-world setting), when the calculation ofwi varies in the interval [si, fi). The conservative
rule in (3.2) would only waste resources because even a short drop in the available power would
affect all the charging periods around it. On the other hand, using the rule of averaging the
consumption as in (3.3) causes overshooting the available power and overloading the grid.

w̄i = min
t∈[si,fi)

wi(t) (3.2)

w̄i =

∑
t∈[si,fi)wi(t)

duri
(3.3)

After solving the integer problem exactly (which turned to be excessively time-demanding,
even non-feasible for bigger problem instances, due to the problem’s NP-complete nature), fol-
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Algorithm 3.5: Phase One of the Sweep-line LRT
Input: Set of activities (with their instances)
Output: Set of feasible instances

1 sort the 2n endpoints in non-decreasing order
2 initialize πĩ ← pi for all i ∈ I
3 for k← 1 to 2n do
4 ĩ← i(tk)

5 if tk is the end-time of ĩ then
6 p← πĩ
7 if p ≤ 0 then
8 delete ĩ
9 else

10 for j ∈ Iaĩ
\ {̃i} do

11 πj ←πj − p
12 end
13 for j ∈ I ′(̃i) do
14 πj ← πj − β · wj · p
15 end
16 end
17 end
18 end

Algorithm 3.6: Phase Two of the Sweep-line LRT
Input: Set of feasible instances’ endpoints
Output: Schedule S

1 S ← ∅
2 W ← 0
3 sort the endpoints list E backwards
4 for t ∈ E do
5 ĩ← i(t)

6 if t is the end-time of ĩ then
7 if W+ wĩ ≤ 1 then
8 S ← S ∪ {̃i}
9 W ←W+ wĩ

10 delete the endpoints of the instances in Iaĩ
\ {̃i}

11 else
12 delete the endpoints of ĩ
13 end
14 else // t is the start-time of ĩ
15 W ←W− wĩ

16 end
17 end
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lowed by the use of greedy and local ratio heuristics (which had the problem of not scheduling
all the activities), we propose a novel technique based on the ideas of the min-conflicts heuristic.

3.3.3 Min-conflicts Heuristic

This section describes our new solution for the EVRSTW problem, based on the core ideas of
the min-conflicts heuristic. This method was proposed by Minton et al. [22] and has proven very
useful on solving different constraint satisfaction problems (CSP). Min-conflicts heuristic has
been applied, among others, for the Hubble Space Telescope scheduling problem [22], Work-
force scheduling [23], Break scheduling [6], N-Queens problem [22], etc., and has also been
used in combination with noise strategies such as random walk [33]. Furthermore, a similar
algorithm to the min-conflicts heuristic is currently one of the best local search strategies for
solving boolean satisfiability problems [28].

Instead of constructing a feasible solution gradually, the min-conflicts heuristic generates
a suboptimal initial solution and then attempts to improve it iteratively. The main idea of this
method is to concentrate the search in the neighborhood of the variables that are in conflict.
This technique initially assigns random values to all variables of the problem to be solved. The
current solution is then improved with the following strategy: in each iteration we randomly
select a variable that is in conflict (i.e., the variable appearing in a constraint that is still violated).
The new value that minimizes the number of conflicts is assigned to the selected variable. The
ties are broken randomly. Note, that different strategies can be applied to escape from the local
optima. If the number of conflicts can not be minimized, even the solutions with more conflicts
or same number of conflicts can be accepted. Alternatively, random strategies like random noise
or random walk can be introduced in the min-conflicts method.

In order to apply the min-conflicts strategy to our problem, we first formulate it as a con-
straint satisfaction problem (CSP) consisting of variables, their domain and constraints. In our
case the activities (cars) represent the variables, the instances (charging plans) represent the val-
ues, and any time slot-wise power constraint violation represents a conflict. The final state with
no conflicts is when the power consumption in each time slot is smaller than or equal to the
available power, i.e. when the power constraint is not violated. As we will see, the concept of
adding some random noise will be introduced to escape the local optima as well.

Internal Solution Representation

An essential part of good system design is an efficient, yet simple, data structure.
We represented the schedule as a two-dimensional matrix, of dimensions |M| · |T |. The

planning time horizon T is discretized into time slots of fixed length (in our setting they are 15
minutes each). This was necessary to make the search space feasible.

Presence of the parked EVs and their charging periods is appointed by their activity IDs. The
absolute value depicts the activity’s ID, while the sign depicts whether the charging is active or
not: If the value is positive — the charging process is active; if it is negative — charging is not
active, i.e. the vehicle is only parked at the charging point. Machines are free where the matrix
value is 0. An example of an internal schedule representation can be seen in Figure 3.1.
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Figure 3.1: Example of internal schedule representation

Additional to this 2-D integer matrix, a hashed map is used with activity IDs as keys. Map
values are activities themselves, containing all the information about the assigned charging plan
instances. This representation is of huge importance for the performance, since it allows for
rapid access to the activity (and its instance) attributes while traversing the search space and
looking for improvements.

The available power and power consumed are represented as integer arrays, per time slot.
This data structure choice plays a remarkable role in the optimization step, as we will soon see.

Neighborhood Search

After the initial charging plan instance has been assigned to each of the activities, potentially
violating the power constraint, the local neighborhood search process starts, in an attempt to
reduce the conflicts. The neighborhood is defined by all feasible charging plan instances of a
randomly chosen activity which is charging in a randomly selected time slot. The search is then
performed by inspecting the defined neighborhood in a manner presented by Algorithm 3.7.

The time slots violating the power constraint (T−) are those having a negative power dif-
ference — the difference between available power and power consumption. Local optimization
stops when there are either no more time slots with negative power differences or when the time
limit is reached.

We introduce stochasticity into the heuristic in three occasions:

• randomly choosing a violating time slot (line 3)

• randomly choosing an activity whose charging is active (line 4)

• random noise in choosing a new instance of the activity (lines 6-8)

The amount of random noise is specified by the probability parameter pnoise, meaning that
in pnoise fraction of cases we choose a random instance instead of the one that most improves
the current. This is to enable escaping the local optima.
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Algorithm 3.7: Search
Input: Activities with assigned initial instances
Output: Locally optimal schedule

1 T−← list of time slots violating the power constraint
2 while T− is not empty and time limit not exceeded do // conflicts exist
3 t← a random time slot from T−

4 a← a random activity charging at t
5 Ia ← all feasible instances for a
6 p← a random number from [0, 1]
7 if p < pnoise then // some random noise
8 i← a random instance from Ia
9 else

10 i← bestImprovement(a, Ia)
11 end
12 assign instance i to a
13 update schedule and T−

14 end

In the remaining cases, we select the best possible instance by inspecting the neighborhood
using the strategy of best improvement. This is where the most of the complex computation is
done, the outline of which is shown in Algorithm 3.8.

Algorithm 3.8: Best Improvement
Input: Activity a with an assigned charging plan instance, and a set of all feasible instances Ia
Output: A new charging plan instance for the activity

1 i← i∗← a’s current instance
2 ∆P ∗ ← calculatePwrDiffs()
3 negSumBest ← sumNegatives(∆P ∗)
4 (*) sort Ia by profit; or shuffle them // set as a parameter
5 for i′ ∈ Ia \ {i} do // search for the best instance
6 ∆P ′← updatePwrDiff(i′, i)
7 negSumNew ← sumNegatives(∆P ′)
8 if negSumNew > negSumBest || (negSumNew == negSumBest & pi′ > pi∗ ) then
9 i∗ ← i′

10 ∆P ∗ ←∆P ′

11 if negSumNew == 0 then // all conflicts resolved
12 break
13 end
14 end
15 end
16 return i∗

∆P is an array of power differences of length |T |, values of which are calculated per time
slot as:

Pavailable(t)− Pconsumed(t).
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This array also serves to determine the set of time slots where the power constraint is violated
(Algorithm 3.7): T− contains time slots where the difference is negative.

The sorting step (*) in line 4 is optional, and is given as a parameter. The sort arranges the
instances of Ia in the non-increasing order of their profits, so that those of maximum profit value
are considered first. Otherwise, the list of charging plan instances is shuffled before trial.

Next we discuss the essential methods the algorithm is using:

calculatePwrDiffs calculates the difference between available power and power consumed per
time slot. This approach is also used when determining the conflicting time slots in Algo-
rithm 3.7 (those with negative values comprise the list T−).

updatePwrDiff is a rapid way of determining the potential local improvement that the given
instance i′ offers, i.e. it serves to evaluate the fitness of the neighbors. We decrease the
power consumed in the time slots where i is active, and increase the power consumed in
those of the newly assigned instance i′, by the amounts of their respective charging rates.
The power consumption update is visualized in Figure 3.2.

sumNegatives serves as a fitness calculation here. It sums up only the negative values in the
array of power differences given as its parameter. This is a swift method of determining the
local fitness improvement. It is possible to apply this since all the charging plan instances
of other activities remain fixed while we test the current activity.
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Figure 3.2: Power consumption update (updatePwrDiff method). Consumption in the time
slots of the current instance (i) is decreased, in those of the new instance (i′) increased.

If the sum of the negative values in array ∆P ′, induced by i′, is greater (i.e. less negative)
than the previous best; or, alternatively, the two are equal but the profit of the observed instance
i′ is higher than the current one i, i′ is assigned as the new best instance i∗. Finally, the overall
best instance (implying least negative sum of negative values in ∆P ) is returned.

Profit Maximization by Sorting the Charging Plan Instances

The min-conflicts heuristic (MCH) has proven very useful for constraint satisfaction problems.
The constraint we are dealing with, once the first subproblem of assigning the activities to ma-
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chines is solved, is the available power. Since our approach is based on MCH (cf. Algorithms
3.7 and 3.8), it is more akin to constraint satisfaction than it is to constraint optimization. This
entails that our algorithm stops when no more conflicts are present (line 9-11).

In an attempt to maximize the induced profit and mimic the constraint optimization, we try
to assign individual charging plan instances of highest profit by sorting the instances at two
occasions:

• when assigning the initial charging plans

• before trialling them for best improvement (cf. line 3 in Algorithm 3.8)

The two strategies we have implemented for assigning the initial charging plans are:

a) Random: among all charging plan instances, assign a random one

b) Max-profit-first: sort all instances by profit and assign the maximum profit one

As far as sorting in the Best Improvement algorithm (Algorithm 3.8) is concerned, we either
shuffle or sort (in the order of decreasing profit) the charging plan instances before trialling
them.

We will see how the different combinations of instance choosing strategies affect the
scheduling results in Chapter 4.

3.4 Steady-state to Dynamic Transition

The scheduling heuristics were intended to be employed within a wider framework of a dynamic,
online reservation system, mimicked by a simulator developed under the KOFLA project. There-
fore we have integrated them in a charging station (CS) controller which can react to various
events generated either from the customers (their EVs) or from the electric grid distribution
system, mediated by the KOFLA system. The online scheduling is event-driven, and not run
periodically (e.g. every 15 minutes).

Main differences to the static version of the problem are:

1. Time transformation: We still deal with this dynamic variant of the problem by discretiz-
ing the time, but we need to standardize the way of translating real time (e.g. 8:27 a.m.)
into discrete intervals.

2. Event handling: The system now responds to various events, such as reservations, arrivals
within or outside of the planned parking period, leave and timeout events. This is when
rescheduling occurs.

3. Rolling schedule: Simulating the flow of real time, the schedule now ”rolls” over the time
slots and keeps track of the NOW marker, which corresponds to the ”current” time.

4. Reduced number of activities: The scheduler now deals only with a subset of all the
activities — those within the planning time horizon T . In general, this reduces the total
number of instances, and makes room for some potential optimizations in the algorithms.
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5. Possible rescheduling: The same activity (that entered the system) can be rescheduled
several times, as long as its assigned charging plan has not yet commenced execution.
This gives room for some performance optimization, in terms of caching.

6. Predictions errors: Real world means things are constantly changing (e.g. arrival and
departure times can turn to be different than predicted, the energy demand can change
in the meantime), and the online system has to keep up with the pace and deal with the
predictions, not factual data, efficiently. The available power is predicted as well, and it
may take different values during the charging periods (the power curve, again discretized).
This makes the problem even more difficult to solve.

The time transformation, various handled events, the rolling schedule and finally the con-
troller providing all of these functions to the system, along with denial-of-service notifications,
are described next.

3.4.1 Time Transformation

Since the heuristics operate on a discrete list of time slots (T = {0, . . . , T − 1}), we need
to transform the real time points into appropriate discrete representation. This is done in two
stages:

1. rounding the time points onto 15-minute timestamps

2. mapping the 15-minute timestamps into discrete time slots

The event time points in real time are first converted by the following rounding principle into
their corresponding parameters, to the nearest ”round” 15-minute block:

Event Real Time Parameter Time Slot
arrival 7:27:17 earliest 7:30:00

departure 9:37:43 latest 9:30:00

Table 3.1: Time Rounding Principle

When calculating the earliest (ea) we round ”up”, and when calculating the latest (la) we
round the time ”down” to the nearest 15-minute block time point.

The time slot identified by a timestamp determines a 15-minute block starting with this
timestamp, e.g. 7:30 identifies the time slot (interval) 7:30 - 7:45.

Here again, the time slot corresponding to earliest is inclusive, and the one corresponding
to latest is exclusive to the parking period. If we follow the example from Table 3.1, the arrival
and departure times transform into the parking period [7:30, 9:30), within which we can plan the
charging. This rounding is necessary as we operate with discrete blocks of time. We need entire
intervals to be available for scheduling, and this rounding principle provides us with exactly that.

To translate these rounded timestamps into integer-valued blocks of time, i.e. time intervals
(0, . . . , T − 1), we consider the NOW marker to correspond to the beginning of the time slot
t = 0, and translate every subsequent 15-minute interval accordingly.
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As an example, if NOW is mapped to 7:30, time slot t = 0 would correspond to the period
[7:30, 7:45), t = 1 to [7:45, 8:00), etc.

Once this transformation has been performed, the data is ready to be forwarded to the
scheduling heuristics.

3.4.2 Events

The events which can occur in our system, to which the controller corresponds appropriately,
are the following:

reserve When the owner of an EV wants to make a reservation for a parking place (i.e. the
charging machine), the KOFLA system provides the following data to the CS: the ex-
pected arrival and departure times, the energy demand and the vehicle’s reservation ID.
The controller checks whether there is enough resources (parking and power) for this ve-
hicle and notifies the system by confirming or cancelling the reservation.

plugin The EV arrives to the charging station and connects to the machine. If necessary, the
actual energy demand is updated, as well as the parameters of the actual parking period
(if they do not correspond to the planned ones). In case there was no previous reservation,
the service for this vehicle is denied.

unplug The EV unplugs from the machine and leaves the charging station (possibly even before
it was planned). The resources it was occupying are released as necessary, and the data
about the activity and its charging plan are updated.

timeout When the EV does not arrive on time (including the predetermined slack period around
the planned arrival), the timeout event notifies the controller to remove the reservation
from the system and release its assigned resources.

available power update Initiated by the externally imposed electrical grid, the available power
curve for the planning time horizon is regularly updated, and rescheduling is performed
when necessary.

More details on the steps taken at the occurrence of each of these events are to follow in
Subsection 3.4.4.

3.4.3 Rolling Schedule

As mentioned, the schedule is ”rolling” over the time slots, and does so at the occurence of the
described events. Every event arrives with an assigned timestamp, and at each event the NOW
marker is updated. This means we do not have to handle each and every time slot, but we can
skip to only those of relevance — when actual events occur. As the NOW marker shifts, we
also need to shift the power load (consumed power) and the available power curves (arrays)
accordingly, so they represent the ”actual” state, and keep the time parameters of the activities
up to date.

The events can induce repeated scheduling of the activities currently present in the plan-
ning time horizon. Rescheduling is performed upon reserve, plugin and available power update

41



events, as they have a potential impact on the previously valid schedule. We maintain the ”ac-
tual” schedule and try to add new activities as they arrive. If the new conditions — be it the
new activity at reserve or plugin; or new available power curve at available power update —
violate the power constraint, the optimization steps are taken. If the scheduling fails, the system
is notified (and the new activity is rejected).

On the other hand, releasing the resources — reducing the power load, freeing up the ma-
chines (parking space) and removing the activities from the ”active” ones — is performed at
unplug and timeout events. At unplug event the corresponding activity is put into the set of
”completed” activities.

Temporary Earliest

One important modification, in relation to the static variant of the problem, is the possibility of
rescheduling a certain activity multiple times, as long as its charging has not already started. For
this purpose we introduce an extension to the EV model in the manner of a temporary earliest
(e′a) variable. When any of the events occur, the NOW marker gets updated. If it enters the
scheduled activity’s parking period, but does not intersect the assigned charging plan instance’s
period, we allow for this activity’s charging plan recalculation by assigning e′a to the value of
NOW. Figure 3.3 shows an example of activities excluded from rescheduling (their charging
plans in red) at t = 5, since the NOW marker intersects their charging period at that time slot.

t=0   t=5
NOW NOW

Figure 3.3: Example of the rolling schedule; NOW marker intersecting activities not allowed
for rescheduling (charging plans in red)

The mapping of the time points into the discrete intervals for the scheduling heuristics is
then based on this temporary value e′a, instead of the ”original” earliest (ea). This allows for an
online adaptation in case of early or late arrivals and departures.
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Caching the Charging Plan Instances

In order to escape the unnecessary repeated generation of the charging plan instances as
rescheduling occurs, we use a map to cache the generated instance sets for every activity in
the system. The sets are recalculated only when some of the activity’s attributes — the energy
demand or the (temporary) parking time window — have changed. This can happen in two
cases:

a) At plugin, the rounded timestamp can slightly differ from that of predicted arrival time
at reservation. In this case, we update ea (and e′a) of the activity to the time slot corre-
sponding to NOW. The energy demand (da or dmin,a, dmax,a) can change at plugin event
as well, when the actual demand differs from the one at the reservation. This case affects
only the activity currently plugging in.

b) At any event’s occurence, the rolling schedule’s NOW marker can intersect the activity’s
parking time window. If it does not intersect the charging period (eai ≤ NOW ≤ si),
we update e′ai to NOW. This case affects all of the activities present in the planning time
horizon whose charging has not commenced yet.

These modifications of e′a(ea) and da (or dmin,a, dmax,a) result in recomputation of the activ-
ity’s charging plan instances set as we prepare it for scheduling. We use the previously generated
set if these attributes have not been changed. This subtle improvement is shown in Algorithm
3.9, presenting a snippet of the modified instance generation module.

Algorithm 3.9: Cached Instance Generation
Input: Activity a
Output: Set of valid charging plan instances for the activity a

1 if M .containsKey(a) and neither e′a nor da have changed then // or dmin,a, dmax,a

2 return M .get(a)
3 end
4 Ia ← ∅
// generate the instances as usual

5 return Ia

3.4.4 The Controller

Here we describe the charging station (CS) controller, i.e. the interface to the KOFLA sim-
ulator. It acts as a wrapper for the scheduling heuristic algorithms, performing the necessary
time transformations, handling the events, exchange of data and signals between the CS and the
system.

The controller maintains the current charging schedule, information about the activities
(those to schedule as well as completed ones), and the load profile of the charging station, which
provides insight into the power consumed at each time slot.

The controller is able to notify the system about the unavailability of resources when trying
to schedule a new activity or reschedule in new conditions. These signals are:
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No parking space available [NPSA]: When there is no room for the new activity at the charg-
ing station, i.e. no machine is available for the given parking period.

No power available [NPA]: When the new activity can not be assigned a charging plan, i.e.
there is not enough power to include it in the current schedule (or the new available power
curve is violated).

Parking duration too short [PDTS]: When there is no feasible charging plan instance for the
given parameters (parking time window and energy demand).

Next we have a look at the methods comprising the controller.

Reserve

At reservation, we need to make sure the charging station has enough resources to accommodate
the EV, by attempting to include the new activity into the schedule. If so, the charging schedule
is updated and the new load profile of the CS is returned to the KOFLA system. (cf. Algorithm
3.10)

Algorithm 3.10: Reserve Procedure
Input: Reservation ID, expected arrival and departure, power demand(s), current time
Output: Load profile

1 update NOW from current time
2 shift the power load and available power arrays correspondingly
3 a← a new activity generated from the input data
4 try to assign a to a machine, otherwise send [NPSA]
5 transform the activities’ timestamps into discrete time slots, according to NOW
6 try to reschedule including a, otherwise send [NPA] or [PDTS]
7 return load profile

Plugin

The EV arrives at the charging station and attempts to plug into the machine assigned to its
reservation ID. If there has been no previous reservation for this EV, it gets rejected. When the
EV scheduled at the same machine as the one plugging in (scheduled before the current one)
has not left yet, the controller attempts to assign it a new charging point. If it fails to satisfy
the requirements by the currently available resources, appropriate signals are emitted and the
activity is not included in the schedule. (cf. Algorithm 3.11)

Unplug

The EV unplugs and the resources it was assigned get released as necessary. If the vehicle left
too early and the charging was interrupted, the power occupied by its charging plan instance
needs to be released, so it does not falsely interfere with the scheduling. (cf. Algorithm 3.12)
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Algorithm 3.11: Plugin Procedure
Input: Reservation ID, actual power demand(s), current time
Output: Load profile

1 if reservation ID not present then
2 reject the EV and notify the system
3 end
4 update NOW from current time
5 shift the power load and available power arrays correspondingly
6 update ea from current time
7 if da has changed then // or dmin,a, dmax,a

8 update da
9 end

10 if the machine assigned at reservation is not free then
11 try to assign a to a new machine, otherwise send [NPSA]
12 end
13 transform the activities’ timestamps into discrete time slots, according to NOW
14 try to reschedule including a, otherwise send [NPA] or [PDTS]
15 return load profile

Algorithm 3.12: Unplug Procedure
Input: Reservation ID, current time
Output: Load profile

1 update NOW from current time
2 remove a from the set of active activities
3 remove a from its machine’s schedule
4 update la from current time
5 i← a’s instance
6 if charging was interrupted then
7 release the power load of i
8 raise the i’s interruption flag and update fi
9 end

10 put a into the set of completed activities
11 shift the power load and available power arrays correspondingly
12 return load profile
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Timeout

In the event of a timeout (EV did not show up on time), the EV’s activity needs to be removed
from the planned schedule. This will cancel the reservation and release the associated charging
point as well as the reserved amount of available power. (cf. Algorithm 3.13)

Algorithm 3.13: Timeout Procedure
Input: Reservation ID, current time
Output: Load profile

1 update NOW from current time
2 remove a from the set of active activities
3 remove a from its machine’s schedule
4 release the power load of a’s instance
5 shift the power load and available power arrays correspondingly
6 return load profile

Available Power Update

As time flows, and the station maintains predicted data about the next 24 hours, the available
power curve needs to be refreshed periodically. Also, in case of a predicted change the charging
station needs to be notified. This event is initiated by the electric grid, and the controller updates
the predicted available power curve of the CS for the planned time horizon. Rescheduling needs
to be performed, as the previous schedule might not be in line with the new power constraints.
(cf. Algorithm 3.14)

Algorithm 3.14: Available Power Update Procedure
Input: Reservation ID, current time
Output: Load profile

1 update NOW from current time
2 update the available power array
3 transform the activities’ timestamps into discrete time slots, according to NOW
4 try to reschedule, otherwise send [NPA]
5 return load profile
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CHAPTER 4
Experimental Results and Analysis

To study the behaviour of the three developed heuristic algorithms, we have run multiple experi-
ments to compare them mutually, as well as line them up with the optimal solutions achieved by
the CPLEX solver (for its feasible problem instances) on the problem’s MIP formulation [7], [9].

In the first section we describe the experimental setting — the hardware on which the exper-
iments were run, the evaluation criteria, and the problem instances we have used to measure the
performance of the heuristics.

Next, we deal with tuning the min-conflicts heuristic’s (MCH) parameters on the offline,
SingleDemand model, to reach its peak performance settings. Here we regard the random noise
probability and various sorting strategies when assigning the charging plan instances. We com-
pare MCH results with those of the greedy heuristic (GH), the local ratio technique (LRT) and
the CPLEX solver.

Finally, we use the MinMax vehicle model, which is more flexible and closer to the real
world setting, to provide experimental results for the system’s offline and online modes.

Parts of results presented here were published in a MISTA conference paper [9].

4.1 Experimental Setting

In this section we will describe the problem instances we used, along with the evaluation function
to assess the performance of the selected solution techniques.

The algorithms were implemented using the Java technology, and all experiments (with the
exception of the CPLEX runs) were performed on a personal laptop with the following specifi-
cations: Intel Core2 Duo P8400 @ 2.26 GHz (3MB Cache), 4GB RAM Dual-Channel DDR2
@ 398MHz, 500GB HDD @ 7200rpm (SATA-III 6.0Gb/s).

4.1.1 Problem Instances

Since the EVRSTW problem as we defined it is quite novel — incorporating time windows
combined with different charging rates and charging completion degrees — we generated a
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synthetic set of problem instances.

The problem instances, denoted with [A]-[M ]-[P ], differ in:

• A — the number of vehicles (activities) whose energy demand is to be satisfied

• M — the number of charging slots (machines) which can charge at different rates

• P — the available power limit

The power limit P is here set to a constant value, but the algorithms can work with a variable
available power curve as well. The planning time horizon T was set to 8 hours, translating into
32 discrete 15-minute time slots to work with.

A single problem instance contains the list of activities, with each having assigned:

• earliest (arrival time)

• latest (departure time)

• energy demand (single value for the SingleDemand model; minimum and maximum value
for the MinMax model)

These values were generated using the uniform distributionU(a, b), in the following manner:

• ea = U(0, 20)

• la = ea + U(4, 10)

• da or dmax,a = U(6, 10) (depending on the vehicle model)

• dmin,a = bdmax,a

2 c (in the case of MinMax model)

Given such a list of activities, the number of machines and the available power, the scheduler
has to determine for each activity its charging plan instance, i.e.:

• the machine to which the vehicle will be connected,

• the start time of charging,

• the charging rate (which together with start time determines the duration, and thus finish
time of charging),

• its completion degree, and

• its profit

All problem instances are created to be feasible, i.e. there are enough machines available,
and each activity can be charged up to at least the minimum requested energy amount (12da for
the SingleDemand model; dmin,a for the MinMax model). The problem instances were modelled
to simulate a moderate load, i.e. there exist several vehicles that can not be charged completely,
given the available power.

The described problem instances were used in the offline (steady-state) mode, i.e. all of
the activities were fed into the algorithm at once, making the system have complete knowledge
about the entire problem at hand. The schedule is then built ”from scratch”.
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4.1.2 Performance Evaluation

As stated earlier (Eq. 2.7), we will measure the total profit attained by each of the algorithms,
using the following evaluation function:

Z =
∑
i∈I

pixi (4.1)

This translates to simply summarizing the profits of the selected charging plan instances assigned
to the activities.

Next, we measure the runtimes of the algorithm runs, as this aspect is quite important for a
real-time scheduler — the customers expect almost instant response from the routing, reservation
and scheduling system.

On top of that, we will register the number of unscheduled activities, as our goal is to ac-
comodate all of the customers’ requests. This will show to be a valuable indicator of a good
solution (e.g. the greedy heuristic and the local ratio technique do not manage to schedule all of
the given activities). As stated previously, we call this a fair ruler policy, meaning our goal is to
rather charge more vehicles with less total energy, instead of charging less cars with more total
energy.

We let MCH run for 100 times on each problem instance (since the method is non-
deterministic), with the time limit of 10 minutes, and collected average, maximum and mini-
mum values of total profit, and average values of the runtime. For other algorithms (GH, LRT,
CPLEX), single values of total profit and runtime are collected from a single run (since those
are deterministic methods).

4.2 Parameter Tuning for the Min-conflicts Heuristic

For this purpose we have employed the algorithm variants in the offline mode, on the SingleDe-
mand vehicle model.

Regarding the profit calculation of the single instance (Eq. 2.1), we have set k = 2 and
α = 0.5, which renders the equation as follows:

pi =
1

2
ci + (1− 1

2
)

2

ri
=

1

2
ci +

1

ri
(4.2)

The value of α was chosen according to the experimental results achieved by the CPLEX
solver in [7], to make them comparable with those of our heuristics’.

4.2.1 Parameters of the Min-conflicts Heuristic

We varied two parameters of the min-conflicts heuristic:

1. Random noise probability pnoise — As shown in Algorithm 3.7, in [pnoise] percent of cases
we choose a random charging plan instance for the currently observed activity.
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2. Sorting strategies for charging plan instances selection — In subsection 3.3.3 we de-
scribed the usage of sorting strategies in an attempt to maximize the total profit, i.e. to
optimize, not just to satisfy the constraints.

We used the problem instances ranging from 20 to 200 vehicles, and varied:

• pnoise in the range {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1}
• 3 sorting strategy variants:

– random — the initial instances are chosen at random; instances are shuffled before
trialling them when searching for best improvement

– sortInit — the initial instances are chosen in the order of the highest profit from the
set of sorted feasible instances; instances are shuffled before trialling them for best
improvement

– sortInitSel — sorting in the order of highest profit first, both when assigning the
initial instances and when trialling for the best improvement

Random Noise Probability

We have found that setting pnoise = 0, i.e. including no random noise at all, does not work even
for the smallest problem instances (A = 20) — the algorithm does finish in some of the runs,
but not all of them.

At the other extreme, setting pnoise = 1, i.e. choosing the charging plan instances completely
at random, shows to be infeasible for problem instances with A >= 60.

Finally, when pnoise = 0.9 the problem instances having A >= 80 could not be solved in all
of the runs within the set time limit.

We therefore discarded these results and here present only those for pnoise in the subset
{0.1, 0.3, 0.5, 0.7}. Table 4.1 shows how pnoise affects the average total profit values when we
average the results over the three sorting strategies (rand, sortInit and sortInitSel). Same results
are visualized in Figure 4.1.

Table 4.1: Average total profit for various pnoise values; SingleDemand model, α = 0.5

Problem Instance 0.1 0.3 0.5 0.7
20-16-30 10.747 10.416 10.163 9.789
40-32-40 17.128 16.652 16.500 16.352
60-40-55 24.679 24.128 23.977 23.807
80-48-70 32.567 31.975 31.731 31.650
100-56-90 41.490 40.447 40.144 39.946

120-64-100 48.480 47.634 47.313 47.171
160-80-150 71.014 68.594 67.051 66.441

200-100-180 87.295 84.548 83.012 82.658

Table 4.2 presents the average runtimes for different probability values.
We observe that pnoise = 0.1 yields best overall results, incurring highest average total profit

and low enough average runtimes (less than 100ms over all problem instances). We can notice
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Figure 4.1: Average total profit for various pnoise values; SingleDemand model, α = 0.5

Table 4.2: Average runtimes (ms) for various pnoise values; SingleDemand model, α = 0.5

Problem Instance 0.1 0.3 0.5 0.7
20-16-30 44.610 25.717 16.470 16.697
40-32-40 46.477 23.103 25.017 34.700
60-40-55 59.293 36.267 52.600 215.417
80-48-70 81.137 54.150 153.263 2484.227

100-56-90 62.607 48.953 99.247 628.617
120-64-100 93.743 119.583 494.340 36198.300
160-80-150 60.337 49.653 70.727 177.183
200-100-180 94.697 71.273 115.393 520.517

that setting pnoise to higher values significantly increases the runtime (e.g. the runtime ascends
to 36s for pnoise = 0.7 and instance 120-64-100).

Charging Plan Instances Sorting Strategy

Similar to trialling the random noise probabilities, we have recorded the average total profits and
runtimes for different sorting strategies, while averaging the results over the pnoise values.

Table 4.3 shows how the three sorting strategies affect the average total profit values, with
results averaged over four pnoise values, {0.1, 0.3, 0.5, 0.7}. Same results are visualized in Figure
4.2.

Table 4.3: Average total profit for the three sorting strategies; SingleDemand model, α = 0.5

Problem Instance rand sortInit sortInitSel
20-16-30 9.121 10.785 10.931
40-32-40 16.367 16.694 16.913
60-40-55 23.925 24.141 24.377
80-48-70 31.784 31.859 32.299
100-56-90 40.143 40.350 41.028

120-64-100 47.297 47.535 48.117
160-80-150 66.555 68.498 69.772

200-100-180 82.676 84.405 86.054
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Figure 4.2: Average total profit for the three sorting strategies; SingleDemand model, α = 0.5

We can observe that the sorting strategy sortInitSel yields the overall best average total profit.

Concerning the runtimes, there are no significant trends regarding the sorting strategies to
be noted — there is no obvious ”winner”. The higher random noise probabilities (pnoise =
{0.5, 0.7}) skew the results averaged over all pnoise values, so we show just the runtimes averaged
over pnoise = {0.1, 0.3} in Table 4.4. The average runtimes for these values are kept low, under
120ms, regardless of the sorting strategy.

Table 4.4: Average runtimes (ms) of the three sorting strategies (averaged over
pnoise = {0.1, 0.3}); SingleDemand model, α = 0.5

Problem Instance rand sortInit sortInitSel
20-16-30 24.110 48.885 32.495
40-32-40 28.815 29.855 45.700
60-40-55 41.580 44.140 57.620
80-48-70 74.980 68.360 59.590

100-56-90 61.030 57.125 49.185
120-64-100 118.925 87.080 113.985
160-80-150 53.960 54.410 56.615
200-100-180 102.870 73.175 72.910

By aggregating the results from the analysis of the two MCH parameters, we can conclude
that the best performing MCH variant is the one with random noise probability pnoise = 0.1
and the sorting strategy set to sortInitSel.

4.2.2 Comparison with Other Techniques

Here we compare the best performing MCH variant (pnoise = 0.1, sortInitSel) to the other so-
lution methods — greedy heuristic (GH), local ratio technique (LRT) and the CPLEX solver
(exact method working on the MIP formulation). We are keeping the system in the offline mode
with the SingleDemand vehicle model, and set α = 0.5 (to be comparable to CPLEX results
from [7]).
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Total profit achieved by the four methods (average total profit for MCH) is presented in Table
4.5 and Figure 4.3.

Table 4.5: Total profit values across all problem instances; SingleDemand model, α = 0.5

Problem Instance GH LRT MCH (Avg) CPLEX
20-16-30 12.760 12.736 11.642 13.526
40-32-40 17.922 18.048 17.569 23.135
60-40-55 26.061 25.424 25.081 32.968
80-48-70 34.054 34.060 33.148 44.029

100-56-90 44.399 41.591 42.412 51.420
120-64-100 52.122 49.374 49.234 61.979
160-80-150 75.622 73.318 73.714 93.962

200-100-180 93.959 87.836 90.258 116.065
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Figure 4.3: Total profit values; SingleDemand model, α = 0.5

Even though it may seem that GH and LRT perform better than MCH, we must recall another
important evaluation criterion we established. While MCH manages to schedule all of the given
activities, GH and LRT do not succeed to accommodate all of the requests. Table 4.6 shows the
number of unscheduled activities for the respective solution methods.

Table 4.6: Number of unscheduled activities; SingleDemand model, α = 0.5

Problem Instance GH LRT MCH
20-16-30 1 0 0
40-32-40 13 7 0
60-40-55 20 12 0
80-48-70 28 13 0

100-56-90 31 18 0
120-64-100 40 20 0
160-80-150 43 14 0
200-100-180 54 26 0
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A smaller part (10-15%) of the unscheduled activities of GH belongs to the too short duration
of the parking period, when there is not enough time to fulfill even 50% of the energy demand
with the charging rate of 3.7kW. But most of the activities are rejected because of the greedy
instances making the consumed power shoot over the available power when trying to add them
into the schedule.

Yet another perspective on the quality of the solution method is its runtime. Figure 4.4 shows
the runtimes of the three implemented heuristics (average value for MCH).
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Figure 4.4: Runtime (ms) of the three heuristic methods; SingleDemand model, α = 0.5

We can observe that the runtimes of MCH are considerably lower (kept under 100ms)
than those of the two other heuristics, further adding to the conclusion that MCH is the best-
performing method under our evaluation criteria. Its runtimes are not significantly impacted by
the size of the problem instances.

We additionally provide the ratio of average and maximum total profit accomplished by
MCH compared to the optimal solution (achieved by CPLEX) in Table 4.7. The average profit
achieved by MCH is above 75%, and the maximum profit at least 79% of the optimal value
(ZCPLEX). The issue with CPLEX (the exact method) approach, however, is the running time for
larger instances, which will be further examined in the following section.

Table 4.7: Total profit values of MCH and CPLEX; SingleDemand model, α = 0.5

MCH
Problem Instance Min Avg Max CPLEX ZMCH,Avg

ZCPLEX

ZMCH,Max
ZCPLEX

20-16-30 10.286 11.642 12.570 13.526 0.861 0.929
40-32-40 16.351 17.569 18.737 23.135 0.759 0.810
60-40-55 23.231 25.081 26.462 32.968 0.761 0.803
80-48-70 31.567 33.148 34.802 44.029 0.753 0.790
100-56-90 40.771 42.412 44.053 51.420 0.825 0.857
120-64-100 46.622 49.234 51.891 61.979 0.794 0.837
160-80-150 71.413 73.714 75.623 93.962 0.785 0.805
200-100-180 87.057 90.258 93.188 116.065 0.778 0.803
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4.3 Testing the MinMax Model

This setting should offer more flexibility, since more completion degrees ci are allowed (instead
of just 50%, 75% and 100% with the SingleDemand model). On the other hand, allowing more
charging plan instances of different completion degrees for a single activity extends the available
search space and makes the problem more complex, but also allows for finer-grain scheduling.

When tuning the function pi (Eq. 2.1) for this purpose, we wanted to assign most of the
weight to the charging completion degree, and allow the lower charging rate preference to only
slightly affect the solution. This setting is also in line with [9], and is necessary to make the
results comparable to those of CPLEX. Thus, we assigned k = 2 and α = 0.95, which renders
the equation as follows:

pi = 0.95 ci + (1− 0.95)
2

ri
= 0.95 ci +

0.1

ri
(4.3)

4.3.1 Offline (Steady-state) Mode

Recall that the system can work with variable available power constraint (power curve), but for
the offline mode we have once again run the experiments with the fixed value of available power.

We compared the results of the three heuristics (MCH, GH, LRT) with the exact solutions
of the CPLEX mixed integer programming model (with the stop condition set at an optimality
gap of 1%). As for the problem instances, we ran the test on those of size 20 to 120 activities,
generated by rules defined in section 4.1.1.

To show once again that the previously selected best-performing variant of the MCH is the
one with sortInitSel sorting strategy, we set pnoise = 0.1 and present the average total profit
values achieved by the three sorting strategies — rand, sortInit, sortInitSel (Figure 4.5). The
runtimes are kept low — under 250ms for all three approaches over all the problem instances.
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Figure 4.5: Average total profit for various MCH sorting strategies; MinMax model, α = 0.95

Next, we line up MCH against greedy heuristic (GH), local ratio technique (LRT) and the
CPLEX solver. Total profit values achieved by the four solution methods are presented in Table
4.8 and Figure 4.6. Once again, the values for MCH are averaged (over 100 runs).
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Table 4.8: Total profit values; MinMax model, α = 0.95

Problem Instance GH LRT MCH (Avg) CPLEX
20-16-30 16.233 15.166 15.343 19.200
40-32-40 27.671 23.672 25.113 29.600
60-40-55 40.849 34.159 35.395 41.480
80-48-70 53.825 45.780 46.425 53.470

100-56-90 67.677 59.815 59.542 67.930
120-64-100 81.953 69.092 69.433 78.520
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Figure 4.6: Total profit values across all problem instances; MinMax model, α = 0.95

We can notice that GH profits are unexpectedly high, reaching even over the optimal CPLEX
results. The reason for that is, once again, the above-zero number of unscheduled activities,
which are rejected to make the solutions of GH and LRT feasible (Table 4.9). LRT performs
nearly as well as MCH on the profit scale, but the solutions contain quite a high number of
unscheduled activities (about 30% for larger problem instances).

Table 4.9: Number of unscheduled activities; MinMax model, α = 0.95

Problem Instance GH LRT MCH
20-16-30 1 2 0
40-32-40 14 11 0
60-40-55 22 18 0
80-48-70 30 25 0

100-56-90 35 30 0
120-64-100 45 39 0

Here again, the reason for about 10% of the unscheduled activities of GH is the too short
parking period (dmin,a can not be satisfied with r = 3.7kW), while the rest is due to not enough
available power.

Comparing the runtimes of the algorithms, we can see that MCH dominates (Table 4.10),
keeping the average runtime below 160ms even for the largest tested problem instance.
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Table 4.10: Runtime (s) of the four solution methods; MinMax model, α = 0.95

Problem Instance GH LRT MCH (Avg) CPLEX
20-16-30 0.219 0.158 0.080 24
40-32-40 0.343 0.343 0.077 26
60-40-55 0.453 0.358 0.103 192
80-48-70 0.859 0.467 0.101 527
100-56-90 0.719 0.512 0.100 1500+

120-64-100 0.735 0.735 0.156 468

Finally, let us see how close MCH gets to the optimal CPLEX solutions in Table 4.11.

Table 4.11: Total profit values of MCH and CPLEX; MinMax model, α = 0.95

MCH
Problem Instance Min Avg Max CPLEX ZMCH,Avg

ZCPLEX

ZMCH,Max
ZCPLEX

20-16-30 13.787 15.343 16.787 19.200 0.799 0.874
40-32-40 23.611 25.113 26.407 29.600 0.848 0.892
60-40-55 33.517 35.395 36.610 41.480 0.853 0.883
80-48-70 44.752 46.425 47.941 53.470 0.868 0.897

100-56-90 57.759 59.542 60.970 67.930 0.877 0.898
120-64-100 67.920 69.433 71.198 78.520 0.884 0.907

We can conclude that MCH is the absolute winner among the three tested heuristic methods,
with the main advantage of feasibility — it managed to schedule all of the activities provided and
satisfy at least their minimum demands. At the same time, the runtime is kept fairly low for even
the greatest problem instances (under 160ms), and it achieves the total profit (objective/fitness
value) of 80% (average profit) and even up to 90% (maximum profit) of the optimal solution,
according to our evaluation function 4.1.

The use of CPLEX, even though always achieving optimal results while scheduling all of the
activities, has the disadvantage of a too long running time (especially for our problem instance
100-56-90). This can not be tolerated in a real world scheduling environment as we described
it, since the KOFLA customers expect almost immediate response (in terms of a few seconds at
most) from the system. If, however, the running time is not of the essence, CPLEX should be
used.

MCH, on the other hand, succesfully solves the problem instances in a fraction of time of
the CPLEX solver execution, up to the order 10−4 (100ms vs. 1500+s for the problem instance
100-56-90).

Figure 4.7 shows an example schedule generated by MCH for the 40-32-40 problem in-
stance, while Figure 4.8 shows the corresponding power load profile, in comparison with the
two other heuristics.

We can see that the area under the MCH consumed power load curve is the largest, i.e. it
satisfies the most energy demand among the three heuristics. For this specific problem instance
40-32-40, GH satisfies 53%, LRT 59%, and the MCH 67% of the total energy demand. Table
4.12 shows total energy charged (demand satisfied) per heuristic over all problem instances.
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Figure 4.7: Schedule generated by MCH in offline mode
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Figure 4.8: Consumed power (charging load) vs. available power; P (t) = 40 (constant)
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Table 4.12: Total energy charged; MinMax model, α = 0.95

GH LRT MCH (Max)
Problem Instance Demand Charged % Charged % Charged %

20-16-30 160 124.027 0.775 118.014 0.738 137.944 0.862
40-32-40 329 173.262 0.527 195.343 0.594 219.929 0.668
60-40-55 493 251.275 0.510 286.476 0.581 302.813 0.614
80-48-70 651 327.728 0.503 366.899 0.564 392.511 0.603

100-56-90 816 423.654 0.519 472.835 0.579 501.300 0.614
120-64-100 974 496.560 0.510 547.498 0.562 583.454 0.599

4.3.2 Online (Dynamic) Mode

Finally, we have integrated the scheduling algorithm using MCH into a charging station con-
troller of the KOFLA simulator, to simulate real-world scheduling.

There are several key differences in this online (dynamic) setting compared to the offline
mode (which we described in detail in section 3.4):

• time transformation from real time into discrete time slots

• the rolling schedule with NOW marker simulating the flow of time

• possible rescheduling of activities for which the charging has not yet commenced, allow-
ing for continuous improvement

• prediction errors, . . .

As opposed to the offline mode, when the scheduler has complete and deterministic knowl-
edge of all of the activities in advance (and builds the schedule from scratch), in the online mode
the schedule is built incrementally, and the system operates only with the subset of activities that
fall into the upcoming planning time horizon. On one hand, there are vehicles that already left
and do not need to be planned for any more; on the other hand, there are vehicles for which no
activity has been registered with the system yet (no reserve event occured yet).

Here it makes even more sense to use the strategy of sorting the charging plan instances
before assigning one of them as initial, since the activities are considered one-by-one. The
previous schedule was valid, so the only conflicts that can occur are the ones including the new
activity, and here we attempt to include the ones of highest profit first.

The online system has to deal with prediction errors, which typically involve vehicles arriv-
ing or leaving earlier or sooner than planned, leading to suboptimal charging schedules. Leaving
too early possibly leads to interruption of the activity’s charging plan, and consequently to less
than planned satisfied energy demand; leaving later than planned unnecessarily occupies the
parking space resource.

In the following experiment we simulate a shopping mall parking (and EV charging) lot, with
80 arriving EVs, and compare the quality of the online MCH solution to that of an offline optimal
solution. We first run the online scheduler for a 24-hour simulation, using a realistic vehicle
charging load distribution (Figure 4.9). The actual parking duration with an average of 3.5 hours
is statistically modified to simulate prediction errors, according to a normal distribution. The
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generated activities are then fed into the offline scheduler (optimal, CPLEX), with their actual
leaving times, for comparison.
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Figure 4.9: Available power and charging load profile at the shopping mall; total power limit Pt

(blue) and total charging load (green) (source: [9])

We would like to show how much better is the offline scheduler for different levels of predic-
tion error (defined by standard deviation) in the real versus planned parking duration, i.e. how
much does the prediction error, present in the online mode, affect the solution quality.

The results in Table 4.13 confirm, as expected, that the performance of the MCH scheduler
in the online mode degrades for additional 9% when we let the average planned parking duration
of 3.5 hours vary with a standard deviation of 30 minutes. We must note, however, that this result
is specific to our model of the ”shopping mall” car arrival distribution, as illustrated by the load
curve in Figure 4.9.

Figure 4.10 shows the entire dynamically generated schedule at the end of the day, after the
simulation was run.
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Table 4.13: Online MCH scheduling performance compared to the offline optimum, under
parking duration prediction error; 80 vehicles, MinMax model, α = 0.95 (source: [9])

Parking duration prediction error Objective ratio Total power charged ratio
σ [min] ZMCH, online

ZCPLEX, offline
[%] online/offline [%]

0 88% 83%
30 79% 75%
60 76% 72%

17 69 96
31 64 102

27 65
57 95

3 52 94
24 59 101

1 46 93
39 80

14 49 98
21 48 92

50 103
19 33 67

2 51 90
5 11 47 76

15 40 75 106
28 68

12 37 73 107
35 54

16 38 82 109
18 44 81

7 53 104
43 87

23 58 100
26 41 77 110

13 29 74
63 105

36 66
9 25 56 84

4 42 97
20 45 83

8 62
10 34 60 108

22 55 86
6 30 72

32 61 99

M
ac

hi
ne

s

Time slot

3.7 kW

8 kW

11 kW

Figure 4.10: Schedule generated in the online mode (source: [9])
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CHAPTER 5
Conclusions and Future Work

With the massive deployment of electric vehicles (EVs), public charging will become necessary
in addition to home charging overnight. Under this assumption, in this work we described and
analyzed the efficient charging of EVs arriving to a public charging station, and contending for
a limited amount of the electric power resource during the planning time horizon. We denoted
this problem as Electric Vehicles Recharge Scheduling with Time Windows (EVRSTW). Our
model incorporates some specific application requirements — such as time windows, minimum
and maximum energy demands, different charging rates, discretization of time etc. — which
make the problem highly combinatorial (the decision variant of its special case is NP-complete).

EVRSTW can be split (under the assumption of identical machines, i.e. charging points)
into two subproblems. The first subproblem — the one of allocating the activities to machines
— can be optimally solved by a greedy method. Thus, all of the hardness of the EVRSTW
problem lies in the second subproblem — the one of identifying the start time and duration of
charging (defined by the charging rate) within the parking time window, while maximizing the
profit.

Since the problem belongs to the family of resource allocation problems, we searched for
heuristic approaches to replace the exact methods, which solve the mixed integer programming
formulation. Using the exact method (CPLEX solver, MIP) entails unpredictable runtimes —
for the same problem size the execution can take from few seconds to tens of minutes [7]. In
order to build a real world dynamic system based on requests and almost immediate responses,
we needed to employ methods that obtain reasonably good solutions within a bounded execution
time.

We showed that the min-conflicts heuristic, as designed in this work, can produce promising
results in a fraction of the CPLEX solver’s execution time (up to the order of 10−4, less than
200 milliseconds versus 25+ minutes in the extreme case). It manages to achieve from 75% up
to 93% for the SingleDemand model, and from 80% up to 91% for the MinMax model, of the
optimal solutions recorded by the exact CPLEX solver (offline mode). In an online environment,
where the response time is of large significance (such as KOFLA framework), MCH would be

63



an immediate choice over CPLEX. If, on the other hand, we are looking for optimal solutions
and do not care for the execution times, the exact method should be favored.

The min-conflicts heuristic confidently outperforms the other two compared heuristics —
greedy heuristic and local ratio technique — by always producing feasible solutions (on the
tested problem instances), scheduling all of the activities in a consistently short time.

Further on, the min-conflicts heuristic has been integrated into the online environment by
means of a charging station controller, which is designed to handle various framework events
and provide signals for a reliable system performance. We have shown that, in this setting,
the parking period uncertainty represents the major issue, and has a significant impact on the
solution quality. In this online setting, the response time is very important, and MCH has proven
its potential with running times in terms of hundreds of milliseconds, while producing solutions
of acceptable quality.

5.1 Future work

Future work should investigate the possible improvements of the min-conflicts heuristic as de-
signed here, and perhaps even its hybridization with other local search techniques, e.g. tabu
search. One such area, where our version of MCH could be improved, is the fitness evaluation
function of the neighborhood.

Another research direction would be to incorporate the electricity price into the objective
(profit) function, as seen in works [29], [18], [11], [27], [21], since it is usually different on and
off peak.

A generalization to non-identical machines, when the preprocessing step as described here
is not possible, would be yet another logical step. This would restrict certain activities to be
scheduled only on a subset of machines, which would further increase the complexity of the
problem.
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