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1 Introduction
Optical fibers by now provide an indispensable backbone for the transport of in-
formation around the globe and are readily available in large quantities. Besides
their technical applications, they can be used to conduct advanced experiments
in the field of quantum optics. Such experiments include the transport of atoms
through hollow-core fibers [1], their use as fiber Bragg gratings [2, 3] and as gain
medium for Raman fiber lasers [4]. This Master thesis was written at the group of
Professor Rauschenbeutel, where the interaction of fiber-guided light with atoms
[5, 6], molecules [7] and nanoparticles [8] is investigated.
A standard telecommunication-grade optical fiber consists of fused silica (SiO2)

with a very small amount of impurities. Light is guided through a cylindrical core,
which is surrounded by a cladding with slightly lower refractive index. This leads
to low-loss light propagation by total internal reflection at the boundary [9]. These
fibers usually have a core diameter of a few micrometers and an overall diameter
of about 125 µm. Since the core diameter is much larger than the wavelength,
light propagates mainly in the core with a small evanescent field extending into
the cladding.
In our group, we use fibers with sub-wavelength diameters to interface matter

with guided light. These fibers are also called nanofibers or tapered optical fiber
(TOF). Due to their small dimensions, a significant part of the optical power is
transported in the evanescent field. This allows for strong coupling with matter.
For example, a single atom, placed in the evanescent field, can easily absorb several
percent of the guided light [10].
These nanofibers can be produced by heating a single-mode fiber while pulling

on both ends in a well-defined way [11, 12]. The result is an adiabatic transition
between fiber and nanofiber with transmissions of 99% or better. This is shown
in figure 1.1.
One big advantage of nanofibers compared to strongly-focussed free-space laser

beams is the possibility to have high intensities over comparatively long distances.
The interaction of atoms with the evanescent field can be used to trap atoms
around the nanofiber [5, 14]. This trap is described in section 3.1 and results
in two one-dimensional diametric arrays of trapping potentials. The trapping
lasers interact with the molecules of the fiber, which leads to Raman scattering
and fluorescence [15]. Ongoing experiments to study electromagnetically-induced
transparency (EIT) [16] with trapped cesium atoms use a probe laser on the cesium
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Figure 1.1: Sketch of a tapered optical fiber. Shown is the normal fiber (left and
right) with the nanofiber in-between. The intensity distribution of light
propagating in the fiber is shown in green. In the taper region, the light
transitions from propagating in the core (light gray) to propagating
in the cladding (dark gray) and the evanescent field is now in the
surrounding vacuum. Note that the relative sizes of core, cladding and
nanofiber are not to scale. Figure taken from [13].

D2 line at 852nm and a 9.2GHz detuned control laser. To achieve sufficient
signal-to-noise ratios, it is necessary to suppress the control laser and filter out the
background caused by Raman scattering. Ideally, only the probe field would reach
the detector.
There are different approaches of how this filtering could be achieved. The

simplest solution would be to use optical filters, such as laser line filters or a
combination of short and longpass filters. However, an off-the-shelf laser-line filter
has a transmission bandwidth on the order of 1THz, which is much larger than
the frequency spacing between control and probe field. With the current setup,
the light is already filtered to a bandwidth of about 50GHz by reflection on a
volume Bragg grating. Much better filtering can be achieved by using a Fabry-
Pérot interferometer (FPI) [17].
The first part of this Master’s thesis describes the design, setup and character-

ization of an FPI that is actively stabilized to a reference laser. This FPI offers
high transmission of the probe laser and strong suppression of both, the Raman
scattered light and the EIT control field. A detailed motivation for this FPI is
given in section 2.1 and the design requirements are discussed. In the following
sections, the design and the experimental setup as well as the coupling of light to
the FPI are described and the actual performance is examined. Finally, the losses
inside the FPI are estimated and the stability is evaluated.
The strong suppression of background photons offered by the FPI opens up a

range of new experimental possibilities. As an example, the second half of this Mas-
ter’s thesis investigates the accurate estimation of the number of atoms trapped
around the nanofiber. With the FPI, it is possible to significantly improve the
counting of atoms in the nanofiber-based trap. This is described in chapter 3. The

2



trap is introduced in section 3.1, followed by a discussion of the scattering of light
by trapped atoms and the heating caused by this. Different approaches on how to
count the atoms are given in section 3.3 and their performance is evaluated with
the help of Monte-Carlo simulations based on current experimental parameters.
It is shown that the precision of atom counting improves with the cavity by a
factor of 3 for small atom numbers, yielding a standard deviation of about 9 for
30 trapped atoms. Accurate determination of the atom number leads to a loss of
almost all trapped atoms due to heating effects. When simultaneously cooling the
atoms, single-atom accuracy is possible.
At the end of both chapters, a conclusion is given and a summary can be found

in chapter 4.
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2 Cavity Filter
Optical resonators are optical components that change the beam path in such a
way, that the beam retraces itself multiple times before leaving the resonator. The
simplest case is the Fabry-Pérot interferometer (FPI) [17], which consists of two
mirrors that are facing each other. Note that throughout this report, the terms
resonator, FPI and cavity are used interchangeably. The special case of an FPI
with curved mirrors is shown in figure 2.1. The mirrors are partially transmitting,

d

Figure 2.1: Fabry-Pérot resonator with two identical plano-concave mirrors. The
arrows indicate light coupled into the resonator from the left, being
reflected many times inside the resonator and leaving it to the right.
The arrow inside the resonator is drawn larger to indicate the higher
intensity with respect to the incident beam (cf. later sections)

so that a light beam can enter the resonator and continues to oscillate between
both mirrors multiple times before leaving the resonator through either the first
or the second mirror.
In the special case of the beam fulfilling the resonance condition, ideally all of

the incoming beam is transmitted through the FPI and none is reflected. The
intensity inside the resonator is in general much higher than that of the incident
beam. This ideal case is shown in figure 2.1. In reality, losses in the resonator (see
section 2.4) and imperfect coupling (cf. section 2.3.8) result in part of the incident
beam being reflected by the resonator and diminish the intensity of the transmitted
beam. On the other hand, an off-resonant beam leads to high reflection and low
transmission at the FPI. This is due to interference of the out-coupled beams after
having been trapped in the resonator for various numbers of round trips.
Inside the resonator, a beam is reflected by the mirrors and after each round trip

interferes with itself. Only for constructive interference will the resonator transmit
the incident beam. This leads to good transmission of discrete frequencies, the so-
called resonator modes. These modes can be derived by looking at the propagation
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of a plane wave in the resonator with amplitude:

Aeikz . (2.1)

Assuming a distance d between the mirrors, and requiring constructive interfer-
ence, the wave has to retrace itself after having travelled distance 2d

Aeikz
!= Aeik(z+2d) (2.2)

⇒ kn = nπ

d
(2.3)

⇔ νn = n
c

2d =: n · νFSR , (2.4)

where n ∈ N and ν is the frequency of the plane wave. We used k = 2π
λ

= 2πν
c

with
λ being the wavelength. The newly-introduced parameter νFSR is the frequency
spacing between the modes and is termed free spectral range (FSR). A more
rigorous derivation of resonator modes is given in section 2.3.4. However, this
simple result is still valid and gives the spacing for the later termed longitudinal
modes.
The linewidth1 δν of these modes is highly dependent upon the losses in the

resonator and the reflectivity of the mirrors. The relation between the linewidth
and the FSR is determined by the finesse F

δν = νFSR
F

. (2.5)

The derivation of expressions for F and δν can be found in section 2.3.4. Figure
2.2 illustrates the optical power transmitted through the FPI in dependence of
the frequency of the light. The maximal suppression of off-resonant light is also
derived in section 2.3.4 and is

Pmin ∝ F−2 , (2.6)
where Pmin is the minimal transmitted power (at the center of two peaks in figure
2.2).
This chapter is dedicated to the filtering cavity. First, a motivation of why this

cavity is needed and what requirements it should fulfil is given in section 2.1. The
design resulting from these requirements is described in section 2.2. Then, the
process of coupling light into the cavity as well as actual performance of the cavity
are discussed in section 2.3. The effect of losses on the properties of the cavity
is outlined in section 2.4 and the complete experimental setup can be found in
section 2.5. Finally, the stabilization of the lasers and the cavity as well as their
long-term stability are assessed in sections 2.6 and 2.7.

1full width at half maximum
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Figure 2.2: Longitudinal modes of an FPI with normalized power and a finesse of
100.

2.1 Motivation and Requirements
The experiment with cesium atoms trapped around an optical nanofiber, at which
this cavity will be used, is roughly outlined in chapter 1 and described in more
detail in section 3.1. The cavity has two purposes. On the one hand it filters out
background light from the fiber that would otherwise interfere with the signal and
on the other hand it suppresses the control beam in electromagnetically-induced
transparency (EIT) experiments. In the following, both effects are briefly described
and resulting requirements for the cavity are deduced in section 2.1.3.
The aforementioned background light is a combination of Raman scattering and

fluorescence. A more comprehensive introduction to these effects can be found in
literature [18, 19, 20, 21, 22, 23] with emphasis on the thesis of David Wardle [15]
that treats the specific case of Raman scattering in optical fibers.
EIT was introduced by [24] in 1986 and first observed by [25] in 1991. A more

comprehensive description is given in [16].

2.1.1 Fluorescence and Raman scattering in fibers
When monochromatic light is sent through a fiber, characteristic spectra can be
observed that show peaks at higher as well as lower wavelengths than the incident
light. This is due to a combination of Raman scattering and fluorescence. These
processes are illustrated in figure 2.3. Fluorescence occurs when a photon excites
an atom from ground state |g〉 to an excited state |e〉 and afterwards the atom
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Figure 2.3: Visualization of Raman scattering and Fluorescence. Raman scattering
leads to a constant frequency shift to higher (Anti-Stokes) or lower
(Stokes) frequencies with respect to the pump light (independent of the
pump frequency), while fluorescence results in the emission of photons
at fixed frequencies.

first decays to another excited state |e′〉, before returning to the ground state by
emission of a photon. Raman scattering takes place when an incident photon
excites an atom from initial state |i〉 to a virtual state |v〉, after which the atom
decays to final state |f〉 by emitting a photon. Both, fluorescence and Raman
scattering occur when sending light through an optical fiber and lead to detection
of unwanted background photons. The intensity of this background light depends
highly on the wavelength of the light originally sent through the fiber and the
wavelength range of detection.
The cavity can filter out large parts of this background since it only transmits

fixed modes and suppresses other frequencies. This is illustrated in figure 2.4.
The light from the fiber is already pre-selected by reflection at a volume Bragg
grating2 before arriving at the cavity. Since the frequency range for which the
Bragg grating reflects is larger than the FSR of the cavity, more than one cavity
mode can be excited by the background light. However, large parts are suppressed
as can easily be seen in figure 2.4.
It should be noted that changing the FSR while keeping the finesse fixed does not

change the suppression of background light over a wide range around the chosen
value of νFSR = 18.7GHz (see section 2.1.3). This is depicted in figure 2.5. An
explanation of why this value is chosen for the FSR is given below.

2Optigrate RBG-852-94
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Figure 2.4: The light from the volume Bragg grating (VBG) shows a Gaussian
distribution on a frequency axis (blue curve). When subsequently fil-
tered by the cavity, only discreet modes are transmitted and the overall
intensity is reduced due to non-perfect transmission through the res-
onator setup (green curve).

2.1.2 Electromagnetically-Induced Transparency

The main motivation for the cavity is to allow for better measurements of EIT at
the nanofiber trap. With EIT, an initially opaque medium can be made trans-
parent by use of a control field. There are various schemes of how this can be
realized [16]. At the nanofiber trap, this is done with the Λ-type level scheme
that is shown in figure 2.6. A probe field driving the |F = 3〉-|F ′ = 4〉 transition
of the cesium D2 line is absorbed by the atoms. When additionally a control field
(|F = 4〉-|F ′ = 4〉) is switched on, the two paths |F = 3〉-|F ′ = 4〉 and |F = 3〉-
|F ′ = 4〉-|F = 4〉-|F ′ = 4〉 interfere destructively, leading to transparency for the
probe field. Furthermore, this leads to a steep change of the refractive index around
resonance and thus slow group velocities. This is known as slow light and can be
used to store light in the medium and later retrieve it by adiabatically switching
the control pulse off and on, respectively.
For good results, it is imperative to maximize detection of the probe beam while

ideally not detecting the control beam at all. The frequency difference between
the probe and the control field for the scheme shown in figure 2.6 corresponds to
the energy difference between the F = 4 and F = 3 level ground states, which is
∆ν = 9.2GHz [26]. As indicated in the introduction of this chapter, the maximal
suppression of a resonator is at the center frequencies between two modes. There-
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Figure 2.5: Change of background suppression with the FSR.
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Figure 2.6: Lambda level scheme for EIT. A probe beam drives the |F = 3〉-
|F ′ = 4〉 transition and a control field the |F = 4〉-|F ′ = 4〉 transition.
In this case, cesium atoms were used and the levels correspond to the
hyperfine states of the D2 line.

fore, for optimal suppression of the control beam while maximizing transmission
of the probe beam, the FSR has to be 2∆ν = 18.4GHz.

2.1.3 Requirements for the Cavity
High Transmission

Since the cavity will be used to filter the light of the experiment, it should have
good transmission for frequencies of interest and high suppression for all other
frequencies. In section 2.4, an equation for the intensity of the transmitted light
through the cavity is given. According to equation 2.74, the ideal case of perfect
transmission on resonance requires two identical mirrors.
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Suppresion of Control Beam

In section 2.1.2, we determined that the FSR should ideally be 18.4GHz to best
suppress the control field at maximal transmission of the probe field in EIT. This
would correspond to a distance between the mirrors of d = 8.02mm. To facilitate
the setup of the cavity, a nominal distance of d = 8mm is chosen, corresponding to
an FSR of νFSR = 18.7GHz. Note that the distance between both mirrors will be
measured by a calliper and its accuracy is thus about ±0.2mm. This translates to
a possible variation of the FSR of about ±0.5GHz. With this configuration, the
control field is best suppressed but the fraction Imin that is still being transmitted
depends on the finesse F of the cavity Imin ∝ F−2 (cf. equation 2.6). Therefore,
a high finesse is desirable.

Suppression of Background Light

The suppression of background light is discussed in section 2.1.1 and is only de-
pendent upon the finesse of the cavity. The higher the finesse, the better the
suppression. This can easily be seen in figure 2.4, since according to equation 2.5
higher finesse results in smaller linewidth. The FSR does not influence this, as
changes around the chosen value of 18.7GHz do not influence the suppression of
the background (cf. figure 2.5). As a result, the finesse should be high to have less
background.

Linewidth

Both previous requirements, the suppression of the control field and of the back-
ground light, call for a high finesse. The linewidth is coupled to the finesse via the
FSR (cf. equation 2.5) and in particular δν ∝ F−1. Thus higher finesse leads to
smaller linewidth. However, the linewidth needs to be larger than the linewidth
of the probe field to allow for high transmission.

Stability

The cavity should provide constant transmission at the frequency of the probe field
and therefore needs to be stabilized with respect to the FSR. This is described in
detail in section 2.7.

Fiber-coupled

As a final requirement, the cavity should be fiber-coupled to allow for easy inte-
gration into the existing setup and facilitate switching between using the cavity or
bypassing it.

10



2.2 Cavity Design
The cavity is designed to best accommodate the requirements of section 2.1.3.
A first requirement was to use identical mirrors and to have a high finesse. In
equation 2.40, the finesse F is linked directly to the reflectivity R of the mirrors
F ≈ π

1−
√
R
. Thus, for high finesse, the reflectivity needs to be close to 1.

There were already plano-concave mirrors available with reflectivities of 98.54%3.
This gives a nominal finesse of 214 (cf. equation 2.40). The linewidth for trans-
mission is then 88MHz (cf. equation 2.5), which is larger than the linewidth of
the probe field.
Another requirement was an FSR of 18.7GHz. This translates to a distance

between the mirrors of 8mm. To be able to adjust this distance, the mirrors are
mounted on a slide rail as shown in figure 2.7. This allows to change the distance

Figure 2.7: Exploded view of the cavity mount. The mirrors are placed in the
holes of the two mounts in the slide rail. A plastic cap covers the setup
to minimize disturbances and to protect the mirrors from dust. The
mirror mount to the right is placed on a translation stage (not shown).

over a range of multiple millimetres. One of the mirrors is additionally mounted on
a translation stage4 to fine-tune this distance with a micrometre screw over a range
of about 1.5mm. Finally, a built-in piezo crystal allows for very fine adjustments

3LENS-Optics PR780-1064nm/0◦, BK7, Radius: −50mm
4Thorlabs Nano Flex Translation Stage Metric (NF15AP25/M)
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within a range of 25 µm and a resolution of 10 nm. This fine-tuning is necessary
to ensure that the cavity can be stabilized to a reference laser while maintaining
maximal transmission of the probe light. A detailed description of this process is
given in section 2.7.

2.3 Coupling into the Cavity
This section describes the coupling of light into the cavity and gives the perfor-
mance of the cavity with respect to the requirements of section 2.1.3.
First, a convenient way to describe the propagation of paraxial light through

optical components is discussed in section 2.3.1. The concept of Gaussian beams
is introduced in section 2.3.2, followed by a discussion of possible cavity modes
(section 2.3.4) and a more rigorous introduction to FSR, finesse and linewidth.
Then, the actually measured properties are presented and the process of matching
incident light to specific modes is described in section 2.3.8. Finally, the efficiency
of the coupling is given in section 2.3.11.

2.3.1 Ray Optics
In the paraxial ray approximation5, sin(φ) ≈ φ, and under the premise that rays
only propagate in a single plane, a coordinate system can be found, in which they
are fully described by their position along the y axis and their angle φ with respect
to the optical axis (see figure 2.8). Optical components can then be represented
by a 2x2 matrix called ray transfer matrix [27].

R

y

z

Figure 2.8: Rays propagating in positive z direction can be fully characterized by
their angle φ with the optical axis (z axis) and their distance y from
the z axis. Any optical component might change the ray’s coordinates
(y, φ).

5All light rays propagate at small angles with respect to the optical axis.
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Ray propagation is in the following always assumed to be in the positive z
direction. Any optical component alters the beam path described by (y1,φ1), so
that it afterwards has different coordinates (y2,φ2), which are determined by Snell’s
law (already in the paraxial approximation)

φ1

φ2
= n1
n2 . (2.7)

The change in coordinates by the optical component can be expressed by a matrix
equation A B

C D


︸ ︷︷ ︸

=:M

y1

φ1

 =
y2

φ2

 . (2.8)

The so-defined matrix M is the ray transfer matrix. Free propagation can also be
described by a ray transfer matrix, so that (y(z2), φ(z2)) = M(y(z1), φ(z1)).
These matrices provide a very versatile tool to easily describe sequences of op-

tical components. Two components that are traversed by the same ray in direct
succession can then be expressed asE F

G H

A B

C D


︸ ︷︷ ︸

M̃

y1

φ1

 =
y2

φ2

 (2.9)

where M̃ represents the ray transfer matrix for the system of both components.
A short list of ray transfer matrixes needed in later sections is given in table 2.1,
a more exhaustive list can be found in [27].
Note that for all ray transfer matrices M , the determinant is [28]

det(M) = n1

n2
, (2.10)

where n1 is the refractive index of the medium before the optical component and
n2 after. Ray optics leads to vanishing spot sizes at focal points, which is not
physical. Another way to describe light beams, which additionally takes into
account beam divergence and the existence of a diffraction limit, is introduced in
the next section.
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d

1 d

0 1

 Free-space propagation

1 0
0 n1

n2

 Refraction at planar boundary

R

 1 0
−n2−n1

n2R
n1
n2

 Refraction at spherical boundary

 1 0
− 1
f

1

 Transmission through a thin lens

R

1 0
2
R

1

 Reflection at spherical mirror

Table 2.1: Some important ray transfer matrices that will be used in later sections.
Note that the focal length f is positive and the radii R are defined
as positive if the ray impacts on a convex boundary and negative for
concave boundaries.
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2.3.2 Gaussian Beams
The concept of Gaussian beams is very powerful in describing the properties of
light beams (e.g. those emitted by a laser). It is based on the idea that the
intensity distribution in any plane perpendicular to the direction of propagation
can be described by a two-dimensional Gaussian as illustrated in figure 2.9. Figure

Figure 2.9: Shown is a two-dimensional Gaussian that describes the intensity dis-
tribution of a Gaussian beam. The normalized intensity is shown on the
z-axis, while the x- and y-axes define a plane perpendicular to the di-
rection of propagation. The beam’s center is at position (x = 0, y = 0).

2.10 shows the sketch of a Gaussian beam that propagates along the z axis. The
waist is the beam radius at its smallest extension with the radius being defined as
the distance from the optical axis to where the intensity has dropped to 1

e2
of the

maximal intensity (W0 in figure 2.10). The position of the waist along the optical
axis (z-axis) is defined as z = 0. The Rayleigh length z0 is defined as the distance
from the waist to where the area of the beam has doubled. Note that a Gaussian
beam is completely characterized by the Rayleigh length and the wavelength of
the light (see equation 2.20 and the following).
Mathematically, Gaussian waves are one possible solution to the paraxial Helmholtz

equation, as will be outlined in the following. Electromagnetic waves are governed
by the wave equation (in free space)(

∇2 − 1
c2
∂2

∂t2

)
u(~r, t) = 0 , (2.11)

which can be solved by separation of variables
u(~r, t) = E(~r)T (t) . (2.12)
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Figure 2.10: Sketch of a Gaussian beam. The minimal radius of the beam is called
waist and denoted W0. The position of the waist is defined as z = 0.
The distance to where the area of the beam is

√
2W0 is called Rayleigh

length z0 (see text).

This leads to (
∇2 − 1

c2
∂2

∂t2

)
E(~r)

E(~r) =

(
∇2 − 1

c2
∂2

∂t2

)
T (t)

T (t) =: k2 . (2.13)

Since the first term only depends on position ~r and the second only on the time t,
they must both be constant and their value is chosen as k2 with k = 2π

λ
being the

wavenumber as will become clear later. λ is the wavelength of the beam.
The time-dependent part can thus be written as(

k2 − 1
c2
∂2

∂t2

)
T (t) = 0 (2.14)

with the straightforward solution

T (t) = T0e
−iωt (2.15)

with ω = kc. The position-dependent part is called Helmholtz equation(
∇2 + k2

)
E = 0 , (2.16)

which for paraxial waves can be approximated with the paraxial Helmholtz equa-
tion [28, 29] (

∂2

∂x2 + ∂2

∂y2

)
E − 2ik∂E

∂z
= 0 . (2.17)

One solution to equation 2.17 are the Gaussian waves, which can be written as
the product of a plane wave propagating along the z-axis, and a complex envelope
A(~r), which is slowly varying with z,

E(~r) = A(~r)e−ikz (2.18)

with
A(~r) = A1

q(z)e
−ik ρ2

2q(z) . (2.19)
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In equation 2.19, ρ =
√
x2 + y2 is the radial distance from the z-axis, q(z) = z+iz0

is the so-called q-parameter or complex beam parameter and z0 is the Rayleigh
length.
By defining R(z) to be the wavefront radius of curvature andW (z) as the radius

of the beam, q(z) can be written as [28]

1
q(z) = 1

R(z) − i
λ

πW 2(z) , (2.20)

with
R(z) = z

[
1 +

(
z0

z

)2
]

(2.21)

and
W (z) = W0

√
1 +

(
z

z0

)2
. (2.22)

The waist radius is given by

W0 =
√
λz0

π
. (2.23)

Inserting equation 2.20 into 2.19 and subsequently into 2.18 results in

E0,0(~r) = A0,0
W0

W (z)e
− ρ2

W2(z) e−ikz −ik
ρ2

2R(z) +iζ(z) , (2.24)

where ζ(z) = arctan
(
z
z0

)
is the Gouy phase [30], which results from the finite

extent of Gaussian beams [31]. The Gouy phase leads to an overall phase shift of
π between z → −∞ and z → +∞.
The notation with the indices 0,0 is chosen to be consistent with the introduction

of Hermite-Gaussian waves in the next section. Equation 2.24 gives the complete
description of the Gaussian wave when multiplied with T (t) (eq. 2.15).
Analogous to the previous chapter, the effects of optical components on Gaussian

beams may be described using the matrices listed in table 2.1. Exactly like shown
in equation 2.9, a succession of optical components can be combined to a single
matrix

M =
A B

C D

 . (2.25)

To calculate the effect of this optical component on a Gaussian beam, the ABCD
law can be used [28]

q2 = Aq1 +B

Cq1 +D
, (2.26)

where A, B, C and D are the matrix elements (cf. equation 2.25) and q1, q2 refer
to q(z) (cf. equation 2.20) before and after passing through the optical component,
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respectively. It is then possible to extract beam radius and wavefront curvature
from q2 by looking at the real or imaginary part.

2.3.3 Hermite-Gaussian Beams
As mentioned before, the Gaussian beam is just one possible solution of the parax-
ial Helmholtz equation. It can be generalized to the Hermite-Gaussian beams,
which include the Gaussian beam as their most fundamental solution. They are
given by [28]

El,m(~r) = Al,m
W0

W (z)Hl

( √
2x

W (z)

)
Hm

( √
2y

W (z)

)
e
− ρ2

W2(z) e−ikz−ik
ρ2

2R(z) +i(l+m+1)ζ(z)

(2.27)

= Al,mHl

( √
2x

W (z)

)
Hm

( √
2y

W (z)

)
ei(l+m)ζ(z)E0,0(~r)

A0,0
, (2.28)

where Hl and Hm are Hermite polynomials and l, m are scalars defining the am-
plitude distribution.
As can be seen from equation 2.28, the difference to the Gaussian beam ampli-

tude E0,0(~r) consists of a change in the amplitude distribution due to the hermite
polynomials (see figure 2.11) and an overall phase shift, but the beam diameter
as well as the radius of curvature of the wavefronts are always identical with the
Gaussian beam. One therefore speaks of modes of the beam, characterised by l, m
and written as TEMlm (Transverse Electro-Magnetic). Since H0(x) = 1∀x, El,m
reduces to the Gaussian beam for l = 0, m = 0.

2.3.4 Resonator Modes
Any electromagnetic wave propagating between the two mirrors of a resonator is
reflected many times. After each round trip, it interferes with itself and only leads
to significant intensities within the resonator in case of constructive interference.
This corresponds to an accumulated total phase shift per round-trip of 2nπ with
n ∈ N.
From equation 2.27, the condition

2nπ = 2kd− 2(l +m+ 1)∆ζ (2.29)

can be extracted for constructive interference after one round-trip with d being
the distance between the mirrors and ∆ζ = ζ(z1)− ζ(z0), where z0 is the positon
of the first mirror and z1 the position of the second mirror. The factor 2 in front of
the ∆ζ term stems from the fact that the wave accumulates twice the Gouy phase
shift when travelling back and forth inside the resonator before retracing itself.
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Figure 2.11: Visualization of Hermite-Gaussian modes of a resonator. Shown are
the normalized color-coded intensity cross-sections of the beam.

With k = 2π
λ

= 2πν
c

and solving for ν, we obtain

νl,m,n = nc

2d + (l +m+ 1) ∆ζ
2πd

= nνFSR + (l +m+ 1)∆ζ
π
νFSR . (2.30)

The newly introduced variable
νFSR = c

2d (2.31)

is called free spectral range (FSR). The phase-shift due to reflection at the two
mirrors adds up to 2π and can be neglected. This leads to a frequency spacing
of νFSR between two modes of equal (l, m). These modes are called longitudinal
modes, as they do have the same amplitude distribution but different frequencies.
Modes of equal n and l′+m′ = l+m have the same resonance frequency. In gen-

eral, the frequency spacing between modes with fixed n is [(l +m)− (l′ +m′)] ∆ζ
π
νFSR.

These modes are called transverse modes (see figure 2.11), as they show different
amplitude distributions. There are thus theoretically an infinite amount of discrete

19



modes that can be sustained by the resonator (see figure 2.12). In practice, though,
these are limited by the dimensions of the cavity mirrors. Note that the FSR is
only dependent on the distance between the mirrors and in particular independent
of the frequency.
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Figure 2.12: Example of coupling to the fundamental mode (TEM00) as well as
higher-order modes. The frequency spacing between the fundamental
modes is the FSR and between higher-order modes with (l + m −
l′ − m′) = j is j∆ζνfsr

π
. The relative frequency spacings are chosen

to match the ones of the cavity used in this report and the relative
strength of the transverse modes is arbitrarily scaled.

Considering only the fundamental mode (l = m = 0), the wave, characterized
by complex amplitude E0,0(~r), accumulates a phase-shift of

∆φ = 2kd− 2∆ζ = 4πν d
c
− 2∆ζ (2.32)

(cf. equation 2.29) every round trip and its amplitude is attenuated by a factor β
(0 < β < 1) due to losses at reflection and partial transmissivity of the mirrors.
After n round-trips, the amplitude has thus changed to

En =
(
αe−i∆φ

)n
E0 =: ξnE0 , (2.33)

where α = (1 − β). The superposition of all En gives the total amplitude within
the resonator

E =
∞∑
n=0

En =
∞∑
n=0

ξnE0 = E0

1− ξ . (2.34)
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Thus, the internal intensity |E|2 of the resonator can be expressed as

I = |E0|2

(1− αe−i∆φ)(1− αei∆φ) = I0

1− 2α cos(∆φ) + α2 . (2.35)

With
cos(∆φ) = 1− sin2

(
∆Φ
2

)
,

the denominator of equation 2.35 becomes

1− 2α + α2 + 4α sin2
(

∆Φ
2

)

= (1− α)2 + 4α sin2
(

∆Φ
2

)

= β2

1 +
(

2
√
α

1− α

)2

sin2
(

∆Φ
2

) ,
which leads to

I = Imax

1 +
(

2F
π

)2
sin2

(
∆Φ
2

) = Imax

1 +
(

2F
π

)2
sin2

(
πν
νFSR
−∆ζ

) (2.36)

with the definitions

F := π
√
α

1− α , (2.37)

Imax := I0

β2 . (2.38)

F is called finesse and gives a measure of the “quality” of the resonator. This
becomes clear when remembering that β = (1−α) is the overall round-trip atten-
uation of the wave’s amplitude and thus for low losses, α is close to 1 and F � 1.
Furthermore, higher finesse values lead to smaller linewidths and lower intensities
at off-resonant frequencies (cf. equation 2.36). In general, α can be written as

α = r1r2 (2.39)

with the reflectivities r1, r2 of the two mirrors and neglecting the attenuation of
propagation in air as well as losses inside the resonator. The finesse then becomes

F = π
√
r1r2

1− r1r2
. (2.40)
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r1 and r2 are the mirror reflectivities with respect to the complex amplitude and
thus the square root of the measurable intensity reflectivity Ri.
The maximal intensity follows directly from equation 2.36 and is given in 2.38.

To get the minimal intensity, the sine term in equation 2.36 needs to be 1. This
results in

Imin = Imax

1 +
(

2F
π

)2 (2.41)

and shows that good suppression of unwanted frequencies requires a high finesse,
in fact Imin ∝ F−2. This is consistent with the fact that the finesse depends on
the reflectivity of the mirrors. In the extreme case where r1 = r2 = 0, the finesse
would be 0 as well and the intensity would be Imax for all frequencies (perfectly
transparent medium). On the other hand, perfect reflectivity of the mirrors results
in F → ∞ and thus infinitely sharp modes with Imin → 0. However, due to the
perfect reflectivity, no light could then be coupled in or out of the resonator.
Finally, the linewidth of an intensity peak can be found by setting I = Imax

2 ,
which leads to

sin2
(
πν

νFSR
−∆ζ

)
=
(
π

2F

)2
. (2.42)

With the assumption F � 1, which is the case for the cavity discussed in this
report, we obtain with the small-angle approximation (sin(x) ≈ x)

ν ≈ νFSR
2F + ν0 (2.43)

with
ν0 := ∆ζ νFSR

π
. (2.44)

Since the intensity I takes its maximal value Imax for sin
(

πν
νFSR
−∆ζ

)
= 0, which

is true for ν = ν0, it follows that the full width at half maximum (FWHM) δν is
twice the difference between 2.43 and ν0

δν ≈ νFSR
F

. (2.45)

Note that equation 2.45 is often used as definition of the finesse. The FWHM
can also be expressed by the photon lifetime τ as δν = 1

2πτ [28]. This allows the
calculation of the mean number of round trips NRT of a photon in the resonator

NRT = c

2dτ = νFSRτ = Fδντ = F2π , (2.46)

which is directly proportional to the finesse.
We conclude that higher reflectivity of the mirrors, or lower losses in general,

result in sharper peaks, higher maximal intensity inside the cavity and better
suppression of off-resonant frequencies.
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2.3.5 Free Spectral Range
The FSR is measured by sending light from a tunable laser6 through the cavity
and measuring the transmission. Since the FSR is the frequency difference between
longitudinal modes, the laser is only coupled to the fundamental mode of the cavity.
The coupling process is discussed in section 2.3.8. To determine the frequency of
the laser, its beam is split and one part coupled into the cavity while the other
part is routed to a wavelength meter7. The setup is sketched in figure 2.13.

tuneable PD
Beam

splitter
Laser

Wavelength meter

PhotodiodeCavity

Figure 2.13: Sketch of the setup to measure the FSR. The tuneable laser is coupled
into the cavity and the transmission measured with a photodiode. At
the same time, the frequency of the laser is measured with a wave-
length meter. Note that this setup is just a sketch and is missing the
coupling mirrors as well as the coupling lens (cf. section 2.3.8).

The laser is then scanned over a large frequency interval while simultaneously
recording the transmission through the cavity and the wavelength of the laser.
This results in data as shown in figure 2.14. The FSR can then be calculated as

νFSR = ∆ν
N − 1 , (2.47)

where ∆ν is the frequency difference between the first and the last recorded peak,
and N is the number of peaks. The bigger the frequency interval is, the more
accurate the result will be. In practice, the interval is limited by the scan range of
the laser and the filters placed in the setup. These filters are described in section
2.5 and were not removed for this measurement to not change the coupling of the
cavity.
The signal from the wavelength meter and the transmission through the cavity

are recorded independently. To get the correct frequency interval ∆ν between first
and last peak, we make use of the linearity of the frequency change of the laser.
By fitting a straight line to the change of frequency over time (cf. figure 2.14), we

6Newport New Focus TLB-6300 Velocity Widely Tunable Laser
7HighFinesse WS6/600
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Figure 2.14: Transmission of the cavity while scanning the laser frequency. The
intensity of the transmitted light is measured with a photodiode and
shown in red. Since the laser is coupled to the fundamental mode,
the distance between two peaks, when converted to frequency, corre-
sponds to the FSR. The straight blue line gives the frequency devia-
tion from the end of the scan range. Note that the different heights of
the peaks are due to fluctuations in the laser intensity while scanning
and not to the sampling size. There are enough measurement points
per peak to reliably resolve the intensity maximum.

obtain the change of frequency per unit time dν
dt
. Multiplying this value by the time

interval ∆t between first and last peak gives the frequency interval ∆ν = dν
dt

∆t.
The positions of the first and last peak are found by fitting Lorentzians.
This has been done in five measurements over frequency intervals of about

1.1THz. The results are shown in table 2.2 and yield an FSR of

νFSR = 16.42GHz . (2.48)

There is a discrepancy between the measured value and the intended value of
18.7GHz (cf. section 2.2). The stabilization of the cavity caused many problems
in the beginning and there were many adjustments of the distance between the
mirrors while trying to solve this problem. Since the measurement of the FSR took
place when the cavity was already installed in the main setup, this mismatch was
unknown before. Correcting this by adjusting the distance between the mirrors
would require the lengthy procedure of aligning the cavity, optimizing the coupling
and the position of the coupling lenses to be performed anew. It was shown in
section 2.1.1 that a change in the FSR such as this has no effect on the suppres-
sion of the background from the fiber. It does, however, affect the suppression of
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Frequency Difference (GHz) Number of Peaks FSR (GHz)

1083 67 16.41
1100 68 16.42
1101 68 16.43
1100 68 16.42

Table 2.2: Measurements of the FSR with a tuneable laser. Shown are the fre-
quency difference between first and last transmission peak, the number
of peaks and the resulting FSR. All scans are centered around 852nm.

the control field (cf. section 2.1.2). With an FSR of 18.7GHz, as intended, this
suppression would be −43.0 dB. With νFSR = 16.42GHz, it is −42.9 dB. A calcu-
lation of the suppression of the control field in dependence of the FSR is shown in
figure 2.15. Since this difference is very small, the FSR is left as it is but it should
be noted that a small improvement is still possible.

2.3.6 Linewidth
The linewidth of a transmission peak is measured analogously to the FSR (cf.
section 2.3.5). However, since the linewidth is on the order of 100MHz, the mea-
surement needs to be more precise. This is achieved by not using the widely
tuneable laser like for the FSR measurement, but the very stable probe laser of
the main experiment and modulating its frequency with an acousto-optical mod-
ulator (AOM). A scan over a transmission peak is shown in figure 2.16. Fitting a
Lorentzian to this peak yields

δν = (73.50± 0.27)MHz . (2.49)

Note that the curve is slightly asymmetric. When measuring the signal without
cavity, significant changes with frequency can be observed. This is due to the
changing diffraction efficiency of the AOM and is corrected for in the graph. The
reason for the observed asymmetry could be that these corrections are inaccurate.
Performing the measurement anew might yield better results.

2.3.7 Finesse
According to equation 2.45, the finesse F is the ratio of the FSR νFSR to the
linewidth δν. When using the FSR and linewidth given above, we obtain a finesse
of

F = νFSR
δν

= 223± 1 . (2.50)
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Figure 2.15: Suppression of the control field in EIT when transmission is maxi-
mized for the probe field. The calculation is based on equation 2.36
and the frequency spacing between control field and probe field is
9.2GHz (cf. section 2.1.2). A finesse of 223 is assumed (cf. sec-
tion 2.3.7). The two vertical lines mark the actual FSR of 16.42GHz
(green) and the ideal FSR of 18.7GHz (red).

Alternatively, it can be expressed by the reflectivities of the cavity mirrors if
neglecting losses inside the resonator (cf. equation 2.40). The intensity reflec-
tivities of the mirrors are measured independently as R1 = 0.9887± 0.0051 and
R2 = 0.9828± 0.0023 and correspond well with the nominal value of R = 0.9854
given in the datasheet. Thus, the finesse becomes

F = π 4
√
R1R2

1−
√
R1R2

= 219± 43 , (2.51)

with Ri = r2
i and neglecting losses. Note that the uncertainty is large in this case

because the denominator in equation 2.40 is very close to 0. Due to this, the small
uncertainties of the reflectivities have a large effect. Both values agree very well
within the uncertainties.

2.3.8 Mode-Matching
As described in the previous sections, the mode spectrum of a resonator consists of
the fundamental (Gaussian) mode and higher-order modes (cf. figure 2.12). When
light is coupled into the resonator, depending on the properties of the incoming
beam and the resonator, either a multitude of modes are excited or just a single
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Figure 2.16: Transmission through cavity in dependence of detuning from reso-
nance frequency. Shown are the data (blue) and a Lorentzian fit
(red). The data is obtained with a single-photon counting module
and already corrected for the change of diffraction efficiency of the
AOM.

one. The process of shaping the incoming beam to excite only the desired modes
while not coupling to the others is called mode-matching. For the purposes of
the cavity used in this report, it is important to achieve good coupling to the
fundamental mode while ideally not coupling to other modes at all.
A schematic setup for coupling into the resonator is shown in figure 2.17. The

A

L

Figure 2.17: Coupling into the resonator is achieved with a lens at distance L from
the center of the cavity. It is assumed that the beam before the lens
is perfectly collimated.

easiest approach to optimize the coupling, is to first calculate the properties of
the fundamental mode of the resonator and then use the ABCD law (cf. section
2.3.2) to propagate the beam out of the resonator and through the coupling lens
to position (A), as shown in figure 2.17. This gives the ideal incident beam in
dependence of the focal length of the coupling lens and its distance from the
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resonator. Since the actual incident beam before the lens is known (assumed to
be perfectly collimated with known radius8), the focal length of the lens and its
distance from the cavity have to be adjusted so that the calculated beam at (A)
is identical to the actually measured beam.
For spherical mirror resonators with identical mirrors, the waist of the funda-

mental mode has to be centered between both mirrors. This position is described
by z = 0 with the beam propagating along the z-axis. The fundamental mode is
a Gaussian beam that coincides with itself after one round trip in the resonator.
There are two possible approaches of how to calculate this. One can either start
with the condition that the wavefront radius of the Gaussian mode must be the
same as the radius of curvature of the resonator mirrors at the positions of the
mirrors, in order for the beam to retrace itself. Together with the positions of both
mirrors, this fixes the parameters of the Gaussian beam for the fundamental mode.
Another, simpler approach is to use the ABCD law introduced in equation 2.26,
using the fact that the q-parameter (equation 2.20) fully characterizes the Gaus-
sian beam profile. We want the beam to retrace itself, therefore the q-parameter
has to be the same after one round-trip (q1 = q2). This leads to

q = Aq +B

Cq +D
(2.52)

with the ray transfer matrix

M =
A B

C D

 (2.53)

representing one round-trip in the resonator.
This means that for any given position z within the resonator, the q-parameter

of the Gaussian beam must be the same when applying the ABCD law with the ray
transfer matrixM for one round trip. The calculation simplifies significantly when
selecting z = 0, because q(0) is entirely imaginary. This is due to the wavefront
radius R(z) becoming infinitely large for z → 0. Therefore, the waist of the beam
can easily be calculated and from this, one obtains all other parameters.
Let the distance between both mirrors be d and the radius of curvature of the

spherical mirrors be R. Starting at z = 0, the beam propagates distance d
2 in free

space characterised by Mf

(
d
2

)
, then it is reflected by the second mirror (Mr,2),

propagates back to the first mirror (Mf (d)) and is reflected by the first mirror
(Mr,1) before propagating back to z = 0 in free space (Mf

(
d
2

)
). The final ray

8The radius is measured at various positions along the beam with a WinCam UCD 23
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transfer matrix of one round trip is then (cf. table 2.1)

M =
1 d

2
0 1


︸ ︷︷ ︸
Mf( d2)

 1 0
2
−|R| 1


︸ ︷︷ ︸

Mr,1

1 d

0 1


︸ ︷︷ ︸
Mf (d)

 1 0
2
−|R| 1


︸ ︷︷ ︸

Mr,2

1 d
2

0 1


︸ ︷︷ ︸
Mf( d2)

=
1− 4 d

|R| + 2 d2

|R|2 2d− 3 d2

|R| + d3

|R|2

−4 d
|R|2 1− 4 d

|R| + 2 d2

|R|2

 =
A B

C D

 . (2.54)

Using this ray transfer matrix with the ABCD law (equation 2.52) and solving for
q, we obtain two solutions

q = ±1
2
√
d(−2|R|+ d) . (2.55)

Note that q must be imaginary and this leads to the following condition

0 ≤ d ≤ 2|R| , (2.56)

which is the confinement condition for a symmetric resonator [28]. SinceW (z) ∈ R,
only the solution with the plus sign is physically meaningful (cf. equation 2.20).
From this, we can extract the waist of the mode (using equations 2.20 and 2.22)

W (0) = W0 =
√
=(q)λ
π

, (2.57)

and with equation 2.23 the Rayleigh length

z0 = =(q) . (2.58)

=(q) means the imaginary part of q.
The coupling of the incident beam into the resonator can be done by using more

than one lens, but to keep it simple, the following calculation assumes a perfectly
collimated beam with waist WI before a single thin lens of focal length f . Let the
distance between the lens (assumed to have no thickness) and the outer edge of
the first mirror of the resonator be L.
When coupling light into the resonator, it first hits the planar outer surface of

the first mirror, passes through the medium of the mirror and finally exits on the
curved side of the mirror. The mirror can thus be described by a combination of
three ray transfer matrices (cf. table 2.1)

Mm =
 1 0
n2−n1
n1|R|

n2
n1


︸ ︷︷ ︸
convex surface

1 b

0 1


︸ ︷︷ ︸
propagation

1 0
0 n1

n2


︸ ︷︷ ︸
planar surface

=
 1 bn1

n2
n2−n1
|R|n1

bn2−n1
|R|n2

+ 1

 , (2.59)
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where n1 ≈ 1 is the refractive index of air, n2 the refractive index of the mir-
ror’s material and b the thickness of the mirror (assuming that the effects of the
curvature are negligible with respect to the thickness).
The ray transfer matrix for the whole path of the incident beam then becomes

M =
1 d

2
0 1

 1 bn1
n2

n2−n1
|R|n1

bn2−n1
|R|n2

+ 1

1 L

0 1

 1 0
− 1
f

1

 =
A B

C D

 . (2.60)

Using the ABCD law (equation 2.26) with this matrix leads to

A(L, f)q0 +B(L, f)
C(L, f)q0 +D(L, f) − q1 = 0 , (2.61)

where q0 is the q-parameter before the incoupling lens and q1 is the q-parameter
at the center of the resonator. Since we want ideal coupling to the fundamental
mode, it has to be q1 = q (with q from equation 2.55). Furthermore, we assume
that the beam is perfectly collimated before the coupling lens and thus q0 = i

πW 2
I

λ

with WI being the beam radius before the lens.
Solving equation 2.61 for distance L yields the optimal distance of the incoupling

lens from the center of the resonator, in dependence of focal length f (all other
parameters are fixed by the resonator design). Since equation 2.61 has two free
parameters (f , L), there are an infinite number of possible solutions. However,
for a solution to physically make sense, both parameters must be real. With this
constraint, only one solution remains which gives both, the ideal focal length of
the lens as well as its ideal distance from the resonator. In practice, this solution
was found by numerically minimizing the imaginary part of L(f).
Note that the coupling to the fundamental mode is very sensitive to radial

misalignment of the beam. Ideally, it would pass through the center of both cavity
mirrors and deviations of about 50 µm result in only half the coupling efficiency
(the beam waist at the center of the cavity is 62 µm). This is visualized in figure
2.18.

2.3.9 Suppression of Off-Resonant Frequencies
The suppression of off-resonant frequencies depends on the finesse of the cavity
and its detuning from resonance with respect to the FSR (cf. equation 2.36). As
mentioned earlier, best suppression is achieved for detunings of half the FSR. This
gives a suppression factor of

χ = 1
1 +

(
2F
π

)2 , (2.62)
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Figure 2.18: Change of coupling efficiency to fundamental mode with radial mis-
alignment of the beam. The misalignment is assumed to be in such
a way that the beam is always parallel to the optical axis. This cal-
culation is based on a focal lens of 175mm placed 174mm before the
center of the cavity.

where I = χImax and Imax is the on-resonance transmitted intensity. With the
finesse determined for this cavity (cf. section 2.3.7), χ becomes

χtheoret. = (−43.04± 0.04) dB . (2.63)

Figure 2.19 shows the suppression over the whole range of one FSR. This data
was recorded early in the optimization process and shows significant coupling to
transverse modes. However, the maximal suppression still reaches almost −40 dB
but not at half the FSR. The coupling to the fundamental mode has since been
improved, which also reduced the intensities of the transverse modes.
Since it is a requirement for the cavity to be fiber-coupled (cf. section 2.1.3),

transverse modes are suppressed even more by optimizing the coupling of the
fundamental mode of the cavity to the fiber. This is shown in figure 2.20, where
no transversal modes can be seen any more. Fitting the peaks with Lorentzians
and extracting the value of maximal suppression yields

χexp. = −42.7 dB , (2.64)

which is close to the theoretical value.
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Figure 2.19: Measured optical power behind the cavity while scanning over one
FSR. The x-axis shows the deviation from the fundamental mode.
3 transverse modes can be seen. This measurement is taken directly
after the cavity. Note that the resolution is not very high and thus
some “edgy” parts can be seen. Note also that this is early data and
the coupling to the fundamental mode has since been improved (see
text).

2.3.10 Suppression of Fiber Background

Before reaching the cavity, the light from the nanofiber is filtered by a volume
Bragg grating9. It has a linewidth of 0.12 nm around a wavelength of 852 nm and
its spectral response can be modeled by a Gaussian. To determine the suppression
of background light from the nanofiber, two measurements, one with cavity in place
and one without cavity are performed and their results compared. To account for
typical background light, the blue trap laser (783nm) of the main experiment is
sent into the nanofiber. While it will be blocked by the Bragg grating, fluorescence
and Raman scattered light will reach the cavity. It is assumed that over this small
wavelength interval, the intensity of the background is constant10. A schematic of
this setup is shown in figure 2.21.
Let P̃ (ν) be the power per unit of frequency. The power in interval ν0 ≤ ν ≤

ν1 would then be P (ν0, ν1) =
∫ ν1
ν0
P̃ (ν)dν. After passing the Bragg grating, the

spectral shape of the background is that of a Gaussian with a width of 0.12nm,

9Optigrate RBG-852-94
10In earlier experiments with background light from fibers, this was found to be true
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Figure 2.20: Transmitted intensity while scanning over one FSR. The peaks of
the fundamental mode are at 0 and 1 and in-between no significant
coupling to any transverse modes can be seen. This measurement is
taken by coupling the light that exits the cavity into a single-mode
fiber and measuring after the fiber. The red horizontal line indicates
the calculated maximal suppression of −43.04dB.

thus
P̃VBG(ν) = P̃0e

− ν2
2σ2 . (2.65)

with σ = 20.38GHz11.
When bypassing the cavity but maintaining the single-mode fiber, the light is

attenuated by η0 and then detected. This leads to

Pnocav = η0

∫ ∞
0

P̃VBG(ν)dν , (2.66)

where Pnocav is the total detected power. If the cavity is put in place, the light is
attenuated by a different factor ηcav and off-resonant frequencies are suppressed as
shown in figure 2.4. This yields

Pcav = ηcav

∫ ∞
0

P̃VBG(ν)ξcav(ν)dν , (2.67)

where ξcav(ν) =
∫
A
Icav(ν)
I0

dA is the normalized transmission through the cavity and
Icav(ν) is given by equation 2.36.
11Value taken from a fit to the graph provided in the datasheet.
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Figure 2.21: Schematic setup for measurement of background suppression. The
beam is filtered by a volume Bragg grating before either being directly
routed to the detector or filtered by the cavity before detection. η0
and ηcav are the factors introduced in equations 2.66 and 2.67.

Comparing both results gives

Pcav

Pnocav
= ηcav

η0

∫∞
0 P̃VBG(ν)ξcav(ν)dν∫∞

0 P̃VBG(ν)dν
. (2.68)

This can not be solved analytically. Using the values for the cavity as determined
above, this fraction becomes 0.0024 when using ηcav

η0
= 0.39 as experimentally deter-

mined. However, the experimental result is 0.015± 0.007. These are significantly
different and it is still unclear why. The dark counts of the detector have been
considered and also the fact that the maximal suppression is less than calculated
can not account for this discrepancy.

2.3.11 On-Resonance Transmission
The on-resonance transmission is Pout

Pin
, where Pout is the transmitted optical power,

measured directly after the cavity, and Pin is the power before the resonator. This
highly depends on the position of the coupling lens, the orientations of the coupling
mirrors and the cleanness of the cavity mirrors. Since one cavity mirror is mounted
on a translation stage, its position also affects the coupling efficiency. All these
variables might change whenever the setup is adjusted. Therefore, only the highest
achieved transmission is given here.
With the current setup, it is impossible to stabilize the cavity while at the

same time measuring the power, as this effectively blocks the beam path. To
nevertheless measure the on-resonance transmission, the cavity is scanned while
measuring the intensity after the cavity. Scanning the cavity refers to varying the
distance between both mirrors with the piezo crystal (cf. section 2.2), which leads
to the recording of transmission peaks. Then, Lorentzians are fitted to these peaks
and the mean of their maxima divided by the mean power measured before the
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cavity gives the transmission. The highest measured transmission is

T = (76.6± 0.7)% (2.69)

2.4 Resonator Losses
In the previous section, we have derived an equation for the intensity within the
resonator (equation 2.36). While this equation is well-suited for a qualitative
investigation of the properties of the resonator, it does not provide the intensity
after the resonator when continuously coupling light into it. To account for the
continuous incoupling of light, the equation for the complex amplitude needs to
be of the following shape (cf. 2.19)

En(t) = αe−iφEn−1(t− τ) + t1E0(t) , (2.70)

where t1 is the amplitude transmission of the incoupling mirror and τ is the time
per round-trip. Index n designates the n-th round-trip within the resonator. Sub-
tracting En−1(t) on both sides gives the change of amplitude during one round
trip.

En(t)− En−1(t− τ) =
(
αe−iφ − 1

)
En−1(t− τ) + t1E0(t) . (2.71)

In the stationary case, this difference is 0 and En−1(t − τ) = En(t) =: E(t) and
thus

E(t) = t1E0(t)
1− αe−iφ . (2.72)

This is similar to equation 2.34 and thus, analogously to above, leads to the result

I = Ĩmax

1 +
(

2F
π

)2
sin2

(
πν
νFSR
−∆ζ

) (2.73)

with Ĩmax = T1Iin
β2 . Here, Ti = t2i is the intensity transmission with index 1 for the

first (incoupling) mirror and 2 for the second (outcoupling) mirror. The result is
very similar to before with just the maximal intensity Ĩmax being different. The
intensity after the cavity is T2I

(
1− L2

)
with the intensity losses L per round-trip

(L2 + Ti +Ri = 1). Note that α is not simply 1−L but comprises the attenuation
due to losses (medium and non-ideal mirrors) as well as the attenuation resulting
from ri < 1 with ri being the amplitude reflection coefficient of mirror i.
The intensity behind the cavity can also be approximately expressed by the

Lorentzian [32]
Iout ≈

4T1T2

(L+ T1 + T2)2 + 4(∆φ)2 Iin , (2.74)
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with ∆φ = πν
νFSR
−∆ζ. Note that equation 2.74 is an approximation for T1, T2, L,

∆φ � 1. A calculation of the transmitted power with increasing losses is shown
in figure 2.22. The finesse F then becomes [32]

F ≈ 2π
L+ T1 + T2

. (2.75)

Note that the on-resonance reflected intensity is given by [32]

Irefl = (L − T1 + T2)2

(L+ T1 + T2)2 Iin . (2.76)
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Figure 2.22: Change of transmitted power on resonance (∆φ = 0) when increasing
the losses within the resonator. These losses comprise losses due to
the medium as well as losses during reflection or transmission at the
mirrors. Basis for this graph is equation 2.74 with T1 ≈ T2 ≈ 0.012,
as for the cavity used in this report.

2.4.1 Estimating Losses in the Cavity
With equation 2.75, the losses inside the cavity can be estimated with known
transmissions of the mirrors and the finesse

L = 2π
F
− T1 − T2 . (2.77)

The transmissions of the mirrors are measured as T1 = (1.30± 0.09)% and T2 =
(1.20± 0.04)% and the finesse is calculated in section 2.3.7 and is F = 223± 1.
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This gives L = (0.3± 0.1)%. Note that L are the losses per round trip in the
resonator. The average number of round trips can be calculated using equation
2.46 and is

NRT = 35.49± 0.16 . (2.78)
With this, we can estimate the total losses inside the resonator to be

Ltotal = LNRT = 1− (T1 + T2)F
2π = (12.9± 3.5)% . (2.79)

The measured maximal transmission of the fundamental mode is (76.6± 0.7)% (cf.
equation 2.69) and the expected on-resonance reflection with the losses estimated
above is (2.7± 0.9)% (cf. equation 2.76). The sum of all these effects gives
(92± 4)%. There are about 8% missing. This is an indication that there is still
coupling to transverse modes. Furthermore, the transmission of the cavity mirrors
was measured at the very beginning, before placing them in the cavity. Due to
dust or non-ideal cleaning, the values for T1 and T2 might be less now, which leads
to an underestimation of the losses (cf. equation 2.79).

2.5 Experimental Setup
In this section, the experimental setup of the cavity filter is described. A sketch
of the setup is shown in figure 2.23. Two beams are coupled into the cavity. A
reference laser, operating at 780 nm and a probe beam (852nm), which comes
directly from the experiment.
The reference laser is used to generate an error signal to provide feedback to the

piezo-actuator of the cavity. This allows for stabilization of the distance between
the cavity mirrors and is described in more detail in section 2.7. To characterize
the cavity, a laser running at 852 nm is sent through the fiber at point (1) in figure
2.23. Both lasers are described in section 2.6.2.
The probe light arrives in a polarization maintaining fiber. Its linear polarization

is then adjusted with a half-wave plate to maximize transmission through the
optical isolator12. The optical isolator is important to protect the experiment
from light reflected at the cavity. In particular, in EIT experiments the cavity
reflects almost all of the control beam. The probe beam is then joined with the
beam of the reference laser by reflection on a shortpass filter13. The reference laser
passes two mirrors before it is joined with the probe beam. Its coupling to the
cavity can thus be changed without affecting the coupling of the probe. Then,
both beams are focused with a lens14 that is mounted on a translation stage and
12Thorlabs NIR Freespace Tandem Isolator (IOT-5-850-VLP)
13Thorlabs DMSP805
14Thorlabs LA1229-B
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Figure 2.23: Experimental Setup of the Cavity Filter. The reference laser is shown
in yellow and includes the saturation spectroscopy setup for its stabi-
lization (cf. section 2.6.2). “PD” signifies a photodiode and “SPCM”
a single-photon counting module. The arrows next to the lenses and
the second cavity mirror indicate their mounting on translation stages.

coupled into the cavity by two mirrors. The lens has a focal length of 175mm and
must ideally be placed 174mm before the center of the cavity. Theoretically, a
maximal coupling to the fundamental mode of 99.97% can be achieved with this
configuration (see section 2.3.8).
Behind the cavity, another shortpass filter separates the reference beam from the

probe beam. While the reference beam is measured by a photodiode15, the probe
beam passes another lens, identical to the one before the cavity, and is coupled
into a single-mode fiber by two mirrors. The reference beam is has a larger power
than the probe beam and a small fraction of it is reflected by the shortpass filter.
To ensure that only a negligible amount of the reference beam is coupled into the
fiber, a longpass16 and a laser line17 filter are placed before the fiber coupler. The
distance of the second lens from the cavity is chosen the same like for the first lens.
Since the beam before the first lens is very well collimated, this—due to symmetry
reasons—then results in a well-collimated beam behind the second lens.
The overall transmission of probe light through the whole setup is 44% (between

15Custom-built. Amplified with an operational amplifier. Characteristics shown in figure 2.24.
16Asahi XIL 0840
17Semrock MaxLine LL01-852-12.5
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points (1) and (2) in figure 2.23), transmission through the optical isolator is 85%
and the coupling efficiency to the fiber at point (2) is 88%.
The photodiode used for stabilization of the cavity, marked “PD” in figure 2.23,

is amplified by an operational amplifier and shows linear behaviour within a range
of 0 µW to 80 µW, where it saturates. This is shown in figure 2.24.
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Figure 2.24: Power-Voltage characteristics of the photodiode. Saturation occurs
at around 80 µW. The slope of the fit is (4.52± 0.02)× 10−2 µWV−1

The reflection of the shortpass filter that separates probe and reference beam
after the cavity depends highly on its angle with respect to the incoming beam.
Best reflection is obtained for angles close to 45◦. The reflection of the probe beam
is then 99% and for the reference laser it is 8%.

2.6 Laser Stabilization
Since the cavity is stabilized to a reference laser (cf. section 2.7), it is important
for the reference laser to be frequency-stabilized. To allow for an accurate char-
acterization of the cavity, the probe laser, too, needs to be frequency-stabilized.
This is achieved with saturation spectroscopy and is described in section 2.6.1.
The setup of the lasers is then discussed in section 2.6.2.

2.6.1 Saturation Spectroscopy
Saturation spectroscopy can be used to resolve the hyperfine atomic structure
that would otherwise be invisible due to Doppler broadening. In absorption spec-
troscopy, a laser beam is sent through a gas cell and then detected by a photodiode.

39



Depending on with which element the gas cell is filled, scanning the frequency of
the laser leads to a change in the detected intensity at the photodiode. One ob-
serves absorption peaks at frequencies close to atomic transitions. These result
from atoms scattering the light out of the beam path. However, since the atoms
are moving at different speeds, they “see” the frequency of the light Doppler-shifted
to red when they move with the beam and to blue when moving in opposite di-
rection of the beam. This means that a light field, which is slightly off-resonance
with respect to this transition, is still on-resonance to some atoms that are moving
in a way that the frequency of the light is Doppler-shifted to match the transition
frequency.
The basic idea of saturation spectroscopy is to have two beams of exactly the

same frequency spatially coinciding but propagating in opposite directions. One
beam, usually of stronger intensity, is called pump beam and the other is called
probe beam. The probe beam is measured while scanning the frequencies of both
beams simultaneously over the transition frequency. An easy way to achieve this,
is to either split one laser beam into two separate beams or to place a mirror
behind the gas cell that reflects the beam back through the cell.
Atoms moving in direction of one beam will see it red-shifted and the opposing

beam blue-shifted. This means that, while scanning the laser, if one beam is
resonant with the transition, the other one is not. Therefore, absorption occurs
in both beams. However, atoms that do not move in direction of either beam, see
both beams on-resonance with the transition at the same time, because there is no
Doppler-shift involved. In this case, the pump beam can saturate the absorption,
which results in the probe beam being much less absorbed. In the transmission
spectrum of the probe, this shows up as a peak, a so-called lamb dip. The spectral
position of the lamb dip corresponds to the frequency of the atomic transition.
With this method, it is possible to resolve the hyperfine structure of a transition.
In the special case where the laser frequency is exactly in the middle of two

transitions with the same ground state and their frequency difference is small
compared to the Doppler width, one also observes these peaks. This is because
atoms moving in direction of the pump see it red-shifted to one transition, while
they see the probe blue-shifted to the other transition. The pump can then saturate
one transition, depopulating the ground state significantly. The absorption of the
probe is then much reduced since it can only excite atoms that are in the ground
state. These peaks are called crossover peaks. The same is true for transitions
with distinct ground states but a shared excited state. The pump saturates one
transition but the decay from the excited state can now happen to either ground
state. The result is that the probe beam is less absorbed because some of the
atoms are in the other ground state, which it can not excite.
Figure 2.25 shows the spectrum of Rubidium for saturation spectroscopy. If
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Figure 2.25: Saturation spectroscopy using a gas cell with Rubidium 87 and Rubid-
ium 85. The x-axis shows the frequency deviation from the Rubidium
85 D2 F = 3→ F ′ = 4 transition. The labels F = 2 and F = 3 refer
to the ground state of the transitions.

correcting for the absorption slope by fitting and subtracting a Gaussian, the
lamb dips can be seen much better. This is shown in figure 2.26.

2.6.2 Locking the Laser

There are two lasers used in the setup. The probe laser, which is used to simu-
late light coming from the experiment and allowing for a characterization of the
resonator and the reference laser that is needed to lock the cavity to a constant
FSR (see section 2.7). Both, the reference and the probe laser are external-cavity
diode lasers (ECDL) in a littrow configuration [33] (see figure 2.27). The diode
emits light which is collimated with a lens before reaching a Bragg grating. The
grating diffracts the 1st order beam back into the diode and thus acts as the second
mirror of the laser cavity, stabilizing the wavelength to cavity modes depending
on its distance from the diode. This distance, together with the diffraction angle,
can be adjusted by tilting the grating with a micrometer screw and a piezo crystal.
The 0th order diffracted beam is reflected out of the system and corresponds to
the beam emitted by the laser in figures 2.28a and 2.28b.
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Figure 2.26: Saturation spectroscopy of Rubidium 85. Shown are the hyperfine
transitions F = 3→ F ′. This corresponds to to the transitions shown
in figure 2.25 when correcting for the Doppler-broadened background.
CO(3,4) means the crossover peak of transitions F = 3→ F ′ = 3 and
F = 3→ F ′ = 4. The x-axis shows the frequency deviation from the
Rubidium 85 D2 F = 3→ F ′ = 4 transition.

Reference Laser

The reference laser is tuned to a wavelength of 780.241 nm (Rubidium D2 line [34,
35]). Note that it is not important to which exact hyperfine transition this laser is
locked. In fact, the possibility to use any of the D2 transitions of both, Rubidium
87 and Rubidium 85, facilitates the stabilization of the cavity (cf. section 2.7).
The optical setup of the laser is shown in figure 2.28a. First, the laser passes

a prism pair to reshape it to have a circular beam profile. An optical isolator18
prevents backreflection into the diode, which might lead to mode-jumps of the
laser. The beam is then partially reflected by a beamsplitter which transmits 90%
and reflects 10%. The transmitted part passes a half-wave plate followed by a
polarizing beamsplitter cube to adjust the power of the reference beam and is
then coupled into the cavity (cf. figure 2.23).
The fraction of the beam being reflected at the 90:10 beamsplitter also passes

a half-wave plate followed by a polarizing beamsplitter cube (PBC) to adjust the
intensity. It then propagates through a gas cell containing both Rubidum 85 and
Rubidium 87. It is then reflected by a mirror and passes a quarter-wave plate
twice, which is identical to passing a half-wave plate once, where the polarization
18Thorlabs IO-5-NIR-LP
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Figure 2.27: Littrow configuration for an ECDL. The angle and position of the
Bragg grating (dark gray) can be adjusted with a micrometer screw
and a piezo-electric actuator (not shown).
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Figure 2.28: Laser setup with saturation spectroscopy.

direction is changed to be reflected at the PBC instead of transmitted. Finally, the
beam is detected by a photodiode. The beam propagating through the rubidium
cell before reflection corresponds to the pump beam above. After reflection, passing
the cell a second time, it is termed probe beam. The photodiode then records a
spectrum similar to the one shown in figure 2.25 when scanning the laser frequency.
With a PI controller, the laser can be locked to a flank of one of these peaks.

Probe Laser

The probe laser is operated at a wavelength of 852.347 nm (Cesium D2 line [26]).
Similar to the reference laser, it passes a prism pair to ensure a circular beam
cross-section and an optical isolator19 to protect the diode and prevent mode-
jumps (see figure 2.28b). The main part of the beam is then coupled into a
fiber that is connected with the cavity setup (cf. figure 2.23). A fraction of the
beam is reflected by a glass plate and sent through a cesium cell for saturation
spectroscopy.
19Thorlabs NIR Freespace Tandem Isolator (IOT-5-850-VLP)
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2.7 Cavity Stabilization
The cavity is actively stabilized to a reference laser for constant transmission of
the probe light, as well as constant suppression of the control field and the fiber
background. While the probe beam is coupled to the fundamental mode, this is
not true for the reference laser. Its coupling is purposely misaligned to couple to
many modes. The stabilization of the cavity essentially means a stabilization of
the FSR and thus of the piezo-controlled position of the second mirror. This is
done by using a PI controller to lock the cavity to one of the transmission peaks of
the reference beam. To maximize the transmission of the probe, this peak needs
to spectrally overlap with the peak of the probe beam. An ideal case is shown
in figure 2.29. Locking to the rising flank of the reference beam maximizes the
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Figure 2.29: Ideal FSR for alignment of probe and reference laser transmission
peaks. Shown are the transmitted powers of the probe and reference
laser with changing distance between both mirrors of the cavity. The
x-axis corresponds to the positional change of the second cavity mirror
from a point at which the probe transmission is maximized.

transmission of the probe beam while additionally optimizing the sensitivity of the
lock by locking to the steepest slope. Such an overlap can be realized by varying
the FSR with the translation stage and the piezo.
It should be noted that the translation stage expands perpendicular to the axis

of motion when increasing the distance between the mirrors. Since it is mounted
within a slide rail, this can lead to jamming the stage in the slide rail and a deadlock
of the piezo crystal. In such a case, the scan range of the piezo is drastically limited
and it might very well be that no transmission peak of the probe beam can be
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found within the scan interval of the piezo crystal. Therefore, the range of possible
adjustments with the micrometer screw is limited to about half a millimetre.
The result of a longterm stability measurement is shown in figure 2.30. Over a
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Figure 2.30: Long-term stability of the cavity transmission. Shown is the deviation
from the mean value in percent.

time interval of about 14 hours, the transmission only deviates by less than ±1%.
The setup for this measurement is shown in figure 2.31.
The short-term performance is shown in figure 2.32. For this measurement, there

is no data on the actual transmission available, only a measurement of the power
after the cavity. This means that there could still be effects like small fluctuations
in the fiber coupling efficiency that lead to variations of the probe’s power before
the cavity but they are assumed to be negligible. The deviations of the power
behind the cavity are again within about ±1%.
Note that there were initially major issues with stabilizing the cavity and large

fluctuations of transmitted intensity. Fourier transforms showed strong oscillations
at frequencies of 35Hz and 400Hz. The reason for this were vibrations transferred
to the cavity via the cable for the piezo actuator. Changing the cable to a very
flexible one that is additionally fixed to the optical breadboard finally solved this
issue.
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Figure 2.31: Schematic setup for transmission measurement. A glass plate is
placed in front of the cavity at almost a right angle to least influ-
ence the coupling to the cavity. The reflection of the glass plate is
then routed to a photodiode to measure the intensity changes be-
fore the cavity. Note that not the real intensity but only its relative
changes are of interest for this measurement. The intensity after the
cavity is measured with another photodiode.
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Figure 2.32: Short-term stability of the intensity after the cavity. Shown is the
deviation from the mean of all data in percent. Note that this is not
a zoom of the data shown in 2.29 but is a different measurement.

46



2.8 Conclusion
In this chapter, the design, setup and characterization of an FPI that is actively
stabilized to a reference laser was discussed. The purpose of this cavity was to filter
background light from the fiber, caused by Raman scattering and fluorescence,
and to suppress the control field in EIT experiments. These requirements are
well-fulfilled, in particular a suppression of −42.7dB of the control field could
be achieved and the fiber background is reduced by about 99%. Thus, the cavity
offers good filtering properties for EIT experiments and also for the atom-counting
discussed in chapter 3. The transmission of the probe field through the whole setup,
including the fiber-coupling before and after the cavity, is 44%. This transmission
is very stable—even on time scales of more than 10h, where variation of less than
±1% have been measured.
The performance of the cavity could potentially be further improved by using

mirrors with higher reflectivity. This would result in a higher finesse, which can
drastically improve the suppression of both the control field as well as the fiber
background. However, this would also increase the average number of round trips
inside the resonator and could result in higher losses.
The main problem that occurred during the setup of the cavity were issues

concerning its stabilization to the reference laser. There were perturbing vibrations
at frequencies of 35Hz and 400Hz. These were transferred to the cavity via the
cord connected to the piezo actuator. This was solved by exchanging this cord for
a very flexible one that is additionally fixed to the optical breadboard.
Finally, I would like to outline two modifications that would improve the usabil-

ity of the cavity. As discussed in section 2.7, the translation stage, on which one of
the cavity mirrors is mounted, does extent perpendicular to its axis of motion when
the distance between the mirrors is adjusted with the micrometer screw. Since the
cavity is mounted in a slide-rail, this jams the movement of the mirror and hinders
the search for a good locking point. This behaviour of the translation stage was
not known before and it is not crucial to the operation of the cavity. Nevertheless,
the handling would be much improved if this jamming could be prevented. If at
some point a similar cavity is built, one could take this into account when choosing
a translation stage. Another possible improvement of the usability would be the
modification of the mirror mounts of the cavity. Currently, the mirrors are fixed
inside their mounts with a metal strip clamping them in place. While this setup
is stable and reliable, it takes some practice to place the mirrors in their mounts.
Furthermore, both cavity mounts have to be taken out of the slide rail to do this.
It is not possible to place the mounts back in the rail without having to repeat the
process of coupling to the fundamental mode. Since this takes quite a bit of time,
the cleaning of the cavity mirrors becomes a very lengthy process. This could be
facilitated by changing the mounts to fix the mirrors with screws. One could drill
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a hole from the top and use screws similar to those used in the commercial mirror
mounts.
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3 Counting of Atoms Trapped
Along a Nanofiber

In this chapter, the counting of atoms in a nanofiber-based trap is discussed. In
particular, it is assessed how precisely this can be done with the existing setup of
the nanofiber trap and the cavity of chapter 2. A brief introduction to trapping
atoms along a nanofiber and the current experimental setup is given in section 3.1.
Then, the scattering of light on these atoms and the resulting heating effects as
well as possible methods of counter-acting that heating with cooling are described
in section 3.2. Finally, different methods to infer the atom number from the
experimental data are introduced in section 3.3 and their performance is evaluated
with simulated datasets. A conclusion is given in section 3.4.

3.1 Nanofiber-based Atom Trap
As mentioned in chapter 1, nanofibers have a pronounced evanescent field, through
which atoms can strongly interact with fiber-guided modes. This interaction can
be used to trap atoms in close proximity around the nanofiber by means of an
optical dipole trap [5, 14]. The basis for such a trap is the dipole force acting
on atoms when irradiating them with far-detuned light with respect to an optical
transition [36, 37, 38, 39, 40]. Such a force can be described by a dipole potential
[36]

Udip(~r) = 3πc2

2ω3
0

γ

∆I(~r) , (3.1)

where ω0 is the transition frequency, ∆ = ω − ω0 is the detuning, γ is the sponta-
neous decay rate, and I(~r) is the field intensity. When the frequency of the light
is below the transition frequency (∆ < 0), the dipole potential is negative and
exerts a force attracting the atom towards higher intensities. Such a light field is
termed red-detuned. The opposite is true for higher frequencies, where the atom
is pushed to regions of lower field intensity. The light is then called blue-detuned.
In our group, cesium atoms are trapped around a nanofiber by using far-detuned

light with respect to the D line transitions1. The experimental setup is shown in
1The D1 line is at 894 nm, the D2 line at 852 nm and the wavelengths of the trapping lasers are
given in figure 3.1.
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Cavity

to detector

Figure 3.1: Schematic setup of the nanofiber-based atom trap experiment. The
red- and blue-detuned lasers are sent through the fiber to create the
trap (see text). Light from outside the fiber (green arrow) scatters on
the trapped cesium atoms (yellow cirles) and part of it is coupled to
fiber-guided modes (green line). On one side, a single-photon detector
is placed behind the cavity (see previous chapter). The magnetic offset
field prevents spin-flips and allows to distinguish transitions between
different Zeeman states [41]. Figure adapted from [13].

figure 3.1. A combination of attractive and repulsive potentials is used to create
two diametric arrays of trapping sites. This is achieved by splitting the beam of
a red-detuned laser and coupling it into the fiber from both sides. Both beams
interfere to create a standing-wave potential. Additionally, a blue-detuned beam
is sent through the fiber as a running wave, exerting a repulsive force on the
atoms. Preparing the beams such that they are quasi-linearly polarized in the
fiber with the polarization of the blue beam orthogonal to that of the red beams,
results in individual trapping sites along both sides of the fiber [5, 14]. These
trapping sites are about 500nm apart and 230nm from the surface of the fiber [42].
Typical parameters are a trap depth of 140 µK and calculated radial, azimuthal
and axial trap frequencies of 120 kHz, 87 kHz and 186 kHz, respectively. A more
comprehensive description of this setup is given in [5, 13, 14, 43].
To count the trapped atoms, they are irradiated with light from outside the fiber.

Part of this light is scattered into fiber-guided modes [44], which is indicated with
the green arrow and the green line in figure 3.1. The cavity is placed on one end
of the fiber, before a single-photon counting module. This is described in more
detail in section 3.3.

3.2 Light Scattering from Trapped Atoms

In this section, the scattering of light on trapped atoms is addressed with a focus
on the heating of atoms through scattering. This is discussed in section 3.2.1. A
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short introduction to cooling is given in section 3.2.2 as a means to counter-act
this heating.
With the approximation of a two-level atom, the scattering rate Γs when irra-

diated with a near-resonant light field can be expressed as [26, 14]

Γs = γ

2

I
Is

1 + I
Is

+
(

2δ
γ

)2 , (3.2)

where I is the intensity of the light field at the position of the atom, Is is the
free-space saturation intensity, γ is the natural decay rate of the excited state and
δ is the detuning of the angular frequency of the laser. The saturation parameter
I
Is

is given by [45]
I

Is
= 2 |Ω|

2

γ2 , (3.3)

where Ω is the Rabi frequency. For the calculations in this report, the |F = 4〉 ↔
|F ′ = 5〉 transition of the cesium D2 line is used with γ = 2π · 5.2MHz [26]. The
reason why this transition is used is described in section 3.3.

3.2.1 Scattering-induced Heating
There are two different heating regimes that depend on the scattering rate. We
define the case where the scattering rate is on the order of or below the trap
frequencies as low-intensity regime. If the scattering rate is much higher than the
trap frequencies, this is called high-intensity regime. In the following, the different
heating effects for both regimes are derived.
In the low-intensity regime, the atom absorbs on average one or less photons

per oscillation. This corresponds to an increase of its thermal energy by the recoil
energy

Erec = 1
2kBTrec (3.4)

In equation 3.4, kB is the Boltzmann constant and Trec is defined as recoil tem-
perature. Assuming the atom to be initially at rest, it’s kinetic energy after the
absorption is

∆E = (~k)2

2m , (3.5)

where ~k is the momentum of the absorbed photon and m is the mass of the atom.
With ∆E = Erec and equations 3.4 and 3.5, we obtain

Trec = (~k)2

kBm
. (3.6)
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After absorption, the atom will re-emit the photon in a random direction. This
increases the kinetic energy of the atom again by Erec, so that the overall increase
in energy per scattering process is 2Erec

2 [36]. The thermal energy of the atom is
given by

E = 3
2kBT (3.7)

and the energy of the atom after time ∆t can be expressed as

E(t+ ∆t) = E(t) + 2ErecΓ∆t , (3.8)

where 2Erec is the energy difference per scattering event and n = Γτ is the number
of scattering events. Subtracting E(t) and dividing by ∆t leads with ∆t→ 0 to

Ė = 2ErecΓ , (3.9)

where Ė is the time derivative of E. With equations 3.7, 3.9 and 3.4, we obtain

Ṫ = 2
3TrecΓ . (3.10)

Inserting equation 3.6 and integrating over time finally yields

T (t) = 2
3

(~k)2

kBm
Γt+ T0 , (3.11)

where T0 is the initial temperature. Equation 3.11 describes heating in the low-
intensity regime. Note that the temperature increase is linear in the number of
scattered photons.
If, on the other hand, the scattering rate is significantly larger than the trap

frequencies, the above result is not applicable any more. In this case, scattering
occurs so fast, that the atom absorbs multiple photons during one oscillation in
the trap. In fact, if the scattering rate is large enough, the atom is “pushed” out of
the trap in a time much shorter than 1

ftrap
, where ftrap is the trap frequency. Each

time the atom absorbs a photon, its momentum increases by the momentum ~k
of the photon. Since the absorptions happen so fast, the total momentum transfer
to the atom can be written as n~k with n being the number of absorbed photons.
Thus, equation 3.5 becomes

∆E = (n~k)2

2m = (~k)2

2m n2 . (3.12)

2The incident photons all propagate in the same direction before absorption. Note that for
simplicity, this anisotropy is neglected and equal distribution of kinetic energy over all three
dimensions is assumed.
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With equation 3.7, this yields

∆T = 1
3

(~k)2

kBm
Γ2(∆t)2 , (3.13)

where we used n = Γ∆t. Equation 3.13 describes heating in the high-intensity
regime.
Comparing equations 3.11 and 3.13, it can easily be seen that in the high-

intensity regime, significantly less photons are needed to heat the atom out of
the trap. In particular nhigh =

√
2nlow, which is consistent with [46]. Here, nhigh

and nlow are the number of photons needed in the high-intensity and low-intensity
regime, respectively, to heat an atom by the same temperature.
To model the loss of atoms due to heating, the trap lifetime τ is used. We define

the trap lifetime as the time, after which only 1
e
of the initially trapped atoms

remain and all others are lost. A simple estimate for τ is to use the average time
needed to heat an atom out of the trap.

3.2.2 Cooling of Trapped Atoms
The heating effects described in section 3.2.1 lead to a loss of atoms from the trap.
This can be countered by cooling the atoms.
In principle, the cooling of atoms in the nanofiber-based trap can be achieved

by lasers from outside the fiber or, potentially, by lasers coupled into the fiber. A
good overview of cooling methods and their quantitative treatment can be found
in [45]. Here, only a very brief introduction to Doppler cooling is given.
For simplicity, we first consider the one-dimensional case with two counter-

propagating laser beams that irradiate a single atom. Both lasers are red-detuned
with respect to an atomic transition. There are three possibilities, the atom could
be at rest or move towards either of the two lasers. If at rest, absorption of
a photon is less likely than on resonance. If the atom moves towards one of
the lasers, however, the probability of absorbing a photon emitted by this laser
increases with its velocity due to the Doppler effect. Similarly, the probability
of absorbing a photon emitted by the other laser, from which it is moving away,
decreases. With each absorption, the atoms velocity is changed by the momentum
of the photon. This leads to an effective slowing-down of the atom, no matter
in which direction it moves. Note that there is a limit to this cooling process of
TD = ~γ

2kB
, where TD is the Doppler temperature [45]. In three dimensions, this

could be achieved with three pairs of counter-propagating beams.
Referring to the trap lifetime τ introduced in section 3.2.1, the effect of cooling

results in an increase of τ and for the purposes of this report, it is assumed that
cooling leads to τ � tM, where tM is the duration of the measurement.
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3.3 Atom Counting
This section covers the counting of atoms in the nanofiber-based trap. An overview
of different experimental approaches to achieve this is given below.
The basic idea, shared by all experimental approaches outlined in the following,

consists of irradiating the atoms with a probe beam and detection of the scattered
photons. There are two different ways to irradiate the atoms, by sending the
probe beam through the fiber or by using a beam that is focused on the atoms
from outside the fiber. In both cases, the atoms scatter light into free-space as
well as into fiber-guided modes [10, 44], yielding two possibilities of detection.
First, the case of the probe propagating in the fiber is discussed. If the light

scattered into guided modes is measured, one invariably detects light from the
probe beam itself as well. It is not possible to filter out the probe beam because
it has the same frequency like the scattered light3. Even placing the detector so
that it only detects light counter-propagating with respect to the probe, would
still lead to detection of probe light due to reflections (e.g. at the fiber end facet).
Measuring light scattered out of the fiber, e.g. by means of a CCD camera as

done in [47, 48], would not yield this problem. This would require a very sensitive
low-noise CCD camera. Alternatively, it is possible to not measure the scattered
light but the absorption of the probe when sent through the fiber. With increasing
power of the probe, the cesium atoms saturate at scattering rates of γ

2 , where γ
is the spontaneous decay rate. At this point, the absorption does not change any
more when the power is further increased. This saturation measurement then
allows to infer the number of trapped atoms as done in [5].
Finally, the probe light could be directed at the atoms from outside the fiber to

measure the light scattered into guided modes. The advantage of this approach is
that, apart from the far-detuned trapping lasers, only the scattered light propa-
gates in the fiber. A detector could then be placed on either end and the cavity
of chapter 2 be used to filter out the background light due to Raman scattering.
The atoms are then detected with a single-photon counting module. This setup is
shown in figure 3.1 and is the basis for all following calculations.
The parameters that influence the accuracy of the measurement are the num-

ber of photons being detected, the number of dark counts of the detector and the
heating of atoms, eventually leading to atom loss. All these mainly depend on the
measurement time and scattering rate as variable parameters, while other parame-
ters, like the detection efficiency are fixed by the setup. Therefore, the calculations
presented in the next sections can easily be adapted for different experimental ap-
proaches by changing the parameters like e.g. the detection efficiency. Note that

3Note that this is not generally true as the probe could for example excite one transition and
the measurement focus on the decay to another ground state. However, with the two-level
approach taken in section 3.2.1, the scattered light has the same frequency as the probe.
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only the total number of detected photons is important and that in principle de-
tection on both ends of the fiber would be possible.
The filtering of the cavity has a significant effect on the resulting accuracy and

this is discussed in section 3.3.7. Since there is only one cavity available, optimally
all guided light should propagate towards the detector behind this cavity (cf. figure
3.1). This is possible by exploiting the spin-orbit coupling of light confined inside
the nanofiber. The details of this process are not given here but can be found in
[42, 49]. In the configuration shown in [42], 90% of the light that is scattered into
guided modes propagates in one direction, using the same setup as depicted in
figure 3.1. This leads to a probability of 2.3%4 that a scattered photon is coupled
to a fiber-guided mode and propagates towards the detector behind the cavity. As
shown in figure 3.1, atoms are trapped on both sides of the fiber and it should be
noted that this effect leads to preferential scattering of light towards the detector
for atoms on one side, while atoms on the other side scatter most photons away
from the detector [42]. Thus, only atoms on one side of the fiber can be efficiently
detected with this configuration.
In the following sections, three methods are presented to infer the number of

trapped atoms. To analyse the differences and the accuracy of these methods,
they are used on simulated data. The simulation of this data is described in
section 3.3.1. Then, all three methods are introduced and their performances
analysed in sections 3.3.2, 3.3.3 and 3.3.4. Most calculations in this chapter are
based on scattering rates comparable to the trap frequencies, which corresponds to
the low-intensity regime (cf section 3.2.1). The case of the high-intensity regime
is discussed in section3.3.6. Finally, the effects of the cavity finesse and overall
detection efficiency are discussed in sections 3.3.7 and 3.3.8.

3.3.1 Simulation of Experimental Results
A Monte Carlo simulation is run to generate data for the single-photon detector
behind the cavity. The simulation starts with a given number NA of trapped atoms
and assumes that the mean number of detected signal photons in time interval ∆t
is

〈RS〉∆t = PdetPscΓNA∆t . (3.14)

Here, 〈RS〉 is the mean rate of detected signal photons and Pdet is the probability
of detecting a photon that is propagating in the nanofiber towards the detector.
Psc is the probability that a scattered photon couples to a fiber-guided mode and
propagates towards the detector. Thus PdetPsc gives the overall probability of
detecting a scattered photon. Γ is the scattering rate and ΓNA∆t gives the total

4This number follows from calculations based on the equations in [49] for the current setup of
the nanofiber-based trap.
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number of scattered photons in time ∆t. Additionally to the signal photons, the
detector also measures background photons (cf. section 2.1.1) and dark counts.
Both are assumed to have constant rates that are determined from experiment and
the sum of both is 〈RB〉∆t.
The probability to detect exactly k photons in a time interval ∆t is given by a

Poisson distribution
PS,∆t(k) = e−〈RS〉∆t(〈RS〉∆t)k

k! . (3.15)

The probability of counting at least one signal photon is then

PS,∆t(k ≥ 1) = 1− PS,∆t(0) = 1− e−〈RS〉∆t . (3.16)

The same applies for the background photons and dark counts.
Due to heating effects, atoms are lost during the measurement. This can be

described by the trap lifetime τ with

NA(t) = NA,0e
− t
τ , (3.17)

where NA,0 is the number of initially trapped atoms. The average number of lost
atoms within interval [t, t+ ∆t] is then

〈∆NA(t,∆t)〉 = NA,0
(
e−

t
τ − e−

t+∆t
τ

)
= NA(t)

(
1− e−∆t

τ

)
≈ NA(t)∆t

τ
. (3.18)

Analogously to equation 3.15, we then obtain the probability of loosing an atom
as

PA,∆t(k ≥ 1) = 1− e−NA,t
∆t
τ , (3.19)

where NA,t is the actual number of remaining atoms at time t.
The simulation then proceeds by moving through time over an interval from

0ms to 200ms in steps of ∆t and performs the following steps.

1. Create a random variable ξ between 0 and 1.

2. If ξ < PS,∆t(k ≥ 1), a signal photon has been detected. Append (1) to the
array of signal photons.

3. Else, no photon has been detected. Append (0) to the array of signal photons.

The same is done for background counts and lost atoms. In the case of lost atoms,
the atom number NA is decreased as well, which influences the rates for atom loss
and signal counts (see above). ∆t needs to be very small so that the probability of
loosing one atom within this interval is much higher than loosing more than one
atom. This is necessary to later compare the real number of trapped atoms with
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the inferred number. However, if ∆t is chosen too small, the simulation will need
too long to run and the created data files will be unnecessarily large. Note that
for the purpose of a rough estimation, detector saturation and dead time are not
considered in this approach.
The result consists of three arrays that correspond to equal time steps of ∆t

and each element containing a 1 signifies a detector count or atom loss. All other
elements are zeros. The sum of all array elements gives the total number of counts.
An exemplary result of such a simulation is shown in figure 3.2.
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Figure 3.2: (a) Shown are the cumulative sums of the arrays for simulated signal
counts and background counts. The background (green) shows a linear
increase which is due to a constant rate of background counts (see text).
The signal counts saturate when all atoms are lost.
(b) Shown is the number of atoms trapped along the fiber. As the
simulation progresses, atoms get lost due to heating until finally no
atoms are left.

The parameters used for this and all other simulations are given in table 3.1.
Note that the number of detected signal photons is below the number of initially
trapped atoms (cf. figure 3.2). This drastically limits the accuracy with which the
number of atoms can be determined.

3.3.2 Fitting Approach
In the previous section, the generation of simulated data was described. A first
method to analyse this data and infer the number of trapped atoms is given in
this section. It consists of fitting a model to the total counts shown in figure 3.2a
with the number of initially trapped atoms as the variable to optimize. The rate
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Parameter Value Description

NA,0 30 or 1000 Number of initially trapped atoms.
Γ 87 kHz Scattering rate in low-intensity regime.

This corresponds to the smallest trap frequency (cf. section 3.1).
Pdet 5% Probability of detecting a photon that is

in the nanofiber and propagating towards the detector.
Psc 2.3% Probability that a scattered photon couples to a

guided mode and propagates towards the detector.
T0 30 µK Mean temperature of atoms in trap.
Ttrap 140 µK Depth of trap.
∆t 2 µs Time step of simulation.
〈RB〉 1.5 kHz Sum of photons from fiber background and detector dark counts.

Table 3.1: Parameters as they were used in the simulation.

of total detector counts after measuring for time t is
Ṅtot(t) = NA(t)ΓPdetPsc︸ ︷︷ ︸

〈RS〉

+ 〈RB〉 , (3.20)

where NA(t) is given by equation 3.17 and the other parameters were introduced in
section 3.3.1. The number of total detector counts is then obtained by integrating
over the measurement time t

Ntot(t) = ΓPdetPsc

∫ t

0
NA(t′)dt′ + 〈RB〉 t . (3.21)

With ∫ t

0
NA,0e

− t
′
τ dt′ = NA,0τ

(
1− e− t

′
τ

)
, (3.22)

this becomes
Ntot(t) = ΓPdetPscNA,0τ

(
1− e− t

τ

)
+ 〈RB〉 t . (3.23)

Except for the initial number of trapped atoms, NA,0, all other parameters are
calculated based on the assumptions discussed above and the average background
count rate 〈RB〉 is taken from a measurement. Fitting this model to the data
shown in figure 3.2a results in an estimate of the initially trapped atom number
of 10885, which is above the actual number of 1000 used in the simulation. This
fit is shown in figure 3.3.
To better judge the performance of this method, the simulation is run multiple

times. The results of fitting to these datasets are shown in figure 3.4. It can
5The uncertainty of the fit as returned by python’s fit routine is below one atom. Bootstrapping
leads to the same result. However, one should be careful with the significance of this result.
A better estimate for the accuracy of the result is a standard deviation of 42 (cf. figure 3.4).
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Figure 3.3: Fitting equation 3.23 to the total detector counts with free parameter
NA,0. The actual number of initially trapped atoms for this simulation
was 1000 and the fit yielded 1088.

be seen that the number of trapped atoms tends to be underestimated with this
method.
Note that since the above fit is using all simulated data, even at time-scales

where all atoms are lost, this corresponds to a destructive measurement in the
sense that no atoms would be left for further experiments. The performance of
this method with increasing measurement time is shown in section 3.3.5.
As mentioned in section 3.2.2, the cooling of atoms during the measurement can

be modelled with a large trap lifetime τ . In equation 3.23, the exponential term
can be approximated as e− t

τ ≈ 1 + t
τ
, which leads to

Ntot,cool(t) = ΓPdetPscNA,0t+ 〈RB〉 t . (3.24)

The result of fitting to data simulated in this way is shown in figure 3.5. The
standard deviation has now reduced from 12 atoms to 1.5 atoms and would improve
even more for longer measurement times.

3.3.3 Optimal Probing Time
At the start of a measurement, the signal from the atoms is strongest with respect
to the background counts. As atoms are lost, the signal becomes weaker and the
influence of the background relatively stronger. When all atoms are lost, only
the background leads to additional counts and the measurement accuracy can not
be improved any more but will be worsened by taking more data. It thus makes
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Figure 3.4: Fitting equation 3.23 to different datasets with 30 and 1000 initially
trapped atoms. The histogram data is normalized and shows a Gaus-
sian distribution. The vertical lines indicate the true number of initially
trapped atoms.
(a) The mean value is 983 atoms with a standard deviation of 42 atoms.
(b) The mean value is 28 atoms with a standard deviaton of 12 atoms.

sense to assume that there is an optimal duration of measurement, for which the
accuracy is best. An estimation for this optimal pulse time is derived in this
section.
Starting with equation 3.23, we can solve for the initial number of trapped atoms

NA,0 = Ntot − 〈RB〉 t
ΓPdetPscτ

(
1− e− t

τ

) . (3.25)

In equation 3.25, Ntot is measured, while all other quantities are calculated or
estimated. The uncertainty of this result depends on the uncertainty of the pa-
rameters, in particular on the uncertainty of the mean rate of background counts
〈RB〉 and the uncertainty of the measured data itself. For simplicity, we assume
that the other parameters, like the trap lifetime τ only negligibly influence the un-
certainty of the initial atom number. The variance of NA,0 can then be calculated
as

σ2
NA,0

=
 1

ΓPdetPscτ
(
1− e− t

τ

)
2

σ2
Ntot +

 t

ΓPdetPscτ
(
1− e− 1

τ

)
2

σ2
B , (3.26)

where σ2
B is the variance of the background counts 〈RB〉 t. Since both, the back-

ground counts and the measured count rate, are described by a Poisson distribu-
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Figure 3.5: Fitting to the datasets of simulations with 30 atoms, whilst cooling
them so that no atoms are lost. The measurement time is 200ms and
the mean value is 29.5 atoms with a standard deviation of 1.5 atoms.

tion, their variance is equal to their mean

σ2
Ntot ≈ ΓPdetPscNA,0τ

(
1− e− t

τ

)
+ 〈RB〉 t , (3.27)

σ2
〈RB〉 = 〈RB〉 t , (3.28)

where we used the approximation that the measured value of the detector counts
is roughly equal to the expected value. Equation 3.26 can then be written as

σ2
NA,0

= NA,0

ΓPdetPscτ
(
1− e− t

τ

) + 2 〈RB〉 t[
ΓPdetPscτ

(
1− e− t

τ

)]2 . (3.29)

Plotting the so-calculated variance for a range of measurement times indeed
shows an optimal time. This is shown in figure 3.6. It is not analytically possible
to determine the optimal time topt, for which the variance in equation 3.29 is
minimized. Therefore, this is in the following always numerically calculated.
For the special case of cooling, the trap lifetime is much larger than the mea-

surement time and thus we can simplify the variance to

σ2
NA,0,cool

= NA,0

ΓPdetPsct
+ 2 〈RB〉

[ΓPdetPsc]2 t
, (3.30)

by using the Taylor expansion for the exponential. It is now clear that the variance
improves with increasing measurement time. However, this is only true for t� τ .
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Figure 3.6: Variance of the number of initially trapped atoms in dependence of
measurement time. The minimal variance of 112 is at t = 16ms. This
calculation is for 30 atoms.

The result of determining the number of initially trapped atoms as described
in this section is shown in figure 3.7. The mean value and standard deviation
agree very well with the fitting approach (cf. section 3.3.2), indicating that both
methods are equal in precision. The standard deviation of the data in figure 3.7b is
9 and the calculation with equation 3.29 gives 10, which is in very good agreement.
For the data in figure 3.7a, it is 41 while the calculation gives 35. This method,
like the fitting approach, also tends to underestimate the atom number.

3.3.4 Bayesian Inference
The approach described in this section is based on Bayes’ law. This is in the fol-
lowing briefly derived. Let the probability of event A be P (A) and the conditional
probability of event B when A is already true P (B|A). Then, the probability of
A and B being true simultaneously is

P (A,B) = P (A|B)P (B) = P (B|A)P (A) . (3.31)

From this, we get

P (A|B) = P (B|A)P (A)
P (B) , (3.32)

which is called Bayes’ law. Before discussing the implications of this further, we
will substitute A and B with parameters relevant for the counting of atoms. For
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(a) 1000 atoms, 10000 datasets
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(b) 30 atoms, 100 datasets

Figure 3.7: Determination of the number of trapped atoms with equation 3.25.
The histogram data is normalized and shows a Gaussian distribution.
The vertical lines indicate the true number of initially trapped atoms.
(a) The mean value is 983 atoms with a standard deviation of 41 atoms.
(b) The mean value is 29 atoms with a standard deviaton of 9 atoms.

A, we set the number of initially trapped atoms NA,0 and for B the number of
detector counts Ntot. Bayes’ law then becomes

P (NA,0|Ntot) = P (Ntot|NA,0)P (NA,0)
P (Ntot)

. (3.33)

The term P (NA,0|Ntot) gives the probability of having NA,0 initially trapped atoms
when Ntot detector counts were measured. This is called posterior probability and
is exactly what we are interested in. P (Ntot|NA,0) is the so-called likelihood and
represents the probability to measure Ntot detector counts when NA,0 atoms are
trapped on the nanofiber. This is multiplied with the prior P (NA,0), the probabil-
ity of NA,0 atoms being trapped. Finally, the probability is normalized by dividing
with the probability of Ntot detector counts P (Ntot). A more comprehensive in-
troduction to Bayesian statistics can be found in [50] and practical cases in [51,
52].
The posterior probability estimate can be improved by Bayesian inference. After

obtaining a posterior probability distribution, it can be used as new prior with
new measurement data to get an improved posterior distribution. In this way, the
posterior will get more and more accurate with each iteration. The calculation
consists of the following steps.

1. Guess initial prior. For simplicity, a flat initial distribution is assumed. Using
a Gaussian distribution centered at the atom number determined with the
fitting approach of section 3.3.2 and a variance calculated with equation 3.29,
does not lead to better end results.
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2. Compute the likelihood based on equation 3.25.

3. Repeat steps 1 and 2 for many values of NA,0

4. Multiply both results and normalize the distribution

5. Use the so-obtained posterior as new prior and start again with new data to
compute an improved posterior distribution.

To do this, the measured data is divided into slices. As an example, the data
shown in figure 3.3 is divided into slices of equal time so that all counts detected
in the first 10 µs belong to the first slice, all counts detected between 10 µs to 20 µs
to the second slice and so forth. Then, the Bayesian inference method is used to
compute a posterior from the first slice. This is used as prior to determine the
posterior of the second slice and so on. Alternatively, one could divide the slices by
equal count rates, e.g. every slice contains 100 counts but the time ranges of the
slices vary significantly. In the first case the likelihood would answer the question
“how likely is it that there were N counts in this interval”?. In the second case the
question would be “how likely is it that the next N counts were detected within
the time-interval [t1, t2]?”. Of these, the latter, with slices of equal count rates,
has been found to perform better.
The results of such an analysis are shown in figure 3.8 and are very similar to

the ones obtained in the previous sections. Again, the actual value of initially
trapped atoms is underestimated. This is discussed further in section 3.3.5.
One parameter of the Bayesian inference is the “step length”, corresponding to

the number of detector counts per slice. Figure 3.9 shows the results of varying
this step length from 1 to 950 for simulations with 1000 atoms. For small step
lenghts, the performance drops significantly. This can be explained by there being
too few counts per slice to reasonably use statistical methods. For very large
step lengths, the performance increases. In these cases, since the step length is
so big, there is only one big slice and Bayes’ law is only applied once. Indeed, a
slight improvement of the analysis algorithm can be seen for this case but it is
not significant. When analysing a large set of simulations of 1000 trapped atoms,
the deviations of the mean value for different step lengths are on the order of one
atom, compared to a standard deviation of about 40 atoms.

3.3.5 Comparison of Analysis Methods
In the previous sections, three methods to determine the number of trapped atoms
were introduced. All are based on the same model (cf. equation 3.23) and yield
similar results. Figure 3.10 shows a real-time analysis using simulated data of 1000
trapped atoms with all three methods. Real-time means that the data is analysed
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(a) 1000 atoms, 10000 datasets
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Figure 3.8: Number of initially trapped atoms as computed with Bayesian infer-
ence. The histogram data is normalized and shows a Gaussian distri-
bution. The vertical lines indicate the true number of initially trapped
atoms. (a) The mean value is 974 atoms with a standard deviation of
39 atoms.
(b) The mean value is 29 atoms with a standard deviaton of 9 atoms.

as if it was measured during the simulation and the accuracy of the determined
atom number is improved as the measurement proceeds. It can be seen that all
three methods show very similar behaviour in the estimation of the current atom
number (cf. figure 3.10a) but the final guess of the number of initially trapped
atoms varies significantly (cf. figure 3.10b). It can also be seen that the likelihood
(cf. section 3.3.4) has a strong effect on the Bayesian estimate during the first
half of iterations, while it induces almost no changes from iteration 30 onward
(cf. figure 3.10b). This can be explained by the fact that most atoms are lost at
that point and the data in the last analysed intervals is only weakly dependent on
the initial number of trapped atoms. This means that for example, starting with
1000 atoms or starting with 1200 atoms would only lead to insignificant changes
in these intervals. The likelihood distribution is then extremely flat and does not
change the prior by much.
So far, these methods were only employed on reasonable datasets. Figure 3.11

shows the result of using them on a dataset with no signal counts—but with
background counts. All three, when interpreting negative values as 0, perform
well on this data. The fitting approach performs best, correctly interpreting each
dataset when setting negative results to 0.
Finally, an analysis of data with very high background counts is shown in figure

3.12. In these extreme cases, all methods significantly underestimate the atom
number. The fitting approach, however, performs worst, giving results that are
several hundred atoms below the results of the other methods.
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Figure 3.9: Number of best results in dependence of the Step length for Bayesian
inference. This is computed by analysing each simulation result multi-
ple times with different step lengths. All those that lead to the closest
atom number with respect to the real one are marked as “best result”.
Thus, one simulation can have more than one best result. All step
lengths are shown on the x-axis, while the y-axis shows the number
of occurrences of best result. All simulations used an atom number of
1000.

To conclude, three methods to infer the number of trapped atoms were presented
in the previous sections. They are all based on the same model and lead to similar
results when applied to many datasets. However, for a specific dataset, they lead in
general to significantly different atom numbers. The underestimation common to
all these methods can be explained by the background rate. When it is increased,
the effect of underestimation is stronger. At very high background rates, the fitting
approach performs significantly worse compared with the other two methods.
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Figure 3.10: (a) Real-time estimation of the current number of trapped atoms
along the nanofiber using a simulated measurement.
(b) Real-time estimation of the number of initially trapped atoms
using the same dataset as for (a). Shown are the estimations based
on Bayesian inference, the fitting approach and the calculation with
equation 3.25. The likelihood curve corresponds to the atom numbers
of maximal likelihood in Bayesian inference. The x-axis shows the
iteration number in Bayesian inference.
The straight line in (b) at 1000 atoms and the curve labeled “Real”
in (a) give the actual number of trapped atoms. The vertical line in
(b) marks the optimal measurement time topt (cf. section 3.3.3).

15 10 5 0 5 10 15
Number of initially trapped atoms

0

5

10

15

20

N
um

be
r 

of
 o

cc
ur

re
nc

es

(a) Optimal pulse time

0 5 10 15 20 25 30
Number of initially trapped atoms

0
5

10
15
20
25
30
35
40
45

N
um

be
r 

of
 o

cc
ur

re
nc

es

(b) Bayesian Inference

54 52 50 48 46
Number of initially trapped atoms

0
20
40
60
80

100
120

N
um

be
r 

of
 o

cc
ur

re
nc

es

(c) Fitting approach

Figure 3.11: Results of using all three methods on datasets that contain only back-
ground counts but no signal counts.
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Figure 3.12: Results of using all three methods on datasets with 1000 atoms that
contain very high background counts.
(a) - (c) The background count rate is roughly 60% of the signal count
rate at the beginning.
(d) - (f) The background count rate is larger than the signal count
rate.

68



3.3.6 Dependence on Scattering Rate
In section 3.2.1, the two different heating regimes for low and high scattering rates
were introduced. Using equation 3.29, the variance of the measurement can be
estimated for both regimes. This is shown in figure 3.13. For the low-intensity
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Figure 3.13: Square-root of variance as calculated with equation 3.29 in depen-
dence of the scattering rate for 1000 atoms. fT is the lowest trap fre-
quency (87 kHz). The calculations are done using the optimal pulse
time for each scattering rate as described in section 3.3.3. The max-
imal scattering rate of 188

fT
in (b) corresponds to γ

2 , where γ is the
natural linewidth.

regime, the accuracy improves with increasing scattering rate. The reason for
this improvement is the decreasing optimal measurement time with increasing
scattering rate. This means that there are less background counts detected while
the amount of signal counts stays roughly the same. Thus, the signal-to-noise
ratio increases with the scattering rate, leading to more accurate results. In the
high-intensity regime, the standard variation is roughly constant and independent
of the scattering rate. As for the low-intensity regime, the optimal measuring time
decreases with increasing scattering rate but since the atoms are lost much faster,
there is only a fraction of the signal counts detected. The background counts have
almost no influence on the total number of counts, since the measurement times
are very short. Therefore, the low-intensity regime leads to better accuracy.

3.3.7 Effect of Cavity
In equation 3.29, an estimation of the variance was given. This depends on the
amount of background counts detected during the measurement. Figure 3.14 de-
picts the standard deviation for a reduction by a factor of 2. This could be achieved
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with a higher finesse of the cavity by using mirrors with higher reflectivity. It can
be seen that this reduction leads to better accuracy. Note that further reduction
does not change the accuracy significantly. The reason for this is that the second
term in equation 3.29 is already much smaller than the first for a reduction by half
and does not influence the variance by much any more. Furthermore, the cavity
does not only reduce the background counts, it also attenuates the power of the
signal6. This has two opposing effects. The suppression of the background counts
leads to an improvement of the accuracy while the lower detection efficiency of
signal photons leads to worse accuracy (cf. section 3.3.8). Additionally, the vari-
ance is proportional to the number of trapped atoms, while the background counts
are not influenced by this. Therefore, the higher the number of trapped atoms is,
the smaller is the effect of background counts on the variance. As shown in figure
3.14, this results in an improvement with cavity for atom numbers below about
1000 but for atom numbers above 1000, the results without cavity are better.
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Figure 3.14: Standard deviation (cf. equation 3.29) in dependence of atom number.
The graphs show the effects of a reduction of background counts by
a factor of 2 and the effect of the cavity.

3.3.8 Effect of Detection Efficiency
The detection efficiency for photons inside the nanofiber that propagate towards
the detector is about 5%. The effect of changing detection efficiency on the esti-
mated standard deviation for the counting of atoms is shown in figure 3.15. An

6As described in section 2.5, the overall transmission through the cavity setup is 44%.
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increase of the detection efficiency results in more signal photons being detected
and thus improves the signal-to-noise ratio and leads to more accurate measure-
ments. Currently, there is a 50:50 beamsplitter in front of the cavity (cf. section
3.1). Removing it, would almost halve the standard deviation for 30 trapped
atoms.
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Figure 3.15: Influence of detection efficiency on variance estimation. The vari-
ance is calculated with equation 3.29 for 30 trapped atoms. The
vertical lines correspond to the current detection efficiency (red) and
the achievable detection efficiency (green) when bypassing the 50:50
beamsplitter in front of the cavity (see figure 3.1). Detection efficiency
means the probability of detecting a photon that is in the nanofiber
and propagates towards the detector.

3.4 Conclusion
This chapter focussed on possible ways to count atoms trapped along a nanofiber.
Three methods were investigated and their performance evaluated with a Monte
Carlo simulation. All three yield similar results but the fitting approach described
in section 3.3.2 performs significantly worse than the other two for high rates of
background counts. Bayesian inference and the approach using an optimal probing
time are therefore more robust to such changes. With these methods, it would be
possible to determine the atom number with a standard deviation of 9 for about
30 trapped atoms when using the cavity of chapter 2.
Good results are obtained when measuring long enough so that most atoms
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are lost due to heating. Better accuracy and almost no atom loss during the
measurement could be achieved by cooling the atoms while measuring them or
even use the cooling lasers as probe beam to determine the atom number. In
such a measurement, the variance decreases with time7 as σ2 ∝ t−1. With this
approach, even single-atom accuracy would be possible.
The main factors that influence the accuracy are the transmission through the

cavity and and the suppression of background counts. While a further suppres-
sion of background does only yield limited improvement, an increase in the signal
transmission could lead to much better accuracy. As an example, a reduction in
variance of almost a factor of 4 for low atom numbers could be achieved by remov-
ing a 50:50 beam splitter, which is currently placed in the beam path and used for
other experiments.
The experimental schemes introduced in this chapter focussed on the scattering

of a probe beam on the atoms and detecting the scattered photons. Another
possible approach is taken in [52], where the accumulated phase-shift through
interaction with the atoms in the evancescent field is used to infer the number of
trapped atoms around a nanofiber. With this method, they achieve accuracies of
±8 for about 1000 trapped atoms based on Bayesian inference similar to how it is
used in section 3.3.4. Besides their different experimental approach, they start with
almost 3000 atoms and measure until about 2000 of these are lost to determine
the number of atoms that are still left. The methods discussed in this chapter,
however, focus on the inference of the number of initially trapped atoms. It is likely
that such an approach of not infering the initial number but the number after the
measurement would also result in much higher accuracies for the experimental
setup discussed in this report. This has not yet been investigated.

7This is only true in the approximation t� τ , where t is the measurement time and τ the trap
lifetime.
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4 Summary
In the course of this Master’s thesis, an FPI was set up that is actively stabilized to
a reference laser. The purpose of this cavity is to filter out background light from
the fiber, which is caused by Raman scattering and fluorescence. Additionally,
it strongly suppresses the control field in EIT experiments. Measurements show
that it reduces the fiber background by (98.5± 0.7)% and strongly attenuates the
control beam, resulting in a measured power of −42.7dB with respect to the power
of the fundamental mode. The suppression of the fiber background is found to be
independent of the FSR for the region of interest. Transmission through the whole
cavity setup, including the fiber-coupling on both ends, yields 44% transmission
of the probe field. With fluctuations of less than ±1%, the transmission through
the cavity is very stable, even during long-term measurements of multiple hours.
In chapter 3, the use of this cavity filter to count atoms in a nanofiber-based

trap has been investigated. While different experimental schemes are possible,
the results in this report are based on directing a probe laser towards the atoms
from outside the fiber and measuring the photons that are scattered into guided
modes. Three methods to infer the number of trapped atoms are discussed and
their results verified with data from a Monte-Carlo simulation. All these methods
underestimate the number of atoms, which is mainly due to the signal-to-noise
ratio. An increase of the background count rate, while keeping the detection rate
of scattered photons fixed, leads to further underestimation of the atom number.
Furthermore, these methods are destructive, meaning that during one measure-
ment process almost all atoms are lost due to heating. This can be countered by
cooling the atoms, which leads to a dependence of the variance on the measurement
time as σ2 ∝ t−1.
In general, the accuracy of the measured atom number improves strongly with

the detection efficiency. This is discussed in section 3.3.8. As an example, doubling
the current detection efficiency would reduce the variance almost by a factor of
4. Therefore, the use of the cavity leads to much better results for atom numbers
below about 1000 because the cavity strongly suppresses the fiber background.
For more than 1000 trapped atoms, the cavity does not improve the accuracy and
even worsens it for larger atom numbers (cf. figure 3.14). This is due to the
lower detection efficiency with the cavity in place1. Additionally, the variance is

1The overall transmission through the cavity is 44%.
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proportional to the number of trapped atoms while the background counts are not.
Thus, the relative influence of the background counts on the variance decreases
with increasing atom number. Best results would be achieved when cooling the
atoms during the measurement and possibly increasing the detection efficiency.
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