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Abstract

This work focuses on methods to extract physical quantities of the quantum impu-
rity problem, that is, among others, at the computational heart of dynamical mean
field theory (DMFT). DMFT is a many-body method, which is capable of describ-
ing the physics of strongly correlated electrons. One way to tackle the impurity
problem is by using Quantum Monte Carlo (QMC) impurity solvers. During the
last decade, continuous-time QMC solvers became state of the art algorithms to
complete this task. This work deals with the implementation of worm sampling
within the hybridization expansion (CT-Hyb). Worm sampling is long known in
the Monte Carlo community, but has only recently been adapted to QMC algo-
rithms.
In Chapter 1 we give an introduction to the Hubbard model and the mapping
onto the Anderson impurity model within the DMFT approximation. We then
turn our focus on the derivation of the hybridization expansion. This will serve as
a mathematical and physical basis for the discussion of the QMC implementation.
At the end of this chapter we introduce some properties of one- and two-particle
Green’s functions. These two functions include almost all physics encoded in the
impurity model.
In Chapter 2 we give an introduction to Monte Carlo integration. In the second
half, we apply the concepts of Monte Carlo integration to the hybridization ex-
pansion derived in Chapter 1, resulting in the QMC algorithm. Lastly, we discuss
the fermionic sign in CT-Hyb in more detail. As the sign problem is present in
one way or another in all QMC implementations, it is important to have a good
understanding on how and why it is occurring.
While Chapter 1 and 2 can be considered to be the foundation of this work, Chapter
3 builds upon these concepts to develop the theory of worm sampling in CT-Hyb.
We focus on how to measure the one- and two-particle Green’s function using this
sampling scheme. We motivate worm sampling by pointing out the differences in
the estimator with respect to sampling in partition function space. We expect
better results for cases, where the estimator of partition function sampling breaks
down. Further, worm sampling opens the possibility of sampling off-diagonal ele-
ments of the two-particle Green’s functions.
In the last chapter of this work we will present the results of measuring Green’s
function using worm sampling. We will benchmark our algorithm for metallic
systems and the Mott metal-insulator transition against measurements of the one-
particle Green’s function in partition function sampling. We further show how the
worm algorithm performs for a two-orbital model with Slater-Kanamori interac-
tions. Lastly, we present results of the two-particle Green’s function using worm
sampling and partition function sampling.
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Zusammenfassung

Diese Arbeit befasst sich mit Methoden um physikalische Größen für das Quanten-
störstellenproblem zu extrahieren, welches unter anderem die Grundlage der Dy-
namischen Molekularfeldnäherung (DMFT) bildet. DMFT ist eine Vielteilchen-
theorie, welche in der Lage ist, die Physik stark korrelierter Elektronen zu be-
schreiben. Eine Möglichkeit um das Quantenstörstellenproblem zu lösen, ist die
Benutzung von Quanten-Monte-Carlo (QMC)-Algorithmen. Innerhalb der letzten
Jahre wurden Zeitkontinuum-QMC-Algorithmen der Stand der Technik. Diese Ar-
beit behandelt die Implementierung des Wurmalgorithmus in die Hybridisierungs-
entwicklung (CT-Hyb). Wurmalgorithmen sind für unterschiedliche Monte-Carlo-
Varianten bekannt, wurden aber erst kürzlich für QMC-Algorithmen adaptiert.
In Kapitel 1 geben wir eine Einleitung in das Hubbard-Modell und dessen Abbild-
ung auf das Anderson-Störstellenmodell im Rahmen der DMFT. Danach befassen
wir uns mit der Ableitung der Hybridisierungsentwicklung. Diese wird als mathe-
matische und physikalische Basis für die Diskussion der QMC-Implementierung
dienen. Abschließend werden einige Eigenschaften der Ein- und Zwei-Teilchen
Greenschen Funktionen behandelt. Diese beiden Funktionen beinhalten beinahe
die gesamte Physik des Störstellenmodells.
In Kapitel 2 geben wir eine Einleitung in die Monte-Carlo-Integration. In der
zweiten Hälfte werden die Konzepte der Monte-Carlo-Integration auf die Hybrid-
isierungsentwicklung aus Kapitel 1 angewandt, woraus der QMC-Algorithmus folgt.
Abschließend behandeln wir das fermionische Vorzeichen in CT-Hyb genauer. Da
das Vorzeichenproblem in allen QMC-Algorithmen auf die ein oder andere Weise
vorhanden ist, ist es notwendig, ein gutes Verständnis über dessen Aufbau und
Ursache zu bekommen.
Während Kaptiel 1 und 2 als Grundlage dieser Arbeit gesehen werden können,
baut Kapitel 3 auf diese Konzepte auf, um die Theorie des Wurmalgorithmus zu
entwickeln. Wir beschränken uns auf die Messung der Ein- und der Zwei-Teilchen
Greenschen Funktionen. Wir motivieren den Wurmalgorithmus im Hinblick auf
die Unterschiede der Schätzfunktion zu der Messung im Zustandssummenraum.
Wir erwarten bessere Ergebnisse für Fälle, in denen die Schätzfunktion des Zu-
standssummenraumes ungültig wird. Außerdem erlaubt der Wurmalgorithmus
Außerdiagonalelemente der Zwei-Teilchen Greenschen Funktion zu messen.
In dem letzten Kapitel liefern wir die Ergebnisse der Messung mittels Wurmalgo-
rithmus. Wir vergleichen den Algorithmus für metallische Systeme und den Mott-
Metall-Isolator-Übergang mit Messungen der Ein-Teilchen Greenschen Funktion
im Zustandssummenraum. Außerdem zeigen wir Ergebnisse des Zwei-Orbital-
Modells für Slater-Kanamori-Wechselwirkungen. Letztlich präsentieren wir die
Ergebnisse der Zwei-Teilchen Greenschen Funktion mittels Wurmalgorithmus und
der Messung im Zustandssummenraum.
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1 Introduction

A physical theory is credible if it is capable of describing experimental results prop-
erly and does not contradict other theories or fundamental laws. It is common that
two or more theories exist to describe phenomena on different scales. If this is the
case, it is important to patch these theories together within their intermediate re-
gions. A typical example is the coexistence of quantum theory and classical theory,
both giving reliable results within different length and energy scales and the corre-
spondence principle patching them together. While in the early days of physics we
favored exact theories, which were in a sense ”analytic”, we have reached a point
where such analytic theories are just too limited to describe the rich and detailed
physics, which may well be uncovered by approximate and numerical methods.
In a very famous quote this problem is addressed in the following way [1]: ”In
eighteenth-century Newtonian mechanics, the three-body problem was insoluble.
With the birth of general relativity around 1910 and quantum electrodynamics
in 1930, the two- and one-body problems became insoluble. And within modern
quantum field theory, the problem of zero bodies (vacuum) is insoluble. So, if we
are out after exact solutions, no bodies at all is already too many!” On the other
hand, it is also well known that we can get very reasonable results of many-body
systems using statistical physics. Some problems become numerically exact in the
thermodynamic limit of an infinite amount of particles N →∞.
In solid state physics the quantum mechanical many-body problem is encountered
when considering the large amount of electrons within the lattice of an element.
Solving the electronic wave function for periodic lattices (i.e. periodic potentials)
without any electron-electron interaction is trivial and is described by Bloch states.
Many interesting phenomena, however, are only present due to electron-electron
interactions. First attempts to solve quantum many-body problems for arbitrary
potentials were made using the Hartree-Fock approximation. The Hartree-Fock
approximation describes electron-electron interaction using a single Slater determi-
nant which obeys the Pauli principle (exchange interaction). It does, however, not
include Coulomb repulsion between electrons (correlation). A next step into solv-
ing the many-body problem was taken with density functional theory (DFT) [2].
DFT does not solve a quantum mechanical wave function with 3N coordinates (3
spatial coordinates times the number of particles N) but simply a wave function
with 3 coordinates, namely the density of the system. DFT includes exchange and
correlation. In order to approximate these two interactions, typically the local
density approximation (LDA) is employed [3]. LDA is an approximation, as it
assumes that the exchange and correlation DFT functional only depends on the
local density. This assumption is true for a uniform electron gas, which has a
constant electron density. While LDA works surprisingly well for most materi-
als, it fails for strongly correlated materials (materials with partially filled d- or
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f-orbitals). A step in describing strongly correlated materials was taken with the
dynamical mean field theory (DMFT) [4]. DMFT solves the many-body problem
in a self-consistency loop. As opposed to DFT, it is a true many-body theory that
requires numerically expensive techniques in order to be solved. This work focuses
on aspects of solving the many-body problem in dynamical mean field theory.

1.1 Hubbard Model

We are able to describe many-body physics very elegantly in second quantization.
A first step in finding solutions to the many-body problems is constructing a
suitable model Hamiltonian. The Hubbard model [5] is a many-body problem
on a lattice, making it a good approximation for strongly correlated materials.
As opposed to the tight-binding model, the Hubbard model includes an on-site
Coulomb repulsion term. One of the major successes of the Hubbard model is its
ability to determine the Mott-Hubbard metal insulator transition (MIT) [6]. The
Hubbard Hamiltonian follows as:

HHubbard = U
∑
i

d†i↑di↑︸ ︷︷ ︸
ni↑

d†i↓di↓︸ ︷︷ ︸
ni↓

−t
∑
〈ij〉,σ

(
d†iσdjσ + d†jσdiσ

)
. (1.1)

The index i runs over all lattice sites and the index-pair 〈ij〉 runs over all nearest
lattice neighbors, σ ∈ {↑, ↓} is the spin index, d and d† denote creation and annihi-
lation operators. The first part of the Hamiltonian leads to electronic correlation
(i.e. the Coulomb repulsion U) due to double occupation on a single site. When
acting on any state, an annihilation operator followed by a creation operator d†iσdiσ
gives the occupation at this site i with spin σ. This is usually abbreviated by the
density operator niσ. The second part of the Hamiltonian describes the hopping
of an electron from one site i to a neighboring site j or vice versa, with a hopping
amplitude −t. Sometimes we refer to this part as the kinetic energy term. We
have presented the one-band Hubbard Hamiltonian without frustration here, that
is we only consider nearest neighbors. An illustration of the Hubbard model is
given in Figure 1.
We will discuss some generalizations later. It turns out that even the one-band
Hubbard model is in principle impossible to solve in a straight-forward way, when
i ranges over a large number of lattice sites. We point out that the Hubbard
Hamiltonian is a model Hamiltonian, which we consider instead of a full ab initio
many-body Hamiltonian for a given material.
In DMFT we map the many-body problem of the Hubbard model onto a single
site Anderson impurity model. This mapping is exact for a lattice with infinite
coordination number (i.e. an infinite number of nearest neighbors). As a result of
integrating out the spatial properties of the lattice during the mapping procedure,
all correlations become local [7].
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Figure 1: Illustration of the Hubbard model for a square lattice with hopping −t
and Coulomb repulsion U . Blue dots represent spin-up electrons and red dots
spin-down electrons.

Lattice Green's Function (Local Part)

Non interacting Bath 

Green's Function

Impurity Green's Function

Self-Energy

Fourier TransformFourier Transform

Figure 2: Illustration of the DMFT loop for the one-band case. We extract the
hybridization function ∆ (see Section 1.3.4) from the non-interacting bath Green’s
function and use it as an input to the impurity problem. From the impurity Green’s
function we can then extract the self-energy and calculate a new lattice Green’s
function. All of these steps make use of the Dyson equation in one way or another.
Intermediate steps include Fourier transforms of the hybridization function and
the impurity Green’s function from Matsubara frequencies to imaginary time and
vice versa.
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We have illustrated the DMFT loop in Figure 2. The DMFT mapping takes place
on the one-particle level, thus making use of the one-particle many-body Green’s
function G(1). The Green’s function G(1) is defined for the lattice problem and
for the impurity problem. The impurity problem inherits the characteristics of
the lattice problem through the hybridization function ∆(iwn), where iwn are
discrete Matsubara frequencies. Solving the impurity problem requires setting up
an impurity Hamiltonian, which we will show in the following. In this work we will
not consider the entire DMFT cycle, but rather concentrate on the solution of the
Anderson impurity model, which is an independent problem in its own right. We
can think of the DMFT mapping of the Hubbard model onto an impurity problem
in the following way: for an infinite amount of neighbors all spatial correlations
are lost. We are allowed to pick any lattice site as our impurity and view all
surrounding sites as the bath in which the impurity is immersed.
It turns out that DMFT gives good approximations for the three dimensional Hub-
bard model, however it fails in describing the predominantly non-local correlations
of e.g. the two dimensional Hubbard model, which makes extensions to DMFT
necessary. One way to include non-local correlations on a finite length scale is
to solve impurity clusters using the dynamical cluster approximation DCA [8, 9].
Diagrammatic extensions, on the other hand, describe non-local correlations on
all length scales. Promising methods include the dynamical vertex approximation
DΓA [10], the dual fermion approach DF [11] and the one-particle irreducible ap-
proximation 1PI [12]. All these diagrammatic extensions require the calculation of
two-particle quantities for the Anderson impurity model, which will also be part
of this work.

1.2 Anderson Impurity Model

For extracting such two-particle quantities and other observables one needs a quan-
tum impurity solver, which solves the Anderson impurity model. This model de-
scribes the interaction of a single impurity with a bath of non-interacting fermions
[13].

1.2.1 Single-Orbital Model

In second quantization the single-orbital, single-site Anderson impurity Hamilto-
nian is given by:

HAIM = U d†↑d↑︸︷︷︸
n↑

d†↓d↓︸︷︷︸
n↓︸ ︷︷ ︸

HI
loc

−µ(d†↑d↑︸︷︷︸
n↑

+ d†↓d↓︸︷︷︸
n↓

)

︸ ︷︷ ︸
H0
loc

+
∑
~k,σ

ε~kσc
†
~kσ
c~kσ︸ ︷︷ ︸

Hbath

+
∑
~k,σ

V~kσc
†
~kσ
dσ

︸ ︷︷ ︸
H̃hyb

+
∑
~k,σ

V ∗~kσd
†
σc~kσ︸ ︷︷ ︸

H̃†hyb

,

(1.2)
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Figure 3: Illustration of the Anderson Impurity model with Coulomb repulsion and
bath hybridization. Blue dots represent spin-up electrons and red dots spin-down
electrons. The non-interactive bath consists of continuously spread bath levels
indexed by an energy k. The impurity is visualized as spin-up and spin-down
orbital.

where we refer to the impurity annihilation and creation operators with d and d†

and to the bath annihilation and creation operators with c and c†. We will use
this notation consistently throughout this work (one may think of ’d’ being an
abbreviation of ”dot” as a synonym for impurity and ’c’ being an abbreviation for
”container” as a synonym for bath).
We separate the Anderson Hamiltonian into a part describing the impurity Hloc =
H0
loc + HI

loc, a part describing the non-interacting bath Hbath and a part de-
scribing the interaction between bath and impurity called the hybridization term
Hhyb = H̃hyb + H̃†hyb.

Impurity Interaction Term HI
loc

HI
loc represents the interaction of electrons inside the impurity with one another.

In the single-orbital case we only allow for density-density type interactions with
a Coulomb repulsion of U :

HI
loc,DD =

1

2

∑
σ 6=σ′

Unσnσ′ . (1.3)

Later we will see a more general form of the interaction matrix Uαβγδ, where Greek
indices denote orbitals. Simplifications of the full U matrix include density-density
type interactions for arbitrary orbitals (see equation (1.6)) and Slater-Kanamori
type interactions (see equation (1.8)).
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Chemical Potential Term H0
loc

H0
loc represents the chemical potential contribution µ of each flavor. When talking

about the ”flavor” of a particle, we really mean the combined spin-orbital quantum
number. We have introduced a negative sign to reproduce the analogy to the grand
canonical partition function Z = e−β(H−µN), where β is the inverse temperature
and N the number of particles in the system.

Bath Term HI
loc

In this work we will solve the Anderson impurity model under the assumption
of a non-interacting bath, parameterized by eigenstates ~k and eigenenergies ε~k.
Dealing with a non-interacting bath makes ε~k diagonal in flavor. We note that

the operators c~k, c
†
~k

operate in k-space and the impurity operators dσ, d
†
σ operate

in real space.

Hybridization Terms H̃hyb, H̃
†
hyb

The hybridization terms H̃hyb, H̃
†
hyb couple the impurity to the bath. Sometimes

we combine these two terms to Hhyb = H̃†hyb + H̃hyb. The term H̃†hyb describes an

electron taken from the bath being inserted into the impurity. H̃hyb describes an
electron taken from the impurity being inserted back into the bath.

1.2.2 Generalizations

We have hitherto described the Hubbard Hamiltonian (1.1) and the Anderson Im-
purity Hamiltonian (1.2) for the single-orbital case for simplicity. In the following
we will give the generalizations to an arbitrary number of bands. The Hubbard
Hamiltonian generalizes to:

HHubbard =
1

2

∑
i

∑
αβγδ

∑
σσ′

Uαβγδd
†
iασd

†
iβσ′diδσ′diγσ

− 1

2

∑
〈ij〉

∑
αβ

∑
σ

tαβ

(
d†iασdjβσ + d†jβσdiασ

)
, (1.4)

where we use Greek indices α, β, γ, δ as band indices. We have generalized the
Coulomb interaction to Uαβγδ and the hopping to −tαβ. The Anderson impurity
model for a non-interacting bath generalizes to:
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HAIM =
1

2

∑
αβγδ

∑
σσ′

Uαβγδd
†
ασd

†
βσ′dδσ′dγσ +

1

2

∑
αβ

∑
σ

εαβd
†
ασdβσ +

∑
~k,α,σ

ε~kαc
†
~kασ

c~kασ

+
∑
~k,α,σ

V~kασc
†
~kασ

dασ +
∑
~k,α,σ

V ∗~kασd
†
ασc~kασ. (1.5)

For the most general form of the density-density interaction only orbital-diagonal
elements Uαγ := Uαβγδδαβδγδ yield a value different from 0. We usually also add
additional spin-dependency to this term, such that Uαβ → Uασ,βσ′ . Then the
generalization to the density-density interaction for an arbitrary number of orbitals
is given by:

HI
loc,DD =

1

2

∑
αβ,σσ′

Uασ,βσ′nασnβσ′ , (1.6)

where we require Uασ,βσ′ = Uβσ′,ασ and Uασ,ασ = 0. We can simplify (1.6) by
introducing a intra-orbital Hubbard U , a inter-orbital Hubbard U ′ and a Hund’s
coupling J , such that:

HI
loc,DD =

∑
α

Unα↑nα↓︸ ︷︷ ︸
intra-orbital

+
∑
α>β

∑
σ

(U ′nασnβ,−σ + (U ′ − J)nασnβσ)︸ ︷︷ ︸
inter-orbital

. (1.7)

Apart from generalizations to density-density interactions for the multi-orbital
Anderson impurity Hamiltonian, we can model spin-flip and pair-hopping terms
of Hund’s coupling [14]. Here we only consider a orbital-diagonal hybridization.
For the Slater-Kanamori interaction HI

loc has the form (see e.g. References [15,16]):

HI
loc,SK =

∑
α

Unα↑nα↓︸ ︷︷ ︸
intra-orbital

+
∑
α>β

∑
σ

(U ′nασnβ,−σ + (U ′ − J)nασnβσ)︸ ︷︷ ︸
inter-orbital

−
∑
α 6=β

J

d†α↓d†β↑dβ↓dα↑︸ ︷︷ ︸
spin-flip

+ d†β↑d
†
β↓dα↑dα↓︸ ︷︷ ︸

pair-hopping

 . (1.8)

The algorithms developed in this work will be tested against Slater-Kanamori type
interactions for the multi-orbital case. At this point we also note that, in principle,
it is possible to connect several impurities to one another and solve the impurity
problem for this cluster of impurities in the dynamical cluster approximation DCA
[8, 9] or in Cluster DMFT [17, 18]. In this work, however, we will only focus on
single-site impurities.

12



We will only consider quantum Monte Carlo impurity solvers to find solutions to
the single-site Anderson impurity model. Other popular methods include pertur-
bation theory, such as the iterated perturbation theory [19] or the non-crossing
approximation [20] and bath discretization methods, such as exact diagonaliza-
tion, matrix product states [21], numerical renormalization group [22] or density
matrix renormalization group [23]! These methods require approximations to be
made at one point or another, making them perform very good for a specific class
of parameters, while performing poorly in other situations. Quantum Monte Carlo
methods, on the other hand, are numerically exact (if we just allow for long enough
simulation times) and can be used for a much broader range of parameters. In
the following we will derive the physical and mathematical framework of quantum
Monte Carlo solvers.

1.3 Hybridization Expansion

1.3.1 Thermal Expectation Value

In order to extract information from the Anderson impurity Hamiltonian (1.2), we
have to calculate quantum mechanical expectation values. Expectation values of
observables in thermal quantum field theory are given by:

〈O(τ)〉 =
1

Z
Tr
(
Tτe

−βHO(τ)
)

=
Tr
(
Tτe

−βHO(τ)
)

Tr (Tτe−βH)
, (1.9)

where Z is the partition function and Tτ is the time ordering operator in imaginary
time. In the Heisenberg picture operators evolve with O(τ) = eτHOe−τH .
Equation (1.9) motivates the use of the imaginary time τ = −it. Formally this
relates to a Wick rotation from the real time axis to the imaginary time axis. We
notice that imaginary time allows us to treat time τ and inverse temperature β on
an equal footing, as the exponents eτH and eβH now cover the same domain. We
will later show how quantities in imaginary times τ can be Fourier transformed to
Matsubara frequencies iω. In order to extract information on the real frequency
axis, we then need to perform an analytic continuation of our data from the imag-
inary to the real axis. This is usually one of the major drawbacks of quantum
Monte Carlo algorithms, as we will see in the following. When looking at the rela-
tionship between the Green’s function G(1)(τ) in imaginary time and the spectral
function A(ω) in real frequencies, we find:

G(1)(τ) =

∫ ∞
−∞

dω
e−τω

1 + e−βω
A(ω). (1.10)

Quantum Monte Carlo algorithms have high-frequency noise usually hiding the
proper asymptotics of G(1)(iω) for iω → ∞. As a consequence of this noise and
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Figure 4: Relationship between real time t, imaginary time τ , discrete Matsubara
frequencies iωn and real frequencies ω. Quantum Monte Carlo impurity solvers
operate in the region of the diagram shaded in grey. The maximum entropy method
allows for transformations G(τ) → A(w) and G(iω) → A(w) depending on what
kernel we choose.

the smallness of the integration kernel for large ω, in equation (1.10), finding one
unique A(ω) to the supplied G(1)(τ) is an ill-posed problem. The statistical method
of choice to find the most likely A(ω) is the maximum entropy method [24].
An illustration of the transformations of real time, imaginary time, Matsubara
frequencies and real frequencies as they are encountered in quantum Monte Carlo
impurity solvers is given in Figure 4. As a side note we would like to point out
that also real-time quantum Monte Carlo solvers exist for solving non-equilibrium
problems [25]. However, these solvers still require analytic continuation as they
operate on a Keldysh contour.

1.3.2 Partition Function Expansion

In the following we will expand the partition function Z in the interaction picture,
where H = H0 +HI . Operators O then evolve with the unperturbated part H0:

O(τ) = eτH0Oe−τH0 . (1.11)

The partition function Z is given by:

Z = Tr
[
Tτe

−βH] = Tr
[
Tτe

−βH0e−βHI
]
. (1.12)

In quantum mechanics we define the time evolution operator U(τ1, τ2), which
obeys:

ψ(τ1) = U(τ1, τ2)ψ(τ2). (1.13)

Inserting this equation into the time-dependent Schrödinger equation results in

14



U(τ1, τ2) = e−(τ1−τ2)H . We can rewrite this expression with (1.11) in the interaction
picture:

UI(τ1, τ2) ≡ eτ1H0U(τ1, τ2)e−τ2H0 = eτ1H0e−(τ1−τ2)He−τ2H0 (1.14)

UI(τ) ≡ UI(τ, 0) = eτH0e−τH . (1.15)

We can now calculate the time derivative of the time evolution operator in the
interaction picture:

∂UI(τ)

∂τ
=

∂

∂τ

(
eτH0e−τH

)
= eτH0 (H0 −H)︸ ︷︷ ︸

−HI

e−τH = − eτH0HIe
−τH0︸ ︷︷ ︸

HI(τ)

eτH0e−τH = −HI(τ)UI(τ). (1.16)

The above is nothing but the Schrödinger equation for the time evolution operator
UI(τ). Integration gives the Dyson series:

UI(τ) = 1 +
∞∑
n=1

(−1)n

n!

∫ τ

0

dτn . . .

∫ τ

0

dτ1 Tτ HI(τn) . . . HI(τ1) = Tτe
−
∫ τ
0 dτ ′HI(τ ′).

(1.17)
We do not include n = 0 into the summation, as we want to stress the fact that we
use UI(0) = 1 as the boundary condition for the differential equation (1.16). We
use time ordering Tτ in order to account for non-commutativity of HI(τi), HI(τj)
at different times. The time ordering operator sorts operators such that earlier
times are to the right of later times. The difference between equation (1.15) and
(1.17) is that the latter is a series up to infinite expansion order, which we can
calculate numerically by introducing a manual or automatic cut-off condition. We
also point out the close resemblance of (1.17) to the path integral formulation.
In fact some algorithms of continuous-time quantum Monte Carlo (CT-QMC) are
usually formulated in terms of path integrals.
We can now use (1.17) to rewrite the partition function (1.12) as:

Z = Tr
[
Tτe

−βH0e−βHI
]

= Tr
[
e−βH0

]
+
∞∑
n=1

(−1)n

n!

∫ β

0

dτn . . .

∫ β

0

dτ1 Tτ Tr
[
e−βH0HI(τn) . . . HI(τ1)

]
.

(1.18)

1.3.3 Partition Function of the Anderson Impurity Model

Up to this point, the above derivation is a very general one valid for a large class
of Hamiltonians H. The only requirement we imposed is, that it is necessary to
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write H in the interaction picture H = H0 + HI . In this section we will discuss
the partition function expansion with H = HAIM . Two popular choices for H0

and HI are summarized in the following table:

Interaction Expansion Hybridization Expansion

H0 Hbath +Hhyb +H0
loc Hbath +H0

loc +HI
loc

HI HI
loc Hhyb

Both the hybridization expansion and the interaction expansion have different ad-
vantages and disadvantages, especially with regards to the scaling with Uijkl in
equation (1.5). In the CT-QMC community we refer to these expansions as CT-
Hyb and CT-Int. Further techniques, such as CT-Aux, CT-J or CT-Bold exist,
but will not be discussed in this work. A very detailed summary of all methods
is given in Reference [26]. Instead we will focus here only on the hybridization
expansion CT-Hyb. Its major advantage is that it allows for any type of inter-
action Uijkl as HI = Hhyb does not depend on the interaction. We however note
that since HI(τ) = eτH0HIe

−τH0 , the time evolution of Hhyb does depend on the
dimension of Hloc, resulting in an exponential scaling with the number of orbitals
or impurity sites. The choice HI = Hhyb has been proposed in Reference [27] and
the derivations in this work follow References [26,27].
The partition function (1.18) for HI = Hhyb is given by:

Z = Tr
[
e−βHloc+Hbath

]
+

∞∑
n=1

(−1)n

n!

∫ β

0

dτn . . .

∫ β

0

dτ1 Tτ Tr
[
e−β(Hloc+Hbath)Hhyb(τn) . . . Hhyb(τ1)

]
, (1.19)

where Hloc = H0
loc +HI

loc. We recall that in quantum mechanics a trace relates to
a sandwich of operators with, in our case, many-body basis states such as:

Tr(O) =
∑
n

〈n| O |n〉 . (1.20)

This means that our operatorO is not allowed to change all basis states |n〉 at once,
otherwise the trace will evaluate to 0. We know that the particle number needs
to be conserved. In combination with the time ordering τn > τn−1 > . . . > τ1 only
even multiples ofHhyb(τ) can enter the partition function expansion. When looking
at the combinatoric factor of the series, the denominator changes from n! to 2n! and
the alternating sign vanishes. We now substitute Hhyb(τ) = H̃hyb(τ) + H̃†hyb(τ). In
other words, the perturbation in our partition function can stem from an electron
being transferred from the bath to the impurity due to H̃†hyb or it can stem from
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an electron being transferred from the impurity to the bath due to H̃hyb. When
ignoring the time-dependence of the operators, this results in product of the form:

(Hhyb)
n =

(
H̃hyb + H̃†hyb

)n
=

n∑
j=0

(
n

j

)(
H̃hyb

)n−j (
H̃†hyb

)j
. (1.21)

From this product only terms will add a non-zero contribution to the trace, where
the amount of H̃hyb operators and H̃†hyb operators are balanced, i.e. where n−j = j.
In this case, the binomial coefficient in equation (1.21) is usually referred to as the
central binomial coefficient: (

2n

n

)
=

(2n)!

(n!)2
. (1.22)

We can rewrite the partition function (1.19) with k = 2n:

Z = Tr
[
e−βHloc+Hbath

]
+
∑
k∈2N

1

(k/2)!(k/2)!

∫ β

0

dτk

∫ β

0

dτk−1 . . .

∫ β

0

dτ2

∫ β

0

dτ1×

Tτ Tr
[
e−β(Hloc+Hbath)H̃hyb(τk)H̃

†
hyb(τk−1) . . . H̃hyb(τ2)H̃†hyb(τ1)

]
. (1.23)

Now k relates to the total number of H̃hyb and H̃†hyb operators in the trace and
k/2 relates to the expansion order of the partition function. In the following we
will restrict our discussion to the single-orbital Anderson impurity Hamiltonian
of equation (1.2). Using H̃hyb =

∑
~kσ V~kσc

†
~kσ
dσ and H̃†hyb =

∑
~kσ V

∗
~kσ
d†σc~kσ we now

insert creation and annihilation operators for the bath and the impurity explicitly:

Z = Tr
[
e−βHloc+Hbath

]
+
∑
k∈2N

1

(k/2)!(k/2)!

∫ β

0

dτk

∫ β

0

dτk−1 . . .

∫ β

0

dτ2

∫ β

0

dτ1∑
~kkσk

. . .
∑
~k1σ1

V~kkσkV
∗
~kk−1σk−1

. . . V~k2σ2V
∗
~k1σ1

Tτ Tr
[
e−β(Hloc+Hbath)

c†~kkσk
(τk)dσk(τk)d

†
σk−1

(τk−1)c~kk−1σk−1
(τk−1) . . . c†~k2σ2

(τ2)dσ2(τ2)d†σ1(τ1)c~k1σ1(τ1)
]
.

(1.24)

The time evolution of the bath and impurity creation and annihilation operators in
the interaction picture follows equation (1.11), where the operator in the exponent
is H0 = Hloc + Hbath. As the time evolution does not include the hybridization,
the bath and the impurity are no longer coupled and we can split the trace:
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Z = Tr
[
e−βHloc+Hbath

]
+
∑
k∈2N

1

(k/2)!(k/2)!

∫ β

0

dτk

∫ β

0

dτk−1 . . .

∫ β

0

dτ2

∫ β

0

dτ1×∑
~kkσk

. . .
∑
~k1σ1

V~kkσkV
∗
~kk−1σk−1

. . . V~k2σ2V
∗
~k1σ1
×

Trd

[
Tτe

−βHlocdσk(τk)d
†
σk−1

(τk−1) . . . dσ2(τ2)d†σ1(τ1)
]

︸ ︷︷ ︸
local trace

×

Trc

[
Tτe

−βHbathc†~kkσk
(τk)c~kk−1σk−1

(τk−1) . . . c†~k2σ2
(τ2)c~k1σ1(τ1)

]
︸ ︷︷ ︸

bath trace

. (1.25)

We will find that the local trace Td(. . .) is difficult to calculate and requires numer-
ical solving techniques such as QMC, while the bath trace Tc(. . .) can be rewritten
into a matrix determinant, which is relatively simple to solve.

1.3.4 Bath Trace and Hybridization Matrix

In the following we will show how the bath trace can be rewritten. We include
the hybridization amplitudes V, V ∗ into the bath trace. When combining the bath
trace and the hybridization amplitudes to one expression, we are left with the
hybridization matrix. First we will introduce the bath partition function:

Zbath = Tr
[
Tτe

−βHbath
]
, (1.26)

with Hbath =
∑

~kσ ε~kn~kσ. When assuming a non-interacting bath, the calculation

of the bath partition function is straight-forward, since each bath state |~kσ〉 is
simply empty or singly occupied (n~kσ = 0, 1):

Zbath = Tr
[
Tτe

−βHbath
]

=
∏
~kσ

(
〈~kσ| e−βεk·0 |~kσ〉+ 〈~kσ| e−βε~k·1 |~kσ〉

)
=
∏
~kσ

(
1 + e−βε~k

)
. (1.27)

We will now take a close look at the combined factor of hybridization amplitudes
Vkσ and the bath trace in equation (1.25). We modify this factor with the bath
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partition function Zbath:

1

Zbath

∑
~kkσk

. . .
∑
~k1σ1

V~kkσkV
∗
~kk−1σk−1

. . . V~k2σ2V
∗
~k1σ1
×

Trc

[
Tτe

−βHbathc†~kkσk
(τk)c~kk−1σk−1

(τk−1) . . . c†~k2σ2
(τ2)c~k1σ1(τ1)

]
. (1.28)

It is instructive to take a close look what an operator pair c†~kiσi
(τi), c~kjσj(τj) does

inside the bath trace. The value Trc

[
Tτe

−βHbathc†~kiσi
(τi)ckjσj(τj)

]
is only non-zero

if the quantum numbers are obeyed, i.e. ~ki = ~kj and σi = σj for some i, j, because

the bath is diagonal in its eigenstates ~k and spin σ. Due to the Pauli principle we
can assume that every bath level and spin is only occupied by zero or one electron
for the interval τ = [0, β], where τ = τi − τj:

Trc

[
Tτe

−βHbathc†~kσ(τi)c~kσ(τj)
]

=

{
−e−ε~kτ , 0 < τ < β
e−ε~k(τ+β), −β < τ < 0

(1.29)

We now introduce the anti-periodic hybridization function ∆σiσj with:

∆σiσj(τ) =
∑
~k

V ∗~kσi
V~kσj

1 + e−βε~k
×
{
−e−ε~kτ , 0 < τ < β
e−ε~k(τ+β), −β < τ < 0

(1.30)

We point out that Vkσi and V ∗kσj do not factorize to Vk and V ∗k , as we still allow

off-diagonal terms for the spin σ in the local trace. We find that equation (1.28)
can be written as a product of hybridization functions ∆σiσj(τi − τj). In order
to include the permutation sign due to the time ordering operator Tτ properly,
we write the product of hybridization functions as a determinant rather than a
permanent, such that:

1

Zbath

∑
~kk,σk

. . .
∑
~k1σ1

V~kkV
∗
~kk−1σk−1

. . . V~k2σ2V
∗
~k1σ1
×

Trc

[
Tτe

−βHbathc†~kkσk
(τk)c~kk−1σk−1

(τk−1) . . . c†~k2σ2
(τ2)c~k1σ1(τ1)

]
= det ∆. (1.31)

The hybridization function connects annihilation operators to creation operators
of the bath and the impurity. The matrix ∆ is defined with elements ∆σiσj(τi−τj)
using equation (1.30). The partition function in the hybridization expansion can
now be written as:
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Z = Tr
[
e−βHloc+Hbath

]
+

Zbath
∑
k∈2N

∫ β

τk−1

dτk

∫ β

τk−2

dτk−1 . . .

∫ β

τ1

dτ2

∫ β

0

dτ1

∑
σk

. . .
∑
σ1

×

Trd

[
e−βHlocdσk(τk)d

†
σk−1

(τk−1) . . . dσ2(τ2)d†σ1(τ1)
]
× det ∆. (1.32)

In this expression, we have explicitly enforced the time-ordering with τk > τk−1 >
. . . > τ2 > τ1. This way the integration bounds are adapted and we lose the
factor 1

(k/2)!(k/2)!
because there are (k/2)! ways to arrange the creation operators

and (k/2)! ways to arrange the annihilation operators. This is the starting point
for efficient algorithms using quantum Monte Carlo (QMC) techniques. Here we
have assumed the single-orbital case. The generalization to the multi-orbital case
is straight-forward and gives us a hybridization function of the type ∆αiαj(τi −
τj), where the α are generalized spin-orbital indices. Further, the above formula
becomes much easier if we assume an orbital-diagonal hybridization function, i.e.
∆αiαi(τi− τj), where we only insert operator pairs of the same flavor into the local
trace. This way our hybridization matrix ∆ has a block diagonal form and the
determinant of ∆ breaks down into a product of determinants of the sub-blocks
for each orbital.

1.4 Green’s Functions

Up to this point we have treated the expansion of the partition function, bringing it
into a form, which can be calculated numerically using equation (1.32). We recall
that we defined the thermal expectation value in equation (1.9). In principle it
would be necessary to derive the hybridization expansion (or any other expansion)
not only for the partition function, but for the expectation value of any local
operator we want to calculate. However, the trace of a local operator and the
trace of the partition function have the same structure. For the partition function
the local trace in the hybridization expansion is given by:

Trd[Z] = Trd

[
Tτe

−βHlocdαk(τk)d
†
αk−1

(τk−1) . . . dα2(τ2)d†α1
(τ1)
]
. (1.33)

The local trace for an operator in the hybridization expansion is instead given by:

Trd[O(τ1, . . . τi, . . .)] =

Trd

[
Tτe

−βHlocdαk(τk)d
†
αk−1

(τk−1) . . . dα2(τ2)d†α1
(τ1)O(τ1, . . . τi, . . .)

]
. (1.34)
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We observe a great similarity between equations (1.33) and (1.34). The local
creation and annihilation operators d†, d are a result of treating the factor e−βHhyb

perturbatively. As suggested in equation (1.34) it is very tempting to just insert
any local operator O(τ1, . . . τi, . . .) into the local trace and calculate it to find the
expectation value up to a normalization factor. Following this route is actually
the main topic of this work, where the corresponding algorithm of the QMC solver
is referred to as worm sampling. But let us take a step back and discuss the
operator O(τ1, . . . τi, . . .) more carefully. A very specific case might be that we
choose O(τi, τj) = d(τi)d

†(τj). The advantage of calculating the expectation value
of this operator, is that operator pairs d(τi)d

†(τj) already exist in the local trace
of the partition function, only with a hybridization line connected. We would just
need to cut these lines and then immediately arrive at a result for 〈O(τi, τj)〉 =
〈d(τi)d

†(τj)〉 (again up to a normalization factor). In the same fashion it would
also be possible to calculate the expectation value of an operator of the type
O(τ1, τ

′
1, . . . , τn, τ

′
n) = d(τ1)d†(τ ′1) . . . d(τn)d†(τ ′n), where creation and annihilation

operators appear pairwise. Taking the expectation value of this operator is nothing
but the n-particle Green’s function:

G(n)
α1α1′ ...αnαn′

(τ1, τ1′ . . . τn, τn′) = (−1)n〈Tτdα1(τ1)d†α1′
(τ ′1) . . . dαn(τn)d†αn′ (τn′)〉.

(1.35)
The similarities between Green’s functions and the partition function make it very
intuitive to calculate expectation values in the hybridization expansion by cutting
hybridization lines [26, 27]. As already indicated in this work we will take the
alternative approach of explicitly inserting the operators into the trace. We will
motivate this approach in Chapter 3.

1.4.1 Properties of Green’s Functions

In the following we will give a short summary of some properties of Green’s func-
tions. While these properties are in general true for any Green’s function G(n),
we will reduce our discussion to the one-particle Green’s function G

(1)
α1α2 and the

two-particle Green’s function G
(2)
α1α2α3α4 , as these two functions are of central im-

portance to this work.

Time Translation and Time Interval
If the Hamiltonian H is time independent, then the Green’s function becomes
translational invariant in its imaginary time argument [28]. This allows us to set
the time origin of the Green’s function. One choice may be to shift all operators
by τ4, such that:
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G(2)
α1α2α3α4

(τ1, τ2, τ3, τ4) = 〈Tτdα1(τ1)d†α2
(τ2)dα3(τ3)d†α4

(τ4)〉 (1.36)

= 〈Tτdα1(τ1 − τ4)d†α2
(τ2 − τ4)dα3(τ3 − τ4)d†α4

(τ4 − τ4)〉
(1.37)

= 〈Tτdα1(τ
′
1)d†α2

(τ ′2)dα3(τ
′
3)d†α4

(0)〉 (1.38)

=: G(2)
α1α2α3α4

(τ ′1, τ
′
2, τ
′
3). (1.39)

Of course the same argument also holds for the one-particle Green’s function,
where we find:

G(1)
α1α2

(τ1, τ2) = −〈Tτdα1(τ1)d†α2
(τ2)〉 (1.40)

= −〈Tτdα1(τ1 − τ2)d†α2
(τ2 − τ2)〉 (1.41)

= −〈Tτdα1(τ)d†α2
(0)〉 (1.42)

=: G(1)
α1α2

(τ). (1.43)

When we introduced the concept of imaginary time along equation (1.9), we found
that there exists a connection between the imaginary time τ and the inverse tem-
perature β. We can establish this link by taking advantage of the Lehmann rep-
resentation. We follow the reasoning of [28], define our Hamiltonian H in its
eigenbasis |m〉 with energies Em and obtain:

G(2)
α1α2α3α4

(τ1, τ2, τ3, τ4) (1.44)

=
1

Z

∑
m

〈m| e−βHdα1(τ1)d
†
α2
(τ2)dα3(τ3)d

†
α4
(τ4) |m〉 (1.45)

=
1

Z

∑
m

〈m| e−(β−τ1)Hdα1e
(τ2−τ1)Hd†α2

e(τ3−τ2)Hdα3e
(τ4−τ3)Hd†α4

e−τ4H |m〉 (1.46)

=
1

Z

∑
m

e−(β−τ1+τ4)Em 〈m| dα1e
(τ2−τ1)Hd†α2

e(τ3−τ2)Hdα3e
(τ4−τ3)Hd†α4

|m〉 . (1.47)

Notice that we have left out the time ordering symbol Tτ ; this means we have
imposed a fixed ordering of the form τ1 > τ2 > τ3 > τ4. In general the Hamiltonian
H is unbound from above, but bound from below. We would like to deal with a
converging sum in the above equation, which means that we require the following
for the exponent:

β − τ1 + τ4 > 0. (1.48)

Combining this with the time ordering, we find:

β + τ4 > τ1 > τ2 > τ3 > τ4. (1.49)
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We can now exploit the time translational property from above, allowing us to
shift this inequality and set τ4 = 0, such that:

β > τ1 > τ2 > τ3 > 0. (1.50)

This means that the time argument of the Green’s function is limited to an interval
τi ∈ [0, β]. Notice that exploiting the time translational property in the last step
was only done out of convenience, but is not strictly required here. One can further
derive the anti-periodicity of the Green’s function using the cyclic properties of
the trace and the algebra of the fermionic operators. We find:

G(1)
α1α2

(τ) = −G(1)
α1α2

(τ + β) if τ < 0 (1.51)

G(2)
α1α2α3α4

(τ1, τ2, τ3) = −G(2)
α1α2α3α4

(τ1 − β, τ2, τ3) if τ1 − β > τ3. (1.52)

Fourier Transform
It is often better to take the Fourier transform of the time argument of a Green’s
function in order to obtain Matsubara frequencies. For G

(1)
α1α2(τ), the Fourier

transform simply becomes:

G(1)
α1α2

(iν) =

∫ β

0

dτeiντG(1)
α1α2

(τ). (1.53)

The fermionic Matsubara frequencies νn are defined as:

νn =
π

β
(2n+ 1) n ∈ Z. (1.54)

We can restrict ourselves to the fermionic frequencies (odd multiples of π/β) due

to the anti-periodicity of the Green’s function G
(1)
α1α2(τ). We note that since the

time domain is bounded, the inverse transformation is not defined as a continuous
Fourier transform, but rather a discrete transform of the type:

G(1)
α1α2

(τ) =
1

β

∑
n

dτe−iντG(1)
α1α2

(iν). (1.55)

The Fourier transform of the two-particle Green’s function G
(2)
α1α2α3α4(τ1, τ2, τ3, τ4)

can be written correspondingly as:

G(2),ph
α1α2,α3,α4

(iν, iν ′, iω) =∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3

∫ β

0
dτ4e

iν(τ1−τ2)e−iν
′(τ3−τ4)eiω(τ1−τ4)G(2)

α1α2α3α4
(τ1, τ2, τ3, τ4).

(1.56)
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Here, we have introduced the bosonic Matsubara frequencies ωn, which are defined
as even multiples of π/β:

ωn =
2π

β
n n ∈ Z. (1.57)

For now we will not explain the deeper meaning of the convention of the time
differences chosen in equation (1.56). We refer to this convention as the particle-
hole convention. Another popular choice is the particle-particle convention. These
conventions are applicable for the single-orbital case. The back-transformation of a
Green’s function in Matsubara frequencies works over a discrete Fourier transform
of the type:

G(2)
α1α2,α3,α4

(τ1, τ2, τ3, τ4) =

1

β2

∑
ν,ν′,ω

e−iν(τ1−τ2)eiν
′(τ3−τ4)e−iω(τ1−τ4)G(2),ph

α1α2α3α4
(iν, iν ′, iω). (1.58)

The one-particle Green’s function G
(1)
α1α2(iν) is a major ingredient of DMFT, the

two-particle Green’s function G
(2)
α1α2α3α4(iν, iν

′, iω) is a major ingredient of the dia-
grammatic extensions to DMFT. A full treatment of the properties and importance
of Green’s function in the context of many-body physics can be found in e.g. Ref-
erences [28,29]. This work will focus on how to measure these two quantities using
a QMC solver.

2 Monte Carlo Integration

The mapping of the Hubbard model (1.1) onto the Anderson impurity model (1.2)
in DMFT and the expansion of the partition function (1.32) are first steps in
solving the many-body problem. We are however still confronted with actually
calculating the perturbative series of the expectation values of the operators un-
der consideration. It turns out that solving the local trace of the expansion is the
most challenging task. Let us give a short reasoning why it is not trivial to solve
the local trace of our quantum impurity. The local trace represents the dynamics
of the quantum impurity with a general interaction. Depending on the expansion
order, the local trace is constructed by a specific amount of annihilation and cre-
ation operators. In the hybridization expansion, the annihilator and the creation
operator appear pairwise. While it may seem counter-intuitive it turns out that
the expansion order is generally higher for low temperatures, i.e. the trace has
more operators in it. This is because the length of the trace scales with the in-
verse temperature β. Typically, the expansion order can go up to a few hundreds.
Although we are dealing with a single site impurity (or sometimes a few cluster
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sites), we encounter integrals of high dimensions due to this expansion order. In
this section we will focus on how to solve such integrals.

2.1 Basic Concepts

In order to solve high dimensional integrals, such as the partition function in
equation (1.32), it is common to employ Monte Carlo techniques. These methods
became more powerful with advancements in computer development [30]. In the
following we will give a general introduction into Monte Carlo sampling. The
theory presented in this section is mostly self-contained and can be read without
the previous sections. The theory in this section is based on References [31, 32].
Once we established the basic tools necessary to treat high dimensional integrals,
we adapt them to our quantum impurity problem in Section 2.2.
In equation (1.9) we have introduced the thermal expectation value using the
partition function Z = Tr

[
Tτe

−βH]. In fact the expectation value is a very gen-
eral concept, not originating from quantum mechanics. In probability theory the
expectation value is given by:

〈A〉 =

∫
V
A(x)p(x)dx∫
V
p(x)dx

, (2.1)

where A(x) is our observable evaluated at the value of x and p(x) is a (not necessar-
ily normalized) probability density function. In order to normalize the expectation
value, we divide the integral

∫
V
A(x)p(x)dx by the integral

∫
V
p(x)dx.

Of course the above expectation value is not restricted to just one dimension x
but may be formed over an arbitrary number of dimensions xi, such that:

〈A〉 =

∫
V
A(xi)p(xi)dxi∫
V
p(xi)dxi

i ∈ N. (2.2)

In the following we are interested in finding the expectation values numerically.
We will focus on the one dimensional case (2.1) for now. In general, one can
think of two ways of calculating an integral numerically. The first is to cut the
integration domain into slices ∆xi (not necessary of equal length) and sum up the
area of the sub-slices. When taking the limit ∆xi → 0, we will find the exact value
of the integral. The method we will use is based on the mean value theorem for
integration, which states that there exists an intermediate point ξ ∈ V such that:∫

V

f(x)dx = f(ξ)V, (2.3)

where the continuous function f(x) evaluated at ξ multiplied with the integration
domain gives the integral value. We will find that f(ξ) = 〈f〉 is nothing but the
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expectation value. The basic idea of Monte Carlo is to sample the integral as an
infinite sum with a large number N of random values from the integration domain
V : ∫

V

f(x)dx =
1

N

N∑
j

f(xj)V +O
(

1

Na

)
, (2.4)

where for now our random variables xj are spread uniformly in the integration
domain. We have not yet specified the error O

(
1
Na

)
, i.e. the exponent of a, but

we will do so in the next section. The expectation value can be written as:

〈A〉 =
V
N

∑N
j A(xj)p(xj)

V
N

∑N
j p(xj)

+O
(

1

Na

)
, (2.5)

where we will refer to the first term as the Monte Carlo expectation value, ignoring
the approximation error:

〈A〉MC =
V
N

∑N
j A(xj)p(xj)

V
N

∑N
j p(xj)

. (2.6)

2.1.1 Uniformly Distributed Random Numbers in V

We will now consider the implications of a uniform probability density function
p(x):

p(x) = const =
1

V
. (2.7)

We find:

〈A〉MC =
1

N

N∑
j

A(xj). (2.8)

For p(x) = 1
V

the denominator of our Monte Carlo expectation value becomes
unity. This is of course nothing but the normalization of the probability density
function. Equation (2.8) is simply the arithmetic mean of A. Now we can calculate
the behavior of the approximation error defined in equation (2.5). The generaliza-
tion of the error to arbitrary probability density functions p(x) is not worked out
at this point. We find:

εN = 〈A〉 − 〈A〉MC = O
(

1

Na

)
. (2.9)

We further calculate the variance of the Monte Carlo expectation value with:

σ2
MC(A) = 〈A2〉MC − 〈A〉2MC . (2.10)
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The central limit theorem states, that for an a set of independent, identically
distributed random numbers from a probability distribution p(x) the error

√
NεN

approaches a normal distribution with variance σ2
MC(A):

√
NεN →

1√
2πσMC(A)

e
− 1

2

(
x

σMC (A)

)2
. (2.11)

The probability distribution of εN follows a Gaussian distribution with a variance
of:

σ2
εN

(A) =
σ2
MC(A)

N
. (2.12)

We have now determined the exponent of the Monte Carlo error O
(

1
Na

)
to a = 1

2

. This means, that if we want to reduce the Monte Carlo error by a factor of 10,
we have to increase our samples by a factor of 100. This allows us to solve any
integral using the Monte Carlo expectation value and the variance with:∫

V

A(x)dx =

(
〈A〉MC ±

1√
N
σMC(A)

)
V. (2.13)

In low dimensions there exist superior integration methods, with a better error
convergence. For dimensions d > 5 usually Monte Carlo integration becomes the
method of choice. With regards to calculating the expectation value of the par-
tition function and local operators, where dimensions of d ∼ 100 are likely, we
are required to use Monte Carlo techniques. We also point out that Monte Carlo
methods parallelize trivially, as we are allowed to calculate the integral indepen-
dently on different threads and then calculate the final result as the mean value
with standard deviation from the given data. It is also important to note, that
the Monte Carlo error is just an estimate of the real error, as it is not guaranteed
that the Monte Carlo error follows a normal distribution.

2.1.2 Importance Sampling

It is possible to reduce the variance, not only by higher statistics, but by a good
choice of random configurations xj. We usually refer to this method of variance
reduction as importance sampling [31]. In the previous paragraph we assumed
p(x) = 1

V
being a uniform probability density function from which we choose our

random variables. Many times we are confronted with a general probability density
function p(x) in the expectation value. We want to keep the freedom of choosing
our random variables from any probability density function g(x), not necessarily
requiring g(x) = p(x). Then we can re-weigh the integral of the expectation value
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Figure 5: Illustration of the transformation method with the probability density
function g(x) and the cumulative distribution function G(x).

as:

〈A〉 =

∫
V
A(x)p(x)dx∫
V
p(x)dx

=

∫
V
A(x)p(x)
g(x)

g(x)dx∫
V
p(x)
g(x)

g(x)dx
≈

V
N

∑N
j

A(xj)p(xj)

g(xj)

V
N

∑N
j

p(xj)

g(xj)

. (2.14)

The random numbers xj are then chosen according to the probability density
function g(x). In other words, we have absorbed the weight g(x) into the random
numbers xj. We need to correct the integrand for this absorption dividing it by
g(x). We will now take a look how to generate random numbers xj according to
the probability density g(x). A general approach in distributing random numbers
along a probability density function g(x) is called inverse transform sampling [32].
We illustrate this method in Figure 5. For this matter we define the cumulative
distribution function G(x) to our probability density function g(x) with:

G(x) =

∫ x

0

g(x′)dx′. (2.15)

A random number xj with respect to g(x) can now be chosen by xj = G−1(xi),
where xi follows a uniform distribution in the interval xi ∈ [0, 1). Remember that
a computer usually supplies us with random numbers out of this interval.
If we decide to choose our random numbers xj from the uniform distribution
g(x) = 1

V
, then we find G(x) = x

V
, G−1(x) = V x. As one would expect this results

in xj = V xi for the one dimensional case. Furthermore:

〈A〉 ≈
1
N

∑N
j A(xj)p(xj)

1
N

∑N
j p(xj)

. (2.16)

This means we need to find the arithmetic mean of the product A(x)p(x) and p(x)
with respect to uniformly distributed random numbers xj. Setting also p(x) =
const recovers equation (2.8). The most general form is given in equation (2.14).
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Let us now look at the variance one more time. For a general p(x) and a general
g(x) from which we choose the random numbers equation (2.13) becomes [32]:∫

V

A(x)p(x)

g(x)
g(x)dx = 〈Ap

g
〉MC ±

1√
N
σMC

(
Ap

g

)
. (2.17)

If we set p(x) = 1 and g(x) = 1
V

, we recover equation (2.13). It turns out that the
optimal choice of g(x) is given by:

g(x) =
|A(x)p(x)|∫

V
|A(x)p(x)|dx

. (2.18)

Importance sampling allows us to reduce the variance to a minimum, if we find a
probability density function, which follows the functional value A(x)p(x) as closely
as possible.

2.1.3 Rejection Sampling, Markov Chains and the
Metropolis-Hastings Algorithm

In the last section we have presented a method of choosing random numbers ac-
cording to a probability density function g(x), called inverse transform sampling.
This method does however have some major short-comings. To generate random
numbers, we require the inverse of the cumulative distribution function G(x). Ac-
quiring the inverse of the cumulative distribution function does not necessarily
require analytic knowledge of G(x). Instead we may create a look-up table. If we
supply a random number xi in the interval xi ∈ [0, 1), then can find xk distributed
in g(x) by xi = G(xk). Another shortcoming is the cumulative distribution func-
tion itself. From its definition G(x) =

∫ x
0
g(x)dx we see that its necessary to

compute the integral of g(x) up to x, where we require
∫
V
g(x) = 1. In QMC

we usually choose the partition function (or something similar) as our probabil-
ity density function g(x). In this case g(x) is a high dimensional function and is
computationally expensive to calculate.

Rejection Sampling
Fortunately, there is another method in order to generate random numbers ac-
cording to a probability density function g(x), which does not require

∫
V
g(x) = 1.

We refer to this method as rejection sampling.
In general the algorithm works as follows: We have a predefined proposal distri-
bution f(x) and an unknown probability distribution g(x) for which we want to
sample our random variables. The only condition we require is that f(x) fully
encloses g(x), i.e. g(x) < Mf(x) ∀x with M > 1. We sample a random point
along the proposal distribution f(x) and an additional uniform random variable
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Figure 6: (a) Illustration of rejection sampling for a proposal probability f(x)
and probability distribution g(x). (b) Illustration of the dimensionality problem
for a hypercube B, representing the acceptance region, enclosed in a hypercube A
representing the proposal region.

u. We have generated a random variable x, which follows g(x) if u ·Mf(x) < g(x),
i.e. the point chosen uniformly along Mf(x) is inside g(x). We illustrate this
procedure in Figure 6a. We mark the accepted configurations with a ”+” and the
rejected ones with a ”-”. We generate many random variables where g(x) is large
and few random variables where g(x) is small.
However, rejection sampling suffers of a dimensionality problem. This can be
reasoned when thinking of two hypercubes in d-dimensional space, illustrated in
Figure 6b. The hypercube A with side-length a will serve as our proposal region,
where we sample uniformly. The enclosed hypercube B with side-length b = 0.9a
will serve as our acceptance region. The volume of A scales like VA = ad, the
volume of B scales like VB = (0.9a)d. For d → ∞ we find VB

VA
→ 0. For very

high dimensions, most of the volume of A will be concentrated near its surface.
Sampling uniformly in the entire region results in a large amount of rejects.

Markov Chains
From rejection sampling, we take another step towards the Metropolis algorithm.
The main ingredient of the Metropolis algorithm is to generate random variables
from g(x) using a Markov chain. We do not need to dive too deep into the theory
of Markov chains here. A more detailed description can be found in e.g. [33]. The
idea of a Markov chain is that we generate random states x′ with respect to the
current state x (but not any previous states). The fact that a new state is linked
to its preceding state in analogy to a chain, inherits the Markov process its name
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Figure 7: Illustration of a Markov chain to a probability density function g(x).
Shown are the states x,x′ and x′′ and their transition probabilities t(x → x′),
t(x′ → x′′) and the inverse transition probabilities t(x′′ → x′), t(x′ → x′).

as a Markov chain. The transition between a state x and a state x′ is defined by
the transition probability t(x → x′). We illustrate this in Figure 7. The Markov
chain can be designed, such that it asymptotically reaches g(x) as a stationary
distribution, if we guarantee the detailed balance condition and ergodicity.
The detailed balance condition for transition probabilities t(x → x′) and proba-
bility densities g(x) is given by:

g(x)t(x→ x′) = g(x′)t(x′ → x). (2.19)

One can motivate this condition by thinking of the Markov chain as a random walk
through our configuration space C. Then the detailed balance condition assures
path-reversibility (i.e. the ability to move the same path in the other direction).
With respect to Monte Carlo integration, we can define ergodicity by:

lim
N→∞

〈A〉MC → 〈A〉. (2.20)

That is, the Monte Carlo expectation value for an infinite amount of steps N
in our Markov chain converges to the true expectation value. In a more general
definition, a system is ergodic if the mean value of all observables of a system over
time (i.e. Markov steps) is the same as the mean value of all observables taken
over all possible states. As a result, we find that a Markov chain is ergodic if there
exists a non-zero probability to reach any state within a finite number of steps.

Metropolis-Hastings Algorithm
The Metropolis-Hastings algorithm [34, 35] combines the ideas of rejection sam-
pling and Markov chains. Up to this point we have not defined, what the transition
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probability t(x → x′) looks like. The main idea of the Metropolis-Hastings algo-
rithm is to split t(x→ x′) into an acceptance probability a(x→ x′) and a proposal
probability f(x→ x′):

t(x→ x′) = a(x→ x′)f(x→ x′). (2.21)

We can now insert this expression into the detailed balance equation (2.19). Re-
arranging for the acceptance rates, we find:

a(x→ x′)

a(x′ → x)
=
g(x′)

g(x)

f(x′ → x)

f(x→ x′)
. (2.22)

If we are in a state x, we always want to move to the state x′ if it is more probable.
On the other hand if x′ is less probable, we only want to move there according to
a probability supplied by the detailed balance equation. Including the ideas of the
rejection sampling, we find:

a(x→ x′) = min

(
1,
g(x′)

g(x)

f(x′ → x)

f(x→ x′)

)
. (2.23)

This way we generate random numbers xi according to g(x). While in rejection
sampling we found independent random numbers, here a random number xi de-
pends on the previously found random number. This results in the problem of
introducing an auto-correlation length. By this we mean that a configuration in
the Markov chain may depend on the previous n configurations, where n is the
auto-correlation length. After n Monte Carlo steps a generated configuration be-
comes independent of the initial configuration. As opposed to rejection sampling,
in the Metropolis-Hastings algorithm we, however, do not have the problem of
dimensionality.
As a starting point of the Metropolis-Hastings algorithm we choose an arbitrary
configuration xi. It is usually not possible to tell if this configuration xi is a
likely one or an unlikely one (most of the time it will be the latter). In order
to reach the likely parts of our configuration space, we need to generate some
initial configurations to get there. These initial configurations are not suitable
to measure any contribution to the integral, otherwise we would over-estimate
unlikely configurations. The number of steps it takes to reach likely configurations
are usually called burn-in steps or warm-up steps.

Proposal Probability
We will discuss the proposal probability in more detail here. The proposal prob-
ability essentially defines what class of problems we deal with. It defines our
configuration space C to be discrete or continuous. We will apply the Metropolis-
Hastings algorithm to three problems in more detail to see how it works.
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First, let us integrate some continuous function f(xi) in Rn, which is only non-
zero inside a known region, defined by some vertices vi in Rn. The probability
density function g(xi), sometimes referred to as the weight, is then just given by
a product of θ-functions specifying this region. We can move from one integration
point to the next using a random-walk scheme. As soon as a random-walk step is
proposed, which leaves the defined region, we reject this step. In this example the
configuration space is identical to the specified region.
Next, let us mention the famous example of the Ising model. The weight g(x)
is now given by the Boltzmann distribution e−βH . We propose a walk in our
configuration space by selecting a lattice site at random and proposing a spin-flip
for this site.
Lastly, we introduce the concept of quantum Monte Carlo (QMC) integration. We
have already derived the weight along with the partition function in the previous
chapter. For now we will refer to the QMC-weight as p(k, τ1, . . . , τk). The proposal
probability of an operator pair insert is then given by the length of our trace β.
We will focus on the details of QMC in the following section.

Probability Density Proposal Probability

g(x) f(x→ x′)

Continuous Function
∏

i θ(xi − vi) Random Walk: xi′ = r + xi

Ising Model e−βH Spin Flip: 1
N

Quantum Monte Carlo p(k, τ1, . . . , τk) dd†-Insert: dτ
β

2.1.4 Configuration Space C

For now we have discussed Monte Carlo integration with respect to some integra-
tion volume V . It is common to refer to the integration volume as the configuration
space C. The integrand is usually referred to as the weight wi. Each weight wi
describes a specific configuration in the configuration space C. The random walk
of Markov chains is performed in this configuration space.

2.2 Quantum Monte Carlo Integration

In Chapter 1 and the first part of Chapter 2 we have introduced the basics of
the Anderson impurity model and of Monte Carlo integration. Now we combine
these two concepts to discuss quantum Monte Carlo (QMC) algorithms. When
sampling the trace of the expectation value and the partition function with in-
finitesimal time intervals dτ , we refer to this as continuous-time Quantum Monte
Carlo (CT-QMC). A very detailed summary of CT-QMC algorithms can be found
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in [26]. Before CT-QMC algorithms became popular, the Hirsch-Fye algorithm
was used to calculate the Anderson Impurity Model [36]. This algorithm requires
a discretization of imaginary time. As a results very large grids are necessary for
low temperatures. Additionally, there are no generalizations for the interaction to
multi-orbital models beyond the density-density interaction due to the restrictions
imposed by the Hubbard-Stratonovich transformation [37]. These shortcomings
are alleviated in CT-QMC. In the following we will focus on CT-QMC algorithms
in the hybridization expansion (1.32) (usually referred to as CT-Hyb), which we
derived in the previous chapter.

2.2.1 Partition Function Sampling

First let us rewrite equation (1.32) into a form that is suitable for Monte Carlo
integration. We start with the expression we have derived for the partition func-
tion:

Z = Tr
[
e−βHloc+Hbath

]
+ Zbath

∑
k∈2N

∫ β

τk−1

dτk

∫ β

τk−2

dτk−1 . . .

∫ β

τ1

dτ2

∫ β

0

dτ1×

Trd

[
Tτe

−βHlocdαk(τk)d
†
αk−1

(τk−1) . . . dα2(τ2)d†α1
(τ1)
]
× det ∆. (2.24)

We split the above expression into a local weight and a weight of the bath:

Z = Tr
[
e−βHloc+Hbath

]
+
∑
k∈2N

∫ β

τk−1

dτk

∫ β

τk−2

dτk−1 . . .

∫ β

τ1

dτ2

∫ β

0

dτ1×

Trd

[
Tτe

−βHlocdαk(τk)d
†
αk−1

(τk−1) . . . dα2(τ2)d†α1
(τ1)
]

︸ ︷︷ ︸
wloc(k,τ1,...,τk)

× Zbath det ∆︸ ︷︷ ︸
wbath(k,τ1,...,τk)

. (2.25)

The entire weight of the partition function in its hybridization expansion (excluding
the zeroth order) is found as:

p(k, τ1, . . . , τk) = wloc(k, τ1, . . . , τk)wbath(k, τ1, . . . , τk)dτ1 . . . dτk. (2.26)

In equation (2.26) we have introduced a relatively severe problem, which is present
in all fermionic QMC algorithms. In the derivation of Monte Carlo theory we
have determined the probability density function g(x), which serves as the weight
of the Metropolis algorithm. In order for a function to serve as a probability
density function, we require that g(x) > 0 ∀x and

∫
V
g(x) = 1. The second

condition can be neglected in the Metropolis algorithm. The first condition is not
fulfilled when g(x) = p(k, τ1, . . . , τk) is the trace of a combination of fermionic
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Figure 8: Illustration of the proposal probability for a pair insert. We go from
a discrete trace to a continuous trace to motivate the proposal probability dτ

β
for

every operator as the probability of choosing an infinitesimal interval dτ from a
trace of length β. The grey and white circles resemble existing annihilators and
creators in the trace. The blue intervals mark, where the operator pair will be
inserted.

operators, as fermionic operators introduce a sign. The common way to deal with
this problem is to assume g(x) = |p(k, τ1, . . . , τk)|, and then re-weighing our Monte
Carlo integration by the mean sign of the trace. This however introduces the so-
called sign problem, which in essence is a cancellation problem of the mean sign
in the denominator, creating large QMC errors. We will deal with the details of
re-weighing and the sign in Section 2.2.3.
Further, notice that the infinitesimal time elements dτi for i = 1 . . . k are usually
considered to be part of the weight p(k, τ1, . . . , τk). This is a convention used in
the QMC community. It is very strange to include infinitesimals into the weight,
as we considered this to be our probability density function. We will give a short
reasoning how the Metropolis condition takes care of this oddity and why this
makes sense. In the Metropolis algorithm we only look at ratios of acceptance
probabilities. Then all infinitesimals in the weights will cancel out if we propose a
move which contains the expansion order k/2. If we propose a move which changes
the expansion order k/2→ k/2+1 (i.e. adding an operator pair) or k/2→ k/2−1
(i.e. removing an operator pair) the additional infinitesimals dτidτj in the weight
cancel with infinitesimals in the proposal probability. We will look at this in more
detail now.

Pair Add and Pair Remove Moves
In order to be ergodic, we need to find moves which allow us to change the expan-
sion order k/2. This way we are able to sample the entire configuration space.
We remember that the expansion order directly refers to the number of d, d† pairs
in the local trace. The proposal probability for adding a pair of dαi , d

†
αj

operators
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Figure 9: Illustration of the proposal probability for a pair removal of operators,
which were previously added. The number of creation operators and annihilation
operators is k+2

2
each. The blue operator pair is selected to be removed.

for two infinitesimal time slices of size dτ (see Figure 8) is:

f(k → k + 2) =
dτ 2

β2
. (2.27)

The weight of a configuration, with an extra operator pair dαi , d
†
αj

is given by:

p(k + 2, τ1, . . . , τk; τi, τj) =

wloc(k + 2, τ1, . . . , τk; τi, τj)wbath(k + 2, τ1, . . . , τk; τi, τj)dτ1 . . . dτkdτidτj. (2.28)

We have introduced a semicolon to the notation of the weight to highlight the new
operator pair:

w(k + 2, τ1, . . . , τk; τi, τj) ≡ w(k + 2, τ1, . . . , τk, τi, τj). (2.29)

The proposal probability for removing the same pair of dαi , d
†
αj

operators (see
Figure 9) is:

f(k + 2→ k) =
1

((k + 2)/2)2
. (2.30)

The proposal probability for removing a pair may change depending on how ran-
dom operators are chosen, and we need to be very careful here. The above is valid
for a pair of operators in the trace by picking a creation operator from (k+2)/2 op-
erators and an annihilation operator from (k + 2)/2 operators. Different proposal
probabilities exist for removing segments in a density-density code.
We point out that our proposal probabilities for inserting and removing operator
pairs are per se not constrained by quantum numbers. The constraints due to
quantum numbers enter the weight p(k, τ1, . . . , τk). That means, if we insert or
remove operator pairs and this results in a forbidden trace, then the trace will
simply evaluate to zero and the move will not be accepted.
We have now fully determined all parts of the acceptance ratio in equation (2.22).
For going from a specific hybridization configuration of order k/2, to one with an
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additional pair at τi, τj we obtain the acceptance ratio:

a(k → k + 2)

a(k + 2→ k)
=

|wloc(k + 2, τ1, . . . , τk; τi, τj)wbath(k + 2, τ1, . . . , τk; τi, τj)dτ1 . . . dτkdτidτj|
|wloc(k, τ1, . . . , τk)wbath(k, τ1, . . . , τk)dτ1 . . . dτk|

×

β2

((k + 2)/2)2dτidτj
. (2.31)

We observe that all infinitesimals cancel out properly and our solution is still well
behaved. We find the Metropolis acceptance rate for a pair insertions hence:

a(k → k + 2) =

min

(
1,
|wloc(k + 2, τ1, . . . , τk; τi, τj)wbath(k + 2, τ1, . . . , τk; τi, τj)|

|wloc(k, τ1, . . . , τk)wbath(k, τ1, . . . , τk)|
β2

((k + 2)/2)2

)
.

(2.32)

The Metropolis acceptance rate for a pair removal is then just given by the inverse:

a(k + 2→ k) =

min

(
1,

|wloc(k, τ1, . . . , τk)wbath(k, τ1, . . . , τk)|
|wloc(k + 2, τ1, . . . , τk; τi, τj)wbath(k + 2, τ1, . . . , τk; τi, τj)|

((k + 2)/2)2

β2

)
.

(2.33)

We point out that a special matrix update algorithm, called inverse by partition-
ing, exists for calculating the determinant and inverse of a matrix, such as det ∆
in wbath, where an additional row and column is added. From a computational
viewpoint it is very helpful to employ this method here.

Operator Shift Moves
In principle the insertion and removal updates are sufficient to sample the partition
function in an ergodic way. One can imagine that, if there are enough Monte
Carlo steps, eventually any allowed configuration along the continuous trace will
be sampled. We will nonetheless introduce shift moves as an additional move.
Essentially, we pick an operator at random and propose a shift along the trace.
In its most general form, the move also allows for the shifted operator to jump
past other operators in the trace. This move contains the expansion order with
k/2→ k/2 and may be useful to decrease auto-correlation times. We give a short
summary of the acceptance rates as a basis for the worm replacement move in the
next chapter, which will be used to tackle a relatively severe ergodicity problem.
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Figure 10: Illustration of the proposal probability for a shift move of a single
operator. The grey and white circles resemble existing annihilators and creators
in the trace.

The proposal probability for shifting an operator dαi or d†αi is the probability of
selecting this specific operator times the probability to put it at a given τ :

f ′(k → k) =
1

(k/2)

dτ

β
. (2.34)

The proposal probability of shifting the operator back to its original position is
exactly the same:

f(k → k) =
1

(k/2)

dτ

β
. (2.35)

We illustrate the shift update in Figure 10. Since the proposal probabilities and
the infinitesimals dτ cancel out, the acceptance ratio is fully determined by the
ratio of weights. The Metropolis acceptance rate the follows as:

a′(k → k) = min

(
1,
|wloc(k, τ1, . . . , τ

′
i , . . . , τk)wbath(k, τ1, . . . , τ

′
i , . . . , τk)|

|wloc(k, τ1, . . . , τi, . . . , τk)wbath(k, τ1, . . . , τi, . . . , τk)|

)
.

(2.36)
In order to add a row and column to an existing combination of a row and col-
umn of a matrix we can employ the Sherman-Morrison formula and the matrix
determinant lemma. Again, this is very useful from a computational point of view.

2.2.2 Switchboard Pictures, Segment Pictures and Hybridization Lines

We will now spend some time in showing how configurations of the local trace in
CT-Hyb can be visualized. For density-density interactions we can draw segment
pictures and switchboard pictures in the occupation number basis (for an illustra-
tion see Figure 12). The switchboard picture scales exponentially with 2(2·orbitals)

as we have to consider many-particle states. The base 2 is a consequence of the
many-particle state being occupied or unoccupied. The exponent 2 stems from the
spin degree of freedom. Segment pictures (as in Figure 14), on the other hand, are
only build of single-particle states. They not only provide a very elegant way of
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Figure 11: Illustration of a given configuration in the local trace.

Figure 12: Switchboard Picture for the configuration given in Figure 11.

picturing the trace, but also allow us to introduce some major simplifications to the
calculation of the local trace. The algorithm then scales linear with (2 ·Orbitals)
in the local trace. For general interactions we cannot draw segment pictures as
the interaction can rotate the time evolved vector in our trace allowing for cases
strictly forbidden in density-density interactions.

Switchboard Pictures
The density-density case results in Hloc being diagonal. As a consequence the time
evolution e−τHloc is easy to calculate. The simplest picture, which we are allowed
to draw for any interaction is just one trace as illustrated in Figure 11 for an
example configuration.
In this work, we represent creation operators using filled shapes and annihilation
operators using empty shapes. We color code spin up operators with blue shapes
and spin down operators with red shapes. For the single-orbital case, we restrict
ourselves to drawing circles. For more orbitals we will use additional shapes to
encode different flavors. We can now follow the path created by the operators
through our occupation number states explicitly, as illustrated in Figure 12.
In this case, we observe that the path wraps around a non-empty state |↓〉. Of
course we may also encounter traces, where the path is in the | 〉-state at τ = 0
and τ = β as illustrated in Figure 13. This example is however more important for
another reason. We notice that a second path exists, which is in the |↑〉-state at
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Figure 13: Switchboard Picture for configuration ending in unoccupied state | 〉
(green path). A second path exists, ending in the singly-occupied state |↑〉 (orange
path).

τ = 0 and τ = β. We can now make the following observation: in the switchboard
picture we are required to draw all possible paths, which contribute to the trace.

Segment Pictures
We are now able to take a step from switchboard pictures to segment pictures,
as illustrated in Figure 14. We will introduce some terminology with reference
to Figure 14. We usually refer to the occupied state between the two operators
d↑(τ2)d†↑(τ1) with τ2 > τ1 as a segment. In this example an anti-segment is given

by the unoccupied state between the two operators d†↓(τ5)d↓(τ3), where τ5 > τ3.
Further notice, that we are not drawing the states | 〉 and |↑↓〉 anymore. Instead,
the state | 〉 is given if both |↑〉 and |↓〉 are empty and the state |↑↓〉 is given by
the overlaps.
Let us reconsider the density-density type local Hamiltonian introduced in Chapter
1 for the single-orbital case:

Hloc = −µ (n↑ + n↓) + Un↑n↓. (2.37)

We notice that the term −µ only contributes while a state is occupied. This
directly translates to the total length of the segments l↑ and l↓. We further notice
that the term U only contributes while both state |↑〉 and |↓〉 are occupied. This
directly translates to the overlap of the segments s↑↓. For the local trace we find:

Trd
[
e−βHlocdαk(τk)d

†
αk

(τ ′k) . . . dα1(τ1)d†α1
(τ ′1)
]

= e−β(−µ(l↑+l↓)+Us↑↓). (2.38)
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Figure 14: Segment Picture for the configuration given in Figure 11. For |↑〉 there
are two segments, for |↓〉 there is an anti-segment. The doubly occupied state |↑↓〉
is symbolized by the overlap regions shaded.

In this work we are interested in general interactions and we will hence not go
into the details of CT-Hyb segment codes. We introduced segment pictures as a
simple visualization tool. The density-density case gives us the chance to analyze
the local trace relatively easy. Especially with regards to the fermionic sign, the
density-density case is very valuable as the sign of each configuration is positive
here [38]. We will deal with the fermionic sign in the next section.

Hybridization lines
We will now show how the hybridization part of the expansion can be included
into pictures of the local trace. To this end, we connect all creation operators
with all annihilation operators. Each hybridization line refers to an entry in the
hybridization matrix. We will illustrate how hybridization lines connect with our
example trace.
The general form of the hybridization matrix for the example trace in Figure 15
has the form:

∆ =

∆11(τ1 − τ2) ∆12(τ1 − τ3) ∆13(τ1 − τ6)
∆21(τ4 − τ2) ∆22(τ4 − τ3) ∆23(τ4 − τ6)
∆31(τ5 − τ2) ∆32(τ5 − τ3) ∆33(τ5 − τ6)

 , (2.39)

where we have assigned the times τ1, . . . τ6 from right to left. Sometimes we will
assume that our hybridization function ∆ij is diagonal in orbital and spin (Figure
16). We illustrate how the hybridization lines would then look for our example:
The hybridization matrix then simplifies to:

∆ =

∆11(τ1 − τ2) 0 ∆13(τ1 − τ6)
∆21(τ4 − τ2) 0 ∆23(τ4 − τ6)

0 ∆32(τ5 − τ3) 0

 . (2.40)
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Figure 15: Local trace with all possible hybridization lines connecting annihilation
dαi(τm) and creation operators d†αi(τn). We number all creation operators from 1
to k/2 and all annihilation operators from 1 to k/2. Hybridization events, where
τm > τn are drawn above the trace, and hybridization events where τm < τn are
drawn beneath the trace.

Figure 16: Local trace with hybridization events of a diagonal hybridization func-
tion ∆σiσj .
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When measuring the one-particle Green’s function two operators are local opera-
tors appearing in the trace. For the 2n-point Green’s function 2n operators appear
locally. In partition function space CZ we can generate such local operators by cut-
ting hybridization lines and then measure the resulting weight.

2.2.3 The Sign of Sampling in Quantum Monte Carlo

As mentioned before, fermionic QMC calculations include an additional difficulty
during sampling due to the sign of the weight p(k, τ1, . . . , τk). The root of the
sign problem is found in the fermionic anti-commutation rule. When exchanging
the order of any two operators (at different times) we produce an additional sign.
In the previous section we have expanded the partition function and the closely
related thermal expectation value. In order to sample the expectation value we use
importance sampling around the weight p(k, τ1, . . . , τk). Interpreting these weights
as probabilities for our Metropolis algorithm requires them to be positive, which
is not necessarily the case. Our starting point is the general equation (2.16):

〈A〉 ≈
1
N

∑N
j A(xj)p(xj)

1
N

∑N
j p(xj)

, (2.41)

where the random numbers xj are chosen uniformly over our whole integration
volume. We now set p(xj) = sign(p(k, τ1, . . . , τk))|p(k, τ1, . . . , τk)| such that:

〈A〉 ≈
1
N

∑
A(k, τ1, . . . , τk)sign(p(k, τ1, . . . , τk))|p(k, τ1, . . . , τk)|

1
N

∑N
j sign(p(k, τ1, . . . , τk))|p(k, τ1, . . . , τk)|

. (2.42)

Now we can employ importance sampling by choosing random numbers xl accord-
ing to |p(k, τ1, . . . , τk)|, using e.g. the Metropolis algorithm:

〈A〉 ≈
1
N

∑N
l A(xl)sign(p(xl))

1
N

∑N
l sign(p(xl))

. (2.43)

We find that we need to re-weigh the measurement by the average sign 〈sign〉.
In this section we attempt to give a deeper insight into how the sign of the current
configuration is calculated. This usually is a non-trivial task and needs to be done
with great care. For the Metropolis algorithm we have found that:

p(k, τ1, . . . , τk) = wloc(k, τ1, . . . , τk)wbath(k, τ1, . . . , τk)dτ1 . . . dτk. (2.44)

We observe that the sign can come from several contributions, which can be divided
into contributions from the local trace and contributions from the hybridization
part. We will first focus on the signs evolving from the local trace and then on the
signs evolving from the hybridization part.
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Sign of the local time ordered Trace sloc
When calculating the local time ordered trace in a straight forward way we may
encounter an overall sign. We will show this for our sample trace in Figure 11.
When applying the time ordering operator the local trace is given by:

wloc = Tr
[
e−βHlocd↑(τ6)d†↓(τ5)d†↑(τ4)d↓(τ3)d↑(τ2)d†↑(τ1)

]
. (2.45)

We now rewrite the time dependent operators in the interaction picture explicitly
according to (1.11), where our time evolution now only covers the local Hamilto-
nian Hloc.

wloc = Tr
[
e−(β−τ6)Hlocd↑e

−(τ6−τ5)Hlocd†↓e
−(τ5−τ4)Hlocd†↑×

e−(τ4−τ3)Hlocd↓e
−(τ3−τ2)Hlocd↑e

−(τ2−τ1)Hlocd†↑e
−τ1Hloc

]
. (2.46)

When writing creation and annihilation operators in the occupation number basis
these operators correspond to sparse matrices. The entries need not be all positive!
We will show this for our 4 dimensional Hilbert space of two flavors, i.e. spin-up
and spin-down. We assume the orthonormal basis:

| 〉 =


1
0
0
0

 |↑ 〉 =


0
1
0
0

 | ↓〉 =


0
0
1
0

 |↑↓〉 =


0
0
0
1

 . (2.47)

We need to choose a sign convention to fulfill the fermionic anti-commutation
relations {di, d†j} = δij, {di, dj} = 0 and {d†i , d

†
j} = 0. One way to go about this,

is to find the correct representation of the annihilation operators first. We add a
sign to di with (−1)N , where N is the number of states k < i being occupied. In
case of having only two spins {↑, ↓} this adds a sign for d↓ |↑↓〉 = − |↑ 〉. Once all
annihilation operators are set up, we find the creation operators by building the
conjugate transpose of the annihilation operators.
With this convention we find:

d↑ =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 d↓ =


0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0

 (2.48)

d†↑ =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 d†↓ =


0 0 0 0
0 0 0 0
1 0 0 0
0 −1 0 0

 . (2.49)

44



If we were to ignore the time evolution in between the matrices, then the product
of our six matrices in the trace would result in a negative sign in one component:

d↑ × d†↓ × d
†
↑ × d↓ × d↑ × d

†
↑ =


0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

 . (2.50)

Let us now focus on why we are allowed to ignore the time evolution in between
the matrices in this case. The time evolution of operators in the local trace is
given by e−τiHloc , where τi > 0. In order to calculate the matrix exponential for
general interactions U , it is convenient to diagonalize Hloc. The matrix exponential
for a diagonalizable matrix A and a diagonal matrix of its eigenvalues D with
A = T−1DT is given by:

esA =
∞∑
n

(sA)n

n!
= sA+

(sA)2

2
+

(sA)3

6
+ . . .

= sT−1DT +
s2

2
T−1DTT−1︸ ︷︷ ︸

1

DT +
s3

6
T−1DTT−1︸ ︷︷ ︸

1

DTT−1︸ ︷︷ ︸
1

DT + . . .

= T−1

(
∞∑
n

(sD)n

n!

)
T = T−1esDT, (2.51)

where s is a scalar. The matrix exponential of a diagonal matrix is the exponential
of each diagonal entry. We usually subtract the lowest eigenvalue in the exponent
to shift our problem relative to the zero-point energy. This is done for the ex-
ponential to stay well-behaved for β → ∞, as otherwise the partition function
Z = Tre−βH =

∑
i e
−βεi diverges.

In any case the time evolution, defined by a matrix exponential, will always stay
positive definite. The sign in the local trace is just a result of the multiplication
done in equation (2.50).

Sign of ordering of Trace into alternating Pairs salt
When not considering the trace in its time ordered form, but the form derived
in the hybridization expansion in formula (1.32), then we are required to write
creation and annihilation operators in alternating order for each flavor:

Z = Zbath

∞∑
k=0

∫ β

τk−1

dτk

∫ β

τk−2

dτk−1 . . .

∫ β

τ1

dτ2

∫ β

0

dτ1×

Trd

[
Tτe

−βHlocdαk(τk)d
†
αk−1

(τk−1) . . . dα2(τ2)d†α1
(τ1)
]
× det ∆. (2.52)
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This is indeed very important and is a result of the hybridization matrix requiring
an alternating order when connecting creation to annihilation operators. This can
be seen in the following example, where we assume two local traces of the form:

Trd1 [dα1(τ4)dα1(τ3)d†α1
(τ2)d†α1

(τ1)] (2.53)

Trd2 [dα1(τ4)d†α1
(τ2)dα1(τ3)d†α1

(τ1)]. (2.54)

We number the creation operators d†α1
(τ1), d†α1

(τ2) with 1, 2 and the annihilation
operators dα1(τ3), dα1(τ4) with 1, 2. The hybridization matrix connects creation
to annihilation operators. We label the rows according to the number of creation
operators and the columns according to the number of annihilation operators.
Both traces Trd1 and Trd2 give a hybridization matrix of the form:

∆ =

(
∆11(τ1 − τ3) ∆12(τ1 − τ4)
∆21(τ2 − τ3) ∆22(τ2 − τ4)

)
, (2.55)

where for now we ignore any possible quantum number violations. In fact in
the density-density case the correct alternating order would be enforced by the
quantum number constraints and equation (2.53) would not be possible. For the
density-density case, we just need to check if each state is filled by segments or by
anti-segments and then add an overall sign for one of the two cases. In the case of
general interactions, the ordering becomes much more important.
Trace Trd1 and Trd2 are equivalent up to a position change of the two operators at
τ2 and τ3 (i.e. before the time ordering sign is applied). This results in a fermionic
sign change due to the anti-commutator. This sign change cannot be recovered
by the hybridization matrix. We can fix this problem by requiring an alternating
order for the operator pairs of the same flavor.
We will now take another look at our example trace in Figure 11. We can observe
that the alternating order d↑d

†
↑ is already fulfilled for the spin-up flavor. The spin

down flavor is not in the required d↓d
†
↓ order and the operators need to be flipped

once, resulting in an overall sign.

Sign of Hybridization Matrix Determinant sdet
The determinant of the hybridization matrix itself can and typically will also
produce a sign, since the hybridization function ∆ is anti-periodic.

Sign of sorting Hybridization Matrix into block structure sblock
The following signs result from the technical implementations of the algorithm. If
we are considering a hybridization, which is diagonal in flavor, then we are able to
build a block diagonal hybridization matrix. In order to exploit the advantages of
calculating the determinant of this block diagonal matrix by just calculating the
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product of the determinant of its sub-blocks, we need to re-sort the hybridization
matrix connected to the time ordered local trace into this form. We pick up a sign
for the exchange of any two operators due to the anti-commutator of fermions. For
our example, this would mean that we sort the hybridization matrix of equation
(2.40) into a block diagonal form by exchanging column 2 and 3:

∆ =

∆11(τ1 − τ2) ∆13(τ1 − τ6) 0
∆21(τ4 − τ2) ∆23(τ4 − τ6) 0

0 0 ∆32(τ5 − τ3)

 . (2.56)

Again this gives us an overall sign.

Sign of Inverse by Partitioning sinv
Another rather technical sign results when calculating the determinant ratio using
inverse by partitioning. For this purpose we sort the newly inserted operators or
the ones to be removed to the back of our determinant block. We pick up a sign
for the exchange of any two operators due to the anti-commutator of fermions. In
order to extract the sign of the current determinant from the determinant ratio,
we need to store the sign of the previous determinant. We cannot directly recover
the correct sign of the determinant from inverse by partitioning.

Total Sign
We are now able to measure the overall sign of our configuration as a combination
of all signs we have discussed:

stot = slocsaltsdetsblock. (2.57)

We point out that sloc, salt and sdet are signs which are encountered in any CT-Hyb
code. The sign sblock is implementation dependent and is generated when exploiting
computationally feasible algorithms. It turns out that the sign is consistent for
all configurations for the single-impurity Anderson impurity model for density-
density type interactions [38]. Empirically it was found for CT-Hyb that the sign
is also very close to being positive for all configurations for the Kondo lattice and
two-orbital models in Reference [27].
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3 Worm Sampling

We will now turn to the main topic of this work. In the last chapter we have
discussed the QMC algorithm in its hybridization expansion. Instead of using
importance sampling in the partition function space CZ , we will now sample in the
Green’s function space CG(n) . In principle, worm sampling allows us to insert any
combination of operators into the local trace and we are not necessarily limited to
Green’s function operators. In that sense it is a much more general concept than
what will be explained here. Worm sampling algorithms play a minor role in the
QMC community. Early worm algorithms for Hirsch-Fye can be found in [39] and
for CT-QMC in [40]. Newer implementations can be found in [26] and especially
in the CT-Bold algorithm in [41]. To our knowledge the worm algorithm has not
yet been implemented to measure two-particle quantities.

3.1 Motivation

Before going into any theoretical details we will give a short motivation why we
attempt to measure Green’s functions G(n) with worm sampling. When measuring
the Green’s function G(1)(τ) in partition function space CZ the estimator takes on
the form:

G
(1)
CZ (τ) = 〈

∑
ij

det ∆(ij)

det ∆
sgn · δ(τ, τi − τj)〉MC , (3.1)

where ∆(ij) is the hybridization matrix with the i-th row and j-th column re-
moved. This estimation by means of a reduced hybridization matrix reveals a
first shortcoming of the estimator: the estimator in equation (3.1) fails for strong
insulating cases, since in this case only very few operators are found in the trace
and few hybridization lines are present. We will see that the estimator of worm
sampling does not depend on the determinant ratio of the hybridization matrix.
This suggests that the estimator of worm sampling does a better job in sampling
strong insulating cases. We would like to make the reader aware of one method
to improve the estimator in partition function sampling, sometimes referred to as
remove-shift measurement (or sliding measurement), which has been implemented
for density-density codes [42]. In this approach the creation and annihilation oper-
ators with no hybridization lines attached are shifted inside the trace. As a result,
each Green’s function contribution includes more information than a δ-function
measurement does.
When viewing the estimator in equation (3.1) we further observe that we are
restricted to diagrams produced by partition function sampling. For diagonal
hybridization functions we are not able to calculate off-diagonal Green’s function
contributions with this estimator. While off-diagonal contributions do not exist
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Figure 17: Illustration of the Monte Carlo moves in each configuration space CZ
and CG(n) and the transition moves ”worm insert” and ”worm remove”.

for the one-particle Green’s function G(1) they exist for the two-particle Green’s
function G(2), when assuming interactions that are not only of density-density
type. When extracting the self-energy Σ(iω) not by the Dyson equation, but
through the equation of motion, a better high-frequency behavior was observed.
This method is usually referred to as improved estimators and has so far only
been implemented for density-density interactions [43]. Off-diagonal contributions
of the Green’s function become especially important when implementing improved
estimators for two-particle quantities. A long-term goal would be to extract the
fully irreducible vertex Λ from the QMC data with the correct high-frequency
behavior using these new improved estimators. This is needed for methods such
as DΓA [10], requiring Λ properly calculated with QMC algorithms.

3.2 Ergodicity in CZ and CG(n)

As already mentioned, in this work we will restrict ourselves to sampling the
one-particle Green’s function G

(1)
α1α2(τ1, τ2) and the two-particle Green’s function

G
(2)
α1α2α3α4(τ1, τ2, τ3, τ4), as illustrated in Figure 17.

Restricting our Worm sampling to the Green’s functions space CG(n) has two rea-
sons: (1) the one and two-particle Green’s functions include almost all relevant
information about the quantum impurity. Knowing these two functions allows us
to calculate self-energies, susceptibilities, etc. (2) when sampling the one- and two-
particle Green’s function, we can easily check our results against the measurements
in the partition function space CZ (especially with regards to the normalization).
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Comparing the two sampling methods in CZ and CG(n) then allows us to assess the
advantages and disadvantages of each method.
In Figure 17 we have illustrated the configuration space of the partition function
CZ and the configuration space of a general Green’s function CG(n) . We included
all steps needed to be ergodic and to decrease auto-correlation lengths in both
configuration steps. The pair insertion and removal steps in CZ were already
discussed in the previous chapter. There we have also introduced the operator shift
move for CZ . We will now give a short summary of all other steps mentioned in the
illustration. We can set up a modified partition function ZG(n) in the configurations
space CG(n) by integrating over all degrees of freedom of the Green’s function
G(n) [26]:

ZG(n) :=

∫∑
G(n)
α1,...,αn

(τ1, . . . τn) =
∑

α1,...,αn

∫
τ1

. . .

∫
τn

G(n)
α1,...,αn

(τ1, . . . τn). (3.2)

We stress that this is not a ”physical” partition function in the sense that it has
the same meaning as Z. We define ZG(n) to make the two configuration spaces CZ
and CG(n) comparable.

3.2.1 Worm Insertion and Removal Steps

The worm insertion and removal steps are transition steps between the two config-
uration steps. In order to sample in CZ and CG(n) we need to switch between these
configuration spaces. We will give a more detailed discussion why it is necessary
to sample in both spaces in the next section. We further assume that the config-
uration spaces CZ and CG(n) may have very different values for their probability
density function. We balance these difference by introducing a weighting factor η:

W = Z + ηZG(n) . (3.3)

Then our combined sampling space takes on the form:

C = CZ ∪ CG(n) . (3.4)

For now we have not formalized how η scales with the number of orbitals, tem-
perature and interaction strength. It is best to choose η, such that we spend and
equal amount of steps in CZ and CG(1) . We will revisit this fact when discussing the
normalization of the worm result in the following section. We illustrate a worm
pair of two operators in a local trace in the Figure 18.
We would like to point out that the only difference between worm operators and
existing operators is the missing of hybridization lines. This has some implications
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Figure 18: Illustration of a worm pair marked in green inside a local trace. Oper-
ators in grey represent operators with hybridization lines connected.

for our Metropolis acceptance rates. The proposal rate of inserting a worm is given
by the same expression as the proposal rate of inserting a regular operator pair:

f(CZ → CG(1)) =
dτ 2

β2
. (3.5)

Adding a worm pair results in the expansion order k/2 of the local trace being
increased by 1, whereas the expansion order in the determinant is kept constant.
This adds an ambiguity to the expansion order, which we need to keep in mind.
The weight of a configuration in CG(n) modified by η is then:

p(CG(1) , τ1, . . . , τk; τi, τj) =

η · wloc(k + 2, τ1, . . . , τk; τi, τj)wbath(k, τ1, . . . , τk)dτ1 . . . dτk. (3.6)

We point out that combining the proposal probability and the configuration of the
weight, the two infinitesimals dτ do not cancel as they would have in partition
function sampling. This is an artifact of how measurement and sampling are
split in partition function sampling and how they are split in worm sampling. In
fact, we encounter a similar problem when measuring the Green’s function G(1) in
partition function space. We identify the two infinitesimals dτ with belonging to
the binning procedure during measurement in τ or belonging to the integration
variables during the measurement in iω when Fourier transforming. The proposal
probability for removing the worm is simply:

f(CG(1) → CZ) = 1. (3.7)

Note, since there is only one worm in the trace at the same time, we will always
propose to remove exactly this worm. For the Metropolis acceptance rate we hence
find:

a(CZ → CG(1)) = min

(
1, η · |wloc(k + 2, τ1, . . . , τk; τi, τj)|

|wloc(k, τ1, . . . , τk)|
· β2

)
. (3.8)

We observe that the bath weight wbath, which includes the hybridization matrix,
cancels out due to the fact that the bath remains unchanged.
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The inverse gives the acceptance probability of a worm removal:

a(CG(1) → CZ) = min

(
1,

1

η
· |wloc(k, τ1, . . . , τk)|
|wloc(k + 2, τ1, . . . , τk; τi, τj)|

· 1

β2

)
. (3.9)

The same is true for adding two worm operator pairs to the trace, which would
result in sampling two-particle quantities. The acceptance rate for the worm in-
sertion move are then given by:

a(CZ → CG(2)) = min

(
1, η · |wloc(k + 4, τ1, . . . , τk; τp, τq, τr, τs)|

|wloc(k, τ1, . . . , τk)|
· β4

)
. (3.10)

The acceptance rate for the worm removal move is given by:

a(CG(2) → CZ) = min

(
1,

1

η
· |wloc(k, τ1, . . . , τk)|
|wloc(k + 4, τ1, . . . , τk; τp, τq, τr, τs)|

· 1

β4

)
. (3.11)

In principle, we are allowed to absorb the factor 1/β2n for the Green’s function
G(n) into the weighting factor η.

3.2.2 Pair Insertion and Removal Steps in CG(n)

In order to determine the likelihood of a worm configuration we need to do ad-
ditional sampling in the Green’s function space CG(n) . This is a very crucial part
of worm sampling. If we forget to sample in Green’s function space then we sim-
ply jump back and forth between CZ and CG(n) , we increase our auto-correlation
length to a point, where we start to violate ergodicity. We remind the reader of
the expectation value:

〈O(τ)〉 =
1

Z
Tr
(
Tτe

−βHO(τ)
)
. (3.12)

When sampling in the space of the operator O, we effectively sample the partition
function with the additional local operator O in the trace. This explains why
we are required to sample the Green’s function space CG(n) with operators having
hybridization lines attached. Acceptance rates look identical to acceptance rates
in CZ space:

a(CG(1) ; k → k + 2) = min

(
1,
|wloc(k + 4, τ1, . . . , τm, . . . , τn, . . . τk; τi, τj)|

|wloc(k, τ1, . . . , τm, . . . , τn, . . . τk)|
×

|wbath(k + 2, τ1, . . . , τk; τi, τj)|
|wbath(k, τ1, . . . , τk)|

β2

((k + 2)/2)2

)
, (3.13)

52



Figure 19: Illustration of the ergodicity problem of a sample trace with many
operators. Inserting a worm into the upper trace is relatively easy. Inserting a
worm into the lower trace may be forbidden due to quantum number violations.

where the worm operators are at times τm, τn. The Metropolis acceptance rate for
a pair removal in the Green’s function space is then just given by the inverse:

a(CG(1) ; k + 2→ k) = min

(
1,

|wloc(k, τ1, . . . τm, . . . , τn, . . . τk)|
|wloc(k + 4, τ1, . . . τm, . . . , τn, . . . τk; τi, τj)|

×

|wbath(k, τ1, . . . , τk)|
|wbath(k + 2, τ1, . . . , τk; τi, τj)|

((k + 2)/2)2

β2

)
. (3.14)

We remind the reader of the fact that the local weight wloc in equation (3.13)
and (3.14) is expressed relative to a factor k + 4, while the bath weight wbath is
expressed relative to a factor k + 2. The ambiguity comes from the two worm
operators in the local trace without hybridization lines. Finally, we mention that
an equal expression for worm inserts and removes with four times for the worm
operators is found in CG(2) .

3.2.3 Worm Replacement Step in CG(n)

We have introduced operator shift moves in the previous chapter in order to de-
crease auto-correlation times. In the partition function space CZ this move may be
considered as an optional step. Sampling in CZ will be ergodic, even if we ignore
operator shifts, and just allow for pair inserts and pair removes. In worm sampling
a shift step is not optional and is required for acceptable auto-correlation lengths.
We will elaborate on this requirement here. Assume a local trace filled with hy-
bridization operator pairs as the one illustrated in Figure 19. We now attempt to
insert a worm pair into this trace. It turns out that inserting a worm pair, where
the worm operators are relatively close to one another is probable, while inserting
a worm pair where the worm operators are far apart is less probable. This is be-
cause quantum number violations may occur in the second case, while inserting a
density pair (like in the first case) is usually possible.
The problem is especially severe for a large amount of operators in the trace, which
occurs at small interaction or high temperatures. Additionally, very restrictive
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Figure 20: Illustration of the exchange procedure of a worm operator at τ1 with
an operator of the same flavor with hybridization line at τ0. The local trace stays
the same but the hybridization matrix has to be rebuild.

interaction types, such as the density-density interaction, produce more rejects due
to quantum number violations of attempted inserts. This way we do not observe
this auto-correlation problem at high temperatures, high interaction parameters
and more general interactions such as Slater-Kanamori interactions (see Section
4.1.2 for results).
The solution to this problem is found in shift moves. In its more general form
shift moves are computationally expensive, as we need to recalculate the local
trace if we shift an operator from τi → τ ′i . While calculating the time evolution is
still very simple if the shift move does not jump over operators, it becomes more
expensive if operators actually switch position. For this matter we will modify the
concept of shift moves in the following. Instead of allowing for continuous shifts,
we allow only for discrete shifts of worm operators in imaginary time. Specifically,
the discrete shift refers to an exchange of a worm operator with an operator of the
same flavor, which has a hybridization line connected as illustrated in Figure 20.
This way we do not have to recalculate the local trace, as two locally indistinguish-
able operators switch position. Instead we need to recalculate the determinant of
the hybridization matrix, as the exchange corresponds to a shift of the worm oper-
ator and a shift of the hybridization operator. Further we will not encounter any
rejects of proposed moves due to local quantum number violations. It may seem
that using exchange moves instead of proper shift moves is a limitation. We will
show, however, that exchange move work specifically well for a very high num-
ber of operators with hybridization lines. This however is also the region, where
we encounter the most severe auto-correlation length problems (i.e. ergodicity
problems) due to quantum number violations.
It turns out, however, that worm replacement moves (or in the same way worm
shift moves) are equally important for traces with very few operators. This occurs
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Figure 21: Illustration of the exchange procedure of a worm operator at τ1 with
an operator of the same flavor with hybridization line at τ0 for a trace with few
operators. The worm pair and the hybridization operator pair are inserted as
density-like pairs. The replacement move generates a worm of length close to β

2
.

if the interaction approaches the atomic limit. We are then restricted to inserting
operator pairs into the trace, where the operators are very close to each other.
These pairs have similar properties as density operators and can in principle be
inserted for very high insulating cases. On the other hand, the high interaction
strength does not allow for inserting operator pairs where τ is close to β

2
.

Operator pairs, where τ is close to β
2

are not inserted due to both the local time
evolution, which goes with e−Uτ , and the strong insulating hybridization function.
By inserting density-like pairs at short distances τi − τj and then exchanging a
worm operator with a hybridization operator we are able to pass this restrictions
of the time evolution (Figure 21). The replacement move only depends on the
ratio of the determinant of the hybridization matrix. We will show this in the
following.
The proposal probability is similar to the proposal probability of a shift move:

f ′(CG(1) , k → k) =
1

2(k/2)
. (3.15)

This corresponds to selecting one of the two worm operators at random and select-
ing one operator of the same flavor with a hybridization line (we choose an operator
from the k/2 operators of the same type (annihilator/creator) and then discard
flavors, which are not equivalent to the worm flavor). The proposal probability of
switching the operators back to their original position is given by:

f(CG(1) , k → k) =
1

2(k/2)
. (3.16)

We observe that the proposal probabilities for the replacement move cancel out
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and the acceptance ratio is fully determined by the ratio of weights:

a′(CG(1) , k → k)

a(CG(1) , k → k)
=
|wloc(k + 2, τ1, . . . , τi, . . . , τj, . . . , τk)wbath(k, τ1, . . . , τi, . . . , τk)|
|wloc(k + 2, τ1, . . . , τi, . . . , τj, . . . , τk)wbath(k, τ1, . . . , τj, . . . , τk)|

,

(3.17)
where τi refers to the initial position of the worm and τj to the initial position of
the operator with the hybridization line. The replacement move is fully determined
by the determinant of the hybridization matrix as the local weight cancels. The
Metropolis acceptance rate is given by:

a′(CG(1) , k → k) = min

(
1,
|wbath(k, τ1, . . . , τi, . . . , τk)|
|wbath(k, τ1, . . . , τj, . . . , τk)|

)
. (3.18)

Up to this point we have stated that shift moves and replacement moves are some-
what similar. We would like to use the opportunity to point out the difference
between a worm replacement and a worm shift move. The acceptance rate of
the worm replacement move depends on a determinant ratio of two matrices of
dimension (k/2 × k/2), where k here refers to the number of operators with hy-
bridization lines connected. In that sense it is very comparable to the determinant
ratio in estimator of partition function sampling of two matrices of dimension
(k/2 − 1 × k/2 − 1) and (k/2 × k/2) in equation (3.1). The acceptance rate of a
worm shift move, on the other hand, only depends on the ratio of the local traces.
While for the worm replacement move we are able to pass the restrictions of the
local time evolution, for the worm shift move we are able to pass the restrictions of
the hybridization function. When calculating strong insulating cases we profit the
most if we consider both moves. Implementing a proper shift move is left however
for the future.

3.3 Worm Measurement

We will now show how the measurement of Green’s function looks in CG(n) . It
turns out that the measurement itself is trivial and we only need to find the
correct normalization of the Green’s functions measured and the correct sign. For
the one-particle Green’s function G(1) a worm is defined by the operators d(τi)
and d†(τj). The correct weight is intrinsically given as we sample in the Green’s
function space CG(n) . Thus, the estimator of the Green’s function simply follows
as:

G
(1)
CG(τ) = 〈sgn · δ(τ, τi − τj)〉MC . (3.19)

The Green’s function in Matsubara frequencies can be calculated by substituting
the δ-function by the Fourier transform:

G
(1)
CG(iω) = 〈sgn · eiω(τi−τj)〉MC . (3.20)
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Figure 22: Illustration of a Markov chain in the configuration spaces CZ and CG(n) .
We extract the normalization factor 1

Z
for the Green’s functions by counting how

many steps are made in CZ .

Both expressions 3.19 and 3.20 are not normalized to Z, but rather ZG(1) as defined
in equation (3.2). The measurement of the two-particle Green’s function G(2) is
done in the same way. We will now discuss the normalization and the sign in more
detail.

3.3.1 Normalization

For now we have not given any reason why we need to sample in CZ . One could
assume, that measuring in CG(n) is enough and we do not need to move back and
forth between CG(n) and CZ . This is a fair assumption, since in principle we are
ergodic in G(n), when assuming Worm replacement or Worm shift moves. It turns
out that we need to sample both in CG(n) and CZ with about the same number of
steps to fix our normalization, as the thermal expectation value is given by:

〈O(τ)〉 =
1

Z
Tr
(
Tτe

−βHO(τ)
)
. (3.21)

As we are not sampling in the partition functions space CZ any more, we need
to consider the factor 1

Z
explicitly. We do this by sampling in both spaces. We

illustrate this in Figure 22.
When measuring the Green’s functions in CG(n) we implicitly normalize with the
number of steps taken in CG(n) . We correct for this factor by explicitly counting
how many steps NG were taken in CG(n) . We further count how many steps NZ

were taken in CZ . This estimates the size of the configuration space CZ , which then
gives the correct normalization. The normalization for G(n) is then given by [41]:

G(n) =
1

η

NG

NZ

G
(n)
CG , (3.22)
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where G
(n)
CG is measured in CG(n) and the factor 1/η is a result of rescaling ZG(n) in

equation (3.3).
We point out that in order to calculate the Monte Carlo expectation value, we
still need to divide the result by the number of measurements N taken. It is
important to notice the difference between the number of measurements N and
the number of steps NG and NZ taken. We observe the difference when dealing
with auto-correlation lengths greater than a single Monte Carlo step (which is
usually always the case). The auto-correlation length in worm space CG(n) looks
very different from the auto-correlation in partition function space CZ . We need
a more elaborate scheme to consider the auto-correlation length in worm space.
Simply skipping an amount of steps close to the auto-correlation length before
measuring the configuration again, as it is done in partition function sampling,
may ignore certain worm configurations fully. We leave this task for the future.
Before turning to the discussion of the worm sign, we mention that equation (3.22)
is only one way of normalizing the worm measurement. In a different scenario, we
could imagine to do the entire sampling in worm space, without removing the
worm operators at all. We are then required to generate worm configurations by
shift moves and replacement moves. In this case, we would need to normalize the
result by assuming some physical knowledge of the Green’s functions behavior.
One possibility is to extract the normalization by assuming the correct behavior
of the asymptotics of G(1)(iω) and G(2)(iν, iν, iω).

3.3.2 Worm Sign

We have already discussed the QMC sign in the previous chapter for the hybridiza-
tion expansion. We will now return to this discussion once more, as we have now
introduced worm operators into our local trace. These operators are local opera-
tors, which contribute to the sign of the configuration and need to be considered
carefully. We will now give a short summary of how the existing sign is changed
by the worm operators.

Sign of the local time ordered Trace sloc
From a local viewpoint we are not able to distinguish worm operators and operators
with a hybridization line connected. As a result the time evolution of the local
time ordered trace may in principle generate a sign. We make the reader aware
of this sign as the contribution from the worm may not be compensated by the
hybridization function.

Sign of ordering of Trace into alternating Pairs salt
We remind the reader of the sign contribution from ordering the local trace into
alternating pairs. This accounts for the fact that the hybridization matrix only
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connects annihilation to creation operators and not annihilation to annihilation
operators or creation to creation operators. The worm operators are not included
in this sorting procedure and need to be sorted to the beginning or to the end of
the trace. This way the sorting into alternating pairs of creation and annihilation
operators is not changed by the occurrence of worm operators in the trace.

4 Results

In this chapter we will present the results of calculating G(1) (in imaginary time
and Matsubara frequencies) and G(2) (in Matsubara frequencies) with the worm
algorithm. We will compare the outcome to the results found using partition
function sampling. We observe that the two methods agree very well with one
another.
We calculate the results on the Anderson impurity model and DMFT Bethe lattice
with an energy scale determined by the half-bandwidth D = 1 (unless otherwise
stated). Different interaction strengths (from metallic to insulating) and interac-
tion types (density-density and Slater-Kanamori) and different temperatures are
considered. Calculations are generally done out of half-filling Moving away from
half-filling further reveals differences between worm sampling and sampling in par-
tition function space.

4.1 One-Particle Green’s Function G(1)

In this section we summarize all results of G(1). As reference, we always supply
the results of G(1) measured in partition function space as well. The results are
presented in the following way: first we establish by what means we are allowed to
compare the measurement of G(1) made in worm space and in partition function
space. Then we revisit the ergodicity problem in worm space solved by worm
replacement steps. We do this using single-shot QMC calculations. Following
this, we benchmark the worm algorithm with reference to the measurement in
partition function space in the metallic case and close to the Mott metal-insulator
transition. This will require us to use the DMFT self-consistency loop. Once
we have shown that the worm measurement gives correct results, we show how
it performs for strong insulating systems approaching the atomic limit. Lastly,
we show results of how the worm algorithm performs for more orbitals and more
general interaction types.
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4.1.1 Simulation Time and Measurement Steps

In order to explore the strengths and weaknesses of the worm algorithm over
conventional methods of CT-Hyb, we are required to look at the differences in the
errorbars generated. When measuring G(1)(τ) in the partition function space the
estimator takes on the form:

G
(1)
CZ (τ) = 〈

∑
ij

det ∆(ij)

det ∆
sgn · δ(τ, τi − τj)〉MC , (4.1)

where ∆(ij) is the hybridization matrix with the i-th row and j-th column removed.
This means, that we measure (k/2)2 contributions to the Green’s function during
each measurement step, where k/2 is the expansion order.
When measuring G(1)(τ) in Green’s function space, the estimator takes on the
form:

G
(1)
CG(τ) = 〈sgn · δ(τ, τi − τj)〉MC . (4.2)

This means, that we measure only one contribution to the Green’s function during
each measurement step. We observe that the measurement in partition function
space includes more information for higher expansion orders k/2 than the mea-
surement in worm space. However, the measurement in partition function space
also takes significantly longer for higher expansion orders as we have to loop over
all possible combinations of operators (computing the determinant ratio is not an
issue due to the fast determinant updates by inverse by partitioning).
In Figure 23 we show the differences in the errorbars of worm sampling and par-
tition function sampling for the Anderson impurity model with a single-orbital
Bethe lattice as bath for an equal number of measurement steps on a logarithmic
scale. The interaction is set to density-density with U = 0.5D, the chemical po-
tential to µ = 0.3D and the inverse temperature to β = 200/D. The parameters
are chosen such that the expansion order is high (k/2 ∼ 40). The parameter η is
set to η = 0.15/β, which assures that we spend an equal amount of time in CZ and
CG(1) .
For an equal amount of measurement steps in worm sampling and partition func-
tion sampling we observe smaller error bars in the measurement made in partition
function space. This can be explained by the high expansion order. The estimator
in partition function space given by equation (4.1) considers all (k/2)2 possible
pairs at each measurement step. The estimator in worm space given by equation
(4.2) only considers one operator pair (i.e. the worm) at each measurement step.
In Figure 24 we repeated the measurement with the same parameters. Instead of
fixing the number of measurement steps, we fix the simulation time. The worm
measurement is faster than the partition function measurement. We observe that
the errorbars are comparable for a similar simulation time. We conclude that
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Figure 23: Errorbars of G
(1)
↑↑ (τ) on a logarithmic y-scale using partition function

sampling (red crosses) and worm sampling (green pluses) for an equal amount of
measurement steps in each space.
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Figure 24: Errorbars of G
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↑↑ (τ) on a logarithmic y-scale using partition function

sampling (red crosses) and worm sampling (green pluses) for a similar simulation
time in each space.
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we are able to compare the results of the worm algorithm to the results of the
conventional method in CT-Hyb by assuming equal simulation times. In the above
calculation we enabled worm replacement steps. In the next section we will show
why worm replacement steps are necessary for ergodicity.

4.1.2 Worm Replacement Steps

In the previous chapter we have discussed some ergodicity problems of worm sam-
pling. For high expansion orders it is difficult to insert worms, where operators are
separated by a length close to β/2. In Figure 25 we show this problem. We have
used the same parameters to generate high expansion orders as in the previous
section 4.1.1. We use a density-density interaction with U = 0.5D, µ = 0.3D and
β = 200/D. The average expansion order is k/2 ∼ 40. We have disabled replace-
ment steps and adjusted η to η = 0.22/β. This assures that we spend an equal
amount of steps in each space.
We observe that we are restricted to inserting worm operators, which are very close
to one another. At around τ = 30 and τ = 170 the auto-correlation (ergodicity)
problem kicks in and the error in the estimator becomes very large (see Figure 25).
The asymmetry between the fluctuations around τ = 30 and τ = 170 follows from
the fact that the calculation is done out of half-filling. In between this interval we
are not able to insert any worms into the trace. In Figure 26 we propose worm
replacement moves with a probability of 0.3 at η = 0.15/β. We observe that
the auto-correlation (ergodicity) problem vanishes and that we are now able to
generate worm operators with a length close to β/2.
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Figure 25: G
(1)
↑↑ (τ) (without errorbars) using partition function sampling (red

crosses) and worm sampling (green pluses) without replacement steps.
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4.1.3 Metallic Systems

We now show how the worm algorithm performs in the DMFT loop. First we cal-
culate a metallic system with U = 1.0D, µ = 0.6D, β = 50/D for the single-orbital
Bethe lattice. We use 10 DMFT self-consistency steps and check for convergence
by looking at the self-energy. For the worm algorithm we further set the probabil-
ity of worm inserts and removes to 0.1 and the probability of worm replacement
moves to 0.2. The remaining probability is equally distributed for inserts and re-
moves of operator pairs with hybridization lines. By setting η = 2.2 · 10−1/β, we
assure that we spend an equal amount of steps in each space.
In Figure 27 we show how G(1) looks after the DMFT self-consistency. The error-
bars for worm sampling and partition function sampling look comparable. Smaller
errorbars in partition function sampling are a consequence of using the Fourier
transform of a Legendre filtered G(1) for the self consistency loop [29].
When looking at the momentum integrated spectral function A(ω) in Figure 28
we find good agreement between the result from sampling G(1) in worm space and
in partition function space. The single well-defined peak characterizes the system
as being metallic. Small differences in A(ω) are a consequence of the differences
in the errorbars in G(1).
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Figure 28: A(ω) resulting from analytic continuation of G(1)(τ) in Figure 27.
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4.1.4 Systems close to the Mott Metal-Insulator Transition

We will now continue to benchmark the worm algorithm in the Mott metal-
insulator transition. The parameters of the system we look at are given by
U = 2.4D, µ = 1.3D and β = 50/D. Again, we use 10 DMFT self-consistency
steps and check for convergence by looking at the self-energy. For the worm al-
gorithm we set the probability of worm inserts and removes to 0.1 and the prob-
ability of worm replacement moves to 0.2. The remaining probability is equally
distributed for inserts and removes of operator pairs with hybridization lines. By
setting η = 3.0 ·10−1/β, we assure that we spend an equal amount of steps in each
space.
When looking at G

(1)
↑↑ (τ) in Figure 29 we find good agreement between the results

from sampling in worm space and sampling in partition function space. We also
find that the errorbars are in good agreement for the two Green’s functions. From
this data we produce the momentum integrated spectral function A(ω) in Figure
30. The two distinct peaks forming correspond to the Hubbard bands, in between
there is a sharp Kondo peak. When looking at the spectral function A(ω) we can
see that the system is still on the metallic side, but the sharpness of the Kondo
peak indicates that the Mott metal-insulator transition occurs for a slightly larger
U . Sampling in worm space and partition function space gives a comparable result.
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Figure 30: A(ω) resulting from analytic continuation of G(1)(τ) in Figure 29.
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4.1.5 Approaching the Atomic Limit

We now show how the worm algorithm performs in the strong insulating case. We
set the parameters of the system to U = 5.0D, µ = 2.6D and β = 50/D for the
single-orbital Bethe lattice. We use 10 DMFT self-consistency steps, expecting to
find a Mott insulator. At this point we will no longer use the Legendre filtered
G(1)(τ) for the Green’s function measurement in partition function space, which
then enters the DMFT loop after Fourier transformation, but rather use the direct
Fourier transform of G(1)(τ). While for the metallic case we do not expect any
differences between the Legendre filtered Green’s function and the measurement
through binning, we find artificial periodic structures for the strong-insulating case
on a logarithmic scale, which we want to avoid. For the worm algorithm we set
the probability of worm inserts and removes to 0.2 and the probability of worm
replacement moves to 0.3 and η = 1.4/β. We choose a slightly higher probability
for worm replacement moves with respect to the previous runs, since the histogram
of the average expansion order is more localized. Due to higher acceptance rates,
it is better to allow for more replacement moves than insert moves.
In Figure 31 we show the strong insulating Green’s function G(1)(τ) for the above
parameters. We see good agreement between the measurement in partition func-
tion space and worm space. When viewing the momentum integrated spectral
function A(ω) in Figure 32, we find two distinct peaks separated by U , resulting
in a Mott insulator.
In Figure 33 we show the strong insulating Green’s function G(1)(τ) on a logarith-
mic y-scale. We observe that both, worm sampling and sampling in partition func-
tion space, produce fluctuating errorbars. This can be explained by the fact that
the hybridization function does not allow for any operator pairs to be inserted near
β/2. Also in the region, where the second derivative of the hybridization function
changes the most, larger errorbars can be observed. On first sight, the errorbars
of worm sampling look worse than the errorbars of partition function sampling.
However, we assume that the errorbars in partition function space towards β/2
are too small and are a result of ergodicity problems of the estimator.
In Figure 34, the Green’s function =(G

(1)
↑↑ (iω)) is shown as a function of Matsubara

frequencies without possible discretization errors. We find good agreement between
worm sampling and sampling in partition function space. We observe that the
worm algorithm converges faster than the conventional algorithm. In Figure 35,
we show =(G

(1)
↑↑ (iω)) after 4 DMFT iterations. At this point the self-energy jumps

quite rapidly.
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Figure 31: G
(1)
↑↑ (τ) for the strong insulating case with errorbars using partition

function sampling (red crosses) and worm sampling (green pluses) after 10 DMFT
steps.
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↑↑ (iω)) for the strong insulating case with errorbars using partition
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4.1.6 Multi-Orbital Slater-Kanamori Results

In this section we present some results from sampling the Green’s function G(1) of
a multi-orbital system with Slater-Kanamori interaction parameters. The Slater-
Kanamori Hamiltonian was already presented in Equation (1.8). We will calculate
a two-orbital Bethe lattice with two different bandwidths. We set the parameters
according to Reference [27], where the same calculation has already been made.
That is, we set D1 = 1.0 for the first orbital and D2 = 2.0 for the second orbital.
We choose U = 3.0D1 and J = 0.75D1, and use U ′ = U − 2J = 1.5D1. The
inverse temperature is set to β = 100/D1. The half-filling condition for the Slater-
Kanamori case is given by µ = 3

2
U − 5

2
J resulting in µ = 2.625D1. For the

worm algorithm we set the probability of worm inserts and removes to 0.1 and the
probability of worm replacement moves to 0.2. By setting η = 3.25 · 10−1/(2β),
we assure that we spend an equal amount of steps in each space (the factor 2 is
an attempt to scale η with the number of orbitals). During the discussion of the
results of the two-particle Green’s function obtained using worm sampling in the
next section, we suggest defining two different η-values for this system, since the
two bands are quite different.
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In Figure 36 we observe a strong insulating Green’s function G1(τ) for the second
orbital. We also see that the first orbital is less insulating. However from Figure
36, we cannot verify if the first orbital is metallic or undergoing a transition.
In Figure 37 we supply the momentum integrated spectral function for the two
orbitals. We can now verify that the first orbital is metallic, close to the Mott
metal-insulator transition, while the second orbital is clearly isolating. Worm
sampling and sampling in partition function space give very similar results for
both orbitals.
We observe differences in the height of the peaks of the insulating orbital of the
momentum integrated spectral function A(ω) between worm sampling and sam-
pling in partition function space. These deviations result from variations of the
errorbars of G1(τ). A better spectral function can be extracted with the Maximum
Entropy method, when repeating this run with higher statistics. The momentum
integrated spectral function of the worm result is more credible, since the two
peeks are symmetric, which is what we expect in the half-filled case.

4.2 Two-Particle Green’s Function G(2)

We now show the results of measuring the two particle Green’s function G(2) using
worm sampling and sampling in partition function space. The results are presented
in the following way: we will measure the two-particle Green’s function G(2) for a
metallic and a strongly insulating single-orbital Bethe lattice. Afterwards, we will
measure G(2) for a two-orbital Bethe lattice with Slater-Kanamori interaction. All
measurements in this section are based on converged DMFT results.

4.2.1 Metallic Systems

First, we calculate the two-particle Green’s function G(2) for the converged DMFT
results of the metallic case introduced in the previous section. The system is
defined by U = 1.0D, µ = 0.6D, β = 50/D. For the worm algorithm we set the
probability of worm inserts and removes to 0.1 and the probability of worm replace-
ment moves to 0.2 and η = 7.5 · 10−4/β. The Green’s function is calculated for 80
fermionic Matsubara frequencies iν, iν ′ = [−79π

β
, 79π

β
] and one bosonic Matsubara

frequency iω = 0. In order to compare the errorbars of G(2) in worm sampling to
the measurements in partition function space we need to produce two-dimensional
slices of G(2), which we do by fixing two of three Matsubara frequencies. In Fig-
ure 38 we have fixed iω = 0. We illustrate how fixing the fermionic Matsubara
frequency iν ′ gives us a single slice of G(2).
When looking at the slices <(G

(2)
↑↑↑↑(iν,

π
β
, 0)) in Figure 39 and <(G

(2)
↑↑↓↓(iν,

π
β
, 0))

in Figure 40 we observe that worm sampling and sampling in partition function
space are in good agreement for the metallic case.
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Figure 38: <(G
(2)
↑↑↑↑(iν, iν

′, iω = 0)) in the particle-hole convention with the ampli-
tude encoded in false colors according to the bar at the right-hand side. A slice at
the fermionic frequency iν ′ = π

β
is marked in green.
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′ = π
β
, iω = 0)) with errorbars for the single-orbital,

metallic case comparing partition function sampling and worm sampling.

4.2.2 Approaching the Atomic Limit

We now calculate the results of the two-particle Green’s function G(2) for the
converged DMFT results of the Mott insulating case, at U = 5.0D, µ = 2.6D, β =
50/D. For the worm algorithm we set the probability of worm inserts and removes
to 0.1 and the probability of worm replacement moves to 0.2 and η = 4.7 · 10−2/β.

While the <(G
(2)
↑↑↑↑(iν,

π
β
, 0)) slices of worm sampling and sampling in partition

function space in Figure 41 agree very well, we observe large deviations in the
<(G

(2)
↑↑↓↓(iν,

π
β
, 0)) slices in Figure 42. We remind the reader that these deviations

are not present in the metallic case.
The mean expansion order of this system is k/2 = 1. As a consequence, there is
on average a single operator-pair in the trace. However, the two-particle Green’s
function measurement requires at least two operator-pairs. This makes partition
function sampling highly inefficient. A first check to verify if the estimator breaks
down, is to increase the expansion order and repeat the measurement in the Mott
insulating case. We do this by increasing the inverse temperature to β = 100/D
and assuming a lower Coulomb repulsion U = 3.0D, with µ = 1.6D. For the worm
algorithm we adjust η = 7 · 10−3/β. The result is shown in Figure 43. We observe
that the deviations cannot be explained by a break-down due to the low expansion
order. We suggest comparing the ↑↑↓↓-component to exact diagonalization results.
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4.2.3 Multi-Orbital Slater-Kanamori Results

In this section we present some results from sampling the Green’s function G(2)

of a multi-orbital system with Slater-Kanamori interaction parameters. Again, we
will calculate a two-orbital Bethe lattice with two different bandwidths. Instead of
assuming the same interaction parameters as defined for the one-particle Green’s
function measurement, we now assume a system, where both bands are metallic.
We do this to avoid the deviations between worm sampling and sampling in par-
tition function space identified in the previous section. The parameters are set
to D1 = 1.0 for the first orbital and D2 = 2.0 for the second orbital. We choose
U = 1.0D1 and J = 0.25D1, and U ′ = U − 2J = 0.5D1. The inverse temperature
is set to β = 100/D1 and the half-filling condition for the Slater-Kanamori case is
given by µ = 3

2
U − 5

2
J resulting in µ = 0.875D1. For the worm algorithm we set

the probability of worm inserts and removes to 0.6 and the probability of worm
replacement moves to 0.2. We have chosen a significantly higher probability for
worm inserts and removes at this point to account for the asymmetry of the two
bands. This way we are able to counter higher rejection rates of worm operators
for the second band. As a result, we set η = 2 · 10−4/(2β) (the factor 2 is an
attempt to scale η with the number of orbitals).
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Slater-Kanamori case comparing partition function sampling and worm sampling.
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Figure 46: <(G
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1↑1↑1↓1↓(iν, iν

′ = π
β
, iω = 0)) with errorbars for the two-orbital,

Slater-Kanamori case comparing partition function sampling and worm sampling.
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Slater-Kanamori case comparing partition function sampling and worm sampling.
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Slater-Kanamori case comparing partition function sampling and worm sampling.
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We observe that worm sampling and sampling in partition function space yield
similar results for measuring the two-particle Green’s function for the two-orbital,
Slater-Kanamori model. In Figure 44 we observe better errorbars in partition func-
tion space for the ↑↑↑↑- component. This can be explained by the fact, that the
measurement in partition function space implicitly includes the crossing symmetry
as we consider all possible combinations of operator-pairs such as G2(τ1, τ2, τ3, τ4)
and G2(τ1, τ4, τ3, τ1), while in worm sampling we would need to consider the cross-
ing symmetry explicitly.
Larger errorbars in worm sampling for the slices of the second band in Figures 45
and 47 indicate that it is much more difficult to insert worms into this band than
inserting worms into the first band. This asymmetry is due to the fact that we
are dealing with two different energy scales D1 and D2. We have observed that
the factor η, which determines the likelihood of changing into worm space, scales
with the interaction parameter U . When dealing with two bands, each having a
different interaction parameter U1 and U2, we would need to define two parameters
η1 and η2. This problem is identical to re-weighing the acceptance rates in order
to propose more worm inserts into regions of the configuration space, which are
less accessible.

5 Conclusion and Outlook

In this work we focused on numerical methods to find solutions to the Hub-
bard model in order to model strongly correlated materials. In DMFT the Hub-
bard model is mapped onto the Anderson impurity model, which is solved self-
consistently. In this work, we have presented the derivation of the hybridization
expansion of the Anderson impurity model in order to solve the quantum impurity
problem numerically. We further reviewed the basics of Monte Carlo integration,
including the concepts of importance sampling, Markov chains, ergodicity and de-
tailed balance, which lead to the formulation of the Metropolis-Hastings algorithm.
We combined the hybridization expansion and the Metropolis-Hastings algorithm
to set up the CT-Hyb algorithm. We put a strong emphasis on deriving all con-
tributions to the fermionic sign, as a correct treatment is crucial for extending the
CT-Hyb algorithm to include worm sampling. With this foundation, we then de-
rived and implemented the worm algorithm as an alternative sampling scheme in
the hybridization expansion. While for partition function sampling in CT-Hyb, we
cut hybridization lines to measure Green’s functions, in worm sampling we insert
local operators explicitly to measure Green’s functions. We motivated worm sam-
pling by its advantages in sampling strongly insulating systems and the possibility
to sample diagrammatic contributions to the two particle Green’s function, which
are not part of the partition function sampling (i.e. off-diagonal contributions).
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We suggest as a first test to verify that off-diagonal contributions vanish for G(1)

and in general for density-density cases. Once it is possible to measure off-diagonal
contributions of G(2) for general interactions, the next step is to derive generalized
improved estimators, similar to [43], to extract the fully irreducible vertex Λ from
the QMC code.
We further showed how measuring the Green’s function becomes trivial in the con-
figuration space of worm sampling CG(n) and how to carry out the normalization
procedure. In this work we have normalized Green’s functions of worm sampling
by repeatedly jumping back and forth between partition function space CZ and
Green’s function space CG(n) . We have further suggested to sample the Green’s
function exclusively in Green’s function space and to find the normalization dif-
ferently. This way, it would be possible to avoid the re-weighing parameter η. In
any case, we suggest to find approximations of the scaling behavior of η in the fu-
ture. A major advantage of the worm algorithm over partition function sampling
is that we have complete control over the worm operators. This way we can easily
measure only certain parts of G(n) or re-weigh acceptance probabilities to access
configurations suppressed by a vanishing hybridization function. This was already
suggested in [26] and is closely related to Wang-Landau sampling.
We have verified that sampling the one-particle Green’s function G(1) and the
two-particle Green’s function G(2) in Green’s function space CG(n) give results com-
parable to sampling in partition function space CZ . When sampling G(1) for the
single-orbital case, the two algorithms behave very similar for the metallic phase,
the insulating phase and the Mott metal-insulator transition. We observe how
worm sampling in combination with DMFT results in a better convergence of the
self-consistency loop. When sampling G(2) for strongly insulating systems, worm
sampling gives different results than the measurement in partition function space.
We suggest to investigate these differences in greater detail by comparing our
results to exact diagonalization measurements of G(2) for the Mott insulator.
For measuring G(1) in the strongly insulating case, we postpone the analysis of
auto-correlation lengths in Green’s function space CG(1) to the future. A relatively
simple way to decrease auto-correlation lengths in worm space is to further im-
plement proper shift moves. We have shown that the acceptance rate for worm
replacement moves is fully determined by the determinant ratio, while the accep-
tance rate for worm shift moves is fully determined by the ratio of the weight of
the local traces. Finally, we suggest to improve the estimator of worm sampling by
including a remove-shift (i.e. sliding) measurement, as already suggested in [42]
for operators in partition function space.
While this work is attempting to create a solid foundation for implementing worm
algorithms into QMC codes, we emphasize how important future developments of
theory and algorithms with respect to worm algorithms in QMC are.
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Figure 50: Flow diagram of the worm algorithm implementation for CT-Hyb. The
different types of moves are highlighted in color. Moves highlighted in red belong to
partition function sampling, moves highlighted in green belong to worm sampling.
The worm insertion and worm removal moves cannot be assigned to any of these
two categories and are thus marked in blue.
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