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Abstract

In the last years, the topic of smart home environments has gained more and more
attention. Such an intelligent home offers several advantages to its users such as (i)
increased energy efficiency, (ii) cost reduction or (iii) supporting them in their daily life. As
part of a project called ThinkHome, an ontology-based intelligent home which uti-
lizes artificial intelligence to improve control of home automation functions provided
by dedicated automation systems, the present thesis aims at defining an actor pref-
erences ontology which stores information about preferences of respective users. Af-
ter classifying the different kinds of preferences and investigating the dependencies
among them, relations to other already existing ontologies of the ThinkHome system
as well as links to suitable external ontologies will be investigated. In order to be able
to efficiently build the desired ontology, several ontology development approaches
are explored and based on the principles of an approach called METHONTOLGY, the
Actor Preferences Ontology, which enables the possibility to store, infer and schedule
preferences and activities of actors within a smart home environment will be carried
out. As addition to the development of a comprehensive ontology covering the do-
main of actor preferences, several state-of-the-art ontology reasoners will be evaluated,
using domain-related reasoning tasks. The results of this evaluation can then be used
to find the most suitable and best performing ontology reasoner for inferring new
knowledge within the domain of the ThinkHome system.
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Kurzfassung

In den letzten Jahren haben Smart Homes immer mehr an Bedeutung gewonnen. Ein
Smart Home, oder auch Intelligentes Wohnen, offeriert seinen Bewohnern diverse Vor-
teile, wie zum Beispiel: (i) gesteigerte Energieeffizienz, (ii) reduzierte Wohnkosten und (iii)
Unterstützung im Alltag. Als Teil eines Forschungsprojektes namens ThinkHome, ein
auf Ontologien und künstlicher Intelligenz basierendes Smart Home, zielt die vor-
liegende Diplomarbeit auf die Definition einer Ontologie zur Speicherung von Prä-
ferenzen von Smart Home Akteuren ab. Hierzu werden zunächst die verschiedenen
Typen von Präferenzen klassifiziert und deren Abhängigkeiten untereinander unter-
sucht, um danach die Verbindungen zu anderen bereits existierenden Ontologien des
ThinkHome Systems definieren zu können. Ebenso werden im Zuge dessen die An-
knüpfungspunkte zu verwandten bzw. nützlichen externen Wissensbasen gesucht und
diese gegebenenfalls integriert. Um die effiziente Entwicklung der angestrebten On-
tologie gewährleisten zu können, werden unterschiedliche Entwicklungsansätze für
Ontologien untersucht und schlussendlich ein Ansatz mit dem Namen METHONTO-
LOGY genauer beschrieben und verwendet. Nachdem die Actor Preferences Ontology,
welche es ermöglicht Präferenzen zu speichern, neue abzuleiten bzw. sie zu planen
entwickelt wurde, werden zusätzlich diverse aktuelle Ontology Reasoner basierend auf
relevanten Aufgaben evaluiert. Dies ist notwendig um bei der Wahl des Ontology Rea-
soners, welcher für die Ableitung neuen Wissens im Rahmen des ThinkHome Projekts
verantwortlich sein soll, jenen auswählen zu können, der für die Smart Home Domäne
am besten geeignet ist.

iv



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement and Aim of the Work . . . . . . . . . . . . . . . . . . 2
1.3 Methodological Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Structure of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 6
2.1 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Resource Description Framework (RDF) . . . . . . . . . . . . . . . . . . . 8

2.2.1 RDF Serialization Formats . . . . . . . . . . . . . . . . . . . . . . 9
2.3 RDF Schema (RDFS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Web Ontology Language (OWL) . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 OWL Sub-languages . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 OWL Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.3 OWL Serialization Formats . . . . . . . . . . . . . . . . . . . . . . 17
2.4.4 OWL Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 SPARQL Protocol And RDF Query Language (SPARQL) . . . . . . . . . 19
2.6 Linked Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.1 Time Ontology (owl-time) . . . . . . . . . . . . . . . . . . . . . . . 21
2.6.2 Ontology of Units of Measure and Related Concepts (OM) . . . 22

3 Smart Homes, Energy Efficiency and User Comfort 23
3.1 Smart Homes - A Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Related Ontology-Based Smart Home Concepts . . . . . . . . . . 24
3.2 The ThinkHome System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Intelligent Multi-Agent System (MAS) . . . . . . . . . . . . . . . 26
3.2.2 Comprehensive Knowledge Base (KB) . . . . . . . . . . . . . . . . 28

3.3 Energy Efficiency in ThinkHome . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 User Comfort in ThinkHome . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Benefits of using Ontologies as Datastores . . . . . . . . . . . . . . . . . 34

3.5.1 Automatic Type Inference . . . . . . . . . . . . . . . . . . . . . . . 34

v



3.5.2 Extensive Reasoning Support . . . . . . . . . . . . . . . . . . . . . 35
3.5.3 Reasoning under Closed and Open World Assumption . . . . . . 36

3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Ontology Engineering 40
4.1 Ontology Design Patterns (ODP) . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Ontology Development Methodologies . . . . . . . . . . . . . . . . . . . 45

4.2.1 Methodology by Uschold & King . . . . . . . . . . . . . . . . . . 45
4.2.2 METHONTOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.3 Unified Process for Ontology Building (UPON) . . . . . . . . . . 49
4.2.4 Ontology 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Ontology Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 The METHONTOLOGY Approach . . . . . . . . . . . . . . . . . . . . . . 56

4.4.1 Planification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.2 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.3 Knowledge Acquisition . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.4 Conceptualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.5 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.6 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.9 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.10 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 The Actor Preferences Ontology 65
5.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1 Use Case Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.2 Ontology Requirements Specification Document . . . . . . . . . . 70

5.2 Conceptualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.1 Glossary of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.2 Concept Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.3 Binary Relation Diagram . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.4 Concept Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.5 Binary Relation Table . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.6 Instance Attribute Table . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.7 Class Attribute Table . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.8 Instance Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.1 Non-Functional Requirements . . . . . . . . . . . . . . . . . . . . 85
5.5.2 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . 86

vi



6 OWL Reasoner Evaluation 96
6.1 Selected OWL Reasoners . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2 Evaluation Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2.2 Consistency Check . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2.3 Type Inference of Individuals . . . . . . . . . . . . . . . . . . . . . 98
6.2.4 Query Answering . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3 Evaluation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.4 Evaluation Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.5 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5.1 Actor Preferences Ontology (:act) . . . . . . . . . . . . . . . . . . 102
6.5.2 Energy & Resources Ontology (:ero) . . . . . . . . . . . . . . . . . 104
6.5.3 User Behavior & Building Processes Ontology (:ppo) . . . . . . . 105
6.5.4 Architecture & Building Physics Ontology (:gbo) . . . . . . . . . 106

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Conclusion 109
7.1 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A Conceptualization Tables 112

B Detailed Evaluation Results 125

C List of Properties 134

D List of Classes 138

Bibliography 154

vii



CHAPTER 1
Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement and Aim of the Work . . . . . . . . . . . . . . . . . 2

1.3 Methodological Approach . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Structure of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Motivation

The topic of smart homes has become more and more popular over the last years.
Besides the possibility to increase the energy efficiency of such homes by introducing
automation technology to home environments, a smart home could furthermore sup-
port users in their daily life by remembering user preferences like room temperature
or ambient light schemes as well as inferring new suitable preferences.

Since various aspects of such smart environments like multiple sensor and actuator
data, user specific data and a high heterogeneity require a highly flexible technology
which is able to deal with those kinds of data, Semantic Web technologies, especially
ontologies and their reasoning capabilities have caught more and more attention.

Using ontologies as underlying knowledge base enables the possibility to deal with
context on all levels required within a smart environment and furthermore offers the
possibility to enrich the gathered sensor data with additional semantics. Based on
those semantics, additional information can be derived, which can (e.g. in the domain
of home automation systems) be used to increase energy efficiency or user comfort.

The present thesis is part of a research project called ThinkHome [77,78], which aims
at developing an ontology-driven smart home system mainly serving the purpose of
both providing efficient energy management of household appliances and increasing
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user comfort of its residents (cf. Section 3.2 for more detailed introduction). It consists
of a knowledge base, represented as several interlinked ontologies which are respon-
sible to store and maintain all data used within the system and a multi-agent system
which is responsible to make decisions based on derived knowledge from the ontolo-
gies, learned experiences, and/or predefined rules.

Users of such a smart home system, whether they are human actors or system
actors1, represent a very important part of that ecosystem. Both main goals of the
ThinkHome system (i.e. increasing (i) energy efficiency and (ii) user comfort) are related to
these actors and especially to be able to provide a certain degree of user comfort, they
have to be represented in the knowledge base. However, since persisting actors alone
does not provide any user comfort at all, their preferences must be persistable too.
Having both, actors and their preferences accessible to the multi-agent system, allows
to increase user comfort of residents by automatically realizing the stored preferences
and to increase energy efficiency by choosing the most energy preserving way to do
that (e.g. the preference of having a temperature value of 20°C in the living room could be
achieved by just opening the windows instead of using the air conditioner).

Thus, an ontology which is particularly dedicated to serve the purpose of storing
information about actors and their preferences is needed and has to be integrated to
the ThinkHome knowledge base.

1.2 Problem Statement and Aim of the Work

The already existing ThinkHome system implements several ontologies, which are re-
sponsible for e.g. storing and representing Building & Architecture Information, Weather
Data, User Behavior & Building Processes, and Energy & Resource Properties. Additionally,
a rudimentary actor preference ontology for representing actor information about the
users in the system does already exist, but unfortunately, that ontology is neither com-
plete nor does it satisfy the requirements stated to such an ontology like being able
to store and schedule preferences, store occupancy information of the smart home, or
automatically infer preference types based on their characteristics.

As the scope of modeling actors and their preferences together with the require-
ments we impose at an ontology which is capable of representing that kind of infor-
mation is a rather domain specific one, we cannot reuse existing ontologies that might
offer similar capabilities. Aside from that fact - to the best of our knowledge - there
does not exists any ontology modeling human/system actors and their preferences.

Thus, aim of the present master thesis is the development of a comprehensive actor
preference ontology, which is capable of storing preferences grouped in preference
profiles for actors of the ThinkHome system, as well as providing additional semantics

1Although the present thesis primarily focuses on human actors.
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to those information. These preferences must be assignable to time and location infor-
mation which makes them schedulable and offers users the possibility to relate them
to certain preference schedules that can be defined for certain e.g. days, weeks. Be-
side common preferences, this newly developed ontology shall cover the definition of
activities, which groups several preferences together that shall be valid for the activity
they are part of.

To summarize, users should be able to:

1. represent themselves in the ontology

2. define several different types of preferences

3. define activities and preferences which should be active whenever the said ac-
tivity is performed

4. schedule preferences and activities

5. group preferences, activities, preference schedules, and activity schedules in ar-
bitrary many preference profiles

6. state time frames the home will be unoccupied

The smart home system should be able to:

1. automatically derive types of concepts based on their characteristics

2. choose appropriate and the most energy preserving way to carry out tasks

3. detect inconsistencies within the ontology

4. re-schedule preferences within their time frames if necessary

5. use occupancy information of the smart home to efficiently carry out scheduled
tasks

Following the principles of the Semantic Web, the developed ontology shall be
highly interwoven with the existing ThinkHome and other related ontologies and must
reuse their concepts whenever it is appropriate.

Although ontologies enable reasoners to infer new knowledge based on the present
information, performing such reasoning tasks often comes in hand with performance
issues like an extensive runtime, which makes it difficult to select the best performing
reasoner for the problem. For that purpose, current state-of-the-art ontology reasoners
are evaluated and compared with each other, using reasoning tasks related to the
developed ontology.

3



1.3 Methodological Approach

The present thesis follows the well-known design science paradigm in information
systems, proposed by Hevner et al. [100] which can be broken down into following
steps:

1. Design as an Artifact. The aim of the present thesis is develop and define an on-
tology to represent the preferences of actors of a smart home system in order to
increase the energy efficiency and user comfort within such a smart home en-
vironment. More precisely, following artifacts will be built in the course of this
thesis:

1. An investigation and analysis of various ontology development mecha-
nisms especially regarding their applicability for our use cases.

2. A thorough definition of the requirements and competency questions such
an ontology must fulfill / stick to.

3. An Actor Preferences Ontology which covers all previous stated requirements
and which was developed following the most suitable and applicable ontol-
ogy development approach discovered during previous investigations.

4. Evaluation of current state-of-the-art OWL reasoners, based on reasoning
tasks that were taken out on the previous developed, and other related
ontologies.

2. Problem Relevance. The presence of an ontology which is capable of persisting
preferences of smart home actors is crucial for a system which aims to achieve
the goals of increasing energy efficiency and user comfort. For our use-case such
an ontology must be integrated within an already existing ontology-based smart
home system and thus, must be developed from scratch.

3. Design Evaluation. The ontology developed in the course of the present thesis will
be evaluated by checking it against the imposed functional and non-functional
requirements.

4. Research Contributions. Although no particular scientific contribution besides the
present thesis are planned, the insights gained and documented by the eval-
uation of OWL reasoners as well as the development of the Actor Preferences
Ontology can serve interested readers as starting point for further investigations.

5. Research Rigor. Some of the aforementioned challenges were already partially in-
vestigated in previous research, especially regarding ontology development mech-
anisms and OWL reasoner evaluations. Therefore, surveys and literature re-
search will be carried out in the starting phase of the thesis before its artifacts
will be evaluated and built, based on the gathered knowledge.
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6. Design as a Search Process. The artifacts developed throughout the present thesis
will be iteratively built and evaluated. This means that parts of the artifacts
will be tested on simple sample examples and eventually adapted before more
complicated scenarios will be taken into consideration.

1.4 Structure of the Work

The present thesis is structured as follows:

Chapter 2: introduces the preliminaries of this work, namely: the concept of ontolo-
gies 2.1, RDF 2.2, RDFS 2.3, OWL 2.4, SPARQL 2.5, and the reused external ontolo-
gies 2.6 OWL-Time and the Ontology of Units of Measure.

Chapter 3: defines the concept of smart homes 3.1, discusses the ThinkHome system
itself 3.2, energy efficiency and user comfort within ThinkHome 3.3 & 3.4, and the
benefits of using ontologies as datastores 3.5 before it emphasizes related work 3.6 in
the field of related ontologies, modeling a similar domain as the Actor Preferences
Ontology.

Chapter 4: investigates different kinds of ontology development tools or approaches
such as: Ontology Design Patterns 4.1, Methodology by Uschold & King 4.2.1, METHON-
TOLOGY 4.2.2, the UPON approach 4.2.3, Ontology 101 4.2.4, Ontology Learning 4.3
and then focuses on explaining the approach of METHONTOLOGY 4.4 as chosen
ontology development strategy in more detail.

Chapter 5: represents the main chapter of the present thesis and covers essential on-
tology development steps together with their documentation artifacts. The dis-
cussed steps are: Specification 5.1, Conceptualization 5.2, Integration 5.3, Implemen-
tation 5.4 and Evaluation 5.5.

Chapter 6: evaluates current state-of-the-art OWL ontology reasoners 6.1 based on domain
related reasoning tasks 6.2 and illustrates the archived results 6.5.

Chapter 7: concludes the present thesis and gives an outlook on potential further
work 7.1.

Appendix A: contains all documentation artefacts which were created during the de-
velopment process.

Appendix B: contains the glossary of terms for properties of the ontology.

Appendix C: contains the glossary of terms for concepts of the ontology.

5



CHAPTER 2
Preliminaries

Contents
2.1 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Resource Description Framework (RDF) . . . . . . . . . . . . . . . . . 8

2.2.1 RDF Serialization Formats . . . . . . . . . . . . . . . . . . . . . 9

2.3 RDF Schema (RDFS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Web Ontology Language (OWL) . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 OWL Sub-languages . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 OWL Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.3 OWL Serialization Formats . . . . . . . . . . . . . . . . . . . . 17

2.4.4 OWL Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 SPARQL Protocol And RDF Query Language (SPARQL) . . . . . . . . 19
2.6 Linked Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.1 Time Ontology (owl-time) . . . . . . . . . . . . . . . . . . . . . 21

2.6.2 Ontology of Units of Measure and Related Concepts (OM) . . 22

In the following chapter, we will introduce the main Semantic Web technologies
used within this thesis1 and conclude with a brief description of reused ontologies
within the Actor Preferences Ontology.

2.1 Ontologies

There exist many similar definitions for the term ontology and probably one of the
most-cited ones was presented by Gruber in 1993:

1Parts of this introduction were already published in [85] and reused in order to provide a self-
contained thesis but at the same time avoid redundant work.
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An ontology is an explicit specification of a conceptualization. [34]

So basically, ontologies are generic conceptual models of a domain of interest. A
more formal definition of an ontology is shown underneath:

Definition 1. We consider an ontology as a triple:

O = 〈C, I, P〉

C - Set of Classes Classes or concepts are abstract representations of objects. They
can be subsumed by other classes and inherit their properties. Furthermore - if
not stated otherwise - a class can inherit from more than one superclass.

I - Set of Individuals Individuals are specific representations of objects and usually
describe a very concrete type of concepts. The choice whether an object should
be modeled as individual or as a class is often not very easy to make and heavily
relies on the modeling domain. For example an object Integer can either be
considered as a subclass of the concept Datatype having an individual called
„1“, or modeled as individual of the concept Datatype in the absence of more
specific objects like „1“.

P - Set of Properties P contains all properties which define data values for specific
attributes (names, ids, . . . ) and relations, describing possibilities to relate entities
in ontologies with each other (subclass, equivalence relations, . . . ).

In contrast to other structures which aim for storing data in a defined way, like re-
lational databases, ontologies enable the possibility to store semantics of data, together
with specific rules which describe the schema. The possibility to infer new knowledge
based on the available data as well as to be able to detect semantic conflicts between
the entities of an ontology are additional benefits for using ontologies over common
databases to represent and store data.

To understand the principles behind the Semantic Web, some of its major tech-
nologies and standards are described in the following chapter and some of them are
represented in the Semantic Web Stack in Figure 2.1.

Built upon the URI/IRI layer, all higher layers in the Semantic Web Stack can uniquely
identify their defined resources by URIs (Uniform Resource Identifier) and IRIs (Inter-
nationalized Resource Identifier) which are common resource identifiers in the World
Wide Web.

The next layers are XML (eXtensible Markup Language) and RDF (Resource De-
scription Framework), which describe the basic language of the Semantic Web and
using RDF, which is based on the XML format, enables the possibility to describe
resources both in a human-readable and machine-processable way, which will be de-
scribed together with its most common formats in Section 2.2.
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Figure 2.1: The Semantic Web stack [9]

There currently exist two extensions for RDF, namely (i) RDF Schema 2.3, and (ii) the
Web Ontology Language 2.4. Only by the use of these extensions it is possible to define
and model ontologies, since RDF does not provide the possibilities for describing
properties or complex relations between resources [20].

In the following sections, we will describe selected parts of the Semantic Web stack
in more detail.

2.2 Resource Description Framework (RDF)

Figure 2.2: Simple RDF graph

The Resource Description Framework (RDF) [38] became a W3C recommendation
in 1999 [57] and was revised several times until it became its last W3C recommendation
in 2004 [4]. It is a framework for describing and representing information about re-
sources in the World Wide Web and is both human-readable and machine-processable,
which enables the possibility to easily exchange information among different applica-
tions using RDF triples, but still be easy to read.
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In RDF everything is a resource, uniquely identified by its URI and all data is
represented as (subject - predicate - object) triples, where subjects and predicates are
URIs and objects can either be literals (strings, integers, . . . ) or URIs as shown in
Figure 2.2.

Furthermore, subjects or objects can be represented using blank nodes, those blank
nodes do not have a corresponding URI which could identify them and are usually
used to express anonymous resources (e.g. »Pino has a friend who is 24 years old«
where a blank node would represent the anonymous friend of Pino.)

Since one RDF triple usually does not describe a resource entirely, more triples are
defined and combined in an RDF Graph. Such an RDF Graph connects those triples
by a simple AND operator and can therefore easily be merged with other RDF Graphs
without losing entailment information, relying on RDFs monotonicity of semantic ex-
tensions [38].

2.2.1 RDF Serialization Formats

There exist several formats for representing and serializing RDF data such as Tur-
tle(N3) [5, 7] and RDF/XML [4]. In this section we will briefly explain each format
and give an example serialization of a small sample triple set which is depicted in
Figure 2.3.

Figure 2.3: An RDF graph describing an animal domain.

2.2.1.1 Turtle and N3

The Terse RDF Triple Language, or Turtle [5], is a very lightweight and easy readable
subset of the Notation3 serialization format for RDF and became a W3C Candidate
Recommendation in February 2013.

It is commonly used for representing ontologies since it perfectly illustrates the
nature of RDF to model data as triples. The simplest statement using Turtle consists
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subject predicate object

anim:Lion rdf:type anim:Animal
anim:Lion anim:age 10
anim:Lion anim:name Clarence
anim:Lion anim:isVeg false

Table 2.1: The RDF triples encoded within the RDF graph shown in Figure 2.3

of a subject, predicate and object which are separated using whitespaces and
terminated by a dot. Furthermore, it is possible to omit the leading subject, if several
triples only vary in their predicates and objects but have the same subject, by termi-
nating each triple (but not the last one) with a semicolon instead of a dot. Listing 2.1
shows the representation of a sample ontology using Turtle.

All examples within this thesis are serialized using the Turtle format.

Listing 2.1: Turtle representation of the RDF graph in Figure 2.3
@prefix : <http://ontology.org/onto1.owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix anim: <http://www.example.org/animal_onto#> .
@base <http://www.w3.org/2002/07/owl#> .

<http://www.example.org/animal_onto/Lion>
rdf:type <http://www.example.org/animal_onto/Animal>;
anim:name "Clarence" ;
anim:isVeg "false" ;
anim:age "10" .

2.2.1.2 RDF/XML

RDF/XML is the most common format for representing ontologies and natively sup-
ported by all RDF parsers. Unlike Turtle, it is an XML-based serialization of RDF,
which inevitably leads to a larger overhead when representing RDF triples. It was in-
troduced together with the RDF specification in 1999 and became a W3C Recommen-
dation in February 2004.2 As shown in Listing 2.2, RDF/XML serializations tend to
be verbose and more difficulty readable by humans. An approach to make RDF/XML
more concise was proposed by Brickley in 2002 and is called „Striped RDF/XML Syn-
tax“ [10]. The striped RDF/XML syntax introduces XML elements for nodes and arcs
of an RDF graph and provides the possibility to group triples as shown in Listing 2.3.

2http://www.w3.org/TR/REC-rdf-syntax/

10



Listing 2.2: RDF/XML description of the RDF graph in Figure 2.3
<?xml version="1.0"?>

<rdf:RDF xmlns="http://ontology.org/onto1.owl#"
xml:base="http://ontology.org/onto1.owl"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:anim="http://www.example.org/animal_onto#">

<rdf:Description rdf:about="http://www.example.org/animal_onto/Lion">
<rdf:type rdf:resource="http://www.example.org/animal_onto/Animal"/>

</rdf:Description>

<rdf:Description rdf:about="http://www.example.org/animal_onto/Lion">
<anim:name>Clarence</anim:name>

</rdf:Description>
....

</rdf:RDF>

Listing 2.3: Striped RDF/XML description of the RDF graph in Figure 2.3
<?xml version="1.0"?>
<rdf:RDF xmlns="http://ontology.org/onto1.owl#"

xml:base="http://ontology.org/onto1.owl"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:anim="http://www.example.org/animal_onto#">

<anim:Animal rdf:about="http://www.example.org/animal_onto/Lion">
<anim:name>Clarence</anim:name>
<anim:age>10</anim:age>
<anim:isVeg>false</anim:isVeg>

</anim:Animal>
</rdf:RDF>

2.3 RDF Schema (RDFS)

Although RDF provides the basic elements and tools for describing web resources, it
does not offer the possibility to describe relations or constraints between entities and
therefore is not able to describe ontologies. This lack of functionality included the
development of RDF Schema (RDFS), which is a semantic extension to the basic RDF
specification and provides the capability to describe properties and relations among
resources and therefore offers basic elements for ontology description.

RDFS was firstly published in 1998 and became a W3C recommendation in 2004 [11].

RDFS now divides resources into two groups:

Classes: The first group of resources is called classes. Those classes are usually iden-
tified by URIs and described using RDF properties, a member of a specific class
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is called its instance, which is denoted by the rdf:type property. A class can have
a set of instances of itself, which is called its class extension. Furthermore classes
can share the same set of instances although they might be different classes (e.g.
Alice defines dogs as animals and Bob defines them as carnivores, it is possible
for those two classes to have the same instances but of course, different proper-
ties).

RDFS introduces subclass relations among classes, namely if there exists a class
A which is a subclass of a class B, then all instances of A will also be instances of
B. Vice versa, if a class B is a superclass of a class A, then all instances of A are
also instances of B. The rdfs:subClassOf property may be used to represent
this subclass relation.

A small sample ontology using RDFS features and describes a teacher/pupil
domain is shown in Figure 2.4.

Figure 2.4: Small sample ontology using RDFS features

Important Classes:

rdfs:Resource: Everything described in RDF is a resource and instance of the
class rdfs:Resource. rdfs:Resource is an instance of rdfs:Class
and all other classes are its subclasses.

rdfs:Class: rdfs:Class is an instance of rdfs:Class and is the class of re-
sources that are RDF classes. (cf. :Teacher)

rdfs:Literal: As mentioned earlier, an object of an RDF triple might be a literal.
Those literals are instances of the class rdfs:Literal and divided into
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typed literals, which are instances of respective datatype class, and plain
literals.

rdfs:Datatype: This class describes the class of datatypes and all instances of it
are related to a datatype described in the RDF Concepts specification ci-
terdf2. It is both an instance and a subclass of rdfs:Class and each in-
stance of rdfs:Datatype is a subclass of the rdfs:Literal.

rdf:Property: rdf:Property is the class of RDF properties and an instance of
rdfs:Class. (cf. :teaches)

Properties: The second group of resources are properties which are defined by [51] as
relations between subject resources and object resources.

Like the subclass relation, RDFS also introduces the concept of subproperties. If
a property A is a subproperty of a property B, then all resources which are con-
nected by A are also connected by B and vice versa. This subproperty relation
indicated by the rdfs:subPropertyOf property.

Important Properties:

rdfs:domain This property states that any resource which has a given prop-
erty must be an instance of the class referenced by rdfs:domain. (cf.
:teaches and :Teacher)

rdfs:range rdfs:range is used to state that the values of a given property
are instances of the class referenced by rdfs:range. (cf. :teaches and
:Pupil)

rdf:type An important property which states that a resource is an instance of a
class.

rdfs:subClassOf & rdfs:subPropertyOf As mentioned above, these properties
are used to state the subclass and subproperty relations among classes and
properties. Both are instances of rdf:Property. (cf. :Teacher and
:Pupil are subclasses of :Person)

rdfs:label & rdfs:comment These properties are instances of rdf:Property
and may be used to provide a human-readable description of the resource
itself as well as its name.

2.4 Web Ontology Language (OWL)

Although RDFS allows the representation of simple ontologies by using properties,
which describe the hierarchical relation among entities, it lacks in the support of defin-
ing more sophisticated entity relations (e.g. disjointness), cardinality (e.g. exactly one),
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equality (e.g. equivalences between classes/properties/instances) and characteristics
of properties (e.g. symmetry). For that purpose the Web Ontology Language (OWL),
which was firstly published in 2002 and became a W3C recommendation in 2004 [64],
was developed. Since 2012 an extension to OWL, called OWL 2, is available as W3C
recommendation [32].

In general, OWL is used to describe complex ontologies and furthermore introduce
the possibility to automatically process the content in the given ontology by using the
previous mentioned constructs which were not available in RDFS.

2.4.1 OWL Sub-languages

Figure 2.5: The OWL sub-language hierarchy as indicated in [64]

In order to sufficiently fulfill the different requirements of ontologies and especially
avoid an unnecessary increase of complexity of those ontologies, three different sub-
languages of OWL were developed, namely: OWL Lite, OWL DL and OWL Full. Each
of these sub-languages is a subset of the more complex one as indicated in Figure 2.5.
As a result, following validity conclusions hold [64]:

OWL EL/QL/RL: These three profiles introduce restrictions on OWL in order to allow
more efficient reasoning. OWL EL provides the expressiveness of large-scale
ontologies but only needs polynomial time for selected reasoning problems such
as classification and instance checking. OWL QL is used to implement sound and
complete query answering on top of relational databases and OWL RL provides
the possibility to run rule-based reasoning algorithms in polynomial time.

OWL DL: Increasing the expressiveness of OWL EL/QL/RL but still be computational
complete and decidable, leads to OWL DL, which is translatable into the expres-
sive Description Logic SROIQ [3] . Although it includes all language concepts of
OWL, they can only be used under special conditions (e.g. a class cannot be an
instance of another class, but of course be its subclass).

OWL Full: Losing the restriction of using OWL language constructs only under cer-
tain conditions and therefore retrieving the most expressiveness and syntactic
freedom for defining OWL ontologies, unfortunately comes in hand with the
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loss of computational guarantees. As indicated in [64], it is very unlikely, that
any reasoning software will be able to support complete reasoning for every
feature of OWL Full.

Remark: Although every ontology expressed in OWL is a valid RDF document, not
every RDF document is a valid OWL ontology. Only OWL Full is a complete extension
of RDF, whereas OWL DL and the profiles OWL EL/QL/RL are restricted extensions
of RDF. When migrating from an RDF document to an OWL DL/EL/QL/RL ontology,
those restrictions must be fulfilled.

2.4.2 OWL Features

OWL introduces many new features for describing information and knowledge about
a domain and is even more expressive than RDFS. We will now introduce some of this
features in more detail based on a sample ontology, illustrated in Figure 2.6.3

Figure 2.6: Sample ontology, which uses selected OWL features

3Note that the following list is only a small subset of the features OWL provides and only contains
those features of OWL, which we use in the present thesis.
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2.4.2.1 Properties

owl:DatatypeProperty Datatype properties link individuals to data values. (cf. :id,
:email)

owl:ObjectProperty Object properties are used to define relations between classes (i.e.
link individuals to individuals). (cf. :isTakenBy, :takes)

owl:FunctionalProperty If a property is defined as owl:FunctionalProperty it
can have only one unique value for each instance of this property. (cf. :is-
TaughtBy; a :Lecture can only be held by one :Professor)

2.4.2.2 Relations between Entities

owl:equivalentClass This property is used to define the similarity between two classes.
(cf. :Lecture and :LVA)

owl:equivalentProperty This property is used to define the similarity between two
properties. (cf. :name is equivalent to the property foaf:name, defined in the
FOAF ontology4)

owl:sameAs This property is used to define the similarity between two instances. (cf.
the two lecture types :PR and :PPR are equivalent)

owl:inverseOf Using owl:inverseOf offers the possibility to state an inverse simi-
larity between two properties. (cf. :isTakenBy and :takes)

owl:disjointWith Using owl:disjointWith offers the possibility to state that two
entities are disjoint. (cf. an instantiation of :Professor cannot be a :Student
too)

2.4.2.3 Boolean Connectives and Enumeration

owl:unionOf This property links a class to a union of class descriptions. (cf. :grading-
Basis, its rdfs:range is a blank node, which is defined as union of :Test and
:Project)

owl:oneOf This property is used to define enumerations within ontologies. (cf. :Lec-
tureType contains one of the listed individuals)

4http://xmlns.com/foaf/spec/
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2.4.2.4 Restrictions

owl:Restriction Restrictions are subclasses of owl:Class and are used to define
value constraints for specific properties. (cf. a :Student must take at least
one :Lecture)

owl:onProperty The owl:onProperty property defines the specific property for which
the restriction holds. (the above mentioned restriction is defined for the property
:takes)

owl:(min|max)Cardinality One example of a restriction mentioned above are cardi-
nality constraints. Whereas owl:minCardinality and owl:maxCardinality
define lower and upper bounds for cardinalities, the owl:Cardinality prop-
erty is used to define a precise value for the cardinality. (owl:minCardinality
1 is used to state, that a :Student must take at least one :Lecture)

2.4.3 OWL Serialization Formats

As an addition to the previous defined serialization formats for RDF 2.2.1, some serial-
ization formats were primarily developed to represent ontologies using OWL features.
In the following we will briefly introduce two of those formats based on the example
shown in Figure 2.4.

2.4.3.1 OWL Manchester Syntax

The Manchester OWL syntax [40] is a very light-weight and user-friendly serializa-
tion format for OWL and has its intended use-case in representing OWL descriptions,
although it is also able to represent entire OWL ontologies. Famous ontology devel-
opment editors such as Protégé 4.x [1] use the Manchester syntax for defining and
displaying descriptions associated with entities. An example of an ontology repre-
sented using the OWL Manchester syntax is shown in Listing 2.4.

Listing 2.4: Sample Ontology in OWL Manchester Syntax
Prefix: : <http://ontology.org/onto1.owl#>
Prefix: owl: <http://www.w3.org/2002/07/owl#>
Prefix: rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
Prefix: xsd: <http://www.w3.org/2001/XMLSchema#>
Prefix: rdfs: <http://www.w3.org/2000/01/rdf-schema#>

Ontology:

AnnotationProperty: rdfs:label
Datatype: xsd:string

ObjectProperty: teaches
Domain:
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Teacher
Range:

Pupil

DataProperty: hasName
Domain:

Person
Range:

xsd:string

Class: Teacher
Annotations:

rdfs:label "A person who teaches pupils"@en
SubClassOf:

Person and teaches some Pupil

Class: Person
SubClassOf:

hasName exactly 1 xsd:string

Class: Pupil
Annotations:

rdfs:label "A person whos taught by teachers"@en
SubClassOf:

Person

2.4.3.2 OWL Functional Syntax

In December 2012, OWL2 together with its functional-style syntax became a W3C
Recommendation5. It was initially used for defining OWL2 in its W3C specifications
and tends to be a clean and easy parseable, adjustable and modifiable ontology format.
Nevertheless it is less intuitive and human readable than Turtle since its definition of
statements does not follow the simple subject, predicate and object principle
as illustrated in Listing 2.5.

Listing 2.5: Sample Ontology in OWL Functional Syntax
Prefix(:=<http://ontology.org/onto1.owl#>)
Prefix(owl:=<http://www.w3.org/2002/07/owl#>)
Prefix(rdf:=<http://www.w3.org/1999/02/22-rdf-syntax-ns#>)
Prefix(rdfs:=<http://www.w3.org/2000/01/rdf-schema#>)

Ontology(
Declaration(Class(:Person))

SubClassOf(:Person DataExactCardinality(1 :hasName xs:string))

Declaration(Class(:Pupil))

5http://www.w3.org/TR/owl2-syntax/
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AnnotationAssertion(rdfs:label :Pupil "A person whos taught
by teachers"@en)

SubClassOf(:Pupil :Person)

Declaration(Class(:Teacher))
AnnotationAssertion(rdfs:label :Teacher "A person who teaches

pupils"@en)
SubClassOf(:Teacher ObjectIntersectionOf(ObjectSomeValuesFrom

(:teaches :Pupil) :Person)

Declaration(ObjectProperty(:teaches))
ObjectPropertyDomain(:teaches :Teacher)
ObjectPropertyRange(:teaches :Pupil)

Declaration(DataProperty(:hasName))
DataPropertyDomain(:hasName :Person)
DataPropertyRange(:hasName xsd:string)

)

2.4.4 OWL Reasoning

One of the core features of RDFS and OWL is, that you can exploit their constructs to
infer new knowledge based on the stored semantics within the ontology. Nevertheless,
if you extend your ontology by using OWL constructs and did not restrict it at least by
the rules which were defined for the previous introduced sublanguage of OWL, OWL
DL, reasoning becomes undecidable [45].

A very simple example of such an exploitation is shown in Listing 2.6, where we
can infer that :ComfortTemperaturePref is not only a :TemperaturePrefer-
ence but also a :Preference based on the semantics of the rdfs:subClassOf
relation [11].

Listing 2.6: Inferring new knowledge using reasoning
:TemperaturePreference rdfs:subClassOf :Preference .
:ComfortTemperaturePref rdf:type :TemperaturePreference .

For our application domain of an ontology based and energy aware home automa-
tion system, reasoning is a crucial part in order to realize artificial intelligence based
control strategies that allow maximizing energy efficiency and user comfort [78].

2.5 SPARQL Protocol And RDF Query Language (SPARQL)

The last Semantic Web technology we want to discuss is the standard query language
for RDF called SPARQL [74], which has become a W3C Recommendation in version
1.1 in 2013 [37]. Its syntax is highly influenced by the previous introduced RDF serial-
ization format Turtle [5] and SQL [17] a query language for relational data.
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Besides basic query operations such as union of queries, filtering, sorting and or-
dering of results as well as optional query parts, version 1.1 extended SPARQLs portfo-
lio by aggregate functions (SUM, AVG, MIN, MAX, COUNT,...), the possibility to
use subqueries, perform update actions via SPARQL Update and several other heavily
requested missing features [73].

A query, illustrating some of the features offered by SPARQL is shown in List-
ing 2.7. It queries recursively (indicated by the * after the property) for all classes
which are subclasses of act:TemperaturePreference and then asks for all indi-
viduals, which are instantiations of those classes. After receiving all relevant prefer-
ence values stored in variable ?prefValue only those having a ?value over 20 are
kept. In the end the average of the remaining values is calculated using the aggregate
function AVG.

Listing 2.7: Querying the average temperature of temperature preferences having a
value over 20 using SPARQL
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#>
SELECT (AVG(?value) as ?avg)
WHERE {

?tmp rdfs:subClassOf* act:TemperaturePreference.
?preference rdf:type ?tmp;

act:hasPreferenceValue ?prefValue.
?prefValue act:hasValue ?value.
FILTER(?value > 20)

}

?avg

"21.86667 "^^xsd:float

Table 2.2: Results of query shown in Listing 2.7

2.6 Linked Ontologies

One of the major concepts of several ontology development approaches (e.g. [23,69,92])
is the reuse of already existing ontologies and vocabularies whenever it is suitable [83].
The advantage of this strategy is, that (i) it saves time since you do not have to rede-
velop already existing concepts, and (ii) it supports the interlinking with other ontolo-
gies since they might use the same concepts to describe their resources.

For the development of our Actor Preferences Ontology we used two already existing
ontologies to describe time concepts (Time Ontology [39]) and to describe units of
measurement (Ontology of Units of Measure and Related Concepts [79]), which are
described in more detail in the following subsections.
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2.6.1 Time Ontology (owl-time)

As mentioned above, we used the OWL-Time ontology, offered by the W3C as working
draft [39] since 2006, to be able to define temporal properties. One of the main concepts
of this ontology is time:TemporalEntity which can either be a time:Instant or
time:Interval. The latter two concepts are especially useful in our domain, since
they offer the possibility to schedule activities and preferences (cf. Chapter 5).

In Listing 2.8 we exemplified an instantiation of time:Interval, called
:sampleInterval. In this example the defined interval has a
time:hasDurationDescription and a designated beginning and end time of type
time:Instant. Using both, a time:hasDurationDescription to define the ac-
tual duration of a specific task and time:hasBeginning & time:hasEnd to define
to lower and upper bound for the execution of this task, allows the business logic
using this ontology to schedule the actual task within bounds on its own behalf.

Whereas :sampleDuration is a time:DurationDescription of length 1 hour
and 30 minutes, :Monday_1000 and :Monday_1200 are instantiations of type
time:Instant and are referring to their respective time:DateTimeDescription.

Listing 2.8: Time interval definition with OWL-Time
@prefix time: <http://www.w3.org/2006/time#> .
@prefix : <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#> .

:sampleInterval rdf:type time:Interval ;
time:hasDurationDescription :sampleDuration ;
time:hasBeginning :Monday_1000 ;
time:hasEnd :Monday_1200 .

:sampleDuration rdf:type time:DurationDescription ;
time:hours 1.0 .

:Monday_1000 rdf:type time:Instant ;
time:inDateTime :DateTimeMonday_1000 .

:Monday_1200 rdf:type time:Instant ;
time:inDateTime :DateTimeMonday_1200 .

:DateTimeMonday_1000 rdf:type time:DateTimeDescription ;
time:minute "00"^^xsd:nonNegativeInteger ;
time:hour "10"^^xsd:nonNegativeInteger ;
time:dayOfWeek time:Monday ;
time:unitType time:unitMinute .

:DateTimeMonday_1200 rdf:type time:DateTimeDescription ;
time:minute "00"^^xsd:nonNegativeInteger ;
time:hour "12"^^xsd:nonNegativeInteger ;
time:dayOfWeek time:Monday ;
time:unitType time:unitMinute .
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2.6.2 Ontology of Units of Measure and Related Concepts (OM)

The Ontology of Units of Measure and Related Concepts (OM) [79] offers the possibil-
ity to easily define different types of units of measurement. Furthermore, it allows the
definition of quantities, measurement scales and dimensions, providing a powerful
way to access and combine different types of units.

In contrast to the OWL-Time ontology, we didn’t integrate the whole OM ontol-
ogy in order to be able to define units of measurement, but referred to their con-
cepts using an appropriate URI. This decision was primarily based on the fact, that
(i) we needed only a small subset of the actual OM ontology (i.e. instantiations of
om:unit_of_measure), and (ii) the original OM ontology is up to seven times larger
than the actual Actor Preferences Ontology.

In Listing 2.9 a sample temperature preference is defined, referring to the
om:degree_Celsius definition in the OM ontology.

Listing 2.9: Preference value definition in degree Celsius(°C)
@prefix om: <http://www.wurvoc.org/vocabularies/om-1.6#> .
@prefix : <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#> .

:sampleTemperaturePrefValue rdf:type :ContinuousPreferenceValue;
:hasValue "21.5"^^xsd:float ;
:hasUnitOfMeasure om:degree_Celsius .

22



CHAPTER 3
Smart Homes, Energy Efficiency and

User Comfort
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In the present chapter, we will discuss related work in the fields of home automa-
tion, smart homes, and ontologies representing actors and their preference information
(cf. Section 3.6), introduce the ThinkHome system (cf. Section 3.2), discuss the topics
of energy efficiency and user comfort within ThinkHome and in combination with the
Actor Preferences Ontology (cf. Section 3.3 & Section 3.4), and finally investigate some
of the benefits of using an ontology-driven way of persisting data (cf. Section 3.5).
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3.1 Smart Homes - A Definition

Over the last couple of years, the idea of a smart home which can support its residents
in their daily lives whilst at the same time decrease living costs has gained more and
more popularity. There exist several slightly different definitions of a smart home
but in general they can be perceived as a building that has some sort of intelligent
control system which can be controlled by the residents, interacts with appliances of
the smart home and monitors the home environment with sensors. A very prominent
example is monitoring of the refrigerator and its content, and if some of its supplies
run short the smart home would initiate their rebuy. Other examples could include
the control over several types of household appliances, fully automatic realization of
heating, ventilation, and air condition (HVAC) [36] system values and many more.

In [50] the authors define a smart home as:

A dwelling incorporating a communications network that connects the key electri-
cal appliances and services, and allows them to be remotely controlled, monitored
or accessed.

which needs 3 parts to make it smart, namely: an Internal Network consisting of all
the hardware which is necessary to connect appliances and equipment of the building,
an Intelligent Control which works as a gateway to manage the system, and a Home Au-
tomation for working with equipment within the house and linking to external systems
and services.

They furthermore identify six main areas of appliances and services a smart home
should cover as depicted in Figure 3.1, two of whom will play an important role
within the present thesis (i.e. the Actor Preferences Ontology), namely: Environment and
Domestic Appliances.

3.1.1 Related Ontology-Based Smart Home Concepts

Obviously, the notion of an ontology-based smart home system is neither a new nor
unique one and was already topic of several research projects over the last couple of
years. In [19] the authors propose a context-aware system using OWL ontologies to
represent their knowledge base, in [6] a multi-agent system is discussed which focuses
on user context and behavior and utilizes ontology alignments to describe mappings
to its environment, and in [81] the authors propose a more general approach by de-
veloping a requirements ontology that models the design process of home automation
systems.

In general, most of these smart home concepts have their focus on either the defi-
nition of a comprehensive knowledge base to model user context or on the usage of a
multi-agent system but rarely try to combine them both to exploit each others benefits
(i.e. ground actions of agents on the knowledge and information a knowledge base
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Figure 3.1: 6 Main areas served by smart home systems according to [50]

can provide). The ThinkHome system (cf. Section 3.2 for a more detailed introduction)
aims to utilize this synergy by grounding its smart home concept on a comprehensive
ontology-based knowledge base and an intelligent multi-agent system.

3.2 The ThinkHome System

Figure 3.2: Overview of the ThinkHome system [77]
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The ThinkHome system [77, 78] is an ontology-based smart home approach, which
leverages the combination of semantic web technologies and a multi-agent system
in home automation. Main goals of the ThinkHome system are the reduction of en-
ergy consumption and the increase of user comfort of residents, which can easily be
achieved due to the flexibility and expressiveness this combined approach comes with.
The ThinkHome system is divided into two main parts, namely: (i) an intelligent multi-
agent system (MAS), and (ii) a knowledge base (KB). While the KB is primarily responsible
of storing and persisting data dedicated to dynamic and static information about the
smart home itself, the MAS utilizes this information and especially the additional ad-
vantages an ontology-based knowledge base comes with (cf. Section 3.5) to be able
to take actions or predict possible future behavior of residents within the smart home
environment.

Due to the previous mentioned fact that the additional semantics an ontology-
based knowledge base comes with can be used for rapid and flexible adaption to
changes, makes this approach superior to others, which was extensively studied and
investigated in previous publications [48, 53–55, 77, 78, 96–99, 101].

In the following, we will give an introduction into these two components, i.e. a
discussion about the multi-agent system in Section 3.2.1 and about the comprehensive
knowledge base in Section 3.2.2, the Actor Preferences Ontology will be part of.

3.2.1 Intelligent Multi-Agent System (MAS)

Multi-agent systems as paradigm for distributed artificial intelligence as introduced
in [22] are responsible for achieving the two primary goals (i) energy efficiency, and
(ii) user comfort within the scope of ThinkHome. For that purpose, agents are able
to interfere with the KB as well as the underlying home automation systems and
various available data-sources to be able to perform actions based on the information
provided. Such agents can e.g. realize certain user preferences, re-schedule tasks
and preferences to provide a more energy preserving environment if possible, or even
predict possible preferences or actions a resident of the smart home might have or
wants to perform [98].

The MAS of the ThinkHome system distinguishes eight different types of agents (cf.
Figure 3.3), namely [76]:

User Agent - The user agent is acting on behalf of users and primarily responsible for
proving user comfort. This can be achieved by reducing interactions with control
systems a resident might have to do in order to realize certain conditions (e.g.
temperature, lighting level, etc.) by learning user habits and by being aware of
occupancy status. Additionally, it provides the interface for users to store their
preference profiles, general preferences, preferences for activities, and/or sched-
ules for preferences and activities. This agent is the one using the information
the Actor Preferences Ontology provides.
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Room Agent - The room agent controls all building services and processes which
are located within its associated zone. Every room/zone has therefore its own
room agent which locally influences its environment and which is responsible
for executing the intelligent control strategies.

Automation System Agent - The automation systems agent collects data from sensors
which are installed within the smart home and routes all communication to and
from automation devices, e.g. obtaining information requested by the agent
system from any automation device.

Data Management Agent - The data management agent primarily observes and pro-
vides information about the whole smart home environment and is aware of a
variety of information on the world which taken together forms the world state.
Based on these information, other agents are able to execute their tasks such as
control strategies.

Global Management Agent - The global management agent is responsible for han-
dling all tasks which require a complete view of the whole smart home ecosys-
tem. Especially, safety & security tasks, as well as global energy efficiency strate-
gies are taken out by this agent. Additionally, it serves as sole interface to ex-
ternal services which want to interfere with the smart home system such as the
smart grid, demand side management or performance contracting.

Figure 3.3: Smart Home System Components [52]
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3.2.2 Comprehensive Knowledge Base (KB)

The knowledge base of the ThinkHome system is represented by a highly interwoven set
of ontologies, where each ontology is responsible for representing a particular part of
the smart home ecosystem. By choosing Semantic Web technologies and particularly
ontologies as main approach to model the knowledge base, the ThinkHome system
is able to exploit the additional semantic information such an infrastructure comes
with. Most of the tasks the previous introduced agents perform would not be exe-
cutable without the help of reasoning and inferencing capabilities an ontology-based
knowledge base offers.

Figure 3.4: Overview about the ontologies within the ThinkHome system and their field
of application (same color indicates same ontology affiliation).

As depicted in Figure 3.4, the previously introduced KB stores information (i.e.
defines concepts, their attributes, and relationships among them) about five different
domains of the ThinkHome system, namely [52]:

Weather & Exterior Influences - Weather and climate information can be exploited to
infer certain actions that are necessary to realize preferences in the most energy-
efficient way possible.

Architecture & Building Physics - Information about the architecture and physics of
the building is of major importance to the smart home system, but often rather
extensive in its representation. Storing such information and therefore releasing
the users of the burden to enter that information by themselves, contributes to a
user friendly smart home ecosystem.

Resources, Facilities, Appliances, Energy Consumption & Energy Production - Energy
and resource information can e.g. be utilized as decision support for agents to
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find the momentarily best option for energy efficient energy consumption.

User Behavior & Building Processes - User behavior is represented as (derived) habit
profiles and patterns of actors as well as possible predicted schedules for differ-
ent occupancy states of the smart home, whilst at the same time a building pro-
cess describes a concept that contains information about elementary operations
within the building.

Users & Preferences - Since information of users of the smart home system is at least
as important as the other already introduced types of information, this part fo-
cuses on the representation of human or system actors of the smart home as well
as the representation of the preferences they might have.

Since some of the aforementioned domains of the ThinkHome system are directly
related to the Actor Preferences Ontology, we will now give a brief description of those
ontologies that are used to model them.

Energy & Resources Ontology (ero)

Figure 3.5: The Energy & Resource Ontology.

The Energy & Resources Ontology (cf. Figure 3.5) is used to describe two main areas
important to smart home systems, (i) energy information, and (ii) resource information.
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While energy information comes into play when integrating the ThinkHome system
into a smart grid, where this information can be used to provide e.g. the momentar-
ily best option for energy consumption [77], the resource information represents all
equipment available in the smart home. The Actor Preferences Ontology refers to two
concepts of the Energy & Resources Ontology, namely: Appliances such as blinds,
lamps, dishwashers, etc. for which an Actor can define Preferences and States
which can be assigned to PreferenceValues and represent different state values a
certain Appliance might have (e.g. On/Off, High/Medium/Low). A Preference
which was defined for a certain Appliance refers to it via its controlsAppliance
property and is then assumed to be an ApplianceCentricPreference.

User Behavior & Building Processes Ontology (ppo)

Figure 3.6: The Process & Profiles Ontology.

The User Behavior & Building Processes Ontology is on the one hand responsible for
storing habit profiles and patterns of residents of the smart home, which enables the
possibility to manage predicted future behavior of mentioned users and on the other
hand to model and store building processes called Applications which contain a
set of actions and operations that can be taken out in the building. Especially the latter
concept of Applications is important for the Actor Preferences Ontology as shown in
Figure 3.6. Certain Preferences might require the use of Applications in order
to be able to be realized, which is indicated by the usesApplication property. Such
a Preference is defined as ApplicationCentricPreference.
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Architecture & Building Physics Ontology (gbo)

Figure 3.7: The Building Information Ontology.

Main purpose of the Architecture & Building Physics Ontology (cf. Figure 3.7) is the
storage of building information. Storing this information is of utter importance for the
smart home system as it can e.g. be used to define Preferences that should only be
valid in certain areas of the building. For this purpose, two concepts which describe
areas of the building, namely Zones from a conceptual and Spaces from a physical
point of view, were referred to by the Actor Preferences Ontology via the properties
forZone and forSpace, respectively.

3.3 Energy Efficiency in ThinkHome

As first of the two main goals the ThinkHome project aims to achieve, Energy Efficiency
is the one having the largest improvement opportunities among other smart home
systems. While most of those systems use different kinds of strategies to provide
a certain degree of energy efficiency, these strategies often do not take both interior
and exterior conditions into account or only have simple realization strategies for e.g.
achieving a certain temperature level in this case, instead of using the air conditioner
to lower the room temperature, a smart home system could take exterior influences
such as the current weather state into account and just open the windows to achieve
the same goal but in a way more energy efficient manner. Other approaches have
shown, that it is possible to foresee potential behaviour of smart home residents by
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deriving their behavioural profiles based on patterns and thus, be able to perform
energy preserving actions before incidents occur [95].

Moreover, the usually large amount of appliances makes it necessary to keep track
of their energy consumption and to schedule their execution taking the current energy
supply situation into account [52].

In the following, we will discuss some scenarios in which the Actor Preferences
Ontology supports one of the major goals of the ThinkHome system - Energy Efficiency -
in more detail.

Schedulable Preferences

Figure 3.8: A potential washing machine job can be re-scheduled within its time frame
to compensate high energy consumption peaks.

By assigning time information to preferences their realization can be planned in
an energy efficient manner. In the example illustrated in Figure 3.8, a user wants
his washing machine job, which takes one hour to be finished, to be executed
during 12am - 6pm. Taking the overall energy consumption of the smart home
system into consideration, a control agent could start this job at any times with
low energy consumption peaks within its time frame if it still finishes before
6pm. Other benefits arise in combination with the later discussed occupancy of
the smart home. If a user e.g. states that he wants a particular room to have 20°C
when arrives back home at 5pm, then a control agent does not have to advise an
air conditioner to maintain this temperature the whole time till 5pm but can plan
actions to reach this preference value in a timely and energy preserving manner
(e.g. open the windows two hours prior to the scheduled time if the current
weather state is suitable) .
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Occupancy Detection

Figure 3.9: Low (1) vs. high (2) energy consumption due to available (1) or missing (2)
occupancy detection.

Occupancy detection is a major influence factor of efficient energy management
and contributes to unnecessary energy consumption if missing as exemplified
in Figure 3.9 and as reported in [8]. In this example, a potential smart home
is unoccupied from 9am to 12am and therefore does not impose the necessity
of having any turned on lamps during that time period (unless it was stated
otherwise). So there sometimes might occur a situation where a resident of the
smart home forgets to turn off the lights before he leaves the house which leads
to a waste of energy (Situation (2)). With occupancy detection on the other hand,
either automatically sensed or statically persisted in PresenceSchedules as
PresencePreferences, the smart home system would be able to start energy
preserving actions such as lowering the temperature or as in the present example
turning the lights off (Situation (1)).

3.4 User Comfort in ThinkHome

User Comfort as second major goal of ThinkHome represents the need for an integrated
and predictive system environment that works on behalf of the residents and automat-
ically realizes comfortable living conditions, whilst at the same time offering enough
possibilities to interfere with the system and manually adjust settings if necessary [52].

In the following, we will discuss two sub goals of User Comfort within ThinkHome
in more detail.

Improved and Simplified User Interaction And improved and simplified interaction
with the system is essential to achieve a certain level of user satisfaction. If e.g.
the entering of user preferences is too complicated residents of the smart home
might get upset and frustrated and either limit the amount of interaction with

33



the system to a minimum or even stop it at all. Additionally, it is of major
importance to offer users insight into current energy consumption levels in a
way that they might rethink their habits based on that feedback and therefore
maybe adjust their lifestyle into a more energy efficient one [46].

The Actor Preferences Ontology with its main focus on storing and persisting pref-
erences of ThinkHome actors builds the foundation for that sub goal. By offering a
simple but at the same time expressive way to persist information about actors,
their preferences, and activities, the ThinkHome system can increase the living
comfort of its users.

Automatic Realization of Preference Processes It is a tedious task for residents to
take care of the realization of comfortable living conditions by themselves, es-
pecially if they aim to do that in an energy efficient way. The ThinkHome system
relieves its users from that burden by offering them a simple and convenient way
to store their preferences about living conditions and by realizing them automat-
ically in the most energy efficient way possible, which represents a significant
additional value to non-automated homes as their residents would have to take
care of that realization by themselves.

3.5 Benefits of using Ontologies as Datastores

In contrast to using common relational databases for storing data about a system,
ontologies offer a large variety of benefits especially regarding intelligent data man-
agement, which makes them superior to the mentioned relational approaches. By
assigning semantic information to entities of the ontology, making the data accessible
through an inference system and thus offering the possibility to e.g. deduct implicit
knowledge, these benefits can be utilized which is often referred to as Ontology Based
Data-Access (ODBA) [102].

One drawback, ODBA in general and ontology driven datastores - called triple-
stores - suffered from, was the misconception that they are immature compared to
other widely used relational database management systems (RDMS). But systems like
Sesame [12] or AllegroGraph [2] which become more and more popular in terms of
their usage have proven to be a sophisticated alternative particularly for the emerging
trend of Big Data scenarios [80].

In the following, we will discuss three major benefits of using ODBA in more detail.

3.5.1 Automatic Type Inference

The first advantage we will discuss is the possibility to automatically infer the type of
individuals of concepts based on their characteristics. Assuming a thoroughly defined
ontology, OWL reasoners like Pellet [71, 84] or HermiT [42, 82] (cf. Section 6.1 for a
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more detailed introduction) are able to perform this task, thus, facilitating data man-
agement and integration whilst at the same time avoiding probable errors originating
from manual assignments.

We have exemplified such a scenario in Figure 3.10. Two individuals, InstanceAge1
and InstanceAge2 are defined as individuals of type Age, while the concept Age
consists of one sub concept HumanActorAge which is defined as concept having a re-
lated hasYears property. HumanActorAge itself can be distinguished into YoungHu-
manActorAge whose hasYears value is below 14 and AdvancedHumanActorAge
whose hasYears value is over 65. These associated owl:equivalentClass axioms
allow the assertion of every individual which fulfills the stated constraints to the con-
cept the respective axiom was defined for.

In the example illustrated in Figure 3.10, a reasoner is able to infer that In-
stanceAge2 is additionally of type YoungHumanActorAge and InstanceAge1 of
type AdvancedHumanActorAge.

Figure 3.10: Automatic type inference of individuals of concept Age.

3.5.2 Extensive Reasoning Support

Since ontologies were all along built to manage and use semantic information of the
data they contain, reasoners which are able to utilize that semantic information have
always been an important part of OBDA. Apart from the task of inferring and de-
ducting new knowledge, reasoners can furthermore be used to detect inconsistencies
and unsatisfiable individuals within the ontology as depicted in Figure 3.11. In that
example, two concepts YoungHumanActorAge and AdvancedHumanActorAge are
defined as being disjoint from each other (i.e. an individual cannot be of both types
at the same time) and a new individual of type Age called InstanceAge3 is in-
troduced having two values assigned via its hasYears property. Since one value
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each now fits exactly to one owl:equivalentClass axiom, a reasoner will declare
InstanceAge3 as being both, of type YoungHumanActorAge and AdvancedHu-
manActorAge, which cannot be the case based on the previous stated disjointness of
both concepts. Thus, a reasoner will throw an error and defines the ontology to be
inconsistent, based on the wrongly defined individual InstanceAge31.

Figure 3.11: Detection of wrongly defined individual InstanceAge3.

The example in Figure 3.11 represents only one case for which a reasoner can de-
tect errors within the ontology. Other common reasoning tasks include the detection
of unsatisfiability of concepts (i.e. these concepts are defined in a way that there cannot
exist any individuals of them), declaring the ontology to be incoherent (i.e. it contains
unsatisfiable concepts which are not instantiated and there exist others that are sat-
isfiable) or declaring the ontology to be inconsistent if there exists no model of the
ontology which makes all axioms hold.

3.5.3 Reasoning under Closed and Open World Assumption

One of the major benefits of SWTs for integration scenarios are their well defined
semantics and the extensive reasoner support as already discussed previously. With
OWL and OWL reasoners it is e.g. possible to describe cardinality constraints, perform
automatic type inferencing as discussed above and to check for inconsistency in the
given ontologies.

1Readers which might be already familiar with Semantic Web technologies probably have noticed that
this behavior could also have been realized by defining the property hasYears as functional property.
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While Semantic Web languages underlie the Open World Assumption (OWA) (i.e., if
a statement is not explicitly stated, it does not mean that it does not exist), software
engineering languages are mostly based on Closed World Assumption (CWA) (i.e., if a
statement is not present, it does not exist) [75]. To deal with this issue, constraints
expressed as OWL axioms and which cannot be checked by common OWL reasoners
due to the OWA can be checked via SPARQL queries.

With SPARQL, it is possible to query for the presence of individuals which violate
those constraints and thus, detect inconsistencies.

Figure 3.12: Detection of violated cardinality constraints.

Consider the example illustrated in Figure 3.12 and especially the cardinality con-
straint ...hasPreference exactly 12 Preference for concept SpecialAc-
tor expressed in OWL Manchester Syntax2 (this cardinality constraint shall only repre-
sent an abbreviation). The answer to the question whether or not a particular Actor
has the right amount of Preferences, would not be directly decidable for OWA,
because there might be some preferences which are not already identified, but is de-
cidable for CWA with the support of SPARQL as depicted in Listing 3.1.

Listing 3.1: ASK Query which returns true if an Actor has not exactly 12 Prefer-
ences

ASK WHERE {
{ SELECT (count(?preferences) AS ?numbOfPrefs) ?actor WHERE {

?actor a :Actor .
?actor :hasPreferenceProfile/:hasPreferenceSchedule?

/:hasPreference ?preferences.
} GROUP BY ?actor

} FILTER(?numbOfPrefs != 12) }

2http://www.w3.org/TR/owl2-manchester-syntax/
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3.6 Related Work

While reusing ontologies for its own purpose is highly encouraged by numerous on-
tology development approaches (cf. Chapter 4), their reusability highly depends on
their intended purpose. Although ontologies that model domains like time informa-
tion [39] or units of measurement [79] can in general be used out of the box, those
having a more precise and narrow field of application also often have a different focus
than the one intended. Moreover, the available ontologies that have a similar focus as
the Actor Preferences Ontology mostly specialize themselves on representing users and
their context within a smart home, rather than considering user preferences/activities
and the scheduling of preferences/activities with the same importance. Developing
the ontology by ourselves additionally comes with the benefit of being in charge of the
creation of documentation artefacts which we ascribe high importance to.

In the following, we will list some of those mentioned ontologies where some of them
served as inspiration for the conceptualization of the Actor Preferences Ontology:

• In [67, 91], the authors present an ontology which models the relationship be-
tween objects in the environment and human intentions. The main field of ap-
plication of the presented ontology lies in the support of elderly people and the
interaction with service robots. They discuss an approach of retrieving human
preferences with reinforcement learning having a major focus on preferences re-
garding actions with household equipment (e.g. opening a lunch box, taking a
pen).

• Residing in a completely different domain, the authors of [49] describe the con-
struction of a user preference ontology for anti-spam mail systems. Although,
as already mentioned that ontology was modeled for a completely different do-
main, the principle of using persisted preference information only in a semi-
automatic manner, i.e. keeping human actors in charge and offer them the pos-
sibility of interfere with the system at any time, will be reused within the Actor
Preference Ontology.

Apart from approaches that use ontologies for modeling users and their preferences
for an arbitrary domain, there also exist some work on using those ontologies within
the scope of smart home concepts:

• In [35], the authors describe an context model to represent, manipulate and ac-
cess context information in intelligent environments and reasoning capabilities
such a context model provides, having a focus on persons, locations and activi-
ties but do not take user preferences into account.

• One article that describes an approach which is quite similar to ours can be found
in [58]. There, the authors use user profiles to store general preferences about
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the environment and activity profiles to represent preferences which should be
valid whenever their asserted activity will be performed.

• In [94], an ontology for persisting user context which stores data about environ-
ment, activity, preference information is discussed. They additionally present an
approach to exclude duplicated information which results in a 70 times smaller
amount of data that has to be persisted.

• Finally, in [19], an ontology that is able of storing user information, instantia-
tions and rules, which can be defined, is presented. The context-aware model
the authors describe can be used within a pervasive environment in a way that
control services are able to perform decisions and actions on behalf of the user
they represent. Unfortunately, the exact structure (i.e. used concepts, properties,
etc.) of the ontology is missing.
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Ontologies have become an important component in many areas including infor-
mation retrieval and extraction, knowledge management, ontology-based data access [72] and
are part of a new approach for building intelligent information systems [21, 83]. As
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a result there exist a variety of different ontology engineering approaches and ontol-
ogy development methodologies, all having different advantages and disadvantages,
which makes it difficult to choose the most suitable approach for the problem at hand.

In the present chapter, we will focus on discussing different strategies for conduct-
ing the process of developing an ontology, and introduce selected ontology develop-
ment methodologies in more detail by explaining their internal workflow and analyz-
ing their advantages and disadvantages, rather than investigating general methodolo-
gies for defining an ontology from scratch as discussed in [87]. We then emphasize our
decision for using METHONTOLOGY [23] for creating the Actor Preferences Ontology,
by introducing its underlying workflow and methodology in more detail.

4.1 Ontology Design Patterns (ODP)

Originating from the field of software engineering, the authors of [25] proposed the
reuse of small, task-oriented ontologies called Ontology Design Patterns (ODP) as strat-
egy to solve specific types of design and implementation issues by using common
solutions (cf. a comprehensive collection of common ODPs [27]). Such an ontology
design pattern serves as possible solution to a recurrent ontology design problem and
can be differentiated into six different ODP families [26] (cf. Figure 4.1).
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Figure 4.1: Different types of Ontology Design Patterns [26].
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We will now briefly introduce the distinct types of ODPs based on their hierarchy,
shown in Figure 4.1 and their definition given in [25].

Structural ODPs are divided into Logical ODPs and Architectural ODPs.

Logical ODPs focus on solving issues of expressivity, which may be caused by
limitations of the chosen representation language, by composing logical
constructs to overcome those problems.

Example: An example of such a Logical ODP is the n-ary relation pattern [68]
(cf. Figure 4.2), which defines a best practice to model n-ary relationships
between concepts in OWL, which natively supports only bidirectional re-
lations between concepts. This can be achieved by introducing a new con-
cept, representing the relationship between the n concepts and additional
relations from/to them.

Figure 4.2: Representation of a n-ary relationship in OWL [68].

Architectural ODPs constrain the overall shape of the ontology. They can be
either (i) internally - defining a set of Logical ODPs that have to be used when
developing an ontology or (ii) externally - defining meta-level constructs
which should build the overall structure of the ontology. Architectural ODPs
usually serve as reference documentation for further ontology design steps.

Correspondence ODPs are further divided into Reengineering ODPs and Mapping ODPs.
While Reengineering ODPs offer solutions to transform conceptual models, which
may have their origin in other resources than ontologies, into ontologies, Map-
ping ODPs provide best practices to map concepts of two existing ontologies with
each other (i.e. creating semantic aligments).
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Content ODPs are focussed on encoding conceptual design patterns and on solving
design problems for specific domains. In contrast to Logical ODPs which define
patterns for problems independent of a specific application domain.

Example: A typical Content ODP is the hasPart/isPartOf relationship among
entities and their parts (cf. Listing 4.1). This pattern provides an example to
model such a conceptual relationship and can directly be used in the specific
part of the ontology, dealing with that issue.

Listing 4.1: Ontology Design Pattern for representing entities and their parts
(taken from [27])
...
:hasPart rdf:type owl:ObjectProperty ,

owl:TransitiveProperty ;
rdfs:label "has part"@en ;
owl:inverseOf :isPartOf ;
rdfs:range owl:Thing ;
rdfs:domain owl:Thing .

:isPartOf rdf:type owl:ObjectProperty ,
owl:TransitiveProperty ;

rdfs:label "is part of"@en ;
rdfs:domain owl:Thing ;
rdfs:range owl:Thing .

...

Reasoning ODPs enable ontology engineers to model Logical ODPs in a way that de-
sired reasoning results are obtainable by certain reasoners. Such patterns can in-
clude examples for classification, inheritance, subsumption, . . . and can be modeled
in a domain independent way (i.e. not limited to certain application domains).

Presentation ODPs are in contrast to previous introduced DPs concerned with the
usability and readability of ontologies from a user perspective. While Naming
ODPs define best practices to create names for entities of an ontology, names-
paces, and files, Annotation ODPs provide conventions for annotating entities in
order to improve the understandability of ontologies and their elements.

Lexico-Syntactic ODPs are linguistic structures that consist of certain types of words
following a specific pattern (similar to naming patterns proposed for business
process activities in [59]), and allow to derive some conclusions about the in-
tended semantics/meaning of entities within an ontology.
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4.2 Ontology Development Methodologies

In contrast to the previously introduced ontology design approach of Ontology Design
Patterns 4.1, the area of specific Ontology Development Methodologies differs primarily
in its intended purpose. While ODPs propose patterns to model certain aspects of
an ontology, ontology development methodologies define guidelines for conducting
the entire development process. In the following section, we will introduce some of
the most common and well established methodologies, by discussing their internal
workflow and analyzing their advantages and disadvantages.

4.2.1 Methodology by Uschold & King

The authors of [92] were one of the first to propose a skeletal methodology, which
is illustrated in Figure 4.3, for developing ontologies based on guidelines and hints
reported in related literature such as (i) principles for designing ontologies [33], and (ii)
evaluation of knowledge sharing technology [30].

Workflow Description

Figure 4.3: Workflow of the ontology development methodology proposed by Uschold
& King [92].

Identifying Purpose and Scope As a first step, the actual purpose of the ontology
together with its scope shall be identified (e.g. as competency questions).
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Building the Ontology This step deals with the actual implementation of the ontol-
ogy and can be broken down into three sub-steps, namely:

Ontology Capture The first part of building the ontology deals with the (i) iden-
tification of key concepts and relationships, (ii) annotating such concepts and rela-
tionships with text definitions, and (iii) identification of referring terms.

Ontology Coding After all relevant terms are captured and documented, the
ontology gets serialized in a formal language which is capable of represent-
ing those elements.

Integrating Existing Ontologies This step, which can be considered to be con-
ducted in parallel to those explained above, deals with the question if there
are any existing ontologies which might be relevant for the application do-
main and could be integrated into the ontology.

Evaluation During the evaluation, previous defined competency questions are used
to evaluate whether or not the requirements are met.

Documentation All important assumptions should be documented, especially those
about main concepts of the ontology.

Although the methodology of Uschold & King can be considered to be outdated,
its main steps served as foundation of many other development approaches proposed
in the recent past (e.g. Ontology 101 [69], METHONTOLGY [23]). Hence, e.g. steps
similar to Identifying Purpose and Ontology Capture/Coding can be found in nearly every
ontology building approach.

Analysis

Advantages: The approach proposed by Uschold & King is a quite simple and straight-
forward methodology for creating ontologies. It only consists of few steps to be
considered while developing an ontology and therefore deemed to be suitable
for small-scale ontologies and non-productive ones.

Disadvantages: Due to the fact that this methodology describes a general workflow to
develop ontologies rather than providing precise tasks that must be conducted in
order to develop an ontology, it should definitely not be used to build ontologies
which need to be well documented and/or are used in an highly productive
environment.

Applicability for the Actor Preferences Ontology: Although there exist some ontolo-
gies which were successfully developed following the methodology proposed by
Uschold & King (e.g. Enterprise Ontology1 and an e-Government Ontology [24]),
we decided against its application based on following major shortcomings:

1http://www.aiai.ed.ac.uk/project/enterprise/enterprise/ontology.html
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1. No mandatory creation of documentation artifacts - Besides a documen-
tation task at the end of the development life-cycle, this methodology does
not require a mandatory creation of documentation artifacts throughout the
development process. For a productive environment and especially if more
than one ontology engineer is involved, a precise documentation is essen-
tial, which cannot be guaranteed following this approach.

2. Vague description of development steps - Again, for the usage within a
productive environment where standardized development steps are impor-
tant in order to guarantee a fully integrateable ontology, this methodology
is not suitable.

4.2.2 METHONTOLOGY

Following the basics and recommendations of Uschold & King, the authors of [23]
proposed one of the first comprehensive methodologies for developing ontologies. In
contrast to many other approaches, which either do not include documentation as step
in the ontology development life cycle or enforce users to explicitly create a documen-
tation after the completion of the ontology, the documentation in METHONTOLOGY
is created throughout the whole development process.

Since we have chosen this approach for the development of our ontology and will
describe it in more detail in Section 4.4, we will introduce the different phases of its
workflow very briefly.

Workflow Description

Planification In this very first step, METHONTOLOGY proposes a plan which de-
scribes the scheduling of each task (i.e. what has to be done at which time?)

Specification During the Specification an Ontology Requirement Specification Document is
defined which describes the scope of the ontology using competency questions.

Conceptualization In the Conceptualization step, the domain knowledge will be struc-
tured in a conceptual model which is divided into a set of diagrams and tables
(cf. Figure 4.8).

Formalization Using the previous defined conceptual model, a formal representation
of that model is produced.

Integration Whenever applicable, existing ontologies which are able to cover parts of
the application domain shall be reused and integrated into the ontology.

Implementation During the Implementation, the results of the Formalization and Inte-
gration step are combined and merged into an ontology.
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Figure 4.4: Process of creating an ontology using the METHONTOLOGY ap-
proach [23].

Maintenance After the ontology has been released, some modifications and mainte-
nance tasks may have to be carried out.

The next three phases are not performed only once or at a specific point during the
development process, but multiple times along with the previous defined phases.

Knowledge Acquisition As the name already suggests, this phase mainly covers the
acquisition of knowledge about the domain of interest.

Evaluation On the basis of previous defined documents, the ontology is evaluated
throughout the whole development process in order to ensure it is meeting its
requirements.

Documentation After each phase, a document describing its results is created.

Analysis

Advantages: As already mentioned earlier, the creation of a comprehensive documen-
tation is enforced during the whole development life cycle (i.e. a document for
every phase of the development process describing its outcomes). Furthermore,
a lot of ontologies were created following the METHONTOLOGY approach in-
cluding a chemical ontology [62], a legal ontology [16] and a graduation screen
ontology [70] (cf. [29] p. 141-142 for a more comprehensive list of ontologies).
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Disadvantages: For the development of small ontologies, which will be most likely
not being used in a productive environment, another more light-weight approach
like Ontology 101 might be more suitable.

Applicability for the Actor Preferences Ontology: Since METHONTOLOGY does per-
fectly fit our requirements (i.e. (i) provide detailed instructions to perform develop-
ment steps and (ii) enforce the creation of documentation artifacts throughout the whole
development process) having at the same time a reasonable development effort, it
is perfectly applicable as development methodology for our Actor Preferences
Ontology.

4.2.3 Unified Process for Ontology Building (UPON)

The authors of [18] wanted to map principles of software engineering, more precisely
principles of the Unified Process [47], to ontology engineering and proposed the Unified
Process for Ontology Building (UPON), which is depicted in Figure 4.5.

Workflow Description

Figure 4.5: Process description of developing an ontology using the UPON ap-
proach [18].

Cycle The development process of the UPON approach consists of n Cycles where each
Cycle results in a new version of the ontology and consists of several Phases.

Phases There exist four different Phases, namely:
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Inception During Inception, requirements are gathered.

Elaboration The Elaboration phase includes the identification and organization
of important main concepts.

Construction Elements of the ontology to be built are created during the Con-
struction phase.

Transition The optional Transition phase involves the evaluation and testing of
the generated ontology.

Iteration Each previous mentioned Phase consists of several Iterations by itself and
each Iteration can be broken down into five Workflows. Notice that, not for every
Phase all Workflows are performed, e.g. Inception is primarily concerned with cap-
turing requirements and partly performing some conceptual analysis but neither
performs implementation nor testing [18].

Workflow Five different Workflows can be distinguished within the UPON approach:

Requirements As a very important first step, the requirements of the ontology,
which should be developed, are investigated. Competency questions along
with use cases, relevant terminology and the purpose of the ontology are
defined and passed to the Analysis.

Analysis Using the generated artifacts of the Requirements workflow, those re-
quirements get refined and structured. Additionally, the reuse of existing
resources is investigated based on the previous created scope definition and
a first version of a glossary of concepts is built.

Design The Design workflow incorporates the more precise refinement of el-
ements discovered during Analysis and the identification of relationships
among them.

Implementation The formalization of the informal ontology, which was created
in the previous workflow, into an ontology language takes place in this step.

Test The Test workflow verifies the correctly implemented requirements of the
ontology (i.e. by trying to answer competency questions using concepts of
the ontology) together with the coverage of the ontology over its application
domain.

Analysis

Advantages: The biggest advantage of building an ontology with the UPON approach
is the exhaustiveness of the ontology which should be built once the develop-
ment process is finished, based on the fact that it maps best practices from soft-
ware development to ontology engineering (i.e. Unified Process [47, 56]).
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Since the UPON approach proposes only an informal guideline for the ontol-
ogy development process, it is possible to slightly alter the different phases or
workflows in order to fit the scope of the ontology more precisely.

Disadvantages: As the description above might already suggests, there is a huge ef-
fort in carrying out a development of an ontology with the UPON approach.
The execution of various development cycles, each consisting of various phases,
iterations and their underlying workflows leads to a development effort, which
is only feasible when building large-scale knowledge bases.

Applicability for the Actor Preferences Ontology: Although the UPON approach in-
corporates two of the major requirements we stated for our ontology develop-
ment methodology and therefore would be in general applicable to develop the
Actor Preferences Ontology, we do not choose it as our preferred development
strategy due to one major aspect: Tremendous development effort. As already
mentioned above, the effort in using the UPON approach to develop an ontology
definitely exceeds the needs of our scope and therefore disqualifies it as suitable
development methodology.

4.2.4 Ontology 101

In their approach called Ontology 101 [69], the authors describe an iterative strategy to
develop an ontology as depicted in Figure 4.6. Furthermore, they emphasize three fun-
damental rules, which can easily be applied to any other ontology building methodol-
ogy and should help to make decisions during the design of the ontology (paraphrased
from [69]):

1. There is no one correct way to model a domain. The best solution almost always depends
on the application that you have in mind and the extensions that you anticipate.

2. Ontology development is necessarily an iterative process.

3. Concepts in the ontology should be close to objects and properties in your domain of
interest. These are most likely to be nouns or verbs in sentences that describe your
domain.

Workflow Description

Definition of Ontology Scope A step which can be found in all ontology building
methodologies and is essential for creating a comprehensive knowledge base, is
the definition of competency questions. Those competency questions define the
scope of the ontology to be built and are important to clarify the purpose of an
ontology in very specific terms [72, 92].
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Figure 4.6: Workflow of the Ontology 101 development approach.

Reuse Existing Ontologies The reuse of already existing ontologies is not only bene-
ficial if the ontology has to interact with other applications which are built upon
ontologies, but also saves a lot of time since particular parts of the knowledge
base do not have to be reinvented [83].

Create a Glossary of Terms Building a glossary of terms, which consists of a com-
prehensive list of terms, is an essential step of Ontology 101. Without worrying
about the type (i.e. classes or properties), all terms which might be related to
the application domain and the owner of the ontology wants to make statements
about are gathered and then further processed in the next steps.

Definition of Classes & Properties First, all terms within the glossary which repre-
sent classes are identified and then used to define a class hierarchy among them.
Based on that class hierarchy, the internal structure of concepts is described us-
ing the remaining terms of the glossary, which are most likely properties of those
classes.

Definition of Property Ranges In this step, the cardinality, the value type and do-
main/range of properties are identified in order to define those properties more
precisely.

Definition of Individuals Taking the remaining terms of the glossary into considera-
tion, individual instances of classes are created. If the ontology can be considered
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to be finished, the result of this step leads to the completed ontology, otherwise
the whole ontology development process starts with a new iteration.

Apart from the Ontology 101 development approach, the authors provide several
informal guidelines and best practices, which shall help data scientists in the task of
building an ontology.

Analysis

Advantages: Ontology 101 is probably one of the most prominent representatives of
ontology development approaches and due to its simplicity rather easily un-
derstandable. Based on that simplicity, it is perfectly suitable for developing
small-scale ontologies which does not need to be thoroughly documented in a
fast way.

Disadvantages: Like the previous introduced methodology by Uschold & King, it
lacks in a standardized way the tasks must be performed in order to develop an
ontology. That might lead to inconsistent results when integrating ontologies,
created following that approach. Furthermore, it does not enforce the creation of
documentation artifacts in any way.

Applicability for the Actor Preferences Ontology: Ontology 101 is one of the best known
and easiest methodology to develop ontologies and was used to create ontologies
such as an ontology for supporting engineering analysis models [31]. Neverthe-
less, due to several facts which are stated underneath it is not entirely applicable
for our scope.

1. Imprecise description of methodology tasks - Ontology 101 offers a set of
tasks which should be performed within their iterative development pro-
cess, but does not provide a detailed and standardized description on how
that should look like. Since our ontology will be part of a system which
incorporates several ontologies, a thorough and standardized development
step description is mandatory.

2. No documentation enforced - Ontology 101 does not require any documen-
tation of the development process and/or the ontology itself, which makes
it less applicable than other investigated methodologies.

4.3 Ontology Learning

Ontology Learning [63] focuses on the (semi-)automatic acquisition of knowledge and
its respective transformation into ontologies. Rather than solely using domain experts
to model and develop ontologies, ontology learning methods should support those
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experts in deriving relations and concepts within the domain of interest using data
mining techniques [15] in a (semi-)automatic manner.

One of the major benefits of ontology learning is the reduction in costs of creating
and maintaining ontologies, which has led to a vast amount of ontology learning
frameworks (e.g. OntoLT [14]) which have been integrated with common ontology
engineering tools (e.g. Protégé).

Ontology learning frameworks are usually based on the same conceptual architec-
ture which is exemplified in Figure 4.7.

Figure 4.7: Ontology Learning conceptual architecture [15].

This general architecture distinguishes different kinds of data (structured, semi-
structured and unstructured) and applies knowledge extraction strategies based on
those respective types of data.

structured Processing structured data (e.g. extracting data from a database) facilitates
the use of machine learning techniques [60] and the reuse of schemas, which can
be derived from the database structure.

semi-structured Semi-structured data (e.g. web-pages, XML, . . . ) sometimes require
a data pre-processing step to identify common concepts and similarities among
them (e.g. using Natural Language Processing (NLP) approaches [13, 61])
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unstructured Text documents (e.g. documentation) are classified as unstructured data
and have to undergo a data pre-processing step as introduced above.

If the respective data-source has been processed and the knowledge extraction
process has been finished, the results are usually presented to a domain expert and/or
ontology engineer, who then investigates and reviews the generated results. Since a
fully automatic knowledge acquisition is currently not achievable, this last step is
mandatory and leads to a semi-automatic ontology generation process with human
intervention [63].

Analysis

Advantages: Ontology Learning approaches usually decrease the amount effort re-
quired to develop an ontology. Especially for use-cases were an ontology must
be created based on data stored in a set of documents or information which is
distributed across several resources, ontology learning approaches have proven
their feasibility.

Disadvantages: If an ontology is created in a (semi-)automatic manner, it usually must
be revised by some domain experts to guarantee the correctness of inferred en-
tities. While that revision might not impose an additional burden in terms of
complexity for small ontologies which have almost no relations to external on-
tologies, it becomes quite complex when trying to create an ontology which has
relations to others and thus, must stick to a potential nomenclature.

Applicability for the Actor Preferences Ontology: There are several reasons why think
that the usage of ontology learning approaches for creating the Actor Preferences
Ontology is not feasible:

1. Compatibility with related ontologies must be ensured - Supposing that
we would have carried out the creation of the ontology with (semi-)automatic
approaches, we could not guarantee its compatibility with other related
ontologies of the ThinkHome system anymore. A complex revision of the
generated ontology fragments would have to be carried out which in turn
would exceed the effort of developing the ontology from scratch with an-
other development approach like METHONTOLOGY.

2. No documentation enforced - One of our main requirements is to produce
thorough documentation artifacts throughout the whole development pro-
cess of the ontology. Unfortunately, ontology learning approaches, which
(semi-)automatically derive entities of an ontology from a set of resources,
do not impose the creation of any documentation artifacts and thus, do not
fulfill this requirement.
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4.4 The METHONTOLOGY Approach

For the development of the Actor Preferences Ontology we have decided to choose the
METHONTOLOGY approach, due to (i) its large acceptance in the ontology development
community, (ii) its elaborate development process and (iii) its approach to produce comprehen-
sive documentation.

In the following, we will introduce each phase of the METHONONTOLOGY ap-
proach in more detail and give an example for the documentation artifacts which will
be produced throughout the whole process.

4.4.1 Planification

Fernández et al. [23] argue, that an ontology development process only defines what
activities have to be carried out when developing an ontology rather than defining a
concrete order in which they have to be performed. Therefore, a plan which schedules
the whole development process must be created during the Planification step. Since
METHONTOLOGY already offers such a plan (cf. the workflow of METHONTOLOGY
in Figure 4.4) , this step is often omitted when carrying out the development of an
ontology with METHONTOLOGY.

4.4.2 Specification

During Specification an Ontology Requirement Specification Document must be generated
which have to include at least following information:

• Purpose of the ontology, use cases, end-users, . . .

• Level of formality of the ontology, ranging from highly informal to rigorously
formal [93].

• Scope of the ontology, including a set of terms which should be represented
together with its characteristics and granularity.

Furthermore, since the total completeness of a specification document [23] cannot
be ensured, following properties must hold for the generated Ontology Requirement
Specification Document:

Concision There must be no irrelevant or duplicated terms in the specification docu-
ment.

Partial Completeness Although total completeness cannot be ensured, coverage of
the terms must be as high as possible according to their granularity levels.

Consistency All terms and their meanings must be consistent to the application do-
main.
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METHONTOLOGY does not propose any formal requirements to a specification
document except for the guidelines introduced above. Hence, we rely on the definition
of [86] for defining an Ontology Requirement Specification Document (cf. Section 5.1.2).

4.4.3 Knowledge Acquisition

One of the activities which is performed throughout the whole development process
and orthogonal to all others is Knowledge Acquisition. It is mainly carried out simulta-
neously to the Specification phase and decreases as the development process continues.

The step of Knowledge Acquisition is very important since it is unlikely that the per-
son who is developing the ontology has enough knowledge to build a comprehensive
and complete ontology from scratch without consulting any domain experts or possi-
ble end-users. Other sources of knowledge are for example books, handbooks, figures,
tables or related ontologies.

Once sources of additional knowledge are identified, techniques such as inter-
views, brainstorming, text analysis and knowledge acquisition tools can be used to
gather that knowledge [23].

4.4.4 Conceptualization

Following a more fine-grained description of the Conceptualization step [29], which is
illustrated in Figure 4.8, the task of structuring the domain knowledge in a conceptual
model can be divided into following sub-tasks:

Figure 4.8: Set of tasks performed during Conceptualization.
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1. Building a Glossary of Terms The first task of Conceptualization is to build a Glos-
sary of Terms. Such a glossary includes all relevant terms of the domain of interest
(i.e. concepts, instances, properties, relationships, . . . ) and is exemplified in Ta-
ble 4.1.

Name Synonyms Acronyms Description Type

. . . . . . . . . . . . . . .

Table 4.1: Glossary of Terms template proposed by METHONTOLOGY

In early stages of the development, the glossary might get refactored many times
in order to reduce redundancy among terms.

2. Building Concept Taxonomies Once the glossary contains a first set of concepts,
Concept Taxonomies as exemplified in Figure 4.9 are built to define a hierarchical
ordering among classes.

Figure 4.9: Concept Taxonomy proposed by METHONTOLOGY.

METHONTOLOGY proposes four different taxonomic relations which describe
different concept-instance relations, namely:

Subclass-Of A concept C is a Subclass-Of another concept D iff every instance
of C is also an instance of D.
Example: Every Human is born as an Omnivore and can digest both meat
and vegetables.

Disjoint-Decomposition A Disjoint-Decomposition of a concept C is a set of sub-
classes of C that does not have common instances and does not cover C.
Example: Both Sharks and Tigers are Carnivores, but there are
Carnivores which are not represented in the taxonomy (e.g. Dogs)
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Exhaustive-Decomposition In contrast to Disjoint-Decomposition, an Exhaustive-
Decomposition of C is a set of subclasses of C that covers C but may have
common instances.
Example: Animals can be divided into Carnivores and Herbivores
but there are instances which are both (cf. Omnivore).

Partition A Partition of a concept C is a set of subclasses of C that covers C but
does not share common instances.
Example: The set of concepts that are Herbivores can be entirely split
into Mammals and NonMammals and there exists no Herbivore which is
both Mammal and NonMammal.

3. Building Ad-hoc Binary Relation Diagrams Once the Concept Taxonomies have been
built, Ad-hoc Binary Relation Diagrams should be generated. Those diagrams rep-
resent relationships between concepts of the taxonomies and should help to iden-
tify possible imprecise or over-specified domains and ranges of properties. Fig-
ure 4.10 illustrates such an Ad-hoc Binary Relation Diagram.

Figure 4.10: Ad-hoc Binary Relation Diagram proposed by METHONTOLOGY.

4. Building a Concept Dictionary To describe each concept of the Concept Taxonomies
in more detail, a Concept Dictionary should be built. This dictionary contains all
concept names, relations and instances of concepts together with their appropri-
ate class and instance attributes and is exemplified in Table 4.2. To retrieve all
required information to build such a dictionary, the results from previous steps
are integrated and summarized.

Concept Dictionary

Concept Name Class Attributes Instance Attributes Instances Relations

. . . . . . . . .

Table 4.2: Concept Dictionary Table proposed by METHONTOLOGY

METHONTOLOGY does not propose any specific order to perform tasks 5 to 8,
once tasks 1 to 4 are completed!

5. Describing Ad-hoc Binary Relations Describing the diagrams of task 3 in more
detail, for each previous defined ad-hoc binary relation, its details (i.e. name,
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source concept, target concept, source cardinality and inverse relation) are sum-
marized and represented in a Ad-hoc Binary Relation Table as illustrated in Ta-
ble 4.3.

Ad-hoc Binary Relation Table

Relation Name Source Concept Cardinality Target Concept Inverse Relation

. . . . . . . . . . . . . . .

Table 4.3: Ad-hoc Binary Relation Table proposed by METHONTOLOGY

6. Describing Instance Attributes All instance attributes which are already included
in the Concept Dictionary are defined more precisely during this step. Hence,
a table of all instance attributes is created, each row describing its name, the
concept it belongs to, its value type, its measurement unit, precision and range
of values as well as its (min,max) cardinality.

Furthermore, all instance attributes, class attributes or constants which are used
to infer values of the attribute, attributes which can be inferred using values of
this attribute, formulas or rules that allow inferring values of the attribute, and
references used to define the attribute, can additionally be defined in the table.

Instance Attribute Table

Attribute Name Concept Name Value Type Measurement Unit Precision Range of Values Cardinality

. . . . . . . . . . . . . . . . . . . . .

Table 4.4: Instance Attribute Table proposed by METHONTOLOGY

7. Describing Class Attributes Like for instances in the previous step, a table speci-
fying class attributes more precisely is defined during this task. Unlike instance
attributes, class attributes cannot be inherited by subclasses or instances, thus
directly describe concepts and take their values in the class where they were
defined.

A possible incarnation of such a description, which includes information about
the defined class itself, information about the concept it is defined for (i.e. its
super concept), its value type, its measurement unit, its precision as well as
(min,max) cardinality and values, is proposed in Table 4.5.

8. Describing Constants The aim of this task is to describe all constants, which were
identified in the Glossary of Terms, in more detail. Therefore a Constants Table is
created, containing information about the name of the constant, its value type,
its measurement unit and its value as illustrated in Table 4.6.
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Class Attribute Table

Defined Concept Super Concept Attribute Name Cardinality Values

. . . . . . . . . . . . . . .

Table 4.5: Class Attribute Table proposed by METHONTOLOGY

Constant Table

Name Value Type Measurement Unit Value

. . . . . . . . . . . .

Table 4.6: Constant Table proposed by METHONTOLOGY

Once all of the above tasks are finished, (i) formal axioms which specify constraints
in the ontology, as well as (ii) rules which infer additional knowledge can be defined
in their respective tables.

9. Describing Formal Axioms A Formal Axioms Table contains a definition for each
formal axiom found in the ontology. Such a definition includes at least: a name,
a natural language description, a logically expression which describes the axiom
in first order logic, the entities to which the axiom refers and the variables it uses
(cf. Table 4.7).

Formal Axiom Table

Axiom Name Description Expression Concepts Referred Attributes Binary Relations Variables

. . . . . . . . . . . . . . . . . . . . .

Table 4.7: Formal Axiom Table proposed by METHONTOLOGY

10. Describing Rules Parallel to a Formal Axioms Table, a Rule Table can be defined (cf.
Table 4.8), which precisely describes all rules found in the ontology.

It basically contains the same columns as the previous defined table for formal
axioms, but in contrast to a logically expression which describes the formal ax-
iom in first order logic, an expression following the pattern if <conditions>
then <consequent> will be used. Although <conditions> can be the con-
junction of atoms, the <consequent> consists of only one atom.

11. Describing Instances As last step during the Conceptualization phase, all instances
found in the the Glossary of Terms are described. These instances are listed once
again in a tabular manner involving following columns: instance name, the con-
cept it belongs to, its attributes and possible values, as depicted in Table 4.9.
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Rule Table

Rule Name Description Expression Concepts Referred Attributes Binary Relations Variables

. . . . . . . . . . . . . . . . . . . . .

Table 4.8: Rule Table proposed by METHONTOLOGY

Instance Table

Instance Name Concept Name Attributes Values

. . . . . . . . . . . .

Table 4.9: Instance Table proposed by METHONTOLOGY

Remark - Based on the different needs and individual nature of ontologies, the step
of Conceptualization may be altered (i.e. reducing or extending the level of detail of
intermediate representations).

4.4.5 Formalization

Till this step, only informal descriptions of the entities of the ontology exist. Therefore,
during Formalization all these descriptions are transformed into the target ontology
language (e.g. OWL).

Although METHONTOLOGY proposes this step to be separately performed be-
fore the Implementation, it is actually mostly performed within the Implementation and
therefore often omitted as separate step.

4.4.6 Integration

During Integration, all relevant ontologies which might be reusable are identified. This
is especially important to

(i) save time and resources during the development process, since you do not have to
redevelop already existing concepts, and

(ii) supporting the interlinking with other ontologies, since they might use the same
concepts to describe their resources.

After they were identified, terms that shall be integrated into the ontology are
summarized in an integration document and prepared to be further processed in the
Implementation step.
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4.4.7 Implementation

During Implementation the ontology finally gets serialized in an appropriate ontology
language such as OWL. Although such a serialization could be carried out using a
normal text editor, the authors of [23] propose to use an editor which supports at
least:

• a lexical and syntactic analyzer to guarantee the absence of lexical or syntactic
errors

• translators, to guarantee the portability of the definitions into other target lan-
guages

• an editor to add, remove or modify definitions

• a browser to inspect the library of ontologies and their definitions

• an evaluator to detect incompleteness, inconsistencies and redundant knowledge
(i.e. an OWL reasoner)

• an automatic maintainer, to manage the inclusion, removal or modification of
existing definitions

Nowadays, ontology editors like Protégé [1] or the TopBraid Composer [89] offer a
large variety of features, supporting ontology developers in developing and maintain-
ing their ontologies.

4.4.8 Evaluation

The phase of Evaluation takes place throughout the whole development process and
assesses whether or not previously defined requirements are met. To do so, every
artifact (table, diagram, serialized code) gets evaluated and compared against the On-
tology Requirement Specification Document whenever it is altered, to prevent possible
implementation errors.

After the completion of the development life cycle all functional and non-functional
requirements must be met and in case of unrealizable requirements, decided whether
or not that happened due to restrictions in the chosen ontology language or based on
implementation mistakes.

4.4.9 Documentation

Similar to Evaluation, Documentation within the METHONTOLOGY approach is not
performed explicitly, but during the whole development process. Following this ap-
proach of documentation, ontology engineers do not have to generate a documentation
after the completion of the ontology, which might lead to incomplete or wrong infor-
mation [23], but are able to finish their documentation together with the ontology.
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4.4.10 Maintenance

Unfortunately, no ontology can be considered to cover the intended application do-
main completely and therefore might have to be modified after its release.

Such a modification usually comes hand in hand with a modification of the re-
quirements of the ontology. If that is the case, the whole development process starts
over again, starting with Specification and is repeated until all requirements are met.
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The Actor Preferences Ontology
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5.1 Specification

The first step proposed by METHONTOLOGY called Specification imposes all require-
ments for the ontology which shall be developed by creating an Ontology Requirements
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Specification Document [86]. We extended this step by identifying and discussing sev-
eral use case scenarios for the Actor Preferences Ontology before we started to formulate
the Ontology Requirements Specification Document.

5.1.1 Use Case Scenarios

In the following, we will motivate the choice of competency questions stated in the
later defined Ontology Requirements Specification Document (cf. Section 5.1.2) by pre-
senting use cases the CQs were extracted from. Each use case consists of (i) a Story
which introduces its context of use, (ii) a Discussion which explains a possible real-
ization approach of that use case in more detail, and finally (iii) Related Competency
Questions which can be extracted from the respective Discussion.

UC1 - Storing Information about Actors and their Preferences

Story

The smart home not only stores information about its actors but further-
more is able to persist a large variety of different types of preferences for its
actors. These information can be used to either retrieve general statistical
information about the actors and their preferences, gather a list of involved
appliances/applications which are responsible for the realization of a cer-
tain preference, and most importantly to increase the user comfort of actors
by automatically realizing the stored preferences. To measure user comfort,
the system rates and persists the level of satisfaction of individual actors
based on a predefined scale.

Discussion: To be able to store information about actors and their preferences the
ontology must provide a possibility to describe these concepts. A neat definition of
properties of actors (e.g. name, age, gender, level of satisfaction) as well as their pref-
erences and properties of preferences (e.g. value, valid timeframe, valid zone), which
should be classified based on their type, is mandatory. Preference profiles that can
be used to provide a condensed way to link a set of preferences (and later introduced
activities/schedules) to their owner shall be introduced. Additionally, specific types of
actors and preferences must be automatically inferable using their characteristics (i.e.
stored values of properties).

Related Competency Questions:

CQ1: Who are the actors of the smart home at hand?

CQ2: What is the average age of all (male/female) actors?

CQ3: What preferences does a specific actor have?
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CQ4: What is the level of satisfaction of a specific user?

CQ7: What is the average comfort temperature of all actors?

CQ12: What applications are involved in order to realize a temperature preference
in a specific room?

CQ13: Is a specific preference defined by a user and if so by whom?

UC2 - Defining Preferences for Activities

Story

As an addition to various types of preferences which can be stored, the
smart home offers the possibility to define sets of preferences which shall
be active whenever a certain activity is performed. Any active or passive
action (e.g. doing sports, reading a book, waking up in the morning, . . . )
can be described in terms of an activity, preferences like Temperature: 20 °C,
Blinds: down defined for it, and classified as being one of the predefined
activity types.

Discussion: The type of an activity shall be determined based on the action the
activity describes (i.e. nonpassive or passive) and further distinguished into various
predefined activity types. To link a set of preferences to a specific activity, they must
be clustered within an activity preference profile and associated to the activity they
were defined for. An actor shall then be able to use his activities by storing them into
one of his preference profiles.

Related Competency Questions:

CQ18: Are there any activities stored for a specific actor?

CQ19: What preferences are involved in the Zumba activity of a specific actor?

CQ20: What kind of activity is the Zumba activity?

UC3 - Scheduling Preferences and Activities

Story

Users of the smart home system are able to schedule their preferences
and activities in preference/activity schedules. Previous non-scheduled
preferences/activities can be associated with a certain timeframe within
which they are supposed to be executed/valid. With these schedules users
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can plan preferences/activities for entire time spans, which drastically de-
creases the amount of time necessary for users to interfere with the smart
home system. Preference schedules can further be used to model time-
frames certain areas (or the entire smart home) are occupied (cf. UC4).

Discussion: Preferences and activities shall be schedulable by associating a time de-
scription to their individuals. Every preference or activity which has such an asso-
ciated time information must be automatically classified as scheduled preference/ac-
tivity and a set of scheduled preferences/activities must be organized in preference
schedules which are linked to preference profiles that are themselves associated to ac-
tors. To ensure a standardized representation of time information, existing ontologies
offering the opportunity to define time definitions in a comprehensive way shall be
explored.

Related Competency Questions:

CQ8: What is the preference schedule of a specific actor?

CQ9: Is there a scheduled preference on Mondays between 8am - 10am?

CQ10: Is the home occupied on Mondays at 11am?

CQ11: Is there a preference for a specific room or zone defined at a specific time?

CQ14: Will the scheduled dishwashing job of the dishwasher be finished at 1pm?

CQ15: Is it possible to re-schedule the dish washing job within its time window and
still be finished at the desired end time?

CQ16: Are there concurring scheduled preferences?

CQ17: If there are concurring preferences, which one is active / shall be realized?

CQ21: What are the scheduled preferences and activities of a specific actor for Mon-
day?

UC4 - Decrease Energy Consumption

Story

The smart home system not only focuses on providing user comfort but
also permanently aims at ensuring an energy efficient execution of house-
hold appliances and applications which are responsible for realizing certain
preferences. Whenever areas of the smart home (or the entire home) are
unoccupied, minimum energy consumption of systems such as lighting, air
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conditioning, . . . is ensured taking possible later scheduled preferences and
their realization into account. Additionally, the executions of household
appliances are re-scheduled within their timeframes to match low energy
consumption peaks.

Discussion: Keeping track of the current occupancy state of the smart home is an im-
portant part of an efficient energy management. The smart home system has to store
this information by introducing a new sub-type of preferences called presence prefer-
ence. These presence preferences shall be linked to a specific timeframe and location,
which uniquely identify the time a certain area of the smart home is occupied.

Related Competency Questions:

CQ10: Is the home occupied on Mondays at 11am?

CQ11: Is there a preference for a specific room or zone defined at a specific time?

CQ15: Is it possible to re-schedule the dish washing job within its time window and
still be finished at the desired end time?

UC5 - Managing of Concurring and/or Scheduled Preferences

Story

If two or more preferences are concurring (i.e. scheduled for the same
timeframe, for the same location, and are of the same type) the smart
home chooses the preference with the highest importance to be realized.
Preferences with a lower importance are either re-scheduled within their
timeframe (if possible) or ignored at all.

Discussion: To be able to re-schedule and/or resolve issues with concurring pref-
erences, it is necessary that the ontology is able to assign time descriptions to pref-
erences. These time descriptions shall be realized by using an external ontology like
the OWL-Time ontology, which offers a large variety of expressive ways to define time
related concepts. Additionally, the level of importance of a certain preference must be
definable by the knowledge base to offer a first and easy way to resolve concurrency
issues.

Related Competency Questions:

CQ14: Will the scheduled dish washing job of the dishwasher be finished at 1pm?

CQ15: Is it possible to re-schedule the dish washing job within its time window and
still be finished at the desired end time?
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CQ16: Are there concurring scheduled preferences?

CQ17: If there are concurring preferences, which one is active / shall be realized?

UC6 - Definition of Standard Preferences based on Standardized Preference Values

Story

In case there exists no defined preference value for a certain type of prefer-
ence for a user, a standard preference value which is based on well-known
standards like ASHRAE 1 is assumed by the system. These standard pref-
erences are especially useful for providing guest visitors of the smart home
with an initial set of preferences without the necessity to define an individ-
ual actor for them.

Discussion: A set of already predefined individuals of standard preferences shall be
defined and their preference values determined based on aforementioned well-known
standards. For that purpose a new sub-type of preferences, distinguishable from those
preferences defined by users, has to be introduced. These predefined standard prefer-
ences have to cover the most prominent preference types such as comfort temperature,
relative humidity, or lighting level.

Related Competency Questions:

CQ5: Are there any standard preferences stored?

CQ6: Are any standard preferences in use?

CQ22: Which unit of measurement does a temperature preference have?

CQ23: What is the standard relative humidity preference value and on which stan-
dard is it based on?

5.1.2 Ontology Requirements Specification Document

Name: Actor Preferences Ontology

1https://www.ashrae.org/
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Purpose: The Actor Preferences Ontology is used to store, classify and schedule pref-
erences of actors within a smart home system. Additionally activities, which
are defined as sets of preferences, can be specified and scheduled in order to
provide an even more sophisticated and comprehensive set of possibilities to
support smart home residents in their daily lives.

Scope: The present ontology covers 11 main concepts, describing the domain of
actor preferences:

Activity: Activities form groups of preferences which have to be fulfilled.
They are divided into PassiveActivities and NonPassiveActivities and can be
either scheduled or non-scheduled.

Activity Schedule: Groups scheduled activities.

Actor: User for which preferences are defined for. Primarily split into Hu-
manActors and SystemActors.

Age: Every actor has an assigned age which is defined in years for Human-
Actors and hours for SystemActors.

Gender: Human actors can be either Female or Male.

LevelOfSatisfaction: Every human actor has a certain level of satisfaction,
namely: DisSatisfied, BarelySatisfied, Satisfied or VerySatisfied.

LevelOfImportance: Every preference has a certain level of importance,
namely: LowImportance, AverageImportance or HighImportance.

Preference: Describes certain preferences of actors. For example Air-
FlowVelocityPreference, AirVentilationPreference, LampPreference, DryerPrefer-
ence, LightingLevelPreference, etc.

Preference Profile: Groups preferences, preference schedules, activities
and/or activity schedules.

Preference Schedule: Groups scheduled preferences and thus allows the
preference management of certain timeframes.

Preference Value: Every preference has an assigned preference value,
which are distinguished into BinaryPreferenceValues and ContinuousPrefer-
enceValues.

Implementation Language: The ontology is realized using Protégé [1] as ontology
development platform, HermiT [82] and Pellet [71] as ontology reasoner and
is implemented in OWL 2 [64].

Intended Users: Ontology-based smart home systems, especially the ThinkHome
system.
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Intended Use: The ontology enables the ThinkHome system to store, classify and
schedule preferences and activities of smart home actors. Based on that
information, other ontologies or a respective business logic can infer new
knowledge and e.g. take actions to reduce energy consumption.

Ontology Requirements:

Non-Functional Requirements:

• Whenever it is possible and applicable, the ontology must reuse ex-
isting ontologies.

• The ontology must be thoroughly documented to ensure its reusabil-
ity for non domain experts.

Functional Requirements:

CQ1: Who are the actors of the smart home at hand?

CQ2: What is the average age of all (male/female) actors?

CQ3: What preferences does a specific actor have?

CQ4: What is the level of satisfaction of a specific user?

CQ5: Are there any standard preferences stored?

CQ6: Are any standard preferences in use?

CQ7: What is the average comfort temperature of all actors?

CQ8: What is the preference schedule of a specific actor?

CQ9: Is there a scheduled preference on Mondays between 8am - 10am?

CQ10: Is the home occupied on Mondays at 11am?

CQ11: Is there a preference for a specific room or zone defined at a
specific time?

CQ12: What applications are involved in order to realize a temperature
preference in a specific room?

CQ13: Is a specific preference defined by a user and if so by whom?

CQ14: Will the scheduled dishwashing job of the dishwasher be fin-
ished at 1pm?

CQ15: Is it possible to re-schedule the dish washing job within its time
window and still be finished at the desired end time?

CQ16: Are there concurring scheduled preferences?

CQ17: If there are concurring preferences, which one is active / shall
be realized?

CQ18: Are there any activities stored for a specific actor?
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CQ19: What preferences are involved in the Zumba activity of a specific
actor?
CQ20: What kind of activity is the Zumba activity?
CQ21: What are the scheduled preferences and activities of a specific
actor for Monday?
CQ22: Which unit of measurement does a temperature preference have?
CQ23: What is the standard relative humidity preference value and on
which standard is it based on?

Glossary of Terms: The Glossary of Terms is defined in Section 5.2.1. A preliminary
set of terms, based on the present requirements specification document, can
be defined as follows:
actor, age, female actor, preference, level of satisfaction, standard preference, com-
fort temperature, preference schedule, mondays, scheduled preference, occupancy,
specific room, zone, application, temperature preference, dishwasher, time frame,
activity, zumba activity, unit of measurement, standard relative humidity prefer-
ence, preference value;

5.2 Conceptualization

After specifying the requirements of the to be developed ontology, its concepts, prop-
erties, and individuals are conceptualized in the present section. We start with a Glos-
sary of Terms in Section 5.2.1 and follow up with a Concept Taxonomy (cf. Section 5.2.2),
Binary Relation Diagram (cf. Section 5.2.3), Concept Dictionary (cf. Section 5.2.4), Binary
Relation Table (cf. Section 5.2.5), Instance Attribute Table (cf. Section 5.2.6), Class Attribute
Table (cf. Section 5.2.7), and an Instance Table (cf. Section 5.2.8).

5.2.1 Glossary of Terms

As first sub-step of Conceptualization a Glossary of Terms must be defined, which cov-
ers all important terms used within the scope of the Actor Preferences Ontology. We
have divided this glossary into a list of classes (cf. 5.2.1.1), properties (cf. 5.2.1.2), and
(cf. individuals 5.2.1.3). All terms represented in red refer to a more comprehensive
description in the Appendix.

73



5.2.1.1 Classes

The concepts represented within the Actor Preferences Ontology are primarily distin-
guishable into 11 main concepts and were already mentioned in Section 5.1.2. In Fig-
ures 5.1 and 5.2, these concepts together with their sub-concepts are listed and linked
to their more detailed description in the Appendix.

1. Activity

1.1 NonPassiveActivity

1.1.1 CleaningActivity
1.1.2 CookingActivity
1.1.3 SportActivity

1.2 PassiveActivity

1.2.1 ReadingActivity
1.2.2 SleepingActivity
1.2.3 WakeUpActivity
1.2.4 WatchingTvActivity
1.2.5 WritingActivity

1.3 ScheduledActivity

1.4 NonScheduledActivity

2. ActivitySchedule

3. Actor

3.1 AgedHumanActor

3.2 FemaleHumanActor

3.3 HumanActor

3.4 MaleHumanActor

3.5 MatureHumanActor

3.6 SatisfiedHumanActor

3.7 SystemActor

3.8 UnsatisfiedHumanActor

3.9 UserSystemActor

3.10 YoungHumanActor

4. Age

4.1 AdvancedHumanActorAge

4.2 HumanActorAge

4.3 MatureHumanActorAge

4.4 SystemActorAge

4.5 YoungHumanActorAge

5. Gender

6. LevelOfSatisfaction

7. LevelOfImportance

8. PreferenceProfile

8.1 ActivityPreferenceProfile

8.2 HumanActorPreferenceProfile

8.3 NonScheduledPreferenceProfile

8.4 ScheduledPreferenceProfile

8.5 StandardPreferenceProfile

9. PreferenceSchedule

9.1 AppliancePreferenceSchedule

9.2 ApplicationPreferenceSchedule

9.3 PresencePreferenceSchedule

9.4 VisualComfortPreferenceSchedule

10. PreferenceValue

10.1 BinaryPreferenceValue

10.2 ContinuousPreferenceValue

Figure 5.1: List of Classes (1/2)
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11. Preference

11.1 AirFlowVelocityPreference

11.2 AirQualityPreference

11.3 AirVentilationPreference

11.4 ApplianceCentricPreference

11.5 ApplicationCentricPreference

11.6 BlindsPreference

11.7 DishwasherPreference

11.8 DryerPreference

11.9 LampPreference

11.10 LightingLevelPreference

11.11 PresencePreference

11.12 RelativeHumidityPreference

11.13 ScheduledPreference

11.14 SoundPressureLevelPreference

11.15 StandardPreference

11.16 TemperaturePreference

11.16.1 ComfortTemperaturePreference
11.16.2 SetbackTemperaturePreference

11.17 UserDefinedPreference

11.18 WashingmachinePreference

Figure 5.2: List of Classes (2/2)

5.2.1.2 Properties

All concepts listed above are connected amongst each other (or related to concepts
of other ontologies) using object properties. Additionally, some concepts are linked
to datatypes via datatype properties. Properties that refer to external ontologies are
marked with a (*) and those having an inverse property are illustrated as (property
<-> inverse property.
Both, all object and datatype properties are listed in Figures 5.3 and 5.4.

5.2.1.3 Individuals

There exist predefined individuals for three concepts, namely: LevelOfSatisfaction -
stating the satisfaction level of an actor, LevelOfImportance - stating the importance of
a preference, and Gender - specifying the gender of a human actor. These individuals
are defined as follows:

LevelOfSatisfaction
DisSatisfied, BarelySatisfied, Satisfied, VerySatisfied

LevelOfImportance
LowImportance, AverageImportance, HighImportance

Gender
Female, Male
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forActivity <-> isActivityOf
relates ScheduledActivities to their non-
scheduled counterpart.

hasActivitySchedule <-> isActivityScheduleOf
relates PreferenceProfiles to Activi-
tySchedules.

hasPreference <-> isPreferenceOf
relates Preferences to PreferencePro-
files/PreferenceSchedules.

hasPreferenceProfile <-> isPreferenceProfileOf
relates PreferenceProfiles to Activi-
ties/Actors.

hasPreferenceSchedule <-> isPreferenceScheduleOf
relates PreferenceSchedules to Preferen-
ceProfiles.

hasPreferenceValue <-> isPreferenceValueOf
relates PreferenceValues to Preferences.

hasAge
relates an Age to an Actor.

hasGender
relates a Gender to an Ac-
tor.

hasImportance
relates a LevelOfImpor-
tance to a Preference.

controlsAppliance *
relates ero:Appliances to
a Preference.

currentlyLocatedIn *
relates a gbo:Zone or
gbo:Space to an Actor.

Figure 5.3: List of Properties (1/2)

hasSatisfactionLevel
relates a LevelOfSatisfaction to an Actor.

hasScheduledActivity <-> isScheduledActivityOf
relates ScheduledActivities to Activi-
tySchedules.

representedBy <-> represents
relates a SystemActor to an Actor.

usesApplication
relates ppo:Applications to a Preference.

forTime *
relates a time:TemporalEntity to Sched-
uledPreferences or ScheduledActivities.

forSpace *
relates a gbo:Space to a Preference.

forState *
relates ero:States to PreferenceValues.

forZone *
relates a gbo:Zone to a Preference.

hasHours
defines the Age in hours as
xsd:float.

hasID
defines the ID of an Actor as
xsd:integer.

hasName
defines the name of an Actor
as xsd:string.

hasValue
defines the value of a
PreferenceValue as
xsd:Literal.

hasYears
defines the Age in years as
xsd:integer.

Figure 5.4: List of Properties (2/2)
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Figure 5.5: Concept taxonomy for Age

5.2.2 Concept Taxonomy

Age

The concept Age (cf. Figure 5.5) represents the age of an Actor either in hours for
SystemActors or years for HumanActors. HumanActors can be further divided
into three different groups based on their age, which are YoungHumanActorAge for
an age below 14, MatureHumanActorAge for an age between 14 and 65, and Ad-
vancedHumanActorAge for an age over 65.

Activity

Figure 5.6: Concept taxonomy for Activity
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The concept of Activities shall represent activities an Actor can perform within
his home environment and for which he wants to define Preferences for. They are
divided into passive and non-passive activities, each having several predefined activ-
ity types (cf. Figure 5.6 and the list below). Each Activity which is not associated
to a specific time slot (i.e. not scheduled yet) is defined as NonScheduledActiv-
ity in contrast to scheduled ones which are called ScheduledActivities. Those
ScheduledActivities are composed of a time description and the NonSched-
uledActivity containing the necessary Preferences.

NonPassiveActivity All activities which include some sort of (physical) exercise.

CookingActivity An activity which describes the action of cooking (e.g. a meal,
a cake).

CleaningActivity An activity which describes any actions necessary to clean
(parts of) the home.

SportActivity All activities that include some sort of workout and sport related
actions (e.g. cardio training, home training).

PassiveActivity All activities which do not include any type of (physical) exercise.

ReadingActivity Activities which include actions related to reading.

SleepingActivity An activity which describes the process of sleeping.

WakeUpActivity All actions which form the process of waking up (e.g. in the
morning, after a nap).

WatchingTVActivity The activity of watching television.

WritingActivity Activities which include actions related to writing (e.g. a letter,
a book, a homework).

Actor

An Actor shall either represent HumanActors of a smart home, having an associated
age, gender, and satisfaction level or SystemActors having an associated age and
ID. Note that SystemActors are supposed to represent agents of the MAS (cf. Sec-
tion 3.2.1) and shall perform actions on behalf of their corresponding users. Within the
course of the present thesis we primarily focused on modeling and describing Human-
Actors rather than SystemActors, which we plan to do in future work. Both types
of Actors are further divided into different sub-types based on following criteria:

AgedHumanActor is of age AdvancedHumanActorAge.

FemaleHumanActor has gender of type Female.
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Figure 5.7: Concept taxonomy for Actor

MaleHumanActor has gender of type Male.

MatureHumanActor is of age MatureHumanActorAge.

SatisfiedHumanActor has satisfaction level of either Satisfied or VerySatis-
fied.

UnsatisfiedHumanActor has satisfaction level of either BarelySatisfied or Dis-
Satisfied.

UserSystemActor is of age SystemActorAge and represents a HumanActor on
whose behalf it performs its actions.

YoungHumanActor is of age YoungHumanActorAge.

Preference

A Preference (cf. Figure 5.8), as the major concept of the Actor Preferences Ontology,
can be primarily defined as being a:

ScheduledPreference if it has an associated temporal entity,

ApplianceCentricPreference if it has an associated appliance which is responsible
for their realization,

ApplicationCentricPreference if it has an associated application which is respon-
sible for their realization,
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Figure 5.8: Concept taxonomy for Preference

PresencePreference if it is used to model occupancy of the smart home,

StandardPreference if it is part of a StandardPreferenceProfile,

UserDefinedPreference if it is part of a HumanActorPreferenceProfile and
thus not a StandardPreference.

They can be further classified in being one of the following types:

AirFlowVelocityPreference describing the velocity of air flow in m/s.

AirQualityPreference describing the air quality in parts per million.

AirVentilationPreference describing the air ventilation frequency in l/h.

BlindsPreference describing the relative state of blinds.

DiswasherPreference describing the state (on/off) of a dishwasher.

DryerPreference describing the state (on/off) of a dryer.

LampPreference describing the state (on/off) and light intensity of lamps.
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LightingLevelPreference describing the lighting level in lux.

RelativeHumidityPreference describing the relative humidity in percent.

SoundPressureLevelPreference describing the sound pressure in dB.

TemperaturePreference describing the temperature in degrees celsius.

ComfortTemperaturePreference describing the comfort temperature of an actor.

SetbackTemperaturePreference describing the standard setback temperature.

WashingmachinePreference describing the state (on/off) of a washing machine.

PreferenceProfile

Figure 5.9: Concept taxonomy for PreferenceProfile

Besides ScheduledPreferenceProfiles which contain at least one PreferenceSched-
ule or ActivitySchedule and their respective counterparts NonScheduledPreferenceProfiles
which contain at least one Preference or NonScheduledActivity, there exist
three different types of PreferenceProfiles, namely:

ActivityPreferenceProfiles which contain Preferences for Activities,

HumanActorPreferenceProfiles which belong to a HumanActor, and

StandardPreferenceProfiles which contain StandardPreferences and do not
belong to any explicit HumanActor.

81



Figure 5.10: Concept taxonomy for PreferenceSchedule

PreferenceSchedule

PreferenceSchedules either contain a set of ScheduledPreferences or a set of
PresencePreferences which are responsible to model the occupancy schedule of
the home (hence, being a PresencePreferenceSchedule) or ScheduledPref-
erences which model any other type of preference. The latter ones can be defined
as:

AppliancePreferenceSchedule if they contain any ApplianceCentricPrefer-
ence,

ApplicationPreferenceSchedule if they contain any ApplicationCentricPref-
erence, or

VisualComfortPreferenceSchedule as an example for a more specific Prefer-
enceSchedule, serving the purpose of containing ScheduledPreferences which
are responsible of ensuring visual comfort.

PreferenceValue

Figure 5.11: Concept taxonomy for PreferenceValue
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A PreferenceValue can either contain binary values and thus be classified as Bi-
naryPreferenceValue or contain continuous values and be classified as Contin-
uousPreferenceValue. The latter type uses units of measurement defined in the
Ontology of Units of Measure and Related Concepts (OM) [79] to represent the units of its
values.

ActivitySchedule, Gender, LevelOfImportance, and LevelOfSatisfaction

Those four concepts do not contain any sub-concepts. Thus, they are not illustrated as
concept taxonomies.

5.2.3 Binary Relation Diagram

Figure 5.12 shows all binary relations between the main concepts of the Actor Pref-
erences Ontology. Please note, that every property starting with has<name> has a re-
spective inverse property named is<name>Of, as exemplified with the two properties
hasPreferenceSchedule and isPreferenceScheduleOf2.

Figure 5.12: Binary relation diagram consisting of the main concepts of the Actor
Preferences Ontology

2Except for the relations hasAge, hasGender, hasSatisfactionLevel, and hasLevel-
OfImportance.
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5.2.4 Concept Dictionary

Before documenting all relations of concepts and as an addition to their verbal descrip-
tion in Section 5.2.2, the concepts themselves get documented in more detail within
this section. We have listed all Concept Names together with their Instance Attributes,
Instances and/or Relations if present and grouped them by their super-concept in Ta-
bles A.1 to A.11.

5.2.5 Binary Relation Table

The Ad-hoc Binary Relation Table (cf. Table A.12) describes and extends the relations
illustrated in Section 5.2.3 in more detail. It consists of the Relation Name, Source/Target
Concept, Cardinality, and Inverse Relation if available.

5.2.6 Instance Attribute Table

Instance Attributes, which are usually of type owl:DatatypeProperties, are those
attributes having different values for each instance and therefore are responsible to
describe individuals/instances of concepts in more detail. The ones used within the
Actor Preferences Ontology are summarized in Table A.13.

5.2.7 Class Attribute Table

When defining Class Attribute Tables the focus usually lies in the description of prop-
erties (Class Attributes) which are responsible for the definition/specialization of con-
cepts (cf. Actor -> HumanActor) itself rather than in the description of those at-
tributes (Instance Attributes) that describe the instances of the concept and whose
value(s) may be different for each instance of the concept (cf. hasName) [16]. In
contrast to the proposed approach of designing such Class Attribute Table, we do not
group the entries by their Attribute Name but by the Defined Concept they define, which
allows a much more concise representation. We have documented all Class Attributes
in Table A.14 to A.18.

5.2.8 Instance Table

Finally, individuals of concepts which were already predefined are documented. The
Instance Table comprises concrete representations of the concepts Gender, Level-
OfImportance, and LevelOfSatisfaction and is located in the appendix in
Table A.19.
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5.3 Integration

An essential part of ontology driven modeling is the reuse of existing ontologies when-
ever possible and suitable [83]. In the domain of storing and scheduling actor prefer-
ence information we identified two different areas for which existing external ontolo-
gies can be used, namely (cf. Section 2.6 for a more comprehensive introduction):

Time information: The usage of OWL-Time (time) [39] for representing temporal in-
formation allows to schedule preferences and activities using a standardized
temporal information representation.

Units of measurement information: The Ontology of Units of Measure and Related Con-
cepts (OM) [79] is used to introduce units to values of preferences. This is a big
advantage in comparison to a simple string representation especially if the Actor
Preferences Ontology must be integrated with other related ontologies.

5.4 Implementation

The steps of Specification (cf. Section 5.1.2) and Conceptualization (cf. Section 5.2.8)
provide the foundations to actually implement the Actor Preferences Ontology. We have
conducted the step of Implementation using Protégé 4.3 [1] as ontology development
platform, HermiT [82] and Pellet [71] as ontology reasoners and OWL 2 [64] as lan-
guage of implementation.

The choice to use HermiT as primary ontology reasoner is based on the facts,
that (i) it performs best (i.e. fastest execution time of reasoning tasks) amongst all
tested ontology reasoners (cf. Section 6 for a detailed discussion on OWL reasoner
evaluation), and (ii) the absence of SWRL rules to be evaluated which would have
enforced the usage of Pellet as it would have been the only ontology reasoner capable
of achieving this task.

5.5 Evaluation

As a last step, the developed ontology gets evaluated based on the functional and non-
functional requirements which were defined in the Ontology Requirements Specification
Document 5.1.2. Only if all requirements are met, the development process can be
assumed to be completed.

5.5.1 Non-Functional Requirements

Two major non-functional requirements were identified and met, namely:
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Reuse of existing ontologies: As already stated in Section 2.6, we reused the Time On-
tology (owl-time) for representing time related concepts (i.e. linking concepts via
forTime to specific time information) and the Ontology of Units of Measure and
Related Concepts (OM) for representing units of measurement of Preference-
Values.

Thorough documentation: One major reason why we chose METHONTOLOGY as
ontology development approach was that it enforces the creation of several doc-
umentation artifacts throughout the whole development process, which leads to
a comprehensive documentation once the development process is finished.

5.5.2 Functional Requirements

In the following, we will evaluate the competency questions (CQ) introduced in the
Ontology Requirements Specification Document 5.1.2. We show the fulfillment of each CQ
by proposing SPARQL queries which are capable of answering their respective CQ
and by discussing them afterwards.

CQ1: Who are the actors of the smart home at hand?

Listing 5.1:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#>
SELECT ?actor WHERE {

?actor rdf:type+ act:Actor .
}

Explanation: This query returns all individuals of type Actor of the smart home
system at hand. By using SPARQL property paths3 it is possible to traverse through
the subclass hierarchy and retrieve all actors, even though they might not be a direct
instantiation of Actor.

CQ2: What is the average age of all female actors?

Listing 5.2:
%Version 1
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#>
SELECT (AVG(?ageYears) as ?avgYears) WHERE {

?actor act:hasGender ?gender .
?actor act:hasAge/act:hasYears ?ageYears .
FILTER(?gender = act:Female)

} GROUP BY ?gender

3Newly introduced with SPARQL 1.1
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------------- Assuming SPARQL reasoning capabilities -------------

%Version 2
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#>
SELECT (AVG(?ageYears) as ?avgYears) WHERE {

?actor rdf:type act:FemaleHumanActor .
?actor act:hasAge/act:hasYears ?ageYears .

}

Explanation: The Gender of a HumanActor is assigned via its hasGender object
property. Furthermore, the defined class FemaleHumanActor is specified as Actor
and (hasGender value Female) which makes it possible for an OWL reasoner
to derive that every individual of type Actor which has a hasGender property with
value Female is additionally of type FemaleHumanActor. The queries presented in
Listing 5.2 both use a SPARQL property path hasAge/hasYears to retrieve the Age
of the HumanActor in years and either (Version 1) do not rely on reasoning capabilities
to retrieve only FemaleHumanActors by filtering out all non Female Actors or
(Version 2) rely on inference and query for individuals of type FemaleHumanActor.
After that, the average age is calculated using the aggregation function AVG.

CQ3: What preferences does a specific actor have? (except those used in activities)

Listing 5.3:
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#>
SELECT ?preferences WHERE {
act:ActorHumanActor1 act:hasPreferenceProfile/act:hasPreferenceSchedule?

/act:hasPreference ?preference .
}

Explanation: All Actors store their Preferences in PreferenceProfiles, where
Preferences can be further distinguished into ScheduledPreferences and those
which are not scheduled. All Preferences of a specific Actor (in this example
ActorHumanActor1) can be retrieved by a SPARQL property path, which matches
either on Preferences stored in a PreferenceSchedule and thus being a Sched-
uledPreference or on those which are not part of a ScheduledPreference and
thus being a non-scheduled Preference.

CQ4: What is the level of satisfaction of a specific user?

Listing 5.4:
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#>
SELECT ?sat WHERE {
act:ActorHumanActor1 act:hasSatisfactionLevel ?sat .
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}

Explanation: A LevelOfSatisfaction can be assigned to every HumanActor via
the hasSatisfactionLevel object property. The LevelOfSatisfaction concept
stores the actual satisfaction level of a specific user and is essential for applications
which are responsible to ensure user comfort within the smart home system.

CQ5: Are there any standard preferences stored?

Listing 5.5:
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#>
SELECT ?stdPref WHERE {
?stdPrefProf a act:StandardPreferenceProfile .
?stdPrefProf act:hasPreference ?stdPref .

}

Explanation: In case no Preference is stored for a specific HumanActor (e.g. for
guests), StandardPreferences can be used. Those StandardPreferences are
usually specified beforehand and stored within a StandardPreferenceProfile.
They rely on certain standards for comfort temperature, relative humidity, etc. which
are defined by 3rd party institutions such as ASHRAE.

CQ6: Are any standard preferences in use?

Listing 5.6:
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#>
ASK WHERE {
?actor a act:Actor .
?actor act:hasPreferenceProfile/act:hasPreferenceSchedule?

/act:hasPreference ?preference .
?stdPrefProf a act:StandardPreferenceProfile .
?stdPrefProf act:hasPreference ?preference .

}

Explanation: To check whether a StandardPreference (cf. Listing 5.5) is currently
in use, all preferences which are assigned to Actors and are part of a Standard-
PreferenceProfile are queried.

CQ7: What is the average comfort temperature of all actors?

Listing 5.7:
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#>
SELECT (AVG(?val) as ?avgVal) WHERE {
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?comPref a act:ComfortTemperaturePreference.
?comPref act:hasPreferenceValue/act:hasValue ?val
FILTER NOT EXISTS {
?stdPrefProf a act:StandardPreferenceProfile .
?stdPrefProf act:hasPreference ?comPref .

}
}

Explanation: It is useful to be able to make general statements about all Actors of
a smart home system. For example to calculate the average PreferenceValue of
ComfortTemperaturePreferences of Actors, which could then be used to de-
fine a StandardPreferenceValue for comfort temperature, without relying on any
3rd party standards. In Listing 5.7 the average of all ComfortTemperaturePrefer-
ences is calculated, excluding all StandardPreferences from the average calcula-
tion.

CQ8: What are the preference schedules of a specific actor?

Listing 5.8:
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#>
SELECT ?prefSchedules WHERE {
act:ActorHumanActor1 act:hasPreferenceProfile/act:hasPreferenceSchedule

?prefSchedules .
}

Explanation: As already mentioned in Listing 5.3 Preferences can either be sched-
uled or non-scheduled. ScheduledPreferences are related to one or more Pref-
erenceSchedules which are themselves accessible through PreferenceProfiles.

CQ9: Is there a scheduled preference which is active on Mondays between 8am -
10am?

Listing 5.9:
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#>
ASK WHERE {
?prefs act:forTime ?time .
?time time:hasBeginning/time:inDateTime ?bDate .
?time time:hasEnd/time:inDateTime ?eDate .
?bDate time:dayOfWeek ?bDay .
?eDate time:dayOfWeek ?eDay .
?bDate time:hour ?bHour .
?eDate time:hour ?eHour .
FILTER (?bDay = time:Monday && ?eDay = time:Monday)
FILTER ((?bHour >= 8 && ?bHour <= 10) ||
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(?eHour >= 8 && ?eHour <= 10) ||
(?bHour < 8 && ?eHour > 10))

}

Explanation: ScheduledPreferences are Preferences which are related to a
specific time period via the forTime object property. They are either (i) valid between
two timestamps defined with the hasBeginning and hasEnd property or (ii) valid
for a certain amount of time (hasDurationDescription) between two timestamps.
Those time descriptions make it possible to check, whether or not certain preferences
are valid during a specific timeframe, which is exemplified in Listing 5.9.

CQ10: Is the home occupied on Mondays at 11am?

Listing 5.10:
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#>
ASK WHERE {
?presPref a act:PresencePreference .
?presPref act:forTime ?time .
?time time:hasBeginning/time:inDateTime ?bDate .
?time time:hasEnd/time:inDateTime ?eDate .
?bDate time:dayOfWeek ?bDay .
?eDate time:dayOfWeek ?eDay .
?bDate time:hour ?bHour .
?eDate time:hour ?eHour .
FILTER (?bDay = time:Monday && ?eDay = time:Monday)
FILTER (?bHour <= 11 && ?eHour >= 11)

}

Explanation: Especially for energy related tasks (e.g. reducing unnecessary energy
consumption), information of occupation of the smart home at hand is very important.
This information is stored within PresencePreferences, which are Scheduled-
Preferences that model the occupied timeframes via their forTime object property.
The query stated above returns true, if the home is occupied at the specified timeframe.

CQ11: Is there a preference for a specific room or zone defined at a specific time?

Listing 5.11:
PREFIX gbo: <https://www.auto.tuwien.ac.at/.../BuildingOnt.owl#>
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#>
ASK WHERE {
?preferences act:forSpace ?space .
?preferences act:forTime act:LR1HA1_ScheduledTemperaturePreferenceDuration_2HMo1800
FILTER(?space = gbo:Space_ID_zon001)}
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Explanation: Preferences can not only be assigned to a specific timeframe (forTime)
but also to a specific space (forSpace) or zone (forZone). Adding space/zone in-
formation to Preferences offers the possibility to define their validity for defined
regions within the smart home, which makes it easier to only trigger applications
and appliances within that region to fulfill those Preferences and thus preserving
energy.

CQ12: What applications are involved in order to realize a temperature preference
in a specific room?

Listing 5.12:
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#>
SELECT ?applications WHERE {

?pref a act:ComfortTemperaturePreference .
?pref act:forSpace ?space .
?pref act:usesApplication ?applications
FILTER (?space = gbo:Space_ID_zon001)

}

Explanation: As mentioned earlier, Preferences can either be realized by using
applications (usesApplication) or appliances (controlsAppliance). A list of
applications which are involved in the realization of a certain Preference can be
retrieved by the query exemplified in Listing 5.12.

CQ13: Is a specific preference defined by a user and if so by whom?

Listing 5.13:
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#>
SELECT ?actor WHERE {

act:LR1HA1_ComfortTemperaturePreference a act:UserDefinedPreference.
act:LR1HA1_ComfortTemperaturePreference isPreferenceOf/isPreferenceScheduleOf?

/isPreferenceProfileOf ?actor .
}

Explanation: If we want to decide whether or not a specific Preference is a UserDe-
finedPreference and if that is the case, to query for the Actor who is assigned to
that Preference. We first have to check if a certain Preference is of type UserDe-
finedPreference and then backtrack to its assigned owners by using the inverse
property path
isPreferenceOf/isPreferenceScheduleOf?/isPreferenceProfileOf.
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CQ14: Will the scheduled dishwashing job of the dishwasher be finished at 1pm?

Listing 5.14:
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#>
ASK WHERE {
act:HA1_ScheduledDishwasherPreference_Mo1200 act:forTime ?time .
?time time:hasEnd/time:inDateTime/time:hour ?eHour .
FILTER (?eHour <= 13)

}

Explanation: An essential part of increasing user comfort and satisfiability within a
smart home, is the possibility to get information about scheduled jobs (e.g. dishwash-
ing/washing machine/etc.) which are represented via ScheduledPreferences.
The query presented in Listing 5.14 returns true if
HA1_ScheduledDishwasherPreference_Mo1200 is scheduled to be finished be-
fore 1pm.

CQ15: Is it possible to re-schedule the dishwashing job within its time window
and still be finished at the desired end time?

Listing 5.15:
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#>
ASK WHERE {
act:HA1_ScheduledDishwasherPreference_Mo1200 act:forTime ?time .
?time time:hasEnd/time:inDateTime/time:hour ?eHour .
?time time:hasBeginning/time:inDateTime/time:hour ?bHour .
?time time:hasDurationDescription/time:hours ?duration .
FILTER ((?eHour-?bHour) > ?duration)

}

Explanation: As an addition to Listing 5.14 and assuming the presence of a Dura-
tionDescription of the task to be executed, one can even check if it is possible to
re-arrange the dishwashing job within its timeframe (e.g. to shift it on an off-peak
time-slot). This can be achieved by calculating the difference between the length of the
timeframe and the actual duration of the task to be executed.

CQ16: Are there concurring scheduled preferences?

Listing 5.16:
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#>
SELECT ?pref1 ?pref2 WHERE {{

?pref1 a ?type .
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?pref2 a ?type .
?pref1 act:forTime ?time .
?pref2 act:forTime ?time .
?pref1 act:forSpace ?space .
?pref2 act:forSpace ?space .

}
FILTER NOT EXISTS {
?pref1 act:controlsAppliance ?app1 .
?pref2 act:controlsAppliance ?app2 .
FILTER (?app1 != ?app2)
}

FILTER NOT EXISTS {
?pref1 act:usesApplication ?appl1 .
?pref2 act:usesApplication ?appl2 .
FILTER (?appl1 != ?appl2)
}
FILTER(?pref1 != ?pref2)

}

Explanation: Sometimes it may happen, that two or more Preferences of the same
type are defined for the same timeframe, space/zone, control the same appliances,
and use the same application. In order to detect such concurring preferences a query
as exemplified in Listing 5.16 can be used.

CQ17: If there are concurring preferences, which one is active / shall be realized?

Listing 5.17:
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#>
SELECT ?pref1 ?importance1 ?pref2 ?importance2 WHERE {
%assuming ?pref1 and ?pref2 from CQ16
?pref1 act:hasImportance ?importance1 .
?pref2 act:hasImportance ?importance2 .

}

Explanation: To support the smart home system and/or business logic with the deci-
sion which Preference should be realized if they are two or more concurring ones
(cf. Listing 5.16) we assigned LevelsOfImportance to Preferences. Those Lev-
elsOfImportance can serve as a first decision support for a potential underlying
business logic.

CQ18: Are there any activities stored for a specific actor?

Listing 5.18:
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#>
SELECT ?activities WHERE {
act:ActorHumanActor1 act:hasPreferenceProfile/act:hasActivitySchedule
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/act:hasScheduledActivity ?activities .
}

Explanation: As an addition to Preferences, Actors can define Activities
which contain a set of Preferences that shall be active whenever this Activity
is performed. Listing 5.18 exemplifies a query which accesses all Activities de-
fined by ActorHumanActor1.

CQ19: What preferences are involved in the Zumba activity of a specific actor?

Listing 5.19:
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#>
SELECT ?preferences WHERE {
act:LR1HA1_ZumbaActivity act:hasPreferenceProfile

/act:hasPreference ?preferences .
}

Explanation: The earlier mentioned set of Preferences which shall be active when-
ever their related Activity is executed, can be accessed via the Activity’s Ac-
tivityPreferenceProfile.

CQ20: What kind of activity is the Zumba activity?

Listing 5.20:
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#>
SELECT ?type WHERE {
act:LR1HA1_ZumbaActivity a* ?type .

}

Explanation: Activities are divided into PassiveActivities and NonPas-
siveActivities, having additional subcategories such as SportActivity, Readin-
gActivity and many more. The short query in Listing 5.20 queries for those types.

CQ21: What are the scheduled preferences and activities of a specific actor for
Monday?

Listing 5.21:
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#>
SELECT DISTINCT ?activities ?preferences WHERE {
act:ActorHumanActor1 act:hasPreferenceProfile/act:hasActivitySchedule

/act:hasScheduledActivity ?activities .
act:ActorHumanActor1 act:hasPreferenceProfile/act:hasPreferenceSchedule

/act:hasPreference ?preferences .
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?preferences act:forTime ?time .
?time (time:hasBeginning|time:hasEnd)/time:inDateTime ?date .
?date time:dayOfWeek ?day .
?activities act:forTime ?atime .
?atime (time:hasBeginning|time:hasEnd)/time:inDateTime ?adate .
?adate time:dayOfWeek ?aday .
FILTER (?day = time:Monday && ?aday = time:Monday)

}

Explanation: Again, to support users with scheduling their Preferences and Ac-
tivities, PreferenceSchedules and ActivitySchedules can be used. The
query exemplified in Listing 5.21 illustrates the retrieval of all Preferences and Ac-
tivities of ActorHumanActor1 which are scheduled for Monday.

CQ22: Which unit of measurement does a temperature preference have?

Listing 5.22:
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#>
PREFIX uom: <http://www.wurvoc.org/vocabularies/om-1.6#>
SELECT DISTINCT ?uom WHERE {

?tempPref a/rdfs:subClassOf* act:TemperaturePreference .
?tempPref act:hasPreferenceValue ?prefValue .
?prefValue act:hasUnitOfMeasure ?uom

}

Explanation: To increase the expressivity of our Actor Preferences Ontology supporting
the collaboration with other related ontologies, we used the UnitsOfMeasurement On-
tology4 to relate PreferenceValues via the hasUnitOfMeasure object property to
their respective unit of measurement, rather than specifying them as strings.

CQ23: What is the standard relative humidity preference value and on which
standard is it based on?

Listing 5.23:
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOnt.owl#>
SELECT ?prefValue ?standard WHERE {
act:StandardRelativeHumidityPreference act:hasPreferenceValue ?prefValue.
?prefValue rdfs:comment ?standard .

}

Explanation: As already mentioned in Listings 5.5 and 5.6 we based our Standard-
Preferences on PreferenceValues proposed by 3rd party institutions. The infor-
mation of the actual standard a certain StandardPreferenceValue is based on, is
stored within the rdfs:comment annotation property.

4http://www.wurvoc.org/vocabularies/om-1.6/
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In the present chapter, we will briefly introduce selected state-of-the-art OWL rea-
soners 6.1 and follow up with a discussion of planned evaluation tasks 6.2 which
chosen reasoners have to perform. We continue by giving a detailed description of the
achieved evaluation results 6.5 before we conclude the present chapter by summariz-
ing the gained insights based on the evaluation we have carried out 6.6.

6.1 Selected OWL Reasoners

Pellet [71, 84] Pellet was introduced in 2002 and is one of the most popular representa-
tives of OWL reasoners and thus widely used. It is based on tableaux algorithms
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developed for expressive Description Logics [44], supports all OWL2 profiles,
and contains optimizations for incremental reasoning, nominals (including in-
verse properties and cardinality constraints), and conjunctive query answering.

FaCT++/JFact1 [90] FaCT++ an OWL reasoner developed in C++ as well as its Java
implementation JFact, are based on tableaux algorithms like Pellet and incorpo-
rate a set of optimization strategies to decrease the processing time. FaCT++ is
a successor of the 1998 proposed FaCT reasoner [41] and is known to have a
limited support of rdfs:Datatype definitions, i.e. it only supports those listed
in the official datatype maps definition2.

HermiT [42, 82] HermiT was introduced in 2008 and was one of the first OWL rea-
soners which were based on a hypertableau calculus that allows for a much more
efficient reasoning than any other previously-known algorithm. It was especially
developed to be used on very complex and large ontologies (e.g. within the
biomedical domain) and offers interfaces to the Java OWLAPI as well as Protégé.

TrOWL [88] A rather new OWL reasoner which follows a completely different rea-
soning approach is the Tractable reasoning infrastructure for OWL 2 called TrOWL.
TrOWL supports the expressiveness of OWL2 by using language/profile trans-
formations, i.e. it performs semantic approximation to transform OWL2-DL on-
tologies into OWL2-QL ones for query answering and into OWL2-EL ontologies
for TBox and ABox reasoning. Additionally, TrOWL is one of the only OWL
reasoners that supports stream reasoning.

6.2 Evaluation Tasks

To represent a certain domain of interest as ontology a set of axioms, which each makes
a statement that is assumed to be true about the domain, is defined (an extensive
definition of OWL2 and its axioms can be found in [65, 66]). Based on these axioms a
number of interpretations (of an ontology O) can be derived, which basically contain
concrete instantiations/mappings of the domain entities, i.e. it maps object properties
to elements of the object domain, data properties to pairs of elements of the object and
data domain, individuals to elements of the object domain, etc.

In order to become a model of the ontology, an interpretation must fulfill several
conditions which are defined by their respective OWL axioms and can be checked by
OWL reasoners [65].

In the following, we will describe four different reasoning tasks the evaluated rea-
soners had to accomplish before we introduce the chosen evaluation approach and
evaluation results.

2http://www.w3.org/TR/owl2-syntax/#Datatype_Maps
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6.2.1 Classification

Definition 2. Let C and D be concepts, R and S be object or data properties, O an
OWL2 Ontology, CO a set of concepts of an ontology O, and OPO (respectively DPO)
a set of object (data) properties of an ontology O. Then a classification of an ontol-
ogy O computes all pairs of classes (C, D) such that {C, D} ⊆ CO and O |= C v D
and respectively all pairs of object/data properties (R, S) such that {R, S} ⊆ OPO (or
{R, S} ⊆ DPO) and O |= R v S [28].

Classifying an ontology, i.e. an OWL reasoner computes the subsumption hierarchies
for concepts and properties of the ontology, is one of the main reasoning tasks any
OWL reasoner must be able to fulfill. Based on the characteristics of both the ontology
as well as the OWL reasoner two dimensions, i.e. (i) time efficiency, and (ii) quality of
results, must be considered. For example, a reasoner might be the fastest one to finish
classifying the ontology but misses some of the correct subsumption relations others
were able to infer.

6.2.2 Consistency Check

Definition 3. Let D be a datatype map, V a vocabulary over D, and O be an OWL2
Ontology. Then O is considered to be consistent (or satisfiable) with respect to D if a
model of O with respect to D and V exists. [65]

An ontology is considered to be consistent if there exists at least one valid model of
the ontology, thus makes the task of checking the consistency of an ontology usually
much faster compared to others.

Remark: An unsatisfiable class does not imply an inconsistent ontology if there is
at least one satisfiable model of the ontology (such an ontology is considered to be
incoherent). On the contrary, all classes of an inconsistent ontology are unsatisfiable.

6.2.3 Type Inference of Individuals

One major advantage of using ontologies as knowledge base is the capability to model
the explicit semantics of concepts, i.e. define characteristics an individual must have
in order to belong to that respective concept (e.g. a SatisfiedHumanActor is a Hu-
manActor which has a LevelOfSatisfaction of Satisfied or VerySatisfied;
cf. Section 3.5 for a more detailed discussion).

The related reasoning task computes all possible types for individuals of an ontol-
ogy and again two dimensions, i.e. (i) time efficiency, and (ii) quality of results must be
considered.
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6.2.4 Query Answering

One drawback of querying ontologies without reasoning support is that information
a reasoner might be able to infer (i.e. type inference, inverse property relations, . . . )
cannot be utilized per se. For example, if we want to accomplish the simple task
of retrieving all non-scheduled activities, a SPARQL query utilizing reasoning results
can be as short as shown in Listing 6.1 or much more complicated as illustrated in
Listing 6.2 if reasoning support is not available.

Listing 6.1: Query with reasoning support
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOntology.owl#>
SELECT DISTINCT ?activity
WHERE {

?activity a act:NonScheduledActivity .
}

Listing 6.2: Query without reasoning support
PREFIX act: <https://www.auto.tuwien.ac.at/.../ActorOntology.owl#>
SELECT DISTINCT ?activity
WHERE {

?activity a/rdfs:subClassOf* act:Activity.
{
?activity act:hasPreferenceProfile/act:hasPreference ?preference.

}
UNION
{
?activity2 a/rdfs:subClassOf* act:Activity.
?activity2 act:forTime ?timeInfo .
?activity2 act:forActivity ?activity .

FILTER(?activity != ?activity2)
}

}

Since queries which rely on reasoning support require some pre-processing done
by the respective reasoning system to be able to retrieve any results at all, we defined
three different query tasks (cf. Listings 6.3, 6.4, and 6.5) to be carried out on the Actor
Preferences Ontology and measured the performance of the tested OWL reasoners to
fulfill these tasks.

99



Listing 6.3: Which non-scheduled activities contain preferences of high importance?
NonScheduledActivity and

hasPreferenceProfile some
(hasPreference some (hasImportance value HighImportance))

Explanation: The particular difficulty of this query lies in the definition of NonSched-
uledActivity which has to be derived in the first place, i.e. individuals of type
Activity must be typed to NonScheduledActivity if they fullfil certain conditions
before the query can be executed.

Listing 6.4: Which preferences end on Monday?
UserDefinedPreference and

forTime some (
(hasEnd some (inDateTime some (dayOfWeek value Monday)))
or

(hasBeginning some (inDateTime some (dayOfWeek value Monday)))
)

Explanation: Again, reasoners have to define individuals of type Preference as
UserDefinedPreference based on rather difficult constraints (i.e. they have to follow
several paths of inverse properties to reach a potential owner of a property), before
they are able to further process the query. Apart from that, external entities of the
OWL-TIME ontology must be processed.

Listing 6.5: Which preference values were defined by ActorHumanActor1?
PreferenceValue and

isPreferenceValueOf some (
isPreferenceOf some (

(isPreferenceScheduleOf some (
isPreferenceProfileOf value ActorHumanActor1)

) or
(isPreferenceProfileOf some (

isActivityOf some (
isScheduledActivityOf some (

isPreferenceProfileOf value ActorHumanActor1)
)

)
)

)
)

Explanation: Some reasoners have difficulties to resolve inverse property relations,
which should be tested using the present query that only consists of not explicitly
defined inverse properties.
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6.3 Evaluation System

The system specifications of the machine that has been used to perform the reasoning
tasks are listed in Table 6.1. Note that this machine was not particularly optimized
for evaluation purposes, thus evaluation results might differ from those perceived by
others.

System Specifications

Processor 2x Dual-Core i5-4200U
Processor Details 1.60 GHz
RAM 12 GB
Allocated RAM 4 GB
Operating System Windows 7 - 64 Bit

Table 6.1: System specifications of the evaluation machine

6.4 Evaluation Approach

All OWL reasoners which we have chosen to evaluate based on reasoning tasks related
to the ThinkHome system, offer an interface to OWLAPI 3.5.03 implemented in Java.
Thus, we developed a reasoner testing framework which performs the previously in-
troduced reasoning tasks using the respective OWL reasoner defined as parameter as
exemplified in Listing 6.6 which contains the method, responsible for computing type
inferences.

public Set<OWLAxiom> computeTypeInference(OWLReasoner reasoner) {
InferredClassAssertionAxiomGenerator classAssertionGenerator = new

InferredClassAssertionAxiomGenerator();
OWLOntologyManager manager = this.ont.getOWLOntologyManager();

// Start measuring the computation time
long start = System.currentTimeMillis();
Set<? extends OWLAxiom> resultAxioms = new HashSet();
try {

// start computing type inferences
reasoner.precomputeInferences(new InferenceType[] { InferenceType.

CLASS_ASSERTIONS });
// generate axioms for inferred class assertions
resultAxioms = classAssertionGenerator.createAxioms(manager,

reasoner);
} catch (InconsistentOntologyException e) {

// return Nothing in case of inconsistent ontology

3http://owlapi.sourceforge.net/
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OWLDataFactory factory = manager.getOWLDataFactory();
resultAxioms = Collections.singleton(factory.getOWLSubClassOfAxiom(

factory.getOWLThing(), factory.getOWLNothing()));
}
// End measuring the computation time
long end = System.currentTimeMillis();
// return the inferred axioms
return (Set<OWLAxiom>) resultAxioms;

}

Listing 6.6: Method computing all type inferences and returning them as set of
OWLAxioms.

For evaluation purposes, we store the time a reasoner needs to complete its task
together with the results it produces. This is primarily based on the fact that you
cannot measure the performance of an OWL reasoner solely based on the time it
needs to complete a tasks but additionally on the quality and completeness of the
calculated/inferred results (e.g. a reasoner might classify an ontology twice as fast
as all other reasoners but misses some of the implications the ontology would offer
which other reasoners could potentially infer).

To provide representative evaluation results, every reasoner had to perform every
reasoning task 100 times before we calculate the average time taken for each reasoner
and gather the computed results.

6.5 Evaluation Results

In addition to the Actor Preferences Ontology, we focused on three different ontologies
of the ThinkHome system which are related to (i.e. are used within) the Actor Prefer-
ences Ontology for our reasoner evaluation, namely: Energy & Resources Ontology (ero),
User Behavior & Building Processes Ontology (ppo), and Architecture & Building Physics
Ontology (gbo) [52]. Each of these ontologies has slightly different characteristics (cf.
Table 6.2) and thus is either easier or more difficult to be reasoned over.

In order to obtain representative reasoning results we have used those versions
of the ontologies which contain already a number of sample instantiations and thus
emulate a real world scenario.

6.5.1 Actor Preferences Ontology (:act)

Discussion of the Results

Pellet: As one of the most matured OWL reasoners available, Pellet was able to ac-
complish all reasoning tasks correctly and to retrieve all expected query results
for Q1-Q3.
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Number of . . .

Ontology Concepts Data Properties Object Properties Individuals

gbo 232 207 233 427
ero 253 39 71 327
ppo 156 9 29 532
act 69 6 28 484

Table 6.2: Characteristics of used ontologies.

time (ms)

Average Computation Time of Reasoning Tasks
Ontology: Actor Preferences Ontology

Classification
Type Inference
Consistency Check
Query Answering (Q1)
Query Answering (Q2)
Query Answering (Q3)

Pellet

JFact

HermiT

TrOWL

0k 2.5k 5k 7.5k 10k 12.5k 15k 17.5k 20k

Figure 6.1: Average processing time of each reasoning tasks for all reasoners.

Reasoner Classification Type Inference Consistency Check Query Answering
Q1 Q2 Q3

Pellet 11913 ms 11883 ms 1329 ms 13132 ms 13119 ms 11872 ms
JFact 9390 ms 17749 ms 1039 ms 13536 ms 11196 ms 10215 ms

HermiT 2364 ms 2643 ms 4109 ms 4054 ms 5443 ms 4795 ms
TrOWL 5 ms 24 ms 1 ms 221 ms 256 ms 218 ms

Table 6.3: Average processing time of each reasoning tasks for all reasoners.
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JFact: One major drawback of FaCT++/JFact is the limited support of datatypes as
they only accept those which are part of the OWL2 datatypes map4. As a result,
custom rdfs:Datatype definitions as e.g. used within the OWL-TIME ontology
lead to errors and the termination of the reasoning process.

HermiT: Like Pellet, HermiT was able to fulfill all reasoning as well as query tasks
correctly whilst at the same time being 3-5 times faster as Pellet.

TrOWL: Two major shortcomings of TrOWL regarding the quality and correctness of
its inferred results were identified, namely: (i) inability to process value range re-
strictions and (ii) missing support of type inference using inverse property relations.
TrOWL was not able to process queries containing any is...Of relations which
are solely defined as the inverse of their related property (e.g. (ii) Preference

and (isPreferenceOf min 1 StandardPreferenceProfile to define standard
preferences) or queries like (i) Age and (hasYears some int[>=66], thus
was not able to retrieve results for Q2 and Q3. Besides those shortcomings,
TrOWL had remarkable results regarding time efficiency being up to 500 times
faster than the second fastest reasoner HermiT.

6.5.2 Energy & Resources Ontology (:ero)

time (ms)

Error

Time Out

Error

Average Computation Time of Reasoning Tasks
Ontology: Energy & Resources Ontology

Classification
Type Inference
Consistency Check

Pellet

JFact

HermiT

TrOWL

0k 5k 10k 15k 20k 25k 30k 35k 40k 45k

Figure 6.2: Average processing time of each reasoning tasks for all reasoners.

4http://www.w3.org/TR/owl2-syntax/#Datatype_Maps
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Discussion of the Results

Pellet: Pellet was able to correctly and completely infer all required inferences, thus
finishing all reasoning tasks.

JFact: Threw exception due to problems with customly defined rdfs:Datatypes.

HermiT: HermiT was only able to check if the present ontology is consistent but failed
in computing the other tasks in a timely manner (i.e. under 10 hours).

TrOWL: Threw exception due to problems with customly defined rdfs:Datatypes.

6.5.3 User Behavior & Building Processes Ontology (:ppo)

time (ms)

Average Computation Time of Reasoning Tasks
Ontology: User Behavior & Building Processes Ontology

Classification
Type Inference
Consistency Check

Pellet

JFact

HermiT

TrOWL

0k 5k 10k 15k 20k 25k 30k

Figure 6.3: Average processing time of each reasoning tasks for all reasoners.

Reasoner Classification Type Inference Consistency Check

Pellet 37207 ms 38385 ms 2949 ms
JFact 7 7 7

HermiT time out time out 11551 ms
TrOWL 7 7 7

Table 6.4: Average processing time of each reasoning tasks for all reasoners.

105



Discussion of the Results

Pellet: Pellet was able to correctly and completely infer all required inferences, thus
finishing all reasoning tasks.

JFact: JFact was able to finish all tasks but it was not able to compute any results. Al-
though this might be related to problems with customly defined rdfs:Datatypes

this cannot be guaranteed and would require further investigations.

HermiT: HermiT was able to finish all reasoning tasks and derived the same inferences
as Pellet, whilst at the same time being 2-3 times faster than Pellet.

TrOWL: We tested TrOWL on both our Java implementation as well as directly in
Protégé where it was only able to run properly in the latter case. The results pre-
sented in Table 6.5 as well as Figure 6.3 for TrOWL are based on the computation
time provided by Protégé and therefore might differ from potential results which
we would have been able to obtain from our reasoner evaluation framework if
TrOWL would not have thrown an internal NullPointerException.

6.5.4 Architecture & Building Physics Ontology (:gbo)

Discussion of the Results

Pellet: Again, only Pellet was able to compute results whilst at the same time being
the only freely available OWL reasoner supporting SWRL Rules.

Reasoner Classification Type Inference Consistency Check

Pellet 25305 ms 28055 ms 1409 ms
JFact 803 ms 573 ms 764 ms

HermiT 7671 ms 11409 ms 1083 ms
TrOWL 284 ms 951 ms 129 ms

Table 6.5: Average processing time of each reasoning tasks for all reasoners.

Reasoner Classification Type Inference Consistency Check

Pellet 23376 ms 23494 ms 4922 ms
JFact 7 7 7

HermiT time out time out time out
TrOWL 7 7 7

Table 6.6: Average processing time of each reasoning tasks for all reasoners.
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time (ms)

Error

Time Out

Error

Average Computation Time of Reasoning Tasks
Ontology: Architecture & Building Physics Ontology

Classification
Type Inference
Consistency Check

Pellet

JFact

HermiT

TrOWL

0k 2.5k 5k 7.5k 10k 12.5k 15k 17.5k 20k 22.5k 25k

Figure 6.4: Average processing time of each reasoning tasks for all reasoners.

JFact: Threw exception due to problems with customly defined rdfs:Datatypes.

HermiT: Although HermiT provides very basic support of SWRL rules (i.e. currently
no support of built-ins), they were removed for the evaluation, since only Pellet
would have been able to process them properly. HermiT was not able to compute
any results in a reasonable time5.

TrOWL: Threw exception due to problems with customly defined rdfs:Datatypes.

6.6 Conclusion

The evaluation conducted within this chapter offers several interesting insights and
information which might be helpful when choosing an appropriate OWL reasoner
for performing reasoning tasks. It has been shown that although single reasoners
might perform very well on specific reasoning tasks which are performed on ontolo-
gies having specific characteristics, they might have a very bad performance (in both
time efficiency as well as quality of reasoning results) for reasoning over ontologies with
slightly different features.

Generally speaking, especially for the domain of an ontology-based knowledge
base which integrates a large variety of different ontologies, a stable OWL reasoner,
i.e. one that is able to fulfill all reasoning tasks on a large variety of different ontologies,

5We aborted the reasoning process after 10 hours.
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should always be preferred over one that cannot guarantee the correctness and to a
certain degree completeness of its results. Of course, this stableness usually comes in
hand with a decrease of time efficiency.

Regarding the evaluated OWL reasoners several key characteristics were derivable,
namely:

Pellet: The most stable OWL reasoner, with extensive reasoning support including
custom rdfs:Datatype definitions and SWRL rules with built-ins, but unfortu-
nately it was also the slowest one amongst all evaluated reasoners.

FaCT++/JFact: The most unstable OWL reasoner which was only able to properly
process one of the tested ontologies and even that quite slowly.

HermiT: A very promising OWL reasoner which (in case it does not get stuck in a
time-out) usually performs reasoning tasks 3-5 times faster than Pellet, whilst at
the same time providing equally good reasoning results and even supporting
basic SWRL rules.

TrOWL: Unfortunately, TrOWL has similar shortcomings in terms of processing cus-
tom rdfs:Datatype definitions as FaCT++/JFact and inverse property relations,
thus, it was not able to process all tested ontologies properly. Besides these short-
comings, if TrOWL was able to process an ontology it was up to 500 times faster
than HermiT.
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CHAPTER 7
Conclusion

In the present thesis, we describe the concept of smart homes in general by introducing
the benefits of an ontology-based smart home system, discuss various ontology devel-
opment approaches, define a comprehensive ontology which is capable of persisting
information about actors and their preferences, and give an evaluation of current state-
of-the-art OWL reasoners based on ontologies of the ThinkHome system.

After motivating the necessity of an ontology which covers the domain of actors
and their preferences within a smart home domain and discussing the concept of a
smart home in general, we discuss several different methodologies for developing on-
tologies and emphasize our choice of using METHONTOLOGY by analysing all of
the said approaches taking their advantages and disadvantages regarding our require-
ments into account.

In the main chapter of the present thesis, we discuss the development process of the
Actor Preferences Ontology structured in a way that follows the development steps pro-
posed by METHONTOLOGY. To summarize, the Actor Preferences Ontology represents
a convenient way for residents of a smart home to persist their personal information,
to store information about their general preferences and preferences for activities, as
well as to schedule preferences and activities. To achieve that, the Actor Preferences On-
tology contains eleven main concepts, namely: Activity, ActivitySchedule, Ac-
tor, Age, Gender, LevelOfImportance, LevelOfSatisfaction, Preference,
PreferenceProfile, PreferenceSchedule, and PreferenceValue. Instantia-
tions of these concepts can be used to precisely model actors of a smart home system
together with their preferences and activities which are grouped within logically co-
herent preference profiles and might be scheduled within preference schedules. Tak-
ing advantage of the reasoning capabilities an ontology-based knowledge base comes
with, we exemplify the usability of our ontology by answering a large set of compe-
tency questions with SPARQL.
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As the previously mentioned reasoning capabilities are of major importance to
any ontology-based system, the choice of the right reasoner for carrying out these
reasoning tasks is no less important. For that purpose, we evaluated current state-
of-the-art ontology reasoners based on different reasoning tasks which have to be
performed on ontologies of the ThinkHome system and discussed their achieved results.

7.1 Further Work

Concerning future work that could be done to improve the Actor Preferences Ontology
primarily revolves around (i) improving reasoning capabilities it provides, and (ii) extending
its predefined set of concepts:

Improving Reasoning Capabilities: Although the Actor Preferences Ontology was built
having extensive reasoning support in mind not all possibilities Semantic Web
technologies would offer in that regard were considered. One example of such
a technology would be the Semantic Web Rule Language (SWRL) [43] which offers
the possibility to define general valid and more complex rules which would have
been difficult to describe using OWL and RDFS alone.

Listing 7.1: SWRL rule that assigns scheduled preferences to type ErrorClass
if their end time starts before their start time.
Preference(?x), forTime(?x,?y), hasBeginning(?y,?B), hasEnd(?y,?E),
inDateTime(?B,?dtB), inDateTime(?E,?dtE), hour(?dtB,?hB), hour(?dtE,?hE),
swrlb:greaterThan(?hB, ?hE) -> ErrorClass(?x)

For example, consider the SWRL rule exemplified in Listing 7.1 using Protégé
syntax. By using that rule, it is possible to assign individuals of type Pref-
erence to type ErrorClass, which is disjoint with all other concepts in the
ontology, if they have a scheduled end time which starts before their scheduled
starting time (under the assumption, that preferences can only be scheduled
within one day, i.e. their timeframe does not span over midnight).

Extending Predefined Concepts: Regarding the extension of predefined concepts three
concepts especially stand out:

Activities - We currently only cover three different types of NonPassive-
Activities and five different types of PassiveActivities, which should
have served as an example on how to define activities but definitely do not
cover the area of activities completely.

Preferences - Although we already conceptualized a large amount of pos-
sible preferences which could be set in a smart home environment, there
definitely exist many more which were not already considered.
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StandardPreferences - Similar to Activities we only defined standard
preference values for a small set of preferences, which should of course be
extended if the ThinkHome system would be deployed in practice.

Introducing and Describing SystemActors As already briefly mentioned in previ-
ous sections (cf. Section 5.2.2), the concept of SystemActors which represent
agents of the multi-agent system is not thoroughly defined in the present thesis.
For future work, we plan to investigate and extend this concept extensively to
provide an even better integration of the MAS and corresponding KB.
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APPENDIX A
Conceptualization Tables

In the present appendix we ’out-sourced’ some tables of Section 5.2 to be able to stick
to a concise representation regime, namely:

Concept Dictionary Table: cf. Section 5.2.4 for more details.

Activity A.1,

ActivitySchedule A.2,

Actor A.3,

Age A.4,

LevelOfImportance A.6,

LevelOfSatisfaction A.7,

Preference A.8,

PreferenceProfile A.9,

PreferenceSchedule A.10,

PreferenceValue A.11;

Binary Relation Tables: A.12; cf. Section 5.2.5 for more details.

Instance Attribute Tables: A.13; cf. Section 5.2.6 for more details.

Class Attribute Tables: cf. Section 5.2.7 for more details.

Actor A.14

Age A.15

Preference A.16
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PreferenceProfile A.17

PreferenceSchedule A.18

Instance Tables: A.19; cf. Section 5.2.8 for more details.
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Concept Name Instance Attributes Relations

CleaningActivity - hasPreferenceProfile

CookingActivity - hasPreferenceProfile

NonPassiveActivity - hasPreferenceProfile

NonScheduledActivity - isActivityOf, hasPreferenceProfile

PassiveActivity - hasPreferenceProfile

ReadingActivity - hasPreferenceProfile

ScheduledActivity - forTime, forActivity

SleepingActivity - hasPreferenceProfile

SportActivity - hasPreferenceProfile

WakeUpActivity - hasPreferenceProfile

WatchingTVActivity - hasPreferenceProfile

WritingActivity - hasPreferenceProfile

Table A.1: Concept Dictionary for Activity

Concept Name Instance Attributes Relations

ActivitySchedule - isActivityScheduleOf

Table A.2: Concept Dictionary for ActivitySchedule
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Concept Name Instance Attributes Relations

Actor - hasPreferenceProfile

AgedHumanActor hasName hasAge, hasGender, hasPreferenceProfile

FemaleHumanActor hasName hasGender, hasPreferenceProfile

HumanActor hasName hasAge, hasGender, hasSatisfactionLevel, hasPreferenceProfile

MaleHumanActor hasName hasGender, hasPreferenceProfile

MatureHumanActor hasName hasAge, hasGender, hasPreferenceProfile

SatisfiedHumanActor hasName hasSatisfactionLevel, hasPreferenceProfile

SystemActor hasID hasAge

UnsatisfiedHumanActor hasName hasSatisfactionLevel, hasPreferenceProfile

UserSystemActor hasName hasAge, represents, hasPreferenceProfile

YoungHumanActor hasName hasAge, hasGender, hasPreferenceProfile

Table A.3: Concept Dictionary for Actor

Concept Name Instance Attributes Relations

AdvancedHumanActorAge hasYears -

Age - -

HumanActorAge hasYears -

MatureHumanActorAge hasYears -

SystemActorAge hasHours -

YoungHumanActorAge hasYears -

Table A.4: Concept Dictionary for Age

Concept Name Instances Relations

Gender
Female

-
Male

Table A.5: Concept Dictionary for Gender
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Concept Name Instance Attributes Relations

LevelOfImportance

LowImportance

-AverageImportance

HighImportance

Table A.6: Concept Dictionary for LevelOfImportance

Concept Name Instance Attributes Relations

LevelOfSatisfaction

DisSatisfied

-
BarelySatisfied

Satisfied

VerySatisfied

Table A.7: Concept Dictionary for LevelOfSatisfaction
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Concept Name Relations

AirFlowVelocityPreference hasImportance, hasPreferenceValue, forSpace, forZone, isPreferenceOf

AirQualityPreference hasImportance, hasPreferenceValue, forSpace, forZone, isPreferenceOf

AirVentilationPreference hasImportance, hasPreferenceValue, forSpace, forZone, isPreferenceOf

ApplianceCentricPreference controlsAppliance, hasImportance, hasPreferenceValue, forSpace, forZone, isPreferenceOf

ApplicationCentricPreference hasImportance, hasPreferenceValue, forSpace, forZone, isPreferenceOf, usesApplication

BlindsPreference hasImportance, hasPreferenceValue, forSpace, forZone, isPreferenceOf

ComfortTemperaturePreference hasImportance, hasPreferenceValue, forSpace, forZone, isPreferenceOf

DiswasherPreference hasImportance, hasPreferenceValue, forSpace, forZone, isPreferenceOf

DryerPreference hasImportance, hasPreferenceValue, forSpace, forZone, isPreferenceOf

LampPreference hasImportance, hasPreferenceValue, forSpace, forZone, isPreferenceOf

LightingLevelPreference hasImportance, hasPreferenceValue, forSpace, forZone, isPreferenceOf

PresencePreference hasImportance, hasPreferenceValue, forSpace, forZone, isPreferenceOf

RelativeHumidityPreference hasImportance, hasPreferenceValue, forSpace, forZone, isPreferenceOf

ScheduledPreference hasImportance, hasPreferenceValue, forSpace, forTime, forZone, isPreferenceOf

SetbackTemperaturePreference hasImportance, hasPreferenceValue, forSpace, forZone, isPreferenceOf

SoundPressureLevelPreference hasImportance, hasPreferenceValue, forSpace, forZone, isPreferenceOf

StandardPreference hasImportance, hasPreferenceValue, forSpace, forZone, isPreferenceOf

TemperaturePreference hasImportance, hasPreferenceValue, forSpace, forZone, isPreferenceOf

UserDefinedPreference hasImportance, hasPreferenceValue, forSpace, forZone, isPreferenceOf

WashingmaschinePreference hasImportance, hasPreferenceValue, forSpace, forZone, isPreferenceOf

Table A.8: Concept Dictionary for Preference
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Concept Name Relations

ActivityPreferenceProfile hasActivitySchedule, hasPreference, hasPreferenceSchedule, isPreferenceProfileOf

HumanActorPreferenceProfile hasActivitySchedule, hasPreference, hasPreferenceSchedule, isPreferenceProfileOf

NonScheduledPreferenceProfile hasActivitySchedule, hasPreference, hasPreferenceSchedule, isPreferenceProfileOf

ScheduledPreferenceProfile hasActivitySchedule, hasPreference, hasPreferenceSchedule, isPreferenceProfileOf

StandardPreferenceProfile hasActivitySchedule, hasPreference, hasPreferenceSchedule, isPreferenceProfileOf

Table A.9: Concept Dictionary for PreferenceProfile

Concept Name Relations

AppliancePreferenceSchedule hasPreference

ApplicationPreferenceSchedule hasPreference

PresencePreferenceSchedule hasPreference

PreferenceSchedule hasPreference

VisualComfortPreferenceSchedule hasPreference

Table A.10: Concept Dictionary for PreferenceSchedule

Concept Name Instance Attributes Relations

BinaryPreferenceValue hasValue forState

ContinuousPreferenceValue hasValue forState, hasUnitOfMeasure

PreferenceValue hasValue forState

Table A.11: Concept Dictionary for PreferenceValue118



Relation Name Source Concept Cardinality Target Concept Inverse Relation

controlsAppliance ApplianceCentricPreference min 1 ero:Appliance -

currentlyLocatedIn HumanActor exactly 1
gbo:Space -

or gbo:Zone -

forActivity ScheduledActivity min 1 NonScheduledActivity isActivityOf

forSpace Preference min 1 gbo:Space -

forState PreferenceValue min 1 ero:State -

forTime
ScheduledPreference

min 1 time:TemporalEntity -
ScheduledActivity

forZone Preference min 1 gbo:Zone -

hasActivitySchedule PreferenceProfile only ActivitySchedule isActivityScheduleOf

hasAge Actor exactly 1 Age -

hasGender HumanActor exactly 1 Gender -

hasImportance Preference exactly 1 LevelOfImportance -

hasPreference
PreferenceProfile only Preference

isPreferenceOf
PreferenceSchedule min 1 ScheduledPreference

hasPreferenceProfile
Activity min 1 ActivityPreferenceProfile

isPreferenceProfileOf
Actor only PreferenceProfile

hasPreferenceSchedule PreferenceProfile only PreferenceSchedule isPreferenceScheduleOf

hasPreferenceValue Preference min 1 PreferenceValue isPreferenceValueOf

hasSatisfactionLevel HumanActor exactly 1 LevelOfSatisfaction -

hasScheduledActivity ActivitySchedule min 1 ScheduledActivity isScheduledActivityOf

hasUnitOfMeasure ContinuousPreferenceValue exactly 1 om:Unit_of_measure -

represents UserSystemActor exactly 1 HumanActor representedBy

usesApplication HumanActor exactly 1 Gender -

Table A.12: Ad-hoc Binary Relation Table
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Attribute Name Concept Name Value Type Measurement Unit Range of Values Cardinality

hasName Actor xsd:string - no restriction (1,1)
hasYears Age xsd:integer [0, ∞] (1,1)
hasHours Age xsd:float [0, ∞] (1,1)
hasID SystemActor xsd:integer - [0, ∞] (1,1)

hasValue PreferenceValue xsd:Literal - [−∞, ∞] (1,1)

Table A.13: Instance Attribute Table
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Defined Concept Attribute Name Cardinality Values

HumanActor

hasAge exactly 1 HumanActorAge

hasGender exactly 1 Gender

hasSatisfactionLevel exactly 1 LevelOfSatisfaction

SystemActor
hasAge exactly 1 SystemActorAge

hasID exactly 1 xsd:integer

UserSystemActor
hasAge exactly 1 SystemActorAge

represents exactly 1 HumanActor

AgedHumanActor
hasAge exactly 1 AdvancedHumanActorAge

hasGender exactly 1 Gender

MatureHumanActor
hasAge exactly 1 MatureHumanActorAge

hasGender exactly 1 Gender

YoungHumanActor
hasAge exactly 1 YoungHumanActorAge

hasGender exactly 1 Gender

SatisfiedHumanActor
hasSatisfactionLevel value Satisfied

or hasSatisfactionLevel value VerySatisfied

UnsatisfiedHumanActor
hasSatisfactionLevel value BarelySatisfied

or hasSatisfactionLevel value DisSatisfied

FemaleHumanActor hasGender value Female

MaleHumanActor hasGender value Male

Table A.14: Class Attribute Table for concept Actor
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Defined Concept Attribute Name Cardinality Values

HumanActorAge hasYears exactly 1 xsd:integer

SystemActorAge hasHours exactly 1 xsd:float

YoungHumanActorAge hasYears some xsd:integer [0, 14)

MatureHumanActorAge hasYears some xsd:integer [14, 66)

AdvancedHumanActorAge hasYears some xsd:integer [66, 120)

Table A.15: Class Attribute Table for concept Age

Defined Concept Attribute Name Cardinality Values

ApplianceCentricPreference controlsAppliance min 1 ero:Appliance

ApplicationCentricPreference usesApplication min 1 ppo:Application

ScheduledPreference forTime min 1 time:TemporalEntity

StandardPreference isPreferenceOf min 1 StandardPreferenceProfile

UserDefinedPreference

isPreferenceOf min 1 HumanActorPreferenceProfile

or isPreferenceOf min 1 (isPreferenceScheduleOf

min 1 HumanActorPreferenceProf)

Table A.16: Class Attribute Table for concept Preference
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Defined Concept Attribute Name Cardinality Values

ActivityPreferenceProfile isPreferenceProfile min 1 Activity

NonScheduledPreferenceProfile
hasPreference min 1 Preference

or isPreferenceProfOf min 1 NonScheduleActivity

ScheduledPreferenceProfile
hasActSchedule min 1 ActSchedule

or hasPreferenceSchedule min 1 PreferenceSchedule

Table A.17: Class Attribute Table for concept PreferenceProfile

Defined Concept Attribute Name Cardinality Values

AppliancePreferenceSchedule hasPreference min 1
(ApplianceCentricPreference

and ScheduledPreference)

ApplicationPreferenceSchedule hasPreference min 1
(ApplicationCentricPreference

and ScheduledPreference)

PresencePreferenceSchedule hasPreference min 1
((PresencePreference

and ScheduledPreference)

VisualComfortPreferenceSchedule hasPreference some
(LampPreference

or LightingLevelPreference)

Table A.18: Class Attribute Table for concept PreferenceSchedule
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Instance Name Concept Name

Female Gender

Male Gender

LowImportance LevelOfImportance

AverageImportance LevelOfImportance

HighImportance LevelOfImportance

DisSatisfied LevelOfSatisfaction

BarelySatisfied LevelOfSatisfaction

Satisfied LevelOfSatisfaction

VerySatisfied LevelOfSatisfaction

Table A.19: Instance Table
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APPENDIX B
Detailed Evaluation Results

In this part of the appendix, detailed results of the measured processing time of rea-
soning tasks are illustrated.

Actor Preferences Ontology

Classification B.1

Consistency Check B.2

Type Inference B.3

Query Answering B.4 B.5

Energy & Resources Ontology

Classification B.7

Consistency Check B.8

Type Inference B.9

User Behavior & Building Processes Ontology

Classification B.10

Consistency Check B.11

Type Inference B.12

Architecture & Building Physics Ontology

Classification B.13

Consistency Check B.14

Type Inference B.15
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Figure B.1: Comparison of time needed to classify the Actor Preferences Ontology.
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Figure B.2: Comparison of time needed to perform a consistency check for the Actor
Preferences Ontology.
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Figure B.3: Comparison of time needed to calculate type inferences for the Actor Pref-
erences Ontology.
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Figure B.4: Comparison of time needed to process query 6.3 on the Actor Preferences
Ontology.
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Figure B.5: Comparison of time needed to process query 6.4 on the Actor Preferences
Ontology.
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Figure B.6: Comparison of time needed to process query 6.5 on the Actor Preferences
Ontology.
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Energy & Resources Ontology (:ero)
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Figure B.7: Comparison of time needed to classify the Energy & Resources Ontology.
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Figure B.8: Comparison of time needed to perform a consistency check for the Energy
& Resources Ontology.
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Figure B.9: Comparison of time needed to calculate type inferences for the Energy &
Resources Ontology.

User Behavior & Building Processes Ontology (:ppo)
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Figure B.10: Comparison of time needed to classify the User Behavior & Building Pro-
cesses Ontology.
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Figure B.11: Comparison of time needed to perform a consistency check for the User
Behavior & Building Processes Ontology.
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Figure B.12: Comparison of time needed to calculate type inferences for the User
Behavior & Building Processes Ontology.
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Architecture & Building Physics Ontology (:gbo)
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Figure B.13: Comparison of time needed to classify the Architecture & Building Physics
Ontology.
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Figure B.14: Comparison of time needed to perform a consistency check for the Archi-
tecture & Building Physics Ontology.

132



number of rounds

tim
e i

n 
(s)

Type Inference for the Architecture & Building Physics
Ontology

Pellet

0 20 40 60 80

22s

24s

26s

20s

28s

Figure B.15: Comparison of time needed to calculate type inferences for the Architec-
ture & Building Physics Ontology.
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APPENDIX C
List of Properties

C | F | H | I | R | U

C

controlsAppliance
relates individuals of ero:Appliance to individuals of ApplianceCentricPref-
erence.
Inverse Property: -

currentlyLocatedIn
relates individuals of gbo:Zone or gbo:Space to individuals of HumanActor.
Inverse Property: -

F

forActivity
relates individuals of NonScheduledActivity to individuals of ScheduledAc-
tivity.
Inverse Property: isActivityOf

forSpace
relates individuals of gbo:Space to individuals of Preference.
Inverse Property: -

forState
relates individuals of ero:State to individuals of PreferenceValue.
Inverse Property: -
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forTime
relates individuals of time:TemporalEntity to individuals of PreferenceSched-
ule or ScheduledActivity or ScheduledPreference.
Inverse Property: -

forZone
relates individuals of gbo:Zone to individuals of Preference.
Inverse Property: -

H

hasActivitySchedule
relates individuals of ActivitySchedule to individuals of PreferenceProfile.
Inverse Property: isActivityScheduleOf

hasAge
relates individuals of Age to individuals of Actor.
Inverse Property: -

hasGender
relates individuals of Gender to individuals of HumanActor.
Inverse Property: -

hasHours
relates individuals of xsd:float to individuals of Age.
Inverse Property: -

hasID
relates individuals of xsd:integer to individuals of SystemActor.
Inverse Property: -

hasImportance
relates individuals of LevelOfImportance to individuals of Preference.
Inverse Property: -

hasName
relates individuals of xsd:string to individuals of Actor.
Inverse Property: -

hasPreference
relates individuals of Preference to individuals of PreferenceProfile or Pref-

erenceSchedule.
Inverse Property: isPreferenceOf
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hasPreferenceProfile
relates individuals of PreferenceProfile to individuals of Activity or Ac-

tor.
Inverse Property: isPreferenceProfileOf

hasPreferenceSchedule
relates individuals of PreferenceSchedule to individuals of PreferencePro-
file.
Inverse Property: isPreferenceScheduleOf

hasPreferenceValue
relates individuals of PreferenceValue to individuals of Preference.
Inverse Property: isPreferenceValueOf

hasSatisfactionLevel
relates individuals of LevelOfSatisfaction to individuals of HumanActor.
Inverse Property: -

hasScheduledActivity
relates individuals of ScheduledActivity to individuals of ActivitySchedule.
Inverse Property: isScheduledActivityOf

hasValue
relates individuals of xsd:Literal to individuals of PreferenceValue.
Inverse Property: -

hasYears
relates individuals of xsd:integer to individuals of Age.
Inverse Property: -

I

isActivityOf
relates individuals of ScheduledActivity to individuals of NonScheduledAc-
tivity.
Inverse Property: forActivity

isActivityScheduleOf
relates individuals of PreferenceProfile to individuals of ActivitySchedule.
Inverse Property: hasActivitySchedule

isPreferenceOf
relates individuals of PreferenceProfile or PreferenceSchedule to indi-
viduals of Preference.
Inverse Property: hasPreference
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isPreferenceProfileOf
relates individuals of Activity or Actor to individuals of PreferencePro-

file.
Inverse Property: hasPreferenceProfile

isPreferenceScheduleOf
relates individuals of PreferenceProfile to individuals of PreferenceSched-
ule.
Inverse Property: hasPreferenceSchedule

isPreferenceValueOf
relates individuals of Preference to individuals of PreferenceValue.
Inverse Property: hasPreferenceValue

isScheduledActivityOf
relates individuals of ActivitySchedule to individuals of ScheduledActivity.
Inverse Property: hasScheduledActivity

R

representedBy
relates individuals of SystemActor to individuals of HumanActor.
Inverse Property: represents

represents
relates individuals of HumanActor to individuals of SystemActor.
Inverse Property: representedBy

U

usesApplication
relates individuals of ppo:Application to individuals of ApplicationCentricPref-
erence.
Inverse Property: -
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APPENDIX D
List of Classes

A | B | C | D | F | G | H | L | M | N | P | R | S | T | U | V | W | Y

A

Activity

An Activity contains an ActivityPreferenceProfile, which stores Preferences for
that specific Activity.

Equivalent To:
-

SubClass Of:
hasPreferenceProfile min 1 ActivityPreferenceProfile

ActivityPreferenceProfile

A PreferenceProfile which is used to store Preferences belonging to a specific
Activity.

Equivalent To:
PreferenceProfile and (isPreferenceProfileOf min 1 Activity)

SubClass Of:
PreferenceProfile

ActivitySchedule

An ActivitySchedule clusters several ScheduledActivities together and is part of
a HumanActorPreferenceProfile.

Equivalent To:
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-

SubClass Of:
hasScheduledActivity min 1 ScheduledActivity

Actor

Actors are all individuals (human or system), which interact with the system.

Equivalent To:
-

SubClass Of:
hasPreferenceProfile only PreferenceProfile

AdvancedHumanActorAge

An AdvancedHumanActorAge represents an age of a HumanActor of at least
66.

Equivalent To:
Age and (hasYears some int[>= 66])

SubClass Of:
HumanActorAge

Age

An Age is used to represent ages of Actors of the smart home system.

Equivalent To:
-

SubClass Of:
-

AgedHumanActor

An AgedHumanActor is a HumanActor older than 65.

Equivalent To:
Actor and (hasAge exactly 1 AdvancedHumanActorAge) and (hasGender exactly

1 Gender)

SubClass Of:
HumanActor

AirFlowVelocityPreference

AirFlowVelocityPreferences are used to define Preferences regarding the velocity
of the air flow.
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Equivalent To:
-

SubClass Of:
Preference

AirQualityPreference

AirQualityPreferences are used to define Preferences regarding the quality of the
air.

Equivalent To:
-

SubClass Of:
Preference

AirVentilationPreference

AirVentilationPreferences are used to define Preferences regarding the amount
of ventilated air.

Equivalent To:
-

SubClass Of:
Preference

ApplianceCentricPreference

ApplianceCentricPreferences are those Preferences whose realization require the
interaction with ero:Appliances.

Equivalent To:
Preference and (controlsAppliance min 1 ero:Appliance)

SubClass Of:
Preference

AppliancePreferenceSchedule

This concept represents schedules that contain at least one ScheduledPreference
of type ApplianceCentricPreference.

Equivalent To:
PreferenceSchedule and (hasPreference min 1 (ApplianceCentricPref-

erence and ScheduledPreference))

SubClass Of:
PreferenceSchedule
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ApplicationCentricPreference

Preferences are those Preferences whose realization require the interaction with
ppo:Applications.

Equivalent To:
Preference and (usesApplication min 1 ppo:Application)

SubClass Of:
Preference

ApplicationPreferenceSchedule

This concept represents schedules that contain at least one ScheduledPreference
of type ApplicationCentricPreference.

Equivalent To:
PreferenceSchedule and (hasPreference min 1 (ApplicationCentricPref-

erence and ScheduledPreference))

SubClass Of:
PreferenceSchedule

B

BinaryPreferenceValue

A BinaryPreferenceValue contains only 0 or 1 as possible values.

Equivalent To:
-

SubClass Of:
PreferenceValue

BlindsPreference

BlindsPreferences are used to define Preferences for blinds.

Equivalent To:
-

SubClass Of:
Preference

C

CleaningActivity

A CleaningActivity represents any action related to cleaning.
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Equivalent To:
-

SubClass Of:
NonPassiveActivity

ComfortTemperaturePreference

ComfortTemperaturePreferences are used to define Preferences regarding the
comfort temperature.

Equivalent To:
-

SubClass Of:
TemperaturePreference

ContinuousPreferenceValue

A ContinuousPreferenceValue combines a PreferenceValue with its respective
unit and is used to represent any type of PreferenceValue except binary ones.

Equivalent To:
-

SubClass Of:
PreferenceValue and (hasUnitOfMeasure exactly 1 om:Unit_of_measure)

CookingActivity

A CookingActivity represents any action related to cooking.

Equivalent To:
-

SubClass Of:
NonPassiveActivity

D

DishwasherPreference

BlindsPreferences are used to define Preferences for dishwashers.

Equivalent To:
-

SubClass Of:
Preference
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DryerPreference

BlindsPreferences are used to define Preferences for dryers.

Equivalent To:
-

SubClass Of:
Preference

F

FemaleHumanActor

A FemaleHumanActor is a HumanActor of Gender female.

Equivalent To:
Actor and (hasGender value Female)

SubClass Of:
HumanActor

G

Gender

The concept Gender represents the sex of a HumanActor.

Equivalent To:
{Female, Male}

SubClass Of:
-

H

HumanActor

A HumanActor represents a human Actor of the smart home system.

Equivalent To:
Actor and (hasAge exactly 1 HumanActorAge) and (hasGender exactly 1

Gender) and (hasSatisfactionLevel exactly 1 LevelOfSatisfaction)

SubClass Of:
Actor

HumanActorAge

A HumanActorAge represents an age of a HumanActor in years.
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Equivalent To:
Age and (hasYears exactly 1 int)

SubClass Of:
Age

HumanActorPreferenceProfile

A HumanActorPreferenceProfile is a profile that belongs to exactly one Human-
Actor.

Equivalent To:
-

SubClass Of:
PreferenceProfile and (isPreferenceProfileOf exactly 1 HumanActor)

L

LampPreference

BlindsPreferences are used to define Preferences for lamps.

Equivalent To:
-

SubClass Of:
Preference

LevelOfImportance

The concept LevelOfImportance describes the importance of a Preference.

Equivalent To:
{LowImportance, AverageImportance, HighImportance}

SubClass Of:
-

LevelOfSatisfaction

The concept LevelOfSatisfaction describes the level of satisfaction of a Human-
Actor.

Equivalent To:
{DisSatisfied, BarelySatisfied, Satisfied, VerySatisfied}

SubClass Of:
-
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LightingLevelPreference

LightingLevelPreferences are used to define Preferences regarding the lighting
level.

Equivalent To:
-

SubClass Of:
Preference

M

MaleHumanActor

A MaleHumanActor is a HumanActor of Gender male.

Equivalent To:
Actor and (hasGender value Male)

SubClass Of:
HumanActor

MatureHumanActor

An AgedHumanActor is a HumanActor older than 13 and younger than 66.

Equivalent To:
Actor and (hasAge exactly 1 MatureHumanActorAge) and (hasGender exactly

1 Gender)

SubClass Of:
HumanActor

MatureHumanActorAge

An MatureHumanActorAge represents an age of a HumanActor of at least 14
and at most 65.

Equivalent To:
Age and (hasYears some int[>= 14]) and (hasYears some int[< 66])

SubClass Of:
HumanActorAge

N

NonPassiveActivity

NonPassiveActivities are used to represent Activities, which involve physical la-
bor.
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Equivalent To:
-

SubClass Of:
Activity

NonScheduledActivity

An Activity, which is not defined for a specific time period.

Equivalent To:
Activity and ((hasPreferenceProfile min 1 NonScheduledPreferencePro-

file) or (isActivityOf min 1 ScheduledActivity))

SubClass Of:
Activity

NonScheduledPreferenceProfile

A NonScheduledPreferenceProfile is a profile which contains non scheduled
Preferences or a profile which is defined for a NonScheduledActivity.

Equivalent To:
PreferenceProfile and ((hasPreference min 1 Preference) or (isPref-

erenceProfileOf min 1 NonScheduledActivity))

SubClass Of:
PreferenceProfile

P

PassiveActivity

PassiveActivities are used to represent Activities, which does not involve any
physical labor.

Equivalent To:
-

SubClass Of:
Activity

Preference

A Preference stores specific PreferenceValues which are realized by applications
or appliances for an Actor.

Equivalent To:
-
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SubClass Of:
(forSpace only gbo:Space) and (forTime only time:TemporalEntity) and

(forZone only gbo:Zone) and (hasImportance exactly 1 LevelOfImpor-

tance) and (hasPreferenceValue min 1 PreferenceValue)

PreferenceProfile

PreferenceProfiles store Preferences, PreferenceSchedules or ActivitySchedules
and can belong to either HumanActors or NonScheduledActivities.

Equivalent To:
-

SubClass Of:
(hasActivitySchedule only ActivitySchedule) or (hasPreference only

Preference) or (hasPreferenceSchedule only PreferenceSchedule)

PreferenceSchedule

PreferenceSchedules can be used to cluster more than one ScheduledPreference
of similar time together.

Equivalent To:
-

SubClass Of:
hasPreference min 1 ScheduledPreference

PreferenceValue

The PreferenceValue of a Preference has an assigned value and can store a spe-
cific state (of applications or appliances).

Equivalent To:
-

SubClass Of:
(forState only Thing) and (hasValue exactly 1 Literal)

PresencePreference

Preferences are used to model the occupancy of the smart home. If the smart
home is occupied its PreferenceValue is set to 1.

Equivalent To:
-

SubClass Of:
Preference and ((hasPreferenceValue min 1 BinaryPreferenceValue) and

(isPreferenceOf min 1 PresencePreferenceSchedule))
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PresencePreferenceSchedule

This concept represents schedules that contain at least one ScheduledPreference
of type PresencePreference.

Equivalent To:
PreferenceSchedule and (hasPreference min 1 (PresencePreference and

ScheduledPreference))

SubClass Of:
PreferenceSchedule

R

ReadingActivity

A ReadingActivity represents any action related to reading (e.g. a book, a news-
paper, . . . ).

Equivalent To:
-

SubClass Of:
PassiveActivity

RelativeHumidityPreference

RelativeHumidityPreferences are used to define Preferences regarding the per-
centage of relative humidity.

Equivalent To:
-

SubClass Of:
Preference

S

SatisfiedHumanActor

A SatisfiedHumanActor is a HumanActor having a LevelOfSatisfaction of at least
satified.

Equivalent To:
Actor and ((hasSatisfactionLevel value Satisfied) or (hasSatisfac-

tionLevel value VerySatisfied))

SubClass Of:
HumanActor
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ScheduledActivity

A ScheduledActivity is a NonScheduledActivity which is assigned to a certain
time frame.

Equivalent To:
Activity and (forTime min 1 time:TemporalEntity) and (forActivity exactly

1 NonScheduledActivity)

SubClass Of:
Activity

ScheduledPreference

This concept represents Preferences which are scheduled for specific time frames.

Equivalent To:
Preference and (forTime min 1 time:TemporalEntity)

SubClass Of:
Preference

ScheduledPreferenceProfile

A ScheduledPreferenceProfile is a profile which contains ActivitySchedules and
PreferenceSchedules.

Equivalent To:
PreferenceProfile and ((hasActivitySchedule min 1 ActivitySchedule)

or (hasPreferenceSchedule min 1 PreferenceSchedule))

SubClass Of:
PreferenceProfile

SetbackTemperaturePreference

AirFlowVelocityPreferences are used to define Preferences regarding the set back
temperature.

Equivalent To:
-

SubClass Of:
TemperaturePreference

SleepingActivity

A SleepingActivity represents any action related to sleeping.

Equivalent To:
-
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SubClass Of:
PassiveActivity

SoundPressureLevelPreference

SoundPressureLevelPreferences are used to define Preferences regarding the level
of the sound pressure.

Equivalent To:
-

SubClass Of:
Preference

SportActivity

A SportActivity represents any action related to doing sports.

Equivalent To:
-

SubClass Of:
NonPassiveActivity

StandardPreference

This concept represents Preferences which store predefined and standardized
PreferenceValues.

Equivalent To:
Preference and (isPreferenceOf min 1 StandardPreferenceProfile)

SubClass Of:
Preference

StandardPreferenceProfile

A StandardPreferenceProfile is a profile which only contains predefined Prefer-
ences.

Equivalent To:
-

SubClass Of:
PreferenceProfile

SystemActor

A SystemActor represents a system agent of the smart home system.

Equivalent To:
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Actor and (hasAge exactly 1 SystemActorAge) and (hasID exactly 1 int)

SubClass Of:
Actor

SystemActorAge

A SystemActorAge represents an age of a SystemActor in hours.

Equivalent To:
Age and (hasHours exactly 1 float)

SubClass Of:
Age

T

TemperaturePreference

TemperaturePreference are used to define Preferences regarding the tempera-
ture.

Equivalent To:
-

SubClass Of:
Preference

U

UnsatisfiedHumanActor

A SatisfiedHumanActor is a HumanActor having a LevelOfSatisfaction of at
most barely satified.

Equivalent To:
Actor and ((hasSatisfactionLevel value BarelySatisfied) or (hasSat-

isfactionLevel value DisSatisfied))

SubClass Of:
HumanActor

UserDefinedPreference

This concept represents Preferences which were defined by a certain Actor.

Equivalent To:
Preference and (((isPreferenceOf min 1 HumanActorPreferenceProfile)

or (isPreferenceOf min 1 (isPreferenceScheduleOf min 1 HumanActor-

PreferenceProfile))) or (isPreferenceOf min 1 (isPreferenceProfileOf
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min 1 (isScheduledActivityOf min 1 (isActivityScheduleOf min 1 Hu-

manActorPreferenceProfile)))))

SubClass Of:
Preference

UserSystemActor

A UserSystemActor is a system agent which represents a HumanActor of the
smart home system.

Equivalent To:
(hasAge exactly 1 SystemActorAge) and (represents exactly 1 Human-

Actor)

SubClass Of:
SystemActor

V

VisualComfortPreferenceSchedule

This concept is primarily used to illustrate the usage of scope-dependent sched-
ules (i.e. schedules that group preferences serving a similar purpose together).
In this case, this concept represents schedules that contain exclusively LampPref-
erences and LightingLevelPreferences.

Equivalent To:
PreferenceSchedule and (hasPreference some (LampPreference or Light-

ingLevelPreference))

SubClass Of:
PreferenceSchedule

W

WakeUpActivity

A WakeUpActivity represents any action related to the process of waking up
(e.g. after a nap, in the morning, . . . ).

Equivalent To:
-

SubClass Of:
PassiveActivity

WashingmachinePreference

BlindsPreferences are used to define Preferences for washing machines.
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Equivalent To:
-

SubClass Of:
Preference

WatchingTvActivity

A WatchingTvActivity represents any action related to watching TV.

Equivalent To:
-

SubClass Of:
PassiveActivity

WritingActivity

A WritingActivity represents any action related to writing (e.g. a letter, a blog
entry, . . . ).

Equivalent To:
-

SubClass Of:
PassiveActivity

Y

YoungHumanActor

An AgedHumanActor is a HumanActor younger than 14.

Equivalent To:
Actor and (hasAge exactly 1 YoungHumanActorAge) and (hasGender exactly

1 Gender)

SubClass Of:
HumanActor

YoungHumanActorAge

An YoungHumanActorAge represents an age of a HumanActor of at most 13.

Equivalent To:
Age and (hasYears some int[< 14])

SubClass Of:
HumanActorAge
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