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Abstract

Dense stereo matching is an active research topic in the area of Computer Vision. Depth in-
formation is extracted from a dense correspondence search between two or more images of the
same scene, taken from different camera positions. Extracted depth information can be used
for various applications such as robotic navigation, automated driving or 3D reconstruction of
objects and buildings.

In this work we will focus on dense stereo matching for urban outdoor environments. We
start from the recently published PatchMatch Stereo approach by Bleyer et al. [8] since it seems
suitable for our purpose in terms of memory consumption and scalability for high resolution
images. We further extend their idea to multi-view stereo. Our algorithm is tested on different
urban outdoor image sets, including image pairs from cameras mounted on a car, panoramic
images of urban areas as well as multi-view data from historic sites and aerial image data. For
the correspondence search, experiments with different cost functions are performed.

PatchMatch Stereo is a local stereo matching approach that estimates a 3D plane at each
pixel position, hence, extracting not only disparity values but also surface normals. The Patch-
Match Stereo algorithm is based on a randomized approximate correspondence search. Initially
a random plane is selected for each pixel position. Good plane estimates are then propagated to
neighboring pixels and further refined in an iterative process.

We transform the PatchMatch Stereo approach to scene space in order to directly estimate
depth values and work with non-rectified images. Mapping from one image to another is facili-
tated by plane induced homographies, utilizing the estimated planes (normal and depth) at each
pixel position. Processing in scene space allows us to directly combine multiple images.

The major contribution of our work is a multi-view stereo matching approach. The use of
more than two images facilitates the handling of partially occluded image regions and therefore
leads to more robust results. Our approach is quantitatively evaluated on existing benchmark
data for two-view and multi-view image sequences. Results are compared with reported values
of state-of-the-art stereo matching methods.
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Kurzfassung

Dichtes Stereomatching ist ein aktives Forschungsgebiet im Bereich der Computer Vision. Ziel
ist es, Tiefeninformationen aus zwei oder mehr 2D-Bildern einer Szene zu extrahieren. Hierfür
wird eine Korrespondenzsuche über alle Pixel der verwendeten Bilder angewandt. Ermittelte
Tiefeninformation kann für verschiedene Anwendungen verwendet werden. Beispiele sind die
automatisierte Navigation von Robotern und Autos oder die 3D-Rekonstruktion von Gegenstän-
den und Gebäuden.

In dieser Arbeit werden wir uns auf dichtes Stereomatching für urbane Outdoor-Bereiche
konzentrieren. Der kürzlich publizierte PatchMatch Stereo Ansatz von Bleyer et al. [8] scheint in
Hinsicht auf Speicherverbrauch und Skalierbarkeit für hochauflösende Bilder für unsere Zwecke
geeignet. Wir starten von dieser Idee und erweitern den Ansatz, um die Verarbeitung von mehr
als zwei Bildern zu ermöglichen. Wir testen unseren Algorithmus an verschiedenen Bilddaten im
urbanen Außenbereich: Stereobilder aufgenommen von einem fahrenden Auto, Panoramabilder
aus städtischen Gebieten, Bildsequenzen von historischen Stätten und Luftbilder. Für die Korre-
spondenzsuche werden Experimente mit unterschiedlichen Kostenfunktionen durchgeführt.

PatchMatch Stereo ist eine lokaler Stereomatching Ansatz, der an jeder Pixelposition eine
3D-Ebene schätzt. Dadurch werden nicht nur Disparitätswerte sondern auch Oberflächennor-
malen ermittelt. Der PatchMatch Stereo Algorithmus basiert auf einer randomisierten, appro-
ximierten Korrespondenzsuche. Zunächst wird für jede Pixelposition eine zufällige Ebene ge-
wählt. Gute Ebenenschätzungen, die niedrige Matching-Kosten aufweisen, werden daraufhin an
benachbarte Pixel weitergegeben und in einem iterativen Prozess weiter verfeinert.

Wir transformieren den PatchMatch Stereoansatz vom Disparitätsraum in den 3D Szenen-
raum, um eine direkte Bestimmung von Tiefenwerten zu ermöglichen. Dies ermöglicht zusätz-
lich das Arbeiten mit nicht-rektifizierten Bildpaaren. Die Abbildung von einem Kamerabild zum
anderen wird durch Ebenen-induzierte Homographien ermöglicht. Hierfür wird die geschätzte
Ebene (Normale und Tiefenwert) an jeder Pixelposition verwendet. Das Arbeiten im Szenen-
raum ermöglicht die direkte Verarbeitung von mehr als zwei Bildern, da keine Rektifizierung
notwendig ist.

Dies führt zum Hauptbeitrag dieser Arbeit: ein Multi-View Stereo Matching-Ansatz. Die
Verwendung von mehr als zwei Bildern erleichtert die Handhabung von teilweise verdeckten
Bildbereichen und führt dadurch zu robusteren Ergebnissen. Unser Ansatz wird quantitativ auf
bestehenden Benchmarks für 2-View und Multi-View Bildsequenzen ausgewertet. Die Ergeb-
nisse werden des Weiteren mit anderen State-of-the-Art Stereomatching Methoden verglichen.
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CHAPTER 1
Introduction

Depth information is a useful cue for multiple vision related applications. For example, it can
be used in autonomous navigation systems or as additional cue for object detection and scene
understanding. In urban outdoor scenes, accurate 3D measurement of buildings and urban envi-
ronment is relevant in areas such as surveying, architecture, civil engineering and cultural her-
itage. Furthermore, depth information extracted from cameras mounted on a car can be used to
warn drivers about potential obstacles or for autonomous driving by capturing the environment
around the car.

Different technologies for depth extraction exist, varying in application area, processing time
and price. In this work, we will focus on dense stereo matching where depth information is ex-
tracted from two or more 2D images. Hence, no special hardware is required for data acquisition.
Depth information from stereo image pairs can be extracted in a similar way as humans perceive
binocular depth from their left and right eyes [25]. In two horizontally displaced views far away
objects will be roughly at the same position in both images. However, the closer the objects are,
the farther apart their positions will be in the two images. This can be tested for example by
placing a finger in front of the face and alternately closing the left and right eye. The position of
the finger will jump left and right relative to the farther away background [54].

When processing images, the pixel distance of corresponding points in the two image views
is commonly called disparity. If the camera setup (including internal parameters as well as
relative location and orientation of the two cameras) is known, the depth value can be computed
from the disparity. The difficult part of dense stereo matching is to find corresponding pixels
among the considered camera images.

1.1 Problem Statement

The focus of this master thesis lies on dense stereo matching for urban outdoor scenes. Thus,
for each pixel in one image the corresponding pixel position in the other image views needs to
be found. In order to find corresponding pixels a cost function is defined which measures the
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dissimilarity of two pixels or pixel patches. Compared to indoor scenes, common challenging
issues in outdoor scenes are changing lighting conditions as well as sky and cluttered vegetation
areas. Hence, robust cost functions in terms of illumination changes are needed.

A problem of two-view stereo is that non-overlapping or occluded areas cannot be recovered.
Figure 1.1 shows an exemplary image pair from the Middleburry Stereo Vision Benchmark [45]
together with the corresponding occlusion map for the left image. Image regions that are either
occluded by other objects in the scene or not visible due to the changed view point of the second
camera are marked in black. To solve this issue, stereo information from multiple views needs
to be combined.

(a) (b) (c)

Figure 1.1: Occluded regions of a stereo image pair: (a) left image, (b) right image, (c) occlusion
map (black) overlayed on grayscale version of left image. Images taken from Middleburry Stereo
Vision Benchmark [45].

We aim to extend the PatchMatch Stereo algorithm by Bleyer et al. [8] in order to fulfill the
requirements of urban outdoor scenes. PatchMatch Stereo is a local stereo matching algorithm.
Hence, for a pixel only its local neighborhood is taken into consideration during dissimilarity
estimation for the correspondence search. The most similar pixel patch in the second image in
terms of color and gradient information is considered for disparity estimation. A randomized
approximate nearest neighbor search facilitates the handling of continuous disparity values and
the additional estimation of a surface normal at each pixel position allows the support of slanted
surfaces. Hence, reconstructions are not biased towards fronto-parallel planes, which is often
the case in traditional stereo methods. The normal estimation can furthermore be used as addi-
tional cue for 3D surface reconstruction. Further benefits of the approach are the low memory
consumption and its linear scale in computation time with respect to the number of pixels. This
makes the algorithm also suitable for high resolution images.

We aim to tackle the mentioned problems for urban outdoor scenes by extending the original
PatchMatch Stereo algorithm in two directions. First, we utilize census transform [63] as cost
functions for the correspondence search, which has been proven to perform well in outdoor
scenarios. We will evaluate its performance compared to the original cost function used by
Bleyer et al. on different outdoor datasets. Second, we will reformulate the PatchMatch Stereo
approach in scene space which allows us to directly work with depth values instead of disparity
values. This will prevent the need for rectification of image pairs (mapping epipolar lines to
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horizontal scanlines). Furthermore, planes will be estimated in 3D scene space instead of the
disparity space. Since we work in a common scene coordinate system, information from multiple
views can be directly fused into a single depth map by combining cost values from different
views. This leads to our multi-view stereo approach. The benefit of a multi-view approach is
that partial occlusions can be directly resolved by valid matches with other image views. Areas
that are occluded in one image view might be still matchable in other views. Furthermore,
redundant information, e.g. consistent matches over multiple views, can help to reduce noise or
to measure reliability of matches.

1.2 Test Data

For a qualitative analysis of our approach we will use images from a high resolution panoramic
camera as well as aerial image data. Both datasets come without ground truth information.
The high resolution panoramic images (about 300 megapixels per image) are obtained from a
360◦ panorama camera with an underlying cylindrical projection. Special issues of this specific
type of camera are the non-linear epipolar geometry, induced by the cylindrical projection, and
potentially high memory consumption due to the high resolution, inducing also a large disparity
range. We will not address the specific geometry of the camera in this thesis but rather work
directly on rectified images, where correspondence search can be performed along the horizontal
scanline. An example of two panoramic images, viewing the same scene, is shown in Figure 1.2.

Figure 1.2: Two panoramic images of an urban scene from horizontally displaced views.

Our second used dataset for qualitative evaluation consists of aerial image sequences ob-
tained from cameras mounted on an airplane. Since more than two views of a scene are provided,
we will use this dataset to evaluate our multi-view stereo matching implementation. Oblique
aerial image data is provided by Slagboom & Peeters1. A special characteristic of this dataset,

1http://www.slagboomenpeeters.com/
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compared to other image data used in our evaluation, is the elevated viewing position. One of
the aerial image sequences is shown in Figure 1.3.

Figure 1.3: Sequence of aerial image data captured from an airplane.

Additionally, we will quantitatively evaluate our algorithm on benchmark datasets for urban
outdoor scenes. An evaluation will be performed on the Kitti Vision Benchmark Suite [17]
as well as the Multi-View Stereo dataset by Strecha et al. [51]. Images in the Kitti Vision
Benchmark were captured from a driving car. Hence, dominant objects in the images are streets,
houses, cars and vegetation. An exemplary image pair is depicted in Figure 1.4. The Strecha
dataset contains outdoor images of a castle and its surroundings from multiple views. Images
from one of the provided sequences are shown in Figure 1.5. Both datasets provide internal and
external camera calibration data and ground truth data captured with a laser scanner. We will
compare quantitative results of our algorithm on those datasets with reported results from other
approaches. Furthermore, a comparison between our two-view and our multi-view matching
approach will be given for the Kitti dataset.

Figure 1.4: Image pair from Kitti Vision Benchmark Suite [17].

Figure 1.5: Image sequence from Multi-View Stereo dataset by Strecha et al. [51].
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1.3 Methodological Approach

As mentioned before, a promising local stereo matching approach, especially in terms of mem-
ory consumption, is the PatchMatch Stereo algorithm by Bleyer et al. [8]. The algorithm is based
on a randomized correspondence algorithm for approximate nearest neighbor search by Barnes
et al. [4]. Concerning memory consumption, per pixel only the current best plane (disparity
value plus normal) and the current cost need to be stored.

Hence, as a first step we have reimplemented the PatchMatch Stereo algorithm and tested it
on the Kitti Vision benchmark as well as on high-resolution panoramic images. Additionally,
different cost functions were tested. E.g. Census Transform [63] has proven to be robust in
challenging outdoor lighting situations [42]. We further investigated potential speed-up options.
Bao et al. [3] use a self-similarity measurement to consider only the n most similar neighboring
pixels instead of the whole support window. Zinner et al. [67] introduced Sparse Census Trans-
form, an adaption of the original Census Transform approach in order to speed up computation
time.

As a major contribution of our work we moved from disparity space to scene space. Benefits
of working directly in scene space are that no rectification of the input images is required and
that depth and plane estimation are directly performed in scene space. Furthermore, we can
extend this approach to multiple views, since calculations are performed in a common coordinate
system. Plane-induced homographies can be used to transform a 2D pixel coordinate from one
camera view to another. In order to handle multiple views, the cost computation needs to be
extended accordingly. Hence, cost values between multiple views need to be fused. A simple
fusing approach is to accumulate over all two-view cost values. However, more sophisticated
ways to fuse the data are also investigated in this thesis. The quantitative performance of the
algorithm is evaluated on existing benchmarks for stereo vision.

1.4 Structure of the Work

After this brief introduction into the topic, in Chapter 2 we will give a detailed description of
the relevant geometric properties for stereo reconstruction. We will cover camera geometry
and epipolar geometry. Moreover, plane-induced homographies will be explained which are
used to map points between different image views. In Chapter 3 an overview of existing stereo
matching approaches is given with a special focus on the PatchMatch Stereo algorithm. The
methodological approach of this thesis is presented in Chapter 4, describing the implementation
of the two-view approach and its extension to scene space and multi-view stereo matching. An
extensive evaluation of the results is conducted in Chapter 5. Finally, the conclusion and an
outlook for future work are provided in Chapter 6.
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CHAPTER 2
Stereo Geometry

This chapter introduces the mathematical concepts used for our dense stereo matching approach.
First of all, in Section 2.1 we define the used camera model and its geometric principles. The
mapping from 3D scene space to 2D image space as well as the definition of depth will be
given. Subsequently, the epipolar geometry between two camera views will be described in
Section 2.2. Epipolar geometry defines the geometric relation between two camera views and
the thereby induced constraints in the correspondence search space. Finally, we introduce the
concept of plane-induced homographies in Section 2.3 in order to map image points from one
view to the other. The content of this chapter is mainly based on Hartley and Zisserman [19],
Chapters 6, 9 and 12.

2.1 Camera Geometry

In this section we will focus on finite projective cameras, which can be used to model most
commonly available still cameras. The simplest model of a finite camera is the pinhole camera
model. The camera is defined by a focal length f , a center of projection or camera center C and
a principal axis. No lenses are considered in this simple model. A graphical representation of
the basic pinhole camera model is depicted in Figure 2.1. The focal length specifies the distance
between the center of projection and the image plane onto which the 3D scene is projected. The
image plane is orthogonal to the principal axis. The intersection point between the principal axis
and the image plane is called principal point p. We refer to the local coordinate system of the
image plane as the image space. The principal point is not necessarily located at the coordinate
origin but might have a small offset from the origin.

Camera Parameters

In order to locate the camera in 3D world space we define the extrinsic camera parameters. They
are given by a translation of the camera center C from the world space origin and rotation of the
principal axis. The rotation can be expressed by a 3x3 rotation matrixR. The 3D coordinates of

7



Figure 2.1: Geometric representation of a pinhole camera with the camera center in the coordi-
nate origin and the principal axis pointing in the direction of the z axis. A 3D point X in world
space is projected onto the image plane at the 2D image coordinate x. Image taken from Hartley
and Zisserman [19].

the camera center represent the translation of the camera. Instead of the explicit representation
of the camera center one can also state the translation vector t = −RC.

We refer to the intrinsic parameters of a camera as the internal geometric setup of the cam-
era. This includes the focal length f and the 2D coordinates of the principal point in image space
(p = (px, py)

T ). In order to extend the basic pinhole model to CCD cameras, we additionally
need to consider the non-squared dimensions of pixels. Thus, we introduce a scale factor for
each axial direction (mx,my). Focal length and principal point are represented in pixel dimen-
sions as αx = fmx, αy = fmy and x0 = mxpx, y0 = mypy. For general finite projective
cameras a skew parameter s is further introduced. The intrinsic parameters of the camera can be
combined in a 3x3 camera calibration matrix K:

K =

αx s x0
0 αy y0
0 0 1

 . (2.1)

Extrinsic and intrinsic camera parameters can be combined into a 3x4 homogeneous camera
projection matrixP = K[R|t]. Note that the camera projection matrix does not take into account
nonlinear intrinsic camera parameters such as radial lens distortion. Hence, images need to be
corrected accordingly in order to resemble the result obtained under a linear projective camera
model. E.g. a straight line method [11] can be used to determine the distortion function. Lens
correction can be also performed jointly with rectification if rectified images are required for the
stereo matching process (see Section 2.2 for details on rectification).

2D to 3D Mapping

The camera projection matrix maps from 3D world coordinate space to the 2D image coordinate
space of the camera:

x = w(x, y, 1)T = PX. (2.2)
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The values x and y represent the 2D coordinates in image space. If the camera matrix is normal-
ized the value w is the depth of the point X. A camera is normalized if the determinant of the
first 3x3 submatrixM of P is greater than zero and the length of the third row of this submatrix
m3 is one. In the scope of this thesis we only deal with normalized camera matrices. In any case,
normalization can be achieved by multiplying the matrix by an appropriate factor. The depth is
defined as the distance of a point to the principal plane of the camera. The principal plane is
parallel to the image plane (normal to the principal axis), passing through the camera center.

In the same way as we project 3D points to the image plane we can back-project 2D image
points to rays in 3D. We can represent the back-projected line as the join of two points on the
ray: the camera center C and the image point x back-projected onto the plane at infinity. When
writing P = [M|p4], the camera center is given by C = −M−1p4. Furthermore, the point at
infinity can be written as D = ((M−1x)T , 0)T . The ray is then defined as the join of these two
points:

X(ω) = ω

(
M−1x

0

)
+

(
−M−1p4

1

)
=

(
M−1(ωx− p4)

1

)
. (2.3)

The original 3D position X can only be recovered if the depth ω of the 2D point is known.

2.2 Epipolar Geometry

The epipolar geometry describes the geometric relationship of two camera views. It depends on
the intrinsic parameters of the cameras and their relative pose to each other. Figure 2.2 depicts
the basic setup of the epipolar geometry. The two cameras are represented by their camera
centers C and C’ and the corresponding image planes. The connection between the camera
centers is called baseline. The epipole e of a camera is the intersection point between its image
plane and the baseline.

For an image point x of a camera image an epipolar plane can be constructed, passing
through the image point, the epipole and the camera center. Or in other words, the plane is
determined by the baseline and the ray from the camera center to the point X in 3D scene space,
passing through the image point x. The intersecting line of the image plane and the epipolar
plane is called epipolar line l. All epipolar lines pass through the epipole. A corresponding im-
age point x’ in the second camera view has to fall on its epipolar line l’ defined by the epipolar
plane. Hence, the search space for a corresponding point is constrained to a one dimensional
search along the epipolar line. The correct position on the line depends on the depth of the point
in 3D scene space.

An important factor for the obtaining of reliable stereo matches is the baseline length be-
tween two cameras. Due to the different viewing angles, wide baselines can lead to different
appearances of corresponding points in the two views. Furthermore, occlusions are more likely
to occur at wider baselines. On the other hand, a narrow baseline results in a less accurate depth
estimation, especially for distant regions. Hence, a good trade-off for the baseline length is
desirable, although not always possible due to technical limitations.
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Figure 2.2: Epipolar geometry setup of two cameras (represented by their image planes and
camera centers C and C’). The correspondence search for an image point x in the second camera
image can be constrained to a one dimensional search on the epipolar line l’.

Rectification

A common transformation used to simplify the search for correspondences is called rectifica-
tion. Rectification maps epipolar lines to horizontal scanlines [54]. This can be achieved by
virtually rotating and translating the two cameras in such a way that their viewing directions are
parallel to each other and perpendicular to the baseline. Furthermore, the cameras need to be
horizontally aligned and their focal lengths need to be the same (can be adjusted by rescaling the
image). Hence, they share a common image plane and their epipoles lie at infinity. This results
in horizontal epipolar lines, simplifying the correspondence search problem. The rectification
process is depicted in Figure 2.3.

For rectified images, the pixel distance between two corresponding points in the two images
is called disparity. When searching for a corresponding point in the right image we can start
at the pixel position of the left image point (disparity 0) and walk along the horizontal scanline
to the left until the image border or the maximal considered disparity value is reached. The
disparity range depends on the scene (closer objects result in higher disparity values) and the
distance between the two cameras (baseline). For an image point (x, y) in the left image and a
certain disparity value d the corresponding image point (x′, y′) in the right image can be obtained
with the following formula:

(x′, y′) = (x− d, y). (2.4)

Similarly, when moving from the right image to the left image the disparity value hast to be
added to the x coordinate. In Figure 2.4 we illustrate the setup of a rectified image pair and
a horizontal scanline. The house is horizontally displaced in the two image views, whereas
the vertical location does not change. Furthermore, the far away sun stays at the same image
location in both views. The bigger the disparity value, the closer the object is to the camera.
Respectively, farther away points have a smaller pixel distance.
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basline

x

x'

C

C'

l

l'

X

Figure 2.3: Image rectification of stereo image pair by projecting the two camera views onto
a common image plane. Original views are depicted in red and their rectified projections are
shown in blue. The baseline between the two cameras is parallel to the common image plane
and, hence, the epipoles lie at infinity.

Figure 2.4: Example of a rectified image pair with a horizontal epipolar scanline in blue.

Depth vs. Disparity

The depth of a point in the scene is inversely proportional to the disparity value. If the distance
between the cameras and the focal length f are known for a rectified image pair, the depth can
be computed with the following formula:

depth = f
baseline

disparity
. (2.5)
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The mapping between disparity and depth values is in general non-linear. This is due to the
fact that the step size of disparity values is uniform along the epipolar line in an image view.
However, this uniform mapping in image space does not lead to a uniform mapping in 3D space.
Depth resolution decreases for farther away points. This effect is depicted in Figure 2.5. The
uniform sampling along the epipolar line leads to a non-uniform sampling in the depth interval.

x

x'

C

C'

Figure 2.5: Stereo setup with a uniformly sampled epipolar line resulting in a non-uniformly
sampled depth interval. Image adapted from Tola et al. [56].

2.3 Plane-Induced Homographies

As stated in the previous section, the search for corresponding points within two stereo views
can be limited to a one-dimensional search along the epipolar line. For rectified images these
epipolar lines correspond to horizontal scanlines. Hence, correspondence search is performed
along these scanlines and the disparity is determined by the horizontal pixel distance between
two corresponding points (see Equation 2.4).

For a general setup (non-rectified images), epipolar lines do no longer correspond to hor-
izontal scanlines. Thus, the correspondence search along epipolar lines needs to be adapted
accordingly. Given an image point x and a depth estimate ω for one image view we want to de-
termine the location of the corresponding image point x’ in another view. This can be achieved
by determining the 3D location X according to Equation 2.3 and mapping the 3D point back
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to the desired 2D image view utilizing Equation 2.2. However, if a plane π is given in the 3D
space, we can directly compute the corresponding image point x’ for the desired view, without
the need of computing the 3D point. The 3D plane π and the camera parameters of the two
images induce a homography H. This homography allows a direct mapping between the two
image planes. The setup is depicted in Figure 2.6.

/

/

CC

x
π

x
x

H

π

Figure 2.6: Homography H from image point x to x’ in the other image plane, induced by a
plane π in scene space. Image taken from Hartley and Zisserman [19].

We consider only the case of one projection matrix having the form P = K[I|0]. This
means the camera is located at the origin of the coordinate system and has zero rotation. We
call this camera the reference camera. A general setup can be translated to this special form by
transforming the two cameras accordingly.

The plane in scene space is defined as π = (nT , d)T , with n being the unit normal vector
of the plane and d the distance of the plane to the coordinate origin (position of the reference
camera center). With the projection matrix of the second camera being of the formP ′ = K′[R|t],
the resulting homography is defined as:

Hπ = K′(R− tnT /d)K−1. (2.6)

Hence, we can use the following formula to get from a pixel position x in one view and a certain
plane π in scene space to the corresponding pixel position x’ in the second view:

x′ = Hπx. (2.7)

Multiple cameras

This setup can be extended to multiple cameras by computing the corresponding homographies
for all cameras (see Figure 2.7). E.g. the homography Hπ,1 for the plane π from reference
camera Cr to camera C1 can be computed from the relative rotation and translation of camera
C1 to camera Cr and the two calibration matrices K and K′ with Equation 2.6. In order to move
from a target camera to the reference camera the corresponding homography can be inverted
(e.g. H−1π,1). Hence, movement between two arbritarty cameras is possible. E.g. to move from
camera C3 to camera C2 the homographyH = Hπ,2H−1π,3 can be used.

13



X

Cr

C1

C2

C3x

x'

x''

x'''

Hπ,1

π

Hπ,2

Hπ,3

Figure 2.7: Multi-view setup with four cameras and homographies from reference camera Cr to
three other cameras.

2.4 Summary

In this chapter we have covered the basic geometric principles that are necessary for our stereo
matching approach. We have introduced the camera projection matrix P that defines the camera
location and orientation in 3D world space and the intrinsic camera parameters, such as focal
length and principal point offset. Furthermore, we have described the epipolar geometry of two
camera views. The epipolar geometry allows us to limit the search space for corresponding
points in image pairs. Finally, the concept of plane-induced homographies was introduced in
order to map a image point from one camera view to arbitrary other views, based on a plane
defined in 3D space.
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CHAPTER 3
State of the Art

In dense stereo matching, for each pixel in one view we want to find the corresponding pixel
location in another view. Based on the offset in the pixel locations (disparity), the depth value
can be computed. Most two-view stereo algorithms work with rectified images in order to sim-
plify the correspondence search to a one dimensional search on a horizontal scanline. In 2002,
Scharstein and Szeliski [45] reviewed existing dense two-frame stereo matching approaches and
introduced the Middleburry Stereo Vision Benchmark. Although new methods have been pre-
sented since then, the basic principles still apply for current approaches. Four main steps can be
recognized in stereo matching methods: matching cost computation, cost aggregation, disparity
computation and optimization, and disparity refinement. Furthermore, methods can be divided
into local and global stereo matching approaches.

The matching cost indicates the dissimilarity of two corresponding pixels in the image pair.
E.g. the absolute or squared difference of intensity or color values can be computed. For cost ag-
gregation, the matching cost is accumulated over a support window of neighboring pixels. Cost
aggregation is commonly used for local stereo matching approaches, but can also be applied for
global methods. In many cases, cost computation and aggregation are implicitly combined. This
is for example the case for normalized cross correlation or census transform [63]. For the dispar-
ity computation and optimization step, local methods select the pixel location with the minimum
overall cost (winner-take-all). Global methods include explicit smoothing assumptions, e.g. by
solving an energy minimization problem, with the energy function consisting of a data and a
smoothness term. The data term again describes the dissimilarity of pixels or image patches
and the smoothness term enforces smoothness in the disparity variation of neighboring pixels.
The final disparity refinement step can include sub-pixel refinement or cross-checking of left
and right disparity maps in order to detect occluded or inconsistent areas. For many approaches,
a clear classification into local or global methods is not possible. E.g. the semi-global match-
ing approach by Hirschmüller [21] combines concepts of both local and global stereo matching
approaches. A global optimization is approximated by pathwise optimization of a global cost
function.
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We chose a local stereo matching approach for our implementation since it seems to be bet-
ter scalable in terms of memory consumption and runtime for high-resolution images compared
to global approaches. Hence, in the following section we will focus on local stereo matching
approaches. In Section 3.2 we will compare different cost computation methods that are relevant
for urban outdoor scenes. Particularly interesting for our purpose is the PatchMatch Stereo algo-
rithm by Bleyer et al. [8], which will be described in detail in Section 3.3. Furthermore, we will
refer to related work in the field of panoramic and high resolution stereo matching in Section 3.4.
Finally, related multi-view stereo matching approaches will be reviewed in Section 3.5.

3.1 Local Stereo Matching

Stereo matching is based on the idea that corresponding points in two images are locally similar
in their appearance [32]. In local stereo matching approaches the disparity selection of a pixel
depends solely on the similarity of two support windows around potential corresponding pixels
in the two image views. Commonly, the support window is a square pixel patch centered around
the current pixel of interest. In the second view a support window is selected for the correspond-
ing pixel at a certain disparity value. The dissimilarity or cost between the two support windows
is computed based on a cost function, e.g. sum of squared intensity differences [45].

A traditional way to select the best disparity value is to compute a cost volume or disparity
space image (DSI) [28, 61]. It can be seen as a three dimensional data structure C(x, y, d) that
stores the cost for a point pair with the coordinates (x, y) in the left and (x−d, y) in the right rec-
tified image. Hence, we get a cost value for each considered disparity value d for an image point
(x, y) in the reference image. Using the winner-take-all strategy, the disparity value with the
minimum cost is selected for an image point. Global methods introduce an additional smooth-
ness cost and use global optimization to solve the disparity search problem, usually resulting in
high computational complexity [45].

One drawback of the computation of a cost volume is that only a discrete number of disparity
values can be handled. Disparity range and step size are limited by the available memory space.
Some methods therefore use sub-pixel refinement as a post-processing step in order to obtain
smooth and continuous disparity values (e.g. [44, 60]). A further possible post-processing step
is the cross-checking of the left-to-right and right-to-left disparity maps to detect inconsistent
areas that might occur due to occlusions [14]. Additionally, a filter can be applied in order to
reduce noise in the disparity image. Potential noise reduction filters are the bilateral filter [57]
and the median filter [45].

Besides discretized disparity values, another drawback of common local stereo matching
approaches is the bias towards fronto-parallel surfaces. If a constant disparity for a local support
window is assumed, reconstruction will be biased towards surfaces parallel to the image plane.
This, especially in combination with discrete disparity steps, can lead to staircase effects when
slanted surfaces are reconstructed (e.g. the ground plane of a scene). The problem is depicted in
Figure 3.1a. With discrete disparity values and fronto-parallel support windows the true shape
of the surface cannot be recovered correctly. Instead, the curved surface is represented by a flat
plane at disparity value 1. Figure 3.2b illustrates the resulting staircase effect on a corridor scene
when using discrete disparity values and no support for slanted surfaces.
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Slanted support windows can be used to overcome the mentioned problem (see Figure 3.1b).
Sub-pixel disparity changes can be recovered and curved regions are approximated more accu-
rately. However, handling slanted support windows and continuous disparity values requires a
bigger cost volume (including also plane parameters) and a reasonable selection of candidate
planes (e.g. [16, 65]). Bleyer et al. [8] presented an alternative approach to solve this problem
by utilizing a randomized approximate correspondence search. Their approach circumvents the
necessity of computing a full cost volume and allows the estimation of continuous disparity val-
ues as well as the support of slanted surfaces. Without the need of computing a cost volume,
the approach is suitable for high resolution images and big disparity ranges. The method will
be discussed in detail in Section 3.3. A reconstruction of the corridor scene utilizing the Patch-
Match Stereo approach is shown in Figure 3.2c. Note that the staircase effects at the floor and
walls disappear and also curved objects are reconstructed reasonably.

(a) (b)

Figure 3.1: Comparison of (a) fronto-parallel support windows at integer disparities and (b)
slanted support windows at continuous disparities. The red bars represent the support windows
and the green curve shows the true surface that we want to reconstructed (in 1D). Images taken
from Bleyer et al. [8].

(a) (b) (c)

Figure 3.2: Illustrating staircase effect for slanted surfaces: (a) Original left image and ground
truth disparity map of a scene with slanted ground floor and walls as well as rounded objects
(b) Reconstruction with integer disparity values and fronto-parallel bias (c) Reconstruction with
slanted support windows. Images taken from Bleyer et al. [8].
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3.2 Cost Computation

The matching cost denotes the dissimilarity of two pixels or image patches. For local stereo
matching approaches the cost is usually aggregated over a local support window. This leads to
implicit smoothing of the depth estimation, since a proposed depth or disparity value needs the
support of the majority of pixels in the image patch. Different methods exist to measure this cost
value. Classical similarity measures are commonly based on sum of absolute or squared differ-
ences (SAD or SSD) or normalized cross-correlation (NCC) [2, 45]. SAD and SSD aggregate
respectively absolute and squared intensity or color differences between two image patches. Due
to the normalization, the NCC score is more robust to exposure changes between images than
SSD or SAD. The NCC score indicates the correlation between two patches. Its value is within
the range [−1, 1], with bigger values meaning higher correlation. For the actual cost value one
can use for example the negative NCC score.

Nonparametric cost functions

Nonparametric techniques, such as rank transform and census transform form another group of
similarity measures [63]. Instead of relying on intensity values themselves they are based on
the relative ordering of intensities. Hence, the method is robust to changes in image gain and
bias (since no absolute intensity values are used) and performance near object boundaries can be
improved (due to intrinsic outlier handling). The rank transform computes the number of pix-
els in a patch whose intensity value is lower than the center intensity value. Census transform
additionally includes location information by computing a signature string for an image patch
with value 0 if a pixel’s intensity is lower than the center pixel intensity and 1 otherwise. The
Hamming distance between the signature strings of two image patches indicates their dissimi-
larity. Stein [50] extended this approach by a third state for similar intensity values. Therefore,
an additional parameter ε is introduced. If the intensity difference between two pixel intensities
is less than ε, these pixels are considered as similar. Hence, the following formula is used to
compute the digit for pixel p′ on a signature string with center pixel p:

ξ(p, p′) =


0 p− p′ > ε

1 |p− p′| ≤ ε
2 p′ − p > ε

(3.1)

Another adaption of the original census transform is the sparse census transform [67], where
only every second row and column is processed. This allows a faster computation and thus
larger window sizes. The authors claim that the accuracy is nearly as good as with the original
results. Fife and Archibald [13] confirmed these results and experimented with additional sparse
patterns and variants.

Adaptive support window

Classical similarity measures for support windows have problems at depth discontinuities, since
objects with different disparity values move by a different amount of pixels in the stereo image
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pair. To overcome this problem, Yoon and Kweon introduced the weighted support window [62].
The weight of each pixel in the support window is based on its photometric and geometric
distance to the center pixel. The underlying assumption is that pixels with a similar color or
intensity value are more likely to belong to the same object than pixels with different values. If
pixels belong to the same object, there is a higher chance that their disparity values are the same
(or they lie on the same plane in case of slanted support windows). Hence, these pixels get a
higher weight in order to have a higher influence on the result.

The adaptive weight function proposed by Yoon and Kweon is similar to bilateral filter-
ing [57]. An extensive study on different adaptive support weight approaches for local stereo
matching was performed by Hosni et al. [24]. They evaluated the quantitative and runtime per-
formance of different approaches on a matching algorithm with fronto-parallel windows and on
PatchMatch Stereo (introduced in Section 3.3), which uses slanted support windows. For the
PatchMatch Stereo approach, where no full cost volume computation is required, the bilateral
weights performed best in their study.

In the PatchMatch Stereo approach a weight function similar to the original approach pro-
posed by Yoon and Kweon was used. However, this weight function is solely dependent on RGB
color information, since additional position information did not show a significant improvement.
The following weight function was used:

w(p, q) = e
− ‖Ip−Iq‖

γ . (3.2)

The parameter γ is defined by the user and ‖Ip − Iq‖ is the L1-distance of the RGB color
values of the pixels p and q. The authors suggested a value of 10 for the parameter γ with the
RGB values being in the range of [0, 255] per color component. Furthermore, the dissimilarity
function used by Bleyer et al. combines truncated absolute differences of color and gradient
information [9, 10, 43]. The pixel dissimilarity between two pixels q and q′ is computed as
follows:

ρ(q, q′) = (1− α) ·min(‖Iq − Iq′‖, τcol) + α ·min(‖∇Iq −∇Iq′‖, τgrad). (3.3)

The user-defined parameter α denotes the respective weighting of color and gradient dissimi-
larity. The parameters τcol and τgrad are used to truncate the dissimilarity values in order to
increase robustness to outliers. The components of the two dimensional gradient vectors ∇Iq
and ∇Iq′ are in the range of [0, 255].

A drawback of adaptive support windows is that intensity or color edges do not necessarily
correspond with disparity edges. This is for example the case for highly textured surfaces.
Hence, potentially valid information from differently textured areas of the same object get a low
weighting. Nevertheless, on average the use of adaptive support windows seems to significantly
improve performance at disparity discontinuities.

3.3 PatchMatch Stereo

In 2011, Bleyer et al. [8] introduced PatchMatch Stereo, a local stereo matching approach based
on approximate nearest neighbor search. Two mayor benefits of this approach are the support
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of slanted surfaces and the direct estimation of floating point disparity values. Furthermore,
instead of computing a memory-demanding cost volume for the full disparity range, only a
limited number of 3D planes is tested at each pixel position and only the current best plane
and cost is stored. The randomized disparity estimation is based on an approximate nearest
neighbor search where good guesses are propagated to neighbors. The mentioned advantages of
the algorithm are also beneficial for our problems. The disparity d for a point p can be computed
from a 3D plane π with the following formula:

d(p, π) = aπpx + bπpy + cπ. (3.4)

The variables aπ, bπ and cπ represent the three plane parameters of π and the parameters px
and py are the x and y coordinates of the image point p. In the following subsections we will
explain the basic idea of the randomized correspondence search and describe the PatchMatch
Stereo algorithm in detail. Furthermore, some adaptions of the PatchMatch Stereo algorithm
will be reviewed.

Randomized Correspondence Search

The search for the best approximating plane is based on the approximate nearest neighbor search
algorithm PatchMatch by Barnes et al. [4]. The idea was originally introduced for interactive
image editing in order to quickly find corresponding patches in an image. The search of near-
est neighbors for an entire image traditionally requires a high computational cost, inhibiting a
real-time execution. The authors present an approximate nearest neighbor search based on the
assumption that there exist large coherent areas in the image. If one image patch finds a good
match, it can propagate its findings to neighboring patches. The three basic phases of the al-
gorithm are depicted in Figure 3.3. First, all patches are initialized with random assignments.
The subsequent iteration phase consists of a propagation setp and a random search step. In the
propagation step patches propagate their matches to local neighbors, if those matches improve
the matching cost of the neighbors. In the random search step other random candidates are tested
within a search radius around the current best match.

Algorithm

Bleyer et al. adapted the PatchMatch algorithm for the correspondence search between stereo
image pairs. In order to support slanted surfaces, the randomized search is used to find a best
approximating 3D plane for each pixel location. A cost function needs to be defined in order
to quantitatively compare different plane assumptions. This cost function computes the dissim-
ilarity of corresponding patches. Bleyer et al. used the following cost function, accounting for
slanted support windows:

m(p, πp) =
∑
q∈Wp

w(p, q) · ρ(q, q′πp). (3.5)

The cost of pixel p for plane πp is determined by aggregating over all pixels q of the support win-
dow Wp. The adaptive weight w(p, q) is based on the color similarity of the neighboring pixel
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Figure 3.3: PatchMatch: Randomized nearest neighbor search using (a) random initialization,
(b) propagation of good matches and (c) randomized search for better matches within neighbor-
hood. Image taken from Barnes et al. [4].

q to the center pixel p (see Equation 3.2). The function ρ(q, q′πp) computes the dissimilarity of
a patch around pixel q and its corresponding patch around pixel q′πp in the second image. It is
based on color and gradient information and was originally introduced by Rhemann et al. [43].
The disparity at a certain pixel position for the current plane can be computed utilizing Equa-
tion 3.4. Based on this disparity value the pixel location in the second view can be computed:

q′πp = q ∓ d(q, πp). (3.6)

A negative sign is used when mapping from left to right image view and a positive sign is used
when mapping from right to left.

In order to estimate the 3D plane and consequently the disparity value at each pixel position
the following steps are executed:

• Random Initialization: Each pixel is initialized with a random 3D plane. In order to
evenly sample the space a random unit vector n for the plane normal and a disparity value
d within the defined disparity range are selected as plane parameters.

• Iteration: The following four steps are iteratively performed. According to the authors,
three iterations are sufficient.

– Spatial Propagation: The costm(p, πp) of a pixel p for the current plane πp is com-
pared with the cost m(p, πq) for a neighboring plane πq. If the neighboring plane
improves the cost, the plane πp is replaced by πq. In even iterations the left and
upper neighbors are considered and in odd iterations the right and lower neighbors
are checked. An illustration of the spatial propagation step is shown in Figure 3.4.
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Figure 3.4: Spatially propagating planes from neighboring pixels to the current pixel
(red): in even iterations propagating good guesses from left and top neighbors and
in odd iterations propagating from right and bottom neighbors.

– View Propagation: If plane estimation is performed for both image views, good
guesses from one view can be propagated to the other. Corresponding image points
should have a similar plane in both image views. Hence, if the matching point of
a pixel p′ in the second view is the current pixel p, the cost m(p, πp′) is compared
with the current cost m(p, πp). Again the plane is replaced by the new plane πp′ if it
yields a lower cost. The view propagation step is depicted in Figure 3.5.

Figure 3.5: Propagating planes from the second image view for all pixels that have
the current pixel (red) as matching point.

– Temporal Propagation: If stereo video sequences are available, planes can also
be propagated over time. Again, the cost of the current plane is compared with the
matching cost for the plane of the pixel in the previous video frame.

– Plane Refinement: This step is comparable to the search step in the original Patch-
Match approach. The current best plane πp for a pixel p is iteratively refined by
randomly selecting a different plane within an iteratively decreasing search space,
limiting the maximum change in disparity and normal direction.

• Post Processing: In order to detect inconsistent (potentially occluded) areas in the two
estimated disparity maps (for the left and right view), left/right cross checking of disparity
values is performed. Hence, for a pixel p and an estimated disparity value d in the left
view the corresponding pixel location p′ in the right view is computed using Equation 3.6.
The disparity value in the second view at location p′ is then compared with the disparity
value of p in the first view. If their absolute difference is bigger than a given threshold
the two pixel locations are labeled as inconsistent and their estimated disparity values are
discarded. These inconsistent pixels are later filled by searching for the closest consistent
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left and right neighboring planes and assigning the lower of the two disparity values to
the current pixel. Assigning the lower disparity value is based on the assumption that
occlusions occur in the background. Additionally a weighted median filter is applied on
the filled-in disparity values in order to remove horizontal streak artifacts.

The approach performed well at the Middleburry Stereo Vision Benchmark [45], achieving
rank 2 for the error threshold 0.5 (sub-pixel performance test) at its initial introduction in 2011.
Additionally, the algorithm is suitable for high resolution images and high disparity ranges due
to its low memory requirements (no need to store an entire cost volume in memory) and linear
scale in computation time with respect to the number of pixels (in contrast to most global stereo
matching approaches). However, the authors reported quantitative results only for low-resolution
and highly textured indoor scenes, captured under laboratory conditions. No results were shown
for outdoor scenes, where lighting conditions are usually less stable than indoors.

Adaptions

Various adaptions of the original PatchMatch Stereo approach have been published in recent
years. Besse et al. [5] combined the method with a global particle belief propagation approach
in order to model explicit smoothing. Another global stereo matching approach was proposed
by Heise et al. [20]. In their approach the PatchMatch algorithm was combined with an explicit
variational smoothing method. Both approaches achieved improved results in the Middleburry
Stereovision Benchmark with the drawback of higher computational complexity. Heise et al.
additionally formulated the plane estimation in scene space, using plane-induced homographies
as described in Section 2.3. However, their implementation was based on rectified images,
working in disparity space only. Hence, in the scope of their paper only results from rectified
image pairs were shown.

A recent approach by Bao et al. [3] uses the PatchMatch idea of approximate nearest neigh-
bor search for optical flow estimation. Instead of considering all pixels of a support window for
matching, only the n most similar pixels to the window center pixel are used. This significantly
reduces computation time for the cost computation. Additionally, the adaptive support weights
of the used neighbors can be precomputed. PatchMatch is used as approximate search for the se-
lection of the n most similar pixels as well as for the flow estimation. Another contribution of the
paper is the presentation of a hierarchical matching strategy for further reduce of computation
cost.

3.4 Panoramic and High-Resolution Images

Different acquisition methods, camera models and geometric relations for panoramic stereo im-
ages have been presented [27, 29, 37]. In general the assumption of straight epipolar lines no
longer holds for panoramic images. E.g. for a single-center cylindrical panoramic camera the
epipolar lines are sine curves [37]. Huang et al. [27] generalized single-center, multi-perspective
and concentric panoramic images into a unified model of polycentric panoramas. They further
derived epipolar curve equations for this generalized model. However, only little work has been
done on the actual matching of panoramic stereo pairs (e.g. [34, 47, 52]).
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Kang and Szeliski [34] presented an omni-directional stereo reconstruction approach from
single-center cylindrical panoramic images. Different reconstruction approaches were com-
pared. The first two approaches use only sparse feature points and do not limit the search
space by epipolar constraints. In the third approach dense stereo matching was performed, using
epipolar geometry to constraint the search space. A denser 3D mesh was recovered from the
later method with the drawback of higher computational complexity. The main benefit of the
use of panoramic images is the resulting wide field of view for depth estimation.

Concerning high resolution images, the traditional approach of evaluating a full cost vol-
ume reaches its limits w.r.t memory consumption, especially when considering slanted surfaces
and continuous disparity values. Some recent approaches start from reliable, sparse keypoint
matches and aim to propagate information to remaining areas [18, 48]. Another possible ap-
proach is to divide the image into smaller overlapping tiles and process them independently [22].
Tola et al. [56] presented a multi-view stereo reconstruction approach for high-resolution image
sets. This is achieved by the use of DAISY descriptors [55] for efficient dense stereo matching.
Furthermore, the PatchMatch Stereo approach is feasible for high resolution images, since the
processing of a full cost volume is avoided.

3.5 Multi-View Stereo

Depth estimation from multiple views as extension to two-view stereo estimation can be divided
into two steps. First, a single depth map can be generated from information obtained from
multiple views [39]. As a subsequent step, multiple depth maps can be fused into a combined
3D representation of the scene [35, 53]. Szeliski reviewed different multi-view stereo matching
approaches [54, Sec. 11.6].

In order to obtain a single depth map of a reference view, cost values from multiple corre-
sponding stereo pairs of the reference view need to be fused. E.g. Okutomi and Kandade [39]
accumulated the SSD costs of multiple views to a combined cost, the sum of sum of squared
distances (SSSD). However, views where the support window is fully or partially occluded con-
tribute to the accumulated cost and potentially impair results.

Kang et al. [33] presented various approaches for robust occlusion handling. Local tech-
niques include temporal selection and adaptive window size. Instead of combining all available
costs, temporal selection only considers a sub-selection of costs. The authors propose two dif-
ferent selection approaches. The first approach is to pick the best 50% of all available views.
Alternatively, one can select either all predecessor or all successor frames to the reference view.
Occlusion often occurs only in one moving direction, i.e. motion is smooth at high frame-rate.
For example, an occluding foreground object moves from the right to the left when the images
are ordered from left to right (see Figure 3.6). The adaptive window size approach aims to deal
with untextured areas. The algorithm starts with a small window size and gradually increases
the size in later iterations. If a depth value is already considered as reliable in earlier iterations
this pixel position is not processed in later iterations. If the local variance of the cost function
around a depth value is too low, the depth is considered as unreliable. Hence, these unreliable
pixels will be processed again in later iterations. As an alternative solution, the authors propose
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to use global techniques by introducing an additional smoothness term and optimizing a global
energy function.

Figure 3.6: The occluding tree is moving from right to left when camera views are ordered from
left to right. Hence, partial occlusions often occur only in one direction.

Shen [46] proposed a multiple view 3D reconstruction approach that internally uses Patch-
Match Stereo. For each image a corresponding neighboring image is selected based on its view-
ing angle and baseline. PatchMatch Stereo in scene space is performed on this stereo pair.
Hence, homographies are used to map 2D points between the unrectified image views. The
method further differs from the original approach by using NCC for cost computation and skip-
ping the view propagation step. In contrast to our approach, only one corresponding image is
used for the initial depth map creation. In a subsequent step depth maps from multiple views are
fused to a combined 3D representation of the scene, including occlusion handling for inconsis-
tent matches.

Another multi-view approach that incorporates the PatchMatch idea was presented by Zheng
et al. [66]. PatchMatch propagation is used for depth estimation from a subset of source image
views. The selection of appropriate views for each pixel is performed jointly with the depth
estimation by solving a probabilistic graphical model. Instead of performing normal estimation,
only a single fixed plane is used for depth estimation. The dominant orientation of the scene is
estimated in a pre-processing step. Without normal estimation, processing time can be reduced
at the cost of reduced accuracy and biased surface reconstruction towards the estimated dominant
orientation.

3.6 Summary

In this chapter we have given an overview of the state-of-the-art work related to our approach.
We have briefly reviewed local stereo matching approaches and different cost computation func-
tions. The PatchMatch Stereo approach by Bleyer et al. [8] was described in detail and some
adaptions to this approach were stated. Furthermore, we reviewed methods for panoramic as
well as high-resolution stereo image pairs. Another major topic of this thesis is multi-view
stereo matching. Hence, different approaches in this field related to our work were reviewed in
the last section of this chapter.
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CHAPTER 4
Multi-View Stereo Approach

In this chapter we present our implemented multi-view stereo matching algorithm. We start
with the implementation of the two-view PatchMatch Stereo algorithm by Bleyer et al. [8].
Subsequently, we transform the approach to scene space and extend it to multi-view.

The PatchMatch Stereo algorithm estimates a disparity value and surface normal at each
pixel position from a rectified stereo image pair as input data. Implementation details are given
in Section 4.1. We furthermore extend the approach with three alternative cost functions, which
are presented in Section 4.2. In Section 4.3 the transformation from disparity space to scene
space is explained. This step allows us to directly process non-rectified images and estimate
depth values instead of disparity values. Operating directly in 3D scene space allows the fusion
of multiple input images at once. Hence, we can process multiple views in a single combined
setup. This multi-view approach is presented in detail in Section 4.4.

4.1 Two-View Stereo Matching

Our two-view stereo matching approach for rectified image pairs is a re-implementation of the
PatchMatch Stereo algorithm by Bleyer et al. [8]. The basic concept of this approach is explained
in Section 3.3. In this section we will focus on the technical details of our implementation.

The main idea of the approach is to utilize a randomized approximate correspondence search
in order to estimate a 3D plane at each pixel position. The plane can be represented in the Hessian
normal form by a normal vector n and the distance d to the coordinate origin: π = [nTd]T . For
a point on the plane the following equation must hold: πT [x y z 1]T = 0. Hence, the disparity
value z at a pixel position (x, y) can be computed from the plane parameters:

z =
−nxx− nyy − d

nz
(4.1)

Accordingly, the parameter d of the plane can be computed from a point (x, y, z) and a normal
n with the following formula: d = −nxx− nyy − nzz.
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The estimation of a whole 3D plane instead of only a disparity value at each pixel position
allows the support of slanted surfaces. Respectively, pixels within a support window do not
need to all have the same disparity. Only in case of a fronto-parallel plane (n = [0, 0, 1]T ) the
disparity value is the same for all pixels. A normal that is not orthogonal to the image view leads
to a slanted support window in the second image view and, thus, allows the reconstruction of
slanted surfaces.

The PatchMatch Stereo algorithm consists of three basic steps: random initialization, itera-
tive propagation and refinement, and post-processing. Following, the implementation details of
these steps are explained.

Random Initialization: In the initialization step a random disparity and unit normal vector
is selected for each pixel. The disparity value is selected from a uniform distribution on the
defined disparity range [0,maxDisparity]. For the random selection of the unit normal we
followed the approach of Marsaglia [36] in order to pick a uniformly sampled random point
from the surface of a unit sphere. Two independent points x1, x2 are picked from uniform
distributions on (−1, 1) until S = x21 + x22 < 1. The unit vector is then formulated in the
following way:

n = (2x1
√

1− S, 2x2
√

1− S, 1− 2S)T (4.2)

In order to limit the normal vector to a hemisphere the dot product between the random unit
vector and the view vector is computed. If the result is positive the vector is inverted. In case of
rectified images we set the viewing vector to [0, 0, 1]T . For the multi-view setup in Section 4.3
the viewing ray is defined by the location of the 2D point in the image plane and the camera
center.

Iterative Propagation and Refinement: As stated in Section 3.3 the iteration step consists
of spatial propagation, view propagation, temporal propagation and plane refinement. The tem-
poral propagation step was omitted in our implementation since we are not considering temporal
image sequences.

In the spatial propagation step a plane from a neighboring pixel is propagated to the current
pixel if the cost value is improved. Bleyer et al. consider the left and upper neighbors in even
iterations (top-left to bottom-right propagation) and the right and lower neighbors in odd itera-
tions (bottom-right to top-left propagation). We altered this propagation scheme after the second
iteration in order to also allow propagation from top-right to bottom-left and reverse.

In order to speed up computation on multiple cores we tested an alternative propagation
scheme, which was proposed by Zheng et al. [66]. Instead of propagating from vertical and hor-
izontal neighbors simultaneously, we use four alternating propagation directions: right, down,
left, up. This allows us to process separate rows (respectively columns) in parallel on multiple
cores. The propagation impact is limited to 1D in this setup. Hence, more iterations might be
necessary. Quantitative evaluations indicated slightly worse results on our datasets, with the
benefit of faster computation time and potential parallelization on GPU.

In the view propagation step we propagate good plane guesses between image views, based
on the assumption that corresponding points in the two views have the same surface plane.
Hence, for the currently processed view, we search on the epipolar line (= horizontal scanline
for rectified images) of the second view for points that have the current pixel as matching point
(within 1 pixel tolerance). For each matching point its plane is used for cost computation for
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the current pixel. If the cost of the current pixel is improved by one of the planes, the plane
information gets updated accordingly.

In the plane refinement step we aim to further decrease the matching cost by testing ran-
dom plane candidates within an iteratively decreasing search window around the current best
plane. Two parameters are used to define the search window: ∆max

z0 for the disparity range and
∆max
n for the range of the normal vector components. Hence, a random value within the inter-

val [-∆max
z0 ,∆max

z0 ] is added to the disparity value of the current plane and three random values
between [-∆max

n ,∆max
n ] are added to each of the three components of the normal vector respec-

tively. The new normal vector is normalized and transformed to the hemisphere as done in the
initialization step. Bleyer et al. [8] suggested to start with ∆max

z0 = maxDisp/2 and ∆max
n = 1

and divide the values by 2 after each iteration. The iterations stop when ∆max
z0 < 0.1. However,

we prefer to divide the limit values by a factor of 4 after each iterations since it requires less
iteration steps without loss of accuracy on our test set. Our test images cover a larger disparity
range than the Middleburry Stereo Vision Benchmark [45], in the original PatchMatch Stereo
paper.

Post-processing: A left/right consistency check is performed for each pixel in order to
discard occluded or mismatched pixels. For a pixel p in the left view the matching point p′ in
the right view is computed. If the difference between the two disparities of p and p′ is bigger
than a given threshold (1 in our experiments), the pixel p is marked as inconsistent. We further
added a normal check, suggested by Heise et al. [20]. Pixels are also marked as inconsistent
if the deviation between the corresponding normals is more than 5◦. If a dense disparity map
is desired, the invalidated pixel positions can be filled in a post-processing step. As Bleyer et
al. [8] suggested we search for the closest consistent pixel to the left and right and propagate the
planes of the two pixels. The smaller of the two disparity values is then used for filling, since
occlusions occur in the background. In order to get rid of horizontal streaks, that can occur due
to this filling strategy, a weighted median filter is applied on the filled-in disparities [43].

The presented approach is capable of processing color images as well as gray-scale images.
Processing of color images is computationally more expensive since three color channels need
to be processed. It is unclear whether and how much color information actually improves the
matching accuracy compared to single-channel gray-scale information [6, 7, 23, 38]. A reason
for the moderate performance improvement with color images compared to gray-scale images is
that the three color channels are strongly correlated to each other. Due to these observations, we
performed tests mainly on gray-scale images.

Panoramic Images

Among others, we tested our two-view stereo implementation on high-resolution panoramic
images obtained from a 360◦ panorama camera with an underlying cylindrical projection. For
the underlying sensor model of the camera we refer to Amiri Parian and Gruen [40]. The non-
linear epipolar geometry induced by the cylindrical projection results in generally non-straight
epipolar curves. However, we directly work on provided rectified image pairs. Hence, the
presented two-view stereo matching approach can be directly applied on the panoramic images.
The low memory requirements of the PatchMatch Stereo algorithm allowed us to process the
high-resolution images on our computer. Results are discussed in Section 5.1.
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4.2 Cost Functions

In this Section we will shortly describe the implemented cost functions that were used in our
evaluation. For a review of different cost computation methods see Section 3.2.

PM Cost: We implemented the cost function used by Bleyer et al. [8] as described in Sec-
tion 3.2. The computation is based on truncated absolute color and gradient differences (see
Equation 3.3). For color images we compute the L1 norm of a three dimensional RGB vector
and divide the result by 3, while for gray-scale images the absolute difference of the gray-scale
values is used. The horizontal and vertical gradient components are computed with a 3x3 Sobel
operator [12,49] and the L1 norm divided by 2 is used for the difference computation. Addition-
ally, the adaptive support weight idea is used in order to deal with depth discontinuities within
the support window (Equation 3.2).

PM Self Similarity: Bao et al. [3] presented a self-similarity approach for faster cost com-
putation. Instead of evaluating all pixels of a support window only the n most similar pixels to
the center pixel are considered. We use the weight w of the adaptive support window (Equa-
tion 3.2) as similarity measure. Hence, this value is already precomputed, which speeds up the
computation of the cost value. The PatchMatch idea for randomized correspondence search [4]
is used for an efficient computation of the n most similar pixels in a window (the self-similarity
vector). The assumption behind this idea is that neighboring pixels are similar in appearance
and, hence, their self-similarity vectors share a large set of common points. Propagating those
common points significantly reduces computation time compared to a brute-force selection of
n similar points for each pixel individually. The authors suggest n = 50 as a good trade-off
between speed and accuracy. A drawback of the method is that storing the similarity locations
and weights increases memory consumption.

Census Transform: We implemented the extended Census Transform approach of Stein [50].
Stein introduced an additional parameter ε in order to categorize the intensity value of a support
pixel into equal to (within ε threshold), lesser than or greater than the center pixel (see Equa-
tion 3.1). Our default value for the intensity threshold is ε = 2.5 (for intensity values in the
range of [0, 255]). A signature string is created for each support window, consisting of one of
the three class labels per pixel position. The cost of a potential match is defined as the Hamming
distance between the signature strings of the left and right support window.

Sparse Census Transform: Zinner et al. [67] introduced an adaption of the original Census
Transform in order to speed up computation time. Instead of considering all pixels of the support
window, only every second horizontal and vertical value is used. We combined this approach
with our extended Census Transform implementation.

4.3 Scene Space PatchMatch Stereo

In this section we explain the necessary steps to move the PatchMatch Stereo approach from
disparity space to scene space. Hence, instead of working with disparity values and horizontal
epipolar scanlines, we operate directly in the 3D scene space, estimating 3D points and depth
values. Furthermore, planes are defined in scene space instead of the non-uniform disparity
space. This transition to scene space allows us to process non-rectified images. However, the
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camera projection matrix P of each camera is required. This projection matrix was introduced
in Section 2.1. It combines intrinsic and extrinsic camera parameters into a single 3x4 matrix
of the form P = K[R|t], with K representing the intrinsic camera calibration matrix and (R, t)
representing the extrinsic rotation and translation of the camera in scene space.

The basic algorithm works similar to the PatchMatch Stereo approach in disparity space. Per
pixel a plane π = (nT , d)T in scene space is estimated. In the initialization step a random depth
value from the defined depth range and a random unit normal are picked. Special care has to be
taken when selecting a random depth value. We do not want it to be uniformly distribution on
the depth range, since this would lead to a non-uniform distribution along the epipolar line in the
second image view (see Figure 2.5). This problem was described in Section 2.2 when explaining
epipolar geometry and the relation between depth and disparity. To overcome this problem, we
select a random disparity value instead and convert it to a depth value according to Equation 2.5.
To ensure that the unit normal is not facing backwards, we invert the normal if the dot product
between the normal and the viewing vector is positive. The viewing ray is passing through the
camera center and the current pixel projected on the image plane.

In order to compute the parameter d of the plane π from the randomly assigned depth value
ω, we compute the 3D point X in scene space from the 2D image point x and the assigned depth
value ω, utilizing Equation 2.3. Subsequently, the distance d of the plane to the coordinate origin
(which is the camera center of the reference camera) can be computed from the definition of a
plane in Hessian normal form:

d = −n · X. (4.3)

In Section 2.3 the concept of plane-induced homographies was introduced. A homography
Hπ induced by a plane π in scene space defines a mapping from one image plane to another.
Hence, we can map an image point x to point x′ in another camera view with the formula
x′ = Hπx. The homography Hπ is defined by the two camera projection matrices P and P ′
and the scene plane π (see Equation 2.6). By utilizing this mapping we are no longer restricted
to rectified images. We transform the reference camera to the coordinate origin ([0, 0, 0]) with
zero rotation (R = I) in order to simplify the homography computation. The second camera is
transformed accordingly (see Section 2.3 for details).

In the plane propagation step we propagate the plane parameters n and d to neighboring
pixels. In order to compute the depth value ω at the new position according to the propagated
plane, we intersect the viewing ray (through camera center C and position x on the image plane)
with the 3D plane. Therefore we substitute the point X in the Hessian normal form definition of
the plane (Equation 4.3) by the viewing ray (Equation 2.3) and solve for ω:

ω =
n(M−1p4)

T − d
n(M−1x)T

(4.4)

The major difference of processing in scene space compared to disparity space is the ne-
cessity of plane induced homographies in order to determine corresponding pixel locations in
the second view. This requires the declaration of camera projection matrices for both views.
However, no rectification is necessary and planes are estimated in 3D scene space instead of
disparity space. Hence, a plane in the scene can be correctly represented. In disparity space,
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an estimated plane would represent a curved surface in the 3D scene due to the non-uniform
mapping of disparity values.

4.4 Multi-View PatchMatch Stereo

In the two-view stereo case we have assumed a left and a right camera view and estimated the
depth value at each pixel of one view by finding the best match (lowest cost value) along the
epipolar line in the second view. In scene space we can easily extend this idea to multiple views.
We again start from one camera, the reference camera, and aim to estimate the depth value by
finding the matching point with the lowest cost. This time, however, we have n other camera
views and hence n matching points (one per view). Thus, for a plane candidate π we compute n
cost values from the corresponding n matching points in the other camera views. These n cost
values further need to be combined to yield a total cost, e.g. by summing over all partial costs.
As a result we obtain a depth map and corresponding plane normals for the selected reference
view.

By introducing multiple cameras we aim to be more robust against occlusions, mismatches
and noise. E.g. an object in the background might be occluded by some foreground objects in
certain views. If multiple views are considered, information from other views can be used to
correctly reconstruct the partly occluded area. An example of partly occluded areas is depicted
in Figure 4.1. When matching the center view with the left view, parts on the right side of the
fountain (white circle) are occluded. If the center view is additionally matched with the right
view, these occlusions can be resolved. The same accounts for partly occluded or non-visible
areas on the wall and the floor. Furthermore, if we get consistent depth estimations over multiple
views we can reduce noise by averaging over the depth and normal estimates.

Figure 4.1: Areas circled in white are occluded in either the left or the right camera view. Images
taken from the fountain-P11 dataset [51].

In order to transfer image coordinates from one camera view to another we use plane-induced
homographies, as described in the previous section. An exemplary setup with one reference view
and three other cameras is depicted in Figure 2.7.

View Selection

In order to limit the number of images for matching per reference view we pre-select a subset of
image views. A view is excluded if the angle between its principal axis and the principal axis of
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the reference view is smaller than 3◦ or larger than 45◦. This is based on the assumptions that
image pairs with a smaller viewing angle are too close to each other for reliable depth estimation
and pairs with a bigger viewing angle are not matchable any more (see for example Tola et
al. [56]). For larger datasets one could further take into consideration the distance between two
cameras.

In general, we only want to consider image views with a large visual overlap to the current
reference view. View selection allows for faster computation, since the number of images that
need to be processed is reduced. Furthermore, wrong matches from far away view points do not
contribute to the depth estimation.

Cost Combination

In the multi-view scenario we match a pixel in the reference view with pixel locations in n other
image views, where n is the number of remaining views after view selection. Hence, for each
pixel and 3D plane in the reference view n cost values are computed. For each image pair the
cost value is computed as described in Section 4.2 for the two view case. The n cost values need
to be combined in order to get a single cost estimate for a 3D plane π.

A possible approach is to accumulate over all n cost values, as proposed by Okutomi and
Kandade [39]. However, if objects are occluded in some of the image views, these views will
return a high cost value for the correct plane. In order to robustly handle these occlusions we
follow the suggestions of Kang et al. [33]. They propose to consider only the best 50% of all n
image matches for the combined cost computation. Instead of a fixed selection of 50% of the
considered views, we introduce a parameter K in our implementation that specifies the number
of single cost values considered (in ascending order) for the combined cost computation:

msrt = sort↑(m1 . . .mN ) , mbest−K =
K∑
i=1

msrt,i . (4.5)

We refer to this cost combination method as best-K. The choice of the parameter K depends on
different factors. A higher value is desirable for more robust results. However, if a 3D point is
only visible in a few views, high cost values from mismatches might negatively affect the result.

Therefore, we introduce a further alternative cost combination method which is independent
of the number of non-occluded views. Again, a cost value is computed for each image view and
the values are sorted in ascending order. The lowest cost values ml of the n matches is used to
compute a truncation threshold tl = kml for the remaining views. In our experiments k = 1.8
performed best. We accumulate over all n truncated cost values with the following equation:

mtrunc =

n∑
i=1

min(mi, tl) (4.6)

The combined multi-view cost mtrunc is computed from the n single view cost values mi, trun-
cated by the threshold tl. Hence, all good matches contribute to the results and mismatches do
not negatively influence the result. We refer to this variant as trunc(ated).
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Depth Fusion

We first compute a depth map for each view by consecutively treating all n views as reference
views. Then depth fusion is performed on these n depth maps in order to eliminate wrong
depth estimations and reduce noise by averaging over consistent depth estimates. Furthermore,
consistent depth values can be propagated to other views where depth values are missing.

Our fusion approach can be seen as an extension of the post-processing step in the original
Patchmatch Stereo algorithm, consisting of left/right consistency checking and filling. Addition-
ally, we introduce an update step, where consistent depth estimates from other views are propa-
gated to the current view. Hence, we perform depth map fusion in three main steps: consistency
checking, update and filling. Intermediate results before and after these steps are depicted in
Figure 4.2 for image 7 of the fountain-P11 dataset [51]. A similar multi-view depth map fu-
sion approach was proposed by Pollefeys et al. [41]. However, we do not compute a confidence
measure for a single depth estimate since that would require the full cost volume over different
disparities.

• Consistency Check: Mismatches mainly occur in textureless regions or due to occlusions
(including also non-overlapping regions due to different camera viewpoints). In order to
eliminate those mismatches we only consider plane estimates that are consistent with other
views. Hence, for each depth map we compute the corresponding 3D points in scene space
per pixel location and map them to the n− 1 other views, resulting in a 2D pixel location
pi and a depth value zi per view.
For a consistent match, the mapped depth value zi needs to be equal to the depth value
stored at the pixel location pi up to a given threshold ε. The threshold ε for consistency is
depending on the dataset, i.e. different datasets require different depth ranges and provide
different depth accuracy. For the Strecha dataset we use ε = 5cm. Additionally normal
vectors are considered as an extra cue for consistency check, eliminating points with a
normal difference of more than 30◦.
If the computed depth value from the 3D point of the reference view is coinciding with
at least one other view, we mark the pixel in the reference view as consistent. Further-
more, depth values and normals are averaged over all consistent views to suppress noise.
Normals can be averaged directly in scene space. To average depths the 3D points of all
consistent views are projected onto the viewing ray of the reference camera.
• Update: After consistency checking, we fill inconsistent points with consistent estimates

from other views. Therefore, for each view an update map is created that stores consistent
plane estimates from other views. If the plane estimate of one view is consistent with at
least two other views, its plane parameters (depth and normal) are transfered to all other
views and stored in their respective update maps. In order to handle occlusions, for each
pixel location the closest depth value is stored in the update map. For example, a point
in the background can be consistently visible in some views, while being occluded by a
foreground object in the current view.
• Filling: Remaining inconsistent points after the consistency check and update step are

filled in a similar vein as proposed by Bleyer et al. [8]. We search for closest consis-
tent depth and normal values in (positive and negative) horizontal and vertical direction.
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Plane parameters from these four resulting points are used to compute a depth value at
the current pixel position. Bleyer et al. used the farther away depth value for filling. As
an alternative approach we chose the plane of the consistent neighbor whose color value
is most similar to the filled pixel. Thus, we want to propagate the plane of the most sim-
ilar pixel, assuming that it belongs to the same object. To eliminate possible horizontal
and vertical streaking effects we apply a weighted median filter on the depth map with a
window size of 7x7.

4.5 Summary

In this chapter we have presented our implementation of dense multi-view stereo matching in
scene space. We have started with the two-view approach PatchMatch Stereo by Bleyer et al. [8].
It requires a rectified image pair as input data and estimates a disparity and normal at each
pixel location. The algorithm uses an iterative propagation scheme in order to refine randomly
initialized disparity and normal values. We have moved the original approach from disparity
space to scene space by utilizing plane induced homographies. As a consequence, rectification
is no longer necessary and, furthermore, the approach can be directly extended to multi-view.

This multi-view approach was introduced in the last section of this chapter. The cost func-
tion was extended to handle multiple views. In the fusion stage, consistency checking, update
and filling are used in order to eliminate inconsistent depth values, propagate planes from neigh-
boring pixels and views and denoise results.
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Figure 4.2: Depth map fusion for image 7 of the fountain-P11 dataset [51]. Left column: in-
termediate results of the depth maps before and after each stage. Right column: corresponding
normal maps. Top to bottom: raw depth maps before consistency checking, results after consis-
tency checking, update and filling. Note for example improvements on the left side part of the
fountain and the ground floor (marked with white circles).
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CHAPTER 5
Results

We have conducted a detailed performance analysis of our approach on different two-view and
multi-view datasets. Results on rectified image pairs with our two-view stereo matching imple-
mentation are presented in Section 5.1. We quantitatively evaluate our algorithm on the Kitti
Vision Benchmark Suite provided by Geiger et al. [17]. The dataset includes a large set of
stereo pairs of urban outdoor scenes. Subsequently, qualitative results of our algorithm on high-
resolution panoramic image pairs are presented.

To demonstrate the performance of our algorithm on non-rectified multiple view data, we
evaluated our multi-view stereo matcher on different outdoor datasets. Results are presented in
Section 5.2. We state quantitative results on the multi-view stereo dataset of Strecha et al. [51]
and on a multi-view setup of the Kitti dataset. Furthermore, we show qualitative results of our
algorithm on a sequences of aerial image data.

Tests were performed for different cost functions and window sizes. Our testing machine is
equipped with a 3.2 GHz processor and 24 GB of RAM. Runtime results should mainly be seen
as relative indicators between different cost functions and window sizes, since the code is not
optimized and executed on the CPU only.

5.1 Two-view Stereo

Results for stereo matching on rectified image pairs were obtained from our two-view stereo
matching implementation in disparity space, as described in Section 4.1. For error measurements
on the Kitti dataset we use dense disparity maps after occlusion filling and weighted median
filtering. Additionally, we measure the error of the subset of consistent pixels and the density of
this subset. Visual results are mainly shown after consistency checking, without filling. Hence,
only consistent pixels of the two views remain in the disparity map.

Unless otherwise stated, tests were performed on gray-scale images only. We used the pa-
rameter values proposed by Bleyer et al. [8]: {γ, α, τcol, τgrad} = {10, 0.9, 10, 2}. Three it-
erations of plane propagation and refinement were conducted per image pair. However, in our
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tests results do not change significantly between iteration 2 and 3. Hence, in order to reduce
computation time one could omit the last iteration.

Kitti Vision Benchmark Suite

The Kitti Vision Benchmark Suite [17] consists of 194 training and 195 test image pairs (recti-
fied) with a resolution of about 1240x376 pixels (slightly varying due to different camera cali-
brations). For our evaluation we only consider the training set, since ground truth data for the
test set is not public. The dataset consists of images of outdoor scenes captured from a moving
car. Images include rural areas as well as highways around the city of Karlsruhe. Typical objects
in the images include streets, houses, vegetation, sky, cars, pedestrians, street signs and street
lamps. Hence, examples of challenging areas for the stereo matcher are cluttered vegetation,
reflections on cars and other shiny objects, homogeneous areas such as house walls and thin
structures such as poles. Furthermore, strongly varying lighting conditions and a large disparity
range are challenging properties of the dataset for stereo matching.

For all training images, ground truth data from a Velodyne laser scanner is provided. The
ground truth disparity maps have an average density of about 50%. Ground truth disparity maps
are provided for non-occluded areas as well as for all ground truth pixels (including occluded
areas). Occluded areas are regions in the image that are not visible in one of the two views due to
occlusions (see Figure 1.1). These areas can not be resolved with matching and, hence, require
additional filling approaches. An exemplary image pair and the corresponding non occluded
ground truth disparity map for the left view are shown in Figure 5.1.

Figure 5.1: Left and right stereo image pair 110 of the Kitti Vision Benchmark dataset [17],
together with the color-coded ground truth disparity map for the left image (yellow: close, blue:
far away, black: no ground truth data available).
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The algorithm was evaluated on the provided training dataset of the Kitti Vision Bench-
mark Suite [17]. Results are summarized in Table 5.1 for different cost functions on window
sizes 35x35 and 25x25. As suggested by the Benchmark Suite an error threshold of 3 pixels
(disparity) is used. Hence, the table lists the percentage of pixels whose disparity values dif-
fer from the ground truth by more than 3 pixels. Error rates are computed for non-occluded
areas (noc) as well as for all areas with ground truth data (occ). We evaluate disparity maps af-
ter post-processing (consistency checking, filling and weighted median filtering). Additionally,
we labeled all pixels that passed the consistency check as consistent pixels and evaluate them
separately. The percentage of consistent pixels and their error rates are listed in Table 5.1 as
well.

Cost
Window Error Error Consistent Error Runtime/

size (noc) (all) pixel (cons) image
(1) PM Cost

35x35

10.5 11.6 57.2 2.0 14.5 min
(2) PM SS (n=50) 11.4 12.4 46.2 1.6 3.4 min
(3) PM SS (n=100) 10.9 11.9 49.1 1.6 5.5 min
(4) Census Transform 9.3 10.9 48.9 2.5 5.9 min
(5) Sparse CT 9.8 11.5 46.1 2.6 3.2 min
(1) PM Cost

25x25

11.5 12.7 52.5 1.8 5.4 min
(2) PM SS (n=25) 14.1 15.2 37.7 1.6 2.9 min
(3) PM SS (n=50) 12.8 13.9 42.1 1.5 3.2 min
(4) Census Transform 9.9 11.6 44.9 2.3 4.3 min
(5) Sparse CT 10.7 12.4 41.8 2.5 3.1 min

Table 5.1: Performance (% of disparities with error > 3 pixel) of different cost functions for the
training set of the Kitti Vision Benchmark Suite [17] with window sizes 35x35 and 25x25. Best
results per window size are written in bold letters.

For visualization, image 110 of the Kitti training set was chosen. It includes some of the
previously mentioned challenging areas, e.g. homogeneous house walls, thin poles and reflective
cars. In Table 5.2 disparity maps after left/right consistency checking are listed for all evaluated
cost functions with window size 35x35. Detailed visual results for the cost functions PM Cost
and Census Transform are depicted in Table 5.3 and Table 5.4 respectively. Disparity maps after
left/right consistency checking as well as after post-processing (occlusion filling and weighted
median filtering) are depicted. Additionally, error maps for the post-processed disparity maps
are shown.

When analyzing the results in Table 5.1 one can see that the original PatchMatch cost func-
tion gives the highest density of consistent pixels. This is for example visible in the dense recon-
struction of the street areas in Table 5.3. However, the Census Transform cost functions detect
valid matches even in challenging areas, such as the left and right house walls in Table 5.4. This
leads to a lower overall error for Census Transform compared to PM cost after occlusion fill-
ing and weighted median filtering, since valid plane estimates in these areas are missing for the
PM cost function. Sparse Census Transform and PM Self-similarity are the fastest of the tested
approaches. As expected, the self-similarity trick significantly speeds up computation time at

39



the cost of higher errors and sparser disparity maps. Comparing the two window sizes, 35x35
obtains consistently better results for all cost functions at the drawback of a longer runtime.

(1)

(2)

(3)

(4)

(5)

Table 5.2: Disparity maps for Kitti image 110 after consistency checking for different cost
functions with window size 35x35: (1) PM Cost, (2) PM Cost with self-similarity (n=50), (3) PM
Cost with self-similarity (n=100), (4) Census transform, (5) Sparse Census transform.
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Left Image

Ground Truth

Consistent

Post-Processing

Error

Table 5.3: Detailed results for Kitti image 110 with original PatchMatch cost and window-size
35x35: Left image, Ground-truth disparity map, disparity map after consistency check, disparity
map after post-processing and error map (white: no error, black: noc error, gray: occ error).
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Left Image

Ground Truth

Consistent

Post-Processing

Error

Table 5.4: Detailed results for Kitti image 110 with Census Transform cost and window-size
35x35: Left image, Ground-truth disparity map, disparity map after consistency check, disparity
map after post-processing and error map (white: no error, black: noc error, gray: occ error).
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Panoramic Images

The panoramic images for our evaluation were captured from a 360◦ panorama camera with
an underlying cylindrical projection1. The raw images have a resolution of 36.206x7.500 pixel
(∼270 megapixel). Additionally, rectified images are provided. For our evaluation we dis-
tinguish between horizontally and vertically displaced stereo pairs. For horizontally displaced
panoramic image pairs (taken from roughly the same height) the epipoles are located within
the images (along the baseline of the two cameras) [34]. After rectification, heavy distortions
occur in the area of epipoles, impairing matching and hence disparity estimation in those areas.
Vertically displacing the two cameras (on top of each other) avoids this problem. However, the
baseline between two cameras is usually limited in a vertical setup. We show qualitative results
for both setups.

Vertical Image Pairs

In this section we state results of our two view stereo matching approach on vertically displaced
cameras. Hence, image pairs are referred to as top and bottom image instead of left and right. A
rectified image pair of two vertically displaced cameras is depicted in Figure 5.2. Note that for
processing images are actually rotated by 90◦ so that epipolar lines are horizontal.

(a) top image

(b) bottom image

Figure 5.2: Rectified panoramic image pair from two vertically displaced cameras: (a) top im-
age captured from higher camera position and (b) bottom image captured from lower camera
position.

1http://www.fovex.com/
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We ran our stereo matching algorithm on full resolution (9.103x36.206 for rectified images)
as well as on downscaled versions of resolution 1.138x4.526 (12.5% of width and height). The
downscaled versions require a smaller window size while giving visually similar results (see
Figure 5.3). In order to reduce computation time, comparisons for different cost functions and
window sizes were performed on these downscaled versions.

In Figure 5.4 we compare results for PM Cost, PM SelfSimilarity, Census Transform and
Sparse Census Transform on the image pair of Figure 5.2. The disparity maps after consistency
checking are displayed for the four cost functions with window size 35x35. The Census Trans-
form cost functions estimate consistent disparity values at the floor where PM Cost functions
fail. On the other hand, a higher amount of wrong estimates can be found in sky regions. In
Figure 5.5 we compare results for the PM Cost function for different window sizes and for color
vs. greyscale input images. Bigger window size and color information increase the density of
consistent pixels at the cost of longer runtime. Runtime results for different resolutions, window
sizes and cost functions are stated in Table 5.5. Considering also the initialization time of PM
Self-Similarity, Sparse Census Transform is the fastest of the tested cost functions. Reasonable
reconstruction results can be achieved on building facades and ground floor areas for all tested
variants. Inconsistencies occur mainly in sky and vegetation areas.

Results for two further vertical image pairs are shown in Figure 5.6 and 5.7. Disparity
estimation on downscaled images was performed for PM Cost and Census Transform with a
window size of 35x35.

Image size Cost Window size Runtime per Iteration
full Sparse CT 45x45 1700 min

12.5%

PM Cost
25x25 33 min
35x35 49 min
45x45 79 min

PM SS (n=100) 35x35 16 (+8) min

Census Transform
25x25 22 min
35x35 32 min
45x45 44 min

Sparse CT 35x35 19 min

Table 5.5: Runtime results per iteration for panoramic images. Note that for the PM SS cost self-
similarity propagation has to be performed during initialization. Runtime for this initialization
step needs to be added proportionally to the runtime per iteration (in case of 3 iterations: divided
by 3). This proportion is stated in parentheses.
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(a) original image (bottom)

(b) full resolution

(c) 12.5% resolution

Figure 5.3: Sparse census transform on full resolution with window size 45x45 vs. downscaled
version with window size 35x35.
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(a) original image (bottom)

(b) PatchMatch Cost

(c) PatchMatch SelfSimilarity

(d) Census Transform

(e) Sparse Census Transform

Figure 5.4: Comparison of different cost functions for window size 35x35. Results are shown
for the bottom image (a), hence areas at the lower part of the image cannot be matched.
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(a) original image (bottom)

(b) 25x25

(c) 35x35

(d) 35x35 color

(e) 45x45

Figure 5.5: Comparison of different window sizes for PM Cost computation: (b) 25x25, (c)
35x35, (d) 35x35 color, (e) 45x45.

47



(a) top image

(b) bottom image

(c) PM Cost

(d) Census Transform

Figure 5.6: Another outdoor image pair (a-b) and its disparity map for the top image with (c)
PM Cost and (d) Census Transform and a window size of 35x35 on the downscaled version.
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(a) top image

(b) bottom image

(c) PM Cost

(d) Census Transform

Figure 5.7: Indoor image pair (a-b) and disparity maps for top image with (c) PM Cost and (d)
Census Transform and a window size of 35x35 on fourth size resolution.
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Horizontal Image Pairs

A horizontally displaced, rectified image pair is displayed in Figure 5.8. The original (non-
rectified) images are shown in Figure 1.2. Due to the mapping of epipolar lines to horizontal
scanlines (rectification), heavy distortions occur in the area of epipoles (in the center and on
the left/right sides of the original image or on the left/right sides of the rectified images) which
impair a dense correspondence search.

We focus on the reconstruction of feasible areas, i.e. the center part of the images. Therefore,
we manually created cutouts of the rectified images and used those cutouts for stereo matching.
The upper and lower center part can be combined to a single cutout. Exemplary cutouts and their
disparity maps after consistency checking for the Census Transform Cost function are shown
in Figure 5.9. Distant objects can be reconstructed up to a certain degree of distortion. Less
consistent matches could be detected in the far left and right areas of the images where distortion
is strongest. For closer regions, such as the ground floor, distortions increase (see for example
the benches in Figure 5.8). Thus, correspondence search is difficult in these areas.

Figure 5.8: Rectified images for input images of Figure 1.2.
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Figure 5.9: Left views of exemplary cutouts and their disparity maps.
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5.2 Multi-view Stereo

For a quantitative evaluation of our multi-view stereo matcher we use the dataset of Strecha et
al. [51]. We perform a detailed parameter analysis and compare our best results with those of
several state-of-the-art multi-view methods. Furthermore, we test our algorithm on a multi-view
setup of the Kitti Vision Benchmark Suite [17] and compare the performance of our method with
results obtained from our two-view implementation (see Section 5.1). We also show qualitative
results of our approach on aerial image data from the city of Enschede.

Strecha Dataset

The Strecha dataset consists of six different image sequences of outdoor scenes with provided
camera parameters and bounding volumes of the scenes. Image sequences comprise 8 to 30
images, each having a resolution of 3072x2048 pixels. For two of the sequences (fountain-P11
and Herz-Jesu-P8) ground truth data is provided in form of high-resolution triangle meshes. The
meshes were generated from raw laser scanning data (LIDAR). For error measurements we use
the ground truth depth maps provided by Tola et al. [55] which were generated from the triangle
meshes.

We followed the evaluation concept of Hu and Mordohai [26] in order to compare our final
results with their stated results. For each image sequence the percentage of correct depth values
for the thresholds 10 cm and 2 cm is averaged over all depth maps except for the two extreme
views (first and last image of the sequence).

Parameter Analysis

We show a detailed parameter analysis of our approach for the image sequence fountain-P11 in
Table 5.6. Different image resolutions, window sizes, cost functions and cost combinations were
tested. For all variants we used the PM Cost functions with γ = 13 for the adaptive weight. The
listed error results were computed from raw depth maps resulting from our multi-view stereo
approach before fusion. On half resolution images (1536x1024) we compared results for three
different values ofK (1,2,3) for the cost combination variant best-K. Furthermore, we computed
error results when considering all views with and without view selection. A visual comparison
between these variants is shown in Figure 5.10. Additionally, results for cost combination vari-
ant trunc are shown. Results show that view selection does not only reduce computation time
but also significantly improves quantitative results. This can be explained by the elimination
of potential wrong matches from farther away views due to little visual overlap or changes in
appearance (because of changing viewing angles). The two different cost aggregation variants
best-K and trunc obtain similar results on the tested dataset. For best-K the valueK = 2 obtains
best results on an error threshold of 2 cm. Hence, we use this value for further evaluations.

The gray-scale variant of the PM cost function performs slightly worse than its color pendant
with the strong benefit of computation time reduction. Hence, if runtime is relevant, one might
consider to process only gray-scale images. However, for our quantitative comparison with
state-of-the-art methods we use color images. Also the Census Transform cost function obtains
inferior results compared to the PM cost function. Concerning window size, results with cost
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combination trunc give similar results on the sizes 15x15, 19x19 and 25x25 for half-resolution
images. We will consider window size 19x19 for our comparison with state-of-the-art methods.

Resolution Cost Color Combination Window
fountain-P11

10 cm 2 cm

half
PM

yes

all (no view selection) 19x19 0.859 0.716
all 19x19 0.931 0.747

best-K (1) 19x19 0.937 0.741
best-K (2) 19x19 0.939 0.749
best-K (3) 19x19 0.940 0.747

no best-K (2) 19x19 0.935 0.744
CT no best-K (2) 19x19 0.935 0.714

half PM
yes trunc

15x15 0.938 0.751
19x19 0.939 0.751
25x25 0.940 0.746

no trunc 19x19 0.936 0.745

full PM yes
best-K (2)

29x29 0.924 0.759
35x35 0.923 0.757

trunc 29x29 0.930 0.769

Table 5.6: Comparison on fountain-P11 of different parameters before depth map fusion on half
and full resolution images. The percentage of correct pixels for error thresholds 10 cm and 2 cm
is stated for all tested variants.

K=1 K=2 K=3 all all (no sel) trunc

70

75

80

85

90

95

100

C
or

re
ct

 P
ix

el
s 

(%
)

 

 

10cm
2cm

Figure 5.10: Percentage of correct pixels for cost combination approach best-K on half resolu-
tion image sequence of fountain-P11 for different values of K: 1, 2, 3, all, all (without view
selection) and results for cost combination approach trunc.

Since tests were performed on different machines (utilizing a computing cluster) no consis-
tent runtime results can be stated. However, we state runtime results for our parallel implemen-
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tation (alternating spatial propagation in four different directions: left, down, right, up). On our
12-core machine one pass with 6 views on half resolution with window size 19x19 takes about
3 minutes for grayscale images and 12 minutes for color images. For our parameter analysis we
used the original propagation scheme with diagonal directions. This does not allow for paral-
lel execution of separate rows and columns but gives slightly better quantitative results on our
testset.

In Figure 5.11 we show the convergence of the stereo algorithm after each iteration for
the parallel implementation variant for error thresholds of 2 and 10 cm, for one specific view.
Iteration 0 means correct pixels in the random initialization. Each iteration corresponds to a
horizontal or vertical propagation pass plus plane refinement. Furthermore, final error results
after depth map fusion are shown. As can be seen, depth estimates are already reasonable after
one single propagation step in horizontal directions. Performance improves only marginally after
the second iteration. For most practial applications, four axis aligned passes or two diagonal
passes will obtain sufficient results. For our quantitative evaluation, we used three diagonal
passes, as proposed by Bleyer et al. [8], since quantitative results are slightly improved in the
last iteration step.
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Figure 5.11: Convergence of the Patchmatch procedure. The graphs show the percentage of
correct pixels (errors < 2 cm and < 10 cm) for two exemplary views. Each iteration on the hor-
izontal axis corresponds to one pass of axis-aligned propagation in either horizontal or vertical
direction. Solid dots denote the final result after fusing multiple depth maps.

Comparison with State-of-the-Art Methods

We compare results obtained from our multi-view approach with other multi-view depth map
estimation methods on the Strecha dataset. Reported values from other approaches are taken
from Hu and Mordohai [26] as well as Zheng et al. [66]. For evaluation, a depth map for each
view was generated. The results in Table 5.7 show the percentage of correct pixels for the
thresholds 10 cm and 2 cm, averaged over all views except the two extreme views (first and last)
of each dataset.
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We show results of our approach before and after depth fusion on half and full resolution
(window size 19x19 and 29x29 respectively). Cost combination variant best-K performed sig-
nificantly better than trunc on the Herz-Jesu-P8 image sequence. Hence, for full resolution
only results for best-K are stated. Furthermore, results of six different approaches are listed
for comparison: Zheng et al. (ZHE) [66], Hu and Mordohai (HU) [26], Furukawa and Ponce
(FUR) [15], Zaharescu et al. (ZAH) [64], Tylecek and Sara (TYL) [58] and Jancosek and Pajdla
(JAN) [30]. The results of HU were generated from downsampled images of a resolution of
1536 x 1024, while results for ZHE were generated from full-resolution images (3072 x 2048).
For HU and ZHE we state intermediate results as well as final results after post-processing (PP).
Results for FUR, ZAH, TYL and JAN were extracted from 3D models provided by the authors,
i.e. filling might be based on more sophisticated surface fitting methods that could also be used
in conjunction with our depth maps. E.g. JAN generated 3D point clouds from estimated depth
maps that were created from a plane-sweeping approach [31]. This point cloud was then used as
input for a surface reconstruction approach utilizing visual hull constraints.

Results show that our method is comparable to state-of-the-art methods, outperforming most
competitors on both half and full resolution (only JAN performs better on both sequences). 3D
point clouds generated by merging consistent depth estimates of different views are visualized
in Figure 5.12. We show colored as well as shaded versions of four different image sequences
of the Strecha dataset (fountain-P11, Herz-Jesu-P8, entry-P10 and castle-P19). Note that for
shading our estimated normals are used.

Method
fountain-P11 Herz-Jesu-P8

10 cm 2 cm 10 cm 2 cm

half, trunc
Raw 0.939 0.751 0.822 0.645
Fusion 0.956 0.770 0.871 0.698

half, best-K
Raw 0.939 0.749 0.863 0.655
Fusion 0.955 0.769 0.918 0.705

full, best-K
Raw 0.924 0.759 0.813 0.605
Fusion 0.956 0.786 0.913 0.683

ZHE [66]
Raw 0.911 0.732 0.833 0.619
PP 0.929 0.769 0.844 0.650

HU [26]
Raw 0.874 0.695 0.781 0.584
Fusion 0.930 0.754 0.848 0.649

FUR [15] 0.838 0.731 0.836 0.646
ZAH [64] 0.832 0.712 0.501 0.220
TYL [58] 0.822 0.732 0.852 0.658
JAN [30] 0.973 0.824 0.923 0.739

Table 5.7: Results of our multi-view stereo approach on the Strecha dataset compared to results
reported from Hu and Mordohai [26] as well as Zheng et al. [66].
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.12: Colored (left column) and shaded (right column) 3D meshes generated from fused
depth maps of the Strecha dataset on half resolution: (a-b) fountain-P11, (c-d) Herz-Jesu-P8,
(e-f) entry-P10, (g-h) castle-P19.
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Multi-view Reconstruction on Kitti

In our two-view evaluation we covered the Kitti Vision Benchmark Suite (see Section 5.1). Ad-
ditional to the two-view stereo pairs captured at the same time, stereo pairs from previous and
successive frames are provided for the dataset. Since the Kitti scenes are largely static, we can
use these additional images for a multi-view setup. Intrinsic and relative extrinsic camera pa-
rameters for each stereo pair are provided in the benchmark suite. The relative camera rotation
and translation between consecutive stereo pairs were kindly provided by the authors of [59].
They computed the ego-motion of the stereo camera system by minimizing a robust error mea-
sure over pre-computed correspondences. A similar ego-motion estimation was introduced by
Badino and Kanade [1].

We compare results of our two-view implementation, considering only the current stereo
pair, with results of our multi-view algorithm, considering three consecutive image pairs (six
images in total). Results for the two-view approach for both cost functions were listed in Ta-
ble 5.1 in Section 5.1. Since the Census Transform cost function performed best on the Kitti
image sequence we use this cost function also for our multi-view algorithm. Results for window
sizes 21, 25 and 35 with cost aggregation best-K (K = 2) are provided in Table 5.8. The use
of additional image pairs significantly improved the accuracy of the algorithm. E.g. for window
size 35x35 an error rate of 6.27% over all ground truth points is achieved compared to an er-
ror rate of 10.94% in the two-view variant. We show visual results for image 110 with Census
Transform cost function and window size 25 in Table 5.9. Main differences are a higher number
of consistent pixels and detected matches in areas that were partly occluded in the two-view
image pair.

Cost
Window Error Error Consistent Error

size (noc) (all) pixel (cons)

Census Transform
35x35 5.89 6.27 85.4 3.48
25x25 5.85 6.26 82.3 3.05
21x21 5.87 6.30 80.2 2.87

Table 5.8: Performance (% of disparities with error > 3 pixel) of our multi-view stereo algorithm
on the Kitti training set, using six views.
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Left Image

Ground Truth

Consistent

Post-Processing

Error

Table 5.9: Detailed results for Kitti image 110 with Census Transform cost and window-size
25x25 for the multi-view setup (6 view): Left center image, Ground-truth disparity map, con-
sistent disparity map after fusion, disparity map after post-processing and error map (white: no
error, black: noc error, gray: occ error).
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Aerial images

We have further qualitatively evaluated our multi-view stereo approach on a set of aerial images.
The two tested sequences contain four views of oblique aerial image data from the city of En-
schede2. We show results for an image resolution of 1404x936 pixels for the two sequences in
Figure 5.13 and 5.14 respectively. The PatchMatch cost function was used for both sequences
with a window size of 25 and cost combination variant best-K. We were able to reconstruct
objects with piecewise constant normals, such as streets, roofs and building walls. Erroneous re-
gions that could not be reconstructed correctly (e.g. trees) were removed during the consistency
check.

Figure 5.13: Aerial image sequence 1 (top row) with resulting colored and shaded point clouds
(bottom row left and right).

5.3 Summary

We have evaluated our approach on various outdoor datasets for both two-view and multi-view
image sequences. Quantitative evaluation on different benchmarks show that our method ob-
tains competitive results compared to state-of-the-art methods. Furthermore, qualitative results
were shown on high resolution panoramic images and aerial image data. A comparison be-
tween two-view and multi-view image sequences on the Kitti dataset revealed that the additional
information from more than two views significantly improves reconstruction results.

We have further tested different cost functions and cost combination variants for the aggre-
gation of cost over multiple views. Census Transform based cost functions obtain more robust
results for input data with strongly varying lighting conditions, such as the tested Kitti dataset.
For scenes with mainly constant lighting conditions the original cost function used by Bleyer
et al. [8] generally obtained a higher number of consistent correspondences and more homo-
geneous normal estimations. Concerning cost aggregation methods, we achieved best results

2http://www.slagboomenpeeters.com/

59



Figure 5.14: Aerial image sequence 2 (top row) with resulting colored and shaded point clouds
(bottom row left and right).

when pre-selecting views (limiting the allowed viewing angle difference between cameras) and
aggregating only over a subset of selected views. The later was accomplished by two different
aggregation variants: best-K and trunc, both allowing robustness to partial occlusions. Variant
best-K aggregates over the best K cost values per pixel. In our tests, a value of K = 2 obtained
best results. The second variant, trunc, is a data-driven approach, circumventing the need of
selecting a fixed parameter for the number of considered views. We accumulate over all pre-
selected views while truncating high costs with a threshold based on the lowest cost value of all
views. On our tested datasets both approaches delivered similar results with the variant best-K
obtaining slightly better quantitative results.
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CHAPTER 6
Conclusion

In this thesis we have presented a multi-view stereo matching approach for the estimation of a
depth value and surface normal at each pixel position. The approach is based on the randomized
correspondence search PatchMatch. This allows efficient memory handling and thus facilitates
3D reconstruction from high-resolution input images.

Our implementation starts from the two-view stereo matching approach PatchMatch Stereo
where continuous disparity values and normal directions are estimated from rectified image
pairs. We extend the original method to scene space, which allows us to handle multiple non-
rectified images in a true multi-view setting, i.e. by measuring low-level image similarity over
multiple images. Estimated depth and normal maps for each view are further refined in a fu-
sion step by removing inconsistent estimates and filling missing areas with plane information
from other views and extrapolation from nearby planes. Moreover, we have tested different cost
(similarity) functions for per-pixel matching as well as different schemes to combine the costs
across multiple images. The most suitable cost function depends on the dataset (respectively, its
illumination conditions and surface properties) and on whether speed or accuracy is more impor-
tant. Correspondence search is more robust when only accumulating over a selected subset of
views and thus implicitly accounting for potential partial occlusions. Concerning speed, work-
ing with gray-scale images as well as limiting the number of propagation iterations significantly
decreases runtime while still yielding similar results.

We have evaluated our approach on both two-view and multi-view outdoor datasets. Tested
images cover a wide range of different settings: street-level images of road scenes under strong
lighting variations, oblique aerial image data, high-resolution panoramic images of urban scenes
and high-quality images of historic buildings captured explicitly for 3D architectural modeling.
Our method was capable of dealing with these different sets of input data and delivered state of
the art results on existing benchmarks.
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Future Work

Even though the computational cost of our approach scales linearly with the number of pixels in
an image (allowing the processing of multiple high-resolution images) runtime remains an issue
in our current implementation. This is mainly due to the relatively large windows empirically
required for normal estimation: per point, a relatively large support window must be warped to
each of the other views with a homography, including bilinear resampling. Thus, future work
will focus on computation time reduction.

First steps in this direction were taken by employing alternative cost functions, such as PM
Self-Similarity and Sparse Census Transform, and the parallelization of the propagation scheme.
The independent spatial propagation along individual rows, respectively columns, allows for a
parallel depth estimation on different cores. Implementing this parallel variant on the GPU
could further reduce runtime. Alternative directions for runtime improvements are a multi-scale
extension of the approach or the use of adaptive window sizes. Starting on lower resolution
images or with smaller window sizes and refining estimates in subsequent steps could help to
reduce computation time.

A different promising direction for future work is the application of surface reconstruction
techniques, such as the one of Jancosek and Pajdla [30], starting from our depth estimates. This
could help to reconstruct complicated regions more robustly, and fill in missing values in a more
qualified manner, especially in areas with few valid matches.
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