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Abstract

The rapid development of laser scanners in resent years has opened a new field of research. In
particular, point clouds generated by terrestrial laser scanners are used in engineering geodesy.
Unlike previous point-wise methods, point clouds contain spatial information about the object.
Consequently, the search for area-based analysis methods to describe the scanned objects is the
new challenge.

In [Harmening and Neuner, 2020] a deformation analysis approach is introduced. The approach
bases on a least square collocation. The main objective is to model the signal and noise in the
point cloud. The information about the deformation holds the signal. This thesis deals with a
part of the modelling process of the signal. This consists of finding locally homogeneous areas
and representing them by a suitable standard deviation.

The main task is to define a clustering process, which reliably provides the same results. The clus-
tering method K-means used in the initial approach does not have this property. An additional
task is the improvement of the calculation routine of the representative standard deviations.
They are used in the stochastic process as a slowly varying factor.

The new clustering process, introduced in this work, is a combination of two clustering methods.
The first one, clustering only the deformed part of the point cloud, is a spectral clustering
algorithm. The clusters are constructed in relation to the eigenvectors of the Laplacian matrix.
The matrix is derived from the similarity graph, which describes the connection between the data
points. An additional clustering is performed using a Gaussian mixture model. This method
leads to a soft clustering implementation, which means that data points can belong to multiple
clusters. The posterior probability of a data point belonging to a cluster is determined considering
Gaussian distributions. Moreover, soft clustering allows crossovers to be better described with
the cluster result. In connection with the properties of soft clustering, the stable region was also
included in the clustering.

As it turned out, finding a suitable clustering process was not the biggest challenge in this work.
The feature vector for each clustering method, the choice of the number of clusters, the influence
of the stable points on the clustering result and the calculation of the representative standard
deviation for each point had influence on the final results. The latter, which is needed for the
normalization of the residuals to the trend surface, had a greater impact on the final results than
assumed.

In essence, however, an optimized clustering process has been developed that provides stable
final results. Influences from other parts of the approach have not yet been considered with
respect to the new clustering process.
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Kurzfassung

Die rasche Entwicklung des Laserscanners in den vergangenen Jahren eröffnete einen neuen
Forschungsbereich. Vor allem werden Punktwolken, welche von terrestrischen Laserscannern
erzeugt werden, in der Ingenieurgeodäsie verwendet. Im Gegensatz zu den punktweisen Methoden
beinhalten Punktwolken flächenhafte Objektinformationen. Die neue Herausforderung ist, dass
flächenhafte Analysemethoden zur Beschreibung des gescannten Objekts gefunden werden.

In [Harmening and Neuner, 2020] wird ein Ansatz zu einer Deformationsanalyse vorgestellt.
Dieser basiert auf einer Kollokation nach kleinsten Quadraten. Das Hauptziel ist das Signal
und Rauschen in der Punktwolke zu modellieren. Im Signal ist die Information zur Deformation
enthalten. Diese Arbeit beschäftigt sich nur mit dem Modellierungsprozess des Signals. Dieser
besteht aus der Findung lokal homogener Bereiche und deren Repräsentation durch eine passende
Standardabweichung.

Die Hauptaufgabe ist die Definition eines Clusterablaufes, welcher wiederholt gleiche Ergeb-
nisse liefert. Die verwendete Methode K-means im bisherigen Ansatz liefert jedoch bei einer
Wiederholung der Clusterung unterschiedliche Ergebnisse. Eine zusätzliche Aufgabe ist die
Verbesserung der Berechnungroutine für die repräsentativen Standardabweichungen. Diese wer-
den im stochastischen Modell als langsam veränderlichen Faktor eingesetzt.

Der neue Ablauf der Clusterung, welcher in dieser Arbeit vorgestellt wird, besteht aus einer
Kombination von zwei Clustermethoden. Die Erste, welche nur den deformierten Teil der Punk-
twolke clustert, ist ein spektraler Clusteralgorithmus. Die Cluster entstehen im Zusammenhang
mit den Eigenvektoren der Laplacematrix. Die Matrix wird abgeleitet vom Ähnlichkeitsgraphen,
welcher die Verbindungen zwischen den Datenpunkten beschreibt. Zusätzlich wird mit einem
Gaußschen Mischmodell geclustert. Diese Methode ermöglicht die Implementation einer weichen
Clusterung, welche die Zuteilung von Datenpunkten zu mehreren Clustern ermöglicht. Die pos-
teriore Wahrscheinlichkeiten der Zugehörigkeit eines Datenpunktes zu einem Cluster wird unter
Berücksichtigung von gaußschen Verteilungen bestimmt. Außerdem wird eine bessere Beschrei-
bung von Übergängen gemöglicht. Im Zusammenhang mit der weichen Clusterung, wurde auch
der stabile Bereich in den Clusterablauf mit einbezogen.

Es stellte sich heraus, dass das Finden eines geeigneten Clusterablaufes nicht die größte Her-
ausforderung in dieser Arbeit war. Der Merkmalsvektor für jede Clustermethode, die Wahl der
Anzahl der Cluster, der Einfluss der stabilen Punkte auf das Clusterergebnis und die Berechnung
der repräsentativen Standardabweichung für jeden Punkt hatten einen Einfluss auf das Endergeb-
nis. Letztere, welche benötigt werden um die Abweichungen zur Trendfläche zu normieren, hatte
einen größeres Einfluss auf das Endergebnis als zuvor angenommen.

Schlussendlich konnte jedoch ein optimierter Clusterablauf entwickelt werden, welcher stabile
Endergebnisse liefert. Einflüsse aus anderen Teilen des Verfahrens wurden im Hinblick auf das
neue Clusterverfahren noch nicht berücksichtigt.
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1. Introduction

In recent years the development of the terrestrial laser scanner opened new possibilities to describe
the form of an object. Due to the areal measuring method, new demands were made for the
evaluation methods of deformation analysis. The previously used point-wise evaluation methods
are no longer sufficient for areal phenomena. But the implementation of areal analysis methods
bring new challenges especially for deformation analysis [Wunderlich et al., 2016].

In [Harmening and Neuner, 2020] a deformation analysis approach is introduced. The basis is
a least square collocation. The functional model consists of a summation of a trend, the signal
and noise. The signal holds the deformation and is related to the trend, realized by the initial
measurement epoch without deformation. It is assumed that the deformation can be described
by a locally stationary stochastic process. This is composed of the product of a stationary
correlation function and a slowly varying factor.

This thesis deals with the part of the deformation analysis approach that calculates this factor.
The aim is to define homogeneous areas in the deformed region using a suitable clustering method
and to calculate the representative standard deviation of the areas there. In the initial approach
introduced in [Harmening and Neuner, 2020], a K-means clustering is performed. However, the
algorithm does not allow repeatable results. Finding a suitable clustering method that reliably
provides the same results is the main task of this work. The additional consideration of the
calculation of the representative standard deviation was done to evaluate the new clustering
process in the best possible way.

In section 2, an overview of common clustering methods and their application in geodesy is given.
In section 3, the developed approach and its aspects are presented. A comparison of the results
with respect to different datasets is given in section 4. Section 5 summarizes the results of this
work and gives an outlook on future work.
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2. Common clustering methods

The following chapter gives an overview of the common clustering methods and their application
in geodesy. Generally speaking, each set of data has its own structure. The main task of cluster
analysis is to break these down in order to be able to draw conclusions about new findings
[Nagy, 1968]. However, this can be achieved through different approaches. The grouping of the
methods is based on the classifications in [Aggarwal and Reddy, 2018] and [Han, 2011].

2.1. Partitional methods

Partitional methods are single-level approaches, which means that there is only one partition of
the data set in the given number of clusters [Jain et al., 1999] [Nagy, 1968].

2.1.1. K-means

The K-means algorithm is the best known partitional clustering algorithm because of the sim-
plicity in its implication [Asgharbeygi and Maleki, 2008] [Jain et al., 1999].

The algorithm starts with selecting k initial centroids for the cluster [Aggarwal and Reddy, 2018]
[The MathWorks, Inc., 2022g]. After that the assignment of each point to a cluster starts. The
criteria for an assignment is a chosen distance metric between each point, for K-means Manhat-
tan distance (L1-Norm), Euclidean distance (L2-Norm) and Cosine similarity are usually used.
When all points are assigned to the nearest cluster centroid, the centroids will be recomputed.
Then the assignment will be repeated until the number of iterations is reached. Another termina-
tion criterion that can be set is the percentage of points that change the cluster. This threshold
describes the maximum number of points that are allowed to change the cluster during an iter-
ation step. Mathematically, K-means is an optimization problem. The underlying minimization
function is called the Sum of Squared Errors (SSE) (equation (2.1) [Aggarwal and Reddy, 2018]
(sec. 4.2.1)).

SSE (C) =

K

k=1



xi∈Ck

(ck − xi)
2 (2.1)
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2. Common clustering methods

with

K ... number of data points

Ck ... kth cluster

xi ... point in Ck

ck ... mean of the kth cluster (= centroid)

Regarding the initial centroids one improvement is the k++-algorithm at which the first centroid
is picked randomly and the others are selected by a weighted probability score
[The MathWorks, Inc., 2022g]. Consequently, the next selected centroid is farthest from the
current selected [Aggarwal and Reddy, 2018].

Figure 2.1.: K-means (number of clusters: 6) Figure 2.2.: K-means (number of clusters: 6) retry

Figure 2.3.: K-means (number of clusters: 12) Figure 2.4.: K-means (number of clusters: 12) retry

Obviously, the result of clustering is still influenced by the centroids chosen at the beginning, as
the figures 2.1 - 2.4 show. The used data is the Fisher’s Iris data set [FISHER, 1936]. The strong
variation of the clusters is the reason why the K-means clustering method should be replaced in
the deformation analysis approach. In addition, the algorithm is strongly influenced by outliers
[Han, 2011]. However, it is included in the tests for comparison with the other clustering methods.
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2. Common clustering methods

Furthermore, finding the appropriate number of clusters for the dataset is a challenge for all clus-
tering methods. Several researchers are confronted with this problem, therefore many approaches
exist [Xu and WunschII, 2005] [Aggarwal and Reddy, 2018] [Han, 2011]. The tested methods are
described in section 3.6.

2.1.2. K-medoids

K-medoids is basically a variation of the K-means clustering method [Aggarwal and Reddy, 2018]
[Han, 2011]. In contrast selecting the centroid of a cluster by the mean value of the objects in
one cluster as in K-means, an actual data point is representing the cluster center. This is where
the name medoids came from. The K-medoids algorithm is less sensitive to outliers since an
absolute-error criterion is used as minimization function. Equation (2.2) shows the criterion
[Han, 2011] (p. 455).

E =
k


i=1



p∈Ci

dist
�
p, oi

�
(2.2)

with

k ... number of clusters

Ci ... ith cluster

p ... points of the data set

oi ... representative object of Ci (= medoid)

dist ... distance function

In this work the Partioning Around Medoids (PAM) algorithm is used for iteratively minimizing
the absolute-error function [The MathWorks, Inc., 2022h]. The figures 2.5 and 2.6 show exem-
plary clustering results with the K-medoids clustering method. It is applied to the Fisher’s Iris
data set [FISHER, 1936].

Figure 2.5.: K-medoids (number of clusters: 6) Figure 2.6.: K-medoids (number of clusters: 12)

11



2. Common clustering methods

2.1.3. Fuzzy C-Means clustering

Fuzzy clustering also known as soft clustering is another variation of the K-means clustering
method [Aggarwal and Reddy, 2018] [The MathWorks, Inc., 2022e]. However, in this method
points have the possibility to be a member of more than one cluster. It follows the possibility
for clusters to have overlapping areas. Therefore, the membership is indicated with additional
values between 0 and 1. Equation (2.3) shows the SSE function [Aggarwal and Reddy, 2018]
(sec. 4.2.4.4). The Fuzzy C-Means clustering algorithm (FCM) has the same steps as K-means.
In addition to the cluster centroid, the membership weight in the minimization of the SSE is also
updated. Because of the similarity to K-means, FCM is also sensitive to outliers.

SSE (C) =

K

k=1



xi∈Ck

wβ
xik�xi − ck�2 (2.3)

with

K ... number of clusters

Ck ... kth cluster

xi ... point in Ck

ck ... mean of the kth cluster (= centroid)

wxik ... membership weight of point xi belonging to Ck

β > 1 ... degree of fuzzy overlap

2.2. Spectral clustering

In contrast to section 2.1, spectral clustering uses the given data set to derive a similarity graph
[von Luxburg, 2007] [Azran and Ghahramani, ] [The MathWorks, Inc., 2022j]. There are three
types of them: �-neighbourhood graph, k-nearest neighbour graph and the fully connected graph.
In general, the similarity graph contains the pairwise distances to the chosen neighbour points.
The appropriate calculation of the distances should also be considered. After setting up the
graph the distances are transformed into similarity measures with weights between the data
points. Usually, the Gaussian similarity function is used.

Now two matrices can be derived from the graph: the similarity matrix S and the degree matrix
D. The similarity matrix S represents the connected nodes of the similarity graph. The degree
matrix D is a diagonal matrix. The entries are the sum of each row of the similarity matrix
S. The degree matrix D represents the degree of a node, which is the number of the connected
edges to it.
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2. Common clustering methods

The matrix connecting the two matrices D and S is called Laplacian matrix L. It is the ba-
sis for clustering, since its eigenvalues tell a lot about the structure of the similarity graph
[von Luxburg, 2007]. The eigenvalues of a matrix is also called spectrum. This is were the name
spectral clustering comes from. Usually, three Laplacian matrix types are listed in the literature:
the unnormalized Laplacian matrix Lu, the normalized random-walk Laplacian matrix Ln intro-
duced in [Shi and Malik, 2000] and the normalized symmetric Laplacian matrix Lns introduced
in [Ng et al., 2001].The calculations of the different matrices are given in the equations (2.4) -
(2.6).

Lu = D − S (2.4)

Ln = D−1Lu (2.5)

Lns = D− 1
2LuD

− 1
2 (2.6)

For the clustering the smallest eigenvalue of the Laplacian matrix L is found
[The MathWorks, Inc., 2022j]. Then the matrix consisting of the eigenvectors according to the
chosen eigenvalue is calculated. Finally, the matrix, where the rows are treated as points, is
clustered by a suitable clustering method. Usually, K-means or K-medoids is used. In figure 2.7
and 2.8 two examples of an spectral clustering with the Fisher’s Iris data set [FISHER, 1936] are
shown.

Figure 2.7.: Spectral clustering
number of clusters: 3

distance metric: Euclidean
similarity graph: k-nearest neighbour

Laplacian matrix: normalized
random-walk

Figure 2.8.: Spectral clustering
number of clusters: 3

distance metric: Euclidean
similarity graph: �-neighbourhood

(radius = 1)
Laplacian matrix: normalized

symmetric
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2. Common clustering methods

2.3. Probabilistic method - Gaussian mixture model

The Gaussian mixture model (GMM) is one representative clustering method in the group of
probabilistic methods [Aggarwal and Reddy, 2018] [Xu and WunschII, 2005]. In general, it is
assumed that the data set can be represented by a mix of Gaussian distributions. The amount
of these is represented by the variable k (see equation (2.7) [Aggarwal and Reddy, 2018] (sec.
3.2.1)).

k ∈ {1, ...,K} (2.7)

with

k ... Gaussian distribution number

K ... number of clusters

The main objective of this clustering method is to find the three describing parameters of the
Gaussian distributions. These are the mean µ, the covariance Σ and the mixing probability π.
Based on these parameters, the data points can finally be assigned to clusters. The mean µ is
the value with the highest probability and fixes the center position of the distribution. Σ defines
the width of the distribution and π the height. However, the mixing probability of each cluster
are, as the name says, probabilities. Therefore, all mixing probabilities have to meet equation
(2.8) [Aggarwal and Reddy, 2018] (sec. 3.2.1).

K

k=1

πk = 1 (2.8)

with

πk ... mixing probability of kth Gaussian distribution

To find the optimal parameters so that each Gaussian distribution per cluster fits the data points
it contains, the maximum likelihood is sought. However, the assumption for describing the data
points is that they can be described with a mixture of Gaussian distributions. Therefore, finding
the maximum likelihood for the data points is challenging. Equation (2.9) and (2.10) show the
mathematical description of a Gaussian mixture model [Aggarwal and Reddy, 2018] (sec. 3.2.2).

14



2. Common clustering methods

p
�
xn|π, µ,Σ

�
=

K

k=1

πkN
�
xn|µk,Σk

�
(2.9)

N �
x|µ,Σ� = 1

(2π)
D
2

1

|Σ| 12
exp{−1

2

�
x− µ

�T
Σ−1

�
x− µ

�} (2.10)

with

xn ... vector of data points from kth Gaussian distribution

N ... multivariate Gaussian distribution

µ ... D-dimensional mean vector

Σ ... DxD covariance matrix

x ... D-dimentional data point vector

D ... dimension

|...| ... determinant

Due to the complexity of equation (2.9), an iterative method is used to determine the optimal pa-
rameters of each Gaussian distribution. The name of this method is Expectation - Maximation
(EM) algorithm [The MathWorks, Inc., 2022f] [Aggarwal and Reddy, 2018]. As the name sug-
gests, it consists of two main steps. These are executed until convergence. First, initial values
for the parameters (µ, Σ and π) are needed. These could be found by pre-clustering the data
set with another method. Then, posterior probabilities for each point are computed in respect
to the membership of a cluster. This is the so called E-step. Afterwards, during the M-step,
the parameters are updated and the log-likelihood is computed. Finally, the data points can be
assigned to the cluster related to the posterior probabilities [The MathWorks, Inc., 2022a].

To give an example, the Fisher’s Iris data set [FISHER, 1936] is clustered with a Gaussian
mixture model with 3 clusters. The result of clustering is shown in figure 2.9. Figure 2.10 shows
the underlying structure of the multivariate Gaussian distribution.

Figure 2.9.: Gaussian mixture model (number of
clusters: 3)

Figure 2.10.: Gaussian mixture model with contours
(number of clusters: 3)
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2. Common clustering methods

2.4. Density-based method - DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is one representative
method of density-based clustering [Han, 2011] [Schubert et al., 2017]. As input parameters the
�-neighbourhood and the MinPts (Minimum number of neighbours) are needed
[The MathWorks, Inc., 2022c]. When clustering a data set with DBSCAN the algorithm starts to
sign each point as "unvisited". Then a random point is selected and marked as "visited". With
the �-neighbourhood, which defines the radius for the neighbourhood search, the neighbours of the
current point are found. If the number of them is equal or greater than the number of MinPts,
the current point is assigned as a new cluster. Next, the algorithm goes through the neighbours
to mark them as "visited", if they are not yet marked. In addition, the �-neighbourhood of these
points are computed. The new found points are also added to the amount of neighbours. After
all neighbouring points have been marked as "visited", the cluster is output. The process is
repeated until no more points are marked as "unvisited". If there are not enough neighbours in
an area, the point is marked as "noise". Furthermore, if a point has already been assigned to a
cluster, it cannot be assigned to a cluster again. It follows that the clusters depend on how the
"unvisited" points are selected one after the other. The two parameters �-neighbourhood and
MinPts also have a large influence. However, the choice of suitable values is not trivial.

The figures 2.11 and 2.12 show the DBSCAN clustering method. The data set is the Fisher’s
Iris data set [FISHER, 1936]. The �-neighbourhood has the value 1.2. MinPts were assumed to
be 50.

Figure 2.11.: k-distance graph (MinPts = 50) Figure 2.12.: DBSCAN clustering (� = 1.2)
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2. Common clustering methods

2.5. Hierarchical clustering

In general, there are two possibilities to do a hierarchical clustering [Aggarwal and Reddy, 2018].
If all points are considered as one cluster at the beginning, which is divided afterwards, it is the so-
called divisive clustering method. Consequently, a top-down hierarchy of clusters is generated. In
contrast, in the agglomerative method, each point is a separate cluster which are subsequently
merged. This generates a bottom-up hierarchy. Hence, hierarchical methods perform nested
series of partitions, which is in contrast to paritional methods [Jain et al., 1999] [Nagy, 1968].

In this work the agglomerative clustering method is used in the context of the deformation
analysis method. As mentioned in the beginning each point is a separate cluster [Jain et al., 1999]
[The MathWorks, Inc., 2022b]. Due to that the first step in the algorithm is to compute pairwise
distances between all data points. An agglomerative hierarchical cluster tree (dendrogram, figure
2.13) is then derived from the calculated distances. It shows the individual links between the
points which leads to the similarity level. In this work the single link approach, which is similar to
the nearest neighbour search, is used [Aggarwal and Reddy, 2018] [The MathWorks, Inc., 2022b].
Hence, a link between two points shows the nearest neighbour. The same applies to groups of
data points. Finally, the dendrogram is cut at a certain level, which leads to the generation of
a cluster. However, different levels of cutting produce different clustering results. Furthermore,
there are various values for defining the cutting level. In this work the level is defined by setting
the maximum number of clusters.

The figures below (2.13, 2.14) shows the dendrogramm and the hierarchical clustering with 6
cluster of the Fisher’s Iris data set [FISHER, 1936].

Figure 2.13.: Dendrogram with Euclidean distance Figure 2.14.: Hierarchical clustering (number of
clusters: 6)
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2. Common clustering methods

2.6. Clustering analysis in geodesy

Historically, the first clustering methods were used in biology [Everitt, 2011]. Nowadays, cluster
analysis is used in many research areas, including geodesy. There are many applications where
cluster analysis is needed. The methods used in the course of cluster analyses are often those
that were also compared in this work.

As expected, K-means is the most commonly used method when performing a cluster analysis.
For instance, it is used to cluster GNSS data [Higginson et al., 2015], airborne laser scanning
raw data [Morsdorf et al., 2003], satellite imagery [Lv et al., 2010] and in the study on the dis-
tribution of geodetic control points [Pokonieczny et al., 2017].

But also the other methods presented in section 2 can be found in publications. For example,
the hierarchical method is also used for satellite imagery [Häme et al., 2020]. A density-based
clustering method is used in [Amjad and Shah, 2020] for finding sites for solar farms. An example
of spectral clustering is given in [Xu et al., 2016], where it is used to cluster point clouds derived
from pictures. [Li et al., 2022] uses a fuzzy clustering method to analyse the signal for GNSS
measurements. The publication [Singh et al., 2021] uses the K-medoids method in connection
with a terrestrial laser scanning point cloud.

A publication, where a Gaussian mixture model is applied, is [Granat et al., 2021]. It is used for
the clustering of GNSS data to identify California’s Major Faults. It should also be said that sev-
eral cluster methods are also used in approaches. For example, in the study of [Praene et al., 2019]
about climate zone mapping a hierarchical method and K-means is used.

This chapter is intended to give a small insight into the different areas of application of a cluster
analysis in geodesy. It is by no means a complete description, but the result of a literature
research in the course of this work. In summary, it can additionally be said that in the research
directions of geodesy, cluster analysis is a frequently used tool.
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3. Further development of the deformation
analysis algorithm

In the following section an overview of the deformation analysis approach is given. Afterwards,
the changes are described. Each aspect, which has significant relevance to the final result, is
discussed in detail.

3.1. Overview of the deformation analysis algorithm

In the publication "A spatio-temporal deformation model for laser scanning point clouds" by
C. Harmening and H. Neuner an approach based on a least square collocation is described
[Harmening and Neuner, 2020]. This subsection should give a short introduction to the method.
Formula (3.1) shows the functional model of the deformation analysis approach.

l = Aϑ+ s+ � (3.1)

The first term Aϑ describes the deterministic trend where ϑ is the vector of unknowns. The
trend is subtracted from the vector of observations l. Consequently the phenomena is described
by the summation of the signal and noise (equation (3.2)).

l −Aϑ = s+ � (3.2)

The deformation is contained in the stochastic signal s. The signal is modelled also similar to
a least squares collocation. The last term represents the stochastic measurement noise �. The
signal and the noise are both assumed as normally distributed shown in equation (3.3) and (3.4).
The expected value is 0. Σ is the covariance matrix. Moreover correlations between the two
covariance matrices are excluded (equation (3.5)).

s ∼ N �
0,Σss

�
with Σss = σ2

0 ·Qss (3.3)

� ∼ N (0,Σ		) with Σ		 = σ2
0 ·Q		 (3.4)

Σs	 = Σ	s = 0 (3.5)

The trend A is realised by a B-Spline surface, which describes the initial geometry of the object.
It is related to the first measurement epoch. Since the deformed area is linked with the signal,
a distinction between deformed and stable regions is required. The distinction is realised by a
threshold. The criterion for distorted points is related to the standard deviation of the noise in
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3. Further development of the deformation analysis algorithm

the first measuring epoch. It is given in equation (3.6). It states that the absolute value of the
residual to the trend surface rx must be greater than 1.5 times of the standard deviation of the
noise in the first measuring epoch σ1

x.

| rx |> 1.5 σ1
x (3.6)

with

rx ... pointwise residual to trend surface

σ1
x ... standard deviation of the noise in the first measuring epoch

x ... coodinate (x,y,z)

| · | ... absolute value

The estimation of the signal is done in a multi-step way. In short, the localisation of locally
homogeneous areas is significant for modelling the corresponding standard deviation. For this,
a K-means clustering method is used. The corresponding standard deviations are the basis for
describing the deformation. Thereafter, the estimation of empirical autocorrelations and cross-
correlations can be done. The last steps are modelling the noise, filtering the results and doing
a prediction between the measured points.

Furthermore, it should be mentioned that the entire processes in the deformation analysis al-
gorithm are carried out separately in terms of coordinates. In addition, cross-coordinate and
cross-epoch processes are considered.

The used data set in this approach is simulated. It consist of three epochs. The epoch 1 is
describing the trend and has no deformed areas. In the two others one control point of the
B-Spline surface of the trend is shifted in the z-direction. The details of the dataset is described
below in section 4.

Finally, this work deals with only one part of the approach, the search for homogeneous areas
and the calculation of the representative standard deviations to normalize the residuals to the
trend surface. The aim is to close the gap between the computed residuals to the trend and the
normalized ones. The following sections discuss each aspect in detail.

3.2. Comparison of the clustering methods

In the above described approach the detection of locally homogeneous areas is realised by a
K-means clustering. As mentioned in section 2.1.1 the K-means algorithm selects the cluster
centroids randomly. Consequently, the clusters are different for each run, which partially leads
to different final results. First of all, finding an alternative to the K-means algorithm is discussed.
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3. Further development of the deformation analysis algorithm

3.2.1. Comparison based on the algorithm

As a first step the single clustering methods will be discussed in more detail. The clustering
methods introduced in section 2 have different criteria to select the points for clusters. In
addition, the aim is to have the same output after clustering the same data.

Compared to the described methods, the DBSCAN method needs an additional threshold to
compute the clusters (� neighbourhood, section 2.4). The threshold is dependent on the distance
between the points and the number of points in the neighbourhood. This is a handicap for an
automated algorithm, because the value of the � neighbourhood has to be specified by hand.

As the Fuzzy C-Means clustering algorithm (FCM) is just a soft clustering variant of K-means and
the Gaussian mixture model algorithm chooses the initial parameters with the k++-algorithm, it
is not surprising that both clustering methods have different results according to the composition
of the clusters after each run of the deformation analysis algorithm. Therefore, both methods
are not suitable for the aim of this work. Nevertheless, it should be mentioned that only these
two methods support the implementation of soft clustering. According to that, combinations
will be tried to achieve soft clustering implementation in the deformation analysis approach (see
section 3.4).

Although the K-medoids method is also a variant of K-means, it could lead to more similar cluster
results. Since the medoids are actual data points and the minimization process is performed with
an absolute-error criterion. The cluster assignment is less influenced by outliers in the data points.
However, the randomly chosen initial medoids lead to significant variations in the clusters.

In contrast, the spectral clustering and the hierarchical clustering partition the data set according
to a computed data graph. Thus, using distances between the data points should always lead to
the same clustering result. Even though the influence of the K-means algorithm in the spectral
clustering is not assessable, the method will still be considered.

As a result the two clustering methods: spectral clustering and hierarchical clustering look
promising in terms of the computational algorithm. Table 3.1 gives an overview of the first
exclusion. Finally, the need to specify the number of clusters has been deliberately omitted.
This aspect is described in more detail in section 3.6.

Table 3.1.: Overview of the first exclusion

method usability
K-means X

FCM X
GMM X

DBSCAN X
K-medoids X
spectral

hierarchical
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3. Further development of the deformation analysis algorithm

3.2.2. Comparison based on the behaviour in the deformation analysis approach

After a look at the algorithm of the individual clustering methods, they were tested in the
deformation analysis approach. Although a first exclusion was made in section 3.2.1 all clustering
methods are considered. The reason was to see the analysis results in comparison to the use of
the K-means method in the clustering process. This also avoids exclusion of methods that are
based only on theoretical assessment. It also allows the potential of each clustering method to
be evaluated in terms of final results.

The following tables 3.2 - 3.4 show the results of the tests. The methods were tested with
the default parameters of the MATLAB® functions [The MathWorks, Inc., 2022i]. The analysis
consisted of the variation of the number of clusters and the weight in the used feature vector.
Equation (3.7) shows the feature vector with the changeable variables.

f e
x,y,z =

�
rex,y,z · a xe · b ye · b ze · b

�
(3.7)

with

fx,y,z ... feature vector in x,y,z-direction

rx,y,z ... residuals to trend surface in x,y,z-direction

x, y, z ... vector of x,y,z-coordinates

a ... weight for residuals

b ... weight for coordinates

e ... epoch

Table 3.2.: Overview of results part 1

method

K-means [mm] K-medoids [mm]
number with weight with weight

of a = 1000 a = 1 a = 1000 a = 1
clusters b = 0.01 b = 0.05 b = 0.01 b = 0.05

5 -5 - 5 -5 - 5 -4 - 2 -5 - 5
6 -5 - 5 -6 - 4 - - - -5 - 5
7 -5 - 5 -500 - 500 - - - -10 - 10
8 - - - -40 - 20 - - - -5 - 10
9 - - - -5 - 5 - - - -20 - 80
10 -5 - 5 -20 - 20 - - - -5 - 5
11 - - - -100 - 200 - - - -8 - 4
12 - - - -20 - 20 - - - -5 - 5
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3. Further development of the deformation analysis algorithm

The shown results in millimetres are the range of the discrepancies to the nominal surface in the
z-coordinate of epoch e = 3. This is the epoch with the biggest deformation in the z-direction.
The best results are in bold letters. These are determined with the lowest range in millimetres
and the lowest values in the two considered weights of the feature vector.

Table 3.3.: Overview of results part 2

method

FCM [mm] DBSCAN [mm]
number with weight with weight

of a = 1000 a = 1 a = 1000 a = 1
clusters b = 0.01 b = 0.05 b = 0.01 b = 0.05

5 - - - - - - - - - - - -
6 - - - -5 - 5 - - - - - -
7 - - - -5 - 5 - - - - - -
8 - - - - - - - - - - - -
9 - - - - - - - - - - - -
10 - - - -2 - 2 - - - - - -
11 - - - - - - - - - - - -
12 - - - -4 - 2 - - - - - -

Table 3.4.: Overview of results part 3

method

GMM [mm] spectral [mm] hierarchical [mm]
number with weight with weight with weight

of a = 1000 a = 1 a = 1000 a = 1 a = 1000 a = 1
clusters b = 0.01 b = 0.05 b = 0.01 b = 0.05 b = 0.01 b = 0.05

5 -4 - 4 -4 - 2 - - - -5 - 10 -2 - 4 - - -
6 -5 - 5 -2 - 2 - - - -20 - 40 -5 - 5 - - -
7 -5 - 5 -5 - 5 - - - - - - -10 - 10 -4 - 4
8 -2 - 2 -5 - 5 - - - -10 - 10 -5 - 10 -5 - 5
9 -10 - 5 -4 - 4 - - - -5 - 10 -5 - 5 -5 - 5
10 -2 - 2 -5 - 5 - - - -6 - 4 -4 - 4 -5 - 5
11 -4 - 2 -2 - 2 - - - -6 - 2 -100 - 50 -4 - 4
12 -2 - 2 -2 - 2 - - - -8 - 4 - - - -4 - 4

Obviously, the DBSCAN method was not able to pass the test. Although different parameters
were tested, the deformation analysis approach was not able to compute final results. The
problem was the approximation of autocorrelation and cross-correlation functions, which are
linked to the clusters and their distribution on the object.
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3. Further development of the deformation analysis algorithm

Figure 3.1 shows the clusters with DBSCAN with 10 clusters in z-direction of epoch e = 3.
The distribution of the darkblue cluster is the reason for no final results. It is related to the
assumption of the underling process which describes the signal (see section 3.3). To fit this
description, the clusters must have a compact form. This is obviously not the case here.

Figure 3.1.: Clusters DBSCAN (number of clusters = 10)

All other methods were able to produce analysis results. But the range of the remaining dis-
crepancies is very different. As mentioned above also the potential of the clustering methods
according to the analysis results was an aspect of the tests. It should be emphasized that the
two methods GMM and FCM, which allow soft clustering, force the smallest discrepancies to the
nominal surface. Just as with the DBSCAN method the distribution of the clusters is crucial for
computing final results. Adding to this is the strikingly strong dependence of the weights in the
feature vector. Also the selection of a proper number of clusters is so far not clearly evident.

Table 3.5 shows another overview of the second exclusion in context with the performance in
the deformation analysis approach. The K-means is excluded not only because of the aim to
replace it in the analysis approach. It also provides the biggest results in comparison with the
other methods. Due to the good results of GMM and FCM, they will be considered again. The
K-medoids method is also considered again because of the better results than K-means.

Table 3.5.: Overview of the second exclusion

method usability
K-means X

FCM
GMM

DBSCAN X
K-medoids
spectral

hierarchical
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3. Further development of the deformation analysis algorithm

3.2.3. Discussion

As a last check the best constellation from the clustering methods were executed 5 times repeat-
edly. The result reflected the statement done in section 3.2.1. In summary, the two clustering
methods, spectral clustering and hierarchical clustering, are suitable methods for the deformation
analysis method. Because their clustering result and their final results were exactly the same
every time. The following table 3.6 shows the final exclusion.

Additionally, as mentioned in 3.2.2, the remaining discrepancies to the nominal surface with the
Fuzzy C-Means clustering algorithm and the Gaussian mixture model are the smallest. This
intensified the idea to combine cluster methods to gain the advantages of the soft clustering.

Table 3.6.: Overview of the final exclusion

method usability
K-means X

FCM X
GMM X

DBSCAN X
K-medoids X
spectral

hierarchical

The cluster result is not the only factor, which has a high influence on the final results. Two
examples of the others are the calculation of the standard deviations to normalize the residuals to
the trend surface and the approximation of the autocorrelation and cross-correlation functions.
In sections 3.3 and 3.5 the calculation of the standard deviations is described in detail. The
influence of the correlation functions is briefly discussed in section 4 in respect to the chosen
data sets. The detailed discussion is part of future work.

3.3. Hard clustering implementation

In this section the modelling of the corresponding standard deviations of each cluster with re-
spect to the hard clustering implementation will be discussed. In [Harmening and Neuner, 2020],
it was found that the change of a locally stationary standard deviations can be used to produce
deformations on the surface. For that only the residuals to the trend are needed. The process
is assumed to be a locally stationary stochastic process. This consists of two parts: a station-
ary correlation function and a slowly varying scale. Both aspects are assumed to be normally
distributed. In this work the stationary correlation function used in the deformation analysis
approach are taken over. However, the slowly varying scale represented by the locally stationary
standard deviation of each cluster is influenced by the clustering result. Therefore, the calcula-
tion of the locally stationary standard deviation is an important component for evaluating the
modelling of the signal.
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3. Further development of the deformation analysis algorithm

Figure 3.2 shows the clustering result of the z-coordinate of epoch e = 3. Each cluster represents
an area with similar residuals. Therefore, a representative standard deviation for each cluster
σe
x,c can be determined. For this purpose, the absolute value of the maximum residual of the

cluster is divided according to the 3-sigma rule (equation (3.8)).

Figure 3.2.: Hard clustering: clustering result

σe
x,c =

max
�
| rex,c |

�
3

(3.8)

with

σe
x,c ... representative standard deviation per cluster

rex,c ... residuals per cluster

x ... coodinate (x,y,z)

c ... cluster number

e ... epoch

| · | ... absolute value

Due to the fact that the signal exists only in the distorted area a representative standard deviation
of the stable area is not needed. Finally, the residuals of each point were normalized by the related
representative standard deviation. Figure 3.3 shows the calculated standard deviations in the
z-coordinate of epoch e = 3. The residuals to the trend surface in the z-coordinate of epoch
e = 3 are shown in figure 3.4.
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3. Further development of the deformation analysis algorithm

Figure 3.3.: Hard clustering: calculated standard
deviations

Figure 3.4.: Hard clustering: residuals to trend
surface

The main objective is to reproduce the progression of the residuals to the trend surface with the
calculated standard deviations. The result looks promising. However, the process is described
with a slowly varying scale. Now, the representative standard deviation are calculated for each
cluster. Therefore, the value changes abruptly. This causes sharp edges around each cluster.
Furthermore, the edge region also has a gap between the calculated standard deviations. For
improving this crossover the soft clustering method was investigated (see section 3.5).

Figure 3.5 shows the schematic structure of the initial and updated clustering process. The initial
one is the approach introduced in [Harmening and Neuner, 2020]. The updated approach has its
only difference in the applied clustering method. The figure states that in the updated approach
the combination of the two clustering methods, spectral clustering and Gaussian mixture model,
is used. This is the outcome of the investigation, where the hierarchical method and spectral
method where combined with the Gaussian mixture model. It is described in the following section
3.4.

Figure 3.5.: Initial and updated approach
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3. Further development of the deformation analysis algorithm

3.4. Combination of clustering methods

During the test of the clustering methods within the deformation analysis approach, the addi-
tional parameters for each methods described in [The MathWorks, Inc., 2022i] where also briefly
investigated. Due to the good results of the Gaussian mixture model (GMM) and the Fuzzy
C-Means clustering algorithm (FCM) section 3.2.2 these two were closely looked at regarding
the implementation in the analysis approach. Especially, the function for the GMM has the
advantage to set a previous clustering as a starting parameter. For the FCM this is not possible.
As mentioned above, implementing the soft clustering was an additional aspect which should be
tested in the deformation analysis approach. Also the transition from a deformed to a stable
region could then be considered in the clustering result. The reason why soft clustering would
be an advantage lies in the description of the underlying process. It is discussed in section 3.5.
But as a first test only the deformed area with hard clustering implementation was investigated.

Since the spectral clustering method and the hierarchical clustering method are the most suitable
(see section 3.2.3), these will be tested in combination with the Gaussian mixture model. The
same aspects and feature vectors used in the test in section 3.2.2 were used for the combinations
of clustering methods. Also the table 3.7 has the same structure.

Table 3.7.: Overview of results with combined clustering methods

method

spectral and GMM [mm] hierarchical and GMM [mm]
number with weight with weight

of a = 1000 a = 1 a = 1000 a = 1
clusters b = 0.01 b = 0.05 b = 0.01 b = 0.05

5 -5 - 5 -2 - 4 -4 - 2 - -
6 - - - -2 - 2 -4 - 2 - - -
7 -5 - 10 -2 - 4 -5 - 5 - -
8 - - - -100 - 100 -5 - 5 - - -
9 -5 - 5 -10 - 10 -4 - 2 - - -
10 -20 - 20 -5 - 10 -2 - 2 - - -
11 -40 - 60 -6 - 4 -5 - 5 - - -
12 -5 - 10 -5 - 5 -20 - 20 - - -

In contrast to the results from the test in section 3.2.2, the spectral clustering produces final
results with one weighting of the feature vector as well as with the other. However, the hierar-
chical methods only works with one weighting. This shows, that the feature vector has different
impact on each clustering method and combination. Which opened another question regarding
the feature vector. The further investigations are described in section 3.7.
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However, both combinations could stabilize the analysis results also after repeated executions.
The following two figures (3.6 and 3.7) show the clustering result with the best constellation of
the combination in the z-direction of epoch e = 3. For comparison, the clustering result of the
K-means method is shown in figure 3.8.

Figure 3.6.: Updated clustering process: spectral +
GMM method (number of clusters: 6)

Figure 3.7.: Updated clustering process:
hierarchical + GMM method (number

of clusters: 10)

Figure 3.8.: Initial clustering process: K-means
method

Finally, the clustering result of the combination of spectral clustering with the Gaussian mixture
model reflects the deformation slightly better than with the hierarchical clustering. Especially,
the yellow and green clusters in figure 3.6 show the conical deformation caused by the shift of
the control point of the B-Spline surface of the trend. Therefore the combination of spectral
clustering and Gaussian mixture model is chosen as the most suitable alternative to K-means.
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3.5. Soft clustering implementation

Since the combination of clustering methods works, it is now feasible to benefit from the proper-
ties of the Gaussian mixture model. As described in section 2, the posterior probability of points
in a cluster are distributed according to the Gaussian distribution. Therefore, it is now possi-
ble for points to be assigned to multiple clusters. Especially the edge regions of a cluster gain
smoothness. Consequently, the clustering result can reflect the shape of the locally stationary
stochastic process more accurately.

The results of testing the Gaussian mixture model in combination with the spectral clustering
method on the deformed part of the point cloud are described in section 3.4. There it was used
as a hard clustering implementation. Since it makes no difference on the clustering result when
using soft clustering, no additional test is needed. Although, the posterior probabilities of the
data points regarding to the clusters influences the calculation of the representative standard
deviations.

However, also the edge region from the stable to the deformed region should be included in
the clustering process. For this two feature vectors, each for one clustering method is defined.
Therefore, the clustering process is split up in two steps. The feature vector for the spectral
clustering method consists of the values belonging to the deformed declared points. The second
feature vector, the one for the Gaussian mixture model, is basically an extension of the first
feature vector. The values added are associated with the stable declared points in the vicinity
of the deformed area. Additionally, the clustering result of the spectral clustering method is set
as starting parameter for the Gaussian mixture model. The added points in the second feature
vector are introduced as one additional cluster. Therefore, the number of cluster has to be
increased by one.

This approach is the result of testing various combinations of properties in the clustering methods
and different uses of the feature vector. When pre-clustering the deformed area, the focus in
the clustering result remains on this region. During the tests the importance of choosing a
suitable number of clusters became evident. Also the specification of a feature vector proved to
be challenging. The results are presented in sections 3.6 and 3.7. The influence of adding the
surrounding points is discussed in section 3.8.

Figure 3.9 shows the clustering result. It is noticeable that the edges of the clusters are blurrier
than with the hard clustering implementation in the updated approach. This provides additional
support in modelling the locally homogeneous standard deviations.
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Figure 3.9.: Soft clustering: clustering result

In the modification the posterior probability for each point is included. After finding σe
x,c (equa-

tion (3.8)), the representative standard deviation per point σe
x,point is computed. For this purpose,

the sum of the posterior probabilities of the representative variances vex,c is calculated. Equations
(3.9) and (3.10) show the calculation depending on the membership of the point to the deformed
and stable regions. The final step is to normalize the residuals with the representative standard
deviation for each point.

σe
1,x,point =

�						�
cmax−1�
k=1

pek · vex,c,k
cmax−1�
j=1

pej

=

�						�
cmax−1�
k=1

pek · σe2
x,c,k

cmax−1�
j=1

pej

(3.9)

σe
2,x,point =

�						�
cmax−1�
k=1

pek · vex,c,k
cmax�
j=1

pej

=

�						�
cmax−1�
k=1

pek · σe2
x,c,k

cmax�
j=1

pej

(3.10)

with

σi
1,x,point ... representative standard deviation per point

point is included in the deformed area

σi
2,x,point ... representative standard deviation per point

point is included in both areas, stable and deformed

x ... coodinate (x,y,z)

c ... cluster number

cmax ... maximal number of clusters

p ... posterior probability

e ... epoch
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By adding points from the stable region, these must also be taken into account when normalizing
the residuals to the trend surface. With the implementation of the soft clustering the points can
change their affiliation to the deformed or stable area after the clustering. In this approach, the
assignment before the clustering process is used to normalize the residuals to the trend surface.
However, the assignment after the clustering process is used for further calculations.

The figures 3.10 and 3.11 shows the calculated standard deviations and the residuals to the trend
surface. Both show the results in the z-coordinate of epoch e = 3. In contrast to the results with
the updated approach the edges of the clusters are smoother and blend into each other. The
effects in the final results will be discussed in section 4.

Figure 3.10.: Soft clustering: calculated standard
deviations

Figure 3.11.: Soft clustering: residuals to trend
surface

3.6. Number of clusters

Undoubtedly, the choice of the number of clusters has a significant impact on the result. The
purpose is to determine this number automatically for each coordinate per epoch. However,
determining this number is the most challenging task in applying a clustering method to a
data set [Aggarwal and Reddy, 2018] [Xu and WunschII, 2005]. In the literature, several possible
methods for calculating the number of clusters are given. One selection is: Akaike Information
Criterion (AIC), Bayes Information Criterion (BIC), Calinski-Harabasz Index, Gap Statistic,
Silhouette Coefficient [Aggarwal and Reddy, 2018] [Xu and WunschII, 2005]
[The MathWorks, Inc., 2022d].

Several methods for choosing a suitable number of clusters were tested. Unfortunately, the
methods failed for consistency in the three coordinate directions. The biggest challenge was
the x-direction. Since the deformations are lowest there, the number of clusters was usually
underestimated. On the other hand, the number in the z-direction was sometimes overestimated
in epoch 3. The figures 3.12 and 3.13 show examples of poor clustering results.

During a literature search for finding more methods, the subclust [The MathWorks, Inc., 2022k]
method was discovered. This MATLAB® method uses a subtractive clustering algorithm. First,
the likelihood of being a cluster center for each point is calculated. It is referred to the density
of surrounding data points. Then the first cluster center is chosen by the highest potential being
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Figure 3.12.: Number of clusters: underestimated
x-direction

Figure 3.13.: Number of clusters: overestimated
z-direction

one. Afterwards, the neighbours are deleted as potential cluster centres. The criterion defining
the neighbourhood is called clusterInfluenceRange. It was empirically set to the value 0.6 in this
work. In the remaining points the next cluster center is found and the neighbours are excluded.
The algorithm is finished when all data point have a cluster center in their influence range.

In addition, it should be mentioned that the Gaussian mixture model method reduces the number
of clusters when it is to high. This characteristic was suppressed by the above described method.
The clustering results was also improved as a result. The determination on this method was
made in the progression of the investigations on the feature vector and the transition area of the
deformed area. These are described in the following two sections (3.7 and 3.8).

3.7. Feature vector adjustment

Another aspect, which was considered in the course of the work, is the adjustment of the feature
vector for clustering. While searching for a suitable solution for calculating the number of
clusters, it became apparent how strongly this was related to the change in the weights in the
feature vector. After defining the clustering process with the combination of spectral clustering
and the Gaussian mixture model (section 3.4), it became clear that this makes the weighting in
the feature vector obsolete.

But the clustering results in combination with the innovations of the deformation analysis ap-
proach were not satisfying. Therefore, other constellations of the vector were tested. Since the
deformation analysis approach separates the coordinates and the epochs a feature vector which
fulfills this criterion has to be found. The equation (3.7) shows the feature vector which was
used in [Harmening and Neuner, 2020]. The basic principle is to cluster the residuals to the
trend surface. To localize the data point onto the surface the three coordinates vectors were
added. During the tests it was found that the coordinate vector of the corresponding direction
to the residual vector has the main impact on the clustering result. Consequently, only the
supplementary coordinates vectors were added to the feature vector. The comparison is shown
in the figures 3.14 and 3.15.
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Figure 3.14.: Feature vector: all three coordinates
directions are used

Figure 3.15.: Feature vector: the supplementary
coordinates directions are used

Obviously, the number of clusters are changing with the different feature vectors. In addition,
the clustering result reflects the progression of the residuals better in figure 3.15. There the
cluster in the center is divided which increases the knowledge of the progression of the residuals.
However, the darkblue cluster is not describing the distribution of the residuals to the trend
surface. According to that an additional variable has to be found which leads to a more accurate
similarity graph for the spectral clustering.

Figure 3.16 shows the clustering result with the final constellation of the feature vector. The
variable used instead of the corresponding coordinate consists of the absolute values of the
residuals to the trend surface. It was challenging to find it, but due to the fact the representative
standard deviations are modelled according to the absolute value of the maximum residual it was
then obvious to try out the variable. Furthermore, the absolute value can also be interpreted as
the distance of the point to the trend surface. The final constellation of the feature vector for
the x-direction is shown in equation (3.11). For comparison, the corresponding residuals to the
trend surface are shown in figure 3.17.

Figure 3.16.: Feature vector: final constellation Figure 3.17.: Feature vector: residuals to trend
surface
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f e
x =

�
rex | rex | ye ze

�
(3.11)

with

fx ... feature vector in x-direction

rx ... residuals to trend surface in x-direction

x ... vector of x-coordinates

e ... epoch

| · | ... absolute value

3.8. Edge region of the deformed area

While setting up the new clustering approach the question about the edge region between the
deformed and stable area raised. Because of the Gaussian mixture model which should find
clusters according to the Gaussian distribution the points with high residuals were clustered
across the whole data set. Although, the deformed part is located in the center of the object
points at the edge of the object were also clustered as deformed (see figure 3.18). These higher
values are related to the trend estimations in the first epoch. The aim was to filter these points
which are away from the deformed part. The idea is to find the biggest influence range of the
deformation according to the stable area. Since the x-direction causes the most clustered points
at the edges of the object because of the smallest deformation in this direction. Thus, the focus
was set on this coordinate direction.

Figure 3.18.: Edge region: the whole data set is
used for the clustering process

Figure 3.19.: Edge region: a part of the data set is
used for the clustering process

The stable declared points which take part at the clustering process are found by a nearest
neighbour search routine. For that, the neighbours of the deformed declared points are searched.
The number of them are two times the number of all deformed points. This value has been
determined purely empirically with focus on the x-coordinate. Figure 3.19 shows the clustering
result.
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Figure 3.20.: Edge region: final clustering result

For the z-coordinate in epoch 2 the approach shows the worst results. Therefore, after the
clustering precess another nearest neighbour search is applied to delete clustered points in the
surrounding. However, this filtering also affects the cluster edges of the deformed area (see figure
3.20). This improvement is part of future work.

3.9. Summary of the new approach

In this section the implemented algorithm is described. In addition, an overview of the selected
parameters is given. Figure 3.21 shows the schematic structure of the new approach.

Figure 3.21.: New approach
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3. Further development of the deformation analysis algorithm

First of all, the variables which contains the indices about the stable declared points and the
deformed ones are taken over. The only additional variable needed contains the residuals to the
trend surface.

The first step in the clustering process finds the neighbours of the deformed points in the sta-
ble area (light purple boxes). The number of these neighbours is defined to be two times the
number of deformed points. As mentioned in section 3.8 the value is determined empirically.
Next, the two feature vectors can be set up (yellow and purple boxes). One only with the
values regarding to the deformed declared points. The second one is an extension of the first
one with the neighbours of the deformed declared points. The form of the feature vectors is
shown in equation (3.11). Afterwards, the number of clusters is found by the subclust method
[The MathWorks, Inc., 2022k]. The extended feature vector (feature vector 2, purple box) and
the clusterInfluenceRange with the value 0.6 are used as parameters. This procedure produces
the most suitable clustering result with respect to the progression of the residuals to the trend
surface.

For the spectral clustering method (see section 2.2, left red box) the feature vector describing the
deformed part is used. The distance calculation is set to the Euclidean distance. The number
of nearest neighbours is the same as above. Both influence the structure of the similarity graph.
The type of the similarity graph is the k-nearest neighbour graph. The K-medoids method is
chosen for clustering the eigenvectors of the Laplacian matrix. The number of clusters is that one
from the subclust method. Parameters which are not mentioned are the default ones described
in [The MathWorks, Inc., 2022j].

The following Gaussian mixture model (right red box) clusters all points to be clustered (feature
vector 2). Since the selected stable points are now added to be clustered the number of clusters
is increased by one. The clustering result of the spectral clustering is used as the first estimate
of the cluster membership. The selected stable points are introduced as one cluster. Additional
parameters are the CoveType which is set to diagonal and the SharedCovariance which is set
to true. It follows, that the fitted covariance matrices in the algorithm is a diagonal matrix.
Additionally, they are assumed to be identical. Thus, the data are assumed to be uncorrelated
and equally weighted.

After the clustering process the result is filtered with a nearest neighbour search to find clus-
tered points in the stable area, which are obviously surrounded by stable points. Then the
representative standard deviations are calculated as described in section 3.5 (bottom gray and
blue box). The following parts of the deformation analysis algorithm is taken over as described
in [Harmening and Neuner, 2020]. Only the approximations of the autocorrelation functions and
cross-correlation functions were adapted to the progression of the newly calculated ones.
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4. Data and results

In this section the analysis results of the new approach (figure 3.21) with respect to the initial
and updated approach (figure 3.5) are shown and discussed. In addition, the outcome is shown
with further data sets. For reasons for better readability, only few representative figures are
shown in this section. All remaining plots are listed in the appendices.

4.1. Data set D1

Data set (D1) is taken over from [Harmening and Neuner, 2020]. However, the figures are of an
later execution of the algorithm. Therefore the results pictured in the figures referred to the
initial approach are not equal to those in [Harmening and Neuner, 2020].

The simulated data set consists of three epochs. The first one has no deformed parts and is
realised by a B-Spline surface. For the second and third epoch the control point P4,5 is shifted
in the z-coordinate. The figure 4.1 shows the control point P4,5 red circled and its location in
relation to the B-spline surface. Table 4.1 shows the shift of the control point per epoch with
respect to the previous epoch. An illustration of the deformation in the middle of the point cloud
is given in figure 4.2.

Figure 4.1.: D1: trend surface with control points Figure 4.2.: D1: illustration of the deformation in
the point cloud

Table 4.1.: Overview of the shift each epoch of P4,5 in the z-coordinate

epoch P4,5 shift [mm]
0 0
1 50
2 25
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4. Data and results

4.2. Comparison of the clustering result

In figure 4.3 one clustering result of the initial approach is shown. All figures of the results of
the dataset can be found in the appendix A. It was created by the application of the K-means
clustering method. Only the deformed declared points with equation (3.6) were used for the
clustering process. In the center of the clustered area the clusters form concentric circles. This
reflects the deformation of the surface. However, the clusters at the edge region of the clusters
only suggest a circular shape.

Figure 4.3.: Clustering result: z-direction of epoch 3
- initial approach

Figure 4.4.: Clustering result: z-direction of epoch 3
- updated approach

In comparison, the clustering result of the updated approach can be seen in figure 4.4. For
complete figures on the results of the dataset, see appendix B. Also for this only the deformed
declared points are used. The division of the clusters is similar to the K-Means method but they
have a more compact form. Also the cluster number decreased. This is due to the Gaussian
mixture model, which attempts to create clusters with respect to Gaussian distributed posterior
probabilities for the membership of a cluster per point.

Figure 4.5.: Clustering result: z-direction of epoch 3 - new approach
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In contrast, the clustering result of the new approach better reflects the progression of the
residuals to be clustered (see figure 4.5 and appendix C). All clusters have the form of concentric
circles. One reason of the blurred crossover between the clustered and not clustered (yellow
points) area is the use of the Gaussian mixture model as second clustering method. A second
reason is that points declared stable were also included in the clustering process. Overall, the
clustering result in the new approach reflects the progression of the residuals to the trend surface
in more detail.

4.3. Comparison of the calculated standard deviations

The aim of the clustering process is to reconstruct the progression of the residuals to the trend
surface. These are shown for the z-direction in the third epoch in figure 4.6. In figure 4.7 the
result of the initial approach is pictured. The main difference to the results of the updated
approach (figure 4.8) is in the middle of the deformed area. It is caused by the varying number
of clusters in this area. In the edge region to the stable region are no significant differences.

Figure 4.6.: Calculated standard deviations:
z-direction of epoch 3 - residuals to

trend surface

Figure 4.7.: Calculated standard deviations:
z-direction of epoch 3 - initial approach

Figure 4.8.: Calculated standard deviations:
z-direction of epoch 3 - updated

approach

Figure 4.9.: Calculated standard deviations:
z-direction of epoch 3 - new approach
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Additionally, the result of the new approach is shown in figure 4.9. In contrast to the other results
the edge region to the stable area better reflects the progression of the residuals. However, the
area the highest deformation is also separated from the smooth region all around. In summary,
the edge region is better approximated with the new approach. The initial approach, on the
other hand, reproduces the maximum deformation better.

4.4. Comparison of the analysis results

A quick look at the analysis results shows that the new approach basically works well. However,
it is interesting to note that the z-direction with the largest deformation gives better results than
the y-direction. One possible reason is that the approximation of the autocorrelation function is
worse in the y-direction than in the z-direction. The figures 4.10 and 4.11 show the discrepancies
to the nominal surface in comparison to the initial and new approach. In the results of the
new approach structures describing the edge of the deformed area clearly can be seen. This
additionally indicates that the normalization of the residuals with the representative standard
deviations per data point is not yet fully developed. But also the approximation of the calculated
autocorrelation functions is not yet optimized. In this case the approximation is worst in the
y-direction, which is also reflected in the results.

Figure 4.10.: D1: y-direction discrepancies to
nominal surface - initial approach

Figure 4.11.: D1: y-direction discrepancies to
nominal surface - new approach

The Cumulative Distribution Functions (CDF) allow easier comparison between the three ver-
sions of the deformation analysis algorithm: initial approach, updated approach and new ap-
proach. They are shown in the figures 4.12 - 4.14 with respect to the residuals of the collocation.

Unsurprisingly, the x-direction has residuals within the smallest range. The majority of the
residuals lies in the interval from -1 to 1. In the two other directions, the majority of the values
are larger by 2 mm overall. The z-direction shows the largest absolute values with up to 8 mm.
In contrast to the y-direction, these are symmetrically distributed around the mean value. The
residuals of collocation in the y-direction of the new approach have larger negative values than
positive. This can also be seen in the figure of the residuals of collocation (4.15). The structures
appear weaker than in figure 4.11. The comparison shows that the deformation is still mapped
in the noise.
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4. Data and results

Figure 4.12.: Cdf: x-driection Figure 4.13.: Cdf: z-direction

Figure 4.14.: Cdf: y-direction Figure 4.15.: D1: y-direction residuals of collocation
- new approach

4.5. Further data sets

To ensure that the developed method does not only work on one data set, others were tested.
For this purpose, deformations were simulated at other locations of the point cloud by moving
control points of the trend surface. In general, the results show the same phenomena as with the
original data set. In data set D2 a single control point was shifted with the same values used for
the data set D1 (see table 4.1). Due to the different curvature of the surface, there is a different
deformation pattern. This is better represented by the representative standard deviation with
the initial approach. The comparison can be seen in the figures 4.16 - 4.18.

Figure 4.16.: D2: clustering result - initial approach Figure 4.17.: D2: clustering result - new approach
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Figure 4.18.: D2: residuals to trend surface - x-direction epoch 3

The differences in the final results have the same behaviours as with the data set D1. Especially,
structures describing the edge region of the deformed area occur also within the results of the
additional data sets. The figures 4.19 and 4.20 show the difference between the initial approach
and the new one in the residuals of collocation in z-direction. It is noticeable that they are
mainly visible in the z-direction, where the greatest deformation takes place. It follows that the
normalization of the residuals to the trend surface is not yet fully developed.

Figure 4.19.: D2: z-direction residuals of collocation
- initial approach

Figure 4.20.: D2: z-direction residuals of collocation
- new approach
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In figures 4.21 - 4.25 a similar comparison is pictured. In this data set D3 two control points
were shifted. The amount is equal to D1 and D2. However, the directions are opposite.

Figure 4.21.: D3: clustering result - initial approach Figure 4.22.: D3: clustering result - new approach

Figure 4.23.: D3: calculated standard deviations -
initial approach

Figure 4.24.: D3: calculated standard deviations -
new approach

Figure 4.25.: D3: residuals to trend surface - z-direction epoch 3
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A third additional data set D4 tested within the two approaches contains two control points
shifted in the same direction. Again, the amount is the same as in D1. The comparison of the
calculated standard deviations is shown in the figures 4.26 - 4.28. Even though the residuals are
better represented by the new approach, the structures in the collocation residuals are clearly
visible. These can be seen in figure 4.29.

Figure 4.26.: D4: calculated standard deviations -
initial approach

Figure 4.27.: D4: calculated standard deviations -
new approach

Figure 4.28.: D4: residuals to trend surface -
z-direction epoch 3

Figure 4.29.: D4: z-direction residuals of collocation
- new approach

For completeness, it should be mentioned that smaller maximum deformations were also tested.
It can be said that if the deformations get smaller, the approach works less effective. This is
especially true for the clustering results. In conclusion, the approach presented in this thesis
provides reliable results. The phenomena, which still need to be improved, occur similarly in
all tested data sets. Compared to the initial approach the calculation routine for standard
deviations is not always reflecting the actual phenomena. This part of the algorithm still needs
to be improved.
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5. Conclusion

This section summarizes the results and discussions during this work. In addition, an outlook
for future work is given.

5.1. Summary

In [Harmening and Neuner, 2020] a new deformation analysis approach was published. This
work discussed the part of finding homogeneous areas in the deformed region of the point cloud.
Since the residuals to the trend surface based on the first measurement epoch contain information
about the deformation of the point cloud, their modelling is a main component of the solution
approach. Up to now, the K-means clustering method was used to define the homogeneous areas.
However, the algorithm involves a random process, which has a significant impact on the final
result of the deformation analysis algorithm. The main objective of this work was to find a
suitable alternative for the clustering method.

This was found by combining two clustering methods. Firstly, the spectral clustering, which
finds the membership of a point to a cluster based on a similarity graph of data points. The
second method is called Gaussian mixture model. Its clustering results consist of clusters related
to a Gaussian distribution.

In the search for a new clustering method, the calculation of the representative standard devia-
tions was also considered. Until now, each cluster was represented by a single locally stationary
standard deviation. However, this modelling did not reflect the underlying process. In this case,
a slowly varying scale factor is assumed. But the modelled values change abruptly at the clus-
ter edges and in the crossover to the stable region. Using the Gaussian mixture model, a soft
clustering approach could be implemented. Consequently, the modelling of the locally stationary
standard deviations could be adapted.

Another influence on the result was generated by the choice of the number of clusters. Since,
there is no explicit method for this, to find a suitable one for this purpose was challenging.
However, a MATLAB® supported function could be found, which provides appropriate results.
During this investigation the influence of the feature vector and the high values of the residuals
at the edges of the object became clear. However, a suitable approach which connects these three
recognized factors is provided in this work.
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5. Conclusion

Finally, the deformation analysis method introduced in [Harmening and Neuner, 2020] could
be further developed. Now the final results remains the same, if the algorithm is executed
repeatedly. Even if the discrepancies to the nominal surface are not improved related to the
values in [Harmening and Neuner, 2020], multiple factors with an influence on them could be
improved. Furthermore, there are other factors left, which are not discussed in this work.

5.2. Outlook

As mentioned above this work only deals with a part of the deformation analysis approach
introduced in [Harmening and Neuner, 2020]. During this work the connection between each
step of the algorithm became clearer. However, not all phenomena could be explained. Also
the fact that the estimation of the autocorrelation functions and the cross-correlation functions
are not investigated in dependence of the clustering result and the modelling of the standard
deviations and their standardization so far, makes it difficult to classify the influence of them to
the final results.

The new approach was tested with additional data sets. However, this was just a brief look if the
clustering methods produce useful results. Therefore, more detailed tests with additional data
sets need to be performed. Also a test with real measured data is missing up to now.

In conclusion, this work could improve some parts of the deformation analysis algorithm. How-
ever, the connection to the steps, which were not investigated, and their improvement is part of
future work.
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A. Results D1 (initial approach)

Appendix A lists the results of the clustering process, the calculated standard deviations and the
final results of the deformation analysis approach using the initial approach. They are sorted by
coordinate direction and epoch.

A.1. x-direction epoch 2

Figure A.1.: D1: x-direction clustering result epoch 2

Figure A.2.: D1: x-direction calculated standard
deviations epoch 2

Figure A.3.: D1: x-direction residuals to trend
surface epoch 2
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A. Results D1 (initial approach)

A.2. y-direction epoch 2

Figure A.4.: D1: y-direction clustering result epoch 2

Figure A.5.: D1: y-direction calculated standard
deviations epoch 2

Figure A.6.: D1: y-direction residuals to trend
surface epoch 2
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A. Results D1 (initial approach)

A.3. z-direction epoch 2

Figure A.7.: D1: z-direction clustering result epoch 2

Figure A.8.: D1: z-direction calculated standard
deviations epoch 2

Figure A.9.: D1: z-direction residuals to trend
surface epoch 2
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A. Results D1 (initial approach)

A.4. x-direction epoch 3

Figure A.10.: D1: x-direction clustering result epoch 3

Figure A.11.: D1: x-direction calculated standard
deviations epoch 3

Figure A.12.: D1: x-direction residuals to trend
surface epoch 3
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A.5. y-direction epoch 3

Figure A.13.: D1: y-direction clustering result epoch 3

Figure A.14.: D1: y-direction calculated standard
deviations epoch 3

Figure A.15.: D1: y-direction residuals to trend
surface epoch 3
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A. Results D1 (initial approach)

A.6. z-direction epoch 3

Figure A.16.: D1: z-direction clustering result epoch 3

Figure A.17.: D1: z-direction calculated standard
deviations epoch 3

Figure A.18.: D1: z-direction residuals to trend
surface epoch 3
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A. Results D1 (initial approach)

A.7. final results

Figure A.19.: D1: x-direction observations before
and after collocation

Figure A.20.: D1: x-direction residuals of
collocation

Figure A.21.: D1: x-direction discrepancies to
nominal surface

Figure A.22.: D1: x-direction noise

Figure A.23.: D1: y-direction observations before
and after collocation

Figure A.24.: D1: y-direction residuals of
collocation
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Figure A.25.: D1: y-direction discrepancies to
nominal surface

Figure A.26.: D1: y-direction noise
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Figure A.28.: D1: z-direction residuals of
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B. Results D1 (updated approach)

Appendix B lists the results of the clustering process, the calculated standard deviations and the
final results of the deformation analysis approach using the updated approach. They are sorted
by coordinate direction and epoch.

B.1. x-direction epoch 2

Figure B.1.: D1: x-direction clustering result epoch 2

Figure B.2.: D1: x-direction calculated standard
deviations epoch 2

Figure B.3.: D1: x-direction residuals to trend
surface epoch 2
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B. Results D1 (updated approach)

B.2. y-direction epoch 2

Figure B.4.: D1: y-direction clustering result epoch 2

Figure B.5.: D1: y-direction calculated standard
deviations epoch 2

Figure B.6.: D1: y-direction residuals to trend
surface epoch 2
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B. Results D1 (updated approach)

B.3. z-direction epoch 2

Figure B.7.: D1: z-direction clustering result epoch 2

Figure B.8.: D1: z-direction calculated standard
deviations epoch 2

Figure B.9.: D1: z-direction residuals to trend
surface epoch 2
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B.4. x-direction epoch 3

Figure B.10.: D1: x-direction clustering result epoch 3

Figure B.11.: D1: x-direction calculated standard
deviations epoch 3

Figure B.12.: D1: x-direction residuals to trend
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Figure B.13.: D1: y-direction clustering result epoch 3

Figure B.14.: D1: y-direction calculated standard
deviations epoch 3

Figure B.15.: D1: y-direction residuals to trend
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B. Results D1 (updated approach)

B.6. z-direction epoch 3

Figure B.16.: D1: z-direction clustering result epoch 3

Figure B.17.: D1: z-direction calculated standard
deviations epoch 3

Figure B.18.: D1: z-direction residuals to trend
surface epoch 3
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B. Results D1 (updated approach)

B.7. final results

Figure B.19.: D1: x-direction observations before
and after collocation

Figure B.20.: D1: x-direction residuals of
collocation

Figure B.21.: D1: x-direction discrepancies to
nominal surface

Figure B.22.: D1: x-direction noise

Figure B.23.: D1: y-direction observations before
and after collocation

Figure B.24.: D1: y-direction residuals of
collocation

XXIV



B. Results D1 (updated approach)

Figure B.25.: D1: y-direction discrepancies to
nominal surface

Figure B.26.: D1: y-direction noise

Figure B.27.: D1: z-direction observations before
and after collocation

Figure B.28.: D1: z-direction residuals of
collocation

Figure B.29.: D1: z-direction discrepancies to
nominal surface

Figure B.30.: D1: z-direction noise
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C. Results D1 (new approach)

Appendix C lists the results of the clustering process, the calculated standard deviations and the
final results of the deformation analysis approach using the new approach. They are sorted by
coordinate direction and epoch.

C.1. x-direction epoch 2

Figure C.1.: D1: x-direction pre-selection of points to be clustered areas epoch 2

Figure C.2.: D1: x-direction clustering result epoch
2 unfiltered

Figure C.3.: D1: x-direction clustering result epoch
2 filtered
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C. Results D1 (new approach)

Figure C.4.: D1: x-direction posterior probability
epoch 2 cluster 1 unfiltered

Figure C.5.: D1: x-direction posterior probability
epoch 2 cluster 2 unfiltered

Figure C.6.: D1: x-direction posterior probability
epoch 2 cluster 3 unfiltered

Figure C.7.: D1: x-direction posterior probability
epoch 2 cluster 4 unfiltered

Figure C.8.: D1: x-direction calculated standard
deviations epoch 2

Figure C.9.: D1: x-direction residuals to trend
surface epoch 2
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C. Results D1 (new approach)

C.2. y-direction epoch 2

Figure C.10.: D1: y-direction pre-selection of points to be clustered epoch 2

Figure C.11.: D1: y-direction clustering result
epoch 2 unfiltered

Figure C.12.: D1: y-direction clustering result
epoch 2 filtered

Figure C.13.: D1: y-direction posterior probability
epoch 2 cluster 1 unfiltered

Figure C.14.: D1: y-direction posterior probability
epoch 2 cluster 2 unfiltered
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C. Results D1 (new approach)

Figure C.15.: D1: y-direction posterior probability
epoch 2 cluster 3 unfiltered

Figure C.16.: D1: y-direction posterior probability
epoch 2 cluster 4 unfiltered

Figure C.17.: D1: y-direction calculated standard
deviations epoch 2

Figure C.18.: D1: y-direction residuals to trend
surface epoch 2
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C. Results D1 (new approach)

C.3. z-direction epoch 2

Figure C.19.: D1: z-direction pre-selection of points to be clustered epoch 2

Figure C.20.: D1: z-direction clustering result
epoch 2 unfiltered

Figure C.21.: D1: z-direction clustering result
epoch 2 filtered

Figure C.22.: D1: z-direction posterior probability
epoch 2 cluster 1 unfiltered

Figure C.23.: D1: z-direction posterior probability
epoch 2 cluster 2 unfiltered
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C. Results D1 (new approach)

Figure C.24.: D1: z-direction posterior probability
epoch 2 cluster 3 unfiltered

Figure C.25.: D1: z-direction posterior probability
epoch 2 cluster 4 unfiltered

Figure C.26.: D1: z-direction posterior probability
epoch 2 cluster 5 unfiltered

Figure C.27.: D1: z-direction calculated standard
deviations epoch 2

Figure C.28.: D1: z-direction residuals to trend
surface epoch 2
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C. Results D1 (new approach)

C.4. x-direction epoch 3

Figure C.29.: D1: x-direction pre-selection of points to be clustered epoch 3

Figure C.30.: D1: x-direction clustering result
epoch 3 unfiltered

Figure C.31.: D1: x-direction clustering result
epoch 3 filtered

Figure C.32.: D1: x-direction posterior probability
epoch 3 cluster 1 unfiltered

Figure C.33.: D1: x-direction posterior probability
epoch 3 cluster 2 unfiltered
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C. Results D1 (new approach)

Figure C.34.: D1: x-direction posterior probability
epoch 3 cluster 3 unfiltered

Figure C.35.: D1: x-direction posterior probability
epoch 3 cluster 4 unfiltered

Figure C.36.: D1: x-direction calculated standard
deviations epoch 3

Figure C.37.: D1: x-direction residuals to trend
surface epoch 3
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C. Results D1 (new approach)

C.5. y-direction epoch 3

Figure C.38.: D1: y-direction pre-selection of points to be clustered epoch 3

Figure C.39.: D1: y-direction clustering result
epoch 3 unfiltered

Figure C.40.: D1: y-direction clustering result
epoch 3 filtered

Figure C.41.: D1: y-direction posterior probability
epoch 3 cluster 1 unfiltered

Figure C.42.: D1: y-direction posterior probability
epoch 3 cluster 2 unfiltered
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C. Results D1 (new approach)

Figure C.43.: D1: y-direction posterior probability
epoch 3 cluster 3 unfiltered

Figure C.44.: D1: y-direction posterior probability
epoch 3 cluster 4 unfiltered

Figure C.45.: D1: y-direction calculated standard
deviations epoch 3

Figure C.46.: D1: y-direction residuals to trend
surface epoch 3
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C. Results D1 (new approach)

C.6. z-direction epoch 3

Figure C.47.: D1: z-direction pre-selection of points to be clustered epoch 3

Figure C.48.: D1: z-direction clustering result
epoch 3 unfiltered

Figure C.49.: D1: z-direction clustering result
epoch 3 filtered

Figure C.50.: D1: z-direction posterior probability
epoch 3 cluster 1 unfiltered

Figure C.51.: D1: z-direction posterior probability
epoch 3 cluster 2 unfiltered

XXXVI



C. Results D1 (new approach)

Figure C.52.: D1: z-direction posterior probability
epoch 3 cluster 3 unfiltered

Figure C.53.: D1: z-direction posterior probability
epoch 3 cluster 4 unfiltered

Figure C.54.: D1: z-direction posterior probability
epoch 3 cluster 5 unfiltered

Figure C.55.: D1: z-direction calculated standard
deviations epoch 3

Figure C.56.: D1: z-direction residuals to trend
surface epoch 3
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C. Results D1 (new approach)

C.7. final results

Figure C.57.: D1: x-direction observations before
and after collocation

Figure C.58.: D1: x-direction residuals of
collocation

Figure C.59.: D1: x-direction discrepancies to
nominal surface

Figure C.60.: D1: x-direction noise

Figure C.61.: D1: y-direction observations before
and after collocation

Figure C.62.: D1: y-direction residuals of
collocation
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C. Results D1 (new approach)

Figure C.63.: D1: y-direction discrepancies to
nominal surface

Figure C.64.: D1: y-direction noise

Figure C.65.: D1: z-direction observations before
and after collocation

Figure C.66.: D1: z-direction residuals of
collocation

Figure C.67.: D1: z-direction discrepancies to
nominal surface

Figure C.68.: D1: z-direction noise
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