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Kurzfassung

Die Entwicklung im Bereich der Datenaquisemethoden der vergangenen Jahre führt zu

immer größer werdenden Datensätzen. Dabei explodiert sowohl die Anzahl an Beobach-

tungen, als auch die Anzahl an Variablen. Klassische statistische Ansätze sind nicht

dafür ausgelegt, um mit dieser neuen Situation adäquat umgehen zu können. Insbeson-

dere flache Datenstrukturen mit mehr Variablen als Beobachtungen stellen ein erhe-

bliches Problem dar, da diese Situation zu Singularitäten im Rahmen der Berechnung

von statistischen Schätzern führt. Große Anzahlen an Variablen führen aber nicht nur

zu Problemen sondern eröffnen auch neue Möglichkeiten in der Datenanalyse.

Der am häufigsten angewandte Ansatz im Zusammenhang mit hochdimensionalen

Daten ist die Reduktion der Dimension durch Variablenselektion oder Methoden wie

z.B. Hauptkomponentenanalyse. Die Mehrheit dieser Ansätze berücksichtigt dabei die

Information des Komplementes der Projektion nicht, obwohl dort im Allgemeinen ein

Teil oder auch die Mehrheit der nützlichen Daten zu finden ist. Nur wenige Ansätze

(z.B. Hubert et al., 2005; Kriegel et al., 2012) erkennen diesen Aspekt an.

Wir entwickeln einen alternativen Projektionsansatz, der beide Informationen, die

Distanzen zwischen Beobachtungen, sowie die Distanz zum Projektionsraum berücksichtigt.

Zusätzlich vermeiden wir ein allgemeines Modell, das alle Daten gleichzeitig beschreibt,

sondern entwickeln eine Serie von Projektionen, die die lokale Datenstruktur beschreibt.

Diese Serie wird daher lokale Projektionen genannt. Wir stellen eine Reihe von Anwen-

dungsmöglichkeiten dieser lokalen Projektionen aus den Bereichen Datentransformatio-

nen, Darstellungsmethoden zur Erkennung von Datenstrukturen, Ausreißererkennung

und Klassifikationsanalyse vor. Jeder Ansatz verwendet die Möglichkeiten, die sich aus

lokalen Projektionen und den Distanzen innerhalb der Projektion und zur Projektion

ergeben, auf seine eigene Art und Weise.





Abstract

The development of data collection methods over the last decades led to increasingly

larger numbers of observations and variables. Classical statistical methods have not

been designed to deal with this new situation. Especially flat data structures, where

more variables than observations are present, pose the problem of singularities during

the computation of statistical estimators required for data analysis approaches. Large

numbers of variables do not just pose a problem in data analysis but also open up new

opportunities.

The most common practice in the context of high-dimensionality is the reduction of

dimension by variable selection or other projection approaches like principal components

analysis. The majority of those approaches does not take the information of the comple-

ment of the projection into account which typically still yields some if not the majority

of the useful information. Few approaches (e.g. Hubert et al., 2005; Kriegel et al., 2012)

acknowledge this aspect of high-dimensional data analysis.

We propose an alternative to projection methods taking both information, the dis-

tance between observations within the projection space as well as the distance to the

projection space into account. In addition, instead of using one overall model, we use

a series of projections, locally describing the data structure. Therefore, our projection

approach is named local projections. Several possibilities including data transformations,

diagnostics for groups in the data structure, outlier detection and supervised classifica-

tion methods based on local projections are presented. Each approach uses the oppor-

tunities of learning from the within-projection and to-projection distance in a unique

way.
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CHAPTER 1
Introduction

Statistics and data analysis methods for high-dimensional data have frequently been in

the focus of scientific endeavours over the last decades. The term high-dimensional refers

to large numbers of variables or features, describing the objects of interest. The interest

in high-dimensional data analysis can mainly be explained due to the vast amount of

data of all kinds which is collected nowadays, reaching from DNA Microarrays, over

spectra analysis data to social networks.

In traditional statistics many observations with few, well chosen variables are as-

sumed to be available. The trend shows that this assumption does not hold any longer.

During the data collection process it is not clear, what variables can be useful for ap-

plications which are not yet developed. Even more often, the questions are not defined

before the data collection process starts. This leads to the problems of high dimensional

data which are nowadays rule rather than exception (Bühlmann and Van De Geer, 2011).

We experience examples where the objects are described by thousands or even millions

of properties while only few objects are available for study. In extreme cases where fewer

variables than observations are available, we speak of flat data. Classical statistics is not

designed to deal with such datasets as pointed out by Donoho et al. (2000).

In this work we are concerned with possibilities to overcome the effects of high-

dimensional data on analysis approaches. Typically, statistical and machine learning

methods are concerned with the questions of supervised and unsupervised classification,

outlier detection etc. For each of those questions a variety of machine learning methods

are available where the vast majority uses distance measures, mostly Euclidean distances,

to separate classes, clusters and outliers.



1.1. High-dimensional and flat data analysis

In this chapter we first discuss the challenges of high-dimensional data-analysis in

Section 1.1 addressing dimensionality-based problems for statistical estimators as well

as possibilities emerging from the dimensionality. Section1.2 describes the concept of

local projections which provide the basis for this thesis as well as the connections to the

related work. We conclude this chapter with Section 1.3, outlining the rest of the thesis

containing information on submitted publications.

1.1 High-dimensional and flat data analysis

When discussing the challenges for classical statistics in the context of high-dimensional

and possibly flat data we often encounter two concepts: The curse and the blessing of

high-dimensionalty. One is perceived as a challenge to the concepts of data analysis by

masking the differences between observations, the other as a chance based on additional

observations. Before addressing the curse and blessing in detail, we introduce more

generalized problems based on the example of regression analysis.

Let y = (y1, . . . , yn)′ denote n observations of a univariate numeric outcome measure-

ment and X = (x1, . . . ,xn)′ the n observations of p variables, with xi = (xi1, . . . , xip)
′,

for i = 1, . . . , n. Assuming we want to use a linear model

yi = β0 +

p∑
j=1

xijβj + εi, i = 1, . . . , n (1.1)

to describe the relations between y and X, and we want to predict the outcome y0

for a future observation x0. Then we will experience several shortcomings for high-

dimensional data in general and specifically in the presence of flat data structures.

The first problem is related to the estimation β̂ of the parameters β = (β0, . . . , βp)
′.

In a case where p > n holds, the estimators are unambiguously defined as we need to

estimate p parameters based on n observations. The same problem occurs during the

computation of covariance matrices which is regularly required by statistical approaches.

Therefore a dimension reduction is commonly applied. Various methods, varying from

feature selection (e.g. Guyon and Elisseeff, 2003) to principal component analysis (e.g.

Abdi and Williams, 2010) are available for this task. By compressing the information

to at most n− 1 linearly independent variables, the coefficients β̂ as well as the inverse

covariance matrix are unambiguously defined. Nevertheless such a compression always

comes at the price of removing information.
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Chapter 1: Introduction

This directly leads to the second shortcoming which is the interpretability of the

coefficients β̂. Large numbers of variables often occur jointly with random correlations

between variables or groups of variables. Therefore, due to multicollinearity occurring by

chance, the importance of variables cannot directly be determined from the coefficients

any more. Again, the same issue exists in classification and outlier detection problems.

If one is interested in identifying the reasons for separation, using analysis on the full

dimensional space is often not useful.

The third issue might be of the highest importance. The predictive ability of high-

dimensional models is limited due to problems of overfitting based on random effects

added with each additional variable. With an increasing number of variables, methods

can not distinguish between random and non-random properties of observations. Again,

the problem is multicollinearity by chance leading to models describing a specific dataset

rather than a class of datasets.

It is important to note that several methods have been developed in order to deal

with those three problems, especially in the context of linear regression, including Ridge

regression (Hoerl and Kennard, 1970) and Lasso based regression (Tibshirani, 1996).

We want to offer an alternative approach to the problems of high-dimensionality. Before

doing so, we provide a description of the concepts of the curse and the blessing of high-

dimensionality leading to insights on critical aspects of high-dimensional data analysis.

The curse of high-dimensionality

The term curse of dimensionality which was first introduced by Bellman (1961) is often

used in a vague form, indicating that the differences in distances between observations

in high-dimensional spaces become insignificant. While a vast number of publications

has addressed the curse of high-dimensionality and ways to overcome it (e.g. Keogh and

Mueen, 2011; Indyk and Motwani, 1998; Aggarwal, 2005), it is more difficult to identify

a clear definition. One of the most precise definitions covering the core of the problem

is provided in Beyer et al. (1999).

Let X denote a data matrix containing of n observations x1, . . . ,xn, where all obser-

vations are drawn from the same p-dimensional random vector Xp. dmax further denotes

the largest distance between two observations of X and dmin, the minimal distance

between two observations from X.

3



1.1. High-dimensional and flat data analysis

If lim
p→∞

V ar

(
||Xp||
E||Xp||

)
= 0 (1.2)

⇒ dmax − dmin
dmin

→
p→∞

0

We use Figure 1.1 to visualize the implication in Figure 1.1a and the convergence in

Figure 1.1b. For both figures we simulate p independent standard normally distributed

variables. We see that only few variables are sufficient to reduce the variance close to 0.

The aspect we would like to emphasize is that it is not the high dimensionality itself which

causes problems. As long as each additional variable contains the same information, there

is not reduction in the overall ability for separation. The term dmax − dmin itself is not

just not converging to 0. In Figure 1.1c we note that the difference between the minimal

and the maximal distance remains the same. Also the variance is not increasing.

Based on the conclusions of Equation (1.2) and the observations from Figure 1.1 we

would like to introduce the concept of informative and non-informative or noise variables

in the context of data analysis. Let X = (X1, . . . , Xp) and Y = (Y1, . . . , Yp) denote two

p-dimensional random variables where the distributions of Xi and Yi are given by FXi

and FYi respectively.

Any variable, where FXi = FYi holds is classified as non-informative or as noise

variable. If FXi 6= FYi holds, we call the variable informative as the variable can

contribute to the distinction between X and Y .

Using this definition we can now clearly see the curse of dimensionality. Let all Xi

and all Yi be independently distributed. Let further X1 ∼ N(0, 1) and Y1 ∼ N(3, 1)

and all Xi and all Yi, i > 1 be standard normally distributed. The expected distance

of Y to the center of X in the first variable is large enough to separate samples of the

two random variables with a high probability. By adding additional noise variables,

this difference becomes less relevant though as the variance from the noise variables

begins to dominate and therefore masks the difference from the first variable. Figure 1.2

visualizes this effect. The dashed black lines represent the distribution of ||X||, which

changes with increasing p. The red solid line shows the expected value of ||X − Y ||. We

see that only few noise variables are required to completely mask the differences between

||X|| and ||X − Y ||. Starting from approximately 15 noise variables approximately 10%

of the observations from X will be further away from the expected center of X than

observations drawn from Y . Thus an observation from Y is likely not to be detectable

as an object, not drawn from X, even though the first variable is highly different.

4
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Figure 1.1: Figure (a) shows the convergence of the variance of
||Xp||
E||Xp|| of a multivariate p-

dimensional independent identically normally distributed variable. Figure (b) shows the
relative difference between the maximum distance and the minimum distance between
observations. Figure (c) shows the individual behaviour of dmin and dmax. Note that
the behaviour in (b) and (c) is strongly influenced by the sample size n as well.

The blessing of high-dimensionality

The context of informative and noise variables further enables the possibility to analyze

the concept of the blessing of high-dimensionality, which is considered a lot less frequently

5
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Figure 1.2: The expected distance of Y to X as well as the distribution of ||X|| using
various quantiles is visualized for varying p.

than the curse, e.g. by Chen et al. (2013a); Korn et al. (2001). The main idea of

the blessing of high-dimensionality is that by repeatedly adding information from the

same covariance structure the distance of all observations of a sample to the center of

the random variable will converge against a constant due to the law of large numbers.

Let X ∼ N(µ,Σ) denote a multivariate normally distributed random variable. The

Mahalanobis distance (e.g. De Maesschalck et al., 2000) of an observation x drawn from

X to the location µ of X is defined as follows:

MDX(x) =

√
(x− µ)′Σ−1(x− µ) (1.3)

For high-dimensional data, normalized Mahalanobis distances converge against a

constant as shown in Hall et al. (2005).

MDX(x)
√
p

→
p→∞

1 (1.4)

If observations from a second random variable with a slightly different covariance

structure and the same location parameter are present, the Mahalanobis distances for

these observations will converge against a different constant. This behaviour is visualized

in Figure 1.3. Two distributions are visualized for varying p, the distribution of ||X||,
with X ∼ N(0,1), where 1 represents a p-dimensional diagonal matrix with 1-entries

and ||Y ||, with Y ∼ N(0, 1.25 ·1). As both random variables are located in the origin, a

separation of the two groups is not possible with a low number of variables, but for each

additional variable the mean increase in Mahalanobis distances is larger for observations

drawn from Y than for observations drawn from X. This effect is visualized in Figure

6
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1.3: p is set to values between 1 and 200, 15 samples of X and one sample of Y are drawn.

Along the x-axis we start by considering the first variable only and increase the number

of considered variables up to 200. All black observations slowly converge against 1, while

the red observation, which initially can not be destinguished from the other observations,

converges against a higher value. Note that even though the expected value of X and

Y are equal, the blessing of high-dimensionality still allows us to perfectly separate the

two groups.
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Figure 1.3: The development of Mahalanobis distances for 15 observations from X ∼
N(0,1) (black) and one observation from Y ∼ N(0, 1.25 · 1) (red) with increasing p are
visualized. All Mahalanobis distances are computed based on the covariance structure
of X. Therefore the observations of X converge against 1, while the observation of Y
converges against a different constant.

1.2 The concept of local projections

This thesis is built around a method for dealing with problems of high-dimensionality in

data analysis for data structures drawn from complex distributions such as multi-group

and non-normal distributions. Here, especially flat data spaces are of interest. We do

7



1.2. The concept of local projections

so by combining methods and concepts from different statistical and machine learning

approaches.

As pointed out in Section 1.1, in order to be able to apply statistical methods, the

ability to inverse covariance matrices is of critical importance. Therefore, we always want

to project the data onto a lower dimensional subspace. This concept is very common

and used in a variety of different approaches like principal component analysis (e.g. Abdi

and Williams, 2010), projection pursuit (Friedman and Tukey, 1974), random projections

(e.g. Achlioptas, 2003) and many more. Most methods project the data onto a subspace

and discard the information lost due to the projection. One of few exceptions to this

approach is RobPCA by Hubert et al. (2005), which is the primary influence on this work.

In Hubert et al. (2005) a robust covariance estimation is performed in order to model

the majority of observations. 50% of all observations are used for this robust estimation.

Based on this covariance, the Mahalanobis distances to the robust estimation of location

and the Euclidean distance of observations to the projection space are considered as

measures for outlyingness. This approach is highly useful but lacks the ability to deal

with more complex structures like subgroups in the data.

In order to be able to analyze subgroups, we need to take the local distribution into

account. Especially knn-based methods (e.g. Zhang et al., 2006, 2009) perform well in

terms of local density estimation. A combination of RobPCA and k-nearest neighbours

leads to the fundamental idea of local projections:

Let X denote a matrix of n rows of observations of p variables where the observa-

tions have been drawn from one or multiple random variables. We explicitly consider

the possibility of p ≥ n. Therefore, we cannot properly describe the local density based

on covariance estimations. Bringing together the ideas of knn-based estimations and

RobPCA we use a set of k instead of n/2 observations, locally representing the data

structure, and project all information onto the affine subspace spanned by these k obser-

vations. We call such a projection, locally describing the data structure, a local projection

and any set of k observations used to define a local projection a core of a projection.

Consequently we call the space spanned by the core observations a core space. A

projection onto the core space is well defined by the right singular vectors of a singular

value decomposition after centering and scaling the core observations. Let {x1, . . . ,xk}
denote a core:

8
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µ̂ =
1

k

k∑
i=1

xi (1.5)

σ̂ =

(√
ˆV ar(x11, . . . , xk1), . . . ,

√
ˆV ar(x1p, . . . , xkp)

)′
(1.6)

˜core =(x̃1, . . . , x̃k)
′ (1.7)

ˆV ar denotes the sample variance and x̃i the scaled and centered core observations

using the estimators µ̂ and σ̂. Based on this notation, the projection V ′ is given by

˜core = UDV ′. (1.8)

Using V ′, new observations can be projected onto the core space, after centering

and scaling them with respect to the core-based location and scatter estimators µ̂ and

σ̂. Besides providing a local description, a core space allows for inverting the covariance

matrix estimated by the core observations and therefore for computing Mahalanobis

distances. Thus we can utilize the two measures of outlyingness used by Hubert et al.

(2005), the orthogonal distance (OD) and the score distance which in accordance with

the core we call core distance (CD):

OD ˜core(x) = ||x̃− V V ′x̃||, (1.9)

CD ˜core(x) =

√
(V V ′x̃)′D(V V ′x̃)

k − 1
(1.10)

where x̃ denotes a scaled and centered observation. Both aspects, the core distance

within the core space and the orthogonal distance to the core space yield important

information which should not be ignored (e.g. Kriegel et al., 2012). Depending on the

data structure and the research question, local projections provide a framework for

combining core and orthogonal distances.

As any set of k observations can be interpreted as a core we do not deal with one

local projection but with a series of projections. Different possibilities for finding cores

and combining cores are described throughout this thesis. One thing they all have in

common in the concept, that a core should always describe the local density. The degree

of locality can be adjusted by varying k. An example for the effect of different k (3, 10, 25

and 40) is visualized in Figure 1.4. We use the k−nearest neighbours of each observation

9



1.2. The concept of local projections

to estimate the local covariance structure and location. The local description is then

provided by the respective confidence ellipse for a 0.75 confidence level.

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●
●

● ●●
●

●

−10 −5 0 5 10

−
5

0
5

10
15

x1

x 2

k=3     

(a)

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●
●

● ●●
●

●

−10 −5 0 5 10
−

5
0

5
10

15

x1

x2

k=10   

(b)

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●
●

● ●●
●

●

−10 −5 0 5 10

−
5

0
5

10
15

x1

x2

k=25    

(c)

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●
●

● ●●
●

●

−10 −5 0 5 10

−
5

0
5

10
15

x1

x2

k=40    

(d)

Figure 1.4: The degree of locality by using different k in the nearest neighbor based es-
timation of location and covariance is visualized. For k = 3 the data is highly overfitted,
while it is underfitted for k = 40. The optimal choice of k depends on the data structure
as well as on the research question.
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Chapter 1: Introduction

The optimal choice of k depends on the data structure. In Figure 1.4 we place 45

observations along an ark combined with a normally distributed error. In Figure 1.4a

the 3 nearest observations are used to estimate the local data structure. We see that

the description is not homogeneous. There are several breaks between the ellipses and

it is not possible to identify any extreme observations. Overall, the structure is clearly

overfitted. For k = 10 in Figure 1.4b the arc becomes apparent and visually extreme

observations are not located within the tolerance ellipses any more. Thus, k = 10 is a

good choice to describe this specific data structure. With increasing k in Figure 1.4c

and 1.4d the data is increasingly underfitted by the overall model. In general, k will be

optimized based on cross-validation approaches.

Comparison of local projections and RobPCA

The orthogonal and score distances in RobPCA are based on a robust covariance estima-

tion using the Minimum Covariance Determinant (MCD) (Rousseeuw, 1985; Rousseeuw

and Driessen, 1999) approach. The covariance matrix with the smallest determinant,

based on (n− p+ 1) · α observations are used. α is a robustness parameter set between

0.5 and 1. In the case of RobPCA it is proposed to set α to 0.5. Based on this covariance

matrix, the first h principal components are used to define the projection space, where

h is set in a way that a certain percentage, usually 80% of the variance is contained in

the projection space.

From the perspective of local projections, the (n − p + 1) · α observations form a

core, defining one local projection. While RobPCA uses a smaller number of principal

components we use the full affine subspace. Therefore, the generalized concept of cores

of local projections can be interpreted as a generalization of RobPCA while the flexible

number of principal components in RobPCA can be interpreted as a generalization of

local projections. RobPCA and local projections are clearly highly related to each other.

Nevertheless, these differences are based on severe differences in the assumptions:

Firstly the idea of selecting the observations obviously differs. The concept of mod-

eling the majority of observations is based on the assumption, that only one main group

of observations containing some outliers is present. We rather reduce the number of

observations below the minimal expected group size in order to locally model the data

structure. This approach is based on the assumption that it is easier to identify a small

group of observations from the same subgroup than modelling the full data space at

once.

11



1.3. Outline of the thesis

Secondly, the reduction of the projection space to the first h principal components

is performed on the assumption that the later principal components contain no useful

information. In order to perform such a reduction, a good covariance estimation is

required. In a flat data space, any covariance estimation will be singular and deviating

from the true structure with an increasing number of variables. Thus, for the setup of

high-dimensional and flat data we rather use the full affine subspace. By doing so the

direction of each core observation from the center of the core obtains the same degree

of importance. This aspect is fully intended as it represents the idea that differences

between distances of observations drawn from the same distribution are insignificant in

high-dimensional spaces.

1.3 Outline of the thesis

The remainder of the thesis consists of three applications of local projections on different

data analysis problems. In Chapter 2 we create a series of projections by sequentially

exchanging one core observation after another. That way a functional data structure is

created which can be interpreted as a data transformation. Based on the transformed

data structure we analyse the degree of separation using various validation measures as

well as the performance of hierarchical clustering approaches. In addition the functional

approach leads to the advantage of having diagnostic plots for the transformed data

available. Chapter 2 has been submitted to the Journal of Computational and Graphical

Statistics:

Ortner, T., Filzmoser, P., Zaharieva, M., Breiteneder, C., and Brodinova,

S., Guided projections for analysing the structure of high-dimensional data.

Submitted to Journal of Computational and Graphical Statistics.

Chapter 3 is dealing with the problems of outlier detection in high-dimensional and

flat data. A local estimation of the density close to each observation is performed using

a robustified core estimation. We then use the core distances to measure the relevance of

the projection space for each potential outlier and then weight the orthogonal distance,

used as measure of outlyingness with the measured relevance. Chapter 3 has been

submitted to the Journal of Statistical Analysis and Data Mining:

Ortner, T., Filzmoser, P., Zaharieva, M., Breiteneder, C., and Brodinova,

12
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S., Guided projections for analysing the structure of high-dimensional data.

Submitted to Statistical Analysis and Data Mining.

Chapter 4 uses local projections in the context of supervised classification. For

each projection, an LDA classification model is computed. Based on the quality of

the projection-based-model we aggregate all models to receive an overall classification.

As the concept of visualization of LDA models can not be aggregated we propose an

alternative way of visualizing the classification results which can be applied to most other

classification results. Chapter 4 has been submitted to the Journal of Computational

and Graphical Statistics:

Ortner, T., Hoffmann, I., Filzmoser, P., Zaharieva, M., Breiteneder, C., and

Brodinova, S., ”Multigroup discrimination based on weighted local projec-

tions. Submitted to Journal of Computational and Graphical Statistics.
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CHAPTER 2
Guided projections for analyzing

the structure of high-dimensional

data

Abstract

A powerful data transformation method named guided projections is proposed creating

new possibilities to reveal the group structure of high-dimensional data in the presence

of noise variables. Utilizing projections onto a space spanned by a selection of a small

number of observations allows measuring the similarity of other observations to the se-

lection based on orthogonal and score distances. Observations are iteratively exchanged

from the selection creating a non-random sequence of projections which we call guided

projections. In contrast to conventional projection pursuit methods, which typically

identify a low-dimensional projection revealing some interesting features contained in

the data, guided projections generate a series of projections that serve as a basis not

just for diagnostic plots but to directly investigate the group structure in data. Based

on simulated data we identify the strengths and limitations of guided projections in

comparison to commonly employed data transformation methods. We further show the

relevance of the transformation by applying it to real-world data sets.

Keywords: dimension reduction, data transformation, diagnostic plots, informative

variables



2.1. Introduction

2.1 Introduction

One of the most frequent problems in classical data analysis is the high dimensionality

of data sets. In this paper we propose a novel method for data transformations, called

guided projections, in order to reveal structure in high-dimensional, potentially flat data

(more variables than observations). The presented approach uses subsets of observations

to locally describe the data structure close to the subsets and measures similarity of all

observations to these subsets utilizing the projection onto such subsets. Exchanging

observations one by one, we continuously change the location of the local description.

By guiding the way these subsets are selected, we receive a sequence of projections which

can be directly used as a data transformation, as well as a method for visualizing group

structure in high-dimensional data. In this paper we present some theoretical background

and properties of the proposed guided projections and focus on the general separation

between groups in data and how this separation, measured by various validation indices,

is affected by the transformation. Furthermore, we compare with existing methods

and discuss the strengths and the limitations of guided projections in experiments on

both synthetic and real-world data. An implementation of the proposed methodology is

publicly available in form of the R-package lop at https://github.com/tortnertuwien/lop

Let X ∈ Rn×p denote a data matrix, with p variables and n observations. We

further assume that some unknown group structure is present in the observations. In

particular we want to consider the possibility that p is larger than n. A large number

of variables leads to two main problems we would like to address: First, the cost of

computational effort for computing all pairwise distances is O(n2p). While we cannot

directly influence n, a reduction in p will directly affect computation time. Second,

in general, not all p variables hold relevant information about the underlying group

structure (Hung and Tseng, 2013). Assume that the data contain some inherent group

structure. In accordance to Hung and Tseng (2013) we call variables contributing to

a group separation informative and variables not contributing to a group separation

non-informative variables. Accordingly, let us assume p = p1 + p2, where p1 denotes the

number of informative variables, and p2 denotes the number of non-informative variables.

If p1 increases, a dimension reduction can considerably reduce the computational burden.

If, however, p2 increases, the variance from non-informative variables will mask the

separation provided from informative variables. One possible solution to deal with this

masking effect is the application of a data transformation to reveal the group structure

in a lower dimensional space. The analysis of effects of such data transformations is the
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focus of this paper.

A variety of data transformations has been proposed in the past. We present a small

selection of commonly employed methods before proposing a novel approach for data

transformation.

Classical variable selection methods rely on selecting a subset of features which are

useful for identifying group structures in data (Guyon and Elisseeff, 2003). A dimension

reduction to a small subset of variables, based on some statistic on the distribution of

the variables usually provides a suboptimal framework for the analysis of present group

structures. One example is the commonly applied method of selecting the 5% of variables

with the largest variance for gene expression data. From the variance itself, in general,

it can not be concluded whether or not variables are informative.

With the focus on computation time, Random Projections (RP) (Achlioptas, 2003)

randomly project X onto Rn×k, k < p, preserving the expected pairwise distances.

There are different ways to identify the required projection matrices. In this paper we

use iid normally distributed coefficients as proposed in Li et al. (2006). Such random

projections always contain contributions in the same proportion from non-informative

variables as from informative variables though.

An approach different from random projections and variable selection is Principal

Component Analysis (PCA) (e.g. Abdi and Williams, 2010) which is likely the most

studied data transformation method. PCA identifies k < p linear combinations of vari-

ables, maximizing the variances of each resulting component under the restriction of

orthogonality. Such components are called principal components. Classical PCA is sub-

ject to restrictions like identifying linear subspaces only. Furthermore, the differences

in distances remain masked, since the principal components contain an increasing por-

tion of the non-informative variables with an increasing number of such variables. The

problem of linearity has been addressed in several publications (Gorban et al., 2008;

De Leeuw, 2011). We will consider Diffusion maps (DIFF) (Coifman and Lafon, 2006)

as one possible modification, where PCA is performed on the transformed data, based on

distances measured by random walk processes. We will further consider Sparse Principal

Component Analysis (SPC) (Zou and Hastie, 2005; Zou et al., 2006; Witten et al., 2009),

since the goal of sparse PCA is to avoid the second problem we addressed, namely the

presence of non-informative variables, by downweighting the non-informative variables.

A more general projection approach is Projection Pursuit (Friedman and Tukey,

1974) where a projection onto a low-dimensional subspace is identified, maximizing a
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2.2. Guided projections

measure of interest like non-normality. This approach can further be generalized to

similarities between estimated and general density functions (Cook et al., 1993) and

visualized using so called guided tours (Cook et al., 1995). There are also proposals

for modifications of the projection pursuit index in order to cope with high-dimensional

data (Lee and Cook, 2010). With the main intention of visualization and visual analysis

of projections, the dimension of the projection pursuit is mostly limited between one

and three.

After performing such a data transformation, one hopes to yield more information

about the underlying group structure of the data. Such information can be measured

in terms of performance with respect to a subsequent application of outlier detection

methods, discriminant analysis, clustering methods, and other related methods.

The paper is structured as follows. The methodology and properties of our approach

is presented in Section 2.2 providing insight on the effects of the transformation as well

as a possibility for diagnostic plots. We define synthetic setups for the comparison of the

newly introduced method with existing data transformation methods in Section 2.3 and

report the results of the performed comparison. In Section 2.4 we apply the methods

to two real-world data sets to illustrate the relevance of guided projections. Finally,

we provide conclusions and an outlook on possible extensions and applications of the

proposed method in Section 2.5.

2.2 Guided projections

Let X ∈ Rn×p denote the data matrix to be analyzed. We further assume, that the ob-

servations xi, i ∈ {1 . . . n}, are randomly drawn from one of the distributions F1, . . . , Fm,

m < n. Therefore, up to m groups are present in our data structure.

The basic concept of guided projections is to find a non-random series of projections

providing directions where differences between occurring groups are present. Each pro-

jection will be described by a selection of observations spanning the projection space.

Any such selection describes the data structure close to the selected observations. The

sequence of projections starts in a dense region of the data distribution, describing a cer-

tain cluster, and alters the observations used for the projections such that another dense

region can be reached. By using a small number of observations for the projections, we

avoid the masking effects of outlying observations on the description. In this context

an outlying observation is an observation which is likely to be from a different group.

This concept is visualized in Figure 2.1 for a two dimensional space, using Mahalanobis
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Chapter 2: Guided Projections

distances as a representative for the similarity between observations. Since we assume a

high-dimensional flat data space, we describe the properties of observations with respect

to each specific projection. Therefore we use two distance measures described in Hubert

et al. (2005), the orthogonal distance and the score distance. Using these distances, we

iteratively identify a series of observations leading to the series of projections (guided

projections).
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Figure 2.1: This plot demonstrates the concept of guided projections. The figure shows
two group structures and the corresponding true covariance structures described by solid
ellipses. Each small subset of three observations, represented by x-symbols, will provide
a local approximation of this group structure as visualized by the dashed ellipses. The
aim of the proposed guided projections approach is to provide a series of such selections,
offering a good overall description of the present group structures. Each blue/dark set of
x-symbols represents selections from the same group, providing useful information about
the group separation, the red/light group represents a mixed selection, where the group
structure is masked, i.e. observations from both groups are present inside the ellipse.

Our assumption that a selection of observations from a specific group can describe

the remaining observations of this group better than the observations from other groups

becomes especially interesting in the high dimensional case. While the overall distances

of all observations become more and more similar with an increasing number of noise
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variables, we can utilize the projections onto the selected observations. By analyzing

the proportion of distances in the projection space and in the orthogonal complement

we can reduce the impact of the curse of dimensionality.

Therefore, after introducing the slightly adapted version of orthogonal and score

distances from Hubert et al. (2005) in Section 2.2, in Section 2.2 we present a method for

identifying a first starting projection. We then introduce a decision process, exchanging

observations one by one depending on the similarity based on the introduced distances

before discussing the properties of the projection sequence in Section 2.2.

Orthogonal and score distances

Let P denote the set of all orthogonal projections P from Rp onto Rq−1, where p is the

number of variables in the original space and q − 1 the fixed dimension of the projected

space. Each projection P can be represented by its projection matrix V ′P , where V P ∈
Rp×q−1, P ∈ P:

∀P ∈ P : ∃V P ∈ Rp×q−1 : P (x) = V ′Px ∀x ∈ Rp (2.1)

Given a projection P ∈ P, we define the orthogonal distance (ODP ) of an observation

x ∈ Rp to a projection space defined by P , given a location µµµ as

ODP (x) = ||x− µ− VPV ′P (x− µ)||, (2.2)

and the score distance (SDP ) of x, given the location µ and the covariance matrix ΣP

of the distribution in the projection space as

SDP (x) =
√

(V ′P (x− µ))′Σ−1P (V ′P (x− µ)), (2.3)

where ||.|| stands for the Euclidean norm.

This definition slightly differs from the original concept presented in Hubert et al.

(2005). Originally, the orthogonal and score distances intend to identify outliers from one

main group of observations. Therefore, robust estimators of location and scatter are used

to estimate µ and ΣP . Thus, the orthogonal and score distances are always interpreted

with respect to the center and covariance structure of the majority of observations.

The larger those distances get, the less likely the evaluated observation belongs to the

same group. While the original work is based on the assumption of one main group of

observations and a small subset of outliers, we assume the presence of multiple groups. In

the latter situation, robust estimators calculated from less than 50% of the observations
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is not appropriate because in robust statistics a majority of observations has to be

considered. Therefore, we alter the location and scatter estimates and estimate them

from a small subset of observations where we try to select the observations from the

same group.

Since SDP (x) andODP (x) are both measures for similarity with respect to a location

and covariance matrix, we define

OSDP (x) = f(SDP (x), ODP (x)) x ∈ Rp, (2.4)

f : R2 → R

f monotonically increasing in ODP and SDP

as a new univariate measure for similarity, always to be interpreted in reference to a

location, a covariance matrix, and the dimensionality q of the projection space, which

in case of Hubert et al. (2005) is given by the number of components used for the

robust principal component analysis. Examples for such functions f are provided in

Pomerantsev (2008).

We utilize a subclass of the presented projections defined by P. Let I denote a set

of q indices I1, . . . , Iq of X, I ∈ P(1, . . . , n) : |I| = q, where P is the power set. XI

defines the matrix of scaled and centred selected observations. To scale and centre the

observations, we use a location estimator

µ̂I = x̄I =
1

q

∑
i∈I

xi (2.5)

and a scale estimator

σ̂I = (
√
V ar(xI11, . . . , xIq1), . . . ,

√
V ar(xI1p, . . . , xIqp))

′ (2.6)

= (σ̂I1, . . . , σ̂Ip)
′,

where xIk = (xIk1, . . . , xIkp)
′ denotes the k-th selected observation and V ar is the

empirical variance. xcIk denotes the centred observation xIk :

xcIk = xIk − µ̂I = (xcIk1, . . . x
c
Ikp)

′ (2.7)

XI =

((
xcI11
σ̂I1

, . . . ,
xcI1p
σ̂Ip

)′
, . . . ,

(
xcIq1

σ̂I1
, . . . ,

xcIqp

σ̂Ip

)′)′
(2.8)

The matrix XI can be represented via a singular value decomposition:

XI = UIDIV
′
I (2.9)
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Note that the centring of the observations reduces the rank of the data matrix by one.

Therefore, under the assumption of q < p, the rank of V ′I , which is equal to the rank

of XI , is q − 1. This assumption is reasonable due to the focus on high-dimensional

data. If q < p does not hold, the dimension of the space is small enough such that

a data transformation is not required. V ′I from the decomposition in Equation (2.9)

provides a projection matrix onto the space spanned by the q observations selected in

I. V ′I represents an element of P since the dimension of the projection space is equal

to the rank of V ′I which is q − 1. For such a projection, we can measure the similarity

of any observation from Rp to the selected observations using the location estimation

from Equation (2.5) and covariance matrix describing the covariance structure in the

projection space, provided by the selection itself as follows:

Σ̂I =
1

q − 1
(V IX

′
I)(V IX

′
I)
′ (2.10)

Using the provided definitions and notation, we can define a univariate measure

OSDI(x) for similarity between an observation x ∈ Rp and a set of observations, defined

by I:

OSDI(x) = f(SDI(x), ODI(x)), x ∈ Rp (2.11)

SDI(x) =

√
(V ′I(x− µ̂I))′Σ̂

−1
I (V ′I(x− µ̂I)). (2.12)

ODI(x) = ||x− µ̂I − V IV ′I(x− µ̂I)|| (2.13)

Guided projections algorithm

To create a sequence of non-random projections, we aim to identify a set of q observa-

tions, project all observations onto the space spanned by those q observations, and use

OSDI to measure the similarity between an observation x ∈ Rp and the selected group

of observations. In general, q is a configuration parameter which needs to be adjusted

based on the data set to be analysed. Depending on both the expected number of obser-

vations in groups in the data structure and on the sparsity of the data set, we typically

select q between 10 and 25. Out of the selected group of observations, we replace one

observation after another by a new observation and therefore get a new projection space

leading to new measures for similarity.

To identify a set q of starting observations, we exploit the Euclidean distances be-

tween all observations. Let dij denote the Euclidean distance d(xi,xj) = ||xi − xxxj ||
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between observation xi and xj . di(k) denotes the kth smallest distance from xi:

min
j∈{1,...,n}

dij = di(1) ≤ · · · ≤ di(n) = max
j∈{1,...,n}

dij (2.14)

Similar to the k-nearest-neighbor approach (e.g. Altman, 1992), we identify a dense

group of q observations given by their indices I01 , . . . , I0q . Let i0 = arg min
i∈{1,...,n}

di(q) de-

note the index of the observation with the smallest distance to the qth-closest observation

and XI0 the centered and scaled matrix of observations as defined in Equation (2.8):

I0 = {I01 , . . . , I0q } = {j : di0j ≤ di0(q)} (2.15)

Note that in Equation (2.15) we assume that the number of observations in I0 is

equal to q even though the second equality does not hold in general. In the case of ties,

more than q observations may fulfill the criterion di0j ≤ di0(q) of Equation (2.15). In

such a case, we randomly select from the tied observations to be added to Io, such that

q observations are selected.

During the determination of the sequence of projections, we always add the observa-

tion with the smallest OSD to the set of selected observations. To keep the dimension-

ality of the projected space constant, which ensures comparability of OSDs, we remove

one observation each time we add an observation. Assuming the observations are or-

dered in a certain sense, each observation remains in the group of selected observations

for q projections before it is removed again.

To identify the observation xi1 to be added in the first step, we solely need to consider

OSDI0 defined in Equation (2.11). The set of observations available to be selected is

defined by A0:

A0 = {1, . . . , n}\I0 (2.16)

i1 = arg min
i∈A0

OSDI0(xi) (2.17)

To identify the observation to be removed, we need to provide an order of I0 first,

which is determined by using leave-one-out distances (LOD). Sorting all elements from

I0 decreasingly according to LOD provides the sorted starting observations and the first
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selected observation i1 defined by I1:

LODI0(j, i1) = OSD{I0\{j}}∪{i1}(xxxj) ∀j ∈ I0 (2.18)

I1 = (j1, . . . , jq, i1) = (ι11, . . . , ι
1
q+1) jk ∈ I0, k = 1, . . . , q (2.19)

LODI0(j1, i1) ≥ · · · ≥ LODI0(jq, i1)

A1 = A0\i1 = {1, . . . , n}\I1 (2.20)

I1 = {I0\j1} ∪ {i1} (2.21)

I1 and A1 again denote the index sets of observations selected in the first step and the

remaining observations available for selection after the first step, respectively. After this

first step, for any following step, in general for the sth step, two projections, represented

by IL and IR are relevant for selecting a new observation:

IL = {ι11, . . . ι1q−1} (2.22)

IR = {ι12, . . . ι1q} (2.23)

The notation L and R comes from the left and right end of the series of indexes in I1

representing the first and the last q observations.

The reason to consider multiple projections is based on the assumption that we start

from a dense region of the data distribution. By adding one observation we move away

from this dense region in one direction. Once the observations at the border of this

direction have been reached, the remaining observations are far away from the selection,

yet close to the initially selected observations in the center. Figure 2.2 visualizes this

issue.

Since we aim at a series of projections as consistent as possible, we always select the

projection with the smallest distance. In the showcase in Figure 2.2 we show the selection

of I0 and the first observation i1 in plot (a). Plot (b) to (f) represent the steps 1 to 5 of

our procedure. The two ellipses represent the OSD, based on IL and IR respectively.

The choice of observation to be added is marked as a red/light dot. Starting from plot

(d) we notice that the selection IR, represented by the observations marked with an R,

requires a large OSDIR to add an additional observation. Therefore, starting from (d)

we add observations to the left end of the series Is. In general it makes sense to consider

all previous projections. However, to create a series of projections where we can look for

structural changes and visualize a development, we limit ourselves to IL and IR.

Depending on the smallest OSD to either IL or IR, the newly added observation,

the new set of sorted observations Is, and the new set of available observations for future
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Figure 2.2: Visualization of the selection procedure. To keep the observations in a
constant location for each plot we use a two-dimensional space. The distances OSDI
to a selection of observations I are represented by dashed ellipses. The red/light ellipse
represents the smaller distance and therefore the choice for the next observation to be
selected. If an observation is part of IL or IR, it is marked with an L or R respectively.
Solid points represent observations which have not been selected so far, empty circles
have been selected before or are part of a current selection. The next observation to be
added to the sequence is marked by a red/light dot.

projections As are determined for the sth step, provided s ≥ 2 holds:

iL = arg min
i∈As−1

OSDIL(xi) (2.24)

iR = arg min
i∈As−1

OSDIR(xi) (2.25)

Is =

{
(iL, ι

s−1
1 , . . . , ιs−1s−1+q),

(ιs−11 , . . . , ιs−1s−1+q, iR),

OSDIL(xiL) ≤ OSDIR(xiR)

else
(2.26)

= (ιs1, . . . , ι
s
s+q)

As = {1, . . . , n}\Is (2.27)

Is is a superset of Is−1 for all s ≥ 1 and provides all information about the sequence
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of previous projections. In total, there are n − q + 1 projections available which are

determined after n− q steps. Therefore, we can define the guided projections GP based

on In−q alone.

GP (x) =(GP1(x), . . . , GPn−q+1(x)) (2.28)

GPj(x) = OSD{ιn−q
j ,...,ιn−q

j+q−1}
(x) j ∈ 1, . . . , n− q + 1 (2.29)

As a result, we receive one series of measures for each observation. Whenever the

measure is small, the observation is likely from the same group as the respective selected

observations. Thus, structures in data can be identified by looking for similar behaviour

in GP (x).

Additional insight on guided projections

Choice for OSD: A variety of useful OSDs can be defined for guided projections.

Some possibilities to combine orthogonal and score distances to a univariate measure

are presented in Pomerantsev (2008). The best choice for OSD depends on the distribu-

tion of the data structure. When dealing with high-dimensional data, especially sparse

data where groups are best described by different variables, the orthogonal distance

contributes more to the group separation than the score distance. When dealing with

low-dimensional data, the opposite is true. Therefore, the decision on the most appro-

priate OSD needs to be met for each analysis individually depending on the underlying

data characteristics. Given the fact, that we deal with high-dimensional data and for

reasons of simplicity we restrict the choice of OSD for this work to the orthogonal dis-

tance, utilizing the properties of the complement of the projection space which is often

ignored (e.g. Gattone and Rocci, 2012; Ilies and Wilhelm, 2010).

OSDI(x) = ODI(x) (2.30)

Two-dimensional visualization of guided projections: Each projection re-

sults in a representation of all observations by orthogonal and score distances which

can be visualized in a two-dimensional plane. The series of projections GP (x) =

(GP1(x), . . . , GPn−q+1(x)) typically starts with observations from one group. Therefore,

the observations to be selected in the following steps are observations which are similar

to the selected observations and thus likely from the same group. By replacing only

one observation per projection, we achieve a high correlation between OSDs created by

consecutive projections. Each step represents a slight rotation of the two-dimensional
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Chapter 2: Guided Projections

OD-SD-plane, the observations are projected onto. This behaviour is represented in

Figure 2.3 where the projection space is always spanned by 10 observations.
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Figure 2.3: Subset of the series of projections for simulated data, consisting of two
groups with 100 observations each, generated from two different fifty-dimensional normal
distributions. The groups are visualized with red circles and blue plus symbols. Each
plot represents one step of guided projections, where all observations are projected onto
the space spanned by 10 selected observations.

In Figure 2.3, the plots (a) to (d) show projections where all selected observations are

taken from the blue (circles) group. Figure (e) shows the first time where an observation

from the red (x-symbols) group is selected. Therefore, the distances for the red group

start decreasing. In plot (g) the majority of selected observations is taken from the red

group. In plot (h) only one blue observation remains in the selection. Starting from

plot (i) in the third row, the groups are separated again since all observations for the

projection are selected from the red group.

Specific behaviour of OD and SD for guided projections: Assume one of

the projection matrices V Is , where Is represents the selected observations in the sth

step. Let us consider plot (a) of Figure 2.3 as an example. One could argue that critical
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2.2. Guided projections

values can be directly provided separating the red from the blue group for this projection,

making the rest of the sequence obsolete. Details for the determination of those critical

values for orthogonal distances and score distances are provided in Olkin (1992) and

Pomerantsev (2008). The problem with this argument can be described as follows.

The possibility of separating two or more groups is based on the assumption that

all selected observations are taken from the same group and an estimation of location

and the covariance matrix based on this group only can be provided. Therefore, such

a decision needs to be made after the initial selection. Thus, only q observations are

available for the required estimation of location and covariance in the q− 1 dimensional

space. This estimation cannot be provided due to the following properties for all s ∈
{0, . . . , n− q + 1}:

ODIs(x) = 0, ⇐⇒ x ∈ span({xi : i ∈ Is}) (2.31)

SDIs(xi) =
q − 1
√
q
, ∀i ∈ Is and q = |Is|, s ∈ {0, . . . , n− q + 1} (2.32)

The proof of these statements can be found in the Appendix. Since there is no variation in

the orthogonal and score distance for the selected observations for Is, the parameters for

the critical values, which are based on the variation, cannot be derived. The orthogonal

and score distances for observations of Is are extremely distorted and do not follow the

expected theoretical distribution of ODIs and SDIs .

Visualization of guided projections

Guided projections can be visualized in a diagnostic plot. In such a plot, the series

of OSDs is shown for each observation. As an example, consider the data set used in

Figure 2.3. Due to Equation (2.31), any selected observation will have an orthogonal

distance of zero for certain projections, and therefore in our application an OSD of zero,

as defined in Equation (2.30).

Figure 2.4 shows the change in OSD by modifying the projection direction, which is

achieved by substituting one observation in the selection spanning the projection space.

Each observation is selected once. Therefore, for each projection, one observation drops

to zero from a non-zero level and one observation goes up to a non-zero level.

Note that this diagnostic plot contains a visualization of the transformed data. As the

dimensionality of the transformed space might remain high – depending on the number

of observations – a visualization of individual coordinates is often not helpful. In our case

we additionally have a very high dependence between variables. Therefore, we use line
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Chapter 2: Guided Projections

plots to track each observation through all variables/projections, assuming that similar

observations from the same group will follow a similar structure in a functional context.

Given the 200 observations, selecting 10 observations for each projection results in a

total number of 191 projections. For the first 85 projections, all observations are selected

from group one (blue dashed lines). During this procedure, no significant changes occur.

Starting with the 86th projection though, which is the same projection as plot (e) of

Figure 2.3, we see some mixed projections and a structural change in OSD for both

groups. The OSDs of the observations from one group drop to a lower level while the

OSDs of the observations from the other group increase.

Such a structural change in guided projections clearly indicates the presence of a

second group in the analyzed data structure. In general, observations whose OSD stays

close to each other during the whole sequence of projections are expected to belong to

the same group.

2.3 Simulations

The aim of this section is to measure the effect of data transformations on the separation

of present groups in simulated data. We consider the data transformation approaches

introduced in Section 2.1: Classical PCA [PCA], Sparse PCA [SPC], Diffusion Maps

[DIFF], and Random Projections [RP]. We use two simulated multivariate normally

distributed data setups to measure the impact of noise variables as well as the impact of

differences in covariance structures. The effects themselves are measured by a selection

of common cluster validity measures.

Evaluation Measures

An overview of internal evaluation indices is presented in Desgraupes (2013). All mea-

sures can be directly accessed through the R-package clusterCrit (Desgraupes, 2016).

The provided indices depend on various measures like total dispersion, within-group

scatter and between-group scatter. Some of those measures heavily depend on the di-

mensionality of the transformation space. Thus, depending on the design of the validity

measures, a lower dimensional space is often preferred over a high-dimensional space

even though the quality of separation decreases with decreasing dimensionality. We use

two simulations visualized in Figure 2.5 to demonstrate this aspect. In the first setup

we generate k simulated independent normally distributed variables. Group one uses a
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Projection Sequence
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Figure 2.4: Diagnostic plot utilizing guided projections for the simulated data from
Figure 2.3. The colors represent the two clusters, originally located in a fifty-dimensional
space. The projection index on the x-axis stands for the index j of GPj(x) of Equation
(2.29). For each observation we can follow the change in OSD while slightly changing
the projection direction. Similar observations are represented in parallel lines, close to
each other.

mean value of 1, while group two uses mean values of −1. The more variables are used,

the better the expected separation should be. The second simulation setup always uses

50 of those variables and in addition adds k normally iid variables with mean value of

zero for both groups. Those non-informative variables theoretically reduce the quality of

the group separation. For a selection of popular validation measures we simulate those

two setups, varying k between 1 and 350. Note that not all original measures should be

maximized. Therefore we transformed all measures which should be minimized, like the

Banfeld Raftery index, in such a way that they are to be maximized to simplify Figure

2.5.

The decision on which indices to consider for the evaluation is based on the simu-

lation results. Validity measures with a non-monotonous development for the second

setup (Xie Beni, Dunn Index and GDI) are excluded. Also measures with a decreasing
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Figure 2.5: The solid (black) line refers to the previously described setup one (informative
variables only), the dashed (red) line to setup two (including non-informative variables).
The transformed validity measures for both setups have been independently scaled to
the interval [0, 1] for a better visualization. Both lines are depending on the number of
variables related to the respective setup. In total, 1000 observations are simulated for
each simulation setup and group to evaluate the considered measures.

development in the first setup (Davies Bouldin and Banfield Raftery) or a large fluctua-

tion range in setup 1 (Calinski Harabasz and McClain Rao) have been excluded. Among

the remaining validation measures, based on their popularity we decided to include the

Gamma index (Baker and Hubert, 1975), the Silhouette index (Rousseeuw, 1987), and

the C index (Hubert and Schultz, 1976) for the evaluation of the group structure of data

transformations.

In addition to the selected validity measures, we are interested in the effect of data

transformations before applying clustering procedures. Therefore, we perform hierar-

chical Ward clustering (Ward Jr, 1963) after applying the data transformations and

evaluate the clustering result using the F-measure (Larsen and Aone, 1999).

Parameter optimization

A number of data transformations has been presented in Section 2.1. Each of them is

depending on one or more configuration parameters, leading to different quality of the
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projections and thus directly affecting the validation measures.

All methods are optimized for each data set individually. For each parameter we

set upper and lower boundaries in which we optimize the parameters for each specific

data transformation method and validation measure. This way we make the methods

comparable since a specific parameter set might work better for one transformation than

for another providing an unfair advantage for one method. The same is true for specific

validation measures. The optimization itself is performed by allowing a discrete number

of parameters within their boundaries and performing and evaluating each combination

of parameters. Hereinafter we present parameters to be optimized for the compared data

transformations.

PCA: For principal component analysis the only parameter that needs to be adjusted

is the proportion of variance of X which should be represented in the projection space.

This can be translated to the number of components considered to span the projection

space. This dimension is optimized for any number between 1 and the rank of X, which

is the maximum number of possible components.

SPC: The considered sparse principal component analysis by Witten et al. (2009)

uses two optimization parameters. The first parameter is the number of sparse com-

ponents, the second parameter the degree of sparsity defined by the sum of absolute

values of elements of the first right singular vector of the data matrix. The number

of components is optimized equivalently to PCA. The sparsity parameter is optimized

between 1 and the square root of the number of columns of the data as recommended

in Witten et al. (2009).

DIFF: Diffusion maps utilize an ε-parameter to describe the degree of localness in

the diffusion weight matrix. A recommended starting point is 2med2knn, where med2knn
represents the squared median of the kth nearest neighbour. By varying k between 0.5%

and 3.5% of the number of observations, which extends the recommended 1% to 2%,

we adjust the ε-parameter. The number of components to describe the transformation

space is adjusted in the same way as for PCA.

RP: For random projections we repeatedly project the observations on a k dimen-

sional projection space 500 times. We optimise k between 1 and kmax. The upper limit

kmax is the maximum number of components available in PCA for real data and the

number of informative variables for simulated data.

GP: For guided projections, only one parameter needs to be adjusted, namely the

number of observations in each projection. We propose to optimize this number between

5 and 30.
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While performing hierarchical clustering, the number of clusters emerges as an ad-

ditional configuration parameter. To provide a fair comparison, we allow any possible

number of clusters between 1 and the number of observations, and report the best possi-

ble result. Figure 2.6 visualizes the optimization for the Gamma index and the F-measure

for an exemplary data set for SPC.
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Figure 2.6: The optimization procedure for SPC is visualized. On the x-axis the sparsity
parameter is presented, on the y-axis the number of sparse components. The quality
of each parameter combination is presented by the color of the respective combination.
Red/dark corresponds to a high value of the considered validity measure, grey/light to
a low value. Figure (a) shows the optimization for the Gamma index, Figure (b) for the
F-measure. For each index, the individual optimum is selected. The sparsity parameter
for the F-measure is selected slightly larger than for the Gamma index. The optimal
F-measure requires 20 sparse principal components while the Gamma index uses one.

Note that we do not compare with projection pursuit, since the aim of this approach

is to identify a low-dimensional projection (one to three dimensions) revealing the group

structure of the data. We evaluated the final projection of a guided tour from Wickham

et al. (2011) and found no significant difference to the performance of random projec-

tions. Such an evaluation is unfair though since two-dimensional projections are being

compared with methods that incorporate multiple or higher dimensional projections.

Therefore, projection pursuits are not considered for the full evaluation.

First simulation setting

The first simulated data setup consists of two groups of observations, where the obser-

vations are drawn from different multivariate normal distributions X1 ∼ N(µ1,Σ1) and

33



2.3. Simulations

X2 ∼ N(µ2,Σ2). The parameters are as follows:

µ1 =(050,0.550,0250)
′ (2.33)

µ2 =(0r,−0.550,0300−r)
′ (2.34)

Σ1 =


I50 0 0

0 Σrand2
50 0

0 0 I250

 (2.35)

Σ2 =


Ir 0 0

0 Σrand2
50 0

0 0 I300−r

 (2.36)

In (2.33) to (2.36), 0r and 0.5r denote a row-vector of length r with 0 or 0.5 entries,

respectively. Ir denotes an r-dimensional unit matrix and Σrand1
50 and Σrand2

50 represent

randomly generated, fifty-dimensional covariance matrices. In order to simulate these

matrices we use the R package clusterGeneration by Qiu and Joe (2015).

By varying r we modify the subspace where the informative variables are located. For

r = 51, a 50 dimensional informative subspace is present but this subspace is informative

for both present groups. For other values of r, the informative variables of X2 are getting

shifted away from the informative variables from X1. An interesting aspect of this setup

is the fact that the expected difference between the two groups changes with r. The

expected distance between X1 and X2 is based on the number of informative variables

as well as on the expected distance for each informative variables. In fact, the expected

distances turn out to be

E(||X1 −X2||) =

√
50− 1

2
min(50, |51− r|). (2.37)

This distance is maximized for r = 51 and is decreasing with any changes in r leading to

the expectation of a maximized separation for r = 51. For each r between 1 and 100, we

repeatedly simulate the setup 25 times. For each simulated data set we report optimized

validation measures.

Each plot in Figure 2.7 shows a similar individual behaviour for each method. The

performance of principal component based methods (columns one, two and five) increases

with increasing expected distance between X1 and X2, which is described in Equation

(2.37), while the quality of guided projections increases with additional informative vari-

ables and especially with an increase in the shift of informative variables. This behaviour
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Figure 2.7: For each selected validation measure, we show the mean performance of
guided projections (solid blue/dark line) and one other transformation (dashed red/light
line) as well as their respective standard errors (dotted lines). The performance of no
transformation is shown by the Raw category. The start index of the informative variable
on the x-axis refers to the parameter r of Equation (2.34) and (2.36).

by guided projections occurs due to the following properties: When observations from

the same group are selected, the subspace spanned by those observations describes the

informative variables of those observations. Therefore, if the second group consists of

different informative variables, the difference in orthogonal distances increases, which are

used here for OSD. If the informative variables are the same though, the differences in

the orthogonal space are expected to be the small. Since we completely ignore the score

distances, guided projections are outperformed by principal component based methods
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in this case. This feature is visible for all considered validation measures. Most valida-

tion measures indicate that guided projections clearly outperform the other projection

methods if the number of informative (shifted) variables increases. An exception is the

Silhouette index, which declares guided projections as the worst method. However, this

might be quite specific in a two-group setting.

Second simulation setting

The second simulated data setup uses three groups drawn from multivariate normally

iid stochastic variables X1 ∼ N(µ1,Σ1), X2 ∼ N(µ2,Σ2) and X3 ∼ N(µ3,Σ3) with the

following parameters:

µ1 =(125,125,025,0r)
′ (2.38)

µ2 =(125,025,125,0r)
′ (2.39)

µ3 =(025,125,125,0r)
′ (2.40)

Σ1 =


Σ
rand1,1
25 Σ

rand1,2
25 0 0

Σ
rand1,3
25 Σ

rand1,4
25 0 0

0 0 I25 0

0 0 0 Ir

 (2.41)

Σ2 =


Σ
rand2,1
25 0 Σ

rand2,2
25 0

0 I25 0 0

Σ
rand2,3
25 0 Σ

rand2,4
25 0

0 0 0 Ir

 (2.42)

Σ3 =


I25 0 0 0

0 Σ
rand3,1
25 Σ

rand3,2
25 0

0 Σ
rand3,3
25 Σ

rand3,4
25 0

0 0 0 Ir

 (2.43)

Similar as before, 0r and 1r represent vectors of length r with 0 and 1 entries, respec-

tively. The matrices

(
ΣΣΣ
randi,1
25 ΣΣΣ

randi,2
25

ΣΣΣ
randi,3
25 ΣΣΣ

randi,4
25

)
from Equation (2.41) to (2.43) represent

randomly created 50 dimensional covariance matrices. Therefore, Σ1, Σ2 and Σ3 repre-

sent covariance matrices too. The first 75 variables are informative variables, while the

remaining r variables are non-informative. With increasing r, the separation between
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the present groups gets increasingly masked. The focus of this simulation setup is the

robustness of data transformations towards non-informative variables.

The parameter r is varied between 0 and 1250 leading to a 75 to 1325 dimensional

space. For each setup we compare three groups of 100 simulated observations per group.

25 repeated simulations are performed for each evaluated r by randomly creating different

covariance matrices.
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Figure 2.8: For the selected validation indices, we analyze the impact of additional noise
variables. The mean optimal performance and the respective standard error is visualized
for an increasing number of noise variables for guided projections (solid blue/dark line)
and one compared method (dashed red/light line). In general we expect a decrease in
quality with increasing noise variables.

Figure 2.8 shows the effect of increasing r non-informative variables on the quality
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of the considered data transformation, based on the different validation measures. The

number of non-informative variables r refers to r in Equation (2.38) to (2.43). For each

method and validation measure but guided projections for all measures and diffusion

maps for C-index index we see the quality of transformations being affected in the same

way as the level of separation is affected for the untransformed data. For guided pro-

jections though, there seems to be no impact from additional non-informative variables.

Compared to setup 1 where only two groups were present, guided projection clearly

outperform all other transformation regardless of the validation index.

Note that the data setup refers to a situation similar to the first simulated setup

where a shift between the informative variables is present. Therefore, we deal with a

good situation for guided projections due to the choice of OSDI(x) = ODI(x) from

Equation (2.30). Assuming that the distances between the observations become more

similar with an increasing number of variables, the proportion of the distance which is

located in the projection space (described by OSD) becomes important. The different

covariance structures combined with the shifted informative variables of the present

groups lead to strong differences between subspaces associated with the different groups

and therefore to larger differences in the proportion of distances represented in those

subspaces. This effect is not addressed by the other transformations which mainly rely

on differences in the mean values (see setup 1), and therefore are strongly affected by

noise variables masking this effect.

2.4 Real-world data sets

The first real-world dataset we take into consideration is the fruit data set which is

often used to demonstrate the stability of robust statistical methods (e.g. Hubert and

Van Driessen, 2004). It consists of 1095 observations of spectra of three different types of

melon labelled with D, M and HA, presented in a 256 dimensional space of wavelength.

It is known that the groups consist of subgroups due to changed illumination systems

and changed lamps while cultivating the plants. Since we do not have labels for the

subgroups, we only consider the originally provided labels. For those labels we randomly

select 100 observations per group repeatedly 50 times.

Figure 2.9 evaluates the separation of groups based on the Gamma index, the Silhou-

ette measure, the C-index and the F-measure. Guided projections clearly outperforms

all other transformations as well as the untransformed data situation. Only when mea-

sured with the C-index, diffusion maps perform better than guided projections. For all
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other validation measures though, diffusion maps perform below average.

In addition to showing that the presentation of the observations with guided projec-

tions leads to a better group separation, we can visualize the transformation using the

diagnostic plot. Figure 2.10 visualizes the transformation for a selection of 100 randomly

selected observation. We use this selection in order to reduce the number of overlap-

ping lines to provide clearer insight into the group structure. First, we notice a strong

fluctuation of OSD indicating the presence of additional group structure, which in the

case of the red/solid grey group is obvious. Additionally we can identify outliers from

the present groups, e.g. by blue/light dotted observation. The presence of outliers and

additional group structure for this data set is well known (e.g. Hubert and Van Driessen,

2004). These subgroups, however, are not documented, and therefore an evaluation of

the additionally observed group structure is not possible.

0.10

0.15

0.20

0.25

0.30

DIFF GP PCA Raw RP SPC

G
am

m
a

(a)

−0.325

−0.300

−0.275

−0.250

−0.225

DIFF GP PCA Raw RP SPC

C
_i

nd
ex

(c)

−0.20

−0.15

−0.10

−0.05

0.00

DIFF GP PCA Raw RP SPC

S
ilh

ou
et

te

(b)

●

●

●

0.2

0.3

0.4

0.5

0.6

DIFF GP PCA Raw RP SPC

F
−

M
ea

su
re

(d)

Figure 2.9: The performance of data transformations is measured by four different vali-
dation measures. 50 randomly selected subsets of the fruit data set are evaluated, based
on the originally provided labels.
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Figure 2.10: Diagnostic plot for the full fruit data set. Three groups are present. Addi-
tional group structure can be adumbrated. Especially the presence of outliers is evident.
The observed group structure reflects the changes in the illumination system while col-
lecting data from melon growth as described in various publications (e.g. Hubert and
Van Driessen, 2004).

To show that the identification of additional group structures and outliers can be

achieved, utilizing diagnostic plots for guided projections we further introduce the glass

vessels (e.g. Filzmoser et al., 2008) dataset. Archaeological glass vessels from the 16th

and 17th century were investigated by an electron-probe X-ray micro-analysis. In total,

1920 characteristics are used to describe each vessel. The presence of outliers, especially

in one out of the four glass groups has been shown in previous studies (Serneels et al.,

2005). We use the algorithm pcout (Filzmoser et al., 2008) to identify outliers in this

group of observations. The diagnostic plot based on guided projections is visualized in

Figure 2.11. We can see that the outliers from pcout, drawn in red/light dotted, cor-

respond to two clear subgroups, being well separated from the majority of blue/dark

observations for most projections. We further note that the outliers consist of at least

two groups and are able to identify at least two groups of main observations and some
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additional candidates for outliers in the final projections of the series. It is not clear,

what underlying nature this group structure is identified from and it seems to be undoc-

umented so far by statistical publications working on the very same glass vessels data

set. This information will be valuable for the analyst, because it can refer to problems

in the measurement process, or to inconsistencies in the observations which are initially

assumed to belong to one group.
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Figure 2.11: Diagnostic plot for the glass vessel data set. Only the main group of
glass vessels is considered. Red/light lines correspond to identified outliers by the pcout
algorithm from Filzmoser et al. (2008).

2.5 Conclusions and outlook

We have proposed guided projections as an alternative to existing data transformations

which are applied prior to data structure evaluation methods. We project all observations

on the space spanned by a small number of q observations which are selected in a way such

that they are likely to come from the same group. We then exchange observations in this

selection one by one and therefore create a series of projections. Each projection can then

be treated as a new variable, but only the complete series is used for investigating the

grouping structure contained in the data. Note that this approach differs conceptually

from projection pursuit approaches, where the focus is on identifying one (or several)

low-dimensional projections of the data that reveal the group structure.
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While guided projections is motivated by the separation of groups using the full

available information, its application can be extended onto all types of data structure

analysis which is affected by high-dimensionality like outlier detection, cluster analysis,

or discriminant analysis. Furthermore, a way for identifying the existence of group struc-

ture is provided by the introduced visualization of guided projections. This concept can

be further extended to new diagnostic plots for identifying outliers and group structures

in the data.

The results based on simulated data show the advantages and limitations of guided

projections in comparison to other data transformation methods. Given favourable con-

ditions in the data structure, namely informative variables in different subspaces, guided

projections can vastly improve the degree of separation between existing groups in the

data. Furthermore, guided projections turned out to be a lot more robust against ad-

ditional non-informative variables. The results based on the real world data sets also

prove the practical importance of guided projections.

There are multiple ways to further improve the concepts of guided projections. First,

we can remove the restriction of considering only the projections IsL and IsR for each step.

Instead, we can consider every projection of previous steps. Removing this limitation

allows a more complex network of projections instead of an ordered series of projections.

The setup requires additional research. The second adjustment is the implementation of

different distance measures in the projection space. While PCA-based transformations

create an orthogonal basis in the projection space, guided projections are highly corre-

lated. Only few projections often provide enough information for a perfect separation.

Identifying these projections is a task of its own.

Furthermore, a detailed evaluation of possible measures for OSD needs to be per-

formed to allow a proper evaluation of the limitations and possibilities of guided projec-

tions.

Appendix

Equation (2.31) and (2.32) can be proven using the decomposition x = z1 + z2, where

z1 ∈ span({xi : i ∈ Is}) and z2 ∈ span⊥({xi : i ∈ Is}). span represents all possible

linear combinations of its observations and span⊥ its orthogonal complement. Specifi-

cally, we write z1 =
∑
i∈Is

aixi. For the equality of Equation (2.31) it is important to note

that also µ̂ is a linear combination of xi, i ∈ Is, with constant coefficients 1
q . Thus, we

42



Chapter 2: Guided Projections

can use the property xi = V IsDIsui, which holds for all i ∈ Is where ui represents the

respective right singular vector:

ODIs(z1) = ||z1 − µ̂− V IsV ′Is(
∑
i∈Is

aixi −
∑
i∈Is

1

q
xi)||, ai ∈ R ∀i ∈ Is

= ||z1 − µ̂− (

q∑
i=1

aiV IsV
′
IsV IsDIsui −

q∑
i=1

1

q
V IsV

′
IsV IsDIsui)|| (2.44)

Since V ′IsV Is = I, one can see that the two linear combinations in Equation (2.44)

sum up to z1 and µ̂ respectively. Therefore, Equation (2.44) can be simplified to

ODIs(z1) = ||z1 − µ̂− (z1 − µ̂)|| = 0, (2.45)

which proves Equation (2.31). To show Equation (2.32) we first note that Σ̂Is can be

written as 1
q−1D

2
Is and due to Equation (2.9) V ′Isxi = DIsui holds. Therefore, we can

rewrite the squared score distances for xi for all i ∈ Is as:

SD2(xi) =
(
V ′Is(xi − µ̂)

)′
Σ̂
−1
Is
(
V ′Is(xi − µ̂)

)
(2.46)

=

DIsui − 1

q

∑
j∈Is

DIsuj

′ (q − 1)D−2Is

(
DIsui −

1

q

∑
l∈Is

DIsul

)

= (q − 1)

u′iui − 1

q

∑
j∈Is

u′jui −
1

q
u′i
∑
l∈Is

ul +
1

q2

∑
j∈Is

u′j

(∑
l∈Is

ul

) .

Due to UIs being a unitary matrix and therefore u′iuj = δij , δij denoting Kronecker’s

delta, this expression can be simplified.

SD2(xi) = (q − 1)

(
1− 1

q
− 1

q
+

q

q2

)
=

(q − 1)2

q
(2.47)

which proves Equation (2.32).
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CHAPTER 3
Local projections for

high-dimensional outlier detection

Abstract

In this paper, we propose a novel approach for outlier detection, called local projections,

which is based on concepts of Local Outlier Factor (LOF) (Breunig et al., 2000) and

RobPCA (Hubert et al., 2005). By using aspects of both methods, our algorithm is

robust towards noise variables and is capable of performing outlier detection in multi-

group situations. We are further not reliant on a specific underlying data distribution.

For each observation of a dataset, we identify a local group of dense nearby ob-

servations, which we call a core, based on a modification of the k-nearest neighbours

algorithm. By projecting the dataset onto the space spanned by those observations,

two aspects are revealed. First, we can analyze the distance from an observation to the

center of the core within the projection space in order to provide a measure of quality

of description of the observation by the projection. Second, we consider the distance of

the observation to the projection space in order to assess the suitability of the core for

describing the outlyingness of the observation. These novel interpretations lead to a uni-

variate measure of outlyingness based on aggregations over all local projections, which

outperforms LOF and RobPCA as well as other popular methods like PCOut (Filzmoser

et al., 2008) and subspace-based outlier detection (Kriegel et al., 2009) in our simula-

tion setups. Experiments in the context of real-word applications employing datasets of

various dimensionality demonstrate the advantages of local projections.



3.1. Introduction

Keywords: dimension reduction, data transformation, diagnostic plots, informative

variables

3.1 Introduction

Classical outlier detection approaches in the field of statistics are experiencing multi-

ple problems in the course of the latest developments in data analysis. The increasing

number of variables, especially non-informative noise variables, combined with complex

multivariate variable distributions makes it difficult to compute classical critical values

for flagging outliers. This is mainly due to singular covariance matrices, distorted distri-

bution functions and therefore skewed critical values (e.g. Aggarwal and Yu, 2001). At

the same time, outlier detection methods from the field of computer science, which do not

necessarily rely on classical assumptions such as normal distribution, enjoy an increase

in popularity even though their application is commonly limited due to large numbers of

variables or flat data structures (more variables than observations). These observations

motivated the proposed approach for outlier detection incorporating aspects from two

popular methods: the Local Outlier Factor (LOF) (Breunig et al., 2000), originating

in the computer science, and RobPCA, a robust principal component analysis-based

(PCA) approach for outlier detection coming from the field of robust statistics (Hubert

et al., 2005). The core aim of the proposed approach is to measure the outlyingness of

observations avoiding any assumptions on the underlying data distribution and being

able to cope with high-dimensional datasets with fewer observations than variables (flat

data structures).

LOF avoids any assumptions on the data distribution by incorporating a k-nearest

neighbour algorithm. Within groups of neighbours, it evaluates whether or not an ob-

servation is located in a similar density as its neighbours. Therefore, multi-group struc-

tures, skewed distributions, and other obstacles have minor impact on the method as

long as there are enough observations for modelling the local behaviour. On the contrary,

RobPCA uses a robust approach for modelling the majority of observations, which are

assumed to be normally distributed. It uses a projection on a subspace based on this

majority. In contrast to most other approaches, RobPCA does not only investigate this

subspace but also the orthogonal complement, which reduces the risk of missing outliers

due to the projection procedure.

The proposed approach aims at combining these two aspects by defining projections
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based on the local neighbourhood of an observation where no reliable assumption about

the data structure can be made and by considering the concept of the orthogonal com-

plement similar to RobPCA. The approach of local projections is an extension of Guided

projections for analyzing the structure of high-dimensional data (Ortner et al., 2017a).

We identify a subset of observations locally, describing the structure of a dataset in order

to evaluate the outlyingness of other nearby observations. While guided projections cre-

ate a sequence of projections by exchanging one observation by another and re-project

the data onto the new selection of observations, in this work, we re-initiate the subset

selection in order to cover the full data structure as good as possible with n local descrip-

tions, where n represents the total number of observations. We discuss how outlyingness

can be interpreted with regard to local projections, why the local projections are suitable

for describing the outlyingness of an observation, and how to combine those projections

in order to receive an overall outlyingness estimation for each observation of a dataset.

The procedure of utilizing projections linked to specific locations in the data space

has the crucial advantage of avoiding any assumptions about the distribution of the

analyzed data as utilized by other knn-based outlier detection methods as well (e.g.

Kriegel et al., 2009). Furthermore, multi-group structures do not pose a problem due to

the local investigation.

We compare our approach to related and well-established methods for measur-

ing outlyingness. Besides RobPCA and LOF, we consider PCOut (Filzmoser et al.,

2008), an outlier detection method focusing on high-dimensional data from the statis-

tics, KNN (Campos et al., 2016), since our algorithm incorporates knn-selection similar

to LOF, subspace-based outlier detection (SOD) (Kriegel et al., 2009), a popular sub-

space selection method from the computer science and Outlier Detection in Arbitrary

Subspaces (COP) (Kriegel et al., 2012), which follows a similar approach but has dif-

ficulties when dealing with flat data structures. Our main focus in this comparison is

exploring the robustness towards an increasing number of noise variables.

The paper is structured as follows: Section 3.2 provides the background for a single

local projection including a demonstration example. We then provide an interpretation

of outlyingness with respect to a single local projection and a solution for aggregating

the information based on series of local projections in Section 3.3. Section 3.4 describes

all methods used in the comparison, which are then applied in two simulated settings in

Section 3.5. Finally, in Section 3.6, we show the impact on three real-world data problems

of varying dimensionality and group structure before we provide a brief discussion on

the computation time in Section 3.7. We conclude with a discussion in Section 3.8.
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3.2 Local projections

Let X denote a data matrix with n rows (observations) and p columns (variables) drawn

from a p-dimensional random variable X, following a non-specified distribution function

FX . We explicitly consider the possibility of p > n to emphasize the situation of high-

dimensional low sample size data referred to as flat data, which commonly emerges in

modern data analysis problems. We assume that FX represents a mixture of multiple

distributions FX1 , . . . , FXq , where the number of sub-distributions q is unknown. The

distributions are unspecified and can differ from each other. However, we assume that

the distributions are continuous. Therefore, no ties are present in the data, which is

a reasonable assumption especially for a high number of variables. In the case of ties,

a preprocessing step, excluding ties can be applied in order to meet this assumption.

An outlier in this context is any observation, which deviates from each of the groups of

observations associated with the q sub-distributions.

Our approach for evaluating the outlyingness of observations is based on the concept

of using robust approximations of FX , which do not necessarily need to provide a good

overall estimation of FX on the whole support but only of the local neighborhood of

each observation. Therefore, we aim at estimating the local distribution around each

observation xi, for i = 1, . . . , n, not by all available observations but by a small subset,

which is located close to xi.

We limit the number of observations included in the local description in order to

avoid the influence of inhomogenity in the distribution (e.g. multimodal distributions or

outliers being present in the local neighbourhood) of the underlying random variable.

For complex problems, especially high-dimensional problems, such approximations

are difficult to find. We use projections onto groups of observations locally describing

the distribution. Therefore, we start by introducing the concept of a local projection,

which will then be used as one such approximation before describing a possibility of

combining those local approximations. In order to provide a more practical incentive,

we demonstrate the technical idea in a simulated example throughout the section.

Definition of local projections

Let y denote one particular observation of the data matrix X = (x1, . . . ,xn)′, where

xi = (xi1 . . . xip)
′. For any such y, we can identify its k nearest neighbours using the
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Euclidean distance between y and xi, denoted by d(y,xi) for all i = 1, . . . , n:

knn(y) = {xi : d(y,xi) ≤ dk}, (3.1)

where dk is the k-smallest distance from y to any other observation in the dataset.

Using the strategy of robust estimation, we consider a subset of dα · ke observations

from knn(y) for the description of the local distribution, where α represents a trimming

parameter describing the proportion of observations, which are assumed to be non-

outlying in any knn. Here, dce denotes the smallest integer ≥ c. The parameter α is

usually set to 0.5 in order to avoid neighbors that are heterogeneous (e.g. due to outliers)

but it can be adjusted if additional information about the specific dataset is available.

By doing so, we reduce the influence of outlying observations, which would distort our

estimation. The idea is to get the most dense group of dα · ke observations, which we

call the core of the projection, initiated by y, not including y itself. The center of this

core is defined by

x0 = arg min
xi∈knn(y)

{d(dα·ke)(xi)}, (3.2)

where d(dα·ke)(xi) represents the dα · ke-largest distance between xi and any other ob-

servation from knn(y). The observation x0 can be used to define the core of a local

projection initiated by y:

core(y) = {xi :d(x0,xi) < d(dα·ke)(x0)∧

xi ∈ knn(y)∧xi 6= y} (3.3)

In order to provide an intuitive access to the proposed approach, we explain the

concept of local projections for a set of simulated observations. In this example, we

use 200 observations drawn from a two-dimensional normal distribution. The original

observations and the procedure of selecting the core(y) are visualized in Figure 1: The

red observation was manually selected to initiate our local projection process and refers

to y. It can be exchanged by any other observation. However, in order to emphasize the

necessity of the second step of our procedure, we selected an observation off the center.

The blue observations are the k = 20 nearest neighbours of y and the filled blue circles

represent the core of y using α = 0.5. We note that the observations of core(y) tend to

be closer to the center of the distribution than y itself, since we can expect an increasing

density towards the center of the distribution, which likely leads to more dense groups

of observations.
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Figure 3.1: Visualization of the core-selection process. The red observation represents
the initiating observation y. The blue observations represent knn(y) and the filled blue
observations represent core(y). x0 itself is not visualized but it is known to be an element
of core(y).

A projection onto the space, spanned by the observations contained in core(y), pro-

vides a description of the similarity between any observation and the core, which is

especially of interest for y itself. Such a projection can efficiently be computed using the

singular value decomposition (SVD) of the matrix of observations in core(y), centered

and scaled with respect to the core itself. In order to estimate the location and scale

parameters for scaling the data, we can apply classical estimators on the core preserving

robustness properties, since the observations have been included into the core in a robust

way.

Xcore(y) =(xy,1, . . . ,xy,dα·ke)
′ (3.4)

xy,j ∈ core(y) ∀j ∈ {1, . . . , dα · ke}

µ̂y =
1

dα · ke
∑

xi∈core(y)

xi (3.5)

σ̂y =
(√

V ar(xy,11, . . . , xy,dα·ke1), . . . ,√
V ar(xy,1p, . . . , xy,dα·kep)

)′
(3.6)

=(σ̂y,1, . . . , σ̂y,p)
′,

where V ar denotes the sample variance. Using µ̂y, the centered observations are given

by

xcy = (xcy,1, . . . x
c
y,p)
′ = xy − µ̂y, (3.7)
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which can be used to provide the centered and column-wise scaled data matrix with

respect to the core of y:

X̃y =

((
xcy,11
σ̂y,1

, . . . ,
xcy,1p
σ̂y,p

)′
, . . . ,

(
xcydα·ke1

σ̂y,1
, . . . ,

xcy,dα·kep

σ̂y,p

)′)′
(3.8)

Based on X̃y, we provide a projection onto the space spanned by the observations of

core(y) by V y from the SVD of X̃y,

X̃y = UyDyV
′
y. (3.9)

Any observation x can be projected onto the projection space by centering with µ̂y,

scaling with σ̂y, and applying the linear transformation V ′y. The projection of the whole

dataset is given by X̃yV y. We refer to the projected observations as the representation

of observations in the core space of y. Since the dimension of the core space is limited

by dα · ke, in any case where p > dα · ke holds and Xcore(y) is of full rank, a non-empty

orthogonal complement of this core space exists. Therefore, any observation x consists

of two representations, the core representation xcore(y) given the core space,

xcore(y) = V ′y

(
xc1
σ̂y,1

, . . . ,
xcp
σ̂y,p

)′
, (3.10)

where xc = (xc1, . . . , x
c
p)
′ is computed as defined in Equation (3.5) and the orthogonal

representation xorth(y) given the orthogonal complement of the core space,

xorth(y) = xc − V yxcore(y). (3.11)

Figure 3.2a shows the representation of our 200 simulated observations in the core

space. Note that in this special case, the orthogonal representation is constantly 0 due

to the non-flat data structure of the core observations (p < k). We further see that the

center of the core is now located in the center of the coordinate system.

Given a large enough number of observations and a small enough dimension of the

sample space, we can approximate FX with arbitrary accuracy given any desired neigh-

borhood. However, in practice, the quality of this approximation is limited by a finite

number of observations. Therefore, it depends on various aspects like the size of dk

and ddα·ke and, thus, the approximation is always limited by the restrictions imposed by
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the properties of the dataset. Especially the behavior of the core observations will, in

practice, significantly deviate from the expected distribution with increasing ddα·ke.

In order to take this local distribution into account, it is useful to include the prop-

erties of the core observations in the core space into the distance definition within the

core space. A more advantageous way to measure the deviation of core distances from

the center of the core than using Euclidean distances is the usage of Mahalanobis dis-

tances (e.g. De Maesschalck et al., 2000). For the projection space, an orthogonal basis

is defined by the left eigenvectors of the SVD from Equation (3.9), while the singular

values given by the diagonal of the matrix Dy provide the standard deviation for each

direction of the projection basis. Therefore, weighting the directions of the Euclidean

distances with the inverse singular values directly leads to Mahalanobis distances in the

core space, which take the variation of each direction into account:

CDy(x) =

√
x′core(y)D

−1
y xcore(y)

min(dα · ke − 1, p)
(3.12)
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Figure 3.2: Plot (a) provides a visualization of the transformed observations from Fig-
ure 3.1. The red observation represents the initiating observation y. The blue obser-
vations represent knn(y) and the filled blue observations represent core(y). The green
ellipses represent the covariance structure estimated by the core observations represent-
ing the local distribution. Plot (b) uses the same representation as Figure 3.1 but shows
the concept of multiple local projections initiated by different observations marked as red
dots. Each of the core distances represented by green ellipses refers to the same constant
value taking the different covariance structures of the different cores into account.
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The computation of core distances can be derived from Figure 3.2a. The green cross

in the center of the coordinate system refers to the (projected) left singular vectors of the

SVD. We note that the scale of the two axes in Figure 3.2 differ appreciably. The green

ellipses represent Mahalanobis distances based on the variation of the two orthogonal

axes, which provide a more suitable measure for describing the distribution locally.

The distances of the representation in the orthogonal complement of the core cannot

be rescaled as in the core space. All observations from the core, which are used to

estimate the local structure, i.e. to span the core space, are fully located in the core

space. Therefore, their orthogonal complement is equal to 0:

xorth(y) = 0 ∀x ∈ core(y) (3.13)

Since no variation in the orthogonal complement is available, we cannot estimate

the rescaling parameters for the orthogonal components. Therefore, we directly use the

Euclidean distances in order to describe the distance from any observation x to the core

space of y. We will refer to this distance as orthogonal distance (OD).

ODy(x) = ||xorth(y)|| (3.14)

The two measures for similarity, CD and OD, are inspired by the score and the

orthogonal distance of Hubert et al. (2005). In contrast to Hubert et al. (2005), we do

not try to elaborate critical values for CD and OD to directly decide if an observation

is an outlier. Such critical values always depend on an underlying normal distribution

and on the variation of the core and the orthogonal distances of the core observations.

Instead, we aim at providing multiple local projections in order to be able to estimate the

degree of outlyingness for observations in any location of a data set. A core and its core

distances can be defined for every observation. Therefore, a total of n projections with

core and orthogonal distances are available for analyzing the data structure. Figure 3.2b

visualizes a small number (5) of such projections in order to demonstrate how the concept

works in practice. The red observations are used as the initiating observations, the green

ellipses represent core distances based on each of the 5 cores. Each core distance refers

to the same constant value considering the different covariance estimations of each core.

We see that observations closer to the boundary of the data are described less adequately

by their respective core, while other observations, close to the center of the distribution,

are well described by multiple cores.

53



3.3. Interpretation and utilization of local projections

3.3 Interpretation and utilization of local projections

Most subspace-based outlier detection methods, including PCA-based methods such as

PCOut (Filzmoser et al., 2008) and projection pursuit methods (e.g. Henrion et al.,

2013), focus on the outlyingness of observations within a single subspace only. The risk

of missing outliers due to the subspace selection by the applied method is evident as the

critical information might remain outside the projection space. RobPCA (Hubert et al.,

2005) is one of the few methods considering the distance to the projection space in order

to monitor this risk as well.

We would like to use both aspects, distances within the projection space and to the

projection space, to evaluate the outlyingness of observations as follows: The projection

space itself is often used as a model, employed to measure the outlyingness of an obser-

vation. Since we are using a local knn-based description, we can not directly apply this

concept as our projections are bound to a specific location defined by the cores. The core

distance from the location of our projection rather describes whether an observation is

close to the selected core. If this is the case, we can assume that the model of description

(the projection represented by the projection space) fits the observation well. Therefore,

if the observation is well-described, there should be little information remaining in the

orthogonal complement leading to small orthogonal distances.

We visualize this approach in Figure 3.3 in two plots. Plot (a) shows the first two

principal components of the core space and plot (b) the first principal component of the

core and the orthogonal space respectively. In order to retrace our concept of interpreting

core distances as the quality of the local description model and the core distances as a

measure of outlyingness with respect to this description, we look at the two observations

marked in red and blue. While the red observation is close to the center of our core as

seen in plot (a), the blue one is located far off. Therefore, the blue observation is not as

well described by the core as the red observation, which becomes evident when looking

at the first principal component of the orthogonal complement in plot (b), where the

blue observation is located far off the green line representing the projection space.

Note that this interpretation does not hold for core observations. This is due to

the fact that the full information of core distances is located in the core space. With

increasing p, the distance of all observations from the same group converges to a constant

as shown in e.g. Filzmoser et al. (2008) for multivariate normal distributions. While this

distance is completely represented in the core space for core observations, a proportion of

distances from non-core observations will be represented in the orthogonal complement of
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Figure 3.3: Visualization of orthogonal and core distances for a local projection of a
multivariate 100-dimensional normal distribution. Plot (a) describes the core space by
its first two principal components. The measurement of the core distances is represented
by the green ellipses. Plot (b) includes the orthogonal distance. The vertical green line
represents the projection space.

the core space. Therefore, the probability of the core distance of a core observation being

larger than the core distance of any other observation from the same group converges to

1 with increasing p:

lim
p→∞

P (CDy(xi) > CDy(z)) = 1, xi ∈ core(y), (3.15)

z /∈ core(y)

So far we considered a single projection, where we deal with a total of n projections.

Let X denote a set of n observations {x1, . . . ,xn}. Therefore, for each initializing obser-

vation x ∈ X , the core distance CDx and the orthogonal distance ODx are well-defined

for all observations from X . As motivated above, we want to measure the quality of lo-

cal description using the core distances and the local outlyingness using the orthogonal

distances. The smaller the core distance of an observation for a specific projection is,

the more relevant this projection is for the overall evaluation of the outlyingness of this

observation. Therefore, we downweight the orthogonal distance based on the inverse

core distances. In order to make the final outlyingness score comparable, we scale these

weights by setting the sum of weights to 1 for each local projection initiating observation
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y:

wy(x) =


0, x ∈ core(y)

1
CDy(x)

−min
z̃∈X

(
1

CDz̃(x)

)
∑

z∈X

(
1

CDz(x)
−min

z̃∈X

(
1

CDz̃(x)

)) , else
(3.16)

The scaled weights wy make sure, that the sum of contributions by all available

projections remains the same. Therefore, the sum of weighted orthogonal distances,

corresponding to local outlyingness through local projections (LocOut),

LocOut(x) =
∑
y∈X

(wy(x) ·ODy(x)) , (3.17)

provides a useful, comparable measure of outlyingness for each observation.

Note that this concept of outlyingness is limited to high-dimensional spaces. When-

ever we analyze a space where p ≤ dα · ke holds, the full information of all observations

will be located in the core space of each local projection. Therefore, for varying core

distances, the orthogonal distance will always remain zero. Thus, the weighted sum of

orthogonal distances can not provide any information on outlyingness unless there is

information available in the orthogonal representation of observations.

3.4 Evaluation setup

In order to evaluate the performance of our proposed methodology, we compare it with

related algorithms, namely LOF (Breunig et al., 2000), RobPCA (Hubert et al., 2005),

PCOut (Filzmoser et al., 2008), COP (Kriegel et al., 2012), KNN (Ramaswamy et al.,

2000), and SOD (Kriegel et al., 2009). Each of those algorithms tries to identify out-

liers in the presence of noise variables. Some methods use a configuration parameter

describing the dimensionality of the resulting subspace or the number of neighbours in a

knn-based algorithm. In our algorithm, we use dα ·ke observations to create a subspace,

which we employ for assessing the outlyingness of observations. In order to provide a

fair comparison, the configuration parameters of each method are adjusted individually

for each dataset: We systematically test different configuration values and report the

best achieved performance for each method. Instead of outlier classification, we rather

use each of the computed measures of outlyingness since not all methods provide cutoff

values. The performance itself is reported in terms of the commonly used area under

the ROC Curve (AUC) (Fawcett, 2006).
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Compared methods

Local Outlier Factor (LOF) (Breunig et al., 2000) is one of the main inspirations

for our approach. The similarity of observations is described using ratios of Euclidean

distances to k-nearest observations. Whenever this ratio is close to 1, there is a consistent

group of observations and, therefore, no outliers. As for most outlier detection methods,

no explicit critical value can be provided for LOF (e.g. Zimek et al., 2012; Campos

et al., 2016). In order to optimize the performance of LOF, we estimate the number of

k-nearest neighbours for each evaluation. We used the R-package Rlof (Hu et al., 2011)

for the computation of LOF.

The second main inspiration for our approach is the RobPCA algorithm by Hu-

bert et al. (2005). The approach employs distances (similar to the proposed core and

orthogonal distances) for describing the outlyingness of observations with respect to the

majority of the underlying data. This method should work fine with one consistent

majority of observations. In the presence of a multigroup structure, we would expect it

to fail since the majority of data cannot be properly described with a model of a single

normal distribution. RobPCA calculates two outlyingness scores, namely orthogonal

and score distances1. RobPCA usually flags observations as outliers if either the score

distance or the orthogonal distance exceed a certain threshold. This threshold is based

on transformations of quantiles of normal and χ2 distributions. We use the maximum

quantile of each observation for the distributions of orthogonal and score distances as

a measure for outlyingness in order to stay consistent with the original outlier detec-

tion concept of RobPCA. The dimension of the subspace used for dimension reduction

is dynamically adjusted. We used the R-package rrcov (Todorov et al., 2009) for the

computation of RobPCA.

In addition to LOF and RobPCA, we compare the proposed local projections with

PCOut by Filzmoser et al. (2008). PCOut is an outlier detection algorithm where lo-

cation and scatter outliers are identified based on robust kurtosis and biweight measures

of robustly estimated principal components. The dimension of the projection space is

automatically selected based on the proportion of the explained overall variance. A

combined outlyingness weight is calculated during the process, which we use as an out-

lyingness score. The method is implemented using the R-package mvoutlier (Filzmoser

and Gschwandtner, 2015).

1For a multivariate interpretation of outlyingness based on those two scores, we refer to Pomerantsev
(2008).
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Another method included in our comparison is the subspace-based outlier detec-

tion (SOD) by Kriegel et al. (2009). The method is looking for relevant dimensions par-

allel to the axis in which outliers can be identified. The identification of those subspaces

is based on knn, where k is optimized in a way similar to LOF and local projections.

We used the implementation of SOD in the ELKI framework (Achtert et al., 2008) for

performance reasons.

All three methods, LocOut, LOF and SOD, implement knn-estimations in their re-

spective procedures. Therefore, it is reasonable to monitor the performance of k-nearest

neighbors (KNN), which can be directly used for outlier detection as suggested in Ra-

maswamy et al. (2000). The performance is optimized over all reasonable k between 1

and the minimal number of non-outlying observations of a group which we take from

the ground truth in our evaluation. We used the R-package dbscan for the computation

of KNN.

Similar to the proposed local projections, Outlier Detection in Arbitrary Sub-

spaces (COP) by Kriegel et al. (2012) locally evaluates the outlyingness of observations.

The k-nearest neighbours of each observation are used to estimate the local covariance

structure and robustly compute the representation of the evaluated observation in the

principal component space. The last principal components are then used to measure

the outlyingness, while the number of principal components to be cut off is dynami-

cally computed. Although the initial concept looks similar to our proposed algorithm, it

contains some disadvantages. The number of observations used for the knn estimation

needs to be a lot larger than the number of variables. A proportion of observations

to variables of three to one is suggested. Therefore, the method can not be employed

for flat data structures, which represent the focus of the proposed approach for outlier

analysis. While COP performed competitive for simulations with no or a very small

number of noise variables, the computation of COP is not possible in flat data settings.

As the non-flat settings only represent a minor fraction of the overall simulations, we

did not include COP in the simulated evaluation but only in the low-dimensional real

data evaluation of Section 3.6.

3.5 Simulation results

We used two simulation setups to evaluate the performance of the methods for increasing

number of noise variables in order to determine their usability for high-dimensional data.

We do that by starting with 50 informative variables and 0 noise variables, increasing
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the number of noise variables up to 5000. We use three groups of observations with 150,

150, and 100 observations. Starting from 350 noise variables, the data structure becomes

flat, which we expect to lead to performance drops as the estimation of the underlying

density becomes more and more problematic. Each of the three groups of observations is

simulated based on a randomly rotated covariance matrix Σi as performed in Campello

et al. (2015),

Σi =

(
Σi
inf 0

0 Inoise

)
Σi
inf = Ωi


1 ρi . . . ρi

ρi
. . .

. . .
...

...
. . .

. . . ρi

ρi . . . ρi 1

Ω′i, (3.18)

for i = 1, 2, 3, where Inoise is an identity matrix describing the covariance of uncor-

related noise variables and Σi
inf the covariance matrix of informative variables, which

are variables containing information about the separation of present groups where ρi is

randomly selected between 0.1 and 0.9, ρi ∼ U [0.1, 0.9]. Ωi represents the randomly

generated orthonormal rotation matrix. For our simulation setups we always consider

the dimensionality of Σi
inf to be 50. During the simulation, we evaluate the impact of

such noise variables and therefore perform the simulation for a varying number of noise

variables. While the mean values of the noise variables are fixed to zero for all groups,

the mean values of the informative variables are set as follows:

(µ1,µ2,µ3) =



µ 0 0

0 µ 0

0 0 µ

µ 0 0

0 µ 0
...

...
...


. (3.19)

Therefore, for each informative variable, one group can be distinguished from the two

other groups. The degree of separation, given by µ, is randomly selected from a uni-

form distribution U[−6,−3]∪[3,6]. The first simulation setup uses multivariate normally

distributed groups of observations using the parameters µi and Σi
inf , for i ∈ {1, 2, 3},

and the second setup uses multivariate log-normally distributed groups of observations

with the same parameters. Note that noise variables can be problematic for several of the

outlier detection methods, and skewed distributions can create difficulties for methods

relying on elliptical distributions.
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After simulating the groups of observations, scatter outliers are generated by re-

placing 5% of the observations of each group with outlying observations. Therefore,

we use the same location parameter µi, but their covariance matrix is a diagonal ma-

trix with constant diagonal elements σ which are randomly generated between 3 and 9,

σ ∼ U [3, 9], for informative variables. The reason for using scatter outliers instead of

location outliers (changed µi) is the advantage, that outliers will not form a separate

group but will stick out of their respective group in random directions.

The outcome of the first simulation setup based on multivariate normal distribution

is visualized in Figure 3.4. figure 3.4a shows the performance for 100 repetitions with

1000 noise variables as boxplots measured by the AUC value. We note that local pro-

jections (LocOut) outperform all other methods, while LOF, SOD, and KNN perform

approximately at the same level. For smaller numbers of noise variables, especially SOD

performs better than local projections. This becomes clear in Figure 3.4b, showing the

median performance of all methods with a varying number of noise variables. We see

that the performance of SOD drops quicker than other methods, while local projections

are effected the least by an increasing number of noise variables. The horizontal grey

line corresponds to a performance of 0.5 which refers to random outlier scores.
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Figure 3.4: Evaluation of outliers in three multivariate normally distributed groups
with a varying number of noise variables. 5% of the observations were replaced by
outliers. Plot (a) shows boxplots for the setup with 1000 noise variables. Each setup
was repeatedly simulated 100 times. Plot (b) shows the median performance of each
method for various numbers of noise variables.

60



Chapter 3: Local Projections for Outlier Detection

Setup 2, visualized in Figure 3.5, shows the effect of non-normal distributions on

the outlier detection methods. The same parameters used for log-normal distributions

as in the normally distributed setup, make it easier for all methods to identify outliers.

Nevertheless, the order of performance changes since the methods are affected differently.

SOD is stronger affected than LOF, since it is easier for SOD to identify useful spaces for

symmetric distributions while LOF does not benefit from such properties. LocOut still

shows the best performance, at least for an increasing number of noise variables. The

most notable difference is the effect on RobPCA, which heavily depends on the violated

assumption of normal distribution.
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Figure 3.5: Evaluation of outliers in three multivariate log-normally distributed groups
with a varying number of noise variables. 5% of the observations were replaced by
outliers. Plot (a) shows boxplots for the setup with 1000 noise variables. Each setup
was repeatedly simulated 100 times. Plot (b) shows the median performance of each
method for various numbers of noise variables.

3.6 Application on real-world datasets

In order to demonstrate the effectiveness of local projections in real-world applications,

we analyze three different datasets, varying in the number of groups, the dimension

of the data space, and the separability of the groups. We always use observations from

multiple groups as non outlying observations and a small number of one additional group

to simulate outliers in the dataset.
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Olive Oil

The first real-world dataset consists of 120 samples of measurements of 25 chemical

compositions (fatty acids, sterols, triterpenic alcohols) of olive oils from Tuscany, Italy

(Armanino et al., 1989). The dataset is used as a reference dataset in the R-package

rrcovHD (Todorov, 2014) for robust multivariate methods for high-dimensional data

and consists of four groups of 50, 25, 34, and 11 observations, respectively. We use

observations from the smallest group with 11 observations to sample 5 outliers 50 times.

In our context, this dataset represents a situation where the distribution can be well-

estimated due to its non-flat data structure. Therefore, it is possible to include COP in

the evaluation. It is important to note that at least 26 observations must be used by

COP in order to be able to locally estimate the covariance structure, while there will

always be a smallest group of 25 observations at most present for each setup. Thus, we

would assume, that COP has problems distinguishing between outliers and observations

from this smallest group which does not yield enough observations for the covariance

estimation.

We show the performance of the compared outlier detection methods based on the

AUC values in Figure 3.6. We note that all methods but PCOut and COP perform at

a very high level. For KNN, SOD and LocOut, there is only a non-significant difference

in the median performance.
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Figure 3.6: Performance of different outlier detection methods for the 25 dimensional
olive oil dataset measured by the area under the ROC curve (AUC). For each method
the configuration parameters are optimized based on the ground truth.
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Melon

The second real-world dataset used for the evaluation is a fruit data set, which consists

of 1095 observations in a 256 dimensional space corresponding to spectra of the different

melon cultivars. The observations are documented as members of three groups of sizes

490, 106 and 499, but in addition, during the cultivation processes different illumination

systems have been used leading to subgroups. The dataset is often used to evaluate

robust statistical methods (e.g. Hubert and Van Driessen, 2004).

We sample 100 observations from two randomly selected main groups to simulate a

highly inconsistent structure of main observations and add 7 outliers, randomly selected

from the third remaining group. We repeatedly simulate such a setup 150 times in order

to make up for the high degree of inconsistency. As Figure 3.7 shows, the identification

of outliers is extremely difficult for this dataset. A combination of properly reducing the

dimensionality and modelling the existing sub-groups is required. LocOut outperforms

the compared methods, followed by LOF and PCOut.
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Figure 3.7: Evaluation of the performance of the outlier detection algorithms on the
fruit data set, showing boxplots of the performance of 150 repetitions of outlier detection
measured by the AUC.

Archaeological glass vessels

The observations of the glass vessels dataset, described e.g. in Janssens et al. (1998)

refer to archaeological glass vessels, which have been excavated in Antwerp (Belgium).
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In order to distinguish between different types of glass, which have either been imported

or locally produced, 180 glass samples were chemically analyzed using electron probe

X-ray microanalysis (EPXMA). By measuring a spectrum at 1920 different energy levels

corresponding to different chemical elements for each of those vessels, a high-dimensional

data set for classifying the glass vessels is created. A few (11) of those variables/energy

levels contain no variation and are therefore removed from our experiments in order to

avoid problems during the computation of outlyingness.

While performing PLS regression analysis, Lemberge et al. (2000) realized that some

vessels had been measured at a different detector efficiency and, therefore, removed

those spectra from the dataset. We do not remove those observations, since from an

outlier detection perspective they represent bad leverage points as indicated by Serneels

et al. (2005), which we want to be able to identify. These leverage points are visualized

in Figure 3.8a with x-symbols. By including these observations as part of the main

groups, it becomes especially difficult to identify outliers sampled from the green group

(potasso-calic). We sample 100 observations from the non-potasso-calic group 50 times

and add 5 randomly selected potasso-calic observations as outliers. The performance

is visualized in Figure 3.8b. Again, LocOut outperforms all compared methods, while

LOF and PCOut have problems to deal with this data setup.

3.7 Discussion of runtime

The algorithm for local projections was implemented in an R-package which is publicly

available2. The package further includes the glass vessels data set used in Section 3.6.

Based on this R-package, we performed simulations to test the required computational

effort for the proposed algorithm and the impact of changes in the number of observations

and the number of variables.

For each projection, the first step of our proposed algorithm is based on the k-

nearest neighbours concept. Therefore, we need to compute the distance matrix for all

n available p-dimensional observations leading to an effort of O(n(n − 1)p/2), where

n(n − 1)/2 represents the combinations of observations and p, being the dimension of

the data space, reflects the effort for the computation of each Euclidean distance.

After the basic distance computation, we need to compare those distances (which

scales with n but only contributes negligibly to the overall effort) and scale the data

2http://www.applied-statistics.at/locout 1.0.tar.gz

64



Chapter 3: Local Projections for Outlier Detection

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●● ●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Na2O

C
aO

/(
C

aO
+

K
2O

)

(a)

●

●

●

●
●

●

Lo
cO

ut

LO
F

R
ob

P
C

A

P
C

O
ut

K
N

N

S
O

D

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C

(b)

Figure 3.8: Evaluation of the performance of the outlier detection algorithms on the
glass vessels data set. Plot (a) shows the classification of the group structure based on
the chemical composition. Plot (b) shows boxplots of the performance of 50 repetitions
of outlier detection measured by the AUC.

based on the location and scale estimation for the selected core (which also does not

significantly affect the computation time).

For all of the n cores, we perform an SVD decomposition leading to an effort of

O(p2n2 + n4). Therefore, a total effort of O(n2p(1 + p) + n4) is expected for the com-

putation of all local projections. In this calculation, reductions, such as the multiple

computation of the projection onto the same core, are not taken into account. Such

an effect is very common due to the presence of hubs in data sets (Zimek et al., 2012).

Figure 3.9 provide an overview of the overall computation time decomposed into the

different aspects of the computation algorithm.

We observe that the computation time increases approximately linearly with p, while

it increases faster than a linear term with increasing n. There is an interaction effect

between k and n visible in plot (a) of Figure 3.9 as well, due to the necessity of n knn

computations. Plots (c) and (d) show that the key factors are the n SVDs. Especially the

core estimation and the computation of the core distance are just marginally affected by

increasing n and not affected at all by increasing p. The orthogonal distance computation

is non-linearly affected by increasing n and p which however remains relatively small

when being compared to the SVD estimations.
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Figure 3.9: Visualisation of the computation time of the local projections. Plots (a) and
(b) evaluate the development of the overall computation time for increasing n in plot (a)
and increasing p in plot (b). Those evaluations are performed for varying k. Plot(c) and
(d) focus on different components of the computation for a fixed k = 40 and increasing
n and p.

3.8 Conclusions

We proposed a novel approach for evaluating the outlyingness of observations based

on their local behaviour, named local projections. By combining techniques from the

existing robust outlier detection RobPCA (Hubert et al., 2005) and from Local Outlier

Factor (LOF) (Breunig et al., 2000), we created a method for outlier detection, which

is highly robust towards large numbers of non-informative noise variables and which is

able to deal with multiple groups of observations, not necessarily following any specific
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standard distribution.

These properties are gained by creating a local description of a data structure by

robustly selecting a number of observations based on the k-nearest neighbours of an

initiating observation and projecting all observations onto the space spanned by those

observations. Doing so repeatedly, where each available observation initiates a local

description, we describe the full space in which the data set is located. In contrast to

existing subspace-based methods, we create a new concept for interpreting the outly-

ingness of observations with respect to such a projection by introducing the concept of

quality of local description of a model for outlier detection. By aggregating the mea-

sured outlyingness of each projection and by downweighting the outlyingness with this

quality-measure of local description, we define the univariate local outlyingness score,

LocOut. LocOut measures the outlyingness of each observation in comparison to other

observations and results in a ranking of outlyingness for all observations. We do not

provide cut off values for classifying observations as outliers and non-outliers. While at

first consideration this poses a disadvantage, it allows for disregarding any assumptions

about the data distribution. Such assumptions would be required in order to compute

theoretical critical values.

We showed that this approach is more robust towards the presence of non-informative

noise variables in the data set than other well-established methods we compared to

(LOF, SOD, PCOut, KNN, COP, and RobPCA). Additionally, skewed non-symmetric

data structures have less impact than for the compared methods. These properties,

in combination with the new interpretation of outlyingness allowed for a competitive

analysis of high-dimensional data sets as demonstrated on three real-world application

of varying dimensionality and group structure.

The overall concept of the proposed local projections utilized for outlier detection

opens up possibilities for more general data analysis concepts. Any clustering method

and discriminant analysis method is based on the idea of observations being an outlier

for one group and therefore being part of another group. By combining the different

local projections, a possibility for avoiding assumptions about the data distribution -

which are in reality often violated - is provided. Thus, applying local projections on

data analysis problems could not only provide a suitable method for analyzing high-

dimensional problems but could also reveal additional information on method-influencing

observations due to the quality of local description interpretation of local projections.
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CHAPTER 4
Multigroup discrimination based

on weighted local projections

Abstract

Local Discriminant analysis (LDA) model is computed using the information within the

projection space as well as the distance to the projection space. The models provide

information about the quality of separation for each class combination. Based on this

information, weights are defined for aggregating the LDA-based posterior probabilities

of each subspace to a new overall probability. The same weights are used for classifying

new observations.

In addition to the provided methodology, implemented in the R-package lop, a

method of visualizing the connectivity of groups in high-dimensional spaces is proposed

at the basis of the posterior probabilities. A deep evaluation is performed using three

different real-world datasets, underlining the strenghts of local projection based classifi-

cation and the provided visualization methodology.

4.1 Introduction

Supervised classification methods are widely used in research and industry, including

tasks like tumor classification, speech recognition, or the classification of food quality.

Observations are gathered from G distinct groups and for each observation the group

membership is known. Decision boundaries are then estimated in the sample space, such
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that a new observation can be assigned to one of the G groups. The aim of discrimination

methods is to find classification boundaries, which result in low misclassification rates

for new observations, i.e. new observations are assigned to the correct class with high

accuracy.

Linear discriminant analysis (LDA) is a popular tool for classification. It estimates

linear decision boundaries by maximizing the between-group to within-group variance

and assumes equal covariance structure of the groups. LDA often gives surprisingly good

results in low-dimensional settings, however, it cannot be directly applied if the number

of variables exceeds the number of observations since then the within-group covariance

estimate becomes singular and its inverse cannot be calculated. With restrictions on

the covariance estimation the problem of singularity can be mended, but asymptotically

(with increasing number of variables) the performance of LDA is not better than random

guessing (Bickel and Levina, 2004; Shao et al., 2011).

In many classification tasks it is commonly the case that the underlying data has

a flat structure, i.e. there are more variables than observations. Therefore, a great va-

riety of alternative classification methods and extensions of LDA have been developed

to overcome this limitations. Several proposed approaches consider projection of the

data onto a lower dimensional subspace (Barker and Rayens, 2003; Chen et al., 2013b)

or reducing the dimensionality by model-based variable selection (Witten and Tibshi-

rani, 2011). Other methods are not based on covariance estimation and so they are

not restricted to low-dimensional (non-flat) settings, e.g. k-nearest neighbour (KNN)

classification, support vector machines (SVM) or random forests (RF). Nevertheless, the

noise accumulation due to a large number of variables, which are not informative for the

class separations, affects these methods as well.

We propose a new approach for supervised classification based on a series of projec-

tions into low-dimensional subspaces, referred to as local projections. In each subspace,

we calculate an LDA model. The posterior probabilities of each LDA model are aggre-

gated (weighted by a class-specific quality measure of the projection space) to obtain

a final classification. The idea of aggregating posterior probabilities in the context of

random forests has been proposed by Bosch et al. (2007) taking the average over the

posterior probabilities from all trees.

The remainder of the paper is structured as follows. Section 4.2 presents the proposed

method. First, local projections based on the k-nearest class neighbors of an observation

and distances within and to the projection space are introduced in Section 4.2, resulting

in the local discrimination space where an LDA model is estimated. Next, in Section 4.2,
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we introduce weights used for aggregating the posterior probabilities from the individual

LDA models leading to a final classification rule. In Section 4.2, the range of the tun-

ing parameter k, associated with the dimensionality of the local discrimination space,

is discussed and a strategy to select the tuning parameter is presented. Section 4.3

introduces a way of visualizing the data structure and the degree of separation. In Sec-

tion 4.4, three real-world datasets are used to evaluate the performance of our approach

in comparison to other related and popular classification methods. The datasets cover

settings with only 25 and up to almost 10.000 variables, including multigoup and binary

classification problems, and a dataset where subgroups are known to exist. The effect of

imbalanced group sizes in the training data is investigated and results are visualized by

the techniques introduced in the previous section. Section 4.5 concludes the paper.

4.2 Methodology

Let X denote a data matrix of n observations X = (x1, . . . ,xn)′ in a p-dimensional

space, xi ∈ Rp, i = 1, . . . , n. We further assume the presence of G classes where the

class memberships of the observations are stored in a categorical vector y with yi = g

iff xi comes from group g, for g ∈ {1, . . . , G}. The number of observations in group g is

denoted by ng with n = n1 + · · · + nG. For all observations we assume that they have

been drawn from G different continuous probability distributions.

For our methodology it is important that each subset of k observations which spans

a space having a dimension of at least G − 1, and that there are no ties present in

our data. These requirements automatically imply high dimensional dataspaces as the

area of application. Both assumptions can be met by a preprocessing step, removing

duplicate or linearly dependent observations. Note that these restrictions only apply for

the training data, but not for new observations.

Previous research (Ortner et al., 2017a,b) shows the effectiveness of using series of

projections to overcome the limitations dictated by a flat data structure. In this section,

the local discrimination method is introduced which allows for the number of variables

p to exceed the number of observations n. The idea is as follows. For a fixed observa-

tion xi, its k nearest neighbours are identified, called the core of xi, which are used to

define a k − 1 dimensional hyperplane, the core space. The Euclidean distance to this

hyperplane, called orthogonal distance, is calculated for each observations. The hyper-

plane and the orthogonal distance together define a k-dimensional subspace, the local

discrimination space, where an LDA model is estimated. This approach is performed
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for each observation resulting in n LDA models. To assign the class membership to an

observation, its posterior probabilities of all models are aggregated.

Local discrimination space

Let dgk(x) denote the kth-smallest distance from x to any observation from class g, for

g ∈ {1, . . . , G}. According to Ortner et al. (2017a) and Ortner et al. (2017b), we define

the core of xi as the k-nearest class neighbors of xi,

core(xi) = {xj : d(xi,xj) ≤ dgk(xi) ∧ yi = yj = g} = {xi1 , . . . ,xik}, (4.1)

where d(xi,xj) denotes the Euclidean distance between xi and xj , and i1, . . . , ik are the

indices of the core observations within X. In contrast to Ortner et al. (2017b), we use

all k-nearest class neighbours as we can use the group membership in order to guarantee

a clean core, i.e. no observations from other groups within the core.

Any of the n available cores core(x1), . . . , core(xn) can be used to unambiguously

define an affine subspace spanned by the core observations. In order to determine the

projection onto this subspace, we center and scale the data with respect to the k core

observations xij , j = 1, . . . , k.

µ̂i =
1

k

k∑
j=1

xij (4.2)

σ̂i =

(√
ˆV ar(xi11, . . . , xik1), . . . ,

√
ˆV ar(xi1p, . . . , xikp)

)′
(4.3)

=(σ̂i1, . . . , σ̂ip)
′,

where ˆV ar denotes the sample variance. For the ongoing work, we denote X̃
i

=

(x̃i1, . . . , x̃
i
n)′ as the data matrix of centered and scaled observations based on the lo-

cation and scale estimators µ̂i and σ̂i of the core of xi. A projection onto the subspace

spanned by the core of xi is defined by V i from the singular value decomposition (SVD)

of the centered and scaled core observations (x̃ii1 , . . . , x̃
i
ik

)′ = U iDiV
′
i. Since the core

of xi consists of exactly k linearly independent observations, Di is a k − 1 dimensional

diagonal matrix, with non-zero singular values in the diagonal.

Since the idea of no ties being present in the data and each core consisting of linearly

independent observations may appear like a strong limitation, an adjustment of the

definitions can help in order to avoid a preprocessing step. If we interpret the core of xi

as a set of observations, where iteratively the observation from the same class, closest
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to xi is added until a k− 1 dimensional subspace is spanned, we only need to guarantee

the existence of such subsets of observations, which is a much weaker assumption.

Given the projection matrix V i from the decomposition, a representation of the data

X in the core space is defined by down-projecting the centered and scaled data matrix,

Zi = X̃
i
V i. The core representation consists of k − 1 orthogonal variables, while the

p−k dimensional complement of Zi defines the orthogonal complement of the core space.

In contrast to commonly used procedures of first reducing the dimensionality using PCA

and then performing a discrimination method like LDA, we acknowledge the fact that

the last principal components might contain an important part of the information like

exploited by modern outlier detection algorithms (e.g. Hubert et al., 2005; Kriegel et al.,

2012). Since the reduction of dimensionality remains vital, we aggregate the information

from the orthogonal complement by considering the Euclidean distance to the core space,

ODi(xj) = ||x̃ij − V iz
i
j ||, (4.4)

where zij = V ′ix̃
i
j denotes the core representation of xj given core(xi).

The combination of the core representation and the orthogonal distance OD in a

matrix, [Zi, ODi], provides a k-dimensional representation for all observations of X.

This k-dimensional space is the local discrimination space. The reduction of the sample

space to the local discrimination space results in a good description of the neighbourhood

of an observation xi and also includes grouping structure which is not described in the

core space by the orthogonal distances.

An LDA model is estimated in the local discrimination space, excluding the observa-

tions from the core of xi. It is necesarry to exclude the core observations, because they

have very specific properties in the local discrimination space and this would distort the

within-group covariance estimation. In Ortner et al. (2017a) it is shown that

ODi(xj) = 0 ∀xj ∈ core(xi) (4.5)

SDi(xj) ≡ const. ∀xj ∈ core(xi), (4.6)

where SD represents the score distance, defined as the Euclidean distance within the

core space. These properties hold because for xj ∈ core(xi) the full information is

located in the core space, so the orthogonal distances are zero. The scaling applied to

the data based on the covariance estimation of the core observations leads to constant

score distances for xj ∈ core(xi). So the core observations must not be included in the

computation of the LDA model. The model estimated on the remaining observations in

the local discrimination space is denoted by LDAi.
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For the model LDAi the posterior probability of group g given an observation x is

defined by

PLDAi(g | x) =
hg(x)∑G
j=1 hl(x)

, (4.7)

where hg(x) denotes the estimated density of a multivariate normal distribution with

the group mean of class g as center and the pooled within-group covariance matrix as

covariance estimate.

Weighting/aggregating local projections

We now have a set of n local discrimination spaces and their respective LDA models. In

order to receive an overall classification rule for a new observation x, we need to aggregate

the n available models from the core spaces. We accomplish such an aggregation by

using the posterior probabilities defined in Equation (4.7). First we consider the mean

over all n posterior probabilities of x belonging to group g, for g ∈ {1, . . . , G},

P̃LPk
1

(g | x) =
1

n

n∑
j=1

PLDAj (g | x), (4.8)

and we define the aggregated posterior probability of x belonging to group g, for g ∈
{1, . . . , G}, as

PLPk
1

(g | x) =
P̃LPk

1
(g | x)∑G

j=1 P̃LPk
1

(j | x)
. (4.9)

These new aggregated posterior probabilities are based on a fixed number k describing

the number of core observations as indicated by the index of LP k1 .

The posterior probabilities of the LDA models, PLDAi(g | x), compared to the true

class membership of x reflect the quality of separation in the respective local projection.

We distinguish between two quality measures. Let qg+i denote the mean posterior prob-

ability of belonging to class g over all observations actually coming from class g, with

respect to the model LDAi, i.e.

qg+i =
1

ng

∑
k:yk=g

PLDAi(g | xk) (4.10)

and qg−i the mean posterior probability of non-class-g observations being classified as

class g observations given the model LDAi, i.e.

qg−i =
1

n− ng

∑
k:yk 6=g

PLDAi(g | xk). (4.11)
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Chapter 4: Local Projections based Discrimination

Based on qg+i and qg−i , we define weights wgi representing the quality of each local

projection i = 1, . . . , n for each group g ∈ {1, . . . , G},

wgi = exp
(
qg+i − q

g−
i

)
. (4.12)

Based on these quality measures wgi , we redefine the overall posterior probabilities

from Equation (4.9) by weighting each projection for each class with the respective

weight. Note that these weights are class-specific and, therefore, a class-individual stan-

dardization of weights is required. In our notation, we remove the subscript 1 from

Equation (4.8) and Equation (4.9), which represents constant weights of 1 for each local

projection, resulting in:

P̃LPk(g | x) =
1∑n

i=1w
g
i

n∑
i=1

wgi PLDAi(g | x) (4.13)

PLPk(g | x) =
P̃LPk(g | x)∑G
j=1 P̃LPk(j | x)

(4.14)

Equivalently to classical LDA, we use these posterior probabilities to assign an ob-

servation x to a class ŷ = argmax
g∈{1,...,G}

PLPk(g | x). This decision rule defines the local

discrimination model.

The choice of k

The computation of LDA models in the full dimensional space, given more variables

than observations are available, demands for data preprocessing including dimension

reduction (e.g. Barker and Rayens, 2003; Chen et al., 2013b) or the parallel performance

of model estimation and variable selection (e.g. Witten and Tibshirani, 2011; Hoffmann

et al., 2016). The concept of local projections allows us to compute an LDA model for

each local projection due to the low dimensional core space. The parameter determining

the dimensionality is k of the k-nearest class neighbours. It is important to properly

tune k since it defines the degree of locality for each projection. Smaller k’s are able

to better describe a lower dimensional manifold on which groups might be located but

increase the risk of not being able to properly describe the local data structure.

The number of classes G as well as the number of observations ng for g ∈ {1, . . . , G}
provide a first limitation for the range of k. In order to compute an LDA model with G

classes, a dimensionality equal to at least G− 1 is required. Therefore,

G− 1 ≤ k (4.15)
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provides a lower boundary for k.

To identify an upper boundary for k, two properties of the core observations must

be taken into account. Due to the specific properties of the core observations stated in

Equations (4.5) and (4.6) they are not included in the computation of the LDA model.

So an upper boundary for k is given by

k ≤ n− (k + 1) (4.16)

to guarantee a non-singular covariance estimation. It is useful to further reduce the

upper boundary of k in order to allow for a reasonable covariance estimation. Here we

take three times more observations than variables leading to the limitation

3k ≤ n− k. (4.17)

With these restrictions on k, LDA models in the core spaces can be computed, but

for the evaluation of the models further limitations are necessary. To be able to evaluate

the LDA models we depend on the posterior probabilities of observations for each class

in order to determine the risks of misclassification. Since a core consists of observations

from the same class only and the core observations are excluded from the LDA model,

the size of the smallest class needs to exceed k.

k + 1 ≤ min
g∈{1,...,G}

ng − 1 (4.18)

Due to the identified restrictions on k we optimize k within the following interval:[
G− 1,min

(
n

4
, min
g∈{1,...,G}

ng − 1

)]
(4.19)

For a given k, the misclassification rate of the local discrimination model is calcu-

lated by summing up the number of misclassified observations (again excluding the core

observations) divided by n − k, the total number of observations. The tuning param-

eter k is chosen from within the interval described in Equation (4.19) such that the

misclassification rate is minimized.

4.3 Visualization of the discrimination

In linear discriminant analysis, the projection space is used for the visualization of the

discrimination (e.g. Hair et al., 1998). The Mahalanobis distances of observations to the
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Chapter 4: Local Projections based Discrimination

class centers refer to the posterior probabilities of the observations for the respective

classes. This approach is not feasible for local discrimination, since each LDA model

refers to a different subspace and the aggregated posterior probabilities do not refer to

one specific low dimensional space, where the posterior probabilities could be visualized.

We therefore focus on visualizing the aggregated posterior probabilities and follow an

approach for compositional data using ternary diagrams. We present the visualization

technique on the four-group Olitos dataset which is used as a benchmark dataset for

robust, high-dimensional data analysis. The dataset is publicly available in the R-

package rrcovHD and was originally described by Armanino et al. (1989).

Hron and Filzmoser (2013) used ternary diagrams to visualize the outcome of (three-

group) fuzzy clustering results, which can be interpreted the same way as posterior

probabilities of discrimination models. The difficult aspect about ternary diagrams is

the limitation to three variables. Therefore, we select two classes, use the respective

posterior probabilities and as third composition the sum of posterior probabilities for all

remaining classes. This new three-class composition is visualized in Figure 4.1.
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Figure 4.1: The aggregated posterior probabilities of two classes (class 1 and class 2)
compared to the remaining classes is visualized as a ternary diagram. The dashed lines
represent classification rules. Observations located in the white areas can be assigned to
the respective group, while the grey area represents an uncertain area, where no certain
statement can be made. The grey dashed lines refer to posterior probabilities of the
selected classes.

Figure 4.1 shows the proposed representation for a sample of the Olitos dataset.

The focus of this representation is the evaluation of the separation between the two

selected classes 1 and 2. The gray dashed lines and the numbers on the left side show
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4.3. Visualization of the discrimination

the posterior probability for an observation to belong to group 1. The two white areas

at the bottom separated by a vertical dashed line represent the classification rules for

the separation between class 1 and 2. Observations in the left area are assigned to group

1 and in the right area to group 2. In the bottom right area we can identify one outlier

from the blue class and one from class 1 which are wrongly assigned to group 2. Besides

these two false classifications, additional information can be gained from the diagram.

Firstly, the grey area represents the region, where no statement about classification

can be made with certainty. Two observations x1 and x2 are highlighted there. While

x1 is located in the uncertainty area we can still tell that it will be misclassified since

the posterior probability for class 2 is larger than for class 1. This decision is indicated

by the vertical dashed line within the uncertainty area. But from this figure it is not

possible to say whether it will be assigned to class 2 or to one of the other classes. The

same holds for observation x2. The posterior probability for class 1 is close to 0.4, for

class 2 close to 0.15. Therefore, the posterior probabilities for classes 3 and 4 sum up

to approximately 0.45. Depending on the class-specific allocation the maximal posterior

probability for the classes 3 and 4 varies between 0.225 and 0.45 and the largest posterior

probability for x2 can originate from class 1, 3 or 4.

Secondly, the white classification area at the top of the triangle visualizes those

observations which with certainty will not be assigned to class 1 or class 2. We note a

minor risk of misclassifying observations in the direction of class 1. Note that the size of

the uncertainty area and therefore the size of the third classification area highly depends

on the number of groups to be aggregated. In a 3-group case, all posterior probabilities

can be visualized and no area of uncertainty exists, as shown in Figure 4.2a. The

remaining plots of Figure 4.2 show the impact of increasing numbers of groups on the

area of uncertainty.
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Figure 4.2: The effect of the number of aggregated groups is visualized. Figure (a) refers
to a three-class case, (b) to a four-class case, (c) to a five-class case, (d) to a six-class
case and (e) to a ten-class case.
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Finally the positioning of the observations in the ternary diagram provides some

insight on the connection between the groups. The red observations from class 2 in Figure

4.1 are mostly aligned along the axis from 1 to 2. Observations from the aggregated group

are also mostly aligned between 1 and 3 while the black observations split up between

class 2 and 3. Therefore, class 2 is strongly connected to class 1 but has no connection

to the aggregated classes. Observations like x3 strongly deviate from the typical class

direction and should therefore be candidates for further investigation in the context of

outlier analysis.
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Figure 4.3: A set of ternary diagrams is used to visualize the classification performance
for each possible combination of classes. While the color remains constant, we switch
labels to emphasize the currently selected classes labeled on the bottom and left of the
diagrams.

Since the representation in Figure 4.1 uses a three-components representation, which

can not illustrate the overall discrimination result, we propose to use a combination of

ternary diagrams in the form of a scatterplot matrix, as presented in Figure 4.3. Each
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4.4. Evaluation

combination of possible two-class plus one aggregated group classifications is presented

as described for Figure 4.1. In order to align the groups and increase the readability,

the diagrams have been rotated accordingly.

Besides providing information on the quality of discrimination and risks of misclassi-

fication, we can derive an overall picture about group connectivity. We already remarked

on the location of class 2. The positioning of the observations of the green and blue ob-

servations in the second and third column of the matrix reveals that the green group

has stronger ties to the black group, while the blue observations are equally drawn to

its direct neighbors, the black and the blue group. Such insight on connectivity provides

a feeling for the location of groups in high dimensional spaces which is in general a

non-trivial task limited by the human spacial sense.

4.4 Evaluation

In order to evaluate the performance of our proposed local discrimination approach,

abbreviated by LP for Local Projections, we use three real-world datasets which have

previously been used as benchmark datasets for high dimensional data analysis. Based

on those datasets, we compare with well established classification methods from the

fields of computer science and statistics. While the visualization introduced in Section

4.3 provides interesting insights into each dataset and will be provided as well, we focus

on comparing the used methods based on the misclassification rate.

For each dataset we split the available observations into training and test dataset.

The same training dataset is used for each method to estimate the discrimination model

and the same test dataset is used to evaluate the performance of all the models by

reporting the misclassification rates.

The datasets under evaluation consist of groups of different numbers of observations.

Since the outcome of a method can be strongly affected by the specific choice of the

training and test set, we resample the observations 50 times per dataset, creating a

series of training and test datasets resulting in a series of misclassification rates. The

overall performance is then measured based on the median misclassification rate as well

as on the deviation from the median misclassification rate.
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Chapter 4: Local Projections based Discrimination

Compared methods

The selection of classification methods is based on the popularity of the methods, the

importance for our setups and the relevance for our proposed approach. The most

important aspect is the applicability on the evaluated datasets. The crucial factor is the

flat data structure (more variables than observations), especially in class-specific subsets

of the overall dataset. In order to cover related classification methods, we include Linear

Discrimination Analysis (LDA) as this is the classification method internally used for

each local projection. We further include statistical advancements of LDA which try

to deal with disadvantageous properties of our datasets of interest, namely penalized

LDA and partial least squares for discriminant analysis. The most related method from

the field of computer science is KNN-classification as our local projections are based

on a knn-estimation. The final methods included in the evaluation are support vector

machines and random forests to cover the most commonly used classification approaches

from the field of computer science.

For Linear Discriminant Analysis (LDA) it is assumed that the covariance struc-

ture is the same for each class and has elliptical shape. Under this assumption the optimal

decision boundaries to separate the groups are linear. The separation of the classes is

achieved by taking G−1 orthogonal directions which maximize the within-group variance

to the between-group variance. In this G− 1 dimensional space the Euclidean distance

to the group centers is used to assign an observation to the group with the closest center.

For the calculations the function lda from the R-package MASS is used. This imple-

mentation can be applied to data with p > n by performing singular value decomposition

and reducing the dimensionality to the rank of the data.

Penalized LDA (PLDA) introduced by Witten and Tibshirani (2011) is a regular-

ized version of Fisher’s linear discriminant analysis. A penalty on the discriminant vec-

tors favours zero entries, which leads to variable selection. The influence of the penalty

is controlled by the sparsity parameter λ: larger values of λ lead to fewer variables in

the model.

The sparsity parameter λ is selected from 10 values between 10−4 and 5 by 10-

fold cross-validation on the training data using as selection criterion the minimum mean

misclassification rate. The number of discriminating vectors is set to G−1. The functions

for cross validation and model estimation are provided in the R-package penalizedLDA

(Witten, 2011).

Partial least squares for discriminant analysis (PLSDA) was theoretically es-
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tablished by Barker and Rayens (2003), where its relationship to LDA and the application

to flat data was discussed. PLSDA performs in a first step a projection onto K latent

variables, which considers the grouping information of y. Then LDA is performed in the

reduced space.

For the evaluation the R-package DiscriMiner (Sanchez and Determan, 2013) is

used, which provides code for the selection of the number of components K by leave-

one-out cross-validation.

Support Vector Machines (SVMs) are a popular machine learning method for

classification. The margins between the groups of the training data are maximized in a

data space induced by the selected kernel. While a variety of kernels is available (e.g.

linear, polynomial, sigmoid, etc.) we limit the optimization procedure to the radial basis

kernel, which is suggested as standard configuration.

We use an R-interface to libsvm (Chang and Lin, 2011) included in the R-package

e1071. The internal optimization of SVM is based on a k-fold cross-validation on the

training dataset, providing a range of values for the cost parameter and for γ. For multi-

class-classification, libsvm internally trains K(K-1)/2 binary ‘one-against-one’ classifiers

based on a sparse data representation matrix.

Random Forest (RF) is an ensemble-based learning method commonly used for

classification and regression tasks. It builds a forest of decision trees using bootstrap

samples of the training data and random feature selection for each tree. The final

prediction is made as an average or majority vote of the predictions of the ensemble of

all trees.

The RF implementation in the R-package randomForest uses Breiman’s random

forest algorithm (Breiman, 2001) for multigroup classification. In order to optimize

the classification model we use the internal optimization procedure, starting with
√
p

randomly sampled variables as candidates for splits and increase this number with a

factor of 1.5, in each optimization step.

In KNN-Classification (KNN), the class-membership of the k-nearest neighbors

of an observation based on Euclidean distances is used for determining the class of the

respective observation. For k = 1, the class of the nearest neighbor is used, for k > 1,

the class with the highest frequency is used. In the case of ties, a random decision is

performed. We use one-fold cross-validation in order to optimize k individually for each

sampled dataset.
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Olive oil

We want to consider datasets with various specific features. The first dataset under evalu-

ation consists of 120 samples of 25 chemical compositions (fatty acids, sterols, triterpenic

alcohols) of olive oils from Tuscany, Italy, and was first introduced by Armanino et al.

(1989). The dataset is publicly available in the R-package rrcovHD (Todorov, 2014)

where it is used as a reference dataset for robust high-dimensional data analysis.

The olive oils are separated in four classes of 50, 25, 34 and 11 observations. In

order to have enough training observations from each group available we use 80% of

observations for the training dataset and the remaining 20% as test observations. We

repeatedly create such an evaluation setup 50 times. Each training dataset therefore

consists of 96 observations, which yields the only setup where we have more observations

than variables available. Therefore, classical LDA is expected to perform fairly well.

Note that the smallest number of training observations per class is still much smaller

than the number of overall variables. Therefore, class-specific covariance estimation as it

is performed in quadratic discriminant analysis (Friedman, 1989) cannot be performed

in this setup or on any other of our considered datasets.

LP and LDA perform exactly the same, which can be seen in Figure 4.4. PLDA

slightly outperforms LP, while PLSDA, SVM, RF and especially KNN get outperformed.

In most cases all variables are included in the PLDA model, but only a subset of vari-

ables contributes to each discriminant vector. This variable selection leads to a slight

improvement over LDA and LP.

Arcene

The second real world dataset is part of the NIPS (Neural Information Processing Sys-

tems) 2003 feature selection challenge (Guyon et al., 2007). The task is to distinguish

between cancer and non-cancer patterns from mass-spectrometric data with p = 9961

variables. Therefore, we deal with a two-class separation with continuous variables. The

data was obtained from two different data sources, the National Cancer Institute (NCI)

and the Eastern Virginia Medical School (EVMS). The observations represent patients

with ovarian or prostate cancer and health or control patients. Very small and large

masses have been removed from the spectrometric data in order to compress the data.

In addition, a preprocessing step including baseline removal, smoothing and scaling was

performed. All these details are described in Guyon et al. (2007).

The initial setup contained of 100 training and 100 validation observations, consisting
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Figure 4.4: The performance in terms of false classification rates of all considered clas-
sification methods for 50 repetitions of the Olitos dataset is visualized by boxplots.

of a total of 112 non-cancer samples and 88 cancer samples. In order to have a non-

equal ratio of observations to create again an imbalanced scenario, we merge both groups

and resample 22 cancer training observations and 84 non-cancer trainining observations.

The remaining observations are used as test observations. This procedure is repeated 50

times as for the other datasets under evaluation.
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Figure 4.5: The performance in terms of false classification rates of all considered clas-
sification methods for 50 repetitions of the Arcene dataset is visualized by boxplots.
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The performance of Arcene is evaluated in terms of boxplots in Figure 4.5. The

classification for this dataset and the designed setup is more challenging than for the

other real-world datasets. LP compares well compared to the other evaluated approaches

being outperformed only by PLSDA. The performane of 80% false classification rate by

SVM might be misleading as worse than random classification. All observations from

the non-cancer samples are classified as cancer samples. This could be improved by

strategies like oversampling or by changing the majority class assignment to a weighted

class assignment. For LP it is not necessary to make adjustments for group imbalance.

Melon

Our final dataset consists of measurements of three types of melons based on spectra

analyses of 256 frequencies. The fruits are pertain to three different melon cultivars, with

group sizes of 490, 106 and 499, but additional subgroups are known to be present due to

changes in the illumination system during the cultivation. The dataset is regularly used

as a benchmark dataset for high dimensional and robust data analysis methods (e.g.

Hubert and Van Driessen, 2004). Especially the subgroups usually affect non-robust

analysis methods. Figure 4.6 provides some insight on the structure of the dataset.
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Figure 4.6: Visualization of the first three principal components of one sample of training
observations of the Melon dataset. We see one subgroup of the green class, represented
in the first principal components and a strong overlapping structure for the remaining
observations.

We repeatedly sample 25% of the observations from each group as training observa-
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4.4. Evaluation

tions, using the remaining 75% for testing the model performance. The smallest training

class therefore consists of 26 observations, leading to a complex classification problem.

The performance of the methods under evaluation is presented in Figure 4.7. LP can

handle the challenges of the Melon dataset the best and significantly outperforms all

compared methods. Especially PLDA results in a high false classification rate which is

assumed to be connected to the subgroups and outliers affecting the variable selection.
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Figure 4.7: The performance in terms of false classification rates of all considered clas-
sification methods for 50 repetitions of the Melon dataset is visualized by boxplots.

One problem during the visualization of LDA models is the property that in high

dimensional spaces with more variables than observations, the training observations will

almost always be well separated. Therefore, in a situation where we do not have enough

observations to validate the model based on additional observations, a visualization of

the discrimination space does not provide a lot of insight on the risks for misclassification

of this model. These challenges are visualized in Figure 4.8a and Figure 4.8b.

We see a perfect separation in Figure 4.8a and have no indication of risks of misclas-

sification. The risk of misclassification can be evaluated using the aggregated posterior

probabilities of LP, defined in Equation (4.14), which provide the advantage that each

of the classification models is located in a low dimensional space. Figure 4.9 provides

the visualization of the same data setup as used in Figure 4.8. The risk of misclassifying

observations from class 1 as class 2 and vice verse becomes evident in Figure 4.9a and

the realization of this risk becomes evident in Figure 4.9b. Note that this visualization

can be adapted and used for posterior probabilities computed through cross-validation

by any arbitrary classification method.
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Chapter 4: Local Projections based Discrimination
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Figure 4.8: Plot (a) shows the training observations of the LDA-projection space for one
repetition of the Melon evaluation. Plot (b) shows the same projection for the respective
setup.
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Figure 4.9: The same data setup as in Figure 4.8 is used. Plot (a) shows the pro-
posed visualization of aggregated posterior probabilities from local projections for the
training observations. Plot (b) visualizes the same aggregations for the respective test
observations.

A further experiment is carried out with the Melon dataset: While in the previous

experiment, the training datasets contained 25% of the observations from the original
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4.4. Evaluation

groups (with sizes 490, 106 and 499), we now investigate the effect of modifying the group

sizes to be very imbalanced. Six different scenarios under investigation with changing

group sizes, but the same overall sample size of n = 250 are given in Table 4.1. Figure

4.10 shows the mean misclassification rate over 50 repetitions. Scenario 1 and scenario 6,

with the most extreme difference in the group sizes, result in the worst results for several

methods. The LDA models are very stable but most of the time they are outperformed

by LP. LP is only slightly affected by scenario 1, but otherwise it leads to similar results

for the different settings, outperforming all other methods.

Table 4.1: Group sizes for simulation scenarios for the Melon dataset. We vary the
numbers of observations per group in order to simulate highly imbalanced group sizes.

Scenario 1 2 3 4 5 6

Class 1 25 50 75 100 125 150
Class 2 75 75 75 75 75 75
Class 3 150 125 100 75 50 25

1 2 3 4 5 6
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Figure 4.10: The performance of the evaluated classification methods for highly imbal-
anced datasets is evaluated. The 6 scenarios refer to the scenarios described in Table
4.1. Especially setup 1 and 6 cause a problem for most approaches while LP presents
itself as mostly robust towards imbalanced group sizes.
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4.5 Conclusions and outlook

We proposed a methodology for supervised classification combining aspects from the field

of computer science as well as from the field of statistics. We use the concept of local

projections to compute a set of linear discriminant models taking the information within

each projection space into account as well as the distance to the projection spaces. The

LDA models are then aggregated based on the projection based degree of separation.

As shown in Ortner et al. (2017a), local projections can help identifying group structure

in high dimensional spaces. Therefore, this way of computing aggregated probabilities

for class-membership allows the utilization of LDA for high dimensional spaces while

exploiting the advantages of identifying group structure by local projections.

A novel visualization based on ternary diagrams has been proposed which reveals

the links between the groups in the high dimensional space. The visualization makes use

of the posterior probabilities computed from the local projections, and it thus allows to

draw conclusions about the uncertainty of the class assignment, supported by gray areas

in the plot for uncertain assignment.

The performance of LP in comparison to related supervised classification methods

(LDA, PLDA, PLSDA, SVM, RF and KNN) based on three different real-world datasets

demonstrated the advantage of LP in various different settings: two- and multi-group

classification tasks, higher number of observations than variables and vice versa, inho-

mogeneous groups caused by outliers, and imbalanced group sizes. The only tuning

parameter for LP is the number k of nearest neighbors, for which a lower and upper

boundary has been proposed.

While we utilize linear discriminant analysis performed on the projection space of

each local projection there is no reason to limit ourselves to LDA. Depending on the

data setup, other methods can be preferred over LDA and still benefit from the local

projection based aggregation. A general combination of classification approaches with

local projections is still to be evaluated in future work.
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