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Kurzfassung

Eine Struktur A heißt homogen, falls sich jeder Isomorphismus zwischen endlich
erzeugten Unterstrukturen zu einem Automorphismus von A fortsetzen lässt. Eine
Konstruktionsmethode solcher Strukturen wurde erstmals von Fräıssé in [Fra54]
beschrieben; seitdem wurden homogene Strukturen zu einem Objekt von Interesse
in zahlreichen Gebieten der Mathematik, insbesondere in der Modelltheorie, Ram-
sey Theorie, der Theorie unendlicher Permutationsgruppen und der theoretischen
Informatik. In Kapitel 1 geben wir eine Einführung zu homogenen Strukturen
und legen dabei den Schwerpunkt auf Resultate, die für den Rest der Arbeit von
Bedeutung sind.

Ein wichtiges offenes Problem auf dem Gebiet ist die Vermutung von Thomas,
die besagt, dass jede abzählbare homogene Struktur A in endlicher relationaler
Sprache bis auf Interdefinierbarkeit nur endliche viele Redukte hat, sprich, dass
in Logik erster Ordnung nur endlich viele Strukturen über A definiert werden
können. In Kapitel 2 bestimmen wir alle Redukte jener homogenen gerichteten
Graphen, die von Henson in [Hen72] beschrieben wurden. Wir zeigen, dass all
diese kontinuum viele, homogene Digraphen nur endlich viele Redukte haben, was
im Einklang mit Thomas’ Vermutung steht. Als Korollar unserer Klassifizierung
können wir zeigen, dass die symmetrische Gruppe auf einer abzählbaren Menge
kontinuum viele nicht-isomorphe maximale abgeschlossene Untergruppen hat. Dies
beantwortet einen offene Frage von Macpherson [BM16].

In Kapitel 3 bestimmen wir die Komplexität einer Familie von Problem aus der
theoretischen Informatik, bei denen der Input aus quantorenfreien Formeln in der
Sprache der Ordnungen besteht, und die Frage ist, ob es eine partielle Ordnung
gibt, in der diese Formeln erfüllbar sind. Diese Probleme können als constraint
satisfaction problems von Redukten der random partial order P modelliert werden,
also jener homogenen Struktur, die als Fräıssé-Grenzwert der Klasse aller endlichen
partiellen Ordnungen gebildet werden kann. Die Redukte von P wurden bereits
in [PPP+14] bis auf first-order Interdefinierbarkeit bestimmt. Wir verfeinern die
dortigen Ergebnisse, und untersuchen Eigenschaften der primitiv positiven Theorie
der Redukte. Dadurch können wir zeigen, dass alle obigen Erfüllbarkeitsprobleme
entweder in P oder NP-vollständig sind. Dabei verwenden wir Methoden aus der
universellen Algebra: Genauso wie die Automorphismengruppe Aut(A) einer ω-
kategorischen Struktur A, diese bis auf first-order Interdefinierbarkeit bestimmt,
legt der sogenannten Polymorphismenklon Pol(A), also die Algebra aller Homo-
morphismen An → A die Struktur A bist auf primitiv-positive Definierbarkeit fest.
Wir untersuchen folglich den Verband aller Polymorphismenklone, die Aut(P) en-
thalten.

Sowohl Kapitel 3 als auch Kapitel 2 bauen stark auf die Ramsey-theoretischen
Methoden, die von Bodirsky und Pinsker in [BP15a] entwickelt wurden und sich
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bereits vielfach als wichtiges Werkzeug im Klassifizieren von Redukten erwiesen
haben.

In Kapitel 4 beschäftigen wir uns mit einer Fragestellung zur “Rekonstruier-
barkeit” ω-kategorische Strukturen. Zwei ω-kategorische Strukturen sind first-
order interdefinierbar (bzw. bi-interpretierbar), genau dann wenn ihre Automor-
phismengruppen übereinstimmen (bzw. topologisch isomorph sind). Dies mo-
tiviert die Fragestellung, inwieweit eine ω-kategorische Struktur bereits aus der
Automorphismengruppe als abstrakter Gruppe rekonstruiert werden kann. Ob-
wohl es zahlreichen positiven Resultate auf dem Gebiet gibt, wurde von Evans und
Hewitt in [EH90] gezeigt, dass es zwei ω-kategorische Strukturen gibt, die zwar iso-
morphe, aber nicht topologisch isomorphe Automorphismengruppen haben. Wir
zeigen, dass dieses Gegenbeispiel derart modifiziert werden kann, dass auch die
Endomorphismen-Monoide und Polymorphismen-Klone der beiden Strukturen jew-
eils isomorph, aber nicht topologisch isomorph sind.

Die Kapitel 2, 3 und 4 entsprechen jeweils den Publikationen [AK15] (mit
Lovkush Agarwal), [KP17] (mit Trung Van Pham) und [BEKP] (mit Manuel
Bodirsky, David Evans und Michael Pinsker).
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Abstract

A structure A is called homogeneous, if every isomorphism between its finitely gen-
erated substructures extends to an automorphism of A. In this thesis we are study-
ing homogeneous structures with countable domains. A method to construct such
structures was introduced by Fräıssé in [Fra54]; since then homogeneous structures
became subject of interest in various areas of mathematics, in particular model
theory, infinite permutation groups, Ramsey theory and theoretical computer sci-
ence. In Chapter 1 we give an introduction to homogeneous structures, focussing
on theoretical background needed for the rest of the thesis.

An important open problem regarding homogeneous structures is Thomas’ con-
jecture, which claims that every countable homogeneous structure in a finite re-
lational language has finitely many reducts up to first-order interdefinability. In
Chapter 2 of this thesis we classify the reducts of the homogeneous digraphs that
were described by Henson in [Hen72]. For all of these continuum many Henson
digraphs there are only finitely many first-order reducts, which is in accordance
with Thomas’ conjecture. Our proof uses the well-know fact that reducts of an ω-
categorical structure A correspond to the closed supergroups of the automorphism
group Aut(A). As a corollary of our result we can show that Sym(ω), the symmet-
ric group on a countable set, has continuum many non-isomorphic maximal closed
subgroups, which answers an open question by Macpherson [BM16].

In Chapter 3 we discuss the complexity of a class of problems from theoretical
computer science, where the input consists of quantifier-free formulas in the lan-
guage of orders and the question is, whether there is a partial order that satisfies
the formulas. These problems can be modeled as constraint satisfaction problems
of reducts of the random partial order P, which is a well-known homogeneous
structure. The reducts of P were already classified in [PPP+14] up to first-order
definability. We refine this result and discuss properties of the primitive positive
theory of those structures. This enables us to prove a dichotomy result: All the
decision problems described above are either in P or NP-complete. As in the
previous chapter we use algebraic methods to prove our result. The so called
polymorphism clone Pol(A) of a structure A is the algebra consisting of all ho-
momorphisms An → A. For ω-categorical structures, the relations on A that are
invariant under the action of Pol(A) are exactly the primitive positive definable
relations in A. Hence, studying reducts of P up to primitive positive definability
is equivalent to study the lattice of closed clones containing Aut(P).

Both Chapter 2 and Chapter 3 rely on the Ramsey theoretical methods that
were developed by Bodirsky and Pinsker in [BP15a] and proved to be a useful tool
in studying reducts in many classifications.

In Chapter 4 of the thesis we discuss a questions about “reconstruction”. It is
a well known result that two ω-categorical structures are first-order interdefinable
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(respectively bi-interpretable) if and only if their automorphism groups are equal
(respectively topologically isomorphic). These facts motivate the question whether
an ω-categorical structures can be already reconstructed from its automorphism
group as an abstract group. In [EH90] Evans and Hewitt gave a counterexample
of two ω-categorical structures with isomorphic, but not topologically isomorphic
automorphism groups. We modify their result and construct two ω-categorical
structures such that also the endomorphism monoids and polymorphism clones
are isomorphic, but not topologically isomorphic.

The chapters 2, 3 and 4 correspond to the publications [AK15] (with Lovkush
Agarwal), [KP17] (with Trung Van Pham) and [BEKP] (with Manuel Bodirsky,
David Evans und Michael Pinsker).
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Chapter 1

Introduction

In the course of this introduction we define homogeneous and ω-categorical struc-
tures and give a short overview how those concepts are related to the theory of
infinite permutation groups and Ramsey theory. We also discuss the newer con-
nection of homogeneous structures to constraint satisfaction problem and clones.
We explain important definitions and theoretical background needed for the three
main results of this thesis, which are presented in Chapter 2, 3 and 4.

This introduction is partially based on the survey article [Mac11], which offers
a good overview over the field of homogeneous structures. For general notions from
model theory we refer to [Hod97], for concepts regarding oligomorphic permutation
groups we refer to [Cam90], for background on structural Ramsey theory we refer
to [NR98] and the lecture notes [Paw16]. The topic of CPSs over homogeneous
structures is treated in the survey [Bod12], a short summary of more up-to-date
results can be found in the introduction section of [BKO+17].

1.1 Basic notions from model theory

A first-order language L is a set of symbols, which can be divided into three
types: constant symbols ci, function symbols fj, and relation symbols Rk, so
L = {ci : i ∈ I} ∪ {fj : j ∈ J} ∪ {Rk : k ∈ K} for some indexing sets I, J,K.
Each function symbol f and each relation symbol R is associated with a nonzero
natural number called the arity ar(f) respectively ar(R) of the symbol.

An L-structure M consists of a domain set M together with interpretations for
the symbols of L. More precisely, every function symbol f ∈ L with ar(f) = n is
interpreted as a function fM : Mn → M , and every relation symbol R ∈ L with
ar(R) = m is interpreted as an m-ary relation RM on M , that is, a subset of
Mn. Constant symbols are interpreted as unary, singleton relations. Note that
this convention for constants might differ from the one used by other authors. We
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write M = (M ; (cMi )i∈I , (f
M
j )j∈J , (R

M
k )k∈K) for an L-structure M. If it is clear from

the context, we do not distinguish between symbols R and their interpretations
RM.

A structure in a language containing no functional symbols is called a relational
structure. A structure in a language consisting only of function symbols is called
an algebra.

For a given structure M in language L, the (first-order) theory of M, short
Th(M) is the set of all L-sentences in first-order logic that hold in M. For a tuple
m̄ = (m1, . . . ,mn) ∈Mn, the type of m̄, or short tp(m̄), is the set of all first-order
formulas φ(x̄) = φ(x1, x2, . . . , xn), such that φ(m̄) holds in M. The set of all types
of M is denotes by S(M).

Let M and N be two relational L-structures on domains M respectively N .
Then we call a map h : M → N an (L-)homomorphism, if for every R ∈ L and for
every tuple m̄ = (m1, . . . ,mn) ∈ RM implies f(m̄) := (f(m1), . . . , f(mn)) ∈ RN.
If moreover m̄ ∈ RM ↔ f(m̄) ∈ RN holds, we call f a strong homomorphism.
An injective, strong homomorphism is called an embedding. If M ⊆ N and the
identity function is an embedding of M into N, we say that M is a substructure of
N and write M ≤ N. Bijective embeddings are called isomorphisms.

For tuples ā ∈ Mn, b̄ ∈ Nn, we say ā and b̄ are isomorphic, and write ā ∼= b̄, if
the function ai 7→ bi for all i such that 1 ≤ i ≤ n is an isomorphism with respect
to the relations inherited from M and N.

A homomorphisms from a structure M to itself is called an endomorphism of
M. Under composition ◦, the set of endomorphisms of M forms the endomor-
phism monoid End(M). The embeddings of M into M also form a monoid, which
will be referred to as the monoid of self-embeddings Emb(M). Finally, an isomor-
phism from a structure M to itself is called automorphisms of M; with respect to
composition the automorphisms of M form the automorphism group Aut(M).

1.2 Infinite permutation groups and transforma-

tion monoids

The theory of infinite permutation groups is one of the newer branches of group
theory, and it has established connections with model theory as we will see in later
sections of this introduction; at this point we just give some basic definitions and
introduce the topology of pointwise convergence.

Let A and B be two sets. Then by AB we denote the set of all functions from
B to A. The set AA together with the composition operation ◦ forms a monoid,
which is called the full transformation monoid of A. By Sym(A) we denote the
symmetric group on A, the group consisting of all permutations of A. Submonoids
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of AA are called transformation monoids and subgroups of Sym(A) are called
permutation groups.

There is a natural way to provide a topology on AA by taking the product
topology on AA, where A bears the discrete topology. By this definition the
sets of the form {f ∈ AA : f(ā) = b̄}, where ā and b̄ are finite tuples, form a
basis of open subsets. It is not hard to check that the composition of functions
◦ : AA×AA → AA is a continuous operation with respect to this topology, therefore
the full transformation monoid AA is a topological monoid. If A is countable, so
without loss of generality A = ω, the topology on AA is induced by the complete
metric

d : AA × AA → [0, 1]

d(f, g) = 2−n with n = min{i : f(i) 6= g(i)}.
So the closer f and g are to each other, the longer is the initial segment of A

on which they agree. Hence a sequence of functions (fn)n∈ω converges, if for every
x ∈ A the sequence fn(x) is eventually constant. That is why this topology is
called the topology of pointwise convergence.

All transformation monoids with the inherited subspace topology are also topo-
logical monoids. For a transformation monoid M a basis is given by all the cosets
of the submonoids Mā := {m ∈M : m(ā) = ā} for finite tuples ā. We call Mā the
stabilizer of ā in M . In particular also Sym(A) inherits the topology of pointwise
convergence and is a topological group under it, i.e. a group in which both com-
position and inversion are continuous operations. If A is a countable set, Sym(A)
with the subspace topology is in fact a Polish group: a complete metric is given by
max(d(f, g), d(f−1, g−1)), where d is defined as above. Note however that Sym(A)
is not closed in AA; its closure is the set of all injective function from A to A.

Clearly the endomorphism monoid of a given structure A is a transformation
monoid on its domain A. One may ask, if also the opposite direction holds, so if
also all transformation monoids are the endomorphism monoid for some structure
A. The answer is negative, it is not hard to see that all endomorphism monoids
are topologically closed submonoids of AA. But more holds:

We say that a relation R ⊆ An is invariant under a function f : A → A (or
f preserves R), if for all ā ∈ R we have f(ā) ∈ R. This gives rise to a Galois
connection between relational structures on one side and sets of functions on the
other side. We write Inv(M) for the structure on A with all relations that are
invariant under all functions of M . Clearly End(Inv(M)) is a monoid containing
M and having the same invariant relations; it is not hard to see that End(Inv(M))
is the smallest closed transformation monoid containing M .

Analogously, for a given set of bijectionsG ⊆ Sym(A) we have that Aut(Inv(G))
is smallest closed group in Sym(A) containing G. We are going to use the following
notational conventions:
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Notation 1.2.1. For F ⊆ AA we write F for the topological closure of F in AA.
For a given set of permutations F ⊆ Sym(A) we write 〈F 〉 for the smallest closed
subgroup of Sym(A) containing F .

We would like to recap that, when talking about permutation groups and trans-
formation monoids we work on three different structural levels: On the highest one
we know the action on the domain set A. From that action we can derive the topol-
ogy of pointwise convergence, which makes G to a topological group. If we forget
also the topology, we end up with an abstract group. If it is needed to distinguish
these structural levels we use the following notation, denoting actions by y and
topological objects by bold characters:

permutation group transformation monoid
action on A G ≤ Sym(A) M ≤ AA

topology topological group G topological monoid M
abstract group G monoid M

This distinction will be essential in Chapter 4.

1.3 Homogeneous structures

In this section we define homogeneity, the first notion of central importance for
this thesis. We discuss how homogeneous structures correspond to amalgamation
classes and state Thomas’ conjecture, which is a motivation for the results in
Chapter 2 of this thesis.

Definition 1.3.1. A structure M is called homogeneous if every isomorphism
between finitely generated substructures of M extends to an automorphism of M.

In order to avoid conflicts with other similar notions, in the literature the
above definition is sometimes also referred to as ultra-homogeneity (cf. [Hod97]).
However, in this thesis there is not a need for such distinction, so we stick to the
term homogeneity.

A basic example of a homogeneous structure is the rational order (Q;<); for this
structure, homogeneity can be seen easily, since every finite order-preserving maps
can be extended to an automorphisms by piecewise linear functions. The rational
order can be constructed as a direct limit of finite total orders. This fact was
generalized by Roland Fräıssé in [Fra54]; his technique is now known as Fräıssé’s
construction, and it constitutes the main method of constructing homogeneous
structures. We outline it below.
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B1 B2

C∃

Figure 1.1: The amalgamation property

Definition 1.3.2. Let M an L-structure. The age of M, denoted by Age(M), is
the class of all finitely generated structures which can be embedded in M.

Let C be a class of finitely generated L-structures. We then say that C has

• the hereditary property (HP), if whenever B ∈ C and A is a finitely generated
substructure of B, then A ∈ C,

• the joint embedding property (JEP), if whenever A1,A2 ∈ C, then there is
B ∈ C such that A1 and A2 both embed into B.

• the amalgamation property (AP), if for all A,B1,B2 ∈ C and embeddings
e1 : A → B1 and e2 : A → B2 there is a C ∈ C and there are embeddings
f1 : B1 → C, f2 : B2 → C such that f1 ◦ e1 = f2 ◦ e2.

The age of any L-structure satisfies both HP and JEP. Conversely, a countable
class of finitely generated L-structures with HP and JEP is always the age of
some countable structure. So in a sense the amalgamation property is the only
non-trivial property in the list above, which motivates the following definition:

Definition 1.3.3. We call a class C of finitely generated L-structures an amalga-
mation class if it contains countably many structures up to isomorphism, has the
hereditary property, the joint embedding property, and the amalgamation prop-
erty.

Fräıssé’s Theorem now gives a one-to-one correspondence of homogeneous struc-
tures and amalgamation classes:

Theorem 1.3.4 (Fräıssé’s Theorem [Fra54]). Let L be a language and C an amal-
gamation class of finitely generated L-structures. Then there is an (up to iso-
morphism) unique countable homogeneous L-structure M such that Age(M) = C.
Conversely, if M is a countable homogeneous L-structure then Age(M) is an amal-
gamation class. �

We remark that Fräıssé’s Theorem can be stated in more abstract, category
theoretical settings, see for instance [Kub14]. However in our context we only use
the classical result by Fräıssé.
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A useful consequence of Fräıssé’s Theorem is that homogeneous structures have
the extension property ; in fact this property can also be used to characterize ho-
mogeneity:

Definition 1.3.5. We say that a structure M with Age(M) = C has the extension
property (for C) if and only if for every finitely generated substructure A of M and
for every B ∈ C such that A embeds into B, there is a substructure B′ of M that
is isomorphic to B, with A ≤ B′.

Further note that, if M is a relational structure, it has the extension property
if and only if it satisfies it for all extensions B of A by only one additional point.
With that in mind it is for instance not hard to see that (Q;<) as a dense, un-
bounded linear order, has the extension property for linear orders.

A vast list of homogeneous structures can be constructed with the follow-
ing stronger notion of amalgamation: For structures A = (A; (RA)R∈L),B1 =
(B1; (RB1)R∈L),B2 = (B2; (RB2)R∈L) such that A is a substructure of B1 and B2,
we call the structure C the free amalgam of B1 and B2 over A, if the domain of
C is the union of B1 ∪B2 and the relations are also defined as the disjoint unions
RC = RB1 ∪ RB2 . We say a class of structures C has free amalgamation if for all
triples A,B1,B2 also their free amalgam is in C. Then clearly C is an amalgamation
class.

Whenever F is a set of finite L-structures, we let Forb(F) denote the class of
all L-structures that do not embed any element of F , and we refer to F as the set
of forbidden substructures. It was observed by Henson in [Hen72] that, whenever F
does only contain structures such that every pair of points is in some relation, then
Forb(F) has free amalgamation. For instance, if L is the language of graphs and
F consists of the 1-element loop, an undirected edge, and a set of tournaments, we
obtain a so called Henson digraph as the Fräıssé limit of Forb(F). We are going
to discuss these digraphs in Chapter 2.

1.3.1 Thomas’ conjecture

Here, following [Tho91] and numerous subsequent authors, we define a reduct of a
structure A to be a relational structure on the same domain all of whose relations
have a first-order definition in A without parameters.

We can define a quasi-order on those reducts, by setting B ≤fo C if B is a
reduct of C. We are going to refer to the equivalence classes given by this quasi-
order as the first-order reducts of A. It is not hard to see that the partial order
induced by ≤fo on the first-order reducts is actually a lattice.

Thomas’ conjecture now states, that this lattice is finite, for certain homoge-
neous A:
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Conjecture 1.3.6 (Thomas [Tho91]). Let A be a countable homogeneous structure
in a finite relational language. Then A has only finitely many reducts up to first-
order definability.

Many well-known homogeneous structures have only finitely many first-order
reducts, see [Cam76], [Tho91], [Tho96], [JZ08], [PPP+14], [BPP15], [Aga16]. The
methods used in these classifications will be outlined later in this introduction.
So all known classifications of reducts are in accordance with Thomas’ conjecture.
Recently in [BCS16], it was shown that the countable atomless Boolean-algebra
has infinitely many reducts, however this does not constitute a counterexample,
since it is only a homogeneous structure in a finite functional language.

A major difficulty in proving that Thomas’ conjecture is true in general, is that
there is no direct connection between the concept of homogeneity and definability.
In particular, homogeneity strongly depends on the language of the structure A and
is not stable under forming reducts: it was already observed in [Tho91] that reducts
of homogeneous structures in a finite language are not necessarily interdefinable
with homogeneous structures in a finite language themselves.

In the next section we will define ω-categoricity, which is a weaker property
than homogeneity, but is better suited to discuss questions about definability and
relate them to infinite permutation groups.

1.4 Omega-categoricity

In this thesis we do not only consider homogeneous structures, but often also work
in the broader framework of ω-categorical structures. In some sense ω-categorical
structures are close to finite structures, since for every natural number n, they
only have finitely many n-types. As we will see below, this finiteness condition
gives rise to a one-to-one correspondence between ω-categorical structures and
their automorphism groups.

Definition 1.4.1. A first-order theory T is called ω-categorical, if it has, up to
isomorphisms, exactly one countable model. A countable structure A is called
ω-categorical, if its theory Th(A) is ω-categorical.

Definition 1.4.2. A permutation group G ≤ Sym(A) on a countable set A is
called oligomorphic if for every n ≥ 1 the (coordinatewise) action of G on An has
only finitely many orbits.

Now the following theorem constitutes a bridge connecting model theory and
permutation group theory, which is of central importance for us:

Theorem 1.4.3 (Engeler, Ryll-Nardzewski, Svenonius, 1959). Let A be a count-
able structure. Then the following are equivalent:
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• A is ω-categorical.

• For every n ∈ ω, there are only finitely many n-types in A.

• For every n ∈ ω there are only finitely many formulas φ(x1, . . . , xn) up to
equivalent over Th(A).

• The automorphism group Aut(A) is oligomorphic.

In this case the orbits of Aut(A) on An correspond to the n-types of A and the in-
variant relations Inv(Aut(A)) are exactly the relations that are first-order definable
in A. �

Thus, from the point of view of automorphism groups, it is more natural to work
with ω-categorical structures, rather than with homogeneous structures. How-
ever, every homogeneous structure A in finite relational language is ω-categorical:
By definition of homogeneity, two n-tuples are in the same orbit of the action
Aut(A) y An if and only if they are isomorphic. So, since Age(A) contains for
every n only finitely many n-substructures up to isomorphism, A is ω-categorical.
Moreover we have the following characterization of homogeneous structures:

Theorem 1.4.4 ([Hod97]). Let L be a finite relational language and let A be an
L-structure. Then the following are equivalent

• A is homogeneous

• The theory of A is ω-categorical and has quantifier elimination. �

By Theorem 1.4.3 also all of the reducts of a given ω-categorical structure are
ω-categorical. Furthermore by Theorem 1.4.3, B is a reduct of A, if and only if
Aut(A) ≤ Aut(B). Thus, determining the lattice of first-order reducts of a given ω-
categorical structure A is equivalent to determining the lattice of closed subgroups
of Sym(A) containing Aut(A).

1.4.1 Reconstruction

We saw that Aut(A) as permutation group allows us to “reconstruct” A up to
first-order definability. In this section we will discuss how much information is
captured in Aut(A), seen as topological or abstract group.

Definition 1.4.5. Let A,B two structures on domains A and B and in not nec-
essarily equal languages. Then we say that a partial function I : An → B is a
(first-order) interpretation of B in A, if
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• I is surjective

• The domain of I is first-order definable in A

• The pre-image of equality under I is first-order definable in A

• The pre-image of every relation of B is first-order definable in A

If such I exists, we say that B is interpretable in A. If there is an interpretation
I1 of B in A and an interpretation I2 of A in B, such that also their compositions
I1◦I2 and I2◦I1 are interpretations, then we say that A and B are bi-interpretable.

Interpretability is a key-definition in model theory, since most model-theoretical
notions are preserved under it. If B is interpretable in A, this implies that there is
a continuous homomorphism h : Aut(A) → Aut(B). For ω-categorical structures
also the converse holds:

Theorem 1.4.6 ([AZ86]). Let A be an ω-categorical structure. Then B is inter-
pretable in A if and only if there is a continuous homomorphism h : Aut(A) →
Aut(B), such that h(Aut(A)) is oligomorphic.
Furthermore A and B are bi-interpretable if and only if Aut(A) and Aut(B) are
topologically isomorphic, so if there is an isomorphism between them, which is also
a homeomorphism. �

Thus for ω-categorical A, the automorphism group Aut(A) as a topological
object allows us to “reconstruct” A up to first-order interpretations.

A natural thing to ask now is, how much information about an ω-categorical
structure A is encoded in its automorphism group as abstract algebraic object. In
particular we would like to know if it still determines A up to interpretability.
There is a considerable literature about ω-categorical structures where the topol-
ogy on the automorphisms is uniquely determined by the abstract automorphism
group; this is for instance the case if Aut(A) has the so-called small index prop-
erty, that is, all subgroups of countable index are open. (This is in fact stronger
and equivalent to saying that all homomorphisms from Aut(A) to Sym(ω) are
continuous.) The small index property has for instance been shown

• for Sym(ω) by Dixon, Neumann, and Thomas [DNT86];

• for (Q;<) and the atomless Boolean algebra by Truss [Tru89];

• for all ω-categorical ω-stable structures and the random graph in [HHLS93];

• for the Henson graphs by Herwig [Her98];
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• more recently, for all homogeneous structures in finite relational language
stemming from free amalgamation classes [SS17].

Other reconstructions results, using different methodology, were shown by Rubin
in [Rub94]. However we will see in Chapter 4 that not all ω-categorical structures
have this reconstruction property; a counterexample was given in [EH90].

1.5 CSPs over homogeneous structures

Constraint satisfaction problems or CSPs appear in almost every area of theoretical
computer science, for instance in artificial intelligence, scheduling, computational
linguistics, computational biology, verification, and algebraic computation. CSPs
are a very general framework that allow us to phrase many different computational
problems, depending on the set of constraint types, that are allowed as input. For
a long time, the main focus of research was on CSPs of finite structures.

In this section we discuss how constraint satisfaction problems of homogeneous
structures and their reducts can be used to encode naturally appearing satisfiabil-
ity problems and we state a dichotomy conjecture for them.

Let C be an arbitrary class of finite structures in a finite relational language L
and let Φ be a finite set of quantifier free L-formulas. Then we define C-SAT(Φ)
as the following decision problem:

C-SAT(Φ):
Instance: A finite set of variables W and a formula of the form φ1∧φ2∧· · ·∧φn,
where each φi is obtained by taking a formula from Φ and substituting with
variables form W .
Question: Is there a structure in C, satisfying φ1 ∧ φ2 ∧ · · · ∧ φn?

If C is for instance the class of linear orders, then the above gives us a variety
of scheduling problems; if C is the class of binary trees, respectively their leaf
structures, we obtain phylogeny constraint satisfaction problems, if C is the class
of graphs, we have satisfiability problems over graphs. The complexities of these
problems were classified in [BK09], [BJP16] and [BP15a] respectively.

In the mentioned examples C is always an amalgamation class. As we will see
this allows us to nicely rephrase the problems as constraint satisfaction problem
of reducts of the corresponding homogeneous structure. This, in turn allows us
to use tools from model theory and universal algebra in order to determine the
complexity.
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But what is a CSP? A first-order formula φ(x1, . . . , xn) in the language L is
called primitive positive if it can be written using conjunction and existential quan-
tification only, so it is of the form ∃y1, . . . , yk (ψ1 ∧ · · · ∧ ψm) where ψ1, . . . , ψm
are all atomic L-formulas. The constraint satisfaction problem of a L-structure A,
short CSP(A), is then defined as the problem of deciding the primitive positive
theory of A:

CSP(A):
Instance: A primitive positive sentence φ, i.e. a formula of the form

φ : ∃ȳ (φ1(ȳ) ∧ · · · ∧ φm(ȳ)) with φi atomic

Question: Does φ hold in A?

We call A the template of the constraint satisfaction problem CSP(A).

Now let C be an amalgamation class with Fräıssé limit M and let {φ1, . . . , φn}
be a finite set of quantifier free L-formulas. We can associate this set with the
reduct (M ;R1, . . . , Rn) ofM that we obtain by setting (a1, . . . , ak) ∈ Ri if and only
if φi(a1, . . . , ak) holds in M. Then CSP(M ;R1, . . . , Rn) and C-SAT({φ1, . . . , φn})
are essentially the same problem: Since the age ofM is C, a conjunction of formulas
from {φ1, . . . , φn} can be satisfied in an element of C if and only if there is a sub-
structure of (M ;R1, . . . , Rn) satisfying it. On the other hand let (M ;R1, . . . , Rn)
be a reduct of M. Since M is homogeneous it has quantifier elimination (see The-
orem 1.4.4), so every relation Ri has a quantifier-free definition φi in M. Then
clearly C-SAT({φ1, . . . , φn}) = CSP(M ;R1, . . . , Rn). Thus we would like to deter-
mine the complexity of the CSPs of the reducts of a given homogeneous structure
M.

The CSP of a finite structure is always in NP. Feder and Vardi conjectured
in [FV99] that every CSP of a finite structure is either in P or NP-complete. Their
dichotomy conjecture was recently proven to be true, independently in [Zhu17]
and [Bul17], which makes finite CSPs to the largest known class of NP problems,
where such a dichotomy holds.

The same conjecture is however false for infinite structures, in fact every com-
putational problem is equivalent to a CSP, up to polynomial time. A simple
counting argument shows that there are even homogeneous structure in finite re-
lational language with undecidable CSPs (cf. [Bod12]). However if C is further
finitely bounded, meaning that C can be described as a class of structures that do
not embed a finite list of given forbidden structures, the corresponding CSPs are
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in NP. This lead to the following generalization of the Feder-Vardi conjecture:

Conjecture 1.5.1 (Bodirsky, Pinsker). Let A be a reduct of a finitely bounded
homogeneous structure. Then CSP(A) is either solvable in polynomial time or
NP-complete.

In the following subsections we discuss the standard reductions that will allow
us to compare the complexity of different constraint satisfaction problems. In
Section 1.6 we see how we can link those reductions, in the ω-categorical case, to
the concept to polymorphism clones.

1.5.1 Model-complete cores

Let A and B be two structures in the same language. We say that A and B are ho-
momorphically equivalent if there is a homomorphisms from A to B and vice-versa.
Since homomorphisms preserve primitive positive formulas, the constraint satis-
faction problems CSP(A) and CSP(B) encode the same computational problem
for homomorphic equivalent A and B.

Definition 1.5.2. A structure B is called a model-complete core, if for every finite
subset X of B and every endomorphism f ∈ End(B), there is an automorphism
g ∈ Aut(B) such that f |X = g|X .

In other words, for a model-complete core the automorphism group Aut(B)
is dense in the endomorphism monoid End(B) with respect to the topology of
pointwise convergence. This definition generalizes the concept of core for finite
structures introduced in [HN92]. By the following result model-complete cores give
us a canonical and in a certain sense smallest representative of homomorphically
equivalent structures:

Theorem 1.5.3. Every ω-categorical structure A is homomorphically equivalent
to a model-complete core Ac which is unique up to isomorphism. Furthermore the
model-complete core Ac is ω-categorical or finite. �

A model-theoretic proof of this fact was given by Bodirsky in [Bod07], a new
proof in the language of transformation monoids be found in [BKO+17]. By the
following theorem of Bodirsky the complexity of the CSP of a model-complete core
does not increase if we add finitely many constants.

Theorem 1.5.4 ([Bod07]). Let A be a model-complete ω-categorical or finite core,
and let a be an element of A. Then CSP(A) and CSP(A, c) have the same com-
plexity, up to polynomial time. �
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1.5.2 Primitive positive definability and interpretability

Definition 1.5.5. Let A be a structure in language L. We then say a relation R is
is primitive positive definable or short pp-definable in A if there is a primitive posi-
tive L-formula φ(x1, . . . , xn) such that (a1, . . . , an) ∈ R if and only if φ(a1, . . . , an)
holds in A.

If, for a given CSP, we substitute in an instance formula every relation by
some pp-formula defining it, the size of the formula only grows linearly, which
immediately gives us the following lemma:

Lemma 1.5.6 (Jeavons [Jea98]). Let A be a relational structure in finite language,
and let B be the structure on the same domain, such that every relation of B is
primitive positive definable in A. Then CSP(B) reduces to CSP(A) in polynomial
time. �

Lemma 1.5.6 implies that, when studying the CSPs of reducts of a homogeneous
structures, we only have to study the reducts up to primitive positive definabil-
ity. Let ≤pp denote the quasi-order on the reducts induced by primitive positive
definability. Like in the first-order case, the partial order induced by ≤pp on its
equivalence classes is in fact a complete lattice.

As for first-order definability, the notion of primitive positive definability can
be generalized to primitive positive interpretations, which allows us to compare
structures on different domains:

Definition 1.5.7. Let A,B two structures on domains A and B. Then we say
that a partial function I : An → B is a primitive positive interpretation (or short
pp-interpretation) of B in A, if

• I is surjective

• The domain of I is primitive positive definable in A

• The pre-image of equality under I is primitive positive definable in A

• The pre-image of every relation of B is primitive positive definable in A

If such I exists, we say that B is primitive positive interpretable in A. If there is
an primitive positive interpretation I1 of B in A and an primitive positive inter-
pretation I2 of A in B, such that also their compositions I1 ◦ I2 and I2 ◦ I1 are also
primitive positive interpretations, then we say that A and B are primitive positive
bi-interpretable.

Then more general, the following lemma holds:
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Lemma 1.5.8. Let A and B be two structures in finite relational language. If A has
a primitive positive interpretation, then CSP(A) reduces to CSP(B) in polynomial
time. �

We summarize that for finite or ω-categorical and finite structures B and A the
complexity of CSP(B) reduces to CSP(A) in the following cases:

1. B is pp-interpretable in A.

2. B is the model-complete core of A.

3. A is a model-complete core and B is obtained by adding finitely many con-
stants to the signature of A.

It is a well-known fact that the finite structure

S := ({0, 1}; {(1, 0, 0), (0, 1, 0), (0, 0, 1)})

pp-interprets all finite structures, and that its CSP is NP-complete. In all know
examples of structures A in the scope of the Conjecture 1.5.1 the only source of
NP-hardness of CSP(A) is that S (and hence all finite structures) can be reduced
to A by the reductions (1)-(3). This leads to the following stronger version of the
dichotomy conjecture stated in Conjecture 1.5.1:

Conjecture 1.5.9. Let A be a reduct of a finitely bounded homogeneous structure
and let Ac be its core. Then

1. either Ac together with finitely many constants pp-interprets S and CSP(A)
is NP-complete,

2. or CSP(A) is in P.

We will recap this in the next section and give algebraic tools that help to
distinguish the first from the second case.

1.6 Oligomorphic clones

We already saw in Section 1.4 that the automorphism group of an ω-categorical
structure A captures its logical properties up to first-order definability, respectively
interpretability. In this section we will see that there is a bigger algebraic object,
called the polymorphism clone of A that captures all of the properties, up to
primitive positive definability, respectively interpretability. This connection allows
us to rephrase the reductions from Section 1.5 in the language of clones.
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This so called universal algebraic approach to study CSPs was originally intro-
duced by Bulatov, Jeavons and Krokhin in [BKJ05] for CSPs of finite structures
and lead to big developments on the area of universal algebra. Their approach was
generalized to the ω-categorical case by Bodirsky and Pinsker.

For a fixed finite base set A, we write AA
n

for the set of all n-ary operation on
A, i.e. the functions f : An → A. Then the set of all finitary operations

⋃
n≥1A

An
,

together with composition of function is an algebraic object that is closed under
composition.

Definition 1.6.1. A function clone A is a subset of
⋃
n≥1A

An
, such that

• A contains all projections πni (x1, . . . , xn) = xi, for all indices 1 ≤ i ≤ n ∈ ω

• A is closed under composition. So if f ∈ A ∩AAn
and g1, . . . , gn ∈ A ∩AAk

,
then also f ◦ (g1, . . . , gn) ∈ A , where

(f ◦(g1, . . . , gn))(x1, . . . , xkn) := f(g1(x1, . . . , xk), . . . , gn(x(k−1)n+1, . . . , xkn)).

Function clones can be seen as a generalization of transformation monoids to
higher arities. As transformation monoids, function clones bear the topology of
pointwise convergence; a base of open neighborhoods for a function f ∈ AA

n
is

given by the sets {g ∈ AAn
: g|F = f |F} for all finite sets F ⊆ An. In this topology

the composition of functions is continuous, hence it forms what we call a topological
clone.

Let A be a relational structure with domain A. By An we denote the direct
product of n-copies of A. This is, a structure on An in the same language as
A, such that for x̄(1), . . . , x̄(k) ∈ An we set (x̄(1), . . . , x̄(k)) ∈ R if and only if

(x
(1)
i , . . . x

(k)
i ) ∈ R in A for every coordinate i ∈ [n].

Then an n-ary operation f is called a polymorphism of A if f is a homomor-
phism from An to A. For every relation R on A we say that f preserves R if f
is a polymorphism of (A;R). Otherwise we say f violates R. Polymorphisms can
be seen as a higher-arity generalization of endomorphisms; in particular endomor-
phisms are unary polymorphisms.

For a given structure A the set of all polymorphisms Pol(A) contains all the
projections and is closed under composition, hence it is a function clone.

Definition 1.6.2. Let A be a relational structure. Then we call the set of all
polymorphisms, the polymorphism clone of A, or short Pol(A).

As for monoids, for a given function clone A the polymorphism clone Pol(Inv (A ))
of all the relations preserved by A is the closure of A with respect to the topology
of pointwise convergence. Hence a function clone on A is closed if and only if it
can be written as the polymorphism clone of some structure on A.
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Definition 1.6.3. We call a function clone oligomorphic if and only if the group
of its unary, invertible functions is an oligomorphic permutation group.

So a countable structure A is ω-categorical if and only if Pol(A) is oligomor-
phic. Now it is of central importance to us that primitive positive definability in
ω-categorical (and finite) structures can be characterized by preservation under
polymorphisms:

Theorem 1.6.4 (Bodirsky, Nešetřil [BN06]). Let A be an ω-categorical structure.
Then a relation is pp-definable in A, if and only if it is preserved by the polymor-
phisms of A. �

Thus, by Lemma 1.5.6 the complexity of CSP(A) only depend on the polymor-
phism clone Pol(A) for ω-categorical A.

Conversely, if a first-order definable relation is not pp-definable in A, this can
be witnessed by polymorphisms of bounded arity:

Theorem 1.6.5 (Bodirsky, Kara [BK09]). Let A be a relational structure and let
R be a k-ary relation that is a union of at most m orbits of Aut(A) on Dk. If A has
a polymorphism f that violates R, then A also has an at most m-ary polymorphism
that violates R. �

1.6.1 Clone homomorphisms

Definition 1.6.6. A clone homomorphism from a function clone A to a function
clone B is a mapping ξ : A → B which

• preserves arities: it sends every function in A to a function of the same arity
in B;

• preserves each projection: it sends the k-ary projection onto the i-th coordi-
nate in A to the same projection in B, for all 1 ≤ i ≤ k;

• preserves composition: ξ(f ◦ (g1, . . . , gn)) = ξ(f) ◦ (ξ(g1), . . . , ξ(gn)) for all
n-ary functions f and all m-ary functions g1, . . . , gn in A .

A mapping ξ : A → B with an inverse that is also a clone homomorphism is called
a clone isomorphism.

As an analogue of the Theorem 1.4.6 we then obtain the following:

Theorem 1.6.7 ([BP15b]). Let B be ω-categorical and A be an arbitrary struc-
ture. Then A has a primitive positive interpretation in B if and only if there is
a continuous clone homomorphism ξ : Pol(B) → Pol(A), such that ξ(Pol(B)) is
oligomorphic.

Moreover, A and B are primitive positive bi-interpretable if and only if their
polymorphism clones are topologically isomorphic. �
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Note that by Lemma 1.5.8 this implies the following:

Observation 1.6.8. For every ω-categorical structure, the complexity of CSP(A)
only depends on Pol(A) as topological clone.

This again leads to the question, as for automorphism groups, whether the
topology is really essential for Theorem 1.6.7, or whether we can reconstruct the
topology on Pol(A) from the pure algebraic structure of the polymorphism clone.
Positive results in this respect are shown in [BPP17], [PP14], [PP15] and [TVG17],
where the strategy is to lift the existing reconstruction results for the group to the
monoid and clone level.

We are going to show in Chapter 4 that it is not possible in general to recon-
struct the topology of an oligomorphic clone from its purely algebraic structure.

1.6.2 An algebraic dichotomy conjecture for infinite CSPs

We would like to recall Conjecture 1.5.9, which claims that the only source of
NP-completeness of a given CSP of a reduct A of a finitely bounded homogeneous
structure is, that the structure S has a pp-interpretation in the model complete
core Ac extended by some constants. In this section we discuss the implications
for the polymorphism clone of A, respectively Ac.

The polymorphism clone of S is the clone consisting of all projections on the
set {0, 1}. We will denote this projection clone by 1. By Theorem 1.6.7, item (1)
of Conjecture 1.5.9 is equivalent to the statement that there is a continuos clone
homomorphism from some stabilizer of Pol(Ac) to 1. Barto and Pinsker could
show that also item (2) has a nice, positive characterization in the language of
clones, namely the existence of a Siggers operation modulo outer embeddings:

Theorem 1.6.9 ([BP16a]). Let A be an ω-categorical model-complete core. The
following are equivalent.

1. A does not pp-interpret S with parameters.

2. No stabilizer of Pol(A) maps homomorphically and continuously to 1.

3. No stabilizer of Pol(A) maps homomorphically to 1.

4. Pol(A) satisfies the pseudo Siggers equation, i.e., there exist e1, e2, f ∈
Pol(A) such that the identity

e1 ◦ f(x, y, x, z, y, z) = e2 ◦ f(y, x, z, x, z, y)

holds in Pol(A).
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Hence Conjecture 1.5.9 has the following algebraic counterpart:

Conjecture 1.6.10. Let A be a reduct of a finitely bounded homogeneous structure
and let Ac be its core. Then

1. either there is a clone homomorphism Pol(Ac, c1, . . . , cn) → 1 and conse-
quently CSP(A) is NP-complete,

2. or Pol(Ac) contains a pseudo Siggers operation and CSP(A) is in P.

Clearly the pseudo Siggers equation e1 ◦f(x, y, x, z, y, z) = e2 ◦f(y, x, z, x, z, y)
does not hold if f is any projection, which is why there cannot be a clone homo-
morphism to 1, not even a discontinuous one. In the analysis of actual CSPs over a
given homogeneous structure, as in Chapter 3, we are going to identify operations
f that satisfy the above, or other non-trivial equations, i.e. equations that cannot
be satisfied by projections. Theses operations then give us structural information
about the underlying reducts, which we can use to show tractability.

We remark that, the usage of homomorphic equivalence and pp-interpretations
might not be optimal in the order in Conjecture 1.5.9. This lead to the statement
of a second conjecture in [BOP] that avoids the concept of cores altogether and
claims that NP-completeness occurs, if and only if S is homomorphically equivalent
to some pp-interpretation of A. Also this second conjecture can be stated in the
language of clones, using the concept of h1-clone homomorphisms. We are however
not going to delve into this, and remark that by a new result in [BKO+17], the two
resulting conjectures are equivalent for reducts of finitely bounded homogeneous
structures.

1.7 The Ramsey property

For two structures A and B in the same language, let
(B
A

)
denote the set of all sub-

structures of B that are isomorphic to A. We then say that a class C of structures
in the same language has the Ramsey property, if for all A,B ∈ C, there is a C ∈ C
such that for all colorings χ :

(C
A

)
→ {0, 1} there is a monochromatic copy of B,

i.e. there is a B′ ∈
(C
B

)
such that χ is constant, when restricted to

(B′
A

)
.

Under quite weak assumption (i.e. if C has HP and JEP), C having the Ramsey
property implies that C is an amalgamation class [Neš05]. This motivates that we
call a homogeneous structure a Ramsey structure, if its age has the Ramsey prop-
erty. Not all homogeneous structures are Ramsey structures, but they often have
“reasonable” expansions to Ramsey classes. This observation was also the start
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of Nešetřils classification programme, whose aim is to find precompact Ramsey
expansions for amalgamation classes. For many well-known structures such ex-
pansions exist, but it was shown recently in [EHN16] that not every ω-categorical
structure has such an expansion.

In the remarkable paper [KPT05], Kechris, Pestov and Todorcevic exhibited a
connection between Ramsey notions and topological dynamics. They could prove
that an ordered homogeneous structure is Ramsey, if and only if its automorphism
group is extremely amenable.

1.7.1 Canonical functions

Canonical functions are a powerful concept with numerous applications in the
study of automorphism groups, and polymorphism clones of countable structures
with Ramsey properties.

Definition 1.7.1. Let A and B be two structures on domains A and B. Then a
function f : A→ B is called canonical, if for all tuples ā, ā′ in A with tp(ā) = tp(ā′),
we have that tp(f(ā)) = tp(f(ā′)) in B.
Every canonical function f induces a function from the set of types of A to the set
of types of B. We refer to this function as the behaviour of f .

We will slightly abuse notation and use the same symbol for a canonical func-
tion and its behaviour function. For example, for an arbitrary structure M, every
automorphism f ∈ Aut(M) is a canonical function with the behaviour f(p) = p
for all types p ∈ S(M).

The benefit of canonical functions is that they are particularly well-behaved
and can be easily manipulated and analysed. Since ω-categorical structures have
only finitely many types in every arity, this makes the analysis of function to a
combinatorial problem. The following theorem grants us the existence of canonical
functions generated by some given arbitrary function:

Theorem 1.7.2 (Bodirsky, Pinsker [BP16b]). Let A be a Ramsey structure and
B be ω-categorical. Then, for every f : A→ B there is a g ∈ Aut(B) ◦ f ◦ Aut(A)
such that g is canonical from A to B. �

In particular, since expansions of Ramsey structures by finitely many constants
are also Ramsey, this gives us the following corollary:

Corollary 1.7.3. Let A be a Ramsey structure in finite relational language, let
f : Al → A be an arbitrary function and let c1, . . . , cn ∈ A. Then there is a function
g ∈ Aut(A) ◦ f ◦ (Aut(A))l, such that

• g agrees with f on {c1, . . . , cn}l and
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• g is canonical from (A, c1, . . . , cn)l to A.

�

This means that, whenever g witnesses a property on a finite set {c1, . . . , cn},
we can find an f , generated by g and the automorphisms of A, that has the
same property and is furthermore canonical from (Al, c1, . . . , cn) to A. This is an
immense help in the study of reducts, and will become more evident in the proofs
in Chapters 2 and Chapter 3.
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Chapter 2

The reducts of Henson digraphs

In this chapter the reducts of the Henson digraphs are classified up to first-order
definability. This result contributes to the large body of work concerning the two
intimately related topics of reducts of countable structures and of closed subgroups
of Sym(ω). Motivation for this work comes from both areas.

In the topic of reducts, to our knowledge, this is the first time that the reducts
of uncountably many homogeneous structures have been classified. In all cases
only finitely many reducts appear. This supports Thomas’ conjecture (Conjec-
ture 1.3.6), which states that all countable homogeneous structures in a finite
relational language have only finitely many reducts. Evidence for this conjecture
has been building as there have been numerous classification results, e.g. [Cam76],
[Tho91], [Tho96], [JZ08], [PPP+14], [BPP15], [Aga16].

The main tool used in this classification are the ‘canonical functions’ that we
introduced in Section 1.7.1. The robustness and relative ease of the methodology
is becoming more evident as several classifications have been achieved by their use,
e.g. [PPP+14], [BPP15], [Bos15], [LP15], [Aga16], [BBWPP16].

In the topic of permutation groups, the main consequence of our result is a pos-
itive answer to a question of Macpherson, Question 5.10 in [BM16], which asked
whether there are 2ω pairwise non-conjugate maximal-closed subgroups of Sym(ω)
with Sym(ω) bearing the pointwise convergence topology. Several related ques-
tions have recently been tackled. Independently, [BM16] and [BR13] showed that
there exist non-oligomorphic maximal-closed subgroups of Sym(ω), the existence
of which was asked in [JZ08]. Also, independently, [KS16] and [BR13] positively
answered Macpherson’s question of whether there are maximal-closed subgroups of
Sym(ω) of countable cardinality. One question that remains open is whether every
proper closed subgroup of Sym(ω) is contained in a maximal-closed subgroup of
Sym(ω), (Question 7.7 in [MN96] and Question 5.9 in [BM16]).

The description of 2ω maximal-closed subgroups follows from the classification
of reducts by taking the automorphism groups of a suitably modified version of
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Henson’s construction of 2ω pairwise non-isomorphic countable homogeneous di-
graphs ([Hen72]). A short argument shows that their automorphism groups are
pairwise non-conjugate. However, we can say more: by Rubin’s work on recon-
struction ([Rub94]), the automorphism groups will be pairwise non-isomorphic as
abstract groups.

We outline the structure of this chapter: In Section 2.1, we provide the nec-
essary preliminary definitions and facts on the Henson digraphs. In Section 2.2,
we prove the classification of the reducts of the Henson digraphs: In Section 2.2.1
we state the classification. In Section 2.2.2 we describe the reducts, establishing
notation and important lemmas that are used in the rest of the paper. In Section
2.2.3 we carry out the combinatorial analysis of the possible behaviours of canon-
ical functions, 2.2.4 contains the proof of the classification. Section 2.3 contains
the denouement of the article: the classification is used to show that there exist
2ω pairwise non-isomorphic maximal-closed subgroups of Sym(ω).

2.1 Henson Digraphs

A directed graph (V ;E), or digraph for short, is in our context a relational structure
on domain V with a binary irreflexive anti-symmetric relation E ⊆ V 2. We call V
the set of vertices, and E is the set of edges. We say a digraph is edgeless if E = ∅.
By Ln we denote the strict linear order on n-elements, regarded as a digraph.

A tournament is a digraph in which there is an edge between every pair of
distinct vertices. Throughout this article, T will denote a set of finite tournaments.
We will often refer to elements of T as forbidden tournaments.

Definition 2.1.1.

(i) Let T be a set of finite tournaments. We let Forb(T ) be the class of finite
digraphs D such that for all T ∈ T , D does not embed T .

(ii) If T does not contain the 1-element tournament, we let (DT ;ET ) be the
unique (up to isomorphism) countable homogeneous digraph whose age is
Forb(T ).

(iii) A Henson digraph is a digraph isomorphic to (DT ;ET ) where T is non-empty
and does not contain the 1- or 2-element tournament.

The fact that (DT ;ET ) exists and is unique follows from the fact that Forb(T )
is a (free) amalgamation class, see Theorem 1.3.4. This particular construction of
digraphs was used by Henson in [Hen72] to show there exists uncountably many
countable homogeneous digraphs.
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If T = ∅ then (DT ;ET ) is the generic digraph, the unique countable homo-
geneous digraph that embeds all finite digraphs. The reducts of the generic di-
graph are classified in [Aga16]. If T contains the 1-element tournament, then
Forb(T ) = ∅. If T contains the 2-element tournament, then (DT ;ET ) is the
countable edgeless digraph. These are degenerate cases which is why we defined
the term Henson digraph to exclude these options.

Lemma 2.1.2. Let (D;E) be a Henson digraph.

(i) Th(D;E) is ω-categorical and has quantifier elimination.

(ii) Let (D′;E ′) be a digraph such that Age(D′;E ′) ⊆ Age(D;E). Then (D′;E ′)
is embeddable in (D;E).

(iii) (D;E) is connected: for every distinct a, b ∈ D, there is a path from a to b
or from b to a. (In fact, an oriented path of length at most two.)

Proof. (i) Follows directly from Theorem 1.4.4.

(ii) This follows from the extension property (cf. Definition 1.3.5) and an induc-
tion argument.

(iii) Let a, b ∈ D be distinct and without loss of generality suppose that there is
no edge between a and b. Then, by the extension property, there is a c ∈ D
with E(a, c) and E(c, b).

In order to use the canonical functions machinery, we need to expand the
Henson digraphs to ordered digraphs. This is described in the following definition.

Definition 2.1.3. (i) An ordered digraph is a digraph which is also linearly
ordered. Formally, it is a structure (V ;E,<) where (V ;E) is a digraph and
(V ;<) is a linear order.

(ii) We let (DT ;ET , <) be the unique (up to isomorphism) countable homoge-
neous ordered digraph such that a finite ordered digraph (D;E,<) is embed-
dable in (DT ;ET , <) iff (D;E) ∈ Forb(T ).

(iii) We say (D;E,<) is a Henson ordered digraph if (D;E,<) ∼= (DT ;ET , <) for
some T .

Theorem 2.1.4. All Henson ordered digraphs are Ramsey structures.

Proof. This fact follows by applying the main theorem of [NR83], where it is
shown that all free amalgamation classes, extended by linear orders, are Ramsey;
additionally, the fact is stated in [LJTW14].
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Hence we can apply the method of canonical functions. Corollary 1.7.3 implies
the following for Henson ordered graphs:

Lemma 2.1.5. Let (D;E,<) be a Henson ordered digraph. Let f ∈ Sym(D) and
c1, . . . , cn ∈ D be any vertices. Then there exists a function g : D → D such that

(i) g ∈ 〈Aut(D;E) ∪ {f}〉.

(ii) g(ci) = f(ci) for i = 1, . . . , n.

(iii) When regarded as a function from (D;E,<, c1, . . . , cn) to (D;E), g is a
canonical function.

2.2 Classification of the Reducts

For this section, we fix a Henson ordered digraph (D;E,<) and let T be its set of
forbidden tournaments.

2.2.1 Statement of the Classification

Definition 2.2.1.

(i) Recall that for F ⊆ Sym(D), 〈F 〉 denotes the smallest closed subgroup of
Sym(D) containing F . For brevity, when it is clear we are discussing su-
pergroups of Aut(D;E), we may abuse notation and write 〈F 〉 to mean
〈F ∪ Aut(D;E)〉.

(ii) We let E∗(x, y) denote the relation defined by E(y, x), i.e. the relation where
the orientation all edges are flipped. We let E(x, y) denote the underlying
(undirected) graph relation E(x, y)∨E(y, x) and N(x, y) denote the non-edge
relation ¬E(x, y).

(iii) A Henson graph is the Fräıssé limit of the class of all finite Kn-free undirected
graphs, for some integer n ≥ 3.

(iv) Assume (D;E) is isomorphic to the digraph (D;E∗) obtained by changing
the direction of all its edges. In this case − will denote a permutation of D
such that for all x, y ∈ D, E(−(x),−(y)) iff E(y, x).

(v) Assume (D;E) is isomorphic to the digraph obtained by changing the direc-
tion of all the edges adjacent to one particular vertex of D. In this case sw
will denote a permutation of D such that for some a ∈ D:

E(sw(x), sw(y)) if and only if

{
E(x, y) and x, y 6= a, OR,

E(y, x) and x = a ∨ y = a
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In words, − is a function which changes the direction of all the edges of the
digraph and sw is a function which changes the direction of those edges adjacent to
one particularly vertex. The existence of − or sw depends on which tournaments
are forbidden; see Lemma 2.2.5. This explains the wording of Theorem 2.2.2(iii): if,
for example, − exists but sw does not, then max{Aut(D;E), 〈−〉, 〈sw〉, 〈−, sw〉} =
〈−〉. Also, note that the groups 〈−〉 and 〈sw〉 are independent from the choice of
the specific functions − or sw; again see Lemma 2.2.5.

Theorem 2.2.2. Let (D;E) be a Henson digraph and let G ≤ Sym(D) be a closed
supergroup of Aut(D;E). Then:

(i) G ≤ Aut(D;E) or G ≥ Aut(D;E)

(ii) If G < Aut(D;E) then G = Aut(D;E), 〈−〉, 〈sw〉 or 〈−, sw〉.

(iii) (D;E) is the random graph, (D;E) is a Henson graph or (D;E) is not ho-
mogeneous. In the last case Aut(D;E) is equal to max{Aut(D;E), 〈−〉, 〈sw〉,
〈−, sw〉} and is a maximal-closed subgroup of Sym(D).

The reducts of the random graph and the Henson graphs were classified by
Thomas in [Tho91]: If (D;E) is the random graph, the supergroups of Aut(D;E)
are 〈−Γ〉, 〈swΓ〉, 〈−Γ, swΓ〉 and Sym(D), where −Γ ∈ Sym(D) is a bijection which
maps every edge to a non-edge and every non-edge to an edge and swΓ is a bijection
which does the same but only for those edges adjacent to a particular vertex
a ∈ D. A Henson graph has only two reducts, its automorphism group and the
full symmetric group. As an immediate consequence we get the following corollary
of Theorem 2.2.2:

Corollary 2.2.3. Let (D;E) be a Henson digraph. Then its lattice of reducts is
a sublattice of the lattice in Figure 2.2.1. In particular, the lattice of reducts of
(D;E) is (isomorphic to) a sublattice of the lattice of reducts of the generic digraph
([Aga16]).

2.2.2 Understanding the reducts

In this section, we establish several important lemmas that play prominent roles
in the proof of Theorem 2.2.2. We omit most of the proofs of the lemmas. This
is because they are relatively straightforward and are identical to the lemmas in
[Aga16, Section 3]. Before we delve into the lemmas, we describe some terminology.

• Let f, g : D → D and A ⊆ D. We say f behaves like g on A if for all finite
tuples ā ∈ A, f(ā) is isomorphic (as a finite digraph) to g(ā). If A = D, we
simply say f behaves like g.
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Aut(D;E)

〈sw〉 〈−〉

〈sw,−〉

Aut(D;E)

〈swΓ〉 〈−Γ〉

〈swΓ,−Γ〉

Sym(D)

Figure 2.1: The (feasible) supergroups of Aut(D;E)

• Let A,B be disjoint subsets of D. We say f behaves like sw between A and
B if f switches the direction of all edges between A and B and preserves all
non-edges between A and B.

• Let A ⊆ D. We let swA : D → D denote a function that behaves like id on
A and D \A and that behaves like sw between A and D \A. Note that the
existence of swA will depend on A and on T .

• We overload the symbols − and sw by letting them denote actions on finite
tournaments. We say T is closed under − if for every T ∈ T , the tournament
obtained from T by changing the direction of all its edges is in T . We say
T is closed under sw if for every T ∈ T and t ∈ T , the tournament obtained
by changing the direction of those edges adjacent to t is in T .

Remark 2.2.4. Note that if f and g are canonical and have the same behaviour,
then f behaves like g. However the terminology does not match exactly as the
notions of ‘behaving like’ is not only defined for canonical functions.

Lemma 2.2.5.

(i) − : D → D exists if and only if T is closed under −.

(ii) sw : D → D exists if and only if T is closed under sw.

(iii) If sw exists, then for all A ⊆ D, swA exists.
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(iv) 〈−〉 ⊇ {f ∈ Sym(D) : f behaves like −}.

(v) 〈sw〉 ⊇ {f ∈ Sym(D) : there is A ⊆ D such that f behaves like swA}.

Proof.

(i) ‘LHS ⇒ RHS’: Suppose − exists. To show T is closed under −, it suffices
to show that if T 6∈ T , then −(T ) 6∈ T . So suppose a finite tournament T
is not in T . Then T is embeddable in (D;E). Then applying − shows that
−(T ) is embeddable in (D;E), i.e. that −(T ) 6∈ T .

‘RHS⇒ LHS’: To show − exists, we need to show that (D;E∗) is isomorphic
to (D;E). (Recall that φ∗(x, y) ..= φ(y, x)). By the uniqueness of Fräıssé
limits, it suffices to show that (D;E∗) is homogeneous and that Age(D;E∗) =
Age(D;E). That the ages are equal follows from the assumption that T is
closed under −. That (D;E∗) is homogeneous follows from the observation
that for all A,B ⊆ D and all f : A → B, f : (A;E|A) → (B;E|B) is an
isomorphism if and only if f : (A;E∗|A)→ (B;E∗|B) is an isomorphism.

(ii) ‘LHS ⇒ RHS’: Apply the same argument as in (i) to prove this.

‘RHS ⇒ LHS’: Let a ∈ D, Xout = {x ∈ D : E(a, x)} and Xin = {x ∈ D :
E(x, a)}. Suppose we found an isomorphism f : (Xout;E)→ (Xin;E). Then
we can define sw as the function which maps a to a, maps elements of Xout

using f and maps elements of Xin using f−1. Thus to complete this proof,
we need to prove that Xout and Xin are isomorphic digraphs. To do this, we
will show that they are homogeneous and have the same age.

First we show that Xout is homogeneous. Note in advance that the same
argument shows that Xin is homogeneous. Let (a1, . . . , an), (b1, . . . , bn) ∈
Xout be isomorphic. Then (a, a1, . . . , an) and (a, b1, . . . , bn) are isomorphic,
so by homogeneity of (D;E) there is g ∈ Aut(D;E) mapping (a, a1, . . . , an)
to (a, b1, . . . , bn). Since g fixes a, g fixes Xout setwise. Then the restriction of g
to Xout is an automorphism of (Xout;E) mapping (a1, . . . , an) to (b1, . . . , bn),
as required.

Next we show that Age(Xout) = Age(Xin). Let A be a finite sub-digraph of
Xout. Then let A′ = A∪{a} and note that A′ is an element of Forb(T ). Now
let A′′ be the digraph obtained from A′ by changing the direction of all the
edges adjacent to a. Since T is closed under sw and A′ ∈ Forb(T ), A′′ is also
in Forb(T ), so A′′ is embeddable in (D;E). By homogeneity, we may assume
that the embedding maps a ∈ A′′ to a ∈ (D;E), so we have embedded A
into Xin. Thus we have shown that Age(Xout) ⊆ Age(Xin). A symmetric
argument shows that Age(Xin) ⊆ Age(Xout), so we are done.
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(iii) Let A ⊆ D. Consider the digraph (D;E ′) obtained from (D;E) by chang-
ing the direction of the edges between A and D \ A and leaving all other
edges unchanged. If (D;E ′) is embeddable in (D;E), then swA exists as any
embedding (D;E ′)→ (D;E) has the desired property.

We will prove the contrapositive, so suppose swA does not exist. This implies
that the digraph (D;E ′) is not embeddable in (D;E), which by Lemma 2.1.2
implies that Age(D;E ′) 6⊆ Age(D;E). This implies there exists T ∈ T which
is embeddable in (D;E ′); let g be such an embedding. Let B = g−1(g(T )∩A),
so B is a subset of T . Now consider the tournament T ′ obtained by applying
the switch operation on T about every element of B. By choice of T and B,
T ′ is isomorphic to (g(T );E|g(T )). Hence T ′ is in the age of (D;E) and so
T ′ 6∈ T . To summarise, we have T ∈ T , T ′ 6∈ T and T ′ is obtained from T
by switching. This means T is not closed under sw and so by (ii) sw does
not exist, as required.

(iv)

(v) We omit these proofs for the reasons described at the start of this section.

Definition 2.2.6. Let G be a subgroup of Sym(D) and n ∈ N. G is n-transitive if
for all tuples ā, b̄ ∈ Dn with distinct entries, there exists g ∈ G such that g(ā) = b̄.
G is n-homogeneous if for all subsets A,B ⊆ D of size n, there exists g ∈ G such
that g(A) = B.

Lemma 2.2.7. Let G ≤ Sym(D) be a closed supergroup of Aut(D;E).

(i) If G is n-transitive for all n ∈ N, then G = Sym(D).

(ii) If G is n-homogeneous for all n ∈ N, then G = Sym(D).

(iii) Suppose that whenever A ⊆ D is finite and has edges, there exists g ∈ G such
that g(A) has less edges than in A. Then G = Sym(D).

(iv) Suppose that there exists a finite A ⊆ D and g ∈ G such that g behaves like
id on D\A, g behaves like id between A and D\A, and, g deletes at least one
edge in A. Then, G = Sym(D).

Notation 2.2.8. Let a1, . . . , an, b1, . . . , bn ∈ D. We say ā and b̄ are isomorphic as
graphs if E(ai, aj)↔ E(bi, bj) for all i, j.

Lemma 2.2.9. Let G ≤ Sym(D) be a closed supergroup of Aut(D;E).
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(i) Suppose that whenever ā and b̄ are isomorphic as graphs, there exists g ∈ G
such that g(ā) = b̄. Then G ≥ Aut(D;E).

(ii) Suppose that for all A = {a1, . . . , an} ⊆ D, there exists g ∈ G such that for
all edges (ai, aj) in A, E(g(ai), g(aj)) if i < j and E(g(aj), g(ai)) if i > j.
(Intuitively, such a g is aligning the edges so they all point in the same
direction.) Then, G ≥ Aut(D;E).

(iii) Suppose that for all finite A ⊆ D and all edges (a, a′) ∈ A there is g ∈ G
such that g changes the direction of (a, a′) and behaves like id on all other
edges and non-edges of A. Then G ≥ Aut(D;E).

(iv) Suppose there is a finite A ⊆ D and a g ∈ G such that g behaves like id on
D\A, g behaves like id between A and D\A, and g switches the direction of
some edge in A. Then, G ≥ Aut(D;E).

Furthermore, in all of these cases we can also conclude that the underlying graph
(D;E) is homogeneous. �

2.2.3 Analysis of Canonical Functions

To help motivate the analysis we are about to undertake, we sketch a part of
the proof of the main theorem. In the following, let G always denote a closed
supergroup of Aut(D;E). One task will be to show that if G > Aut(D;E) then
G ≥ 〈−〉 or G ≥ 〈sw〉. Since G > Aut(D;E), G does not preserve the relation
E, so there exist g ∈ G and c1, c2 ∈ D with E(c1, c2) but ¬E(g(c1), g(c2)). Then
by Lemma 2.1.5, we find a canonical function f : (D;E,<, c1, c2) → (D;E) that
agrees with g on (c1, c2) and lies in the closure of G in the space of all unary
functions. The behaviour of f will give us information about G. We only have
to consider the behaviour of f on the 2-types, since (D;E,<, c1, c2) has quantifier
elimination and all relations are of arity ≤ 2. Therefore there are only finitely
many possibilities for the behaviour of f , so we can check each case and show that
G must contain 〈−〉 or 〈sw〉.

Canonical functions from (D;E,<) to (D;E)

We start our analysis of the behaviours with the simplest case, which is when no
constants are added. This will simplify other proof steps later on.

• Let φ1(x, y), . . . , φn(x, y) be formulas. We let pφ1,...,φn(x, y) denote the (par-
tial) type determined by the formula φ1(x, y) ∧ . . . ∧ φn(x, y).

• There are four 2-types in (D;E): p=, pE, pE∗ and pN .
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• There are seven 2-types in (D;E,<): p=, p<,E, p<,E∗ , p<,N , p>,E, p>,E∗ and
p>,N .

The following lemma contains a little ‘trick’ that proves useful during the anal-
ysis of the behaviours. Roughly, this lemma allows us to manipulate freely how
finitely many elements are ordered, and its benefits will be seen shortly.

Lemma 2.2.10. Let {a1, . . . , an} ∈ (D;E,<) and let σ ∈ Sn. Then there exists
g ∈ Aut(D;E) such that for all i, j, E(ai, aj) if and only if E(g(ai), g(aj)), and
for all i, j, g(ai) < g(aj) if and only if σ(i) < σ(j).

Proof. Follows straightforwardly from the definition of the age of (D;E,<) and
the homogeneity of (D;E).

Lemma 2.2.11. Let G be a closed supergroup of Aut(D;E), let f ∈ G, and let f
be canonical when considered as a function from (D;E,<) to (D;E).

(i) If f(p<,N) = pN , f(p<,E) = pE∗ and f(p<,E∗) = pE, then − exists and − ∈ G.

(ii) If f(p<,N) = pN , f(p<,E) = pE and f(p<,E∗) = pE, then (D;E) is a homoge-
neous graph and G ≥ Aut(D;E).

(iii) If f(p<,N) = pN , f(p<,E) = pE∗ and f(p<,E∗) = pE∗, then (D;E) is a homo-
geneous graph and G ≥ Aut(D;E).

(iv) If f(p<,N) = pE or pE∗ , f(p<,E) = pN and f(p<,E∗) = pN , then (D;E) is a
homogeneous graph and G ≥ Aut(D;E).

(v) If f has any other non-identity behaviour, then either we get a contradiction
(i.e. that behaviour is not possible) or G = Sym(D).

Proof.

(i) By Lemma 2.2.5, to show − exists, it suffices to show that if T 6∈ T , then
−(T ) 6∈ T . So let T be a finite tournament not in T . This means T is em-
beddable in (D;E); let T ′ ⊆ (D;E) be isomorphic to T . Then the conditions
in the lemma tell us that f(T ′) ∼= −(T ), so −(T ) is embeddable in (D;E),
so −(T ) 6∈ T , as required.

Next we show − ∈ G. Since G is closed, it suffices to show that for all finite
ā ∈ D there exists g ∈ G such that g(ā) = −(ā). So let ā ∈ D be finite.
By the conditions in the lemma, f(ā) ∼= −(ā). By homogeneity, there exists
g1 ∈ Aut(D;E) mapping f(ā) to −(ā). Since f ∈ G, there is g2 ∈ G such
that g2(ā) = f(ā). Letting g = g1 ◦ g2 completes the argument.
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(ii) We will use Lemma 2.2.9 (ii). Let (a1, . . . , an) ∈ D. By Lemma 2.2.10, there
is g1 ∈ Aut(D;E) such that g(a1) < g(a2) < . . . < g(an). Then, due to the
conditions in the lemma, applying f aligns the edges of this tuple to point
in the same direction. As f ∈ G, there exists g2 ∈ G which agrees with f on
g1(ā). Letting g = g2 ◦ g1 completes the argument.

Note: For the remaining arguments, we will no longer comment explicitly
on the fact that f ∈ G implies that f can be imitated on a finite set by a
function in G.

(iii) Use the same argument as (ii).

(iv) Let ā be any tuple. Then apply f once to get f(ā). By Lemma 2.2.10, there
is g ∈ Aut(D;E) such that gf(ā) is linearly ordered the same way as ā.
Now apply f again. Observe that the behaviour of fgf on ā matches the
behaviour of the canonical function in (ii) or (iii). Thus, this case is reduced
to one of those.

Terminology. In future, we use the phrase applying f twice to abbreviate the
procedure of applying f , re-ordering the elements to match the ordering of
the initial tuple, and applying f again.

(v) Case 1: f(p<,N) = pN . We are left with the behaviours where f(p<,E) = pN
or f(p<,E∗) = pN (or both), as all the other possibilities have been dealt with
above. Now for any finite A ⊆ D that has edges, f(A) has less edges than A
does. So by Lemma 2.2.7 (iii), we conclude that G = Sym(D).

Case 2: f(p<,N) = pE
Case 2a: f(p<,E) = pE and f(p<,E∗) = pE. For every all tuples ā, b̄ ∈ Dn

with pairwise distinct entries we have that f(ā) ∼= f(b̄) ∼= Ln (as digraphs),
so G is n-transitive for all n and G = Sym(D) by Lemma 2.2.7 (i).

Case 2b: f(p<,E) = pE∗ and f(p<,E∗) = pE∗ . Apply f twice and use the same
argument as in Case 2a to show that G = Sym(D).

Case 2c: f(p<,E) = pE and f(p<,E∗) = pE∗ . We will show that this behaviour
is not possible. Let T ∈ T be of minimal cardinality. Enumerate T as
T = (t1, . . . , tn) so that we have an edge going from t1 to t2 (as opposed
to t2 to t1). Now let A = (a1, . . . , an) be the ordered digraph constructed
as follows: Start with T , delete the edge (t1, t2), and add a linear order so
that a1 < a2. As T was minimal, A can be embedded in (D;E,<), so then
f(A) ⊆ (D;E). But by the construction of A, f(A) ∼= T , so we have shown
that T is embeddable in (D;E). This contradicts that T ∈ T .

Case 2d: f(p<,E) = pE∗ and f(p<,E∗) = pE. Applying f twice reduces to a
case that is dual to Case 2c.
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Case 2e: f(p<,E) = pE and f(p<,E∗) = pN . Applying f twice reduces to Case
2a.

Case 2f: f(p<,E) = pN and f(p<,E∗) = pE. Applying f twice reduces to Case
1.

Case 2g: f(p<,E) = pE∗ and f(p<,E∗) = pN . We will show that this behaviour
is not possible. Let T ∈ T be of minimal cardinality. Observe that f 3 has the
identity behaviour, so that f 3(T ) = T . Now observe that f 2(T ) is a digraph
that contains non-edges, so by the minimality of T , f 2(T ) can be embedded
in (D;E,<). But then applying f shows that f(f 2(T )) is embeddable in
(D;E), i.e. that f 3(T ) = T is embeddable in (D;E). This contradicts that
T ∈ T .

Case 2h: f(p<,E) = pN and f(p<,E∗) = pE∗ . Using the same argument as in
2g shows that this case is not possible.

Case 3: f(p<,N) = pE∗ . This case is is symmetric to Case 2.

Now we have seen an analysis, we provide more detailed intuition. Given some
closed supergroup G of Aut(D;E), we want to know what functions it contains.
Since G is closed, this amounts to knowing how G acts on finite tuples in D. But
this is exactly the information a canonical function in G provides! For example,
in (i) the canonical function tells us that G can behave like − on any finite tuple,
which implies that G ≥ 〈−〉. The role of homogeneity is that it allows us to move
between isomorphic tuples, so knowing how G acts on one tuple automatically tells
us how G acts on all tuples isomorphic to that one tuple.

Canonical functions from (D;E,<, c̄) to (D;E)

We now move on to the general situation where we have added constants c̄ ∈ D
to the structure. For convenience, we assume that ci < cj for all i < j. Since
(D;E) is ω-categorical, (D;E, c̄) is also ω-categorical, so the n-types of (D;E,<, c̄)
correspond to the orbits of Aut(D;E,<, c̄) acting on the set of n-tuples of D. For
this reason, we often conflate the notion of types and orbits.

We need to describe the 2-types of (D;E,<, c̄), and to do that we first need
to describe the 1-types. There are two kinds of 1-types, i.e. two kinds of orbits.
The first is a singleton, e.g. {c1}. The other orbits are infinite and are determined
by how their elements are related to the ci. These infinite orbits are of the form
{x ∈ D :

∧
i (φi(x, ci) ∧ ψi(x, ci))}, where φi ∈ {<,>} and ψi ∈ {E,E∗, N}.

Unlike in the case of the generic digraph, the substructures induced on these
orbits will not necessarily be isomorphic to the original structure. For example, let
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T = {L3} and c̄ = (c1). Then consider the orbit X = {x ∈ D : x < c1 ∧E(x, c1)}.
If there was an edge, ab say, in X, then {c1, a, b} would be a copy of L3. However,
L3 is forbidden. Thus, X contains no edges so in particular X is not isomorphic
to (DT ;ET , <).

However, there are always orbits such that the substructures induced on them
are isomorphic to the original structure. For example, regardless of T , the orbit
X = {x ∈ D : x < c1 ∧

∧
iN(x, ci)} is isomorphic to (D;E,<). These orbits form

a central part of the argument so we give them a definition.

Definition 2.2.12. Let c̄ ∈ D and X ⊆ D be an orbit of (D;E,<, c̄). We say X
is independent if X is infinite and there are no edges between c̄ and X.

The following lemma highlights the key feature of independent orbits that
makes them useful.

Lemma 2.2.13. Let X be an independent orbit of (D;E,<, c̄).

(i) Let v ∈ D\(X ∪ c̄). Let A = (a0, . . . , an) be a finite digraph in the age of
(D;E). Then there are x1, . . . , xn ∈ X such that (a0, a1, . . . , an) ∼= (v, x1, . . . , xn)
as tuples in (D;E,<, c̄).

(ii) The substructure induced on X is isomorphic to (D;E).

Proof. Let k be the length of the tuple c̄ and let x be any element of X. Con-
sider the finite ordered digraph A′ which is constructed as follows: start with A,
add new vertices c′1, . . . , c

′
k and then add edges and an ordering so that we have

(a0, c
′
1, . . . , c

′
k)
∼= (v, c1, . . . , ck) and so that (ai, c

′
1, . . . , c

′
k)
∼= (x, c1, . . . , ck) for all

i > 0.
A′ is embeddable in (D;E,<) so let f be such an embedding. By composing

with an automorphism of (D;E,<) if necessary, we can assume that f(c′j) = cj
for j = 1, . . . , k. Then letting xi = f(ai) for i = 1, . . . , n completes the proof.

(ii) From (i), we know that the age of X equals the age of (D;E), so it suffices to
show that X is homogeneous. Let (a1, . . . , an), (b1, . . . , bn) ∈ X be isomorphic tu-
ples, as ordered digraphs. Then (c1, . . . , ck, a1, . . . , an) ∼= (c1, . . . , ck, b1, . . . , bn). By
the homogeneity of (D;E,<), there is f ∈ Aut(D;E,<) mapping (c1, . . . , ck, a1, . . . , an)
to (c1, . . . , ck, b1, . . . , bn). Since f fixes c̄, f fixes X setwise, and so f |X is an auto-
morphism of X mapping ā to b̄, as required.

Notation 2.2.14. Let A,B be definable subsets of D and let φ1(x, y), . . . , φn(x, y)
be formulas. We let pA,B,φ1,...,φn(x, y) denote the (partial) type determined by the
formula x ∈ A ∧ y ∈ B ∧ φ1(x, y) ∧ . . . ∧ φn(x, y).
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Using this notation, we can describe the 2-types of (D;E,<, c̄). They are all
of the form pX,Y,φ,ψ = {(a, b) ∈ D : a ∈ X, b ∈ Y, φ(a, b) and ψ(a, b)}, where X
and Y are orbits, φ ∈ {<,=, >} and ψ ∈ {E,E∗, N}.

Our task now is to analyse the possibilities for f(pX,Y,φ,ψ), where f is a canonical
function. It turns out that it is sufficient to study those cases where we assume X
is an independent orbit. The first lemma deals with the situation when X = Y .

Lemma 2.2.15. Let G be a closed supergroup of Aut(D;E), let c̄ ∈ D, let f ∈ G,
and let f be canonical when considered as a function from (D;E,<, c̄) to (D;E).
Let X ⊆ D be an independent orbit.

(i) If f(pX,X,<,N) = pN , f(pX,X,<,E) = pE∗ and f(pX,X,<,E∗) = pE, then − exists
and − ∈ G.

(ii) If f(pX,X,<,N) = pN , f(pX,X,<,E) = pE and f(pX,X,<,E∗) = pE, then (D;E) is
a homogeneous graph and G ≥ Aut(D;E).

(iii) If f(pX,X,<,N) = pN , f(pX,X,<,E) = pE∗ and f(pX,X,<,E∗) = pE∗, then (D;E)
is a homogeneous graph and G ≥ Aut(D;E).

(iv) If f(pX,X,<,N) = pE or pE∗ , f(pX,X,<,E) = pN and f(pX,X,<,E∗) = pN , then
(D;E) is a homogeneous graph and G ≥ Aut(D;E).

(v) If f has any other non-identity behaviour, then either we get a contradiction
or G = Sym(D).

Proof. Intuitively, since X ∼= (D;E), the canonical functions here provide us the
same information as the canonical functions in Lemma 2.2.11, so we are done.
More formally, one can copy the arguments from Lemma 2.2.11 and add minor
adjustments as necessary. We do this for (i) as an example, and leave the rest to
be checked by the reader.

First we show − exists, so let T be a tournament not in T . This means T is
embeddable in (D;E) and so, by Lemma 2.2.13, T is embeddable in X; let T ′ ⊆ X
be isomorphic to T . Then the conditions in the lemma tell us that f(T ′) ∼= −(T ),
so −(T ) is embeddable in (D;E), so −(T ) 6∈ T , as required.

Next we show − ∈ G. Since G is closed, it suffices to show that for all finite
ā ∈ D there exists g ∈ G such that g(ā) = −(ā). So let ā ∈ D be finite. By
Lemma 2.2.13, there is ā′ ∈ X isomorphic to ā. By the conditions in the lemma,
f(ā′) ∼= −(ā). By homogeneity, there exist g1 ∈ Aut(D;E) mapping ā to ā′ and
g2 ∈ Aut(D;E) mapping f(ā′) to −(ā). Since f ∈ G, there is g3 ∈ G such that
g3(ā) = f(ā). Letting g = g2 ◦ g3 ◦ g1 completes the argument.

Next we look at the behaviour of f between an independent orbit X and any
other orbit Y . This task is split depending on how X and Y relate with regard to
the linear order.
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Observation 2.2.16. There are two ways that two infinite orbits X and Y of
Aut(D;E,<, c̄) can relate to each other with respect to the linear order <:

• All of the elements of one orbit, X say, are smaller than all of the elements
of Y . This is abbreviated by ‘X < Y ’.

• X and Y are interdense: ∀x < x′ ∈ X, ∃y ∈ Y such that x < y < x′ and vice
versa.

The next lemma contains the analysis for the case where X < Y or X > Y .

Lemma 2.2.17. Let G be a closed supergroup of Aut(D;E), let c̄ ∈ D, let f ∈ G,
and let f be canonical when considered as a function from (D;E,<, c̄) to (D;E).
Let X ⊆ D be an independent orbit on which f behaves like id and let Y be an
infinite orbit such that X < Y or X > Y .

(i) If f(pX,Y,N) = pN , f(pX,Y,E) = pE∗ and f(pX,Y,E∗) = pE, then sw exists and
sw ∈ G.

(ii) If f(pX,Y,N) = pN , f(pX,Y,E) = pE and f(pX,Y,E∗) = pE, then (D;E) is a
homogeneous graph and G ≥ Aut(D;E).

(iii) If f(pX,Y,N) = pN , f(pX,Y,E) = pE∗ and f(pX,Y,E∗) = pE∗, then (D;E) is a
homogeneous graph and G ≥ Aut(D;E).

(iv) If f(pX,Y,N) = pE or pE∗ , f(pX,Y,E) = pN and f(pX,Y,E∗) = pN , then (D;E)
is a homogeneous graph and G ≥ Aut(D;E).

(v) If f has any other non-identity behaviour, then either we get a contradiction
or G = Sym(D).

Remark: We do not need to include < or > in the subscripts of the type because
it is automatically determined by how X and Y are related to c̄.

Proof. Assume that X < Y . The proof for the case Y < X is symmetric. Let
y0 ∈ Y be any element.

(i) The proof is analogous to that of Case (i) in Lemma 2.2.11 and is left as an
exercise for the reader. Note that Lemma 2.2.13 is needed for this.

(ii) Using Lemma 2.2.9 (ii), it suffices to show that for any finite A ⊆ D we can
align all its edges by using functions in G. Let A = {a1, . . . , an}. First we
map an−1 to y0 and the rest of A into X (possible by Lemma 2.2.13), and
then apply f . Then we repeat but with an−2 instead of an−1, then with an−3,
and so on until a1.
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(iii) Same as (ii).

(iv) The same argument as in (ii) works but with a slight modification: the
intuition is that whenever f was applied to some tuple (a0, . . . , an) in those
proofs, here we apply f twice to get the same effect. To be more precise,
the modification is as follows. Let (a0, . . . , an) ∈ D. We first map this to an
isomorphic copy (y0, x1, . . . , xn) for some xi ∈ X. Then apply f . Then again
we map this to an isomorphic tuple (y0, x

′
1, . . . , x

′
n) for some x′i ∈ X. Then

apply f a second time. The total effect of this procedure is the same as what
the canonical function did in Case (ii) or (iii). Thus we have reduced this
case to either (ii) or (iii).

Remark: For the rest of this proof, we will use the phrase “by applying f
twice” to refer to the procedure described above.

(v) Case 1: f(p<,N) = pN . By a similar argument as in Case 1 of Lemma 2.2.11,
G = Sym(D). Note that Lemma 2.2.13 is needed for this.

Case 2: f(pX,Y,N) = pE
Case 2a: f(pX,Y,E) = pE∗ . We will show that this behaviour is not possible, in
a similar fashion to Case 2c of Lemma 2.2.11. Let T ∈ T be of minimal size
and enumerate T as (t0, t1, . . . , tn) so that t0 has at least one edge going into
it. Construct a digraph A = (a0, a1, . . . , an) as follows: start with A being
equal to T and then replace edges into a0 with non-edges, replace edges out
of a0 with incoming edges, and leave all other edges of A the same.

Since T was minimal, A ∈ Forb(T ) so A can be embedded in D. Fur-
thermore, by Lemma 2.2.13 there are xi ∈ X such that (a0, a1, . . . , an) ∼=
(y0, x1, . . . , xn). Now apply f . By construction of A, f(y0, x1, . . . , xn) ∼=
(t0, . . . , tn). Thus, T is embeddable in D, contradicting T ∈ T .

Case 2b: f(pX,Y,E∗) = pE∗ . Use the same argument as Case 2a to show this
is not possible.

Now there are only three behaviours left to analyse.

Case 2c: f(pX,Y,E) = pE and f(pX,Y,E∗) = pE. We will show that G =
Sym(D), by showing that every tuple (a0, . . . , an−1) ∈ Dn can be mapped
to Ln using functions in G. We do this by induction on n. The base case
n = 1 is trivial so let n > 1. By the inductive hypothesis we can assume
that (a1, . . . , an−1) ∼= Ln−1. By Lemma 2.2.13 we map ā to an isomorphic
tuple (y0, x1, . . . , xn−1) for some xi ∈ X. Then applying f maps the tuple to
a copy of Ln, as required.

Case 2d: f(pX,Y,E) = pE and f(pX,Y,E∗) = pN . By applying f twice this case
is reduced to Case 2c.
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Case 2e: f(pX,Y,E) = pN and f(pX,Y,E∗) = pE. By applying f twice this case
is reduced to Case 1.

Case 3: f(pX,Y,N) = pE∗ . This case is symmetric to Case 2.

In the proof above we only had to study the behaviour of f on {y0} ∪ X for
some element y0 ∈ Y . The key property which allowed this is Lemma 2.2.13. This
feature allows us to use these arguments with minimal modification to prove the
subsequent lemmas.

The next lemma deals with the case where X and Y are interdense.

Lemma 2.2.18. Let G be a closed supergroup of Aut(D;E), let c̄ ∈ D, let f ∈ G,
and let f be canonical when considered as a function from (D;E,<, c̄) to (D;E).
Let X ⊆ D be an independent orbit on which f behaves like id and let Y be an
infinite orbit such that X and Y are interdense. Then at least one of the following
holds.

(i) f preserves all the edges and non-edges between X and Y .

(ii) f switches the direction of every edge between X and Y and preserves non-
edges between X and Y . In this case sw exists.

(iii) G ≥ Aut(D;E) and (D;E) is a homogeneous graph.

(iv) G = Sym(D).

Proof. First just consider the increasing tuples from X to Y . With the same
arguments as in Lemma 2.2.17 one can show that either

(a) f(pX,Y,N,<) = pN , f(pX,Y,E,<) = pE and f(pX,Y,E∗,<) = pE∗,

(b) f(pX,Y,N,<) = pN , f(pX,Y,E,<) = pE∗ and f(pX,Y,E∗,<) = pE,

(c) G ≥ Aut(D;E) and (D;E) is a homogeneous graph, or

(d) G = Sym(D).

If (c) or (d) is true we are done, so assume (a) or (b) is true. Similarly we can
assume that f behaves like id or sw between decreasing tuples from X to Y . If
the behaviours between increasing and decreasing tuples are the same, then (i) or
(ii) will be true so we we would be done. Thus it remains to check what happens
if f behaves like id on decreasing tuples and sw on increasing tuples. Explicitly
we are assuming that:
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f(pX,Y,N,<) = pN , f(pX,Y,E,<) = pE∗ , f(pX,Y,E∗,<) = pE, and
f(pX,Y,N,>) = pN , f(pX,Y,E,>) = pE, f(pX,Y,E∗,>) = pE∗ .

Let ā = (a0, a1, . . . , an) ∈ Forb(T ) be a digraph with at least one edge (a0, a1).
We can consider ā as an ordered digraph by setting ai < aj ↔ i < j. Then
by Lemma 2.2.13 ā has an isomorphic copy b̄ = (b0, b1, . . . , bn) such that b1 ∈ Y
and bi ∈ X for i 6= 1. All the edges of b̄ are preserved under f , except for
the edge (b0, b1) whose direction is switched. By Lemma 2.2.9, we conclude that
G ≥ Aut(D;E) and (D;E) is a homogeneous graph.

We end by looking at how f can behave between the constants c̄ and the rest
of the structure.

Lemma 2.2.19. Let G be a closed supergroup of Aut(D;E), let (c1, . . . , cn) ∈ D,
let f ∈ G, and let f be canonical when considered as a function from (D;E,<, c̄)
to (D;E). Suppose that f behaves like id on D− ..= D\{c1, . . . , cn}. Then at least
one of the following holds.

(i) For all i, 1 ≤ i ≤ n, f behaves like id or like sw between ci and D−.

(ii) G ≥ Aut(D;E) and (D;E) is a homogeneous graph.

(iii) G = Sym(D).

Proof. Fix some i, 1 ≤ i ≤ n. Let Xout = {x ∈ D : x < c1 ∧ E(ci, x) ∧∧
j 6=iN(cj, x)}. Define Xin and XN similarly, with E(ci, x) replaced with E(x, ci)

and N(x, ci) respectively. Then for any finite digraph (a0, a1, . . . , an), there exist
x1, . . . , xn ∈ Xout ∪ Xin ∪ XN such that (a0, a1, . . . , an) ∼= (ci, x1, . . . , xn). So by
replicating the proof of Lemma 2.2.17 we can assume that f behaves like id or sw
between ci and Xout ∪Xin ∪XN . Without loss of generality, we assume f behaves
like id, because we can compose f with swci if necessary.

If f behaves like id between ci and D− we are done, so suppose there is an
infinite orbit X such that f does not behave like id between ci and X. Assume
that there are edges from ci into X - the arguments for the other two cases are
similar.

Let A be a finite digraph in the age of D which contains an edge, ab say. Then
observe that there is an embedding of A into D such that a is mapped to ci, b is
mapped into X, and the rest of A is mapped into Xout∪Xin∪XN . Then applying
f changes exactly the one edge (a, b) in A, so by Lemma 2.2.7 or Lemma 2.2.9 as
appropriate, we are done.

2.2.4 Proof of the classification

We would like to recall the statement of our main result that we are going to prove
with the help of observations we made on canonical functions in the last section.
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Theorem 2.2.2. Let (D;E) be a Henson digraph and let G ≤ Sym(D) be a closed
supergroup of Aut(D;E). Then:

(i) G ≤ Aut(D;E) or G ≥ Aut(D;E)

(ii) If G < Aut(D;E) then G = Aut(D;E), 〈−〉, 〈sw〉 or 〈−, sw〉.

(iii) (D;E) is the random graph, (D;E) is a Henson graph or (D;E) is not ho-
mogeneous. In the last case Aut(D;E) is equal to max{Aut(D;E), 〈−〉, 〈sw〉,
〈−, sw〉} and is a maximal-closed subgroup of Sym(D).

Proof. (i) Suppose for contradiction that G 6≥ Aut(D;E) and G 6≤ Aut(D;E).
Because of the second assumption G violates the relation E. By Lemma 2.1.5 this
can be witnessed by a canonical function. Precisely, this means there are c1, c2 ∈ D
and f ∈ G such that f : (D;E,<, c1, c2)→ (D;E) is a canonical function, E(c1, c2)
and N(f(c1), f(c2)).

Now let X be an independent orbit of (D;E,<, c1, c2).

Claim 1. We may assume that f behaves like id on X.

By Lemma 2.2.15 we know that f behaves like id or − on X, otherwise G
would contain Aut(D;E). If f behaves like − on X, then we continue by
replacing f by − ◦ f .

Claim 2. We may assume that f behaves like id between X and every other
infinite orbit Y .

Let Y be another infinite orbit. By the Lemmas 2.2.17 and 2.2.18, f behaves
like id or sw between X and Y , as otherwise G would contain Aut(D;E). If
f behaves like sw between them, then we simply replace f by swY ◦f . Note
that one needs to check swY is a legitimate function, but this has been done
in Lemma 2.2.5 (iii).

Claim 3. We may assume that f behaves like id on every infinite orbit and be-
tween every pair of infinite orbits.

Suppose not, so there are infinite orbits Y1 and Y2 (possibly the same) and
there are distinct y1, y2 ∈ Y1, Y2, respectively, such that (y1, y2) 6∼= f(y1, y2).
Now for any finite digraph (a1, a2, . . . , an) ∈ Forb(T ) with (y1, y2) ∼= (a1, a2),
we can find x3, . . . , xn ∈ X such that (y1, y2, x3, . . . , xn) ∼= (a1, . . . , an) (This
statement can be verified analogously to Lemma 2.2.13). Then f has the
effect of only changing what happens between y1 and y2, since we know f
behaves like id on X and between X and all other infinite orbits. In short,
given any finite digraph, we can use f to change what happens between
exactly two of the vertices of the digraph.
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There are three options. If f creates an edge from a non-edge, then we we
can use f to introduce a forbidden tournament, which gives a contradiction.
If f deletes the edge or changes the direction of the edge, then by Lemma
2.2.7 or Lemma 2.2.9, as appropriate, we get that G ≥ Aut(D;E).

Claim 4. We may assume that f behaves like id between {c1, c2} and the union
of all infinite orbits.

The follows immediately from Lemma 2.2.19, composing with swci if neces-
sary.

Conclusion. We can assume that f behaves everywhere like the identity, except
on (c1, c2), where it maps an edge to a non-edge. But then we get that
G = Sym(D) by Lemma 2.2.7, completing the proof of (i).

The proof of (ii) follows exactly the same series of claims as in part (i) but with
minor adjustments to how one starts and concludes. We go through one case as
an example, leaving the rest to the reader. We will show that if Aut(D;E) < G ≤
Aut(D;E), then G ≥ 〈−〉 or G ≥ 〈sw〉 (if they exist). So suppose Aut(D;E) <
G ≤ Aut(D;E). Then G preserves non-edges but not the relation E. By Lemma
2.1.5, there is an edge (c1, c2) ∈ E and a canonical function f : (D;E,<, c1, c2)→
(D;E) which changes the direction of the edge (c1, c2). Suppose for contradiction
that G 6≥ 〈−〉 and G 6≥ 〈sw〉.

Let X be an independent orbit. By Lemma 2.2.15, f must behave like id on
X and then by Lemma 2.2.17 and Lemma 2.2.18, f must behave like id between
X and all other infinite orbits. By repeating the argument of Claim 3 above, f
must behave like id on the union of infinite orbits and so by Lemma 2.2.19 f must
behave like id between the constants and the union of infinite orbits. Now we
are in the situation of Lemma 2.2.9 (iv), so we conclude that G ≥ Aut(D;E), so
G ≥ 〈−〉, 〈sw〉.

For (iii), note that (D;E) embeds every finite edgeless graph and is connected
(Lemma 2.1.2 (ii)). Hence, if (D;E) is a homogeneous graph then (D;E) has
to be the random graph or a Henson graph, by the classification of countable
homogeneous graphs ([LW80]).

Thus assume that (D;E) is not a homogeneous graph. Let G′ be equal to
max{Aut(D;E), 〈−〉, 〈sw〉, 〈−, sw〉}. Now let G be a closed group such that
G′ < G ≤ Sym(D). We want to show that G = Sym(D). By Lemma 2.1.5,
there are c̄ ∈ D and a canonical f : (D;E,<, c̄) → (D;E) such that f cannot be
imitated by any function of G′ on c̄. To be precise, we mean that for all g ∈ G′,
g(c̄) 6= f(c̄).

Now we continue as in (i), proving that we may assume f behaves like id on
the union of all infinite orbits and like id between c̄ and the union of infinite orbits.
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In doing so, we may have composed f with − or swA for some A. Since − and
swA are elements of G′, these compositions do not change the fact that f could
not be imitated by G′ on c̄. In particular, f(c̄) 6∼= c̄. Hence, we are in the situation
of either Lemma 2.2.7 (iv) or Lemma 2.2.9 (iv). Thus, either G = Sym(D) and
we are done, or (D;E) is a homogeneous graph - contradiction.

We have shown that there are no closed groups in between G′ and Sym(D).
Since Aut(D;E) contains G′ and is proper subgroup of Sym(D), we must conclude
that G′ = Aut(D;E), as required.

2.3 2ω pairwise non-isomorphic maximal-closed

subgroups of Sym(ω)

Definition 2.3.1. Let G be a closed subgroup of Sym(ω). We say that G is
maximal-closed if G 6= Sym(ω) and there are no closed groups G′ such that G <
G′ < Sym(ω).

We construct 2ω pairwise non-isomorphic maximal-closed subgroups of Sym(ω)
by modifying Henson’s construction of 2ω pairwise non-isomorphic homogeneous
countable digraphs and taking their automorphism groups. The modification is
needed to ensure that the groups are maximal. A short argument will show that
the automorphism groups are pairwise non-conjugate. The groups are even pair-
wise non-isomorphic, since by a result of Rubin [Rub94] automorphism groups
of Henson digraphs are conjugate if and only if they are isomorphic as abstract
groups.

Henson’s construction in [Hen72] centres on finding an infinite anti-chain, with
respect to embeddability, of finite tournaments.

Definition 2.3.2. Let n ∈ N\{0}. In denotes the n-element tournament obtained
from the linear order Ln by changing the direction of the edges (i, i + 1) for i =
1, . . . , n− 1 and of the edge (1, n).

By counting 3-cycles, Henson showed that {In : n ≥ 6} is an anti-chain. It
is a short exercise to show that the 3-cycles in In are (1, 3, n),(1, 4, n),. . .,(1, n −
2, n),(3, 2, 1),(4, 3, 2),. . .,(n, n−1, n−2). In particular, observe that In has at most
two vertices through which there are more than four 3-cycles, namely the vertices
1 and n; this observation is useful in our modification.

The automorphism groups of the Henson digraphs constructed by forbidding
any subset of these In’s are not maximal: 〈−〉 and the automorphism group of the
random graph are closed supergroups. By forbidding a few extra tournaments,
however, we can ensure that the automorphism groups are maximal.
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In a digraph, a source, respectively sink, is a vertex which only has outgoing,
respectively incoming, edges adjacent to it. Then let T be a finite tournament that
is not embeddable in In for any n and that contains a source but no sink. Such a
T can be found, for example, by ensuring there are at least three vertices through
which there are more than four 3-cycles.

Let k = |T |. Let T = {T ′ : |T | = k + 1, T is embeddable in T ′}. Then for
A ⊆ N\{1, . . . , k + 1}, let TA = T ∪ {In : n ∈ A}. Then let DA be the Henson
digraph whose set of forbidden tournaments is TA. The automorphism groups of
these DA is the set of groups we want.

Theorem 2.3.3. {Aut(DA) : A ⊆ N\{1, . . . , k+1}} is a set of 2ω maximal-closed
subgroups of Sym(ω) which are pairwise non-isomorphic as abstract groups.

Proof. We prove the Theorem in eight steps:

Claim 1. For all A ⊆ N\{1, . . . , k + 1}, TA is not closed under −.

Let T ′ be obtained as follows: Change the direction of all the edges of T and
then add a new vertex t which is a sink. Since T has no sinks, T can not be
embedded into T ′, hence T ′ 6∈ TA. Now consider −(T ′). By construction, T
is embeddable in −(T ′), so −(T ′) ∈ TA. Thus TA is not preserved under −.

Claim 2. For all A ⊆ N\{1, . . . , k + 1}, TA is not closed under sw.

Let T ′ be obtained as follows: Change the source s in T to a sink, and then
add a new vertex which will be a sink of T ′. Since T has no sinks, T can not
be embedded into T ′, hence T ′ 6∈ TA. Now consider switching T ′ about s, to
obtain T ′′. By construction, T is embeddable in T ′′, so T ′′ ∈ TA. Thus TA is
not preserved under sw.

Claim 3. For all A ⊆ N\{1, . . . , k + 1}, (DA, E) is not a Henson graph nor the
random graph.

Finite linear orders do not embed any element of TA, thus are embeddable
in DA. Removing the direction of the edges in a finite linear order gives a
complete graph, so (DA, E) is not Kn-free for any n, so (DA, E) is not a
Henson graph.

Now let U ⊆ DA be isomorphic to T - this is possible as T has not been
forbidden. Then there is no vertex x ∈ D such that for all u ∈ U , E(x, u) ∨
E(u, x), because all tournaments containing T are forbidden. Hence (DA, E)
does not satisfy the extension property of the random graph and so is not
isomorphic to the random graph.
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Claim 4. For all A ⊆ N\{1, . . . , k + 1}, Aut(DA) is a maximal-closed subgroup
of Sym(N).

This follows from the classification Theorem 2.2.2 and the previous three
claims.

Claim 5. Let A = N\{1, . . . , k + 1}. Then TA is an anti-chain with respect to
embeddability.

Let T1, T2 ∈ TA and suppose for contradiction that T1 is embeddable in T2.
All elements of TA have size at least k+ 1 and |T2| must be bigger than |T1|,
so |T2| ≥ k + 2. Hence, T2 6∈ T , so T2 = In for some n ∈ A. By Henson’s
arguments, T1 cannot equal Im for any m ∈ A. Thus T1 ∈ T , which implies
that T is embeddable in In, contradicting our choice for T .

Claim 6. If A,B ⊆ N\{1, . . . , k + 1} are not equal, then DA 6∼= DB.

Suppose, without loss of generality, that there is some n in A but not in
B. Then In is not embeddable in DA. To prove the claim, it suffices to
show that In is embeddable in DB. Suppose for contradiction that it is not.
Hence, In 6∈ Forb(TB) which means that In embeds an element of TB. But
this implies that TB∪{n} is not an anti-chain, contrary to Claim 5.

Claim 7. If A,B ⊆ N\{1, . . . , k + 1} are not equal, then Aut(DA) and Aut(DB)
are not conjugate.

We prove the contrapositive so suppose Aut(DA) and Aut(DB) are conju-
gate. Let f : DA → DB be a bijection witnessing this, so that Aut(DA) =
f−1Aut(DB)f . In particular this means that f maps orbits of Aut(DA) to or-
bits of Aut(DB), i.e., that f is canonical. f cannot map edges to non-edges or
vice-versa, because non-edges are symmetric and edges are not. This leaves
only two options: f behaves like id or f behaves like −. We can rule out
the latter option because we know from (the proof of) Claim 1 that T is not
closed under −. Hence, f behaves like id, which means f is an isomorphism,
so by Claim 6 we conclude that A = B.

Claim 8. If A,B ⊆ N\{1, . . . , k + 1} are not equal, then Aut(DA) and Aut(DB)
are not isomorphic as pure groups.

This follows from Claim 7 and Rubin’s reconstruction results [Rub94].

Together, Claim 4 and Claim 8 prove the theorem.
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Chapter 3

CSPs over the random partial
order

Reasoning about temporal knowledge is a common task in various areas of com-
puter science, for example Artificial Intelligence, Scheduling, Computational Lin-
guistics and Operations Research. In many application temporal constraints are
expressed as collections of relations between time points or time intervals. A
typical computational problem is then to determine whether such a collection is
satisfiable or not.

A lot of research in this area concerns only linear models of time. In particular
there exists a complete classification of all satisfiability problems for linear tem-
poral constraints in [BK09]. However, it has been observed many times that more
complex time models are helpful, for instance in the analysis of concurrent and
distributed systems or certain planning domains. A possible generalizations is to
model time by partial orders (e.g. in [Lam86], [Ang89]).

Some cases of the arising satisfiability problems have already been studied
in [BJ03]. We will give a complete classification in this chapter. Speaking more
formally, let Φ be a set of quantifier-free formulas in the language consisting of
a binary relation symbol ≤. Then Poset-SAT(Φ) is the following computational
problem

Poset-SAT(Φ):
Instance: A finite set of variables W and a formula of the form φ1∧φ2∧· · ·∧
φn, where each φi is obtained by taking a formula from Φ and substituting
with variables form W .
Question: Is there a partial order, satisfying φ1 ∧ φ2 ∧ · · · ∧ φn?

We are going to give a full complexity classification of problems of the form
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Poset-SAT(Φ). In particular we are going to show that every such problem is
NP-complete or solvable in polynomial time.

The class of partial orders is an amalgamation class, whose Fräıssé limit is
called the random partial order P = (P ;≤). By the discussion in Section 1.5,
the Poset-SAT(Φ) problems are equal to the constraint satisfaction problems of
reducts of P. We are going to study these reducts with the model theoretic and
universal algebraic methods outlined in Sections 1.5 and 1.6 of the introduction.

A helpful result has already been established in the form of the classification
of first-order reducts of the random partial order in [PPP+14]. In a fist step
we extend this analysis to closed transformation monoids, identifying all possible
model-complete cores. Informally this preclassification then implies that we can
identify three types of Poset-SAT problems: (1) trivial ones (i.e., if there is a
solution, there is a constant solution), (2) problems that can be reduced to the
problems studied in [BK09] and (3) CSPs on templates that are already model-
complete cores themselves.

So we only have to study problems in the third class. Here we will first identify
a list NP-complete relations by reducing know finite NP-hard CSPs to them. By
studying the polymorphism clones and their equational structure if those NP-hard
relations are violated, we can show that the CSPs of all other reducts are in P.

This chapter has the following structure: Section 3.1 contains the preclassifi-
cation, where we identify the model-complete cores of the reducts of P. This is
followed by the actual complexity analysis in Section 3.2 to Section 3.5 using the
universal algebraic approach. In Section 3.6 we summarize our results. It turns out
that a CSP of a model-complete reduct of P is NP-complete if one of four relations
is pp-definable in it, and tractable otherwise (see Theorem 3.6.3). This complexity
dichotomy corresponds to an algebraic dichotomy as in Conjecture 1.6.10; we even
obtain slightly stronger equations in the tractable cases, see Corollary 3.6.5.

We fix some standard terminology and notation. By P = (P ;≤) we denote the
random partial order (short: random poset), the Fräıssé limit of all finite partial
order. In general we let ≤ always denote a partial order relation, i.e. a binary
relation that is reflexive, antisymmetric and transitive. Let < be the corresponding
strict order defined by x ≤ y ∧ x 6= y. And let x⊥y denote the incomparability
relation defined by ¬(x ≤ y) ∧ ¬(y ≤ x). Sometimes we will write x < y1 · · · yn
for the conjunction of the formulas x < yi for all 1 ≤ i ≤ n. Similarly we will use
x⊥y1 · · · yn if x⊥yi holds for all 1 ≤ i ≤ n.

53



3.1 A pre-classification by model-complete cores

In this section we start our analysis of reducts of the random partial order P =
(P ;≤). Our aim is to determine the model-complete core for every reduct A of
P. Therefore we want to discuss the endomorphism monoids End(A) containing
Aut(P). Part of the work was already done in [PPP+14] where all the automor-
phism groups Aut(A) ≥ Aut(P) were determined. Several parts of our proof are
very similar to the group case; at that points we are going to directly refer to the
corresponding proofs of [PPP+14].

As in Chapter 2, we are going to use canonical functions as a tool for the anal-
ysis, for which we need the following Ramsey result: If we look at the class of all
structures (A;≤,≺), where ≺ is a linear order that extends ≤, it is an amalgama-
tion class and has the Ramsey property by [PTJW85]. Therefore its Fräıssé limit
(P ;≤,≺) is an ordered homogeneous Ramsey structure.

We start by giving a description of the first-order reducts of P. If we turn the
partial order P upside-down, then the obtained partial order is again isomorphic
to P. Hence there exists a bijection l: P → P such that for all x, y ∈ P we have
x < y if and only if l (y) < l (x). By the homogeneity of P it is easy to see that
the closed monoid generated by l and Aut(P) does not depend on the choice of
the function l.

The class of all finite structures (X;≤, F ), where (X;≤) is a partial order and
F is upwards closed set is an amalgamation class. Its Fräıssé limit is isomorphic to
P with an additional unary relation F . We say F is a random filter on P. Note that
F and I = P \ F are both isomorphic to the random partial order. Furthermore
for every pair x ∈ I and y ∈ F either x < y or x⊥y holds.

We define a new order relation <F on by setting x <F y if and only if

• x, y ∈ F and x < y or,

• x, y ∈ I and x < y or,

• x ∈ I, y ∈ F and x⊥y.

It is shown in [PPP+14] that the resulting structure (P ;<F ) is isomorphic to
(P,<). We fix a map �F : P → P that maps (P ;<) isomorphically to (P,<F ).
By the homogeneity of P one can see that the smallest closed monoid generated
by � and Aut(P) does not depend on the choice of the random filter F . We fix a
random filter F and set �:=�F .

We recall that for B ⊆ Sym(P ), 〈B〉 denotes the smallest closed subgroup of
Sym(P ) containing B. For brevity, when it is clear we are discussing supergroups
of Aut(P), we may abuse notation and write 〈B〉 to mean 〈B ∪ Aut(P)〉.
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Theorem 3.1.1 (Theorem 1 from [PPP+14]). Let A be a reduct of P. Then
Aut(A) is equal to one of the five groups Aut(P), 〈l〉, 〈�〉, 〈l,�〉 or Sym(P ). �

We are going to show the following extension of Theorem 3.1.1:

Proposition 3.1.2. Let A be a reduct of P. Then for End(A) at least one of the
following cases applies:

1. End(A) contains a constant function,

2. End(A) contains a function g< that preserves < and maps P onto a chain,

3. End(A) contains a function g⊥ that preserves ⊥ and maps P onto an an-
tichain,

4. The automorphism group Aut(A) is dense in End(A), i.e. A is a model-
complete core. So by the classification in Theorem 3.1.1, End(A) is the
topological closure of Aut(P), 〈l〉, 〈�〉, 〈l,�〉 or Sym(P ) in the space of all
functions P P .

Before we start with the proof of Proposition 3.1.2 we want to point out its
relevance for the complexity analysis of the CSPs on reducts of P.

Constraint satisfaction problems on reducts of (Q;<) are called temporal sat-
isfaction problems. The CSPs of reducts of a countable set with a predicate for
equality (ω; =) are called equality satisfaction problems. For both classes a full
complexity dichotomy is known, see [BK09] and [BK08]. As a corollary of Propo-
sition 3.1.2 we get the following pre-classification of CSPs reducing all the cases
where A is not a model-complete core to temporal or equality satisfaction prob-
lems:

Corollary 3.1.3. Let A be a reduct of P. Then one of the following holds

1. CSP(A) is trivial;

2. The model-complete core of A is a reduct of (ω; =),
so CSP(A) is equal to an equality satisfaction problem;

3. The model-complete core of A is a reduct of (Q;<),
so CSP(A) is equal to a temporal satisfaction problem;

4. End(A) is the topological closure of Aut(P), 〈l〉, 〈�〉 or 〈l,�〉.

Proof. If there is a constant function in End(A), then CSP(A) accepts every in-
stance, so we are in the first case. So let End(A) contain no constants.
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Assume that g⊥ ∈ End(A). Since g⊥ preserves ⊥, the image of (P ;⊥) under
g⊥ is isomorphic to a countable antichain, or in other word, a countable set ω with
a predicate for inequality (ω; 6=). Thus, for every reduct of A the image g⊥(A)
can be seen as a reduct of (ω; 6=). Now clearly A and g⊥(A) are homomorphically
equivalent. It is shown in [BK08] that every reduct of (ω; 6=) without constant
endomorphisms is a model-complete core. So we are in the second case.

Now assume that g< ∈ End(A) but g⊥ 6∈ End(A). Since g< preserves < and is
a chain, the image of (P ;<) under g< has to be isomorphic to the rational order
(Q;<). Thus for every reduct of A the image g<(A) can be seen as a reduct of Q.
Now clearly A and g<(A) are homomorphically equivalent. It is shown in [BK09]
that the model-complete core of every reduct of (Q, <) is either trivial, definable
in (ω, 6=) or the reduct itself. So we are in the third case.

Note that also in the case where End(A) = Sym(P ) we have that e⊥ ∈ End(A).
So by Proposition 3.1.2 we are only left with the cases where End(A) is the topo-
logical closure of Aut(P), 〈l〉, 〈�〉 or 〈l,�〉.

Let us define the following relations on P :

Betw(x, y, z) :=(x < y ∧ y < z) ∨ (z < y ∧ y < x).

Cycl(x, y, z) :=(x < y ∧ y < z) ∨ (y < z ∧ z < x) ∨ (z < x ∧ x < y)∨
(x < y ∧ z⊥xy) ∨ (y < z ∧ x⊥yz) ∨ (z < x ∧ y⊥zx).

Par(x, y, z) :=(x⊥yz ∧ y⊥z) ∨ (x < yz ∧ y⊥z) ∨ (x > yz ∧ y⊥z)

Sep(x, y, z, t) :=(Cycl(x, y, z) ∧ Cycl(y, z, t) ∧ Cycl(x, y, t) ∧ Cycl(x, z, t))∨
(Cycl(z, y, x) ∧ Cycl(t, z, y) ∧ Cycl(t, y, x) ∧ Cycl(t, z, x)).

In Lemma 3.1.5 we are going to give a description of the monoids 〈l〉, 〈�〉 and
〈l,�〉 as endomorphism monoids with the help of the above relations. We remark
that Cycl and Par describes the orbits of triples under 〈�〉 and Sep describes the
orbit of a linearly ordered 4-tuple under 〈l,�〉.

Lemma 3.1.4. The incomparability relation ⊥ is pp-definable in (P ;<,Cycl) and
Par is pp-definable in (P ; Cycl).

Proof. To prove the first part of the lemma, let

ψ(x, y, a, b, c, d) := x < a < c ∧ x < b < d ∧ y < c ∧ y < d ∧ Cycl(x, a, y)

∧Cycl(x, b, y) ∧ Cycl(y, c, b) ∧ Cycl(y, d, a) ∧ Cycl(b, d, c) ∧ Cycl(a, c, d).

We claim that x⊥y is equivalent to ∃a, b, c, d ψ(x, y, a, b, c, d). It is not hard to
verify that x⊥y implies ∃a, b, c, d ψ(x, y, a, b, c, d). For the other direction note that
ψ(x, y, a, b, c, d) implies that x 6= y because Cycl(x, a, y) is part of the conjunction
ψ.
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Let us assume that x < y and ψ(x, y, a, b, c, d) holds for some elements a, b, c, d ∈
P . Then Cycl(x, a, y) implies that a < y, symmetrically we have b < y. Since
y < c, d we have that a < d and b < c. Then Cycl(b, d, c) implies d < c and
Cycl(a, c, d) implies c < d, which is a contradiction.

Now assume that y < x and ψ(x, y, a, b, c, d) holds for some elements a, b, c, d ∈
P . Then we have y < a, b by the transitivity of the order. Then Cycl(y, c, b)
implies c < b and Cycl(y, d, a) implies d < a. But this leads to the contradiction
a < c < b and b < d < a.

For the second part of the lemma let s, t ∈ P be two elements with s < t.
Then the set X = {x ∈ P : s < x < t} is pp-definable in (P ; Cycl, s, t) by the
formula φ(x) := Cycl(s, x, t). By a back-and-forth argument one can show the two
structures (X;≤) and (P ;≤) are isomorphic. The order relation, restricted to X
is also pp-definable in (P ; Cycl, s, t) by the equivalence

y <|X z ↔ φ(x) ∧ φ(y) ∧ Cycl(y, z, t).

Since ⊥ is pp-definable in (P ;<,Cycl), we have that its restriction to X has
a pp-definition in (P ; Cycl, s, t). Therefore also the relation R = {(x, y, z) ∈ X3 :
x⊥y∧x⊥z∧z⊥y} is pp-definable in (P ; Cycl, s, t). Let φ(s, t, u, v, w) be a primitive
positive formula defining R.

We claim that ∃x, y φ(x, y, u, v, w) is equivalent to (u, v, w) ∈ Par. Let (u, v, w) ∈
Par. The relation Par describes the orbit of a 3-element antichain under the action
of 〈�〉 ⊆ End(P ; Cycl). So we can assume that (u, v, w) is a 3-antichain, otherwise
we take an image under a suitable function form 〈�〉. Now let us take elements
s < t such that s < uvw and uvw < t. Then clearly ψ(s, t, u, v, w) has to hold.

Conversely let (s, t, u, v, w) be a tuple such that ψ(s, t, u, v, w) holds. We can
assume that s < t (otherwise we take the image of (s, t, u, v, w) under a suitable
function in 〈�〉). By what we proved above, (u, v, w) is antichain, hence it satisfies
Par.

Lemma 3.1.5.

1. End(P ;<,⊥) = Aut(P)

2. End(P ; Betw,⊥) = 〈l〉

3. End(P ; Cycl) = 〈�〉

4. End(P ; Sep) = 〈l,�〉

Proof.
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1. Clearly Aut(P) ⊆ End(P ;<,⊥). For the other inclusion let f ∈ End(P ;<
,⊥). Let A ⊆ P be an arbitrary finite set. The restriction of f to a finite
subset A ⊆ P is an isomorphism between posets. By the homogeneity of P
there is an automorphism α ∈ Aut(P) such that f � A = α � A.

2. Since l preserves Betw and ⊥, we know that 〈l〉 ⊆ End(P ; Betw,⊥) holds.
For the opposite inclusion let f ∈ End(P ; Betw,⊥). If f preserves <, then
f ∈ End(P ;<,⊥) and we are done. Otherwise there is a pair of elements
c1 < c2 with f(c1) > f(c2). Let d1 < d2 be an other pair of points in P . Then
there are a1, a2 ∈ P such that c1 < c2 < a1 < a2 and d1 < d2 < a1 < a2.
Since f preserves Betw, f(a1) > f(a2) holds and hence also f(d1) > f(d2).
So f inverts the order, while preserving ⊥. Therefore l ◦f ∈ End(P ;<,⊥).
We conclude that f ∈ 〈l〉.

3. It is easy to see that 〈�〉 ⊆ End(P ; Cycl). So let f ∈ End(P ; Cycl). Clearly
f is injective and preserves also the relation Cycl′(x, y, z) := Cycl(y, x, z).
By Lemma 3.1.4, f also preserves the relation Par. Furthermore 〈�〉 is 2-
transitive: This can be verified by the fact that for every two elements of
P , we can find a α ∈ Aut(P) that map one element to the random filter
F and the other element to P \ F . So also End(P ; Cycl) is 2-transitive.
It follows that End(P ; Cycl) also preserves the negation of Cycl. In other
words, f is a self-embedding of (P ; Cycl). So, when restricted to a finite
A ⊂ P , f is a partial isomorphism. By the results in [PPPS13] we know
that (P ; Cycl) is a homogeneous structure. Hence for every finite A ⊂ P we
find an automorphism α ∈ Aut(P ; Cycl) = 〈�〉 such that f � A = α � A.

4. Let f ∈ End(P ; Sep). We claim that either f or l ◦f preserves Cycl. If we
can prove our claim we are done by (3). First of all note that Sep(x, y, z, u)
implies Cycl(x, y, z)↔ Cycl(y, z, u).

Without loss of generality let there be a elements x, y, z ∈ P with Cycl(x, y, z)
and Cycl(f(x), f(y), f(z)), otherwise we look at l ◦f instead of f . Let (r, s, t)
be arbitrary tuple satisfying Cycl.

We can always find elements a < b < c in P that are incomparable with
all entries of (x, y, z) and (r, s, t). Further we can choose elements u, v ∈ P
that are incomparable with (a, b, c) such that z < u < v and Sep(x, y, z, u)∧
Sep(y, z, u, v) holds. This can be done by a case distinction and is left to the
reader. By construction we have

Sep(x, y, z, u)∧ Sep(y, z, u, v)∧ Sep(z, u, v, a)∧ Sep(u, v, a, b)∧ Sep(v, a, b, c).

So we have that (f(x), f(y), f(z)) ∈ Cycl if and only if (f(a), f(b), f(c)) ∈
Cycl. Repeating the same argument for (r, s, t) gives us that (f(r), f(s), f(t)) ∈
Cycl. So f preserves Cycl.
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Recall that we obtain an ordered homogeneous Ramsey structure (P ;≤,≺) by
taking the Fräıssé limit of the class of finite structures (A;≤,≺), where (A;≤) is
a partial order on A and ≺ an extension of < to a total order. By Corollary 1.7.3
the following holds:

Lemma 3.1.6. Let f : P → P and c1, . . . , cn ∈ P be any points. Then there exists
a function g : P → P such that

1. g ∈ 〈Aut(P) ∪ {f}〉.

2. g(ci) = f(ci) for i = 1, . . . n.

3. Regarded as a function from (P ;≤,≺, c̄) to (P ;≤), g is a canonical function.

�

Let A be a reduct of P. We are going to study all feasible behaviors of a
canonical function f : (P ;≤,≺, c̄) → (P ;≤) when f ∈ End(A). Note that the
behaviour of such f only depends on the behaviour on the 2-types because (P ;≤
,≺, c̄) is homogeneous and its signature contains at most 2-ary relation symbols.
Since there are only finitely many 2-types, the study of all possible behaviors of
such canonical functions is a combinatorial problem. We introduce the following
notation:

Notation 3.1.7. Let A,B be definable subsets of P and let φ1(x, y), . . . , φn(x, y)
be formulas. We let pA,B,φ1,...,φn(x, y) denote the (partial) type determined by the
formula x ∈ A∧y ∈ B∧φ1(x, y)∧. . .∧φn(x, y). Using this notation, we can describe
the 2-types of (P ;≤,≺, c̄). They are all of the form pX,Y,φ,ψ = {(a, b) ∈ P 2 : a ∈
X, b ∈ Y, φ(a, b) and ψ(a, b)}, where X and Y are 1-types, φ ∈ {=, <,>,⊥} and
ψ ∈ {=,≺,�}.

Let X, Y be two distinct infinite 1-types of (P ;≤,≺, c̄). We write X ⊥
<
Y if there

are pairs (x, y), (x′, y′) ∈ X × Y with x < y and x′⊥y′.
When it is convenient for us we will abuse notation and write c̄ to describe the

set containing all entries of the tuple c̄.

Observation 3.1.8. The structure (P ;≤,≺, c̄) is a homogeneous structure. If X
is an 1-type of (P ;≤,≺, c̄) with infinite elements, then (X;≤,≺) is isomorphic
to (P ;≤,≺) itself. This can be seen by a back-and-forth argument. Similarly, if
X and Y are 1-types of (P ;≤,≺, c̄) with infinite elements such that X ⊥

<
Y holds,

then X ∪ Y is isomorphic to (P ;≤) with X being a random filter. If we define
X ≤ Y ↔ ∃(x, y) ∈ X × Y (x ≤ y) we get a partial order on the 1-types of
(P ;≤,≺, c̄) (cf. Lemma 18 of [PPP+14]). But note that the 1-types of (P ;≤,≺, c̄)
are not necessarily linearly ordered by ≺: There can be infinite 1-types X, Y and
(x, y), (x′, y′) ∈ X × Y with x ≺ y, x⊥y and y′ ≺ x′, x′⊥y′.
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In the following lemmas let A be always be a reduct of P and let f ∈ End(A)
be a canonical function from (P ;≤,≺, c̄) to (P ;≤).

Lemma 3.1.9. Let X be a 1-type of (P ;≤,≺, c̄) with infinite elements. Then f
behaves like id or l on X, otherwise End(A) contains a constant function, g< or
g⊥.

Proof. Note that (X;≤,≺) is isomorphic to (P ;≤,≺). Then we can prove the
statement with the same arguments as in Lemma 8 of [PPP+14].

Lemma 3.1.10. Let X, Y two infinite 1-types of (P ;≤,≺, c̄) with X ⊥
<
Y . Assume

f behaves like id on X. Then f behaves like id or �X on X∪Y , otherwise End(A)
contains a constant function, g< or g⊥.

Proof. Assume that f does not contains a constant function, g< or g⊥. Note that
the union of X and Y is isomorphic to P and X is a random filter of X ∪ Y . By
following the arguments of Lemma 22 in [PPP+14] one can show that we only have
the two possibilities that

1. f(pX,Y,<) = p< and f(pX,Y,⊥,≺) = p⊥ or

2. f(pX,Y,<) = p⊥ and f(pX,Y,⊥,≺) = p>.

By Lemma 3.1.9 we may assume that f behaves like id or l on Y . But if f behaves
like l on Y , the image of y1, y2 ∈ Y and x ∈ X with x ≺ y1 < y2, x⊥y1 and x < y2

would be a non partially ordered set. So if the type pX,Y,⊥,� is empty, f behaves
like id or �X on X ∪ Y and we are done.

If pX,Y,⊥,� is not empty, there are x ∈ X and y ∈ Y with x � y and x⊥y. We
claim that in this case f(pX,Y,⊥,�) = f(pX,Y,⊥,≺). We only prove this claim for (1),
the proof for (2) is the same.

Assume that f(pX,Y,⊥,�) = p<. Then let x′ ∈ X be an element such that
y ≺ x′ and x < x′ and y⊥x′. The fact that such an element exists can be verified
by checking that the extension of {x, y} ∪ c̄ by such an element x′ still lies in the
age of (P ;≤,≺, c̄). By our assumption we then have f(x) < f(x′) < f(y), which
contradicts to f(x)⊥f(y).

Now assume that f(pX,Y,⊥,�) = p>. Then let x′ ∈ X be such that x ≺ y ≺
x′ and x < y and x′⊥xy. Again the fact that x′ exists can be verified by the
homogeneity of (P ;≤,≺, c̄). Then f(x) < f(y) < f(x′), which contradicts to
f(x′)⊥f(x′).

Lemma 3.1.11. Either f behaves like id or l on every single 1-type or End(A)
contains a constant function, g< or g⊥.
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Proof. For every two infinite orbits X < Y there is a infinite orbit Z with X ⊥
<
Z

and Z ⊥
<
Y . For every two infinite orbits X⊥Y there is an infinite orbit Z with

X < Z and Y < Z. So this statement holds by Lemma 3.1.10. (cf Lemma 23
of[PPP+14])

Lemma 3.1.12. Assume End(A) does not contains constant functions, g< or g⊥.
Then there is a g ∈ 〈�, l〉 ∩ End(A) such that g ◦ f is canonical from (P ;≤,≺, c̄)
to (P ;≤) and behaves like id on every set (P \ c̄) ∪ {c}, with c ∈ c̄.

Proof. By Lemma 3.1.11, f behaves like id or l on every infinite orbit. Without
loss of generality we can assume that the first case holds, otherwise consider l ◦f .

Let X ⊥
<
Y , Y ⊥

<
Z and X ⊥

<
Z or X < Z. If f behaves like id on X ∪ Y and

Y ∪ Z it also has to behave like id on X ∪ Z; otherwise the image of a triple
(x, y, z) ∈ X × Y ×Z with x < y < z would not be partially ordered. Let X < Z,
Y < Z and X⊥Z. Again, if f behaves like id on X ∪ Y and Y ∪ Z it also has to
behave like id on X ∪ Z, otherwise we get a contradiction.

By Lemma 3.1.10 f either behaves like id or like �X on the union two or-
bits X ⊥

<
Y . In the second case �∈ End(A). The set A = {x ∈ P : y <

x ∨ y⊥x for all y ∈ f(Y )} is a union of orbits of Aut(P ;≤,≺, c̄) and a random
filter of P . So �A ◦f is canonical and behaves like id on X ∪ Y . Repeating this
step finitely many times gives us a function g ∈ 〈�〉 such that g ◦ f behaves like
id on the union of infinite orbits, by the observations in the paragraph above.

It is only left to show that g ◦ f behaves like id between a given constant c in
c̄ and an infinite orbit X. Assume for example that c < X and g ◦ f(pc,X,<) = p⊥.
Let A ⊆ P with a ∈ A. By homogeneity of P we find an automorphism of P that
maps a to c and all points that are greater than a to X. If we then apply g ◦ f
and repeat this process at most |A|-times we can map A to an antichain. Thus
g⊥ ∈ End(A) which contradicts to our assumption.

Similarly all other cases where g ◦ f does not behave like id between c and X
contradict our assumptions. We leave the proof to the reader. Hence g ◦f behaves
like id everywhere except on c̄.

Now we are ready to prove the main result of the section.

Proof of Proposition 3.1.2. Let A be a reduct of P such that End(A) does not
contains constant functions, g< or g⊥. We show that then End(A) is equal to
Aut(P), 〈l〉, 〈�〉 or 〈l,�〉.

First assume that End(A) contains a non injective function. This can be wit-
nessed by constants c1 6= c2 and a function f ∈ End(A) with f(c1) = f(c2) that is
canonical as function f : (P ;≤,≺, c1, c2) → (P ;≤). By Lemma 3.1.12 we can as-
sume that f behaves like id everywhere except from c1, c2. But this is not possible,
since there is a point in a ∈ P with a⊥c1 but ¬(a⊥c2). Since f(c1) = f(c2) either

61



< or ⊥ is violated, which contradicts to f behaving like id everywhere except on
{c1, c2}. So from now on let End(A) only contain injective functions.

Assume End(A) violates Sep. This can also be witnessed by a canonical func-
tion f : (P ;≤,≺, c̄)→ (P ;≤) such that c̄ ∈ Sep but f(c̄) 6∈ Sep. By Lemma 3.1.12
we can assume that f behaves like id on every set (P \ c̄) ∪ {c}, with c ∈ c̄. If
there are ci < cj with f(ci)⊥f(cj) it is easy to see that End(A) generates g⊥ which
contradicts to our assumptions. If there are ci < cj or ci⊥cj with f(ci) > f(cj) let
a be an element of (P \ c̄) with a < cj and a⊥ci. Then the image of a, ci, cj under
f induces a non partially ordered structure - contradiction.

So End(A) preserves Sep. By Lemma 3.1.5 we know that End(A) ⊆ 〈l,�〉. If
End(A) violates Cycl and Betw or Cycl and ⊥ we can proof as in the paragraph
above that End(A) = 〈l,�〉.

Similarly, if End(A) preserves Cycl but violates Betw or ⊥ then End(A) = 〈�〉.
If End(A) preserves Betw and ⊥ but violates Cycl. Then End(A) = 〈l〉.
Finally, if End(A) preserves Betw, ⊥ and Cycl we have End(A) = Aut(P).

3.2 The case where < and ⊥ are pp-definable

Throughout the remaining parts of this chapter we are going to study the com-
plexity of CSP(A) for model-complete reducts A of P. In this section, we start
with the case where End(A) is the topological closure of the automorphism group
of P. In this case the two relations < and ⊥ are pp-definable by Theorem 1.6.5. So
throughout this section let A be a reduct of P in which < and ⊥ are pp-definable.
We are first going to discuss the binary part of the Pol(A). This will be essential
for proving the dichotomy in this case.

Observation 3.2.1. The binary relation x⊥
<
y defined by x < y∨x⊥y is equivalent

to the primitive positive formula ∃z (z < y)∧ z⊥x. Therefore x⊥
<
y is pp-definable

in A.

By e< we denote an embedding of the structure (P ;<)2 into (P ;<). Clearly e<
is canonical when regarded as map e< : (P ;≤,≺)2 → (P ;≤). It has the following
behaviour:

e< = < > ⊥
= = ⊥ ⊥ ⊥
< ⊥ < ⊥ ⊥
> ⊥ ⊥ > ⊥
⊥ ⊥ ⊥ ⊥ ⊥

By e≤ we denote an embedding of (P ;≤)2 into (P ;≤) that is canonical function
when regarded as map e≤ : (P ;≤,≺)2 → (P ;≤). It has the following behaviour:

62



e≤ = < > ⊥
= = < > ⊥
< < < ⊥ ⊥
> > ⊥ > ⊥
⊥ ⊥ ⊥ ⊥ ⊥

3.2.1 Horn tractable CSPs given by e< and e≤

The two functions e< or e≤ are of central interest to us. We will show in this
section that if one of them is a polymorphisms of A, then the problem CSP(A) is
tractable.

Let B and C be relational structures of the same signature. We recall that map
h : B → C is a strong homomorphism if x̄ ∈ R ↔ h(x̄) ∈ R. By B̂ we denote the
extension of B that contains the negation ¬R for every R is in B.

Theorem 3.2.2 (Proposition 14 from [BCKvO09]). Let B be an ω-categorical
structure and let A be a reduct of B. Suppose CSP(B̂) is tractable. If A has
a polymorphism that is a strong homomorphism from B2 to B, then also A is
tractable. �

By definition e< is a strong homomorphism from (P ;<)2 → (P ;<) and e≤ s a
strong homomorphism from (P ;≤)2 → (P ;≤). Let 6< respectively 6≤ denote the
negation of the order relation < respectively ≤. One can see that every input to
CSP(P ;<, 6<) and CSP(P ;≤, 6≤) is accepted as long as it does not contradict to
the transitivity of < respectively ≤. But this can be checked in polynomial time,
thus the two problems are tractable. So by Theorem 3.2.2 every template A with
polymorphism e< or e≤ gives us a tractable problem.

In the following theorem we additionally give a semantic characterization of
these tractable problems via Horn formulas. This characterisation works also in
the general setting, we refer to [BCKvO09] for the proof.

Lemma 3.2.3. Let A be a reduct of P. Suppose that e≤ ∈ Pol(A). Then CSP(A)
is tractable and every relation in A is equivalent to Horn formula in (P ;≤):

xi1 ≤ xj1 ∧ xi2 ≤ xj2 ∧ · · · ∧ xik ≤ xjk → xik+1
≤ xjk+1

or

xi1 ≤ xj1 ∧ xi2 ≤ xj2 ∧ · · · ∧ xik ≤ xjk → ’false’

Suppose that e< ∈ Pol(A). Then CSP(A) is tractable and every relation in A is
equivalent to a Horn formula in (P ;<), i.e. a formula of the form:

xi1 C1 xj1 ∧ xi2 C2 xj2 ∧ · · · ∧ xik Ck xjk → xik+1
Ck+1 xjk+1

or

xi1 C1 xj1 ∧ xi2 C2 xj2 ∧ · · · ∧ xik Ck xjk → ’false’,

where Ci ∈ {<,=} for all i = 1, . . . , k + 1. �
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3.2.2 Canonical binary functions on (P ;≤,≺)

In the following text we are going to study the behaviour of binary functions
f ∈ Pol(A) that are canonical seen as functions from (P ;≤,≺)2 to (P ;≤), this
will simplify later proof. We are in particular going to specify conditions for which
Pol(A) contains e< or e≤.

Definition 3.2.4. Let f : P2 → P be a function. Then f is called dominated on
the first argument if

• f(x, y) < f(x′, y′) for all x < x′ and

• f(x, y)⊥f(x′, y′) for all x⊥x′.

We say f is dominated if f or (x, y) 7→ f(y, x) is dominated on the first argument.

We are going to prove the following lemma:

Proposition 3.2.5. Let A be a reduct of P in which < and ⊥ are pp-definable. Let
f(x, y) ∈ Pol(A) be canonical when seen as a function from (P ;≤,≺)2 to (P ;≤).
Then at least one of the following cases holds:

• f is dominated

• Pol(A) contains e<

• Pol(A) contains e≤

First of all we make some general observations for binary canonical func-
tions preserving < and ⊥. We are again going to use the notation introduced
in Notation 3.1.7. Let us fix a function − : (P ;≤,≺) → (P ;≤,≺) such that
x ≺ y ↔ −y ≺ −x holds. It is easy to see that such a function exists.

Lemma 3.2.6. Let f : (P ;≤,≺)2 → (P ;≤) be canonical and f ∈ Pol(A). Then
the following statements are true:

1. f(p<, p<) = p<, f(p⊥, p⊥) = p⊥

2. f(p, q) = −f(−p,−q), for all types p, q.

3. f(p<, p⊥,≺), f(p<, p⊥,�), f(p⊥,�, p<) and f(p⊥,≺, p<) can only be equal to p<
or p⊥.

4. At least one of f(p<, p⊥,≺) and f(p⊥,≺, p<) is equal to p⊥.

5. At least one of f(p<, p⊥,�) and f(p⊥,≺, p>) is equal to p⊥.
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6. It is not possible that f(p<, p>) = p= holds.

7. f(p⊥,≺, p<) = p⊥ → f(p⊥, p=) = p⊥

Proof.

1. This is clear, since f is a polymorphism of A and hence preserves < and ⊥.

2. This is true by definition of −.

3. This is true since f preserves the relation ⊥
<

, see Observation 3.2.1.

4. Assume f(p<, p⊥,≺) = f(p⊥,≺, p<) = p<. Let a1 ≺ a2 ≺ a3 with a1 < a2,
a3⊥a1a2 and b1 ≺ b2 ≺ b3 with b2 < b3, b1⊥b2b3. By our assumption
f(a1, b1) < f(a2, b2) < f(a3, b3) holds, which is a contradiction to f pre-
serving ⊥.

5. This can be proven similarly to (4).

6. Assume that f(p<, p>) = p= holds. Let a1 ≺ a2 ≺ a3 with a1 < a3, a2 < a3,
a1⊥a2 and b1 � b2 � b3 with b1 > b3, b2 > b3, b1⊥b2. Then f(a1, b1)⊥f(a2, b2)
but also f(a1, b1) = f(a3, b3) = f(a2, a2) have to hold, which is a contradic-
tion.

7. Assume that there are a1⊥a2 and b such that f(a1, b) ≤ f(a2, b) holds.
Then we take elements a3 and b′ with a2 < a3, a1⊥a3 , a1 ≺ a3 and
b′ > b. Then f(a1, b) ≤ f(a2, b) < f(a3, b

′) holds, which is a contradiction to
f(a1, b)⊥f(a3, b

′).

By Lemma 3.2.6 (2) we only have to consider pairs of types where the first
entry is p=, p< or p⊥,≺ when studying the behaviour of f . Further Lemma 3.2.6
implies that f(x, y) 6= f(x′, y′) always holds for x 6= x′ and y 6= y′.

Lemma 3.2.7. Let f ∈ Pol(A). Then the following are equivalent:

1. f(p<, p>) = p<

2. f(p<, p⊥,�) = p<

3. f(p<, q) = p< for all 2-types q

4. f is dominated in the first argument

65



Proof. It is clear that the implications (4) → (3) → (2) and (3) → (1) are true.
(1) → (3): Let a1 < a2 < a3 and b1b3 < b2. Then f(a1, b1) < f(a2, b2) <

f(a3, b3) has to hold regardless if the type of (b1, b3) is p⊥,≺, p⊥,� or p=. So
f(p<, q) = p< for all 2-types q.

(2) → (1): Let a1 < a2 < a3 and b1 � b2 � b3 with b1 > b3, b2⊥b1b3. Then
f(a1, b1) < f(a2, b2) < f(a3, b3) implies f(a1, b1) < f(a3, b3) and so f(p<, p>) = p<.

(3) → (4): We have to consider all the pairs of 2-types where the first entry is
p⊥,≺. By Lemma 3.2.6 (4) and (5) we know that f(p⊥,≺, p<) = f(p⊥,≺, p>) = p⊥.
From Lemma 3.2.6(7) follows that f(p⊥, p=) = p⊥.

We want to point out that we did not require f to be canonical; it can be easily
verified that all proof steps also work for general binary functions.

Lemma 3.2.8. Let f : (P ;≤,≺)2 → (P ;≤) be canonical and f ∈ Pol(A). If f is
not dominated the following statements are true:

1. f(p<, p>) = f(p<, p⊥,�) = f(p⊥,≺, p>) = p⊥.

2. f(p<, p=) = p< or f(p<, p=) = p⊥.

3. f(p⊥,≺, p=) = p⊥ or f(p⊥,≺, p=) = p<.

Proof.

1. is a direct consequence of Lemma 3.2.7.

2. Suppose there are a1 < a2 and b such that f(a1, b) ≥ f(a2, b). Then we take
elements a3, b

′ ∈ P with a2⊥a3 a2 � a3, a1 < a3 and a b′ > b. Then f(a2, b) ≤
f(a1, b) < f(a3, b

′) holds, which is a contradiction to f(a2, b)⊥f(a3, b
′).

3. Assume that there are a1⊥a2, a1 ≺ a2 and b such that f(a1, b) ≥ f(a2, b)
holds. There are elements a3 and b′ with a2 > a3, a1⊥a3, a1 ≺ a3 and b′ < b.
Then f(a2, b) > f(a3, b

′) and f(a1, b)⊥f(a3, b
′). But this contradicts to our

assumption.

Definition 3.2.9. Let us say a binary function is ⊥-falling, if it has the same
behaviour as e< respectively e≤ on pairs of partial type (p 6=, p6=).

Lemma 3.2.10. Let f ∈ Pol(A) be a canonical function f : (P ;≤,≺)2 → (P ;≤)
of ⊥-falling behaviour. Then Pol(A) contains e< or e≤.

Proof. From Lemma 3.2.6 (7) follows that f(p⊥, p=) = p⊥ and f(p=, p⊥) = p⊥. By
Lemma 3.2.8 we further know that f(p<, p=), f(p=, p<) ∈ {p⊥, p<}. So we have to
do a simple case distinction:
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• If f(p=, p<) = f(p<, p=) = p⊥, then f behaves like e<, hence e< ∈ Pol(A).

• If f(p=, p<) = p< and f(p<, p=) = p⊥, the function (x, y) → f(f(x, y), x)
has the same behaviour as e<, thus e< ∈ Pol(A).

• Symmetrically if f(p=, p<) = p⊥ and f(p<, p=) = p<, the function (x, y) →
f(f(y, x), y) has the same behaviour as e<, thus e< ∈ Pol(A).

• If f(p=, p<) = p< = f(p<, p=) = p<, then f has the same behaviour as e≤,
thus e≤ ∈ Pol(A).

We now give a simple criterium for the existence of a canonical ⊥-falling func-
tion in Pol(A). This criterium will allows us to finish the proof of Proposition 3.2.5.

Lemma 3.2.11. Assume that for every k > 1, every pair of tuples ā, b̄ ∈ P k and
every indices p, q ∈ [k] with ap < aq and ¬(bp ≤ bq) there exists a binary function
g ∈ Pol(A) such that g(ap, bp)⊥g(aq, bq) and for all i, j ∈ [k]:

1. ai < aj implies g(ai, bi) < g(aj, bj) or g(ai, bi)⊥g(aj, bj),

2. ai⊥aj implies g(ai, bi)⊥g(aj, bj).

Then Pol(A) contains e< and e≤.

Proof. First we are going to show that for all ā, b̄ ∈ P k there is a binary function
f ∈ Pol(A) that has ⊥-falling on (ā, b̄). To be more precise we want to construct
an f ∈ Pol(A) such that:

• f(ai, bi) < f(aj, bj) if ai < aj and bi < bj,

• f(ai, bi)⊥f(aj, bj) if ai < aj and ¬(bp ≤ bq).

• f(ai, bi)⊥f(aj, bj) if ai⊥aj and bi 6= bj

We are going to construct f by a recursive argument.

Let f (0)(x, y) = g(0)(x, y) = x and ā(0) = f (0)(ā, b̄). If already f (0) has the
desired properties we set f(x, y) = f (0)(x, y) and are done.

Otherwise, in the (k + 1)-th recursion step, we are given a function f (k)(x, y)
and a tuple ā(k) = f (k)(ā, b̄). Let us assume that there are indices p, q with ap <

aq, ¬(bp ≤ bq) and a
(k)
p < a

(k)
q . Then by our assumption there is a function

g(k+1)(x, y) ∈ Pol(A) such that g(k+1)(a
(k)
p , bp)⊥g(k)(a

(k)
p , bp). We set f (k+1)(x, y) =

g(k)(f (k)(x, y), y) and ā(k) = f (k)(ā, b̄).
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Note that by the properties (1) and (2) of the function gk the only possible
cases for fk being not ⊥-falling is the case above. It is clear that the recursion
ends after finitely many steps.

So on every finite subset X × Y of P 2 we find a ⊥-falling function. By a
compactness argument there exists a h ∈ Pol(A) that is ⊥-falling on P 2. It
remains to show that there is also a canonical ⊥-falling function in Pol(A).

By Theorem 1.7.2 we have that h is canonical on arbitrarily large substructures
of P 2. Let (Fn)n∈ω be an increasing sequence of finite substructures such that its

union is equal to P . Then for every n ∈ ω there are α
(n)
1 , α

(n)
2 ∈ Aut(A) such that

f ◦ (α
(n)
1 , α

(n)
2 ) is canonical on Fn. By thinning out the sequence we can assume

that f ◦ (α
(n)
1 , α

(n)
2 ) has the same behaviour for every n ∈ ω.

Since the behaviour f ◦ (α
(n)
1 , α

(n)
2 ) on all Fn is the same, we can inductively

pick automorphisms βn ∈ Aut(P) such that βn ◦ f ◦ (α
(n)
1 , α

(n)
2 ) agrees with βn+1 ◦

f ◦ (α
(n+1)
1 , α

(n+1)
2 ) on Fn. The limit of this sequence is a canonical function in

Pol(A) with ⊥-falling behaviour.
By Lemma 3.2.10 we have that e< or e≤ is an element of Pol(A). This concludes

the proof.

Proof of Proposition 3.2.5. Let f : (P ;≤,≺)2 → (P ;≤) be canonical and f ∈
Pol(A). Let us assume that f is not dominated. By Lemma 3.2.8 we know
f(p<, p>) = f(p<, p⊥,�) = f(p⊥,≺, p>) = p⊥.

By Lemma 3.2.6 (3) and (4) we have to look at the following cases:

1. f(p<, p⊥,≺) = f(p⊥,≺, p<) = p⊥.

2. f(p<, p⊥,≺) = p< and f(p⊥,≺, p<) = p⊥.

3. f(p<, p⊥,≺) = p⊥ and f(p⊥,≺, p<) = p<.

In the first case f has⊥-falling behaviour therefore we are done by Lemma 3.2.10.
For the remaining cases we can restrict ourselves to (2), otherwise we take

(x, y) → f(y, x). From Lemma 3.2.6 (7) follows that f(p⊥, p=) = p⊥. Thus
f(p⊥, q) = p⊥ holds for every 2-type q.

We are going to show that then the conditions in Lemma 3.2.11 are satisfied.
Let ā, b̄ ∈ P k be two tuples of arbitrary length k and let p, q ∈ [k] such that
ap < aq, bp ≺ bq and bp⊥bq hold. Then let α ∈ Aut(P) with α(bp) � α(bq). Such
an automorphism exists by the homogeneity of P. Then we set g(x, y) = f(x, α(y)).

Clearly g(ap, aq)⊥g(bp, bq), since α(bp) � α(bq). Also the other conditions in
Lemma 3.2.11 are satisfied, by the properties of f . Therefore Pol(A) contains e<
or e≤.
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3.3 The NP-hardness of Low

Let Low be the 3-ary relation defined by

Low(x, y, z) := (x < y ∧ z⊥xy) ∨ (x < z ∧ y⊥xz).

Clearly ⊥ and < are pp-definable in Low. Note that Low is not preserved by
e< or e≤, so CSP(P ; Low) is not covered by the tractability result in Lemma 3.2.3.
In this section we prove the NP-hardness of CSP(P ; Low).

Lemma 3.3.1. Let us define the relations

Abv(x, y, z) :=(y < x ∧ xy⊥z) ∨ (z < x ∧ xz⊥y)

U(x, y, z) :=(y < x ∨ z < x) ∧ (y⊥z)

Then Abv and U are pp-definable in Low.

Proof. Note that the formula

φ(x, y, z, v) := ∃u u⊥v ∧ Low(u, y, z) ∧ Low(y, x, v) ∧ Low(z, x, v)

is equivalent to the statement that v⊥x and y⊥z and at least one element of {y, z}
is smaller that x and at most one element of {y, z} is smaller than v
With that in mind one can see that

∃v1, v2 φ(x, y, z, v1) ∧ φ(v2, y, z, x)

is equivalent to Abv(x, y, z) and

∃v φ(x, y, z, v)

is equivalent to U(x, y, z).

Proposition 3.3.2. Let a, b ∈ P with a⊥b. There is a pp-interpretation of S in
(P ; Low, a, b). Thus CSP(P ; Low) is NP-hard.

Proof. Let NAE be the Boolean relation {0, 1}3\{(0, 0, 0), (1, 1, 1)}. It is easy to
see that Pol({0, 1},NAE, 0, 1) is the projection clone 1. So by Theorem 1.6.9 it
suffices to show that ({0, 1}; NAE, 0, 1) has a pp-interpretation in (P ; Low, a, b) to
prove the statement.

Let D := {x ∈ P : Low(x, a, b)}, D0 := {x ∈ D : x < a}, D1 := {x ∈ D : x <
b}. Note that D0⊥D1. Let I : D → {0, 1} be given by:

I(x) :=

{
0 if x ∈ D0

1 if x ∈ D1

.
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Clearly the domain D of I is pp-definable in (P ; Low, a, b). Since the order
relation < is pp-definable in Low also the sets D0 and D1 are pp-definable. Let
R = {(x, y, z, t) ∈ P 4 : (x > y ∨ x > z ∨ x > t) ∧ ¬(x ≤ yzt)}. We claim that the
relation R is pp-definable in Low. Observe that (x, y, z, t) ∈ R is equivalent to

∃u, v (Abv(x, u, v) ∧ U(x, y, u) ∧ U(x, z, u) ∧ U(x, t, v))

and therefore pp-definable in Low by Lemma 3.3.1. By the definition of R we have
that I(c1, c2, c3) ∈ NAE if and only if (a, c1, c2, c3) ∈ R and (b, c1, c2, c3) ∈ R. Thus
the preimage of NAE is pp-definable in (P ; Low, a, b).

The following lemma gives us an additional characterization of reducts, in which
Low is pp-definable.

Lemma 3.3.3. The relation Low is pp-definable in A if and only if every binary
polymorphism of A is dominated.

Proof. Every dominated function f : P 2 → P preserves Low. For the other di-
rection observe that by Lemma 3.2.7 we have that f is dominated in the first
argument if and only if f(a1, b1) < f(a2, b2) for all a1 < a2 and b1⊥b2. Note that
Lemma 3.2.7 also works for non-canonical functions.
So if f ∈ Pol(A) is a binary, not dominated function, there are a1 < a2, b1⊥b2, a

′
1⊥a′2

and b′1 < b′2 such that f(a1, b1)⊥f(a2, b2) and f(a′1, b
′
1)⊥f(a′2, b

′
2). Hence f violates

the relation

S(x1, x2, y1, y2) := (x1 < x2 ∧ y1⊥y2) ∨ (x1⊥x2 ∧ y1 < y2).

But the relation S and Low are pp-interdefinable:

Low(x, y, z)↔S(x, y, x, z) ∧ y⊥z
S(x1, x2, y1, y2)↔∃u, v, w (Low(x1, x2, u) ∧ Abv(u, x1, v),

∧ Low(u, v, w) ∧ Abv(w, y1, v) ∧ Low(y1, y2, w)).

We conclude that f violates Low.

3.4 Violating the Low relation

We saw in Lemma 3.2.3 that CSP(A) is tractable if e< or e≤ are polymorphisms
of A. By Proposition 3.3.2 we know that CSP(A) is NP-complete if Low is pp-
definable in A. In this section we are going to show that these results already
cover all possible reducts where < and ⊥ are pp-definable.
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Proposition 3.4.1. Let A be a reduct of P such that ⊥ and < are pp-definable in
A. Then Low is not pp-definable in A if and only if Pol(A) contains one of the
functions e< or e≤.

Proof. Note that by Theorem 1.6.5 Low is not pp-definable in A if and only if
there is a binary f ∈ Pol(A) violating Low. This means that there are a, b, c ∈ P
such that a < b ∧ ab⊥c and f(a, a) < f(b, c) ∧ f(a, a) < f(c, b), or f(a, a)⊥f(b, c)
and f(a, a)⊥f(c, b).

We have only these two cases since f preserves ⊥
<

and ⊥. We can assume that
a ≺ b ≺ c since otherwise we can find an automorphism α ∈ Aut(P) such that
α(a) ≺ α(b) ≺ α(c). Then we consider the map (x, y) 7→ f(α−1(x), α−1(y)) with
three elements α(a), α(b) and α(c) instead.

By Lemma 3.1.6 we can assume that f is canonical as a function from (P ;<,≺
, a, b, c)2 to (P ;<). We deal with the two cases in Lemma 3.4.3 and Lemma 3.4.10
in the following subsections.

Notation 3.4.2. For simplicities sake, a canonical binary function in this section
means a function that is canonical as a function from (P ;≤,≺)2 → (P ;<).
Let f : P 2 → P be a function and X, Y,X ′, Y ′ be subsets of P such that f is
dominated on X × Y and X ′ × Y ′. We say that f has the same domination on
X × Y and X ′ × Y ′ if f is dominated by the first argument on both X × Y and
X ′ × Y ′, or dominated by the second argument on both X × Y and X ′ × Y ′.
Otherwise, we say that f has the different domination on X × Y and X ′ × Y ′.

3.4.1 f(a, a) < f(b, c) ∧ f(a, a) < f(c, b)

The aim of this subsection is to prove the following lemma.

Lemma 3.4.3. Let f ∈ Pol(A) be canonical as a function from (P ;<,≺, a, b, c)2

to (P ;<). If f(a, a) < f(b, c) ∧ f(a, a) < f(c, b) then Pol(A) contains e< or e≤.

We define the following two sets:

• B1 := {x ∈ P : x > c ∧ x⊥a ∧ x⊥b},

• B2 := {x ∈ P : x > b ∧ x > c}.

Let x, y ∈ B1∪B2. We say that x and y are in the same orbit if x ∈ Bi and y ∈ Bi

for an i ∈ [2].

Observation 3.4.4. B1 and B2 are orbits of Aut(P ;<,≺, a, b, c). By the ho-
mogeneity of (P ;≤,≺) we can show that (B1;≤,≺), (B2;≤,≺) are isomorphic to
(P ;≤,≺). Further also the union of B1 and B2 is an isomorphic copy of (P ;≤,≺),
in which B1 forms a random filter.
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If there is a canonical g ∈ Pol(A) that is not dominated, then Lemma 3.2.5
gives us that e< or e≤ is in Pol(A). So throughout the lemmata and corollaries
below in this section, we assume that every binary canonical function in Pol(A) is
dominated and f(a, a) < f(b, c) ∧ f(a, a) < f(c, b).

Lemma 3.4.5. f is dominated on Bi ×Bj for every i, j ∈ [2].

Proof. For a contradiction, we assume that f is not dominated on Bi ×Bj. Since
(Bi;≤,≺) and (Bj;≤,≺) are isomorphic to (P ;≤,≺), there are α : P → Bi and
β : P → Bj such that α is an isomorphism from (P ;≤,≺) to (Bi;≤,≺) and β
is an isomorphism from (P ;≤,≺) to (Bj;≤,≺). Let g : P 2 → P be given by
g(x, y) := f(α(x), β(y)). It follows from Observation 3.4.4 that g is canonical and
is not dominated, a contradiction.

Lemma 3.4.6. f has the same domination on all sets Bi ×Bj, i, j ∈ [2].

Proof. We claim that f has the same domination on B1 × Bk and B2 × Bk for
any k ∈ [2]. For a contradiction, we assume that f does not have the same
domination B1 ×Bk and B2 ×Bk. Without loss of generality we can assume that
f is dominated by the first argument on B1 × Bk and dominated by the second
argument on B2 × Bk. Let x, y ∈ B1, z, t ∈ B2 be such that x < y ∧ y < z ∧ x⊥t.
Let x′, y′, z′, t′ ∈ Bk be such that x′⊥t′ ∧ y′ < z′ ∧ z′ < t′. Since f is dominated by
the first argument on B1 × Bk, we have f(x, x′) < f(y, y′). Since f is dominated
by the second argument on B2 ×Bk, we have f(z, z′) < f(t, t′). Since f preserves
<, we have f(y, y′) < f(z, z′). Thus f(x, x′) < f(t, t′), a contradiction to the fact
that f preserves ⊥.

By considering the map (x, y) 7→ f(y, x) we have that f has the same domina-
tion on Bk × B1 and Bk × B2 for every k ∈ [2]. This implies that f has the same
dominations on all products Bi ×Bj, i, j ∈ [2].

In the rest of this section, we assume that f is dominated by the first argument
on Bi × Bj for every i, j ∈ [2]. The other case can be reduced to this case by
considering the map (x, y) 7→ f(y, x).

Lemma 3.4.7. Let u, v ∈ B1 and u′ ∈ B2, v
′ ∈ B1 be such that u < v ∨ u⊥v.

Then f(u, u′)⊥f(v, v′).

Proof. First, we claim that f(u, u′) > f(v, v′) ∨ f(u, u′)⊥f(v, v′). For a con-
tradiction, we assume that f(u, u′) ≤ f(v, v′). Since f preserves <, we have
f(c, b) < f(u, u′). Therefore f(a, a) < f(c, b) < f(u, u′) < f(v, v′), a contradiction
to the ⊥-preservation of f . Thus the claim follows.

The proof is completed by showing that f(u, u′) > f(v, v′) is impossible. For
a contradiction, we assume that f(u, u′) > f(v, v′). Let s, t ∈ B1 be such that
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s⊥t∧ s < v ∧ u < t. Let s′ ∈ B1, t
′ ∈ B2 be such that s′⊥t′. By the domination of

f , we have f(s, s′) < f(v, v′)∧f(u, u′) < f(t, t′). It follows from f(u, u′) > f(v, v′),
we have f(s, s′) < f(t, t′), a contradiction to ⊥-preservation of f .

Lemma 3.4.8. Let u, v ∈ B1 be such that u⊥v. Then for every u′, v′ ∈ B1 ∪ B2,
we have f(u, u′)⊥f(v, v′).

Proof. For a contradiction, we assume that ¬(f(u, u′)⊥f(v, v′)). Without loss
of generality, we assume that f(u, u′) ≤ f(v, v′). Let s, t ∈ B1 be such that
s < u ∧ v < t ∧ s⊥t. Let s′, t′ ∈ B1 ∪ B2 be such that s′⊥t′, s′, u′ are in the same
orbit and t′, v′ are in the same orbit. By the domination of f , we have f(s, s′) <
f(u, u′) ∧ f(v, v′) < f(t, t′). Since f(u, u′) < f(v, v′), we have f(s, s′) < f(t, t′), a
contradiction to the ⊥-preservation of f .

Lemma 3.4.9. Let u, v ∈ B1 and u′, v′ ∈ B1 ∪ B2 be such that u < v. Then
f(u, u′) < f(v, v′) ∨ f(u, u′)⊥f(v, v′).

Proof. For a contradiction, we assume that f(v, v′) ≤ f(u, u′). Let s, t ∈ B1 be
such that t < v ∧ u < s ∧ s⊥t. Let s′, t′ ∈ B1 ∪ B2 be such that s′⊥t′, s′, u′
are in the same orbit, and t′, v′ are in the same orbit. By the domination of f ,
we have f(t, t′) < f(v, v′) ∧ f(u, u′) < f(s, s′). Since f(v, v′) < f(u, u′), we have
f(t, t′) < f(s, s′), a contradiction to the ⊥-preservation of f .

Proof of Lemma 3.4.3. We are going to show that Pol(A) contains a function that
behaves like e< or like e≤ by checking the conditions of Lemma 3.2.11.

So let ā, b̄ ∈ P k with ap < aq and ¬(bp ≤ bq). We set Y := {bi : bi ≥ bp}, Z :=
{bi : ¬(bi ≥ bp)}. By definition we have bq ∈ Z. By the homogeneity of P, there
is α ∈ Aut(P) such that α(Y ) ⊆ B2 and α(Z) ⊆ B1. Let β ∈ Aut(P) such that
β({ai : i ∈ [k]}) ⊆ B1. Let g(x, y) := f(β(x), α(y)). Clearly, g ∈ Pol(A).
By Lemma 3.4.7 we have that g(ap, bp)⊥g(aq, bq). Further we know by Lemma 3.4.9
that g(ai, bi) < g(aj, bj) or g(ai, bi)⊥g(aj, bj) holds for all ai < aj. By Lemma 3.4.8
we know that g(ai, bi)⊥g(aj, bj) holds for all ai⊥aj. So the conditions of Lemma 3.2.11
are satisfied. Hence e< or e≤ is a polymorphism of A.

3.4.2 f(a, a)⊥f(b, c) ∧ f(a, a)⊥f(c, b)

The aim of this section is to prove the following.

Lemma 3.4.10. Let f ∈ Pol(A) be canonical as a function from (P ;<,≺, a, b, c)2

to (P ;<). If f(a, a)⊥f(b, c) ∧ f(a, a)⊥f(c, b), then Pol(2)(A) contains e< or e≤.
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We define the following sets.

B1 := {x ∈ P : a < x < b ∧ x⊥c}
B2 := {x ∈ P : x < b ∧ x < c ∧ x⊥a ∧ x ≺ a}.

Throughout the lemmata and corollaries below in this section, we assume
that every binary canonical function in A is dominated and f(a, a)⊥f(b, c) ∧
f(a, a)⊥f(c, b).

Observe that by the homogeneity of (P ;≤;≺) and the back-and-forth argu-
ment, we can show that (B1 ∪B2;≤,≺) is isomorphic to (P ;≤,≺), with B2 being
a random filter. For every two k-tuples x̄ and ȳ in Bk

i , x̄ and ȳ are in the same
orbit of Aut(P) if and only if x̄ and ȳ are in the same orbit of Aut(P ; a, b, c).

Lemma 3.4.11. f has the same domination on sets Bi ×Bj, i, j ∈ [2].

Proof. This lemma can be shown as in Lemma 3.4.5 and Lemma 3.4.6.

In the rest of this section we assume that f is dominated by the first argument
on Bi×Bj for every i, j ∈ {1, 2}. Similarly, to Lemma 3.4.7, we have the following.

Lemma 3.4.12. Let u, v ∈ B1 and u′ ∈ B1, v
′ ∈ B2 be such that u < v ∨ u⊥v.

Then f(u, u′)⊥f(v, v′).

Proof. First we prove that f(v, v′) < f(u, u′) ∨ f(v, v′)⊥f(u, u′). For a contra-
diction we assume that f(u, u′) ≤ f(v, v′). Since a < u ∧ a < u′, we have
f(a, a) < f(u, u′). Since v < b ∧ v′ < c, we have f(v, v′) < f(b, c). Thus
f(a, a) < f(b, c), a contradiction to the fact that f(a, a)⊥f(b, c). Thus f(v, v′) <
f(u, u′) ∨ f(v, v′)⊥f(u, u′).

The proof is completed by showing that f(u, u′) > f(v, v′) is impossible. For
a contradiction, we assume that f(u, u′) > f(v, v′). Let s, t ∈ B1 be such that
s⊥t∧ s < v ∧ u < t. Let s′ ∈ B2, t

′ ∈ B1 be such that s′⊥t′. By the domination of
f , we have f(s, s′) < f(v, v′)∧f(u, u′) < f(t, t′). It follows from f(u, u′) > f(v, v′),
we have f(s, s′) < f(t, t′), a contradiction to ⊥-preservation of f .

Lemma 3.4.13. Let u, v ∈ B1 be such that u⊥v. Then for every u′, v′ ∈ B1 ∪B2,
we have f(u, u′)⊥f(v, v′).

Proof. analogous to Lemma 3.4.8.

Lemma 3.4.14. Let u, v ∈ B1 and u′, v′ ∈ B1 ∪ B2 be such that u < v. Then
f(u, u′) < f(v, v′) ∨ f(u, u′)⊥f(v, v′).

Proof. analogous to Lemma 3.4.9.
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Proof of Lemma 3.4.10. We are again going to show that Pol(A) contains a func-
tion that behaves like e< or like e≤ by checking the conditions of Lemma 3.2.11.

So let ā, b̄ ∈ P k with ap < aq and ¬(bp ≤ bq). We set Y := {bi : bi ≥ bp}, Z :=
{bi : ¬(bi ≥ bp)}. By definition we have bq ∈ Z. By the homogeneity of P, there
is α ∈ Aut(P) such that α(Y ) ⊆ B1 and α(Z) ⊆ B2. Let β ∈ Aut(P) such that
β({ai : i ∈ [k]}) ⊆ B1. Let g(x, y) := f(β(x), α(y)). Clearly, g ∈ Pol(A).
By Lemma 3.4.7 we have that g(ap, bp)⊥g(aq, bq). Further we know by Lemma 3.4.9
that g(ai, bi) < g(aj, bj) or g(ai, bi)⊥g(aj, bj) holds for all ai < aj. By Lemma 3.4.8
we know that g(ai, bi)⊥g(aj, bj) holds for all ai⊥aj. So the conditions of Lemma 3.2.11
are satisfied. Hence e< or e≤ is a polymorphism of A.

3.5 The NP-hardness of Betw, Sep and Cycl

By Corollary 3.1.3 we are now left with the cases where End(A) is equal to one of
the monoids 〈l〉, 〈�〉 or 〈l,�〉. We are going to deal with all these remaining cases
in this section. Interestingly, we can treat them all similarly: By fixing finitely
many constants c1, . . . , cn on A we obtain definable subsets of (A, c1, . . . , cn) on
which < and Low are pp-definable. This enables us to reduce every every such
case to the NP-completeness of Low.

Lemma 3.5.1. Let u, v ∈ P with u < v. Then the relations < and Low are
pp-definable in (P,Betw,⊥, u, v).

Proof. It is easy to verify that there is a pp-definition of the order relation by the
following equivalence:

x < y ↔ ∃a, b (Betw(x, y, a) ∧ Betw(y, a, b) ∧ Betw(u, v, a) ∧ Betw(v, a, b)).

The two maps e< : P 2 → P and e≤ : P 2 → P do not preserve Betw, since for
every triple ā = (a1, a2, a3) with a1 < a2 < a3 and b̄ = (b1, b2, b3) with b1 > b2 > b3,
the image of (ā, b̄) forms an antichain.

By Proposition 3.4.1 we have that Low is pp-definable in (P,Betw,⊥, u, v).

Proposition 3.5.2. Let A be a reduct of P such that End(A) = 〈l〉. Then there
are constants u, v, w, t ∈ P such that S is pp-interpretable in (A, u, v, w, t). Hence
CSP(A) is NP-complete.

Proof. Note that the betweenness relation Betw is an orbit of End(A) = 〈l〉 on
P 3. Now Theorem 1.6.5 implies that Betw is primitively positive definable in
A. For the same reason ⊥ is pp-definable in A. By Lemma 3.5.1 there is pp-
definition of Low in (A, u, v). By Proposition 3.3.2 we can find a pp-interpretation
of S in (A, u, v, w, t), where w, t are two additional constants. Hence CSP(A) is
NP-complete.
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For the case where End(A) = 〈�〉, we first need the following lemma:

Lemma 3.5.3. Let c, d be two constants in P such that c < d. Then there is a
pp-interpretation of (P ; Low) in (P ; Cycl, c, d)

Proof. Let X := {x ∈ P : c < x < d}. By using back-and-forth argument one can
show easily that (P ;<) and (X;<|X) are isomorphic. We first show that X (as
a unary predicate) and <|X are pp-definable in (P ; Cycl, c, d). It is easy to verify
that the set X can be defined in (P ; Cycl, c, d) by φ(x) := Cycl(c, x, d) and that
x <|X y ↔ φ(x) ∧ φ(y) ∧ Cycl(c, x, y). Now a pp-interpretation of (P ;<,Cycl) in
(P ; Cycl, c, d) is simply given by the identity on X.

By Lemma 3.1.4 we have that ⊥ is pp-definable in (P ;<,Cycl). It is easy to
verify that e< and e≤ do not preserve Cycl. Therefore, by Proposition 3.4.1, Low
is pp-definable in (P ;<,Cycl), which concludes the proof of the Lemma.

Proposition 3.5.4. Let A be a reduct of P such that End(A) = 〈�〉. Then there
are constants a, b, c, d ∈ P such that S is pp-interpretable in (A, a, b, c, d). Hence
CSP(A) is NP-complete.

Proof. The cyclic order relation Cycl is an orbit of End(A) = 〈�〉 on P 3. So Theo-
rem 1.6.5 implies that Cycl is primitively positive definable in A. By Lemma 3.5.3
there is pp-definition of Low in (A, c, d) with c < d. By Proposition 3.3.2 we
can find a pp-interpretation of S in (A, a, b, c, d), where a, b are two additional
constants. Hence CSP(A) is NP-complete.

In the following, we prove the NP-hardness of CSP(P ; Sep) by using the same
proof idea as the proof of NP-hardness of CSP(P ; Cycl) in Section 3.5.

Lemma 3.5.5. Let c, d, u be constants in P such that c < d < u. Then (P ; Low)
has a pp-interpretation in (P ; Sep, c, d, u).

Proof. Let X := {x ∈ P : d < x < u}. By using a back-and-forth argument, one
can show easily that (X;≤) and P are isomorphic. Similarly as in the proof of
Proposition 3.5.4, X and <|X are pp-definable in (P ; Sep, c, d, u) as follows.

The set X can be defined by the formula φ(x) := Sep(c, d, x, u), and <|X can
be defined by x <|X y :⇔ φ(x) ∧ φ(y) ∧ Sep(c, d, x, y). Also Cycl(x, y, z)|X can be
defined by the primitive positive formula φ(x) ∧ φ(y) ∧ φ(z) ∧ Sep(c, x, y, z)

So a pp-interpretation of (P ;<,Cycl) in (P ; Sep, c, d, u) is simply given by the
identity, restricted to X. By Lemma 3.5.3, Low is pp-definable in (P ;<,Cycl),
which concludes the proof of the Lemma.

Proposition 3.5.6. Let A be a reduct of P such that End(A) = 〈l,�〉. Then there
are constants a, b, c, d, u ∈ P such that S is pp-interpretable in (A, a, b, c, d, u).
Hence CSP(A) is NP-complete.
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Proof. The relation Sep is an orbit of End(A) = 〈l,�〉 on P 3. So Theorem 1.6.5
implies that Sep is primitively positive definable in A. By Lemma 3.5.5 there
is pp-definition of Low in (A, c, d, u) with c < d < u. By Proposition 3.3.2 we
can find a pp-interpretation of S in (A, a, b, c, d, u), where a, b are two additional
constants. Hence CSP(A) is NP-complete.

3.6 Main Results

In this section we complete the proof of our result that Poset-SAT(Φ) problems
are either in P or NP-complete. This dichotomy corresponds to an model-theoretic
dichotomy of the reducts of P and can nicely captured in the language of clones,
see also the discussion in Section 1.6. We will show that Conjecture 1.6.10 holds
for the reducts of P, and that we obtain in fact some stronger equations in the
tractable cases in Corollary 3.6.5. Furthermore we give a finite list of relations,
that entirely describes the NP-complete cases and show that also the meta-problem
of deciding whether Poset-SAT(Φ) is tractable or not for a given Φ is decidable.

Let A be a reduct of P and Ac be its model-complete core. Throughout this
chapter we have studied the question whether there is a pp-interpretation of the
structure S in Ac, extended by finitely many constants or not.
First we recall the situation, where < and ⊥ are pp-definable.

Lemma 3.6.1. Let A be a reduct of P in which < and ⊥ are pp-definable. Then
the following are equivalent:

1. There is a binary f ∈ Pol(A) which is not dominated.

2. The relation Low is not pp-definable in A.

3. e< or e≤ is a polymorphism of A.

4. There is a binary f ∈ Pol(A) and endomorphisms e1, e2 ∈ End(A) such that

e1(f(x, y)) = e2(f(y, x))

5. For all c1, . . . , cn ∈ A there is no clone homomorphism from Pol(A, c1, . . . , cn)
onto 1.

6. For all c1, . . . , cn ∈ A there is no continuous clone homomorphism from
Pol(A, c1, . . . , cn) onto 1.

7. There is no pp-interpretation of S in any expansion of A by finitely many
constants.
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Proof.
The equivalences of the points (5)-(7) hold for all ω-categorical structures A and
were discussed in Theorem 1.6.9.
(1) ↔ (2) This is the statement of Lemma 3.3.3.
(2) → (3): This is the statement of Proposition 3.4.1.
(3) → (4): Set f = e< respectively f = e≤.
(4) → (5): If there are e1, e2, f ∈ Pol(A) satisfying the equation e1(f(x, y)) =
e2(f(y, x)) then there are also such polymorphisms fixing finitely many elements
c1, . . . , cn. This is true for all ω-categorical cores, see Lemma 82 of [BJP16]. It
follows that there is no clone homomorphism from Pol(A, c1, . . . , cn) onto 1.
(7) → (2): This follows from the contraposition of Proposition 3.3.2.

Thus, in this case, the non-existence of a pp-interpretation of S in A with finitely
many parameters is equivalent to the existence of a pseudo-Siggers operation, but
to even stronger equational condition e1(f(x, y)) = e2(f(y, x)). If we include the
cases, in which A itself is not a model-complete core, we are able to show the
following theorem:

Theorem 3.6.2. Let A be a reduct of P and let Ac be the model-complete core of
A. Then the following are equivalent:

1. There is a binary f ∈ Pol(Ac) and endomorphisms e1, e2 ∈ End(Ac) such
that

e1(f(x, y)) = e2(f(y, x))

or there is a ternary f ∈ Pol(Ac) and endomorphisms e1, e2, e3 ∈ End(Ac)
such that

e1(f(x, x, y)) = e2(f(x, y, x)) = e3(f(y, x, x)).

2. There is a pseudo Siggers polymorphism, i.e. a function f ∈ Pol(Ac)(6) and
endomorphism e1, e2 ∈ End(Ac) such that

e1(f(x, y, x, z, y, z)) = e2(f(y, x, z, x, z, y)).

3. For all c1, . . . , cn ∈ Ac there is no clone homomorphism from Pol(Ac) onto
1.

4. For all c1, . . . , cn ∈ Ac there is no continuous clone homomorphism from
Pol(Ac) onto 1.

5. There is no pp-interpretation of S in any expansion of Ac by finitely many
constants.
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Proof. First of all we remark that the equivalence of the points (2)-(5) holds for
all ω-categorical core structures and was discussed in Theorem 1.6.9.

In Proposition 3.1.2 we saw that the model-complete core Ac is either equal to
A or a reduct of (Q, <) or (ω,=).

Suppose the core Ac is a reduct of (Q, <) or (ω,=). We know from the analysis
of temporal constraint satisfaction problems that then the statement is true: By
Theorem 10.1.1. in [Bod12] there is no pp-interpretation of S in Ac, if and only if
an equation e1(f(x, x, y)) = e2(f(x, y, x)) = e3(f(y, x, x)) holds in Pol(Ac).

So let A = Ac. By Lemma 3.6.1 the equivalence (1)↔(4) holds when < and
⊥ are pp-definable in A. In the remaining cases End(A) is equal to 〈l〉, 〈�〉 or
〈l,�〉 and we have a pp-interpretation of S in an extension of A with finitely many
constants by Propositions 3.3.2, 3.5.2, 3.5.4 and 3.5.6.

On the relational side, we can sum up our dichotomy result to the following
complexity dichotomy:

Theorem 3.6.3. Let A be a reduct of P in a finite relational language and a
model-complete core. Under the assumption P 6=NP either

• one of the relations Low, Betw, Cycl, Sep is pp-definable in A and CSP(A)
is NP-complete or

• CSP(A) is in P.

Proof. If Low, Betw, Cycl or Sep is pp-definable in A, the CSP(A) is NP-complete
by Propositions 3.3.2, 3.5.2, 3.5.4 and 3.5.6.

By Proposition 3.1.2 the only remaining case is the one, where < and ⊥ are
pp-definable, but Low is not. In this case e< or e≤ is a polymorphism of A by
Proposition 3.4.1. Lemma 3.2.3 then implies that the problem is tractable.

Including also the non-model complete cores in the analysis we obtain the
following result:

Corollary 3.6.4. Let A be a reduct of P in a finite relational language. Under the
assumption P6=NP the problem CSP(A) is either NP-complete or solvable in poly-
nomial time. Further the “meta-problem” of deciding whether CSP(A) is tractable
or NP-complete, is decidable.

Proof. By Proposition 3.1.2 we know that either A is a model-complete core or
g< or g⊥ are endomorphisms of A. In the first case the dichotomy holds by The-
orem 3.6.3, in the second case A is homomorphically equivalent to a reduct of
(Q, <) and the dichotomy holds by the result in [BK09] respectively [BK08].

The main result in [BPT13] implies that it is decidable if the relations <, ⊥,
Low, Betw, Cycl or Sep are pp-definable in A. By Lemma 3.1.5 the question
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whether A is model-complete core or not is then also decidable. By Theorem 3.6.3
and Corollary 52 of [BK09] we have that the meta-problem is decidable.

We finish with an algebraic version of our dichotomy that is a direct implication
of Theorem 3.6.2:

Corollary 3.6.5. Let A be a reduct of P in a finite relational language and let Ac
be its model complete core. Under the assumption P 6=NP either

• CSP(A) is NP-complete and all finite structures are pp-interpretable in Ac,
extended by finitely many constant, or

• CSP(A) is tractable and the conditions (1)-(5) in Theorem 3.6.2 hold. �
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Chapter 4

A counterexample to the
reconstruction of ω-categorical
structures from their
endomorphism monoids

How much information about a structure A is coded into its automorphisms group
Aut(A)? We saw that classical model theory provides a strong form of reconstruc-
tion of A from Aut(A) when A is ω-categorical: Aut(A) is equal to Aut(B) as a
permutation group for some structure B if and only if B has a first-order definition
in A, and vice versa. The assumption that A is ω-categorical is in some sense
best possible for this type of reconstruction: it can be seen that when A has a
countable signature, then the above reconstruction statement holds if and only if
A is ω-categorical by Theorem 1.4.3.

The situation is more complicated when we only know that Aut(A) and Aut(B)
are isomorphic as groups. To approach this question, it is essential to first examine
Aut(A) and Aut(B) as topological groups, equipped with the topology of pointwise
convergence. With this topology, automorphism groups of countable structures
are precisely the closed subgroups of the full symmetric group Sym(ω) on ω. By
Theorem 1.4.6 Aut(A) and Aut(B) are isomorphic as topological groups (that is,
via an isomorphism that is also a homeomorphism), then A and B are first-order
bi-interpretable. Hence, we focus on the following subproblem: is it true that when
Aut(A) and Aut(B) are isomorphic as groups, then they are also isomorphic as
topological groups?

Rather surprisingly, isomorphisms between automorphism groups of countable
structures are typically homeomorphisms, see also the discussion about the small
index property in Section 1.4.1. And in fact, it is consistent with ZF + DC that
all homomorphisms between closed subgroups of Sym(ω) are continuous, and that
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all isomorphisms between closed subgroups of Sym(ω) are homeomorphisms; see
the end of Section 4.2.2 for more explanation. Using the existence of non-principal
ultrafilters on ω, it is relatively easy to show that there are oligomorphic permu-
tation groups with non-continuous homomorphisms to Z2. But it was open for
a while whether for countable ω-categorical structures A and B the existence of
an isomorphism between Aut(A) and Aut(B) implies the existence of an isomor-
phism which is additionally a homeomorphism. This problem was solved by Evans
and Hewitt [EH90], by giving two structures A and B for which the answer was
negative.

Natural objects that carry more information about a structure A than Aut(A)
are its endomorphism monoid End(A) and more generally its polymorphism clone
Pol(A), see Section 1.6. We are going to show the following theorem related to
results of Lascar [Las89]; see also the discussion in Section 4.3.

Theorem 4.0.1. There are countable ω-categorical structures A, B such that
End(A) and End(B) are isomorphic, but not topologically isomorphic.

In fact, the two endomorphism monoids of the structures A and B will be the
closures in ωω of the two automorphism groups which are isomorphic, but not topo-
logically isomorphic, presented in [EH90]. Ironically, it is its non-continuity which
makes the extension of the isomorphism between those groups to their closures
non-trivial, giving rise to the present work.

It has been asked in [BPP17] whether there are ω-categorical structures whose
polymorphism clones are isomorphic, but not topologically. Theorem 4.0.1 imme-
diately implies a positive answer to this question: any two structures whose poly-
morphism clones consist essentially (that is, up to adding of dummy variables) of
the functions in End(A) and End(B), respectively, are examples.

Corollary 4.0.2. There are countable ω-categorical structures A, B such that
Pol(A) and Pol(B) are isomorphic, but not topologically isomorphic.

The construction in [EH90] is based on a representation of profinite groups as
quotients of oligomorphic groups, due to Hrushovski, and on a non-reconstruction
result for profinite groups which uses the axiom of choice. The non-reconstruction
lifts to the oligomorphic groups representing the profinite groups.

In the present paper we show that it lifts further to the closures of the oligo-
morphic groups. The method of embedding profinite groups into quotients of
oligomorphic structures is quite powerful and might be useful in different contexts
as well.

The structures constructed in our proof of Theorem 4.0.1 have an infinite re-
lational language. We use a well-known construction due to Hrushovski to encode
countable ω-categorical structures into structures with a finite relational language,
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and show that this encoding is compatible with our examples, roughly because the
encoding preserves model-completeness. That way, we obtain the following main
theorem of the present article.

Theorem 4.0.3. There exists a countable ω-categorical structure A in a finite
relational language such that none of Aut(A), End(A), and Pol(A) have recon-
struction (cf. [BPP17]): that is, there exists a countable ω-categorical structure B
such that Aut(A) and Aut(B), End(A) and End(B), and Pol(A) and Pol(B) are
isomorphic, but not topologically isomorphic.

4.1 Preliminaries

Most of the relevant notions needed for this chapter were introduced in Section
1.2 and Section 1.6. In order to distinguish better between (oligomorphic) per-
mutation groups and (profinite) topological groups, we will denote the appearing
oligomorphic permutation groups by capital greek letters (Φ, Σ, Λ) and the profi-
nite topological groups by bold latin letters (G, G′).

For a subgroup H of G we write H ≤ G, and we write gH := {gh : h ∈ H} for
the (left-) coset of H in G containing g. We denote by G/H the set of all cosets
of H in G. If H is a normal subgroup of G then G/H carries a natural group
structure which is a topological group with respect to the quotient topology. We
write G ∼= H if G and H are isomorphic as groups, and G ∼=T H if G and H
are topologically isomorphic, that is, there exists an isomorphism which is also a
homeomorphism. When forming direct products G ×H of topological groups G
and H, then the group G×H is equipped with the product topology of G and H.

For background on profinite groups, we refer to the text book of Ribes and
Zalesskii [RZ00].

4.2 The Proof

4.2.1 Overview

The idea is to obtain the results in the following steps.

(1) There exist separable profinite groups G and G′ which are abstractly but
not topologically isomorphic: G ∼= G′ but G �T G′.

(2) There is a oligomorphic permutation group Φ on a countable set such that
for every separable profinite group R there exists a closed permutation group
ΣR ≥ Φ such that R ∼=T ΣR/Φ. Furthermore Φ can be characterized in the

83



topological group structure of ΣR as the intersection of the open normal
subgroups of finite index.

It would then be natural to continue by the following steps. However, we do not
know whether (3) is true, so the argument will proceed in a less direct way, but
still following the outline below.

(3) For the separable profinite groups G and G′ from (1), the permutation groups
ΣG and ΣG′ are isomorphic.

(4) ΣG and ΣG′ cannot be topologically isomorphic, since by (2) any topological
isomorphism would have to send Φ onto itself, and so ΣG/Φ and ΣG′/Φ
would be topologically isomorphic, contradicting (1).

(5) The isomorphism between the permutation groups ΣG and ΣG′ extends to
their topological closures ΣG and ΣG′ in ωω. However, the closed monoids
ΣG and ΣG′ are not topologically isomorphic: otherwise we would obtain a
topological isomorphism between ΣG and ΣG′ by restricting any topological
isomorphism between ΣG and ΣG′ , contradicting (4).

(6) The closed oligomorphic function clones containing precisely the essentially
unary functions obtained from ΣG and ΣG′ are isomorphic by extending
the isomorphism between ΣG and ΣG′ naturally. However, they are not
topologically isomorphic as otherwise ΣG and ΣG′ would be topologically
isomorphic as well by restricting any topological isomorphism between the
functions clones to their unary sort.

(7) ΣG can be encoded in a structure in a finite language such that the above
arguments still work.

We remark that the steps (1)-(3) have already been discussed in [EH90], but
we are going to recapitulate them for the convenience of the reader and to build
on the construction in the further steps. The profinite group G in (1) has been
known for a long time [Wit54]. Its properties were used in [EH90] to construct the
profinite group G′ that is isomorphic, but not topologically isomorphic to it. The
proof of step (2) is due to an idea of Cherlin and Hrushovski, and (7) to another
idea of Hrushovski.

The biggest technical challenge is step (3), and similarly, step (5). It is worth
noting that we do not know whether (3) and (5) are true in general; our proof
depends on the particular structure of the group G from (1). In fact, our proof
will deviate from the above presentation in that we will not directly work with G
but with a factor thereof. We find it, however, useful to have the above schema in
mind since it does reflect the general proof idea.
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4.2.2 Profinite groups

In this section we are going to discuss the profinite group G that will be the basis
of our counterexample. We say a subgroup F′ ≤ G is a complement of a normal
subgroup F of G iff G = F · F′ and F ∩ F′ is the identity subgroup.

Proposition 4.2.1. There exists a separable profinite group G with the following
properties:

• G has a non-trivial, finite central subgroup F with a dense complement F′

in G;

• any complement of any finite central subgroup of G is dense in G.

The construction of this profinite group can be found in [EH90, Theorem 4.1],
where it is also used to answer a question about relative categoricity. We remark
that the same group had already been constructed in [Wit54] in a different context,
namely to provide an example of a compact separable group with a non-compact
commutator subgroup.

Lemma 4.2.2. Let G,F and F′ be as in Proposition 4.2.1. Then:

• G/F is a profinite group which is isomorphic, but not topologically isomor-
phic to F′;

• G and G/F×F are isomorphic as groups, but are not topologically isomor-
phic.

Proof. Since F is central we have that G = F′ · F. Since moreover F′ ∩ F is the
identity subgroup, every g ∈ G has a unique representation g = f ′f , where f ′ ∈ F′

and f ∈ F. Hence every coset gF contains exactly one representative from F′. So
the restriction of the quotient homomorphism G → G/F to F′ is bijective and
thus an isomorphism. Since F is closed, G/F is a profinite group; in particular it
is compact. By Proposition 4.2.1 F′ is not closed in G and therefore not compact.
So G/F and F′ cannot be topologically isomorphic.

Since F is central in G, we have that F′ × F is isomorphic to G, and so is
G/F × F by the above. However, no isomorphism from G/F × F to G can be a
topological one. Otherwise, the image of F (viewed as a subgroup of G/F× F in
the natural embedding) would be central in G and so the image of G/F would
have to be a proper dense subgroup of G, by Proposition 4.2.1. Therefore it would
not be closed, contradicting compactness.

Notation 4.2.3. From now on, we fix groups G, F, and F′ as in Proposition 4.2.1.
We moreover denote the isomorphism from G/F onto F′ which sends every class
gF to the unique element in gF ∩ F′ by κ.

85



We remark that the axiom of choice was used to show the existence of the
pair of subgroups F,F′ in G in Proposition 4.2.1. This seems unavoidable: it is
well-known that every Baire measurable homomorphism between Polish groups is
continuous (see e.g. [Kec95]). Further the statement that every set is Baire mea-
surable is consistent with ZF+DC ([She84]). Thus the existence of two separable
profinite groups (respectively two closed oligomorphic groups) that are isomorphic,
but not topologically isomorphic, cannot be proven in ZF+DC (see the discussion
in [BP15b]). The insufficiency of ZF+DC to construct a non-continuous homo-
morphism between Polish groups was already observed in [Las91].

4.2.3 Encoding profinite groups as factors of oligomorphic
groups

The next step is to describe a given separable profinite group as a factor of two
oligomorphic permutation groups. Our argument is a generalization of an argu-
ment of Cherlin and Hrushovski, which can be used to show that there are oligo-
morphic groups without the small index property [Las82]. A similar construction
is also used in [BPP] to show that there is an oligomorphic clone on a countable
set with a discontinuous homomorphism onto the projection clone. The result also
appears in [EH90].

Proposition 4.2.4. There is a closed oligomorphic permutation group Φ on a
countable set X such that for any separable profinite group R there exists a closed
permutation group ΣR such that Φ ≤ ΣR ≤ Sym(X) and:

• Φ is a closed normal subgroup of ΣR,

• Φ is the intersection of the open subgroups of ΣR of finite index,

• R ∼=T ΣR/Φ.

Proof. We first prove the proposition for the special case R =
∏

n≥1 Sym(n). Let L
be the language containing an n-ary relation symbol P n

i for all integers 1 ≤ i ≤ n.
Then we consider the class of all finite L-structures such that

• for all n ≥ i ≥ 1: P n
i (x̄) implies that the entries of x̄ are distinct;

• for all n ≥ 1: P n
1 , . . . , P n

n form a partition of the n-tuples with distinct
entries.

It is easy to verify that this class is an amalgamation class. Thus there is a
unique countable homogeneous structure A∗ = (A, (P n

i )n≥i≥1) whose age, i.e., its
set of finite induced substructures up to isomorphism, is equal to this class. Since
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the number of relations of any fixed arity in A∗ is finite, A∗ is ω-categorical. We
set Φ to be the automorphism group of A∗.

For every n, let En(x̄, ȳ) be the 2n-ary relation on A that holds if and only if
x̄ and ȳ are members of the same partition class P n

i . By definition, the relation
En forms an equivalence relation on the n-tuples with distinct entries that has
the sets P n

i as equivalence classes. We set ΣR to be the automorphism group of
(A, (En)n≥1). Clearly every En is definable in A∗, so Φ ≤ ΣR. By verifying that
(A, (En)n≥1) has the extension property, one can easily see that it is a homogeneous
structure.

Every function in ΣR induces a permutation on the set Xn := {P n
i : 1 ≤

i ≤ n}, for every n ≥ 1. The action of ΣR on the disjoint union of Xn gives
us a homomorphism µR : ΣR → R. The homogeneity of (A, (En)n≥1) guarantees
that every permutation on a finite subset of

⋃
n≥1Xn (respecting the arities n)

is induced by an element of ΣR. This fact, together with a standard back-and-
forth-argument, implies that we can obtain every permutation on the full union⋃
n≥1Xn as the action of an element of ΣR. In other words, µR is surjective. Every

stabilizer in ΣR of a finite subset of
⋃
n≥1Xn is an open subgroup, hence µR is

continuous and open. The kernel of µR is Φ, so we have ΣR/Φ ∼=T R.
Finally, we want to prove that Φ is the intersection of the open subgroups of

ΣR of finite index. It is clear that Φ contains this intersection, since Φ is the
intersection of the preimages of all the stabilizers of Xn, n ≥ 1, under the action
of µR. It remains to show that Φ has no proper open subgroup of finite index.

Suppose that Φ has a proper open subgroup Λ ≤ Φ of finite index. Since Λ is
open, there is a finite tuple ȳ of distinct elements in A such that its stabilizer Φ(ȳ)

lies entirely in Λ. We will obtain a contradiction by studying the actions of Φ and
Λ on ȳ. Let OΦ(ȳ) := {g(ȳ) : g ∈ Φ} and OΛ(ȳ) := {g(ȳ) : g ∈ Λ} be the orbits
of ȳ under these actions. Now OΦ(ȳ) can be partitioned into subsets of the form
gOΛ(ȳ), where g ∈ Φ. This partition is clearly preserved under the action of Φ.
For all g ∈ Φ the following holds:

g(ȳ) ∈ OΛ(ȳ)⇔ ∃h ∈ Λ(g(ȳ) = h(ȳ))⇔ ∃h ∈ Λ(h−1 ◦ g ∈ Φ(ȳ))⇔ g ∈ Λ.

Thus the index |Λ : Φ| coincides with the number of partition classes gOΛ(ȳ) in
OΦ(ȳ). Since this index is greater than 1, there exists b̄ ∈ OΦ(ȳ) outside the class
OΛ(ȳ).

We next claim that there exists a tuple ā ∈ OΛ(ȳ) such that all elements of
the tuple (ā, ȳ) are distinct. Otherwise in every tuple (ā, ȳ) with ā ∈ OΛ(ȳ) an
equation ai = yj holds; we will derive a contradiction. For all i ∈ ω, pick fi ∈ Φ
such that for all i 6= j the tuples fi(ȳ) and fj(ȳ) contain no common values. This
is possible by the construction of A∗. By our assumption, for every function g in
the coset fiΛ, g(ȳ) contains an element of the tuple fi(ȳ). By the choice of the fi,
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it follows that for i 6= j, the cosets fiΛ and fjΛ are disjoint. This is a contradiction
to the finite index of Λ in Φ.

There exists d̄ ∈ OΦ(ȳ) such that the tuples (ȳ, ā), (d̄, ā), and (d̄, b̄) lie in
the same orbit with respect to the action of Φ. This follows from the extension
property of A∗. So there are functions h1, h2 ∈ Φ such that h1(ȳ, ā) = (d̄, ā) and
h2(d̄, ā) = (d̄, b̄). Since Φ preserves our partition, h1(ȳ, ā) = (d̄, ā) implies that d̄
lies in OΛ(ȳ). But because of h2(d̄, ā) = (d̄, b̄) also b̄ lies in the same class, which
is a contradiction.

We have shown the proposition for R =
∏

n≥1 Sym(n). Let now R′ be an
arbitrary separable profinite group. As such, it is topologically isomorphic to a
closed subgroup of R, so without loss of generality let R′ ≤ R. We set ΣR′ to be the
preimage of R′ under µR. Clearly then R′ ∼=T ΣR′/Φ. Again Φ is the intersection
of all the stabilizers of Xn in ΣR′ for n ≥ 1, implying that the intersection of all
open subgroups of finite index in ΣR′ is contained in Φ. Since Φ has no proper
open subgroup of finite index, they are equal.

Notation 4.2.5. From now on let Φ be the oligomorphic permutation group de-
fined in the proof of Proposition 4.2.4 and A be its domain. Also let µR : ΣR → R
be the quotient mapping described in the proof.

4.2.4 Lifting the isomorphism to the encoding groups

Let G be as in Proposition 4.2.1. The most natural next step in the proof might
be to lift the non-topological isomorphism between G and G′ := G/F × F to an
isomorphism between ΣG and ΣG′ . However, we do not know if this is possible.
Instead, we will work with ΣG/F × F and the closure of ΣG/F in a discontinuous
action as a permutation group.

As technical preparation for this, we will now provide a particular representa-
tion of the topological group G as a permutation group (i.e., a topological isomor-
phism with a permutation group).

A representation of G as a permutation group

As a separable profinite group, G contains a countable sequence (Gi)i∈ω of open
normal subgroups with trivial intersection. Since G is compact, the factor groups
G/Gi are finite. Letting G act on the disjoint union of the factor groups by
translation, we obtain a topologically faithful action of G, i.e., a representation of
G as a closed permutation group on the countable set

⋃
i∈ω G/Gi. In particular,

we then have a representation of the subgroup F′ as a (non-closed) permutation
group on

⋃
i∈ω G/Gi.

Recall that F′ is naturally isomorphic to G/F, but not topologically isomorphic
to it. In the following, we will pick the open normal subgroups Gi mentioned above
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in such a way that the restriction of the action of F′ to
⋃
i≥1 G/Gi (where G/G0

is missing) will still be faithful and hence isomorphic to F′; however, it will be
topologically isomorphic to G/F, and in particular not topologically isomorphic
to F′. Note that the topology on G/F is obtained from the topology of F′ by
factorizing modulo F, and hence is coarser than the topology on F′, making such
an undertaking possible.

Our action of G on
⋃
i∈ω G/Gi will moreover have the property that its re-

striction to F′ will be isomorphic (as an action) to an action of F′ on the disjoint
union

⋃
i∈ω F′/F′i of certain coset spaces of F′, rather than of G. Hence, it can

be defined from F′ alone. In particular, since F′ is dense in G, the action of
G can be reconstructed from F′ and a particular sequence of normal subgroups
(F′i)i∈ω thereof. Note that not all of the F′i will be open, since the action of F′ on⋃
i∈ω F′/F′i is not a closed permutation group. In fact, only F′0 will be non-open.

It is this particular representation of G as a permutation group which will
allow us to lift isomorphisms to the oligomorphic permutation groups encoding
our profinite groups. Note that we use the particular structure of G, e.g., the
density of F′, to obtain the representation.

To obtain the desired open normal subgroups, we first pick a sequence (Hi)i≥1

of open normal subgroups of G/F whose intersection is the identity. The sequence
exists since F is closed and so G/F is profinite. We now set Gi to be the preimage
of Hi under the quotient mapping, i.e., Gi := {hf | hF ∈ Hi and f ∈ F}, for all
i ≥ 1. So each Gi is an open normal subgroup of G, and

⋂
i≥1 Gi = F. To finish the

construction, we pick an open normal subgroup G0 of G whose intersection with F
is the identity; this is possible, because by profiniteness G contains a sequence of
open normal subgroups with trivial intersection, and because F is finite. Finally,
we set F′i := F′ ∩Gi, for all i ∈ ω.

Notation 4.2.6. We now fix (Gi)i∈ω and (F′i)i∈ω as above, and let τ : G →
Sym(

⋃
i∈ω G/Gi) be the mapping which sends an element g of G to the per-

mutation acting on
⋃
i∈ω G/Gi by translation with g.

Lemma 4.2.7.

(1) τ is faithful and continuous;

(2) F is the stabilizer of
⋃
i≥1 G/Gi under the action τ ;

(3) the restriction of τ(F′) to
⋃
i≥1 G/Gi is a permutation group that is topolog-

ically isomorphic to G/F;

(4) the actions of F′ on
⋃
i∈ω G/Gi (via τ) and on

⋃
i∈ω F′/F′i (by translation)

are isomorphic.
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(5) the closure of F′ in Sym(
⋃
i∈ω F′/F′i) is isomorphic to G.

Proof.

(1) The elements of the family (Gi)i∈ω are open normal subgroups of G with
trivial intersection. Thus τ is faithful and continuous.

(2) Since F is the intersection of all (Gi)i≥1, it is the stabilizer of
⋃
i≥1 G/Gi.

(3) For every i ≥ 1 the quotient group G/Gi is isomorphic to (G/F)/(Gi/F).
Thus the action of F′ on

⋃
i≥1 G/Gi is isomorphic to the action of F′ on⋃

i≥1(G/F)/(Gi/F), which is a representation of G/F as permutation group
since the intersection of the factors (Gi/F) is trivial by choice of the Gi.

(4) Since F′ is dense in G and all Gi are open, every coset in
⋃
i∈ω G/Gi contains

an element of F′. Thus

G/Gi = F′Gi/Gi
∼= F′/(F′ ∩Gi) = F′/F′i.

One can now easily verify that the actions of F′ on
⋃
i∈ω G/Gi and on⋃

i∈ω F′/F′i are isomorphic.

(5) This follows from (4) as F′ is dense in G.

The lifting

We will now consider a discontinuous action of ΣG/F, similarly to the action of F′

on
⋃
i∈ω G/Gi in Lemma 4.2.7, which is discontinuous if considered as an action

of G/F rather than of F′: otherwise it would be closed as a permutation group,
but its closure as a permutation group is topologically isomorphic to G.

The quotient homomorphism µG/F : ΣG/F → G/F from Proposition 4.2.4 gives
rise to an action of ΣG/F on the cosets

⋃
i∈ω G/Gi by simply considering the com-

position τ ◦ κ ◦ µG/F. If we restrict this action to
⋃
i≥1 G/Gi then it is continu-

ous, as the composition of continuous functions. But if we regard the action on⋃
i∈ω G/Gi, the action fails to be continuous, since the induced permutation group

is topologically isomorphic to the non-closed F′.
Recall that ΣG/F was defined as a closed, oligomorphic permutation group on

a countable set A. Clearly, the combined action of ΣG/F on A ∪G/G0 fails to be
continuous. By χ we denote the embedding of ΣG/F into Sym(A∪G/G0). Then,
analogously to F′ in the profinite case, χ[ΣG/F] is not closed in Sym(A ∪G/G0).

Notation 4.2.8. Henceforth χ will denote the action of ΣG/F on A∪G/G0, and
Γ the closure of χ[ΣG/F] in Sym(A ∪G/G0).
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Group acting on via properties image ∼=T properties
(i) G

⋃
i∈ω G/Gi τ faithful, cont. G closed

(ii) G/F
⋃

i∈ω G/Gi τ ◦ κ faithful, discont. F′ non-closed
(iii) ΣG/F

⋃
i∈ω G/Gi τ ◦ κ ◦ µG/F discontinuous F′ non-closed

(iv) ΣG/F

⋃
i≥1 G/Gi restr. of (iii) continuous G/F closed

(v) ΣG/F A ∪G/G0 χ faithful, discont. χ[ΣG/F] oligom., non-closed
(vi) Γ A ∪G/G0 ext. of (v) faithful, cont. Γ oligom., closed
(vii) Γ

⋃
i∈ω G/Gi comb. of (iv), (vi) continuous G closed

Figure 4.1: Group actions, some of their properties, and the permutation groups
they induce.

Figure 4.1 gives an overview to all the group actions we are considering.

Lemma 4.2.9.

(1) Γ is a closed oligomorphic permutation group.

(2) Γ is the semidirect product χ[ΣG/F] · Γ(A).

(3) χ[Φ] is the intersection of the open subgroups of finite index in Γ.

(4) Γ/χ[Φ] ∼=T G.

(5) Γ(A) is central in Γ and isomorphic to F.

(6) Γ ∼= ΣG/F × F.

Proof.

(1) Γ is closed by definition. As ΣG/F is oligomorphic on A and G/G0 is finite,
it follows that Γ is oligomorphic.

(2) The restriction function of Γ to A is a continuous homomorphism |A : Γ →
ΣG/F. Let g ∈ Γ and let (hn)n∈ω be a sequence of permutations in ΣG/F

such that χ(hn) converges to g in Γ. Then (hn)n∈ω converges in ΣG/F, since
hn = |A ◦ χ(hn) for all n ∈ ω. By h we denote its limit in ΣG/F. The
functions g and h are identical on A, thus χ(h)−1 ◦ g ∈ Γ(A). Moreover,
χ[ΣG/F] and Γ(A) have trivial intersection. Therefore Γ is the semidirect
product of χ[ΣG/F] and Γ(A).

(3) Note that χ is open and that it maps subgroups of finite index in ΣG/F

to subgroups of finite index in Γ by (2). Since by Proposition 4.2.4 the
permutation group Φ is the intersection of the open subgroups of finite index
in ΣG/F, we have that χ[Φ] contains the intersection of open subgroups of
finite index in Γ.
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For the other inclusion we remark that χ[Φ] fixes G/G0. Therefore the
restriction of χ to Φ is continuous. If now χ[Φ] had a proper open subgroup
of finite index, then its preimage under χ would be open and of finite index
in Φ. Because of Proposition 4.2.4 it would be equal to Φ, a contradiction.

(4) By considering µG/F ◦ |A we get a continuous surjective homomorphism of Γ
onto G/F. This gives us a continuous action of Γ on

⋃
i≥1 G/Gi, by further

composing with the mapping τ ◦ κ. By additionally letting Γ act on G/G0

by restriction of its domain we get a continuous action of Γ on
⋃
i∈ω G/Gi

(Item (vii) in Figure 4.1).

It is easily verified that χ[Φ] is the kernel of the action of Γ on
⋃
i∈ω G/Gi. So

Γ/χ[Φ] is topologically isomorphic to the permutation group that Γ induces
on
⋃
i∈ω G/Gi via this action. By the definition of the action, if we consider

its restriction to χ[ΣG/F], then it induces the same permutation group on⋃
i∈ω G/Gi as the action of G/F on

⋃
i∈ω G/Gi – this permutation group

is, by Lemma 4.2.7, topologically isomorphic to F′. Since the action of Γ
is continuous and Γ is the topological closure of χ[ΣG/F] we get that the
permutation group it induces is topologically isomorphic to the closure of
the action of F′ on

⋃
i∈ω G/Gi, which is in turn topologically isomorphic to

G. In conclusion we get that Γ/χ[Φ] ∼=T G.

(5) In the action of Γ on
⋃
i∈ω G/Gi from (4), the stabilizer of

⋃
i≥1 G/Gi con-

sists precisely of the elements of χ[Φ] · Γ(A); this follows from (2) and the
definition of the action. Since the permutation group induced by this action
on
⋃
i∈ω G/Gi coincides with the permutation group induced by the action

τ of G on this set, and since the stabilizer of
⋃
i≥1 G/Gi in the latter action

is isomorphic to F, we get that χ[Φ] · Γ(A), factored by the kernel χ[Φ], is
isomorphic to F. Hence, Γ(A) is isomorphic to F. As F is a central subgroup
of G, Γ(A) is central in Γ.

(6) Since Γ(A) is a central normal subgroup, the semidirect product in (2) is a
direct product. We conclude that, as groups:

Γ = χ[ΣG/F] · Γ(A)
∼= ΣG/F × F.

Notation 4.2.10. Let ∆ be any closed oligomorphic permutation group on a
countable set which is topologically isomorphic to ΣG/F × F. The existence of ∆
follows from the fact that ΣG/F is itself such a group and that F is finite.

Corollary 4.2.11. The closed oligomorphic permutation groups ∆ and Γ are iso-
morphic, but not topologically isomorphic.
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Proof. As we have seen in Lemma 4.2.9 (6), ∆ and Γ are isomorphic as groups.
Recall that χ[Φ] is the intersection of the open subgroups of finite index in Γ,
by Lemma 4.2.9 (3). By Proposition 4.2.4, Φ is the intersection of the open
subgroups of finite index in ΣG/F, and hence also in ΣG/F×F. Thus any topological
isomorphism from Γ to ∆ sends χ[Φ] onto Φ, and hence induces a topological
isomorphism between the quotients Γ/χ[Φ] ∼=T G and (ΣG/F/Φ)×F ∼=T G/F×F,
which is a contradiction to Lemma 4.2.2.

4.2.5 Extending the isomorphism to the closures of the
groups

Recall that, for a permutation group Θ, we denote by Θ the topological closure of
Θ in the space of all transformations on its domain, equipped with the topology
of pointwise convergence.

Note that the elements of Θ are precisely the elementary embeddings to itself
of any structure whose automorphism group is Θ. Our aim in this section is to
show that the monoids ∆ and Γ are isomorphic, but not topologically isomorphic.
It is clear that ∆ and Γ are not topologically isomorphic, since the subgroups of
invertible elements ∆ and Γ are not. It is harder to show that they are isomorphic,
since there seems to be no obvious way to carry it over from the permutation
groups, the problem being the non-continuity of the isomorphism. We therefore
need to further study the topological monoids ∆ and Γ and how they are related
to the profinite group G.

Lemma 4.2.12. Let R be any separable profinite group. The continuous homo-
morphism µR : ΣR → ΣR/Φ ∼=T R extends to a continuous monoid homomorphism
µR : ΣR → R.

Proof. Recall that µR was obtained via the action of ΣR on
⋃
n≥1Xn, where Xn

consists of the equivalence classes of the relations En. Every element of ΣR agrees
on every finite set with an element of ΣR. Therefore the functions in ΣR preserve
the equivalence relations En and their negations for n ≥ 1. Since every such
relation has only finitely many equivalence classes, every element of ΣR induces a
permutation on them. This action of ΣR on

⋃
i≥1Xi extends the action of ΣR and

gives us the continuous monoid homomorphism µR.

Recall the discontinuous action of ΣG/F on the cosets
⋃
i∈ω G/Gi via the map-

ping τ ◦κ ◦µG/F (Item (iii) in Figure 4.1). With the help of µG/F we see that this
action has a natural extension to ΣG/F. As before, the restriction of this action
to
⋃
i≥1 G/Gi is continuous, and the induced permutation group is isomorphic to

G/F. It is with the action on G/G0 that we lose the continuity.
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By composing the continuous function µG/F ◦ |A : Γ → G/F with the con-
tinuous action τ ◦ κ of G/F on

⋃
i≥1 G/Gi, we obtain a continuous action of Γ

on
⋃
i≥1 G/Gi. By additionally letting Γ act on G/G0 by restriction, we get a

continuous action of Γ on
⋃
i∈ω G/Gi which extends the action of Γ thereon.

Similarly to the situation with ΣG/F, we can let ΣG/F act on A ∪ G/G0,
inducing an embedding χ of ΣG/F into the set of all transformations on A∪G/G0

which extends the group embedding χ from Lemma 4.2.9.

Lemma 4.2.13.

(1) Γ = χ[ΣG/F].

(2) All elements of Γ which stabilize (pointwise) A are invertible. Hence, Γ(A) =
Γ(A).

(3) The action of Γ on
⋃
i∈ω G/Gi induces a permutation group that is equal to

G.

(4) Γ is isomorphic to the monoid direct product ΣG/F × F.

Proof.

(1) Γ was defined as the topological closure of χ[ΣG/F] in Sym(A ∪G/G0), so
this is immediate.

(2) The functions in Γ are injective, so by finiteness of G/G0 any element of Γ
which fixes all points of A is bijective.

(3) The action of Γ on
⋃
i∈ω G/Gi induces a permutation group that is topolog-

ically isomorphic to G, by Lemma 4.2.9 (4). The action of Γ on
⋃
i∈ω G/Gi

extends this action. Since all permutations induced by the action of Γ have
only finite orbits, and since the action of Γ is continuous, every element of
Γ actually induces a permutation on

⋃
i∈ω G/Gi. Every such permutation

is in turn already induced by the action of Γ, since the permutation group
induced by this action is closed. Summarizing, the functions induced by the
two actions coincide, and induce a permutation group which is topologically
isomorphic to G.

(4) Let g ∈ Γ, and assume first that g fixes
⋃
i≥1 G/Gi pointwise. So g|A ∈ ΣG/F

fixes
⋃
i≥1 G/Gi and χ(g|A) is the identity on G/G0. Note that χ(g|A) agrees

with g on A (but g may be non-identity on G/G0).

By (3), there is g′ ∈ Γ which agrees with g on
⋃
i∈ω G/Gi. By 4.2.9 we

can write g′ = e · f where e ∈ χ(ΣG/F) and f ∈ Γ(A). As f, g′ fix all of
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⋃
i≥1 G/Gi, the same is true of e. So e ∈ χ(Φ) and therefore e fixes all of

G/G0. Thus f ∈ Γ(A) agrees with g′ and therefore with g on
⋃
i∈ω G/Gi.

So g = χ(g|A) · f (as g agrees with χ(g|A) on A and f fixes all of A).

Now let g be arbitrary. There exists h ∈ ΣG/F such that g and h agree in
their action on

⋃
i≥1 G/Gi, by (3). Then by the preceding case, χ(h)−1 ◦ g

is contained in χ[ΣG/F] · Γ(A), and hence so is g.

Clearly χ[ΣG/F] ∩ Γ(A) is the trivial group and χ is a monoid isomorphism
from ΣG/F to its image. As Γ(A)

∼= F, we have the result.

Let ∆ be as in Notation 4.2.10.

Proposition 4.2.14. The closed transformation monoids ∆ and Γ are isomorphic,
but not topologically isomorphic.

Proof. The group ∆ is topologically isomorphic to ΣG/F×F, thus ∆ is topologically
isomorphic to ΣG/F × F. By Lemma 4.2.13 Γ is isomorphic to ΣG/F × F, so
∆ and Γ are isomorphic. If they were topologically isomorphic, then also the
groups of invertible elements, equal to ∆ and Γ respectively, would be topologically
isomorphic. But this contradicts Corollary 4.2.11.

4.2.6 Extending the isomorphism to the function clones

When ∆ is any set of finitary functions on a given set, then there exists a smallest
function clone containing it, the function clone generated by ∆. In the special
case where ∆ is a transformation monoid, this clone consists precisely of those
functions which arise by adding dummy variables to the functions of the monoid.
In this case, if ∆ is topologically closed, then so is the function clone generated
by ∆. Thus moving from a ∆ to the clone it generates is an algebraic procedure,
in contrast to the moving from a closed permutation group to its topological clo-
sure as a transformation monoid, which is topological. It is therefore much more
straightforward to extend non-topological isomorphisms between closed transfor-
mation monoids to the clones they generate. The following proposition is easy, its
proof can be found in [BPP17].

Proposition 4.2.15. Let Σ,Λ be transformation monoids, and let ξ : Σ → Λ be
a monoid isomorphism such that both ξ and its inverse function send constant
functions to constant functions. Then ξ extends to an isomorphism between the
function clones generated by Σ and Λ.

Corollary 4.2.16. The function clones generated by the transformation monoids
∆ and Γ are isomorphic, but not topologically isomorphic.
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Proof. By Propositions 4.2.14 and 4.2.15, the clones are isomorphic. Any topo-
logical isomorphism between them would yield a topological isomorphism between
the monoids ∆ and Γ by restriction to the unary sort, and hence contradict Propo-
sition 4.2.14.

4.2.7 Encoding into a finite relational language

We have shown that there are ω-categorical structures A and B whose endomor-
phism monoids are isomorphic, but not topologically isomorphic. The structure
A has an infinite signature, and it is easy to see from the theorem of Coquand,
Ahlbrandt, and Ziegler [AZ86] that any structure A′ whose automorphism group
is topologically isomorphic to the one of A must have an infinite signature. In this
section we are going to show that there is an ω-categorical structure in a finite
language such that its automorphism group, its endomorphism monoid and its
polymorphism clone do not have reconstruction.

The key ingredient for the counterexamples of the previous sections was Propo-
sition 4.2.4. It gave us an encoding of the profinite group G/F as the quotient of
an oligomorphic group ΣG/F and the intersection of its open subgroups of finite
index. Our primary goal in this section is to construct an oligomorphic permuta-
tion group Σ̃ that also encodes G/F in the above sense and can be written as the
automorphism group of a structure with finite signature. We will obtain Σ̃ with
the help of a theorem due to Hrushovski, which states that every ω-categorical
structure is definable on a definable subset of an ω-categorical structure with fi-
nite signature. In Proposition 4.2.17 we present Hrushovski’s result and a proof
sketch taken from [Hod97, Theorem 7.4.8] in order to refer to this construction
later on.

Proposition 4.2.17. Let A be a countable ω-categorical structure. Then there is a
finite language L, containing a 1-ary predicate P , and an ω-categorical L-structure
B, such that the domain of A is equal to the elements of B satisfying P and the
definable relations of A are exactly the definable relations of B restricted to P .

Proof. We can assume that A is relational with atomic relations R1, R2, . . . where
Rn has arity l(n). We can also assume that every definable relation in A is equiv-
alent to an atomic formula and that l(n) ≤ n for all n ≥ 1. In particular, A has
quantifier elimination and is homogeneous. Let L be the language consisting of
the relation symbols P , Q, λ and ρ (all 1-ary), H (2-ary), and S (4-ary), and let
L+ be the union of L and the language of A. Let T be the theory in L+ which
says:

• If Rn(x̄) for some n ≥ 1, then all entries of x̄ satisfy P ;

• Q(x) if and only if ¬P (x);
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• if λ(x) or ρ(x), then Q(x);

• if H(x, y), then Q(x) and Q(y);

• if S(x, y, a, b) then Q(x), Q(y), and P (a), P (b).

LetM be a model of T . Then we say a set of elements ofM is an n-pair if it
can be written as {a1, . . . , al(n), c1, . . . , cn}, where n ≥ 1 and

• P (ai) holds for all 1 ≤ i ≤ l(n) and Q(ci) holds for all 1 ≤ i ≤ n;

• the elements ci are distinct and H(ci, cj) holds iff j ≡ i+ 1 mod n;

• λ(ci) holds iff i = 1 and ρ(ci) holds iff i = l(n);

• S(ch, ci, ak, am) holds iff ah = ak.

Note that if an n-pair {a1, . . . , al(n), c1, . . . , cn} is given, we can uniquely recover
the sequence (c1, . . . , cn) and also the sequence (a1, . . . , al(n)), which may contain
repetitions. We say the n-pair labels the sequence ā = (a1, . . . , al(n)).

Consider the class of finite models B′ of T such that

• the restriction of B′ to P and to the relations Rn is isomorphic to a finite
substructure of A;

• for every n ≥ 1, if B′ contains an n-pair which labels the sequence ā, then
B |= Rn(ā).

By [Hod97, Theorem 7.4.8], this is an amalgamation class; let B+ be its Fräıssé
limit.

Clearly, the restriction of B+ to the subset P and to the relations Rn is homo-
geneous and has the same age as A. Therefore it is isomorphic to A. Let B be the
reduct of B+ in the language L. By construction B+ |= Rn(ā) holds if and only if
some n-pair in B+ labels ā. Therefore every relation Rn is definable in B.

In Proposition 4.2.17, the definable relations of B restricted to P are exactly
the definable relations of A. Hence the orbits of Aut(B) and the orbits of Aut(A)
on tuples in P coincide. However we do not know if the restriction of Aut(B) to
P is closed in the full group Aut(A), i.e. it might be a proper dense subgroup of
Aut(A).

Lemma 4.2.18. Let A be a countable ω-categorical homogeneous structure and B
as constructed in Proposition 4.2.17. Then End(B) = Aut(B), i.e., B is a model-
complete core (cf. [Bod07]).

97



Proof. It is shown in [BP14] that for ω-categorical structure B, End(B) = Aut(B)
holds if and only if every formula in B is equivalent to an existential positive for-
mula. Let B+ be as in the proof of Proposition 4.2.17. Because of the homogeneity
of B+, every L-formula in B is equivalent to a quantifier-free L+-formula in B+.
So it suffices to show that every quantifier free L+-formula is equivalent to an
existential positive L-formula in B+. We first prove the statement for an atomic
formula Rn(x1, . . . , xl(n)). By the construction of B+ we have

B+ |= Rn(x1, . . . , xl(n))⇔ B+ |= ∃y1, . . . , yn ({x1, . . . , xl(n), y1, . . . , yn} is an n-pair) .

The latter is an existential positive L-formula, since the definition of an n-pair
did not require quantifiers or negations. For a general quantifier-free formula in
B+ we can assume that the relations (Rn)n≥1 only appear in positive form, since
we introduced a relation symbol for every definable relation in A. Applying the
equivalence above for every such Rn then gives us an existential positive formula
in L.

From now on, let A be the canonical structure of the oligomorphic permutation
group ΣG/F, i.e., the structure on the domain of ΣG/F containing all relations which
are invariant under ΣG/F. Let B and B+ be as in the proof of Proposition 4.2.17.

Set Σ̃ := Aut(B), and let µ̃ : Σ̃→ G/F be the composition of the restriction of Σ̃
to P and the homomorphism µG/F.

Recall the construction of ΣG/F in Proposition 4.2.4. Let A∗ be, as in the proof
of that proposition, the structure (A, (P n

i )1≤i≤n). Recall that A∗ is ω-categorical
and homogeneous, and that all relations of A are definable in A∗. By B∗ we denote
the expansion of B+ with the relations (P n

i )1≤i≤n on its P -part. Let Φ̃ be the
automorphism group of B∗.

Lemma 4.2.19. The map µ̃ : Σ̃→ G/F is a continuous surjective homomorphism
with kernel Φ̃. Furthermore, Φ̃ is the intersection of the open subgroups of finite
index in Σ̃.

Proof. As a composition of continuous homomorphisms, µ̃ is a continuous homo-
morphism. As in Proposition 4.2.4 we can think about µ̃ as an action of the
elements of Σ̃ on the set

⋃
n≥1Xn, where Xn = {P n

1 , . . . , P
n
n } for all n ≥ 1. The

functions in Φ̃ are exactly those elements who stabilize all P n
i pointwise, so Φ̃ is in-

deed the kernel of µ̃. Using the homogeneity of B+ and a back-and-forth argument
as in Proposition 4.2.4 one can show that µ̃ is surjective.

Note that the age of B∗ consists exactly of those structures whose restriction
to P lies in the age of A∗ and whose reduct to the language L+ lies in the age of
B+. With this in mind it is easy to verify that B∗ satisfies the extension property.
Hence also B∗ is homogeneous.
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The subgroup of Σ̃ consisting of the elements that stabilize Xn pointwise for
a fixed n ≥ 1 is open and of finite index. The intersection of all such subgroups
is equal to Φ̃. Hence the intersection of all open subgroups of finite index in Σ̃ is
contained in Φ̃.

It remains to show that also the other inclusion holds; we follow the proof of
Proposition 4.2.4. Assume that Φ̃ has a proper open subgroup Λ̃ of finite index.
Because of the openness of Λ̃, there is a tuple ȳ such that the stabilizer Φ̃(ȳ) lies in

Λ̃. Let OΦ̃(ȳ) and OΛ̃(ȳ) denote the orbits of ȳ under Φ̃ and Λ̃, respectively. We
will obtain a contradiction by studying the action of Φ̃ on the partition of OΦ̃(ȳ)
into blocks gOΛ̃(ȳ) with g ∈ Φ̃. The index |Φ̃ : Λ̃| coincides with the number of
partition classes gOΛ̃(ȳ) in OΦ̃(ȳ).

Choose a tuple ā ∈ OΛ̃(ȳ) and a tuple b̄ from another partition class such that
the entries of (ȳ, ā, b̄) are pairwise disjoint. We claim that there is a d̄ ∈ OΦ̃(ȳ)
such that (ȳ, ā), (d̄, ā) and (d̄, b̄) lie in the same orbit of Φ̃, which is a contradiction.

By the homogeneity of B∗ two tuples lie in the same orbit of Φ̃ if they satisfy the
same relations in B∗. We write ȳ = (ȳP , ȳ¬P ), where the components of ȳP satisfy
P , and the components of ȳ¬P do not satisfy P . Similarly, we write ā = (āP , ā¬P ),
b̄ = (b̄P , b̄¬P ). By the proof of Proposition 4.2.4, we can find a tuple d̄P of elements
of A∗ such that (ȳP , āP ), (d̄P , b̄P ) and (d̄P , āP ) satisfy the same relations.

We wish to find a tuple d̄¬P of the same length as ȳ¬P such that setting d̄ :=
(d̄P , d̄¬P ) we have that (d̄, ā) and (d̄, b̄) lie in the same orbit as (ȳ, ā). To this
end, let d̄¬P be a tuple of new variables of the right length. We endow the set
of elements appearing in ȳ, ā, b̄ and d̄ with relations ρ, λ, H and S such that we
obtain a structure in the age of B∗, and such that (d̄, ā) and (d̄, b̄) satisfy the same
relations as (ȳ, ā); clearly, we can then realize these variables as elements of B∗ and
are done by homogeneity. When doing so we can also ensure that all quadruples
of elements from ā, b̄, and d̄ for which S holds consist entirely of elements of (d̄, ā)
or of (d̄, b̄).

We claim that the resulting structure lies in the age of B∗. Assume otherwise.
Then the reduct of the structure in L+ contains a n-pair that labels a tuple x̄
with ¬Rn(x̄). This n-pair has to contain elements of d̄, otherwise this would be
a contradiction to the fact that the union of the elements of ȳ, ā and b̄ induces
a structure in the age of B∗. Moreover, this n-pair lies entirely in (d̄, ā) or (d̄, b̄),
since S does not hold for any other tuples containing elements of d̄. But then, by
construction, also the union of ȳ and ā contains a n-pair that labels an x̄′ with
¬Rn(x̄′). This contradicts the fact that the union of the elements of ā and ȳ lies
in the age of B∗. This proves our claim.

Therefore there are functions h1, h2 ∈ Φ̃ such that h1(ȳ, ā) = (d̄, ā) and
h2(d̄, ā) = (d̄, b̄). Since Φ preserves our partition, h1(ȳ, ā) = (d̄, ā) implies that
d̄ lies in OΛ(ȳ). But because of h2(d̄, ā) = (d̄, b̄) also b̄ lies in the very same class,
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which is a contradiction.

We are now ready to conclude this section with the proof of Theorem 4.0.3.

Proof of Theorem 4.0.3. In Lemma 4.2.19 we have shown that µ̃ : Σ̃ → G/F is
a surjective continuous homomorphism whose kernel Φ̃ is the intersection of open
subgroups with finite index in Σ̃ = Aut(B). Let B be the domain of B. We proceed
as in Section 4.2.4: Via µ̃ we can define an action of Σ̃ on B∪G/G0. This action is
not continuous and has a non-open image, let Γ̃ be its closure in Sym(B ∪G/G0).
Then, following the exact same proof steps as in Lemma 4.2.9 and Corollary 4.2.11
we see that Γ̃ and Σ̃ × F are isomorphic, but not topologically isomorphic. By

the same arguments as in Section 4.2.5 one can also prove that Γ̃ and Σ̃ × F are
isomorphic as abstract monoids, but not topologically isomorphic.

Since F is finite and B has finite signature, there is a structure C with finite
signature such that End(C) ∼=T End(B) × F. Then Aut(C) is topologically iso-
morphic to Aut(B) × F = Σ̃ × F, which we know does not have reconstruction.
By the model completeness of B, we know that its automorphism group is dense

in its endomorphism monoid. It follows that End(C) ∼=T End(B) × F = Σ̃ × F,
proving that also the endomorphism monoid of C has no reconstruction. Finally,
by including the relation R(x, y, a, b)↔ x = y∨a = b in C one can ensure that the
polymorphism clone of C consists of those functions arising from endomorphisms
of C by adding dummy variables. By Proposition 4.2.15, Pol(C) and the function
clone generated by Γ̃ are isomorphic, but not topologically isomorphic.

We do not know whether Γ̃ can be represented as automorphism group of a
structure with finite relational signature. Similarly, we do not know whether its

closure Γ̃ as a monoid is the endomorphism monoid of a structure with finite
relational signature.

4.3 Open Problems

Because of the comments on the consistency of reconstruction for groups in Sec-
tion 4.2.2, the following question is of central importance for the reconstruction of
structures from their endomorphism monoid.

Question 4.3.1. Let Σ be a closed oligomorphic subgroup of Sym(ω) which has
reconstruction. Does the monoid obtained as the closure of Σ in ωω have recon-
struction?

A positive answer would imply that it is consistent with ZF+DC that all
monoids with a dense set of units have reconstruction. These monoids play a
central role in the study of polymorphism clones of ω-categorical structures, in
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particular for the study of the computational complexity of constraint satisfaction
problems (we refer to [BP15b, BP16a] for details).

In the course of the proof, we encountered natural questions that we had to
leave open (for example at the beginning of Section 4.2.4). An answer to the
following question will most probably shed some light on them.

Question 4.3.2. Let Γ be a closed oligomorphic permutation group without recon-
struction. Does the monoid closure of Γ also fail to have reconstruction?

Lascar showed in [Las89] that if A and B are countable ω-categorical structures
which are G-finite, then any isomorphism between their endomorphism monoids
is a topological isomorphism when restricted to their automorphism groups. An
early version of that article concluded with the question whether the assumption
of G-finiteness could be dropped; the published version does not contain the ques-
tion anymore. We remark that our example would be a counterexample to that
question.
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[BK09] Manuel Bodirsky and Jan Kára. The complexity of temporal con-
straint satisfaction problems. Journal of the ACM, 57(2):1–41, 2009.
An extended abstract appeared in the Proceedings of the Symposium
on Theory of Computing (STOC).

[BKJ05] Andrei A. Bulatov, Andrei A. Krokhin, and Peter G. Jeavons. Clas-
sifying the complexity of constraints using finite algebras. SIAM
Journal on Computing, 34:720–742, 2005.

[BKO+17] Libor Barto, Michael Kompatscher, Miroslav Olsák, Michael Pinsker,
and Van Trung Pham. The equivalence of two dichotomy conjectures
for infinite domain constraint satisfaction problems. In Logic in Com-
puter Science (LICS), 2017 32nd Annual ACM/IEEE Symposium on
Logic in Computer Science, pages 1–12. IEEE, 2017. Extended ver-
sion available as arXiv preprint arXiv:1612.07551.

[BM16] Manuel Bodirsky and Dugald Macpherson. Reducts of structures
and maximal-closed permutation groups. The Journal of Symbolic
Logic, 81(3):1087–1114, 2016.

[BN06] Manuel Bodirsky and Jaroslav Nešetřil. Constraint satisfaction with
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[BOP] Libor Barto, Jakub Opršal, and Michael Pinsker. The wonderland
of reflections. Israel Journal of Mathematics. To appear, Preprint
arXiv:1510.04521.

[Bos15] François Bossière. The Countable Infinite Boolean Vector Space and
Constraint Satisfaction Problems. PhD thesis, TU Dresden, 2015.

[BP14] Manuel Bodirsky and Michael Pinsker. Minimal functions on the
random graph. Israel Journal of Mathematics, 200(1):251–296, 2014.

[BP15a] Manuel Bodirsky and Michael Pinsker. Schaefer’s theorem for graphs.
Journal of the ACM, 62(3):52 pages (article number 19), 2015. A
conference version appeared in the Proceedings of STOC 2011, pages
655–664.

[BP15b] Manuel Bodirsky and Michael Pinsker. Topological Birkhoff. Trans-
actions of the American Mathematical Society, 367:2527–2549, 2015.

[BP16a] Libor Barto and Michael Pinsker. The algebraic dichotomy conjec-
ture for infinite domain constraint satisfaction problems. In Proceed-
ings of LICS’16, pages 615–622, 2016. Preprint arXiv:1602.04353.

[BP16b] Manuel Bodirsky and Michael Pinsker. Canonical functions: a new
proof via topological dynamics. Preprint arXiv:1610.09660, 2016.

[BPP] Manuel Bodirsky, Michael Pinsker, and András Pongrácz. Projec-
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Ordonnée (Le Mans, 1987), pages 33–43, 1989.

[Las91] Daniel Lascar. Autour de la propriété du petit indice. Proceedings
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