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Welcome to WAVES 2019

A warm welcome to Austria, to Vienna, and to the WAVES 2019, the 14th Interna-
tional Conference on Mathematical and Numerical Aspects of Wave Propagation.
The 2019 edition of the conference series takes place at TU Wien (Vienna Uni-
versity of Technology) and is jointly organized by the Institute of Mechanics and
Mechatronics (Faculty of Mechanical and Industrial Engineering) and the Institute
of Analysis and Scientific Computing (Faculty of Mathematics and Geoinforma-
tion).

With approximately 260 contributions, 8 plenary lectures, 11 minisymposia, and
20 contributed sessions, WAVES 2019 is a vivid forum for researchers from
different areas of science to disseminate their latest advances in theoretical and
computational modelling of wave phenomena, both in science and technology.
The themes of the conference include: Analytical and Asymptotic Methods,
Approximate Boundary Conditions, Domain Decomposition, Fast Computational
Techniques, Flow-Acoustic Interaction, Forward and Inverse Scattering, Guided
Waves and Random Media, Homogenization of Wave Problems, Mathematical
Problems in Optics, Modelling Aspects in Photonics and Phononics, Nonlinear
Wave Phenomena, and Numerical Analysis.

We would like to thank all our sponsors for their support and financial contributions:
Austrian Acoustics Association, Acoustics Research Institute of the Austrian
Academy of Sciences, City of Vienna, DS Simulia, Springer Verlag, TU Wien,
Vienna Center for Partial Differential Equations, Special Research Programme

”Taming Complexity in Partial Differential Systems“ (funded by FWF, the Austrian
Science Fund), and Vienna Convention Bureau.

We are very pleased that WAVES 2019 could attract a large number of excellent
presentations and we are particularly grateful to the mini-symposia organizers
for contribution to this success. Finally, warm thanks to all members of the
International Scientific Committee and Local Scientific Committee.
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Paul Martin
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4 General Information

Plenary Speakers
Assyr Abdulle (Ecole Polytechnique Fédérale de Lausanne, Switzerland) will
lecture about Numerical methods for wave propagation in heterogenenous me-
dia.

Assyr Abdulle earned his Ph.D. in mathematics from the University of Geneva
in 2001. He completed his first post-doctoral year at Princeton University in the
Program in Applied and Computational Mathematics with successive positions at
ETH Zurich, the University of Basel, and the University of Edinburgh. He was
appointed full professor and chair of computational mathematics and numerical
analysis at EPFL in 2009. He has been the director of the mathematics institute
at EPFL since 2017. His awards include the SciCADE new talent prize (2005),
an Advanced Research Fellowship by the UK Engineering and Physical Sciences
Research Council (2007), the SIAM Wilkinson Prize in Numerical Analysis and
Scientific Computing (2009), and the SIAM Germund Dahlquist Prize (2013). His
research interests concern numerical methods for multiscale partial differential
equations, numerical homogenization methods, Bayesian inverse problems as
well as numerical methods for deterministic dynamical systems and stochastic
differential equations.

Anne-Sophie Bonnet-Ben Dhia (French National Center for Scientific Research,
France) will lecture about Combining integral representations on infinite boundar-
ies and complex scaling for time-harmonic scattering problems.

Anne-Sophie Bonnet-Ben Dhia is a former student of the Ecole Normale Supérieure
de Jeunes Filles. She received the PhD degree in Applied Mathematics in 1988
and the Habilitation à Diriger les Recherches in 1995 from the University Pierre
et Marie Curie. She is presently Directeur de Recherche at CNRS. She is the
leader of the research team POEMS (associated to CNRS, INRIA, and the Ecole
Nationale Supérieure de Techniques Avancées) whose activities are devoted to
the mathematical and numerical analysis of wave phenomena. She is a specialist
of spectral theory and scattering theory, with a particular interest for waveguides
configurations. Her theoretical and numerical contributions apply to various
physical domains covering optics and electromagnetism, water waves, acoustics,
aeroacoustics and ultrasonics.

Josselin Garnier (École Polytechnique, France) will lecture about Wave propaga-
tion in randomly perturbed waveguides.

Josselin Garnier has been a professor in applied mathematics since 2001, first in
Toulouse, then in Paris at the University Paris Diderot, and at Ecole Polytechnique
since 2016. His research interests concern various aspects of applied probability,
including wave propagation in random media, imaging for waves in complex
media, uncertainty quantification, and the design and analysis of stochastic al-
gorithms.
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Marlis Hochbruck (Karlsruhe Institute of Technology, Germany) will lecture
about Unified error analysis for certain full discretizations of wave-type prob-
lems.

Marlis Hochbruck, born in 1964 in Germany, received her diploma degree in Tech-
nomathematics in 1989 and graduated in 1992 from the University of Karlsruhe.
Her PhD studies included a research stay at the NASA Ames Research Center
in California. Afterwards, she held postdoctoral positions at ETH Zürich, the
University of Würzburg, and the University of Tübingen, where she completed her
habilitation in 1997. In the winter semester 1997/98 she held a substitute profess-
orship at the University of Kaiserslautern. In 1998 she became a full professor for
applied mathematics at Heinrich-Heine University of Düsseldorf and in 2010 she
moved to her current affiliation at Karlsruhe Institute of Technology (KIT) as a
full professor of numerical analysis. Her research interests lie in various fields of
numerical analysis, reaching from Krylov subspace methods for linear systems
and matrix functions to the construction, analysis, and efficient implementation of
time integrators for partial differential equations. Most recently, the focus was on
time integration of wave type problems. Marlis Hochbruck is a member of several
committees of the German Research Foundation (DFG), currently serving as one
of its vice presidents. At KIT, she was the speaker of the DFG Research Training
Group 1294 ”Analysis, simulation and design of nanotechnology processes” from
2011-2015 and is now the speaker of the DFG Collaborative Research Center 1173
”Wave phenomena: analysis and numerics”.

Andrii Khrabustovskyi (Graz University of Technology, Austria) will lecture
about Crushed ice problem revisited.

Andrii Khrabustovskyi is a researcher working at Graz University of Technology,
Austria. He works mainly at the intersection of spectral theory, asymptotic ana-
lysis, and homogenization for partial differential equations. Andrii Khrabustovskyi
was born in 1984 in Kharkiv, Ukraine. He was graduated from Kharkiv National
University in 2006. In 2010 he received his PhD from Institute for Low Temper-
ature Physics and Engineering of the National Academy of Sciences of Ukraine.
Since November 2012 he worked at Karlsruhe Institute of Technology, first as
a postdoc at the Research Training Group ”Analysis, Simulation and Design of
Nanotechnological Processes” and then in the Collaborative Research Center
“Wave phenomena: analysis and numerics”. In January 2017 he completed his
habilitation with a thesis entitled “Spectral and asymptotic properties of periodic
media”. In 2017 he received a Lise Meitner scholarship of the Austrian Science
Fund (FWF). Since November 2017 he is a member of the Institute of Applied
Mathematics at TU Graz.
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Euan Spence (University of Bath, United Kingdom) will lecture about For most
frequencies, strong trapping has a weak effect in frequency-domain scatter-
ing.

Euan Spence is a Reader in Mathematics at the University of Bath. His research
interests lie at the interface between semiclassical analysis and numerical analysis
of wave propagation problems, with this being the title of a 5-year EPSRC Early-
Career Fellowship that he currently holds. Euan has been at Bath since 2009,
first as a postdoc on the EPSRC-funded project ”Boundary Integral Equation
Methods for High Frequency Scattering Problems” (a joint project between Bath
and Reading), then as an EPSRC Postdoctoral Fellow (2011-2014), then as a
Lecturer (2014-2017). Before coming to Bath he did his undergraduate, masters,
and PhD at the University of Cambridge.

Beth Wingate (University of Exeter, United Kingdom) will lecture about Non-
linear resonance and finite time-scale separation in highly oscillatory PDEs:
examples in geophysical fluid dynamics and numerical analysis.

Professor Beth Wingate’s main research interest is the study of oscillations in fluid
mechanics, mathematics, and numerics related to high performance computing.
Her recent research is focused on physics of the Arctic Ocean, direct numerical
simulations, and time-stepping methods for HPC and climate modeling, and the
fluid mechanics of the slow/fast manifolds. She did her PhD work at the University
of Michigan studying numerics, waves and ocean fluid dynamics. Other interests
include spectral element methods, in particular the investigation of near optimal
interpolation on triangles. She spent many years at the Los Alamos National
Laboratory in New Mexico, USA before moving to the University of Exeter in
Devon, UK in 2013.

Lexing Ying (Stanford University, USA) will lecture about Building neural net-
works for wave-based inverse problems.

Lexing Ying has been Professor of Mathematics at Stanford University since
2012. Prior to that, he was a professor at the University of Texas at Austin
from 2006 to 2012. His research focuses on computational mathematics and
scientific computing. He received his Ph.D. from New York University and
was a postdoctoral scholar at California Institute of Technology from 2004 to
2006. He is a recipient of the Sloan Research Fellowship (2007), the National
Science Foundation CAREER Award (2009), the Feng Kang Prize of Scientific
Computing (2011), the James H. Wilkinson Prize in Numerical Analysis and
Scientific Computing from SIAM (2013), and the Silver Morningside Medal in
Applied Mathematics (2016).
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Minisymposia
Analysis and numerical methods for wave problems in heterogeneous me-
dia and complicated domains organised by Lise-Marie Imbert-Gérard, Andrea
Moiola and Euan Spence.

Asymptotic models for the wave propagation in presence of periodic struc-
tures organised by Sonia Fliss and Berangere Delourme.

Frames and PDEs organised by Peter Balazs and Helmut Harbrecht.

Modelling and numerical simulation of flow-acoustic interaction organised by
Manfred Kaltenbacher and Claus-Dieter Munz.

Modern fast Boundary Element formulations for wave propagation prob-
lems organised by Martin Schanz and Stephanie Chaillat-Loseille.

Nonlinear acoustics: analytical and numerical aspects organised by Barbara
Kaltenbacher and Mechthild Thalhammer.

Resonant-state expansion of waves in the near- and far-field organised by
Stefan Rotter and Thomas Weiss.

Sweeping preconditioners and related iterative solvers for the Helmholtz
equation organised by Martin Gander and Thorsten Hohage.

Tent-Pitching Space-Time Methods for Nonlinear Waves organised by Robert
Haber and Joachim Schöberl.

Wave Phenomena: Analysis and Numerics organised by Wolfgang Reichel and
Marlis Hochbruck.

Wave propagation and imaging in complex media organised by Chrysoula Tso-
gka and Arnold Kim.
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The conference is supported and sponsored by



Practical Information

Conference Venue: TU Wien
The Conference will be held at main campus of Faculty of Mechanical and In-
dustrial Engineering, TU Wien (Getreidemarkt 9, 1060 Vienna). The TU Wien
(Vienna University of Technology) is located in the heart of Europe, in a cosmopol-
itan city of great cultural diversity. For more than 200 years, the TU Wien has been
a place of research, teaching, and learning in the service of progress. TU Wien is
among the most successful technical universities in Europe and is Austria’s largest
scientific-technical research and educational institution.

All sessions, coffee breaks, and exhibitions will take place on campus in Getreide-
markt 9, 1060 Vienna in the following two locations:

• Building BA, with rooms

– Seminar Room BA 02A, 2nd floor: Conference office

– Seminar Room BA 02B, 2nd floor

– Seminar Room BA 02C, 2nd floor: Internet room

– Foyer on 2nd floor: Coffee, Exhibition

– GM1 Audimax, 1st basement floor (U1)

– GM3 Vortmann Lecture Hall, 2nd floor

– GM5 Praktikums Lecture Hall, 2nd basement floor (U2)

• Building BD, with rooms

– Seminar Room GM8, 2nd floor

– Lecture hall GM2 Radinger, 1st floor

– Lecture hall GM4 Knoller, 2nd floor

– Ground floor: Coffee
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Rooms in building BA
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Rooms in building BD

Information for Presenters
All lecture rooms are equipped with projectors (VGA and HDMI connectors). A
laptop computer and laser pointer will be provided by the conference organisation.
Lecture rooms will be accessible 30 minutes prior to the start of the sessions.
Please copy your presentation (PDF or PowerPoint) to the provided computer well
before the session starts, and test if everything is working as expected. Our lecture
room staff will be there to assist you.

Conference Office
The conference office at Seminar Room BA 02A, 2nd floor of the BA building is
available on:

• Sunday, 25. August; 16:00–20:00

• Monday, 26. August; 07:30–18:00

• Tuesday, 27. August; 08:00–17:00

• Wednesday, 28. August; 08:00–12:30

• Thursday, 29. August, 08:00–17:00

• Friday, 30. August, 08:00–13:00
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Coffee & Lunch
During the coffee breaks, there will be drinks, coffee and snacks provided on the
second floor of building BA, and at the assembly hall of building BD.

For lunch, there are several restaurants in walking distance. The famous Nasch-
markt, located between the streets Rechte Wienzeile and Linke Wienzeile, is a
market with over 100 different market stalls and offers food from traditional
Austrian to Japanese buffet. Furthermore Austria’s biggest shopping street, the
Mariahilfer Straße offers a large variety of restaurants and shops. Both places are
just five minutes away.

Surroundings of the conference venue

WiFi at the Venue
WiFi is available at the whole university. Conference participants with an eduroam
account can use it on the campus. All participants without access to eduroam can
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use their personalized account to access the network tunetguest. Participants have
received the required login credentials (username and password) in the conference
bag.

Cloakroom
Since we expect that many participants will have their luggage with them on the
last conference day, a cloakroom will be available 07:45–09:30 and 08:00–13:00
on Friday, 30. August 2019 in building BA, basement floor (opposite of GM1
Audimax). On all other conference days you have the possibility to store luggage
at the conference office (building BA, 2nd floor, room BA 02A).

No Smoking Policy
There is a strict no-smoking-rule in all buildings of the conference venue. How-
ever, outside of the buildings smoking is allowed. Please use the provided ash
trays.



Social Events

Welcome Reception
Sunday, 25 August 2019, 17.00-20.00: The welcome reception, will be held on
Sunday at TUtheSky on the 11th floor of the BA building, the main conference
building, located at Getreidemarkt 9, 1060 Vienna. At the welcome reception
drinks and finger food will be served, you will meet old and new friends, and
you will have the possibility to get your conference bag. The BA building is an
“energy-plus” office tower; it is the first office tower in the world capable to feed
more energy into the power grid than is required to operate it.

Mayor’s Reception
Tuesday, 27 August 2019, 19.30, City Hall: On Tuesday evening, the Mayor’s
Reception will be held at the Vienna City Hall (Rathaus), located in the center
of Vienna and has to be entered through the side entrance at Lichtenfelsgasse 2.
The City Hall is one of the most beautiful buildings in Vienna and serves as the
seat of both the mayor and the city council of the city of Vienna. It was designed
by Friedrich von Schmidt and built between 1872 and 1883. The distinctive Neo-
Gothic style of the City Hall with its magnificent and fabulous halls provides a
perfect setting for the conference reception. Please do not forget to bring along
the invitation you have recieved with your conference bag.

https://www.google.at/maps/@48.2011,16.3634,17z
https://www.google.at/maps/@48.2106456,16.3565667,17z
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Walk from conference venue to Mayor’s Reception

Conference Banquet
Thursday, 29 August 2019, 19.00, Brandauer’s Schlossbräu: The banquet will
take place at the Brandauer’s Schlossbräu in a former aristocratic dancing hall,
located at Am Platz 5, 1130 Wien, close to the famous castle Schönbrunn. In
the previous restaurant, Der Weisse Engel, which was located at the same place,
Johann Strauss, Johann Strauss Sohn, Franz Schubert and many more were among
the guests.

The venue is reachable by subway line U4 (stop Hietzing). However, due to
construction works line U4 is closed between Karlsplatz and Längenfeldgasse.
The U4z replacement bus line operates between these stations (see information
flyer in your conference bag).

Especially for larger groups, an alternative route by subway is: Walk up from the
conference venue along Mariahilfer Straße to U3 stop Neubaugasse. Take subway
line U3 (direction Ottakring) to Westbahnhof where you change to U6 (direction
Siebenhirten/Alterlaa). At Längenfeldgasse change to U4 (direction Hütteldorf )
and exit at stop Hietzing from where you can walk to the venue. There is a handy
map on your banquet ticket.

https://www.google.at/maps/@48.185838,16.2989153,17z
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Walk from conference venue via Getreidemarkt and Mariahilfer Strasse to
subway stop Neubaugasse (line U3)

Walk from subway stop Hietzing (line U4) to Conference Banquet



Scientific Program

Overview
Monday
08:30–09:00 Opening Speech and General Information in GM1 Audimax, Build-

ing BA

09:00–10:00 Plenary Lecture
Assyr Abdulle (EPFL, Switzerland) Numerical methods for wave propagation
in heterogenenous media in GM1 Audimax, Building BA

10:00–10:30 Coffee Break in buildings BA and BD

10:30–12:30 Parallel Sessions
Seismic and Hydroacoustic Problems in GM2 Radinger, Building BD
BEM and BIE in GM1 Audimax, Building BA
Transparent Boundary Conditions in Sem BA 02 B, Building BA
Optimization in GM8, Building BD
Resonant-state expansion of waves in the near- and far-field in GM5 Prak-
tikum, Building BA
Asymptotic models for the wave propagation in presence of periodic struc-
tures in GM4 Knoller, Building BD
Modelling and numerical simulation of flow-acoustic interaction in GM3
Vortmann, Building BA

14:00–15:00 Plenary Lecture
Lexing Ying (Stanford University, United States of America) Building neural
networks for wave-based inverse problems in GM1 Audimax, Building BA

15:00–15:30 Coffee Break in buildings BA and BD

15:30–17:00 Parallel Sessions
Modelling and numerical simulation of flow-acoustic interaction in GM3
Vortmann, Building BA
Nonlinear acoustics: analytical and numerical aspects in GM4 Knoller,
Building BD
Resonant-state expansion of waves in the near- and far-field in GM5 Prak-
tikum, Building BA
Time Stepping in GM2 Radinger, Building BD
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BEM and BIE in GM1 Audimax, Building BA
Numerical Methods in GM8, Building BD
Transparent Boundary Conditions in Sem BA 02 B, Building BA

17:15–18:45 Parallel Sessions
Modelling and numerical simulation of flow-acoustic interaction in GM3
Vortmann, Building BA
Time Stepping in GM2 Radinger, Building BD
Numerical Methods in GM8, Building BD
Multiscale Problems in Sem BA 02 B, Building BA
Resonant-state expansion of waves in the near- and far-field in GM5 Prak-
tikum, Building BA
Nonlinear acoustics: analytical and numerical aspects in GM4 Knoller,
Building BD
Modern fast Boundary Element formulations for wave propagation prob-
lems in GM1 Audimax, Building BA

Tuesday
08:30–09:30 Plenary Lecture

Euan Spence (University of Bath, United Kingdom) For most frequencies,
strong trapping has a weak effect in frequency-domain scattering in GM1
Audimax, Building BA

09:30–10:00 Coffee Break in buildings BA and BD

10:00–12:00 Parallel Sessions
Scattering in GM8, Building BD
Asymptotic models for the wave propagation in presence of periodic struc-
tures in GM4 Knoller, Building BD
Analysis and numerical methods for wave problems in heterogeneous me-
dia and complicated domains in GM2 Radinger, Building BD
Modelling and numerical simulation of flow-acoustic interaction in GM3
Vortmann, Building BA
Modern fast Boundary Element formulations for wave propagation prob-
lems in GM1 Audimax, Building BA
Sweeping preconditioners and related iterative solvers for the Helmholtz
equation in GM5 Praktikum, Building BA

13:30–14:30 Plenary Lecture
Beth Wingate (University of Exeter, United Kingdom) Nonlinear resonance
and finite time-scale separation in highly oscillatory PDEs: examples in geo-



Overview 19

physical fluid dynamics and numerical analysis in GM1 Audimax, Building
BA

14:30–15:00 Coffee Break in buildings BA and BD

15:00–16:30 Parallel Sessions
Sweeping preconditioners and related iterative solvers for the Helmholtz
equation in GM5 Praktikum, Building BA
Analysis and numerical methods for wave problems in heterogeneous me-
dia and complicated domains in GM2 Radinger, Building BD
Metamaterials in GM3 Vortmann, Building BA
Method of Images and Green’s Functions in GM4 Knoller, Building BD
Numerical Methods in GM8, Building BD
BEM and BIE in GM1 Audimax, Building BA

16:45–18:15 Parallel Sessions
Modern fast Boundary Element formulations for wave propagation prob-
lems in GM1 Audimax, Building BA
Optics in GM3 Vortmann, Building BA
Numerical Methods in GM8, Building BD
Waveguides in GM4 Knoller, Building BD
Analysis and numerical methods for wave problems in heterogeneous me-
dia and complicated domains in GM2 Radinger, Building BD
Sweeping preconditioners and related iterative solvers for the Helmholtz
equation in GM5 Praktikum, Building BA

Wednesday
08:30–09:30 Plenary Lecture

Marlis Hochbruck (Karlsruhe Institute of Technology, Germany) Unified error
analysis for certain full discretizations of wave-type problems in GM1 Audimax,
Building BA

09:30–10:00 Coffee Break in buildings BA and BD

10:00–12:00 Parallel Sessions
Periodic Structures in Sem BA 02 B, Building BA
Waveguides in GM4 Knoller, Building BD
Analysis and numerical methods for wave problems in heterogeneous me-
dia and complicated domains in GM2 Radinger, Building BD
Wave Phenomena: Analysis and Numerics in GM3 Vortmann, Building BA
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Wave propagation and imaging in complex media in GM5 Praktikum, Build-
ing BA
Modern fast Boundary Element formulations for wave propagation prob-
lems in GM1 Audimax, Building BA
Tent-Pitching Space-Time Methods for Nonlinear Waves in GM8, Building
BD

Thursday
08:30–09:30 Plenary Lecture

Andrii Khrabustovskyi (1: Graz University of Technology, Austria; 2: Uni-
versity of Trier, Germany) Crushed ice problem revisited in GM1 Audimax,
Building BA

09:30–10:00 Coffee Break in buildings BA and BD

10:00–12:00 Parallel Sessions
Numerical Methods in GM8, Building BD
Inverse Problems in GM2 Radinger, Building BD
Analysis and Asymptotics in GM4 Knoller, Building BD
Frames and PDEs in Sem BA 02 B, Building BA
Wave Phenomena: Analysis and Numerics in GM3 Vortmann, Building BA
Wave propagation and imaging in complex media in GM5 Praktikum, Build-
ing BA
Modern fast Boundary Element formulations for wave propagation prob-
lems in GM1 Audimax, Building BA

13:30–14:30 Plenary Lecture
Josselin Garnier (Ecole Polytechnique, France) Wave propagation in randomly
perturbed waveguides in GM1 Audimax, Building BA

14:30–15:00 Coffee Break in buildings BA and BD

15:00–16:30 Parallel Sessions
Modern fast Boundary Element formulations for wave propagation prob-
lems in GM1 Audimax, Building BA
Wave Phenomena: Analysis and Numerics in GM3 Vortmann, Building BA
Frames and PDEs in Sem BA 02 B, Building BA
High Frequency and Oscillatory Problems in GM5 Praktikum, Building BA
Numerical Methods in GM8, Building BD
Vibration in GM4 Knoller, Building BD
Inverse Problems in GM2 Radinger, Building BD
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16:45–18:15 Parallel Sessions
Wave Phenomena: Analysis and Numerics in GM3 Vortmann, Building BA
High Frequency and Oscillatory Problems in GM5 Praktikum, Building BA
Elastodynamics in GM4 Knoller, Building BD
Inverse Problems in GM2 Radinger, Building BD
Domain Decomposition in GM8, Building BD
Modern fast Boundary Element formulations for wave propagation prob-
lems in GM1 Audimax, Building BA

Friday
08:30–10:30 Parallel Sessions

Analysis and Asymptotics in GM4 Knoller, Building BD
Domain Decomposition in GM8, Building BD
Wave Phenomena: Analysis and Numerics in GM3 Vortmann, Building BA
Wave propagation and imaging in complex media in GM5 Praktikum, Build-
ing BA
Modern fast Boundary Element formulations for wave propagation prob-
lems in GM1 Audimax, Building BA

10:30–11:00 Coffee Break in buildings BA and BD

11:00–12:00 Plenary Lecture
Anne-Sophie Bonnet-Ben Dhia (CNRS, France) Combining integral represent-
ations on infinite boundaries and complex scaling for time-harmonic scattering
problems in GM1 Audimax, Building BA

12:00–12:30 Closing in GM1 Audimax, Building BA
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Monday

08:30–09:00 Opening Speech and General Information
GM1 Audimax

09:00–10:00 Plenary Lecture
GM1 Audimax, Building BA Chaired by Jens Markus Melenk

Assyr Abdulle Numerical methods for wave propagation in heterogenenous
media

10:00–10:30 Coffee Break
Building BA and building BD

Seismic and Hydroacoustic Problems
GM2 Radinger, Building BD Chaired by Piotr Borejko

10:30 Comparison of Full-waveform and Travel-time Inversions in Helioseismo-
logy
Majid Pourabdian, Laurent Gizon, Thorsten Hohage, Damien Fournier,
Chris S. Hanson

11:00 Imaging the Solar Interior with Seismic Holography
Damien Fournier, Dan Yang, Laurent Gizon

11:30 Low-rank representation of omnidirectional subsurface extended image
volumes
Mengmeng Yang, Marie Graff, Rajiv Kumar, Felix J. Herrmann

12:00 Excitation and Propagation of Whispering Gallery Waves in a Vicinity of
Curvilinear Isobath in Shallow Water
Boris Katsnelson, Pavel Petrov

BEM and BIE
GM1 Audimax, Building BA Chaired by Jens Markus Melenk

10:30 Convergence analysis of boundary element methods for electromagnetic
resonance problems for dielectric and plasmonic scatterers
Gerhard Unger

11:00 Model of electromagnetic scattering by breaking sea waves based upon the
method of fundamental solutions
Arnaud Coatanhay

11:30 A Continuation Approach to Boundary Integral Equation for Steady-state
Wave Scattering by a Crack with Contact Acoustic Nonlinearity
Taizo Maruyama, Terumi Touhei
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12:00 P-SV wave scattering from an array of cylinders; tail-end asymptotics for
the quasi-periodic Green’s function
Georgia M. Lynott, William J. Parnell, I. David Abrahams, Raphael C.
Assier

Transparent Boundary Conditions
Sem BA 02 B, Building BA Chaired by Eliane Becache

10:30 Error analysis for transparent boundary conditions in fractal trees
Patrick Joly, Maryna Kachanovska

11:00 Computation of plasmon resonances localized at corners using frequency-
dependent complex scaling
Anne-Sophie Bonnet-Ben Dhia, Christophe Hazard, Florian Monteghetti

11:30 Complex Scaled Infinite Elements for Electromagnetic Problems in Open
Domains
Bernhard Auinger, Karl Hollaus, MichaelLeumüller, Lothar Nannen, Markus
Wess

12:00 Complex Scaled Infinite Elements for Wave Equations in Heterogeneous
Open Systems
Lothar Nannen, Karoline Tichy, Markus Wess

Optimization
GM8, Building BD Chaired by Martin Berggren

10:30 Analysis of topological derivative as a means for qualitative identification
Marc Bonnet, Fioralba Cakoni

11:00 Topology optimisation for cloaking of arbitrary objects
Hiroshi Isakari, Ryo Yamamoto, Kenta Nakamoto, Toru Takahashi, Toshiro
Matsumoto

11:30 Topological optimization of periodic materials to enhance anisotropic
dispersive effects
Cédric Bellis, Rémi Cornaggia, Bruno Lombard

12:00 Efficiently optimizing inclusion rotation angle for maximal power flow
Boaz Blankrot, Clemens Heitzinger

Resonant-state expansion of waves in the near- and far-field
GM5 Praktikum, Building BA Chaired by Thomas Weiss

10:30 Microwave experiments on resonances and zeros of the scattering matrix:
From spectral gaps and width shifts to random anti-lasing
Ulrich Kuhl

11:00 Modal correlation and modal selectivity in open disordered media
Matthieu Davy, Azriel Z. Genack
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11:30 Spectral resonance expansion by Riesz projections
Lin Zschiedrich, Felix Binkowski, Sven Burger

Asymptotic models for the wave propagation in presence of periodic
structures
GM4 Knoller, Building BD Chaired by Bérangère Delourme

10:30 Effective equations of arbitrary order for wave propagation in periodic
media
Assyr Abdulle, Timothée Pouchon

11:00 Electromagnetic shielding by thin periodic structures and the Faraday cage
effect
Bérangère Delourme, David Peter Hewett

11:30 Homogenization of the time-harmonic Maxwell equations for a large class
of periodic and perfectly conducting microstructures
Maik Urban, Ben Schweizer, Klaas Hendrik Poelstra

12:00 A homogenisation theory for a general class of high-contrast problems;
asymptotics with error estimates
Ilia Kamotski

Modelling and numerical simulation of flow-acoustic interaction
GM3 Vortmann, Building BA Chaired by Manfred Kaltenbacher

10:30 Stable acoustic operators for sound propagation using an adjoint based
method
Étienne Spieser, Christophe Bailly

11:00 Low Mach number aeroacoustics in ducts using incompressible-flow wall
pressure
Emmanuel Perrey-Debain, Nicolas Papaxanthos

11:30 Wave interaction with an infinite cascade of non-overlapping blades
Georg Maierhofer, Nigel Peake

14:00–15:00 Plenary Lecture
GM1 Audimax, Building BA Chaired by Martin J. Gander

Lexing Ying Building neural networks for wave-based inverse problems

15:00–15:30 Coffee Break
Building BA and building BD
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Modelling and numerical simulation of flow-acoustic interaction
GM3 Vortmann, Building BA Chaired by Stefan Schoder

15:30 Jet-Wing Interaction Noise Prediction with Forced Eddy Simulation
Andrej Neifeld, Roland Ewert

16:00 Turbulence modelling for flow-acoustic interaction of side mirror and gap
noise
Alexander Schell

16:30 Mechanisms for wave generation in a turbulent air-water flow
Francesco Zonta, Miguel Onorato, Alfredo Soldati

Nonlinear acoustics: analytical and numerical aspects
GM4 Knoller, Building BD Chaired by Barbara Kaltenbacher

15:30 A priori analysis for the finite element approximation of Westervelt’s quasi-
linear acoustic wave equation
Vanja Nikolic, Barbara Wohlmuth

16:00 Fundamental models in nonlinear acoustics
Mechthild Thalhammer

16:30 Optimal decay rates of the Moore-Gibson-Thompson equation
Marta Pellicer, Belkacem Said-Houari, J. Sola-Morales

Resonant-state expansion of waves in the near- and far-field
GM5 Praktikum, Building BA Chaired by Stefan Rotter

15:30 Resonant-state expansion applied to photonic-crystal structures
Sam Neale, Egor Muljarov

16:00 Resonant mode approximation near Wood-Rayleigh anomalies
Nikolay A. Gippius, Sergey G. Tikhodeev

16:30 First-order perturbation theory for material changes in the surrounding of
open optical resonators
Steffen Both, Thomas Weiss

Time Stepping
GM2 Radinger, Building BD Chaired by Marcus Grote

15:30 Implicit-explicit scheme for the elastodynamic wave equation in plates
Sonia Fliss, Alexandre Imperiale, Sébastien Imperiale, Hajer Methenni

16:00 Semi-implicit time discretisation of incompressible elastodynamic equa-
tions
Federica Caforio, Sébastien Imperiale

16:30 High-order locally implicit time schemes
Hélène Barucq, Marc Duruflé, Mamadou N’Diaye
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BEM and BIE
GM1 Audimax, Building BA Chaired by Holger Waubke

15:30 A group theoretical approach for the numerical treatment of symmetries in
multipole methods
Igor Chollet, Xavier Claeys, Francis Collino, Laura Grigori

16:00 Multi-Trace FEM-BEM formulation for acoustic scattering by composite
objects
Marcella Bonazzoli, Xavier Claeys

Numerical Methods
GM8, Building BD Chaired by Joachim Schöberl

15:30 A matrix-free Discontinuous Galerkin method for the time dependent Max-
well equations in open domains
Bernard Kapidani, Joachim Schöberl

16:00 Perturbed edge finite element method for the simulation of electromagnetic
waves in magnetised plasmas
Damien Chicaud, Patrick Ciarlet, Axel Modave

16:30 An Inf-Sup Stable Space-Time Variational Formulation for the Scalar
Second-Order Wave Equation
Marco Zank, Olaf Steinbach

Transparent Boundary Conditions
Sem BA 02 B, Building BA Chaired by Dan Givoli

15:30 Stable Perfectly Matched Layers for a Class of Anisotropic Dispersive
Models
Eliane Becache, Maryna Kachanovska

16:00 High Order Farfield Expansion ABC coupled with IGA and Finite Differ-
ences Applied to Acoustic Multiple Scattering
Vianey Villamizar, Jacob Badger, Tahsin Khajah, Sebastian Acosta

16:30 A high order impedance boundary condition with unique solutions for the
time harmonic Maxwell’s equations
Pierre Payen, Olivier Lafitte, Bruno Stupfel

Modelling and numerical simulation of flow-acoustic interaction
GM3 Vortmann, Building BA Chaired by Manfred Kaltenbacher

17:15 Aeroacoustic formulation based on compressible flow data applying Helm-
holtz’s decomposition
Stefan Schoder, Klaus Roppert, Manfred Kaltenbacher
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17:45 Towards an efficient detection of hydrodynamic-acoustic feedback mechan-
isms in an industrial context
Daniel Kempf, Claus-Dieter Munz

18:15 A Stochastic Approach to Compute Cavity Noise using SNGR
Michael Weitz, Stefan Schoder, Manfred Kaltenbacher

Time Stepping
GM2 Radinger, Building BD Chaired by Sébastien Imperiale

17:15 Efficient Uncertainty Quantification for Wave Propagation in Complex
Geometry
Marcus J. Grote, Simon Michel

17:45 Numerical methods for efficiently solving fractionally damped wave equa-
tions
Katherine Baker, Lehel Banjai

Numerical Methods
GM8, Building BD Chaired by Assyr Abdulle

17:15 On Trefftz virtual element spaces
Alexey Chernov, Lorenzo Mascotto, Ilaria Perugia, Alexander Pichler

17:45 A Trefftz discontinuous Galerkin method for acoustic scattering by small
circular obstacles
Monique Dauge, Ilaria Perugia, Alexander Pichler

18:15 A DPG Maxwell Approach for Studying Nonlinear Thermal Effects in
Active Gain Fiber Amplifiers
Stefan Henneking, Leszek Demkowicz, Jacob Grosek

Multiscale Problems
Sem BA 02 B, Building BA Chaired by Josselin Garnier

17:15 Heterogeneous Multiscale Method for Maxwell’s Equations
Bernhard Maier, Marlis Hochbruck

17:45 Fast time-explicit micro-heterogeneous wave propagation
Roland Maier, Daniel Peterseim

18:15 Discrete Wave Equation Upscaling in 1-D and 2-D
Cyrill Bösch, Dirk-Jan Van Manen, Andreas Fichtner
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Resonant-state expansion of waves in the near- and far-field
GM5 Praktikum, Building BA Chaired by Egor Muljarov

17:15 Resonant States Expansions of Scattering Operators in the Harmonic and
Time Domains
Rémi Colom, Brian Stout, Ross Mcphedran, Nicolas Bonod

17:45 Modal expansion of the T-matrix for resonant light scatterers
Anton I. Ovcharenko, Jean-Paul Hugonin, Christophe Sauvan

18:15 Expanding the Scattering Matrix through Quasi Normal Modes: a Numer-
ical Case Study
Maximilian Geismann, Faruk Salihbegovic, Matthias Kühmayer, Florian
Libisch, Stefan Rotter

Nonlinear acoustics: analytical and numerical aspects
GM4 Knoller, Building BD Chaired by Mechthild Thalhammer

17:15 The Jordan-Moore-Gibson-Thompson equation of nonlinear acoustics:
Well-posedness and singular limit for vanishing relaxation time
Barbara Kaltenbacher, Vanja Nikolic

17:45 Exact dispersion relation for strongly nonlinear elastic waves
Romik Khajehtourian, Mahmoud Hussein

Modern fast Boundary Element formulations for wave propagation
problems
GM1 Audimax, Building BA Chaired by Timo Betcke

17:15 Analytic preconditioners for 3D high-frequency elastic scattering problems
Stéphanie Chaillat, Marion Darbas, Frédérique Le Louër

17:45 Spectral coarse space for robust additive Schwarz preconditionning of
hypersingular integral operators
Xavier Claeys, Pierre Marchand, Frédéric Nataf

18:15 Modelling the fluid-structure coupling caused by a far-field underwater
explosion using a convolution quadrature based fast boundary element
method
Damien Mavaleix-Marchessoux, Stéphanie Chaillat, Bruno Leblé, Marc
Bonnet
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Tuesday

08:30–09:30 Plenary Lecture
GM1 Audimax, Building BA Chaired by Ilaria Perugia

Euan Spence For most frequencies, strong trapping has a weak effect in frequency-
domain scattering

09:30–10:00 Coffee Break
Building BA and building BD

Scattering
GM8, Building BD Chaired by Paul Martin

10:00 Near-Field Imaging of an Unbounded Elastic Rough Surface with a Direct
Imaging Method
Xiaoli Liu, Bo Zhang, Haiwen Zhang

10:30 A Frequency Domain Method for Scattering Problems with Moving Bound-
aries
David Gasperini, Xavier Antoine, Christophe Geuzaine, Hans Peter Beise,
Udo Schroeder

11:00 Scattering for NLS with a sum of two repulsive potentials
David Lafontaine

Asymptotic models for the wave propagation in presence of periodic
structures
GM4 Knoller, Building BD Chaired by Sonia Fliss

10:00 Numerical modeling for scattering of transient acoustic waves by resonant
interfaces
Marie Touboul, Cédric Bellis, Bruno Lombard

10:30 Asymptotic analysis of the visco-acoustic equations for absorbing walls of
arrays of Helmholtz resonators
Kersten Schmidt, Adrien Semin

11:00 Enriched homogenized model in presence of boundaries
Clément Beneteau, Xavier Claeys, Sonia Fliss

11:30 Effective description of waves in discrete and heterogeneous media
Ben Schweizer
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Analysis and numerical methods for wave problems in
heterogeneous media and complicated domains
GM2 Radinger, Building BD Chaired by Lise-Marie Imbert-Gerard

10:00 Boundary element methods for scattering by fractal screens
Simon N. Chandler-Wilde, David P. Hewett, Andrea Moiola

10:30 Acoustic scattering by impedance screens with fractal boundary
Joshua Bannister, David P. Hewett

11:00 Electromagnetic scattering problems on perfectly-conducting complex do-
mains: from Rayleigh-Sommerfeld integrals toward fractal screens
James M. Christian, Holly A. J. Middleton-Spencer

11:30 High-Order Galerkin Method for Helmholtz and Laplace Problems on
Multiple Open Arcs
José Andrés Pinto Denegri, Carlos Felipe Jerez-Hanckes

12:00 Integral equation solution for two-dimensional simulations in nanoplas-
monics; single layer vs multi-layer configurations.
Harun Kurkcu

13:00 Eigenoscillations and computation of surface waves in a water-basin with
a conical bottom
Ning Yan Zhu, Mikhail A. Lyalinov

Modelling and numerical simulation of flow-acoustic interaction
GM3 Vortmann, Building BA Chaired by Manfred Kaltenbacher

10:00 On the well-posedness of Galbrun’s equation
Linus Hägg, Martin Berggren

10:30 Numerical analysis of the augmented Galbrun equation using discontinu-
ous Galerkin finite elements
Marcus Maeder, Andrew Peplow, Steffen Marburg

11:00 Efficient Modeling Strategies for Thermoviscous Acoustics
Florian Toth, Hamideh Hassanpour Guilvaiee, Manfred Kaltenbacher

11:30 A computationally inexpensive visco–thermal boundary layer model for
acoustic simulation and optimization
Martin Berggren, Anders Bernland, André Massing, Daniel Noreland, Ed-
die Wadbro
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Modern fast Boundary Element formulations for wave propagation
problems
GM1 Audimax, Building BA Chaired by Naoshi Nishimura

10:00 Efficient FEM solution of exterior wave propagation problems with weakly
enforced integral non reflecting boundary conditions
Silvia Falletta

10:30 Generalization of Adaptive Cross Approximation for a Convolution Quad-
rature based Boundary Element Method
Anita M. Haider, Martin Schanz

11:00 A superconvergence phenomenon in Runge-Kutta convolution quadrature
for the wave equation
Jens Markus Melenk, Alexander Rieder

11:30 On the development of a hybrid model based on the Convolution Quadrat-
ure Boundary Element Method
Jacob Robert Rowbottom, David Chappell

Sweeping preconditioners and related iterative solvers for the
Helmholtz equation
GM5 Praktikum, Building BA Chaired by Thorsten Hohage

10:00 On a Class of Iterative Solvers for Time Harmonic Wave Propagation:
Factorizations, Sweeping Preconditioners, Source Transfer, Single Layer
Potentials, Polarized Traces, and Optimal and Optimized Schwarz Methods
Martin J. Gander

10:30 L-Sweeps: A scalable parallel preconditioner for the high-frequency Helm-
holtz equation
Matthias Taus, Leonard Zepeda-Núñez, Russell J. Hewett, Laurent De-
manet

11:00 Sweeping Preconditioner
Lexing Ying

11:30 Towards sweeping preconditioners for computational helioseismology
Janosch Preuß, Christoph Lehrenfeld, Thorsten Hohage

13:30–14:30 Plenary Lecture
GM1 Audimax, Building BA Chaired by Dan Givoli

Beth Wingate Nonlinear resonance and finite time-scale separation in highly
oscillatory PDEs: examples in geophysical fluid dynamics and numerical analysis

14:30–15:00 Coffee Break
Building BA and building BD
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Sweeping preconditioners and related iterative solvers for the
Helmholtz equation
GM5 Praktikum, Building BA Chaired by Martin J. Gander

15:00 A time-domain approach for solving the Helmholtz equation
Christiaan C. Stolk

15:30 Scalable Parallel Methods for the Helmholtz Equation via Exact Control-
lability
Jet Hoe Tang, Marcus Grote, Frédéric Nataf, Pierre-Henri Tournier

16:00 Solving Helmholtz Equation via the Wave Equation
Daniel Appelö, Fortino Garcia, Olof Runborg

Analysis and numerical methods for wave problems in
heterogeneous media and complicated domains
GM2 Radinger, Building BD Chaired by Andrea Moiola

15:00 Uncertainty quantification for Helmholtz transmission problems with geo-
metric uncertainties
Laura Scarabosio

15:30 Uncertainty Quantification for Helmholtz Scattering by Random Surfaces:
Shape Calculus and Sparse Tensor Approximation
Paul Escapil-Inchauspé, Carlos Jerez-Hanckes

16:00 Nearby preconditioning for multiple realisations of the Helmholtz equation,
with application to uncertainty quantification
Owen R. Pembery, Ivan G. Graham, Euan A. Spence

Metamaterials
GM3 Vortmann, Building BA Chaired by Andrii Khrabustovskyi

15:00 Essential spectrum generated by a negative material described by the
Lorentz model
Christophe Hazard, Sandrine Paolantoni

15:30 Numerical study of the spectrum of cavities containing a negative-index
material
Sandrine Paolantoni, Christophe Hazard

16:00 Constant-intensity waves in non-Hermitian media
AndreBrandstötter, Konstantinos G. Makris, Etienne Rivet, Romain Fleury,
Stefan Rotter
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Method of Images and Green’s Functions
GM4 Knoller, Building BD Chaired by Ben Schweizer

15:00 Use (and Misuse) of the Method of Images
Paul Martin

15:30 A step towards the embedding formula for the ‘varying’ Robin half-plane
diffraction
Marianthi Moschou, Raphael Assier

16:00 Acoustic excitation of a layered scatterer by N internal point sources
Andreas Kalogeropoulos, Nikolaos Tsitsas

Numerical Methods
GM8, Building BD Chaired by Wolfgang Kreuzer

15:00 A numerical algorithm to reduce the ill conditioning in meshless methods
for the Helmholtz equation
Pedro R. S. Antunes

15:30 New Mass-Lumped Tetrahedral Elements for 3D Wave Propagation Model-
ling
S. Geevers, W.A. Mulder, J.J.W. Van Der Vegt

16:00 Study of a stable hybridzation method to couple FVTD,GD scheme with
FDTD/FEM scheme
Xavier Ferrieres, Sebastien Pernet, Nicolas Deymier

BEM and BIE
GM1 Audimax, Building BA Chaired by Xavier Claeys

15:00 Boundary integral equations and block Jacobi preconditioner
Bertrand Thierry

15:30 A sinc-Fourier approach to an inverse problem in scattering
S.-Sum Chow, Frank Stenger

16:00 A high order method of boundary operators for the 3D time-dependent
wave equation
Sergey Petropavlovsky, Semyon Tsynkov, Eli Turkel
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Modern fast Boundary Element formulations for wave propagation
problems
GM1 Audimax, Building BA Chaired by Marion Darbas

16:45 Finite Element Discontinuous Galerkin and Fast Multipole BEM coupling
for performing accurate scale resolved CAA simulations involving large
geometries
Stanislav Proskurov, Roland Ewert, Markus Lummer, Michael Mößner,
Jan Delfs

17:15 Synthetic Turbulence imposed as Boundary Condition for Fast Multipole
BEM
Nils Reiche, Markus Lummer, Roland Ewert, Jan Werner Delfs

17:45 A BEM-FEM Model for Vibrations in Soils Caused by Railway Traffic in
Tunnels
HolgerWaubke, Wolfgang Kreuzer, Tomasz Hrycak, Sebastian Schmutzhard

Optics
GM3 Vortmann, Building BA Chaired by Stefan Rotter

16:45 Designing symmetry-protected valley-Hall networks in phononic systems
Mehul Makwana, Richard Craster, Sebastien Guenneau, Kun Tang, Patrick
Sebbah, Gregory Chaplain

17:15 Hybrid approach for modelling wave motion in a layered phononic crystal
with multiple cracks and piezoelectric transducers
Mikhail V. Golub, Alisa N. Shpak, Sergey I. Fomenko, Olga V. Doroshenko,
Chuanzeng Zhang

17:45 Optimal Wave Fields for Micromanipulation in Complex Scattering Envir-
onments
Matthias Kühmayer, Michael Horodynski, Andre Brandstötter, Kevin
Pichler, Yan V. Fyodorov, Ulrich Kuhl, Stefan Rotter

Numerical Methods
GM8, Building BD Chaired by Eli Turkel

16:45 A residual-based artificial viscosity finite difference method for scalar
conservation laws
Vidar Stiernström, Lukas Lundgren, Murtazo Nazarov, Ken Mattsson

17:15 Globally Divergence-Free Discontinuous Galerkin Methods for Ideal Mag-
netohydrodynamic Equations
Pei Fu, Fengyan Li, Yan Xu

17:45 Compact fourth order scheme for the elastic wave equation in the frequency
domain using a first order formulation
Dan Gordon, Rachel Gordon, Eli Turkel
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Waveguides
GM4 Knoller, Building BD Chaired by Kersten Schmidt

16:45 Transparent boundary conditions for periodic waveguides: analysis and
extensions
Sonia Fliss, Patrick Joly, Vincent Lescarret

17:15 Wave Equation in a Periodic Waveguide with a Local Perturbation
Marina Fischer

17:45 Discrete nonlinear Schrödinger equations for periodic optical systems:
pattern formation in χ(3) coupled waveguide arrays
James M. Christian, Richard Fox

Analysis and numerical methods for wave problems in
heterogeneous media and complicated domains
GM2 Radinger, Building BD Chaired by Euan Spence

16:45 Generalized Plane Waves & Maxwell’s equations
Lise-Marie Imbert-Gerard, Jean-Francois Fritsch

17:15 Frequency-domain wave propagation in hyperbolic metamaterials
Patrick Ciarlet, Maryna Kachanovska

17:45 Hamiltonian structure of the cold-plasma model and its discretization
Omar Maj, Eric Sonnendrücker, Olivier Lafitte, Philip J. Morrison

Sweeping preconditioners and related iterative solvers for the
Helmholtz equation
GM5 Praktikum, Building BA Chaired by Thorsten Hohage

16:45 An efficient domain decomposition method with cross-point treatment for
Helmholtz problems
Axel Modave, Xavier Antoine, Anthony Royer, Christophe Geuzaine

17:15 A domain decomposition method for the Helmholtz equation using a DtN
map
Achim Schädle
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Wednesday

08:30–09:30 Plenary Lecture
GM1 Audimax, Building BA Chaired by Marcus Grote

Marlis Hochbruck Unified error analysis for certain full discretizations of wave-
type problems

09:30–10:00 Coffee Break
Building BA and building BD

Periodic Structures
Sem BA 02 B, Building BA Chaired by Anne-Sophie Bonnet-Ben Dhia

10:00 Guided modes in a hexagonal periodic graph like domain : the zigzag and
the armchair cases
Bérangère Delourme, Sonia Fliss

10:30 Reconstruction of a Local Perturbation in Inhomogeneous Periodic Layers
Alexander Konschin

11:00 Modelling of acoustic waves in fluid-saturated periodic scaffolds: Bloch
wave decomposition and homogenization approaches
Eduard Rohan, Robert Cimrman

11:30 A high order numerical method for scattering from locally perturbed peri-
odic surfaces
Ruming Zhang

Waveguides
GM4 Knoller, Building BD Chaired by Lothar Nannen

10:00 An algorithm for the localization of exceptional points and the computation
of Puiseux series with applications to acoustic waveguides
Benoit Nennig, Emmanuel Perrey-Debain

10:30 Recovering underlying graph for networks of 1D waveguides by reflecto-
metry and transferometry
Geoffrey Beck, Maxime Bonnaud, Jaume Benoit

11:00 Exact zero transmission during the Fano resonance phenomenon in non
symmetric waveguides
Lucas Chesnel, Sergei A. Nazarov

11:30 Bound States in the Continuum for a Class of Lattice Models
Ya Yan Lu
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Analysis and numerical methods for wave problems in
heterogeneous media and complicated domains
GM2 Radinger, Building BD Chaired by David Peter Hewett

10:00 Finite element discretizations of high-frequency wave propagation problems
in heterogeneous media
Théophile Chaumont-Frelet, Serge Nicaise

10:30 Two wave localisation effects and their impact on numerical simulation
Céline Torres, Stefan Sauter

11:00 Domain decomposition methods for heterogeneous Helmholtz problems
Shihua Gong, Ivan G. Graham, Euan A. Spence

Wave Phenomena: Analysis and Numerics
GM3 Vortmann, Building BA Chaired by Wolfgang Reichel

10:00 The Limiting Absorption Principle for periodic Schrödinger operators
Rainer Mandel

10:30 Multiple solutions to a nonlinear curl-curl problem in R3

Jarosław Mederski, Jacopo Schino, Andrzej Szulkin

11:00 Bifurcation from Gap Eigenvalues for Nonlinear Schrödinger Equations
Peter Rupp

11:30 Coupled Mode Equations and Gap Solitons for Wavepackets in Nonlinear
Periodic Media
Tomas Dohnal, Lisa Wahlers

Wave propagation and imaging in complex media
GM5 Praktikum, Building BA Chaired by Chrysoula Tsogka

10:00 Imaging sparse reflectivities from noisy data
Alexei Novikov

10:30 Imaging in three-dimensional terminating waveguides with partial-aperture
data
Symeon Papadimitropoulos, Chrysoula Tsogka, Dimitrios Mitsoudis

11:00 Adaptive Eigenspace Regularization for Inverse Scattering Problems
Daniel H. Baffet, Marcus J. Grote, Jet H. Tang

11:30 Obstacle Identification Using Learning
Adar Kahana, Eli Turkel, Dan Givoli, Shai Dekel
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Modern fast Boundary Element formulations for wave propagation
problems
GM1 Audimax, Building BA Chaired by Silvia Falletta

10:00 Stability of the boundary integral equation methods for the two dimensional
wave equation in time domain revisited
Mio Fukuhara, Ryota Misawa, Kazuki Niino, Naoshi Nishimura

10:30 Time domain CQBEM for wave scattering in complex media
Akira Furukawa, Sohichi Hirose

11:00 Space-Time Boundary Elements for the Acoustic Wave Equation
Dominik Pölz, Martin Schanz

11:30 The Fast Hybrid Method: Efficient (O(1) sampling) and High-order, Dis-
persionless Long-time Transient Wave Scattering
Thomas G. Anderson, Oscar P. Bruno, Mark Lyon

Tent-Pitching Space-Time Methods for Nonlinear Waves
GM8, Building BD Chaired by Joachim Schöberl

10:00 Distributed Parallel-Adaptive Causal Spacetime Discontinuous Galerkin
Method with Application to Earthquake Simulation
Robert Haber, Amit Madhukar, Xiao Ma, Ahmed Elbanna, Reza Abedi

10:30 Applications of Adaptive Spacetime Meshing in the Asynchronous Space-
time Discontinuous Galerkin Method
Reza Abedi, Robert B Haber

11:00 Tent pitching and a Trefftz-DG method for the acoustic wave equation
Ilaria Perugia, Joachim Schöberl, Paul Stocker, Christoph Wintersteiger

11:30 An explicit Runge-Kutta type time-stepping for Mapped Tent Pitching
schemes
Jay Gopalakrishnan, Joachim Schöberl, Christoph Wintersteiger
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Thursday
08:30–09:30 Plenary Lecture
GM1 Audimax, Building BA Chaired by Patrick Joly

Andrii Khrabustovskyi Crushed ice problem revisited

09:30–10:00 Coffee Break
Building BA and building BD

Numerical Methods
GM8, Building BD Chaired by Achim Schädle

10:00 High-order finite difference methods for the time-dependent Schrödinger
equation on deforming domains
Ylva Rydin, Jonatan Werpers, Ken Mattsson, Erik Sjöqvist

10:30 Gypsilab, an open source efficient software for wave scattering simulation
François Alouges, Matthieu Aussal, Marc Bakry

11:00 Analysis of the hp-version of a first order system least squares method for
the Helmholtz equation
Maximilian Bernkopf, Jens Markus Melenk

Inverse Problems
GM2 Radinger, Building BD Chaired by Eric Lunéville

10:00 Calderòn cavities inverse problem as a shape-from-moments problem
Alexandre Munnier, Karim Ramdani

10:30 On well-posedness of scattering problems in a Kirchhoff-Love infinite plate
Laurent Bourgeois, Christophe Hazard

11:00 The Linear Sampling Method applied to Kirchhoff-Love infinite plates
Arnaud Recoquillay, Laurent Bourgeois

Analysis and Asymptotics
GM4 Knoller, Building BD Chaired by Monique Dauge

10:00 Asymptotic model for elastodynamic scattering by a small surface-breaking
defect
Marc Bonnet, Marc Deschamps, Eric Ducasse, Aditya Krishna

10:30 Equivalent point-source modeling of small obstacles for electromagnetic
waves
Justine Labat, Victor Péron, Sébastien Tordeux

11:00 Asymptotic expansions of Whispering Gallery Modes in graded index op-
tical micro-cavities
Stéphane Balac, Monique Dauge, Zoı̈s Moitier
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11:30 Dynamics and stability of a cold magnetic plasma
Ibtissem Zaafrani, Simon Labrunie

Frames and PDEs
Sem BA 02 B, Building BA Chaired by Peter Balazs

10:00 Frames for the solution of operator equations in Hilbert spaces with fixed
dual pairing
Peter Balazs, Helmut Harbrecht

10:30 U-cross Gram matrices and their invertibility
Peter Balazs, Mitra Shamsabadi, Ali Arefijamaal

11:00 The invertibility of U-fusion cross Gram matrices of operators
Mitra Shamsabadi, Ali Akbar Arefijamaal Arefijamaal, Peter Balazs

11:30 Using B-spline frames to represent solutions of acoustics scattering prob-
lems
Wolfgang Kreuzer

Wave Phenomena: Analysis and Numerics
GM3 Vortmann, Building BA Chaired by Marlis Hochbruck

10:00 Breather Solutions for a Quasilinear 1+1dim Wave Equation
Jiřı́ Horák, Simon Kohler, Wolfgang Reichel

10:30 Breathers on metric necklace graphs
Daniela Maier

11:00 Time-periodic solutions of a cubic wave equation
Dominic Scheider

11:30 Singularity formation in nonlinear wave equations
Irfan Glogic, Birgit Schörkhuber

Wave propagation and imaging in complex media
GM5 Praktikum, Building BA Chaired by Chrysoula Tsogka

10:00 Mixed-Dimensional Coupling for Time-Dependent Wave Problems
Dan Givoli, Hanan Amar, Daniel Rabinovich

10:30 Wave equation in a weakly randomly perturbed periodic medium
Laure Giovangigli, Sonia Fliss

11:00 Invisible floating objects
Mahran Rihani, Lucas Chesnel

11:30 Time Domain Full Waveform Inversion involving Discontinuous Galerkin
approximation
Andreas Atle, Hélène Barucq, Henri Calandra, Julien Diaz, Pierre Jacquet
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Modern fast Boundary Element formulations for wave propagation
problems
GM1 Audimax, Building BA Chaired by Xavier Claeys

10:00 Bempp-cl: Fast GPU and CPU assembly of integral operators with OpenCL
Timo Betcke, Matthew Scroggs

10:30 A fast direct solver for multilayered quasi-periodic scattering
Yabin Zhang, Adrianna Gillman

11:00 High order impedance boundary condition for the three scattering problem
in electromagnetism with the adaptive cross approximation
Soumaya Oueslati, Christan Daveau, Brice Naisseline

11:30 Convolution quadrature and BEM for scattering from generalized imped-
ance boundary conditions
Lehel Banjai, Christian Lubich, Jörg Nick

13:30–14:30 Plenary Lecture
GM1 Audimax, Building BA Chaired by Eliane Becache

Josselin Garnier Wave propagation in randomly perturbed waveguides

14:30–15:00 Coffee Break
Building BA and building BD

Modern fast Boundary Element formulations for wave propagation
problems
GM1 Audimax, Building BA Chaired by Eric Darrigrand

15:00 Numerical resolution of boundary integral equations on some domains with
singularities.
Martin Averseng, Francois Alouges

15:30 Shape Holomorphy of the Boundary Integral Operators in Acoustic Wave
Scattering
Fernando Henriquez, Christoph Schwab

16:00 An implementation of the Galerkin method for the EFIE using the Hdiv
inner product
Kazuki Niino, Naoshi Nishimura

Wave Phenomena: Analysis and Numerics
GM3 Vortmann, Building BA Chaired by Wolfgang Reichel

15:00 Time integration and regularity theory of Maxwell equations in heterogen-
eous media
Konstantin Zerulla
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15:30 Numerical analysis of nonlinear wave equations with dynamic boundary
conditions
Marlis Hochbruck, Jan Leibold

16:00 Time-integration of semilinear wave equations with highly oscillatory solu-
tions
Benjamin Dörich, Marlis Hochbruck

Frames and PDEs
Sem BA 02 B, Building BA Chaired by Helmut Harbrecht

15:00 Multilevel frames for solving high-dimensional partial differential equa-
tions
Helmut Harbrecht, Peter Zaspel

15:30 Adaptive solution of PDEs using hybrid shearlet-wavelet frames
Philipp Grohs, Gitta Kutyniok, Jackie Ma, Philipp Petersen, Mones Raslan

16:00 Quarkonial frames with compression properties - theory and numerical
applications
Stephan Dahlke, Ulrich Friedrich, Philipp Keding, Thorsten Raasch, Al-
exander Sieber

High Frequency and Oscillatory Problems
GM5 Praktikum, Building BA Chaired by Olof Runborg

15:00 Galerkin boundary element methods for high-frequency sound-hard scat-
tering problems
Fatih Ecevit, Akash Anand, Yassine Boubendir, Souaad Lazergui

15:30 Least squares collocation for a high-frequency scattering problem
Andrew Gibbs, David Hewett, Daan Huybrechs, Emile Parolin

16:00 PathFinder: a toolbox for oscillatory quadrature
Andrew Gibbs, Daan Huybrechs

Numerical Methods
GM8, Building BD Chaired by Ilaria Perugia

15:00 Robust adaptive hp discontinuous Galerkin finite element methods for the
Helmholtz equation
Scott Congreve, Joscha Gedicke, Ilaria Perugia

15:30 A discontinuous Galerkin Trefftz type method for solving the Maxwell
equations
Hakon Fure, Sebastien Pernet, Sebastien Tordeux
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16:00 High order discretization of seismic waves-problems based upon DG-SE
methods
Hélène Barucq, Henri Calandra, Aurélien Citrain, Julien Diaz, Christian
Gout

Vibration
GM4 Knoller, Building BD Chaired by Florian Toth

15:00 Combining Dynamical Energy Analysis with Advanced Transfer Path Ana-
lysis
Gregor Tanner, Timo Hartmann, Satoshi Morita, Martin Richter

15:30 Sound radiation from complex vibrating mechanical structures using Wigner
transformation technique
Neekar Majeed Mohammed, Gregor Tanner, Stephen C Creagh

16:00 3d Modeling and Simulation of a Harpsichord
Lukas Larisch, Gabriel Wittum

Inverse Problems
GM2 Radinger, Building BD Chaired by Lucas Chesnel

15:00 Crack monitoring using transmission eigenvalues with artificial back-
grounds
Lorenzo Audibert, Houssem Haddar, Lucas Chesnel, Kevish Napal

15:30 Near-Field Inverse Dipole Problems in Spherical Media
Nikolaos Tsitsas

16:00 Imaging small dielectric inclusions with polarization data
Patrick Bardsley, Maxence Cassier, Fernando Guevara Vasquez

Wave Phenomena: Analysis and Numerics
GM3 Vortmann, Building BA Chaired by Marlis Hochbruck

16:45 Space-time discontinuous Galerkin method for the wave equation in poly-
gonal domains
Pratyuksh Bansal, Andrea Moiola, Ilaria Perugia, Christoph Schwab

17:15 A space-time DPG method for acoustic waves in heterogeneous media
Christian Wieners, Johannes Ernesti

17:45 Uniform-in-time optimal convergent HDG method for transient elastic
waves with strong symmetric stress formulation
Shukai Du, Francisco-Javier Sayas
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High Frequency and Oscillatory Problems
GM5 Praktikum, Building BA Chaired by Euan Spence

16:45 Ray density transport through a mesh using a phase-space integral operator
with a direction preserving discretisation
David James Chappell, Martin Richter, Gregor Tanner

17:15 Convergence Properties of Transfer Operators for Billiards with a Mixed
Phase-Space
Martin Richter, David J. Chappell, Gregor Tanner

17:45 Error estimates for Gaussian beams at a fold caustic
Olof Runborg, Olivier Lafitte

Elastodynamics
GM4 Knoller, Building BD Chaired by Sébastien Imperiale

16:45 Linear isotropic elastodynamics by means of potentials: The case of trans-
mission conditions for piecewise homogeneous media.
Jorge Albella, Sébastien Imperiale, Patrick Joly, Jerónimo Rodrı́guez

17:15 Numerical aspects of Energetic Boundary Element Method for 2D soft
scattering in linear elastodynamics
Giulia Di Credico, Alessandra Aimi, Mauro Diligenti, Chiara Guardasoni

17:45 Spectral analysis of a nonhomogeneous rotating Timoshenko beam: Riesz
basis property
Jean-Luc Akian

Inverse Problems
GM2 Radinger, Building BD Chaired by Marc Bonnet

16:45 One-Way Operators for Time Dependent Wave Splitting and Echo Removal
Daniel Henri Baffet, Marcus Grote

17:15 How to solve inverse scattering problems without knowing the source term
Marie Graff, Marcus J. Grote, Frédéric Nataf, Franck Assous

17:45 Shape reconstruction of deposits inside a steam generator using eddy
current measurements
Hugo Girardon, Houssem Haddar, Lorenzo Audibert

Domain Decomposition
GM8, Building BD Chaired by Joachim Schöberl

16:45 High order transmission conditions for a Domain Decomposition Method
applied to an efficient and accurate solution of EM scattering problems
Bruno Stupfel, Matthieu Lecouvez
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17:15 An integral equation on infinite boundaries when a global Green’s function
is not available
Anne-Sophie Bonnet-Ben Dhia, Sonia Fliss, Yohanes Tjandrawidjaja

17:45 Non-overlapping domain decomposition algorithm for time-harmonic elastic
wave problems
Marion Darbas, Christophe Geuzaine, Vanessa Mattesi

Modern fast Boundary Element formulations for wave propagation
problems
GM1 Audimax, Building BA Chaired by Martin Schanz

16:45 Interior Penalty Discontinuous Galerkin BEM for the Helmholtz equation:
Theoretical and numerical analysis
Messai Nadir-Alexandre, Pernet Sébastien

17:15 A stable integral equation for a mixed acoustic transmission problem
Sarah Eberle, Francesco Florian, Ralf Hiptmair, Stefan Sauter

17:45 FastMMLib: a generic library for Fast Multipole Methods
Eric Darrigrand, Yvon Lafranche
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Friday
Analysis and Asymptotics
GM4 Knoller, Building BD Chaired by Christophe Hazard

08:30 Homogenization of the time-dependent heat equation on plane mesh struc-
tures
Adrien Semin, Kersten Schmidt, Josip Tambaca, Matko Ljulj

09:00 Uniqueness of self-similar solutions obeying the problems of arbitrary
discontinuity disintegration for the generalized Hopf equation
Anna Chugaynova

09:30 Water wave scattering by a submerged metamaterial
Christos Marangos, Richard Porter

10:00 Effective models for non-perfectly conducting thin coaxial cables
Geoffrey Beck, Sébastien Imperiale, Patrick Joly

Domain Decomposition
GM8, Building BD Chaired by Christian Wieners

08:30 A Preconditioner for the Electric Field Integral Equation on Screens
Ralf Hiptmair, Carolina Urzúa-Torres

09:00 Non overlapping domain decomposition methods with non local transmis-
sion conditions for electromagnetic wave propagation
Xavier Claeys, Francis Collino, Patrick Joly, Emile Parolin

09:30 New transmission conditions for corners and cross-points
Bruno Després, Anouk Nicolopoulos, Bertrand Thierry

Wave Phenomena: Analysis and Numerics
GM3 Vortmann, Building BA Chaired by Wolfgang Reichel

08:30 Solving inverse electromagnetic sacttering problems via domain derivatives
Felix Hagemann, Tilo Arens, Timo Betcke, Frank Hettlich

09:00 Reconstructing thin tubular scattering objects in electromagnetic scattering
Roland Griesmaier, Marvin Knöller

09:30 On the analysis of perfectly matched layers for electromagnetic waves
propagation in anisotropic media
Éliane Bécache, Sonia Fliss, Maryna Kachanovska, Maria Kazakova

Wave propagation and imaging in complex media
GM5 Praktikum, Building BA Chaired by Chrysoula Tsogka

08:30 Reflection matrix approach for ultrasonic imaging in heterogeneous media
Laura A. Cobus, William Lambert, Mathias Fink, Alexandre Aubry
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09:00 Introducing the Random Anti-laser: Coherent Perfect Absorption in Dis-
ordered Media
Stefan Rotter, Kevin Pichler, Matthias Kühmayer, Julian Böhm, Andre
Brandstötter, Philipp Ambichl, Ulrich Kuhl

09:30 Maximum-likelihood estimation of target parameters in a time-evolving
random medium
Clément Roussel, Arnaud Coatanhay, Alexandre Baussard

10:00 Stochastic Models in Coordinate-Delay Synthetic Aperture Radar Imaging
Mikhail Gilman, Semyon Tsynkov

Modern fast Boundary Element formulations for wave propagation
problems
GM1 Audimax, Building BA Chaired by Martin Schanz

08:30 Fast Calderón preconditioning of the PCMHWT formulation for scattering
by multiple dielectric particles
Antigoni Kleanthous, Timo Betcke, David Hewett, Carlos Jerez-Hanckes,
Paul Escapil-Inchauspé, Anthony Baran

09:00 Fast Calderón Preconditioning for Helmholtz Boundary Integral Equations
Carlos Jerez-Hanckes, Ignacia Fierro

09:30 FEM-BEM coupling for vibroacoustics using the open-source Gypsilab
software
Marc Bakry, François Alouges, Matthieu Aussal

10:00 Parallelization techniques for the collocation boundary element method
Caglar Guerbuez, Christopher Jelich, Steffen Marburg

10:30–11:00 Coffee Break
Building BA and building BD

11:00–12:00 Plenary Lecture
GM1 Audimax, Building BA Chaired by Manfred Kaltenbacher

Anne-Sophie Bonnet-Ben Dhia Combining integral representations on infinite
boundaries and complex scaling for time-harmonic scattering problems

12:00–12:30 Closing
GM1 Audimax
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Numerical methods for wave propagation in heterogenenous media

Assyr Abdulle1

1ANMC, Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Station 8, CH-1015
Lausanne, Switzerland

Abstract

In this work we discuss effective models and nu-
merical methods for wave propagation in het-
erogeneous media. For problems without scale
separation we show that discrete coarse approxi-
mation spaces based on local orthogonal decom-
position can be used to capture the wave dynam-
ics. For locally-periodic problems, we discuss
analytical and numerical models that are able
to capture the dispersive effects that develops
when the wave propagates over long time.
Keywords: second order hyperbolic prob-
lems, heterogenenous media, localized or-
thogonal decomposition, homogenization,
dispersion

1 Wave in heterogeneous media

In this paper we discuss recent developments of
numerical methods for the wave equation in het-
erogeneous media given by the following prob-
lem: find uε : [0, T ]→ R such that

∂ttuε −∇ · (aε∇uε) = F in Ω× (0, T ], (1)

with suitable initial and boundary conditions.
The tensor aε, which describes the medium, is
assumed to have multiscale coefficients, i.e., aε

varies on a scale of order O(ε), where 0 < ε� 1.
At first we do not assign a particular value to
ε, but we only assume that it is a very small
parameter.

To illustrate our arguments we will assume
that ‖aε‖W 1,∞(Ω) = O(ε−1). Let us also assume
that Ω ⊂ Rd is a bounded Lipschitz domain and
that the matrix-valued function aε belongs to
the space M(α, β,Ω) of symmetric matrix val-
ued functions, uniformly elliptic and bounded
by α and β, respectively,

2 Classical approximation

For a classical numerical approximation of the
problem (1) we pick a P1 finite element (FE)
space Vh with mesh size h (chosen for simplicity
to be a quasi-uniform family of triangulation of
the domain Ω in simplicial elements). The fol-
lowing standard approximation result can then

be obtained following Baker [8]:

‖uε − uh‖L∞(L2) ≤ C(‖uε −Πh(uε)‖L∞(L2)

+ ‖∂tuε − ∂tΠh(uε)‖L1(L2)),

where Πh : H1
0 (Ω) → Vh is the Ritz-projection

onto Vh, i.e., the (aε∇·,∇·)-orthogonal projec-
tion. The projection error can be further esti-
mated (assuming ∂tuε ∈ L1(H1)) by exploiting
its quasi best-approximation property inH1(Ω),
an Aubin-Nitsche duality argument for the el-
liptic projection and the H1-stability of Πh to
obtain

‖uε − uh‖L∞(L2) ≤ Ch‖aε‖W 1,∞(Ω)

(
‖uε‖L∞(H1)

+‖∂tuε‖L1(H1)

)
≤ C

h

ε2
,

where C = C(T ) is independent of ε. One
power of ε originates from ‖aε‖W 1,∞(Ω) = O(ε−1),
the other from the energy estimate for ‖∂tuε‖L1(H1)

that also scales as O(ε−1) (following classical ar-
guments). The above estimate raises two obser-
vations. First, it scales poorly with respect to
the parameter ε and requires a prohibitive mesh
resolution if ε is small. Second, the estimate is
not optimal in h. This is due to the fact that
applying an Aubin-Nitsche duality argument to
use an optimal first order convergence rate in the
H1 norm would require to bound ‖∂tuε‖L1(H2)

that however scales as Cε−2. This issue also
prevents the use of higher spatial approxima-
tion when using classical FE or finite difference
(FD) methods for the approximation of (1).

In this contribution we consider two distinct
classes of media that require different numerical
strategies.

3 No scale separation and local orthog-
onal decomposition

For the first class of media, we assume no scale
separation in the highly heterogeneous tensor
aε, but only assume ‖aε‖W 1,∞(Ω) = O(ε−1). To
construct a suitable method, we first need to de-
sign an appropriate multiscale space. For that
we follow the idea of localized orthogonal de-
composition (LOD) [11].
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Consider a coarse quasi-uniform mesh and
an associated FE space VH = span{Φz}, spanned
by piecewise basis functions Φz. Here H can be
much coarser than ε. We then consider the L2

projection IH : H1
0 (Ω) −→ VH and define Wh =

Ker(IH |Vh), where Vh is a FE space spanned by
piecewise basis functions with a quasi-uniform
mesh with meshsize h that resolves the finest
scale, i.e. h < ε.

Next we consider the corrector Q : VH −→
Wh given by the elliptic projection

(aε∇Q(vH),∇wh) = −(aε∇vH ,∇wh)

∀wh ∈ Wh and we obtain a multiscale space
V ms
H = {Φz+Q(Φz),Φz nodal macro basis fct}.

Building this space is very costly as it involves
multiple solves of elliptic partial differential equa-
tions in Ω with resolved mesh h < ε. The crucial
finding in [11] is that the elliptic projection can
be localized on a patch around each coarse el-
ement, while maintaining good approximation
properties of the multiscale space (the size of
the neighbouring coarse elements involved in the
patch usually scales as | logH|). We denote this
localized space by V ms

H,loc and assume that the
local elliptic solution to build the multiscale FE
space are sufficiently well resolved (see [2] for a
precise statment).

Using V ms
H,loc for a FE solution of the wave

equation (1) we can show for its corresponding
solution umsH the following error estimate

‖uε − umsH ‖L∞(L2) ≤ CH
(
‖uε‖L∞(H1)

+ ‖∂tuε‖L1(H1)
).

However, as mentioned earlier, ‖∂tuε‖L1(H1) scales
asO(ε−1). Using a perturbation argument based
on the notion of G−convergence from homoge-
nization, we show in [2] that ‖∂tuε‖L1(H1) can
be bounded independently of ε, establishing a
convergence rate that scales with a coarse mesh-
size H for a multiscale FE discretization of the
wave equation in a medium with a continuum
of (heterogenenous) scales. Fully discrete es-
timates with time-discretization for Newmark
schemes (e.g. Crank-Nicolson method) can also
be found in [2].

4 Locally periodic media: effective equa-
tions and numerical homogenization

For the second class of media, we assume scale
separation in the tensor aε (e.g., periodic, lo-
cally periodic media). Multiscale methods based

Figure 1: Heterogeneous medium (left), solu-
tion of the wave equation in the heterogeneous
medium by a resolved FEM (middle) and a the
multiscale solution uH (right), see [2].

on homogenization theory can then be used, re-
lying on the discretization of a homogenized ver-
sion of (1)

∂ttu0 −∇ ·
(
a0∇u0

)
= F in Ω× (0, T ]. (2)

These multiscale methods, rely on a macroscopic
finite element space VH and a microscopic finite
element space Vh that is used to solve the origi-
nal highly oscillatory elliptic problem associated
to (1) to recover on the fly the effective tensor
a0 at suitable quadrature points. This compu-
tation is done on patches that scales with ε, re-
sulting in a computational cost independent of
ε [1].

However as time evolves dispersive effects
accumulate in the oscillatory wave uε given by
(1) that are not captured by the homogenized
wave u0 [12]. Higher order models must then
be computed. The first interesting time-scale
where significant dispersion occur to make the
homogenized model (2) invalid is [0, T ε−2]. It
is shown in [3] that a family of effective models
(summation convention is used) of the form

∂ttũ− a0
ij∂

2
ij ũ+ ε2

(
a2
ijkl∂

4
ijklũ− b2ij∂2

ij∂ttũ
)

= F,

can be defined upon appropriate choice of the
tensors a2 and b2. Solutions of these models are
ε close to the solution uε in a norm equivalent to
the L∞(0, T ε−2;L2(Ω)) norm. The above fam-
ily of models is appropriate when aε is a periodic
tensor. Convergence of a multiscale method re-
lated to such models is proved in [4], effective
models with locally periodic aε are derived in
[5] and effective models on arbitrary timescales
are presented in [6]. Related works can also be
found in [7, 9, 10].
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Figure 2: Wave propagating in layered medium
(top figure), wave in the corresponding homog-
enized medium (middle figure), an effective so-
lution given by the higher order model (bottom
figure), see [3].
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Building Neural Networks for Wave-based Inverse Problems

Lexing Ying1,∗

1Department of Mathematics, Stanford University, Stanford, CA, USA
∗Email: lexing@stanford.edu

Abstract

This talk summarizes our recent work on de-
veloping neural networks for wave-based inverse
problems.
Keywords: neural networks, inverse problems,
Fourier-integral operators, butterfly algorithm

1 Introduction

In the past several years, deep learning has ad-
vanced the state-of-art of many topics in arti-
ficial intelligence, including vision, speech, etc.
The main player of this success story is the ar-
chitecture of deep neural networks, which is highly
flexible in terms of representing high-dimensional
functions and probability distributions and al-
lows for automatic feature extraction. When
combined with efficient optimization algorithms
such as stochastic gradient descent and modern
hardware (GPU, TPU, etc) and software (Ten-
sorflow, Pytorch, etc) developments, they out-
perform traditional machine learning methods
in many fields.

Wave-based imaging has been an important
tool for scientific discovery in physical sciences.
Unfortunately, many problems of wave-based imag-
ing are mathematically challenging, due to the
nonlinearity of the problem and the need to learn
appropriate prior information from the data.

In this abstract, we present some recent work
of applying deep learning to address some of
these challenges. There are two main challenges
in applying deep learning to inverse problems.
First, in most applications of inverse problems,
one is often faced with limited amount of data,
when compared to the traditional machine learn-
ing tasks such as image and speech recognition.
Second, since many inverse problems are often
formulated as regression problems, i.e., learn-
ing a function rather than just a yes/no an-
swer, they require much better accuracy. In or-
der to overcome these main difficulties, our ap-
proach leverages the mathematical and physical
structures of the inverse problems, by introduc-
ing compact neural network structures for the
key mathematical operators, such as the pseudo-

differential operators and the Fourier-integral op-
erators. At the same time, the weights of the
neural networks along with the prior are trained
end-to-end from the data.

2 Novel structural modules

Pseudo-differential operators (PDOs) and Fourier-
integral operators (FIOs) are key building blocks
of mathematical treatments of the inverse prob-
lems.

PDOs of form

(Af)(x) ≡
∫
K(x, y)f(y)dy,

are typically used to model the normal opera-
tor associated with the linearized forward oper-
ator. When viewed as a matrix, its off-diagonal
blocks are often numerical low-rank. Based on
this key property, we have recently proposed
two types of neural networks for representing
PDOs. The first type is motivated by the ad-
ditive multiscale decomposition of PDOs (see
Figure 1 top). When applied to an arbitrary
vector, each scale of the decomposition can be
encoded as a three-layer linear neural network
(see Figure 1 bottom). By putting together the

Figure 1: Pseudo-differential operators: ad-
ditive multiscale decomposition in hierarchical
matrix form.

three-layer linear neural networks at different
scales and including nonlinear operators such
as ReLU, we propose the multiscale neural net-
works in [1] (see Figure 2 top). By further ex-
ploiting the nested structures of the low-rank
factorizations across different scales, one arrives
at a more compact version proposed in [2] (see
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Figure 2: Multiscale neural network.

Figure 2 bottom). The second type is moti-
vated by the multiplicative decomposition based
on the non-standard wavelet from proposed by
Beylkin, Coifman, and Rokhlin (see Figure 3 for
a schematic decomposition and the matvec at a
single scale). By putting together the liner neu-

Figure 3: Pseudo-differential operators: mul-
tiplicative multiscale decomposition in non-
standard wavelet form.

ral networks at each scale and including nonlin-
ear operations such as ReLU, we arrive at the
BCR-Net proposed in [3] (see Figure 4).

FIOs of form

(Af)(x) ≡
∫
a(x, ξ)e2πiΦ(x,ξ)f(ξ)dξ

are typically used to model the linearized for-
ward and adjoint operators. If one partitions
its matrix form into blocks that are square-root
size of the dimension, a key property is that each
block of the FIO is numerical low-rank. By ap-
plying low-rank approximations to each block,

Figure 4: BCR-Net.

we arrive at the butterfly factorization (see Fig-
ure 5 top). When applied to an arbitrary vec-
tor, the whole computation can be encoded in a
three-layer linear neural network (see Figure 5
bottom). By inserting the nonlinear operations,

Figure 5: Fourier-integral operators: butterfly
factorization in hierarchical.

we propose the Switch-Net module in [4] (shown
in Figure 6) for applying the FIOs.

Figure 6: Switch-Net.

3 Applications

We have applied the neural network modules de-
veloped above to a few wave-based inverse prob-
lems. The first problem is inverse media scat-
tering from the far field pattern (see Figure 8).
This problem is modeled by the Helmholtz equa-
tion

Lu =

(
−∆− ω2

c0(x)2
− η(x)

)
u = 0.

where ω is the frequency, c0(x) is the background
velocity, and η(x) is the unknown media. Given
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Figure 7: Inverse media scattering from far field
pattern.

an incoming wave direction s and an outgoing
wave direction r, the far field pattern d(r, s) en-
codes the scaled and modulated scattering wave
in the r direction. In the linearized regime, i.e.,
η(x)� 1, the following approximation holds

d(r, s) ≈ (Aη)(r, s) ≡
∑

x∈X
eiω(s−r)·xη(x),

where the linearized forward operator A, as an
FIO from Ω to S1×S1, can be represented with
a Switch-Net. Under the same assumption, the
inverse operator is (A∗A+ εI)−1A∗d, where the
part (A∗A+ εI)−1 can be shown to be a PDO.
Based on these considerations, we propose in [4]
the following neural network architecture for the
full (nonlinear) inverse problem

d(r, s)⇒ SwitchNet⇒ BCR-Net⇒ η(x).

The second case is a toy example of seis-
mic imaging with surface observations in the fre-
quency domain. To simplify the treatment, the

Figure 8: Seismic imaging with surface observa-
tions.

problem is modeled by the Helmholtz equation

Lus =

(
−∆− ω2

c0(x)2
− η(x)

)
us = δs(x),

where η(x) is the unknown media and s is the
source at surface. By imposing receivers r at
the surface as well, the seismic data d(r, s) can
be approximated in the linearized regime as

d(r, s) ≈ (Aη)(r, s) ≡
∑

x∈X
G0(r, x)G0(x, s)η(x),

where G0 is the Green’s function of the back-
ground media c0(x). It can be shown that A is
an FIO for sufficiently smooth background ve-
locity c0(x) and hence can be represented with a
Switch-Net. Following the same reasoning, the
linearized normal operator (A∗A + εI)−1 is a
PDO and the same neural network architecture

d(r, s)⇒ SwitchNet⇒ BCR-Net⇒ η(x)

can be used for this inverse problem as well [4].

References

[1] Yuwei Fan, Lin Lin, Lexing Ying, and
Leonardo Zepeda-Nunez. A multiscale neu-
ral network based on hierarchical matrices.
arXiv:1807.01883.

[2] Yuwei Fan, Jordi Feliu-Faba, Lin Lin, Lex-
ing Ying, and Leonardo Zepeda-Nunez. A
multiscale neural network based on hierar-
chical nested bases. Res. Math. Sci. 6, 2019.

[3] Yuwei Fan, Cindy Orozco Bohorquez, and
Lexing Ying. BCR-Net: a neural network
based on the nonstandard wavelet form.
Journal of Computational Physics, 384,
2019.

[4] Yuehaw Khoo and Lexing Ying. Switch-
Net: a neural network model for for-
ward and inverse scattering problems.
arXiv:1810.09675

Monday, 14:00, GM1 Audimax, Building BA



57



58 Plenary Lectures

For most frequencies, strong trapping has a weak effect in frequency-domain scattering

D. Lafontaine1, E.A. Spence2,∗, J. Wunsch3

1Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK
2Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK

3Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston IL
60208-2730, US

∗Email: E.A.Spence@bath.ac.uk

Abstract

It is well known that when the geometry and/or
coefficients allow stable trapped rays, the solu-
tion operator of the Helmholtz equation (a.k.a. the
resolvent of the Laplacian) grows exponentially
through a sequence of real frequencies tending
to infinity.

In this talk (based on the paper [21]) we
show that, even in the presence of the strongest-
possible trapping, if a set of frequencies of arbi-
trarily small measure is excluded, the Helmholtz
solution operator grows at most polynomially as
the frequency tends to infinity.

One significance application of this result is
in the convergence analysis of several numerical
methods for solving the Helmholtz equation at
high frequency that are based on a polynomial-
growth assumption on the solution operator (e.g.
hp-finite elements, hp-boundary elements, cer-
tain multiscale methods). The result of this talk
shows that this assumption holds, even in the
presence of the strongest-possible trapping, for
most frequencies.
Keywords: Helmholtz, high-frequency, a priori
bound, resolvent, trapping, resonance.

1 Introduction

1.1 Motivation: bounds on the solu-
tion operator under trapping

Trapping and nontrapping are central concepts
in scattering theory. This talk is concerned with
the behaviour of the solution operator in frequency-
domain scattering problems (a.k.a. the resolvent)
in the presence of strong trapping. Our results
(taken from the paper [21]) hold for a wide va-
riety of boundary-value problems where the dif-
ferential operator is the Helmholtz operator ∆+
k2 outside some compact set; indeed, we work
in the framework of black-box scattering intro-
duced by Sjöstrand–Zworski in [36] and recapped
briefly in [21, §2]. For simplicity, in this intro-

duction we focus on the exterior Dirichlet prob-
lem (EDP) for the Helmholtz equation; i.e. the
problem of, given a bounded, open set O ⊂
Rn, n ≥ 2, such that the open complement
O+ := Rn \ O is connected and ∂O+ is Lips-
chitz, f ∈ L2(O+) with compact support, and
frequency k > 0, find u ∈ H1

loc(O+) such that

∆u+ k2u = −f in O+, γu = 0 on ∂O+,
(1)

(where γ denotes the trace operator on ∂O+)
and

∂u

∂r
(x)− iku(x) = o

(
1

r(d−1)/2

)
, (2)

as r →∞, uniformly in x̂ := x/r (with this last
condition the Sommerfeld radiation condition).
One can show that the solution of the EDP is
unique for all k, and then Fredholm theory im-
plies that the solutions exists for all k and, given
R > 0 such that suppf ⊂ BR := {x : |x| < R}
and k0 > 0,

‖∇u‖L2(O+∩BR) + k ‖u‖L2(O+∩BR)
≤ Υ(k,O, R, k0) ‖f‖L2(O+) (3)

for all k ≥ k0, where Υ(k,O, R, k0) is some (a
priori unknown) function of k,O, R, and k0.

It is convenient to write bounds such as (3)
in terms of the outgoing cut-off resolvent χR(k)χ :
L2(O+) → H1(O+) for k ∈ R \ {0}, where
χ ∈ C∞comp(O+) and R(k) := −(∆ + k2)−1,
with Dirichlet boundary conditions on ∂O+, is
defined by analytic continuation from R(k) :
L2(O+) → L2(O+) for =k > 0 (this definition
impiles that the radiation condition (2) is sat-
isfied for k ∈ R \ {0}). The bound (3) then
becomes

‖χR(k)χ‖L2(O+)→L2(O+) ≤
Υ(k,O, χ, k0)

k
,

‖χR(k)χ‖L2(O+)→H1(O+) ≤
Υ(k,O, χ, k0)

min(k0, 1)
,

(4)
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for all k ≥ k0. Having obtained an L2 → L2

bound on Rχ(k), an L2 → H1 bound can be
obtained from Green’s identity (i.e. multiplying
the PDE in (1) by u and integrating by parts;
see, e.g., [37, Lemma 2.2]) and so we focus on
L2 → L2 bounds from now on.

When O+ has C∞ boundary and is nontrap-
ping, i.e. all billiard trajectories starting in an
exterior neighbourhood of O escape from that
neighbourhood after some uniform time, one can
show that Υ in (4) is independent of k, i.e. given
k0 > 0,

‖χR(k)χ‖L2(O+)→L2(O+) .
1

k
for all k ≥ k0,

(5)
where the notation a . bmeans that there exists
a C > 0, independent of k (but dependent on k0,
O+, and χ), such that a ≤ Cb. This classic non-
trapping resolvent estimate was first obtained
by the combination of the results on propaga-
tion of singularities for the wave equation on
manifolds with boundary by Melrose and Sjös-
trand [29,30] with either the parametrix method
of Vainberg [40] (see [33]) or the methods of Lax
and Phillips [22] (see [28]).

On the other hand, when O+ is trapping, a
loss is unavoidable in the cut-off resolvent; in-
deed, at least in the case of semiclassical scat-
tering by a potential, if trapping exists then one
has a semiclassical lower bound by [4, Théorème
2], which in our notation corresponds to

‖χR(k)χ‖L2→L2 & log(2 + k)

k
, (6)

and one expects the strength of the loss to de-
pend on the strength of the trapping. In the
standard example of hyperbolic trapping, which
is when O equals the union of two disjoint con-
vex obstacles with strictly positive curvature (see
Figure 1(a), the lower bound (6) is achieved,
since

‖χR(k)χ‖L2(O+)→L2(O+) .
log(2 + k)

k

for all k ≥ k0 by [9, Proposition 4.4]. In the
standard example of parabolic trapping, which is
when O equals the union of two disjoint, aligned
squares, in 2-d, or cubes, in 3-d, (see Figure
1(b)), the cut-off resolvent suffers a polynomial
loss over the nontrapping estimate, with the bound

‖χR(k)χ‖L2(O+)→L2(O+) . k for all k ≥ k0

proved in [14, Theorem 1.9]; variable-power poly-
nomial losses have also been exhibited in [16,
Theorem 2] in cases of degenerate-hyperbolic
trapping in the setting of scattering by metrics.

For general O+ with C∞ boundary, the cut-
off resolvent can grow at most exponentially in
k by the bound of Burq [7, Theorem 2]

‖χR(k)χ‖L2(O+)→L2(O+) . eαk for all k ≥ k0

for some α = α(O, k0) > 0. In the presence of
the strongest possible trapping – so called el-
liptic trapping – this exponential growth of the
cut-off resolvent is achieved. Indeed, if O has
an ellipse-shaped cavity (see Figure 1(c)) then
there exists a sequence of frequencies 0 < k1 <
k2 < . . ., with kj →∞, and α > 0 such that

‖χR(kj)χ‖L2(O+)→L2(O+) & eαkj j = 1, 2, . . . ,

(7)
see, e.g., [3, §2.5]. More generally, if there ex-
ists an elliptic trapped ray (i.e. an elliptic closed
broken geodesic), and ∂O+ is analytic in neigh-
bourhoods of the vertices of the broken geodesic,
then the resolvent can grow at least as fast as
exp (αkqj ), through a sequence kj as above and
for some range of q ∈ (0, 1), by the quasimode
construction of Cardoso and Popov [12] (note
that Popov proved superalgebraic growth for cer-
tain elliptic trapped rays when ∂Ω− is smooth
in [32]).

The question this talk answers is how does
the cut-off resolvent behave under elliptic trap-
ping when k is not equal to one of the “bad"
frequencies kj?

Our answer to this question uses this fact
that the growth of the cut-off resolvent through
the real sequence kj under trapping is due to
the presence of (complex) resonances lying in
the lower-half complex k-plane, close to the real
axis. The “bad" real frequencies kj then corre-
spond to the real parts of these (complex) res-
onances. The strength of the trapping and how
close the resonances are to the real axis are inti-
mately related. Indeed, in elliptic trapping, the
resonances are super-algebraically close to the
real axis, causing at least superalgebraic growth
of the cut-off resolvent, whereas in hyperbolic
trapping the resonances stay a fixed distance
away from the real axis, hence the weak loga-
rithmic loss over the nontrapping resolvent esti-
mate; see the recent overview discussion in [41,
§2.4] and the references therein.
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(a) (b)

(c)

Figure 1: Examples of (a) hyperbolic trapping, (b) parabolic trapping, and (c) elliptic trapping, with
a trapped ray for each indicated by a black dashed line.

1.2 Statement of main results (in the
setting of impenetrable-Dirichlet-
obstacle scattering)

In the setting of scattering by an impenetrable
Dirichlet obstacle our main result is the follow-
ing. This result is valid (and hence stated) for
all Lipschitz obstacles, but is of primary interest
when the obstacle contains an elliptic trapped
ray.

Theorem 1 (Polynomial resolvent estimate
for most frequencies [21, Theorem 1.1])
Let O be an open set O ⊂ Rn, n ≥ 2, such that
the open complement O+ := Rn \O is connected
and ∂O+ is Lipschitz. Let R(k) be defined as in
§1.1. Then, given k0 > 0, δ > 0, and ε > 0,
there exists C = C(k0, δ, ε, n) > 0 and a set
J ⊂ [k0,∞) with |J | ≤ δ such that

‖χR(k)χ‖L2(O+)→L2(O+) ≤ Ck5n/2+ε

for all k ∈ [k0,∞)\J. (8)

In other words, even in the presence of el-
liptic trapping, outside an arbitrary-small set of
frequencies, the resolvent is always polynomially
bounded, with an exponent depending only on
the dimension. We make the following remarks.

• The analogue of Theorem 1 in the black-
box-scattering framework is given as [21,
Theorem 3.4]; this result is that a resol-
vent estimate identical to (8) in its k-dependence

is valid in a wide range of settings, includ-
ing scattering by an impenetrable Neu-
mann obstacle, by a penetrable obstacle,
by a potential, by elliptic and compactly-
supported perturbations of Laplacian, and
on finite volume surfaces (see [18, §4.1]).

• The proof of Theorem 1 uses the results
of Tang and Zworski [39] about (i) the be-
haviour of resolvent away from resonances
[38, Lemma 1], [39, Proposition 4.3] (see
also [18, Theorem 7.5]) and (ii) the semi-
classical maximum principle [38, Lemma
2], [39, Lemma 4.2] (see also [18, Lemma
7.7]). In fact [39, Proposition 4.6] notes
that the cut-off resolvent is bounded poly-
nomially in regions of the complex plane
that include intervals of the real axis away
from resonances; the difference here is that
we seek to control the measure of these in-
tervals.

• Under assumptions about the distribution
of resonances, one can lower the exponent
in (8) and also obtain a bound on the mea-
sure of the set {k : ‖χR(k)χ‖L2→L2 >
λs} ∩ [λ, λ + 1); see [21, Theorem 3.6].
Scattering by a strictly convex, penetrable
obstacle is one scenario where relatively-
strong information is known about the dis-
tribution of resonances, and [21, Corollary
3.9] applies the general result of [21, The-
orem 3.6] in this case.
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• We do not know the sharp value of the ex-
ponent in the bound (8). Under an almost-
equidistribution of resonances hypothesis,
we obtain a lower bound of ‖χR(k)χ‖L2→L2 &
kn−2: see [21, Lemma 3.10].

• Similar results to Theorem 1 about rela-
tively “good" behaviour of the Helmholtz
solution operator under elliptic trapping
as long as k is outside some finite interval
were proved for scattering by a penetrable
ball in [10, Theorem 6.5] for 2-d and [11,
Theorem 2.5] for 3-d. These results use
the explicit expression for the solution in
terms of an expansion in Fourier series (2-
d) or spherical harmonics (3-d), with coef-
ficients given by Hankel and Bessel func-
tions, to bound the scattered field outside
the obstacle in terms of the incident field,
with a loss of derivatives (corresponding
to a loss of powers of k). At least when
the contrast in wave speeds inside and out-
side the obstacle is sufficiently large, [10,
Lemma 6.2] and [11, Lemma 3.6] show that
the scattered field everywhere outside the
obstacle is polynomially bounded in k for
k outside a set of small, finite measure.

• As noted in §1.1, when the obstacle O
contains an ellipse-shaped cavity, the re-
solvent grows exponentially through a se-
quence kj (7); in this situation Theorem 1
implicitly contains information about the
widths of the peaks in the norm of the re-
solvent at kj . We are not aware of any re-
sults in the literature about the widths of
these peaks in the setting of obstacle scat-
tering, but precise information about the
widths and heights of peaks in the trans-
mission coefficient for model resonance prob-
lems in one space dimension can be found
in [35], [1].

• Complementary results (in a different di-
rection to Theorem 1) about “good" be-
haviour of the resolvent in trapping sce-
narios can be found in in [13, Theorem
1.1], [8, Theorem 4], and [17, Theorems
1.1, 1.2]. Indeed, [13, Theorem 1.1] proves
that, even in the presence of trapping, the
nontrapping resolvent estimate (5) holds
when the support of χ is sufficiently far
away from the obstacle ( [8, Theorem 4]

proves this result up to factors of log k).
The results [17, Theorems 1.1, 1.2] prove
the analogue of this result in the setting
of scattering by a potential and/or by a
metric when the cut-off functions are re-
placed by semiclassical pseudodifferential
operators restricting attention to areas of
phase space isolated from the trapped set.

1.3 Applications to numerical analy-
sis of Helmholtz scattering prob-
lems

The most exciting applications of the bound (8)
are for numerical methods whose analyses re-
quire the resolvent to be polynomially bounded
in k, with the method depending only mildly on
the degree of this polynomial. Three such meth-
ods are

1. The hp-finite-element method (hp-FEM),
where, under the assumption that the re-
solvent is polynomially bounded in k, the
results of [19,26,27] establish that the finite-
element method when h ∼ k−1 and p ∼
log k does not suffer from the pollution ef-
fect; i.e. under this choice of h and p, for
which the total number of degrees of free-
dom ∼ kn, the method is quasi-optimal
with constant independent of k. Similar
results were then obtained for DG meth-
ods in [25,34], and for least-squares meth-
ods in [2, 15].

2. The hp-boundary-element method (hp-BEM),
where, under a polynomial-boundedness
assumption on the solution operator, the
results of [23,24] establish that the boundary-
element method when h ∼ k−1 and p ∼
log k does not suffer from the pollution ef-
fect.

3. The multiscale finite-element method of
[20], [6], [5] [31], which, under the assump-
tion that the resolvent is polynomially bounded
in k, computes solutions that are uniformly
accurate in k but with a total number of
degrees of freedom ∼ kn, provided that a
certain oversampling parameter grows log-
arithmically with k.
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Nonlinear resonance and finite time-scale separation in highly oscillatory PDEs:
examples in geophysical fluid dynamics and numerical analysis
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Abstract

In highly oscillatory fluid dynamics, such as flu-
ids that govern Earth’s atmosphere and ocean,
the role of the waves on developing and sus-
taining a mean flow is an open question with
far-reaching consequences that include how we
understand climate variability and how we per-
form numerical computations. In this talk we
will discuss the role of nonlinear and linear res-
onance from time-scale separated PDEs on the
formation and persistence of low-frequency phe-
nomenon. We will rely on the use of the semi-
group operator as a mapping that helps reveal
the mathematical structure of the PDE. We will
give examples from ODEs and an example from
the Arctic Ocean. Finally, we will sketch a new
proof of convergence for the parareal method
when there is time-scale separation.
Keywords: resonance, numerical analysis, os-
cillations

1 Introduction

One of the most interesting challenges in dy-
namics is to understand the role of waves on
the creation of low frequency (long-lived) mean
flows. This type of phenomenon has long been of
interest in fluid dynamics because it governs our
understanding of the large-scale, low-frequency
flow that we observe in atmospheres and oceans,
plasmas, and other branches of physics. Hav-
ing a deeper understanding of this type of phe-
nomenon is also important in creating new nu-
merical approximations to these PDEs required
to use challenging new computer architectures
and has long been of interested in mathemat-
ics. In this talk I will focus on highly oscillatory
PDEs that exhibit time scale separation of the
form,

du

dt
+

1

ε
Lu+N (u) = 0, (1)

u(t)|t=0 = u0. (2)

where the linear operator L has pure imaginary
eigenvalues, the nonlinear term N(u,u) is of

polynomial type, the operator D encodes a form
of dissipation, and ε is a small non-dimensional
parameter. For notational simplicity, we let u (t)
denote the spatial (vector-valued) function

u (t, ·) = (u1 (t, ·) , u2 (t, ·) , . . .) .

The operator ε−1L results in time oscillations on
an order O (ε) time scale. As ε→ 0, the oscilla-
tions become more rapid, leading to time-scale
separation. It is these fast oscillations that gen-
erally require small time steps if standard ex-
plicit numerical integrators are used in numeri-
cal approximations.

When ε → 0, (1), we encounter the case of
a fast-singular limit (infinite time-scale separa-
tion). As such we expect small scale oscillations
will remain a part of the solution even when the
nonlinearity even in the limit as ε → 0 [1–3].
To take a closer look at the oscillatory structure
embedded in the PDE we apply an exponential
mapping to (1) to arrive at,

u(t) = e−
1
ε
Lt v(t) (3)

dv

dt
(t) + e

1
ε
LtN (e−

1
ε
Ltv(t)) = 0, (4)

v(t)|t=0 = u0. (5)

Comparing (1) with (3-4) shows that the
mapping (3) removes the stiff linear term from
the evolutionary equation. However, though the
stiff linear term is gone, taking another deriva-
tive of (4), which we call the Modulation equa-
tion, shows that there will still be oscillations
present.

Inspired by the mathematical structure of
fast singular limits, we take a next step and in-
troduce a fast-wave-average approximation into
(3)-(5),

u(t) ≈ e− 1
ε
Lt v(t) (6)

dv

dt
(t) +

1

η

∫ η

0
e

1
ε
LsN (e−

1
ε
Lsv(t))ds = 0,(7)

v(t)|t=0 = u0. (8)
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Notice that the integral in (7) is over a parame-
ter s, which only appears in the nonlinear com-
bination of the exponential operators, not in the
solution itself.

Much is understood about (6-8) when ε→ 0,
but in some real-world applications the dynam-
ics is not in the asymptotic limit, for example
Earth’s rotation rate does not go to infinity.
And even in applications where ε is small enough
to be considered within the asymptotic limit, it
may not remain so as the solution evolves. This
is because small nondimensional parameters are
constructed using characteristic velocity, length,
and time scales that change as solutions evolve.
As a consequence we must take into account the
finiteness of ε when studying the fluid dynamics
that develops from equations of the form (1). A
additional benefit would be to try and use what
we learn from studies of finite ε when we con-
sider time-descritizations.

In this talk I will discuss the relationships
between the three equation sets above. I will
give examples, including a real-world example of
layer formation in the Arctic Ocean, and discuss
a numerical approximation of (6-7) ( [4] [5]) used
to prove convergence of the parareal method (
[6]). For quadratic nonlinearity this will involve
ordered sequences of near-resonant sets.
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Unified error analysis for certain full discretizations of wave-type problems
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Abstract

We consider the full discretization of a class of
linear wave-type problems in first order formu-
lation, such as Maxwell’s equations, the acous-
tic wave equation or the advection equation. In
order to achieve this full discretization we use
a method of lines approach, where we first dis-
cretize in space via the discontinuous Galerkin
(dG) method. Subsequently, we use one of four
schemes for time integration:

• the Crank–Nicolson scheme,

• the leapfrog scheme,

• a locally implicit scheme,

• the Peaceman–Rachford scheme.

In this paper we investigate the resulting
fully discrete schemes. We show their stabil-
ity (subject to an appropriate CFL condition
where necessary) and error bounds that are op-
timal in space and time and robust under mesh
refinement. These bounds are derived within a
unified error analysis based on the fact that all
schemes can be interpreted as perturbations of
the Crank–Nicolson scheme.

1 Introduction

Let Ω ⊂ Rd be a bounded domain and T be a
finite time. We consider linear wave-type prob-
lems of the form

Mu′ = Lu+ f, (0, T )× Ω,

u(0) = u0, Ω.
(1)

Here, L is a first-order differential operator (also
called Friedrichs’ operator) given by

Lu =

d∑

i=1

Li∂iu+ L0,

with L0 ∈ Rd×d such that L0 + LT0 is negative
semidefinite and symmetric L1, . . . , Ld ∈ Rd×d.
Further, f ∈ L2(Ω)d is a source term and M ∈
L∞(Ω)d×d is a symmetric positive definite ma-
terial tensor.

Wellposedness of (1) in suitable function spa-
ces can be shown under assumptions on the data
[1, 6]. More general operators, where the co-
efficients are matrix-valued functions that pos-
sess certain regularity and positivity assump-
tions can be considered as well. However, for
the sake of presentation, we restrict ourselves to
the constant coefficient case and refer the reader
to [1, 6] for more general problems.

2 Spatial discretization

Discretizing the wave-type problem (1) in space
using a dG method with central fluxes [2] yields
the semidiscrete problem

u′ = Lu + f , (0, T ),

u(0) = u0,
(2)

where L is the discrete version of M−1L, f =
πhM

−1f , and u0 = πhu
0. Here, πh denotes the

L2-orthogonal projection onto the approxima-
tion space of the dG method.

3 Time integration

To obtain a fully discrete scheme, we consider
the four different time integration schemes men-
tioned above. All four schemes are of classical
order two and we will show that this order is
retained in the stiff case.

Given a time stepsize τ we approximate the
solution at times tn = nτ , i.e., un ≈ u(tn). In
what follows we abbreviate fn = f(tn).

Crank–Nicolson scheme. Applying the Crank–
Nicolson scheme to (2) yields the recursion

un+1− un =
τ

2
L(un+1+ un) + τ f

n+1/2
,

with f
n+1/2

= 1
2(fn+1 + fn). It is well known,

that the Crank–Nicolson scheme is uncondition-
ally stable.

Leapfrog or Verlet scheme. To apply the
leapfrog scheme we need that (1), (2) exhibit a
two field structure of the form

u =

(
p
q

)
, f =

(
fp
0

)
, L =

(
0 Lq

Lp 0

)
. (3)
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Then, the leapfrog scheme applied to (2) is given
by

qn+1/2 − qn =
τ

2
Lpp

n,

pn+1 − pn = τLqq
n+1/2 + τ f

n+1/2
p ,

qn+1 − qn+1/2 =
τ

2
Lpp

n+1,

with f
n+1/2
p = 1

2(fn+1
p +fnp ). The leapfrog scheme

is stable under the CFL condition

τ ≤ Cθhmin, θ ∈ (0, 1),

where hmin is the smallest mesh width of the
spatial grid [9].

Locally implicit scheme. Next, we consider a
locally implicit scheme [5,10] that combines the
implicit Crank–Nicolson and the explicit leap-
frog scheme. Hence, we again assume the two-
field structure (3). The locally implicit scheme
reads

qn+1/2 − qn =
τ

2
Lpp

n,

pn+1 − pn =
τ

2
Li
q(q

n+1 + qn)

+ τLe
qq

n+1/2 + τ f
n+1/2
p ,

qn+1 − qn+1/2 =
τ

2
Lpp

n+1,

where Lq = Le
q + Li

q is split into an explicit
and an implicit part in a suitable way, cf. [5, 9]
for details. In particular, for Le

q = 0, we obtain
the Crank–Nicolson scheme and for Li

q = 0, we
obtain the leapfrog scheme. One can show that
the scheme is stable under the CFL condition

τ ≤ Cθhemin, θ ∈ (0, 1),

where hemin is the smallest mesh width of the
explicitly treated part of the spatial grid [5, 9].

Peaceman–Rachford scheme. This is a split-
ting scheme, which is why we split L = A + B.
This splitting can, e.g., be a directional split-
ting leading to an ADI scheme [7, 8, 11]. The
Peaceman–Rachford scheme is then given by

(I−τ
2
A)(I − τ

2
B)un+1

= (I +
τ

2
A)(I +

τ

2
B)un + τ f

n+1/2
q .

As for the Crank–Nicolson scheme, one can show
that the Peaceman–Rachford scheme is uncon-
ditionally stable [3, 4].

Unified representation

Our analysis is based on the observation that
we can represent all four schemes as perturba-
tions of the Crank–Nicolson scheme. Namely,
by introducing the operators

R± = I ± τ

2
L +

τ2

4
D,

we can write all four schemes as

R−un+1 = R+u
n + τ f

n+1/2
q (4)

with different choices of D for each scheme:

Crank–Nicolson: D = 0.

Leapfrog: D =

(LqLp 0
0 0

)
.

Locally implicit: D =

(Le
qLp 0

0 0

)
.

Peaceman–Rachford: D = AB.

4 Error analysis

To derive error bounds we consider the full dis-
cretization error

en = enπ + en,
enπ = u(tn)− πhu(tn),

en = πhu(tn)− un.

Using standard interpolation bounds, it is easy
to see that the projection error satisfies ‖enπ‖ ≤
Chk+1 with k being the polynomial degree used
in the dG method. Here, ‖ · ‖ denotes a norm
which is equivalent to the L2-norm. To bound
the discretization error en, we insert the pro-
jected exact solution πhu(tn) into the numerical
scheme (4). This yields the error recursion

R−en+1 = R+e
n + τdnπ + δn, (5)

where the exact shape of the defects dnπ and δn

depends on the considered scheme. However,
for all schemes, the projection defect satisfies
‖dnπ‖ ≤ Chk and it therefore only remains to
bound the discretization defect δn.

For the Crank–Nicolson scheme, this defect
corresponds to the quadrature error of the trape-
zoidal rule and can therefore be bounded by
‖δn‖ ≤ Cτ3 if the exact solution is sufficiently
smooth. Solving the error recursion (5) and us-
ing the stability of the Crank–Nicolson scheme
then yields

‖en+1‖ ≤ C(hk + τ2). (6)
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The analysis of the leapfrog, locally implicit
and Peaceman–Rachford scheme is more involved
as additional perturbation terms arise stemming
from the nonzero D. However, we show that
the above analysis can be adapted to deal with
those additional terms, yielding equivalent error
bounds to (6).
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Crushed ice problem revisited
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Abstract

We revisit one of the classical problems in ho-
mogenization theory – homogenization in a do-
main with a lot of tiny holes (also known as
crushed ice problem). This problem concerns
the Dirichlet Laplacian ∆Ωε on a perforated do-
main Ωε := Ω \ (∪iDiε), where Ω ⊂ Rn and
{Diε}i is a family of tiny identical holes dis-
tributed periodically with period ε. We denote
by µε the capacity of a single hole. It was known
for a long time that −∆Ωε converges to the op-
erator −∆Ω + q in strong resolvent sense pro-
vided the limit q = lim

ε→0
µεε
−n exists and is fi-

nite. In this talk we will discuss our recent im-
provements of this result. Namely, we show the
norm resolvent convergence of the above oper-
ators and derive estimates in terms of opera-
tor norms. As an application, we establish the
uniform convergence of the corresponding semi-
groups and convergence of spectra.
Keywords: domains with holes, Dirichlet Lapla-
cian, homogenization, norm resolvent conver-
gence, operator estimates

1 Introduction

Let Ω ⊂ Rn be an open domain (n ≥ 2) and
{Diε}i be a family of small holes. The holes
are identical (up to a rigid motion) and are dis-
tributed in Ω along the ε-periodic cubic lattice;
more details will be given in Section 2 . We set
(see Figure 1)

Ωε := Ω \
(⋃

i

Diε

)
.

In Ωε we consider the problem

−∆Ωεuε + uε = f �Ωε ,

where ∆Ωε is the Dirichlet Laplacian in Ωε, f ∈
L2(Ω) is a given function, f �Ωε is the restriction
of f to Ωε. The goal is to describe the behavior
of the solution uε to this problem as ε→ 0.

In what follows we denote by µε the capacity
of Diε (we recall its definition in Section 2).

One has the following celebrated result.

Theorem 1 Let the limit

q := lim
ε→0

µεε
−n

exist and finite. Then for any f ∈ L2(Ω)

‖uε − u‖L2(Ωε) → 0 as ε→ 0,

where u is the solution to the problem

−∆Ωu+ qu+ u = f.

This result was proven independently (and
with quite different methods) by V.A. Marchenko
and E.Ya. Khruslov [6,7], J. Rauch and M. Tay-
lor [11]1, D. Cioranescu and F. Murat [3]. For
more details we refer to monographs [1, 8, 12].

6

?
ε

Diε

�
�	

Ωε

Figure 1: The domain Ωε.

On the language of operator theory Theo-
rem 1 says that −∆Ωε converges to −∆Ωε + q in
a strong resolvent topology. Strictly speaking,
we are not able to treat the classical resolvent
convergence (since the underlying operators act
in different Hilbert spaces), but we have its nat-
ural analogue for varying domains with Ωε ⊂ Ω:
for any f ∈ L2(Ω) one has

lim
ε→0
‖RεJεf − JεRf‖L2(Ωε) = 0,

1Strictly speaking for q > 0 J. Rauch and M. Tay-
lor considered randomly distributed holes under assump-
tions resembling the case q > 0 in a deterministic case.
The pioneer result in this direction was obtained by
M. Kac in [4], who studied the case of uniformly dis-
tributed holes.
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where Jεf := f �Ωε and

Rε := (−∆Ωε + I)−1, R := (−∆Ω + (q+ 1)I)−1.

In the talk we discuss the results of our re-
sent paper [5], where we extend the above theo-
rem by the proving norm resolvent convergence
with the estimate for its rate. As a consequence
of our main results, we establish uniform con-
vergence of the corresponding semi-groups and
convergence of spectra.

Let us stress that we do not assume that the
domain Ω is bounded (except Theorem 6).

2 Main results

Let n ≥ 2 and let Ω ⊂ Rn be a domain with
C2-boundary ∂Ω (also some mild additional as-
sumptions on ∂Ω are required if Ω is unbounded).

We set � := (−1/2, 1/2)n.

6

?

ε

- �κε

�iε

Diε

AAU

B(Diε)
��*

Figure 2: A scaled cells �iε and possible po-
sition of the obstacle Diε (white). The small-
est ball B(Diε) (dashed circle) containing the
obstacle Diε has security distance κε from the
boundary of �iε, i.e., it should stay inside the
dotted cube of side length (1− 2κ)ε.

Now we describe a family of holes in Ω. Let
Dε be a Lipschitz domain in Rn depending on
a small parameter ε > 0. We denote by dε the
radius of the smallest ball containing Dε. It is
assumed that

(dε)
n−2 ≤ Cεn as n ≥ 3,

| ln dε|−1 ≤ Cε2 as n = 2
(1)

(hence, in particular, dε = o(ε)). For i ∈ Zn, let
Diε be a set enjoying the following properties
(see Figure 2):

Diε coincides with Dε up to a rigid motion,
B(Diε) ⊂ �iε := ε(�+ i),

dist
(
B(Diε), ∂�iε

)
≥ κε for some κ > 0, (2)

where B(Diε) is the smallest ball containing Diε

(the radius of this ball is dε).
Finally, we set (see Figure 1)

Ωε := Ω \
(⋃

i∈Iε
Diε

)
,

where Iε := {i ∈ Zn : �iε ⊂ Ω}, i.e. the set of
those indices for which the rescaled unit cell �iε
is entirely in Ω.

By Aε we denote the Dirichlet Laplacian on
Ωε, i.e. the operator acting in the Hilbert space
Hε := L2(Ωε) associated with the closed densely
defined positive sesquilinear form

aε[u, v] :=

∫

Ωε

∇u · ∇v̄ dx, dom(aε) := H1
0(Ωε).

Our goal is to describe the behaviour of the
resolvent (Aε+I)−1 as ε→ 0 under the assump-
tion that the limit

q := lim
ε→0

µεε
−n

exists and is finite; here µε denotes the capacity
of Dε.

Recall that the capacity cap(D) of the set
D ⊂ Rn for n ≥ 3 is defined via

cap(D) = inf

∫

Rn
|∇u(x)|2 dx, (3)

where the infimum is taken over u ∈ C∞0 (Rn)
being equal to 1 on a neighbourhood of D. For
n = 2 the right-hand-side of (3) is zero for an
arbitrary domain D, hence we need a modified
definition. It is as follows:

cap(D) = inf

∫

B1

|∇u(x)|2 dx,

where B1 is the unit ball concentric with B(D) –
the smallest ball containing D (here we assume
that the set D is small enough so that D ⊂
B(D) ⊂ B1), the infimum is taken over u ∈
C∞0 (B1) equal to 1 on a neighbourhood of D.

Finally, we introduce the limiting operator
A = −∆Ω + q. It acts in H := L2(Ω) and is
associated with the sesquilinear form

a[u, v] :=

∫

Ω
(∇u · ∇v̄ + q uv̄) dx,

dom(a) := H1
0(Ω).

Now, we are in position to formulate the
main result.
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Theorem 2 One has
∥∥(Aε + I)−1Jε − Jε(A+ I)−1

∥∥
L(H,Hε) ≤ 4δε,

where δε is defined by

δε = |µεε−n − q|

+ CΩ,κ,β





ε| ln ε|, n = 2,

ε, n = 3

ε1−β, β > 0, n = 4,

max
{
ε; dεε

−1
}
, n ≥ 5,

(4)

and the constant CΩ,κ,β depends on the domain
Ω, the relative distance κ of the obstacles from
the period cell boundary (see (2)), and, in the
case n = 4, on β.

Of course, the operator Jε is not the only
natural way to compare the resolvents of Aε
and A. Alternatively one can use J ′ε : Hε → H,
which is the operator of extension by zero:

(J ′εu)(x) =




u(x), x ∈ Ωε,

0, x ∈
⋃

i∈Iε
Diε.

Theorem 3 One has
∥∥J ′ε(Aε + I)−1 − (A+ I)−1J ′ε

∥∥
L(Hε,H)

≤ 6δε,

where δε is defined in (4). Moreover,
∥∥J ′ε(Aε + I)−1Jε − (A+ I)−1

∥∥
L(H,H)

≤ 9δε,
∥∥(Aε + I)−1 − Jε(A+ I)−1J ′ε

∥∥
L(Hε,Hε) ≤ 13δε.

Remark 4 Recently, using another methods,
K.Cherednichenko, P. Dondl and F. Rösler [2]
proved that

lim
ε→0

∥∥J ′ε(Aε + I)−1 − (A+ I)−1J ′ε
∥∥
L(Hε,H)

= 0

(without the estimates for the rate of this con-
vergence). The authors assumed that Diε are
balls distributed ε-periodically in Ω. For bounded
Ω their proof resembles the variational approach
developed in [3], for unbounded Ω they also uti-
lize a rapid decay of the Green’s function of A+I.

One important applications of the norm re-
solvent convergence is the uniform convergence
of semi-groups generated by Aε and A. Namely,
we can approximate exp(−Aεt) in terms of sim-
pler operators exp(−At), Jε and J ′ε:

Theorem 5 One has for each t > 0:
∥∥exp(−Aεt)− Jεexp(−At)J ′ε

∥∥
L(Hε,Hε) ≤ ctδε,

where δε is defined in (4), and the constant ct
depends only on t.

Another important application is the con-
vergence of spectra. In this note to simplify
the presentation we formulate the result only
for bounded domains Ω. In this case the oper-
ators A and A have discrete spectra; we denote
by {λk,ε}k∈N and {λk}k∈N the sequences of the
eigenvalues of Aε and A, respectively, arranged
in the ascending order and repeated according
to their multiplicities.

Theorem 6 For each k ∈ N one has

lim
ε→0

λk,ε = λk, (5)

moreover

|λk,ε − λk| ≤ 4Cε(λk,ε + 1)(λk + 1)δε, (6)

where δε is defined in (4), |Cε| ≤ C, lim
ε→0

Cε = 1.

Our proofs are based on the abstract scheme
for studying the convergence of operators in vary-
ing Hilbert spaces which was developed by O. Post
in [9] and in more detail in the monograph [10].
The main ideas will be presented on the talk.
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Abstract

We consider wave propagation in randomly per-
turbed waveguides. The random perturbations
may affect the index of refraction within the core
of the waveguide or the core boundary. A sep-
aration of scales technique can be applied when
the amplitude of the random perturbation is
small, its correlation length is of the same or-
der as the wavelength, and the propagation dis-
tance is large so that the net effect of the per-
turbations is of order one. The overall result is
that the wavefield can be expanded on the com-
plete basis of modes of the unperturbed waveg-
uide and the complex mode amplitudes follow
an effective Markovian dynamics that depends
on the statistics of the random perturbations
of the waveguide. In particular the analysis
shows that wave intensity fluctuations can be-
come very strong.
Keywords: waveguides, random media

1 Introduction

We consider a two-dimensional waveguide with
range axis denoted by z ∈ R and transverse co-
ordinate denoted by x ∈ R. This may model a
dielectric slab waveguide for instance. A point-
like source at a fixed position (x, z) = (xs, 0)
transmits a time-harmonic signal. The wave-
field p(x, z) satisfies the Helmholtz equation:
[
∆ + k2n2(x, z)

]
p(x, z) = δ(z)δ(x− xs), (1)

where (x, z) ∈ R2, ∆ = ∂2x + ∂2z , k is the homo-
geneous wavenumber, and n(x, z) is the index of
refraction at position (x, z).

When the waveguide is ideal (unperturbed),
the index of refraction is range-independent:

n(0)(x) =

{
n if x ∈ (−d/2, d/2),
1 otherwise, (2)

where n > 1 is the relative index of the core and
d > 0 is its diameter.

We are interested in randomly perturbed waveg-
uides. In this talk we address two types of ran-
dom perturbations.

Type I perturbation: the index of refraction
within the core region x ∈ (−d/2, d/2) is ran-
domly perturbed [5]:

n(ε)(x, z) =





n + εν(x , z ) if x ∈ (−d/2, d/2)

and z ∈ (0, L(ε)),
1 otherwise.

(3)
The fluctuations are modeled by the zero-mean,
bounded, stationary in z random process ν(x, z)
with smooth covariance function that satisfies
strong mixing conditions in z. The typical am-
plitude of the fluctuations of index of refraction
is assumed to be much smaller than 1 and it is
modeled by the small and positive dimensionless
parameter ε.

Type II perturbation: the boundaries of the
core are randomly perturbed [6]:

n(ε)(x, z) =





n if x ∈
(
D(ε)

− (z),D(ε)
+ (z)

)

and z ∈ (0, L(ε)),
1 otherwise,

(4)
where

D(ε)
± (z) = ±d/2± εdν±(z). (5)

The fluctuations are modeled by the zero-mean,
bounded, independent and identically distributed
stationary random processes ν+ and ν− with
smooth covariance function and mixing proper-
ties.

We study the wavefield at z > 0, satisfying

p ∈ C0
(
(0,+∞), H2(R)

)
∩ C2

(
(0,+∞), L2(R)

)
,

and to set radiation conditions, we have assumed
that the random fluctuations are supported in
the range interval (0, L(ε)). The net scattering
effect of these fluctuations becomes of order one
at range distances of order ε−2, so we consider
the interesting case L(ε) = L/ε2.

2 Effective Markovian dynamics

The overall result in the limit ε→ 0 is that the
scalar wavefield p(x, z) can be expanded on the
complete basis of the unperturbed waveguide
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(that contains guided modes, radiating modes
and evanescent modes) and the complex mode
amplitudes follow an effective Markovian dynam-
ics. The infinitesimal generator of the effective
Markov process depends on the unperturbed waveg-
uide geometry and the two-point statistics of the
random process ν (type I) or (ν+, ν−) (type II).
The inspection of its form reveals different mode
coupling mechanisms induced by scattering:
1) the coupling between guided modes gives rise
to power exchange between the guided modes;
2) the coupling between guided and radiating
modes gives rise to power leakage from the guided
modes to the radiating ones (effective dissipa-
tion) and it adds frequency-dependent phases
on the guided mode amplitudes (effective dis-
persion);
3) the coupling between guided and evanescent
modes also adds frequency-dependent phases on
the guided mode amplitudes (effective disper-
sion).

The effective Markovian description of the
guided mode powers makes it possible to analyze
their first- and second-order moments, which
in turn gives a statistical description of the in-
tensity distribution of the wavefield. In dra-
matic contrast with the situation in open ran-
dom medium, the relative fluctuations of the in-
tensity exponentially grow with the propagation
distance in a randomly perturbed waveguide.
The exponential growth rate can be identified
as the difference of the first eigenvalues of two
self-adjoint operators. When the effective dissi-
pation is negligible, the exponential growth rate
is zero and we recover the well-known equipar-
tition result [4]: the energy becomes equiparti-
tioned amongst the guided modes. When there
is effective mode-dependent dissipation, the ex-
ponential growth rate is positive which may give
rise to strong intensity fluctuations in such ran-
domly perturbed waveguides.

3 Applications

We can discuss a few applications:
1) We address a directional coupler in integrated
optics [1]. We consider a randomly perturbed
system made of two parallel, single-mode waveg-
uides. The goal is to quantify the transfer of
power between the two waveguides in terms of
their separation distance. The results show that,
no matter how small the fluctuations of the in-
terfaces are, they have significant effect at suf-

ficiently large distance of propagation, which
manifests in two ways: The first effect consists of
power leakage from the guided modes to the ra-
diation ones. The second effect consists of blur-
ring of the periodic transfer of power between
the waveguides and the eventual equipartition
of power.
2) We address a geoacoustic inverse problem in
underwater acoustics [2]. The goal is to estimate
the regional acoustic and geoacoustic shallow-
water environment from data collected by a ver-
tical hydrophone array and transmitted by dis-
tant time-harmonic point sources. We first show
how to express the cross moments of the sound
pressure in terms of the parameters to be esti-
mated. We then show how the estimation prob-
lem can be formulated as a nonlinear inverse
problem using this formulation, which can be
solved by minimization of a misfit function or
by a Bayesian approach. We apply this method
to experimental data collected by the ALMA
system (Acoustic Laboratory for Marine Appli-
cations) [3].
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Abstract

Nowadays integral methods or Perfectly Mat-
ched Layers allow to solve a large class of time-
harmonic scattering problems in unbounded do-
mains. But difficulties remain when the Green
function is not available (or too expensive to
compute) and when PML are not working (be-
cause of the presence of inverse modes). For
several configurations of practical interest, a so-
lution can be found by using integral represen-
tations on infinite boundaries, combined with
complex scaling. The object of this presentation
is to discuss some progress in this direction [1,5].
Keywords: scattering problems, integral rep-
resentation, complex scaling, Fredholm theory

1 Motivations

Integral representations are commonly used in
numerical methods when solving scattering prob-
lems in unbounded domains. In general, the in-
tegral is written on a bounded curve (in 2D) or
surface (in 3D), typically the boundary of the
scatterer or a boundary surrounding the scat-
terer. But for various reasons, one may have
to consider integral representations on infinite
boundaries. This arises for instance in stratified
media, when one wants to avoid the heavy com-
putation of the Green function of the stratified
medium, by using integral representations writ-
ten on the interfaces between two adjacent lay-
ers. But a difficulty comes from the slow decay
of the scattered field at infinity, when truncating
the boundary for numerical purposes [2].

Another motivation of the present work con-
cerns scattering of elastic waves in anisotropic
media. Such problems occur for instance in the
context of ultrasonic non destructive testing of
composite plates. The difficulty is that on one
hand, the computation of the Green tensor is
very expensive, and on the other hand, cartesian
PML may fail [3]. In [4], we have developed a
method which takes advantage of the fact that
plane wave representations of the scattered field
can be easily derived in half-spaces, based on a

partial Fourier transform. Imposing the com-
patibility of different representations written in
overlapping half-spaces, one ends up with a sys-
tem of integral equations, written on the infi-
nite boundaries of four half-spaces surrounding
the defect. This so-called Half-Space Matching
method has been satisfactorily understood and
analyzed in the dissipative case. But again, due
to the slow decay of the scattered field at infin-
ity, its validity in the non-dissipative case was
still not clear, and the present work aims at clar-
ifying this question.

For simplicity, the main ideas are presented
below on the model case of a 2D Helmholtz
equation: u denotes the outgoing solution of

∆u+ k2u = 0 in R2\D
∂u

∂ν
= −∂uinc

∂ν
on ∂D

(1)

where k ∈ R is the wavenumber, D is a bounded
obstacle and uinc some incident wave.

2 Complex-scaled representations of
Helmholtz solutions in half-planes

Suppose D ⊂ {|x1| < a} ∩ {|x2| < a} and let us
focus on the half-space {x1 > a}, where the so-
lution u of (1) has the following representation:

u(x1, x2) =

∫

R
K((x1, x2), (a, y2))u(a, y2)dy2

with a kernel related to the fundamental solu-
tion of the Helmholtz equation as follows:

K((x1, x2), (y1, y2)) =
i

2

∂

∂y1
(H

(1)
0 (k

√
(x1 − y1)2 + (x2 − y2)2)).

Then, in the spirit of PML, thanks to the ana-
lyticity of y2 7→ K((x1, x2), (a, y2))u(a, y2), we
can deform the path of integration. More pre-
cisely we set for b > 0:

Jθ(y2) =
y2 for |y2| < b
∓b+ (y2 ± b) eiθ for ± y2 > b

Then, since u(a, y2) ∼ A±
eik|y2|√
|y2|

when |y2| →

+∞, we can check that ϕθ(y2) = u(a,Jθ(y2)) is
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well-defined for y2 ∈ R and exponentially decay-
ing when |y2| → +∞. The same result holds for
the analytic extension of the Green function as
soon as (x1−a)2+(x2−Jθ(y2))2 6= 0. Summing
up, we get the new representation of u:

u(x1, x2) =

∫

R
Kθ(x1, x2, y2)ϕθ(y2)dy2 (2)

whose kernel is now defined by

Kθ(x1, x2, y2) = K((x1, x2), (a,Jθ(y2)))J ′θ(y2)
Representation (2) holds in the domain

{x1 > a and |x2| < b+ (x1 − a) cot θ}

+b

−b

a x1

x2

θ

The advantage of the new formula is that now,
the function to integrate is exponentially decay-
ing, so that in practice, a truncation of the trace
ϕθ will produce an exponentially small error.
The price to pay is that the formula does not
hold in the whole half-plane but only in the grey
region.

3 Application to the complex-scaled Half-
Space Matching method

Let us show now how these complex-scaled rep-
resentations can be used to generalize the Half-
Space Matching method of [4] to the non-dissipa-
tive problem (1). We first introduce 4 infinite
straight lines Σj , j = 0, 1, 2, 3 as represented
on the figure. Then the new idea is to consider
as unknowns the complex-scaled traces of u on
these lines, ϕjθ, j = 0, 1, 2, 3. Then the equations
linking the ϕjθ are obtained as follows. Consider
for instance the complex-scaled trace ϕ1

θ on the
part of Σ1 which is located at the right of Σ0.
We can compute it by taking the analytic exten-
sion of (2) at the point (Jθ(x1), a). This gives a
first equation linking ϕ0

θ and ϕ1
θ for x1 > a:

ϕ1
θ(x1) =

∫
RKθ(Jθ(x1), a, y2)ϕ0

θ(y2)dy2

Proceeding in the same way for all traces, we
get 8 equations coupling all the ϕjθ, which can
be coupled to an equation for u in Ωb where
Ωb = [−b, b]2\D with b > a.

D
Ωb

x1

x2

Σ2

Σ3

Σ0

Σ1

2a

2b

Thanks to the complex scaling, we can prove,
with the same arguments as in the dissipative
case [4], that the complete formulation is of Fred-
holm type in a standard functional framework
where ϕjθ ∈ L2(Σj) and u ∈ H1(Ωb).

The next step consists in the conception of
a similar method for anisotropic cases where
cartesian PML do not work: in addition to pre-
vious ideas, a splitting of the traces has to be
introduced, in order to handle differently the so-
called direct and inverse waves.
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Abstract

The scattering of time-harmonic acoustic waves
by sound-soft (Dirichlet) screens, or cracks, its
modeling via boundary integral equations (BIE)
and discretisation with the boundary element
method (BEM) are classical topics when the
screens are sufficiently smooth. We extend the
theory to include screens that are fractal or have
fractal boundaries, such as the Sierpinski trian-
gle, the Cantor dust and the Koch snowflake.
Building on previous work on Sobolev spaces
[1, 3] and BIE [2] we present well-posed BVPs
for open and compact flat screens. We give con-
ditions under which these problems can be ap-
proximated by similar ones on smoother “pre-
fractal” sets, and results on the convergence of
the associated BEM. Details, extensions, proofs
and numerical experiments can be found in [4].
Keywords: Helmholtz equation, boundary el-
ement method, scattering, screen, sound-soft,
fractal, non-Lipschitz set, Mosco convergence

1 Notation and Sobolev spaces

We consider a flat screen Γ that is a bounded
subset of the plane Γ∞ := R2×{0} ⊂ R3. (The
case of 2-dimensional wave propagation Γ ⊂ R×
{0} ⊂ R2 can easily be treated in the same way.)

We use fractional (Bessel) Sobolev spaces.
For s ∈ R, Ω ⊂ R2 open and F ⊂ R2 closed, let

Hs(R2) :={u ∈ S∗(R2) : ‖u‖Hs(R2) <∞}

‖u‖2Hs(R2) :=

∫

R2

(1 + |ξ|2)s|û(ξ)|2 dξ,

Hs(Ω) :={u|Ω : u ∈ Hs(R2)},

H̃s(Ω) :=C∞0 (Ω)
Hs(R2)

,

Hs
F :={u ∈ Hs(R2) : suppu ⊂ F}.

In general H̃s(Ω) ⊂ Hs
Ω
; they coincide if Ω is

sufficiently regular but examples with H̃s(Ω) 6=
Hs

Ω
can be constructed [3, Thm. 3.19]. We de-

note γ± the traces γ± : W 1(R3
±) → H1/2(Γ∞),

where R3
± are the upper and lower half-spaces.

2 Boundary value problems (BVP)

The classical sound-soft screen scattering BVP
consists of looking for u satisfying the Helmholtz
equation (1), the Sommerfeld condition (2) and
the Dirichlet boundary condition (3):

∆u+ k2u =0 in D := R3 \ Γ, (1)

∂ru(x)− iku(x) =o(r−1) r := |x| → ∞, (2)

u =− ui on Γ, (3)

where k > 0 is the wavenumber and ui is a given
incident wave. To formulate a well-posed BVP,
one needs to be more precise about the sense in
which the boundary condition (3) holds.

We first describe the case when Γ is a rela-
tively open subset of Γ∞.

Definition 1 (BVP Dop(Γ)) Let Γ ⊂ Γ∞ be
bounded and open and g ∈ H1/2(Γ). Find u ∈
C2(D) ∩W 1,loc(D) satisfying (1)–(2) and

(γ±u)|Γ = g.

Theorem 2 (Thm. 6.2 [2]) If H̃−1/2(Γ) =

H
−1/2

Γ
, then Dop(Γ) admits a unique solution u.

Moreover, u satisfies the representation for-
mula u(x) = −SΓφ(x), x ∈ D, where SΓ is the
single-layer potential and φ = [∂nu] := ∂+

n u −
∂−n u ∈ H̃−1/2(Γ) is the unique solution of the
BIE SΓφ = −g, with SΓ : H̃−1/2(Γ)→ H1/2(Γ)
the single-layer operator.

The main assumption for the well-posedness
of the BVP is H̃−1/2(Γ) = H

−1/2

Γ
, equivalent to

the density of C∞0 (Γ) in H−1/2

Γ
. This is guaran-

teed if, e.g., (i) Γ is C0 up to countably many
points P ⊂ ∂Γ such that P has only finitely
many limit points [3, Thm. 3.24], or (ii) Γ is
“thick” in the sense of Triebel [1]. All Lipschitz
Γ, but also classical and exotic snowflakes with
fractal boundaries, satisfy these conditions [1].

If the screen Γ is a compact set, we substi-
tute the restriction operator |Γ in the bound-
ary conditions with the orthogonal projection
PΓ : H1/2(R2)→(H̃1/2(Γc))⊥, where Γc=R2\Γ.
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Definition 3 (BVP Dco(Γ)) Let Γ ⊂ Γ∞ be
compact and g ∈ (H̃1/2(Γc))⊥. Find u ∈ C2(D)
∩W 1,loc(D) satisfying (1)–(2) and

PΓγ
±u = g.

This choice of PΓ ensures that if Ω ⊂ Γ∞ is
bounded, open, and H̃−1/2(Ω) = H

−1/2

Ω
, then

the problems Dop(Ω) and Dco(Ω) are equivalent.

Theorem 4 (Thm. 6.4 [2]) Problem Dco(Γ)
admits a unique solution u.

Moreover, u satisfies the representation for-
mula u(x) = −SΓφ(x), x ∈ D, with φ = [∂nu]
the solution of the BIE SΓφ = −g for the single-
layer operator SΓ : H

−1/2
Γ → (H̃1/2(Γc))⊥.

3 Prefractal to fractal convergence

To study the scattering by a fractal screen Γ, we
approximate it with simpler prefractal shapes
(Γj)j∈N. The BVP Dx(Γ) (x∈{op,co}) is correct-
ly approximated by a sequence of BVPs Dx(Γj)
if the corresponding sequence of subspaces (ei-
ther H̃−1/2(Γj) or H−1/2

Γj
) of H−1/2(R2) con-

verges in the sense of Mosco [4]. In [4] we show:

Theorem 5 The solution φj of the BIE on Γj
converges in H−1/2(R2) to the solution φ of the
BIE on Γ and Sφj → Sφ in W 1,loc(R2) if, e.g.,
• Γ and Γj are bounded, open with Γj ⊂ Γj+1

and Γ =
⋃
j∈N Γj, or

• Γj are compact, Γj ⊃ Γj+1 and Γ =
⋂
j∈N Γj.

We also show convergence for a class of non-
nested prefractals such as those in Figure 1.

Figure 1: Non-nested prefractals Γj for the
square snowflake Γ, for which φj → φ in H−1/2.

4 BEM discretisation

We approximate the solution of scattering prob-
lems posed on a non-Lipschitz screen Γ (frac-
tal or with fractal boundary) using a piecewise-
constant boundary element methods (BEM) on
prefractal screens Γj . In [4] we give general cri-
teria on the mesh to guarantee convergence of
the Galerkin BEM: the key is the Mosco conver-
gence of the discrete spaces on Γj to the desired
Sobolev space, either H̃−1/2(Γ) or H−1/2

Γ .

E.g., if Γj are the classical prefractal approx-
imation of the Koch snowflake, or the square
snowflake prefractals of Figure 1, then any se-
quence of meshes Tj on Γj with meshsize hj ↘ 0
provides a provably convergent BEM scheme.

If Γ is a Cantor dust (the Cartesian product
of two identical Cantor sets) then its scattered
field is non-zero (for almost every incident plane
waves) if and only if the Hausdorff dimension of
Γ is larger than 1, [2]. We verify this numeri-
cally in Figure 2. For details and more extensive
numerical tests, see [4].

Figure 2: On-screen (◦), near-field (�) and far-
field (∗) norms of the field scattered by Can-
tor dust prefractals Γ0, . . . ,Γ6 computed with
BEM. When the prefractal level is refined, for
Hausdorff dimension d = log 4

log 3 > 1 (left) the
norms provably converge to a positive value,
while for d = log 4

log 10 < 1 (right) they converge
to 0.
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Abstract

We present a well-posedness analysis of bound-
ary value problem and boundary integral equa-
tion formulations for acoustic scattering by pla-
nar screens/cracks on which impedance bound-
ary conditions are imposed. In contrast to previ-
ous works, our analysis is valid for screens with
arbitrarily rough (possibly fractal) boundary.
Keywords: Boundary integral equations, Sobolev
spaces, screen problems, Mosco convergence

The scattering of time-harmonic acoustic waves
by thin “screens” or “cracks” is important in many
applications, including noise barrier design and
defect detection in non-destructive testing. To
model the case where the screen acts as an ab-
sorber of wave energy one formulates the scat-
tering problem as an impedance boundary value
problem (BVP), which itself can be reformu-
lated as a boundary integral equation (BIE) on
the screen. Previous studies [1,2] establish well-
posedness of such formulations when the bound-
ary of the screen is smooth (in an unspecified
sense). In this study we clarify the smoothness
assumptions required for the analysis of [1, 2]
to be valid, and show how the addition of ex-
tra conditions in the BVP, along with a sim-
ple modification of the functional setting for the
BIE, produce formulations which are well-posed
for completely arbitrary bounded open planar
screens, as was done previously for Dirichlet and
Neumann screen problems in [3].

In order to focus attention on the regularity
of the screen boundary, we simplify the problem
as much as possible by restricting attention to a
planar screen Γ, assumed to be a bounded open
subset of the hyperplane Rn−1×{0} ⊂ Rn, n =
2, 3. For s ∈ R let Hs(Rn−1) be the standard
Bessel potential Sobolev space on Rn−1, normed
by ‖u‖2Hs(Rn−1) =

∫
Rn−1(1+ |ξ|2)s|û(ξ)|2 dξ, and

for open Γ ⊂ Rn−1 and closed F ⊂ Rn−1 let

H̃s(Γ) := C∞0 (Γ)
Hs(Rn−1)

,

Hs
F := {u ∈ Hs(Rn−1) : suppu ⊂ F},

and

Hs(Γ) = {u|Γ : u ∈ Hs(Rn−1)},

|Γ denoting (distributional) restriction to Γ.
Given k > 0 and an incident field ui (e.g. a

plane wave ui = eikd·x), the standard BVP for
the scattered field is [2]: find u ∈ C2(Rn \ Γ))∩
W 1,loc(Rn \ Γ), outgoing at infinity, s.t.

(∆ + k2)u = 0, in Rn \ Γ, (1)
∂±n u|Γ ± λ±γ±u|Γ = g±, (2)

where γ± and ∂±n are the Dirichlet and Neu-
mann traces from the half spaces {±xn > 0} to
the hyperplane Rn−1, λ± are impedance param-
eters (constants with =λ± ≥ 0 and λ++λ− 6= 0)
and g± = −(∂±n u

i|Γ ± λ±γ±ui|Γ) ∈ H−1/2(Γ).

Theorem 1 Let g+ − g− ∈ H̃−1/2(Γ)|Γ. The
BVP (1)-(2) is well-posed if H̃±1/2(Γ) = H

±1/2

Γ

and H
−1/2
∂Ω = {0}. In particular, these condi-

tions hold when Γ is “C0 except at a countable
set of points with finitely many limit points” [4].

The proof of Theorem 1 follows the approach
in [2]. We first prove BVP uniqueness by a stan-
dard Rellich/unique continuation argument, then
that the BVP solution (if it exists) is given by

u = Dφ− Sψ,

where D and S are the usual double- and single-
layer potentials and φ := [u] ∈ H1/2

Γ
= H̃1/2(Γ)

and ψ := [∂nu] ∈ H
−1/2

Γ
= H̃−1/2(Γ) are the

Dirichlet and Neumann jumps, which must sat-
isfy the BIE

A

(
φ
ψ

)
=

(
λ−g+ + λ+g−

g+ − g−
)
,

where

A =

(
λ+λ−|Γ + (λ+ + λ−)T −1

2(λ+ − λ−)|Γ
1
2(λ+ − λ−)|Γ |Γ − (λ+ + λ−)S

)
,

with S : H̃−1/2(Γ)→ H1/2(Γ) and T : H̃1/2(Γ)→
H−1/2(Γ) denoting the usual single layer and hy-
persingular operators. (Note: the double layer
contributions in [2] vanish when Γ is planar.)
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Viewing A as an operator

A : H̃1/2(Γ)×H̃−1/2(Γ)→ H−1/2(Γ)×H̃−1/2(Γ)|Γ,

the assumptions of Theorem 1 guarantee that
|Γ : H̃−1/2(Γ)→ H−1/2(Γ) is injective, implying
that A is Fredholm of index zero, so that well-
posedness follows from BVP uniqueness.

But for general open Γ the above analysis
can fail. In particular, the spaces H̃±1/2(Γ) and
H
±1/2

Γ
may differ, the space H−1/2

∂Γ may be non-
trivial (which holds if the Hausdorff dimension
of ∂Γ exceeds n − 2), and |Γ : H̃−1/2(Γ) →
H−1/2(Γ) may have a nontrivial kernel [4].

Our proposed remedy is to demand a lit-
tle extra smoothness, namely that g+ − g− ∈
H0(Γ) ∼= L2(Γ), and supplement (1)-(2) with
two additional conditions, namely

[u] ∈ H̃1/2(Γ), (3)

[∂nu] ∈ H̃0(Γ) ∼= L2(Γ). (4)

It is easily checked that, when the assumptions
of Theorem 1 hold, the extra assumptions (3)-
(4) are superfluous, i.e. they hold automatically.

Theorem 2 Let g+ − g− ∈ H0(Γ) ∼= L2(Γ).
The BVP (1)-(4) is well-posed for any bounded
open screen Γ.

Our proof follows that of Theorem 1, except now
we view A as an operator

A : H̃1/2(Γ)× H̃0(Γ)→ H−1/2(Γ)×H0(Γ).

(Note that both H̃0(Γ) and H0(Γ) are isometri-
cally isomorphic to L2(Γ) but we maintain the
H̃0(Γ) and H0(Γ) notation to distinguish distri-
butions on Rn−1 from those on Γ.) This new
functional setting for A is attractive because
now the codomain is the dual of the domain,
so we have a symmetric variational framework.
Furthermore, A is then not only Fredholm of
index zero, but in fact one can decompose A as

A = Acoercive +Acompact,

where, for a suitable choice of dual pairing on
the product space,

Acoercive =

(
(λ+ + λ−)T 0

0 |Γ

)

is coercive (strongly elliptic) [5] and

Acompact =

(
λ+λ−|Γ −1

2(λ+ − λ−)|Γ
1
2(λ+ − λ−)|Γ −(λ+ + λ−)S

)

is compact.
This improved regularity result for A is a

useful tool for the numerical analysis of bound-
ary element approximations to impedance screen
scattering problems. In particular, for a class of
screens Γ with fractal boundary (including the
von Koch snowflake) one can apply the theory of
Mosco convergence for variational problems (de-
tailed in [6]) and certain density results for func-
tion spaces on rough domains (derived in [7])
to prove that boundary element discretizations
of scattering problems on smoother “prefractal”
screens approximating Γ converge to the solu-
tion of (1)-(4) on the limiting fractal screen Γ.
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Abstract

The di�raction of light by an aperture in an oth-
erwise perfectly conducting plane screen of in-
�nite extent is a phenomenon of fundamental
interest in electromagnetics. Here, we consider
classes of problems where the aperture domain is
complex (possessing self-similar structure across
a range of spatial scales) and modelled on �nite
iterations of the fractal shapes devised by Can-
tor and Sierpinski.

Rayleigh-Sommerfeld (RS) integrals are de-
ployed to predict electric �elds in the space be-
hind the screen. This approach captures more
fully the details of wave scattering, eliminating
many of the approximations inherent with sim-
pler analyses in Fraunhofer and Fresnel regimes.
The solutions are essentially exact for Cantor-
set apertures, at least within Kirchho�'s treat-
ment of the boundary conditions. Di�raction
patterns from Cantor dust and Sierpinski tri-
angle apertures are computed by transforming
integrations over the domain into circulations
around the constituent subdomain boundaries.

Keywords: Fractal screens, Cantor set, Cantor
dust, Sierpinski triangle

1 Introduction

We consider an in�nite screen Γ∞ that is a per-
fect conductor of zero thickness and which occu-
pies an entire axis (in 2D) or an entire plane (in
3D). If Γ denotes a bounded aperture in Γ∞,
then the Dirichlet and Neumann RS integrals
for the electric �eld E behind the screen are

ED(x) = −2

∫

Γ
dΓ′E(x′)

∂

∂n′
G0(x|x′), (1a)

EN (x) = 2

∫

Γ
dΓ′G0(x|x′) ∂

∂n′
E(x′), (1b)

respectively, where G0 is the free space Green's
function of the corresponding Helmholtz equa-
tion [1]. These formulations of the di�raction
problem inherently respect the Sommerfeld ra-
diation condition [2]. Since either E(x′) or its
(outward) normal derivative (∂/∂n′)E(x′) are

anticipated to vanish on the screen, one needs to
specify their values on Γ. Following Kirchho�'s
prescription, we set these quantities to match
those of the incident plane wave; Eqs. (1a) and
(1b) are then internally self-consistent [1].

2 Cantor set

Consider removing a closed interval of width 2a
from the centre of an in�nite screen Γ∞ that
is de�ned along a straight line. This initiator
stage, labelled by index n = 0, creates a gap of
empty space [−a, a] which represents a bounded
aperture Γ (see Fig. 1). At the �rst pre-fractal
level (n = 1), the open middle third of that gap
is �lled-in to produce two closed sub-intervals of
empty space, [−a,−a/3] and [a/3, a]. The iter-
ative process of �lling-in the open middle thirds
may continue inde�nitely, with the limit n→∞
de�ning a Cantor set whose capacity dimension
is log 2/ log 3 ≈ 0.63 [3]. We then take the com-
plex domain Γ as the union of 2n closed aperture
sub-intervals, each of width 2a/3n.

When the electric vector of the incident wave
is linearly polarized and perpendicular to the
propagation plane, Eqs. (1a) and (1b) prescribe

Figure 1: Examples of complex domains�the
initiator and �rst three pre-fractal levels of the
Cantor set (top), Cantor dust (middle), and
Sierpinski triangle (bottom). White: bounded
aperture Γ. Black: unbounded screen Γ∞\Γ.
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Figure 2: Numerical calculations of the Dirichlet RS integral [that is, <e(ED)] for the initiator and �rst
four pre-fractal levels of the (top) Cantor dust and (bottom) Sierpinski triangle. Black lines correspond
to the geometrical projections of the aperture domain boundaries onto the observation plane.

the vector E = (0, 0, ED,N ). In this case, ED,N

and its partial derivatives must be zero on the
unlit surface of the screen. One may then cal-
culate the magnetic �eld components from B =
−(i/ck)∇×E, prove that∇·E = 0 and∇·B = 0
(as required by Maxwell's equations), and work
out the energy �ow from the Poynting vector.
It is also possible to reconstruct the electromag-
netic �eld in front of the screen by restoring the
incident and re�ected waves, and to devise a
moderate form of Babinet's principle by consid-
ering a complementary problem [2].

3 Cantor dust & Sierpinski triangle

We now consider apertures based on the Cantor
dust and Sierpinski triangle (see Fig. 1) [3]. In
the limit, these shapes have capacity dimensions
of log 4/ log 3 ≈ 1.26 and log 3/ log 2 ≈ 1.58, re-
spectively. In these cases, the relationship be-
tween the scalar �elds of Eqs. (1a) and (1b) and
the full vector solution for the electromagnetic
wave is not so obvious. Polarization e�ects are
thus neglected here, but we expect ED,N to cap-
ture the dominant contribution in E.

Evaluating the RS integrals for a given 2D
domain is nontrivial, but progress can be facil-
itated by applying the divergence theorem and
transforming integrations over area Γ into circu-
lations around the boundaries ∂Γ of all the con-
stituent subdomains. Such a technique renders
the calculations more manageable (see Fig. 2)
but they can still remain computationally ex-
pensive as the pre-fractal level increases.

4 Concluding remarks

The RS di�raction formulae are best suited to
high-frequency regimes and have many advan-
tages over their far �eld (Fraunhofer) and parax-
ial (Fresnel) counterparts. One must be par-
ticularly mindful of limitations [1, 2], however,
within the complex-domains arena. All three
apertures have a Lebesgue measure of zero, in-
terpreted physically as vanishing area for n →
∞. Equations (1a) and (1b) will inevitably re-
turn a wave with zero amplitude as Γ shrinks to
a set of points (though the validity of Kirchho�'s
approximation will have been compromised well
before then). Formulating the scattering prob-
lem more rigorously, it has recently been proved
that classes of zero-measure screens can some-
times support a transmitted wave [4].
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Abstract

In this work we present a spectral numerical
solver for Laplace and Helmholtz problems with
Dirichlet boundary conditions on a �nite set of
open arcs in R2. An indirect boundary inte-
gral method is employed, giving rise to a �rst
kind formulation whose variational form is dis-
cretized using weighted Chebyshev polynomials.
Convergence rates under the existence of smoth
maps to describe the arcs are proved. In order
to reduce computation times, a simple matrix
compression technique based on sparse kernel
approximations is developed. Numerical results
provided validate our claims.

Keywords: Boundary integral equations, spec-
tral methods, crack problems

1 Introduction

The scattering of waves by open arcs is a well-
studied problem with applications ranging from
structural cracks modeling to acoustic engineer-
ing and medical images. The problem is charac-
terized by: (i) unbounded domain with a non-
Lipschitz boundary, (ii) solutions which exhibit
singular behaviors in the end points of each arc,
(iii) large number of degrees of freedom for high
frequency, and (iv) bad accuracy when the num-
ber of arcs and frequency increase. The problem
is re-formulate as a system of boundary inte-
gral equations using standard boundary opera-
tors theory. This last formulation can be anal-
ysed with the techniques presented by [2]. In
particular we are able to show that the bound-
ary integral formulation is well posed for an ar-
bitrary number of arcs.

For the approximation of the solutions we
do a Galerkin driscretization of the problem. In
order to obtain a fast convergence method we
employ an spectral method with weighed poly-
nomials, whose weight mimics the singular be-
havior of the solutions at the end points. We are
able to characterize the rate of converge for this
basis functions under regularity assumptions of

the geometry and the arcs, but without previous
knowledge of the singularity of the solution.

Finally in order to be able to solve geome-
tries with hundred or more arcs, we present a
compression algorithm, which give an sparse ap-
proximation of the matrix corresponing to the
Galerkin discretization, and thus we can accel-
erate the solution of the linear system when it-
erative methods are employed.

2 Boundary Integral Formulation

Consider Γ ⊂ R2 a �nite collection of M open
arcs, and denote Ω = R2 \ Γ. For κ ≥ 0,
g = (g1, . . . gM ) ∈ H1/2(Γ1) × . . . H1/2(ΓM ) we
consider the problem. Seek u ∈ H1

loc(Ω) such
that

−∆u− k2u = 0 in Ω,

γ±i u = g|i i = 1, ..,M,

condition at in�nity(k).

Where the conditions of in�nity for k = 0
are ∇u ∈ (L2(Ω))2 and

u(x)√
1 + ‖x‖22 log(2 + ‖x‖22)

∈ L2(Ω)

whereas for k > 0 we use the standard Sommer-
feld condition. The solution u can be written
as

u(x) =

M∑

i=1

(SΓi [κ]λi)(x), ∀ x ∈ Ω,

where

(SΓi [κ]λi)(x) :=

∫

Γi

Gκ(x,y)λi(y)dΓi(y)

denotes the single layer potential generated by
the arc Γi with fundamental solution Gκ.

Hence the boundary integral problem is to
�nd λ1, . . . λM such that

M∑

i=1

γj(SΓi [κ]λi)(x) = gj(x).
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where γj is the Dirichlet trace on the arc Γj .
The following result is a simple extension of the
work done in [2].

Theorem 1 The boundary integral problem is

well-posed.

3 Galerkin Discretization

We detail the discrete spaces used to form the
approximation of the solution of equation (2).

Let TN (Γ̂) = span{Tn}Nn=0, where Tn denote
the n-degree �rst kind Chebyshev, polynomi-
als orthogonal under the weight w−1(t) = (1 −
t2)−1/2 over (−1, 1). Now, let us construct ele-
ments pin = Tn◦r−1

i , where ri is the parametriza-
tion of Γi, spanning the space TN (Γi). We de-
�ne the normalized space:

TN (Γi) =

{
p̄in =

pin∥∥r′i ◦ r−1
i

∥∥
2

, pin ∈ TN (Γi)

}

Since the solutions λ exhibit singular behavior
at the end points of each arc, we consider the
weighted polynomial space:

QN (Γi) :=
{
qin := w−1

i p̄in : p̄in ∈ TN (Γi)
}
,

wherein wi := w ◦ r−1
i . The corresponding basis

for QN (Γi) will be denoted {qin}Nn=0.

Theorem 2 (Theorem 4.23 [1]) Let κ > 0,
m ∈ N with m > 2, Γ ∈ Cm, g ∈ Cm(Γ), λ be

the only solution of the boundary integral prob-

lem, and λN ∈ QN (Γ1)× . . .QN (ΓM ) the solu-

tion of the Galerkin discretization. Then, there

exists N0 ∈ N such that for every N > N0 ∈ N
there is a unique λN that converge as

‖λ− λN‖H̃− 1
2 (Γ)
≤ C(Γ, κ)N−m+1;

Moreover, if Γ, and g are analytic, there exists

ρ > 1 such that

‖λ− λN‖H̃− 1
2 (Γ)
≤ C(Γ, κ)ρ−N+2

√
N.

with C(Γ, κ) being a positive constant.

The case κ = 0 works simmilar, but the vector
densities λ and λN have to be choosen such that
〈λ, 1〉 = 〈λN , 1〉 = 0 over each arc. The result
of the theorem is ilustrated on Figure 1.

Figure 1: Convergence for Γ given by r(t) =
(t, |t|p), m is the measured rate of convergence.
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4 Matrix Compression

Lets denote L[κ] the matrix associated with the
Galerkin discretization, the entries are given by

(Lji[κ])lm =
〈

̂γjSΓi [κ]w−1Tm, w
−1Tl

〉
(−1,1)

,

where ̂γjSΓi [κ] is the weakly integral operator
with kernel Gk(rj(t), ri(s)). Hence the matrix
terms correspond to the Chebyshev coe�cients
of the kernel. By the Approximation theory this
coe�cients decay super-algebracly with respect
to the indices m and l [1], when the kernel is
smooth, which is the case for i 6= j. Hence
since the terms decay fast, we can approximate
the blocks of the cross interactions matrices by
sparse matrices.
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Abstract

Nanoplasmonics forms a major part of the �eld
of nanophotonics, which explores how electro-
magnetic �elds can be con�ned over dimensions
on the order of or smaller than the wavelength.
Here, we present an integral-equation formula-
tion of the mathematical model that delivers ac-
curate solutions in small computational times
for surface plasmons coupled by periodic corru-
gations of �at surfaces of single layer and multi
layered con�gurations along with experimental
comparisons.

Keywords: nanoplasmonics, integral-equations,
periodic structures

1 Introduction

Nanoplasmonics forms a major part of the �eld
of nanophotonics, which explores how electro-
magnetic �elds can be con�ned over dimensions
on the order of or smaller than the wavelength.
Initiated in 1902 by R.W. Wood [1] with the dis-
covery of grating anomalies, this phenomenon
has attracted signi�cant attention over the last
hundred years [2,3]. Mie in 1908 gave a mathe-
matical description of light scattering from spher-
ical particles of sizes comparable to the wave-
length [2], describing an e�ect that would come
to be known as localized surface plasmons in the
context of nanoplasmonics. It is based on inter-
action processes between electromagnetic radia-
tion and conduction electrons at metallic inter-
faces or in small metallic nanostructures, lead-
ing to an enhanced optical near-�eld at sub-
wavelength dimension. In 1899, Sommerfeld had
described surface waves (waves propagating at
the surface of metals) mathematically, and in
1902 Wood observed anomalous drops in the in-
tensity of light re�ected by a metallic grating [2].
But theory and observation would not be linked
until 1941, by Fano [4]. Further experimental
validation came in 1968, when Kretschmann and
Raether used prism coupling to excite surface
waves with visible light [5]. Other forms of cou-
pling to surface plasmons have been thoroughly

investigated since then. All of the phenomena
mentioned above are based entirely on classi-
cal electromagnetics, and thus can be mathe-
matically described by Maxwell's equations. In
this paper, an integral-equations formulation is
given for an in�nitely periodic metal surface whose
period d is on the nanometer scale. The metal is
assumed to extend in�nitely below this surface,
while a dielectric material extends in�nitely above
the surface. In this paper, we also, o�er to
extend this achievement to a more challenging
case; multilayer con�gurations. The new con-
�guration will composed of a thin layer of no-
ble metal (gold, silver, etc.) with depth larger
than skin depth of the material, buried into dif-
ferent epoxies on top (glass/polymer substrate)
and the bottom (liquid/water/blood). Some de-
tails of the numerical implementation and the
results of a few numerical simulations and ex-
perimental comparisons are also given.

2 Formulation and Algorithm

In this section, a system of integral equations
for the total exterior �eld u (u = Ez in Trans-
verse Electric �TE� and u = Hz in Transverse
Magnetic �TM� polarizations) and its normal
derivative ∂u

∂n on the surface ∂Γ are given. The
metal surface ∂Γ is in�nitely thick and periodic
and satis�es f(x + d, y) = f(x, y). These �elds
[u, ∂u∂n ] satisfy [5];

ui(r) =

∫

P
Gi(r, r

′)
∂ui(r′)
∂n(r′)

− ∂Gi
∂n(r′)

(r, r′)ui(r′)ds(r′),

ue(r) =

∫

P
ue(r′)

∂Ge
∂n(r′)

(r, r′)−Ge(r, r′)
∂ue(r′)
∂n(r′)

ds(r′),

for x ∈ Γ, and for x ∈ Γc, respectively where n
is the unit normal to ∂Γ directed into the exte-
rior of Γ and P is a single period of the surface
∂Γ. Here, G(r, r′) is the quasi-periodic Green's
function [6] given by

GQ(r, r′) =
i

4

∞∑

n=−∞
eiαndH

(1)
0 (krn)

where α = k sin(θ) and θ is incidence angle.
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As x → ∂Γ and using the boundary condi-
tions, the surface integral equations become

uinc(r) = ψ(r) +

∫

P

∂(Gi −Ge)
∂n(r′)

(r, r′)ψ(r′)dr′

−
∫

P
(νGi −Ge)(r, r′)

∂ψ(r′)
∂n(r′)

dr′,

∂uinc(r)

∂n(r)
=
ν + 1

2

∂ψ(r)

∂n(r)
+

∫

P

∂2(Gi −Ge)
∂n(r)∂n(r′)

(r, r′)ψ(r′)dr′

−
∫

P

∂(νGi −Ge)
∂n(r)

(r, r′)
∂ψ(r′)
∂n(r′)

dr′,

for r ∈ ∂D with the unknowns ψ(r) = ue(r) +
uinc(r) and ∂ψ(r)/∂n(r). Here uinc(r) denotes
the incoming incident wave and ν = 1 for TE
polarization and ν = ki/ke for TM polarization.

The multi-layer formulation on the other hand
follows similarly;

(
A1 +[A21|A22]

)




u1(x)
∂u1(x)

∂n(x)
u2(x)
∂u2(x)

∂n(x)




=




uinc(x)
0

∂uinc(x)

∂n(x)
0




where

A1 =




1 0 0 0
0 0 −1 0

0
1 + ν1

2
0 0

0 0 0 −1 + ν2

2




A21 =




D1
m −D1

e S1
e − ν1S

1
m

−D1
m ν1S

1
m

−(N1
e −N1

m) D∗1e − ν1D
∗1
m

−N1
m ν1D

∗1
m




A22 =




D2
m −S2

m

D2
i −D2

m S2
m − ν2S

2
i

N2
m −D∗2m

−(N2
m −N2

i ) D∗2m − ν2D
∗2
i




and the operators are

Sia(µ) =

∫

Γi

Ga(x, y)µ(y)dy

Di
a(µ) =

∫

Γi

∂Ga(x, y)

∂n(y)
µ(y)dy

D∗ia (µ) =

∫

Γi

∂Ga(x, y)

∂n(x)
µ(y)dy

N i
a(µ) =

∫

Γi

∂2Ga(x, y)

∂n(x)∂n(y)
µ(y)dy

and Ga(x, y) is the quasi periodic Green's func-
tion. Here uinc(r) denotes the incoming inci-
dent wave and ν = 1 for TE polarization and
ν = ki/ke for TM polarization.

Our numerical algorithm depends on seeking
the unknowns on the surface of the grating, and
the matrix elements are evaluated through the
derivation of a careful decomposition that allows
for explicit evaluation of the singular and non-
singular parts of the kernels [7].
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Abstract

This paper is centred on the numerical study
of eigenoscillations and the corresponding sur-
face waves in a water-basin with a conical bot-
tom, whose closed-form exact solution is given
in [1] by means of the Mellin transform and
functional di�erence-equations. As revealed by
an asymptotic analysis, the Mellin transform
is slowly decreasing and highly oscillatory at
the water surface, rendering a combination of
a Filon-Clenshaw-Curtis rule and uniform sta-
tionary phase method necessary for the compu-
tation of the velocity-potential; for a close neigh-
bourhood of the tip, the path of integration has
been shifted. Numerical examples are included
to demonstrate the behaviour of surface waves
in such a canonical domain.

Keywords: Surface waves, eigenoscillations, water-
basin with a conical bottom, asymptotical-numerical
computation

1 Statement of the problem and its ex-

act solution

In a spherical co-ordinate system with the z-
axis pointed vertically downwards, the conical
bottom is located at ϑ = ϑ1 < π/2 and the wa-
ter surface at ϑ = π/2. The velocity-potential
u(r, ϑ, ϕ) solves the Laplace equation in water
(0 ≤ r <∞, ϑ1 ≤ ϑ ≤ π/2,−π < ϕ ≤ π):

div gradu(r, ϑ, ϕ) = 0,

is subject to the boundary condition at the wa-
ter surface

[
1

r

∂

∂ϑ
u(r, ϑ, ϕ)−Ku(r, ϑ, ϕ)

]

ϑ=π/2

= 0

(K > 0 plays the role of the spectral parame-
ter and corresponds to the continuous spectrum)
and at the bottom of the basin

1

r

∂

∂ϑ
u(r, ϑ, ϕ)

∣∣∣∣
ϑ=ϑ1

= 0.

We are seeking for classical solutions of the ho-
mogeneous problem that satisfy a Meixner's type
condition at the vertex and vanish slowly at in-
�nity.

On use of the Mellin transform

u(r, ϑ, ϕ) =
1

2πi

∫ +i∞

−i∞
uν(ω)rν−1/2dν, (1)

the problem of solving the Laplace equation for
the velocity-potential u(r, ϑ, ϕ) has been con-
verted into one for resolving a functional di�er-
ence equation for uν(ω). As detailed in [1], the
Mellin transform, save for a constant, reads

uν(ω) = e−inϕKν
[
P
−|n|
ν−1/2(cosϑ)

−
dϑ1P

−|n|
ν−1/2(cosϑ1)

dϑ1P
−|n|
ν−1/2(− cosϑ1)

P
−|n|
ν−1/2(− cosϑ)

]

×Γ(−ν + |n|+ 1/2)γn(ν)

1 +
dϑ1P

−|n|
ν−1/2

(cosϑ1)

dϑ1P
−|n|
ν−1/2

(− cosϑ1)

. (2)

In addition to the associated Legendre function

P
−|n|
ν−1/2(·) and the Euler Gamma function Γ(·), a

new special function γn(·) has been constructed,
cf [1].

2 Computational aspects and examples

As a preparation for the computation of the
Mellin transform (1), let us consider the be-
haviour of uν(ω) as ν → ±i∞. On use of the re-
spective properties of the employed special func-
tions, we have

uν(ω)rν−1/2 ∼ e∓iν(ϑ−π)+ν−ν ln ν+ν ln(Kr)√
rν sinϑ

γ±n

with γ±n = limν→±i∞ γn(ν).
Hence it is evident that, on the water sur-

face with ϑ = π/2, the integrand of the Mellin
transform is a highly oscillatory function whose
envelope decreases with ν−1/2 as ν → ±i∞.
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To compute e�ciently the highly oscillatory
integral over an in�nite interval (1), it is ad-
vantageous to divide the imaginary axis in the
ν-plane into a �nite, central part and two semi-
in�nite parts:

u(r, ϑ, ϕ) =
1

2πi

(∫ −iµ0
−i∞

+

∫ +iµ0

−iµ0
+

∫ +i∞

+iµ0

)

uν(ω)rν−1/2 dν, (3)

with µ0 � 1.
The integration over the central �nite part is

executed by means of a Filon-Clenshaw-Curtis
rule as suggested in [2]. The remaining two
semi-in�nite integrals are evaluated by means
of the uniform stationary-phase method, cf [3].
To this end, let us write

I+ =

∫ +i∞

iµ0

uν(ω)rν−1/2

2πi
dν

=

∫ ∞

1
f(m) eiµ0q(m) dm

with q(m) = m(1 + ln Kr
µ0m

). Therefore,

I+ ≈
{

F∗
[√

µ0|q(1)− q(ms|
]

+
e−iπ/4+iµ0[q(1)−q(ms)]

2
√
π
√
µ0|q(1)− q(ms)|

}

×f(ms)e
iKr−iπ/4

√
2πKr

µ0

+
f(1) e

i
[
µ0
(
1+ln Kr

µ0

)
+π

2

]

µ0 ln(Kr/µ0)
. (4)

Here, ms = Kr/µ0 is the stationary point of
q(m), F(·) stands for the Fresnel integral (see
[3]) and

√
µ0|q(1)− q(ms| represents the detour-

parameter.
The Mellin transform (1) is not directly suit-

able for numerical computation of the velocity-
potential in a neighbourhood of the tip with
Kr < 1. As an alternative, the path of inte-
gration has been shifted to 1 + iR, say:

u(r, ϑ, ϕ) = −
∑

Resνj

[
uν(ω)rν−1/2

]

+

∫ +i∞

−i∞

uν+1(ω)rν+1/2

2πi
dν,(5)

with νj (0 < Re νj < 1) being the poles of uν(ω)
eventually captured during the deformation of
the integration path.

On inspection of (2), there is merely one
such pole located at ν = 1/2 for n = 0. Hence,

−Resν=1/2

[
uν(ω)rν−1/2

]
=

√
Kγ0(

1
2)

cosϑ1
. (6)

It can be shown that the integrand at the
right-hand side of (5) remains highly oscillatory,
but its envelope decreases with ν−3/2 at the wa-
ter surface. Therefore, the integral in (5) is eval-
uated in a similar fashion as the Mellin trans-
form (1).

As an example Figure 1 displays the velocity-
potential with n = 0 on the water surface away
from the tip.

20 40 60 80 100

Kr

−0.4

−0.2

0.0

0.2

0.4

0.6

U
n
(K

r,
ϑ
,ϕ

)

Re
Im

ϑ1 = 45◦, ϑ = 90◦, ϕ = 0◦, n = 0

Figure 1: Velocity-potential at the water surface
away from the tip (solid line: real part; broken
line: imaginary part).
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with geometric uncertainties

Laura Scarabosio1

1Department of Mathematics, Technical University of Munich, Munich, Germany

Abstract

We address how to compute statistics of quan-
tities of interest depending on the solution to
a Helmholtz transmission problem with random
interface. A mapping to a reference configura-
tion allows for an efficient computational treat-
ment and a rigorous numerical analysis building
on the well-established results for PDEs on de-
terministic domains with uncertain coefficients.
For quantities of interest depending smoothly on
the stochastic parameters, a dimension-adaptive
Smolyak algorithm proves to be much more effi-
cient than Monte Carlo rules, without suffering
from the so-called curse of dimensionality. Mul-
tilevel Monte Carlo is instead a viable alterna-
tive for non-smooth quantities of interest.
Keywords: random geometry, high-dimensional
approximation, Helmholtz equation.

1 Model problem

To define the random interface, we introduce a
probability space (Ω,A,P), where Ω is the set
of elementary events, A a sigma-algebra on Ω
and P a probability measure. For every ω ∈
Ω, we formally define Γ(ω) to be the boundary
of the scatterer, Din(ω) the domain occupied
by the latter and Dout(ω) the outer, unbounded
domain. The transmission problem reads:




−∇ · (α(Γ(ω);x)∇u)− κ2(Γ(ω);x)u = 0,

JuKΓ(ω) = 0, Jα(Γ(ω);x)∇u · nKΓ(ω) = 0,

+ Sommerfeld radiation condition on u− ui,
where u = u(ω) is the total field, the first equa-
tion is posed on Din(ω) ∪ Dout(ω) ⊂ R2, the
second line denotes continuity of the tangential
and conormal traces across the interface (with n
the unit normal pointing to the outer domain)
and, in the third equation, ui is an incoming
plane wave. The coefficients α and κ are real-
valued, piecewise constant in each subdomain
and uniformly positive. Our goal is to compute
efficiently the mean of quantities of interest de-
pending on the solution u to the model problem.
These could be, for instance, the solution u it-
self, the far-field pattern or point values of u.

2 Interface parametrization

For a star-shaped scatterer, we model the stochas-
tic interface as

r(y;ϕ) = r0+

J∑

j=1

cjy2j−1 cos(jϕ)+sjy2j sin(jϕ),

for ϕ ∈ [0, 2π), J ∈ N and cj , sj ∈ R for every
j = 1, . . . , J . The quantity r0 ∈ R describes a
nominal circular interface, while the terms in the
summation model the random shape variations.
The parameter y = (y1, . . . , y2J) is the image of
a random variable Y (ω) := (Y1(ω), . . . , Y2J(ω)),
ω ∈ Ω, whose entries are independent, identi-
cally distributed ∼ U([−1, 1]). Consequently, y
takes values in the high-dimensional parameter
space [−1, 1]2J . In the model problem we can
now substitute the dependence on ω ∈ Ω by a
dependence on y ∈ [−1, 1]2J , and computing the
average of a quantity of interest means perform-
ing an integration over the high-dimensional space
[−1, 1]2J with respect to the image measure µy =(

1
2

)2J . To ensure positivity of the radius and
convergence of the sum for J arbitrarily large,
we assume the following [2].

Assumption 1 The coefficient sequences (cj)j≥1

and (sj)j≥1 have a monotonically decreasing ma-
jorant in `p(N) for 0 < p < 1

2 . Moreover, they
fulfill

∑
j≥1(|cj |+ |sj |) ≤ r0

2 .

3 Mapping to a reference configuration

We follow the mapping approach described in
[5] to work on a reference configuration with
fixed, parameter-independent interface. First,
we truncate the outer domain with a circle of
radius R ∈ R+ that contains every realization
of the scatterer in its interior, and denote by
DR the truncated domain; the Sommerfeld ra-
diation condition for the unbounded domain is
replaced by a Neumann boundary condition in-
volving the DtN map [2]. Then, we construct a
y-dependent, orientation preserving diffeomor-
phism Φ(y) : DR → DR, y ∈ [−1, 1]2J from a
reference configuration with interface r0 to the
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configuration with interface r(y; ·). We ask that
Φ maps ∂DR to itself and the circle with nomi-
nal radius r0 to r(y; ·). In particular, from now
on, we consider

Φ(y; x̂) = x̂+ χ(x̂)(r(y; arg(x̂))− r0)
x̂

‖x̂‖ ,

for every x̂ ∈ DR, with χ : DR → R0,+ a smooth
mollifier acting on the radial direction [2].

4 Computing statistics of smooth quan-
tities of interest

To compute the mean of some quantity of in-
terest, different quadrature rules can be used,
depending on the smoothness of the quantity
with respect to y ∈ [−1, 1]2J . In this section
we focus on the smooth case, and address the
non-smooth case in the next section. We have
the following result, proved in [2].

Theorem 1 Let Assumption 1 hold. Moreover,
assume that (j|cj |)j≥1 and (j|sj |)j≥1 have a mo-
notonically decreasing majorant, and that the
wavelengths inside and outside the scatterer are
large compared to the scatterer size, in the sense
that κ fulfills Assumption 4.4 in [2]. Then û(y; x̂)
:= u(y; Φ(y; x̂)), as mapping from [−1, 1]2J to
H1(DR), admits a holomorphic extension to any
open set Oρ :=

⊗
l≥1Oρl , with Oρl := {z ∈ C :

dist(z, [−1, 1]) ≤ ρl − 1} and
∑

l≥1

(ρl − 1)l(|cl|+ |sl|) ≤ ε,

for ε > 0 sufficiently small.

As a consequence of this result, high-order qua-
drature rules on [−1, 1]2J allow to attain conver-
gence rates for the computation of Eµy [û] which
are much higher than those of Monte Carlo and
do not degenerate for J large. In particular,
application of the dimension-adaptive Smolyak
algorithm described in [4] using, for instance,
R-Leja nodes, shows a convergence rate of N−s,
where N is the number of function evaluations
for û (i.e. the number of PDE solves) and s =
1
p − 2, p being as in Assumption 1. The same
convergence rate is attained for the average of
the far field pattern [2].

5 Computing statistics of non-smooth quan-
tities of interest

For quantities of interest that do not depend
smoothly on y ∈ [−1, 1]2J , in general we cannot

expect high-order convergence rates from high-
order quadrature rules, but it is still possible to
devise a multilevel Monte Carlo (MLMC) strat-
egy to obtain considerable computational sav-
ings compared to plain Monte Carlo. We show
this for the point evaluation of the solution u
at a fixed point x0 that can be crossed by the
interface for some realizations [3]. We consider
a hierarchy of meshes on the reference config-
uration, obtained by uniform refinement, and
denote by EL[u(y;x0)] the MLMC estimator of
Eµy [u(y;x0)] using L levels [1].

Theorem 2 Let Assumption 1 hold, and assume
that the values of the wavenumber κ inside and
outside the scatterer fulfill Assumption 4.4 in
[2]. On each mesh in the hierarchy, we con-
sider a linear finite element discretization (that
resolves the interface r0) and an algebraic multi-
grid solver for the linear system. Then, for any
tolerance TOL > 0, there exist L ∈ N, a se-
quence of number of samples per level (Ml)

L
l=1

and a constant C > 0 such that

‖EL[u(y;x0)]−Eµy [u(y;x0)]‖L2([−1,1]2J ,R) ≤ TOL
and the work to compute the estimator is bounded
as W(EL[u(y;x0))]) ≤ CTOL−2.

For the proof of this result, we refer to [3].
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Abstract

We consider the numerical solution of acoustic
wave scattering by obstacles with uncertain ge-
ometries. In particular, we analyze fields diffrac-
ted by small stochastic perturbations of a nom-
inal shape. Using the shape derivative, we de-
rive deterministic boundary integral equations
for the statistical moments of the fields. These
are approximated by sparse tensor Galerkin dis-
cretization –via the combination technique. We
show numerically predicted convergence rates
with poly-logarithmic growth in the number of
degrees of freedom and accuracy in approxima-
tion of the moments, and discuss implementa-
tion details.
Keywords: Helmholtz scattering, UQ

1 Introduction

Acoustic wave scattering modeling and simula-
tion is key in numerous areas such as in aeronau-
tics, biology or astrophysics, to name a few. As
the complexity of applications increases, quanti-
fying the effects of random perturbations origi-
nated by actual manufacturing or operation con-
ditions becomes ever more relevant for efficient
and robust design.

The present work seeks to provide an accu-
rate and fast method for computing the mean
field and higher statistical moments due to small
random perturbations of a nominal determinis-
tic shape. Model problems here considered in-
volve solving Helmholtz equations in unbounded
domains. Thanks to the small perturbation as-
sumption and following the technique proposed
in [3, 6], we employ suitable shape Taylor ex-
pansions through shape derivatives (SD) to ap-
proximate the statistical moments by quantities
defined on the nominal shape, leading to an
equation with stochastic right-hand side. We
then combine the theory of boundary integral
equations (BIEs) and boundary element method
(BEM) with the sparse tensor approximation
theory [1, 2, 5].

U"#$

Γ

𝐧
𝐷( 𝐷)(	

𝐷				𝐷)	 Γ+ 	

Figure 1: Problem geometry.

2 Random Domains

Throughout, we consider an open bounded Lip-
schitz –nominal– domain D ⊂ Rd, d = 2, 3, of
class C1,1 with Γ := ∂D. Let (Ω,A,P) be a suit-
able probability space. For an index k ∈ N and
for U : Ω → X a random field in the Bochner
space Lk(Ω,P;X) [3, Section 4.1] we define the
statistical moments:

Mk[U(x, ω)] :=

∫

Ω
U(x1, ω) · · ·U(xk, ω)dP(ω),

with the case k = 1 being the expectation. Ac-
cordingly, for suitably defined random vector
fields v we introduce families of random surfaces
via mappings Ω 3 ω 7→ Γt(ω) = {x+tv(ω), x ∈
Γ} (see Figure 2).

Definition 1 (Shape Derivative) Consider
a random shape dependent scalar field Ut(ω) de-
fined in a domain Dt(ω) for each t ∈ [0, ε). We
say that Ut(ω) admits a SD U′ in D along v(ω),
if the following limit exists

U′(ω) := lim
t→0

Ut(ω)−U
t

. (1)

If Ut admits a SD, for small t, the quantities
of interest can be approximated accurately for
k ≥ 2 on proper domains by

E[Ut(ω)] = U +O(t2),

Mk[Ut(ω)−U] = tkMk[U′(ω)] +O(tk+1).

3 Boundary Reduction and Sparse Ten-
sor Approximation

For an incident wave, we introduce the sound-
soft, -hard, impedance and transmission prob-
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Figure 2: Γt function to t (3249 vertices)

lems. Besides, k-fold tensors are denoted with
parenthesized subscripts for k ∈ N. The tech-
nique presented consists in using the boundary
value problems satisfied by the SD, as detailed
in [4, Table 5.6], and performing a boundary re-
duction, leading to well-posed BIEs:
Generic Formulation for the BIEs For k ≥
2, X,Y Hilbert spaces, g ∈ Y , and Mk[g] ∈
Y (k), we seek ξ ∈ X,Σ ∈ X(k) such that

{
Zξ = g on Γ,

Z(k)Σ =Mk[g] on Γ(k).
(2)

Then, solving via the Galerkin method and nes-
ted spaces {VL}L∈N0 , leads to an O(hmin(p+1,s))
asymptotic error bound for ξ ∈ Xs a smooth-
ness space and p the polynomial degree. Classi-
cal results for sparse tensor elements guarantee
the existence of L0(k) ∈ N such that the solu-
tion converges quasi-optimally as follows [5].

Lemma 2 The following error bound
holds for L ≥ L0(k) ∈ N and Σ ∈ (Xs)(k):

‖Σ− Σ̂L‖X(k) ≤ Chmin(p+1,s)| log h|(k−1)/2.

4 Numerical Results

We perturb a kite-shaped object (see Figure 2)
for different t values and test the accuracy of
the first-order shape approximation. Then, we
verify the expected convergence rates for the
sparse tensor approximation (see Figure 3 for
the sound-soft problem on S2).

5 Conclusion

In this work, we tackled the UQ for random
shape Helmholtz scattering. Under small per-
turbation assumptions, we applied the SD-UQ
framework and allowed for an accurate approx-
imation of the statistical moments with a poly-
logarithmic complexity. Numerical results ev-
idenced the applicability of the technique and
showed good scalability and robustness when
coupled with fast resolution methods and effi-
cient preconditioners.

2.14

ℎ&'.()

3.25

Figure 3: Convergence results of the solution in
full (black) versus sparse tensor spaces for k = 2,
Γ = S2 and κ = 1 function to L0.
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Abstract

We present a technique for speeding up the so-
lution of multiple linear systems arising from
multiple realisations of the heterogeneous Helm-
holtz equation; the main idea is to calculate a
preconditioner for one realisation exactly and
then use it for many ‘nearby’ realisations. We
prove, and give numerical evidence, of how the
effectiveness of the technique depends on the
wavenumber, and apply the technique to a prob-
lem in uncertainty quantification, demonstrat-
ing significant speedup.
Keywords: Helmholtz equation, random, het-
erogeneous, preconditioning, uncertainty quan-
tification, GMRES

Motivation

The motivation for this work comes from uncer-
tainty quantification (UQ) where one seeks to
compute properties of the solution of the sto-
chastic Helmholtz equation

∇ · (A∇u) + k2 nu = −f, (1)

where A and n are random fields, and therefore
u is also a random field (i.e., A, n, and u are
both random and spatially hetergeneous). If one
uses a sampling-based approach, one will have
to solve many (potentially thousands) of linear
systems which arise from discretising many real-
isations of (1). If one is using a preconditioned
linear solver (such as GMRES) then one must,
it seems, construct a different preconditioner for
each realisation of (1). This may incur a signifi-
cant computational cost. Therefore we propose
re-using preconditioners for problems that are
‘nearby’ in some sense.

Model Problem and aim

To focus on the convergence of GMRES applied
to ‘nearby preconditioned’ linear systems, con-
sider the two deterministic Helmholtz equations

∇·(A(j)∇u(j))+k2n(j)u(j) = −f, j = 1, 2, (2)

where A is matrix-valued, n is real-valued, and
A equals the identity and n equals one outside
some compact set. We combine (2) with ei-
ther the Sommerfeld radiation condition or an
impedance boundary condition. Let A(j), j =
1, 2 denote the matrices arising from fixed-order
finite-element discretisations of (2).

The aim of this work is to study the be-
haviour of GMRES applied to (A(1))−1A(2), and
to give sufficent conditions on ‖A(1) − A(2)‖L∞

and ‖n(1)−n(2)‖L∞ such that GMRES converges
in a number of iterations that is independent of
the wavenumber k.

Main Results

We work with h-finite elements with polyno-
mial degree p. We prove results for GMRES
in the weighted norm ‖ · ‖Dk

, where the matrix
Dk := S + k2M, where S and M are the finite-
element stiffness and mass matrices respectively.
Whilst we state the results below only for left
preconditioning, analogous results also hold for
right preconditioning. Related results also hold
when working in the standard norm ‖ · ‖2, and
we discuss these below.

Theorem 1 Assume A(1), n(1) and the domain
are nontrapping (see, e.g., [4, p.2871 and Defi-
nition 7.6]), and h depends on k and p such that
the finite-element error is bounded uniformly in
k. Given k0 > 0, there exist C1 and C2 indepen-
dent of h and k (but dependent on A(1), n(1), p,
k0, and the domain) such that for all k ≥ k0

‖I− (A(1))−1A(2)‖Dk
≤

C1 k ‖A(1) −A(2)‖L∞+C2 k ‖n(1) − n(2)‖L∞ .
(3)

From (3), we can conclude the following re-
sult on the convergence of GMRES for the ‘near-
by preconditioned’ system (A(1))−1A(2) using
the analogue of the Elman estimate for GMRES
in the weighted norm ‖ · ‖Dk

, see [3, Theorem
5.1].
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Corollary 2 Under the assumptions of Theo-
rem 1, if

C1k‖A(1)−A(2)‖L∞ +C2k‖n(1)− n(2)‖L∞ ≤ 1

2
,

(4)
then weighted GMRES in ‖ · ‖Dk

applied to

(A(1))−1A(2)u = f

converges in a k-independent number of itera-
tions for all k ≥ k0.

We also obtain similar results to Theorem
1 and Corollary 2 for standard GMRES (i.e.,
working in ‖·‖2). The only substantial difference
is that the term C1 k ‖A(1) − A(2)‖L∞ on the
right-hand side of (3) and left-hand side of (4)
is replaced by

C̃1
1

h
‖A(1) −A(2)‖L∞ , (5)

for some constant C̃1. The new condition (5) is
typically more restrictive, as practical values of
h are < 1/k. However, as discussed below, nu-
merical experiments show that (5) is not neces-
sary for nearby preconditioning to perform well.

Observe that (4) is more restrictive on
‖A(1)−A(2)‖L∞ and ‖n(1)−n(2)‖L∞ for larger k.
Therefore the set of problems for which A(1) is a
good preconditioner decreases as k grows. How-
ever, as discussed below, when this technique
is applied to a UQ model problem we obtain
speedup for a range of physically relevant k.

Numerical Confirmation

Numerical results show that the condition (4) is
sufficient in standard GMRES, despite the fact
it is only proved for weighted GMRES. I.e., if
‖A(1) − A(2)‖L∞ and ‖n(1) − n(2)‖L∞ decrease
like 1/k as k →∞, the the number of GMRES
iterations is bounded independently of k.

We note that [3] observed similar behaviour
with domain-decomposition preconditioners for
the Helmholtz equation; results on GMRES con-
vergence were proved for weighted GMRES, but
the numerically observed behaviour for weighted
and standard GMRES was essentially the same.

Application to UQ

To test the effectiveness of the nearby precon-
ditioning technique applied to UQ, we consider
the model problem of computing samples of

∆u+ k2 nu = −f (6)
∂νu− iku = g,

with n given by the artificial Karhunen–Loève
expansion

n(ω,x) = n0(x) +

J∑

j=1

yj(ω)ψj(x)

for some J ∈ N, spatially varying n0 and ψj
(chosen so that n is positive almost surely), and
independent Unif(−1/2, 1/2) random variables
yj . We generate many realisations of n by gener-
ating many vectors y = (yj)

J
j=1 using a Monte-

Carlo or a Quasi-Monte-Carlo (see, e.g., [2])
method. We then solve the realisations of (6)
given by each realisation of n.

To use nearby preconditioning in this set-
ting, we calculate a preconditioner for a realisa-
tion of (6), and then reuse this preconditioner
on nearby realisations (where n(1) and n(2) are
‘nearby’ if (4) with A(1) = A(2) holds). We re-
calculate the preconditioner (corresponding to
another realisation of (6)) when the number of
GMRES iterations needed to solve (A(1))−1A(2)

grows too large. With this strategy, we obtain
speedup for a range of physically relevant k.
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Abstract

Modeling for wave propagation in magnetically
confined plasma motivates the development of
numerical methods for smooth variable coeffi-
cient time-harmonic Maxwell’s equations. The
simplest of these models, the cold plasma model,
reads

∇×∇×E− κ2εE = 0 (1)

where the 3 × 3 tensor epsilon is both homoge-
neous and anisotropic. Generalized PlaneWaves
(GPWs) were introduced in the 2D variable re-
fractive index Helmholtz framework. These func-
tions are constructed to satisfy approximately
the PDE, and a set of linearly independent GPWs
can easily be constructed for discretization pur-
poses. They were designed as exponential of
polynomials, using Taylor expansions. The first
extension of the GPW construction to the 3D
vector-valued Maxwell’s equation is introduced,
including a discussion on possible ansatz for the
amplitude and phase functions, and emphasiz-
ing the challenges related to the construction
algorithm.
Keywords: Generalized Plane Waves, Time-
harmonic Maxwell, variable coefficients.

1 Introduction

GPWs have been introduced in the framework of
Trefftz methods: Trefftz methods are Galerkin
methods that rely on basis functions chosen as
local solutions to the homogeneous partial dif-
ferential equation (PDE), but for variable co-
efficient PDEs such solutions are generally not
available; GPWs are basis functions tailored for
a given partial differential operator L to solve lo-
cally approximately the homogeneous PDE Lϕ ≈
0.

They were first initially proposed, in two di-
mensions, for scalar Helmholtz operator:

LH := −∆− κ2η(x)

with a scalar coefficient η, see [1, 2], were then
coupled to a Trefftz formulation in [4], and were

also used to study mode conversion for the fol-
lowing operator:

LMC :=
(
∂2x + (d+ d)∂x∂y + |d|2∂2y

)

+(d− d)x∂y −
(

1 + 1
µ + x(x+ y)

)
,

with parameters (d, µ) ∈ C2.
A GPW ϕ associated to a partial differential

operator L was designed as an approximated so-
lution in the following sense: it is constructed
locally, at a point x0 to ensure that the Tay-
lor expansion of Lϕ at x0 cancels up to a given
order q.

2 GPW ansatz, vector-valued operators
& normalization

For scalar valued operators, the original GPW
ansatz studied in [2] corresponds to adding higher
order terms to the phase function of a classical
plane wave x 7→ exp iκd · (x − x0) for a given
direction d with |d| = 1:

ϕ(x) = exp(iκd · (x− x0) +H.O.T.)

where the higher order terms H.O.T. were con-
structed to ensure that Lϕ(x) = O(‖x− x0‖q)

A vector valued classical plane wave, x 7→
p exp iκd·(x−x0), has a direction d with |d| = 1
as in the scalar valued case, but also has a po-
larization p. Hence for vector valued operators,
there is a priori several possibilities to define a
GPW starting from a classical plane wave, since
higher order corrections could be added either to
the phase function or to the amplitude function:
each component of a GPW could be designed as
follows:
φα(x) =
(pα +H.O.T.) exp(iκd · (x− x0) +H.O.T.).

However, as described in [3], it is natural to pre-
serve the fact that each component of a GPW,
as those of a classical plane wave, have the same
unique phase function: we therefore propose to
study the construction of vector-valued GPWs
constructed with the ansatz

φα(x) = (pα +H.O.T.) exp iκd · (x− x0). (2)
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The normalization of a GPW, corresponding
to choosing the lowest order terms of its phase
and amplitude functions, is performed naturally
following the compatibility conditions between
the phase and amplitude of a classical plane
wave in the constant coefficient case. The chal-
lenge, in order to construct GPWs to satisfy the
Taylor approximation Lφ(x) = O(‖x − x0‖q),
then lies in the construction of a solution to the
system coupling the higher order terms of the
components (2) of the amplitude of φ.

3 Maxwell’s equations

In the particular case of Maxwell’s equations
(1), the normalization condition reads:

d× d× p(x0)− κ2ε(x0)p(x0) = 0.

It corresponds, see [3], to the WKB approxima-
tion in the high frequency regime. The construc-
tion of a GPW φ(x) = A(x) exp iκd · (x − x0),
as in the scalar case, relies on a careful study of
the quantity:

Lφ(x) = κ2
[
− d× d×A− εA

]
eiκd·(x−x0)

+iκ
[
d×∇×A

]
eiκd·(x−x0)

+
[
∇×∇×A

]
eiκd·(x−x0).

Thanks to the choice of a unique phase func-
tion, it is sufficient to construct the amplitude
function A to cancel the Taylor expansion, up
to order q, of the following quantity:

Q(x) := −κ2d× d×A− εA
+iκd×∇×A +∇×∇×A.

The the amplitude components Aα(x) are con-
structed as polynomials, denoted

∑

0≤i+j+k≤degα

λαi,j,k(x− xK)i(y − yK)j(z − zK)k,

thanks to a careful examination of the system
obtained from canceling the Taylor expansion
terms of Q:

∀(i, j, k) ∈ N3, i+ j + k < q, ∂ix∂
j
y∂

k
zQ(x) = 0

Despite the coupling of the three components of
A in Q, we will present an algorithm to con-
struct a solution to this system, and as in the
scalar case this will be achieved via the construc-
tion of an analytic formula.
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Abstract

In this work we address the question of theo-
retical justification of problems arising in the
wave propagation in hyperbolic metamaterials
[1]. Such phenomena are described by anisotropic,
dispersive Maxwell equations, which, in the fre-
quency domain, correspond to a problem that
is hyperbolic for a range of frequencies. For a
particular case of such materials (highly magne-
tized plasmas), we prove the well-posedness of
the corresponding model in the free space, pro-
viding a suitable radiation condition, as well as
study its regularity and demonstrate the lim-
iting amplitude and limiting absorption princi-
ples.
Keywords: hyperbolic metamaterials, radia-
tion condition, Maxwell equations, limiting am-
plitude principle, limiting absorption principle

1 Introduction

We consider the wave propagation in hyperbolic
metamaterials, for the simplest case of the 2D
strongly magnetized plasma. In the time do-
main, it is modelled by the Maxwell’s equations

∂tEx − ∂yHz = 0, (1)
∂tEy + ∂xHz + ωpjy = 0, ∂tjy = ωpEy,

∂tHz + ∂xEy − ∂yEx = f(x, t), (x, t) ∈ R2 × R+,

with given initial conditions. The energy

E(t) =
1

2

(
‖Ex‖2 + ‖Ey‖2 + ‖Hz‖2 + ‖jy‖2

)

is preserved in the absence of sources (f = 0).

With û = Fu = 1√
2π

∞∫
0

eiωtu(t)dt, and assuming

zero initial conditions, we can rewrite the above
problem in the frequency domain as follows:

ω2Ĥz + ∂2yĤz + ε⊥(ω)−1∂2xĤz = iωf̂ ,

ε⊥(ω) =

(
1−

ω2
p

ω2

)
, x ∈ R2.

(2)

Thus, for 0 < ω < ωp the above problem is hy-
perbolic (Klein-Gordon equation), and for ω >

ωp it is elliptic. Here we address the hyperbolic
regime. A similar problem, but in a different
setting, was studied in [2].

2 Well-posedness in the hyperbolic case

We start with the case with absorption (ω /∈ R),
and next consider the case ω ∈ R.

Theorem 1 (Case with absorption) Let ω ∈
C \ R. For any f̂ ∈ L2(R2), the problem (2)
has a unique solution Ĥz ∈ H1(R2). Moreover,
‖Ĥz‖H1 ≤ C(ω)‖f̂‖L2.

The solution to (2), when =ω 6= 0, is given by
convolution of f̂ with the corresponding fun-
damental solution Gω. Taking ω = ω0 + iε,
0 < ω0 < ωp, ε→ 0+, it is possible to show the
existence of a solution to (2) with ω = ω0. The
uniqueness is assured with the help of a radia-
tion condition. We suggest to use a radiation
condition which resembles the Fourier radiation
condition in the rough surface scattering [4]. Let

Fxu(kx, y) =
1√
2π

∞∫

−∞

eikxxu(x, y)dx.

Let us fix 0 < ω < ωp; importantly, ε⊥(ω) < 0.

Definition 2 (Radiation Condition) A func-
tion Ĥz satisfies the radiation condition (RC) if

• Ĥz(., y) ∈ L2(R) for all y ∈ R (a.e.)

• FxĤz satisfies for all kx ∈ R (a.e.),

lim
|y|→+∞

(
∂|y| − i

√
− k2x
ε⊥(ω)

+ ω2

)
FxĤz = 0.

To formulate the well-posedness result, we will
need the anisotropic weighted Sobolev spaces:

‖u‖2⊥,s =

∫

R2

(1 + |y|2)s|u(x, y)|2dxdy, s ∈ R,

L2
⊥,s = {u ∈ L2

loc(R
2) : ‖u‖⊥,s <∞},

H1
⊥,s = {u ∈ L2

loc(R
2) : ‖u‖2⊥,s + ‖∇u‖2⊥,s <∞}.

We assume throughout that s > 1
2 . The princi-

pal result of this section reads.

Tuesday, 17:15, GM2 Radinger, Building BD



Analysis & num. meth. for waves in heterog. media & complicated domains 99

Figure 1: Im Ĥz, for f̂ = 1{x ∈ Ω} ∈ ⋂
ε>0

H
1
2
−ε.

Left: Ω = [−1, 1]2. Here Ĥz ∈ H
5
2
−ε

loc , ε > 0.
Right: Ω = Rπ

4
[−1, 1]2 (Rφ is a rotation by φ).

In this case Ĥz ∈ H
3
2
−ε

loc , ε > 0, Ĥz /∈ H
3
2
loc.

Theorem 3 (Case without absorption) Let
0 < ω < ωp. For all f̂ ∈ L2

s(R
2), the problem

(2) equipped with the radiation condition (RC)
admits a unique solution Ĥz ∈ H1

⊥,−s(R
2). Also,

there exists C > 0, s.t. for all f̂ ∈ L2
s(R

2),

‖Ĥz‖H1
⊥,−s
≤ C‖f̂‖L2

⊥,s
.

Let us define the resolvent for (2): Nωf̂ = Ĥz,
Nω ∈ B(L2

⊥,s, H
1
⊥,−s). It is analytic in ω ∈ C\R,

and is continued to (0, ωp) according to Thm 3.

Theorem 4 (Limit. absorp., ω ∈ (0, ωp)) For
all f̂ ∈ L2

⊥,s,

lim
ε→0+

Nω+iεf̂ = Nωf̂ in H1
⊥,−s.

3 Regularity in the hyperbolic case

In the elliptic regime (ω > ωp), Ĥz ∈ H2
loc(R

2),
while in the hyperbolic it holds only that Ĥz ∈
H1
loc(R

2). Denoting by L2
comp = {u ∈ L2 :

u is compactly supported}, we obtain

Theorem 5 Let 0 < ω < ωp. Then

Nω ∈ B
(
L2
comp, H

1+σ
⊥,−s

)
⇐⇒ σ ≤ 0.

This result can be refined: it appears that re-
duced regularity is induced by the lines of dis-
continuity of f̂ , which are aligned with char-
acteristics of (2), see Figure 1. Solutions are
computed with the help of the PMLs of [5].

4 Limiting amplitude principle

Adapting the classical proof of the limiting am-
plitude principle by Eidus [3], we obtain

Figure 2: Left: limiting amplitude solution
lim
t→∞

Re
(
Hze

−iω0t
)
, where Hz solves (1) with

f = eiω0tg(x).
Right: limit. absorpt. sol. lim

ε→0+
Re Ĥz(ω0 + iε)

where Ĥz solves (2) with f̂ = ĝ

Theorem 6 (Limit. amplit., ω ∈ (0, ωp)) Gi-
ven f(x, t) = eiωtg(x), g(x) ∈ L2

s, let Hz solve
(1) and Ĥz solve (2) with f̂ replaced by ĝ, equipped
with the radiation condition (RC). Then

lim
t→+∞

‖Hz(t)− Ĥze
iωt‖L2

−s
= 0.

This result is shown in Figure 2 (0 < ω0 < ωp).

5 Future work

A continuation of this work consists in the de-
velopment of accurate numerical methods for
(2) and studying frequency-domain hyperbolic
problems in more general geometric configura-
tions (bounded domains, higher dimensions).
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Abstract

In this work we consider Maxwell’s equations
coupled to an evolution equation for the electric
current density. The coupled system is known
as the cold-plasma model and describes high-
frequency waves in magnetically confined plas-
mas, with application in nuclear fusion research.
We show formally that the system has a natural
Hamiltonian structure, which can be exploited
in order to design a structure-preserving numer-
ical scheme.
Keywords: Electromagnetic waves; Hamilto-
nian systems; Finite element exterior calculus.

1 Introduction

In certain conditions, the propagation of electro-
magnetic waves in a magnetized plasma can be
described by the cold-plasma model, which com-
prises Maxwell’s equations coupled to an evolu-
tion equation for the current density induced in
the plasma by the wave electric field (cf. Bram-
billa [1] for a physics derivation and the validity
conditions of the cold-plasma model). The sys-
tem of equations reads





∂tE = curlB − ωpY,
∂tB = − curlE,

∂tY = ωpE − Y × ωc,
(1)

with the constraint

divB = 0, (2)

where E,B are the electromagnetic fields of the
wave, Y is proportional to the induced current
density, and the dimensionless coefficients ωp =
ωp(x) ∈ R+ and ωc = ωc(x) ∈ R3 depend on the
spatial position x = (x1, x2, x3) in a domain Ω.
Time and spatial coordinates are normalized to
a given frequency ω0 and to the corresponding
wave number ω0/c, respectively, with c being
the speed of light in free space.

For simplicity, let the domain Ω be either
the full space R3 or the torus (R/2πZ)3, hence

∂Ω = ∅, and let Cauchy data

E(0) = E0, B(0) = B0, Y (0) = Y0, (3)

be given at t = 0, with divB0 = 0.
Formally, the L2-norm of u = (E,B, Y ) is

constant for a solution of system (1), that is,
the total energy

H(u) =
1

2

(
‖E‖2L2 + ‖B‖2L2 + ‖Y ‖2L2

)
, (4)

is preserved.
Motivated by many applications in plasma

physics, several codes have been developed for
the cold-plasma model. Most of these codes im-
plement the standard Yee scheme [2] enhanced
with an ad hoc update rule for the current den-
sity. The Yee scheme is an energy preserving
variational scheme for Maxwell’s equations [3],
but the choice of the update rule for the current
density may destroy such desirable properties;
for instance, special care needs to be taken in
order to ensure energy conservation [4].

In this work we show that system (1) defines
an infinite-dimensional Hamiltonian system [5]
and constraint (2) corresponds to a family of
Casimir invariants. We use this fact to obtain a
structure-preserving numerical scheme.

2 Hamiltonian structure

A Poisson structure on a Banach space U is a
Lie-algebra structure on C∞(U) = C∞(U,R)
satisfying the Leibniz rule, that is, a bi-linear
anti-symmetric map {·, ·} : C∞(U)×C∞(U)→
C∞(U), called Poisson brackets, satisfying the
Leibniz and Jacobi identities,

{F,GH} = {F,G}H + {F,H}G,
{F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0,

for all F,G,H ∈ C∞(U).
An evolution equation for u ∈ C1(R, U) of

the form du/dt = f(u), where f : U → U , is
Hamiltonian if there exist a Poisson structure
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{·, ·} and a functional H ∈ C∞(U), referred to
as the Hamiltonian, such that

d

dt
F
(
u(t)

)
=
{
F,H

}(
u(t)

)
, (5)

for all functional F ∈ C∞(U).
With u = (E,B, Y ), we define formally

{F,G} = {F,G}0 + {F,G}p − {F,G}c, (6)

where

{F,G}0 =

∫

Ω

[
curl

δF

δE
· δG
δB
− curl

δG

δE
· δF
δB

]
dx,

{F,G}p =

∫

Ω
ωp

[δF
δY
· δG
δE
− δG

δY
· δF
δE

]
dx,

{F,G}c =

∫

Ω
ωc ·

[δF
δY
× δG

δY

]
dx,

with all functional derivatives computed with
respect to the L2-pairing. Brackets (6) define
an anti-symmetric bi-linear form which satisfies
both the Leibniz and Jacobi identities formally.
Upon using (4) as Hamiltonian, equation (5)
amounts to a weak formulation of (1).

The divergence constraint (2) is recovered
from Casimir invariants, that are all functionals
C ∈ C∞(U) such that

{C,F} = 0, for all F ∈ A.

For every scalar function ϕ = ϕ(x),

Cϕ(u) =

∫

Ω
ϕdivBdx (7)

is a Casimir invariant of brackets (6). If the ini-
tial condition satisfies (2), the existence of this
family of invariants implies (2) for t ≥ 0.

3 Finite element exterior calculus

Let us assume ωp ∈ L∞(Ω), ωc ∈ (L∞(Ω))3.
The variable u = (E,B, Y ) ∈ U is approxi-
mated by uh ∈ Uh = V1 × V2 × V1, with con-
forming spaces Vj such that the diagram

H1(Ω)→ H(curl,Ω)→ H(div,Ω)→ L2(Ω)
yπ0

yπ1
yπ2

yπ3

V0 → V1 → V2 → V3

is commutative and each row is an exact se-
quence. Here the arrows represent the opera-
tors grad, curl, and div respectively in the upper
row and their discrete counterparts in the lower

row. Possible choices of the discrete spaces Vj
are available [6, 7].

We denote by u ∈ RN the vector of degrees
of freedom of the discrete field uh ∈ Uh. The
restriction of a functional F to Uh amounts to
a function F = F(u) = F (uh) on RN . The dis-
cretization of (5) then reads

d

dt
F
(
u(t)

)
=
{
F,H

}
h

(
u(t)

)
, (8)

for all F ∈ C∞(RN ), where the discrete brackets
{F,G}h = ∇uF · P∇uG, with P a constant anti-
symmetric matrix (the Poisson tensor), define
a Poisson structure on RN and admit a family
of Casimir invariants corresponding to (7). The
Hamiltonian structure is preserved, and the dis-
crete energy H

(
u(t)

)
of a solution is constant.

Equation (8) has to be integrated in time.
Since H is quadratic, the problem reduces to a
linear evolution equation and it is sufficient to
evaluate the matrix exponential. On the other
hand the Hamiltonian structure opens the way
to integrators based on splitting either the Pois-
son brackets (preserving energy) or the Hamil-
tonian (preserving the Poisson structure). In
Hamiltonian splitting, it is critical to find an
exact solution of each step. To this end, we
introduce a time-dependent change of variables
which yields time-dependent Poisson brackets,
and show how such a structure can be useful.
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Finite element discretizations of high–frequency wave propagation problems in
heterogeneous media
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Abstract

We analyze the convergence of finite element
discretizations of time-harmonic wave propaga-
tion problems. We propose a general methodol-
ogy to derive stability conditions and error esti-
mates that are explicit with respect to the fre-
quency. The method is developed under gen-
eral assumptions and is illustrated on particular
cases including the propagation of acoustic and
elastic waves in heterogeneous media. We pro-
vide numerical experiments that illustrate our
analysis and indicate that our results are sharp.
Keywords: Helmholtz problems; High order
methods; Finite element methods; Pollution ef-
fect

Time-harmonic wave propagation problems
arise in a variety of applications, which moti-
vate the design of efficient and robust simulation
tools. When the domain of propagation is het-
erogeneous, finite element methods (FEMs) are
routinely employed to discretize the problem.

While FEMs are very efficient to accurately
take into account complex geometries, they suf-
fer from the so–called “pollution effect” in the
high–frequency regime where the domain of prop-
agation is large compared to the characteristic
wavelength [2]. This “pollution effect” manifests
itself by a loss of stability of FEMs when the
frequency is high. Specifically, there is a gap
between the error of the finite element solution,
and the one of the best possible representation
of the continuous solution in the discrete space.

The pollution effect has been thoroughly stud-
ied in the literature for the propagation of acous-
tic waves in homogeneous media [2–4]. The key
conclusions of these works is that the pollution
effect can be eliminated if the mesh size h is suf-
ficiently small. More precisely, in the case of a
non-trapping problem at angular frequency ω,
the authors show that the pollution effect van-
ishes under the condition that

ωp+1hp ≤ C, (1)

where p is the degree of the polynomial basis
functions and C is a generic constant that is
independent of h and ω. We can restate stability
condition (1) as

Nλ ≥ Cω1/p (2)

where Nλ = (ωh)−1 is the number of elements
per wavelength. A key observation is that high
order FEMs are less sensitive to the pollution
effect, as stability condition (2) is less restrictive
when p is large.

Stability condition (1) is established using
an approach known as the “Schatz argument”
[5]. The crucial step of the proof is a dual-
ity technique in which a solution to the wave
propagation problem with an L2(Ω) right–hand
side is introduced. The stability of the FEM is
then linked to the ability of the discrete space
to approximate the aforementioned solution. As
this dual right–hand only belongs to L2(Ω), the
corresponding solution possesses low regularity,
and it is not clear why high–order methods are
performant. As a result, the key idea intro-
duced in [3] is to perform a “regularity split-
ting” where the dual solution is decomposed into
two components. The first component belongs
to H2(Ω) only, but its norm does not grow as
the frequency increases. The other component
is highly oscillatory and analytic. It is the dom-
inant part in the high–frequency regime, and
since it is smooth, it is efficiently captured by
high–order FEMs, which explains there enhanced
stability.

The regularity splitting introduced in [2, 3]
focuses on the acoustic Helmholtz equation in
homogeneous media. As the proposed splitting
heavily relies on the Green’s function of the wave
operator, it is not clear how it can be extended
to more complex wave propagation systems, in-
cluding heterogeneous media.

In this work, we propose a new strategy to
derive stability condition (1) in more general
settings [1]. Specifically, we consider a problem
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of the form

−ω2L0u− iωL1u+ L2u = f in Ω,

with additional boundary conditions that we dis-
cretize with a FEM of order p. We assume that
the operators Lj satisfy

‖L0v‖`,Ω ≤ C‖v‖`,Ω,
‖L1v‖`,Ω ≤ C‖v‖`+1,Ω,

‖L −1
2 v‖`+2,Ω ≤ C‖v‖`,Ω,

(3)

for all v ∈ C∞(Ω) and 0 ≤ ` ≤ p − 1. This
hypothesis is rather general, as it is satisfied if
the boundary of Ω and the heterogeneous coef-
ficients appearing in the operators Lj are suf-
ficiently smooth. In addition, we can weaken
this hypothesis by assuming piecewise smooth-
ness only.

Instead of relying on the Green’s function,
our analysis exploits the expansion

u =

p−1∑

j=0

ωjuj + rp, (4)

where the uj ∈ Hj+2(Ω) are iteratively defined
and independent of ω, and rp ∈ Hp+1(Ω) is a
remainder, whose norm is controlled explicitly
in ω. Then, we employ splitting (4) within the
Schatz argument technique to establish (2).

We derive the method in generality under
assumption (3) on the domain of propagation
and the differential operators appearing in the
boundary value problem. We illustrate our anal-
ysis on acoustic, convected and elastic Helmholtz
equations in heterogeneous media.

In Figure 1, we have simulated the propa-
gation of a superposition of elastic plane waves
with a FEM of degree p for different frequencies
ω and mesh sizes h. In each case, we compute
both the finite element error, and the best ap-
proximation error. For a given frequency ω, we
denote by h?(ω) the largest value of h such that

|u− uh|1,Ω ≤ 2|u− πhu|1,Ω
for all h ≤ h?(ω), where uh and πhu are the
finite element solution and the best approxima-
tion of u. The curves presented on Figure 1
show that h?(ω) ' ω−1−1/p, which is in agree-
ment with stability condition (1).

The main conclusion of our work is that, as
in the case of acoustic wave propagation in ho-
mogeneous media, high order FEMs are less sen-
sitive to the pollution effect, and should be pre-
ferred in the high–frequency regime.
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ω−5/4

ω
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?
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)
Figure 1: Asymptotic ranges h?(ω) for P1 (top)
and P4 (bottom) elements
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Two wave localisation effects and their impact on numerical simulation
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Abstract

We study the wave propagation in Rd modelled
in the frequency domain by the Helmholtz equa-
tion in heterogeneous media. In particular, we
are interested in media with highly oscillating
contrast and derive stability estimates which are
explicit in the wave number and wave speed of
the media. We consider two different mecha-
nisms of wave localisations: (a) Wave localisa-
tion appearing at a single discontinuity in the
geometry or the material (“whispering gallery”
modes), (b) wave localisation caused by highly
varying wave speed. The latter can be studied in
an isolated way in 1D, since whispering gallery
modes are absent in this regime.
Keywords: stability, resonance, localisation,
heterogeneous Helmholtz

1 Setting

We consider the Helmholtz Equation of the form

−∆u−
(ω
c

)2
u = f in Ω (1a)

for a bounded Lipschitz domain Ω, right hand
side f ∈ L2(Ω) and a wave number ω in R,
corresponding to the “pure” Helmholtz problem
(for wave scattering in lossy media ω is complex
valued and its stability is analysed, e.g., in [3]).
We impose impedance boundary conditions

∂u

∂n
− i

ω

c
u = g on ∂Ω. (1b)

Existence and uniqueness for a bounded wave
speed c s.t. 1

c ∈ L∞(Ω) is proved by the Fred-
holm alternative (see [2] for details). We are
interested in the stability of the solution of (1)
with variable and possibly non-smooth or oscil-
latory coefficients.

Conjecture 1 For any bounded Lipschitz do-
main Ω ⊂ Rd, c ∈ L∞(Ω), with 0 < cmin ≤ c ≤
cmax < ∞, ω ≥ ω0 > 0 the stability constant
Cstab in
(∫

Ω
|∇u|2 +

(ω
c

)2
|u|2
) 1

2

≤ Cstab

(
‖f‖2L2(Ω) + ‖g‖2H1/2(∂Ω)

) 1
2
.

(2)

satisfies

Cstab ≤ C1 exp (C2ω) , (3)

with C1, C2 > 0 depending only on cmin, cmax

and Ω.

2 Localisation effect in 1D

For the following we assume that the wave speed
c is piecewise constant (possibly highly varying).
Such situations are also considered in [1]. Our
investigation of localisations in 1D is based on
a new recursive representation of the Green’s
function of the problem. We derive a very sim-
ple scalar sequence (Qj), represented as iterated
Möbius transformations, which has as inputs the
wave speed c as a piecewise constant function
and the wave number ω and which fully encodes
the localisation effect. The sequence can be used
to design media which exhibits localisation phe-
nomena (see Fig. 1) at prescribed locations. It
turns out that, in order to observe localisation,
the number of jumps n needs to be chosen such
that n ∼ ω, i.e. is “in resonance” with the wave
number ω.

We show that Conjecture 1 holds in 1D and
for piecewise constant wave speed c. Moreover,
we use the sequence (Qj) to construct explicitly
localisation waves as in Fig. 1, we show that the
estimate in (3) is sharp.

We note that the effect of localisation is very
unstable w.r.t. perturbations of the wave speed,
the location of discontinuities, or the wave num-
ber and is therefore “rare” in the set of piece-
wise constant and bounded wave speeds. Our
sequence (Qj) can also be used to find regions
in the set of given data (wave speed, position
and number of discontinuities,. . . ) where the
solution is “well-behaved”, i.e. solutions whose
stability constant is independent of ω.

We note that in our analysis, we allow dis-
continuous wave speeds which are non-periodic,
non-monotonic and not a small perturbation of
the constant case.
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Figure 1: Two examples of a solution u with
localisation effect in 1D.

3 Localisation effects in 3D

In contrast to the 1-dimensional case, in 3D we
may observe a localistion effect of type (a). A
rigorous analysis of these localisation effects can
be found in [4, 5], for smooth or discontinuous
coefficients with one interface. We present new
stability results for discontinuous (in particular
highly varying non-periodic) heterogeneous me-
dia in 3D. We will see that, besides whispering
gallery modes, the solution can also show local-
isation effects caused by many jumps.
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Domain decomposition methods for heterogeneous Helmholtz problems
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Abstract

We consider one-level additive Schwarz precon-
ditioners for a family of Helmholtz problems of
increasing difficulty (characterised by increas-
ing wavenumber). These are discretized using
nodal conforming finite elements of any (fixed)
order on fine meshes with mesh diameter cho-
sen to maintain accuracy as the wavenumber
increases. The action of the preconditioner re-
quires the solution of independent subproblems
(with impedance boundary conditions) on over-
lapping subdomains. These are linked together
using prolongation/restriction operators defined
using a partition of unity. In this talk we will
study (both theoretically and experimentally)
the effect of heterogeneity in the coefficients on
the properties of the preconditioner.

1 Previous results

These (and related) preconditioners were stud-
ied experimentally in the papers [5–7]. In nu-
merical experiments we observe robust (wavenum-
ber k−independent) GMRES convergence as k
increases, with subdomain diameter decreasing
moderately as k increases. This provides a highly-
parallel, k−robust one-level domain-
decomposition method for this class of prob-
lems. The cost of the method is dominated
by the cost of solving the subdomain problems,
but the size of the required direct solves can
be reduced by further recursive subdivision (and
inner-outer iteration), or by adding an additional
coarse space. Supporting theory for this precon-
ditioner in the case of homogeneous Helmholtz
problems is given in [7]. A distinctive feature of
the theory is that it applies to problems posed
on general Lipschitz polyhedral domains such as
those which arise from exterior sound-soft scat-
tering problems in truncated domains. The sub-
domain problems can all be solved in parallel at
each iteration and the domain may contain cav-
ities. The theory in the homogeneous case is ob-
tained by considering “nearby” absorptive prob-
lems with the level of absorption appropriately
chosen so that (a) the preconditioner works well

for the absorptive problem and (b) the absorp-
tive problem is not too far away from the pure
Helmholtz problem. [2, 7]. The performance of
related preconditioners for Maxwell problems is
discussed in [1].

2 This talk

In this talk we will present new theoretical re-
sults and numerical experiments for the method
when it is applied to heterogeneous Helmholtz
problems of the form

−∇ · (A∇u)− ω2nu = f

subject to mixed impedance/Dirichlet boundary
conditions, with variable A and n, where ω is
the angular frequency. (The wavenumber k = ω
when A = I and n = 1.) We will focus in partic-
ular on the role of the ‘non-trapping’ criterion
from [3], [4] in the theory and performance of
preconditioners.
Keywords: Helmholtz equation, high frequency,
domain decomposition, absorbing boundary con-
dition, heterogeneity
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Effective equations of arbitrary order for wave propagation in periodic media
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Abstract

While the standard homogenized wave equation
describes the effective behavior of the wave at
short times, it fails to capture the macroscopic
dispersion that appears at long times. To de-
scribe the dispersion, the effective model must
include additional operators of higher order. In
this work, we present a practical way to con-
struct effective equations of arbitrary order in
periodic media, with a focus on their numeri-
cal approximation. In particular, we exhibit an
important structure hidden in the definition of
the high order effective tensors which allows a
significant reduction of the computational cost
for their approximation.
Keywords: homogenization, long time be-
havior, dispersion

1 Introduction

Let a(y) be a [0, 1)d-periodic tensor, Ω ⊂ Rd be
a hypercube and for ε > 0 let uε : [0, T ]×Ω→ R
be the solution of the wave equation

∂2t u
ε(t, x)−∇x ·

(
a
(
x
ε

)
∇xuε(t, x)

)
= f(t, x),

(1)
for (t, x) ∈ (0, T ] × Ω, where we impose Ω-
periodic boundary conditions, the initial con-
ditions and the source f are assumed to have
O(1) frequencies and O(1) support, and Ω is
arbitrarily large. To accurately approximate uε,
standard numerical methods require a grid reso-
lution of order O(ε) in the whole domain, which
leads to a prohibitive computational cost as ε→
0. In the regime ε � 1, homogenization the-
ory provides a way to approximate uε at a cost
that is independent of ε : the result states that
limε→0 u

ε = u0 in L∞(0, T ; L2(Ω)), where u0

solves the homogenized equation

∂2t u
0(t, x)− a0ij∂2iju0(t, x) = f(t, x), (2)

equipped with the same initial and boundary
conditions as (1). The homogenized tensor a0 is
constant and can be computed by means of (first

order) correctors, solutions of (first order) cell
problems, i.e., periodic elliptic PDEs in [0, 1)d

involving a(y). In practice, we observe that for
long times t = O(ε−α) α ≥ 2, dispersion effects
that appear in the L2 behavior of uε(t, ·) are not
captured by u0(t, ·). High order effective equa-
tions are effective models that describe the dis-
persion (with an accuracy that should increase
with the order). Several definitions of high order
effective equations were recently proposed [1–3].
Although the form of the equations are not the
same, they all involve the same high order effec-
tive quantities.

2 Family of effective equations of arbi-
trary order

We present the high order models introduced
in [1]. For q ∈ Symn(Rd), a symmetric ten-
sor of order n, we denote the operator q∇nx =∑
qi1··in∂

n
i1··in . For a timescale O(ε−α), the ef-

fective equations have the form

∂2t ũ− a0∇2
xũ−

bα/2c∑

r=1

(−1)rε2rL2rũ = Qf, (3)

where the operators L2r and Q are defined as

L2r = a2r∇2r+2
x − b2r∇2r

x ∂
2
t ,

Q = 1 +

bα/2c∑

r=1

(−1)rε2rb2r∇2r
x ,

and a2r ∈ Sym2r+2(Rd), b2r ∈ Sym2r(Rd). Note
that if a2r, b2r are non-negative, (3) is well-posed.

To derive the values of the effective tensors
a2r, b2r, we use asymptotic expansion. We look
for an adaptation Bεũ that approximates uε. An
error estimate tells us that for ũ to be close to uε

up to O(ε−α) timescales, Bεũ− uε must satisfy
the wave equation with a right hand side of order
O(εα+1) in the L∞(0, ε−αT ; L2(Ω))-norm. We
then combine (i) the ansatz

Bεũ(t, x) = ũ(t, x) +

α+2∑

k=1

χk(t, x, y)∇kxu(t, x),
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where the k-th order corrector χk =
{
χki1··ik

}

has value in Symk(Rd), and (ii) inductive Boussi-
nesq tricks (use (3) to replace time derivatives
with space derivatives) and obtain the cell prob-
lems, which have the cascade form:

Aχ1
i1= F1

i1(a),

Aχ2
i1i2= F2

i1(a, χ1, a0),

Aχ2r+1
i1··i2r+1

=F2r+1
i1··i2r+1

(
a, χ1,.., χ2r

)
,

Aχ2r+2
i1··i2r+2

=F2r+2
i1··i2r+2

(
a,χ1,..,χ2r+1, a2r−a0⊗b2r

)
,

(4)
where A = −∇y ·

(
a∇y ·

)
and Fki1··ik are specified

in [1]. While the odd order cell problems are
well-posed unconditionally, the solvability of the
even order cell problems provides constraints on
the tensors a2r, b2r:

a2r − a0 ⊗ b2r =S q̌
r
(
χ1, . . . , χ2r+1

)
, (5)

where q̌r
(
χ1, . . . , χ2r+1

)
is a constant tensor of

order 2r+2 computed by means of the correctors
χ1 to χ2r+1 and =S means that the equality
holds up to symmetry.

Theorem 1 Assume sufficient regularity of the
data and let {a2r, b2r}bα/2cr=1 be symmetric, non-
negative tensors satisfying (5). Then it holds

‖uε − ũ‖L∞(0,ε−αT ;W ) ≤ Cε,

where the constant C is independent of ε and Ω
and the norm ‖ · ‖W is equivalent to the L2(Ω)-
norm up to the Poincaré constant.

Theorem 1 ensures that any set {a2r, b2r}bα/2cr=1

satisfying the requirements gives an effective equa-
tion. Hence, this result implicitly defines a fam-
ily of effective equations over timescalesO(ε−α).

3 Substantial cost reduction to compute
the high order effective tensors

In [1], we provide an explicit procedure to com-
pute the effective tensors {a2r, b2r} in practice.
As q̌r may happen to be negative, the main chal-
lenge is to build non-negative a2r that satisfy
(5). The preeminent computational cost of the
procedure is the calculation of q̌r. The natural—
but naive—formula for q̌r requires to solve the
cell problems for χ1 to χ2r+1. However, exploit-
ing a hidden structure of the cell problems, we
prove the following result:

Theorem 2 The tensor q̌r involved in (5) can
in fact be computed from χ1, . . . , χr+1.

Thanks to this result, the computational cost
to compute the effective tensors {a2r, b2r}bα/2cr=1

is significantly reduced. Specifically, it allows to
avoid solving

N(α, d) =

(
2bα/2c+ 1 + d

d

)
−
(bα/2c+1 + d

d

)

cell problems (e.g., N(6, 2) = 21, N(6, 3) = 85).

Figure 1: Comparison between uε (top) and
high order effective solutions for α=2 (ũ1, mid-
dle) and α=4 (ũ2, bottom). See [1] for details.
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Abstract

The ability of wire meshes to block electromag-
netic waves (the “Faraday cage” effect) is well
known to physicists and engineers. We consider
the scattering of electromagnetic waves (gov-
erned by the time-harmonic Maxwell equations)
by a thin periodic layer of perfectly conduct-
ing obstacles. The size of the obstacles and
the distance between neighbouring obstacles are
both small compared to the wavelength. We de-
rive homogenized interface conditions for three
model configurations, namely (i) discrete obsta-
cles, (ii) parallel wires, (iii) a wire mesh, and ob-
serve that the leading order behaviour depends
strongly on the topology of the periodic layer,
with shielding of incident waves of all polariza-
tions occurring only in the case of a wire mesh.
Keywords: Homogenized interface conditions,
Maxwell equations, Faraday cage

Our aim is to derive homogenized interface con-
ditions for electromagnetic scattering by a thin
periodic layer of perfectly-conducting obstacles

L δ = int


 ⋃

(i,j)∈Z2

δ
{

Ω̂ + ie1 + je2

}

 ,

where δ > 0 is small and Ω̂ ⊂ [0, 1]2 × R ⊂ R3

is the canonical obstacle in the period cell. In
particular we consider three model cases:

(i) Ω̂ = (3
8 ,

5
8)2 × (−1

8 ,
1
8), i.e. a cube;

(ii) Ω̂ = [0, 1]× (3
8 ,

5
8)× (−1

8 ,
1
8), i.e. a wire (of

square section) parallel to the direction e1.

(iii) Ω̂ = {[0, 1]× (3
8 ,

5
8)× (−1

8 ,
1
8)} ∪ {(3

8 ,
5
8)×

[0, 1]×(−1
8 ,

1
8)}, i.e. a cross-shaped domain

with branches parallel to e1 and e2.

We seek a solution uδ of the Maxwell equations

curl curl uδ − ω2εuδ = f in Ωδ := R3 \L δ,

subject to the PEC boundary condition

uδ × n = 0 on Γδ := ∂Ωδ.

(i) (ii) (iii)

Figure 1: The domain Ωδ in cases (i)-(iii).

It is well-known that, under appropriate assump-
tions on f , ω and ε and the far-field behaviour,
this problem is well-posed. Our aim is to iden-
tify the limit u0 of uδ as δ tends to 0. This
limit solution is defined in the union of two dis-
tinct domains Ω± = {x ∈ R3 : ±x3 > 0}, whose
common interface is Γ = {x ∈ R3 : x3 = 0}.

Theorem 1 The limit solution u0 satisfies

curl curl u0 − ω2εu0 = f in Ω+ ∪ Ω−,

and the following interface conditions on Γ (where
[·]Γ denotes the jump across Γ):
Case (i): [u0×e3]Γ = 0 and [curl u0×e3]Γ = 0,
so the interface is transparent to leading order.
Case (ii): u0 · e1 = 0 on Γ, [u0 · e2]Γ = 0, and
[(curl u0×e3)·e2]Γ = 0, so the interface reflects
waves polarized parallel to the wires.
Case (iii): u0 × e3 = 0 on Γ, so the interface
reflects waves of all polarizations.

To prove Theorem 1 we approximate uδ using
matched asymptotic expansions, as in [1–7] where
closely related problems are studied. It is con-
venient to work with the first-order formulation

− iωhδ + curl uδ = 0 in Ωδ,

− iωuδ − curl hδ = − 1

iω
f in Ωδ,

uδ × n = 0 and hδ · n = 0 on Γδ.

Far from the periodic layer L δ we expand

hδ = h0(x) + δh1(x) + · · · ,
uδ = u0(x) + δu1(x) + · · · ,
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and, in the vicinity of L δ,

hδ = H0(x1, x2,
x

δ
) + δH1(x1, x2,

x

δ
) + · · · ,

uδ = U0(x1, x2,
x

δ
) + δU1(x1, x2,

x

δ
) + · · · ,

where, for i ∈ {0, 1}, Hi(x1, x2, y1, y2, y3) and
Ui(x1, x2, y1, y2, y3) are 1-periodic in both y1

and y2. The near and far field expansions satisfy
matching conditions, the O(1) one being

lim
x3→0±

h0 = lim
y3→±∞

H0, lim
x3→0±

u0 = lim
y3→±∞

U0.

(1)

The near fields U0 and H0 satisfy

curlU0 = curlH0 = 0 in B∞,

divU0 = divH0 = 0 in B∞,

U0 × n = 0 and H0 · n = 0 on ∂B∞,

where B∞ = R3 \⋃(i,j)∈Z2

{
Ω̂ + ie1 + je2

}
. A

key step in our analysis is to prove that U0

and H0 are uniquely defined respectively as ele-
ments of the normal and tangential cohomology
spaces KN and KT [8, 9], which are subspaces
of Hloc(curl; B∞) ∩Hloc(div; B∞) with a peri-
odicity condition in y1 and y2 and appropriate
decay conditions at y3 = ±∞. In the following
theorem let Ui,± := limy3→±∞U · ei.

Theorem 2 For each of the three cases (i)-(iii),
KN and KT are spanned by gradients of certain
scalar potentials satisfying the Laplace equation
with appropriate boundary/decay conditions.
Case (i): KN and KT have dimension 4 and
3 respectively. If U ∈ KN and H ∈ KT then
Ui,+ = Ui,− and Hi,+ = Hi,− for i ∈ {1, 2}.
Case (ii): KN and KT have dimension 3 and
4 respectively. If U ∈ KN and H ∈ KT then
U1,± = 0, U2,+ = U2,−, and H1,+ = H1,−.
Case (iii): KN and KT have dimension 2 and 5

respectively. If U ∈ KN then U1,± = U2,± = 0.

Theorem 1 then follows by combining The-
orem 2 with the matching conditions (1). For
details see [9]. We note that a study of case
(iii), using a different approach to that outlined
above, appeared recently in [4], where the first
order correction terms were also considered.

The convergence of uδ to u0 in the limit
δ → 0 can be made rigorous by justifying the
asymptotic expansions considered above. This
can be done a posteriori by constructing an ap-
proximation of uδ on Ωδ (based on truncated

expansions) and using a δ-explicit stability es-
timate, cf. [10]. This is the subject of ongoing
work by the authors of the talk.
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Abstract

Inspired by experimental observations, homog-
enization of the time-harmonic Maxwell equa-
tions has been an active field of research in re-
cent years. We contribute by studying periodic
meta-materials consisting of perfectly conduct-
ing microstructures and void space. Contrary
to the most known results, we do not focus on
a microstructure with a particular topology but
consider a large class of microstructures. We
show that topological characteristics of the mi-
crostructure determine the structure of the ef-
fective equations as well as transmission prop-
erties of the effective medium. The definition of
the effective magnetic field requires a new no-
tion of average, the so called geometric average.
As we consider a large class of microstructures
we present a new definition of the geometric av-
erage, which extends the known definitions.
Keywords: Maxwell’s equations, homogeniza-
tion, meta-material, periodic structures

1 Description of the problem

We consider a periodic meta-material placed in
a bounded domain Ω ⊂ R3. In this context,
a meta-material is a periodic assembly of per-
fect conductors, and we are interested in the
behaviour of the electromagnetic fields when the
period of the meta-material tends to zero. De-
noting the period of the meta-material by η > 0,
we assume that the perfect conductors fill the
set Ση ⊂ Ω. We study distributional solutions
(Eη, Hη) ∈ L2(Ω;R3) × L2(Ω;R3) to the time-
harmonic Maxwell equations

curlEη = iωµ0H
η in Ω , (1)

curlHη = −iωε0E
η in Ω \ Ση , (2)

Eη = Hη = 0 in Ση , (3)

in the limit η → 0. In this system, ω > 0 is a
fixed frequency, ε0 > 0, and µ0 > 0 are material
parameters.

This problem has already been investigated
in [3] but with stronger assumptions on the per-
fectly conducting microstructure.

R

Ω

Y

Ση

Figure 1: The meta-material is located in a sub-
domain R b Ω and is obtained by periodization
of microstructures Σ ⊂ Y .

2 Geometry and assumptions

We remain in the framework of standard peri-
odic homogenization; that is, the set Ση is as-
sumed to be locally periodic. A reference mi-
crostructure Σ ⊂ Y is considered, where Y de-
notes the unit cube [0, 1]3 ⊂ R3. Identifying op-
posite faces, we can think of Y as the flat three-
dimensional torus. The topology of Σ plays
an important role in the effective equations; we
make the following assumptions:

(i) Σ is a proper subdomain of the three di-
mensional torus Y that has a Lipschitz
boundary;

(ii) Σ∗ := Y \ Σ is connected as a subset of
the three-dimensional torus Y .

We assume that the meta-material is located
in a second domain R b Ω. In its complement,
Ω \ R, the relative permittivity as well as the
relative permeability are equal to unity. The
perfect conductor Ση is given by

Ση :=
⋃

k∈K
η(k + Σ) ,

where K :=
{
k ∈ Z3 : η(k + Y ) ⊂ R

}
. In Fig-

ure 1 we sketched the setting.
We use the tool of two-scale convergence. In

order to apply this, we have to assume that we
are given a sequence (Eη, Hη)η of distributional
solutions to the time-harmonic Maxwell equa-
tions (1)-(3) that satisfies the energy-bound

sup
η>0

∫

Ω
|Eη|2 + |Hη|2 <∞ .
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3 The notion of a geometric average

Denote by E0, H0 ∈ L2(Ω×Y ;R3) the two-scale
limits of (Eη)η and (Hη)η, respectively. It is
classical that the effective fields Ê and Ĥ are
defined as suitable averages of E0 and H0. For
physical reasons, the averaging procedure has
to be chosen in such a way that the tangential
components of (Ê, Ĥ) are continuous across the
boundary of the meta-material. Setting Ê :=∫
Y E0 yields the right effective electric field. The
volume average of H0, however, possesses tan-
gential discontinuities [1]. To overcome this dif-
ficulty, Bouchitté et al. introduced a new aver-
aging procedure for periodic magnetic fields; the
key idea is to handle them as one-forms. We use
this idea and extend the definition of the geo-
metric average given in [1] to the microstruc-
tures Σ ⊂ Y that we consider.

Define the function space

V (Σ∗) :=

{
φ ∈ L2(Y ;R3) :

curlφ = 0 in Y
and φ = 0 in Σ

}

and the space of attainable averages of fields
from V (Σ∗),

AV (Σ∗) :=

{∫

Y
φ : φ ∈ V (Σ∗)

}
⊂ R3 .

We write ∧ for the cross-product in R3.

Definition 1 For every u ∈ L2(Σ∗;R3) that
satisfies curlu = 0 in Σ∗ there is at least one
vector b ∈ R3 such that the identity

∫

Σ∗
u ∧ φ = b ∧

∫

Σ∗
φ , (4)

holds for all φ ∈ V (Σ∗). The vector of minimal
Euclidean norm among all vectors b ∈ R3 sat-
isfying (4) is called the geometric average of u,
and is denoted by

∮
Σ∗ u.

In [2] we prove that the geometric average is
well-defined. As H0 satisfies curlH0(x, ·) = 0 in
Σ∗ for almost all x ∈ Ω, we may define Ĥ by
Ĥ(x) :=

∮
Σ∗ H0(x, ·). Some components of this

effective magnetic field Ĥ satisfy the continu-
ity condition across the boundary of the meta-
material. More precisely, for almost all x ∈ Ω,

πAV
(
curl Ĥ(x, ·)

)
∈ L2(Ω;R3) ,

where πAV : R3 → R3 is the orthogonal projec-
tion onto the space AV (Σ∗). In particular, if
AV (Σ∗) = R3, then all tangential components
of the effective field Ĥ are continuous.

4 Effective equations

The space of all φ ∈ V (Σ∗) with div φ = 0 in Σ∗

is denoted by V E(Σ∗). By XH(Σ∗) we denote
the space of all vector fields u ∈ L2(Y ;R3) that
satisfy curlu = 0 in Σ∗, div u = 0 in Y , and u =
0 in Σ. Denoting by XH

0 (Σ∗) the set of vector
fields u ∈ XH(Σ∗) with

∮
Σ∗ u = 0, we have the

decomposition XH(Σ∗) = XH
0 (Σ∗) ⊕ XH

⊥ (Σ∗),
which is orthogonal with respect to the L2-scalar
product. Similar to AV (Σ∗) we define the set of
attainable geometric averages,

AX(Σ∗) :=

{∮
u : u ∈ XH

⊥ (Σ∗)
}
.

The effective permittivity εeff is the linear map
AV (Σ∗)→ AV (Σ∗) that satisfies

εeff

(∫

Y
φ

)
·
(∫

Y
φ′
)

=

∫

Y
φ · φ′

for all φ, φ′ ∈ V E(Σ∗). We further set ε̂(x) :=
εeff for x ∈ R and ε̂(x) := id for x ∈ Ω \
R. The effective permeability µeff is the linear
map AX(Σ∗) → R3,

∮
Σ∗ u 7→

∫
Σ∗ u. We de-

fine µ̂(x) := µeff for x ∈ R and µ̂(x) := id for
x ∈ Ω \R.

Theorem 2 Let (Ê, Ĥ) be the effective fields
defined above, and let ε̂ and µ̂ be as above. Then
there holds

curl Ê = iωµ0µ̂Ĥ in Ω ,

πAV
(
curl Ĥ

)
= −iωε0πAV

(
ε̂Ê
)

in Ω ,

curl Ĥ = −iωε0Ê in Ω \R ,
Ê(x) ∈ AV (Σ∗) for x ∈ R ,
Ĥ(x) ∈ AX(Σ∗) for x ∈ R .

References

[1] G. Bouchitté, C. Bourel, and D. Felbacq,
Homogenization Near Resonances and Ar-
tificial Magnetism in Three Dimensional
Dielectric Metamaterials, Arch. Ration.
Mech. Anal., 225(3) (2017), pp. 1233-1277

[2] K. H. Poelstra, B. Schweizer, and M. Ur-
ban, The geometric average of curl-free
fields in periodic geometries, in preparation

[3] B. Schweizer and M. Urban, Effective
Maxwell’s equations in general periodic mi-
crostructures, Appl. Anal., 97(13) (2017),
pp. 2210-2230

Monday, 11:30, GM4 Knoller, Building BD



114 Minisymposia
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Abstract

In this talk, we present a framework to study
the asymptotic behaviour of (a large class of)
periodic non-uniformly elliptic systems with re-
spect to a (small period) parameter. We de-
termine, under very few readily veri�able as-
sumptions, the leading-order approximation of
the solution and derive error estimates, uniform
in right-hand-side. Asymptotics for the spec-
trum with error estimates directly follow.

Keywords: Homogenisation, High contrast, Er-
ror estimates

1 Motivating examples and Problem for-

mulation

We are motivated by the asymptotic behaviour
of the solution u ∈ H1(Rd) to the problem

divAε∇u − u = f ∈ L2(Rd), (1)

as ε → 0. Here Aε(·) = a1(
·
ε) + ε2a2(

·
ε), a1, a2

are non-negative measurable periodic matrix-functions
such that the sum is uniformly elliptic and bounded:

c|ξ|2 ≤
(
a1(y)+a2(y)

)
ξ·ξ ≤ c−1|ξ|2, ∀ξ, y ∈ Rd,

for some c > 0, cf [1, 2]. If a2 = 0 then (1)
reduces to the problem of classical homogeni-
sation with uniformly elliptic matrix. If a2 is
an identity matrix and a1 = χa2, where χ is a
characteristic function of connected periodic set,
then (1) corresponds to the generalised �double
porosity model", see [3]. Other problems we are
interested in include (but are by no means lim-
ited to) : Schrödinger's equation with a strong
periodic magnetic �eld b:

(∇ − iε−1b( ·
ε))

∗(∇ − iε−1b( ·
ε))u − u = f,

and di�erential-di�erence equations, e.g. in the
one-dimensional setting:

ε−2b(x
ε )

(
u(x + ε) − 2u(x) + u(x − ε)

)

+(a(x
ε )u(x)′)′ − u(x) = f(x),

with 1-periodic positive functions a and b.
Upon rescaling x/ε → y and an application

of the Floquet transform y → (y, θ), all these
problems fall into the following general class of
problems: For �xed ε > 0 and each θ in given
compact set Θ ⊂ Rd,
{

Find uθ ∈ H such that

ε−2aθ(uθ, ϕ) + (uθ, ϕ)θ = ⟨f, ϕ⟩, ∀ϕ ∈ H.

(2)
Here, H is a (complex) Hilbert space with a fam-
ily of equivalent scalar products (·, ·)θ, f ∈ H∗

and aθ is a non-negative, continuous sesquilinear
form on H. Our aim is to �nd the leading-order
approximation to uθ (with respect to ε) and to
derive error estimates uniform in θ ∈ Θ. We
assume that (·, ·)θ and aθ are merely Lipschitz
continuous with respect to θ, that is there exists
c > 0 such that

∣∣(u, v)θ1 − (u, v)θ2

∣∣ ≤ c
∣∣θ1 − θ2

∣∣∥u∥θ1∥v∥θ1 ,
∣∣aθ1(u, v) − aθ2(u, v)

∣∣ ≤ c
∣∣θ1 − θ2

∣∣∥u∥θ1∥v∥θ1 ,

for all u, v ∈ H, ∀θ1, θ2 ∈ Θ. Denote aθ[u] =
aθ(u, u), Vθ = {u ∈ H | aθ[u] = 0} and Wθ =
{w ∈ H | (w, v)θ = 0, ∀v ∈ Vθ}. Let

νθ = inf{aθ[w]∥w∥−2
θ : w ∈ Wθ, w ̸= 0}.

Our main assumption is the following Spectral

gap condition: νθ is positive, for all θ ∈ Θ. Let
us stress that this condition is easily veri�able in
applications, see [2] for the extensive list of phys-
ically relevant examples of divergence type sys-

tems that satisfy this condition. Other interest-
ing examples include homogenisation problems
on periodic quantum graphs and their general-
isations. Some problems in thin domains also
fall into the above framework.

2 Main results

First we assume that the family of spaces Vθ is
Lipschitz continuous: there is c > 0 such that

inf
v2∈Vθ2

∥v1 − v2∥θ2 ≤ c|θ1 − θ2|∥v1∥θ1 , (3)
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∀v1 ∈ Vθ1 , ∀θ1, θ2 ∈ Θ. This is the case e.g. in
the inverse double porosity model, where the
sti� phase is formed by periodic isolated inclu-
sions.

Theorem 1 If Vθ is Lipschitz continuous then

infθ∈ Θ νθ = ν > 0, and

ε−2aθ[uθ − vθ] + ∥uε,θ − vθ∥2
θ ≤ ε2ν−1∥f∥2

∗θ,

where vθ ∈ Vθ solves

(vθ, ṽ)θ = ⟨f, ṽ⟩, ∀ṽ ∈ Vθ.

In applications, condition (3) is often violated
at some point θ0 ∈ Θ (without loss of generality
we assume that θ0 = 0), and the family of spaces
Vθ has a removable singularity at this point. By
this we mean that there exists a closed subspace
V⋆ of H such that

V ⋆
θ =

{
Vθ, θ ̸= 0,
V⋆, θ = 0

is Lipschitz continuous.

(4)
For a wide class of applications one has Vθ = V
for θ ̸= 0 and (4) trivially holds for V⋆ = V .
Set Z to be orthogonal complement of V⋆ in V0(
with respect to (·, ·)0

)
.

We further assume that there exist sesquilin-
ear bounded forms a′

0 : H × H → Cd, a′′
0 :

H × H → Cd×d and a constant c ≥ 0 such that

|aθ(u, v) − a0(u, v) − a′
0(u, v) · θ − a′′

0(u, v)θ · θ|

≤ c|θ|3∥u∥0∥v∥0, ∀u, v ∈ H, ∀θ ∈ Θ (5)

((5) holds with c = 0 for second order di�eren-
tial systems). Our �nal assumption is

∃ν⋆ > 0 : νθ ≥ ν⋆|θ|2, ∀θ ∈ Θ, (6)

which condition is a well-known to hold in the
classical homogenisation.

We introduce the generalisation of the ho-

mogenised matrix : the positive sesquilinear (quad-
ratic in θ) form ahom

θ : Z × Z → C given by

ahom
θ (z, z̃) := a′′

0(z, z̃)θ·θ−a0(θ·Nz, θ·Nz̃), z, z̃ ∈ Z,

where the corrector Nz ∈ W d
0 is the solution to

a0(θ·Nz, w̃0) = −a′
0(z, w̃0)·θ, ∀w̃0 ∈ W0, ∀θ ∈ Θ.

Theorem 2 Assume (4)-(6). Consider the so-

lutions v⋆
θ ∈ V ⋆

θ to

(v⋆
θ , ṽ)θ = ⟨f, ṽ⟩, ∀ṽ ∈ V ⋆

θ ,

and zθ ∈ Z to

ε−2ahom
θ (zθ, z̃) + (zθ, z̃)0 = ⟨f, z̃⟩, ∀z̃ ∈ Z.

(7)
Set

uapprox
θ = v⋆

θ + zθ + θ · Nzθ.

Then, there exists constant c > 0 independent

of ε, θ and f such that

ε−2aθ[uθ −uapprox
θ ]+∥uθ −uapprox

θ ∥2
θ ≤ ε2c∥f∥2

∗θ,

and

∥uθ − (v⋆
θ + zθ)∥2

θ ≤ ε2c∥f∥2
∗θ,

∀θ ∈ Θ, ∀ε > 0.

We note that Z is �nite dimensional under an
additional easily veri�able condition and (7) is
then a linear algebraic system. This theorem
recovers some of the results from [4] in the con-
text of classical homogenisation and of the re-
sults from [5] for the �double porosity" model.

Theorem 2 implies uniform in θ estimates of
the spectrum of the operator generated by the
form ε−2aθ(u, v) + (u, v)θ, which in turn allows
us to establish the gaps in the spectrum of the
original operator with error estimates.
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Numerical modeling for scattering of transient acoustic waves by resonant interfaces
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Abstract

With an adequate scaling on the physical pa-
rameters, a thin micro-structured medium can
be such that resonances are possible in the inclu-
sions. The homogenization of such media yields
jump conditions that apply across an interphase
and involve frequency-dependant coefficients in
the harmonic regime. Auxiliary variables are
used to take into account these resonances and
perform time-domain simulations.
Keywords: homogenization, resonant interfaces,
time-domain wave propagation, immersed inter-
face method

1 Physical modeling

The physical problem concerns the propagation
of acoustic waves through scatterers disposed
periodically in a 2D media with a spacing h.
The spatial coordinates are denoted by x =
(x1,x2). The mass density ρ and the compress-
ibility χ are piecewise constants:

(ρ, χ)(x) =

{
(ρm, χm) in the matrix
(ρi, χi) in the inclusions.

(1)

Figure 1: Homogenization process on a single
array of resonant inclusions.

Resonances are possible with a low contrast
in the compressibility χi/χm = O (1) and a high
contrast in the mass density ρm/ρi = (kh)2,
where k = 2π

λ is the wavenumber in the matrix
and λ is the wavelength supposed to be much
larger than h.

Under these asumptions, the microstructured
problem can be replaced by an equivalent ho-
mogenized problem [1]. It consists in solving
the volumic equations around an interphase of
thickness a, and jump conditions on the pressure
p and the normal velocity v1 across this inter-
phase. These jump conditions take into account
the microstructure characteristics and read in
the frequency domain :




Jp̂Ka = B1〈∂x1 p̂〉a +B2〈∂x2 p̂〉a,

Jv̂1Ka = C11〈∂x1 v̂1〉a + C12〈∂x2 v̂1〉a
+C22〈∂x2 v̂2〉a + hD(k)〈∇ · v̂〉a,

(2)
where we have defined

JfKa (x2) = f
(a

2
, x2

)
− f

(
−a

2
, x2

)
, (3)

〈f〉a(x2) =
1

2

(
f
(a

2
, x2

)
+ f

(
−a

2
, x2

))
(4)

being the jump of f across the homogenized in-
terphase and the mean value of f respectively.
D(k) encapsulates the resonant behaviour of the
inclusions and can be written as:

D(k) = α0 −
∑

n≥1

α2
n

k2

k2 − k2n
, (5)

where the set of {kn} denote resonant frequen-
cies, with {k2n} eigenvalues of the problem ∆P+
κ2P = 0 solved in an inclusion.
Stability of such system is linked to energy con-
siderations and is guaranteed for a specific inter-
phase thickness that will be detailed in a future
work.

2 Auxiliary variables

Because of D(k), formulating the system in the
time domain involves a convolution product. This
is very costly numerically and it reduces the
computational gains obtained from homogeniza-
tion. To avoid this, auxiliary fields [3] Ĵr are
introduced:

Ĵr = α2
r

k2

k2 − k2r
∇ · v̂ for r = 1, .., NR. (6)
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We introduce NR the number of resonances cho-
sen in (5), cm = 1/

√
ρmχm, C̃11 = C11 + hα0,

C̃22 = C22 + hα0, and the NR auxiliary fields
Gr = ∂tJr. We combine (2) and (6) and get
formally in the time domain and on the inter-
faces:




∂tGr +(cmkr)
2Jr = (αrcm)2∆(∇ · v),

∂tJr = Gr,

JpKa = B1〈∂x1p〉a +B2〈∂x2p〉a,
Jv1Ka = C̃11〈∂x1v1〉a + C12〈∂x2v1〉a

+C̃22〈∂x2v2〉a − h
NR∑

r=1

〈Jr〉a.

(7)
The system (7) is a first-order boundary-value
problem. This formulation is at price of han-
dling 2NR auxiliary variables Jr and Gr. But
contrary to v and p they are introduced only
along the interfaces.

3 Time-domain simulations

An explicit finite-difference scheme is used to
solve numerically the homogenized problem. The
scheme has to be adapted because the solution
is not defined in the interphase. This modifica-
tion will take into account the jump conditions.
A point M is called an irregular point if the
stencil at M requires nodes that are in the in-
terphase where the solution is not defined. For
these points, some modified values will be used
in the interphase, and direct numerical values
will be used otherwhise. These modified values
are constructed as a smooth extension of the
solution on the interface using the jump con-
ditions. Their construction is detailed in [2] for
the non-resonant case and is adapted here in the
resonant case.
For a plane wave and a resonant plane in-

terphase (tilted or not), a semi-analytical solu-
tion of the homogenized problem can be com-
puted. Comparisons of both solutions along x1
are shown in Figure 2. A comparison with a
semi-analytical solution is also possible for a
plane wave on a circular interphase and gives
the same type of results.

Figure 2: Semi-analytical pressure pr (blue line)
and numerical pressure p (red symbols).

Figure 3: p(x1, x2, t = 0.02375) without (left
panel) and with resonances (right panel) for a
short pulse emitted at the black cross location.

This numerical method then allows to inves-
tigate other types of sources (Figure 3 displays
the numerical solution for a source point in the
non-resonant and resonant cases) or interphases
for which analytical solutions are not known.
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Abstract

We will consider the visco-acoustic equations in
a three-dimensional domain that contains a wall
constituted of arrays of Helmholtz resonators.
These arrays of resonators are used to suppress
reflections from walls. Due to the smallness of
the periodicity and of the perforations a direct
numerical simulation is only possible for very
large costs. We introduce a surface homogeniza-
tion with three scales that combines a multiscale
approach for the homogenization of the array
of Helmholtz resonators with a matched asymp-
totic method around their aperture to prove that
the solution of the visco-acoustic problem ad-
mits a limit as the characteristic sizes of the
periodicity and of the perforation tend to 0.
We justify that the limit model takes the array
of Helmholtz resonators into account through
equivalent impedance boundary conditions, which
integrated into numerical methods leads to much
lower computational costs.

1 Introduction

We consider a three-dimensional domain Ω that
is for simplicity a simply connected smooth boun-
ded domain in R2×R+, and we consider Γ as a
connected, smooth subset of ∂Ω∩{x3 = 0} and
of measure non-zero. We extend the domain Ω
to a domain containing an array of Helmholtz
resonators as follow: we assume this array to be
periodic, i.e. there exists two fixed vectors a1

and a2 such that the centered parallelogram A
spanned by these two vectors has an area of 1,
and there exists δ > 0 such that the set Γδ de-
scribing the aperture centers is given by

Γδ := Γ ∩
(
δa1Z + δa2Z

)
.

We assume then that the array of resonators is
described as follow: given a resonator position
xδΓ ∈ Γδ, the resonator Ωδ

H(xδΓ) is decomposed
into a chamber part

Ωδ
C(xδΓ) := xδΓ + δAC × (−L,−δ2h0)

δa1

δa2

δAC

Figure 1: Example of one resonator (square-
shaped constant cross-sections) that connects
through one hole.

δ|a1|
d0δ

2

area
aCδ

2

h0δ
2

L

Figure 2: Representation of the array of res-
onators (cut along one periodicity direction).

and a neck part

Ωδ
N (xδΓ) := xδΓ + δ2D2(0.5d0)× (−δ2h0, 0),

where AC ⊂ A is a simply connected fixed do-
main of area aC < 1, D2 designates the cen-
tered two-dimensional disc, and the lengths L,
d0, h0 > 0 are independent of δ (see Fig. 1).

We finally extend the domain Ω into the
open domain Ωδ containing the periodic array
of resonators, i.e. whose closure is defined by

Ωδ = Ω ∪
⋃

xδΓ∈Γδ

Ωδ
H(xδΓ).

On the domain Ωδ we introduce the acoustic
equations in the framework of Landau and Lifs-
chitz [1] as a perturbation of the Navier-Stokes
equations around a stagnant uniform fluid with
mean density ρ0. We consider the-harmonic ve-
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locity vδ and acoustic pressure pδ (the time reg-
ime is exp(−iωt), ω > 0), which are described
by the coupled system

−iωvδ + 1
ρ0
∇pδ − ν(δ)∆vδ = f , in Ωδ,

−iωpδ + ρ0c
2 divvδ = 0, in Ωδ,

vδ = 0, on ∂Ωδ,

(1)

with the speed of sound c, the kinematic viscos-
ity ν(δ) = ν0δ

4 and a source term f independent
of δ and compactly supported in Ω away from
its boundary with a positive distance.

2 Main result

We embed domain geometry Ωδ and the asso-
ciated Navier-Stokes problem (1) in a family of
problems that are δ-dependent, and we are in-
terest by the limit problem posed on Ω as δ → 0.
Coupling a three-scale expansion technique de-
veloped in [2] for an interface problem and a
periodic homogenization technique [3,4] for the
array of Helmholtz resonators, we show that the
non-trivial limit (v0, p0) is solution of an invis-
cid Helmholtz problem posed on Ω, stated by
the following theorem.

Theorem 1 (Limit problem) The solution
(vδ, pδ) of the linearized Navier-Stokes problem
in Ωδ converges weakly in H(div,Ω)×H1(Ω) to
(v0, p0) solution of the following problem

−iωv0 + 1
ρ0
p0 = f , in Ω,

−iωp0 + ρ0c
2 divv0 = 0, in Ω,

v0 · n = 0, on ∂Ω \ Γ,

and
( i cρ0

ac
cos ωLc + 2iωρ0

kR
sin ωL

c

)
v0 · n + p sin ωL

c = 0

on Γ, where n designates the outer unit normal
vector of Ω, and kR is a complex constant with
Im(kR) > 0, the so-called effective Rayleigh con-
ductivity [2], obtained by solving an instationary
Stokes problem in an infinite domain Ω̂N that is
the union of two infinite half-spaces glued by one
cylindrical domain of diameter d0 and height h0,
see Fig. 3. More precisely, we seek for (V, P ) ∈
H1(Ω̂N )2 × H1

loc(Ω̂N ) with ∇P ∈ L2(Ω̂N )2 solu-
tion of the problem

−iωV + 1
ρ0
∇P − ν0∆V = 0, in Ω̂N ,

divV = 0, in Ω̂N ,

V = 0, on ∂Ω̂N ,

lim
S→∞

P|Γ̂±(S)
= ±1

2 ,

Γ+(S)

Γ−(S)

h0d0

Figure 3: Domain Ω̂N and representation of the
imaginary part of V.

and kR is given by

kR := lim
S→∞

iωρ0

2

(∫

Γ̂+(S)
V · n−

∫

Γ̂−(S)
V · n

)
.

Keywords: Helmholtz resonators, visco-acoustics,
impedance boundary conditions
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Enriched homogenized model in presence of boundaries
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Abstract

We study the wave equation set in periodic half-
space when the period is small compared to the
wave length. The classical homogenization the-
ory enables to derive an effective model which
provides an approximation of the solution. How-
ever it is well known that these models are not
accurate near the boundaries. In this work, we
propose an enriched asymptotic expansion which
enables to derive high order effective models.
Keywords: homogenization, asymptotic model

1 Introduction

In this work, we consider the time-harmonic wave
equation in a periodic half-space :

−∇ ·
[
a
(x
ε

)
∇uε

]
− ω2ρ

(x
ε

)
uε= f in Ω

uε= g on ∂Ω
(1)

where x = (x1, x2) ∈ Ω = R+ × R, Im(ω2) > 0
(so that the problem is well-posed in H1(Ω)),
f ∈ L2(Ω), g ∈ H1/2(∂Ω), a and ρ are 1-periodic
functions in the two directions which are uni-
formly bounded from above and below by strictly
positive constants, and ε is the period of the
medium. We are interested in the situation where
the period is small compared to the wave length.
In order to simplify the physical model and to
reduce the computational cost, we want to pro-
pose an asymptotic model. The homogeniza-
tion theory justifies that the periodic medium
can be replaced by an effective homogeneous
medium [1]. It is well-known that the homoge-
nized model gives a good approximation of the
macroscopic behavior of the solution but it poorly
takes into account interfaces or boundaries. In
this work, we propose an effective model which
is enriched near the boundary. Note that this
can be directly applied to the time-dependent
wave equation.

2 Asymptotic expansion : ansatz and equa-
tions

The method consists in postulating the ansatz

uε(x) = u0(x)+ε u1

(
x;

x

ε

)
+ε2 u2

(
x;

x

ε

)
+ · · ·

+ εU1

(
x2;

x

ε

)
+ ε2 U2

(
x2;

x

ε

)
+ · · · (2)

The first line of (2) is the two-scale asymptotic
expansion of the classical homogenization the-
ory which is relevant far from the boundary: the
un’s are such that y = (y1, y2) 7→ un(x;y) is 1-
periodic. For all x ∈ Ω, the study of un(x; ·)
can be restricted to the periodicity cell Y =
(0, 1)2. The second line of (2) contains the so
called near field terms which take account the
boundary without polluting the two-scale ex-
pansion far from the boundary : the Un’s are
such that y2 7→ Un(x2; y1, y2) is 1-periodic and
y1 7→ Un(x2; y1, y2) is exponentially decreasing
as y1 → +∞. For all x2, the study of Un(x2; ·)
can be restricted to a semi-infinite strip S =
R× (0, 1). Formally, we inject this ansatz in the
equation (1) and we show by induction that for
all n, un is a sum of a so called oscillating part
uoscn (x;y) which can be expressed thanks to the
previous terms and the solutions of cell prob-
lems, and a so called macroscopic part ûn(x).
Moreover, the necessary condition of existence
of un+2 leads to the volume equation satisfied
by ûn (as in classical homogenization) and the
necessary condition of existence of Un leads to
its boundary condition. Finally, we recover for
the first term the classical effective problem:
−∇ · [A∗∇u0]− ω2ρ∗u0 = f in Ω

u0 = g on ∂Ω
(3)

where A∗ = (a∗ij) is the homogenized tensor cal-
culated from the periodic solutions wi with van-
ishing mean value of the cell problems

−∇ · [a(y)∇wi] = −∂yia(y) in Y, (4)

and ρ∗ =
∫
Y ρ(y)dy. For the second term, we

have u1(x;y) = wi(y)∂xiu0(x)+û1(x) where its
macroscopic part û1 is solution of

−∇ · [A∗∇û1]− ω2ρ∗û1 = 0 in Ω

û1 = d
(i)
1 ∂xiu0 on ∂Ω

The coefficients d(i)
1 are derived from the solu-

tion of problems set in the semi-infinite peri-
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Ω

Y

S

Figure 1: The domains Ω, Y and S
odic strip S (which can be solved by using for
instance periodic DtN operators). Those coeffi-
cients take into account the way the boundary
cuts the periodic medium.
Besides, for the third term, we have

u2(x;y) = ∂2
xixju0(x)θij(y) + ∂xi û1(x)wi(y)

+ ω2u0(x)γ(y) + û2(x)

where θij and γ are periodic solutions with van-
ishing mean value of cell problems similar to (4),
and the macroscopic part û2 is solution of

−∇ · [A∗∇û2]− ω2ρ∗û2 = b∗ijkl∂
4
ijklu0

+ω2c∗ij∂
2
iju0 + ω4d∗u0 in Ω

û2 = d
(i)
1 ∂iû1 + d

(ij)
2 ∂2

iju0 + d
(0)
2 u0 on ∂Ω

Similarly to d(i)
1 , the coefficients d(ij)

2 and d
(0)
2

are obtained thanks to the solution of strip prob-
lems. Let us remark that this third term is
important for the homogenization of the time-
dependent wave equation and more precisely to
capture the long-time dispersion of the solution
(see for instance [2]). So far, the long-time ho-
mogenization was studied without boundaries
and in this work, we treat the presence of bound-
aries and propose appropriate boundary condi-
tions.
This construction can be done at any order. Fi-
nally, under regularity assumptions on f and g,
error estimates justify the expansion :

∀n,

∥∥∥∥uε −
n∑
k=0

εk(uk + Uk)

∥∥∥∥
L2(Ω)

= O(εn+1),

∥∥∥∥uε −
n∑
k=0

εk(uk + Uk)

∥∥∥∥
H1(Ω)

= O(εn).

In classical homogenization, the near field terms
are not considered and homogeneous boundary
conditions are imposed for each macroscopic term.
In that case, the error estimate in the H1 norm
is locked at any order at O(

√
ε).

3 Approximate models

From the asymptotic expansion, it is possible
to derive effective models which provide an ap-
proximation of the solution uε at a fixed order.
Indeed, it is easy to see that u0 + εû1 satisfies
up to an error O(ε2) :

∣∣∣∣∣
−∇ · [A∗∇vε]− ω2ρ∗vε = f in Ω

vε − εd(i)
1 ∂xivε = g on ∂Ω

(5)

This problem can be ill-posed (unstable for the
corresponding time-dependent problem) if d(1)

1 <
0. As the sign of this coefficient is not known a
priori, we want to modify it without deteriorat-
ing the consistency order of the approximation.
A first method consists in shifting artificially the
boundary as in [3]. A simpler strategy consists
in choosing another solution of the cell problem
(4). More precisely, if wMi is the solution of (4)
with the mean value equal to M ∈ R, and if
the asymptotic is performed with this cell so-
lution, the coefficient d(i)

1 is simply replaced by
d

(i)
1 + M . Thus for M large enough, the corre-

sponding problem (5) is well-posed.
Then, u0 + εû1 + ε2û2 satisfies up to an error
O(ε3) an equation in which appears a fourth or-
der operator. It is well known in the long time
homogenization, even without boundaries, that
this problem has to be modified in order to be
well-posed. Because fourth order PDEs are not
easy to discretize, we propose another approxi-
mate model. It consists (for sufficiently regular
datas) in considering u0 as a source term for the
problem satisfied approximately by εû1 + ε2û2.
We end up with the volume equation set in Ω

−∇ · [A∗∇wε]− ω2ρ∗wε = ε2b∗ijkl∂
4
ijklu0

+ ε2ω2c∗ij∂
2
iju0 + ε2ω4d∗u0

with the boundary condition

wε−εd(i)
1 ∂iwε = εd

(i)
1 ∂iu0+ε2d

(ij)
2 ∂2

iju0+ε2d
(0)
2 u0

To make this problem well-posed, we adopt the
same strategy than before. Numerical results
will be shown for the time-harmonic and the
time-dependent wave equations.
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Effective description of waves in discrete and heterogeneous media
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Abstract

Our analysis is motivated by the wave equation
on Rd with periodic coefficients,

∂2t u
ε = ∇ · (a(xε )∇uε(x)) .

Homogenization theory predicts that solutions
can be described, in the limit of small periodic-
ity ε > 0, by an effective wave equation

∂2t u(x, t) = AD2u(x, t) ,

where the effective coefficient A can be con-
structed with the help of cell-problems. Nev-
ertheless, when we consider large time intervals
of order 1/ε2, the effective equation from above
leads to predictions that are off by the order 1.
In the two papers [2,3], the authors showed that
a good effective equation (with constant coeffi-
cients) has the form

∂2tw
ε = AD2wε+ε2ED2∂2tw

ε−ε2FD4wε . (1)

The authors supplied a rigorous proof that, for
appropriate coefficient tensors A,E, and F , the
solution wε to the above equation approximates
uε on time intervals [0, T/ε2]. The result is
based on a Bloch-wave representation of solu-
tions and uses the “replacement trick” in order
to transform the “bad Bousinesq equation” into
a well posed partial differential equation.

Starting from this result, we considered the
following two research questions.

Long time behavior of lattice dynamics

In this project with F. Theil we are interested
in discrete wave equations on a lattice, γ ∈ εZd,

∂2t u
ε(γ, t) =

1

ε2

∑

j∈Zd
aju

ε(γ + εj, t)

with correlation numbers aj . The lattice points
are undistinguishable; nevertheless, by its dis-
crete character, the system has an ε-periodicity.

We may therefore expect that a weakly disper-
sive equation similar to (1) appears in the limit.
This fact was derived rigorously in [1].

Description with profile dynamics

The work [1] actually contains an additional re-
sult, which was further developed in [4]. We
describe the solution of the weakly dispersive
equation (1) with profile functions.

In order to introduce the idea, let us first
describe the 1-dimensional situation: The long
time behavior of the dispersive equation

∂2t u = c2∂2xu+ ε2p ∂4xu

can be described by the linearized KdV-equation

∂τV (z, τ) = − p

2c
∂3zV (z, τ) .

This fact can easily be shown with the ansatz
u(x, t) = V (x − ct, ε2t). What is interesting
already in the 1-dimensional situation is the se-
lection of initial values: In terms of the Fourier
transforms, we must choose, for the right-going
pulse V and its initial data V0:

V̂ ε
0 (ξ) :=

{
ûε0(ξ) for ξ > 0

0 else.

The result can be obtained also in higher
space dimension. We consider a solution of a
(dispersive) wave equation, in Fourier space given
by û(k, τ/ε2) = û0(k)e

−i(c|k|/ε2+b(|k|))τ . The re-
sult of [4] is that this solution can be recon-
structed in physical space with profile functions.
The reconstruction is done in three steps. With
an operatorR, we extract from the Fourier trans-
form of initial data the Fourier transform of pro-
file equation initial data:

Rû0(ξ, q) :=
( |ξ|
2πi

) d−1
2

û0(|ξ|q)1{ξ>0}.
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In this equation, a vector q ∈ Sd−1 is used to
select a direction of interest. The profile evolu-
tion is given in Fourier space for initial data V̂0
with a multiplication,

(JbV̂0)(ξ, q, τ) := e−ib(ξ)τ V̂0(ξ, q).

We note that the choice b(ξ) = b3ξ
3 leads to the

linearized KdV-equation mentioned above.
Finally, from the profiles V = V (z, q, τ), we

can reconstruct a function in physical space with
a shell-like distribution of the profiles,

(SV )(x, t) :=

1

(ct)(d−1)/2
V

(
|x| − ct, x|x| , ε

2t

)
1{|x|<2ct} .

The main result of [4] provides an approxi-
mation result for the reconstruction operator

Qb = S ◦ F−11 ◦ Jb ◦ R .

We obtain, for initial data û0 with some smooth-
ness properties, the convergence

(Q̂bû0)(k, τ/ε2)eic|k|τ/ε
2 − e−ib(|k|)τ û0(k)→ 0 .

The proof uses the method of stationary phase
and is performed in dimensions d ∈ {1, 2, 3}.
Keywords: Heterogeneous media, discrete me-
dia, dispersion, profile equation
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Frames for the solution of operator equations in Hilbert spaces with �xed dual pairing

Peter Balazs1, Helmut Harbrecht2
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Abstract

For the solution of operator equations, Steven-
son introduced a de�nition of frames, where a
Hilbert space and its dual are not identi�ed.
We are going to revisit the concept of Steven-
son frames and introduce it for Banach spaces,
show that in this setting the investigation of `2-
Banach frames make sense and apply them to
the discretization of operator equations.

Details and proofs can be found in [3].

Keywords: Banach frames, Stevenson frames,
matrix representation, discretization of opera-
tors.

1 Introduction

The standard de�nition of frames in a Hilbert
space H by Du�n and Schaefer [10] is the fol-
lowing:

‖f‖H ≈ ‖〈f, ψk〉H‖`2 for all f ∈ H. (1)

Here, x ≈ y means that there are constants 0 <
A ≤ B <∞ such that A · x ≤ y ≤ B · x.

This concept led to a lot of theoretical work,
see e.g. [6,7], but has been used also extensively
in signal processing [5], quantum mechanics [11],
acoustics [4] and various other �elds.

Frames can be used also to represent oper-
ators. For the numerical solution of operator
equations, the (Petrov-) Galerkin scheme [15] is
used, where operators are represented by

〈Oψk, φl〉k,l∈K ,

called the sti�ness or system matrix. The collec-
tion Ψ = (ψk)k∈K consists of the ansatz func-
tions, the collection Φ = (φk)k∈K are the test
functions.

In �nite and boundary element approaches,
bases were used [9], but also frames have been
applied, e.g. in [13, 16]. Recently, such opera-
tor representations got also a more theoretical
treatment [1, 2].

Partial di�erential operators are typically
operators of the form O : H → H′, while bound-
ary integral operators might also be smooth-
ing operators which map in accordance with

O : H′ → H. One possible solution is to work
with Gelfand triples i.e, H ⊂ H0 ⊂ H′. This
is explicitly done for the concept of Gelfand
frames [8].

Another possibility is the following, intro-
duced by Stevenson in [16]: A collection Ψ =
(ψk)k∈K ⊂ H is called a (Stevenson) frame for
H, if

‖f‖H′ ≈
∥∥∥〈f, ψk〉H′,H

∥∥∥
`2

for all f ∈ H′. (2)

Clearly, the de�nitions (1) and (2) are equiv-
alent by the Riesz isomorphism, i.e. considering
H ∼= H′. If another isomorphism is utilized, for
example, considering the triple H ⊂ H0 ⊂ H′,
using the Riesz isomorphism on the pivot space
H0
∼= H′0, H and H′ cannot be considered to be

equal.
On a more theoretical level, let us consider

Banach frames [12]. For a Banach space X, a
sequence space Xd, a sequence Ψ ⊂ X ′ is a Xd-
frame if

‖f‖X ≈
∥∥∥〈f, ψk〉X,X′

∥∥∥
Xd

for all f ∈ X.

It is called a Banach frame if a reconstruction
operator exists, i.e. there exists R : Xd → X

with R
(
〈f, ψk〉X,X′

)
= f for all f ∈ X.

In this presentation, we look at `2-Banach
Stevenson frames and apply them for the matrix
discretization of operator equations.

2 Stevenson Banach Frames

De�nition 1 Let (X,X ′) be a dual pair of re-

�exive Banach spaces. Let Ψ = (ψk)k∈K ⊂ X.

It is called a Stevenson Banach frame for X, if

there exist bounds 0 < AΨ ≤ BΨ <∞ such that

AΨ ‖f‖2X′ ≤
∥∥∥〈f, ψk〉X′,X

∥∥∥
`2
≤ BΨ ‖f‖2X′

for all f ∈ X ′.

Consider the frame operator SΨf =∑ 〈f, ψk〉X′,X ψk, which is a mapping
SΨ : X ′ → X. In this setting one can
show [3]:
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Theorem 2 The sequence Ψ̃ =
(
ψ̃k
)
k∈K :=(

S−1
Ψ ψk

)
k∈K ⊂ X ′ is a Stevenson Banach frame

for X ′ with bounds 1
BΨ

and 1
AΨ

. For f ∈ X and

g ∈ X ′, we have the reconstructions

f =
∑

k∈K

〈
f, ψ̃k

〉
X,X′

ψk

and

g =
∑

k∈K
〈g, ψk〉X′,X ψ̃k.

Set � u, v �:= 〈u, SΨv〉X′,X . This is, triv-
ially, a symmetric and positive bilinear form
and, therefore, an inner product on X ′ making
(X ′,� ·, · �) a Hilbert space with equivalent
norm.

But note that for things like condition num-
bers, constants in convergence rates, etc. the
concrete norms are important. So in this case
distinguishing `2-Banach frames from Hilbert
frames is necessary and useful.

3 Matrix Representation

If we have an operator O : X → X ′ and look at
the equation Ou = b, we use

Ou = b⇐⇒
∑

k

〈
u, ψ̃k

〉
X,X′

Oψk = b,

which implies
∑

k

〈
u, ψ̃k

〉
X,X′

〈Oψk, ψl〉X′,X = 〈b, ψl〉X′,X

for all l ∈ K. Setting M = 〈Oψn, ψm〉X′,X ,

~uk =
〈
u, ψ̃k

〉
and ~bk = 〈b, ψk〉, we thus have

Ou = b⇐⇒M~u = ~b.

Solving the system of linear equationsM~u =
~b gives a solution to Ou = b by u =

∑
k

~ukψk.

Note that this avoids the numerically expensive
calculation of a dual frame [14].
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Abstract

The Gram matrix is de�ned for Bessel sequences
by combining synthesis with subsequent analysis
operators. If di�erent sequences are used and an
operator U is inserted we reach so called U -cross
Gram matrices. Many authors investigated how
to �nd a matrix representation of operators on
a Hilbert space H with Bessel sequences, frames
and Riesz bases. In this talk, we show that un-
der mild conditions the pseudo-inverse of a U -
cross Gram matrix can always be represented as
a U -cross Gram matrix with dual frames of the
given ones. Details and proofs can be found in
[4].

Keywords: Frames, dual frames, U -cross Gram
matrices, pseudo-inverses.

1 Introduction

From practical experience it soon has become
apparent that the concept of an orthonormal ba-
sis is not always useful. Sometimes it is more im-
portant for a decomposing set to have other spe-
cial properties rather than guaranteeing unique
coe�cients. For example it is impossible to have
good time-frequency localization for Gabor ONBs
or a wavelet ONB with a mother wavelet which
has exponentially decay and is in�nitely often
di�erentiable with bounded derivatives [9]. Fur-
thermore suitable ONBs are often di�cult to
construct in a numerical e�cient way. This led
to the concept of frames, which was introduced
by Du�n and Schaefer [8].

Some operator equations, e.g. in acoustics
[10] and vibration simulation [5] cannot be treated
analytically, but have to be solved numerically.
Depending on the problem this can be done us-
ing a boundary element method [11] or �nite
element method [7] approach. Thereby opera-
tor equations Of = b, are transferred to ma-
trix levels to be able to be treated numerically
[11]. A standard approach for that, the Galerkin

1This work was supported by FWF project Y 551-

N13.

method, is using orthonormal basis (ONB) {ei}i∈I
and investigate the matrix

Mk,l := 〈Oel, ek〉

solving Mc = d for d = {dl}l∈I = {〈b, el〉}l∈I .
More recently frames are used for such a dis-
cretization (3,6).

A sequence Φ = {φi}i∈I in a separable Hilbert
spaceH is a frame if there exist constantsAΦ, BΦ >
0 such that for all f ∈ H

AΦ ‖f‖2 ≤
∑

i∈I
|〈f, φi〉|2 ≤ BΦ ‖f‖2 . (1)

The numbers AΦ and BΦ are called the frame
bounds. We call a complete Bessel sequence an
upper semi-frame (1, 2). If {φi}i∈I is assumed
to satisfy the right hand of (1), then it is called
a Bessel sequence with Bessel bound BΦ. For
a Bessel sequence Φ = {φi}i∈I , the synthesis
operator TΦ : `2 → H is de�ned by

TΦ{ci}i∈I =
∑

i∈I
ciφi.

Its adjoint operator T ∗Φ : H → `2; the so called
analysis operator is given by

T ∗Φf = {〈f, φi〉}i∈I , .

The operator SΦ : H → H, which is de�ned by
SΦf = TΦT

∗
Φf =

∑
i∈I 〈f, φi〉φi, for all f ∈ H,

is called the frame operator. For a frame Φ the
operator TΦ is onto, T ∗Φ is one-to-one, and SΦ is
positive, self-adjoint and invertible [9]. A dual
for a Bessel sequence Φ = {φi}i∈I ⊆ H is a
Bessel sequence Ψ = {ψi}i∈I in H such that

f =
∑

i∈I
〈f, ψi〉φi, (f ∈ H).

For a frame Φ it is obvious to see that the Bessel
sequence

{
S−1

Φ φi
}
i∈I is a dual and is itself a

frame again. This dual, denoted by Φ̃ =
{
φ̃i

}
i∈I

,

is called the canonical dual. A Riesz basis for H
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is a family of the form {Uei}i∈I , where {ei}i∈I is
an orthonormal basis for H and U : H → H is a
bounded bijective operator. Every Riesz basis is
a frame and has a biorthogonal sequence which
is also its unique dual. In this talk, we present
U -cross Gram matrices and their properties.

2 Main Results

De�nition 1 Let Ψ = {ψi}i∈I and Φ = {φi}i∈I
be Bessel sequences in Hilbert spaces H1 and H2,
respectively. For U ∈ B(H1,H2), the matrix
GU,Φ,Ψ given by

(GU,Φ,Ψ)i,j = 〈Uψj , φi〉 , (i, j ∈ I) , (2)

is called the U -cross Gram matrix. If H1 = H2

and U = IH1 it is called the cross Gram matrix
and denoted by GΦ,Ψ. We use GΦ for GΦ,Φ; the
so called Gram matrix [9].

Obviously, GU,Φ,Ψ = T ∗ΦUTΨ and ‖GU,Φ,Ψ‖ ≤√
BΦBΨ‖U‖. It is a compact operator when

U is compact. In the next theorem, we study
su�cient conditions for the invertibility of the
U -cross Gram matrix associated to Riesz se-
quences.

Theorem 2 Let U ∈ B(H1,H2), Φ = {φ}i∈I
and Ψ = {ψi}i∈I be two Bessel sequences in H2

and H1, respectively, such that GU,Φ,Ψ is invert-
ible. Then Φ and Ψ are Riesz sequences in H2

and Hl1, respectively. If Φ and Ψ are assumed to
be upper semi-frames, Φ and Ψ are Riesz bases
and U is invertible. In this case,

(GU,Φ,Ψ)−1 = G
U−1,Ψ̃,Φ̃

.

For a closed range operator U ∈ B(H1,H2), the
pseudo-inverse of U is the unique operator U † ∈
B(H1,H2) satisfying that

N
(
U †
)

= R (U)⊥ , R
(
U †
)

= N (U)⊥ ,

and UU †U = U .
If U has closed range, then U∗ has closed

range and (U∗)† =
(
U †
)∗
, see e.g. Lemma 2.5.2

of [9]. Similar to the case for multipliers [12] we
can show that there exist duals that allow the
representation of the pseudo-inverse as a matrix
of the same class.

Theorem 3 Let Ψ and Φ be frames in Hilbert
space H, U ∈ B(H) be an invertible operator
and GU,Φ,Ψ have closed range. Then the follow-
ing assertions hold:

(1) There exists a unique dual Φ(U,Ψ) of Φ such
that

(GU,Φ,Ψ)† = G
U−1,Ψ̃,Φ(U,Ψ) .

(2) There exists a unique dual Ψ(U,Φ) of Ψ
such that

(GU,Φ,Ψ)† = G
U−1,Ψ(U,Φ),Φ̃

.
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Abstract

For applications like the numerical solution of
physical equations a discretization scheme for
operators is necessary. Recently frames have
been used for such an operator representation.
In this paper, we do this with fusion frames.
We interpret the operator representation using
fusion frames as a generalization of fusion Gram
matrices. Also we study the (pseudo-)invertibility
of the U -cross Gram matrices, characterize fu-
sion orthonormal bases and fusion Riesz bases
by those properties and give formulas for the
(pesudo-)inverses. For more details see [2, 10].

Keywords: Fusion frames, Dual, U - fusion cross
Gram matrices, pseudo-inverses.

1 Introduction

For a numerical treatment of operator equations,
used for example for solving integral equations
in acoustics [7], the involved operators have to
be discretized to be handled numerically. Ap-
plying (Petrov-)Galerkin approach [5]. For an
operator O, the matrix M de�ned by Mk,l =
〈Oψl, φk〉 is called the matrix corresponding to
the operator O, or the system matrix. The stan-
dard way for the discretization of operators is
using bases, but recently the general theory for
frames has been developed. Frames were also
used in numerics (6), in particular in an adap-
tive approach (1). As the concept of domain
decomposition is a particularly relevant topic in
this �eld, the investigation of operators with fu-
sion frame is very important (9).

Let {Wi}i∈I be a family of closed subspaces
of H and {ωi}i∈I be a family of weights, i.e.
ωi > 0, i ∈ I. The sequence {(Wi, ωi)}i∈I is
called a fusion frame for H if there exist con-
stants 0 < AW ≤ BW <∞ such that

AW ‖f‖2 ≤
∑

i∈I
ω2
i ‖πWif‖2 ≤ BW ‖f‖2, (f ∈ H).

3This work was supported by FWF project Y 551-

N13.

The constants AW and BW are called fusion

frame bounds. If we have the upper bound,
we call {(Wi, ωi)}i∈I a Bessel fusion sequence.
A fusion frame {(Wi, ωi)}i∈I is said to be an
fusion orthonormal basis if H =

⊕
i∈IWi and a

fusion Riesz basis for H if there exist constants
0 < C ≤ D <∞ such that for each �nite subset
J ⊆ I

C
∑

j∈J
‖fj‖2 ≤ ‖

∑

j∈J
ωjfj‖2 ≤ D

∑

j∈J
‖fj‖2, (fj ∈Wj).

(1)
for a given fusion Riesz basisW = {(Wi, wi)}i∈I
denote by W ′ the 1-uniform family of subspaces
{(Wi, 1)}i∈I . Furthermore, the synthesis opera-

tor

TW : (
∑

i∈I
⊕
Wi)`2 → H for a Bessel fusion

sequence {(Wi, ωi)}i∈I is de�ned by

TW ({fi}i∈I) =
∑

i∈I
ωifi, for (fi)i∈I ∈

(∑

i∈I
⊕Wi

)

`2

.

The adjoint operator T ∗W : H → (
∑

i∈I
⊕
Wi)`2

which is called the analysis operator is given by

T ∗W f = {ωiπWif}i∈I , (f ∈ H).

Both are bounded by
√
BW . If {(Wi, ωi)}i∈I is

a fusion frame, the fusion frame operator SW :
H → H, which is de�ned by SW f = TWT

∗
W f =∑

i∈I ω
2
i πWif , is bounded (with bound BW ), in-

vertible and positive (3,8).
Every Bessel fusion sequence {(Vi, υi)}i∈I is

called a G�avruµa-dual of {(Wi, ωi)}i∈I , if

f =
∑

i∈I
ωiυiπViS

−1
W πWif, (f ∈ H).

The sequence of subspaces W̃ :=
{(
S−1W Wi, ωi

)}
i∈I

is also a fusion frame forH and a dual of {(Wi, ωi)}i∈I ,
called the canonical dual of W

2 Main Results

De�nition 1 LetW = {(Wi, ωi)}i∈I be a Bessel

fusion sequence for H and V = {(Vi, υi)}i∈I a
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fusion frame for H. For U ∈ B(H), the matrix

operator GU,W,V :
(∑

i∈I
⊕
Wi

)
`2
→
(∑

i∈I
⊕
Wi

)
`2

given by

GU,W,V = φWV T
∗
V UTW = {πWiS

−1
V T ∗V UTW }i∈I ,

is called the U -fusion cross Gram matrix. If

U = IH, it is called fusion cross Gram matrix

and denoted by GW,V . We use GW for GW,W ; the

so called fusion Gram matrix.

Theorem 2 Let W = {(Wi, ωi)}i∈I be a fu-

sion frame in H and U an invertible operator

in B(H). Then the following assertions hold.

(1) If W is a fusion orthonormal basis, then

the inverse of GU,W,W is also a Gram ma-

trix and G−1U,W,W = GU−1,W,W .

(2) If GU,W,W is invertible, then W is a fusion

Riesz basis and

G−1U,W,W = GS−1
W ′U

−1S−1
W ′ ,W,W

.

(3) If G
U,W̃ ,W

is invertible, then W is a fusion

Riesz basis and G−1
U,W̃ ,W

= G
U−1,W̃ ,W

.

(4) If G
U,W,W̃

is invertible, then W is a fusion

Riesz basis and

G−1
U,W,W̃

= G(OUSW ′ )−1,W,W ,

where O = TWφWW̃
T ∗
W̃
.

(5) If G
U,W̃ ,W̃

is invertible, then W is a fusion

Riesz basis and

G−1
U,W̃ ,W̃

= GS−1

W̃ ′
U−1S−1

W̃ ′
,W,W .

For a closed range operator U ∈ B(H1,H2),
the pseudo-inverse of U is the unique operator
U † ∈ B(H1,H2) satisfying that

N
(
U †
)
= R (U)⊥ , R

(
U †
)
= N (U)⊥ ,

and UU †U = U (4).

Theorem 3 Let W = {(Wi, ωi)}i∈I be a fusion

frame in H and U a closed range operator in

B(H), also let G
U,W̃ ,W

have closed range. Then

G†
U,W̃ ,W

= G
U†,W̃ ,W

if and only if S−1W πWi = π
W̃i

on R (U∗)∪ R (U).

De�nition 4 Let W = {(Wi, wi)}i∈I be a fu-

sion frame with bounds AW and BW , respec-

tively. The alternate fusion frame operator

LW : H → H is de�ned by

LW = TWφWWT
∗
W .

It follows that LW is bounded, positive, self-adjoint

and invertible operator.

Theorem 5 Let W = {(Wi, ωi)}i∈I be a fusion

frame in H and U ∈ B(H) be onto. If GU,W,W
is a closed range operator, then

(GU,W,W )† = GLWU†L−1
W ,W,W

if and only if

πWiS
−1
W πWi = πWiL

−1
W , (i ∈ I)

on R (U∗) ∪ R (U).
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Using B-spline frames to represent solutions of acoustics scattering problems
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Abstract

Frames have been used in signal processing for
some time now, however in other �elds of mathe-
matics and engineering they haven't found much
attention yet. In the talk we want to investigate
approximations of solutions of wave scattering
problems by Gabor frames, where B-splines are
used as generating windows. We will discuss
di�erent ways to determine the unknown ex-
pansion coe�cients and numerical examples are
presented showing the e�ciency of the di�erent
representation in terms of number of coe�cients
used versus approximation error.

Keywords: Frames, Helmholtz equation, ap-
proximation

1 Introduction

For simulating acoustic scattering problems �-
nite element (FEM) or boundary element (BEM)
methods have a long tradition. The application
of these methods range from calculating the ef-
�ciency of noise barriers to determining �lter
functions for 3D audio. Both FEM and BEM
depend on a discretization of the scatterer's ge-
ometry or in case of the BEM its surface, re-
spectively. For the BEM, it is, as a general rule,
recommended to use at least six elements per
wavelength (cf. [1]).

One way to deal with this frequency depen-
dence of the mesh is to use ansatz functions for
the unknown solution u(x) =

∑
i∈I uiφi(x) that

already contain oscillating components (cf. [2]).
Alternatively, we want to investigate the ap-
proximation properties of Gabor frames, i.e. a
family of functions that is generated by trans-
lating and modulating a given window function.

Compared to a basis, representations using
frames are in general not unique, on the other
hand, frames are more �exible and still can pro-
vide e�cient and stable representations.

In this manuscript we will only look at one-
dimensional functions, the extension to higher
dimensions is straightforward using tensor prod-
ucts of one-dimensional frames.

2 Frames

In a Hilbert space H a countable family of func-
tions {φi}i∈I is called frame if there exist con-
stants A,B > 0 such that

A||f ||2 ≤
∑

i∈I
|〈f, φi〉|2 ≤ B||f ||2,∀f ∈ H, (1)

where I ⊂ N is some countable index set and
〈f, g〉 denotes the scalar product in H. The val-
ues A and B are called lower and upper frame-
bound, respectively. If the frame bounds are
close to each other Eq. (1) ensures a stable re-
construction of every element of the Hilbert space
by the frame. It is known that for every frame
there exists at least one dual frame φ̃ such that

f =
∑

i∈I
〈f, φ̃i〉φi =

∑

i∈I
〈f, φi〉φ̃i.

In the Hilbert space of square integrable func-
tions L2(R) Gabor systems G(g, a, b) are collec-
tions of functions that are constructed by trans-
lating and modulating a given window function
g(x):

φm,n(x) = g(x− na)e2πimbx. (2)

It can be show (cf. [3]) that under certain con-
ditions on the window and on the parameters a
and b a Gabor system is a frame, additionally it
is known that some of the dual frames also can
be constructed by translation and modulation of
a window function, the so called dual window.

3 B-splines

In numerical and applied mathematics and es-
pecially in computer graphics cardinal B-splines
are often used for curve-�tting, representing sur-
faces, or approximating functions in general. The
B-splines of di�erent order can be constructed
by

N1(x) =

{
1, x ∈ [0, 1],
0, otherwise,

N`+1(x) = (N` ∗N1)(x) =

∫ 1

0
N`(x− t)dt,

where '*' denotes the convolution operator.
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The B-Splines N` are ` − 2 times continu-
ously di�erentiable, have compact support, are
linear independent, and the shifted versions of
a �xed order form a partition of unity. Espe-
cially the partition of unity and the compact
support make B-splines interesting generating
windows for Gabor frames (cf. [3] where sev-
eral theorems with respect to B-splines, Gabor
frames and their duals can be found).

4 Implementation

When using (Gabor) frames in connection with
BEM or FEM two points have to be addressed.
1) The restriction of the frames to a �nite in-
terval and 2) the calculation of the expansion
coe�cients. Since a frame may have many pos-
sible duals there are several ways for represent-
ing the target function. If the coe�cients are
calculated using a known dual frame, a numeri-
cal algorithm for the inner space vector product
needs to be implemented. Alternatively there is
also the possibility to determine the unknown
coe�cients by setting up a least squares prob-
lem

argminc||f(x)−
N∑

i=1

cigi(x)||2 (3)

that can be solved for example by a greedy al-
gorithm like the orthogonal matching pursuit
(OMP). Note, that solving Eq. 3 using the pseu-
doinverse is equivalent to the canonical dual win-
dow approach.

In general, Gabor frames are constructed for
the whole real line, whereas for BEM and FEM
the frames need to be restricted to one element.
Assuming periodicity of the solution may lead to
possible discontinuities at the element bound-
aries, thus it is advisable to extend the target
functions over the element to cover the support
of the dual frames needed for determining the
frame coe�cients or by using the least squares
approach.

5 Numerical Experiments

As an example we use the sound �eld on a sound
hard cylinder caused by a plane wave, which can
be reduced to a problem in 2D:

f(x) =
2

πkr

∞∑

n=0

εn(−i)(n−1)
cos(nϕ)

H ′n(kr)
,

where x = reiϕ, ε0 = 1, εn = 2, n > 0 and H ′n
is the derivative of the Hankel function of order
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Figure 1: Relative approximation error using
Gabor frames based on the B-spline N2(x).
The coe�cients are calculated using three dual
frames and the OMP algorithm (cf. [4]).

n. r = 1, k = 5 and the above sum is trun-
cated appropriately to achieve su�cient accu-
racy. ϕ is discretized in the interval [0, 2π] with
601 equidistant nodes and scaled to the inter-
val [0, 3] to avoid having to rescale the B-spline
window N2(x). The frame parameters are set
to a = 1 and b = 1

3 . In Fig. 1 the relative ap-
proximation error when using the 120 biggest
(in absolute value) coe�cients calculated with
either three types of dual frames or a modi�ed
OMP algorithm are depicted (for more details
refer to [4]). In general, using Eq. (3) in com-
bination with a modi�ed OMP yields the best
ratio between approximation error and number
of coe�cients used.
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Multilevel frames for solving high-dimensional partial differential equations
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Abstract

We consider the numerical solution of elliptic
problems on the tensor product of two physi-
cal domains as e.g. present in the approxima-
tion of the solution’s covariance of elliptic par-
tial differential equations with random input. In
order to approximate such problems in sparse
tensor product spaces, we use multilevel frames.
They are usually based on a geometrically con-
structed multilevel hierarchy, but can also be
constructed by means of the algebraic multigrid
method. Thus, we are able to apply sparse ap-
proximation techniques also to problems given
on complex geometries and for discretizations
arising from unstructured grids, which was not
feasible before. Numerical results show that our
algebraic construction exhibits the same conver-
gence behaviour as the geometric construction,
while being applicable even in black-box type
PDE solvers.
Keywords: sparse tensor product approxima-
tion, multilevel frames, algebraic multigrid

1 Introduction

The solution of elliptic problems on tensor prod-
ucts of a polygonally bounded domain Ω ⊂ Rd
with e.g. d = 2, 3 given by

(∆⊗∆)u = f on Ω× Ω,

u = 0 on ∂(Ω× Ω),
(1)

is an important high-dimensional problem. As
an example, this problem arises from the esti-
mation of the output covariance of an elliptic
partial differential equation with random input
data that is given on a domain Ω. The problem
becomes high-dimensional since the dimension-
ality of the elliptic problem on Ω is doubled. In
case of real-world problems in d = 3, we end up
solving a six-dimensional problem, which might
become prohibitively expensive.

2 Sparse tensor product spaces

There have been developments to overcome this
strong limitation. These developments are based

on the introduction of a geometrically construc-
ted multilevel frame to solve the elliptic problem
on Ω. Standard Galerkin discretizations of this
problem approximate the solution with respect
to a basis of a finite-dimensional trial and test
space VJ , which is connected to a triangulation
TJ of the domain Ω. A multilevel frame dis-
cretization uses more functions to construct the
trial and test space. In fact, it uses all basis
functions of a (nested) hierarchy of subspaces

V0 ⊂ V1 ⊂ · · · ⊂ VJ ⊂ H1
0 (Ω), (2)

which are associated to a (nested) geometric hi-
erarchy of triangulations T0, T1, . . . , TJ with an
increasing number of nodes |T0| < |T1| < · · · <
|TJ |. This set with many redundant basis func-
tions is no longer a basis for VJ , but a frame,
compare [1, 2].

The multilevel frame gives rise to a sparse
approximation with respect to the energy space
H1

0 (Ω)⊗H1
0 (Ω) of the tensor product type boun-

dary value problem (1). It has been shown that
the approximation in the sparse trial and test
space

̂VJ ⊗ VJ =
∑

0≤j+j′≤J
Vj ⊗ Vj′

instead of the full trial and test space

VJ ⊗ VJ =
∑

0≤j,j′≤J
Vj ⊗ Vj′

allows to solve the tensor product problem at
a computational complexity that stays essen-
tially (i.e. up to a poly-logarithmic factor) pro-
portional to the number of degrees of freedom
to discretize a function on the single domain Ω
with respect to the trial space

3 Algebraic multilevel frames

The currently available geometric construction
of the multilevel hierarchy imposes limitations
on the discretization for real-world problems.
First, the coarsest triangulation T0 in the geo-
metrical hierarchy of triangulations has to fully
represent the boundary of the geometry Ω. This
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Figure 1: Meshes on a circle (left) and a square with four holes (middle). The convergence with respect
to the level is plotted on the right.

either limits the types of geometry to consider
or the computational efficiency (in case even the
coarsest mesh has to be fine at the boundary).
Second, the use of a fully unstructured mesh TJ
becomes barely possible, since we are missing a
coarsening strategy for such a mesh.

To overcome the obstruction of geometrically
constructing multilevel sequences (2), their alge-
braic construction has been proposed in [4]. It
starts with the discretization of the problem

−∆u = f on Ω, u = 0 on ∂Ω

on the finest (potentially unstructured) mesh
TJ . The coarser spaces are then obtained by us-
ing algebraic coarsening known from the classi-
cal Ruge-Stüben algebraic multigrid (AMG) [5].
Thus, the classical multilevel discretizations for
elliptic partial differential equations are replaced
by a purely matrix-based construction.

4 Iterative solution

The discretization of the tensor product type
boundary value problem (1) with respect to the
multilevel frame discretization leads to a sys-
tem of linear equations, which has a huge ker-
nel. Nonetheless, all nonzero eigenvalues stay
constant independently of the mesh size. There-
fore, the numerical solution is order-optimal by
using an appropriate iterative solver.

As shown in [3], the multilevel frame dis-
cretization is equivalent to the sparse grid com-
bination technique. This fact enables a second
way of solving (1) with respect to the multilevel
frame. Instead of solving one, large system of
linear equations, one can also solve a couple of
small systems of linear equations and combine
their approximate solutions appropriately to get
the sparse multilevel frame representation.

5 Numerical illustration

In our numerical studies, we consider the solu-
tion of (1) with right-hand side f ≡ 1 on a disc
and on a square domain with holes. The un-
structured triangulation on level J = 5 is found
in Figure 1. In the right plot of this figure, we
compare the approximate solution in the sparse
tensor product space against the exact solution,
which can simply be computed by tensorizing
the numerical solution u ∈ H1

0 (Ω) of the Poisson
equation −∆u = 1 on Ω for the level J . Con-
vergence results for the choices J = 3, . . . , 8 are
given, showing the expected convergence rate
O(J4−J), which is indicated by the dashed line.
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Abstract

We present a hybrid shearlet-wavelet frame for
Sobolev spaces defined on bounded domains.
This representation system yields best N -term
approximation rates that are superior when
compared to pure wavelet frames for solutions
of elliptic partial differential equations (PDEs)
with right-hand sides (RHSs) that contain curvi-
linear singularities. It constitutes the starting
point for the development of an efficient, adap-
tive shearlet-based solver for the solution of such
problems.
Keywords: shearlets, wavelets, frames, ap-
proximation rates, PDEs, adaptivity

1 Motivation

In [1], the authors developed a numerical, adap-
tive wavelet-based solver for the solution of ellip-
tic PDEs with optimal convergence rates to so-
lutions with high Besov-regularity. However, for
solutions which cannot be adequately described
in terms of Besov regularity, the convergence
rates are suboptimal in general. As a special
case, consider the Poisson equation −∆u = f
on a bounded domain Ω ⊂ R2 with homoge-
neous boundary conditions such that f ∈ L2(Ω)
is a cartoon-like function (see [2]), i.e. a func-
tion which is in C2 apart from a C2-curvilinear
singularity. It has been shown in [3] that the
higher-order derivatives of u are cartoon-like
(see Figure 1).
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Figure 1: Left: u; Middle: ∂2

∂x21
u; Right: ∂2

∂x22
u.

2 Frame discretization of PDEs

In an abstract setting, consider a Hilbert space
H and an operator equation Lu = f, where

L : H → H∗ ∼= H is a linear, bounded, symmet-
ric, elliptic operator, f ∈ H∗ is the RHS and u ∈
H is the uniquely determined solution. Then,
given a frame Φ = (ϕi)i∈N for H, it is possible
to reformulate the operator equation Lu = f
as a discrete system of linear equations Lu = f ,
with L = T ∗ΦLTΦ, f = T ∗Φf, where T

∗
Φ, TΦ are the

analysis and synthesis operators of Φ, respec-
tively and u =

∑
i∈N uiϕi. In [5], an asymptot-

ically optimal, adaptive algorithm SOLVE has
been developed which under certain assump-
tions converges with the same rate to u as the
error of best N -term approximation rate of u
with respect to Φ, denoted by σN,Φ,H(u). Hence,
a sufficient prequisite towards the efficient so-
lution of PDEs with cartoon-like RHS is the
construction of a frame for the solution space
H1(Ω), which exhibits efficient best N -term ap-
proximation rates for functions whose higher-
order derivatives are cartoon-like. We will de-
scribe such a system in the next section.

3 Shearlet-wavelet frames for Sobolev
Spaces

A shearlet frame for L2(R2) is an anisotropic
multiscale system based on the parabolic scal-
ing and shearing (see [2] for further information
and Figure 2 for the induced frequency tiling)
of a few generator functions. It yields prov-
ably optimal best N -term approximation rates
for cartoon-like functions with respect to the L2-
norm not achievable by wavelet systems.

Figure 2: Anisotropic shearlet frequency tiling.
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The intuitive reason behind this observa-
tion is depicted in Figure 3: Shearlets are able
to capture a curvilinear singularity better than
wavelets due to their anisotropy.

Figure 3: Capturing of a curvilinear singu-
larity by left: isotropic wavelets, and right:
anisotropic shearlets.

To employ shearlets for the efficient so-
lution of PDEs, it is desirable to construct
a shearlet frame for the space H1(Ω) yield-
ing efficient approximation rates for functions
with cartoon-like derivatives and whose ele-
ments are boundary-adapted in order to incor-
porate boundary conditions given by the PDE.
However, there is no known construction of
boundary-adapted shearlet elements. A remedy
to overcome this drawback is the construction
of a hybrid system: It consists of compactly
supported shearlet elements to provide efficient
approximation rates, and boundary adapted
wavelets (see Figure 4). To be more precise,
the following holds:

Theorem 1 ( [2, 4] ) There exists a frame Φ
for H1(Ω) with dual frame Φd consisting of
shearlets fully supported in Ω as well as
boundary-adapted wavelets close to the bound-
ary of Ω such that σN,Φd,H1(Ω)(u) ∈ O(N−1) for
N → ∞ and for all u ∈ H1(Ω) with cartoon-
like higher-order derivatives. In particular, the
approximation rate provided by pure wavelet sys-
tems cannot be better than O(N−1/2−ε) for N →
∞ and all ε > 0.

Figure 4: Red: Compactly supported shearlets,
Green: Boundary adapted wavelets

.

4 Numerical examples

Having constructed a hybrid shearlet-wavelet
frame for H1(Ω) for Ω ⊂ R2, we conclude this
note with a numerical experiment implementing
a simulated version of SOLVE based on thresh-
olding for the solution of the Poisson equation
with cartoon-like RHS. We see in Figure 5, in
particular the right part, that after just a few
iterations we already obtain a reconstruction of
u which is close to the ground truth. This is due
to the ability of shearlets to capture the singular
behavior of the derivatives of u.
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Figure 5: Top: Reconstructed solutions; Mid-
dle: Errors of the reconstructions; Bottom: Ac-
tive shearlet elements.
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Quarkonial frames with compression properties — theory and numerical applications
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Abstract

We discuss the design and numerical applica-
tions of compressive quarkonial frames. Such
so-called quarklet systems are wavelet versions
of hp-finite element systems. Smooth functions
with local singularities can be approximated from
quarkonial systems at exponential rates. More-
over, rescaled quarklet systems are frames in
Lebesgue and negative-order Sobolev spaces, en-
abling their application in numerical solvers for
differential and singular integral equations, and
in anisotropic tensor product approximation.
Keywords: quarkonial frames, partition-of-unity
methods, operator compression, adaptivity

1 Atomic decompositions

The stable decomposition of function spaces by
atoms and molecules [12] is a well-studied field
of research with manifold applications, e.g., in
the convergence analysis of basis-oriented adap-
tive numerical schemes for local and nonlocal
operator equations, cf. [6,9] for recent overviews.

Atomic decompositions are given by a dic-
tionary which allows for equivalences between
smoothness norms and weighted sequence norms
of expansion coefficients. Prominent examples
are wavelet systems and multilevel h-finite el-
ement systems on a domain Ω ⊂ Rn, both of
which are designed via dilation and spatial trans-
lation of a finite set of basis functions. Such dic-
tionaries are stable in a range of Besov, Sobolev
and Triebel-Lizorkin spaces over Ω.

The approximation order of both wavelet and
h-finite element dictionaries is polynomial, in
the sense that under generic assumptions on the
approximand, the best N -term approximation
errors from wavelet or h-finite element dictio-
naries scale like N−s for some s > 0, N be-
ing the number of active basis functions. In the
last decades, intensive research on the conver-
gence properties of adaptive h-FEM and wavelet
methods for well-posed local and nonlocal oper-
ator equations has revealed that these very rates
s can also be realized in practice, most often at

a linear computational complexity [6, 9].

2 Quarkonial frames

In order to achieve superalgebraic or even expo-
nential approximation rates for piecewise smooth
approximands, the underlying dictionary has to
be enlarged appropriately. This idea has some
history in numerical analysis and involves hp-
finite element systems [2,7], the partition of unity
method [1] and related multiscale schemes [8],
and meshless methods. It is well-known that,
e.g., hp-adaptive finite element methods can in
principle achieve discretization errors that scale
like e−αNβ in N , with α, β > 0. Despite signif-
icant progress in the last years, however, a full
convergence analysis of hp-adaptive finite ele-
ment schemes is not yet available.

In [10], quarkonial decompositions of func-
tion spaces (“quarks” ↔ “finer than atoms”) have
been proposed to characterize spaces of smooth
functions over general domains. Quarkonial sys-
tems are constructed from a partition of unity
{φj,k}k of locally supported bump functions, cen-
tered at points xj,k in a cloud of meshsize hj ≈
2−j . j is the scale, while k navigates through
the point cloud at level j. A quarkonial system

Φ := {φp,j,k}p,j,k (1)

is achieved by adding a third degree of freedom
p standing for the degree of the polynomial part
of φp,j,k. If Ω = Rn, and if the point clouds stem
from dilation of a single lattice, the quarkonial
system can be produced via modulation φp(x) =
gp(x)φ(x) of a single bump function φ with an
enrichment function gp, and by subsequent dila-
tion and translation, e.g., φp,j,k(x) = φp(2

jx−k)
in a shift-invariant setting. Such quarkonial sys-
tems combine features of local refinement and
spectral approximation.

Under generic conditions, it was shown in
[11] that properly scaled quarkonial systems of
this type are frames in Besov-Sobolev spaces of
positive order, and the numerical stability could
be significantly improved by an alternative ap-
proach [5], relaxing the decay assumptions on
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the p-dependent scaling. The stability proper-
ties and the similarity to hp-finite element and
partition-of-unity dictionaries render quark sys-
tems appealing for numerical applications.

3 Compressive quarkonial frames

While such non-compressive quarkonial systems
can already be used in an adaptive numerical
scheme, just as an hp-finite element dictionary,
it is not immediately possible to work with such
systems in scenarios where the frame property in
Lebesgue and nonnegative-order Sobolev spaces
is essential, e.g., in anisotropic tensor product
approximation, in space-time variational meth-
ods for evolution problems, or in the numerical
treatment of singular integral equations.

By borrowing a leaf from the construction
principles of wavelet systems, it could be shown
in [4] how to augment a compactly supported,
biorthogonal spline wavelet basis on the real line
by polynomially enriched oscillatory functions,
so-called quarklets. The resulting compactly sup-
ported quarklet systems can be considered as an
hp versions of a wavelet system, and it has the
frame property in L2 and certain negative-order
Sobolev spaces. In [3], the quarklet construc-
tion from [4] could be adapted to the case of
bounded intervals, as well as to a class of poly-
hedral domains in Rn, by means of anisotropic
tensor product techniques.

What is more, the cancellation properties of
the individual quarklets enable operator com-
pression techniques, just as in the case of wavelet
frames [3]. In the adaptive numerical discretiza-
tion of elliptic boundary value problems, the at-
tainable convergence rates of adaptive quarklet
schemes are yet polynomial, but significantly
higher than those of adaptive wavelet schemes
that work with the embedded wavelet Riesz ba-
sis alone. The anisotropic structure of the over-
all quarklet frame can also be used to show that
the attainable convergence rates do not depend
on the spatial dimension.

Current research focuses on the question how
to ensure exponential convergence rates of the
numerical quarklet solver. In the talk, we will
report on the latest developments.
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Abstract

Adjoint method is a clever technique to tackle
acoustic propagation effects of broadband sources
in the presence of a flow and diffracting surfaces.
The theory is first presented and validated nu-
merically in considering the acoustic propaga-
tion of a source in a sheared and stratified flow.
Physical instability waves may occur for such
sheared flows, but corrupt the computed acous-
tic field and render it unusable. Some ad hoc
stable wave equation are given here by taking
benefit of the energy conservation property of
self-adjoint operators. In this study acoustic
predictions computed with these new stable prop-
agation operators and with some others from
literature are compared. Unexpectedly Pierce’s
wave equation [3] for potential acoustics is found
to be the best compromise. The question on
how to generalise acoustic potential theory for
non-potential mean-flows is also addressed. In
addition Euler Wave Equation (EWE), a new
wave equation almost equivalent to LEE is pre-
sented in this work.
Keywords: adjoint method, wave equation

1 Adjoint method in propagation prob-
lems

The methodology introduced by Tam and Au-
riault [4] to assess mean-flow refraction effects
for jet noise is synthesised and generalised here.
Consider a pressure field p and a source term s,
a linear acoustic propagation problem may be
described by an operator L0 so that the phys-
ical problem of interest - the direct problem -
may be written as:
{
L0 (p) = s in Ω
B0 (p) = 0 on ∂Ω

≡ (D)

Green-Lagrange’s identity relates the direct and
adjoint fields with help of a given scalar prod-
uct. That is the cornerstone of the methodol-
ogy: given a scalar product <,>, there exist a

unique operator L†0 and specific boundary con-
ditions B†0 such that for any field p†:

< p†,L0 (p) > = < L†0 (p†), p >

p† is referred to as the adjoint field. Introducing
the adjoint source s†, such that s† = L†0 (p†), the
adjoint problem associated with (D) reads:
{
L†0 (p†) = s† in Ω

B†0 (p†) = 0 on ∂Ω
≡ (A)

The adjoint Green function G†xm for a point
source in xm is now considered. Green-Lagrange’s
identity can be used to solve locally the direct
propagation problem,

p(xm) = < G†xm,tm , s >

2 Application to propagation over a par-
allel mean-flow

Acoustic propagation over parallel mean-flows is
governed by Lilley’s wave equation [2]:

L0 (p) = Du0

(
D2

u0
(p)−∇ · (a20∇p)

)

+2a20∇u0,z · ∇
(
∂p

∂z

)

The mean-flow is aligned with z, that is u0 =
u0,zz, and the material derivative is denoted by
Du0 = {∂/∂t+ u0 · ∇}. From Green-Lagrange’s
identity, using integration by parts, the adjoint
linear operator L†0 to Lilley’s equation can be
obtained for the classic scalar product,

L†0 (p†) = −Du0

(
D2

u0
(p†)−∇ · (a20∇p†)

)

+4a20∇u0,z · ∇
(
∂p†

∂z

)

+3a20∆u0,z
∂p†

∂z

+3
∂p†

∂z
∇a20 · ∇u0,z

The boundary conditions for the direct prob-
lem B0 correspond to free-field radiating condi-
tions while the boundary conditions to the ad-
joint problem B†0 are anti-radiating conditions.
The adjoint source can be seen as a sink.
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3 Numerical illustration

Lilley’s equation L0 and its adjoint operator L†0
have been implemented in a finite difference di-
rect frequency solver. Radiating boundary con-
ditions are achieved with PML. The acoustic
propagation of a source in a mean sheared flow is
computed [1], but the frequency is chosen so not
to trigger instability waves. The direct pressure
field p is shown in figure 1.
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Figure 1: Source and fluctuating pressure p.
Dotted and dashed lines represent the maximal
shear position and the approximative width σ
of the Gaussian mean flow considered.

Adjoint Green functions G†xm are computed for
a sample of xm along the line x2/σ = 7.25 as
illustrated in figure 2.
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Figure 2: Sample of 17 adjoint Green functions.

p(xm) is rebuilt at these locations. A compari-
son between the direct problem and the recon-
structed field is finally plotted in figure 3.
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Figure 3: Validation along x2/σ = 7.25. Refer-
ence (-) adjoint method (+). Re(p), Im(p).

4 Stable operators

For the adjoint approach as for the direct method
there is a need of stable accurate wave equations
which do not describe the physical acoustic-vortical
coupling. Starting from the LEE for a paral-
lel mean-flow, the Euler Wave Equation (EWE)
can be obtained for the fluctuating velocity u:

E0 (u) = D2
u0

(u) +
[
(∇u0) + (∇u0)

T
]
·Du0(u)

+(∇u0)
T · (∇u0) · u− a20∇(∇ · u)

This new wave equation, equivalent to Lilley’s
one may present some interest in analytical model
developments. Assuming a potential description
of the fluctuations, ρ0u = ∇Φ, the following
wave equation can be derived:

ρ0 E0
(∇Φ

ρ0

)
= ∇

[
D2

u0
(Φ)−∇ · (a20∇Φ)

]

+(∇× u0)×
[
∇(Du0(Φ))−

[
(∇u0) + (∇u0)

T
]
· ∇Φ

]

From the latter, it appears that Pierce’s wave
equation [3],

P0 (Φ) = D2
u0

(Φ)−∇ · (a20∇Φ)

is not only exact in the high-frequency limit, but
also stands for propagation in the presence of a
potential mean flow.
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Abstrat

This work deals with numerial predition of
noise produed by interation of a low Mah
number �ow with �xed obstales inserted in a
dut. The omputation of the �ow-generated
noise is aomplished following a hybrid approah.
In a �rst step, a Large Eddy Simulation for in-
ompressible �ows is performed in order to ob-
tain wall pressure �utuations. An integral for-
mulation for the pressure orretion term taking
into aount ompressibility e�ets is presented.
Comparisons with experimental data show good
agreement and on�rm the interest for the pro-
posed formulation.

Keywords: Low Mah number internal �ow
noise, Lighthill's analogy, integral equation.

1 Introdution

The predition of �ow noise in duts is essen-
tial for noise ontrol in industrial duts, suh as
HVAC or pipelines. The presene of obstales
with a low Mah number �ow will result in un-
steady aerodynami �utuations whih generate
sound waves propagating along the dut. These
an be onstritions (ori�es, diaphragms) or
other obstales (�ap, splitter...). The numerial
approah presented in this work permits to pre-
dit the radiated aousti power in an e�ient
manner as it only requires the disretization of
the surfae of the �uid domain whih inludes
the dut wall and the obstale.

2 Integral form of Lighthill's equation

In the frequeny domain, Lighthill's analogy an
take the form of an inhomogeneous wave equa-
tion for the pressure whih relates the noise gen-
erated by a turbulent �ow to the noise emitted
by quadrupoles of strength Tij per unit volume
in a medium at rest:

�

Δ + k2
�

p = q with q = −

∂2Tij

∂xi∂xj
. (1)

The unknown pressure p omprises both the hy-
drodynami pressure �utuations in the turbu-

lent �ow and the sought-after propagating pres-
sure waves whih are dominant outside the soure
region. In an isentropi low Mah number �ow,
Lighthill's stress tensor beomes Tij ≃ ρ0uiuj −

τij whih an inompressible-�ow simulation ap-
proximates adequately and, within these assump-
tions, the inompressible �ow pressure p0 is known
to obey the Poisson's equation Δp0 = q.

We are interested in solving (1) in a bounded
domain Ω with rigid walls terminated by open-
ings Γ whih at as semi-in�nite waveguides.
In these regions, it is assumed that the soure
term q is negligible so the aousti pressure p
an be desribed as outgoing waves and ∂np =
T (p) where n is the outward unit normal and T
stands for the Dirihlet-to-Neumann map. So-
lution of (1) must satisfy the integral equation

SΩ[p](x) =

�

Ω

q GdΩy (2)

where SΩ[p] is the sattering operator for the
open domain Ω

SΩ[p](x) = C(x)p(x) −

�

∂Ω

p ∂nGdΓy

+

�

Γ

GT (p) dΓy. (3)

where G refers to the free-�eld Green's funtion,
and ∂Ω delimits the volume of interest Ω. The
literature mentions several di�ulties linked to
the volume integral alulation, suh as numeri-
al errors of soures estimation and memory re-
quirement (see [1℄ and referenes therein). In or-
der to ease the omputation of the volume inte-
gral, the integral equation an be modi�ed in or-
der to inlude the inompressible-�ow pressure,
this gives the alternative form for the pressure
orretion

SΩ[pc](x) ≈

�

∂Ω

p0 ∂n(G − G0) dΓy

+

�

Γ

[G0∂np0 − GT (p0)] dΓy

where pc = p − p0. The volume integral

Π =

�

Ω

q (G − G0) dΩy
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an be seen as the ompressible part of the ini-
dent �eld from quadrupoles and is intentionally
omitted in the right-hand side. It is found in [2℄
that Π negligible for the ase of a non-ompat
wing in an unbounded domain as a result of the
proximity of the main soures to the trailing
edge. The fat that the re�eted part of the
inident wave�eld aounts for most of the ra-
diated power is disussed in detail in Refs. [3,4℄

3 Results for a �ap inserted in a straight

dut

Figure 1 shows the omputational domain for
the �ow simulation. The �ap is made with a 8
mm thikness retangular plate of dut setion
dimensions (20 x 10 m2) inlined 30 degrees
about the dut axis. Meshes are both built with
approximately 9 millions hexahedral ells with
re�nement boxes around the obstale, espeially
near edges where ells size reah 0.5 mm.

Figure 1: Computational domain

The �ow simulation is arried out on 160
CPUs with the �nite volume ommerial soft-
ware STAR-CCM+. A RANS alulation is �rst
performed and gives the initial onditions to
the LES. The averaged veloity over the inlet
ross-setion is 4.6 m/s. Simulations are arried
out during a physial time of 0.3125 s with a
time step δt = 10−5 s. Figure 2 illustrate the
Lighthill's stress tensor on the midplane at 200
and 2000 Hz. It permits to identify the loa-
tion of the main noise soures. Here, only the
longitudinal omponent T33 of Lighthill's stress
tensor is shown as it dominates over the other
terms. Figure 3 shows the alulated as well
as the measured total sound power radiated up-
stream and downstream. Results math fairly
well with experimental data (obtained from our
aeraoustis benh), exept near ut-o�, and this
on�rms the interest for the proposed formula-
tion.
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Wave interaction with an infinite cascade of non-overlapping blades
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Abstract

We consider the acoustic scattering problem on
an infinite cascade of finite-length blades. This
problem has its origins as a model for the com-
ponents in turbofan engines and is of correspond-
ingly wide interest. Analytical studies of the
problem, however, have only been successful thus
far in the case of overlapping blades. We present
the first analytical solution in the case of non-
overlapping blades, which is found to be valid for
an arbitrary choice of blade spacing. This solu-
tion exploits the Wiener-Hopf technique and is
based on the use of a novel additive splitting in
a system of coupled scalar Wiener-Hopf equa-
tions. The solution allows us to understand the
far-field behaviour of scattered acoustic waves,
as well as the lift exerted on the blades by vortex
waves that are incident on the structure.
Keywords: acoustics, Wiener-Hopf method,
analytical methods, scattering

1 Introduction

We consider an infinite cascade of blades of zero
thickness and camber as sketched in figure 1,
which provides a model for sound propagation
through the fan components of turbofan engines.
One of the earliest formulations of this prob-
lem was given by [1], and analytical solutions
were first studied in [2], then later using asymp-
totic kernel factorisations and incident harmonic
gusts in [3], and the setting was extended to in-
clude spanwise waves in a three-dimensional set-
ting in [4]. All of these studies apply theWiener-
Hopf method in a coupled scalar formulation
and specifically rely on overlapping blades.

Similar to previous work, our method builds
on the idea of reformulating a periodic three-
part boundary value problem (BVP) as a system
of coupled two-part BVPs on a strip – an ap-
proach related to Schwarzschild’s method. This
facilitates the use of classical Wiener-Hopf tech-
niques for scalar equations. A careful analysis
of the Wiener-Hopf system shows that it is pos-
sible to apply an additive splitting that is valid
for arbitrary blade spacing, and this allows the

analytical reduction to an infinite algebraic sys-
tem. We demonstrate that this method of solu-
tion applies to multiple types of incident fields
and that we can use the finite section method
to evaluate solutions numerically. This allows
for the study of physical observables, including
the scattered radiation from an incident acous-
tic wave and the blade lift generated by incident
vortical gusts.

2 Model problem

Meanflow M y

x

α0

s

1
d

Figure 1: A cascade of blades with mean flow.

Non-dimensionalising all physical variables
allows us to consider blades of length 1, with
blade overlap d (non-overlapping cascades have
d ≥ 1). Irrotational perturbations to the mean
flow are then given in terms of a velocity poten-
tial φ, which satisfies

β2
∂2φ

∂x2
+
∂2φ

∂y2
− 2iM2Ω

∂φ

∂x
+M2Ω2φ = 0, (1)

on (x, y) ∈ R2 \ {(nd+ t, ns) | t ∈ [0, 1], n ∈ Z}.
Here β2 = 1 −M2, M is the Mach number of
the flow, and Ω is the reduced frequency. For
an incident harmonic wave (e.g. gust, or acous-
tic waves) the upwash on the nth blade of the
cascade is

Vg exp (iΩt− iK1x+ inσ) ,

where σ describes its change of phase between
adjacent blades, K1 is the first component of the
incident wave vector and Vg is a constant de-
scribing the incident amplitude. Additionally φ
must satisfy a Neumann boundary condition on
the blades, together with continuity of pressure
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p away from the blades and a radiation condition
(we assume that the incident wave is damped by
a small Im Ω < 0 and the radiation condition is
φ(·, y) ∈ L1(R) ∩ L2(R) for each y), which alto-
gether result in a periodic three-part BVP.

3 Method of solution

It is possible to distribute these boundary con-
ditions onto φ1 + φ2 + φ3 = φ, such that each
φj , j = 1, 2, 3, satisfies (1) and a two-part bound-
ary condition on the strip 0 ≤ y ≤ s. Fourier
transforming those allows us to arrive at the fol-
lowing system of scalar Wiener-Hopf equations
relating the pressure jumps [pj ] and φj :
[
P+
1

]
(α)

κ(α)
=
∂Φ−

1

∂y
(α, 0) − iVg

α−K1
,

∂Φ̃+
2

∂y
(α, 0) =

1

κ(α)

([
P̃−
2

]
(α) −

[
P̃+
1

]
(α) −

[
P̃+
3

]
(α)
)
,

∂Φ−
3

∂y
(α, 0) =

1

κ(α)

([
P+
3

]
(α) −

[
P−
2

]
(α)
)
.

Here the capitals [Pj ]
± and Φ±

j denote half-line
Fourier transforms and κ is determined by the
geometry of the cascade. Via an additive Cauchy-
type splitting and careful analysis it is possible
to reduce the problem to an infinite algebraic
system. Approximate solutions to this system
and hence to the original scattering problem can
be found using the finite section method.

4 Numerical results

We can use these approximate solutions to un-
derstand the effect of mean-flow and cascade
geometry on the scattered potential. Figure 2
shows the total lift exerted by an incident gust
on each blade in the cascade for a range of mean-
flow speeds – in this example d < 1. The so-
lution is found to be in very good agreement
with previous work by [3]. In figure 3 we see
the effect of changing the blade spacing (far into
the non-overlapping regime) on the transmission
amplitude of the first cut-on radiation mode.
Each jump in the figure corresponds to the point
where a new mode begins to propagate (i.e. be-
comes cut-on). Thus larger gaps make the cas-
cade more permeable and allow for a greater
number of propagating modes.

5 Concluding remarks

Our solution also generalises naturally to the
three-dimensional setting, and the correspond-
ing analysis and further numerical results will
be presented at the conference.

M = 0.20

M = 0.70

M = 0.72

M = 0.90

Figure 2: Total lift L for M ∈ [0.2, 0.9].

AAK
Radiation

mode cut-on

HHY

Duct mode
cut-on

Figure 3: Transmission amplitude for s/d fixed.
The jumps correspond to new modes becoming
cut-on. The dashed lines represent the number
of cut-on radiation and duct modes.
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Abstract

The present work concerns the numerical predic-
tion of jet-wing interaction noise for the geom-
etry specified in the European project JERON-
IMO, which consists of a Ultra High Bypass
Ratio (UHBR) nozzle mounted in close proxim-
ity to a swept wing with deployed flap (αF =
14○). The geometrical setup provides a realis-
tic scenario for a modern aircraft at 1:10 model
scale but slightly reduced complexity neglecting
details such as pylon, struts, and slat.

Results are obtained using a newly extended
block structured mesh that resolves the high-lift
wing with the UHBR nozzle and applying the
latest version of the Forced Eddy Simulation ap-
proach based on a combined active/dissipative
subgrid scale model. In agreement with exper-
iment, the jet flow interacts with the trailing
edge and generates additional installation noise,
which predominates the low frequency part of
the acoustic spectrum.
Keywords: Computational Aeroacoustics, LES,
DNC, FRPM, FES, Jet Noise, Jet-Airframe In-
teraction

1 Methodology

A Direct Noise Computation (DNC) is carried
out with DLR’s 4th order structured multi-block
code PIANO solving the compressible Navier-
Stokes equations with Non-Linear Disturbance
Equations (NLDE). With the triple decomposi-
tion of the flow variables

U = U0 +U ′ +U ′′, (1)

into U0 for the mean part, U ′ for the resolved
fluctuations, and U ′′ for the non-resolved sub-
grid scale fluctuations, the Navier-Stokes equa-
tions in the applied disturbance form read

∂U ′
∂t
+N (U0 +U ′) = S, (2)

where N represents the Navier-Stokes operator
and the right-hand side source term contains the

subgrid scale contributions, S = (0,f sgs, θsgs)T ,
e.g. refer to the discussion in [1]. The back-
ground mean-flow part is provided by a precur-
sor RANS simulation of the envisaged flow prob-
lem. The sum of the resolved fluctuating part
and the mean-flow part provides the resolved
turbulent scales over the NLDE zone (that might
represent a sub-zone of RANS) and as such alto-
gether realizes a zonal RANS/LES method [3].

In the Forced Eddy Simulation (FES) ap-
proach [2,4], a combined dissipative/active sub-
grid scale model replaces the standard purely
dissipative LES subgrid scale model. The active
part provides a model for the turbulence pro-
duction by the non-resolved scales, which repre-
sents an important physical aspect of the sub-
grid scales, especially on relatively coarse meshes.
Chances are that a subgrid scale model with
extended physics might help to lower general
LES resolution requirements. Furthermore, the
transition to fully developed turbulence is en-
forced thus avoiding grey areas. The active part
of the model is provided by a stochastic forc-
ing method based on the Fast Random Particle-
Mesh Method (FRPM). The applied vector force
model reads

f sgs = −∇ × [ρνr (ω′ −ωf)] /ρ , (3)

Eq. (3) consists of a combined dissipiation and
production term, where ρ = ρ0 + ρ′ is the re-
solved density, νr is the residual eddy viscosity,
ω′ are the resolved vorticity fluctuations and ωf

represents the stochastic forcing [2, 4].

2 Results

The resulting turbulent flow distribution of this
computation is illustrated in Fig. 1 with the aid
of Q-criterion. It is defined as

Q = 1

2
∣∣Ω∣∣2 − ∣∣S∣∣2 (4)

which describes the imbalance between the vor-
ticity and strain rate magnitude.
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Figure 1: Q-criterion of JERONIMO configura-
tion computed with Forced Eddy Simulation

Fig. 2 shows the corresponding fluctuating
part of the pressure field. The plot includes
both, acoustical waves as well as non-acoustical
hydrodynamic fluctuations. Despite the hydro-
dynamic pressure fluctutations are not directly
contributing to the far-field noise radiation, it is
crucial to reproduce correctly these structures
beneath the wing. The driving mechanism for
the circular wave radiation as observable in Fig. 2
is the passing-by of coherent hydrodynamic struc-
tures over the flap trailing edge and thus the
generation of a dipole source with orthogonal
orientation to the flap cord.

Figure 2: Distribution of non-dimensional pres-
sure fluctuations p′ = (ptot − p0)/(ρ∞c2∞) in the
x-z-plane on jet axis

Fig. 3 demonstrates a quantitative evalua-
tion of FES computation with the comparison
of power spectral density to the measurement of
the same setup. Two different microphone loca-
tions are considered for this comparison, i.e. one
above and one below the wing at a polar angle of
θ = 90○ with the origin at the bypass nozzle exit
on jet axis. A second measurement of isolated
nozzle is also included in this plot for evaluation
of noise increase from the installation with the
wing. The numerical prediction slightly overes-

timates the peak value and frequency with ap-
prox. 1.2kHz while the measurement yields the
maximum around 0.9kHz. In terms of maxi-
mum frequency resolution with approx. 3kHz,
the range of installation noise is well captured.
The noise contribution above this frequency can
be rather attributed to jet mixing noise, which
is partly shielded to the upper side and reflected
to the bottom side§.

Figure 3: Comparison of power spectral density
between measurement and FES computation at
1m distance and a polar ange θ = 90○ with (tri-
angle symbol) above and (square symbol) below
the wing geometry; (circle symbol) represents
the isolated nozzle as reference without instal-
lation noise contribution
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Abstract

This work deals with the numerical calculation
of aeroacoustic excitations to estimate the wind
noise entrainment into a passenger car. Based
on in-/compressible detached and large eddy sim-
ulations with the commercial CFD code Star-

CCM+ [1], direct and hybrid computational aero-
acoustic methods are investigated and validated.
Beside classical side mirror noise, with its broad-
band noise character, more challenging applica-
tions like gape noise and aeroacoustic feedback
phenomena are focused.

Keywords: computational aeroacoustics, di-
rect noise calculation, aeroacoustic feedback

1 Introduction

Wind noise is becoming increasingly important
for automotive development due to signi�cant
reductions in road and engine noise. For many
vehicles, wind noise is the dominant contribu-
tor to interior noise at higher vehicle speeds.
Beside the typical broadband noise character of
wind noise, tonal noise phenomena like resonant
gap noise and aeroacoustic feedback are more
critical. These narrow band noise components
can be a lot more disturbing independent of the
overall interior noise quality of the vehicle.
Increases in computational resources have made
it feasible to implement di�erent direct and hy-
brid computational aeroacoustic (CAA) strate-
gies using a variety of numerical approaches, be-
side the original integral methods.

2 Methods

A direct noise calculation (DNC) uses the com-
pressible Navier-Stokes equations to solve the
hydrodynamic and acoustic �eld at once. There-
fore, e�ects of both physical �elds are considered
on each other. Unfortunately, the bene�t of a di-
rect approach and its natural behavior is faced
with several challenges. In order to avoid the
di�culties associated with a direct noise calcu-
lation (e.g. disparity of scales, accurate numer-
ical methods, disturbances and acoustic re�ec-
tions at boundary conditions and mesh transi-

tions, hydrodynamic masking of acoustic near
�eld content), it is useful to instead describe
the contributions to hydrodynamic and acoustic
surface pressures separately by using an acous-
tic analogy. Due to this separation no backward
coupling of the acoustics to the �ow �eld is con-
sidered, which might be for instance necessary
to capture resonant bu�eting phenomena, but is
negligible for broadband side mirror noise.
The hybrid computational aeroacoustic approach
used in the following studies is based on incom-
pressible large and detached eddy simulations,
meaning the solved unsteady pressure �uctua-
tions contain no acoustic information. Start-
ing from the APE-2 equation set [2], assuming
an incompressible �ow and neglecting the minor
source term of mean vorticity - acoustic interac-
tion, one can derive a scalar wave equation for
the acoustic pressure without mean convection
and refraction e�ects [3]:

1

c2
∂2pa

∂t2
−∇2pa = − 1

c2
∂2pink

∂t2
(1)

Independent of the used CAA method the cor-
rect �ow �eld has to be determined �rst. As
acoustics is of transient nature, the challenge is
about correct and appropriate turbulence mod-
elling and one has to �nd the best suitable CFD
method for each application.

3 Side mirror noise (broadband)

For classical side mirror noise it can be assumed
that the hydrodynamic �ow �eld is independent
of any resulting acoustics and a separate calcu-
lation of both is applicable. This also allows
a di�erentiated analysis of both physical excita-
tions and their contribution to the interior noise
level [4,5], which is not straightforward in wind
tunnel measurements.
By using a detached eddy simulation (DES) the
advantages of a large eddy simulation (LES) and
an unsteady Reynolds Averaged Navier-Stokes
simulation (URANS) are combined. Within the
LES region, which requires a highly resolved
mesh, the turbulent �ow structures and acoustic
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source mechanisms can be captured accurately.
The unsteady RANS part in coarse regions and
the inner boundary layer reduces the computa-
tional e�ort and enables the usage for larger in-
dustrial applications.

4 Gap noise

This works �ne as long as the aeroacoustic rel-
evant �ow mechanisms are dominated by fully
turbulent separated �ow topologies, hence, re-
solved by DES and not modelled. Whenever
upstream turbulence information for the aero-
acoustic source mechanism is necessary, both,
DES and LES, struggle due to missing unsteady
in�ow turbulence information. Or it would be
computationally too expensive by resolving the
entire boundary layer in case of a LES.
To overcome this, the turbulent boundary �uc-
tuations, which drive the noise mechanism in
case of a rear door gap, are ampli�ed by aniso-
tropic linear forcing [6]. The gap noise simula-
tion, independent of the used CAA method, is
based on a two-step approach: a steady RANS
simulation based on an elliptic-blending Reynolds
stress model of the entire setup with a subse-
quent LES of a small region around the gap.
Here, anisotropic linear forcing close to the in-
let of the LES region introduces necessary tur-
bulent boundary layer �uctuations [7].
Comparison of di�erent CAAmethods show that
a direct noise computation is able to consistently
reproduce the experimental results, while simu-
lations based on the acoustic wave equation can-
not predict the varying excitation strength of
the gap's Helmholtz frequency. This indicates
that �ow-acoustic interaction above the gap's
opening leads to acoustic dissipation which is
not considered in the current formulation of the
wave equation.

5 Side mirror noise (narrow band)

Whistling sounds usually occur by �ow over sharp
edges and resonant gaps, but can also be caused
by the feedback of sound waves with laminar
boundary layers or separation bubbles and the
resulting frequency-selective growth of bound-
ary layer instabilities. Such aeroacoustic feed-
back can e.g. occur at the side mirror of a vehi-
cle [8] and one compellingly needs the coupling
of acoustic and �ow �eld. A compressible LES
is in principle suitable but one has to take care
of any numerical artifacts which can disturb the

entire acoustic �eld. The provided compressible
simulations are using non-re�ecting boundary
conditions in combination with a sponge zone
approach to reduce hydrodynamic �uctuations
a prior to the non-re�ective acoustic boundary
conditions.
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Abstract

Using the Direct Numerical Simulation (DNS)
of the Navier Stokes equations, we analyze the
dynamics of the interface between air and water
when they are driven by opposite pressure gra-
dients (countercurrent configuration). At each
time step, the physical domain is transformed
into a rectangular domain (using a nonorthogo-
nal transformation) where Continuity and Navier-
Stokes equations are solved using a pseudospec-
tral method. The problem is described by the
Reynolds number (Reτ ), the Weber number (We),
and the Froude number (Fr). Keeping Reτ con-
stant and varying We and Fr, we show that, in
the initial stages of the wave generation process,
the amplitude of the interface elevation grows
in time as t2/5. At steady state, our data are in
good agreement with the prediction of the Wave
Turbulence Theory.
Keywords: Wave generation, Turbulence, DNS

1 Introduction

Interfacial waves at the air/water interface inter-
act with turbulence modifying mass, momentum
and energy transfer rates between the phases.
These processes are crucial in many industrial
applications, including condensers/evaporators
and heat exchangers, where air and water usu-
ally flow countercurrent to promote interfacial
transfer [1]. In such instances, predicting the
evolution of the interface deformation accord-
ing to flow conditions is essential since inter-
face transfer mechanisms depend on magnitude
and structure of interface deformation. How-
ever, mechanisms controlling interfacial waves
generation and growth in air/water flow sys-
tems are not yet clear and still require inves-
tigation. Experimental measurements of turbu-
lence/interface interactions occurring at the tiny
scale of the near-interface region are extremely
challenging , and progresses in this direction
have been observed only recently [2]. Obtaining
a description of the flow field above and below
the interface is still an open issue using exper-

imental techniques. Direct Numerical Simula-
tion (DNS) can help providing at any given time
the entire velocity/pressure fields as well as the
interface deformation, ensuring a level of detail
sufficient to characterize the phenomena occur-
ring in the proximity of the interface (where ex-
perimental measurements are difficult). For this
reason, we decided to perform DNS to analyze
the process of wave generation and growth in
a countercurrent air/water turbulent flow. We
let the air/water interface evolve starting from
flat interface conditions, and we focus in partic-
ular on the transient behavior of the interface
dynamics, deriving a simplified model capable
of predicting the initial growth of the surface
elevation.

2 Governing equation and numerical mod-
elling

We consider a turbulent air-water flow. The
reference geometry consists of two different do-
mains (one for air and one for water) separated
by a deformable interface. The origin of the co-
ordinate system is located at the center of each
domain, and the x−, y− and z−axes point in
the streamwise, spanwise and interface normal
direction. Air and water, which are considered
incompressible and Newtonian, are driven by an
imposed pressure gradient and flow in opposite
directions. We consider a Cartesian coordinate
system where air is placed above water. The di-
mensionless continuity and Navier-Stokes equa-
tions are:

∇ · u = 0, (1)

∂u

∂t
+ u · ∇u = −∇p+ 1

Reτ
∇2u, (2)

where u is the velocity vector and p is pressure.
Variables are made dimensionless using the half
depth of each subdomain h, the thermophysi-
cal properties of each phase (the density ρ and
the kinematic viscosity ν) and the correspond-
ing shear velocity uτ =

√
τint/ρ (τint being the

shear stress at the interface). Free–slip bound-
ary conditions for the velocity field and zero-
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gradient conditions for the pressure field are em-
ployed at the outer boundaries for both gas and
liquid side. Periodic boundary conditions are
employed in the streamwise and spanwise di-
rections. At the interface, air and water are
coupled by the continuity of the velocity and
of the normal/shear components of the stress
tensor (dynamic boundary conditions). The di-
mensionless numbers that describe the problem
are the Weber, We = ρLhu

2
τL/γ, Froude, Fr =

ρLu
2
τL/(gh(ρL−ρG)) and ReynoldsReτ = uτG2h/νG

(but also Reτ = uτL2h/νL) numbers : Note that
the subscripts G and L are for gas (air) and
liquid (water) and γ is the surface tension (uτ
being evaluated at the beginning of the simula-
tion). The kinematic boundary condition for the
interface is prescribed using an advection equa-
tion for the vertical elevation of the interface
(boundary-fitted approach): At each time step,
the distorted physical domain is transformed onto
a Cartesian domain where governing equations
are solved using a pseudospectral technique which
employs Fourier series in the homogeneous di-
rections (x and y) and Chebichev polynomials in
the interface-normal direction (z). Time march-
ing is realized by a two-stage fractional step
splitting method [3]. We run three different
simulations, each characterized by a specific set
of dimensionless numbers and corresponding to
a specific choice of the domain height h (h =
0.045 m for S1, h = 0.05 m for S2 and h =
0.06 m for S3).

3 Results

The dynamics of the deformable interface sep-
arating air and water currents is governed by
the interaction between external forcing (pres-
sure/velocity fluctuations and large scale coher-
ent structures) and restoring forces (surface ten-
sion and gravity). The interface dynamics is
strongly time-dependent and can support the
propagation of waves with different amplitudes
and wavelengths. To characterize the time-behavior
of the interface deformation, we computed the
root mean square (rms) of the interface ampli-
tude in time, ηrms(t) = 〈η(t)2〉1/2, where brack-
ets 〈·〉 implies averaging in space. Results are
shown in Fig. 1. We first focus on the initial
stage up to t ' 6 s; in this stage, the trend of
the growth of ηrms(t) seems to be independent
of the physical parameters of the simulations. A
simple phenomenological model of the wave gen-
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Figure 1: Time behavior of the root mean
square (rms) of the interface amplitude, ηrms =
〈η(t)2〉1/2, for simulation with

√
Fr/We = 2.03

(simulation S1, red line),
√
Fr/We = 1.9 (sim-

ulation S2, blue line) and
√
Fr/We = 1.4 (sim-

ulation S3, cyan line). The theoretical scaling
law predicted by the simplified physical model
proposed in the present study (thin line) is also
shown.

eration during this initial stage gives η ∝ t2/5, a
behavior that seems in good agreement with the
numerical results and indicates that the process
is dominated by capillarity.

4 References

References

[1] Bartrand, T. A., Farouk, B., & Haas, C. N.,
“Countercurrent gas/liquid flow and mix-
ing: Implications for water disinfection,”
Int. J. Multiphase Flow, 35, 171 (2009).

[2] Berhanu, M. & Falcon, E., “Space-Time-
Resolved Capillary Wave Turbulence,”
Phys. Rev. E, 87, 033003 (2013).

[3] Fulgosi, M., Lakehal, D., Banerjee, S. &
De Angelis, V., “Direct numerical simula-
tion of turbulence in a sheared air-water
flow with a deformable interface,” J. Fluid
Mech., 482, 319 (2003).

Monday, 16:30, GM3 Vortmann, Building BA,



150 Minisymposia

Aeroacoustic formulation based on compressible flow data applying Helmholtz’s
decomposition

Stefan Schoder1,∗, Klaus Roppert1, Manfred Kaltenbacher1
1Institute of Mechanics and Mechatronics, TU Wien, Vienna, Austria

∗Email: stefan.schoder@tuwien.ac.at

Abstract

Aeroacoustic analogies, in combination with a
hybrid approach, represent a computationally
efficient way to predict sound radiation. The
classical hybrid approach, of first performing an
incompressible flow computation, evaluate the
acoustic sources and finally compute the acous-
tic field does not consider any feedback of the
acoustic field on the flow. Therefore, we propose
the following adapted approach: (1) Perform
a compressible flow simulation on a restricted
domain, which incorporates two-way coupling
of flow and acoustics; (2) Filter the flow data
by Helmholtz’s decomposition, such that we ob-
tain a pure non-radiating field, which the acous-
tic sources are computed with; (3) Perform the
acoustic propagation computation. In this work,
we present the theoretical fundamentals of this
adapted hybrid approach and in particular Helm-
holtz’s decomposition of the flow data using the
finite element method.
Keywords: Aeroacoustic, CFD, Helmholtz de-
composition, FEM

Introduction

A general aeroacoustic analogy, in combination
with a hybrid approach, assumes a causal for-
ward coupling of the forcing (obtained by an in-
dependent flow simulation) on fluctuating quan-
tities, e.g. the fluctuating pressure p′. The na-
ture of flow and acoustic fluctuations allows to
speak of the acoustic pressure pa at large dis-
tances from the turbulent region. Thereby, the
differential equation of an acoustic analogy com-
poses a hyperbolic left hand side (e.g. wave op-
erator �) and a generic right hand side RHS(?)

�p′ = RHS(p,u, ρ, ...) . (1)

Lighthill’s inhomogeneous wave equation per-
fectly fits into this class of equations [1]. It is
obvious that RHS(?) of Lighthill’s inhomoge-
neous wave equation contains not only source
terms, but also interaction terms between the
sound and flow field, which includes effects, such

as convection and refraction of the sound by
the flow. Regarding physics, the whole set of
compressible flow dynamics equations, includ-
ing acoustics, has to be solved in order to cal-
culate the right hand side. This flow simulation
must already resolve the acoustics as implicit
part of the right hand side RHS(?), which is a
challenge for any numerical scheme. The com-
putational noisy errors itself may strongly dis-
turb the physical radiating wave components [2].
Phillips and Lilley [3, 4] moved interaction ef-
fects, at least to some extent, to the wave oper-
ator � and predicted certain aspects of jet-noise
quite accurately. These effects are neglected
by Lighthill’s wave operator and are often not
present in Lighthill’s source term due to the re-
stricted numerical resolution of interactions dur-
ing a preceding flow simulation [5].

In year 2003, Goldstein [6] proposed a method
to split flow variables (p,u, ...) into a base flow ?̃
and a remaining component ?′

? = ?̃+ ?′ . (2)

Although Goldstein’s idea has a different per-
spective, a separation into a base flow and a
remaining component shows distinctive features
of sound in the source terms. In this contri-
bution, we develop a formal construct to derive
and analyze aeroacoustic analogies. We intro-
duce a non-radiating base flow as a flow state
around the flow equations are linearized. A non-
radiating flow solution is defined as a flow that
has not emitted the sound (e.g. an incompress-
ible flow) but has the potential to do so, either
due to the physical model or the computational
algorithm. The remaining component is the per-
turbation of the base flow and is usually small
for subsonic flows. Using a non-radiating base
flow, the remaining component describes all ra-
diating component, including the sound field.

Applying the decomposition to the right hand
side of the wave equation yields

�p′ = RHS(p̃, ũ, ρ̃, p′,u′, ρ′, ...) . (3)
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Now interaction terms can be moved to the dif-
ferential operator to take, e.g., convection and
refraction effects or even nonlinear interactions
into account. Exactly this approach has been
applied in the theories of Phillips and Lilley,
and furthermore in the derivation of perturba-
tion equations [7–9].

Following this modeling approach, the main
interaction terms between the flow and the acous-
tic field are modeled by an appropriate wave op-
erator �̃, e.g. convection and refraction effects,
and the right hand side is modeled by the base
flow

�̃p′ = RHS(p̃, ũ, ρ̃, ...) . (4)

Following the hybrid approach, we perform a
compressible flow simulation, which incorporates
two-way coupling of flow and acoustics and ex-
tends aeroacoustic analogies to physical phenom-
ena, where feedback matters. Based on this
compressible flow results, we use Helmholtz’s
decomposition to obtain the non-radiating base
flow (incompressible part of the flow result) that
is used as base flow in the wave equation.

Helmholtz’s decomposition

In this contribution, we discuss Helmholtz’s de-
composition of the compressible flow field in the
vector potential formulation and the finite ele-
ment method implementation in CFS++ [11].
Using Helmholtz’s theorem, the curl-curl equa-
tion for the vector potential Aic is obtained

∇×∇×Aic = ∇× u , (5)

forced by the vorticity ∇ × u. We derive the
weak formulation of (5) and prescribe bound-
ary conditions that are based on fluid dynam-
ics [10]. The weak formulation is discretized
with edge elements. Having the vector poten-
tial, the incompressible part of the velocity field
is computed by

ũ := uic = ∇×Aic . (6)

This incompressible part of the velocity field can
be used as the non-radiating base flow. Finally,
we apply Helmholtz’s decomposition to a Mach
0.8 flow over a rectangular cavity [12].
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Abstract

Direct noise computation (DNC) offers some ad-
vantages compared to hybrid approaches in sim-
ulating aeroacoustic feedback mechanisms. In
DNC, hydrodynamics and acoustics are solved
in a coupled manner which allows to depict intri-
cate interactions between both fields. However,
this approach intrinsically requires the resolu-
tion of the occurring disparate length and time-
scales which is computationally expensive. The
aim of this work is to draw the attention to an
efficient method for the detection of aeroacous-
tic feedback. It can be effectively predicted by
a global stability analysis. Here, an impulse re-
sponse analysis on a time averaged flow field is
carried out. The underlying baseflow is main-
tained constant through volume forcing terms.
To overcome the drawback of long time-averaging
of LES-data a computationally less expensive
numerical method like a RANS-solver can be
employed to generate the time-averaged base-
flow, which is then used by our high order frame-
work FLEXI to simulate the response of small
perturbations. Results of a side-view mirror will
demonstrate the advantages of the latter ap-
proach.
Keywords: Aeroacoustic feedback loop,
Global instability, Side-view mirror

1 Introduction

Tonal noise due to aeroacoustic feedback is well
understood, e.g. trailing edge noise of the NACA
0012 airfoil [1]. Lounsberry et al. [2] suggested
that the tonal noise seen at smooth surfaces,
such as a side-view mirror, is based on the same
mechanism. The mechanism is associated to
laminar boundary layer separation and the asso-
ciated coherent vortex shedding. Within the de-
veloping shear layer, instabilities are amplified
and eventually roll up to coherent vortices. The
interaction of those structures with the trailing
edge leads to acoustic radiation. The upstream
travelling acoustic wave interacts with the shear
layer trough receptivity and excites instabilities

at a certain frequency. This mechanism can trig-
ger a self-sustaining oscillatory state at a certain
frequency, which is the source of tonal noise.

To depict the interaction between hydrody-
namics and acoustics DNC is necessary. Frank
[3] successfully demonstrated the occurrence of
aeroacoustic feedback on a side-view mirror by
applying DNC. Furthermore, he applied a global
stability analysis to detect acoustic feedback pro-
posed by Jones et. al [1]. Here, an initial time
averaged flow field obtained from compressible
high-fidelity large eddy simulation (LES) is dis-
turbed by a small perturbation, while the un-
derlying baseflow is maintained through volume
forcing terms. To overcome this drawback of
computational expensive time averaging, we pro-
pose a more efficient method by using a less ex-
pensive numerical method, based on the Reynolds
averaged Navier-Stokes equations (RANS), to
generate the time-averaged baseflow. We ap-
ply this method to a submodel of a side-view
mirror and will demonstrate the applicability of
this approach.

2 Numerical method

The mechanism of acoustic feedback is based
on an complex interaction between the hydro-
dynamics and the acoustics, which requires a
direct numerical simulation of the compressible
Navier-Stokes equations (NSE). In this work we
apply the high-order discontinuous Gelerkin spec-
tral element method (DGSEM) implemented in
our framework FLEXI as described in Hinde-
lang et. al [4] and extended by a perturbation
formulation. The perturbation formulation is
implemented according to Jones et. al [1] and
Frank [3]:

U ′t = R(U0 + U ′)−R(U0). (1)

With Ut = R(U) being the nonlinear Navier-
Stokes operator, U ′ the fluctuating values and
U0 the baseflow. The second part of the right-
hand side can be interpreted as a forcing back
onto the baseflow. This method allows us to
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analyze the impulse response of a small pertur-
bation to any provided baseflow, which is like a
global stability analysis. To obtain the baseflow
we use a steady state, incompressible RANS-
solver implemented in OpenFOAM. The RANS-
equations are closed by the Langtry-Menter 4-
equation transitional SST model. Conducting
a perturbation analysis of a disturbed baseflow
obtained from a RANS solver, followed by a dy-
namic mode decomposition (DMD) of the ob-
tained time series reveals the frequencies which
are considered for feedback.

3 Perturbation analysis

In the following, the results of the perturbation
analysis applied to a two-dimensional side-view
mirror at freestream velocity of U∞ = 27.78m/s
are presented. Figure 1 shows the Ritz values
of the associated time series analyzed by means
of a DMD. In the diagram you can see the real
part plotted over the imaginary part of the com-
plex eigenvalues ω, which are associated to the
growth rate and the angular frequency of the
mode. The size of the plotted modes is en-
coded with the Euclidean norm of the respective
mode which can be seen as a measure of en-
ergy of the modes. The least damped energetic
modes which is seen as the acoustic feedback
mode is found to be at 2555 Hz. Compared to
the dominant tonal frequency found in DNC at
f = 2550 Hz, the results of the DMD are in
good agreement with the dominant frequency
found in the perturbation analysis.

Figure 1: Spectrum of Ritz values delivered by
the DMD algorithm.

Those promising results for the baseline ve-
locity shows great potential of the new proposed
method. A variation of the freestream velocities
shows that the newly proposed method can re-

produce the Reynolds dependency of the tonal
frequency, compared to DNC by Frank [3], well.

4 Conclusions

The present work deals with an efficient method
to capture aeroacoustic feedback induced by the
flow around a side-view mirror. A global pertur-
bation ansatz based on a mean flow is proposed.
The potential of such a stability analysis has
been demonstrated in the literature, with the
downside of computationally expensive time av-
eraging of transient LES or DNS to obtain the
baseflow. Using a RANS solver to compute the
baseflow as well as a geometric submodel the
computational effort reduces significantly. Con-
ducting a perturbation analysis of a sudmodel
based on the RANS baseflow, followed by a dy-
namic mode decomposition reveals the selection
of discrete frequencies by the mechanism. Good
agreement of the least damped modes with the
tonal frequency found by DNC as well as the
literature was found. This leads to the conclu-
sion that RANS simulations are suitable as a
baseflow for a high order disturbance analysis
in order to detect acoustic feedback.
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Abstract

Stochastic methods represent a highly efficient
way to recreate turbulent velocity fluctuations
based on Reynolds-averaged Navier-Stokes
(RANS) simulations. In this work, we present
how to compute source terms from the gener-
ated stochastic velocity field and how to apply
it to the aeroacoustic simulation of a deep cav-
ity with a lip to compute broadband noise and
aeroacoustic modes.
Keywords: Computational Aeroacoustics, Fluid
Dynamics, Stochastic Methods

1 Introduction

Stochastic methods constitute a low-cost com-
putational fluid dynamics (CFD) approach to
reconstruct the turbulent velocity fluctuations
using results from RANS simulations. This ap-
proach was introduced by Béchara et al. in 1994
and is known as stochastic noise generation and
radiation (SNGR) [1].

As proposed by Billson et al. [2], a stochastic
turbulent velocity field can be generated as a
finite sum of N unsteady random Fourier modes

ut(x, t) = 2

N∑

n=1

ũn cos(kn · (x− tuc)

+ ψn + ωnt)σn .

(1)

where x is the spatial position, and kn, ũn, ψn,
and σn are the wave vector, the amplitude, the
phase, and the direction of the nth mode, re-
spectively. The wave vector kn is randomly cho-
sen on a sphere of radius kn = ‖kn‖ to ensure
isotropy of the generated turbulent velocity field
and is thus defined by the coordinates (kn, ϕn,
θn) as depicted in Fig. 2. Additionally, incom-
pressibility of the turbulent flow field implies
∂uti/∂xi = 0, and hence

kn · σn = 0 for n = 1, . . . , N . (2)

Therefore, the unit vector σn lying in the (k′1-
k′2)-plane is perpendicular to the wave vector
kn and solely defined by its polar angle αn (see
Fig. 2). The probability density functions that

determine the randomly drawn angles ϕn, αn,
ψn, and θn are listed in Tab. 1.

y

z

x

𝜃n

φn

kn

k1ʹ

k3ʹ k2ʹ
σn
αn

Figure 1: Geometry of the wave vector corre-
sponding to the nth Fourier mode.

Table 1: Probability distributions of random
variables used to generate stochastic turbulent
velocity field [3].

Probability density Interval

p(ϕn) = 1/(2π) 0 ≤ φn ≤ 2π
p(αn) = 1/(2π) 0 ≤ αn ≤ 2π
p(ψn) = 1/(2π) 0 ≤ ψn ≤ 2π
p(θn) = (1/2) sin θn 0 ≤ θn ≤ π

Homogeneous isotropic turbulence may be
characterized by an energy spectrum E(k) with
k = ‖k‖, which allows to compute the ampli-
tude ũn of the nth mode as

ũn =
√
E(kn)∆kn . (3)

The spectrum E(k) used to simulate the com-
plete spectral range is a von Kármán-Pao spec-
trum [4,5]

E(k) = α
u′2

ke

(k/ke)
4

[1 + (k/ke)2]
17/6

exp

[
−2

(
k

kη

)2
]
,

(4)
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where kη = (ε/ν3)
1
4 is the Kolmogorov wave

number, and u′ =
√

2K/3 is the root mean
square value of the velocity fluctuations, where
ε is the rate of dissipation of turbulence energy,
ν is the kinematic viscosity, and K is the tur-
bulent kinetic energy . Moreover, ke is the wave
number of the most energetic eddies and α is a
numerical constant.

In Eq. (1), uc is the local convection veloc-
ity and ωn is the angular frequency of the nth

mode. As opposed to the convection velocity
uc, which is a function of the known local mean
flow, the angular frequency ωn is a random vari-
able drawn from a distribution associated to a
Gaussian probability density function

pn(ω) =
1

ωn
√

2π
exp

(
−(ω − ωn)2

2ω2
n

)
, (5)

where the mean angular frequency of the nth

mode ωn is connected to the wave number kn
by ωn = u′kn.

2 Application to a cavity

The presented stochastic approach is applied to
a generic cavity that was presented in [6]. In
this contribution, we generate a velocity field
u = U + ut, where U is the solution of the
RANS simulation and ut are the turbulent ve-
locity fluctuations resulting from the SNGR ap-
proach described above. This velocity field can
be employed to compute the Lighthill source
term ∂2Lij/(∂xi∂xj). For low Mach numbers,
Lighthill’s tensor may be approximated by Lij =
ρ0uiuj , where ρ0 is the mean density [7].

With this procedure, it is possible to com-
pute both acoustic modes and the broadband
noise associated to a turbulent flow over the ori-
fice of the cavity.
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Figure 2: Geometry of the investigated cavity
[8].
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On the well-posedness of Galbrun’s equation
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Abstract
We investigate well-posedness of Galbrun’s equa-
tion, which is a reformulation of linearized Eu-
ler’s equations that model propagation of sound
in moving fluids.
Keywords: Galbrun’s equation, linearized Eu-
ler’s equations, Friedrichs’ systems, flow-acoustic
interaction

1 Introduction
Linearized Euler’s equations, which are obtained
by linearizing Euler’s equations around some
given flow, constitute the standard model for
loss-less sound propagation in moving fluids.
We consider flows where the entropy is every-
where constant; that is, either the flow is ho-
mentropic or the fluid is elastic. In such cases,
Euler’s equations describe the evolution of the
fluid velocity u, pressure p and density ρ given
the volume force density ϕ acting on the fluid
and suitable initial and boundary conditions.
Introducing the linearization ansatz φ(x, t) =
φ0(x, t) + δφ(x, t)—where φ denotes a generic
flow field, φ0 is given, δφ denotes the so-called
Eulerian perturbation and where u0, p0, ρ0 and
ϕ0 fulfill Euler’s equations—into Euler’s equa-
tions and retaining terms that are at most linear
in the perturbations, yields linearized Euler’s
equations [2]

D0δu +∇δp

ρ0
+ (δu · ∇)u0 − ∇p0

ρ2
0

δρ = δϕ, (1a)

D0δρ + ∇ · (ρ0δu) + (∇ · u0)δρ = 0, (1b)
δp − c2

0δρ = 0, (1c)

where D0 = ∂t + u0 · ∇ denotes the material
derivative with respect to the background flow,
and where c0 denotes the isentropic speed of
sound.

Less known is the reduction of linearized
Euler’s equations (1) to a vector wave equation
in the Lagrangian displacement w, which has
been attributed to H. Galbrun [3]. As depicted in
Figure 1, the Lagrangian displacement describes
the displacement of individual fluid particles
induced by the perturbations.

Advection by u0

Advection by u

(p, 0)

(x+ w(x, t), t)

(x, t)

w(x, t)

Figure 1: The Lagrangian displacement w.

For homentropic flows (or elastic fluids), Gal-
brun’s equation reads [2]

ρ0D2
0w − ∇(ρ0c2

0∇ · w) + (∇p0)∇ · w

− (∇w)T ∇p0 = ρ0 (δϕ + (w · ∇)ϕ0) ,
(2)

where (∇w)ij = ∂jwi. The derivation of Gal-
brun’s equation (2) relies critically on the so-
called no resonance assumption, which will be
discussed in the sequel.

A series of papers that consider increasingly
complicated steady background flows has estab-
lished well-posedness of a spatially regularized
formulation in two spatial dimensions of the time
harmonic counterpart to Galbrun’s equation (2)
(culminating paper [4]). For general time depen-
dence in two spatial dimensions, the regularized
formulation is also known to be well-posed for
homogenous background flows [1]. To the best of
our knowledge, no other results regarding well-
posedness of Galbrun’s equation (2) have been
reported in the literature.

2 Our approach to Galbrun’s equation
Instead of introducing the Lagrangian displace-
ment w in the spirit of Figure 1, we propose
to define w abstractly as the solution to the
transport equation1

(∂t + Lu0)w︸ ︷︷ ︸
D0w−(w·∇)u0

= δu, (3)

where Lu0w = (u0 · ∇)w − (w · ∇)u0 denotes
the Lie derivative of w along u0. We show that
definition (3) and equation (1b) implies that

ρ0D0

(
δρ + ∇ · (ρ0w)

ρ0

)
= 0. (4)

1To make w well-defined, adequate initial and bound-
ary conditions need to be supplied.

Tuesday, 10:00, GM3 Vortmann, Building BA,



Modelling and numerical simulation of flow-acoustic interaction 157

One formulation of the no resonance assumption
is that the only solution to equation (4) is the
trivial solution; that is,

δρ = −∇ · (ρ0w). (5)

We remark that relation (5) provides the only so-
lution to equation (4) when posed on a bounded
domain, if and only if relation (5) holds ini-
tially and at the part of the boundary where the
background flow enters the domain. In partic-
ular, when the background flow is everywhere
tangential to the boundary, we note that the
initial condition of w may be chosen so that
relation (5) holds initially and thereby for all
subsequent times.

Definition (3) and expressions (5) and (1c)
substituted into equation (1a) yields Galbrun’s
equation

ρ0D0(D0w − (w · ∇)u0) − ∇(c2
0∇ · (ρ0w))

+ ρ0 ((D0w − (w · ∇)u0) · ∇) u0

+ ∇p0
ρ0

∇ · (ρ0w) = ρ0δϕ.

(6)

The equivalence of formulations (2) and (6) can
be established by a direct, albeit lengthy, calcu-
lation.

Our approach to Galbrun’s equation indi-
cates that if (δu, δρ) is a solution to linearized
Euler’s equations (1), then w defined by rela-
tion (3) is a solution to Galbrun’s equation (6)
provided that relation (5) holds. Moreover, we
have shown that if the background flow is every-
where tangential to the boundary of the domain,
then the initial condition needed to make w in
definition (3) well-defined can be chosen so that
relation (5) holds.

In order to proceed, we establish mild well-
posedness of an initial boundary value problem
of linearized Euler’s equations (1) in the particu-
lar case that the background flow is everywhere
tangential to the boundary of the domain and
where the boundary condition is given by

Y δp − ρ0c0n · δu = ρ0c0g. (7)

In boundary condition (7), Y is a non-negative
Lipschitz continuous dimensionless admittance
function that allows interpolation between the
boundary conditions −n · δu = g and δp −
ρ0c0n · δu = ρ0c0g that holds at a vibrating
impenetrable wall and can be used as an ar-
tificial in/out boundary condition, respectively.

Our proof of well-posedness is carried out within
a recently developed framework for Friedrichs’
systems [5,6] and relies on results obtained by
Rauch [7].

Within the same framework for Friedrichs’
systems, we establish mild well-posedness of
the initial boundary value problem for trans-
port equation (3); that is, we show that the
Lagrangian displacement is well-defined.

Finally, we demonstrate that if the back-
ground flow is sufficiently regular, then suffi-
ciently regular solutions to the initial boundary
value problem of Galbrun’s equation (6) satisfy
the estimate
d

dt

∥∥∥
(
τ−1

0 w, (∂t + Lu0)w, c0ρ−1
0 ∇ · (ρ0w)

)∥∥∥
2

ρ0
≤

γ
∥∥∥
(
τ−1

0 w, (∂t + Lu0)w, c0ρ−1
0 ∇ · (ρ0w)

)∥∥∥
2

ρ0
+

τ0‖δϕ‖2
ρ0 + α‖g‖2

ρ0c0,∂Ω, (8)

where τ0 > 0 has been introduced to homogenize
dimensions, γ, α > 0 depends on the background
flow and on the admittance function Y , and
where we have introduced weighted L2-norms
‖ξ‖2

q =
∫

q|ξ|2 on the domain and on the bound-
ary. From estimate (8) follows a so-called energy
estimate for Galbrun’s equation (6). Due to the
presence of zeroth order terms of indefinite signs,
our energy estimate incorporates solutions that
grow exponentially with time.
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Abstract

In the engineering field of areoacoustics, a num-
ber of reformulations of the Navier-Stokes equa-
tions known as Linearized Euler Equations (LEE),
the Linearized Navier-Stokes Equations (LNSE),
the Acoustic Perturbation Equations (APE) or
Galbrun’s equation can be used to analyze acous-
tic wave propagation in moving media. Gal-
brun used a mixed Lagrangian-Eulerian frame
to describe perturbations of the field quanti-
ties only in terms of the Lagrangian particle
displacement. Despite the reduced number of
degrees of freedom, Galbrun’s equation suffers
from numerical difficulties, for example the on-
set of pollution errors due to spurious-like modes,
when utilizing standard finite element approaches.
Preliminary studies have shown that by using
DG-FEM, numerical difficulties such as spuri-
ous modes can be omitted.
In this paper, the authors numerically investi-
gate the Galbrun equation using a discontinu-
ous Galerkin finite element method (DG-FEM)
to solve aeroacoustic problems in shear flow.
Keywords: Galbrun, discontinuous Galerkin,
finite element method

1 Introduction

Besides well studied theories for aeroacoustic
problems, Galbrun’s equation is not widely ap-
plied. Know drawbacks and solutions to solve
Galbrun’s equation can be found in the litera-
ture, cf. [1, 3, 6, 7].
We apply a discontinuous Galerkin finite ele-
ment method in order to gain solution stabil-
ity and further to separate acoustically relevant
from non-relevant eigenvalues in the frame of a
numerical modal analysis.

2 Theory

We consider a fluid filled domain ΩF ⊂ R2 which
is bounded by ΓF . Further, a Cartesian coordi-
nate system is assumed while a vector compo-
nent description together with Einstein’s sum-

mation convention is applied. Following the con-
siderations of Treyssède et al. [7] and assuming
that the reference pressure field is uniform, the
displacement based formulation of Galbrun’s equa-
tion can be stated such that

ρ0
d2wk
dt2

−
(
c20ρ0wl,l

)
,k

= 0, in ΩF , (1)

wjnj = 0, on ΓF . (2)

with the material time derivative

dwk
dt

=
∂wk
∂t

+ v0lwk,l (3)

where the abbreviation wk,l can be understood
as the spatial derivative of wk with respect to
the l-direction. We consider a harmonic time de-
pendency in the form of wk(xk, t) = wk(xk)e

−iωt

with the angular frequency ω = 2πf and the
imaginary unit i.

3 Numerical Method

We apply the well known principles of the finite
element method where the weak form of equa-
tion (1) is set up and discretized using discontin-
uous finite elements. For a complete description
we refer to the literature, cf. [2, 4, 5].

4 Simulations

As a test case, we use an annulus with an inner
radius r1 = 0.75 m and an outer radius r2 = 1 m
to study the proposed method for a sheer flow
problem. Figure 1 displays the geometry of the
annulus together with the flow direction.

v0k =

[
v01
v02

]
=

[
0

−Mac0 1
r2−r1 (2r − (r1 + r2))

]

(4)

Equation (4) describes the flow velocity depend-
ing on the radial coordinate r. The boundaries
of the domain can be seen as acoustically hard.
After discretizing the domain with DG finite el-
ements we are interested in the solutions of the
associated eigenvalue problem. In a first step we
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Figure 1: Geometry of annulus
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Figure 2: Solution of eigenvalue problem

consider the unfiltered Galbrun equation. The
results are shown in Figure 2.
It can be seen that for Ma = 0 the eigenvalues
are distributed close to the real axis in the com-
plex plane, cf. Figure 2(a). As the flow velocity
increases to Ma = 0.1 the main portion of the
eigenvalues show an increasing imaginary part.
Only some of the eigenvalues remain close to the
real axis. For the remaining, the system is set
up so that the real value of the eigenvalue solu-
tion is associated with the oscillating frequency.
In a second step as an example we introduce
a Lagrange multiplier enforcing the rotational
components of the solution field to be zero. This
way, it is possible so study the which eigen-
values have strong rotational components and
which don’t. Figure 2(b) shows the solutions of
the filtered Galbrun equation. It can be seen
that only these eigenvalues remain which have
a vanishing rotational component. Further, it
is possible to analyze the relative change in the
frequency in order to understand the influence
of the rotational components to the eigenvalue.

5 Conclusion

We analyzed an annulus with sheer flow and
acoustically hard walls and applying a discon-

tinuous Galerkin finite element method. By in-
troducing Lagrange multipliers that enforce, e.g.
the rotational components of the solution field
to be zero, one can analyze the nature of the
eigenvalues associated to the sheer flow prob-
lem.
In future work the augmented version of Gal-
brun proposed by Bonnet-Ben Dhia [1] will be
implemented and further analyzed.
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Abstract

Several formulations exist to model viscous and
thermal boundary layers in fluids close to solid
boundaries, ranging from the linearised Navier-
Stokes equations to standard pressure acoustics
with impedance-type boundary conditions. We
critically assess the existing methods and pro-
pose a hybrid approach coupling the linearised
Navier-Stokes and Helmholtz equations via non-
conforming grids. The formulation is validated
via simple example problems and subsequently
applied to more complex modeling tasks.
Keywords: acoustics, linearised Navier-Stokes,
viscous and thermal losses, non-conforming grid

1 Introduction

Viscous and thermal effects are often neglected
when modeling acoustic phenomena. However,
these dissipative effects become important in ap-
plications like hearing aids or microelectrome-
chanical systems (MEMS). In general, viscous
and thermal effect must be considered whenever
the viscous and thermal boundary layer thick-
ness become non-negligible in comparison to a)
the acoustic wave length, or b) the model di-
mension.

2 Modelling

We assume small, harmonic perturbations of the
state variables particle velocity v, pressure p,
density ρ, specific entropy s and and tempera-
ture T of the form f(t) = f0 +<{f̂ ejωt}, where
f0 denotes the value of the state variable at equi-
librium and f̂ ∈ C the perturbation. Further-
more, we assume that the relation between the
thermodynamic quantities obey the ideal gas
law, and that the viscous stress tensor is de-
scribed by an isotropic Newtonian fluid, i.e.

τ̂ = µ(∇v̂ + (∇v̂)T )− (
2

3
µ− η)I∇·v̂, (1)

where the parameters µ and η denote the shear
and bulk viscosity, respectively, and I is the unit
tensor. The linearized conservation equations

for momentum, mass and energy are then

jωρ0v̂ +∇p̂−∇·τ̂ = 0, (2)

jω
ρ0
p0
p̂− jω ρ0

T0
T̂ + ρ0∇·v̂ = 0, (3)

jωρ0cpT̂ −∇·κ∇T̂ − jωp̂ = 0, (4)

where cp denotes the heat capacity at constant
pressure and κ denotes the thermal conductiv-
ity. Prescribing suitable boundary conditions,
above equations can be solved for the unknown
pressure, temperature and velocity components
by the finite element method.

Above formulation may be modified in sev-
eral ways: The velocity field may be spit into
a rotational and solinoidal part, leading to two
scalar Helmholz equations for acoustic and en-
tropic temperatures, and a vecorial Helmholz
equation for the rotational velocity [2, 3]. By
taking the time derivative of (2) and the diver-
gence of (3) one may eliminate the pressure and
thus obtain a coupled equation system for the
temperature and velocity components [4]. Re-
taining the pressure in a mixed formulation may
avoid numerical problems associated with near
incompressibility, but requires appropriate sta-
ble discretisations [5].

3 Numeric Efficiency

As the termoviscous formulation requires the so-
lution of coupled equations with 5 unknowns
and thin viscous and thermal boundary layers
need to be resolved, the computational effort is
much larger than for standard acoustics with a
scalar unknown and the requirement to resolve
the acoustic wave length. As thermoviscous ef-
fects are only active close to the boundaries, one
can couple thermoviscous and purely acoustic
descriptions. This can be elegantly done using
non-conforming grids [6], removing the necessity
of a transition mesh between fine and coarse di-
cretisation.

Another recent approach uses classical pres-
sure acoustics (neglecting viscosity and thermal
conductivity) in the fluid domain but introduces
thermal and viscous effects as boundary condi-
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Figure 1: 2D model of a plane wave traveling
through an isothermal plate with narrow slits
(left), and computed velocity (vectors) and tem-
perature (in color) fields in the slit (right).

tions derived by integrating the known bound-
ary layer profiles [1, 7]. The aim of this work is
to critically assess and compare the numerical
performance as well as the range of applicabil-
ity of the different available methods.

4 Application

The above formulation has been implemented in
the finite element software CFS++ [8], which is
used to solve representative example problem,
e.g. the propagation of a plane wave though a
rigid plate with thin slits (see Fig. 1). The slits
are much smaller than the acoustic wave length,
however they are in the order of magnitude of
the viscous and thermal boundary layer. Thus,
the arising damping effects must be accurately
modeled. Figure 2 shows the computed velocity
and temperature profile in the middle of the slit.
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Abstract

To model the effects of acoustic boundary lay-
ers close to solid surfaces, we have derived a
generalized admittance boundary condition to
the Helmholtz equation for the acoustic pressure.
The admittance operator acts on the acoustic
pressure and its surface Laplacian in order to
account for thermal and viscous effects, respec-
tively. For a model problem with significant
visco–thermal effects, this model yields virtually
identical results to a hybrid Helmholtz/linearized
Navier–Stokes model; however, our model needs
about two orders of magnitude less memory and
computational time. We have recently incorpo-
rated the model in a shape optimization frame-
work to design a device for which visco-thermal
losses are important to model.
Keywords: acoustics, visco-thermal boundary
layers, Helmholtz equation, shape optimization

1 Background

For devices such as hearing aids, microphones,
micro loudspeakers, and compression drivers for
loudspeaker horns, the presence of visco–thermal
boundary layers in the vicinity of solid walls sig-
nificantly affects the overall performance. These
effects thus have to be accounted for in the mod-
eling and optimization of such devices. Although
the linearized Navier–Stokes equations provide
accurate modeling, the computational cost of
solving these equations is generally very high.
The high cost stems from the need to resolve the
extremely thin boundary layers, which are in the
order of 20–400 µm in the audio range.

2 The acoustic boundary-layer model

Under isentropic assumptions, sound propaga-
tion in air can in frequency domain be modeled
by the first-order system

iω

c2
p+∇ · ρ0U = 0, (1a)

iωρ0U +∇p = 0, (1b)

where p and U are the acoustic pressure and
velocity, and ρ0 and c the static density and
the speed of sound of air. Eliminating U , the
system reduces to the Helmholtz equation in the
pressure,

−∆p− k20p = 0, (2)

where k0 = ω/c. Equations (1) or (2) accu-
rately model acoustic wave propagation except
close to solid walls, where boundary layers form.
Boundary-layer theory yields, in the case of a
smooth wall, an explicit formula for the acoustic
velocity and density as a function of wall distance.
From their boundary values, the acoustic velocity
and density will exponentially attain isentropic
values governed by equation (1) with decay con-
stants δV =

√
2ν/ω and δT =

√
2κ/(ωρ0cp), the

viscous and thermal boundary-layer thicknesses.
Here, ν and κ are the thermal conductivity and
the kinematic viscosity, and cp the specific heat
at constant pressure.

Plugging these formulas into the equation of
mass conservation and integrating in the wall-
normal direction, we have shown that the isen-
tropic mass conservation law (1a) holds to first
order in δV and δT , provided that the solid-wall
boundary condition on n · u (or ∂p/∂n for the
Helmholtz equation (2)) is modified [1]. We have
recently learned that this modification has pre-
viously been derived, using a different approach,
by Pierce [2, Eq. 10-4.12]. Somewhat surpris-
ingly, it seems, to the best of our knowledge,
that Pierce’s condition has not been translated
into a boundary condition for numerical compu-
tations.

In the case of a closed acoustic cavity with
vibrating walls, the boundary-value problem for
the Helmholtz equation using the resulting bound-
ary condition becomes

−k20p−∆p = 0 (Ω), (3a)
δTk

2
0
1
2(i− 1)(γ − 1)p

−δV 1
2(i− 1)∆Tp+ ∂p/∂n = g (Γw), (3b)
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where γ is the heat capacity ratio and g is pro-
portional to the imposed vibration amplitude.
Boundary condition (3b) constitutes a perturba-
tion of the wall boundary condition ∂p/∂n = g,
where g = 0 for a motionless wall. The viscous
part of boundary condition (3b) has previously
appeared in a report by Schmidt and Thöns–
Zueva [3], derived by different means. The cur-
rent model requires that boundary layer thick-
ness is much smaller than the radius of curvature
of the wall and that possible opposite-facing walls
are well outside the boundary layer.

In a recent article [1], we assessed the model
by computing the radiated power out of a generic
compression driver. Figure 1 shows the power
spectrum for three different models: a lossless
Helmholtz model (dashed), a model where the
linearized Navier–Stokes equations were used in
narrow regions (circles), and our boundary-loss
model (solid).
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Figure 1: Compression-driver power output for
different models

Our model gives virtually identical results
to the more accurate one, but in our model,
the memory requirement was reduced from 102
Gbytes down to 1 Gbytes and the computational
times from 2100 s down to 12 s per frequency.

Since the new model does not need meshes
that resolve boundary layers and due to its com-
putational efficiency, we here apply it for the
first time in the context of shape optimization
of devices for which boundary-layer effects need
to be considered. Figures 2 and 3 shows ini-
tial results of an optimization in 3D of the so-
called phase plug of a compression driver. We
use gradient-based shape optimization, adjoint

equations to compute gradients, and a geometry
represented with a level-set function. Boundary
condition (3b) is imposed using the CutFEM
method [4]. The figure shows one half of 32
circumferentially symmetric sections. The mem-
brane is located to the left, and the outlet into
the throat of the horn is to the right.

Figure 2: A shape-optimized phase plug
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Figure 3: Frequency response. Target and
results when optimized with and without
accounting for boundary-layer effects
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Abstract

The work is concerned with the numerical so-
lution of 3D high-frequency elastic scattering
problems by a bounded obstacle, namely the
exterior Navier problem with a Dirichlet or a
Neumann boundary condition. We propose the
combination of analytic preconditioners [2] and
the Fast Multipole Method (FMM).
Keywords: Elastodynamics, boundary integral
equations, FMM, analytic preconditioners

1 Introduction

The numerical solution of high-frequency scat-
tering problems of time-harmonic elastic waves
by a three-dimensional obstacle is a challenging
task. The fast multipole method is an efficient
technique to accelerate the solution of large scale
3D scattering problems with boundary integral
equations. However, the fast multipole acceler-
ated boundary element method (FM-BEM) is
intrinsically based on an iterative solver. It has
been shown that the number of iterations can
significantly hinder the overall efficiency of the
FM- BEM. The derivation of robust precondi-
tioners for FM-BEM is inevitable to increase
the size of the problems that can be considered.
The main constraint in the context of the FM-
BEM is that the complete system is not assem-
bled to reduce computational times and memory
requirements. Analytic preconditioners offer a
very interesting strategy by improving the spec-
tral properties of the boundary integral equa-
tions ahead from the discretization. We propose
to combine an approximate adjoint Dirichlet to
Neumann (DtN) map as an analytic precondi-
tioner with a FM-BEM solver to treat Dirich-
let exterior scattering problems in 3D elastic-
ity. We compare usual and preconditioned Com-
bined Field Integral Equations (CFIEs).

2 The Navier exterior problem

We consider a bounded domain Ω− in R3, with a
closed smooth boundary Γ := ∂Ω−. Let Ω+ de-

note the exterior domain R3\Ω− and n the outer
unit normal vector to the boundary Γ. The scat-
tering problem is formulated as follows : Given
an incident displacement wave uinc, find the so-
lution u of the Navier exterior problem:

µ∆u+ (λ+ µ)∇ divu+ ρω2u = 0, in Ω+,
u = −uinc, on Γ,
∆up + κ2

pup = 0, curl curlus − κ2
sus = 0,

(1)

where ω > 0 is the frequency, and the Lamé pa-
rameters µ, λ and the density ρ are positive con-
stants. The field u is decomposed into a longi-
tudinal field up with vanishing curl and a trans-
verse divergence-free field us solutions to with
respective wavenumbers κ2

p = ρω2(λ+2µ)−1 and
κ2
s = ρω2µ−1.

3 Usual and preconditioned CFIEs

Integral equation method is based on the poten-
tial theory. The field u is uniquely determined
by the knowledge of the Cauchy data (u|Γ, t|Γ).
The Neumann trace t|Γ := Tu is given by the
traction operator

T = 2µ
∂

∂n
+ λndiv +µn× curl .

For any real-valued constant α, we introduce the
modified Neumann trace tα ∈ H−

1
2 (Γ) defined

by
tα = t|Γ − αMu|Γ

where M is the tangential Günter derivative.
The standard CFIE consists in finding the phys-
ical unknown ϕ = −

(
t|Γ + tinc|Γ

)
solution to

(
I

2
+D

′
+ iηS)ϕ = −

(
tinc + iηuinc|Γ

)
, on Γ,

(2)
with tinc|Γ = Tuinc, η a non-zero real constant
and the single- and double-layer boundary inte-
gral operators

Sϕ(x) =

∫

Γ
Φ(x,y)ϕ(y) ds(y),

Dψ(x) =

∫

Γ
[T yΦ(x,y)]Tψ(y) ds(y).
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It is well known that the standard CFIE is not
suited for an iterative solution. To expect an
eigenvalue clustering and hence a fast conver-
gence of GMRES, the approach we consider is to
derive preconditioned CFIEs: Find ϕ = −

(
t|Γ+

tinc|Γ
)
solution to

(
I

2
+D

′ −Λ′S)ϕ = −
(
tinc|Γ −Λ′uinc|Γ

)
, on Γ,

(3)
where Λ′ is an approximation of the exact ad-
joint DtN map

Λex : u|Γ ∈H
1
2 (Γ) 7→ Λexu|Γ := t|Γ ∈H−

1
2 (Γ) ,

4 Approximation of the adjoint DtN map
and new boundary integral equations

The spectral properties of (3) depend on the
choice of the approximate adjoint DtN map Λ′.
We want to compare several approximations of
different orders. In [2], new approximations of
the DtN map have been obtained in the spirit
of OSRC methods. The idea is to consider only
the principal part of the exact adjoint operator
Λex′
α and the decomposition

Λex = Λex
α + αM

where Λex
α is the exact exterior Modified Dirichlet-

to-Neumann (MDtN) map defined by

Λex
α : u|Γ ∈H

1
2 (Γ) 7→ Λex

αu|Γ := tα ∈H−
1
2 (Γ) .

We compare low- and high-order adjoint DtN
approximations, and the corresponding LO and
HO preconditioned CFIEs [1]. The high-order
adjoint DtN approximations are expressed in
terms of surface differential operators, square-
root operators and their inverse. Complex Padé
rational approximants provide local and uniform
representations of the square-root operators.

5 Numerical results

The numerical effciency of the different proposed
preconditioned CFIEs is illustrated for several
more or less complex geometries. An analyt-
ical study for the spherical case underlines an
"ideal" eigenvalue clustering around the point
(1, 0) for the preconditioned CFIEs. This is not
the case for the standard CFIE which has small
eigenvalues close to zero. The number of GM-
RES iterations is drastically reduced when the
preconditioned CFIEs are considered, indepen-
dently of the frequency.
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Figure 1: Distribution of the eigenvalues of the
standard and different P-CFIEs (η = 1, κs =
16π and nλs = 10).

#DOFs ω # iter # iter HO(1) # iter HO(2)
CFIE P-CFIE P-CFIE

1 926 4 18 7 5 (11)
7 686 8.25 27 6 4 (11)
30 726 16.5 51 6 3 (13)
122 886 33 180 6 3 (13)
490 629 66.5 > 500 6 3 (14)

Table 1: Diffraction of P-waves by the unit
sphere. Number of GMRES iterations for a fixed
density of 10 points per wavelength.

6 Perpectives

Ongoing work concerns the derivation of such
preconditioners for Neumann (or cavity) elas-
tic exterior problems. Contrary to the acoustic
and electromagnetic cases, the definition of the
Neumann-to-Dirichlet preconditioner as the in-
verse of the DtN preconditioner is not sufficient
to construct well-conditioned BIEs for Neumann
scattering problems. A more extensive analy-
sis of the DtN and Neumann-to-Dirichlet maps
has to be realized in the transition region corre-
sponding to the grazing modes.
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Abstract

Considering hypersingular integral operators dis-
cretised by Lagrange �nite elements, we present
a preconditionner based on a two level additive
Schwarz domain decomposition strategy. This
preconditionner relies on a coarse space de�ned
through the solution, in parallel, of generalised
eigenvalue problems in each subdomain. The
construction of the coarse space is fully auto-
matic and garantees scalability of iterative solvers.
We provide theoretical bounds for the condition
number of the preconditionned problem as well
as numerical results supporting the theory.

Keywords: domain decomposition, boundary
integral operator, preconditionning

1 Model problem

Let Ω ⊂ Rd, d = 2, 3 refer to a polyhedral do-
main with Γ := ∂Ω, denote Vh ⊂ H1/2(Γ) the
space of Pk-Lagrange functions constructed over
a triangulation T of Γ, and V∗h its dual. Given
` ∈ V∗h, we study the problem of �nding u ∈ Vh

solving A(u) = ` with A : Vh → V∗h de�ned by

〈A(u), v〉 :=∫

Γ×Γ
G(x− y)[curlΓu(x) · curlΓv(y)

+ γ2u(x)v(y)n(x) · n(y)] dσ(x,y).

where G refer to the Green kernel of the opera-
tor γ2 −∆. Numerous past contributions have
already proposed domain decomposition based
preconditionners for such a model problem, e.g.
Additive Schwarz Method (ASM), the most e�-
cient of which encompassing coarse space correc-
tions, see e.g. [3]. However, most of the coarse
spaces proposed so far depend a priori on the
discretisation procedure and are ad-hoc prob-
lem dependent constructions.

Following the so-called GenEO strategy pre-
viously developped for preconditionning Laplace-
like equations discretised by P1-Lagrange �nite
elements [2], we propose a new coarse space con-
struction.

2 Domain decomposition

Consider a decomposition Γ = ∪Jj=1Γj into over-
lapping subdomains, each Γj being a union of
cells of the triangulation T , and set

nχ = chromatic number

nµ = supx∈Γ

∑J
j=1 1Γj (x)

(1)

The chromatic number is de�ned as the min-
imum number of colours required to garantee
that any two adjacent subdomains have di�er-
ent colours. We suppose that the subdomain
covering {Γj}Jj=1 has been generated so that
nχ, nµ remain bounded uniformly with respect
to J. This is a reasonnable assumption met by
standard automatic mesh partitionners.

De�ne V̇j
h := {v ∈ Vh, supp(v) ⊂ Γj} and

V̇h := V̇1
h×· · ·×V̇J

h. We have Vh = V̇1
h+· · ·+V̇J

h

so that the operator R : V̇h → Vh de�ned by
R(u1, . . . , uJ) = u1+· · ·+uJ is surjective. De�ne
also B : V̇h → V̇∗h by

〈B(u),v〉 :=
∑J

j=1〈A(uj), vj〉

for u = (uj),v = (vj) in V̇h. With the one-level
ASM preconditionner de�ned by RB−1R∗, the
conditionning of the system is admittedly stable
with respect to meshwidth, but deteriorates as
J = "number of subdomains" grows.

3 Spectral coarse space

This is our motivation for introducing a coarse
space correction. Denote Vj

h := {v|Γj , v ∈ Vh}
and Vh = V1

h × · · · × VJ
h. Let ψj ∈ V̇j

h satisfy

ψ1 + · · ·+ ψJ = 1, and de�ne D : Vh → V̇h by

D((uj)
J
j=1) := ( Πh(ψjuj) )J

j=1

where Πh is the Lagrange interpolator on Vh.
Let hT (x) := |τ |1/(d−1) for x ∈ τ and τ any cell
of the triangulation T , and de�ne the operator
B′ : Vh → V∗h by

〈B′(u),v〉 :=
∑J

j=1

∫
Γj
hT ∇Γuj · ∇Γvj dσ.
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Given a parameter Λ > 0 to be �xed heuristi-
cally, our coarse space V0

h ⊂ Vh is de�ned by

V0
h := span{ RD(v) ∈ Vh | ∃λ > Λ

such that D∗BDv = λB′v }

Since both B and B′ are subdomain-wise block
diagonal, this eigenvalue problem can be solved
in parallel. Next set Wh := V0

h ×Vh and de�ne
Bw : Wh →W∗h and Rw : Wh → Vh by

〈Bw(u),v〉 :=
∑J

j=0〈A(uj), vj〉
Rw(u) := u0 + · · ·+ uJ

Our two level preconditionner is then given by
RwB−1

w
R∗
w
.

4 Condition number estimates

We provide a complete analysis of this precondi-
tionner. First consider the Sobolev-Slobodecki
norm

‖u‖21/2,Γ :=

∫

Γ×Γ

|u(x)− u(y)|2
|x− y|d dσ(x,y)

for all u ∈ H1/2(Γ), and de�ne the condition
number of A with respect to this norm

κA := supW (A)/ inf W (A)

W (A) := {〈A(u), u〉
‖u‖21/2,Γ

, u ∈ H1/2(Γ) \ {0}}

Finally we also need to de�ne

cB′ := sup
v∈Vh\{0}

∫
Γ |∇Γv|2hT dσ

〈A(v), v〉 . (2)

Left apart Γ and A, the constant cB′ only de-
pends on the shape regularity of the triangula-
tion T and the polynomial degree k, but not on
the meshwidth h = supΓ hT , see [1, Prop.5].

De�ning cond(RwB−1
w

R∗
w

A) := supS/ inf S,
where S refers to the spectrum of RwB−1

w
R∗
w

A,
we can establish the following bound

cond(RwB−1
w

R∗
w

A) ≤
max(2, 5nχκA)(cB′nµΛ(1 + 5nχκA) + 2)

(3)

The upper bound above only depends on the dis-
cretisation through nχ, nµ and cB′ . Our previ-
ous remarks thus show that this bound depends
neither on the mesh width h nor on the number
of subdomains J.

5 Numerical validation

The �gure below presents strong scaling results
obtained for the case where Ω := (−2,+2)2 \
[−1,+1]2 ⊂ R2 with γ = 0.1. For both one and
two level preconditionners, this picture provides
the number of iterations of a conjugate gradient
solver versus the number of subdomains J for
a �xed problem size dim(Vh). It con�rms the
strong scalability of our two-level precondition-
ner. During the talk, we shall provide further
numerical proofs of the e�ciency of this precon-
ditionning strategy.
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Abstract. This contribution concerns the modelling
of the impact of a far-field underwater explosion shock
wave on a structure, in deep water. An iterative fluid-
structure coupling is developed to solve the problem.
Two complementary methods are used: the Finite Ele-
ment Method (FEM), that offers a wide range of tools to
appreciate the structure response; and the Boundary El-
ement Method (BEM), more suitable to deal with large
fluid domains. The issues addressed are the conception
of a temporal fast BEM procedure and the implementa-
tion of the FEM-BEM coupling.

A frequency-based BEM, accelerated by the Fast
Multipole Method (FMM) and extended to the time
domain by the Convolution Quadrature Method (CQM),
permits an accurate resolution of the Helmholtz equa-
tion, despite the high frequencies considered when deal-
ing with underwater explosions (UNDEX).
Keywords: Boundary Element Method, Fast Multipole
Method, Convolution Quadrature Method, underwater
explosion

Assessing the impact of underwater explosions
on submerged structures (submarines) is an im-
portant naval engineering problem. An under-
water explosion mainly induces two distinct phe-
nomena: a “shock wave” (fast acoustic pertur-
bation) followed by an oscillating bubble of gas
(slow incompressible flow) [4]. Our overall goal
is to create an efficient numerical method that
accounts for the effects of both phenomena on
submerged structures.

This contribution focuses on the interaction
for the shock wave phenomenon. Computational
challenges arise: (a) the relevant structures are
large, and (b) the interaction is fast (lasting a
few milliseconds) and hence involves high fre-
quencies. Strong simplifying assumptions are
often proposed, such as the Doubly Asymptotic
Approximations (DAA) [5]. The goal of this
work is to develop accurate numerical methods
allowing to deal with complex geometries.

Formulation of the problem, radiated and
reflected pressures Consider a structure Ωs

of surface Γ submerged in an infinite fluid do-
main Ωf (see Figure 1). The fluid and the struc-
ture are both at initial rest. At t = 0, a known
spherical wave emerges from an explosion (re-

Fluid: Ωf , c, ρShell

d0

ϕi , pi

Figure 1: Shell submerged in an acoustic medium,
submitted to a far-field UNDEX.

mote point source). At a distance r far from
the explosion, the incident pressure pinc is given
by an empirical law [4]:

pinc(r, t) = pm(r) exp
(
− t− r/c

τ(r)

)
H
(
t− r/c

)
,

where pm(r) and τ(r) depend on parameters of
the explosive material (typically pm ≈ 1 Mpa
and τ ≈ 1 ms), and H is the Heaviside step
function. The velocity potential φ is such that

~v = ~∇φ , p = −ρ∂φ
∂t

, ∆φ− 1

c2
∂2φ

∂t2
= 0 .

A set of structure equations, not specified here,
governs the dynamical response of the structure.
The fluid and structure equations are coupled
by requiring the continuity of the normal veloc-
ity and the normal stress on Γ. For the fuid-
structure interaction (FSI) problem, the poten-
tial φ is decomposed upon three parts [6]:

φtot = φinc + φref + φrad .

The incident field φinc defines the acoustic field
in the absence of the structure. The reflected
field φref is the perturbation that would be ob-
served in the fluid if the structure were mo-
tionless. The radiated field φrad corresponds
to the modification of the fluid state due to
the motion of the structure, which radiates an
acoustic wave into the fluid. On Γ, the boundary
conditions verified by φref, φrad stem from the
required continuity of the normal velocity:
~∇(φref).~n = −~∇(φinc).~n , ~∇(φrad).~n = ~v s.~n,

where ~v s(~x) is the structure velocity at ~x ∈
Γ, and ~n is the outward normal to Γ. The
potentials φref, φrad are to be computed using
the boundary element method.
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Figure 2: Pressure induced on a breathing sphere
surface, submerged in water.

Convolution quadrature based fast bou-
ndary element method The BEM [1, 9] al-
lows to solve 3D linear problems by discretising
only a 2D surface (such as Γ), making it very
suitable for unbounded propagation domains.
The BEM used in this work is accelerated using
the FMM [2, 7]. Combining the CQM [8] and
the Z-transform, a time-marching solution algo-
rithm can be set up using a set of suitably chosen
Laplace-domain BEM solutions. The latter are
computed using the FMM code COFFEE [2,3].

This acoustic CQM-BEM formulation has
been validated on two simple problems: (a) the
acoustic pressure radiated by a breathing sphere
in water, and (b) the scattering of the wave
emerging from an underwater explosion by a
rigid infinite cylinder. Figure 2 shows results ob-
tained for a breathing sphere whose prescribed
normal velocity is of the form

∑
iCi sin(2πfi t),

with the largest excitation frequency fmax =
4.0 kHz being of an order typically observed in
underwater explosion analysis.

Iterative fluid-structure coupling The pro-
blem is solved through an iterative fluid-structure
coupling which alternates solutions for the en-
tire time interval in the fluid and structure do-
mains (Figure 3), making it easier to couple our
CQM-FMM treatment with a commercial FEM
code for the structure part:
• The reflected pressure is computed from

the incident field using the BEM;
• At iteration k = 0, the total field is ex-

pressed as ptot[0] = pref + pinc + 0. A FEM
based procedure is used to compute the
structure motion due to this pressure field;
• The structure motion implies a radiated

BEM-Fluid

Incident pressure

Reflected pressure

FEM-Structure

Coupling interface

Induced
velocity

Nodal
forces

BEM-Fluid

Radiated
pressure

Loop until convergence

Normal
Velocity

Figure 3: Fluid-structure coupling procedure.

pressure prad[k+1] computed with the BEM;
• The total field ptot[k+1] = pref +pinc+prad[k+1]

is updated, and it goes back to step 2 until
convergence (stagnation criterion).

Modified forms of the above basic scheme in-
volving relaxation are also studied. The com-
munication will include preliminary numerical
results.

Closing remarks. This contribution focuses
on computing the effect on a structure of the
“shock wave” created by an underwater explo-
sion. The treatment of the FSI asociated with
the follow-up oscillating bubble phenomenon is
currently being developed. Merging the two phe-
nomena into a single two-scale model will then
permit to address the challenges of the naval
engineering problem motivating this study.

References

[1] M. Bonnet. Boundary integral equation methods in
solids and fluids. John Wiley & sons, 1999.

[2] S. Chaillat, M. Bonnet, and J.-F. Semblat. A multi-
level fast multipole BEM for 3-D elastodynamics
in the frequency domain. Comput. Methods Appl.
Mech. Engrg., 197(49):4233 – 4249, 2008.

[3] S. Chaillat, uma.ensta-paristech.fr/soft/COFFEE/
[4] R. H. Cole. Underwater explosions. Princeton

University Press, 1948.
[5] T. L. Geers and C. A. Felippa. Doubly asymptotic

approximations for vibration analysis of submerged
structures, J. Acoust. Soc. Am. 73:1152–1159, 1983.

[6] M. C. Junger and D. Feit. Sound, structures, and
their interaction. The MIT Press, 2nd edition, 1986.

[7] N. Nishimura. Fast multipole accelerated boundary
integral equation methods. Appl. Mech. Rev., 55:
299 – 324, 2002.

[8] F. J. Sayas. Retarded Potentials and Time Do-
main Boundary Integral Equations. A Road Map.
Springer International Publishing, 2016.

[9] S. Sauter and C. Schwab. Boundary element
methods. Springer, 2010.

Monday, 18:15, GM1 Audimax, Building BA



170 Minisymposia

E�cient FEM solution of exterior wave propagation problems with weakly enforced

integral non re�ecting boundary conditions

Silvia Falletta1,∗

1Department of Mathematical Sciences, Politecnico di Torino, Torino, Italy
∗Email: silvia.falletta@polito.it

Abstract

We consider waves scattered by rigid bodies and
propagating in 2D unbounded domains. We pro-
pose a numerical method that approximates the
solution using computations only in an interior
�nite domain, bounded by an arti�cial bound-
ary B. Transmission conditions between the in-
terior domain, discretized by a FEM, and the
exterior one, which is reduced to the boundary
B via a BEM, are imposed weakly using a mor-
tar approach. The main advantage of this ap-
proach is that non matching grids can be used
at the interface B of the interior and exterior
domains. This allows to exploit the higher ac-
curacy of the BEM with respect to the FEM,
which justi�es the choice of the discretization
in space of the BEM coarser than the one in-
herited by the spatial discretization of the �nite
computational domain.

Keywords: boundary element method, �nite
element method, non re�ecting boundary con-
ditions, non matching grids.

1 Introduction

LetOe = R2\O be the complement of a bounded
rigid obstacle O ⊂ R2, having a smooth bound-
ary Γ. We consider the following exterior wave
propagation problem:





utt(x, t)−∆u(x, t) = f(x, t) inOe × [0, T ]

u(x, t) = 0 onΓ× [0, T ]

u(x, 0) = u0 inOe
ut(x, 0) = v0 inOe.
To solve it by means of a �nite element method,

we truncate the in�nite external domain by an
arti�cial boundary B, de�ned by a smooth curve.
This boundary divides Oe into two open sub-
domains: a �nite computational domain Ωi, which
is bounded internally by Γ and externally by B,
and an unbounded domain Ωe = R2 \ Ωi ∪ O.
We assume that the data are locally supported
and that the arti�cial boundary B is chosen in
such a way that their supports are included in

Ωi. Then, the above problem can be split into
two problems: a problem set on the interior do-
main




uitt(x, t)−∆ui(x, t) = f(x, t), inΩi × [0, T ]

ui(x, t) = 0, onΓ× [0, T ],

ui(x, 0) = u0 inΩi

uit(x, 0) = v0 inΩi.

and a problem set on the exterior one





uett(x, t)−∆ue(x, t) = 0, inΩe × [0, T ]

ue(x, 0) = 0 inΩe

uet (x, 0) = 0 inΩe.

Denoting by λi = ∂niu
i and λe = ∂neu

e, ni and
ne being the unit normal vectors on B point-
ing outward of Ωi and Ωe, respectively, the two
problems are coupled by the conditions ui = ue

and λi + λe = 0 on B. It is known that the
solution ue in Ωe can be represented by

ue(x, t) = Vλe(x, t)−Kue(x, t), (1)

where

Vλe(x, t) =

∫ t

0

∫

B
G(x−y, t− τ)λe(y, τ)dBydτ

Kue(x, t) =

∫ t

0

∫

B
∂nd

G(x−y, t−τ)ue(y, τ)dBydτ,

are the single and double layer integral opera-
tors; G(x, t) = H(t − ‖x‖)/(2π

√
t2 − ‖x‖2) is

the fundamental solution of the wave equation
(being H(·) the Heaviside function). We intro-
duce the spaces

V i = H1
0,Γ(Ωi) = {u ∈ H1(Ωi) : u = 0 onΓ},

V e = H1/2(B), Λ = H−1/2(B),

and, for any w ∈ H1(Ωi), we denote by γBw its
trace on B, which belongs to H1/2(B). Then,
introducing the bilinear form

a : H1(Ωi)×H1(Ωi)→ R
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a(v, w) =

∫

Ωi
∇v(x) · ∇w(x)dx,

and denoting by (v, w)Ωi =
∫

Ωi v(x)w(x)dx the
L2(Ωi) scalar product, we write the weak for-
mulation of the coupled problem as follows: for
any t > 0, given f(t) ∈ L2(Ωi), �nd ui(t) ∈ V i,
λi(t) ∈ Λ, ue(t) ∈ V e, λe(t) ∈ Λ such that for
all vi ∈ V i, ve ∈ V e, µi ∈ Λ and µe ∈ Λ





d2

dt2
(ui, vi)Ωi + a(ui, vi)− 〈λi, γBv

i〉 = (f, vi)Ωi

〈µe,Vλe〉 − 1
2〈µe, ue〉 − 〈µe,Kue〉 = 0

〈λi + λe, ve〉 = 0

〈µi, γBu
i − ue〉 = 0.

where 〈·, ·〉 denotes the duality pairing between
andH−1/2(B) andH1/2(B). Note that the trans-
mission conditions on B, obtained as the trace of
(1) on B (see [1]), are enforced in a weak form.

For the numerical approximation of the pro-
posed method, we present a full discretization
by �nite elements in space and a Crank-Nicolson
time stepping scheme in the interior of the com-
putational domain. For the discretization of the
NRBC, we construct a numerical scheme which
is based on a second order Lubich discrete con-
volution quadrature formula for the discretiza-
tion of the time integral, coupled with a classical
Galerkin method in space. We remark that the
spatial discretization of the NRBC is decoupled
from that of the FEM.

Example We consider the scattering of a wave
by a circular obstacle of radius 2. The wave
propagates radially, starting from an initial con-
�guration u0(x, y) = e−5((x−5)2+y2), with null
initial velocity and without external source. The
arti�cial boundary B is the circle of radius R =
8. We compare the solution uS , obtained by us-
ing the standard (strong) FEM-BEM coupling,
with the solution uW obtained by using the new
proposed weak coupling method. The former
has been obtained by a decomposition of Ωi into
nT = 41554 triangles, which induces a non uni-
form decomposition of B into M i = 408 seg-
ments. The solution uW has been obtained by
using the same triangular decomposition of Ωi,
and usingM e = 128 subintervals of equal length
for the decomposition of the arti�cial boundary
B. The time interval [0, 20] has been decom-
posed into N = 256 time steps. In Figure 1, left
plot, we show the comparison of the reference

solution uBEM (obtained by solving the associ-
ated BEM) with the solutions uS and uW at the
point P ≈ (8, 0), and the associated absolute er-
rors. In the right plot, we show the behavior of
uS and uW on B for t ∈ [0, 20]. In Figure 2
we show the snapshots of the solution uW at
some time instants. We will show that the

Figure 1: Behavior of the solution at P ≈ (8, 0)
and associated absolute error (left plot). Plot of the
solutions uS and uW at the arti�cial boundary in
the time interval [0, 20] (right plot).

Figure 2: Snapshots of the solution uW at di�erent
times.

new approach allows to reduce signi�cantly the
computational cost of the NRBC, preserving the
accuracy. One further advantage is that the use
of di�erent spatial discretizations for the FEM
and the BEM is allowed. For example, the use
of wavelet type discretization for the BEM will
allow sparse representation of the matrices as-
sociated to the integral operators, thus reducing
further the computational cost (see [2]).
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Abstract

The acoustic wave equation is solved in time
domain with a boundary element formulation.
The time discretisation is performed with the
convolution quadrature method and for the spa-
tial approximation standard elements and a col-
location schema is applied. In the interest of
increasing the efficiency of the boundary ele-
ment method a low-rank approximation such
as the adaptive cross approximation is carried
out. We discuss about a generalization of the
adaptive cross approximation to approximate a
three-dimensional array of data, i.e. usual bound-
ary element matrices at several complex frequen-
cies. First results are presented for some simple
problems.
Keywords: BEM, generalised ACA, CQM

1 Problem setting

We consider the time domain boundary element
method for the homogeneous wave equation with
vanishing initial conditions and given Dirich-
let and/or Neumann boundary conditions. The
convolution quadrature method (CQM) is used
for the temporal discretization and collocation
for the spatial discretization. Essentially, the
CQM requires to establish boundary element
matrices of the corresponding elliptic problem in
Laplace domain at several complex frequencies
(usually as much as time steps). Consequently,
we get an array of system matrices. This ar-
ray of system matrices can be interpreted as a
three-dimensional array of data which we want
to approximate by a data-sparse representation.

2 Generalization of the adaptive cross
approximation

The idea of a generalization of adaptive cross
approximation has been proposed in [1] and is
sketched in Algorithm 1. As discussed above, we
generate a three-dimensional array of data Cij,k.
The first two indices corresponds to the spatial
discretization. One is related to the collocation

Algorithm 1 idea generalized ACA
For ` = 1, 2, 3 . . .

1. compute face H` via low-rank approxima-
tion h`ij = Cij,k`

2. define pivot position

(i`, j`) := arg max
i,j

|h`ij |

3. compute fiber F ` f `k = Ci` j`,k

Stop if ‖H̃`‖F ‖F̃ `‖F ≤ ε‖S`‖F

point and the other to the basis function. The
third index of the 3D array corresponds to the
complex frequencies from the CQM. The algo-
rithm starts by assembling the system matrix at
an arbitrary chosen but fixed frequency. Let the
corresponding index be k`. This system matrix,
which we call face H, is compressed by the stan-
dard adaptive cross approximation. Therefore,
we have to decompose the system matrix into
a hierarchical scheme first. This hierarchical
structure is based on the usual geometrical con-
siderations and used for all further assembled
faces. After the low-rank approximated face is
determined, we have to define the position of
the pivot element. In principle, the maximum
entry of the matrix determines the pivot posi-
tion, where h`ij denotes the entries of the current
face. Regarding to this position we compute the
fiber F , an array with all frequencies where the
indices related to the spatial discretization are
fixed, i.e. one matrix entry at all frequencies for
a distinct collocation point and shape function
is assembled, f `k. In this way the first cross with
an approximated face and a fiber is generated.
An schematic sketch of the fiber and face can
be found in Fig.1. For the next cross, the face
or the fiber has to be updated. At further iter-
ations the residual of the face and of the fiber
has to be determined and based on this residual
the position of the pivot element is computed.
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k`

i`

j`

F

H

i`. . . collocation point
j`. . . basis function
k` . . . frequency

Figure 1: Sketched idea of generalized ACA

The algorithm terminates successfully if a suit-
able stopping criterion with a given accuracy ε is
satisfied. The current approximation is defined
as S` =

∑`
d=1 H̃

d ⊗ F̃d .
The crucial task to determine the pivot posi-

tion is how to find the maximum entry in a low-
rank approximated face in an appropriate time
for admissible blocks, i.e. ACA approximated
blocks. Certainly, it is no option to compute the
matrix entry of face H by multiplying the low-
rank matrices. Instead, we define the index i or
j by the maximum of the absolute row sum of
the low rank matrices, respectively. To get the
idea, let assume the block A is approximated
by the truncated singular value decomposition
A ≈ Ar = UΣVH , where the low-rank matri-
ces U and V consists of orthonormal columns.
In this caes, we define the index i of the pivot
position by

arg max
i,j

|aij | = arg max
i,j

r∑

k=1

|uikσk| |vjk|︸︷︷︸
≤1

≤ arg max
i

r∑

k=1

|uikσk|

and, analogously, for index j. This concept is
based on the fact that the columns of U and
V are orthonormal. To adopt this to an ACA
approximated block, a QR-decomposition of the
low-rank matrix U and V is performed

A ≈ Ar = UVH = QU (RUR
H
V )QHV

= QU ǓΣ̌V̌HQHV = UΣ̌V
H

and, secondly, we use the SVD for the smaller
inner matrix RUR

H
V . Finally, we end up with

low-rank matricesU andV where their columns
are orthonormal. This allows to use the above
described selection of the pivot position. Addi-
tionally, this process makes an implicit recom-
pression of the block by the SVD of the inner
matrix product.

0 1 2 3 4 5 6

10−7

10−5

10−3

10−1

101

iteration `

‖C
−
S`
‖2 F

face approx.
NO APPROX
SVD – ε = 10−4

ACA – ε = 10−4

Figure 2: Approximation error in the Frobenius
norm versus frequency

3 First result

How the introduced algorithm performs is shown
by a numerical experiment. In this example,
the three-dimensional array of data C is com-
puted by assembling the single layer operator
at 11 different frequencies given by the CQM.
The squared error of the approximation in the
Frobenius norm is plotted in Fig. 2 against the
iteration counter of the algorithm. Note, the
iteration number corresponds to the number of
necessary complex frequencies. The accuracy of
the generalized ACA is chosen as ε = 10−4. We
perform the numerical experiment first without
any low-rank approximation of the face, then
with an approximation by a singular value de-
composition and, last, by adaptive cross approx-
imation. The accuracy of the low-rank approxi-
mated face is set as well to ε = 10−4 for both ap-
proximation methods. For all three alternatives,
the stopping criterion is satisfied after five iter-
ations. At the fifth iteration, the ACA approx-
imated face exhibits a slightly different approx-
imation error. This indicates that the low-rank
approximation error of the faces has already an
effect. Nevertheless, it may be concluded that it
is sufficient to evaluate the single layer operator
only at a few instead of all frequencies and still
a sufficiently quality of the data is maintained,
resulting in a reduction of the computation time
and the memory consumption.
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Abstract

For Runge-Kutta convolution quadrature (CQ),
the convergence rate is usually analyzed by s-
explicit bounds of the convolution symbol in the
Laplace domain. When looking at scattering
problems, this does not tell the whole story, as
dividing by s has larger impact on the observed
rate. We provide an explanation and a proof for
such phenomena.

Keywords: Convolution Quadrature, Wave equa-
tion, Boundary Element Methods

1 Introduction

When discretizing by Runge-Kutta convolution
quadrature, the expected convergence rate is usu-
ally determined by bounds of the form

|K(s)| ≤ C |s|µ , (1)

where K(s) is the Laplace transform of the con-
volution kernel, µ ∈ R and s is taken in a com-
plex sector in the right half-plane. The conver-
gence rate is then given as min(q + 1 − µ, p),
where q and p are the stage order and classical
order of the underlying Runge-Kutta method re-
spectively.

When considering boundary element meth-
ods, such estimates may fail to be sharp. Namely,
for the Dirichlet-to-Neumann map, the estimates
read

‖DtN‖H1/2→H−1/2 ≤ C |s|µ−1 .

When looking at DtN and s−1 DtN, one would
therefore expect rates q and q + 1 respectively.
But the numerical results show a di�erent pic-
ture, see Figure 1. Even though the estimates
seem sharp for the DtN operator, the integrated
version shows an increased rate of q+ 2 instead.

We give an explanation for this phenomenon
based on a decomposition of the Dirichlet-to-
Neumann map. Similar techniques can also be
used to derive sharp bounds for the Neumann
problem of the wave equation, which are not
covered by direct bounds of the Neumann-to-
Dirichlet map of the form (1).

2 Runge-Kutta convolution quadrature

Runge-Kutta CQ was introduced by Lubich and
Ostermann in [1] to approximate convolution in-
tegrals of the form

K(∂t)g :=

∫ t

0
k(· − τ)g(τ) dτ,

where the symbol K(·) is the Laplace transform
of the convolution kernel k.

The approximation is computed by

K(∂kt )g :=

∞∑

n=0

Wng(· − tn + k c),

where the weightsWj can be computed by sam-
pling K at appropriate points, c are the Runge-
Kutta nodes and k > 0 is the step size.

State of the art for analyzing CQ approxi-
mations is the following result:

Proposition 1 ( [2]) Let g be su�ciently smooth.

Assume that K satis�es

|K(s)| . |s|µ1 for Re(s) ≥ σ0 > 0,

|K(s)| . |s|µ2 for Arg(s) ∈ (−π/2 + δ, π/2− δ).

Then the error of the CQ-approximation can be

bounded by:

∣∣∣K(∂t)g −K(∂kt )g
∣∣∣ ≤ C(g)kmin(q+1−µ2,p).

3 The Dirichlet Problem

Let Ω− ⊆ R2 be a smooth bounded domain or a
polygon with boundary Γ. We start by consid-
ering the sound-soft scattering problem. Given
a function g : R → H1/2(Γ) with g(−t) = 0,
t > 0 we solve

ü(t) = ∆u(t) in R2 \ Ω−, t>0, (2a)

u(t)|Γ = g(t) for t > 0, (2b)

u(t) = 0 for t ≤ 0. (2c)

We are interested in discretizing the time do-
main Dirichlet-to-Neumann map g 7→ ∂nu. Us-
ing the frequency-domain operator DtN(s), and
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convolution quadrature, we approximate λ =
∂nu = DtN(∂t)g by two schemes,

λk := DtN(∂kt )g and λ̃k := J(∂kt ) DtN(∂kt )ġ.

where J(s) := s−1 and J(∂kt ) is the (discrete)
integration operator.

Theorem 1 Let g be su�ciently smooth, then

∥∥∥λ(tn)− λk(tn)
∥∥∥
H−1/2

. C(g)kq,
∥∥∥λ(tn)− λ̃k(tn)

∥∥∥
H−1/2

. C(g)kmin(q+2,p).

C(g) depends on the time tn and on the data g.

This result is surprising in the light of Propo-
sition 1, as the convolution symbol only di�ers
by one power of s.

3.1 The underlying mechanism

We work in the frequency domain. For the (mod-
i�ed) Helmholtz equation, the scaled Dirichlet-
To-Neumann map can be decomposed into

s−1 DtN(s) = s−1(DtN(s) + s I)− I

=: s−1 DtI(s) + I .

Since the identity operator does not depend on
s, it is reproduced exactly by CQ. The DtI map
has improved bounds in the frequency domain:

Theorem 2 For s ∈ C+ with Arg(s) ∈ (−π/2+
δ, π/2− δ) and all g ∈ H1(Γ):

‖DtI(s)g‖H−1/2(Γ) ≤ C ‖g‖H1(Γ) (3)

with constant C > 0 independent of s.

For the case of the half-plane and the unit sphere,
a similar estimate to (3) was proved in [3] and
conjectured for general convex scatterers.

Our proof of (3) relies on three observations:

1. In 1d, the DtN map is given by g 7→ −sg.

2. The bad s dependence of DtN is mainly
caused by boundary layers.

3. Boundary layers are essentially a 1d phe-
nomenon, so observation 1 applies.

For the Neumann problem, similar observa-
tions can be made for the Neumann-to-Dirichlet
map:

NtD(s) = (NtD(s) + s−1 I)− s−1 I .

The s−1 I part corresponds to a discrete inte-
gral which is realized with order p by the RK-
method. The Neumann-to-Impedance map also
has more favorable bounds than the NtD map.
We note the additional complication, that the
Neumann-to-Impedance map only maps toH1/2

if the Neumann data is also at least H1/2. This
discrepancy needs to be taken care of by an ad-
ditional decomposition step of the data into a
smooth part and remainder.

4 Numerical example

We compare the approximations λk and λ̃k for
a model problem on an L-shaped domain. To
discretize, we use a 5-stage RadauIIa method
and prescribe the exact solution as a travelling
wave. Figure 1 shows the predicted rates, as the
RK-method has stage order q = 5.
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−
1
/
2
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rr
or
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Figure 1: Convergence using 5-stage Radau IIa
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Abstract

An overview of the Convolution Quadrature
Boundary Element Method (CQBEM) for solv-
ing the wave equation will be presented. We
discuss the computational issues arising when
wave problems containing broadband frequency
content are of interest. A hybrid model is pro-
posed to address these issues, where the lower
frequency content will be modelled via the CQBEM
which provides an explicit connection to the fre-
quency content of the wave modelled via the Z-
transform, making it the ideal candidate for a
hybrid scheme. The higher frequency content
will be modelled using a statistical, or energetic,
approach such as ray tracing.

Keywords: Convolution Quadrature, Bound-
ary Element Method, Wave equation, Ray trac-
ing, Hybrid method.

1 Introduction

Numerical wave equation solvers share the lim-
itation that high frequency content in the time
domain signal requires a discretised model con-
taining many degrees of freedom. The computa-
tional cost depends on the choice of method and
the number of spatial dimensions to be mod-
elled [1]. A hybrid model is proposed to ad-
dress these issues at high frequencies, where the
lower frequency content will be modelled via the
CQBEM and the higher frequency content will
be modelled using a statistical approach. The
CQ approach was developed by Lubich [2,3] and
provides a simple way to obtain a stable time
stepping scheme using the Laplace transform of
the kernel function. Since then, the CQ method
has made signi�cant progress in time-dependent
wave simulation methods including high-order
Runge Kutta implementations for a variety of
wave equations [4, 5]. It possesses favourable
stability properties due to an implicit regulariza-
tion in time. For the discretisation of boundary
integral equations, its main advantage is that it
avoids having to evaluate the convolution ker-

nel in the time domain and instead solving a
simpli�ed system of frequency domain bound-
ary integral equations in the spatial region [6].
We employ a direct BEM for the spatial discreti-
sation. Other examples of work on the CQBEM
for solving a range of problems can be found
in [7] as well as for a Neumann BVP, such as the
one considered here, in [8]. For high frequen-
cies in the CQBEM we require a larger num-
ber of boundary elements to model the rapidly
oscillating waves. The hybrid method will be
more computationally e�cient as we can solve
in terms of phase-space density, which is fre-
quency independent [9]. At higher frequencies,
wave problems in industry also exhibit a greater
sensitivity to small uncertainties in the models,
meaning a hybrid method with less sensitivity
to these uncertainties is of more interest to en-
gineers or manufacturers.

2 Solving the wave equation via CQBEM

Let Ω ⊂ R2 be a domain with boundary Γ =
∂Ω. We de�ne the following Neumann boundary
value problem for the homogeneous wave equa-
tion as follows

∂2
t u = c2∆u in Ω× (0, T ), (1a)

with initial conditions

u(·, 0) = ∂tu(·, 0) = 0, in Ω (1b)

and boundary conditions

∂u

∂n̂y
= h on Γ× (0, T ) (1c)

for some T > 0, where n̂ is the unit outward nor-
mal to the boundary at y ∈ Γ. The solution can
be calculated by reformulating the above bound-
ary value problem into an integral equation via a
direct formulation. The direct method involves
applying Green's identities to derive a bound-
ary integral representation of the wave equation
in space and time, which takes the form of a
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convolution integral in time. The main advan-
tage of using a direct method is that our so-
lution is expressed in terms of physical quanti-
ties. The CQBEM is then applied to rewrite the
space-time boundary integral equation as a sys-
tem of Helmholtz boundary integral problems
for N complex wave numbers kl = iγ(zl)

c∆t , where

zl = λe−2πil/N , l = 0, 1, ..., N − 1, and λ ∈ (0, 1)
is a constant. The function γ(z) = 1

2(z2−4z+3)
is the quotient of the generating polynomials of
the second order backward di�erence formula
applied to discretise in time [4]. The system
of Helmholtz equations is then given by

−1

2
ũl(x)+

(∫

Γ

∂Gk
∂n̂

(‖x− y‖ , kl) ũl(y)dΓy

)
= g̃l(x),

(2)
for l = 0, 1, ..., N − 1. Here Gk(r, s) is the free
space Green's function for the Helmholtz equa-
tion and g̃l(x) is calculated using the z-transform

g̃l(x) =

N−1∑

n=0

λngn(x)e−2πiln/N , (3)

where

gn(x) =

∫ tn

0

∫

Γ
k(‖x− y‖ , t− τ)h(y, τ)dΓydτ.

Here k(r, s) is the fundamental solution of the
wave equation in R2. The solution to (1a) can
then be approximated via a trapezoidal method
for the inverse z-transform

ul =
λ−l

N

N−1∑

j=0

ũje
2πilj/N . (4)

3 Transformation to phase-space densi-

ties and outlook

We aim to develop a hybrid method that is ca-
pable of e�ciently modelling waves with broad-
band frequency content. At high frequencies,
the Helmholtz solution ũ may be well approxi-
mated in terms of the phase φ and amplitude A
along a ray, which can be provided via a high
frequency energy method such as ray tracing [9].
We therefore require a direct link between the
Helmholtz equation and a phase-space density
function obtained from the ray tracing method.
In particular, one can express the phase-space
density ρ on Γ in the form

ρ(s, p) =

M∑

m=1

A2
m(s)δ

(
p− dφm

ds

)
, (5)

where s is the arc-length boundary parameter,
p is the tangential slowness and the sum corre-
sponds to a superposition of plane waves.
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Abstract

The primary focus of our research is on the weak
and strong coupling of two advanced Computa-
tional Aero-Acoustic (CAA) methods for per-
forming efficient fan tone shielding simulations
of aerial vehicles with unconventional engine in-
take installations. In this work the Fast Mul-
tipole Boundary Element Method (FM-BEM)
which can solve the surface integral based on
the Kirchhoff-Helmholtz wave equation for large
geometries [1, 2] (e.g. a full scale aircraft) is
combined with a volume resolving Discontinu-
ous Galerkin (DG) method which is very well
suited for the region around a jet inlet where
strong mean flow gradients are present. [3] Weak
coupling results are presented for a generic test
problem. The extension to a strongly coupled
method utilising the Möhring-Howe acoustic anal-
ogy is discussed.
Keywords: Discontinuous Galerkin, Fast Mul-
tipole Boundary Element Method, acoustic shield-
ing, acoustic scattering

1 Introduction

A high order DG method which solves the sys-
tem of Acoustic Perturbation Equations (APE)
[4] has been converted into the frequency do-
main to cope with the frequency domain formu-
lation of FM-BEM. Solving a sound propaga-
tion problem for a full-scale aircraft with vol-
ume resolving CAA methods requires substan-
tial high-performance resources as for today. To
some extent, computational effort can be re-
duced by placing an integration surface in the
linear region and applying the Ffowcs Williams
and Hawkings (FW-H) method for determining
the far-field pressure. However, such trick can
only produce a meaningful acoustic solution for
isolated components where acoustic scattering
by other bodies is of minor importance. In con-
trast, DG / FM-BEM coupling does not only ac-
count for acoustic scattering and shielding but
the FM-BEM can also enforce global boundary
conditions on the DG sub-domain as “feedback”.

As a result, such hybrid approach has a much
reduced turnaround time in comparison to solv-
ing the wave propagation in the entire domain
yet it should be capable of producing a solution
of similar quality.

2 Boundary Element Method
BEM simulations are performed using the DLR
FMCAS code (Fast Multipole Code for Acoustic
Shielding). This section introduces the reader to
the fundamental physical concept of the method.
Starting from the Helmholtz equation for pres-
sure,

(O2 + κ2)p(x) = −f x ∈ Ω+ (1)

where Ω+ is the exterior CAA domain, f is the
forcing term, κc = ω where c is the speed of
sound and p(x) is the acoustic pressure at the
far-field point x, we follow the derivation in [1]
for obtaining the boundary integral equation:

ξ(x)p(x) =

∫

∂Ω

p(y)
∂G(x, y)

∂ny
dΩy

− iωρ0

∫

∂Ω

G(x, y)vf (y)dΩy + pinc(x) (2)

where ξ(x) is a free term coefficient {0, 1/2 or
1}, G is the free field Green’s function, vf is
related to the fluid particle velocity expressed
via the normal derivative of pressure at y: vf =

1
iωρ0

∂p(y)
∂ny

and pinc =
∫

Ω−Q(z)G(x, y)dΩz is the
incident pressure term which accounts for the
source strength Q(z) inside the domain, Ω−.

In a classic BEM approach the surface pres-
sure p(y) is computed from an incident source.
However, if part of the surface already has a
solution of p(y) and ∂p(y)

∂ny
(e.g. interpolated

from DG) then it can be treated as a perme-
able source surface. Hence, by solving a scatter-
ing problem p(x) can be obtained following the
standard procedure.

The FM-BEM represents a fast summation
method for the quadrature of the integrals of the
boundary integral equation reducing the num-
ber of operations for each integral evaluation
from O

(
N2
)
to O (N logN), where N denotes

the number of surface elements.
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3 Surface sources from DG

For acoustic sources definition on the coupling
surface we rely on the DISCO++ (Discontinuous
Galerkin) code developed by the DLR. The ini-
tial step consists of the wave propagation in a
highly non-uniform flow. The DG pressure so-
lution at the radiation surface becomes part of
a broader BEM surface representing the entire
geometry. Eventually, based on the partly given
surface solution, the entire BEM problem can be
solved for the remaining unknowns.

The coupling concept may be demonstrated
by considering a simple monopole scattering prob-
lem. Figure 1 shows the triangulated BEM ge-
ometry which consists of two parts: a solid rect-
angular shield and a protruded permeable source
surface. Both parts feature an opening but to-
gether form a common watertight surface.

Figure 1: Triangulated BEM geometry: Total
p{Re} solution computed by the FMCAS code.

For concept validation the above solution is
compared to a classic incident-scattering prob-
lem of a distributed monopole source placed in
front of the same rectangular shield. For consis-
tency, the spherical FMCAS source is located at
the origin of the DG monopole with its radius
matching the half width of the original source.
Figure 2 shows the noise footprint comparison
on a plane which is placed 6 shield widths below
the source region. For comparison, the ampli-
tude of the monopole source has been rescaled
to unity and a good agreement between noise
shielding contours is reported.

If a source surface is located in the vicinity
of a solid body, in some cases, its scattering may
have the influence on the DG solution. There-
fore, two-way coupling is necessary to appropri-
ately satisfy the boundary conditions.

Figure 2: Noise footprint: the SPL contour ob-
tained with the DG source surface (a) and with
the reference monopole source (b).

4 Two-way coupling
The feedback information arriving to the DISCO++
boundary ghost points must contain a full ve-
locity matrix in addition to pressure. Since this
missing information cannot be recovered directly
from the FMCAS solution, the idea is to reformu-
late the BEM equations in terms of the acous-
tic potential, B′. [5] Then one can apply the
Möhring-Howe acoustic analogy which by defi-
nition, also, accounts for the mean flow.

B′ =
p′

ρ0
+ v0 · v̂′ ∇B′ = −iωv̂′ (3)

The gradient of the acoustic potential is eval-
uated as part of the FMCAS solution for the re-
quired boundary coordinates. As soon as the
DG solution converges the data is passed back
to FMCAS. The iterative process repeats until the
residual is sufficiently small.∗
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Abstract

A non-empirical approach for airframe noise sim-
ulation is realised by coupling synthetically mod-
elled turbulence and a fast multipole boundary
element method. The approach is applied to
and validated against a benchmark case for trail-
ing edge noise.

1 Introduction

Broadband noise from interaction of turbulent
flows with surfaces plays an important role for
many technical applications, such as aircrafts.
For their acoustic assessment and for low noise
aircraft design research and industry invest in
the development of numerical, non-empirical sim-
ulation approaches that accurately capture all
important flow effects. However, the challenge
for this simulation approach is to resolve the
very small turbulent structures and the aircraft
parts of all sizes. This requirement results in a
numerical setup with a huge number of degrees
of freedom. An idea to minimize this number
is achieved by the presented strategy that com-
bines modelled, synthetic turbulence, i.e. sound
sources, in the region of interest and a fast mul-
tipole boundary element method for sound prop-
agation [1]. Both algorithms as well as their cou-
pling interface are designed to be fast, accurate
and efficient and scale with O (N logN).

2 Numerical Approach

Sound wave propagation through a homogeneous
medium at rest can be described by the Helmholtz
equation for the pressure p̂ in frequency domain

(
∇2 + k

)
p̂x = −f̂ , x ∈ Ω (1)

where k is the wave number and −f̂ defines
an arbitrary source. Using the free-field Green’s
function G0 for eq. (1) and integration over the
domain Ω leads to the Kirchoff-Integral

p̂x −
∫

∂Ω

[
p̂y
∂G0

∂ny
−G0

∂p̂y
∂ny

]
dΩy = p̂V , (2)

where the subscripts indicate observer (x)
and surface location (y). p̂V =

∫
∂Ωy
−f̂G0dΩ

accounts for some volume contribution, which
is not present in the later problem statement
and thus neglected.

Note, the solution of eq. (2) can be contam-
inated if k is an eigenvalue of the inner prob-
lem of surface ∂Ω. However, a unique solution
can be enforced by the proposal of Burton-Miller
(BM) which entails the application of the linear
operator Bx = 1+α ∂

∂nx
to eq. (2). The coupling

constant α for a sphere might be α = i
k .

Eq. (2) allows coupling with surface sources
using a von Neumann boundary condition

∂p̂y
∂ny

= Yyp̂y + Vy (v̂n) (3)

with wall admittance Yy and some surface
excitation Vy (v̂n) that according to the split-
ting theorem [4,5] is a function of the wall nor-
mal velocity v̂n. Application of the boundary
condition (3) and the BM operator to eq. (2)
leads to

1

2
Bxp̂x −

∫

∂Ω

[
p̂y

∂

∂ny
− Yy

]
BxG0dΩy =

∫

∂Ω
Vy (v̂n)BxG0dΩy (4)

Turbulence interaction with the surface can
be established by coupling acoustic and incom-
pressible velocity v̂n,a = v̂n,i. Latter is induced
by turbulence vortices Ω′ and can be obtained
by solving a Poisson equation for the stream
function Ψ′

v̂n,i = F
{
n ·
(
∇×Ψ′

)}
, ∇2Ψ′ = −Ω′. (5)

Here, n is the wall normal vector and F in-
dicates the Fourier transform. The turbulence
vorticity Ω′ is synthesised using the fast random
particle mesh (FRPM) method which provides
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spatio-temporal resolved turbulence that fulfills
turbulence statistics from a RANS solution.

Discretisation of the surface integrals of (4)
into surface elements yields a boundary element
formulation which can be written as an equa-
tion system Bp̂ = −q̂. This system is solved
using an iterative solver such as GMRES. Since
the size of the matrix B depends quadratically
on the number of elements the method becomes
inefficient for very large problems. But, imple-
mentation of a Fast Multipole Method (FMM)
splits the matrix B into near- and far-field sig-
natures and reduces the number of matrix vector
multiplication for the iterative solver. A more
detailed description of the fast multipole code
for acoustic scattering (FMCAS) is given in [2].

3 Application

The interaction of a turbulent flow with a sur-
face is studied for a turbulent boundary layer
trailing edge noise problem. A large validation
data base is given by the BANC-benchmark for
a flow around a NACA0012 airfoil [3]. The bench-
mark case#1 describes an incompressible flow of
flow Mach number Ma = 0.1664 at an angle of
attack of α = 0◦, see top of Figure 1.

Figure 1: Simulation setup (top); Ω2 iso-surface
/ Slice across source domain displaying Ω3 /
Surface excitation Vy (bottom).

The steady flow state is computed by the
DLR TAU code that solves the RANS equations
using a k-ω Menter SST turbulence model. The
obtained 3-dimensional mean flow data and tur-
bulence statistics are interpolated to acoustic

source region, displayed in Figure 1, and used
for the reconstruction of turbulence. The air-
foil is extruded to a wing and discretised for a
acoustic resolution of fmax = 5kHz. Figure 1
shows the surface excitation Vy for a single fre-
quency of f ≈ 800Hz. An acoustic simulation
is performed for each single frequency of the en-
tire Fourier transformed excitation signal. This
acoustic signal is propagated to the far-field and
evaluated at an observer point 2.5 chord lengths
underneath the trailing edge of the airfoil.

Figure 2: Far-field cylinder with sound pressure
level contours (top); Acoustic spectrum at ob-
server point underneath trailing edge (bottom).

Figure 2 shows the obtained spectrum for
sound pressure level and compares it to a val-
idated reference simulation of the benchmark
case performed by the DLR code PIANO [3].
The FRPM/ FMCAS spectrum matches the ref-
erence spectrum very well for the location of
the maximum and high frequency trend. This
results indicate promising capabilities for full-
scale simulations of large, complex problems.

References

[1] N. Reiche et al. 23rd AIAA/CEAS Aeroa-
coustics Conference (2017-3515)

[2] M. Lummer et al. 19th AIAA/CEAS
Aeroacoustics Conference (2013-2096)

[3] M. Herr et al. 21st AIAA/CEAS Aeroa-
coustics Conference (2015-2847)

[4] M.S. Howe Journal of Sound and Vibration
225 (1999), pp. 211–238.

[5] M. E. Goldstein, Aeroacoustics, 1st edition,
McGraw-Hill International Book Company,
New-York, 1976.

Tuesday, 17:15, GM1 Audimax, Building BA



182 Minisymposia

A BEM-FEM Model for Vibrations in Soils Caused by Railway Traffic in Tunnels

Holger Waubke1,∗, Wolfgang Kreuzer1, Tomasz Hrycak1, Sebastian Schmutzhard1

1Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria
∗Email: holger.waubke@oeaw.ac.at

Abstract
Railway traffic in tunnels produces vibrations in
the soil. Assuming that the tunnel is straight
and has a constant cross-section the model is
defined in the wave-number domain w.r.t. the
longitudinal direction x. In the current model
the soil is modeled as a horizontally layered lin-
ear elastic anisotropic medium. By a Fourier
transformation in space and time the waves in
the medium are derived in the wave-number do-
main about the horizontal axes x and y. As-
suming a Dirac load the Green’s function is de-
rived in this domain and the element integrals
are solved in the transformed domain. The nu-
merical results have to be transformed from the
wave-number domain to the original domain for
the horizontal axis y. A collocation approach
with linear shape functions is used for the BEM
part in 2.5D.
Keywords: 2.5D approach, anisotropic medium,
FEM-BEM coupling

1 Introduction
Railway traffic in tunnels produces vibration in
the soil that can annoy inhabitants in houses
directly or by secondary airborne noise. Some
mitigation measures e.g. ballast mats and float-
ing slabs can be used to reduce the vibrations
at the source or an elastic foundation of the
houses can be used to reduce the vibrations
in the house. These measures are costly and
therefore a prediction of the needed measures is
needed during the planning phase of the tunnel.
Prediction models used today show differences
of up to 10 dB with respect to the measurements
and are therefore not helpful [1].

A stratification of an isotropic soil is taken
into account by Clouteau [2] using a Floquet
transformation in the longitudinal direction.

2 Highspeed trains
New lines are often build for high-speed trains.
The moving source can be simply introduced
into the model in the frequency wave-number

domain:

ω = Ω − kx · v . (1)

The angular frequency in the moving system is
Ω, ω is the angular frequency for a fixed ob-
server, kx the wave-number in the longitudinal
direction x and v the velocity of the moving
load.

3 Waves in the medium
The solution for the waves in an anisotropic
medium are derived in the frequency wave-num-
ber domain applying the Fourier transformation
with respect to all coordinates in space and in
time [5]. The differential relationships become
simple matrix equation depending on the wave-
numbers kx, ky, kz and the angular frequency
ω.

Assuming no load in a single layer six gener-
alized eigenvalues kz,i and corresponding eigen-
vectors describing the displacements and stresses
can be derived. An inverse Fourier transforma-
tion of the equations for the displacements and
stresses with respect to z leads to equations con-
sisting of complex exponential functions.

The equations for the media of the multiple
layered soil are coupled at the interfaces. Three
equations for the displacements and three equa-
tions for the stresses at the interface can be de-
rived. At the top only three equations for the
stresses can be derived. Adding an isotropic
half-space below the layers setting the three up-
ward traveling waves to zero assures causality
and reduces the number of unknowns to the
number of equations.

If the material axes are rotated with respect
to the global coordinates the stiffness tensor can
be derived by 4 rotations using the cosines be-
tween the normal vectors.

4 Green’s function
So far it was assumed that loads are only al-
lowed at the interfaces. Therefore, an additional
interface is needed in the depth of the Dirac
loading needed for the Green’s function. The
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possibility to add a load in the interior of the
layer is discussed in [4].

5 Boundary Element Method
The difficulty that occurs is the need to inte-
grate the boundary elements with singularities
in the original y, z domain, but the Greens func-
tion is only known in the ky, z domain. The so-
lution of the BEM is to transform the element
integral into the wave-number domain and solve
the element integrals analytically [3]. A con-
stant shape function leads to a sinc function and
a linear shape function gives a derivative of the
sinc function. Only the inverse transformation
to the y domain has to be done numerically.
This function is oscillating and thus the Filon
method is used to demodulate the kernel.

6 Finite elements
Volume elements in 2.5D will be used for the
simulation of the concrete shell of the tunnel
and the superstructure. The element will be
reduced in 2.5D to a flat shell element. Linear
shape functions will be applied for the 3 node
triangle and 4 node quadrilateral elements to
be consistent with the shape functions in the
BEM part. The rail is simulated using a beam
in 2.5D, there the element is reduced to a point
element.

7 Coupling FEM with BEM
The matrices of the FEM and BEM are of me-
dium size in 2.5D. Therefore, direct coupling
for FEM and BEM will be used. A direct solver
seams to be appropriate.

8 Results
First results for the BEM part without FEM are
presented in Fig. 1. The unit load is assumed
to act directly at the base of the tunnel. The
vibrations at the surface are clearly visible. The
parameters are presented in [4].

9 Conclusions
A new model is presented that includes strat-
ification and anisotropy of the soil. The effect
of a fast moving load can also be added to the
model in a simple manner using a simulation in
2.5D. The degrees of freedom of the task are re-
duced using the 2.5D approach and a BEM for-
mulation of the stratified medium. Overall the
memory size needed for the task is small and

Figure 1: Vibrations in the soil caused by a unit
load at the base of the tunnel.

the time for computing the solution can be re-
duced by parallel computing, because the com-
putation can be split up to several tasks. Only
the results have to be collected at the end.
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Abstract

This study considers the stability of the tradi-
tional time domain collocation BIEMs for the
wave equation in 2D. We show that the question
of stability of time domain BIEMs is reduced to
a nonlinear eigenvalue problem related to fre-
quency domain integral equations. We propose
to solve this eigenvalue problem numerically with
the Sakurai-Sugiura method (SSM). The pro-
posed approach is validated numerically with
standard BIEs for exterior and transmission prob-
lems.

Keywords: stability, time domain, BIEM, eigen-
value problems

Introduction

Boundary integral equation methods (BIEMs)
for the wave equation in time domain have a
long standing stability problem. Among vari-
ous e�orts to stabilise BIEMs for wave equa-
tions, the three dimensional space-time varia-
tional approach by Ha Duong and his colleagues
[1] appears to be the �rst successful attempt.
Unfortunately, however, implementing a space-
time variational BIEM is not very easy, which
is why engineers still prefer fully collocated ap-
proaches. Recent developments of CQM by Lu-
bich [2] made it possible to stabilise colloca-
tion BIEMs, but there still remain demands for
simpler traditional methods. In the traditional
collocation BIEM, however, there exist few ef-
fective methods of checking stability except for
solving large eigenvalue problems for the space-
time discretised system matrices. Even this �last
resort� is not very practical in 2D problems be-
cause of the slow decay of the fundamental so-
lution with respect to time.

In this presentation we propose to resolve
this di�culty by carrying out the required sta-
bility analysis in frequency domain. Namely,
we convert the stability analysis for BIEMs in
the wave equation in 2D to a non-linear eigen-
value problem similar to those for the Helmholtz

equation and solve it with SSM using techniques
proposed in Misawa et al. [3]. This approach
has an additional bene�t of making the rela-
tion between eigenvalues of the integral oper-
ators in frequency domain and the stability of
the time domain BIEM clearer. We use the pro-
posed tequnique to investigate stability of vari-
ous time domain integral equations for exterior
and transmission problems.

Stability

We consider the following integral equation

f(t) =

∫ t

0
K(t− s)v(s) ds (1)

where K and f are given functions and v is an
unknown function. Equation (1) is typically ob-
tained as one discretises the time domain BIEs
for the wave equation in the spatial direction us-
ing N collocation points, in which case K is an
N×N matrix and v and f areN -vectors, respec-
tively. Discretising the unknown function v(s)
in (1) using time interpolation functions φm(s)

as v(s) ≈
∑

m

φm(s)vm (vm ∈ RN ), we obtain

the following algebraic equation:

f(l∆t) =

l∑

m=1

∫ l∆t

0
K(l∆t− s)φm(s) ds vm

l = 1, 2, · · · (2)

where φm(s) = φ∆t(s − m∆t) and φ∆t(t) is a
basis function which satis�es φ∆t(k∆t) = δk0

(where δij is the Kronecker delta), respectively.
One shows that the stability of this equation is
related to the following eigenvalue problem: �nd
Ω ∈ C with which the following equation

0 =

∞∑

m=−∞

1

∆t
K̂(Ωm)φ̂∆t(Ωm) v (3)

has a non-trivial solution v ∈ CN , where Ωm =
Ω− 2mπ

∆t and ˆ stands for the Fourier transform
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with respect to time. One �nds that (2) is stable
(unstable) if Im Ω ≤ 0 (Im Ω > 0) holds for
all the eigenvalues (an eigenvalue) of (3). The
stability issue of the time domain BIEM is thus
reduced to a non-linear eigenvalue problem in
frequency domain given by (3). One may use
methods based on contour integrals such as the
Sakurai-Sugiura Method (SSM) in the solution
of non-linear eigenvalue problem in (3).

In the special case where the boundary of
the domain is a unit circle Γ, one may consider
a semi-discretisation in which only the time di-
rection is discretised. Actually, we can simplify
the non-linear eigenvalue problem in (3) using
the Fourier series with respect to the angular
variable. In the exterior Dirichlet problem in
2D, for example, one has the following BIE:

∫ t

0

∫

Γ
G(x− y, t− s)q(y, s)dSyds = uinc(x, t)

x ∈ Γ, t > 0 (4)

where G(x, t) = 1/(2π
√
t2 − |x|2+), uinc(x, t) is

a given function (incident wave) and q is the un-
known function. One shows that the eigenvalues
of (3) for this special case are the zeros of

∑

m

H(1)
n (Ωm)Jn(Ωm)φ̂∆t(Ωm), (5)

for an n ∈ Z, where Jn and H
(1)
n are Bessel and

Hankel functions.

Numerical experiments

We now carry out numerical experiments to see
if the stability analysis given in the previous sec-
tion can predict the behaviour of the time do-
main BIEM correctly. We consider (4) with the
incident wave given by

uinc =

{
0 (t− x1 − t0 ≤ 0)
(t−x1−t0)2

2 (t− x1 − t0 > 0)
(6)

where t0 = 1 + 2∆t. We use piecewise con-
stant boundary elements, piecewise linear time
elements and the collocation method to discre-
tise the BIE in (4). The boundary is discretised
into 100 elements, the time increment is set as
∆t = 2π

100 and the number of time steps is 1000.
Also, the eigenvalues of (3) are calculated with
(5) and SSM, neglecting the e�ect of spatial dis-
cretisation. The equation obtained by taking
the time derivative of (4) is also considered.

Figs.1 (a) and (b) show the plot of q for every
10 time steps obtained with time domain BIEs.
We see that (4) leads to instability, while its
time derivative gives stable results. Figs.2(a)
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Figure 1: q obtained with various integral equa-
tions vs point number.

and (b) show the eigenvalues (green symbols)
of (3) for the corresponding time domain BIEs
in Figs.1 (a)�(b). Also shown in red are the
eigenvalues of the frequency domain BIEs given
by K̂(Ω)v = 0. These �gures show that the
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Figure 2: Eigenvalues of (3) for time domain
integral equations

stability of BIEs considered and the behaviour
of the eigenvalues of (3) are consistent.
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Time domain CQBEM for wave scattering in complex media
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Abstract

A time domain boundary element method (BEM)
based on the CQM (convolution quadrature method)
is applied to analyze wave scattering in �uid-
saturated porous solid and its formulation is ver-
i�ed via numerical analysis for wave propagation
of an incident wave in the complex media.

Keywords: wave scattering, Biot media, bound-
ary element method, CQM

1 Introduction

In general, ground has complex materials con-
sisting of soil, water and air, and it is very im-
portant to investigate wave propagation behav-
ior in the ground from the view point of earth-
quake engineering, ground exploration and so
on.

In this paper, a time domain BEM based
on the CQM is applied to analyze wave scatter-
ing in complex media like ground. The CQM
is used to evaluate numerically convolution in-
tegrals with use of a kernel function in Laplace
domain. One advantage of the CQBEM is to
produce very stable solutions even if small time
increment is chosen, compared with the conven-
tional one. Another advantage is to make pos-
sible the formulation of time domain boundary
integral equations whenever the fundamental so-
lution in Laplace domain is available. These ad-
vantages expand the application of a time do-
main CQBEM to the analysis of very compli-
cated problems, such as wave propagation and
scattering with attenuation, even if a fundamen-
tal solution is not available explicitly in time
domain.

In the following, Biot's theory for �uid-saturated
porous solid is brie�y introduced as an example
of complex media and the formulation and nu-
merical example of a time domain BEM based
on the CQM are presented.

2 Biot's theory

For general anisotropic �uid-saturated porous
solid under in�nitesimal deformation, the con-

stitutive equations for the Biot's model are given
by

σij = Cijkluk,l − αijp (1)

p = −M(αkluk,l + wk,k) (2)

where σij is the total stress in solid, p is the pres-
sure in �uid, and ui and wi are displacements of
solid skeleton and �ow of the �uid relative to the
solid, respectively. Cijkl, αij and M are elastic
moduli of solid skeleton, Biot's e�ective-stress
coe�cients, and Biot's elastic modulus, respec-
tively.

The equations of motion with no body force
are expressed as

σij,j = ρüi + ρf ẅi (3)

p,i = −ρf üi − mijẅj − ηrijẇj (4)

where ρ and ρf are densities of porous solid and
pore �uid, respectively. mij , η and rij are mass
matrix determined by geometry of pores, �uid
viscosity, and the �ow resistivity matrix, respec-
tively.

Assuming zero initial values at time t = 0,
the Laplace transform is applied to eqs.(1)�(4),
and the variables w and σij are eliminated to
have the following governing equations with the
parameter s in Laplace domain for q̄K = {ūk, p̄}T

(K = 1, . . . , 4 and k = 1, 2, 3).

L̄IK q̄K = 0 (5)

where

L̄IK =

[
Cijkl∂j∂l − ρ̃iks

2 −α̃ij∂j

{α̃kl∂l}T − 1
s2 Y −1

jl ∂j∂l + 1
M

]

(6)

where ρ̃ik = ρδik − ρ2
fY −1

ik , α̃ij = αij − ρfY −1
ij ,

Yik = mik + ηrik/s.
The fundamental solution ŪQK(x, y, s) in Laplace

domain, indicating the general displacement in
Q direction at x due to the general body force
in K direction at y in Biot's media, is governed
by

L̄IQŪQK = −δ(x − y)δIK . (7)
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Following a similar procedure derived for the
fundamental solution for elastodynamics in gen-
eral anisotropic solids [1], the fundamental solu-
tion ŪQK is obtained in the integral form, and
is evaluated numerically.

3 Formulation of CQBEM

We consider the wave propagation problem shown
in Fig. 1. The incident wave qin

I is generated

x
3

x
1

2.5a

2.5a0.5a

0.5a

O

A

S

D

Figure 1: Model for wave scattering analysis.

due to a body force at the origin O, and scat-
tered by a scatterer with the surface S. Apply-
ing the reciprocal theorem to q̄K in eq.(5) and
ŪQK in eq.(7) in Laplace domain and transfer-
ring formally from Laplace domain to time do-
main, then the general wave displacement in the
outer domain D is expressed by

qin
I (x, t) +

∫

S
UIK(x, y, t) ∗ sK(y, t)dSy

−
∫

S
WIK(x, y, t) ∗ qK(y, t)dSy = c(x)qI(x, t)

(8)

where c(x) is the free term de�ned by c(x) =
1(x ∈ D), 1/2(x ∈ S), and 0(x ̸∈ D̄) and ∗
is the time convolution integral. sK and WIK

are general traction and double layer kernels,
corresponding to qK and UIK , respectively.

The time convolution integral in eq.(8) is
evaluated by using CQM [2], i.e.,

K(t) ∗ g(t)|t=N∆t ≈
n∑

k=0

wn−k(∆t)g(k∆t) (9)

where ∆t is the time increment and wm(∆t) is
the weight function given by

wm(∆t) =
R−m

L

L−1∑

l=0

K̄(
γ(zl)

∆t
)e−2πiml/L (10)

where K̄(s) is the Laplace transferred function
of the kernel function K(t), and other parame-
ters of γ, zl, R and L are referred to [2].

The boundary integral equation of eq.(8) for
x ∈ S is solved by discretizing the boundary
S with constant element for unknown bound-
ary values of sK or qK , applying the CQM for
the time convolution, introducing the bound-
ary conditions, and taking the time marching
scheme.

4 Numerical example

We consider the wave propagation problem in
Fig. 1, where the interior domain enlosed by the
boundary S is occupied by the same material of
sand stone as the outer one [3] . The boundary
integral equation (8) for the exterior problem
can be solved with combination of the boundary
integral equation for the interior problem. In
this case, no scattered wave is generarted and
the obtained solution is exactly the same as the
incident wave.

Fig.2 shows the time variations of the solid
displacements u1 and u3 and the �uid pressure p
at the point A in Fig. 1. Numerical solutions for
total wave obtained by time domain CQBEM
are the same as analytical solutions of the inci-
dent wave.

Figure 2: Time variations of u1, u3 and p at the
point A in Fig. 1.
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Abstract

Many acoustic scattering problems are modelled
by the 3d wave equation. The use of bound-
ary integral equations enables an elegant han-
dling of problems posed on the unbounded ex-
terior of the scatterer. In this work, we discuss
space-time discretizations of these time domain
integral equations. The philosophy of space-
time methods is to treat time like an additional
spatial coordinate. Consequently, the operator
equation is discretized in the 3+1-dimensional
space-time cylinder. In the context of bound-
ary integrals, only a discretization of the lateral
space-time boundary is required. We employ
standard finite element spaces based on simplex
meshes of this boundary.

In the space-time setting, the numerical com-
putation of the underlying integral operators is
challenging. We present a tailored quadrature
technique for point-wise evaluations of integral
operators of the 3d wave equation. The method
is verified via numerical experiments.
Keywords: time domain, boundary integral
equation, retarded potential, space-time mesh

1 Wave equation and integral form

Let Ω− ⊂ R3 be a bounded open domain with
polyhedral Lipschitz boundary Γ = ∂Ω− and
exterior Ω+ = R3\Ω−. For a fixed wave velocity
c > 0 we employ the scaled time t = c τ , where τ
denotes the physical time. We define the space-
time cylinders Q∗ = (0, T )× Ω∗ for ∗ ∈ {−,+}
with lateral boundary Σ = (0, T )×Γ where T >
0 is the simulation end time. We are concerned
with the solution u of the wave equation

(∂2
t −∆x)u = 0 in Q+ (1)

u = 0 ∧ ∂tu = 0 on {0} × Ω+ (2)
u = g on Σ (3)

for some given Dirichlet datum g. Note that
∆x denotes the Laplace operator differentiating
with respect to spatial coordinates only. In this
work, we shall use a boundary integral represen-
tation of the solution of (1)-(3), which is conve-
nient since Q+ is unbounded. For a sufficiently

smooth surface density w : Σ→ R the Huygens
(also known as retarded) single layer potential
SL has the integral representation [1]

SLw(t, x) =

∫

Γ

w(t− ‖x− y‖, y)

4π‖x− y‖ dS(y) (4)

with the extension w(t, ·) = 0 for t ≤ 0. It holds

(∂2
t −∆x) SLw = 0 in Q+ ∪Q−

for any admissible w, in particular, the ansatz
u = SLw satisfies (1) and (2) for any surface
density w. To find w such that (3) is satisfied,
the trace is applied, yielding the equation

Vw = g on Σ, (5)

where the integral representation of V is exactly
(4) since SL is continuous across the boundary.

2 Space-time boundary elements

We devise a discretization method for (5) based
on a decomposition of the lateral boundary Σ
into space-time boundary elements. Since Σ is
a 3d hypersurface embedded in R4 we employ
a mesh ΣN composed of N ∈ N tetrahedral
boundary elements. Each tetrahedron σ ∈ ΣN

is the image of the reference element σ̂ ⊂ R3

under a smooth bijection χσ : σ̂ → σ. We use
standard trial spaces, e.g. for p ∈ N0

SpN = {v : Σ→ R : v|σ ◦ χσ ∈ Pp(σ̂), σ ∈ ΣN}.

These are space-time boundary element spaces,
since there is no distinction between space and
time variables. In [2], we derived the representa-
tion of Huygens layer potentials that genuinely
matches the space-time setting

SLw(t, x) =
∑

σ∈ΣN

kwσ (t, x)

with

kwσ (t, x) =

∫

χ−1
σ (Ξ∩σ)

w ◦ χσ(ξ)vσ(ξ)

4π‖x− y(ξ)‖ dS(ξ) (6)

where vσ : σ̂ → R is some smooth function and
the 3d hypersurface Ξ is the backward light cone

Ξ = {(ζ, y) ∈ R× R3 : t− ζ = ‖x− y‖}.
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A robust and accurate quadrature technique for
evaluating (6) is proposed in [2], which exploits
that χ−1

σ (Ξ ∩ σ) is a subset of a quadric if χσ
is affine. This quadric is parametrized by well-
known maps ψ : domψ → ranψ with domψ ⊂
R2 and ranψ∩σ̂ = χ−1

σ (Ξ∩σ). By transforming
(6) to the parameter domain domψ the singu-
larity of the kernel function is lifted, enabling
the application of standard quadrature rules.

An example space-time collocation scheme
that approximates solutions of (5) is to find

wN ∈ S1
N ∩ C(Σ) : VwN (t, x) = g(t, x) (7)

for any vertex (t, x) of the mesh ΣN .

3 Numerical examples

To test the method, we apply it to a simple prob-
lem setting, for which an exact solution of (5)
is known. We consider the unit ball Ω− = {x ∈
R3 : ‖x‖ < 1} and Dirichlet data of the form

g(t, x) = ϕ(t), (t, x) ∈ Σ

where ϕ : R → R is sufficiently smooth and
ϕ(t) = 0 for t ≤ 0. In this case the solution
w of (5) is known [3]. In particular, we use
ϕ(t) = t4 exp(−2t) for t > 0 in our tests.
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Figure 1: Convergence test: quadrature scheme

The tetrahedral mesh ΣN is an approxima-
tion of the smooth space-time boundary, which
is the extrusion of the unit sphere in time up
to end time T . To measure the approximation
error, we compute the arithmetic mean

eN =
1

6

6∑

i=1

∣∣Ṽw(T, xi)− g(T, xi)
∣∣,

where xi are six vertices of the mesh ΣN lo-
cated at time T = 6. The tilde in above formula
indicates that the integral operator is approxi-
mated by Gaussian quadrature of order nG ∈ N
[2]. The result displayed in Fig. 1 shows the
expected second-order convergence rate in the
mesh size h for a sequence of uniform meshes.
Further tests that illustrate the capacity of the
quadrature scheme can be found in [2].
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‖w
−
w
N
‖ L

2
(Σ

)

T = 1
T = 2
T = 3
T = 4

Figure 2: Convergence test: collocation method

As a second test, consider the collocation
method (7). The error of the approximation
‖w − wN‖L2(Σ) is computed for a sequence of
uniform meshes. A convergence study is exhib-
ited in Fig. 2 for various values of T . While the
approach yields quadratic convergence in the ex-
amined scenarios, there are cases where it may
fail, see [2]. Instabilities of collocation meth-
ods, independent of the space-time setting, are
already well-known. The stability of space-time
schemes is subject of further investigations.
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Abstract

We propose a frequency/time hybrid integral-
equation method for transient wave scattering.
The method uses Fourier-time transformation,
resulting in required solution of a fixed set (with
size independent of the desired solution time)
of frequency-domain integral equations to evalu-
ate transient solutions for arbitrarily long times.
Two main concepts are introduced, namely 1) A
smoothly-windowed time-partitioning method-
ology that enables accurate band-limited repre-
sentations for arbitrary long time signals, and 2)
A novel Fourier transform approach which deliv-
ers dispersionless spectrally-accurate solutions.
The proposed algorithm is computationally par-
allelizable and exhibits high-order convergence
for scattering from complex geometries while,
crucially, enabling time-parallel solution with an
O(1)-cost of sampling at large times T .
Keywords: transient wave propagation, inte-
gral equations, Fourier transform methods

1 Introduction

The simulation of transient (i.e. non-zero in-
cident field bandwidth) wave propagation and
scattering phenomena is an important problem
in science and engineering. Hybrid methods for
the problem

∂2u

∂t2
(r, t)− c2∆u(r, t) = 0, r ∈ Ω, (1a)

u(r, 0) =
∂u

∂t
(r, 0) = 0, (1b)

u(r, t) = b(r, t) (r, t) ∈ Γ× [0, T inc], (1c)

are characterized by use of solutions to well-
studied frequency-domain problems to construct
transient scattering solutions. A prominent ex-
ample in this class is the Convolution Quadra-
ture method [2] which proceeds by application
of a discrete Z-transform to time-stepped ap-
proximations to equation (1a), solution of inte-
gral equations for resulting modified Helmholtz
problems, and approximate numerical inversion

via a certain complex contour integral. A num-
ber of difficulties—including dispersion and in-
version errors, as well as a growing number of
required integral equations solutions for long-
time simulation arise in this approach which we
seek to avoid in the proposed methodology.

2 Temporal Partitioning

The proposed Fast Hybrid Method is based on
Fourier time transformation of incident fields;
we propose to partition and window in time
the incident field b(r, t) using a smooth window
function wk(t) = w(t−sk) which vanishes for H
time units away from certain well-spaced time-
window centers sk ∈ [0, T inc]. The window func-
tions satisfy a partition of unity (POU) prop-
erty

∑
k wk(t) = 1 so that bk(r, t) = wk(t)b(r, t)

satisfies
∑

k bk(r, t) = b(r, t). Due to the POU
property the desired scattering solutions uk cor-
responding to boundary condition bk(r, t) also
satisfy

∑
k uk(r, t) = u(r, t). The intent of this

decomposition is to re-center the temporal vari-
able t in the transform and limit the oscillatory
character of the frequency-domain solutions due
to the oscillatory kernel eiωt in the transform—
hence the “slow” superscripts in our notation.
Concretely, for incident fields of the form

bk(r, t) =
1

2π

∫ ∞

−∞
Bt
k(ω)ei(κ(ω)p·r−ωt) dω (2)

in a given single direction p, the temporally-
partitioned boundary condition function bk(t)
(the inverse Fourier transform of Bt

k(ω)) has the
Fourier transform,

Bslow
k (ω) =

∫ H

−H
bk(t+ sk)e

iωt dt, (3)

and it follows that Bt
k(ω) = eiωskBslow

k (ω), so
that Bslow

k is a slowly-varying function of ω.
The resulting boundary densities ψslow

k (r, ω)
and near-field solutions U slow

k (r, ω) can be ob-
tained for all time partitions k on a fixed (time
independent) set {ψtp} of boundary integral den-
sities for each ω in a frequency sample set F
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(with maximum frequency W , the bandlimit of
bk), using the representation formula

U slow
k (r,ω) =

∫

Γ
ψslow
k (r′, ω)Gω(r, r′) dσ(r′)

= Bslow
k (ω)

∫

Γ
ψtp(r′, ω)Gω(r, r′) dσ(r′).

(4)

3 FFT-accelerated Transform Inversion

The proposed method produces transient ap-
proximations uWk ≈ uk from U slow

k using inverse
Fourier transforms of W -bandlimited frequency
domain solutions:

uWk (r, t) =

∫ W

−W
U slow
k (r, ω)e−iω(t−sk) dω (5)

A certain special treatment of this transform re-
quired for 2D scattering due to a singularity at
ω = 0 is used (but not described here). The
proposed treatment for the 3D case begins with
the M -term truncated Fourier series expansion
U slow
k ≈∑M/2

m=−M/2 cmei2πmω/W .
Exact integration on an arbitrary (no CFL

restriction is present in the fast hybrid method)
equi-spaced temporal sampling grid {tn = n∆t}
leads to the scaled-convolution sum:

uWk (r, tn) ≈
∑

m

cm

∫ W

−W
e−i π

W
(βn−m)ω dω

=
∑

m

cmbβn−m, β =
W∆t

π
,

(6)

with the convolution kernel bq = 2W sinc(q).
This expression displays the O(1) sampling cost
of the fast hybrid method, but rapid evaluation
for a range of temporal samples tn, (N1 ≤ n ≤
N2) is facilitated using FFT-accelerated Frac-
tional Fourier Transform methods [3].

4 Numerical Examples

Analysis guarantees that errors decrease super-
algebraically as the two approximation param-
eters W,M → ∞, and excellent convergence
properties are observed to confirm the theory.
The fast hybrid method has been successfully
demonstrated in a variety of wave scattering
contexts. Figure 1 displays snapshots from the
long-time simulation of a certain 2D “whispering
gallery” geometry, while Figure 2 shows scat-
tering off a 3D glider geometry, the boundary
of which is discretized with a high-order multi-
patch strategy based on a CAD description.

Figure 1: “Whispering Gallery” scattering; 30
multiple scattering events were computed.

Figure 2: 3D Glider scattering

5 Conclusion

The proposed method [1] is effective for dis-
persive media and complex physical structures,
straightforwardly permits temporal and spatial
parallelization, and enables time leaping, that
is, solution sampling at time T at O(1)-bounded
sampling cost, without requirement of evalua-
tion of the solution at intermediate times. The
fast hybrid method, which generalizes to any lin-
ear partial differential equation in the time do-
main for which frequency-domain solutions can
be obtained, yields an attractive time-domain
wave solver.
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Bempp-cl: Fast GPU and CPU assembly of integral operators with OpenCL
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Abstract

We present Bempp-cl, a successor of the Bempp
library for the Galerkin discretisation of bound-
ary integral operators.
Bempp-cl is built on OpenCL and allows explicit
use of AVX/AVX-512 vectorisation on CPUs and
supports AMD, Intel, and Nvidia GPUs. On
an Nvidia Volta GPU it can on-the-�y assemble
and apply to a vector an electric �eld boundary
operator with 20,000 elements in less than one
second.

Keywords: integral equations, GPU accelera-
tion, Galerkin assembly, OpenCL

1 Introduction

The Bempp boundary element library is a UCL
lead project that has been developed since 2011.
It consists of a fast C++ core and a user friendly
Python interface. It supports the Galerkin dis-
cretisation of Laplace, Helmholtz and Maxwell
boundary integral operators, either as dense ma-
trices or via ACA based H-Matrix compression.

However, over the last 10 years a revolu-
tion has taken place in advanced computing ar-
chitectures. Massively multicore Xeon CPUs
with up to 48 cores are expected to be released
in 2019. Each of these cores supports AVX-
512 registers that allow the parallel execution of
eight double precision or sixteen single precision
instructions. At the same time GPU architec-
tures have become mainstream with the fastest
Nvidia Volta V100 GPUs having over 5000 com-
pute cores with a peak performance of almost 16
TFlops per second in single precision.

While Bempp performs well on classical multi-
core architectures with a few parallel cores, per-
formance issues arise in massive multicore en-
vironments. Moreover, it is not able to take
advantage of modern vectorized instructions or
GPU computing environments.

These considerations have lead to the deci-
sion to completely redevelop the library with
modern compute architectures in mind. The
new library should support advanced vector in-
struction sets on CPUs and vendor-independent

GPU computing. Moreover, the new library
should consist only of Python code that would
not require any pre-compilation of C or C++
modules. The outcome of these e�orts is the
Bempp-cl library, which is expected to be re-
leased in April 2019. So far it supports the dense
Galerkin assembly of Laplace, Helmholtz and
Maxwell operators. The performance pro�les
are signi�cantly improved compared to Bempp,
making it possible to assemble dense matrices in
the dimension of tens of thousands within sec-
onds on a modern CPU or GPU node. This is
especially useful for highly oscillatory problems,
which are challenging for standard H-Matrix com-
pression algorithms. Indeed, we will demon-
strate high-frequency examples, where the dense
assembly in Bempp-cl is signi�cantly more per-
formant than the H-Matrix assembly in previous
Bempp versions.

2 An overview of Bempp-cl

Bempp-cl is a pure Python library with essen-
tially the same interface as the previous Bempp
library. The big di�erence is what goes on under
the hood. Consider the function to assemble an
electric �eld boundary operator in Bempp-cl.

op = maxwell . e l e c t r i c _ f i e l d (
domain , range_ ,
dual_to_range ,
wavenumber ,
p r e c i s i o n=' s i n g l e ' ,
assembler=' dense ' ,
d ev i c e_ in t e r f a c e=cl_dev ice )

The new parameters precision, assembler, and
device_interface are crucial. Based on this in-
formation (or the corresponding default param-
eters) Bempp-cl proceeds as follows:

1. Select the suitable assembler interface (see
below for available assemblers)

2. Based on the chosen compute device se-
lect either a GPU compute kernel, or in
the case of a CPU device, one of several
CPU kernels depending on the hardware
support for vectorisation.
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(a) Performance of Bempp-cl in dense mode on a 10
Core Xeon CPU compared to Bempp in dense and
H-Matrix mode on the same CPU.

(b) Performance of the dense evaluator assembly
mode of Bempp-cl on a 10 Core Xeon CPU vs Nvidia
and AMD GPUs.

3. Con�gure the chosen precision level (sin-
gle or double precision) and just-in-time
compile the code for the compute device.
This is handled by the PyOpenCL library
developed by Andreas Klöckner, which pro-
vides a convenient Python interface to the
underlying OpenCL drivers.

4. Run the compiled compute kernel.

Currently, two assembler types are available, a
dense assembler which returns a dense matrix
discretisation of the operator, and a dense eval-
uator. The latter one does not pre-assemble the
matrix. Rather, during a matrix-vector product
it generates the required matrix elements on the
�y and then discards them again. This allows
us to handle also larger problems with tens of
thousands of unknowns on a memory restricted
device such as a GPU.

3 Performance tests

In the following we present benchmarks for the
assembly of an electric �eld boundary opera-
tor on the unit sphere with wavenumber k =
15. The sphere is discretised with 19572 ele-
ments (around 8 elements per wavelength), giv-
ing 29358 edge degrees of freedom. In Figure
1a we present results for Bempp-cl in dense as-
sembler mode compared to dense assembly and
H-Matrix assembly in the current Bempp re-
lease version. The tests were performed on an
Intel Xeon W-2155 CPU with 10 cores. AVX-
512 was used for the Bempp-cl compute kernels.

The H-Matrix timings are not much better than
the dense results in this case due to the high-
frequency discretisation with 8 elements per wave-
length. Bempp-cl is three times faster than Be-
mpp in double precision and almost six times
faster in single precision (Bempp only supports
double precision). The results are even more
impressive on GPUs. Figure 1b shows timings
for the dense evaluator of Bempp-cl, which per-
forms a matrix-vector product by assembling
the matrix on the �y and not storing the el-
ements, reducing memory access signi�cantly.
On an Nvidia Volta GPU this on-the-�y assem-
bly/matvec only takes 0.6s, making this highly
e�cient even compared to standard H-Matrices
for the demonstrated element sizes. Only for
very large element sizes beyond 100,000 does
this evaluation become noticeably slow on a sin-
gle V100 GPU due to its quadratic complexity.

4 Outlook

Bempp-cl is already highly usable and will be re-
leased in summer 2019. We are currently imple-
menting optimised Calderón and transmission
operators. The corresponding results will be re-
ported at a later stage. Multi GPU and dis-
tributed computing support is also in the work,
as well as an OpenCL based FMM implementa-
tion for Bempp-cl.
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A fast direct solver for multilayered quasi-periodic scattering
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Abstract

This paper presents a fast direct solver for solv-
ing two dimensional wave scattering problems
from quasi-periodic multilayered structures. It
is based upon an existing boundary integral for-
mulation that is robust at the Wood’s anomalies
and recent developments on hierarchical matrix
representations and inversions. The proposed
scheme scales linearly with respect to the total
number of unknowns on the interfaces. It is ef-
ficient in handling multiple incident angles and
requires minimal extra calculations if a certain
layer or interface in the structure is modified,
as what may often happen in an optimal design
setting.
Keywords: fast direct solver, Helmholtz equa-
tion, multilayered media, matrix compression

1 Introduction

Wave scattering from multilayered quasi-periodic
geometries arises in the design of optical and
electromagnetic devices. Some specific exam-
ples include solar cells (thin-filmed photovoltaic
cells [1] ), dielectric gratings for high-powered
laser [7] and wideband [5] applications. Most
of such applications require solving a scattering
problem with a large number of incident angles.
For example, a Bragg diagram created from the
solution of 200 boundary value problems is de-
sirable in many engineering applications. Addi-
tionally, in the case of optimal design, a scat-
tering problem is often nested inside an opti-
mization loop and solved with slightly different
geometry or material properties for each itera-
tion. Thus, having access to a robust and ef-
ficient numerical method that can well handle
multiple incident angles and changes in geome-
try and/or material properties will significantly
reduce the cost of developing such devices.

Consider a L layered geometry Ω =
⋃L
i=1 Ωi

where Ωi denotes a layer with material property
ωi and Γi denotes the interface between Ωi and
Ωi+1. There are L − 1 interfaces. The geom-
etry is infinite both horizontally and vertically
but d-periodic in the horizontal direction. A

plane wave uinc with angle θinc ∈ (−π, 0) is in-
cident to the top layer. The incident wave and
the resulting scattered field are quasi-periodic;
i.e. uinc(x+d, y) = αuinc(x, y), where the Bloch
phase α depends on the incident angle θinc via
α = eidω1 cos θinc . Let ui denote the scattered
field in layer Ωi. The scattered field satisfies the
boundary value problem

(∆ + ω2
i )ui(x) = 0 x ∈ Ωi, 1 ≤ i ≤ L
u1 − u2 = −uinc(x) x ∈ Γ1

∂u1

∂ν
− ∂u2

∂ν
= −∂u

inc

∂ν
x ∈ Γ1

ui − ui+1 = 0 x ∈ Γi, 1 < i < L− 1

∂ui
∂ν
− ∂ui+1

∂ν
= 0 x ∈ Γi, 1 < i < L− 1 (1)

plus radiation conditions in the top and bottom
layer. The first equation in (1) is the Helmholtz
equation. The remainder equations enforce con-
tinuity of the solution and the flux through the
interfaces. Figure 1(a) illustrates a model prob-
lem in a five layered geometry.

2 The formulation and solution scheme

Since the wave speed in any layer is constant, it
is possible to recast the boundary value problem
as a boundary integral equation. This means
that instead of discretizing all of R2, only the
interfaces need to be discretized. The proposed
direct solver is constructed for the boundary in-
tegral formution presented in [2]. This integral
formulation is robust even at Wood’s anomolies
by utilizing the free space Green’s function and
introducing additional unknowns to enforce pe-
rioidicity.

Upon discretization, this formulation results
in a block linear system where the largest block
(in general) is a tridiagonal matrix correspond-
ing to discretized boundary integral operators.
The diagonal blocks correspond to the discretized
operator on Γ

(0)
i (single period) evaluated on it-

self plus constributions from the left and right
neighboring periods, Γ−1

i and Γ+1
i , respectively.

The off-diagonal blocks correspond to the eval-
uation of the discretized integral operators from
the top and bottom neighbor interfaces Γi−1 and
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Γi+1. Figure 1(b) illustrates the notation for the
five layered geometry.

Since the tri-diagonal matrix is the largest in
the block linear system, the proposed solver is
based on creating a fast direct solver for this ma-
trix. Specifically, the tridiagonal matrix is writ-
ten as a block diagonal matrix D plus a block
tridiagonal matrix B. The diagonal blocks of
D correspond to discretizated integral operators
evaluated on the same interface. This matrix
can be approximated and inverted for a cost that
scales linearly with the number of discretization
points on each interface via a fast direct solver
such as [4]. The matrix B has all the non-self
interaction matrices which can be approximated
via low rank factorizations to high accuracy. All
of these approximations can be done indepen-
dently of the incident angle θinc and Bloch phase
α. The full tridiagonal matrix D + B can then
be inverted rapidly via a Woodbury formula as
in [3] and [6].

This approach allows lots of the expensive
calculations to be performed independently of
the incident angle and the Bloch phase as pre-
computation, and thus multiple incident angles
can be processed rapidly. Furthermore, in the
case where one (or several) particular interface
or layer property changes, a new self inversion
and a low rank approximation capturing neigh-
bor interactions for this particular interface can
be reconstructed and replaces the previous one
without touching the rest of the precomputed
operators.

3 Numerical results

The numerical results will show the following:

• The solver can handle complex interface
geometries (e.g. sharp corners) and low
to intermediate frequency problems( the
largest testsed value for ωi is about 50)
to very high accuracy (with matrix com-
pression tolerance set to be 1× 10−12, the
observed relative error is about 1×10−10).

• The cost scales linearly with respect to the
total number of unknowns on the inter-
faces. The precomputation is expensive,
but once done, solving for one incident an-
gle is cheap. (e.g. for the model geometry
in Figure 1 with 8.4× 104 total points on
the interfaces, the Bloch phase indepen-
dent precomputation takes 536 seconds,

the Bloch phase dependent precomputa-
tion takes 75 seconds, and one incident
angle solve takes 8 seconds.)

• The proposed solver is efficient in handling
multiple incident angle problems.

• Once the direct solver is constructed, the
cost of changing an interface or wave num-
ber ωi depends only on the interfaces af-
fected by the change. The rest of the di-
rect solver can be reused.

Ω1

Ω2

Ω3

Ω4

Ω5

θinc

Γ1

Γ2

Γ3

Γ4

(a)

Γ−1
1 Γ0

1 Γ+1
1

Γ−1
2 Γ0

2 Γ+1
2

Γ−1
3 Γ0

3 Γ+1
3

Γ−1
4 Γ0

4 Γ+1
4

(b)

Figure 1: (a)A five-layer model geometry (L = 5) with
plane wave of angle θinc incident to the top layer. Three pe-
riods are drawn for each interface. (b) Same geometry with
the center period in red box. Γ0

i , Γ−1
i , and Γ+1

i denote the
self, left neighbor, and right neighbor period of the ith inter-
face Γi, respectively.
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Abstract

In this paper, we propose a new variational for-
mulation for the electromagnetic scattering prob-
lem which derives from an integral method with
the use of high order impedance boundary con-
dition (HOIBC) to improve the accuracy Leon-
tovitch impedance boundary condition (SIBC).
The performances of the HOIBC are evaluated
by calculating the radar cross section (RCS).
Keywords: HOIBC, boundary element method,
scattering problem.

1 Introduction

We consider the scattering problem of electro-
magnetic waves (E, H) by perfectly conduct-
ing obstacles coated with a thin layer of dielec-
tric. The coating is modeled by the SIBC on
its outer surface Γ. More accurate models can
be obtained with high order impedance bound-
ary condition [2]. In this model the tangential
values of the electric and magnetic fields on the
surface of an object are related with the incident
angle at each point of the surface.

This paper deals with the implementation
of HOIBC in 3D MoM codes using Rao-Wilton-
Glisson (RWG) basis functions. To improve ef-
ficiency, the MPI method is used to accelerate
fast boundary elements formulation based on
Hierarchical compression of matrices by adap-
tive cross approximation (ACA).

2 Approximation of the HOIBC

The impedance boundary condition (IBC) is ap-
proximated with a ratio of polynomials of sec-
ond order. Equivalently, it can be written as a
second order IBC with Hodge operator [1]. It
is worth noting that three-dimensional HOIBC
approximation as

(I+b1LD−b2LR)Etg=(a0I+a1LD−a2LR)n×H (1)

where n is the outer unit normal vector, Γ is
the boundary of the illuminated object and Etg

and H designates, respectively, the tangential
electric and magnetic fields. The Leontovitch

impedance boundary condition is the case with
a1 = a2 = b1 = b2 = 0. We find method to cal-
culate these coefficients (a0, aj , bj) for HOIBC
in [2]. We define the operators LD and LR for
all vector function A sufficiently smooth, such
that A · n = 0

LDA = ∇tg(divtgA), LRA = rottg(rottgA).

3 Variational problem with HOIBC

In this section, we give a new variational formu-
lation with unknowns J = n×H and M = E×n.

Find U = (J,M) ∈ V = [H−1/2(div,Γ)]2

such that:

A(U,Ψ) =
〈
IEinc,ΨJ

〉
+

〈
IHinc,ΨM

〉
,

for all Ψ = (ΨJ ,ΨM ) ∈ V , where the bilinear
form A(U,Ψ) is defined as:

A(U,Ψ) = 〈Z0(B − S)J,ΨJ〉 +
a0

2
〈J,ΨJ〉

+
b1

2a0
〈LD(n × M),n × ΨM〉 − 〈QJ,ΨM 〉

+
1

Z0
〈(B − S)M,ΨM 〉 +

b2

2
〈LRn × M,ΨJ〉

+
a1

2
〈LDJ,ΨJ〉 +

1

2a0
〈n × M,n × ΨM 〉

− a1

2a0
〈LDJ,n × ΨM 〉 +

a2

2a0
〈LRJ,n × ΨM 〉

+ 〈QM,ΨJ〉 − b2

2a0
〈LR(n × M),n × ΨM 〉

−b1

2
〈LD(n × M),ΨJ〉 − a2

2
〈LRJ,ΨJ〉 ,

where k is the wave number. The operators (B−
S) and Q are defined in [3].

The operators arising in the discretization
of HOIBC are not easily computed with basis
functions. The surface RWG is discontinuous
when crossing the edge that borders the two el-
ements on which they are defined. We propose a
new approximation of the high order impedance
boundary condition which is Hodge operator.
To overcome the difficulty of the discretization
of div(n × w) and rot(w) ∀w ∈ H(div), we use
the theory of distributions.
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4 Hierarchical compression by ACA ap-
proximation

The discretization of the integral operators de-
scribed in section 3 leads to dense matrices. The
overall simulation time and the memory foot-
print of the method are very high. To solve
this problem, we use a matrix approximation
method called the ACA method introduced in
[4] and MPI parallelization of our comutation
code. Our work, which was written with MPI
functions is mainly intended to reduce the user’s
parallel programing cost and the overall simula-
tion time.

5 Numerical validation

To illustrate our approach, we compute the RCS
of a unit sphere coated with a thin dielectric
layer. The comparison of the calculation time is
given by the following table:

Unknowns Direct solve ACA solve
229740 32 4

The effect of coating thickness on the complexity
of the impedance terms is illustrated in the next
few Figures. Figure 1 illustrates that thin layers
the SIBC is an excellent approximation. The in-
creasing complexity of the impedance terms as
the coating becomes thicker is illustrated in Fig-
ures 2 and 3. In the case of d = 0.3λ0 clearly
show the increased accuracy of the HOIBC solu-
tion relative to the SIBC solution. As illustrated
in Figure 3, when d = λ0 the HOIBC is found
to be unsatisfactory. In the case derivatives of
higher than second order must be included in
the boundary condition in order to obtain an
accurate model of the bistatic RCS. The second
example, Figure 4, is chosen to include increas-
ing a wave number. In this cas, the HOIBC is
quite satisfactory.
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Figure 1: Bistattic RCS of the sphere coating
thickness of d = 0.1λ0 with ǫ = 4.
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Figure 2: Bistattic RCS of the sphere coating
thickness of d = 0.3λ0 with ǫ = 4.
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Figure 3: Bistattic RCS of the sphere coating
thickness of d = λ0 with ǫ = 4.

Figure 4: Bistattic RCS of the sphere coating
thickness of d = 0.01λ0 with ǫ = 2.
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Abstract

We consider the acoustic wave equation on an
exterior domain with linear generalized impeda-
nce boundary conditions. A boundary integral
formulation is developed and then discretized
in time with the convolution quadrature (CQ)
method. We prove stability and convergence of
the semi-discretized systems.

A boundary element (BEM) spatial-semi-
discretization is then applied and analyzed. Sim-
ilarly as before, we prove a stability result and
use it to obtain a convergence result. Finally, a
full discretization that couples both discretiza-
tions is employed and analyzed. The combina-
tion of the results obtained before gives a sta-
bility result that leads to the convergence result
of the fully discretized scheme.
Keywords: Acoustic wave equation, Convolu-
tion quadrature, Generalized impedance bound-
ary conditions

1 Introduction

The simulation of scattered waves in unbounded
exterior domains is a challenge both in theory
and in practice. This work considers the acous-
tic wave equation, with two generalized bound-
ary conditions. We denote with uinc an inci-
dental incoming wave from an exterior domain
Ω ⊂ R3, with boundary Γ. The first bound-
ary condition considered is then a kinetic-type
boundary condition, i.e.

∂nu = ε(∂2
t (u+ uinc)−∆Γ(u+ uinc))− ∂nuinc,

(1)

which is a model for a material with a thin coat-
ing. which .

The second boundary condition analyzed, a
model for highly absorbing materials, is a
fractional-type boundary condition, namely

∂nu = ∂
1/2
t

(
u+ uinc)− ∂nuinc. (2)

2 Calderon operator system

We start with Kirchhoff’s integral representa-
tion theorem

u = S(∂t)ϕ+D(∂t)∂
−1
t ψ,

and take the limit towards the boundary. The
jump conditions of the potential operators then
yield an operator system that is solved by bound-
ary densities ϕ and ψ, corresponding to a solu-
tion of the wave equation u.

Plugging in the boundary conditions then
gives an operator system that is solved by den-
sities, corresponding to a solution u, that fulfills
these same boundary conditions. In the case of
(2) this gives the system
(
Bimp(∂t) +

(
0 0

0 ε(∂t −∆Γ∂
−1
t )

))(
ϕ
ψ

)

=

(
0
ginc

)
,

where the Operator Bimp(s) is the translated
Calderon operator for the Helmholtz equation,
which was already analyzed in [1]. The ginc is
purely depending on the incidental wave uinc.
The kinetic boundary condition yields a similar
system.

3 Time discretization with the Convolu-
tion Quadrature method

Both boundary conditions lead to such a trans-
formed Calderon operator. By using the Con-
volution Quadrature method based on A-stable
backward difference formulae, we discretize these
systems in time.

The key to the convergence analysis is to an-
alyze the corresponding Helmholtz operators in
the frequency domain. We choose fitting Hilbert
spaces that keep the coercivity property of the
Calderon operator, shown in [1], which plays a
key role in the analysis.

Using an operator valued Herglotz theorem,
formulated in [1], then gives an energy estimate
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and results from [2] give an optimal order error
estimate of the semi-discretization in time.

4 Space Discretization with the Bound-
ary Element method

Discretization of the boundary sobolev spaces
by boundary element spaces of piecewise con-
stant and linear functions allows us to formulate
differential-algebraic systems.

By relying heavily on the properties of the
corresponding elliptic operators, in particular
the coercivity property, a stability result is shown
for these systems. The regularity of the defects
here is handled in a way, that a factor ε−1 of the
right-hand side of the error estimate is avoided.

The defects are then estimated using stan-
dard arguments of finite element theory and the
bound of the Calderon operator in the frequency
domain.

5 Full discretization

Combining both estimates gives an error bound
on the fully discrete system. For both boundary
conditions we at least achieve the error bound

n∑

j=0

∥∥∥ϕj∆x − ϕ(j∆t, ·)
∥∥∥

2

H−1/2(Γ)

+

n∑

j=0

∥∥∥ψj∆x − ψ(j∆t, ·)
∥∥∥

2

H1/2(Γ)

≤ CT (τp + h)2 ,

where CT at most grows polynomially in T and p
is the order of the corresponding A-stable back-
ward difference formulae.
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Abstract

The standard Galerkin method for wave scat-
tering problems in 2D by open arcs has a slow
convergence in terms of the mesh-size, due to the
singular nature of the exact solution. Moreover,
the usual preconditioning techniques prove inef-
�cient, due to the singularity of the domain itself
and the lack of e�cient pseudo-di�erential the-
ories on this kind of geometries. Here, we solve
both problems by introducing a new Galerkin
setting in weighted L2 spaces, and two new pre-
conditioners for the exterior Dirichlet and Neu-
mann problems. The preconditioners take the
form of square roots of local operators. We
demonstrate the e�ciency of this method on
several numerical examples. We also introduce
an adapted pseudo-di�erential calculus on open
curves to analyze the proposed preconditioners.
An extension to the case of scattering by a �at
disk in 3 dimensions is also presented.

Keywords: integral equations, boundary ele-
ment method, preconditioning

1 Introduction

The problem of preconditionning the linear sys-
tems coming from the discretization of �rst kind
integral equations has received considerable at-
tention since two decades. Among the possible
strategies are the so-called pseudo-di�erential
preconditionners [1�3, 5, 6, 15]. Roughly speak-
ing, if the original problem is written in the ab-
stract form

Lu = f , (1)

where L is a linear operator, the strategy con-
sists in left multiplying equation (1) by an op-
erator K and solve

KLu = Kf . (2)

Now, if KL is a compact perturbation of the
identity, the condition number of the discretized
underlying linear system becomes independent
of the mesh size, enabling the e�cient use of
iterative methods such as GMRES [13]. This is

in particular the case when K is a parametrix
of L, which is usually proven using tools from
pseudo-di�erential calculus [14].

Several strategies, depending on the prob-
lem to solve (e.g. Helmholtz or Maxwell equa-
tions) have been studied in the literature to pro-
pose such operators K, that often turn out to be
very e�ective in practice, when numerical appli-
cations are considered. Among those, we would
like to emphasize the viewpoint �rst proposed
in [1, 2], where, for Helmholtz equation, the au-
thors consider integral formulations of the prob-
lem that involve the Dirichlet-Neumann map Λ
which leads to well-conditioned systems after
discretization. Combined with the approxima-
tion of Λ proposed �rst in [3] under the form of
the square root operator

Λ ∼
√
−∆Γ − k2 , (3)

where ∆Γ stands for the Laplacian operator on
the surface Γ, the method (called GCSIE) yields
a very impressive reduction of the number of
iterations.

However, all the preceding results and the-
ories are limited to smooth surfaces Γ and very
little is known when the integral equation is
posed on non-smooth domains, such as domains
with corners (in 2D), wedges or conical points
(in 3D). One of the reasons might be the fact
that pseudo-di�erential calculus is di�cult to
generalize on such manifolds and the existing
theories such as the ones presented in e.g. [9,11,
12] do not seem to be adequate for the analysis
of such problems.

Nevertheless, attempts to precondition the
integral equations that come from the discretiza-
tion of single-layer or double-layer potentials for
Laplace equation on singular domains has started
a few years ago [4, 6�8, 10] in dimension 2 or
3, but for very particular domains such as a
straight and then curved segments in 2D and a
unit disc in 3D. In most of these works, weighted
versions of the single layer and hypersingular op-
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erators are introduced,

Sk,ω = Sk
1

ω
, Nk,ω = Nkω,

where ω(x) ∝
√
d(x, ∂Ω). Those weighted oper-

ators enjoy better mapping properties than the
standard operators, and the analysis is obtained
�by hand� without any explicit use of pseudo-
di�erential calculus.

Here, we describe an analytical framework
and a Galerkin method in weighted L2 spaces
suited to the inversion of these weighted oper-
ators. We introduce two scale of interpolating
Hilbert spaces, T s and U s, based on Chebyshev
polynomials of �rst and second kind. Namely,

T s = {u ∈ L2
ω |
∑

n≥0

(1 + n2)s|ûn|2}

where ûn are the �rst kind Fourier-Chebyshev
coe�cients of u. U s is de�ned analogously, us-
ing this time the second kind Fourier-Chebyshev
coe�cients. The operators Sk,ω and Nk,ω are
shown to map continuously T s to T s+1 and U s

to U s−1 for all s ∈ R. Using the properties
of T s and U s, we prove optimal rates of con-
vergence for the piecewise linear Galerkin dis-
cretization of the corresponding �rst-kind inte-
gral equations. Furthermore, using a novel kind
of pseudo-di�erential calculus on open arcs, we
are able to derive asymptotic expansions of the
symbols of Sk,ω and Nk,ω. This allows us to
build e�cient preconditioners P1 and P2 for the
linear systems arising from the previous Galerkin
method, respectively for the Dirichlet and the
Neumann problem. Those preconditioners are
de�ned at the continuous level as

P1 =
√

(ω∂τ )2 − k2ω2

P2 =
√

(∂τω)2 − k2ω2
−1

and discretized using Padé approximants. Lastly,
we show how a large part of this analysis can be
put forward in 3 dimensions with minimal mod-
i�cations to treat the case of a �at disk.
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Abstract

In this work, we consider the boundary integral
operators (BIOs for short) for the Helmholtz
equation in domains of class C 2 and in two di-
mensions. We prove that these operators, as el-
ements of the Banach spaces of bounded linear
operators, depend holomorphically on the shape
of the boundary on which they are posed. Fur-
thermore, we explore the implications of these
findings in forward and inverse shape uncertainty
quantification (UQ).

Keywords: Shape Holomorphy, Boundary In-
tegral Operators, Uncertainty Quantification.

1 Introduction

We establish the holomorphic dependence of the
BIOs, as well as the solution of any well–posed
boundary integral equations (BIEs), in the shape
of the boundary on which these are posed, as-
suming that the boundary is of class C 2 in two
dimensions. This property, referred to as shape
holomorphy, is key to mathematically justify the
use of several cutting-edge computational tools
in forward and inverse UQ [1]. In particular, this
result implies sparse approximation of the solu-
tion of any family of parametric and well–posed
BIEs. As a particular application in UQ, we
consider the Bayesian approach to inverse prob-
lems in acoustic wave scattering for the approxi-
mation of the unknown shape of the scatterer by
incorporating noisy measurements, a technique
known as Bayesian shape inversion [2, 3].

2 Shape Holomorphy of the BIOs

Set I := [0, 1]. Let {Γr}r∈T be a family of C 2–
smooth, Jordan curves given by

Γr :=
{
x ∈ R2 : x = r(t), t ∈ I

}
,

where r ∈ T is a regular boundary representa-
tion of the Jordan curve Γr and T ⊂ C 2

per(I,R2).
Let τr denote the pullback between Γr and the
reference domain I. For r ∈ T, τr : Hσ(Γr) →
Hσ

per(I) is an isomorphism, for all |σ| ≤ 1, be-
ing Hσ

per(I) the periodic Sobolev spaces in I. For

r ∈ T, we recall the Calderón projector

C(ω)
r :=

(
1
2 Id− K

(ω)
r V

(ω)
r

W
(ω)
r

1
2 Id + K

(ω)′
r

)
.

where V
(ω)
r , Kωr , K

(ω)′
r and W

(ω)
r are the sin-

gle layer, double layer, adjoint double layer and
hypersingular BIOs for the Helmholtz operator
with angular frequency ω and defined on the
Jordan curve Γr (here Id stands for the identity
operator). Using the pullback operator, we de-
fine Ĉr := τr ◦ Cr ◦ τ−1r (the application of τr is
understood component-wise). Provided δ > 0,
we define

Tδ :=

{
r ∈ C 2

per(I,C2) :
∃ r̃ ∈ T s.t.
‖r − r̃‖C 2

per(I)
< δ

}
.

We proceed to state the main result, namely
shape holomorphy of the BIOs.

Theorem 1 There exists δ > 0 such that the
Calderón projector Ĉr admits an extension to the
set Tδ, denoted by Ĉr,C, such that

r ∈ Tδ 7→ Ĉ
(ω)
r,C ,∈ L




H
1
2
per(I)
×

H
− 1

2
per (I)

,
H

1
2
per(I)
×

H
− 1

2
per (I)


 ,

is holomorphic and uniformly bounded.

3 Shape Holomorphy of the Combined
Integral Operator

For r ∈ T, we consider the combined integral
operator on Γr

A(ω,η)
r :=

1

2
Id + K(ω)

r − ıηV(ω)
r ,

where η ∈ R\{0} is the coupling parameter. It
is well-known that A

(ω,η)
r : L2(Γr) → L2(Γr) is

an isomorphism for boundaries of class C 2 and
for all angular frequencies ω ∈ R+. By means of
the pullback operator, for r ∈ T, we now define

Â(ω,η)
r := τr ◦ A(ω,η)

r ◦ τ−1r ∈ Liso(L2(I), L2(I)),

Theorem 2 There exists δ > 0 such that the
operator Â

(ω,η)
r admits an extension to Tδ, de-

noted by Â
(ω,η)
r,C , such that the map r ∈ Tδ →

Â
(ω,η)
r,C is holomorphic and uniformly bounded.
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By means of BIOs, the sound–soft scattering
problem by an incoming plane wave exp(ıωd ·r)
(d is unitary direction direction of propagation)
may be reduced to the following BIE: find ϕ̂r ∈
L2(I) such that Â

(ω,η)
r ϕ̂r := f̂r, where f̂

(ω)
r =

− exp(ıωd · r) ∈ L2(I), for all r ∈ T. The afore-
mentioned BIE is well-posed for all ω ∈ R+ and
all r ∈ T. We define the so–called domain–to–
solution map r ∈ T→ ϕ̂r :=

(
Â
(ω,η)
r

)−1
f̂
(ω)
r . As

a consequence of Theorem 2, the fact that linear
isomorphisms are open in the space of bounded
linear operators and that the inversion opera-
tion of linear isomorphisms is holomorphic, one
may establish the following result.

Theorem 3 There exists δ > 0 such that the
domain–to–solution map ϕ̂r ∈ L2(I) admits an
extension to Tδ, denoted by ϕ̂r,C, such that r ∈
Tδ → ϕ̂r,C :=

(
Â
(ω,η)
r,C

)−1
f̂
(ω)
r,C , is holomorphic

and uniformly bounded, where f̂ (ω)r,C := − exp(ıωd·
r), for r ∈ Tδ.

4 Bayesian Shape Inversion

Our goal is to compute the expected value of the
boundary by taking into account noisy measure-
ments. We consider the following set of affine,
parametric boundary representations T = {ry :
y ∈ U}, where r(y) := r0 +

∑s
j=1 yjrj , y :=

{yj}j∈N ∈ U := [−1, 1]s and s ∈ N is the di-
mension truncation. Here rj ∈ C 2

per(I,R2) and
{‖rj‖C 2

per(I,R2)}j∈N ∈ `p(N), for some p ∈ (0, 1).

Provided ND ∈ N unitary directions {di}ND
i=1, we

define the uncertainty–to–observation G : y →
CND2

, where the output vector contains the far-
field measured in the unitary directions di, i =
1, · · · ,ND, and produced by the the domain–
to–solution map, namely ϕ̂y := ϕ̂ry when the
scattered object is illuminated by an incoming
plane wave with direction dj , j = 1, · · · ,ND.

The measured data Υ is modeled as the ob-
servation produced by a fixed boundary y? plus
an additive Gaussian noise %, namely Υ = G(y?)+

%, where % ∼ N (0,Σ) and Σ ∈ RND2×ND2

sym is
the covariance matrix. We measure the misfit
between the available noisy data and the out-
put of the uncertainty–to–observation map us-
ing the following least square potential: ΦΥ

Σ(y) =
1
2 (Υ− G(y))

>
Σ−1 (Υ− G(y)) .

According to Bayes’ Theorem [2], the ex-
pected value of r(y) with respect to the con-
ditional distribution of y provided noisy mea-

surements Υ is given by

Ey|Υ[r] =
1

ZΣ

∫

U
r(y) exp(−ΦΥ

Σ(y))µ0(dy),

where

ZΣ :=

∫

U
exp(−ΦΥ

Σ(y))µ0(dy)

and µ0(dy) :=
∏s
j=1 dyj .

5 Numerical Results

In Figure 1 we obtain the expected value of the
boundary by incorporating noisy measurements
and using the Bayesian framework. The high-
dimensional integrals arising in this approach
are computed using higher order Quasi–Monte
Carlo integration rules, as in [3]. This tech-
nique is immune to the curse of dimensional-
ity, namely convergence rates do not depend on
the dimension of the parameter space U. Shape
holomorphy of the BIOs is the key mathematical
concept to justify this property.
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Figure 1: Prior and posterior expectations of
the boundary for ND = 8, s = 48, ω = 1 and
Σ = 1.
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Abstract

A discretisation method for the elctric �eld inte-
gral equation (EFIE) using the Hdiv inner prod-
uct is discussed. The EFIE is known to suf-
fer from the low-frequency breakdown, which
makes the EFIE have bad accuracy for prob-
lems with small frequencies. In a proceeding
study, we found that using the Hdiv inner prod-
uct for the Galerkin method with the Bu�a-
Christiansen (BC) basis function resolves the
low-frequency breakdown In this paper, we pro-
pose a new implementation of the discretisa-
tion method using the Hdiv inner product with-
out the use of the Bu�a-Christiansen (BC) basis
function. In this implementation, the EFIE can
be discretised with only the Raviart-Thomas func-
tion and the piecewise constant function.

Keywords: EFIE, Low-frequency breakdown

1 Introduction

The EFIE [1], which is one of formulations of in-
tegral equations for solving electromagnetic wave
scattering problems, is known to have several
problems from the numerical point of view, such
as the low-frequency breakdown. Many formu-
lations of EFIEs avoiding the low-frequency break-
down have been studied [2, 3]. We also found
that using the Hdiv inner product instead of
the standard L2 inner product in the Galerkin
method solves the low-frequency breakdown [4].
This method, however, requires the implementa-
tion of the BC basis functions, which are de�ned
on the barycentric elements having six times
more triangular elements than an original mesh
used for discretising the EFIE. In this paper, we
propose a new implementation of the discretisa-
tion method using the Hdiv inner product with-
out the use of the Bu�a-Christiansen (BC) basis
function.

2 Formulation

The domain of a scatterer is denoted by Ωi and
its surface Γ is su�ciently smooth. We consider

the following electric �eld integral equation

iωµQj = Einc × n, (1)

de�ned on Γ, where ω is the frequency, µ is the
permeability, j is the unknown electric current
on Γ,

Qj =n×
∫

Γ

{
G(x− y)

+
1

k2
∇∇G(x− y)

}
j(y)dSy,

andG is Green's function of the Helmholtz equa-

tion: G(x− y) = eik|x−y|
4π|x−y| .

3 Discretisation of the EFIE with the

Hdiv inner product

In this section, we brie�y introduce the discreti-
sation method using the Hdiv inner product for
the EFIE in (1) and describe an implementation
of this method without the BC basis function.
Readers can refer to [4] for more details.

A standard Galerkin method for the EFIE
utilises the L2 inner product to discretise the
EFIE in (1) as follows:

(n× ti, iωµQj)L2
T (Γ) = (n× ti,Einc × n)L2

T (Γ),

(2)

where (·, ·)L2
T (Γ) denotes the L2 inner product

of tangent-vector functions on Γ and ti is the
Raviart-Thomas function of �rst order. This
equation is known to su�er from the so called
low-frequency breakdown, in which the discre-
tised EFIE shows bad accuracy for small fre-
quencies. Also, solving this equation with itera-
tion methods such as the GMRES requires much
computational time since the coe�cient matrix
is ill-conditioned.

Instead of the L2 inner product, one can use
the Hdiv inner product

(u,v)Hdiv(Γ) := (u,v)L2
T (Γ) + c(∇S · u,∇S · v)L2(Γ)
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for applying the Galerkin method to the EFIE:

(si, iωµQj)Hdiv(Γ) = (si,E
inc × n)Hdiv(Γ),

where si is the Bu�a-Christiansen (BC) basis
function. The LHS of this equation is calculated
as

(si, iωµQj)Hdiv(Γ) = (si, iωµQj)L2
T (Γ)

− iωµc(∇S · si,n ·Ψj)L2(Γ) (3)

where ∇S denotes the surface gradient on Γ and
Ψj =

∫
Γ∇G × jdSy. It is known that this for-

mulation can solve the low-frequency breakdown
by setting the parameter c = 1/k2 [4]. Also one
can easily �nd a preconditioner for this equa-
tion. The LHS in (3), which corresponds to the
coe�cient matrix of the discretised EFIE, can
be calculated as

(si, iωµQj)Hdiv(Γ) =
(
si, iωµQ̃j

)
L2
T (Γ)

where Q̃ = Q + ∇Sn · Ψ. One can prove that
the operator Q̃ multiplied with iωεS̃ = iωεn ×∫

ΓG(x − y) · dSy is well-conditioned in a sense

that the equation iωεS̃ · Q̃ = R+K is satis�ed,
where R is an operator on Γ whose eigenvalues
are 1/4 and −1/4 and K is a compact opera-
tor [4]. Hence the matrix T ′−1

L2 S̃
BC
L2 T

′′−1
L2 ABCHdiv

is
expected to be well-conditioned where

(ABCHdiv
)ij = (si, iωµQtj)Hdiv(Γ),

(S̃BCL2 )ij = (n× si, iωεS̃sj)L2(Γ),

(T ′L2)ij = (n× si, tj)L2(Γ),

(T ′′L2)ij = (si, sj)L2(Γ).

Now we propose an implementation of the dis-
cretisation method with the Hdiv inner product
without the BC basis function. The �rst term of
the RHS in (3) with the preconditioner S̃ can be
discretised with only the Raviart-Thomas func-
tion as T−1

L2 S̃
RT
L2 T

−1
L2 A

RT
Hdiv

where

(ARTHdiv
)ij = (n× ti, iωµQtj)Hdiv(Γ),

(S̃RTL2 )ij = (ti, iωεS̃(n× tj))L2(Γ),

(TL2)ij = (ti, tj)L2(Γ).

Although the second term cannot be discretised
in the same way, one can move the surface deriva-
tive ∇S in the operator ∇Sn·Ψ to S̃. This oper-
ation leads us to the discretisation of the second

term as T−1
L2 DT

−1
c M where

(D)ij =

(
ti,n×

∫

Γ
∇GqjdS

)

L2
T (Γ)

,

(M)ij =

(
qi,n ·

∫

Γ
∇G× tjdS

)

L2
T (Γ)

,

(Tc)ij = (qi, qj)L2(Γ),

and qi is the piecewise constant function.

4 Numerical example

We consider a spherical scatterer with the radius
0.25 illuminated by a plane wave. We compare
the proposed discretisation method and the con-
ventional method in (2). The linear equation is
solved by the GMRES with the error tolerance
10−5 and the maximum iteration number 1500.
Figure 1 shows the iteration number of the GM-
RES for the three kinds of preconditioning. The
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Figure 1: The iteration number of the GMRES.

iteration number of the proposed method is less
than that of the standard EFIE even in small
frequencies.

5 Conclusions

We proposed an implementation of the discreti-
sation method using theHdiv inner product with-
out the BC basis function.
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Abstract

In this study we propose the construction and
the first a priori error analysis of an interior
penalty Galerkin numerical scheme applied to
the integral equation related to the Helmholtz
problem. Our main results are an error bound
in a broken norm suited to the problem and
in a more classic L2 norm. Various formula-
tion choices and penalty functions are theoreti-
cally and numerically discussed. We confirm the
advantage of using a symmetric formulation in
the context of a DG in integral equations. We
will present an extensive numerical study of the
scheme, particularly the h and p convergence.
The very important case of nonconforming mesh
and varying polynomial order are treated, and
indicates the method’s ability to handle hp re-
finement strategies.
Keywords: discontinuous Galerkin method, in-
tegral equation, acoustics

1 Introduction

In this study we explore a discontinuous ap-
proach for solving the family of integral equa-
tions arising in the field of acoustics. The use of
this nonconforming methodology could indeed
bring significant advantages in the processes of
local refining procedure and mesh generation of
complex objects. As far as we know very little
was investigated about discontinuous approxi-
mation of integral problems. Our work is an
extension of [1] to oscillating kernels.
Here we deal with the following problem model:

Wu = f in H
1
2 (Γ) (1)

which arises in the integral formulation of a sound-
hard scattering problem. We note Γ a polyhe-
dral closed surface, u the unknown of the prob-
lem and W the double layer potential operator
defined for all x ∈ Γ:

Wu(x) = − ∂

∂n(x)

∫

Γ
u(y)

∂g(x, y)

∂n(y)
dΓ(y) (2)

with g being the Helmholtz kernel. We also need
the simple layer potential operator defined by
Vu = g ? u, with ? being the convolution prod-
uct.

2 Discontinuous Galerkin scheme

A discontinuous numerical scheme is obtained
from (1) by a classic procedure: we split the
weak formulation on each elementK of the mesh
Th and use integration per parts formula in order
to exhibit the trace of the trial function on the
skeleton of the mesh γh. At the end, we seek a
numerical solution uh such that:

∀v ∈ Xhp, Aθh(uh, v) = 〈f, v〉Γ (3)

with Aθh being a bilinear form such that:

Aθh(u, v) = 〈Vcurlhuh, curlhv〉Γ
−k2〈V(uhn), vn〉Γ

+〈Tuh, v〉γh + P σ(uh, v) + θ〈Tv, uh〉γh
(4)

with 〈Tu, v〉γh = 〈te · Vcurlhu, v〉γh . The pa-
rameter θ can be tuned in order to get symmet-
ric (θ = 1) or anti symmetric (θ = −1) flux.
A penalty term denoted P σ must be added to
stabilise the formulation. We classically choose
P σ(u, v) = σh〈[u], [v]〉γh , with [u] being the jump
and σh : γh → R+ the penalty function which is
essential in order to stabilise the discrete prob-
lem. In this work we choose σh = σo

hnh
pnp , with

nh > 0, np > 0 and σo > 0 being parameters to
determine.
The approximation space Xhp is a piece-wise
polynomial space of order pK on each element
K ∈ Th. We equip this latter with the following
broken norm:

||u||2dg = ||curlhu||2
H− 1

2 (Γ)
+ ||u||2L2(Γ)

+||σ
1
2
h u||2L2(γh).

(5)

We obtain the following a priori error bound.
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Theorem 1 Let u ∈ Hr(Γ) be the solution of
problem (1), with r ≥ 1. Let σh be the penalty
function from definition above with nh > 3 and
np > 4.
Let uh denote the DG approximation defined in
problem (3). There exists ho > 0 and po > 1
such that for all 0 < h < ho and p > po with
Xhp ⊂ Xhopo , the following error estimate holds:

||u− uh||dg � max
K∈Th




h
nh−3

2
+µK

K

p
r+

np−4

2
K



 ||u||Hr(Γ)+

max
K∈Th




h

min(0,
nh−4

2
)

K

p
min(0,

np−5

2
)

K



 inf

v∈Xhp∩Co(Γ)
||v − u||dg,

with : µK = min(pK + 1, r).

One can see that the theoretical rate of conver-
gence explicitly depends on the penalty param-
eters. More precisely depending on the selected
values three ranges of convergence appear (in
the case of h convergence):

• r+ nh−5
2 ≤ 0: the error isn’t controlled by

the theorem. Nothing can be said about
the convergence of the numerical scheme.

• 1
2 ≤ r + nh−4

2 ≤ r: convergence rate of

O(hr+
nh−5

2 ) which is slower than the BEM
rate of convergence.

• nh ≥ 4: convergence rate of O(hr−
1
2 ), as

fast as the conforming BEM method.

3 Numerical results

In the presentation we will present numerical ex-
periments which illustrate the convergence rates
predicted by the theorem. We show below two
illustrative examples.

3.1 Nonconforming experiment

We show some numerical results in a hp non-
conforming situation. We consider a cube illu-
minated by plane wave. We consider the mesh
in figure 3.1, with the upper part being a P 4

approximation and the lower part a P 2 approx-
imation. The corresponding solution is can be
seen figure 3.1. It tends to show the noncon-
forming interface doesn’t pollute (at least visu-
ally) the numerical solution.
Those preliminary tests give hope in the actual
possibility of using this kind of methods for solv-
ing real problems.

Figure 1: Mesh used

Figure 2: Real part of the numerical solution

3.2 Comparison of the formulations

On figure 3.2 we compare the three formulations
(symmetric, anti symmetric and natural). We
run an example with the same setting. As for
other DG, we note the symmetric formulation
reestablish a lot better the continuity of the nu-
merical solution.

Figure 3: real part of the solutions for all the formu-
lations. From left to right: anti-symmetric (θ = −1),
natural (θ = 0) and symmetric formulation (θ = 1)

4 References
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Abstract

In physics and engineering there are many im-
portant applications where it is essential to ob-
tain information on material properties inside
(large) solid objects. For this purpose, typically,
time-depending waves are sent into the solid and
the scattered waves are recorded and used to
solve the governing mathematical equations for
the quantity of interest.

In this paper we consider the acoustic wave
equation as our model problem and derive a sta-
ble formulation as retarded potential integral
equations for general boundary and transmis-
sion conditions.

An efficient solution of the resulting problem
is addressed by means of the boundary element
method and convolution quadrature.
Keywords: Boundary Element Methods, wave
equation, impedance boundary condition, con-
volution quadrature

1 Introduction

We consider the wave equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ2
1∂

2
t u1 + a2

1∆u1 = 0 in Ω1 × [0, T ]
ρ2

2∂
2
t u2 + a2

2∆u2 = 0 in Ω2 × [0, T ][u]Γ1,2 = [a2 ∂u
∂n

]
Γ1,2

= 0 on ΓJ × [0, T ]
u = gD on ΓD × [0, T ]
a ∂u
∂nI

− T ∗ u̇ = dI on ΓI × [0, T ]
a ∂u
∂nN

= dN on ΓN × [0, T ]
u(0, x) = u̇(0, x) = 0 in Ω

(1)

in a domain Ω ⊆ R3 split into Ω = Ω1 ∪ Ω2 for
some positive parameters ai = a∣Ωi , ρi = ρ∣Ωi for
i ∈ {1,2}; Ω1 and Ω2 are open sets, ΓD∪ΓN∪ΓI =
∂Ω, ΓJ ∶= ∂Ω1∩∂Ω2 and T is a dissipative oper-
ator acting on the boundary ΓI . Typical exam-
ples include operators giving rise to impedance
type and DtN type boundary conditions.

In order to transform the problem to a bound-
ary integral equation, we introduce Γj ∶= ∂Ωj , j ∈{1,2}, Γ ∶= Γ1 ∪ Γ2, and γD, γN the trace and

co-normal trace operators. This allows to in-
troduce the single and double layer potentials,
defined for functions ϕ and ψ ∶ Γj → C by

(Sj ∗ ϕ)(x, t) ∶= ∫
Γj

ϕ (y, t − ρj∥x−y∥
aj

)
4πa2

j∥x − y∥ dsy

(Dj ∗ ψ)(x, t) ∶=
∫

Γj

⎛⎜⎝γN,Γj ,y

ψ (z, t − ρj∥x−y∥
aj

)
4πa2

j∥x − y∥
⎞⎟⎠
RRRRRRRRRRRRRRz=y

dsy,

∀(x, t) ∈ (R3 ∖ Γj) × [0, T ], where dsy denotes
the surface measure on Γj .

We will extend the approach developed in [2]
to the more general interface and boundary con-
ditions considered in eq. (1): we use Green’s rep-
resentation formula and insert boundary condi-
tions and jump relations from eq. (1), to obtain
a system of retarded potential integral equations
of convolution type:

B ∗ η = d, (2)

where η is a function (consisting of the unknown
Cauchy data) in an appropriate Sobolev space
of the boundary ∂Ω1 ∪ ∂Ω2; d collects the right
hand side of the jump relations (i.e. 0) and
boundary conditions (i.e. gD, dN , dI) in eq. (1);B is built from the boundary operators

Vj ∗ ϕj = γD,Γj(Sj ∗ ϕj)Kj ∗ ψj = γD,Γj(Dj ∗ ψj)K′j ∗ ϕj = γN,Γj(Sj ∗ ϕj)Wj ∗ ψj = −γN,Γj(Dj ∗ ψj)
for j ∈ {1,2}, their restrictions to certain subsets
of the surface Γj , the Dirac distribution δ and
the operator T ; we refer to [3] for the details.

This system can be equivalently restated by
applying a Laplace transform with respect to
time to all equations; in [3] a proof is given that
the derived formulation in the Laplace domain
is continuous, coercive, and hence well posed;
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by standard techniques, this carries over to the
well posedness of eq. (2).

2 Integro-differential equations
in the Laplace domain

We start from a generic convolution integral h(t) =
f ∗g(t) = ∫ t0 f(t−τ)g(τ)dτ . We replace f by the
inverse Laplace transform of its Laplace trans-
form:

h(t) = ∫ t

0

1

2πi
∫
c+iR e

s(t−τ)f̂(s)dsg(τ)dτ
= 1

2πi
∫
c+iR f̂(s)∫

t

0
es(t−τ)g(τ)dτds.

(3)

The inner integral U(s, t) ∶= ∫ t0 es(t−τ)g(τ)dτ
is the solution of the initial value problem

y′(t) = sy(t) + g(t) y(0) = 0. (4)

We rewrite our problem (2) using this method;
applying the inverse Laplace transform to the
Laplace transformed equation, we end up with
a system of integro-differential equations:

⎧⎪⎪⎨⎪⎪⎩
1

2πi ∫γ BZ = d

∂tZ(s, t) = sZ(s, t) + η(t), Z(s,0) = 0;
(5)

now g, f̂ , h in eq. (3) are substituted by the un-
known η, the Laplace transform of B (denoted
by B), and the boundary conditions and jump
relations g; the auxiliary function U is now re-
placed by Z; we emphasize that here η,g,U are
vector-valued1.

3 Convolution quadrature (CQ)

In this section we propose a method for dis-
cretizing eq. (5). We start again with a gen-
eral setting, and follow [1]: eq. (4) can be ap-
proximated by a discretization, e.g. by an im-
plicit A-stable Runge-Kutta scheme on equidis-
tant points2 tj ∶= j∆t; we consider hn ∶= h(tn)
at these discrete points, so that a z-transform
yields:

∞∑
n=0hn+1z

t = bTA−1f̂ (∆(z)
∆t

) ∞∑
n=0 gnz

n, (6)

where ∆(z) = (A − z
1−z1bT )−1, gk is the vector

containing the values of g at tn+cj∆t and A,b,c
define the Runge-Kutta method.

1We refer to [3] for the details
2This can be generalized to consider intervals of vari-

able length, see e.g. [4]

Suppose now that f̂ is analytic, thus

f̂ (∆(z)
∆t

) = ∞∑
n=0W

∆t
n (f̂) zn, (7)

where

W∆t
n (f̂) = 1

2πi
∫
γ
f̂ (∆(z)

∆t
) z−n−1dz

≈ R−n
L

L−1∑
l=0 f̂ (∆(Rζ−l)

∆t
) ζnl, ζ = e 2πi

L

for γ = Reiθ, 0 ≤ θ ≤ 2π, and the last sum can
be computed via a fast Fourier transform. We
insert this and eq. (7) into eq. (6), to obtain a
discrete convolution:

hn+1 = bTA−1
n∑
j=0W

∆t
n−j (f̂) gj . (8)

Next we apply CQ to our original problem
in the form of eq. (5). It can be treated as
eqs. (6) and (7), resulting in a discretization
of the form (8). The resulting system is then
block-triangular and has to be solved for η.
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Abstract

FastMMLib is a library which provides a generic
framework for Fast Multipole Methods (FMM)
usable in various applications and physical con-
texts. The library deals with all the FMM as-
pects (clustering, kernel expansion, pre-calcula-
tion, matrix-vector product) but the user keeps
the entire control of the application background
(physics, solved equations, discretisation). The
library is written in C++. Dedicated classes en-
sure the interaction with the user, and offer the
tools to inform precisely the user application (fi-
nite element / point-wise approach; Helmholtz
equation / Coulomb potential).
Keywords: FMM, C++ library, Helm-
holtz kernel, Coulomb potential

1 Introduction

The Fast Multipole Method (FMM) has been
widely used and studied in the context of inte-
gral equations for the resolution of wave propa-
gation phenomena in exterior domains (e.g. [2,
4]). However, the method is still rather unac-
cessible for academic studies due to its compli-
cated implementation. One can find some ex-
isting codes or libraries (e.g. [3]). To complete
this offer, FastMMLib has been developed with
the idea to provide a generic framework for the
use of Fast Multipole Methods in various appli-
cations and physical contexts. The most popu-
lar uses of the FMM are matrix-vector products
where the matrix is obtained either from the
discretisation of an integral equation involving
the Helmholtz Green kernel or from interactions
governed by the Coulomb potential. As an ex-
ample, solving boundary integral equations on a
domain Γ by finite elements, one has to consider
matrices like

[M ]i j =

∫∫

Γ×Γ
G(x, y)ϕj(y)ϕi(x)dγ(y)dγ(x) , (1)

where G(x, y) = eik‖x−y‖/(4π ‖x− y‖), and ϕi
are the finite element basis functions. In the
context of the Coulomb point-wise interactions,

the matrix would reduce to [M ]i j = G(xi, yj)
with G the Coulomb potential.

The library is written in C++ and deals with
all the FMM aspects (geometry clustering, pre-
calculation, kernel expansions, FMM product,
...) but the user keeps the entire control of
the discretisation of his model (finite element or
point-wise discretisation, quadrature rules, cal-
culation of the singular integrals, ...). This is
made possible due to specific C++ classes which
organise the interfaces between the user problem
and the library. In the next section, we present
the generic expansion for the kernel and show
its use for the Helmholtz equation. The third
section is devoted to a brief presentation of the
generic class which defines the geometric con-
text of the user.

2 The generic formulation

A fundamental ingredient of the library is the
choice of a generic expansion of the interaction
function G:

G(x, y) ≈
S∑

p=1

cp g
(p)
x,B

S̃∑

p̃=1

T (p,p̃)

B,B̃
f

(p,p̃)

y,B̃
, (2)

where S and S̃ are generally truncation or dis-
cretisation parameters; cp is a coefficient which
depends only on p; T (p,p̃)

B,B̃
is named the trans-

lation operator, with B and B̃ two FMM clus-
ters containing resp. x and y (generally cubic
boxes); f (p,p̃)

y,B̃
is named a far moment and is in-

dependent of the point x; g(p)
x,B is named a local

moment and is independent of the point y.

As an example, the Helmholtz Green kernel
can be approximated by such an expansion us-
ing Gegenbauer series and the Funk-Hecke for-
mula

G(x, y) ≈
S∑

p=1

cp g
(p)
x,B T

(p)

B,B̃
f

(p)

y,B̃
, (3)

with S a discretisation parameter related to the
integration on the unit sphere (from the Funk-
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Hecke formula); cp = ik
(4π)2

wp, with wp a quadra-

ture weight; f (p)

y,B̃
= e−ik<sp,y−CB̃> where C

B̃
is

the center of the box B̃, and sp a quadrature
point; g(p)

x,B = eik<sp,x−CB> where CB is the cen-

ter of the box B; T (p)

B,B̃
the translation operator,

from B̃ to B derived from a truncation of the
Gegenbauer series

T (p)

B,B̃
=

L∑

`=1

(−i)`(2`+ 1)h
(1)
` (k|CB − CB̃|)

P`(cos(sp, CB − CB̃)),

with h
(1)
` the spherical Hankel function of the

first kind of degree `, P` the Legendre polyno-
mial of degree `, L and S estimated thanks to
empirical formulae.

From the expansion of the interaction func-
tion G, e.g. (3), we deduce the expansion of the
matrix [M ]. For the matrix defined in (1),

[M ]i j ≈
S∑

p=1

cp
∑

B/B∩suppϕi 6=∅
g

(p)
i,B

∑

B̃/B̃∩suppϕj 6=∅

T (p)

B,B̃
f

(p)

j,B̃
,

(4)

with

f
(p)

j,B̃
=

∫

B̃∩suppϕj

f
(p)

y,B̃
ϕj(y)dγ(y) , (5)

and g(p)
i,B defined similarly from g

(p)
x,B.

3 Interface with the user

The interface with the user consists of the de-
scription of the geometrical context and the dis-
cretisation strategy (e.g. a finite element method
or a point-wise approach), and the identification
of the physics through the interaction function
(e.g. the Helmholtz Green kernel, the Coulomb
potential). One of the main ingredients of this
interface is the C++ class, named Particle,
which defines the geometrical objects inducing
the structure of the matrix [M ] of the matrix-
vector product to be evaluated. The problem
specific configuration is described by the user
through a class of particles which derives from
the Particle abstract class. The particles are
typically finite element degrees of freedom or ge-
ometrical points in a domain. They follow a rig-
orous identification through a C++ class which

contains different mandatory geometrical data
(localisation, close influence area, ...). The par-
ticle is also the object that should evaluate itself
if it is contained in a FMM cluster, and explain
how the related moments are calculated. For
example, the far moment f (p)

j,B̃
, given in (5) is

computed thanks to a member function of the
class Particle that should corresponds to the
operator which returns the quantity f (p)

j,B̃
from a

given function f (p) : y 7→ f
(p)

y,B̃
. This function

f (p) is defined in a class dedicated to the kernel.

4 State of the art and futur of FastMM-
Lib

First validation results and asymptotic beha-
viours will be presented for the single-level FMM
in the case of Helmholtz kernel. The multilevel
version of the FMM is in progress. The generic
aspect and the squeleton of FastMMLib are de-
signed in such a way that the library is also able
to cope with other developments of the method
like the regularized FMM introduced in [1] or
kernel-independent versions of the FMM [5].
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Abstract
The discrete PMCHWT formulation for the sin-
gle and multi-particle transmission problem suf-
fers from ill-conditioning. Calderón precondi-
tioning is a well-known technique to remedy
this, reducing the number of iterations required
by the linear solver, albeit at the expense of
an increased number of matvecs per iteration.
For single-particle problems, we find that the
Calderón method is often outperformed by a
simple mass-matrix preconditioner. For multi-
particle problems a block-diagonal Calderón pre-
conditioner provides a significant reduction in
computational cost. We explore the capabili-
ties of a bi-parametric Calderón preconditioner,
which uses high quadrature orders and small H-
matrix tolerances for the assembly of the oper-
ator, but low quadrature orders and larger H-
matrix tolerances for the preconditioner. Fi-
nally, we investigate the effect of using only
near-field interactions in the preconditioner. The
performance of the different approaches is com-
pared using the Bempp software package.
Keywords: Boundary element method, elec-
tromagnetic scattering, multiple bodies, Bempp

1 Introduction
We consider 3D electromagnetic scattering by
M disjoint isotropic homogeneous dielectric scat-
terers in a homogeneous exterior medium. The
electric and magnetic fields in the interior do-
mains (Ei

m,Hi
m), and the exterior domain (Ee,He)

are assumed to satisfy the time-harmonic Maxwell
equations, which, written in second-order form
for the electric fields Ei

m, Ee, are
∇× (∇×E)−k2E= 0,

where k = km = ω
√
µmεm and k = ke = ω

√
µeεe

are the wavenumbers for the respective domains.

The exterior field is assumed to satisfy the Silver-
Müller radiation condition.

2 Boundary Integral Operators
We define electric and magnetic potentials
Ev(x) :=ik

∫

Γ
v(y)G(x,y)dΓ(y)

− 1
ik∇x

∫

Γ
∇y · v(y)G(x,y)dΓ(y),

Hv(x):=∇x ×
∫

Γ
v(y)G(x,y)dΓ(y),

with G(x, y) = exp(ik|x− y|)
4π|x− y| , and interior (−)

and exterior (+) Dirichlet and Neumann traces

γ±
Du±(x) = u±(x)× n(x), x ∈ Γ,

γ±
Nu±(x) = 1

ik
γ±
D

(∇× u±(x)
)
, x ∈ Γ.

We define the electric and magnetic boundary
integral operators (with {γ·} := (γ+

· + γ−
· )/2)

S := {γD}E = −{γN}H, C := {γD}H = {γN}E ,
and the block operators and vectors

Ai
m =



Cim µm

km
Sim

− km
µm
Sim Cim


 , uim =



γ−
D,mEi

m

km
µm
γ−
N,mEi

m


 ,

Ae
m =



Cem µe

ke
Sem

− ke
µe
Sem Cem


 , usm =



γ+
D,mEs

ke
µe
γ+
N,mEs


 ,

Am` =



Cem` µe

ke
Sem`

− ke
µe
Sem` Cem`


 , uincm =



γ+
D,mEinc

ke
µe
γ+
N,mEinc


 ,

where e.g. Sem` is S acting on scatterer `, evalu-
ated on scatterer m, with wavenumber k = ke.

3 The PMCHWT formulation
The multi-particle PMCHWT formulation is

Aus =
(1

2I −Ai
)

uinc, (1)
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where

A =

Ae
1 + Ai

1 A12 · · · A1M

A21
...

... A(M−1)M

AM1 · · · AM(M−1) Ae
M + Ai

M







,

Ai=

Ai
1 0 · · · 0

0
...

... 0
0 · · · 0 Ai

M







, us =

us1
us2
...

usM







,

I =

I1 0 · · · 0

0
...

... 0
0 · · · 0 IM







, uinc =

uinc1

uinc2

...
uincM







.

4 Calderón Preconditioning
Galerkin discretisation of (1) produces an ill-
conditioned linear system, leading to slow con-
vergence of iterative solvers. This occurs be-
cause Cim and Cem are compact, with eigenval-
ues accumulating at zero, while Sim and Sem are
the sum of a compact operator, with eigenval-
ues accumulating at zero, and a hypersingular
operator, with eigenvalues accumulating at in-
finity. As was shown in [1], one can remedy this
at the continuous level by applying A to (1),
obtaining the preconditioned system

A2us = A
(1

2I −Ai
)

uinc, (2)

which has better spectral properties than (1)
due to the Calderón identities

S2 = −1
4I + C2, CS + SC = 0.

In a recent study of Calderón precondition-
ers for single- and multi-particle dielectric scat-
tering [2], we found that the standard Calderón
preconditioner (2) is actually no more efficient
than a simple mass-matrix preconditioner in terms
of the total matvecs required to reach GMRES
convergence. But for the multi-particle case
we found that a significant saving in computa-
tional cost can be obtained by performing block-
diagonal Calderón preconditioning in which (1)

Figure 1: Squared magnitude of the electric
field created by a plane incident wave travelling
across an aggregate of ice crystals.

is multiplied by only the block-diagonal part D
of A. Numerical experiments were performed
for scatterers representing complex ice crystals,
an example of which is shown in Fig. 1.

In [3], a bi-parametric Calderón precondi-
tioner was introduced for the EFIE problem.
We apply this bi-parametric approach to the
PMCHWT multi-particle problem, with the op-
erator A discretised by RWG basis functions
and assembled with a high order quadrature
and small H−matrix tolerance, and the precon-
ditioner D discretised by BC functions and as-
sembled with a minimum number of quadrature
points and a larger H−matrix tolerance. In ad-
dition, we explore the possibility of including
only the near-field interactions in the precondi-
tioner, which results in a sparse matrix.
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Abstract

The computational performance of Calderón mul-
tiplicative preconditioners worsens as mesh size
decreases due to the barycentric refinement used
to construct dual basis functions. Based on coar-
ser quadrature rules over dual cells andH-matrix
compression, we propose a family of fast pre-
conditioners that significantly reduce assembly
and computation times when compared to stan-
dard versions of Calderón preconditioning for
the Helmholtz three-dimensional BIOs.
Keywords: Calderón Preconditioning, Hierar-
chical Matrices, Fast solvers

1 Introduction

Many applications require the modeling of time-
harmonic wave scattering in unbounded domains
by solving boundary integral equations (BIEs).
Due to the non-local character of the result-
ing boundary integral operators (BIOs), aris-
ing linear systems are dense. Moreover, if first
kind integral equations are employed, their con-
dition numbers will worsen as discretization ac-
curacy is improved. Consequently, the perfor-
mance of iterative solvers is foiled and precon-
ditioning techniques become mandatory.

One preconditioning strategy involves so-called
Calderón identities, which for Helmholtz BIEs
read:

VκWκ =
1

4
I
H

1
2 (Γ)
− K2

κ, (1)

WκVκ =
1

4
I
H− 1

2 (Γ)
− K′2κ , (2)

wherein the weakly singular BIO (Vκ) can serve
as a preconditioner for the hyper-singular one
(Wκ) and viceversa.

Numerically, Calderón Multiplicative Precon-
ditioners (CMP) are built as follows [1, 2]. Let
A : X → Y and B : Y → X denote Vκ and
Wκ and vice-versa, (cf. (1) and (2) wherein X
and Y are alternatively H±1/2(Γ)). Set discrete
spaces Xh ⊂ X and Yh ⊂ Y over meshes of
characteristic length h, such that dim(Xh) =

Figure 1: Primal, barycentric and dual meshes
for piecewise-constant basis functions.

dim(Yh), to find discretizations for A and B (Ah

and Bh, respectively). Assume that X and Y
are dual to each other and use a stable L2-
pairing, GXh,Yh

h = (φh, ϕh)L2 for φh ∈ Xh and
ϕh ∈ Yh. With these elements, the precondi-
tioned matrix takes the general form:

(GXh,Yh
h )−1Bh(GXh,Yh

h )−TAh. (3)

In practice, dual basis are based on barycentric
refinements of the primal mesh [3]. This entails
a six-fold increase in computational complexity,
rendering the method often impractical in real-
istic scenarios and recent efforts have been de-
voted to tackle this issue [4, 5].

In this note, we device an effective yet much
cheaper CMP preconditioner built by heavily
compressing far-field interaction as in [5], along
with coarse quadrature rules to integrate directly
over dual basis functions.

2 Modified Calderón Preconditioning

Let Th refer to either primal (Γh), dual (Γ̂h)
or barycentrically refined primal (Γh) mesh (see
Figure 1). For p = 0, 1, we write Pp ≡ Pp(Γh)
for the space of piecewise constant or linear func-
tions over Γh, respectively. Similarly for barycen-
tric (P p) and dual (P̂p) basis functions. We seek
to solve

Wκ,hu = b, (4)
Vκ,hv = η. (5)

The standard CMP matrix reads:

(GXh,Yh
h )−1ΣBY h,Y h

h ΣT (GXh,Yh
h )−TAXh,Xh

h ,
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Figure 2: Interior view of the submarine mesh.

None H-mCMP1E-8 H-CMP1E-8
9,745 1,751 1,734

Table 1: GMRES iteration counts. Compression
tolerance of H-matrices: ε = 1E − 8

where Σ is an averaging matrix. We build pre-
conditioners directly on approximations of the
dual mesh employing low accuracy integration
routines.

Consider (1) and the associated matrix VP̂0,P̂0

κ,h .
As shown in Figure 1, the supports of P̂0-basis
functions are obtained as the sum of barycen-
tric piecewise-constant basis functions, P 0, that
occupy the dual basis function support. Ideally,
integration should be performed over the whole
support, but we can also consider a quadrilat-
eral mesh in which dual supports are divided
into coarser partitions than the barycentric one.
Computationally, self-interaction matrix entries
VP̂0,P̂0

κ,h are obtained as prescribed in standard
CMP. For cross-interaction terms, quadrilateral
elements are first built by merging couples of
barycentric triangles into quadrilaterals. A hi-
erarchical version of the mCMP can also be ob-
tained by performing a H-matrix compression
of the mCMP (H-mCMP).

3 Numerical Results

We show a submarine-like mesh containing 44,338
nodes. The boundary condition used was γNu =
n̂ze

iκz and κ = 30. Table 1 compares the num-
ber of iterations that takes to solve the induced
system, by using hierarchical versions of mCMP
and standard CMP. Results show that the mCMP
performs as good as the CMP.

Assembly and solving times for each pre-
conditioner (Figure 3) confirm the standard H-
CMP poor’s performance when compared against
H-mCMP assembly time. In some cases, to-
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Figure 3: Assembly and solving time for H-
mCMP and H-CMP. Tolerances used to build
the compressions are indicated by the names of
the preconditioners.

tal execution time of the mCMP does not ex-
ceed that of the unpreconditioned system. Also,
solving times in the case of hierarchical precon-
ditioners are prohibitively long, as the precon-
ditioner is applied in each GMRES iteration.
However, more efficient methods should be em-
ployed in order to reduce this bottleneck.
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Abstract

We show the capabilities of the open-source soft-
ware Gypsilab developed at the Ecole poly-
technique. Available under the GPL3.0 license,
Gypsilab is a prototyping library entirely writ-
ten in the Matlab language. It enables the
natural writing of variational formulations as
the code reflects the mathematical formulation,
and features natively an entire algebra for H-
matrices. In this work, we study a strong cou-
pling FEM and BEM in vibroacoustics using
Gypsilab.
Keywords: open-source, FEM-BEM coupling,
hierarchical matrices, vibroacoustics

1 Introduction

Gypsilab [1, 3] is a high-level coding interface
(whose purpose may be compared to other APIs
like FreeFEM++, XLiFE++, Phoenix, Drake,
this is not exhaustive). It aims at providing the
user a portable and fast prototyping tool, tak-
ing advantage of the powerful Matlab API, for
the assembling of variational formulations aris-
ing from the classical Finite Element Method or
Boundary Element Method. Until recently, it
only focused on pure FEM or pure BEM prob-
lems. In this work, we will show how one can
easily compute the strong coupling between an
acoustic wave propagating in an exterior me-
dium and an elastic wave in a solid in the fre-
quency domain. The elastic part will be com-
puted using a classical FEM formulation. The
acoustic scattering part will be computed using
the well-known Brakhage-Werner BEM formu-
lation [4, 5] by taking advantage of the full H-
matrix algebra [6].

2 Coupling equations, implementation

We study the interaction between an acoustic
wave with angular frequency ω propagating in
an exterior medium and a vibrating solid Ω with
surface Γ and outbound normal ~n. The solid has
a density ρs and Lame coefficients (λ, µ). The
unkown is the displacement vector field u. The
propagation equation may be found in [7]. On

the other side, the acoustic medium has a den-
sity ρ0. The total pressure field is the sum of the
incident field pi (given) and the scattered field
ps. The propagation of the acoustic wave is com-
puted using the Brakhage & Werner boundary
integral equation [5] which we shorten such that

ps(x) = BWα(x), (1)
∂ps

∂n
(x) =

∂BW

∂n
α(x), (2)

where α is some scalar non-physical unknown.
We have the coupling conditions extrapolated
from [2,7]

ρ0ω
2(u · ~n) =

∂ptot

∂n
, (3)

and reciprocity of the constraint

σ(u) · ~n+ ptot~n = 0, (4)

where σ(u) is the stress-tensor in Ω. We obtain
the following variational formulations
∫

Ω

(
σ(u) : v̄ − ρsω2(u · v̄)

)
dΩ +

∫

Γ
(BWα)(~n · v̄)dγ = −

∫

Γ
pi(~n · v̄)dγ, (5)

ρ0ω
2

∫

Γ
w̄(~n · u)dγ−
∫

Γ
w̄(
∂BW
∂n

α)dγ =

∫

γ
w̄
∂pi

∂n
dγ, (6)

where v is the "FEM" test function and w is
the "BEM" test function.

Implementation The key point with Gypsi-
lab is that the implementation will mirror the
way variational formulations are written. The
system defined by (5) and (6) is a 2 × 2 block-
system which can be rewritten as

(
A B
C D

)
·
(
u
α

)
=

(
e
f

)
, (7)
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where all terms A,B,C,D, e, f are computed
using a combination of the same generic inter-
face function integral(...) whose behaviour
and return-type is determined by the number
and kind of arguments which are given as in-
put. The block system is then solved using a
Schur complement to avoid mixing the different
types of matrices. The unknown α is computed
by solving iteratively
(
D − C ·A−1 ·B

)
α = f − C ·A−1 · e. (8)

The left-hand-side may be preconditioned by us-
ing the LU-decomposition of the H-matrix D.
The post-processing (for example near- and far-
field computations based on the representation
formula (1)) is performed in the same fashion
using the integral() interface.

3 Numerical results

The coupling has been validated in 2D and 3D.
For example, it was used to compute numeri-
cally the transmission and reflexion coefficients
of a dispersive solid screen as it can be seen
on Fig. 1. The computation was performed

0 2000 4000 6000 8000 10000
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Gypsilab

Figure 1: Reflexion coefficient for a dispersive
thick screen.

by solving a 2D (or 3D) problem for a slab by
forbidding lateral displacement and shear-wave
propagation, and using a beamed incident field
smaller than the surface. Note that the source
code for the 2D and 3D examples are available
at [1].

Another example is the scattering by a 3D
steel cylinder where the source is a spherical
wave placed at the middle. The main dimen-
sion is along the ~ex axis. Gypsilab was used to

compute the radiation diagrams which are rep-
resented on Fig. 2 for a frequency f = 1000 Hz.

Figure 2: Radiation diagram for a cylinder at
1000 Hz

4 Conclusion

Using the Gypsilab library, we quickly design
a readable and synthetic code for the resolution
of vibroacoustics problems. We are able to cou-
ple efficiently a FEM formulation for the elastic
part and a complex BEM formulation for the
acoustic part as Gypsilab is able to mix finite
elements spaces defined on surfacic or volumic
meshes. Moreover, the H-matrix algebra can be
used to accelerate the BEM by simply adding a
tolerance parameter to the integral() routine.
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Abstract

We introduce a parallel implementation strategy
for the collocation boundary element method
(BEM) applied to the interior boundary value
problem of the three-dimensional Helmholtz equation.
This contribution presents an implementation
strategy in order to accelerate the matrix assembly
process. For this purpose, we take advantage of
the fact that each matrix element is evaluated
independently. Thus, we transform the nested
loop of the matrix assembly procedure into a
large iteration space. Then, the associated work
can be e�ciently distributed among the threads.
Moreover, we present an acceleration technique
for the iterative solving scheme, especially for
the matrix-vector product, by using parallelized
routines from PETSc or the Math Kernel Library
provided by Intel R©. The performance of the
presented strategies is demonstrated for a numerical
benchmark problem and for an industrial application,
a �uid model of a sedan cabin compartment.

Keywords: boundary element method, Helmholtz
equation, high performance computing, parallel
programming

1 Introduction

Sound radiation and scattering problems play
an important in many engineering applications.
In this contribution, we will investigate the sound
radiation in a sedan cabin compartment in order
to reduce noise in the interior of a vehicle. For
this application, we consider the time-harmonic
wave equation, i.e. the Helmholtz equation, for
the sound pressure p in a domain Ω

∆p(x) + k2p(x) = 0 x ∈ Ω ⊂ R3 (1)

where k = w/c denotes the wavenumber. The
angular frequency and the speed of sound are
described by ω and c respectively. Moreover,
admittance boundary conditions are applied on
the boundary Γ, which are equivalent to Robin
boundary conditions

vf (x)− vs(x) = Y (x)p(x) x ∈ Γ ⊂ R2

(2)

with Y representing the boundary admittance.
The sound radiation can now be formulated in
a boundary integral equation, i.e. the Kirchho�-
Helmholtz integral equation, which can be discretized
by the collocation boundary element method.
Even if fast boundary element methods, such as
the fast multipole method or hierarchical matrices,
exist, the presented parallelization method is
�rstly applied to the classical BEM. The presented
method can then be easily adapted to the matrix
assembly of the dense blocks in the accelerated
methods. In general, the BEM is highly advantageous
since it only requires the discretization of the
boundary. However, the resulting system matrices
are dense and generally neither Hermitian nor
positive de�nite. Subsequently, the matrix assembly
and the iterative solving procedure are both associated
with high computational e�orts.

Figure 1: Sedan Cabin Compartment, interior
acoustic problem [2].

In order to accelerate the matrix assembly,
we transform the nested loop, which underlies
the assembly process, into a loop with a large
iteration space. This provides the opportunity
to share the work among the threads and to
parallelize the matrix assembly process. The
parallelization is implemented by using OpenMP
[7]. Moreover, we present a basic mechanism
to accelerate the iterative solving procedure by
applying parallelized routines from PETSc [9]
and the Intel R© Math Kernel Library (MKL)
[8]. Finally, some aspects associated with code
optimization are covered.
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2 Parallelization strategies

In the matrix assembly in the collocation boundary
element method, the elements in the system matrix
are evaluated independently from each other.
Hence, the matrix assembly can be parallelized
by transforming the nested loop into a large
iteration space. Then, more work can be distributed
among the threads, which makes the parallelization
more e�cient. This parallelization strategy is
implemented by using OpenMP [7]. More speci�cally,
we applied the collapse clause in OpenMP in
order to parallelize all loop levels instead of just
the outer loop. The basic idea of the parallelizd
matrix assembly is depicted in the pseudo-code
below.

Algorithm 1 Parallel matrix assembly

1: #pragma omp for collapse(2)
2: for all collocation points do

3: for all elements do

4: perform integration on element level
5: assemble the system matrix

In addition to the parallelized matrix assembly,
the authors demonstrate an elementary parallelization
technique in order to accelerate the iterative solving
procedure. For this purpose, the linear system
of equations is solved by using parallelized routines
from Intel R© MKL [8] and PETSc [9].

3 Numerical results

The performance of the implemented parallelization
techniques are analyzed for two numerical examples.
At �rst, a typical numerical benchmark case in
the �eld of computational acoustics, the three-
dimensional duct problem, is investigated. Then,
the presented method is applied to an industrial
problem, a sedan cabin compartment [2].

4 Conclusions and outlook

In this contribution, we presented a parallelization
method in order to accelerate the matrix assembly
process in the collocation boundary element method.
Even if modern boundary element methods omit
the full assembly of the dense system matrix,
the presented method can still be applied on
accelerated methods, in order to perform the
matrix assembly of dense blocks, which are still
present in the fast BEM. Moreover, the iterative
solving scheme is accelerated by using parallelized
libraries. Finally, the performance of the presented
method is analyzed for two examples: the three-

dimensional duct problem and the sedan cabin
compartment. Besides further parallelization of
the BEM, the BEM code will be optimized towards
an e�cient distribution of data.
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Abstract

We analyze the spatial discretization of Wester-
velt’s quasilinear strongly damped wave equa-
tion by piecewise linear finite elements. The
main challenges lie in handling the underlying
nonlinearities which involve temporal derivatives
of the acoustic pressure and ensuring the non-
degeneracy of the model. The talk is based
on [2].
Keywords: finite element method, a priori anal-
ysis, nonlinear acoustics

1 Introduction

We study a spatial discretization of Westervelt’s
wave equation for the acoustic pressure u:

(1− 2ku)utt − c2∆u− b∆ut = 2ku2t . (1)

This equation represents a classical model for
nonlinear ultrasound propagation through ther-
moviscous fluids [3]. In (1), the constant c de-
notes the speed of sound, b is the sound diffu-
sivity, k = βa/(%c

2), where % is the mass den-
sity and βa the coefficient of nonlinearity of the
medium. We consider equation (1) with homo-
geneous Dirichlet conditions and non-zero initial
data (u, ut)|t=0 = (u0, u1).

The motivation to study (1) comes from many
applications of nonlinear ultrasound in medicine
and industry. For instance, high-intensity ultra-
sound waves are often used in treatments of kid-
ney stones to break them into smaller pieces.

An interesting feature of Westervelt’s quasi-
linear equation is that the non-degeneracy is not
a priori given. In our proofs, we have to ensure
that the factor 1− 2ku next to the second time
derivative remains positive.

In the continuous analysis of the Westervelt
equation, non-degeneracy is typically ensured
by a higher-regularity result for the solution and
the use of an embedding, e.g., H2(Ω) ↪→ L∞(Ω),
combined with an assumption of sufficiently small
data; cf. [1, Theorem 3.1]. We cannot directly
transfer this strategy to the semi-discrete setting

since we use piecewise linear basis functions. In-
stead, we rely on inverse estimates for finite el-
ement functions and the stability and approxi-
mation properties of the interpolation operator.

It is also worth noting that the strong damp-
ing (i.e., b > 0) is needed for the continuous
problem to be well-posed in 2D and 3D; the
same holds for the semi-discrete equation.

2 Linearized Westervelt’s equation

Let Sh ⊂ H1
0 (Ω) denote a finite element space

that consists of piecewise polynomials of degree
1 on a quasi-uniform simplicial tessellation T of
Ω ⊂ Rd, where d ∈ {2, 3}.

Our theoretical approach employs the Ba-
nach fixed-point theorem in combination with a
priori analysis of a non-degenerate linear wave
model with variable coefficients:

α(x, t)utt − c2∆u− b∆ut + β(x, t)ut

= f(x, t),
(2)

where 0 < α0 ≤ α ≤ α1 a.e. in Ω × (0, T ),
coupled with the initial conditions and homo-
geneous Dirichlet data. The error analysis of
the discretization of (2) in Sh has to take into
account approximation errors of the coefficients
α and β to make later use of a fixed-point ap-
proach possible.

3 A priori analysis of Westervelt’s equa-
tion

The analysis of the nonlinear problem is then
performed by defining an iterative map on which
we can apply the Banach fixed-point theorem
while relying on the error analysis for the lin-
earized equation (2). In this way, we obtain
optimal convergence rates in L2-based spatial
norms for sufficiently small data and mesh size,
and a suitable choice of initial approximations.

Theorem 1 [A priori error estimate, [2]] Let
c2, b, k > 0, and let T > 0. Assume that
the initial-boundary value problem for (1) has
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a unique solution which satisfies

u ∈ L∞(0, T ;L∞(Ω) ∩ Ḣs(Ω)),

ut ∈ L2(0, T ;L∞(Ω)) ∩ L∞(0, T ; Ḣs(Ω)),

utt ∈ L2(0, T ;L∞(Ω) ∩ Ḣs(Ω)),

where max{1, d/2} < s ≤ 2. Then for suffi-
ciently small

m = ‖u‖L∞L∞ ,

M = max {‖u‖L∞Hs , ‖ut‖L∞Hs , ‖ut‖L2L∞ ,

‖utt‖L2Hs , ‖utt‖L2L∞} ,

and h, there exists a unique uh in a neighbour-
hood of u which satisfies the equation

((1− 2kuh)uh,tt, φ)L2 + c2(∇uh,∇φ)L2

+ b (∇uh,t,∇φ)L2 = 2k
(
u2h,t, φ

)
L2 ,

for all φ ∈ Sh a.e. in time, and (uh(0), uh,t(0)) =
(Rhu0, Rhu1) . Furthermore, there exists a posi-
tive constant C that depends on m, M , and T ,
but not on h, such that

‖u− uh‖L∞L2 + ‖ut − uh,t‖L∞L2

+ h‖∇(u− uh)‖L∞L2 + h ‖∇ut − uh,t‖L∞L2

≤ Chs.

In the talk, we will illustrate our theoretical
findings by numerical experiments in a setting of
a 1D channel as well as for a focused-ultrasound
problem.
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Abstract

Recent advances on the numerical simulation
of fundamental models from nonlinear acous-
tics will be presented. A hierarchy of nonlinear
damped wave equations arising in the descrip-
tion of sound propagation in thermoviscous flu-
ids will be introduced. Former investigations
imply that two classical models, the Kuznetsov
and Westervelt equations, are retained as limit-
ing systems for vanishing thermal conductivity
and consistent initial data. Numerical compar-
isons confirm and complement this theoretical
result.
Keywords: Nonlinear acoustics; Nonlinear
damped wave equations; Limiting systems; Nu-
merical simulation

1 Introduction

Wave equations naturally arise in the field of
nonlinear acoustics; in view of various medical
and industrial applications, the investigation of
nonlinear damped wave equations is of particu-
lar importance in high-intensity ultrasonics, see
for instance [1] and references given therein.

Pursuing former work [2], our main objective
is to provide numerical simulations for a hierar-
chy of nonlinear damped wave equations mod-
elling sound propagation in thermoviscous flu-
ids; our study confirms and complements a rig-
orous theoretical result which implies that two
classical models, the Kuznetsov and Westervelt
equations, are retained as limiting systems for
vanishing thermal conductivity and consistent
initial data.

2 Kuznetsov and Westervelt equations

The Kuznetsov equation [3] is a widely-used
model for the propagation of sound in thermo-
viscous fluids that neglects thermal effects. In
accordance with [2], we employ a formulation as
abstract evolution equation for the space-time-
dependent acoustic velocity potential

ψ : Ω× [0, T ] ⊂ Rd × R −→ R ,
d ∈ {1, 2, 3} ,

(1a)

defined on a certain space-time domain; setting
σ = 1 as well as

β
(0)
1 = νΛ ,

β3 = c20 ,

β5(σ) = 1
c20

(
2 (1− σ) + B

A

)
,

β6(σ) = σ ,

σ ∈ {0, 1} ,

(1b)

with kinematic viscosity ν, quantity Λ = µB
µ + 4

3
given by the ratio of the bulk and shear viscosi-
ties µB and µ, speed of sound c0, and parameter
of nonlinearity B

A , the Kuznetsov equation reads
as follows

∂ttψ(t)− β(0)1 ∆∂tψ(t)− β3 ∆ψ(t)

+ ∂t

(
1
2 β5(σ)

(
∂tψ(t)

)2

+ β6(σ)
∣∣∇ψ(t)

∣∣2
)

= 0 ,

t ∈ (0, T ) ,

ψ(0) = ψ0 ,

∂tψ(0) = ψ1 .

(1c)

The special choice σ = 0 leads to the Westervelt
equation [4], which in addition disregards local
nonlinear effects.

3 Nonlinear damped wave equation

An extended model is obtained from the fun-
damental conservation laws for mass, momen-
tum, and energy as well as an equation of state,
see [2] for details on the derivation. In accor-
dance with (1), we denote by a > 0 the thermal
conductivity and set

β
(a)
1 = a

(
1 + B

A

)
+ νΛ ,

β
(a)
2 (σ0) = a

(
νΛ + a B

A

+σ0
B
A (νΛ− a)

)
,

β3 = c20 ,

β
(a)
4 (σ0) = a

(
1 + σ0

B
A

)
c20 ,

β5(σ) = 1
c20

(
2 (1− σ) + B

A

)
,

β6(σ) = σ ,

σ, σ0 ∈ {0, 1} ;

(2a)
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Figure 1: Comparison of solution profiles for
consistent initial data.
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Figure 2: Comparison of solution profiles for in-
consistent initial data.

evidently, β(a)1 → β
(0)
1 and β(a)2 (σ0) → 0 as well

as β(a)4 (σ0)→ 0 if a→ 0+. The heuristic obser-
vation that the nonlinear damped wave equation

∂tttψ
(a)(t)− β(a)1 ∆∂ttψ

(a)(t)

+ β
(a)
2 (σ0) ∆2∂tψ

(a)(t)

− β3 ∆∂tψ
(a)(t)

+ β
(a)
4 (σ0) ∆2ψ(a)(t)

+ ∂tt

(
1
2 β5(σ)

(
∂tψ

(a)(t)
)2

+ β6(σ)
∣∣∇ψ(a)(t)

∣∣2
)

= 0 ,

t ∈ (0, T ) ,

ψ(a)(0) = ψ0 ,

∂tψ
(a)(0) = ψ1 ,

∂ttψ
(a)(0) = ψ2 ,

(2b)

includes as special cases the Kuznetsov and
Westervelt equations is made rigorous in [2].

4 Numerical simulations

The general model (2) defines a hierarchy of
nonlinear damped wave equations, see refer-

ences given in [2]. The Brunnhuber–Jordan–
Kuznetsov equation is cast into the general
formulation with σ = 1 and σ0 = 1. The
Blackstock–Crighton–Kuznetsov equation arises
in situations, where the quantity (νΛ − a) BA
is negligible, for instance in the description of
monatomic gases; it is embedded for σ = 1 and
σ0 = 0. In both cases, the Kuznetsov equation
results as limiting system for vanishing thermal
conductivity a → 0+ and initial data satisfying
a certain consistency condition. Westervelt-type
equations do not take into account local nonlin-
ear effects; this is reflected by the absence of the
term c20 |∇ψ|2 − (∂tψ)2 and corresponds to the
value σ = 0.

A natural approach for the space and time
discretisation of these partial differential equa-
tions is to combine standard methods such as fi-
nite element approximations with Runge–Kutta
methods; as alternative, we favour operator
splitting methods, as this provides the possibil-
ity to use tailored solvers.

In Figures 1 and 2, we display preliminary
results obtained for the Brunnhuber–Jordan–
Westervelt equation (nonlinear model 1) versus
the Westervelt equation (nonlinear model 2) and
a linearised wave equation (linear model); re-
stricing ourselves to a single space dimension,
the simple geometry of the spatial domain per-
mits the use of fast Fourier techniques. As ex-
pected, for smaller values such as a = 10−3 and
consistent initial data the solutions to the non-
linear models coincide (Figure 1), whereas in-
consistent initial data lead to different solution
profiles, even in the special case a = 0 (Fig-
ure 2).
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Abstract

The Moore�Gibson�Thompson equation is a well-
known model in Acoustics and, under the name
of standard linear viscoelastic model, it also ap-
pears in Viscoelasticity. We present the results
of two recent works where we study the asymp-
totic stability of this problem under a certain
dissipative condition in a bounded domain and
in RN , giving optimal decay rates in both situ-
ations. In both cases, an accurate and precise
description of the spectrum of the related oper-
ators will be very important.

Keywords: Moore-Gibson-Thompson mo-

del, standard linear viscoelastic model, op-

timal decay rate, optimal scalar product,

energy method, eigenvalues expansion me-

thod.

1 Motivation of the problem

Our aim is to study the asymptotic stability
of the so-called Moore�Gibson�Thompson equa-
tion, a well-known model in Acoustics which is
given by the following third order in time linear
dissipative wave equation:

τuttt + utt − a2∆u− a2β∆ut = 0, (1)

where u represents the acoustic velocity poten-
tial. This equation arises in Acoustics as the
linearization of the important Jordan�Moore�
Gibson�Thompson equation (see [2], [3] or [4]
and the references therein for more details). The
JMGT equation, together with its linearization
(1), has applications in medical and industrial
use of high intensity ultrasound such as litho-
tripsy, thermotherapy or ultrasound cleaning.
Actually, the JMGT equation pretends to be an
alternative (and more realistic) model for vis-
cous thermally relaxing �uids, instead of other
classical acoustic models such as the Kuznetsov
equation (see previous references). It appears
when we want to overcome the paradox of in-
�nite speed propagation in thermal waves that
is usually used. This is achieved by considering

the Cattaneo law τqt+q = −κ∇θ instead of the
usual Fourier one for the heat conduction. Here,
q and θ are representing the heat �ux and tem-
perature di�erence, respectively, and τ is the
relaxation time of the heat �ux (usually small
with respect to the other parameters of the mo-
del).

Surprisingly, the same equation is a well-
known model in Mechanics, but then under the
name of standard linear viscoelastic model. In
this case, u stands for the linear deformations
of a viscoelastic solid (that is, a solid exhibit-
ing both a viscous �uid and an elastic solid re-
sponse) with an approach that is considered to
be more realistic than the usual Kelvin-Voigt
one (that is actually recovered if we take τ = 0).
The main idea in modelling this type of defor-
mations is that (1) can be obtained by consider-
ing the following constitutive relation between
σ (the stress) and e (the strain):

σ + τσ′ = E(e+ βe′)

with E being the Young modulus of the elastic
structure and the constants τ and β being small
and satisfying 0 < τ < β. As references for this
problem under the viscoelastic approach see, for
instance, [1] or [4] and the references therein.

In spite of being a linear equation, (1) ex-
hibits very di�erent behaviours depending on
the physical parameters of the equation. As we
are going to see, the relation between the relax-
ation parameter τ and β is indeed very impor-
tant when determining the stability of problem
(1). From previous references ( [2] and refer-
ences therein) we know that, in a bounded do-
main, 0 < τ < β is a dissipative condition that
makes the problem exponentially stable. When
0 < τ = β the energy of the problem is con-
served and when τ > β > 0 the solutions turn
out to have a chaotic behaviour. In the next
sections we summarize the results of the two re-
cent works [5] (bounded domain case) and [4]
(problem in RN ), both dealing with optimal de-
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cay rates of the solutions of the MGT problem
under the dissipative condition.

2 Optimal decay rate of the MGT equa-

tion in a bounded domain in RN

In [5] we study the asymptotic behaviour of the
following general version of the MGT equation
(1) in a bounded domain under the previous dis-
sipative condition 0 < τ < β

τuttt + utt + Lu+ βLut = 0,

with L being a self-adjoint and strictly posi-
tive operator in a Hilbert space with compact
resolvent. Observe that, in particular, when
L = −a2∆ we have the MGT given in (1).

By completing the description of the spec-
trum given in [3] (with the accurate description
of the cases in which we have eigenvalues with
algebraic multiplicity higher than one), we give
a new equivalent and explicit scalar product un-
der which the operator will be proved to be nor-
mal, which is the best we can expect in this
case. Hence, the operator admits a complete
set of orthonormal eigenfunctions. This will be
true except from some exceptional values of the
parameters (corresponding to cases with eigen-
values with algebraic multiplicity higher than
one), in which case we will prove that the oper-
ator cannot be made normal (see Theorem 1.1
of [5]). We will use this result to obtain opti-
mal exponential decay rates in the asymptotic
behaviour of the solutions, and will adapt it to
achieve the same kind of results when the opera-
tor is not normal (see Theorem 1.2 of [5]). These
results slightly improve previous ones related to
the asymptotic decay rate of this problem.

3 Optimal decay of the MGT equation

in RN

In [4] we study the MGT equation (1) in RN also
when 0 < τ < β. First, we give the appropri-
ate functional setting to prove that this Cauchy
problem is well-posed. Then, we are interested
in the asymptotic stability of this problem in
RN . We �rst apply the energy method in the
Fourier space and �nd the appropiate some Lya-
punov functionals to show that a norm related
to the solution decays with a rate (1+t)−N/4 (see
Theorem 3.6 in [4]). Similar results are given for
the decay rate of this norm involving derivatives
of the solution. As the previous result does not
give the asymptotic decay rate of the solution

itself, we use the eigenvalues expansion method
to give it. That is, we show an explicit repre-
sentation of the solution in the Fourier domain
using the the accurate and explicit description
of the operator given in [5]. The optimal decay
rate we obtain with this method for the solution
(and also of its derivatives), is (1 + t)1−N/4 for
N = 1, 2 and (1 + t)1/2−N/4 when N ≥ 3 (see
Theorems 5.1, 5.3 and 5.5 in [4]).
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Abstract

The Jordan-Moore-Gibson-Thompson equation
is a third order in time wave equation describing
the nonlinear propagation of sound that avoids
the infinite signal speed paradox of classical sec-
ond order in time strongly damped models of
nonlinear acoustics, such as the Westervelt and
the Kuznetsov equation. We show well-posedness
in an acoustic velocity potential formulation with
and without gradient nonlinearity. Moreover,
we consider the limit as the parameter of the
third order time derivative that plays the role
of a relaxation time tends to zero, which again
leads to the classical Kuznetsov and Westervelt
models. The proofs rely on appropriate energy
estimates for the linearized equations as well as
fixed-point arguments for well-posedness of the
nonlinear equations. These results extend to the
practically relevant setting of Neumann bound-
ary conditions for modelling excitation, as well
as absorbing boundary conditions.
Keywords: nonlinear acoustics, Jordan-Moore-
Gibson-Thompson equation, Kuznetsov’s equa-
tion, Westervelt equation, singular limit

Introduction

Nonlinear propagation of sound arises in numer-
ous applications. We here especially mention
high-intensity ultrasound used in medical imag-
ing and therapy, but also for industrial purposes,
such as ultrasound cleaning or welding. One of
the most established models of nonlinear acous-
tics is Kuznetsov’s equation (Kuznetsov 1971;
Lesser and Seebass 1968); by ignoring local non-
linear effects modeled by the quadratic veloc-
ity term, we arrive at the Westervelt equation,
(Westervelt 1963). In terms of the acoustic ve-
locity potential ψ, these equations can be rewrit-
ten as

ψtt − c2∆ψ − δ∆ψt = NK(ψ) (1)

and

ψtt − c2∆ψ − δ∆ψt = NW (ψ) , (2)

respectively, where c is the speed of sound, δ is
the diffusivity of sound, and the nonlinear terms
are defined by

NK(ψ) =

(
1

c2

B

2A
(ψt)

2 + |∇ψ|2
)

t

,

NW (ψ) =

(
βa
c2

(ψt)
2

)

t

,

with the parameter of nonlinearity B/(2A) and
the coefficient βa = 1 +B/(2A).

As has been observed, e.g., in [1] (see also the
references therein), the use of classical Fourier’s
law leads to an infinite signal speed paradox,
which appears to be unnatural in wave propaga-
tion. Therefore in [1], several other constitutive
relations for the heat flux within the derivation
of nonlinear acoustic wave equations are con-
sidered. Among these is the Maxwell-Cattaneo
law, whose combination with the balance equa-
tions for mass and momentum, as well as the
equation of state, leads to the third order in
time PDE model:

τψttt + ψtt − c2∆ψ − b∆ψt = NK(ψ) , (3)

where τ is a positive constant accounting for re-
laxation (the relaxation time), and b = δ+ τc2 .
If one neglects local nonlinear effects modeled
by the quadratic velocity term |∇ψ|2, one re-
places NK by NW in (3) analogously to the
reduction of the Kuznetsov to the Westervelt
equation; cf. [2].

Our results rely on energy estimates for the
linearized equation

τψttt + αψtt − c2∆ψ − b∆ψt = f , (4)

also called the (Stokes-)Moore-Gibson-Thompson
equation, see also Kaltenbacher, Lasiecka, and
Marchand 2012; Marchand, McDevitt, and Trig-
giani 2012; Dell’Oro and Pata 2017; Pellicer and
Solá-Morales 2019.

This paper reports on recent contributions
to the analysis of the JMGT equation in two
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ways. Firstly, its well-posedness with a quadratic
gradient nonlinearity arising when taking into
account local nonlinear effects (cf. the addi-
tional (|∇ψ|2)t term in NK(ψ) as compared to
NW (ψ)). Since maximal parabolic regularity
and Implicit Function Theorem arguments do
not apply here, the arguments are based on en-
ergy estimates for a fixed-point reformulation
(4) with α = α(ψ) = (1 − kψt), f = f(ψ) =
2∇ψ · ∇ψt of (3) where we use the abbrevia-
tion k = 2

c2
B
2A . We rely on the formulation in

terms of the acoustic velocity potential ψ which
more easily than the acoustic pressure formu-
lation from [2] allows to include the quadratic
velocity term (|∇ψ|2)t on the right hand side of
(3).

Secondly, we consider the limit τ → 0 and
state that solutions of (3) converge to a solution
of (1) as τ → 0. Also for this purpose, the
previously derived energy estimates are crucial.

Theorem 1 [3] Let c2, b, T > 0, and k ∈ R.
Then there exist τ̄ , ρ > 0 , ρ0 > 0 such that
for all (ψ0, ψ1, ψ2) ∈ XW

0 = H1
0 (Ω) ∩ H2(Ω) ×

H1
0 (Ω) ∩H2(Ω)×H1

0 (Ω) satisfying

‖ψ0‖2H2(Ω) + ‖ψ1‖2H2(Ω) + τ‖ψ2‖2H1(Ω) ≤ ρ2
0 ,

and all τ ∈ (0, τ̄), there exists a solution ψ ∈
XW of




τψttt + ψtt − c2∆ψ − b∆ψt = NW (ψ)

in Ω× (0, T ),

ψ = 0 on ∂Ω× (0, T ),

(ψ,ψt, ψtt) = (ψ0, ψ1, ψ2) in Ω× {0},
(5)

and satisfies the energy estimate

τ2‖ψttt‖2L2L2+τ‖ψtt‖2L∞H1

+ ‖ψtt‖2L2H1 + ‖ψ‖2W 1,∞H2 ≤ ρ2 .

Theorem 2 [3] Let c2, b, T > 0, k ∈ R. Then
there exist τ̄ , ρ > 0 , ρ0 > 0 such that for all
(ψ0, ψ1, ψ2) ∈ XK

0 = H1
0 (Ω)∩H3(Ω)×H1

0 (Ω)∩
H2(Ω)×H1

0 (Ω) satisfying

‖ψ0‖2H3(Ω) + ‖ψ1‖2H2(Ω) + τ‖ψ2‖2H1(Ω) ≤ ρ2
0 ,

and all τ ∈ (0, τ̄), there exists a unique solution
ψ ∈ XK of (5) with NW (ψ) replaced by NK(ψ)
and satisfies the energy estimate

τ‖ψtt +
c2

b
ψt‖2L∞H1 + ‖ψtt +

c2

b
ψt‖2L2H1

+ ‖ψt +
c2

b
ψ‖2L∞H2 + ‖ψ‖2L∞H3 ≤ ρ2.

The function space setting for the limiting
case is determined by the respective τ -indepen-
dent part of the energies defined in Theorems 1
and 2, respectively, i.e.,

X̄W := H2(0, T ;H1
0 (Ω)) ∩W 1,∞(0, T ;H2(Ω)) ,

X̄K := X̄W ∩ L∞(0, T ;H3(Ω)).

Theorem 3 [3] Let c2, b, T > 0, and k ∈ R.
Then there exist τ̄ , ρ0 > 0 such that for all
(ψ0, ψ1, ψ2) ∈ XW

0 , the family (ψτ )τ∈(0,τ̄) of so-
lutions to (5) converges weakly* in X̄W to a so-
lution ψ̄ ∈ X̄W of (2) with homogeneous Dirich-
let boundary conditions and initial conditions
ψ̄(0) = ψ0, ψ̄t(0) = ψ1.

The statement remains valid with the West-
ervelt nonlinearity NW , the equation (2) and
the spaces XW

0 , X̄W replaced by the Kuznetsov
nonlinearity NK , the equation (1), and the spaces
XK

0 , X̄K , respectively.

In [4], the above results have been extended
to the practically relevant setting of Neumann
and absorbing boundary conditions

∂ψ

∂n
= g on Γ ,

∂ψ

∂n
= −βψt on ∂Ω \ Γ ,
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Wave motion lies at the heart of many disci-
plines in the physical sciences and engineering.
For example, problems and applications involv-
ing light, sound, heat, or �uid �ow are all likely
to involve wave dynamics at some level. In this
extended abstract, we present our recent work
on large-strain elastic waves in solids, focusing
on both homogeneous and periodic media.

Speci�cally, we examine the propagation of
a large-amplitude elastic wave in an elastic one
dimensional medium that is undeformed at its
nominal state. In this context, our focus is on
the e�ects of inherent nonlinearities on the dis-
persion relation. Considering a slender rod, where
the thickness is small compared to the wave-
length, we present an exact formulation for the
treatment of nonlinearity in the strain-displacement
gradient relation. As examples, we consider Green-
Lagrange strain (for which the conjugate stress
is second Piola-Kirchho� stress) and Hencky strain
(for which the conjugate stress is Kirchho� stress).
The ideas presented, however, apply generally
to other types of geometric nonlinearities, and
also to material nonlinearities regardless of type
or order. The only limitation is that the non-
linearity has to be expressed analytically and
be integrable. Furthermore, a thick rod may be
considered by simply accounting for lateral in-
ertial in the model.

The derivation starts with an implemen-
tation of Hamilton's principle and terminates
with an expression for the �nite-strain disper-
sion relation in closed form [1]. The derived
relation is then veri�ed by direct time-domain
simulations, examining both instantaneous dis-
persion (by direct observation; see Figure 4 in
Ref. [1]) and short-term, pre-breaking disper-
sion (by Fourier transformations; see Figure 1).
As can be seen in Figure 1, the theory (solid
lines) matches corresponding results shown as a
contour of the energy spectrum. This contour is
obtained by running a series of separate simula-
tions where each involves a di�erent excitation

wavenumber, and �nally plotting the superposi-
tion of the space-time Fourier transform of the
�eld variable in these simulations; what emerges
is a pro�le of the fundamental harmonic span-
ning the various simulations. Moreover, reveal
that an otherwise linearly nondispersive elas-
tic solid may exhibit dispersion solely due to
the presence of a nonlinearity. The same ap-
proach is also applied to �exural waves in an Eu-
ler Bernoulli beam, demonstrating qualitatively
di�erent nonlinear dispersive e�ects compared
to longitudinal waves [1]. Finally, we present a
method for extending this analysis to a contin-
uous periodic thin rod, i.e., a one-dimensional
phononic crystals (see Figure 2) [2]. The method,
which is based on a standard transfer matrix
augmented with a nonlinear enrichment at the
constitutive material level, yields an approxi-
mate band structure that accounts for the �nite
wave amplitude. The e�ects of the nonlinear-
ity on the Bragg band gap are also highlighted,
among other intriguing outcomes. In Ref. [1],
it was shown that this technique gives accurate
results for up to an amplitude-to-unit cell length
ratio of one-eighth. The same technique is also
applicable to one-dimensional locally resonance
elastic metamaterials [3].

The present theory is not limited by the strength
of the nonlinearity, unlike perturbation-based
analysis which is commonly used in the liter-
ature for weakly nonlinear waves. A validated
dispersion relation for a strongly nonlinear prob-
lem provides new understanding of the physics
of nonlinear waves in general. This result is
relevant to the study of waves in both natural
and engineered problems, and in principle is ap-
plicable to a range of topics including disloca-
tion and crack dynamics, geophysical and seis-
mic waves, material nondestructive evaluation,
biomedical imaging, elastic metamaterial engi-
neering, nanoscasle thermal transport, among
others.
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Figure 1: Finite-strain dispersion curves for a thin homogeneous rod. Top panel show case with Green-
Lagrange strain [1], and bottom panel show case with Hencky strain. The contours shown are obtained
by direction space-time simulation (left) and corresponding Fourier transform (right).

Figure 2: Finite-strain dispersion curves for a phononic-crystal thin rod under �nite strain. For com-
parison, the dispersion curves under in�nitesimal strain are included. Also, corresponding dispersion
curves for a statically equivalent one-dimensional homogeneous elastic medium are overlaid. [2]
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Microwave experiments on resonances and zeros of the scattering matrix: From spectral

gaps and width shifts to random anti-lasing
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Abstract

I will present versatile microwave set-ups ad-
dressing such di�erent questions as the fractal
Weyl law, the spectral Gap, width shifts, and
zeros of the scattering matrix. The starting
point is a detailed description of the experiments
including the extraction of complex resonances
from the measured re�ections. Thereafter, re-
sults on the fractal Weyl law and the spectral
gap are presented for strongly open systems with
thin and thick classical repellers.The results are
in agreement with predictions from resonance
theory. Next the width shifts, i.e. change of
resonance widths under local or global pertur-
bations, are investigated. The experimental dis-
tributions agree with predictions from random
matrix theory. Last but not least, I will concen-
trate on zeros of the scattering matrix, related to
coherent perfect absorbers. Is is experimentally
realize in a q1D-setting with adjustable local ab-
sorption and corresponds to a random anti-laser.

Keywords: Resonances, Random Matrix

Theory, RandomMedia, Wave front shap-

ing, Coherent Perfect Absorber

In microwave experiments the complex scat-
tering S is measured using vector network net-
work analyzers [1]. In the experiments re�ec-
tion Saa and transmission Sab are measured and
can be described approximately by Sab(E) =
δab − i

∑
n

an
ν−νn+ i

2
Γν,n

, where an is the complex

amplitude, νn the eigenfrequency and Γν,n the
width in frequency units. The complex eigen-
frequencies νn can be related to the complex
eigenenergies of a quantum-mechanical Hamil-
tonian. From the theoretical side, random ma-
trix theory often in combination with the e�ec-
tive Hamiltonian approach is used to obtain pre-
diction of the statistical behaviour of systems
with corresponding classically chaotic systems.
Apart from this theory from the mathematical
side also interest on resonances of the Lapla-
cian on an open space, see for example [2]. In
this case the well founded Weyl law and width
distributions need to be revisited. I will present

Figure 1: Left: Photograph of the microwave
three-disk experiment with a sketch included.
Right: Shade plots of the distribution of imag-
inary parts of kn using a color code from white
to dark blue for the three-disk experiment as a
function of the R/a parameter. The classical
escape rate is the solid black line and the pres-
sure P (1/2) corresponds to the dotted line. For
details see [4].

microwave experiments on the three disk system
agreeing with the prediction from mathematics.
In Fig. 1 the experimental setup is shown on the
left hand side and the experimental results for
the spectral gap are shown on the right. For
details on the microwave experiments and re-
sults on the fractal Weyl law refer to [3] and the
spectral gap to [4].

The change of resonance widths in an open
system under a perturbation of its interior has
been introduced by Fyodorov and Savin [5] as
a sensitive indicator of the nonorthogonality of
resonance states. I present an experimentally
study on the universal statistics of this quan-
tity in weakly open two-dimensional microwave
cavities. Global as well as local perturbations
are treated. In Fig. 2 the system used for lo-
cal perturbations is shown (upper left) with the
corresponding resonance position in normalized
energies En. The resonance width of width Γn
is indicated by the vertical lines. On the lower
part the experimental width shift distributions
for two types of perturbations (global and local)
are presented. The theory prediction obtained
by random matrix theoretical (RMT) studies
are in good agreement with the experimental
results. For further details see [6].

We will now turn from resonances to zeros
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Figure 2: The experimental setup (upper, left)
together with the parametric dependence (right)
of energies and widths (red vertical lines). The
eigenvalue dynamics are generated by moving a
scatterer along the green arrow. The lower part
shows the experimental normalized width veloc-
ities distribution P (y) for systems with local and
global perturbations. The solid (dashed) curve
stand for the prediction for the global (local)
perturbations. For further details see [6].

of the scattering matrix, more precisely to ze-
ros of an eigenvalue of the scattering matrix.
This is related to the coherent perfect absorber
and time reversed lasing [7]. The experimen-
tal set-up is based on a quasi-one dimensional
waveguide supporting four propagating modes.
An arbitrary mode combination can be excited
using four dipole antennas which are driven by a
vector network analyzer via four IQ-modulators.
The full complex scattering matrix can be de-
tected using the set-up shown in the left part
of Fig. 3. The scattering system presented here
consists of randomly placed te�on scatterers and
an additional local absorber (a dipole antenna
connected to a 50Ω) is placed in the central
part of the scattering region. The coupling of
the antenna can be adjusted by changing its
length. Within the frequency interval de�ned
by the four mode propagating range for each
realization we found a minimal eigenvalue of
the scattering matrix with ver low power re�ec-
tion. An example is presented on the right hand
side of Fig. 3 showing that the relative re�ected
power is less than 0.3%. As the local absorber
is a dipole antenna we can also measure the re-
�ection Rabs of this absorber and a minima is
present at the same frequency as well showing

Figure 3: Left: Experimental set-up situated
in the Waves in Complex Systems group at the
University of Côte d'Azur in Nice, for the re-
alization of an coherent perfect absorber cor-
responding to a random anti-laser. Right:
Scattering signatures of a CPA state showing
less than 0.3% re�ection from the injected mi-
crowave power.

the connection to the random anti-laser. For
further details refer to [8].
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Abstract

Open systems that are coupled to its surround-
ings through channels are described by non Her-
mitian Hamiltonians with complex eigenvalues.
The bi-orthogonality of eigenfunctions leads to
many exciting physical phenomena such as the
existence of exceptional points or an excess noise
in random lasers. Here, using microwave mea-
surements, we explore the degree of correlation
of eigenfunctions in chaotic and random sys-
tems. We demonstrate that the non-Hermiticity
leads to the enhancement of modal strengths
in transmission. Transmission is then reduced
with negative correlations between overlapping
modes so that the net transmission is bounded
by unity. We then explore the selective excita-
tion of quasi-normal modes by controlling the
incoming wavefront. We show that the energy
of a mode can be enhanced within a sample by
a factor equal to the number of channels but the
correlation between eigenfunctions limits modal
selectivity.

Keywords: non-Hermitian, correlation of eigen-
functions, modal selectivity

1 Introduction

Quasi-normal modes, referred as modes in the
following, are solutions of the wave equation
with outgoing boundary conditions. In open
systems, the eigenvalues and eigenfunctions of
the wave equation are complex as a result of
losses through channels. This stands in con-
trast to closed system for which they are real.
The complex eigenvalues ω̃n = ωn − iΓn/2 are
the poles of the scattering matrix S(ω) and can
be extracted from spectral measurement of ele-
ments of S(ω). Here ωn correspond to the cen-
tral frequency and Γn to the linewidths. The
statistics of modes are crucial to analyze trans-
port through random systems. Thouless showed
that the average of the dimensionless conduc-
tance g is determined by the degree of level or

modal overlap, which is the ratio of the average
level width and spacing, so that δ = g [1]. The
modal overlap parameter, known as the Thou-
less number, re�ects the degree of spatial local-
ization of waves within the sample. Thus the
degree of modal overlap and spatial localization
can be inferred from a measurement of steady-
state conductance or transmission. The eigen-
functions of open systems, which are hence non-
Hermitian, are nonorthogonal [2]. They form a
bi-orthogonal set with a degree of correlation be-
tween eigenfunctions which increases with modal
overlap [3, 4]. Measuring the degree of non-
Hermiticity is however challenging since this re-
quires probing the �eld inside the medium.

2 Experimental results

We measure the transmission matrix (TM) of
a two-dimensional microwave multichannel sys-
tem (see Fig. 1a). The TM is the part of scat-
tering matrix associated with transmission co-
e�cients between incoming and outgoing chan-
nels on the left and right side of the sample,
respectively. We �rst show in Fig. 1b that
spectra of the TM can be decomposed into a
superposition of modal transmission matrices of
unit rank. We then demonstrate that this modal
analysis makes it possible to probe the degree of
correlation of the eigenfunctions within the sam-
ple.The coupling coe�cients between modes and
channels are the projection of eigenfunctions at
the interfaces of the sample and give the corre-
lation between eigenfunctions. This is demon-
strated for samples with high quality factor and
moderate modal overlap which are chaotic cavi-
ties with weakly coupled antennas to the sample
and random media with strong disorder.

We observe that the degree of correlation
of eigenfunctions increases with the coupling of
channels to the sample and with modal over-
lap. Experimental results of the correlation as
a function of the spacing in the complex plane
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Figure 1: (a) Experimental setup. (b) Spec-
trum of the transmittance through a weakly lo-
calized sample (red curve), reconstruction using
a modal analysis (blue dashed line) and contri-
butions of modes to the transmittance (dashed
lines). (c) Illustration of a spatial intensity pro-
�le inside the sample obtained for maximal en-
hancement of a mode.

between two resonances are in very good agree-
ment with the theoretical eigenvector statistics
given in Ref. [4, 5]. We then show that the
non-Hermiticity is accompanied by an enhance-
ment of modal strength in transmission Tn. The
modal strength is related to the Petermann fac-
tor which characterizes an excess spontaneous
emission for laser cavities [4�6]. The distribu-
tion of Tn is found to be bimodal for localized
waves and extend over a very broad range for
di�usive waves. Since transmission is bounded
by unity, transmission is then suppressed rela-
tive to the incoherent sum of modal contribu-
tions by the coherent sum of overlapping modes

due to the negative correlation of modal speckle
patterns.

Finally, we demonstrate that the energy den-
sity of a mode can be enhanced by a factor equal
to the number of channels by shaping the incom-
ing wavefront [6]. This provides a new approach
to control waves in complex media in addition
to the control of transmission and delay time [7].
Modal selectivity however is limited in open sys-
tems by the correlation between eigenfunctions
leading to the correlation of output speckle pat-
terns of neighboring modes. In accord with re-
sults of an e�ective Hamiltonian model, the de-
gree of modal selectivity decreases with increas-
ing modal spectral overlap and non-Hermiticity.
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Abstract

We review a spectral expansion approach for
light-matter interaction problems as arising in
nano-optical applications. The expansion is based
on Riesz projections, which are given as contour
integrals in the complex frequency plane to pre-
cisely quantify the coupling of an emitter to the
eigenmodes and to the background continuum
of modes of a nanoresonator. The approach is
in particular also applicable in the case of gen-
eral material dispersion.

Keywords: Riesz projection, resonance expan-
sion, QNMs

Riesz projection expansion

In the past decades, the concept of a modal
eigen�eld expansion has been successfully gen-
eralized to open dissipative optical devices to
study light-matter interaction [1�4]. In a nut-
shell, non-normalizable resonant states, also called
quasinormal modes (QNMs), are used instead
of eigenmodes. An orthogonality relation for
QNMs together with an unconjugated scalar prod-
uct has been formulated [5] and generalized for
common dispersive media [6] allowing for a pro-
jection of a light scattering problem onto a �nite
set of discrete resonances. However, for weakly
coupled systems, the discrete set of QNMs must
be supplemented by the continuous spectrum of
the operator capturing the nonresonant back-
ground scattering [7].

In this contribution, we discuss Riesz pro-
jections as an alternative approach for a reso-
nance expansion of the electromagnetic �eld [8].
We show that with Riesz projections the non-
resonant background interaction can be incor-
porated in a closed form. Riesz projections are
a well-known concept in spectral theory [9] and
they do not rely on orthogonality relations and
the explicit knowledge of eigenfunctions and are
therefore applicable for material dispersion be-
yond the Drude model.

To decompose the electric �eld solutionE(r, ω0)
of time-harmonic Maxwell's equations into its

resonant and nonresonant parts, we consider the
z = ω2 plane and write E(r, z) = E(r, ω =

√
z).

Cauchy's residue theorem gives

E(r, ω0) =
1

2πi

∮

C0

E(r, z)

z − ω2
0

dz, (1)

where C0 is a closed curve around ω2
0 so that

E(r, z) is holomorphic inside of C0, as shown in
Fig. 1(a). Then, deforming the path of integra-
tion so that an outer curve Cnr includes ω

2
0, the

resonance poles ω2
1, . . . , ω

2
M and no further poles

yields

∮

C0

E(r, z)

z − ω2
0

dz =−
∮

C1

E(r, z)

z − ω2
0

dz − · · · −
∮

CM

E(r, z)

z − ω2
0

dz

+

∮

Cnr

E(r, z)

z − ω2
0

dz,

see Figs. 1(b) and (c). Thereby, we obtain the
expansion

E(r, ω0) =

M∑

m=1

Em(r, ω0) +Enr(r, ω0), (2)

where the �elds

Em(r, ω0) = −
1

2πi

∮

Cm

E(r, z)

z − ω2
0

dz (3)

are related to the resonance poles ω2
1, . . . , ω

2
M .

The �eld

Enr(r, ω0) =
1

2πi

∮

Cnr

E(r, z)

z − ω2
0

dz (4)

quanti�es the nonresonant components and con-
tributions from possible resonance poles outside
of the integration curve Cnr. It has to be en-
sured that Cnr does not cross the branch cut in
the z = ω2 plane starting from z = 0. The �elds
in Eq. (3) are essentially Riesz projections ap-
plied to the governing time-harmonic Maxwell's
equations, see results from spectral theory [9].

Monday, 11:30, GM5 Praktikum, Building BA



Resonant-state expansion of waves in the near- and far-field 235

Figure 1: Contour integration in the complex ω2 plane
for computing the Riesz projection expansion, The red
crosses represent resonance poles ω2

m, the blue curves
are the integration curves. (a) Top: Integration path
C0 around ω2

0 . Bottom: Deforming the integration path
without enclosing resonance poles does not modify the
integral. (b) Integration curves Cm in negative direction
for computing Riesz projections. (c) Outer integration
path Cnr for quantifying the interaction with nonreso-
nant components. (�gure from [8])

The numerical implementation of the Riesz
projection is straigthforward and essentially re-
quires solving time-harmonic scattering prob-
lems for complex frequencies. We demonstrate
the method by computing modal decay rates of a
dipole emitter embedded in a diamond nanodisk
antenna showing a weak coupling to the QNMs
and a signi�cant background coupling [8].
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The resonant state expansion (RSE) is a novel
rigorous method for calculating resonant states
(RSs) of a photonic system [1]. These are the
eigensolutions of Maxwell's wave equation
(MWE) with outgoing boundary conditions. Us-
ing a complete set of RSs of a simpler system
as a basis, the RSE makes a mapping of MWE
onto a linear eigenvalues problem, determining
the full set of the RSs of a complex system.

In addition to higher numerical e�ciency
[2,3] compared to other computational meth-
ods, the RSE provides an intuitive physical pic-
ture of resonant phenomena, capable of explain-
ing features observed in optical spectra. So far
the RSE has been applied to �nite open optical
systems of di�erent geometry and dimensional-
ity, as well as to homogeneous and inhomoge-
neous planar waveguides [3]. Very recently, the
RSE was generalized to magnetic, chiral and
bi-anisotropic optical systems [4], enabling its
further application to metamaterials. The RSE
has been also used in �rst perturbation order for
photonic crystal (PC) structures to describe the
refractive index sensing [5], and a rigorous ana-
lytic normalization of the RSs in PC structures
has been presented [5,6].

Here, we develop a PC-RSE, a new rigor-
ous approach for accurate calculation of RSs in
planar PC structures using a homogeneous slab
as basis system. The key advantage of treat-
ing periodic modulations of a homogeneous slab
as perturbations is that all diagonal elements
of the perturbation matrix are vanishing due to
periodicity, which guarantees a low level of nu-
merical errors in the RSE even for small basis
sizes. Using for illustration a dielectric slab peri-
odically modulated in one direction, we demon-
strate the accuracy and e�ciency of the PC-
RSE in �nding the RSs of photonic crystal struc-
tures.

The periodicity of PC structures mixes all
possible Bragg harmonics. Therefore, the ba-
sis RSs have to be taken with di�erent in-plane
wave numbers. As a result, the Green's func-
tion of MWE has branch cuts in the complex

frequency plane, which have to be taken into ac-
count in the PC-RSE along with the RSs. This
presents the major complication of the PC-RSE
which we have dealt with by splitting the cuts
into series of discrete, arti�cial cut states added
for completeness to the basis of RSs [3].

We further study bound states in the contin-
uum (BIC) of a dielectric photonic-crystal slab.
We show in particular how di�erent types of
RSs of a homogeneous slab contribute to BIC
and compare these contributions with other res-
onances of the photonic-crystal system, such as
waveguide, quasi-guided [7] and Fabry-Pérot
modes.
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Abstract

The optical properties of Fano resonances near
diffraction threshold are addressed. The reso-
nant mode approximation for the optical scat-
tering matrix in respect to the propagation con-
stant of the opening diffraction channel provides
good description of the optical scattering matrix
near the diffraction threshold anomalies.
Keywords: resonances, Wood–Rayleigh anoma-
lies

1 Introduction

Layered periodic structures or photonic crystal
slabs (PCS) [1] attract a great interest in mod-
ern nanooptics. A very convenient formalism
for the numerical investigation of periodic struc-
tures is the Fourier modal method in the form
of the optical scattering matrix (S-matrix) ap-
proach [2–4]. It is based on a decomposition of
the solutions of the Maxwell’s equations into a
set of the Bloch waves. S-matrix connects the
hypervectors of complex amplitudes of Bloch
harmonics corresponding to the incoming and
outgoing waves, |I〉 and |O〉,

S|I〉 = |O〉. (1)

The S-matrix method has been greatly improved
in recent years with several techniques, such as
factorization rules [5] and adaptive spacial reso-
lution [6] (see, e.g., [7]). Due to this progress it
is now possible to consider periodic structures
with a complicated unit cell consisted of arbi-
trary materials including metals and/or anisotropic
crystals. However, the needed computational
time can still be very long. Therefore, physi-
cally clear approximations giving a qualitative,
and, if possible, quantitative prediction of the
system’s properties are crucially important.

2 Resonant mode approximation

In this paper we analize a generalization of the
resonant mode approximation (RMA) [8,9], which

allows one to describe correctly the optical prop-
erties of PCS with the Fano-type resonances [10]
near theWood-Rayleigh diffraction threshold ano-
malies [11]. The approximation is free of fitting
parameters: all needed quantities are calculated
from the eigenproblem for the linearized inverse
S-matrix [12].

Far from the diffraction thresholds, if N dif-
ferent poles are located near the frequency range
of interest, S-matrix can be represented [8,9] as
a sum of slowly varying background and reso-
nant parts Sb and Sr,

S = Sb + Sr = Sb +

N∑

r=1

Ar
ω − Ωr

. (2)

Here matrices Ar depend on the correspond-
ing input and output resonant vectors, |Ir〉 and
|Or〉,

Ar = |Or〉〈Ir|. (3)

The details of this resonant mode approxima-
tion can be found in [9, 13].

On the other side, as shown in [14], S-matrix
in the vicinity of the threshold can be repre-
sented as S = S0+Bκ,where the parameter κ =√
ε
c

√
ω2 − Ω2

t is a z-component of the wavevec-
tor of the new diffracted wave. This parameter
is real above the threshold (ω > Ωt ) where the
diffracted wave is propagating, and pure imagi-
nary below the threshold.

Following [12] we consider the simplest case
of two poles κ1 and κ2 in the vicinity of the
diffraction oppening. Instead of Eq. (2) we can
now write the Breit-Wigner type expression for
the S-matrix as a function of κ as

S = Sb + Sr = Sb +
∑

r=1,2

|Or〉
1

κ− κr
〈Ir|. (4)

Figures 1-2 show the trajectories of the poles
κ1,2 spanned with the change of kx, i. e., the in-
plane wavevector. Figure 3 and 4 show the de-
pendencies of the reflection coefficient on com-
plex κ for kx = 0.13µm−1 (diffraction chan-
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Figure 1: Trajectories of the poles in energy
plane.

Figure 2: Trajectories of the poles in kz plane.

nel for the quided mode is closed) and, respec-
tively at the oppening of the diffraction at kx =
0.17µm−1.
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First-order perturbation theory for material changes in the surrounding of open optical
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Abstract

We present a �rst-order perturbation theory to
predict resonance shifts and linewidth changes
under small variations of the surrounding ma-
terials in almost any kind of open optical res-
onator. Our method allows to drastically reduce
computational e�orts and has potential applica-
tions in developing advanced sensor designs.

Keywords: computational methods, resonant
sensing, plasmonics

1 Introduction

In recent years, nanophotonics has evolved into
a powerful platform for various kinds of opti-
cal sensing applications. The typical operation
principle is the following: Changes in the local
environment of an open optical resonator lead
to shifts of its resonance frequencies, and these
shifts are then detected optically [1]. Examples
for open resonators are plasmonic nanoanten-
nas, dielectric nanoparticles, as well as photonic
crystals. In order to design and optimize such
systems with regard to their sensing capabili-
ties, theoretical modeling becomes important.
Usually this relies on full numerical simulations,
which, however, have the disadvantage that they
can be very time consuming, since, in order to
calculate the response of the sensor to variations
of the analyte subtances, the simulations have
to be repeated several times.

2 Perturbative approach

A way to drastically reduces the computational
e�ort consists in perturbative theories. Such
theories are based on the eigenmodes of the sys-
tem, also known as resonant states or quasi-
normal modes [1, 2]. The idea is the follow-
ing: Once the eigenmodes of the unperturbed
system are known, e.g., from a single simula-
tions, the in�uence of perturbations to the sys-
tem can be calculated analytically without rely-
ing on repetitive simulations. Such theories have
been proven to be very e�cient for describing
all kinds of changes within or in close proxim-

ity to open optical resonators. However, a gen-
eral rigorous way to incorporate perturbations
of the surrounding medium into the theory is
missing so far. The main di�culty arises from
the fact that nanophotonic systems exhibit res-
onant states that radiate to the far �eld, so that
their �eld distributions grow with distance to
the resonator. Hence, conventional perturbative
formulations for bound states, e.g., known from
quantum mechanics, cannot be applied. Based
on existing works [1�4], we recently have devel-
oped a way to also account for changes within
the surrounding of the resonator [5]. Our main
result is a simple integral expression over the
�elds of the unperturbed mode, that, in �rst-
order approximation, directly provides the res-
onance shift and linewidth change as a function
of the perturbation.

3 Results

(b)

(c)

�

�

� �+Δ

(a)

P = 300 nm kin

kz

kx

x

z

y

substrate

t 80 nm=

g = 100 nm

ETE
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Figure 1: Exemplary test system: one-
dimensional photonic crystal slab. (a) The
structure consists of a periodic grating (dark
gray), embedded into a substrate with permit-
tivity ε, and air on top. (b,c) As a perturbation,
we change ε to ε+ ∆ε.

To verify our theory, we apply it to di�er-
ent example systems. One of them is a one-
dimensional photonic crystal slab, as depicted
�gure 1(a). The structure was initially intro-
duced in Ref. [6] and was further discussed in
Ref. [3]. All parameters are chosen as in the

Monday, 16:30, GM5 Praktikum, Building BA



Resonant-state expansion of waves in the near- and far-field 241

aforementioned references. The geometry con-
sists of a periodic grating (dark gray, period
P = 300 nm) of a material with refractive in-
dex 2.5, embedded into a substrate with per-
mittivity ε, and air on top. As indicated in
�gure 1(b,c), we introduce a perturbation by
changing ε to ε+ ∆ε. In �gure 2(a,b), we dis-
play the normalized electric �eld distribution of
exemplary resonant states in the unperturbed
system. The example uses exactly the same
modes as discussed in Ref. [3], which are a TE
resonance at kx = π/(2P ) = 5.236 µm−1 (a),
and a TM resonance at kx = 0.2 µm−1 (b).
Panels (c) and (d) depict the corresponding res-
onance energy (black) and linewidth (blue) as a
function of ε. The solid lines represent the re-
sult of the �rst-order perturbation theory, while
the squares have been derived from exact nu-
merical calculations based on the Fourier modal
method. It can be seen that for both modes,
perturbation theory and exact results exhibit a
good agreement, as long as the change in ε is not
too big. Note that for the TE mode, the linear
perturbation theory works over a much larger
range of ε than for the TM mode. The reason
is that the TM resonance depicted here is coin-
cidentally very close to a Rayleigh anomaly [3]
that strongly a�ects the far-�eld coupling, which
in turn signi�cantly depends on the substrate
index that is changed here as the perturbation
parameter.

4 Conclusion

We have generalized the single-mode approxi-
mation of the resonant state expansion to per-
turbations in the exterior of open optical res-
onators. We have tested our theory on di�erent
example systems, and found that, as long as the
perturbations are not too big, our method ex-
hibits a good agreement with exact calculations,
while having the advantage of a reduced compu-
tational e�ort. Hence, we believe that our the-
ory provides an e�cient tool for the design and
modeling of nanophotonic sensors.
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Abstract

In this work, we consider the S and T -matrices
of dispersionless spherical scatterers and expand
their elements with respect to their resonant
states. This resonant state expansion features
two terms: a non-resonant term and a resonant
term composed of a phase term multiplied by a
sum of lorentzian functions. The modal expan-
sion of the T− matrix allows for a modal calcu-
lation of the scattering Mie coefficients which in
turn provide the optical cross-sections. In a sec-
ond step, we address the problem of the eigen-
field divergence in the far field region. We show
that this divergence vanishes when calculating
the modal expression of the eigenfields in the
time domain when invoking causality principle.

Keywords: Resonant states; Multipolar
Formalism; Resonant Light Scattering; Open
Systems

1 Introduction

The resonant interaction between light and plas-
monic or Mie scatterers is of particular inter-
est to enhance light-matter interactions through
resonant light scattering, internal or near field
enhancements. Such particles behave like open
cavities for light and a lot of attention has been
paid to describe their optical response in terms
of their resonant states, also called quasi-normal
modes [1-4].

In the multipolar description of light scatter-
ing, the electromagnetic properties of the scat-
terers can be predicted thanks to S and T - ma-
trix operators. The matrix elements are of par-
ticular importance to calculate the scattering
Mie coefficients with which are calculated the
electromagnetic response of the scatterer, in par-
ticular their scattering and extinction cross-sections.
They are also of high interest since the polar-
izabilities of the scatterer are proportional to
these coefficients.

Here, we aim at expanding the coefficients of

these scattering operators in terms of the reso-
nant states of the scatterer. We first derive the
the resonant states expansion in the harmonic
domain of the three main S, T and Ω matrix
operators. The second objective is to show that
the well-identified divergence of the eigenfields
observed in the harmonic domain far from the
scatterer is removed in the time domain thanks
to causality. The analytic expression of the scat-
tered field in the time domain is derived when
considering a causal incident field [5].

2 Resonant States Expansion in the Har-
monic domain

In the multipolar framework theory, the incom-
ingEin(kr), outgoingEout(kr), incidentEinc(kr)
and scattered Esca(kr) fields are expanded on
the appropriate set of vector partial waves (VPW).
The S-matrix operator links the outgoing field
to the incoming field, Eout(ω) = S(ω)Ein(ω),
while the T -matrix operator links the scattered
field to the incident field, Esca(ω) = T (ω)Einc(ω).
The poles of the scatterer satisfy the condition
S

(i)
n

−1 (
p

(i)
α,n

)
= 0, where i = e or h denotes the

electric and magnetic modes, and n the multipo-
lar order. We started this study in 2013 by de-
scribing the S matrix operator under the form:

S
(i)
n (ω) = A

(i)
n eiB

(i)
n ω

(
1 +

∑
α

r
(i)
n,α

ω−p(i)n,α

)

where rin,α are the residues at the pole pin,α,
A

(i)
n and B

(i)
n being constant [1]. This expres-

sion unveils the existence of two kinds of con-
tributions. The first term, A(i)

n eiB
(i)
n ω, is a non-

resonant contribution while the second term, com-
posed of a sum of lorentzian functions, is a reso-
nant contribution. We recently derived the an-
alytic expression of the A(i)

n and B(i)
n constants

and managed to derive the fully analytic modal
expansion of the 3 matrix operators [5]:

S(i)
n (ω) ' e−2ikR

(
S(i)

nr,n +

M∑

α=−M

r
(i)
n,α

ω − p(i)
n,α

)
, (1)
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T (i)
n (ω) ' S

(i)
nr,ne−2ikR − 1

2

+
e−2ikR

2

+M∑

α=−M

r
(i)
n,α

ω − p(i)
n,α

,

(2)

where S(i)
nr,n = 1 +

∑+M
α=−M

r
(i)
n,α

p
(i)
n,α

, R being the

radius of the spherical scatterer. The conver-
gence of the modal expansion can be studied
with respect to the number of poles, M , taken
into account in the expansion. It turns out that
the convergence cannot be achieved if the non-
resonant contribution is not taken into account.
This kind of expansion was recently derived for
the Ω-matrix coefficients linking the internal field
to the incident field:

Ω(i)
n (ω) ' 1

2

+M∑

α=−M

r
(i)
Ξ,n,α

ω − p(i)
n,α

, (3)

where r
(i)
Ξ,n,α is the residue of Ω

(i)
n (ω) at pole

p
(i)
n,α. This modal expansion does not feature any

non-resonant term. Lastly, we benefited from
the modal expansions of external and internal
to analyze the link between the Fano anomalies
and anapoles observed in the scattering spec-
trum of dielectric Mie resonators with internal
field enhancements inside the particle [6].

3 Resonant States Expansion in the Time
domain

The problem of divergence experienced by the
eigenfields has been studied by several authors
and some of them suggested that causality could
solve the problem [7]. However, despite sig-
nificant advances, the problem of divergence of
eigenfields still remains. Divergence-free expan-
sion of the time-dependent scattered field may
be derived from the pole expansions of the scat-
tering operators by means of an inverse Fourier
transform. One has however to consider a causal
excitation field, g(t) with a cut-off in the time
domain, and to use the causality principle. In
that case, we can obtain the analytic expression
of the scattered field in the time domain and
the far field with respect to the poles p(i)

n,α of the

scatterer:

E
(e),FF
scat,n,m(r, t) =

Dn,m(θ, φ)

2k0r
g(t)∗

(
S(e)

nr,nδ (t− τ)− δ
(
t− ts −

r

c

)

−iH (t− τ)

M∑

α=−M
r(e)
n,αe

−iω(e)
p,n,α(t−τ)

) (4)

with Dn,m(θ, φ) being defined in ref.[5], τ =
ts + r

c − 2R
c with ts an additional time delay.

A very similar expression can be obtained for
E

(h),FF
scat,n,m(r, t) [5]. This expression shows that

the scattered field of an optical cavity results
from the convolution between the excitation field
g(t) and the response of the scatterer that is
composed of two terms. The first term depends
on the non-resonant contribution S(e)

nr,n and the
second term includes the far-field expression of
the eigenfield. The Heaviside distribution in
front of this QNM field term comes from causal-
ity. This term is very important since it solves
the divergence problem, the outgoing field being
different from zero only when t−ts− r

c + 2R
c ≥ 0

so that eω
(e)′′
p,n,α(t−ts− r

c
+ 2R

c ) < 1.
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Abstract

We propose a modal formalism to calculate semi-
analytically the T -matrix of a single resonant
scatterer from the sole knowledge of its eigen-
modes. We use the reconstructed T -matrix to
calculate the response of an ensemble of scatter-
ers with the multipole method. This formalism
allows calculating semi-analytically light scat-
tering by various assemblies of resonant scatter-
ers from the sole knowledge of a few eigenmodes
of a single object.

Keywords: Quasinormal modes, T-matrix

1 Introduction

The development of micro- and nanotechnolo-
gies has recently opened a wide range of possibil-
ities for controlling light at the wavelength scale
or below. A �ne control of the light (emission,
transport and detection) in small volumes is at
the heart of various applications, such as high-
performance sensors, light focusing below the
di�raction limit, nanolasers, solid-state single-
photons sources, or photovoltaic devices. Most
of these applications rely on the use of local-
ized optical resonances supported by photonic
or plasmonic micro and nanoresonators. More-
over, applications often require the use of an
ensemble of resonators. For design and opti-
mization purposes, it is crucial to calculate ac-
curately the optical response of an ensemble of
resonant light scatterers as fast as possible.

Multiple light scattering from an ensemble
of scatterers, be it ordered or disordered, in a
homogeneous environment or inside a layered
medium, can be calculated from the T -matrix of
each scatterer with the multipole method [1�4].
The T -matrix links the scattered �eld to the in-
cident �eld, both expanded in the vector spheri-
cal waves basis. Once the T -matrix of each scat-
terer has been calculated, the calculation of light
scattering by any arrangement of these scatter-
ers can be easily calculated with the multipole
method. The critical step is thus the calculation
of the T -matrix. For spherical scatterers (sim-

ple spheres or core-shell spheres), the calcula-
tion can be done analytically with Mie theory.
For scatterers with a more complex geometry,
one has to rely on numerical calculations, see
for instance [5].

Light scattering by a single resonant scat-
terer can be calculated semi-analytically from
a modal expansion of the scattered �eld with
quasinormal modes (QNMs, also known as res-
onant states) [6�8]. Very recently, a few works
have shown that such a modal expansion can
be applied to reconstruct the T -matrix of a sin-
gle scatterer or the scattering matrix of a peri-
odic array [9�11]. However, the proposed for-
malisms do not rely on the sole knowledge of
the object eigenmodes: either the �t of a non-
resonant background [9,10] or the calculation of
the residues are needed [11].
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Figure 1: Relative error on the T -matrix calcu-
lated with a QNM expansion for a silver sphere
of radius R = 25 nm. Left: relative error on the
electric term with n = 1 and m = 0. Right: rel-
ative error on the electric term with n = 2 and
m = 1. The reference calculation for the error
evaluation is performed with Mie theory.

We propose a modal formalism that allows
calculating semi-analytically the T -matrix of a
single scatterer from the sole knowledge of its
eigenmodes. Figure 1 displays the relative error
on two di�erent coe�cients of the T -matrix for
a silver nanosphere. The wavelength is chosen
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close to the resonance.
Then, from the sole knowledge of the eigen-

modes of a single scatterer, we calculate the op-
tical response of an ensemble of scatterers by
using a multipole method [2, 3]. We apply our
formalism to dimers and periodic arrays of plas-
monic nanoparticles. For instance, Fig. 2 shows
the extinction cross-section of a dimer made of
two gold nanorods illuminated by a plane wave
with an incident angle shown by the red arrow.
The solid blue curve corresponds to the calcula-
tion made from the T -matrix of a single nanorod
reconstructed with a single QNM. It is compared
to the results of a rigorous calculation (red cir-
cles). The calculation of a single QNM pro-
vides the extinction cross-section of the dimer
with a good accuracy. Once the QNM of a sin-
gle nanorod has been calculated, it can be used
to calculate light scattering by any assembly of
nanorods illuminated by any incident �eld.

Figure 2: Extinction cross-section of a dimer
made of two gold nanorods. The dimer is illu-
minated by a plane wave with an incident an-
gle shown by the red arrow. We compare rig-
orous calculations (red circles) with the results
obtained from the multipole method with the T -
matrix of a single nanorod reconstructed with a
single QNM (solid blue curve).
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Abstract

Calculating the scattering-matrix (S-matrix) of
a complex system typically requires an immense
computational effort. Here we present a semi-
analytical expansion of the S-matrix based solely
on the far-field of Quasi-Normal Modes (QNMs)
and on their complex eigen-energies. We show-
case this approach by reconstructing the S-ma-
trix of a disordered medium and demonstrate its
superiority as compared to standard approaches,
which have to repeat their numerical routines for
every real scattering energy in a given energy-
interval. For our QNM-expansion, on the other
hand, similar routines are run only for a much
smaller number of energies, which are in this
case, however, complex. The resulting expan-
sion thus requires only a comparatively short
computation time and allows one to interpret
the calculated scattering quantities through res-
onances in the system.
Keywords: Complex Scattering Systems, Quasi
Normal Mode Expansion

1 Introduction

Scattering problems in quantum mechanics or
classical electrodynamics typically require ex-
plicit solutions of the corresponding wave equa-
tions, i.e., the Schrödinger equation and the Max-
well equations, respectively. Imposing outgo-
ing wave boundary conditions outside the sys-
tem under study leads to special solutions called
Quasi Normal Modes (QNMs) or resonant states.
Their complex eigen-energies correspond to poles
of the S-matrix located in the lower half of the
complex plane. Along the real axis each pole
forms a resonance-peak of width proportional
to the modulus of its imaginary part such that
a QNM-expansion is at the same time a pole
expansion. Also, QNMs decay exponentially in
time (they leak out of the system) but diverge in
space for points far away from the scattering re-
gion due to their negative imaginary part. Nor-
malisation is thus not trivial but possible [1, 2].

Furthermore, QNMs can form complete sets ren-
dering them a suitable basis for perturbative
techniques [3].

QNM-expansions of the S-matrix for spe-
cific cases have been proposed before: in [4] –
on which our approach is based – the authors
present a normalisation-independent derivation
for real-valued far-fields starting from a coupled
mode formalism, while the authors of [5] em-
ploy a normalisation-scheme for QNMs in order
to expand the resonant part of the S-matrix.

In this contribution we will discuss limita-
tions of the approach of [4] and new strategies
for how to evaluate the non-resonant contribu-
tion to the S-matrix. Specifically, we will work
with the example presented in Figure 1, consist-
ing of a wave-guide with randomly distributed
scattering elements placed inside of it. Com-
paring the QNM-expansion for this system with
a conventional recursive Green’s function algo-
rithm, we find a speed-up by a factor larger
than 20 [6]. Furthermore, our approach pro-
vides considerable insight into the actual scat-
tering physics that can be used for optimisation
of such structures for any desired purpose [7].

2 Simulation and Results

The S-matrix expansion we use is given by [6]:

S(ω) = C + iB
(
ω − Ω̄

)−1
Q−1B† (1)

where C is the direct coupling matrix or the
non-resonant background-term and the matrix
B consists of the far-field column-vectors (eval-
uated at the boundaries) of the QNMs. The
entries of Ω̄ and Q are given by

Ω̄ij = δijωi (2)

Qij = i
~b†i~bj

ωj − ω∗i
(3)

with δij being the Kronecker-delta and ωi and~bi
being the energy and far-field of the i-th QNM.
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Figure 1: Geometry and potential of the two dimensional system under study: the square scattering
region of length L=4.35 consists of 25 randomly placed scatterers (red rods) featuring a radius r =

0.025L and a constant potential V = 98.86E0 inside with E0 = 1
2

(
π
L

)2. The scattering region is
connected to two semi-infinite wave-guide leads with 8 open modes via a slit of width L/3 on each side
(only six modes are shown in the asymptotic region).

In the example problem of Figure 1, we first
evaluate a reference S-matrix using the mod-
ular recursive Green’s function method [8, 9].
Next, we calculate the QNMs as eigen-states of a
discretised Hamiltonian with perfectly matched
layers attached at the boundaries via an itera-
tive Krylov subspace routine. Both approaches
show excellent agreement with each other, e.g.,
on the level of the transmission through the struc-
ture. Calculating the QNMs and evaluating the
expansion took about 30 minutes, while compu-
tation of the reference S-matrix took about 11
hours on the same cluster.
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Abstract

There have been many recent developments for
iterative solvers for time harmonic wave prop-
agation. The methods mentioned in the title
seem all to be quite different, and their invention
followed quite different path’. They are however
very closely related, and I will show the precise
relations, both at the continuous and the dis-
crete level.
Keywords: Domain Decomposition, Time Har-
monic Wave Propagation.

Introduction

Time harmonic wave propagation problems are
difficult to solve by iterative methods, for a re-
view, see [1]. Sweeping type preconditioners
have received a lot of attention over the past few
years, following the publication by Engquist and
Ying [2,3]. In the original version of the sweep-
ing preconditioner, the problem is solved grid
layer by grid layer, first sweeping in one direc-
tion over the computational domain, and then
sweeping back.

Sweeping Type Preconditioners

An intense development of iterative methods based
on sweeping motion followed. In the source trans-
fer domain decomposition method by Chen and
Xiang [4, 5], a Green’s function representation
is used to describe how a source on one side of
the domain is transferred over the domain and
the sources contained in it to the other side, and
then back, in order to obtain an iterative solver.
In the method of Stolk [6], which is based on sin-
gle layer potentials, the domain is decomposed
into a so called one way decomposition, lead-
ing to a decomposition into strips, and a subdo-
main iteration is introduced which uses a single
layer potential representation at the interfaces
to transmit information from one subdomain to
the next, first from left to right, and then back.
Then there is also the method of polarized traces

by Zepeda-Núñez and Demanet [7], and all these
methods have sparked a wealth of followup pub-
lications.

Underlying Mathematical Techniques

All these methods use Prefectly Matched Lay-
ers (PML) or (high-order) Absorbing Bound-
ary Conditions (ABCs) as an essential ingre-
dient in transmission conditions on what can
be interpreted as subdomain interfaces. They
are very much related to earlier developments:
on the one hand to the so called Analytic In-
complete LU (AILU) preconditioners by Gan-
der and Nataf [8, 9] going back to the Filter-
ing Frequency Decomposition by Wagner and
Wittum [10, 11]. On the other hand, and even
more importantly, they are related to the devel-
opment of optimal and optimized Schwarz meth-
ods [12–17], see [18,19] for an introduction.

The common formulation of optimal and op-
timized Schwarz methods allows us to explain
in detail how and why these methods work. All
these methods are based on one-dimensional de-
compositions of the problem in space into a se-
quence of subproblems, and they have in their
optimal form the property to lead to nilpotent
iterations, like an exact block LU factorization.
They thus represent at the discrete level approx-
imate block LU decomposition preconditioners.
The continuous analog of the exact block LU
factorization at the PDE level is what is called
an optimal Schwarz method, where optimal here
does not refer to scalability, but to the fact that
better transmission conditions are not possible.
The optimal transmission conditions involve Dirich-
let to Neumann operators, and in situations where
those can be well approximated by PML, the
methods can work extremely well. While we fo-
cus in the presentation on the specific case of the
Helmholtz equation, our formulations are com-
pletely general and hold for other partial differ-
ential equations as well. This talk is based on
joint work with Hui Zhang that just appeared
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in a comprehensive article in SIAM Review [20].
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Abstract

We introduce a new preconditioning technique
for the high-frequency Helmholtz equation based
on a checkerboard domain decomposition. The
novelty of the new technique is that it can be
applied in parallel and is independent of the
discretization. In particular, the preconditioner
can be applied in O(N/p) complexity where N
is the number of degrees of freedom and p =
O(N1/d) is the number of processors. We con-
sider several numerical examples involving con-
stant and non-constant wave speeds. In all ex-
amples, using a preconditioned GMRES method,
the preconditioner results in a logarithmic growth
of the number of iterations with respect to the
frequency ω.
Keywords: High-frequency Helmholtz equation,
Preconditioning, Parallel computing

1 Introduction

In many science and engineering applications,
solving time-harmonic high-frequency wave prop-
agation problems quickly and accurately is of
paramount importance. For example, in geo-
physics, particularly in oil exploration, such prob-
lems can be the forward problem in an iterative
process for solving the inverse problem of sub-
surface inversion. It is important to solve these
wave propagation problems accurately in order
to efficiently obtain meaningful solutions of the
inverse problems: low order forward modeling
can hinder convergence. Additionally, due to
the volume of data and the iterative nature of
most optimization algorithms, the forward prob-
lem must be solved many times. Therefore, a
fast solver is necessary to make solving the in-
verse problem feasible. For time-harmonic high-
frequency wave propagation, obtaining both speed
and accuracy is historically challenging.

Recently, there have been many advances in
the development of fast solvers for such prob-

lems, including methods which have linear com-
plexity with respect to the number of degrees
of freedom. While most methods scale opti-
mally only in the context of low-order discretiza-
tions and smooth wave speed distributions, the
method of polarized traces [1] has been shown to
retain optimal scaling for high-order discretiza-
tions, such as hybridizable discontinuous Galerkin
methods and for highly heterogeneous (and even
discontinuous) wave speeds [4]. The resulting
fast and accurate solver is consequently highly
attractive for geophysical applications. To date,
this method relies on a layered domain decom-
position together with a preconditioner applied
in a sweeping fashion, which has limited straight-
forward parallelization.

In this work, we introduce a new technique
which reveals more parallel structure than pre-
vious versions while preserving all of other ad-
vantages of the method of polarized traces. We
achieve this by introducing the preconditioner
based on a checkerboard domain decomposition
(DD) resulting in a preconditioner that can be
applied in optimal parallel complexity. All con-
sidered numerical examples result in a logarith-
mic growth of the number of iterations in a pre-
conditioned GMRES solver showing the almost
optimal complexity to invert the linear system.
To the best of our knowledge, this is the first
preconditioner for the high-frequency Helmholtz
equation that reveals this almost optimal paral-
lel complexity.

As a model problem we use the high-frequency
Helmholtz equation with varying wave speed on
a square (or cube) Ω with transparent bound-
ary conditions. We discretize the problem using
finite difference methods and perfectly matched
layers. However, all techniques presented in this
work can be directly extended to other discretiza-
tions or transparent boundary conditions.
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2 Method

The method is based on a checkerboard DD of
the domain Ω. Corresponding to each subdo-
main we define a local problem by gluing trans-
parent boundary conditions to its boundaries.
The global wave field is then reconstructed in
two stages. The first stage simply consists of
the method of polarized traces applied to each
row and column of the checkerboard DD, see
Figure 1.

The second stage constructs the wave field
in the remaining subdomains. A sweep over
the domain on a layer-by-layer basis is applied
where the layers are defined as the diagonals
of the checkerboard DD. Then each subdomain
in one layer can be processed independently by
solving a quarter-space problem based on L-shaped
incoming traces from the previous layer. We
show that on the algebraic level, the solution of
these quarter-space problem can be computed
using similar techniques as in [1].

Using this procedure, we sweep over the di-
agonally defined layered domain decomposition.
The sweep from the bottom left corner to the
top right corner is illustrated in Figure 1.

Figure 1: The reconstructed wave fields after
stage 1 (top left), and at snapshots during stage
2. The snapshots were taken during (top right,
bottom left) and at the end of (bottom right)
the first diagonal sweep over the domain.

To get a good approximation of the global wave
field, we sweep over each diagonal in both direc-
tions, see Figure 2. Combined with a window-
ing technique to avoid ill-defined restrictions of
delta distributions appearing in the residuals of
the reconstructed wave field, this technique is

used as a preconditioner for the iterative solu-
tion of the global linear system.

We consider several numerical examples to
show that the resulting iteration count is log-
arithmic with respect to the frequency ω and
that for appropriately defined domain decompo-
sitions, the new preconditioner can be applied in
O(N/p) complexity where p = O(N1/d).

Sweep 1: bottom left to top right: Sweep 2: top right to bottom left:

Sweep 3: bottom right to top left: Sweep 4: top left to bottom right:

Figure 2: Summary of stage 2.

3 Outlook

Our solution strategy can be applied for d = 2, 3
as long as p = O(N1/d). In 3D, this can be
further improved by parallelizing the quasi-one-
dimensional problems in each subdomain using
multi-frontal methods. This allows one to use
p = O(N

d−1
d ) processors resulting in theO(N1/d)

complexity for d = 2, 3. In the presence of sev-
eral right hand sides this can be even further
improved using pipelining [2]. The end result
is that in average in a parallel environment the
preconditioner can be applied in O(1) time per
right hand side as long as there are at least
O(N1/d) right hand sides and p = O(N

d−1
d ) pro-

cessors. All of these extensions are the topic of
current research.
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Abstract

This talk reviews the main ideas behind the
sweeping preconditioner for solving high-frequency
time-harmonic wave equations and its extensions.
Keywords: sweeping preconditioner, Helmholtz
equation, Maxwell equation, elasticity equation

1 Introduction

Let us start by considering the Helmholtz equa-
tion

∆u(x) +
ω2

c2(x)
u(x) = f(x),

on the unit box D = (0, 1)d with d = 2, 3 with
Sommerfeld boundary condition at infinity, where
ω is the angular frequency, c(x) is the velocity
field, and f(x) is the external force. It is conve-
nient to assume that c(x) is of order O(1) and
λ = 2π

ω is the typical wavelength.
A popular treatment of the Sommerfeld bound-

ary condition is the perfectly matched layer de-
veloped by Berenger [1]. By introducing appro-
priate complex damping at the domain bound-
ary, the PML solution for d = 2 satisfies
(
∂1

(
s1
s2
∂1

)
+ ∂2

(
s2
s1
∂2

)
+

ω2

s1s2c2

)
u = f,

where s1 and s2 are functions of x1 and x2, re-
spectively.

In a typical setting, the Helmholtz equation
is discretized with at least a constant number
of points per wavelength. Therefore, the num-
ber of samples n in each dimension is propor-
tional to ω, the total number of samples N for a
uniform Cartesian discretization is nd = O(ωd).
For simplicity, assume that the 5-point stencil fi-
nite difference method is used for the discretiza-
tion of the second order differential operator and
the unknowns are order slice-by-slice by going
through the x1 coordinate first, we end up with
a matrix equation

Au = f .

By denoting the unknowns and forcing terms in
the i-th slice by ui and fi, the system takes the

form



A1,1 A1,2

A2,1 A2,2

. . .
. . .

. . . An−1,n

An,n−1 An,n







u1

u2

...
un


 =




f1
f2
...
fn




2 Sweeping preconditioner

The starting point of the sweeping precondi-
tioner [3] is the LDLT factorization of A:

A = L1 · · ·Ln−1




S1

S2

. . .
Sn


LT

n−1 · · ·LT
1 ,

where Si are the Schur complements. Inverting
this factorization gives an explicit representa-
tion of the solution

u = (LT
1 )

−1 · · · (LT
n−1)

−1




S−1
1

S−1
2

. . .
S−1
n




L−1
n−1 · · ·L−1

1 f.

Figure 1: Left: the domain discretization and
the sweeping direction. Middle: the half-space
problem for each Schur complement Sm. Right:
the truncated domain.

The key challenge is how to apply S−1
m to an

arbitrary vector efficiently and accurately. The
main observation is that the matrix S−1

m is the
restriction to the m-th slice of the discrete half-
space Green’s function with zero boundary con-
dition at the (m + 1)-th slice. The key idea is
that,

since only the restriction at the m-th slice is of
interest, one can approximate by truncating the

domain and moving the PML from the
beginning all the way close to the m-th slice.
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This is the moving PML idea of the sweeping
preconditioner.

The main computational advantage is that,
for each matrix-vector multiplication of S−1

m , we
have traded a d-dimensional half-space problem
with and a quasi (d−1)-dimensional sub-problem.
When d = 2, the quasi 1D sub-problem can be
solved efficiently by banded LU factorization.
The costs for constructing and applying the fac-
torization are bothO(n). When d = 3, the quasi
2D sub-problem can be solved efficiently using
the nested dissection algorithm by George [5]
(or the more general multifrontal method). The
costs for constructing and applying the factor-
ization are O(n3) and O(n2), respectively.

The resulting algorithm serves as a reason-
ably accurate approximate inverse of the oper-
ator A. When combined with general iterative
solvers (e.g. GMRES or TFQMR) as a precon-
ditioner, the iterative solver typically converge
in a small number of iterations, as witnessed by
a wide variety of numerical examples. In 2D, the
overall costs for constructing the preconditioner
and solving the Helmholtz problem iteratively
are O(N) and O(Nmit), respectively, where mit

is the number of iterations. In 3D, the costs are
O(N4/3) and O(N logNmit), respectively.

We would like to point out that the idea
of using LU or LDLT factorization for solving
the Helmholtz equation has appeared earlier in
the work of Gander and Nataf [4]. The main
novel ingredients of the sweeping preconditioner
are (1) truncating the domain with the moving
PML to reduce the dimensionality, and (2) in-
corpating the nested dissection for the rapid so-
lution of the quasi 2D sub-programs.

3 Extensions

When the sweeping preconditioner was first pro-
posed, the quasi 2D sub-problemes are solved
[2] with the hierarchical matrix algebra devel-
oped by Hackbusch et al. However, theoretical
and nuemrical studies seem to suggest that the
nested dissection approach is more efficient and
robust.

Over the past several years, the sweeping
preconditioner has been extended in several di-
rections. First, it has been applied to the time-
harmonic Maxwell’s equations, in the settings of
the Yee’s scheme and the curl-conforming edge
element. We have also implemented it to time-
harmonic elasticity equation in the setting of

spectral elements with local Gauss-Lobatto grids.
For 3D large-scale (i.e. high-frequency) prob-

lems, the main computational task of the sweep-
ing preconditioner is the construction and ap-
plication of the nested dissection solver for each
slice. We have designed a parallel multifrontal
solver to speed up these calculations and have
applied the parallel solver to 3D large-scale seis-
mic simulations.

For 3D problems, another approach for speed-
ing up the quasi 2D sub-problems relies on the
simple observation that these sub-problems are
approximately Helmholtz equations themselves.
Therefore, it is natural to applying the sweeping
preconditioner to solve them. This line of idea
results the recursive sweeping preconditioners.

As we have seen, the starting point of the
sweeping preconditioner is the (multiplicative)
LDLT factorization of the operator A−1. Al-
ternatively, one can also write down an additive
L+D+U decomposition for A−1. It turns out
that one can also use the same moving PML
sweeping idea to accelerate the matrix-vector
multiplications of L and U. This results an ad-
ditive version of the sweeping preconditioner.

Finally, the sweeping preconditioner has also
been applied to solve the (integral) Lippman-
Schwinger equation of the time-harmonic acous-
tic scattering. The key idea here is to design a
problem-specific transformation that turns the
Lippman-Schwinger approximately to a sparse
linear system. This sparse linear system can be
viewed as a Helmholtz-type equation and the
sweeping preconditioner can be applied to speed
up its solution.
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Abstract

The propagation of acoustic waves in the Sun
can be described by a Helmholtz-type equation.
We aim to construct efficient preconditioners for
the iterative solution of the arising linear sys-
tems based on a sweeping approach. The res-
onating nature of the Sun poses a major chal-
lenge for the application of sweeping precondi-
tioners. In this talk we discuss why this is the
case based on an investigation of the Dirichlet-
to-Neumann operator. Furthermore, we sketch
our approach to overcome these problems em-
ploying symmetry and spherical harmonic trans-
forms.
Keywords: helioseismology, sweeping precon-
ditioners, Dirichlet-to-Neumann operator, reso-
nances

1 Introduction

The propagation of acoustic waves in the Sun is
approximately described by the Helmholtz equa-
tion

− σ
2

ρc2
u−∇ ·

(
1

ρ
∇u
)

= f, (1)

where u is the divergence of the wave displace-
ment. The density ρ and sound speed c are
determined by a given solar model and σ2 =
ω2 + 2iγω with damping γ = γ(ω) chosen to fit
the solar data.

In [1] wave propagation in the Sun has been
treated under the assumption of axial symme-
try. We further refer to [2] in which Atmospheric
Radiation Boundary Conditions were developed
that model the behavior of outward propagat-
ing waves. In the fully three-dimensional case
or for a more accurate vector-valued version of
(1) a direct solution of the arising linear systems
may become unfeasible. Hence, we aim to con-
struct efficient preconditioners for the iterative
solution of these problems.

Our aim is to develop sweeping precondi-
tioners as introduced in [3]. In [4] this pre-
conditioner has been described as a special op-

timized Schwarz method which uses as trans-
mission condition between subdomain interfaces
an approximation of the Dirichlet-to-Neumann
(DtN) operator by a moving Perfectly Matched
Layer (PML). Applying this preconditioner in
combination with GMRES to an axisymmetric
version of the problem yields iteration numbers:

ω/2π 9.0 6.0 4.5 4.0 3.5 3.0
#iterations 5 5 10 22 68 > 100

Contrary to expectation, the preconditioner
is very efficient for high frequencies but its per-
formance deteriorates dramatically for low fre-
quencies. Next, we want to explain this behav-
ior and the arising challenges.

2 Challenges for applying sweeping pre-
conditioners

The Sun is a resonator: Inward propagating
waves are refracted by an increase in sound speed
towards the core while outward propagating waves
with frequency lower than a certain cutoff (ω/2π =
5.3 mHz) are reflected by the sharp decrease
in density towards the surface. While sweep-
ing preconditioners have shown impressive re-
sults for many problems their usefulness in the
presence of resonances, as for the Sun, appears
to be an open question. Indeed, our tests indi-
cate that the sweeping preconditioner performs
poorly in this setting. To understand why this
happens it is instructive to consider the one-
dimensional case:

Assuming spherical symmetry, i.e. c = c(r),
ρ = ρ(r) with r denoting the radial distance
from the Sun’s core, the solution decomposes
into spherical harmonics

u(r, θ, φ) =

L∑

`=0

∑̀

m=−`
u`,m(r)Y m

` (θ, φ). (2)

Plugging this ansatz into (1) yields the ODE

− ∂

∂r

(
r2

ρ

∂u`,m

∂r

)
+

(
`(`+ 1)

ρ
− σ2r2

ρc2

)
u`,m

= r2f `,m. (3)
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The success of the sweeping preconditioner is
determined by how well the DtN operator can be
approximated by the moving PML [5]. Figure 1
shows this approximation close to the Sun’s sur-
face obtained with a moving PML that contains
about ten degrees of freedom. The exact DtN
numbers have outliers that occur close to the
nodes of a nearby resonance eigenfunction. Ap-
parently, the PML fails completely to capture
the behavior of the DtN numbers.

0.85 0.9 0.95 1

−100

−50

0

50

100

r/R�

exact
PML approx.

<(ures)
=(ures)

0.85 0.9 0.95 1

−100

−50

0

50

100

r/R�

exact
PML approx.

<(ures)
=(ures)

Figure 1: Moving PML approximation of the
imaginary part of the DtN numbers for equation
(3) with ω = 3.0 mHz, ` = 0. Also shown is
an eigenfunction ures corresponding to a nearby
resonance. Distance on the abscissa given in
terms of the solar radius R�.

3 Towards more accurate transmission
conditions

Spherical symmetry of the reference model sug-
gests to decompose the Sun into spherical shells
which can serve as layers for the sweeping method.
This requires an approximation of the DtN op-
erator on spheres. For boundary data g(θ, φ) =∑L

`=0

∑`
m=−` g

`,mY m
` (θ, φ) given in terms of spher-

ical harmonics the solution of the corresponding
exterior problem can easily be written down in
the form (2). From this expression the normal
derivative ∂u/∂r can be obtained by differenti-
ating the radial coefficients ∂u`,m/∂r. Hence,
for the purely spherically symmetric case the
DtN operator can be determined by solving the
ODEs (3), which are actually independent of m.
Combining this observation with spherical har-
monic transforms allows to apply the DtN op-
erator to arbitrary boundary data.

We realized this idea for a two-dimensional
model problem on the unit disk employing a

general framework for the sweeping methods (see
Algorithm 2 of [4]). To demonstrate the short-
comings of the moving PML we use a similar
strategy as in [5]: The disk is partitioned into
ten circular layers in between which the wavenum-
ber is discontinuous. On the first layer the wavenum-
ber is 16(1 − α/2), on the second 16(1 + α/2),
on the third 16(1 − α/2) and so on continuing
this sequence. Increasing the contrast α leads
to a dramatic growth of the iteration numbers:

α moving PML our approach
0.0 7 17
0.5 63 18
1.0 137 19

However, our approach appears to be nearly
robust. Encouraged by this result we aim to
extend this technique for our applications in he-
lioseismology.
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Abstract

In this work we present a novel finite-difference
time domain (FDTD) method specifically de-
signed to simulate time-harmonic waves with
minimal dispersion errors. The method uses re-
cently developed spatial discretizations of the
Helmholtz equation and a time discretization
adapted to the narrow band wave field, so that
relatively coarse meshes can be used. The scheme
is suitable for comparison of the FDTD approach
with other approaches for solving finite-difference
discretizations of the Helmholtz equation, such
as those based on sparse direct solvers, domain
decomposition, multigrid or complex-shifted Lapla-
cians. A study of overall performance is forth-
coming.
Keywords: Helmholtz equation, finite differ-
ences, solvers

1 Introduction

In application fields, FDTD is regularly used to
simulate solutions to Helmholtz equations. At
the same time, in the literature on Helmholtz
solvers usually little is said about this method-
ology (e.g. in papers on domain decomposition,
multigrid methods or complex shifted-Laplacian
methods). This raises the question whether nu-
merical mathematicians should give more atten-
tion to this approach.

We start with some a priori observations about
time domain simulation and its computational
cost. (i) If both the frequency and the number
of unknowns in each direction is increased, also
the number of time steps must be increased. If
d is the dimension, assuming a constant number
of time-steps per period, and a constant number
of spatial discretization points per wavelength in
each direction, then a first estimate is that com-
putational cost increases with N1+1/d. (ii) The
CFL condition implies a minimum number of
time steps per period, which may be quite large
in absolute numbers. Large differences in veloc-
ities worsen the situation in this respect. (iii)
Time discretization errors, if not handled prop-

erly, may also mean that many time steps per
period are required. (iv) FDTD algorithms are
often well suited for modern hardware (in terms
of vectorization and memory locality).

While (i) to (iii) appear to be disadvantages
of the time domain, this is mostly not the case.
Issue (i) is not unique to time domain methods.
For complex-shifted Laplacians, the number of
iterations also scales at least linear with prob-
lem size (we are not aware of any hard bounds
in fact). In 3-D the solve cost of sparse direct
solvers scales similarly. Issue (ii) can be ad-
dressed by using relatively coarse spatial grids.
Recent discretizations of the Helmholtz equa-
tion allow for this [3] and this is part of our ap-
proach. However, large differences in velocities
do pose challenges, because appropriate adap-
tive meshes are not easily combined with our
methodology. To mitigate (iii), an adapted time
discretization will be presented below. Obser-
vation (iv) is of course a main reason that time
domain methods are of interest.

We will assume, as is commonly done, that
some damping is present in the Helmholtz equa-
tions to be solved, for example from absorbing
layers included for modeling an unbounded do-
main. Previous works documenting large scale
Helmholtz solvers include [1, 2, 4].

2 A novel FDTD scheme

With standard low order discretizations, the use
of coarse grids leads to large numerical disper-
sion. We next outline a scheme that involves rel-
atively small stencils, but nevertheless obtains
small dispersion errors when simulating time har-
monic waves of a specific angular frequency ω.
This scheme incorporates recently developed dis-
cretizations of the Helmholtz operator in a time-
domain scheme. We start with the homoge-
neous wave equation without damping. The
inclusion of inhomogeneous terms and damp-
ing will be briefly discussed afterwards. Once
a discrete wave equation is available, it can be
solved with a time harmonic right hand side.
For typical systems that include some form of
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damping, the solution becomes approximately
time-periodic after some time, and a solution to
the Helmholtz equation can then be extracted
(“limiting-amplitude principle”).

The continuous equation to be discretized is
(

1

c(x)2

∂2

∂t2
−∆

)
u(t, x) = f(t, x)

Here u(t, x) is the wave field to be simulated.
The first step is the spatial discretization.

Let H denote a discrete Helmholtz equation of
[3], section 5.1. This operator is a good approxi-
mations of −∆−k2, in the sense that the propa-
gating wave solutions to the Helmholtz equation
have closely similar wave numbers (small numer-
ical dispersion). Thus the continuous time, dis-
crete space wave equation is
(

1

c(x)2

∂2

∂t2
+H + k2

)
u(t, x) = f(t, x). (1)

Here u(t, x) denotes a function of t ∈ R and x
in a regular grid with grid spacing h.

For the time discretization, the equality
(
∂2

∂t2
+ ω2

)
e±iωt = 0.

should remain true when ∂2

∂t2
is replaced by the

discrete second order time derivative. (This fol-
lows by inserting a solution U(x)e±iωt into (1)
where U is a solution to the discrete homoge-
neous Helmholtz equation HU = 0, and multi-
plying by c(x)2.) Discretizing by replacing

∂2u

∂t2
→ αu(n+1) − 2βu(n) + γu(n−1)

∆t2
.

the equation becomes

αeiω∆t − 2β + (∆t)2ω2 + γe−iω∆t = 0.

To obtain zero imaginary part, one sets γ = α.
Then one parameter is free due to overall scaling
so that one can set β = α. Solving for α then
results in

α =
(∆t ω)2

2− 2 cos(ω∆t)
.

The resulting discrete scheme for the homoge-
neous equation is then

α(u(n+1) − 2u(n) + u(n−1))

∆t2
+ (H + k2)u(n) = 0.

from which an explicit expression for u(n+1) in
terms of u(n) and u(n−1) can be easily extracted.

For the inhomogeneous equation an overall
scaling of the right hand side can be established
and the operators Q of [3], section 5.2 can be
applied. Damping can be included by adding
a contribution β u

(n+1)−u(n−1)

∆t were β = β(x) is
a local damping constant (not the same β as
above).

3 Discussion

In wave field processing it is common to go back
and forth between time and frequency domains,
or between position and k-space. Examples are
for example the processing of seismic data or in
some simulation approaches (e.g. k-Wave). We
present a new instance of such mixed domain
computing. It will be of interest to compare
the computational cost of the FDTD approach
for solving the Helmholtz equation with that of
other Helmholtz solvers. Numerical results are
forthcoming.
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Abstract

Large-scale Helmholtz problems are notoriously
difficult to solve with standard iterative meth-
ods, in fact increasingly so, the higher the fre-
quency ω > 0. Controllability methods (CM)
offer an alternative approach [1–4] for the nu-
merical solution of the Helmholtz equation. In-
stead of solving the problem directly in the fre-
quency domain, we first transform it back to the
time domain where we seek the time-periodic so-
lution y(., t) of the corresponding time-dependent
wave equation with known period T = (2π)/ω.
By minimizing a cost functional, which penal-
izes the mismatch after one period, CM itera-
tively steer y towards the desired periodic state.

Here, we consider two different approaches
based either on the first or second-order formu-
lation of the wave equation [1, 5]. Both are ex-
tended to general boundary-value problems gov-
erned by the Helmholtz equation and lead to ro-
bust and inherently parallel algorithms. Numer-
ical results illustrate the accuracy and strong
scalability of CM with up to a billion unknowns
on massively parallel architectures [4].
Keywords: time-harmonic waves, controllabil-
ity method, parallel computing

1 Second-order wave equation

Let Ω ⊂ Rd be a connected, bounded Lipschitz
domain with boundary ∂Ω = ΓD ∪ΓN ∪ΓS and
u denote the solution of the Helmholtz equation,

−∆u(x)− k(x)2u(x) = f(x) x ∈ Ω,
∂u(x)

∂n
= g(x) x ∈ ΓN ,

u(x) = 0 x ∈ ΓD,
∂u(x)

∂n
− ik(x)u(x) = g(x) x ∈ ΓS ,

(1)

where ΓD and ΓN are physical boundaries, ΓS
is an artificial boundary, k = ω/c is the wave
number, and c(x) is the speed of propagation.

Instead of solving (1) directly in the frequency
domain, we consider the T -periodic time-harmonic
solution

y(x, t) = Re{u(x) e−iωt}.

It satisfies the second-order wave equation

1

c2

∂2y

∂2t
−∆y = Re{f e−iωt} in Ω×(0, T ), (2)

with corresponding time-harmonic initial and bound-
ary conditions

y(·, 0) = y0, yt(·, 0) = y1 in Ω. (3)

Once the (unknown) initial conditions y0 and
y1 have been determined, the solution u of (1)
is immediately given by

u = y0 + (i/ω)y1. (4)

2 Controllability methods

To determine (y0, y1), Glowinski et al. [1] pro-
posed to reformulate the problem as a least-
squares optimization problem over H1×L2 for
the quadratic energy functional

J(y0, y1) =
1

2
‖∇y(T )−∇y0‖2+

1

2
‖1

c
(yt(T )−y1)‖2,

where y satisfies (2)–(3). The minimizer (y0, y1)
of J is determined by the conjugate gradient
(CG) method. To ensure that all CG-iterates
remain in H1×L2, each iteration requires the
solution of a coercive elliptic problem indepen-
dent of ω.

Instead of using the wave equation (3) in
second-order form, we can also reformulate it
in first-order (or mixed) form [5] as

1

c2

∂v

∂t
− divp = Re{f e−iωt} in Ω×(0, T ),

∂p

∂t
= ∇v in Ω×(0, T ),

(5)

with corresponding initial and boundary condi-
tions. Since the initial values (p0, v0) ∈ (L2)d+1.
the solution of an elliptic problem at each CG
iteration is no longer necessary. To discretize
(5), we consider a recent hybrid discontinuous
Galerkin (HDG) method. First, it leads to a
block-diagonal mass-matrix and, therefore, be-
comes trivially parallel when combined with ex-
plicit time integration of (5). Second, it also
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Figure 1: 2D-Marmousi: (top) wave field u,
(bottom) CPU-time w.r.t. numbers of cores

yields superconvergence in space after a local
post-processing step.

When applied to general boundary-value prob-
lems governed by the Helmholtz equation (1),
the original CMCG method with J generally
yields a time-periodic solution of (2)-(3) (or (5)),
which contains u, but also a constant shift, a
linearly growing part determined by a constant
η, and higher frequency harmonics. In [3,4], we
showed that the shift and higher eigenmodes can
be removed by a simple filtering procedure:

u = ŷ+
iη

ω
, ŷ =

1

T

∫ T

0
(y(·, t)+ i

ω
yt(·, t)) eiωt dt.

Then, η is determined by the following compat-
ibility condition directly derived from (1):

iη

ω
= − 1

‖k‖2
(∫

Ω
f dx+

∫

ΓN

g ds+

∫

Ω
k2ŷ dx

)
.

3 HPC parallel results

We apply the CMCG method with P2-FE to
the Marmousi model (ω = 2πν, ν = 10 – 250)
and with P1-FE to the 3d-cavity problem (k =
ω = 2πν, ν = 2 – 6), both with mass-lumping.
For the time integration of (2), (5), we use the
explicit leag-frog method. The implementation
is written in FreeFem++ and the elliptic prob-
lem is solved in parallel by using the hpddm
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Figure 2: 3D-cavity: (top) wave field u, (bot-
tom) CPU-time w.r.t. numbers of cores

library. As shown in Figures 1 and 2, the paral-
lel implementation of the CMCG method scales
perfectly for a fixed FE mesh as the number of
cores increases.
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Abstract

We introduce a novel idea inspired by recent
work on exact controllability (EC) methods, [4].
As in EC methods our method make use of time
domain methods for wave equations to design
frequency domain Helmholtz solvers but unlike
EC methods we don’t require adjoint solves. Nu-
merical examples with various discretization tech-
niques are presented.
Keywords: Helmholtz, Wave Equation.

1 Introduction

Designing efficient iterative solvers for the Helm-
holtz equation

c(x)2∆u+ ω2u = f(x), (1)

is notoriously difficult when ω >> 1 and has
been the subject of much research. The main
difficulties in solving the Helmholtz equation are
the resolution requirements and the highly in-
definite character of the discretized problem.

Assuming that (1) has been scaled so that
the mean of c(x) is about 1 then the typical
wavelength is λ = 2π/ω and the typical wave-
number is ω/2π. In order to numerically propa-
gate solutions to the time dependent wave equa-
tion corresponding to (1) with small errors it is
crucial to control the dispersion by using high
order methods. The basic estimate by Kreiss
and Oliger [1] shows that in order to propagate
a wave over J wavelengths with a pth order finite
difference method and with an error no greater
than ε one must choose the number of points per
wavelength PPW(J, p) as PPW(J, p) ≥ C(p, ε)J

1
p ,

where C(p, ε) depends on the tolerance but de-
creases with increasing order of accuracy p. Con-
sequently, for a problem in d-dimensions and
with fixed physical size the number of wave-
lengths in the domain will scale as ωd and to
maintain a fixed tolerance the total number of
degrees of freedom needed, Np(ω) = O(ω

d(1+ 1
p
)
),

is very large for high frequencies.
The dependence on p and ω in Np(ω) im-

mediately reveals two fundamental criteria for

designing high frequency Helmholtz solvers: 1.)
The solvers must be parallel, memory lean
and they must scale well. In 3D the number
of degrees of freedom representing the solution
cannot be stored on a single computer, and even
on a parallel computer it is important to pre-
serve the sparsity of the discrete version of (1).
2.) The underlying discretizations must be high
order accurate. At high frequencies and in 3D
the extra penalty due to pollution / dispersion
errors becomes prohibitive.

2 A New Idea for Designing Scalable Par-
allel Helmholtz Solvers

Note that for suitable initial conditions w(0, x)
and wt(0, x), the unique T = 2π/ω-periodic so-
lution to wtt = c(x)2∆w − f(x)eiωt is also the
unique solution to the Helmholtz equation. We
can thus find u(x) by finding initial conditions
that gives a T -periodic solution to (2). Without
loss of generality, we may take wt(0, x) = 0 and
w(t, x) = u(x) cos(ωt), since for a T -periodic so-
lution there is a time when wt(0, x) = 0. Thus
{
wtt = c(x)2∆w − f(x) cos(ωt),

w(0, x) = v(x), wt(0, x) ≡ 0,
(2)

where 0 ≤ t ≤ T . In other words, to find u(x),
rather than solving (1) directly, we will find the
initial data v(x) that produces the unique T -
periodic solution to (2).

We now propose a fixed point iteration that
can be used to construct highly scalable paral-
lel solvers for Helmholtz type equations. The
proposed iteration is defined as follows

v(n+1) = Πv(n), v(0) ≡ 0, (3)

where

Πv =
2

T

∫ T

0

(
cos(ωt)− 1

4

)
w(t, x)dt, T =

2π

ω
,

with w(t, x) solving the wave equation (2) with
initial data v(x) ≡ v(n). It is not hard to show
that the above iteration can be expressed as a
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Marmousi II at ! “ 150 Rad/s

Figure 1: Plotted is the magnitude of the solution to Helmholtz equation due to a point source at 150Rad/s. The
color scale is logarithmic. The inlay displays the velocity (compressional) structure with regions ranging from 1km/s to
„ 4.6km/s. Spatial discretization is done by a 6th order accurate summation-by-parts finite difference scheme for the
full Marmousi 2 velocity model with a spatial extent of 17 ˆ 3.5km using a 13601 ˆ 2801 grid. The domain is truncated
by a super-grid layer, [6].

necessitating a costly factoring in each update.
Finally, the two criterions 1.) and 2.) above are not so easy to meet for sweeping preconditioners.

The sweep itself is intrinsically sequential and although there are have been at least partially successful
attempts to parallelize the sweeping methods it is hard to say that they are easy to parallelize in a scalable
way. In a similar vein most of the methods use (and some rely on) low order discretizations. Although it is
possible to use higher order accurate discretizations together with sweeping preconditioners, their scarcity
in the literature is noticeable.

3 Proposed Work: Numerical Methods in the Frequency Domain
3.1 A New Idea for Designing Scalable Parallel Helmholtz Solvers

Note that for suitable initial conditions wp0, xq and wtp0, xq , the unique T “ 2⇡{! -periodic solution to
wtt “ cpxq2�w ´ fpxqei!t, wp0, xq “ v0pxq, wtp0, xq “ v1pxq, (2)

is also the unique solution to the Helmholtz equation (to see this insert wpt, xq “ upxq exppi!tq into (2))
cpxq2�u ` !2u “ fpxq. (3)

We can thus find upxq by finding initial conditions that gives a T -periodic solution to (2). Note that,
without loss of generality, we may take wtp0, xq “ 0 and wpt, xq “ upxq cosp!tq , since for a T -periodic
solution there is a time when wtp0, xq “ 0 . We choose that time as the initial time so that (2) becomes

wtt “ cpxq2�w ´ fpxq cosp!tq, wp0, xq “ vpxq, wtp0, xq ” 0, 0 § t § T. (4)

In other words, to find upxq , rather than solving (3) directly, we will find the initial data vpxq that produces
the unique T -periodic solution to (4).

There are many advantages to solving the time dependent wave equation rather than the Helmholtz
equation: (a.) Algorithms for solving the wave equation are very easy to parallelize and they scale well,
(b.) There is essentially no startup cost associated with solving a wave equation, (c.) Algorithms for the
wave equation are memory lean, (d.) There are many provably stable and high order accurate methods
for time-dependent waves, (e.) Solving the wave equation for an interior problem or in a waveguide is no
more difficult than solving the exterior problem.

Thus, finding the initial data vpxq by solving the wave equation (4) will circumvent the aforementioned
weaknesses of the sweeping preconditioners. An important goal of the proposed research is to design,
implement and analyze algorithms that can find vpxq with computational complexity that is no greater than
that of current state of the art Helmholtz solvers.

3.2 Iteration

We now propose a symmetric positive definite fixed point iteration that can be used to construct highly
scalable parallel solvers for Helmholtz type equations. The proposed iteration is defined as follows

Page 4

Figure 1: Plotted is the magnitude of the solution to Helmholtz equation due to a point source at
150Rad/s. The color scale is logarithmic. The inlay displays the velocity (compressional) structure
with regions ranging from 1km/s to ∼ 4.6km/s.

Figure 2: The behavior of classic ILU preconditioning under constant fill in ratio.

system of equations where the system matrix is
symmetric positive definite (unlike systems that
stem from the direct discretization of Helmholtz
eq.). Note that this method shares the feature of
finding time-periodic solutions with so called ex-
act controllability methods that were considered
in the late 1990’s by Bristeau [3] for Dirichlet
and impedance conditions and, more recently,
general boundary value problems in Grote et
al. [4]. The latter was an inspiration for the work
presented here but we stress that our method is
distinct from [4], e.g. we do not need to compute
gradients at each step.

3 A Numerical Examples

Consider the interior 1D problem with constant
wave speed of one and with homogenous Dirich-
let boundary conditions on the domain with a
very narrow forcing placed near the middle of
the domain. The discretization is an energy
based DG method, [2] with 4 elements and a
basis of Legendre polynomials of degree 32 to-
gether with a Taylor series method of order 32
in time. We increase the resolution with ω so
that the problem is resolved and solve it us-
ing Matlab’s built-in QMR solver as a baseline.
We compare the QMR results with results us-
ing Matlab’s ILU preconditioner with the crout
and milu = ’off’ options together with GM-
RES. The results, displayed in Figure 2 are in-
triguing: the number of iterations appears to
be less sensitive to wavenumber than the un-

preconditioned case. As a more realistic prob-
lem we compute the solution of the Marmousi 2
test problem on the full grid (13601×2801 grid-
points or 38 ·106 degrees of freedom). The wave
equation is discretized using 6th order accurate
summation-by-parts operators, and we impose
homogenous Dirichlet boundary conditions at
the surface and non-reflecting super-grid on the
other boundaries. We force the solution at a
point near the surface at ω = 150 Rad/s. The
amplitude of the solution is plotted in logarith-
mic scale in Figure 1.
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Abstract

The parallel finite-element solution of large-scale
time-harmonic scattering problems is addressed
with a non-overlapping domain decomposition
method (DDM). It is well known that the effi-
ciency of this method strongly depends on the
transmission condition enforced on the interfaces
between the subdomains. Local conditions based
on high-order absorbing boundary conditions
(HABCs) are well suited for configurations with-
out cross points (where more than two subdo-
mains meet). In this work, we extend this ap-
proach to efficiently deal with cross points. Two-
dimensional finite-element results are presented.
Keywords: Helmholtz solvers, finite elements,
domain decomposition, fast comput. technique

1 Introduction

Optimized Schwarz DDMs are currently a very
promising approach for the parallel solution of
high-frequency time-harmonic problems. With
these methods, subproblems of smaller sizes are
solved in parallel using direct solvers, and are
combined in an iterative procedure [1, 2, 4].

The convergence rate of the DDM procedure
depends on the transmission condition enforced
on the interfaces between the subdomains. Lo-
cal conditions based on HABCs represent a good
compromise between basic impedance conditions
(which lead to suboptimal convergence) and the
exact Dirichlet-to-Neumann (DtN) map related
to the complementary of the subdomain (which
is expensive to compute). They are well suited
for configurations without cross points [1], but
a direct application of this approach with cross
points does not provide satisfactory results.

Noting that cross points actually are corners
for the subdomains, we propose a novel strategy
which consists in incorporating a corner treat-
ment developed for HABCs [3] into the DDM
procedure for configurations with cross points
and right angles.

2 DDM method

We consider a 2D Helmholtz problem defined on
a rectangular computational domain Ω:

{
∆u+ k2u = s, in Ω,
∂nfu− ıku = 0, on each Γf ,

where k is the wavenumber, s is a source term,
Γf is an edge of the domain, and ∂nf is the ex-
terior normal derivative, with f = 1 . . . 4.

The domain Ω is partitioned into a struc-
tured grid of non-overlapping rectangular sub-
domains ΩI , with I = 1 . . . Ndom. Each edge
ΓI,f can be either a boundary edge (if ⊂ ∂Ω)
or an interface edge (if 6⊂ ∂Ω). In the standard
DDM procedure, the solution uI of each subdo-
main ΩI is obtained by solving the subproblem




∆uI + k2uI = s, in ΩI ,

∂nI,fuI − ıkuI = 0, on each ΓI,f ⊂ ∂Ω,

∂nI,fuI + BuI = gI,f , on each ΓI,f 6⊂ ∂Ω,

where B is an impedance operator and gI,f is
a transmission variable. For any interface edge,
the transmission variable is computed using

gI,f = ∂nI,fuJ + BuJ = −gJ,g + 2BuJ , (1)

where gJ,g and uJ belong to the neighboring sub-
domain ΩJ with the shared edge ΓI,f = ΓJ,g.
Each iteration of the DDM procedure then con-
sists in solving concurrently the subproblems
and updating the transmission variables using
equation (1). See [1] for further details.

With our approach, the transmission opera-
tor B is an approximation of an exact half-space
DtN operator, where a rational approximation
of the square root is used in the symbol. The
application of B on uI is written as

BuI = −ıkα
[
uI +

2

M

N∑

i=1

ci (uI + ϕI,f,i)

]
,

where α = eıφ/2, ci = tan2(iπ/M),M = 2N+1,
N and φ are parameters, and {ϕI,f,i}i=1...N are
1D auxiliary fields living on the edge ΓI,f .
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∂τI,f τI,fϕI,f,i + k2
(
(α2ci + 1)ϕI,f,i + α2(ci + 1)uI

)
= 0, on ΓI,f ,

∂nI,f ′ϕI,f,i − ikϕI,f,i = 0, on each PI,ff ′ ⊂ ∂Ω,

∂nI,f ′ϕI,f,i + C
(
ϕI,f,i, ϕI,f ′,1, . . . , ϕI,f ′,N

)
= gI,f,i, on each PI,ff ′ 6⊂ ∂Ω.

(2)

For each interface edge ΓI,f , each auxiliary
field ϕI,f,i is governed by a 1D Helmholtz equa-
tion (first equation in system (2), where ∂τi is
the tangent derivative). Because of the second-
order partial derivative, a boundary condition is
required at each extremity of the edge [3], which
are corners of the subdomain. In the DDM pro-
cedure, that condition becomes a transmission
condition if the adjacent edge is an interface.

The corner shared by ΓI,f and any adjacent
edge ΓI,f ′ is denoted PI,ff ′ = ΓI,f ∩ ΓI,f ′ . De-
pending on the type of ΓI,f ′ , the auxiliary field
ϕI,f,i verifies one of the two last equations of sys-
tem (2). In the last one, C is a linear function
taking ϕI,f,i and all the auxiliary fields living on
ΓI,f ′ (the expression is easily obtained from [3]).
The transmission variable gI,f,i verifies

gI,f,i = −gJ,f,i + 2C
(
ϕJ,f,i, ϕJ,g′,1, . . . , ϕJ,g′,N

)
,

where ΓI,f and ΓJ,f have the same position in
ΩI and ΩJ , and ΓI,f ′ = ΓJ,g′ is the shared edge.

3 Preliminary finite element results

To analyse the efficiency of the method, we con-
sider the scattering of a plane wave by the unit
disk in a squared domain partitioned into 6 sub-
domains (figure 1). A Neumann BC is used on
the boundary of the disk, and the basic ABC is
prescribed on the exterior border. Simulations
are performed with P1 elements and a Galerkin
method adapted from [1] using GetDDM [4]. The
GMRES is used on the top of the procedure.

The convergence is faster when the HABC
transmission condition is used with the cross-
point treatment (figure 2). If the number of
auxiliary fields N is large enough, the number
of iteration does not vary when increasing the

Figure 1: Configuration and reference solution.

Figure 2: Number of iterations to reach relative
residual 10−6 vs wavenumber k (with nλ = 15)
and mesh density nλ (with k = 2π), without
(dot. lines) or with (cont. lines) c.-p. treatment.

frequency or the mesh density. The procedure
always converges towards the correct solution,
even without the treatment (results not shown).

Our approach can be used with other exte-
rior boundary conditions. In future works, we
will consider other physical waves and combina-
tion with preconditioning techniques.
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Abstract

In this talk I will try to analyze what can be ex-
pected from a Schwarz iteration using some sort
of Dirichlet to Neumann (DtN) operator to ex-
change information among sub-domains applied
to the Helmholtz equation on an unbounded do-
main with circular scatteres. For the analy-
sis ideas from multiple scattering are combined
with the non-overlapping Schwarz algorithm.
Keywords: domain decomposition, Helmholtz
equation, DtN operator

Introduction

Our model problem is the Helmholtz equation in
R2 with several circular non-intersecting holes
given by

∆vto(x) + ω2vto(x) = f for x ∈ Ω̃

∂νvto(x) = 0 for x ∈ Γ

+ boundary condition for |x| → ∞
(1)

where Ω̃ := R2\{∪Mj=1Brj (xj)} with Brj (xj),
j′1, . . . ,M pairwise disjoint discs of radius rj
and midpoint xj . By Γ := ∂Ω̃ we denote the
boundary of the discs.

The motivation behind this problem are pho-
tonic crystals. There the size of the compu-
tational domain is several wavelengths and the
typical structure size is below the wavelength.

Domain Decomposition

Restricting (1) to a bounded computational do-
main Ω, an artificial boundary Γext and an ex-
terior domain Ωext are introduced.

The solution uto, the total field, of equa-
tion (1) for an incoming wave uin is given by

∆uto + ω2uto = f in Ω ,

∂νuto = 0 on Γ ,

∂νuto = ∂νusc + ∂νuin on Γext .

(2)

The scattered field usc on the boundary is cal-
culated using the DtN map from

∂νusc = DtN(usc) on Γext, (3)

where the coupling of (2) and (3) is given by
usc = uto − uin. By definition of the DtN map
uto coincides with vto restricted to Ω. In total
we get

∆uto+ω
2uto = f in Ω

∂νuto = 0 on Γ ,

∂νuto = DtN(uto − uin) + ∂νuin on Γext.

(4)

The DtN operator for the scattered field on the
exterior boundary Γext of Ω is defined as the
operator that:

1. Solves Equation (1) on the exterior do-
main Ωext with given Dirichlet data on
Γext and Sommerfeld radiation condition.

2. Evaluates and returns the Neumann data
of the solution on Γext.

For the definition of the DtN operator we do not
require, that there are no “holes” in Ωext.

A wave from outside Ω is given by uin and
∂νuin on Γext. Equation (4) is the key to our
understanding of the domain decomposition al-
gorithm.

Let Ωm, m = 1, ..,M , form a decomposi-
tion of Ω into M non-overlapping sub-domains
with interfaces Σk,l = Σl,k := ∂Ωl ∩ ∂Ωk. Set
Σk,ext := ∂Ωk ∩ Γext and Σk,int := ∂Ωk ∩ Γint.
The out-going normal to Ωk is ν(k).

Starting with v−1+ j
M a full iteration of the

multiplicative Schwarz method is performed through
M fractional steps, where v

j
M is the solution of

the following problem

∆v
j
M + ω2v

j
M = f in Ωj ,

∂ν(j)v
j
M =





DtN(v
j
M − v k

M ) + ∂ν(j)v
k
M

on Σj,k for j < k,

DtN(v
j
M − v−1+ k

M ) + ∂ν(j)v
−1+ k

M

on Σj,k for j > k,

∂ν(j)v
j
M = 0 on Σj,int ,

∂νv
j
M = DtN(v

j
M − vin) + ∂νvin on Σj,ext .

(5)
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For the additive Schwarz method a similar it-
eration can be written down. In the above it-
erative method the DtN operator differs from
sub-domain to sub-domain, taking into account
the “holes” and sources in the respective exte-
rior domain. It seems hopeless to ever be able
to evaluate the DtN operator.
This leads to the notion of a pseudo Dirichlet
to Neumann operator, which does not take into
account “holes” and sources f in the exterior do-
main.

Definition 1 (pDtN Operator) The pseudo
DtN operator for the scattered field on the ex-
terior boundary Γext of Ω is defined as the oper-
ator that given Dirichlet data g:

1. Solves the exterior Helmholtz equation

∆w(x) + ω2w(x) = 0 for x ∈ R2\Ω
w = g on Γext

lim
|x|→∞

(∂νu− iku) = 0.

2. Evaluates and returns the Neumann data
of the solution on Γext.

In case Ω is a disk and ω is constant in the ex-
terior the pDtN operator can be written down
explicitly. For Ω a convex polygon and assum-
ing ω to be constant along rays in the exterior
the pDtN operator can be approximated using
the PML method or a non-reflecting boundary
condition such as the pole condition.

Multiple Scattering

Consider the simple situation of only two circu-
lar scatterers, i.e. Ω := R2\{BR1(p) ∪ BR2(q)}.
A separation in angular and radial variables with
respect to disc ` = 1, 2 gives the following rep-
resentation of u`, cf. [1].

u`(r`, φ`) =

∞∑

n=−∞
exp(inφ`)(b

(`)
n Hn(r`k)) (6)

whereHn(z) =: H
(1)
n (z) are the cylindrical Han-

kel functions. Denoting by Γ1 the boundary of
ball 1 and by Γ2 the boundary of ball 2 we have
the following system of equations

∂νu1|Γ1 = −∂νuin|Γ1 − ∂νu2|Γ1 ,

∂νu2|Γ2 = −∂νuin|Γ2 − ∂νu1|Γ2 ,

equivalently
[

Id ∂ν |Γ1A2

∂ν |Γ2A1 Id

] [
∂ν |Γ1u
∂ν |Γ2u

]
=

[
∂ν |Γ1uin
∂ν |Γ2uin

]
,

where A1 is the linear mapping that maps the
Neumann data on Γ1 to the solution defined in
R2\BR1(p). ∂ν |Γ2 denotes the restriction to Γ2

and evaluating the normal derivative there, sim-
ilar A2 is defined. Differentiating (6) one ob-
tains

∂ν|Γ`u`(R`, φ`) =

∞∑

n=−∞
einφ`b(`)n kH ′n(kR`).

Only 2N discrete points on each boundary are
taken into account corresponding to 2N Fourier
modes of the angular variable. The Fourier co-
efficients b(`)n of ∂νu` allow to evaluate ∂νu1 on
Γ2 resp. ∂νu2 on Γ1.

A lengthy calculation yields a formula for a
discretization of the operators ∂ν |ΓjAi.

This ansatz can be easily extended to N cir-
cular scatteres. And it is the basis to study
a Schwarz like iteration on a purely algebraic
level. In contrast to a standard domain decom-
position ansatz the information in this case is
not only passed between neighbouring domains
through a common interface.

In this talk a convergence result for the al-
gorithm sketched above and numerical experi-
ments will be presented.
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Abstract

Serial versions of the causal Spacetime Discon-
tinuous Galerkin (cSDG) method compete with
other methods running on multi-host platforms
for challenging wave problems with wide ranges
of length and time scales. This performance re-
flects the method’s asynchronous structure and
fine-grained adaptive meshing. However, an ef-
fective parallel–adaptive cSDG scheme using tra-
ditional domain decomposition has proven elu-
sive. Rebalancing decompositions introduces se-
vere synchronous barriers and is unable to keep
pace with dynamic cSDG adaptive meshing.

We use lazy mesh refinement to localize adap-
tive meshing and, in place of domain decomposi-
tion, and a probabilistic scheme for distributing
data and tasks continuously maintains load bal-
ance. We obtain a fully asynchronous, barrier-
free software architecture that delivers excellent
performance and scaling efficiency on multi-host
platforms. Earthquake simulations exemplify
the distributed cSDG implementation’s multi-
scale simulation capabilities.
Keywords: parallel, adaptive, spacetime, dis-
continuous Galerkin, earthquake

1 Introduction

The cSDGmethod depends on specialized space-
time finite element mesh generation. Figure 1
(left) shows a spacetime solution domain with
one spatial dimension. Arrows on cell A indi-
cate characteristic trajectories for waves travel-

x

t

2
111

3 33
22

A
B C

D

1E F

Figure 1: left: cSDG solution scheme in 1d ×
time; right: adapted causal mesh in 2d × time.

ling left and right. We impose a causality con-
straint on interior cell faces: they must be space-
like (closer to horizontal than the characteristic
trajectories). This ensures that the solution in
cell A depends only on solutions in cells B and
C. If the overall solution is cell-wise discontinu-
ous and the predecessor-cell solutions are avail-
able, the solution in cell A is fully determined
and can be solved locally. Level-1 cells on the
initial-time boundary can be solved in parallel
using only initial data and boundary data. Any
level-2 cell can be solved as soon as its level-1
predecessors have been solved, etc.

At any stage of the solution process, there
is a front mesh (shown in red in Fig. 1) below
which all cells have been solved. Each step in
the cSDG solution process involves advancing a
vertex to form a new cell, computing a local so-
lution on the new cell, and updating the front
mesh to its new configuration. We repeat this
process until the spacetime mesh fills the space-
time analysis domain.

Adaptive refinement of the front mesh in-
duces spacetime mesh refinement. If the solu-
tion on a larger cell constructed to the dashed
outline near cell D in Fig. 1 has excessive error,
we discard the larger cell, bisect its inflow (red)
faces to refine locally the front mesh, and restart
the cSDG meshing/solution process. This gen-
erates cell D which, due to the causality con-
straint, is refined in both space and time.

In practice, we use the Tent Pitcher algo-
rithm [1] to fill the region between the old and
new fronts with a small patch of simplex cells.
Inter-cell boundaries within the patch are not
necessarily causal, so the entire patch has to be
solved simultaneously. Fig. 1 (right) shows an
adaptively refined cSDG mesh at an intermedi-
ate stage of a 2d × time simulation of crack-tip
wave scattering in which high-resolution cSDG
adaptive meshing captures moving wavefronts
and quasi-singular crack-tip fields.
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2 Parallel–Adaptive Implementation

Figure 2 diagrams a previous parallel–adaptive
cSDG software architecture for a single multi-
core, shared-memory host with two hardware
threads per core. The front mesh and the Pitch-
able Vertex Queues (PVQs determine the patch-
building order) are the only global, shared data.
On each core i, one hardware thread handles
meshing while the other solves patches. Threads
run asynchronously and communicate exclusively
via queues. All meshing and solve operations
are embarrassingly parallel, with the exception
of operations that access the global data to build
and store front-mesh fragments called footprints.

In our new architecture, a templated dis-
tributed vector container class distributes front-
mesh and PVQ data across meshing threads on
multiple hosts. The distributed vector class han-
dles internally non-blocking MPI access com-
mands, recycling of storage freed by delete op-
erations, and a probabilistic load-balancing dis-
tribution scheme. Solve threads only access pri-
vate local data and are unchanged in the dis-
tributed architecture.

3 Simulation of Super-Shear Earthquake

Earthquake simulations present extreme com-
putational challenges due to the wide range of
scales — regional fault systems extend over thou-
sands of kilometers while rupture process zones
measure in hundreds of microns. State-of-the-
art earthquake simulations are unable to bridge
this range of scales, so it is common practice
to use much larger process zone sizes in numer-
ical models. For example, the Southern Cali-
fornia Earthquake Center (SCEC) TPV205-2D
benchmark problem uses a critical slip-weaking
distance, Dc, that is 104 times larger than is
physically reasonable.Software Architecture for Adaptive aSDG

meshing thread i solve thread iglobal data

SOLVE

• solve patch
• compute errors
• output solution

BUILD

• build footprint
• lazy cleanup
• build patch

STORE
• lazy refine

coarsen, etc
• update PVQs
• update front

front
data

PVQ 0

PVQ i

PVQ n

SOLVE QUEUE

STORE QUEUE

shared-memory or 
distributed storage

solution output
stream i

footprint/patch pair

Pitchable Vertex priority
Queue for core i

private/local storage and hardware threads
 on core i, for i    {0,1,2,…,n}∈

Figure 2: Parallel software architecture

Figure 3: Super-shear rupture for reduced dc in
SCEC TPV205-2D benchmark problem.

We combined adaptive cSDGmodels for elas-
todynamics, dynamic contact, and dynamic frac-
ture [2] with a slip-weakening friction model to
obtain a powerful new earthquake simulation
tool. When we modeled SCEC TPV205-2D as
specified, our cSDG solutions were in good agree-
ment with previous results where rupture-tip
speeds remained below the shear-wave speed.
Figure 3 shows the cSDG solution when we re-
duced Dc by a factor of 10. The left and right
Mach cones confirm the presence of super-shear
rupture speeds that approach the dilatational
wave speed.

4 Conclusions

The SCEC TPV205-2D results underline the im-
portance of resolving all relevant length and time
scales in science and engineering simulation. The
results shown here, obtained with a serial cSDG
code, demonstrate the power of adaptive cSDG
methods. Parallel–adaptive cSDG codes run-
ning on HPC platforms promise break-through
performance capable of solving problems with
realistic material-parameter values on regional-
scale fault systems. New results will demon-
strate the the distributed cSDG scheme’s per-
formance and scalability.
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Abstract

Asynchronous Spacetime Discontinuous Galerkin

(aSDG) methods use robust adaptive meshing
to construct unstructured grids on spacetime
analysis domains with no global time-step con-
straints. While traditional adaptive remeshing
is performed only once per N time steps, aSDG
solvers perform many thousands of adaptive op-
erations per layer of spacetime elements to cap-
ture fast-moving wavefronts and track rapidly-
evolving interfaces. We present applications in
dynamic fracture and electromagnetics to demon-
strate these capabilities.

Keywords: adaptive meshing, spacetime, dis-
continuous Galerkin, front capturing, interface
tracking, dynamic fracture, electromagnetics

1 Introduction

The Tent Pitcher algorithm [1] is the point of
departure for aSDG adaptive meshing. Tent
Pitcher advances a space-like front mesh with
non-uniform time coordinates by incrementing
the time coordinate of one vertex at a time. The
increment of time advancement is limited by a
causality constraint that ensures that the front
remains space-like. Tessellations of the space-
time volume between fronts de�ne patches of
spacetime elements on which local aSDG solu-
tions are computed. If the solution is successful,
the old front is discarded and the process repeats
on updated fronts until the spacetime analysis
domain is covered.

Adaptive re�nement is triggered whenever a
patch solution fails adaptive error criteria. In
that case, the adaptive meshing procedure dis-
cards the failed patch and the updated front,
locally re�nes the old front mesh, and resumes
the Tent Pitcher procedure. The result is new
patches that are simultaneously re�ned in space
and time. In addition to front re�nement, adap-
tive vertex-deletion, edge-�ip, and vertex-moving
operations are available.

Figure 1: Dynamic tensile fracture under in-
creasing load amplitudes.

2 Dynamic fracture: tracking interfaces

Simulation of dynamic fracture poses signi�cant
challenges: capturing fast-moving crack-tip �elds
and wavefronts as well as fracture nucleation,
extension, and coalescence � all while ensur-
ing that the physics model alone determines the
crack patterns. We combined aSDG adaptive
meshing capabilities with a stochastic fracture
nucleation model to meet these challenges.

Figure 1 shows crack patterns due to dy-
namic fracture in identical pre-cracked strips sub-
ject to increasing mode-I load amplitudes. For
the lowest loading (top), crack extension in nearly
a straight line is su�cient to absorb the applied
energy. As the loading increases (middle, bot-
tom), so do crack-path undulation, micro-crack
formation, and crack branching. The emergence
of these mechanisms are also observed experi-
mentally; they serve as means to dissipate ex-
cess input power.

Figure 2 compares predicted fracture pat-
terns for homogeneous and inhomogeneous frac-
ture strength. Crack nucleation is pervasive for
homogeneous fracture strength, as in Fig. 2(a).
A more realistic sparse nucleation pattern emerges
for inhomogeneous fracture strength in Figs. 2(b)
and 2(c) where only the weakest �aws trigger
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(a) Homogeneous strength. (b) Inhomogeneous strength (c) Inhomogeneous strength (mesh)

Figure 2: E�ects of inhomogeneous fracture strength on fragmentation patterns

failure.

3 Electromagnetics: capturing wavefronts

The two-dimensional
Transverse Magnetic

electromagnetic prob-
lem depicted at the
right involves an
inner square region
�lled with a low-
electric-permittivity
material (white) and
an outer region containing a second material
(purple) with 10 times higher electric permit-
tivity. A short-duration excitation within the
red square at the center of the domain gener-
ates a sharp wavefront that propagates to the
bi-material interface where it is re�ected and
transmitted into the outer region.

We compare non-adaptive and adaptive aSDG
simulations to demonstrate the �exibility and
e�ciency of asynchronous spacetime meshing.
The non-adaptive front is, at all times, an un-
structured mesh of 83071 triangles. The initial
front mesh for the adaptive simulation with just
46 triangles is shown in the �gure. We depend
on adaptive spacetime meshing to generate suf-
�cient re�nement to capture the initial pulse as
well as evolving patterns of sharp wavefronts
over the course of the simulation, as depicted by
the sequence in Fig. 3. The adaptive run gener-
ates 2.77 million patches over the course of the
simulation with a minimum element diameter of
9.77 × 10−4. This compares favorably with the
non-adaptive run's minimum element diameter,
0.0134, as well as 5.6 times more patches, 7.5
times higher computation time, and about dou-
ble the energy error of the adaptive simulation.

4 Conclusions

Adaptive aSDG methods support front captur-
ing and interface tracking in some of the most
challenging dynamic simulations. We will present
additional examples that showcase emerging parallel�
adaptive and 3d×time aSDG technologies.
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Figure 3: Time sequence; H3 mapped to color.
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Tent pitching and a Trefftz-DG method for the acoustic wave equation
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Abstract

We present a space-time Trefftz discontinuous
Galerkin method for the first-order transient
acoustic wave equation. The method uses dis-
continuous test and trial functions that enforce
properties of the wave equation. Optimal con-
vergence, in terms of mesh size, was proven by
A. Moiola, I. Perugia, (Numer. Math. 138,
2 (2018), 389-435), for arbitrary space dimen-
sions. The method was implemented in NG-
Solve, using a tent pitching algorithm to ad-
vance in time.
Keywords: Space-time finite elements, discon-
tinuous Galerkin, Trefftz functions, tent pitch-
ing

1 Introduction

Standard finite element methods approximate
the solution of a given partial differential equa-
tion (PDE) by piecewise polynomial functions.
Instead of following the classic approach, where
one uses finite element methods to discretize
space and then use time stepping schemes to
advance in time, we take a different approach,
using finite element approximation simultane-
ously in space and time. This requires to mesh
the full space-time domain and increases the di-
mension of the approximation space by the di-
mension of time. On the upside, hp-refinement
is made possible in space-time, and we are able
to use unstructured meshes.

The method we present combines a space-
time discontinuous Galerkin (DG) method with
the following two tools: tent pitched meshes
and Trefftz functions. Tent pitching techniques
give a possible way of generating a space-time
mesh, which complies with the causality proper-
ties of the hyperbolic PDE, allowing to solve the
PDE locally, circumventing the CFL-condition,
which usually limits the global time-step size by
the size of the smallest spatial element. Trefftz
methods allow to enforce properties of the PDE
in the test and trial spaces, resulting in smaller
approximation spaces, but preserving approxi-

mation properties.

2 The Trefftz-DG method for the acous-
tic wave equation

We consider the acoustic wave equation in first
order formulation, given by the initial boundary
value problem (IBVP)




∇ · σ + c−2 ∂v∂t = 0 in Q
∇v + ∂σ

∂t = 0 in Q
v(·, 0) = v0, σ(·, 0) = σ0 on Ω

v = gD on ΓD × [0, T ]

on the space-time domainQ = Ω×(0, T ), with Ω
a Lipschitz bounded domain in Rn. We assume
that the wavespeed c > 0 is piecewise constant
on Ω.

2.1 The space-time mesh

The mesh Th(Q) of the space-time domain Q is
assumed to consist of non-overlapping Lipschitz
polytopes. Either vertical faces or faces below
the characteristic speed are allowed, an exam-
ple and special notation for the faces is shown
in Figure 1. If only faces below the character-
istic speed are present, we call the mesh a tent
pitched mesh, which can be obtained algorith-
mically as shown in [2].
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Figure 1: A Cartesian product mesh on the bot-
tom and a tent pitched mesh on the top.
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2.2 The Trefftz spaces

The main property of Trefftz functions is that
they are in the kernel of the considered differ-
ential operator. For an element K ⊂ Rn+1 in
the mesh Th(Q), we define the local polynomial
Trefftz space as

Tp(K) :=
{

(w, τ ) ∈ Pp(K)n+1 :

∇ · τ + c−2 ∂w

∂t
= 0, ∇w +

∂τ

∂t
= 0

}
,

where we denote by Pp the space of polyno-
mials of degree ≤ p. The global Trefftz-DG
space on the whole mesh is then given by
Tp(Th) :=

∏
K∈Th T

p(K). A possible way to con-
struct a basis for the space is given in [1].

2.3 The method

The method is derived, as in [1], from the lo-
cal weak formulation of IBVP by integrating by
parts. Then the volume integrals over K van-
ish, since the test functions (w, τ ) ∈ Tp(K) are
Trefftz, and we get

∫

∂K

[
v̂hp
(
τ · nx

K + c−2wntK
)

+ σ̂hp ·
(
wnx

K + τntK
) ]

= 0.

The solution (v, τ ) in the boundary in-
tegral is replaced by the numerical fluxes
(v̂hp, σ̂hp) ∈ Tp(K). Suitably defining numeri-
cal fluxes for each face type and summing over
all elements in the mesh results in the following
method:

Find (vhp,σhp) ∈ Tp(Th) s.t.
A(vhp,σhp;w, τ ) = `(w, τ ), ∀(w, τ ) ∈ Tp(Th)

with

A(vhp,σhp;w, τ ) :=∫

Fspace
h

v−hp(c−2[[w]]t + [[τ ]]N ) + σ−hp · ([[τ ]]t + [[w]]N )

+

∫

FT
h

c−2vhpw + σhp · τ +

∫

FD
h

(σ · nΩ + αvhp)w

+

∫

Ftime
h

[
({{vhp}}+ β[[σhp]]N )[[τ ]]N

+ ({{σhp}}+ α[[vhp]]N ) · [[w]]N
]

`(w, τ ) :=

∫

F0
h

c−2v0w + σ · τ

+

∫

FD
h

g(αw − τ · nΩ),

where α, β ∈ L∞(F time
h ∪ FDh ) are parameters

penalizing the jump term. By w+ and w− we

denote the trace of the function w on space-like
faces from the adjacent element at higher and
lower times, respectively. We have used some
standard DG notation for

averages: {{τ}} :=
1

2
(τ |K1

+ τ |K2
)

jumps: [[τ ]]N := τ |K1
· nxK1

+ τ |K2
· nxK2

[[τ ]]t := τ |K1
ntK1

+ τ |K2
ntK2

,

between two elements K1,K2 ∈ Th(Q).
On a product mesh the method can be solved

sequentially on each time-slab, on each of which
the method is implicit. On a tent pitched mesh
it is semi-explicit, meaning that the solution on
each tent only depends on the tents below, al-
lowing to solve the tents sequentially, possibly
in parallel.

3 Numerical results

For this example we use tent pitching in 2 + 1
dimensions until T = 1 solving tents sequen-
tially. On the unit square initial and Dirichlet
boundary conditions are chosen, such that the
standing wave is the solution. The results of
this are shown in Figure 2. We see a conver-
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Figure 2: Tent pitching in (2+1)D, convergence
comparison to the maximum mesh size.

gence rate of O(hp+1), as the one we would ex-
pect from non-Trefftz polynomials of degree p in
space and time.
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Abstract

The presented Mapped Tent Pitching (MTP)
method is based on a tent pitching algorithm,
which partitions the spacetime domain into tent-
shaped regions that respect causality. Instead of
discretizing these tents in spacetime, we intro-
duce a transformation, which maps each tent
to a domain with tensor product structure of
the spatial domain with a time interval. Using
a discontinuous Galerkin method space, we ob-
served a convergence order reduction when using
standard explicit Runge-Kutta methods in time.
Therefore we present a Runge-Kutta type time-
stepping which overcomes this issue and can be
applied to non-linear hyperbolic systems.
Keywords: tent pitching, local time stepping,
non-linear hyperbolic systems

1 Introduction

In this work we consider hyperbolic systems,
which fit into the following generic description.
The integer L > 0 denotes the number of equa-
tions and N > 0 the spatial dimension. Further
we denote the spatial domain with Ω0 ⊂ RN and
the cylindrical spacetime domain with Ω = Ω0×
(0, tmax). With sufficiently smooth functions g :
Ω× RL → RL and f : Ω× RL → RL × RN , the
problem is to find a function u : Ω → RL such
that

∂tg(x, t, u) + divx f(x, t, u) = 0 (1)

is satisfied. We use the notation ∂t = ∂/∂t for
the temporal derivative and divx for the row-
wise divergence operator.

Based on an unstructured mesh T of the
spatial domain Ω0 a tent pitching algorithm is
used to generate a discretization of Ω. Details of
the tent pitching algorithm can be found in [1],
which is based on the ideas presented in [2]. The
main idea is that the time coordinates of the
vertices are consecutively incremented such that
the causality condition of the hyperbolic system
is respected. Thus the algorithm consecutively

creates advancing fronts and the spacetime re-
gion between the old and the new front is de-
noted as tent. These tent pitched meshes are
mostly used in combination with spacetime dis-
continuous Galerkin (SDG) methods as in [3].
In contrast to these methods we construct a fully
explicit method by mapping the tents to a ten-
sor product domain, such that space and time of
the local problems can be discretized separately.

2 Mapped Tent Pitching scheme

The tents can be easily characterized in the fol-
lowing way. For each vertex V we denote the
vertex patch by ωV . The functions ϕb and ϕt
describe the bottom and top advancing fronts
restricted to ωV . This allows us to define a tent

K := {(x, t) : x ∈ ωV , ϕb(x) ≤ t ≤ ϕt(x)}. (2)

To separate space and time for the local problem
on K, we introduce a transformation Φ : K̂ →
K, with K̂ := ωV × (0, 1). This transformation
is defined by Φ(x, t̂) := (x, ϕ(x, t̂)), where

ϕ(x, t̂) := (1− t̂)ϕb(x) + t̂ϕt(x). (3)

Further we rewrite (1) using the spacetime di-
vergence, which allows us to apply the Piola
transform. This then leads to the equivalent
system on K̂

∂t̂
(
g(x, t̂, û)− f(x, t̂, û)∇ϕ(t̂)

)

+ divx
(
δ(x)f(x, t̂, û)

)
= 0,

(4)

with û = u ◦ Φ and the height of the tent δ =
ϕt − ϕb.

Equation (4) is then discretized a using dis-
continuous Galerkin (DG) method with poly-
nomials of order p. Given that n ∈ N is the
dimension of the discrete space Vh restricted
to the vertex patch ωV , we are left to solve
the system of ordinary differential equations for
U : [0, 1]→ Rn such that

(
M(t̂)(U(t̂))

)′ −A(U(t̂)) = 0. (5)

The arising operators M(t̂)(·) and A(·) might
be non-linear, depending on the structure of the
considered problem (1).
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RK3 RK3type
h e eoc e eoc

2.50e-02 1.96·10−4 1.99 1.96·10−4 1.99
1.25e-02 3.55·10−5 2.46 3.56·10−5 2.46
6.25e-03 4.72·10−6 2.91 4.75·10−6 2.91
3.13e-03 6.26·10−7 2.92 6.15·10−7 2.95
1.56e-03 1.18·10−7 2.41 7.87·10−8 2.96
7.81e-04 4.47·10−8 1.40 9.91·10−9 2.99
3.91e-04 2.27·10−8 0.98 1.25·10−9 2.99
1.95e-04 1.09·10−8 1.06 1.57·10−10 3.00
9.77e-05 5.84·10−9 0.89 1.98·10−11 2.99

Table 1: L2(Ω0)-error and convergence rates of
the one-dimensional Burgers using a DG finite
element space with polynomial order p = 2.

3 Runge-Kutta type time-stepping

Defining the variable Y (t̂) := M(t̂)(U(t̂)), equa-
tion (5) reads

Y (t̂)′ −A(M(t̂)−1(U(t̂))) = 0. (6)

Applying a standard Runge-Kutta method to
(6) leads to a reduction of the spatial conver-
gence order and we obtain a method which con-
verges only linearly in h, where h denotes the
mesh size diam(T ).

This can be illustrated for the one-dimensional
Burgers equation

∂tu(x, t) + ∂xu(x, t)2 = 0, ∀(x, t) ∈ Ω, (7)

with initial values

u(x, 0) = exp
(
− 50

(
x− 1

2

)2)
, ∀x ∈ Ω0.

solved on Ω0 = [0, 1]. The final time tmax = 0.1
is chosen such that the exact solution is still
smooth. The boundaries are defined as inflow
boundary at x = 0 and outflow boundary at
x = 1. The results shown in Table 1 were calcu-
lated using the third order Heun method and
second order polynomials in space. The sec-
ond column contains the spatial L2-errors e :=
‖u− uh‖L2(Ω0) at t = tmax and the “experimen-
tal order of convergence” (eoc). We see the ex-
pected third order convergence for the first few
refinement levels before the rate drops to first
order.

The explicit time dependency of M(t̂) arises
from the definition (3) of ϕ. Since ϕ is affine in
t̂, we get M(t̂) = M0 − t̂M1 with the time inde-
pendent operators M0(·) and M1(·). Recalling

the definition of Y (t̂) and integrating (5) from
0 to t̂ gives

Y (t̂) = M0(U(t̂))− t̂M1(U(t̂))

= M0(U(0)) +

∫ t̂

0
A(U(s))ds.

(8)

For the additional variable Z(t̂) := M0(U(t̂))
equation (8) reads

Z(t̂) = Z(0) + t̂M̃1(Z(t̂)) +

∫ t̂

0
Ã(Z(s))ds, (9)

with M̃1 := M1 ◦ M−1
0 and Ã = A ◦ M−1

0 .
This allows us the define the following new time-
stepping method.

Definition 1 For a given explicit Runge-Kutta
method with s-stages and the Butcher tableau
(A, b), the explicit Runge-Kutta type method
is defined by

Zi = Z0 + t̂
∑

j<i

dijM̃1(Zj) + aijÃ(Zj), (10a)

for 1 ≤ i ≤ s and

Y1 = Y0 + t̂

s∑

i=1

biÃ(Zi), (10b)

with Y0 = Y (0) and Z0 = Z(0). The addi-
tional coefficients of this method are given by
a lower triangular matrix D ∈ Rs×s with the
entries (D)ij := dij.

Applying the Runge-Kutta type time-stepping
of order 3 to the previously discusses example
we now obtain optimal convergence order. The
third column of Table 1 contains the L2-errors
and the experimental convergence order.
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Abstract

We present a new Limiting Absorption Principle
for periodic Schrödinger operators −∆+V (x) as
well as its applications to nonlinear Helmholtz
equations. It is demonstrated how this result
depends on the shape of the associated Fermi
surfaces (also called isoenergetic surfaces).

Keywords: Limiting Absorption principles, Pe-
riodic Schrödinger operators, Nonlinear Helmholtz
Equations

1 Introduction

Standing wave ansatzes for wave equations in
periodic Kerr-type media lead to the study of
nonlinear Helmholtz equations of the form

−∆u+V (x)u−λu = Γ(x)|u|p−2u in Rn. (1)

Here, u describes the pro�le of the wave that
oscillates in time with frequency λ ∈ R. For
λ /∈ σ(−∆ + V (x)) variational techniques and
other tools may be employed to prove the ex-
istence of nontrivial localized solutions of this
equation. Typically, these solutions are smooth,
exponentially decaying and have at most �nitely
many zeros. Positive solutions are called ground
states. Our intention is to show that in the com-
plementary case λ ∈ σ(−∆ + V (x)) localized
solutions still exist even though most of the well-
established techniques for Nonlinear Schrödinger
equations break down due to the weak decay
rates and oscillatory behaviour of solutions at
in�nity. Ground states and other �nite energy
solutions do in general not exist in this case so
that di�erent analytical tools have to be devel-
oped. We provide here such a tool and discuss
its applications.

One possibility to tackle (1) is to use a dual
formulation based on a Limiting Absorption Prin-
ciple. This principle, explained in more detail
below, allows to �nd solutions u ∈ Lp(Rn) of (1)
by solving

u = Rλ(Γ|u|p−2u) + ϕ (2)

where −∆ϕ + V (x)ϕ − λϕ = 0 and Rλ is a
kind of right inverse of the Schrödinger opera-
tor −∆ + V (x) − λ. Following [1, 2, 4] the dual

equation (2) may be solved via �xed point or
variational techniques once the mapping proper-
ties of Rλ : Lp

′
(Rn) → Lp(Rn) are established.

In [3] this was for the �rst time achieved for
a class Schrödinger operators with nonconstant
periodic potential V .

2 The Limiting Absorption Principle

The Limiting Absorption Principle consists in
proving the well-de�nedness of the operator

Rλ := lim
ε→0+

Re
(
(−∆ + V (x)− λ− iε)−1

)
.

For applications to nonlinear problems such as
(2) the boundedness of Rλ between Lebesgue
spaces is required. In the special case of the
trivial potential V ≡ 0 Fourier analysis can be
used to prove the corresponding estimates and
thereby establish a Limiting Absorption Princi-
ple, see Theorem 6 in [2]. This technique does
not apply in the general periodic setting which
we are interested in, but Floquet-Bloch theory
may act as a substitute. Using the tools from
this theory and de�ning the notion of a �Fermi
surface� in an appropriate and physically rea-
sonable manner, we �nd the following su�cient
conditions for a good Limiting Absorption prin-
ciple for the operator −∆ + V (x):

(A1) V ∈ L∞(Rn) is Zn-periodic.

(A2) The Fermi surface of −∆ + V (x) at the
energy λ is smooth, regular, with positive
Guassian curvature.

(A3) The Floquet-Bloch eigenfunctions associ-
ated with −∆ + V (x) are pointwise equi-
bounded.

In Fig. 1 resp. Fig. 2 we depict numerically com-
puted Fermi surfaces for two di�erent potentials
and various values of λ. We can analytically
verify (A2) in two dimensions for separated po-
tentials V (x) = V1(x1)+V2(x2) that are close to
constants and low frequencies λ in the �rst band
of the spectrum σ(−∆+V (x)). The assumption
(A3) is less problematic.

Wednesday, 10:00, GM3 Vortmann, Building BA,



Wave Phenomena: Analysis and Numerics 275

Theorem 1 Assume (A1),(A2),(A3) as well as
2(n+1)
n−1 < p < 2n

n−2 . Then Rλ : Lp
′
(Rn) →

Lp(Rn) is well-de�ned and bounded.

Figure 1: V (x1, x2) = 0.2 sin(2πx1)
2 cos(2πx2)

Figure 2: V (x1, x2) = 10 sin(2πx1)
2 cos(2πx2)

3 Applications

As indicated above, Theorem 1 may be used to
�nd Lp(Rn)-solutions of (2) and hence of (1).
Following [2], one may use the Contraction Map-
ping Theorem to get small nontrivial solutions
of (1) that are parametrized by small Herglotz
waves ϕ as above.

Theorem 2 [4] Assume (A1),(A2),(A3) and

p > 2(n+1)
n−1 , Γ ∈ L∞(Rn). Then (2) admits a

continuum of small mutually di�erent solutions
in Lp(Rn).

For exponents bigger than 2n
n−2 a truncation

is used in the proof. In [1] Evequoz and Weth
demostrated in the special case V ≡ 0 how large
solutions may be constructed using dual vari-
ational methods and the Symmetric Mountain

Pass Theorem. We could partly adapt their ap-
proach to the periodic setting.

Theorem 3 [3] Assume (A1),(A2),(A3) and
2(n+1)
n−1 < p < 2n

n−2 and let Γ ∈ L∞(Rn) be posi-
tive and evanescent at in�nity. Then (2) admits
an unbounded sequence of solutions.
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Abstract

We look for ground states and bound states E :
R3 → R3 to the curl-curl problem

∇× (∇× E) = f(x,E), x ∈ R3, (1)

which originates from nonlinear Maxwell equa-
tions. The energy functional associated with
this problem is strongly indefinite due to the
infinite dimensional kernel of ∇× (∇× ·). The
growth of the nonlinearity f is controlled by an
N -function Φ : R→ [0,∞) such that lim

s→0
Φ(s)/s6

= lim
s→+∞

Φ(s)/s6 = 0. We prove the existence of
a ground state, i.e. a least energy nontrivial so-
lution, and the existence of infinitely many ge-
ometrically distinct bound states. Multiplicity
results for our problem have not been studied so
far in R3 and in order to do this we construct
a suitable critical point theory. It is applicable
to a wide class of strongly indefinite problems,
including this one and Schrödinger equations.
The talk is based on a joint work with Jacopo
Schino and Andrzej Szulkin [3].
Keywords: Time-harmonic Maxwell equations,
ground state, variational methods, strongly in-
definite functional, curl-curl problem

1 Main result

We look for weak solutions to the semilinear
curl-curl problem (1) originating from the Maxwell
equations, where Ē(x, t) = E(x) cos(ωt) is a
time-harmonic electric field in a nonlinear medium
and f(x,E) models a nonlinear polarization in
the medium. Ē(x, t) solves the so-called electro-
magnetic wave equation. Another motivation
has been provided by Benci and Fortunato [2]
who introduced a model for a unified field theory
for classical electrodynamics based on a semilin-
ear perturbation of the Maxwell equations in the
spirit of the Born-Infeld theory [1]. In the mag-
netostatic case in which the electric field vani-
shes and the magnetic field is independent of
time, this leads to an equation of the form (1)

with E replaced by A, the gauge potential re-
lated to the magnetic field.

The problem (1) has a variational structure
and the energy functional is given by

E(E) =
1

2

∫

R3

|∇ × E|2 dx−
∫

R3

F (x,E) dx

where f = ∂EF , and is unbounded from above
and from below and its critical points may have
infinite Morse index. For instance, this is the
case, if f(x,E) = Γ(x) min{|E|p−2, |E|q−2}E
with 2 < p < 6 < q, where Γ ∈ L∞(R3) is
Z3-periodic, positive and bounded away from
0. Here E is of class C1 on the Banach space
D(curl,Φ), see [3] for details.

Our principal aim is to prove the follow-
ing result under suitable growth conditions con-
trolled by Φ.

Theorem 1 (a) Equation (1) has a ground state
solution, i.e. there is a critical point E ∈ N of
E such that E(E) = infN E > 0, where

N = {E ∈ D(curl,Φ) : E 6= 0, E ′(E)[E] = 0,

and E ′(E)[∇ϕ] = 0 for any ϕ ∈ C∞0 (R3)}.

(b) If in addition F is even in u, there is an in-
finite sequence (En) ⊂ N of geometrically dis-
tinct solutions of (1), i.e. solutions such that
(Z3 ∗ En) ∩ (Z3 ∗ Em) = ∅ for n 6= m, where
Z3 ∗ En := {En(·+ y) : y ∈ Z3}.
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Abstract

A global bifurcation for the (stationary) nonlin-
ear Schrödinger equation originating from the
trivial solutions at a gap eigenvalue of the cor-
responding linearized operator is proved. These
problems originate inserting a standing wave
Ansatz in the time dependent Schrödinger equa-
tion. Aside from the existence of such stand-
ing waves for certain frequencies, we also obtain
some information about the topological struc-
ture of the connected component of the set of
solutions containing the bifurcation point.
Keywords: nonlinear Schrödinger equation, bi-
furcation

1 Introduction

We consider the equation

−∆u+ V (x)u− λu− g(x, u) = 0, (1)

where the functions V : RN → R and g : RN ×
R → R fulfill the following assumptions: Let
V ∈ L∞(RN ) be a potentialsuch that the spec-
trum σ(T ) of the corresponding linear selfad-
joint Schrödinger operator

T : L2(RN ) ⊃ D(T )→ L2(RN ),

Tu := −∆u+ V (x)u

admits

σ(T ) ∩ (−a, a) = {λ0, λ1, . . . , λm} ⊂ σp(T )

for some a > 0, where σp denotes the set of
eigenvalues of finite multiplicity. Such a spec-
tral pattern can occure considering periodic po-
tential with a relatively compact perturbation
or interface potentials consisting of a junction
of two periodic potentials at an interface. How-
ever, the approach presented here does not rely
on any structural properties aside from the spec-
tral pattern.

For the function g we assume all linear (in
u) parts of the equation already to be absorbed
in V sucht that T is the linearization of the
left hand side in u = 0. Hence, some minimal

growth condition in 0 is imposed. Moreover we
need some subcritical growth for large u as well
as some bounds for its derivative. Let s > 0 be
fixed, then it is assumed:

(G1) g ∈ C(RN ×R,R) and g(x, ·) ∈ C2(R) for
almost every x ∈ RN .

(G2) There is ε0, C > 0 and α < ε0·s
2 such that:

|g(x, v)| ≤ C〈x〉α|v|1+ε0

((x, v) ∈ RN × (−1, 1)).

(G3) ForN ≥ 4 there is C > 0, p0 ∈ (2, 2N
(N−4)+ )

and β < p0s
2 such that:

|g(x, v)| ≤ C〈x〉β|v|p0

((x, v) ∈ RN × R).

(G4) For N ≥ 4 there is C > 0,

q0 ∈ (2,min{ N

(N − 4)+
− 1,

4

(N − 4)+
})

and ϑ < q0s
2 such that:

|∂vg(x, v)| ≤ C〈x〉ϑ|v|q0 , ((x, v) ∈ RN×R).

(G5) There is γ > 2 such that

0 ≤ γ ·G(x, v) ≤ g(x, v) · v,

((x, v) ∈ RN × R), where G(x, ·) is a pri-
mitive of g(x, ·).

2 Results

The following theorem can be found in [2] Let

L2,s(RN ) = {u ∈ L2(RN ) : 〈x〉su ∈ L2(RN )}

and

H2,s(RN ) = {u ∈ H2(RN ) : 〈x〉su ∈ H2(RN )}

be the weighted Lebesgue and Sobolev space.
Moreover let S (s) be the set of nontrivial H2,s-
solutions to (1),i.e a pair

(λ, u) ∈ ((−a, a), H2,s(RN )) \ ((−a, a)× {0}).

The result reads as follows:
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Theorem 1 Let s0 > 0 small enough and λ0 ∈
(−a, a) be a gap eigenvalue of odd multiplicity
of T in L2(RN ). Let Cλ0(s) be the connected
component of S (s) containing (λ0, 0) . Then at
least one of the following statements holds true:

1. ∃s∗ ∈ (0, s0): Cλ0(s) is unbounded for all
s ∈ [s∗, s0).

2. ∃λ1 ∈ (−a, a) \ {λ0} and s∗ ∈ (0, s0) such
that (λ1, 0) ∈ Cλ0(s) for all s ∈ (0, s∗).

3. ∃s∗ ∈ (0, s0), such that for any s ∈ (0, s∗)
either for all λ ∈ (−bs, λ0] or for all λ ∈
[λ0, bs) there exists uλ ∈ H2,s(RN ) such
that (λ, uλ) ∈ Cλ0(s) for some bs → a as
s→ 0.

3 Outline of the proof

The result is based on the global bifurcation re-
sult of Rabinowitz in [1]. Formally, the problem
is reformulated into a fix point problem

−∆u+ V (x)u− λu− g(x, u) = 0

(−∆ + V (x) +W − λ)−1(g(x, u) +Wu) = u,
(2)

where W : L2(RN ) → L2(RN ) is a compact
operator to be chosen later. In order to make
it rigorous, we have to overcome two obstacles:
Firstly, the Rabinowitz result requires a com-
pact operator, which will be guaranteed by us-
ing weighted Sobolev spaces introduced above.
This way the compactness of the map

H2,s(RN )→ L2,s(RN ), u 7→ g(x, u)

under the assumptions (G1)-(G4) is shown.
In order to provide the invertibility of the

linear operator we introduce the perturbation
W , defined by W := M · Pu, where P de-
notes the projection on the common eigenspace
of {λ0, . . . , λm} and M is large enough. In this
way, W shifts the eigenvalues outside the gap
while preserving the essential part of the spec-
trum of T . This property is preserved using
weighted spaces provided that M > 0 is large
enough in relation to the weight. This prop-
erty furthermore relies on the eigenfunctions to
gap eigenvalues being exponentially decaying.
Moreover, we obtain a bound on the resolvent
(−∆ +V (x) +W −λ)−1 uniformly in s ∈ [0, s0]
for some s0 > 0 and λ ∈ [−b, b] ⊂ (−a, a).

Finally, assumption (G5) provides the dif-
ferentiability of the left hand side of (2). The

application of Rabinowitz’ theorem yields the
global bifurcation result firstly for fixed s > 0
and in an s-independent formulation stated in
Theorem 1
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Abstract

Wavepackets in the periodic Gross-Pitaevskii equa-
tion in arbitrary dimension are studied. For
asymptotically small wavepackets with N car-
rier Bloch waves a system of �rst order coupled
mode equations (CMEs) is justi�ed as the ef-
fective system. The CMEs are then shown to
possess standing solitary wave solutions bifur-
cating from spectral edges into a spectral gap.

Keywords: wavepacket, periodic medium, cou-
pled mode equations, solitary waves

1 Introduction

We consider small amplitude wavepackets in the
Gross-Pitaevskii equation in Rd

i∂tu+ ∆u− (V + εW )u− σ|u|2u = 0, (1)

x ∈ Rd, t ∈ R where V, σ ∈ C(Rd,R) are 2πZd−
periodic, ε > 0 is a small parameter, and

W (x) =

m∗∑

m=−m∗
ame

il(m)·x

is a real periodic function with l(m) ∈ Rd ∀m.
In contrast with the traditional asymptotic

ansatz with one carrier wave leading to the non-
linear Schrödinger equation [1,3] e�ective equa-
tion we study wavepackets with N carrier waves
(andN envelopes). In genral these carrier waves
have di�erent group velocities. The approxi-
mate ansatz is

uapp(x, t) := ε1/2
N∑

j=1

Aj(εx, εt)pj(x)ei(k(j)·x−ω0t)

where pj(x)ei(k(j)·x−ω0t), j = 1, . . . , N are the
carrier Bloch waves. A formal asymptotic cal-
culation shows that the envelopes (A1, . . . , AN )
have to satisfy the coupled mode equations (CMEs)

i(∂tAj + v(j)
g · ∇Aj) +

N∑

r=1

κjrAr +Nj( ~A) = 0,

(2)

j = 1, . . . , N, where for j, r ∈ {1, . . . , N}

Nj( ~A) :=
∑

(α,β,γ)∈{1,...,N}3
k(α)−k(β)+k(γ)∈k(j)+Zd

γ
(α,β,γ)
j AαAβAγ ,

γ
(α,β,γ)
j := −

∫

T
σ(x)pα(x)pβ(x)pγ(x)×

× pj(x)ei(k(α)−k(β)+k(γ)−k(j))·x dx,

κjr := −
∑

m∈{−m∗,...,m∗}
k(r)+l(m)∈k(j)+Zd

am

∫

T
ei(k(r)+l(m)−k(j))·x×

× pr(x)pj(x) dx,

and where T := Rd/(2πZd) is a d-dimensional
torus.

2 Justi�cation of the CMEs

It is essential to justify the above formal asymp-
totics, i.e. to prove that the ansatz uapp, with
suitable solutions ~A of (2), produces an approx-
imation of a solution u of (1) on time intervals
[0, O(ε−1)].

System (2) with κ = 0 (due to the choice
W ≡ 0) was considered and justi�ed in [2]. The
authors work in a scaled Hs-space. Because
of the loss of powers of ε when evaluating the
L2(Rd) norm of a function f(ε·), they are forced
to consider higher order terms in the asymp-
totics and to impose a certain closed mode sys-
tem condition. We work in an L1 space in the
Bloch variables avoiding the need for higher or-
der terms as well as the closed mode condition.

Our justi�cation result is [4]:

Theorem 1 Under non-resonance and smooth-

ness assumptions on the band structure of −∆+
V , assumptions on the smoothness of V and σ
and the assumption of Lipschitz continuity with

respect to k for the Bloch functions let ~A be a

solution of (2) with Âj ∈ C
(
[0, T0], L1

sA
(Rd)

∩L2(Rd)
)
, ∂T Âj ∈ C

(
[0, T0], L1(Rd)

)
for some

T0 > 0, all j = 1 . . . , N and some sA > 2dd2e+
d + 2. Then there are constants c > 0 and

ε0 > 0, such that if u(·, 0) = uapp(·, 0), then

Wednesday, 11:30, GM3 Vortmann, Building BA,



Wave Phenomena: Analysis and Numerics 281

for all ε ∈ (0, ε0) the solution u of (1) satis�es
u(x, t)→ 0 as |x| → ∞ and

‖u(·, t)− uapp(·, t)‖C0
b
≤ cε3/2 (3)

for all t ∈ [0, ε−1T0].

The proof is carried out in the Bloch variables
in L1(B, l2s/d) with s > d/2. The supremum
norm in physical variables is controlled by the
L1(B, l2s/d) norm in Bloch variables. The proof
is based on an improvement of the asymptotic
ansatz, an estimate of the residual and a Gron-
wall inequality argument.

3 Existence of Solitary Waves for CMEs

A natural question in nonlinear dispersive prob-
lem is the existence of localized solitary waves.
The shape of these solutions balances the dis-
persive and the nonlinear e�ects of the equation.
Solitary waves of the CMEs (2) produce approx-
imate solitary waves of (1) via Theorem 1. Lo-
calized solitary waves are most easily found in
spectral gaps. These are called gap solitons. In
the case d = 1 (and N = 2) the CMEs are
known to possess a family of explicit gap soli-
tons parametrized by velocity (for a special case
of γ). For d ≥ 2 spectral gaps in CMEs can ex-
ist only for even N . In the moving frame ansatz
~A = ~B(X − vT )e−iΩT in all studied examples
the problem for ~B lacks a spectral gap when
v 6= 0. We study standing gap solitons (v = 0)
with the asymptotic ansatz

~̂Bapp(k) = ε1−dĈ
(
k − k0

ε

)
~η(j0)(k0),

where ~η(j0)(k0) is an eigenvector corresponding
to the dispersion relation of the CMEs. The
scalar function C has to satisfy the e�ective non-
linear Schrödinger equation

ω1C +∇T (G0∇C) + Γ|C|2C = 0, (4)

where ω1, γ ∈ R and 2G0 ∈ Rd×d is the Hessian
of the dispersion relation at k0. We prove [5]:

Theorem 2 Choose ω0 ∈ {α, β}, where (α, β)
is a spectral gap for (2) and let the edge ω0 be

simple. Let ω1 ∈ R be such that sign(ω1) = 1 if

ω0 = α and sign(ω1) = −1 if ω0 = β. If C is a

PT -symmetric solution of (4) with Ĉ ∈ L1
4(Rd)

and the kernel of the Jacobian of (4) is three

dimensional, then there are constants c1, ε0 > 0

such that for each ε ∈ (0, ε0) there is a solution

e−iΩt ~B(X) of CMEs with Ω = ω0 + ε2ω1 which

satis�es ~̂B ∈ L1
2(Rd) and

‖ ~̂B − ~̂Bapp‖L1(Rd) ≤ c1ε
9/5.

We have found coe�cients κ ∈ R4×4 such that
the spectral conditions of Theorem 2 are sat-
is�ed. The proof of Theorem 2 is based on a
decomposition of the solution ~B and a nested
Banach �xed point argument .

Figure 1 (from [5]) shows the �rst compo-
nent of the approximation ~Bapp for a radially
symmetric solution of (4) and the correspond-
ing numerical solution B1.

Figure 1: Asymptotic approximation Bapp,1 and
the numerical solution B1 (real and imag. part)
at ε = 0.05.
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Abstract

For the 1+1-dimensional quasilinear wave equa-
tion

g(x)∂2t u− ∂2xu+ Γ(x)∂t((∂tu)3) = 0, (1)

with (x, t) ∈ R2, we prove the existence of a
breather solution, i.e., a solution which is local-
ized in space and periodic in time.
Here g ∈ L∞(R) is a periodic potential such that
0 lies in a spectral gap of the operators Lk =
− d2

dx2
−k2ω2g(x) on L2(R) for all k ∈ 2Z−1. A

typical example for g is a periodic step potential.
The main feature of the problem is the choice of
Γ(x) as a multiple of a delta-distribution located
at 0. Using a Fourier ansatz in time we obtain
the breather solution as a minimizer of a func-
tional on a suitable sequence space of Fourier
coefficients. The analytical results are comple-
mented by numerical simulations.
Keywords: calculus of variations, quasilinear
wave equation, breather

1 Physical Motivation

One way to deduce the quasilinear equation (1)
is the following: We consider a nonlinear Maxwell
model without charges and currents

∇ ·D = 0, ∇×E =− ∂tB,
∇ ·B = 0, ∇×H = ∂tD,

and with Kerr-type nonlinear material laws

B = µ0H, D = ε0(1 + χ1(x) + χ3(x) |E|2)E

to obtain the vector-valued equation

∇×∇×E + ∂2t

(
g(x)E + Γ(x) |E|2E

)
= 0.

Assuming that g and Γ only depend on x1, E =
(0, v(x1, t), 0) and writing x instead of x1 we get

g(x)∂2t v − ∂2xv + Γ(x)∂2t (v3) = 0.

Finally we write v = ∂tu and integrate once in t
to obtain (1), which has a variational structure.

2 Main Result

Our problem consists in finding requirements on
the potential g such that a spatially localized
and time-periodic solution u exists for (1).
After the explicit breather family for the sine-
Gordon equation was found, also non-existence
result for breathers for perturbed sine-Gordon
equations were discovered: the sine nonlinearity
is the only nonlinearity in the class of nonlineari-
ties f with f(0) = 0, f ′(0) 6= 0 close to sine such
that a breather exist, cf. [3] and [1]. Only few
other results on the existence of breathers are
know, e.g., cf. [2] for small breathers via bifurca-
tion methods and [5] for large breathers via vari-
ational calculus. These works considered semi-
linear equations. By using a multiple scale ap-
proximation ansatz the authors in [6] find strong
evidence, that coherent spatially localized solu-
tions of a quasilinear 1+1 dimensional Maxwell
model exist. Similar multiple scale ansatzes are
used in [7] to verify coherent multiscale struc-
tures arising from wave packet type initial con-
ditions in numerical simulations.
Our result for (1) reads as follows.

Theorem 1 For a, b > 0, a 6= b and Θ ∈ (0, 1)
let

g(x) :=




a, |x| < πΘ

b, πΘ < |x| < π

and extend g as a 2π-periodic function to R. As-
sume in addition

√
b

a

1−Θ

Θ
∈ 2Z + 1.

For every ω such that 2
√
aΘω − 1

2 ∈ N0 there
exists a nontrivial, real-valued, spatially localized
and time-periodic weak solution u of (1) with
period T = 2π

ω . Furthermore there are constants
C, ρ > 0 such that |u(x, t)| ≤ Ce−ρ|x|.

3 Outline of the Ideas

Solutions are obtained by finding critical points
of an energy functional whose Euler-Lagrange-
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equation is (1). We write TT for the 1-dim torus
of period T .

Definition 2 A function u ∈ H1(R× TT ) with
∂tu(0, ·) ∈ L3(0, T ) is called a weak solution of
(1), if for every ϕ ∈ C∞c (R× TT )

∫

R×TT
−g(x)∂tu ∂tϕ+ ∂xu ∂xϕd(x, t)

− γ
∫

TT
(∂tu(0, t))3∂tϕ(0, t) dt = 0.

If we assume that u is even in x, we can formally
rewrite (1) as a wave equation on the half-axis
with nonlinear Neumann boundary conditions:
{
g(x)utt − uxx = 0,

2ux(0+, t) = γ
(
ut(0, t)

3
)
t

for x ∈ (0,∞)
t ∈ R

We choose the following ansatz

u(x, t) =
∑

k∈Zodd

ẑk
k

Φk(|x|)
1√
T

eikωt (2)

with unknowns ẑk ∈ C, were Φk is the expo-
nentially decaying Bloch-mode of Lk = − d2

dx2
−

k2ω2g(x). Here a function Φk : R→ R is called
a Bloch mode, if it solves LkΦk = 0 and Φk(·+
2π) = ρkΦk(·) for some ρk ∈ C, cf. [4]. The
formal energy functional

I(u) =

∫

R×TT
−g(x) |∂tu|2 + |∂xu|2

− 1

2
Γ(x) |∂tu|4 d(x, t)

then (up to constants) becomes

J(ẑ) =
1

4
(ẑ ∗ ẑ ∗ ẑ ∗ ẑ)0 +

1

γω4

∑

k

Φ′k(0)

k2
|ẑk|2

for sequences ẑ = (ẑk)k, where ∗ denotes convo-
lution. Theorem 1 follows by minimizing J on
a suitable Banachspace of sequences. We then
show that the reconstruction of u by (2) yields
a solution of (1) in the sense of Definition 2.

4 Numerical Results

We implemented numerical steepest decent meth-
ods to construct approximate minimizers of J
in suitable l-dimensional subspaces. We also
prove analytically, that minimizers in such l-
dimensional subspaces converge towards a global
minimizer of J as l→∞.

5 Further Analytical Results

By exploiting the Euler-Lagrange equation for
J we prove additional regularity for solutions u,
in particular we obtain u ∈ H1+ν(TT , L2(R)) ∩
Hν(TT , H1(R)) for any ν ∈ (0, 14).
Furthermore we prove the existence of count-
ably many solutions of (1) on different energy
levels.
Moreover we have formulated abstract condi-
tions on the Bloch modes Φk, such that the
minimization procedure of J , the reconstruction
procedure of u and the additional smoothness of
u can be performed.
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Abstract

We provide a rigorous proof for the existence of
breather solutions for nonlinear Klein-Gordon
equations on periodic metric necklace graphs
with Kirchhoff boundary conditions. The proof
relies on a spatial dynamics approach combined
with center manifold reduction. It requires a
careful control of the Floquet Bloch spectrum of
the underlying linearized differential operators.
Keywords: nonlinear Klein Gordon equation,
breathers, spatial dynamics, center manifold re-
duction

1 Introduction

1.1 Quantum graphs
Applications of periodic graphs
arise in many fields of science,
for instance as models for com-
plex physical structures such as
photonic crystals, nano-tubes
or graphene.

What is meant by posing differential equations
on metric graphs?

Figure 1: Geometry of the metric necklace
graph. We assign length π to each edge.

The differential operator acts on functions
defined on the edges together with appropriate
boundary conditions. For instance, the Lapla-
cian becomes self-adjoint by imposing Kirchhoff
boundary conditions (continuity and conserva-
tion of the flows).

1.2 The problem

We are interested in real-valued, time-
periodic and spatially structures in nonlinear
Klein Gordon equations on periodic necklace
graphs. From a mathematical point of view,

the existence of these so called breather solu-
tions for PDEs is very rare. In the spatially ho-
mogeneous situation, a nonlinear wave equation
known to admit small-amplitude breather solu-
tions of pulse form is the Sine-Gordon equation.
These solutions do not persist under analytic
perturbations. However, the situation is dif-
ferent if one introduces spatial inhomogeneities
and breather solutions are back.

Our approach is motivated by the existence
result of small-amplitude breathers of Blank,
Chirilus-Bruckner, Lescarret, and Schneider [1].

2 Existence of breather solutions
Theorem 1 Let k be an odd integer. For suf-
ficiently small ε > 0, the cubic Klein-Gordon
equation

∂2t u(x, t) = ∂2xu(x, t)−
(
k2

4
+ ε

)
u(x, t) + u(x, t)3

with Kirchhoff boundary conditions at the ver-
tices possesses breather solutions of amplitude
O(√ε) and frequency ω = k/2. These solutions
are symmetric in the upper and lower semicir-
cle.
Precisely, there exist functions u : R × R → R
satisfying

• u(x, t) = u(x, t+ 4π
k ), for all t, x ∈ R,

• lim|x|→∞u(x, t)eβ|x| = 0, for all t ∈ R and
a constant β > 0.

By construction we get polychromatic, long-
wave breathers.

3 Method of proof

Using a Fourier series expansion with respect to
time

u(t, x) =
∑

m∈Nodd

um(x)cos(mωt),

the original problem transforms into countably
many coupled second order ordinary differential
equations
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−m2ω2um = ∂2
xum − (α+ ε2)um

+ (u ∗ u ∗ u)m,
(1)

for the Fourier coefficients with m ∈ Nodd and
new dynamic variable x (spatial dynamics for-
mulation). The cubic nonlinearity transforms
into a discrete convolution term. Since we are
interested in spatially localized solutions, i.e.,

lim|x|→∞u(t, x) = 0, t ∈ R,

we construct a homoclinic orbit to zero in the
phase space of the infinite dimensional system
above. The key idea is to perform a center man-
ifold reduction in order to reduce (1) to a finite
dimensional system. However, because of the
Kirchhoff boundary conditions, the system is
non-autonomous and the first derivatives of the
solutions have jumps and the flow on the center
manifold is no longer continuous. Therefore, we
apply a discrete version of the center manifold
theorem to the family of time-P -maps.
To do so, we require a careful control of the
Floquet Bloch spectrum of the underlying lin-
earized differential operators.

Floquet-characterization of the spectrum:
LetM(λ) denote the monodromy matrix of sys-
tem (1), which is the canonical fundamental ma-
trix evaluated after one period. Then,

λ ∈ σac(−∂2
x|Γ) ⇔ |tr(M(λ))| ≤ 2.

Discrete center manifold reduction: There
exists an invariant manifold with same dimen-
sion as the center subspace and dynamics of
small solutions are determined on this center
manifold.

 Key relation and choice of breather fre-
quency:

1. |trM(m2ω2 − α)| ≤ 2 ⇔ Eigenvalues of
M(m2ω2 − α) on unit circle,

2. #{Eigenvalues of M(m2ω2 − α) on unit
circle} = dimension of center manifold.

We choose constants ω = k/2, α = ω2 with
k ∈ Nodd such that |trM(ω2 − α)| = 2 and
|trM(m2ω2−α)| > 2 for all odd integers m ≥ 3,
cf. Figure 2.

Figure 2: Band-gap structure of the spectrum
and odd multiples of ω (vertical lines)

Analysis of the reduced system: The low-
est order approximation of the dynamics on the
center manifold is given by the ODE for u1 with
um = 0 for all m ≥ 3:

∂2
xu1(x) = εu1(x)− u3

1(x).

The existence of a homoclinic to zero of this
ODE was proved in [2].
The persistence of homoclinics under higher or-
der perturbations is obtained by symmetry and
reversibility arguments, cf. Figure 3.

Figure 3: Transversal intersection

Remark: This work is part of my PhD-Thesis
supervised by Guido Schneider and will be pub-
lished soon.
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Abstract

We construct time-periodic “polychromatic” so-
lutions of a cubic wave equation set on the full
three-dimensional space. Our solutions are lo-
calized and radially symmetric in the space vari-
able. This is achieved by reduction to an infi-
nite system of stationary Helmholtz-type wave
equations, which can be solved using bifurcation
theory. The key element is a detailed analysis
of the oscillatory behavior of the components
in the far field, which will give rise to infinitely
many distinct families of time-dependent solu-
tions of the original wave equation bifurcating
from any time-independent solution.
Keywords: Nonlinear wave equation, Nonlin-
ear Helmholtz system, Bifurcation.

1 Introduction

There have been recent advances in construct-
ing time-periodic, spatially localized and real-
valued solutions U = U(t, x) of wave equations

V (x)∂2t U − ∂2xU + q(x)U = Γ(x)U3 on R× R

with periodic V (x) ≥ 0, q(x) = c · V (x) ≥ 0,
Γ(x). The first construction of such kind in [1]
has been done for a very specific choice of the
periodic coefficient functions; it relies on spatial
dynamics and center manifold reduction. The
approach in [2] incorporates more general po-
tentials and nonlinearities and is based on vari-
ational techniques. Both articles use a polychro-
matic ansatz of the form

U(t, x) =
∑

k

uk(x)eikωt (t, x ∈ R),

which reduces the time-dependent equation to
an infinite set of stationary problems with pe-
riodic coefficients. Floquet-Bloch theory then
provides the required spectral properties of the
associated differential operators, in particular
the occurrence of spectral gaps. It is required
that 0 lies in such spectral gaps, and moreover
that the distance between 0 and the spectra has
a positive lower bound. This is realized by as-
suming a certain “roughness” of the potentials.

We present an entirely different approach,
which yields time-periodic, spatially localized,
real-valued solutions of the cubic wave equation

∂2t U −∆U − U = U3 on R× R3 (1)

in three space dimensions, but assuming radial
symmetry. Our solutions also have the form

U(t, x) =
∑

k∈Z
uk(x)eikt (t ∈ R, x ∈ R3) (2)

where the coefficients uk, k ∈ Z, are chosen as
radially symmetric solutions of an infinite sys-
tem of nonlinear Helmholtz equations similar
to [4]. Concerning mathematical methods, the
fundamental difference is that this construction
does not require conditions ensuring the exis-
tence of spectral gaps of sufficient size; on the
contrary, Helmholtz methods allow to work in-
side the essential spectrum.

2 The main result

Let us consider some radially symmetric solu-
tion of the stationary equation

−∆w0 − w0 = w3
0 on R3. (3)

For the existence, see [3]; it is shown there in
particular that w ∈ C2

loc(R3) ∩X where we let

X :=
{
u ∈ Crad(R3,R) | ‖(1 + | · |)u‖∞ <∞

}
.

Then, the following Theorem holds:

Theorem 1 There exist an open interval I ⊆
R containing 0 and a continuum (U (α))α∈I in
C(R, X) of twice differentiable, classical solu-
tions of the wave equation (1) of the form

U (α)(t, x) =
∑

k∈Z
u
(α)
k (x) eikt

with U (0)(t, x) = w0(x) and U (α) nonstationary
for α 6= 0.

Theorem 1 is proved via bifurcation from a
simple eigenvalue. We will put special emphasis
on the verification of simplicity, which will be
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achieved by fixing suitable parameters govern-
ing the asymptotic behavior of the components
u
(α)
k (x) as |x| → ∞. It will be demonstrated

that such a freedom of choice is a particular fea-
ture of the nonlinear Helmholtz equations gov-
erning u(α)k . In particular, the bifurcation pa-
rameter we introduce only affects the asymp-
totic behavior and hence does not appear in the
wave equation (1).

We add some remarks.

(a) For every ν ∈ N, the proof yields solutions
with d

dα

∣∣
α=0

U (α)(t, x) = ũ(x) cos(νt).

(b) Generalizations: Pass from (1) to

∂2t U −∆U − ξU = Γ(x)U3 (1’)

where ξ ∈ R \ {0} and Γ(x) is radially
symmetric, C1 and bounded with Γ 6= 0
almost everywhere.

(c) Still open: Extension to non-constant pe-
riodic potentials q(x). This requires, most
of all, extensions of the linear theory.

3 Methods

We give a sketch of the main steps and tools.

. Step 1: Infinite Helmholtz system.
Insert (2) into (1) (with u−k = uk):

−∆uk − (k2 + 1)uk = tk(u) (4a)

where tk(u) =
∑

l+m+n=k ul um un.

. Step 2: Limiting Absorption Principle.
LAPs provide resolvent-type operators for
Helmholtz equations. By [4], we pass to

uk = Rτk
k2+1

[tk(u)] (4b)

for suitable τk ∈ [0, π) and with a convolu-
tion operator Rτk

k2+1
: X → X. Then (4b)

implies (4a) with, as |x| → ∞,

uk(x) ∼ sin(|x|
√
k2 + 1 + τk)

4π|x|
+O(|x|−2).

(4c)

The bifurcation parameter λ is included
by replacing τν with τν − λ.

. Step 3: Solving the system (4b) by means
of the Crandall-Rabinowitz Theorem.

Most importantly, this requires that the
linearization of (4b) close to (uk)k∈Z ≈
(..., 0, w0, 0, ...) has a simple kernel. Mo-
tivated by (4b), every element (qk)k∈Z of
that kernel satisfies

qk = 3Rτk
k2+1

[w2
0 qk]. (4d)

As in (4a), (4c) this yields a differential
equation with an asymptotic condition.

Following [4], there is a unique τk ∈ [0, π)
such that (4d) has a radial nonzero solu-
tion. We choose this value only for k = ν,
cf. Remark (a).

. Step 4: Regularity estimates complete the
proof.
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Abstract

In this talk, we review recent results on singu-
larity formation for the focusing semilinear wave
equation. In particular, we discuss the existence
of non-trivial self-similar blowup solutions and
their role in the time evolution of generic initial
data.

Introduction

We consider the focusing wave equation

(∂2t −∆)u = |u|p−1u, p > 1 (1)

for u : (t, x) ∈ I × Rd → R, I ⊂ R, 0 ∈ I
and d ≥ 3. In the past years this model has
been studied extensively as a natural toy model
for more involved problems. Despite the sim-
ple form of Eq. (1), its solutions exhibit rather
complex dynamics, depending of course on the
space dimension and the strength of the nonlin-
earity. It is well-known that Eq. (1) has solu-
tions that blow up in finite time for all p > 1
and d ≥ 1. In view of the scale invariance
uλ(t, x) = λ

2
p−1u(λt, λx) one can look for self-

similar blowup solutions

u(t, x) = (T − t)−
2
p−1 f( x

T−t), T > 0.

A trivial example is given by the ODE blowup
profile f0 = cp, where cp > 0 is a constant de-
pending on p. Apart from this, infinitely many
smooth, non-trivial radial profiles {fn}n∈N are
known to exist at least for d = 3 and each odd
p ≥ 7, see [2]. The trivial ground state f0 and
the excited profile f1 seem to play a special role
in the generic time evolution. In fact, numer-
ical experiments performed in [1] suggest the
following picture: For small initial data, solu-
tions disperse as t→∞. For large generic data,
solutions blowup in finite time T <∞ in a self-
similar manner and approach f0 locally around
the blowup point as t → T−. For data fine-
tuned to the threshold between blowup and dis-
persion, f1 is approached for some intermediate
period before one of the two scenarios occurs
eventually.

Analysis of self-similar blowup solutions

We are far from understanding this picture from
a rigorous point of view. However, in the re-
cent years, the nonlinear asymptotic stability of
the ODE blowup has been established in vari-
ous works covering basically all p > 1 and all
(odd) space dimensions, see e.g. [3] and the ref-
erences therein. Little is known about the sta-
bility properties of non-trivial self-similar pro-
files. One difficulty is that so far such solutions
were not known in closed form. In [4] we gave
the first example of an explicit non-trivial self-
similar profile f∗ for the cubic wave equation
in d ≥ 5 and analyzed its stability properties.
In d = 5, we proved that the corresponding
blowup solution is codimension one stable in a
local sense (i.e., in a backward lightcone). In
this talk, we review these results and discuss the
role of f∗ as a threshold for blowup. We address
generalizations to higher space dimensions and
report on new findings for other nonlinearities.
Keywords: Nonlinear wave equations, finite-
time blowup, self-similar, stability
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Time integration and regularity theory of Maxwell equations in heterogeneous media
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Abstract

We consider linear isotropic Maxwell equations
on a cuboid consisting of two different media.
To account for sharp material interfaces, the
material parameters are allowed to have discon-
tinuities at an interface. We first focus on the
smoothness of the associated solutions and give
a result stating piecewise regularity of second
order up to the boundary.

The second part deals with ADI schemes for
the time integration of linear Maxwell equations
on cuboids. These are attractive since they have
only linear complexity and are still uncondition-
ally stable. Based on our regularity results for
the continuous system, we establish a rigorous
error bound in the abstract time-discrete set-
ting, requiring only regularity of the initial data.
Keywords: Regularity theory, heteroge-
neous media, Maxwell equations, time in-
tegration

1 Introduction

Maxwell equations belong to the most impor-
tant PDEs in physics and describe the propa-
gation of electromagnetic waves in matter. We
treat the homogeneous, linear, and isotropic case

∂tE = 1
ε curlH Q× [0,∞), (1a)

∂tH = − 1
µ curlE Q× [0,∞), (1b)

div(εE) = div(µH) = 0 Q× [0,∞), (1c)
εE× ν = 0, µH · ν = 0 ∂Q× [0,∞), (1d)
E(0) = E0, H(0) = H0 Q, (1e)

on a cuboid Q ⊂ R3 with perfectly conduct-
ing boundary. The fields E = E(x, t),H =
H(x, t) ∈ R3 are the electric and magnetic field.
The functions ε, µ : Q→ (0,∞) further describe
the electric permittivity, and the magnetic per-
meability, respectively. Finally, ν ∈ R3 is the
outer unit normal vector at the boundary ∂Q.

If the functions ε and µ are sufficiently reg-
ular and strictly positive, system (1a)-(1e) has
a unique classical solution (E,H) belonging to
C([0,∞), H2(Q)6)∩C1([0,∞), L2(Q)6), for ap-
propriate initial data (E0,H0), see e.g. [4].

We however want to treat here heterogeneous
media to cover a broader range of applications.
In our model, the cuboid Q is divided into two
smaller cuboids Q1 and Q2 and their common
interface is denoted by Fint. On both subcuboids,
the functions ε and µ are supposed to be con-
stant, expressing piecewise homogeneous media.
At the interface however, both coefficients are
allowed to have discontinuities.

In this setting arise two issues. First, the
regularity of solutions to the system (1a)-(1e)
is treated. Second, we aim at a rigorous error
result for the Peaceman-Rachford ADI scheme
integrating the Maxwell system in time. So far,
an error analysis seems to be missing in the case
of piecewise regular coefficients.

2 Regularity analysis

We write w = (E,H) and interpret system (1a)-
(1e) as an evolution equation

∂tw =Mw, t ≥ 0, (2)
w(0) = w0,

employing the Maxwell operator

M

(
E
H

)
=

( 1
ε curlH
− 1
µ curlE

)

on its domain

D(M)

:= {(E,H) ∈ L2(Q)6| curlE, curlH ∈ L2(Q)3,

div(εE) = div(µH) = 0,

E,H satisfy (1d)}.

For the wellposedness of system (2) and the
regularity of its solutions, we obtain the fol-
lowing result. Note that a function is called
piecewise regular here if its restrictions to both
cuboids Q1 and Q2 are regular.

Theorem 1 The domain D(M2) embeds con-
tinuously into PH2(Q)6, the space of piecewise
H2-regular functions. Moreover, the Cauchy prob-
lem (2) has a unique classical solution w belong-
ing to C1([0,∞), L2(Q)6)∩C([0,∞), PH2(Q)6)
for all initial data w0 ∈ D(M2).
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The first step of the proof is concerned with
piecewise first order regularity for solutions of
(2), arguing in parts similar to [1]. Then, a de-
tailed regularity analysis for transmission prob-
lems involving interpolation theory follows. Sim-
ilar techniques are applied in [3] and [4] for the
case of ε and µ regular on Q. Note however
that the regularity of solutions to (2) on general
Lipschitz domains can be far below H2, see [2].

3 ADI schemes

The main idea of alternating direction implicit
(ADI) schemes is to split the Maxwell system
(1a)-(1e) into two smaller problems that are solved
separately. In both subproblems, the space deriva-
tives decouple and one solves essentially one-
dimensional elliptic problems implicitly, lead-
ing to linear complexity of the scheme, see [5]
and [6].

In the current framework, the Maxwell op-
erator M is splitted into two operators

M =

(
0 1

εC1
1
µC2 0

)
+

(
0 −1

εC2

− 1
µC1 0

)
=: A+B

employing

C1 :=




0 0 ∂2
∂3 0 0
0 ∂1 0


 and C2 :=




0 ∂3 0
0 0 ∂1
∂2 0 0


 .

The Peaceman-Rachford ADI scheme for (1a)-
(1e) then approximates the exact solution at
time tn = nτ by

wn =(I − τ
2B)−1(I + τ

2A)(I − τ
2A)

−1

· (I + τ
2B)wn−1, (3)

where w0 = w0 and τ > 0 is the chosen time
step size, see [6].

While it is known that (3) is second order
accurate when the material parameters ε and µ
are sufficiently regular, see [4], a rigorous error
bound for piecewise regular coefficients seems
not to be known. In fact, experiments in [4] in-
dicate that (3) suffers from a loss of convergence
order in case of discontinuous ε and µ.

By means of Theorem 1, we can show the fol-
lowing rigorous error result in the time-discrete
setting. We stress that it only requires regu-
larity of the initial data. Note moreover that
‖·‖D(M3) denotes the graph norm of M3 with
respect to ‖·‖L2(Q) and that D(M3) contains
PH3(Q)6 with appropriate boundary, transmis-
sion and divergence conditions.

Theorem 2 Let T > 0. There are uniform
constants C, τ0 > 0 such that the error estimate

‖wn − w(nτ)‖L2(Q) ≤ CTτ3/2‖w(0)‖D(M3)

is true for the iterates wn of (3) for all initial
data w0 = w(0) ∈ D(M3), τ ∈ (0, τ0) and n ∈ N
with nτ ≤ T . The constants C and τ0 depend
only on ε, µ and Q.

Our error analysis in parts transfers argu-
ments from [4] for the case of regular ε and µ.

4 Extensions

We are currently investigating a generalization
to include charges, currents and conductivity.
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Abstract

In this paper we present and analyze a full dis-
cretization of semilinear acoustic wave equations
with dynamic boundary conditions. Dynamic
boundary conditions do not neglect the momen-
tum of the wave on the boundary and are typi-
cally posed on domains with (piecewise) smooth,
curved boundaries. Hence, numerical schemes
have to approximate the domain which leads
to non-conforming approximations. This makes
the error analysis much more involved. We pre-
sent a framework that can be used to analyze
non-conforming space- and time discretizations
of such problems. Using this we derive an a-
priori error estimate for a discretization with an
efficient implicit-explicit scheme in time and fi-
nite elements in space. To our knowledge this is
the first full discretization error result for non-
linear wave equations with dynamic boundary
conditions.
Keywords: dynamic boundary conditions, er-
ror analysis, wave-type equation, finite element
method, time integration

Introduction

In this paper we consider the following semilin-
ear wave equation with kinetic boundary condi-
tions

utt + αΩut − cΩ∆u = |u|2, in Ω,

µutt + cΩ∂nu− cΓ∆Γu = |u|3, on Γ,

u(0, ·) = u0, ut(0, ·) = v0, in Ω

(1)

as a guiding example. Here, Ω is a domain with
Ck boundary Γ, k ≥ 2 and ∆Γ denotes the
Laplace-Beltrami operator. The wellposedness
of generalizations of this equation is analyzed
in [4].

We will use equation (1) to demonstrate the
difficulties that occur in the construction and er-
ror analysis of numerical methods for such prob-
lems and how to deal with them.

Non-conformal space discretization

The weak formulation of (1) is given by

m(u′′, v) + b(u′, v) + a(u, v) = m
(
f(u), v

)
(2)

for all v ∈ V in the Hilbert space

V = {v ∈ H1(Ω) | γ(v) ∈H1(Γ)}
dense
↪→ H = L2(Ω)× L2(Γ),

where γ denotes the trace operator.
The bilinear forms a, b, and m contain inte-

grals over Ω as well as over Γ due to the dynamic
boundary condition. We have, e.g.,

m(u, v) =

∫

Ω
u(x)v(x) dx+ µ

∫

Γ
u(x)v(x) ds.

To discretize (1) in space, we use the bulk-
surface finite element method presented in [1].
For problems with dynamics boundary condi-
tions, such discretizations have been considered
in [2] for the linear and in [3] for the semilinear
case.

Let Vh be the isoparametric finite element
space of degree p ≤ k with mesh width h and
let Ωh ≈ Ω be the discretized domain. Then,
the finite element discretization is then given by

mh(u′′h, vh) + bh(u′h, vh) + ah(uh, vh)

=mh

(
fh(uh), vh

)

for all vh ∈ Vh. The discrete bilinear forms are
obtained from the continuous ones by adjusting
the domains in the integrals, e.g.,

mh(uh, vh) =

∫

Ωh

uh(x)vh(x) dx

+ µ

∫

Γh

uh(x)vh(x) ds.

In general, this leads to non-conformal discretiza-
tions since due to the smooth boundary we have
Vh * V and thus m 6= mh, a 6= ah, and b 6= bh.
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Time integration

For the time integration we rewrite the spatially
discretized equation as evolution equation in Vh:

u′′h +Bhu
′ +Ahu = fh(uh).

We propose the following implicit-explicit (IMEX)
time integration scheme:

v
n+1/2
h = vnh −

τ

2
Ahu

n
h −

τ2

4
Ahv

n+1/2
h

− τ

2
Bhv

n+1/2
h +

τ

2
fh(unh)

un+1
h = unh + τv

n+1/2
h (3)

vn+1
h = vnh −

τ

2
Ahu

n
h −

τ2

4
Ahv

n+1/2
h

− τ

2
Bhv

n+1/2
h +

τ

2
fh(un+1

h )

This scheme can be rewritten in such a way,
that only one application of Ah and Bh, one
evaluation of the nonlinearity, and the solution
of one linear system of equations is necessary in
each timestep.

Full discretization error bound

The full discretization error analysis is quite in-
volved, since the error of the IMEX scheme has
to be combined with error bounds of the non-
conforming space discretization provided by the
unified error analysis [2, 3].

To relate the discrete and the continuous so-
lution we use a lift operator Lh : Vh → V as in [1]
and make the following rather general assump-
tions:

• The bilinear form m is an inner product
on H.

• There exists a constant cG > 0 s.t. a+cGm
is an inner product on V .

• The bilinear form b : V×H → R is bounded
and quasi-monotone.

• The function f : V → H is locally Lipschitz-
continuous.

For the corresponding discrete quantities we re-
quire the same properties, with constants inde-
pendent of h.

In the framework of the unified error analysis
we proved the following result:

Theorem 1 Let u be a sufficient smooth solu-
tion of (2) on [0, T ] and let unh, v

n
h be the fully

discrete approximations given by (3). Then there
exists τ∗ > 0 s.t. for all τ < τ∗ and tn < T the
lifted fully discrete solution satisfies

‖Lhunh − u(tn)‖V + ‖Lhvnh−u′(tn)‖H
≤ C

(
τ2 + Eh

)
.

The constants C and τ∗ are independent of h.
Eh contains interpolation errors of the solution
as well as geometric errors and discretization er-
rors of the initial values, the bilinear forms and
the nonlinearity.

Theorem 1 can be applied to all equations
and space discretizations fitting in the general
setting, for instance to (1).

Corollary 2 Let u be a sufficiently smooth so-
lution of (1) and let unh, v

n
h be the fully discrete

approximation obtained with isoparametric ele-
ments of order p ≤ k. Then there exists τ∗ > 0
s.t. for all τ < τ∗ and tn < T the lifted fully
discrete solution satisfies the error bound

‖Lhunh − u(tn)‖V + ‖Lhvnh−u′(tn)‖H
≤ C

(
τ2 + hp

)
.

The constants C and τ∗ are independent of h.
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Abstract

In this talk we consider the time-integration of
abstract semilinear wave equations. We are in-
terested in problems, where the solution lacks
spatial regularity and thus standard numerical
integrators require the use of very small time
step sizes. By exploiting the connection of trigo-
nometric integrators and splitting methods we
construct and analyze numerical schemes which
circumvent these issues.
Keywords: highly oscillatory, wave equation,
splitting methods, non-standard error analysis,
summation by parts, filter functions.

Trigonometric integrators

We consider the abstract semilinear wave equa-
tion

q′′(t) = −Λ2q(t) +G(q(t)),

q(0) = q0, q′(0) = q′0
(1)

with a positive, self-adjoint operator Λ. We as-
sume G : L2(Ω) → L2(Ω) to be bounded and
that the solution q satisfies the finite energy con-
dition

‖Λq(t)‖2L2 + ‖q′(t)‖2L2 ≤ K, t ∈ [0, T ],

but no bounds on q′′. This means that we can-
not use higher order Taylor expansions of the
solution. In such situations, numerical experi-
ments show resonances in the error at certain
time step sizes which are related to the largest
eigenvalues of Λ (dotted line, Figure 1). For
these step sizes, the order deteriorates.

In the ODE case, where Λ2 is a matrix, inte-
gration by trigonometric integrators yields con-
vergence of second order with a constant inde-
pendent of the norm of Λ [2–4]. In first-order
formulation trigonometric integrators for (1) are
given by
(
qn+1

q′n+1

)
=

(
cos(τΛ) Λ−1 sin(τΛ)
−Λ sin(τΛ) cos(τΛ)

)(
qn
q′n

)

+
τ

2

(
τψ(τΛ)Gn

ψ0(τΛ)Gn + ψ1(τΛ)Gn+1

)
(2)

10−3 10−2 10−1 100

10−3

10−2

10−1

100

Figure 1: dotted line: Lie splitting without fil-
ter, solid line: Lie splitting with filter

with suitable filter functions ψ, ψ0, ψ1, φ, and
Gn = G(φ(τΛ)qn).

The key ingredient is the appropriate choice
of filters depending on τ and Λ. For a symmetric
scheme, such functions χ should be even and
satisfy

χ(0) = 1, χ(kπ) = 0, k = 1, 2, 3, . . . .

Roughly speaking these filters smooth the inter-
action of the nonlinearity and the stiff part Λ in
such a way that resonances in the error cancel
out (solid line, Figure 1).

Averaged equations and splitting methods

It is well known that trigonometric integrators
can also be written as splitting methods applied
to an averaged equation, where the nonlinearity
G is replaced by

G̃(q) = Ψ̂G(Φ̂q).

Indeed, if we define

A =

(
0 I
−Λ2 0

)
, u =

(
q
q′

)
, b̃(u) =

(
0

G̃(q)

)

and the flow

ϕτ
b̃
(u) = u+ τ b̃(u),
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we can rewrite (2) as the Strang splitting

un+1 = ϕ
τ/2

b̃

(
eτA ϕ

τ/2

b̃
(un)

)
.

Recently, in [1], this observation was used to
prove error bounds in a different way. The idea
is to first bound the error induced by replacing
G by G̃ in (1). The second step consists of the
error analysis of a Strang splitting applied to
the averaged equation by techniques developed
for splitting methods.

Generalizations

We investigate the construction of splitting meth-
ods or variants of exponential integrators under
different assumptions on the regularity of the
solution or on the nonlinearity G than in [1–4].

The Lie splitting

un+1 = eτA ϕτ
b̃
(un)

based on a modified function b̃ is analyzed in
two different scenarios.

(a) We still assume the finite energy condi-
tion, but allow the perturbation G to map from
L2 to H−1.

Proposition 1 Let u be the solution of the first
order formulation of (1) in L2×H−1. If Φ̂ = I
and Ψ̂ is suitably chosen, then

‖u(tn)− un‖L2×H−1 ≤ Cτ,

where C is independent of τ .

(b) Assume G to be linear and bounded from
L2 to L2. Then we can weaken the finite energy
assumption and obtain the following result.

Proposition 2 Let u be the solution of the first
order formulation of (1) in L2×H−1. If Ψ̂ = I
and Φ̂ is suitably chosen, then

‖u(tn)− un‖L2×H−1 ≤ Cτ,

where C depends on ‖u(t)‖L2×H−1, but is inde-
pendent of τ and ‖u(t)‖H1×L2 .

Note that not only the position of the filters,
but also the error analysis needs to be carefully
adapted to the problem at hand.
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Abstract

Corners in a polygon may lead to singularities
in the solution of the wave equation. These sin-
gularities can be resolved using meshes with ap-
propriate local refinement near the corners. We
propose a novel non-Trefftz space-time discon-
tinuous Galerkin method, which yields optimal
asymptotic rates of convergence with these lo-
cally refined meshes in polygons. It is uncondi-
tionally stable, thus, no restriction needs to be
imposed on the size of the space-time cells. We
prove a priori error estimates for the proposed
method.

Use of hierarchies of locally, corner-refined
meshes in the spatial, polygonal domain (e.g.
by bisection-tree refinement) and corresponding
adapted multi-level time-stepping allows to ap-
ply the combination formula to approximate the
wave propagation in polygons in time-domain at
work vs. accuracy scaling as one elliptic solve
on the finest spatial grid.

Numerical results confirm the theory.
Keywords: polygon, corner singularities, space-
time DG, local refinement, sparse-grids.

1 Introduction

Let Q = Ω × I be a space-time domain, where
Ω ⊂ R2 is an open, bounded, Lipschitz polygon
with outward unit normal nxΩ and I = (0, T )
is a time interval, for T ∈ R+. Let Γ = ΓD ∪
ΓN be the boundary of Ω, where ΓD and ΓN

are mutually disjoint and correspond to Dirich-
let and Neumann boundary conditions, respec-
tively. We consider the following initial bound-
ary value problem (IBVP) for the linear, first-
order acoustic wave equation:

∇v +
∂σ

∂t
= 0 in Q,

∇ · σ + c−2∂v

∂t
= f in Q,

v(·, 0) = v0, σ(·, 0) = σ0 on Ω,

v = gD on ΓD × Ī ,
σ · nxΩ = gN on ΓN × Ī .

(1)

Here c is the wave speed and f, v0,σ0, gD, gN are
the given data.

Results on the regularity of solutions of the
second-order acoustic wave equation in spatial,
polygonal domains have been established in the
recent years, see [1] and references therein. These
results imply that the solution of IBVP (1),

(v,σ) ∈ Cs−1(Ī;Hk+1,2
δ (Ω))× Cs(Ī;Hk,2

δ (Ω)2),

for s, k ∈ N, under suitable regularity assump-
tions for the data in our setting. It is well-known
that for functions in weighted Sobolev spaces
Hk,2
δ (Ω) one can recover optimal convergence

rates for finite element methods with local mesh
refinement in the vicinity of corners, refer [1].

2 Numerical scheme

Let T (x)
hx

be a shape-regular mesh on Ω with Nx

elements and T (t)
ht

be a partitioning of I into Nt

sub-intervals In := (tn−1, tn), n = 1, 2, . . . , Nt.
Define the space-time mesh Th on the domain
Q as a Cartesian tensor product of the spatial
mesh T (x)

hx
and the time partitioning T (t)

ht
,

Th := {Kx × In : Kx ∈ T (x)
hx

, In ∈ T (t)
ht
}. (2)

Define a finite element space of discontinuous
piecewise polynomials on the mesh Th as

Vp(Th) :=
∏

K∈Th
PpvK (K)×

(
Ppσ

K (K)
)2
, (3)

where Pp
(·)
K (K) := Pp

(·)
x,K (Kx)⊗ Pp

(·)
t,K (In′) is the

polynomial space on a space-time element K ∈
Th and p(·)

x,K , p
(·)
t,K ∈ N0 are polynomial degrees.

We propose a non-Trefftz space-time discon-
tinuous Galerkin (xt-DG) method based on the
formulation developed in [2]. We keep the same
definitions for numerical fluxes, but choose the
approximation space Vp(Th) (3). This implies
that the volume integrals in the variational for-
mulation from [2] do not vanish. The fully dis-
crete formulation reads: find (vh,σh) ∈ Vp(Th)
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such thatADG(vh,σh;w, τ ) = `(w, τ ), ∀(w, τ ) ∈
Vp(Th).

For ease of notation, assume px = pvx,K =
pσx,K + 1 and pt = pvt,K = pσt,K , ∀K ∈ Th. Let hx
and ht denote maximum meshwidth measures
in space and time, respectively. Then the xt-
DG solution (vh,σh) satisfies the a priori error
bounds in Thm. 1.

Theorem 1 Let (v,σ) be the solution of IBVP
(1) and (vh,σh) be the xt-DG solution. Under
certain regularity assumptions, the following es-
timate holds:
∥∥c−1(v − vh)

∥∥
L2(Ω×{T}) + ‖σ − σh‖L2(Ω×{T})2

≤ C1h
q
x + C2h

pt+1
t ,

(4)
where q = px for locally, corner-refined spatial
meshes and q = 1− δ, δ > 0, for quasi-uniform
spatial meshes. Here C1 and C2 are constants
independent of mesh size.

3 Sparse Grids

We devise a sparse approximation of the finite
element space Vp(Th) based on the combination
formula from sparse grids [3]. Consider a nested
hierarchy of locally, corner-refined meshes on Ω
and a dyadic hierarchy of uniform partitions of
I. Build a sequence T of space-time meshes,
such that for a fine spatial mesh, a coarse time
partitioning is used, and vice-versa. Next, com-
pute the xt-DG solution for each mesh in T. In
the end, we take an appropriate linear combina-
tion of these mutually independent solutions to
obtain the sparse-xt-DG solution.

4 Results

Choose Ω = (−1, 1)2\{(0, 1)× (−1, 0)} and T =
1.125. For r = ‖x‖2 and θ = arctan(x2/x1), we
consider the solution v = ∂tu, σ = −∇xu, u =
r

2
3 sin(2

3θ) sin(πt). We generate graded spatial
meshes using local bisection tree refinement on
uniform meshes, refer [1], and choose a uniform
partitioning in time.

From the convergence behaviour in Figure
1, we verify that the xt-DG method converges
with sub-optimal rates for uniform meshes and
optimal rates for graded meshes.

A comparative study of accuracy vs. work
scaling for the full-xt-DG solution, i.e. with-
out any sparse approximation, against that of
the sparse-xt-DG solution is shown in Figure 2.
Here O(M−1

L ) corresponds to the scaling for a

single elliptic solve on the finest spatial mesh
and we observe that sparse-xt-DG solution ap-
proaches it asymptotically.
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Figure 1: Relative error vs. h−1, h = hx = ht
is the meshwidth, for p = px = pt. For uniform
meshes - O(h0.67) convergence; for graded meshes -
O(hp) convergence.
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Figure 2: FG: full-xt-DG solution, SG: sparse-xt-
DG solution, p = px = pt = 1. Relative error vs.
the number of degrees of freedom ML.
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Abstract

We apply the discontinuous Petrov-Galerkin me-
thod (DPG) to linear acoustic waves in space
and time using the framework of first-order Frie-
drichs systems. We show that the ideal DPG
method is well-posed on a suitable subset of the
space-time cylinder. We use the graph norm of
the space-time differential operator, and traces
are implicitly defined as distributions. Then,
the practical DPG method is analyzed by con-
structing a Fortin operator numerically, and non-
conforming traces are considered by comparison
with an equivalent conforming scheme. For our
numerical experiments we introduce a simplified
DPG method with discontinuous ansatz func-
tions on the faces of the space-time skeleton.
Examples include results for a benchmark con-
figuration in seismic imaging with a point source
and a small region with measurement points.
We show that the computation on a truncated
space-time cylinder allows for a substantial re-
duction of DoFs.
Keywords: space-time finite elements, DPG

The linear wave equation

On a Lipschitz domain Ω0, we consider the evo-
lution equation

Lu := M∂tu+Au = f in (0, T )× Ω0 ⊂ R× Rd

subject to initial conditions u(0) = u0 in Ω0,
where f ∈ L2

(
(0, T )×Ω0;Rm

)
is a source func-

tion, and with

a) a symmetric positive definite operator M
represented by M ∈ L∞(Ω0;Rm×msym );

b) a hyperbolic operator A with domain
D(A) ⊂ L2(Ω0;Rm) such that

(Av, z)0,Ω0 = −(v,Az)0,Ω0 , v, z ∈ D(A)

and such that M +A is surjective, i.e.,

(M +A)(D(A)) = L2(Ω0;Rm) .

In this setting, the operator M−1A generates
a semigroup in L2(Ω0;Rm), and for sufficiently
regular f the solution is given by

u(t) =

∫ t

0
exp

(
(t− s)M−1A

)
M−1f(s) ds .

Our basic example is the acoustic wave equation
for velocity and pressure with (v, p) ∈ D(A) =
H(div,Ω0)×H1

0(Ω0), M(v, p) = (ρv, κ−1p), and
A(v, p) = −(∇p,∇ · v) where ρ, κ ∈ L∞(Ω0)
model the spatially varying mass density and
the bulk modulus of the material.

A main property of the linear wave equa-
tion is the finite speed of propagation cmax > 0,
which allows – in case of local support of the
source function f – to restrict the computation
to the cone

C+(supp f) =
{

(t, x) ∈ (0, T )× Ω0 :

|x− x0| ≤ cmax(t− t0) t0, x0) ∈ supp f
}
,

i.e., for the solution of Lu = f holds suppu ∈
C+(supp f). E.g., in the acoustic case we have
c(x) =

√
κ(x)/ρ(x).

Correspondingly, if the solution is evaluated
only in a domain of interest ω ⊂ [0, T ] × Ω0,
the solution in ω only depends on the backward
cone C−(ω̄).

The space-time discretization

Let Ω ⊃ C+(supp f) ∪ C−(ω̄), and let Ωh =⋃
K ⊂ Ω be a decomposition into open con-

vex subsets K with skeleton ∂Ωh. Integration
by parts defines the operator DΩh by

〈DΩhv, z〉 = (Lv, z)0,Ωh− (v, L∗z)0,Ωh

with L∗ = −L, and formally we obtain for the
solution u and its distributional trace û = DΩhu

(u, L∗z)0,Ωh + 〈û, z〉 = (f, z)0,Ωh

for all test functions z ∈ H(L∗,Ωh).
The DPG method is defined by selecting and

ansatz space Yh and test space Zh such that the
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Figure 1: Acoustic parallel space-time DPG simulation for the Marmousi benchmark configuration in
Fig. 2: pressure distribution computed with a time stepping method with DG discretization in Ω0 and
with a space-time DPG method on a truncated domain Ω ⊂ (0, T )× Ω0.

discrete solution (uh, ûh) ∈ Y is uniquely de-
fined by

(uh, L
∗zh)0,Ωh + 〈ûh, zh〉 = (f, zh)0,Ωh , zh ∈ Zh .

Suitable spaces are constructed and the conver-
gence is analyzed in [1–3].

Numerical results

Many applications rely on accurate numerical
simulations of waves through complex material
structures. A typical example is the problem of
full waveform inversion (FWI), where the ma-
terial distribution is reconstructed from mea-
surements of the wave field close to the surface.
Here, in a field survey a wave is excited at some
point S0 ∈ Ω0, and the scattered wave field is
measured by receiver devices located in ω.

Figure 2: Density distribution for the Marmousi
benchmark.

To demonstrate the flexibility and the accu-
racy of the space-time DPG method for hetero-
geneous media, we consider a numerical exam-
ple corresponding to the forward problem within
FWI. We use the acoustic wave equation for the

Marmousi benchmark, a synthetic model prob-
lem for geophysical structures, cf. Fig. 2. The
results are illustrated in Fig. 1.
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Uniform-in-time optimal convergent HDG method for transient elastic waves with
strong symmetric stress formulation
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Abstract

We present a semi-discrete Hybridizable Discon-
tinuous Galerkin (HDG) method for transient
elastic waves and prove it is optimal convergent
uniformly-in-time. The method uses polynomial
spaces of degree k and k+1 for the approxi-
mations of stress and displacement respectively,
and the symmetry of the stress tensor is enforced
strongly. The core in the design and the analysis
of the method is a newly devised tailored pro-
jection for the Lehrenfeld-Schöberl type HDG
(HDG+ for simplicity) methods. The projection
enables us to recycle existing projection-based
error analysis of HDG methods and render the
analysis of our method simple and concise. We
show some numerical experiments at the end to
support our analysis.
Keywords: elastic waves; discontinuous Galer-
kin method; hybridization

1 Introduction

The first HDG for elasticity [6] uses piecewise
Psym

k pKq, P3
k pKq and P3

kpF q as approximation
spaces for the stress σh, the displacement uh

and the numerical trace puh. It was proved in [2]
that the method is suboptimal. One simple and
efficient way to recover optimal convergence is
to use a variant of HDG which we call HDG+ in
this paper. HDG+ method uses a special type of
numerical flux first proposed by Lehrenfeld and
Schöberl for elliptic diffusion [4], then applied to
steady-state elasticity in [5] and time-harmonic
elasticity in [3]. In this paper, we consider the
design and the analysis of HDG+ for transient
elastic waves. To be more specific, the elastic
waves equations we consider are

Aσptq ´ εpuptqq “ 0 in Ω ˆ r0, 8q, (1a)
ρ:uptq ´ div σptq “ fptq in Ω ˆ r0, 8q, (1b)

γuptq “ gptq on BΩ ˆ r0, 8q, (1c)
up0q “ u0 in Ω, (1d)
9up0q “ v0 in Ω, (1e)

where A is the compliance tensor and ρ is the
mass density. For the input of the PDE sys-
tem, we have pf ,gq : r0, 8q Ñ L2pΩ; R3q ˆ
H1{2pBΩ; R3q as the forcing term and the Dirich-
let data, and pu0,v0q P “

L2pΩq‰2 as the initial
displacement and velocity.

2 A semi-discrete HDG+ method

We next propose a semidiscrete HDG+ method
for (1): Find (for all t P r0, 8q)

σhptqˇ̌
K

P Psym
k , uhptqˇ̌

K
P P3

k`1,

puhptqˇ̌
F

P P3
k ,

satisfying (we will hide the dependence on t)

pAσh,θqTh
` puh,div θqTh

´ xpuh,θnyBTh

“ 0, (2a)
pρ:uh,wqTh

` pσh, εpwqqTh
´ xpσhn,wyBTh

“ pf ,wqTh
, (2b)

xpσhn,µyBThzΓ “ 0, (2c)

xpuh,µyΓ “ xg,µyΓ, (2d)

where the numerical flux is defined as

pσhn :“ σhn ´ τPM puh ´ puhq. (3)

In the above, the stabilization function τ
ˇ̌
K

“
Oph´1

K q and PM is the L2 projection onto
RkpBKq, which we denote as the piecewise
P3

kpF q space on the boundary BK.
For the initial conditions, we use ideas from

[1], where a HDG method for acoustic waves is
proposed and analyzed, and the HDG projec-
tion is used to define the initial conditions for
the HDG scheme. Following similar ideas, we
next complete the scheme (2) by using a HDG+
projection (which will be defined and explained
in section 3) to define the initial conditions:

pˆ, 9uhp0qqˇ̌
K

:“ ΠHDG` ˇ̌
K

pA´1εpv0q,v0; τ q,
and uhp0q is simply defined as the solution of the
HDG+ discretization of the steady-state linear
elasticity system with input ´div pA´1εpu0qq
and gp0q as the forcing term and Dirichlet boun-
dary condition.
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3 HDG+ projection

We present the HDG+ projection in this sec-
tion. A novelty of the projection is the fact that
it has an associated boundary remainder term,
which does not affect the error bounds or the the
simplicity of the proofs. The boundary remain-
der allows us to more flexibily design the HDG
projection, since the standard HDG projection
now only corresponds to the very limited case
where the boundary remainder vanishes, and an
important observation is that the optimal con-
vergence of a HDG scheme only requires a small
enough boundary remainder instead of a van-
ishing one. We will see this in section 4, where
we use the projection defined here for the error
analysis of the scheme we proposed in section 2.

The HDG+ projection is (for k ě 1):

ΠHDG` : H1
sym ˆ “

H1
‰3 Ñ Psym

k pKq ˆ P3
k`1pKq,

pσ,uq ÞÑ pσK ,uKq,
R : H1

sym ˆ “
H1

‰3 Ñ RkpBKq,
pσ,uq ÞÑ δK ,

satisfying

puK ´ u,vqK “ 0,

´pdiv pσK ´ σq,wqK

`xτPM puK ´ uq,wyBK “ xδK ,wyBK ,

´xpσK ´ σqn ´ τ puK ´ uq, µyBK “ xδK ,µyBK ,

for all v P P3
k´1pKq, w P P3

k`1pKq and µ P
RkpBKq. The convergence properties are

}σK ´ σ}K ` h´1
K }uK ´ u}K ` h

1{2
K }δK}BK

ď Chm
Kp|σ|m,K ` |u|m`1,Kq,

with m “ 1, 2, ..., k ` 1.

4 Projection-based error analysis

We define εh̊ “ Π˚ ´˚h and e˚ “ Π˚ ´˚, where
˚ “ σ or u. We aim to control the terms εh̊

by the local projection error e˚ and boundary
remainder δ (which we have a control by the
convergence properties of the HDG+ projection
). For a fixed constant C ą 0, the following
estimate holds:

}εσ
hpT q}A ` }PMpεu

hpT q ´ εpu
hpT qq}τ ` } 9εu

hpT q}ρ

ď C

ˆ
}eσp0q}A ` ~ 9eσ~r0,T s

A,1

` ~:eu~r0,T s
ρ,1 ` ~δ~r0,T s

τ ´1,8 ` ~ 9δ~r0,T s
τ ´1,1

˙
,

If k ě 1, the meshes are shape-regular, and
the elliptic regularity holds, then

}εu
hpT q}Ω ď

Cp1 ` T q2
ˆ

h}eσp0q}Ω ` h}δp0q}τ´1 ` }eup0q}Ω

` h~ 9eσ~r0,T s
Ω,8 ` h~ 9δ~r0,T s

τ ´1,8 ` ~:eu~r0,T s
Ω,8

` h~:eσ~r0,T s
Ω,8 ` h~:δ~r0,T s

τ ´1,8 ` ~;eu~r0,T s
Ω,8

˙
,

where the constant C is independent of the mesh
size h and the time T .

5 Numerical experiments
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Figure 1: History of convergence for σpT q and upT q
with sequence of uniform refinements in space and over-
refinements in time.
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Abstract

We employ domain derivatives to solve inverse
electromagnetic scattering problems for obsta-
cles which are either penetrable or inpenetrable
with perfect conducting or impedance bound-
ary conditions. A new proof of the characteriza-
tion of the domain derivative for an impedance
boundary condition using variational methods
is shown. We consider the inverse scattering
problem of reconstructing the scatterer from far
field measurements for a single incidient field
and solve it by a regularized iterative Newton
scheme. Both the direct scattering problem and
the problem characterizing the domain deriva-
tive are formulated as boundary integral equa-
tions and numerically solved using the boundary
element library Bempp. Numerical examples of
shape reconstructions are presented.
Keywords: inverse scattering problem, maxwell,
domain derivative

1 Impedance boundary value problem

We consider time harmonic Maxwell’s equations

curlE − ikH = 0, curlH + ikE = 0 (1)

with constant wavenumber k = ω
√
εµ in a lin-

ear isotropic homogeneous medium with electric
permitittivity ε,magnetic permeability µ and fre-
quency ω. Given an incident field (Ei, H i), a so-
lution of (1) in R3, a bounded scatterer D ⊂ R3

gives rise to a scattered field (Es, Hs) in R3 \D,
a solution of (1) which satisfies the Silver Müller
radiation condition. The impedance boundary
condition reads as

ν ×H = λ
(
ν × (E × ν)

)
on ∂D,

for some positive impedance λ : ∂D → R and
the outwards directed unit normal ν. Due to
the boundary condition, the appropriate Hilbert
space for the weak formulation is

Himp := {E ∈ H(curl,Ω) : ν × E ∈ L2
t (∂D)},

with Ω = BR(0) \ D and R > 0 large enough.
The corresponding inner product is

〈E, V 〉Himp = 〈E, V 〉H(curl,Ω)+〈ν×E, ν×V 〉L2
t (∂D).

The weak formulation reads as: Find E ∈ Himp
with

〈curlE, curlV 〉L2(Ω) − k2〈E, V 〉L2(Ω)

− ik〈λν × E, ν × V 〉L2(∂D)

+ ik〈Λ(E × ν), V 〉L2(∂BR(0))

= 〈ikΛ(ν × Ei)− ν × curlEi, V 〉L2(BR(0))

for all V ∈ Himp. The impedance boundary
value problem is uniquely solvable in Himp and
depends continuosly on the right hand side [1].
The variational approach of finding the deriva-
tive of the solution E with respect to the bound-
ary ∂D starts by considering variations of the
boundary ∂D, generated by small, compactly in
BR(0) supported vector fields h ∈ C1(R3,R3).
Then, one considers solutions Eh of the bound-
ary value problem with respect to the perturbed
scatterer

Dh := {y = ϕ(x) = x+ h(x) : x ∈ D}.

By investigations of the behaviour of Eh as h→
0 in C1(R3,R3), we prove the following theo-
rems.

Theorem 1 The solution E depends continu-
osly on D. To be more precise: Let Êh :=
J>ϕ (Eh ◦ ϕ). Then

‖E − Êh‖Himp → 0, ‖h‖C1 → 0.

Theorem 2 The solution E is differentiable with
respect to the boundary: There exists a unique
W ∈ Himp, depending linear and continously on
h, such that

lim
‖h‖C1→0

1

‖h‖C1

‖Êh − E −W‖Himp = 0.

The function W is called material derivative of
E and can be used to characterize the known
[2,5] domain derivative E′ ∈ Himp.
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Theorem 3 We have

E′ = W − J>h E − JEh ∈ Himp,

where (E′, H ′) are weak solutions of (1) with
boundary condition

ν ×H ′ − λ
(
ν × (E′ × ν)

)

= Grad(hνHν)× ν + λGrad(Eνhν)

+ hν

(∂λ
∂ν

+ ik − 2λ(R+ κ)
)

(ν × (E × ν))

+ ikλhν(H × ν) (2)

2 Solving inverse problems

We define the boundary to far field operator F
by

F(∂D) = E∞,

where E∞ is the far field of the solution E with
respect to the scatterer D. We want to solve the
following inverse problem. Fixing an incoming
plane wave

(
Ei

H i

)
(x) =

(
p

(d× p)

)
eikd·x

with direction d ∈ S2 and polarization p ∈ C3,
satisfying p · d = 0, solve the equation

F(∂D) = E∞.

Theorems 2 and 3 show differentiability of F.
We employ a regularized iterative Newton scheme
as follows. First, we chose an initual guess ∂D0.
In every iteration i ∈ N, we check the residual
r = ‖F (∂Di)−E∞‖. We solve for the variation
h in the linearized equation F(∂Di

h) = E∞ and
update our current boundary ∂Di by h. Regu-
larization comes in play by applying Tikhonov
regularization, i.e. solving

(
F′[∂Di]?F′[∂Di] + αI

)
h

= F′[∂Di]?(E∞ − F(∂Di))

for some α > 0. This algorithm has been suc-
cessfully carried out for the three-dimensional
accoustic scattering [4]. We have applied this
technique to electromagnetic wave scattering from
obstacles which are either penetrable or inpen-
etrable with perfect conductiong or impedance
boundary condition. We have formulated both
the direct scattering problem and the charac-
terization of the domain derivative as integral
equations. In order to solve these numerically,

Figure 1: Reconstruction of a rounded cuboid
using 64 shape functions and noisy data. The
black arrow indicates the direction of the incom-
ing plane wave.

we have used the boundary element method li-
brary BEMPP [6]. The implementation of the
right hand side of (2) requieres stable discretiza-
tions of surface differential operators, the rota-
tion ν×· and the mean curvature κ. In figure 1,
an actual reconstruction for a penetrable object
is shown. For further details and more recon-
structions, we refer to our paper [3].
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Abstract

We derive an efficient regularized Newton algo-
rithm for reconstructing thin tubular scattering
objects in electromagnetic scattering. The al-
gorithm is based on an asymptotic perturbation
formula for the Maxwell transmission problem
in three dimensional free space. Due to this for-
mula, in contrast to classical Newton schemes,
no partial differential equation has to be nu-
merically solved during the whole reconstruc-
tion process. We will first discuss the asymp-
totic perturbation formula, building on the ab-
stract framework in [2], and study its basic com-
ponents for the case of a thin tubular scatterer.
Then we set up the regularized Newton method,
discuss its implementation and present numeri-
cal results, which illustrate the performance of
the reconstruction algorithm.
Keywords: inverse scattering, thin tubular scat-
terers, Newton method, Maxwell equations

1 The Maxwell transmission problem

Let k = ω
√
ε0µ0 be the wave number with fre-

quency ω, electric permittivity ε0, and magnetic
permeability µ0. Denote by Ei and H i the in-
cident electric and magnetic field respectively,
which solve the time-harmonic Maxwell equa-
tions, i.e.

curlEi − iωµ0H
i = 0 in R3,

curlH i + iωε0E
i = 0 in R3.

For a C2-curveK with length L > 0 we consider
thin tubular scattering objects of the form

Dρ = {x ∈ R3 | dist(x,K) < ρ}.

The incident wave is scattered by such an ob-
ject, for which we assume homogenous electric
permittivity ε1 > 0 and magnetic permeability
µ1 > 0. The total fields Eρ = Ei + Esρ and
Hρ = H i +Hs

ρ satisfy the Maxwell system

curlEρ − iωµρHρ = 0 in R3,

curlHρ + iωερEρ = 0 in R3,

where

γρ (x) =

{
γ1, if x ∈ Dρ

γ0, if x ∈ R3 \Dρ

for γ ∈ {µ, ε}. The tangential components of
E and H are assumed to be continuous on the
interface of Dρ. Additionally, Esρ and Hs

ρ have
to satisfy the Silver-Müller radiation condition.
The scattered field permits a representation of
the form

Esρ(x) =
eik|x|

4π|x|

(
E∞ρ (x̂) +O

(
1

|x|

))
,

where E∞ρ : S2 → C3 is called far field. Our
approach to scattering by thin tubular objects
is supported by the following theorem.

Theorem 1 The far field of Esρ satisfies

E∞ρ (x̂) =

ρ2π
(∫

K

α1 (curlxG(x̂, y))∞Mµ(y)curlyE
i(y)

− α2 (G(x̂, y))∞Mε(y)Ei(y) ds(y)
)
+ o(ρ2)

with α1 = µ1/µ0 − 1 and α2 = k2(1− ε1/ε0) as
ρ→ 0. Here, G denotes the dyadic Green’s func-
tion and the matrix-valued functions Mε and Mµ

denote the electric and magnetic polarization ten-
sors.

We discretize the curve K as a linear spline

K ≈ K̃ =

n⋃

j=1

[xj , xj+1],

where [xj , xj+1] denotes the line segment from
xj to xj+1. Using results from [1], we conclude
that for γ ∈ {µ, ε}, the polarization tensors can
be diagonalized,

Mγ(y) = V (y)MγV >(y),

where V (y) contains the Frenet-Serret frame at
y ∈ K̃ as its columns and

Mγ = diag (1, 2γ0/(γ1 + γ0), 2γ0/(γ1 + γ0)) .
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Convergence of this discretization of the formula
from theorem 1 for fixed ρ with respect to the
number of subsegments of K̃ is depicted in fig-
ure 1. The reference solution has been numer-
ically approximated by means of the boundary
element method library BEM++ (see [5] and
https://bempp.com/).

Figure 1: Top row: Two different curves to-
gether with their projections onto the 3 coordi-
nate planes. Bottom row: Relative error be-
tween the result of the discretized perturbation
formula and the far field computed by means of
BEM++ with respect to the number of subseg-
ments of the linear spline K̃ for fixed ρ.

2 A regularized Newton method

Next we consider the operator T : K 7→ g∞ρ ,
which maps the curve K to the leading order
term g∞ρ of the perturbation formula in theo-
rem 1. The inverse problem consists in solving
T (K) = E∞ρ for the unknown curve K. The
idea is to minimize the nonlinear functional

F
(
x1, ..., xn+1

)
=
∥∥∥E∞ρ −

n∑

j=1

T
([
xj , xj+1

]) ∥∥∥
2

L2

+ λ21ψ1(x
1, . . . , xn+1) + λ22ψ2(x

1, . . . , xn+1)

with regularization parameters λ1, λ2 > 0 and
penalty terms ψ1 and ψ2, which prevent the
subsegments of the reconstructed linear spline
from getting entangled and from having strongly
varying lengths. A combination of the Gauß-
Newton method and the golden search line method
is now used to minimize F . A visualization of
the reconstruction process is shown in figure 2.

Figure 2: Reconstruction of a helix using 30 sub-
segments in the discretization of K.
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Abstract

The work deals with the analysis of Cartesian
Perfectly Matched Layers (PMLs) in the context
of electromagnetic wave propagation in a 3D in-
finite anisotropic homogeneous medium with a
diagonal dielectric tensor. Contrary to the 2D
case some anisotropies lead to the existence of
backward waves giving rise to instabilities of the
PMLs in the time-domain and a lack of conver-
gence in the frequency domain.
Keywords: Anisotropic Maxwell’s equation,
Perfectly Matched Layers, Backward waves

1 Introduction

We are interested in simulating wave propaga-
tion in three-dimensional infinite anisotropic me-
dia which can be described with Maxwell’s equa-
tions. Since the medium is infinite, one needs to
introduce an equivalent formulation posed in a
bounded domain which is suitable for numer-
ical purposes. The widely-used PML method
(see [1]) consists in surrounding the computa-
tional domain by a layer which absorbs outgo-
ing waves. PML techniques are very popular
because they are efficient and easy to imple-
ment for a large class of problems. They can
be used in the time and frequency domains. It
is well known that classical Cartesian PMLs fail
in the presence of backward waves in the PML
direction: one can observe instabilities in time-
domain (see e.g. [2]), and a lack of convergence
towards the physical solution in the frequency
domain (see [4]).

Although backward waves do not exist for
diagonal anisotropy for the 3D scalar wave equa-
tion as well as for 2D Maxwell’s equations, sur-
prisingly they do exist for 3D Maxwell’s equa-
tions for a class of diagonal anisotropic dielectric
tensors. This is counter-intuitive and a more
detailed analysis follows. In the sequel, we con-
sider the time-domain problem, but this can be
transposed to the frequency regime.

2 Problem statement

We consider electromagnetic wave propagation
in a diagonal anisotropic medium described by
Maxwell’s equations

ε∂ttE(t,x)+∇×∇×E(t,x) = 0, x ∈ R3 (1)

with compactly supported initial conditions, and
ε = diag{εx, εy, εz}, with εj > 0, j = x, y, z.

In order to allow for numerical simulation
of (1) in unbounded space, we surround the
computational domain by a PML. Inside this
layer one modifies (1) by an appropriate com-
plex scaling. The layer is truncated and vanish-
ing Dirichlet/Neumann boundary conditions are
imposed. To analyse the stability of the PMLs
we perform the plane-wave analysis of the origi-
nal system (1). This consists in considering par-
ticular solutions of (1) of the form

E(t,x) = Êei(ωt−kx),

where Ê is the amplitude vector, k = (kx, ky, kz)
is the wave vector. This yields the dispersion
relation

ω2F (ω, kx, ky, kz) = 0. (2)

Here F is a biquadratic equation in ω, with four
roots denoted as ω±

j (k), j = 1, 2, which define
four almost everywhere different modes.

For a given mode, we can define the phase
velocity vp and the group velocity vg:

vp(k) =
ω±
j (k)
|k|

k
|k| , vg(k) = ∇kω

±
j (k),

In the following, we will analyse the stability of
PMLs for (1) relying on these quantities.

3 Condition on the tensor ε

The necessary condition of the stability of PML
methods in time domain for anisotropic media
was established in [2]. For systems with con-
stant coefficients this criterion is based on the
analysis of (2). The classical PML method is
unstable in a given direction ej if

∃k ∈ R3 : (vp(k) · ej)(vg(k) · ej) < 0. (3)
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Figure 1: Snapshots of the electric field component Ex(t, x, y, 0) at (a) t = 2.5, (b) t = 4.
(c) Solution of dispersion relation (2) for εy < εx < εz with kz = const.

By definition this corresponds to the presence
of backward propagating modes in the direction
ej . For example, if the PML is applied in x-
direction, the necessary stability condition is writ-
ten as

kx

ω±
j (k)

∂ω±
j (k)
∂kx

≥ 0 ∀k ∈ R3.

As demonstrated in [2], this condition has a sim-
ple geometrical interpretation, expressing the fact
that along the dispersive surfaces, the phase and
the group velocity are oriented in the same di-
rection with respect to the ex direction (see fig-
ure 1,(c)).

The following result establishes the neces-
sary condition of stability of the PML applied
for (1) in x-direction:

Theorem 1
(i) if min(εy, εz) < εx < max(εy, εz) ∃k0,

ε > 0 such that ∀k : ‖k − k0‖ < ε there
are backward propagating modes in the ex
direction (see Figure 1(c)).

(ii) otherwise there are no backward propagat-
ing waves in the ex direction.

The criterion (3) being a necessary stability con-
dition, the classical PML method is unstable in
the time-domain if (i) is satisfied. Since the
analysis is not specific to the ex direction, we
conclude that if εx 6= εy 6= εz backward waves
will exist in one of the axis direction, but if two
of the coefficients are equal no backward waves
exist. Numerical simulations confirm the insta-
bilities of PML in the x-direction for a medium
satisfying (i) (see Figure 1 (a,b)). On the other
hand, no instabilities appear in the two other
directions. The justification of this constitutes
part of future research.

It is known that the extension of classical
PML methods can be proposed for some mod-
els with backward propagating modes (see [3]
for dispersive metamaterials and plasmas) via a
new change of variables for the PML construc-
tion. However in the present case a similar tech-
niques seem to be inappropriate, and an alterna-
tive solution should be proposed. A new strat-
egy is currently under investigation first in the
frequency domain, and then in time-domain.
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Abstract

We consider the problem of imaging sparse scenes
from a few noisy data using an `1-minimization
approach. This problem can be cast as a linear
system of the formAρ = b, whereA is a sensing
matrix. We assume that the dimension of the
unknown sparse vector ρ is much larger than
the dimension of the data vector b. Our main
contribution is a new method for exact support
recovery in the presence of additive noise. We
propose to solve the augmented linear system
Aρ + Cη = b, where the matrix C is a noise
collector.
Keywords: array imaging, sparse recovery, l1-
minimization

1 Formulation of the problem

Consider point sources located inside the im-
age window IW. The goal of array imaging is
to determine their positions and amplitudes us-
ing measurements obtained on an array of re-
ceivers. The array of size a has N receivers sep-
arated by a distance h located at positions ~xr,
r = 1, . . . , N (see Figure 1). They can measure
single or multifrequency signals with frequencies
ωl, l = 1, . . . , S. The M point sources, whose
positions ~zj and (complex-valued) amplitudes
αj ∈ C, j = 1, . . . ,M , we seek to determine,
are at a distance L from the array. In order to
form the images we discretize the IW using a
uniform grid of points ~yk, k = 1, . . . ,K, and we
introduce the true source vector

ρ = [ρ1, . . . , ρK ]ᵀ ∈ CK ,

such that

ρk =





αj , if ‖~zj − ~yk‖∞ < grid-size,
for some j = 1, . . . ,M,

0, otherwise.

To write the data received on the array in a
compact form, we define the Green’s function

xr

xs

L

a

yj

h

Figure 1: General setup of array imaging.

vector

g(~y;ω) = [G(~x1, ~y;ω), . . . , G(~xN , ~y;ω)]ᵀ (1)

at location ~y in the IW, where G(~x, ~y;ω) de-
notes the free-space Green’s function of the ho-
mogeneous medium. The signal received at ~xr
at frequency ωl is given by

b(~xr, ωl) =

M∑

j=1

αjG(~xr, ~zj ;ωl). (2)

If we normalize the columns of A to have
length one and stack the data in a column vector

b =
1√
NS

[b(~x1, ω1), . . . , b(~xN , ωS)]ᵀ , (3)

then the source vector ρ solves the system of
equations Aρ = b, with the (N ·S)×K matrix

A =
1√
NS



g(~y1;ω1) .. g(~yK ;ω1)

...
...

g(~y1;ωS) .. g(~yK ;ωS)


 .
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no NC with NC and τ = 1 with NC and τ = 2 `2 on the support
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Figure 2: High level of noise; SNR = 1. From left to right: `1-norm minimization without the noise
collector; `1-norm minimization with a noise collector with Σ = 104 columns, and the weight τ = 1;
`1-norm minimization with a noise collector, and the correct τ = 2; `2-norm solution restricted to the
support. In the top row we show the images, and in the bottom row the solution vector with red stars
and the true solution vector with green circles.

2 Main Results

When data is perturbed by small noise, the fol-
lowing qualitative description of the image could
be observed. Firstly, the points where the sources
are located become blobs containing several nearby
pixels. Secondly, a few pixels away from the
sources are also visible. The latter is usually
referred as grass. In order to quantify the ob-
served results we introduce the vicinities.

Let ρ ∈ CK be an M -sparse solution of
Aρ = b, with support T = {i : ρi 6= 0}. For
any j ∈ T define the corresponding vicinity of
aj as

Sj =

{
k : |〈ak,aj〉| >

1

3M

}
. (4)

For any vector η ∈ CK its coherent misfit to ρ
is

Co(ρ,η) =
∑

j∈T

∣∣∣∣∣∣
ρj −

∑

k∈Sj
〈aj ,ak〉ηk

∣∣∣∣∣∣
, (5)

whereas its incoherent remainder with respect
to ρ is

In(ρ,η) =
∑

k 6∈Υ

|ηk|, Υ = ∪j∈TSj . (6)

Proposition 1. Suppose the vicinities Sj do
not overlap, and let

γ = sup
c

(‖ξ‖`1/‖c‖`2) , (7)

where ξ is the minimal `1-norm solution of A ξ =
c. Let

ρδ = arg min ‖ρe‖`1 , subject to Aρe = bδ, (8)

with noise ‖b − bδ‖`2 6 δ. Then, Co(ρ,ρδ) 6
3γδ, and In(ρ,ρδ) 6 5γδ. If δ = 0, and Υ does
not contain collinear vectors, then ρδ = ρ.

Proposition 1 implies that a key to control
the noise is the constant γ defined in (7). In
general, we have γ = O(

√
N). This means that

the quality of the image deteriorates as the num-
ber of measurements N → ∞. We can remedy
that by augmenting the imaging matrix A with
a “noise collector” matrix C, and solving the sys-
tem

(ρτ ,ητ ) = arg min
ρ,η

(τ‖ρ‖l1 + ‖η‖l1) , (9)

subject to Aρ+ Cη = bδ,

with τ = 1, see the second column on Figure 2.
The Σ = Nβ columns of C are chosen at random
from the unit sphere. We further can remove all
the grass from the image by correctly choosing
the weight τ , see the third column on Figure 2.
The last column of Figure 2 shows ths l2 pro-
jection of the measurement bδ on the recovered
support of ρ.
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Abstract

We study the problem of imaging extended re-
flectors in a three-dimensional terminating wave-
guide using an active planar array. Our imaging
method relies on the back propagation of an ap-
propriate projection of the usual array response
matrix and allows us to obtain good reconstruc-
tions of the reflector with partial-aperture ar-
rays that cover a small fraction of the wave-
guide’s cross-section.
Keywords: array imaging, waveguide, partial
aperture, prolates

1 Formulation of the problem

We consider a three-dimensional (3D) Cartesian
coordinate system ~x = (z,z′) ∈ R3, where z
is the range coordinate, the cross-range coordi-
nates z′ lie on the xy-plane, and x is taken to
be positive downwards. We denote by Ω a 3D
cylindrical waveguide, as shown in Figure 1, that
consists of two parts: a semi-infinite cylindrical
waveguide ΩL− of constant (bounded, Lipschitz)
cross-section C for range z < L, filled with a
homogeneous medium, and a bounded domain
ΩL+ ⊂ R3 where the cross-section may vary
with range and/or the medium may be inho-
mogeneous. For simplicity, we restrict ourselves
to the acoustic case with a sound-soft bound-
ary but our approach applies to other boundary
conditions as well. An active planar array A of
N transducers is placed parallel to the waveg-
uide’s cross-section at range z = za < L; the
array may span the entire cross-section or just
a part of it. In this setup we want to create
images in order to locate an extended reflector
contained somewhere in ΩL+; the term extended
refers to a reflector with typical size comparable
to a reference wavelength.

Our data set for imaging is contained in a
matrix Π̂(ω) ∈ CN×N whose (r, s) entry is the
Fourier coefficient at frequency ω of the time
traces of the echoes recorded at the r-th receiver
when the s-th source emits a signal. This is the

C

z = za z = L

O

Ω−
L Ω+

L

A

x
y

z

Figure 1: Imaging setup in a 3D terminating
waveguide.

so-called array response matrix.
We denote by Ĝ(~x, ~xs;ω) the Green’s func-

tion for the Helmholtz operator evaluated at
~x ∈ Ω, due to a point source located at ~xs ∈ Ω,
for a single frequency ω, i.e. Ĝ(~x, ~xs;ω) solves

−∆Ĝ(~x, ~xs;ω)−k2η(~x)Ĝ(~x, ~xs;ω) = δ(~x−~xs),

supplemented with Dirichlet boundary condi-
tions. Moreover, let {µn,Φn}∞

n=1 be the eigen-
values (in ascending order) and corresponding
orthonormal eigenfunctions of the Dirichlet trans-
verse Laplacian −∆ in C. It is well-known that
µn ∈ R and are positive, while {Φn}∞

n=1 forms
an orthonormal basis of L2(C). Let also M be
the number of propagating modes in ΩL− , i.e.
M is an index that satisfies µM < k2 < µM+1,
where k is the constant wavenumber in ΩL− .

Finally, let βn =

{ √
k2 − µn, 1 ≤ n ≤ M,

i
√

µn − k2, n ≥ M + 1.

2 Imaging

To create an image, we define a search domain
S ⊂ Ω and we compute the values of an appro-
priate imaging functional, which has the prop-
erty that its values, when computed and graph-
ically displayed, exhibit peaks that indicate the
location of the scatterer.

The full-aperture array case. In [2] we have
proposed an imaging approach, inspired by phase
conjugation, for the case of a two-dimensional
(2D) terminating waveguide. The extension in
our current 3D setting, leads to the imaging
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functional

Ia(~y s) =

M∑

i=1

M∑

j=1

βi βj Q̂ij Ĝi(za, ~y
s) Ĝj(za, ~y

s),

where ~y s ∈ S and Ĝi(za, ·) are the Fourier coef-
ficients of the Green’s function with respect to
the orthonormal basis {Φn}∞

n=1 of L2(C), i.e.,
Ĝi(za, ·) =

∫
C Ĝ

(
(za,z

′), ·
)
Φi(z

′) dz′.

The matrix Q̂ in the case of the full-aperture
array (A = C) is defined as the projection of
Π̂rs := Π̂(~xr, ~xs;ω) on Φi(x, y). Therefore it is
an M × M matrix with entries

Q̂ij =

∫

A

∫

A
Π̂rs(ω)Φi(z

′
s)Φj(z

′
r) dz′

s dz′
r. (1)

Following similar arguments as in [2] we may
show that the functional Ia for a point scatterer
behaves like the square of the imaginary part of
the Green’s function.

The partial-aperture array case. For A ⊂
C the eigenfunctions Φi are no longer orthonor-
mal along A. As a result the efficiency of Ia de-
teriorates as |A| decreases. In [1], in the case of
a 2D waveguide, we have introduced a method,
that is based on a projection of the array re-
sponse matrix on proper orthogonal functions,
which remarkably improves the performance of
Ia for small array apertures. A key role to our
approach, and to the extension to the 3D case,
plays the real, symmetric (Gram) matrix Aarr:

(Aarr)ij =

∫

A
Φi(z

′)Φj(z
′) dz′, i, j = 1, . . . ,M.

Let {νn,w(n)} be the eigenvalues (in descending
order) and corresponding orthonormal eigenvec-
tors of Aarr. It is easy to show that νn ∈ [0, 1].
Then, we define the functions

Sj(z
′) =

M∑

i=1

w
(j)
i Φi(z

′), j = 1, . . . ,M.

The Sj’s are doubly orthogonal in the sense that
they are orthonormal along C and orthogonal
along A and exhibit a prolate-like behavior. In
fact, in the 2D case they are clearly identified
as prolate or prolate-like wavefunctions; for de-
tails see [1] and the references therein. Next, we
project Π̂ on Sj, i.e.

Ŝij =
1

νiνj

∫

A

∫

A
Π̂rs(ω)Si(z

′
s)Sj(z

′
r) dz′

sdz′
r,

where it is to be understood that Ŝij = 0 when-
ever νi or νj = 0 (or, in practice, whenever they
are below a certain threshold). Finally, we de-
fine the projected array response matrix Q̂ as

Q̂ = W ŜW T , (2)

where W = (w(1),w(2), . . . ,w(M)). In the case
of a point scatterer, it can be shown that in this
way, as long as the eigenvalues νn remain above
a certain threshold, we recover the exact same
matrix as in (1) and, subsequently, the same
image as in the full-aperture case.

3 Numerical results

We consider a 3D terminating homogeneous wa-
veguide with constant rectangular cross-section
C = ([0, 10] × [0, 20])λ0, where λ0 is a reference
wavelength that corresponds to k0 = π/10. We
use a single frequency with k = 0.9875k0 . A 2D
square perfect reflector with sidelength 2λ0 is
placed parallel to the waveguide’s cross-section
centered at ~x ⋆ = (19, 5, 10)λ0 . In Figure 2 we
present some imaging results using Ia with ar-
rays of various shapes that cover roughly the
same area which is about 30% of the waveguide’s
(full-aperture) cross-section.
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Figure 2: Imaging using Ia with arrays of vari-
ous shapes covering covering about 30% of the
waveguide’s full aperture (with area ≃ 0.3 |C|).
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Abstract

A nonlinear optimization method is proposed
for inverse scattering problems in the frequency
domain. The time-harmonic inverse medium
problem is formulated as a PDE-constrained op-
timization problem and solved by an inexact
truncated Newton-type method combined with
frequency stepping. Instead of a grid-based dis-
crete representation combined with standard Ti-
khonov regularization, the unknown medium is
projected to a small finite-dimensional subspace,
which is iteratively adapted using dynamic thresh-
olding. Rigorous error estimates of the adaptive
eigenspace approximation are proved for an ar-
bitrary piecewise constant medium.
Keywords: Helmholtz equation, inverse scat-
tering, total variation, regularization

1 Inverse scattering problem

Let y be the solution of the Helmholtz equation,

−∇ · (u∇y) − ω2 y = f in Ω, (1)
∂y

∂n
− i

ω

c
y = g on Γ, (2)

in a bounded connected polygonal domain Ω ⊂
Rd, with boundary Γ. Here ω > 0 denotes the
wave frequency, u(x) = c2(x) denotes the (un-
known) squared wave speed inside Ω, n is the
unit outward normal to Γ, and f ∈ L2(Ω) and
g ∈ L2(Γ) are known sources.

To determine u, the inverse problem is for-
mulated as a PDE-constrained optimization prob-
lem with the standard L2-least-squares misfit
functional

J [u] =
1

2

Ns∑

`=1

‖y` − yobs
` ‖2L2(Γ) (3)

where for each ` = 1, . . . , Ns, y` = y`[u] is the
solution to (1)-(2) with f = f` and g = g`, and
yobs
` ∈ L2(Γ) is the observed data on the bound-
ary. To minimize J [u], we use a standard (inex-
act, truncated CG) Newton-like iteration.

Since the inverse problem is in general sev-
erly ill-posed, a Tikhonov (TV) regularization

term is typically added to the cost functional.
Here, we instead seek u in a finite-dimensional
subspace spanned by the first few eigenfunctions
of a linear elliptic operator, which itself depends
on the medium.

2 Adaptive eigenspace (AE) basis

During the optimization, we compute at each
iteration an approximation u∗ of the solution u
as a truncated expansion

u∗(x) =

K∑

k=1

βkϕ
k(x) (4)

where {ϕk}k≥1 are the eigenfunctions of the lin-
ear elliptic operator [1–3]

Lv = Lε[u]v = −∇· (µε[u]∇v) , (5)

with

µε[u] =
1√

|∇u|2 + ε2
, ε > 0. (6)

More precisely, for each k, the eigenpair (ϕk, λk)
satisfies

Lε[u]ϕk = λk ϕ
k in Ω, (7)

ϕk = 0 on Γ,

the sequence {λk} is nondecreasing with each
eigenvalue repeated according to its multiplicity,
and {ϕk} is orthonormal w.r.t. the L2(Ω) inner
product.

Note that for a piecewise constant function
u, (6) is not well-defined. Instead, we thus use
a more regular approximation uδ of u, e.g., a
projection of u into an H1-conforming finite el-
ement (FE) space. Although our analysis as-
sumes that uδ satisfy certain conditions, it does
not require uδ to be obtained by any specific
method. Hence, we distinguish the parameter δ
from the FE mesh parameter h.

3 Analysis of the AE approximation

We assume that u is piecewise constant,

u =

K∑

k=1

ukχk , uk ∈ R , uk 6= 0 , (8)
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where for each k, χk is the characteristic func-
tion of a set Ak compactly contained in Ω. For
δ > 0 and k = 1, . . . ,K, let Ukδ be the δ-neighbor-
hood of the boundary of Ak, Uδ =

⋃K
k=1 U

k
δ and

Dδ = Ω \ Uδ their complement.
Next, we introduce the more regular approx-

imation uδ of u. To include FE approximations
in our analysis, we consider the eigenvalue prob-
lem (7) in a closed subspace Vδ ⊂ H1

0 (Ω). For
each k = 1, . . . ,K, let {χkδ}δ>0 be such that
χkδ ∈ Vδ, and limδ→0 χ

k
δ = χk in L2(Ω), and set

uδ =

K∑

k=1

ukχkδ . (9)

Theorem 1 Let the sets A1, . . . , AK be open,
connected, satisfy the strong Lipschitz condition,
and with mutually disjoint boundaries. Suppose
for each k, the function χkδ ∈ Vδ satisfies ∇χkδ ∈
L∞(Ω), ∇χkδ = 0 a.e. in Ω \ Ukδ , and there ex-
ist p ∈ [1,∞] and C1 > 0, such that for every
sufficiently small δ, there holds

δ1−1/p‖∇χkδ‖Lp(Ω) ≤ C1 (10)

(with the usual convention 1/∞ := 0). Then
there exists a constant C > 0, such that for ev-
ery ε > 0, k = 1, . . . ,K and δ > 0 sufficiently
small there holds

‖∇ϕk‖2L2(Dδ)
≤ C ε

minj |uj |
. (11)

Here (ϕk, λk) are the eigenvalues and eigenfunc-
tions of Lε[uδ] in Vδ.

Essentially, estimate (11) implies that the
first K eigenfunctions ϕk of (7) are “almost”
constant in each connected component of Dδ.
Thus, for sufficiently small δ and ε, u in (8) can
be well approximated in the K dimensional sub-
space spanned by ϕ1, . . . , ϕK .

4 Numerical results

Here we consider a profile u which consists of
characteristic functions of two sets in Ω = (0, 1)2.
Figure 1 shows uδ, discretized with P 1-FE, and
the first two eigenfunctions ϕ1, ϕ2 ∈ Vδ of Lε.

Figure 2 shows results for an inverse medium
problem, given scattered wave data on Γ recorded
from eight separate Gaussian sources located
in Ω. Here, the AE Inversion Algorithm em-
ploys frequency stepping; it starts at a low fre-
quency and iteratively computes minimizers for

Figure 1: (left) true profile uδ; (middle-right)
the eigenfunctions ϕ1, ϕ2 of Lε in (7), ε = 10−8.

Figure 2: (left) observation yobs
2 ; reconstruction

without (middle) or with 20% noise (right).

data obtained at increasingly higher frequencies,
where each minimizer u(`) obtained for a fre-
quency ω` is used as an initial guess for the
minimization for ω`+1. At each frequency ω`,
we use the BFGS method to seek a minimizer
of (3) in the span of a finite dimensional basis
B` constructed iteratively as follows: At each
iteration, B` is obtained by combining the basis
B`−1 from the previous frequency ω`−1 with the
first few eigenfunctions of (5), with u replaced
by u(`−1), truncated via SVD. To ensure that
B` remains L2 orthogonal, we apply the modi-
fied Gram-Schmidt algorithm. Thus, we ensure
that the misfit essentially decreases monotoni-
cally even when we update the basis.
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Abstract

The �eld of machine learning is growing very
fast, with applications to many other �elds. We
propose applying advanced methods of learning
to the classical numerical solution for the wave
equation, allowing the solution of ill-posed prob-
lems with high accuracy for obstacle identi�ca-
tion.

Keywords: learning, inverse problem, source,
scatterer, sensors, neural network, convolution

1 Introduction

We investigate the solution of the acoustic wave
equation in a homogeneous medium with re�ect-
ing or absorbing boundaries. We synthetically
create a small eruption that generates a wave
propagation and insert a small number of sen-
sors in the medium. Information is stored, in
time, only at these sensors. We formulate our
main questions as inverse problems [1] -

• Source refocusing [6] - Given the medium
properties (boundary condition, scatter-
ers, wave velocity, sensors, etc.) we are
interested in �nding the location of the
source that started transmitting the acous-
tic waves.

• Obstacle identi�cation [4, 5] - Given the
medium properties and the source loca-
tion, but excluding the scatterers, we are
interested in the properties of the scat-
terers (location, size, shape, penetrability,
etc.).

Both problems are ill-posed so that a solution
does not necessarily exist and even when it does
it might not be unique. In addition, the solu-
tion is highly sensitive to perturbations in the
input data. Hence, when we have only noisy
partial knowledge - since we only record in a
small amount of sensors - we cannot retrieve the
solution in the entire domain. To aid us with the
lack of information we use learning.

In this work we discuss the problem of obsta-
cle identi�cation. The main goal is to locate an

arbitrary obstacle together with its shape. We
simulate a physical experimental with synthetic
data using the propagation of waves. Data is
stored at a small number of sensors for every
time step of the forward calculation of the wave
equation. We wish to use this stored data to
�nd the properties of the scatterers using learn-
ing techniques. In previous works [4�6] we found
that solving the wave equation backward in time
using this sensor information signi�cantly adds
to the robustness of the method especially with
regard to noise.

The proposed method involves using classi-
cal numerical methods for solving the problems
previously discussed, both forward and back-
ward in time, within a learning framework. We
construct physically informed models so the pro-
cess of learning will be part of the physical so-
lution (rather than a pre/post process).

2 Learner architecture

Given the measurements recorded in the sen-
sors we propose several methods of inferring the
properties of the scatterer. First, we address the
problem as a segmentation problem - modeling
the scatterer as a binary segment (each voxel is
either inside or outside the segment). We apply
several learning techniques such that the output
will be a probability tensor including the obsta-
cle (each voxel has a probability to be inside the
segment).

To enhance the robustness of our model to
noise and achieve faster convergence of the learner
we introduce a method that mimics the classical
regularization procedure for PDEs and adapt it
to the training process of the learner. Instead
of a common loss function we take in account a
weighted loss penalized with an equivalent to a
regularization term.

Another proposed method is exploiting the
time-reversibility of the wave equation. Instead
of using the recorded values in the sensors di-
rectly, we use the Time Reversal (TR) [2,3] pro-
cedure and a feature extraction algorithm spe-
cially constructed for the backward step of the
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TR. The interesting results we achieved using
this method show that using the TR procedure
adds additional independent information to the
learner, giving us better inferences (even though
the backward step was in fact simulated using
the same data from the sensors).

3 Noise

To determine how reliable our inferences are, we
introduce arti�cial noise to the data. There are
two types of noise to take into account -

• Noisy data (the more common type of noise)
- Every electrical component generates in-
ternal noise. Also, the wave equation does
not take in account all the physical pro-
cesses in the wave propagation. An un-
derwater environment may include noise
from unknown sources. Therefore, after
simulating the recording in the sensors we
synthetically add arti�cial normally dis-
tributed noise to the measurements.

• Noisy labels - When training the models
we use a learning set including recordings
with known scatterers. Some of the mea-
surements may have false labels.

We propose several methods to overcome the
negative e�ect of these types of noises on our
model and present the models accuracy given
the amount of noise.

4 Numerical results

Using a convolutional neural network with a very
simple architecture, we trained the model on
only 25,000 measurements (10% of them used
for testing) of arbitrarily shaped polygons (not
necessarily convex). After only 5 computer hours
of training (using nVidia's GTX1050 GPU) we
achieved an average of 60% intersection over
union score, i.e

IOU =
#(ytruth ∩ ypred)
#(ytruth ∪ ypred)

Training with more samples produced more ac-
curate results. As an example, we diaplay a non
convex polygon in Figure 1.

5 Conclusion

We considered the use of learning techniques for
ill-posed problems in partial di�erential equa-
tions. By using learning techniques that incor-
porate the numerical solution of the wave equa-
tion we were able to well approximate the shape

Figure 1: Non-convex polygon. Left: Predic-
tion, Right: Ground truth

and position of the scatterer based on time data
at only a few sensors.
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Abstract

The coupling of two-dimensional (2D) and one-
dimensional (1D) models to form a single hy-
brid 2D-1D model is considered, for the time-
dependent linear scalar wave equation and for
the equations of elastodynamics. The 1D model
is used to represent a 2D computational domain
where the solution behaves approximately in a
1D way. This hybrid model, if designed prop-
erly, is a more e�cient way to solve the full 2D
model for the entire problem. The paper fo-
cuses on the way the 2D-1D coupling is done,
and on the coupling error generated, and in do-
ing so compares three methods of coupling: the
Panasenko method, the Nitsche method and the
Dirichlet-to-Neumann (DtN) mapping mathod.

Keywords: coupling, mixed-dimensional, 2D-
1D, 1D-2D, Nitsche, Panasenko, DtN

1 Introduction

A reoccurring theme in computational mechan-
ics in recent years is the need to reduce the size
of large discrete models. One type of such a re-
duction is spatial dimensional reduction, which
one may perform in cases where the solution in
some region of a high-dimensional (HighD, say
3D) computational domain behaves in a low-
dimensional (LowD, say 1D) way. There are sev-
eral scenarios where this could be the case. Most
signi�cant is the scenario where the solution in
a certain region behaves in a way that is weakly
(or hardly) dependent on a certain coordinate,
relative to the other coordinates. Another pos-
sible scenario is when we are interested in the
solution within a geometrically slender region.
In this case we might be interested in the lateral
average of the solution within this region rather
than in its lateral distribution. Alternatively we
might already know the nature of the lateral dis-
tribution of the solution within this region and
wish to know the axial distribution. In these
cases, the lateral dimension is the dimension we
would eliminate, resulting in a LowD model.

Typically, the LowD model is employed as
an approximation to the HighD model in a par-

tial region of the spatial domain. The HighD
region is the region of interest where the LowD
approximation does not hold or does not provide
the details required for the analysis. The LowD
region is the `outer region' where the LowD ap-
proximation is believed to be valid (e.g., based
on asymptotic analysis). The LowD solution is
possibly of less interest in its details to the an-
alyzer, yet it a�ects the solution in the HighD
region signi�cantly. Denoting the LowD region
by Ω1 and the complementary HighD region by
Ω2, it is bene�cial to represent the problem by
a LowD model in Ω1 and by a HighD model
in Ω2. Then, one has to couple the two mod-
els via the interface between them. The hy-
brid HighD-LowD model, if designed properly,
is much more e�cient than the standard HighD
model taken for the entire problem. An impor-
tant issue related to such hybrid models is the
way in which the mixed-dimensional coupling is
done on the interface, and the coupling error
generated. If the mixed-dimensional coupling
performs poorly, this may deteriorate the accu-
racy of the whole computation.

In recent years, along with the increase in
the size and complexity of computational mod-
els, the scenario of mixed-dimensional (LowD-
HighD) coupling has drawn a lot of attention.
Fields of application where this scenario is of
special interest include, among others, the fol-
lowing:

• Blood-�ow analysis. Typically the HighD
model corresponds to a speci�c blood ves-
sel of interest in the human body and the
LowD model corresponds to the rest of the
blood system. An example can be found
in [1].

• Hydrological and geophysical �ow models.

Here the LowD region represents a collec-
tion of channel-like entities (rivers, �ood
streams, etc.) and the HighD region is
that of a large water body (a river delta,
a lake, etc.).

• Elastic structures. A number of LowD-
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HighD con�gurations exist in this appli-
cation �eld. In one of them the LowD
model consists of the slender parts of the
structure that have rod- or beam- or plate-
or shell-like behavior, and which typically
constitute most of the structure volume,
while the HighD parts are the regions that
have to be modeled as 3D elastic bodies.
Examples include the frame structure of
a car or an aircraft. The beam-like parts
of the structure exhibit 1D behavior, but
some small regions (the joints and parts
of the base) behave in a fully 3D man-
ner. Panasenko et al. have developed an
asymptotic-variational approach for such
structural problems, under static condi-
tions. See, e.g., [2].

Our focus in this work is the latter applica-
tion, although the coupling methods developed
are general and may be useful for other appli-
cations as well. We apply the proposed cou-
pling methods to wave problems governed by
the scalar wave equation and by the equations
of elastodynamics.

2 The hybrid model

After splitting the given problem into a 2D part
and a 1D part, thus creating a hybrid 2D-1D
model, we need to consider the interface condi-
tions imposed at the continuous level (i.e., be-
fore any discretization takes place). There are
two interface conditions: on the wave function
u (the pressure in acoustics, the displacement
vector in elastodynamics) and on its ��ux� (the
normal derivative ∂u/∂n in acoustics, the trac-
tion in elastodynamics). We impose pointwise
continuity on u (which also implies that u is uni-
form along the interface), and continuity in the
average sense on the ��ux.� We prove that the

hybrid model involving these two interface con-

ditions is well-posed.

3 The coupling methods

We shall consider three coupling methods. The
methods themselves are not new, but to the best
of out knowledge they have not been adopted
to the scenario of mixed-dimensional coupling,
except in the previous work of the �rst author
(but then only in the steady-state regime).

• The Panasenko coupling method. Here the
u-continuity condition is imposed strongly

and the �ux-continuity condition is im-
posed weakly. See [2] and [3]. The advan-
tage of this method is that it is very simple
to implement and produces accurate solu-
tions if one places the 2D-1D interface in
an appropriate location.

• The Nitsche coupling method. Here both
the u-continuity condition and the �ux-
continuity condition are imposed weakly;
see [4]. The Nitsche method results in a
symmetric �nite element formulation which
is stabilized via a special stabilization term.
We show that the Nitsche method is more
forgiving than the Panasenko method in
situations where the interface is placed deep
in the 2D regime.

• The Dirichlet-to-Neumann (DtN) coupling

method. Here information is passed at each
time-step between the 2D model and the
1D model by using the numerically-obtained
DtN mapping of the 1D model on the in-
terface. This method outperforms the other
two methods, although its implementation
is more involved.

By experimenting with various numerical ex-
amples, we shall investigate the performance of
the three methods, estimate the errors that each
of them generates, and compare between them
in accuracy and e�ciency.
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Abstract
In this work we consider the solution of the time
harmonic wave equation in a periodic medium and
we want to study the effects of rare random pertur-
bations of the medium. More precisely, we study a
one-dimensional periodic setting, in which each pe-
riod have a probability η to have its coefficients mod-
ified, independently of the other periods. The pertur-
bation is weak in the sense that it happens rarely but
when it happens the correction is of the order of the
initial coefficient. Our goal is to derive an asymp-
totic approximation of the solution uη with respect
to η.
Keywords: random media, periodic media, defects,
wave equation

1 Introduction

In this work, which is at its very first stage, we con-
sider the solution of the time harmonic wave equa-
tion in a periodic medium and we want to study the
effects of rare random perturbations of the medium.
More precisely, we study a one-dimensional periodic
medium, in which each period have a probability η
to have its coefficients modified, independently of
the other periods. Our goal is to derive an asymp-
totic approximation of the solution uη with respect
to η.

Our motivations are twofold. The idea of this
problem originates from a paper [2] by C. Le Bris
and A. Anantharaman who worked on this particu-
lar problem but in the context of homogenization to
model composite materials with defects. [3] and [4]
extend the framework to other random perturba-
tions but are still considering the homogenized prob-
lem. We want here to investigate the general regime
where homogenization techniques can not necessar-
ily be applied.

Our second motivation concerns the numerical
approximation of the solutions of the wave equations
in weakly perturbed periodic media in order to pro-
pose transparent boundary conditions. We wish to
build an easily computable and good approximation
of the random solution uη by using our expertise on
periodic media [1].

We present the model in Section 1 before prov-
ing the convergence of uη to the solution of the peri-
odic problem in Section 2 and developing first-order
approximations of E(uη) and uη in the last section.

2 Problem settings

Let (Ω,F ,P) be a probability space. Let (Bjη)j∈N be
independent Bernouilli random variables with pa-
rameter η ∈ [0, 1]. We consider a random medium
occupying N periods of length L > 0, characterised
by the following coefficients for (x, ω) ∈ [0, NL]×Ω

κη(x, ω) = κper(x) + bη(x, ω)κ̃per(x),

ρη(x, ω) = ρper(x) + bη(x, ω)ρ̃per(x),

where κper, κ̃per, ρper, ρ̃per are L-periodic functions

and bη(x, ω) =

N−1∑

j=0

1J(x)Bjη(ω), J = [jL, (j + 1)L].

We are interested in the solution uη of the wave
equation in this medium in the frequency domain.
More precisely, uη is the solution in L2(Ω, H2((0, NL))
of the equation



− ∂

∂x
κη

∂

∂x
uη − ρηk2uη = 0 in (0, NL),

uη(0) = 1, uη(NL) = 0.

(1)

where we suppose to simplify that =(k2) > 0. We
assume furthermore that there exist strictly non neg-
ative constants κ+, κ−, ρ+, ρ− such that almost ev-
erywhere

0 < κ− ≤ κper ≤ κ+, 0 < κ− ≤ κper + κ̃per ≤ κ+,

0 < ρ− ≤ ρper ≤ ρ+, 0 < ρ− ≤ ρper + ρ̃per ≤ ρ+.

We equip L2(Ω, V ) for V = L2((0, NL)),H1((0, NL))
or H2((0, NL)) with the norm

∀u ∈ L2(Ω, V ), ‖u‖L2(Ω,V ) =
√
E(‖u‖2V ).

3 Convergence of uη
We introduce uper the solution of the wave equa-
tion in the unperturbed domain. uper is the unique
solution in H2((0, NL)) of



− ∂

∂x
κper

∂

∂x
uper − k2ρperuper = 0 in (0, NL),

uper(0) = 1, uper(NL) = 0.

We prove that uη converges to uper as η → 0 in
L2(Ω, H1((0, NL)) at a rate of √η.
Theorem 1

‖uη − uper‖L2(Ω,H1((0,NL)) ≤ C
√
η‖uper‖H1((0,NL)),

where C =
max(κ+, ρ+|k|2)

=(k)|k|min
(
κ−
|k|2 , ρ−

) .

Thursday, 10:30, GM5 Praktikum, Building BA



Wave propagation and imaging in complex media 319

4 First-order corrections

In order to refine this approximation, we introduce
uj1,··· ,jp , the solution in a medium where exactly
only the periods J1, · · · , Jp are perturbed.

Let p ≥ 1. Let j1 < · · · < jp in [|0, N − 1|].
uj1,··· ,jp is the unique solution in H2((0, NL))





− ∂

∂x

(
κper +

p∑

m=1

1Jm κ̃per

)
∂

∂x
uj1,··· ,jp

−k2

(
ρper +

p∑

m=1

1Jm ρ̃per

)
uj1,··· ,jp = 0

in (0, NL),

uj1,··· ,jp(0) = 1, uj1,··· ,jp(NL) = 0.

For all ω ∈ Ω, we denote by Pω the set of integers
j ∈ [|0, N − 1|] such that Bjη(ω) = 1. uη can then be
written for all (x, ω) ∈ (0, NL)× Ω

uη(x, ω) = 1Pω=∅(ω)uper(x)

+
N∑

p=1

∑

j1<···<jp
1Pω={j1,··· ,jp}(ω)uj1,··· ,jp(x).

(2)
The expectation of uη has therefore the following
expression

E(uη) = (1− η)Nuper

+ηp(1− η)N−p
N∑

p=1

∑

j1<···<jp
uj1,··· ,jp ,

(3)

which yields directly to the following result.

Theorem 2

‖E(uη)− uper − η
N−1∑

j=0

vj‖H1((0,NL)) = O(η2),

where vj , j ∈ [|0, N − 1|] denotes uj − uper.

The first-order correction for E(uη) is the sum of
the difference between the solutions in a medium
with exactly one defect and uper, for all the different
possible defects. Higher order approximation can
also be derived from (3). The advantage of such
expansion is that each term is solution of a deter-
ministic problem set on a locally perturbed periodic
medium. Using (1), these problems can be solved
considering only cell problems with (κper, ρper) or
(κper + κ̃per, ρper + ρ̃per). Computationally, the res-
olution is then really cheap.

Unfortunately, adding this corrector to uη does
not change the rate of convergence of √η found in
Theorem 1 in L2(Ω, H1((0, NL)), even if the ap-
proximation seems to be slightly better. Figure 1
illustrates the different rates of convergence that we
exhibited so far.
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lo
g
(‖
·‖
L
2
(Ω
,H

1
((

0
,N
L

))
))

E(uη)− uper (slope: 0.8)
E(uη)− uper − η

∑
vj (slope: 1.7)

uη − uper (slope: 0.5)
uη − uper − η

∑
vj (slope: 0.7)

Figure 1: Rate of convergence of E(uη) and uη
and their first-order corrections

However, similarly as (3), one can obtain from
(2) asymptotic expansions for the expectation of any
smooth function of uη. This can be seen as an ap-
proximation in law in the first order in η of uη.
Higher order approximations can also be derived.

Theorem 3 For any ϕ ∈ C∞((0, NL))

‖E(ϕ(uη))−ϕ(uper)−η
N−1∑

j=0

ϕ(vj)‖H1((0,NL)) =O(η2).

(4)
We are currently working on improving the ap-

proximation that we built for uη. One of the ques-
tion reads: Is it possible to provide a good and de-
terministic approximation of uη in a stronger sense
than (4)? We are also investigating other types of
weakly randomly perturbed periodic media such as
stationary weakly correlated environments.
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Abstract
We consider a time-harmonic water waves prob-
lem in a 2D waveguide. The geometry is sym-
metric with respect to an axis orthogonal to the
direction of propagation of waves. Moreover,
the waveguide contains two floating obstacles
separated by a distance L. We study the be-
haviours of R (the reflection coefficient) and T
(the transmission coefficient) as L tends to +∞.
From this analysis, we exhibit situations of non
reflectivity (R = 0, |T | = 1) or perfect invisibil-
ity (R = 0, T = 1).
Keywords: water waves, waveguides, invisibil-
ity, asymptotic analysis

Introduction

y = −1

y = 0
x

y

x = 0 x = L

x = L/2

Figure 1: The waveguide ΩL.

We consider the propagation of water waves in
a 2D waveguide ΩL witch coincides with R ×
(−1; 0) outside of a bounded domain. We as-
sume that ΩL is symmetric with respect to the
vertical line x = L/2 and contains two floating
objects separated by a distance L (see Figure
1). This leads us to study the problem

∆u = 0 in ΩL

∂nu = λu on Γ0 := R× {0}
∂nu = 0 on ∂ΩL\Γ0

(1)

where λ > 0 is proportional to the square of the
frequency and ∂n stands for the outward normal
derivative. Define β > 0 such that β tan(β) =
λ. Only two waves w±(x, y) = e±iβx cosh(β(y+
1)) can propagate in ΩL. And (1) admits the
scattering solution

u = w+ +Rw− + ... for x < 0
Tw+ + ... for x > 0,

where R, T ∈ C and where the dots are terms
which are exponentially decaying at ±∞. Due

to conservation of energy, the reflection and trans-
mission coefficients satisfy |R|2+|T |2 = 1. Thus,
perfect invisibility implies non reflectivity but
the converse is not true in general. Working as
in [1], we compute an explicit asymptotic expan-
sion of R and T as L→ +∞. This allows us to
exhibit non reflecting geometries. Then playing
with an additional parameter, we explain how
to get not only |T | = 1 but also T = 1 (perfect
invisibility).

Half waveguide problems
In this section, we use the symmetry of the
problem to decompose it into two half waveg-
uide problems. Set ωL := {(x, y) ∈ ΩL, x <
L/2} and Σ := {0} × (−1; 0) (see Figure 2).

Σ

x = 0

y = −1

y = 0 x = L/2

Figure 2: The half waveguide ωL.

Consider the two problems

∆uD = 0 in ωL
∂nuD = λuD in Γ0
∂nuD = 0 in ∂ωL\Γ0
uD = 0 in Σ

∆uN = 0 in ωL
∂nuN = λuN in Γ0
∂nuN = 0 in ∂ωL\Γ0
∂nuN = 0 in Σ.

They admits solutions such that uD = w+ +
RDw

− + ... and uN = w+ + RNw
− + .... Here

RD, RN ∈ C and the dots are terms which are
exponentially decaying at −∞. Due to conser-
vation of energy, we have |RD| = |RN | = 1. We
can show that

R = RN +RD
2 ; T = (RN −RD)

2 e−iβL. (2)

Therefore, to obtain an asymptotic expansion
of R, T as L → +∞, it is enough to work on
RD, RN .
When L→ +∞, the limit geometry of ωL is the
domain ω∞ with just one floating object pic-
tured in Figure 3. We denote by

s =
(
r t
t r̃

)
∈ C2×2
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x
y

x = 0

y = −1

y = 0

Figure 3: The limit geometry ω∞.

the unitary scattering matrix of the propagation
problem set in ω∞. When rt 6= 0, as L→ +∞,
we can prove the expansions RD = RasyD + . . .
and RN = RasyN + . . . with

RasyD = r− t2

e−iβL + r̃
; RasyN = r− t2

−e−iβL + r̃
.

One can check that |RasyD | = |R
asy
N | = 1. Intro-

duce θD, θN , θasyD , θasyN ∈ R/(2πZ) the phases
of RD, RN , RasyD , RasyN . Finally, define

e := θD − θN − π; easy := θasyD − θasyN − π.

Non reflectivity
From (2), we see that we have R(L) = 0 if and
only if e(L) = 0. To prove that this occurs for
certain L, first we show that there is L? such
that easy(L?) = 0 and ∂Le

asy(L?) 6= 0. Then
using the exponential convergence of e(L) to
easy(L) when L → +∞, as well as the contin-
uous dependence of e(L) with respect to L, we
can obtain the desired result.

Theorem 1 Assume that rt 6= 0. Then there is
a sequence (Ln) of values of L such that R(Ln) =
0. And we have Ln+1 − Ln ∼

n→+∞
π/β.

−1 −0.5 0 0.5 1
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−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 Coefficient R
Coefficient T

Figure 4: R(L), T (L) for L ∈ (0.5; 7) (top).
Real part of the scattered field us = u−w+ for
L = 3.15 (bottom). In this case, R(L) ≈ 0 and
us is exponentially decaying in the left branch.

We illustrate this theorem in Figure 4. The
floating objects are half disks of radius 0.5. We
approximate numerically (FEM) the scattering
coefficients R(L), T (L) for L ∈ (0.5; 7). And we

observe that the curve L 7→ R(L) indeed passes
through zero. An example of non reflecting ge-
ometry is given in Figure 4.

Perfect transmission
Now we study the problem of imposing T = 1.
Using (2) and the expansions of RD, RN , we get

T = T asy + . . . with T asy =
t2e−2iβL

e−2iβL − r̃2.

Then a direct calculus shows that the curve
L 7→ T asy(L) passes through 1 if and only if
t ∈ R. This occurs for example when the float-
ing object is a demi ellipse of semi minor axe
0.3 and semi major axe l for l = l? ≈ 3.6 (see
Figure 5). With this notation, with the inverse
function theorem, we can prove the following
result.

Theorem 2 Assume that r(l?)t(l?) 6= 0. Then
there is a sequence (ln, Ln) converging to (l?,+∞)
such that T (ln, Ln) = 1. And we have Ln+1 −
Ln ∼

n→+∞
π/β.
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Coefficient t(l)
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Figure 5: Coefficients r(l), t(l) for l ∈ (0.5; 3.9)
(top left). Coefficients R(l?, L), T (l?, L) for L ∈
(0.5; 10) (top right). Real part of the scattered
field us = u−w+ for L = 2.9 and l = 3.6. In this
case, T (l, L) ≈ 0 and us is almost exponentially
decaying in the two branches.
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Abstract

Geophysical exploration can be formulated as a
minimization problem under constraints to get
quantitative information of the subsurface with
numerical simulations. In this work, we focus
on the Full Waveform Inversion governed by the
time-domain acoustic wave equation. Our ob-
jective is to revisit the inversion algorithm to as-
sess the influence of the numerical discretization
on the capability of FWI in retrieving the char-
acteristics of the propagation medium. In par-
ticular, we propose to analyze different meth-
ods for time integration while the space vari-
ations are approximated with a Discontinuous
Galerkin scheme.
Keywords: Full Waveform Inversion, Acoustic,
Time domain, Discontinuous Galerkin

1 Introduction

Geophysical exploration is increasingly using nu-
merical experiments to get information of the
subsurface, either kinematic or dynamic. The
underlying physical phenomenon is a wave equa-
tion like

1

µ

∂2u

∂t2
− div

(
1

ρ
∇u
)

= s(x, t),

where µ denotes the bulk modulus and ρ the
density of the propagation medium. We omit
here the boundary and initial conditions. The
wavefield u is the solution of the forward prob-
lem generated by the sourcefield s. By traveling
inside the subsurface, u is transformed into dif-
ferent waves including reflected waves recorded
by receivers. The objective of the Full Wave-
form Inversion (FWI) is to use this set of data
to reconstruct the propagation medium. It con-
sists in solving an inverse problem which aims
at retrieving µ and ρ from the seismic traces
provided by the receivers. The inversion algo-
rithm heavily involves the solution of the for-
ward problem and its adjoint. In 2D, the FWI

is mainly based upon harmonic wave equations
because its computational cost is really below
the one in time domain. In 3D, the competition
is in favor of time-domain simulations regarding
both the computational burden and the treat-
ment of the data which are intrinsically tem-
poral. The objective of this talk is to analyze
how the discretization of the forward and ad-
joint problems impacts on the efficiency of the
Time Domain FWI (TDFWI).

2 Full Waveform Inversion Algorithm

Let P be the map relating the physical param-
eters α = (µ, ρ) to the recorded seismic traces
coming from u. Let dobs be the set of real data
obtained from acquisition. Then, the result of
FWI is the set of parameters αopt which makes
the misfit between P (α, u) and dobs minimal.
We introduce the least-square misfit function
defined by

J(α, u) =
1

2
||P (α, u)− dobs||2,

where ||.|| stands for the L2-norm in time and
space. The minimization of J can be conducted
by applying a gradient descent algorithm which
is based upon an iterative process related to the
update of α as follows:

αi+1 = αi − δ∇αJ(αi)

The parameter δ corresponds to the step length
of the descent and i is the number of iterate.
This method requires then to compute the Fré-
chet derivatives of the forward solution which
can be very expensive. Fortunately, there is a
way to avoid the computation of the Fréchet
derivatives by introducing an auxiliary unknown
λ solution to

1

µ

∂2λ

∂t2
− div

(
1

ρ
∇λ
)

= s∗(x, t).

The unknown λ defines the adjoint state. The
adjoint problem depends on the source term s∗
which is defined by [1] s∗ = P ∗(P (α, u)− dobs).
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We can for instance consider the gradient ob-
tained by taken the derivative of the cost func-
tion by µ parameters.

∇µJ = −
∫ Tmax

0

∫

Ω
λ

1

µ2

∂2u

∂t2
dΩdt.

Here, Tmax denotes the final time of acqui-
sition.

The FWI algorithm can then be pictured as
in Fig. 1.

Initial model

Forward
problem

Cost
function

Observations

Gradient
computation

Adjoint
problem

Update
model

Figure 1: FWI algorithm

3 Numerical implementation

Mechanical waves are very sensitive to the to-
pography of the subsurface. In order to keep as
much information as possible from the seismic
traces, it is important to use accurate discretiza-
tion for the simulations. For that purpose, we
use DG elements which in addition allow h and
p adaptivity and are also suitable for massively
parallel computations [2]. In Fig. 2, we have
displayed the result obtained for the Marmousi
model. We have used 3rd order finite elements
and the time discretization has been done with
a Runge Kutta 2 time scheme.

We can see in Fig. 2 the cost function gra-
dient by the µ model (with noiseless sources).
This result validates the first loop of the FWI
algorithm. It remains to finalize the optimisa-
tion and make tests with different models.

Regarding the FWI algorithm, we have seen
that the gradient of the cost function is carried
out by solving an auxiliary problem defining the
adjoint state. At this point, we have two op-
tions: the first one consists in using the same
numerical scheme to discretize both the adjoint
problem and the forward one; the second option
consists in deriving the adjoint of the numeri-
cal scheme used for the forward problem. The

Initial µ Model

µ Gradient

Compute Gradient
Update model

(Ideal) Final µ Model

Convergency Tests Passed

Figure 2: Algorithm illustration on Marmousi

second method passes exactly the adjoint test
and guarantees the inversibility of the Hessian
of J . However, it requires to implement and to
optimize two different numerical schemes.

This question has been addressed in [4] for
finite difference methods and the conclusion is
that the best option could be the first one. We
compare, here, the impact of the two strategies
in a RK-DG schemes context. We also ana-
lyze the effect of the basis functions (Lagrange
or Bézier polynomials) and of the time schemes
(RK2, RK4, AB3) on the efficiency of the FWI
algorithm.
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Abstract

We present a re�ection matrix approach for wave
imaging through heterogeneous media. The idea
is that a wide range of information can be ob-
tained via the mathematical projection of the re-
�ection matrix between various geometrical bases.
This approach enables compensation for com-
mon imaging problems such as aberration, mul-
tiple scattering and multiple re�ections. Here,
the concepts are introduced and demonstrated
in the context of ultrasound imaging.

Keywords: matrix approach, acoustics, imag-
ing, scattering, wave propagation

1 Introduction

Classical wave imaging is limited in depth and
resolution by variations in the refractive index
of the medium under investigation. When such
variations cause the equivalence of time-of-�ight
and target to be lost, then conventional imag-
ing techniques fail. Slow variations cause dis-
tortion of the propagating wavefront, aberrat-
ing the resulting image, while smaller variations
cause multiple scattering, adding noise to the
image. Most conventional imaging modalities
in re�ection, such as ultrasonic echography or
optical coherence tomography, are based on a
temporal and confocal discrimination of singly-
scattered waves. However, e�ects such as distor-
tion result in a temporal and spatial `spreading'
of the point spread function. This loss of in-
formation inherent in the confocal approach is
especially signi�cant in heterogeneous media.

To overcome the fundamental limits of aber-
ration and multiple scattering, there has been a
growing interest in matrix approaches for imag-
ing. These consist of the acquisition of an entire
matrix of responses between di�erent inputs and
outputs, whether in transmission or re�ection.
While most of the work in this area has to date
been performed in the transmission geometry,
the re�ection matrix [1] (the more relevant for
non-invasive medical imaging) also has diverse
potential for transport and control. However,
only a few studies have attempted to apply this

approach to imaging [2�4]. Here, we present
a re�ection matrix approach for wave imaging
that can cope with issues such as aberration and
multiple scattering. The method is based on the
projection of the re�ection matrix between var-
ious geometrical bases, which enables informa-
tion not available with confocal approaches to
be extracted and exploited.

2 Imaging with the re�ection matrix

In general, the re�ection matrix R can be de-
scribed as mapping the responses between points
of a geometrical basis to points located in an-
other (or the same) basis. For ultrasound imag-
ing performed with a transducer array, three
bases are relevant : the transducer, far-�eld and
focused bases [Fig. 2(a)]. In principle, R can be
acquired experimentally in any of these bases
via beamforming: for example, by emitting and
receiving with individual elements of the array
(whose locations are de�ned by vector u), R is
acquired in the transducer basis, now expressed
as Ruu. Emitting/receiving plane waves of dif-
ferent angles θ gives Rθθ (the far-�eld). Using
focused beams would giveRrr in the focused ba-
sis (focal points located at r ≡ x+ ẑz, where x
is lateral position and z is depth); however, such
acquisition sequences are prohibitively time con-
suming, as scanning of the focused beam in re-
ception is required for each emission. Happily
Rrr can be calculated fromR in any other basis.

Sound propagation between points of any
two bases can be described by a matrix of appro-
priate Green's functions. For example, propaga-
tion between the far-�eld and the focused bases
is modeled by Gθr(ω), whose elements are

Gθr (rin, θin, ω) = e[ik(zin cos θin+xin sin θin)], (1)

where ω = 2πf is the angular frequency of the
waves and k = ω/c is the wave number. Thus,
Rθθ can be projected into the focused basis via:

Rrr =
∑

δω

G∗θr (ω)×Rθθ(ω)×G†θr (ω) (2)

where ∗ is the complex conjugate, † the conju-
gate transpose, × represents a matrix product
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conventional
ultrasound imaging

x (mm) x (mm)

(a) (b)

Figure 1: (a) The ultrasonic transducer array is placed in contact with a breast phantom. The
transducer basis corresponds to points in vector u. The far-�eld basis corresponds to emission/reception
of plane-waves with di�erent angles θ. Images are calculated from the diagonal of Rrr, (b) assuming
a spatially-invariant speed of sound, and (c) using c(z). (d) c(z) for the breast phantom is shown. (e)
A map of multiple scattering inside the phantom is shown superimposed on the image.

and δω is the acoustic bandwidth.
Rrr can be thought of as containing responses

between virtual transducers distributed through-
out the medium [2]. The signal in the diagonal
elements of Rrr is equivalent to that obtained
using confocal methods; thus, images [Fig. 2(b,c)]
are calculated via I (x, z) ≡ R (rin = rout). How-
ever, the o�-diagonal elements hold an abun-
dance of additional information. In particular,
they enable a direct measurement of focus qual-
ity everywhere inside the medium � an objective
measure of image reliability. We can further-
more calculate spatial maps of medium param-
eters such as the amount of multiple scattering
(an important bio-marker for tissue), and sound
speed as a function of depth c(z) [Fig. 2(e,d)].
Knowledge of c(z) enables the calculation of a
clean image even through layers of fat or muscle
tissue. As shown in Fig. 2(c), this method can
uncover hidden features such as microcalci�ca-
tions (a bio-marker for cancer).

Finally, examining the re�ection matrix in
di�erent bases gives di�erent information; for
example, Rθθ is sensitive to multiple re�ections
between parallel surfaces, thus enabling suppres-
sion of this signal for better imaging.

3 Conclusion

The re�ection matrix holds much more informa-
tion than is available with conventional imaging
techniques. By studying this matrix in various
geometrical bases, we can measure the spatial

variation of sound speed and multiple scatter-
ing, and compensate for wavefront distortion
and multiple re�ections in heterogeneous media.
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Abstract

I will present the concept of random anti-lasing,
i.e., the time-reverse of random lasing. In the
same way as a random laser emits a spatially
complex but coherent wave at its first lasing
threshold, the random anti-laser absorbs such
a complex incoming field perfectly. We recently
implemented this concept in a microwave exper-
iment, where an absorber is embedded in the
middle of a disordered medium [1]. Measuring
the 8×8 scattering matrix of this structure al-
lows us to calculate and then generate an incom-
ing wave field that gets absorbed by more then
99.7% inside the disorder. Our setup is scalable
in the number of involved modes and can easily
be transferred to other wave scattering systems.
Keywords: wave scattering, disordered media,
wave front shaping

1 Introduction and Theory

A very promising concept that has emerged from
the field of non-Hermitian wave engineering is
that of coherent perfect absorption [2–4] – an ef-
fect corresponding to the time-reversal of coher-
ent emission of radiation at the lasing threshold.
Coherent perfect absorbers (CPAs) have already
been realized in a number of experiments [3, 4],
but have remained limited to setups involving
simple slab geometries. Here we combine the
concept of coherent perfect absorption with that
of random lasing [5]. A random laser is a disor-
dered gain medium that is pumped sufficiently
strongly to emit coherent laser light. Time-
reversing such a random laser mode results in
a highly complex wave state that impinges on
the disordered structure and gets perfectly ab-
sorbed there (without any back-reflection to the
asymptotic region).

The crucial quantity behind the CPA con-
cept is the scattering matrix S, which relates
the injected fields to the outgoing ones, ψout =
Sψin. In Hermitian systems, zeros of the S-

matrix are generally located in the upper half
(Im(ν) > 0) of the complex plane of frequency
ν, whereas poles are located in the lower half
(Im(ν) < 0). Adding gain to the system moves
the poles up towards the real ν-axis where the
system turns into a random laser as soon as the
first pole hits the real ν-axis. Conversely, adding
loss to the medium will turn it into a random
anti-laser (disordered CPA) at those frequencies
and loss values where one of the S-matrix zeros
crosses the real ν-axis. At these parameter con-
figurations, a random anti-laser mode ψCPA is
an eigenstate of the S-matrix with eigenvalue
λCPA = 0, i.e. SψCPA = 0, where ψCPA is the
incoming radiation field and the empty 0-field is
the outgoing one.

2 Experimental realization

Our experimental setup consists of an aluminum
waveguide where a disordered medium is imple-
mented by 60 randomly placed cylindrical Teflon
scatterers, see Fig. 1a. Four transverse modes
are open at the operation frequency, requiring
four antennas on each side (left and right) to
control all degrees of freedom of the injected
microwave field. The absorption strength inside
the waveguide can be tuned by simply varying
the length of a monopole antenna placed in the
center of the scattering region. This microwave
setup allows us to measure the full scattering
matrix of the disordered medium as well as to
inject arbitrarily shaped wavefronts into the dis-
order. Our experimental procedure to realize a
random anti-laser is now the following: we first
measure the S-matrix of the system as a func-
tion of frequency (in a broad interval to ensure
that many S-matrix zeros are contained in it)
and of the absorption strength of the central
absorbing antenna (as determined by the pen-
etration depth into the waveguide). In a next
step, we evaluate the eigenvalues of these S-
matrices and identify those parameter configu-
rations for which the absolute value of the small-
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Figure 1: (a) Experimental setup of the random anti-laser: microwaves are injected through eight
external antennas into an aluminum waveguide, which contains a set of randomly placed Teflon scat-
terers emulating a disordered medium (the top plate covering the entire waveguide is not shown). A
monopole antenna in the center of the disordered region (central antenna) absorbs the microwave field
with a degree that can be tuned by its penetration into the waveguide. (b) Scattering signatures of a
CPA state: Ratio between outgoing (Iout) and incoming (Iin) intensity of a CPA state injected by the
external antennas compared to the reflection signal R measured at the central antenna when injecting
microwaves there.

est S-matrix eigenvalue dips almost to zero. In
the last step, we inject the S-matrix eigenstate
with the smallest eigenvalue (the CPA state)
into the system and evaluate its properties, in
particular its degree of absorption.

3 Results and Discussion

Following the protocol outlined in section 2, we
find CPA states whose injected intensity gets
absorbed by more than 99.78%, as illustrated
by the blue curve in Fig. 1b that shows the ra-
tio between the outgoing and the incoming mi-
crowave intensity (Iout/Iin) of a CPA state as a
function of the signal frequency. Since we expect
that a CPA state is primarily absorbed by the
central antenna (and less by global absorption
in the metallic waveguide), the time-reverse of
this state should be a harmonic signal that en-
ters through the central antenna without any
back-reflection. Indeed, we find by injecting mi-
crowaves through the central antenna that its
frequency-dependent reflection coefficient |R|2
shows a pronounced minimum close to the fre-
quency where we found the CPA state indepen-
dently, see red dashed curve in Fig. 1b.

4 Conclusions

In summary, we present the first experimental
realization of a random anti-laser, which pro-
vides proof of principle that coherent perfect ab-

sorption can also be realized in arbitrarily com-
posed systems such as in disordered media. We
expect our findings [1] to be relevant for practi-
cal applications such as perfect focusing of elec-
tromagnetic signals and sound fields in complex
environments such as in an office space or in bio-
logical tissue. Our results also serve as a bridge
between the two highly active communities of
wavefront shaping and non-Hermitian physics.
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Abstract

We derive the stochastic differential equation
(SDE) that models the scattering by a target
embedded in a dynamic random medium for two
target models: homodyned K scattering (HK)
and generalized K scattering (GK). Using Euler-
Maruyama’s scheme, we approximate the tran-
sition probabilities of the reflectivity. Using the
Markov property, we can express the likelihood
of a time-series. We show that it is possible
to analytically maximize the likelihood with re-
spect to a complex parameter Ψc. Using numer-
ical experiments, the performances of the result-
ing maximum likelihood (ML) estimator for Ψc

are assessed and illustrated.
Keywords: random media, stochastic differen-
tial equations, Markov processes, target

1 Introduction

For remote sensing applications, a target of in-
terest should generally be placed in a complex
natural or urbanized environment. A typical
approach to model these multiple and heteroge-
neous environments is to consider them as gath-
erings of random scatterers. In static case, the
quantification of the electromagnetic field re-
flected by these random scatterers and what is
scattered by the target can raise some modeling
difficulties. However, for fluctuating problems,
the modeling issue becomes significantly harder
and the identification of model parameters is far
more challenging. This is due to the fact that,
when electromagnetic waves are emitted toward
a time-evolving random medium, the complex
reflectivity of the medium, called clutter, is un-
predictable.

Statistical models for the clutter Ψt have
long been developed. More specifically, the ran-
dom walk model (see [1]) represents Ψ

(cl)
t as a

sum of contributions from a population of dis-
crete scatterers in the limit of infinitely many
scatterers. zt = |Ψt|2 is known to beK-distributed
for all t, but the dynamics of Ψt or zt are unspec-
ified and independence for t, t + ∆t is usually

assumed [2]. This is a limit for target detection
schemes since this assumption breaks down for
small ∆t. We propose to use Field’s model (see
[3] and [4]), which is an extension of the random
walk model and represents the clutter as a prod-
uct Ψ

(cl)
t = x

1/2
t γt where xt and γt = γ

(R)
t +iγ

(I)
t

solve the SDEs:




dxt = A(1− xt)dt+
(
2Aαxt

) 1
2 dW

(x)
t

dγ
(R)
t = −1

2Bγ
(R)
t dt+ 1√

2
B 1

2 dW
(R)
t

dγ
(I)
t = −1

2Bγ
(I)
t dt+ 1√

2
B 1

2 dW
(I)
t .

(1)

xt is a R+-valued slow process for the local power,
and γt is a C-valued fast process for the scatter-
ers phase decoherence, and theWt processes are
brownian motions. The model is parameterized
by three constants A, B and α, whose estima-
tion has been addressed in [5].

2 Contributions

Two models of target are proposed in [3]. HK
scattering assumes that the target reflectivity
is a complex constant Ψc, while GK scattering
assumes that the target reflectivity is Ψcxt, i.e.:

Ψt = x
1/2
t γt + Ψc (HK scattering)

Ψt = x
1/2
t γt + Ψcxt (GK scattering).

If Ψt has real and imaginary parts Rt and It, we
derive SDEs for the multidimensional stochastic
process Yt =

[
xt Rt It

]>. We obtain:



dxt
dRt
dIt


 = β

(iK)
Ψc

(xt, Rt, It) dt

+ Σ
(iK)
Ψc

(xt, Rt, It)




dW
(x)
t

dW
(R)
t

dW
(I)
t


 (2)

where iK refers either to HK or GK, β(iK)
Ψc

is a
3D vector and Σ

(iK)
Ψc

a 3 × 3 matrix. Applying
Euler-Maruyama’s scheme [6] to (2), we get:

Yt+∆t ≈ Yt + β
(iK)
Ψc

(Yt) ∆t

+ Σ
(iK)
Ψc

(Yt) ∆Wt, (3)
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where the brownian increment ∆Wt is multi-
variate Gaussian distributed. Equation (3) is
used to obtain Gaussian approximations for the
transition probabilities pΨc(Yt+∆t = y |Yt = x).
This approximation is relevant for small ∆t, which
is the case for high sampling frequency observa-
tion systems, such as radars over the sea sur-
face [7]. If a time series Ỹ = {Ỹ0, Ỹ1, . . . , Ỹn} of
Yt is observed at times t0 < t1 < · · · < tn, its
likelihood is then by the Markov property:

LΨc = pΨc

(
Ỹ0

) n∏

k=1

pΨc(Ytk = Ỹk|Ytk−1
= Ỹk−1).

(4)
If Ψc is unknown, we state that a good estima-
tor for it is the value Ψ̃c which maximizes the
likelihood (4). Expression the optimality condi-
tion:

∂LΨc

∂Ψc

(
Ψ̃c

)
= 0, (5)

we obtain analytical expressions for Ψ̃c in both
HK and GK scattering as a function of the ob-
served time series Ỹ :

Ψ̃(HK)
c = F (Ỹ ) (6)

Ψ̃(GK)
c = G(Ỹ ). (7)

Equations (6) and (7) express ML estimators
for the target constant Ψc. They would lead
naturally to target detection scheme in a ran-
dom medium. Numerical simulations more spe-
cific to radar remote sensing of the sea surface
are carried out to evaluate the ML estimators
of Ψc in comparison with a naive ergodicity-
based estimator. It is shown that the estima-
tion bias is negligible and that the estimation
variance is low for both HK and GK scatter-
ing. Dependence to the intensity |Ψc|2 of the
target and to the duration of Ỹ are studied. It
is shown that mostly in GK scattering (interac-
tion between the target and random medium)
does ML provide a significant advantage over
the ergodicity-based estimator. The contribu-
tion reported above corresponds to an area of
research on which we are working very activelly
and we continue to improve, [8].
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Abstract

We build stochastic models for synthetic aper-
ture radar (SAR) imaging of targets that exhibit
delayed scattering. Detection of scattering de-
lay in SAR is hindered by the range-delay am-
biguity, and the stochasticity of scattering adds
uncertainty to the result. Using Monte-Carlo
simulations, we obtain ensembles of coordinate-
delay SAR images of instantaneous and delayed
targets. Then, we explore the separation of
likelihood-based metrics for those ensembles.
Keywords: SAR, range-delay ambiguity,
Monte-Carlo simulation, Hellinger distance

1 Coordinate-delay SAR

By detecting and analyzing the scattering delay,
we can learn important geometrical information
about radar targets such as the presence of cav-
ities, their internal structure, and characteristic
size. Following [1], we will consider targets for
which the relation between the incident ui and
scattered us fields is local in space and non-local
in time. It is rendered by the spatio-temporal
reflectivity function ν(tz , z ):

us(t, z ) =

∫ ∞

0
ui(t− tz , z )ν(tz , z ) dtz . (1)

The coordinate-delay SAR (cdSAR) image
is built from a series of scattering events with
signals transmitted and received from the lo-
cations xn spaced over the synthetic aperture:
I(ty ,y) =

∑
n

∫
P (t− ty ,n)us(t,xn) dt. In this

formula, ty ,n = ty + 2|xn − y |/c is the sum of
scattering and propagation delays, and P is the
complex conjugate of the frequency modulated
transmitted pulse: P (t) = e−iω0te−iBt

2/(2τ),
|t| 6 τ , where B and τ are pulse bandwidth and
duration, respectively. In the linearized setting
(1), the image is given by a convolution operator

I(ty ,y) =

∫ ∞

0
dtz

∫
dz ν(tz , z )W (ty ,y ; tz , z ),

(2)
with the kernel defined as

W

Nτ
= e−2iξω0/B sinc ξ

∫ 1/2

−1/2
e2iηseiκξrs

2
ds. (3)

In (3), sincx = sin(x)/x, ξr = B(y2−z2) sin θ/c,
ξd = B(ty − tz )/2, ξ = ξr + ξd, κ = ϕ2

Tω0/B, N
is the number of pulses per the synthetic array,
η = ϕTω0(y1 − z1) sin θ/c, ϕT is the angular
aperture size, θ is the incident angle, and the
indices 1 and 2 denote the cross-range and range
coordinates, respectively.

The range-delay ambiguity is due to a com-
bination of range- and time-dependent terms in
ξ, and is controlled by the value of κ. If κ→ 0,
then the integral in (3) is just sinc η. Hence, the
dependence of W on ξr disappears and the two
terms in ξ cannot be separated. In this case, we
see that the cdSAR image (2) will be constant
along the lines y2 sin θ + cty/2 = const.

2 Stochastic scatterers and cdSAR

Speckle in SAR [2] is seen as rapid and strong
variations of the observed reflectivity of an ex-
tended scatterer whereas the true quantities of
interest vary gradually and smoothly. Due to
a large parameter ω0/B in the exponent in (3),
the kernel in (2) oscillates rapidly and thus em-
phasizes the singularities of ν in the directions z2
and tz . Typically, the reflectivity is rough on the
scale of the wavelength λ0 = 2πc/ω0, while the
size of the resolution cell in range is ∼ c/B �
λ0. The following stochastic model proved ef-
fective in standard SAR [2]. It simulates a large
number of point scatterers that are randomly
positioned inside each resolution cell and repre-
sent the singularities of ν:

νb(tz , z ) = δ(tz )µb(z ). (4)

In (4), µb(z ) is a two-dimensional circular Gaus-
sian white random field:

〈µb(z )〉 = 0,
〈
µb(z )µb(z ′)

〉
= σ2bδ(z − z ′).

(5)
In (5), σ2b is a deterministic parameter that char-
acterizes the average reflectivity of a homoge-
neous extended scatterer.

As an extension to (4)–(5), we introduce two
new stochastic scatterer models: νt is a delayed
point scatterer and νs is an inhomogeneous in-
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stantaneous scatterer:

νt(tz , z ) = µt(Btz/2)δ(z − zd), (6)
νs(tz , z ) = µs

(
B(z2 − zd2) sin θ/c

)

· δ(tz )δ(z1 − zd1), (7)

where zd = (zd1, zd2, 0) is the reference location
of the inhomogeneity. In (6)–(7), µs,t(ξ) are in-
homogeneous one-dimensional circular Gaussian
white random processes described by

〈
µs,t(ξ)µs,t(ξ

′)
〉

= σ2s,tF (ξ)δ(ξ − ξ′),
where σ2s and σ2t are the averaged reflectivities
of the corresponding scatterers, 0 6 F 6 1, and
we choose F (ξ) = 0 for ξ < 0 to account for
the causality in (1). The justification for intro-
ducing stochasticity for νt may be seen in the
presence of multiple cavity eigenmodes and/or
multipath reflection. The form of F will char-
acterize the scatterer: we choose F (ξ) = 1 for
0 6 ξ 6 ξmax and zero otherwise, where ξmax

describes the maximum scattering delay.
The reflectivities νs and νt of (6)–(7) are

built so that they produce similar cdSAR im-
ages when the range-delay ambiguity is not re-
solved, e.g., when κ → 0 (Section 1). Hence,
we will use (6)–(7) to explore our ability to dis-
tinguish between the instantaneous and delayed
scatterers. The background (clutter) (4)–(5) is
added to (6)–(7) to create the overall reflectivity

ν = νb + νt or ν = νb + νs. (8)

3 Monte-Carlo simulations

The autocorrelation of a cdSAR image can be
obtained by substituting models (8) with (4)–
(7) into (2) and subsequent averaging. Then,
for given intensities σ2b, σ

2
s , and σ2t , we can use

the Monte-Carlo method to manufacture ensem-
bles of cdSAR images (i.e., arrays of pixel values
Q) due to one of the two models in (8) with the
corresponding multivariate Gaussian statistics.
Optionally, we can add to the result an uncor-
related circular Gaussian term to represent the
noise. If, on the other hand, we have an array
Q randomly generated as above or obtained by
observations, then we can use the same statis-
tics to calculate the probability density function
(pdf) of Q due to either of these models. De-
noting these likelihood functions by ps(Q) ≡
ps(Q;σ2b, σ

2
s) and pt(Q) ≡ pt(Q;σ2b, σ

2
t ), we cal-

culate

p̆t(Q) = max
σ2
b,σ

2
t

pt(Q), p̆s(Q) = max
σ2
b,σ

2
s

ps(Q).

Other parameters, such as zd, can be added to
the set of optimization variables.

Although the multivariate Gaussian models
can yield any data with nonzero pdf, we ex-
pect that on average, p̆t(Q) > p̆s(Q) for the
data produced from the first model in (8), and
p̆t(Q) 6 p̆s(Q) for the second one. In order
to characterize the separation between the two
models numerically, we use the Hellinger dis-
tance H[f, g] between two pdfs, f(x) and g(x),
defined as H[f, g] = 1

2

∫ (√
f(x) −

√
g(x)

)2
dx,

see [3]. In the limiting cases, H[f, g] = 1 when f
and g are completely disjoint, and H[f, f ] = 0.

Figure 1: Plot of the Hellinger distance vs. ξmax.

We calculate the Hellinger distance between
the pdfs of log

(
p̆t(Q)/p̆s(Q)

)
for the ensembles

generated according to the two models in (8).
Figure 1 plots this distance for two different val-
ues of signal to clutter and noise ratio (SCNR)
and κ = 1/4. We can see that with high SCNR
and large scattering delays ξmax, the models in
(8) are safely distinguishable.
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Abstract. We establish a leading-order asymptotic mo-
del for the scattering of elastodynamic fields by small
surface-breaking defects in elastic solids. The asymp-
totic form of the representation formula of the scattered
field is written in terms of the elastodynamic Green’s
tensor, which is in fact available in semi-analytical form
for some geometrical configurations that are of practical
interest in ultrasonic NDT configurations.

Keywords: elastodynamics, surface-breaking defect,
asymptotic expansion

Asymptotic formulations for the scattering of
waves by small obstacles embedded in the inte-
rior of the propagation domain has elicited sig-
nificant attention (especially so for obstacles in
the free space Rd), see e.g. [1, 2]. This com-
munication addresses a different case which has
received comparatively little attention so far,
namely that of superficial obstacles (such as in-
dentations) lying at the (possibly curved) sur-
face of a spatially bounded medium.

As a practical motivation, asymptotic mod-
els of the kind considered here will be useful for
modelling non-destructive testing of embedded
pipes, tubes and composite plates. In addition
to permitting good interpretation of fields scat-
tered by small superficial defects at moderate
computational costs, even for 3D situations, this
work paves the way towards versions of imaging
methods such as the topological derivative [2,3]
specifically aimed at finding flaws lying at the
inner or outer surface of tested structures.

Elastodynamic scattering by a small sur-
face-breaking defect Let a reference elastic
solid body occupy the open domain Ω ⊂ R3

(with material characterized by the elasticity
tensor C and the mass density ρ). We consider a
flawed solid Ωε,z featuring a small indentation of
characteristic radius ε around a point z of the
surface S := ∂Ω, consisting in matter removal
occurring in a small volume vε,z ⊂ Ω adjacent
to S (Fig. ??). The surface S is smooth and
traction-free in a neighborhood of z. A time-
harmonic excitation (e.g. tractions on a surface
portion separated from z) is applied to either

Ssε,z

Ωε,z

z
vε,z

Figure 1: Two-scale asymptotics: notation.

solid Ω and Ωε,z, giving rise to displacement
fields u and uε, respectively.

The scattered displacement field vε :=uε−u
caused by the superficial flaw can be shown to
satisfy the boundary integral equation (BIE)

1

2
vε(x) +

∫

sε,z

t[Gk
ω(y,x)]·vε dSy

= −
∫

sε,z

Gω(y,x)·t[u](y) dSy x∈ sε,z, (1)

where sε,z := Ω∩ ∂vε,z, t[w] := n ·C : ∇sw de-
fines the traction operator, andGω is the elasto-
dynamic Green’s tensor of Ω satisfying suitable
homogeneous boundary conditions on S (in par-
ticular t[Gk

ω(·,x)] = 0 on S near z).
Following the intuitive idea that the flawed

solid resembles an indented half-space when ob-
served near z at the (small) length scale ε, we in-
troduce the half-space E := {x̃ = (x̃′, x̃3), x̃3 <
0} (with x̃′ := (x̃1, x̃2)) and let points x ∈Ω in
a neighborhood U of z be parameterized as

x = Φ(x̃) := z+ x̃′+F (x̃′)e3 + x̃3n(x̃′)

where the C2 function F is such that x= z+x̃′+
F (x̃′)e3 gives a local parametrization of S, and
verifies F (0) = ∂1F (0) = ∂2F (0) = ∂12F (0) = 0.
Then, letting V denote a fixed indentation made
to E around its origin, a family of indentations
vε,z of vanishing size ε is defined through

x = Φ(εx̄), x∈ vε,z, x̄∈V
allowing to map vε,z and sε,z on fixed sets of
parametric coordinates as ε varies.

The asymptotic behavior of vε as ε → 0
is now found by (a) setting y = Φ(εȳ) and
x= Φ(εx̄) in (1), (b) seeking the leading-order
limiting form of the resulting integral equation
(whose support is now the fixed surface S :=
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∂V∩E) and (c) interpreting that limiting equa-
tion in terms of a BVP. Step (b) relies on the
following representation of Gω near z:

Proposition 1 Let (ỹ, x̃)∈E×E 7→ GE
0 (ỹ, x̃)

denote the elastostatic Green’s tensor of E sat-
isfying the traction-free condition on ∂E. Let
V := U ∩Ω. There exist tensor-valued kernel
functions H and Hc such that for any V ×V 3
(y,x) = Φ(ỹ, x̃) the decomposition
Gω(y,x) = GE

0 (ỹ, x̃)+H(ỹ, x̃; x̃)+Hc(y,x)

holds. Moreover: (i) Hc(·,x) ∈ H1(V ) with
‖Hc(·,x)‖H1(V ) ≤ C uniformly in x ∈ V , (ii)
c 7→H(a, b; c) is C1 for all a 6= b, (iii) (a, b) 7→
H(a, b; c) is positively homogeneous with degree
-1, and (iv) H(a, b; 0) = 0 for all a 6= b.
Proof. The given decomposition is established by recast-
ing a BVP governing Gz in V using the rectified coordi-
nates x̃, in particular (i) finding the BVP in E defining
H and using its partial Fourier version to show homo-
geneity, and (ii) (by linear superposition) showing that
Hc solves a weak problem to which the Lax-Milgram
lemma is applicable. �

Using Prop. 1 with y = Φ(εȳ), x= Φ(εx̄), and
observing that (ȳ, x̄) 7→ GE

0 (ȳ, x̄) is also posi-
tively homogeneous with degree -1, we find

Gω(y,x) = ε−1GE
0 (ȳ, x̄) + o(1),

t[Gω](y,x) = ε−2t[GE
0 ](ȳ, x̄) + o(ε−1)

i.e. Gω is dominated as the length scale van-
ishes by GE

0 . This, together with dSy = (1 +
o(1))ε2 dSȳ, allows to show that the limiting
form of (1) is an elastostatic integral equation
for a displacement field in EV :=E\V (the half-
space with a normalized indentation). More pre-
cisely, the asymptotic approximation of vε on
the flaw surface sε,z is found as follows:
Theorem 1 The following expansion holds, in
H1/2(sε,z) norm:

vε(x) = εV (x̄)+o(ε), x= Φ(εx̄), x̄∈S,
where V solves the elastostatic BVP in EV :

L0V = 0 in EV , |V | → 0 for |x̄| → ∞
t[V ] =n·C :∇su(z) on S,
t[V ] = 0 on ∂EV \S

Proof. The shown BVP results from interpreting the
leading-order limiting BIE. The given expansion of vε
is justified using the BIE solved by the expansion error,
showing that its r.h.s. decays fast enough in H1/2(sε,z)

norm w.r.t. ε and its governing integral operator is
boundedly invertible (uniformly for small enough ε). �

Then, the limiting form of the integral represen-
tation theorem applied to vε(x),x 6= z becomes

vε(x) = ε3|V|
{∇sGω(z,x) :A :∇su(z)

− ρω2Gω(z,x)·u(z)
}

+ o(ε3), (2)

where the elastic moment tensor (EMT) A is
given explicitly in terms of V .

Discussion The asymptotic representation for-
mula (2) relies on the elastodynamic Green’s
tensor Gω for the defect-free solid. While Gω

has in general to be evaluated numerically, it is
available in analytical form (in Fourier/Laplace
variables associated with space/time) for some
configurations (plates, tubes) that are of interest
in NDT modelling, including in cases where ma-
terial properties are anisotropic or layered [4].

The structure of formula (2) is the same as in
the case of small internal defects. The surface-
breaking nature of the defect is reflected in (i)
the choice of Green’s tensor and (ii) the value
of the EMT A being determined by V . The
latter does not depend on whether S is planar or
curved at z (whileGω depends on the curvature
of S). In Prop. 1, H = 0 if S is locally planar.

The foregoing analysis applies equally when
time is treated in the Laplace domain rather
than the frequency domain.

Numerical examples. We will present sim-
ulations of the scattering of an incident field by
corrosion pits at the external surface of a cylin-
drical tube, considering various shapes for the
flaw (half-ball, half-cube, triangular occlusion)
for which the EMT is first computed using the
FEM. These simulations exploit a previously-
established semi-analytic formulation of the rel-
evant Green’s tensor [4].
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Abstract

We develop reduced models to approximate the
solution of scattering problem by electromag-
netic obstacles that are small in comparison with
the wavelength. Using the matched asymptotic
expansions method, we investigate a meshless
multi-scale approach where the scatterers are
represented by equivalent point-sources. In the
context of multiple scattering, we deduce from
this a Foldy-Lax approximation whose accuracy
and e�ciency are illustrated with numerical sim-
ulations.

Keywords: Reduced models, Maxwell's equa-
tions, Multiple scattering

Introduction

The propagation of time-harmonic electromag-
netic waves of angular frequency ω > 0 in a ho-
mogeneous and isotropic dielectric in�nite medium
of electric permittivity ε > 0 and magnetic per-
meability µ > 0 is described by an incident wave

Re
(
Einc(x) exp(−iωt)

)
, x ∈ R3, t > 0.

In the presence of a small and smooth auto-
similar obstacle ωδ = δω ⊂ R3 centered at
the origin, whose characteristic length δ is very
small compared to the wavelength λ = 2π

ω
√
µε ,

the wave is scattered and gives birth to electro-
magnetic �elds Eδ and Hδ satisfying the time-
harmonic Maxwell equations

{
∇×Eδ − iκHδ = 0,

∇×Hδ + iκEδ = 0,

where κ = 2π
λ denotes the wave-number. For

a perfectly conducting obstacle, the domain of
propagation Ωδ is the exterior domain R3 \ ωδ
and the boundary condition reads as

n×Eδ = −n×Einc on ∂ωδ.

The existence of a unique solution is guaranteed
by the hypothesis of outgoing wave at in�nity
given by the Silver-Müller radiation condition,

lim
|x|→∞

|x| (Hδ × x̂−Eδ) = 0 unif. in x̂ =
x

|x| .

Numerical techniques based on a discrete ap-
proximation of the geometry are limited and
very expensive due to the smallness of the ob-
stacle. To overcome these di�culties, we investi-
gate two meshless approaches involving approxi-
mate solutions of the exterior Maxwell problem.

Equivalent point-source modeling

The �rst one is a volumical approach based on
the method of matched asymptotic expansions
[1]. This method consists in constructing dis-
tinct expansions of the solution in di�erent re-
gions of the domain of propagation with appro-
priate scales, and matching them in an inter-
mediate region called the matching area. Far
from the obstacle, the obstacle is modeled like
a dipolar source around the origin. As a result,

Eδ ∼
δ→0
Eelec[deδ ] + Emag[d

h

δ ], (1)

where Eelec[deδ ] (resp. Emag[d
h

δ ]) is the electric
�eld generated by an electric (resp. magnetic)
dipole of moment deδ ∈ C3 (resp. dhδ ∈ C3),
given by

Eelec[d](x) =
exp(iκr)

r

[(
2

r2
− 2iκ

r

)
(d · x̂)x̂

+

(
− 1

r2
+

iκ

r
+ κ2

)
(x̂× d)× x̂

]
,

Emag[d](x) =
exp(iκr)

r

(
1

r
− iκ

)
(iκd) × x̂,

where r = |x|. For the single-scattering case,
the dipole moments will depend on the inci-
dent �eld, size and location of the scatterer.
In particular, for a spherical obstacle, we have
deδ = δ3Einc(0) and dhδ = − δ3

2 Hinc(0). For
the multiple-scattering case, each obstacle ωkδ =
ck+δω (k = 1, . . . ,Nobs) is modeled as a dipolar
source around its center ck. Following (1), the
electric �eld is approximated by

Nobs∑

k=1

Eelec[deδ,k](x− ck) + Emag[d
h

δ,k](x− ck).
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According to Foldy-Lax theory, the dipole mo-
ments depend not only on the incident �elds,
but also on all the other scattered �elds,

deδ,k =δ3α(δ)
{
Einc(ck)+

Nobs∑

`=1, ` 6=k
Eelec[deδ,`](ck − c`) + Emag[d

h

δ,`](ck − c`)
}
,

with a similar expression for the magnetic mo-
ments dhδ,k. These expressions lead to a vecto-
rial formulation involving 6Nobs unknowns. The
coe�cient α(δ) di�ers with di�erent levels of ap-
proximation. We de�ne

α(δ) =





1 : �rst Foldy model,

1 +
3(κδ)2

10
: collected Foldy model,

3i

2(κδ)3

j1(κδ)

h
(1)
1 (κδ)

: modi�ed Foldy model,

where j1 and h
(1)
1 denote the bessel function and

the hankel function of the �rst kind, of order
1. The Born approximations are de�ned by ne-
glecting the interactions between the obstacles.

Spectral method: the reference solution

The electric �eld has the integral representation

Eδ(x) =

Nobs∑

k=1

∇×
∫

∂ωkδ

Φ(x, y)pk(y)dsy, x ∈ Ωδ,

where Φ(x, y) = exp(iκ|x−y|)
4π|x−y| denotes the Green

function associated to the Helmholtz equation.
The tangential densities pk solve the following
boundary integral equations

Nobs∑

`=1

Mk`
Γ p` = −n×Einc on ∂ωkδ , (2)

where the magnetic potentialsMk`
Γ λ are de�ned

as an extension of

n(xΓ)× lim
x→xΓ

(
∇×

∫

∂ω`δ

Φ(x, y)λ(y) dsy

)
,

with xΓ ∈ ∂ωkδ . The spectral method [2] con-
sists in discretizing (2) into a local spectral basis
associated with the vectorial Laplace-Beltrami
operator with Nmod modes. For spherical obsta-
cles, the basis is composed of the vector spheri-
cal harmonics ∇SYn,m, curlSYn,m,

p` =

Nmod∑

n=1

n∑

m=−n
p`,⊥n,m∇SY

`
n,m + p`,×n,mcurlSY

`
n,m,

where Y `
n,m(x̂) = Yn,m(x̂− c`). This formula-

tion leads to the linear system developed in [3]
with 2Nmod(Nmod + 2)Nobs degrees of freedom.
The matrix becomes more ill-conditionned as
the number of obstacles grows or the size of ob-
stacles decreases. We make use of linear algebra
tools, preconditionners and iterative solvers to
perform simulations with thousands of spheres.

Numerical tests

The asymptotic models are validated with the
spectral method, itself validated with �nite el-
ement solutions provided by Montjoie code, in
spherical geometries. Figure 1 shows the per-
formance of the reduced models. The incident
wave is an electromagnetic plane wave of wave-
length λ = 1.0 and the medium contains �ve
aligned spheres of radius δ varying between 10−0.5

and 10−2.75 . The reference solution is the spec-
tral solution truncated at the order Nmod = 10.

0 1 2

−1

0

1

x

z

−1

0

1

2

3

(a) Reference (real part)
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101
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1st Foldy

Col. Born

Col. Foldy

Mod. Foldy

(b) Distance ∝ λ
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√
δ
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10−3
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Figure 1: Relative L2-error depending on the
obstacle size computed in the domain delimited
by spheres of respective radius 15λ and 16λ.
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Abstract

We are interested in resonance frequencies of
two dimensional dielectric cavities—a compo-
nent of optical micro-resonators—and more spe-
cifically in resonances corresponding to whis-
pering gallery modes (WGM). WGM are opti-
cal waves with high polar mode index, circling
around the cavity and almost perfectly guided
by total internal reflection. For a cavity of gen-
eral shape with a varying optical index n (grad-
ed index optical cavity), using a phase ampli-
tude ansatz, we have obtained asymptotic ex-
pansions of resonances as the polar mode index
becomes large. We have also found sufficient
conditions linking the curvature of the cavity
boundary and the optical index for such expan-
sions to hold.
Keywords: Helmholtz transmission problem;
Resonances; WKB method.

1 Problem setting

Resonant modes in an optical micro-cavity are
particular time-harmonic solutions to the source
free Maxwell equations inside and outside the
dielectric cavity. We consider a 2D setting, a
situation that arises as a simplification of the
3D resonance problem, e.g. by using the effec-
tive index approach. It is well know that the 2D
Maxwell setting is the combination of two sub-
systems of equations referred to as transverse
electric (TE) and transverse magnetic (TM). For
brevity we report here only for the TM case.

We denote by Ω the bounded domain in R2

describing the dielectric cavity. The optical in-
dex n is 1 outside Ω and coincides with a smooth
function n > 1 in Ω. The resonance problem can
be formulated as: Find (k, u) ∈ C × H2

loc(R2)
with u 6= 0 such that

−∆u− k2 n2 u = 0 in R2, (1a)

u(r, θ) =
∑

m∈Z
cmH(1)

m (kr) eimθ r > R0. (1b)

Here H
(1)
m refers to Hankel function of the first

kind of orderm. Equation (1b) expresses the ra-

diation condition at infinity in polar coordinates
for R0 large enough. For real k, it corresponds
to the outgoing Sommerfeld’s condition. It is
known that the solutions (k, u) to problem (1)
are such that k has a negative imaginary part.

For a circular cavity with constant index,
asymptotic expansions of the resonances can be
obtained using expansions of Bessel functions
[1]. When n is not constant in Ω, this approach
is not applicable.

2 Disk cavity with radially varying index

Let R be the radius of the disk and assume n
is a smooth radial function r 7→ n(r). Then
problem (1) can be reduced to a family of 1D
radial problems depending on an integer m ∈ Z
referred as the polar mode index :

− 1

m2
Lw + V w = λw (4)

where V (r) =
[
n(R)R
n(r) r

]2
−1 is an effective poten-

tial, k = m
Rn(R)

√
1 + λ and Lw = n(R)2R2

n(r)2 r
(rw′)′

is an elliptic operator. Since V (R−) = 0 and
V (R+) = n(R)2 − 1 > 0, we have a potential
barrier at r = R. We note that V ′(R−) = −2κ̆
where

κ̆ =
1

R
+
n′(R)

n(R)
. (5)

We have identified three typical behaviors [2] for
the solutions of (4), depending on the sign of
κ̆, relying on the spectral theory of Schrödinger
operators.
a) Half-triangular potential well. If κ̆ > 0
then V is decreasing in a left neighborhood of
R and has a local minimum at R. We have
obtained an asymptotic expansion of the reso-
nances in the form k = mKa(m

− 1
3 ) for a func-

tion Ka in C∞([0, 1]) with determined Taylor ex-
pansion at 0. Moreover, the (quasi)mode u lo-
calizes at the boundary.
b) Half-quadratic potential well. If κ̆ = 0,
under the additional condition 2

R2 − n′′(R)
n(R) > 0

the effective potential V has a local minimum
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at R. Our expansion is now k = mKb(m−
1
2 )

for another function Kb ∈ C∞([0, 1]). Again,
the (quasi)mode u localizes at the boundary.
c) Internal quadratic potential well. If κ̆ < 0,
since limr↘0 V (r) = +∞, the effective potential
V has at least a global minimum r0 in (0, R).
Under the condition 2

r20
− n′′(r0)

n(r0)
> 0 and that r0

is the unique global minimum of V , our expan-
sion has again the form k = mKc(m

− 1
2 ) with

a different function Kc ∈ C∞([0, 1]), and now u
localizes inside the cavity around r = r0.

3 General cavity with variable index

In the general case, the phase function is not
known and we have used a phase amplitude ansatz,
the famous WKB method, to find asymptotic
expressions of the resonances in tubular coordi-
nates along the boundary of Ω [2]. This leads to
an eikonal equation coupled with a Schrödinger
equation. A small parameter h appears natu-
rally, and has to be quantized so that the phase
is well-defined, giving rise to a generalized no-
tion of polar mode index. We have constructed
quasi-resonances (k, u) in the sense of [3] in a
similar, but more general, form than in case a)
above, when the condition κ + ∂νn

n > 0 is ful-
filled all along ∂Ω where κ is the curvature of
∂Ω. The asymptotic expansions are computed
using a computer algebra system.

The advantage of the asymptotic formulas
we have obtained is twofold. They provide ac-
curate approximations of resonances at high fre-
quencies when the use of standard numerical
approximation is difficult. For lower frequen-
cies, combined with finite element (FE) com-
putations, they provide information on the lo-
calization of the resonances in the FE matrix
spectrum.

4 Numerical Experiments

For numerical illustration we consider an elliptic
cavity with perimeter L and constant index n.
Our 4-term asymptotic expansion of k reads

k
[4]
j (m) =

2πm

Ln

[
1+

aj
2
〈κ 2

3 〉h
2
3
m−

n〈κ〉
2
√
n2 − 1

hm

+
a2j
12

(
〈κ 2

3 〉2 − 〈κ
4
3 〉

10
− 4

45
〈κ′2κ− 8

3 〉
)
h

4
3
m

− ajn0

12
√
n2 − 1

(
〈κ 2

3 〉〈κ〉+
〈κ 5

3 〉
n2 − 1

)
h

5
3
m

]

as m → +∞, where hm = L
πm and 〈·〉 is the

mean value along ∂Ω. Here j is a natural integer
(radial mode index) and aj is the j-th zero of the
reverse Airy function x 7→ Ai(−x).

On Figure 1, we have compared our N -terms
asymptotic expansion to FE computation for an
ellipse of semi-major axis 1 and eccentricity 0.5
with constant index n = 5. We have used a Per-
fectly Matched Layer with a structured quadran-
gular mesh of geometric degree 3 and a FE space
of degree 7 with 64156 dofs. For N = 0, k[0]0 (m)

is the principal term 2πm
Ln , for N = 1, k[1]0 (m) is

k
[0]
0 (m) plus one corrective term, etc. Note that,

problem (1) has two solutions for each m.

5 10 20 30
m

10−5

10−4

10−3

10−2

10−1

N=0
N=1
N=2
N=3
N=4

Figure 1: Relative difference between FE reso-
nances and N -terms asymptotic expansions, for
j = 0. The slopes of the solid lines are −N+2

3 .
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Abstract

We study the stabilization of Euler–Maxwell mod-
el in a cold plasma in the presence of a static ex-
ternal magnetic field. This model corresponds
to the coupling between linearized Euler equa-
tion in two particle species and a Maxwell sys-
tem. We show that the model is well-posed for
two types of boundary conditions: perfectly con-
ducting (metallic) and Silver–Müller (absorbing).
We prove the strong stability of the system in a
closed subspace of the energy space.
Keywords: electromagnetism, stabilization

1 Introduction

Let Ω ⊂ R3 be a bounded open set, which rep-
resents the plasma volume in the tokamak with
static external time-invariant magnetic field [3].
We consider the following linearised Euler–Maxwell
model for (t,x) ∈ R+ × Ω:

∂J1

∂t
= ε0 ω2

p1 E + Ωc1 J1 ∧ b − ν1 J1 ; (1)

∂J2

∂t
= ε0 ω2

p2 E + Ωc2 J2 ∧ b − ν2 J2 ; (2)

∂E

∂t
= c2 rotB − 1

ε0
J1 − 1

ε0
J2 ; (3)

∂B

∂t
= − rotE ; (4)

where the indices 1 and 2 denote the particle
species: ion and electron. The variable coeffi-
cients depending on x are: νs the collision fre-
quency, ωps the plasma pulsation, Ωcs the cy-
clotron pulsation of the species s, and b the di-
rection of the external magnetic field.
The boundary conditions on Γ = ∂Ω are as fol-
lows. On the conducting part ΓP 6= ∅, it holds
that

E ∧ n = 0 on ΓP , (5)

while on the (possibly vanishing) absorbing part
ΓA = Γ \ ΓP , one has the Silver–Müller bound-
ary condition:

E ∧ n + cB⊤ = g(t,x) on ΓA, (6)

where g is given. Moreover, Js, E and B are
given at time t = 0.

2 Well-posedness of the system

To prove an existence and uniqueness result for
the Euler–Maxwell model (1)-(4) with various
boundary conditions, we re-write it as a system
of evolution equations:

{
u′(t) = Au(t),
u(0) = u0,

(7)

where A is a linear operator given by the formula

A =




−M1 0 ε0 ω2
p1 0

0 −M2 ε0 ω2
p2 0

− 1
ε0

− 1
ε0

0 c2 rot

0 0 −rot 0


 ,

with Ms ∈ M3,3(R) such that

Ωcsb ∧ v + νsv = Msv, ∀v ∈ R3,

u(t) =




J1(t)
J2(t)
E(t)
B(t)


 and u′(t) its derivative.

The well-posedness of problem (7) follows from
semi-group theory, in particular the Hille–Yosida
theorem, in the appropriate Hilbert space, namely
X = L2(Ω)

4, endowed with the scalar prod-

uct and norm (u | w)X :=

(
1

ε0 ω2
p1

u1 | w1

)
+

(
1

ε0 ω2
p2

u2 | w2

)
+ (ε0 u3 | w3)

+
(
c2ε0 u4 | w4

)
and ‖u‖X := (u | u)

1
2
X.

There are two cases, according to the boundary
conditions.

2.1 Perfectly conducting boundary con-
ditions

We assume that (5) holds on the whole bound-
ary, i.e., ΓP = Γ, ΓA = ∅. The unbounded op-
erator associated with the abstract problem (7)
on X, noted (D(A1), A1), is defined as

D(A1) = L2(Ω)×L2(Ω)×H0(rot; Ω)×H(rot; Ω)

and A1u = Au for all u in D(A1). The operator
A1 is a maximal dissipative [5]; thus if u0 ∈
D(A1) there exists a unique strong solution
u ∈ C1([0,+∞[;X) ∩ C([0,+∞[;D(A1)).
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2.2 Silver–Müller boundary conditions

In this case, we assume that ΓA 6= ∅ and ΓP 6= ∅.
First, we study the homogeneous case g = 0.

We define the operator A2 from X into itself
associated with the evolution problem (7) with
conditions (5)–(6) as follows:

D(A2) = L2(Ω) × L2(Ω) × H,

where

H = {(w1,w2) ∈ HP
0 (rot; Ω) × H(rot; Ω) :

w1 ∧ n + cw2⊤ = 0 on ΓA},

and A2u = Au for all u in D(A2). Again [5],
A2 is maximal dissipative, hence the existence
and uniqueness of a strong solution to this prob-
lem. The non-homogeneous case g 6= 0 can then
be handled by a lifting of the boundary data un-
der appropriate conditions on g.

In a second step, one recovers in both cases [5]
Maxwell’s divergence equations and the condi-
tion B · n = 0 on ΓP as usual.

3 Strong stability

The decay of the energy of the system

E(t) = 1
2‖(J1,J2,E,B)T ‖2

X

is guaranteed under suitable conditions on νs,
ωps and Ωcs.

As the resolvents of our operators are not
compact, in order to show strong stability we
will use the following theorem due to Arendt–
Batty and Lyubich–Vu [1, 4].

Theorem 1 (Arendt–Batty/Lyubich–Vu). Let X
be a reflexive Banach space and let (T(t))t≥0 be
a C0 semi-group on X of generated A. Assume
that (T(t))t≥0 is bounded and that no eigenval-
ues of A lie on the imagenary axis. If σ(A)∩ iR
is countable, then (T(t))t≥0 is stable i.e for all
x ∈ X, lim

x→∞
T(t)x = 0.

With the aim of applications to tokamaks, we
consider that the domain Ω is not simply con-
nected, but its boundary Γ is connected. We in-
troduce the cuts (Σj)1≤j≤J as usual [2]. We be-
gin with the perfectly conducting case. Setting
HΣ

0 (div0;Ω) := {v ∈ H0(div0;Ω) : 〈v·n, 1〉Σj =
0, 1 6 j 6 J}, we define

X̃ := L2(Ω) × L2(Ω) × L2(Ω) × HΣ
0 (div0;Ω).

X̃ is a closed subspace of X endowed by the
same scalar produt (. | .)X.
After a spectral analysis of the operator A1 car-
ried out on the imaginary axis, we introduce a
unbounded operator on X̃, noted (D(Ã1), Ã1)
defined by

D(Ã1) = D(A1) ∩ X̃.

and Ã1u = A1u, for all u in D(Ã1).
As a consequence of Theorem 1, it holds

that:

Theorem 2 The operator Ã1 is strongly stable.

The proof of strong stability with the Silver–
Müller condition is similar and in progress.
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Abstract

In this paper we use the homogenization the-
ory and a definition of two-scale convergence to
elliptic problems defined on domains consisting
of curves located in a plane with certain peri-
odic properties. Using this approach we prove
that family of solutions of diffusion equations
defined on graphs in a plane with repeating pe-
riodic unit cells converges to the solution of ap-
propriate diffusion equation defined on the sub-
set of plane, when unit cells size converge to
zero.We additionally show how to perform for-
mal analysis (which in this setting gives the cor-
rect limit model) and show several examples of
various unit cells appearing in the domain.

1 Introduction

Let us consider a one-dimensional manifold ΓY ⊂
(0, 1)2 that can be described as an oriented, con-
nected and periodic graph structure whose edges
admit a regular enough parametrization. Let Ω
be a connected Lipschitz domain, and let Γδ be
the plane mesh illustrated in Fig. 1 and defined
by

Γδ := Ω ∩
( ⋃

(n1,n2)∈Z2

δ
(
ΓY + n1e1 + n2e2

))

Let ΓD ⊂ ∂Ω be a part of the boundary
of Ω that corresponds to a finite union of line
segments of positive length. For any δ, let us
introduce ΓδD := ∂ΓD ∩ ∂Γδ and

Hδ :=
{
v ∈ H1(Γδ) such that v = 0 on ΓδD

}

On this domain, we consider the heat equa-
tion, written in a weak formulation: given T >
0, f δ ∈ L2(0, T ; L2(Γδ)) and the initial tempera-
ture uδinit ∈ Hδ, find uδ ∈ L2(0, T ;Hδ) such that,
for any v ∈ Hδ,

ρcp

∫

Γδ
∂tu

δ(t,x)v(x) ds(x)

+

∫

Γδ
a(x)∂Γu

δ(t,x)∂Γv(x) ds(x)

=

∫

Γδ
f δ(t,x)v(x) ds(x), (1)

and
uδ(0, ·) = uδinit;

here ρ is the mass density of the material, cp is
the specific heat capacity that are considered as
constants, a : Ω → R the thermal conductiv-
ity that is a positive continuous function that is
uniformly bounded from below, i.e.,

min
x∈Ω

a(x) > 0,

and ∂Γv designates the derivate of v along the
graph Γδ or ΓY .

To stress the passage from the 1D mesh Γδ

to the 2D domain Ω we call the two-scale con-
vergence in this paper the mesh two-scale con-
vergence.

Definition 1 (Mesh two-scale convergence)
We say that family of function (vδ) ∈ L2(0, T ; L2(Γδ))
for δ → 0 is "mesh two-scale convergent" to
v0 ∈ L2(0, T ; L2(Ω; L2(ΓY ))) if for each ψ ∈
C∞(0, T ;C∞(Ω;C∞(ΓY ))) we have

lim
δ→0

∫ T

0

∫

Γδ
vδ(t,x)ψ

(
t,x, xδ

)
ds(x) dt

=

∫ T

0

∫

Ω

∫

ΓY

v0(t,x,y)ψ(t,x,y) ds(y) dxdt.

In the following, we are interested by the
two-scale limit u0 of the solution uδ of the heat
equation (1). To do so, we develop a two-scale
homogenization procedure, in a spirit of what

Figure 1: Example of an admissible one-
dimensional periodic domain Γδ (left) and the
associated unit pattern ΓY (right).
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can be found in [1, 2], with the additional pres-
ence of the time-dependency. In particular, the
two-scale limit u0 is stated by the following the-
orem.

Theorem 2 (Two-scale convergence)
Let f δ(t,x) = f

(
t,x, xδ

)
for all δ > 0 with

f ∈ L2(0, T ; L2(ΓY ;C(Ω))),

and uδinit(x) = uinit
(
x) with

uinit ∈ C1(Ω), uinit = 0 on ΓD,

and let for δ > 0, uδ ∈ L2(0, T ;Hδ) be such that
∂tu

δ ∈ L2(0, T ; L2(Γδ)) be the unique solution
of (1). Then (uδ)δ>0 mesh two-scale converges
to the function u0 which is the unique solution
of the problem: find u0 ∈ L2(0, T ;H) such that
∂tu

0 ∈ L2(0, T ; L2(Ω)), where

H :=
{
v ∈ H1(Ω) : v = 0 on ΓD

}
,

such that

ρcp

∫

Ω
∂tu

0(t,x)v(x) dx

+

∫

Ω

(
Ahom(x)∇u0(t,x)

)
· ∇v(x) dx

=

∫

Ω
fhom(t,x)v(x) dx, (2)

and
u0(t,x) = uinit

(
x), x ∈ Ω,

where

fhom =
1

|ΓY |

∫

|ΓY |
f(·, ·,y) ds(y)

and where the 2-by-2 symmetric and positive def-
inite homogenized thermal conductivity tensor
Ahom(x) is given by

Ahom(x) :=
a(x)

|ΓY |

∫

|ΓY |
(t(y) + ∂ΓΦ(y))

(t(y) + ∂ΓΦ(y))T ds(y),

where t(y) is the tangent vector defined on ΓY
and Φ := (φ1, φ2) ∈ H1(ΓY )2 is a periodic func-
tion defined componentwise on ΓY as any solu-
tion of the canonical problem
∫

ΓY

∂Γφi(y)∂Γψ(y) ds(y)

= −
∫

ΓY

t(y) · ei∂Γψ(y) ds(y),

for any smooth periodic function ψ.

Figure 2: Left: plot of the solution uδ(T ) for
T = 2 and δ = 1/8. Right: Plot of the homoge-
nized solution u0(T ) for the same time and using
the same color values.
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Figure 3: Relative L2(Γδ) error as a function
of δ for T = 2. The dashed line is at δ = 1/8.

We shall also see that numeric computation
of the solution of (1) tends to the solution of (2),
qualitatively (see Fig. 2) and quantitatively. In
particular, we will seek numerically that the rel-
ative L2-error on Γδ between uδ and u0 scales
like at most like δ and reduces fast depending
on the pattern of ΓY (see Fig.2).
Keywords: Heat equation, two-scale homoge-
nization, numerical methods
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Abstract

Solutions of a problem about an arbitrary dis-
continuity disintegration for the generalized Hopf
equation are under investigation. The solution
is constructed from a sequence of the non-overtur-
ning Riemann waves and discontinuities having
the stable stationary and non-stationary struc-
ture. The influence of small-scale effects of dis-
sipation and dispersion are analyzed. Small-
scale processes determine a discontinuity struc-
ture and a set of discontinuities with stationary
structures. Among discontinuities with station-
ary structures there are special ones on which
(in addition to relations following from conser-
vation laws) some additional relations should be
satisfied which follow from the requirement for
the discontinuity structure to exist. The ex-
istence of special discontinuities leads to non-
unique way to construct self-similar solutions to
the problem of arbitrary discontinuity disinte-
gration.
Keywords: special discontinuities, nonlinear
hyperbolic systems of equations, travelling wave
solution

1 Introduction

Special discontinuities, for example, deflagration
waves, are known for a long time. These dis-
continuities are described as undercompressive
shock wave [1, 2] and non-classical one [3] are
used. We shall use the term a special disconti-
nuity introduced in [4].

The solutions of nonlinear hyperbolic sys-
tems of equations are studied. To the hyperbolic
system we add terms describing small-scale pro-
cesses of dispersion and dissipation. Solutions
of this supplemented system are smoothed dis-
continuous solutions of the initial system. The
solution in the form of travelling wave for the
supplemented system is called a stationary dis-
continuity structure. Among all discontinuities
with stationary structures we select special dis-
continuities, their structures are described by
integral curves joining two saddle points. The

condition for such a curve to exist is called an
additional condition on a discontinuity [4].This
condition following from the requirement for a
stationary structure to exist provides the evolu-
tional character of a discontinuity [5].

If the initial system can have a special dis-
continuity as a solution, the problem of arbi-
trary discontinuity disintegration for this system
can have non-unique solution [4, 6–9].

2 Special discontinuities for longitudinal
waves propagating in visco-elastic rods
with complicated nonlinearity

Special discontinuities in longitudinal waves prop-
agating in visco-elastic rods were considered in
[4,6–8] (see also the references). Special discon-
tinuities can occur if the function responsible for
nonlinearity is specified in a special way. The
discontinuity structure is described by the gen-
eralized KdV-Burgers equation

∂v

∂t
+
∂ϕ(v)

∂x
= µ

∂2v

∂x2
−m∂3v

∂x3
, (1)

m,µ = const, v = v(x, t)

The term involving the coefficient m in the
right-hand side of Eq. (1) describes the dis-
persion effects (m is the dispersion parameter).
The term involving the coefficient µ takes into
account the viscous effects and dissipation (µ
is the dissipation parameter). The nonlinear-
ity is specified by the function ϕ(v), which is
not a quadratic one and will be defined below.
One should analyze the traveling wave solutions
representing shock structures in solutions of the
equation

∂v

∂t
+
∂ϕ(v)

∂x
= 0, (2)

to which Eq.(1) is reduced when considering so-
lutions characterized by variations of large scale
L in x (both terms on the right-hand side of
Eq. (1) become small as compared with the left-
hand-side terms).
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Equation (2) can be called a generalized Hopf
equation, with the Hopf equation it coincides
when ϕ(v) is a quadratic function of v.

Equation (2) (as well as (1)) represents a
conservation law, so the corresponding relation
at the discontinuity can be written as

W =
[ϕ(v)]

[v]
. (3)

Here, W is the discontinuity velocity and
square brackets denote the difference in the func-
tions values behind and ahead of the disconti-
nuity.

The function ϕ(v) is defined as

ϕ(v) = v4 − v2. (4)

We consider self-similar solutions of arbitrary
discontinuity disintegration which consist only
of stable discontinuities with a stationary or non-
stationary structure and simple waves. The con-
clusive criterion has been formulated of an ad-
missible discontinuity problem of arbitrary dis-
continuity disintegration governed by the Hopf
equation (2). Admissible discontinuities were
treated as discontinuities with a stable struc-
ture, which can be stationary or periodic in time.
Accordingly, discontinuities with stationary un-
stable structures were excluded from the set of
discontinuities regarded previously as admissi-
ble and time-periodic structures were added to
this set (their stability and periodicity were ver-
ified by direct numerical computation). As a re-
sult we showed that the solution of the problem
of arbitrary discontinuity disintegration constructed
in this work uniquely exists for all parameter
values.
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Abstract

This work presents solutions to several water
wave problems, in the presence of a fixed meta-
material on the bed. Typically, in these prob-
lems, metamaterial can be viewed as an infinite
array of parallel thin plates, placed infinitely
closed to each other. After the governing equa-
tion of the wave inside and outside the metama-
terial is derived and solved, then the reflection
and transmission coefficients, will be found us-
ing a variety of semi-analytical techniques. By
adjusting the geometry of the array structure,
the behaviour of the reflected and transmitted
wave can be manipulated and get a plethora of
phenomena.
Keywords: water waves, metamaterials, ho-
mogenisation

1 Introduction

Linear, time-harmonic water wave theory is used
to derive the model in the fluid domain of finite
depth, while in the presence of the metamate-
rial, homogenisation theory and the continuum
hypothesis is used to derive the governing equa-
tion. So after the surface gravity wave strikes
the metamaterial, which looks like a waveguide,
there will be some transmission and some reflec-
tion. The unknown Fourier coefficients (that
rise from the separation of variables and give
information about the reflection and transmis-
sion), can be found by matching the wave across
the boundaries of the metamaterial.

2 Geometry of the 3D problems

In the first problem, thin rectangular arrays,
that are aligned with the x-axis and separated
by some infinitesimal distance, are placed in the
bottom of an inviscid fluid and they interact
with an incident surface gravity water wave of
wavenumber k, arriving from a point in x < −b
and travelling at an acute angle θ0 with the pos-
itive x-axis. The origin is sitting on the surface
of the water, direclty above the midpoint of the
plates, with the z direction pointing normally
outwards the fluid.

Figure 1: Geometry of the "x-aligned" problem

The second problem is exactly the same as the
first one, but this time the plates are aligned
with the y-axis. So, the plates will have infinite
length.

3 The Continuum Hypothesis

Assuming time-harmonic motion of the wave,
the governing equations outside the structure,
are

∇2φ(x, y, z) = 0 , φz(x, y,−h) = 0 ,

φz(x, y, 0) = Kφ(x, y, 0)
(1)

where φ is the complex velocity potential, with
time dependence removed and K = ω2/g with
ω be the angular velocity of the incident wave.
But to derive the model in the metamaterial,
we use homogenisation theory [1], [2]. So in the
x- aligned problem, we have that in the single
channel x ∈ (−b, b), y ∈ (0, l), with l be the
spacing of the plates and λ be the incident wave-
length (l� λ)

∇2φ = 0 , φy = 0 on y = 0, l (2)

Now by introducing the new microscopic vari-
able y = lY and expanding φ = φ0 + lφ1 +
l2φ2 + ..., then the orders of l0, l1 will imply
that φ0, φ1 are functions of the macroscopic
variables x, z only, while the orders of l2 will
imply

(
∂2xx + ∂2zz

)
φ0 = 0, after integrating in

Y ∈ (0, 1). Therefore, by the continuum hy-
pothesis

(
∂2xx + ∂2zz

)
φ(x, y, z) = 0 (3)
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inside the metamaterial (using φ ∼ φ0). The ac-
curacy of the continuum description compared
to the exact results, is confirmed in [3].

4 Extensions

The main focus of the talk will be about the two
previous problems, where the plates are aligned
with the x-axis and y-axis, but we will show
what happens when the plates are tilted at a
random angle too. Also, we might compare it
with the problems involving the replacement of
thin plates with thick barriers (again infinitely
close to each other). This kind of problems, are
analysed in [4].

5 Numerical Results

Then we apply the matching conditions to get
he Fourier coefficients numerically.

kb

|R
|

Figure 2: Reflection coefficient against kb (x-
aligned problem), with d/h = 0.9, b/h = 1, for
θ0 = π/6, π/4, π/3 (—, - - -, ...)

This kind of plots, will always go through the
origin because of the penetration of the motion
of the fluid. In long waves (kb� 1) the decay of
the wave as we go down to the bottom, is very
small, because of ekz and so the wave can some-
how travel above the obstacle uneffected (the
energy of a long wave sits on the top surface).
Also, as we increase θ0 from 0 to π/2, the slid-
ing ability of the wave (through the plates) is
reduced, causing more reflection. Moreover, the
period of |R| is not constant in kb, even if we
fix θ0. This happens due to the effect of multi-
ple scattering interference and it has to do with
how many wavelengths can fit in the distance
travelled by the wave in the channel. The en-

ergy |R|2 + |T |2 was conserved in all the possi-
ble choice of parameters, with the trivial case of
θ0 = 0 giving R = 0 and T = 1. Now, by solv-
ing the second problem, but now developing an
integral equation and solving it efficiently using
the Galerkin method, the analogous result is

kb
|R

|

Figure 3: Reflection coefficient against kb (y-
aligned problem), with d/h = 0.1, b/h = 1, for
θ0 = π/6, π/4, π/3 (..., - - -, —)

First, we can see that, compared to the previous
result, the interaction increases as the height of
the arrays becomes larger. Also, the special case
of θ0 = 0, gives the same results as if there was a
rigid step in the region of the metamaterial [5],
which makes sense, since incompressibility im-
plies no z variation in between the plates in the
limit kl→ 0.
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Abstract

Continuing past work on the modelling of coax-
ial cables, we investigate the question of the
modeling of non-perfectly conducting thin coax-
ial cables. Starting from 3D Maxwell’s equa-
tions, we derive, by asymptotic analysis with
respect to the (small) transverse dimension of
the cable, a simplified effective 1D model. This
model involves a fractional time derivatives that
accounts for the so-called skin effects in highly
conducting regions.
Keywords: Maxwell’s equations, Coaxial ca-
bles, Asymptotic analysis

Statement of the problem

Figure 1: Section the coaxial cable. Σ+ and Σ−
are the outer and inner boundary of S.

Denoting δ > 0 a small parameter, we consider
a family of (thin) domains Ωδ = Gδ

(
Ω
)
where

Gδ : (x1, x2, z) −→ (δx1, δx2, z).

and Ω is the disjoint union of a conducting do-
main Ωc and a dielectric one Ωd,

Ωc = C × R, Ωd = S × R,

where C = C+ ∪ C−, C+ corresponding to the
outer metallic shield and C− to the inner metal-
lic wire and S is non-simply connected, see Fig-
ure 1. Accordingly, we have, with obvious nota-
tion

Ωδ = Ωδ
d ∪ Ωδ

c.

We are interested in the solution (Eδ, Hδ) of 3D
Maxwell’s equation in Ωδ :





εδ ∂tE
δ + σδ Eδ − curl Hδ = jδ,

µδ ∂tH
δ + curl Eδ = 0,

(1)

with zero initial data. In Ωδ
c, (εδ, µδ) are con-

stant equal to (εc, µc) and jδ = 0. In Ωδ
d, (εδ, µδ)

do not depend on z and are obtained by a scal-
ing in the transverse variable xT = (x1, x2) of
fixed distributions in the reference domain Ωd,
for instance

εδ(xT , z) = ε(xT /δ).

The source term jδ is defined similarly, moreover
it is compactly supported, it has no longitudinal
component and is divergence free. The conduc-
tivity is weak in the dielectric Ωδ

d, but very high
in Ωδ

c. More precisely

σδ(xT , z)=

{
δ−4σc in Ωδ

c,

δ σ(xT /δ), in Ωδ
d.

(2)

Note that the O(δ−4) magnitude of σδ in Ωδ
c

gives rise to a skin depth in O(δ2), small with
respect to δ.

Our approach consists in obtaining the formal
behaviour of the solution for small δ. To do so,
we propose two distinct assymptotic expansions
of the solution Ωδ

d and Ωδ
c that we match using

transmission conditions. We present below our
main results.

Electromagnetic field in the dielectric
We introduce the following notations.

• ∇ for the 2D transverse gradient in xT , iden-
tified to a 3D vector with third component 0,

• SΓ := S \ Γ where Γ is a cut that makes SΓ

simply connected (see Figure 1),

• [·]Γ for the jump across Γ in the direction n,

• ∇̃ is the 2D transverse gradient in SΓ,

• ∂n is the normal derivative, and ∂τψ = ∇̃ψ ·τ
the tangential derivative.
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We obtain that, for small δ and all xT ∈ Sδ,

Eδ(xT , z, t) ∼ V δ(z, t) ∇ϕe(xT /δ)

+ δ
(∫ t

0 V δ(z, s) ds
)
∇ϕr(xT /δ),

+ δ ∂zV
δ(z, t) (ϕe − ϕm)(xT /δ) ez,

Hδ(xT , z, t) ∼ Iδ (z, t) ∇ψm(xT /δ),

+ δ
(∫ t

0 ∂
1
2
t I

δ(z, s) ds
)
∇ψr(xT /δ),

+ δ ∂zI
δ(z, t) (ψe − ψm)(xT /δ) ez,

where ez = (0, 0, 1)t. Moreover:

i) The potential ϕe ∈ H1(S) satisfies,

div ε∇ϕe = 0 (S), ϕe = 0 (Σ+), ϕe = 1 (Σ−),

and the same for ϕm with µ−1 instead of ε.

ii) The potential ψm ∈ H1(SΓ) satisfies

divµ∇ψm=0 (SΓ), ∂nψm=0 (∂S),

and [ψm]Γ =1, [∂nψm]Γ =0. The same holds for
ψe with ε−1 instead of µ. Moreover

∫

S
µψe =

∫

S
µψm = 0.

iii) The function ϕr ∈ H1
0 (S) is the solution of

div ε∇ϕr = − divσ∇ϕe.

iv) The function ψr ∈ H1(S) satisfies

divµ∇ψr=0 (S), µ ∂nψr=−
√
µc
σc
∂2
τψm (∂S).

v) The electric potential V δ(z, t) and current
Iδ(z, t) are 1D unknowns governed by general-
ized telegrapher’s equations:





C ∂tV
δ + δ G V δ + ∂zI

δ = j,

L ∂tI
δ + δ R ∂

1
2
t I

δ + ∂zV
δ = 0,

(3)

where j(z, t) is an effective source term,

j(z, t) =

∫

S
j(xT , z, t) · ∇ϕe(xT ), (4)

and ∂
1
2
t is the square root derivative in the sense

of Caputo

∂
1
2
t u(t) =

1√
π

∫ t

0

∂τu(τ)√
t− τ dτ.

As in [1], the capacity C, inductance L and con-
ductance G are given by:

C =

∫

S
ε
∣∣∇ϕe

∣∣2, L =

∫

S
µ
∣∣∇̃ψm

∣∣2, G =

∫

S
σ
∣∣∇ϕe

∣∣2.

Moreover, we obtain an explicit expression for
the resistance R, which takes into account skin
effects:

R =

∫

∂S

√
µc
σc

∣∣∂τψm
∣∣2. (5)

This generalizes formulas of the literature (see
[2], chapter 13) already derived in very simple
cases.

Electric field in the outer conductor

In the rescaled con-
ducting domain C+

the electromagnetic
fields are described
using tangential and
normal coordinates
(τ, ν). The penetra-
tion depth `δ of the
fields is in O(δ).

L+ being the length of Σ+, one shows that there
exists a 3D field

E+ : [0, L+]× R+ × R× R+ → R3

such that in Cδ+ × R and for small δ,

Eδ(xT (τ, ν), z, t) ∼ δ2E+(τ/δ, ν/δ2, z, t),

(and a similar property holds for the magnetic
field). The important fact is that the component
E+
z is solution of the 1D heat equation

µcσc ∂tE
+
z − ∂2

νE
+
z = 0, (6)

and thus satisfies, at the boundary ν = 0:

∂νE
+
z +
√
µcσc ∂

1
2
t E

+
z = 0.

The above equation is used when writing trans-
mission conditions across Σδ

+ × R.

This explains the appearance of ∂
1
2
t in the effec-

tive model (3).
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Convergence analysis of boundary element methods for electromagnetic resonance
problems for dielectric and plasmonic scatterers
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Abstract

We present a convergence analysis of Galerkin
boundary element methods for the approxima-
tion of electromagnetic resonances and modes of
dielectric and plasmonic scatterers. The analy-
sis is based on the analytic Fredholm theory and
on the concept of regular approximations of op-
erators.
Keywords: electromagnetic scattering, reso-
nances, boundary element method

1 Boundary integral formulation

We consider resonance problems for dielectric
and plasmonic scatterers occupying a bounded
Lipschitz domain Ω1 with boundary Γ. The em-
bedding domain is denoted by Ω2 := R3\Ω1. We
assume that the permittivity ε and the perme-
ability µ are homogeneous in Ω1 and Ω2, respec-
tively, and define ε = ε1χ(Ω1) + ε2χ(Ω2) and
µ = µ1χ(Ω1) + µ2χ(Ω2), where χ denotes the
characteristic function. The permittivity and
permeability may depend on the angular fre-
quency ω, but the dependency is assumed to
be holomorphic within the interested frequency
range Λ ⊂ C. The resonance problem reads as
follows: find ω ∈ Λ and non-trivial (E,H) ∈
(Hloc(curl,R3))2 such that:

∇×E = iωµH in R3 \ Γ,

∇×H = −iωεE in R3 \ Γ,

γ
(1)
t E = γ

(2)
t E and γ(1)

t H = γ
(2)
t H on Γ,

(1)

where γ(j)
t F := n × F|∂Ωj , j = 1, 2, and n is

the unit normal vector field on Γ pointing into
Ω2. In addition we impose that (E,H) satis-
fies an outgoing radiation condition, see [5]. If
(ω,E,H) satisfies (1), then E can be represented
in terms of the tangential traces

j := n×E|Γ and m := iω(n×H|Γ)

by the Stratton-Chu representation formula

E =

{
−( µ1

ε1ω2 )
1
2 Ψ1

SL(ω)m−Ψ1
DL(ω)j, in Ω1,

( µ2
ε2ω2 )

1
2 Ψ2

SL(ω)m + Ψ2
DL(ω)j, in Ω2,

(2)

where Ψj
SL and Ψj

DL are the single and dou-
ble layer potential of Maxwell’s equations [1].
A similar formula holds for H. Applying the
tangential trace operators γ(1)

t and γ
(2)
t to the

Stratton-Chu formula (2) yields the interior and
exterior Calderón identity [1]

(1
2I −A1(ω))

(
j
m

)
= 0 = (1

2I +A2(ω))

(
j
m

)

(3)
with

Aj(ω) :=


 Cj(ω)

√
µj

ω
√
εj
Sj(ω)

ω
√
εj√
µj

Sj(ω) Cj(ω)


 ,

where Cj := 1
2

(
γ

(1)
t Ψj

DL +γ
(2)
t Ψj

DL

)
and Sj :=

γ
(j)
t Ψj

SL. Combining the identities in (3) leads
to the following boundary integral formulation
of the resonance problem (1): find ω ∈ Λ and
non-trivial (j,m) ∈ X2 such that

A(ω)(j,m)> = 0, (4)

where X := H−1/2(divΓ,Γ) and A := A1 + A2.
The boundary integral formulation of the reso-
nance problem in (4) is a nonlinear eigenvalue
problem, even in the non-dispersive case, since ω
appears nonlinearly in the kernel of the bound-
ary integral operators Sj(ω) and Cj(ω). How-
ever, on the discrete level the resulting eigen-
value problem can be reduced to an equivalent
linear eigenvalue problem by the contour inte-
gral method.

For the analysis of the eigenvalue problem
(4) it is crucial that A(ω) satisfies a generalized
Gårding’s inequality in X2, i. e., there exist
a compact operator K(ω) and an isomorphism
T (ω) such that

〈A(ω)u, T (ω)u〉+ 〈K(ω)u, u〉 ≥ c(ω)‖u‖2X2 (5)

for all u ∈ X2 [1, 5]. The operator T (ω) is a
block diagonal operator with diagonal elements
T and/or IX depending on the frequency. The
operator T is constructed as projection which
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is related to a Helmholtz-type decomposition of
X [1]. The generalized Gårding’s inequality (5)
shows that A(ω) is a Fredholm operator of in-
dex zero. This together with the holomorphy
of the integral operators implies that the eigen-
value problem (4) can be treated within the an-
alytic Fredholm theory [2].

2 Boundary element approximation

We consider a conforming Galerkin boundary
element approximation of the eigenvalue prob-
lem (4). Let (X2

h)h be a sequence of finite-
dimensional subspaces of X2 such that

inf
uh∈X2

h

‖uh−u‖X2 → 0 as h→ 0 ∀u ∈ X2. (6)

We denote by Qh : X2 → X2
h is the orthogonal

projection.
The Galerkin approximation of the eigen-

value problem (4) reads as follows: find ωh ∈ Λ
and a non-trivial uh ∈ X2

h such that

〈A(ωh)uh, vh〉 = 0 ∀vh ∈ X2
h. (7)

The Galerkin eigenvalue problem (7) results in a
nonlinear matrix eigenvalue problem which can
be solved by the contour integral method [5].

The application of abstract convergence re-
sults of [2,3] to the Galerkin approximation (7)
requires a regular approximation of the opera-
tor A(ω) by the sequence (QhA(ω)Qh)h, i. e., for
any (QhA(ω)Qhuh)h, ‖uh‖X2 ≤ 1, which has a
convergent subsequence, it holds that (uh)h has
already a convergent subsequence.

For the case of an operator which satisfies a
generalized Gårding’s inequality sufficient con-
ditions for the regular approximation are speci-
fied in [4]. These imply that a regular approxi-
mation of A(ω) by (QhA(ω)Qh)h is guaranteed
if the following condition is satisfied:

(A) For T (ω) as given in (5) there exists a se-
quence (Th(ω))h, Th(ω) : X2

h → X2
h linear

and continuous, such that

sup
uh∈X2\{0}

‖(T (ω)− Th(ω))uh‖X2

‖uh‖X2

−−−→
h→0

0.

If Xh is the space generated by Raviart-Thomas
elements defined on a sequence of regular trian-
gulations of Γ, then (6) holds [1] and also con-
dition (A) is satisfied for

Th[i, j](ω) := PhT [i, j](ω), 1 ≤ i, j ≤ 2,

where Ph : X→ Xh is the orthogonal projection
[5].

In the following theorem the error estimates
for the Galerkin approximations are presented.

Theorem 1 Suppose that (6) and (A) holds.
Let ω ∈ Λ be an eigenvalue of (4) and D ⊂ Λ
be compact such that ω is the only eigenvalue in
D. Then there exists an h0 > 0 and a constant
c > 0 such that for all 0 < h ≤ h0 we have:

|ω − ωh| ≤ cδ(G(ω),X2
h)2/`

for all eigenvalues ωh ∈ D of (7), where

δ(G(ω),X2
h) := sup

u∈G(ω)
inf

uh∈X2
h

‖u− uh‖X2

‖u‖X2

.

Here G(ω) denotes the generalized eigenspace
corresponding to ω, and ` is the maximal length
of a Jordan chain corresponding to ω. Further,
if (ωh, uh) is an eigenpair of (7) with ωh ∈ D
and ‖uh‖X2 = 1, then it holds

inf
u∈G(ω)

‖u− uh‖X2 ≤ c(δ(G(ω),X2
h) + |ω − ωh|).

Numerical examples in [5] confirm the theo-
retical results of Thm. 1.
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Abstract

Two issues arise from modeling of the electro-
magnetic scattering by breaking sea waves: first,
the simulation of the breaking sea waves which
is matter of fluid mechanics theory and, sec-
ondly, the computation of the electromagnetic
scattered field which is matter of electromag-
netic physics. The purpose of this study is mod-
eling these two issues with the same approach:
the method of fundamental solutions.
Keywords: electromagnetic scattering, break-
ing waves, method of fundamental solutions

1 Introduction

At a fundamental level, models in fluid dynam-
ics are based on non-linear partial differential
equations leading to very complex numerical es-
timations and time-consuming simulations for
the sea waves. Fortunately, considering fluid as
ideal, incompressible and irrotational, the fluid
mechanics issue becomes much easier to treat.
In fact, on these assumptions, the velocity po-
tential φ can be described by a Laplace equa-
tion:

∆φ = 0 in the fluid (1a)

φ = e( ~M, t) on the free surface, (1b)

where ~M denotes the two-dimensional position
of pointM on the free surface and the function e
follows from the solution of the time differential
system composed of kinematic and dynamic free
surface boundary conditions.

The method of fundamental solutions (MFS)
is to express the velocity potential in the form
of a series of elementary solutions:

φ(~x, t) ≈
N∑

j=1

qj(t)G(~x, ~Xj(t)), (2)

where ~Xj(t) are the location of source num-
ber j and qj is its strength. We denote G the
fundamental solution (one point source) for the
Laplace equation.

The position of the sources is not arbitrary
and must be tuned to be optimized, but, in any
case, sources are located outside the fluid do-
main. In fact, the distance from the boundary
is chosen so that mass and energy are well con-
served. Several years ago, Y.-M. Scolan com-
bined conformal transformations with MFS and
developed a very efficient algorithm to simulate
sea breaking waves. This algorithm is imple-
mented in the code FSID (Free Surface IDenti-
fication) and is fully described in [1]. Here we
use that code to produce realistic overturning
crest and its dynamics as illustrated in figure 1:

−2 −1 0

0

1

x(m)

z(
m

)

Breaking sea waves profiles

strong curvature

Figure 1: Breaking sea wave profile generated
by the code FSID.

2 Electromagnetic field

A standard approach to compute the electro-
magnetic field scattered by these breaking wave
profiles is to use the electric field integral equa-
tion (EFIE) and standard numerical methods,
method of moments (MoM) for instance, to solve
this equation. Unfortunately, breaking waves
profiles involve the presence of strong local cur-
vature area. For standard MoM, strong curva-
tures create numerical convergence problems [2].
To overcome these difficulties, different numeri-
cal strategies can be applied [4–6].

From a numerical viewpoint, these strategies
enable to solve the convergence problem. How-
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ever, the strategies does not clarify the phys-
ical interpretations of the complex interaction
between time-evolving sea surface and the elec-
tromagnetic scattering. Strictly speaking, the
scattering by sea surafce is not a coupled phe-
nomenon since the electromagnetic field has no
influence on the fluid. However, we think that
a common numerical model for the fluid me-
chanics and the electromagnetics may be help-
ful in understanding the interaction between sea
surface and the scattered electromagnetic field.
With this aim in mind, we suggest to applied
the same numerical approach (MFS) previously
used in fluid mechanics as for the electromag-
netic issue.

From a formal point of view, the scattering
problem of a monochromatic plane electromag-
netic wave can be summarized as the following
boundary value problem:

(Helmholtz equation)

∆u+ k2u = 0 in Ω (3a)

u = v on ∂Ω, (3b)

where Ω ⊂ R2 = C is a connected planar domain
with analytic boundary ∂Ω.

In the same way as for fluid modeling, the
idea of the MFS is to approximate u by a lin-
ear combination of fundamental solutions of the
form:

u(~x, t) ≈ i

4

N∑

j=1

αiH
(1)
0

(
k
∣∣∣~x− ~Xj

∣∣∣
)

(4)

where ~X is the position of the source number
j. H(1) = J0 + iY0 is an Hankel function of the
first kind of zero order, J0 is a Bessel function
of the first kind of order zero and Y0 is a Bessel
function of the second king of order zero.

The application of MFS for Helmholz equa-
tion has been validated by already published
studies [7,8] for various canonical configurations.
In this study, we propose to apply this numerical
method in the case of breaking wave profiles and
to present the connection between fluid mechan-
ics source points and the electromagnetic ones.
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A Continuation Approach to Boundary Integral Equation for Steady-state Wave
Scattering by a Crack with Contact Acoustic Nonlinearity
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Abstract
The present study deals with steady-state wave
scattering by a crack with contact acoustic non-
linearity. The authors propose a continuation
approach to the boundary integral equation for
the wave scattering in order to investigate non-
linear resonance with higher- and sub-harmonic
generation. To derive the system of nonlin-
ear equations, a harmonic balance method is
integrated into the boundary element method.
A numerical continuation method is applied to
track the solution of the system of nonlinear
equations.
Keywords: Elastic wave, Contact acoustic non-
linearity, Continuation method, Boundary ele-
ment method, Harmonic balance method

1 Introduction
Nonlinear ultrasonic testing (NLUT) based on
contact acoustic nonlinearity (CAN) has been
developed for inspection of closed cracks [1].
Accurate NLUT requires an understanding of
the behavior of higher- and sub-harmonic waves,
which are used for the defect evaluation. How-
ever, the theoretical explanation of the nonlin-
ear scattering phenomena with CAN is not suf-
ficient at present. In particular, there remains
investigation of nonlinear resonance due to the
interaction among incident frequency and am-
plitude, size of crack, and CAN.

In order to investigate the behavior of non-
linear resonance with higher- and sub-harmonic
generation, the present study deals with steady-
state wave scattering by a crack with contact
boundary conditions. Under pre-opening dis-
placement or static compressive stress, a crack
in an unbounded elastic solid is subjected to a
time-harmonic incident wave, and clapping mo-
tion and dynamic friction on the crack face are
induced as a nonlinear phenomenon.

2 Wave scattering by a crack with CAN
An incident wave uin is scattering by a crack
S ⊂ R2 having edges ∂S, as shown in Fig. 1(a).

The base material D(:= R2 \ S) is assumed to
be a homogeneous, isotropic, and linear elastic
solid. The unit normal vector n is defined as
pointing to the positive side of S.

From a microscopic viewpoint, the crack has
rough surfaces as shown in Fig. 1(b). However,
the wavelength of the waves dealt with herein
is much larger than the roughness height and
length, which enables us to analyze the crack
from a macroscopic viewpoint. Therefore, av-
erage displacement u± and average stress σ±

are treated on S, where the superscript + (−)
indicates the field variables limited to S from
the positive (negative) side of S. It is assumed
that the traction t±(:= n · σ±) and the crack
opening displacement (COD) [u] satisfy

t+ = t−(:= t) on S, (1)
[u](:= u+ − u−) = 0 on ∂S. (2)

In order to describe the clapping motion and
dynamic friction on the crack, we consider sep-
aration and closed phases. It is assumed that S
can be separated into Ss and Sc, where Ss and
Sc denote portions of S in the separation and
closed phases, respectively. At the separation
phase, the traction-free condition is assumed:

t = 0 on Ss. (3)
For the closed phase, we consider the displace-
ment continuity and Coulomb’s friction law:
[u] · n = 0, (4a)
t · s = −µd (t · n) sgn ([u̇] · s) on Sc, (4b)

where s is the unit tangential vector, µd is the
dynamic friction coefficient, and ˙( ) indicates
the time differentiation.

When the incident wave uin reaches S under
the static displacement field ust, the scattered
wave usc is generated by the interaction of ust

and uin with S and radiates into infinity. Hence,
the total displacement field u is represented as
u = ust + uin + usc, and usc satisfies
µ∇2usc(x, t) + (λ+ µ)∇∇ · usc(x, t)

= ρüsc(x, t) for (x, t) ∈ D × [0,∞), (5)
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(a) (b)

Figure 1: (a) Wave scattering by a crack in
an unbounded elastic solid and (b) microscopic
view of crack faces.

and the outgoing radiation condition, where ρ
is the mass density, and λ and µ are the Lamé
parameters.

3 Solution procedure
It is expected for the above stated problem that
a time-harmonic incident wave leads to periodic
responses after a sufficient elapsed time. There-
fore, we introduce the nonlinear steady-state
scattering due to time-harmonic uin with circu-
lar frequency ωin as asymptotic behavior after a
sufficient elapsed time. The solution procedure
is briefly summarized.

The wave scattering by a crack is described
in the time-domain BIE with unknown variables
[u] and t on S. Then, [u] and t are approxi-
mated by means of the finite Fourier series. For
example,

[u](x, t) ' a
(0)(x)

2
+

Nh∑

n=1

[
a
(
n
κ

)
(x) cos

(
nωint

κ

)

+ b
(
n
κ

)
(x) sin

(
nωint

κ

)]
, (6)

where the Fourier series are truncated by Nh,
and κ is an integer used to represent possible
sub-harmonic components. Substituting Eq.(6)
into the time-domain BIE and taking limit of
t → ∞ to express the asymptotic behavior,
we can obtain a system of nonlinear equations
without time factors, whose unknown variables
are a

(
n
κ

)
and b

(
n
κ

)
. The system of nonlinear

equations can be written as

f(φ, α) = 0 (7)

φ =

{
a(0), ...,a

(
Nh
κ

)
, b

(
1
κ

)
, ..., b

(
Nh
κ

)}T

,

where α is a physical parameter such as ωin.
Solving Eq. (7) with some spatial discretization

is called a harmonic balance-boundary element
method (HB-BEM) [2].

We want to track the solution φ of Eq. (7)
when α is changed, and the numerical contin-
uation method (NCM) [3] is therefore used for
the purpose. In the NCM procedure, we may
encounter the turning and branch points of the
solution path, which are related with important
phenomena such as jump and bifurcation in the
nonlinear dynamical system. Thus, investiga-
tion of these points is an important role in the
NCM procedure.

The HB-BEM provides steady-state solutions
without distinction of stability, though we have
to distinguish the stability to understand the
physical phenomenon. For the stability anal-
ysis, assuming that an infinitesimal perturba-
tion ε arises around the obtained COD solution
[ũ], we investigate whether or not the ampli-
tude of ε grows with time. As a result of the
formulation based on Hill’s method, the stabil-
ity analysis comes to the nonlinear eigenvalue
problem, which is solved by the Sakurai-Sugiura
method [4] in this study.

4 Conclusions
We developed a numerical method for the steady-
state wave scattering by a crack with contact
acoustic nonlinearity. The numerical solutions
and their comparison to the transient solutions
will be presented in the talk.

References
[1] I. Yu. Solodov, D. Doring, and G. Busse,

New opportunities for NDT using non-
linear interaction of elastic waves with de-
fects, Journal of Mechanical Engineering
57 (2011), pp. 169–182.

[2] T. Maruyama and T. Touhei, Steady-state
anti-plane shear wave scattering by a crack
with friction, The Journal of the Acoustical
Society of America 143 (2018) pp. 3545–
3556.

[3] E. L. Allgower and K. Georg, Introduc-
tion to numerical continuation methods,
Springer-Verlag (1990).

[4] J. Asakura, T. Sakurai, H. Tadano, T.
Ikegami, and K. Kimura, A numerical
method for nonlinear eigenvalue problems
using contour integrals, JSIAM Letters 1
(2009), pp. 52–55.

Monday, 11:30, GM1 Audimax, Building BA



354 Contributed Sessions

P-SV scattering from a periodic array of cylinders; tail-end asymptotics for efficient
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Abstract

We study the scattering of time-harmonic P-
and SV-waves from an infinite periodic array of
cylindrical scatterers via the use of boundary
element methods and the quasi-periodic elas-
todynamic Green’s function. The slow conver-
gence of the quasi-periodic Green’s function is
well known; we present a novel method of cal-
culation that allows for rapid and accurate ap-
proximation of the functions, while remaining
relatively easy to implement. This approach is
based on an asymptotic expansion of the sum-
mand in the quasi-periodic Green’s functions in
order to derive tail-end correction terms, as was
recently demonstrated for the acoustic case [1].
We extend this method to the elastodynamic
case, which combined with BEM allows us to
efficiently calculate the transmission and reflec-
tion coefficients associated with arrays of cylin-
ders of different cross-sections and varying as-
pect ratios.
Keywords: Elastic scattering, periodic Green’s
function, BEM

1 Introduction

The reflection and transmission of elastic waves
from an array of cylinders or voids is a canoni-
cal scattering problem with a wide range of po-
tential applications. Previous work by [1] pre-
sented a novel method of calculation for the
quasi-periodic Green’s function in the acoustic
case. Numerous alternative methods exist for
periodic and quasi-periodic Greens functions in
the acoustic case, as discussed in the review by
[2], as well as more recent works [3], [4]. Meth-
ods for the elastodynamic case are less common
in the literature. We demonstrate an extension
of the method in [1] to the quasi-periodic elas-
tic Green’s functions that arise from the BEM
scheme.

2 Problem formulation

We consider an infinite periodic array of cylin-
ders of arbitrary shape along the x1 axis, as
shown in Fig. 1, surrounded by an isotropic,
elastic medium with Lamé constants µ, λ and
density ρ. We denote the mth cylinder by V m,
with surface ∂V m. We seek time-harmonic so-

∂V −m ∂V −1 ∂V 0 ∂V 1 ∂V m· · · · · ·

ψ0

p

x2

x1

d

Figure 1: Time-harmonic wave, with incident
angle ψ0 and wavevector p, scattering from a
periodic array of cavities with spacing d.

lutions of the form u(xe−iωt, where the displace-
ment u(x) satisfies the elastodynamic wave equa-
tion

µ∇2u(x) + (µ+ λ)∇(∇ · u(x)) + ρω2u(x) = 0

where x = (x1, x2). Let us consider an incident
compressional wave of the form

uin(x) = u0peiklp·x,

with the wavevector

p = −(sinψ0, 0, cosψ0),

and the compressional and shear wavenumbers,
kl, and ks.

The total displacement field may be written
as the sum of the scattered and incident fields,
which allows us to introduce the BIE formula-
tion for the displacement on the surface of a
cylinder

1

2
δikuk(x) = uin

k (x) +

∫

∂Vm
Uik(x,y)ti(y) dS(y)

−−
∫

∂Vm
Tik(x,y)ui(y) dS(y), x ∈ ∂V m,
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where −
∫
denotes the CPV integral, and Uik, Tik

are the fundamental elastodynamic solutions, or
Green’s functions, for the displacement and trac-
tion. The displacement for the entire array is
given simply by summing over the surfaces ∂V m,
owing to the superposition principle.

To reduce the surface of integration from an
infinite array of cylinders to that of a single ref-
erence cylinder, we apply the quasi-periodic con-
ditions

xp1 = x01+pd, xp2 = x02, yq1 = y01+qd, yq2 = y02,

so that the incident field satisfies

uin(xp) = uin(x0)e−iklpd sinψ0 .

This suggests the total displacement field also
satisfies the Bloch-Floquet type condition

u(xp) = u(x0)e−iklpd sinψ0 .

We can therefore rewrite the boundary integral
equation in terms of the zeroth cell coordinates,
integrating over the reference cylinder ∂V 0 to
get

1

2
δikuk(x

0) = uin
k (x0) +

∫

∂V 0

Ũik(x
0,y0)ti(y

0) dS(y0)

−−
∫

∂V 0

T̃ik(x
0,y0)ui(y

0) dS(y0), x0 ∈ ∂V 0,

and defining the quasi-periodic forms of the fun-
damental solutions as

Ũik(x
0,y0) =

∞∑

m=−∞
eikldm sinψ0Uik(rm),

Σ̃j
ik(x

0,y0) =

∞∑

m=−∞
eikldm sinψ0Σj

ik(rm)

where rm =
√

(x01 − y01 + (m)d)2 + (x02 − y02)2.

3 Asymptotics of the quasi-periodic Green’s
function

In order to speed up computation of the quasi-
periodic forms of the fundamental elastodynamic
solutions, in each case we seek to truncate the
sum at some integer M , and then approximate
the remaining ‘tail ends’ of the sum, i.e. the
sum for |m| ≥ M , using an asymptotic expan-
sion for the summand for each term |m| ≥ M .
We define the truncated sum as

SM =

M−1∑

m=−(M−1)
eikl sinψ0dmUik(rm),

and seek correction terms s±(M) such that

Ũik ∼ SM + s+(M) + s−(M),

where σ+ and σ− denote the tail ends m ≥ M
and −m ≤ −M respectively. By asymptotically
expanding the terms of Uik for large m, we find
an expression for the tail ends in terms of a series
of Lerch transcendents. We then exploit the in-
tegral representation of the Lerch transcendent,
along with Watson’s lemma, to replace the par-
tial sums with an series of terms of increasing or-
der M−

1
2 ,M−

3
2 ,M−

5
2 , . . . , for truncation point

M . The same method can be applied to the
quasi-periodic fundamental traction.

While the resulting expressions for the cor-
rection terms are somewhat involved, they are
still relatively straightforward to implement and
allow for more accurate approximation of the
Green’s functions than the truncated sums alone
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Abstract

Multilevel acceleration methods for integral equa-
tions, such as the Fast Multipole Method (FMM),
are commonly optimized by taking advantage of
symmetry invariance properties of certain ma-
trices involved in their hierarchical structure.
Although such optimizations are well documented
in the case where the invariance group under
consideration is commutative, we present a uni-
�ed approach that can also deal with the general
non-commutative case. We apply this method-
ology to the particular case of HF-FMM in con-
junction with Lebedev cubature grids.

Keywords: Symmetries, Helmholtz, High fre-
quency, FMM, Cubature, Block diagonalization

Introduction

We consider the problem of computing sums of
the form

f(x) =
∑

y∈Y
G(x− y)u(y), x ∈ X

where G(z) = exp(iκ|z|)/(4π|z|)

where X,Y ⊂ R3 are large point clouds. Fast
Multipole Methods (FMM) aims at computing
such sums as fast as possible [4]. In the high fre-
quency regime, the classical FMM for Helmholtz
kernel heavily relies [3] on the formula:

G(r + d) =

∫

S2
exp(iκr · λ)T (λ,d)dσ(λ) (1)

with S2 the unit sphere and T (λ,d) is a kernel
involving Hankel and Legendre functions. There
are many possible cubature strategies to evalu-
ate the integral above, and their e�ciency can
be measured with respect to the ratio

#{integrated spherical harmonics}
#{cubature nodes} (2)

where #{integrated spherical harmonics} refers
to the number of spherical harmonics that are

exactly integrated on S2 by the cubature rule
under consideration.

Interpolation over the unit sphere

The choice of the cubature order relies on the re-
quested accuracy and on the size of the smallest
box containing all vectors r in (1). In a multi-
level procedure, this size varies between levels,
and so does the cubature grid. It is important to
be able to realize interpolation between di�erent
cubature grids.

In practice, the FMM involves interpolation
steps where nodal values distributed on one cu-
bature grid Cs = {λk}Nsk=1 are mapped to val-

ues on the grid Ct = {µj}Ntj=1 of the next level.
These steps take the form of a matrix-vector
product q 7→Mq where

Mj,k :=

L∑

l=0

2l + 1

4π
Pl(µj · λk). (3)

Here L is a heuristically chosen truncation or-
der, taking account of the consistancy order of
both Cs and Ct, and Pl denotes the l

th Legendre
polynomial. A priori, the matrixM is rectangu-
lar Ns 6= Nt and cannot be compressed through
a truncated singular value decomposition.

These interpolation steps can become very
costly when the size of boxes becomes large, and
the global speed of the FMM depends on e�-
cient matrix-vector products with (3). The aim
of the present work is to reduce this cost.

Exploiting symmetries

We investigated block-diagonalisation of (3) by
taking maximal advantage of the symmetries of
the cubature grids Cs, Ct ⊂ S2. Let us point
that H, the symmetry group of transformations
leaving both Cs and Ct invariant, can be non-
commutative in which case such a block diag-
onalisation becomes non-trivial. We use �nite
group representation theory [6] to tackle this.
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This approach can be applied in the general
situation where the matrix M stems from the
discretisation of a kernel Φ : Rd × Rd → C sat-
isfying the symmetry property:

Φ(h · x, h · y) = Φ(x,y),

∀x,y ∈ R3, ∀h ∈ H.
(4)

In our case Φ(x,y) =
∑L

l=0 Pl(x·y)(2l+1)/(4π)
clearly satis�es this property as soon as H is any
rotation group.

This exact block-diagonalization, including
the number of blocks and their sizes, only relies
on the irreducible group representations of H [6].

Choice of cubature rules

The most common choices for cubature grids on
S2 are based on tensorized 1D rules: for exam-
ple Gauss-Legendre rules combined with 1D uni-
form rules (GL-U). In this situation H is a cyclic
group of rotations along a �xed axis, and block-
diagonalisation can be achieved e�ciently using
Fast Fourier Transform (FFT).

We dedicate particular attention to Lebedev
cubature rules [5] that do not fall into the pre-
viously mentionned category of tensorized 1D
rules. Lebedev cubature grids enjoy the same
symmetry group D as the normalised octahe-
dron, a non-commutative group of cardinal 48.
Although Lebedev cubature does not lend itself
to FFT, its e�ciency in terms of (2) appears
superior compared to tensorized rules (approxi-
mately 3

2 times better than GL-U).
This last point has a particular interest in an

important part of HF-FMM (namely the hori-
zontal pass) where the cost of computation de-
pends on the number of cubature nodes.

Other highly e�cient group-invariant cuba-
tures, based on the icosahedral group [1] exist.
However, working on Lebedev cubatures allows
to consider the symmetries appearing in the oc-
tree structure. This information can be used in
practice to reduce the cost of precomputation.

The �gure below provides a comparison of
application timings for the interpolation between
cubature grids over the sphere with regard to in-
tegration order of Cs. The order of Ct is twice
the order of Cs. FFT based interpolation for
GL-U is confronted to block-diagonalisations (BD)
of M for Lebedev rules. We shall discuss in fur-
ther detail how those methods compare, com-
menting on the various low-level optimization.

10-5
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10-2

10-1

	0 	10 	20 	30 	40 	50 	60

Interpolation	with	Lebedev	before	BD
Interpolation	with	Lebedev	after	BD

Interpolation	with	Gauss-Legendre	nodes	(FFT)

Figure 1: Application times (sec.) vs order of
Cs := (#integrated spherical harmonics)1/2−1.
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Abstract

This talk is about the scattering of an acous-
tic wave by an object composed of piecewise
homogenous parts and an arbitrarily heteroge-
neous part. We propose and analyze a formula-
tion that couples, adopting a Costabel-type ap-
proach, boundary integral equations for the ho-
mogeneous subdomains with domain variational
formulations for the heterogenous subdomain.
Keywords: FEM-BEM coupling, boundary in-
tegral equations, Helmholtz, junction points
Acknowledgement This work was supported by
NonlocalDD project, ANR-15-CE23-0017-01.

1 Introduction

We propose an extension of the global multi-
trace formulation (MTF) introduced in [2,3] for
acoustic scattering by composite objects, allow-
ing the wavenumber to vary arbitrarily in a part
of the domain. This can be seen also as an ex-
tension of Costabel FEM-BEM coupling to a
multi-domain configuration, with junctions
points allowed, i.e. points where three or more
subdomains abut. Usually just the exterior un-
bounded subdomain is treated with the BEM;
here we wish to exploit the BEM whenever it is
applicable, that is for all the homogenous parts
of the scattering object, since it yields a reduc-
tion in the number of unknowns compared to
the FEM. This talk is based on the upcoming
paper [1], where proofs will be included.

ΩΣ

Ω0

Ω1 Ω2

n0

n1
nΣ

n2

Figure 1: Geometric setting.

We consider a partition into Lipschitz sub-
domains Rd =

⋃n
j=0 Ωj ∪ ΩΣ (see Figure 1),

where ΩΣ and the Ωj for j 6= 0 are bounded;
in addition, ΩΣ, Rd \ ΩΣ, and each Ωj are con-
nected. This partition reflects the material prop-
erties of the propagation medium, which is ho-
mogeneous in each Ωj , with wavenumbers κj ∈
R, and heterogeneous in ΩΣ, with wavenum-
ber κΣ ∈ L∞(ΩΣ). We set Γ :=

⋃n
j=0 ∂Ωj ,

Σ := ∂ΩΣ.
For each subdomain Ωj (and similarly for

ΩΣ), denote by γjD and γjN the interior Dirich-
let and Neumann trace operators, and by γjD,c
and γjN,c the exterior ones. The orientation of
both γjN and γjN,c is fixed by the outward normal
nj . Gathering traces, we define the interior and
exterior Cauchy trace operators

γj : H1
loc(∆,Ωj)→ H1/2(∂Ωj)×H−1/2(∂Ωj)

γjc : H1
loc(∆,Rd\Ωj)→ H1/2(∂Ωj)×H−1/2(∂Ωj)

γj(V ) :=

(
γjD(V )

γjN(V )

)
, γjc (V ) :=

(
γjD,c(V )

γjN,c(V )

)
.

2 Multi-trace FEM-BEM formulation

First of all, consider the trace space

Ĥ(Γ) := H(∂Ω1)× · · · ×H(∂Ωn)×H−
1
2 (Σ),

where H(∂Ωj) := H+ 1
2 (∂Ωj)×H−

1
2 (∂Ωj),

equipped with the standard norm of the Carte-
sian product on the spaces H±1/2(∂Ωj). We
write 〈·, ·〉j for the duality pairing between
H+1/2(∂Ωj) and H−1/2(∂Ωj), and for H(∂Ωj) we
define the skew-symmetric pairing

[(
uj
pj

)
,

(
vj
qj

)]

j

:= 〈uj , qj〉j − 〈vj , pj〉j ,

and similarly for [·, ·]Σ.
Let the function Gκ(x) be the κ-outgoing

fundamental solution for the Helmholtz opera-
tor −∆−κ2, κ ∈ R. For each subdomain Ωj , for
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any vj = (v, q) ∈ H(∂Ωj) and any x ∈ Rd \∂Ωj ,
define the potential operators

SLjκ(q)(x) :=

∫

∂Ωj

q(y)Gκ(x− y)dσ(y)

DLjκ(v)(x) :=

∫

∂Ωj

v(y)nj(y)·(∇Gκ)(x− y)dσ(y)

Gjκ(vj)(x) := DLjκ(v)(x) + SLjκ(q)(x).

Applying traces to potentials yields boundary
integral operators: in our compact notation we
will use

Ajκ := {γj} ◦ Gjκ := 1
2(γj + γjc ) ◦ Gjκ.

Finally, set θj(vj) := (−v, q)>, and

aΣ(U, V ) :=

∫

ΩΣ

(
∇U · ∇V − κ2

Σ(x)UV
)
.

Given a source term f ∈ L2(ΩΣ) and an incident
field Uinc ∈ H1

loc(Rd), the global multi-trace for-
mulation with Costabel-type coupling is: find
U ∈ H1(ΩΣ), û ∈ Ĥ(Γ), û = (û1, . . . , ûn, pΣ)
such that

n∑

j=1

[(Ajκj + Ajκ0
)(ûj), θj(v̂j)]j

+

n∑

j=1

n∑

q=1,q 6=j
[γqGjκ0

(ûj), θq(v̂q)]q

+

[
AΣ
κ0

(
γΣ
DU

pΣ

)
, θΣ

(
γΣ
DV

qΣ

)]

Σ

+

n∑

j=1

[
γΣGjκ0

(ûj), θΣ

(
γΣ
DV

qΣ

)]

Σ

+

n∑

q=1

[
γqGΣ

κ0

(
γΣ
DU

pΣ

)
, θq(v̂q)

]

q

+
1

2

[(
γΣ
DU

pΣ

)
,

(
γΣ
DV

qΣ

)]

Σ

+ aΣ(U, V )

=

n∑

j=1

[γjUinc, θj(v̂j)]j

+

[
γΣUinc, θΣ

(
γΣ
DV

qΣ

)]

Σ

+

∫

ΩΣ

fV

(1)

for all V ∈ H1(ΩΣ), v̂ ∈ Ĥ(Γ), v̂ =
(v̂1, . . . , v̂n, qΣ). The first five lines could be
written in a matrix form, with diagonal terms
Ajκj + Ajκ0 , AΣ

κ0
, and off-diagonal terms γqGjκ0 ,

γΣGjκ0 , γqGΣ
κ0

that couple all subdomains with
all other subdomains, hence the attribute global.

In the MTF the unknown traces are doubled
on each interface that separates two (bounded)
subdomains and the transmission conditions are
imposed weakly by the equation itself.

Theorem 1 If U ∈ H1(ΩΣ), û ∈ Ĥ(Γ), solve
(1), then Ũ ∈ L2

loc(Rd) defined by

Ũ(x) := U(x) for x ∈ ΩΣ,

Ũ(x) := Gjκj (ûj)(x) for x ∈ Ωj , j = 1, . . . , n,

Ũ(x) :=

(
Uinc − GΣ

κ0

(
γΣ
DU

pΣ

)
−

n∑

j=1

Gjκ0
(ûj)

)
(x)

for x ∈ Ω0, solves the standard transmis-
sion problem (see e.g. [2, §1]) for multi-domain
acoustic scattering.

Theorem 2 (Gårding inequality) Let aMTF
designate the bilinear form on the left-hand side
of (1). There exist a compact bilinear form k
and a constant β > 0 such that

<
[
aMTF

(
(V, v̂), (V , v̂)

)
+ k
(

(V, v̂), (V , v̂)
)]

≥ β(‖V ‖2H1(ΩΣ) + ‖v̂‖2Ĥ(Γ)
)

for all V ∈ H1(ΩΣ), v̂ ∈ Ĥ(Γ).

A consequence of Theorem 2 is that the operator
induced by aMTF is of Fredholm type with index
0, hence injectivity is sufficient for bijectivity
and for stability of (1).

Theorem 3 Let U ∈ H1(ΩΣ), û ∈ Ĥ(Γ), solve
(1) with f = 0, Uinc = 0. Then U = 0; more-
over, û = 0 if and only if κ0 is not an interior
Dirichlet eigenvalue of −∆ on ΩΣ.

A combined field formulation immune to spuri-
ous resonances can be constructed.
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Boundary integral equations and block Jacobi preconditioner

Bertrand Thierry1,∗

1CNRS - Laboratoire Jacques Louis Lions, Sorbonne Université, Paris, France
∗Email: bertrand.thierry@sorbonne-universite.fr

Abstract
Boundary integral equation (BIE) is a powerful
method and a large number of BIEs with dif-
ferent properties have been proposed in the lit-
terature. In multiple scattering context, BIEs
can be rewritten in a block matrix form and
consequently, the block Jacobi preconditioner
becomes an attractive choice. This presenta-
tion focuses on the action of this precondition-
ing technique on all BIEs and is mainly based
on the following result: every preconditioned
BIEs become either identical or equals, up to a
change of basis. The main result of this contri-
bution has been proven in [2] and even though
it can be considered as “old”, it has never been
presented at Waves conference.
Keywords: Boundary Integral Equation, Mul-
tiple scattering, Preconditionning, Helmholtz,
Block Jacobi

1 Direct BIEs
In a homogeneous medium, when illumated by
an incident time-harmonic acoustic wave uinc,
the M > 1 obstacles Ωp, p = 1, . . . ,M , generate
a scattered wave u solution of the Helmholtz
equation:




∆u+ k2u = 0 R3 \ ∪Mp=1Ωp
u = −uinc Γ := ∪Mp=1Γp

u is radiating.

The quantity k is the positive wavenumber, the
radiation condition stands for the Sommerfeld
one and Γp is the boundary of Ωp. The bound-
ary condition is here of Dirichlet type but an-
other condition can be imposed.

It is well known that this problem can be
rewritten equivalently under the form of a sys-
tem of boundary integral equations (BIEs) with
the densities ρ and λ as unknown. If S and
D respectively represent the volume single- and
double-layer integral operators, then the scat-
tered field is sought as

u(x) = Sρ(x) +Dλ(x), ∀x 6∈ ∪Mp=1Ωp.

Following [1], the BIEs can be classified as di-
rect or indirect, depending on whether or not
the unknown densities (λ, ρ) are equal to the
Cauchy data. For Direct BIEs and Dirichlet
boundary value problem, the quantity λ van-
ishes and the single-layer BIE, sometimes called
Electric Field Integral Equation (EFIE), is ob-
tained by applying the interior Dirichlet trace
on Γ on the quantity u:

{
u = Sρ
Sρ = −uinc|Γ, S = S|Γ.

Applying the Neumann interior trace leads to
the MFIE and a Fourier trace to the CFIE (=α
EFIE + (1−α) MFIE). For an abstract frame-
work, a general interior trace γA is introduced
and the associated (direct) BIE is then given
by:

{
u = Sρ

SAρ = −γAuinc, γAS = SA.

2 Multiple Scattering and Block Jacobi
In this context, BIE can be rewritten in a ma-
trix form (SAp,q)p,q where the diagonal block SAp,p
corresponds to the boundary integral operator
when considering only the obstacle Ωp (single
scattering) and where the off-diagonal block SAp,q
for q 6= p represents the interaction between the
two obtacles Ωp and Ωq. For example and for
two obstacles, the BIE SAρ = γAuinc reads as:

(
SA1,1 SA1,2
SA2,1 SA2,2

)(
ρ1
ρ2

)
= −

(
γAuinc|Γ1

γAuinc|Γ2

)
.

The block Jacobi preconditioner ŜA, composed
by the M blocks located on the diagonal of this
matrix, is here given by:

ŜA =

(
SA1,1 0

0 SA2,2

)

When applying it to the above BIE, the matrix
of the system has now the following form:

(ŜA)−1SA =

(
I1,1 (SA1,1)

−1SA1,2
(SA2,2)

−1SA2,1 I2,2

)

(1)
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This preconditioner is classical and known
as the block Jacobi preconditioner. In this con-
text, it can also be seen as geometric as it takes
into account only the single scattering effects
and be thus named single scattering precondi-
tioner. It is also linked to the Reflexion Method,
Lax-Foldy model or the Boundary Decomposi-
tion Method.

3 Main Result
As it has been proven in [2], the three direct
boundary integral equations cited above become
exactly the same after being preconditioned (by
the block Jacobi). In other words, (1) is totally
independent of the choice of γA. This result is
also independent of the geometry, provided that
the obstacles do not touch each other.

For other BIEs, such as the indirect bound-
ary integral equations of Brakhage-Werner, the
result can be extended. For this case, the linear
systems become similar, that is, equal up to an
invertible operator (the passing operator). For
example, if SBW is the operator of Brakhage-
Werner and ŜBW its block jacobi preconditioner,
then there exists an invertible operator U such
that

(ŜA)−1SA = U
[
(ŜBW )−1SBW

]
U−1.

These properties imply in particular that the
convergence rate of a Krylov subspaces solver
will be exactly the same for every precondi-
tioned integral equations.

4 Numerical Illustration
This result will be illustrated using either µ−diff
[3] or GypsiLab [4], two open-source Matlab
toolboxes for solving two dimensionnal scatter-
ing problem using BIE. The first one is restricted
to disks (using Fourier series) while the second
one is based on BEM and is thus more flexible.
As an example, for 30 obstacles of unit length
and a wavenumber k = 20, the eigenvalues of
the four preconditioned BIEs are shown on fig-
ure 4 and up to a numerical error, they match.
On figure 4 is shown the histories of convergence
of the GMRES for the four BIEs with and with-
out preconditioner, these last four curves being
superimposed (dashed line).
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A sinc-Fourier approach to an inverse problem in scattering
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Abstract

In this paper, we discuss a Sinc-Fourier trans-
form solution method for determining the re-
fractive index of an inhomogeneous medium acous-
tic scattering problem in a three dimensional re-
gion. We formulate the problem as a 3D Lipp-
mann�Schwinger equation. The direct prob-
lem is solved iteratively by �rst applying a 2D
Fourier transform that takes advantage of the
simple form of the free space Green's function
and then solving the transformed equation using
the sinc convolution method for one dimensional
problems, and �nally by an inverse Fourier trans-
form. By using a regularization method, we
extend the sinc-Fourier approach to the inverse
problem and examine the numerical performance
of the method.

Keywords: sinc convolution, Lippmann-Schwinger,
inverse medium problem

1 Introduction

In applications such as biomedical imaging, it is
important to determine material properties of
the underlying medium. In this paper we dis-
cuss a Sinc-Fourier transform solution method
for determining the refractive index of an inho-
mogeneous medium acoustic scattering problem
in a three dimensional region.

The scattering problem under consideration
is modelled by a Helmholtz equation in a non-
homogeneous medium inside a bounded domain
V = [−X,X]× [−Y, Y ]× [−Z,Z] :

∆f + κ2(1 + γ(x)) f = 0

with given boundary data:

f = v,
∂f

∂ν
= w on ∂V

The di�erential equation with boundary data
may be reformatted as a 3D Lippmann�Schwinger

integral equation. With G(r) =
ei κ r

4πr
, r = |r| =

|(x, y, z)|, denoting the Green's function for free

space constant coe�cient Helmholtz problem,
we have the Lippmann�Schwinger equation

f(r)−
∫

V
κ2(1+γ(r′)) f G(|r− r′|) dr′ = f in(r)

where

f in(r) =

∫

∂V
wG(r− r′)− v ∂G(r− r′)

∂ν ′
dS(r′).

In practice, it is often more realistic to assume
that the incident wave f in is known in place of
the function and derivative values on the bound-
ary.

For the direct problem of �nding f , the in-
tegral equation is a Fredholm equation of the
second kind while for the inverse problem of
�nding γ, it is a Fredholm equation of the �rst
kind. The solution the full 3D problem typically
requires high computational resource. An e�-
cient method using a sinc-Fourier approach was
recently introduced by Stenger, Anderssen and
Chow [1] to handle the direct problem. This is
done using a combination of 2F Fourier trans-
form and a 1D sinc convolution method that
e�ectively reduces the solution process to a se-
quence of 1D problems. By using a regular-
ization method, we extend the sinc-Fourier ap-
proach to the inverse problem.

With the refractive index γ assumed known,
the direct problem of calculating the solution to
the Helmholtz may be solved e�ciently using a
sinc-Fourier method.

First a 2D Fourier transform for the y, z vari-
ables is applied to the integral equation. The
2D Fourier transform of the corresponding free
space Green's function has the simple and ex-
plicit form

G̃(x,λ) =
i

2β
exp(iβ |x|)

where λ̄ = [λy, λz]
T are the Fourier variables

corresponding to y and z, and

β =

√
κ2 − |λ̄|2.
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Under the further assumption that the inci-
dent wave is a plane wave, and set

f = fsc + f in,
fsc = f in u,

the transformed Lipmann-Schwinger equation takes
the form

ũ(x, λ̄) = κ2
∫ X

−X
H̃(x−t , λ̄)

{
γ̃ u(t , λ̄) + γ̃(t , λ̄)

}
dt ,

where

H̃(x , λ̄) =
i

2β
exp (−i κ x+ i β |x|) .

The equation is then solved iteratively. For
each �xed Fourier variable pair, the transformed
equation is a one dimensional equation involv-
ing integral of convolution type. With a known
approximate solution un , the convolution inte-
gral involving γ̃ un is evaluated using the highly
accurate sinc convolution method [2], which al-
lows us to handle the singularity in the integral

equation e�ectively, and a new function ũn+1 is
found from the integral equation. An inverse
2D Fourier transform is then applied to obtain
a new approximation un+1.

For the inverse problem of determining the
re�ective index γ, we introduce a small regular-
ization term to the Lippmann�Schwinger equa-
tion:

αγ̃(x, λ̄) = −ũ(x, λ̄)

+κ2
∫ X

−X
H̃(x− t , λ)

{
γ̃ u(t , λ̄) + γ̃(t , λ̄)

}
dt ,

where α is the regularization parameter. Itera-
tion process based on the sinc-Fourier approach
described above is then applied to determine the
re�ective index. We will report the numerical
performance of di�erent iterative schemes and
discuss the convergence of the iterative method.

2 Numerical example

To illustrate the method we note that for any
nice F , by setting

γ = − ∆F + 2 i κ Fx
κ2 (1 + F )

.

we have a solution to the Lippmann-Schwinger
equation.

For

F (r̄) = b exp
(
−a |r̄ − r̄0|2

)
,

where a and b constants, with a is positive,

γ(r̄) =
4 i a κ (x− x0) + 6 a− 4 a2 |r̄ − r̄0|2

κ2(1 + F (r̄))
F (r̄).

Note γ has a �peak� at r̄ = r̄0 = (x0 , y0 , z0) .
With parameters

a = 0.03, b = 0.05, (x0, y0, z0) = (0, 0, 0), κ = 2π(1+a)

X = 20, Y = 15, Z = 8, Nx = 16, Ny = 12, Nz = 9

the error of real and imaginary parts of F are

3 References
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Abstract

We propose an efficient high order accurate
boundary algorithm for the numerical solution
of unsteady exterior initial boundary problems
for the three-dimensional wave equation. The
algorithm relies on the method of difference po-
tentials combined with the Huygens’ principle.
Keywords: method of difference potentials,
Huygens’ principle, unsteady wave propagation

1 Introduction

Consider an exterior initial boundary value
problem (IBVP) for the three-dimensional ho-
mogeneous wave (d’Alembert) equation:

1

c2

∂2u

∂t2
−∆u = 0, on R3\Ω× [0, T ], (1a)

lΓu = φ, on ∂Ω× [0, T ], (1b)
u|t=0 = ∂u/∂t|t=0 = 0, (1c)

where c is the speed of light. The boundary con-
dition (1b) is inhomogeneous. For example, if u
is the field scattered off the given shape Ω, then
the operator lΓ defines the type of scattering on
∂Ω and the data φ represent the impinging field.

The numerical method we propose for solv-
ing the IBVP (1) combines the flexibility and
ease of finite differences with the advantages of a
boundary approach. It reduces the dimension of
the problem by one and handles non-conforming
boundaries ∂Ω on regular grids with no loss of
accuracy. These features are enabled by the
method of difference potentials (MDP) [1] that
employs discrete counterparts of Calderon’s op-
erators. The MDP has previously been used
for the simulation of both time-harmonic [2]
and time-dependent waves [3]. As an extension
of [3], the current work addresses exterior prob-
lems and offers high order accuracy.

A fundamental difficulty in applying bound-
ary methods (e.g., those based on retarded
potential boundary integral equations [4] or
those based on Calderon’s operators) to time-

dependent problems is that the boundary ex-
tends with time. To avoid the growth of cost,
we employ the strong Huygens’ principle that
helps us truncate the ever expanding “tail” of
the algorithm. It also guarantees that only out-
going waves will be present in the solution to the
exterior problem. The time marching is there-
fore performed on a sliding window of fixed du-
ration and only along the boundary ∂Ω× [0, T ],
which has dimension (2+1) in space-time. As
such, the method provides sub-linear complex-
ity, i.e., outperforms the typical explicit schemes
in long-time simulations. Moreover, changing
the boundary condition (1b) incurs only a mi-
nor additional cost compared to that for a con-
ventional volumetric time-stepping technique.

2 Method

The MDP reduces the PDE (1a) from the un-
bounded domain R3\Ω × [0, T ] to the operator
equation at the boundary Γ=∂Ω× [0, T ]:

PΓξΓ = ξΓ. (2)

In (2), PΓ is Calderon’s projection for the
d’Alembert operator and ξΓ≡(ξ0, ξ1) is the den-
sity of the generalized Calderon’s potential:

PΩξΓ =

∫

Γ

{
ξ1(y , t′)G(x − y , t− t′) (3)

− ξ0(y , t′)
∂G

∂n
(x − y , t− t′)

}
dt′dSy .

The functions ξ0 and ξ1 in (2), (3) are traces of
the solution and its normal derivative on Γ, re-
spectively, and G(x , t) in (3) is the fundamental
solution of the d’Alembert operator. The pro-
jection PΓ in (2) is the vector trace of the po-
tential (3): PΓξΓ =

(
PΩξΓ,

∂PΩξΓ
∂n

)∣∣
Γ
.

The boundary equation (2), which is equiv-
alent to (1a), is solved as a system along with
the BC (1b). This can be arbitrary as long as
the overall formulation (1) is well-posed. In sim-
ple cases, the BC explicitly provides one com-
ponent of ξΓ, e.g., ξ0 for a Dirichlet BC and ξ1
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for a Neumann BC. The remaining component
is then obtained as a solution to (2).

To discretize (2), the MDP computes the
finite difference projection operator by solving
a series of inhomogeneous auxiliary problems
(APs) for equation (1a). The AP is originally
formulated as a Cauchy problem and then trun-
cated to a bounded domain Ω0 of simple shape,
see Figure 1, where it can be easily integrated
by any appropriate finite difference scheme. The
Huygens’ principle combined with MDP enables
a perfectly reflectionless treatment of the artifi-
cial outer boundary ∂Ω0, as in [5].

𝑡𝑖𝑚𝑒 

T 

0 


0

Figure 1: Computational domain for the AP.

Moreover, the Huygens’ principle incorpo-
rated into our time-marching algorithm implies
that for a bounded domain Ω in space, the ex-
tent of the backward dependence of the solution
u to equation (1a) in time is finite and non-
increasing. This property allows us to solve (2)
(and thus, (1)) over long computational times
Tfinal � T sequentially, updating the density ξΓ

by “chunks” of size T , see Figure 2. The solu-
tion u on Ω is computed only once, at t=Tfinal.
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Figure 2: Time marching by “chunks” of size T .

3 Numerical demonstrations

To solve the AP, we employed a fourth order
accurate compact scheme [6] (it controls the
dispersion error more efficiently than the pre-
viously used lower order schemes). The test

problem is scattering of a plane wave about a
sphere of radius R0. All computations are con-
ducted on a Cartesian grid, for which the spher-
ical boundary r = R0 is non-conforming. Fig-
ure 3 shows the error profiles for a long-time run
with Tfinal=4000R0/c on two consecutive grids.
Table 1 demonstrates that the CPU time to ad-
vance the solution over T =R0/c scales roughly
as 23 =8 for the proposed boundary method ver-
sus 24 =16 for an explicit volumetric scheme.

0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1
time

-18

-17

-16

-15

-14

-13

-12

-11

-10

2x grid
4x grid

# T
sim

Figure 3: Fourth order convergence of the pro-
posed boundary method with Robin BC (1b).

Grid CPU time, sec scaling rate
MDP Volume MDP Volume

1× 0.0474 1.26 - -
2× 0.421 19.8 8.87 15.7
4× 3.56 322 8.46 16.3

Table 1: Comparison of numerical performance
over a fixed time interval T = R0/c of the pro-
posed boundary method (MDP+Huygens’ prin-
ciple) vs. standard volumetric time marching.
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High order transmission conditions for a Domain Decomposition Method applied to an
efficient and accurate solution of EM scattering problems
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Abstract

In this paper, we present a non-overlapping Do-
main Decomposition Method (DDM) for the so-
lution of electromagnetics problems such as the
computation of the Radar Cross Section (RCS)
of an object. As we target objects that are
coated with layers of material, we restrict our-
selves to non-intersecting interfaces so that no
subdomain has more than two neighbours. For
the sake of high accuracy, an exact radiation
condition is used to close the computational do-
main. We investigate various high order trans-
mission conditions, for which Sufficient Condi-
tions for Uniqueness (SCU) can be derived, en-
suring the wellposedness of the local problems.
An implementation of this algorithm, using fi-
nite elements, is presented in an HPC frame-
work and numerical results show the interest of
our method.
Keywords: domain decomposition, EM scat-
tering, GMRES, HPC

1 Introduction and model problem

We are interested here in the numerical compu-
tation of the RCS of objects coated with (possi-
bly thin) layers of material, in open space. The
governing equations for the targeted problem
are the Maxwell’s equations in the frequency do-
main. We use an electric field formulation (E is
the electric field, µ and ε are the characteristic
properties of the materials):

∇×
(
µ−1∇× E

)
− k20 εE = 0. (1)

Let S0 be the surface of the object of interest,
on which we prescribe an impedance condition

n× µ−1∇× E = − ik0
Z
Et, on S0, (2)

where Et = −n× (n×E) is the tangential field,
and n is the outgoing normal. Above S0, several
layers of materials are located, up to a surface S.
Finally, the computational domain is closed by a
fictive surface Sf (see Figure 1 for an illustration
of the computational domain). Between S and

S
0

S Sf

nn

Figure 1: The computational domain: Between
S0 and S, materials are present.

Sf , we have µ = ε = 1. On Sf , we prescribe an
integral representation [1] that links the electric
field on Sf to the fields on S: ∀x ∈ Sf ,

E(x) = Einc(x)− T J(x)− LK(x),

T J(x) = − 1

ik0
∇
∫

S
g(x, y)∇ · J(y)dy

+ik0

∫

S
g(x, y)J(y)dy,

LK(x) =

∫

S
∇ g(x, y)×K(y) dy,

(3)

where g is the usual Green kernel, K = n × E,
J = n×H and H = − 1

ik0
µ−1∇×E. Equations

(1), (2) and (3) form the well-posed global prob-
lem [2]. It is discretized using classical first or-
der Raviart-Thomas basis functions in H(curl),
supported by the edges of the mesh.
Considering the problem sizes that we are tar-
geting, (up to 300 millions of unknowns), it is
natural to consider a DD method.

2 Domain decomposition framework

The computational domain Ω (between S0 and
Sf ) is decomposed into subdomains, that may
correspond to the material layers. Traditionally,
the subdomains are coupled through their inter-
faces thanks to Transmission Conditions (TCs)
and the coupled problem is solved via a Krylov
method (GMRES). It is well known that the
convergence of the algorithm strongly depends
on the TCs [3]. Very generically, one can write
these TCs on each interface as follows

T±
i (E+

i , J
+
i ) = T±

i (E−
i , J

−
i ), on Si. (4)
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In (4), the + and − subscripts denotes quan-
tities located above and below the interface Si
respectively, and T±

i are operators acting on the
tangential electric field and on the electric cur-
rent. Most TCs in the literature can be written
within this framework [3], in particular

• Robin-like TCs: T±(E, J) = αE ± J

• Rational fractions of 2nd order operators

These TCs lack efficiency or robustness: Robin-
like TCs may have slow convergence, Padé ap-
proximant of the square root operator may have
great convergence but no proof of wellposedness
of the subproblems. When these TCs are tuned
in order to comply with SCU, the convergence
strongly degrades.

3 High order transmission conditions

To overcome these issues, we introduce heuristic
HOTC, whose general form reads

T1E
+
t + ηT2J

+ = T1E
−
t + ηT2J

−

T1E
+
t − ηT2J+ = T1E

−
t − ηT2J− (5)

where Ti = 1− (aiLD − biLR)/k20 (i = 1, 2) and
LD and LR are the divergence and the rotational
part of the Hodge operator: LD V = ∇t∇t · V
and LR = ∇t × ([n · (∇t × V )]n). By taking
specific values of ai and bi, one can greatly sim-
plify the analysis of the problem, in particular
if one takes a1 = b1 = a2 = α and b2 = 0, it can
be shown that

Re(α) ≥ 0, Re(η) > 0
Im(α)Im(η) ≤ 0

(6)

are sufficient conditions that ensure the unique-
ness of the solution in each subdomain, and the
equivalence to the global problem. Moreover,
by noting that LD LR = LR LD = 0, one can
simplify the TCs to get (ΛR = 1 + α/k20LR)

ΛRE
+
t ± ηJ+ = ΛRE

−
t ± ηJ−. (7)

The implementation of these TCs does not re-
quire any additional unknowns or Padé approxi-
mant, leading to almost no extra cost compared
with Robin-like TCs.

4 A numerical example

This method has been implemented in a fully
parallel framework [4]. All sub-problems are
solved concurrently and directly using the par-
allel (MPI + OpenMP) solver PaStix, the dense

Figure 2: Geometry of the test case.

blocks arising from the integral representation
are compressed in parallel (MPI + OpenMP)
using the ACA algorithm and any other GM-
RES step is also parallelized.

The test case presented has run on 640 cores
(20 nodes) of the Tera1000-1 supercomputer at
CEA. The geometry corresponds to a cylinder
with a hemispherical cap and a lateral groove
(see Figure 2). We compare the HOTC to De-
sprés TCs and optimized Robin-like TCs. The
computation is done at 1 GHz, leading to about
44.5M unknowns. We report the number of it-
erations and time to solution for each case.

• Després: 274 it., 5890 s

• Optimized: 207 it., 4320 s

• HOTC: 142 it., 3470 s

This example shows a clear reduction of the
number of iterations (about 30%), as well as a
reduced time to solution (about 20%).
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Abstract

We are interested in time-harmonic scattering
problems for configurations where the Green’s
function is not easily computable for the exte-
rior domain, but different Green’s functions are
available in several unbounded subdomains cov-
ering the whole space. For a model problem, by
using integral representations of the solution in
each subdomain, we propose a formulation cou-
pling the traces and the normal traces of the
solution on infinite boundaries. The system of
equations is shown to have a unique solution in
the dissipative case.
Keywords: integral equations, domain decom-
position

1 The model problem

We search u in H1(Ω) which satisfies:

−∆u(x)− (k(x) + iε)u(x) = f in Ω, (1)

where k is positive, and Ω = Ωb ∪Ω0 ∪Ω1, with
Ωj , j ∈ {0, 1} is such that the Green’s functions
Gj associated to the problem in Ωj can be com-
puted. Finally, the support of f is included in
Ωb. In Figure 1 we represent 2 examples: the
junctions of 2 stratified media or 2 half-spaces of
different topography. In this second case, we im-
pose for instance a compactly supported Dirich-
let condition on ∂Ω.

To focus only on the originality of the method,
let us suppose that u is known on the boundary
of the bounded domain Ωb:

u = g on ∂Ωb, (2)

with g ∈ H1/2(∂Ωb) a given data.

2 The system of integral equations

The idea of this integral method is to couple
several representations obtained from its traces
ϕj and normal traces ψj on the boundary of

Σ0 Σ1

Ωb

Ω0

Ω1

f

Σ0

Σ1

Ωb Ω0Ω1 f

Figure 1: Multi-domain representation

each subdomain:

u|Ωj (x) = Uj(ϕj , ψj) in Ωj (3)

:=

∫

Σj

ϕj(y)
∂Gj
∂yνj

(x− y)− ψj(y)Gj(x− y)dγy,

where νj is the exterior normal of Ωj .
On the part of Σ0 located in Ω1, we have by
definition:

u = ϕ0,

and by using the representation (3) for j = 1,
we have

u = U1(ϕ1, ψ1).

As a consequence, on this part of Σ0 we must
have ϕ0 = U1(ϕ1, ψ1). Proceeding in the same
manner for the normal trace ψ0, we obtain on
Ω0 ∩ Σ1:

ϕ0 = U1(ϕ1, ψ1) and ψ0 = ∂ν0U1(ϕ1, ψ1).

Thursday, 17:15, GM8, Building BD



Domain Decomposition 369

The boundary condition (2) implies that

ϕ0 = g on Σ0 ∩ ∂Ωb.

Finally, there are several possible equations for
ψ0 on Σ0 ∩ ∂Ωb:

ϕ0 = U0(ϕ0, ψ0) or ψ0 = ∂ν0U0(ϕ0, ψ0).

In the sequel we choose the first option. Similar
equations can be obtained by permuting 0 and
1. This leads to: for j ∈ {0, 1},
∣∣∣∣∣∣∣∣

ϕ1−j = Uj(ϕj , ψj) on Σ1−j ∩ Ωj ,
ψ1−j = ∂ν1−jUj(ϕj , ψj) on Σ1−j ∩ Ωj ,
ϕj = g on Σj ∩ ∂Ωb,
ϕj = Uj(ϕj , ψj) on Σj ∩ ∂Ωb.

(4)

3 The mathematical formulation

The natural choice of functional spaces for the
traces are ϕj ∈ H1/2

g (Σj) := {φ ∈ H1/2(Σj), φ =
g on Σj ∩ ∂Ωb} and ψj ∈ H−1/2(Σj). However,
the traces involved in the system (4) are defined
piece by piece, meaning that we "cut" them. To
avoid this, we have to choose the test functions
cleverly and not in the same space as the un-
knowns. To do so, we define the curves

Σ̃j := ∂(Ωj ∪Ωb) = (Σj ∩Ω1−j)∪ (Σ1−j ∩∂Ωb)).

We choose the test functions ϕ̃tj ∈ H
1/2
0 (Σ̃j) :=

{φ ∈ H1/2(Σ̃j), φ = 0 on Σ̃j ∩ ∂Ωb}, and ψ̃tj ∈
H−1/2(Σ̃j). Afterwards, we define several oper-
ators that allow us to pass functions defined on
Σ0 ∪ Σ1 to functions defined on Σ̃0 ∪ Σ̃1:
∣∣∣∣∣∣∣

Ej : H
1/2
g (Σ0)×H1/2

g (Σ1)→ H
1/2
g (Σ̃j),

Ej(ϕ0, ϕ1) = ϕ̃j =

{
ϕj on Σj ∩ Ω1−j ,

ϕ1−j on Σ1−j ∩ ∂Ωb,

and Ẽj : H
1/2
g (Σ̃0)×H1/2

g (Σ̃1)→ H
1/2
g (Σj).

Finally, the formulation is written as: find for
j ∈ {0, 1}, (ϕj , ψj) in H

1/2
g (Σj) × H−1/2(Σj)

such that for all (ϕ̃j , ψ̃j) inH
1/2
0 (Σ̃j)×H−1/2(Σ̃j),

∣∣∣∣∣∣∣∣∣

〈E0(ϕ0, ϕ1), ψ̃t0〉Σ̃0
= 〈U1(ϕ1, ψ1), ψ̃t0〉Σ̃0

,

〈ψ0, Ẽ0(ϕ̃t0, 0)〉Σ0
= 〈∂ν0U1(ϕ1, ψ1), ϕ̃t0〉Σ̃0

,

〈E1(ϕ0, ϕ1), ψ̃t1〉Σ̃1
= 〈U0(ϕ0, ψ0), ψ̃t1〉Σ̃1

,

〈ψ1, Ẽ1(0, ϕ̃t1〉)Σ1 = 〈∂ν1U0(ϕ0, ψ0), ϕ̃t1〉Σ̃1
.

(5)
Remark that the first equation of (5) combines
the first and the last equations of (4).

Theorem 1 System (5) has a unique solution.

4 Numerical result

For the numerical simulation, we use 2D La-
grange finite elements to treat the volume un-
known. For the trace unknowns, we truncate the
curves Σj far enough and use 1D Lagrange finite
elements for both types of traces. Finally, once
we obtain the ϕj and ψj , we can reconstruct the
solution by applying Formula (3). This method
can be used to solve scattering problems in con-
figurations like in Figure 1 bottom. In Figure 2,
we represent the scattered field for a particular
incident field (which has to be defined precisely).
This result is obtained by using XLiFE++.

Figure 2: Numerical validation with a localized
defect.

Note that although the theory is established for
dissipative media, the numerical simulation works
as well in the case without dissipation.

Remark 2 When the Green’s function of each
subdomain is not available in a closed form, we
could take, instead of 2 curves, at least 3 straight
lines and then use a Fourier integral represen-
tation instead of (3) (see for instance [1, 2]).
It is particularly useful in the elasticity problem
in locally perturbed 3D anisotropic plate, where
both types of the traces are needed to represent
the displacement field in each half-plate.
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Abstract

We focus on the construction of an optimized
non-overlapping domain decomposition method
(DDM) for 2D-elastic scattering problems where
the sub-domains are coupled by a new high-
order Transmission Boundary Condition (TBC).
These TBCs are defined in terms of an approx-
imate local Dirichlet-to-Neumann (DtN) map.
First, we explain the derivation of the new TBC
in the context of a non-overlapping DDM and
recall the standard low-order Lysmer-Kuhlemeyer
TBC. Next, a convergence study mode-by-mode
for a model problem is addressed.
Keywords: Scattering, 2D elastic waves, opti-
mized Schwarz method, approximate DtN map

1 Mono-domain time-harmonic elastic wave
problem

Let us consider Ω− := {x ∈ R2 : |x| ≤ rint}
with boundary Γ and its complementary Ω+ :=
R2\Ω−. Let us remind the second-order har-
monic elastic wave equation :

divσ(u) + ρω2u = 0, (1)

where u ∈ Ω+, σ and ε are the stress, respec-
tively strain tensors defined in the isotropic case
by σ(u) = λ(divu)I + 2µε(u), ε(u) = 1

2([∇u] +
[∇u]T ), with λ and µ the Lamé coefficients. When
illuminated by a time-harmonic incident wave
uinc, the scattering problem is formulated as fol-
lows: find the displacement u solution to the
Navier equation (1) in Ω+ such that

u = −uinc, on Γ, (2)

and satisfying the Kupradze radiation conditions
at infinity and particularly on Γ∞ := {x ∈ R2 :
|x| = rext} which delimits the studied bounded
domain Ω := {x ∈ R2 : rint ≤ |x| ≤ rext}.
2 Domain decomposition

We split the domain Ω into Ndom sub-domains
Ωi without overlap. Let us denote Γi := Γ∩Ωi,

Γ∞i := Γ∞ ∩ Ωi and Σij := Ωi ∩ Ωj the trans-
mission boundary. At iteration (n+1) for a sub-
domain Ωi, the additive Schwarz DDM leads to
solve two problems:
• Find un+1

i := u|Ωi , i = 1, · · · , Ndom solution
to



divσ(u
(n+1)
i ) + ρω2u

(n+1)
i = 0, in Ωi,

u
(n+1)
i = −uinc, on Γi,

Tniu
(n+1)
i = Bu(n+1)

i , on Γ∞i ,

Tniu
(n+1)
i − Sniu

(n+1)
i = g

(n)
ij , on Σij ,

(3)
where ni is the outgoing normal to Ωi, B the op-
erator describing boundary conditions at infin-
ity, T the traction operator, S the transmission
operator and g

(n)
ij the surface fields given by the

previous iteration of the algorithm.
• Update the interface unknowns g(n+1)

ji as

g
(n+1)
ji = −g(n)

ij − (Sni + Snj )u
(n+1)
i , on Σij ,

(4)
with nj the outgoing normal to Ωj .

3 Transmission operator

A key point of the method remains in approx-
imating accurately the traction operator T by
the transmission operator S. The choice of this
operator is important for the convergence rate
of the iterative solver. We consider two trans-
mission operators:
• The low-order transmission operator:

S0 = i(λ+ 2µ)κpIn + iµκsIτ , (5)

with κ{p,s} the wavenumbers associated to re-
spectively the P- and S-waves, In = ni ⊗ ni and
Iτ = I− In.
• The high-order (HO) non-local transmission
operator inspired by [1]- [2]:

S1,ε
n = (I + Λ2,ε,n)−1Λ1,ε + 2µMn, (6)

with

Λ1,ε = iρω2
[ n

κp,ε

(
∆Γ

κ2
p,ε

+ I

)−1/2

In

+
τ

κs,ε

(
∆Γ

κ2
s,ε

+ I

)−1/2

Iτ

]
,

(7)
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Λ2,ε,n = −i
[ τ

κs,ε
∂s

(
∆Γ

κ2
s,ε

+ I

)−1/2

In

− n

κp,ε
∂s

(
∆Γ

κ2
p,ε

+ I

)−1/2

Iτ

]
,

(8)
andMn the Günter tangential derivative given
by

Mn = ∂s(n · In)τ − ∂s(τ · Iτ )n. (9)

We denoted ∆Γ the Laplace-Beltrami operator
and ∂s the curvilinear derivative.

4 Convergence analysis

In order to study the convergence of the pro-
posed DDM with the non-local HO-TBC (6), we
analyze a model problem with two sub-domains:
a disk-shaped bounded sub-domain Ω1 of radius
R and an unbounded complementary domain
Ω0. We denote by Γ := ∂Ω1 the boundary of
Ω1. The convergence analysis can be developed
by studying the spectral properties of the itera-
tion operator A (a matrix 4× 4) defined by

A :=

(
02 A0

A1 02

)
, (10)

with A0 and A1 2× 2 matrices satisfying

A0g
(p)
0 := −g(p)

0 − (S1,ε
n0 + S1,ε

n1 )u
(p+1)
0 ,

A1g
(p)
1 := −g(p)

1 − (S1,ε
n0 + S1,ε

n1 )u
(p+1)
1 .

(11)
The modal iteration matrix Am is determined
through a Fourier-Hankel serie expansion of the
solutions. An important result is that the spec-
tral radius of Am vanishes for evanescent modes
(m→∞).

To highlight the efficiency of the HO non-
local TBC, let us choose κp = 12π/

√
3m−1,

κs = 12πm−1, ρ = 1Kg.m−3, R = 1m and a
maximal number of modes mmax = 140. We
report in Figure 1 the modal spectral radius
ρ(Am) with respect to m corresponding to the
transmission operators S0, S1,0, S1,ε, where S1,0

is the non-local HO-TBC operator taking εp =
εs = 0. The LO-TBC operator S0 acts on prop-
agative modes only. As the Desprès condition
in the Helmholtz case [3], the spectral radius of
Am is equal to 1 for evanescent modes. Apply-
ing the new non-local HO-TBC without damp-
ing related to S1,0, the convergence rate is opti-
mal for the evanescent modes and an improve-
ment over the LO-TBC is observed. The sin-
gularities of the square-root operators in the
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m = κpR

m = κsR

Modes m

ρ
(A

m
)

S0
S1,0
S1,ε

Figure 1: Spectral radius of the modal iteration
matrix Am with respect to the mode m. f =
6Hz, R = 1m, dκpe = 22m−1, dκse = 38m−1.

transition zone of creeping modes (m ≈ κpR
and m ≈ κsR) lead to two expected ampli-
tude peaks. Finally, adding damping parame-
ters ε{p,s} = 0.39κ

1/3
{p,s}R

−2/3, the non-local HO-
TBC leads to a smaller spectral radius for the
grazing modes than without damping.

In a finite element context, a localization
procedure is needed [3], which is achieved through
a complex Padé approximation of the inverse of
the square-root operator.
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Abstract

We consider the electric field integral equation
(EFIE) arising from the scattering of time-har-
monic electromagnetic waves by a perfectly con-
ducting screen. When discretizing the EFIE
by means of low-order Galerkin boundary ele-
ment methods (BEM), one obtains linear sys-
tems that are ill-conditioned on fine meshes.
This makes iterative solvers perform poorly and
motivates the use of preconditioning.

This paper presents a new preconditioner
for the EFIE on screens that achieves condi-
tion numbers that are bounded and indepen-
dent of the meshwidth h, is robust with respect
to the so-called low-frequency break-down, and
works on non-uniformly refined meshes. This
last property is very important as solutions to
the EFIE on screens feature edge singularities.

We provide some numerical results to verify
our theoretical findings.
Keywords: Electric field integral equation,
preconditioning, screen problems.

1 Introduction

Let Γ be a simple Lipschitz screen, k > 0 a
fixed wave number, and g ∈ (H̃−1/2(divΓ,Γ))

′

be given. The corresponding EFIE variational
problem reads: Seek ξ ∈ H̃−1/2(divΓ,Γ) such
that

ak(ξ,η) := 〈Vk ξ , η〉 −
1

k2
〈Vk divΓ ξ , divΓ η〉

= 〈g , η〉 ,

for all η ∈ H̃−1/2(divΓ,Γ).
Here Vk is the weakly singular boundary in-

tegral operator for the Helmholtz operator (∆+
k2), and Vk its extension to surface vector fields
(see [4] for notation and definitions of the cor-
responding Sobolev spaces).

When discretizing the EFIE by means of
low-order Galerkin boundary element methods
(BEM), one obtains linear systems that are ill-
conditioned on fine meshes. Moreover, the re-
sulting Galerkin matrix will also suffer from the

so-called low-frequency break-down. These two
phenomena make iterative solvers perform poor-
ly and motivate the use of preconditioning that
is robust with respect to the meshwidth h and
for k→ 0.

Several preconditioning approaches have be-
en proposed for the EFIE in the literature, see
for example [2, Sect. 1.c] and the references the-
rein. However, many of these strategies do not
work in the case of screens, and those that do,
require special treatment and do not achieve
h-independent condition numbers when dealing
with screens. A popular technique on closed sur-
faces is the so-called Calderón preconditioning,
which builds on Calderón identities and leads to
mesh independent condition numbers [1]. Un-
fortunately, these identities do not hold on scre-
ens. Indeed, when using them in the screen set-
ting, one obtains condition numbers that still
grow like log(h). It is worth noticing that this
result is a consequence of the operators’ map-
ping properties. Therefore, the construction of a
suitable preconditioner for the EFIE on screens
needs to find different identities that actually
hold in the energy trace spaces involved. On
the other hand, since in this case the solution
features edge singularities, it is important that
the preconditioner can also handle meshes re-
fined towards the boundary of the screen.

We present a novel preconditioner for the
EFIE on screens. First, we find a compact equi-
valent inverse of the EFIE operator. Then, we
use this to construct an operator preconditioner
that is stable. Furthermore, the stability of the
preconditioner relies only on the stability of the
scalar L2 duality pairing, instead of the vec-
torial one. This approach not only offers h-
independent condition numbers, but it allows
for non-uniform meshes without additional com-
putational effort.

2 Compact Equivalent inverse

Let V0 and W0 be the weakly and hypersingu-
lar operators arising from the Exterior Lapla-
cian BVPs on Γ. We introduce the following
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operators derived in [4]:

Bz = curlΓ ◦W−1
0 ◦(curlΓ)∗

and
B⊥ = L ◦V−1

0 ◦ L∗,
with L : H̃

−1/2
∗ (Γ) → X⊥(Γ) being a right in-

verse of divΓ.
For k > 0, we define the operator Bk, map-

ping from H−1/2(curlΓ,Γ) to H̃−1/2(divΓ,Γ), as

Bk = Bz −k2 B⊥ . (1)

This operator satisfies:

Theorem 1 (Theorem 3.2 in [4]) The oper-
ator Bk from (1) is continuous and satisfies

Bk Ak = Id+Ck (2)

with Ck a compact operator, uniformly bounded
for k→ 0.

From (2) we get that Bk would be a suitable
preconditioner for Ak.

3 Preconditioner

We formulate our preconditioner from Bk such
that it fulfills all the requirements of operator
preconditioning and its discretization is stable.
In order to achieve this purpose, we resort to
the following mixed variational formulations:

À Bz g is obtained by finding u ∈ H̃1/2(Γ),
λ ∈ H−1/2(Γ) such that
〈
W−1

0 λ , φ
〉

+ 〈u , φ〉= 0,
〈λ , w〉 = −〈g , curlΓw〉 ,

for all v ∈ H̃1/2(Γ), and then applying
curlΓ: Bz g := curlΓ u.

Á Let H̃d := H̃−1/2(divΓ,Γ) ∩ L2
t (Γ) . The

computation of B⊥ g boils down to the fol-
lowing two steps:

(i) Seek µ ∈ H̃d, u ∈ H1/2
∗ (Γ) such that

〈µ , j〉+ 〈u , divΓ j〉= 〈g , j〉 ,
〈divΓµ , v〉 = 0,

for all j ∈ H̃d and v ∈ H1/2
∗ (Γ).

(ii) Seek ξ⊥ ∈ H̃d, w ∈ H1/2
∗ (Γ) such that:

〈ξ⊥ , q〉+ 〈w , divΓ q〉= 0,

〈divΓ ξ⊥ , v〉 =
〈
V−1

0 u , v
〉

for all q ∈ H̃d and v ∈ H1/2
∗ (Γ).

Then B⊥ g := ξ⊥ ∈ H̃d ⊂ H̃−1/2(divΓ,Γ).

Remark 2 There are closed-form integral op-
erator formulas for the inverses of the weakly
and hypersingular operators on the unit disk D
[3]. Moreover, their associated symmetric bilin-
ear forms are easy to incorporate into a BEM
implementation.

During the presentation, we will explain fur-
ther details and report numerical experiments
for different wave numbers k, both on the unit
disk and on more general screens.
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Abstract
In this work, we investigate iterative non over-
lapping domain decomposition methods for time
harmonic Maxwell’s equations. The main nov-
elty of our approach is the use of non-local op-
erators (integral operators) in the transmission
conditions between two adjacent subdomains,
in the spirit of previous works for Helmholtz
equation. Under suitable assumptions on the
transmission operators the algorithm converges
linearly, that is to say the error decreases expo-
nentially. In this work, we address the issue of
designing well adapted integral operators. The
main difficulty is to take into account the partic-
ular properties of the trace spaces of solutions
of Maxwell’s equations. A second difficulty is
to propose an adequate finite element approx-
imation. The main theoretical aspects of this
construction process will be detailed and pre-
liminary numerical results will be presented.
Keywords: Domain Decomposition, Impedance
transmission conditions, Non-local operators.

Domain decomposition method
We consider time harmonic Maxwell’s equations
in a bounded domain Ω ⊂ R3. Let k > 0 be the
(possibly varying) wave number of the medium
and f ∈ L2(Ω), we seek u ∈ H(curl ; Ω) such
that (we impose a first order absorbing condi-
tion on the boundary Γ, omitted here for brevity)

(
curl curl − k2

)
u = f , in Ω. (1)

We suppose that the domain is partitioned into
two non-overlapping subdomains Ω = Ω− ∪ Ω+

with interface Σ for which the unit normal vec-
tor n is oriented from Ω− to Ω+. We suppose
in addition that Σ does not intersect Γ. We
introduce the tangential trace operators

γ0 : H(curl ; Ω)→ H
−1/2
t (curlΣ),

γ1 : H(curl ; Ω)→ H
−1/2
t (div Σ),

(2)

respective extensions of γ0u = n× (u× n) and
γ1u = 1

k n× curl u for regular fields. The idea

consists in considering the following transmis-
sion problem, equivalent to (1), in the spirit of
previous works in the acoustic setting [1, 2],

Find u± ∈ H(curl ; Ω±) such that
(curl curl − k2)u± = f |Ω± , in Ω±,

(γ1 ∓ iTγ0)u± = (γ1 ∓ iTγ0)u∓, on Σ.

(3)

If the boundary operator

T : H
−1/2
t (curlΣ)→ H

−1/2
t (div Σ) (4)

is a positive self-adjoint isomorphism, the asso-
ciated relaxed Jacobi algorithm converges lin-
early: there exists τ < 1 and C > 0 such that
the n-th iterates un± satisfy
∥∥un+ − u|Ω+

∥∥+
∥∥un− − u|Ω−

∥∥ ≤ C τn. (5)

Construction of T

A valid candidate for T is a dissipative version
of the EFIE operator as proposed in [3]. In this
work, we propose an alternative that lend itself
to a quasi-localization process.

Our construction is guided by the Helmholtz
decompositions of the two trace spaces (valid for
simply connected surfaces)

H
−1/2
t (curlΣ) = ∇ΣH

1/2 + curlΣH
3/2,

H
−1/2
t (div Σ) = ∇ΣH

3/2 + curlΣH
1/2.

(6)

We see that a suitable T is a pseudo-differential
operator of order −1 on the ∇ -part and order
1 on the curl -part. Such a property cannot be
realized by a local operator.

We introduce the regularizing operator (Riesz
potential) of order −3/2 which admits the fol-
lowing representation for regular fields f ∈ L2

t (Σ)

R f(x) :=

∫

Σ

f(y)

(k|x− y|)1/2
dσ(y), ∀x ∈ Σ, (7)

and the coercive operator

L := Id− k−2∇Σdiv Σ. (8)
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Figure 1: Eigenvalues of the iterative operator

We define

T = Λ∗
0Λ0 + Λ∗

cΛc + Λ∗
gΛg, (9a)

with





Λ0 = L−1/2 (in× ·) ,
Λc = curlΣR curlΣ,

Λg = −L−1/2 (∇ΣR div Σ) .

(9b)

It is clear that such a T is a positive self-adjoint
operator. Furthermore, it can be shown that
Λ0, Λc and Λg map continuously H

−1/2
t (curlΣ)

to L2
t (Σ) and that T is an isomorphism.

The main role of the first term in (9a) will
become clear in the next section. The last two
terms in (9a) allow us to act selectively and in-
dependently on the two components of the de-
composition of tangential fields since

∇ΣH
1/2 ⊂ KerΛc, curlΣH

3/2 ⊂ KerΛg.

The relaxed Jacobi algorithm can be rewrit-
ten in the compact form

un+1 = Aru
n, (10)

where r is the relaxation parameter. In Fig. 1
we report the eigenvalues of the iteration opera-
tor A0.5 in the case where Ω = R3, Σ is the unit
sphere and the medium is homogeneous with
k = 10. Note that the spectrum is strictly con-
tained inside the unit circle.

Quasi-localization
The main advantage of T given in (9a) is that
it can be “quasi-localized” while retaining its
positivity and self-adjointness. To do so, given

a smooth cut-off function χ defined on R+ and
supported on [0, δ], we first define Rχ as in (7),
except that f(y) is replaced by χ(|x − y|)f(y).
Then in (9a), we substitute Λc and Λg for Λc,χ
and Λg,χ which are defined as in (9b) with R re-
placed by Rχ. Hence, the “localized” transmis-
sion operator Tχ involves only local or quasi-
local operators and writes in full

Tχ = −n× L−1 (n× ·)
+ (curlΣRχ curlΣ) (curlΣRχ curlΣ)

+ (∇ΣRχ div Σ) L
−1 (∇ΣRχ div Σ) .

(11)

The injectivity of Tχ is secured by the first
term. The surjectivity follows from the fact
that Rχ is a compact perturbation of R since
the singularity of the kernel in (7) is preserved.

Finite Elements approximation
The approximation of Tχ in (11) using finite el-
ements is a delicate task. Indeed, if one resorts
to using standard (Nedelec or Raviart-Thomas)
first order edge elements, the associated bilin-
ear form does not satisfy a discrete inf-sup con-
dition. We propose to use Buffa-Christianssen
dual finite elements [4] to solve this issue.
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Abstract

We are interested in deriving transmission con-
ditions (TC) for domain decomposition meth-
ods (DDM) with mesh constraints such as cor-
ners and cross-points. With respect to [1] where
the study concerns right-angle cross-points or
[2] which deals the Neumann conditions, our
framework adresses Dirichlet and Neumann con-
ditions with more general mesh features. To do
so, we start by defining an absorbing boundary
condition (ABC) that treats corner points, that
we further adapt to define a TC. This work is
illustrated by numerical simulations.
Keywords: parallel DDM, corner points, cross
points, integral constraints, Helmholtz equation

Introduction. We focus on the Helmholtz equa-
tion on a polygonal domain Ω with a compactly
supported source term f with classical second
order absorbing boundary condition
{

(−∆− ω2)u = f in Ω,(
1− 1

2ω2∂tt
)
∂nu− iωu = 0 on ∂Ω = ∪Γk.

In a weak formulation, because of the derivative
of ∂nu along ∂Ω which is a closed broken line,
additional relations have to be prescribed at the
corners Ak` = Γk ∩ Γ` on ∂nu.

Γk
Ak`Γl

Ω

nk
tk

τ k

τ kn`
t`

τ `

τ `

θk`

x

y

dη

π
2 + η

Figure 1: Geometric setting at corners of ∂Ω

Geometry. We consider the geometric setting
corresponding to the above figure, and for each

k we introduce the unknown

ϕk = ∂nku ∈ H1(Γk).

For an indicent plane wave uη(x) = exp(iω(dη,x)),
we are able to obtain the two following quasi-
continuity relations of order O(η2)





iω cos(θk`) (ϕk − ϕ`) (Ak`)

− cos
(
θk`
2

)
(∂τkϕk − ∂τ `ϕ`) (Ak`) = 0,

−iω cos

(
θk`
2

)
(ϕk + ϕ`) (Ak`)

+ (∂τkϕk + ∂τ `ϕ`) (Ak`) = 0.
(CR)

Remark that these relations coincide with the
continuity relations if the line is flat at Ak` (i.e.
θk` = −π).
The solution ϕ = (ϕk)k ∈ ⊕kH1(Γk) of

(
1− 1

2ω2
∂t2k

)
ϕk = u in Γk

that verifies a combination of equations (CR)
at corners leads to the definition of a bounded
linear operator T in L2(Γ). Once introduced in
the Helmholtz equation we obtain

{
(−∆− ω2)u = f in Ω,

∂nu− iωT (u) = 0 on Γ.

DDM with 2nd order ABC. Let us now
consider the DDM Ω = ∪Ωi, and define for all
k, i the segments Γi,k := ∂Ωi ∩ Γk. T (u) is a
global operator on Γ, so that a DDM using the
simple condition ∂niu

p+1
i = iωT (up+1) couples

all subdomains that meet the border. Instead,
an auxiliary unknown ϕi,k ∈ H1(Γi,k) is intro-
duced to replace the global T (u) on each Γi,k.
After initialization, the algorithm reads at iter-
ation number p = 0, 1, . . . : Solve for all i




(−∆− ω2)up+1
i = f in Ωi,

(∂ni − iω)up+1
i = −

(
∂nj + iω

)
upj on ∂Ωi ∩ ∂Ωj ,

∂niu
p+1
i = iωϕp+1

i,k on Γi,k,

coupled with, for all k
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(
1− 1

2ω2∂t2k

)
ϕp+1
i,k = up+1

i in Γi,k,[(
1 + i

cos
(
θk`
2

)

cos θk`

)
∂τkϕ

p+1
i,k

+
(
ω − iω cos

(
θk`
2

))
ϕp+1
i,k

]
(Aij

k`)

=

[(
−1 + i

cos
(
θk`
2

)

cos θk`

)
∂τ `ϕ

p
j,`

+
(
ω + iω cos

(
θk`
2

))
ϕpj,`

]
(Aij

k`).

The resolution of this DDM can be done in par-
allel for all i by solving local problems in Ωi

with unknowns
(
up+1
i ,

(
ϕp+1
i,k

)
k

)
supported on

Ωi× (⊕kΓi,k). To show the algorithm is conver-
gent, we focus on the vanishing source case and
show the decrease of energy

F p =
∑

i

∫

∂Ωi−Γ
|(∂ni − iω)upi |

2
dγ

+
∑

Aij
k`

cθk`

∣∣∣
(
1 + i

cos
(
θk`
2

)

cos θk`

)
∂τkϕ

p
i,k

+
(
ω − iω cos

(
θk`
2

) )
ϕpi,k

∣∣∣
2
(Aij

k`).

The coupling between up+1
i and (ϕp+1

i,k )k can be
removed by introducing new auxiliary unknowns
(ψp+1

i,k )k that correspond to the values of up+1
i on

the segments Γi,k. The system on up+1
i is then

solved as a Helmholtz boundary value problem,
where the boundary conditions involve (ϕpi,k)k
and (ψpi,k)k.

2nd order TC. The main difference between
ABC and TC is that an ABC is a model for a
radiation condition, whereas TC are a precon-
ditioning of

ui−uj = 0 and ∂niui+∂njuj = 0 on ∂Ωi∩∂Ωj .

To obtain stability when transposing the ABC
into TC, we want to respect the structure of
these operators. We assume here the interfaces
∂Ωi ∩ ∂Ωj are straight lines for the sake of sim-
plicity, but the method generalizes to the case of
broken lines. We number the corners of a sub-
domain Ωi as Ci

r for r = 1 to mi. When two
sub-domains Ωi and Ωj have a corner in com-
mon, we denote it

Pij
rs = Ci

r = Cj
s.

Figure 2: Error between the real parts of the
analytical solution and the computed solutions
without the corner treatment above, with the
new corner treatment in the ABC below.

After considering a first TC based on the reso-
lution in H1(∂Ωi ∩ ∂Ωj) of

{ (
1− 1

2ω2∂ti2
)
ϕ = u ∂Ωi ∩ ∂Ωj ,

∂tiϕ(Pij
rs) = 0,

and noting that the value at the corners is per-
sistant, we define a second TC with integral con-
straint based on the resolution H1(∂Ωi ∩ ∂Ωj)
with the constraint of zero mean of∫

ϕψ +
1

2ω2
∂tiϕ∂tiψ =

∫
(u− 〈u〉ij)ψ.
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Abstract

When solving 2D linear elastodynamics equa-
tions in homogeneous isotropic media, two types
of waves travel at di�erent velocities. In many
applications, a high di�erence on the velocities
penalise the numerics. Then, the introduction
of potentials helps to rewrite the problem as
two scalar wave equations only interacting on
boundaries and interfaces. The resultant is a
problem better adapted for discretization, how-
ever some di�culties arise on the treatment of
boundary and transmission conditions. In pre-
vious works, the authors addressed the cases of
rigid and free boundary conditions. Here, the
aim is to follow the same philosophy to treat the
transmission conditions between two isotropic
homogeneous media.

Keywords: Elastodynamics, Transmission
problem, Potentials, Mixed formulation.

1 Motivation and basic idea

In 2D elastodynamics, the variation of the dis-
placement �eld u is governed by the law

ρ ∂2
t u− divσ = f ,

σ ≡ stress tensor,
ρ ≡ density.

For isotropic homogeneous media, this trans-
lates into (λ and µ are Lamé coe�cients)

ρ ∂2
t u− (λ+ 2µ)∇ divu+ µ curl curlu = f

Two types of waves (P-waves and S-waves) prop-
agate at di�erent velocities VP > VS and there-
fore with wavelengths λP ∼ VP and λS ∼ VS .
With standard time explicit numerical methods,
the space step h is constrained by the smaller
wavelength λS for accuracy, while the time step
∆t is constrained by the higher velocity VP for
stability. In consequence, the computations are
costly when VP >> VS .
This motivates to �nd a formulation that decou-
ples the two type of waves. In the whole space,

the idea is to introduce the two scalar potentials

ϕP = V 2
P divu and ϕS = −V 2

S curlu (1)

These realize a Helmholtz decomposition of

∂2
t u− f/ρ = ∇ϕP + curlϕS . (2)

Then, applying div and curl to (2), we get two
decoupled scalar wave equations

1
V 2
Q
∂2
t ϕQ −∆ϕQ = 1

ρ gQ, Q ∈ {P, S}.

where gP = −divf and gS = −curlf .
2 Piecewise homogeneous media

We now consider a bounded domain Ω formed
by two non overlapping homogeneous isotropic
domains Ω1 and Ω2 and we denote the interface
Γ := ∂Ω1 ∩ ∂Ω2. Then (1, 2) only hold in each
subdomain. More precisely, introducing an in-
dex i ∈ {1, 2} for the related potentials, we have

1
V 2
Q,i
∂2
t ϕQ,i −∆ϕQ,i = 1

ρi
gQ, in Ωi. (3)

We assume that ∂Ω is a closed loop on which
u = 0 is imposed. Indeed, (3) need to be com-
pleted with transmission conditions on which we
focus in the following (the treatment of bound-
ary conditions has been addressed in [1, 2]).

3 Transmission conditions

Assume that Γ is a closed loop, with abscissa
s ∈ [0, L], that does not intersect ∂Ω. We note
n and τ the normal (outward to Ω1) and tan-
gential unit vector along Γ . The transmission
conditions along Γ read

(i) [u] = 0 and (ii) [σ(u)]n = 0, (4)

where [·] is the jump across Γ. Introducing the
new unknown uΓ := u|Γ, which encodes (4)(i),
one �rst show using (2) that, if suppf ⊂ Ω1, uΓ

is related to the potentials via

∂nϕP,i = ∂2
t uΓ · n+ ∂τϕS,i,

∂nϕS,i = ∂2
t uΓ · τ − ∂τϕP,i.

(5)
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Next, introducing ϕ = (ϕP , ϕS)t de�ned by (1),
one can show that (4)(ii) becomes

2[µ]∂τuΓ,1 =[ρϕ] · τ , 2[µ]∂τuΓ,2 =−[ρϕ] · n.

In the general case [µ] 6= 0, one can eliminate
uΓ using Iη(s) =

∫ s
0 η(γ):

uΓ = 1
2[µ]

(
I([ρϕ] · τ )
−I([ρϕ] · n)

)
+

(
c1

c2

)
, (6)

with some constants (c1, c2).

If [µ] = 0, things become much simpler since the
transmission conditions reduce to

[ρϕ] · n = [ρϕ] · τ = 0. (7)

Note that (5, 6), (or (7)) couple (ϕP , ϕS) at the
interface and that, as soon as [ρ] 6= 0, ϕ jumps
across Γ, contrary to u.

4 Naive variational formulations

First, notice that by (2) we seek ϕ in

V =V 1×V 2, V i = H(div,Ωi) ∩H(curl,Ωi).

In the case [µ] 6= 0, we even deduce that the
solution must be searched in the closed subspace

V 0 ={ϕ∈V /
∫

Γ[ρϕ] · n =
∫

Γ[ρϕ] · τ = 0}. (8)

It is then easy to see that a variational formu-
lation of (3, 5, 6) read as follows

Find ϕ(t) : R+ → V 0 such that

∂2
tm(ϕ,ψ) + a(ϕ,ψ) = `(ψ), ∀ψ ∈ V 0

(9)

where `(ψ) is the source term and, if ϕi = ϕ|Ωi ,

a(ϕ,ψ) =
∑
i=1,2

ρi

∫

Ωi

(
divϕi
curlϕi

)
·
(
divψi
curlψi

)
,

while m = mΩ +mΓ, mΩ(ϕ,ψ) =
∫

Ω
ρ

V 2
Q,i
ϕ · ψ

and mΓ is the symmetric bilinear form associ-
ated to the quadratic form

mΓ(ϕ,ϕ) = [µ]−1

∫

Γ
I([ρϕ] · n) [ρϕ] · τ (10)

Unfortunately, this naive formulation is not a
good one by defect of positivity of m:

Lemma 1 There exists ψ ∈ V 0 / m(ψ,ψ)<0.

In consequence, as in the case of free boundary
conditions in [2], a natural Galerkin discretiza-
tion is expected to be unstable.

Remark 2 In the special case [µ] = 0 (see (7)),
things are much simpler. The variational for-

mulation is still of the form (9), however the

space V must be replaced by the subspace,

V 0,Γ ={ϕ∈V /[ρϕ] · n = [ρϕ] · τ = 0}, (11)

and, more importantly, m = mΩ, which is posi-

tive de�nite. As a consequence the naive formu-

lation is, only in this case, stable.

5 Stabilization when [µ] 6= 0

Using the same philosophy as in [2], the idea is
to �nd a subspace V+ of V 0 such that

(a) ϕ(t) ∈ V+, for all t ≥ 0, (consistency)

(b) For all ψ ∈ V+ \ {0}, m(ψ,ψ)>0,

where (b) yields well-posedness of (9) in V+.

Lemma 3 A space V+ satisfying (a),(b) is

V+ = {ϕ ∈ V 0 / ∀ψ ∈ T ,m(ϕ,ψ) = 0},
where T = {ψ ∈ V 0 / divψi = curlψi = 0}.
Moreover, we have V 0 = V+ ⊕ T .

The de�nition of V+ naturally leads to introduce
a Lagrange multiplier to impose ϕ(t) ∈ V+.
This leads to the stable mixed problem

Find (ϕ,λ) : R+ → V 0 × T such that

∀ (ψ,µ) ∈ V 0 × T ,
∂2
tm(ϕ,ψ) + a(ϕ,ψ) +m(λ,ψ) = `(ψ),

m(ϕ,µ) = 0.

For numerics, we use the characterization
T = {Eν, ν ∈M}, E ∈ L(M ,T ), where

M =
{
ν = (ν1, ν2), νi ∈ H−

1
2 (∂Ωi)

∫
∂Ωi

νi = 0 and
∫

Γ(ν1 + ν2) = 0
}
,

with Eν := (∇p1/ρ1,∇p2/ρ2), pi ∈ H1(Ωi)/R
the unique solution of

{
−∆ pi = 0, in Ωi,

∂nipi = νi, on ∂Ωi.
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Abstract

We consider an exterior linear elastodynamics
problem with vanishing initial conditions and
Dirichlet datum on the scatterer. We convert
the Navier Equation, governing the wave be-
havior, into two space-time Boundary Integral
Equations (BIEs) whose solution is approximat-
ed by the Energetic Boundary Element Method
(BEM). To apply this technique, we have to set
the BIEs in a weak form related to the energy
of the differential problem solution at the final
time instant of analysis. After the space-time
discretization of the weak formulation, we have
to deal with double space-time integrals, with
a weakly singular kernel depending on primary
and secondary wave speeds and multiplied by
Heaviside functions. The main purpose of this
work is the analysis of these peculiar integrals
and the study of suitable quadrature schemes
for their approximation.
Keywords: Elastodynamics, Energetic BEM,
weakly singular kernel, numerical integration

1 Introduction

The study of elastodynamics has several appli-
cations, including mechanical and civil engineer-
ing problems, seismic risk assessment, etc. In
literature, the main approach to deal with it
is the Finite Element Method (FEM) (see [1]
and, for a recent improvement, [2]), but this is
not an optimal choice for unbounded domains.
In this scenario, elastodynamics problems can
be efficiently resolved using Boundary Element
Method (BEM), which has already been suc-
cessfully applied for electromagnetic wave prop-
agation, computation of transient acoustic wave,
fluid dynamics, achieving highly accurate results.
The advantages in using BEMs lie in approxi-
mating the solution of the problem by solving
a system of integral equations (BIEs) defined
only on the usually bounded domain boundary,
incorporating the solution behavior at infinity.
Unfortunately, in time-domain framework, the
standard Galerkin and collocation BEMs are nu-

merically unstable, while genuine convergence
results are obtained using a weak formulation of
the BIEs related to the energy of the elastody-
namics problem. The consequent discretization
approach, called Energetic BEM, already ana-
lyzed in case of scalar waves propagation [3],
shows a long-time stability and guarantees ex-
cellent approximation accuracy; here, it is ex-
tended to elastodynamics in the context of soft
scattering. Its algebraic reformulation leads to a
linear system with block lower triangular Toepli-
tz structured matrix, useful for memory savings
and for an efficient computation of linear system
solution. On the other side, matrix elements
are space-time double integrals with a log singu-
lar kernel, depending on primary and secondary
wave speeds, multiplied by Heaviside functions
and functions not regular in the first spatial
derivative; hence a consistent part of this work
is focused on a suitable partition of integration
domain and on the study of efficient quadrature
rules [3, 4] used in order to overcome the above
highlighted numerical issues. Several results on
benchmark problems will be discussed, too.

2 Statement of the problem and BIEs
energetic weak formulation

For the vectorial wave propagation in the time
interval [0, T ], in absence of body forces and in
the 2D unbounded domain Ω := R2 \ Γ made
of a linear, elastic, homogeneous and isotropic
medium and exterior to the obstacle Γ repre-
sented by a non-intersecting open arc in the
plane, the problem is featured by the following
Navier equation:

(λ+µ)∇(∇ ·u) +µ∆u = ρü x ∈ Ω, t ∈ (0, T ]
(1)

where λ and µ are the Lamè parameters and
ρ is the mass density. The unknown u(x, t) =
(u1, u2)>(x, t) identifies the displacement field
and dots indicate time differentiation. The dif-
ferential equation is equipped by vanishing ini-
tial conditions and Dirichlet boundary datum
u(x, t) = g(x, t) assigned on Σ = Γ × (0, T ].
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Having set r = ‖x − ξ‖2 and denoted by φ =
(φ1, φ2)> a vectorial density function, we can
consider the single-layer representation formula
for the field u(x, t) in Ω× (0, T ], i.e. for i = 1, 2

ui(x, t) =

2∑

j=1

∫ t

0

∫

Γ
Gij(x, ξ; t, τ)φj(ξ, τ) dΓξdτ,

where

Gij(x, t; ξ, τ) =
1

2πρ

{
H[cp(t−τ)−r]

cp

[
2A2

p−1√
A2
p−1

( r,ir,j
r

)
− δij

r

√
A2
p − 1

]

−H[cs(t−τ)−r]
cp

[
2A2

s−1√
A2
s−1

( r,ir,j
r

)
− δij

r
A2
s√

A2
s−1

]}
,

with Aκ = cκ(t−τ)
r , κ = p, s, cp the velocity of

primary wave, defined by c2
p = (λ+2µ)/ρ, and cs

the velocity of secondary wave, defined by c2
s =

µ/ρ. Then, with a limiting process to x ∈ Γ,
using Dirichlet datum we can to obtain a system
of two space-time BIEs in the unknown φ on Σ:
[
V11 V12

V21 V22

] [
φ1(x, t)
φ2(x, t)

]
=

[
g1(x, t)
g2(x, t)

]

where for i, j = 1, 2

[Vijφj ](x, t) :=

∫ t

0

∫

Γ
Gij(x, ξ; t, τ)φj(ξ, τ)dΓξdτ.

At this stage, the energetic weak formulation [3]
is defined as follows:
find φi ∈ L2([0, T ];H−

1
2 (Γ)) such that for i =

1, 2

2∑

j=1

〈 ˙[Vijφj ], ψi〉L2(Σ) = 〈ġi, ψi〉L2(Σ) (2)

where ψ is a suitable test function belonging to
the same functional space of φ. We can write
the energy identity:

2∑

j,i=1

〈 ˙[Vijφj ], φi〉L2(Σ) = E(u, T )

where the right-hand side represents the energy
of the solution of (1) at the final time instant of
analysis.

3 Energetic BEM and integration issues

We define the time knots tn = n∆t, n = 0, .., N∆t,
with time step ∆t = T/N∆t and we denote with
em, m = 1, ...,M , the M linear elements mesh-
ing the obstacle Γ. The unknowns φi will be

approximated by a linear combination of shape
functions in space and time, i.e. for (x, t) ∈ Σ

φ̂i(x, t) =

N∆t−1∑

n=0

M∆x∑

m=1

αinmwm(x)vn(t)

where vn is piece-wise constant and wm is a
piece-wise polynomial function, obtained from
local lagrangian basis fixed for each element em.
Due to this discretization, (2) becomes a linear
system Eα = β, where the elements of the vec-
tor α are the coefficients αinm and E is a block
lower triangular Toeplitz matrix made of N∆t

blocks. Each block has dimension 2M∆x: hav-
ing set ∆n,ñ := tn − tñ, for fixed m, m̃, i, j, its
entries are linear combination of integrals of the
type

∫

Γ
wm̃(x)

∫

Γ
wm(ξ)νij(x−ξ; ∆ñ,n)dΓξdΓx (3)

where the kernel νij appears after the time in-
tegration. Double space integral (3) depends
strongly on the distance r and on the two phase
speeds cs and cp. In the region where 0 6 r 6
cs∆ñ,n the kernel νij has a log(r) singularity for
r → 0 and it has to be treated with a specific
interpolatory quadrature rule [3]. If cs∆ñ,n <
r < cp∆ñ,n there are no space singularities but
νij depends on the argument

√
c2
p∆

2
ñ,n − r2 that

is not regular for r → cp∆ñ,n in its first spatial
derivative. In this case, to improve the efficiency
of the standard Gaussian quadrature rule, we
apply the correction formula in [4] that shifts
the quadrature nodes closer to r = cp∆ñ,n.
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Abstract

We consider a spatially nonhomogeneous Tim-
oshenko beam mounted on the periphery of a
rigid root of radius R rotating about its axis at
a constant angular speed Ω. The junction be-
tween the beam and the root is assumed to be
elastically restrained and damped. It is shown
that under some hypotheses on the physical
properties of the beam, one can find a sequence
of root vectors of the unbounded operator as-
sociated to the problem which form a Riesz ba-
sis [1]. The outline of the proof is as follows.
First we write a variational formulation of the
problem which is transformed into a first or-
der evolution equation. The unbounded oper-
ator of this evolution equation is the generator
of a contraction semigroup so that the prob-
lem is well-posed. This operator has a com-
pact resolvent but it is non-self-adjoint. The
spectrum of this operator is studied by mak-
ing a change of variable in order to reduce the
problem to a first-order system asymptotically
linear in the spectral parameter. By applying
some results of [2], we obtain the asymptotics of
the spectrum of this operator and we show that
its eigenvalues are asymptotically algebraically
simple. Then we show that the system of root
vectors of the operator is complete and, apply-
ing a theorem from [3], that they form a Riesz
basis. As a consequence of this result, one ob-
tains an asymptotic expansion of the solution of
the initial problem.
Keywords: Timoshenko beam, non-self-
adjoint, Riesz basis

1 Introduction

In what follows, l is the length of the beam,
A its cross-sectional area, E its Young mod-
ulus, ρ its mass density, I the moment of in-
ertia of its cross-section, G its shear modulus,
αs its shear correction factor, w its infinites-
imal transverse displacement, ϕ the infinitesi-
mal rotation of its cross-section, kw, kϕ, cw and
cϕ the corresponding spring and damping con-

stants at the junction. All the coefficients and
their inverses are assumed to be inW 1,∞(0, l). If
u0, v0 are given in subspaces of [H1(0, l)]2 and
[L2(0, l)]2, the corresponding variational prob-
lem reads as follows: find u = t(w,ϕ) ∈
C1([0,+∞[; [H1(0, l)]2)∩ C2([0,+∞[; [L2(0, l)]2)
such that ∀δu ∈ [H1(0, l)]2,

m(ü, δu) + b(u̇, δu) + a(u, δu) = 0

and such that u(0) = u0; u̇(0) = v0 (Problem
(P )), where ∀ u, δu ∈ [H1(0, l)]2,

a(u, δu) =

∫ l

0
[Tw′δw

′
+ EIϕ′δϕ

′
]dx+

∫ l

0
αsGA×

[(w′ − ϕ)(δw
′ − δϕ)]dx+ kww(0)δw(0)+

kϕϕ(0)δϕ(0)− Ω2

∫ l

0
ρIϕδϕdx,

b(u, δu) = cww(0)δw(0) + cϕϕ(0)δϕ(0),

and ∀ u, δu ∈ [L2(0, l)]2,

m(u, δu) =

∫ l

0
ρIϕδϕdx+

∫ l

0
ρAwδwdx.

Setting v = t(z, ψ), U =
(

u
v

)
,U0 =

(
u0

v0 − Ωu0

)
, after replacing u(t) by eΩtu(t),

(P ) boils down to

U̇ = AU, U(0) = U0,

where A is an unbounded operator of H =
[H1(0, l)]2 × [L2(0, l)]2 with domain D(A). A∗
is an unbounded operator of H with a do-
main D(A∗) 6= D(A) so that A is non-self-
adjoint. On the other hand 0 ∈ ρ(A) and
A−1 is a compact operator of H therefore the
spectrum of A consists of isolated eigenvalues
of finite algebraic multiplicity. A is maximal-
dissipative hence A is the generator of a con-
traction semigroup on H. Returning to the
initial problem (P ) it follows that if U0 ∈
D(A), there exists a unique solution to (P ) such
that u ∈ C0([0,+∞); [H2(0, l)]2) ∩ C1([0,+∞);
[H1(0, l)]2) ∩ C2([0,+∞); [L2(0, l)]2) and such
that U ∈ C0([0,+∞);D(A)).
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2 Spectral theory of A

Setting α1 =
√

ρA
T+αsGA

, α2 =
√

ρ
E , Λ̃1 =

diag (α1, α2,−α1,−α2) there exist matrices T0,
Λ̃0, Λ̃−1, B̃1, B̃0, C̃1, C̃0 such that for λ ∈
C∗, the conditions: U ∈ D(A), U 6= 0 and
(A− λId)U = 0 are equivalent to the condi-
tions: Z ∈ [H1(0, l)]4, Z 6= 0 and T (λ)Z = 0

where Z = T−1
0

(
u

u′/λ

)
, T (λ) =

(
TD(λ)
TR(λ)

)
,

TD(λ)Z = Z ′ − (λΛ̃1 + Λ̃0 +
1

λ
Λ̃−1)Z,

TR(λ)Z = (B̃1+
1

λ
B̃0)T0Z(0)+(C̃1+

1

λ
C̃0)T0Z(l).

Assume that there exists a constant C > 0 such
that |α1 − α2| ≥ C > 0 on [0, l]. Then from [2],
Theorem 2.8.2, there exists an asymptotic fun-
damental matrix function of TD(λ)Z = 0 de-
noted Ẽ(., λ) such that for λ ∈ C∗, the con-
ditions: Z ∈ [H1(0, l)]4, TD(λ)Z = 0 are
equivalent to the condition: ∃ c(λ) ∈ C4 with
Z(., λ) = Ẽ(., λ)c(λ). It follows that λ is an
eigenvalue of A iff detM(λ) = 0 where M(λ) =
TR(λ)Ẽ(., λ). If cw 6= (α1(T + αsGA))(0) and
cϕ 6= (α2EI)(0) the eigenvalues of A are given
asymptotically by the formulas λ1

n = µ1−Ω+ν1
n,

λ2
n = µ2−Ω + ν2

n where µ1, µ2 ≤ 0, ν1
n, ν2

n ∈ iR,
|ν1
n|, |ν2

n| → +∞ when |n| → +∞. If µ1 6= µ2

the zeros of det M(λ) are asymptotically simple
and inf

n6=m
|λn − λm| > 0.

If Ω is an open nonempty subset of C, E and
F are Banach spaces, µ ∈ Ω, S ∈ H(Ω, L(E,F ))
and x ∈ H(Ω, E) are holomorphic families, x is
called a root function of S at µ if x(µ) 6= 0
and (Sx)(µ) = 0. The order of the zero of
Sx at µ is called the multiplicity of x with
respect to S at µ. One can also define the
geometric and algebraic multiplicities of S at
µ [2], Chapter I. By comparing the multiplic-
ities of the root functions and the geometric
multiplicities of the three holomorphic families
λ ∈ C∗ 7→ T (λ) ∈ L([H1(0, l)]4, [L2(0, l)]4×C4),
λ ∈ C∗ 7→ A(λ) = A − λId ∈ L(D(A),H) and
λ ∈ C∗ 7→M(λ) ∈ L(C4,C4) at an eigenvalue of
A, it can be shown that if µ1 6= µ2, the eigenval-
ues of A are asymptotically algebraically simple
(in the "classical" sense). By estimating the
resolvent of A first on the negative real axis
(comparing A with the self-adjoint operator ob-
tained by taking cw = cϕ = 0) and then on the

right half-plane (using the Hille-Yosida Theo-
rem) and by applying the Phragmen-Lindelöf
Theorem to a certain function of exponential
type, it is shown that the system of root vec-
tors of A is complete in H.

Recall that a sequence (hn)n∈N of a Hilbert
space V is a Riesz basis of V iff there exists an
isomorphism U of V and a Hilbert basis (en)n∈N
of V such that ∀n ∈ N, hn = Uen. Applying
Theorem 1.1 of [3], it follows that there exists
a sequence of root vectors of A which forms a
Riesz basis of H. The following theorem gives
an expansion of the solution of (P ).

Theorem 1 Assume that U0 ∈ D(A). Let
{λk, k ∈ N} be the set of eigenvalues of A. For
all k ∈ N, let rk be the geometric multiplicity of
λk, Uk,i,j, i = 1, . . . rk, j = 0, . . . ,mk,i − 1 a
familly of root vectors corresponding to λk such
that (A − λkId)Uk,i,j = Uk,i,j−1, i = 1, . . . rk,
j = 0, . . . ,mk,i − 1 (with Uk,i,−1 = 0) and set

Uk,i,j =
(

uk,i,j
vk,i,j

)
.

Then there exists a familly of polynomial
functions Pk,i,j of degree ≤ mk,i − 1− j, k ∈ N,
i = 1, . . . rk, j = 0, . . . ,mk,i − 1 such that if for
all n ∈ N and t ∈ R we set

un(t) =

n∑

k=0

rk∑

i=1

mk,i−1∑

j=0

ak,i,j(t)uk,i,j

where ak,i,j(t) = e(Ω+λk)tPk,i,j(t), then for all
T > 0, un → u in C0([0, T ]; [H2(0, l)]2) ∩
C1([0, T ]; [H1(0, l)]2) ∩ C2([0, T ]; [L2(0, l)]2).
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Abstract

We consider two-dimensional sound-hard scat-
tering problems in the exterior of smooth com-
pact strictly convex obstacles. In this connec-
tion, we derive high-frequency uniform asymp-
totic expansions of the Dirichlet trace of the to-
tal field associated with a plane wave incidence,
and obtain wavenumber explicit estimates on its
derivatives. These estimates, in return, can be
used to develop efficient high-frequency Galerkin
approximation spaces for the solution of coer-
cive integral equation formulations.
Keywords: high-frequency scattering, sound-
hard obstacle, asymptotic expansions, Galerkin
boundary element methods

1 Introduction

State-of-the-art integral equation methods for
the solution of high-frequency scattering prob-
lems in the exterior of compact smooth strictly
convex obstacles have been confined to sound-
soft boundary conditions [1,3–5,7]. In this case,
the scattering problem can be reduced to de-
termination of the Neumann trace µ of the to-
tal field on the boundary, and the aforemen-
tioned algorithms are based on phase extraction
µ(x, k) = eikα·x µslow(x, k) (assuming for sim-
plicity a planewave incidence uinc(x, k) = eikα·x)
along with the Melrose-Taylor asymptotic ex-
pansion [6, 8]

µslow ∼
∑

p,q≥0
k2/3−2p/3−qbp,q(x) Ψ(p)(k1/3Z(x))

of the amplitude µslow. In sound-hard scatter-
ing problems, in contrast, the problem reduces
to the determination of the Dirichlet trace η of
the total field on the boundary, and here we de-
rive the asymptotic expansion of the related am-
plitude over the entire boundary. We also ob-
tain sharp wavenumber explicit estimates on its
derivatives which can be used in the design and

analysis of efficient numerical methods for the
solution of associated integral equations.

2 Scattering problem and asymptotic ex-
pansion of the amplitude

We consider a smooth compact strictly convex
sound-hard obstacle K ⊂ R2 illuminated by a
plane wave incidence uinc(x) = eikα·x with di-
rection α (|α| = 1 and k > 0). In this case, the
associated scattered field u satisfies [2]




(∆ + k2)u = 0 in R2\K,
∂νu = −∂νuinc on ∂K,
limr→∞

√
r
(
∂u
∂r − iku

)
= 0, r = |x|

(1)

where ν is the exterior unit normal to ∂K. The
direct approach in integral equation formula-
tions transforms problem (1) into the determi-
nation of the Dirichlet trace of the total field,
say η, on ∂K since the scattered field can then
be recovered through the integral [2]

u(x) =

∫

∂K

∂G(x, y)

∂ν(y)
η(y) ds(y). (2)

Here G is the outgoing free space Green’s func-
tion for the Helmholtz equation. While η can
be recovered through a variety of uniquely solv-
able integral equations, as in the case of sound-
soft scattering problems, development of effi-
cient boundary element methods can be based
on phase extraction

η(x, k) = eikα·x ηslow(x, k)

provided the asymptotic behavior (as k → ∞)
of the amplitude ηslow is incorporated into the
solution strategy.

Indeed, assuming that the boundary ∂K ad-
mits a P -periodic regular parameterization γ(s),
writing ηslow(s, k) for ηslow(γ(s), k), we have the
following which extends the associated asymp-
totic expansion in [8] to the entire boundary ∂K.
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Theorem 1 The Dirichlet trace η of the total
field associated with the Neumann and Robin
boundary conditions belongs to the Hörmander
class S0

2/3,1/3([0, P ] × (0,∞)), and admits the
asymptotic expansion

ηslow(s, k) ∼
∑

p,q,r∈Z+
`∈−N

k−(1+2p+3q+r+`)/3+(`+1)−

× bp,q,r,`(s) (Ψ`,r)(p)(k1/3Z(s))

where t− = min{t, 0}, where bp,q,r` are P -periodic
complex-valued C∞ functions, Z is a P -periodic
real-valued C∞ function that is positive on the
illuminated region {s : α ·ν(γ(s)) < 0}, negative
on the shadow region {s : α · ν(γ(s)) > 0}, and
vanishes precisely to first order on the shadow
boundary {s : α · ν(γ(s)) = 0}. Finally, Ψ`,r are
complex-valued C∞ functions such that

Ψ`,r(τ) ∼
∑

j∈Z+

a`,r,jτ
1+`−2r−3j

as τ → +∞ and are rapidly decreasing in the
sense of Schwarz as τ → −∞.

3 Wavenumber explicit estimates on the
derivatives of the amplitude

Theorem 1 implies that the amplitude ηslow ad-
mits boundary layers in neighborhoods of size
O(k−1/3) around the shadow boundary points,
say {t1, t2} = {s : α · ν(γ(s)) = 0}. Numerical
methods for the solution of associated integral
equations can therefore preserve their efficiency
throughout the entire frequency spectrum only
if they resolve these boundary layers efficiently.

As in the case of sound-soft scattering prob-
lems, in regards to the design and numerical
analysis of such algorithms, sharp wavenumber
explicit estimates on the derivatives of the am-
plitude ηslow plays a key role. In this connection,
we have the following estimates.

Theorem 2 Given k0 > 1 and n ∈ Z+, there
exists a constant C independent of k such that

|Dn
s η

slow(s, k)| ≤ C W (s, k)−n

holds for all (s, k) ∈ [0, P ]× [k0,∞) with

W (s, k) = k−1/3 + |ω(s)|

and ω(s) = (s− t1)(t2 − s).

As in the case of sound-soft scattering prob-
lems [4,5], these estimates can be used in the de-
sign and analysis of Galerkin boundary element
methods for the solution of integral equation for-
mulations that require an increase of only O(kε)
(for any ε > 0) in the number of degrees of free-
dom to maintain any prescribed accuracy inde-
pendent on frequency.
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Abstract

Hybrid numerical asymptotic methods for inte-
gral equations in scattering problems are based
on incorporating asymptotic information about
the solution at high frequencies into the dis-
cretization. However, in several cases this leads
to an overcomplete set of functions, rather than
to a basis, and this in turn leads to conditioning
problems at small or moderately large frequen-
cies. We show that such ill-conditioning is reme-
died effectively by considering a least squares
collocation approach. The oversampled collo-
cation scheme is found to be numerically sta-
ble regardless of the frequency and of the order
of the discretization. Since it is based on sin-
gle integrals rather than double integrals in the
discretization, it is also computationally much
more efficient than a Galerkin approach. We
show examples for scattering by a screen.
Keywords: boundary element method, collo-
cation, least squares, high-frequency

Introduction

High-frequency scattering problems necessitate
a large number of degrees of freedom in their
numerical discretization. The size of the dis-
cretization can be reduced by adding well cho-
sen oscillatory basis functions to the approxi-
mation space, modelling for example reflected,
refracted and diffracted waves. This approach
leads to two distinct computational challenges:

1. The discretization of an integral operator
with oscillatory kernel and oscillatory ba-
sis functions requires the evaluation of a
large number of highly oscillatory integrals;

2. Function approximation by a collection of
wavelike basis functions often seems ill-
conditioned.

We tackle the first challenge by considering ef-
fective modern numerical methods for highly os-
cillatory integrals [1], noting that the collocation

approach yields single integrals only. In partic-
ular, all integrals are evaluated at a cost that
is independent of the frequency. In this talk we
mainly focus on the second challenge, for which
the proposed remedy is to oversample. Thus,
we consider a least squares collocation approach.
This follows from recent results on function ap-
proximation using redundant sets [2, 3].

Scattering by a screen

We consider 2D time-harmonic acoustic scatter-
ing by a sound-soft (Dirichlet) screen Γ ⊂ R2.
This is modelled by the Helmholtz equation,

∆u+ k2u = 0,

with appropriate boundary conditions (see [5]).
We use a first kind integral equation formu-

lation
Sφ = f, (1)

in which S is the single layer potential

Sφ(x) =

∫

Γ
Φ(x,y)φ(y) ds(y), x ∈ Γ (2)

with in 2D Φ(x, y) = i
4H

(1)
0 (k‖x− y‖).

The HNA ansatz

An approximation space is proposed with the
generic form

φ(x) ≈
d∑

m=1

Nm∑

n=1

cm,nψm,n(x)eikgm(x). (3)

Here, the phases gm are chosen based on the
known high frequency asymptotics. In the case
of a single flat screen (see Fig. 1), d = 2 and the
two phases represent diffracted rays emanating
from the corners. The corresponding amplitudes
are known to be highly peaked: this is accom-
modated by chosing the basis functions ψm,n(x)
to be piecewise polynomials on a graded mesh,
with geometric refinement towards the respec-
tive corners.
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Figure 1: A typical screen scattering problem
with k = 32.

Least squares collocation

The collocation method is described in [4] and
is ongoing work by the authors of this talk. The
redundancy of (3) is most evident in the limit
k → 0. Indeed, in that limit we have:

φ(x) ≈
d∑

m=1

Nm∑

n=1

cm,nψm,n(x). (4)

The unknown is described by a union of piece-
wise polynomials defined on the same domain.
A function on that domain may have several
representations with wildly different coefficients:
this lack of uniqueness implies that any linear
system to solve for cm,n is necessarily extremely
ill-conditioned or even singular, even without an
integral operator involved.

The ansatz (3) is plugged into (1). The collo-
cation points are chosen to be Chebyshev nodes
on each of the pieces of the graded meshes in-
volved. We employ oversampling by a factor of
COS ≥ 1. The resulting rectangular linear sys-
tem is solved by a regularization technique, in
our implementation using the singular value de-
composition with truncation of singular values
smaller than a prescribed threshold ε.

Numerical results

For the single screen scattering problem illus-
trated in Fig. 1, it is shown in Fig. 2 that the
number of degrees of freedom required to achieve
a given accuracy in practice improves with in-
creasing wavenumber. Fig. 3 shows that maxi-
mal accuracy for larger values of the polynomial
degree is only achieved with oversampling.
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Abstract

A range of contemporary methods exist for the
efficient evaluation of highly oscillatory integrals.
These methods are very effective for model in-
tegrals, but may require expertise and manual
intervention for integrals with higher complex-
ity. The PathFinder project aims to develop
robust and fully automated numerical software
for such problems. In this paper we outline the
main algorithm, focusing on its approach for ef-
ficient handling of coalescing stationary points.

Keywords: Oscillatory quadrature, steepest de-
scent, high frequency

1 Introduction

Here we consider the model integral:

Iωγ [f, g] =

∫

γ
f(z)eiωg(z)dz, (1)

where γ is a contour in C, f and g are non-
oscillatory analytic functions and ω > 0 is our
frequency parameter. Integrals of the form (1)
arise frequently in wave-based problems, how-
ever evaluation via a standard quadrature rou-
tine requires a computational cost which grows
like O(ω). In contrast, oscillatory quadrature
routines become more accurate as ω grows (for
fixed cost), when numerically stable. PathFinder
is an algorithm which in a stable manner con-
structs an oscillatory quadrature rule based on
numerical steepest descent (NSD), requiring as
inputs ω, g, g′, g′′ and endpoints of γ (available
at github.com/AndrewGibbs/PathFinder).

2 Numerical steepest descent

Steepest descent (SD) methods deform the path
of integration γ onto a region in C along which
the integrand of (1) is non-oscillatory and expo-
nentially decaying. It follows by Cauchy’s The-
orem that the value of the integral (1) remains
unchanged after this deformation.

The asymptotic behaviour of (1) for large
ω can be described by the set of critical points
Φ. For an infinite contour γ, this is simply

Φ = {z ∈ C : g′(z) = 0}, the set of station-
ary points. For polynomial g, PathFinder ob-
tains stationary points via a companion matrix.
Otherwise a global bisection method based on
the argument principle is used, requiring only
g′ and g′′. In the case where γ has one or two
finite endpoints, these are also included in Φ.

The SD paths from a critical point ξ ∈ Φ are
the solution(s) to

g(hξ,j(p)) = g(ξ) + iprξ , for p ∈ [0, Pξ,j ], (2)

for j ∈ Jξ := {1, . . . , rξ}; Pξ,j ∈ [0,∞) and rξ is
the smallest natural number such that g(rξ)(ξ) 6=
0 (see, e.g., [1, Prop. 5.6]). There are rξ solu-
tions to (2) at each ξ, hence rξ possible SD paths
(indexed by j). It follows from (2) that along
such a path z = hξ,j(p), the integrand of (1)
is exponentially decaying. If g−1 is unavailable,
we may consider the ODE

h′ξ,j(p) = iprξ/g′(hξ,j(p)), for p ∈ [0, Pξ,j ],
(3)

which follows by differentiating (2), and can be
solved numerically for hξ,j (see, e.g., [1, 5.3.1]).

We now transform the path of integration
into a series of SD paths from points in Φ, to
obtain Iωγ [f, g] =

∑

ξ∈Φ,j∈Jξ

cξ,je
iωg(ξ)

ω1/rξ

∫ Pξ,j

0
f
(
hξ,j

( p
ω

))
h′ξ,j

( p
ω

)
e−p

rξ
dp,

+O(e−ωP
∗
), where P ∗ = max

ξ,j
P
rξ
ξ,j (4)

and cξ,j ∈ {−1, 0, 1} are chosen such that the
union of the SD paths in C is a deformation of
γ (with the endpoints unchanged). Algorithmi-
cally, PathFinder constructs a graph with nodes
at ξ ∈ Φ and at the valleys of g, and with edges
based on the SD paths. Deforming γ is equiva-
lent to solving this shortest path problem.

Each term in (4) can be integrated by Gaus-
sian quadrature with the appropriate exponen-
tial weight. An example is given in Fig. 1.

3 Instability for coalescing stationary points

We say a phase g has coalescing stationary points
if they are very close together; (equivalently) g
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Figure 1: SD paths in C for Iω[−1,1][f, z
3]. The

term c0,j corresponding to the dotted path is 0,
this path is not used when deforming [−1, 1].

is only a small perturbation from a phase with
fewer stationary points of higher order. An un-
welcome consequence of coalescence is that the
Jacobian h′ξ,j(p/ω) of (4) will be nearly singular
when p is small. This can lead to instabilities
in the numerical solution of the ODE (3) and
in the quadrature approximation of (4). To the
best knowledge of the authors, PathFinder con-
tains the first algorithm with a general and ro-
bust framework for coalescing stationary points.

4 A general and robust algorithm

Conveniently, in the region of C where coales-
cence occurs and h′ξ,j is nearly singular, ω|g′| is
very small and hence the integrand of (1) can
be treated locally as non-oscillatory. We exploit
this by partitioning C into two distinct regions
Ω±. Loosely speaking, in the region Ω+, the
quantity ω|g′| is bounded below, and NSD per-
forms well. Meanwhile in Ω−, we have that ω|g′|
is small, the integrand of (1) is non-oscillatory,
and standard quadrature performs well.

Formally, these regions are divided by a con-
tour, which (assuming g′ 6≡ 0) is derived from

Γ̃ξ = {z ∈ C : ω|g(z)− g(ξ)| = C},

for some constant C > 0 (we choose C = 1 in
§5) and a stationary point ξ. It follows by the
maximum modulus principle that each Γ̃ξ is a
finite union of closed contours. We choose Γξ to
be the unique closed contour of Γ̃ξ which con-
tains ξ and define Ω− as the open set enclosed
by the contours ∪ξΓξ, and Ω+ := C \ Ω−. If
required, in contrast to (2) and (3), PathFinder
traces SD paths from the edge of the contour
Γξ starting at Φ∗: the set of local minima of
Im{g|Γξ∩Ω+}. This notation-heavy explanation
is made clearer by the figure at the end of §5.

PathFinder’s approach avoids approximation
of the SD paths in regions which may be numer-

ically unstable. Fixing C and varying ω, the
number of quadrature points required to accu-
rately represent (1) is at worst O(1). Fixing
g, if rξ ≤ 2 for all ξ ∈ Φ, there exists some
ω+ > 0 such that for all ω ≥ ω+ PathFinder is
numerically robust using (3)–(4), recovering the
asymptotic order of NSD: O(ω

−2N+1
2 ) error for

N quadrature points per SD path [1, Thrm 5.7].

5 Numerical experiments

Our experiments focus on cases of coalescence,
which (as explained in §3) are unstable with a
naive implementation of (4). Below we give er-
rors for the approximation of Iω[−1,1][1, gε], where
gε(z) := z3/3 − ε2z (which has coalescing sta-
tionary points at ±ε), by 50 quadrature points:
PathFinder can handle any number of coalescing

ω \ ε 0.1 0.01 0.0001 0
1,000 3.4e-06 2.7e-07 2.9e-07 2.9e-07
10,000 1.1e-07 1.6e-07 1.3e-07 1.3e-07
100,000 1.4e-08 2.1e-08 9.3e-09 9.3e-09

stationary points, as is demonstrated in the fig-
ure below - which shows the topology for a phase
with g′(z) = (z+ε)(z−ε/2)(z+iε/2)(z−εi), for
ε = 2/5, with an infinite contour γ connecting
e9πi/10 to e21πi/10. The stars mark the stationary
points, the dashed lines are the SD paths, the
closed contours are Γξ and the crosses represent
the quadrature nodes.
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Abstract

Phase-space integral operator models for trans-
porting ray densities through complex two and
three dimensional domains have recently been
proposed, based on the Frobenius-Perron op-
erator. The dependence of the density on the
momentum (or equivalently direction) variable
has typically been approximated using a basis
expansion of orthogonal polynomials. This ap-
proach allows for the inclusion of directivity in
the model, going beyond more conventional ra-
diosity based methods. However, due to the
�nite basis approximation, numerical di�usion
leads to an accumulation of error each time the
integral operator is applied. This issue is par-
ticularly problematic for transporting densities
through a mesh, since transmission from one
cell to the next is modelled via successive ap-
plications of the integral operator. In this work,
the possibility of a direction preserving discreti-
sation procedure will be discussed in order to
eliminate these errors.

Keywords: High frequency asymptotics, Ray
tracing, Frobenius�Perron operator, Geometri-
cal optics

1 Introduction

The transport of phase-space densities along a
trajectory �ow map ϕτ through time τ and space
Rd can be formulated in terms of the Frobenius-
Perron (FP) operator (see, for example, [1]).
The action of this operator on a phase-space
density f may be expressed in the form

Lτf(X) =

∫
δ(X − ϕτ (Y ))f(Y ) dY, (1)

where X and Y are phase-space coordinates in
R2d. Solving such problems when d > 1 and
for physically relevant systems is often consid-
ered intractable due to both high dimensional-
ity and potentially complex geometries [2]. In
this work, the FP operator is reformulated as a
phase-space boundary integral operator, which

is imposed in a weak Galerkin form with a basis
approximation applied in both the position and
momentum variable. An e�cient numerical im-
plementation of this integral equation model on
two-dimansional mesh elements was proposed
in [3] and further extended to three-dimensional
meshed domains in [4].

Figure 1: A density propagating horizontally in-
side a unit square domain. The initial density
ρ0 illuminates the central section of the left edge
and both plots show numerical models with sim-
ilar total numbers of degrees of freedom. The
left plot is computed using a boundary integral
model of the unit square, the right plot shows
the e�ect of introducing an internal mesh and in-
stead propagating between mesh edges, instead
of the outer boundary only.

When applied on a meshed object, the FP
operator transports a density from the bound-
ary of one mesh cell to the next where the den-
sity may be re�ected or transmitted, depending
on the underlying physics. The �nite basis ap-
proximation in momentum (i.e. direction) leads
to a smoothing of the directivity pattern each
time the FP operator is applied. Hence on a
mesh with many cells, signi�cant errors due to
the repeated smoothing of the directivity may
arise - see Fig. 1. In this work we propose a
discretisation for the momentum variable which
is based on a global direction set. The local
basis on a particular mesh boundary is then se-
lected as a subset from this global set, allowing
in many cases for the direction to be preserved
as the density is translated across the mesh.
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2 Mathematical model: FP operator as

a local boundary integral operator

Consider the propagation of a density f through
a mesh M =

⋃N
j=1 Ej ⊂ R2, consisting of N

convex polygonal elements Ej , j = 1, ..., N . Let
us assume that the trajectory �ow is governed
by Hamiltonians of the formHj(r, p) = cj |p| = 1
in Ej , where cj is the �ow velocity for r ∈ Ej and
the momentum coordinate p lies on a circle of
radius c−1j . This Hamiltonian is associated to
the Helmholtz equation with wave velocity c(r).

Let the phase-space on the boundary of Ej
be written Qj = ∂Ej×(−c−1j , c−1j ). Then the as-
sociated coordinates are given byXj = [sj , pj ] ∈
Qj with sj ∈ [0, Lj) parameterising ∂Ej , where
Lj is the total length of the boundary of the jth
element, and pj ∈ (−c−1j , c−1j ) parameterising
the component of the inward momentum vector
tangential to ∂Ej . Next we de�ne ϕij : Qj → Qi
to be the boundary �ow map, which takes a vec-
tor in Qj and maps it along the �ow given by
Hj to a vector in Qi. The propagation of the
density f along the map ϕij is given by the FP
operator acting on this map as follows

Lf(Xi) =
∑

j

∫

Qj

δ(Xi − ϕij(Xj))f(Xj)dXj . (2)

The operator L describes propagation of f along
a trajectory with endpoint on the boundary of
element Ei and start point on the boundary of
each neighbouring or coincident element Ej . In
order to include re�ection/transmission along
with other physics such as dissipation we need
to add a weighting factor wi,j(Xj) in (2).

The stationary density ρ(Xi) on Qi, i =
1, ..., N , due to an initial boundary distribution
ρ0 onQj , j = 1, ..., N is the density accumulated
in the long time (many iterate) limit. That is

ρ(Xi) =

∞∑

n=0

Lnρ0(Xi), (3)

where Ln is the nth iterate of the operator (2)
including the weight factor wi,j . For the sum
(3) to converge requires the incorporation of a
dissipative term within wi,j , so that the spectral
radius of L is less than one.

3 Discretisation: basis choice and trun-

cation errors

We consider a �nite dimensional approximation
of the stationary boundary density ρ on Qj us-

ing a basis expansion of the form

ρ(sj , pj) =

Nj∑

l=1

Np∑

n=0

ρ(j,l,n)bl(sj)Pn(pj), (4)

where Nj is the number of boundary elements
on Ej and Np is the order of the basis expan-
sion in the momentum coordinate pj . We ap-
ply piecewise-constant basis functions bl in the
space coordinate sj , with support only on the
lth boundary element on Ej . The role of the
functions Pn is to model the dependence of the
stationary density ρ on the direction of trans-
port. In Ref. [3], Pn are chosen as Legendre
polynomials and hence the Galerkin projection
of a point or line source (where the directional
dependence will be expressed as a Dirac δ) onto
the �nite dimensional basis will lead to smooth-
ing and di�usion - see Fig. 1.

In this work we instead propose a basis of the
form Pn(pj) = δ(pj − pnj ) for n = 0, 1, ..., Np,
where pnj are a set of momenta obtained from
the projection of a global direction set in [0, 2π)
onto the local boundary element l on Ej . In
this way, a consistent direction of travel may
be preserved through di�erent mesh cells. A
Petrov-Galerkin scheme will be necessary to en-
sure that the Galerkin projection is well de�ned.
Piecewise constant test functions are a conve-
nient choice and lead to orthonormality in the
L2 inner product.
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Abstract

We analyse the convergence properties of a ray-
tracing approach via transfer operators. The in-
vestigation focuses on a two-dimensional Hamil-
tonian system with a mixed-phase space, i.e. co-
existing integrable and chaotic dynamics. As we
focus on mid- to high-frequency regimes of the
corresponding wave problem, we construct the
transfer operator by means of a ray-tracing ap-
proach. We then solve the propagation problem
numerically and investigate the rate of conver-
gence. We accompany this with an investigation
of the dynamics in phase space in terms of the
boundary map. We compare our findings with
recent rigorous proofs carried out for a circular
domain and conclude with an outlook about its
applicability to real-world problems.
Keywords: Transfer operator, ray tracing, bil-
liard dynamics, mixed phase space

1 Introduction

Solving wave equations and the corresponding
energy transport is a very common problem in
many fields ranging from quantum mechanical
transport through materials, electromagnetic
settings in media or cavities to vibrational prob-
lems in structure-borne sound propagation. De-
spite being widely studied from a mathemati-
cal point of view, real-world problems often re-
quire numerical tools to approximate solutions
for flows through complex geometries. Espe-
cially in mid- to high-frequency regimes, clas-
sical finite-element methods (FEM) fail to give
good results unless the underlying meshes for
describing the structure under investigation are
refined accordingly, thereby increasing numeri-
cal effort and hardware requirements. On the
other hand, at very high frequencies, the often
complex nature of the objects allows for a statis-
tical description of the problem, dubbed "Sta-
tistical Energy Analysis", SEA [1]. Between the
two extremes, a method based on ray-tracing
techniques applied to meshes called "Dynamical
Energy Analysis" [2] can be used to describe, for

example, structure-borne sound.
While the approach of DEA as a ray-tracing

method over FEM meshes works well in prac-
tice [3], less is known about the mathemati-
cal error bounds on its convergence behaviour.
To remedy this, a recent work investigated the
convergence of the algorithm on a circular bil-
liard domain [4]. While the proven result in
this example works very well, little is known for
more generic systems and further investigations
are necessary to understand the convergence be-
haviour of transfer-operator methods on com-
plex, real-world meshes.

This work undertakes one of these necessary
investigations: We focus on a deformed circle
thereby taking the first logical step away from
globally integrable dynamics. While not com-
parable with the full complexity with a real-
world mesh it still is a valid and important step
towards the understanding of the latter as it
introduces generic properties of mixed phase-
space dynamics to previously integrable dynam-
ics. We choose the boundary from the family of
Limaçon billiards [5] and present their phase-
space portraits as well as a comparison of the
transfer operator in a Fourier basis. In order to
understand the convergence we will also study
spectral properties of the operator and investi-
gate the role of invariant subsets in phase-space
introduced by the boundary deformation.

2 Transfer Operator

In the short-wavelength limit of wave problems,
a description in terms of propagating rays along
geodesics is a meaningful approximation. This
can be used to describe the propagation of en-
ergy by means of transfer operators T . More
specifically, in two-dimensional billiardproblems
like the one discussed here, it is feasible to use
a boundary map to describe this transport [6].

Numerically, these operators T are decom-
posed into a orthonormal basis which is trun-
cated at a certain order K, then we arrive at a
finite-dimensional matrix representation of the
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transfer operator. To calculate an element of
the transfer matrix, we have to solve the flow
equation and integrate

Tnmkl =
(−1)l−m

2π2

2π∫

0

π/2∫

−π/2

ei(kϕ+2lψ)× (1)

× e−i(nMϕ(ϕ,ψ)+2mMψ(ϕ,ψ))dψdϕ

=
(−1)l−m

2π2

2π∫

0

2π∫

0

∣∣∣∣
∂ψ

∂ϕ′
(ϕ,ϕ′)

∣∣∣∣ × (2)

× ei(kϕ−nϕ
′+2lψ(ϕ,ϕ′)−2mψ′(ϕ,ϕ′))dϕ′dϕ

whereM is the boundary map (see for example
Eq. (4)) and ψ(ϕ,ϕ′) denotes the outgoing an-
gle for a trajectory connecting the points ϕ,ϕ′.
Analogously, ψ′(ϕ,ϕ′) is the angle after the next
reflection of the same trajectory. The main ob-
ject of interest is the equilibrium density from a
given initial density ρ0 on the boundary via

ρ∞ =

∞∑

k=0

T kρ0 = (1− T )−1 ρ0 (3)

in dependence of the truncation of the order of
the basis used to describe the above matrix.

For a perfect circle, the boundary dynamics
can be solved straightforwardly. If ϕ is the po-
lar angle and ψ the angle of a reflected ray with
respect to the normal pointing towards the inte-
rior of the circle, then we have with ϕ ∈ (0, 2π)
and ψ ∈ (−π/2, π/2).

(ϕ,ψ) 7→ M(ϕ,ψ) = (ϕ+ π − 2ψ,ψ). (4)

In order to generalise this and to introduce more
complicated ray dynamics, we focus on a de-
formed circle from the Limaçon family given by
a boundary according to

r(ϕ) = 1 + δ · cos(m · ϕ). (5)

For this system, the boundary map (4) has to
be solved numerically.

3 Phase-Space of a Deformed Circle

To get an overview of the ray dynamics in the
deformed billiard, we can plot the sequence of
points for various initial conditions and compare
them to real-space orbits plotted in the (ϕ,ψ)
plane, see Fig. 1. At this point it is important
to note that depending on m the deformation
parameter δ must not be too large as otherwise

x

y

L≈ 2π

0 π ϕ 2π

ϕ

−π/2

0

ψ

π/2

Figure 1: Boundary map and real-space orbit for
the deformed circle. The deformation in Eq. (5)
is m = 3, δ = 0.1. Slightly larger deformations
would lead to a non-convex billiard.

the billiard gets non-convex and Eq. (2) becomes
more complicated as there might be no solution
for ψ(ϕ,ϕ′) for specific values of ϕ and ϕ′.

In order to investigate the convergence we
will use functions of different smoothness and
different norms to describe the rate of conver-
gence. We present properties of the transfer ma-
trix in terms of its spectrum as well as more ef-
ficient implementations. We close the talk with
a direct comparison to results known from a cir-
cular domain [4].
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Abstract

We consider approximations of high frequency
solutions to the Helmholtz equation in two di-
mensions by Gaussian beam superpositions. We
derive a new error estimate for first order beams
at a fold caustic, showing a pointwise error of
size O(k−5/6), where k is the wave number.
Keywords: high frequency approximations,
Gaussian beams, caustics

1 Introduction

Gaussian beam superpositions is a high frequency
asymptotic model for solution of wave equations
[1]. It is often used in numerical methods to
simulate waves in the high frequency regime. In
this paper we consider error estimates for the
model in terms of the wave number k. Unlike
standard geometrical optics, the Gaussian beam
model does not break down at caustics, which
is one of its main advantages.

Error estimates for Gaussian beams are known
in a number of settings. See for instance [2, 3]
and the references therein. The main result is
that, in L2 and Sobolev norms, the relative er-
ror of first order beams decays as O(k−1/2), in-
dependently of dimension and regardless of the
presence of caustics. The better rate O(k−1)
is typically observed in numerical computations
and has been shown in L2 for the Schrödinger
equation, and also in L∞ on sets strictly away
from caustics. Similar estimates have been shown
for higher order beams.

There are, however, no precise, pointwise,
error estimates for the solution at a caustic. In
particular, for first order beams it has not been
shown that this error vanishes as k → ∞, al-
though there is ample numerical evidence to this
effect. The purpose of this paper is to show such
an error estimate for a typical fold caustic in two
dimensions. More precisely, we consider the in-
dex of refraction n(x, y)2 = 1 − y and the fold
caustic that this generates in the out-going solu-
tion of the Helmholtz equation with a compactly

supported source that concentrates on y = 0,

∆u+ k2(1− y)u = ikδ(y)f(x),

where we take

f(x) =
1

ξ0
A0(x)eiη0x, ξ0 =

√
1− η20.

This represents an incoming plane wave in the
direction θ with amplitude envelopeA0(x), where
η0 = cos θ. A caustic develops along the line
y = ξ20 . Fig. 1 shows a representative solution.

2 Exact solution

We let û(η, y) be the k-scaled Fourier transform
in x of the exact solution,

û(η, y) =
√
k/2π

∫
e−iηkxu(x, y)dx.

For y > 0 we can derive an exact expression
using Airy functions [4],

û(η, y) = e−
iπ
3

Ai(k
2
3 (y + η2 − 1))

Ai(e
iπ
3 k

2
3 (1− η2))

Â0(η). (1)

In this expression, one notices that the denom-
inator never vanish because all the roots of the
Airy function are on the negative real axis.

3 Gaussian beam approximation

The approximation is made up of a superposi-
tion of Gaussian beams,

uGB(x, y) =
√
k/2π

∫
v(x, y; z)dz.

where v is the Gaussian beam starting at x = z,

v(x; z) =

A(s; z) exp
(
ik
[
S(s; z) + (x− γ(s; z)) · p(s; z)

+
1

2
(x− γ(s; z))TM(s; z)(x− γ(s; z))

])
,

and x = (x, y). The beam parameters are the
central ray position γ, the beam direction p the
Gaussian shape M , the initial phase S and the
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Figure 1: The fold caustic: Full solution and ray tracing picture.

amplitude A. They all satisfy known ODEs in s
with initial data determined by z. In this partic-
ular case the ODEs can be solved exactly, and
we can derive the following expression for the
k-scaled Fourier transform of uGB,

ûGB(η, y) = (2)

c0Â0(η − η0)
√

k

2π
eik(−2η0ξ0(η−η0)+2ξ30/3)

×
∫

eikφ(y,θ,η−η0)√
1 + 2(ξ0 + θ)i− (ξ0 + θ)2(1 + 2iξ0)

dθ,

where c0 = η0
√

4ξ20 − 2iξ0 and

φ(y, θ, η) = −1

3
θ3 + θ(ξ20 − y − 2η0η)

+
1

2
m(ξ0 + θ)(y − ξ20 + θ2)2,

with m being a smooth function with positive
imaginary part. One deduces then, through Mal-
grange preparation theorem, that there exists
two functions ρ̃, φ0 and two symbols σ0, σ1 (see
below) such that

ûGB(η, y) = c0Â0(η − η0)
√

2πk
1
6× (3)

[σ0Ai + ik−
1
3σ1Ai′](−k 2

3 ρ̃(y, η))

× eik(−2η0ξ0(η−η0)+2ξ30/3+φ0(y,η)).

4 Error estimate

The max error at a fixed y is given by the esti-
mate,

sup
x
|uGB(x, y)− u(x, y)| ≤
√
k/2π

∫
|ûGB(η, y)− û(η, y)|dη.

Away from the caustic (0 ≤ y < ξ20) stationary
phase estimates for ûGB in (2) and asymptotic
estimates for large arguments of Airy functions
for û in (1) yield the expected O(k−1) error.
At the caustic where y = ξ20 , the asymptotic es-
timates above fail and a more precise analysis is

needed.
Comparing (1) and (3), using the principal term
of ρ̃, φ0, σ0, σ1, the error is of the orderO(k−5/6).
One notes that since the size of the solution itself
grows as O(k1/6) at the caustic [5], the relative
error is then O(k−1), the same as the L∞ error
away from caustics.

Determination of ρ̃ and φ0. Critical val-
ues of the phase φ for η small are needed. As
∂3θφ(ξ20 , 0, 0) < 0, let θ(y) solve (locally)
∂2θφ(y, θ(y), η) = 0, hence θ(y) = (y − ξ20)h(y)
and the (complex) critical points are θ±(y, η) =
θ(y)± δ±

√
∂θφ for <∂θφ > 0. Thus, for η small,

two critical values arise which lead to ρ̃ and φ0:

φ±(y, η) = φ0(y, η)± 2
3(ρ̃(y, η))

3
2 , with

ρ̃(y, η) = ∂θφ(y, θ(y), η)r(y, η)
= (ξ20 − y + 2ηη0 +O((y − ξ20)2)r.
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Abstract

In this paper, we address a particular case of
Calderón’s conductivity inverse problem in di-
mension two, namely the case of a homogeneous
background containing a finite number of cavi-
ties (i.e. heterogeneities of infinitely high con-
ductivities). We aim to recover the location and
the shape of the cavities from the Dirichlet-to-
Neumann (DtN) map of the problem. Our re-
construction method is non iterative and uses
two main ingredients. First, we show that the
so-called generalized Pólia-Szegö tensors (GPST)
of the cavities can be computed from the DtN
map. Secondly, we conjecture (and prove for
some particular configurations) that these GPST
can be related to a moment problem for an un-
known measure supported in the cavity. Nu-
merical simulations show that solving this mo-
ment problem provide an efficient reconstruc-
tion method, for quite general configurations.
Keywords: Inverse problems, integral equa-
tions, complex moments problem

1 Introduction

Ω

Γ

ω1

ω2

ω3

γ1

γ2

γ3

Figure 1: The domain and the unknown cavi-
ties.

Let Ω ⊂ R2 be a simply connected open
bounded set with Lipschitz boundary Γ. We
suppose that Ω contains a multiply connected
domain ω = ∪Nk=1ωk, where the open sets ωk,
for k = 1, . . . , N are non intersecting simply
connected domains with C1,1 boundaries γk and
ω ⊂ Ω (see Figure 1). We denote by γ = ∪Nk=1γk

and by n the unit normal to Γ ∪ γ directed to-
wards the exterior of Ω \ ω. For every trace
f in H

1
2 (Γ), let (uf , cf ) ∈ H1(Ω \ ω) × RN ,

with cf := (cf1 , . . . , c
f
N )T, be the solution of the

Dirichlet problem:

−∆uf = 0 in Ω \ ω (1a)

uf = f on Γ (1b)

uf = cfk on γk, k = 1, . . . , N, (1c)

with the additional conditions:
∫

γk

∂nu
f dσ = 0, k = 1, . . . , N. (1d)

By following the proof given in the Appendix
of [3] for the case of a single cavity (N = 1),
it can be easily shown that this elliptic prob-
lem is well-posed. Its solution can be seen as
the limit solution of Calderón’s problem for a
piecewise constant conductivity when the con-
stant conductivities inside the cavities tends to
infinity. The inverse problem investigated in
this paper can be formally stated as follows:
Knowing the Dirichlet-to-Neumann (DtN) map
Λγ : f 7−→ ∂nu

f |Γ, how to reconstruct the mul-
tiply connected cavity ω ?

Combining an integral formulation with tools
from complex analysis, the authors solve in [3]
this inverse problem in the case of a single cav-
ity (ω simply connected). This limitation is due
to the crucial use of the Riemann mapping the-
orem in the reconstruction method. In this talk,
we present an alternative reconstruction method
that can handle the case of several cavities (for
more details, see [4]).

2 Reconstruction method

The proposed reconstruction method uses two
main ingredients. The first one is summarized
in the following result, which shows that the
knowledge of the DtN maps with and without
the cavities allows one to compute the entries of
the so-called Generalized Pólya-Szegö Tensors
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(GPST) of the multiply connected cavity (see
also [1]). More precisely, let Λγ and Λ0 denote
respectively the DtN maps with and without the
cavities, and let SΓ denote the trace of the single
layer potential on the outer boundary Γ. Using
the measurements, we can compute the follow-
ing operator:

R := SΓ(Λγ − Λ0).

Identifying every point x = (x1, x2) of the plane
with the complex number z = x1 + ix2, let us
introduce for every integer m > 1, the harmonic
polynomials of degree m: Pm1 (x) = Re (zm),
Pm2 (x) = Im (zm). Finally, let us define the
polynomials Qm`,Γ := Pm` + cm`,Γ, ` = 1, 2, where
the constants cm`,Γ are chosen such that the densi-
ties Q̂m`,Γ := S−1

Γ Qm`,Γ satisfy 〈Q̂m`,Γ, 1〉− 1
2
, 1
2
,Γ = 0.

Theorem 1 For m,m′ > 1 and `, `′ = 1, 2, the
Generalized Pólya-Szegö Tensors (GPST) of the
cavity 〈Qm`,γ , Qm

′
`′,γ〉 1

2
,γ are given by the formula

〈Qm`,γ , Qm
′

`′,γ〉 1
2
,γ = 〈(Id + R)−1RQm`,Γ, Q

m′
`′,Γ〉 1

2
,Γ.

The second step is to recover the geometry of the
cavities from the new available data, namely the
real quantities 〈Qm`,γ , Qm

′
`′,γ〉 1

2
,γ , or equivalently

the complex quantities 〈Qmγ , Qm
′

γ 〉 1
2
,γ , where we

have set QmΓ := Qm1,Γ + iQm2,Γ. Inspired by the
limit case of small cavities (see for instance [2]),
we conjecture the existence of a Borel measure
ν supported in the cavity ω such that (z denotes
the variable in the complex plane)

1

m
〈Qmγ , Q1

γ〉 1
2
,γ =

∫

ω
zm−1 dν, ∀m > 1.

This formula connects the complex GPST (which
can be computed from the measurements thanks
to Theorem 1) to the moments of the unknown
measure ν supported in the cavity. We have
been able to prove this conjecture in two special
cases: for a simply connected cavity and in the
case of two disks.

Admitting this conjecture, it is natural to
seek an atomic approximation of the measure ν
in the form

∑n
i=1 ciδzi for some integer n, where

the weights ci are positive and the points zi are
distinct. This leads to the following reconstruc-
tion algorithm :

1. Given n > 1, compute for 0 6 m 6 2n−1:

τm :=

∫

ω
zm dν =

1

m+ 1
〈Qmγ , Q1

γ〉 1
2
,γ .

2. Solve Prony’s system with the 2n unknowns
(zi) and (ci):
n∑

i=1

ciz
m
i = τm, ∀m = 0, · · · , 2n− 1.

3. Plot the disks of centers (zi) and radii (ρi),
with ρi =

√
|ci|/2π.

Below an example of reconstruction of a mul-
tiply connected cavity having three connected
components, for n = 21 (i.e. using 21 disks).

Figure 2: Reconstruction of a multiply con-
nected cavity.
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Abstract

We prove well-posedness of scattering problems
for impenetrable obstacles in an in�nite elastic
Kirchho�-Love plate in the purely bending case.

Keywords: Scattering problem, Impenetrable
obstacle, Kirchho�-Love plate

1 Introduction

Let us consider a smooth bounded open domain
D ⊂ R2. The scattered �eld vs satis�es in the
unbounded domain Ω = R2 \D the problem





∆2vs − k4vs = 0 in Ω
B1(vs + ui) = B2(vs + ui) = 0 on ∂Ω

lim
r→+∞

∫

∂Br

|∂nvs − ikvs|2 ds = 0.

(1)
Here k > 0 is the wave number, ui is a smooth
incident �eld which satis�es ∆2ui − k4ui = 0
in R2, Br is the open disc centered at 0 and of
radius r, n is the outward normal to Br. The
�rst line describes the motion of the plate in
the frequency domain, the second one character-
izes the boundary conditions on the boundary
of the obstacle while the third one is the radia-
tion condition, which speci�es that only outgo-
ing scattering waves are admissible. Concerning
the surface di�erential operators B1 and B2, we
consider the four di�erent cases:

1. (B1, B2) = (I, ∂n) (clamped plate)

2. (B1, B2) = (I,M) (simply-supported plate)

3. (B1, B2) = (∂n, N) (rolled-supported plate)

4. (B1, B2) = (M,N) (free plate),

where I is the identity, n is the outward unit
normal to Ω, M is the bending moment and
N is the shear force. More precisely, if x =
(x1, x2) ∈ R2, t = n⊥ is the unit tangent vector
and s the corresponding curvilinear abscissa,M
and N are de�ned by

{
Mu = ν∆u+ (1− ν)M0u,
Nu = −∂n∆u− (1− ν)∂sN0u,

where M0 and N0 are given by

{
M0u = ∂2

1un
2
1 + 2∂1∂2un1n2 + ∂2

2un
2
2,

N0u = ∂1∂2u(n2
1 − n2

2)− (∂2
1u− ∂2

2u)n1n2

and ν ∈ [0, 1/2) is the Poisson's ratio. The main
result is the following:

Theorem 1 The problem (1) has a unique so-

lution in H2
loc(Ω)

• for any k in cases 1 (clamped), 2 (simply-

supported) and 3 (rolled-supported),

• for k /∈ K in case 4 (free), where the set

K is formed by a sequence of kn > 0 such

that kn → +∞.

Note that such kind of existence-uniqueness the-
orem for di�raction problems in an in�nite plate
seems new, if we except [1] for a Bilaplacian per-
turbed by zero and �rst order perturbations.

Remark 2 A crucial point is that if u satis-

�es ∆2u − k4u = 0 in Ω, then U := ∆u + k2u
and V := ∆u − k2u satisfy ∆U − k2U = 0 and

∆V + k2V = 0, respectively. This enables us to
establish that at in�nity, the solution u is an (in-

�nite) linear combination of the four functions

Hm(kr)eimθ, with Hm(z) = H
(1)
m (z), H

(1)
m (iz),

H
(2)
m (z), H

(2)
m (iz), where H

(1)
m , H

(2)
m are the Han-

kel functions of �rst and second kinds and order

m ∈ Z. Only the �rst two satisfy the radiation

condition.

2 Sketch of the proof

Let us introduce the exterior problem: for (f, g) ∈
H3/2(ΓR)×H1/2(ΓR) and ΓR = ∂BR, �nd u ∈
H2

loc(R2 \BR) such that





∆2u− k4u = 0 in R2 \BR
(u, ∂nu) = (f, g) on ∂BR

lim
r→+∞

∫

∂Br

|∂nu− iku|2 ds = 0.

(2)
The general strategy for proving Theorem 1 is
the following. In step 1 we prove uniqueness
in problem (1). In step 2 we prove existence

Thursday, 10:30, GM2 Radinger, Building BD



Inverse Problems 399

in problem (2) by using separation of variables.
This very technical step relies as in [2] on a
precise analysis of the asymptotic behaviour of
Hankel functions. Step 1 and step 2 imply that
problem (2) is well-posed, which enables us to
de�ne a Dirichlet-To-Neumann operator T which
from (f, g) ∈ H3/2(ΓR) × H1/2(ΓR) associates
(Nu,Mu) ∈ H−3/2(ΓR) ×H−1/2(ΓR), where u
is the solution to problem (2). We then intro-
duce the bounded domain ΩR = Ω∩BR, where
R > 0 is such that BR contains the obstacle D.
It is easy to prove that problem (1) is equiva-
lent to the following problem: �nd us ∈ H2(ΩR)
such that




∆2us − k4us = 0 in ΩR

B1(us + ui) = B2(us + ui) = 0 on ∂Ω(
Nus

Mus

)
= T

(
us|ΓR
∂nu

s|ΓR

)
on ΓR.

(3)
Assume that (f, g) ∈ H3/2(ΓR)×H1/2(ΓR) has
decomposition

(f, g) =
∑

m∈Z
(fm, gm)eimθ.

The operator T is then explicitly given by

T

(
f
g

)
=
∑

m∈Z

(
T 11
m T 12

m

T 21
m T 22

m

)(
fm
gm

)
eimθ,

with




T 11
m = −(1− ν)

m2

R3
− 2ik3 rmsm

rm − ism
T 12
m = T 21

m = (1− ν)
m2

R2
+ k2 rm + ism

rm − ism
T 22
m = −1− ν

R
− 2k

rm − ism
and

rm =
(H

(1)
m )′(kR)

H
(1)
m (kR)

, sm =
(H

(1)
m )′(ikR)

H
(1)
m (ikR)

.

Step 3 consists in proving with a variational ap-
proach that the problem (3) is of Fredholm type,
which relies on a sign analysis of the real part
of matrices Tm for large |m|. Hence uniqueness
implies existence. We conclude that problem (3)
is well-posed, as well as (1).

3 Uniqueness

Let us give some insights into the uniqueness
proof. We set ui = 0 in (1) and u = vs. We �rst

eliminate the propagating part V (see Remark
2) of u. Since u satis�es the radiation condition,
we can prove that when r → +∞,

‖Nu−ik3u‖L2(∂Br)+‖Mu−ik∂nu‖L2(∂Br) → 0.

By multiplying the �rst equation of (1) by u and
using an adapted Green formula in Ωr we obtain

Im

{∫

∂Br

(Nus u+Mu∂nu) ds

}
= 0.

The two above ingredients imply that

lim
r→+∞

{‖u‖L2(∂Br) + ‖∂nu‖L2(∂Br)} = 0. (4)

We can prove that ‖U‖L2(∂Br) → 0 when r →
+∞, which implies the same property for V =
U−2k2u. By the Rellich theorem for Helmholtz
equation, we obtain that V = ∆u − k2u = 0 in
Ω. We have now to eliminate the evanescent
part U of u. For boundary conditions 1, 2 and
3, we have either u = 0 or ∂nu = 0 on ∂Ω,
which by reusing (4) implies that u = 0 in Ω,
which completes the proof. Case 4 is more com-
plicated. We introduce the following coupled
system on the boundary ∂Ω: for λ > 0, �nd
(U ,V) ∈ H1(∂Ω)×H1(∂Ω) such that





d2U
ds2

+ γV − λU = 0,

d2V
ds2
− d

ds

(
γ
dU
ds

)
+ λV = 0,

(5)

where γ is the curvature. We obtain that the
traces functions U = u|Ω and V = ∂nu|∂Ω satisfy
problem (5) with λ = k2/(1 − ν). By using
a well-designed sequence (λm) of λ such that
λm → +∞, we obtain there exists λ > 0 such
that if (U ,V) ∈ H1(∂Ω) ×H1(∂Ω) satis�es the
system (5) associated with λ, then (U ,V) = 0.
The Fredholm analytic Theorem then enables us
to conclude.

Remark 3 In addition, in case 4 we prove that

for convex obstacles D, uniqueness holds for any

su�ciently large k (for any k if D is a disk).
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Abstract

Previous works [1] showed the possibility to ap-
ply sampling methods such as the Linear Sam-
pling Method [2] to image thick plates. In par-
ticular, images of real defects in plates were ob-
tained when considering the plate as a 2D waveg-
uide, that is considering it to be invariant ac-
cording to one direction. The objective of this
talk is to present the adaptation of the Linear
Sampling Method to the case of infinite thin
elastic plates, for which the wave propagation
can be modeled thanks to the Kirchhoff-Love
model in 2D, neglecting the plate’s thickness.
This method is applied to numerical data com-
puted using a Finite Element Method coupled
with a transparent boundary condition.
Keywords: inverse scattering, Linear Sampling
Method, thin plate, Kirchhoff-Love model

1 Forward problem

In this talk, only impenetrable obstacles are con-
sidered. Let D ⊂ R2 be a bounded open domain
of class C3, characterized either by a Dirichlet
or a Neumann boundary condition, and Ω =
R2\D. The considered forward problem is then:
find vs ∈ H2

loc(Ω) such that




∆2vs − k4vs = 0 in Ω
B1(v

s + ui) = B2(v
s + ui) = 0 on ∂D

limr→+∞
∫
∂Br
|∂nvs − ikvs|2 ds = 0,

(1)
where k > 0 is the wave number, Br is the open
ball centered at 0 and of radius r, n is the out-
ward unit normal to Br and s is the measure on
∂Br, whereas ui is an incident field satisfying
∆2ui−k4ui = 0 in a neighborhood of D. As for
the surface boundary operators B1 and B2, they
satisfy either (B1, B2) = (I, ∂n) for the Dirich-
let boundary condition or (B1, B2) = (M,N)
for the Neumann boundary condition, M and
N being respectively the bending moment and
the shear force, defined in [3]. It is shown in [3]
that

Theorem 1 The problem 1 has a unique solu-

tion in H2
loc(Ω) for any k in the Dirichlet case

and except for a set K0 formed by a sequence of
kn > 0 such that kn → +∞ in the Neumann
case.

Consider now the bounded domain ΩR = Ω ∩
BR, where R > 0 is such that BR contains D.
Then, the problem (1) is equivalent to: find us ∈
H2(ΩR) such that




∆2us − k4us = 0 in ΩR

B1(u
s + ui) = B2(u

s + ui) = 0 on ∂D
(
Nus

Mus

)
= T

(
us|∂BR
∂nu

s|∂BR

)
on ∂BR,

(2)

with T : H3/2(∂BR)×H1/2(∂BR)→ H−3/2(∂BR)×
H−1/2(∂BR) a Dirichlet-to-Neumann operator
defined as follows: assume that (f, g) ∈ H3/2(∂BR)×
H1/2(∂BR) can be decomposed as

(f, g) =
∑

m∈Z
(fm, gm)ξm, ξm(θ) = eimθ,

then

T

(
f
g

)
=
∑

m∈Z
Tm

(
fm
gm

)
ξm, Tm =

(
T 11
m T 12

m

T 12
m T 22

m

)

with




T 11
m = −(1− ν)

m2

R3
− 2ik3

rmsm
rm − ism

T 12
m = (1− ν)

m2

R2
+ k2

rm + ism
rm − ism

T 22
m = −1− ν

R
− 2k

rm − ism

and rm =
H

(1)′
m (kR)

H
(1)
m (kR)

, sm =
H

(1)′
m (ikR)

H
(1)
m (ikR)

,

where H(1)
m is the Hankel function of the first

kind and order m.
It is then possible to compute artificial data dis-
cretizing (2) with nonconforming finite elements
such as the Morley finite element and truncating
the series (Tm)m∈Z.
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Figure 1: Computed scattered field for two val-
ues of R (same color scale)

2 Inverse problem

Let G(·, y) be the fundamental solution, which
satisfies




∆2G(·, y)− k4G(·, y) = δy in R2

lim
r→+∞

∫

∂Br

|∂nG(·, y)− ikG(·, y)|2 ds = 0,

and is given by

G(x, y) =
i

8k2
(H

(1)
0 (k|x− y|)−H(1)

0 (ik|x− y|)).

Suppose that sources and receivers are placed
all over ∂BR. Then, let us(·, y) denote the scat-
tered field associated to ui = G(·, y) through
(1) and ũs(·, y) denote the one associated to
ui = ∂nyG(·, y), where ny is the outward unit
normal to BR at y. The assumption is made
that, for all y ∈ ∂BR, us(·, y) and ũs(·, y) as well
as their normal derivatives are measured at all
x ∈ ∂BR. The objective of the Linear Sampling
Method is to recover the obstacle D from these
data. To do so, let N : L2(∂BR)2 → L2(∂BR)2

be the near-field operator:

N

(
h
t

)
=

( ∫
∂BR

us(·, y)h(y) + ũs(·, y)t(y)ds(y)

∂n
∫
∂BR

us(·, y)h(y) + ũs(·, y)t(y)ds(y)

)
.

Theorem 2 Let K be either the union of K0

and the set of the fourth roots of the Neumann
eigenvalues of operator ∆2 in D, or the fourth
roots of the Dirichlet eigenvalues of ∆2 in D.
Assume that k /∈ K, for some z ∈ R2, we have

if
(
G(·, z)
∂nG(·, z)

)
∈ Range(N), then z ∈ D.

The converse statement is false in general, but a
weaker statement exists: assume that k /∈ K, if

Figure 2: Reconstruction of a Dirichlet (left)
and a Neumann (right) obstacle.

z ∈ D, then for all ε > 0 there exists a solution
(hε(·, z), tε(·, z)) of the inequality
∥∥∥∥N

(
hε(·, z)
tε(·, z)

)
−
(
G(·, z)
∂nG(·, z)

)∥∥∥∥
L2(∂BR)2

≤ ε,

such that, for a given fixed ε, it satisfies

lim
z→∂D

‖(hε(·, z), tε(·, z))‖L2(∂BR)2 = +∞.

The justification of the Linear Sampling Method
uses the same arguments as for the Helmholtz
case, a special attention being given to the con-
sidered functional spaces. In view of theorem 2,
the following near-field equation is introduced:

N

(
h
t

)
=

(
G(·, z)
∂nG(·, z)

)
. (3)

As the near-field operator N is compact, (3) is
ill-posed and needs to be solved in the sense of
Tikhonov. Plotting the inverse of the norm of
the solution allows to image the defect, as shown
figure 2 on artificial data, as this norm goes to
infinity outside of the obstacle.
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Crack monitoring using transmission eigenvalues with artificial backgrounds
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Abstract

We propose a new method to localize cracks from
far field data based on Transmission Eigenvalues
(TEs) associated with a carefully chosen artificial
background. It relies on scanning the probed do-
main with a fictitious inclusion and exploits the fact
that TEs change only if the inclusion intersects the
cracks. We explain how these TEs can be identified
from measured far field data and validate our pro-
cedure in the case of extended cracks. The method
also allows for the detection and quantification of
small cracks aggregates.

Keywords: inverse scattering, crack monitoring,
transmission eigenvalues.

1 Introduction

In this work, we are interested in the problem of
identifying cracks embedded in some homogeneous
background from far field data at multiple frequen-
cies. We rely on the notion of Transmission Eigen-
values. For the considered inverse problem, TEs
were usually presented as the frequencies one should
avoid to guarantee the success of some inversion
methods such as the Linear Sampling Method or the
Factorization Method. Several recent works have
tried to use TEs to recover quantitative information
on the material properties of probed domains. In
this approach, the difficulty lies in the fact that the
link between TEs and the physical parameters is not
straightforward. To bypass this problem, it has been
proposed in the literature to work with a modified
far field operator constructed from an artificial back-
ground and for which the corresponding TEs have a
more direct connection to the physical parameters
[1]. We shall exploit this idea for the imaging prob-
lem related to cracks. Let us recall that because the
cracks have empty interior, one cannot define usual
TEs if the background is homogeneous. Working
with a non homogeneous artificial background, for
instance containing an obstacle, we show that we
can define new TEs whose values depend on the rel-
ative positions between the crack and the artificial
obstacle. The numerical procedure is then as fol-
lows. First, we subtract to the measured far field F a

numerically computed far field Fnum corresponding
to an artificial sound-soft obstacle located in some
arbitrary domain Ω and we set F rel := F − Fnum.
The TEs associated with the relative far field opera-
tor F rel are then defined as the frequencies such that
there are generalized incident fields that have the
same far field both for the true reference medium
and for the artificial one. In absence of crack in Ω,
these TEs are simply the Dirichlet eigenvalues of Ω,
otherwise they are different. These TEs can be eval-
uated from F rel using the framework of generalized
linear sampling method. Varying the position of Ω,
and comparing the TEs with the Dirichlet eigenval-
ues of Ω, one is able to identify the cracks position.
In the case of small cracks aggregates, one obtains
an indicator function on the cracks density.

2 The forward scattering problem

We start by presenting the scattering problem for a
crack embedded in a homogeneous medium. Let
Γ ⊂ R3 be a portion of a non-intersecting surface
that encloses a domain with smooth boundary. The
scattering of the plane wave ui(θ ,x) := eikθ ·x of in-
cident direction θ ∈ S2 := {θ ∈ R3 | |θ | = 1} by Γ
leads us to consider the problem

Find u = ui +us such that
∆u+ k2u = 0 in R3 \Γ

σ(u) = 0 on Γ
lim
|x|→+∞

|x|(∂|x|us− ikus

)
= 0.

(1)

Here σ(u) is a generic boundary condition (Neu-
mann, Dirichlet, ...) and k > 0 is the wave num-
ber. Moreover, the last line of (1) corresponds to
the Sommerfeld radiation condition. The scattered
field us(θ ,x) has the expansion

us(θ ,x) = eik|x||x|−1 (u∞
s (θ , x̂)+O(1/|x|)

)
(2)

as |x|→+∞, uniformly in x̂= x/|x|, where u∞
s (θ , x̂)∈

C is the far field pattern in the direction x̂. The in-
verse problem we consider consists in reconstruct-
ing Γ from the knowledge of u∞

s (·, ·) : S2×S2→ C.
We define the far field operator F : L2(S2)→ L2(S2)
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such that

(Fg)(x̂) =
∫

S2
g(θ)u∞

s (θ , x̂)ds(θ). (3)

By linearity of (1), Fg is nothing but the far field
pattern of the scattered field associated with the in-
cident field ui(g) :=

∫
S2 g(θ)eikθ ·x ds(θ) (Herglotz

wave function), with g ∈ L2(S2).

3 The relative far field operator

Let Ω be an arbitrary bounded domain of R3. Intro-
duce Fnum : L2(S2)→ L2(S2) the far field operator
defined as F in (3) replacing us by ũs, ũs being the
solution of the exterior Dirichlet problem

∆ũs + k2ũs = 0 in R3 \Ω
ũs +ui = 0 on ∂Ω

lim
|x|→+∞

|x|(∂|x|ũs− ikũs) = 0.
(4)

Note that Fnum does not depend on the data and can
be computed numerically. Finally, we define the rel-
ative far field operator

F rel := F−Fnum.

One can show that F rel admits a factorization F rel =
GrelHrel for certain operators Grel, Hrel that we do
not explicit here. The TE are then defined as the
values of k > 0 such that Grel has a non trivial ker-
nel. Using the Rellich lemma, one can prove the
following characterization.

Theorem 1 TEs coincide with the k > 0 such that
there is a non trivial w ∈ H1(Ω\Γ) solving

∆w+ k2w = 0 in Ω\Γ
w = 0 on ∂Ω

σ(w) = 0 on Γ∩Ω.
(5)

From this proposition, we observe that when Γ∩
Ω = /0, the TEs are nothing but the eigenvalues of
the Dirichlet laplacian in Ω. In the next section, we
will explain how to compute TEs from F . Hence
scanning the probed domain with different Ω, one
can identify the cracks using TEs. In the particular
case of sound-hard cracks, i.e. when σ(w) = ∂νw, ν
being a unit normal vector to Γ, the spectrum of (5)
consists of real positive eigenvalues 0≤ τΓ

1 ≤ τΓ
2 ≤

. . . satisfying the following min-max principle:

τΓ
j = min

W∈W Γ
j

max
w∈W\{0}

‖∇w‖2
L2(Ω\Γ)

‖w‖2
L2(Ω\Γ)

, (6)

where W Γ
j denotes the sets of j-dimensional sub-

spaces of

V Γ := {v ∈ H1(Ω\Γ)|v = 0 on ∂Ω}.

Consequently, given two cracks Γ1 ⊂ Γ2 ⊂Ω, since
V Γ1 ⊂ V Γ2 , we obtain that τΓ1

j ≥ τΓ2
j for all j ∈ N.

This monotonicity result, which also holds in the
case of sound-soft cracks, allow us to quantify crack
densities in Ω.

4 Imaging with TE’s computed from far field
data

The computation of TEs exploits the behaviour of
the solution g∈L2(S2) of the far field equation F relg≈
Φ∞

z , where Φ∞
z is the far field of the fundamental

solution Φz of the Helmholtz equation (with a Dirac
source term at z∈R3). To state our result, we define
the cost function such that, for α > 0, g ∈ L2(S2),

Jα(g) = αP(g)+‖F relg−Φ∞
z ‖L2(S2), (7)

with the penalty term P(g)= |〈Fnumg,g〉|+|〈Fg,g〉|.
Let gα

z be a minimizing sequence of Jα .

Theorem 2 Assume that k is such that F rel : L2(S2)−→
L2(S2) has dense range. Then k2 is an eigenvalue of
(5) if and only if the set of point z for which P(g) is
bounded as α → 0 is nowhere dense in Ω.

As a consequence, the eigenvalues τΓ
j coincide with

the peaks in the curve k 7→ ∫
Ω P(gα

z )dz for small val-
ues of α . In Figure 1, we provide a numerical re-
sult in 2D. We identify a sound-hard crack by work-
ing with a collection of artificial backgrounds with
sound-soft disks. For each disk, the distance be-
tween TEs and Dirichlet eigenvalues is materialized
by the contrast in the red colour. Note that when the
radius of the disks tends to zero, the Dirichlet eigen-
values blow up. Therefore, to obtain a thin resolu-
tion, it is necessary to work at high frequencies with
a k large band.

Figure 1: Detection of a sound-hard crack using TEs for
artificial backgrounds with sound-soft disks.
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Abstract

A homogeneous dielectric spherical medium ex-
cited by an internal point-dipole is utilized as a
simpli�ed benchmark model in di�erent applica-
tion domains, like e.g. medical imaging. In this
work, we investigate the electromagnetic inverse
source problem of the determination of the in-
ternal dipole's characteristics by using near-�eld
measurements on the boundary of the medium.
We describe a simple analytic inverse algorithm.

Keywords: electromagnetic scattering, inverse
source problem, internal dipole

1 Introduction

Excitation of a spherical medium by an internal
dipole constitutes a simpli�ed realistic model for
applications in medical imaging [1]. For exam-
ple, in electroencephalography (EEG) the brain's
spontaneous primary electrical activity is deter-
mined by means of measurements from multiple
electrodes placed on the scalp [2]. Mathematical
techniques for the study of brain imaging appli-
cations involving point dipoles inside spheres are
overviewed in [3].

The mathematical modeling of such applica-
tions requires the formulation and solution of a
near-�eld inverse source problem. In the con-
text of acoustic scattering, inversion algorithms
for determining the characteristics of an acous-
tic point-source or point-dipole, radiating inside
a homogeneous sphere were developed in [4].

The purpose of the present work concerns
the investigation of the pertinent electromag-
netic boundary-value-problem corresponding to
the excitation of a homogeneous dielectric spher-
ical medium by an internal dipole. The location
and moment of the dipole are determined an-
alytically by using a set of measurements on
the boundary of the medium. In particular,
the developed algorithm exploits the informa-
tion from the moments, obtained by integrating
on the unit sphere the inner products of the total
tangential electric �eld on the medium's spheri-
cal interface with the vector spherical harmonic
functions.

2 Description of the Scattering Problem

and Boundary Data

Consider a homogeneous spherical medium of
radius a, dielectric permittivity ε1 and magnetic
permeability µ1. The sphere's exterior is as-
sumed homogeneous with permittivity ε0 and
permeability µ0. The medium is excited by an
arbitrary internal electric dipole with polariza-
tion p ∈ R3 and located at r1 = (r1, θ1, φ1)
(with 0 ≤ r1 < a). The total electric �eld in the
exterior of the spherical medium is expressed as
the double series of the vector wave functions
[under exp(−iωt) time dependence] [5]

E0(r; r1,p) = A

∞∑

n=1

n∑

m=0

∑

σ=e,o

2n+ 1

n(n+ 1)
εm

(n−m)!

(n+m)!

[
αnM

3
σmn(r, k0)

(
M1

σmn(r1, k1) · p
)

+γnN
3
σmn(r, k0)

(
N1
σmn(r1, k1) · p

)]
, r > a,

(1)

where the �eld coe�cients αn and γn are given
by (31) of [5], while A = −ωµ0k1

4π .
The total surface electric �eld Esurf , i.e. the

total �eld E0 on the boundary r = a of the
spherical medium, is decomposed into its nor-
mal and tangential components, as

Esurf(θ, φ; r1,p) = Esurf
r (θ, φ; r1,p)r̂

+ Esurf
t (θ, φ; r1,p). (2)

We consider, next, the expressions of the spher-
ical vector wave functions in terms of the vector
spherical harmonics Bσmn and Cσmn to derive
an expression of the tangential component Esurf

t ,
which is useful in the development of the inverse
source algorithm. Precisely, we obtain

Esurf
t (θ, φ; r1,p) = A

∞∑

n=1

n∑

m=0

∑

σ=e,o

2n+ 1√
n(n+ 1)

εm

(n−m)!

(n+m)!

[
α̃nCσmn(θ, φ)

(
M1

σmn(r1, k1) · p
)

+γ̃nBσmn(θ, φ)
(
N1
σmn(r1, k1) · p

)]
, (3)
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where α̃n = αnhn(k0a), γ̃n = γnh̃n(k0a), hn are
the n-th order spherical Hankel functions of the
�rst kind, and h̃n(z) = [zhn(z)]′/z.

The boundary data of Esurf
t are exploited to

determine the internal dipole's characteristics.
Note that the tangential part of the electric �eld
is continuous on r = a.

3 Inverse Dipole Algorithm

We consider the moments, obtained by integrat-
ing the product of Esurf

t with the vector spher-
ical harmonic functions. Thus, for ν ≥ 1, µ =
0, . . . , ν and s = e, o, we have

Qsµν = qν

∫

Ω
Esurf
t (θ, φ; r1,p) ·Bsµν(θ, φ)dΩ,

(4)

Rsµν = rν

∫

Ω
Esurf
t (θ, φ; r1,p) ·Csµν(θ, φ)dΩ,

(5)

where Ω is the unit sphere, and the quantities

qν =

√
ν(ν + 1)

4πA γ̃ν
, (6)

rν =

√
ν(ν + 1)

4πA α̃ν
(7)

are known (for known parameters of the sphere).
Now, by using the known orthogonality prop-

erties of the vector spherical harmonic functions,
we get from (4) and (5) that

Qsµν = N1
sµν(r1, k1) · p, (8)

Rsµν = M1
sµν(r1, k1) · p. (9)

We seek to determine the six unknowns of
the inverse dipole problem, namely the compo-
nents of the position vector r1 = (r1, θ1, φ1) and
the polarization vector p = (px, py, pz) of the
internal dipole. To this end, we combine the
results obtained from (8) and (9) for di�erent
moments (i.e. for di�erent values of µ and ν).
Particularly, we use Re01, Re02, Re03 and Re04

as well as the recurrence relation of the spherical
Bessel functions

jn−1(z) + jn+1(z) =
2n+ 1

z
jn(z), (10)

to get

1

k1r1

Re02

cos θ1
+

2

5

Re03

1− 5 cos2 θ1
=

3

5
Re01, (11)

14

3

1

k1r1

Re03

1− 5 cos2 θ1
− 4Re04

3 cos θ1 − 70 cos3 θ1
=

− 1

3 cos θ1
Re02. (12)

The last two equations lead to a third-degree
polynomial for cos2 θ1, the coe�cients of which
are determined explicitly by means of the mo-
ments Rsµν . Then, the value of θ1 is uniquely
determined by using the expressions for Re01

and Re02. The modulus r1 of the position vector
of the dipole is obtained from (11) or (12).

To determine the remaining unknown pa-
rameters φ1, px, py and pz, we consider the equa-
tions resulting by using the higher-order mo-
ments Qs1ν and Rs1ν . Then, two distinct poly-
nomial equations are obtained for sinφ1 and cosφ1,
respectively; thus, φ1 is uniquely determined.
Finally, px, py and pz are also found analytically.

The explicit forms of the equations leading
to the analytic determination of all unknown
parameters are not included here due to space
limitations, and will be presented in the confer-
ence. The treatment of special cases, such as
cos θ1 = 0 (when (11) and (12) cannot be ob-
tained), will be also analyzed in detail.
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Abstract

We present a method for imaging small dielec-
tric inclusions in a homogeneous medium from
polarization measurements. The problem is a
generalization of phase-less imaging, with data
being the coherency matrix of the electric field
at an array of receivers. The data are obtained
by illuminating the scatterers with a single point
source with known position and polarization.
The imaging consists of two steps. First we
partially recover “the ideal data”, i.e. when the
full scattered field is measured on the array for
three independent source polarizations. Second,
we use an electromagnetic version of Kirchhoff
imaging. We show that for high frequencies, the
images we obtain are close to the ones obtained
with ideal data. Resolution estimates of the re-
constructed quantities and numerical results to
illustrate our method are presented. A time do-
main interpretation of this imaging problem is
left to the talk.
Keywords: Polarization imaging, Kirchhoff mi-
gration, phaseless imaging, coherency matrix.

1 Introduction and mathematical model

We consider the problem of imaging the posi-
tion and polarizability tensor of N small dielec-
tric polarizable inclusions in an homogeneous
medium (with permeability µ) by using polar-
ization data only. This is a common assumption
in optics, where it is easier to measure polariza-
tion (a statistical property of light) than the full
electrical field. We assume that the medium is
probed by a single electric source whose posi-
tion xs ∈ R3 is known and dipole moment is
j′s(ω) ∈ C3 at the frequency ω. Furthermore,
the source and the two dimensional array A of
receivers (within the plane z = 0) are supposed
to be far from the inclusions. To model “white
light” we assume its “rescaled dipole moment”
js(ω) = µω2j′s(ω) ∈ C3 is given at each fre-
quency by a circular symmetric Gaussian ran-
dom vector with zero mean 〈js(ω)〉 = 0. The

covariance of this vector is assumed known and
determines the polarization state of the probing
wave. It is given as UsJs(ω)U∗s , where Js(ω) is
a 2× 2 complex positive definite matrix and Us
is 3× 2 unitary matrix whose range Ran(Us) is
the cross-range of the source. This corresponds
to losing the range component of the source’s
polarization in the far field, where the probing
wave is close to a plane wave near the inclu-
sions [1].

At each realization, the source emits an inci-
dent wave: Ei(x;ω) = G(x,xs;ω) js(ω), where
G(x,xs;ω) denotes the standard Dyadic Green
tensor [4]. As the inclusions are assumed to be
small with respect to the wavelength, they can
be modelled as a point-like inclusion localized
at yn ∈ R3 whose scattering properties are de-
termined by a polarizability tensor α′(yn;ω) for
n = 1, . . . , N that is a 3× 3 complex symmetric
matrix. We denote by α(yn) = µω2α′(yn;ω)
“the rescaled polarizability tensor”, assumed here
to be frequency independent. The incident wave
is then reflected and the resulting scattered field
(see [4]) is given under the first Born approxi-
mation by: Es(x;ω) = Π(x;ω)js(ω) with

Π(x;ω) =

N∑

n=1

G(x,yn;ω)α(yn)G(yn,xs;ω).

Finally, one records at each receiver xr ∈ A the
2× 2 coherency matrix:

ψ(xr;ω) =
〈[
(E(xr;ω)E(xr;ω)

>]
1:2,1:2

〉
, (1)

that encodes the polarization of the total field
E = Ei+Es onA (where 〈·〉 is the expectation).
2 Kirchhoff imaging with ideal data

We consider now the case of ideal data, that
is when one can measure Π(x;ω) for x ∈ A
or equivalently the scattered field for three in-
dependent source’s dipole moments. We use
a matrix-valued electromagnetic version of the
Kirchhoff imaging function [3]:

I[Π](y;ω) =

∫

A
dxrG(xr,y;ω)Π(xr;ω)G(xs,y;ω).
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We denote by Ur = [e1, e2] (where (e1, e2, e3)
is the canonical basis of R3) the 3 × 2 unitary
matrix whose range is the cross-range of A. We
extract from I a stable reconstruction [1, 3] of
the position yn and of the 2 × 2 block α̃n =
U∗r α(yn)Us of the polarizability tensor α(yn)
(up to a complex phase). The other compo-
nents of α(yn) are lost in this regime of propa-
gation. In the Fraunhofer regime [1], resolu-
tion estimates for the reconstruction of these
two quantities are given (as in acoustics) by the
Rayleigh criterion in cross-range and by c/B in
range (where the constant c is the wave propa-
gation speed and B the frequency bandwidth of
the data Π(·, ω)). Moreover, one shows that

I[Π](y;ω) ≈ I[UrΠ̃U∗s ](y;ω) with Π̃ = U∗rΠUs.

Thus, instead of using Π, one can image as well
with UrΠ̃U∗s , i.e. the ideal data Π projected
on the left on the cross-range of the array and
on the right on the cross-range of the source.

3 The Phase-less imaging method

The strategy we use for imaging generalizes the
approach for scalar waves of [2]. One first pre-
processes the data ψ(xr;ω) to calculate the ma-
trix p(ψ) = UrΠ̃U∗s +error terms. It consists in
particular to partially recover the data UrΠ̃U∗s
by eliminating the contribution of the incident
field Ei in (1). The remaining error terms are
antilinear and sesquilinear in Π̃. The key is that
these terms do not affect the Kirchhoff images
for high frequencies. Indeed, one shows [1] via a
stationary phase argument and under mild as-
sumptions on the geometry of the problem that
the imaging functions with either p(ψ) or Π
data are similar, i.e. as ω →∞ we have

I[p(ψ)](y;ω) = I[UrΠ̃U∗s ](y;ω) + o(1).

Our method is illustrated in figure 1 where
the medium contains two dipoles located at y1=
(−6, 4, 105)λ0 and y2 = (7, 4, 105)λ0 with λ0
the central wavelength of B. To image the po-
sition, we use the Frobenius norm ‖α̃(·)‖F of
the recovered polarizability tensor. To visualize
the polarization tensor (up to a complex phase)
we visualize Re α̃ = 1/2(α̃ + α̃) and Im α̃ =
(1/2i)(α̃ − α̃), which are real non-symmetric
matrices. We visualize 2 × 2 real matrices A
with the ellipse E(A) = {Av | ‖v‖2 = 1}. To
emphasize that the matrices are not symmetric,

we also display the vectors σ1v1 and σ2v2 as
axes, where the σj are the singular values and
vj the right singular vectors of A.
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Figure 1: Cross-range (top) and range (bottom)
images of ‖α̃(·)‖F . The columns show recon-
structions with Π (left) and with p(ψ) (right).
Here (up to a reference phase [1]) the true ten-
sor Re α̃ (resp. Im α̃) is depicted by the white
(resp. yellow) ellipses/axes, whereas the recov-
ered tensor is depicted using black (real part)
and magenta (imaginary part) ellipses/axes.
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One-Way Operators for Time Dependent Wave Splitting and Echo Removal
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Abstract

We propose a method for the separation of time-
dependent wave fields given measurements of
the total wave field. The method is based on
classical absorbing boundary conditions (ABC);
it is local in space and time, deterministic, makes
no prior assumptions on the frequency spectrum
and the location of sources or physical bound-
aries, and can be made arbitrarily accurate.
Keywords: Wave splitting, source separation,
echo removal, absorbing boundary conditions,
non-reflecting boundary conditions

1 Introduction

For decades absorbing boundary conditions (ABC)
have been used to truncate unbounded regions
for the simulation of time-dependent wave phe-
nomena [1–3]. Typically, an ABC consists of a
linear “one-way” operator, B, which eliminates
outgoing waves. By imposing the boundary con-
dition

B[u] = 0 (1)

at the outer artificial boundary, (unphysical) in-
coming waves are set to zero while outgoing waves
remain unaffected.

Here we show that one-way operators also
permit to split and recover individual wave fields,
given observations from a time-dependent total
wave field, a problem that arises, e.g., in marine
seismic exploration [4]. Our approach [5] is local
in space and time and does not require deriving
any new PDE.

2 Wave splitting

We consider the simple but generic set-up of
source separation in free space to present the
main idea underlying our approach for wave split-
ting. Let the total wave field u satisfy the wave
equation

∂2u

∂t2
−∆u = F (x, y, t) (2)

in R2 × (0, T ) with homogeneous initial condi-
tions at time t = 0. Suppose F is given by

F = F1 + F2 , (3)

where each F1 and F2 is compactly supported
in Ω1 = (−∞, 0) × R, and Ω2 = (0,∞) × R,
respectively. Then, the wave field u admits the
unique (Kirchhoff) decomposition

u = u1 + u2 , (4)

where u1 and u2 each solve (2) in R2 × (0, T )
with F = F1 and F = F2, respectively.

Given the time-dependent total wave field u
and its normal derivative ∂u/∂n on Γ, we wish
to recover u1 and u2 on Γ for all t. As seen from
Γ, u1 is purely rightward moving whereas u2 is
purely leftward moving; therefore, we may use
one-way operators to distinguish between them.

LetB be a one-way operator such thatB[u2] =
0 on Γ and the corresponding initial boundary
value problem (IBVP) in Ω2 is well-posed. Ap-
plying B to u on Γ then yields

B[u1] = B[u1] +B[u2] = B[u]. (5)

Provided B[u] can be computed from the mea-
sured total field u, (5) yields an equation for u1
on the interface Γ of Ω1 and Ω2. It is not obvi-
ous how to reconstruct u1 itself from (5), as the
equation typically involves normal derivatives of
u1 at Γ. For Γ a circle, (5) can be used to derive
a hyperbolic partial differential equation for u1,
which involves only time and tangential deriva-
tives and thus can be solved on Γ [6].

Instead, we note that v = u1 is the unique
solution of the IBVP in D∞ = (0,∞)× R:

∂2v

∂t2
−∆v = 0 in D∞ × (0, T ) (6a)

B[v] = g(y, t) on Γ× (0, T ) (6b)

v(0) =
∂v

∂t
(0) = 0 in D∞ , (6c)

with g = B[u]. Although here D∞ coincides
with Ω2, this is not true in general. To re-
cover u1, we simply solve numerically the IBVP
(6) in D∞. For computations, we truncate D∞
by a perfectly matched layer (PML) in the x
direction. In principle, the truncated domain
(excluding the PML) can be arbitrarily narrow
and even consist only of a fixed number of mesh
points in width.
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Figure 1: Source separation. Top left: snapshot
of u at t ≈ 3.5; the measurement surface Γ is
marked by a dashed line. Top right: the space-
time data u on Γ. Bottom left: the reference
solution u1. Bottom right: the split data uh1
obtained with P = 4.

3 Numerical results

To recover u1 from u on Γ, we require a one-way
operator B that discriminates between incoming
and outgoing waves such that the IBVP (6) is
well-posed. We consider the high-order ABC by
Collino [2, 3] and let B equal the corresponding
P -th order one-way operator, which becomes in-
creasingly accurate with increasing P .

The top left frame of Figure 1 shows a snap-
shot of the total field u, whereas the top right
frame shows the space-time data on Γ used for
the reconstruction. In particular, we observe the
emergence of two space-time cones as the left-
ward and rightward moving wave fronts cross Γ.
The numerical solution, uh1 , of the IBVP (6) is
shown in the bottom right frame and compares
remarkably well with the reference solution, u1,
shown at the bottom left. In fact, u1 and uh1
essentially coincide, as shown in the left frame
of Figure 2 where we compare their time evolu-
tion at a fixed location on Γ. In the right frame
of Figure 2, we observe that the relative space-
time global error E decays exponentially with
the order of the operator P , until it saturates at
the level of the discretization error.
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Figure 2: Source separation. Left: the numer-
ical solution u driven by the two sources, the
reference solution u1 and the reconstructed sig-
nal uh1 at (x, y) = (0, 0). Right: the relative
global error E as a function of the order P of
the operator B.
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Abstract

Solving inverse scattering problems always pre-
supposes knowledge of the incident wavefield and
requires repeated computations of the forward
problem, for which knowing the source term is
essential. Here we present a three-step strategy
to solve inverse scattering problems from total
field measurements when the time signature of
the source is unknown. The proposed strategy
combines three recent techniques: (i) wave split-
ting to retrieve the incident and the scattered
wavefields, (ii) time-reversed absorbing condi-
tions for redatuming the data inside the compu-
tational domain, (iii) adaptive eigenspace inver-
sion to solve the inverse problem.
Keywords: Inverse scattering, unknown
source, redatuming, wave splitting, time
reversal

1 Introduction

When solving inverse scattering problems, op-
timization techniques always require repeated
computations of the forward problem. There-
fore the knowledge of the source term is cru-
cial to perform the reconstruction of the un-
known parameter. However, some applications
such as medical or seismic imaging do not al-
ways provide that information. We then need
to retrieve it from the measurement data only.
By judiciously combining our wave splitting ap-
proach [4] with the time-reversed absorbing con-
ditions (TRAC) [1], we propose a strategy to re-
cover the incident and the scattered wavefields
on an annulus inside the computational domain
that encloses the unknown parameter. Finally,
we solve the resulting inverse problem, for in-
stance by performing the adaptive eigenspace
inversion (AEI) [3].

We consider an unbounded medium with ve-
locity c whose (unknown) local variations deter-
mine a scatterer O. Next, we illuminate the
medium with a source f , for which we approxi-

mately know the location but not the time sig-
nature, and record the total wave field and its
normal derivative on a boundary Γ enclosing
both the source and the scatterer. Hence, the
total field u satisfies the wave equation

∂2ttu− c2∆u = f, in (0, T )× Ω,
u|t=0 = 0, ∂tu|t=0, in Ω.

From the measured data on Γ, we seek to re-
cover the shape, location and properties of the
scatterer O.
2 A three-step strategy

Since the source f is unknown, we reduce the
computational domain Ω to an area DS which
encloses the scatterer but does not include the
source. Thus, f will not directly affect subse-
quent solutions of the forward problem in DS ,
but only indirectly so through the incident wave-
field, still to be determined in the vicinity ofDS .

As we have only recorded the total wave-
field u on Γ, we now proceed in two steps to
reconstruct the incident wavefield in the vicin-
ity of DS : First, we split u on Γ into its inci-
dent uI and scattered uS components; then, we
back-propagate the recovered fields uI and uS

into Ω \DS using the TRAC method.
The total field u admits the unique decom-

position u = uI + uS . To split u into its in-
dividual components, we assume that we know
the approximate location of both the source and
the scatterer. Let DI , resp. DS , denote the cir-
cular subdomain enclosing the source, resp. the
scatterer. Henceforth, the index K may refer to
either I or S. Now, we consider the first order
Bayliss-Turkel absorbing boundary condition

BK [u] := ∂tu+ c ∂rKu+ c u/2rK ' 0 on Γ,

where rK denotes the distance of any point of
Γ from the center of DK . By neglecting higher
order terms and by linearity, we get

BK [u] = BK [uI ] +BK [uS ] and BK [uK ] = 0,
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Figure 1: Schematic: (1) Wave splitting to retrieve uI and uS from the measurements on the bound-
ary Γ; (2) reconstruction of uI and uS individually from the split data on Γ using the TRAC method;
(3) recovery of the scatterer in a smaller computational domain DS from the redatumed u = uI + uS .

which yields

BS [uI ] = 0 and BI [u
S ] = 0, on Γ. (1)

To solve (1) on Γ, we use the progressive wave
expansion to replace normal derivatives by time
and tangential derivatives. Then, we recover uI

and uS on Γ by solving the resulting first-order
hyperbolic PDE in time and tangential variables
on four disjoint quarter circles – see [4].

Once uI and uS have been retrieved on Γ,
we reconstruct uK inside the computational do-
main Ω \ DK . This second redatuming step
determines uI and uS in the vicinity of DS –
see [1,3]. Here, we use the TRAC method which
combines time reversal techniques with a nu-
merical sink to avoid artifacts during the back-
propagation of boundary information. Each wave-
field uK , K denoting I or S, thus solves

∂2ttu
K
R − c2∆uKR = 0, in (0, T )× Ω\DK ,

uKR |t=0 = 0, ∂tu
K
R |t=0, in Ω\DK ,

uKR = uK,dataR , on (0, T )× Γ,

TRACK [uKR ] = 0, on (0, T )× ∂DK ,

(2)

where TRACK denotes the time-reversed BK
and uK,dataR is the time-reversed knowledge of
uK on Γ from wave splitting. To finally get the
redatumed total field u in the vicinity of DS , we
sum uI and uS in Ω \ (DI ∪DS).

3 Numerical results

In Fig. 1, we illustrate our three-step strategy
for an elliptic scatterer with a 3:1 contrast in the
squared velocity c2. Once we have split the total
field u and redatumed uI and uS using (2), re-
sulting in a relative error of 8.0% in the vicinity
of DS , we solve the inverse problem inside DS

using AEI [3]. The recovered scatterer, shown
in Fig. 1, compares remarkably well with that
obtained from the exact wave fields uI and uS

with a relative error of only 6.1%.
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Abstract

Non-destructive testing is an essential tool to
assess the safety of the facilities within nuclear
plants. In particular, conductive deposits on
U-tubes in steam generators constitute a ma-
jor danger as they may block the cooling loop.
To detect these deposits, eddy-current probes
are introduced inside the U-tubes to generate
currents and measuring back an impedance sig-
nal. Based on the work of [3], we develop a
shape optimization technique with regularized
gradient descent to invert these measurements
and recover the deposit shape. To deal with the
unknown, and possibly complex, topological na-
ture of the latter, we propose to model it using
a level set function as it is introduced in [1].

The methodology is first validated on syn-
thetic axisymmetric configurations and fast con-
vergence is ensured by careful adaptation of the
gradient steps and regularization parameters. Us-
ing the actual domain, from which the acqui-
sitions are made, we then consider a more re-
alistic modeling that incorporates the support
plate and the presence of imperfections on the
tube interior section. We employ in particular
an asymptotic model to take into account these
imperfections and treat them as additional un-
knowns in our inverse problem. A multi-objective
optimization strategy, based on the use of differ-
ent operating frequencies, is then developed to
solve this problem. We shall present various nu-
merical examples with synthetic data showing
the viability of our approach.
Keywords: Shape optimization, inverse prob-
lems, level set, eddy-current approximation

1 Problem modelling

Consider the 3D Maxwell equations :
{

curl H + (iωε− σ)E = J in R3

curl E− iωµH = 0 in R3 (1)

where the source term J is supported by the
coils. The material parameters σ, ε and ω are
such that the eddy current approximation :
σ � ωε holds true. The coils inside the tube
move along the vertical direction z and collect
measurements at different positions.

Our goal is to invert the impedance sig-
nal measured by the coils varying in a given
z interval. The impedance signal represents the
difference of the flow of the electromagnetic field
(Ek, Hk) created by the coil k in presence of de-
posit and the flow (E0

l , H
0
l ) created by the coil

l, without deposit. It can be written as :

∆Zkl =
1

I2

∫

∂Ωd

(
E0
l ×Hk −Ek ×H0

l

)
· n dS

(2)
where Ωd represents the deposit.

Figure 1: Axisymmetric domain

We here will concentrate on axisymmetric
configurations of the domain to validate more
easily the algorithm. Under the assumption J
axisymmetric, (1) leads to the following scalar
equation verified by the azimuthal component
of E

−div
(

1

µr
∇(rEθ)

)
− iωσEθ = iωJθ in R2

+ (3)
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Where ∇ := (∂r, ∂z)
t and div := ∇·.

A plate, modeling the supporting grating,
made out of a highly conductive (σp = 100σtube)
and magnetic material is added to the domain.
It can be replaced by an impedance condition
on its boundary since the penetration depth δ =
1/
√
ωσpµp � 1:

1

µ
∂n(rEθ) =

√
2

2µpδ
(−1 + i) (rEθ) on ∂Ωp (4)

Due to uncertainties in the manufacturing of the
tube, its thickness is not constant and is mod-
eled by a function ft(z) as defined in Figure 1.
Moreover, thin deposits have been observed out-
side of the plate area, their thickness is mod-
eled using a function fd(z). Since these fluctu-
ations are small compared to the deposit and
tube thickness, asymptotic models can be used
to replace them by a transmission condition at
the interface:
1

µt
∂r(rE±)−iωσt/df(z)(rE±) =

1

µv
∂r(rE∓) on Γt1/2

where E− is the solution on the left of the in-
terface and E+ on the right.

2 Optimization algorithm

ConsiderN impedance measurements on a given
z interval Zmes. The aim is to find the shape
Ω∗
d, the tube thickness variation f

∗
t and the thin

deposit thickness f∗d that corresponds to these
measurements, considering that impedance sig-
nals Z can be computed for any Ωd, ft, fd in
some admissible class of regular and bounded
parameters. In terms of optimization problem,
this can be written as

Find Ω∗
d, f

∗
t and f∗d solution of :

min
ft,fd
Ωd

∫ z0

−z0
|Z(Ωd, ft, fd; ζ)− Zmes(ζ)|2 dζ (5)

where Z is given for different industrial pulsa-
tions ω. A gradient descent simultaneously on
the three unknowns that are Ωd, ft, and fd is
used to solve (5). The optimization with re-
spect to fd and ft is a standard vector opti-
mization after discretizing the functions on the
interfaces. The optimization with respect to Ωd

needs the introduction of the notion of shape
derivative and the definition of appropriate reg-
ularized descent direction with the help of ad-
joint state. To handle topological changes in
the shape, we choose to model it using a level-

set functions ψ. For a shape Ωd, ψ is a function
negative inside, zero on the boundary and pos-
itive outside Ωd. This level-set function solves
a Hamilton-Jacobi equation with velocity field
equals the shape gradient. For the numerical
implementation, the mesh for the level-set func-
tion is taken independently from the mesh used
for the computation of the solution.

3 A numerical example

The 2D axisymmetric eddy current problem is
solved with P2 finite elements, using the FE-
software FreeFem++. On Figure 2, we consid-

(a) Initialization (b) Solution after
21 iterations

Figure 2: Example of a numerical result

ered a test case with an elliptical deposit on the
tube wall (the red line), paired with an elliptical
tube thickness variation. The signal to invert is
given on 71 coil positions. The reconstruction
algorithm is initialized with ft ≡ 0 and the yel-
low shape on Figure 2a. After 21 iterations,
Figure 2b displays in yellow the optimal shape.
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Essential spectrum generated by a negative material described by the Lorentz model
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Abstract

In [2], we investigated the spectral effects of an
interface between vacuum and a negative ma-
terial described by the non dissipative Drude
model. We showed in particular that such an in-
terface is responsible for various resonance phe-
nomena related to various components of an es-
sential spectrum. The aim of the present work is
to extend these results to the so-called Lorentz
model (dissipative or not).
Keywords: metamaterials, spectral theory

1 The spectral problem

We consider here a two-dimensional scalar prob-
lem which can be derived from Maxwell’s equa-
tions in a cavity which contains an inclusion of
negative material (NeM) described by the so-
called Lorentz model. As shown in Figure 1,
our cavity is represented by a bounded open set
C ⊂ R2 and the inclusion by a polygonal do-
main N assumed for simplicity such that their
respective boundaries ∂C and ∂N are disjoint.
We denote by V := C \N the “vacuum” comple-
mentary domain. Our aim is to investigate the
following eigenvalue problem:

Find ω ∈ C and ϕ ∈ H1
0 (C) \ {0} such that

div

(
1

κCω
gradϕ

)
+ ω2 ϕ = 0 in C, (1)

where (1) is understood in the distributional
sense and κCω is a piecewise constant function
defined by

κCω(x) =





1 if x ∈ V,

κω := 1−
ω2
p

ω2 − ω2
r + iγω

if x ∈ N ,

where the three coefficients ωp > 0 (plasma
frequency), ωr > 0 (resonance frequency) and
γ ≥ 0 (damping factor) characterize the Lorentz
material. We see in particular that in the non-
dissipative case, i.e., if γ = 0, then κω < 0 when
ω2 ∈ (ω2

r , ω
2
r + ω2

p).
Problem (1) is clearly a nonlinear eigenvalue

problem since κω is a rational function of ω.

•
αV

N

Figure 1: The cavity C = V ∪ N
Thanks to the introduction of auxiliary vari-
ables, it can be written equivalently as a linear
eigenvalue problem. The approach we present
here is slightly different from that we propose
in [2] for the Drude model, since the latter can-
not be extended to the present problem. Denote
by R : L2(C) → L2(N ) the operator of restric-
tion from C to N and by R∗ : L2(N ) → L2(C)
the adjoint operator, that is, the operator of ex-
tension by 0 from N to C. By setting

p := ω−1
(
κCω
)−1

gradϕ,

u := (1− κω)Rp, (2)
v := ω u,

it is easy to verify that (1) is equivalent to



0 −div 0 0
grad 0 0 R∗

0 0 0 1
0 ω2

pR ω2
r −iγ







ϕ
p
u
v


 = ω




ϕ
p
u
v


 (3)

provided ω 6= 0, κω 6= 0 and κ−1ω 6= 0. The
block operator matrix of the left-hand side de-
fines an unbounded operator A in the Hilbert
space H := L2(C)×L2(C)2 ×L2(N )2 ×L2(N )2

with domain

D(A) := H1
0 (C)×H(div; C)×L2(N )2×L2(N )2.

One can prove that if γ = 0, this operator is
selfadjoint provided that H is equipped with the
following inner product, forX := (ϕ p u v)> and
X ′ := (ϕ′ p′ u′ v′)>:

(X,X ′)H := (ϕ,ϕ′)C + (p, p′)C

+ ω−2p ω2
r (u, u′)N + ω−2p (v, v′)N

where (· , ·)C orN denotes the usual inner product
in L2(C orN ).
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2 The essential spectrum σess(A)

We show that contrary to cavities filled by a
usual material, negative contrasts κω generate
an essential spectrum. As in [2], the idea is to
construct Weyl sequences of A for values of ω
which correspond to various sets of critical val-
ues of the contrast that are responsible for vari-
ous resonance phenomena. In our case, the map-
ping ω 7→ κω is easily inverted: noticing that the
spectrum of A is symmetric with respect to the
imaginary axis, we restrict ourselves to Reω ≥ 0
and define, for all κ ∈ (−∞, 0),

ωκ =
−iγ +

√
4
(
ω2
r + ω2

p/(1− κ)
)
− γ2

2

where we assume for simplicity that γ < 2ωr.
Recall that a Weyl sequence associated to some
ω ∈ σess(A) is a sequence (Xn) ∈ D(A)N such
that ‖Xn‖H = 1, ‖(A−ω)Xn‖H → 0 and Xn ⇀
0 in H (weakly). In the following, we briefly
show how to construct such sequences, more
precisely the first components (ϕn) ∈ H1

0 (C)N
(the others follows by relations (2)).

(i) Bulk resonance: κ = −∞. For the fre-
quency ω−∞ := limκ→−∞ ωκ, the idea is sim-
ply to start from a sequence (ϕNn ) ∈ H1

0 (N )N

of eigenfunctions of the Dirichlet Laplacian in
N , which satisfy −∆ϕNn = λn ϕ

N
n in N with

λn → +∞, and then define ϕn := R∗ϕNn . Notic-
ing that ω−∞ is not an eigenvalue of A, we infer
that it is an accumulation point of eigenvalues of
A, whose associated eigenfunctions are confined
in the NeM.

(ii) Surface resonance: κ = −1. This
particular value of κ is known to be a critical
value of the contrast which is related to the
so-called plasmonic waves that are highly os-
cillating waves propagating at the boundary of
a NeM. Weyl sequences for ω−1 are searched as
plasmonic waves which are more and more local-
ized near a given point of ∂N (apart from ver-
tices). In the simple case where the NeM fills a
half plane, say x1 > 0, it is readily seen that for
any k > 0, the function exp(ik(x2 + ix1)) satis-
fies equation (1) with κ = −1 and the term ω2 ϕ
removed (this term acts as a small perturbation
for large wavenumbers k). Any superposition of
such surface waves still satisfies the same equa-
tion. By choosing proper densities of superposi-
tion, one can construct more and more confined
surface waves, which yields the expected Weyl
sequence using smooth cutoff functions.

•
ω−∞

•
ω−cα •

ω−1
•

ω−1/cα •
ω0

Reω

Imω

−γ

Figure 2: σess(A) ∩ {Reω ≥ 0}
(iii) Corner resonance: κ ∈ K(α) with

K(α) :=]− c(α),−1/c(α)[\{−1} where c(α) :=
max

(
(2π/α−1), (2π/α−1)−1

)
. Contrary to the

latter case, instead of one critical value, each
vertex of ∂N is related to two critical inter-
vals of the contrast depending on the angle α
of the vertex (see Figure 1). Indeed, it is shown
in [1] that if κ belongs to K(α), then one can
construct highly oscillating solutions to (1) with
the term ω2 ϕ removed, which concentrate near
the vertex and can be interpreted as black hole
waves. Indeed their behavior in polar coordi-
nates (r, θ) centered at the vertex is riηm(θ)
as r → 0 where η ∈ R and m(θ) is the angu-
lar modulation, which is L2 but not H1 near
the vertex. Weyl sequences for the frequency
ωκ associated to some κ ∈ K(α) can be con-
structed by superpositions of black hole waves
of the neighboring frequencies with densities of
superposition that tend to a Dirac measure at
ωκ.

The last possible point of σess(A) corresponds
to κ = 0. Indeed ω0 appears as an eigenvalue of
infinite multiplicity of A, which is actually an
artifact of the augmented formulation (3) that
is not representative of a physical phenomenon.
To sum up, we have the following theorem, il-
lustrated by Figure 2.

Theorem 1 σess(A) is composed of ω0, ω−1,
ω−∞ and, for each corner of ∂N of angle α, the
set Ω(α) :=

{
ωκ; κ ∈ K(α) \ {−1}

}
, as well as

the symmetric of these components with respect
to the imaginary axis.
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Numerical study of the spectrum of cavities containing a negative-index material
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Abstract

The purpose of this work is the numerical ap-
proximation of the spectrum of a cavity partially
filled with a negative-index material (NIM), that
is, a dispersive material whose electric permit-
tivity and magnetic permeability become neg-
ative in some frequency range. We consider
here a simple two-dimensional scalar toy prob-
lem (derived from Maxwell’s equations) where
the NIM is described by a non-dissipative Drude
model. In [1], the spectral analysis of this prob-
lem highlighted three resonance phenomena as-
sociated to an essential spectrum of the cavity.
We investigate here the numerical simulation of
these phenomena.
Keywords: Metamaterials, spectral theory

1 The continuous spectral problem

We first recall some results obtained in [1]. We
consider a circular cavity C, divided into two
angular sectors V and N defined by an angle
α ∈ (0, 2π), as shown in Figure 1. The do-
mains V andN respectively contain vacuum and
a NIM described by a non dissipative Drude
model. This leads us to define two functions
ελ(θ) and µλ(θ) of the polar angle θ ∈ (−π, π]
by

ελ(θ)

ε0
= 1−Λe

λ
1N (θ) and

µλ(θ)

µ0
= 1−Λm

λ
1N (θ),

where λ is the square of the frequency, Λm and
Λe are constants linked with the NIM, and 1N
is the indicator function of (−α/2, α/2) (so that
ελ(θ) = ε0 and µλ(θ) = µ0 if |θ| > α/2).

We consider the following eigenvalue prob-
lem : find λ ∈ C and ϕ ∈ H1

0 (C) \ {0} such
that

div
(

1

µλ
gradϕ

)
+ λελϕ = 0. (1)

This problem is clearly non-linear (with respect
to λ). It can be linearized by using an “aug-
mented formulation” approach which consists in
introducing a new unknown u only defined inN .
We denote by R the operator of restriction to N
of functions defined on the whole cavity C and

NIMvacuum

V
N

α

Figure 1: The cavity

by R∗ the operator of extension by 0 in V of
functions defined in N . It is readily seen that
if λ /∈ {0,Λm}, problem (1) is equivalent to find
(ϕ, u) ∈ H1

0 (C)× L2(N ) \ {(0, 0)} such that

A
(
ϕ
u

)
= λ

(
ϕ
u

)
(2)

with A :=


−

1

ε0µ0
∆ + Λe1N − 1

ε0µ0
divR∗

ΛmRgrad Λm


 .

In the Hilbert spaceH := L2(C)×L2(N )2 equip-
ped with the inner product

(
(ϕ, u), (ψ, v)

)
H := ε0µ0

∫

C
ϕψ +

1

Λm

∫

N
u · v,

A appears as a non-negative self-adjoint oper-
ator with domain D(A) := {(ϕ, u) ∈ H1

0 (C) ×
L2(N )2; div(gradϕ+R∗u) ∈ L2(C)}.

In [1], we proved that the essential spectrum
of A is composed of 1) λ = 0, linked with a bulk
resonance in the NIM (accumulation of eigenval-
ues), 2) λ = Λm/2, associated to a surface res-
onance on the interface between both media, 3)
the set {λ ∈ R; |λ− Λm/2| < |1− α/π|Λm/2} re-
lated to a corner resonance interpreted as a “black
hole” phenomena, and finally 4) λ = Λm, which
can be seen as an artifact of the augmented for-
mulation.

2 The numerical spectrum

We show now some numerical results obtained
by a Finite Element (FE) discretization of the
eigenvalue problem (2). Note that such an ap-
proach cannot be justified by theoretical argu-
ments: our aim is to explore the influence of
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0 1/2 1

λ/Λm

4.34∗10−4 1.16∗10−3

0.3924 0.4954

0.4977 0.5007

563.4 609.9

Figure 2: FE discretization of (2). On the horizontal line, red thick lines represent the essential
spectrum of A, whereas blue dashes are the numerical eigenvalues. Above and below are shown the
real parts of the eigenvectors associated to some of them (the value of λ/Λm is given for each of them).

the essential spectrum of A when using a stan-
dard numerical scheme. The starting point is
the variational formulation of (2) which writes
as
∫

C
(gradϕ+R∗u) · (gradψ +R∗v)

+ Λeε0µ0

∫

N
ϕψ = λ

(
(ϕ, u), (ψ, v)

)
H,

for all (ψ, v) ∈ H1
0 (C) × L2(N )2. Choosing a

FE subspace of the latter variational space leads
us to solve a matrix eigenvalue problem of the
form AX = λMX. For the implementation of
this problem, we used the library XLiFE++ [2]
developed in POEMS. We chose respectively P1
and P0 usual FE spaces for ϕ and u.

Figure 3: Example of refined mesh

Since we are interested in resonance phe-
nomena which can be localized near the inter-
face between both media or near the corner, we
used a refined mesh as shown in figure 3. As
“black hole” waves have a radial behavior like riη

(for real η, where r stands for the distance to the
corner), we chose meshes whose element size de-
creases exponentially as r → 0. For the numeri-

cal application presented in Figure 2, the values
of the parameters of the problem are the follow-
ing: the radius of C is 1, α = π/2, ε0µ0 = 1,
Λm = Λe = 0.25. Let us comment these results.

Firstly, the accumulation of eigenvalues near
λ = 0 predicted by the theory is well approx-
imated (although poorly visible here: all com-
puted eigenvalues are very close to 0). Both dis-
played eigenmodes clearly confirm the bulk res-
onance in the NIM. Secondly, contrary to what
we could expect, we did not find a large num-
ber of eigenvalues spread in the interval λ/Λm ∈
[1/4, 3/4], even with an extremely refined mesh.
The only concentration of eigenvalues is observed
near 1/2 : it mixes “corner modes” and “inter-
face modes”: the latters are localized outside the
corner, whereas the formers are interface modes
that interact at the corner. The small number
of eigenvalues near the bounds of the interval
[1/4, 3/4] will be explained in the talk. Finally,
as expected for large values of λ/Λm, the shapes
of the modes behave as in a usual non-dispersive
cavity (since the NIM behaves like vacuum).
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Abstract

When waves propagate through a non-uniform
potential landscape their interference typically
gives rise to a complex intensity pattern. Here
we show how to entirely suppress these inten-
sity variations by adding system-speci�c gain
and loss components to the potential. The re-
sulting constant-intensity waves are entirely free
of interference-fringes and get perfectly trans-
mitted across any such non-Hermitian scatter-
ing landscape. Quite surprisingly, these waves
can be found for the paraxial equation of dif-
fraction, the discrete and continuous nonlinear
Schrödinger equation, and the scalar Helmholtz
scattering wave equation. We show how to use
these wave solutions to make a medium com-
pletely invisible from one side and report on
a recent experimental implementation using an
acoustic waveguide and a set of simple electroa-
coustic resonators.

Keywords: disorder scattering, non-Hermitian
physics, complex media

1 Introduction

Waves play an important role in many �elds of
science and in all of them the plane wave so-
lution is the one that solves the corresponding
wave equation in the most straightforward way.
When placing a spatially varying potential in
the way of such a plane wave, however, the prob-
lem becomes immediately less trivial as poten-
tials typically re�ect and scatter the wave, lead-
ing to interference and a non-uniform wave in-
tensity that is strongly position-dependent. Such
a potential could be a non-uniform distribution
of a dielectric medium for an electromagnetic
wave or a wall that re�ects an acoustic pressure
wave. All of these cases lead to di�raction and
wave interference, resulting in the highly com-
plex variation of a wave's spatial pro�le that we
are all very familiar with. Here we show that for

a general class of non-Hermitian potentials fea-
turing both gain and loss, it is possible to elim-
inate the intensity variations in wave scattering
entirely, and create constant-intensity waves.

2 Theory

Scalar wave scattering is governed by the 1D-
Helmholtz equation, [d2/dx2+k2n2(x)]ψ(x) = 0
where ψ(x) is the electric �eld, k the wavenum-
ber in vacuum and n(x) the non-Hermitian dis-
tribution of the refractive index. We now make
an ansatz for the electric �eld traveling in posi-
tive x-direction with constant amplitude, ψ(x) =
exp[ik

∫
W (x′)dx′], with an arbitrary real-valued

generating function W (x). The corresponding
wave intensity is given by |ψ(x)|2 = 1, i.e., it
is constant everywhere inside the medium. By
�xing the shape of W (x), we can identify ana-
lytically the required non-Hermitian optical po-
tential

n2(x) = [nR(x) + inI(x)]
2

=W 2(x)− i

k

d

dx
W (x),

(1)

that supports a constant-intensity wave [1�3].
Such a scattering state is perfectly transmitted
with no re�ection (from left to right) and no in-
tensity variations inside the medium despite the
fact that the dielectric constant can be highly
�uctuating.

3 Results

We consider now one speci�c example of an in-
dex distribution and study the constant-intensity
waves it gives rise to. Fig. 1(a) shows the real
part of a refractive index distribution nR(x) as
the gray shaded area. A wave impinging on this
dielectric structure composed of only nR(x) is
partly re�ected and features a highly oscillatory
pro�le [see blue line in Fig. 1(a)]. Quite in con-
trast, when adding also the gain and loss inher-
ent in the imaginary index component nI(x) de-
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(a) (c)(b)

Figure 1: (a) Strongly �uctuating intensity of a wave (blue) impinging from the left on a disordered
refractive index distribution nR(x) (gray). (b) Our calculations show that the wave loses all its inter-
ference fringes and gets perfectly transmitted, when a suitable combination of gain and loss is added to
the disorder [see red and green for the corresponding imaginary refractive index nI(x)]. (c) Moreover,
by using a similar concept, we can create a wave state that shows a strong focus at a predetermined
spot inside the structure.

rived from Eq. (1) [see green and red regions in
Fig. 1(b)], the resulting scattering state is fully
transmitted and features a constant intensity.

Choosing the generating function W (x) to
be complex instead of purely real, we can not
only generate a wave with a constant-intensity
pro�le but, in fact, with any arbitrary intensity
pattern. Fig. 1(c) shows, for example, a wave
that features a strong focus inside the structure.

In a recent work [3] we showed that by care-
fully choosing the generating functionW (x), we
can even turn a structure perfectly invisible. In
contrast to already existing invisibility concepts,
our design principle requires neither a speci�c
symmetry (like PT -symmetry) nor periodicity
and can thus be applied in a much wider con-
text.

4 Experimental realization with an acoustic

waveguide

The �rst experimental realization of the constant-
intensity concept was carried out in acoustics
where the acoustic impedance replaces the re-
fractive index in optics [4]. Instead of a con-
tinuous system, which is di�cult to implement
in practice, a discrete acoustic setup was used
to produce constant pressure waves inside of it.
Speci�cally, a one-dimensional acoustic meta-
material composed of an air-�lled tube was con-
sidered, loaded with a set of discrete inclusions
(loudspeakers), see Fig. 2. Our measurements
on this non-Hermitian acoustic metamaterial
demonstrate unambiguously the creation of a
wave that features the same constant pressure in
front of each inclusion in this disordered struc-
ture.

however, the inclusions provide the necessary gain and loss (derived from our theory), the pressure of the acoustic 
wave measured directly in front of the inclusions is constant for all sites, as shown in Fig. 2.  
 

 
 

Fig. 1 A one-dimensional acoustic metamaterial consisting of a waveguide loaded with four actively controlled non-
Hermitian acoustic inclusions. 

 
Our measurements on this non-Hermitian acoustic metamaterial demonstrate unambiguously the creation of a wave 
that features the same constant pressure throughout the entire disordered structure. We expect our proof-of-principle 
demonstration to trigger interesting new developments not only in sound engineering, but also in other related fields 
such as in non-Hermitian photonics.  
 

 
Fig. 2 Acoustic pressures p1-p4 measured directly in front of the inclusions of the non-Hermitian system. The 

pressures have the same amplitude. 
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Use (and Misuse) of the Method of Images
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Abstract

Images are often used to replace flat boundaries.
We do that in the context of antiplane elastic
waves in an anisotropic half-space: the image of
a singularity is not at the mirror-image point.
Keywords: images, elastic waves, anisotropy

1 Introduction

Mirror images are known to small children. Like
them, we know that our image is located behind
the mirror: if we place a source at a distance h
from a flat mirror, the image is at a distance
h behind the mirror, and the image itself is a
faithful copy of the source.

This notion is used (and sometimes misused)
when one wants to replace a flat boundary by
appropriate images. For example, consider the
Helmholtz equation (∇2+k2)u = 0 in the semi-
infinite region y > −h with a sound-hard wall
at y = −h (so that ∂u/∂y = 0 at y = −h) to-
gether with a source at the origin. Then, quot-
ing Pierce [4, p. 208], ‘the original boundary-
value problem of source plus wall is replaced by
one with two sources (original source and image
source) but no wall.’ Exploiting and extending
this simple idea leads to useful methods for solv-
ing scattering problems when one has scatterers
in the presence of flat boundaries.

2 Antiplane anisotropic elasticity

Time-harmonic antiplane motions of a homoge-
neous anisotropic elastic solid are governed by

C55
∂2u

∂x2
+2C45

∂2u

∂x ∂y
+C44

∂2u

∂y2
+ρω2u = 0, (1)

where u(x, y) is the out-of-plane displacement,
C55, C45 and C44 are stiffnesses, ρ is the den-
sity and ω is the frequency. Suppose we want
to solve (1) in a half-space y > −h (h > 0) with
a traction-free boundary condition at y = −h
and a scatterer of some kind (such as a circu-
lar cavity) within the half-space. For simplicity,
assume that the origin is inside the scatterer.

The simplest case is isotropy. Then C44 =
C55, C45 = 0 and (1) reduces to the Helmholtz

equation with k2 = ρω2/C55. The basic singular
solution is H0(kr) where r2 = x2 + y2 and H0

is a Hankel function. The boundary condition,
∂u/∂y = 0 at y = −h, can be incorporated by
adding an image term,

u(x, y) = H0(kr) +H0(kr̂), (2)

where r̂2 = x2 + (y + 2h)2. The extra term is
singular at the image point (x, y) = (0,−2h),
which is the mirror image of the origin in the
‘mirror’ at y = −h.

A slightly more complicated case is ortho-
tropy , for which C44 6= C55 and C45 = 0. Then
we can reduce (1) to the Helmholtz equation
by scaling x, y or both. For example, putting
x′ = x/α with α =

√
C55/C44 gives ∂2u/∂x′2 +

∂2u/∂y2 + (αk)2u = 0 with k as before. This
scaling does not move the flat boundary at y =
−h but it does deform the shape of the scatterer.
Alternatively, put y′ = αy giving ∂2u/∂x2 +
∂2u/∂y′2 + k2u = 0. Stretching y is closer to
what is often done in the context of anisotropic
elasticity but it moves the flat boundary to y′ =
−αh. Once the stretching has been done, we can
reuse known solutions for the Helmholtz equa-
tion. In particular, for a solution singular at the
origin, we can incorporate the boundary condi-
tion at y = −h by adding an appropriate solu-
tion that is singular at the mirror-image point.

For the general anisotropic case, governed
by (1) with C45 6= 0, we could transform (1)
into the Helmholtz equation using an appropri-
ate scaling and rotation of coordinates, the rota-
tion being needed so as to eliminate the mixed-
derivative term in (1). The implication is that
solutions involving Hankel (or Bessel) functions
of certain arguments will appear. This approach
is convenient for full-space problems but less
so for half-space problems because the required
transformation will also move the boundary of
the half-space.

Instead, we first construct the full-space so-
lutions (as has been done by others) and express
them in terms of the original independent vari-
ables, x and y. We then introduce correspond-
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ing solutions singular at an appropriate image
point. The location of this point was found by
Ting [6, §3.5]: it is not the mirror-image point
unless C45 = 0, it is at

(x, y) = (2qh,−2h) with q = −C45/C44.

Ting was concerned with static problems, but
introducing dynamics does not change the lo-
cation of the image point, just the kind of solu-
tions that are to be singular at that point. Once
this observation has been made, the rest is mere
calculation [3]. For the simplest example, we
find the fundamental solution

G(x, y) = H0(kR) +H0(kR̂), (3)

where R and R̂ are given by

R2 =
(
C44x

2 − 2C45xy + C55y
2
)
/C44,

R̂2 =
{
C44x

2 − 2C45xy + C55(y + 2h)2

− 4h(y + h)C2
45/C44

}
/C44.

The function G satisfies (1) everywhere in the
anisotropic half-space y > −h except for a loga-
rithmic singularity at the origin, and it satisfies
the traction-free boundary condition at y = −h.
In the special case of orthotropy, (3) reduces to
a formula in Kausel’s book [1, eqn (5.10)]. In
fact, the formula (3) itself can be found in a pa-
per by Stevenson [5, §6]. He considers a three-
dimensional (but scalar) version of (1).

Multipole solutions (with higher-order sin-
gularities) can also be constructed [3]. Note
that the curve R = constant is a material-dep-
endent ellipse in the xy-plane. Consequently,
infinite series of multipoles will converge in re-
gions bounded by certain confocal ellipses (i.e.,
not concentric circles).

3 Discussion

Obviously, G could be used to derive boundary
integral equations for scattering problems posed
in an anisotropic half-space. The corresponding
multipoles may also have their uses; see [3] for
some discussion.

More generally, the whole subject of images
and their use may be worth further investigation
and systemisation. (For some examples of mis-
use, see references given in [2,3].) Evidently, one
difficulty with (1) stems from the mixed deriva-
tive term, but that cannot be the whole story:
for example, with linear water waves, the ve-
locity potential u satisfies Laplace’s equation in

the water, y > 0, with the boundary condition
Ku + ∂u/∂y = 0 on the mean free surface at
y = 0, where K is a positive constant. The cor-
responding fundamental solution is known ex-
plicitly but it is quite complicated. One can say
the same about plane-strain elastic waves in an
isotropic half-space.

Fundamental solutions for half-space prob-
lems can often be constructed but an interest-
ing question remains: when can the effect of a
(flat) boundary be replaced by (a finite number
of) image singularities? This is probably a diffi-
cult question, in general. For example, Ting [6,
§8.7] shows that, for some problems involving
an anisotropic elastic half-space, 9 distinct im-
age singularities are needed!
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A step towards the embedding formula for the ‘varying’ Robin half-plane diffraction
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Abstract

A study of the acoustic diffraction by a half-
plane, subject to ‘varying’ Robin boundary con-
ditions is discussed. The problem is approached
by evaluating the diffraction coefficient, which
contains all the necessary information for the
description of the far-field. The embedding for-
mula gives the far-field diffraction coefficient;
an important step towards the derivation of the
embedding formula includes finding the edge
Green’s functions, a special form of the usual
Green’s functions. This step is achieved by us-
ing Mellin transformations, which enable us to
determine the near-field asymptotics of the edge
Green’s functions.
Keywords: embedding formula, diffraction co-
efficient, Robin boundary conditions, edge Green’s
functions

1 Introduction

In this study the acoustic diffraction by a half-
plane subject to ‘varying’ Robin boundary con-
ditions will be considered. The technique used
involves solving an auxiliary problem instead of
the main diffraction problem with plane-wave
incidence. The auxiliary problem is associated
with the excitation of the field by a point source
located asymptotically close to the edge of the
half-plane, generating a specific form of the Green’s
solution, the edge Green’s function. The solu-
tion of the original problem is then represented
in terms of the auxiliary problem. Such a rep-
resentation is called embedding formula.

Embedding formulae have previously been
derived for several diffraction problems. Mostly,
cases with perfect boundaries have been consid-
ered. The technique is well explained by Craster
et al. for a general geometry [1], with various
papers to follow [2, 3] which discuss the imple-
mentation and further developments of the tech-
nique.

For the derivation of the embedding formula
a number of steps are considered. Firstly, the
near-edge behaviour of the edge Green’s func-
tions should be studied. Once the oversingu-

ui
y
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Figure 1: The geometry of the physical prob-
lem with plane-wave incidence (left) and the
geometry of the auxiliary problem with source-
incidence (right)

lar solution is obtained (note that the source is
placed asymptotically close to the edge of the
half-plane creating an unphysical field), a dif-
ferential operator is introduced and applied to
the physical field. Next, the reciprocity theorem
is used, relating the far-field of the edge Green’s
function to the near field of the physical prob-
lem. Finally, the acoustic uniqueness theorem is
used.

In this talk we discuss the early step in the
derivation process, that is to find the asymptotic
behaviour of the edge Green’s function subject
to ‘varying’ Robin boundary conditions.

2 Formulation of the problem

We assume time-harmonicity, with the suppressed
time-factor e−iωt and consider an incident wave
of the form ui = e−ikr cos(θ−θ

i), where k is the
wavenumber, θi the angle of incidence and (r, θ)
the polar coordinates.

Then, the total velocity potential ut(r, θ) sat-
isfies the Helmholtz equation (∇2+k2)ut=0 and
the boundary condition1 ∂ut

∂n± + h
ru

t= 0, where
n+(n−) is the normal to the top (bottom) sur-
face of the boundary and h is a constant associ-
ated with the acoustic impedance of the bound-
ary. Moreover, the field satisfies the edge condi-
tion

1In order to make our boundary conditions separable
the constant h is divided by r. These are not the stan-
dard Robin boundary conditions, but a ‘varying’ version
of them.
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Figure 2: Graph of the set of non-zero solutions
of (2), where the solid line depicts ν1. Left:
h ∈ R. Right: h = reiφ as 0 < r < 100 and
φ=−π/2.

ut ∼ A+O(rν1), as r → 0. (1)

where ν1 = ν1(h) is the non-zero solution of
(
h sin(πν)−ν cos(πν)

)(
h cos(πν)+ν sin(πν)

)
=0,
(2)

with the smallest positive real part (see Fig. 2).
Note that (2) is obtained by separation of vari-
ables. Finally, a radiation condition at infinity
is applied.

3 Edge Green’s function

The auxiliary problem is introduced. This is as-
sumed to be similarly formulated with the main
difference being the source-incidence. Three sources
are located at a distance ε from the edge; two
sources at positions (ε,±π) with strength S1,2(ε)
and one source at position (ε, 0) with strength
S3(ε) (see Fig. 1). Then, the function ûε(r, θ)
satisfies the inhomogeneous Helmholtz equation

(∇2 + k2) ûε =
δ(r − ε)

r

3∑

j=1

Sj(ε)δ(θ − θj),

where S1(ε)=S2(ε), θ1=−θ2=π and θ3=0. Fi-
nally, the desired edge Green’s function is given
by û, which is defined by û = limε→0 ûε.

As the behaviour of the edge Green’s func-
tion needs to be determined near the edge, one
can scale the space variables with a parameter η
such that kη � 1 and solve Laplace’s equation
instead of Helmholtz’s equation. Note that one
solves three separate problems for each source
and then uses the superposition principle to ob-
tain ûε. Next, each problem is approached using
Mellin transformations. Let f(r) be a locally in-
tegrable function on (0,∞). The Mellin trans-
form of f is

F (s) =

∫ ∞

0
rs−1f(r) dr,

which converges absolutely for −a < <(s) < b,
for

a =sup
{
α : f(r) = O(rα) as r → 0+

}

b =sup
{
β : f(r) = O(r−β) as r →∞

}
.

The general solution of the jth transformed
problem in the Mellin space can be found to be

Ûj(s, θ; θj)=(ε/η)s Sj(ε)×
1

2s

(
s cos (s(π±θj))−h sin (s(π±θj))

)
×

(
cos (sθ)

h cos (sπ)+s sin (sπ)
± sin (sθ)

s cos (sπ)−h sin (sπ)

)
,

where the plus (minus) sign stand for the case
θj<θ < π (−π<θ<θj). Note that the strength
is carefully chosen to be Sj(ε) = Cj/ε

ν1 , where
Cj is a constant. This choice of strength ensures
the existence of the û = limε→0 ûε limit and that
it is non-trivial.

Then, as mentioned before, superposition of
all three solutions will give the full solution. Fi-
nally, after applying the inverse Mellin formula,
a residue series will be obtained, with leading
order

û ∼ Â+O(r−ν1), as r → 0, (3)

where ν1 the solution of (2) with the smallest
strictly positive real part.

4 Future work

Since the near- field behaviour of the edge Green’s
has been determined, we are ready to move to
the next step of the derivation of the embedding
formula. The procedure as explained earlier in
the introduction can be followed to obtain the
sought-after embedding formula.
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Acoustic excitation of a layered scatterer by N internal point sources
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Abstract

Excitation of a layered obstacle by N acoustic
internal point sources is considered. Scattering
relations are derived. These involve the �elds in
a speci�c layer of the scatterer due to a source or
a group of sources in any other layer. Potential
applications of such problems are pointed out.

Keywords: acoustic scattering, internal point
sources, scattering relations

1 Introduction

The study of scattering and radiation problems,
where a layered scatterer is excited by internal
point-generated waves, is motivated by interest-
ing applications, including e.g. the excitation
of the human brain by the neurons currents [1].
Particularly, the excitation of a layered medium
by N internal point sources �nds applications
in optical di�usion, where an incident beam is
replaced by multiple point sources of di�erent
strengths inside the medium [2]. Besides, hav-
ing groups of sources in di�erent layers o�ers
additional degrees of freedom and makes feasi-
ble the determination of mean-�elds variations
due to stochastically distributed sources.

In this work, some preliminary scattering
relations are reported concerning the acoustic
excitation of a layered scatterer by N internal
point sources. By adopting speci�c decomposi-
tions of the �elds, we present certain general
scattering theorems relating the �elds in one
layer due to all excitation �elds of an other layer.
Optical theorems are also given which determine
the scattering cross section by means of the sec-
ondary �elds at the sources locations.

2 Mathematical Formulation

A layered scatterer V of R3 contains P homo-
geneous layers Vp (p = 1, . . . , P ) each with mass
density ρp and wavenumber kp. The core VP is
soft, hard, or penetrable. The exterior V0 of V
has parameters ρ0 and k0. The scatterer V is
excited by N internal point sources (of strength
Aq,j) located in Q excitation layers V ex

q (q =
1, . . . , Q). Each layer V ex

q contains mq sources

located at rjq (j = 1, . . . ,mq) and generating
the primary �elds (under exp(−iωt) time depen-
dence)

uprq (r; rjq) = Aq,j
exp(ikq|r− rjq|)
|r− rjq|

, r 6= rjq. (1)

The individual �eld induced in V ex
q due to

the excitation by a single source at rjq is

utq(r; r
j
q) = uprq (r; rjq) + usecq (r; rjq), (2)

for r ∈ V ex
q \ {rjq}. The q-exitation �eld of V ex

q

due to excitation by allmq sources located in the
same layer is given for r ∈ Vq \ {r1q , . . . , r

mq
q } by

utq(r; r
1
q , . . . , r

mq
q ) = uprq (r; r1q , . . . , r

mq
q )+

usecq (r; r1q , . . . , r
mq
q ). (3)

Total, secondary and primary q-excitation
�elds induced in layer Vp (due to all sources in
layer V ex

q ) are the superpositions of the corre-
sponding total, secondary and primary individ-
ual �elds induced in Vp. When Vp 6= V ex

q , the
total �elds are equal with the secondary �elds.

Individual (as well as q-excitation) �elds sat-
isfy the scalar Helmholtz equations

∇2utp(r; r
j
q) + k2pu

t
p(r; r

j
q) = 0, (4)

in Vp, if Vp is not an excitation layer and in
V ex
q \ {r1q , . . . , r

mq
q } if Vp coincides with an exci-

tation layer V ex
q . Each individual �eld satis�es

the transmission conditions

utp−1(r; r
j
q) = utp(r; r

j
q) (5)

1

ρp−1

∂utp−1(r; r
j
q)

∂n
=

1

ρp

∂utp(r; r
j
q)

∂n
(6)

on the layers boundaries, oriented by the out-
ward normal unit vector n̂. The q-excitation
�elds also satisfy (5) and (6). The total �eld in
V0 satis�es the Sommerfeld radiation condition.

Next, we de�ne the q-excitation cross section

due to all sources in V ex
q as

σq =
1

k20

∫

S2

|gq(r̂)|2ds(r̂), (7)

where S2 is the unit sphere of R3 and gq the
corresponding far-�eld pattern.
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3 Scattering Theorems

By considering the above formulation and using
Theorem 4 of [3], we get that for any two sources
at rjq, rνq , holds

k0ρ0

[
iAq,j
ρq

usecq (rjq; r
ν
q ) +

iAq,ν
ρq

usecq (rνq ; r
j
q) +

A(rjq; rνq )
]
=

1

2π

∫

S2

gjq(r̂)g
ν
q (r̂)ds(r̂), (8)

where

A(rjq; rνq ) = 2kqAq,jAq,νsinc(kq|rjq − rνq |). (9)

For constant rjq, we get the corresponding re-
lations of (8) for all the other sources of V ex

q . In
this way, we obtain the following general scat-

tering theorem for the excitation layer V ex
q .

Theorem 1 For the q-excitation secondary �eld

and the individual �elds induced in V ex
q due to

all sources radiating in the same layer, holds

k0ρ0

[
iAq,j
ρq

usecq (rjq; r
1
q , . . . , r

mq
q )+

mq∑

ν=1

iAq,ν
ρq

usecq (rνq ; r
j
q) +

mq∑

ν=1

A(rjq; rνq )
]
=

1

2π

∫

S2

gjq(r̂)gq(r̂)ds(r̂). (10)

Relations of the form (10) hold for all sources
at rjq ∈ V ex

q . By summing for j = 1 to mq, and
considering the de�nition (7), we arrive at the
following optical theorem for layer V ex

q .

Theorem 2 The q-excitation cross section due

to excitations by all sources of V ex
q , is given by

σq = 4π
ρ0
k0



mq∑

j=1

Re

(
iAq,j
ρq

usecq (rjq; r
1
q , . . . , r

mq
q )

)

+
1

2

mq∑

j=1

mq∑

ν=1

A(rjq; rνq )
]
. (11)

Then, by using Theorem 2 of [3] and follow-
ing a similar procedure to that of Theorem 1,
we get the following general scattering theorem.

Theorem 3 The q-excitation �eld of V ex
s and

the s-excitation �eld of V ex
q satisfy

k0ρ0



mq∑

j=1

iAq,j
ρq

utq(r
j
q; r

1
s, . . . , r

ms
s ) +

ms∑

ν=1

iAs,ν
ρs

uts(r
ν
s ; r

1
q , . . . , r

mq
q )

]
=

1

2π

∫

S2

gq(r̂)gs(r̂)ds(r̂). (12)

Considering Eqs. (12) for any pair of excita-
tion layers and using Theorems 1 and 2, we get
by summation the following optical theorem.

Theorem 4 The cross section σ due to excita-

tion by all N point sources is given by

σ = 4π
ρ0
k0




Q∑

q=1

mq∑

j=1

Re

(
iAq,j
ρq

usecq (rjq; r
1, . . . , rN )

)

+
1

2

Q∑

q=1

mq∑

j=1

mq∑

ν=1

A(rjq; rνq )


 , (13)

where usecq (rjq; r1, . . . , rN ) is the secondary �eld

of V ex
q due to excitation by all N internal sources.

The presented theorems quantify the rela-
tions between the individual, the q-excitation
�elds and the respective cross sections. Addi-
tional relations between cross sections due to
individual sources and the total cross section
have been worked out and will be presented at
the conference. Such relations are expected to
be important for the applications mentioned in
the Introduction to distinguish the �elds contri-
butions generated by di�erent sources.
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Heterogeneous Multiscale Method for Maxwell’s Equations
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Abstract

We discuss a Heterogeneous Multiscale Method
(HMM) proposed in [3] for the time-dependent
linear Maxwell’s equations in first order formu-
lation with highly oscillatory material parame-
ters. We discretize in space using Nédélec’s edge
elements. For the time integration, we investi-
gate algebraically stable Runge–Kutta schemes,
the Crank–Nicolson method, and the leapfrog
scheme. By combining the uniform error analy-
sis of non-conforming space discretizations from
[2] and an error analysis of the time integration
schemes, we provide an error estimate for both
the semi-discrete and the fully discrete scheme.
We conclude with numerical tests.
Keywords: Heterogeneous Multiscale Method,
first order time-dependent Maxwell’s equations,
fully discrete error analysis

Multiscale Maxwell’s equations and ho-
mogenization

Let Ω ⊂ R3 be a bounded domain and T > 0.
We consider the linear Maxwell’s equations with
permeability µη(x) = µ(x, xη ) and permittivity
εη(x) = ε(x, xη ) being periodic in the second ar-
gument for a characteristic microscopic length
0 < η � 1, i.e.,

µη∂tH
η = − curlEη,

εη∂tE
η = curlHη − J , (1)

in (0, T ) × Ω, subject to perfectly conducting
boundary conditions (n×Eη)|∂Ω = 0 and initial
conditions. Here, Hη(t, x) and Eη(t, x) denote
the magnetic and the electric field, respectively,
and J(t, x) is a given electric current indepen-
dent of the microscopic length η.

As η is very small in comparison to the di-
ameter of Ω, it is very costly to resolve these
fine oscillations in numerical schemes. Hence,
we use results from analytical homogenization
in [4] describing the qualitative macroscopic be-
havior as

µeff∂tH
eff = − curlEeff,

εeff∂tE
eff = curlHeff − J ,

(2)

in (0, T )×Ω. The effective material parameters
αeff = µeff, εeff are pointwise given as

αeff(x) =

 

Y (x)
α
(
x, yη

)(
I −Dyχα

(
x, yη

))
dy (3)

for a periodic solution χα
(
x, yη

)
∈ W 1,2

per(Y (x))
of the local problems
ˆ

Y (x)
α
(
x, yη

)
Dyχα

(
x, yη

)
· ∇yv

(y
η

)
dy

=

ˆ

Y (x)
α
(
x, yη

)
∇yv

(y
η

)
dy,

(4)

for all periodic functions v ∈W 1,2
per(Y (x)), where

Y (x) is the unit cube with midpoint x.

Space discretization and HMM

We discretize (2) in space using Nédélec’s edge
elements of order ` on a mesh TH of Ω with
maximal edge length H. We further use the
standard nodal finite elements of order k on a
mesh Th of Y (x) with maximal edge length h for
the local problems (4). In addition, all integrals
in the weak form of (2) and in the computation
of the effective material parameters are replaced
by quadrature rules of sufficiently high order.

The basic idea of HMM is to evaluate (3)
only at the quadrature points. Therefore, every
quadrature node x̂ of the macro mesh TH is the
midpoint of a scaled unit cell Y (x̂) with micro
mesh Th, on which the local problems (4) are
solved.

The approximation to (2) obtained by the
HMM is then given as the solution of the system

µHMM
H ∂tH

HMM
H = − curlEHMM

H ,

εHMM
H ∂tE

HMM
H = curlHHMM

H − JH ,
(5)

in (0, T ) × Ω, using the quadrature rules as in-
ner product of the approximation space. We
only need the values of the HMM material pa-
rameters µHMM

H , εHMM
H at the quadrature points.

As the inner products of the continuous and dis-
crete space do not coincide, (5) is a nonconform-
ing discretization. Using [2] yields the following

Monday, 17:15, Sem BA 02 B, Building BA



Multiscale Problems 427

error estimate for the difference between the ef-
fective solution and the approximation by the
HMM.

Theorem 1 For a sufficiently smooth solution
ueff = (Heff,Eeff) of (2) and the approximation
uHMM
H = (HHMM

H ,EHMM
H ) obtained as solution

of (5), the error at time t ∈ [0, T ] is bounded by

||ueff(t)−uHMM
H (t)||L2(Ω) ≤ C(1+t)(H`+

(
h
η

)k
).

Full discretization

For a fully discrete scheme, we integrate (5) in
time, e.g., using algebraically stable and coer-
cive Runge–Kutta schemes with s stages and
order at least s+1. Combination of the stability
estimate [3] with the techniques from Theorem 1
yields the following result.

Theorem 2 For a sufficiently smooth solution
ueff = (Heff,Eeff) of (2) at time tn ∈ [0, T ] and
uHMM
H,n = (HHMM

H,n ,EHMM
H,n ) obtained by the HMM

with algebraically stable Runge–Kutta schemes
of order at least s+ 1 with step size τ , the error
is bounded by

||ueff(tn)−uHMM
H,n ||L2(Ω) ≤ C(τ s+1 +H`+

(
h
η

)k
).

We further consider the Crank–Nicolson method
and the explicit leapfrog scheme, both being of
second order. Showing that the Crank–Nicolson
method is unconditionally stable and that the
leapfrog scheme is stable under the standard
step size restriction, we get the following result.

Theorem 3 For a sufficiently smooth solution
ueff = (Heff,Eeff) of (2) at time tn ∈ [0, T ] and
the approximation uHMM

H,n = (HHMM
H,n ,EHMM

H,n ) by
the HMM with the Crank–Nicolson method, the
error is bounded by

||ueff(tn)− uHMM
H,n ||L2(Ω) ≤ C(τ2 +H` +

(
h
η

)k
).

The same estimate holds for the leapfrog scheme
under the standard step size restriction.

Numerical examples

For the numerical tests, we consider the HMM
with the leapfrog scheme for a model problem.
The time step size τ is chosen sufficiently small
to observe the convergence in the spatial grid
parameters. Figure 1 shows the error dependent
on the macroscopic edge length H (a) and the
microscopic edge length h (b) for various differ-
ent values of h andH, respectively. As proposed

in Theorem 3 for linear elements (` = k = 1),
we get linear convergence in H and quadratic
convergence in h/η.
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Figure 1: Error for HMM with leapfrog scheme

Our implementation of the HMM using the
finite element library deal.II [1] is accessible un-
der www.waves.kit.edu/hmm-maxwell.php in-
cluding the configuration file for the model prob-
lem considered here.

Acknowledgement

We gratefully acknowledge financial support by
the Deutsche Forschungsgemeinschaft (DFG)
through CRC 1173.

References

[1] W. Bangerth, R. Hartmann, and G. Kan-
schat, deal.II – a general-purpose object-
oriented finite element library, ACM Trans.
Math. Software 33(4) (2007), art. 24.

[2] D. Hipp, M. Hochbruck, and C. Stohrer,
Unified error analysis for nonconforming
space discretizations of wave-type equa-
tions, IMA J. Numer. Anal. 00 (2018),
pp. 1–40.

[3] M. Hochbruck, B. Maier, and C. Stohrer,
Heterogeneous multiscale method
for Maxwell’s equations, preprint,
http://www.waves.kit.edu/downloads/
CRC1173_Preprint_2018-54.pdf, (2018).

[4] N. Wellander, Homogenization of the
Maxwell equations. Case I. Linear theory,
Appl. Math. 46(1) (2001), pp. 29–51.

Monday, 17:15, Sem BA 02 B, Building BA



428 Contributed Sessions

Fast time-explicit micro-heterogeneous wave propagation
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Abstract

Explicit time stepping schemes are very popular
in the context of wave propagation because they
are relatively simple and allow for fast compu-
tations. However, the so-called CFL condition
that bounds the time step size with respect to
the spatial mesh size needs to be ful�lled. In
case of micro-heterogeneous media where spa-
tial �nescale information have to be resolved,
such a condition is very restrictive. We show
that using numerical homogenization in space
can reduce the complexity in space and time.

Keywords: explicit time stepping, wave equa-
tion, numerical homogenization

Problem formulation

We consider the model problem

ü− divA∇u = f in (0, T )× Ω,

u(0) = u0 in Ω,

u̇(0) = v0 in Ω,

u|∂Ω = 0 in (0, T ),

(1)

on a polygonal, bounded, convex Lipschitz do-
main Ω ⊆ R2 with suitable initial conditions
u0, v0. We assume that the coe�cient A ful-
�lls α|ξ|2 ≤ A(x)ξ · ξ and |A(x)ξ| ≤ β|ξ| for
all ξ ∈ R2 and almost all x ∈ Ω for some 0 <
α ≤ β < ∞. We have in mind coe�cients that
vary on some small scale but without further
assumptions such as (local) periodicity or scale
separation.

A classical time-explicit discretization of (1)
seeks unH ∈ VH , n ≥ 2 such that

τ−2(un+1
H − 2unH + un−1

H , vH)L2(Ω)

+ (∇unH , A∇vH)L2(Ω) = (f(nτ), vH)L2(Ω)

(2)

for all vH ∈ VH . Here, VH ⊂ H1
0 (Ω) is a stan-

dard P1 (or Q1) �nite element space based on a
mesh TH of Ω with mesh size H, τ is some �xed
time step, and u0

H and u1
H are appropriate ini-

tial conditions. The bene�t of this approach is
its simple nature and fast computations in every
time step. However, the method in (2) is only

stable if the CFL condition τ . H holds. This
condition is in general a severe restriction if the
space VH should resolve �nescale features be-
cause in this case H, and thus τ , need to be very
small. Since standard (coarse) �nite element
spaces lack the desired approximation proper-
ties, the idea is to add �nescale information to
a space VH with parameter H that does not re-
solve the �ne scale. This is referred to as numer-
ical homogenization. Here, we use the Localized
Orthogonal Decomposition (LOD) method in-
troduced in [6].

Homogenization in space

The LOD method is built upon a (local) quasi-
interpolation operator IH : H1

0 (Ω) → VH that
ful�lls

‖H−1(v − IHv)‖L2(Ω)

+ ‖∇IHv‖L2(Ω) . ‖∇v‖L2(Ω)

and
‖IHv‖L2(Ω) . ‖v‖L2(Ω)

for any v ∈ H1
0 (Ω). With such an operator, we

can de�ne for any function vH ∈ VH its element
correction C`T vH by

(∇C`T vH , A∇wh)L2(N `(T )) = (∇vH , A∇wh)L2(T )

for all wh ∈ Vh ∩ kerIH and its (full) correction
by C`vH =

∑
T∈TH C

`
T vH . Here, Vh denotes a P1

(or Q1) �nite element space with h small enough
to resolve any relevant scales and N `(T ) is the
extension of T by ` layers of elements, where
` . | logH|. These corrections allow to de�ne
an adapted space ṼH = (1 − C`)VH that can
be used in (2) instead of VH . The new space
has much better approximation properties and
stability of the method is still guaranteed with
time steps subject to the CFL condition τ . H.
Note that the element corrections are computed
in parallel for a set of basis functions. This only
moderately increases the computation time in
the o�ine stage and leads to slightly denser sys-
tem matrices (dependent on `). Further, this
approach can also be extended to higher-order
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methods. For more details and an error analy-
sis, we refer to [4]; see also [1] for the implicit
and the semi-discrete case or [7] for the wave
equation on adaptive meshes.

Numerical example
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‖·
‖ L

2
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order 1

Figure 1: Coe�cient A (top) and errors (bot-
tom) for the numerical example.

The numerical example is taken from [5]. We
set Ω = (0, 1)2 and T = 1. The reference so-
lution is computed using standard Q1 elements
on a uniform quadrilateral mesh with parameter
h =
√

2 ·2−8 which is also used for the computa-
tions of the corrector problems. The time step
τ is chosen small enough subject to the CFL
condition, f = 1, u0 = v0 = 0, ` = 2 and A
as shown in Figure 1 (top). All computations
are done based on the code from [3]. The errors
in the energy norm for a standard �nite element
approach and one based on LOD are depicted in
Figure 1 (bottom) with respect to H. The clas-
sical �nite element method shows a suboptimal
convergence rate because it does not account for
�nescale information. The method based on the
LOD discretization leads to an optimal conver-
gence rate of order one which can also be shown

theoretically, see [4].

Ongoing work: reconstruction of system

matrices

Based on recent �ndings in [2] regarding the re-
construction of e�ective low-resolution models
from coarse data in the elliptic setting, the next
step is to tackle this problem in the context
of wave propagation. We assume to be given
coarse measurements of solutions corresponding
to problems of the form (1) with an unknown
(�nescale) coe�cient A. If no further informa-
tion on A is given, the reconstruction of A is ba-
sically unfeasible. Thus, we want to reconstruct
an e�ective numerical model (in the form of sys-
tem matrices with a prescribed sparsity pattern
in the spirit of numerical homogenization) that
can reproduce the given measurements. Such a
model can then for instance be used to simulate
the e�ective behavior of other problems based
on the same unknown coe�cient.
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Discrete Wave Equation Upscaling in 1-D and 2-D
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Abstract

We present a novel homogenization technique,
referred to as Discrete Wave Equation Upscaling
(DWEU). Its advantages are (i) the applicabil-
ity to arbitrary heterogeneous and anisotropic
media, (ii) the computation of effective prop-
erties directly on a coarser grid, which enables
more efficient numerical solutions of the wave
equation, as well as (iii) conceptual and com-
putational simplicity that only requires Fourier
transforms. We develop DWEU for the elas-
tic wave equation in 1-D and 2-D. In addition
to reproducing analytical results for simple me-
dia, we provide numerical examples, as well as
an analysis of the homogenization operators in
relation to the ill-posedness of the inverse prob-
lem.
Keywords: Numerical Homogenization, Elas-
tic Wave Propagation, Inverse Theory.

1 Introduction

Homogenization is a mathematical procedure to
transform a medium with sub-wavelength struc-
ture into an effective medium that is smooth
compared to the shortest wavelength, while pro-
ducing nearly the same deformation field as the
detailed medium at sufficiently low frequencies.
Homogenization reduces the computational cost
of the forward problem solution, and it al-
lows us to understand the relation between sub-
wavelength structure and the ill-posedness of in-
verse (imaging) problems.

In contrast to scale-expansion methods (e.g.
[4]), DWEU operates on the discretized wave
equation on a fine, N -point grid (we assume that
the medium of interest can be fully represented
by a finite number of grid points N ), which is
transformed by Fourier projections into an ef-
fective wave equation on a coarser K -point grid
(K < N). Thereby, effective density and elas-
ticity properties are obtained. Using wavelets, a
similar approach was suggested by [3]. The ma-
jor difference of DWEU is the explicit computa-
tion of effective material properties, whereas [3]
homogenize the wave operator as a whole.

2 Method

In the interest of simplicity, we outline the DWEU
concept in 1-D, following [1]. For this, we start
from the frequency-domain, continuous, elastic
wave equation

−ω2ρ(x )u(x , ω)− ∂x [µ(x )∂xu(x , ω)] = f (x , ω),
(1)

where ρ is the density, µ the elastic parameter,
ω the circular frequency, f the source and u the
wavefield. Discretizing (1) on an N -point grid
using a finite-difference scheme gives

−ω2MNuN −DNRNDNuN = fN , (2)

where MN ∈ IRN×N is the mass matrix with
the density ρρρN ∈ IRN×1 on its diagonal, RN ∈
IRN×N the elasticity matrix with the elastic mod-
ulus µµµN ∈ IRN×1 on its diagonal, fN ∈ IRN×1

is the source, and DN ∈ IRN×N are differen-
tial operator matrices. DWEU transforms (2)
into a new, effective wave equation on a K -
dimensional grid (K < N), given by

−ω2MKuK −DKRKDKuK = fK . (3)

All the matrices in (3) are now in IRK×K and the
vectors are in IRK×1. Solutions of the effective
K -point wave equation (3) approach solutions
of the original N -point wave equation (2) ar-
bitrarily closely for sufficiently low frequencies.
Interestingly, the effective mass and elasticity
matrices, MK and RK , are not diagonal any-
more, giving rise to non-local rheologies. This
implies that non-locality in a metamaterial may
compensate for sub-wavelength structure. For
numerical modelling, we extract the diagonals
of MK and RK . In summary, the effective wave
equation is derived by the following steps:

1. Project the discrete, frequency-domain
wave equation on the N -D grid onto the
discrete spatial Fourier domain using an
N -D discrete Fourier transform.

2. Solve for the first K low-wavenumber com-
ponents of the wavefield to obtain a K -D
discrete wave equation in the wavenumber
domain.
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3. Invert to the space domain using a K -D
inverse Fourier transform.

We extended the above formalism to 2-
D, allowing for arbitrary heterogeneous and
anisotropic elastic materials, defined by density
ρ and the 2-D reduction of the fourth-order elas-
tic tensor Cijkl. In figure 1 we present a 2-D ex-
ample where a layered but isotropic medium is
transformed into a homogeneous but anisotropic
medium, confirming analytical results [2]. In fig-
ure 2 DWEU is applied to a random medium.

3 Results

Besides the extension of the method to the most
genereal 2D case, we performed detailed analy-
ses in 1-D. For this, we explicitly defined the
homogenization operators for density (linear),
Hρ : ρρρN → ρρρK and elasticity (non-linear),
Hµ : µµµN → µµµK . Their properties (nullspace,
eigenvectors, etc.) are linked to properties of
the inverse problem. For instance, the nullspace
of a homogenization operator contains those
medium perturbations relative to a constant
medium that do not affect the wavefield. Those
are perturbations about which the wave does
not carry any information, meaning that they
are impossible to recover in an inverse prob-
lem solution. To physically test and interpret
the mathematical findings and to highlight the
practical applicability of our method, we per-
formed extensive numerical wave propagation
experiments.
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Figure 1: (Left column) Two of the elastic pa-
rameters on the fine 80 × 80 grid. (Right col-
umn) The effective parameters on the coarse 20
× 20 grid after the 2-D DWEU was applied.
The fine layered, isotropic part of the medium
is transformed into an anisotropic (transversely
isotropic), but homogeneous medium. This is
in agreement with Backus, 1962 [2]. The con-
stant part of the medium remains constant (in
fact, a constant medium is an eigenvector to the
homogenization operator).

Figure 2: The same figure as figure 1 but for an
originally random medium (left column). As ex-
pected, the effective medium (right column) is
smoothened, however some of the random char-
acter is retained. Randomly distributed discon-
tinuities of the original medium are converted to
local anisotropies in the effective medium. This
can be explained as follows: If by chance some
of the heterogeneity with a similar directionality
are stacked, then the wave will "see" an effective
anisotropy.
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A matrix-free Discontinuous Galerkin method for the time dependent Maxwell
equations in open domains
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Abstract

A Discontinuous Galerkin (DG) approach for
the time dependent Maxwell equations is in-
troduced, based on the covariant projection, on
each element of the mesh, of an orthogonal modal
basis of L2(K̂) originally defined on a reference
element K̂. This approach leads to an explicit
time stepping scheme for which the the mass
matrix is at most d × d block-diagonal (in d =
2, 3 spatial dimensions) and other discrete bilin-
ear forms involved in the scheme can be com-
puted and stored only once on the reference el-
ement. Open boundaries are also handled natu-
rally in the formulation through a complex stretch-
ing based approach.
Keywords: Discontinuous Galerkin, Maxwell,
covariant transformation, PML

1 Theoretical aspects

When solving numerically time dependent wave
propagation problems, discontinuous Finite El-
ements are an attractive choice, because they
allow for a cheap inverse of the mass matrix
and therefore explicit time stepping schemes on
unstructured grids. These are based on intro-
ducing a triangulation TΩ of the domain Ω, and
subsequently testing the solution of the equa-
tions to be solved against a basis of polynomial
order p on each mesh element K. For Maxwell
equations (with the usual meaning of symbols
for fields and material tensors) the weak formu-
lation reads

∂t
∑

K∈TΩ

∫

K
εe ·ϕ`j =

∑

K∈TΩ

∫

K
(∇× h) ·ϕ`j ,

∂t
∑

K∈TΩ

∫

K
µh ·ϕ`j = −

∑

K∈TΩ

∫

K
(∇× e) ·ϕ`j ,

holding for all ϕ`j , ` ∈ 1, 2, . . . , N =
(
p+d
d

)
and

j ∈ {1, 2, 3}. These vector test functions are
defined as

ϕ`j(x) = JK
−T ϕ̂`j(x̂) = JK

−T ϕ̂`(x̂)v̂j , (1)

with v̂j being one of the three Cartesian unit
vectors, and we have used the covariant trans-
formation rule for vector fields from point x̂ on
the reference element (triangle or tetrahaedron)
to x on the physical finite element, i.e. the sec-
ond order tensor JK is defined such that JK

jk
=

∂xj/∂x̂k. By choosing the scalar test functions
on the right-hand side of (1) among the Dubiner
basis functions [1], such that 〈ϕ̂`, ϕ̂`′〉 = δ``′

also holds (with respect to the appropriate in-
ner product on the reference element), it eas-
ily follows that the ϕ̂`j(x̂) form a basis of the
space [Pp(K̂)]3, i.e.

[
L2(K)

]3 functions which
are polynomials of degree at most p on K̂. The
solution is accordingly sought in the same finite
dimensional trial space:

e (x, t) =

`=N∑

`=1

j=d∑

j=1

u`j(t)ϕ`j(x),

h (x, t) =

`=N∑

`=1

j=3∑

j=(dmod 3)+1

f`j(t)ϕ`j(x).

The above definitions are used in the final weak
formulation both on the r.h.s. and on the l.h.s.
Take any pair of trial and test functions: for
the mass matrix term associated to their inner
product it holds
∫

K
(εϕ`k) ·ϕ`′k′ =

∫

K̂
JK

(
J−1
K εJ−TK ϕ̂`k

)
· ϕ̂`′k′ ,

while for the bilinear forms on the r.h.s. it holds
∫

K
∇×ϕ`k ·ϕ`′k′ =

∫

K̂
��JK

(
1

��JK@@
JK∇̂ × ϕ̂`k

)
·@
@@

J−TK ϕ̂`′k′ ,

(2)

where JK = det(JK) and the Piola transfor-
mation has been used to map curls of covariant
vector fields. From (2) it is easy to see that all
discrete bilinear forms on the r.h.s. of the equa-
tions (even after integration by parts as in com-
mon FEM practice) are independent of mesh ge-
ometry, and can thus be computed once and for
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all on the reference element and re-used for all
elements in the mesh.
Furthermore, when absorbing layers based on
complex coordinate stretching are used as bound-
ary conditions, identical transformation rules are
employed, which keeps bilinear forms involving
differential operators geometry independent [2].

2 Numerical results

We take as an example a waveguide-ring struc-
ture with four ports (P1 through P4 in Fig.2)
as the one described in [3], wrapped by a layer
of Cartesian PML.

Figure 1: The test waveguide ring geometry:
PML wrap-around is clearly shown.

Through Fourier analysis on a single time sim-
ulation, we can compute spectra of scattering
parameters for the four port system (Fig.2).
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Figure 2: Ratio between power absorbed from
P2 over power injected at P1, obtained by FFT.

Consequently we can validate this result by in-
jecting a pure sine mode at the resonant fre-
quency: in Fig.2, the energy of the sinusoidal
field injected in the slab waveguide is split, through
evanescent mode coupling, between the ring struc-
ture and the waveguide’s upper-right output port.
After a full round-trip of the guided mode around

Figure 3: First few wave-fronts of the time do-
main simulation, polynomial order p = 5.

the ring structure the guided wave interacts (again
through evanescent mode coupling) destructively
with the continuous wave coming from the source:
the steady state behaviour, shown in Fig.2, com-
prises resonant energy stored in the ring struc-
ture, and a guided mode from the P1 to P3
clearly visible.

Figure 4: Steady-state fields after 400 000 time
steps.

We finally remark that all results have been ob-
tained within the FEM library NGSolve [4].
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Abstract

Numerical simulation of electromagnetic waves
in magnetised plasmas is a challenging topic.
We address the finite element solution of a time-
harmonic model. With the classical method,
the variational formulation has a poor coerciv-
ity which leads to an ill-conditioned numerical
system and numerical instabilities. We propose
a perturbed formulation to improve the condi-
tioning of the system. Promising preliminary
numerical results are discussed.
Keywords: Maxwell’s equations, Magnetised
plasmas, Edge finite element method

1 Introduction

The study of electromagnetic waves in magne-
tised plasmas is a growing field, notably for its
importance in the promising controlling of nu-
clear fusion in tokamaks. We follow the model
described in [1,2]. Mathematical analyses of this
model show that the problem, although well-
posed, has bad properties which causes the nu-
merical system to be ill-conditioned and hard to
solve.

In [1], Back et al. have considered nodal
finite element methods. This is made possi-
ble thanks to the regularity of the solution, as
shown in [2]. However, instabilities are observed
due to the poor conditioning of the system.

We present and analyseH(curl)-conforming
formulations and their discretization using Nédé-
lec’s edge elements. We consider the plain for-
mulation obtained with standard tools, as well
as a perturbed version motivated by the hope of
getting a better conditioning, while preserving
a good approximation of the solution.

2 Model

The electric field E in time-harmonic domain,
in a bounded domain Ω filled with plasma as
described in [1], is governed by equation

curl curl E− ω2

c2
KE = 0, (1)

which derives from Maxwell’s equations; ω is the
wave angular frequency, c the light celerity, and
K the medium response tensor. K results from
two main physical phenomenons: conductivity
due to interactions between particles, and Lan-
dau damping.

From a mathematical point of view, the ten-
sorK is complex-valued, non-diagonal (the medi-
um is anisotropic), and non-hermitian. Besides,
we will assume K to be bounded and satisfying
the following property:
There exist two strictly positive constants η and
ζ (possibly dependent on ω), s.t., ∀v ∈ L2(Ω),

0 < ζ||v||2L2 ≤ Im (Kv|v) ≤ |(Kv|v)| ≤ η||v||2L2 .
(2)

The boundary Γ of Ω is smooth, and made
up of two parts: on ΓC there holds a perfectly
conducting condition. On the remaining ΓA :=
Γ\ΓC of the boundary, an antenna imposes an
electric current jA, and there holds

curl E× n = iωµ0jA. (3)

3 Variational formulations

We consider H(curl) formulations, by contrast
with [1]. We seek E in the space V := {v ∈
H(curl,Ω),v × n|ΓC = 0}.

3.1 Plain formulation

The natural, so-called "plain" formulation reads:
Find E in V s.t., ∀F ∈ V,

(curl E|curl F)− ω2

c2
(KE|F) = l(F), (4)

where l(F) contains the data of the imposed cur-
rent jA.

This plain formulation is analysed in [1]. As-
sumption (2) ensures that it is well-posed. How-
ever, it appears to be poorly coercive (i.e. with a
very small coercivity constant), which results in
a numerical system that is poorly conditioned.
This is not the formulation discretized in [1]. In-
stead, an "augmented" formulation, which leads
to a nodal FE discretization, is preferred.
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3.2 Perturbed formulation

Following [3], we propose a perturbation method
to approach the plain formulation. The per-
turbed formulation reads:
Find Eγ in V s.t., ∀F ∈ V,

(curl Eγ |curl F)+

(
γ − ω2

c2

)(
KEγ |F

)
= l(F)

(5)
for a small γ ∈ C.

Under certain conditions on γ, we prove that
the perturbed formulation is well-posed. Addi-
tionally, the solution of the perturbed formula-
tion converges well to the solution of the plain
formulation (proofs not shown). More precisely,

||E−Eγ ||H(curl) = O(γ). (6)

4 Preliminary numerical results

To analyse the accuracy of the method, we con-
sider the following toy problem, posed in Ω =
[0, 1]3:

curl curl E− ω2

c2
KE = f , (7)

with the boundary condition n×E = 0 on ∂Ω.
In the following, ω = c = 1. We set as reference
solution

Eexa =




2 cos(πx) sin(πy) sin(πz)
− sin(πx) cos(πy) sin(πz)
− sin(πx) sin(πy) cos(πz)


 (8)

and compute the right-hand side in consequence.
The tensor K is set to

K =




1 0 0
0 1 0
0 0 −2 + 10−4i


 . (9)

This is a first step on the road to modelling
plasmas appropriately with K as in [2], where
extra-diagonal terms arise. Numerical results
are obtained using FreeFem++, with edge finite
elements (linear basis functions).

According to theory, we expect the error in
H(curl) norm to be in O(h). On Fig.1., we
observe that this convergence rate is numerically
recovered.

We denote by γopt the value of γ ∈ C mini-
mizing the error. For this value, we actually get
a smaller error than when γ = 0. Thus, our per-
turbed method permits a significant decreasing
of the error, without any additional cost.

Figure 1: Convergence of the method

Numerical results are presented in Table 1.
We observe that γopt, a priori a complex num-
ber, is a posteriori a negative real number. Its
value varies with h. More precisely, γopt de-
creases in O(h2), which recalls the result of [3]
obtained in a different context.

Mesh size 1/8 1/10 1/12 1/15
Err γ = 0 0.1221 0.09315 0.07077 0.05325
Err γopt 0.0984 0.08106 0.06333 0.04934
Gain 19% 13% 10% 7%
γopt -0.037 -0.023 -0.016 -0.010

−γopt/h
2 2.368 2.3 2.304 2.25

Table 1: Gain of the perturbed method

These preliminary results show the perturbed
method performs well, and is quite promising
compared to a more standard approach, as it
permits to improve the problem conditioning
and reduce the error without any additional cost.
Future work will focus on a more precise numer-
ical analysis of the method, including results on
more realistic testcases.
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Abstract

For the discretisation of time-dependent par-
tial di�erential equations, usually explicit or im-
plicit time stepping schemes are used. An al-
ternative approach is the usage of space-time
methods, where the space-time domain Q is dis-
cretised and the resulting global linear system
is solved at once. In any case, the underly-
ing space-time variational formulation plays a
decisive role for space-time Galerkin methods.
In this talk, space-time variational formulations
for the scalar second-order wave equation, which
are well-suited for space-time Galerkin methods,
are investigated. A new space-time approach is
introduced, where the starting point is a Hilbert
space H(Q). Then, a completion procedure is
used to de�ne a suitable subspace H0,(Q) ⊂
H(Q), where a Poincaré-Friedrichs type inequal-
ity holds. This idea leads to a uniquely solvable
variational formulation in H0,(Q), including an
isomorphic solution operator and a correspond-
ing inf-sup condition.

Keywords: second-order wave equation, space-
time methods, inf-sup condition

Variational Formulation in H1(Q)

As a model problem, the homogeneous Dirichlet
problem for the second-order wave equation,

∂ttu−∆xu = f in Q = Ω× (0, T ),
u = 0 in Σ = ∂Ω× [0, T ],

u(·, 0) = ∂tu(·, 0) = 0 in Ω,

where Ω ⊂ Rd, d = 1, 2, 3, is a bounded Lip-
schitz domain with boundary ∂Ω, T > 0 is a
terminal time and f is a given right-hand side,
is examined. Integration by parts with respect
to time and space leads to the variational for-
mulation to �nd u ∈ H1,1

0;0, (Q) ⊂ H1(Q) such
that

aH1(u, v) = 〈f, v〉L2(Q) (1)

for all v ∈ H1,1
0; ,0(Q) ⊂ H1(Q), where f ∈ L2(Q)

is given. Here, the bilinear form

aH1(·, ·) : H1,1
0;0, (Q)×H1,1

0; ,0(Q)→ R

is de�ned by

aH1(u, v) = −〈∂tu, ∂tv〉L2(Q) + 〈∇xu,∇xv〉L2(Q)

for u ∈ H1,1
0;0, (Q), v ∈ H1,1

0; ,0(Q), where the stan-
dard Sobolev spaces

H1,1
0;0, (Q) = L2(0, T ;H1

0 (Ω)) ∩H1
0,(0, T ;L2(Ω)),

H1,1
0; ,0(Q) = L2(0, T ;H1

0 (Ω)) ∩H1
,0(0, T ;L2(Ω)),

endowed with the norm

|v|H1(Q) =
√
‖∂tv‖2L2(Q)

+ ‖∇xv‖2L2(Q)
,

ful�l the homogeneous Dirichlet condition, and
the initial or terminal condition, i.e.

v(·, 0) = 0 in Ω or v(·, T ) = 0 in Ω.

In addition, 〈·, ·〉Q denotes the duality pairing in

[H1,1
0; ,0(Q)]′×H1,1

0; ,0(Q) as extension of the L2(Q)
inner product 〈·, ·〉L2(Q).

In (1), the initial condition u(·, 0) = 0 is
considered in the strong sense, whereas the ini-
tial condition ∂tu(·, 0) = 0 is incorporated in a
weak sense. It is well known that for f ∈ L2(Q),
there exists a unique solution u ∈ H1,1

0;0, (Q) of
the variational formulation (1), see [1, Theorem
3.2 in Chapter IV], and [2]. However, the bi-
linear form aH1(·, ·) does not satisfy an inf-sup
condition, see [4, Subsection 4.2]. To overcome
this problem, a new space-time variational for-
mulation is introduced, see [4, Subsection 4.4]
or [3] for the proofs of the statements of the
next section.

New Variational Formulation in H(Q)

To derive a new space-time variational formula-
tion, the space

H(Q) = {v|Q : v ∈ L2(Q−), v|Ω×(−∞,0) = 0,

�Q−v ∈ [H1,1
0; ,0(Q)]′}
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with the Hilbertian norm

‖v‖H(Q) =

√
‖v‖2L2(Q) + ‖�Q−v‖2[H1,1

0; ,0(Q)]′

is considered, where

Q− = Ω× (−∞, T ) ⊂ Rd+1

is the unbounded domain with respect to time
and

�Q− : D′(Q−)→ D′(Q−)

is the distributional wave operator for distribu-
tions D′(Q−). It can be shown that the space
H(Q) is complete, i.e. a Hilbert space.

Lemma 1 It holds H1,1
0;0, (Q) ⊂ H(Q). Further-

more, each function u ∈ H1,1
0;0, (Q) ful�ls

〈�Q−u, v〉Q = aH1(u, v)

for all v ∈ H1,1
0; ,0(Q).

Since H1,1
0;0, (Q) ⊂ H(Q), one de�nes by comple-

tion the Hilbert space

H0,(Q) = H1,1
0;0, (Q)

‖·‖H(Q) ⊂ H(Q)

endowed with the Hilbertian norm ‖ · ‖H(Q). A
Poincaré-Friedrichs type inequality is true on
this subspace H0,(Q).

Lemma 2 For u ∈ H0,(Q), it holds

‖�Q−u‖[H1,1
0; ,0(Q)]′ ≥

√
2

T
‖u‖L2(Q).

Hence, the subspace H0,(Q) ⊂ H(Q), endowed
with the Hilbertian norm ‖�Q−(·)‖

[H1,1
0; ,0(Q)]′ , is

a Hilbert space. The weak variational formula-
tion for a given f ∈ [H1,1

0; ,0(Q)]′ is as follows:
Find u ∈ H0,(Q) such that

aW (u, v) = 〈f, v〉Q (2)

for all v ∈ H1,1
0; ,0(Q), where the bilinear form

aW (·, ·) : H0,(Q)×H1,1
0; ,0(Q)→ R

is de�ned by

aW (u, v) = 〈�Q−u, v〉Q

for u ∈ H0,(Q), v ∈ H1,1
0; ,0(Q). Next, proper-

ties of the bilinear form aW (·, ·) are given and
�nally, unique solvability of the weak variational
formulation (2) is proven.

Lemma 3 The bilinear form aW (·, ·) ful�ls the

following properties:

First, there holds the boundedness

|aW (u, v)| ≤ ‖�Q−u‖[H1,1
0; ,0(Q)]′ |v|H1(Q)

for all u ∈ H0,(Q), v ∈ H1,1
0; ,0(Q).

Second, there holds the inf-sup condition

sup
06=v∈H1,1

0; ,0(Q)

|aW (u, v)|
|v|H1(Q)

= ‖�Q−u‖[H1,1
0; ,0(Q)]′

for all u ∈ H0,(Q).

Third, for each 0 6= v ∈ H1,1
0; ,0(Q), there ex-

ists an element u ∈ H0,(Q) with aW (u, v) 6= 0.

A direct consequence of the last lemma is the
following main result.

Theorem 4 For each f ∈ [H1,1
0; ,0(Q)]′, there ex-

ists a unique solution u ∈ H0,(Q) of the varia-

tional formulation (2). Furthermore,

LW : [H1,1
0; ,0(Q)]′ → H0,(Q), LW f = u,

is an isomorphism, satisfying

‖�Q−LW f‖[H1,1
0; ,0(Q)]′ = ‖f‖

[H1,1
0; ,0(Q)]′ .

Conclusions

A new weak space-time variational formulation
(2) for the scalar second-order wave equation
with a homogeneous Dirichlet boundary condi-
tion and homogeneous initial conditions is intro-
duced. Since the related bilinear form is inf-sup
stable, this new framework might be used for
the analysis of di�erent approximation schemes,
e.g., �nite element methods or wavelets, and
might be useful for deriving and analysing cor-
responding boundary integral equations, leading
to boundary element methods.
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Abstract

We discuss the construction of Tre�tz virtual el-
ement spaces for certain classes of partial di�er-
ential equations with zero right-hand side. Such
spaces may asymptotically have better approx-
imation properties in terms of the number of
basis functions than other Tre�tz technologies,
such as Tre�tz discontinuous Galerkin methods.
We present here a �uni�ed� theoretical frame-
work, which allows for extensions to a plethora
of other problems. Numerical results will be
shown as well.

Keywords: Tre�tz methods, virtual element
methods

1 Model problems

In order to illustrate in an easy fashion the con-
struction of Tre�tz virtual element (VE) spaces,
we consider a Laplace and a Helmholtz prob-
lems. More precisely, given Ω ⊂ R2 a polygonal
domain, k > 0 a wave number, and gL and gH
two functions in H

1
2 (∂Ω) and H−

1
2 (∂Ω), respec-

tively, we aim to approximate the solutions to
the two following problems:

{
�nd u ∈ H1

gL
(Ω) such that

(∇u,∇v)0,Ω = 0 ∀v ∈ H1
0 (Ω),

(1)

and




�nd u ∈ H1(Ω) such that

(∇u,∇v)0,Ω − k2(u, v)0,Ω

+ik(u, v)0,∂Ω =−1/2 〈gH , v〉1/2
∀v ∈ H1(Ω),

(2)

where, for any g ∈ H 1
2 (∂Ω), we have set

H1
g (Ω) = {v ∈ H1(Ω) | v|∂Ω = g in H

1
2 (∂Ω)}.

Importantly, both problems are the weak formu-
lation of partial di�erential equations with zero
right-hand side.

2 Local and global Tre�tz virtual ele-

ment spaces

Here, we construct Tre�tz VE spaces for prob-
lems (1) and (2), see Sections 2.1 and 2.2, re-
spectively.

In both cases, we construct global noncon-
forming spaces, since this choice allows for a
general framework including various problems.
We point out that for problem (1), a conform-

ing Tre�tz space has been introduced in [1].
Henceforth, we denote by Tn a (conforming)

polygonal decomposition of Ω, and En its set of
edges. Further, given a polygon K ∈ Tn, we
denote its set of edges by EK .

2.1 Nonconforming harmonic VE spaces

for the Laplace problem

It is well known that harmonic polynomials have
�proper� h- and p-approximation properties for
harmonic functions [2]. However, employing only
piecewise harmonic polynomials as an approxi-
mation space would lead to a global fully dis-
continuous space; we can �reduce� the disconti-
nuity of such space by de�ning global spaces of
the form

Vn = {vn ∈ L2(Ω) such that∫

e
JvnKeqp−1 = 0∀qp−1 ∈ Pp−1(e) ∀e ∈ En,

vn|K ∈ Vn(K) ∀K ∈ Tn},

where J·Ke denotes the jump operator across the
edge e, and where

Vn(K) = {vn ∈ H1(K) | ∆vn = 0,

∂nvn|e ∈ Pp−1(e) ∀e ∈ En}.

Thus, the local spaces Vn(K) contain harmonic
polynomials, guaranteeing good approximation
properties, and the global space Vn contains func-
tions that are �continuous� in an integral sense.

For the analysis of approximation properties
of Vn, the construction of the method, and how
the basis functions are used in practice, we refer
to [3].
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2.2 Nonconforming Tre�tz VE spaces

for the Helmholtz problem

Focusing now on a possible approximation space
for the Helmholtz equation (2), we recall that
plane waves have �proper� h- and p-approximation
properties of functions in the kernel of the Helmholtz
operator [4].

However, employing only piecewise plane waves
as an approximation space would lead to a global
fully discontinuous space; we can �reduce� the
discontinuity of such space by de�ning global
spaces of the form

Vn = {vn ∈ L2(Ω) such that∫

e
JvnKewp = 0∀wp ∈ PWp(e) ∀e ∈ En,

vn|K ∈ Vn(K) ∀K ∈ Tn},

where J·Ke denotes the jump operator across the
edge e, where PWp(e) denotes the space of Dirich-
let traces of p plane waves traveling along dif-
ferent directions, and where

Vn(K) = {vn ∈ H1(K) | ∆vn + k2vn = 0,

∂nvn + ikvn|e ∈ PWp(e) ∀e ∈ EK}.

Thus, the local spaces Vn(K) contain plane waves
(guaranteeing approximation properties) and the
global space Vn contains functions that are �con-
tinuous� in an integral sense.

For the analysis of approximation properties
of Vn, the construction of the method, and how
the basis functions are used in practice, we refer
to [5].

3 Uni�ed framework

The construction of the Tre�tz spaces de�ned
in Sections 2.1 and 2.2 can be generalized to
partial di�erential equations of the form Lu = 0
endowed with certain boundary conditions, for
some di�erential operator L, as follows.

Given An(K) = {ṽn | Lṽn = 0} a space
of computable functions with �proper� h- and
p-approximation properties, one may introduce
the local Tre�tz space

Vn(K) = {vn | Lvn = 0, γ(vn)|e = γ(ṽn)|e

for some ṽn ∈ An(K), ∀e ∈ EK},

where γ denotes a �suitable� trace operator. By
doing so, it is clear that An(K) ⊆ Vn(K), which
entails good approximation properties of Vn(K).

The construction of the global nonconform-
ing space follows along the same lines as in Sec-
tions 2.1 and 2.2; in particular, the continuity
is enforced in an integral sense by testing the
jumps of functions in the global space across
edges with suitable traces of functions inAn(K).

4 Advantages and �cli� e�ect�

By employing Tre�tz VE spaces, one can asymp-
totically achieve a given accuracy employing less
basis functions than other Tre�tz methods, such
as Tre�tz discontinuous Galerkin methods. In
particular, it happens that, after few h- and p-
re�nements, the approximation error converges
to zero without a real growth of the dimension of
the spaces. This phenomenon, analyzed in [6],
has been regarded as �cli� e�ect� [7].
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Abstract

We introduce a Tre�tz discontinuous Galerkin
(DG) method for the numerical approximation
of solutions to acoustic scattering problems by
small circular obstacles with a mesh resolving
the position of the obtacles but not their size.
This is achieved by employing circular waves
adapted to the geometry, so that boundary con-
ditions around each obstacle are directly embed-
ded in the trial functions. Since the employed
basis functions are Tre�tz, i.e. they lie elemen-
twise in the kernel of the Helmholtz operator,
a large reduction in the required number of de-
grees of freedom for a given accuracy, when com-
pared to standard �nite element methods, can
be obtained; see [3] for a survey.

Keywords: acoustic scattering, discontin-

uous Galerkin methods, Tre�tz functions

1 Model problem

Let Sεj , j = 1, . . . , N , be a set of pairwise non-
intersecting circular scatterers with radii εj and
centers xj . Given an incident plane wave uinc

with wave number k > 0, the continuous prob-
lem for the scattered acoustic pressure �eld reads





−∆usca − k2usca = 0 in R2 \ S,
usca = −uinc on ∂S,

lim
r→∞

√
r (∂r − ik)usca = 0,

where S = ∪Nj=1Sεj and r = |x|. The total

acoustic pressure �eld is u := usca + uinc.

2 Tre�tz-DG method

Let Ω ⊂ R2 be a polygonal bounded domain
such that S ⊂ Ω and Σ := ∂Ω is far from ∂S.
We set ΩS := Ω \ S. Our aim is to design a DG
method with the following properties:

• the method is applicable to all kind of
polygonal meshes over Ω instead of ΩS ,
thus it is not necessary to resolve the size
of the scatterers;

• the Sommerfeld radiation condition is di-
rectly taken into account by the method.

Both of these aspects will be achieved by the
use of speci�cally tailored basis function that
are additionally Tre�tz, i.e. local solution to the
homogeneous Helmholtz equation, and therefore
have good approximation properties.

3 Construction in the case of one circu-

lar scatterer

The construction of a method with the above-
mentioned properties for the case of one circular
scatterer with radius ε > 0 and center x0 gives
insight for the case of multiple scatterers.

Meshes. Let T ]h be a polygonal mesh of Ω
not resolving the scatterer. Then, by agglom-
eration of elements, a mesh Th containing the
scatterer in exactly one element K̃ can be ob-
tained from T ]h . The main idea of the method is
to consider the in�nite domain K∞ := R2 \Ω as
a single element and then solve the Helmholtz
problem over the mesh Th ∪K∞.

Tre�tz functions. The following three sets
of basis functions are employed: Given e�ective
degrees q

K̃
, qK∞ , qK ∈ N,

• {W [ε]
n (kr)einϕ}|n| ≤ q

K̃
in K̃,

• {H(1)
n (kr) einϕ}|n| ≤ q∞K in K∞,

• {Jn(krK)einϕK}|n| ≤ qK elsewhere,

where n ∈ Z, (r, ϕ) and (rK , ϕK) are the po-
lar coordinates centered at x0 and the element
barycenters, respectively, and

W [ε]
n (kr)einϕ :=

(
Jn(kr) + β[ε]n Yn(kr)

)
einϕ,

with β
[ε]
n := −Jn(kε)

Yn(kε)
. Here, Jn and Yn denote

the Bessel functions of the �rst and second kind,

respectively, and H
(1)
n are the Hankel functions

of the �rst kind. By de�nition, W
[ε]
n (kr)einϕ au-

tomatically incorporate the homogeneous Dirich-
let boundary condition on ∂Sε; see e.g. [4].
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Tre�tz-DG variational formulation. Fol-
lowing the concept of the ultra weak variational
formulation [1], after introducing a circular do-
main BR centered at x0 with radius R > 0 such
that Ω ⊂ BR, one can design a variational for-
mulation over the skeleton of Th for

ŭp :=

{
up in ΩS ,

uscap in KR := BR\Ω,

where up represents an approximation of the to-
tal �eld u inside ΩS , and u

sca
p approximates the

scattered �eld usca in KR. By taking R → ∞,
a formulation over R2 is obtained.

4 The case of multiple scatterers

The above process can be extended to the case
of several small circular scatterers by modi�ca-
tion of the involved basis functions. More pre-
cisely, after an agglomeration process, one can
employ in each element containing a scatterer

basis functions of the type W
[ε]
n (krj)e

inϕj with
polar coordinates (rj , ϕj) centered at the scat-
terer centers. For the approximation of the scat-
tered �eld usca, one can either employ sets of
Fourier-Hankel functions associated to the scat-
terer centers ('method 1') or to a common center
of gravity ('method 2').

A comparison of these methods can be car-
ried out in terms of the far�eld pattern. To this
purpose, we consider a numerical example with
two circular scatterers with radii ε = 0.02 and
centers in (−d, 0) and (d, 0), for d = 0.1 and
d = 0.4, respectively. As mesh Th, we take the
one depicted in Figure 1. Further, we �x k = 15
and the e�ective degrees q = 35 in all elements
of Th. For method 1, we employ q = 4 as e�ec-
tive degrees for the two sets of Fourier-Hankel
functions associated with to the two scatterers,
whereas for method 2, we take q = 9. The ob-
tained far�eld pattern for d = 0.1 and d = 0.4
are shown in Figure 2, where we also compare
them with 'method 3', which superposes the
scattered solutions of the two scatterers with-
out taking the joint backscattering into account.
From the plots, we observe that backscattering
plays in fact an important role. It turns out that
method 2 is preferable when the scatterers are
close to each other, whereas method 1 should be
used when they are further away.

A full description of the method including
exponential error estimates and various numer-
ical experiments will be presented in [2].
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Figure 1: Mesh for the numerical example.
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Figure 2: Far�eld pattern for two scatterers cen-
tered at (−d, 0) and (d, 0), d = 0.1 and d = 0.4.
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Abstract

Fiber lasers at high-power operation suffer from
undesired thermal coupling effects such as trans-
verse mode instability (TMI). Indeed, TMI is a
major obstacle in power-scaling of continuous
wave, weakly-guided, large mode area (LMA),
active gain, silica fiber amplifiers. A better
understanding of these nonlinear coupling ef-
fects is beneficial in the design of new fibers.
To that end, we propose a three-dimensional
discontinuous Petrov-Galerkin (DPG) finite el-
ement approach for studying a novel nonlinear
full vectorial Maxwell model. The model incor-
porates both amplification and thermal effects
via coupling with the heat equation. The high-
frequency nature of this wave propagation prob-
lem requires the use of high-order discretizations
to effectively counter numerical pollution. We
present numerical results for this coupled sys-
tem, modeling fibers with several hundred wave-
lengths. Our results provide new insight into
the nonlinear effects of laser gain and thermal
polarization in fiber amplifiers.
Keywords: High-frequency wave propagation,
High-order finite element discretization, Nonlin-
ear fiber optics, Active gain fiber amplifiers

1 Introduction

Continuous wave, weakly guided, LMA, active
gain, silica fiber amplifiers can achieve high-
power operation with great efficiency and pro-
vide highly coherent light sources [4]. We con-

Pump

Signal
Amplified 
Signal

Figure 1: Fiber schematic

sider a step-index fiber, core-doped with active
Ytterbium (Yb) ions that lase around 1064nm
very efficiently [4]. Two near-monochromatic
fields are present: the signal field, seeded at
1064nm, and the pump field, at 976nm. At high
power levels, thermal effects become relevant as
they may severely degrade beam quality [2]. We
model active gain and thermal effects within a
three-dimensional Maxwell formulation coupled
with the heat equation in order to investigate
nonlinear phenomena in the fiber amplifier.

2 DPG Methodology

The DPG methodology [1] has been successfully
applied to various complex multiphysics appli-
cations, including acoustic and electromagnetic
wave propagation [3, 5]. DPG admits work-
ing with any well-posed variational formulation,
and it guarantees mesh-independent discrete
stability [1]. In the context of high-frequency
wave propagation, the ultraweak DPG formu-
lation has proven superior in many ways. Its
built-in a-posteriori error estimator enables hp-
adaptivity in the preasymptotic regime, which
has led to state-of-the-art multilevel precondi-
tioners applicable to wave propagation prob-
lems [5].

We apply the ultraweak DPG formulation to
the full vectorial Maxwell system for two cou-
pled time-harmonic fields. The Maxwell system
is then coupled with the primal DPG formula-
tion of the heat equation, yielding a formulation
that requires the use of elements of the entire
exact sequence [1].

3 Coupled Maxwell/Heat Fiber Model

We assume that no free charges are present in
the dielectric silica fiber, and that magnetic po-
larization of the material is neglectable. Since
we are dealing with two near-monochromatic
fields, we may apply the time-harmonic ansatz
and obtain the time-harmonic Maxwell equa-
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tions in the silica fiber:

∇×Ek = −iωkµ0Hk (1)
∇×Hk = iωk(ε0Ek + P k) (2)

where k ∈ {s, p} refers to either the signal (s)
or pump (p) field. The electric polarization P
is given by,

P k = P background
k + P gain

k + P thermal
k (3)

where the background polarization, assuming an
isotropic material refractive index, is

P background
k = ε0(n

2 − 1)Ek (4)

The gain polarization is derived as a complex
perturbation to the refractive index [3],

P gain
k = iε0

nc

ωk
gk(E{s,p})Ek (5)

And the thermal polarization is induced by
the thermal response of the material refractive
index in the fiber,

n(T ) = n(Tambient) + δn

≈ n(Tambient) +
dn

dT
(Tambient)δT

(6)

where T is the temperature, dn
dT is the thermo-

optic coefficient, and δT, δn are the temperature
change and the induced refractive index pertur-
bation, respectively. The gain function gk is de-
rived from Yb ion rate equations [4],

gk ≈ −σabsk N Y b
total + (σabsk + σemsk )N̄ Y b

excited (7)

where σabs, σems are effective ion absorption
and emission cross-sections, respectively. The
steady-state excited ion population density is,

N̄ Y b
excited =

∑
k={s,p}

Ik
~ωkσ

abs
k

1
τ +

∑
k={s,p}

Ik
~ωk (σabsk + σemsk )

N Y b
total

(8)
where τ is the upper level radiative lifetime, and
Ik = |Re{Ek ×H∗k}| denotes the irradiance.

The derived Maxwell system is coupled with
the heat equation, where the heat source Q is
dependent upon the gain and optical intensities
of the fields inside the fiber core,

Q(I{s,p}) = −
(
gp(I{s,p})Ip + gs(I{s,p})Is

)
(9)

4 Numerical Simulation

The number of wavelengths (λ) in a real length
fiber is about 107, which is computationally not
feasible in a 3D high-order finite element dis-
cretization. To investigate gain and heating ef-
fects in a short fiber, we introduce a novel scal-
ing for the coupled system: an artifical gain am-
plifier g̃a and an anisotropic heat diffusion op-
erator. Figure 2 presents gain scaling results by
plotting the cross-sectional power along a fiber
of 120 and 240 wavelengths, with different gain
amplifiers, illustrating the concept of equivalent
gain in a short fiber.

(a) 120λ, g̃a = 5.0 · 103 (b) 240λ, g̃a = 2.5 · 103

Figure 2: Gain scaling in short fiber
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A numerical algorithm to reduce the ill conditioning in meshless methods for the
Helmholtz equation

Pedro R. S. Antunes1

1Group of Mathematical Physics - University of Lisbon

Abstract

Some meshless methods have been applied to
the numerical solution of boundary value prob-
lems involving the Helmholtz equation. In this
work we focus on the Method of Fundamental
Solutions and the Plane Waves Method. It is
well known that these methods can be highly
accurate assuming smoothness of the domains
and the boundary data. However, the matrices
involved are often ill-conditioned and the effect
of this ill conditioning may drastically reduce
the accuracy. In this work, we propose a nu-
merical algorithm to reduce the ill conditioning
in both methods. The idea is to perform a suit-
able change of basis. This allows to obtain new
basis functions that span exactly the same space
as the original meshless method, but are much
better conditioned.
Keywords: Helmholtz equation, method of fun-
damental solutions, plane waves, ill conditioning

1 The direct approaches of the Method
of Fundamental Solutions (MFS) and
the Plane Waves Method (PWM)

Let Ω be a smooth bounded planar domain. We
consider the following boundary value problem,

{
∆u+ κ2u = 0 in Ω,

u = g on ∂Ω,
(1)

for some given function g defined on ∂Ω.
We will denote by Φκ a fundamental solution

of the Helmholtz equation,

Φκ(x) =
i

4
H

(1)
0 (κ|x|),

where H(1)
0 is a Hankel function of the first kind

of order zero. This fundamental solution is an-
alytic, except at the origin, where it has a loga-
rithmic type singularity. The standard approach
of the Method of Fundamental Solutions, which
will be called Direct-MFS, approximates the so-
lution of the boundary value problem (1) by a
linear combination

uMFS−Dir
N (x) =

N∑

j=1

αMFS−Dir
j Φκ(x− yj). (2)

Each basis function is a translation of the funda-
mental solution to some source point yj placed
on some admissible source set Γ̂ that does not
intersect Ω̄. Thus, by construction it satisfies
the PDE of the problem. The approximation of
the boundary condition can be justified by den-
sity results (eg. [1]). We will assume that the
source points are distributed uniformly on a cir-
cumference of radius R > RΩ := maxx∈∂Ω ‖x‖,

yj = R (cos(γj), sin(γj)) , j = 1, ..., N, γj =
2πj

N
.

(3)
The coefficients of the linear combination (2)

can be determined by collocation, forcing the
boundary conditions of the problem. We con-
sider P collocation points xi, i = 1, 2, ..., P , and
solve

AMFS−DirαMFS−Dir = G, (4)

where

AMFS−Dir = [Φκ(xi − yj)]P×N , G = [g(xi)]P×1

and αMFS−Dir is a vector with all the coeffi-
cients of the Direct-MFS linear combination (2).
In this work we took P = 2N and solved (4) in
the least-squares sense.

Another Treffz type method is the PWM. In
this case, for given unitary directions d1, d2,...,dN ,
the numerical approximation for the solution of
the boundary value problem is a linear combi-
nation of plane waves,

uPWM−Dir
N (x) =

N∑

j=1

αPW−Dirj eiκx.dj . (5)

The approximation of the boundary condi-
tion is justified by a density result, stating that
if Ω is a bounded simply connected domain and
κ is not an eigenfrequency of Ω, then (e.g. [4])

L2(∂Ω) = span {eiκx.d : d ∈ S1}.

The Direct-MFS can be highly accurate, even
with a small number of source points. For exam-
ple, the method can achieve exponential conver-
gence on analytic domains and boundary data
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[3,5]. On the other hand, the linear least squares
problem is often ill-conditioned, which affects
the accuracy and prevents the exponential con-
vergence to be observed in the numerical simu-
lations.

2 New formulations - the MFS-QR and
PWM-QR algorithms

We assume that the source points are given by
(3), for R > RΩ. Dropping the constant i/4 that
may be incorporated in the coefficients of the
linear combination, by Graf’s addition theorem
[4], each MFS basis function can be written as

H
(1)
0 (κ|x− yj |) = H

(1)
0 (κ|yj |)J0(κ|x|)+

2

∞∑

n=1

H(1)
n (κ|yj |)Jn(κ|x|) cos(nβ),

where β denotes the angle between x and yj .
We will use the notation x̂ = x/|x| and ŷj =
yj/|yj | and write x̂ = (cos(θ), sin(θ)), for some
θ ∈ [0, 2π). Then,

x̂.ŷj = cos(θ) cos(γj)+sin(θ) sin(γj) = cos(θ−γj)

and by the law of cosines,

x̂.ŷj = |x̂||ŷj | cos(β) = cos(β).

Therefore, in polar coordinates, we have

ψj(r, θ) := H
(1)
0 (κR)J0(κr)+

2

∞∑

n=1

H(1)
n (κR)Jn(κr)[cos(nθ) cos(nγj)+

sin(nθ) sin(nγj)].

Concerning the PWM we can use Jacobi-
Anger expansion [4],

eiκx.d = J0(κ|x|) + 2

∞∑

n=1

inJn(κ|x|) cos(nβ),

(6)
where in this case β is the angle between x and
d. Thus, writing dj = (cos(γj), sin(γj)) each
basis function is written in polar coordinates as

φj(r, θ) := J0(κr)+2

∞∑

n=1

inJn(κr)[cos(nθ) cos(nγj)+

sin(nθ) sin(nγj)].

We will skip the details that can be found in [2],
but after truncating these expansions, we are led
to the following matrix factorization

Θ(r, θ) = B D F(r, θ), (7)

where Θ(r, θ) is a vector-valued function of all
the basis functions of each of the methods, the
matrix B is well-conditioned, even for large val-
ues of N . The ill-conditioning of the Direct-
MFS arises essentially from the diagonal matrix
D. To reduce this ill-conditioning we propose
an algorithm which allows to construct new ba-
sis functions. The main idea is to use the fact
that if we multiply an invertible matrix from the
left in (7), this procedure will change the ba-
sis functions without modifying the functional
space that is generated by them. Thus, we pro-
pose a way to determine such a suitable matrix
to be multiplied from the left, and instead of the
basis functions defined through (7), we propose
to use a new set of basis function defined by

Ψ(r, θ) = R̃ F(r, θ), (8)

for a convenient matrix R̃ (see [2] for details).
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New Mass-Lumped Tetrahedral Elements for 3D Wave Propagation Modelling

S. Geevers1,∗

Abstract

We present a new accuracy condition for con-
structing mass-lumped elements. This condi-
tion is less restrictive than the one previously
used and enabled us to construct new mass-
lumped tetrahedral elements for 3D wave propa-
gation modelling. The new degree-2 and degree-
3 elements require significantly fewer nodes than
previous versions and mass-lumped tetrahedral
elements of higher degree had not been found
before. We also present a new accuracy con-
dition for evaluating the stiffness matrix-vector
product. This enabled us to obtain tailored
quadrature rules for the new elements that fur-
ther reduce the computational cost.
Keywords: mass lumping, tetrahedral element,
spectral element, wave equation

1 Introduction

Finite element methods offer a good alternative
to finite difference methods for wave propaga-
tion modelling when the geometry of objects or
the topography of seismic models need to be
accurately modelled. Tetrahedral elements are
particularly suitable for complex 3D models due
to their geometric flexibility. A major drawback
of the classical finite element method, however,
is that, at each time step, it requires solving a
large system of equations of the form Mx = y,
with M the stiffness matrix, which is large and
sparse, but not diagonal. The high computa-
tional cost required for solving this linear prob-
lem is avoided by lumping the mass matrix into
a diagonal matrix. This is accomplished by ap-
proximating the matrix using a quadrature rule
and by placing the basis function nodes at the
quadrature points.

For first-order elements, mass-lumping is ac-
complished by placing the quadrature points and
nodes at the vertices. Higher-order triangular
and tetrahedral mass-lumped elements are ob-
tained by enriching the element space with higher-
degree bubble functions [1–3, 5]. For tetrahe-

Table 1: Element spaces Û of mass-lumped
tetrahedral elements of degree p with # nodes.
Asterisks indicate new elements.

p

# Û

2* 15 P2 + F + I
2 23 P2 + FP1 + I

3* 32 P3 + FP1 + IP1

3 50 P3 + FP2 + IP2

4* 60 P4 + FP2 + I(P2 + F )
4* 61 P4 + FP2 + I(P2 + F + I)
4* 65 P4 + F (P2 + F ) + I(P2 + F + I)

dra, only elements up to degree 3 [1, 5] were
available. By deriving a new and less restrictive
accuracy condition for the quadrature rule, we
could obtain mass-lumped tetrahedral elements
of degree 4 and new elements of degree 2 and 3
with significantly fewer nodes.

To further improve the efficiency of the nu-
merical scheme, we also derived a new accuracy
condition for evaluating the stiffness matrix-vector
product and obtained new tailored quadrature
rules with less points than rules previously avail-
able. It is known that, for higher-degree el-
ements, computing the stiffness matrix-vector
product on the fly is more efficient than using
a pre-assembled matrix and recently, we showed
that the new quadrature rules also outperform
exact integration algorithms [4].

2 New mass-lumped elements

Previously, the accuracy condition imposed on
the quadrate rule for the mass matrix was ex-
actness for polynomials of degree p+p′−2, with
p the polynomial degree of the element and p′

the highest polynomial degree of the enriched
element space. We proved in [3] that, to obtain
optimal convergence rates, it is sufficient if the
quadrature rule is exact for Û ⊗ Pp−2, where Û
denotes the element space and Pp−2 the polyno-
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Figure 1: Dispersion error of the symmetric in-
terior penalty DG method (solid), the former
mass-lumped element method (dashed), and the
new mass-lumped elements (dotted).

mials of degree at most p− 2.
Using this new accuracy condition, we were

able to construct new mass-lumped tetrahedral
elements. An overview of the different elements
is given in Table 1. There, F denotes the set
of degree-3 face bubble functions and I denotes
the degree-4 interior bubble function.

The efficiency of the new and former mass-
lumped elements, together with symmetric in-
terior penalty discontinuous Galerkin methods,
have also been compared using a dispersion anal-
ysis. The dispersion error, defined as the rel-
ative error of the numerical wave propagation
speed, is computed for travelling plane waves
moving through a regular tetrahedral mesh and
is plotted in Figure 1 against the estimated com-
putational cost, which is based on the size of the
stiffness matrix and the number of time steps.
The figure shows that the new mass-lumped meth-
ods are more efficient than the previous ones and
the DG methods, especially for p = 2 and p = 3.

3 Tailored quadrature for the stiffness
matrix

To obtain optimal convergence rates, it is suffi-
cient to approximate the stiffness matrix-vector
product using a quadrature rule that is exact for
DÛ ⊗ Pp−1 [4], with DÛ the space of all par-
tial derivatives of all functions in Û . With this
condition, we obtained tailored quadrature rules
for the new elements. A comparison with other
available quadrature rules is given in Table 2.

Table 2: Number of quadrature points of the
new tailored rules, order-(p+ p′ − 2), and exact
(order-(2p′ − 2)) rules, for computing the stiff-
ness matrix-vector product of the new n-node
degree-p mass-lumped tetrahedral elements.

p–n new order-(p+ p′ − 2) exact
2–15 14 14 24
3–32 21 24 46
4–60 51 59 127
4–61 60 79 194
4–65 60 79 194

Especially the tailored rules for the degree-4 el-
ements have significantly less points than other
rules available in the literature.

Various numerical tests also confirm the ef-
ficiency of the new mass-lumped elements.
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Abstract

The purpose of this paper is the study of a stable
method for coupling two types of schemes using or
not numerical fluxes for the resolution of Maxwell’s
equations in time domain. The methods considered
in the hybridization process are Finite Volume (FV),
Finite Element (FEM), Finite Difference (FD) and
Discontinuous Galerkin (DG). We give the principle
of the hybrid method and by the study of an ener-
getic quantity, one specifies the conditions of stabil-
ity of it. Finally, one example is given to validate
the proposed hybrid method.
Keywords: Hybrid method, finite element scheme,
Galerkin discontinuous scheme, Maxwell’s equations
in time domain

Introduction

Current electromagnetic problems require the pro-
cessing of complex structures in which geometrical
details, computational time and size of the discrete
problem are important factors to consider in the sim-
ulation. To increase the performances in terms of
computation time and storage memory, the use of
cartesian meshes is prefered, whereas near the ge-
ometry, to guarantee the precision, it is rather nec-
essary to use a non-structured mesh. For each type
of mesh or class of problems, there are different kinds
of schemes more or less appropriate to solve it. This
is due to the approximations made in the scheme
which induce different kinds of errors on the solution.
Then, to improve the simulation, a good idea con-
sists in dividing the computational domain into dif-
ferent sub-domains where we apply the most appro-
priate numerical method to solve the Maxwell equa-
tions. In this strategy, different numerical schemes
are coupled and the difficulty lies in having a sta-
ble and consistent hybrid scheme. In this paper,
we propose a stable hybrid method allowing to take
into account FV, FD, FEM and DG schemes. Af-
ter the presentation of the hybridization principle,
by considering a leapfrog time discretization for the
hybrid method, one shows that it exists a condition
according to the schemes taken in the hybridization
which ensures the conservation of an energetic quan-
tity. This condition gives a stability condition of the
hybrid method. Next, we give some results on the
study of a propagative mode inside a wave guide to
validate the proposed hybrid method.

Principle of the hybrid method

In this paper we present a hybrid method based on
the coupling of some numerical schemes (FEM, DG,
FD etc.) to solve the transient Maxwell equations.
One of the main difficulties is to ensure the stability
of the method at the space and time level. In the
literature, it exists, for exemple, several approaches
constructed from interpolation techniques which suf-
fer from numerical instabilities. To overcome this
problem, we propose to use a DG formalism in or-
der to couple together in a stable manner the sub-
domains in which different numerical methods are
used. Now, we briefly explain our approach. Let
(Ωi)i=1,··· ,N be a partition of the computational do-
main Ω, Σi,j := Ωi ∩Ωj , ni,j the unit normal to Σi,j

directed from Ωi et Ωj and V (i) is the set of neigh-
bour subdomains of Ωi. In a first step, we write the
Maxwell problem in Ω as a transmission one on the
subdomains : ∀i = 1, · · · , N ,

ε
∂Ei

∂t
−∇×Hi = J in Ωi (1a)

µ
∂Hi

∂t
+∇× Ei = 0 in Ωi (1b)

ni,j × Ei = ni,j × Ej on Σi,j , ∀j ∈ V (i) (1c)

ni,j ×Hi = ni,j ×Hj on Σi,j , ∀j ∈ V (i) (1d)

Next, we rewrite (1) in a weak form by using a DG
approach : ∀ϕ, ψ ∈ H(curl,Ωi),

∫

Ωi

(
ε
∂Ei

∂t
−∇×Hi

)
· ϕdx =

∫

Ωi

J · ϕdx

+
∑

j∈V (i)

∫

Σi,j

αi,j(ni,j ×Hi − ni,j ×Hj) · ϕdγ

(2a)∫

Ωi

(
µ
∂Hi

∂t
+∇× Ei

)
· ψ dx

=
∑

j∈V (i)

∫

Σi,j

γi,j(ni,j × Ei − ni,j × Ej) · ψdγ

(2b)
To ensure the equivalence of this reformulation with
the original problem, the coefficients αi,j and γi,j
must be as follows :

1− αi,j + αj,i = 0 and 1− γi,j + γj,i = 0
αi,j + γj,i = 0 and αi,j + γj,i = 0
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Stability

We now use in each subdomain Ωi an adapted spa-
tial numerical scheme (FEM, DG, FDTD, FV) and a
second order leapfrog scheme for the time discretiza-
tion. To ensure the stability of the hybrid scheme,
we study the evolution in time of a quantity given
by
∫

Ω
εE(x) · E(x)dx+

∫
Ω
νH(x) ·H(x)dx.

More precisely, we have to prove that this quan-
tity is maintained or decreased along the time. For
example, by considering an hybridization between
DG [1] and FEM [2] methods, we have [3] :

∆t ≤ 2

c0

[
max(A1, A2, A3)

] with

A1 =

√
ρ
(
M̂
− 1

2
1 R̂1M̂

− 1
2

1

)
+

√
µ√
ε

max
(
ρ
(
M̂
− 1

2
1 B̂E

1 M̂
− 1

2
1

))

A2 = ρ
(
M̂
− 1

2
1 B̂H

1 M̂
− 1

2
1

)

A3 =
1

ΛK

(√
ρ
(
M̂
− 1

2
2 R̂2M̂

− 1
2

2

)
+

√
µ√
ε
ρ
(
M̂
− 1

2
2 B̂2M̂

− 1
2

2

)

with ρ(A) the spectrum radius, c0 the waves speed,
the matrices M̂2, R̂2, B̂2 the mass, stiffness and jump
matrices for the DG scheme and M̂1, R̂1, B̂E

1 , B̂
H
1

the same for FEM. ΛK is a coefficient which de-
pends on the Jacobian matrix of the transformation
between K and the unit element for the DG scheme.

Numerical validation

To validate our hydrid method, we propose to study
a propagative mode inside a curved wave guide. The
guide is divided into two parts on which a hybrid
FEM/DG method is applied (see Figure 1). In Fig-
ure 2, we compare the results obtained with our hy-
brid FEM/DG method and with a DG method ap-
plied on all the problem. We can show on this figure
the good agreement between the solutions obtained
by our FEM/DG and the DGmethods at a test-point
located inside the curved guide.

Figure 1: Curved guide geometry with the two do-
mains for FEM/GD Hybrid method.

Figure 2: Comparison between FEM/DG and DG
approaches.

Conclusion

In this paper, we proposed a stable hybrid method
between continuous and discontinuous Gakerkin schemes,
in order to solve the Maxwell equations in time do-
main. We have specified how to establish a sta-
bility condition for two combined methods and we
give, as example, a stability condition for a hybrid
FEM/DG method. Finally, we showed a validation
of this method by comparison to a reference DG so-
lution, based on the computation of a propagative
mode inside a curved wave guide.
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A residual-based artificial viscosity finite difference method for scalar conservation laws
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Abstract

We present a residual-based artificial viscosity
(AV) finite difference method (FDM) for solving
scalar conservation laws. The AV is constructed
such that at most first-order upwind dissipation
is applied at shocks, without destroying accu-
racy in smooth regions. The spatial discretiza-
tion uses summation-by-parts (SBP) finite dif-
ference operators and boundary conditions are
imposed weakly through simultaneous approxi-
mation terms (SAT), allowing for fully explicit
time integration of the resulting scheme. The
method is benchmarked against the 2D advec-
tion equation and the Kurganov-Petrova-Popov
(KPP) rotating wave problem.
Keywords: finite difference methods, high-order
accuracy, scalar conservation laws, first-order vis-
cosity, upwinding, shock-capturing

1 Introduction

Conservation laws govern fundamental physical
processes and are of interest in many engineer-
ing applications. Developing accurate and sta-
ble solution methods for non-linear conservation
laws is a challenging task which has received
considerable attention in the last decades. Noted
by Lax already in the 1950s, first-order con-
vergence for non-linear hyperbolic equations is
readily achieved by using the first-order upwind
flux. In recent work within the finite element
community (see e.g [1, 2]), non-linear stabiliza-
tion methods utilizing a residual- or entropy-
based AV have shown to be successful where
many traditional stabilization methods converge
to incorrect entropy solutions. However, in con-
trast to entropy-based AV, residual-based AV is
proven to be convergent [1]. To our knowledge,
a residual-based AV-FDM is currently lacking in
the literature, and differs from the FEM setting
in particular regarding treatment of boundaries.
The FDM presented here is based on the SBP-
SAT framework, which is a robust and well-
proven high-order methodology that ensures sta-
bility of time-dependent partial differential equa-
tions. In the present work, diagonal-norm up-

wind operators derived in [3] are used to pro-
vide additional high-order dissipation, suppress-
ing oscillations in regions away from shocks.

2 Residual-based artificial viscosity

For a conserved quantity u with flux f(u) de-
fined on the domain Ω, the associated scalar
conservation law is given by

ut +∇ · f(u) = 0, x̄ ∈ Ω, t ≥ 0 (1)

Discretizing (1) in space using SBP finite differ-
ence operators, results in the semi-discrete prob-
lem

ūt = −Df (ū) +D
(ε)
2 (ū) + SAT, t ≥ 0 (2)

where Df is a discretization of ∇ · f and D(ε)
2 is

a variable-coefficient second-derivative operator
introducing diffusion proportional to ε. Well-
posed boundary conditions for (1) are imposed
through the SAT term, allowing for a provable
linearly stable discretization. The AV is chosen
as

ε = min(ε1, εr) (3)

with

ε1 = C1h|f ′(ū)|, εr = Crh
2 max

loc

|R(ū)|
n(ū) .

ε1 is the first-order upwind viscosity, where C1

is a constant and h is the grid spacing. For in-
stance, discretizing (2) using second-order cen-
tral differences and choosing C1 = 1

2 , one re-
tains the traditional Lax–Friedrichs scheme for
ε = ε1. Shock detection is provided by the resid-
ual viscosity εr, where Cr is a constant, R(ū) is
the residual and n(ū) = |ũ− ‖ū−mean(ū)‖L2|
is a normalization, with ũ = maxloc ū−minloc ū.
Here maxloc denotes the maximum of neighbor-
ing grid points (similarly for minloc). In the
present work, C1 = 1

2 , Cr = 1 is used. The
residual R(ū) is calculated as

R(ū) = Dt(ū) + D̃f (ū), (4)

where Dt(ū) and D̃f (ū) are discretizations of ut
and ∇ · f(u), respectively. In the present work,
Dt(ū) is computed using higher-order backward
difference formulas, while D̃f (ū) is discretized
using SBP finite difference operators.
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3 Computations

Consider the 2D advection equation

ut + (a · ∇)u = 0, x̄ ∈ Ω, t ≥ 0, (5)

with a rotating velocity field a(x, y) = (−y, x)
on Ω = [−0.5, 0.5] × [−0.5, 0.5]. In order to
demonstrate that the AV is localized to regions
with steep gradients, (5) is solved with initial
data given by a slotted cylinder, a cone and a
hump, as shown in Figure 1a. The solution is
calculated at t = 2π using a 5th order accurate
spatial discretization on a 401 × 401 grid. The
solution together with the AV is presented in
Figures 1b - 1c. Note that the shape of the cone
and the hump is preserved, while the cylinder is
diffused along its edges.

(a) Solution at t = 0.

(b) Solution at t = 2π.

(c) Artificial viscosity.

Figure 1: Advection equation.

Finally to illustrate that the method can han-
dle non-convex fluxes, the KPP rotating wave
problem given by (2) with f(u) = (sinu, cosu)
is solved, using initial data as in [2]. The result

at t = 1 is presented in Figure 2 using a 5th or-
der accurate spatial discretization and 401×401
grid points.

(a) Solution at t = 1.

(b) Artificial viscosity.

Figure 2: KPP rotating wave problem.

Although not presented here, expected first-
order convergence in presence of shocks has been
verified for the 2D Burgers’ equation. Further-
more convergence for smooth problems has been
verified for (5), where the solution converges
with the accuracy of the spatial discretization.
This has been tested using 3rd up to 9th or-
der accurate SBP finite difference operators. In
future work, we hope to extend the method to
systems of equations and include the positivity
preserving property.
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Abstract
Ideal magnetohydrodynamic (MHD) equations
are widely used in many areas in physics and en-
gineering, and these equations have a divergence-
free constraint on the magnetic field. In this pa-
per, we propose a high order globally divergence-
free numerical methods to solve the ideal MHD
equations. The algorithms are based on dis-
continuous Galerkin methods in space. The in-
duction equation is discretized separately to ap-
proximate the normal components of the mag-
netic field on elements interfaces, and to extract
additional information about the magnetic field
when higher order accuracy is desired. This
is then followed by an element by element re-
construction to obtain the globally divergence-
free magnetic field. In time, strong-stability-
preserving Runge-Kutta methods are applied.
Our methods are local and the approximated
magnetic fields are globally divergence-free. Nu-
merical examples are presented to demonstrate
the accuracy and robustness of the methods.
Keywords: Globally divergence-free; Discon-
tinuous Galerkin method; MHD equation

1 Introduction
In this paper [1], we developed globally divergence-
free discontinuous Galerkin (DG) methods to
numerically simulate ideal magnetohydrodynamic
(MHD) equations. The main difficulties to solve
MHD equations are to solve the whole nonlinear
system and to handle the divergence-free con-
straint. Our work follows the development of
exactly divergence-free central DG methods for
ideal MHD equations in [2], and it is related
to the exactly divergence-free DG methods for
the magnetic induction equations using multi-
dimensional Riemann solvers [3]. We obtain the
globally divergence-free magnetic field based on
the discrete space for magnetic field with ex-
actly divergence-free space and computing lo-
cally. The main difficulty in our method is how

to approximate electric field flux in DG scheme
on element interface.

2 MHD equations and DG scheme
The MHD equation in two dimension is

∂ρ

∂t
+ ∇ · (ρu) = 0,

∂(ρu)

∂t
+ ∇ · [ρuuT + (p +

1

2
|B|2)I − BBT] = 0,

∂B

∂t
− ∇ × (u × B) = 0,

∂E
∂t

+ ∇ · [(E + p +
1

2
|B|2)u − B(u · B)] = 0,

with a divergence-free constraint
∇ · B = 0.

We rewrite it as
∂U

∂t
+ ∇ · F(U, B) = 0,

∂B
∂t

+ ∇̂ × Ez(U, B) = 0,

where U = (ρ, ρux, ρuy, ρuz, Bz, E)T, B = (Bx, By)
T,

Ez(u, B) = uyBx − uxBy. The approximate
spaces for DG method of MHD equation are de-
fined as following. The discrete space for vari-
able Uh is

Vk
h = {v : v|K ∈ [P k(K)]8−d, ∀K ∈ Th},

and the discrete space for magnetic field Bh is
Mk

h ={v ∈ H(div0; Ω) : v|K ∈ Wk(K), ∀K ∈ Th}
={v : v|K ∈ Wk(K), ∇ · v|K = 0, ∀K ∈ Th,

and v · n is continuous on element interface},

with Wk defined as
Wk = [P k(K)]d ⊕ span{∇̂× (xk+1y), ∇̂× (xyk+1)}.

The DG methods for MHD equation are we
look for Un+1

h ∈ Vk
h, such that for any w ∈ Vk

h
and any element Iij ∈ Th,
∫

Iij

Un+1
h · wdxdy =

∫

Iij

Un
h · wdxdy

− ∆t

(∫

∂Iij

He,Iij · wds −
∫

Iij

F(Un
h, Bn

h) · ∇wdxdy

)
.
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with

He,Iij(a,b;n) =
1

2
(F(a) · n + F(b) · n − α(b − a)) ,

Next, we use the DG method to get the con-
tinuous normal component B · n of the mag-
netic field on element interfaces. That is to look
for bx

ij(y) ∈ P k([yj− 1
2
, yj+ 1

2
]), such that for any

φ(y) ∈ P k([yj− 1
2
, yj+ 1

2
])

∫ y
j+1

2

y
j− 1

2

bx
ij(y)φdy =

∫ y
j+1

2

y
j− 1

2

Bn
x (xi+ 1

2
, y)φdy

− ∆t


Êz(xi+ 1

2
, y)φ

∣∣∣
y
j+1

2

y
j− 1

2

−
∫ y

j+1
2

y
j− 1

2

Ez(xi+ 1
2
, y)

∂φ

∂y
dy


 ,

and look for by
ij(x) ∈ P k([xi− 1

2
, xi+ 1

2
]), such

that for any φ(x) ∈ P k([xi− 1
2
, xi+ 1

2
])

∫ x
i+1

2

x
i− 1

2

by
ij(x)φ(x)dx =

∫ x
i+1

2

x
i− 1

2

Bn
y (x, yj+ 1

2
)φdx

− ∆t

(
̂̂−Ez(x, yj+ 1

2
)φ
∣∣∣
x
i+1

2

x
i− 1

2

−
∫ x

i+1
2

x
i− 1

2

−Ez(x, yj+ 1
2
)
∂φ

∂x
dx

)
.

Êz,
̂̂−Ez and Ez, −Ez are exact or approxi-

mate Riemann solvers to approximate the elec-
tric field flux Ez at the vertices and on the el-
ement interfaces. For k ⩾ 2, we look for B̃h ∈
[P k−2(Iij)]

2 such that for any Φ ∈ [P k−2(Iij)]
2

with Φ = (Φ1, Φ2)
T,

∫

Iij

B̃h · Φdxdy =

∫

Iij

Bn
hΦdxdy

− ∆t

(∫ x
i+1

2

x
i− 1

2

(
ẼzΦ1

)
|y

j+1
2

dx −
∫ x

i+1
2

x
i− 1

2

(
ẼzΦ1

)
|y

j− 1
2

dx

+

∫ y
j+1

2

y
j− 1

2

( ˜̃−EzΦ2

)
|x

i+1
2

dy −
∫ y

j+1
2

y
j− 1

2

( ˜̃−EzΦ2

)
|x

i− 1
2

dy

−
∫

Iij

(
Ez

∂Φ1

∂y
− Ez

∂Φ2

∂x

)
dxdy

)
.

Here Ẽz and ˜̃−Ez are the numerical flux along
an x-direction edge and y-direction edge.
Reconstraction: Given an element Iij , the re-
construction is to obtain Bn+1

h |Iij ∈ Wk(Iij) on
Iij , such that Bn+1

h = (Bn+1
x,h , Bn+1

y,h )T satisfies

R1.
∫ y

j+1
2

y
j− 1

2

(
Bn+1

x,h (xl+ 1
2
, y) − bx

lj(y)
)

φ(y)dy =

0 on the y-direction edge with l = i − 1, i
and any φ(y) ∈ P k([yj− 1

2
, yj+ 1

2
]),

R2.
∫ x

i+1
2

x
i− 1

2

(
Bn+1

y,h (x, yl+ 1
2
) − by

il(x)
)

φ(x)dx =

0 on the x-direction edge with l = j − 1, j
and any φ(x) ∈ P k([xi− 1

2
, xi+ 1

2
]),

R3.
∫

Iij

(
Bn+1

h (x, y) − B̃h(x, y)
)

Φdxdy = 0 for

any Φ(x, y) ∈ [P k−2(Iij)]
2 when k ≥ 2.

Theorem 1 Under the conditions that
1) the electric field flux approximations along
the same edge satisfy

Ez = −(
˜̃−Ez), −Ez = −(Ẽz),

2) and the electric field flux approximation at
the same vertex is single-valued, satisfying

̂̂−Ez = −Êz,

then for ∀k ≥ 0, the reconstructed Bn+1
h (Iij)

exists uniquely in Wk(Iij) and ∇·Bn+1
h |Iij= 0.

The choice of numerical flux is

Ẽz =
ELD

z + ELU
z

2
− αy

2
(BLU

x − BLD
x ),

˜̃−Ez =
(−ERD

z − ELD
z )

2
− αx

2
(BRD

y − BLD
y ),

Êz =
1

4
(ELU

z + ERU
z + ELD

z + ERD
z )

+
β

4
(
BLU

x + BRU
x

2
− BLD

x + BRD
x

2
)

− α

4
(
BRD

y + BRU
y

2
− BLD

y + BLU
y

2
).

For more details, please see the paper [1].
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Abstract

We develop a compact fourth order scheme for
the elastic wave equation in the frequency do-
main using a first order formulation of the equa-
tion. We use a 3D staggered grid and apply our
minimalistic “Gradient Method" concept to the
BGT absorbing boundary condition. The equa-
tions are solved in a partitioned domain using
the block-parallel CARP-CG algorithm. The re-
sults are compared with the analytic solution.
Keywords: Elastic wave equation, frequency
domain, first order formulation, compact scheme,
fourth order accuracy, gradient method absorb-
ing boundary conditions.

1 The compact fourth order scheme
The elastic wave equation in the frequency do-
main can be expressed as a first order system of
velocities and stresses. The stresses are denoted
by σij and form a symmetric matrix, so there
are only six different values of σij . For conve-
nience, we denote D= ∂u

∂x + ∂v
∂y +

∂w
∂z . Then the

system (including a forcing term) is given by the
following nine equations:

−ρiωu =
∂σ11
∂x

+
∂σ12
∂y

+
∂σ13
∂z

+ Fu

−ρiωv =
∂σ12
∂x

+
∂σ22
∂y

+
∂σ23
∂z

+ F v

−ρiωw =
∂σ13
∂x

+
∂σ23
∂y

+
∂σ33
∂z

+ Fw

−ρiωσ11 = λD + 2µ
∂u

∂x

−ρiωσ22 = λD + 2µ
∂v

∂y

−ρiωσ33 = λD + 2µ
∂w

∂z

−ρiωσ12 = µ(
∂u

∂y
+
∂v

∂x
)

−ρiωσ13 = µ(
∂u

∂z
+
∂w

∂x
)

−ρiωσ23 = µ(
∂v

∂z
+
∂w

∂y
)

u(x, y, z), v(x, y, z), w(x, y, z) are the displace-
ments in the x, y, z directions, respectively, and
F (x, y, z) = (F x, F y, F z) is the vector of dis-
placements in the x, y, z directions at a point
of the domain. Additional parameters: ω=2πf ,
where f is the frequency, λ and µ are the Lamé
parameters and ρ is the density (which are all
assumed to be constant),. The elastic equations
give rise to two wave speeds, the compression or
P-wave vp, and the shear or S-wave vs, given by

vp =

√
λ+ 2µ

ρ
, vs =

√
µ

ρ
.

The wave numbers associated with the two wave
speeds are kp = ω/vp and ks = ω/vs.

2 Discretization
We use the standard discretization notations on
a staggered grid, but we forgo the development
steps of the discretization. This yields

uxxx = −iω
(

σ11
λ+ 2µ

)

xx

−
(

λvy
λ+ 2µ

)

xx

−
(

λwz

λ+ 2µ

)

xx

with corresponding expressions for vyyy and
wzzz. We also obtain appropriate 4th order ex-
pressions for σij , which depend on these third
order derivatives. The derivatives in the O(h2)
terms are replaced by second order central dif-
ferences. These can all be computed on a com-
pact 3×3×3 stencil.

3 Absorbing boundary conditions

The absorbing boundary conditions (ABC) of
[1] (BGT) was originally developed for a sphere
and used radial derivatives (which are also nor-
mal to the boundary direction). We made the
following adaptation of BGT for the elastic case,
which we call BGTE:(

∂

∂r
+

1

r
− ikp

)(
∂

∂r
+

1

r
− iks

)
u = 0,

where r is the distance from the source and the
derivatives are in the radial direction.

In [3] we developed the “Gradient Method"
concept for ABCs, which is based on the princi-
ple that the directional derivatives in any ABC
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should be in the direction of the gradient of the
wavefront, without regard to the orientation of
the boundary. According to this concept, BGT
and BGTE can be used in any convex domain
with an interior source. The advantage of this
approach is that the ABCs take up just one ex-
tra grid point on each side, and this is big ad-
vantage over PMLs.

4 Preliminary results

We use a well-known example from the litera-
ture, see, for example, [5]. The domain is of size
20003 meters, with a source at the center, dis-
cretized by 1423 grid points (including the extra
points for the ABC). Since the Green’s function
of the solution is known, the source of impact
was simulated by placing a small cube at the
center with values of the Green’s function. We
made tests with the BGTE ABC and also with
Dirichlet BC (with boundary values from the
Green’s function). The density was ρ = 1000
Kg/m3, and the frequency was f = 10. The
acoustic case and the elastic case were tested,
with parameters vp = 2500 m/s, vs = 0 m/s for
the acoustic case, and vp=5000 m/s, vs=2500
m/s for the elastic case.

The acoustic case was solved with GMRES,
with a restart of 20. For the elastic case, we
used the CARP-CG algorithm [2], which has
been shown to be especially useful on strongly
convection-dominated PDEs and the Helmholtz
equation at high frequencies. CARP-CG was
used in various wave problems e.g. [3–5].

Fig. 1 shows sample plots for the acoustic
and elastic cases. Each plot compares the Green’s
function with the solutions with the ABC and
with Dirichlet boundary conditions. The acous-
tic case is the Helmholtz equation for the 3 stresses
σii. The good correspondence between the plots
is in line with our previous Helmholtz results.
The results in the elastic case are not as good,
and work on improving the ABC for this case is
still in progress.
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Figure 1: Comparison of the Green’s function with
the solutions obtained with Dirichlet boundary con-
dition and the ABC. Top: the acoustic case. Bot-
tom: the elastic case.
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Abstract

In this talk finite-difference discretization for the
Schrödinger equation on domains that deform in
time will be presented presented. This problem
set-up gives rise to interesting solutions that are
caused by quantum mechanical phenomena. An
example of such phenomenon is Berry phases.
In this study, Berry phases on deforming quan-
tum billiards are explored numerically with prov-
ably stable high-order finite difference methods.
To model the deforming quantum billiard, the
Schrödinger equation is solved with Dirichlet
boundary conditions on domains with moving
boundaries.
Keywords: finite difference methods, quantum
mechanics, high-order accuracy, stability, bound-
ary treatment, deforming domain

Introduction

A much used model in the study of quantum
chaos is particles localized in spatial domains
surrounded by infinite potential walls. The en-
ergy levels of such model systems typically show
a rich behaviour of avoided crossings and cross-
ings occurring in domains that lack symmetry
(‘diabolical points’). The corresponding wave
functions show complex structures, such as scars
resembling classical periodic orbits. To capture
the complex and rich behaviour of such systems,
there is need for stable and accurate numerical
methods. In this work, we derive a stable and
accurate high-order Summation-By-Parts (SBP)
finite-difference scheme for the 2-dimensional (2D)
Schrödinger equation on deforming domains that
can be used to efficiently model this type of com-
plex quantum systems. An example on how this
type of quantum systems behave is displayed
in Figure 1, where the probability density of a
quantum state is displayed before and after a
small domain deformation.

Solutions Schrödinger equation are in gen-
eral wave dominated, therefore numerical meth-
ods with low dispersion errors are needed for effi-

cient numerical solutions. It is well known that
higher-order finite-difference methods are well
suited for this type of problems. However, con-
structing stable boundary treatment for these
methods is a challenging task. A technique for
constructing stable high-order finite-difference
methods for initial-boundary-value-problems is
to combine discretization by SBP finite-difference
operators with a weak method of imposing the
boundary conditions Simultaneous-Approximation-
Term (SAT). So far, the development of the
SBP-SAT technique is mainly focused on prob-
lems on fixed domains. How to extend the tech-
nique to deforming domains for first order hy-
perbolic systems by a time-dependent coordi-
nate transformation is described in [1]. In this
work we extend this framework to the 2-dimensional
(2D) Schrödinger equation.

Continuous problem

To allow efficient and stable numerical discretiza-
tion, the Schrödinger equation is subjected to a
time-dependent coordinate transformation. This
methodology can be extended to higher dimen-
sions, but for notational simplicity this work
is restricted to the 2D-case. We consider the
Schrödinger equation on the domain Ω(t), with
infinite potential walls which are implemented
by Dirichlet boundary conditions:

ut = i∆u− iV (x, y, t)u, t > t0, u ∈ Ω(t),
u = 0, t ≥ t0, u ∈ ∂Ω(t),
u = u0(x, y), t = t0, u ∈ Ω(t).

(1)
Here, ∂Ω(t) denotes the domain boundary and
u0 the initial condition. Since the positions of
the physical domain boundaries are time-dependent
the coordinate transformation

x = x(ξ, η, τ), ξ = ξ(x, y, t),
y = y(ξ, η, τ), η = η(x, y, t),
t = t(τ), τ = τ(t),

(2)

is performed in both time and space. In the
new coordinates the Schrödinger equation (1) is
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(a) Probability density of initial state.

(b) Probability density after moving the upper right cor-
ner adiabatically along the black arrow

Figure 1: Example of adiabatic evolution of in
a quantum billiard

given by

uτ = −T (u) + i∆u− iV (ξ, η, τ, u)u, (3)

where T (u) = 1
2J (γ1uξ+(γ1u)ξ+γ2uη+(γ2u)η−

Jτu). Here J is the Jacobian determinant, and
γ1, γ1 metrical coefficients derived in the trans-
form.

Discretisation

In space, the equation is discretised by high-
order SBP finite difference opertors, the bound-
ary conditions are imposed weakly by SAT. The
summation-by-parts property of the operators,
that mimic the continuous integration-by-part
property gives a provably stable discretization
that preserves the probability. The resulting

Figure 2: Convergence for the numerical scheme

ODE-system is integrated in time with a fourth
order Magnus-Lacsoz integrator which is known
to be a suitable choice for highly oscillating Hamil-
tonian systems, such as the Schrödinger equa-
tion [2].

Numerical experiments

The scheme has been verified by recreating the
experiments on adiabatic deforming quantum
billiard presented by Lauber et al in [3]. The
numerical simulations have shown to agree well
with the experimental results. Further, the con-
vergence rate is verified for 2nd, 4th and 6th or-
der SBP operators by a manufactured solution,
see Figure 2.
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Abstract

Gypsilab is a Matlab suite that enables the
user to solve various problems in wave scatter-
ing simulation. In particular, it contains a com-
plete environment that allows to solve problems
in FEM, or BEM in 2D or 3D. This paper fo-
cuses on the main functionalities and the con-
cept that were used as guides for the develop-
ment of the toolbox.
Keywords: Finite element method, boundary
element method, H−matrices, Matlab

1 Introduction

In many wave scattering simulation problems,
people often uses classical numerical methods
such as the Finite Element Method (FEM) or
the Boundary Element Method (BEM). Very
classically both methods possess differents ad-
vantages and drawbacks that might limit its own
range of application. We present a new Matlab
complete environment to do such applications,
called Gypsilab [2,3] which is open source and
freely available under the GPL 3.0 license.

2 Gypsilab

Gypsilab allows to code directly the variational
formulation of the problem under consideration
with a syntax which is very close to the math-
ematical formulation in a way comparable to
FreeFem++ [9] or Fenics [5] or Xlife++
[11]. The novelty is that the approch is gen-
eralized to variational formulations that come
from the Galerkin or collocation approximations
of boundary integral operators. Moreover the
Green kernels used for the problem might be
completely freely given by the user. A classi-
cal semi analytical regularization technique of
singular integrals is also provided. Un example
of the core of the computational code for the
acoustic scattering by a unit sphere, that pro-
duces eventually the picture given in Fig. 2 is
given afterwards. The familiar user will imme-
diately recognize the classical discretization of
the single layer equation.

% Parameters
N = 9e4; tol = 1e-3; X0 = [0 0 -1];
% Spherical mesh
sphere = mshSphere(N,1);
S2 = dom(sphere,3);
% Frequency
f = 3e3; k = 2*pi*f/340;
% Incident wave
PW = @(X) exp(1i*k*X*X0’);
% Green kernel
Gxy = @(X,Y) ...
femGreenKernel(X,Y,’[exp(ikr)/r]’,k);
% Finite element space
Vh = fem(sphere,’P1’);
% Operator
LHS=1/(4*pi)*integral(S2,S2,Vh,Gxy,Vh,tol);
LHS=LHS+ ...
1/(4*pi)*regularize(S2,S2,Vh,’[1/r]’,Vh);
% Wave trace --> \int_Sx psi(x)’ pw(x) dx
RHS = integral(S2,Vh,PW);
% Solve the system [-S] * lambda = - P0
lambda = LHS \ RHS;

3 H−matrices

One of the known drawbacks of the BEM is that
it usually leads to dense matrices that might not
fit in the memory of usual computers. Special
methods and algorithms have been designed to
circumvent this problem such as the FMM [6],
the SCSD [1] or the H−matrices [4, 7, 8].

Developed mainly by the team of W. Hack-
bush since 2000, the latter theory is a format
that permits to compress standard full matrices
while keeping the flexibility of realizing standard
operations (addition, multiplication, LU factor-
ization, inversion, etc.).

The Gypsilab library contains a full subset
of functions, grouped inside the openHmx folder
that implements, in full Matlab, the hierarchi-
cal format. The adopted viewpoint consists of
an object class containing all the algorithms for
a complete algebra [4].

In openHmx, all traditional operations have
been overloaded in such a way that the new for-
mat can be completely used transparently as the
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classical full and sparse formats. It is therefore
possible to add, subtract, multiply or invert H-
matrices (via the LU factorization) or even visu-
alize their structure through the command spy.
An output of this command is given in Fig. 1.

In Gypsilab, this type of matrices may be
freely used for the numerical solution of wave
scattering problems using the BEM. Moreover,
the library allows for a coupling of sparse and
H−matrices opening the possibility of coupling
FEM and BEM discretizations.

Other functionalities, and in particular new
algorithms, will be also presented that makes
it possible to generalize the approcah to quite
large scale computations. Applications of such
cases will be shown.

Figure 1: Two H-matrices showing low rank ex-
tradiagonal blocks (left) or empty and sparse
(right). The first structure is typically used in
BEM applications while the second one is useful
in FEM.

Figure 2: Magnitude of the pressure produced
in the acoustic scattering by a unit sphere of
a plane wave coming from above, using Gyp-
silab. The sphere is discretized with 9 · 104
vertices and the frequency used is 3 · 103 Hz,
and the problem is solved using the H−matrix
toolbox openHmx.
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Abstract

We consider a first order system least squares
method (FOSLS) for the Helmholtz equation.
To that end, we first derive sharp error estimates
for the scalar variable for a second order ellip-
tic model problem with emphasis on the case of
limited Sobolev regularity of the data. The re-
sults rely on a careful analysis of an appropriate
dual problem in conjunction with recently de-
veloped approximation operators with suitable
orthogonality properties. The results are then
transferred to the Helmholtz equation for which
we present an error analysis for the scalar vari-
able in a high frequency regime under certain
scale resolution conditions.
Keywords: Helmholtz equation, Least Squares
FEM, hp-FEM

1 Introduction

In the first part of the talk we consider a Poisson-
like second order model problem written as a
system of first order equations. For the numeri-
cal discretization of the vector valued and scalar
variable anHHH(Ω,div)×H1(Ω)-conforming least
squares formulation is employed. A least squares
formulation has the major advantage that re-
gardless of the original formulation the linear
system resulting from a least squares type dis-
cretization is always positive semi-definite, mak-
ing it easier to solve. Even though our model
problem in its standard H1(Ω) formulation is
coercive our methods and lines of proof can most
certainly be applied to other problems as well,
see [1, 3] for an application to Helmholtz equa-
tion. A major drawback of a least squares for-
mulation is that the energy norm is somewhat
intractable. Deducing error estimates in other
norms, e.g., the L2(Ω) norm of the scalar vari-
able, is more difficult. Numerical examples in
our previous work [1] suggested convergence rates
previous results did not cover. Closing this gap
in the literature will be our main focus of the
first part of the talk.

In the second part we consider the Helmholtz

equation with large wavenumber k. Extending
the results of [3], we show a priori estimates for
the least squares method that is explicit in h and
p. These estimates are valid under the scale res-
olution condition that kh/p is sufficiently small
and p/ log k is sufficiently large. Our key refine-
ment over [3] is a wavenumber explicit regularity
estimate of a suitable dual problem.

2 Part 1

Let Ω denote a bounded simply connected do-
main in Rn, n = 2, 3 with C∞ boundary Γ and
outward unit normal vector nnn. For γ > 0 fixed
and f ∈ L2(Ω) we consider the following model
problem

−∆u+ γu = f in Ω,

∂nu = 0 on Γ.
(1)

We formulate (1) as a first order system: Intro-
ducing the new variable ϕϕϕ = −∇u we arrive at
the system

∇ ·ϕϕϕ+ γu = f in Ω,

∇u+ϕϕϕ = 0 in Ω,

ϕϕϕ ·nnn = 0 on Γ.

(2)

The corresponding least squares problem is to
find (ϕϕϕ, u) ∈HHH0(Ω,div)×H1(Ω) such that

b((ϕϕϕ, u), (ψψψ, v)) = F ((ψψψ, v)),

for all (ψψψ, v) ∈ HHH0(Ω,div) × H1(Ω) with the
bilinear form b and the linear functional F given
by

b((ϕϕϕ, u), (ψψψ, v)) = (∇ ·ϕϕϕ+ γu,∇ ·ψψψ + γv)L2(Ω)

+ (∇u+ϕϕϕ,∇v +ψψψ)L2(Ω),

F ((ψψψ, v)) = (f,∇ ·ψψψ + γv)L2(Ω).

Next we perform a duality argument for the
scalar variable: For any (ϕϕϕ,w) ∈ HHH0(Ω, div) ×
H1(Ω) there exists (ψψψ, v) ∈HHH0(Ω, div)×H1(Ω)
such that

‖w‖2L2(Ω) = b((ϕϕϕ,w), (ψψψ, v)),
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with (ψψψ, v) allowing for explicit regularity esti-
mates. Exploiting this duality argument gives
the error estimate

‖u− uh‖L2(Ω) . h ‖(u− uh,ϕϕϕ−ϕϕϕh)‖b ,

which is well-known in the literature. At this
point higher order convergence rates are just a
question of approximation properties in the en-
ergy norm ‖(·, ·)‖b. With f ∈ L2(Ω) elliptic reg-
ularity immediately gives u ∈ H2(Ω). Therefore
u can be approximated by globally continuous
piecewise polynomials of degree greater or equal
to one with a rate of h2 in the L2(Ω) norm,
which is achieved by classical FEM, due to the
Aubin-Nitsche trick. In contrast, the above es-
timate does not give the desired rate. The norm
‖(ϕϕϕ−ϕϕϕh, u− uh)‖b contains a term of the form

‖∇ · (ϕϕϕ−ϕϕϕh)‖L2(Ω) = ‖f −∇ ·ϕϕϕh‖L2(Ω) ,

from which no further convergence rate can be
extracted, since f is only in L2(Ω).

The main result of this part will be an opti-
mal L2(Ω) error estimate for the scalar variable.
To that end, an approximation operator IIIh on
HHH0(Ω,div) is constructed that satisfies

(∇ · (ϕϕϕ− IIIhϕϕϕ),∇ ·χχχh) = 0

for any χχχh in the finite element space together
with approximation properties in L2(Ω). Here
a crucial tool are recently developed projection
based commuting diagram operators, see [4].

3 Part 2

We consider a first order least squares method
for the Helmholtz equation with wavenumber k:

−∆u− k2u = f in Ω,

∂nu− iku = g on Γ.
(3)

Similar to the elliptic model problem we will
first derive a least squares formulation and per-
form a duality argument. As in [5] a wavenum-
ber explicit splitting of the dual solution is per-
formed. Again these results are used to derive
an error estimate in L2(Ω) for the scalar variable
under the scale resolution conditions

kh

p
small and p & log k.

We conclude this part with numerical examples
which confirm our findings.
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Abstract

This talk presents an hp a posteriori error anal-
ysis for the 2D Helmholtz equation that is ro-
bust in the polynomial degree p and the wave
number k. For the discretization, we consider a
discontinuous Galerkin formulation that is un-
conditionally well posed. The a posteriori er-
ror analysis is based on the technique of equili-
brated fluxes applied to a shifted Poisson prob-
lem, with the error due to the nonconformity
of the discretization controlled by a potential
reconstruction. We prove that the error esti-
mator is both reliable and efficient, under the
condition that the initial mesh size and polyno-
mial degree is chosen such that the discontin-
uous Galerkin formulation converges, i.e., it is
out of the regime of pollution. We confirm the
efficiency of an hp-adaptive refinement strategy
based on the presented robust a posteriori error
estimator via several numerical examples.
Keywords: a posteriori error analysis, hp dis-
continuous Galerkin finite element method, equi-
librated fluxes, potential reconstruction

1 Introduction

In this talk, we consider the Helmholtz prob-
lem with impedance boundary condition: Find
a (complex) solution u such that

−∆u− k2u = f in Ω,

∇u · n− iku = g on ∂Ω,

where Ω ⊂ R2 is a bounded, Lipschitz domain,
n denotes the outer unit normal on the bound-
ary ∂Ω, f ∈ L2(Ω), g ∈ L2(∂Ω), and k > 0 is
the (constant) wavenumber.

In [2] we developed an a posteriori error esti-
mator based on equilibrated fluxes [1,3,4]. Since
the Helmholtz problem is highly indefinite, it is
not clear how to localize it in order to obtain
localized problems for the error approximation
that are well posed. However, the error has two
components, the interpolation error and the pol-
lution error. While the pollution error is global

and hence cannot be estimated with local error
indicators, it is possible to derive equilibrated a
posteriori error estimators for the interpolation
error.

We will apply the theory of equilibrated flux
and potential reconstructions [3, 4] and derive
the a posteriori error estimator of the form

η2
hp :=

∑

T∈T

(
‖G(uhp) + σhp‖0,T

+
hT
j1,1
‖f + k2uhp − divσhp‖0,T

+ Ctr
∑

E∈E(T )∩E(∂Ω)

h
1/2
E ‖gosc‖0,E

)2

+
∑

T∈T
‖G(uhp)−∇shp‖20,T ,

where G(uhp) denotes a discrete gradient, σhp an
equilibrated flux reconstruction, shp a potential
reconstruction, gosc := σhp · n + g + ikuhp −
γk h

p(g −∇huhp ·n+ ikuhp), hT and hE are the
diameter of the element T of the mesh T and the
edge E of T , respectively, Ctr is a trace inequal-
ity constant, and j1,1 is the first positive root of
the Bessel function of the first kind. We prove
that the a posteriori error estimator is reliable
and efficient, for suitably chosen functions σhp
and shp, up to generic constants which are in-
dependent of the wave number, the polynomial
degrees, and the element sizes.

2 A posteriori error analysis

We approach the a posteriori error estimation
of the DG finite element approximation of the
Helmholtz problem [5] by considering the fol-
lowing (shifted) Poisson problem with Neumann
boundary conditions: Find a (complex) function
w such that

−∆w = F in Ω,

∇w · n = G on ∂Ω,

where F := f + k2uhp, and G := g + ikuhp −
γk h

p(g−∇huhp·n+ikuhp). Note that the bound-
ary condition is chosen in such a way that the

Thursday, 15:00, GM8, Building BD



Numerical Methods 463

102 104 106

10-6

10-4

10-2

100

e
hp

, p=2

e
hp

, p=3

e
hp

, p=4

hp
, p=2

hp
, p=3

hp
, p=4

20 40 60 80 100

10-6

10-4

10-2

100

e
hp

, h=1/2

e
hp

, h=1/4

e
hp

, h=1/8

hp
, h=1/2

hp
, h=1/4

hp
, h=1/8

Figure 1: Algebraic convergence O(hp) for the h-version (left) and exponential convergence of the
p-version (right) of the error ehp = ‖∇u− G(uhp)‖0,Ω and the estimator ηhp for k = 20, cf. [2, fig. 1].

compatibility condition for the pure Neumann
problem is satisfied.

Definition 1 (Flux reconstruction) For given
uhp ∈ Vhp, we define an equilibrated flux recon-
struction for uhp as any function σhp ∈ H(div; Ω)
which satisfies
∫

T
divσhp dx =

∫

T
F dx ∀T ∈ T ,

∫

E
σhp · n ds =

∫

E
−Gds ∀E ∈ E(∂Ω).

Definition 2 (Potential reconstruction) We
define a potential reconstruction as any func-
tion

shp ∈ H1
∗ (Ω) := {v ∈ H1(Ω) : (v, 1) = 0}.

Theorem 3 (Reliability) Let u ∈ H1(Ω) be
the weak solution of the Helmholtz problem, and
uhp ∈ Vhp be the discrete solution. Then, for the
error estimator ηhp, we have that

‖∇u− G(uhp)‖0,Ω .
ηhp + k2‖u− uhp‖0,Ω + k‖u− uhp‖0,∂Ω

+ ‖γkh
p

(g −∇huhp · n+ ikuhp)‖0,∂Ω,

where the hidden constant is independent of k.

Note that reliability of ηhp holds for any equi-
librated flux and potential reconstructions un-
der the condition that p ≈ ln k and kh

p small
enough. In order to also have efficiency, we lo-
cally define equilibrated flux and potential re-
constructions similar to [3, 4], for which we can

prove efficiency of the estimator with constants
independently of the polynomial degree [1].

In the talk, we present extensive numerical
results also for varying k.
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Abstract

We propose a symmetric Trefftz Discontinuous
Galerkin (DG) scheme to solve the time-harmonic
heterogeneous Maxwell problems. It allows to a
drastic decrease of the so-called numerical pol-
lution effect which is unacceptable when large
computational domains (in term of wavelength)
are considered. Moreover, this approach has a
great flexibility on the construction of the DG
mesh in term of shape and size of cells.
Keywords: Trefftz method, Galerkin Discon-
tinuous, pollution effect, electromagnetism

1 Introduction

Numerical methods like the finite element method
and the finite difference method are widely be-
ing used to solve electromagnetic time-harmonic
wave equations. One limitation they all face is
called the pollution effect. When solving for
high frequency on large domains: 1 << L/λ,
where λ is the wavelength and L is a character-
istic length of the physical domain of interest,
numerical stability deteriorates at a high rate.
High dispersion occurs, and a large number of
points must be used to ensure acceptable preci-
sion. Currently, lot of research is being con-
ducted to overcome these problems and thus
to propose a general and efficient method for
dealing with large wave propagation problems
(acoustic, electromagnetic, seismic). An idea is
to use basis functions adapted to the physical
phenomena rather than "simple" polynomials.
The performances of the method obviously de-
pend on the choice of basis functions. Recently,
the teamMagique3D of INRIA has developed an
efficient Trefftz method for acoustics [1]. Their
scheme is based on the one hand on a GD formu-
lation of the problem and on the other hand on
a non-explicit approximation space constructed
from local resolutions of the underlying PDE.
In particular, this method allows an accurate
take into account of evanescent modes which is
a weakness of approaches based on plane waves.

For this talk, we will present an extension of
this type of approach in the context of electro-
magnetism problems. In this case, we propose
an approximation space parametrized from the
range of an impedance trace operator defined
on the edges/faces of the Trefftz cells and basis
functions computed by using a high-order edge
finite elements. This choice makes it possible a
great flexibility on the shape and size of the cells
constituting the mesh. In particular, polygonal
/ polyhedral cells, even non-convex, are allowed.
Two-dimensional numerical examples will illus-
trate the relevance of the proposed method.

2 A symmetric Trefftz DG method for
the Maxwell equations

We are interested in the following second order
time-harmonic Maxwell system:




∇× 1

µ
∇×E− εk2E = 0 in Ω

γ×(
1

µ
∇×E)− ZγtE = gR on ΓR

γtE = gD on ΓD

(1)

where Ω is a bounded and open Lipschitz do-
main, ∂Ω = ΓD∪ΓN , gR, gR are boundary data,
Im(Z(x)) > 0 a.e on ΓR, k is the wavenumber
in vaccum, ε, µ are the relative dielectric pa-
rameters and γ× and γt are the tangential trace
and component operators respectively.

Let T be a partition of the computational
domain Ω i.e Ω = ∪T∈T T and ∀T 6= K ∈ T ,
T ∩ K = ∅. Fi and Fb are the sets of interior
and boundary faces respectively. We now define
a space of local (Maxwell) solutions: for each
Trefftz cell T ∈ T ,

XT = {w ∈ H(curl, T ) ;

∇× 1

µT
∇×w − εTk2

Tw = 0 in T,

γtw|∂T , γ×(
1

µ
∇w)|∂T ∈ L2(∂T )

}
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The Maxwell problem (1) can be rewritten
in the following symmetric DG formulation: find
E ∈ XT := ΠT∈T XT such that ∀w ∈ XT , a(E , w) =
`(w) where

a(E , w) :=
∫

Γ

(
{{E}} · [[γ×µ−1∇×w]] + [[γ×µ

−1∇×E]] · {{w}}

−{{µ−1∇×E}} · [[γ×w]]− [[γ×E]] · {{µ−1∇×w}}
)
ds

+

∫

∂Ω

E · n× (µ−1∇×w) + n× (µ−1∇×E) ·wds

−2

∫

Γb

Z−1(µ−1∇×E)(̇µ−1∇×w)ds

and

`(w) := −2

∫

Γb

Z−1gR · (µ−1∇×w)ds

+2

∫

Γb

gD · n× (µ−1∇×w)ds.

with [[·]] and {{·}} are the classical jump and av-
erage operators and Γ := ∪F∈FiF .
3 Discretization

Following the idea of [1], the construction of our
approximation space is based on a parametriza-
tion of the spaces XT from Cauchy data. For
that, we first introduce the isomorphism L :
L2(∂T ) → XT defined by L(g) = w where w is
the solution of
{ ∇× µ−1

T ∇×w − εTk2
Tw = 0 in T

γ× × (µ−1
T ∇×w)− ZTγtw = g on ∂T

(2)

where ZT is an impedance operator such that
Im(ZT ) > 0 (for example ZT := i

√
εT µT k).

For each Trefftz cell T ∈ T , we first intro-
duce two meshes Th(∂T ) and Th(T ) of ∂T and
T respectively. Next, we introduce two finite
elements spaces Pqh(∂T ) and N p

h (T ) which are
respectively a space of piecewise polynomials of
degree at most q defined from Th(∂T ) and a
high-order H-curl conforming space of order p
defined from Th(T ).

The discretization of the problem (2) by us-
ing a finite element method on N p

h (T ) induces a
discrete equivalent operator Lph of L. Finally,
the discrete DG Trefftz formulation is : find
Eh ∈ ΠT∈T Lph

(
Pqh(∂T )

)
such that

∀wh ∈ ΠT∈T Lph
(
Pqh(∂T )

)
, a(Eh , wh) = `(wh).

Remark 1 The basis functions (wi)i=1,··· ,N are
defined from a set (ϕi)i=1,··· ,N of basis functions
of Pqh(∂T ) by using the relation wi := Lph (ϕi).

4 Numerical validations

The main motivation for Trefftz DG type meth-
ods is reducing the impact of the pollution ef-
fect, by which more classical FE methods tend
to be limited. One way of analyzing this is by
studying long range wave propagation. For that,
we consider a duct of height 1 and length L
where an incoming plane wave is generated at
x = 0, propagating freely to the right, and fi-
nally arriving at a transparent boundary con-
dition at the right side. The figures 1 show
that the pollution effect is one order of mag-
nitude larger for the FEM than for the Trefftz
method at comparable meshes and approxima-
tion orders.

Figure 1: Relative maximum error for long
range propagation using the DG Trefftz (up)
and FEM (down) for different orders and
meshes. N on this figure corresponds to 1/h.
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Abstract

Hybrid meshes comprised of hexahedras and te-
trahedras are particularly interesting for repre-
senting media with local complex geometrical
features like the seabed in offshore applications.
We develop a coupled finite element method for
solving elasto-acoustic wave equations. It com-
bines Discontinuous Galerkin (DG) finite ele-
ments for solving elastodynamics with spectral
finite elements (SE) for solving the acoustic wave
equation. SE method has demonstrated very
good performances in 3D with hexahedral me-
shes and contributes to reduce the computa-
tional burden by having less discrete unknowns
than DG. The implementation of the method
is performed both in 2D and 3D and it turns
out that the coupling contributes to reduce the
computational costs significantly: for the same
time step and the same elementary mesh size,
the CPU time of the coupled method is almost
halved when compared to the one of a full DG
method.
Keywords: Hybrid meshes, Discontinuous Ga-
lerkin method, Spectral Element method, cou-
pling

1 Introduction

We focus on the first-order elasto-dynamic sys-
tem due to space constraint. We denote by Ω a
rectangular domain in 2D or a parallelepiped in
3D. We consider the system of wave equations:





ρ(x)
∂v

∂t
(x, t) = ∇ · σ(x, t),

∂σ

∂t
(x, t) = C(x)ε(v(x, t)),

(1)

where ρ is the density, C the elasticity tensor
and ε the deformation tensor. The space vari-
able is x ∈ Rd (with d = 2, 3) and t ≥ 0 is
the time variable. The two unknowns are v the
wavespeed and σ the strain tensor. This system

can be solved by using DGm (see [1, 2]) or a
SEm (see [3–5]). Our objective is to construct a
variational formulation resulting from the com-
bination of both approximations. The difficulty
of such a coupling is the communication between
the two different schemes.

2 Variational Formulation

Offshore geophysical exploration can be repre-
sented by a reference domain composed of a
layer of water over the ocean bottom (see Fig
1). The computational domain is covered by a
hybrid grid composed of hexahedra on the top
and tetrahedra within the bottom. Basically,
we define two areas: Ωh,1 composed of cartesian
cells and Ωh,2 paved with unstructured tetrahe-
dra capable of following the topography of the
in-depth site. The transition between both areas
is located inside the water. Hence, the interface
Γ1/2 = Ωh,1 ∩ Ωh,2 is flat and the two regions
communicate with each other through suitable
fluxes. The portion Ωh,1 of the mesh can thus
be seen as a macro-element of the DG partition.
In the following, we use the subscript 1 to des-
ignate the fields computed over Ωh,1 while any
field with subscript 2 corresponds to a quan-
tity computed over Ωh,2. We introduce the pair
(w, ξ) to test the continuous problem (1) and
to get a variational formulation set in the whole
domain Ω. For the sake of simplicity, we denote
by aj , bj , cj and dj the bilinear forms defined
by

aj(v, w) =

∫

Ωh,j

ρ∂tv · w,

bj(σ,w) = −
∫

Ωh,j

σ · ∇w

cj(σ, ξ) =

∫

Ωh,j

∂tσ : ξ,

dj(v, ξ) = −
∫

Ωh,j

(∇(Cξ)) · v
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Then the global variational formulation reads
as:

a1(v1, w1) + a2(v2, w2) = b1(σ
1
, w1) + b2(σ

2
, w2)

+
∑

Γ∈Γint

∫

Γ
{{σ

2
}}[[w2]] · n +

∫

Γ1/2

{{σ}}[[w]] · n

c1(σ
1
, ξ

1
) + c2(σ

2
, ξ

2
) = d1(v1, ξ

1
) + d2(v2, ξ

2
)

+
∑

Γ∈Γint

∫

Γ
[[Cξ

2
]]{{v2}} · n +

∫

Γ1/2

[[Cξ]]{{v}} · n

where Γint stands for the set of internal bound-
aries limiting DG-elements. The shortage of the
paper challenges us to omit to speak about ex-
ternal boundary conditions.
At the interface Γ1/2, we define n as the unitary
normal vector oriented from Ωh,1 to Ωh,2. We
can see how the two areas communicate through
the different fluxes involving the jump and the
mean value respectively defined by:

[[w]] = (wK2 − wK1) · n, {{ξ}} =
1

2
(ξ
K2

+ ξ
K1

)

K1 and K2 are two connected DG-cells and wKj
(resp. ξ

Kj
) is the value of w (resp. ξ) in Kj .

In comparison with the implementation of a full
SEm or a full DGm, we have to create new terms
corresponding to the handling of Γ1/2. They are
written in terms of integrals mixing DG basis
functions with a SE-one.

3 Numerical tests

We consider an exemple of anisotropic elasto-
acoustic domain depicted in Figure 1

water

water sand

salt

sandstone

Figure 1: Propagation domain

It is a square 3000 meters paved with 74969
cells composed of 53969 unstructured triangles
and 21000 structured quadrangles. The source

is a second-order Ricker point source located on
the top of the layer of water. Both DGm and
SEm have been validated separately in stratified
media for which we dispose of analytical solu-
tions. To assess the accuracy of the coupling,
we have compared the full DG solution with the
DG-SE one at order three and the results are
displayed in Table 1. We compare the CPU-
time at equal time-step and the relative error
between these two solutions and a reference so-
lution computed using DGm at order five. The
second column shows that the DG-SEm solution
has the same accuracy as the DG one. Then the
third column certifies that the coupling allows
to reduce the CPU time by a factor of 2. It is
worth noting that we have used a global time-
step and in the near future, we hope to improve
our results by using local-time stepping.

Relative error(%) CPU-time(s)
DGm 5e-4 16317

DG_SEm 1e-3 8918

Table 1: DGm vs DG_SEm comparison.
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Abstract

Predictive theory to geometrically engineer materi-
als in continuum systems to have desired symmetry-
induced effects is developed here by bridging the
gap between quantum and continuum descriptions.
We emphasise a predictive approach, the strength of
which is demonstrated by the ability to design well-
defined broadband edge states and valley-Hall net-
works. The design of these valley-Hall networks is
contingent upon properties specific to the underly-
ing geometries chosen. We hope that the additional
degrees of freedom afforded by our designs, in addi-
tion to the topological robustness of the modes, will
result in its assimilation into practical devices.

Keywords: valley-Hall, topological, networks, elas-
ticity, phononics

1 Introduction

Guiding waves, splitting, and redirecting them be-
tween channels, and steering waves around sharp
bends in a lossless manner is of interest across many
areas of engineering and physics. In particular, ge-
ometrically engineering valley-Hall phononic crys-
tals to direct waves along interfaces in a robust tune-
able manner has shown much potential. Herein, we
elucidate the core concepts of these effects as well
as a myriad of other exotic symmetry-induced phe-
nomena.

2 Models

We choose to illustrate our theory within the con-
text of flexural waves upon thin structured elastic
plates, by doing so we emphasise the continuum na-
ture of the model and show the generality of the ba-
sic ideas. These displacement eigenmodes are gov-
erned by the (non-dimensionalised) Kirchhoff-Love
(K-L) equation

(
∇4

x − ω2
κ

)
ψnκ = F (x), (1)

and the reaction forces at the point constraints F (x)
introduce the dependence upon the direct lattice. The
simplest constraints are those of point mass-loading
with the reaction forces proportional to the displace-
ment via an impedance coefficient and thus

F (x) = ω2
κ

∑

n

P∑

p=1

M
(p)
n ψnκ(x)δ

(
x− x

(p)
n

)
.

(2)
Here n labels each elementary cell, containing p =
1...P constraints, that periodically repeats to create
the infinite physical platonic crystal. The mass in
cell n at point constraint p is given by M (p)

n . This
constraint automatically encompasses the point pinned
platonic crystal, as the limit ω2

κM
(p)
n → ∞, where

the reaction forces are retained. This model has the
advantage of being almost completely explicit; this
leads to highly resolved solutions that enable us to
interpret the results accurately.

Figure 1: Underside of periodically pinned elastic
plate. The displacement of the flexural waves sat-
isfies the K-L equation where F (x) is given by Eq.
(2) in the limit ω2

κM
(p)
n →∞.
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3 Hexagonal valley-Hall networks

The valley Hall effect originates from the gapping
of Dirac cones, resulting in nontrivial band gaps
where broadband edge states are guaranteed to re-
side. In two-dimensional systems, there are only
three symmetry sets that are guaranteed to yield Dirac
cones, all of which occur on hexagonal lattices. These
three cases are distinguised by their point groups at
Γ in Fourier space; these are C6v, C6, C3v [1]. We
demonstrate that from these edge states can be in-
telligently constructed that are imbued with a chi-
ral flux that results in enhanced robustness against
defects [2]. Utilising these edge states alongside
tunneling phenomena, the interfacial wave networks
designed contain splitters which partition energy in
two, three, four, or five directions (Fig. 2). This
enriches the valleytronics literature that has, so far,
been limited to two-directional splitters. Importantly,
note that only the two and four-way splitters, de-
signed, result in outgoing leads that retain topolog-
ical protection. Experimental results for a period-
ically pinned elastic plate (setup shown in Fig. 1)
will be shown in the presentation.

Figure 2: Valley-Hall supernetwork containing a
four-way topological energy-splitter (that utilises
tunneling phenomena)

4 Three-way valley-Hall beam-splitter for elas-
ticity

Strategically combining four structured domains, Fig.
3(a), creates the first ever three-way topological energy-
splitter for elasticity, Fig. 3(b) [3]; remarkably, this
is only possible using a square, or rectangular, lat-
tice, and not the hexagonal structures more com-
monly used in valleytronics. To achieve this effect
accidental Dirac cones, that are located away from
high symmetry points, are engineered. The geomet-
rical construction of our structured medium allows
for the three-way splitter to be adiabatically con-
verted into a wave steerer around sharp bends [3].

(a) (b)

Figure 3: Panel (a): Schematic of structured do-
main containing four geometrically distinct regions,
source located (highlighted) at beginning of left-
most interface. Panel (b): three-way valley-Hall
energy-splitter for an elastic plate.

Unlike the four-way topological beam-splitter
alluded to in the previous section, this three-way
splitter is unreliant upon tunneling phenomena and
hence the transmission along the outgoing leads is
far more tunable. Dissimilar to the hexagonal case,
the two interfaces of this square structure, are re-
lated by time-reversal symmetry (TRS). This sub-
tlety is what allows for more than two-way parti-
tioning of energy away from a well-defined nodal
point without the need for tunneling.

5 Conclusion

We have geometrically engineered interfacial wave
networks containing energy-splitters that partition
energy in more than two directions. Due to the tun-
ability of the energies directionality by geometry,
our results have far-reaching implications for appli-
cations such as beam-splitters, switches and filters
across wave physics.
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Abstract

A hybrid approach based on the boundary in-
tegral equation method (BIEM) and the fre-
quency domain spectral element method (FD-
SEM) to simulate wave propagation in a layered
phononic crystal (PnC) with multiple delamina-
tions and a network of piezoelectric transducers
mounted on its surface is presented here. The
proposed hybrid approach incorporates the ad-
vantages of the BIEM and the FDSEM. Bound-
ary conditions at the crack faces are satis�ed
by Bubnov-Galerkin method. In order to sat-
isfy continuity boundary conditions at the con-
tact area between a PnC and a piezoelectric
transducer, the collocation method and Petrov-
Galerkin method are applied.

Keywords: hybrid method, wave propagation,
crack, periodic, phononic crystal

1 Introduction

This paper presents a hybrid approach for mod-
elling wave phenomena in a layered PnC with
multiple delaminations and a network of piezo-
electric transducers. The method employs the
FDSEM [1] to discretize piezoelectric structures
and the BIEM [2] to simulate wave propagation
in a multi-layered waveguide with a set of hor-
izontal delaminations. The presented method
extends the hybrid approach proposed in [3] to
simulate dynamic interaction of perfectly bonded
or partially debonded piezoelectric structures with
a layered elastic waveguide. The coupling of the
methods is performed in the contact area be-
tween the PnC and transducers via the intro-
duction of unknown traction vectors.

2 Statement of the problem

Let us consider in-plane motion of a network
of piezoelectric transducers (PZTs) occupying
rectangular domains Ω(n) and a PnC composed
of M unit-cells (each is made of 2 elastic lay-
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Figure 1: Geometry of the problem

ers V (m,k),m = 1, 2, . . . , M, n = 1, 2) on a half-
space V (0) and L strip-like cracks with stress-
free faces occupying domains S(l), see Figure 1.
The following governing equation in terms of
displacements ui and electric potential ϕ are
valid in Ω(n) for the time-harmonic motion with
the angular frequency ω:

Cijkluk,lj + ekijϕ,kj + ρω2ui = 0, (1)

eikluk,li − εikϕ,ki = 0. (2)

Here Cijkl, ekij and εik are elastic, piezoelectric
and dielectric constants, ρ is the mass density,
uk,lj denotes derivative of uk with respect to xl

and xj . Electric potentials V
(n)
± are applied at

lower Ŝ
(n)
− and upper Ŝ

(n)
+ surfaces of PZTs Ω(n):

ϕ = V
(n)
± , x ∈ Ŝ

(n)
± , (3)

At the side boundaries of the PZTs, horizon-
tal electric displacements D1 = 0. In the PnC,
the governing equations (1) are employed with
zero electric potential. The continuity of the dis-
placement u and the traction (τ = {σ12, σ22})
vectors is assumed at the interfaces between sub-
layers and at the boundaries Ŝ

(n)
− = V (M,2) ∩

Ω(n). The crack faces S(l) are stress-free.
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3 Hybrid scheme

At �rst, traction vector τ = q(n) is introduced
in the contact area S(n −). The solution in PZTs
is constructed via the FDSEM [1], so that the
state vector y = {u1, u2, ϕ} can be approxi-
mated using Lagrange interpolation polynomi-
als CI(x1, x2) at Gauss�Lobatto�Legendre points
via a special index I [3]:

y(n) =
∑

I

y
(n)
I CI(x1, x2), (4)

The total wave-�eld in the PnC can be ob-
tained as a sum of wave-�elds û(n) excited by
PZTs and the wave-�elds u(n) scattered by the
cracks. According to the BIEM [2], displace-
ment and traction vectors can be expressed as
follows:

û(n) =
1

2π

∫

Γ

K(n)(α, x2)Q
(n)(α)e−iαx1dα, (5)

τ̂ (n) =
1

2π

∫

Γ

T(n)(α, x2)Q
(n)(α)e−iαx1dα. (6)

Here Q(n), K(n) and T(n) are the Fourier trans-
forms of q(n) and corresponding Green's matri-
ces for the PnC, while Γ is the integration con-
tour (for more details, see [2]). Similar expres-
sions are written for the scattered wave-�elds:

u(l) =
1

2π

∫

Γ

K(l)(α, x2)W
(l)(α)e−iαx1dα, (7)

τ (l) =
1

2π

∫

Γ

T(l)(α, x2)W
(l)(α)e−iαx1dα. (8)

Here K(l), T(l) and W (l) are the Fourier trans-
forms of Green's matrices and unknown crack
opening displacement (COD) w(l)(x1) for l-th
crack. In order to obtain the solution, the COD
for l-th crack is expanded in terms of Chebyshev
polynomials of the second kind with square-root

weight p
(l)
i (x1)

w
(l)
k (x1) =

∑

i

γ
(l)
ki p

(l)
i (x1), (9)

while the traction vector is approximated using
splines sJ(x1) based at the nodal points [3]

q(n)(x1) =
∑

J

q
(n)
J sJ(x1). (10)

In accordance with the FDSEM, substitu-
tion of (4) and (10) into governing equations
(1) and (2) leads to the equations

A(n) · ŷ(n) + B(n) · q̂(n) = ϕ(n), n = 1, N,

where vectors ŷ(n), q̂(n) and γ̂(l) are composed
of unknown expansion coe�cients, while ϕ(n)

arises from boundary condition (3). Substitu-
tion of representations (4)�(8) into the bound-
ary conditions of the continuity of displacements
and the application of Bubnov-Galerkin method
leads to the relations

C(n)·ŷ(n) = D(nk)·q̂(k)+F(nm)·γ̂(m), n = 1, N.

Substitution of integral representations (5)�(8)
into the stress-free boundary conditions at crack
faces gives relations

G(lk) · q̂(k) + H(lm) · γ̂(m) = 0, l = 1,M,

which �nalize the system necessary to obtain
solution of the considered boundary value prob-
lem.

4 Conclusions

The proposed method is applicable to the multi-
parameter analysis of the phenomena related to
elastic wave excitation and scattering in multi-
layered structures. In order to obtain the tran-
sient solution, the Laplace transform with re-
spect to the frequency variable can be applied.

The research was supported by the Russian
Foundation for Basic Research within the project
18-501-12069 with the German Research Foun-
dation (DFG, Project No. ZH 15/29-1).
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Abstract

Due to its many applications ranging from phys-
ics to biology, the field of micromanipulation
has grown tremendously in recent years. Here,
we introduce and experimentally demonstrate
a novel approach to identify the optimal light
fields for micromanipulation even in very com-
plex environments like disordered media. Our
approach is based on a generalization of the well
established Wigner-Smith time-delay operator
and can be used to transfer torque, to apply
pressure or to create an intensity focus at any
desired target. Most importantly, these opti-
mal light fields can be created based solely on
the far-field information stored in the experi-
mentally accessible scattering matrix.
Keywords: micromanipulation, disordered sys-
tems, complex scattering

1 Introduction

Starting with the seminal work of Ashkin on
optical trapping of nano-scale dielectric parti-
cles with a laser beam [1], the field of optical
micromanipulation has become a research area
on its own and has enabled many interesting
applications like cellular manipulation, micro-
robotics and tests of fundamental physics. A
recent and very promising trend in this research
field is to make use of the technological advances
of spatial light modulators to create light fields
that are tailor-made for each desired purpose [2].
The techniques developed in this context so far
rely, however, mostly on iterative optimization
schemes, which do not assure the convergence
to the optimal wave state in the iteration, as
one may get stuck in some local minimum [3,4].
Here, we demonstrate a novel approach that al-
lows us to obtain the optimal scattering state for
micromanipulation purposes as the solution of a
simple eigenvalue problem based on the scatter-
ing matrix of a system and its dependence on
the target’s properties.

2 Theory

To achieve the optimal field configuration for
manipulating a designated target buried inside
a scattering medium, we utilize a generaliza-
tion of the Wigner-Smith time-delay operator
Qω = −iS−1dS/dω [5, 6], which is originally
based on the scattering matrix S of a given sys-
tem and its derivative with respect to the fre-
quency ω. Due to this frequency derivative,
the eigenvalues of Qω correspond to well-defined
delay times associated with the scattering by
a given potential, where time is the conjugate
quantity to frequency. By replacing the fre-
quency derivative with a derivative with respect
to some arbitrary parameter α of the target,
the eigenstates of this generalized Wigner-Smith
(GWS) operator now feature eigenvalues, which
correspond to a well-defined change in the con-
jugate quantity to α between the incoming and
outgoing waves [7]. In Ref. [7] we demonstrate
that choosing the parameter α as the position
of the target that we want to manipulate, yields
GWS-eigenstates that are optimal in terms of
the momentum transfer onto the target. As we
will show here analytically, numerically and ex-
perimentally, this concept can also be extended
to deliver an optimal torque or radiation pres-
sure onto the target or for focusing wave inten-
sity inside of it.

3 Results

Using the GWS-operator Qα = −iS−1dS/dα we
show that considering α as the radius of a cic-
ular target enables us to apply a well-defined
pressure to it. Similarly, we can also control
the torque exerted onto a target by consider-
ing the orientation angle of a non-circular tar-
get as the parameter α. Moreover, using the
refractive index of the target as the parameter
α allows us to control the total intensity de-
posited inside the target. In addition to the an-
alytical proofs, we confirm our theoretical find-
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Figure 1: Measured intensity distribution for the GWS-eigenstates corresponding to the largest eigen-
value (a) for the rotation of an asymmetric metallic target inside an empty waveguide, (b) for a radius
change of a metallic cylindrical target inside a disorder, and (c) for a change in the target’s refractive
index. In (a) the intensity builds up as far away as possible from the target’s center such that the
maximal torque is transferred, whereas the intensity distribution in (b) builds up on all sides of the
target to produce an optimal value of the applied radiation pressure. Using the refractive index as
parameter α results in GWS-eigenstates, which maximize the stored intensity inside the target as can
be seen in (c).

ings by numerical simulations in which we solve
the two-dimensional scalar Helmholtz equation
[∆ +n(~r)2k20]ψ(~r) = 0 for waveguide geometries
filled with randomly placed circular scatterers of
varying sizes using a finite element method [8].
Here, ∆ is the Laplacian in two dimensions, n(~r)
is the refractive index distribution dependent
on the position ~r = (x, y), k0 is the vaccuum
wavenumber and ψ(~r) is the z-component of
the TE-polarized electric field. Since the GWS-
operator is Hermitian for unitary scattering ma-
trices its eigenbasis is complete and orthogonal
with the consequence that the GWS-eigenstate
featuring the largest eigenvalue corresponds to
the optimal state for a given change in the con-
jugate quantity to α. Note that our approach
is applicable to any kind of target scatterer in
arbitrary environments for any kind of waves
(electromagnetic, acoustic, etc.). The only re-
quirement of our protocol is a linear wave scat-
tering problem to which a scattering matrix can
be assigned.

Finally, we implemented these ideas also ex-
perimentally with a microwave setup featuring
a waveguide that contains a disordered medium
with randomly placed cylindrical Teflon scatter-
ers of varying size. In the middle of the scatter-
ing region we place target scatterers of different
shapes and sizes. Since we have full control of
the injected microwave field both in phase and
amplitude, this setup allows us to measure the
scattering matrices needed for the construction
of the GWS-operator. The resulting eigenstates
are then reinjected into the system and their
measured electric field distributions around the

target scatterer (see Fig. 1) confirm the findings
of our theoretical analysis.
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Abstract. This work addresses the mathematical jus-
tification of topological derivative-based qualitative in-
verse scattering, for the case of anisotropic scatterers
and background and near-field data. Our results in-
clude justification of sign heuristics and verification, in
the isotropic case, of spatial decay.
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Consider an unbounded, homogeneous reference
propagation medium where a wave u satisfies

−div
(
A·∇u

)
− κ2u = 0

(with A ∈ R3×3
sym; see [4] for scattering in aniso-

tropic media). The medium hosts an unknown
inhomogeneity with compact support B ⊂ R3

and material parameters Ã∈R3×3
sym. BothA and

Ã are positive definite. Probing excitations and
measurements are supported by the respective
closed surfaces Γs and Γm, which surround B
and are assumed to either coincide or be nested.

Let the single-layer potential operator Srα :
H−1/2(Γα)→ H1

loc(R3) (α=m, s) be defined by

Sαϕ(x) =

∫

Γα

Φκ(x−y)ϕ(y) dy

(α=m, s) where Φκ(x−y) is the radiating fun-
damental solution for the background medium.
Towards the identification of B, the medium is
excited by source densities g ∈ H−1/2(Γs) cre-
ating incident fields u = Ssg, which give rise in
the perturbed medium to the total field

ugB(x) =

∫

Γs

uB(x; s)g(s) ds x∈R3

where uB(·; s) is the radiating solution of

−div
(
AB ·∇uB

)
− κ2uB = δ(· − s)

with AB :=A+(Ã−A)χB. In the present set-
ting (where sources and measurements are not
in the far field), point sources and their super-
position as potentials replace plane waves and
Herglotz wave functions used in e.g. [1].

Let W κ[g] be the volume potential defined
for any density g ∈ L2

comp(R3;C3) by

W κ[g](x) =

∫

R3

∇Φκ(x−y)·g(y) dy.

The scattered field us
B(·; s) := uB(·; s)−u(·; s) is

then given by us
B(·; s) = W κ[hB], where hB :=

(Ã−A) ·∇uB(·, s) ∈ L2(B;C3) solves the sin-
gular volume integral equation (VIE)

A1/2Q
[
I−QRκ

]
A1/2hB = 2h in B (1)

with Q := (Ã+A)−1(Ã−A) and Rκ := I +
2A1/2W κA

1/2. There exists a matrix q ∈ R3×3

and a diagonal matrix σ such that Q = qT·σ2·q,
with the nonzero entries of σ2 (also diagonal)
being ±1 according to the sign of the corre-
sponding eigenvalue ofQ. The VIE (1) is known
to be well-posed, see [2] for details.

Cost functional We assume the knowledge
on Γm of a measurement uobs(·; s) of uB(·; s) for
each source location s∈Γs, and idealize the sit-
uation further by considering noise-free data, i.e.
uobs(·; s) = uB(·; s). We formulate the problem
of identifying B in terms of the minimization of
the cost functional

JE(D) :=
1

2

∫

Γs

∫

Γs

∣∣(EuD − Euobs
)
(s′; s)

∣∣2 ds ds′

where D is the support of a trial inhomogeneity
and the bounded linear operator H1/2(Γm) →
H1/2(Γs) E, defined by E := (γmSs)

?(γmSm)−1

and acting on the first variable of uD, uobs, pro-
duces an “equivalent measurement” Euobs and
its model prediction EuD that are defined on
the source surface Γs. Crucially for our anal-
ysis, E ensures a symmetrical factorization of
the measurement operator g 7→ ugB. This sym-
metrization issue commonly arises for factoriza-
tion methods with near field data (see e.g. [5]).

Topological derivative. The medium is “sam-
pled” using trial inhomogeneities Bδ(z) of sup-
port Bδ(z) = z+δB and size δ > 0, centered at
a given point z and endowed with specified ma-
terial constants Az. Denoting by uδ := uBδ the
total field forD=Bδ(z), we set J(δ) :=JE(Bδ).
The topological derivative (TD) T (z) of J at z is
then defined (see e.g. [6]) through the expansion

J(δ) = J(0) + δ3T (z) + o(δ3).
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The heuristic basis for identification is that T (z)
is expected to take pronounced negative values
in a neighborhood of B, consistently with the
notion of minimizing J . This heuristic involves
both the magnitude and the sign of T (z).

An explicit expression of T (z) can be formu-
lated and analysed [3], taking advantage of the
form (1) of the governing VIE and using its so-
lution operator; this yields the following result:

Theorem 1 Given the true anisotropic scatterer
(B, Ã), we assume that the background is isotropic
(A = aI) and that the contrast has a definite
sign in the sense that σ2 = σ2I with σ2 = ±1.
Then, if we consider a spherical isotropic trial
inhomogeneity (i.e. B the unit ball and Az =
azI) and a wave number κ such that

‖q ·Rκ ·q‖L2(B)→L2(B) < 1, (2)

the TD satisfies the sign condition

sign(T (z)) = −sign
( az−a
az +a

σ2
)

ensuring correctness of the TD sign heuristic.
When both media are anisotropic, the above re-
sult remains true if the trial contrast also has a
sign (i.e. if σz = σzI with σ2

z =±1).

Condition (2) restricts the justification of the
sign heuristic to “moderate” scatterers. It is less
restrictive than the weak scattering condition
‖q·Rκ·q‖� 1 defining the Born approximation.

Spatial decay of TD. The spatial decay of
T (z) as z moves away from B is the other com-
ponent of the TD heuristic warranting justifica-
tion. As near-field data is assumed, we need to
understand how T (z) decays for z “far" from B
while still remaining “reasonably" distant from
Γm. We treat this issue by means of a two-scale
asymptotic calculation [3], limited to the case

Figure 1: Two-scale asymptotics: notation.

where (i) Bδ is spherical and (ii) Γs = Γm = ρŜ
(with Ŝ the unit sphere). For a fixed z outside
B we set the reference length as dz := dist(z, B),
noting that |y−z|, y ∈ B is O(dz). Let η > 0
be a small parameter that characterizes the ra-
tio between the size of B and the radius ρ of
Γm = Γs (Fig. 1), so that |y|/|s| = |y|/ρ = O(η)
(y ∈ B, s ∈ ρŜ. We express the facts that (a)
the probing region and inhomogeneity are far
from Γs = Γm and (b) z stays “far from" the
inhomogeneity, by assuming that
|y−z|
|s| =

|y−z|
ρ

= O(ηα),
|y|
|y−z| = O(η1−α),

respectively, uniformly for y ∈ B and for some
constant 0<α< 1. Loosely speaking our scaling
is such that dz/ρ= ηα and diam(B)/dz = η1−α

(Fig. 1). We performed a “far field" asymptotic
expansion of T (z) as η → 0, retaining only the
O(1) and O(ηα) terms (the O(1) terms being
those appearing in the far field expansion [1]).

Theorem 2 For an unknown isotropic inhomo-
geneity B and with the above definitions, we
have T (z) = O

(
(κ dist(z, B))−2

)
as η → 0.

Numerical examples. The main theoretical
findings of this work are supplemented by 3D
numerical examples [3]. Results (a) show that
the operator E, which is important for the anal-
ysis by allowing a symmetric source-to-data fac-
torization, affects only mildly the results in prac-
tice, and (b) verify the well-documented robust-
ness of TD-based imaging against data noise.
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Abstract

We propose a new topology optimisation for
cloaking devices. In the present formulation,
we explore an optimum dielectric material dis-
tribution minimising total electromagnetic field
in a domain as well as far-field scattering am-
plitude. The dielectric distribution obtained in
the present formulation works as a “material-
and shape-independent cloak”. We can put any
object in the area in which the electromagnetic
field is minimised without disturbing the scat-
tered field. Thus, the optimised dielectric mate-
rial distribution cloaks any object regardless of
its shape and material.
Keywords: cloaking, topological derivative,
level-set method, boundary element method

1 Introduction

Recently, various topology optimisations have
been proposed to realise so-called cloaking de-
vices [1, 2]. Most of the existing formulations
minimise scattered field in a preset bounded re-
gion (which is often set by trial and error) by a
specific material of particular shape. A device
obtained in such a way may not work as a cloak-
ing for an object which has a slightly different
shape or material constants from the expected
ones. Also, the scattering outside the preset re-
gion is not necessarily minimised. In this study,
to resolve these issues, we propose a new formu-
lation for topology optimisation of the cloaking
device which works regardless of shape or ma-
terial of objects [3]. The numerical experiments
show the effectiveness of the proposed formula-
tion.

2 Electromagnetic scattering in 2D

We here consider a plane electromagnetic wave
scattered by dielectric materials. We assume
that the electromagnetic field is uniform in x3

direction and is TE-polarised, i.e., the magnetic
field only has an x3 component which is denoted
by u. With these settings, u is governed by the

following boundary value problem:

∇2u(x) + k2
i u(x) = 0 x ∈ Ωi, (1)

[u(x)] =

[
1

εi

∂u(x)

∂n

]
= 0, (2)

The radiation condition as |x| → ∞, (3)

where ki := ω
√

µiεi, εi and µi are the wave
number, relative permittivity and permeablity
in Ωi, respectively, and i takes either 1 or 2.
We here assume Ω2 is a bounded domain filled
with a dielectric material, and Ω1 := R2 \ Ω2 is
the host vacuum domain. ω is the angular fre-
quency with which the time dependence of the
electromagnetic fields is written as e−iωt. Also,
[] in (2) denotes the jump in its argument across
the boundary Γ of Ωi, and n is the unit normal
on Γ directed from Ω2.

It is well known that the scattered field usc =
u−uin (where uin denotes a plane incident wave)
admits the following far-field approximation:

usc(x) = e− iπ
4

√
2

πk1|x|e
ik1|x|f(x̂), (4)

in which f is the far-field pattern evaluated as

f(x̂) = − i

4

∫

Γ

[
∂usc(y)

∂n

+ik1(x̂ · n(y))usc(y)] dΓ(y), (5)

and x̂ = x/|x|.
3 Topology optimisation

With the far-field pattern reviewed in the pre-
vious section, our topology optimisation prob-
lem is defined as follows: For a specific incident
plane wave uin, find Ω2 ⊂ D such that the fol-
lowing cost function J is minimised:

J =
w1

N1

N1∑

i=1

|f(psc
i )|2 +

w2

N2

N2∑

i=1

|u(xobs
i )|2, (6)

where D is a bounded domain (which is of-
ten called fixed design domain), psc is set as
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psc
i = (cos 2πi/N1, sin 2πi/N1)

T , xobs
i is i-th ob-

servation point at which the total magnetic in-
tensity will be minimised. w1, w2 > 0 are preset
constants. Dielectric material distribution Ω2

minimising the cost function J achieves cloak-
ing for arbitrary objects. In fact, Ω2 itself is in-
visible since the scattering amplitudes for all the
directions are reduced. Furthermore, even when
an arbitrarily shaped object with arbitrary ma-
terial constants is put in the region where the
observation points distribute, the object does
not influence the scattering field because the to-
tal field in the area is minimised.

In this study, we explore such a distribu-
tion of Ω2 by the level-set method [4, 5], which
involves the topological derivative [6, 7]. Our
method [4] is an extension of [5] and uses B-
spline surface as the level-set function, which
enables us to reduce the number of design vari-
ables considerably. We will present at the oral
presentation the explicit representation of the
topological derivative for our cost function and
the detailed algorithm of our level-set method.

4 Numerical examples

We here present an example of optimised cloak-
ing device. In this numerical example, we set
the fixed design domain as D = [0, 60]2 in
which four circular dielectric material (relative
permittivity: ε2 = 2) of radius eight are allo-
cated at regular interval. We use N1 = 360
directions to evaluate the scattering amplitude
and put N2 = 151 × 151 observation points
in [25.5, 34.5]2. With these settings, we min-
imised the cost function J (with w1 = 0.1 and
w2 = 1.0) for the incident plane wave of an-
gular frequency ω = 0.7 propagating along x1

direction. In the optimisation, 31 × 31 B-spline
functions are used to express the level-set func-
tion, and the topological derivative is evaluated
by the boundary element method.

Figure 1 shows the topology optimised
cloaking device as well as the corresponding
magnetic field. Not only the scattered field but
also the total field in the dashed rectangle is re-
duced. One can put any material in the dashed
rectangle without disturbing the scattered field.
This means that the designed cloak can make
arbitrary objects invisible.
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Figure 1: Topology optimised cloaking device
(Solid line). The real part of the corresponding
magnetic field is also plotted.

5 Concluding remarks

In this study, we have proposed a new formu-
lation for cloaking design which can make arbi-
trary objects invisible.
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Topological optimization of periodic materials to enhance anisotropic dispersive e�ects
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Abstract In the context of waves in periodic me-
dia, we propose an iterative algorithm that deter-
mines an optimal material distribution to reach tar-
get e�ective dispersive properties. It relies on an
homogenized model of this medium, an update pro-
cedure based on the topological derivative concept,
and on an e�cient FFT-accelerated method to solve
cell problems.

Keywords: Topological optimization, homogeniza-

tion, dispersion

Introduction We are interested in standing
waves in unbounded two-dimensional domains
�lled with a periodic medium, e.g. antiplane
elastic shear waves. The material is made of
cells Y` = `Y , where Y is the reference unit cell
and ` the characteristic periodicity length (Fig.
1). At circular frequency ω, the wave amplitude
u` obeys the equation:

∇ · (µ`∇u`
)
+ ρ`ω

2u` = 0, (1)

where µ` and ρ` are the Y`-periodic shear modu-
lus and density of the medium.

In the long wavelength regime (λ > `), the
motion can be described approximatively by the
superposition of a slowly varying mean �eld U
and higher-order (in ε = `/λ) oscillating correc-
tors. Given an e�ective (homogenized) model
satis�ed by U , the e�ective dispersion of the
medium is characterized by the variations of the
phase velocity c(k,d) = ω(k,d)/k of a plane
wave U(x) = exp(ikd · x) when the wavenum-
ber k and direction d vary. Here we adopt the
following direction-dependant dispersion indica-
tor:

γ(d) :=
∂2c2(k,d)

∂k2

∣∣∣∣
k=0

. (2)

In this work, the goal is to optimize the
material distribution within the unit cell Y to
reach some target e�ective dispersive proper-
ties, in particular to maximize their anisotropy.
The proposed method relies on four main com-
ponents: a second-order homogenized e�ective
model, the topological derivatives of the model's
coe�cients, an iterative topological optimiza-
tion algorithm for the unit cell, and an e�cient

ℓ ≪ λ

Ba(z) =z+aB

b

a ≪ ℓ

Figure 1: Periodic material and small phase change

�xed-point FFT method to evaluate these topo-
logical derivatives at each iteration. These com-
ponents are now described in more details.

Second-order homogenized model The two-
scale asymptotic homogenization method [1,3] is
a popular way to derive an e�ective model from
the equation (1). One obtains a fourth-order
wave equation for the mean �eld U :

µ0 : ∇2U + ω2%0U

+ `2
[
µ2 :: ∇4U + ω2%2 : ∇2U

]
= 0, (3)

where (µ0, %0,µ2,%2) are constant tensors com-
puted by solving cell problems over Y [3], �:�
and �::� indicate inner products between second-
and fourth-order tensors, and ∇j = ∇(∇j−1).
Moreover, this model coincides with the one ob-
tained by the Bloch-Floquet wave method (see
[1, Sect. 3] for the case ρ` = 1). The dispersion
indicator γ de�ned by (2) is then simply given
by:

γ(d) = 2`2
[
%2 ⊗ µ0 − %0µ2

(%0)2

]
:: (d⊗d⊗d⊗d).

(4)

Topological optimization of the unit cell

To reach a target dispersive behavior, one �rst
de�nes a cost functional to be minimized, e.g.

J(Y ;d1,d2, . . . ,dNd) =
1

2




Nd∑

j=1

wj [γ(dj)]
αj


 ,

(5)
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where each exponent αj is �xed to 2 (resp −2)
to minimize (resp. maximize) the dispersion in
direction dj and the positive constants wj are
user-de�ned weights that balance the contribu-
tion of each term in the cost functional. This
cost functional depends on the cell Y implicitely
through the homogenized coe�cients that inter-
vene in the expression (4) of γ.

An iterative topological optimization algo-
rithm, already used in microstructural optimiza-
tion of static properties [2], is then adapted to
the present situation. We restrain ourselves to
two-phase cells, which are described thanks to
a level-set function ψ. At each iteration, the
update of this function is based on the concept
of topological sensitivity (TS) of the cost func-
tional to an in�nitesimal phase change at point
z, supported by a small disc Ba of size a � `,
as depicted in Figure 1. This TS, denoted DJ ,
is the leading-order coe�cient of the following
expansion of the perturbed cost functional Ja:

Ja = J + (a/`)2DJ(z) + o
(
(a/`)2

)
.

The negative minima of the map z 7→ DJ(z)
thus indicates the locations in Y where a small
phase change would decrease J the most. Fol-
lowing [2], the level-set update ψn → ψn+1 is
done by partial projections of ψn onto the TS
DJ . The algorithm stops when the optimality
condition DJ > 0 is reached, indicating a local
minimum of J .

Computational considerations At each it-
eration, the TS DJ is computed by simple alge-
braic combinations of the TSs of the four coe�-
cients (µ0, %0,µ2,%2) whose evaluation requires
the resolution of 12 direct and adjoint scalar po-
tential problems on the current material con�g-
uration of the cell Y , as speci�ed in [3].

To solve these problems, we adopted the FFT-
accelerated algorithm proposed by Moulinec and
Suquet in the 90's (see e.g. the introduction
of [4]), that permits (i) a meshless representa-
tion of the unit cell as an image, (ii) a very sim-
ple implementation of the whole procedure and
(iii) good computational performances.

An example of microstructure obtained with
the proposed procedure is presented in Fig. 2.
We also note that a similar study is conducted
in [1], using the shape derivative of the homog-
enized coe�cients rather than their topological
derivative to update the level-set.

(a) (b)

(c)

0°

45°

90°

135°

180°

225°

270°

315°

0.00775

0.01550

0.02325

0.03100

Dispersion | ( )|

Initial
Final

(d)

Figure 2: Microstructure optimization to maximize
the dispersion in the directions θ = ±π/4 and mini-
mize it in the directions θ = 0, π/2 (Nd = 4 in the
de�nition (5) of J). The unit cell is discretized into
128 × 128 pixels and initialized with a random dis-
tribution of materials 1 (white pixels) and 2 (black
pixels). The material ratios are µ2/µ1 = 6 and
ρ2/ρ1 = 1.5. The optimality condition was reached
after 9 iterations. (a) Initial unit cell, (b) �nal unit
cell, (c) resulting microstructure (3×3 unit cells) and
(d) �nal dispersion indicator γ.
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Efficiently optimizing inclusion rotation angle for maximal power flow
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Abstract
We present an efficient method for optimizing the
rotation angles of a collection of objects for max-
imal time-averaged electromagnetic power flow
in a specified direction. This method combines a
reduced-order model and multiple-scattering ap-
proach for computing the electromagnetic field
with adjoint state optimization, and achieves
fast and accurate results. We demonstrate our
method with a numerical example that shows a
dramatic increase in power flow.
Keywords: Electromagnetic scattering, Opti-
mization, Photonics

1 Introduction
Significant research effort has been expended
in recent years for the analysis, design, and op-
timization of dielectric optical nanostructures,
as the span of their potential uses continues to
grow [1]. A common subclass of these nanos-
tructures contains devices consisting of many
repetitions of a dielectric subwavelength build-
ing block which is parametrized in some way, be
it by radius, height, or rotation angle, where the
overall structure has unique light manipulation
capacities. Researchers would benefit from the
ability to choose these parameters, given arbi-
trary desired electromagnetic properties, in an
efficient and automated way. In this work, we
focus on power flow maximization, where the de-
sign parameters are the rotation angles of a set
of otherwise identical inclusions, building upon
our field intensity optimization approach in [2].
With this approach, the single repeated inclu-
sion is discretized, after which all inclusions are
replaced with multipole expansions that have co-
efficients β (see also [3]). These coefficients give
rise to a multiple-scattering formalism which is
both easy to solve and differentiable with respect
to the rotation angles ϕ.

2 Formulation
We assume an arbitrary layout of smooth two-
dimensional inclusions that are identical up to
rotation with relative permittivity εr, a trans-

verse magnetic incident plane wave with wave-
length λ that is represented by the multipole
coefficients α, and use the multiple-scattering
formulation to arrive at our system of equations

(I−XT)β = Xα, (1)
where X is a block diagonal scattering matrix
that depends on the shape and rotation angle
of each inclusion, and T is a translation matrix
that depends on the distances between the inclu-
sions. The residual of this system is denoted by
c. Our goal is to maximize the time-averaged
power flowing through a curve strictly outside
the inclusions, as given by

P = 1
2<

∫
(E×H∗) · n̂ dl. (2)

As the multipole expansion yields the represen-
tation Ez(r) = ez(r) · β, and similar represen-
tations for Hx, Hy, we can find the derivatives
of the power with respect to these coefficients,
∂P/∂β. We can now construct the gradient g
for our optimization problem using the adjoint
state method. For a complex vector ζ, we define
the Lagrangian

Λ = −P + 2<(ζ>c), (3)
whose total derivative with respect to one of the
rotation angles ϕi is

dΛ
dϕi

=2<
([
ζ>(I−XT)− ∂P

∂β

] ∂β
∂ϕi

)

− 2<
(
ζ>

∂X
∂ϕi

X−1β
)
. (4)

Solving the adjoint system of equations in the
square brackets for ζ, which does not depend
on i, means that the right-hand side of Eq. (4)
can be computed for all values of i with a single
system solution. On the other hand, since we
are solving for c = 0, we know that the total
derivatives of Λ and −P are equal. Finally, the
derivatives of the scattering matrix are readily
available by a multiplication of sparse and di-
agonal matrices. Thus both P and its gradient
can be computed with the runtime complexity
of 2 system solutions, which in our case are
accelerated with the Fast Multipole Method.
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3 Numerical results
We apply our approach to a collection of 38
rounded stars with diameter 0.6λ0 and εr = 9
that are arranged on a triangular lattice. Fig. 1(a)
depicts the initial structure with rotation angle
ϕ = 0 for each inclusion, as well as the elec-
tric field amplitude in its vicinity in response
to an incident unit plane wave. This structure
completely blocks the plane wave from propa-
gating to the right. We ran our optimization
procedure with the objective of maximizing the
right-propagating power flow on the dotted line
shown in Fig. 1. The optimized structure is
presented in Fig. 1(b), where the electric field
amplitude along the dotted line is substantially
larger. The rotation angles do not adhere to any
obvious pattern and are vertically asymmetric.
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0
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(b)
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1.5

2.0

2.5

3.0

Figure 1: Electric field amplitude (a) before and
(b) after the optimization process. The dotted
line indicates the 50 points where power flow
was maximized.

The optimization process converged with the
criterion ∆P < 10−5 in 149 seconds and 112
iterations, and is shown in detail in Fig. 2, where
P0 denotes the power flow without the structure
and ‖g‖∞ is the infinity norm of the gradient. In
particular, the normalized power P/P0 increased
from 9.3× 10−3 to 2.57.

Finally, we investigate the dependence of
the transmitted power on the wavelength of the
incident plane wave in Fig. 3. The power flow
exhibits a sharp peak at the design frequency
λ0 which rapidly drops off below P0, with a
full width at half maximum of 0.01λ0. This is
unsurprising, as we only optimized the rotation
angles for a single frequency.

The code for our approach is available in the
open-source Julia package ParticleScattering [4].
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Figure 2: Convergence of the normalized power
and the gradient norm.
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Figure 3: Right-propagating power vs. wave-
length for the optimized device.
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Guided modes in a hexagonal periodic graph like domain : the zigzag and the armchair
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Abstract

In this work, we study the wave propagation
in hexagonal periodic media that are close to a
graph domain. By using an asymptotic analysis,
we exhibit situations where the introduction of
lineic defects into the geometry of the domain
leads to the appearance of guided modes and
we show that the direction of the defect leads to
very different properties of the guided modes.
Keywords:honeycomb structure, periodic me-
dia, spectral theory, guided modes.

1 Introduction

Let us first consider a hexagonal periodic medium
Ωε that consists of the plane R2 minus an infinite
set of equi-spaced hexagonal perfect conductor
obstacles. The distance between each obstacle
is supposed to be small and is denoted ε (see in
Figure 1 where Ωε lies in the grey region). Let
(e1, e2) be the two directions of periodicity of
Ωε represented in Figure 1 (without loss of gen-
erality, we suppose that the period is 1 along
these directions).

ε
e1

e2

Figure 1: The hexagonal periodic medium Ωε

Then we introduce two types of unbounded lineic
defects, the zigzag one and the armchair one,
by changing the distance between two obstacles
from each side of a broken line having respec-
tively a zigzag form or an armchair one. More
precisely, the lineic defect is in the vertical di-
rection vz = e2 for the zigzag case and in the
horizontal direction va = 2e1 − e2 for the arm-
chair case (see Figure 2). The corresponding
domains are denoted respectively Ωz

ε,µ and Ωa
ε,µ.

Each domain Ωj
ε,µ is periodic in the direction vj ,

we denote Ω̂j
ε,µ one of its period. We are inter-

µε µε

Figure 2: Two types of lineic defect: the zigzag
and the armchair cases
ested in the existence of guided modes, that is to
say solutions of the homogeneous wave equation
propagating along the defect. In other words,
for a fixed wavenumber β ∈ R, we look for cou-
ples (ujε(β), λjε(β)) ∈ H1

loc(Ω
j
ε,µ)×R+ satisfying

for j ∈ {z, a}{
−4ujε,µ = λjε,µ u

j
ε,µ, in Ωj

ε,µ

∂nu
j
ε,µ = 0 on ∂Ωj

ε,µ

(1)

such that ujε,µ
∣∣
Ω̂jε,µ
∈ H1(Ω̂j

ε,µ) and

∀x ∈ Ωj
ε,µ, ujε,µ(x + vj) = e2ıπβ ujε,µ(x). (2)

This problem can be rewritten as an eigenvalue
problem for a self-adjoint operator Ajε,µ(β) in
L2(Ω̂j

ε,µ). We want, in this work, to exhibit con-
ditions on the perturbations which ensure exis-
tence of guided modes and we want to point out
the differences between the zigzag and the arm-
chair cases. Remark that we have performed
a similar study for square lattices with a lineic
perturbation [1]. The condition on the pertur-
bation was simple: if µ ∈ (0, 1), for ε small
enough, there exist guided modes for any β.

2 Methodology

Inspired by previous works on square lattices [1],
we analyse the spectral problem and more gen-
erally the spectrum of the operator Ajε,µ(β) by
using a standard approach of asymptotic anal-
ysis. We first identify the formal limit of the
eigenvalue problem as the distance between the
obstacles tends to 0. It corresponds to an eigen-
value problem for a second order differential op-
erator defined along an hexagonal graph, ob-
tained by taking the geometrical limit of the do-
main Ωj

ε,µ when the thickness tends to 0. The
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differential operator Ajε,µ(β) is the laplacian on
each edge defined for continuous, β-quasi peri-
odic (in the direction vj) functions satisfying
the so-called Kirchhoff conditions at each ver-
tice of the graph. The spectrum of this operator
can be characterized explicitly. Finally, we show
that the spectrum of the operator Ajε,µ(β) ap-
proaches in some sense the spectrum of the op-
erator Ajε,µ(β) as ε is small enough (see e.g. [2]).

3 Spectrum of the operators Ajε,µ(β)

Before studying the discrete spectrum of the op-
erators Ajε,µ(β), let us describe their essential
spectrum. Using the Weyl’s theorem, we know
that they are linked to the essential spectrum
σ(Aε) of the unperturbed operator Aε = −4,
D(Aε) = {u ∈ H1(Ωε), 4u ∈ L2(Ωε), ∂nuε =
0 on ∂Ωε}. Thanks to the Floquet Theory, we
have

σ(Aε) =
⋃

k∈R2

⋃

n∈N
µε,n(k)

where (µε,n(k))n is the increasing sequence of
the eigenvalues of Aε(k) = −4, D(Aε(k)) =
{u ∈ H1(Ωε), 4u ∈ L2(Ωε), ∂nuε = 0 on ∂Ωε,
u(x + ej) = eık·eju(x)}. Of course, the Flo-
quet variable k can be considered in the Bril-
louin zone, which is here also an hexagon de-
fined thanks to the dual basis (e∗1, e

∗
2) of (e1, e2)

(defined by ei · e∗j = 2πδij). By using the same
asymptotic approach than the one described in
the previous section but adapted to the the op-
erator Aε, we can show that, as in e.g. [3], be-
cause of the symmetry and the invariance by
2π/3−rotation, for ε small enough the spectrum
of Aε contains Dirac points in the Brillouin zone,
i.e conical intersections between two dispersion
surfaces (see a numerical computation of the
spectrum in Figure 3).

Figure 3: Dirac Points in the spectrum of Aε.
More precisely for k∗ = (−1/3, 1/3), let µ∗ =
µε,0(k∗), we have

µε,0(±k∗ + η) = µ∗ − αε‖η‖+Oε(‖η‖2)

µε,1(±k∗ + η) = µ∗ + αε‖η‖+Oε(‖η‖2)

These Dirac points are one of the specificity
of hexagonal or honeycomb structures (they do
not appear in square lattices for instance) re-
sponsible for particular phenomena. We want
in this work to point out one of them.

Finally, we have that for the zigzag case
σess(A

z
ε,µ(β)) =

⋃

k1∈R

⋃

n∈N
µn(k1, β)

the Dirac Point being in σess(A
z
ε,µ(β)) for β =

±1/3 and for the armchair case
σess(A

a
ε,µ(β)) =

⋃

2k1−k2=β

⋃

n∈N
µn(k1, k2)

the Dirac Point being in σess(A
a
ε,µ(β)) for β = 0.

Besides, still using the asymptotic analysis, we
can show the following result.

Theorem 1 For any µ 6= 1, for ε small enough,
there exists δ > 0 such that for all β ∈ (−1/3 +
δ, 1/3− δ), Azε,µ(β) has an eigenvalue λzε,µ(β) =
µ∗ +O(ε).

In other words, guided modes arise for any peri-
odic lineic perturbation of zigzag type, this cor-
responds in a certain sense to a robustness re-
sult. Moreover, these guided modes have almost
zero-group velocity. For the armchair case, this
result does not hold : we can show that the ex-
istence of guided modes is extremely dependent
on µ and β. The influence of the Dirac points
on that phenomena is under investigation. We
want also to study the existence of guided modes
in such structure when the symmetry or the in-
variance by rotation is broken. We will illustrate
all the theoretical results by numerical simula-
tions.
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Abstract

We consider the scattering problem for an inho-
mogeneous periodic layer in Rd, d = 2, 3, which
is locally perturbed by some bounded defect.
We formulate the corresponding variational prob-
lem on an unbounded domain and show the equiv-
alence of this problem to a family of quasiperi-
odic problems on a bounded domain. This al-
lows us to prove unique existence of the scat-
tered wave using only a classical condition for
the uniqueness like local absorption of the re-
fractive index and to introduce a numerical me-
thod to approximate the solution.

Hereafter, we address the inverse scattering
problem to reconstruct the perturbation by ana-
lyzing the near �eld operator, proving the unique-
ness of the reconstruction and applying the New-
ton-method for numerical examples. Moreover,
we de�ne a carefully designed far �eld operator
for our setting and formulate the Factorization
method to reconstruct the shape of the pertur-
bation.

Keywords: non-periodic wave scattering, in-
verse scattering problem, numerical approxima-
tion, Bloch-Floquet transform

1 Introduction

The growing industrial interest for micro or nano-
structured materials and the resulting challenge
to construct an automated non-destructing test-
ing method for the structures is one of the fun-
damental motivations to study perturbed peri-
odic scattering problems. For a �rst study, we
will consider a simpli�ed physical model of elec-
tromagnetic scattering in TE mode. To �x the
notation, we de�ne for R ≥ 0 the sets

ΩR := Rd−1 × (0, R), ΓR := Rd−1 × {R},
ΓR0 := (−π, π)d−1 × {R}, I := (−1/2, 1/2)d−1.

2 Direct problem

Suppose n2
p ∈ L∞(Rd+), d = 2, 3, is an 2π-

periodic refractive index in x := (x1, . . . , xd−1),
which satis�es n2

p = 1 for xd > R0 > 0 and
characterizes the unperturbed scattering layer.

To simplify the notation, we assume that the lo-
cal perturbation q ∈ L∞(Rd+) has the support in

ΩR0
0 , where ΩR

0 := (−π, π)d−1×(0, R) for R > 0,
such that we consider the perturbed refractive
index n2 := n2

p+q. The scattering problem is to

�nd the scattered �eld u ∈ H1
0,loc(Rd+)∩H1(ΩR)

for every R > R0, such that

∆u+ k2n2u = −f in Rd+, u = 0 on Γ0, (1)

for some right hand side f ∈ L2(ΩR0). More-
over, the scattering �eld is assumed to satisfy
the so-called angular spectrum representation.
As a consequence, we can de�ne the exterior
Dirichlet-to-Neumann map T , which is a bounded
linear operator fromH1/2(ΓR) toH−1/2(ΓR). We
call the space of H1(ΩR)-functions with vanish-
ing trace on Γ0 as H̃1(ΩR) and consider an arbi-
trary function f ∈ L2(ΩR), thus, the variational
formulation is to
Find a function u ∈ H̃1(ΩR), such that

∫

ΩR
∇u · ∇v − k2n2uv dx

−
∫

ΓR
T (u

∣∣
ΓR

)v dS =

∫

ΩR
fv dx

for all v ∈ H̃1(ΩR). Since for real wave num-
bers k and for a real refractive index some sur-
face waves can exist, we assume that the set
{Im n2

p > 0} is not empty.

Theorem 1 For Im n2
p ≥ 0 and Im q ≥ 0 and

if there is an open ball contained in {Im n2
p >

0}, then the variational problem has a unique

solution for every right hand side f ∈ L2(ΩR).

3 Inverse problem

The next step is to analyze the inverse scattering
problem to reconstruct the local perturbation.
For that, we consider the following measurement
operator S.

De�nition 2 Let Λq : L2(ΩR0) → H̃1(ΩR
0 ) be

the solution operator for some q ∈ Q := D(S)
and let γΓR0

: H̃1(ΩR) → H1/2(ΓR0 ) be the trace
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operator restricted to ΓR0 . We de�ne the mea-

surement operator

S : Q→ L(L2(ΩR0
0 ), L2(ΓR0 )), q 7→ γΓR0

◦ Λq,

which only measures the scattered �eld on one

periodic cell of the upper boundary.

We show injectivity of S by utilizing the complex

geometrical optics.

Theorem 3 Consider for d = 3 two perturba-

tions q1 and q2 ∈ Q∩C2(R3
+) with compact sup-

port in R3
+, and assume n2

p ∈ C2
p(ΩR

0 ). If we call

the solution operator Λq : L2(ΩR0
0 ) → H̃1(ΩR)

for q ∈ Q, and de�ne S̃ : Q→ L(L2(ΩR0), L2(ΓR)),
q 7→ γΓR ◦ Λq, where γΓR is the trace operator,

then it holds: If S̃(q1) = S̃(q2), then q1 = q2.

In the following, we will reconstruct the per-
turbation by CG-REGINN. For that, we prove
di�erentiability and ill-posedness of the mea-
surement operator S. We discretize L2(ΩR0

0 ) in
2 × Nf = 32 right hand sides and add 1.1%
additive relative noise to the traces of the ap-
proximated solutions vector w

∣∣
ΓR0
, i.e., the mea-

surement is given by vε = (w + c)
∣∣
ΓR0
, where

||c
∣∣
ΓR0
||
L2(ΓR0 )

2Nf = 0.011× ||w
∣∣
ΓR0
||
L2(ΓR0 )

2Nf .

(a) Three periods of perturbed refractive index. Red line
marks the area of measurement for S.

(b) Exact Re q. (c) Reconstruction of Re q.

Figure 1: Result for 1.1% noise and k2 = 3.

4 Factorization method

Now we drop the homogeneous boundary condi-
tion and consider the two dimensional scattering
problem

∆us + k2(n2
p + q)us = −f in ΩR, (2a)

∂

∂x2
us = T±Rus on Γ±R, (2b)

where ΩR is rede�ned as ΩR := R×(−R,R) and
analogously ΩR

0 . The analysis of the forward
problem is easily extendable to the setting of
free space scattering problem. Fix some small
η > 0 and consider the plane waves uinc(x, d) =
e−ikd·x with some d ∈ S, where
S := {d ∈ R× C : d · d = 1, |Im d2| ≤ η}.

Set α as a function by de�ning α(d) := kd1 and
let ũsqp(·, d)+uinc(·, d) be the α-quasiperiodic to-
tal �eld ũqp(·, d) solving the scattering problem
∆ũqp(·, d) + k2n2

pũqp(·, d) = 0 in R2.

De�nition 4 We set the notation ũs(x,±R, d′) :=
J us(α(d′), x,±R), where J is the Bloch-Floquet

transform, and de�ne the far �eld u∞ ∈ L2(S)
of the solution us by

u∞(d′) :=

[∫

ΓR0

−
∫

Γ−R
0

]
∂ũs

∂x2
(·,−d′)uinc(·, d′)

− ũs(·,−d′)∂u
inc(·, d′)
∂x2

dS.

De�ne the far �eld operator F : L2(S)→ L2(S),
Fg(d′) :=

∫
S u
∞(d, d′)g(d) dS(d), where u∞(d, ·)

is the far �eld of the solution us(·, d) for f =
k2qũqp(·, d).

Theorem 5 Under some assumptions the oper-

ator F# := |(Re F )|+ (Im F ) : L2(S) → L2(S)
is strictly positive and it holds for z ∈ R2

z ∈ supp(q)⇔ φ∞z ∈ R(F
1/2
# ),

where φ∞z is the far �eld of the fundamental so-

lution for (2) with right hand side f = δz.

Figure 2: Result of FM (1% rel. noise, k2 = 3).
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Abstract

We consider acoustic wave propagation in peri-
odic rigid sca�olds saturated by viscous or in-
viscid �uids. In a case of perfused pores, the
steady �ow is incompressible, while the acoustic
perturbations are given by the barotropic ap-
proximation. To analyze the wave dispersion,
two approaches are examined: the periodic ho-
mogenization (PH) and the Floquet-Bloch wave
decomposition (FB). The PH method provides
suitable approximation of the dispersion for low
wave numbers, the FB method enables to cap-
ture band gap behaviour which is in�uenced by
the sca�old geometry.

Keywords: Acoustics, periodic sca�olds, Floquet-
Bloch theory, homogenization, band gaps

1 Introduction

Modelling of acoustic waves in �uid saturated
porous media has been treated mostly using the
homogenization theory [1], or using the phe-
nomenological models using the theory of porous
media. Here we consider waves propagating in a
�uid saturating these periodic structures (scaf-
folds) while neglecting their compliance. To an-
alyze wave dispersion for wave lengths compara-
ble with the periodicity size, the Floquet-Bloch
(FB) theory is employed, cf. [3]. For compari-
son, the lowest frequency modes are compared
with the homogenization-based prediction.

Both the homogenization procedure and the
Floquet-Bloch wave analysis are concerned with
boundary value problems formulated in the rep-
resentative pore Yf ⊂ Y ⊂ R3, see Fig. 1, with
Y = Π3

i=1]0, ai[, whereby on ∂#Yf = ∂Yf ∩
∂Y 6= ∅ periodicity conditions are prescribed
for Y -periodic functions. Alternatively we con-
sider a steady �ow of the Newtonian incom-
pressible �uid through a periodic system of scaf-
folds in an in�nite medium; the velocity �eld w̄
is governed by the Navier-Stokes (N-S) equa-
tions with nonslip conditions on the pore walls
Γs = ∂Yf∩Y and assuming incompressible �uid,

∇·w̄ = 0. The acoustic waves are superimposed
to the steady �ow, so that the total velocity and
pressure �elds are w = w̄ + ũ and q = q̄ + p̃.

2 Sca�olds with inviscid static �uid

For an inviscid �uid and assuming w̄ = 0, the
N-S system reduces to

γρ0
∂2

∂t2
p̃ = ∇2p̃ , (1)

with νf · ∇p̃ = 0 on Γs, where ν
f denotes the

unit normal vector and γ is the acoustic �uid
compressibility. The FB analysis of plane waves
relies on the wave decomposition (note i2 = −1)

p̃(y, t) = p(y)e−iκ·yeiωt,

ũ(y, t) = u(y)e−iκ·yeiωt ,
(2)

where p and u are Y -periodic functions, ω is the
frequency, and the wave vector κ = κn is given
by the wave direction n and the wave number
κ. This ansatz substituted in (1) leads to the
eigenvalue problem: Given κ ∈ R, �nd ωk and
the Y -periodic eigenmode pk, k = 0, 1, . . . sat-
isfying

−∇ · (∇pk − 2iκnpk) + κ2pk = ω2
kγρ0p in Yf ,

νf · (∇pk − iκnpk) = 0 on Γs .

(3)

It can be shown that ωk ∈ R. The numerical so-
lutions are obtained using the FE-discretization.

The periodic homogenization of the pore �uid
governed by (1) considered in the frequency do-
main provides a modi�ed Helmholtz equation,

∇ ·A∇p0 +
ω2

c2f
φfp

0 = 0 , (4)

where φf is the �uid volume fraction, cf = 1/
√
γρ0

is the sound speed in the free �uid. The struc-
tural tensorA = (Aij) is computed in terms of a
characteristic response of the Laplace operator
in Yf . Planar harmonic wave have no dispersion,
since κ = κf

√
φf/A : n⊗ n, where κf = ω/cf

is the free �uid wave number.
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3 Viscous �ow �uid in sca�olds

We assume w̄ is Y -periodic and given. The per-
turbed N-S system yields

ρ0

(
∂

∂t
ũ + w̄ · ∇ũ + ũ · ∇w̄

)
= ∇ · IDe(ũ)−∇p̃ ,

γ

(
∂

∂t
p̃+ w̄ · ∇p̃

)
= −∇ · ũ ,

(5)

where tensor ID = (Dijkl) with Dijkl = ηδijδkl+
µ(δikδjl+δilδjk) depends on the 1st and the 2nd
viscosities, µ and η.

The homogenization of acoustic problem (5)
leads to the extended Darcy �ow model,

∇ · [K(iω)∇p]− iωγφfp = 0 ,

in which Kij(iω) = iω|Y |−1
∫
Yf
wi

j is the dy-

namic permeability tensor, computed using the
characteristic response w j = (wji ) of the lin-
earized N-S equation involving the incompress-
ibility constraint and the convective accelera-
tion given by w̄ . Let us de�ne Vy = {v ∈
H̃1

#(Yf )| ∇y ·v = 0 in Yf , v = 0 on Γs}, where
H̃1

#(Yf ) is a space of Y-periodic functions. We

�nd wk ∈ Vy, k = 1, 2, 3, satisfying

iω

∫

Yf

w
k · v − 2

∫

Yf

w̄ ⊗wk : ey(v)

+ ν̄

∫

Yf

∇ywk : ∇yv = − i

ω

∫

Yf

vk ,

(6)

for all v ∈ Vy, where ν̄ = µ̄/ρ0 is the kinematic
viscosity. For non-vanishing w̄ the dynamic per-
meability is non-symmetric. For plane waves,
the dispersion relationships can be computed by

κ =
√

(−iωγφf )/K(iω) : n⊗ n .

4 Numerical illustration and discussion

In Fig. 2, we report wave dispersion analysis
computed for water-saturated porous periodic
structures using the inviscid model, see Fig. 1.
The eigenvalue problems were solved by the �-
nite element method implemented in the soft-
ware SfePy, see http://sfepy.org, using the
ARPACK solver [2] through the SciPy package.

With decreasing porosity φf = |Yf |/|Y | (in-
creasing the �bres diameter) the two lowest modes
separate and a band gap opens. The homoge-
nized model provides good predictions only for
very large φf , or for long waves only.

Figure 1: The �uid part Yf of the periodic cell.
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Figure 2: Dispersion curves for microstructure
with �bre diameter d = 0.23 mm (inviscid �uid,
eq. (3)). The dashed lines depict the response
ω − κ of the homogenized model, eq. (4).
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Abstract

In this paper, we introduce a high order nu-
merical method to solve the scattering problems
with locally perturbed periodic surfaces in 2D
spaces. For these problems, classical methods
to treat quasi-periodic scattering problems no
longer work, while a Bloch transform based nu-
merical method was proposed. This numerical
method converges slowly . The motivation of
this paper is to improve this numerical method
from the regularity results of the Bloch trans-
form of the total field. As the set of the singular-
ities of the total field is finite in one periodic cell,
we are able to improve the numerical method
by designing a proper integration contour with
special conditions at the singularities. We can
prove that the new numerical method converges
super algebraically. This new method improves
the efficiency significantly. This method could
be extended to 3D cases when further conditions
are satisfied.
Keywords: high order method, scattering prob-
lems, local perturbation, periodic surface, con-
vergence rate

1 Introduction

In this paper, we propose an efficient numeri-
cal method of solving scattering problems from
locally perturbed periodic surfaces with nonpe-
riodic incident fields. Different from the well-
studied scattering problems with periodic back-
ground and incident fields, the classical frame-
work no longer works. In [?], a Floquet–Bloch
based numerical method was applied to solve
this kind of problems. However, the convergence
rate of this method is low. In this paper, the
method is improved by reducing the computa-
tional complexity significantly (see [1]).

Suppose Γ is a bounded periodic surface and
Γp is a local perturbation of Γ. In this pa-
per, we fix the period as 2π. Let Ω (Ωp) be
the unbounded domain above Γ (Γp). Suppose
ΓH := R× {H} be a straight line above both Γ
and Γp, let ΩH (Ωp

H) be the domain between Γ

Γ
Λ

H

Ω
H

p Ω
Λ

H

Γ
p

Γ
H

Ω
H

Γ

x
1

x
2

(Γp) and ΓH , then the scattering problem could
be modelled by the following equation:

∆u+ k2u = 0 in ΩH
p ; u = 0 on Γp. (1)

Moreover, from the radiation condition, we also
put the following boundary condition on ΓH :

∂u

∂x2
−T+u = f, f is defined by the incident field.

(2)
In Chandler-Wilde et. al., 2010, it is proved
that when f in the weighted Sobolev spaceH−1/2

r (ΓH)
(where |r| < 1), the scattering problem is uniquely
solvable in H1

r (ΩH
p ).

2 The Floquet-Bloch transform

The definition of the Floquet-Bloch transform is
similar to a Fourier series, i.e.,

(J φ)(α, x) :=
∑

j∈Z
φ(x1 + 2πj, x2)e−i2παj ,

where α ∈ W (W := (−1/2, 1/2]) and x ∈ Ω2π
H

(Ω2π
H := (−π, π]× R ∩ ΩH). It is easily checked

that the transformed field is 1-periodic in α and
α−quasi-periodic in x. As the transform is only
defined in periodic domains, we introduce a dif-
feomorphism Φ that maps the periodic domain
ΩH to the locally perturbed Ωp

H . Let

uT := u ◦ Φ; w(α, x) := (J uT )(α, x),

then w satisfies the following varational problem
defined in W × Ω2π

H :
∫

W
aα(w(α, ·), φ(α, ·))dα+ b(w, φ) = 〈F, φ〉 ,
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where aα(·, ·) is the variational form of the clas-
sic α-quasi-periodic scattering problem in Ω2π

H ,
and b(·, ·) is a sesquilinear form defined in the
bounded domain W × Ω2π

H , F = J f .
In Lechleiter et. al., 2017, it is proved that

when f ∈ H−1/2
r (ΓH), then the variational prob-

lem (2) is uniquely solvable in Hr(W,H1(Ω2π
H )).

To apply the finite element method, we re-
quire that the surfaces are smoother and f ∈
H

1/2
r (ΓH) such that the solution lies in the space

Hr(W,H2(Ω2π
H )). We divide the intervalW into

N uniform subintervals, and generate regular
and quasi-uniform meshes for the domain Ω2π

H

with the meshsize h. We formulate the finite
dimensional problem by the piecewise constant
basic functions on W and piecewise linear basic
functions on Ω2π

H , then the finite element prob-
lem is uniquely solvable. Let wN,h be the finite
element solution, then the L2-error decays with
the rate h(N−r + h).

3 Singularity of w with respect to α

Let the finite set S be all the points α ∈ W
such that there is an n ∈ Z, |α + n| = k. Then
S is a finite set with at most three elements, set
S = {α1, . . . , αN}. Define Property* by:

Definition 1 (Property*) A function φ(α, ·)
with α ∈W satisfies Property* if

φ(α, ·) =

N∑

n=1

√
α− αn φn(α, ·)

where φn(α, ·) depends smoothly on α ∈W .

Inspired by the analysis in Kirsch et. al.,
1993, we can prove the following theorem.

Theorem 2 When F = J f satisfies Property*,
then the solution w also satisfies Property*.

4 High order numerical method

The key point for the high order method is the
inverse Bloch transform, i.e., to design a high
order method for the integral

(J −1w)(x) =

∫

W
w(α, x)dα.

We can redefine W by (−α0, 1−α0] where α0 is
defined by k, then there are two different classes
of S:

1. S = {−α0, 1− α0};

2. S = {−α0, α0, 1− α0}.
Based on the two different types of S’s, we

could choose two different curves for the inte-
gral. Let g be a smooth enough and monotoni-
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Figure 1: Two different choices of the function
g.

cally increasing function with any order deriva-
tive at points in S vanishes. Let α be replaced
by α = g(t), then let w̃(t, x) := w(g(t), x)g′(t),
then w̃(t, ·) depends smoothly on t. We use
the same meshes and basic functions to formu-
late the finite dimensional problem, then we can
prove the following convergence result.

Theorem 3 Let W̃N,h be the finite element so-
lution, then for any n ∈ N,

‖W̃N,h − w‖L2(W×Ω2π
H ) ≤ Ch(N−n + h), (3)

where C depends on n and the incident field.

The finite element method for the high order
case is carried out in the same way as introduced
in Section 2. The relationship between the num-
ber of nodals inW and relative errors are shown
in the following figure.

3 4 5 6

log
2
N

-24

-22

-20

-18

-16

-14

-12

-10

-8

lo
g

2
e
rr

Eg 1

Eg 2

Eg 3

Eg 4

References

[1] R. Zhang, A high order numerical method
for scattering from locally perturbed peri-
odic surfaces, SIAM J. Sci. Comput., 40
(2018), pp. A2286–A2314.

Wednesday, 11:30, Sem BA 02 B, Building BA



490 Contributed Sessions

Near-Field Imaging of an Unbounded Elastic Rough Surface with a Direct Imaging
Method

Xiaoli LIU1,∗, Bo Zhang2, Haiwen Zhang2
1INRIA Saclay-Ile-de-France/CMAP Ecole Polytechnique, Palaiseau, France

2NCMIS and Academy of Mathematics and Systems Sceince, Chinese Academy of Sciences, Beijing,
China

∗Email: xiaoli.liu@inria.fr

Abstract

A direct imaging method is developed to recon-
struct unbounded rough surface S := (x1, f(x1)),
which is supposed to be smooth enough such
that f ∈ BC1,1(R), from the elastic scattered
near-field Cauchy data generated by point sources.
A Helmholtz-Kirchhoff-type identity is derived
and then used to provide a theoretical analysis
of the direct imaging algorithm. Numerical ex-
periments are presented to show that the direct
imaging algorithm is fast, accurate and robust
with respect to noise in the data.
Keywords: inverse elastic scattering, unbounded
rough surface, direct imaging method

1 Introduction

The domain above the rough surface is filled
with a homogeneous and isotropic elastic medium,
and the medium below the surface is assumed to
be elastically rigid. See Fig. 1 for the geometry.

T
H

u
i u

s

S

Ω

Figure 1: Problem Geometry

Compared with inverse acoustic scattering
problems (see [1]), the elastic cases are more
complicated due to the coexistence of the com-
pressional and shear waves that propagate at
different speeds. For bounded elastic bodies,
several numerical inversion algorithms have been
proposed. See also the monograph [2] for a good
survey. However, as far as we know, not many
results are available for inverse elastic scattering
by unbounded rough surfaces.

The purpose of this paper is to develop a
direct imaging method for inverse elastic scat-
tering problems by an unbounded rigid rough
surface. Motivated by the Helmholtz-Kirchhoff
identity for bounded obstacles, we consider the
unbounded rough surface and provide an inte-
gral identity concerning the fundamental solu-
tion of the Navier equation on an infinite line
(see Lemma 1). In addition, a reciprocity re-
lation (see Lemma 2) is proved for the elastic
scattered field corresponding to the unbounded
rough surface. Based on these results, the re-
quired imaging function is then proposed, which,
at each sampling point, involves only the inner
products of the measured data and the funda-
mental solution of the Navier equation in a ho-
mogeneous background medium. Numerical re-
sults are presented to show that our imaging
method can provide an accurate and reliable re-
construction of the unbounded rough surface.
This paper is a nontrivial extension of our recent
work in [3] from the acoustic case to the elastic
case since the elastic case is much more compli-
cated than the acoustic case due to the coexis-
tence of the compressional and shear waves that
propagate at different speeds.

2 The imaging algorithm

The propagation of time-harmonic waves with
circular frequency ω in an elastic solid with Lamé
constants µ, λ (µ > 0, λ+µ ≥ 0) is governed by
the Navier equation

µ∆u+ (λ+ µ)grad divu+ ω2u = 0.

Here, u = (u1, u2)
T denotes the elastic field.

For any H ∈ R, introduce the sets

UH := {x = (x1, x2) ∈ R2 : x2 > H},
TH := {x = (x1, x2) ∈ R2 : x2 = H}.

Lemma 1 (Helmholtz-Kirchhoff-type identity)
∫

TH

(
[Π

(1)
ξ,x]TΓξ,y − [Γξ,x]TΠ

(1)
ξ,y

)
ds(ξ) = 2i=Γy,x
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for x, y ∈ R2\UH , where Γ is the free-space
Green’s tensor for the 2-D Navier equation and
Π(1) is the corresponding derivatives with the
unit normal n on TH pointing into UH .

Lemma 2 (Reciprocity relation) For p, q ∈ R2,
let us(z, x,p) and us(z, y, q) be the scattered fields
in Ω associated with the rough surface S and
the incident point sources ui(z, x,p) := Γ(z, x)p
and ui(z, y, q) := Γ(z, y)q, respectively. Then

us(y, x,p) · q = us(x, y, q) · p, x, y ∈ Ω.

Based on the above two lemmas, we can
present the following theorem which leads to the
imaging function for our imaging algorithm.

Theorem 3 Define U i(y, z, ej) := 2ieTj =Γ(y, z),
j = 1, 2, then the scattered field generated by
U i(y, z, ej) is given by

U s(y, z, ej) :=

∫

TH

(
Tus(x, y, ej) · ui(x, z, ej)

− us(x, y, ej) · Tui(x, z, ej)
)
ds(x)

− 2iej · =− Γ(z, y)ej ,

where T is the stress operator.

Motivated by Theorem 3, we finally give the
imaging function for each sampling point z as

I(z) :=

2∑

j=1

∫

TH

∣∣∣U s(y, z, ej)
∣∣∣
2
ds(y).

Since U s(y, z, ej) is the scattered field corre-
sponding to U i(y, z, ej) := 2ieTj =Γ(y, z), which
is related to the Bessel function J0, it is expected
that I(z) takes a large value when z ∈ S and de-
cays as z moves away from the rough surface S.

3 Numerical results

We now present several numerical experiments
to demonstrate the effectiveness of our imag-
ing algorithm and compare the reconstructed
results under different parameters.

Figure 2: Reconstructed results with w = 9, 15, 20,
respectively.

Figure 3: Different measurement places. Top row
(from left to right): the Cauchy data are measured
on (x1, 2) such that |x1| ≤ 7.5, |x1| ≤ 10} and |x1| ≤
15, respectively. Bottom row (from left to right): the
Cauchy data are measured on (x1, 1.2), (x1, 2) and
(x1, 4) such that |x1| ≤ 10, respectively.
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Figure 4: Reconstructed results with no noise, 20%
noise and 40% noise, respectively.

Fig.2 shows that the reconstruction result
is getting better with the increase of the fre-
quency. From Fig.3, it can be seen that the
reconstructed result is getting better if both the
measurement line segment is getting closer to
the rough surface and its length is getting longer.
Finally, Fig.4 proved that our imaging method
is very robust to the noise in the data.
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A Frequency Domain Method for Scattering Problems with Moving Boundaries
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Abstract

We focus on the construction of a frequency
domain resolution method for the wave scat-
tering problem in one dimension with moving
boundaries. We compare the obtained results
with those given while applying the fast Fourier
transform to more standard space-time resolu-
tion and show that the proposed method is much
more efficient.
Keywords: Scattering, 1D Acoustic Wave, Fre-
quency Domain Resolution, Moving Boundaries.

1 Introduction

We are interested in radar detection of moving
scatterers. The aim of this ongoing work is to
present a method to solve in the frequency do-
main time-harmonic accoustic scattering prob-
lems for which the scatterer is spatially oscillat-
ing. Brute approaches may be comprised of a
first space-time resolution on which one applies
the fast Fourier transform. However such com-
putations exhibit high costs since they require
long time samples and are also penalized by fre-
quency dispersion effects. Such problems have
already been investigated for instance by ex-
plicit asymptotic expansion in [1], but restricted
to unbounded time-shifted domain. In our ap-
proach we investigate the problem in the fre-
quency domain, and derive how the frequency
components of the solution must be coupled,
and compute only the ones with significative
contributions by solving coupled systems of Hel-
mholtz-type equations. This provides an alter-
native which combines both accuracy and effi-
ciency. Below we sketch a general description
of this method and compare it with brute force
approach.

2 Problem statement

Let us consider the bounded domain Ω := {x :
x ∈]0, l(t)[} with moving boundary l(t) := 1 +
ε sin(ωst) for ωs > 0 and 0 < ε < 1. We impose
at the left boundary a source term eiωf t and ho-

mogeneous Dirichlet boundary conditions at the
moving right boundary. Other boundary condi-
tions (for instance impedance boundary condi-
tions) that fit with more realistic models could
also be taken into account and will be presented
in the extended paper. The scattering problem
is formulated as follows: find the wave u(x, t) in
{(x, t) ∈ R× R+

∗ , such that 0 < x < l(t)}, such
that u(0, t) = eiωf t, u(l(t), t) = 0 and u(x, 0) =
∂tu(x, 0) = 0, solution to

1

c2
∂ttu− ∂xxu = 0 (1)

3 Methodology

We apply a suitable smooth change of space
variable x̃ : (x, t) 7→ x̃(x, t) with x̃(0, t) = 0
and x̃(l(t), t) = 1 for all t > 0, while keeping
the time coordinate the same in order to work
in a fixed spatial domain. The previous scatter-
ing problem (1) becomes: find ũ(x̃, t) = u(x, t),
solution in Ω̃ × R+

∗ with Ω̃ =]0, 1[, of the equa-
tion

∂ttũ− c2
[(

∂x̃

∂x

)2

∂x̃x̃ũ+
∂2x̃

∂x2
∂x̃ũ

]

+

(
∂x̃

∂t

)2

∂x̃x̃ũ+ 2
∂x̃

∂t
∂x̃tũ+

∂2x̃

∂t2
∂x̃ũ = 0 (2)

with ũ(0, t) = eiωf t, ũ(1, t) = 0 and ũ(x̃, 0) =
∂tũ(x̃, 0) = 0. We consider the linear change of
variable

x̃ =
x

l(t)
.

By linearity of x̃ the term ∂2x̃
∂x2

vanishes. As in [2]
the resulting equation in the fixed domain de-
pends on the space Jacobian ∂x̃

∂x of x̃. If for
a practical radar sensing applications, the per-
turbation amplitude ε is much smaller than the
size of the domain, then the terms in (2) aris-
ing from the second order temporal derivative
(second line of the previous equation) can be
neglected. The following simplified problem can
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be formulated: find u∗ solution of the equation

l2

c2
∂ttu

∗ − ∂x̃x̃u∗ = 0 (3)

with the same initial and boundary conditions
as before.

4 Frequency domain resolution

We assume that t 7→ u∗(x̃, t) is integrable on
R for all x̃ ∈ Ω̃ and that there exists ϕ(t) inte-
grable on R+

∗ such that for all (x̃, t) ∈ Ω̃×R+, we
have |∂x̃x̃u∗| ≤ ϕ(t), and apply a time Fourier
transform on (3). Then the problem is: find û
in Ω̃× R+ solution of the equation

∂x̃x̃û+

[(
2πξ

c

)2

û

]
.

[(
1 +

ε2

2

)

+
ε

i

(
τωs

2π
− τ−ωs

2π

)
− ε2

4

(
τωs
π

+ τ−ωs
π

)]
= 0

(4)

such that û(x̃, 0) = 0, û(1, ξ) = 0, û(0, ξ) = 0 for
ξ 6= ωf and û(0, ωf ) = 1, with τθ the translation
operator applied on the second variable. Due to
the discrete spectrum of the Laplace operator in
bounded domains, û is a linear combination of
the main excitation ûωf and the contributions of
the proper modes ûωi of the system, for i ∈ N.
The perturbation creates around each contribut-
ing frequency ω a symmetric cluster of coupled
frequencies spaced by ωs. We write the corre-
sponding term ûω as a Fourier expansion around
ω with ωs-multiple harmonics:

ûω(x̃, ξ) =
∑

j∈Z
aj(x̃)δ

(
ξ − ω + jωs

2π

)
.

For each ω, (4) leads to the following algebraic-
differential coupled system, for all j ∈ Z:

∂x̃x̃aj + k2j

(
1 +

ε2

2

)
aj +

ε

i

[
k2j−1aj−1

−k2j+1aj+1

]
− ε2

4

[
k2j−2aj−2 + k2j+2aj+2

]
= 0

(5)

with kj := ω+jωs
c . As the size of the domain is

much larger than ε, we neglect the second order
terms in ε. The coupling between the aj ’s is the
consequence of the variation of l and describes
how the amplitudes associated to the frequency
components depend on each other. Taking ei-
ther ε = 0 or ωs = 0 leads to the standard
Helmholtz equation with fixed boundaries. It is

analytically shown that there exists J > 0 such
that for |j| > J , maxx̃(aj) is fastly decaying to
zero when |j| increases. In the present method
we solve (5) for |j| ≤ J with the same boundary
conditions, assuming aj ≡ 0 for |j| > J .

5 Preliminary numerical results

The reference is computed with the FFT ap-
plied on the FDM time resolution of (3), taking
ωf = 10 Hz and ωs = 1 Hz. The multihar-
monic, frequency domain system is solved with
FDM for J = [−9, 8]. Given a spatial discretiza-
tion of 100 nodes, the CPU time ratio between
both methods is 350.

Figure 1: Comparison of the brute force solution
(top) with the present method centered on ωf
(bottom).
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Scattering for NLS with a sum of two repulsive potentials
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Abstract

We will present a scattering result [Laf18] for a
defocusing nonlinear Schrödinger equation with
a sum of two repulsive potentials with strictly
convex level surfaces. We deal with this unstable-
trapping framework using a concentration, com-
pactness and rigidity approach together with new
almost-Morawetz estimates.
Keywords: Non-linear Schrödinger equation,
scattering, trapped trajectories, potential, Morawetz
estimates, concentration-compactness/rigidity

1 Introduction

We are concerned with the scattering behaviour,
as defined in Definition 1 below, of the following
defocusing non-linear Schrödinger equation with
a potential

i@tu + �u� V u = u|u|↵, u(0) = ' 2 H1, (1)

in arbitrary spatial dimension d � 1. Once good
dispersive properties of the linear flow, such as
Strichartz estimates, are established, the local
well-posedness of (1) follows by usual fixed point
arguments. Because of the energy conservation
law,

E(u(t)) :=
1

2

Z
|ru(t)|2 +

Z
V |u(t)|2

+
1

↵+ 2

Z
|u(t)|↵+2 = E(u(0)),

this result extends to global well-posedness. Thus,
it is natural to investigate the asymptotic be-
haviour of solutions of (1), and, in particular,
wether the non-linearity still plays a role for
large times. If it is not the case, we say that
the solutions scatter, in the sense that

Definition 1 A solution u 2 C(R,H1(Rd)) of
(1) scatters in H1(Rd) if there exists a unique
couple of data  ± 2 H1(Rd) such that

ku(t)� e�it� ±kH1(Rd) �! 0
t!±1

.

In the homogeneous case V = 0, in the in-
tercritical regime

4

d
< ↵ <

(
+1 d = 1, 2,

4
d�2 d � 3,

(2)

the scattering of solutions of (1) is well-known
since Nakanishi’s paper [Nak99]. The inhomo-
geneous setting V 6= 0 was investigated more re-
cently, for example in [BV16], [Laf16], [Hon16].
However, all these scattering results rely on a
non-trapping assumption, namely, that the po-
tential is repulsive:

x ·rV  0,

or, as in [Car16], that its non-repulsive part is
sufficiently small.

The aim of this talk is to present a first
scattering result [Laf18] in a trapping situation.
More precisely, we are interested in one of the
simplest unstable-trapping frameworks, that is,
the case where V is the sum of two positive, re-
pulsive potentials with strictly convex level sur-
faces. This is the potential-analog of the ho-
mogeneous problem outside two strictly convex
obstacles, subject of a work in progress [LL].

2 Statement of the result

Let V1 and V2 be two positive, smooth potentials
and let V = V1 + V2 be the total potential. We
make the following geometrical assumptions:

(G1) V1 and V2 are repulsive, that is, there
exists a1 and a2 in Rd such that

(x� a1,2) ·rV1,2  0.

Without loss of generality, we as-
sume that 0 2 [a1, a2].

(G2) The level surfaces of V1 and V2 are
convex, and uniformly strictly con-
vex in the non-repulsive region: the
eigenvalues of their second fundamen-
tal forms are uniformly bounded be-
low by a strictly positive universal
constant in {x ·rV > 0}.

(G3) All the trapped trajectories of the
Hamiltonian flow associated with��+
V belong to a same line R.
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We will, in addition, suppose that the total po-
tential follows the following decay assumption

V,rV 2 L
d
2 (Rd, (1 + |x|�)dx), � > 1. (3)

And finally, that the pointwise dispersive esti-
mate

keit(��+V )kL1�!L1 . 1

|t|d/2
(4)

holds. This estimate gives us in particular cru-
cial Strichartz estimates mentioned above. Note
that this last assumption is automatically veri-
fied using Goldberg and Schlag’s result [GS04]
under the non-negativity and decay assumption
with � � 2 in dimension d = 3. Our result reads

Theorem 1 Assume that d � 3. Let V1 and
V2 be two positive, smooth potentials, satisfying
(G1)-(G2) -(G3), such that the sum V = V1+V2

satisfies (3) and (4). Then, in the intercritical
regime (2), every solution of (1) with potential
V scatters in H1(Rd).

3 Outline of the proof

We use the strategy of concentration, compact-
ness and rigidity first introduced by Kenig and
Merle in [KM06]: seeking a contradiction, one
assumes that there exists a finite energy above
which solutions do not scatter. This assumption
allows one to construct a compact-flow solution
(a so-called critical solution), which is then elim-
inated.

Notice that in the case of a repulsive po-
tential, this last rigidity part is immediate by
classical Morawetz estimates. This is the main
difficulty to overcome and the novelty of [Laf18].

The construction of a critical solution fol-
lows [Laf16], generalizing it to any spatial di-
mension. The difficulty in this construction is
the lack of translation invariance of the equa-
tion due to the potential. The key idea to deal
with it is to notice that a profile escaping to in-
finity does not see the potential.

Finally, we eliminate this critical solution us-
ing a family of Morawetz multipliers that almost
vanish on the trapped trajectory. This almost-
Morawetz multipliers family is our main idea to
deal with scattering for nonlinear wave equa-
tions in unstable-trapping geometries. We be-
lieve that it could be used efficiently to treat
other similar problems and geometrical frame-
works.
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Abstract

Performing inversions in time–distance helioseis-
mology is demanding because of the large amount
of data and the high level of noise which is due
to the stochastic excitation of the solar oscilla-
tions. Averaging the input data is thus pivotal
to increase the signal-to-noise ratio and make
the problem tractable. Here, we compare full-
waveform and travel-time inversions to recover
flows at a given 3D location in the solar inte-
rior. With the same noise levels, we find that
averaging kernels are more localized when us-
ing the cross-covariance function in frequency
domain (full-waveform inversion), rather than
travel times as input data.
Keywords: helioseismology, full-waveform in-
version, travel time

1 Helioseismic observables

The Sun is stochastically oscillating due to the
turbulent convection. Time–distance helioseis-
mology [1] is a method to probe the solar in-
ternal structure using the observed oscillation
signals (e.g., Doppler velocities) on the solar
surface. In this manner, the cross-covariance
function is then defined as the product of the
observed signals, denoted by ψ at angular fre-
quency ω, at two surface locations, indexed by
i, like i = (r1, r2):

Ci(ω) =
2π

T
ψ∗(r1, ω)ψ(r2, ω), (1)

where T is the observation time and the star de-
notes the complex conjugation. One then seeks
to relate the observed surface measurements di
(e.g., cross-covariance in Eq. (1)), with the cor-
responding noise ni, to the solar internal struc-
ture, e.g., flows as

di(ω) =

∫

S
Ki(ω, r) · u(r)dr + ni(ω), (2)

where u(r) = (ur(r), uθ(r)) is an unknown flow
vector at a position r. Here, r denotes a 2D
position at radius r and co-latitude θ in spher-
ical coordinates and S is a half-disk of the so-
lar radius R�. The responses of the observed
measurements to the local flow changes are de-
scribed via the sensitivity kernelsKi = (Kr

i ,K
θ
i )

(see Figure 1). The cross-covariance resembles a

Figure 1: Sensitivity kernels Kθ(r) for pertur-
bations in uθ for cross-covariance (imaginary
and real parts at 3 mHz), travel-time and am-
plitude measurements. The measurements cor-
respond to a pair of points located at the lati-
tudes 3◦ and 33◦ on the solar surface. The values
of the kernels are normalized and saturated and
are computed following the framework in [2].

seismogram as it contains the information about
the travel times and amplitudes of the waves
propagating in the solar interior. Hence, the
cross-covariance is considered as the full-waveform
observable. One might instead use some inter-
mediate data products of the cross-covariance
as observable (e.g., travel times of the waves).
In addition to travel times, cross-covariance am-
plitudes may also be beneficial in helioseismol-
ogy as they carry independent information of
the wave field than travel times. The travel
times and amplitudes are computed from the
cross-covariance and they are averaged quanti-
ties over a range of frequencies [2]. Thus, the
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forward problem in Eq. (2) for travel-time or
amplitude observables shrinks to:

di =

∫

S
Ki(r) · u(r)dr + ni. (3)

Note that the sensitivity kernels for the cross-
covariance measurements are frequency-dependent,
while the kernels of travel times and amplitudes
only depend on the observational pairs of points
(see Figure 1).

So far local helioseismic inversions have been
based on the computation of travel times or cross-
covariance amplitudes as an intermediate step.
However, such procedures neglect a substantial
amount of information contained in the cross-
covariance of the seismic wavefield which pro-
vides the full-waveform inversion (FWI). In this
study, as the inversion procedure, we compare
different choices of observables in terms of res-
olution and propagated errors to the solution.
Note that d (see Eqs. (2) and (3)) can be any
types of observables as we consider cross-covariance
in frequency domain (FWI), travel-time and am-
plitude measurements.

2 Comparison of inversion strategies

In helioseismology, the inverse problem is mainly
solved linearly. Thus, we seek to find the flow
solution vector û such that

û = Wd, (4)

where the solution vector is a weighted average
of the input data vector d. Each row of the
weight matrix W provides the optimal coeffi-
cients to compute the solution at a chosen tar-
get position r0 = (r0, θ0). To find the weights
W in Eq. (4), we seek solutions to the discrete
regularized least squares problem:

û = argmin
u

{
‖Λ−1/2(Ku−d)‖22+α‖u‖22

}
, (5)

where u is the unknown flow vector. We com-
pute K which is the matrix of the sensitivity
kernels, Λ is the noise covariance matrix of the
measurements and α is a regularization param-
eter. Here, ‖...‖2 denotes the 2-norm. The in-
verse problem is a balance between resolution
and propagated errors to the solution. This can
be seen by computing the difference between the
reconstructed and the exact flow

E
[
‖û− u‖22

]
= E

[
‖Wd− u‖22

]

= ‖(K − I)u‖22 + ‖W‖22, (6)

where E denotes the expectation value, I is the
identity matrix and K is called averaging kernel

K = WK. (7)

The averaging kernels describe the resolution of
the inversion and it is desirable that the aver-
aging kernels have a peak near the target r0 =
(r0, θ0). The localization of the averaging ker-
nel depicts the bias of the linear estimator in
Eq. (4). The last term in Eq. (6) corresponds
to the variance of the estimator, i.e. the error
propagation to the estimated solution in Eq. (4).

Figure 2: Averaging kernelsK for uθ correspond-
ing to the FWI (left panel), travel-time (middle
panel) and amplitude (right panel) inversions for
T = 4 years and frequencies between [2−4] mHz.
The crosshairs (solid lines) indicate the target
location at r0/R� = 0.9 on the solar equator.
The magnitude of the propagated error to the
solutions at this chosen target is approximately
1.5 m/s for the three observables.

Considering the same propagated error to
the solution at r0/R� = 0.9, Figure 2 shows
that the cross-covariance measurements lead to
a more localized averaging kernel than the travel-
time and amplitude measurements. In other
words, with the same noise level, the FWI gives
solutions with higher resolutions in comparison
to inversion results using other types of mea-
surements such as travel times of waves. This
motivates us to infer the solar meridional flow
using the observational data in the next step.
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Abstract

Despite 20 years of high-quality observations of
Doppler velocities at the solar surface, the inter-
nal structure of the Sun still presents some mys-
teries. As it is impossible to treat all the data at
once, some averages have to be performed a pri-
ori. These averages are based on some physical
understanding or on the analysis of wave propa-
gation in a reference solar-like background. We
analyze and improve a classical method called
seismic holography which aims at propagating
the surface data to any location in the solar in-
terior.
Keywords: helioseismology, holography,
inverse problem

1 Introduction

Time-distance helioseismology [1] aims at recov-
ering subsurface properties of the Sun from the
observation of the Doppler velocities at the sur-
face. Due to convection, the data are stochastic
and one generally analyzes the cross-covariances
of the wavefield ψ between any two points r1
and r2 at the solar surface

Cω(r1, r2) = ψ∗(r1, ω)ψ(r2, ω). (1)

Here ω denotes the frequency and the product
of the wavefield in frequency space corresponds
to a convolution in the time domain. Every 45 s,
a map of size 4k×4k pixels of Doppler velocities
on the solar surface is available which lead to
1013 possible cross-covariance measurements at
each time. The number of available frequencies
is linked to the observation time (e.g. 5000 fre-
quencies for 4 days of observations). It is thus
impossible to save all measurements and some
averagings in space and/or frequency have to be
performed a priori. One possibility is called seis-
mic holography which aims at propagating the
wavefield from the surface to any target point in
the interior based on the knowledge of the wave
equation satisfied by the wavefield. Here, we
analyze this method and propose some possible
improvements.

2 Forward model

We suppose that the wavefield satisfies an acous-
tic wave equation [2]

−(∆ + k2)ψ − 2iω

ρ1/2c
ρu · ∇

(
ψ

ρ1/2c

)
= s, (2)

where ρ and c are the density and sound speed
taken from a standard solar model, γ is the at-
tenuation, u a flow term, and s a stochastic
source of excitation. The local wavenumber k
is given by

k2 =
(ω2 + 2iωγ)− ω2

c

c2
, ω2

c = ρ1/2c2∆(ρ−1/2).

A radiation boundary condition that takes into
account the exponential decay of the density
close to the solar surface is used to complement
Eq. 2 [3]. The wave equation is solved using
high-order finite elements on a mesh adapted to
the strong stratification of the Sun [4].

At first order, the perturbation to the cross-
covariance with respect to a reference model is
linked to perturbations in the background medium
via a sensitivity kernel [4]

δCω(r1, r2) =

∫

V
Kω(x; r1, r2)δq(x)dx, (3)

where q ∈ {ρ, c, γ,u}. The kernels K can be
computed from the knowledge of the Green’s
function of the wave equation.
Aim: Averaging the data δC in space and fre-
quency in order to be as sensitive as possible to
a scatterer δq at a given location x in the solar
interior.

3 Seismic holography

Seismic holography is one possibility to average
the data. From the knowledge of the wavefield
everywhere on the observed surface A of the
Sun, one can generate the hologram Φω

α

Φω
α(x) =

∫

A
Hω
α (x, r′)ψ(r′, ω)dr′, (4)
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Figure 1: Sound speed sensitivity kernel 〈Kωαβ(x;xs,xs)〉 for a scatterer located at a depth of zs =
0.7R� along the polar axis. Left: the frequencies are directly averaged (W = 1), middle: optimal
averaging obtained by principal component analysis, right: cut of the two kernels along the polar axis.

which aims at estimating the wavefield ψ at a
target location x. Hω

α is a wave propagator,
for example the Green’s function associated to
a wave equation, but it can be seen as a general
weighting of the observations.

Similarly to the cross-covariance of the wave-
field, the cross-covariance between two holograms
is defined as

Iωαβ(x1,x2) = Φω∗
α (x1)Φ

ω
β (x2) = (5)∫

A

∫

A
Hω∗
α (x1, r)Hω

β (x2, r
′)Cω(r, r′)drdr′.

The measurement Iαβ is thus an averaging of all
the cross-covariances at the solar surface. Com-
bining Eqs. 3 and 5, one can link the measure-
ment Iωαβ to perturbations δq

δIωαβ(x1,x2) =

∫

V
Kωαβ(x;x1,x2)δq(x)dx. (6)

By choosing properly the wave propagators, one
can get sensitive to a physical parameter at a
given target location in the solar interior. Ide-
ally the averaging should lead to a kernel K that
is localized close to the target location x.

4 Optimizing the averaging

Due to convection, the data at one frequency
are extremely noisy. One needs to average fre-
quencies using a given weighting w(ω) such that
the averaged measurement is given by

〈δIωαβ(x1,x2)〉 =
∑

ω

W (ω)δIωαβ(x1,x2). (7)

Usually, a constant weighting in some frequency
bands is used. This is not optimal as the ker-
nel is oscillating extremely rapidly as a function

of frequency [2]. We use a principal component
analysis in order to obtain the most significant
averaging in the frequency domain. A represen-
tation of a sound speed kernel for constant and
optimized weightings is shown in Fig. 1. One
can see that the optimized version is more lo-
calized close to the target location with a way
smaller contribution from the surface. This op-
timization is promising and will be used to im-
prove the current capabilities of imaging the in-
terior and farside of the Sun. Morever, it is un-
clear if the holography weightings given by Eq. 5
are optimal. We will perform a similar analysis
to determine the most significant averaging of
the data in space depending on the type of scat-
terers.
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Abstract

We propose a low-rank representation of full
subsurface extended image volumes, which are
usually described as large dense matrices. Our
approach proves to be cost-effective in the com-
putation without explicitly calculating the ad-
joint wavefields, since the customary loop over
sources is avoided. Moreover, storage issues are
overcome thanks to the randomized SVD algo-
rithm and probing techniques involved in the
computation. Then, information of the extended
image volume can be extracted using simple lin-
ear algebra tools. We illustrate the efficiency of
our approach through a numerical example from
seismic imaging.
Keywords: image volume, randomized SVD,
low-rank factorization, seismic exploration

1 Introduction

In seismic exploration, extended image volumes
(EIVs) are tools to image reflections from a coar-
se or blurred background velocity model of the
Earth’s underground, with applications in de-
tecting deposits such as gas, oil or salt [3]. They
can be defined as a cross-correlation of the for-
ward and adjoint wavefields for non-zero space
offsets, i.e.

E = VU∗, (1)

where the forward field U and the adjoint field
V satisfy

H(m)U = P>s Q, and H∗(m)V = P>r D,

with H the modeling operator, e.g. the mono-
chromatic Helmholtz equation, m the blurred
velocity model, Ps (resp. Pr) the projector on
the sources (resp. receivers) locations, and Q
and D the sources and data matrices. As a re-
sult, the EIV is represented as a square matrix,
which contains all available information by ex-
tracting: e.g. the reverse time migration (RTM)

image in the diagonal or the common-image point
(CIP) gathers in columns. As they are quadratic
and because of redundant information due to
the subsurface offsets, EIVs are usually huge and
dense, which makes them impossible to compute
and store for real-life applications in seismic ex-
ploration.

2 Low-rank form of EIV

In [4] a cost-effective approach is proposed via
probing techniques with canonical vectors and
matrix-free operations to build the EIV. Whereas
a single canonical vector is enough to extract a
column containing CIP gathers, it is more ex-
pensive to investigate other parts of the EIV,
like the diagonal to get the RTM for instance.
Moreover, it is not feasible to store the result-
ing quadratic matrix. Therefore, each new ex-
tracted information requires to rebuild the EIV,
and each computation means to solve two PDEs
for each of the ns sources, i.e. 2ns PDE-solves.
As seismic data exhibits low-rank structure, [2]

recently combined probing techniques with the
randomized SVD algorithm [1] to judiciously de-
liver a storable low-rank representation of the
EIV. Let r denote the estimated rank of the
EIV. Using randomized SVD allows us to com-
pute the low-rank form of the EIV in only 2r
PDE-solves and store two N×r matrices, where
N is the number of grid points, such that r ≤
ns � N and originally the EIV is a N ×N ma-
trix of maximal rank ns.

Algorithm 1:
Low-rank SVD algorithm [1] for EIV
1. X = E∗W, here, W is (N × r) Gaussian
random matrix for probing
2. [G,R] = qr(X) 3. B = EG ∈ CN×r
4. [Y,S,Z] = svd(B), where svd computes
the top r singular vectors of B
5. Z← ZG 6. L = Y

√
S and R = Z

√
S

7. E = LR∗, here L, R are (N × r) matrices
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(a) (b) (c)

Figure 1: Diagonal extraction aka RTM image. (a) From full EIV (1). (b) Using only 15 significant
singular values in the standard SVD of E, energy kept at 94.4%. (c) With 15 probing vectors in Alg. 1,
then using in (2) for the low-rank form LR∗, energy kept at 93.5%.

3 Information extraction

The randomized SVD algorithm applied for EIV
allows us to compute the thin (N×r)matrices L
and R such that E = LR∗, which we can store
and use to extract elements of the EIV. For in-
stance, to access to the RTM image, we would
want to extract the main diagonal of E. To
do so, we consider the following formula coming
from linear algebra: for Lk, resp. Rk, denoting
the k-th column of L, resp. R, we get:

diag(E) =

r∑

k=1

Lk �Rk, (2)

Clearly, we do not need to recompute the full
EIV to extract its diagonal. Similarly, we can
use a permutation matrix P, to extract off-dia-
gonals of the EIV, yielding information about
nonzero-offsets, inaccessible to until now.

4 Numerical results

To illustrate the efficiency of our approach, we
consider a 1km× 1km profile m extracted from
the Marmousi model, with N = 1012 = 10201
grid points, receivers and sources at each surface
points, i.e. ns = 101. For a fixed frequency,
ν = 25Hz, we compute the full EIV E, available
for this small example and we compare with the
low-rank form LR∗. In Fig. 1, we show the RTM
image extracted from the full E (left), from the
15 more significant singular values in the SVD
of E (middle), and when using eq. (2) on L and
R for only r = 15 probing vectors (right). The
resulting relative error is less than 7% for only
2r solutions of the Helmholtz equation.

5 Discussion

While impossible to build otherwise in the re-
quirements specification of the geophysics so-
ciety, we use a matrix-free algorithm to com-
pute and store a low-rank representation of the
EIV. This representation also allows us to con-
sider model changes without recomputing the
EIV thanks to an invariance formulation [2]. An
extension to the time-domain is also in progress.
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Abstract

In the paper sound signals propagation in shal-
low water area with varying bathymetry which
could be part of an underwater canyon, bay, a
lagoon or a lake with bowl-like bottom relief
is studied. It is shown that whispering gallery
waves localized near curvilinear isobaths exist.

Keywords: whispering gallery waves, shallow-
water acoustics

1 Introduction

In the paper sound propagation in a shallow-
water waveguide with rotational symmetry is
considered (Fig. 1). It is characterized by curvi-
linear (in particular circular) isobaths with the
water depth increasing toward their center of
curvature (i.e., toward the deeper part of bowl-
like bottom). Let us consider a waveguide with

r

z

bottom

S
in

S
out

water

r
2

r
1

z=h
2

z=h
1

Figure 1: Shallow-water waveguide with bowl-
like bottom (no vertical walls are present).

variable water depth:

h(r) =

{
h1, if r ≤ r1, ,
h2, if r ≥ r2 . (1)

and with some transitional segment r1 < r < r2.
If r1 = r2 then we have step-like bathymetry.

The question we study is the possibility of for-
mation of waves localized near circular isobaths
[1], in other words whispering gallery waves (WG
waves).

2 Mathematical formulation

Amplitude of the sound �eld P (x, y, z) with the
constant frequency is found in the form of de-
composition over adiabatic vertical modes [2]

P (x, y, z) =

Nm∑

j=1

Aj(r, θ)φj(r, z) , (2)

where local (adiabatic) eigenfunctions φj(r, z)
and the corresponding horizontal wavenumbers
qj(r) can be found via solution of the Sturm-
Liouville problem for each value of r [2]. Ampli-
tudes Aj = Aj(r, θ) depending on mode number
and the source frequency describe distribution
of acoustic intensity in the horizontal plane and
satisfy the following equation

1

r

∂

∂r

(
r
∂Aj
∂r

)
+

1

r2
∂2Aj
∂θ2

+ q2jAj = 0 . (3)

Amplitudes Aj(r, θ) can be found in turn as a
decomposition over radial modes Rν(r)

Aj =
∑

Rjν(r)ψjν(θ) . (4)

In our study a spectral problem for the radial
modes Rν(r) in the horizontal plane is obtained
and studied (ν is the spectral parameter). Its
solutions corresponding to WG waves can com-
puted by the WKBJ method, and the respective
solutions ν,Rjν(r) are called WG modes [1].

3 Some examples

Certain radial modes with large values of the
spectral parameter ν ∼ 2500 have speci�c shape
with maximum in area of boundary/transition
segment and correspond to the WG modes. In
the Fig. 2 these modes Rν(r) (hereafter we con-
sider j = 4) are shown for step-like bathymetry
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where r1 = r2 = 6 km, h1 = 24 m, h2 = 26 m.
In this case they are expressed in terms of the
Bessel functions. Note that radial modes in the
Fig. 2 have only outgoing waves in area r > r2,
and they can be excited by the source located
in the deeper part r < r2 of the waveguide (Sin
in Fig. 1). At the same time, all WG modes are
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ν=2293.4

Figure 2: Radial modes localized in the vicinity
of the boundary r = r2 = 6 km between two
areas of constant depth.

leaking (see Fig. 3), as there is no total internal
re�ection at a curvilinear boundary (if this situ-
ation is considered in the framework of horizon-
tal rays and vertical modes). This corresponds
to the fact that the spectral parameter ν always
has a nonzero imaginary part. It can be shown
however that for WG modes =(ν)� <(ν).
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Figure 3: Sound �eld due to a point source lo-
cated in the deeper part (Sin).

A rather interesting phenomenon for the con-
sidered waveguide is the possibility of excitation
of WGM by the source located in the area of
smaller depth r > r2 (source Sout in the Fig. 1)
It means that we can �nd radial modes Rν(r),

x, km
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 k

m
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1
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3
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6

Figure 4: Sound �eld in the horizontal plane
excited by the source Sout (computed by solving
paraxial equation in a ring-like area).

that contain outgoing and incoming waves in
the area r > r2. Excitation of WG modes by
the source located in the shallower part of the
waveguide in Fig. 1 corresponds to the so called
tunnel e�ect in quantum mechanics. In Fig. 4
the distribution of the sound �eld for this case is
shown in the horizontal plane at z = 10 m (the
point source is located at rs = 6.2 km, while
r2 = 6 km). This distribution was obtained
from the numerical solution of mode parabolic
equations that can be derived from Eq. (3) in a
standard way.
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Abstract

Our objective is to provide an efficient simula-
tion tool for the propagation of elastic waves
in thin plates in the context of Guided Waves
based Structural Health Monitoring. A naive
discretization procedure based on a Leap-frog
explicit scheme can be really costly because of
the small thickness of the plate. By treating
implicitly the operators corresponding to deriva-
tives through the thickness, we show by a stabil-
ity analysis that the time step is less restricted
by the space discretization along the thickness.
The price to pay is to solve at each iteration
small independent linear systems, but this strat-
egy offers an accurate and efficient discretization
of the elastic fields in all dimensions.
Keywords: Elastodynamics, Time discretiza-
tion, Plate models.

1 Setting of the problem

We consider the solution, for t > 0, uδ(t) ∈ V ≡
H1(Ωδ)3 of the elastodynamic equations
{
ρ ∂2

t u
δ − div C ε(uδ) = 0 in Ωδ,

Cε(uδ)n = gδ on ∂Ωδ,
(1)

where Ωδ = Σ× [−δ, δ] is a plate (Σ ⊂ R2 ) with
δ, the dimensionless thickness, being a small pa-
rameter, ρ is the density, C the elasticity ten-
sor and ε(·) the symmetrised gradient tensor.
The problem is completed with vanishing initial
conditions. The term gδ, the transverse loading
imposed by a thin piezoelectric patch located on
the upper face of the plate, is so that

supp gδ ⊂ Σ× {δ}, gδ = δ (g1, g2, 0)t.

The term gδ is scaled by δ in order to obtain
bounded solutions when δ goes to 0.
Of course, this method can be used for any other
source term.

2 A rescaled problem

We introduce the rescaled displacement ûδ

ûδ(x1, x2, x3, t) = uδ(x1, x2, δx3, t) in Ω

with Ω = Σ × [−1, 1]. We also introduce the
following operators

ε3(v) =
1

2




0 0 ∂3v1

0 0 ∂3v2

∂3v1 ∂3v2 2∂3v3


 ,

and ετ (v) = ε(v) − ε3(v). From Problem (1)
and the notation introduced above one can de-
duce the following variational formulation: for
all v ∈ V find ûδ(t) ∈ V such that

d2

dt2
m(ûδ(t),v) + aδ(ûδ(t),v) = `(v),

where m(·, ·) = ρ (·, ·), (·, ·) being the L2(Ω)3–
scalar product. The bilinear form aδ is defined
by

aδ(u,v) = aτ (u,v)+δ−1 am(u,v)+δ−2a3(u,v)

where aτ stands for the bilinear form involving
only in-plane differential operators, a3 only in
the thickness direction and am involves differ-
ential operators of mixed type: for q ∈ {τ , 3}

aq(u,v) = (Cεq(u), εq(v)),

am(u,v) = (Cετ (u), ε3(v)) + (Cε3(u), ετ (v)).

Finally ` is a linear form given by

`(v) =

∫

Σ×{1}
(g1, g2, 0)t · v dγ.

3 A standard discretization method

We consider first a standard discretization pro-
cedure by conforming finite elements and cen-
tered explicit finite difference in time (with time
step ∆t). Let Vh be finite dimensional sub-
spaces of V . It is constructed using high order
spectral finite elements with mass-lumping on
an extruded mesh (see [2]), i.e., the mesh along
the thickness is obtained by extrusion, with step
size, ηh (η > 0) of a quasi-uniform subdivision
of size h of Σ.
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For n ∈ N, we look for unh ∼ ûδ(n∆t) solution
of, for all vh ∈ Vh,

mh(
un+1
h − 2unh + un−1

h

∆t2
,vh)+aδ(unh,vh)=`(vh),

where we assume that mh is an approximation
of m using mass lumping techniques (yielding a
diagonal mass matrix). The stability condition
for this scheme is well-known

∆t2 ≤ 4

(
sup
vh∈V

aδ(vh,vh)

mh(vh,vh)

)−1

.

In practice such condition depends on δ, indeed
we can prove the following estimation

∆t2 . h2(1 + δ−2η−2)−1. (2)

One can see that choosing η ∼ δ−1, i.e., a very
coarse discretization along the thickness, would
provide a satisfactory stability condition, how-
ever this is not always possible for at least two
reasons: i) if one wants to construct reference
solutions; ii) if the medium is varying (typically
stratified) along the thickness. In these cases,
(2) is severely penalising the computations.

4 An implicit-explicit method

Our objective is to obtain a numerical scheme
for which the CFL condition is less restricted by
δ. In [1], a θ-scheme is used locally on penalizing
finite elements while in our case the θ-scheme is
used only on the penalising part of the bilinear
form aδ, namely δ−2a3. This gives

mh(
un+1
h − 2unh + un−1

h

∆t2
,vh) + aτ (unh,vh)

+ δ−1am(unh,vh) + δ−2a3({unh}θ,vh) = `(vh),

where {unh}θ = θun+1
h +(1−2θ)unh+θun−1

h . The
stability condition now reads, for all vh ∈ Vh,

mh(vh,vh)− ∆t2

4
(aτ + δ−1am)(vh,vh)

+ δ−2 (4θ − 1)∆t2

4
a3(vh,vh) ≥ 0.

If θ = 1/4 then, our estimation shows that ∆t2

should be bounded byO(h2(1+δ−1η−1)−1) which
is already an improvement compared to (2). The
bound obtained just above can be improved, by

considering θ > 1/4. Indeed, for an homoge-
neous isotropic medium, one can show that the
stability condition becomes

∆t2 ≤ 4
(
1 +

1

4θ − 1

)−1
sup
vh∈V

(
aτ (vh,vh)

mh(vh,vh)

)−1

,

and is independent of δ.

5 Numerical aspects

At each iteration, one needs to solve a linear sys-
tem which is decoupled into several small linear
systems (that can be solved efficiently in par-
rallel) for each interpolation point on Σ. This
property holds because we consider a structured
mesh and since the bilinear form a3 depends
only on ∂3. See Figure 1 where θ = 1/2.

Figure 1: The x1 and x3 components of the dis-
placement field in a rescaled plate.

This method can be used to compute reference
solutions and verify the validity of asymptotic
models such as Reissner–Mindlin model and some
extensions [3] (since there exists no rigorous jus-
tifications for elastodynamic problems). Finally
under some conditions on the mesh, our ap-
proach can be extended to plates with a smoothly
varying thickness.
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Abstract

The principal aim of this work is to provide
an adapted numerical scheme for the approx-
imation of elastic wave propagation in nearly-
incompressible solids. The simulation in such
media is computationally intensive due to the
severe stability condition that is imposed on the
time step of explicit methods. We construct
an implicit/explicit, second-order time discreti-
sation, that, by using penalisation techniques,
provides an efficient way to deal with incom-
pressibility: at the price of solving at each time
step a scalar Poisson problem (that can be per-
formed by various, efficient algorithms), the time
step restriction is independent of the incompress-
ibility parameters.
Keywords: Elastodynamic equations, Time
discretisation, Incompressibility

1 Statement of the problem

In the context of wave propagation in soft tis-
sues (such as transient elastographic waves in
living tissues), we look for the solution of the
nearly-incompressible elastodynamic equation

∂2t yλ−divC ε(y
λ
)−λ∇div y

λ
=f (Ω× [0, T ]),

where y
λ
∈ X = H1

0 (Ω)d is the elastic dis-
placement, ε the symmetrised gradient, C(x) a
fourth-order elasticity tensor that accounts for
heterogeneities and anisotropy (e.g. in fibered
tissues such as muscles) and λ, the first Lamé
parameter, is very large (i.e. λ >> |C|). The
problem is completed with vanishing initial con-
ditions and we assume f smooth.

2 A fully explicit scheme

We consider a finite-dimensional subspace of X ,
denoted Xh, and a scalar product (·, ·)h that in-
duces in Xh a norm equivalent to the norm in
H = L2(Ω)d. This scalar product accounts for
quadrature formulae that are typically used for
mass lumping. We set, for vh and wh in Xh,

(Ahvh, wh)h = (C ε(vh), ε(wh))H.

Moreover, we define L as the space of functions
in L2(Ω) with zero average and

(Dhvh, wh)h = (div vh,divwh)L.

A straightforward space-time discretisation of
our problem yields the scheme

[[yn
λ,h

]] +Ah y
n
λ,h

+ λDhy
n
λ,h

= fn
h
, (NI)

where [[znh ]] =
(
zn+1
h − 2 znh + zn−1h

)
/∆t2. Al-

though fully explicit, this scheme is highly pe-
nalised by the CFL condition: if Lagrangian fi-
nite elements are used on subdivisions of Ω of
size h, then one has ∆t . hλ−

1
2 . Of course, an

implicit discretisation (a so-called theta scheme)
would solve this problem but, in that case, a
linear system on the DOFs representing the dis-
placement field must be solved at each iteration.

3 The pure incompressible formulation

Since it is not efficient to use (NI) in practice,
an alternative is to consider the limit equations
for λ→ +∞:

∂2t y − divC ε(y)− ∇p=f, div y = 0. (1)

It can be proved that supt ‖yλ−y‖X . λ
−1. The

discretisation of (1) requires further notation
and, in particular, we introduce a factorisation
of the operator Dh. LetMh ⊂ (L ∩H1(Ω)) be
a family of finite-dimensional spaces. Following
[3], we introduce the space Yh=∇Mh+Xh ⊂ H
and the discrete divergence operator Ch : Yh →
Mh such that, for all qh ∈Mh and wh ∈ Yh,

(Chwh, qh)L := (wh, C
T
h qh)L := −(∇qh, wh)H.

Then, we define the embedding ih = Xh → Yh
and its transpose, for all vh ∈ Xh and wh ∈ Yh,

(vh, i
T
hwh)H := (ihvh, wh)H := (vh, wh)H.

Finally, we define another discrete divergence
operator Bh = Chih, and a discrete gradient
operator BT

h = iThC
T
h . One can show that

Dh = BT
hBh = iThC

T
h Chih.
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As a consequence, from Eq. (1) we deduce the
following scheme: we look for yn

h
∈ Xh and pnh ∈

Mh solution of

[[yn
h
]] +Ah y

n
h

+BT
h p

n
h = fn

h
, Bhy

n
h

= 0. (I)

The stability condition of (I) only depends on
Ah. Moreover, at each iteration, one has to solve

BhB
T
h p

n
h = Bhf

n
h
−BhAh ynh

and, if an adequate inf-sup condition holds (e.g.
Mh should not be too large), then a unique so-
lution exists. Scheme (I) is preferable compared
to fully implicit schemes, since only a scalar field
has to be recovered at each iteration. However,
the operator BhBT

h does not correspond to the
standard Laplace operator that would be ChCTh .
In practice, this represents a crucial gain since
fast methods [2] can be employed to solve the
Laplace problem.

4 A penalised formulation

Our main contribution presented during the talk
is described in what follows. Starting from (1),
we consider the equation

∂2t yα−divC ε(y
α
)−∇pα=f, div y

α
= −α∆pα.

We can prove that supt ‖yα − y‖X . α
1
2 and,

under some assumptions on the properties of the
operator divC ε, we also show that

‖y
α
− y‖L2(0,T ;X ) . α. (2)

Hence, for small α, y
α
is an accurate approxi-

mation of y, that is itself an accurate approxi-
mation of y

λ
. Then, we propose the following,

rather straightforward, fully discrete scheme




[[yn
α,h

]] +Ah y
n
α,h

+BT
h p

n
α,h = fn

h
,

Bhy
n
α,h

= α∆t2ChC
T
h p

n
α,h.

(P)

Note that we have replaced α by α∆t2. We have
proved that the stability condition for (P) only
depends on Ah, and that yn

α,h
− yn

h
goes to zero

in the L2 norm as ∆t2 for α fixed (see Fig. 1).

(NI) (I) (P)
System to solve − BhB

t
h ChC

t
h

∆t2 ≤ 4
‖Ah+λBhBth‖

4
‖Ah‖

4α−1
α ‖Ah‖

Table 1: Main properties of the schemes

At each iteration one can compute pnα,h by in-
verting ChCTh using fast solvers for scalar Laplace
equation (such as the one we have developed
in [2]).

5 Numerical convergence analysis

Although we wish to solve the nearly incom-
pressible problem, we performed a space-time
convergence analysis of yn

α,h
−yn

h
on a rather dif-

ficult case: we considered a heterogeneous (lin-
early varying from top to bottom) transversely
isotropic medium representing a fibered tissue.
We used 7th order spectral finite element on
quadrangles for Xh and 6th order finite elements
forMh. We fixed α = 1/3, chose ∆t ' ‖Ah‖−

1
2 ∼

h and let h go to zero (hence ∆t goes to 0
as well). We observed the expected behaviour:
second-order convergence in ∆t and a small loss
of convergence in the H1-norm when the wave
hits the boundary (as for Stokes problems – see
[3] – boundary layers are expected).

Figure 1: Top: Elastic wave propagation (ab-
solute value) in a heterogeneous transversely
isotropic medium. Bottom: sups∈[0,t] ‖yα−y‖V ,
V = H (left) and V = X (right).
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Abstract

Locally implicit time discretizations can be of
great interest for accurate simulations of wave
propagation in complex media like Earth sub-
surface. They allow to use unconditionally sta-
ble schemes in the regions of computational do-
main covered by small cells and explicit schemes
in the remaining. The receivable values of the
time step are then increased which reduces the
computational costs while limiting the disper-
sion e�ects. In this work, we propose to combine
optimized explicit schemes and implicit schemes
to form high-order locally implicit schemes for
linear ODEs, including in particular wave prob-
lems.

Keywords: Acoustic wave, implicit-explicit time
schemes, Runge-Kutta (RK) and Padé schemes

1 Introduction

When solving wave equations in a complex ge-
ometry, the mesh may contain very small ele-
ments. For this reason, explicit schemes may
have a highly restrictive stability condition lead-
ing to a prohibitive computational time. Using
implicit time schemes allow to take a large time
step, but the solution of the linear system to be
solved in this approach requires a large amount
of memory space, especially in 3D. In this talk,
we propose high order locally implicit schemes
for linear ODEs of the form

y′(t) = Ay(t) + F (t), t ∈ (0, T ] (1)

where A is a given matrix, coming from a spatial
discretization, and F is the source term.

Herein, the development of the locally im-
plicit method shares the same idea as the local
time stepping presented in [1]. The mesh used
for the spatial discretization is divided into two
parts: a coarse region where explicit time step-
ping is applied, and a re�ned region where an
implicit time scheme is used [2]. For the im-
plicit part, we use either Padé schemes or LS-
DIRK (Linear-Singly Diagonally Implicit RK)

schemes [3]. Padé schemes are constructed from
the Padé approximation of the exponential func-
tion while LSDIRK schemes are based on the
approximation of the exponential function by a
fraction with a unique pole. Therefore, LSDIRK
schemes usually require less memory than Padé
schemes but are more demanding in computa-
tional time. Both Padé and LSDIRK schemes
are unconditionally stable, they are available
until order 12. For the explicit schemes, we
use optimized RK schemes in order to have a
large CFL number (stability condition). The
optimized RK schemes are constructed, �rst by
de�ning a typical pro�le using the spectrum of
the operator A in (1), and then compute a sta-
bility function that maximize the CFL number
for the typical pro�le as described in [4]. The
coupling between these two families of scheme
(explicit and implicit) is completed by ensur-
ing the same order of accuracy as the schemes
used in the re�ned or coarse region. Numeri-
cal experiments are performed in 2D and 3D for
schemes of order 4 and order 8. We used the
�nite elements C++ code Montjoie. All the de-
tails about this work are presented in the PhD
dissertation [5].

2 Convergence and numerical results

We consider the acoustic wave equation





ρ ∂tu− div v = 0, ∀(x, t) ∈ Ω× R+

µ−1∂tv −∇u = 0, ∀(x, t) ∈ Ω× R+

u = fD, x ∈ ΓD

(2)

To produce the space-time convergence curves,
equation (2) is solved in Ω = [5, 5]2 with ρ =
µ = 1 using the �nite element solver Montjoie.
The time step is taken as ∆t = α∆x, where
α is a constant close to the CFL number of
the explicit scheme and ∆x is the mesh size
which changes with the number N of points
taken along the axes. We choose [0, 200] for
the time interval. We use a Gaussian source
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Figure 1: Space-time convergence curves of ERK4-2
combined with Padé4 and LSDIRK4-1. We used Q3 el-
ements in space.

in space and a Ricker source in time with ini-
tial frequency f0 = 1. In Figures 1 and 2 we
show the space-time convergence curves of the
locally implicit schemes obtained from the opti-
mized explicit schemes combined with Padé and
Linear-SDIRK schemes of order 4 and order 8.
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Figure 2: Space-time convergence curves of ERK8-2
combined with Padé8 and LSDIRK8-1. We used Q7 el-
ements in space.

To evaluate the e�ciency, we solve (2) in
a 2D Magnetron containing sixteen resonating
cavities shown in Figure 3. In Table 1, we present
the computational times needed for purely ex-
plicit, purely implicit and local implicit schemes
of order 4 to reach 0.3% of relative L2 error
computed at t = 200 between the numerical so-
lution and a reference solution computed with
the eighth order Padé scheme with ∆t = 0.01.
As expected, the results show that a locally im-
plicit scheme is a compromise in terms of com-
putational time and memory usage compared to
purely explicit and implicit schemes.

Figure 3: Cavity resonant mesh. Re�ned region in
green, and coarse region in red. ABC is set in the outer
circle and Dirichlet condition elsewhere.

Method Time
step

CPU
Time

Memory

ERK4-2 9.09e−4 8h52min 720 Mo

Local LSDIRK 0.025 54min15s 1.8 Go
LSDIRK 0.04 1h12s 3.2 Go

Local Padé 0.025 39min11s 2.3 Go
Padé 0.033 38min27s 4.8 Go

Table 1: E�ciency of ERK4-2 combined with
LSDIRK4-1 and Padé4 (relative error of 0.3%).
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Abstract

Monte Carlo methods are probably the most
popular approach in uncertainty quanti�cation
to compute expected values of quantities of in-
terest (QoIs). Multilevel Monte Carlo (MLMC)
methods signi�cantly reduce the computational
cost by distributing the sampling across a mesh
hierarchy and restricting most samples to the
coarser grids [1]. Geometric constraints, how-
ever, may impede uniform coarsening thereby
forcing some elements to remain small across
all levels. Then, the increasingly stringent CFL
stability condition on the time-step on coarser
levels e�ectively nulli�es the advantages of the
multilevel approach. By adapting the time-step
to the locally re�ned elements on each level, lo-
cal time-stepping (LTS) methods [2] permit to
restore the e�ciency of MLMC methods even in
the presence of complex geometry without sacri-
�cing the explicitness and inherent parallelism.

Keywords: Multilevel Monte Carlo, local time-
stepping, �nite elements, mesh adaptivity

1 Introduction

We consider the wave equation with stochastic
coe�cient in a bounded domain D ⊂ Rd,

∂2

∂t2
u−∇ ·

(
c2(x, ω)∇u

)
= 0, (1)

with appropriate (deterministic) boundary and
initial conditions. Here we model the uncer-
tainty in the wave speed c > 0 as a time in-
dependent random �eld c : D × Ω → R, where
Ω is the sample space of a complete probabil-
ity space. To estimate the statistics of some
QoI of the solution u = u(x, t, ω) [3], or al-
ternatively the expected value of the solution
E[u] := E [u(T )] ∈ V at a �xed time T > 0
itself, we now consider MLMC methods.

2 Multilevel Monte Carlo methods

MLMC methods [1] provide a robust, e�cient
and noninvasive approach by sampling the so-
lution on a sequence of meshes of size H` =
H0/2

` and appropriate time steps ∆t` ≤ CH`,

` = 0, . . . , L. Let u` denote the corresponding
FE approximations of u on level `. Then,

E[uL] = E[u0] +

L∑

`=1

E[u` − u`−1︸ ︷︷ ︸
∆u`

],

which motivates the MLMC estimator of E[uL],

ûML
h :=

L∑

`=0

1

N`

N∑̀

i=1

(
∆u`

(
ω(i)
))
, (2)

where N` is the number of samples ω(i) com-
puted on level `. The mean square error (MSE),

e
(
ûML
h

)2
:= E

[∥∥ûML
h − E[u]

∥∥2

V

]
(3)

splits into total variance and numerical bias:

e
(
ûML
h

)2
=

L∑

`=0

N−1
` V` + ‖E[uL − u]‖2V , (4)

with

V` = E[‖∆u`‖2V ]− ‖E[∆u`]‖2V . (5)

To bound the MSE by a given tolerance ε, one
chooses N` and L such that both contributions
are bounded by ε2/2 � see e.g. [4].

3 Local time-stepping (LTS)

Due to geometric constraints, it may not be pos-
sible to coarsen the entire mesh uniformly. On
coarser levels, standard explicit time-stepping
schemes then become increasingly ine�cient due
to the ever more restrictive CFL condition. To
overcome this bottleneck, we consider explicit
local time-stepping (LTS), which use a larger
time step ∆t` in the coarser part and a smaller
time-step ∆t`/p` in the �ner part of the mesh
with p` ' H`/hmin [2].

4 Computational cost

Let C` denote the computational cost of com-
puting one sample on level `. Then, the total
cost of the MLMC estimator is given by

C
[
ûML
h

]
=

L∑

l=0

N`C`.
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Figure 1: Overlay of realizations of wave speed
c(x, ω(i)) (top) and FE-solutions u0(x, T, ω(i)) at
T = 6 (bottom).

In general, C[ûML
h ] = O(ε−2), if V`C` → 0 for

`→∞, regardless of the numerical method [1].
To estimate the gain in computational cost

for MLMC with leap-frog (LF) based LTS over
standard LF, we compute the theoretical speed-
up Qeff ,

Qeff (r, p0, L, {V`}) =
CLTS-LF

[
ûML
h

]

CLF

[
ûML
h

] , (6)

where r denotes the relative measure of the lo-
cally re�ned region, Dfine, with respect to D.
The smaller Dfine, the smaller Qeff and hence
the greater the gain of using LTS. Typically, Qeff

reaches its minimum at moderate values of the
local re�nement factor p0 ≈ 8− 32.

5 Numerical Example

We consider (1) in D = (0, 6) ⊂ R with homo-
geneous Neumann conditions and set the initial
condition to the Gaussian pulse:

u(0, x) = e−16(x−3)2 , ut(0, x) = 0.

For simplicity, c is modelled here by a standard
Karhunen-Loève expansion,

c2(x, ω) =

1 +

20∑

k=1

ξk(ω)

2π2k

(
cos

(
kπx

6

)
+ sin

(
kπx

6

))
,

where ξk ∼ U(−1, 1) are i.i.d. random variables,
but clearly other choices are possible. We let the
locally re�ned regionDfine = [4.4, 4.5] with �xed
mesh size h = H0/16 across all levels.
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Figure 2: Computational work vs. root MSE
tolerance ε with, or without, LTS.

Figure 1 shows an overlay of six particular
samples c(x, ω(i)) and the respective FE-solu-
tions u`(T, ω

(i)) of (1) at T = 6 on the coarsest
level with H0 = 1/16. In Figure 2, we compare
the performance of MLMC using either leap-
frog (LF) based LTS or the standard LF method
with P1-FE with mass-lumping. Although the
total computational cost behaves inversely pro-
portional to the MSE tolerance ε2 in both cases,
the LTS-LF based MLMC method achieves a
one order of magnitude reduction in computa-
tional cost. In general, the speed-up Qeff in (6)
will depend on the parameters of the problem.
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Abstract

We study numerical quadrature methods that
aim to improve e�ciency (in particular memory
e�ciency) and reduce computational complex-
ity in solving wave equations with time frac-
tional damping. These equations include non-
local fractional derivatives to incorporate the ef-
fects of acoustic attenuation of the wave, making
them appropriate for modelling high intensity
focused ultrasound therapy (HIFU).

Initially existence and uniqueness results of
the given PDE will be discussed, then a wave
equation with an additional fractional (lower or-
der) time derivative is discretized. The non-
local nature of the fractional time-derivative is
treated with convolution quadrature. Recent
improvements in storage requirement for con-
volution quadrature are employed. Paper is of
topical interest for WAVES.

Keywords: Convolution quadrature, �nite ele-
ment method, Caputo fractional derivative

1 Fractional Wave Equation

High intensity focused ultrasound is a non-invasive
and non-ionising medical treatment that is used
to ablate tissue; it is used to treat a number of
disorders, such as cancer [1]. The aspect of this
treatment that we wish to understand is energy
decay of the ultrasound waves as they propagate
through tissue. It is known that this acoustic
attenuation adheres to a frequency dependence
de�ned by the power law,

S(−→x + ∆−→x ) = S(−→x )e−γ(ω)|−→x |, (1)

where S is amplitude, ∆−→x is wave propagation
distance, ω is frequency and γ(ω) = γ0|ω|y is the
term describing attenuation. This attenuation is
dependent on parameters y and γ0 which relate
to the media.

To model this we consider the modi�ed ver-
sion of Szabo's convolution wave equation that
is presented by Chen and Holm [3] which uses
the Caputo fractional derivative as opposed to
the Riemann-Liouville derivative. We aim to

�nd solutions to the initial boundary value prob-
lem involving this PDE in a bounded domain
Ω ⊂ Rd given by,

∂2
t u−∆u+ ∂αt u = f, in Ω× [0, T ] (2)

u(·, 0) = u0, in Ω

∂tu(·, 0) = v0, in Ω

u(·, t) = 0, on ∂Ω× [0, T ]

where α = y+1 and remaining coe�cients have
been set to 1. We use this fractionally damped
wave equation because its solutions obey the fre-
quency dependence power law (1).

Theorem 1 Given u0 ∈ H1
0 (Ω), v0 ∈ L2(Ω),

f ∈ L2(0, T ;L2(Ω)) and α ∈ (0, 1] a unique

weak solution u ∈ L∞(0, T ;H1
0 (Ω)) exists to the

IBVP with ∂αt u ∈ L2(0, T ;L2(Ω)),
∂2
t u ∈ L2(0, T ;H−1(Ω)) and ∂tu ∈ L∞(0, T ;L2(Ω)).

There also exists a unique weak solution in the

case where α ∈ (1, 2) with the same regularity

conditions when v0 = 0.

2 Derivation of Numerical Method

2.1 Space Discretization

To convert (2) into a discrete problem with re-
spect to the spatial domain we use a Galerkin
method. Thus, the problem becomes seeking
a solution uh ∈ Vh, where Vh is a �nite di-
mensional subset of the original solution space
H1

0 (Ω), to
∫

Ω
∂2
t uhχ+

∫

Ω
∇uh∇χ+ a

∫

Ω
∂αt uhχ =

∫

Ω
fχ

(3)
where χ ∈ Vh. We assume solutions have the
form

uh =

k∑

j=0

U jφj(x)

for a set of basis functions {φj}kj=0, and let the
test function χ = φi for i = 0..k. Then we are
left with

M∂2
t U +AU +M∂αt U = F
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where M and A denote mass and sti�ness ma-
trices.

2.2 Time Discretization

As previously mentioned the time discretization
is developed using a mix of two schemes. Ini-
tially, we use the second order Leapfrog method
to discretize our standard derivatives,

MUn+1 − 2MUn +MUn−1

∆t2
+AUn

+
[(
∂∆t
t

)α−1
MV

]
n

= Fn (4)

where Vj =
Uj+1−Uj−1

2∆t . Then apply the convo-
lution quadrature method [4] to discretize the
fractional derivative,

[(
∂∆t
t

)α−1
MV

]
n

=

n−1∑

j=0

ωn−jMVj

+
ω0M (Un+1 − Un−1)

2∆t
(5)

where ω denotes the quadrature weights. These
weights are de�ned by,

(
δ(ζ)

∆t

)α−1

=

∞∑

j=0

ωjζ
j ,

where δ(ζ) is the generating function of the lin-
ear multi-step method being used. When using
BDF1 the weights can be calculated using a re-
currence relation, but for higher order methods
we derive them using a fast Fourier transform
method.

3 Standard vs Fast Convolution Quadra-

ture

As a result of the sum that arises from the con-
volution quadrature we need to store all previ-
ous data and process all this data at each time
step. This drastically increases the schemes mem-
ory requirement and computational complexity.
To resolve this we have been implementing an al-
gorithm for improving this quadrature that was
discussed in [2]. In short, this method decom-
poses the sum in (5) into two parts, one part
is a sum up to a small n0 where the weights
are calculated in the usual sense via fast Fourier
transform. The second is a sum containing the
remaining terms, but the weights are calculated
in such a way that fewer are required and the

sum itself can be written as a recurrence rela-
tion.

We have conducted a number of numerical
experiments which show the e�ects of the new
quadrature and its ability to retain the same
degree of accuracy as the standard method with
fewer weights. Table 1 shows the e�ectiveness
of reducing the number of weights on memory
consumption.

dx Standard Fast

0.5 0.0069 0.0095
0.25 0.0347 0.0342
0.125 0.2162 0.1364
0.0625 1.4708 0.5314
0.03125 10.7389 2.1884
0.015625 81.6034 8.7616
0.0078125 636.3872 34.781

Table 1: Memory usage (MB) of the two meth-
ods as the mesh size (dx) decreases, with α =
0.5, tol= 10−6 and the CQ uses BDF1.
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Patrick Joly1,∗, Maryna Kachanovska1

1POEMS, ENSTA ParisTech-INRIA-CNRS, INRIA, Palaiseau, France
∗Email: patrick.joly@inria.fr

Abstract

This work is dedicated to an efficient resolution
of the wave equation in fractal trees (with ap-
plication to wave propagation in a human lung).
Thanks to self-similarity, it is possible to avoid
computing the solution at deeper levels of the
tree by using transparent boundary conditions.
The corresponding DtN operator is defined by
a functional equation for its symbol. in the fre-
quency domain. In this work, we analyse an
approximate transparent condition, cf. Waves
2017, based on rational approximation of the
symbol. The error and complexity analysis re-
lies on Weyl-like estimates of eigenvalues of the
weighted Laplacian and related eigenfunctions.
Keywords: fractal tree, wave equation, ratio-
nal approximations, Weyl estimates

1 Introduction

Given a compact self-similar p-adic tree T con-
sisting of a countable set of edges and vertices,
we study the wave equation defined on its edges

µ∂tt − ∂x(µ∂xu) = 0 (1)

equipped with u(M∗, t) = f(t) at the root ver-
tex M∗ of T . The (space) function µ is con-
stant along every edge Σ. If the length of Σ is
`, the length of each of its p children Σj , j =
0, . . . , p−1 is αj` with 0 < αj < 1. Moreover the
value of µ along Σj is µj times its value along
Σ, with µj > 0. (1) is completed with vertex
conditions (see also Figure 1)

u|Σ = u|Σk , 0 ≤ k ≤ p− 1,

∂xu|Σ =

p−1∑

k=0

µk ∂xu|Σk .

The problem (1) is equipped with Neumann or
Dirichlet boundary conditions at ’infinity’ (even
though the tree is compact), incorporated in the
variational formulation of the problem. For the
Neumann case considered in this paper, this is:

d2

dt2
(µu, v)T + (µ∂xu, ∂xv)T = 0, ∀ v ∈ H1

µ (2)

Figure 1: Edge transmission conditions

where we look for u ∈ C1(R+;L2
µ)×C0(R+;H1

µ).
For a precise definition of the (weighted) spaces
L2
µ and H1

µ and scalar products, see [1]. An
important (non-trivial) result of [1] is that the
embedding H1

µ ⊂ L2
µ is compact. As a conse-

quence, setting α = (αi) and µ = (µi), (2) can
be rewritten in abstract form as

d2u

dt2
+Aα,µu = 0. (3)

where Aα,µ is a positive definite self-adjoint in
L2
µ which has a pure point spectrum

σ(Aα,µ) = {ω2
1 ≤ ω2

2 ≤ · · · }, ω2
n → +∞, (4)

each eigenvalue repeated with its multiplicity.

2 Transparent conditions

In order to compute the solution, we truncate
the tree at a certain level using a transparent
boundary condition at each end point M :

∂xu(M) =

p−1∑

i=0

µi Λi(∂t)u(M, ·)

where Λi(∂t) = `−1Λ(αi ` ∂t), Λ(∂t) is the DtN
operator associated with a reference tree (with
length 1 root edge) and ` the length of the edge
ending at M . Λ(∂t) is a convolution operator
whose Fourier-Laplace symbol Λ(ω), ω ∈ C, is
not known explicitly but satisfies

Λ(ω) cos(ω)− ω sinω =
(

cosω + Λ(ω)
sinω

ω

)( p−1∑

i=0

µi
αi

Λ(αiω)
)
.

(5)
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The above equation admits a unique even mero-
morphic solution as soon as Λ(0) = 0, which is
easily seen for the Neumann problem. More-
over, using (3, 4) for the reference tree, one
shows that

Λ(ω) =

+∞∑

n=1

an ω
2

ω2 − ω2
n

, an =
∂xϕn(0)2

ω2
n

, (6)

where Aα,µ ϕn = ω2
n ϕn, ‖ϕn‖L2

µ
= 1 and 0 the

root edge of the reference tree. An approximate
transparent condition is obtained by truncating
the above expansion at some order N > 1

Λ(ω) ∼ ΛN (ω) :=

N∑

n=1

an ω
2

ω2 − ω2
n

. (7)

The resulting boundary condition is local in time:
at each end point M , we write an inhomoge-
neous Neumann condition involving N auxiliary
unknowns coupled to u via ordinary differential
equations (harmonic oscillators with frequencies
ωn). In practice, the (an, ωn)’s are computed
through the numerical solution of (5). The sta-
bility of the resulting IBVP can be shown via
energy estimates. Below we address the corre-
sponding error (and complexity) analysis.

3 Error and complexity analysis

Let us denote uN the solution on the truncated
tree issued from the approximation of Λ(∂t) by
ΛN (∂t) through (7) and eN := u − uN the cor-
responding error. The full error analysis relies
on three steps. Denoting Tc the finite truncated
tree, and given T > 0, we set

|||eN |||c,T = ‖eN‖L∞(0,T :H1
µ(Tc))

+ ‖∂teN‖L∞(0,T :L2
µ(Tc)) .

(8)

Lemma 1 For sufficiently smooth data, one has

|||eN |||c,T ≤ C T rN ‖∂4
t ∂xu‖L1(0,T :L2

µ) (9)

with rN the remainder of a converging series

rN :=

+∞∑

n=N

an
ω2
n

≡
+∞∑

n=N

∂xϕn(0)2

ω4
n

. (10)

Lemma 1 ois proven by energy techniques. For
estimating rN , we first get a lower bound for
ω2
n by using min-max and Dirichlet-Neumann

bracketing techniques and adapting the ideas of
[2]. The result depends on two quantities

|α| = α0 + · · ·+ αp−1 ∈ ] 0, p [ (11)

dα > 0 unique sol. d of
p−1∑

i=0

αdi = 1. (12)

Lemma 2 There exists ω∗ > 0 such that:
If |α| < 1, dα < 1 and ω2

n ≥ ω2
∗ n

2.

If |α| = 1, dα = 1 and ω2
n ≥ ω2

∗ n
2/ log n.

If |α| > 1, dα > 1 and ω2
n ≥ ω2

∗ n
2/dα .

Let us emphasize that these bounds are sharp
in the sense that similar upper bounds, with
ω+ > 0 instead of ω∗, can be obtained.

The next step involves particular upper bounds
involving the eigenfunctions ϕn. Using a theo-
rem of [3] (that can be straightforwardly adapted
to our case) we prove the (note the difference
between rN and the left hand side of (13))

Lemma 3 There exists C > 0 such that,

∀M > 0,
∑

ω2
n≥M2

∂xϕn(0)2

ω4
n

≤ C

M
. (13)

Our main result is obtained by combining lem-
mas 1, 2 and 3.

Theorem 4 For sufficiently smooth data, the
estimate (8) holds with




rN ≤ C N−1 if |α| < 1,

rN ≤ C N−1 logN if |α| = 1,

rN ≤ C N−(1/dα) if |α| > 1.

(14)

Note that the computational complexity of the
method is directly related to (14) since the cost
of the boundary condition is proportional to N .

In the talk, we shall also propose some hints
(suggested by the convergence proof) to improve
accuracy with (almost) no additional cost.
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Abstract

A plasmonic device with a non-smooth boundary
can exhibit strongly-oscillating surface waves whose
phase velocities vanish as they reach the corners.
This work investigates in the quasi-static limit the
existence of corner resonances, which are analogous
to scattering resonances in the sense that the local
behavior at each corner plays the role of the be-
havior at infinity. Resonant contrasts are sought as
eigenvalues of the transmission problem with com-
plex scaling applied at corners. Since the scaling
function must depend upon the contrast, the corre-
sponding eigenvalue problem is nonlinear.

Keywords: sign-changing permittivity, complex
resonances, complex scaling

1 Definition of corner resonances

This work focuses on the transmission problem
{

div
(
ε(x)−1∇u(x)

)
= 0

(
x ∈ Ω ⊂ R2

)

u(x) = 0 (x ∈ ∂Ω) ,
(1)

where the differentiations are weak, Ω is a bounded
C∞ domain, and ε is piecewise constant

ε(x) = κ1Ωm(x) + 1Ω\Ωm(x), (2)

where Ωm is a piecewise-smooth domain modeling
the plasmonic device, see Figure 1.

Typically, the contrast κ depends upon the fre-
quency ω through a physical model; this dependency
need not be introduced herein since ω does not ap-
pear explicitly in the quasi-static approximation (1).

If the contrast κ is not real, then the only solu-
tion of (1) in H1(Ω) is u = 0. Let us review some
results for κ ∈ R.

If ∂Ωm is smooth there is a sequence of real
eigenvalues (κn)n, for which (1) has a non-null so-
lution, accumulating at −1 [3, Thm. 1]. These con-
trasts are associated with surface waves known as
surface plasmons, whose energy-concentrating prop-
erties are employed in many applications.

Let ∂Ωm have one cornerxc of angle φ ∈ (0, π).
If κ lies in the critical interval [1, Tab. 1] [4]

Ic :=

[
φ− 2π

φ
,−1

]
∪
[
−1,

φ

φ− 2π

]
= Iodd

c ∪Ieven
c ,

Ωm φ

Ω xc

Figure 1: Transmission problem on Ω. The plas-
monic inclusion Ωm has a corner of angle φ.

then there is η ∈ R, which depends implicitly upon
the contrast κ through the dispersion relation

fφ(η, κ) :=

[
sinh (ηπ)

sinh [η (π − φ)]

]2

−
[

1− κ
1 + κ

]2

= 0,

(3)
such that the strongly-oscillating black-hole field

ubh(r, θ) = riηΦ(θ) (θ ∈ (−π, π])

is a solution to (1) in a neighborhood of xc. Note
that ubh ∈ L2(Ω) but ubh /∈ H1(Ω). The require-
ment that ubh be outgoing leads to (using energy
considerations or a limiting absorption principle)

η < 0 if κ ∈ Iodd
c , η > 0 if κ ∈ Ieven

c . (4)

The purpose of this work is to investigate the ex-
istence of complex resonances occurring at the cor-
ners of ∂Ωm, which can be built analogously to that
of usual scattering resonances. We propose here the
following, somewhat imprecise, definition:

Definition 1. A corner resonance is a value of κ for
which there is a non-trivial solution u to (1) that is
outgoing at a corner xc ∈ ∂Ωm.

A corner resonance function is localized at a
corner xc of ∂Ωm in the sense that it blows up as

u(r, θ) ∼
r→0+

riηΦ(θ) (θ ∈ (−π, π]) , (5)

where κ solves (3) with =(η) ≥ 0. The multival-
ued nature of κ 7→ {η | fφ(η, κ) = 0} suggests that
such resonances can exist. This seems to be cor-
roborated by the strategy proposed in [5], which
consists in perturbing a smooth ∂Ωm with corners
so that eigenvalues κn are perturbed into embedded
eigenvalues or resonances.
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2 Complex scaling for corners resonances

The principle of complex scaling is to define a mod-
ified transmission problem such that if κ is a corner 
resonance with resonance function u, then κ is an 
eigenvalue of the modified p roblem. The construc-
tion exploits the analyticity of (5) with respect to r. 

To formalize this, let (r, θ) be cylindrical coor-
dinates originating at a corner xc ∈ ∂Ωm. The com-
plex scaling technique introduced in [1] consists in 
analytically continuing u from (0, R) × (−π, π] to
{r1/α | r ∈ (0, R)} × (−π, π], where α ∈ C is the 
complex scaling parameter to be chosen. By defin-
ing uα(r, θ) := u(r1/α, θ), the modified problem is

ε−1 (αr∂r)
2 uα(r, θ) + ∂θ

(
ε−1∂θuα

)
(r, θ) = 0

(6)
on (0, R) × (−π, π], which can be discretized with
a finite element method. A suitable choice of α 66= 1
enables to turn resonances κ that belong to a given
region Kα ⊂ C into eigenvalues of (6). The asso-
ciated eigenfunction uα ∈ L2(Ω) behaves at each
corner as (compare with (5))

uα(r, θ) ∼
r→0+

ri
η
αΦ(θ) (θ ∈ (−π, π]) ,

where α ∈ C is chosen such that =(η/α) < 0.
The numerical difficulty stems from the fact that

(6) is nonlinear in κ, since arg (α) must depend
upon κ, echoing [6] where parameters with frequency-
dependent modulus are considered. This is apparent
from the outgoing condition (4), which implies

arg(α) < 0 if κ ∈ Iodd
c , arg(α) > 0 if κ ∈ Ieven

c .

Specifically, a study of the dispersion relation (3)
shows that α must satisfy the stability constraint

θmin(κ) < arg(α(κ)) < θmax(κ) (κ ∈ R), (7)

which ensures that only outgoing corner waves must
be exponentially decaying (equivalently, the corner
must not bring energy into the domain).

Figure 2 illustrates (7). The values of θmax for
κ < φ−2π

φ and θmin for κ > φ
φ−2π are consequences

of (4). Any κ-independent scaling parameter such
as α1 = e−iπ/4 fails (7); α2(κ) = eiθ(κ) where θ(κ)
is a polynomial satisfying (7) for κ ∈ [−6, 0].

Figure 3 plots the deformation of the essential
spectrum

σess = {κ | ∃η ∈ C∗ : fφ (η, κ) = 0, = (η/α) = 0}

for α = 1 (i.e. no complex scaling, in which case
we recover Ic), for the κ-independent scaling α1

−6 −5 −4 −3 −2 −1 0

π/2
π/4

0
−π/4

−π/2

Contrast κ

a
rg

(α
)

φ−2π
φ -1

φ
φ−2π

Figure 2: Illustration of condition (7) for a cor-
ner angle φ = π/3. Stability limits: ( ) θmax,
( ) θmin. Complex scaling parameters: ( )
α1 = e−iπ/4, ( ) α2 = eiθ(κ).

−6 −5 −4 −3 −2 −1 0

−2

−1

0

<(κ)
=(
κ

)

φ−2π
φ -1

φ
φ−2π

Figure 3: Essential spectrum σess for a corner angle
φ = π/3 and various complex scaling parameters:
( ) α = 1, ( ) α1 = e−iπ/4, ( ) α2 = eiθ(κ).

(discussed in [2, § 4.7.1]), and for the κ-dependent
scaling α2. The regionKα where resonances can be
computed is the region uncovered by the deforma-
tion of the essential spectrum.

Ongoing work focuses on the construction of a
scaling function κ 7→ α(κ) that maximizes |Kα|
while still leading to a tractable nonlinear eigen-
value problem in κ.
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Abstract

A popular approach for treating time-harmonic
Maxwell problems in open domains is the tech-
nique of complex scaling. Thereby a complex
coordinate stretching is applied leading to expo-
nentially decreasing outgoing solutions. Usually
a perfectly matched layer is generated by trun-
cating the domain and discretizing the problem
in the bounded layer with finite elements. In
our work we present a method based on com-
plex scaling that omits truncation by the use
of infinite elements. These infinite elements are
straightforward to use and lead to super-algebraic
convergence with respect to the number of un-
knowns in propagation direction. Moreover, they
are stable, i.e. the condition numbers of the dis-
cretization matrices are small.
Keywords: time harmonic Maxwell’s equations,
waveguide, infinite elements, complex scaling,
transparent boundary conditions

1 Introduction

This work considers electromagnetic problems
in open domains with an electromagnetic source.
Such problems appear in the context of electro-
magnetic compatibility in electronic based sys-
tems [1,2]. Interesting results may be the input
impedance, the radiated power, etc.

The performance of the standard perfectly
matched layer (PML) method depends on the
thickness of the layer, the discretization and the
finite element (FE) order in the layer, as well as
the complex coordinate stretching. Optimizing
these parameters is cumbersome. Moreover, the
PML has exponential convergence with respect
to the thickness of the layer, but standard FE
convergence with respect to the discretization
in the layer. We propose infinite elements (IE)
which depend only on a damping parameter and
the degrees of freedom (DoF) in the direction of
propagation and lead to super-algebraic conver-
gence with respect to the DoFs in the direction
of propagation.

Γ Ωext

Ωint

Ωsource

Figure 1: Longitudinal section of a waveguide.

2 Mathematical formulation

Let Ω ⊂ R3 such that Ω = Ωint ∪ Γ ∪ Ωext

where Ωint is bounded, Ωext = Ω \ Ωint is un-
bounded and Γ = Ωint ∩ Ωext ∩ Ω. To simplify
the explanation of the method the focus is set on
waveguides (cf. Figure 1) where Γ = {0}×Γ0 for
a suitable bounded Lipschitz domain Γ0 ⊂ R2.

The goal is to solve time-harmonic Maxwell’s
equations in the following form

curlµ−1 curlA− ω2εA = J0 (1)

on Ω, where A is the magnetic vector potential,
ω ∈ R>0 the angular frequency, µ the permeabil-
ity, ε the permittivity and J0 the given electric
current density. Moreover, boundary conditions
on ∂Ω are imposed. Since Ω is unbounded, an
additional radiation condition is imposed in the
following way: A solution A to (1) is called out-
going if the real part of its radiated power

S =
1

2

∫

Γ

(
iωA× µ−1 curlA

)
· n dΓ (2)

is non-negative and if A is bounded. Here n
denotes the normal vector on Γ pointing into
Ωext.

3 Complex Scaling

To obtain exponentially decreasing solutions of
(1) in Ωext for |x| → ∞ a complex coordinate
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stretching is applied in Ωext. This is necessary
for two reasons. It allows to derive a weak for-
mulation of (1), and it ensures that only phys-
ically relevant outgoing solutions and exponen-
tially decreasing evanescent modes are obtained.
The scaling alters the longitudinal coordinate
only and has the form

x = (x1, x2, x3)> 7→ (σx1, x2, x3)>,

for some complex parameter σ with positive imag-
inary part.

4 Infinite Elements

The interior problem is discretized using a high-
order FE space Vint ⊂ Hcurl(Ωint). The dis-
cretization of the complex scaled exterior prob-
lem is inspired by [3]. A tensor product basis
W := W̃⊗Ŵ, with a subspace W̃ ⊂ H1(R>0) in
longitudinal and Ŵ ⊂ H1(Γ) in transversal di-
rection, discretizing H1(Ωext) is used. The idea
is to discretize H1(R>0) by exponentially de-
creasing functions imitating the behavior of the
complex scaled solution in direction of propaga-
tion. The basis functions W̃ discretizingH1(R>0)
are

ξ 7→ exp(−ξ) pj(ξ) , j = 0, . . . , N, (3)

for certain polynomials pj of degree j. These
polynomials are closely linked to the Laguerre
polynomials which form a complete orthogonal
system for a weighted L2-space on R>0. The
orthogonality leads to sparse system matrices.

A conforming discretization V ⊂ Hcurl(Ωext)
is derived such that it contains the gradients of
basis functions of W.

We choose

V :=

(
W̃ ′ ⊗ Ŵ

0

)
⊕
(

0

W̃ ⊗ V̂

)
. (4)

Thereby, W̃ ′ consists of the derivatives of the
basis functions of W̃, Ŵ ⊂ H1(Γ), and V̂ ⊂
Hcurl(Γ) is the trace space of Vint on Γ.

5 Results

The method described above is applied to the
problem introduced in Section 2. The dimen-
sions of Ωint are 0.08m× 0.2m× 0.2m. The do-
main Ωsource is centered at (−0.03m, 0.1m, 0.1m)>

and has the dimensions 0.01m×0.01m×0.04m.
Ωext is located at the right side of Ωint with the

same depth and height and infinite length in x-
direction. The shared boundary is Γ. Homo-
geneous Dirichlet boundary conditions are im-
posed on ∂Ω and as source J = (0, 0, J)> with
J = 108 A

m2 which is only supported in Ωsource

has been choosen. Moreover, parameters are set
to ω = 2π · 109 rad

s , µ = 4π · 10−7 Vs
Am , ε = 8.854 ·

10−12 As
Vm . A high order tensor product FE basis

has been used to discretize the problem in Ωint.
The interior domain was split into 7×10×10 sec-
tions. The FE order p varied between 2 and 4.
The radiated power was evaluated on the plane
{−0.005m}×[0m, 0.2m]×[0m, 0.2m], with a sec-
tion wise applied Gauß-Quadratur of order 8.

In Figure 2 the relative error is shown. The
reference value was calculated using FE order
5 and IE with 30 DoF. Super-algebraic conver-
gence with respect to the DoF of IE is observed.
The errors are constant when the accuracy of
the FE discretization of Ωint is reached.
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Figure 2: Relative error of the radiated power
with respect to the number of DoF of IE for
different FE orders.
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Abstract

The technique of complex scaling is a popular
way to deal with the wave equation on unboun-
ded domains. It is based on a complex coordi-
nate stretching in the time harmonic regime. In
our work we consider settings, where the usual
cartesian or radial scalings are not applicable
due to inhomogeneous exterior domains (e.g. o-
pen waveguides in non-axial directions). We
apply a scaling in normal direction. Moreover
we use in�nite elements to discretize the com-
plex scaled equation instead of truncating the
domain to bene�t from superior approximation
properties and omit an additional truncation er-
ror. We present numerical experiments to illus-
trate our results.

Keywords: wave equation, in�nite elements,
complex scaling

1 Introduction

We consider numerically solving the wave equa-
tion

c(x)2 ∆xp(t,x) =
d2

dt2
p(t,x) (1)

on Ω := R2. We are interested in settings similar
to the one sketched in Figure 1, where the wave
speed c is constant inside and outside of a set of
open waveguides respectively. More generally
we assume that there exist Ωint,Γ,Ωext ⊂ R2,
such that Ω = Ωint∪̇Γ∪̇Ωext, where Ωint is open,
bounded, and convex, Γ = ∂Ωint is smooth with
outer normal n,

Ωext = {x̂ + ξn(x̂) : ξ ∈ R>0, x̂ ∈ Γ} , (2)

such that the coordinates ξ(x) , x̂(x) are unique
for each x ∈ Ωext and

c|Ωext(x) = c̃(ξ(x)) ĉ(x̂(x)) .

Since we allow inhomogeneities which are nei-
ther radial nor parallel to the axes, the frequently
used cartesian or radial complex scalings are not
applicable in this case.

c ≡ c0

c ≡ c1

Ωext

Ωint

Γ

n

x ξ

x̂

Figure 1: Example domain, where cartesian or
spherical scalings would fail: Open waveguide
with junction.

2 Absorbing layers for the wave equa-

tion

To construct absorbing boundary layers for the
wave equation we follow the ideas presented for
example in [4]. Note that the following steps are
merely theoretical prerequisites to our method.
The numerical method itself consists of discretiz-
ing the resulting system of equations. First, we
apply a Fourier transformation. Then the tech-
nique of complex scaling is applied to the result-
ing Helmholtz equation. This technique relies on
a complex coordinate stretching γ : Ωext → C2,
which is chosen such that the outgoing solu-
tions of the Helmholtz equation on the complex
scaled domain γ (Ωext) are exponentially decay-
ing. We use normal scalings (cf. [1]), mean-
ing that the complex deformation γ(x(x̂, ξ)) :=
x(x̂, s(ξ)) for a scalar scaling function s : R>0 →
C, is only applied to the normal coordinate ξ.
The scaling function s is of the form

sω(ξ) =
q1(iω)

q2(iω)
ξ (3)

with complex polynomials q1, q2. While the de-
pendency on the frequency is advantageous for
resonance problems (cf. [3]) due to better ap-
proximation properties, it is essential for time
domain. The wrong treatment of a subset of
the present frequencies can lead to exponentially
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growing and therefore unstable solutions in time.
Di�erent choices of (3) are suitable for di�erent
problem settings.

The resulting complex scaled equation is sub-
sequently transformed back to time domain by
applying the according inverse Fourier transfor-
mation. Since powers of −iω are transformed to
time derivatives, we introduce a suitable set of
additional unknowns to end up with a second
order system in time again.

3 Discretization in space

To discretize the system obtained in the previ-
ous section in space, usually the �nite element
method is applied to a truncated exterior do-
main which introduces an additional error. Dif-
fering from this approach we use in�nite ele-
ments which are based on Hardy space in�nite
elements (cf. [2]) instead. To this end, we use
the exterior coordinates ξ, x̂ and a tensor prod-
uct ansatz space (cf. Figure 2). The �rst part

Ωint ΩextΓ

Figure 2: Sketch of the tensor product basis and
some of the degrees of freedom for triangular
�nite elements of order 2 and in�nite elements
of order 3.

of this space is composed of boundary functions,
which are the traces of the basis functions of the
interior discretization. The second part consists
of basis functions in the normal coordinate

φj(ξ) = exp(−ξ) pj(ξ) ,

for certain polynomials pj of degree j (cf. Fig-
ure 3). These polynomials are closely linked to
the Laguerre polynomials which form a complete
orthogonal system for a weighted L2-space on
R>0.

Desirable properties of the basis functions
φj include that they result in sparse, well-condi-
tioned discretization matrices. Moreover it can

be shown that they approximate the normal com-
ponents of the solution super-algebraically with
respect to the number of basis functions. They
are simple to evaluate and can be integrated
numerically. Coupling the interior and exterior
problem works in a straightforward way.

0 2 4 6 8 10
−1

−0.5

0

0.5

1

ξ

φ0
φ1
φ2
φ3

Figure 3: The �rst few basis functions φj . The
basis function φ0 couples with the interior and
corresponds to the degrees of freedom on the
interface Γ in Figure 2, while the remaining basis
functions live purely in the exterior.

4 Time integration

After spacial discretization the resulting semi-
discrete system in time is discretized using im-
plicit time-stepping methods. A possible ex-
tension of our method would be the use of ex-
plicit time-stepping schemes to improve compu-
tational e�ciency. To this end, a discontinuous
Galerkin approach for the interior and interface
basis functions can be used.
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Stable Perfectly Matched Layers for a Class of Anisotropic Dispersive Models
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Abstract

We consider wave propagation in 2D anisotropic
dispersive media in an unbounded domain de-
scribed by Maxwell’s equations with an anti-
symmetric dielectric permittivity tensor and scalar
magnetic permeability. Bounding the computa-
tional domain is required to obtain the solution.
In order to do so, we use the perfectly matched
layer (PML) technique. However, the PMLs ex-
hibit instabilities connected to the presence of
backward propagating waves. This work is ded-
icated to stabilizing the PMLs for this case.
Keywords: perfectly matched layers, PMLs,
Laplace transform, passive metamaterials

1 Introduction

The wave propagation in the 2D dispersive me-
dia is described by the Maxwell’s equations

∂tDx = ∂yHz,

∂tDy = −∂xHz,

∂tBz = −∂xEy + ∂yEx.

(1)

The relations between the fields D and E, and
Bz and Hz are written in the Laplace domain,
more precisely, denoting by û(s) the Laplace
transform of u, D̂ = ε(s)Ê, and B̂z = µ(s)Ĥz,
where ε is the dielectric permittivity tensor and
µ the scalar magnetic permeability. In a first
step, we consider a diagonal dielectric tensor,
ε(s) = diag[εx(s), εy(s)] and we will present at
the end an extension to antisymmetric dielec-
tric tensors. This kind of tensors appears for
instance for the wave propagation in magneto-
optical or plasma materials .
We assume that the material has the so-called
passivity property : a function f(s) is passive
if it is analytic in C+ = {s : Re s > 0}, and
Re (sf(s)) > 0 for all s ∈ C+. This property
is satisfied by µ(s), εx(s), εy(s). These condi-
tions are consistent with physics literature and
are related to stability and energy conservation.

In order to apply the PML method [2], we
first rewrite (1) in the Laplace domain. Then
the construction of the PMLs amounts to per-

Figure 1: The field Hz for a disper-
sive anisotropic problem obtained with the
Bérenger’s PML (left) and stabilized PML
(right). The boundary between the domain and
the PML is marked in black.

forming the change of variables

x→ x+
1

s

x∫

0

σ(x′)dx′, (σ(x) > 0),

and rewriting the newly obtained equations in
the time domain. However, as demonstrated in
[1], this change of variables may lead to instabil-
ities in presence of backward propagating waves
in the PML direction (waves with x-components
of group and phase velocities of the opposite
sign). In the same work it was suggested that
for isotropic (εx(s) = εy(s)) dispersive mate-
rials a modified change of variables x → x +
ψ(s)
s

x∫
0

σ(x′)dx′ would stabilize the PMLs, pro-

vided a special choice of ψ(s). We can show
that this preserves the perfect matching as in
the classical case. In the present work we show
that the results of [1] can be extended to the
cases where the dielectric tensor is either diago-
nal or antisymmetric; however, we base our con-
siderations on a different kind of analysis. This
abstract summarizes some of the results of [3].

2 Passivity and stability

In the Laplace domain (1) reads

s2µ(s)Ĥz − εx(s)−1∂yyĤz − εy(s)−1∂xxĤz = 0.

The following result on the stability holds true.
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Theorem 1 Assume that µ, εx, εy are pas-
sive.Then the formulation

A(Ĥz, v) = 〈f̂ , v〉, ∀v ∈ H1(R3),

A(Ĥz, v) = s2µ(s)(Ĥz, v) +
1

εx(s)
(∂yĤz, ∂yv)

+
1

εy(s)
(∂xĤz, ∂xv)

has a unique solution Ĥz for all f̂ ∈ H−1(R3),
and all s ∈ C+. If f̂ is a Laplace transform of a
causal C2(R, H−1(R3))-function f , with f (3) ∈
L1(R, H−1(R3)), then Hz is a continuous causal
function and, for some α > 0,

‖Hz(t)‖H1 ≤ αmax(t3, 1)

×
t∫

0

‖(1 + ∂τ )
3f(τ)‖H−1dτ, t ≥ 0.

We will say that the sesquilinear form A(u, v),
defined in the above theorem, is passive, if µ, εx,
εy are passive. The above result shows that the
passivity of the sesquilinear form implies well-
posedness and stability (i.e. at most polynomial
growth of the time domain solution provided a
sufficiently fast decaying at infinity RHS data).

3 Construction of stable PMLs

Let σ = const > 0. As shown in Theorem 1, for
the stability of the PML it is sufficient to ensure
the passivity of the coefficients of the sesquilin-
ear form stemming from PML. With the new
change of variables x→ x(1 + s−1σψ), we get

Aσ(Ĥz, v) = s2µ(s)(Ĥz, v) +
1

εx(s)
(∂yĤz, ∂yv)

+
1

εy(s)(1 +
σψ
s )2

(∂xĤz, ∂xv).

Theorem 2 Let ψ(s) = εy(s)
−1. Then the form

Aσ(Ĥz, v) is passive.

This result allows to apply Theorem 1 to show
the stability of the PML solution. However, the
choice ψ(s) = εy(s)

−1 may be non-optimal, in
the sense that it may require the introduction of
many additional unknowns in the time-domain
PML system. For a class of passive systems a
characterization of ’stable’ ψ(s) is available.

4 Stable PMLs for local nondissipative
materials

Assume that µ, εx, εy and ψ can be represented
as 1 + p(s2)

q(s2)
, where p(s) and q(s) are polynomi-

als with real coefficients that have no common

roots, and deg p < deg q. For this case in [1] the
authors derived necessary conditions of the sta-
bility of the PMLs, which we can reformulate in
a more convenient form. Given a function r(s),
we will denote r̃(ω) = r(−iω). Then the nec-
essary stability conditions of the PML can be
reformulated as the following two conditions:

1. ψ(s)−1 is passive

2. For all propagative frequencies ω ∈ R (i.e.
satisfying ε̃x(ω)µ̃(ω) > 0 or ε̃y(ω)µ̃(ω) >
0), it holds: ψ̃(ω)ε̃y(ω) ≥ 0.

Let us introduce Ãσ(Ĥz, v) = ψ(s)εy(s)Aσ(Ĥz, v).

Theorem 3 Let ψ(s)−1 be passive. Then the
second necessary stability condition is equivalent
to the passivity of Ãσ(u, v).

Figure 1 confirms the above results, obtained
with ψ(s) = εy(s)

−1.

5 Extension to antisymmetric dielectric
tensors

We now consider the case where the off-diagonal
entries do not vanish and satisfy εxy(s) = −εyx(s).
We can show that, in this case, the equation sat-
isfied by Ĥz becomes:

s2µ(s)Ĥz − τx(s)−1∂yyĤz − τy(s)−1∂xxĤz = 0,

where τx = det ε/εy and τy = det ε/εx.

Lemma 4 Let ε(s) be a passive tensor (in the
sense <e(s(ε(s)u, u)) > 0, ∀u ∈ C2 \ {0}, ∀s ∈
C+), then τx and τy are passive.

Therefore, we are in the framework of diagonal
dielectric tensors and the previous results apply.
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Abstract

We have constructed and successfully applied high
order local Farfield Expansions absorbing bound-
ary conditions (FEABC) for time-harmonic single
acoustic scattering in two– and three–dimensions
in previous works [1, 2]. We have also extended
the formulation of FEABC to two and three dimen-
sional acoustic multiple scattering in previous pa-
pers. In this work, we present some numerical re-
sults for two-dimensional multiple scattering from
obstacles of arbitrary shape. We will also discuss
weak formulations of these multiple scattering prob-
lems as our first step to implement general curvilin-
ear finite element methods in the context of Isogeo-
metric Analysis (IGA) for multiple scattering.

Keywords: Acoustic multiple scattering, High or-
der local absorbing boundary conditions

1 The Local FEABC for multiple scattering

For brevity, we specialize our discussion to the two
dimensional case but its extension to three dimen-
sions follows a similar procedure [1]. We consider
M disjoint obstacles each occupying a bounded do-
main with boundary Γm for m = 1, . . .M . The un-
bounded region in the exterior of Γm is denoted by
Ωm. The obstacles are sufficiently separated from
each other as to enclose each one with disjoint circu-
lar artificial boundaries Bm. The computational re-
gion Ω−m is bounded internally by the obstacle bound-
ary Γm and externally by the artificial boundaryBm.
The unbounded region in the exterior of Bm is de-
noted by Ω+

m so that Bm is precisely the interface
between Ω−m and Ω+

m. We also consider the follow-
ing definitions:

Ω =
⋂M
m=1 Ωm, Ω− =

⋃M
m=1 Ω−m,

Ω+ =
⋂M
m=1 Ω+

m and Γ =
⋃M
m=1 Γm.

The scattering problem that we are considering
consists of the scattering of a plane incident wave,
uinc, from multiple soft (Dirichlet) or hard (Neu-
mann) obstacles embedded in the unbounded two-
dimensional region Ω. As stated in our previous
work, the construction of the FEABC is based on

a decomposition of the scattered field u into purely-
outgoing wave fields um, such that u =

∑M
m=1 u

m

in Ω+, where each um is an outgoing wave radiating
from the artificial boundary Bm. The fundamental
idea of this work is the use of a truncated expansion
introduced by Karp in 1961 to represent each um in
Ω+
m as

um(rm, θm) = H0(krm)

L−1∑

l=0

Fml (θm)

(krm)l

+H1(krm)

L−1∑

l=0

Gml (θm)

(krm)l
. (1)

The angular functions Fml (θm) and Gml (θm) are
additional unknowns. They depend on the geom-
etry of the scatterers and the properties of the do-
mains Ω−m. An improved version of the formulation
for the scattered field u is given by

∆u+ k2u = 0, in Ω−, (2)

u = −uinc, or ∂ru = −∂ruinc, in Γ, (3)

u =

M∑

m=1

um on Bm, (4)

∂u

∂νm
=

M∑

m=1

∂um

∂νm
on Bm, (5)

H m[u
]

=

M∑

m=1

H m[um
]

on Bm, (6)

for m = 1, . . .M in equations (4)-(6).
In (5), νm denotes the normal derivative onBm.

The symbol H m is the Helmholtz operator in terms
of the local polar coordinate system in Ωm. The
Eqs. (4)-(5) are the usual continuity of u and its
normal derivative at the interface Bm. The condi-
tion (6) establishes the continuity of the Helmholtz
operator at the interface. The system is completed
by adding the recurrence formulas for the angular
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functions for l = 1 . . . L− 1, defined on Bm,

2l Gml (θ) = (l − 1)2Fml−1(θ) + d2
θF

m
l−1(θ) (7)

2l Fml (θ) = −l2Gml−1(θ)− d2
θ G

m
l−1(θ). (8)

The weak formulation for this BVP is an extension
of the one found in [2] to several obstacles. For the
IGA application to the BVP (3)-(8) with Dirichlet
BC, we define the function spaces

S = {(u, F 1
0 , G

1
0, . . . F

M
0 , GM0 , . . . FML−1, G

M
L−1)|u =

= −uinc on Γ, u ∈ H1(Ω−), Fml , G
m
l ∈ H1(Bm)}

Sm
0 = {vm ∈ H1(Ω−m) | vm = 0, on Γm},

for m = 1, . . .M . Then, the weak formulation con-
sists of finding (u, F 1

0 , G
1
0, . . . F

M
L−1, G

M
L−1) ∈ S

such that the following equations are satisfied:

a(u, vm)−
M∑

m̄=1

(∂um̄νm , v
m)Bm = 0, vm ∈ Sm

0 ,

a(u, vm) =

∫

Ω−
m

(
∇u · ∇vm − k2uvm

)
dΩ−m,

(u, v̂m)Bm −
M∑

m̄=1

(um̄, v̂m)Bm = 0, for v̂m ∈ H1(Bm)

(H m[um
]
, v̂m)Bm = 0, for v̂m ∈ H1(Bm)

2l(Fml , v̂
m)Bm + l2(Gml−1, v̂

m)Bm −
((
Gml−1

)′
, (v̂m)′

)
Bm

.

The angular functionGml satisfies a similar equation
to this last equation.

Some of our numerical results obtained by nu-
merically solving (2 )-(8 ) with a second order finite
difference approximation in generalized curvilinear
coordinates are illustrated by Figs. 1- 3. We will
present numerical results from the IGA technique at
the conference.

Figure 1: Total pressure field with k = 2π, for eight
soft cylinders using L = 8 terms in the FEABC

0 /2 3 /2 2
10

-1

10
0

10
1

Exact

Numerical

Figure 2: Comparison of exact and numerical far-
field pattern for the eight cylinders of Fig. 1

Figure 3: Scattering from a hard submarine and two
soft whales with k = 4π using L = 12 terms

2 Concluding remarks

In the experiments shown above, the numbers of
terms, L in the FEABC was increased to achieve the
best possible approximation. The overall order of
convergence of the combined method for the cylin-
drical scatterers was two due to the second order of
convergence of the numerical method used in the
interior. The local nature of the FEABC is of great
advantage when compared to alternative ABCs such
as Dirichlet to Neumann.
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Abstract

We consider the electromagnetic scattering from
an object modelled by an impedance boundary
condition (IBC). The originality of this paper is
the exhibition of sufficient uniqueness conditions
(SUC) to compute the IBC coefficients and their
implementation in a integral equation code. The
approximated solution is then validated on some
objects of interest.
Keywords: Maxwell, impedance boundary
condition, sufficient uniqueness condition, con-
strained optimisation, integral equation

1 Introduction

In this paper, →x is a vector and A is a matrix.
Let Ω be a 3D object whose exterior bound-

ary Γ is infinitely smooth and its outgoing normal
vector is →n . The object Ω may be a coating of lay-
ers of materials on a perfectly conducting body,
the layers being characterised by their thickness
d, their (complex) relative permitivities ε and
permeabilities µ, constant in each layer. The
free space impedance is η0 =

√
µ0/ε0.

We seek harmonic (eiωt) solutions of the
Maxwell’s equations in R3 scattered by Ω, supple-
mented by a radiation condition at infinity. From
ω, we define the wavenumber k0 = ω

√
ε0µ0.

The radiation condition (2) is expressed on
a ball of a large radius whose outgoing normal
vector is →ν (see [2] for the expression of T ):

It is proven in [1] that there exists a Calderon
operator Op(C) such that Maxwell equations on
Ω∪Ωc with radiation condition (2) is equivalent
to (1)-(2)-(3).

{→
∇×

→
E = ik0µ

→
H in Ωc ∩B(

→
0 , R)

→
∇×

→
H = −ik0ε

→
E in Ωc ∩B(

→
0 , R)

(1)

T
→
Et = −→ν ×

→
H on ∂B(

→
0 , R) (2)

→
Et = Op(C)

(
→
n ×

→
H

)
on Γ (3)

The equation (3) is traditionally replaced by
an approximate boundary condition denoted by
IBC.

To compute a solution of (1)-(2)-(3) in Ωc ∩
B(
→
0 , R) is impractical, and so the surface inte-

gral equation method is used on Γ (see [2]).

2 High order impedance boundary con-
dition

We call a high order impedance boundary condi-
tion (HOIBC) an IBC that contains differential
operators. Several HOIBC have been proposed
(see [4,6]). We chose the following, here named
IBC3.

(I + b1LD + b2LR)
→
Et =

(a0I + a1LD + a2LR)
→
n ×

→
H on Γ (4)

and we refer to [4,6] where operators LD,LR are
defined.

Coefficients a0, a1, a2, b1, b2 are complex func-
tions of the coating and the frequency and their
computation will be explained later.

3 Sufficient uniqueness conditions

Uniqueness of the solution of (1)-(2) is guaran-
teed when

<
(∫

Γ

(
→
n ×

→
H

)
·
→
Etds

)
≥ 0 (5)

(see [1, 5]). Let z = |a1|2|a2|2 − b1a0a1|a2|2 −
b2a0a2|a1|2. If a1 and a2 are non-zero and the
following quantities are positive:

< (a0z) −< (a1z) −< (a2z)
< (b1a1) < (b2a2) −< (a1)

−< (b1a2a1a0) −< (b2a1a2a0) −< (a2)
(6)

one can prove (5), hence (6) are called sufficient
uniqueness conditions (SUC) and imply unique-
ness of the solution of (1)-(2)-(4).

We denote by C the subset of C5 where the
SUC (6) are verified.
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4 The locally planar approximation

Since Γ is infinitely smooth, we assume it is lo-
cally flat. This new boundary gives by a Fourier
analysis the symbol of the Calderon operator.
Thus the HOIBC coefficients are solution of the
following constrained optimisation problem:

Find x = (a0, a1, a2, b1, b2)t ∈ C that min-
imise

||Ax− b||2L2
(7)

where A is a ni × 5 complex matrix, b is
a complex vector of size ni, depending on the
value of the symbol of the Calderon operator at
some incidence of interest. The number ni is the
number of angles of incidence.

In the case of lossless material, the cost func-
tion is equal to∞ when the incidence belongs to
the set of critical values where k0

√
εµ− s2d is a

pole of tan, a term contained in the symbol of
the Calderon operator. Our numerical method
needs to avoid such points therefore other SUC
have been used.

5 Surface integral equation

The system (1)-(2)-(4) is equivalent to a sur-
face integral equation (see [2]) from which one
can deduce the electromagnetic fields. This sur-
face integral equation is approximated with the
Boundary Element Method (BEM) and leads to
the following basis dependent linear system:
[
S0 + ZJJ SG − ZJK

SG − ZKJ −S0 − ZKK

] [
J
K

]
=

[
bE
bH

]
(8)

The unknowns J and K are complex vectors
of size nf where nf is the number of degrees of
freedom of the mesh. The right hand side of (8)
is given and depends on the incident field.

Projecting a new set of test functions 1 to
account for the discretisation of the LR terms,
one can deduce

ZJJ = 2π (a0M− (a1LD + a2LR))

ZJK = 2π (b1LD + b2LR)P

ZKJ =
2π

a0
(a2LD + a1LR)P

ZKK =
2π

a0
(M− (b2LD + b1LR))

(9)

Matrices S0, SG, M, P, LD, LR are defined
in [5].

1which differs from the usual Raviart-Thomas Hdiv
conforming function

6 Numerical results

We model one layer of low index material ε = 1−
i, µ = 1 of thickness d = 0.05m. The wavenum-
ber is k0 = 4.192m−1. Figure 1 shows the
bistatic radar cross section (RCS) for a sphere-
cone of the BEM+IBC3 code to a 3D axisym-
metric code, labelled as ’Exact’.

||rpl − rIBC3||22/||rpl||22
IBC3 3.80010−7

IBC3 + SUC 5.56910−4

Table 1: Relative L2 error of the reflection coef-
ficient of the infinite plane.

0 20 40 60 80 100 120 140 160 180
TM polarisation: Angle of observation (deg)

5

0

5

R
C

S
 (

d
B

)

ε = 1-i, μ = 1, d = 0.05m, k
0
 = 4.192m-1

Exact

Leontovich

IBC3

IBC3 + SUC

Figure 1: Bistatic RCS of the IBC3 of a sphere-
cone illuminated on the tip

7 Conclusion

The IBC3 outperforms the Leontovich approxi-
mation and the SUC ensures the uniqueness of
the solution.
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Combining Dynamical Energy Analysis with Advanced Transfer Path Analysis
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Abstract

Dynamical Energy Analysis (DEA) is a high
frequency integral method modelling structure
borne sound for complex built-up structures. The
method works directly on existing finite element
meshes circumventing time-consuming and costly
remodelling strategies. DEA has been used to
calculate the structure borne sound of an assem-
bled agricultural tractor and good agreement
between measurements and DEA calculations
has been shown. We propose here to integrate
measurement data into DEA based on the Ad-
vanced Transfer Path Analysis (ATPA) to ex-
tract energy transmission characteristics of a struc-
ture. The proposed method is verified by com-
paring with measurements on a full tractor struc-
ture.
Keywords: High frequency asymptotics, trans-
fer operator, structure borne sound, transfer path
analysis

1 Introduction

Simulations of the vibro-acoustic performance of
cars, trains, airplanes as well as heavy goods ve-
hicles such as lorries and tractors are routinely
carried out at various design stages. The Fi-
nite Element Method (FEM) is used for noise
and vibration simulations in complex structures
in the low frequency regime. It requires ex-
tremely fine meshes at high frequencies, how-
ever, to capture shorter wave lengths leading
to large model sizes. Statistical representations
such as the Statistical Energy Analysis (SEA)
[1] have been developed, leading to relatively
small and simple models in comparison with FEM.
However, SEA gives results only on a relatively
coarse scale and cannot deal with details of the
structure [2]. We start from a ray-tracing ansatz
reformulated in terms of integral equations. This
leads to linear flow equations for the mean vibra-
tional energy density and forms the basis of the
Dynamical Energy Analysis (DEA) method [3].
DEA includes SEA as special case via a low or-
der representation of the so-called transfer oper-

ator. Higher order implementations enrich the
DEA model with information from the underly-
ing ray dynamics. DEA allows for more freedom
in sub-structuring the total system and varia-
tions of the energy density across sub-structures
can be modelled. Hence, DEA can resolve the
full geometrical complexity of the structure. An
efficient implementation of DEA on meshes has
been presented in [4]. DEA has been used to
calculate the structure borne sound of an assem-
bled agricultural tractor and good agreement
between measurements and DEA calculations
has been demonstrated [5]. It is often diffi-
cult to generate accurate FE meshes of assem-
bled complex structures such as the gear box,
the engine or the power train. For these parts,
DEA is expected to work less well and we sug-
gest here to cut out these complex parts of the
structure from the DEA mesh and replace it
with coupling elements derived from measure-
ment data. We generate these new DEA cou-
pling elements based on the so-called Advanced
Transfer Path Analysis (ATPA), which gener-
ates a transfer matrix from measurements [6].
In the following, we will show some results for a
real tractor structure. For a description of the
DEA or the ATPA method, see [4, 5] and [6] as
well as [7] for the theory behind combining these
two methods.

2 Results

The DEA-ATPA approach was validated in [7]
with an FE model for a simple structure made
of three plates connected by beams. We as-
sume that the middle plate represents the com-
plicated part and is modelled as the DEA-ATPA
element. Four interface points were defined at
the boundaries of the connecting beams and the
ATPA transfer function was calculated, here us-
ing FEM data instead of measuring a real struc-
ture. Validation is also performed doing an FE
calculation of the full structure.

In this presentation, the hybrid method is
extended to a real tractor structure as shown in
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Figure 1: Upper panel: Tractor model with and without the gearbox; lower panel: results based on
DEA, DEA-ATPA and measurements

the upper half of Fig. 1. The part below the
cabin containing the gear-box and other com-
plex structural elements is treated as the ATPA
coupling element. The entries for the transfer
function are obtained from measurements by ap-
plying shakers to the structure and measuring
the response at the connection points (yellow
circles in Fig. 1). The results from measure-
ments on the full structure compare favourably
with the DEA and the DEA-ATPA results as
can be seen in the lower half of Fig. 1.
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Sound radiation from complex vibrating mechanical structures using Wigner
transformation techniques
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Abstract

We propose a new method to model sound ra-
diation using the vibrational response obtained
from Dynamical Energy Analysis (DEA) cal-
culations. The link between the structural re-
sponse and the acoustic field can be achieved
using so-called Wigner transform (WF) tech-
niques. The energy density from a DEA structure-
borne sound calculation can be related to two-
point correlations of the vibrational displace-
ment and then used to propagate the acoustic
field using Rayleigh integral methods. This inte-
gral relates the vibration of a plate to the sound
pressure at a point in a half-space above the
plate. In this way we compute the intensity of
the sound pressure radiated from a structure,
here from a flat plate. Furthermore, we present
a formula of radiation efficiency in terms of the
WF. This technique has the potential to be used
for generic complex mechanical structures.
Keywords: Sound radiation, fluid-structure cou-
pling, Wigner distribution functions

1 Introduction

Sound propagation in and radiation from com-
plex vibrating mechanical built-up structures is
an important research area for mechanical engi-
neering. While standard methods such as the fi-
nite element (FEM) or boundary element method
(BEM) can be used in the low frequency regime,
these methods have limitations when the wave-
length of the field becomes small compared to
the size of the structure. Therefore, more effi-
cient algorithms become desirable, and in par-
ticular, high frequency approximation methods
become an attractive alternative. Dynamical
Energy Analysis (DEA) [1] is used to model
vibro-acoustic response of complex mechanical
structures based on meshed shell structure mod-
els in frequency ranges where FEM or BEM
models are becoming too large. In this paper,
we extend DEA towards coupling structural vi-
bration calculations with estimating acoustic ra-
diation in the surrounding fluid; the method is

based on the Wigner transformation technique
(WF). The WF technique has its origin in quan-
tummechanics [2], but has been intensively stud-
ied also in the context of electromagnetism such
as for radio frequency (RF) radiation [3] and op-
tics [4]. The energy density from DEA can be
related to two-point correlations of the vibra-
tional wave. We propagate the acoustic field us-
ing a Rayleigh integral method [5]. In addition,
we describe how field-field correlation functions
can be efficiently propagated using the propaga-
tor obtained by Fourier transforming Rayleigh’s
first integral. Furthermore, we derive an acous-
tic phase-space representation in the classical
ray tracing limit.

2 Rayleigh integral and the propagator
in the momentum representation

We use as a basis for our calculation the Kirchoff-
Helmholtz equation for irregularly shaped vi-
brating bodies, which can be further simplified,
for planar structures, to the so-called Rayleigh
integral [5]. The pressure p radiated by the
structure is then determined by

p(r) = − iρkc
2π

∫

Ω
w(r′)

exp(ik|r− r′|)
|r− r′| dr′, (1)

where r = (x, y), Ω is the domain of the pla-
nar structure, k denotes the acoustic wave num-
ber, w(r′) is the normal surface velocity, c is the
speed of sound in the surrounding medium and
ρ is the fluid density. We take the Fourier trans-
forms in x and y of both sides of Eq.(1) to get [3]

P (p, z) = ρcW (p, z)
eikT (p)z

T (p)
, (2)

where P (p, z), W (p, z) denote the momentum
representation of the sound pressure and the
normal surface velocity respectively, z denotes
the distance above the plate and kp is the wave
vector component in the (x, y)-plane. In this
work, the normal component of the unit wave
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vector is defined as

T (p) =

{√
1− |p|2 for |p|2 ≤ 1,

i
√
|p|2 − 1 for |p|2 > 1.

In the next section we connect the structural re-
sponse from DEA to the sound pressure and for
that we need the acoustic correlation function.

2.1 Propagation of correlation data and
Wigner transformation

The aim of this work is to predict acoustic emis-
sion from complex, nosily driven vibrating struc-
tures using methods that combine well with phase-
space simulation methods such as DEA. In this
setting, the vibrational and radiated acoustic
fields are naturally described statistically, in the
form of field-field correlation functions. Here we
work with a correlation function in momentum
representation, defined by

Γ̃z(p1,p2) = 〈P (p1, z), P
∗(p2, z)〉 , (3)

where P (p, z) is given in Eq.(2). A phase-space
representation, which combines position and mo-
mentum coordinates can be obtained from Eq.(3)
through the WF. Using this, we can find the
propagated acoustic WF in the form

Wz(r,p) = W0(r,p) ∗r gz(r,p), (4)

where p = (p1 + p2)/2, r = (r1 + r2)/2, q =
p1 − p2, and ∗r represents a convolution with
respect to r. W0 is the WF of the surface normal
velocity correlation function, and

gz(r,p) =

(
kρc

2π

)2 ∫ 1
T (p + q/2)T ∗(p− q/2)

eikz[T (p+q/2)−T ∗(p−q/2)]eikq.rdq. (5)

The kernel gz(r,p) can be simplified through a
ray-based approximation [3]. In the case of the
spatial variation in the source correlation is as-
sumed to take place on a scale larger than the
wavelength, significant contributions to Eq.(5)
come from small values of q. This suggests us-
ing a Taylor expansion of the kernel exponent
around q = 0. Retaining only the leading or-
der contribution, the Green integral operator
becomes a Dirac delta function. Thus, one ob-
tains the classical ray tracing approximation of

the acoustic WF in the form

Wz(r,p) =
ρ2c2

|T (p)|2


W0(r− zp√

1− p2
,p) for |p|2 ≤ 1,

W0(r,p)e−2kz
√
|p|2−1 for |p|2 > 1.

(6)

We are interested in calculating radiation effi-
ciency in terms of the WF. From classical for-
mulations of radiation efficiency, one can derive
a formula for it in terms of the WF using Eq.(6),
sampled at z = 0 (because total sound been ra-
diated is independent of z). This takes the form

σ =

∫
Ω dr

∫
R2 dpW0(r,p)f(r,p)∫

Ω dr
∫
R2 dpW0(r,p)

, (7)

where f(r,p) is a Wigner representation of
Re(1/T (p)) projected onto the region Ω. This
approach allows us to quantify acoustic radia-
tion from noisy vibrating structures withW0(r,p)
being approximated by phase-space simulations
such as DEA.
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Abstract

In our talk, we present FEM based numerical
simulations of a harpsichord. We aim to cap-
ture the oscillation behavior of eigenfrequencies
of its soundboard. We resolve the complicated
geometry by an unstructured 3d grid and take
into account the anisotropy of wood. The eigen-
value problem is solved using the preconditioned
inverse iteration method (PINVIT) with an ef-
ficient multi grid preconditioner. The latter al-
lows us to resolve the harpsichord with a high
resolution grid, which is required to capture fine
modes of the simulated eigenfrequencies. To
verify our results, we compare them with mea-
surement data obtained from an experimental
modal analysis of the harpsichord that we have
modeled. We finally investigate the impact of
various aspects of the geometry on the com-
puted eigenfrequencies.
Keywords: Eigenvalue problem, finite strain
mechanics, FEM, musical instrument

1 Introduction

The mathematical characterization of the sound
of a musical instrument still follows Schumann’s
laws [1]. According to this theory, the reso-
nances of the instrument body, the formants,
filter the oscillations of the sound generator (e.g.
string) and produce the characteristic “timbre”
of an instrument. This is a strong simplifica-
tion of the actual situation: It applies to a point
source and can be easily performed by a loud-
speaker, disregarding the three dimensional struc-
ture of music instruments. To describe the effect
of geometry and material of the instruments, we
set up a three dimensional model and simulate
it using the simulation system UG4 [2] [3].

The design of musical instruments is primary
a matter of experience. Understanding the con-
nection between geometry and material on the
one hand (morphology) and the timbre of the
instrument on the other hand, is still lacking
quantitative insight. Modeling musical instru-

ments aims at obtaining a quantitative charac-
terisation of the sound and timbre of musical
instruments. In particular the connection be-
tween geometry, material and the characteristic
sound needs investigation.

2 Modeling

In order to understand and simulate the oscilla-
tions of a soundboard, we investigate the occur-
ing mechanical forces on the soundboard and
how they deform it. We consider the sound-
board an elastic body on which outer and inner
forces are acting. We use a displacement-ansatz
to solve the coupled system of equations

(1) div σ + ~f = 0

(2) σ = c : ε

(3) ε = 1
2(∇~u+ (∇~u)T ),

the equilibrium of forces (1), Hookes law (2)
and conditions of kinematics (3), leading to the
generalized eigenvalue problem

(4) div(c : (12(∇u0 + (∇u0)T ))) = −λ ~u0,

which is then discretized by FEM with quad-
ratic ansatz functions.

We created four geometries of the sound-
board corresponding to successive manufactur-
ing stages. The complete model is a (plain)
soundboard with several ribs, a bridge and a
rosette.

Figure 1: Complete geometry of the sound-
board. Left: top view, Right: bottom view.
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3 Experimental Modal Analysis

It is possible to describe properties in struc-
tural dynamics (e.g., frequencies, mode shapes)
of components with help of an experimental modal
analysis. We are interested in the eigenmodes of
the harpsichord on the soundboard for verifica-
tion of our simulations.

Basically, the measurement setup consists of
an oscillation generator and a vibrometer that
measures the reaction corresponding to the exci-
tations. Because we are interested in the oscilla-
tion behavior of various excitation frequencies,
the frequency generated by the osciallation gen-
erator is altered with time. The excitation force
thereby remains constant.

We carried out the experiments in the labo-
ratories of Polytec, where we used a PSV-400
Scanning Vibrometer [4]. During the experi-
ment, the frequency of the excitation ranged
from 5Hz to 2000Hz with a sampling rate of
0.5Hz. We thereby investigated the displace-
ment of 2013 points.

Figure 2: Grid for the experimental modal anal-
ysis.

Figure 3: Response (velocity) within the experi-
ment. Dots above peaks denote eigenmodes that
are shared between simulation and experiment.

4 Results

The simulations show that the ribs and the bridge
are crucial for the osciallation behavior of the

soundboard wheras the effects of the rosette are
negligible. We investigated the impact of three
different sets of material constants on the results
of the simulation. They do not have consider-
able influence on mode shapes, but are sensitive
on the eigenfrequencies.

We observe that all but one of 16 simultated
eigenmodes can be found on our reference harp-
sichord that has been used for the experiments.
However, the real soundboard has several eigen-
modes that do not appear in the simulations, be-
cause our models cover the actual soundboard,
but other parts of the harpsichord as, e.g., the
case, which is oscillating as well.
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Abstract

We consider the time harmonic wave equation
in perturbed periodic waveguides. We justify
rigorously the construction of the transparent
boundary conditions based on Dirichlet-to-
Neumann map and show that the problem with
these transparent boundary conditions is of Fred-
holm type except for a countable set of frequen-
cies. This allows to define and compute the
physical solution of the problem.
Keywords:periodic media, Floquet modes,
Dirichlet-to-Neumann operator.

1 Introduction

It is really delicate to define the physical so-
lution of the time harmonic wave equation in
perturbed periodic media, especially in presence
of guided modes. Recent progresses have been
done about the mathematical analysis of the
time harmonic wave equation in (1) periodic
waveguides and (2) surfaces and layers. In or-
der to define uniquely the physical solution, ra-
diation conditions have been proposed in [3] for
perfectly periodic closed waveguide, in [2] for
periodic closed half-waveguide and finally in [4]
for periodic open waveguides.

From a numerical point of view, there are few
methods. Some years ago, we have proposed a
numerical method, based on Dirichlet-to-Neumann
operators (DtN) for the time harmonic wave
equation in locally perturbed periodic waveg-
uides. This method was rigorously justified in
presence of dissipation. In this work we provide
a rigorous mathematical justification of this nu-
merical method in the absence of dissipation.

2 Model problem

Let us consider a half-waveguide which is an
open connected domain, unbounded in one di-
rection and bounded in the other directions Ω ⊂
S×] − a,+∞[. A generic point of Ω has co-
ordinates (xs, xd) where xd is the coordinate
in the infinite direction of the waveguide and

xs ∈ S ⊂ Rd−1 (d ≥ 2) is the coordinate in
the transverse direction. The semi-infinite part
Ω+ = Ω ∩ {xd > 0} is L-periodic (Ω+ + Led ⊂
Ω+). We denote C the periodicity cell of Ω+

which is defined by

C = Ω ∩ {0 < xd < L},

Let Ω0 = Ω \ Ω+ be the remaining part of the
propagation domain and Γ0 = Ω∩ {xd = 0} the
interface between Ω0 and Ω+. Let ν denotes the
outgoing normal to Ω.

We wish to solve the Helmholtz equation

−∇(A(x)∇u)− ω2B(x)u = f in Ω

A(x)∇u · ν = 0 on ∂Ω
(1)

where the source term f is in L2(Ω) and has a
compact support included in Ω0, the character-
istic of the medium A and B are L∞-functions,
positively bounded from below, and L-periodic
in Ω+, the frequency ω is in R.

CΓ0Ω0
Ω

Figure 1: The domains Ω and C

(1) is not always sufficient to define the physical
solution of the problem. In order to characterize
it, we often use is the limiting absorption prin-
ciple. Let uε be the unique solution in H1(Ω) of
(1) where ω2 is replaced by ω2 + ıεω with ε > 0.
Then the restriction of uε in Ω0 is solution of the
problem set in Ω0 with the transparent bound-
ary conditions

A(x)∇u0
ε · ed + Λε u

0
ε = 0 on Γ0

where Λε is the associated DtN map, defined
by periodic half-waveguide problems set on Ω+.
In [1], an algorithm to compute this operator has
been proposed. We investigate here the limit of
Λε when ε tends to 0. Using [2], we show that,

Tuesday, 16:45, GM4 Knoller, Building BD



Waveguides 535

Theorem 1 Except for a countable set of fre-
quencies denoted σ+, Λε has a limit Λ when ε
tends to 0.

This limit Λ can be computed as follows.
• Solve the cell problems

−∇(Ap∇e`)− ω2Bp e
`= 0 in C

Ap∇e` · ν= 0 on ∂Ω ∩ ∂C
e`(ϕ)|Γ` = ϕ, e`(ϕ)|Γ1−` = 0

and

−∇(Ap∇e`(1))− ω2Bp(x) e`(1) = ıωBp e
` in C

Ap(x)∇e`(1) · ν= 0 on ∂Ω ∩ ∂C
e`(1))(ϕ)|Γ0 = 0, e`(ϕ)|Γ1 = 0

• Compute the local DtN operators

T `k ϕ = ∓(−1)k ∂ze
`(ϕ)

∣∣
Γk

and
T `k(1) ϕ = ∓(−1)k ∂ze

`
(1)(ϕ)

∣∣
Γ±
k
.

• compute the operator P, unique solution of
the stationary Ricatti equation

T (P) = 0 where ∀X ∈ L(H1/2(Γ0)),

T (X) := T 10X2 +
(
T 00 + T 11

)
X + T 01

(E)

whose spectral radius is less than 1 and whose
unitary eigenvalues p satisfy

Re (qp) < 0, q = −A(p, ϕ)

B(p, ϕ)
(2)

where ϕ is an associated eigenvector and

A(p, ϕ) =
〈[
p2T 10

(1) + p
(
T 11

(1) + T 00
(1)

)

+T 01
(1)

]
ϕ,ϕ

〉

B(p, ϕ) =
〈[

2pT 10 +
(
T 11 + T 00

)]
ϕ,ϕ

〉

• compute Λ = T 00 + T 10 P.

Note that when ω2 lies in the essential spec-
trum of the underlying periodic operator, there
are several solutions of (E) of spectral radius less
than 1. This is linked to the presence of propa-
gating Floquet modes. Condition (2) allows to
select the good solution by retaining the propa-
gating modes with a positive group velocity.

We can now introduce the problem set on Ω0.

Theorem 2 If ω2 /∈ σ+, the problem set on Ω0

−∇(A(x)∇u0)− ω2B(x)u0 = f in Ω0

A(x)∇u0 · ν = 0 on ∂Ω ∩ ∂Ω0

A(x)∇u0 · ν + Λu0 = 0 on Γ0

is of Fredholm type. Uniqueness holds except for
another countable set of frequencies denoted σ0.

The physical solution is then defined by

u
∣∣
Ω0 = u0

u
∣∣
C+nLed = e0((P)nϕ0) + e1((P)n+1ϕ0),

where ϕ0 = u0
∣∣
Γ0

and we can show that when ω2 /∈ σ+ ∪ σ0, this
solution is the limit in a certain sense of uε.

The set of forbidden frequencies σ0 corresponds
to the resonances of the problem. On contrary,
the set σ+ was introduced artificially by the
method. We will discuss, during the talk, how
the method can be adapted to these frequencies.
We will also illustrate the method by numerical
results.

This approach can be applied to deal with junc-
tions of different periodic closed waveguides. We
will also discuss the extension of the method to
the diffraction by locally perturbed periodic lay-
ers, surfaces or halfspaces.
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Abstract
We focus on the numerical computation of the
wave equation in a periodic waveguide that is lo-
cally perturbed in a bounded domain. By using
the Laplace transform in time, we transfer our
computations to the frequency domain and ob-
tain a Helmholtz equation. Applying the ideas
in [1, 2], we derive transparent boundary con-
ditions on the perturbed domain by solving lo-
cal problems on one periodicity cell and extend
the solution to the rest of the waveguide. With
the inverse Laplace transform, we then obtain
transparent boundary conditions in the time do-
main which are now given as a convolution. On
using convolution quadrature methods we are
able to compute the solution of the wave equa-
tion in the perturbed domain. Besides, with the
same technique the solution on the rest of the
waveguide can be computed.
Keywords: periodic waveguide, transparent
boundary conditions, DtN operator, convolu-
tion quadrature

1 Introduction
In contrast to theoretical considerations, peri-
odic media in real applications usually are not
perfectly periodic but contain some bounded re-
gions where the periodic structure is perturbed.
For example, this can be observed in photonic
crystals. A well-known idea for the numerical
computations in these regions is to take advan-
tage of the periodicity outside.

In this contribution, we consider a periodic
waveguide Ω which contains a local perturba-
tion in the region Ω0 := Ω∩{−a < x < a}. Out-

Ω0 C+
0 C+

1C−
0C−

1

Γ+
0 Γ+

1 Γ+
2Γ−

0Γ−
1Γ−

2

side the region Ω0 the waveguide Ω is periodic
to the left and to the right. The periodicity
cells on the periodic sub-domains are denoted
by C±

j , where Γ±
j := C±

j ∩ {x = ±a(1 + 2j)}
are the “vertical” boundaries.

We study the wave equation

ρ(x, y) ∂2t u−∆u = f in Ω× R+ (1)

subject to the initial conditions u(·, 0) = u0
and ∂tu(·, 0) = u1 in Ω and with quasi-periodic
boundary conditions on ∂Ω. In particular, we
are interested in finding the transparent bound-
ary conditions on the vertical segment Γ−

0 ∪ Γ+
0

that enable us to solve the wave equation in Ω0.
We assume supp(f(·, t)) ⊂ Ω0 ∀t ∈ R+ as well as
supp(u0) ⊂ Ω0 and supp(u1) ⊂ Ω0. The func-
tion ρ is a strictly positive function of L∞(Ω)
and periodic in x-direction outside the region
Ω0, thus modelling the local perturbation. Un-
der these hypotheses the wave equation (1) is
well posed (c.f. [3]).

2 Transformation into frequency domain
For brevity, we now restrict our considerations
to the sub-domain Ω+ :=

⋃∞
j=0C

+
j , i.e. to the

construction of the boundary condition on Γ+
0 .

Because of the periodicity, it is clear that all
cells C+

j can be identified to C+
0 and all bound-

aries Γ+
j to Γ+

0 .
Since we would like to apply the approach in

[1–3] which benefits from this identification, we
use the Laplace transform in t of (1) to transfer
our computations into the frequency domain.
This yields the Helmholtz equation

ρ(x, y) s2U −∆U = 0 in Ω+ with s ∈ C, (2)

where U(x, y, s) := L {u(x, y, ·)}(s). Impos-
ing the boundary condition U = ϕ on Γ+

0 for
ϕ ∈ H1/2(Γ+

0 ) and using the solutions of two lo-
cal problems on C+

0 , we can compute the trans-
parent boundary condition which is given as the
DtN operator

Λ+(s)ϕ := − ∂
∂xU

∣∣Γ+
0

,

as well as the extension operators

P+(s)ϕ := U∣∣Γ+
1

and S+(s)ϕ := U∣∣C+
0

.

The solution U of (2) is thus characterized by
U∣∣C+

j

= S+(s)◦ (P+(s))jϕ, j = 0, . . . (cf. [1,2]).
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(a) Homogeneous waveguide
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(b) Locally perturbed periodic waveguide

Figure 1: Solution of the wave equation (1) for t = 10 on a homogeneous waveguide
(a) and on a periodic waveguide (b) with a local perturbation in Ω0 = [−1, 1]2.

Analogously, we can derive the operators
Λ−(s)ϕ := ∂

∂xU
∣∣Γ−

0

, P−(s) and S−(s) on the

periodic sub-domain Ω− :=
⋃∞
j=0C

−
j .

3 Transforming back into the time do-
main

Instead of solving the Helmholtz equation in
Ω0 subject to the exact boundary conditions on
Γ−
0 ∪ Γ+

0 , we use the inverse Laplace transform
to get back to solving the wave equation (1),
where the transparent boundary conditions are
now given as the convolution

± ∂
∂xu =

∫ t

0
L −1

{
−Λ±(·)

}
(t− τ)u(·, τ)dτ on Γ±

0 .

We use the convolution quadrature presented
in [4] to approximate this integral. For this
method we do not have to compute the kernel
but require only its Laplace transform which are
the DtN operators we already know. On the
boundaries Γ±

0 , we thus get at time tN = N∆t,
with N steps and step size ∆t, the approxima-
tion

± ∂
∂xu(·, tN ) ≈ ∆t

N∑

n=0

ω±
N−n u(·, tn).

Here the convolution quadrature weights ω±
n can

be represented as integrals over a circle with ra-
dius ϑ, i.e.,

∆t ω±
n =

1

2πi

∫

|ζ|=ϑ
ζ−n−1

(
−Λ±

(
δ(ζ)
∆t

))
dζ,

where δ(z) is the generating function of the time
discretization method, e.g. δ(z) = 1 − z for
the implicit Euler method. Approximating the

above integral by the trapezoidal rule yields

∆t ω±
n ≈

ϑ−n

J

J−1∑

j=0

−Λ±
(
δ(ζj)
∆t

)
e
−2πinj/J

with ζj = ϑe2πij/J and J ≥ N . The weights,
thus, can be computed using fast Fourier trans-
forms.

In the same manner as the DtN operator,
the solution of equation (1) on each cell C±

j can
be represented as

u∣∣C±
j

=

∫ t

0
L −1

{
S±(·)(P±(·))j

}
(t− τ)u(·, τ)∣∣Γ±

0

dτ

and, thus, also be computed using convolution
quadrature.
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Abstract

Discrete nonlinear Schrödinger equations have
been used for many years to model the propa-
gation of light in optical architectures whose re-
fractive index pro�le is modulated periodically
in the transverse direction. Typically, one con-
siders a modal decomposition of the electric �eld
where the complex amplitudes satisfy a coupled
system that accommodates nearest neighbour
linear interactions and a local intensity depen-
dent term whose origin lies in the χ(3) contribu-
tion to the medium's dielectric response.

In this presentation, two classic continuum
con�gurations are discretized in ways that have
received little attention in the literature: the
ring cavity and counterpropagating waves. Both
of these systems are de�ned by distinct types of
boundary condition. Moreover, they are suscep-
tible to spatial instabilities that are ultimately
responsible for generating spontaneous patterns
from arbitrarily small background disturbances.
Good agreement between analytical predictions
and simulations will be demonstrated.

Keywords: Ring cavity, counterpropagation,
Turing instability

1 Introduction

In optics, discrete nonlinear Schrödinger (dNLS)
equations are often used to describe the way in
which electromagnetic waves propagate through
structures whose dielectric properties vary peri-
odically [1]. The archetypal waveguide array,
for instance, comprises a refractive index distri-
bution engineered in the form of a square wave
with period D. Light con�ned to each chan-
nel in the array is coupled to that in its nearest
neighbours due to evanescent �elds.

While dNLS equations have been studied ex-
tensively for over thirty years, here we address
two geometries that have received little atten-
tion. First, the ring cavity involves con�ning
a periodic array between a set of mirrors and
feeding the output back into the input. Such
systems are known in dNLS contexts, but here

we relax the mean �eld considerations that have
tended to underpin previous works. Second, the
counterpropagating waves scenario appears to
be entirely new to the dNLS realm and does not
lend itself well to a mean-�eld theory. Both pro-
posed dNLS models turn out to support sponta-
neous pattern formation through the universal
mechanism discovered by Turing [2].

2 Ring cavity

In dimensionless form, the slowly-varying en-
velope con�ned within waveguide channel n =
0,±1,±2, ... is denoted by En. It follows that

idzEn + cL(En+1 − 2En + En−1)

+χL|En|2En = 0, (1a)

where z ∈ [0, 1] denotes the (scaled) longitudi-
nal position along an array of length L, c is a
coupling constant, and χ parametrizes the in-
tensity dependent polarization of the medium.
To capture the essence of the cavity, we enforce
the traditional boundary condition [3]

En(0) = tEin + r exp(iδ)En(1). (1b)

Here, Ein is the complex amplitude of the plane
wave pump �eld, the transmission t and re�ec-
tion r coe�cients of the coupling mirror satisfy
t2+r2 = 1, and δ allows for interferometric mis-
tuning between the pump and intracavity waves.

3 Counterpropagating waves

The continuum counterpropagating waves con-
�guration [4] may be reformulated within a dis-
crete framework by following much the same
approach as with the cavity. The array is il-
luminated from both ends by plane waves trav-
elling in exactly opposite directions down the
longitudinal axis z. Channel n then supports
a forward and a backward wave whose slowly-
varying envelopes are denoted by Fn ≡ Fn(z, t)
and Bn ≡ Bn(z, t), respectively. In dimension-
less form, we �nd that Fn and Bn must satisfy

i (∂z + ∂t)Fn + cL (Fn+1 − 2Fn + Fn−1)

+χL
(
|Fn|2 +G|Bn|2

)
Fn = 0, (2a)
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Figure 1: Typical threshold instability spectra
obtained for (left) the ring cavity and (right)
counterpropagating waves.

i (−∂z + ∂t)Bn + cL (Bn+1 − 2Bn +Bn−1)

+χL
(
|Bn|2 +G|Fn|2

)
Bn = 0, (2b)

where t is now the time coordinate and 1 ≤ G ≤
2 is the grating factor [4]. Equations (2a) and
(2b) belong to the �1+2� class of problem [note
that Eq. (1a) is the simpler �1+ 1� class]. They
are supplemented by the plane wave pumping
boundary conditions Fn(0, t) = F0 and Bn(1, t)
= B0 for all n, where F0 and B0 are constants.

4 Spontaneous patterns

The uniform states of Eqs. (1a) and (2a)−(2b)
can be identi�ed, and the discrete stability anal-
ysis subsequently proceeds in a way that takes
its inspiration from the corresponding contin-
uum model [3, 4]. These states are perturbed,
and one seeks solutions to the linearized prob-
lem that prescribe Fourier modes with trans-
verse spatial frequency K and which must re-
spect the appropriate boundary conditions. It
turns out that counterpropagation is the more
di�cult case to analyze, involving the exponen-
tiation of a non-diagonal 4× 4 matrix.

The threshold instability spectrum has been
derived for both systems, which predicts the
minimum wave intensity required to drive the
growth of a perturbation mode at any given K.
These spectra comprise discrete sets of islands
or bands whose structure is periodic in 2π along
the KD axis (see Fig. 1). The most unstable
frequency, denoted by K0, is de�ned to be that
K with the lowest threshold and which hence
possesses the highest growth rate.

In regimes with KD � O(1), the thresh-
old conditions revert to those of their contin-
uum counterparts [3,4]. This type of asymptotic
behaviour is required on physical grounds since

Figure 2: Emergence in time of a static pattern
in the output forward wave of the counterprop-
agation problem. The discrete index tR denotes
the number of passes through the medium.

perturbation wavelengths 2π/K much greater
than D do not `see' the periodic structure.

Simulations have been performed for both
systems, wherein the uniform state is initialized
with a small level of (�ltered) noise added to
mimic a random background �uctuation. When
the intensity of the uniform state just exceeds
threshold, a simple pattern is seen to grow spon-
taneously after a su�cient number of transits
through the medium. Such patterns appear to
be static in nature and they have a dominant
spatial scalelength given by 2π/K0 (see Fig. 2).
The numerics have thus provided some encour-
aging evidence to con�rm the threshold predic-
tions of K0 made by linear stability analysis.
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Abstract

Finding the defective eigenvalues of parametric
non hermitian eigenvalue problem is of particu-
lar interest due to the rich physics attached to
the singular behavior at the branch point.

Here, a new algorithm is proposed to explore
the parametric space and to locate exceptional
point (EP). The method requires the compu-
tation of successive derivatives of two selected
eigenpairs with respect to the parameter so that,
after recombination, regular functions can be
constructed. This algebraic manipulation per-
mits the localization of exceptional points (EP),
using standard root-�nding algorithms and the
computation of the associated Puiseux series up
to an arbitrary order.

Practical applications dealing with dissipa-
tive acoustic waveguides are given to illustrate
the e�ciency and the versatility of the proposed
method.

Keywords: Exceptional point, Puiseux series,
defective eigenvalue, parametric eigenvalue prob-
lem, acoustic waveguides

Introduction

In presence of losses, gain or with open systems,
the �nite element discretization of the wave equa-
tion typically yields sparse non-hermitian eigen-
value problem depending smoothly on a single
complex parameters ν

L(λ(ν), ν)x(ν) = 0. (1)

Here λ(ν) is the eigenvalue, x(ν) 6= 0 is the
right eigenvector. In the context of duct acous-
tics, the description of waves is usually accom-
plished using mode decomposition and L takes
the form of a quadratic eigenvalue problem [7]
and λ represents the axial wave number.

Depending on the con�guration, the param-
eter can be, for instance, a wall impedance asso-
ciated with a locally reacting liner or the e�ec-

tive density of a porous material as illustrated
in Fig. 1. For some speci�c values ν∗ the matrix
(1) is defective, and in the case of an isolated
defective eigenvalue λ∗ of algebraical multiplic-
ity 2, we can anticipate the local behavior of the
two branches of solution by using Puiseux series
expansion [4]. These can be written formally as

λ1(ν) = λ∗ +
∞∑

k=1

ak

(
(ν − ν∗) 1

2

)k
, (2a)

λ2(ν) = λ∗ +
∞∑

k=1

ak

(
− (ν − ν∗) 1

2

)k
. (2b)

As stated in [5], as long as a1 6= 0 the two
branches coalesce at a branch point singularity
as ν tends to ν∗. The branch point ν∗ in the ν-
complex plane is called an exceptional point [4].

In the vicinity of the EP, eigenvalues coa-
lesce in opposite directions, and this has remark-
able e�ects on modal attenuation [3, 7] and on
stability issues like the �utter phenomenon [1].
EPs also arises in quantum mechanics [6] or in
phase transition in PT-symmetric systems.

In this work, we are interested in �nding
ν∗ as well in computing the coe�cients of the
Puiseux series up to a certain order.

a) b)

Impedance Porous lining Periodic inclusion

c)

Figure 1: Examples of acoustical waveguides.
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EP localization

The proposed algorithm exploits the knowledge
of high order derivatives of two selected eigen-
values (λ1, λ2) calculated at an arbitrary value
ν0. In order to circumvent the branch point sin-
gularity (2) two auxiliary functions are de�ned

g(ν) = λ1 + λ2, and h(ν) = (λ1 − λ2)2 . (3)

By construction, these functions are holomor-
phic in the vicinity of ν∗ (as this was already
mentioned in [6] and in [4, p. 66]). The method
consists of 3 steps:

1. Computation of the derivatives of two se-
lected eigenpairs (λi,xi) (i = 1, 2) follow-
ing the technique presented in [2]. This
serves to construct the truncated Taylor
series Tg and Th of g and h with respect
to the arbitrary value ν0. This step is the
most computationally expensive.

2. Application of standard root-�nding algo-
rithms for polynomials in order to �nd the
zeros of Th and locate the branch point ν

∗.

3. Find the connecting coe�cients between
the Taylor series Tg and Th with those
given by the Puiseux series (2).

To illustrate the method, we consider a bidimen-
sional acoustic waveguide with one treated wall
(at y = 0). The eigenvalue problem is obtained
from the discretization of the weak formulation

(k2 − λ)〈ψ, φ〉 − 〈ψ′, φ′〉+ 1

ν
ψ(0)φ(0) = 0. (4)

As illustrated in Fig. 2, the spurious roots of
Th tend to be aligned on a circle (which is known
to be connected with the radius of convergence
of the series) and genuine zeros corresponding to
the EP located inside the circle of convergence.
The computed value ν∗ is a good approximation
of the true value with a relative error of 0.4% for
a signi�cantly distant initial value ν0 ≈ 2.3ν∗.

References

[1] R. O. Akinola, M. A. Freitag, and
A. Spence. The computation of Jordan
blocks in parameter-dependent matrices.
IMA J. Numer. Anal., 34(3):955�976, 2014.

[2] A. L. Andrew, K.-W. E. Chu, and P. Lan-
caster. Derivatives of eigenvalues and
eigenvectors of matrix functions. SIAM J.

Matrix Anal. Appl., 14(4):903�926, 1993.

0 0.5 1 1.5 2

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 2: Roots of Th. Example of EP localiza-
tion in the case of locally reacting liner with 13
derivatives with ν0 = 0.5825−0.6412i. Roots of
Th (·), initial value ν0 (+) and Tester's reference
solution ν∗ref = (1.6506 + 2.0599i)−1 (◦) for the
merging of the two least attenuated modes.

[3] W. Bi and W. Pagneux. New in-
sights into mode behaviours in waveg-
uides with impedance boundary conditions.
arXiv:1511.05508, 2015.

[4] T. Kato. Perturbation Theory for Lin-

ear Operators, 2nd edition, page 623pp.
Springer-Verlag, Berlin, Heidelberg, 1980.

[5] A. P. Seyranian, O. N. Kirillov, and A. A.
Mailybaev. Coupling of eigenvalues of com-
plex matrices at diabolic and exceptional
points. J. Phys. A, 38(8):1723, 2005.

[6] R. Uzdin and R. Lefebvre. Finding
and pinpointing exceptional points of an
open quantum system. J. Phys. B,
43(23):235004, 2010.

[7] L. Xiong, B. Nennig, Y. Aurégan, and
W. Bi. Sound attenuation optimization
using metaporous materials tuned on ex-
ceptional points. J. Acoust. Soc. Am.,
142(4):2288 � 2297, 2017.

Wednesday, 10:00, GM4 Knoller, Building BD



542 Contributed Sessions

Recovering underlying graph for networks of 1D waveguides by reflectometry and
transferometry

Geoffrey Beck1,∗, Maxime Bonnaud2, Jaume Benoit2
1POEMS (CNRS-INRIA-ENSTA Paristech) Palaiseau, France

2CEA, LIST, 91191 Gif-sur-Yvette CEDEX, France
∗Email: geoffrey.beck.poems@gmail.com

Abstract

We present a method for blind recovery of net-
work made out of a tree of 1D homogeneous
waveguides with the same physical characteris-
tics using reflectogram and transferogram(s).
Keywords: Inverse problem, Topology recover-
ing, Quantum graph, Reflectometry, Wire anal-
ysis

1 Introduction

We consider an unknow quantum graph G (see
[2]) equipped with a wave operator along its
branches and some transmission conditions on
its nodes connecting together the quantities eval-
uated on the branches. Our graph is a rooted
tree graph, where all branches are oriented from
a root-point Inp to end-points Outk (k = 1...K).
We will consider a maximum of two consecutive
nodes between Inp and any Outk and at least a
node in G.

We will now explain how a wave V propa-
gates along the graph G :

• On each branch of G the wave satisfiy an
homogeneous wave’s equation

∂2ttV − c2∂2xxV = 0,

where t denotes the time and x the ab-
scissa along the considered branch. The
celerity c of the waves is supposed to be a
known constant.

• Following Kirchhoff’s rules, V is continu-
ous on G and at each node J

∂xV |ej0 (J) =

jK∑

jk=j1

∂xV |ejk (J),

where ejk are the branches connected to
J , with ej0 the branch closest to Inp.

• On Inp, we have an impedance boundary
condition

∂tV (Inp, t)− cZu
Zc
∂xV (Inp, t) = (∂tu)(t)

where the constant Zu and u ∈ H1
loc(R)

are known. The unknown characteristic
impedance Zc is supposed to be constant.

• At each Outk we have an impedance con-
dition

∂tV + c
Zk
Zc
∂xV = 0,

where Zk is an unknown constant.

2 Graph recovery problem

Reflectometry and transferometry methods can
be applied to any practical electrical or acous-
tic network. The reflectogram is the following
Steklov operator :

u(t) 7→ R(t) := V (Inp, t),

whereas transferograms are operators for k =
1...K:

u(t) 7→ Tk(t) := V (Outk, t).

We suppose that we can control u. With a
known celerity c and the input load Zu, the re-
flectogram and optionally some transferograms,
we want to recover G that is to say to determine

• the number of nodes and end-points, and
their ordering (topology),

• the lenght `j of all branches,

• the end-points load Zk,

• the characteristic impedance Zc.

3 Injectivity

There can exists several quantum graph with
the same reflectogram, so we will make two hy-
pothesis. Firstly, no scatterer (node or end-
points) have the same distance from Inp, to en-
sure they can be dissociated. Secondly, no Zk
is equal to Zc to ensure waves are reflected on
the end-point. We will suppose that Zk > Zc is
always statisfied.
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4 Scattering

We can choose the excitation signal u such it
is a peak function (sole local maximum). It
propagates at celerity c along a branch until it
meets a scatterer. R is the sum of attenuated
u-shaped peaks, i-e of the form

∑
p Spu(t − tp)

where where each (tp, Sp) - called echo - corre-
sponds to the duration and the amplitude atten-
uation of a propagation of u in G through trans-
missions T and reflections Γ looping on Inp. Tk
is similarly generated, with propagations from
Inp to Outk. An echo amplitude Sp gives the
nature of its contained scatterers (order for a
node, load for an end-point), its abscissa the
path length between the observation point (Inp
for R and Outk for Tk) and the scatterer.

The algorithm presented in [1] identifies echoes
in a complex reflectogram and associates them
with unknown scatterers in G, giving their na-
ture and location. It runs iteratively, dispelling
ambiguities from peaks overlaping and accumu-
lated reflections.

But this method requires knowledge of Zc
and supposes that Zc = Zu (no reflections at
Inp). It can be enhanced by the use of transfer-
ograms.

5 Algorithm

5.1 Recovering Zc

We simply recover Zc from the reflectogram at
origin where we see an echo (called mismatch
echo) of amplitude Tu = (1 − Γu) with Γu =
(Zu − Zc)(Zu + Zc). Of course if Zc = Zu then
the mismatch peak is null.

5.2 Recovering the first node

The first echo observe in R after the mismatch
echo have for abscissa 2`0/c and for amplitude
Tu(1 + Γu)Γ0 with Γ0 = (2/m0−1) where m0 is
the order of the first node J0. We thus recover
`0 and m0.

5.3 Using the transferograms

If the amplitude of the first echo (t1, S1) of Tk is
above 4Tu(Γ0 + 1)/3, then Outk is directly con-
nected to J0. Thus we have S1 = Tu(2/m0)(1 +
Γk) with Γk = (Zk − Zc)(Zk + Zc), so we re-
cover Zk. The length of the J0 to Outk branch is
(ct1−`0). If S1 is under Tu(Γ0+1), a node exists
between J0 and Outk. This recovered topology

can remove branch location ambiguities for an
unknown scatterer with the reflectogram.

5.4 Using the reflectogram

We use the algorithm developed in [1] to con-
tinue the analysis of R. We changed the pro-
cedure to use informations from the transfero-
grams, and adapt to Zu 6= Zc. Indeed, we need
to apply a Tu(1−Γu) factor to all R echoes am-
plitude and to consider reflexions on Inp when
discriminating between echoes.

This method achieves an error-free topology
reconstruction if some technical hypothesis on
u are fullfiled. `j are retrieved with an accu-
racy decreasing when farther from Inp (relative
error under 5% from 350 simulations), as are
Zc (under 0.1%) and Zk (under 10%). Better
determination is possible by optimizing the all
lengths ˜̀ and all loads Z̃ vectors such that they
minimize the functional

J(`,Z) =

∫ 8`max/c

0

|R(t)−R`,Z(t)|2
3`max/c+ t2

dt

where `max is the maximum `j from previous
steps and R`,Z the simulated reflectogram us-
ing the recovered topology with ` and Z. We
look for the minimum of J with Newton’s algo-
rithm, initializing ˜̀ and Z̃ with the previously
recovered values.

6 Applications

This algorithm can be used for recovering un-
known electrical networks, with one reflectom-
etry device and optionnal transferometry tran-
scievers on end-points. Removing the condition
on Zu makes the algorithm more resilient to
real-life implementation limitations.
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Abstract
We investigate a time-harmonic wave problem
in a waveguide. We work at low frequency so
that only one mode can propagate. It is known
that the scattering matrix exhibits a rapid vari-
ation for real frequencies in a vicinity of a com-
plex resonance located close to the real axis.
This is the so-called Fano resonance phenomenon.
And when the geometry presents certain prop-
erties of symmetry, there are two different real
frequencies such that R = 0 or T = 0, where R,
T denote the reflection and transmission coeffi-
cients. In this work, we prove that without the
assumption of symmetry of the geometry, quite
surprisingly, there is always one real frequency
such that T = 0. In this case, all the energy
sent in the waveguide is reflected.
Keywords: waveguides, complex resonance, zero
transmission, scattering matrix

1 Setting of the problem

Ω Ωε

∂Ωε = (x, 1 + εH(x))

Figure 1: Original waveguide Ω (left) and per-
turbed geometry Ωε (right).

Let Ω ⊂ R2 be a connected waveguide which
coincides with the strip {(x, y) ∈ R× (0; 1)} for
|x| ≥ d where d > 0 is given (see Figure 1 left).
Propagation of acoustic waves in Ω with sound
hard walls leads to study the problem

∆u+ λu = 0 in Ω
∂νu = 0 on ∂Ω.

(1)

For λ ∈ (0;π2), only two waves w±(x, y) =
e±i
√
λx can propagate in Ω. The scattering of

the incident rightgoing wave w+ yields a solu-
tion of (1) admitting the expansion

u+ = w+ +Rw− + . . . , for x < −d
T w+ + . . . , for x > d.

(2)

Here R ∈ C is a reflection coefficient, T ∈ C
is a transmission coefficient and the dots stand
for terms which are exponentially decaying at
infinity. Similarly, there is a solution u− of (1)
associated with the incident leftgoing wave w−.
We denote R̃, T the corresponding scattering
coefficients (T is the same for u+ and u−). We
define the scattering matrix

s :=
(
R T

T R̃

)
∈ C2×2,

which is unitary (ss> = Id). We assume that
the geometry is such that the Neumann Lapla-
cian in Ω admits a simple eigenvalue λ0 ∈ (0;π2).
In the sequel, we perturb a bit the geometry,
so that this real eigenvalue becomes a complex
resonance, and we study the behaviour of the
scattering matrix for real frequencies in a neigh-
bourhood of λ0.

2 Perturbation of the frequency and of
the geometry

We perturb the geometry from some smooth
compactly supported profile function H with
amplitude ε ≥ 0 as in Figure 1 right. We de-
note Ωε the new waveguide and s(ε, λ), T (ε, λ),
R(ε, λ), R̃(ε, λ) the quantities introduced above
in the geometry Ωε at frequency λ. For short,
we set s0 = s(0, λ0), T 0 = T (0, λ0), R0 = R(0, λ0),
R̃0 = R̃(0, λ0). Decomposition in Fourier series
guarantees that the eigenfunctions associated
with λ0, the trapped modes, behave at infinity
as K±e−

√
π2−λ0|x| cos(πy) + . . . where K± ∈ C.

In [1], the following theorem is proved.

Theorem 1 Assume that (K+,K−) 6= (0, 0).
There is a quantity `(H) ∈ R, which depends
linearly on H, such that when ε→ 0,

s(ε, λ0 + ελ′) = s0 +O(ε) for λ′ 6= `(H),

and, for any µ ∈ R,

s(ε, λ0 +ε`(H)+ε2µ) = s0 +
τ>τ

iµ̃− |τ |2/2+O(ε).
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In this expression τ = (a, b) ∈ C × C depends
only on Ω and µ̃ = Aµ+B for some unessential
real constants A, B with A 6= 0.

Theorem 1 shows that the mapping s(·, ·) is
not continuous at (0, λ0) (setting where trapped
modes exist). And for ε0 small fixed, the scat-
tering matrix λ 7→ s(ε0, λ) exhibits a quick change
in a neighbourhood of λ0 + ε0`(H): this is the
Fano resonance phenomenon. When (K+,K−) =
(0, 0) a faster Fano resonance phenomenon oc-
curs. In the sequel, to simplify we denote sε(µ),
T ε(µ), Rε(µ), R̃ε(µ) the values of s, T , R, R̃ in
Ωε at the frequency λ = λ0+ε`(H)+ε2µ. When
Ωε is symmetric with respect to an axis orthogo-
nal to the direction of propagation of waves, one
can deduce quite simply from Theorem 1 that
the complex curves µ 7→ T ε(µ) and µ 7→ Rε(µ)
pass through zero for ε small enough (see [1]).
In the next section, we explain how to show that
without assumption of symmetry, in Ωε, there
is still a real frequency closed to λ0 such that
the transmission coefficient is zero. However in
general µ 7→ Rε(µ) does not pass through zero.

3 Exact zero transmission
Theorem 2 Assume that T 0 6= 0. Then there
is ε0 > 0 such that for all ε ∈ (0; ε0], there is
µ ∈ R such that T ε(µ) = 0.

Proof. Theorem 1 provides the estimate

|T ε(µ)− T asy(µ)| ≤ C ε (3)

with T asy(µ) = T 0 +
ab

iµ̃− (|a|2 + |b|2)/2.

For any compact set I ⊂ R, the constant C > 0
in (3) can be chosen independent of µ ∈ I.
? First, we study the set {T asy(µ), µ ∈ R}.
Classical results concerning the Möbius trans-
form guarantee that {T asy(µ), µ ∈ R} coincides
with C asy \ {T 0} where C asy is a circle passing
through T 0. Let us show that C asy also passes
through zero. One finds that T asy(µ) = 0 for
some µ ∈ R if and only if there holds

|a|2 + |b|2
2 = <e

(
ab

T 0

)
. (4)

An intermediate calculus of [1] implies R0 a +
T 0 b = a and T 0 a+R̃0 b = b. From this and the
unitarity of s0 which imposes R̃0 = −R0T 0/T 0,
we can obtain (4). Denote µ? the value of µ

such that T asy(µ?) = 0 and for ε > 0, define the
interval Iε = (µ? −

√
ε;µ? +

√
ε). From (3), for

ε > 0 small, we know that the curve {T ε(µ), µ ∈
Iε} passes close to zero. Now, using the unitary
structure of sε(µ) as in [2], we show that this
curves passes exactly through zero for ε small.
? Assume by contradiction that for all ε > 0,
µ 7→ T ε(µ) does not pass through zero in Iε.
Since sε(µ) is unitary, there holds Rε(µ)T ε(µ)+
T ε(µ) R̃ε(µ) = 0 and so

−Rε(µ)/R̃ε(µ) = T ε(µ)/T ε(µ) ∀µ ∈ Iε.
But if µ 7→ T ε(µ) does not pass through zero on
Iε, one can verify that the point T ε(µ)/T ε(µ) =
e2iarg(T ε(µ)) must run rapidly on the unit cir-
cle for µ ∈ Iε as ε → 0. On the other hand,
Rε(µ)/R̃ε(µ) tends to a constant on Iε as ε→ 0.
This way we obtain a contradiction. �
Remark 3 The fact that C asy passes through
zero is quite mysterious. Without assumption
of symmetry, we do not have physical reason to
explain this miracle.

In the geometry of Figure 2, first we find that
trapped modes exist for ε = 0 and

√
λ0 ≈ 1.2395.

Then we approximate (FEM) T (ε, λ) (×) and
R(ε, λ) ( ) for

√
λ ∈ (1.2; 1.3) and ε = 0.05. As

predicted, we observe that λ 7→ T (ε, λ) passes
through zero around λ0. Finally, we display the
real part of u+ in Ωε for ε = 0.05 and

√
λ =

1.2449. In this setting, we have T (ε, λ) ≈ 0.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

0.5 + ε

Figure 2: Zero transmission in a waveguide.
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Abstract

A general theory for bound states in the contin-
uum (BICs) is developed for a lattice model gov-
erned by an infinite real symmetric matrix with
simple tridiagonal tails. An eigenvalue problem
with a finite real nonsymmetric matrix is de-
rived for computing BICs and other modes. A
condition for the existence of BICs is obtained.
The robustness of BICs against structural per-
turbations is analyzed.
Keywords: Bound states, lattice models

1 Introduction

The concept of bound states in the continuum
(BICs) was originally introduced by Von Neu-
mann and Wigner in 1929. For classical waves,
a BIC is a trapped mode with a frequency in the
radiation continuum, and it corresponds to an
eigenvalue embedded in the continum spectrum.
Recently, BICs have been intensively studied in
optics [1–3]. When a perfect structure with a
BIC is perturbed, the BIC may continue to ex-
ist or become a resonant mode with a complex
frequency. Resonant modes are useful in nu-
merous applications. To understand BICs, it is
desirable to determine conditions for BICs to
exist, to determine perturbations that preserve
the BICs, and to analyze the resonances for per-
turbations that do not preserve the BICs.

The experiments of [1, 2] are performed on
waveguide arrays. To analyze waveguide arrays,
approximate ODE systems are widely used. The
unknown functions in the ODE system are the
amplitudes of guided modes propagating on in-
dividual waveguides and the independent vari-
able is the spatial variable z along the waveguide
axes. Assuming the array consists of infinite
number of waveguides and with the z variable
separated, the ODE system is reduced to

Ax = λx, (1)

where A is an infinite real symmetric matrix and
x = [..., x−1, x0, x1, x2, ...]

T is an infinite vector.
The above equation also appears in other appli-
cations and it will be referred to as the lattice

model. If the independent variable in the ODE
system is time t, then λ is the frequency. BICs
on lattice models have been studied by a number
of authors [1,2,4], but a systematic study is not
available. In the following, we study BICs for a
rather general lattice model that covers those of
Refs. [1, 2, 4] as special cases. Our study helps
to gain physical insight, and provides guidelines
for analyzing more complicated structures.

2 Theory

If the waveguide array is infinite and one di-
mensional with identical waveguides that couple
(identically) to the nearest neighbors only, then
A is an infinite tridiagonal matrix with a con-
stant diagonal entry α and a constant non-zero
off-diagonal entry β. We modify n + 1 waveg-
uides (labeled by integers 0, 1, ..., n) and allow
them to couple arbitraily with each other, then
A has an (n+1)×(n+1) diagonal block (which is
a general real symmetric matrix), and the other
parts of A are identical to the original infinite
tridiagonal matrix. We can assume α = 0 and
β = 1, since otherwise we can redefine λ by sub-
tracting α and dividing by β.

Since A is infinite, Eq. (1) can be an eigen-
value problem or a boundary value problem. The
special block of A is for rows and columns from
0 to n. If j < 0 or j > n, the j-th row of Eq. (1)
is simply xj−1+xj+1 = λxj . For λ ∈ (−2, 2), we
have the general solution xj = C1µ

j + C2µ
−j ,

where µ is a complex number with unit am-
plitude satisfying µ2 + 1 = λµ. We assume
xj = µ−j is a wave that propagates in the in-
creasing j direction. For any given λ ∈ (−2, 2),
we can specify an incident wave (for example
xincj = µj) for j > n, and try to find the re-
flected wave for j > n and the transmitted wave
for j < 0. This gives rise to a boundary value
problem for Eq. (1).

We are interested in eigenvalue problems of
Eq. (1), where λ (the eigenvalue) is to be deter-
mined. We look for solutions satisfying

xj = x0µ
j , j ≤ 0; xj = xnµ

n−j , j ≥ n, (2)

where µ satisfies µ2 + 1 = λµ. A bound state is
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a solution such that
∑ |xj |2 < ∞. A BIC is a

bound state with λ ∈ (−2, 2). A resonant mode
is a solution with a complex µ such that µ−j

represents an outgoing wave as j → +∞.
It is possible to find solutions of (1) and (2)

by solving a new eigenvalue problem with a fi-
nite matrix. We have

[
An −JT
J 0

]
u = µu, (3)

where An is the (n+1)× (n+1) block of A for
rows and columns from 0 to n, J = [0, In−1,0]
is an (n − 1) × (n + 1) matrix, and In−1 is the
(n − 1) × (n − 1) identity matrix, and µ is the
eigenvalue. A zero eigenvalue of Eq. (3) does not
correspond to a “physical” solution. Non-zero
eigenvalues of Eq. (3) include BICs, resonant
modes and other modes.

It is easy to show that a BIC must be com-
pact, that is, x0 = xn = 0. If we let

An =



∗ bT ∗
b B c
∗ cT ∗


 , y =



x1
...

xn−1


 .

then a BIC must satisfy

By = λy, bTy = cTy = 0. (4)

A solution of (4) is a compact mode. A BIC
requires the additional condition λ ∈ (−2, 2).

The BIC of [1] is symmetry-protected. We
can use Eq. (4) to understand symmetry pro-
tected BICs. Let P be a real (n − 1) × (n − 1)
matrix such that P 2 = I, we say the structure
is symmetric if

PB = BP, P Tb = b, P T c = c. (5)

In that case, the eigenvectors of matrix B must
satisfy either Py = y (symmetric) or Py = −y
(anti-symmetric). An anti-symmetric mode cor-
responds to a symmetry protected bound state.
As usual, the symmetry protected compact bound
states are robust to symmetry preserving per-
turbations. That means, if we perturb B, b and
c such that Eq. (5) remains valid, then we have
an anti-symmetric compact bound state with a
slightly different λ.

In general, a perturbation of the structure
will turn a BIC to a resonant mode with a com-
plex λ. If the strength of the perturbation is δ,
the imaginary part of λ is usually O(δ2). How-
ever, if we add two parameters depending on

δ, it is possible to preserve the BIC. More pre-
cisely, assuming the structure described by ma-
trix B, vectors b and c has a BIC with eigen-
vector y and eigenvalue λ ∈ (−2, 2), and if B is
perturbed to B+δB1 where B1 is a real symmet-
ric matrix and y is not an eigenvetor of B1, b1

and c1 are given vectors such that bT1 y 6= 0 and
cT1 y 6= 0, then for small but arbitrary δ, there
are two small numbers β and γ depending on δ,
such that the system corresponding to B+ δB1,
b+βb1 and c+γc1 also has a BIC. This result
has some similarity with the robustness result
for BICs on periodic structures [5].

3 Conclusion

For a lattice model described by an infinite sym-
metric matrix, we developed a general theory for
computing and analyzing BICs. Formulated as
a finite matrix eigenvalue problem, all modes
can be easily calculated and BICs can be easily
obtained. Based on the new formulation, we de-
veloped perturbation theories for BICs. In par-
ticular, special perturbations that preserve the
BICs are obtained.
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