
Language Model Driven Analysis
Simplifying text on an individual scale

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Alexej Strelzow, BSc.
Matrikelnummer 0926103

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Dr. Allan Hanbury
Mitwirkung: Dr. Mihai Lupu

Wien, 19. September 2016
Alexej Strelzow Allan Hanbury

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Language Model Driven Analysis
Simplifying text on an individual scale

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Alexej Strelzow, BSc.
Registration Number 0926103

to the Faculty of Informatics

at the TU Wien

Advisor: Dr. Allan Hanbury
Assistance: Dr. Mihai Lupu

Vienna, 19th September, 2016
Alexej Strelzow Allan Hanbury

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Alexej Strelzow, BSc.
Heitzles 20/2, 3623 Kottes-Purk

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 19. September 2016
Alexej Strelzow

v

Acknowledgements

First and foremost, I would like to thank my supervisor Dr. Mihai Lupu, who has always
supported and motivated me when my back was against the wall. Thank you for your
guidance, great suggestions, extensive proof reading and kindness. I am deeply grateful
to have worked with you and very satisfied with what we have accomplished.

I also want to thank Professor Hideaki Takeda from the National Institute of Informatics
(NII) of Japan, who took me in as a research intern in summer 2014. Under your
supervision, I was able to get in touch with research areas and data sources that have lead
to this very work. Thank you for letting me explore those and for the very comprehensive
frequent word list that you purchased on my behalf.

Furthermore, I want to express my deepest gratitude to my fiancée Yoko. You have
always supported me in this very time consuming endeavor and made me your first
priority. Thank you for your understanding, the delicious food you put on the table and
your patience.

Finally, I want to thank everybody who supported me, especially my parents.

vii

Abstract

The goal of this thesis is to provide a tool that individually supports people (users) to
comprehend relatively challenging textual resources like a researcher’s published papers.
Therefore, based on a user’s document collection, we introduce a novel approach to detect
words in a new document he or she might be reading that are most likely to be unknown
to the user. Furthermore, we explain those words by utilizing external data sources. Our
tool visualizes the analyzed document page by page and provides the user with a list
of detected, possibly unknown words and their meaning with respect to the currently
viewed page.
We implemented a proof of concept application to generate language models (user and
document models) from text, compare them with each other, and provide an explanation
of the words identified as unknown. The user model is an abstraction of the user’s
language skills in terms of known vocabulary. We estimate this set of known words
by considering the user’s written documents as a domain specific component and a
very comprehensive frequent word list of contemporary American English as a general
component. The model comparison algorithm takes a user and a document model as
input and identifies possible unknown words based on semantical and statistical methods.
To explain the words that are considered to be unknown to the user, we use BabelNet, a
large semantic dictionary.
To validate our approach, first, we have created a test set of user and document models
and second, conducted quantitative and qualitative experiments based on them. The
underlying document collection of our user models has been identified using the DBLP
computer science bibliography, a database for bibliographic metadata. In our conducted
experiments, we compare user models from the domain of computer science (CS) with
document models from the domains of CS (equi-domain experiments) and medicine
(cross-domain experiments). We obtained the medical journal articles from PubMed, a
meta-database for the area of biomedicine.
After 360 completed experiments (180 for each domain), we witnessed that on average
almost twice the amount of unknown words have been found in documents from the
medical domain in contrast to documents from the CS domain. Furthermore, in contrary
to the equi-domain experiments, the cross-domain experiments revealed that the majority
of unknown words were domain specific words and not general terms. We also revealed a
negative correlation (Kendall’s τ = -0.82) between the estimated language level of the
user and the sum of detected unknown words with respect to the user.

ix

Kurzfassung

Das Ziel dieser Arbeit ist es ein Tool bereit zu stellen, das Personen (Benutzern) beim
Verstehen von schweren Texten, z.B. Publikationen eines Forschers, individuell unter-
stützt. Basierend auf einer Sammlung von Dokumenten des Benutzers stellen wir eine
neuartige Methode vor Wörter in einem neuen Dokument, welcher er oder sie lesen
möchte, zu finden, welche dem Benutzer mit großer Wahrscheinlichkeit unbekannt sind.
Außerdem erklären wir diese Wörter mit Hilfe von externen Datenquellen. Unser Tool
stellt das analysierte Dokument Seite für Seite dar und zeigt dem Benutzer eine Liste
von gefundenen, unbekannten Wörtern und deren Erklärung zu der jeweiligen Seite.
Wir implementierten einen Prototypen, welcher Sprachmodelle (Benutzer- und Doku-
mentenmodelle) aus Text generiert, diese miteinander vergleicht und die als unbekannt
befundenen Wörter erklärt. Das Benutzermodell ist eine Abstraktion von seinen Sprach-
kenntnissen im Sinne von bekanntem Vokabular. Wir schätzen die Menge an bekannten
Wörtern mit Hilfe der geschriebenen Dokumenten vom Benutzer (domänenspezifische
Komponente) und einer sehr umfassenden Wortliste, bestehend aus zeitgenössischem
amerikanischen Englisch (generelle Komponente). Der Algorithmus, der die Modelle
vergleicht, nimmt die Sprachmodelle als Eingabe und identifiziert mögliche unbekannte
Wörter basierend auf semantischen und statistischen Methoden. Um unbekannte Wörter
erklären zu können verwenden wir BabelNet, ein großes semantisches Wörterbuch.
Um herauszufinden ob unsere Vorgehensweise funktioniert haben wir zuerst ein Testset
aus Sprachmodellen erstellt und danach quantitative und qualitative Experiment durch-
geführt. Dokumente für die Generierung von Benutzermodellen stammen von der DBLP
Computerwissenschaftsbibliographie, einer Datenbank für bibliographische Metadaten.
In unseren Experimenten haben wir Benutzermodelle (aus der IT Domäne) mit den
Dokumentenmodellen aus den Domänen der IT (equi-domain Experimente) und Medizin
(cross-domain Experimente) verglichen. Die medizinischen Journalartikel stammen aus
PubMed, einer Metadatenbank der Biomedizin. Nach 360 Experimenten (180 pro Domäne)
haben wir beobachtet, dass im Durchschnitt beinahe zwei Mal die Menge an unbekannten
Wörtern in Dokumenten aus der medizinischen Domäne, im Kontrast zu Dokumenten aus
der IT Domäne, gefunden wurden. Im Vergleich zu den equi-domain Experimenten, haben
wir in den cross-domain Experimenten beobachtet, dass die Mehrzahl an unbekannten
Wörtern domänenspezifischer Natur sind und nicht generellen Ursprungs. Wir haben auch
eine negative Korrelation (Kendall’s τ = -0.82) zwischen dem geschätzten Sprachniveau
des Benutzers und der Summe der unbekannten Wörter nachgewiesen.

xi

Contents

Abstract ix

Kurzfassung xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Structure of the Work . 2
1.4 Methodology . 3

2 Related Work 5
2.1 Information Retrieval . 6
2.2 Text Readability . 13

3 Method 23
3.1 Language Modeling . 24
3.2 Linguistic Processing . 26
3.3 Comparing Language Models . 29
3.4 Explaining Unknown Words . 30
3.5 Evaluation . 31

4 Proof of Concept 33
4.1 Data Sources . 34
4.2 Software Architecture . 38
4.3 Generating Language Models . 45
4.4 Comparing Language Models . 52
4.5 Explaining Unknown Words . 56
4.6 Summary . 58

5 Evaluation 59
5.1 Test Set . 59
5.2 Quantitative Results . 63

xiii

5.3 Qualitative Results . 66
5.4 Discussion . 70
5.5 Summary . 74

6 Summary 75
6.1 Limitations and Future Work . 75
6.2 Conclusion . 77

Appendix 79

List of Figures 83

List of Tables 83

List of Listings 84

Bibliography 85

CHAPTER 1
Introduction

1.1 Motivation

This work is related to the research areas of Information Retrieval (IR), Text Readability
(or only Readability) and Natural Language Processing (NLP). According to Collins-
Thompson [CT14], assessment of text readability or text difficulty has been addressed
for over 70 years. Traditional measures like the Flesch-Kincaid score [KFRC75] from
1975, estimate readability based on word and syllable counts. They essentially state that
longer sentences or words are more complex than shorter ones. Clearly, that is not always
the only criteria because other important factors like complexity of words (semantics)
and complexity of the sentence structure or grammar (syntax) have not been taken into
account.

Advances in Machine Learning (ML) and Computational Linguistics opened the door for
automated readability assessments [CTC04]. The basic idea is to extract features from
text, which are then used in a supervised machine learning approach to classify other
documents. For example, one can design a training set that contains documents with
words that are most likely to be understandable by six year old children. An algorithm
“learns” those words and, in case of binary classification, classifies an “unknown” document
as “Yes - understandable by a six year old child” or “No - not understandable”. By using
ML methods one can check if educational material has the right difficulty level regarding
students age or grade. This approach is more sophisticated than the first one, but the
fundamental problem remains unsolved: By nature, readability is a highly individual
and subjective task. To assess the text difficulty precisely, one must perform it on an
individual scale. The importance of user models (UM) in this matter has been known for
more than ten years [AAB+03], but still remains as an open problem [CT14].

The goal of this thesis is therefore to individually support people (users) to comprehend
relatively challenging textual resources like a researcher’s published papers. For that

1

1. Introduction

purpose, we compute user models from text, e.g. a researcher’s published papers, with
the aim to find words in other textual documents that are most likely to be unknown to
the user model (and therefore to the user). In the next step, we will explain those words
by using glossary entries and images from an already existing data source. We address
the problem of constructing language models from domain-specific text and of comparing
them for the purpose of identifying dissimilarities. We provide experimental results on a
collection of scientific articles from the Computer Science (CS) and the Medical domains.
The proposed method can be useful in the area of readability research and E-Learning.

1.2 Problem Statement

The term “user model”, adopted from computational linguistics [Chi88], has been used
extensively in research areas like Information Retrieval [AAB+03] and Text Readabil-
ity [CT14]. A simple definition for it might be the following (from [Chi88]): “A user
model (UM) contains information about users, such as users’ goals, beliefs, knowledge,
preferences and capabilities.” Among them, knowledge, in terms of used words in textual
documents, is the most important property for our purpose. We use those words to
construct a “language model”, therefore we will use “language model” and “user model”
interchangeably. While we acknowledge the difference between the two concepts in
general, in the context of the current thesis it is more practical to use the expression
“user model” to distinguish between language models of different users and language
models of individual documents.

There has been a considerable amount of work on using language models for estimating
the readability of textual documents as early as 2001 [SC01]. Nevertheless, what happens
after a document has been judged to be more or less readable is rarely considered. This
is a significantly harder problem. Because first, we have to identify specific terms that
are likely to be unknown to the user and find their proper definition, second, creating a
test collection for assessing the effectiveness of the method is fundamentally dependent
on the knowledge of the user and therefore highly subjective.

In order to address these problems, we report our experiments using language modeling
on a collection of scientific articles. We consider, as Paukkeri et al. [POH13] before,
documents from two domains, namely, Computer Science and Medicine. Unlike Paukkeri
et al. however, we take the analysis a step further and look at individual terms selected
by the models, rather than a general assessment of reader/writer skills.

1.3 Structure of the Work

This work is divided into a theoretical, a practical, and an evaluation part. The theoretical
part essentially describes the construction of our language models (user and document
models) and how we compare these to find words that are likely to be unknown to the
user.

2

1.4. Methodology

The implementation of the design outlined in the theoretical part (Chapter 3) as a
software prototype, is the outcome of the practical part (Chapter 4). The proof of
concept offers the following functionalities:

• Computation of document models and user models from a collection of scientific
papers.

• By comparing a user model with a document model, we detect words that are most
likely to be unknown to the user.

• Providing information about those unknown words by leveraging BabelNet1, which
contains data from different sources like (WordNet2 and Wikipedia3).

In order to validate the proposed method, we have considered both quantitative and
qualitative experiments (see Chapter 5). In the absence of user judgments for known or
unknown terms, the quantitative experiment will observe whether the method identifies
a significantly higher number of unknown terms in documents belonging to the medical
domain (i.e. a domain different from that of the users’). In our qualitative analysis,
we examined the identified unknown words from a single chosen experiment from each
domain.

1.4 Methodology

Finding words that are likely to be unknown to the user requires knowledge about the
user’s vocabulary. By creating a model from a collection of text (written by the user),
we are able to perform experiments and draw conclusions based on them. In addition,
we need to evaluate our conclusions or results, to validate our proposed approach.

1.4.1 Design

Our design (see Chapter 3) based on a literature research (see Chapter 2) is created and
it includes answers to the following questions:

• Language modeling: How can we create language models from text to model
documents and users?

• Comparing models: How can we compare language models with each other to
find words (from a document model) that are likely to be unknown to the user
(model)?

1http://babelnet.org/
2https://wordnet.princeton.edu/
3https://www.wikipedia.org/

3

http://babelnet.org/
https://wordnet.princeton.edu/
https://www.wikipedia.org/

1. Introduction

• Explaining words: How can we explain the identified unknown words to the
user?

• Evaluation: How can we evaluate our approach?

Based on this design, a proof of concept implementation is created.

1.4.2 Implementation

Chapter 4 describes the proof of concept application, which implements the following
functionalities, explained in the design from Chapter 3:

• The generation of document and user models from document collections.

• The comparison of language models (document vs. user model) to find words that
are most likely to be unknown to the user model and therefore to the user.

• The explanation of those unknown words if the information is available.

This implementation is evaluated in Chapter 5.

1.4.3 Evaluation

The evaluation part reveals the quality of our approach to find words that are likely
to be unknown to the user model and therefore to the user. We conduct quantitative
and qualitative experiments on a collection of documents from the domains of computer
science (CS) and medicine (Chapter 5). First, we compute user models from a document
collection of published papers by scientific researchers from the field of CS to compare
them afterwards with document models constructed from the domains mentioned above
to find words that are most likely to be unknown to the user. Based on those user models,
we evaluate the following two cases:

1. Equi-Domain Experiments: Documents from the same domain (CS) as the
user, but not written by the user, must not contain more unknown words than
documents from the medical domain.

2. Cross-Domain Experiments: Documents from the medical domain must contain
more unkown words than documents from the CS domain.

Documents that have been used to generate user models are excluded from the documents
that we use for our model comparison. This prevents us from having unrealistic good
results. In terms of qualitative observations, we have manually considered the terms
identified as unknown for one medical and one CS document.

4

CHAPTER 2
Related Work

This chapter covers related work from the research areas of Information Retrieval (IR)
and Readability. The problem tackled in this thesis can be seen as a special IR problem.
IR is primarily concerned with developing algorithms to identify relevant pieces of
information in response to a user’s information need [LC03]. Relevant information
might be documents like scientific papers, articles, or even smaller parts or passages of
documents. In our case, words that are unlikely to be known to the user are considered
as highly important. As such, we are searching for information that is unknown to the
user (or to its corresponding user model), by utilizing the “Language Modeling Approach”
from Ponte and Croft [PC98].

Section 2.1 gives a brief introduction to IR and describes some probabilistic retrieval
approaches like the “Classical Model” from Robertson and Sparck Jones [RJ76], and
the “Generative Model” from Victor Lavrenko [Lav04]. We also explain the concept of
language models, its technical realizations as unigram and n-gram models, and how their
probabilities are calculated.

Our work is also related to readability, which is concerned with the difficulty of text and
how to objectively measure it. The vocabulary load is one reason why text is felt to be
difficult to comprehend and there are ways to determine whether words are likely to be
unknown or not [WN08]. We explore this research area in Section 2.2, where we describe
both the classical approaches which are based on formulas (traditional measures) and the
modern ones which apply various machine learning techniques. Furthermore, we outline
the concept of user models which we use in this thesis and which is still attached to many
problems like a lack of reliable and scalable evaluation methods. To conclude, in this
chapter, we explain the concepts on which our thesis is based upon, namely user models
based on the language modeling approach.

5

2. Related Work

2.1 Information Retrieval

Information retrieval can be a very broad term. Manning et al. define IR as an academic
field of study, as follows [MRS+08]:

“Information retrieval (IR) is finding material (usually documents) of an
unstructured nature (usually text) that satisfies an information need from
within large collections (usually stored on computers).”

Basically this is what Google does for us when we enter a search query into the text
input field. The retrieved documents are usually ranked or sorted in descending order by
their suggested “relevance” for us. A formal notation would be that based on the query
(Q), the retrieval system needs to decide which document (D), from the collection (C),
is most likely to satisfy the user’s information need (or is among the class of relevant (R)
documents).

Over the past six decades, IR methods evolved from boolean retrieval to vector space
models towards a probabilistic approach. Furthermore, different ways have been explored
to leverage probabilities and to interpret or model the concept of relevance. This
resulted in a language modeling approach to IR [PC98] and a more powerful “Generative
Model” [Lav08].
This section explains the importance of relevance and covers the ideas behind the chosen
probabilistic retrieval methods. Other retrieval methods like boolean retrieval and vector
space model are well explained elsewhere [MRS+08].

2.1.1 Relevance and Relevance Models

As mentioned above, an IR system is supposed to return documents that are relevant to
the user. Within a probabilitic framework, Lafferty and Zhai elaborated the following
question [LZ03]:

“What is the probability that this document is relevant to this query?”

The answer depends on the chosen retrieval method and its underlying “relevance
model”. According to Lavrenko and Croft, a relevance model is defined as the probability
distribution P(w|R), where w is a random word from a random document D from the
collection C. For every word w, it states the probability that w can be observed in a
document from the relevant class R [LC03].

How to formalize and to model relevance is quite hard and has been attempted by over
160 publications [Lav08]. In ad-hoc retrieval for example, relevance models need to get
estimated without examples or prior knowledge. Lavrenko and Croft [LC01] described
how to effectively estimate a relevance model based only on the user’s query and without
the use of heuristics.

6

2.1. Information Retrieval

Nevertheless, over time, the following three relevance models (see Figure 2.1), which
follow different assumptions, have been established.

Figure 2.1: Graphical diagrams showing dependencies between the query Q, the document
D, and relevance R variables in different probabilistic models of IR. Shaded circles
represent observable variables (from [Lav08]).

The next sections will cover those models and explain their core ideas and assumptions.
We look at them from a generative point of view and model relevance explicitly.

Generative Relevance Models

Generative models generate text or strings by using the probabilities assigned to its
attributes or words [MRS+08]. In the classical probabilistic approach for example, we
estimate the probability that a document is generated given a certain query and relevance
(relevant or not relevant). And in the language modeling approach we go the other way
and estimate the probability that the query is generated from the document.

2.1.2 Classical Probabilistic Approaches

Probability theory offers a principled foundation for reasoning under uncertainty. Uncer-
tainty plays a key role in IR, because the system has to guess the relevance of documents
based on a user’s description of his or her information need in terms of a query [MRS+08].

Robertson and Sparck Jones [RJ76] estimated two models for each query, one modeling
the relevant documents, the other modeling the non-relevant ones. Afterwards, docu-
ments are ranked according to the posterior probability of relevance. In other words,
documents D get ranked by the odds of their being observed in the relevant class [Rob77]:
P(D|R)/P(D|N), where N is the non-relevant class or 1-R. This means that the IR
system presents the documents in order of their probability of being relevant to the user’s
request or query. This concept is known as the Probability Ranking Principle (PRP).
The Binary Independence Model (BIM) has traditionally been used with the PRP and is
known to be the original probabilistic retrieval model [MRS+08].

7

2. Related Work

Document Likelihood

Lafferty and Zhai [LZ03] argue that from a generative relevance model point of view,
the probability of relevance p(R=r|D,Q) is estimated indirectly by invoking Bayes’ rule:
p(R = r|D,Q) = p(D,Q|R=r)p(R=r)

p(D,Q) . R, D and Q are random variables, where R denotes
the relevance, which can either be r (relevant) or r̄ (not relevant).

In the next step p(D,Q|R=r) is factored as p(Q|R=r)p(D|Q,R). After several transforma-
tions the equation is as follows: p(R=r|D,Q) ' p(D|Q,R=r). The probability of relevance
(R=r) given a document and a query (or simply D is relevant to Q) is proportional to
the probability of observing the document given the query and relevance. The latter
probability can be easily estimated under the Naive Bayes conditional independence
assumption, which states that features are independent of each other given the param-
eter [MRS+08]. This assumption is used to reduce the number of parameters, hence
allows simpler computation. In reality, the conditional independence assumption does
not hold for text data. Terms are conditionally dependent on each other [MRS+08]. For
example, the pairs “hong” and “kong” are highly dependent terms.

Given the Naive Bayes conditional independence assumption we estimate p(D|Q,R=r)
with

n∏
i=1

p(wi|Q,R = r). We assumend, that the words w of D are independent given
R and Q. The same method is used to estimate the probabiltiy for R=r̄. The result is
the document likelihood based on two parameters, the query and relevance. The term
likelihood is just a synonym of probability. It is the probability of an event or data
according to a model. The term is usually used when people are thinking of holding the
data fixed, while varying the model [MRS+08].

By estimating a second model for R=r̄ (not relevant), documents are ranked by their
log-odds ratio: log (p(D|Q,R=r)

p(D|Q,R=r̄)). Simply said, we are generating documents given a query
and rank them according to their likelihood descending. The log-odds ratios are needed
for document normalization. Ranking only based on document likelihoods p(D|r,Q)
would not be effective, because it is inherently biased against long documents [LZ03]. In
the next section (2.1.3) we will also start from the PRP, but choose another factorization
of the same joint likelihod.

2.1.3 Language Modeling Approaches

The language modelling approach to information retrieval was introduced in 1998 by
Ponte and Croft [PC98]. They took the idea of “Language Models” (LM) from other
areas of human language technology (HLT), like speech recognition or statistical machine
translation [GM03]. A language model is a probability distribution that captures the
statistical regularities of the generation of language (generative model). The generated
language or result contains more terms with higher probability than terms with lower
probability [MRS+08].

The two main ideas behind the model are first, to let the data speak for itself and second,

8

2.1. Information Retrieval

to unite the indexing model, which assigns indexing terms to documents, and the retrieval
model [PC98]. The first idea emphasizes the importance of probabilities of words as
their manifestation of an underlying probability distribution [GM03]. This approach is
different from classical methods like tf-idf weighting and has been shown to outperform
these [PC98]. Section 2.2.6 describes how language models are implemented.

The original model, proposed by Ponte and Croft, has also been improved by Song and
Croft [SC99] or Hiemstra [Hie01]. Still, it had no explicit notion of relevance as the classical
probabilistic approach, which raised the question “Where is the relevance?” [SJR01]. The
concept of relevance, while seemingly intuitive, is nevertheless quite hard to define and
even harder to model in a formal fashion, as evidenced by over 160 publications attempting
to deal with this issue [Lav04]. Lafferty and Zhai [LZ03] incorporate relevance into the LM
approach to show its probabilistic equality to the classical approach. Robertson [Rob05]
disputed that this document generation approach by Lafferty and Zhai is theoretically
equivalent to the classical probabilistic retrieval model [RJ76] due to their different
event spaces [LZ15]. However, Lafferty and Zhai’s work [LZ03] still presents a formal
and widely-accepted way to connect the language modeling approach to the notion of
“relevance” that could answer the question:“Where is the relevance?” [LZ15].

Query Likelihood

In the previous section (2.1.2), we explained how the probability that this document
is relevant to this query (p(R|Q,D)), was computed. We factorized p(D,Q|R=r) as
p(Q|R=r)p(D|Q,R). In this approach we factorize it as p(D|R=r)p(Q|D,R) [LZ03].

In this case two assumptions are made:

1. Conditioned on the event R=r̄, the document D is independent of the query Q.
This allows us to drop the “irrelevant” language model p(Q|R=r̄).

2. D and R are independent.

The resulting estimation for the relevance ranking becomes log p(Q|D,R = r), which is
basically the probability that the query is generated by the document, given relevance.
As in the previous approach, we can decompose the query into words or attributes and
view those as independent given the document and relevance. The resulting probability
(p(Q|D,R=r)) is then the product of each words’ probability. This computation is quite
simple but also dangerous, because a word that cannot be observed in the document,
receives the probability of zero, leading to a total probability of zero. This problem is
known as the problem of zero frequencies and it can be dealt with by applying a technique
called “smoothing”.

There are simple ways to get rid of zero probabilities. The simplest one is to always add
a small number to each probability. A more advanced method is to steal away some
probability mass from the maximum-likelihood estimator and distribute it among the
words that have zero frequency [LC03].

9

2. Related Work

Query Likelihood vs. Document Likelihood vs. PRP

Above we have briefly mentioned two liklihood models for relevance. The first is generating
the document from the query, whereas the second is generating the query from the
document. Intuitively, it is easier to estimate a model for “relevant queries” based on
a document than to estimate a model for relevant documents based on a query [LZ03].
The reason is that a document usually contains more words than a query and therefore
provides a larger foothold for estimating a statistical model.

In the LM approach we want to compute the probability that this document generated this
query. In contrast to the classical model relevance is not explicitly modeled here. Intuition
tells us that the document that is most likely to generate the query is of capital importance.
Therefore it must be the most relevant one [JRHZ03]. The classical probabilistic model
on the contrary comes up with heuristics to approximate relevance [RJ76].

Another important difference between those two approaches is the need for document
normalization. Ranking on document likelihoods is biased against long documents, hence
log-odds ratios are used as a counter-measure. In the LM approach competing documents
are scored using the same number probabilities, therefore document normalization is not
a crucial issue [LZ03].

2.1.4 Generative Model

In his PhD thesis, entitled “A Generative Theory of Relevance”, Victor Lavrenko worked
on another view on relevance. He described relevance as a generative process, and hypoth-
esized that both user queries and relevant documents represent random observations from
that process (see Figure 2.1). This is formulated in the Generative Relevance Hypothesis
(GRH) (from [Lav04]):

“For a given information need, queries expressing that need and documents
relevant to that need can be viewed as independent random samples from the
same underlying generative model.”

By treating both documents and queries as such, he was able to estimate all relevant
probabilities without resorting to heuristics [Lav08].

Lavrenko showed that his model, which he named “Generative Model”, could outperform
prior retrieval models on the TREC ad-hoc retrieval and cross-language tasks [LC01].
The model is also applicable to other retrieval areas like handwriting retrieval, image
retrieval or video retrieval. The reason is that nothing in the model is specific to language,
to documents, and to queries. Its most important quality is that it makes no structural
assumptions about the data.

10

2.1. Information Retrieval

2.1.5 Limitations of Probabilistic Retrieval Models

In previous sections we covered three probabilistic retrieval models. Each of them is
limited in some way, but all of them share the closed-universe approach. That means,
they all assume that there exists only a single information need R. For two information
needs (R1 and R2), having a document D which is relevant to both of them, we run into
a philosophical inconsistency.

According to the Lavrenko’s GRH, D would have to be drawn from the relevance model
from R1 and R2, but this is only possible if they are identical. Same inconsistency also
exists in the classical probabilistic model [RJ76] and an even bigger one in the language
modeling approach [RH01], where we work with the query likelihood. Assuming that the
query Q is a sample drawn from a relevant document Dr, implies that among the whole
collection C, there can only be one relevant document, namely Dr, the source of Q.

Lavrenko states that those inconsistencies are purely philosophical and that they have
absolutely no practical impact, since we are dealing with probabilities and no hard
yes-or-no decisions about the origin of the sample [Lav04].

2.1.6 Technical implementation of Language Models

Language models can be realized in different ways. Depending on the conditioning
context a language model can be generally classified into a unigram language model or a
n-gram language model. The simplest and most common one is the unigram language
model [MRS+08].

Unigram Language Models

The unigram language model is the simplest form of a language model. It estimates the
probabilities over each term independently. Therefore the order of terms is not relevant.
The probability of a certain string of terms is calculated as follows: Puni(t1t2t3t4) = P(t1)
P(t2) P(t3) P(t4). Figure 2.2 illustrates a unigram language model as a one-state finite
automation.

Figure 2.2: Unigram language model as a one-state finite automation ([MRS+08]).

11

2. Related Work

The probability of a term is typically calculated using a Maximum Likelihood Estimator,
as the number of occurences of that term in the document divided by the total amount
of terms in the document. For instance the probability distribution of a document with
the content “I love Sushi. I love Japan.” is displayed in Table 2.1.

Table 2.1: Probability of terms in an unigram language model.

Term Probability
I 2/6 = 1/3
love 2/6 = 1/3
Sushi 1/6
Japan 1/6

Language models, which take more than one term into account, are called “n-gram
models”.

n-gram Language Model

The n-gram model, for n > 1, does not estimates the probabilities over each term
independently, therefore the ordering is important. This is crucial in areas like speech
recognition. For example, the probability to generate a sequence of four words gets
computed as follows: P(t1t2t3t4) = P(t1) P(t2|t1) P(t3|t2) P(t4|t3).

The probability distribution of the sentence “I love Sushi. I love Japan.” using a bigram
language model is displayed in Table 2.2.

Table 2.2: Probability of terms in an bigram language model.

Term Probability
I love 2/4 = 1/2
love Sushi 1/4
love Japan 1/4

In contrast to unigram models, n-gram models require more computational power and
space, but they are able to capture dependencies between words. Also data sparsity
becomes a greater issue, because the terms are considered in a compound and not
standalone anymore. The probability to encounter another occurence of the word “love”
is higher than to encounter an n-gram, where the word “love” is included. Probably
the biggest disadvantage of n-gram models is that they are static in the sense that their
parameters are fixed during their design [HAA+96]. For example, once a trigram model
is created for a certain task, it cannot be transformed to a bigram model to fit another
task. Therefore, unigram models are more flexible than n-gram models.

12

2.2. Text Readability

2.2 Text Readability

Readability of text can be judged by content, style, format, and features of organiza-
tion [GL35]. Research in readability originated in the desire to grade textbooks and other
materials for use in the elementary grades. Subsequently, the research activities were
extended not only to demonstrate the lack of adequate reading materials for adults, but
also to suggest how materials might be better prepared [Lor44]. In the 1920s, methods
have been developed to measure the “vocabulary burden” or vocabulary load [LP30].

Twenty years later, Lorge confirmed that vocabulary load is the most important con-
comitant of difficulty [Lor44]. More than 60 years later, researchers still try to evaluate
the vocabulary load of written text [WN08]. Also, methods have been developed to find
words that are likely to be unknown [NB07] [NH02].

While we shall come back to these later in this section, it is worth pointing out already
that in contrast to those methods, our approach does not require the attendance of the
user, because we build a user model based on the user’s written work and reason about
words that are likely to be unknown, on that “virtual basis”. Nevertheless, there are
interesting ideas and concepts that we can learn from readability research and incorporate
in our proof of concept implementation.

This section gives a brief historical overview, then introduces some concepts and ideas
of how to find words that are likely to be unknown by measuring the vocabulary load
and ends with user models, yet an open problem and regarded as future work by Collins-
Thompson [CT14].

2.2.1 History

In his book “The Classic Readability Studies” [DuB07], William H. DuBay gives a brief
historical overview covering the time span of 1893 to 1948. After we covered some of
the traditional formulas, we will briefly mention advanced approaches based on machine
learning techniques to present a more holistic picture of this research area.

The Early Times (1890 - 1930)

In 1893, a professor of English Literature at the University of Nebraska, Lucius Adelno
Sherman, published a book with the title “The Analytics of Literature: A Manual for
the Objective Study of English Prose and Poetry” [She93]. He analyzed literature from
different time periods and found that the average sentence length became shorter over
time [DuB07]:

• Pre-Elizabethan times: 50 words per sentence

• Elizabethan times: 45 words per sentence

• Victorian times: 29 words per sentence

13

2. Related Work

• Sherman’s time: 23 words per sentence.

He made literatue a subject for statistical analysis and proposed to shorten sentences to
increase readability. His ground work set the agenda for a century of research in reading.

In 1921 Edward Lee Thorndike published the first extensive list of words entitled The
Teacher’s Word Book which initially listed 10,000 words in English. The alphabetical
list of 10,000 words were chosen from a corpus with 41 different sources. They mainly
contained literature for children and contained about 625,000 words [Tho21]. Each of
those 10k words is listed with a “credit-number”, a measure of the range (how many
sources use the word) and frequency (how often is the word used) of each word’s occurence
(see Table 2.3). Common words have a higher number than uncommon ones.

Table 2.3: Thorndike’s scheme from “The Teacher’s Word Book” [Tho21].

Credit-Number Position of Word
49 or over 1 to 1000
29 to 48 1001 to 2000
19 to 28 2001 to 3000
14 to 18 3001 to 4000
10 to 13 4001 to 5144

9 5145 to 5544
8 5545 to 6047
7 6048 to 6618
6 6619 to 7262
5 7263 to 8145
4 8146 to 9190
3 9191 to 10000

His work helped teachers to measure and adjust the difficulty of textbooks to the reading
level of the students. This book is available online1.

A few years later, Lively and Pressey of Ohio State University, tested the following three
methods for measuring the vocabulary load of a thousand words of text [DuB07]:

1. Number of different words (vocabulary range)

2. Number of words not in “The Teacher’s Word Book” (10,000 words version) [Tho21]

3. An average value of the credit numbers of Thorndike’s list mentioned before. If a
word was not part of that list it got the value 0 and got counted twice to give it
some extra weight [BG16].

1https://babel.hathitrust.org/cgi/pt?id=coo1.ark:/13960/t9f48724f;view=1up;
seq=15

14

https://babel.hathitrust.org/cgi/pt?id=coo1.ark:/13960/t9f48724f;view=1up;seq=15
https://babel.hathitrust.org/cgi/pt?id=coo1.ark:/13960/t9f48724f;view=1up;seq=15

2.2. Text Readability

They found that the third method was the best indicator of what they called the “vocab-
ulary burden” of their analyzed reading materials [LP30]. Their work and Thorndike’s
frequent word list influenced future readability formulas.

In the late 1920s Mabel Vogel and Carleton Washburne of Winnetka, Illinois, published
a paper in which they included structural characteristics as criteria for their readability
formula [VW28]. This formula allowed to objectively match the grade level of a text with
the reading ability of the reader or in other words, to classify the reader into grades. The
Winnetka formula, which takes semantics and syntax into account, became the prototype
of modern readability formulas [DuB07].

New Directions of Readability (1931 - 1950)

By using a formula, which determines the relative difficulty of textbooks using a combi-
nation of frequency and vocabulary diversity, W. W. Patty and W. I. Painter discovered
that the sophomore year (second year of high school or college) is the year of the highest
vocabulary burden [PP31]. They also used another way of creating a sample by using a
percentage of words from each text instead of a big passage from one text.

In 1935, William S. Gray and Bernice Leary investigated the question:“What makes a
book readable?”. They identified 228 elements that affect readability and grouped them
into four categories [GL35]:

1. Content: Propositions, Organization, Coherence

2. Style: Semantic and Syntactic Elements

3. Format: Typography, Format, Illustrations

4. Features of Organization: Chapters, Headings, Navigation

Their very comprehensive study revealed following findings:

• Content, with a slight margin over style, was most important.

• Less relevant was format, followed by features of organization.

• They could not measure content, format or organization statistically.

In 1944, Irving Lorge published a new formula consisting of a new combination of variables,
which predicted readability with higher accuracy than the Gray-Leary formula. His
formula used the “Dale list of 769 easy words” [Dal31], which was published in 1931. It
took the average sentence length in words and the number of prepositional phrases per
100 words into account. He also published “The Semantic Count of the 570 Commonest
English Words”, which is basically a frequent word list of word-meanings, rather than

15

2. Related Work

just words. The Lorge Index was initially conceived for children’s reading, but was also
used for adult material as well [Lor44].

Only four years after Lorge published his Index, Edgar Dale and Janne Chall published
the most reliable readability formula of that time, namely “The Dale-Chall Readability
Formula” [DC48] [DuB07]. Its core component was a list that contained 3,000 easy
words2. This is basically the extension of the “Dale list of 769 easy words”. He developed
this list, because he claimed that Thorndike’s vocabulary lists failes to capture the
familiarity of words accurately.

Over 70 years ago, in 1943, the Austrian Rudolf Flesch, published his first readability
formula for measuring adult reading material. Publishers adopted his formula and
witnessed an increase of readership by 40 to 60 percent [DuB04]. In 1948 he published
another formula in his article “A New Readability Yardstick”[Fle48]. This formula used
only two variables, the number of syllables and the number of sentences for each 100-word
sample as follows: “Flesch Reading Ease (FRE)” = 206.835 - (1.015 x ASL) - (84.6 x
ASW), where ASL is the average sentence length and ASW is the average number of
syllables per word. The constant 206.835 adjusts most readability scores to the scale
from 0 to 100, moreover the values 1.015 together with 84.6 are the weights for ASL and
ASW [HS75]. The interpretation of the score is listed in Table 2.4.

Table 2.4: Interpretation table for Flesch Reading Ease scores (adapted from [HS75])

FRE
score

Description
of style

ASL ASW Typical
magazine

Potential
Audience

school grade
completed

0-30 Very difficult > 29 > 1,92 Scientific College
30-50 Difficult 25 1,67 Academic H.S. or some college
50-60 Fairly difficult 21 1,55 Quality Some H.S.
60-70 Standard 17 1,47 Digests 7-8 Grade
70-80 Fairly easy 14 1,39 Slick-fiction 6 Grade
80-90 Easy 11 1,31 Pulp-fiction 5 Grade
90-100 Very easy 6 8 6 1,23 Comics 4 Grade3

The FRE formula became the most widely used readability formula and one of the most
tested and reliable [DuB07]. Nevertheless, traditional formulas have some weak points.
Some of them are [CT14]:

1. They typically assume that text has little or no noise.

2. They require significant samples of text (> 300 words).
2http://www.readabilityformulas.com/articles/dale-chall-readability-word-

list.php
3Students in Fourth Grade are usually 9–10 years old.

16

http://www.readabilityformulas.com/articles/dale-chall-readability-word-list.php
http://www.readabilityformulas.com/articles/dale-chall-readability-word-list.php

2.2. Text Readability

3. They do not perform well on non-traditional documents like web pages.

4. They are based only on surface characteristics of text and ignore deeper levels like
cohesion, syntactic ambiguity, etc.

Advances in computational linguistic, machine learning and new data sources smoothed
the way for new approaches.

Machine Learning based Approaches

The “AI” (Artificial Intelligence) approach to readability requires following three things:

1. A gold-standard training corpus of individual texts and their corresponding gold-
standard labels or readability levels.

2. A set of features extracted from text, which will be later on used by the machine
learning model.

3. The ML model that predicts (predefined) readability levels based on features,
extracted from text.

The gold-standard corpus plus labels need human expertise to be made (choosing text
and annotating it by hand). Labels or grades are usually numbers, which reflect the
difficulty level. Complex features need to be extracted by using computational linguistic
methods. Some of those features are [CT14]:

• Lexico-semantic: rare, unfamiliar or ambigious words

• Morphological: rare or more complex morphological particles

• Syntax: grammatical structure

• Higher-level semantics: use of unusual sense, idioms, domain knowledge, etc.

The ML model can be viewed as a function, which receives features as input and maps
them to a number (the readability level). There are many types of learners, but it has been
shown [KLP+10] that they are not as important as the features used by those learners.
In general, machine learning models improved accuracy over traditional readability
formulas [FM12]. The best prediction performance has been accomplished by using both,
traditional and non-traditional features.

17

2. Related Work

2.2.2 Evaluating the vocabulary load of written text

In 2002, Paul Nation4 from the Victoria University of Wellington (New Zealand) published
a paper [NH02] about a piece of software that could evaluate the vocabulary load of
written text. RANGE, programmed by Alex Heatley, is freely available for download
from Prof. Nation’s homepage4. Before we describe its features, we introduce the concept
of “word families”, which is important for vocabulary size research in general.

Word families are groups of words that have a common feature or pattern. Bauer and
Nation define word families as follows [BN93]:

“From the point of view of reading, a word family consists of a base word
and all its derived and inflected forms that can be understood by a learner
without having to learn each form separately”.

According to the “Word Family Framework of General English” (WFF)5, a searchable
resource that consists over 22,000 vocabulary items, developed for the British Council,
the word “easy” is in the same word family as “ease”, “uneasy”, “unease”, “uneasily”
and “uneasiness”. The headword6 (or lemma) is “ease”. It gets transformed by attaching
affixes7, e.g. prefixes, like “un-”, or suffix, like “-ly”, to it.

RANGE, which uses resources (baseword files) that are built upon the concept of word
families, can be used to compare the vocabulary of up to 32 different texts at the same
time. For each word, RANGE provides (see INSTRUCTIONS.doc of the downloaded
archive file):

• a range or distribution figure (how many texts the word occurs in)

• a headword frequency figure (the total number of times the actual headword type
appears in all the texts)

• a family frequency figure (the total number of times the word and its family
members occur in all the texts)

• and a frequency figure for each of the texts the word occurs in.

It can be used for example to determine the vocabulary size necessary to understand
the vocabulary in text, or to evaluate the vocabulary load of text and, most important
for us, to determine the number of words in the text which are likely to be unknown. If
RANGE gets multiple files as input, it lists the frequency of types from each base list for
each file like below (F1 is file 1 and F2 is file 2).

4http://www.victoria.ac.nz/lals/about/staff/paul-nation
5https://www.learnenglish.org.uk/wff/index.html
6https://en.wikipedia.org/wiki/Headword
7http://www.affixes.org/a/index.html

18

http://www.victoria.ac.nz/lals/about/staff/paul-nation
https://www.learnenglish.org.uk/wff/index.html
https://en.wikipedia.org/wiki/Headword
http://www.affixes.org/a/index.html

2.2. Text Readability

TYPE RANGE FREQ F1 F2
A 2 229 193 36
ABILITY 1 3 3 0
ABLE 2 4 1 3
ABOUT 2 5 3 2

In that way, one can analyze which words have been used in document F1 but not in
document F2 (see “ABILITY” above).

RANGE was used in the development of the 14 British National Corpus (BNC) 1000
word lists, which were created according to the frequency and range of occurence of word
families [WN08].

It can be configured to use up to 16 baseword files, where files 1 to 14 are the 14 BNC
word lists, the 15th contains proper nouns and the 16th shows marginal words such as
“ah” and “oh” (see Figure 2.3).

Figure 2.3: Screenshot of the RANGE program.

Those baseword files contain word families. An example is the word “achieve”, which is
the headword of “achievable”, “unachievable”, “achieved”, “achievement”, “achievements”,
“achiever”, “achievers”, “achieves” and “achieving”. RANGE can be used in conjunction
with the Vocabulary Size Test, which measures the knowledge of word families, based on
those 14 1000 word lists [NB07]. The idea is simple: if the learner is able to demonstrate

19

2. Related Work

knowledge of the headword in the test (“achieve” in our case), there is an assumption that
he or she will also have receptive knowledge of the rest of that word family. There are
ten questions per 1000 word level, which corresponds to a list. Each question represents
knowledge of 100 word families. If one question (out of 10) gets answered wrong, then
the learner demonstrated knowledge of 900/1000 word families from that level [NB07].

RANGE seems to use a very intuitive approach, which allows fast analysis due to simple
computation like tokenizing words (from files) and looking them up in the BNC lists. By
writing own baseword files for each user (this would substitute our user model), we could
probably achieve a similar result as presented in this work. We could provide RANGE
with documents (not known to the user) which contain the “unknown” words and match
them with our custom basword files (user model replacements). The disadvantage of that
approach is the time-consuming creation and maintenance of those files. Moreover, it is
not possible to extend the program with additional functionality or data sources.

It is worth exploring the opportunities it offers and consider the usage of those 14
1000 word lists. But our problem cannot efficiently be solved with RANGE. We need
a fully automated approach that creates models from documents of the author (or
user), compares them with each other, and explains the words which are most likely
to be unknown to the user. In his survey regarding the current and future research of
computational assessments of text readabiltiy, Collins-Thompson [CT14] describes the
importance of individual assessments by leveraging “user-centric models”.

2.2.3 User Models

Current measures are not able to capture readabiliy adequately, because its nature is
inherently individual. In an ideal world, readability is taylored to each user individually.
One step in that direction is to explore the creation, evaluation, and validation of models
that abstract the individual. User-centric models or just user models can be used for
that purpose. Collins-Thompson and Callan [CTC05] built similar models to retrieve
content appropriate for elementary and secondary school students. The main idea is
to provide students with a search tool that can find reading material relevant to the
students reading level. In a first step, they created 12 statistical language models to
fit 12 American grade levels. Then, they built a classifier to categorize text from web
pages according to those 12 grade levels. That classifier can categorize unknown content
with an average root mean squared error of between one and two grade levels for 9 of 12
grades.

We can interpret the above language models as a model for a specific user group. In this
thesis, we go a step further and create language models from text, e.g. a researcher’s
papers, on an individual level. We call such a user specific model also user model, because
it models the user’s knowledge in terms of used and therefore known words. Based on
those models, we identify words that are most likely to be unknown to the user. Also, as
several studies have shown, word difficulty is an excellent predictor of reading difficulty.
Chall and Dale showed a correlation between 0.7 and 0.9 for word difficulty to reading

20

2.2. Text Readability

difficulty [CD95]. According to Collins-Thompson [CT14] user models can also be used
for the following two tasks:

• Personalized training: Adapt users to content.

• Personalized simplification: Adapt content to users.

In this thesis, we build a bridge between those two tasks by introducing additional
content to the user. By performing experiments on a generated user model, we first
identify words that are likely to be unknown to the user. In a next step, we provide
additional content like definitions, images or translations to explain those “hard” words.
We therefore simplify the content that has been identified as difficult for the user with
the intention to adapt the user to that content.

A significant challenge regarding those models is the method of creation. In our approach,
we do not assess the user’s language skill in terms of known words a-priori, but use his or
hers individual work (e.g. scientific articles) to create the user model directly and fully
automated. The challenge in creating those models is to estimate the words which are
not contained in the underlying documents, the basis of those models. We use statistical
methods to compute the language level of the user from the user model and further use
this level to estimate the words, not mentioned in the documents at hand. For this, we
use an additional resource, which is based on the Corpus of Contemporary American
English (COCA) corpus8. From a technical perspective, we create the user model as a
smoothed unigram model. More details on that is provided in Section 3.1.

To conclude, user models, for the task of text readability, can be created using language
modeling techniques. In contrast to traditional measures like the Flesch-Kincaid measure,
they do not rely on any (reliable) syntactic features, but just on the words themselves
(semantics). Therefore, they can also be applied on non traditional documents like web
pages. Also, user models can be easily extended, combined with other models, and used
to classify text (see [CTC05]). When dealing with user models, one thing is for sure,
gold-standard approaches need to be adapted to provide reliable methods for evaluation.

8http://corpus.byu.edu/coca/

21

http://corpus.byu.edu/coca/

CHAPTER 3
Method

This chapter outlines the proposed method of how we detect specific dissimilarities
between two probabilistic language models, denoted as document and user models.
Specifically, we describe our approach of finding words in the document model that are
most likely to be unknown to the user model.

In the first section, Language Modeling, we explain the concept of document and user
models. Although, language models can be built from any kind of textual resource (book,
web page, etc.), for our purposes, we limit ourselves to scientific articles from the two
domains of computer science and medicine.

Section 3.2 covers the basics of natural language processing, like text normalization,
tokenization and annotation. We use these techniques to clean, segment and enrich
text before we perform the task of language modeling. In this way, we can e.g. remove
unwanted content, which results in models of higher quality which consequently leads to
better results when comparing these.

Section 3.3 describes how we compare a user model with a document model to detect
words that are likely to be unknown to the user. We introduce an algorithm which takes
two models, a user model (Mu) and a document model (Md), as an input. Each model
consists of words, which again carry properties like part of speech, lemma and statistical
data, that are used to determine, whether a word from Md is likely to be unknown to
Mu.

What happens to a word after it has been identified as possibly unknown to the user is
the topic of Section 3.4. There, we briefly outline the content needed to explain those
identified terms to the user.

In the last section, we explain our evaluation method, which consists of two types
of experiments. The equi-domain experiments take documents from a single domain

23

3. Method

into account, whereas the cross-domain experiments use documents from both domains,
namely computer science and medicine.

3.1 Language Modeling

Language modeling is the process of transforming text into models. The texts we have
chosen are scientific journal articles from the domains of computer science and medicine.
We selected those documents for the following reasons:

1. Quality: Because journal articles are the traditional scientific dissemination
medium, they are less prone to slang and typos.

2. Quantity: Over the past decades, research conducted in both areas resulted in
millions of papers.

3. Legality: Among the quantity of published papers, we are able to acquire a subset
of it without violating any legal rights.

4. Authorship: Each paper contains information about the author(s), therefore we
can easily group documents by a specific person. This is inherently important for
the task of creating a user model from multiple documents.

5. Scalability: By removing or adding documents, we are able to vary the size of the
user model, which enables us to conduct a variety of experiments. We are able to
evaluate the model comparison algorithm for “small” user models, as well as for
“big” ones. Although, we have the opportunity to do so, for our evaluation part, we
only consider user models of a certain “medium” size.

Based on the document collection resulting from both domains, we define two types of
language models:

1. Document Models

2. User Models

Every model is realized as a unigram language model and therefore contains no information
about the surrounding tokens. Each model consists of words and the number of their
occurrences. In all models, words are considered together with their POS tag: e.g.
(book, NN) is considered different from (book, VBZ). For the user model, we additionally
applied smoothing. Smoothing is a well known technique in language modeling to assign
probabilites to words, which are not included in the language model. The basic idea
is to redistribute parts of the probability mass from known words to rare and unseen
words [CTC05].

24

3.1. Language Modeling

Like Collins-Thompson and Callan [CTC05], we use Simple Good-Turing (SGT) smooth-
ing. Gale and Sampson [GS95] described the Simple Good-Turing estimator as a new
version of the “Good-Turing” algorithm, originally developed by Alan Turing and his
assistant I.J. Good1. The SGT estimator has been tested on a variety of NLP data sets
on which it performed well. A comparison of other smoothing techniques is given by Chen
and Goodman [CG96]. More details regarding the used implementation of smoothing are
provided in Section 4.3.5, where we describe the statistical computation step of the user
model generation process.

3.1.1 Document Models

Document models (Md) are abstractions of single documents and are self-contained. They
are either matched with user models to find words that are likely to be unknown to the
user or are embedded into the domain specific component of the user model.

3.1.2 User Models

This concept has already been introduced in Section 2.2.3. Our user model (Mu) consists
of two components: a domain specific component (Ms) based on the scientific documents,
and a general component (Mg) based on the list of frequent terms of American English
(FWL, see Section 4.1.2).

The domain specific component is built from a collection of documents, which have been
authored by the user. It contains the terms and their smoothed probabilities. To address
the problem of missing common words, we needed to bring in another component. For
example, a document (which we compare with Mu) might contain common words (like
“dog” or “milk”), but because the user did not use those common words in his papers, they
cannot be found in the domain specific component of the user model and are therefore
marked as probably not known by the comparison algorithm. The purpose of the general
component is to enrich the user model with those trivial words, which are most likely
not included in the paper, but are most certainly known to the user. This component
helps us to reduce the amount of too many potential false positives (words are classified
as unknown, although they are most likely not).

Because the general component is based on a frequent word list (FWL) which contains
over 100k entries, it is wrong to assume that the user might know all of them. Therefore,
we introduced a threshold which we compute based on the domain specific component of
the user model, but by using the rank order of words contained in the FWL. The rank
order can be described as a measure for the user’s language level, where a higher rank (1
is higher than 2, but 2 is greater than 1) denotes a lower level. Actually, the rank order of
the word (token) is the manifestation of the raw frequency of the token in the 450 million
word Corpus of Contemporary American English. By computing the average rank of
words from the domain specific component of the user model, we can define the section

1http://www.grsampson.net/RGoodTur.html

25

http://www.grsampson.net/RGoodTur.html

3. Method

of words (within the FWL) from rank 1 to the value of the average rank as probably
known. Therefore, the size of the general component depends on the word complexity
of the domain specific component. We will use the term “language level” and “average
rank” interchangeably to refer to the general knowledge of English of the user.

Our approach to construct the domain specific component of a user model from an
author’s document collection is as follows:

1. Extract the text from each document.

2. For each document, perform linguistic processing (e.g. tokenization) on the ex-
tracted content (see 3.2.1). The result is a document model with annotated tokens.

3. Merge all document models into one unified user model.

4. Compute the smoothed probabilities to handle yet unseen words.

Next section describes the linguistic processing.

3.2 Linguistic Processing

We summarize following steps as linguistic processing:

• Text normalization: For example cleaning the text from unwanted content, like
html-markup or non-unicode characters.

• Tokenization: Segmenting the text into tokens.

• Annotation: Adding metadata to the tokens, like part of speech (POS) tags.

3.2.1 Text Normalization & Tokenization

To be able to construct a user model from documents, one must first preprocess or
normalize the text. Tokenization is the task of segmenting a character sequence (e.g.
text written in English) into pieces, called tokens [MRS+08]. Tokens are linguistic units
such as words, punctuation, numbers, alpha-numerics, etc.

Text normalization can also include steps like:

• Removing unwanted content: Like special characters, HTML tags, spaces,
line-breaks, digits, punctuation, etc.

• Capitalization (case folding): Lowercase all content or just words after a full
stop. Depending on the method side-effects might occur (“US” vs. “us”).

26

3.2. Linguistic Processing

• Defining token boundaries: This is trivial for words like “dog” or “algorithm”,
but not for words with apostrophes or hyphens like “isn’t” or “e-mail”. Those words
do need to be further decomposed for subsequent processing. Defining boundaries
is more complicated in other languages like Chinese or Japanese, where words are
not separated by whitespaces.

• Stemming: This is a heuristic rule-based word reduction process that does not
require any prior analysis of the word. As such, the result might not be a word
anymore. The most common algorithm for stemming English is Porter’s algo-
rithm [Por80]. More information is available here2.

• Lemmatization: The aim of lemmatization is to return the base or dictionary form
of the word. In contrast to stemming, it needs prior vocabulary and morphological
analysis.

• Stopword removal: This method aims to remove the most frequent words, e.g.
“the”, “and” or “a”. Those words usually do not carry much meaning and can be
omitted as such. A very comprehensive list of 571 English words is available here 3.

Text normalization systems are considered to be very important [Zhu]. Mistakes made at
this stage are very likely to induce more mistakes at later stages. Tasks listed above can
usually be achieved by writing regular expressions (regex).

Tokens

The resulting tokens are sometimes referred to as terms, words, or types. The difference
between these expressions is explained below [MRS+08] [Zhu]:

• Token or Word Token: An instance of a sequence of characters in some particular
document that are grouped together as a useful semantic unit for processing.

• Type: Unique words or the class of all tokens containing the same character
sequence.

• Term: This is used in the context of Information Retrieval systems. It is a type
that is included in the IR system’s dictionary and may consist of one or more
tokens.

3.2.2 Annotation

Annotations provide meta information about the underlying data. For example tokens can
be annotated with POS tags, which describe if the token is a noun, verb or something else.
Another example would be named entity (NE) annotations, which provide information
about the type of the entity, like location, person or organization.

2http://tartarus.org/~martin/PorterStemmer/
3http://www.lextek.com/manuals/onix/stopwords2.html

27

http://tartarus.org/~martin/PorterStemmer/
http://www.lextek.com/manuals/onix/stopwords2.html

3. Method

Part of Speech Tagging

The part of speech (POS) for a word gives a significant amount of information about
the word and is needed for us to look it up in our 100k frequent word list. POS can be
divided into the following two categories [JM14]:

1. Closed classes: They have a relatively fixed membership, like prepositions. Closed
class words are generally also function words (grammatical words), like “of”, “it”,
“and”, or “you”, which tend to be very short, occur frequently, and play an important
role in grammar.

2. Open classes: Nouns and verbs are of this category, because new nouns and verbs
are continually coined or borrowed from other languages. The four major open
classes that occur in the languages of the world4, are nouns, verbs, adjectives, and
adverbs.

For our purposes, it is also good to know if a noun is a proper noun or a common noun.
Proper nouns, like “Arnold Schwarzenegger”, “Vienna” or “Red Bull”TM, are names
of specific persons or entities [JM14]. For our task of identifying words that are likely
to be unknown to the user, we consider proper nouns as not important. We want to
identify “hard words” of the general language domain with respect to the user model,
which appear with a relatively low frequency, or domain specific words.

POS tagging for English is integrated into the ApacheTMOpenNLP library5 and the
Stanford CoreNLP distribution6.

Named Entity Tagging

The tagging of named entities (NE), the names of particular things or classes, is regarded
as an important component for many NLP applications. These applications include
Information Extraction (IE), from which it was born, Question Answering (Q&A),
Summarization and Information Retrieval (IR) [SSN02].

We perform NE tagging and use this information in our post-processing step (see Section
4.3.4). We also use this information from BableNet, which distincts between concepts
and named entities. Because named entities are related to proper nouns, we have another
way to check if the examined word is important for our purpose or not.

Named Entity Recognition (NER) is also embedded into ApacheTMOpenNLP7 and the
Stanford CoreNLP distribution8.

4English has all four of these, but there are other languages, like, the native American language
Lakhota, which have no adjectives.

5https://opennlp.apache.org/documentation/manual/opennlp.html#tools.
postagger

6http://nlp.stanford.edu/software/tagger.shtml
7http://opennlp.apache.org/documentation/1.6.0/manual/opennlp.html#tools.

namefind.recognition
8http://nlp.stanford.edu/software/CRF-NER.shtml

28

https://opennlp.apache.org/documentation/manual/opennlp.html#tools.postagger
https://opennlp.apache.org/documentation/manual/opennlp.html#tools.postagger
http://nlp.stanford.edu/software/tagger.shtml
http://opennlp.apache.org/documentation/1.6.0/manual/opennlp.html#tools.namefind.recognition
http://opennlp.apache.org/documentation/1.6.0/manual/opennlp.html#tools.namefind.recognition
http://nlp.stanford.edu/software/CRF-NER.shtml

3.3. Comparing Language Models

3.3 Comparing Language Models
Section 3.1 described the two types of language models (document and user models) that
are matched by an algorithm, described in this section, to identify words that are most
likely to be unknown to the user9. The user model (Mu) consists of a domain specific
component (Ms), which we constructed from the document collection and a general
component (Mg), which is a subset of the 100k frequent word list (FWL).

We define a function (f comp(Mu,Md) : Set < wu >) that takes following input:

1. A user model (Mu), which is assumed to contain only known words (wk).

2. A document model (Md), which may contain both known words (wk) and unknown
words (wu).

It returns a set (only unique entries) of unknown word types (Set < wu >).

The idea of the method introduced below is that we first try a direct match of the word
(wd) with its POS tag against the domain specific component. If the match is successful,
the word will be marked as known. Otherwise, we try to find it in the general component.
If we cannot find the word in there either, we classify it as unknown. If the word is
contained in the general component, then the user is most likely familiar with it and it is
classified as known. Because we use the average rank order (computed from the domain
specific component) as the language level of the user to compute the relevant subset of
words (from the FWL) for our general component, we use the rank order (found in the
FWL) of words from the document model to determine if they are known to the user or
not. Therefore, to determine whether a word belongs to the general component of the
user model, we compare its rank order with the average rank order of the user model.
If the rank order of the word is higher than the average rank (or language level) of the
user model, we consider the word to be known to the user. We already introduced the
concept of the average rank in Section 3.1.2.

If the word is not contained in the general component, we obtain its lemma. We assume
that the lemma is a more common word than the word at hand, hence we expect it to
have a higher rank order or familiarity. To gain a more accurate or holistic picture of the
comparison process, we abstained from using the lemma from the beginning. If the user
uses a derived word from the lemma, e.g. “went”, then he or she most certainly knows the
lemma, in this case “go”. Therefore, we perform the familiarity check with the lemma this
time. If the lemma is contained in the general component, we classify the original word
as known. Otherwise, in case of a verb or adjective, we retrieve the antonym (opposite
meaning) of the word. In the other case (e.g. noun or adverb), we classify the word as
unknown. The idea behind the antonym is that it might be a more familiar word than
the word at hand. For example, the word “dissimilarities” is ranked at position 62,314
whereas the antonym “similarities” is ranked at position 7,916. Without considering the

9For the sake of simplicity, we denote those words as unknown words.

29

3. Method

antonym, we would classify the word “dissimilarities” as unknown, although “similarities”
is contained in the general component and as such probably known to the user. There
are probably more word relations (like antonym) we could leverage. However, this is
considered as future work.

Our intention behind using those concepts (lemma and antonym) is to keep the result
set small. We want to avoid false positives (words classified as unknown, although they
are probably known to the user). This is our design decision and we are aware of the
tradeoff between false positives and false negatives. A brief description of the algorithm
is given below.

We loop through each word (wd) in the document model and for each word not in the
domain specific component (Ms) of the user model make decisions based on the following
decision tree:

1. wd with its POS tag is not contained in the general component

1.1. wd without its POS tag in Mg: Add it to the result if the rank of wd or its
lemma is greater than the average rank of Ms.

1.1. wd without its POS tag not contained in Mg: Add it to the result if the word
is a concept (not NE).

2. wd with POS tag contained in the general component

2.1. Add it to the result if:
2.1.1. the rank of wd or its lemma is greater than the average rank of Ms and
2.1.2. if wd is an adjective or verb, also compare it with the rank of the antonym

The POS tags that we use here are obtained from the linguistic processing step. The
lemmas were taken from the 100k frequent word list, the average rank was computed
from Ms and the antonym was taken from BabelNet. BabelNet contains further word
relations (like WordNet relations and semantic relations from Wikipedia) that might be
useful for our task. Exploring those relations in depth is part of the future work.

3.4 Explaining Unknown Words
Once we found the words which are most likely to be unknown to the user, we try to
provide as much information to the user about those words as we can. We consider the
following information useful to comprehend an unknown word:

• Glossary entry: It provides the user with an explanation of the word. This requires
an embedded dictionary or glossary. Wiktionary10 contains such information.

10https://en.wiktionary.org/wiki/Wiktionary:Main_Page

30

https://en.wiktionary.org/wiki/Wiktionary:Main_Page

3.5. Evaluation

• Translation: A translation into the user’s mother tongue requires a multilingual
dictionary. This is probably relatively easy to realize for common languages. One
project that provides such a serivce is Open Multilingual Wordnet11.

• Picture: Sometimes a picture is worth a thousand words. Search engines like
Google might be leveraged for this purpose. Also some Wikipedia12 articles include
pictures.

• Further Information: Pointer to web pages which contain further information
about the word might provide deeper insights. Wikipedia contains a lot of informa-
tion about all kinds of concepts. Also the BabelNet website13 can be used for this
purpose.

There exist probably additional resources, which we could add to this list, but the listed
resources might be sufficient for a start.

3.5 Evaluation
We evaluate our work by conducting quantitative and qualitative experiments. We
distinguish among the following two types of experiments, which we relate with each
other to determine if our approach is working in general or not:

1. Equi-Domain Experiments: We construct document and user models from the
same domain according to Section 3.1. We match Mu with Md, for a document
d not used to generate Mu and count words that have been identified as likely
to be unknown, to compare them later on with the result of the cross-domain
experiments.

2. Cross-Domain Experiments: We build document models from the medical
domain and user models from the computer science domain, match them, and count
words classified as unknonwn to the user (just as above).

By using quantitative methods, we expect to encounter a higher number of unknown words
from the cross-domain experiments than from the equi-domain experiments. Also, among
the identified unknown words, by using qualitative methods, we expect to encounter
more domain-specific words from the cross-domain experiments. Those statements are
sufficient to show that the proposed approach works in general. Little is known though,
about its quality, because there is no reference whether the gap between both results is
too high, too little or just right. Hence, more advanced evaluation methods are considered
as future work.

Our detailed results and findings of our experiments are presented in Chapter 5.
11http://compling.hss.ntu.edu.sg/omw/
12http://en.wikipedia.org/
13www.babelnet.org

31

http://compling.hss.ntu.edu.sg/omw/
http://en.wikipedia.org/
www.babelnet.org

CHAPTER 4
Proof of Concept

This chapter describes the proof of concept implementation based on the proposed method
from the previous chapter. In Section 4.1, we detail the three data sources we use. First,
the DBLP computer science bibliography. Due to its structure and contents, DBLP has
been extensively used to create expert models in the literature[DKL08]. We use it to
create the domain specific component of our user model. Second, a very comprehensive
frequent word list (FWL) which is the basis of the general component of the user model.
Third, BabelNet, a large dictionary that we mainly use to explain the unknown words.

In Section 4.2, we describe our chosen software architecture, frameworks, and libraries.
First, we introduce our frontend application, which visualizes our models and the outcome
of our conducted experiments. Second, we describe the layers of our backend application,
which consist of Maven modules. In those modules, we realized the functionality explained
in the following sections.

Implementation details about the language model generation is explained in Section
4.3. There we describe the initial parsing of PDF documents, which basically extracts
the text from files. This text is passed to our linguistic processing step where we filter
and segment it into tokens. Those tokens are then processed again and finally used to
generate our language models.

Generated models are then compared with each other in Section 4.4. There we explain
the comparison function introduced in Section 3.3. Words identified to be most likely to
be unknown to the user are then looked up in BabelNet, where we retrieve information
(e.g. glossary entries or images) about them (see Section 4.5). Those entries are then
saved to the database, where they can be retrieved by the frontend application.

An overall summary is given in the last section of this chapter.

33

4. Proof of Concept

4.1 Data Sources
The three data sources we utilize are:

1. DBLP: The DBLP computer science bibliography is a high-quality bibliographic
metadata database lead by Dr. Michael Ley1, lecturer at the Department of
Computer Science of the University of Trier. We use it to identify authors (user
model candidates) for the task of user modeling (see Section 4.3). The domain
specific component is generated from the author’s document collection.

2. Frequent Word List (FWL): A very comprehensive frequent word list by Mark
Davies2, Professor of Linguistics at Brigham Young University. This resource is
utilized to model the general component of the user model.

3. BabelNet: BabelNet [Bab] is a very large multilingual encyclopedic dictionary and
semantic network desigend by Professor Roberto Navigli3, head of the Linguistic
Computing Laboratory of the Sapienza University of Rome. We use BabelNet for
multiple tasks, like removing tokens which are most likely artefacts introduced by
the document parser and explaining words, identified as possibly unknown, to the
user.

4.1.1 DBLP Computer Science Bibliography

The DBLP computer science bibliography is an online reference for bibliographic in-
formation on major computer science publications [Ley05]. It provides free access to
high-quality bibliographic metadata and links to the electronic editions of publications.
The whole data set is accessible for download4 as a single XML file [Ley09a]. Additionally,
parts of it can be retrieved via the XML-based API [Ley09b]. DBLP contains more than
3 million publications from more than 1.6 million authors [Dbl].

The eight types of publications are5:

1. Books and Theses: Authored monographs, as well as PhD theses.

2. Conference and Workshop Papers: Papers published in peer-reviewed confer-
ences or peer-reviewed workshops.

3. Editorship: All publications that have been edited by a person.

4. Journal Articles: Articles that have appeared in a peer-reviewed journal.
1http://dblp.uni-trier.de/db/about/ml
2http://davies-linguistics.byu.edu/personal/
3http://wwwusers.di.uniroma1.it/~navigli/
4http://dblp.uni-trier.de/xml/
5http://dblp.uni-trier.de/faq/What+types+does+dblp+use+for+publication+

entries

34

http://dblp.uni-trier.de/db/about/ml
http://davies-linguistics.byu.edu/personal/
http://wwwusers.di.uniroma1.it/~navigli/
http://dblp.uni-trier.de/xml/
http://dblp.uni-trier.de/faq/What+types+does+dblp+use+for+publication+entries
http://dblp.uni-trier.de/faq/What+types+does+dblp+use+for+publication+entries

4.1. Data Sources

5. Parts in Books or Collections: Research articles that have been published as a
chapter of a monograph.

6. Reference Works: E.g. survey papers and encyclopedia entries.

7. Data and Artifacts: Evaluated and published research data and artifacts.

8. Informal and Other Publications: Publications that do not fall into one of the
other categories above.

Publications (DBLP records) of those types above are represented as following XML ele-
ments [Ley09a]: article, inproceedings, proceedings, book, incollection,
phdthesis, masterthesis, and www. Each XML entry represents a single publica-
tion. Those DBLP records can be understood as BIBTEX records [Lam86] in XML. For
our purposes, we are only considering journal articles, because they are the traditional
scientific dissemination medium. Figure 4.1 illustrates the growth of journal articles over
time.

Figure 4.1: Total number of Journal publications from 1960 to 20166

We can further expand our document collection by considering other types of papers. The
Proximity DBLP database7, based on data from the DBLP Computer Science Bibliography
with additional preparation performed by the Knowledge Discovery Laboratory, University
of Massachusetts Amherst, denotes following DBLP record types as the type paper:

• articles: An article from a journal or magazine.

• incollection: A part of a book having its own title.

• inproceedings: An article in a conference proceedings.
6http://dblp.uni-trier.de/statistics/recordsindblp.html
7https://kdl.cs.umass.edu/display/public/DBLP+README

35

http://dblp.uni-trier.de/statistics/recordsindblp.html
https://kdl.cs.umass.edu/display/public/DBLP+README

4. Proof of Concept

4.1.2 100,000 Frequent Word List

The frequent word list used by this implementation is the most accurate one for English
data [wor]. It is based on the 520 million word Corpus of Contemporary American
English8 (COCA)9. Relevant columns (from the 100k spreadsheet10), which are used in
our implementation are listed below:

• ID: This is the rank order. Terms are ordered decreasingly by their frequency in
the English language. The word “the” is ranked as the first one in the list, wheras
“ovules” is ranked as number 100,813.

• Word: This is the actual word.

• Lemma: That is the base form of the word, e.g. “go” for the words “went” and
“gone”.

• Part of Speech: POS according to the CLAWS7 tags11.

• Raw Frequency: This is the word count in the 450 million word Corpus of
Contemporary American English. For the most frequent word amongst them
(“the”) it is 25,131,726 and 16 for the least frequent word (“ovules”).

The frequent word list also contains frequencies (per million words) in other corpora
like the British National Corpus12, Corpus of American Soap Operas 13 and Corpus of
Historical American English for 1950-1989, 1900-1949 and 1810-189914.

Before we can use this list to filter out words when we compare language models with
each other, we have to convert the POS tags from CLAWS7 to Penn Treebank tags. This
is necessary because the POS tagger we use in Section 4.3.3 is trained on the WSJ Penn
Treebank. The conversion table is shown in the Appendix (see Table1).

4.1.3 BabelNet

BabelNet is both a multilingual encyclopedic dictionary with lexicographic and encyclo-
pedic coverage of terms and a semantic network, which connects concepts and named
entities in a very large network of semantic relations, called “Babel synsets”. Each synset
represents a given meaning and contains all the synonyms which express that meaning
in a range of different languages. In its current form (version 3.7), it contains 14 data
sources and covers 271 languages [Bab].

8http://corpus.byu.edu/coca/
9http://www.wordfrequency.info/comparison.asp

10http://www.wordfrequency.info/100k.asp
11http://ucrel.lancs.ac.uk/claws7tags.html
12http://corpus.byu.edu/bnc
13http://corpus2.byu.edu/soap
14http://corpus.byu.edu/coha

36

http://corpus.byu.edu/coca/
http://www.wordfrequency.info/comparison.asp
http://www.wordfrequency.info/100k.asp
http://ucrel.lancs.ac.uk/claws7tags.html
http://corpus.byu.edu/bnc
http://corpus2.byu.edu/soap
http://corpus.byu.edu/coha

4.1. Data Sources

We use the BabelNet version 2.5.1, which was available for download in winter 2014,
but is not anymore at the time of writing. This software is based on approximately 26
GB of unpacked resources (Apache LuceneTMindex files) from Wikipedia, Wiktionary,
Wikidata, WordNet, Open Multilingual WordNet and OmegaWiki (see Figure 4.2). From
version 2.5.1 on, users have to use the BabelNet API to query the data source.

Figure 4.2: BabelNet: A composition of data sources (from15)

BabelNet 2.5.1 offers the following features (see [Rob]):

• 50 languages covered

• 9.3 million Babel synsets (synonym sets of specific meanings in different languages)

• 67 million Babel senses (synonyms which belong to a synset)

• 21.7 million textual definitions

• 262 million semantic relations

• 7.7 million synset-associated images

• 1.1 billion RDF16 triples
15http://babelnet.org/about
16https://www.w3.org/RDF/

37

http://babelnet.org/about
https://www.w3.org/RDF/

4. Proof of Concept

More statistics and comparisons between versions are available online17.

The BabelNet JavaTMAPI provides methods to query the data. The following information
can be retrieved:

• Senses or Synsets by language, word, part of speech18, data source (Wikipedia,
WordNet, OmegaWiki, etc.)

• Relations from synsets and senses

• Images from synsets

• Glossaries from synsets

• Translations from synsets

Using these resources, it is possible to explain words to the user in many ways, e.g. by
providing the glossary entry, translation to the mother tongue, or showing an image if
available. Furthermore, BabelNet classifies words into the following two categories:

• Concepts: According to Merrill et al. [MT77], a concept is a set of specific objects,
symbols, or events which are grouped together on the basis of shared characteristics
and which can be referenced by a particular name or symbol. Some examples for
concepts are the words “company” or “person”.

• Named Entities: Named entities (NE) are phrases that contain the names of
persons, organizations, locations, times, and quantities [TKSDM03]. For example,
“Apple” is a company and “Michael Jackson” a person. One can say that NE are
instances of concepts [Web].

This distinction is important for our task, because we are interested in unknown concepts
and known NE. We use BabelNet as a semantic filter and as an information provider
to explain unkown words to the user. Its anatomy (underlying RDF structure/graph)
allows us to follow the relations of synsets (like “Antonym” - the opposite meaning) and
as such provides more possibilities to filter words.

4.2 Software Architecture
This section describes the architecture of the proof of concept implementation. At first,
we give an overview about the overall structure of the application. In Sections 4.2.2 and
4.2.3, we explain the used technologies and their features.

17http://babelnet.org/stats
18In version 2.5.1 BabelNet uses only following four part of speech tags, namely nouns, verbs, adjectives

and adverbs.

38

http://babelnet.org/stats

4.2. Software Architecture

4.2.1 Overview

The proof of concept has been implemented as a Client-Server application (see Figure
4.3). Such an architecture provides us with loose coupling between the data, which are
stored on the server-side, and their presentation, which resides on the client-side which is
the web browser. The server and client application use the http protocol19 to transfer
data.

Figure 4.3: Architecture Overview: Client-Server (C/S) Application.

For a variety of reasons, which we explain in the next section, we chose AngularJS 220 as
our frontend technology.

The entire backend application is written in JavaTM, where we structure the logic in
services. Those services are exposed via REST21 and are accessed by the client over the
network via http.

4.2.2 Frontend

AngularJS 2 or just Angular2 (the successor of AngularJS), is a web framework for single
page applications (SPA). A SPA consists of a shell page (index.html) which displays
different HTML templates or views, based on the applications state. Those fragments are
retrieved asynchronously, hence the user does not have to wait for the request to finish.
This enriches the user experience. A downside of this approach is that the browser has

19Hypertext Transfer Protocol: https://tools.ietf.org/html/rfc2616
20https://angular.io/
21https://en.wikipedia.org/wiki/Representational_state_transfer

39

https://tools.ietf.org/html/rfc2616
https://angular.io/
https://en.wikipedia.org/wiki/Representational_state_transfer

4. Proof of Concept

a lot of work to do (e.g. compiling HTML elements, evaluate data bindings, execute
directives). This is not the case in the traditional round-trip-model [Fre14], where the
browser is essentially a rendering engine and data and logic reside on the server side.

Angular2 (as its predecessor) can be used with plain JavaScript22, but we use it with
TypeScript23, which is a superset of JavaScript. In contrast to JavaScript, TypeScript
offers type safety, which helps developers to write maintainable code. Because browsers
are not able to run TypeScript, it has to be compiled to JavaScript. The TypeScript
compiler (tsc) might display errors during compilation, which is an additional help for
web developers. The official website of AngularJS24 recommends the usage of TypeScript.

We use Angular2 for the following reasons:

• It is a state of the art web framework supported by major actors in the field.

• We can use it with HTML525 and CSS26, hence we can build it as a responsive
application27.

• Due to the Node Package Manager28 (NPM), the integration of other libraries is
simple.

• We can visualize our data with the help of Angular Animate, which is one of the
numerous features29 from Angular2.

• Asynchronous and event-based programming is very convenient, because it is
based on The Reactive Extensions for JavaScript30 (RxJS), a project developed by
MicrosoftTM.

• Because one of the core concepts of Angular2 is dependency injection (DI)31, testing
the services, which contain the logic, is very easy.

• One of the most powerful features of Angular2 is the concept of components.
Components are self-contained structures that are intended to be reused by other
components. This can be a navigation bar, table, or any composition of HTML
elements.

22https://en.wikipedia.org/wiki/JavaScript
23https://www.typescriptlang.org/
24https://angular.io/
25https://www.w3.org/TR/html5/
26https://www.w3.org/Style/CSS/
27https://en.wikipedia.org/wiki/Responsive_web_design
28https://www.npmjs.com/
29https://angular.io/features.html
30https://github.com/Reactive-Extensions/RxJS
31https://en.wikipedia.org/wiki/Dependency_injection

40

https://en.wikipedia.org/wiki/JavaScript
https://www.typescriptlang.org/
https://angular.io/
https://www.w3.org/TR/html5/
https://www.w3.org/Style/CSS/
https://en.wikipedia.org/wiki/Responsive_web_design
https://www.npmjs.com/
https://angular.io/features.html
https://github.com/Reactive-Extensions/RxJS
https://en.wikipedia.org/wiki/Dependency_injection

4.2. Software Architecture

Another positive aspect of Angular is its community. There are numerous open source
projects hosted on Github32, a public git33 repository, which can be easily integrated
into the web application via NPM. Also, there are a few project seeds34 available, which
ease the project setup. They are already configured, contain many useful libraries and
ways to build and deploy the application.

With our frontend application, the user can visualize the computed language models,
run experiments on them and display words that are likely to be unknown. The model
generation is only possible directly with the backend application. Figure 4.4 shows the
home screen of the application, which consists of the navigation bar (menu) and the
welcome screen. The welcome screen shows the user a brief introduction to the application
and offers three image buttons (representing “User Model”, “Document Model” and
“Experiment”), which navigate the user to the respective page.

Figure 4.4: Home screen of the frontend application.

4.2.3 Backend

The backend is written entirely in JavaTM, because there are several useful NLP libraries
available. Due to the Java Virtual Machine (JVMTM) a JavaTM application offers also
the advantage of platform independence.

32https://github.com/
33https://git-scm.com/
34We used the following Angular2 seed: https://github.com/mgechev/angular2-seed

41

https://github.com/
https://git-scm.com/
https://github.com/mgechev/angular2-seed

4. Proof of Concept

We structure our application by using Maven35 modules. Maven is a tool for software
project management. We use it for dependency management and building the backend
application (for deployment). Figure 4.5 shows our modules and their dependencies:

Figure 4.5: Backend Architecture: Dependencies of Maven modules.

The backend application is divided into the following three layers:

1. RESTful web service layer: It provides the API to external applications, e.g.
our frontend written in Angular2.

2. Service layer: This layer implements all the logic, like linguistic processing, model
comparison and word explanation.

3. Persistence layer: The persistence layer contains the Object-Relational (O/R)
Mapper36 and database.

The DTO-module, which contains data transfer objects37, is shared accross all layers.
35https://maven.apache.org/
36https://en.wikipedia.org/wiki/Object-relational_mapping
37https://en.wikipedia.org/wiki/Data_transfer_object

42

https://maven.apache.org/
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Data_transfer_object

4.2. Software Architecture

Spring Boot Framework

Throughout this application, we utilize the Spring Boot38 framework (or just Spring).
We use it with the starter POM39 for Maven, which simplifies the configuration. Spring
Boot comes with an integrated web server, e.g. Tomcat40, Jetty41 or Undertow42, which
makes deployment straightforward.

Additional functionality or libraries can be added to Spring via Maven-Dependencies43

as in the following example:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>

</dependency>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>

</dependency>

Maven downloads the libraries specified by the artifactId, and adds them to the
classpath44, where they are found by the JVMTM, the part of the JavaTMruntime
environment (JRE) that executes the bytecode (runs the program).

The first dependency enables support for full-stack web development, including Tomcat
and spring-webmvc45. We used this to build our RESTful web service layer. Each starter
artifact contains a bundle of consistent dependencies, which helps developers to get
started.

The latter dependency enables support for the Java Persistence API (JPA), including
spring-data-jpa, spring-orm and Hibernate46, which is a widely used O/R-Mapper. We
implemented our persistence layer on top of that.

RESTful Web Service Layer

The purpose of this layer is to expose functionality (API) to other applications via RESTful
web services, which use http to transport data and JavaScript Object Nation47 (JSON) as

38http://projects.spring.io/spring-boot/
39https://maven.apache.org/pom.html
40http://tomcat.apache.org/
41http://www.eclipse.org/jetty/
42http://undertow.io/
43Maven queries repositories for libraries, which are defined in dependency-tags. One of the most

important ones is https://mvnrepository.com/.
44https://en.wikipedia.org/wiki/Classpath_(Java)
45Further information is available here: http://docs.spring.io/spring-boot/docs/

current/reference/html/using-boot-build-systems.html
46http://hibernate.org/orm/
47http://www.json.org/

43

http://projects.spring.io/spring-boot/
https://maven.apache.org/pom.html
http://tomcat.apache.org/
http://www.eclipse.org/jetty/
http://undertow.io/
https://mvnrepository.com/
https://en.wikipedia.org/wiki/Classpath_(Java)
http://docs.spring.io/spring-boot/docs/current/reference/html/using-boot-build-systems.html
http://docs.spring.io/spring-boot/docs/current/reference/html/using-boot-build-systems.html
http://hibernate.org/orm/
http://www.json.org/

4. Proof of Concept

the data format. JSON is a lightweight, language independent data-interchange format,
that is widely used by modern web applications, which perform many asynchronous calls
to the backend.

Service Layer

The service layer contains the following three modules:

1. babelnet: This is the BabelNet source code from version 2.5, which constructs
BabelNet from Lucene48 indices.

2. babelnet-wrapper: The wrapper project overwrites configuration files from the
babelnet module to make it work in a web environment.

3. service: This module is the very core of this proof of concept implementation. It
contains the logic to generate and compare a document and a user models and
utilizes BabelNet to explain words that are likely to be unknown. The work outlined
in the future Sections 4.3, 4.4 and 4.5 are implemented in this module.

Persistence Layer

The persistence layer consists of the database and the O/R-Mapper, which serves as an
abstraction of the database. One of many advantages of an O/R-Mapper is that we can
exchange the database easily, e.g. we can use a different database during development
and production. The database is completely transparent to the service layer, which only
needs to call the API of the O/R-Mapper. Java defines the Java Persistence API (JPA),
which is implemented by Hibernate, the library we use.

As a database we use H249, a relational open source database that has been written
entirely in JavaTM. It can be run standalone as a server or as an in-memory database,
which is convenient for application testing. Our main entities, which are represented
by tables, are “RawDocument”, “DocumentModel”, “UserModel” and “Experiment”.
Both document models and user models have been built from text files, e.g. PDF files,
which are represented by the “RawDocument” entity. The “Experiment” entity links one
document model to one user model and contains the result as a byte-array. The result
is a serialized data structure, which can be deserialized using Java Object Serialization
(JOS)50.

Evaluation Module

The standalone evaluation module has dependencies to the service and to the DTO
module, but cannot be accessed via RESTful web services. Because it only serves

48https://lucene.apache.org/
49http://www.h2database.com/html/main.html
50https://www.cs.cornell.edu/Info/People/chichao/ccc-ch4.pdf

44

https://lucene.apache.org/
http://www.h2database.com/html/main.html
https://www.cs.cornell.edu/Info/People/chichao/ccc-ch4.pdf

4.3. Generating Language Models

(internal) experimental purposes, it is not part of the deployed application. We have
conducted our experiments using this module, which offers the following functionality:

1. Processing the DBLP xml file and downloading papers from user model candidates
(see 4.1.1).

2. Generating document and user models (see 4.3) used for evaluation purposes by
using services exposed by the service layer.

3. Performing experiments on user models (see 4.4) and writing statistics to the file
system.

We will explain more about the evaluation in Chapter 5.

4.3 Generating Language Models
This section outlines the process of language model generation. It is different for user and
document models, because user models are composed of multiple documents, therefore
generating them is more complex. The model generation process consists of up to seven
steps:

1. Document parsing: Parsing the text from the file, e.g. PDF-file51, or use the
already parsed text directly for further processing.

2. Preprocessing: Manipulating the raw text to increase quality.

3. Tokenization: Segmenting the text into single tokens.

4. Annotation: Enriching the tokens with part of speech tags and identifying the
named entities (NE) from the text.

5. Merging: Merging all document models into a single user model.

6. Post-Processing: Performing filtering on a higher level to increase the quality of
the language model.

7. Statistical Computation: Computing the counts and smoothed probabilities.

Table 4.1 provides an overview about the neccessary steps needed to generate each
model. Both models rely on the same algorithms for document parsing, preprocessing,
tokenization, annotation and post-processing. In contrast to the user model, we omit
the merge operation and the statistical computation step when generating the document
model.

51We use Apache PDFBoxR© (https://pdfbox.apache.org/)

45

https://pdfbox.apache.org/

4. Proof of Concept

Table 4.1: Processing steps needed for each language model.

Processing steps User Model Document Model
Document Parsing yes yes
Preprocessing yes yes
Tokenization yes yes
Annotation yes yes
Merging yes no
Post-Processing yes yes
Statistical Computation yes no

4.3.1 Document Parsing

We parse our PDF documents with a sophisticated open source JavaTM solution from
The Apache Software Foundation52 (Apache), namely Apache PDFBox R©. This library
is also used by Apache TikaTM, a software framework focused on automatic media
type identification, text extraction, and metadata extraction [MZ11]. Although Apache
TikaTM offers more functionality than Apache PDFBox R© (it can be used to extract text
from over a thousand different file types [Tik]), we cannot use it to extract the content
by the pageful in a reliable way. Therefore, we have to use Apache PDFBox R© directly.

Listing 4.1 shows how we extract data from an input stream of a PDF file.

Listing 4.1: Text extraction from PDF using Apache PDFBox R©

1 pr i va t e DocumentDTO extractPdfWithPdfBox (InputStream i s) throws IOException
{

2 DocumentDTO documentDTO = new DocumentDTO() ;
3
4 PDDocument document = PDDocument . load (i s) ;
5 Map<Integer , Str ing> pageToContent = new LinkedHashMap<>() ;
6 f i n a l i n t pages = document . getNumberOfPages () ;
7
8 f o r (i n t i = 0 ; i < pages ; i++) {
9 PDFTextStripper s t r i p p e r = new PDFTextStripper () ;

10 s t r i p p e r . s e tStar tPage (i) ;
11 s t r i p p e r . setEndPage (i + 1) ;
12 f i n a l S t r ing text = s t r i p p e r . getText (document) ;
13 pageToContent . put (i , t ex t) ;
14 }
15
16 documentDTO . setSourceType (SourceType .PDF. name ()) ;
17 documentDTO . s e tT i t l e (document . getDocumentInformation () . g e tT i t l e ()) ;
18 documentDTO . setPageCount (pages) ;
19 documentDTO . setText (new PDFTextStripper () . getText (document)) ;
20 documentDTO . setPages (pageToContent) ;
21
22 re turn documentDTO ;

52http://www.apache.org/

46

http://www.apache.org/

4.3. Generating Language Models

23 }

Below is the explanation of the code:

• Line 2: Definition of the JavaTM DTO that contains the result of the method.

• Line 4: Loading the document stream into a data structure.

• Line 6: Obtaining the number of pages of the PDF document.

• Line 8-14: Stripping the content of each page separately, so we know which words
are on which page. This is important for the PDF-Viewer we introduce in Section
4.5. Without the page information we are not able to display the identified unknown
words with respect to the currently viewed page.

• Line 16-20: Document meta data like title and pages from the meta data object
are set into the DTO. We also set the raw extracted text from the document, as
well as the data structure that contains the pages separately.

Now that we have the raw text from the input stream of the PDF file, we can preprocess
the text to increase the text quality and therefore the quality of the generated language
models.

4.3.2 Preprocessing

The concept of text preprocessing or text normalization has already been introduced in
Section 3.2. This step prepares the text for tokenization and includes the following steps:

1. Removing the bibliographic chapter: Paper references contain no valuable
content and as such must be removed.

2. Lowercase first word in sentences: Without this operation we would get many
wrong tagged words, because the tagger53 would for example identify a noun (NN)
as a proper noun (NNP)54.

3. Handle line breaks and whitespaces: Reduce all line breaks and multiple
spaces to a single white space character.

4. Remove digits: Digits are irrelevant for the purpose of finding words that are
most likely to be unknown to the user.

5. Remove markup: HTML markup will most likely lead to unusable tokens.
53http://www-nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/tagger/

maxent/MaxentTagger.html with the model: english-left3words-distsim.tagger
54Example:“I am Bob. Apples are my favorite fruits!”

47

http://www-nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/tagger/maxent/MaxentTagger.html
http://www-nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/tagger/maxent/MaxentTagger.html

4. Proof of Concept

6. Handle syllables: Words that are connected by hyphens because of formating
need to be reassembled by omitting the hyphen.

7. Remove non Unicode characters: As a final cleanup, we remove any non
Unicode characters.

Now the text is ready for the next step, tokenization and annotation.

4.3.3 Tokenization & Annotation

The term tokenization has already been defined in Section 3.2. It is the process of dividing
text into a sequence of tokens, which roughly correspond to words.

For tokenization, we use a Standford NLP pipeline consisting of a fast, rule-based
tokenizer (the PTBTokenizer55), which has been already introduced in Section 3.2.1.
The PTBTokenizer mainly targets formal English writing rathern than SMS-speak,
hence it is suitable for our documents. It was initially designed to mimic the Penn
Treebank 356 (PTB) tokenization [Gro]. The Penn Treebank project selected 2,499 stories
from a three year Wall Street Journal (WSJ) collection of 98,732 stories for syntactic
annotation [Con].

After we obtained the tokens, we tag them with part of speech tags using a POS tagger
(MaxentTagger57). The POS tagger is the bidirectional dependency network tagger
trained on the WSJ Penn Treebank provided with the Stanford NLP distribution. While
the training data is considerably different from our own data, to the best of our knowledge
there is no POS model specifically created for scientific articles, nor an annotated corpora
sufficiently large to train such a model.

Listing 4.2 shows how we combine tokenization and POS tagging.

Listing 4.2: Combination of tokenization and POS tagging using the Stanford CoreNLP
library

1 pub l i c Bag<TaggedWordWrapper> artic leToTaggedTokens (S t r ing text) {
2 Bag<TaggedWordWrapper> bag = new HashBag<>() ;
3 f i n a l PTBTokenizer<Word> token i z e r = new PTBTokenizer (new Str ingReader (

t ex t) , new WordTokenFactory () , getOptions ()) ;
4 f i n a l L i s t<Word> tokens = token i z e r . t oken i z e () ;
5 f o r (TaggedWord word : tagger . apply (tokens)) {
6 bag . add (new TaggedWordWrapper (word)) ;
7 }
8 re turn bag ;
9 }

55http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/process/
PTBTokenizer.html

56https://catalog.ldc.upenn.edu/LDC99T42
57http://www-nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/tagger/

maxent/MaxentTagger.html

48

http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/process/PTBTokenizer.html
http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/process/PTBTokenizer.html
https://catalog.ldc.upenn.edu/LDC99T42
http://www-nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/tagger/maxent/MaxentTagger.html
http://www-nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/tagger/maxent/MaxentTagger.html

4.3. Generating Language Models

Below is the explanation of the code:

• Line 2: Instantiation of the resulting data structure, which is a Bag58, a collection
that counts the number of times an object appears, of TaggedWordWrappers. Lat-
ter class is a custom class that wraps the POS taggers resulting class TaggedWord59,
but overrides the equals and hashcode functions, so that the uniqueSet func-
tion of the Bag can be used.

• Line 3: Creation of the PTBTokenizer, which needs the text, a word token
factory and optional options.

• Line 4: Triggers the tokenization process, which results in a list of words.

• Line 5-7: Application of the MaxentTagger, which adds the POS tag to each of
those tokens, wrapping the result and saving it into the bag.

In addition to tokenization and POS tagging, we also identify named entities. Again,
we use a solution from the Stanford University, namely the Stanford Named Entity
Recognizer [FGM05]. It includes the following models60:

• 3 class: Location, Person, Organization

• 4 class: Location, Person, Organization, Misc

• 7 class: Location, Person, Organization, Money, Percent, Date, Time

We use the 7 class model trained on the MUC 6 and MUC 7 training data sets, which
are available through the Linguistic Data Consortium61 (LDC). The Message Under-
standing Conference (MUC) is designed to promote and evaluate research in information
extraction [GS96]. One of the tasks of MUC-6 was to identify named entities of the types
“People”, “Organizations”, and “Geographic Locations”.

Listing 4.3 shows how we perform named entity recognition (NER).

Listing 4.3: Named Entity Recognition performed with Stanford NER
1 pub l i c Set<CoreLabel> identifyNER (St r ing text) {
2 Set<CoreLabel> ners = new LinkedHashSet<>() ;
3
4 f o r (L i s t<CoreLabel> coreLabe l s : c l a s s i f i e r . c l a s s i f y (t ext)) {
5 f o r (CoreLabel coreLabe l : co r eLabe l s) {

58https://commons.apache.org/proper/commons-collections/javadocs/api-
release/org/apache/commons/collections4/Bag.html

59http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/ling/
TaggedWord.html

60http://nlp.stanford.edu/software/CRF-NER.shtml
61https://www.ldc.upenn.edu/

49

https://commons.apache.org/proper/commons-collections/javadocs/api-release/org/apache/commons/collections4/Bag.html
https://commons.apache.org/proper/commons-collections/javadocs/api-release/org/apache/commons/collections4/Bag.html
http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/ling/TaggedWord.html
http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/ling/TaggedWord.html
http://nlp.stanford.edu/software/CRF-NER.shtml
https://www.ldc.upenn.edu/

4. Proof of Concept

6 St r ing category = coreLabe l . get (CoreAnnotations .
AnswerAnnotation . c l a s s) ;

7 i f (! S e qC l a s s i f i e r F l a g s .DEFAULT_BACKGROUND_SYMBOL. equa l s (
category)) {

8 ners . add (coreLabe l) ;
9 }

10 }
11 }
12 re turn ners ;
13 }

Below is the explanation of the code:

• Line 2: Defines the result, a set of CoreLabel62 instances. A CoreLabel
represents a single word and its metadata, like the POS tag or lemma.

• Line 4: Identifies the NE and returns them as a list of CoreLabels. We use the
CRFClassifier63 which classifies a sequence using a Conditional Random Field
model. A CRF is a statistical modelling method64 which can take a context into
account and therefore is used in pattern recognition and machine learning (ML) to
predict structures. In our case a sequence of lables (NE tags) are predicted for a
sequence of input samples (the words in the text). To detect the maximum amount
of named entities, we use the 7 class model (english.muc.7class.distsim.crf.ser.gz).

• Line 6: Retrieves the category (NE type) from the label. The CoreLabel class
is internally a typesafe map which contains Classes as keys. Metadata is added
to the CoreLabel via specific annotations (see CoreAnnotations65). The NE
classifier stores the NE type using the AnswerAnnotation.

• Line 7: Filters out the lables which contain the default symbol, which is defined
as a String with the value “0”.

• Line 12: Returns the resulting data structure which contains CoreLabel, classi-
fied as one of the seven classes mentioned above.

We hold those NE in a separate list and use them in conjunction with our tokens in the
post-processing step.

62http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/ling/
CoreLabel.html

63http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/ie/crf/
CRFClassifier.html

64https://en.wikipedia.org/wiki/Conditional_random_field
65http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/ling/

CoreAnnotations.html

50

http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/ling/CoreLabel.html
http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/ling/CoreLabel.html
http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/ie/crf/CRFClassifier.html
http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/ie/crf/CRFClassifier.html
https://en.wikipedia.org/wiki/Conditional_random_field
http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/ling/CoreAnnotations.html
http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/ling/CoreAnnotations.html

4.3. Generating Language Models

4.3.4 Post-Processing

Before we construct a language model, we want to make sure that its foundation (the
bag of words) is sound. Therefore we perform sanity checks, which remove entries that
do not satisfy them. The post-processing step takes a bag of TaggedWordWrappers
as input, performs the following operations (which are listed below) in the given order
and returns a smaller bag of words, which only contains approved entries.

1. Remove short character sequences: Removes tokens with a length less than 4
letters. This operation removes all sorts of punctuation, which are irrelevant for
our task, and short words (like “I”, “am” or “the”), which are most likely known to
the user.

2. Remove words not in BabelNet: Words, that cannot be found in the almost
10 million BabelNet synsets, are considered to be artefacts, which we omit.

3. Remove proper nouns/NE: We remove proper nouns (words tagged with “NNP”
or “NNPS”) and NE in two steps. First, we remove NE identified in the previous
section if we cannot find them in the FWL. For example, we might encounter the
token “Francisco” (from “San Francisco”), which is not part of the FWL, therefore
we discard it. The organization “Apple” on the other hand is included as a noun in
our FWL, hence we keep this entry. Second, because our FWL does not contain
any proper nouns, we remove them if we cannot find them in the list without their
tag.

After those operations, the bag contains only words that are at least four characters long,
can be found in BabelNet, and are not considered as proper nouns or named entities. In
the next section, we describe the creation of our probabilistic language models.

4.3.5 Statistical Computation

The goal of this step is to smooth the unigram language model and to compute the
average word rank order, which we interpret as the language level of the user. The
probability of a word in our user model is the word frequency divided by the sum of
words contained in that model. Because the user model does not reflect all the known
words from the user, we have to take possibly missing words into account. Smoothing is
the technique that takes some probability mass away from events (e.g. word occurrences)
and reserves it for future events to avoid zero estimates. We use SimpleGoodTuring66

(SGT), which is implemented in the Stanford CoreNLP library. We already mentioned it
in Section 3.1.

After we computed the smoothed probabilities, we calculate the average rank order of
words within the model to estimate the models’ difficulty. Based on this value, we decide

66http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/stats/
SimpleGoodTuring.html

51

http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/stats/SimpleGoodTuring.html
http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/stats/SimpleGoodTuring.html

4. Proof of Concept

whether words from the document model are below or above the user’s language level.
The word rank order is taken from the frequent word list (see Section 4.1.2).

4.4 Comparing Language Models
The model comparison algorithm has already been introduced in Section 3.3. Because the
implementation contains more than 100 lines of code, we will break it down in two pieces,
each denoted as a placeholder. Listing 4.4 shows the method with two placeholders,
which we explain later.

Listing 4.4: Model comparison algorithm with two placeholder
1 pub l i c ComparisonResultDTO compareWithLemma(UserModelDTO userModel ,

DocumentModelDTO documentModel) {
2 Bag<TaggedWordWrapper> unknownWords = new HashBag<>() ;
3 Bag<TaggedWordWrapper> knownWordsUserModel = new HashBag<>() ;
4
5 f i n a l double avgRank = userModel . getAvgRank () ;
6
7 f o r (TaggedWordWrapper docWrapper : documentModel . getModel () . uniqueSet

()) {
8 f i n a l S t r ing word = docWrapper . get () . va lue () . toLowerCase () ;
9 f i n a l S t r ing pos = docWrapper . get () . tag () ;

10
11 f i n a l boolean isInMu = userModel . getModel () . conta in s (docWrapper) ;
12
13 i f (isInMu) {
14 knownWordsUserModel . add (docWrapper) ;
15 cont inue ;
16 }
17
18 <placeholder_1> −> see L i s t i n g 4 .5
19
20 <placeholder_2> −> see L i s t i n g 4 .6
21 }
22
23 f i n a l Set<TaggedWordWrapper> allWords = new HashSet<>(documentModel .

getModel () . uniqueSet ()) ;
24 allWords . removeAll (new HashBag<>(unknownWords)) ;
25 allWords . removeAll (new HashBag<>(knownWordsUserModel)) ;
26
27 ComparisonResultDTO r e s u l t = new ComparisonResultDTO(unknownWords) ;
28 r e s u l t . setKnownWordsUserModel (knownWordsUserModel) ;
29 r e s u l t . setKnownWordsCollection (new HashBag<>(allWords)) ;
30
31 re turn r e s u l t ;
32 }

Each placeholder has its own set of variables, which it needs to make decisions whether
to put the observed word from the document model into the set of known or unknown
words.

52

4.4. Comparing Language Models

Below is the explanation of the relevant parts of the code:

• Line 1: Definition of the method, which accepts a user model and a document
model as input.

• Line 5: Retrieval of the user model’s underlying computed average rank (language
level). This number helps us to distinguish possible known words from unknown
ones. In future code sections, we will compare this value with the rank of words
from the document model, which we retrieve from the FWL.

• Line 11-15: If Mu contains exactly the same word (word + POS tag) as the
TaggedWordWrapper (w), we add w to the known words and skip further pro-
cessing. We will proceed to the next word in Md.

• Line 18+19: Will be shown in Listing 4.5 and 4.6.

• Line 23-29: For evaluation purposes, we document which component (Ms or
Mg) contains which known words. We compute known words from the general
component (our FWL Mg) as all words minus the unknown words minus the known
words from the user model Mu.

Before we explain the code of the placeholders, we introduce our ProtocolService.
We use it to protocol unknown words and their reason for being unknown to identify
anomalies. The protocolUnknownWord method takes three arguments, the Reason,
word or lemma and the POS tag or blank in case of a lemma.

The first placeholder handles the case that w cannot be found in Mg with its POS tag.

Listing 4.5: Model Comparison Algorithm - w cannot be found in Mg with its POS tag
1 f i n a l boolean isInFwlListWithPoS = fw lS e r v i c e . i s I nFw lL i s t (word , pos) ;
2 f i n a l boolean i s InFw lL i s t = fw lS e r v i c e . i s I nFw lL i s t (word) ;
3 f i n a l boolean isWordsLowestRankGtAvgRank = fw lS e r v i c e . getLowestRank (word) >

avgRank ;
4
5 St r ing lemma ;
6 boolean isLemmasLowestRankGtAvgRank ;
7 boolean isLemmaInFwlList ;
8 lemma = getLemma(word) ;
9 isLemmaInFwlList = fw lS e r v i c e . i s I nFw lL i s t (lemma) ;

10 isLemmasLowestRankGtAvgRank = fw lS e r v i c e . getLowestRank (lemma) > avgRank ;
11
12 f i n a l boolean useBabelNet = Conf igurat ion .USE_BABELNET;
13
14 i f (! isInFwlListWithPoS && i s InFw lL i s t && isWordsLowestRankGtAvgRank &&

isLemmasLowestRankGtAvgRank) {
15 unknownWords . add (docWrapper) ;
16 p r o t o c o l S e r v i c e . protocolUnknownWord (Reason .LEMMA_RANK_GT_AVG_RANK,

lemma , " ") ;
17 cont inue ;

53

4. Proof of Concept

18 }
19
20 i f (! isInFwlListWithPoS && ! i s InFw lL i s t) {
21 i f (isLemmaInFwlList) {
22 i f (isLemmasLowestRankGtAvgRank) {
23 unknownWords . add (docWrapper) ;
24 p r o t o c o l S e r v i c e . protocolUnknownWord (Reason .

LEMMA_RANK_GT_AVG_RANK, lemma , " ") ;
25 }
26 } e l s e {
27 unknownWords . add (docWrapper) ;
28 p r o t o c o l S e r v i c e . protocolUnknownWord (Reason .NOT_IN_COLLECTION_NO_NE,

word , pos) ;
29 }
30 cont inue ;
31 }

Below is the explanation of the relevant parts of the code:

• Line 1-3: Preparing variables for decision making. A word can be contained in
the FWL multiple times, e.g. “walls” as noun (NN2) with the rank 1,520 or as verb
(VVZ) with the rank 89,672.

• Line 5-10: Similar to lines 1-3, we gather that information for the lemma of the
word, which we obtain from the FWL.

• Line 14-18: The word w is added to the collection of unknown words if it cannot
be found with its POS tag in the FWL, but it’s in general contained (without tag)
and the rank of the word and its lemma is greater than the average rank. This
condition is very weak, because if the rank of the lemma is higher than the average
rank, we do not add the word to the collection of unknown words.

• Line 20-31: Here we know that the word is not contained in the word column of
the FWL. If we cannot find the word’s lemma in the FWL, we add it to the list of
unknown words. We do the same if we can find the lemma, but its rank is greater
than the average rank (i.e. the language level of the user).

The next placeholder handles the case that we can find the word (with its POS tag) in
the FWL, but even the rank order of its lemma is bigger than the average rank.

Listing 4.6: Model Comparison Algorithm - w can be found in Mg with its POS tag but
the lemmas rank is greater than the average rank

1 f i n a l long wordRank = fw lS e r v i c e . getRank (word , pos) ;
2 f i n a l boolean wordRankWithPoSGtAvgRank = wordRank > avgRank ;
3 f i n a l boolean wordLowestRankGtAvgRank = fw lS e r v i c e . getLowestRank (word) >

avgRank ;
4 lemma = fw lS e r v i c e . getLemma(word . toLowerCase () , pos) ;
5 isLemmasLowestRankGtAvgRank = fw lS e r v i c e . getLowestRank (lemma) > avgRank ;

54

4.4. Comparing Language Models

6
7 i f (isInFwlListWithPoS && wordRankWithPoSGtAvgRank &&

wordLowestRankGtAvgRank && isLemmasLowestRankGtAvgRank) {
8 i f (useBabelNet) {
9 f i n a l POS posForTag = BabelNetUt i l s . getPosForTag (pos) ;

10 i f (POS.ADJECTIVE. equa l s (posForTag) | | POS.VERB. equa l s (posForTag))
{

11 f i n a l S t r ing antonymWord = getAntonym(Language .EN, word ,
posForTag) ;

12 i f (antonymWord != nu l l && fw lS e r v i c e . getLowestRank (antonymWord
) > avgRank) {

13 unknownWords . add (docWrapper) ;
14 p r o t o c o l S e r v i c e . protocolUnknownWord (Reason .

ANTONYM_RANK_GT_AVG_RANK, antonymWord , pos) ;
15 } e l s e {
16 unknownWords . add (docWrapper) ;
17 p r o t o c o l S e r v i c e . protocolUnknownWord (Reason .

LEMMA_RANK_GT_AVG_RANK, lemma , pos) ;
18 }
19 } e l s e {
20 unknownWords . add (docWrapper) ;
21 p r o t o c o l S e r v i c e . protocolUnknownWord (Reason .

LEMMA_RANK_GT_AVG_RANK, lemma , " ") ;
22 }
23 } e l s e {
24 unknownWords . add (docWrapper) ;
25 p r o t o c o l S e r v i c e . protocolUnknownWord (Reason .LEMMA_RANK_GT_AVG_RANK,

lemma , " ") ;
26 }
27 }

Below is the explanation of the relevant parts of the code:

• Line 7: We pursue further investigation if we can find the word (with its POS tag)
in the FWL, but even its lemma is greater than the average rank.

• Line 9: Converting the words POS tag into the BabelNet POS tag. BabelNet only
maintains four POS tags (noun, verb, adverb and adjective).

• Line 10-18: In case of a verb or adjective, we retrieve the antonym (if exists) and
check if its rank is greater than the average rank. For example, the rank of the
word “nonspecific” is 38,128, whereas the rank of “specific” is 867. If latter rank is
lower than the average rank, then we assume that the related word “nonspecific” is
most likely to be known to the user.

• Line 19-22: In case we cannot find the lemma, we add the word to the set of
unknown words.

• Line 23-26: In case we do not use BabelNet for comparison, we add the word to
the set of unknown words.

55

4. Proof of Concept

After we run an experiment, we generate a protocol using the ProtocolService
which we briefly explained above. For example, we compared a user model contain-
ing around 70,000 tokens and 3,500 types with a document model which contains
around 2,250 tokens and 700 types. By examining the protocol, we know that we
found exactly 173 possible unknown word tokens, from which 145 result from the reason
“LEMMA_RANK_GT_AVG_RANK”, 2 from “ANTONYM_RANK_GT_AVG_RANK”,
and 26 from “NOT_IN_COLLECTION_NO_NE”. It further shows that from 147 un-
known words, 21 were found in the FWL without the POS tag and the rest (126) with
the POS tag. The remainder (26 words) were not part of the FWL. Based on that
information, we can analyze why words could not be found with their POS tag in the
FWL. Maybe some words were not correctly classified, e.g. as a proper noun instead of
an ordinary noun. If that is the case, we can try to improve our preprocessing step to
handle such cases. Next section covers the explanation part of possible unknown words.

4.5 Explaining Unknown Words
In this section, we explain how we support the user in understanding the analyzed
document. Based on the identified words in the previous section, we query our local
BabelNet instance for additional information like:

• Glossary entries

• Images

• Translations

• The BabelNet word identifier, which we use to link to the word on the Babelnet
website67.

BabelNet returns us the content in the requested language. In the following presented
case, we chose the languages of German and English. In addition to those resources,
we also provide information from the frequent word list (FWL) like the lemma, part
of speech (POS), rank order and also the frequency of the word within the analyzed
document (term frequency). Figure 4.6 shows the tool we provide to the user to support
him or her in understanding a challenging document (in this case a medical journal
article). The illustration is divided into the following three sections:

1. Analyzed PDF: We use PDF.js, a general-purpose, web standards-based platform
for parsing and rendering PDFs68, to display the analyzed document. We extended
the viewer to provide basic operations like page rotation and go to next or previous
page.

67www.babelnet.org
68https://mozilla.github.io/pdf.js/

56

www.babelnet.org
https://mozilla.github.io/pdf.js/

4.5. Explaining Unknown Words

2. Unknown Words: The second section displays a list of unknown words from the
current page. Entries in this list can be expanded to show information from the
FWL and the number of occurences (as described above). In the given example,
we chose the word “fibrinogen”, which lemma is “fibrinogen”, the rank is 71,262
and the term frequency is 1. As in a dictionary, the unknown words are sorted
alphabetically.

3. Explanations: If the user clicks on an unknown word, we request the above
mentioned resources from BabelNet. First, we display the glossary entries in the
requested languages (if available), followed by the images, which we present in a
space saving image viewer, then the direct translation of the term and in the end,
the pointer to the word in BabelNet. BabelNet provides additional information
like pronunciation (sound) and it visualizes relations to other words69.

Figure 4.6: Explaining unknown words with data from BabelNet

69Fibrinogen: http://babelnet.org/synset?word=bn:00032665n&details=1&lang=EN

57

http://babelnet.org/synset?word=bn:00032665n&details=1&lang=EN

4. Proof of Concept

4.6 Summary
This chapter covered the technical realization of our proposed method from the previous
chapter. We started with a description of the three data sources we use, namely, the
DBLP computer science bibliography, a very comprehensive frequent word list of over
100k words based on American English and BabelNet. After that, we described our
software architecture, which consists of a client and a server application. The frontend
and backend application communicate over http via RESTful services. And, we further
outlined our strict structuring of the backend into layers and Maven modules, where each
module is responsible for a specific area. The core module is the service module, which
contains services that create our language models and compares those to identify the
unknown words.

Due to our modular approach and utilization of services, we are very flexible with adding
and removing data sources or functionality. We are aware that this proof of concept
has some limitations, which we outline in Section 6.1. Nevertheless, it demonstrates
the integration of linguistic and semantical sources and libraries into a mature software
framework built for business applications. It contains a workflow to automatically
generate language models from text, like PDF files, compare them with each other and
write the resulting outcome into the database, where it can be retrieved by the client
application. Our introduced web client displays the analyzed document page by page
and shows the detected unknown words and their explanation with respect to the current
page. How well our approach works in terms of identified words which are likely to be
unknown to the user is the topic of the next chapter.

58

CHAPTER 5
Evaluation

This chapter describes the evaluation of our proposed method to find words that are
most likely to be unknown to the user. We describe the used data (our computed test
set) in Section 5.1.

In order to validate our work we have considered both quantitative and qualitative
experiments. In the absence of user judgments for known or unknown terms, the
quantitative experiment will observe whether the method identifies a significantly higher
number of unknown terms in documents belonging to the medical domain (i.e. a domain
different from that of the users) than in documents belonging to the computer science
(CS) domain (see Section 5.2).

In terms of qualitative observations, we have manually considered the terms identified for
one document from each domain and for one fixed user model (see Section 5.3). For each
experiment, we display the whole list of words which have been identified to be most
likely unknown to the user and comment on the result.

We discuss our findings and the data at hand in Section 5.4. First, we explore the
properties of our user models, such as tokens, types and the computed average word rank.
Second, we investigate the correlation of types and the average word rank within the
user model and their influence on the amount of unknown words.

The main observations are summarized in Section 5.5.

5.1 Test Set
This section describes the test set that is used to evaluate this work. We divide this set
into user models and documents models. Throughout the evaluation, which consists of
two kinds of experiments, namely, the equi-domain experiments and the cross-domain
experiments, we use the same ten user models. Those models are introduced in Section
5.1.1. In Section 5.1.2, we describe the used document models.

59

5. Evaluation

5.1.1 User Models

Before we describe the chosen user models, we explain how we chose their underlying
document collection. We selected the documents, used to generate this test set, from
the DBLP Computer Science Bibliography (see Section 4.1.1). Due to its structure and
contents, DBLP is a good starting point to choose authors, from which we generate user
models. A user model consists of a preprocessed (normalized) collection of documents
from a certain author. We filtered the DBLP XML records by the following three criteria:

1. As explained earlier in Section 4.1.1, we only consider journal articles.

2. To avoid legal problems when releasing our data, documents must be freely available
for download.

3. For our purposes, only authors with at least 25 publications are appropriate
candidates for generating user models. We assume that more documents, hence
more words, lead to a better model.

In the first step, all 1,409,695 article XML elements have been extracted from the
main XML file and written into a separate file. Articles itself contain other elements1,
like author or ee. The author element contains the name of the author and can
appear multiple times in an article element. In the next step, we grouped articles by the
domain name of their ee element. The ee element (short for electronic edition) provides
a link to an online version of the paper or to a DBLP web page for the corresponding
entry [Ley09a]. Table 5.1 shows the top 10 domains and whether it is possible to download
articles from those domains for free.

Table 5.1: Grouped content of ee element by domain.

Domain Count Free download available
http://dx.doi.org/ 2,270,860 No
http://doi.ieeecomputersociety.org/ 346,315 No
http://doi.acm.org/ 274,414 No
http://arxiv.org/ 96,820 Yes
http://dl.acm.org/ 36,010 No
http://ieeexplore.ieee.org/ 27,458 Yes
http://www.isca-speech.org/ 21,002 Yes
http://aisel.aisnet.org/ 16,936 No
http://www.aaai.org/ 16,807 Yes
http://search.ieice.org/ 11,023 No

In total, 20 authors were selected, each of them was listed as an author for at least 25
articles. For our evaluation purposes, we chose ten authors randomly and downloaded
their papers (see Table 5.2).

1For more details download dblp.dtd from http://dblp.uni-trier.de/xml/

60

http://dblp.uni-trier.de/xml/

5.1. Test Set

Table 5.2: Chosen user model candidates from DBLP.

Author’s Name # Articles Author’s Name # Articles
Amir K. Khandani 58 Lei Chen 29
Andrea Montanari 88 Mita Nasipuri 67
Bertrand Meyer 28 Philippe Wenger 86
Chin-Chen Chang 28 Sanjeev R. Kulkarni 29
Jim Gray 52 Stefan Szeider 46

The whole collection of 511 articles in PDF format has been made available to the public
and can be downloaded2. From each author, we possess at least 28 documents which
we can use to build our user models. To create this test set, we have randomly selected
25 of their publications (see Table 5.3). We provide the mapping from the user model
(Mu#1-10) to the author in Table 2 of the Appendix).

Table 5.3: User models statistics generated from 25 random papers.

Author Total
initial
tokens

Tokens
after

preprocess.

Total
removed
tokens

Total
tokens
in Ms

Total
types
in Ms

Average
word
rank

Mu#1 328,293 198,800 257,935 70,358 4,567 12,740
Mu#2 523,962 306,025 415,686 108,276 7,323 13,548
Mu#3 453,248 230,200 309,029 144,219 10,010 14,597
Mu#4 183,281 85,400 138,078 45,203 4,461 10,944
Mu#5 218,356 99,675 130,161 88,195 10,729 14,079
Mu#6 376,807 188,450 262,556 114,251 7,609 12,499
Mu#7 133,771 53,725 87,846 45,925 5,210 11,764
Mu#8 168,859 82,225 125,462 43,397 4,806 12,132
Mu#9 273,245 146,350 198,005 75,240 6,636 12,667
Mu#10 427,962 221,625 336,354 91,608 4,956 12,154
Average 308,778 161,247 226,111 82,667 6,630 12,711
σ 127,194 76,865 102,128 31,709 2,163 1,041

Table 5.3 contains the following information about our created user models:

• Total initial tokens: This is the amount of tokens we get from the PTBTokenizer
for the parsed document. We do not directly use those tokens, because we perform
preprocessing on the text.

• Tokens after preprocessing: The preprocessing has already been described
in Section 4.3.2. We remove many tokens by discarding the bibliographic chapter,
merging multiple occurences of whitespaces into a single one and removing digits.

2https://public@bitbucket.org/alexej_strelzow/thesis.git

61

https://public@bitbucket.org/alexej_strelzow/thesis.git

5. Evaluation

• Total removed tokens: This includes all the removed tokens from the prepro-
cessing step, the removed named entities and tokens removed during execution of
the post-processing step (see Section 4.3.4).

• Total tokens in Ms: The total tokens in the user model are the total initial tokens
minus the total removed tokens. In most of our cases, this is less than one third of
the initial size of the model.

• Total types in Ms: Those are the unique tokens (or distinct words) of the user
model. In most of our cases, this is less than 10 percent of the total tokens.

• Average word rank: This value is crucial for the model comparison algorithm
as it describes the user’s language level, which we introduced in Section 4.4. The
higher the value, the more complex (in terms of frequent words) the model is.

In the next section, we briefly describe the used document models.

5.1.2 Document Models

For the equi-domain experiments, we use the same documents as in the previous section.
From the collection of 511 PDF documents, we randomly choose two documents from
each author, resulting in a total amount of 18 documents. The 18 medical papers used
for the cross-domain experiments can be found on PubMed3 using the digital object
identifier4 (DOI) from Table 5.4.

Table 5.4: The eighteen DOI of medical papers we used.

10.1056/NEJMoa1503479 10.1186/s13148-016-0196-3
10.1056/NEJMoa1504542 10.1186/s13148-016-0182-9
10.1056/NEJMoa1506119 10.1186/s13148-016-0197-2
10.1056/NEJMoa1506583 10.1186/s13148-016-0191-8

10.3322/caac.21333 10.1186/s13148-016-0192-7
10.4049/jimmunol.1500696 10.1186/s12929-015-0180-9

10.1093/jnci/djv387 10.1186/s13148-016-0174-9
10.3324/haematol.2015.130849 10.1186/s13148-016-0175-8
10.3324/haematol.2015.135921 10.1007/s00280-015-2850-4

PubMed is a service of the US National Library of Medicine5 that provides free access to
medical journal articles6.

3http://www.ncbi.nlm.nih.gov/pubmed/
4https://www.doi.org/
5https://www.nlm.nih.gov/
6For more information: https://www.nlm.nih.gov/services/pubmed.html

62

http://www.ncbi.nlm.nih.gov/pubmed/
https://www.doi.org/
https://www.nlm.nih.gov/
https://www.nlm.nih.gov/services/pubmed.html

5.2. Quantitative Results

5.2 Quantitative Results

This section outlines the results from the equi-domain and the cross-domain experiments
separately.

5.2.1 Equi-Domain Experiments

This experiment compares each user model with a set of 18 randomly chosen papers (2
from each author) from the same domain. Those 18 document models have on average
3,611 tokens and 1,032 types. Table 5.5 shows the results of the first experiment. The
colums have the following meaning:

• Avg. tokens in Md: This denotes the average value of tokens of the document
model (after preprocessing and post-processing), computed over 18 documents.
The standard deviation shows that the documents vary around 50 percent in size.
We have some papers with more than 5,000 tokens and some with less than 2,000
tokens.

• Avg. types in Md: This is analogue to the previous column, only for unique
tokens.

• Avg. unknown words: The amount of words which are probably unknown to the
user are shown here. The standard deviation shows us, that this is highly variable
(σ > 0.5 x word-count).

• Avg. known words (Ms): In Section 4.4, we outlined how we distinguish between
known words. Our user model is based on two components, the domain specific one
(Ms), which we build from the PDF document collection and the general component
(Mg), which we construct from our FWL. This column contains the quantity of
words from Md, which we found in Ms. We only considered an exact match (word
+ POS tag).

• Avg. known words (Mg): The amount of words, we found in the FWL (sometimes
with its lemma), which have a higher rank than the average rank ofMd, are outlined
here.

Table 5.5 shows that the proportion of unknown word types is on average below ten
percent. The domain specific component (Ms) of our user model, which we built from
the user’s document collection, identified on average three times more known words than
the general component (Mg), which we use to patch Ms with missing general terms.
This is the case, because we first look up the words in Ms, before we query Mg for it.
We do this, because we know that words found in Ms are truly known to the user. In
contrary to Ms, Mg is an estimated component which is derived from Ms and therefore
not genuinely user specific. Words identified as known by Mg might be unknown words.

63

5. Evaluation

Table 5.5: Comparison results of Mu and Md, both from the same domain (CS). The
shown values are averages and standard deviations (σ), computed over 18 runs (one Mu

and 18 Md).

Author/
Standard
deviation

Average
tokens
in Md

Average
types
in Md

Average
unknown
words

Average
known

words (Ms)

Average
known

words (Mg)
Mu#1 3,617 1,037 102 678 256
σ 1,834 423 64 230 170
Mu#2 3,631 1,026 81 777 168
σ 1,828 424 58 277 123
Mu#3 3,426 972 72 775 124
σ 1,631 374 35 278 76
Mu#4 3,805 1,076 140 667 267
σ 1,725 400 70 190 156
Mu#5 3,460 964 95 726 142
σ 1,767 356 50 246 68
Mu#6 3,632 1,042 95 798 148
σ 1,797 416 52 281 101
Mu#7 3,873 1,091 126 705 260
σ 1,639 381 63 199 140
Mu#8 3,698 1,057 120 647 289
σ 1,751 404 64 200 165
Mu#9 3,408 1,013 90 754 169
σ 1,656 416 59 255 132
Mu#10 3,560 1,038 108 683 246
σ 1,739 415 61 235 149
Average 3,611 1,032 103 721 207
σ 1,744 403 62 246 145

5.2.2 Cross-Domain Experiments

This experiment compares the same user models as before with a fixed set of 18 papers
from the medical domain. The 18 document models had on average 3,199 tokens and
1,024 types (see the identical values for the document properties in Table 5.6). By
comparing the average word tokens (3,611 vs. 3,199) and word types (1,032 vs. 1,024) of
both experiments, we can see that the setting is similar. The standard deviation on the
other side, tells us that the medical documents we picked do not vary as much in size, as
the documents chosen for the first experiment.

Table 5.6 shows that the number of unknown words is significantly higher (almost double)
than in the prior experiment, where the documents belong to the same domain. It also
shows that the proportion of unknown word types is on average slightly below twenty
percent, which is almost twice the amount compared to the first experiment. Furthermore,

64

5.2. Quantitative Results

Table 5.6: Comparison results of Mu from the CS domain and Md from the medical
domain. The shown values are averages and standard deviations (σ), computed over 18
runs (one Mu and 18 Md).

Author/
Standard
deviation

Average
tokens
in Md

Average
types
in Md

Average
unknown
words

Average
known

words (Ms)

Average
known

words (Mg)
Mu#1 3,199 1,024 202 461 361
σ 763 199 47 103 80
Mu#2 3,199 1,024 187 579 257
σ 763 199 44 129 58
Mu#3 3,199 1,024 171 627 225
σ 763 199 39 144 51
Mu#4 3,199 1,024 217 462 345
σ 763 199 50 98 77
Mu#5 3,199 1,024 192 591 240
σ 763 199 46 133 52
Mu#6 3,199 1,024 193 592 239
σ 763 199 45 134 53
Mu#7 3,199 1,024 205 532 286
σ 763 199 48 117 68
Mu#8 3,199 1,024 204 461 359
σ 763 199 48 102 81
Mu#9 3,199 1,024 194 554 275
σ 763 199 45 132 56
Mu#10 3,199 1,024 201 471 351
σ 763 199 48 114 72
Average 3,199 1,024 197 533 294
σ 763 199 48 136 84

the domain specific component (Ms) identified on average a bit less than two times more
known words than the general component (Mg). In the previous experiment, we observed
a ratio slightly above 3 to 1.

Without any knowledge of the qualitative results, these observations can have two causes.
First, a significant increase of unknown domain specific words (medical terms) increased
the unknown word count and lead to a shift of the known word ratio. Second, a significant
increase of unknown general terms increased the unknown word count and lead to a shift
of the known word ratio. Our intuition tells us that the first cause is the most likely one,
because we are dealing with another domain than before. A qualitative analysis of those
results, which is presented in next section, will provide more insights.

65

5. Evaluation

5.3 Qualitative Results

This section analyzes the result of one experiment from one domain each. For both
experiments, we chose the user model we computed from Mu#1. The average word rank
we have computed for this model is 12,740. We present the log entry, which contains
statistics about the compared models and the words, which were classified as possibly
unknown to the user model. Words are presented with their POS tag. Their rank, if
available, is always greater than the average rank of the user model. The presentation of
the unknown word and its metadata follows following format: <word>#<POS> (rank).

5.3.1 Equi-Domain Experiments

For the qualitative analysis of this experiment, we used the paper with the title “Distance-
join: pattern match query in a large graph database”7. The results are displayed below.

Size of tokens/types in user model: 70358 / 4567
Size of tokens/types in document model: 2266 / 699
Number of unknown words identified: 45

Of the 45 words identified as unknown:
1 word not in the general model (FWL):

shortest-path#NN

16 words found in the general model (FWL) without considering
the POS tag:

NULL#NN (19000) NULL#NNP (19000)
QUERY#NNP (18048) Query#NNP (18048)
Theorems#NNPS (48005) Vertex#NNP (57064)
Vertices#NNPS (62477) hash#JJ (23658)
hash#VB (23658) his/her#NN (15856)
query#VB (18048) redistribute#VB (31921)
republish#VB (78225) s/he#NN (32364)
traversal#JJ (68860) vertex#VB (57064)

28 words found in the general model (FWL) considering also
the POS tag:

Estimation#NN (13806) Lout#NN (47582)
Query#NN (18048) Selectivity#NN (31040)
datasets#NNS (54849) embedding#NN (37457)
fictitious#JJ (21520) hash#NN (23658)
informative#JJ (14224) metabolic#JJ (14460)
nested#JJ (34745) operand#NN (64186)

7http://dl.acm.org/citation.cfm?id=1687727

66

http://dl.acm.org/citation.cfm?id=1687727

5.3. Qualitative Results

operands#NNS (50545) predicates#NNS (61170)
prohibitive#JJ (26167) pruned#VBN (46606)
pruning#NN (20475) queries#NNS (18734)
query#NN (18048) reachability#NN (84041)
relational#JJ (13835) selectivity#NN (31040)
tamer#JJR (47396) traversal#NN (68860)
twig#NN (21169) usefulness#NN (13095)
verification#NN (14492) well-studied#JJ (58446)

In terms of qualitative observations, we can note that in the case of the document
belonging to the same domain, the unknown words (e.g.shortest-path, query, hash, Vertex
ordatasets tended to be domain specific terms. General terms in the set of frequent
American English terms (Mg) that rank below the author’s average rank are for example
his/her, s/he, fictitious, informative, prohibitive, tamer, twig, Lout, Selectivity, metabolic,
usefulness, and well-studied.

We would group the 35 unique words (types) as follows into general and domain specific
terms:

• General terms: embedding, estimation, fictitious, his/her, informative, lout,
metabolic, nested, operand, operands, predicates, prohibitive, reachability, redis-
tribute, relational, republish, s/he, selectivity, tamer, theorems, twig, usefulness,
verification, well-studied

• Domain specific terms: datasets, hash, null, pruned, pruning, queries, query,
shortest-path, traversal, vertex, vertices

We could probably move some more words from the domain specific group to the general
group or vice versa, but the message is clear to us: The majority of unknown words tend
to be originating from the general domain. Another observation we could make is that
the domain specific unknown words are describing the topic of the paper well enough to
guess what it might be about. The analyzed paper addresses pattern match problems
over a large data graph. Shortest-path queries and pruning strategies are also mentioned.
Indeed, it has something to do with the above mentioned domain specific words like:
graph, queries and the shortest-path between vertices.

5.3.2 Cross-Domain Experiments

For the second analysis, we used the medical paper with the title “Telomerase Inhibitor
Imetelstat in Patients with Essential Thrombocythemia”8. Below is the result of this
experiment.

8http://www.nejm.org/doi/full/10.1056/NEJMoa1503479#t=article

67

http://www.nejm.org/doi/full/10.1056/NEJMoa1503479#t=article

5. Evaluation

Size of tokens/types in user model: 70358 / 4567
Size of tokens/types in document model: 2797 / 905
Number of unknown words identified: 176

Of the 176 words identified as unknown:
26 not in the general model (FWL):

CALR#NN Hydroxyurea#NN Hypokalemia#NN
JAK-STAT#NN calreticulin#NN clin#NN
covalently#RB cytopenia#NN cytoreduction#NN
gabriela#NN hepatotoxic#JJ hepatotoxicity#NN
hydroxyurea#NN hype#R Bilirubinemia#NN
insel#NN megakaryocyte#NN megakaryocytes#NNS
megakaryocytic#JJ multipotent#JJ myelofibrosis#NN
myelosuppression#NN nasopharyngitis#NN reticulin#NN
steatosis#NN thrombocythemia#NN thrombopoietin#NN

23 words found in the general model (FWL) without considering
the POS tag:

Alkaline#NN (28418) Diagnostics#NNPS (26059)
Hematology#NNP (72693) Inhibitor#NNP (30048)
Leukemia#NNP (15121) Neutropenia#NNP (88293)
Oncology#NNP (25817) Supplementary#NNP (22236)
Telomerase#NNP (41622) Telomere#NNP (62500)
Thrombocytopenia#NNP (76659) Upstate#NNP (14717)
alkaline#NN (28418) coexisting#NN (40592)
elicit#VB (14230) esophageal#NN (34612)
inhibit#VB (15598) lipid#NN (31448)
mutant#JJ (20917) recur#VB (28616)
reprint#VB (31545) vitro#FW (95775)
vouch#NN (31839)

127 words found in the general model (FWL) considering also
the POS tag:
Alanine#NN (96361) Anemia#NN (20057)
Cellulitis#NN (63804) Constipation#NN (29308)
Diarrhea#NN (14425) Discontinuation#NN (54793)
Dizziness#NN (20914) Epistaxis#NN (48427)
Hematologic#JJ (72281) Hematopoietic#JJ (86881)
Inhibition#NN (21438) Interferon#NN (41190)
Malignancies#NNS (44977) Marrow#NN (13218)
Mutation#NN (16950) Myalgia#NN (83824)
Neutropenia#NN (88293) Platelet#NN (33616)
Syncope#NN (66314) Transplantation#NN (21610)

68

5.3. Qualitative Results

abnormalities#NNS (18840) activator#NN (56824)
alanine#NN (96361) allele#NN (37241)
aminotransferase#NN (93421) anemia#NN (20057)
assay#NN (29487) assays#NNS (39753)
attainment#NN (13121) bilirubin#NN (54465)
biochemical#JJ (20193) biologic#JJ (41031)
cirrhosis#NN (34609) clinically#RB (15466)
clinician#NN (22615) clonal#JJ (49405)
clone#NN (17435) clones#NNS (19619)
colony-forming#JJ (84717) competitively#RB (29235)
conclusively#RB (26283) concomitant#JJ (20581)
confounded#VBD (47679) contributory#JJ (47351)
deciliter#NN (62048) diarrhea#NN (14425)
discontinuation#NN (54793) discontinued#VBN (25159)
dosing#NN (33100) elicit#VBP (14230)
enzymatic#JJ (53297) febrile#JJ (44240)
fibrosis#NN (25396) hematologic#JJ (72281)
hematopoietic#JJ (86881) hemiparesis#NN (98111)
hemoglobin#NN (30725) hemorrhage#NN (25840)
hemorrhagic#JJ (48392) hepatic#JJ (38157)
hepatitis#NN (14690) histologic#JJ (34824)
hyperplasia#NN (43642) influenza#NN (13264)
infusion#NN (15536) inhibited#VBD (45877)
inhibited#VBN (29471) inhibition#NN (21438)
inhibitor#NN (30048) inhibitory#JJ (42945)
inhibits#VBZ (25187) interferon#NN (41190)
intermittent#JJ (16831) intravenously#RB (43508)
ischemia#NN (41617) kilogram#NN (35028)
kinase#NN (58578) leukemia#NN (15121)
leukocytosis#NN (90728) malignant#JJ (15763)
marrow#NN (13218) millimeter#NN (23735)
mutated#VBN (51613) mutation#NN (16950)
mutations#NNS (17271) neoplasm#NN (45335)
neoplasms#NNS (49843) neoplastic#JJ (59382)
neutropenia#NN (88293) neutrophil#NN (76674)
nonspecific#JJ (38128) oligonucleotide#NN (93481)
osteomyelitis#NN (51547) palpable#JJ (13610)
pathway#NN (13045) phosphatase#NN (69332)
platelet#NN (33616) postsurgical#JJ (64793)
progenitor#NN (37795) progenitors#NNS (47700)
prognostic#JJ (44788) rash#NN (13444)
reassessed#VBN (53046) receptor#NN (20653)
red-cell#JJ (96498) refractory#JJ (40873)

69

5. Evaluation

remissions#NNS (72251) retinal#JJ (29450)
reversibility#NN (51542) side-effect#JJ (97640)
side-effects#NNS (38875) subgroup#NN (20833)
syncope#NN (66314) telomerase#NN (41622)
telomere#NN (62500) thrombocytopenia#NN (76659)
thromboembolic#JJ (70770) thrombosis#NN (31757)
thrombotic#JJ (76582) transcriptase#NN (65901)
transcription#NN (19849) transducer#NN (28539)
transfusion#NN (24259) transfusions#NNS (29899)
transient#JJ (14702) treatment-related#JJ (85700)
urinary#JJ (20950)

The result of this experiment contains 176 word tokens and 153 word types. This is
more than four times the amount of words from the previous experiment. By looking at
them, we notice that they are mainly from the medical domain. Due to their high word
rank (most words are ranked widely above 20k), it is unlikely that they are contained
in the general component Mg. Therefore, to mark them as known, medical terms have
to be part of the domain specific component (Ms) of the user model. But because our
user models are based on another domain (computer science), they are unlikely to be
contained. Hence, the difference of unknown words we witness is because of different
general terms in Ms and a lower rank order of words contained in the document model.

5.4 Discussion
In this section, we take a closer look at the data at hand. First, we explore the properties
of our user models, such as tokens, types and the computed average word rank. Second,
we investigate whether there are relationships between those properties. We investigate
the correlation of types and the average word rank within the user model and their
influence on the amount of unknown words.

Figure 5.1 shows the proportion of word tokens to types from each user model. Computed
over all models, the ratio of tokens to types is on average 1 : 12.5. Because the actual
frequency of types in our user models varies quite strongly, the value of 12.5 is only useful
to compare the height of the bars displayed in the discussed histogram. We explored
the most and least frequent words (together with their POS tag) of the model Mu#3.
Common words like “that”, “this” and “with” occur over one thousand times. On the
contrary, out of 10,010 word types, we have counted 3,467 types (~1/3) that appear only
once, 1,442 types that appear twice, and 837 types that appear thrice within this user
model. More than half of the types (5,746) contained in this user model appear less than
four times. To emphasize the sparsity of data, we calculate the probabiltiy to randomly
select one word contained in the 3,467 types from the user model, which is ~0.7× 10−5

(1/144,219). The ratio of types to tokens presented above (1 : 12.5) would be even higher,
if we would have included short words, like “I”, “a” or “and”, which we removed during
the preprocessing step.

70

5.4. Discussion

Another fact that this histogram reveals, is that the chosen 25 documents vary significantly
in size. Mu#3 contains around three times more tokens than Mu#8, but only around
twice the amount of types. Also interesting is that although Mu#3 contains the most
tokens, it does not contain the most types. This model contains 144,219 tokens and
10,010 types, but Mu#5 contains 88,195 tokens and 10,729 types (see Table 5.3).

Figure 5.1: Histogram of word tokens and types of user models.

Besides the amount of tokens, an additional relevant aspect (to finding unknown words)
is the language level of the user (i.e. the average rank of the words of the user model).
Figure 5.2 shows that Mu#3 has the highest average rank, followed by Mu#5.

Figure 5.2: The average word rank of the user models.

71

5. Evaluation

To further explore the relationship between word tokens and the average rank of words, we
calculated the Kendall rank correlation coefficient, also known as Kendall’s τ coefficient.
Kendall’s τ9 is a measure of non-parametric (distribution free) rank correlations. The
correlation coefficient takes values between +1 and -1. For example, given some values of
two variables (x1 to xn and y1 to yn), a value closer to +1 indicates more concordant
pairs (x1 > x2 =⇒ y1 > y2) and a value closer to -1 indicates more discordant pairs (x1
> x2 =⇒ y1 < y2). A value of zero (0) implies no correlation between the variables x
and y. The value for Kendall’s τ can be interpreted as a probability of observing the
agreeable pairs.

The null hypothesis is that there is no association between the amount of word tokens
and the average rank of words. The computed value for τ is 0.56, which indicates a
rather weak relationship. Therefore, we cannot claim that user models with more types
have a higher average rank. Figure 5.3 visualizes the relationship of both properties of
the user models. To better display the weak correlation, we sorted the data in this figure
by the amount of word types in ascending order.

Figure 5.3: The average word rank and the amount of word types of the user models
sorted by the amount of types.

In a next step, we explore the outcome of our conducted experiments and investigate the
relationship between the amount of word types, the average rank and the amount of the
resulting unknown words. Figure 5.4 shows a comparison of unknown and known words
from both experiments for each user model. It states that with respect to the user model,
we found less unknown words in the equi-domain experiments than in the cross-domain
experiments.

9http://www.statisticssolutions.com/kendalls-tau-and-spearmans-rank-
correlation-coefficient/

72

http://www.statisticssolutions.com/kendalls-tau-and-spearmans-rank-correlation-coefficient/
http://www.statisticssolutions.com/kendalls-tau-and-spearmans-rank-correlation-coefficient/

5.4. Discussion

Figure 5.4: Comparison of the known and unknown words of both experiments.

Also the inverse proportion of known and unknown words is clearly visible. For the user
model with the highest average word rank (Mu#3), we identified the least amount of
unknown words for both experiments, namely 72 and 171 words (see Table 5.7).

Table 5.7: Relevant statistics about our conducted experiments. Ms are ordered by their
sum of unknown words in descending order.

Author Types of the
1. experiment

in Md

Sum of
types
in Ms

Average
word rank
in Ms

Sum of
unknown
words

Mu#3 972 10010 14597 243
Mu#2 1026 7323 13548 268
Mu#9 1013 6636 12667 284
Mu#5 964 10729 14079 287
Mu#6 1042 7609 12499 288
Mu#1 1037 4567 12740 304
Mu#10 1038 4956 12154 309
Mu#8 1057 4806 12132 324
Mu#7 1091 5210 11764 331
Mu#4 1076 4461 10944 357

73

5. Evaluation

Table 5.7 displays the most relevant data of our experiments. It contains the types of
the document models (Md) of the equi-domain experiment, but not of the cross-domain
experiment. That is because we used different documents for the former experiment, but
always the same for the latter, thus we treat it as a constant and omit it in this table.
The less types Md contains, the less words can be classified as unknown. Furthermore,
the table displays the amount of types contained in the domain specific part of the user
model (Ms), its average word rank and the sum of unknown words. We sorted the table
by the sum of unknown words in descending order.

We observe that a higher amount of types and a higher average word rank leads to
less unknown words. To investigate the relationship between those three variables, we
performed two correlation analyses. The Kendall’s τ coefficient for the sum of types in
Ms and the sum of unknown words is 0.56 and -0.82 for the average word rank of Ms

and the sum of unknown words. The latter correlation coefficient suggests a quite strong
relationship between the average word rank and the sum of unknown words. After all,
based on the example of Mu#2 and Mu#9, which both have a significantly lower amount
of types and average word rank, the content is what really matters.

5.5 Summary
This chapter covered the evaluation part of this thesis, which consists of two kinds of
experiments. The first type compares user models with documents from the same domain
(equi-domain experiments), whereas the second one compares them with documents from
another area (cross-domain experiments), namely the medical domain. We conducted
the experiments based on a test set of ten user models, each consisted of 25 randomly
chosen documents (see Table 5.3).

After 360 completed experiments (180 for each domain), we witnessed that on average
more than four times the amount of unknown words have been found in documents from
the medical domain in contrast to documents from the CS domain. Furthermore, in
contrast to the equi-domain experiments, the cross-domain experiments revealed that the
majority of unknown words were domain specific words and not general terms. Also, we
described a relationship between the average word rank of our user models and the sum
of detected unknown words. The Kendall’s τ coefficient of -0.82 quantifies the intuition
that a higher language level of a user likely implies a lower amount of unknown words.

74

CHAPTER 6
Summary

6.1 Limitations and Future Work

This section judges the limitations of our work from a technical and a philosophical stand
point. The technical limitations describe the shortcomings of our implementation and are
therefore not as severe as the boundaries we face in our methodology. We also suggest
some possible solutions, regarded as future work, for the described limitations.

Our implementation is limited to the English language only, which has practical reasons.
First of all, it is only a proof of concept and not a mature software product. We chose
English as our language, because most of the work conducted on NLP has been done
on English text. Despite the fact that Stanford CoreNLP also supports other languages
when it comes to POS tagging or NER1 (e.g. German), there are other areas which lack
of a mature technical solution. Also the FWL we use is not available in such a quality
for other languages. The same is true for the information contained in BabelNet.

A less important limitation, but yet present, is the support for other file formats except
PDF and plain text. We limited them for our proof of concept, because we only deal
with journal articles which are in the PDF format. This can be an issue, if we allow the
public to use our application, because there exist other popular text formats (e.g. .docx
from Microsoft Word or .odt from Apache OpenOfficeTM).

From a philosophical point of view, our biggest limitation would be the lack of knowledge
about the user and therefore about his general and domain knowledge. The only
information we have is what is written in those papers we process. Based on that, it is
hard or maybe even impossible to tell which domain specific words from other domains
might be known by the user. For example, according to our FWL the noun “infarct” has
a rank of 82,944, altough it is clearly a common medical term. We need another measure

1http://stanfordnlp.github.io/CoreNLP/

75

http://stanfordnlp.github.io/CoreNLP/

6. Summary

for domain specific words, which tells us more about the importance of those words. The
FWL we use does not provide us with an adequate measure for that information need.
One way to approach this problem would be to count semantic relations of that sense,
which we can do by resolving them with BabelNet.

We tried to keep the set of unknown words small by using the lemma instead of the word
itself if the average rank of the user model was lower than the rank of the word. This
approach might be justified when we deal with authors who have an already proficient
language level. For beginners, we might not use the lemma, but just the word, because
often there is a big morphological difference between the two of them (see “go” and
“went”). Also our concept of the language level (average rank order) of the user as an
index for the model complexity needs to be reconsidered. Our user models, which we
computed from highly technical text, could not exceed a rank of 15,000 of the ~100,000
in the FWL. Also, we experienced the necessity of a well designed protocol service, which
offers insights about model computation and comparison. After all, text comes in many
forms and often brings new processing challenges with it, but that is the beauty of it.

We also do not include knowledge of other languages in our method. The German
translation for the above word “infarct” is “Infarkt”. If we would compute an English
language model for a user, whose mother tongue is German, we should include “infarct”
in the collection of known words, because both words are very similar. We can compute
a value for similarity by analyzing the structural difference of the word or, to be on the
safe side, define a mapping between those words, because we might have too many false
positives.

Another issue is the dynamic nature of languages. By the time of writing, the term
“Brexit” is very popular, but it is not part of our FWL because the list is static and we do
not receive any updates. We need to find a way to catch up with changes in the human
languages. Those changes will only occur to words, where the POS is among the open
classes. A possible solution would be to use words reported as new from web corpora like
the Now Corpus2 because it is updated on a daily basis.

Also worth mentioning is that due to our evaluation approach, we only consider relatively
clean text from journal articles. Those papers have probably been proofread and do
not contain misspelled text or slang. Also, our POS tagger only considers clean text, as
opposed to SMS speak or text from the web.

As already mentioned in Section 3.5, we do not know if our approach finds too many, too
few, or the right amount of unknown words. Only conducting individual assessments with
the user would provide an accurate answer to this question. This is an option for building
a training set which can be further used to judge the correctness of the comparison
functions. Nevertheless, a semi-automated approach is impractical on a global scale. We
must be able to learn from the user’s created or used resources and construct the model
automatically from it.

2http://corpus.byu.edu/now/

76

http://corpus.byu.edu/now/

6.2. Conclusion

6.2 Conclusion
In this thesis, we presented a fully automated approach for identifying words which are
most likely to be unknown to the user and providing the user with the proper word
explanations. We use the following three data sources: First, BabelNet, a multilingual
encyclopedic dictionary with lexicographic and encyclopedic coverage of terms. Second,
a very comprehensive frequent word list which is based on the 520 million word Corpus
of Contemporary American English. Third, the DBLP computer science bibliography, a
high-quality bibliographic meta-data database. Furthermore, we leverage state of the art
libraries for natural language processing (NLP) from the well known Stanford Universiy.

We have integrated both, the data sources and libraries into our proof of concept (POC)
implementation. The POC consists of a backend server application, which we use to
create the language models from text, to compare user models with document models,
and to explain words which have been identified as most likely to be unknown to the
user. The frontend application, written in Angular 2, supports the user to understand a
certain document, which has been submitted for analysis. It displays the submitted PDF
file which can be viewed page by page, a list of identified unknown words with respect to
the currently viewed page (context sensitive), and a list of word explanations, which the
user can fill by clicking on an unknown word entry. We evaluated our approach by using
a collection of over 500 scientific papers from exactly ten authors from the Computer
Science domain, which we identified through the DBLP computer science bibliography.
For each author, we construct a smoothed probabilistic unigram language model, which
we refer to as user model, because it models the knowledge of the user in terms of known
words. In a next step, we construct simpler language models from single documents,
which we name document models. The construction of both high quality language models
requires techniques like text parsing, text normalization, tokenization, part of speech
(POS) tagging, named entity recognition (NER) and post-processing. We investigated
and adapted these concepts for the task at hand. One important task was to reduce
the amount of artefacts (tokens that are not words), for which we used custom regular
expressions (regex), our FWL and BabelNet. Another challenge was to identify and
remove named entities (like locations, organizations and people), because we were only
aiming to find and explain concepts. With those measures, we effectively reduced the
amount of possible false positives (words identified as unknown words).

The evaluation compared our generated user models with documents models. The
results verified our assumptions regarding the amount of unknown words we found. Our
comparison algorithm detected on average fifty percent less unknown words for documents
from the same domain than for document from the medical domain. The qualitative
analysis revealed that we were able to classify a big amount of the domain specific medical
terms as possibly unknown to the user. Also, we identified a relationship between the
language level (average word rank order) of our user models and the sum of detected
unknown words. We computed a Kendall’s τ coefficient of -0.82, which indicates a
negative correlation. A higher language level led to a lesser amount of detected unknown
words.

77

Appendix

Table 1: POS conversion table between CLAWS7 and Penn3. We added the rules (C7 ->
Penn): PP -> PRP and VV -> MD.

C7 Penn C7 Explanation
APPGE PRP$ possessive pronoun, pre-nominal (e.g. my, your, our)
AT DT article (e.g. the, no)
AT1 DT singular article (e.g. a, an, every)
BCL before-clause marker (e.g. in order (that),in order (to))
CC CC coordinating conjunction (e.g. and, or)
CCB CC adversative coordinating conjunction (but)
CS IN subordinating conjunction (e.g. if, because, unless, so, for)
CSA IN as (as conjunction)
CSN IN than (as conjunction)
CST IN that (as conjunction)
CSW IN whether (as conjunction)
DA after/post-determiner capable of pronominal function (e.g. such)
DA1 singular after-determiner (e.g. little, much)
DA2 plural after-determiner (e.g. few, several, many)
DAR comparative after-determiner (e.g. more, less, fewer)
DAT superlative after-determiner (e.g. most, least, fewest)
DB PDT before/pre-determiner capable of pronominal function (all, half)
DB2 DT plural before-determiner (both)
DD DT determiner (capable of pronominal function) (e.g any, some)
DD1 DT singular determiner (e.g. this, that, another)
DD2 DT plural determiner (these,those)
DDQ WDT wh-determiner (which, what)
DDQGE WP$ wh-determiner, genitive (whose)
DDQV WDT wh-ever determiner, (whichever, whatever)
EX EX existential there
FO formula
FU unclassified word
FW FW foreign word
GE POS germanic genitive marker - (’ or’s)

79

IF IN for (as preposition)
II IN general preposition
IO IN of (as preposition)
IW IN with, without (as prepositions)
JJ JJ general adjective
JJR JJR general comparative adjective (e.g. older, better, stronger)
JJT JJS general superlative adjective (e.g. oldest, best, strongest)
JK JJ catenative adjective (able in be able to, willing in be willing to)
MC CD cardinal number,neutral for number (two, three..)
MC1 CD singular cardinal number (one)
MC2 CD plural cardinal number (e.g. sixes, sevens)
MCGE genitive cardinal number, neutral for number (two’s, 100’s)
MCMC CD hyphenated number (40-50, 1770-1827)
MD JJ ordinal number (e.g. first, second, next, last)
MF NNS fraction,neutral for number (e.g. quarters, two-thirds)
ND1 NN singular noun of direction (e.g. north, southeast)
NN NN common noun, neutral for number (e.g. sheep, cod, headquarters)
NN1 NN singular common noun (e.g. book, girl)
NN2 NNS plural common noun (e.g. books, girls)
NNA following noun of title (e.g. M.A.)
NNB preceding noun of title (e.g. Mr., Prof.)
NNL1 singular locative noun (e.g. Island, Street)
NNL2 plural locative noun (e.g. Islands, Streets)
NNO numeral noun, neutral for number (e.g. dozen, hundred)
NNO2 numeral noun, plural (e.g. hundreds, thousands)
NNT1 temporal noun, singular (e.g. day, week, year)
NNT2 temporal noun, plural (e.g. days, weeks, years)
NNU unit of measurement, neutral for number (e.g. in, cc)
NNU1 singular unit of measurement (e.g. inch, centimetre)
NNU2 plural unit of measurement (e.g. ins., feet)
NP NNP proper noun, neutral for number (e.g. IBM, Andes)
NP1 NNP singular proper noun (e.g. London, Jane, Frederick)
NP2 NNPS plural proper noun (e.g. Browns, Reagans, Koreas)
NPD1 NNP singular weekday noun (e.g. Sunday)
NPD2 NNPS plural weekday noun (e.g. Sundays)
NPM1 NNP singular month noun (e.g. October)
NPM2 NNPS plural month noun (e.g. Octobers)
PN NN indefinite pronoun, neutral for number (none)
PN1 NN indefinite pronoun, singular (e.g. anyone, everything, nobody, one)
PNQO WP objective wh-pronoun (whom)
PNQS WP subjective wh-pronoun (who)
PNQV WP wh-ever pronoun (whoever)
PNX1 reflexive indefinite pronoun (oneself)

80

PP PRP all PP* below
PPGE nominal possessive personal pronoun (e.g. mine, yours)
PPH1 PRP 3rd person sing. neuter personal pronoun (it)
PPHO1 PRP 3rd person sing. objective personal pronoun (him, her)
PPHO2 PRP 3rd person plural objective personal pronoun (them)
PPHS1 PRP 3rd person sing. subjective personal pronoun (he, she)
PPHS2 PRP 3rd person plural subjective personal pronoun (they)
PPIO1 PRP 1st person sing. objective personal pronoun (me)
PPIO2 PRP 1st person plural objective personal pronoun (us)
PPIS1 PRP 1st person sing. subjective personal pronoun (I)
PPIS2 PRP 1st person plural subjective personal pronoun (we)
PPX1 PRP singular reflexive personal pronoun (e.g. yourself, itself)
PPX2 PRP plural reflexive personal pronoun (e.g. yourselves, themselves)
PPY PRP 2nd person personal pronoun (you)
RA RB adverb, after nominal head (e.g. else, galore)
REX RB adverb introducing appositional constructions (namely, e.g.)
RG RB degree adverb (very, so, too)
RGQ WRB wh- degree adverb (how)
RGQV WRB wh-ever degree adverb (however)
RGR RBR comparative degree adverb (more, less)
RGT RBS superlative degree adverb (most, least)
RL RB locative adverb (e.g. alongside, forward)
RP IN prep. adverb, particle (e.g about, in)
RPK IN prep. adv., catenative (about in be about to)
RR RB general adverb
RRQ WRB wh- general adverb (where, when, why, how)
RRQV WRB wh-ever general adverb (wherever, whenever)
RRR RBR comparative general adverb (e.g. better, longer)
RRT RBS superlative general adverb (e.g. best, longest)
RT quasi-nominal adverb of time (e.g. now, tomorrow)
TO TO infinitive marker (to)
UH UH interjection (e.g. oh, yes, um)
VB0 VBP be, base form (finite i.e. imperative, subjunctive)
VBDR VBD were
VBDZ VBD was
VBG VBG being
VBI VB be, infinitive (To be or not... It will be ..)
VBM VBP am
VBN VBN been
VBR VBP are
VBZ VBZ is
VD0 VBP do, base form (finite)
VDD VBD did

81

VDG VBG doing
VDI VB do, infinitive (I may do... To do...)
VDN VBN done
VDZ VBZ does
VH0 VBP have, base form (finite)
VHD VBD had (past tense)
VHG VBG having
VHI VB have, infinitive
VHN VBN had (past participle)
VHZ VBZ has
VM MD modal auxiliary (can, will, would, etc.)
VMK MD modal catenative (ought, used)
VV MD wouldst
VV0 VBP base form of lexical verb (e.g. give, work)
VVD VBD past tense of lexical verb (e.g. gave, worked)
VVG VBG -ing participle of lexical verb (e.g. giving, working)
VVGK VBG #NAME?
VVI VB infinitive (e.g. to give... It will work...)
VVN VBN past participle of lexical verb (e.g. given, worked)
VVNK past participle catenative (e.g. bound in be bound to)
VVZ VBZ -s form of lexical verb (e.g. gives, works)
XX RB not, n’t
ZZ1 singular letter of the alphabet (e.g. A,b)
ZZ2 plural letter of the alphabet (e.g. A’s, b’s)

Table 2: Mapping from the user models (Mu) to the author.

User Model Author
Mu#1 Khandani
Mu#2 Montanari
Mu#3 Meyer
Mu#4 Chang
Mu#5 Gray
Mu#6 Chen
Mu#7 Nasipuri
Mu#8 Wenger
Mu#9 Kulkarni
Mu#10 Szeider

3https://github.com/magnusnissel/pos-tag-conversion/blob/master/conversion.
csv

82

https://github.com/magnusnissel/pos-tag-conversion/blob/master/conversion.csv
https://github.com/magnusnissel/pos-tag-conversion/blob/master/conversion.csv

List of Figures

2.1 Graphical diagrams showing dependencies between the query Q, the document
D, and relevance R variables in different probabilistic models of IR. Shaded
circles represent observable variables (from [Lav08]). 7

2.2 Unigram language model as a one-state finite automation ([MRS+08]). 11
2.3 Screenshot of the RANGE program. 19

4.1 Total number of Journal publications from 1960 to 20164 35
4.2 BabelNet: A composition of data sources (from5) 37
4.3 Architecture Overview: Client-Server (C/S) Application. 39
4.4 Home screen of the frontend application. 41
4.5 Backend Architecture: Dependencies of Maven modules. 42
4.6 Explaining unknown words with data from BabelNet 57

5.1 Histogram of word tokens and types of user models. 71
5.2 The average word rank of the user models. 71
5.3 The average word rank and the amount of word types of the user models

sorted by the amount of types. 72
5.4 Comparison of the known and unknown words of both experiments. 73

List of Tables

2.1 Probability of terms in an unigram language model. 12
2.2 Probability of terms in an bigram language model. 12
2.3 Thorndike’s scheme from “The Teacher’s Word Book” [Tho21]. 14
2.4 Interpretation table for Flesch Reading Ease scores (adapted from [HS75]) . . 16

83

4.1 Processing steps needed for each language model. 46

5.1 Grouped content of ee element by domain. 60
5.2 Chosen user model candidates from DBLP. 61
5.3 User models statistics generated from 25 random papers. 61
5.4 The eighteen DOI of medical papers we used. 62
5.5 Comparison results of Mu and Md, both from the same domain (CS). The

shown values are averages and standard deviations (σ), computed over 18
runs (one Mu and 18 Md). 64

5.6 Comparison results of Mu from the CS domain and Md from the medical
domain. The shown values are averages and standard deviations (σ), computed
over 18 runs (one Mu and 18 Md). 65

5.7 Relevant statistics about our conducted experiments. Ms are ordered by their
sum of unknown words in descending order. 73

1 POS conversion table between CLAWS7 and Penn6. We added the rules (C7
-> Penn): PP -> PRP and VV -> MD. 79

2 Mapping from the user models (Mu) to the author. 82

List of Listings

4.1 Text extraction from PDF using Apache PDFBox R© 46
4.2 Combination of tokenization and POS tagging using the Stanford CoreNLP

library . 48
4.3 Named Entity Recognition performed with Stanford NER 49
4.4 Model comparison algorithm with two placeholder 52
4.5 Model Comparison Algorithm - w cannot be found in Mg with its POS tag 53
4.6 Model Comparison Algorithm - w can be found in Mg with its POS tag

but the lemmas rank is greater than the average rank 54

84

Bibliography

[AAB+03] J Allen, Jay Aslam, Nicholas Belkin, Chris Buckley, Jamie Callan, WB Croft,
Sue Dumais, Norbert Fuhr, Donna Harman, David J Harper, et al. Chal-
lenges in information retrieval and language modeling. In SIGIR Forum,
volume 37, pages 31–47. ACM Press, 2003.

[Bab] BabelNet. http://babelnet.org/. Accessed: 2016-02-12.

[BG16] Alan Bailin and Ann Grafstein. Readability: Text and Context. Springer,
2016.

[BN93] Laurie Bauer and Paul Nation. Word families. International journal of
Lexicography, 6(4):253–279, 1993.

[CD95] Jeanne Sternlicht Chall and Edgar Dale. Readability revisited: The new
Dale-Chall readability formula. Brookline Books, 1995.

[CG96] Stanley F Chen and Joshua Goodman. An empirical study of smoothing
techniques for language modeling. In Proceedings of the 34th annual meeting
on Association for Computational Linguistics, pages 310–318. Association
for Computational Linguistics, 1996.

[Chi88] David N Chin. User models and discourse models. Computational Linguistics,
14(3):86–87, 1988.

[Con] Linguistic Data Consortium. https://catalog.ldc.upenn.edu/ldc99t42. Ac-
cessed: 2016-04-22.

[CT14] Kevyn Collins-Thompson. Computational assessment of text readability:
A survey of current and future research. International Journal of Applied
Linguistics, 165(2):97–135, 2014.

[CTC04] Kevyn Collins-Thompson and James P Callan. A language modeling
approach to predicting reading difficulty. In HLT-NAACL, pages 193–200,
2004.

85

[CTC05] Kevyn Collins-Thompson and Jamie Callan. Predicting reading difficulty
with statistical language models. Journal of the American Society for
Information Science and Technology, 56(13):1448–1462, 2005.

[Dal31] Edgar Dale. A comparison of two word lists. Educational Research Bulletin,
pages 484–489, 1931.

[Dbl] DblpWebsite. http://dblp.uni-trier.de/. Accessed: 2016-03-19.

[DC48] Edgar Dale and Jeanne S Chall. A formula for predicting readability:
Instructions. Educational research bulletin, pages 37–54, 1948.

[DKL08] Hongbo Deng, Irwin King, and Michael R Lyu. Formal models for expert
finding on dblp bibliography data. In 2008 Eighth IEEE International
Conference on Data Mining, pages 163–172. IEEE, 2008.

[DuB04] William H DuBay. The principles of readability. Online Submission, 2004.

[DuB07] William H DuBay. The classic readability studies. Online Submission, 2007.

[FGM05] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorpo-
rating non-local information into information extraction systems by gibbs
sampling. In Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics, pages 363–370. Association for Computational
Linguistics, 2005.

[Fle48] Rudolph Flesch. A new readability yardstick. Journal of applied psychology,
32(3):221, 1948.

[FM12] Thomas François and Eleni Miltsakaki. Do nlp and machine learning improve
traditional readability formulas? In Proceedings of the First Workshop on
Predicting and Improving Text Readability for target reader populations,
pages 49–57. Association for Computational Linguistics, 2012.

[Fre14] Adam Freeman. Pro AngularJS. Apress, 2014.

[GL35] William Scott Gray and Bernice Elizabeth Leary. What makes a book
readable. 1935.

[GM03] Warren R Greiff and William T Morgan. Contributions of language modeling
to the theory and practice of information retrieval. In Language Modeling
for Information Retrieval, pages 73–93. Springer, 2003.

[Gro] Stanford NLP Group. http://nlp.stanford.edu/software/tokenizer.shtml.
Accessed: 2016-04-22.

[GS95] William A Gale and Geoffrey Sampson. Good-turing frequency estimation
without tears*. Journal of Quantitative Linguistics, 2(3):217–237, 1995.

86

[GS96] Ralph Grishman and Beth Sundheim. Message understanding conference-6:
A brief history. In COLING, volume 96, pages 466–471, 1996.

[HAA+96] X Huang, Alex Acero, F Alleva, M Hwang, L Jiang, and Milind Mahajan.
From sphinx-ii to whisper—making speech recognition usable. In Automatic
Speech and Speaker Recognition, pages 481–508. Springer, 1996.

[Hie01] Djoerd Hiemstra. Using language models for information retrieval. Taaluit-
geverij Neslia Paniculata, 2001.

[HS75] Shelley A Harrison and Lawrence M Stolurow. Improving instructional
productivity in higher education. Educational Technology, 1975.

[JM14] Dan Jurafsky and James H Martin. Speech and language processing. Pearson,
2014.

[JRHZ03] K Sparck Jones, Stephen Robertson, Djoerd Hiemstra, and Hugo Zaragoza.
Language modeling and relevance. Language Modeling for Information
Retrieval, 13, 2003.

[KFRC75] JP Kincaid, RP Fishburne, RL Rogers, and BS Chissom. Derivation of
new readability formulas. Technical report, Technical report, TN: Naval
Technical Training, US Naval Air Station, Memphis, TN, 1975.

[KLP+10] Rohit J Kate, Xiaoqiang Luo, Siddharth Patwardhan, Martin Franz, Radu
Florian, Raymond J Mooney, Salim Roukos, and Chris Welty. Learning to
predict readability using diverse linguistic features. In Proceedings of the
23rd international conference on computational linguistics, pages 546–554.
Association for Computational Linguistics, 2010.

[Lam86] Leslie Lamport. Latex: User’s guide & reference manual. 1986.

[Lav04] Victor Lavrenko. A Generative Theory of Relevance. Ir, University of
Massachusetts, 2004.

[Lav08] Victor Lavrenko. A generative theory of relevance, volume 26. Springer
Science & Business Media, 2008.

[LC01] Victor Lavrenko and W Bruce Croft. Relevance based language models.
In Proceedings of the 24th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 120–127. ACM,
2001.

[LC03] Victor Lavrenko and W Bruce Croft. Relevance models in information
retrieval. In Language modeling for information retrieval, pages 11–56.
Springer, 2003.

[Ley05] Michael Ley. Dblp computer science bibliography. 2005.

87

[Ley09a] Michael Ley. Dblp: some lessons learned. Proceedings of the VLDB Endow-
ment, 2(2):1493–1500, 2009.

[Ley09b] Michael Ley. Dblp xml requests, 2009.

[Lor44] Irving Lorge. Predicting readability. The Teachers College Record, 45(6):404–
419, 1944.

[LP30] Bertha A.. Lively and Sydney Leavitt Pressey. A method for measuring
the" vocabulary burden" of textbooks. 1930.

[LZ03] John Lafferty and Chengxiang Zhai. Probabilistic relevance models based
on document and query generation. In Language modeling for information
retrieval, pages 1–10. Springer, 2003.

[LZ15] Yuanhua Lv and ChengXiang Zhai. Negative query generation: bridging the
gap between query likelihood retrieval models and relevance. Information
Retrieval Journal, 18(4):359–378, 2015.

[MRS+08] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, et al.
Introduction to information retrieval, volume 1. Cambridge university press
Cambridge, 2008.

[MT77] M David Merrill and Robert D Tennyson. Concept teaching: An instruc-
tional design guide. Englewood Cliffs, NJ: Educational Technology, 1977.

[MZ11] Chris Mattmann and Jukka Zitting. Tika in action. Manning Publications
Co., 2011.

[NB07] ISP Nation and David Beglar. A vocabulary size test. The language teacher,
31(7):9–13, 2007.

[NH02] ISP Nation and A Heatley. Range: A program for the analysis of vocabulary
in texts [software]. Retrieved April, 4:2011, 2002.

[PC98] Jay M Ponte and W Bruce Croft. A language modeling approach to
information retrieval. In Proceedings of the 21st annual international ACM
SIGIR conference on Research and development in information retrieval,
pages 275–281. ACM, 1998.

[POH13] Mari-Sanna Paukkeri, Marja Ollikainen, and Timo Honkela. Assessing user-
specific difficulty of documents. Information Processing and Management,
49(1):198–212, 2013.

[Por80] Martin F Porter. An algorithm for suffix stripping. Program, 14(3):130–137,
1980.

88

[PP31] WW Patty and Wm I Painter. A technique for measuring the vocabulary
burden of textbooks. The Journal of Educational Research, 24(2):127–134,
1931.

[RH01] SE Robertson and Djoerd Hiemstra. Language models and probability of
relevance. 2001.

[RJ76] Stephen E Robertson and K Sparck Jones. Relevance weighting of search
terms. Journal of the American Society for Information science, 27(3):129–
146, 1976.

[Rob] Roberto Navigli. http://www.kdnuggets.com/2014/05/babelnet-25-
multilingual-encyclopedic-dictionary-semantic-network.html. Accessed:
2016-04-22.

[Rob77] Stephen E Robertson. The probability ranking principle in ir. Journal of
documentation, 33(4):294–304, 1977.

[Rob05] Stephen Robertson. On event spaces and probabilistic models in information
retrieval. Information Retrieval, 8(2):319–329, 2005.

[SC99] Fei Song and W Bruce Croft. A general language model for information re-
trieval. In Proceedings of the eighth international conference on Information
and knowledge management, pages 316–321. ACM, 1999.

[SC01] Luo Si and Jamie Callan. A statistical model for scientific readability.
In Proceedings of the tenth international conference on Information and
knowledge management, pages 574–576. ACM, 2001.

[She93] Lucius Adelno Sherman. Analytics of literature: A manual for the objective
study of English prose and poetry. Ginn, 1893.

[SJR01] K Sparck-Jones and S Robertson. Lm vs pm: Where’s the relevance? In First
Workshop on Language Modeling and Information Retrieval, Pittsburgh, PA,
2001.

[SSN02] Satoshi Sekine, Kiyoshi Sudo, and Chikashi Nobata. Extended named entity
hierarchy. In LREC, 2002.

[Tho21] Edward L Thorndike. The teacher’s word book, 1921.

[Tik] Apache Tika. https://tika.apache.org/. Accessed: 2016-04-22.

[TKSDM03] Erik F Tjong Kim Sang and Fien De Meulder. Introduction to the conll-
2003 shared task: Language-independent named entity recognition. In
Proceedings of the seventh conference on Natural language learning at HLT-
NAACL 2003-Volume 4, pages 142–147. Association for Computational
Linguistics, 2003.

89

[VW28] Mabel Vogel and Carleton Washburne. An objective method of determining
grade placement of children’s reading material. The Elementary School
Journal, 28(5):373–381, 1928.

[Web] WebKnow. http://webknox.com/p/named-entity-definition. Accessed: 2016-
04-22.

[WN08] Stuart Webb and Paul Nation. Evaluating the vocabulary load of written
text. TESOLANZ Journal, 16:1–10, 2008.

[wor] wordfrequency. http://www.wordfrequency.info/100k.asp. Accessed: 2016-
02-12.

[Zhu] Xiaojin Zhu. http://pages.cs.wisc.edu/ jer-
ryzhu/cs769/text_preprocessing.pdf. Accessed: 2016-03-19.

90

	Abstract
	Kurzfassung
	Contents
	Introduction
	Motivation
	Problem Statement
	Structure of the Work
	Methodology

	Related Work
	Information Retrieval
	Text Readability

	Method
	Language Modeling
	Linguistic Processing
	Comparing Language Models
	Explaining Unknown Words
	Evaluation

	Proof of Concept
	Data Sources
	Software Architecture
	Generating Language Models
	Comparing Language Models
	Explaining Unknown Words
	Summary

	Evaluation
	Test Set
	Quantitative Results
	Qualitative Results
	Discussion
	Summary

	Summary
	Limitations and Future Work
	Conclusion

	Appendix
	List of Figures
	List of Tables
	List of Listings
	Bibliography

