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Abstract

This thesis deals with the mathematical modeling, the estimation, and the control
of the contour evolution in heavy-plate rolling. Reversing mill stands are used
to reduce the thickness of heavy plates in consecutive rolling passes. During the
rolling process, asymmetric rolling conditions in the lateral direction may lead to
a deviation between the actual and the desired plate contour. This may cause
a reduced product quality, product rejects, and in the worst case even damaged
plant components around the rolling mill. Asymmetric rolling conditions are
generally unknown and cannot be compensated in advance to prevent the plate
from cambering. Therefore, a useful approach is to apply feedback if a shape
defect occurs. Clearly, this requires a measurement of the contour of the plate.
Precise measurements of the contour (longitudinal boundaries and shape of the
head and tail end) can be used to optimize the adjustment of the mill stand to
reduce the camber.

First, the estimation of the plate contour is discussed. Infrared cameras
mounted at the ceiling of the rolling mill are used to capture images of the
plate during the rolling passes. A threshold-based edge detection is performed
in the infrared bitmaps. The detected edges are then used in an optimization-
based approach which utilizes the restrictions of the movement of the plate
being clamped in the rolling gap. Herein, a polynomial representation of the
longitudinal boundaries of the plate is estimated based on the detected edges of
several consecutive images. In addition to the contour of the plate, the translational
and angular movement of the plate is estimated by the presented approach. A
validation by means of a downstream contour measurement device shows a high
accuracy of the proposed contour estimation method.

Second, a static model of the contour evolution is derived. The continuum-
mechanics-based model predicts the contour of the plate after the rolling pass
based on the contour before the rolling pass and the input and output thickness
profiles. It is used to analyze the effects of temperature gradients in the lateral and
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longitudinal direction on the contour evolution. Measurements of a plate rolled
during the standard production process are used to validate the model. Moreover,
a model covering the relation between the contour and the movement of the plate
is presented. In particular, the model links the curvature and the angular velocity
at the entry of the rolling gap with the curvature and the angular velocity at the
exit of the rolling gap. The model is validated using the angular velocity and
curvature of the plate obtained from the contour estimation approach.

The mathematical models are used in different control approaches for the
reduction of contour errors. First, a feedforward control strategy to determine
the required asymmetry of the rolling gap height to compensate contour errors in
single passes is discussed. The optimization-based approach utilizes the continuum-
mechanics-based model of the contour evolution. The control objectives can be
changed in an intuitive manner by changing weighting factors of the objective
function and input constraints are systematically incorporated. Moreover, the
asymmetric compliance of the mill stand as a function of the rolling forces is
identified and compensated based on the desired rolling forces. The resulting
asymmetry of the output thickness after each pass is estimated and used to
compensate disturbances affecting the asymmetry of the rolling gap. Furthermore,
feedback control during the rolling pass is discussed. The measurement of the
contour of the plate is subject to a transport delay. Hence, the presented approach
utilizes the delay-free measurement of the angular movement of the plate in a two
degrees-of-freedom control structure containing a Smith-predictor. Furthermore,
a proof of the robust stability of the proposed control concept is presented.
In general, compensating a contour error results in an inhomogeneous thickness
profile in the lateral direction. Therefore, a method to determine a rolling schedule
covering several rolling passes is presented which achieves both the desired contour
and a homogeneous thickness profile of the final product.

Finally, simulation results and measurements for the proposed control ap-
proaches are shown. The influence of weighting and tuning factors on the control
behavior is discussed by means of simulations. Measurements from the considered
industrial rolling mill show that the proposed measures can significantly improve
the contour of the rolled plates.



Kurzzusammenfassung

Diese Arbeit beschäftigt sich mit der mathematischen Modellierung, der Schät-
zung und der Regelung der Konturentwicklung beim Walzen von Grobblech. Die
sogenannten Walztafeln werden an Reversierwalzgerüsten in mehreren aufeinan-
derfolgenden Stichen auf eine bestimmte Dicke ausgewalzt. Während der Walzung
können asymmetrische Verhältnisse in Breitenrichtung Abweichungen zwischen
der Soll- und Istkontur zur Folge haben. Dies kann zu verringerter Produktquali-
tät, Produktausfällen und im schlimmsten Fall zur Beschädigung benachbarter
Anlagenteile führen. Die während der Walzung auftretenden Dickenasymmetrien
sind im Allgemeinen nicht bekannt und können daher nicht vorab kompensiert
werden. Deshalb scheint es sinnvoll, Gegenmaßnahmen erst beim Auftreten von
Konturfehlern zu ergreifen. Es ist also eine Messung der Walztafelkontur notwen-
dig, um entsprechende Korrekturen der Anstellung des Walzgerüstes bestimmen
zu können.

Zu Beginn wird die Ermittlung der Walztafelkontur diskutiert. Infrarotkameras
an der Hallendecke des Walzwerkes nehmen Bilder der Walztafel während der
Walzung auf. Die Kanten der Walztafel innerhalb der aufgenommenen Bilder
werden anhand einer Schwellwertdetektion ermittelt. Die Information über die Lage
der Walztafelkanten wird in einem optimierungsbasierten Verfahren zur Schätzung
der Kontur und der Bewegung der Walztafel verwendet. Eine Validierung anhand
von Messdaten einer nachgelagerten Konturvermessungsanlage bestätigt die hohe
Genauigkeit des vorgestellten Verfahrens.

Anschließend wird ein mathematisches Modell der Entwicklung der Walzta-
felkontur vorgestellt. Das statische, kontinuumsmechanische Modell prädiziert
die Kontur nach dem Stich aufgrund der Kontur vor dem Stich und der Ein-
und Auslaufdickenprofile der Walztafel. Anhand des Modells wird der Einfluss
von Temperaturgradienten in Quer- und Längsrichtung analysiert. Messungen
einer Walztafel aus dem normalen Produktionsprozess werden zur Validierung
des Modells verwendet. Zusätzlich wird ein Modell zur Beschreibung des Zusam-
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menhanges zwischen der Bewegung und der Konturentwicklung der Walztafel
präsentiert. Dieses Modell, welches die Krümmung und die Winkelgeschwindigkeit
der Walztafel vor und nach dem Walzspalt in Verbindung bringt, wird anhand
von Messdaten der Konturschätzung validiert.

Die mathematischen Modelle werden in verschiedenen Strategien zur Vermin-
derung von Konturfehlern verwendet. Zunächst wird eine Vorsteuerungsstrategie
zur Bestimmung der notwendigen Gerüstanstellung für die Beseitigung von Kon-
turfehlern in einem einzelnen Stich diskutiert. Der optimierungsbasierte Ansatz
verwendet das kontinuumsmechanische Modell der Entwicklung der Walztafelkon-
tur. Das Regelverhalten kann durch Anpassung von Gewichtungsfaktoren gezielt
beeinflusst und Beschränkungen der Stellgrößen systematisch berücksichtigt wer-
den. Es konnte eine von der Walzkraft abhängige, asymmetrische Auffederung
des Walzgerüstes beobachtet werden, welche anhand der Sollwerte der Walzkraft
kompensiert wird. Die sich einstellende Asymmetrie der Auslaufdicke wird ge-
schätzt und zur Kompensation von Störungen der Asymmetrie des Walzspaltes
herangezogen. Anschließend wird eine Regelungsstrategie mit Rückkopplung zur
Verringerung von Konturfehlern während des aktuellen Stiches vorgestellt. Die
Messung der sich im Walzspalt ausbildenden Kontur der Walztafel kann nur mit
einer Transportverzögerung erfolgen. Deshalb wird die verzögerungsfreie Messung
der Winkelgeschwindigkeit der Walztafel zur Regelung in einem 2-Freiheitsgrade
Regelungskonzept mit einem Smith-Prädiktor herangezogen. Zusätzlich wird die
robuste Stabilität des Regelungskonzeptes bewiesen. Im Allgemeinen führt die
Kompensation von Konturfehlern zu einem Dickenkeil in Querrichtung. Deshalb
wird ein mehrere Stiche umfassender Optimierungsansatz zur Erzielung der Soll-
kontur bei homogener Enddicke präsentiert.

Zum Schluss werden Simulationsergebnisse und Messungen der entwickelten
Verfahren gezeigt. Der Einfluss von Parametern und Gewichtungsfaktoren auf das
Regelungsverhalten wird anhand von Simulationen erläutert. Am betrachteten
industriellen Walzgerüst aufgenommene Messungen zeigen die Effektivität der
vorgestellten Methoden zur Beseitigung von Konturfehlern.
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CHAPTER 1

Introduction

The steel industry has a history of more than hundred years. Although the basics
of modern steel production techniques were developed decades ago, the quality
demands on steel products are still increasing. These demands are driven by the
need for special material qualities and features that are only reached by today’s
high tech materials. Such materials are key enablers to build skyscrapers, to
deliver oil and gas in pipelines across continents, and to harvest wind energy with
offshore wind turbines. Furthermore, the steel industry is subject to governmental
restrictions on the pollution of the environment and the energy consumption
caused by the steel production. In addition, the legal frameworks and varying
energy prices in different countries play an important role for steel manufacturers
to remain competitive on the market. Main objectives of steel manufacturers
are thus to increase the production quality and to reduce the emissions and the
energy consumption caused by their production processes. Measures to cope with
these challenges help to preserve the steel industry in high-wage countries with
restrictive environmental regulations.

In this work, the production of heavy plates is considered. The quality of
the final product is mainly characterized by the material properties, the shape,
and the thickness of the plates. The usable area of the plate after edge trimming
clearly depends on the shape of the plate. Hence, the resulting plate contour is
of special interest in the production process. Imperfections of the plate contour
may result from asymmetric rolling conditions in the lateral direction of the plate.
This includes inhomogeneous input and/or output thickness profiles in the width
direction and spatially inhomogeneous as well as time-dependent temperature
variations of the plate. These are the motivations for the development of control
measures to improve the shape of the rolled products, in particular the plate
contour.
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2 1. Introduction

1.1 Hot rolling of heavy plates
The considered rolling mill of AG der Dillinger Hüttenwerke, Germany, is outlined
in Fig. 1.1. Here, the slabs from the slab yard are first reheated in one of the
furnaces. During the heating, a scale layer builds up, which is removed in a
descaling unit before the actual rolling steps at the roughing mill stand. After the
beginning of the rolling process, the product is called plate. Following the lateral
expansion phase to the desired width at the roughing mill, the plate is rolled in
longitudinal direction to the desired plate thickness at the finishing mill. In the
following cooling section, a specific reduction of the plate temperature may be
enforced to obtain the desired mechanical properties of the plate material. Then,
the plate is leveled to reduce residual stresses. Finally it is carried away and cut
to the desired lateral and longitudinal dimensions. At the considered rolling mill,
3 to 400mm thick plates with a length of up to 50m and a maximum width of
4.7m may be produced.

pusher-
type

furnace

bogie-
type

furnace

side-
charging
furnace levelers

cooling
section

roughing
mill

finishing
mill

descaling
unit

Figure 1.1: Processing line of AG der Dillinger Hüttenwerke, Germany.

The finishing mill considered in this work is a 4.8m wide quatro-reversing mill
stand and is shown in Fig. 1.2. The finishing mill can apply forces up to 90MN
to reduce the thickness of the plates in successive rolling passes. The term rolling
pass or pass denotes a single reduction step of the thickness of the plate. Rolling
passes are performed in alternating direction at reversing mill stands. Due to the
compliance of the 16.5m high mill stand and the acting forces, elastic deflections
of up to 14mm may occur. In comparison, the tolerances on the thickness of the
plate are in the range of one tenth of a millimeter.

Moveable side guides are installed before and after the mill stand, which are
especially used to center the plate in the lateral direction before each rolling pass.
During the rolling pass the downstream side guides are opened. However, the
upstream side guides are also used to center plates which sometimes tend to move
sideways during the rolling pass.
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plateside guides

Figure 1.2: The considered mill stand at AG der Dillinger Hüttenwerke, Germany.

1.2 Problem description and objectives of this
work

In general, the shape of the plate, as seen in top view, should be rectangular
to maximize the usable area. The plastic deformation of the plate during the
rolling pass can also lead to a deviation of the actual plate contour from the
desired one, e.g., the contour of the plate may have a camber (cf. Fig. 1.3). This
may cause a lowered product quality, product rejects, and in the worst case even
damaged plant components around the rolling mill. The deviations may result
from asymmetric conditions during the rolling process, e.g., non-homogeneous
temperature or thickness distributions in the lateral direction.

Figure 1.3: Contour error (camber) appearing during the rolling process.

Asymmetric rolling conditions are generally unknown and cannot be compen-
sated in advance to prevent the plate from cambering. Therefore, a common
approach is to apply feedback if a shape defect occurs. Clearly, this requires the
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measurement of the contour of the plate. A precise knowledge of the contour
(longitudinal boundaries and shape of the head and tail end) can be used to
optimize the adjustment of the rolling mill to reduce the camber.

To determine the necessary control input of the mill stand to reduce contour
errors, the evolution of the plate contour must be thoroughly understood. Here,
mathematical models may be used to predict the evolution of the plate contour.
However, real-time model-based control concepts require models with high ac-
curacy and moderate computational effort. To meet these demands, a tailored
mathematical model of the evolution of the plate contour is necessary.

Thus, the objectives of this work can be summarized as follows:

• Estimation of the plate contour during the rolling pass
The longitudinal and lateral edges of the plate should be accurately and
robustly estimated already during the rolling pass. In addition to the
contour of the plate, the movement of the plate (rotational and lateral
movement) should be estimated and the influence of these movements on
the camber formation should be investigated. Furthermore, a tracking of
the product during the rolling pass is necessary, i. e., a precise estimation
of the longitudinal speed of the plate. Suitable measurement equipment
should be selected and the necessary algorithms for the contour estimation
implemented.

• Mathematical modeling of the contour evolution
The mathematical model should be suitable for real-time control applications
and it should accurately predict the evolution of the plate contour. Further-
more, the effects of temperature inhomogeneities on the camber formation
should be investigated. The model should help to study the factors that
influence the formation of camber. Finally, experiments have to be designed
and conducted to validate the model.

• Design and validation of camber reducing control concepts
Based on the estimation or measurement of the plate contour and the model
of the contour evolution, control concepts to reduce the camber, which may
occur during the rolling pass, should be designed. The control concepts
should be implemented and validated at the considered rolling mill.

1.3 State of the art and new contributions of
this work

This chapter gives a short overview of the literature published in the fields of
measurement, mathematical modeling, and reduction of shape errors in hot rolling.
Already in 1987, Tanaka et al. used three devices to measure the lateral position
of the plate downstream of the mill (cf. [1]). Based on these measurements, a
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polynomial representation of the actual plate profile is estimated and used for
feedback control to reduce the occurring camber by modifying the output thickness
wedge.

Soaring computer performance enabled the usage of image processing tech-
niques for contour estimation as proposed in [2], where three 2D-CCD cameras
capture neighboring areas of the plate. In this camera configuration, the acute
angle between the plate surface and the optical axis of the camera requires a
precise calibration of the camera to accurately reconstruct the real image. After
this preprocessing step, a customized edge detection routine estimates the edge
of the plate. The detected edges of neighboring images are joined based on the
longitudinal speed of the plate and to ensure C1-continuity of the estimated plate
edges. A very similar approach using just one camera to estimate the centerline
of the plate is discussed in [3].

Also in strip rolling, 2D-cameras are used to track the lateral position of the
strip during the rolling process. Carruthers-Watt et al. (cf. [4]) used measurements
from several cameras between the mill stands to determine the lateral position
of the strip in the finishing train of a hot strip mill. The edge is identified as
maximum of the gradient of the intensity of the image in the lateral direction
and parameterized using Bezier curves. A similar measurement setup and a
mathematical model of the lateral position of the strip for steering control is
discussed in [5]. There, an H2 controller that is robust against heterogeneous
properties of the different rolled products was designed using the tilts of several
mill stands as control inputs.

An algorithm that stitches several images of the plate was developed in [6],
[7], and [8]. Common feature points are identified on two consecutive images to
determine the displacement between the images, which are captured by a CCD
camera. Ollikkala et al. (cf. [9]) used a very similar approach. However, in this
solution the inclined viewing angle of the CCD-camera requires a perspective
correction of the recorded images. After this image rectification step, an edge
detection algorithm is used to extract the boundaries of the plate.

The existing solutions for the detection of the plate contour are mainly based
on specialized image processing techniques. In most published works in this field,
neither lateral nor rotational movements of the plate are estimated or measured.
The knowledge of the restrictions of the movement of the plate during the rolling
process is also not taken into account, which may reduce the achieved accuracy of
the contour estimation.

Clearly, the angular velocity is linked with the lateral movement (snaking) of
the plate in the rolling gap. This movement may lead to an off-center position of
the plate in the lateral direction. Because of the resulting asymmetric loading
of the rolls, knowledge of the lateral position of the plate is also vital for the
necessary adjustment of the rolling gap actuators.

Furthermore, the estimation of the longitudinal speed of the plate, which may
be required for the detection of the contour, is not covered in many works. Usually,
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the speed of the plate is calculated using a mathematical model (forward slip
model) and measurements of the angular velocity of the rolls of the mill, see, e. g.,
[10]. In general, this results in an error-prone estimation of plate speed due to
inaccuracies of the slip model and therefore in an additional error of the estimated
contour. Hence, a more accurate method to determine the plate velocity seems
favorable in terms of the contour detection.

Therefore, an approach to simultaneously estimate the contour and the move-
ment of the plate during the rolling pass is discussed in this work. It uses a
mathematical model of the movement of the plate and top-view images of the
plate captured by a 2D-infrared camera. The model considers the restrictions of
the lateral movement of the plate in the rolling gap. In addition to the contour,
the angular movement and the longitudinal velocity of the plate are estimated.

In the past, different approaches were suggested to model the movement and
the contour evolution of flat products in the rolling process. The existing models
may be classified into two categories:

• Kinematic models only based on the conservation of mass.

• Continuum-mechanics-based models of the contour evolution.

Models from the first category mainly focus on the modeling of the lateral
position of the plate during the rolling pass. In heavy plate rolling, the resulting
contour of the plate and its evolution are of special interest. This contour defines
the usable area of the final plate. These models typically require only moderate
computational effort. The models belonging to the second category are using
theory from continuum mechanics and elastoplastic material properties of the
plate to estimate the plate contour. These models have a high accuracy but
entail large computational effort, which may render them unsuitable for real-time
control.

One of the models belonging to the first category is proposed in [11], where the
effect of snaking of a strip in a tandem cold rolling mill was analyzed. The model
utilizes the plastic deformation of the strip as well as the elastic deformation of
the rolls and the mill housing to predict the angular velocity of the strip at the
entry and exit of the rolling gap. The lateral position of the strip is derived from
the angular velocity and the rigid body motion of the strip outside the rolling
gap.

Shiraishi et al. (cf. [12]) investigated the relation between camber and a
thickness wedge of the strip under restrictions of the lateral movement of the
strip. The proposed model also includes the use of edgers at the rolling gap
entrance and the application of tension on the rolled strip. A model based on
the conservation of mass in the rolling gap is used to compute the curvature of
the strip. Experimental results are provided from a laboratory rolling mill to
investigate the effects of the restrictions of the lateral strip movement.
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Models belonging to the second category are proposed, e. g., in [13], [14], [15],
[16], and [17]. A FEM simulation was used in [13] to predict the camber and the
lateral movement of a hot rolled strip with an elastic-plastic material model. The
camber model covers roll deflection as well as roll flattening during the rolling
process and shows a good agreement with measurements from a pilot plant.

Also in [14] FEM is used to simulate the evolution of camber during hot
rolling. The influence of lateral temperature variations of the plate on the
resulting camber is investigated with a two-dimensional analysis. Furthermore,
three-dimensional FEM simulations with elastic-plastic material properties were
conducted to examine the effects of non-uniform rolling forces. Strategies for the
reduction of camber across several rolling passes were also discussed.

Trull et al. (cf. [15]) developed an advanced finite element model of a plate
mill to simulate the shape evolution of a rolled plate. The model includes the
stretch of the mill housing, the profile of the rolls and the material properties of
the plate. It is used to investigate the influence of the roll condition on the shape
of the plate.

The effects of width-wise asymmetric rolling conditions in strip rolling were
analyzed in [16]. The mill stretch and the deformation of the roll stack are used
to approximate the lateral thickness profile, the resulting camber, and the snaking
of the strip at the exit of the rolling gap.

A three-dimensional FEM model was also used in [17] to predict the shape of
heavy plates in hot rolling. In particular, a rigid plastic thermomechanical FEM
was developed to investigate inhomogeneous plastic deformations. The evolution
of uneven shapes in the longitudinal rolling process and the broadside-longitudinal
rolling process were analyzed in detail.

A mathematical model bridging the gap between the two different model
categories is presented in this work. This model predicts the contour of the plate,
which is in contrast to the models from the first category. Additionally, it requires
only a moderate computational effort compared to the models from the second
category. It utilizes the input and output thickness of the plate as well as its input
contour to predict the residual stresses and the contour of the plate after the
rolling pass. Generally, the output thickness profile is assumed to be known in this
work. It may come from measurements or a dedicated model of the rolling gap,
which, however, is not further discussed here. The presented model serves as a
basis for studying the factors that influence the formation of camber. Furthermore,
the high accuracy of the proposed model and its moderate computational costs
make it suitable for model-based control concepts for the reduction of an existing
camber. The nexus between the evolution of the camber and the angular velocity
of the plate is described by a supplementary kinematic model.



8 1. Introduction

Several approaches to avoid contour errors and off-centering of the strip in
hot strip rolling can be found in the literature. In the hot strip rolling process, a
number of consecutive mill stands are used to reduce the thickness of the strip.
Contrary to configurations with reversing mill stands, the rolling direction does not
change. Kiyota et al. (cf. [18]) derived a model covering the plastic deformation of
the strip in the rolling gap and the elastic deformation of the mill housing. Based
on a linear model of the movement of the plate, an optimal regulator and a state
observer were designed and validated using simulations. Furthermore, adjustment
coefficients accounting for different rolling conditions were introduced. Sliding
mode control and a state observer were presented in [19] to reduce the lateral
movement of the strip. The controller design is based on a linear mathematical
model using the asymmetry of the rolling gap as control input. Simulation and
measurement results from an industrial plant show the achieved improvements.
Also model predictive control (MPC) is used to reduce the lateral movement
of strips in hot rolling (cf. [20]). The MPC formulation allows the systematic
incorporation of input and state constrains into the design of the controller.

The strip tracking problem at a hot strip finishing mill during the tail-out
phase was discussed in [21]. A mathematical model based on first principles is the
basis for a linear model predictive controller with the mill stand tilt as control
input. The states of the mathematical model are estimated using a Kalman filter
where the rolling forces are used as measurements. Based on simulations the
results of the MPC and a PID-controller were compared.

The reduction of contour errors during the rolling using reversing mill stands
is only rarely discussed in the literature. An early control-based attempt to reduce
the camber in plate rolling was presented in [1]. There, a model linking the
thickness wedge with the contour of the plate as well as a setup to measure the
camber of the plate were discussed. Correction coefficients have to be manually
tuned to achieve an appropriate model accuracy. The camber of the plate is
measured in the forward pass whereas the asymmetry of the rolling gap is only
adjusted in the backward pass to reduce camber.

A FEM based simulator to predict camber in hot rolling was developed by
Jeong et al. (cf. [22]). The plate is treated as a rigid perfectly plastic body in the
three-dimensional problem formulation of the deformation in the rolling gap. The
developed FEM simulator was used to design an output feedback fuzzy controller
for the curvature and the lateral movement of the plate. The asymmetry of
the rolling gap is adjusted during the actual pass. The resulting controller was
compared with a PI-controller utilizing the presented simulator.

The camber reducing approaches found in the literature do not fully exploit
the possibilities resulting from the alternating rolling direction during heavy plate
rolling. The subsequent rolling passes on reversing mill stands offer the use of two
different control strategies:

• Measure the plate contour and counteract to contour errors during the same
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pass.

• Use the measurement of the plate contour to reduce occurring camber in
the subsequent pass(es).

Plates with camber may collide with and thus damage plant components
downstream the rolling mill. If a large camber occurs, the first approach seems
more suitable because the camber is reduced earlier compared to the second
one. In general, however, there exists a time delay between the generation and
the measurement of the plate contour. Hence, all appearing errors can only be
corrected with a delay. This is why it also seems suitable to adjust the inputs of
the mill stand in the next pass as a feedforward compensation of contour errors.
A drawback of the second approach is that it cannot eliminate contour errors
appearing in the last pass.

In addition to the top-view shape of the plate, also the homogeneity of the
plate thickness defines the quality of the final rolled plate. Hence, the effect
of camber-reducing counter-measures on the thickness distribution of the plate
should be considered in the controller design. The existing solutions to curb
camber in heavy plate rolling only focus on one of the discussed control strategies.
Also constraints on the maximum allowed asymmetry of the thickness of the plate
are generally not taken into account.

In this work, an optimization-based approach utilizing a mathematical model
of the contour evolution is presented. Optimization-based methods can be used
with fairly general mathematical models and input and system constraints can be
systematically incorporated. Furthermore, the control objectives can be considered
in an intuitive manner by suitably shaping the objective function. In addition
to the contour of the plate, the measurement of the angular velocity of the plate
is used in a feedback control approach. The angular velocity of the plate can
be measured with a much smaller delay than the contour of the plate. This
facilitates to minimize contour errors emerging during the pass. The presented
methods allow for systematic control actions during the rolling pass (feedback)
and from one pass to the next pass (feedforward) in a two degrees-of-freedom
control structure.

The mathematical model of the contour evolution is also used in an optimization-
based estimation approach. Here, the asymmetry of the output thickness is
estimated using the contour of the plate before and after the respective rolling
pass. This information about the rolling gap can be utilized to minimize negative
effects of asymmetric rolling conditions on the plate thickness.
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1.4 Structure of this thesis
This work is organized as follows: The estimation of the contour and the movement
of the plate are discussed in Chapter 2. In Chapter 3, a mathematical model of
the contour evolution is presented. This model predicts the contour after a rolling
pass based on the input and output thickness profile and the contour before the
rolling pass. Furthermore, a mathematical model which links the angular velocity
of the plate with the resulting contour is discussed in Chapter 4. These two
models are the basis for the control concepts designed in Chapter 5. The proposed
strategies are validated by means of simulations and measurements in Chapter 6.
Finally, Chapter 7 concludes this work with a summary and an outlook on future
work.





CHAPTER 2

Estimation of the plate contour

The methods to reduce occurring camber presented in this work essentially build
on the knowledge of the plate contour. Here, the longitudinal edges as well as the
shape of the head and tail end of the plate are of interest. In this chapter, the
methods used to estimate the plate contour are discussed. Simply measuring the
whole plate contour in one step, e. g., by means of edge detection of an image of
the whole plate, is not possible in the considered application due to the following
reasons:

• The contour of the plate is partly covered by plant components.

• The measurement should be performed during rolling in real-time.

• The length to width ratio of long plates is very different from the aspect
ratio of common cameras.

Furthermore, the estimation of the contour should be carried out as close as
possible to the rolling gap because of the following reasons:

• Short plates should also be captured.

• The time delay between the generation of a camber and its estimation should
be kept as small as possible.

Keeping the time delay small is also important because a plate with a camber
before the rolling pass may lead to an off-center position of the plate in the lateral
direction. The consequences are asymmetric rolling forces and a non-homogeneous
rolling gap which may further increase camber.

Therefore, the contour and the lateral position of the plate should be estimated
during the rolling pass itself and close to the rolling mill. Directly at the mill

13
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stand, the harsh environment may deteriorate the accuracy and the robustness of
measurements. Also the lateral and rotational movement of the plate, which is
not considered in many published contour estimation procedures, makes contour
estimation difficult. In case of pure longitudinal movement, the contour could be
obtained by simple integration of the plate velocity leading to the plate position
and using measurement signals gathered at a spatially fixed position. Under real

measurement devicesmill roll

la
te
ra
l

d
ir
ec
ti
on

longitudinal
direction

rotation

Figure 2.1: Measurement setup providing insufficient data for the estimation of
the longitudinal boundaries of the plate. The solid line represents a rotating plate
with camber. A rectangular plate with pure longitudinal movement is shown
as dashed lines. Both contours may lead to the same position signals at the
measurement devices, which are located at a spatially fixed position.

rolling conditions, this approach is insufficient because the plate may also rotate
in addition to its main longitudinal motion (cf. Fig. 2.1). The possible rotation of
the plate during the rolling process complicates the estimation of the contour.

To solve the contour estimation task, 2D-infrared cameras were installed before
and after the considered rolling mill to measure the contour of the plate in both
rolling directions. Here, the whole plate cannot be captured within a single image
because the plate may be long and partly hidden by other plant components.
Hence, the camera can only capture parts of the rolled plate and the contour
has to be determined using a series of images. The edges of the plate within a
single image are determined using an edge detection algorithm. The result of the
edge detection of several images is then fed into an optimization-based algorithm
which yields the whole contour of the plate. The presented approach utilizes
the knowledge about the restrictions of the plate movement resulting from the
plate being clamped in the rolling gap. Additionally, the algorithm estimates
the movement of the plate characterized by its angular and longitudinal velocity.
Furthermore, the lateral position of the plate in the rolling gap is estimated
which facilitates the adjustment of the rolling gap actuators to compensate for
asymmetric loads caused by the off-centering of the plate. The contour estimation
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yields the boundary contour as a series of boundary points defined in a Cartesian
coordinate system. Large parts of this chapter have been published in [23] and
[24].

2.1 Mathematical model of the movement of the
plate boundary

The exit velocity of the plate leaving the rolling gap may be non-uniform along the
lateral direction. This is because the plate can experience rotations with respect
to its vertical axis in addition to the main longitudinal motion, as observed in
[11]. The measured boundary position is thus a superposition of the plate contour
and the plate movement. To analyze these effects, a mathematical model of the
movement of the plate and the resulting measurement signal of the contour of the
plate is deduced in this section. The algorithm is presented for one longitudinal
edge of the plate and can be analogously applied to the second longitudinal edge.replacemen

mill roll
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Figure 2.2: Top view of the rolling process with geometric parameterization of
the plate contour.

A schematic representation of the mill roll and the rolled plate is shown in
Fig. 2.2. The origin of a fixed global coordinate frame (ξ, η, ζ) with base vectors
eξ, eη and eζ is located at the center of the rolling mill. At ξ = 0, the plate moves
out of the rolling gap with the unknown velocity vL.



16 2. Estimation of the plate contour

Moreover, the velocity in the direction η at ξ = 0 is denoted by vS. Although
vS is generally zero because the material is clamped in the rolling gap, vS will
be taken into account in the mathematical model. The reason to introduce this
velocity is that misalignments of the camera as shown in Fig. 2.3 may be present.
The plate is still clamped in the rolling gap and the local velocity v of the plate is
therefore perpendicular to the axis of the mill roll. Because of the misalignment of
the camera and the rolls, this velocity induces a longitudinal and lateral (sideways)
velocity component vL and vS in the (ξ, η, ζ) coordinate frame. The non-zero
lateral velocity vS reduces the accuracy of the estimated contour if it is not
considered in the mathematical model. Due to the assembling situation of the

field of view (FOV) of the camera

ξ

η

ζ

vL
vS

v

Figure 2.3: Angular misalignment of the camera and the rolls.

camera, a small but constant angular misalignment can be expected.
Furthermore, the plate contour is assumed to be constant after leaving the

rolling gap. Let ω be the angular velocity of the plate with respect to the axis ζ.
A second local coordinate frame (index pl) that is fixed to the plate is used for
parameterizing the longitudinal boundary by a polynomial

pL(ξpl) =
NL∑
i=0

cL,iξ
i
pl, (2.1)

with degree NL and so far unknown coefficients cL,i. The origin of the coordinate
frame (ξpl, ηpl, ζpl) is shifted by (∆ξ,∆η, 0) and rotated by the angle ϕ with respect
to the axis ζ. Hence, the nonlinear dynamical model of the plate movement reads
as

d
dt

∆ξ
∆η
ϕ

 =

vL − ω∆η
ω∆ξ + vS

ω

 , (2.2)
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with state vector x =
[
∆ξ ∆η ϕ

]T
and the inputs vL, vS(t), and ω(t).

Assume that PL is the currently measured point on the longitudinal boundary
of the plate as indicated in Fig. 2.2. PL has the fixed distance ξml with respect to
the roll axis. In the local coordinate frame, PL is described in vector representation
as

r′L =
[
ξL(t) ηL(t)

]T
=
[
ξL(t) pL(ξL(t))

]T
, (2.3)

starting from the origin of the plate-fixed coordinate frame. The point PL can
also be described in the global coordinate frame with the vector

rL =
[
ξml ηml(t)

]T
,

where ηml(t) is the actual measurement signal at the considered measurement line,
see Fig. 2.2. Position signals from several such measurement lines are obtained
from edge detection algorithms within bitmaps of the plate, which are captured
by a single infrared 2D-CCD camera mounted at the ceiling of the rolling mill
building. A detailed description of the measurement setup is given in Section 2.5.
The distance ξml does not vary with time (in contrast to ηml(t)) because the
measurement device has a fixed position and orientation in the global coordinate
frame. An alternative representation of (2.3) is given by

r′L =
[
ξL(t)
ηL(t)

]
= Aζ(ϕ(t))

[
ξml −∆ξ(t)
ηml(t)−∆η(t)

]
, (2.4)

where the rotation matrix Aζ(ϕ(t)) is defined in the form

Aζ(ϕ(t)) =
[

cos(ϕ(t)) sin(ϕ(t))
− sin(ϕ(t)) cos(ϕ(t))

]
.

Similar to (2.1), the head end of the plate is parameterized by the polynomial

pH(ηpl) =
NH∑
i=0

cH,iη
i
pl, (2.5)

with degree NH and coefficients cH,i. Hence, a point PH on the head end may be
written in vector representation as

r′H =
[
pH(ηH(t)) ηH(t)

]T
using (2.5) or as

r′H =
[
ξH(t)
ηH(t)

]
= Aζ(ϕ(t))

[
ξmh(t)−∆ξ(t)
ηmh −∆η(t)

]
(2.6)

in the local coordinate frame using measurements (ξmh(t), ηmh) on the head end. In
contrast to the measurements on the longitudinal boundaries, here the longitudinal
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coordinate ξmh(t) varies with time and ηmh is constant. This is because spatially
fixed measurement lines parallel to the axis ξ are used for the head end.

Note that (2.4) and (2.6) also depend on the states x of the kinematic model
(2.2). That is, the kinematic states x constitute the link between position mea-
surements from a camera bitmap in the global coordinate frame to a polynomial
boundary representation in the local coordinate frame.

2.2 Optimization-based contour estimation
The challenging task of estimating the boundary of the plate also includes the
estimation of the states and inputs of the system (2.2). Tailored versions of an
Extended Kalman Filter (EKF), see, e. g., [30], may be used to estimate the states
and the inputs of the system. But the large number of measurements (more
than 1000) obtained by a single infrared camera makes the real-time execution
of an EKF rather difficult due to the resulting extensive computational effort.
Optimization-based state estimation is another option. An overview of this topic
can be found in [31]. Because such methods are able to simultaneously estimate
inputs, parameters, and states, an optimization-based approach is developed
to estimate the contour and the movement of the plate (angular, lateral, and
longitudinal velocity of the plate) based on the measurement signals.

2.2.1 Formulation of the optimization-based contour esti-
mation

The optimization-based estimation of the contour of the plate can be divided into
three parts. First, the coefficients of the polynomial (2.5) are calculated when the
head end of the plate is in the field of view (FOV) of the camera for the first time.
In the second part, the head end of the plate is still in the FOV, which enables the
estimation of the longitudinal speed vL of the plate. When the head end of the
plate is no longer in the FOV (third part), the plate velocity in the longitudinal
direction is estimated based on the approach presented in Section 2.3.

2.2.1.1 Parameterization of the head end

The time t is set to zero, i. e. t = 0 and the contour estimation starts when the
plate length in the FOV exceeds a lower bound lmin. Then, the initial state of
(2.2) is chosen as

x(0) = x0 =
[
ξml,1 0 0

]T
, (2.7)

with ξml,1 representing the longitudinal position of the left-most measurement line
of the FOV in the global coordinate frame. At this time step, the coefficients cH,i
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of the polynomial (2.5) are calculated once by minimizing

min
pH ∈ RNH+1

MH∑
j=1

e2
H,j,0(x0, 0; pH),

with the coefficient vector

pH =
[
cH,0 cH,1 . . . cH,NH

]T
,

the number MH of rows used from the camera bitmap, and the (longitudinal)
offset

eH(x(t), t; pH) = pH(ηH(t))− ξH(t) (2.8)

between a measured point (ξmh(t), ηmh) at the head end and its representation
(2.6) in the least-squares sense.

2.2.1.2 Optimization problem with a head end in the FOV

A convenient method for determining the unknown polynomial coefficients cL,i of
the longitudinal boundary is to minimize the lateral offset eL(x(t), t; pL) between
a measured boundary point (ξml, ηml(t)) and its representation (2.3) during a
certain time period. At the time t, this error is defined as

eL(x(t), t; pL) = pL(ξL(t))− ηL(t) (2.9)

with the coefficient vector

pL =
[
cL,0 cL,1 . . . cL,NL

]T
(2.10)

of the boundary polynomial (2.1). Additionally, the longitudinal offset (2.8) may
be minimized to estimate the velocity vL using the determined coefficient vector
pH from Section 2.2.1.1 during a certain time period. The unknown velocity vL is
assumed to be constant during this time period.

Contrary to Section 2.2.1.1, a dynamic optimization problem has to be solved
to minimize the longitudinal and lateral offset. The optimization problem, which
is formulated in the plate-fixed coordinate frame, is used to estimate the unknowns
ω(t), vS(t), pL, and vL. In order to obtain a static optimization problem, (2.2)
is discretized using the zero-order-hold scheme and a fixed sampling time Ts.
Based on the assumptions ω(t) = ωk and vS(t) = vS,k during a sampling interval
kTs ≤ t < (k+ 1)Ts, (2.2) can be analytically solved. This yields the discrete-time
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system

xk+1 =

∆ξk cos(ωkTs)−∆ηk sin(ωkTs)
∆ξk sin(ωkTs) + ∆ηk cos(ωkTs)

ϕk + ωkTs

+ vL
ωk

 sin(ωkTs)
1− cos(ωkTs)

0



+ vS,k
ωk

cos(ωkTs)− 1
sin(ωkTs)

0


= f(xk, ωk, vS,k, vL)

(2.11)

with the state xk = x(kTs) =
[
∆ξk ∆ηk ϕk

]T
, k ∈ N0.

Hence, the static optimization problem can be formulated as

min
ω ∈ RN

vS ∈ RN

pL ∈ RNL+1

vL

N∑
k=0

ML∑
j=1

e2
L,j,k(xk; pL) +

N∑
k=0

MH∑
j=1

e2
H,j,k(xk)︸ ︷︷ ︸

J(ω,vS ,pL,vL)

(2.12a)

subject to xk+1 = f(xk, ωk, vS,k, vL) (2.12b)

with the abbreviations

eL,j,k(xk; pL) = pL

(
(ξml,j −∆ξk) cos(ϕk) + (ηml,j,k −∆ηk) sin(ϕk)︸ ︷︷ ︸

ξL,j,k

)

−
(

(ηml,j,k −∆ηk) cos(ϕk)− (ξml,j −∆ξk) sin(ϕk)︸ ︷︷ ︸
ηL,j,k

) (2.13)

and

eH,j,k(xk) = pH

(
(ηmh,j −∆ηk) cos(ϕk)− (ξmh,j,k −∆ξk) sin(ϕk)︸ ︷︷ ︸

ηH,j,k

)

−
(

(ξmh,j,k −∆ξk) cos(ϕk) + (ηmh,j −∆ηk) sin(ϕk)︸ ︷︷ ︸
ξH,j,k

) . (2.14)

The optimization variables are the coefficient vector pL, the vector of the angular
velocities ω =

[
ω0 ω1 . . . ωN−1

]T
, the vector of the lateral velocities vS =[

vS,0 vS,1 . . . vS,N−1
]T
, and the longitudinal velocity of the plate vL. ML is the

number of columns used from the camera bitmap. If no measurement (ξml,j, ηml,j,k)
is available at a certain time step k and measurement line j, eL,j,k(xk; pL) is set
to zero. Similarly, eH,j,k(xk) is set to zero if the head end of the plate is no longer
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in the FOV of the camera. The considered time period ranges from t = 0 to
t = NTs, i. e., there are N + 1 sampling points and the optimization involves N
values of ωk and vS,k.

Remark 2.1 To estimate the contour polynomial and the movement of the plate,
at least two measurement lines (ML ≥ 2) at significantly different positions ξml,j
must be used. However, a larger number of measurements improves the robustness
of the estimation as noise is suppressed by averaging.

2.2.1.3 Optimization problem without a head end in the FOV

If the head end of the plate is already outside the FOV of the camera, the presented
approach does not allow the estimation of the longitudinal speed vL of the plate.
Hence, vL is obtained by a different estimation approach described in Section 2.3
and the optimization problem (2.12) simplifies to

min
ω ∈ RN

vS ∈ RN

pL ∈ RNL+1

N∑
k=0

ML∑
j=1

e2
L,j,k(xk; pL) (2.15a)

subject to xk+1 = f(xk, ωk, vS,k, vL). (2.15b)

2.2.2 Numerical solution of the optimization problem
In this subsection, the numerical solution of the optimization problem (2.12) is
discussed. The presented approach can be analogously applied to the optimization
problem (2.15) by omitting the optimization variable vL. For a compact notation,
all optimization variables are assembled in the vector

w =


ω
vS
pL
vL

 =
[
w0 w1 . . . w2N+NL+1

]T

and the objective function is written in the form J(w) = J(ω,vS,pL, vL). The
optimization problem is solved using the quasi-Newton method presented in
Appendix A.2 and the line search from Appendix A.4.2. The quasi-Newton method
proved to be more useful than the Gauss-Newton method because of the large
number of addends in the objective function. This would lead to large matrices
when using the Gauss-Newton method and hence to larger optimization times. The
gradient of the objective function with respect to the optimization variables may
be calculated by numerical differentiation. For the given optimization problem,
however, the gradient is calculated analytically as described in Appendix B.
Compared to the use of numerical differentiation, this leads to a more accurate
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calculation of the gradient and hence to a faster convergence of the optimization
algorithm (cf. [32]).

Three different termination criteria are used:

• The gradient gl is sufficiently small, i. e., ‖gl‖∞ < γg
(
1 + ‖g0‖∞

)
with a

tuning parameter γg > 0.

• The step size is sufficiently small, i. e., ‖wl+1 −wl‖∞ < γx with a parameter
γx > 0.

• The achieved improvement of the objective function value J along the current
search direction is smaller than the constant γdJ > 0, i. e., J(wl)−J(wl+1) <
γdJ .

Properly chosen values for γg, γx, and γdJ ensure both, a sufficiently accurate
optimization result and a low number of iterations.

2.3 Estimation of the plate velocity
With the approach from Section 2.2, the rolling speed can only be estimated as
long as the head end of the plate is in the FOV of the camera. In general, the
rolling speed is held constant during the pass. Hence, the plate speed estimated
for the head end could also be used for the remaining part of the plate. However,
the assumption of a constant plate speed may only hold true as long as the plate is
clamped in the rolling gap. After the plate has left the rolling gap, the velocity of
the plate is influenced by the rotational speed of the roller table. Furthermore, the
operator may change the rolling speed during the rolling pass. Consequently, it is
necessary to estimate the velocity of the plate during the whole contour estimation
process. One method to determine the velocity is to add a velocity sensor. This
sensor should be located as near as possible to the rolling gap because the velocity
of short plates should also be measured. However, such a configuration may be
affected by steam, dust, and heat and requires costly robust sensors. To avoid
these costs, a method to determine the velocity using the images of the already
installed thermographic camera is presented.

As shown in Fig. 2.4, the surface temperature distribution T (ξ, η) is generally
non-uniform. These inhomogeneities may be caused by non-uniform heating in
the slab furnace or inhomogeneous conditions during the rolling process and are in
general unfavorable. However, non-uniform plate temperatures along the direction
ξ can be useful for determining the velocity of the plate by the method proposed
in the following.

As a preparatory step, the mean surface temperature in lateral direction

T̄ (ξj, tk) = 1
L+ 1

L̄+L/2∑
i=L̄−L/2

T (ξj, ηi)
∣∣∣∣∣
t=tk

(2.16)
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Figure 2.4: Thermographic image of a heavy plate with a spatially fixed distur-
bance (pyrometer).

of the image captured at time tk = kTs is calculated. The averaging in (2.16)
utilizes a rectangular section of the image with L+ 1 rows symmetric to the row
L̄. Note that spatially fixed systematic disturbances, e. g., the pyrometer, must
not be contained in this section of the image. Instead of the mean temperature
distribution, it would also be possible to use the temperature values from a single
row of the image. However, the larger number of measurements improves the
robustness of the estimation against noise and local disturbances.
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Figure 2.5: Mean temperature distribution for three consecutive images.

As an example, the resulting longitudinal temperature distribution for three
consecutive images with L = 20 is shown in Fig. 2.5. Since the images are captured
with a high frame rate, the temperature of the plate of consecutive images is
almost the same. The figure suggests that there is only a spatial shift of a more
or less constant temperature distribution. In this case, the shift ∆s between the
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temperature distributions can be determined, e. g., by using the cross correlation
function (see, e. g., [33]). Assuming a constant velocity within a sampling time Ts,
the velocity of the plate vL then follows as

vL = ∆s
Ts
. (2.17)

However, the temperature distribution is subject to minor changes and dis-
turbances. Possible reasons are heat conduction processes or image distortions
caused by the camera lens. Such disturbances entail additional deviations between
the shifted temperature profiles and therefore deteriorate the velocity estimation,
unless they are systematically considered in the estimation approach. From expe-
rience, it is known that these distortions depend on the spatial coordinate ξ of
the image. Therefore, the empirical correction approach

T̂ (ξ, tk) = p(ξ)T̄ (ξ, tk), (2.18)

with a polynomial scaling function

p(ξ) =
PV∑
i=0

biξ
i (2.19)

with degree PV and so far unknown coefficients bi, is employed to compute
a corrected temperature distribution T̂ (ξ, tk). As the averaged temperature
distribution (2.16) is only defined at the spatial grid points of the bitmap, a
linear interpolation is performed in (2.18) between the pixels to achieve sub-pixel
resolution.

A convenient method for determining the velocity of the plate and the unknown
polynomial coefficients bi in (2.19) is to minimize the difference e(ξ, tk; ∆s,p)
between consecutive temperature distributions. At the time tk, this error is
defined as

e(ξ, tk; ∆s,p) = T̂ (ξ −∆s, tk − Ts)− T̂ (ξ, tk) (2.20)

∀ξ ∈ [∆smax, lfov −∆smax] with the coefficient vector p =
[
b1 b2 · · · bPV

]T
and

the length lfov of the FOV of the camera. The term ∆smax = vL,maxTs represents
the maximal expected shift as a function of the maximal rolling speed vL,max.

The first coefficient is chosen as b0 = 1 because it would only scale the
temperature distribution T̄ by a constant factor. Hence, a static optimization
problem can be formulated as

min
∆s, p ∈ RPV

NV −1∑
k=1

MV∑
j=1

e2(ξj, tk; ∆s,p) (2.21)
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using MV grid points and NV images. Note that only the spatially overlap-
ping parts of the temperature difference in (2.20) are used in (2.21), i. e., ξj ∈
[∆smax, lfov −∆smax]. Clearly, an implicit assumption made here is that vL is con-
stant during the time interval t0 ≤ t ≤ tNV −1. Therefore, the time interval should
not be too large. On the other hand, increasing the number NV of consecutive
images reduces noise in the estimation result, which is why a compromise has to
be found. Once the optimization problem (2.21) is solved, the velocity of the plate
follows from (2.17). The optimization problem is solved using the Gauss-Newton
method from Appendix A.3, the line search from Appendix A.4.2, and the opti-
mization variables w =

[
∆s pT

]T
. The algorithm terminates if the maximum

number of iterations is exceeded or the convergence criterion ‖wl+1 −wl‖∞ < γV
with a properly chosen constant γV > 0 is fulfilled.

The derivative of e(ξj, tk; ∆s,p), j = 1, . . . ,MV and k = 1, . . . , NV − 1 with
respect to ∆s is required in the Gauss-Newton algorithm and is calculated using
a Savitzky-Golay filter, see, e. g., [33], with degree 2 and window length 11.

2.4 Receding horizon approach
With the method proposed so far, the contour is estimated based on the whole
set of measurements in one go after the plate has left the rolling gap. This global
approach has two drawbacks:

1. There is a large number of optimization variables, which increases with the
number of images used, leading to large computing times when solving the
associated optimization problems, e. g., (2.12).

2. The contour information is only available after the rolling pass has finished.
Thus, the contour information cannot be utilized for feedback control in the
same pass.

These problems are avoided if the optimization routine is applied to overlapping
sections along the plate. Such a receding horizon approach reduces the number of
optimization variables and provides almost real-time contour information.

The beginning of the optimization procedure is outlined in Fig. 2.6, where
the plate is shown at 2 different times. At any time, the FOV of the 2D-camera
remains the same. As indicated in the upper part of Fig. 2.6, the first optimization
starts at t = 0 when the plate length in the FOV exceeds a lower bound lmin. The
starting point of the optimization at the boundary of the plate is marked with a
cross and the end point is marked with a circle. As the plate leaves the rolling
gap with the speed vL, the starting points (crosses) move through the FOV, i. e.,
they are fixed to the corner points of the plate. The end points (circles), however,
have a fixed coordinate ξ, i. e. the circles move along the boundary as seen from
a plate-fixed point of view. Therefore, the optimization horizon and hence the



26 2. Estimation of the plate contour

field of view (FOV) of the camera

field of view (FOV) of the camera

ξ

ξ

ηη

η

ζ

ζ

lmin

Figure 2.6: Receding horizon approach for the proposed contour estimation
method.

number of optimization variables increases in every time step. This continues until
the maximum number N of images used in one optimization horizon is reached.
From this time onwards, the dimension of the optimization problem does not
change anymore. Therefore, for every additionally captured image, the oldest
image in the measurement set is discarded.

As indicated in the lower part of Fig. 2.6, the optimization regions are overlap-
ping. In this case, the estimated boundary from the first optimization is shown
in green. Without this spatial overlap, discontinuities at the junction of the
optimization regions could occur. Nevertheless, a small but negligible deviation
between the resulting contours of subsequent optimization horizons is present. It
is defined that the overlapping part of the result from the most recent optimization
overwrites the result from the previous run. In case of the example from the lower
part of Fig. 2.6, the current estimate of the longitudinal boundaries consists of
the green line between the red and green cross plus the whole red line.

The results of the actual optimization for vL and the coefficients of the boundary
polynomial pL are taken as initial guess for the subsequent optimization. The
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other optimization variables are initialized with zero. The contour estimation
procedure stops when the tail end is detected. At this time step, the tail-contour
is added to the already estimated contour to obtain the whole plate boundary.

Remark 2.2 With increasing plate length, also ∆ξk increases. For large values
∆ξk � 1 and boundary polynomials pL with a high degree NL, the Hessian ∇2J(w)
and therefore the optimization problem become ill-conditioned. This property may
be challenging in terms of the numerical solution of the optimization problem.
An easy countermeasure is to regularly shift the plate-fixed local coordinate frame
(ξpl, ηpl, ζpl) to a new position closer to the FOV and to reset the rotation of
the coordinate frame to zero. Then, the estimated contour consists of different
polynomials belonging to the respective optimization region. The parameters which
define the displacements and the rotations of the coordinate frames have to be
stored so that the whole contour can be assembled at the end of the rolling pass.

2.5 Recording and processing of image data
The proposed optimization algorithm requires measurement pairs (ξml,j, ηml,j,k),
j = 1, . . . ,ML and k = 0, . . . , N , to estimate the plate contour. For the head
end based estimation of the longitudinal velocity vL of the plate, measurements
(ξmh,j,k, ηmh,j), j = 1, . . . ,MH and k = 0, . . . , N , from the head end of the plate
are required. One possible measurement principle is to extract the actual plate
boundary from a 2D-image that is taken by a 2D-infrared CCD camera mounted
above the plate. It is thus natural to select a sampling time Ts that equals the
frame rate of the camera or that is at least an integer multiple of it. The advantage
of using a 2D-camera instead of a line scan device is that several measurement lines
(depending on the camera resolution) are concurrently recorded. Furthermore, a
single 2D-camera is cheaper than several line scan devices.

Compared to a standard color 2D-CCD camera, infrared cameras are superior
for the considered application due to the following properties:

• Objects can be captured through a cloud of steam.

• The thermal contrast between the plate and its environment is high and
therefore no illumination is needed.

• There is no disturbance of the images due to other light sources, e. g. sunlight.

The first property is beneficial for the subsequent edge detection because the
plate may be covered by a cloud of steam resulting from cooling water sprayed
onto the plate during the rolling process. Furthermore, the high thermal contrast
(cf. Fig. 2.7) enables a simple threshold based edge detection. Clearly, visible light
cameras are suffering from disturbing light sources leading to falsely detected edges,
see, e. g., [3]. However, disturbing light sources are seldom in the measured infrared
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range of the thermographic camera. Additionally, the temperature distribution of
the surface of the plate can be used for process monitoring and process control.
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Figure 2.7: Bitmap of the temperature distribution of a rolled plate and currently
detected edges (blue: longitudinal edges, green: lateral edge).

Fig. 2.8 shows the necessary tasks to estimate the plate contour. The camera
is connected via a Gigabit Ethernet interface to a PC and addressed using the
so called pylon API (Application Programming Interface) from the company
Basler. The pylon API is based on the GenICam standard and allows an interface-
independent control of the camera in the user application. Furthermore, the API
allows to change a large number of parameters of the camera.

An important parameter is the exposure time of the CCD camera which has
to be properly chosen to get high-contrast images. Especially when the plate
enters the FOV, the exposure time should be quickly adjusted to a suitable value
to ensure a reliable contour estimation at the beginning of the rolling pass. The
camera features an automatic control of the exposure time. Here, the exposure
time is adjusted until an average intensity of an area of interest (AOI) is reached.

camera

Gigabit
Ethernet

Basler
Pylon

Basler
C++

Interface

edge
detection

velocity
estimation

contour
estimation

plate contour estimation

computational effort 5 % 10 % 85 %

Figure 2.8: Necessary tasks and their computational effort for the estimation of
the plate contour.
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The area of interest is set to a rectangular region where the plate first enters the
FOV. This selection ensures a fast settling of the controlled exposure time after
the plate has entered the FOV.

The pylon API provides the image data in the form of an intensity distribution
(12-bit resolution) of the detected infrared radiation. Instead of the temperature
bitmap, the intensity bitmap is utilized for detecting the edges. This is favorable
because the intensity features similar transitions from the hot plate to the cold
surrounding area even for different temperature levels. Furthermore, there exists
a huge intensity gradient between the plate and the surrounding area. The
longitudinal and lateral edges of the plate are expected to be nearly parallel to the
ξ-axis and the η-axis, respectively. These properties offer a simple edge detection
approach based on an intensity threshold Ith. It is set to

Ith = Imin + krel (Imax − Imin) ,

with the minimum Imin and the maximum Imax of the intensity I in the considered
image. The relative threshold krel ∈ [0, 1] is a user-defined constant. In every
column of the image, the two outermost pixels where the threshold Ith is exceeded
determine the longitudinal edges of the plate. A tail or head end is detected
analogously by processing the rows of the image.
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Figure 2.9: Intensity distribution normalized to the upper measurement limit Ilim
of the infrared camera and temperature distribution of a cold and a hot plate as
well as detected edge pixels for krel = 0.2.
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Fig. 2.9 shows the intensity distribution of a single row of the bitmap for two
different plates. The upper part of Fig. 2.9 shows the intensity of a cold plate
and in the lower part a very hot plate is shown. Both plates feature a steep slope
from the outside margin of the plate to its inner part which turned out to be
characteristic. The parameter krel is chosen so that the detected edge pixels are in
the region of the steep slope. The detected edge pixels for krel = 0.2 are marked
with crosses in Fig. 2.9.

Remark 2.3 The intensity is linked with the temperature by the Stefan-Boltzmann
law I = σT 4, where σ denotes the Stefan-Boltzmann constant (cf. [34]). Hence,
an equivalent temperature threshold could alternatively be calculated and the edge
detection could be performed using the temperature bitmap. However, the relation
between the intensity measured by the camera and the temperature deviates from
Stefan-Boltzmann’s law because of imperfections of the intensity measurement.
The mapping used in the software of the camera is generally not known which
hampers a temperature based edge detection.

Compared to standard algorithms for the detection of edges such as the Canny
algorithm, see, e. g., [35], the presented approach requires smaller computational
times and an inherent separation in longitudinal and lateral edges. The results
of the edge detection algorithm and the velocity estimation from Section 2.3 are
finally fed into the contour estimation from Section 2.2. Fig. 2.8 indicates the
relative computational effort of the different processing tasks.

2.6 Validation and statistics
In the following, results for the estimated contour of a plate rolled in an industrial
rolling mill of AG der Dillinger Hüttenwerke, Germany are given. An infrared
2D-CCD camera was installed 25 m above the pass-line level at the ceiling of
the building before and after the finishing mill. This isolates the cameras from
oscillations and harsh conditions (heat, dust, cooling water) near the rolling
process. Using a 25 mm lens, a spatial resolution of 9.6 mm/pixel is achieved.
The industrial IR camera used in this work captures 30 frames/s with an image
resolution of 659 x 494 pixels.

The developed measurement system has proven to be robust against the harsh
conditions at the rolling mill for the last two years without any maintenance.
Measurement data from a contour measurement device (CMD) located at the
downstream end of the production line is used to validate the estimated contour.
This contour measurement is performed by means of a laser line scanner and some
image processing algorithms. The scanner is arranged across the roller table. It
captures images (1D arrays) as the plate is conveyed on the roller table along a
strictly straight path (no rotation of the plate). The image frames are joined by
software to generate a full 2D picture of the plate contour.
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Parameter Value

NL 3
NH 4
N 10
ML 659
MH 100
L 20
L̄ 494/2
MV 659
NV 5

Parameter Value Unit

krel 0.2
Ts 1/30 s
lmin 3 m
ξml,1 4 m
γg 10−10

γx 10−8

γdJ 10−3

γV 10−3

lfov 6.3475 m

Table 2.1: Parameters used for the estimation of the plate contour.

The optimization problem (2.12) was implemented in C++ utilizing the linear
algebra packages LAPACK and BLAS to speed up matrix and vector calculations.
When considering both longitudinal edges of the plate, the optimization variables
w read as

w =
[
ωT vT

S pT
L,left pT

L,right vL
]T
,

with the coefficient vectors pL,left and pL,right (cf. (2.1) and (2.10)) of the boundary
polynomials for the left and the right longitudinal boundary as seen in rolling
direction, respectively.

The initial guess w0 is chosen as ω0 = 0, vS,0 = 0, and vL,0 = 3 m/s (common
rolling speed). The first entries of pL,left and pL,right (constant terms of the
polynomials) are set to the mean values of the respective edge in the first detected
image. All other elements of pL,left and pL,right are initially set to 0.

A crucial parameter for the estimation accuracy is the chosen length N of
the optimization horizon. A larger value of N results in a smoother estimated
contour due to averaging. This is because of a better suppression of noise in
the detected contour. Clearly, N also controls the time needed for solving the
optimization problem. The actual choice of N is therefore a tradeoff between a
sufficiently smooth contour and a reasonable computing time. For the considered
measurement configuration, N = 10 proved to be a good compromise. The
remaining parameters used for the contour estimation are shown in Tab. 2.1.
With these parameters, it takes less than 0.025 s (Standard PC with i7-2600 @
3.4 GHz processor and 16 GB RAM) to solve the optimization problem (2.12) for
one optimization horizon and thus facilitates contour estimation in real-time.

A requirement to achieve short optimization times is a good convergence rate
of the method used to solve the optimization problem. Hence, the convergence
properties for a single optimization horizon of the proposed optimization approach
are analyzed. To prevent the optimization from premature termination, the
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Figure 2.10: Decrease of J (wl) as a function of the iteration l.

termination criteria are temporarily set to γg = γx = γdJ = 0. Fig. 2.10 shows the
decrease of the objective function J(wl) in every iteration l. The objective function
value converges within only 5 iterations to the magnitude of machine precision
(≈ 2.26 · 10−16). When using the parameters from Tab. 2.1, the convergence
criteria would have been already fulfilled after the second iteration. This shows
that the convergence properties of this algorithm are quite good for the considered
optimization problem. An important prerequisite for this behavior is the choice
of the initial Hessian according to (A.4). Contrary, the initial guess w0 of the
optimization variables only slightly affects the convergence of the algorithm.

Fig. 2.11a shows the contour of the plate both measured by the downstream
CMD and estimated by the proposed algorithm. The estimated contour is rotated
and shifted to allow a comparison with the measured contour in the coordinate
frame (x, y) of the CMD. The figure indicates a good accuracy of the contour
estimation in the range of one centimeter in lateral direction. Also the shapes of
the head and tail edges as well as the length of the plate are accurately estimated.

Remark 2.4 In Fig. 2.11b - 2.11d, the longitudinal displacement ∆ξ of the plate-
fixed coordinate frame starts at ∆ξ = ξml,1 = 4 m because of the chosen initial
condition (2.7) and the parameters of the used measurement setup (cf. Tab. 2.1).

Fig. 2.11b shows the movement of the plate in the form of the position and
orientation of the plate-fixed coordinate frame. In Fig. 2.11c, the estimated
velocity vS in lateral direction is shown. Although there are oscillations, they are
not disturbing the estimation of the contour. This is because the lateral deviations
resulting from these oscillations are very small, i. e., they are less than half a
centimeter and therefore less than half of the width of a pixel. They could be
caused by vibrations of the camera in lateral direction. Furthermore, the estimated
longitudinal velocity vL of the plate is shown in Fig. 2.11d. As mentioned in
Section 2.2.1, vL can only be estimated in conjunction with the contour as long as
the head end of the plate is in the FOV of the camera. Therefore, the estimation
approach from Section 2.3 is used for the remaining part of the plate.
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Figure 2.11: Measurement and estimation results for a rolled plate.
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Figure 2.12: Definition of the maximum lateral deviation δmax and the length of
the plate l.

The deceleration of the plate at the end of the rolling pass clearly shows that
an estimation of the velocity during the whole contour estimation is necessary.
The accurately estimated length of the plate (cf. Fig. 2.11a) indicates that the
estimated velocity agrees well with its real (average) value. In Fig. 2.13, the
results of the contour estimation system for several plates are compared with
those of the CMD by means of the lateral deviation δmax of the centerline of the
plate (cf. Fig. 2.12) and the plate length l.

The results shown in Fig. 2.13 cover more than 3000 plates which where rolled
within two months and which had a minimum length of 20 m. Shorter plates
are not considered because camber does not play such an important role for

σ = 3.74 cm
µ = -0.24 cm

σ = 1.92 %
µ = -0.02 %

fr
eq
u
en
cy

in
%

δmax,cmd − δmax in m

lcmd−l
lcmd

in %

fr
eq
u
en
cy

in
%

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−5 −2.5 0 2.5 5

0

10

20

30

0

5

10

15

Figure 2.13: Frequency distribution in terms of maximum lateral deviation δmax
and length of the plate l.
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these plates. The upper part of Fig. 2.13 shows the frequency distribution of the
relative error of the estimated length l of the plates. It indicates a sufficiently
accurate estimation. The lower part of Fig. 2.13 shows the frequency distribution
of the maximum lateral deviation δmax. The histogram agrees well with a normal
distribution with over 90 percent of the estimated centerlines featuring an error
of less than 5 cm.

2.7 Summary
In this chapter, a method for the estimation of the contour and the movement of the
plate was discussed. The combination of a 2D-infrared camera as measurement
device with optimization-based algorithms yields a robust and very accurate
estimation of the plate contour. The contour estimation will be used with the
mathematical model of the contour evolution presented in the following chapter
to reduce camber by means of different control strategies. Furthermore, the
estimated angular movement of the plate will be of interest to effectively reduce
contour errors already during the actual rolling pass. Henceforth, the estimation
of the plate contour and the movement of the plate are considered to be ideal.
This is why the estimated quantities will be referred to as measurements in the
following.





CHAPTER 3

Modeling of the contour evolution

The basis for the proposed methods to reduce camber in hot rolling is a suitable
mathematical model of the contour evolution. The presented model is tailored
to be used in real-time applications, where a precise prediction of the contour
evolution and a moderate computational effort are the key prerequisites. The
contour after the rolling pass is predicted by the model based on the contour
before the rolling pass and the input and output thickness profile of the plate.
The output thickness is assumed to be known, e. g., from measurements or from a
model of the rolling gap and the mill stand [36]. Large parts of this chapter have
been published in [26].

As indicated in Fig. 3.1, a Cartesian coordinate system with coordinates x, y
and z is used. The origin of the coordinate system is fixed to the spatial center of
the plate before the rolling pass. In order to simplify the model, the following
assumptions are made:

• The plate thickness profile hin(x, y) in lateral and longitudinal direction is
known before each rolling pass.

• The profile of the output thickness hout(x, y) is also a given quantity.

• After the plate exits the rolling gap, no further plastic deformation occurs.

• Lateral expansion in the rolling gap is not considered.
Knowing the thickness hin(x, y) of the plate before the rolling pass and the

thickness hout(x, y) at the exit of the rolling gap, the plastic strain in longitudinal
direction is

εplxx = hin(x, y)
hout(x, y) − 1. (3.1)

37



38 3. Modeling of the contour evolution

x

y
z

h
in
(x
,y
)

h
o
u
t (
x
,y
)

Figure 3.1: Plastic deformation in the rolling gap.

Note that both thickness profiles are defined in the coordinate system fixed to the
plate before the rolling pass. The plastic strain εplxx is an input of the following
model.

3.1 Mathematical model for estimating camber
and residual stresses

Before the first rolling pass, the plate has approximately the shape of a rectangular
block. Therefore, the computational domain is initially chosen as a cuboid. As
long as non-uniformities along the thickness direction of the plate are neglected, a
two-dimensional problem formulation may be used. For the given problem, this
simplifies the estimation of the strains and residual stresses in the plate. In the
following derivation, the assumption of plane stress is made. It is motivated by
the absence of surface tractions (outside the rolling gap) and the small dimension
in thickness direction compared to the length and the width of the plate (cf.
[37]). This implies that stresses along the z-direction vanish and all quantities are
uniform along the z-direction.

If body forces are absent, the equilibrium equations for an infinitesimal volume
element in the two-dimensional space read as

∂σxx
∂x

+ ∂σxy
∂y

= 0 (3.2a)

∂σxy
∂x

+ ∂σyy
∂y

= 0, (3.2b)
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with the normal stresses σxx and σyy along the directions x and y, respectively, and
the shear stress σxy. Furthermore, a linear elastic material behavior is assumed,
i. e.,

εelxx = 1
E

(σxx − νσyy) (3.3a)

εelyy = 1
E

(σyy − νσxx) (3.3b)

and

εelxy = 1
2Gσxy (3.3c)

with Young’s modulus E, shear modulus G = E
2(1+ν) , and Poisson’s ratio ν.

These elastic strains have to be added to the plastic strains εplxx, εplyy and εplxy
that are induced during the rolling process. Hence, the total strains read as

εΛ = εelΛ + εplΛ , Λ ∈ {xx, xy, yy}. (3.4)

The displacement fields u = u(x, y) and v = v(x, y) in longitudinal and lateral
direction are linked with the strains by

εxx = ∂u

∂x
(3.5a)

εyy = ∂v

∂y
(3.5b)

and
γxy = 2εxy = ∂u

∂y
+ ∂v

∂x
. (3.6)

Furthermore, the three unknown strain components are subject to the com-
patibility equation

∂2εxx
∂y2 + ∂2εyy

∂x2 = ∂2γxy
∂x∂y

. (3.7)

The latter ensures the existence of continuous, single-valued displacements (cf.
[37]). Inserting Hooke’s law (3.3) into the relations (3.4) and further into the
compatibility equation (3.7) yields

∂2

∂y2

[ 1
E

(σxx − νσyy)
]

+ ∂2

∂x2

[ 1
E

(σyy − νσxx)
]
− ∂2

∂x∂y

( 1
G
σxy

)

= −∂
2εplxx
∂y2 −

∂2εplyy
∂x2 + 2

∂2εplxy
∂x∂y

. (3.8)
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Summing up the derivatives of (3.2a) and (3.2b) with respect to x and y, respec-
tively, gives

∂2σxy
∂x∂y

= −1
2

(
∂2σxx
∂x2 + ∂2σyy

∂y2

)
.

This expression helps to eliminate the shear stress and Poisson’s ratio from (3.8)
using G = E

2(1+ν) and the assumption of a uniform Young’s modulus E. The
simplified version of (3.8) thus reads as

∂2σxx
∂x2 + ∂2σxx

∂y2 + ∂2σyy
∂x2 + ∂2σyy

∂y2 = −E
(
∂2εplxx
∂y2 +

∂2εplyy
∂x2 − 2

∂2εplxy
∂x∂y

)
. (3.9)

As mentioned in [38], (3.9) shows that only plastic deformations with nonvanishing
second derivatives induce residual stresses. That is, using a Taylor series expansion,
constant and linear terms in the strain tensor would not induce additional elastic
deformations. This is because the right-hand side of (3.9) vanishes for such terms
resulting in the trivial solution σxx = σyy = σxy = 0 for the considered case of
absent surface tractions at the boundary of the plate.

An effective way to deal with the two-dimensional problem (3.9) was introduced
in [39]. The so called Airy’s stress function F = F (x, y), which satisfies

σxx = ∂2F

∂y2 , σyy = ∂2F

∂x2 , σxy = − ∂2F

∂x∂y
, (3.10)

can be inserted into (3.9) to obtain the fourth order inhomogeneous partial
differential equation

∆∆F = −E
(
∂2εplxx
∂y2 +

∂2εplyy
∂x2 − 2

∂2εplxy
∂x∂y

)
︸ ︷︷ ︸

f(x,y)

, (3.11)

with the Laplacian ∆ = ∂2

∂x2 + ∂2

∂y2 . Note that the plastic strains εplΛ , Λ ∈ {xx, xy, yy}
are given model inputs. εplxx follows from (3.1) whereas εplxy and εplyy are assumed to
be zero. Eq. (3.11) is also known as extended biharmonic equation. The term
extended hints at the inhomogeneous disturbance term on the right-hand side. In
the absence of plastic strains, (3.11) is called biharmonic equation. Because of
(3.11), the compatibility equation (3.7) is automatically fulfilled if the stresses are
calculated according to the chosen ansatz (3.10). Another interesting feature of
the (extended) biharmonic equation is its independence of Poisson’s ratio ν.
Instead of solving the initial partial differential equation for the unknown stresses,
strains, and displacements subject to the compatibility equation (3.7), it is
equivalent to solve (3.11) for the stress function F . Once F is known, the
stresses are calculated based on (3.10) and the elastic strains follow from (3.3).
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It remains to determine the displacements by integrating the strains (3.4) and
(3.5) to

u(x, y) =
∫ x

0
εelxx(x̄, y)dx̄+

∫ x

0
εplxx(x̄, y)dx̄+ 1

E
φ(y) (3.12a)

and

v(x, y) =
∫ y

0
εelyy(x, ȳ)dȳ +

∫ y

0
εplyy(x, ȳ)dȳ + 1

E
ψ(x), (3.12b)

with scalar functions φ(y) and ψ(x). They define the boundary values of the
displacements and cannot be arbitrarily chosen because the strains resulting from
inserting (3.12) into (3.5) and (3.6) must fulfill (3.7). Note that (3.12) satisfies
the displacement-strain relations (3.5) regardless of the choice of φ(y) and ψ(x).
Combining (3.6), (3.4), and (3.3c) yields

γxy = ∂u

∂y
+ ∂v

∂x
= 2εelxy + 2εplxy = 2(1 + ν)

E
σxy + 2εplxy

and, by inserting (3.12), it follows that

2Eεplxy + 2(1 + ν)σxy = E
∫ x

0

∂εelxx(x̄, y)
∂y

dx̄+ E
∫ x

0

∂εplxx(x̄, y)
∂y

dx̄+ dφ(y)
dy

+ E
∫ y

0

∂εelyy(x, ȳ)
∂x

dȳ + E
∫ y

0

∂εplyy(x, ȳ)
∂x

dȳ + dψ(x)
dx .

Proceeding with this expression and using (3.3a), (3.3b), and the definition (3.10)
yields

dψ(x)
dx + dφ(y)

dy = 2Eεplxy − 2(1 + ν) ∂
2F

∂x∂y

−
∫ x

0

(
∂3F (x̄, y)
∂y3 − ν ∂

3F (x̄, y)
∂x̄2∂y

)
dx̄

−
∫ y

0

(
∂3F (x, ȳ)
∂x3 − ν ∂

3F (x, ȳ)
∂x∂ȳ2

)
dȳ

− E
(∫ x

0

∂εplxx(x̄, y)
∂y

dx̄+
∫ y

0

∂εplyy(x, ȳ)
∂x

dȳ
)

= δ1(x) + δ2(y). (3.13)

The left-hand side of (3.13) splits up into a term δ1(x) = dψ(x)
dx depending only on

x and a term δ2(y) = dφ(y)
dy depending only on y. Integrating these terms gives

ψ(x) =
∫ x

0
δ1(x̄)dx̄+ Cδ1 (3.14a)
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and

φ(y) =
∫ y

0
δ2(ȳ)dȳ + Cδ2, (3.14b)

with integration constants Cδ1 and Cδ2 representing the translational degrees of
freedom of a rigid body motion of the plate. Equation (3.13) provides insight into
the limitations of choosing the functions ψ(x) and φ(y) such that the compatibility
equation (3.7) is fulfilled by (3.12).

3.2 Derivation of the boundary conditions
In addition to fulfilling the extended biharmonic equation (3.11), a suitable stress
function F has to satisfy certain boundary conditions. Two different types of
boundary conditions can be identified: one giving a restriction on the displacements
at the boundary and one constraining the stresses at the boundary. Only the
latter one is discussed because the first one (rigid body motion) is not relevant in
the considered problem.

x

y

z

n

s

T n
x

T n
y

(x(s), y(s))

Γ

Figure 3.2: Boundary conditions at the plate contour.

The stresses at the boundary Γ of the plate (cf. Fig. 3.2) may be expressed
by the components of the external stress vector, i. e., T nx = T nx (s) in longitudinal
and T ny = T ny (s) in lateral direction. They depend on the curvilinear coordinate s
measured in the counter-clockwise direction and they are defined by

T nx = σxxnx + σxyny (3.15a)

and

T ny = σxynx + σyyny. (3.15b)
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Here, nx and ny denote the components of the unit normal vector

n =
[
nx
ny

]
=
[ dy

ds
−dx

ds

]
(3.16)

of the boundary Γ. The vector n points outwards. A specific point on the
boundary Γ is defined by its Cartesian coordinates (x(s), y(s)). Insertion of (3.10)
and (3.16) into (3.15) yields

T nx = ∂2F

∂y2
dy
ds + ∂2F

∂x∂y

dx
ds (3.17a)

and

T ny = − ∂2F

∂x∂y

dy
ds −

∂2F

∂x2
dx
ds . (3.17b)

In the considered problem, surface tractions are absent, i. e. the boundary condi-
tions are

T nx = T ny = 0. (3.17c)

3.3 Solution of the biharmonic equation
Searching for an exact solution of (3.11) and the boundary conditions (3.17) is
difficult. Only for trivial shapes, specific plastic deformations and particular
boundary conditions, exact solutions may be obtained. To circumvent this
difficulty, an approximate solution with a stress function that automatically
satisfies (3.11) but not necessarily (3.17) is used.

The solution Fhom of the homogeneous biharmonic equation

∆∆Fhom = 0 (3.18)

and the particular solution Fpart of the extended biharmonic equation (3.11) are
added to obtain the solution

F = Fhom + Fpart. (3.19)

This superposition approach is possible due to the linearity of (3.11). Fpart fulfills
(3.11) but not necessarily (3.17). Therefore, Fhom, which is independent of the
plastic deformation (cf. (3.18)), is chosen so that F satisfies (3.17). In this work,
power series are used for F to solve the extended biharmonic equation.
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3.3.1 Power series solution
A method originally proposed in [40] is applied to obtain the power series solution.
A single homogeneous solution term Ψi with degree p is characterized by

Ψi =
p∑
j=0

p∑
q=0

bj,qx
jyq (3.20)

with constant coefficients bj,q. They are chosen so that the homogeneous bihar-
monic equation (3.18) is individually satisfied by each term Ψi. By insertion of Ψi

into (3.18), a system of linear equations for determining the unknown coefficients
bj,q is obtained. Fhom is a linear combination of the terms Ψi, i. e.,

Fhom =
n∑
i=1

aiΨi = JTa (3.21)

with a = [ai]i=1,...,n and J = [Ψi]i=1,...,n for some constants ai, i = 1, . . . , n. The
coefficients ai will be chosen to satisfy the boundary conditions (3.17). In an
analogous manner, a series solution of the extended biharmonic equation (3.11)
can be found if the given plastic strains are approximated by a two-dimensional
power series

εplΛ =
Px∑
i=0

Py∑
q=0

cΛ,i,qx
iyq︸ ︷︷ ︸

ΦΛ,i,q

, Λ ∈ {xx, xy, yy} (3.22)

with constant coefficients cΛ,i,q, i = 0, . . . , Px and q = 0, . . . , Py and the degrees
Px and Py in the longitudinal and lateral direction, respectively. Each individual
solution term Fpart,i,q of the particular solution

Fpart =
Px∑
i=0

Py∑
q=0

Fpart,i,q

must satisfy the corresponding part of (3.11), i. e.,

∆∆Fpart,i,q = −E
(
∂2Φxx,i,q

∂y2 + ∂2Φyy,i,q

∂x2 − 2∂
2Φxy,i,q

∂x∂y

)
︸ ︷︷ ︸

fi,q(x,y)

(3.23)

with ΦΛ,i,q according to (3.22). Similarly to (3.20), Fpart,i,q is formulated as a
two-dimensional polynomial

Fpart,i,q(x, y) =
P̆x∑
i=0

P̆y∑
q=0

b̆i,qx
iyq
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with the degrees P̆x and P̆y selected properly depending on the degree of fi,q(x, y).
The polynomial coefficients b̆i,q are found from a comparison of coefficients in
(3.23).

As mentioned earlier, a solution that satisfies the boundary conditions in an
approximate manner is derived. Inserting an approximate ansatz F̂ for Airy’s
stress function into the boundary conditions (3.17) gives the residuals

Rx(F̂ ) = ∂2F̂

∂y2
dy
ds + ∂2F̂

∂x∂y

dx
ds

Ry(F̂ ) = − ∂2F̂

∂x∂y

dy
ds −

∂2F̂

∂x2
dx
ds .

The idea is that these residuals vanish in a weighted integral sense, i. e.,∫
Γ
vxRx(F̂ )ds+

∫
Γ
vyRy(F̂ )ds = 0, (3.24)

with the weighting functions vx and vy. Two different weighting functions are
necessary to avoid that only the sum Rx(F̂ ) + Ry(F̂ ) vanishes. With F̂ =
F̂hom + F̂part and F̂hom = ĴTa according to (3.19) and (3.21), respectively, the
residual terms can be written as

Rx(F̂ ) =
(
∂2ĴT

∂y2
dy
ds + ∂2ĴT

∂x∂y

dx
ds

)
a + ∂2F̂part

∂y2
dy
ds + ∂2F̂part

∂x∂y

dx
ds

and

Ry(F̂ ) =
(
− ∂

2ĴT

∂x∂y

dy
ds −

∂2ĴT

∂x2
dx
ds

)
a − ∂2F̂part

∂x∂y

dy
ds −

∂2F̂part
∂x2

dx
ds .

Now a slightly modified least-squares method as reported in [41] is employed.
The method suggests using the residualsRx(Ψi) andRy(Ψi) as weighting functions
vx and vy, respectively. Other weighting functions are also possible for the given
problem but Rx(Ψi) and Ry(Ψi) simplify the evaluation of the integrals in (3.24).
Equation (3.24) must vanish individually for each pair of weighting functions
vx = Rx(Ψi) and vy = Ry(Ψi). This results in a system of linear equations

(Ax + Ay) a = yx + yy (3.25)

with the matrices

Ax =
∫

Γ
Rx(Ĵ)Rx(ĴT)ds (3.26a)

Ay =
∫

Γ
Ry(Ĵ)Ry(ĴT)ds (3.26b)
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and the vectors

yx = −
∫

Γ
Rx(Ĵ)Rx(F̂part)ds (3.27a)

yy = −
∫

Γ
Ry(Ĵ)Ry(F̂part)ds. (3.27b)

The residual of a vector is just an assembly of the residuals of its components. The
proposed method generates symmetric matrices Ax and Ay, which can be utilized
when solving (3.25) for the unknown coefficients ai. The numerical properties of
Ax and Ay are of good nature, even for polynomial approximations with high
degrees. For simplicity reasons, henceforth the approximate solution F̂ is no
longer denoted with a hat.

3.3.2 Parameterization of the plate contour
There exist various methods to deal with curvilinear boundary domains of differ-
ential equations. In some cases, a change of the chosen coordinate system leads to
a formally simpler representation of the boundary. Polar coordinates, for instance,
should be used for circular computational domains.

However, the problem considered in this work requires a tailored definition of
the boundary, which also allows to track the camber during several rolling passes.
A closed-form parametric representation of the boundary seems favorable in terms
of integration along the edges. As indicated in Fig. 3.3, a convenient formulation
consists of four polynomials representing the four boundaries. A point on the

edge 1

edge 2

edge 3

edge 4

x

y

z

pB1(x)

pB2(y)

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

Figure 3.3: Definition of the edges of a plate with a curvilinear boundary.

edges 1 and 3 (longitudinal edges) is parameterized by a polynomial with degree
NB as

pBj(x) =
NB∑
i=0

dj,ix
i, j = 1, 3
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and on the edges 2 and 4 (head and tail) as

pBj(y) =
NB∑
i=0

dj,iy
i, j = 2, 4.

Hence, the curvilinear boundary Γ is described by

Γ =
{

(x, y)
∣∣∣x ∈ [x1, x2] , y = pB1(x)

}
∪
{

(x, y)
∣∣∣y ∈ [y3, y2] , x = pB2(y)

}
∪
{

(x, y)
∣∣∣x ∈ [x4, x3] , y = pB3(x)

}
∪
{

(x, y)
∣∣∣y ∈ [y4, y1] , x = pB4(y)

}
.

Due to the integration along a curved boundary Γ, e. g., in (3.24), it seems
reasonable to introduce a curvilinear coordinate s defined by

ds =

√√√√1 +
(
dpBj(x)

dx

)2

dx

for j ∈ {1, 3} and

ds =

√√√√1 +
(
dpBj(y)

dy

)2

dy

for j ∈ {2, 4}.
A curved shape Γ generally precludes an analytical integration of (3.24).

Therefore, the integrals are numerically evaluated by Gaussian quadrature. An
integral is thus approximated by a weighted sum

∫ 1

−1
f(ξ)dξ ≈

Nq∑
i=1

wif(ξi), (3.28)

where Nq denotes the quadrature order and wi represents the weight for the
function value f(ξi) at the sampling point ξi. Krylov (cf. [42]) showed that the
sampling points of one possible quadrature method can be found as the roots of
the Legendre polynomial

pNq(x) = 1
2NqNq!

dNq

dxNq

[(
x2 − 1

)Nq
]

and that the corresponding weights are defined by

wi =
∫ 1

−1

Nq∏
q=0
q 6=i

x− xq
xi − xq

dx .



48 3. Modeling of the contour evolution

Additionally, a transformation∫ xup

xlo

f(x)dx = xup − xlo
2

∫ 1

−1
f(ξ)dξ

with

x = xup + xlo
2 + xup − xlo

2 ξ

and properly chosen integration boundaries xlo and xup (cf. Fig. 3.3) has to be
performed. This transformation maps the different integration boundaries in
(3.26) and (3.27) to the interval [−1, 1] used in (3.28). The weights wi and the
sampling points ξi are only calculated once and stored, so that their numerical
values can be used in the evaluation of the integrals.

3.3.3 Simulation results
In the following, simulation results demonstrate the feasibility of the proposed
contour evolution model. As inputs of the computations, input and output
thickness profiles based on thickness measurements are used. The thickness
profiles are assumed to be constant and quadratic in longitudinal and lateral
direction, respectively. A quadratic polynomial is used in the lateral direction
because the thickness measurement device installed at the considered rolling mill
measures the thickness of the plate only at three different positions along the
direction y. Hence, only a polynomial with degree less or equal than two can be
fitted uniquely in the width direction of the plate. The plastic deformations εplyy
and εplxy are assumed to vanish. Moreover, the temperature profile is assumed to
be constant and a rectangle with the dimensions l = 29.4 m and w = 2.7 m is used
as initial shape of the plate (before the first rolling pass). The results obtained by

Parameter Value Unit

E 140 kN/mm2

ν 0.3
n 70
Px 8
Py 8
NB 4
Nq 20

Table 3.1: Parameters used for the computations.

the power series solution method using the parameters from Tab. 3.1 are shown in
Fig. 3.4. For both passes, Fig. 3.4 shows the input and output thickness profile of
the plate and the resulting plastic deformation εplxx, approximated by polynomials
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Figure 3.4: Simulation results for 2 consecutive passes utilizing the power series
solution scheme.

of degree Px = Py = 8. Due to the uniform thickness profile along the plate length
l, the plastic deformation εplxx is also uniform along the longitudinal direction x.

Furthermore, the residual normal stress σxx in longitudinal direction and the
resulting plate shape after the pass are shown. Fig. 3.4 indicates the approximate
satisfaction of the stress boundary conditions at the head and the tail end of the
plate. The slight violation of the boundary conditions can be further reduced
by increasing the order of the ansatz function for Airy’s stress function F . As
seen in the lower part of Fig. 3.4, the contour of the plate shows a considerable
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camber after the second pass. This contour error is caused by the change of
the asymmetry of the plate thickness which is too small to see in Fig. 3.4. The
asymmetry is characterized by the absolute asymmetry ∆h(x) in the form

∆h(x) = h(x, w/2)− h(x, −w/2).

For the given simulation scenario, ∆hi(x) in the i-th pass is independent of the
longitudinal coordinate x and has the values ∆hin1 = −319 µm, ∆hout1 = ∆hin2 =
−340 µm, and ∆hout2 = −361 µm.

For the considered plate, these absolute asymmetries result in a maximum
lateral deviation of 0.4 m. That is, the sensitivity of the contour evolution with
respect to the thickness asymmetry is high, especially for long and thin plates.
This simulation illustrates that the reduction of contour errors is a delicate task
because even small deviations from the desired thickness profile may lead to large
contour errors.

3.4 Effect of non-uniform elastic properties

In the previous sections, a homogeneous elastic behavior was assumed. However,
in many real heavy-plate rolling scenarios, temperature gradients in the plate may
be a consequence of inhomogeneous heating in the slab reheating furnace. As a
consequence of its temperature dependency, Young’s modulus is thus also non-
uniform. Assuming a homogeneous temperature distribution along the thickness
of the plate, the inverse of Young’s modulus E(x, y) may be approximated by a
Taylor series, i. e.,

pE(x, y) = 1
E(x, y) =

PE∑
i=0

PE∑
q=0

cE,i,qx
iyq (3.29)

with the polynomial degree PE and the coefficients cE,i,q. The coefficients of the
polynomial (3.29) are determined utilizing the least-squares method. Insertion of
(3.29) into (3.8) leads to

∂2

∂y2

[
pE(x, y) (σxx − νσyy)

]
+ ∂2

∂x2

[
pE(x, y) (σyy − νσxx)

]

− ∂2

∂x∂y

[
2(1 + ν)pE(x, y)σxy

]

= −
(
∂2εplxx
∂y2 +

∂2εplyy
∂x2 − 2

∂2εplxy
∂x∂y

) .
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With the reasonable assumption ν = const. (cf. [43]), the extended biharmonic
equation then reads as∂2pE(x, y)

∂x2

(
∂2

∂x2 − ν
∂2

∂y2

)
+ ∂2pE(x, y)

∂y2

(
∂2

∂y2 − ν
∂2

∂x2

)

+ 2(1 + ν)∂
2pE(x, y)
∂x∂y

∂2

∂x∂y
+ 2∂pE(x, y)

∂x

(
∂3

∂x3 + ∂3

∂x∂y2

)

+ 2∂pE(x, y)
∂y

(
∂3

∂y3 + ∂3

∂x2∂y

)

+ pE(x, y)
(
∂4

∂x4 + 2 ∂4

∂x2∂y2 + ∂4

∂y4

)F (x, y)

+
(
∂2εplxx
∂y2 +

∂2εplyy
∂x2 − 2

∂2εplxy
∂x∂y

)
︸ ︷︷ ︸

f̆

= D
(
F (x, y)

)
= 0. (3.30)

The inhomogeneous Young’s modulus causes some additional terms in the extended
biharmonic equation compared to (3.11) for uniform E. However, linearity of the
equation is preserved. Simple adaption of the proposed solution scheme fails for
this case because it is rather difficult to find exact solutions for (3.30).

Therefore, exact satisfaction of the extended biharmonic equation is abandoned
and the equation is only satisfied in an integral sense over the considered domain
I. For this purpose, the boundary condition (3.24) is extended by a weighted
residual of the extended biharmonic equation (3.30). This gives∫∫

I
D
(
F (x, y)

)
vDdxdy +

∫
Γ
Rx

(
F (x, y)

)
vxds+

∫
Γ
Ry

(
F (x, y)

)
vyds = 0

with the additional weighting function vD.
The stress function F (x, y) is chosen as

F (x, y) =
P̆x∑
i=0

P̆y∑
q=0

ăi,qx
iyq = J̆Tă (3.31)

with the degrees P̆x and P̆y in the lateral and longitudinal direction, respectively.
Note that the coefficients ă0,0, ă1,0 and ă0,1 are set to zero because they neither
contribute to the boundary condition (3.17) nor to the extended biharmonic
equation (3.30).

Equation (3.31) does not automatically satisfy the extended biharmonic equa-
tion (3.30) and therefore the coefficients ăi,q are used to approximately fulfill
(3.30) and the boundary condition (3.24). Therefore, it is no longer distinguished
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between a homogeneous and a particular solution. Even the number of solution
terms in (3.31) should be raised compared to the homogeneous case to achieve a
sufficient fulfillment of (3.30).

By analogy to the case with uniform E (see (3.25)), the weighted residual
ansatz results in a system of linear equations(

Ăx + Ăy + Ăext

)
ă = y̆ (3.32)

with the coefficient matrices

Ăx =
∫

Γ
Rx

(
J̆
)
Rx

(
J̆T
)

ds

Ăy =
∫

Γ
Ry

(
J̆
)
Ry

(
J̆T
)

ds

Ăext =
∫∫

I
D
(
J̆
)∣∣∣∣
f̆=0
D
(
J̆T
)∣∣∣∣
f̆=0

dxdy

(3.33)

and the vector

y̆ = −
∫∫

I
D
(
J̆
)∣∣∣∣
f̆=0

f̆dxdy. (3.34)

Again the coefficient matrix from (3.32) is symmetric.
In addition to the integration along the boundary Γ of the plate, a two-

dimensional integral over the plate surface has to be evaluated in (3.33) and
(3.34). The evaluation of these double integrals must be handled separately. This
is caused by the curvilinear boundaries of the plate, where the integration order
cannot be selected arbitrarily. Depending on the actual shape of the plate, the
integration domain I has to be divided into several subdomains. Fig. 3.5 shows an
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(x1, y1)

(x2, y2)

(x3, y3)
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Figure 3.5: Integration area split up into three subdomains.

exemplary plate contour parameterized by polynomials where three subdomains
are necessary. For the inner subdomain I2 of the shown plate, the integration
is first performed along the y-direction and then along the x-direction. For the
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remaining subdomains I1 and I3 the integration order has to be changed. Because
the boundaries of the subdomains I1 and I3 can be uniquely defined as a function
of the coordinate y, no additional subdomains are necessary.

In the following, the influence of an inhomogeneous Young’s modulus will be
studied to determine its relevance for the formation of camber defects. First,
Young’s modulus E(x, y) is calculated from a given temperature distribution
T (x, y) by

E(x, y) = fT (T (x, y))

with an appropriate function fT (T ). As proposed in [43], fT (T ) may be approxi-
mated as an affine function

E(x, y) = E0 + E1 (T (x, y)− T0) ,

with the parameters E0 = 200 kN/mm2, E1 = −83 N/(mm2 ◦C), and T0 = 20 ◦C.
The impact of two different temperature distributions on the plate contour and

the residual stresses are analyzed utilizing the rolling process from Section 3.3.3.
Here, the polynomial degree PE = 3 and n = 102 coefficients ăi,q are used for
the calculations, which is equivalent to a polynomial degree P̆x = P̆y = 13 of the
stress function F . In both cases, only the first pass and a time-independent linear
temperature distribution are considered. The first temperature distribution is
linear in longitudinal direction of the plate as indicated in Fig. 3.6. The resulting
Young’s modulus is therefore also affine in longitudinal direction (cf. Fig. 3.6),
which leads to a decreasing stress distribution σxx. A temperature non-uniformity
of 200 ◦C occurs seldom in the real rolling process. Hence, the considered scenario
provides a conservative estimation of the significance of non-uniform elastic
properties.

σ
x
x
in

N
/m

m
2

y in m
x in m

−10
0

10

−101
−100

0

100

E
in

k
N
/m

m
2

y in m x in m

T
in

◦ C

y in m x in m

−10 0 10

−10 0 10

−101

−101

140
145
150

600

700

800

Figure 3.6: Normal stress distribution σxx for temperature gradient in longitudinal
direction.

For the second case, the temperature is non-uniform along the lateral direction
(cf. Fig. 3.8). Compared to the results for a plate with constant temperature
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shown in Fig. 3.7, the differences are almost negligible. The same conclusion can
be drawn from the maximum lateral deviation of the centerline of the plate (cf.
Fig. 2.12). The inhomogeneous Young’s modulus does not change the maximum
lateral deviation by more than 0.7 mm.
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Figure 3.7: Normal stress distribution σxx for constant plate temperature T =
700 ◦C.

This result shows that an inhomogeneous temperature distribution has only
little influence on the occurring camber caused by changes of the Young’s modulus.
This is why the influence of the temperature on the Young’s modulus is neglected
in all subsequent simulations and in the model-based control concepts to reduce
the camber. However, the temperature distribution has a significant influence
on the deformation resistance (yield stress) and thus on the resulting rolling gap
profile. Note that the yield stress does not appear as a parameter in the proposed
model.
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Figure 3.8: Normal stress distribution σxx for temperature gradient in lateral
direction.
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3.5 Effect of thermal expansion
The thermal expansion of the plate is another effect, which depends on the
temperature distribution of the plate. In the simulation results from Section 3.4,
the temperature was assumed to be constant over time and therefore no thermal
strain εtherm occurred. However, the change of the temperature from T0 to T1
assuming an isotropic thermal material behavior induces the thermal strain

εthermΛ = α (T1(x, y)− T0(x, y)) , Λ ∈ {xx, yy}

with the thermal expansion coefficient α. No shear deformation is induced due to
thermal expansion, i. e., εthermxy = 0. As shown in [38], the thermal strains εthermΛ
can be considered in the extended biharmonic equation in the form

∆∆F = −E
∂2

(
εplxx + εthermxx

)
∂y2 +

∂2
(
εplyy + εthermyy

)
∂x2 − 2

∂2εplxy
∂x∂y

 . (3.35)

The effect of thermal expansion can only be described with (3.35) as long as the
thermal strains do not induce further plastic deformations in the plate. Because of
the similarity of (3.35) with (3.23), (3.35) can be solved with the method presented
in Section 3.3. I.e, the sum of the plastic and thermal strains are approximated
by two-dimensional polynomials (cf. (3.22)), the resulting polynomial coefficients
cΛ,i,q are used to calculate the coefficients of the homogeneous solution of the
biharmonic equation and further the displacements of the plate.

In the following, the effect of the thermal expansion on the rolling process
from Section 3.4 is studied. For simplicity reasons, a constant thermal expansion
coefficient α = 12 · 10−6 1/K is assumed for the simulations.

First, the temperature distribution shown in Fig. 3.6 is used as initial temper-
ature T0. It is assumed that the plate temperature becomes homogeneous and
settles at T1 = 700 ◦C. The vanishing longitudinal temperature gradient considered
in this simulation scenario does not change the plate contour significantly.

In the second simulation scenario, a temperature distribution with a lateral
gradient as shown in Fig. 3.8 is used as initial temperature T0 and the final
temperature is chosen as T1 = 700 ◦C. This change of the temperature in the
lateral direction results in a reduction of the maximum lateral deviation of
approximately 50 mm. A temperature non-uniformity of 100 ◦C in the lateral
direction occurs quite seldom in the real rolling process. Hence, the considered case
constitutes a worst-case scenario of thermal expansion. Therefore, the influence
of thermal expansion will be neglected in all subsequent considerations.

3.6 Validation
In this section, simulation results of the contour evolution model are compared to
measurement results for a typical plate rolled at AG der Dillinger Hüttenwerke,
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Germany. The considered plate is rolled out from an initial plate thickness

Calculation
step I

Calculation
step II

Calculation
step III

1 2 3 5 11

... Rolling pass with available measurement data

Figure 3.9: Explanation of the three calculation steps.

of 87 mm to its final thickness 36.5 mm using 11 rolling passes. As inputs of
the computations, the input thickness and the output thickness of the plate
are used. These thickness profiles are obtained from measurements. Moreover,
the temperature is assumed to be uniform and the parameters used for the
computations are listed in Tab. 3.1.

Measurement data is only available before and after the rolling passes 1, 3,
5 and 11. Therefore, the calculation is done in three steps, each covering at
least two rolling passes, as indicated in Fig. 3.9. The simulation only uses the
contour measurement from pass 1 as initial contour before calculation step I. The
remaining measurements of the contour are only used for validation.

For the three calculation steps, Fig. 3.10a shows the plastic strains εplxx ap-
proximated by polynomials of degree Px = Py = 8. The real plate contour is
measured by means of a laser line scanner and some image processing algorithms.
The scanner is arranged across the roller table. It captures images (1D arrays)
as the plate moves along the roller table. Its images are joined by software to
generate a full 2D picture of the plate contour. Due to the purely translational
motion of the plate this is a consecutive arrangement of 1D arrays. This strategy
gives a relatively low image resolution along the direction x, which does not
allow an accurate measurement of the edges 2 and 4 (head and tail end of the
plate). Consequently, only the edges 1 and 3 are shown and analyzed in the
following. Fig. 3.10b shows the simulated and measured plate contours after all
three calculation steps. Despite the fact that the calculation covers 10 rolling
passes, the model mismatch is in an acceptable range. More accurate results
would be achieved if the model were fed with measurement data not only at the
beginning but after each rolling pass where measurements are available. With the
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Figure 3.10: Results of the three calculation steps.

same hardware configuration as used for the contour measurement (cf. Section 2.6),
a rolling pass can be simulated within less than 1 ms CPU time.

3.7 Summary
In this chapter, a continuum-mechanics-based model for the evolution of the
plate contour was presented. The two-dimensional model predicts the contour
after a rolling pass based on the contour before the rolling pass and the input
and output thickness profiles. Simulation studies show that the influence of
temperature gradients on the resulting plate contour can be neglected in the
considered application. A validation of the model by means of measurements from
a typical rolled plate demonstrates its high accuracy. In the following, the model
of the contour evolution will be used in an optimization-based approach to reduce
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contour errors in the subsequent pass. However, the presented quasi-static model
does not cover the relation between the camber formation and the movement
during the rolling pass and hence cannot be used for feedback control during
the rolling pass. This is why a model linking the movement of the plate being
clamped in the rolling gap with the camber formation is presented in the next
chapter.



CHAPTER 4

Modeling of the plate movement during the rolling pass

A quasi-static mathematical model of the plate contour based on the input and
output thickness profiles of the plate was presented in Chapter 3. Online feedback
control during the rolling pass, however, requires also a mathematical model of the
movement of the plate during the rolling pass. Therefore, a model covering the
rotational movement and the camber formation during the rolling pass is discussed
in this chapter. This model will serve as the basis for an online feedback control
approach utilizing measurements of the plate contour and of the angular velocity
of the plate up- and downstream of the mill stand. Fig. 4.1 shows a top view of
the mill stand with the global coordinate frame (ξ, η, ζ) (Eulerian coordinates).
It is assumed that the material flow in the rolling gap is strictly perpendicular to
the work roll axis, which implies that lateral spread of the plate in the rolling gap
is neglected. The camber characterized by the lateral displacement δ(ξ) of the
centerline of the plate is of interest (cf. Fig. 4.1). The displacement δ(ξ) is the
arithmetical mean of the coordinates η of the longitudinal boundaries of the plate.
Clearly, δ(ξ) is a function of the time t because of the motion and deformation of
the plate. For the sake of readability, the argument t is omitted in the following.
The centerline δ(ξ) can be computed based on the contour measurement. The
local slope δ′(ξ) of the centerline (with respect to the axis ξ) is

δ′(ξ) = ∂δ(ξ)
∂ξ

and the local curvature δ′′(ξ) follows in the form

δ′′(ξ) =
∂2δ(ξ)
∂ξ2(

1 +
(
∂δ(ξ)
∂ξ

)2
) 3

2
≈ ∂2δ(ξ)

∂ξ2 . (4.1)

59
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Figure 4.1: Top view of the rolling process.

Because the local slope δ′(ξ) is expected to be very small the curvature δ′′(ξ) can
be approximated by ∂2δ(ξ)/∂ξ2.

4.1 Movement of the plate
Consider the Lagrangian coordinate

Y = η − δ(ξ)

which points along the direction η because the influence of the very small local
slope δ′(ξ) on the Lagrangian coordinate Y can be neglected. Y = 0 holds at the
centerline of the plate and Y = ±w/2 defines the boundaries of the plate, with w
as the width of the plate. Neglecting any bending deflection or crown of the work
rolls, the rolling gap height can be formulated as

hout(Y ) = h̄out + h̃out(Y ) = h̄out + ∆houtY
w
, (4.2)

which implies h̄out = (hout(w/2) + hout(−w/2)) /2 and ∆hout = hout(w/2) −
hout(−w/2). In the same way, the input thickness at ξ = 0 is parameterized
in the form

hin(Y ) = h̄in + h̃in(Y ) = h̄in + ∆hinY
w
. (4.3)

The plate enters the rolling gap with the velocity vin(Y ) and leaves it with
the velocity vout(Y ). These two velocities are linked at the point ξ = 0 by the
continuity equation

vin(Y )hin(Y ) = vout(Y )hout(Y ). (4.4)
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Specialization of (4.4) for Y = 0 yields

v̄inh̄in = v̄outh̄out (4.5)

with the spatial mean values v̄in and v̄out of the upstream and downstream
velocities vin(Y ) and vout(Y ), respectively. Because there are no external loads
outside the rolling gap, the motion of the plate can be characterized as a rigid-
body displacement both upstream and downstream of the rolling gap. Due to the
assumption of zero material flow along the lateral direction η in the rolling gap,
the upstream plate velocity vin(Y ) is given by

vin(Y ) = v̄in − Y ωin

and the downstream plate velocity vout(Y ) by

vout(Y ) = v̄out − Y ωout.

The upstream mean translational velocity follows in the form

v̄in = vin(−w/2) + vin(w/2)
2

and the upstream angular velocity is

ωin = vin(−w/2)− vin(w/2)
w

with respect to the axis ζ at the origin. Similarly, the downstream mean transla-
tional velocity follows in the form

v̄out = vout(−w/2) + vout(w/2)
2

and the downstream angular velocity is

ωout = vout(−w/2)− vout(w/2)
w

. (4.6)

The mean velocity of the downstream plate follows from (4.5) in the form
v̄out = v̄inh̄in/h̄out. The local velocity of the downstream plate follows from (4.4)
in the form

vout(Y ) = vin(Y )
h̄in + ∆hin Y

w

h̄out + ∆hout Y
w

, (4.7)

where (4.2) and (4.3) have been inserted. The asymmetry of the input thickness
and the asymmetry of the rolling gap height are expected to be small compared
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to their mean values. Therefore, it is reasonable to linearize (4.7) at the point
∆hin = ∆hout = 0 resulting in

vout(Y ) ≈
(
v̄in − Y ωin

) h̄in

h̄out
+ Y

wh̄out
∆hin − h̄inY

w
(
h̄out

)2 ∆hout
 . (4.8)

Insertion of (4.8) into (4.6) yields

ωout = v̄in

w

 h̄in(
h̄out

)2 ∆hout − 1
h̄out

∆hin
+ h̄in

h̄out
ωin. (4.9)

That is, the angular velocity ωout of the downstream plate depends on the velocities
of the upstream plate (v̄in and ωin) and the input and output thickness of the
plate. Here, a model of the forward and backward slip, see, e. g., [44] and [45],
is not needed because the upstream as well as the downstream longitudinal and
angular velocities are assumed to be measurable.

4.2 Evolution of the camber
The evolution of the camber defined in terms of the plate curvature δ′′(ξ) and its
nexus with the angular velocities ωin and ωout of the plate are analyzed in the
following. The objective of this analysis is to explore whether the camber can
be computed based on the measurement of the angular velocities ωin and ωout
and the longitudinal velocities v̄in and v̄out of the plate according to Chapter 2. If
the machine vision system is directly used for camber measurement of the part
of the plate that is currently in the FOV of the camera, there is an inherent
transport delay between camber generation and camber measurement. This delay
is clearly undesirable for feedback control of the camber. However, this delay can
be avoided by using measurements of the angular velocity of the plate.

The plate enters the rolling gap with the curvature (δin)′′ = δ′′(0−) and leaves
it with the curvature (δout)′′ = δ′′(0+). Because of the very small expected slope
of the centerline δ′(ξ), the angle ϕ(ξ) = arctan (δ′(ξ)) of the centerline may be
approximated by ϕ(ξ) = δ′(ξ) and the angular velocity of the material follows in
the form

dϕ(ξ, t)
dt︸ ︷︷ ︸
ω

= ∂δ′(ξ)
∂t

+ δ′(ξ)
∂ξ

dξ
dt︸︷︷︸
v

.

Hence, the angle δ′(0) changes according to
∂δ′(0−)
∂t

+
(
δin
)′′
v̄in = ωin (4.10a)

∂δ′(0+)
∂t

+
(
δout

)′′
v̄out = ωout. (4.10b)
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Because of the thickness reduction h̄out/h̄in in the rolling gap at Y = 0 and the
associated elongation of the plate, the downstream slope δ′(0+) follows in the form

δ′(0+) = h̄out

h̄in
δ′(0−). (4.11)

Hence, the derivatives δ′(ξ) and δ′′(ξ) can be discontinuous at ξ = 0. In the
following, it is considered that h̄out/h̄in is constant. Elimination of δ′(0−) and
δ′(0+) in (4.10) and (4.11) and insertion of (4.5) yields

(
δout

)′′
= ωout

v̄out
− h̄out

h̄in
ωin

v̄out
+
(
h̄out

h̄in

)2 (
δin
)′′
, (4.12)

i. e., a relation between the angular velocities ωin and ωout and the curvature of
the plate before and after the rolling gap.

4.3 Time-free formulation
So far, most of the quantities have been parameterized in terms of the time t. This
implies that the dynamical behavior depends on the plate velocities v̄in and v̄out,
which can vary, e. g., if the rotational speed of the work roll changes. Hence, the
dynamical model is generally time variant and the transport delay between the
mill stand and some downstream curvature measurement device can entail time
delays of various lengths. These drawbacks can be circumvented if the processed
downstream plate length is used as an independent coordinate instead of the time
t. Let

X(t) =
∫ t

0
v̄out(τ)dτ (4.13)

be the length of the already rolled part of the plate measured along the direction
ξ. More precisely, X(t) is the curvilinear distance from the mill stand to the head
end of the plate. During a rolling pass that starts at the time t = 0 (head end of
the plate enters the rolling gap), X(t) grows from 0 to the plate length. From
(4.13), it follows that

Ẋ(t) = v̄out(t) (4.14)
or equivalently

dX = v̄out(t)dt.
Based on this relation, the angular displacements per unit processed plate length
are defined in the form

Ωin = ωin

v̄out
(4.15a)

Ωout = ωout

v̄out
. (4.15b)
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Insertion of these relations and (4.5) into (4.9) and (4.12) yields the time-free
description of the camber evolution

Ωout = 1
wh̄out

∆hout − 1
wh̄in

∆hin + h̄in

h̄out
Ωin (4.16a)

(
δout

)′′
= Ωout − h̄out

h̄in
Ωin +

(
h̄out

h̄in

)2 (
δin
)′′
. (4.16b)

Note that all variables in (4.16) can be formulated as functions of the variable X
(in lieu of t).

4.4 Validation
In this section, the model of the movement of the plate covering the static
equations (4.16) is validated. For the validation of (4.16a), the input and the
output thickness (mean value and asymmetry) of the plate have to be known. The
reached tolerances of the mean thickness of the plate are tight and therefore the
desired values of the input and output thickness are used for h̄in and h̄out. Hence,
it is sufficient to measure the asymmetries of the input and output thickness.
However, at the considered rolling mill a thickness measurement device is only
installed downstream of the mill stand. Therefore, the thickness of the plate and
hence the thickness asymmetry can only be measured after every second pass.
This is why (4.16a) cannot be validated by means of measurements.

Contrary, (4.16b) can be validated because no thickness asymmetries appear
in (4.16b). In the validation, the curvature of the downstream plate is calculated
based on (4.16b) and then compared to the curvature calculated from the mea-
surement of the downstream centerline according to (4.1). All necessary quantities
in the validation are determined by the contour measurement approach from
Chapter 2. A Savitzky-Golay filter with degree 3 and window length 31 is used to
calculate the curvature based on the measurement of the centerline.

after passbefore pass
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Figure 4.2: Contour of the plate before and after the considered rolling pass.

The curvature of the upstream plate can be calculated during the contour
measurement itself based on the centerline of the already rolled part of the plate.



4.4. Validation 65

ΩoutΩin

Ω
in

10
−
3
/m

X(t) in m
−10 0 10 20 30 40 50
−2

−1

0

1

2

Figure 4.3: Measured upstream and downstream angular displacements Ωin and
Ωout, respectively.

However, the curvature of the downstream plate can only be calculated after the
contour measurement at the downstream camera. To this end, the measured plate
contour is shifted in time based on the movement of the plate to compensate for
the transport delay and to determine the curvature in the rolling gap.

Clearly, the curvature of the upstream plate of the actual pass could be
determined from the measured downstream contour of the previous pass. However,
as the upstream measurements of the angular movement and the curvature should
be compatible, the upstream curvature is determined by means of the upstream
contour measurement.

The thickness of the plate used in the validation is reduced from 19.9 mm to
18.5 mm in the considered pass. Fig. 4.2 shows the measured contours before and
after the rolling pass of the plate with a desired plate length of 43.3 m.

Furthermore, Fig. 4.3 shows the measured upstream and downstream angular
displacements as a function of the already rolled plate length X. Only the
overlapping part of the angular displacements in Fig. 4.3 can be used for the
validation of (4.16b). Hence, the measurements of a long plate are used for the
validation to have a large overlap.

In this scenario, the upstream angular displacement of the plate is almost
zero. This is because the upstream side guides were positioned close to the plate
edges to prevent the plate from rotations and from moving sidewards. Contrary,
the downstream plate can rotate due to the opened downstream side guides. For
rolled plate lengths X(t) larger than approximately 35 m, the plate is no longer
between the upstream side guides. This leads to a change of the almost constant
downstream angular displacement of the plate (cf. Fig. 4.3).

Fig. 4.4 shows the measured and the calculated downstream curvature of
the considered plate. The mismatch between the measured and the calculated
values is in an acceptable range. The missing upstream guidance of the plate for
X ≥ 35 m may also be seen in Fig. 4.4. It leads to a higher magnitude of the
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Figure 4.4: Measured and calculated downstream curvature of the plate (δout)′′.

curvature near the end of the plate.

4.5 Summary
A model describing the nexus between the movement of the plate and the evolution
of the centerline of the plate during a rolling pass was discussed in this chapter.
The model was validated by means of measurements of a plate rolled during
the standard production process. The model will be used in a feedback control
approach to reduce errors between the desired and the actual curvature of the
centerline during the rolling pass. In particular, a new two degrees-of-freedom
control structure with a Smith-predictor utilizing the time-delay free measurement
of the angular velocity is presented in the following chapter.



CHAPTER 5

Model-based control of the contour evolution

In this chapter, the method to measure the plate contour presented in Chap-
ter 2 as well as the mathematical models from Chapters 3 and 4 are utilized in
different control approaches to reduce contour errors during the rolling process.
A feedforward strategy is discussed first. Here, the measurement of the plate
contour is used to determine the required asymmetry of the output thickness
profile to obtain the desired contour after the rolling pass. This approach requires
knowledge of the input asymmetry before the rolling pass. Because a measurement
of the input asymmetry is not available in every rolling pass, a method to estimate
this quantity based on contour measurements is presented.

Despite the feedforward controller, imperfections like disturbances, model plant
mismatches, or inaccurate rolling gap control may lead to a deviation between the
required and the actual output thickness profile and hence to a deviation between
the desired and the resulting contour. In particular after the last rolling pass,
no further correction of the contour is possible with the discussed feedforward
approach. Hence, an additional feedback controller seems favorable to reduce
contour errors emerging during the current rolling pass.

The FOV of the camera used for the measurement of the plate contour is located
a few meters downstream of the rolling gap. Hence, the resulting plate contour
is measured with a time delay (transport delay), which in general complicates
the use of feedback controllers. However, the angular velocity of the plate is
linked with the contour evolution. The measurement of the angular velocity
does not have a delay and is therefore utilized in the presented feedback control
approach. In particular, a two degrees-of-freedom (2-DOF) control structure with
a Smith-predictor, i. e. a combination of a feedforward controller and a feedback
Smith-predictor controller is used. Furthermore, the proof of robust stability of
the proposed control concept is given.

67
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The automation system installed at the considered rolling mill allows two
different ways to adjust the rolling gap height. First, the desired output thickness
can be set before the beginning of the next pass, which is used to apply the
feedforward approach. Second, an extra value may be added to the set point of
the asymmetry during the rolling pass, which makes feedback control possible
during the rolling pass.

Consider a plate with a homogeneous thickness and a camber. In general, the
compensation of the camber within a single pass results in an inhomogeneous
thickness after the rolling pass. This drawback can be avoided by using a control
approach covering several passes. Then, the output thickness in interim passes is
determined such that both the desired contour and a homogeneous thickness of
the final plate can be simultaneously achieved. Parts of this chapter have been
published in [28] and [29].

5.1 Single pass-to-pass adjustment of the rolling
gap (feedforward control)

In this section, an optimization-based reduction of camber of heavy plates is
presented. To this end, the contour measurement described in Chapter 2 is
used to determine the downstream plate contour. Based on the mathematical
model discussed in Chapter 3 and the measured contour, the required asymmetry
of the output thickness to achieve the desired contour after the next pass is
computed. The calculation is performed once after every pass. Based on the

infrared
camera

rolling gap
actuators

field of view

model-
based
control

contour
estimation

heavy
plate

pass j

pass j + 1

Figure 5.1: Overview of the camber reducing feedforward control approach.



5.1. Single pass-to-pass adjustment of the rolling gap (feedforward control) 69

required asymmetry to reduce the camber, the actuators of the rolling gap (cf.
Fig. 5.1) are adjusted using the subordinate automatic gauge control (AGC)
system, see, e. g., [46].

5.1.1 Parameterization of the thickness profiles and the
centerline

The optimization-based methods presented in this section require a parameteriza-
tion of the thickness profile of the plate. The automation system installed at the
considered rolling mill can adjust the center-thickness h̄out and the asymmetry
∆hout of the rolling gap height according to desired values defined on a regular
spatial grid in the longitudinal direction of the plate. A linear interpolation
is performed between the grid points. Consequently, the profile of the output
thickness hout(x, y) is parameterized as

hout(x, y) = h̄outi + h̄outi+1 − h̄outi

xi+1 − xi
(x− xi)

+ y

w

[
∆houti + ∆houti+1 −∆houti

xi+1 − xi
(x− xi)

]
∀ xi ≤ x ≤ xi+1

(5.1)

with the grid points xi, i = 1, . . . , NP and the plate width w. The center-thickness
hout(x, 0) may be adjusted by the coefficients h̄outi , i = 1, . . . , NP , whereas the
coefficients ∆houti determine the asymmetry of the output thickness. The profile
of the input thickness hin(x, y) is parameterized analogously using the coefficients
h̄ini and ∆hini , i = 1, . . . , NP .

Additionally, the centerline of the plate as shown in Fig. 5.2 is parameterized
by δ(x) and is used as an aggregate measure of the lateral plate contour. The
centerline δin(x) of the plate before the rolling pass is calculated in the form (see
Fig. 3.3)

δin(x) = pB1(x) + pB3(x)
2 (5.2)

with the polynomials pB1(x) and pB3(x) of degree NB of the longitudinal edges
of the plate. The polynomials pB1(x) and pB3(x) follow from a least-squares
approximation of the longitudinal boundaries of the plate before the rolling pass.
The predicted centerline δoutpred(x) of the plate after the rolling pass follows as (cf.
Fig. 5.2)

δoutpred

(
x+ u(x, δin(x))

)
= δin(x) + v(x, δin(x))

with the displacements u(x, y) and v(x, y) from (3.12).
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Figure 5.2: Centerline of the plate before and after the rolling pass.

5.1.2 Approximation of the plastic strain
The mathematical model of the camber evolution expects the plastic strain to
be parameterized as a polynomial (cf. (3.22)). However, the parameterization
of the input and output thickness according to (5.1) does not directly yield a
polynomial strain (cf. (3.1)). Therefore, the plastic strain (3.1) is approximated
by the polynomial representation (3.22) using a weighted residual method, see,
e. g., [41]. To this end, the residual

R =
(
hin(x, y)
hout(x, y) − 1

)
−

Px∑
i=0

Py∑
q=0

cxx,i,qx
iyq

︸ ︷︷ ︸
λT(x,y)c

is forced to vanish in a weighted integral sense, i. e.,∫∫
I

λ(x, y)Rdxdy = 0. (5.3)

The coefficients cxx,i,q are arranged in the vector c and the vector λ(x, y) contains
the corresponding terms xiyq. In (5.3), the weighting function is denoted by
λ(x, y) and the integration domain I is the area of the plate as shown in Fig. 3.3.
It is required that (5.3) vanishes for each element of λ used as weighting function
λ(x, y). This approach yields the coefficient vector c as solution of the linear
equation

Ac = b (5.4)
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with the matrix

A =
∫∫
I

λλTdxdy (5.5)

and the vector

b =
∫∫
I

(
hin(x, y)
hout(x, y) − 1

)
λdxdy. (5.6)

The numerical properties of (5.4) are of good nature iff the components of λ are
linearly independent because then A is positive definite. The integrations are
performed analytically in (5.5) and by means of Gaussian quadrature in (5.6).

5.1.3 Formulation of the optimization problem
In the following, the asymmetry of the output thickness ∆houti , i = 1, . . . , NP is
adjusted to reduce the camber. The coefficients h̄outi of the center-thickness are
set to the desired thickness value houtdes, i. e., h̄outi = houtdes. Additionally, the profile
of the input thickness hin(x, y) has to be known. At the considered rolling mill,
measurements of the input thickness profile are not available at every pass because
there is only one thickness measurement device. It is located downstream of the
rolling mill and the thickness over the whole plate is only measured after the last
pass in the standard production process. Hence, instead of using measurements to
determine the coefficients h̄ini of the center-thickness, they are set to the desired
plate thickness of the previous pass. The asymmetry of the input thickness
characterized by ∆hini , i = 1, . . . , NP is estimated based on the method presented
in Section 5.1.4.

The asymmetry of the output thickness ∆houti is determined by solving the
optimization problem

min
∆hout ∈ RNP

J(∆hout) (5.7a)

with

∆hout =
[
∆hout1 ∆hout2 . . . ∆houtNP

]T
and the objective function

J(∆hout) = 1
MCL

MCL∑
j=1

(
(δdes(x̄j))′′ − (δoutpred(x̄j))′′

)2
+ β1

NP

NP∑
i=1

(∆houti )2

+ β2

NP − 1

NP−1∑
i=1

(
∆houti+1 −∆houti

xi+1 − xi

)2

+ β3

NP

NP∑
i=1

P (∆houti ).
(5.7b)
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Here, the curvature of the desired centerline is denoted by (δdes(x))′′ andMCL is the
number of values used for evaluating the curvature deviation (δdes(x))′′−(δoutpred(x))′′
on an equally spaced grid x̄j, j = 1, . . . ,MCL. In general, a straight centerline is
desired, i. e., (δdes)′′ = 0.

Besides weighting the difference between the desired and the predicted cur-
vature of the centerline, the positive constants β1 and β2 are used to weight the
asymmetry of the output thickness and its variation along the plate length, respec-
tively. Note that xi, i = 1, . . . , NP , represents a grid point of the parameterization
of the output thickness (cf. (5.1)).

The term β3/NP

∑NP
i=1 P (∆houti ) with β3 > 0 penalizes asymmetries outside the

allowed range ∆houti ∈ [∆houtmin,i,∆houtmax,i]. The penalty function

P (∆houti ) =


(
∆houti −∆houtmin,i

)2
if ∆houti < ∆houtmin,i(

∆houti −∆houtmax,i

)2
if ∆houti > ∆houtmax,i

0 else

is used to form a soft constraint, see, e. g., [47]. This soft-constraint formulation
does not ensure that the constraints ∆houtmin,i ≤ ∆houti ≤ ∆houtmax,i are exactly
fulfilled. However, a properly chosen weighting factor β3 keeps the violation of
the constraints within an acceptable range. Note that (5.7b) is a sum of squares
and can be written in the form J(∆hout) = eTe with the vector e. This quadratic
form of the objective function (5.7b) facilitates the use of the Gauss-Newton
method (cf. Appendix A.3) with the line search from Appendix A.4.1 to solve the
optimization problem.

Three termination criteria are used to decide whether the solution ∆houtl of
the current iteration l is acceptable:

• The change of the optimization variable is sufficiently small, i. e., ||∆houtl+1 −
∆houtl ||∞ < γ̄x with a constant γ̄x > 0.

• The value of the objective function is small enough, i. e., J(∆houtl ) < γ̄J
with a tuning parameter γ̄J > 0.

• The improvement of the objective function achieved in the current iteration
is smaller than the constant γ̄dJ > 0, i. e., J(∆houtl )− J(∆houtl+1) < γ̄dJ .

5.1.4 Estimation of the thickness asymmetry
The presented method for the reduction of contour errors requires the knowledge
of the thickness asymmetry before the rolling pass. Because the thickness profile
is not measured after every rolling pass, a method to estimate the thickness
asymmetry is presented in this section. Clearly, the output thickness asymmetry
of the actual pass is the relevant input asymmetry of the consecutive pass. In
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the estimation approach, the parameterization from (5.1) is used for the input
and output thickness profiles. The estimated values of the asymmetry coefficients
∆houti , i = 1, . . . , NP are denoted by ∆ĥouti . Again, the coefficients of the center-
thickness h̄ini and h̄outi , i = 1, . . . , NP are set to their desired values. Additionally,
the asymmetry coefficients of the input thickness profile ∆hini are assumed to be
known. The estimated asymmetry of the output thickness characterized by the
coefficients ∆ĥouti , i = 1, . . . , NP is found by solving the optimization problem

min
∆ĥout ∈ RNP

Ĵ(∆ĥout) (5.8a)

with the objective function

Ĵ(∆ĥout) = 1
MCL

MCL∑
j=1

(
(δout(x̄j))′′ − (δoutpred(x̄j))′′

)2
+ β̂1

NP

NP∑
i=1

(∆ĥouti )2

+ β̂2

NP − 1

NP−1∑
i=1

∆ĥouti+1 −∆ĥouti

xi+1 − xi

2

+ β̂3

NP

NP∑
i=1

P (∆ĥouti )
(5.8b)

and the vector of the optimization variables

∆ĥout =
[
∆ĥout1 ∆ĥout2 . . . ∆ĥoutNP

]T
.

The centerline of the plate after the rolling pass δout is calculated similarly to
the centerline before the rolling pass (cf. (5.2)) based on the measurement of the
plate contour. MCL denotes the number of values used to evaluate the curvature
of the centerline on an equidistant spatial grid x̄j, j = 1, . . . ,MCL. The term
β̂1/NP

∑NP
i=1(∆ĥouti )2 may be omitted in the objective function. However, a properly

chosen weighting factor β̂1 leads to a numerically good-natured optimization
problem while affecting the accuracy of its solution only insignificantly. The term
with the weighting factor β̂2 may be used to reduce the noise on the estimation
result because it penalizes the change between neighboring asymmetry coefficients
∆ĥouti . The objective function (5.8b) also features a soft constraint to limit the
estimated output asymmetry to the range ∆ĥouti ∈ [∆ĥoutmin,i,∆ĥoutmax,i] by choosing
an appropriate weighting factor β̂3. Due to the similarity of (5.8) with (5.7), the
Gauss-Newton method is also suitable for solving the optimization problem (5.8).
Three termination criteria are used to decide whether the solution ∆ĥoutl of the
current iteration l is acceptable:

• The change of the optimization variable is sufficiently small, i. e., ||∆ĥoutl+1 −
∆ĥoutl ||∞ < γ̂x with a constant γ̂x > 0.

• The value of the objective function is small enough, i. e., Ĵ(∆ĥoutl ) < γ̂J
with a tuning parameter γ̂J > 0.
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• The improvement of the objective function achieved in the current iteration
is smaller than the constant γ̂dJ > 0, i. e., Ĵ(∆ĥoutl )− Ĵ(∆ĥoutl+1) < γ̂dJ .

The presented approach allows the estimation of the output thickness profile of a
single pass. Hence, if an initial thickness measurement of the plate is available, the
first estimation of the output thickness profile may be performed. The estimated
output thickness profile is then used as input thickness profile of the asymmetry
estimation of the next pass and so forth. This recurrent estimation approach
yields the input thickness profiles needed in the camber reduction approach from
Section 5.1.3.

An accurate estimation result has been observed for thin plates whereas the
estimation results are less accurate for thick plates. This behavior is due to the
limited accuracy of the contour estimation in the range of one centimeter and due
to the fact that large thickness asymmetries are necessary to produce a measurable
camber on thick plates. Hence, the estimation of the thickness asymmetry is only
performed for passes with a desired output plate thickness lower than the constant
houtest,max. A limitation of the estimated output asymmetry is not mandatory in
(5.8). However, the constraint is used as a safety measure to avoid excessive
estimated asymmetries for thick plates.

Beside its usage in the pass-to-pass camber reduction approach, the estimation
of the asymmetry can be used to monitor the condition of the mill stand during
the rolling process. It allows, for instance, the identification and compensation of
deviations between the desired and actual output asymmetry of the plate.

5.1.5 Compensation of the asymmetric mill stand deflec-
tion

Due to the rolling forces, the mill stand is subject to an elastic deflection of up to
14mm. Generally, the compliance of the mill stand is not strictly the same on
the drive side and on the operator side, which brings along a deflection that is
asymmetric in the lateral direction and hence causes a cambered plate. The effect
of this imperfection is analyzed by means of the evolution of the centerline of a
plate rolled with zero control action (nominal value ∆houti = 0) at the considered
reversing mill stand. As shown in Fig. 5.3, the maximum lateral deviation δmax of
the centerline of the plate (cf. Fig. 2.12) is unacceptably large and changes its sign
although the nominal asymmetry of the output thickness profile is kept constant.
The first passes show a positive camber, while δmax becomes negative in the last
pass ending up with δmax ≈ −20 cm. Similar evolutions of the centerline have
been observed for many other plates rolled without any form of camber correction.

This remarkable behavior seems to be linked with the respective rolling force.
It is assumed that a change of the rolling force from one pass to the next pass
may lead to a different asymmetry of the output thickness. For the considered
plate, the averages of the measured total rolling force are shown in the lower
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Figure 5.3: Measured evolution of the centerline for nominal values ∆hout = 0
and averages of the measured normalized rolling force.

part of Fig. 5.3. The figure indicates that the desired control action ∆houti is not
accurately realized. Clearly, such a mismatch between the desired and the realized
control action may jeopardize the effectivity of any camber control approach.

To analyze the asymmetric deflection of the mill stand, the dependence of
the thickness asymmetry on the rolling force needs to be known. During a
measurement campaign the thickness profile of the plate was measured after every
forward pass. The thickness asymmetry of the plate after the backward pass
was estimated using the approach presented in Section 5.1.4. In this approach,
the measured input asymmetry and the measured contours before and after the
considered rolling pass are used to estimate the output thickness asymmetry after
the pass. Based on the measured and estimated thickness asymmetries of different
plates and rolling passes, an almost linear relation between the disturbance of
the output thickness asymmetry and the applied rolling forces can be observed.
Moreover, this behavior is different for forward and backward rolling passes. Hence,
the disturbance ∆houtdist of the thickness asymmetry is empirically formulated as

∆houtdist =


w
wcyl

∆h0 + w
wcyl

kfwdFroll in forward passes
w
wcyl

∆h0 + w
wcyl

kbwdFroll in backward passes
(5.9)

with the compliance constants kfwd and kbwd for rolling passes in the forward and
backward direction, respectively. Furthermore, ∆h0 denotes an unknown offset of
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the asymmetry and wcyl is the lateral distance between the cylinders of the rolling
gap actuator. The term w/wcyl maps the asymmetric deflection of the mill stand
to the output asymmetry of the plate, which has the width w. The deflection
constants were identified as kfwd = 15.0 µm/MN and kbwd = 17.4 µm/MN utilizing the
least-squares method and measurements of different plates and rolling passes.

wcyl

w
∆hout

dist

Froll

∆h0

0

forward pass

backward pass

FrollFroll,ref

∆hrg
comp

Figure 5.4: Compensation of the asymmetric deflection of the rolling mill relative
to the reference rolling force Froll,ref .

The idea of the compensation approach is to supplement the desired asym-
metry of the rolling gap actuator by a compensation term ∆hrgcomp such that
the disturbance (5.9) on the thickness asymmetry vanishes. The value of ∆h0
in (5.9) may change because after every change of the work rolls a calibration
routine that can modify ∆h0 is performed. Here, the tilt of the rolls is manually
adjusted to obtain a symmetric rolling gap profile in forward direction when
applying the reference rolling force Froll,ref . Therefore, the compensation ∆hrgcomp
is done relatively to the deflection caused by the reference rolling force Froll,ref
(cf. Fig. 5.4) and is formulated as

∆hrgcomp =
kfwd (Froll,ref − Froll) in forward passes
kfwdFroll,ref − kbwdFroll in backward passes

. (5.10)

Note that the compensation ∆hrgcomp is defined at the lateral distance of the
cylinders of the rolling gap actuator and is therefore independent of the plate
width. The reference rolling force Froll,ref is chosen in the range of the rolling forces
applied during the last pass of the plates from the future production schedule.

5.1.6 Combination of feedforward control and asymmetry
estimation

This section describes the combination of the feedforward control approach from
Section 5.1.3 with the method to estimate the asymmetry from Section 5.1.4.
Under real rolling conditions, the output asymmetry of the plate can be subject
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to disturbances, e. g., due to a non-ideal control of the rolling gap actuators. That
is, there exists a deviation between the desired output asymmetry ∆hout and the
estimated (real) output asymmetry ∆ĥout. The estimated deviation ∆h̃outj in the
pass j is calculated using an IIR low-pass filter of the form

∆h̃outj = β̃∆h̃outj−1 + (1− β̃)
(
∆ĥoutj−1 −∆houtj−1

)
(5.11)

with the filter constant 0 ≤ β̃ ≤ 1 and the initial value ∆h̃out0 = 0. Clearly, an
implicit assumption made in the estimation of ∆h̃outj is that the compensation of
the asymmetric deflection of the mill stand is exact and therefore the estimated
deviation is not influenced by the asymmetric deflection. The value of β̃ may
be used to reduce the noise on the estimated deviation ∆h̃outj as not only the
actual deviation

(
∆ĥoutj−1 −∆houtj−1

)
but deviations from previous passes are also

influencing the estimation. Clearly, β̃ ≈ 1 yields in an almost constant deviation
over several passes whereas β̃ = 0 does not take previous deviations into account.
The result of the optimization problem (5.7) is supplemented by a compensation
term for the estimated deviation ∆h̃outj and the compensation of the asymmetric
mill stand deflection ∆hrgcomp from (5.10). The required asymmetry of the rolling
gap cylinders ∆hrgreq,j is thus computed in the form

∆hrgreq,j = wcyl
w

∆houtreq,j = wcyl
w

(
∆houtj −∆h̃outj

)
+ ∆hrgcomp (5.12)

with ∆hrgcomp =
[
1 . . . 1

]T
∆hrgcomp. The values ∆hrgreq,j are sent to the automa-

tion system of the rolling mill before the rolling pass j. Hence, the desired rolling
forces Froll,des are used in the compensation approach of the asymmetric mill
stand deflection, i. e., Froll = Froll,des. Fig. 5.5 shows the necessary calculations for
the single pass-to-pass adjustment in graphical form after pass j − 1, i. e. how to
calculate the required asymmetry ∆hrgreq,j of the rolling gap cylinders for pass j.

Note that only a measurement of the downstream contour is necessary in
the presented approach. This is because the centerline δoutj−2 of the downstream
measurement of the preceding pass j−2 is used instead of the upstream centerline
δinj−1 to estimate the output thickness asymmetry of pass j − 1.

5.2 Feedback control during the rolling pass
A non-ideal control of the rolling gap actuators, model-plant mismatches or distur-
bances may lead to a deviation between the desired and the actual plate contour
even if feedforward control is used. Hence, an additional feedback controller
is used to (further) improve the contour of the plate. Simple feedback control
utilizing the directly measured contour is difficult to apply because of the inherent
transport delay between the camber generation in the rolling gap and the camber
measurement. To circumvent this difficulty, a control approach using the delay-free
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Figure 5.5: Single pass-to-pass adjustment of the rolling gap with compensation
of the asymmetric mill stand deflection and the estimated deviation ∆h̃out.

measurement of the downstream and upstream angular velocities of the plate is
presented. The mathematical model of the plate movement from Chapter 4 is
used in the controller design. It describes the nexus between the angular velocity
and the resulting curvature of the plate.

5.2.1 Plant model
As a preparatory step for the feedback controller design, the idealized time-free
model (4.16) is supplemented by an output equation for the measured camber and
by disturbances, which may, for instance, be caused externally or by modeling
errors. The inputs of the system are

u1 = ∆hout, u2 = ∆hin, u3 = Ωin, u4 =
(
δin
)′′
.

Here, u1 is a control input (tilt of the rolling mill) whereas u2, u3, and u4 are
externally defined known inputs. The static model (4.16) is supplemented by
disturbances (process noise) d1 and d2 to get the plant model

x1(X) = Ωout = 1
wh̄out

∆hout︸ ︷︷ ︸
u1(X)

− 1
wh̄in

∆hin︸ ︷︷ ︸
u2(X)

+ h̄in

h̄out
Ωin︸︷︷︸
u3(X)

+d1(X) (5.13a)

x2(X) =
(
δout

)′′
= Ωout︸ ︷︷ ︸

x1(X)

− h̄
out

h̄in
Ωin︸︷︷︸
u3(X)

+
(
h̄out

h̄in

)2 (
δin
)′′

︸ ︷︷ ︸
u4(X)

+d2(X). (5.13b)
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It is assumed that the contour measurement described in Chapter 2 exactly
measures the respective quantities, i. e., without errors. The machine vision system
measures the current values v̄in, v̄out, ωin, and ωout as well as δ′′(ξ) for those parts
of the plate that are currently inside the fields of view of the cameras. Therefore,
the current (upstream) value u4(X) = (δin)′′ is also known from images previously
captured by the upstream camera. In contrast, a direct measurement of the
current (downstream) value x2(X) = (δout)′′ can only be made by the downstream
camera after the plate has traveled the (constant) distance ξcam ≥ ξml,1 from the
rolling gap to the field of view of the downstream camera along the direction ξ.
This causes a delay between the generation of the camber and its measurement.
In the plant model, the camera system is represented by the output equations

y1(X) = x1(X) (5.14a)
y2(X) = x2(X − (ξcam + ξ̃cam)). (5.14b)

Here, ξcam is the known nominal distance, and ξ̃cam is the unknown uncertainty
of the distance. It is assumed that ξcam and ξ̃cam are constant. Because of the
unknown disturbances d1 and d2 in the (static) process model (5.13), there is no
need to consider extra measurement noise in (5.14). The output y1(X) is computed
in the measurement system based on (4.15b) using the measured current values
v̄out and ωout.

Note that the process model (5.13) is a static mapping. The only dynamical
behavior of the plant model is the delay in the output equation (5.14b).

5.2.2 Camber control
The model (5.13) and (5.14) serves as a basis for the controller design and is
rewritten in the compact form

x1(X) = (A1 + Ã1)u1(X) + (A2 + Ã2)u2(X) + 1
A3 + Ã3

u3(X) + d1(X) (5.15a)

x2(X) = x1(X)− (A3 + Ã3)u3(X) + (A3 + Ã3)2u4(X) + d2(X) (5.15b)
y1(X) = x1(X) (5.15c)
y2(X) = x2(X − (ξcam + ξ̃cam)), (5.15d)

where the coefficients

A1 + Ã1 = 1
wh̄out

(5.16a)

A2 + Ã2 = − 1
wh̄in

(5.16b)

A3 + Ã3 = h̄out

h̄in
(5.16c)
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are assumed to be constant. Ai + Ãi represents the unknown true value of the
respective coefficient and Ai is its known nominal counterpart used for all compu-
tations. Constancy of these values is a reasonable assumption if h̄in is constant
and if the thickness controller ensures h̄out to be constant. This assumption is not
necessary for practical control implementation but will simplify the proof of the
closed-loop stability. The constants Ã1, Ã2, Ã3, and ξ̃cam capture the model-plant
mismatch and satisfy |Ã1| � A1, |Ã2| � A2, |Ã3| � A3, and |ξ̃cam| � ξcam. They
will be of interest in an analysis of the robustness of the controller and are set to
zero in the nominal model.

outer
controller

inner
controller+ −

u1 y1y1,ref y2
y2,ref Plant

(5.15a),
(5.15c)

Plant
(5.15b),
(5.15d)

Figure 5.6: Cascade structure of the feedback controller.

Fig. 5.6 shows the proposed cascade control structure with two loops. The
inner loop controls y1 = Ωout with the control input u1 = ∆hout, whereas the outer
loop uses the control input y1,ref to make y2 = (δout)′′ follow y2,ref . As usual for
cascade control structures, the inner control loop is assumed to be ideal for the
design of the outer control loop.

5.2.2.1 Inner loop

The inner control loop, which controls the plant (5.15a) and (5.15c), is outlined
in Fig. 5.7. The control law is formulated as

u1 = u1,ff (X) + u1,fb(X)

where the feedforward part u1,ff (X) is calculated according to the optimization-
based feedforward approach (cf. (5.12)). Note that the control input u1 (output
asymmetry of the plate) is defined at the plate width w and hence has to be scaled
by the factor wcyl

w
before it is sent to the automation system of the rolling gap

height controller. The feedforward part u1,ff (X) of the asymmetry is computed
by linear interpolation in the form

u1,ff (X) = w

wcyl

[
∆hrgreq,i +

∆hrgreq,i+1 −∆hrgreq,i
xi+1 − xi

((
ldes
2 −X

)
χ
h̄out

h̄in
− xi

)]

∀ xi ≤
(
ldes
2 −X

)
χ
h̄out

h̄in
≤ xi+1
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with the grid points xi, i = 1, . . . , NP . The feedback part

u1,fb(X) = VI
A1
TI (y1,ref (X)− y1(X)) + VI

A1

∫ X

0
y1,ref (X̄)− y1(X̄)dX̄ (5.17)

defines the PI-feedback controller CI with the controller parameters VI and TI .
The thickness asymmetry of the feedforward approach is defined in a coordinate
system fixed to the center of the plate before the rolling pass (cf. Chapter 3).
The term

(
ldes

2 −X
)
χ h̄

out

h̄in with χ ∈ {−1, 1} maps the already rolled plate length
X to the coordinate x in the plate-fixed coordinate system. The desired plate
length after the pass is denoted by ldes. A rolling pass in backward direction is
characterized by χ = −1 and a rolling pass in forward direction by χ = 1. In the

PSfrag
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A2 + Ã2

(A3 + Ã3)
−1

u1

u2

u3

d1

y1y1,ref

u1,ff

u1,fb +

+

+

+

+

+

++ − CI

eI

inner control loop

Figure 5.7: Inner control loop.

following, a hatˆ labels signals in the Laplace domain and s ∈ C is the Laplace
variable with the unit 1/m. The transfer function of the PI-feedback controller is

CI(s) = VI
A1

1 + sTI
s

. (5.18)

In the Laplace domain, the input-output relation defined by (5.15a) and (5.15c)
reads as

ŷ1(s) = (A1 + Ã1)û1(s) + (A2 + Ã2)û2(s) + 1
A3 + Ã3

û3(s) + d̂1(s)

and the tracking error (closed-loop control error) follows in the form

êI(s) = ŷ1,ref (s)− ŷ1(s)

=
ŷ1,ref (s)− (A1 + Ã1)û1,ff (s)− (A2 + Ã2)û2(s)− 1

A3+Ã3
û3(s)− d̂1(s)

1 + (A1 + Ã1)CI(s)
.

(5.19)
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For closed-loop stability, the denominator of (5.19) must be Hurwitz. Insertion of
(5.18) into (5.19) shows that this is satisfied if VI > 0 and VITI > −A1/(A1+Ã1) ≈
−1. The scaling 1/A1 in the control law (5.17) results in a closed-loop dynamics
independent of w and h̄out for Ã1 = 0. This property simplifies the choice of the
controller parameters VI and TI as they do not have to be adjusted to plates with
different dimensions. The final value theorem shows that

lim
X→∞

eI(X) = lim
s→0

sêI(s) = 0

holds for constant inputs y1,ref , u1,ff , u2, u3, and d1, i. e., the steady-state error
vanishes in this case.

5.2.2.2 Outer loop

The outer control loop, which controls the plant (5.15b) and (5.15d), is shown in
Fig. 5.8. Here, a 2-DOF Smith-predictor control structure, i. e., a combination of
a feedforward controller and a feedback Smith-predictor controller is used, see,
e. g., [48] and [49]. For the design and the analysis of robust stability of this loop,
the inner loop is assumed to be ideal, which means y1 = y1,ref . The control law

A2
3

Ā2
3

Ā3

A3

u3

u4

d2

y1y1,ref y2

y2,ref y1,ff

y1,fb x2

+

++

+

+

+

+ +

+

+
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−
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inner
control
loop
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Figure 5.8: Outer control loop.

y1,ref (X) = y1,ff (X) + y1,fb(X)

with the feedforward controller FO defined by

y1,ff (X) = y2,ref (X + ξcam) + A3u3(X)− A2
3u4(X) (5.20)
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and the PI-feedback controller defined by

y1,fb(X) = VOTOẽO(X) + VO

∫ X

0
ẽO(X̄)dX̄

is used for the outer control loop. The control law (5.20) of the feedforward
controller follows from (5.15b)-(5.15d) with d2 = 0, ξ̃cam = 0, and Ã3 = 0. The
PI-feedback controller of the outer control loop with the parameters TO and VO
reads as

CO(s) = VO
1 + sTO

s
. (5.21)

As usual for a Smith-predictor, the input of the feedback controller is defined in
the form

ẽO(X) = y2,ref (X)− y2(X)−
(
y1(X)− A3u3(X) + A2

3u4(X)

− y1(X − ξcam) + A3u3(X − ξcam)− A2
3u4(X − ξcam)

)
,

where y1(X)− A3u3(X) + A2
3u4(X) is the internal model prediction of x2(X) (cf.

(5.15b)).
In the Laplace domain, the input-output relation defined by (5.15b) and

(5.15d) reads as

ŷ2(s) =
(
ŷ1(s)− Ā3û3(s) + Ā2

3û4(s) + d̂2(s)
)

e−sξ̄cam

with ξ̄cam = ξcam + ξ̃cam and Ā3 = A3 + Ã3. The closed-loop transfer function
relevant for internal stability can be written utilizing Fig. 5.8, (5.20), and (5.21)
in the form

[
ŷ1,ref (s)
ŷ2(s)

]
= T(s)


ŷ2,ref (s)
d̂2(s)
û3(s)
û4(s)

 (5.22)

with the matrix

T(s) = 1
1 + L(s)N(s)

= 1
1 + CO(s)

(
1 + e−sξ̄cam − e−sξcam

)
[
N11(s) N12(s) N13(s) N14(s)
N21(s) N22(s) N23(s) N24(s)

]
(5.23)
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and the abbreviations

N11(s) = CO(s) + esξcam

N12(s) = −CO(s)e−sξ̄cam

N13(s) = A3 + CO(s)
(
Ā3e−sξ̄cam + A3(1− e−sξcam)

)
N14(s) = −A2

3 − CO(s)
(
Ā2

3e−sξ̄cam + A2
3(1− e−sξcam)

)
N21(s) =

(
CO(s) + esξcam

)
e−sξ̄cam

N22(s) =
(
1 + CO(s)(1− e−sξcam)

)
e−sξ̄cam

N23(s) = −Ã3N22(s)
N24(s) = Ã3(2A3 + Ã3)N22(s).

Without any model-plant mismatch and with an exactly known position of
the curvature measurement, i. e. Ã3 = 0 and ξ̃cam = 0, satisfying VO > 0 and
VOTO > −1 ensures the BIBO stability of (5.22) and thus internal stability of the
system. VO > 0 and VOTO > −1 are assumed throughout this chapter.

In general, the position of the curvature measurement is uncertain, i. e., ξ̃cam 6=
0. The control loop is rearranged as shown in Fig. 5.9 for the test of internal
stability. The task of proving internal stability is to show that the transfer
functions between every input/output combination in the closed-loop system of
the signals shown in Fig. 5.9 are BIBO-stable. The signal y1,ff can be shifted and
added to uI and uO. Furthermore, the signals uI and uO can be shifted behind
the transfer function blocks 1− e−sξcam and e−s(ξcam+ξ̃cam), respectively, because
these two transfer functions are BIBO-stable. Hence, the effect of uI and uO
is equivalent to that of y2,ref . Consequently, y1,ff , uI , and uO are not relevant
for the stability analysis and are set to zero, i. e., y1,ff = uI = uO = 0 and it is
sufficient to show the stability of the control loop with the reference value y2,ref
as input and y2 as output.

uO = d2 − Ā3u3 + Ā2
3u4

y1 y2

ỹ2

y2,ref

y1,ff

y1,fb x2

uI = −A3u3 + A2
3u4

+

++

++

+

+

+

++ − CO

ẽO
e−s(ξcam+ξ̃cam)

1− e−sξcam

outer controller

Figure 5.9: Proof of robust stability of the outer control loop.
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However, it is easier to show the stability for the reference value y2,ref as
input and ỹ2 as output because this input/output combination results in a SISO
feedback control loop with L(s) in the forward branch and gain 1 in the feedback
branch. Proving the stability for ỹ2 is sufficient because when ỹ2 is bounded also
y2 is bounded. The test for internal stability is to analyze whether 1

1+L(s) ∈ Â, see
[50], for all admissible values of ξ̃cam, where Â is the set of Laplace transforms of
BIBO-stable impulse responses as defined in [50] or [51]. A Nyquist-like graphical
stability test, see, e. g., [51], is used for this analysis which consists of two parts:

First, it must be shown that L(s) can be written in the form

L(s) = La(s) + Lr(s),

where La(s) ∈ Â and Lr(s) is rational and strictly proper. Insertion of (5.21) into
L(s) from (5.23) yields, see also Fig. 5.9,

L(s) =
(
VO
s

)
︸ ︷︷ ︸

Lr(s) rational and strictly proper

+ VOTO
(
1− e−sξcam(1− e−sξ̃cam)

)
− VO

s
e−sξcam

(
1− e−sξ̃cam

)
︸ ︷︷ ︸

La(s)∈ Â

.(5.24)

Second, 1+L(s) has to be analyzed. Suppose that L(s) has p poles in C+
0 . Here,

C+
0 denotes the right half of the complex plane, i. e. C+

0 = {s ∈ C : <{s} > 0},
with <{·} denoting the real part. Let N̄∞ be the so-called Nyquist contour,
which is the semi-circle contour encompassing C+

0 in the clockwise sense. This
semi-circle has an infinite radius and its straight section is generally the jω-axis
(imaginary axis). However, if L(s) features poles on the jω-axis, small detours
around these poles have to be made. These detours are small semi-circles in
the counterclockwise direction around these poles (so that the detours are in
C+

0 ). The radius of the detours is infinitesimally small, meaning that they do not
exclude any relevant part of C+

0 . Based on these definitions, the second part of
the graphical stability test requires that

1 + L(s) 6= 0 ∀s ∈ N̄∞

and that 1+L(s)|s∈N̄∞ encircles the origin (s = 0) p times in the counterclockwise
sense.

From (5.24), it follows that p = 0. Therefore,

<{1 + L(s)} > 0 ∀s ∈ N̄∞ (5.25)

implies that the second part of the above graphical stability test is satisfied.
Because (5.25) is sufficient but generally not necessary for the second part of
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the graphical stability test, (5.25) may yield an overly conservative (yet safe)
approximation of the true stability region. However, for the proposed outer loop,
(5.25) is a tractable stability test.

The following statement is shown in Appendix C. For satisfaction of (5.25)
with L(s) from (5.23) it is sufficient (though not necessary) that VO > 0, TO > 0,
and

1
VO

+ TO > 2
∣∣∣∣∣sin

(
ω
ξ̃cam

2

)∣∣∣∣∣
√
T 2
O + 1

ω2︸ ︷︷ ︸
rhs(ω)

∀ω ∈ R.

The global maximum of rhs(ω) occurs, see Appendix C, at the point

ω =
0 if TO ≤ |ξ̃cam|

2
√

3
±ω∗ otherwise

,

where ω∗ is the smallest strictly positive solution of

0 =
(
ξ̃camω

∗

2

)3 ( 2TO
ξ̃cam

)2

+ ξ̃camω
∗

2 − tan
(
ξ̃camω

∗

2

)
.

The values ω∗ and rhs(ω) have to be numerically computed whereas rhs(0) =
|ξ̃cam|. These results show which conditions the tuning parameters VO and TO
have to satisfy for robust closed-loop stability and conclude the stability analysis.

From (5.22), the tracking error of the outer loop follows in the form

êO(s) = ŷ2,ref (s)− ŷ2(s) = 1
1 + L(s)E(s)


ŷ2,ref (s)
d̂2(s)
û3(s)
û4(s)


with the abbreviation

E(s) =


1− e−sξ̃cam + CO(s)(1− e−sξcam)(
CO(s)(e−sξcam − 1)− 1

)
e−sξ̄cam

−Ã3
(
CO(s)(e−sξcam − 1)− 1

)
e−sξ̄cam

Ã3
(
2A3 + Ã3

) (
CO(s)(e−sξcam − 1)− 1

)
e−sξ̄cam



T

.

Using the final value theorem, it follows that

lim
X→∞

eO(X) = lim
s→0

sêO(s) = 0

for constant inputs y2,ref , d2, u3, and u4, i. e., ŷ2,ref(s) = 1
s
α0, d̂2(s) = 1

s
α1,

û3(s) = 1
s
α2, and û4(s) = 1

s
α3 with arbitrary constants αi ∈ R, i = 0, 1, 2, 3. The

steady-state error vanishes in this case.
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5.2.3 Implementation
The discussed feedback control laws are parameterized as functions of the processed
plate length X. However, the angular and longitudinal velocities as well as the
curvature of the plate are measured with a fixed sampling time Ts,fb. This is
why the controllers are implemented in a discrete-time form. Assuming piecewise
constant inputs and using the Euler-forward integration scheme for a sampling
period kTs,fb ≤ t < (k + 1)Ts,fb, the PI-feedback control law of the inner loop at
t = kTs,fb follows in the form

u1,fb(kTs,fb) = VI
A1
TI (y1,ref (kTs,fb)− y1(kTs,fb)) + VI

A1
xI,k, (5.26)

with the update of the discrete-time integrator state

xI,k+1 = xI,k + v̄out(kTs,fb)Ts,fb (y1,ref (kTs,fb)− y1(kTs,fb)) .

The spatial increment Xk+1 −Xk = v̄out (kTs,fb)Ts,fb follows directly from (4.14).
By analogy, the PI control law for the outer loop reads as

y1,fb(kTs,fb) = VOTOẽO(kTs,fb) + VOxO,k, (5.27)

with the update of the discrete-time integrator state

xO,k+1 = xO,k + v̄out(kTs,fb)Ts,fbẽO(kTs,fb).

The initial states of the integrators are set to xI,0 = xO,0 = 0.
The feedback part u1,fb of the inner control loop is limited to u1,min ≤ u1,fb ≤

u1,max to avoid an excessive (additional) asymmetry of the output thickness of the
plate. In combination with the integrators used in the feedback controllers, such
a constraint of the control input can lead to a windup behavior of the controller,
which is associated with a deterioration of the control performance. This is why
a simple anti-windup mechanism is added to the control laws (5.26) and (5.27).
The integrator state xI,k is only updated if one of the conditions

u1,min < u1,fb(kTs,fb) < u1,max

u1,fb(kTs,fb) ≤ u1,min ∧ y1,ref (kTs,fb) > y1(kTs,fb)
u1,fb(kTs,fb) ≥ u1,max ∧ y1,ref (kTs,fb) < y1(kTs,fb)

is fulfilled. Analogously, the integrator state xO,k is only updated for

u1,min < u1,fb(kTs,fb) < u1,max

u1,fb(kTs,fb) ≤ u1,min ∧ ẽO(kTs,fb) > 0
u1,fb(kTs,fb) ≥ u1,max ∧ ẽO(kTs,fb) < 0.

Otherwise, the integrator states are held constant.
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5.3 Multi-pass adjustment of the rolling gap

All methods of camber control presented so far are only utilizing the asymmetry
of the plate thickness during the actual or the subsequent rolling pass. These
single-pass-based approaches may indeed lead to the desired plate contour at the
end of the rolling process. However, they can entail a non-homogeneous thickness
profile of the final product. This drawback may be avoided by using a multi-pass
approach utilizing the asymmetry of the thickness in several rolling passes. The
result of this approach is a rolling schedule containing the desired curvature and
the desired thickness asymmetry for the considered passes. Another application
of the multi-pass approach is the production of annular sectors (a specifically
cambered plate) with a homogeneous thickness profile, which are then bent to
form a truncated cone. To this end, the multi-pass approach is used to determine
the necessary rolling schedule yielding the desired contour and thickness profile
after the last pass.

5.3.1 Formulation of the optimization problem

As indicated in Fig. 5.10, the thickness asymmetry and the centerline before the
first considered pass (pass 1) are assumed to be known. In the following Nrp − 1
passes, the asymmetry of the plate thickness is adjusted to obtain the desired
final plate contour defined by δoutpred,Nrp

and a homogeneous plate thickness after
the last rolling pass, i. e., ∆houtNrp

= 0.

∆hout
0

∆hout
1 ∆hout

2 ∆hout
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· · ·
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· · ·

Figure 5.10: Schematic of the multi-pass approach to obtain the desired plate
contour and a homogeneous thickness of the final product.

The output asymmetries ∆houti,q in every pass q = 1, . . . , Nrp − 1 defined on an
equally spaced grid xi,q, i = 1, . . . , NP are summarized in the matrix ∆Hout in
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the form

∆Hout =
[
∆hout1 ∆hout2 . . . ∆houtNrp−1

]
.

∆Hout is determined by solving the optimization problem

min
∆Hout ∈ RNP×Nrp−1

J(∆Hout) (5.28)

with the objective function

J(∆Hout) = 1
MCL

MCL∑
j=1

(
(δdes(x̄j,Nrp))′′ − (δoutpred,Nrp

(x̄j,Nrp))′′
)2

+ β̃1

NP (Nrp − 1)

Nrp−1∑
q=1

(
∆houtq

)T
∆houtq

+ β̃2

(NP − 1)(Nrp − 1)

NP−1∑
i=1

Nrp−1∑
q=1

(
∆houti+1,q −∆houti,q

xi+1,q − xi,q

)2

+ β̃3

NP (Nrp − 1)

NP∑
i=1

Nrp−1∑
q=1

P (∆houti,q )

+ β̃4

MCL(Nrp − 1)

MCL∑
j=1

Nrp−1∑
q=1

(
(δoutpred,q(x̄j,q))′′

)2
.

Here, the desired centerline is denoted by δdes(x) and MCL is the number of values
used for evaluating the final curvature deviation (δdes(x))′′ − (δoutpred,Nrp

(x))′′ on an
equally spaced grid x̄j,Nrp , j = 1, . . . ,MCL. The weighting factors β̃i, i = 1, . . . , 3,
have a similar influence on the optimization result as their counterparts βi in the sin-
gle pass optimization (5.7). The term β̃4/MCL(Nrp−1)

∑MCL
j=1

∑Nrp−1
q=1

(
(δoutpred,q(x̄j,q))′′

)2

with the weighting factor β̃4 is added to the objective function to avoid too large
curvatures of the centerline in the interim passes. The optimization problem
(5.28) is solved similarly to the optimization problem (5.7) of the single pass ap-
proach. The same termination criteria as for the single pass-to-pass optimization
in Section 5.1.3 are used in the numerical solution of (5.28).

5.3.2 Rolling of annular sectors
The multi-pass approach can be used for the production of annular sectors.
Typically they are then bent to truncated cones (cf. Fig. 5.11a), which are used,
e. g., for the pylons of wind turbines. In the standard production process, an
annular sector is cut out from a rectangular plate (cf. Fig. 5.11b). Clearly, this
approach entails significant amounts of waste (scrap), which has to be recycled.
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Figure 5.11: Basic and final geometry of a truncated cone.

Hence there is potential to reduce scrap by rolling annular sectors (plates with
intentional camber).

In the following section, the multi-pass approach is used to create a rolling
schedule which produces annular sectors with zero thickness asymmetry in several
rolling passes. As shown in Fig. 5.11a, the truncated cone may be parameterized
by the height hC and the radii of the bottom and the top surface R and r,
respectively. Another common parameter set to describe a cone is given by the
outer radius R, the height hC and the taper of the cone kC = 2R−r

hC
.

As shown in Fig. 5.11b, the corresponding annular sector has the width
m =

√
h2
C + (R− r)2, the outer radius H = Rm

R−r , and the angle γC = 2πR−r
m

. If
this annular sector is cut out from a rectangular plate, it must at least have the
width

wC = H − (H −m) cos
(
γC
2

)
and the length

lC = 2H sin
(
γC
2

)
.

Clearly, the amount of waste produced in the standard production process depends
on the actual dimensions of the annular sector. As an indicator for the potential
to reduce the recycling material and therefore the production costs, the degree of
material utilization ηC is introduced. This is the ratio between the area of the
annular sector and the area of a rectangle with dimensions wC and lC , i. e.,

ηC =
(
H2 − (H −m)2

) γC
2lCwC

.
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Fig. 5.12 shows ηC for two different radii R and for different values of the cone
height hC and of the cone taper kC . The height hC ranges from 2 m to the
maximum plate width wmax = 4.7 m that can be rolled at the considered rolling
mill. However, Fig. 5.12 only shows parameter combinations where m ≤ wmax is
satisfied because wider plates cannot even be rolled with the multi-pass approach
at the considered rolling mill. The figure indicates that the achievable material
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Figure 5.12: Degree of utilization ηC for different heights hC and tapers kC of a
cone.

savings can be quite large if an annular sector is rolled. In this case, the multi-pass
approach is used to create a rolling schedule with the desired centerline

δdes(x) = H − m

2 −
√(

H − m

2

)2
− x2

after the last pass. However, the direct rolling of annular sectors is subject to
limitations. First of all, the controller of the rolling gap height has to cope with
the off-center position of the plate. This entails an adaption of the subordinate
rolling gap controller because in general an asymmetric deflection of the mill stand
caused by the asymmetric loading of the rolling gap cylinders is not taken into
account. Furthermore, the downstream plate moves sideways during the rolling
pass due to the intended camber and hence it must be ensured that the plate
stays on the roller table.

5.4 Summary
In this chapter, two approaches to reduce contour errors utilizing the contour
measurement from Chapter 2 were discussed. The first one uses the mathematical
model of the contour evolution to calculate the asymmetry of the output thickness
required in the subsequent pass to eliminate a camber. Furthermore, an asym-
metric compliance of the mill stand can be compensated based on the desired
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rolling force. Moreover, using the measurement of the contour before and after
the rolling pass, the resulting output asymmetry can be estimated. The difference
between the estimated and the desired asymmetry is used to determine and to
compensate disturbances affecting the asymmetry of the rolling gap. In the second
approach, a feedback controller reduces contour errors during the current pass.
Here, a delay-free measurement of the angular velocity of the plate is utilized in a
2-DOF Smith-predictor control structure. Moreover, a control strategy covering
several rolling passes was discussed. This multi-pass approach may be used to
determine a rolling schedule to simultaneously obtain the desired plate contour
and a homogeneous thickness profile after the last pass. In the following chapter,
the proposed camber reduction approaches are validated using simulations and
measurement results from the considered rolling mill.



CHAPTER 6

Numerical results and measurements

In this chapter, the impact of disturbances and parameter uncertainties on the
proposed approaches for the reduction of contour errors is studied by means of
simulations. Furthermore, simulation results of the multi-pass adjustment for
rolling of an annular sector are shown. Finally, measurements from the considered
mill stand demonstrate the practical feasibility of the proposed methods.

6.1 Simulation results
This section presents simulation results obtained by the proposed feedforward
and feedback control strategies. The effect of changing important weighting and
tuning factors is studied by means of different simulations. Furthermore, the
impact of disturbances of the thickness profile and imperfections of the rolling
gap actuators is investigated. Another simulation addresses the rolling of annular
sectors as an application of the multi-pass approach.

6.1.1 Single pass-to-pass adjustment
First, simulation results of the single-pass method to reduce the camber are shown.
The evolution of the contour is predicted using the mathematical model from
Chapter 3. The simulated contour is used in the optimization-based approach
from Section 5.1 to determine the required output thickness profile of the next
pass. Besides contour errors resulting from upstream processes (e. g. continuous
casting, slab reheating process, roughing mill), generally unknown, inhomogeneous
input thickness profiles are common imperfections before the first pass. Hence, an
unknown asymmetric input thickness profile and a (measurable) initial contour

93
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error at the beginning of the rolling process are used to validate the feedforward
approach. In the first two simulation scenarios, ideal rolling gap actuators are
assumed. Under real rolling conditions, position control of these actuators may
be imperfect. Hence, the effect of deviations between the required and the actual
output asymmetry is investigated in the third simulation scenario. Because
the simulation model does not capture the mill stand compliance, the effect of
asymmetric mill stand deflection is not considered in the simulations.

Crucial parameters affecting the result of the optimizations are the weighting
factors βi, i = 1, . . . , 3 and β̂i, i = 1, . . . , 3. In addition to the role of β1 (and also
of β̂1) as weighting factor in the objective function, a large value of β1 contributes
to a good-natured optimization problem due to the regularizing effect of the
term β1/NP

∑NP
i=1(∆houti )2, see, e. g., [47]. Variations of the output asymmetry in

longitudinal direction are strongly penalized by setting β2 = β̂2 = 103 m−2. This
yields a sufficiently homogeneous asymmetry. The output asymmetry of the plate
is limited to ∆houti ∈ [∆houtmin,i,∆houtmax,i], i = 1, . . . , NP . The constant β3 is chosen
so that violations of the constraints ∆houtmin,i and ∆houtmax,i are within an acceptable
range. The constraints ∆houtmin,i and ∆houtmax,i are set according to

∆houtmin,i = max(∆houtmin,rel + ∆hini ,∆houtmin,abs)
∆houtmax,i = min(∆houtmax,rel + ∆hini ,∆houtmax,abs).

The parameters ∆houtmin,rel and ∆houtmax,rel represent constraints relative to the
asymmetry ∆hin of the input thickness of the current pass and are used to limit
the change of the asymmetry from pass to pass. In contrast, ∆houtmin,abs and
∆houtmax,abs restrict the absolute value of the output asymmetry. Typically, the
weighting factors of the asymmetry estimator are chosen equal to the weighting
factors of the feedforward approach. However for the simulations, the estimated
output asymmetry should not be subject to constraints, which is why β̂3 is set to
zero, i. e., β̂3 = 0. The parameters used in the simulations are shown in Tab. 6.1.

Parameter Value Unit

Px 20
Py 4
NP 15
NB 4
MCL 100
β1 = β̂1 10−1 m−4

β2 = β̂2 103 m−2

β3 104 m−4

β̂3 0

Parameter Value Unit

β̂ 0.2
∆houtmin,rel -100 µm
∆houtmax,rel 100 µm
∆houtmin,abs -400 µm
∆houtmax,abs 400 µm
houtest,max 30 mm
γ̄x = γ̂x 10−7 m
γ̄J = γ̂J 10−8 m−2

γ̄dJ = γ̂dJ 10−4 m−2

Table 6.1: Parameters used for the simulations of the feedforward strategy.
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pass 1 2 3 4 5 6

houtdes in mm 48.1 36.3 26.2 18.8 15.1 13.1

Table 6.2: Rolling schedule of the considered plate.

The choice β̂ = 0.2 for the filter constant of the low-pass filter in (5.11) has
proven to be useful because this selection entails only a moderate filtering of the
estimated deviation ∆h̃out. As discussed in Section 5.1.4, the estimation of the
output asymmetry is only performed for plates with a desired output thickness
smaller than houtest,max where the selection houtest,max = 30 mm has proven to be useful.

A plate with the initial dimensions l = 6.92 m, w = 2.59 m, and h = 60.2 mm
is considered in the simulations. At the end of the rolling process, a final plate
length of 31.7 m and a final plate thickness of 13.1 mm should be achieved. The
rolling schedule of the considered plate is shown in Tab. 6.2.

6.1.1.1 Initial input thickness asymmetry

In the first simulation, an unknown asymmetric plate thickness (∆hin = −1 mm)
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Figure 6.1: Simulation results for an unknown asymmetry of the initial thickness.
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before the first rolling pass is assumed. The resulting centerline of the plate after
each pass and the corresponding optimized input according to (5.12) are shown
in Fig. 6.1. The width of the bars is proportional to the initial plate length in the
respective pass and the height of the bars represents the value of the asymmetry
at the equally spaced grid points. Due to the initial rectangular contour and the
unknown input profile of the plate, no control action is performed in the first
pass, i. e. ∆houtreq,1 = 0. This causes a cambered plate after the first pass because
of the non-homogeneous deformation. Because of the constant initial asymmetry
of the plate thickness, the asymmetries in Fig. 6.1 are also constant with respect
to the x-coordinate. The asymmetry of the output thickness is only estimated
for passes with a desired output thickness less than houtest,max = 30 mm which is
only satisfied for passes 3 to 6 (cf. Tab. 6.2). Hence, the estimated deviation
∆h̃out is only available for passes 4 to 6. The assumed ideal position controller
of the rolling gap actuators should lead to ∆h̃out = 0. However, because the
optimization problem to estimate the output asymmetry is only solved up to a
certain numerical tolerance (cf. Section 5.1.4), a small but negligible estimated
deviation ∆h̃out results.

The camber is successively reduced to almost zero after the third pass and
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hence the passes 3 and 4 cannot be seen in the upper part of Fig. 6.1 because
they are covered by the centerline of the passes 5 and 6. Without constraints
on the output asymmetry and with β1 = 0, i. e. no weighting of the asymmetry
in the objective function J(∆hout), the contour error after pass 1 would be
fully compensated in pass 2. An inhomogeneous thickness profile remains in the
lateral direction after the last rolling pass, which is caused by the initial thickness
asymmetry.

6.1.1.2 Initial contour error

In the second simulation study (cf. Fig. 6.2), a measurable and thus known contour
error with a homogeneous thickness distribution at the beginning of the rolling
process is assumed. Here, the constraint ∆houtmin on the asymmetry of the output
thickness is active in the first two passes. Without constraints and with β1 = 0
the initial contour error could be fully compensated in pass 1. However, after
a few passes the contour error is reduced to zero at the cost of an asymmetric
thickness profile after the last rolling pass. Similar to the simulation scenario from
Section 6.1.1.1, ∆h̃out should be zero but the numerical method used to estimate
the output asymmetry only yields ∆h̃out ≈ 0.

6.1.1.3 Non-ideal control of actuator positions and asymmetry distur-
bance

The following simulation covers both, an unknown asymmetric input thickness
profile and a known camber before the first pass. Furthermore, the actual output
asymmetry is considered in the form

∆houtact = κ∆houtreq +
[
1 . . . 1

]T
∆hdist.

This mapping is used to simulate an erroneous behavior of the rolling gap actuators.
For the following simulations, the scaling factor is chosen as κ = 0.5 and the offset
was set to ∆hdist = 100 µm. Even for this rather extreme simulation scenario, the
camber of the plate can be successively reduced as shown in Fig. 6.3. Due to the
low-pass filtering in (5.11) the estimated deviation ∆h̃out increases during the
rolling passes from 0 µm to approximately 170 µm.

Without using the estimated values ∆h̃out, the results shown in Fig. 6.4
are obtained. Fig. 6.3 and 6.4 show that using the asymmetry estimation for
compensation of the asymmetry results in a superior camber reduction. Fig. 6.3
indicates that the centerline of the plate after the last rolling pass shows a small
but acceptable camber. The remaining camber is caused by the low-pass filtering of
∆h̃out which brings along that the estimation ∆h̃out approaches the real deviation
∆ĥout −∆hout with the dynamics given by (5.11).

For κ > 1, the control strategy achieves a similarly successful reduction of the
camber. Generally, κ > 1 entails an overcompensation of the camber and may
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Figure 6.3: Simulation results for an initial input thickness wedge and an initial
contour error. Furthermore, a non-ideal position controller of the rolling gap
actuators is considered.

 

 

 

 

pass

∆
h
o
u
t
in

µm
δo

u
t
in

m

x in m pass 6
pass 5
pass 4
pass 3
pass 2
pass 1

initial
contour

1 2 3 4 5 6

−10 0 10

−400

−200

0

200

0

0.05

0.1

∆hout
act∆hout

req

Figure 6.4: Results for the simulation scenario from Fig. 6.3 without using the
estimated value ∆h̃out.



6.1. Simulation results 99

thus cause an oscillation of the centerline with respect to δout = 0. In practical
terms, the scaling imperfections of the rolling gap actuators are small, i. e., κ ≈ 1,
and deteriorate the control result only slightly.

6.1.2 Feedback control
In the following, simulation results of the feedback control approach from Sec-
tion 5.2 are presented. The first simulation covers the last pass of the plate from
Section 6.1.1.3 to analyze the potential for improving the final contour of the
plate by feedback control. The mathematical model of the movement of the plate
(5.13) is used to simulate the contour evolution in the last pass. The input and
the output thickness profiles as well as the centerline of the plate before the rolling
pass are fed to the mathematical model (5.15a) and (5.15b) and the outputs
(5.15c) and (5.15d) are used in the feedback controller.

The plate is rolled with a constant rolling speed v̄out = 3 m/s in forward
direction. Furthermore, it is assumed that the upstream angular displacement
vanishes, i. e., Ωin = 0 (cf. Fig. 4.3) because the upstream side guides are closed.
Also the same non-ideal controller of the rolling gap actuators as used in the
simulation scenario from Section 6.1.1.3 is considered by choosing Ã1 = −A1(1−κ)
and d1 = A1∆hdist. The disturbance d2 and the constants Ã2 and Ã3 are set to zero.
The sampling time of the discrete-time controller is set to Ts,fb = 100 ms because
at the considered rolling mill the desired asymmetry of the output thickness can
only be changed with this sampling time. The controller parameters shown in
Tab. 6.3 were empirically determined on the mill stand during a commissioning
phase with different types of plates. According to the stability analysis from
Section 5.2.2.2, the parameters used for the outer controller ensure internal stability
for |ξ̃cam| < 2.6 m. In the simulations ξ̃cam = 0 m is used.

Parameter Value Unit

VI 0.5 m−1

TI 0 m
VO 0.4 m−1

TO 0.1 m
Ts,fb 100 ms
u1,min -100 µm
u1,max 100 µm
ξcam 5 m
Xmin 9 m

Table 6.3: Parameters used for the simulations of the feedback controller.

Because a central control objective is a straight plate, the desired curvature
is set to y2,ref = 0. The FOVs of the cameras are located ξcam = 5 m away
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Figure 6.5: Simulation results of the feedback control approach applied to the last
rolling pass of Fig. 6.3 with d2 = 0.

from the rolling gap. The plate must range a few meters into the FOV for a
reliable measurement of the contour and the movement of the plate. Therefore,
a rolled plate length larger than the constant Xmin is necessary to measure the
downstream angular displacement. Hence, the feedback controller is activated
when the minimum rolled plate length Xmin is reached, i. e., X > Xmin is satisfied
for the first time.

Fig. 6.5 shows the simulation results with and without applying the feedback
controller. The desired output asymmetry determined by the feedforward controller
is used for the feedforward part u1,ff of the inner loop. For X < Xmin, the camber
of the plate cannot be reduced because a measurement of the downstream plate
is not available. However, for the remaining part of the plate, i. e. X ≥ Xmin,
the curvature can be reduced to almost zero. As shown in Fig. 6.5, the necessary
control effort in the form of the output asymmetry is in the range of 15 µm. The
lower part of Fig. 6.5 shows that the inner control loop ensures y1,ref = y1 within
a few meters after the activation of the feedback controller. The outer controller
should not be activated until y1,ref = y1 is sufficiently ensured because otherwise
the prerequisite of an ideal inner control loop is not fulfilled. For the parameters
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used in the inner controller, activating the outer controller for X ≥ Xmin + 6 m
has proven to be useful. The control effort y1,ref of the outer control loop stays
almost constant after the activation of the controller.
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Figure 6.6: Simulation results of the feedback control approach applied to the last
rolling pass of Fig. 6.3 with d2 = 0.1 ·10−3/m with and without using the outer
control loop.

The second simulation scenario is similar to the first one but uses the constant
disturbance d2 = 0.1 ·10−3/m. Fig. 6.6 shows the simulation results with (TO 6= 0,
VO 6= 0) and without (TO = 0, VO = 0) the outer feedback controller CO. After
some distance for the feedback controller to become active (X ≈ 20 m), the outer
loop compensates the effect of the disturbance d2. By contrast, without using the
outer control loop the effect of the disturbance d2 cannot be suppressed.

6.1.3 Multi-pass adjustment
As shown in Section 6.1.1, considering just a single pass for the reduction of
contour errors may lead to the desired contour after the last rolling pass but in
general the final product then shows an asymmetric thickness profile. By using
the alternative multi-pass approach from Section 5.3 to create a tailored rolling
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schedule, both the desired contour and a homogeneous thickness of the final
product can be obtained.

6.1.3.1 Compensation of contour errors

The first simulation uses the same scenario as in Section 6.1.1.1, i. e., the plate
has an initial thickness wedge (∆hin = −1 mm) before the first pass. Contrary to
the simulation from Section 6.1.1.1, the initial input thickness is assumed to be
known in the calculations. This is because the aim is to determine an optimized

Parameter Value Unit

Nrp 6

β̃1 10−1 m−4

β̃2 103 m−2

β̃3 104 m−4

β̃4 10−5

Table 6.4: Parameters used for the simulations of the multi-pass approach.

rolling schedule to get a straight plate with vanishing asymmetry after the last
pass. The parameters from Tab. 6.4 are used in addition to the parameters listed
in Tab. 6.1.

Fig. 6.7 shows the contour as well as the output asymmetry of the plate in
the considered passes. The contour is assumed to be rectangular before the first
rolling pass. A small camber is intentionally rolled in the first rolling pass which
results in different lengths of the longitudinal boundaries of the plate measured
along the coordinate x. An assumption made in the multi-pass approach is
that the plate velocity during the rolling pass is perpendicular to the axis of
the mill stand and that the plate does not rotate. Then even a lateral constant
plastic deformation along the coordinate x results in a different elongation of
the longitudinal boundaries because of the different lengths before the rolling
pass. This effect is utilized in the presented approach to cause an inhomogeneous
material flow which skews the contour of the plate in the interim rolling passes
such that a homogeneous output thickness profile in the last pass yields a straight
centerline. By increasing the weighting factor β̃4, the maximum lateral deviation
in the interim passes could be decreased. Contrary to the simulation results
from the single pass-to-pass approach, the contour of the plate is shown instead
of its centerline. This is because the contour (especially the angle between
the longitudinal and lateral boundaries) shows the effect of the inhomogeneous
material flow.
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Figure 6.7: Simulation results for a known initial input thickness wedge ∆hin =
−1 mm using the multi-pass approach.

6.1.3.2 Rolling of annular sectors

The second simulation addressing the multi-pass approach deals with planning
of a rolling schedule for the production of annular sectors. The rolling schedule
contains target values of the feedforward and feedback strategy to ensure the
desired contour in the considered interim passes and especially after the last
pass. Once again, the simulation scenario from Section 6.1.1 is used. However,
a symmetric thickness distribution and a rectangular shape of the plate are
presumed before the first rolling pass. The plate should have a camber (circular
arc) defined by δmax = 150 mm at the end of the rolling process. Compared to the
standard production process where annular sectors are cut out from rectangles,
the achievable material savings are approximately 5 % in the presented scenario.
As shown in Fig. 6.8, the centerline of the plate is first bent in the opposite
direction of the desired final camber. In the last pass, the thickness asymmetry
vanishes and the curvature of the centerline changes its sign. The final tail and
head end of the plate are approximately parallel to the y-axis.
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Figure 6.8: Simulation results of the multi-pass approach for rolling an annular
sector.

6.2 Measurements
In the following, measurement results from plates rolled at AG der Dillinger
Hüttenwerke are presented. The discussed control strategies and the algorithmic
part of the contour measurement system from Chapter 2 were implemented in
C++ and are executed on a standard PC. The data exchange between this PC
and the mill stand computer is performed by means of TCP/IP messages. First,
measurements from a plate rolled with the single pass-to-pass adjustment are
shown. Additionally, a statistic covering several hundred plates demonstrates the
feasibility of the contour error reduction approach. In the second part, measure-
ment results of the feedback control approach are presented for an exemplary plate.
Again the statistic evaluation of 2500 representative plates shows that the combi-
nation of the feedforward with the feedback control approach can significantly
improve the contour of the rolled plates.

6.2.1 Single pass-to-pass adjustment
Fig. 6.9 illustrates the feedforward control approach in combination with the
contour measurement from Chapter 2. The figure shows the mill stand and the
two infrared cameras installed at the ceiling of the rolling mill. One camera is
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Figure 6.9: Contour measurement in combination with the feedforward control
approach.

mounted upstream of the rolling mill to measure the outgoing contour in backward
passes. The second camera is located downstream of the rolling mill to capture
the outgoing plate contour in forward passes. As shown in Fig. 6.9, the measured
contour after the forward pass is used to calculate the required asymmetry of the
rolling gap height (characterized by the vector ∆hrgreq) in the consecutive backward
pass. Consequently, the measured contour after the backward pass determines
the target value of the rolling gap height in the following forward pass, and so on.

In the following, measurement results from a plate rolled during the stan-

pass 1 2 3 4 5 6

houtdes in mm 44.7 32.7 23.0 17.2 14.0 12.2

Table 6.5: Production schedule of the plate rolled with the feedforward control
approach.
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Figure 6.10: Measurement results of the feedforward control approach applied to
a 42 m long and 2.7 m wide plate with a final plate thickness of 12.2 mm.

dard production are shown. The same parameters as for the simulations from
Section 6.1.1 were used for the feedforward control approach, see Tab. 6.1. The
considered plate has a desired final length of 42 m, a desired final width of 2.7 m,
and a desired final thickness of 12.2 mm. Tab. 6.5 shows the desired output
thickness values houtdes in the interim passes.

Fig. 6.10 shows the evolution of the centerline of the considered plate. The
deviations of the centerline can be reduced to very small values after the last pass.
The lower part of Fig. 6.10 shows the required asymmetry ∆houtreq as well as the
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Figure 6.11: Plate with contour error and rectangular usable area inside the
longitudinal boundaries of the plate.

asymmetries ∆hout, ∆h̃out and ∆houtcomp normalized to max(|∆houtreq|). Only for
the passes 4, 5 and 6, an estimation of the input asymmetry and therefore of the
disturbance ∆h̃out is available. Contrary to the simulations from Section 6.1.1, the
asymmetries are no longer uniform in longitudinal direction. Furthermore, a large
part of the required asymmetry ∆houtreq of the mill stand is due to the compensation
of the asymmetric deflection of the mill stand. Note that also non-uniform contour
errors along the axis x (e. g. after pass 4) can be compensated by an appropriate
profile of the thickness asymmetry along the plate length.

The plates are trimmed to rectangular shapes at the end of the production
process. Clearly, the usable area of the plates should be maximized. This
requirement is equivalent to maximizing the width of the blue region (usable area)
inside the plate boundaries shown in Fig. 6.11 when neglecting the shape of the
tail and head end. The maximum width of the usable area is denoted by w∗ (cf.
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Figure 6.12: Frequency distribution of ∆w obtained without and with the feedfor-
ward control approach (sample size 800 plates).
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Fig. 6.11) and is determined from the longitudinal boundaries of the plate by
means of static optimization. In the following, the difference ∆w = w − w∗ is
used as an aggregate measure of the plate width lost due to contour errors.

Fig. 6.12 shows the frequency distribution of contour errors obtained with
and without the proposed feedforward control approach. Here, ∆w is shown
for 800 plates with a minimal plate length of 10 m and a maximum final plate
thickness of 30 mm. Shorter and thicker plates are not considered because for
such plates camber does not play an important role. The measurements with
feedforward control were recorded during the day work shift and the measurements
without control actions were recorded during the remaining part of the working
day. For the considered plates, the mean value µ of ∆w has been reduced by
approximately 20 % by applying the feedforward control approach. That is, the
number of plates with small values of ∆w has been increased by the feedforward
control approach.

6.2.2 Feedback control
In this section, measurement results of the feedback control approach are presented.
The same parameters as in the simulations of the feedback controller (see Tab. 6.3)
are used in the real-time implementation. The center input and output thickness
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Figure 6.13: Downstream and upstream contour measurement in combination
with the feedforward and feedback control approach.
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h̄in and h̄out are set to the desired input and output thickness of the plate,
respectively. In addition to the downstream measurement of the contour, also the
upstream plate movement and the upstream plate contour have to be measured
during a feedback controlled pass (cf. Fig. 6.13).

The contour measurement has a lower sampling time (Ts = 33 ms) compared
to the sampling time Ts,fb = 100 ms of the feedback controller. To avoid aliasing
effects, the mean value of the quantities measured by the contour measurement
within a sampling period Ts,fb are used in the feedback controller. At the end
of the rolling pass, upstream measurements of the plate are not available due to
the distance between the FOV of the camera and the mill stand. If upstream
measurements are not available, the upstream quantities (δin)′′ and Ωin are set to
zero in the feedback controller. Fig. 6.14 shows the results obtained for a plate with
a final plate thickness of 12.4 mm and a final plate length of 29.8 m. During this
rolling pass, the upstream side guides centered the plate in the lateral direction.
The upper part of Fig. 6.14 shows the centerline of the plate before and after the
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Figure 6.14: Measurement results of the feedback control approach applied to the
last pass of a 29.8 m long plate.

rolling pass. The centerline before the rolling pass only shows a small camber.
However, the plate shows a considerable camber near the head end (x > 5 m)
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after the rolling pass. Nevertheless, the curvature of the downstream centerline
has been reduced to almost zero after Xmin plus a few meters for the controller to
become active. Furthermore, Fig. 6.14 shows the control efforts of the feedforward
and the feedback controller u1,ff and u1,fb, respectively. The desired and measured
downstream angular velocities are shown in the lower part of Fig. 6.14. There
exists a large control error eI = y1,ref − y1 when the controller is activated at
X = Xmin = 9 m. This error which is linked with the camber of the plate at this
time step is reduced by the inner controller to an acceptable level within a few
meters. For the considered plate, the measurement of the downstream angular
velocity is very noisy. However, the proposed control approach can significantly
reduce the camber of the plate even for measurements which are corrupted by
large noise.

Fig. 6.15 shows the frequency distribution of the contour errors obtained
without any control and with the presented feedforward and feedback control
approaches. 2500 plates were rolled with camber control switched on and 2500
plates with comparable dimensions and material properties were rolled without
any control. The plates used in the comparison have a minimal plate length of
15 m and a maximum final plate thickness of 30 mm. For shorter plates, almost
no improvement of the contour can be achieved by feedback control because of
the minimal plate length Xmin = 9 m associated with the distance between the
FOV of the camera and the mill stand.
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Figure 6.15: Frequency distribution of ∆w obtained without any control and with
feedforward and feedback control (sample size 2500 plates).

For the considered plates, the mean value of ∆w has been reduced by approxi-
mately 45 % by the combined feedforward and feedback controller. Using both
control measures yields ∆w < 5 cm for 93 % of the plates. The number of plates
with ∆w > 5 cm has been reduced to a very low level.
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6.3 Summary
In this chapter, simulation results of the proposed control strategies to reduce
contour errors were presented. In particular, the effect of disturbances of the input
thickness profile and the impact of a non-ideal position controller of the rolling gap
actuator on the feedforward and feedback control approaches were investigated.
Furthermore, simulation results of the multi-pass approach simultaneously yielding
the desired plate contour and a homogeneous thickness profile of the final product
were shown. Finally, measurements from the considered industrial rolling mill with
a real-time implementation of the developed feedforward and feedback control
strategies prove the practical feasibility of the proposed methods.





CHAPTER 7

Conclusions

7.1 Summary
This work deals with model-based estimation and control of the contour evolution
in heavy-plate rolling. In the first part of the thesis, a new approach for the
estimation of the plate contour was discussed. In this approach, the edges of the
plate are first detected in bitmaps captured by two infrared cameras. The detected
edges are then fed into an optimization-based estimator which fits polynomials to
the detected edges. In addition to the contour, the angular movement and the
longitudinal velocity of the plate are estimated. The estimator uses a mathematical
model of the movement of the plate and systematically considers the restrictions
on the lateral movement of the plate in the rolling gap. The longitudinal velocity
of the plate is estimated based on the spatial shift of the non-uniform temperature
distribution between subsequent bitmaps. The contour estimation was validated
by means of measurements from a downstream contour measurement device.

A continuum-mechanics-based model of the contour evolution of the plate
was presented. The quasi-static model predicts the contour after the rolling
pass based on the contour before the rolling pass and the input and output
thickness profiles of the plate. A two-dimensional problem formulation is used and
a plane stress distribution is assumed. The resulting system of partial differential
equations covering the unknown residual stresses is rewritten as scalar-valued
partial differential equation (known as extended biharmonic equation) for a stress
function. The biharmonic equation was solved using two-dimensional polynomials
and a weighted residual method to fulfill the boundary conditions. By means of
this model, the influence of lateral and longitudinal temperature gradients on the
contour evolution was discussed. Measurements from a plate rolled during the

113
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standard production process were used to validate the model.
The movement of a plate during a rolling pass is not considered in the quasi-

static model of the contour evolution. Online feedback control during the rolling
pass, however, requires a mathematical model of the evolution of the camber and
the movement of the plate. Hence, a model covering the rotational movement and
the camber formation during the rolling pass was developed. The model links the
downstream and upstream angular velocities with the curvature before and after
the rolling gap. Using the processed plate length as independent variable yields a
time-free formulation, which is independent of the rolling speed. Measurements
from the developed contour measurement system were used to validate the model.

The presented models of the contour evolution and the movement of the
plate are used in different control approaches for the reduction of contour errors.
Here, the asymmetry of the rolling gap height serves as control input. First,
a feedforward strategy utilizing the static model of the contour evolution was
proposed. The optimization-based approach determines the required asymmetry
of the rolling gap to compensate a contour error during the subsequent rolling
pass. Weighting factors in the objective function can be used to penalize the
absolute value of the output asymmetry and its change. Furthermore, constraints
on the asymmetry of the plate thickness are systematically incorporated into the
optimization problem.

It was found that the compliance of the considered mill stand is slightly
asymmetric. The resulting asymmetric deflection is compensated by an empirical
approach. Based on the measured contour before and after a rolling pass and the
input thickness profile, the deviation between the desired and the actual output
thickness asymmetry is estimated so that it can be compensated in subsequent
rolling passes. To further improve the contour of the plate, feedback control
during the rolling pass was developed. Because the contour of the plate can only
be measured with a transport delay, a delay-free measurement of the angular
movement is utilized in a two degrees-of-freedom Smith-predictor control structure.

In general, the compensation of contour errors within single passes results in an
inhomogeneous thickness profile of the final product. Hence, an approach covering
several rolling passes to achieve both the desired contour and a homogeneous
thickness was developed. The result of this multi-pass strategy is a rolling
schedule which contains reference values for the feedforward and the feedback
control approach.

Finally, simulation results and measurements of the proposed control strategies
to reduce contour errors were presented. The simulations show the effect of
changing the parameterization of the controllers and the influence of disturbances
on the control performance. Measurements from an industrial rolling mill including
statistical evaluations that cover a representative amount of plates prove the
practical feasibility of the proposed methods.
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7.2 Conclusions
A precise measurement of the plate contour is a key requirement for the reduction of
contour errors. The results presented in Section 2.6 demonstrate that the presented
contour measurement approach achieves a good accuracy with deviations in the
range of a few centimeters in the lateral direction. Also the length of the plates
is accurately measured by this approach. Therefore, the results of the contour
measurement system can be used as inputs for the reduction of contour errors
from pass to pass. The estimated velocity of the plate can also be used for process
monitoring, e. g., to validate and, if necessary, to adapt the forward slip model
used in the automation system of the mill stand.

The receding horizon estimation approach lowers the computational effort of
the contour measurement. This facilitates an online measurement of the contour
evolution and thus the use of feedback control approaches during the rolling pass
itself. In contrast to the contour measurement concepts known from literature,
also the angular velocity of the plate during the rolling pass is estimated, which
simplifies the design of feedback controllers. Using infrared cameras instead of
visible light cameras is beneficial for the considered application because the plate
can be even captured through a cloud of steam and no illumination is needed.
Moreover, the developed camera system has proven to be robust against the harsh
conditions at the rolling mill for the last two years without any maintenance.

The derived mathematical models for the evolution of the contour and the
movement of the plate are tailored to the use in control applications. As the
continuum-mechanics-based model is computationally inexpensive but still suffi-
ciently accurate, it can be used in the optimization-based feedforward concept.
Because the input and output thickness profiles of the plate are used as inputs
of the model no (additional) model of the mill stand and the deformation in
the rolling gap is needed. The model was also used to analyze the effect of
inhomogeneous temperature distributions. These investigations show that the
influence of temperature gradients in the lateral and longitudinal direction may
be neglected in the considered application. A validation with a plate rolled during
the standard production process confirmed that the model can accurately predict
the contour evolution.

The model of the movement of the plate serves as a basis for the design of
feedback control strategies. It is tailored to the use with the proposed contour and
movement measurements of the plate. The upstream as well as the downstream
angular and longitudinal velocities of the plate can be estimated based on the
measurements provided by the infrared cameras. Therefore, neither a model for
the forward and backward slip nor a parameterization of such a model is needed.
This is beneficial because the parameterization of a slip model covering different
rolled materials is a delicate task. Measurements for an exemplary plate of the
proposed contour measurement approach have shown a small acceptable model
mismatch.
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Simulation results presented in Section 6.1 further show that the proposed
optimization-based feedforward approach can reduce initial contour errors and can
successfully handle unknown inhomogeneous initial thickness profiles. Furthermore,
disturbances of the output asymmetry or a non-ideal position controller of the
rolling gap actuators deteriorate the control performance only slightly. This
is due to the estimation of the (real) output asymmetry and the estimation of
the disturbance affecting the output asymmetry. Moreover, simulation results
demonstrate that the feedback control approach can further improve the final
contour of long plates. Here, using the delay-free measurement of the angular
velocity in addition to the delayed measurement of the curvature is advantageous
in terms of feedback control. Utilizing the multi-pass approach, both the desired
contour and a homogeneous thickness profile of the final product can be achieved.
Furthermore, the presented approach for the direct rolling of annular sectors
allows considerable material savings and cost reductions.

Measurements shown in Section 6.2 demonstrate the effectiveness of the
proposed approaches for the reduction of contour errors. Statistical evaluations
show a considerable reduction of contour errors already when only using the
feedforward approach. A further improvement of the contour is achieved by
feedback control in combination with the feedforward approach. In particular, the
number of larger contour errors can be significantly decreased. This improvement
can only be achieved because the feedback controller utilizes the measurements of
the downstream and upstream camera.

Summarizing, the proposed control strategies have proven to be effective to
systematically reduce contour errors in heavy-plate rolling. This also simplifies
the work of the mill stand operator, who can focus more on monitoring the overall
rolling process. Considerable savings of costs can be achieved with the proposed
methods because:

• The allowance on the width of the plate can be reduced due to less contour
errors.

• The downtime of the mill stand is reduced because large cambers are avoided,
which otherwise may lead to damaged plant components nearby the mill
stand.

• The product portfolio can be expanded by long thin products which cannot
be properly rolled with pure manual adjustment of the mill stand by the
operator.

7.3 Outlook
Currently, the proposed control strategies for the reduction of contour errors are
used in an industrial pilot installation where their performance is permanently
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supervised by a human operator. It is planned to further test the system in
twenty-four hours operation without any supervision in the subsequent months.
The algorithms of the contour measurement and the feedforward and feedback
control algorithms are executed on a separate PC which communicates with the
mill stand computer. Future work concerns the transfer of the algorithms to the
mill stand computer. This makes a communication with the mill stand computer
unnecessary and may help to improve the robustness of the control system against
network failures.

Until now, only the single pass-to-pass approach and the feedback controller
were implemented at the considered rolling mill. Because of the promising results
of the single-pass feedforward and feedback approaches, it is planned to perform
a test campaign using the multi-pass approach. This will include the reduction of
contour errors across several passes by simultaneously achieving a homogeneous
thickness profile of the final product. Also the tailored rolling of annular sectors
will be tested in near future. To this end, the controller of the rolling gap height
has to be adapted to cope with the off-centering of the plate during the rolling
pass.

Using infrared cameras has proven to be useful for the measurement of the
plate contour during the hot-rolling process. However, the use of infrared cameras
in the hot rolling process may be extended. Further applications in rolling mills
include material tracking of heavy plates. The knowledge of the plate position and
the continuous measurement of the plate temperature by the infrared camera can
be used to further monitor and automatize the handling of the products. Ideally,
the plate is tracked from the exit of the reheating furnace to the last production
step, e. g., inspection. Clearly, many plates are processed at the same time in
modern rolling mills and have to be robustly distinguished. Further research
questions may be related to the tracking of plates with several cameras covering
the interesting parts of the production line. This includes the handling of several
plates at the same time and additionally the processing of images captured by
different cameras. The first steps towards material tracking are shown in [25]
where the movements of the plates in front of the mill stand are tracked in real
time.





APPENDIX A

Static optimization

This appendix presents numerical methods to solve unconstrained static optimiza-
tion problems and gives an overview of the methods used in this work. A more
detailed description of the methods may be found in [47]. The unconstrained
static optimization problem is formulated as

min
w ∈ RN

J(w), (A.1)

where w =
[
w1 w2 . . . wN

]T
is the vector of optimization variables and J(w)

is the scalar valued twice continuously differentiable objective function. Sufficient
conditions for a local minimum of J(w∗) at the optimal point w∗ have the form
(cf. [47])

∇J(w∗) = 0 (A.2a)
sT∇2J(w∗)s > 0 (A.2b)

for all vectors s ∈ RN and the Nabla operator ∇. In most cases, (A.2) cannot be
solved analytically. Therefore, it is common to use iterative numerical methods.
Starting with an initial guess for w, the objective function is decreased in every
iteration. The iteration stops if a termination criterion is satisfied or the maximum
number of iterations is exceeded.

The literature offers a huge collection of suitable algorithms for solving the
optimization problem (A.1), for instance, the steepest descent method [47], the
conjugate gradient method [52], the quasi-Newton method [53], the Newton’s
method [54], and the Gauss-Newton method [47]. They differ in their theoretical
convergence rate and the computational effort necessary in every iteration. Clearly,
for the real-time capable estimation and control algorithms presented in this work,
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short optimization times have to be achieved. The time required to solve a specific
optimization problem depends on the achieved convergence rate of the algorithm
and the computational effort associated with each iteration. To achieve short
optimization times, different tailored algorithms are used in this work.

The presented methods are called line search strategies, where the value of
the objective function is decreased along the search direction dl in every itera-
tion l. The step length αl along dl is determined by solving a one-dimensional
optimization problem. The iterative procedure to solve the optimization problem
(A.1) proceeds as follows:

Step 0: Choose the initial guess w0 and set l = 0.
Step 1: Compute the search direction dl.
Step 2: Perform a line search, i. e. solve

min
αl≥0

J(wl + αldl) and apply the update
wl+1 = wl + αldl.

Step 3: Check if any termination criterion (maximum
number of iterations, convergence) is fulfilled.
If yes, stop here.

Step 4: Increment l and start again at Step 1.

In the following, algorithms with different approaches to choose the search
direction dl and to solve the line search problem are discussed.

A.1 Newton method
The search direction according to Newton’s method is derived from the second-
order Taylor series approximation of J(wl + dl) at the point wl, which is given
by

J(wl + dl) ≈ J(wl) + dT
l gl + 1

2dT
l Hldl, (A.3)

with the gradient gl = ∇J(wl) and the Hessian Hl = ∇2J(wl). The search
direction of Newton’s method follows in the form

dl = −H−1
l gl.

The vector dl minimizes the right-hand side of (A.3). Newton’s method features
a superlinear convergence rate (cf. [47]). However, the calculation of the inverse
Hessian in every iteration entails a high computational effort.
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A.2 Quasi-Newton method
Quasi-Newton methods provide an attractive alternative to Newton’s method
because they do not require the calculation of the Hessian. However, they can
still achieve a superlinear convergence rate. In fact, an approximation H̃−1

l of the
inverse of the Hessian is used, which is iteratively updated in every iteration. One
method to update H̃−1

l is the BFGS (Broyden-Fletcher-Goldfarb-Shanno) rule,
which follows as

H̃−1
l+1 =

(
I− dlqT

l

qT
l dl

)
H̃−1
l

(
I− qldT

l

qT
l dl

)
+ dldT

l

qT
l dl

αl,

with ql = gl+1 − gl and the identity matrix I ∈ RN×N . The search direction dl
reads as

dl = −H̃−1
l gl.

A crucial point for the achieved convergence rate of the quasi-Newton method
is the choice of the initial guess H̃−1

0 (cf. [47]). In so called least-squares problems,
the objective function may be written in the special form

J(w) = eT(w)e(w),

where the vector e =
[
e1 e2 . . . eM

]T
contains scalar functions of w. Let the

Jacobian J of e with respect to w be denoted as

J(w) = (∇e)T .

Hence, the Hessian of J(w) can be written as

∇2J(w) = 2JT(w)J(w) + 2Γ,

with Γ = [Γq,n] and

Γq,n =
M∑
j=1

ej
∂2ej

∂wq∂wn
∀q, n ∈ {1, 2, . . . , N}.

This motivates the initial guess

H̃−1
0 =

(
2JT(w0)J(w0)

)−1
, (A.4)

which requires M ≥ N . H̃−1
0 is a positive definite approximation of the inverse of

the Hessian. Γ (second order derivatives) is typically neglected.
The expression

(
2JT(wl)J(wl)

)−1
could also be used as an approximation of

the inverse Hessian in every iteration of the optimization problem. This choice is
made in the Gauss-Newton method (cf. [47]) presented in the following.
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A.3 Gauss-Newton method
As described in Section A.2, the Gauss-Newton method exploits the quadratic form
of the objective function of least-squares problems to avoid the costly computation
of the Hessian. The search direction follows as

dl = −
(
2JT(wl)J(wl)

)−1
gl, (A.5)

with the gradient gl = 2JT(wl)el. The Gauss-Newton method features a very good
convergence rate for the optimization problems considered in this work. However,
the computational effort of the matrix multiplications and of the solution dl
of the linear equation −

(
2JT(wl)J(wl)

)
dl = gl (cf. (A.5)) may lead to larger

optimization times compared to the quasi-Newton method.

A.4 Line search
In every iteration l, the step size αl to move along the search direction dl has to
be determined. The natural step length is αl = 1 for all three discussed methods.
This is because choosing αl = 1 minimizes the objective function if the quadratic
approximation from (A.3) is exact. In general, the approximation is not exact
and therefore a line search based on a quadratic interpolation of the objective
function

J (wl + αldl) ≈ a0 + a1αl + a2α
2
l (A.6)

with coefficients ai, i = 0, 1, 2, is performed. Two different methods to determine
the coefficients of the quadratic interpolation are used in this work.

A.4.1 Line search I
In the first line search approach, the objective function is evaluated at three
different step sizes αl ∈ {0, 0.5, 1}. The coefficients in (A.6) follow as

a0 = J0, a1 = −3J0 − J1 + 4J0.5, a2 = 2J0 + 2J1 − 4J0.5,

where

J0 = J(wl), J0.5 = J(wl + 0.5dl)

and

J1 = J(wl + dl).

The optimal step length α∗l that minimizes the polynomial (A.6) reads as

α∗l = 1
4

3J0 + J1 − 4J0.5

J0 + J1 − 2J0.5
.
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A.4.2 Line search II
The second method uses the derivative of the objective function at αl = 0 in
the quadratic approximation. The polynomial coefficients a0, a1 and a2 can be
computed in the form

a0 = J0, a1 = J ′0, a2 = J1 − J0 − J ′0,

where

J ′0 = dJ (wl + αldl)
dαl

∣∣∣∣∣
αl=0

= dT
l gl.

The optimal step length α∗l that minimizes the right-hand side of (A.6) is therefore

α∗l = 1
2

J ′0
J0 + J ′0 − J1

.

The second line search approach requires only two evaluations of the objective
function in every iteration, which reduces the computational effort compared
to the first line search method. However, the first line search may lead to a
more accurate approximation of the left-hand side of (A.6) and thus to a greater
improvement of the objective function value in each iteration. This behavior was
especially observed for line search problems with an inaccurate approximation by
means of the right-hand side of (A.6).





APPENDIX B

Gradients used in the estimation of the plate contour

In the sequel, the analytical gradients of the objective function (2.12) with respect
to the optimization variables ω, vS, pL, and vL are summarized. The gradient of
J(w) = J(ω,vS,pL, vL) with respect to the angular velocities ωr, r = 0, . . . , N−1
has the form

d
dωr

J (w) = 2
N∑
k=0

ML∑
j=1

eL,j,k
d

dωr
eL,j,k + 2

N∑
k=0

MH∑
j=1

eH,j,k
d

dωr
eH,j,k

with

d
dωr

eL,j,k = ∂pL (ξL,j,k)
∂ξL,j,k

dξL,j,k
dωr

− dηL,j,k
dωr

(B.1)

and

d
dωr

eH,j,k = ∂pH (ηH,j,k)
∂ηH,j,k

dηH,j,k
dωr

− dξH,j,k
dωr

(B.2)

according to (2.9) and (2.8), respectively.
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The additional derivatives used in (B.1) can be calculated as

∂pL (ξL,j,k)
∂ξL,j,k

= cL,1 + 2cL,2ξL,j,k + . . .+NLcL,NL
ξNL−1
L,j,k (B.3a)

dξL,j,k
dωr

= −(ξml,j −∆ξk) sin(ϕk)
dϕk
dωr

+ (ηml,j,k −∆ηk) cos(ϕk)
dϕk
dωr

− cos(ϕk)
d∆ξk
dωr

− sin(ϕk)
d∆ηk
dωr

(B.3b)

dηL,j,k
dωr

= −(ηml,j,k −∆ηk) sin(ϕk)
dϕk
dωr

− (ξml,j −∆ξk) cos(ϕk)
dϕk
dωr

− cos(ϕk)
d∆ηk
dωr

+ sin(ϕk)
d∆ξk
dωr

(B.3c)

(cf. (2.13) and (2.14)). The derivatives utilized in (B.2) may be obtained by
exchanging pL with pH , NL with NH , cL,i with cH,i and ξL,j,k with ηH,j,k in (B.3a).
Moreover, ξL,j,k has to be replaced by ξH,j,k, ηL,j,k by ηH,j,k, ξml,j by ξmh,j,k and
ηml,j,k by ηmh,j in (B.3b) and (B.3c), respectively.

Based on (2.11), the derivatives dxk

dωr
can be recursively computed in the form

dxk
dωr

=


0 if r ≥ k
∂f(xr,ωr,vS,r,vL)

∂ωr
+ ∂f(xr,ωr,vS,r,vL)

∂xr

dxr

dωr
if r = k − 1

∂f(xk−1,ωk−1,vS,k−1,vL)
∂xk−1

dxk−1
dωr

if r < k − 1

with

∂f(xr, ωr, vS,r, vL)
∂ωr

= Ts



−∆ξr sin(ω̄r)−∆ηr cos(ω̄r) + vL

ωr
cos(ω̄r)

− vL

ω2
rTs

sin(ω̄r)− vS,r

ωr
sin(ω̄r)− vS,r

ω2
rTs

(cos(ω̄r)− 1)

∆ξr cos(ω̄r)−∆ηr sin(ω̄r) + vL

ωr
sin(ω̄r)

− vL

ω2
rTs

(1− cos(ω̄r)) + vS,r

ωr
cos(ω̄r)− vS,r

ω2
rTs

sin(ω̄r)

1


and

∂f(xr, ωr, vS,r, vL)
∂xr

=

cos(ω̄r) − sin(ω̄r) 0
sin(ω̄r) cos(ω̄r) 0

0 0 1

 , (B.4)

where the abbreviation ω̄r = ωrTs was used.
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The gradient of (2.12) with respect to vS,r reads as

d
dvS,r

J (w) = 2
N∑
k=0

ML∑
j=1

eL,j,k
d

dvS,r
eL,j,k + 2

N∑
k=0

MH∑
j=1

eH,j,k
d

dvS,r
eH,j,k

with
d

dvS,r
eL,j,k = ∂pL (ξL,j,k)

∂ξL,j,k

dξL,j,k
dvS,r

− dηL,j,k
dvS,r

and
d

dvS,r
eH,j,k = ∂pH (ηH,j,k)

∂ηH,j,k

dηH,j,k
dvS,r

− dξH,j,k
dvS,r

.

The expressions

dξL,j,k
dvS,r

= dξH,j,k
dvS,r

= − cos(ϕk)
d∆ξk
dvS,r

− sin(ϕk)
d∆ηk
dvS,r

and
dηL,j,k
dvS,r

= dηH,j,k
dvS,r

= − cos(ϕk)
d∆ηk
dvS,r

+ sin(ϕk)
d∆ξk
dvS,r

follow in the form

dxk
dvS,r

=


0 if r ≥ k
∂f(xr,ωr,vS,r,vL)

∂vS,r
+ ∂f(xr,ωr,vS,r,vL)

∂xr

dxr

dvS,r
if r = k − 1

∂f(xk−1,ωk−1,vS,k−1,vL)
∂xk−1

dxk−1
dvS,r

if r < k − 1

using (B.4) and

∂f(xr, ωr, vS,r, vL)
∂vS,r

= 1
ωr

cos(ωrTs)− 1
sin(ωrTs)

0

 .
The gradient of the objective function J(w) with respect to the parameter

vector pL is

d
dpL

J (w) = 2
N∑
k=0

ML∑
j=1

eL,j,k
[
1 ξL,j,k ξ2

L,j,k . . . ξNL
L,j,k

]
.

The gradient of the objective function J(w) with respect to vL reads as

d
dvL

J (w) = 2
N∑
k=0

ML∑
j=1

eL,j,k
d

dvL
eL,j,k + 2

N∑
k=0

MH∑
j=1

eH,j,k
d

dvL
eH,j,k
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with

d
dvL

eL,j,k = ∂pL (ξL,j,k)
∂ξL,j,k

dξL,j,k
dvL

− dηL,j,k
dvL

and

d
dvL

eH,j,k = ∂pH (ηH,j,k)
∂ηH,j,k

dηH,j,k
dvL

− dξH,j,k
dvL

.

Here, it is necessary to calculate

dξL,j,k
dvL

= dξH,j,k
dvL

= − cos(ϕk)
d∆ξk
dvL

− sin(ϕk)
d∆ηk
dvL

and

dηL,j,k
dvL

= dηH,j,k
dvL

= − cos(ϕk)
d∆ηk
dvL

+ sin(ϕk)
d∆ξk
dvL

with the recursive definition

dxk
dvL

=


0 if k = 0

1
ωk−1


sin (ωk−1Ts)

1− cos (ωk−1Ts)
0

+ ∂f(xk−1,ωk−1,vS,k−1,vL)
∂xk−1

dxk−1
dvL

if k > 0

using (B.4).
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Proof of the robust stability of the feedback control loop

For proving BIBO stability of (5.22), it is sufficient to satisfy

<{1 + L(s)} > 0 ∀s ∈ N̄∞. (C.1)

Insertion of L(s) from (5.23) into (C.1) and evaluation along the jω-axis yields

1
VO

+ 1
ω

[
sin(ωξcam)− sin(ωξ̄cam)

]
+ TO

[
1− cos(ωξcam) + cos(ωξ̄cam)

]
> 0.

Applying the summation formulas for trigonometric functions results in

1
VO

+ TO > 2TO sin
(
ω(2ξcam + ξ̃cam)

2

)
sin

(
ωξ̃cam

2

)

+ 2
ω

cos
(
ω(2ξcam + ξ̃cam)

2

)
sin

(
ωξ̃cam

2

)
. (C.2)

Using Pythagoras’ theorem, an upper bound of the right-hand side of (C.2) is
found in the form

2
∣∣∣∣∣sin

(
ωξ̃cam

2

)∣∣∣∣∣
√
T 2
O + 1

ω2 .

Hence,

1
VO

+ TO > 2
∣∣∣∣∣sin

(
ωξ̃cam

2

)∣∣∣∣∣
√
T 2
O + 1

ω2

ensures internal stability of (5.22).

129



130 C. Proof of the robust stability of the feedback control loop

The task is to determine the global maximum of

rhs(ω) = 2
∣∣∣∣∣sin

(
ω
ξ̃cam

2

)∣∣∣∣∣
√
T 2
O + 1

ω2 (C.3)

with respect to ω. Note that (C.3) is symmetric in ω. The maximum of rhs(ω) is
found by analyzing the roots ω∗ of drhs(ω)

dω

∣∣∣
ω=ω∗

. The roots ω∗ follow from solving
the equation

0 =
(
ξ̃camω

∗

2

)3 ( 2TO
ξ̃cam

)2

+ ξ̃camω
∗

2 − tan
(
ξ̃camω

∗

2

)
. (C.4)

Utilizing the Taylor series expansion of tan(x) about 0, i. e., tan(x) = x+ 1
3x

3 +
2
15x

5 + 17
315x

7 + . . . , (C.4) may be written in the specialized form

0 =
(
ξ̃camω

∗

2

)3 ( 2TO
ξ̃cam

)2

− 1
3︸ ︷︷ ︸

k1

− 2
15

(
ξ̃camω

∗

2

)2

− 17
315

(
ξ̃camω

∗

2

)4

− . . .︸ ︷︷ ︸
k2(ω∗)

. (C.5)

Clearly, ω∗ = 0 is a solution of (C.5). Because of k2(ω∗) ≤ 0, an additional
solution of (C.4) exists for k1 > 0, i. e., if TO > |ξ̃cam|

2
√

3 .
The solution ω∗ = 0 only represents a maximum of rhs(ω) if TO < |ξ̃cam|

2
√

3
because then

d2rhs(ω)
dω2

∣∣∣∣∣
ω=0

= 1
12 |ξ̃cam|

(
12T 2

O − ξ̃2
cam

)

is negative. For TO > |ξ̃cam|
2
√

3 , the global maximum occurs at ω = ±ω∗ where ω∗ is
the smallest strictly positive solution of (C.4).
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