
D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.

Cross-Blockchain Smart
Contracts

Invoking Smart Contracts Across Blockchains

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Markus Nissl, BSc

Matrikelnummer 01525567

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Associate Prof. Dr.-Ing. Stefan Schulte

Wien, 20. Juni 2019

Markus Nissl Stefan Schulte

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

Cross-Blockchain Smart
Contracts

Invoking Smart Contracts Across Blockchains

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Markus Nissl, BSc

Registration Number 01525567

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dr.-Ing. Stefan Schulte

Vienna, 20th June, 2019

Markus Nissl Stefan Schulte

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

Erklärung zur Verfassung der
Arbeit

Markus Nissl, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 20. Juni 2019

Markus Nissl

v

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

Acknowledgements

First, I would like to thank my advisor Stefan Schulte for his support and his fast and
constructive feedback on this thesis.

I also like to thank Michael Borkowski for his technical input and comments on this
thesis.

Finally, I have to thank my family for their support during my studies.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

Kurzfassung

Seit 2017 haben Kryptowährungen große Beachtung gefunden. Pro Monat werden ungefähr
50 neue Kryptowährungen auf Vergleichsseiten gelistet. Diese Währungen werden dabei
mittels Transaktionen in verteilten Bestandsbüchern, sogenannten Blockchains, verwaltet.

Die Blockchains werden allerdings nicht nur für „digitales Geld“ verwendet, sondern
bieten unter anderem durch codebasierte Verträge, sogenannte Smart Contracts, die
Möglichkeit nahezu beliebige Dienste dezentral auszuführen. Mögliche Anwendungen
umfassen die Bereiche Gesundheitswesen, Vermögens- und Supply Chain Management.

Da sich die Blockchains in der Funktionalität voneinander unterscheiden, z. B. durch
die Unterstützung von Smart Contracts oder durch Privatsphäre-Funktionen, eignen
sich bestimme Blockchains für manche Anwendungsgebiete besser. Vor allem im Bereich
der Industrie, z. B. im Supply Chain Management, kann daher der Fall eintreten, dass
Unternehmen unterschiedliche Blockchains im Einsatz haben. Eine Kommunikation
zwischen den Smart Contracts ist jedoch nicht oder nur über Umwege möglich, da Smart
Contracts den Anwendungsbereich der jeweiligen Blockchain nicht verlassen können ohne
die manipulationssichere Eigenschaft von Blockchains zu verlieren, da die Transaktionen
in einer unsicheren Umgebung, z. B. per Hand, übertragen werden müssen.

Daher wird im Zuge dieser Diplomarbeit ein Framework entwickelt, das die Interope-
rabilität zwischen unterschiedlichen Blockchains erhöht. Es werden dabei sogenannte
Cross-Blockchain-Calls eingeführt, die einen Aufruf eines Smart Contracts auf einer
anderen Blockchain ermöglichen. Das Framework nimmt dabei Rücksicht auf die Neben-
läufigkeit der Blockchains, die „eventual consistency“ von Transaktionen, die Bezahlung
von Transaktionsgebühren sowie die korrekte Ausführung der Cross-Blockchain-Calls.
Weiters werden die Fortführung einer Transaktion nach Erhalt des Ergebnisses eines
Cross-Blockchain-Calls und der rekursive Aufruf über mehrere Blockchains ermöglicht.
Der implementierte Prototyp unterstützt dabei alle Blockchains, die auf der Ethere-
um Virtual Machine basieren sowie den Solidity Compiler verwenden (z. B. Ethereum,
Ethereum Classic oder Tron) und kann um weitere Blockchains erweitert werden.

Die Evaluierung hat gezeigt, dass der Prototyp die Transaktionskosten um das 40-fache
erhöht und je nach Konfiguration 5-7-mal länger benötigt als das manuelle Importieren
eines Transaktionsresultates. Allerdings wird durch die Verwendung des Frameworks
der manuelle Aufwand des Aufrufers verringert und der Importwert von unabhängigen
Stellen überprüft.

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

Abstract

At least since 2017, cryptocurrencies got significant attention. About 50 new cryptocur-
rencies are listed on comparison pages per month. These currencies are managed by
transactions in distributed ledgers, so-called blockchains.

However, the blockchains are not only used for “digital money”, but also offer the
possibility of code-based contracts, so-called smart contracts, that execute services
decentralized. Possible applications include health care, asset management and supply
chain management.

Since the functionalities of blockchains differ, for example by supporting smart contracts
or privacy functions, certain blockchains are better suited for some application areas.
Especially in industry, for example in supply chain management, it can happen that
companies use different blockchains. As a result, communication between the smart
contracts is not or only indirectly possible because smart contracts cannot leave the scope
of the respective blockchain without losing the tamper-proof property of blockchains,
since the transactions are transferred in an insecure environment, e.g. manually.

As part of this thesis, a framework is developed that increases the interoperability between
different blockchains. Therefore, so-called cross-blockchain calls are introduced, which
allow to call a smart contract on another blockchain. The framework takes into account
the concurrency of the blockchains, the eventual consistency of transactions, the payment
of transaction fees and the correct execution of the cross-blockchain calls. In addition, it
is possible to continue the transaction after receiving the result of a cross-blockchain call
and to recursively call smart contracts across blockchains. The implemented prototype
supports all blockchains that are based on the Ethereum Virtual Machine and use the
Solidity compiler (e.g., Ethereum, Ethereum Classic and Tron), but can be extended
with additional blockchains.

The evaluation has shown that the prototype increases the transaction cost by a factor
of 40 and, depending on the configuration, takes a factor of 5-7 longer than importing
the transaction result manually. However, the manual effort of the caller is reduced and
the import is verified by independent parties.

xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivational Scenario . 3
1.2 Research Questions . 4
1.3 Methodology . 5
1.4 Structure . 6

2 Background 7
2.1 Blockchain Fundamentals . 7
2.2 Smart Contracts . 12
2.3 Blockchain Technologies . 16
2.4 Summary . 18

3 State of the Art 19
3.1 Atomic Cross-Chain Swaps . 19
3.2 Off-Chain Payment Networks . 22
3.3 Cross-Blockchain Tokens . 24
3.4 Further Concepts for Blockchain Interoperability 29
3.5 Summary . 30

4 Design 31
4.1 Blockchain Selection . 32
4.2 Use Cases . 32
4.3 Method Design . 33
4.4 Conceptual Architecture . 54
4.5 Discussion . 56

5 Implementation 59
5.1 Technology Stack . 59

xiii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2 Invocation Contract . 60
5.3 Distribution Contract . 63
5.4 Intermediary . 67
5.5 Validator . 68
5.6 Limitations of the Prototype . 69

6 Evaluation 73
6.1 Evaluation Setup . 73
6.2 Evaluation Scenarios . 74

7 Conclusion & Future Work 95
7.1 Discussion of Research Questions . 95
7.2 Future Work . 96

List of Figures 99

List of Tables 101

Listings 103

Listings 103

Acronyms 105

Bibliography 107

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 1
Introduction

At least since the hype in 2017, cryptocurrencies got significant attention by the industry
and the research community. Since then, many different proposals for novel blockchain
technologies have been presented. While Bitcoin [Nak08], the first and in the public
most famous cryptocurrency has only limited feature support, new blockchain approaches
which provide more sophisticated functionalities arise continually.

Alone CoinMarketCap1 has more than 2100 cryptocurrencies (of which around 800
coins) listed in March 2019, and the number continues to rise. In February 2019,
CoinMarketCap listed about 50 new cryptocurrencies2, with the actual number of assets
created being higher, as asset listing requires trading on at least two exchanges supported
by CoinMarketCap3.

Many of these added coins are just tokens or a variation of an older one, but some of
them introduce novel concepts. In general, technology advances can be grouped into the
following categories (based on [BRMS18b]):

• Improving the cryptocurrency itself, e.g., adding multi-signature support in Bitcoin.

• Creating spin-offs of cryptocurrencies, e.g., Bitcoin by adapting hashing algorithms
(Litecoin [Lit]), block creation rules (Bitcoin Cash [bitb]) or adding features, like
privacy-related enhancements (Dash [DD18], Zcash [BSCG+14]).

• Using the cryptocurrency technology as a protocol layer and adding new layers on
top of it, like OmniLayer [omn] or the Lightning Network [PD16] for Bitcoin.

• Creating new cryptocurrencies with novel concepts, such as smart contracts, which
are well known, e.g., from the Ethereum [Ethc] platform.

1https://coinmarketcap.com/all/views/all/, accessed 2019-03-19
2https://coinmarketcap.com/new/, accessed 2019-03-19
3https://coinmarketcap.com/methodology/#listings-criteria, accessed 2019-03-19

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

As a developer and researcher it is still difficult to track the progress of each blockchain
technology and to choose the promising technologies to build on. Different research
groups use different blockchain technologies, users are not sure which one is right for
holding assets and developers have the agony of choice to decide which one should be
used for their next project. This leads to a fragmented blockchain world.

Marketplaces and exchanges provide for users a money exchange service between cryp-
tocurrencies. These providers act as a third-party service and provide a more or less
trustful man-in-the-middle identity for coin exchange, where parties are sending coins in
one currency and are receiving coins in a different one. Indeed, these services present a
risk for security attacks, as the famous Mt. Gox hack4 has shown, or other events, such
as the death of the owner of an exchange service5.

Therefore, atomic swap protocols [Her18] were developed, which provide a peer-to-peer
cryptocurrency exchange without using a trusted third party. However, even with
atomic swaps, the problem of fragmented blockchains is not solved [BRMS18a]. In
general, transactions made in one blockchain never leave the ecosystem of the particular
blockchain. Therefore, the following actions can be only carried out within a single
blockchain [BFS+18]:

• Sending coins between various participants

• Calling smart contracts saved in the blockchain

• Accessing data stored in the blockchain

This has the effect that users cannot move their assets between different blockchains,
and developers cannot use libraries written for one blockchain without conversion on
a different blockchain. In addition, the conversion step gets difficult, when libraries
themselves have dependencies or functional requirements that are only supported by the
primary blockchain. Furthermore, researchers cannot use current work in their preferred
blockchain, since novel concepts are targeted for a particular blockchain technology.

To mitigate the problem of cross-blockchain interaction, more recent work has introduced
methods to transfer tokens across several blockchains [Aut18, BRMS18b]. While these
methods focus on token transfers, i.e., sending coins between various participants in
different blockchains, the other topics mentioned in the list above are still open and of
important interest.

To the best of our knowledge, finding a way to interact with a smart contract on a
different blockchain has not been regarded so far, although this would lead to various
possibilities in industry and research. For example, the library and function dependency

4https://blockonomi.com/mt-gox-hack/, accessed 2019-03-19
5https://www.theguardian.com/technology/2019/feb/04/quadrigacx-canada-

cryptocurrency-exchange-locked-gerald-cotten, accessed 2019-03-19

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

1.1. Motivational Scenario

issue would be solved by invoking a smart contract of one blockchain by a different smart
contract on a different blockchain. A concrete usage scenario of a fictional example is
described in Section 1.1.

Therefore, the main focus of this thesis is to design and develop methods for calling smart
contracts across blockchains.

1.1 Motivational Scenario

There are several use cases for calling smart contracts on a different blockchain. This
section describes in detail a scenario in the area of supply chain management. It shows
the intuition behind invoking smart contracts between blockchains. The requirements
are then summarized.

1.1.1 Description

Assume a company called “CarTech” is a manufacturer of vehicle components. This
company needs for production several materials, such as screws or steel, from vendors
and delivers its produced parts, for example an engine, to the car manufacturer. For this
process, a supply chain is usually set up, in which each participating company is subject
to rules. One of these rules usually includes delivery conditions and a penalty fee if they
are violated. However, detecting the guilty party is often more difficult than expected.
Without having an immutable tracking system, companies could, for example, adjust the
date of a good arrival or the date of shipment of their produced commodities.

In order to ensure immutable data tracking, the use of blockchains is suitable. Each
company publishes its data values in real time on a blockchain of its choice. These include
vendors, clients and delivery services. This way, continuous tracking data is published
and a complete record is available.

CarTech is interesting in analyzing the published data to identify events for abnormalities.
For that, the company has created a smart contract, which is called twice a day to
retrieve up-to-date data from the blockchains. This contract interacts with the smart
contracts of its business partners by invoking methods for obtaining published values.

Someday, a vendor called “CrazyParts” develops a new material that is lighter and more
stable than the previously used steel. CarTech, as a leading car part manufacturer,
is interested in using this material for its product parts. Unfortunately, CrazyParts
has chosen another blockchain to save its data values before entering into partnership
with CarTech. Thus, the smart contract of CarTech cannot interact with the supply
chain data of CrazyParts, since there is currently no such interaction between blockchain
technologies. The development effort of CarTech’s smart contract is thereby lost, since
the automatic abnormality system is ignoring the new vendor.

Therefore, CarTech has to download and save the other blockchain locally, then either
manually check for abnormalities or publish the values in the blockchain used by CarTech,

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

so that the developed smart contract can scan the values there. This is increasing the
local storage capacity, computational power and cost. While this may be a potential
solution for CarTech for one partner company, the company is not interested in taking
this step for many new vendors.

Therefore, CarTech is looking for a way to invoke smart contracts on a different blockchain
inside their own smart contract logic.

1.1.2 Requirements

Based on the motivational scenario, the following requirements can be extracted:

1. Invoking smart contracts on a different blockchain. This requirement is
the main objective of the thesis. It should be possible to call smart contracts on
another blockchain with varying parameters and return values.

2. Scalability. The solution should be scalable to multiple parties, smart contracts
and blockchains.

3. Security. Invoking smart contracts requires passing of parameters and return
types. To ensure that correct data is processed, the integrity of the values must be
preserved. For this, a method for verifying the integrity of parameters and return
types is required.

4. Consistency. Blockchains are using a concept of eventual consistency. A block is
considered to be more consistent with higher probability, as more blocks follow the
current block. This has to be taken into account when receiving values from other
blockchains.

1.2 Research Questions

Following the motivational scenario from the previous section, multiple research questions
have to be addressed. The following list summarizes the research questions of this thesis:

1. Which blockchain technologies are suitable candidates for implementing
cross-blockchain smart contract calls? Which methods for interacting
between blockchains exist? Can they be used as a basis for invoking
smart contracts?
This task builds heavily on literature search. Thereby, different approaches are
discussed based on the requirements. The research is focusing on the following
concepts:

a) Which technological features are supported by well-known cryptocurrencies?

b) How are atomic swap protocols implemented?

4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

1.3. Methodology

c) What is the current status and behavior of cross-blockchain token transfer
protocols?

2. How can smart contracts be called across blockchains?
Inspired by related work, a method for invoking smart contracts across blockchains
is designed, which is addressing the mentioned requirements.

3. How does the prototype perform in terms of cost and performance?
The created prototype is evaluated by empirical evaluation in test networks. The
obtained measurements will be used to calculate prices to estimate the trade-off by
using this architecture.

1.3 Methodology

The methodological approach of this thesis consists of the following phases:

1. Literature research. In the first part, required background information about
blockchain technologies is gathered. Of particular interest are recent work on atomic
swaps and cross-platform token transfers, as well as supported features of various
blockchain technologies. The collected information is used as input for the design
process. Thereby, it helps finding a basic concept for calling a method on a different
blockchain and selecting a blockchain technology for the prototype.

2. Design. Based on literature work, a method for invoking smart contracts across
blockchains is developed. For this, several approaches will be discussed. Among
other, consistency issues related to the concurrent environment of multiple blockchain
technologies are addressed. An important part is the modeling of transaction flows
between different blockchains including parameter and result propagation between
the interacting blockchains. Moreover, based on the chosen method, a conceptual
architecture for cross-blockchain interaction is designed. In addition to a functional
design, it is of great interest to maintain the current level of security of blockchains
and to detect possible introduced illegal transaction flows such as double execution
(spending) or integrity violation.

3. Implementation. The designed architecture is used to implement a prototype.
This prototype is a proof-of-concept which demonstrates the invocation of smart-
contracts across block chains.

4. Evaluation. The prototype is evaluated with different settings. These contain
a varying number of parallel transactions, parameters, return values and smart
contracts. The results are then analyzed with different metrics, such as execution
time and cost, which can be used to improve the prototype as well as to evaluate
the proposed solution. Since the evaluation is part of the implementation process,
these steps are performed iteratively.

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

1.4 Structure

The remainder of this work is organized as follows:

• Chapter 2 summarizes key concepts of blockchain technologies needed for the fol-
lowing chapters, introduces smart contracts, and outlines important characteristics
of top-ranked blockchain technologies.

• Chapter 3 discusses the current state of the art in cross-blockchain interoperability.
The focus is on related work regarding atomic swap protocols and cross-blockchain
tokens.

• Chapter 4 first selects a blockchain technology for implementing a prototype and
sets up functional use cases for the design. The remainder of this chapter is focusing
on the method design and the architecture.

• Chapter 5 describes the implementation of a prototype for cross-blockchain smart
contracts.

• Chapter 6 evaluates the results from the previous chapter by quantitative mea-
surements and discusses these results.

• Chapter 7 concludes this thesis by summarizing the proposed solution and outlin-
ing plans for future work.

6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 2
Background

This chapter summarizes basic concepts of blockchain technologies used in this thesis.
First, the elementary concepts of blockchains are briefly presented, followed by a detailed
explanation of smart contracts. The chapter concludes with a brief description of various
blockchain technologies.

2.1 Blockchain Fundamentals

This section will quickly review the basics of cryptocurrencies.

2.1.1 Cryptographic Concepts

Hash Functions. A hash function (H) transforms a variable-length input into a fixed-
length output. This mean that for any value v it is easy to compute H(v), but it is
infeasible to discover a v′ 6= v, so that H(v′) = H(v) [Her19]. Different blockchain
technologies use different hash functions, like SHA-256d [Nak08] or Scrypt [Lit].

Example 2.1 Assume the input “abc”. The SHA-256 hash would be
“ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad”

Asymmetric Cryptography. Asymmetric cryptography describes the concept of
using public and private keys to encrypt and decrypt values. Which key is used for
encryption depends on the usage [Her19]:

• Confidentiality: If the public key is used for encryption, the message can only be
read by the owner of the private key.

• Digital Signature: If the private key is used for encryption, anyone can verify that
the message was encrypted by the owner of the private key.

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background

Example 2.2 Alice wants to sign a file to prove that the file was issued by her.
Therefore, she calculates the hash value of the file, which she encrypts with her private
key (she signs the document). Afterwards, she adds the signature to the file.

Bob wants to check if the document was created by Alice. Therefore, he decrypts the
signature attached by Alice and calculates the hash value of the file with the same
function as Alice. Then he compares the two values if they are the same.

2.1.2 Transactions

A transaction is a contract for an action. Possible actions include token transfers and
invoking smart contracts (see Section 2.2). Each transaction must be authorized by the
account holder so that anyone can verify that the transaction was made on behalf of
the holder. This is achieved through the use of digital signatures. To prevent reuse
of the signed document, each transaction has a concept similar to a serial number to
identify the uniqueness of the document. For example, Bitcoin uses unspent transaction
outputs (UTXOs). Thereby, received transactions can only be used once to generate new
transactions [Her19, TS16].

Example 2.3 Assume following action: Alice wants to send Bob a coin. For this
reason, Alice has to generate a signed transaction with the information “Use transaction
#1234 with a value of 5 coins. Pay 1 coin to Bob’s address, 4 coins to Alice’s address.”

2.1.3 Blockchain

The blockchain is a distributed ledger that contains all published transactions in a sorted
order. Each transaction stores the hash value of the previous transaction entry and points
to the transaction. This builds a chain of transactions (single linked list) where the hash
has the task of making the chain tamper-proof.

In fact, the transactions in the blockchain are grouped into blocks for efficiency, while
the transactions themselves are stored in a separate data structure within the block (see
Section 2.1.4 on Merkle Trees). Therefore, the link with its hash is applied only to the
blocks, which is visualized in Figure 2.1. Modifying any value in the chain changes the
calculated hash in the next block, indicating an anomaly in the blockchain [Her19, TS16].

TX TX TX ...

BlockHash

PrevBlockHash

MerkleRoot

Nonce Time

TX TX TX ...

BlockHash

PrevBlockHash

MerkleRoot

Nonce Time

TX TX TX ...

BlockHash

PrevBlockHash

MerkleRoot

Nonce Time

Figure 2.1: Visualization of a Simplified Blockchain [TS16].

8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

2.1. Blockchain Fundamentals

2.1.4 Merkle Trees

Transactions are stored in blockchains (at least in Bitcoin [Nak08] and Ethereum [Ethc])
in so-called Merkle trees. Thereby, each transaction is placed at a leaf in the tree. The
parent nodes contain hashes of their child nodes. Therefore, a branch in the tree can
be easily verified to the end, without the need for other branches. Only the siblings
along the path are required, since any modification would affect the root hash of the tree.
Figure 2.2 shows a graph representing the path (red) to transaction B3 with the siblings
(green) required for verification [Aut19].

B1 B2

H1 H2

B3 B4

H3 H4

B5 B6

H5 H6

B7 B8

H7 H8

H1..2 H3..4 H5..6 H7..8

H1..4 H5..8

H1..8
Merkle Path

Siblings along path

Other nodes

Figure 2.2: Merkle Path [Aut19]

2.1.5 Consensus Protocol

The order of the blocks is determined with the consensus protocol. It is a protocol
between multiple parties (so-called miners), which try to append their generated block
to the ledger such that all honest parties agree on the selected block [Her19, TS16].

There exist many variations to reach consensus among honest users. A few protocols,
which are often used in the world of cryptocurrencies are shortly explained in Section 2.1.6.
In general, a consensus protocol is not more than a agreement on a set of rules that
describe the validity of a transaction, of a block and how the information is propagated
between the participating miners [Nak08].

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background

2.1.6 Consensus Algorithms

Several approaches for reaching consensus in blockchains have been proposed. This
section summarizes the most common ones in one paragraph each.

Proof of Work (PoW). Participants of the blockchain, so-called miners, have to solve
a complex puzzle to include a block in the blockchain. This puzzle requires finding a
nonce so that the hash of the block begins with a certain number of zeros. The number
of zeros is determined by a variable called the difficulty, which is dynamically adjusted
depending on the total computing power. Since a hash can be recalculated, when the
nonce is known, miners can easily verify the correctness of the nonce. For example, this
algorithm is used in Bitcoin. However, calculating the nonce requires a lot of energy and
time. Therefore, alternative approaches have been developed [Sun18].

Proof of Stake (PoS). The creator of the next block is selected by a pseudorandom
function. To participate, a node has to build up a stake, which will be lost through
malicious behavior. There exist several variations of the consensus protocol that contain
different parameters to influence the likelihood of selection, for example the age of the
stake [Sun18].

delegated Proof of Stake (dPoS). It is an adaption of PoS where any token holder
can vote for witnesses who create and validate blocks, as well as delegates who can change
blockchain parameters, such as transaction sizes or block intervals. Therefore, there
are only a small amount of witnesses and thus the protocol is much faster, but more
centralized. The selection of the leader for creating the next block is deterministic [Sun18].

Proof of Authority (PoA). The blocks are validated by approved accounts that may
lose the reputation by behaving malicious. Since the identity of the validator needs to
be verified in the real world, it becomes much more difficult to be chosen as validator.
Therefore, this protocol is controlled very centrally [Sun18].

2.1.7 Blockchain Forks

Sometimes, two parties practically simultaneously propose a block. Consequently, the
participating parties receive different blocks on which to build: A fork happened. The
forks may join together after a new block has been proposed, as honest parties always
follow the longest chain [Her19]. The blocks, which are not part of the longest chain
anymore are called stale blocks.

There exist also intended forks of the developers of a cryptocurrency: soft forks and hard
forks. While hard forks are not backward compatible because old nodes do not accept
blocks created by new nodes, soft forks prohibit only blocks created by old nodes because
of restrictions in the validation rules. However, both types of nodes accept the blocks of
the new nodes, so the longest chain does not diverge [ZSJ+19].

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

2.1. Blockchain Fundamentals

2.1.8 Rewards and Fees

To acquire miners for the blockchain, a kind of reward is necessary. Bitcoin has introduced
two types of rewards: block mining rewards and transaction fees. Block mining rewards
are paid to the miner who is able to successfully append the next block to the longest
blockchain, while transaction fees are paid by participants who wish to add a transaction
to the blockchain. Depending on the amount of the fee, the transaction may sooner or
later be considered by the miners. The fee is calculated in Bitcoin by the difference from
outgoing and incoming transactions [TS16].

Example 2.4 Carole is mining a block. The current block reward is 12.5 coins. The
block contains a transaction from Alice. She uses an unspent transaction of 5 coins
and sends 2.5 coins to Bob. Carole can now collect 15 coins for mining the block (12.5
block reward + 2.5 transaction fee).

2.1.9 Security Issues

This subsection summarizes commonly discussed cryptocurrency attack vectors.

51% Attack. If one party owns at least 51% of the mining resources, it has more
resources than the rest of the participating miners. This would have a negative impact
on the network, if the party behaves maliciously. Transactions could be held back for
being added to the blockchain and already published blocks can be rewritten due to the
high amount of resources by creating a chain longer than the current one. This would
destroy the trustworthiness of the currency [TS16].

Alice to Bob

Alice to Alice

Figure 2.3: Double Spending Attack [TS16].

Double Spending Attack. This attack describes the flaw of spending a coin multiple
times. For example, in Bitcoin, this problem is solved by the verification step of the
consensus protocol, where each transaction has to be checked for double spending attacks
by verifying that the UTXO has not already been used. A different form of a double
spending attack would be in form of the 51% attack, where the blocks can be rewritten
by creating the longest chain, which is also shown in Figure 2.3. Thereby, the recipient

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background

already assumes that the transaction has been successfully verified (the longest blockchain
contains the transaction) and fulfills its part of the agreement [TS16].

Example 2.5 Alice pays 5 coins to Bob for a concert ticket. Bob sends the ticket to
Alice after 6 blocks have been built on the block containing the transaction (very likely
that the transaction is valid). However, Alice forks the blockchain in front of the block
containing her transaction and alters her transaction so that Alice sends the 5 coins
to herself. Since she owns over 50% of the computation power, Alice can generate the
longest chain and publishes it to the other miners. Honest miners are now considering
her chain as the longest and start mining on this one. The previous chain is “gone”.
As a result, Bob has received no coins and lost his concert ticket.

Sybil Attack. If a network decides only on the majority of votes, a party can create
a lot of fake identities to win the vote, as long as there exist no possibility to verify
the parties. For example, this is the case in cryptocurrencies, where any number of
public/private key pairs can be generated by one party. To mitigate the problem, the
voting system is tied to resources (e.g., computing power), which are limited. As a result,
the creation of fake identities leads to a distribution of the resources, which reduces the
individual voting power of an identity [TS16].

2.2 Smart Contracts

Ethereum is one of the first and most widely used cryptocurrency to support quasi
Turing-complete smart contracts [Ethc, BMM+20, TS16]. The following subsections in-
troduce smart contracts by discussing the concepts of scripting in blockchain technologies,
necessary Ethereum basics for understanding smart contracts, potential applications and
vulnerabilities.

2.2.1 The Beginning of Blockchain Scripting

Bitcoin already supports a weak version of smart contracts, although the functions are
very limited. For a better understanding, it is necessary to break down the simplified
view of transactions and look at them at a more sophisticated level.

Transactions contain not only the address of the recipient, but are made up of several
operation codes. These operations are executed in a simple stack-based programming
language and are Turing-incomplete. The script of sending coins to a public address looks
as follows: Take a signature as input, verify it with the transaction and the owner of the
UTXO and return 1 if the verification is successful. The steps are shown in Figure 2.4. Of
course, there exist more complex scripts, such as multi-signatures, where more than one
key is required to authorize a transaction (for example, 2 out of 2 or 2 out of 3) [Ethc].

However, since no loops are allowed, the scripting language of Bitcoin does not support
all features. Bitcoin only tracks if UTXO are spent entirety, so no additional state is

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Smart Contracts

 <sig> <pubKey> OP_DUP OP_HASH160 <pubKeyHash?> OP_EQUALVERIFY OP_CHECKSIG

<sig> <sig>

<pubKey>

<sig>

<pubKey>

<pubKey>

<sig>

<pubKey>

<pubKeyHash>

<sig>

<pubKey>

<pubKeyHash>

<pubKeyHash?>

<sig>

<pubKey>

true

Figure 2.4: Example of a Bitcoin Script Execution [NBF+16].

possible. Therefore, all information has to be saved in the transaction output. Ethereum
is using a different attempt for saving the balance of an address and for tracking the
ownership status of a coin, which is discussed in the following sections [Ethc].

2.2.2 Ethereum Basics

This section summarizes the basic concepts of Ethereum that have not previously been
addressed and are needed for understanding the behavior of smart contracts.

Accounts. In Ethereum, two types of accounts exist: external controlled and contract
accounts. Every account contains four fields: a nonce for security aspects, an ether

balance to replace UTXO with a balance state, a contract code (used only for
contract accounts) and an account storage. External accounts can create and receive
transactions, while contract accounts must be poked by a transaction or message to
get active. Then, contract accounts can send other messages or read and write to their
account storage [Ethc].

Transaction prices. A transaction in Ethereum does not cost a static fee like in
Bitcoin, but depends on the number of computational steps. Therefore, each transaction
includes parameters for controlling the fees. startgas describes the maximum number of
allowed steps and gasprice is a fee, which is paid for each executed step. If startgas
is reached, the transaction is aborted [Ethc].

Messages. A message is like a transaction, except that it is created by a contract
account and not by the initiator of the transaction (external account). Therefore, it has
no field for defining the gas price per step. However, the maximum startgas of the
message can be limited. Messages provide contract creators the possibility to call and
interact with other smart contracts and to send money to other accounts [Ethc].

State Transitions. A state transition describes the behavior of changing the state
of a blockchain by executing a transaction. It is defined as follows: A state transition
accepts a state S and a transaction Tx as input and outputs a new state S’ by executing
the transaction ((S, Tx) → S′). If an error occurs, it depends on the blockchain how it
is handled. For example, in Ethereum, the state is reverted if a message runs out of
gas during execution. However, fees have to be paid for executing the transactions and

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background

parent messages are resumed and not reverted (as long as the message was sent with a
lower startgas limit than the remaining transaction) [Ethc].

Difference in Blockchain. Since Ethereum needs to store the state of the blockchain
(storage, balance, receipts of transactions), each block contains not only the list of
transactions (as in Bitcoin), but also the current state of the blockchain in the Merkle
tree (in fact, Ethereum uses a more complex version called Merkle Patricia tree) [Ethc].

2.2.3 Ethereum Smart Contracts

The code for Ethereum smart contracts is written in a stack-based, low-level bytecode
language called “Ethereum virtual machine (EVM) code”. Each byte of the code represents
an operation to which a particular instruction sequence applies.

Example 2.6 Assume the operation ADD. This operation has to pop two values from
the stack, calculate the total, and push the result back on the stack. Furthermore, the
remaining gas has to be reduced by 1 while the program counter has to be incremented.

EVM code has access to multiple types of storage: A stack, an infinitely expandable
byte array called memory, and the account storage that is not lost after the execution
is completed. In addition, smart contracts can access information about the sender,
incoming data, and block header data and can return a byte array as output [Ethc].

Ethereum also supports logging functionalities through events. The logs are stored in a
special data structure within a block and can only be retrieved by clients and not by the
contracts (not even from the contract that created the log entry). Moreover, so-called
“delegatecall” functions allow the call of libraries in the context of the caller contract,
which means that the library uses the storage of the caller [Ethb].

For completion, the Application Binary Interface (ABI) is a specification that contains
metadata about the functions used in a contract and can be used in a static environment
for invoking other contracts. A code (Listing 2.1) that visualizes some of the features of
smart contracts is written in Solidity, a programming language for Ethereum similar to
JavaScript, with a corresponding ABI-File (Listing 2.2) [Ethb].

2.2.4 Applications Using Smart Contracts.

There exist several ways for using smart contracts. In addition to the motivational
scenario presented in the introduction, smart contracts can be used for creating financial
applications, such as sub-currencies, wills, employment contracts or non-financial applica-
tions like systems for online voting, health care or asset digitization (ownership tracking
of physical assets) [Ethc, Ash18].

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Smart Contracts

Listing 2.1: Example Contract Code [Ethb]
contract Test {

bytes32 b;

constructor() public {

b = hex"12345678901234567890123456789012";

}

event Event(uint indexed a, bytes32 b);

event Event2(uint indexed a, bytes32 b);

function foo(uint a) public {

emit Event(a, b);

}

}

Listing 2.2: Example Contract ABI [Ethb]
[{

"type":"event",

"inputs": [

{"name":"a","type":"uint256","indexed":true},

{"name":"b","type":"bytes32","indexed":false}

],

"name":"Event"

}, {

"type":"event",

"inputs": [

{"name":"a","type":"uint256","indexed":true},

{"name":"b","type":"bytes32","indexed":false}

],

"name":"Event2"

}, {

"type":"function",

"inputs": [{"name":"a","type":"uint256"}],

"name":"foo",

"outputs": []

}]

ERC20-Tokens. ERC20 is a technical standard on the Ethereum platform. It defines
an interface for implementing tokens as a sub-currency in smart contracts, which includes
methods for receiving the name, symbol, number of decimals, total token supply and
current account balance as well as functions for sending tokens and granting permissions
to others for withdrawing tokens from its own account. This standard has the benefit
that tools and external platforms can easily interact and list the tokens [VB15].

2.2.5 Smart Contracts and Concurrency Issues

A smart contract can be seen as an object. It has a constructor, a long-lived state
(storage) and various functions (methods) that manage the states. Every contract lives
in the blockchain. When a miner is generating a block, each transaction is ordered and
executed one-by-one (for completion: there are discussions to let them run in parallel, as
long as the transactions do not conflict with each other [DGHK17]). Therefore, it seems
that a developer does not have to worry about the problems of executing a method in
parallel.

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background

Listing 2.3: Vulnerable DAO code [Her19]
function withdraw(unit amount) {

client = msg.sender:

if (balance[client] >=amount} {

if (client.call.sendMoney(amount)) {

balance[client] -= amount;

}

}

}

Listing 2.4: DAO Hack [Her19]
function sendMoney(unit amount){

msg.sender.withdraw(amount)

}

However, as described above, smart contracts can directly invoke other functions of
themselves or interact with other accounts that may be also smart contracts. Since
many developer ignored this feature, many security issues arose. A famous example was
the Decentralized Autonomous Organization (DAO) hack. DAO was a crowd-funding
platform where investors could vote, which party should receive the money [ABC17].
The vulnerability was a typical re-entrance attack in which the balance of the party was
not reduced before the function was called again. In order to receive more money than
intended, a hacker only has to call the function again within its receiving function in order
to bypass the guard for checking if enough money is left. The concepts of the vulnerability
are shown in Listing 2.3, followed by a possible attack in Listing 2.4 [Her19, ABC17].

The DAO hack was not the only issue, there exist also flaws in other contracts [Ban18,
BDJS17, kin16]. For example, the official ERC20 specification includes a warning that
before changing the debit value to another positive value, the value must be first set to
zero, otherwise more money than desired can be debited [VB15].

2.3 Blockchain Technologies

After the introduction of the key concepts of blockchain technologies, this section intro-
duces the top-ranked technologies. Therefore, the top 10 coins are analyzed by market
capitalization1 (with at least $1,000,000,000 market cap).

Bitcoin-based technologies. Bitcoin [Nak08], the first blockchain-based cryptocur-
rency, is limited in features. It has a scripting language called Script and supports
third-party approaches by adding a layer above Bitcoin for transferring different type of
assets beside Bitcoin itself, like colored coins [col] or OmniLayer [omn]. Bitcoin uses PoW
as a consensus protocol. Since Bitcoin was the first blockchain-based cryptocurrency
many forks were made. Bitcoin Cash was created by a hard fork and Bitcoin SV was

1https://coinmarketcap.com/coins/, ranking from 2019-03-23

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

2.3. Blockchain Technologies

again a fork of Bitcoin Cash, which both increased the block size. Moreover, there were
also forks in the code-base that modified some algorithms used in Bitcoin. Litecoin [Lit]
used a different hash algorithm and reduced the block generation time. Dash [DD18] was
again a fork from Litecoin, which added additional privacy features and used masternodes
for the consensus algorithm.

Ethereum. As discussed in the previous section, Ethereum [Ethc] is mainly known
because of its ability to add smart contracts and its EVM. It is a Turing-complete
scripting language and uses currently a PoW consensus protocol, like Bitcoin. However a
change to PoS is planned2. Ethereum Classic is a hard fork of Ethereum.

Ripple. Ripple [SYB] is a currency using the Ripple network. All coins have been
issued in the genesis block, but are distributed monthly and can be bought by users
with money. The Ripple network itself also supports additional assets, like fiats or other
cryptocurrencies, and uses a custom consensus algorithm in which a voting system decides
which transactions are selected in the next round. Thereby, each participant chooses
trusted participants to validate their transactions. Since Ripple does not support smart
contracts, the currency will not be further discussed in this thesis [CM18, Sha].

Stellar. Stellar [Maz16] is a cryptocurrency technology that has a similar code-base
as Ripple and provides a cryptocurrency called Lumen. Like Ripple, it uses a custom
consensus protocol, the Stellar Consensus Protocol. While Ripple focuses on money
transfers between banks, Stellar creates a network where people can transfer money
between currencies. Stellar also supports “smart contracts”, but these have limited
functional support, are made for payment agreements and are not Turing-complete3.
Therefore, this technology (like Ripple) is not discussed further in this thesis.

Eos. Eos [blo18] is a cryptocurrency running on the eos.io blockchain. The blockchain
has no transaction fees and supports parallel processing of transactions by dividing a
block into cycles, each containing shards that can be executed in parallel. Furthermore,
it uses a dPoS consensus protocol and supports smart contracts. These contracts can
be written in WebAssembly, which means that developers can write their programs in
C++. Since no transaction fees are applied, EOS uses a different model to limit the
bandwidth of the application. Depending on the percentage of EOS tokens associated
with an account, the accounts receive partial resources (storage, CPU, RAM) on the
network. Furthermore, developers of smart contracts have to pay for the resources.

2https://www.mangoresearch.co/ethereum-roadmap-update/, accessed 2019-03-27
3https://medium.com/goodx/the-magic-of-stellar-smart-contracts-

4519d2cb1b03, accessed 2019-03-23

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background

Tron. Tron [TRO18] is a cryptocurrency technology focusing on the entertainment
sector. It was a fork from Ethereum and thus supports smart contracts with similar
features. Like Eos, Tron uses the dPoS consensus protocol. However, there are fees
for certain operations and frequent use of the blockchain (calculated on a daily basis).
Moreover, it uses “buyable” energy for interacting with smart contracts.

Cardano. Cardano [KRDO17, CD17] is a multi-layered cryptocurrency whose concepts
are based on peer-reviewed scientific and academic theories. While the first (settlement)
layer handles the transactions and uses the native coin ADA, the second (computing)
layer is responsible for handling smart contracts. The computing layer supports also
other coins. Cardano uses the PoS consensus protocol [Car]. Since the computation layer
is not finished4 and only test nets are active, this cryptocurrency will not be discussed
further in this thesis.

2.4 Summary

This chapter discussed the basics of blockchain technologies. First, the basic concepts of
transactions as well as the blockchain technology with its different consensus protocols
were briefly discussed. Furthermore, the concepts of rewards, forks as well as security
issues were covered before a closer introduction to smart contracts was made. There was
a short tour of Bitcoin Script, followed by a closer look at the Ethereum platform. This
chapter concluded by discussing several top-ranked cryptocurrencies. Thereby, three
cryptocurrencies (Ethereum, Tron, Eos) provide support for a Turing-complete language
(taking fees out of assessment) in a productive network. While the next chapter introduces
state of the art concepts regarding cross-blockchain interoperability, the discussion of
cryptocurrencies continues in Chapter 4, where fundamental design decisions need to be
made, including the selection of a technology for a prototype.

4https://u.today/cardano-to-launch-new-roadmap-after-iohk-summit, accessed

2019-03-23

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 3
State of the Art

This chapter discusses the state of the art in related work. It first focuses on atomic
swap transactions by highlighting different concepts and discussing their benefits and
drawbacks. The following section deals with off-chain payment networks that use many
atomic swap technology concepts. Then the fundamentals of cross-blockchain tokens
are summarized and compared. Subsequently, Section 3.4 discusses further concepts of
blockchain interoperability, and Section 3.5 concludes this chapter with a brief summary
of the introduced concepts.

3.1 Atomic Cross-Chain Swaps

Herlihy [Her18] describes an atomic cross chain-swap as “a distributed coordination task
where multiple parties exchange assets across multiple blockchains”. Thereby, the parties
do not have to trust each other as the protocol guarantees that the atomic swap only
occurs when everyone agrees to the swap and that no one loses any coins, if no agreement
is found [Her18].

3.1.1 Implementation

This is usually achieved by using hashlock and timelock constraints. A hashlock h

restricts spending an output until a secret s is provided, such that H(s) = h, where
H is a hash function, while a timelock t restricts the spending of coins until a certain
time (block height) is reached. As part of atomic swaps, the locks are combined into a
so-called hashed time-lock contract (HTLC). This contract ensures that it will only be
executed if the secret s is provided before time t has elapsed. Otherwise the contract is
reverting the behavior (i.e., the coins will be reimbursed to the original owner) [Her18].
A graphical representation of the communication on a timeline is shown in Figure 3.1.
The explanation is given with the following example.

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

3. State of the Art

Party A Blockchain A Blockchain B Party B

Create Address

Initiate

Contract

Secret

Secret Hash

Audit Contract

Secret Hash

Create Address

Contract TX

ParticipateContract TX

Audit Contract

Redeem Redeem TX

Extract Secret

Secret

RedeemRedeem TX

Executed on Blockchain A

Executed on Blockchain B

Executed locally

Figure 3.1: Atomic Swap Protocol [ato17]

Example 3.1 Assume the following atomic swap: Alice (Party A) wants to exchange
1 Bitcoin (Blockchain A) for 50 Litecoins (Blockchain B) with Bob (Party B). The
protocol would be as follows:

1. Alice and Bob each need an address on the other blockchain (create address).

2. Alice creates a secret s, such that h = H(S) and publishes the contract on the
Bitcoin platform with a timelock of ∆12. She sends the contract to Bob.

3. Bob confirms the published contract and publishes a contract on the Litecoin
blockchain with a timelock of ∆6 with the same hashlock h found in Alice’ contract
and sends his contract to Alice.

4. Alice checks if Bob has published his contract and reveals the secret to Bob while
acquiring Bob’s Litecoins.

5. Bob extracts the secret from his contract and acquires Alice’s Bitcoins by using
the secret.

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1. Atomic Cross-Chain Swaps

3.1.2 Security concerns

During the protocol process, there exist many side effects, which may result in the loss
of coins. Possible issues include: not forwarding the secret, the order of contracts, and
short timelock values. The following list summarizes these issues [Her18]:

• Refunds are triggered by preventing the disclosure of the secrets to others. Unless
the first person is not disclosing, the person wishing to boycott the swap loses its
assets and will not do so.

• If Bob is deploying his contract before Alice, she does not have to deploy her and
can claim the coins because she has chosen the secret.

• When Bob’s timelock difference to Alice is almost zero, Alice can reveal her secret
at the last second, leaving Bob no time to claim his coins.

• If Alice publishes her contract and reveals the secret before Bob deploys his contract,
Bob can claim the coins from Alice without publishing his contract.

3.1.3 Discussion

There exist several slightly different implementations, most of them based on the same
concepts [ato17, bar17, bita]. The only requirements for an atomic swap are the support
for the above mentioned operations (hashlock and timelock) and the use of a hash function
supported by both blockchain technologies. Since transactions are executed in a linearly
order, someone has to send the coins first. Therefore, although the correct procedure is
followed, a delay or denial of service in one blockchain may result in the loss of the coins
of one participating party if the other is dishonest. Thus there is a minimal risk for the
participating parties to lose their coins.

There are several approaches for addressing these issues. One of these is BarterDex [bar17],
where two UTXOs are required per party. It has additional motivational concepts, for
example, Bob has to provide a total liquidity of 215%, with 115% being used as deposit
to prove willingness and Alice has to pay a fee that can be lost if the transaction is
discontinued. In addition, reputation rankings are calculated on the BarterDex exchange
on the basis of successful swaps. These concepts should increase the commitment of the
users to complete a started atomic swap [kom18]. Since it merely adds additional concepts
for penalizing misbehavior, this thesis does not elaborate on the exact implementation
details of this protocol.

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

3. State of the Art

3.2 Off-Chain Payment Networks

Off-chain payment networks were mainly discussed with the introduction of the Lightning
Network [PD16] in Bitcoin, which was implemented to improve the scalability of Bitcoin
by using a network for micropayment transactions. The basic idea is that the transfer of
money takes place off-chain and only the final state is published to Bitcoin. Therefore,
fewer fees have to be paid and fewer transactions have to be processed by the network.
However, this poses challenges for establishing a secure off-chain bi-directional communi-
cation channel between two participating parties as well as for finding payment networks
which can be combined to further reduce the on-chain transactions [PD16]. There
exist also approaches for other blockchain technologies like the Raiden Network [raib]
for Ethereum. This section discusses the technologies used by the two highest-rated
cryptocurrencies, the Lightning Network as well as the Raiden Network.

3.2.1 Lightning Network

The Lightning Network protocol consists of three phases, a funding transaction, temporary
balance updates by commitment transactions and a settlement transaction.

Funding Transaction. For initializing an off-chain transaction, a shared payment
channel has to be created. Therefore, the two participating parties create an on-chain
multi-signature transaction containing the amount of coins each party has to deposit into
the channel. However, before the funding transaction is published, the first commitment
transactions are signed and exchanged between the parties for security reasons [PD16].

Commitment Transaction. For each payment in the channel, two commitment
transaction are generated, one for each party, which are signed by both parties. The
commitment contains the same UTXO and thus only one commitment can be spent
on the blockchain. The difference is a restriction for the owner of the commitment. A
commitment consists of the following rules:

• The owner can spend his coins after waiting for a certain number of blocks (timelock),
or the coins can be spent by the other party by providing a secret whose hash is
equal to a value (hashlock constraint). The value is selected by the owner.

• The other party can spend its coins immediately after the publication of the
commitment.

If a new commitment is created, the owner reveals the old secret to the other party. This
prevents malicious behavior by publishing an old commitment, since the other party can
first claim the coins due to the timelock constraint of the commitment owner and the
revealed secret of the hash [PD16].

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. Off-Chain Payment Networks

Settlement Transaction. If both parties decide together to close the channel, they
can create and publish a so-called settlement transaction that contains the signatures of
both parties. Sometimes, however, only one party wants to close a channel. Therefore,
the last valid commitment transaction can be used that is published on the Bitcoin
network. Since the other party does not know the latest secret (it must be unique for
each commitment), the other party can only claim its own coins. Indeed, the owner of
the commitment can only spend its coins after the timelock has been reached [PD16].

Payment routing. Since opening a channel between each party is costly (coin deposit
is required), a coin can be sent to a third participating party by using a multi-hop
payment network. One way to ensure that coins are forwarded in the network can be
achieved by using HTLC. The detailed concept is beyond the scope of this thesis and
will not be further discussed [PD16].

Example 3.2 Suppose Alice wants to send coins to Carole. She only has a network
with Bob and Bob has already established a network with Carole. Alice can send the
coins to Bob, who forwards the coins to Carole.

3.2.2 Raiden Network

The Raiden Network works in a similar way as the Lightning Network, but is less complex
because of the support of smart contracts. First, the participating parties send their
tokens to a smart contract where they are stored until the payment channel is closed.
While participants in Lightning are using commitment transactions, participants in
Raiden are issuing balance proofs signed by the sender to each other, which contain
the total sum of all balance proofs sent to the other party. As the amount continues
to rise, the party has no incentive to present an older proof at the end. Therefore, the
recipient only retains the last proof. These proofs are used for closing the channel. This
is done by one party by calling the close function with the balance proof received from
the other party. The second party submits its received balance proof by calling the
updateTransfer function to receive its tokens, or waits for the timeout if there is no
balance proof. Subsequently, anyone can call a settle operation to withdraw the money
to both participants [raib]. Furthermore, the network supports partial withdrawals and
on-chain updates without closing the channel [raia]. However, these are just additional
contract features and not of further interest in this thesis.

3.2.3 Discussion

While Bitcoin offers a more complex solution with technologies that are mainly known
from the atomic swap protocol, Ethereum has the advantage of supporting smart contracts,
facilitating the exchange of commitment messages and supporting additional features
that are difficult or even impossible to implement in Bitcoin. However, the number of
transactions in Bitcoins is lower by one, since the updateTransfer function is not needed.
This is only relevant when there is a high fee.

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

3. State of the Art

3.3 Cross-Blockchain Tokens

While atomic swaps provide the possibility to exchange tokens between parties on multiple
blockchains, cross-blockchain tokens focus on using the same token on multiple blockchains.
Therefore, a concept for transferring a token between parties on different blockchains
is required, e.g., there must be a technology for sending a token from the Ethereum
blockchain to a user who has an account on the Eos blockchain. At the moment and to the
best of our knowledge, there exist two protocols for supporting cross-blockchain tokens:
Metronome [Aut18] and Deterministic Cross-Blockchain Token Transfers (DeXTT) from
the TAST [BRMS18b] project. The following sections are introducing the concepts of
these approaches and discuss the differences between them.

3.3.1 Metronome

The Metronome token MET is currently operating on the Ethereum blockchain. The first
successful chainhop in a testnet between Ethereum and Ethereum classic was announced
at the end of the first quarter 20191. Therefore, a live version is not yet deployed and the
following description may be incomplete or may have changed after the release of the first
version. Additionally, this thesis focuses on the technical part published by Metronome
and does not address the economic aspects contained in its publications such as coin
generation and inflation rate.

MET on
Blockchain A

Receipt for MET on
Blockchain A issued

Receipt issues MET
on Blockchain B

MET on
Blockchain B

User
initiates
export

Receipt
issued to
user

User
redeems
receipt

Figure 3.2: Metronome Cross-Chain Token Exchange [Aut18]

Metronome allows user to move their tokens between different blockchains. Therefore,
the user has to remove the tokens from the source blockchain, gaining a “proof of exit”
Merkle tree receipt, which has to be provided to the Metronome contract on the target
blockchain to receive the tokens back. For an overview of this process, see Figure 3.2.
This concept is called the “Import/Export System” [Aut18].

Export. When the user is sending coins to a different blockchain, the coins are exported.
Thereby, an export function is called, which burns the coins on the source blockchain
and issues a receipt to the user [Aut18]. The receipt contains parameters of the export
and a hash of a Merkle root tree, which is calculated based on the hash of the previous
burn transactions on the source chain. The source chain itself stores all details about the
burn [Aut19].

1 https://medium.com/@MetronomeToken/on-testnets-chainhops-validators-and-

whats-next-57af7d6fd875, accessed 2019-03-24

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Cross-Blockchain Tokens

Import. The user calls the Metronome contract on the target chain with the receipt
received at the export step. This receipt contains the root of a Merkle tree, which is
stored by the importer. After the validators have provided sufficient information to verify
the validity of the receipt, the contract issues the tokens to the user [Aut18, Aut19].

Validation. Since multiple distributed blockchains are used, Metronome uses a vali-
dation concept to verify the import and export steps. So-called validators observe the
blockchain by listening for events, validating cross-chain transactions, and voting on the
validity of an event. The release of the validators is grouped into three phases. In the
end, the validators build up an own cryptocurrency network, where each validator (node)
contains a full list of cross-chain transfers. For reaching consensus, a version similar
to PoS is used. Furthermore, validators have to deal with issues not encountered with
traditional blockchain technologies, like hard forks, where a chain has to be selected,
which contains the tokens. Validators receive a fee for validating the receipts, which
is paid by the exporter and is distributed equally to the validators who vote for the
receipt. A summary, how the import, export and validate step work together is shown in
Figure 3.3 [Aut19].

Validators

Source Chain Destination Chain

Wallet

1. call export()

receive Export receipt 2. C
all im

port()

provid
e Export r

eceipt

3. emit Import event

4. validate Export re
ceipt 5. votes accumulate for

Import validity

6. smart contract
determines vote passes
mint tokens

Figure 3.3: Cross-Chain Token Transfer Overview [Aut19]

Voting system. A validator can vote either positive (+1) or negative (-1) for a receipt.
Therefore, the validator generates and signs the Merkle path provided for verification
from the last 16 burn transactions performed at the source chain. The importing contract
verifies the signature of the validator by knowing the public key of the validator and
compares the root of the provided path with the root provided by the wallet during the
importing step. This procedure is shown in Figure 3.4 [Aut19].

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

3. State of the Art

Validators

Source Chain

burn transactions:

calculate Merkle root

Destination Chain

Wallet

Export event
with Merkle root

Provid
e

Merkle
 ro

ot

Constr
uct

Merkl
e path

fro
m burn

tra
nsa

ctio
ns

Provide
Merkle path

during vote

Smart contract:
export()

Smart contract:
vote() - validate that Merkle

path leads to root

Figure 3.4: Metronome Import Voting System [Aut19]

3.3.2 Deterministic Cross-Blockchain Token Transfers (DeXTT)

Like Metronome, the first version of DeXTT was written for smart contracts for Ethereum
and is not yet used in a productive environment. Instead of transferring the tokens
between chains like Metronome, this approach synchronizes the amount of tokens between
all chains. This is achieved by witnesses, which verify and broadcast the transactions
and by so-called claim-first transactions [dex19]. The following paragraphs describe the
protocol in more detail.

Proof of Intent (PoI). For sending x tokens between a source S and a destination
D, the two parties have to sign a so-called Proof of Intent (PoI). Thereby, S defines
a validity period t0..t1 of the transaction and signs the information with its signature
sigs, which is countersigned by D with its signature sigd. This PoI is denoted as
[S, D, x, t0..t1, sigs, sigd]. The created PoI can be used by any participant to verify that
this token transfer is intended by both parties [dex19].

Claim First Transactions. While the PoI can be generated on-chain as well as off-
chain, it must be distributed across all chains so that each chain can update the tokens
accordingly. The next step is the announcement of the PoI, where D publishes a so-called
claim transaction on any participating blockchain so that possible witnesses are informed
by observing the blockchain (i.e., using events) and forwarding the transaction to all
other blockchains [dex19].

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Cross-Blockchain Tokens

Witness Contest. Since witnesses are propagating the information between multiple
blockchains, a so-called witness contest is determining which witness will receive a reward
fee. Therefore, a so-called contest transaction is generated in which the PoI is signed by
a witness with its signature sigw. This transaction is then published on every blockchain.
Thereby, it is assumed that each witness is posting the transaction to each blockchain,
maintaining a consistent token balance between the chains when winning the contest,
which has the positive side effect that the transaction is distributed across all participating
blockchains [dex19].

Finalizing Token Transfer. The contest is running as long as t1 is not reached. Then,
the winner is selected by choosing the witness with the lowest sigw. The decision is
calculated by calling a finalize function, which is usually called by the receiver of the
transaction (D), but can also be called by any other party. This function transfers the
witness reward r to the winning witness and the tokens x − r to the destination D. Since
a witness has posted the winning transaction to all blockchains, the lowest sigw can be
calculated by all blockchains in a deterministic way. This would not have been possible
if a method has been selected as winner strategy where the order of the winning witness
is depending on the transaction order, like choosing the first witness that publishes a
verifying transaction [dex19].

Example 3.3 Assume Alice (A) has a balance of 50 tokens and wants to send 10
tokens to Bob (B) in the next minute. The witness reward is defined as 1 token. There
are two witnesses Charlie (C) and Dave (D). The protocol is executed as follows:

1. Alice signs a PoI of the form [A, B, 10, 1..61]. The resulted signature is 0xAA.
Alice sends the PoI to Bob.

2. Bob countersigns the PoI of the form [A, B, 10, 1..61, 0xAA]. The signature of
Bob is 0xBB.

3. Bob publishes the PoI [A, B, 10, 1..61, 0xAA, 0xBB] on a blockchain.

4. The observers Charlie and Dave are observing the transaction. Each one inde-
pendently calculates a contest transaction by signing the PoI. It is assumed that
the witness signature of Charlie is 0xCC and of Dave is 0xDD. Both publish the
contest transaction during the period on the other blockchains.

5. The transaction time is over. Bob calls the finalize method. Since Charlie’s
signature is lower (0xCC < 0xDD), Charlie wins the contest. Bob gets 9 tokens
and Charlie gets 1 token.

Prevent Double Spending. Since the coins are deduced at the end of the period,
the sender S can sign two transactions during one time period. If evaluated without
verification, the balance of S would be negative after calling the finalize transaction.

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

3. State of the Art

Therefore, a veto contest has been introduced, which follows the same technique used for
rewards at the contest transaction. Thereby, the witness generates a veto transaction,
which contains the conflicting data of both transactions and signs it. Once a veto
transaction was recorded, all valid PoIs mentioned in the veto are aborted, the balance
of the sender is set to zero and the veto contest is started. The veto contest ends after
both PoIs have reached the end of their period plus an offset of the longer time period
has passed additionally. Then, the finalize veto function can be called, which pays the
reward to the winning witness [dex19].

3.3.3 Discussion

While both approaches set on a technology of using trusted “validators”, the concept
of transferring and verifying tokens is very different. Metronome “destroys” the tokens
to transfer them to a different chain and uses Merkle trees to verify a successful export,
whereas DeXTT syncs the tokens across different blockchains through witness contests.
Both approaches have their advantages and disadvantages.

Starting with Metronome, exporting tokens by destroying them on one chain and import-
ing them on a another is actually not the same token. It is just a currency that has the
same value regardless of the blockchain. Sending money directly to a party on a different
blockchain is not possible with the description currently available, since the receipt has to
be added by an intermediary on the other blockchain and this concept is not mentioned in
any document so far. In addition, the actual draft of the voting script only shows that the
wallet has to provide the Merkle root, no additional information is provided there, which
can be traced back to bad documentation, since the API documentation of the owners
manual [Aut18] reveals some fields for the exporting step, like a destinationRecipientAddr.
Hence, it can be concluded that the import address must be specified in the export.
However, the rewards for the verification are equally balanced between the validators
and not tied to any time constraints.

In contrast, DeXTT has no restrictions on sending transactions between parties. For that,
a concept called PoI is used, which proves the willingness of both parties to participate in
the token transfer. However, a malicious witness can participate only in a few blockchains,
which results in inconsistent token balances between the chains. In addition, this can
happen when a witness can only send the transaction to a limited number of chains in
time. Furthermore, honest witnesses have to download all the chains to participate in
the network, which requires a large amount of data storage. Moreover, the cost of the
verification messages and finalize messages are quite high and may prevent witnesses to
participate in the network, since only the winner is receiving a reward.

In summary, the transaction concept of DeXTT is more mature due to real cross-chain
tokens, while the verification concept of Metronome is more promising because it looks
more consistent and has fewer constraints to function properly.

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

3.4. Further Concepts for Blockchain Interoperability

3.4 Further Concepts for Blockchain Interoperability

This section summarizes some further concepts of blockchain interoperability.

• Blockchain Migration: Based on various factors such as performance, cost and
time, a migration to another blockchain is considered. There are several ways to
transfer the data, ranging from a fresh start via the transfer of a state only to the
complete blockchain history including the block headers. Bandara et al. [BXW19]
discuss recurring design patterns for blockchain migration and Lu et al. [LXL+19]
introduce a unified blockchain as a service platform that facilitates the design and
deployment of blockchain-based applications. Since the technological scope of such
scenarios differs from cross-platform interactions, this topic is not further discussed.

• Polkadot [Woo17]: Polkadot uses a relay chain to distribute transactions to
multiple “worker chains” called parachains, which process the transactions in
parallel. It includes external blockchains like Ethereum via bridges. At the moment,
only a high-level description of Polkadot’s functionalities is provided. Thereby,
validators forward transactions to Ethereum, and events and Merkle proofs back to
Polkadot. The validity of a block is proven by two-thirds majority and by challenges
that can be submitted after the vote in a certain time period to prove the invalidity
of the header data of a block. Polkadot wants to support not just tokens but all
kinds of assets.

• Aion [SN17]: Aion introduces a blockchain that connects via bridges to other
networks, such as Ethereum. The description is very vague and high level, but the
transactions are imported and validated as already discussed in other concepts,
e.g., Metronome or Polkadot. A transaction is confirmed when two-thirds of the
validators have published voting information and fees are used as incentive.

• Cosmos [Ten19]: Cosmos uses a blockchain called hub, which is connected to
independent blockchains, called zones, to transfer tokens as packets between the
zones through a inter-blockchain communication protocol. The receiving chain has
to prove a packet by keeping track of the block headers of the sender chain. Cosmos
focuses on token-transfers and has already launched the cosmos hub2.

• Ion Stage 2 [Cle18]: Ion explains how to continue a transaction on one blockchain
that depends on a particular state of another chain. For this purpose, a state
event is emitted, which is submitted with the corresponding block to the other
blockchain. There, the block is verified and the transaction is executed with the
state that was transferred by the event. An information who executes the import
and who validates the validity of the block is not given. This concept does not focus
on cross-blockchain interactions, but only discusses the transfer of states between
blockchains and will therefore not be discussed further.

2https://hub.cosmos.network/, accessed 2019-06-12

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

3. State of the Art

3.5 Summary

This chapter introduced the concept of hashlock and timelock constraints and how
they can be applied in a practical environments like atomic swaps or off-chain payment
networks. Thereby, possible protocols were discussed. However, all protocols have a
certain time limit in order to avoid losing coins. This can be used as an attack vector
by blocking the submission of transactions by other participants with denial of service
attacks. The main part of this chapter was focusing on cross-chain token swaps by
taking a closer look at the implementations of Metronome and DeXTT. Both approaches
use a kind of intermediary, which is distributing and validating the token transfers.
However, both implementations use completely different concepts for achieving this step.
While Metronome uses Merkle tree proofs and votes, DeXTT uses signatures and veto
transactions. Finally, a brief overview of other blockchain interoperability technologies
was given. There, blockchain migration, financial token transfers (Cosmos) and initial
ideas to interact with other blockchains were presented (Polkadot, Aion, Ion). However,
most of the proposed technologies are described only on a high level and focus only
on token transactions and do not take account of smart contracts that have specific
characteristics, which will be discussed in Chapter 4. The concepts presented in this
chapter will be used as basis in the following design phase.

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 4
Design

This chapter presents the design for invoking smart contracts across blockchains. There-
fore, this chapter first selects a smart contract platform based on the assessment in
Chapter 2. Next, use cases that are helpful for the design procedure are discussed. Subse-
quently, possible design options are introduced in Section 4.3 followed by an architecture
description in Section 4.4. This chapter finishes in Section 4.5 with a discussion of the
design.

We define for this chapter the following terminology to distinguish between the elements
in the design:

• Caller. This describes the account (user/smart contract) that wants to execute a
function of an account on a different blockchain.

• Callee. This describes the account which will be called by the caller.

• Source Chain. This blockchain contains the account of the caller.

• Target Chain. This blockchain contains the account of the callee.

• Distribution Contract. This contract contains the logic for handling cross-
blockchain calls on the source chain.

• Invocation Contract. This contract contains the logic for handling cross-
blockchain calls on the target chain.

• Intermediaries. These users are playing the role of a broker and are transferring
the information between the source and target chain.

• Validators. These users are validating the information passed by the intermediaries.
For simplicity, this group consists of the same users as the intermediaries, however
the users are called validators to distinguish between the tasks.

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Design

4.1 Blockchain Selection

As discussed in Chapter 2, there are only three possible candidates currently offering
comprehensive support for smart contracts: Ethereum, Tron and Eos. Since Tron is
a fork of Ethereum and supports the same features, its usage would not provide any
benefit over Ethereum, and therefore, we do not consider it as a true alternative in
this thesis. Therefore, a decision has to be made between Eos and Ethereum. While
Ethereum has a long history in the market, Eos is still in its infancy. Although Eos offers
more possibilities and no transaction fees, Ethereum is more widely known, offers mature
building tools and is thorougly discussed in the literature [Tik18, ABC17]. Therefore,
we select Ethereum as the technology for the prototype. Because the development of
smart contracts is expensive, a local blockchain environment is used that simulates the
Ethereum core infrastructure. The setup and the tools used are described in Chapter 5.

4.2 Use Cases

Although the main purpose of this thesis is to find a way to interact with smart contracts
across different blockchains, there are some use cases where calling a smart contract is
not enough, but just the basis. Therefore, this section outlines possible scenarios that
may be of interest for smart contract developers when invoking smart contracts across
blockchains. These scenarios are derived by an extension of the motivational scenario of
Section 1.1, which is given at the end of each list item.

1. Restrict the function access to specific users.
In many smart contracts, for example lottery applications, only the owner or a
group of users is allowed to call additional functions. If a user only exists on
one blockchain and has no address on the target chain, there must be another
mechanism for deciding whether the function of the smart contract can be executed.

Extension:
“CrazyParts” offers a special function for “CarTech” where they can automatically
file a complaint if “CrazyParts” has not delivered its materials on time.

2. Sending and receiving tokens.
Although cross-chain tokens exist (as described in Section 3.3), there is a possibility
that a user might want to use the concept of smart contracts to transfer tokens.

Extension:
“CrazyParts” wants to automatically review the complaint and pay “CarTech” a
penalty if the complaint was correct.

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Method Design

3. Chain of smart contract calls.
As with smart contract calls for one blockchain, smart contracts should be able
to be called recursively between the blockchains as long as there is sufficient gas
available.

Extension:
A car manufacturer named “HighTechCar” uses a different blockchain than “CarTech”
and wants to use the statistical calculation of “CarTech” in its own calculations to
predict the delivery dates.

4. Continue with the execution after invoking a smart contract.
The result of a cross-blockchain is available only after some time, since the block
creation time varies. The smart contract should continue when the result is returned
to the smart contract.

There are two different ways to continue a smart contract: synchronously and
asynchronously. Either the transactions are halted until the result is obtained to
proceed with the logic (synchronous) or the transactions continue without waiting
for the result (asynchronous). Since it depends on the use case of the caller which
option is preferable, both variants should be considered.

Extension:
“CarTech” would like to start its analysis process automatically after receiving the
result, so that no manual invocation of the contract is required to start the analysis
(synchronous).
“CarTech” is not interested in an immediate result while submitting complaints,
since it will receive tokens if the complaint is successful (asynchronous).

4.3 Method Design

4.3.1 Design Preliminaries

Based on the literature, e.g., [Aut19, dex19], the following design for invoking smart
contracts across blockchains will also use the concept of intermediaries. This is necessary,
since it has to be assumed that the initiator does not have an account on the target
blockchain. In contrast to DeXTT, a smart contract is only executed on one blockchain.
Therefore, calling a smart contract is more akin to the Metronome project, where a
transaction is exported and imported into the target chain. Accordingly, a smart contract
invocation always consists of two separate transactions in two directions: calling a method
with parameters and returning the values to the initiator.

The handling of cross-chain smart contract calls is more complex compared to the
handling of cross-chain token transfers. While in cross-chain token transfers, the gas cost
for submitting the transaction is known in advance (always the same code, therefore
the same gas required), the amount of gas for executing a cross-chain smart contract is
individual and cannot be determined beforehand in all cases (e.g., unknown variable sizes).

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Design

Thus, it cannot be guaranteed that the gas paid by the caller is sufficient for executing
the cross-chain smart contract transaction. Therefore, the caller has to ensure that the
executing intermediary receives not only a static fee but also the gas cost. Otherwise, the
incentive to execute the transaction decreases. Unlike DeXTT, where the winning witness
is selected at the end of the token import, the intermediary has to be chosen in advance,
as a caller does not want to reimburse the gas cost to multiple intermediaries as the
cost is increasing linearly and an intermediary does not want to execute the transaction
without getting the gas cost refunded. Possible methods for invoking smart contracts are
described in Section 4.3.5.

Compared to the complexity of calling methods, it is easier to return values to the source
chain. There, only the received values have to be returned to the source chain, which
is similar to the import step in Metronome, since the required gas depends only on the
length of the return value.

However, if more complex interactions have to be considered as well, e.g., the continuation
of a transaction after receiving a return value, the advantage of using a fixed gas value is
no longer given. Therefore, the method design has to take this into account, together
with all other use cases mentioned in Section 4.2. Possible methods for passing back the
return values are described in Section 4.3.6.

There are also general issues that need to be considered, for example, use cases such as
restricting method access for specific users, requirements like dealing with consistency
issues or protocol tasks such as the selection of participating intermediaries. These
requirements are covered in the following sections.

4.3.2 Concurrency & Consistency

When different blockchains are considered as a common ecosystem, we cannot say anything
about the order of execution of the transactions across the blockchain boundaries, since
the block creation time varies (see Example 4.1), whereas the transactions on a single
blockchain are guaranteed to be executed in a sequential order [DGHK17]. This means
that while a transaction is processed on one blockchain, a different transaction is processed
on a different blockchain. While this does not pose a problem for the following method
design, it might create issues for developers using the proposed system. Developers have
to consider that a response from a transaction executed later may be obtained earlier than
a transaction executed earlier, since the order in which other blockchain systems perform
certain transactions cannot be determined. Therefore, a developer has to be aware of
the transaction status for cross-blockchain invocations, since the final result may not be
available immediately as in a single blockchain, but may arrive later. This behavior is
well-known from other technologies like asynchronous communication [ZBZ11].

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Method Design

Blockchain A

Blockchain B

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 3 4 5 6

1 2 3 4 5

Figure 4.1: Execution Order of Two Blockchains

Example 4.1 It is assumed that two different blockchains (A and B) have been started
at the same time with an average block time of 5 seconds and only one transaction
per block. Since PoW is used and a nonce has to be found (see Section 2.1.6), the
block-time varies randomly. This visualizes, for example, etherscan.ioa for Ethereum
with a range between 13 and 30 seconds. The transaction diagram shown in Figure 4.1
illustrates that it may happen that the transactions are executed in parallel (time 0
and 13) or that a transaction is called before or after the transaction of the other
blockchain (A before B: 17-18, 21; A after B: 4-5, 9-10). Thus, nothing can be said
about the order of transactions between two blockchains.

ahttps://etherscan.io/chart/blocktime, accessed 2019-05-24

However, the method design is strongly influenced by the consistency behavior. Since it
cannot be guaranteed that the received transactions are valid because of the eventual
consistency of blockchains, there is a common approach to wait for a certain amount of
blocks before the transaction is considered as valid. This approach is not only used by
exchanges [Com18], but also proposed by Metronome [Aut18]. Finding a reliable number
of blocks requires a tradeoff between security and time. While Metronome generously
sets the number to 4000-5000 blocks (one block per 15 seconds in Ethereum1 means
a waiting time of about 17 hours), exchanges use smaller confirmation numbers. For
example, Binance, a large exchange service, uses 30 confirmations2 (about 7.5 minutes).
Metronome argues that this high number avoids forking and mitigates the effects of a 51%
attack [Aut19]. Since exchanges are also affected by a 51% attack, this argumentation is
not fully comprehensible.

An approximate calculation that compares the numbers of Binance and Metronome
(Metronome in parentheses) shows that a transaction is executed after 7.5 minutes (17
hours) at the target chain and the return value is received after 15 minutes (34 hours)
and considered as safe after 22.5 minutes (51 hours), if no additional steps are needed. As
the numbers show, a longer waiting time than necessary postpones the function call and,
considering the usage scenario of the car manufacturer, leads to a delayed comparison of
the values and thus to a later intervention in the production chain.

1https://etherscan.io/chart/blocktime, accessed 2019-03-29
2https://www.binance.com/userCenter/deposit.html, accessed 2019-05-07, login required

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Design

4.3.3 Selecting Intermediaries and Validators

For transferring the data between the source and the target chain, so-called intermediaries
are used. These intend to transfer the data of the cross-blockchain calls between the source
and target chain. Since an intermediary can act dishonestly, so-called validators review
the actions of the intermediaries and inform the distribution contract that something has
been suspicious.

In order to ensure that mostly honest participants act as intermediaries and validators,
they have to be selected. Metronome relies at the final stage on the approach of setting up
its own blockchain to manage and select their validators, which can be applied to our work
as well. However, in our work, the intermediaries and validators are created on-demand,
as it is just a proof-of-concept, which does not require a detailed implementation of
a selection procedure for testing the functionality. Therefore, we do not focus on the
selection of possible intermediaries and validators in our work.

4.3.4 Restricting Access to a User

Restricting the access of a specific user is usually implemented by checking whether a
sender address of a message exists in a stored list [Etha]. However, this is not possible
in cross-blockchain interactions, since the sender of the message is not the user but the
intermediary. Therefore, it is necessary to pass the initiator of the transaction in a
different way so that the authorization is granted for executing the method on behalf of
the user. Furthermore, there are some requirements that have to be considered:

• The intermediary is not known in advance. Therefore, the approval cannot be
tied to a particular intermediary without introducing additional transactions that
increase the delay and complexity of the protocol.

• The permission should only be granted for one transaction and be bound to the
parameters of the users. This limits the possibility to execute a different function
on behalf of the user. For example, a dishonest intermediary cannot call a destroy
function.

There exist well-known concepts that can be used to solve the issue. One of them is the
use of digital signatures [RSA78]. For this, both blockchains have to support the same
asymmetric encryption and hash function. At first, the caller concatenates all parameters,
then calculates the hash value and signs it. This hash value is then additionally passed to
the smart contract, which can verify whether the parameters are chosen by a valid user.

To prevent replay attacks, the number of executions can be limited by using a random
nonce [LKKY05]. The contract keeps track of used nonces and blocks execution if a
nonce is reused. If a different party executes the call with the signed parameters before
the intermediary, then this call is still executed at the discretion of the user. Even if the
transaction runs out of gas, this is not an issue (except the loss of the gas) as the status

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Method Design

is reverted, the nonce is not added to the list and can be re-executed with sufficient gas.
Therefore, a different party cannot disrupt the execution.

However, saving all nonces requires storage space and increases the complexity and cost
of invoking smart contracts. Therefore, this option should only be used on purpose, e.g.,
when an approval of an user is required.

4.3.5 Invoking Smart Contracts

This section discusses the steps for transferring the transaction from the source chain to
the target chain. First, we perform an analysis to define the phases required for executing
a cross-chain transaction, which are discussed in detail afterwards.

Sequence Analysis

For transferring a transaction to the target chain, we rely on intermediaries as discussed
in Section 4.3.1. In order for an intermediary to become aware of a call, it has to be
announced by the caller. This can be done either by finding an intermediary off-chain
or by using an on-chain transaction. Since finding an intermediary off-chain requires an
additional infrastructure already provided by the blockchain, an on-chain transaction is
used.

As discussed in Section 4.3.1, only one intermediary should perform the cross-blockchain
call. Therefore, an intermediary has to claim the right to execute the transaction. Possible
options are the use of the first intermediary claiming the right, the selection of the caller,
or the selection by an algorithm, such as using the lowest signature as defined by DeXTT.
The first two options cannot be used because the use of the first intermediary prefers
intermediaries with a better internet connection or the miners who mine the block,
and the selection of a caller requires additional interactions by the caller, which should
be avoided because a smart contract cannot invoke functions without being triggered.
Therefore, we use the last option.

After the intermediary has been selected, it can execute the transaction on the target
chain.

Following this analysis, calling smart contracts across blockchains can be divided into
the following phases:

1. Register Phase: The caller announces the transaction on the source chain.

2. Offer Phase: The intermediary makes an offer and commits to execute the
transaction.

3. Executing Phase: The selected intermediary executes the transaction on the
target chain.

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Design

Register phase

In the first phase, the caller commits to execute a transaction on a different blockchain.
For this, a contract function named registerCall is called on the source chain, which
passes the blockchain identifier of the target chain, the address, the method and the
parameters of the contract as well as the fees paid to the intermediaries and validators
to the method. The caller deposits tokens with which the transaction can be executed,
i.e., the gas and the fees paid. This function generates a unique invocation id, which is
returned to the caller.

Hint 4.1 In the prototype used in this work, the fees are defined in the contract and
do not have to be passed by the caller to reduce the already limited call stack. In a
later release, a feature can be added to update these fees by selected delegates.

The gas price and startgas have to be chosen by one party, and there are various
possibilities to choosing this party, as we discuss in the following paragraphs. The
selection is dependent on whether additional parameters are required.

• Caller sets Gas. If the caller determines the gas price on the source chain, it
has to know the current market behavior of the target chain. While the startgas
(steps in the contract) remains the same and can be set by the caller (this can be
calculated approximately in advance), the gas price is a dynamic market value and
cannot be determined by the caller without any additional knowledge. Therefore,
selecting the startgas is a valid option, whereas the actual gas price should not be
set by the caller. However, if a caller wants to set a maximum limit, it may be an
option to include a maximum gasprice field at the request.

• Intermediary sets Gas. If the intermediary sets the gas price, there is no
control institution that can verify, without discussion, whether the chosen values
are acceptable. Thereby, the intermediary can set the value of the gas price very
high, so that all gas of the caller is wasted. Furthermore, if the startgas is also
set by the intermediary, it can always trigger an “out of gas exception” so that
the caller has to invoke the transaction with more gas again. This cycle can be
continued arbitrarily to burn the caller’s tokens, which is an undesirable behavior
and therefore not an option.

• Target Blockchain sets Gas Price. There is a contract on the target blockchain
that contains a gas price, which must be used by the intermediaries for executing
a transaction. In a full infrastructure, where the intermediaries have their own
consensus protocol, this value could be adjusted by delegates who were chosen by
the users. This has the advantage that the gas price is transparent and fair, since
it can be verified by all participants. However, the price is probably higher than
desired by the caller, since the caller cannot influence the price. The reason why
the source chain does not contain the gas price, although the caller would have the
opportunity to see the actual gas price, is mainly because the source blockchain

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Method Design

would have to store the gas price for each blockchain. This leads to updates across
all blockchains and thus to many unnecessary transactions.

• Gas Price set during Offer Phase. Intermediaries propose a gas price per step
in the currency of the caller during the offering phase. This leads to a competition for
the lowest offer, as the intermediary with the lowest gas price wins the competition.
For this, the respective intermediary itself has to ensure that the ratio between the
gas price on the source chain and the gas price on the target chain is not below the
current market value, since otherwise the offer is not lucrative for the intermediary.
However, if the exchange rate is higher, it will get more gas than the current market
value. Therefore, a caller has to set a maximum gas price to avoid excessive offers.

Suggested Solution. At the register phase, the caller sets the maximum number of
steps (startgas) as well as the maximum gas price and deposits enough tokens. The final
gas price is proposed during the offer phase. The minimum amount of deposited tokens
can be calculated as follows:

max gasprice · startgas + fees ≤ deposited tokens (4.1)

Offer phase

In the offer phase, intermediaries can submit a bid for executing the transaction by
calling a makeOffer function on the distribution contract. For this, the intermediaries
monitor the blockchain for new cross-platform transactions. Once a new transaction
occurs, they submit an offer request and thus participate in the contest of being selected
as the executor of the transaction.

As has already been mentioned, this request has to include a gas price. At the end of the
offering phase, the intermediary with the lowest price will be selected. The formula for
calculating the lowest price is as follows:

price = gasprice · startgas (4.2)

Since each intermediary wants to receive the execution fees, the gas price will normalize
to a value similar to the market value. If several intermediaries submit the same price,
the intermediary with the lowest signature will be selected. This approach is used in
DeXTT and guarantees that the intermediary can be selected in a deterministic way
without any additional transaction.

Signature Definition. Since the signature should vary between invocations, the invo-
cation id in combination with the sender address would be a good candidate. However,
the incentives to update the price will be low when others have a lower hash since they
only have to set the same price to get back into pole position. Therefore, the gas price
is included in the hash. This guarantees randomness in the signature calculation and

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Design

nobody is favored at price updates. Therefore, we define the signature as the hash of
concatenating the sender address, the invocation id and the gas price.

The offer phase can end in several ways:

• Caller-based. The caller has to send a transaction to complete the offering phase.
This has the advantage that the caller can decide whether the offer meets their
wishes. However, if a smart contract needs to interact with a different blockchain,
this is not an option, since a contract cannot call a function by itself. In addition,
the user experience would be degraded if users have to watch the blockchain status
and call additional functions.

• Time-based. The voting ends after a predefined time. Thereby, the selection
is made implicitly with the provided rules after the time has elapsed. Therefore,
no explicit call is required. However, the intermediaries have to follow open
competitions and cannot receive a notification announcing the end of the phase, so
the simplicity of working only with events is no longer given.

• Random-based. The phase ends pseudo-randomly after an offer has been submit-
ted by an intermediary, either by using insecure blockchain parameters or external
services [Reu18]. Thereby, a notification can be sent to the participants. However,
this randomness may lead to higher fees, as the competition may end too soon or
may not even end, if the condition is never triggered.

• Combined Solution. Defining a function that ends the offer phase by the caller
can be added as it works well with the other options. Furthermore, the random-
based approach can be combined with the time-based approach so that the phase
closes randomly after a fixed period of time. This guarantees that the intermediaries
have enough time to submit their offers.

However, the worst case that an offering phase will never end, remains. One possible
solution consists of using a soft and a hard limit. While the offering phase remains
active at least until the soft limit, it can randomly close between the soft and the
hard limit and will definitely close at the hard limit. Due to the hard limit, the
intermediaries still have to follow the competition status (at least while they are in
lead) and thus there is no real advantage of such a solution.

A key factor in choosing the right solution may be the incentives for receiving
fair or good offers. It can be discussed, among other things, whether randomness
increases the incentive to publish greatly reduced offers or whether reaching a time
limit increases voting behavior. Since our prototype shows only the functionality of
cross-blockchain smart contract invocations and does not focus on finding the best
way to increase the incentive to make fair offers, this research will be kept open for
future work.

40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Method Design

Suggested Solution. All proposed solutions have some disadvantages, so a trade-off
decision has to be made. When no time-based limit is chosen, there is a likelihood
that the offering phase will never end. The advantages for using soft and hard limits
is not really visibly. Therefore, the proposed solution is time-based only, although it
is known that potentially lower fees can be achieved by using other methods, as some
intermediaries may not be able to participate in the contest because the competition
is over before the transaction has been processed successfully. If no intermediary has
submitted an offer, then the cross-chain transaction is aborted. In order to receive the
deposited tokens back, the caller has to finalize the call (see Section 4.3.6).

Aborting Transaction. As long as the offering phase is open, the caller can execute
an abort function that aborts the requested transaction. The intermediary who is
currently winning will receive the fee and the remaining tokens will be returned to the
caller.

Hint 4.2 The prototype does not implement this feature, since a processed transaction
cannot be revoked in a single blockchain either.

Revoking Offer. An intermediary may want to revoke its offer by calling a revokeOffer
function before the end of the offer period. This may be necessary if the market changes
quickly and the offer is no longer in line with the market. However, this distorts the
offering phase since all other offers depend on this value. Therefore, the offering process
must theoretically be restarted.

However, there can be a dishonest intermediary who submits a best offer and subsequently
revokes it to trigger a restart of the offer phase. If this behavior is repeated again and
again for the same transaction, reaching the next phase can be blocked. Therefore, the
intermediary has to be excluded for submitting offers for a certain number of blocks. In
addition, the intermediary has to pay a penalty fee, which the winning intermediary will
additionally receive for the overheads. For the sake of simplicity, the fee is equal to the
fee paid by the caller.

Hint 4.3 The prototype does not implement this feature for simplicity. If an interme-
diary does not want to execute the offer, it can simply avoid executing the next step.
The transaction is then flagged as fraud and aborted by the validators.

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Design

Example 4.2 Assume the following scenario shown in Figure 4.2, which illustrates
the discussed elements of the offer phase:

1. The caller registers the cross-blockchain call.

2. Intermediary A and B submit their offers and try to underbid each other.

3. The market value changes. Therefore, intermediary A revokes its offer. This
triggers a restart of the offer phase.

4. Intermediary B submits a new offer.

5. Intermediary A cannot submit a new offer, since it has revoked the last one and
is blocked.

6. The caller does not like the offer of B since it is too high and aborts the transac-
tion.

Intermediary A
Distribution

Contract Intermediary B

makeOffer

makeOffer

makeOffer

revokeOffer

makeOffer
blocked

makeOffer

Caller

registerCall

abort

Restart
OfferPhase

Figure 4.2: Possible Sequence of Offer Phase

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Method Design

Executing Phase

After an intermediary has won the selection, it has to execute the transaction on the
target blockchain. Since the contract call with its result can only be checked by the
validators, when the contract is called via a smart contract that logs input and return
values (the result of the transaction is otherwise invisible to others), the intermediary
executes a function named executeCall with the data received from the source chain.
This function forwards the transaction to the callee and stores the input and return data
with a unique execution id.

Penalizing Misbehavior. In some cases, the intermediary gives up its reward and
does not execute the transaction. Then, the tokens of the caller would be locked forever.
To solve this problem, two options have to be considered: releasing the locked tokens to
the caller and making this decision unattractive for the intermediary.

Release Locked Tokens. In order to release the locked tokens to the caller, a method
for detecting misbehavior has to be defined. Thereby, two options are proposed: a
time-based and a voting-based detection method.

• Time-based Detection. The tokens can be refunded after a certain period of
time (for example after one week or 40,000 blocks). However, if multiple cross-chain
blockchain calls are executed, the time may not be sufficient, resulting in a loss of
tokens by the intermediary.

• Voting-based Detection. If the caller has doubts that the transaction has been
executed, it can create a vote of no confidence by calling a requestVerification
function. Each validator observes the blockchain whether the intermediary has
executed the transaction on the target blockchain by checking the transaction log.
Depending on whether the transaction has been found, the validator submits an
invalid (no fraud) or a valid (fraud) vote to the source chain contract by calling a
function named fraudVote. At the end of the voting period, a fee will be paid to
the voting winner (where the winner is identified by having the lowest signature
and the correct voting result based on the majority of votes). If the voting result is
invalid, i.e., the vote of no confidence turns out to be untenable, the transaction
continues normally and the fee is paid by the caller (the fee has to be deposited at
the beginning of the voting). Otherwise, the fee will be paid by the intermediary,
the transaction will be aborted and the locked tokens will be released to the caller.

Under the assumption that at least 51% of the validators behave honestly and the
probability of voting decreases exponentially per voting option (if the signature is
not lower, the vote will not be submitted because the voter could not win), this
procedure should ensure that a honest intermediary does not lose any tokens. In
practice, this may not be always the case, since in the worst case the signature at
the first vote for a voting option will be zero, resulting in no further votes for this
option.

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Design

Furthermore, the source chain does not know the truth value of the target blockchain
and can only judge by the majority of votes regardless of the correct result. There-
fore, validators have no incentive to behave honestly, aim for profit and always
vote for the majority if the signature is lower. Thus, it is important to monitor the
validators. This can be achieved, for example, with dPoS, where participants will
only nominate honest validators.

Thus, other options, such as the payment of a fee to all validators or the comparison
of the signature with a predefined value (e.g., the block hash that can only by
influenced by the miner) may be preferred. A short discussion of voting alternatives
is given in Section 4.3.7, although these are not considered further in this thesis.

An extension for the proposed method allows valdiators to vote for suspicion without
being prompted by the caller. This reduces the complexity for developers and users
of smart contracts because the status does not have to be monitored and no proper
functionality has to be provided in the own smart contract for triggering a request
verification. The voting period starts with the first vote of a validator. Since the
caller cannot pay the fee if the voting is invalid (the number of invalid votings is
not known in advance and validators will always trigger this voting to get more
tokens), the validator has to deposit the fee for the payment of the other validators,
if its voting initiative is wrong. Thus, a validator will only start voting for a valid
fraud, otherwise its deposit may be paid to a different validator if its own signature
is higher. The rest is defined equally.

Suggested Solution. Since validators have more information about the blockchain
and can easily detect misbehavior, only those can start a vote of no confidence. The first
voting is allowed only after a certain period of time (e.g., one week), if no result was
published. This guarantees to the intermediary that it has enough time to execute the
cross-chain invocation and return the result to the transaction on time. If a voting is
active while the result is submitted, the voting is aborted and the deposition of the fee
is reimbursed to the corresponding voter. Furthermore, a long delay of an action of an
intermediary (e.g., publication of the transaction on the target chain after winning is
delayed by the defined time period) is considered by all validators as a violation of the
rules. This ensures that the voting result is not influenced by a postponed action of the
intermediary. Figure 4.3 visualizes the difference between a successful execution and a vote
for no confidence. Figure 4.3a shows a valid sequence in which the intermediary executes
the transaction (executeCall) after winning the offer (OfferWon) and submits the
result of the call to the distribution contract (postResult). In contrast, Figure 4.3b
shows that the intermediary does not execute the transaction within a certain period
of time after winning the offer. Thus, the validator submits a vote of no confidence
(fraudVote).

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Method Design

Distribution
Contract Validator Intermediary

Invocation
Contract

OfferWon

executeCall

postResult

(a) Valid Execution

Distribution
Contract Validator Intermediary

Invocation
Contract

OfferWon

fraudVote

Fraud
Detection
Period

(b) Fraudulent Execution

Figure 4.3: Difference between a Valid and Fraudulent Execution

Penalty Fees for Intermediary. To penalize the non-execution of a cross-chain
smart-contract call, the intermediary has to deposit tokens in a depot, with which the
misbehavior can be compensated. For this, an intermediary can deposit any number
of tokens at any time (using a function named depositTokens), whereby the more
tokens are deposited, the more transactions can be executed in parallel. The tokens
are locked from the deposit on submission of an offer and get available for further use
once the cross-blockchain call has reached the final state or a better offer has been made.
Each time a transaction is not executed, the locked tokens are used to pay the caller a
compensation fee for the breach of the contract. All unlocked tokens can be withdrawn
by the intermediary at any time (withdrawTokens).

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Design

As part of the development, the following concepts were also developed:

• Share deposit between all callers In order to simplify the management of locked
tokens, the intermediary has to deposit a static amount of tokens. If the agreement
is not fulfilled, all failed transactions registered in an appropriate time period will
receive a compensation fee based on a distribution algorithm. The deposition of
the intermediary is set to zero. It turned out that this approach increases the
complexity in case of misconduct. Additionally, if a withdraw request is executed,
it has to be verified that no transaction of the intermediary is in progress.

• Paying fee while making an offer: Each time an offer is made, the intermediary
deposits tokens which will be refunded after the agreement has been fulfilled. As
multiple offers are submitted, any better offer has to reimburse the tokens of the
previous offer, resulting in many unnecessary transactions. With a deposit, token
management is outsourced to a central location, regardless of a specific requirement.

Because of the disadvantages for handling misconducts in “Share deposit between all
callers” and the simplicity of using a centralized token management compared to “Paying
fee while making an offer” we do not pursue the approaches any further.

4.3.6 Receiving Data from Smart Contracts

After the transaction has been executed, the return value must be forwarded to the
source chain. Again, we first discuss the required steps and then explain the details.

Sequence Analysis

Once a result has been received by the target chain, the intermediary has to forward
the result to the caller. This can be done again on-chain or off-chain. Using the same
argument as in Section 4.3.5 of an already provided infrastructure by the blockchain, the
source chain is used to transfer the result to the caller.

In return for offering the services, the intermediary receives a reward from the caller.
If an intermediary receives the reward before executing the transaction, a dishonest
intermediary may collect the reward but not proceed with the execution. Therefore, the
only way to pay the reward is after the execution.

However, it can be that an intermediary does not behave honestly and forwards the
wrong result. Therefore, a verification step is required before the reward is paid and the
result is considered valid. Since a caller cannot verify the execution without knowledge
of the target chain, the caller needs help to verify the transaction. This is done by using
validators, known from the concept of Metronome, who compare the values of the target
and source chains. Alternatively, the callee can inform the caller about the successful
execution off-chain, but again an external infrastructure would be required.

Therefore, we divide again the section into three phases:

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Method Design

1. Result Forwarding: The intermediary forwards the result from the target to the
source chain.

2. Result Verification: Validators verify the import to prove the correct execution
of the intermediary.

3. Token Claiming: The fees are paid to the intermediary and the validators.

Result Forwarding

In this phase, the result is forwarded from the target chain to the source chain. Therefore,
the intermediary calls a function called postResult on the source chain. It passes the
result received from the contract or null, if unavailable, the amount of gas used when
calling the transaction and the execution as well as the invocation id.

However, the intermediary can be dishonest and may not pass the result back to the
source chain. Although the incentive to do so is small (except for token transfers, see
Section 4.3.10), since tokens have already been spent for executing the transaction, this
may happen. Therefore, the same voting procedure is used as in the execution phase.

Usually, there has to be an unfortunate coincidence, that the value has not been forwarded
to the source chain, e.g., the intermediary has lost the internet connection or the
transaction has not been processed by the network. Therefore, the vote of no confidence
needs to be adjusted by introducing a third state: “result available but not transmitted”.
Validators pass the correct result to the chain during voting or in an additional step
after the voting. As this approach adds complexity to the design, introduces new states,
and extends the scope of the prototype, it will not be discussed further. Instead, an
undelivered transaction is marked as invalid and the call is aborted.

Side note: A transaction can always be executed with the same parameters more than
once, whereby the intermediary may not necessarily be the first one to execute the
transaction (another party will execute the call request before the end of the offering
phase). Thus, if a unique action is required, the use of nonces as described in Section 4.3.4
and the use of a consistent return value are required. This is achieved by storing the
return value in the contract for each nonce. For a concept of token transfers, where the
intermediary has to transfer tokens to the source chain, see Section 4.3.11.

Result Verification

The published result has to be verified for correctness. This is done by validators by
comparing the following values from the source chain with the values stored on the target
chain:

• used gas + max gas

• target chain + contract address + method name

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Design

• parameters

• return status (ok, exception) + return value

• invocation and execution id

There exist three possible voting results: call invalid, call valid but used gas invalid, call
valid and gas valid. Each validator can vote for a possible result by calling the vote
function. Like the other votings, it ends after a certain period of time. Then, the positive
(call valid) and negative (call invalid) votes are compared. If the vote is positive, the gas
votes are compared. The fees will be distributed according to the same criteria described
in the previous votings.

Moreover, a brief security discussion has to be conducted to ask if a validator can act
dishonestly and trigger a Sybil attack to gain a majority of votes. Since validators are
selected by PoA (as defined in this design) or by voting in a dPoS consensus protocol in
which the stakes weight the voting rights, it is possible to identify dishonest validators
and revoke the voting rights (PoA) or stop voting the validators into the top-k (dPoS).
Therefore, Sybil attacks can be excluded in practice as long as the consensus protocols
ensure that creating another entity does not increase the voting power.

Token Claiming

After the voting is completed, a finalize function is called on the contract of the
source chain to distribute the tokens. Depending on the voting result, the tokens are
distributed differently.

If the voting result is negative or the gas used is incorrect, the entire transaction value
(with the exception of the result verification fee and the gas cost for executing the token
claiming step) is reimbursed to the caller. Therefore, the caller or the validators will call
the finalize function.

If the voting result is positive and the gas price is correct, the intermediary will be
reimbursed for its transaction cost plus compensation, the winner of the voting will
receive its reward and the remaining tokens will be refunded to the caller. Since the
intermediary receives most of the tokens, it is assumed that the transaction will be
executed by the intermediary. However, it can also be called by anyone else, such as the
caller or the validator.

Upon completion of this phase, the caller can access the returned value by calling the
getValue function on the contract of the source chain.

If no offer has been submitted, the function has to be called as well to receive the tokens
back from the caller as mentioned in Section 4.3.5. Since there is no voting and no
execution, neither the intermediary nor the validator will execute the finalize function
because no reward is paid. Therefore, only the caller will execute this function.

48

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Method Design

Hint 4.4 It should be avoided that the caller has to execute the transaction so that
the cross-blockchain call can be used by the caller without observing the blockchain.
Therefore, a reward may be considered for calling the finalize function which allows
to outsource the call to the validators or intermediaries.

4.3.7 Voting Alternatives

The previous section describes a solution that limits voting to a certain time period.
While this approach is used in the design, it could be improved by additionally waiting
for a certain number of votes, so that a minimum amount of validators participated in
the vote. For example, in Metronome there must be a minimum number of positive
votes to accept the vote. However, there is no possibility that a vote ends negatively,
it can only be postponed. This approach is not possible with this design because the
transaction value must be paid or refunded depending on the outcome of the voting.

Metronome uses a concept in which all validators receive an even share of the fee. This
improves the willingness to vote, but as mentioned earlier, a lot of gas has to be paid to
transfer the fees to each validator. As long as the number of validators is limited, the
amount of gas used for transferring the fees is within manageable limits. However, if
more validators need to be supported, a linear increase in gas cost and a linear decrease
of the voting reward per validator has to be expected.

Another approach for improving the willingness to vote, but keeping the gas price low, is
to randomly select a voting winner when calling the finalize function. However, it is
difficult to achieve true randomness because the operations on an Ethereum blockchain
have to be deterministic to reach a consensus about the execution state across the
network [Ethc]. Thus, only an external factor can be used to make the voting independent
of the miners [Reu18]. In addition, if no external factor is used, validators will wait to
call the finalize function until the chosen factor guarantees its own winning.

4.3.8 Extension: Continuation of Caller Smart Contract

After the result of a cross-blockchain smart contract call has been received, the caller
smart contract should be automatically continued. Therefore, the caller has to specify
additional parameters (startgas, gasprice and method name of the callback function) at
the registerCall function that informs the contract that the call should be continued.

As mentioned in Section 4.2, the developer should be able to call the continuation function
synchronously or asynchronously. By default. the function is executed asynchronously.
However, the developer can simulate a synchronous call by storing the state of the function
in storage and ending the function immediately after invoking the registerCall

function. Then, the function state can be restored when the cross-blockchain result has
arrived.

Furthermore, the token claiming step has to be adjusted. When the intermediary executes
the finalize function, the callback function is executed first and the required gas

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Design

is truncated afterwards from the provided gas of the caller. The remaining function
continues as defined.

Thus, the caller has do deposit more tokens at the beginning. The formula from
Section 4.3.5 is adjusted as follow:

max gasprice · startgas + fees

+callback startgas · callback gasprice ≤ deposited tokens
(4.3)

The callback gas price is a value that the caller pays per step for executing the callback
transaction. Since the gas price is determined by the gas price used for calling the
finalize function, the callback function will not be called with a higher gas price than
defined by the caller. Therefore, only a gas price below the callback gas price is used to
benefit from the callback invocation. Since other participants may call this function with
a higher gas price (transactions with a higher gas price are ranked ahead), the gas price
will be close to the gas price specified by the caller. If it turns out that this competition
is not working, checks can be added to confirm that the intermediary has not used a
lower gas price.

Hint 4.5 The prototype implementation does not specify the gas price of the callback
function. It assumes that the current gas price of a transaction is equal to the gas
price of the registerCall transaction.

4.3.9 Extension: Chain of Smart Contract Calls

Depending on the use case, the concept may be extended to forward smart contract
calls between several blockchains. If the source chain is not interested in the final result,
nothing needs to be adjusted. However, if the source chain needs the final result of the
chain, the complexity is increased.

In this case, the invoked contract has to return a predefined status so that the invocation
contract at the target chain is aware of this state and notifies the intermediary that the
value is not yet intended for the source chain (status pending) and therefore cannot be
published. The intermediary has to wait until completion of the cross-chain call. After
the result of a transaction is received, the pending transaction has to be updated with
the new value. The pending status is replaced by the return status and the return value
is added. Then, the transaction is forwarded to the source chain by the intermediary.

When a new cross-chain transaction is invoked while a transaction continues, the pending
status is updated with the new cross-chain transaction. Once the new result is received,
the process continues as defined.

Figure 4.4 shows an abstraction of such a chain using three methods, where the final
method does not trigger a cross-chain transaction. Each color of an arrow shows a
single on-chain transaction, the blue boxes are on-chain, the orange boxes visualize the
intermediaries executing the transactions and the dashed lines symbolize the begin and
the end of the callback transaction. Intermediary Init starts the transaction by importing

50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Method Design

the transaction values to the invocation contract (step 1), which invokes Method A (step
2). Method A invokes an external method via the distribution contract (step 3) and
returns the received invocation id from the distribution contract with the status pending
to the invocation chain (steps 4 and 5). After the distribution contract has received a
result (step 6 and 12), the callback transaction is executed (step 7 and 13). Depending
on whether the method invokes a different blockchain again (Method B, steps 8-10) or
returns a result (Method C, steps 13 and 14), the status is updated differently. Either
the pending transaction on the invocation contract is updated with the new invocation
id (Method B, step 11) similar to Method A or the final result is received (Method C, step
15). The final result is returned to Intermediary Init (step 16).

Invocation
Contract

Method A Distribution
Contract

Method B

Method C

Intermediary
A

Intermediary
 B

Intermediary
Init

1. Call Method A

16. Event:
 Result for call

2. Forward Method A Call

3. Call Extern A

4. [InvocationID1]

5. Pending, waiting for [InvocationID1]

6. Result of Extern A

7. Callback

9. [InvocationID2]
8. Call Extern B

10. [InvocationID2]

12. Result of Extern B

11. Update [InvocationID1] with [InvocationID2]

13. Callback

14. R
esult 15

. R
es

ul
t f

or

[In
vo

ca
tio

nI
D

2]

on-chain
off-chain /
intermediary

first transaction
second transaction
third transaction

start & end of callback function
other function interactions

Figure 4.4: Chain of Smart Contract Calls

Recursive Execution Attack. Theoretically, an attacker can create an endless chain
(imagine an infinite loop as shown in Figure 4.5 where the contracts of two chains call
each other) so that the transaction status never reaches its final state as long as enough
gas is provided by the attacker. This harms the intermediary, since it does not get its
tokens for the transaction back while the loop continues. If the intermediary discontinues
its services during the “endless” waiting period, the transaction is considered as fraud
and the paid gas will not be returned. The attack is particularly interesting for token
transfers, which are described in the following sections, where an intermediary has to
prepay the tokens for a caller.

To limit the transactions between recursive systems, solutions like a maximum call depth
can be used. For this, the intermediary has to transfer the current call depth to the
other blockchain. Furthermore, the amount of callback function has to be limited to
prevent infinite continuations on a single chain. Beside limiting the execution count and

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Design

transmitting the depth value to the target chain, no satisfactory solution for an endless
chain has been found so far. Thus, no anti-recursion patterns are included in the design
and this thesis assumes that in the worst case, the transaction ends when there are no
more tokens available.

Distribution
Contract

Distribution
Contract

Invocation
Contract

Invocation
Contract

Method A Method B

Figure 4.5: Recursive Execution Attack

4.3.10 Extension: Sending Tokens to a Smart Contract

Not only parameters have to be sent to the smart contract, but it may also happen
that tokens have to be transferred. Therefore, an additional field is added in the
registerCall function that indicates the amount of tokens to be paid to the contract
on the target chain. The payment has to be additionally checked by the validators.

Since the value of one token is not equal between two chains, an exchange rate has to be
used. In addition, we define that the number of tokens is registered in the currency of
the target chain, since the receiving amount is supposed to be static (e.g., a merchant
expects to get the tokens exactly).

There are several solutions for finding a suitable exchange rate:

• Exchange rate is managed by contracts
The current exchange rate is either stored in the contract of the source chain or the
target chain. The update process could be solved similar to the gas price updates
of the target blockchain (see Section 4.3.5). Unlike the gas price, it does not matter
where the exchange rate is stored, since each blockchain pair has a unique conversion
value. Since billing takes place in the source chain, the distribution contracts of
both chains contain the exchange value. However, this approach results in many
adjustment transactions because the market value fluctuates.

• Exchange rate will be proposed during the offer phase
The intermediaries propose an exchange rate while making an offer to the caller.
In addition, the caller defines a maximum exchange rate that prevents excessive
offers. Here, at least max exchangerate · tokens tokens have to be deposited for the
token transfer. This option is preferred, since no additional exchange rate updates

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Method Design

need to be made. The best offer is then calculated by adding the exchange rate to
the formula:

price = gasprice · startgas + max exchangerate ∗ tokens (4.4)

The deposit of the caller while registering the call is calculated as follow:

max gasprice · startgas + fees

+callback startgas · callback gasprice

+max exchangerate · tokens ≤ deposited tokens

(4.5)

4.3.11 Extension: Receiving Tokens from a Smart Contract

Unlike sending tokens, this type of transaction is more difficult to solve because of
following issues:

• The caller may want to specify a minimum exchange rate compared to
sending tokens.
This can be easily solved by defining this parameter as well. This parameter limits
the exchange rate between a minimum and a maximum value when tokens are sent
and received. In addition, the formula for the best offer has to be adjusted again:

price = gasprice · startgas + (sent tokens − received tokens) · exchangerate (4.6)

• The intermediary receives the tokens first and has to forward them to
the source chain contract.
If the intermediary behaves dishonestly, the tokens are lost. Therefore, the caller
has to specify the maximum number of tokens to be withdrawn and the intermediary
has to deposit at least the amount of tokens at the specified exchange rate.

• The source chain contract has to ensure that the tokens can be with-
drawn.
This can be achieved by forwarding the tokens to the callback function or the
initiator of the cross-chain transaction.

• The execution can be executed by someone else.
In this case, the tokens are lost. Since the transaction is executed via a contract,
the execution can be tied to this contract. However, this does not solve the problem
that the contract has to forward the tokens to the dishonest intermediary. Therefore,
the payout transaction has to be tied to the winning intermediary. This requires
an additional method call by the caller. Admittedly, the caller has to observe the
blockchain to perform this action, which has heretofore been omitted to reduce the
complexity for the caller.

An option that does not require the caller, is to split the import step. First, the
intermediaries import the transaction into the target chain where it is checked by

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Design

the validators. Only if the import is successful, the intermediary can execute this
transaction in a second step. This introduces a voting on the target chain and
requires an additional call from the intermediary to execute the transaction (one
for registering and one for executing the transaction). Since this option does not
require any observation by the caller, it is preferred. However, the time to complete
a cross-chain transaction increases as additional voting is required. The voting fee
is paid in advance by the intermediary (as the caller may not have an account on
the target chain), which will be refunded by the caller at the end of the transaction
if the intermediary is acting honestly.

Hint 4.6 Due to limitations with the representation of decimal numbers in the Solidity
language, token transfer was not implemented in the prototype. For more details, see
the corresponding chapter in the implementation section (Section 5.6).

4.4 Conceptual Architecture

This section combines the discussed methods as an architecture for invoking smart
contracts across blockchains. Figure 4.6 shows the interactions between two blockchains
without token transfers and the deposition and withdrawal of tokens. Table 4.1 summarizes
the introduced functions. The protocol follows the steps given in Figure 4.6 and is
summarized as follows:

1. The caller registers the cross-chain smart contract invocation.

2. Intermediaries make offers.
Optional: If the caller wants to cancel the transaction, it can abort it.
Optional: Intermediaries can revoke their offers.

3. An offer of an intermediary is accepted. The selected intermediary imports the
transaction data into the invocation contract and executes the transaction. If
the intermediary is not delivering the results, the voters can vote for a dishonest
intermediary.

The yellow arrows illustrate a possible recursive cross-chain call:

a) The callee registers a cross-chain invocation at the distribution contract.

b) Once the result is received, the distribution contract calls the invocation
contract with the return value for updating the status of the transaction.

4. The intermediary listens to the transaction status.

5. Once the status has been set to completed, the intermediary will import the value
into the distribution contract on the source chain.

54

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. Conceptual Architecture

6. The validators verify the forwarded data and vote whether the intermediary behaves
correctly.

7. The transaction is finalized by the intermediary after a positive vote. If the vote
was negative, the caller or the winning validator invokes the finalize function
to retrieve the tokens.

8. The caller fetches the result of the cross-blockchain call.

Caller Callee

Invocation
Contract

Distribution
Contract

1.) registerC
all

Intermediaries

2.) makeOffer

3.)
 ex

ec
ute

Call

3.) autom
atically

invoked

4.) o
bservin

g re
sult

5.) postResult

6.) vote

7.) finalize

Source Chain Target Chain

2*.) abort

… all validators
… chosen intermediary
… all intermediaries
… cancelling
… caller
… mutli-hop only
… alternative transaction

3b.) Update

transaction status

Distribution
Contract7*.) finalize

3a.) Call Contract

2*.) revokeOffer

Validators
6.) verify

8.) getValue

7*.) fin
alize

3*.) fra
udVote

*

Figure 4.6: Interactions between Caller, Distribution Contract, Intermediary, Invocation
Contract, Callee and Validator

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Design

Table 4.1: Methods Used for Calling Smart Contracts across Blockchains

Name Initiator Description

registerCall Caller A caller registers a cross-blockchain function call.
abort Caller A caller can abort its registered transaction as

long as no offer has been accepted.
depositTokens All A participant deposits tokens as guarantee.
withdrawTokens All A participant revokes its deposit.
makeOffer Intermediary An intermediary is making an offer for executing

the registered transaction.
revokeOffer Intermediary As long as an offer has not been accepted, the

offer can be revoked.
executeCall Intermediary The intermediary is executing the registered call

on the target blockchain.
postResult Intermediary The intermediary is submitting the result re-

ceived from executeCall.
fraudVote Validator The validator votes for a fraudulent behavior of

the intermediary.
vote Validator The validator votes on the submitted result

whether it is correct.
finalize All Someone (mostly Intermediary) finalizes the ex-

ternal execution, continues with the next func-
tion and distributes the tokens.

getValue Caller The caller receives the returned value.

4.5 Discussion

This section introduced a design for calling smart contracts between blockchains. In each
section, several approaches were discussed. The proposed solution tries to a find a good
compromise between security, cost and usability. It pays attention to block consistency
by waiting a certain amount of time before proceeding to the next step, and uses a voting
algorithm for selecting the intermediary as well as for verifying the successful execution on
the target blockchain. Compared to cross-blockchain tokens, it is more important to focus
on gas cost by avoiding redundant work because the gas cost for executing an unfamiliar
smart contract function can be much higher. In addition, the voting mechanisms are in
most cases kept simple and are not endowed with security features like the Merkle proof
used in Metronome, although such concepts could be added in a later step to eventually
improve the stability of the voting algorithms. Furthermore, concepts, like the usage
of incentives for defining the gas rate or the exchange rate have been introduced, and
more complex topics such as chain continuation or cross-blockchain user restriction have
been discussed. The proposed solution meets all the requirements introduced in the
motivational scenario and all the use cases mentioned in Section 4.2. In the following

56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4.5. Discussion

subsections, these requirements are discussed in detail. The given architecture will be
implemented in Chapter 5.

4.5.1 Requirement Evaluation

1. Invoking smart contracts on a different blockchain.
This is possible with the proposed architecture by following the protocol introduced
in Sections 4.3 and 4.4.

2. Scalability.
The solution is scalable by increasing the number of validators and intermediaries.
In addition, different intermediaries and validators can be used for each blockchain
combination. Furthermore, it is possible to duplicate the smart contracts to
distribute the load between the systems.

3. Security.
Since the majority of votes are required to finalize a transaction and the rules
include a verification of all parameters and return values, the security of this
architecture is guaranteed as long as at least 50% of the validators behave honestly.
In addition, a method for using nonces and asymmetric cryptography for one-time
method invocations on behalf of the caller was discussed, which can be used if a
repeated execution is forbidden.

4. Consistency.
The block wait time for further steps has been taken into consideration while
planning the protocol. Therefore, the proposed protocol can handle eventually
consistent data.

The handling of blockchain forks was not discussed, as intermediaries and validators
have to decide which blockchain to follow. This is most likely done in an own
blockchain as discussed in Chapter 4.3.3. In most cases, some transactions will fail
in the fork detection period, since some voters or intermediaries will use different
versions of the blockchains for executing or validating the transactions.

4.5.2 Use Case Evaluation

1. Restrict the function access to specific users.
The protocol itself does not support restricting access to specific callers. However,
a method has been discussed which can be implemented by the developer.

2. Sending and receiving tokens.
A concept for the transfer of tokens between different blockchains has been intro-
duced. It uses an exchange rate provided by the intermediary during the offer. The
concepts were described in Sections 4.3.10 and 4.3.11.

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Design

3. Chain of smart contract calls.
The architecture supports to call a smart contract across blockchains within a smart
contract of the target chain as discussed in Section 4.3.9. Therefore, this use case
is supported by the architecture.

4. Continue with the execution after invoking a smart contract.
The architecture supports the continuation of a transaction when calling the
finalize function. Thereby, a previously saved function is called with the return
value as discussed in Section 4.3.8.

58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 5
Implementation

This chapter describes the implementation of the architecture presented in Chapter 4.
First, in Section 5.1, a brief overview of the technology stack is given. Then each compo-
nent is presented in a separate section: Invocation Contract (Section 5.2), Distribution
Contract (Section 5.3), Intermediary (Section 5.4), and Validator (Section 5.5). The
chapter concludes with a brief discussion about limitations of the prototype (Section 5.6).

5.1 Technology Stack

As discussed in Section 4.1, the Ethereum blockchain is used for the prototype imple-
mentation. Thus, Solidity is used as programming language for the smart contracts.
There are several ways to write and compile Solidity code. One possible option is to
use the official Ethereum Remix IDE1, which is provided as a Web-based solution and
includes a security analysis option. The security analysis option allows developers to
check the code for common mistakes like potential reentrancy bugs, the usage of tx.origin,
block timestamp and blockhash in functions as well as the correct usage of selfdestruct.
Another option is to use the command-line compiler solc, which can be controlled using,
amongst others, the JavaScript library solcjs2.

For local development, there are also frameworks that facilitate the work. One is the
Truffle Suite3, which provides Ganache, a local Ethereum blockchain for development,
and Truffle, a local development environment. However, in this work, Truffle was not
used to develop the prototype because we decided against an additional tool.

Furthermore, we use Docker4 to easily set up and run various Ethereum test networks
using Ganache. This allows a simple simulation of the architecture.

1https://remix.ethereum.org, accessed 2019-04-26
2https://www.npmjs.com/package/solc, accessed 2019-04-26
3https://truffleframework.com/, accessed 2019-04-26
4https://www.docker.com/, accessed 2019-04-26

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

For intermediaries and validators who need to process and transfer information between
multiple blockchains, the JavaScript Ethereum API web3.js5 is used. The code is executed
using node.js6, a JavaScript runtime environment.

Alternatively, there is also Web3.py7, an alternative library for Python-based applications
for interacting with Ethereum, based on web3.js.

In summary, the following technology stack is used:

• Solidity + solc + solcjs

• Docker + Ganache

• web3.js + node.js

5.2 Invocation Contract

The invocation contract is responsible for tracking and logging the call on the target chain.
For this purpose, the invocation contract includes a method named executeCall that
stores and logs all execution parameters and results. Furthermore, the contract includes
methods that update the progress of the result if a call across multiple blockchains is
required (see Section 4.3.9).

5.2.1 Execute Call

Each time executeCall is called, a new result entry is created that contains information
about the transaction (gas price, amount of steps), the call (result status, result data,
parameters, contract address, maximum gas, unique call id) as well as information needed
by the intermediary and the validators (source chain, sender address, current block
number). This entry is used by the intermediary to transfer the data back to the source
chain and by the validators to verify that the intermediary has used the correct data.

5.2.2 Update Invocation Status

In some cases, the result is not immediately available (e.g., a transaction is calling
another blockchain again). Therefore, the contract includes the ability to publish the
final return result at a later time by setting the return status to pending. In order for
this return status to be recognized by the invocation contract, the callee must notify
the contract. This is done by using a hard-coded 32-byte keyword as return value
(0xcafefeedcafefeedcafefeedcafefeedcafefeedcafefeedcafefeedcafefedcafefeed).

Subsequently, the invocation contract registers a listener at the distribution contract to
get notified when an update is received. There are two different methods to receive the

5https://web3js.readthedocs.io/en/1.0/, accessed 2019-04-26
6https://nodejs.org/en/, accessed 2019-04-26
7https://web3py.readthedocs.io/en/stable/, accessed 2019-04-26

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Invocation Contract

update: updateResult and finalResult. While finalResult only updates the
result entry with the data, updateResult analyzes the result data and checks if the
keyword regarding a cross-blockchain call is present again to perform a new registration
for an update event. For security reasons, both functions can only be invoked by the
distribution contract while checking for possible registered listeners. The decision which
function is used, is made by the distribution contract and is described in Section 5.3.

When one transaction registers multiple cross-blockchain calls in one function, it is
assumed that the last registered cross-chain transaction is always used to update the
return value and return status. The assumption is based on the fact that normally the
return statement is always the last statement of a function.

This has to be taken into account when implementing callee contracts. Listing 5.1 shows
parts of the described methods (verifying the keyword, registering a listener and returning
the keyword) for better understanding:

• Verifying the keyword:

– Line 2: Definition of the keyword.

– Line 5: Gets the last invocationId before invoking the callee contract.

– Line 6: Calls the callee contract.

– Line 7-11: If the invocation was successful (line 7), the invocationId is
increased, i.e., a cross-blockchain call has been triggered in the callee contract
(line 8) and the keyword matches the defined keyword from line 2 (line 9),
then a listener for the result of the cross-blockchain call is registered (line 11).

– Line 12: Sets the execution status to ExecutionWaiting so that the inter-
mediary knows that the result is not ready and should not be published on
the source chain.

• Registering a listener:

– Line 19: Verifies whether the invocation contract calls this function.

– Line 20: Stores the result id received from line 11 to notify the invocation
contract as soon as the last generated invocationId (=numCallings) has
received its result.

• Returning the keyword:

– Line 25: Invokes a cross-blockchain call.

– Line 26: Returns the keyword so that the invocation contract waits for the
result of the cross-blockchain call.

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

Listing 5.1: Example of a Register Call
1 // Invocation Contract

2 bytes waitingCode = hex"cafefeedcafefeedcafefeedcafefeedcafefeedcafefeedcafefeedcafefeed";

3

4 function executeCall() {

5 uint tmp = distributionContract.getNumCallings();

6 (bool success, bytes memory resultData) = contractAddress.call(...);

7 if (success &&

8 distributionContract.getNumCallings() > tmp &&

9 waitingCode.equalStorage(resultData)

10) {

11 distributionContract.registerNotifyOnResult(resultId);

12 status = ResultStatus.ExecutionWaiting;

13 }

14 ...

15 }

16

17 // Distribution Contract

18 function registerNotifyOnResult(uint resultId) external {

19 require(msg.sender == address(invocationContract), "Only invocationContract can call this

function");

20 listeners[numCallings] = resultId;

21 }

22

23 // Example Contract

24 function foo() public returns (bytes32) {

25 distributionContract.registerCall(...);

26 return hex"cafefeedcafefeedcafefeedcafefeedcafefeedcafefeedcafefeedcafefeed";

27 }

Hint 5.1 According to the concept presented, the use of the return value "0xcafefeed-
cafefeedcafefeedcafefeedcafefeedcafefeedcafefedcafefedcafefed" is allowed if there is no
triggered cross-blockchain call. Otherwise it is assumed that the result of the external
call should be used as the return value.

In the highly unlikely event that the return value should match the keyword and an
external call is triggered, a continuation function (see Section 5.3) can be used which
will be executed after the external call has been returned. This function offers the
possibility to update the return value with the keyword.

Since transactions are executed sequentially, a more elegant way to solve this issue
is to let the smart contract inform the invocation contract by a method call of an
additional external call. However, the address of the invocation contract has to be
known in advance by the contract, if msg.sender cannot be used (subcontract). Thus
no exchange of the invocation contract is possible without updating all depending
contracts. Therefore, the decision was made to use the keyword.

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. Distribution Contract

5.3 Distribution Contract

The distribution contract manages the phases of a cross-blockchain call, offering and
voting processes and the continuation of smart contracts.

5.3.1 Phases of the Distribution Contract

The transitions of the phases of the distribution contract are based on block numbers and
published data, since a block can be considered as part of the chain with high probability
after a certain number of subsequent blocks. The following list describes the conditions
under which the cross-blockchain call is in a particular phase.

1. PreOfferPhase: This phase is valid once a call has been registered and ends
when waitingBlocks have passed to ensure that the call registration has been
successfully added to the chain.

2. OfferPhase: This phase follows the PreOfferPhase for blocksPerPhase blocks.
At this stage, intermediaries have the opportunity to submit offers.

3. PreTransactionPhase: Similar to the PreOfferPhase, this phase is a buffering
phase of waitingBlocks blocks to ensure the correct winner is selected. It starts
immediately after the OfferPhase.

4. TransactionPhase: This phase starts immediately after the end of the PreTrans-
actionPhase and lasts until the final result is published.

5. PreVotingPhase: With the release of the final result, this phase begins for
waitingBlocks blocks to ensure that the result has not been changed.

6. VotingPhase: This phase begins after the PreVotingPhase. During this period,
the validators have the opportunity to vote whether the published result is correct.
The validators have blocksPerPhase blocks time to submit their voting after
the first vote has been received. This ensures that at least one voting has always
been registered before the end of the phase.

7. PostVotingPhase: This phase starts immediately after the VotingPhase and
is again a buffer of waitingBlocks blocks to ensure that all votes have been
successfully recorded and processed.

8. WaitForFinalization: This phase begins after the PostVotingPhase and ends
when the finalize function is called to complete the call.

9. Finalized: This phase starts after WaitForFinalization and remains active until
the end of life of the distribution contract.

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

CallRegister OfferStart OfferEnd Winner
Selected

Publish
Result Start Voting End Voting Voting valid Finalize

0 14 24 38 X+38 X+52 X+Y+62 X+Y+76 X+Y+Z+76

Source Chain Target Chain

PreOfferPhase OfferPhase PreTransaction
Phase

Transaction
Phase

PreVoting
Phase

Voting
Phase

WaitForFinalization
Phase

PostVoting
Phase

Figure 5.1: Execution Phases

The diagram in Figure 5.1 shows the phases on a timeline and the number of blocks
required to reach each phase when waitingBlocks is set to 14 and blocksPerPhase

is set to 10 blocks. X is the number of blocks while waiting for the result, Y is the
number of blocks between the begin of the voting phase and the first vote, and Z is the
number of blocks that have passed in the WaitForFinalization phase.

Example 5.1 Assume that the next step is published immediately after the phase has
been reached and the transaction result is considered as valid after 14 blocks. Then,
Y = Z = 0 and X = 0 + 14 = 14 and the total number of blocks to reach the final
phase is 76 + 14 = 90, which corresponds to 23 minutes at a hash rate of four blocks
per minute.

5.3.2 Register Call

Once a caller wants to execute a cross-blockchain transaction, it has to register the call.
Thereby, the following parameters have to be passed:

• blockchainId: An id (4 bytes) that uniquely identifies a target blockchain.

• contractId: The address of the callee

• parameters: Contains all data which are passed on directly to the callee. The
data value contains the method signature and the parameters encoded in a bytes
datatype.

• maxSteps: The maximum number of steps that can be used to execute the smart
contract.

• maxGasPrice: The maximum gas price that can be submitted for an offer.

• callbackSteps: The maximum number of steps that can be used when a smart
contract is continued. 0, if no continuation is required.

• callbackAddress: The contract address, which should be called upon continuation.
0, if no continuation is required.

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. Distribution Contract

Listing 5.2: Example of a Register Call
1 DistributionContract distributionContract;

2 address targetContractAddress;

3

4 function foo() public {

5 bytes memory params = abi.encodeWithSignature("setText(string)", "Hallo Welt");

6 bytes targetContract = abi.encodePacked(targetContractAddress);

7 distributionContract.registerCall.value(3000000000000000)("ETH0", targetContract, params,

50000, 9999, 0, address(0), "");

8 }

• callbackMethod: The name of the method to call when continuing. Empty if no
continuation is required.

The registerCall method creates a unique invocationId that is returned and
published with an event to the intermediaries and validators. This id identifies the cross-
blockchain call and is needed to track the status. Listing 5.2 shows an example of correctly
invoking the registerCall function with its arguments. In line 5, the function name
with its arguments is encoded and in line 6 the callee contract address is converted to
bytes. The blockchain ETH0 in invoked in line 7 with the encoded address, the encoded
function name as well as parameters with a maximum of 50000 steps, a maximum gasprice
of 9999 per step and no callback function. For this, 3,000,000,000,000,000 Wei (=0.003
Ether) are deposited to the distribution contract for the payment of the cross-blockchain
transaction.

5.3.3 Offering Process

The offering phase selects the winner based on the signature and the best offer (gasPrice).
Each offerer has to ensure for itself that the gas price is chosen so that it does not incur a
loss due to a bad exchange rate. Furthermore, the offerer has to ensure that the selected
gas price on the target chain is high enough for the transaction to be executed on time.
If this is not the case, the offerer is classified as a fraud. In order to reduce the number of
frauds, each offerer has to deposit tokens in advance. These tokens are consumed when
the winning offerer cannot publish the results in time to pay the fees for the validators
and to compensate the caller.

5.3.4 Voting Process

In general, the voting process is divided into multiple phases, whereby the voting phases
correspond to the phases of the distribution contract (PreVoting, Voting, PostVoting,
WaitForFinalization, Finalized). With each voting, the voter with the lowest signature
and the correct voting result wins the voting and receives a voting fee. The voting process
is used for result voting and fraud voting. While the result voting verifies the result
published by the intermediary, the fraud voting complements the transaction phase in
which an intermediary may cause harm to the caller by failing to complete its task.

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

The fraud voting is performed according to the following rules: The result of a transaction
of a cross-blockchain call must be registered within fraudDistanceBlocks blocks so
that the execution is guaranteed and can be verified by the validators. If the result is not
available (e.g., multi-chain calling), the result id must be published. The validator has to
vote for fraud if the result id was not published or the final result was not returned after
it became available within fraudDistanceBlocks blocks.

Hint 5.2 Note that a transaction is considered fraudulent, even if the result id may
not be available on time. Thus, in a more complex protocol, validators could observe
the transaction throughput on the target chain and dynamically adapt the duration
while the result id can be registered by the intermediary.

As discussed above, there is a difference between the result and the fraud voting. In
order to participate in fraud voting, a deposit of tokens has to be made. If a fraud voting
is started with the information that it is fraudulent and this information is incorrect,
then the voting fee will be paid by the winning candidate of the wrong voting.

5.3.5 Continuation of Smart Contracts

When registering the cross-blockchain call, the caller can pass a callback function that
is invoked during the finalize function. The function signature must accept exactly
one parameter, the invocation id. The developer can use this id to get more information
about the result by interacting with the distribution contract. An example is given in
Listing 5.3 where the received result (line 4) is published as an event (line 6), if the result
is valid (line 5).

If an additional cross-blockchain call has been triggered (as described in Section 5.2),
it informs the invocation contract of a result update. Depending on whether a callback
function has been defined, the return value of the callback function or the value obtained
from the target chain is forwarded to the invocation contract. Since the continuation
method can only trigger a cross-blockchain call, but not the result of the target chain,
different methods are called to pass the result. In the case of a cross-blockchain call,
updateResult is called, in the other case finalResult.

Hint 5.3 If the original value of the target chain needs to be returned, but a callback
function is defined, then the continuation method must return the original result so
that it can successfully be passed to the invocation contract.

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

5.4. Intermediary

Listing 5.3: Example of a Callback Function
1 event CallbackEvent(uint id, bytes);

2

3 function callback(uint invocationId) public {

4 (bool valid, bool resultStatus, bytes memory result) =

distributionContract.getValue(invocationId);

5 if (valid && resultStatus) {

6 emit CallbackEvent(invocationId, result);

7 }

8 }

5.4 Intermediary

The intermediary has the task of listening to new calls, registering offers, executing
all won offer contests, publishing the return values to the source chain, and finalizing
the transactions. For this purpose, the intermediary subscribes to all participating
blockchains and listens for events. After an event is received, certain operations are
performed. The following subsections summarize these.

5.4.1 Offering

As soon as the intermediary receives a call event, it periodically checks the current phase
of the call. Once the OfferPhase is reached, the intermediary publishes an offer where
the gas price per step is lower than the current offer. When a new offer takes the lead,
the intermediary receives this information through a status update. If the first place is
lost, a new offer will be made, if the exchange rate permits. Otherwise, the intermediary
waits until the TransactionPhase is reached.

Hint 5.4 The current prototype implementation does not include a complex protocol
that takes into account timing decisions or signature values when submitting an offer.
The intermediary always submits a value below the current offer, as long as a certain
threshold has not been exceeded.

5.4.2 Executing Transaction

The intermediary calls the invocation contract with the specified parameters received
from the distribution contract on the target blockchain. After that, the intermediary
waits for an event of the invocation contract, in which an unique id is published, over
which further information, such as the result, can be retrieved. The intermediary submits
this id to the source chain to register the execution of the cross-blockchain call. Once the
final result is available, the result is transferred to the source chain.

5.4.3 Finalizing Transaction

Once the voting is over, the intermediary calls the finalize function to receive the
tokens spent in advance to execute the transaction. For this, the intermediary has to
ensure that enough gas is provided for the callback function specified by the caller.

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

Hint 5.5 In the prototype, the intermediary or the contract do not check if the gas
limit has been set by the caller within an acceptable range. Therefore, this could be an
attack vector that prevents the intermediary from successfully receiving its fees due to
an “out of gas” error.

In addition, the prototype assumes that the transaction is valid and does not verify the
voting result before calling the finalize function.

5.5 Validator

The validator is responsible for verifying the results and detecting fraud.

5.5.1 Result Verification

Once a result is available and the voting begins, the validator compares the result stored
on the target chain with the result stored on the source chain. If these values coincide,
“valid” is submitted, otherwise, “invalid”. As discussed in Section 4.3.6, there is an
additional status if the result is valid but the required gas does not match. Listing 5.4
shows an excerpt of the verification script that visualizes the parameters that are verified
at each level (0 = invalid, 1 = valid, but gas invalid, 2 = valid):

• Line 2-3: Defines the parameters for each level that have to be checked.

• Line 4-8: Verifies that the level 1 parameters match between the source and the
target chain. If not, invalid will be returned.

• Line 9-13: Verifies that the level 2 parameters match between the source and the
target chain. If not, valid, but gas invalid will be returned.

• Line 14: Returns valid if all parameters match.

The following list describes the reason for the verification of each parameter.

• invocationId: If the same request is called twice by the caller, the intermediary
has to execute it twice and cannot reuse an old result.

• parameters: The intermediary has to pass the correct parameters to the target
chain, otherwise they will not match the requested execution behavior.

• resultStatus: The result status defines whether the transaction has been executed
successfully. Returning the wrong value would lead to an incorrect assumption
about the transaction status on the target chain.

• result: The result contains the return value of the transaction and would be used
incorrectly in later functions, if this value does not match.

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

5.6. Limitations of the Prototype

Listing 5.4: Execution Validation
1 function validateCall(source, target) {

2 let level1 = [’invocationId’, ’parameters’, ’resultStatus’, ’result’, ’contractId’,

’maxSteps’];

3 let level2 = [’requiredSteps’];

4 for (el of level1) {

5 if (source[el] != target[el]) {

6 return 0;

7 }

8 }

9 for (el of level2) {

10 if (source[el] != target[el]) {

11 return 1;

12 }

13 }

14 return 2;

15 }

• contractId: This field contains the address of the callee contract to verify that
the correct contract has been invoked.

• blockchainId: This field is checked implicitly by retrieving the results from the
blockchain submitted by the caller. It ensures that the intermediary has submitted
the execution to the correct chain.

• maxSteps: If the maximum amount of steps specified by the caller do not match,
the contract may fail due to an unpredictable “out of gas” error.

• requiredSteps: If the intermediary submits more steps than is necessary to
execute the transaction, it tries to obtain more tokens than it is entitled to.

5.5.2 Fraud Detection

The validator observes the blockchain for events and checks whether the intermediary is
executing the transaction correctly. Thereby, the validator checks whether the intermedi-
ary has submitted the result id and the result value, if available, on time. If a fraud is
detected, the validator will participate in a fraud voting. The cross-blockchain call is
finalized by the winner of the voting to receive its reward.

5.6 Limitations of the Prototype

Since the prototype is a proof of concept, there are some limitations, which are explained
in detail in the following sections.

5.6.1 Stack Depth and Local Variables

The number of local variables within a function is limited by the stack size. Therefore, the
use of modifiers sometimes results in errors because the maximum number of variables is
reached earlier. Therefore, the code of the modifiers has been written inside the methods

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Implementation

and modifiers have not been used at all. As a side effect, this has the advantage that
the security analysis offered by the Remix IDE works better, since modifiers cannot be
analyzed for re-entrance attacks.

5.6.2 Token Transfer

Since the Solidity language does not support decimal numbers at the moment, the concept
of the exchange rate as discussed in Section 4.3.10 cannot be used.

An alternative way would be to support fractions by passing numerators and denominators
individually. However, this leads to increased complexity and even more variables on an
already limited stack size. Therefore, the token transfer has been dropped and can be
added later if needed.

5.6.3 Stale Blocks

The intermediary and the validator do not check the events for stale blocks for simplicity
and readability of the source code. Otherwise, all events have to be stored and verified
to see if the status has not changed after n blocks.

5.6.4 Other Limitations and Peculiarities

In addition to the limitations stated above, the current implementation has the following
limitations.

• The return value is always taken from the last cross-blockchain call, instead of
letting the callee decide which return value should be used.

• The keyword cannot be returned when a cross-blockchain call is triggered (see
Section 5.2.2).

• The result of the callback function is always used to update the result data instead
of letting the caller decide whether the return value is deepening on the callback
function.

• The intermediary always selects a lower gas price instead of taking the signature
and the market value into consideration.

• If no intermediary has participated in the offering process, the prototype does not
mark the cross-blockchain call as finished according to Section 4.3.6. Therefore,
the caller has to observe the blockchain to finalize the cross-blockchain call and
receive back its deposit, if no offer has been submitted.

• The intermediary finalizes all offers it has won, independently of the voting result.

• The gas value of the callback function is not verified as described in Section 5.4.3.

70

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

5.6. Limitations of the Prototype

• There are no restrictions regarding the recursive execution attack.

• The prototype (intermediary, validator) has no error handling and retry mechanism
if an transaction has not been processed successfully.

• The prototype does not handle an id overflow error.

• From the point of game theory, the validator may not vote honestly but by majority
to receive a compensation as discussed in Section 4.3.5.

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 6
Evaluation

This chapter evaluates the prototype presented in Chapter 5. First, the evaluation setup
is specified in Section 6.1. Then, several evaluation scenarios are given in Section 6.2.

6.1 Evaluation Setup

The evaluation setup specifies the infrastructure used for the following scenarios. As
defined in Section 5.1, we again use different Ganache blockchains in Docker containers for
the setup. For the considered tests, we define three blockchains, each with a cost of 1 gas
per step, so we can easily estimate the actual costs of the live Ethereum blockchain, and
with slightly different block times to achieve a different block mining progress between
the chains (4-6 seconds). The ports of the containers are forwarded to the localhost. The
configurations of the containers are described in Table 6.1 where blockTime describes
the time after a new block is added and gasPrice defines the cost per step.

We choose Ganache as a local test environment because it is easy to use and provides
adjustable parameters such as gas cost or block mining time, and do not use official test
networks unless specified otherwise, since for most scenarios the evaluation is independent
of other transactions in the network. This allows us to spawn and destroy multiple
networks as needed for the experiment without being tied to the few existing public test
networks, all of which require gigabytes of storage. Furthermore, we can guarantee a
controlled environment for the test cases where unexpected failures of the test networks
do not affect the test result.

In addition, all blockchains are initialized with the developed contracts. The parameters
for waitingBlocks and blocksPerPhase are both set to 10 unless specified otherwise.
The reason behind a relatively low waitingBlocks time is that it shortens the test
time. However, this is only possible because we know that the blockchains of the test
network do not fork and thus the waitingBlocks time is not needed at all. All

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

Table 6.1: Definition of Evaluation Blockchains

Name LocalPort Blockchain Settings

ETH0 8510 --blockTime=5 --gasPrice=1
ETH1 8520 --blockTime=6 --gasPrice=1
ETH2 8530 --blockTime=4 --gasPrice=1

Table 6.2: Functions of the TestContract

Function Description

setBool(bool) This function stores a boolean value in the contract.
setNumber8(uint8) This functions stores a 8 bit integer in the contract.
setNumber256(uint256) This functions stores a 256 bit integer in the contract.
setText(string) This functions stores an utf8-encoded text in the contract.
setBytes(string) This functions stores various bytes in the contract.
setAddress(address) This functions stores an address in the contract.

getBool() This function returns the stored boolean.
getNumber8() This function returns the stored 8 bit integer.
getNumber256() This function returns the stored 256 bit integer.
getText() This function returns the stored text.
getBytes() This function returns the stored bytes.
getAddress() This function returns the stored address.

callbackText(uint) A function for receiving a text callback. It stores the
received data in the own contract and returns the result.

callSetText(string) This function invokes setText on ETH1 and registers
callback1 as callback function.

callback1(uint) This function calls getText on ETH1 and registers
callbackText as callback function.

callGetText() This function calls getText on ETH1 and does not reg-
ister any callback function.

accounts initially deposit 1 Ether to the DistributionContracts for the execution of the
cross-blockchain operations, which is enough Ether for all of the scenarios. Furthermore,
we create a TestContract for each chain that contains different functions for the following
test scenarios, which are listed in Table 6.2.

For the following scenarios, when mentioning ETH0, we are referring to the test smart
contract on blockchain ETH0 unless stated otherwise. This also applies to ETH1 and
ETH2 for their respective blockchain.

6.2 Evaluation Scenarios

This section evaluates the blockchain in terms of cost and features. In total, twelve
different scenarios are evaluated, of which ten focus only on the functional correctness.

74

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Evaluation Scenarios

6.2.1 Scenario 1: Cross-Blockchain Call – Transaction Order

Description

This scenario verifies the correct transaction order of a cross-blockchain call. There is
only one call at a time, only one intermediary making an offer and only one validator
verifying the transaction.

The caller registers a cross-blockchain call from Blockchain ETH0 to ETH1, in which
the boolean value is set to true. The expected result is a change of the value to true,
and the order of the transactions should match the order given in Section 4.4. In order
to ensure a correct test result, it has to be checked whether the value is set to false

before the evaluation. If this is not the case, the value can be changed by executing the
setBool function on ETH1.

This experiment only has to be evaluated once, since the sequence of operations is
deterministically tied to the phases of the distribution contract.

Result

Listing 6.1 shows the relevant parts of the log output. As shown in line 12, the re-
sult matches with the assumption and has been previously successfully reset (Line 3).
Furthermore, the sequence of the transactions follows the figure in Section 4.4:

• Line 2: Cross-blockchain call is registered.

• Lines 3-5: Offer submitted and chosen as best offer.

• Line 6: Execution on target chain.

• Line 7: Published result on source chain.

• Line 8: Published voting.

• Line 9: Finalization of cross-blockchain call.

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

Listing 6.1: Log Output Showing the Order of Transactions
1 11:40:38.607 INFO Current bool value on blockchain ETH1: ’false’

2 11:40:43.173 INFO New event ’NewCallRequest’ on contract distributionContract on blockchain ETH0

blockNumber: 56 data: {"invocationId":{"_hex":"0x01"}}

3 11:41:33.334 INFO Submitted offer: 0xF23A7eb6EDF8D5Ca365C27a2E46D0E96857876b7 invocationId 1

4 11:41:38.272 INFO New event ’NewBestOffer’ on contract distributionContract on blockchain ETH0

blockNumber: 67 data: {"invocationId":{"_hex":"0x01"}}

5 11:41:38.375 INFO First place offer: 0xF23A7eb6EDF8D5Ca365C27a2E46D0E96857876b7 invocationId 1

6 11:43:15.548 INFO New event ’NewExecuteResult’ on contract invocationContract on blockchain ETH1

blockNumber: 72 data: {"sender":"0x21574114b889Ea4Dac00d46b445324fdE3b56EA1",

"resultId":{"_hex":"0x01"}}

7 11:44:18.590 INFO New event ’ResultAvailable’ on contract distributionContract on blockchain ETH0

blockNumber: 99 data: {"sender":"0xF23A7eb6EDF8D5Ca365C27a2E46D0E96857876b7",

"invocationId":{"_hex":"0x01"}}

8 11:45:04.214 INFO Voted 0x7295BB66b1f6e2b49203FDe339482AD8F86c5b50, invocationId: 1, value: 2

9 11:46:53.910 INFO New event ’CallFinished’ on contract distributionContract on blockchain ETH0

blockNumber: 130 data: {"invocationId":{"_hex":"0x01"}}

10 11:46:54.610 INFO Current bool value on blockchain ETH1: ’true’

Listing 6.2: Log Extraction Illustrating the correct Result on the Source Chain
1 11:54:04.326 INFO Current text value on blockchain ETH1: ’Hello World’

2 11:54:05.254 INFO New event ’NewCallRequest’ on contract distributionContract on blockchain ETH0

blockNumber: 216 data: {"invocationId":{"_hex":"0x04"}}

3 ...

4 12:00:20.983 INFO New event ’CallFinished’ on contract distributionContract on blockchain ETH0

blockNumber: 291 data: {"invocationId":{"_hex":"0x04"}}

5 12:00:21.154 INFO Result value on blockchain ETH0: ’0x00000000000000000000000000000000

00000000000000000000000000000020 00000000000000000000000000000000

0000000000000000000000000000000b 48656c6c6f20576f726c640000000000

00000000000000000000000000000000’, translated: Hello World

6.2.2 Scenario 2: Correct Propagation of Return Value

Description

This scenario evaluates the correct forwarding of the return value to the source chain.
First, the text is set to “Hello World” using setText on ETH1, which is verified
by calling getText. Afterwards, a cross-blockchain call is registered from ETH0 to
ETH1, which executes getText on ETH1. The returned result is then checked on the
distribution contract by calling the getValue function. It is expected that the received
value matches “Hello World”.

Again, only one caller, one intermediary and one validator are used. This experiment only
needs to be evaluated once, as the result does not depend on the number of invocations.

Result

Listing 6.2 shows the returned result in line 5. Since the result is encoded in a bytes
object, it has to be decoded for human readability. Therefore, the decoded value is given
as well.

76

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Evaluation Scenarios

Listing 6.3: Log of a Parallel Execution of Multiple Transactions
1 11:47:15.797 INFO Current bool value on blockchain ETH1: ’false’

2 11:47:15.993 INFO Current bool value on blockchain ETH2: ’false’

3 11:47:19.066 INFO New event ’NewCallRequest’ on contract distributionContract on blockchain ETH0

blockNumber: 135 data: {"invocationId":{"_hex":"0x02"}}

4 11:47:24.135 INFO New event ’NewCallRequest’ on contract distributionContract on blockchain ETH0

blockNumber: 136 data: {"invocationId":{"_hex":"0x03"}}

5 ...

6 11:49:52.047 INFO New event ’NewExecuteResult’ on contract invocationContract on blockchain ETH1

blockNumber: 138 data: {"sender":"0x21574114b889Ea4Dac00d46b445324fdE3b56EA1",

"resultId":{"_hex":"0x02"}}

7 11:49:56.812 INFO New event ’NewExecuteResult’ on contract invocationContract on blockchain ETH2

blockNumber: 208 data: {"sender":"0x07ABe1858d3cAeac7d7Da86F57BF79dbDC5fcbCB",

"resultId":{"_hex":"0x01"}}

8 11:50:39.566 INFO New event ’ResultAvailable’ on contract distributionContract on blockchain ETH0

blockNumber: 175 data: {"sender":"0xF23A7eb6EDF8D5Ca365C27a2E46D0E96857876b7",

"invocationId":{"_hex":"0x03"}}

9 11:50:54.654 INFO New event ’ResultAvailable’ on contract distributionContract on blockchain ETH0

blockNumber: 178 data: {"sender":"0xF23A7eb6EDF8D5Ca365C27a2E46D0E96857876b7",

"invocationId":{"_hex":"0x02"}}

10 ...

11 11:53:14.998 INFO New event ’CallFinished’ on contract distributionContract on blockchain ETH0

blockNumber: 206 data: {"invocationId":{"_hex":"0x03"}}

12 11:53:30.094 INFO New event ’CallFinished’ on contract distributionContract on blockchain ETH0

blockNumber: 209 data: {"invocationId":{"_hex":"0x02"}}

13 11:53:31.001 INFO Current bool value on blockchain ETH1: ’true’

14 11:53:31.016 INFO Current bool value on blockchain ETH2: ’true’

6.2.3 Scenario 3: Parallel Execution of Cross-Blockchain Calls

Description

In this scenario, different cross-blockchain calls are executed in parallel. Again, there
is only one caller, one intermediary and one validator. This experiment is intended to
show that the intermediary and the validator can handle multiple calls at the same time
period and do not have to wait until one call is finished. Transactions should not be
mixed or lost by the parties. This time, the caller executes the same transaction as in
Scenario 1, but sends the call not only to ETH1 but also to ETH2. We only evaluate
this experiment once to show that nothing is lost.

Result

Listing 6.3 shows that the invocations are not mixed and are handled in parallel. This is
shown by the output of the invocationIds in lines 3 and 6, in which the call to ETH1 is
first registered and executed, followed by lines 4 and 7 with the call to ETH2, as well as
in lines 8 and 11, in which the result of ETH2 is first published and finalized, followed
by lines 9 and 12 with the result handling for ETH1. In addition, it is visible that the
execution order of an event does not depend on the registration id, since the call to ETH2
is finalized first (line 8 vs. 9), although it was registered after ETH1 (line 3 vs 4).

77

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

6.2.4 Scenario 4: Offer Process – Multiple Intermediaries

Description

This scenario evaluates a cross-blockchain transaction where multiple intermediaries
participate in the offer process. The experiment setup complies to Scenario 1, except that
three intermediaries submit offers. It is expected that the three intermediaries always
try to make a better offer if they are not in lead and that only the winner will execute
the transaction. Therefore, this experiment will be evaluated at least until two different
intermediaries have won the offer to show that various intermediaries can win the offer.

Result

Listing 6.4 shows a typical offer process as expected in the description. After the call
has been registered (line 1), all participating intermediaries submit an offer (lines 2-4).
Once a new block with a better offer has been mined (lines 5-6, 11-13, 18-20, 25-27 and
32-34), the non-leading intermediaries try to submit a better offer (lines 9-10, 16-17,
23-24, 30-31) as long as the offer process has not ended.

Some interesting findings in the offer process are summarized:

• Lines 2, 6: The offer with the best price was not selected.

Depending on the order of the transactions processed in a block, for each best offer
a new NewBestOffer line is written. Furthermore, not all transactions are processed
in the same block, so two NewBestOffer lines are not shown in a row. Unfortunately
it has been observed that Ganache rarely groups the transactions into one block,
so many blocks contain only one transaction, and thus two NewBestOffer events in
the same block are not outputted with high likelihood.

• Lines 10, 17: The first offer submitted by an intermediary is better than the next
one.

Since not all transactions are processed in the same block and intermediaries do
not save submitted offers, they always submit a new offer when a leader switch has
been announced. This leads to increased gas cost and unnecessary transactions by
the intermediaries, which can be avoided by storing the submitted offers.

In addition, Listing 6.5 shows two different outcomes of the offer process, where different
intermediaries execute the transaction on the target chain. This is illustrated in lines 3
and 9 by the sender value.

78

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Evaluation Scenarios

Listing 6.4: Log Extraction of a Offer Process with Multiple Intermediaries
1 12:06:31.977 INFO New event ’NewCallRequest’ on contract distributionContract on blockchain ETH0

blockNumber: 365 data: {"invocationId":{"_hex":"0x05"}}

2 12:07:22.253 INFO Submitted offer: 0xF4cf86A951Fd057571a85c747C24c0A4Eb8B5E08 invocationId 5 gas

price 9114

3 12:07:22.272 INFO Submitted offer: 0xF23A7eb6EDF8D5Ca365C27a2E46D0E96857876b7 invocationId 5 gas

price 9285

4 12:07:23.194 INFO Submitted offer: 0x127E15EE07C07e5A0b3A47aD6A44a23367450536 invocationId 5 gas

price 8983

5 12:07:27.093 INFO New event ’NewBestOffer’ on contract distributionContract on blockchain ETH0

blockNumber: 376 data: {"invocationId":{"_hex":"0x05"}}

6 12:07:27.231 INFO First place offer: 0xF4cf86A951Fd057571a85c747C24c0A4Eb8B5E08 invocationId 5

7

8

9 12:07:27.465 INFO Submitted offer: 0x127E15EE07C07e5A0b3A47aD6A44a23367450536 invocationId 5 gas

price 7539

10 12:07:27.513 INFO Submitted offer: 0xF23A7eb6EDF8D5Ca365C27a2E46D0E96857876b7 invocationId 5 gas

price 6772

11 12:07:37.172 INFO New event ’NewBestOffer’ on contract distributionContract on blockchain ETH0

blockNumber: 378 data: {"invocationId":{"_hex":"0x05"}}

12 12:07:37.236 INFO Lost first place: 0xF4cf86A951Fd057571a85c747C24c0A4Eb8B5E08 invocationId 5

13 12:07:37.346 INFO First place offer: 0x127E15EE07C07e5A0b3A47aD6A44a23367450536 invocationId 5

14

15

16 12:07:37.450 INFO Submitted offer: 0xF4cf86A951Fd057571a85c747C24c0A4Eb8B5E08 invocationId 5 gas

price 7314

17 12:07:37.468 INFO Submitted offer: 0xF23A7eb6EDF8D5Ca365C27a2E46D0E96857876b7 invocationId 5 gas

price 6784

18 12:07:42.211 INFO New event ’NewBestOffer’ on contract distributionContract on blockchain ETH0

blockNumber: 379 data: {"invocationId":{"_hex":"0x05"}}

19 12:07:42.320 INFO Lost first place: 0x127E15EE07C07e5A0b3A47aD6A44a23367450536 invocationId 5

20 12:07:42.450 INFO First place offer: 0xF23A7eb6EDF8D5Ca365C27a2E46D0E96857876b7 invocationId 5

21

22

23 12:07:42.624 INFO Submitted offer: 0xF4cf86A951Fd057571a85c747C24c0A4Eb8B5E08 invocationId 5 gas

price 6206

24 12:07:42.652 INFO Submitted offer: 0x127E15EE07C07e5A0b3A47aD6A44a23367450536 invocationId 5 gas

price 5621

25 12:08:02.341 INFO New event ’NewBestOffer’ on contract distributionContract on blockchain ETH0

blockNumber: 383 data: {"invocationId":{"_hex":"0x05"}}

26 12:08:02.523 INFO Lost first place: 0xF23A7eb6EDF8D5Ca365C27a2E46D0E96857876b7 invocationId 5

27 12:08:02.632 INFO First place offer: 0x127E15EE07C07e5A0b3A47aD6A44a23367450536 invocationId 5

28

29

30 12:08:02.741 INFO Submitted offer: 0xF4cf86A951Fd057571a85c747C24c0A4Eb8B5E08 invocationId 5 gas

price 5589

31 12:08:02.754 INFO Submitted offer: 0xF23A7eb6EDF8D5Ca365C27a2E46D0E96857876b7 invocationId 5 gas

price 4098

32 12:08:12.396 INFO New event ’NewBestOffer’ on contract distributionContract on blockchain ETH0

blockNumber: 385 data: {"invocationId":{"_hex":"0x05"}}

33 12:08:12.558 INFO Lost first place: 0x127E15EE07C07e5A0b3A47aD6A44a23367450536 invocationId 5

34 12:08:12.671 INFO First place offer: 0xF23A7eb6EDF8D5Ca365C27a2E46D0E96857876b7 invocationId 5

Listing 6.5: Log Extraction Showing Different Winners in the Offer Process
1 12:08:12.558 INFO Lost first place: 0x127E15EE07C07e5A0b3A47aD6A44a23367450536 invocationId 5

2 12:08:12.671 INFO First place offer: 0xF23A7eb6EDF8D5Ca365C27a2E46D0E96857876b7 invocationId 5

3 12:09:05.661 INFO New event ’NewExecuteResult’ on contract invocationContract on blockchain ETH1

blockNumber: 330 data: {"sender":"0x21574114b889Ea4Dac00d46b445324fdE3b56EA1",

"resultId":{"_hex":"0x04"}}

4

5 ---

6

7 12:16:34.136 INFO Lost first place: 0xF4cf86A951Fd057571a85c747C24c0A4Eb8B5E08 invocationId 6

8 12:16:34.275 INFO First place offer: 0x127E15EE07C07e5A0b3A47aD6A44a23367450536 invocationId 6

9 12:17:36.288 INFO New event ’NewExecuteResult’ on contract invocationContract on blockchain ETH1

blockNumber: 415 data: {"sender":"0x28A65438EB59408E5398E8Cba29269eAa4fB3d35",

"resultId":{"_hex":"0x05"}}

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

Listing 6.6: Log Extraction of Two Different Voting Winners
1 13:00:25.398 INFO balance for 0xe87858a6278747C5B6D13d3D34b8944AC9227F31: 98999999999999847970

2 13:00:30.448 INFO balance for 0x535F9924928De7A6160cBDBCf9c9ade5Ad437809: 98999999999999897559

3 13:00:35.484 INFO balance for 0x7295BB66b1f6e2b49203FDe339482AD8F86c5b50: 99003359999999235957

4 13:02:10.682 INFO New event ’CallFinished’ on contract distributionContract on blockchain ETH0

blockNumber: 1031 data: {"invocationId":{"_hex":"0x07"}}

5 13:02:11.182 INFO balance for 0x7295BB66b1f6e2b49203FDe339482AD8F86c5b50: 99003919999999235957

6 13:02:11.189 INFO balance for 0xe87858a6278747C5B6D13d3D34b8944AC9227F31: 98999999999999847970

7 13:02:11.194 INFO balance for 0x535F9924928De7A6160cBDBCf9c9ade5Ad437809: 98999999999999897559

8

9 ---

10

11 13:13:47.615 INFO balance for 0x535F9924928De7A6160cBDBCf9c9ade5Ad437809: 98999999999999787292

12 13:13:52.648 INFO balance for 0x7295BB66b1f6e2b49203FDe339482AD8F86c5b50: 99003919999999175279

13 13:13:57.712 INFO balance for 0xe87858a6278747C5B6D13d3D34b8944AC9227F31: 98999999999999787292

14 13:15:32.847 INFO New event ’CallFinished’ on contract distributionContract on blockchain ETH0

blockNumber: 1191 data: {"invocationId":{"_hex":"0x08"}}

15 13:15:33.195 INFO balance for 0x7295BB66b1f6e2b49203FDe339482AD8F86c5b50: 99003919999999175279

16 13:15:33.199 INFO balance for 0xe87858a6278747C5B6D13d3D34b8944AC9227F31: 99000559999999787292

17 13:15:33.204 INFO balance for 0x535F9924928De7A6160cBDBCf9c9ade5Ad437809: 98999999999999787292

6.2.5 Scenario 5: Voting Process – Multiple Validators

Description

In this scenario, a cross-blockchain transaction is evaluated, where multiple validators
submit a vote. The experiment setup is equal to Scenario 1 except that three validators
participate in the voting process. It is expected that depending on the signature, different
validators will win and get a reward. Therefore, this experiment is evaluated at least
until two different validators have won the vote.

Result

Listing 6.6 shows the balance of the validator accounts after the voting and after the
cross-blockchain call has been finalized for two different executions. As shown by the
token balances in lines 3 and 5 and lines 13 and 16, two different validators received a
reward for participating in the vote.

6.2.6 Scenario 6: Triggering a Callback Function

Description

It may happen that a caller wants to continue a task after the result is available. This
experiment is based on Scenario 2, but this time the caller adds the callbackText
function as continuation method while registering the transaction. The function is shown
in Listing 6.7.

Since this function saves the result (line 4), the storage is cleared by setting an empty
string before the cross-blockchain call is executed. It is expected, that the local variable
matches “Hello World”. The experiment only needs to be evaluated once because the
sequence is always the same.

80

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Evaluation Scenarios

Listing 6.7: Callback Function for Scenario 6
1 function callbackText(uint256 invocationId) public returns(string memory) {

2 (bool valid, bool resStatus, bytes memory result) =

distributionContract.getValue(invocationId);

3 if (valid && resStatus) {

4 text = abi.decode(result, (string));

5 }

6 return text;

7 }

Listing 6.8: Log Output Showing a Successful Execution of a Callback Function
1 14:06:47.161 INFO Current text value on blockchain ETH1: ’Hello World’

2 14:06:50.102 INFO Current text value on blockchain ETH0: ’’

3 14:06:55.217 INFO New event ’NewCallRequest’ on contract distributionContract on blockchain ETH0

blockNumber: 1806 data: {"invocationId":{"_hex":"0x09"}}

4 ...

5 14:13:06.054 INFO New event ’ContinuedResult’ on contract distributionContract on blockchain ETH0

blockNumber: 1880 data: {"invocationId":{"_hex":"0x09"},"success":true}

6 14:13:06.054 INFO New event ’CallFinished’ on contract distributionContract on blockchain ETH0

blockNumber: 1880 data: {"invocationId":{"_hex":"0x09"}}

7 14:13:06.914 INFO Current text value on blockchain ETH0: ’Hello World’

Result

When a continuation of a cross-blockchain call is triggered, a ContinuedResult event
is fired. This event is shown in Listing 6.8 in line 5. The successful update of the text is
displayed in line 7.

6.2.7 Scenario 7: Recursive Cross-Blockchain Calls

Description

If the result of a call is depending on another cross-blockchain call, a chain of calls is
required. This scenario simulates the use case by executing two cross-blockchain calls.
First, ETH0 calls callGetText on ETH2, which executes getText on “ETH1“. It
is expected that the result is received via ETH2 to ETH0 and should match “Hello
World”. Again, to ensure functional correctness, the text on ETH1 is set in advance
to “Hello World” and on ETH0 to an empty string. This experiment only needs to be
evaluated once, as the result is always the same. The described experiment is visualized
in Figure 6.1.

Result

The log output in Listing 6.9 shows the corresponding chain:

• Lines 3, 6: Call to ETH2.

• Lines 5, 9: Call to ETH1.

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

ETH0 ETH2 ETH1

callGetText getText

“Hello World”“Hello World”

Figure 6.1: Visualization of the Chain of Scenario 7

Listing 6.9: Log Illustrating a Recursive Cross-Blockchain Call
1 14:23:48.940 INFO Current text value on blockchain ETH1: ’Hello World’

2 14:23:52.911 INFO Current text value on blockchain ETH0: ’’

3 14:23:57.990 INFO New event ’NewCallRequest’ on contract distributionContract on blockchain ETH0

blockNumber: 2010 data: {"invocationId":{"_hex":"0x0a"}}

4 ...

5 14:26:32.715 INFO New event ’NewCallRequest’ on contract distributionContract on blockchain ETH2

blockNumber: 2551 data: {"invocationId":{"_hex":"0x01"}}

6 14:26:32.716 INFO New event ’NewExecuteResult’ on contract invocationContract on blockchain ETH2

blockNumber: 2551 data: { "sender":"0x07ABe1858d3cAeac7d7Da86F57BF79dbDC5fcbCB",

"resultId":{"_hex":"0x02"}}

7 14:27:18.340 INFO New event ’ResultRegistered’ on contract distributionContract on blockchain ETH0

blockNumber: 2050 data: {"invocationId":{"_hex":"0x0a"}}

8 ...

9 14:28:37.311 INFO New event ’NewExecuteResult’ on contract invocationContract on blockchain ETH1

blockNumber: 1723 data: { "sender":"0x21574114b889Ea4Dac00d46b445324fdE3b56EA1",

"resultId":{"_hex":"0x09"}}

10 14:29:41.429 INFO New event ’ResultAvailable’ on contract distributionContract on blockchain ETH2

blockNumber: 2598 data: {"sender":"0x07ABe1858d3cAeac7d7Da86F57BF79dbDC5fcbCB",

"invocationId":{"_hex":"0x01"}}

11 ...

12 14:31:45.822 INFO New event ’CallFinished’ on contract distributionContract on blockchain ETH2

blockNumber: 2629 data: {"invocationId":{"_hex":"0x01"}}

13 14:31:45.823 INFO New event ’NewExecuteUpdate’ on contract invocationContract on blockchain ETH2

blockNumber: 2629 data: {"sender":"0x07ABe1858d3cAeac7d7Da86F57BF79dbDC5fcbCB",

"resultId":{"_hex":"0x02"}}

14 14:32:28.891 INFO New event ’ResultAvailable’ on contract distributionContract on blockchain ETH0

blockNumber: 2112 data: {"sender":"0xF23A7eb6EDF8D5Ca365C27a2E46D0E96857876b7",

"invocationId":{"_hex":"0x0a"}}

15 ...

16 14:35:04.328 INFO New event ’ContinuedResult’ on contract distributionContract on blockchain ETH0

blockNumber: 2143 data: {"invocationId":{"_hex":"0x0a"},"success":true}

17 14:35:04.328 INFO New event ’CallFinished’ on contract distributionContract on blockchain ETH0

blockNumber: 2143 data: {"invocationId":{"_hex":"0x0a"}}

18 14:35:04.435 INFO Current text value on blockchain ETH0: ’Hello World’

• Line 7: ETH0 gets informed that an additional cross-blockchain call has been
registered so that the validators are aware of a longer waiting time.

• Line 10: Result of ETH1 is imported into ETH2.

• Line 13: Result update on ETH2 for invocation of ETH0.

• Lines 14, 16: Result from ETH2 is imported into the source chain ETH0 and the
callback function is triggered.

82

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Evaluation Scenarios

6.2.8 Scenario 8: Callback Cross-Blockchain Calls

Description

As described in Section 4.3.9, a callback function can also execute an additional cross-
blockchain call. This scenario simulates Figure 4.4 given in the mentioned section. For
this, ETH0 calls ETH2, which first executes a setText function with the text “Hello
World” on ETH1. While the cross-blockchain transaction between ETH2 and ETH1 is
finalized, the first callback function is invoked, which calls getText on ETH1 to receive
the latest text. Once the second callback is invoked, the value is stored locally on ETH2
and is returned to ETH0. It is expected that the text on ETH1 as well as on ETH2 and
ETH0 is set to “Hello World”.

Of course, for a meaningful test, the text values on all chains have to be set to a string
other than “Hello World”, such as an empty string, before starting the experiment. This
experiment only needs to be evaluated once to show the correct propagation of the text
values.

Result

Listing 6.10 shows the relevant parts of the cross-blockchain invocation. The result is as
expected (lines 28-30) and all desired calls are executed, two for the interaction between
ETH2 and ETH1 and one for ETH0 and ETH2. The following list gives a brief overview
of the relevant parts:

• Lines 4, 7, 8: Call from ETH0 to ETH2 with a registration for a longer waiting
time of the result.

• Lines 6, 10, 11: Call from ETH2 to ETH1.

• Lines 13-15, 18: Finishing call from ETH2 to ETH1 and invoking another call to
ETH1.

• Lines 16: Updating result for ETH0 on ETH2.

• Lines 18-22: Finishing call from ETH2 to ETH1.

• Lines 23: Updating result for ETH0 on ETH2.

• Lines 24-27: Finishing call from ETH0 to ETH2 and invoking callback function.

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

Listing 6.10: Log Extraction Illustrating Multiple Cross-Blockchain Calls
1 14:47:24.324 INFO Current text value on blockchain ETH2: ’’

2 14:47:26.829 INFO Current text value on blockchain ETH1: ’’

3 14:47:31.123 INFO Current text value on blockchain ETH0: ’’

4 14:47:36.277 INFO New event ’NewCallRequest’ on contract distributionContract on blockchain ETH0

blockNumber: 2293 data: {,"invocationId":{"_hex":"0x0b"}}

5 ...

6 14:50:09.655 INFO New event ’NewCallRequest’ on contract distributionContract on blockchain ETH2

blockNumber: 2904 data: {,"invocationId":{"_hex":"0x02"}}

7 14:50:09.655 INFO New event ’NewExecuteResult’ on contract invocationContract on blockchain ETH2

blockNumber: 2904 data: {"sender":"0x07ABe1858d3cAeac7d7Da86F57BF79dbDC5fcbCB",

"resultId":{"_hex":"0x03"}}

8 14:50:51.683 INFO New event ’ResultRegistered’ on contract distributionContract on blockchain ETH0

blockNumber: 2332 data: {,"invocationId":{"_hex":"0x0b"}}

9 ...

10 14:52:15.439 INFO New event ’NewExecuteResult’ on contract invocationContract on blockchain ETH1

blockNumber: 1959 data: {"sender":"0x21574114b889Ea4Dac00d46b445324fdE3b56EA1",

"resultId":{"_hex":"0x0a"}}

11 14:53:18.180 INFO New event ’ResultAvailable’ on contract distributionContract on blockchain ETH2

blockNumber: 2951 data: {"sender":"0x07ABe1858d3cAeac7d7Da86F57BF79dbDC5fcbCB",

"invocationId":{"_hex":"0x02"}}

12 ...

13 14:55:22.731 INFO New event ’NewCallRequest’ on contract distributionContract on blockchain ETH2

blockNumber: 2982 data: {"invocationId":{"_hex":"0x03"}}

14 14:55:22.732 INFO New event ’ContinuedResult’ on contract distributionContract on blockchain ETH2

blockNumber: 2982 data: {"invocationId":{"_hex":"0x02"},"success":true}

15 14:55:22.732 INFO New event ’CallFinished’ on contract distributionContract on blockchain ETH2

blockNumber: 2982 data: {"invocationId":{"_hex":"0x02"}}

16 14:55:22.733 INFO New event ’NewExecuteUpdate’ on contract invocationContract on blockchain ETH2

blockNumber: 2982 data: {"sender":"0x07ABe1858d3cAeac7d7Da86F57BF79dbDC5fcbCB",

"resultId":{"_hex":"0x03"}}

17 ...

18 14:57:27.844 INFO New event ’NewExecuteResult’ on contract invocationContract on blockchain ETH1

blockNumber: 2011 data: {"sender":"0x21574114b889Ea4Dac00d46b445324fdE3b56EA1",

"resultId":{"_hex":"0x0b"}}

19 14:58:31.220 INFO New event ’ResultAvailable’ on contract distributionContract on blockchain ETH2

blockNumber: 3029 data: {"sender":"0x07ABe1858d3cAeac7d7Da86F57BF79dbDC5fcbCB",

"invocationId":{"_hex":"0x03"}}

20 ...

21 15:00:35.620 INFO New event ’ContinuedResult’ on contract distributionContract on blockchain ETH2

blockNumber: 3060 data: {"invocationId":{"_hex":"0x03"},"success":true}

22 15:00:35.620 INFO New event ’CallFinished’ on contract distributionContract on blockchain ETH2

blockNumber: 3060 data: {"invocationId":{"_hex":"0x03"}}

23 15:00:35.621 INFO New event ’NewExecuteUpdate’ on contract invocationContract on blockchain ETH2

blockNumber: 3060 data: {"sender":"0x07ABe1858d3cAeac7d7Da86F57BF79dbDC5fcbCB",

"resultId":{"_hex":"0x03"}}

24 15:01:17.814 INFO New event ’ResultAvailable’ on contract distributionContract on blockchain ETH0

blockNumber: 2457 data: {"sender":"0xF23A7eb6EDF8D5Ca365C27a2E46D0E96857876b7",

"invocationId":{"_hex":"0x0b"}}

25 ...

26 15:03:53.181 INFO New event ’ContinuedResult’ on contract distributionContract on blockchain ETH0

blockNumber: 2488 data: {"invocationId":{"_hex":"0x0b"},"success":true}

27 15:03:53.181 INFO New event ’CallFinished’ on contract distributionContract on blockchain ETH0

blockNumber: 2488 data: {"invocationId":{"_hex":"0x0b"}}

28 15:03:53.384 INFO Current text value on blockchain ETH0: ’Hello World’

29 15:03:53.420 INFO Current text value on blockchain ETH1: ’Hello World’

30 15:03:53.454 INFO Current text value on blockchain ETH2: ’Hello World’

84

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Evaluation Scenarios

6.2.9 Scenario 9: Dishonest Intermediary

Description

This experiment is similar to Scenario 2. This time, we are manipulating the winning
intermediary in different ways:

1. The intermediary does not execute the cross-blockchain call. The expected result
is a fraud detection. For demonstration purposes, we configure the fraud detection
period to 100 blocks.

2. The intermediary does not return the correct result. The expected behavior is a
vote that the result is invalid.

3. The intermediary tries to cheat with the gas cost. The expected behavior is a vote
that the result is valid but the intermediary has cheated.

Each experiment need to be done only once to show the correct detection of misconduct.

Result

The following listings show the different error constellations. On all listings, it can be
seen that the intermediary has not received back its used tokens.

1. Lines 4 and 5 of Listing 6.11 show a different sequence than the previous listings.
Since no result has been submitted, a fraud voting has to be initialized by the
validator.

2. Line 6 of Listing 6.12 shows that the imported result does not match, since the
validator voted 0 instead of 2.

3. Line 6 of Listing 6.13 shows that the imported result is valid, but the required gas
is invalid, since the validator voted 1 instead of 2.

Listing 6.11: Log Extraction Illustrating the Non Execution of the Cross-Blockchain
Transaction

1 21:33:51.894 INFO balance 0xF23A7eb6EDF8D5Ca365C27a2E46D0E96857876b7: 99005600026733038921

2 ...

3 21:34:50.879 INFO New event ’NewBestOffer’ on contract distributionContract on blockchain ETH0

blockNumber: 7169 data: {"invocationId":{"_hex":"0x10"}}

4 21:44:46.711 INFO New event ’FraudVotingStarted’ on contract distributionContract on blockchain

ETH0 blockNumber: 7288 data: {"invocationId":{"_hex":"0x10"}}

5 21:44:46.711 INFO New event ’NewFraudVotingWinner’ on contract distributionContract on blockchain

ETH0 blockNumber: 7288 data: {"invocationId":{"_hex":"0x10"},

"winner":"0x7295BB66b1f6e2b49203FDe339482AD8F86c5b50"}

6 21:46:31.896 INFO New event ’CallFinished’ on contract distributionContract on blockchain ETH0

blockNumber: 7309 data: {"invocationId":{"_hex":"0x10"}}

7 21:46:32.338 INFO Result valid on blockchain ETH0: ’false’, result status: ’false’

8 21:46:32.346 INFO balance 0xF23A7eb6EDF8D5Ca365C27a2E46D0E96857876b7: 99005600026732966473

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

Listing 6.13: Log Extraction Illustrating the Import of Wrong Gas Values
1 21:53:46.892 INFO balance 0xF23A7eb6EDF8D5Ca365C27a2E46D0E96857876b7: 99005600026732493694

2 ...

3 21:56:24.189 INFO New event ’NewExecuteResult’ on contract invocationContract on blockchain ETH1

blockNumber: 6194 data: {"sender":"0x21574114b889Ea4Dac00d46b445324fdE3b56EA1",

"resultId":{"_hex":"0x0f"}}

4 21:57:24.496 INFO Manipulating gas

5 21:57:29.236 INFO New event ’ResultAvailable’ on contract distributionContract on blockchain ETH0

blockNumber: 7440 data: {"sender":"0xF23A7eb6EDF8D5Ca365C27a2E46D0E96857876b7",

"invocationId":{"_hex":"0x12"}}

6 21:58:14.919 INFO Voted 0x7295BB66b1f6e2b49203FDe339482AD8F86c5b50, invocationId: 18, value: 1

7 22:00:04.587 INFO New event ’CallFinished’ on contract distributionContract on blockchain ETH0

blockNumber: 7471 data: {"invocationId":{"_hex":"0x12"}}

8 22:00:05.444 INFO Result value on blockchain ETH0: ’0x00000000000000000000000000000000

00000000000000000000000000000020 00000000000000000000000000000000

0000000000000000000000000000000b 48656c6c6f20576f726c640000000000

00000000000000000000000000000000’, translated: Hello World

9 22:00:05.448 INFO balance 0xF23A7eb6EDF8D5Ca365C27a2E46D0E96857876b7: 99005600026731959177

Listing 6.12: Log Extraction Illustrating the Import of a Wrong Result
1 21:47:19.338 INFO balance 0xF23A7eb6EDF8D5Ca365C27a2E46D0E96857876b7: 99005600026732966473

2 ...

3 21:49:59.175 INFO New event ’NewExecuteResult’ on contract invocationContract on blockchain ETH1

blockNumber: 6130 data: {"sender":"0x21574114b889Ea4Dac00d46b445324fdE3b56EA1",

"resultId":{"_hex":"0x0e"}}

4 21:51:00.253 INFO Manipulating result

5 21:51:02.467 INFO New event ’ResultAvailable’ on contract distributionContract on blockchain ETH0

blockNumber: 7363 data: {"sender":"0xF23A7eb6EDF8D5Ca365C27a2E46D0E96857876b7",

"invocationId":{"_hex":"0x11"}}

6 21:51:48.336 INFO Voted 0x7295BB66b1f6e2b49203FDe339482AD8F86c5b50, invocationId: 17, value: 0

7 21:53:37.848 INFO New event ’CallFinished’ on contract distributionContract on blockchain ETH0

blockNumber: 7394 data: {"invocationId":{"_hex":"0x11"}}

8 21:53:37.980 INFO Result valid on blockchain ETH0: ’false’, result status: ’true’

9 21:53:37.984 INFO balance 0xF23A7eb6EDF8D5Ca365C27a2E46D0E96857876b7: 99005600026732493694

6.2.10 Scenario 10: Dishonest Validator

Description

This experiment is similar to Scenario 5. However, one of the three validators behaves
dishonestly and votes against the result. Since over 50% of the validators have voted
for success, it is expected that the result is still marked as valid. This experiment has
to be executed only once, as the result is independent of the exact validator who votes
against the result. This means that the outcome of the experiment is always the same,
regardless of whether validator one, two or three voted against the result, as long as the
other two have voted correctly.

Result

Listing 6.14 shows the invalid voting of a dishonest validator (line 4) and the still correct
voting result (line 9).

86

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Evaluation Scenarios

Listing 6.14: Log of an Invalid Vote of a Single Validator
1 22:00:18.425 INFO Current bool value on blockchain ETH1: ’false’

2 ...

3 22:03:55.407 INFO New event ’ResultAvailable’ on contract distributionContract on blockchain ETH0

blockNumber: 7517 data: {"sender":"0xF23A7eb6EDF8D5Ca365C27a2E46D0E96857876b7",

"invocationId":{"_hex":"0x13"}}

4 22:04:41.238 INFO Voted 0x7295BB66b1f6e2b49203FDe339482AD8F86c5b50, invocationId: 19, value: 0

5 22:04:41.446 INFO Voted 0xe87858a6278747C5B6D13d3D34b8944AC9227F31, invocationId: 19, value: 2

6 22:04:41.658 INFO Voted 0x535F9924928De7A6160cBDBCf9c9ade5Ad437809, invocationId: 19, value: 2

7 ...

8 22:06:30.857 INFO New event ’CallFinished’ on contract distributionContract on blockchain ETH0

blockNumber: 7548 data: {"invocationId":{"_hex":"0x13"}}

9 22:06:31.353 INFO Current bool value on blockchain ETH1: ’true’

6.2.11 Scenario 11: Cost Calculation

Description

After the previous scenarios have tested the functionality, this scenario compares the
cost of various functions by manually executing the transaction on the target chain for
comparison with the prototype. For this, the gas cost per step is set to one, so that
the steps can be read from the transaction logs or can be calculated by subtracting the
account balance after the transaction from the account balance before the transaction.
With the number of steps, a calculation with real numbers from the current Ethereum
blockchain can be conducted by multiplying the current transaction prices with the given
steps.

Since the required steps vary between different parameters, the cost of the setters and
getters listed in Table 6.2 are determined. While we assume that the return values of
the setters are not needed on the source chain, the return values of getters have to be
imported into the source chain. For this, a setter method is called on the source chain
for the manual step and a callback function is applied for the prototype.

Result

The results are summarized in Table 6.3. It is visible that registering and executing a call
as well as posting the result will cause the highest gas cost and depends on the function
signature as well as the parameter and the return value length. The worst case gas cost
for the defined setters is

388568 + 72448 + 331818 + 309081 + 110267 + 93733 = 1305915 Steps

and of the getters

354389 + 72448 + 306348 + 384982 + 110267 + 131353 = 1359787 Steps

taking into account only one intermediary, one validator and no fees.

The total required gas is about 40 times higher than with manual invocations (Setters:
1305915

33022
≈ 40, Getters: 1359787

33022
≈ 41 times), assuming that the getter functions do not cost

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

Table 6.3: Required Steps per Transaction

Operation Required Steps

registerCall, without callback, Setter 362,967-388,568
registerCall, with callback, Getter 354,325-354,389
makeOffer, first call 72,448
makeOffer, not a better offer 26,131
makeOffer, better offer 49,011
executeCall, Setter 290,667-331,818
executeCall, Getter 265,403-306,348
postResult, Setter (empty) 309,081
postResult, Getter 344,445-384,982
vote, first vote 110,267
vote, other votes 60,678
finalize, without callback 93,733
finalize, with callback 111,114-131,353

manual setter calls 26,983-33,022
manual getter calls 0

anything when invoked manually, as no transaction has to be executed on the blockchain
and only the setter is required for the import. Looking more closely at executeCall,
which is more or less the call of a setter function, it has alone an overhead of about
300,000 steps or by a factor of 9.

Considering the current gas prices, which are about 11 gwei per step1, such a transaction
costs about 0.012 Ether or $3.24 (current market value of 1 Ether=$2702) compared to
about $0.10 (=0.00037 Ether) for a manual invocation.

6.2.12 Scenario 12: Time Overhead Estimation

Description

As described in Section 5.3, there is a time overhead when executing the cross-blockchain
call over this prototype. In this scenario, a comparison of the time spent between the
prototype and manual execution is determined using Scenarios 1, 6, 7, and 8, as these
scenarios differ from the number of cross-blockchain calls. The time required for the
prototype is calculated as the difference of the block numbers between the functions
registerCall and finalize, while the number of blocks for the manual execution
can be estimated by ignoring different block creation times and using the value of
waitingBlocks for each required invocation (e.g., executeCall and callback).

Furthermore, the amount of time spent is estimated by using different values for
waitingBlocks and blocksPerPhase. While the number of waitingBlocks is

1 https://etherscan.io/gastracker, accessed 2019-05-28
2 https://coinmarketcap.com/currencies/ethereum/, accessed 2019-05-28

88

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Evaluation Scenarios

important for consistency and should not be set to low, the amount of blocksPerPhase
guarantees enough time to get fair offers and correct voting results. We use different com-
binations for waitingBlocks and blocksPerPhase for the evaluation, where we set
the number of waitingBlocks to 30, 50 and 100 and the number of blocksPerPhase
to 5, 10 and 30.

By using a local test network, the time between sending a transaction and including
it into a block, i.e., the wait time in the transaction pool, is missing, since a local test
chain usually includes the transaction in the next block. Therefore, Scenario 1 of this
experiment is also executed on an official Ethereum test network called Rinkeby, where
the contracts are deployed two times on the same blockchain to simulate instead of using
explicitly two different blockchains. This makes no difference in the evaluation process,
since the logic remains the same and the contracts are not aware of the location of the
other blockchain. The transaction on the official test network is executed 3 times and
the average number of blocks are used. Similar to the local test network, Rinkeby uses
the PoA consensus algorithm and has a block mining time of about 15 seconds. The
retrieved numbers of block cannot be compared to the local numbers due to different
block mining times and their deviations. However, the impact of the transaction pool
can be measured by comparing with optimal block numbers.

An execution of all scenarios on the test network is not feasible in the given timeframe,
since the block mining time is higher than the local test networks. Therefore, we decided
to only evaluate the base case on an official network and run the other scenarios only on
the local test network and estimate the execution based on following calculation:

Taking into account the 11 gwei per step used in Scenario 11, then the transaction is
included in the block on average after 18 seconds3 in the official Ethereum blockchain (1-2
blocks). This is only one additional block per transaction and therefore negligible for the
experiment. Of course, if the transactions are executed with less gas or the blockchain
is not synced completely, the duration increases as the transactions stay longer in the
transaction pool, but at least if less gas is provided the calculated cost from Scenario 11
decreases.

Result

Table 6.4 shows the results for Scenario 1, Table 6.7 for Scenario 6, Table 6.8 for Scenario 7,
and Table 6.9 for Scenario 8.

The following list explains the estimation for the manual executions (denoted as m in
the tables):

• Scenario 1: The setText function is called. The call is considered valid after
waitingBlocks blocks. The return value is not required, so no further transac-
tions have to be invoked.

3https://etherscan.io/gasTracker, accessed 2019-06-09

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

• Scenario 6: The getText function is called. The returned value is considered valid
after waitingBlocks blocks and has to be imported into the source chain. Since
the continuation method is invoked at the end of the cross-blockchain call and
therefore the validity of the continuation method is not checked, no blocks have to
be considered.

• Scenario 7: A getText function is called via ETH2. Since ETH2 forwards the
call without any additional functionality, ETH1 can be invoked directly. Since the
call now corresponds to Scenario 6, the same estimate applies.

• Scenario 8: First, ETH2 is invoked, which triggers the setText function on ETH1.
To retrieve the parameters for setText, they have to be queried from ETH2. This
requires waitingBlocks blocks to consider these values as valid. Then, setText
can be called, which requires waitingBlocks blocks to consider the call as valid
(as in Scenario 1).

Subsequently, getText is invoked on ETH1 by ETH2. As in Scenario 6, this call
requires waitingBlocks blocks. This time, however, the value is imported into
ETH2, which is not the start chain. Therefore, waitingBlocks blocks have to
be waited to consider this import as valid. Only then is the value imported into
ETH0, which can be ignored with the argument given in Scenario 6.

Therefore, the total is waitingBlocks · 4 blocks, once to retrieve the parameters,
once for setText and getText on ETH1 and once for the continuation method
on ETH2.

We would like to point out that increasing the block configuration does not increase
the required number of blocks by the same factor, since other blockchains have dif-
ferent block mining times and thus the time to reach the next block differs between
the blockchains. For example, Table 6.4 shows an increase of 11 blocks with a con-
figuration of 30 waitingBlocks when the parameter blocksPerPhase is increased
from 5 to 10. This has not been taken into account when estimating the manual block
time.

Example 6.1 At the given block mining times of 5 (ETH0), 6 (ETH1), and 4 (ETH2)
seconds, the blockchains generate 12 (ETH0), 10 (ETH1) and 15 (ETH2) blocks in
one minute. For example, to reach 30 blocks, 2.5 (ETH0), 3 (ETH1) and 2 (ETH2)
minutes are needed. When the number of blocks is measured on ETH0, then 36 (ETH1)
or 24 (ETH2) blocks are generated in the time when 30 blocks are reached on the other
chain.

The result shows an increase of factor 5-7 for a single cross-blockchain call, depending
on the number of blocksPerPhase. Given the current blockchain time of about 15
seconds per block, the transaction takes 45 minutes if waitingBlocks is set to 30 and
blocksPerPhase is set to 10, compared to 7.5 minutes if invoked manually. If, as in
Scenario 7, two cross-blockchain calls can be merged into one manual call, the factor

90

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Evaluation Scenarios

increases to 10-12. However, in these cases, the blockchain call may be adjusted as well
to remove the unnecessary step. For example, in Scenario 7 the call via ETH2 is not
required and can be removed there as well.

Example 6.2 Cost-Time Tradeoff

As discussed in the description, depending on the gasprice the transactions may stay
longer in the transaction pool. Assume that the cross-blockchain call of Scenario 1
is executed only with 2 gwei per step. Then it takes 98 seconds or about 7 blocksa to
include a transaction into the block, but the execution cost decreases to $0.58. Thus, the
amount of blocks increases by about 35 (the call to makeOffer has no influence since
it does not control any phase) and the manual execution by about 7 blocks. The factor
gets slightly better due to the larger relative increase of the denominator. Figure 6.4
visualizes the estimated tradeoff.

ahttps://etherscan.io/gasTracker, accessed 2019-06-09

Figure 6.2 illustrates the distribution of blocks spent in each phase of the cross-blockchain
call for Scenario 1 using 30 waitingBlocks and 5 blocksPerPhase and Figure 6.3
for Scenario 8. The figures show which phases use which parameter (OfferPhase and
VotingPhase use blocksPerPhase, the others use waitingBlocks). Furthermore,
the different block mining times of the blockchains are visible in Scenario 1, where the
TransactionPhase takes 4% longer than the other phases. The TransactionPhase in
Scenario 8 takes more than 50% of the time because it has to wait until the final result
of the second cross-blockchain call is available.

Considering the values given in Table 6.6 for Scenario 1 on an official test network, the
transaction pool has a nearly consistent and negligible impact on the query of about
1 block. As comparison, Table 6.5 lists the optimal times for Rinkeby based on the
formula

5 · waitingBlocks + 2 · blocksPerphase + 4 (6.1)

where the summand + 4 is derived from the one block offsets until the next action is
triggered (import of call, import of result, first vote, finalize) and the other values are
based on the discussion in Chapter 5. For most of the calls, the number of blocks stays the
same, only for some calls, there has been an impact on the block count. This can depend
not only on the size of the transaction pool, but also on the arrival of blocks due to network
latency. For example, by blocksPerPhase = 10 and waitingBlocks = 30, there was an
outlier with 183 instead of 177 and for blocksPerPhase = 10 and waitingBlocks = 30,
there was an outlier with 630 instead of 567.

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

Table 6.4: Time Consumption for Scenario 1 on Local Network (in Blocks)

b
lo

ck
sP

er
P

h
as

e waitingBlocks
30 50 100

5 168 273 533
10 179 282 542
30 218 323 582
m 30 50 100

Table 6.5: Optimal Time Consumption for Scenario 1 on Rinkeby (in Blocks)

b
lo

ck
sP

er
P

h
as

e waitingBlocks
30 50 100

5 164 264 514
10 174 274 524
30 214 314 564
m 30 50 100

Table 6.6: Average Time Consumption for Scenario 1 on Rinkeby (in Blocks)

b
lo

ck
sP

er
P

h
as

e waitingBlocks
30 50 100

5 167 267 517
10 179 277 527
30 217 317 588
m 30 50 100

Table 6.7: Time Consumption for Scenario 6 (in Blocks)

b
lo

ck
sP

er
P

h
as

e waitingBlocks
30 50 100

5 168 272 532
10 178 282 542
30 218 322 583
m 30 50 100

Table 6.8: Time Consumption for Scenario 7 (in Blocks)

b
lo

ck
sP

er
P

h
as

e waitingBlocks
30 50 100

5 299 482 942
10 317 500 960
30 388 572 1,033
m 30 50 100

92

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Evaluation Scenarios

Table 6.9: Time Consumption for Scenario 8 (in Blocks)

b
lo

ck
sP

er
P

h
as

e waitingBlocks
30 50 100

5 441 712 1,392
10 466 738 1,417
30 570 843 1,522
m 120 200 400

PreOfferPhase (18 %)

OfferPhase (3 %)

PreTransactionPhase (18 %)

TransactionPhase (22 %)

PreVotingPhase (18 %)

VotingPhase (3 %)

PostVotingPhase (18 %)

Figure 6.2: Time Distribution per Phase for Scenario 1 (waitingBlocks=30, blocksPer-
Phase=5)

6.2.13 Summary of Results

The first scenarios focus on the functional correctness of the prototype. For this, the paral-
lel execution of cross-blockchain calls, the recursive invocation as well as the continuation
of a cross-blockchain call and the handling of dishonest parties were evaluated.

The last two scenarios discusses the cost and performance of the prototype. The results
have shown that the costs increase by a factor of 40 and the performance by a factor of
5-7, depending on the configuration, the transaction pool and the network latency of the
blockchain node.

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Evaluation

PreOfferPhase (10 %)

OfferPhase (2 %)

PreTransactionPhase (10 %)

TransactionPhase (56 %)

PreVotingPhase (10 %)

VotingPhase (2 %)

PostVotingPhase (10 %)

Figure 6.3: Time Distribution per Phase for Scenario 7 (waitingBlocks=30, blocksPer-
Phase=5)

2 3 4 5 6 7 8 9 10 11 12
160

170

180

190

200

210

220

gwei

B
lo

ck
s

Figure 6.4: Estimated Time-Cost Tradeoff for Scenario 1 (waitingBlocks=30, blocksPer-
Phase=5)

94

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 7
Conclusion & Future Work

This thesis aims to improve the interoperability of blockchains. Based on the concepts of
state-of-the-art methods of cross-blockchain interaction, a method for invoking smart
contracts across blockchains has been developed. It takes into account the correct
execution of a transaction, the concurrency and consistency of blockchains and the
payment of transaction fees and rewards. The method supports not only a single
cross-blockchain call, but also the recursive invocation of cross-blockchain calls and the
continuation of a function after receiving a result.

A prototype has been implemented, supporting all blockchains based on the EVM that
use the Solidity compiler. The functionality of the prototype was evaluated with several
tests where results had a performance overhead by a factor of 6 and a cost overhead by a
factor of 40.

7.1 Discussion of Research Questions

This section provide answers to the three research questions introduced in Chapter 1.

1. Which blockchain technologies are suitable candidates for implementing
cross-blockchain smart contract calls? Which methods for interacting
between blockchains exist? Can they be used as a basis for invoking
smart contracts?

This question mainly focuses on providing an overview of existing technologies. In
Chapter 2, we discussed the fundamentals of blockchains and the characteristics
of common cryptocurrencies. We discovered that only Eos, Ethereum and Tron
are suitable candidates for implementing a prototype. As stated in Section 4.1, we
chose Ethereum because of thorough discussions in existing literature.

95

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Conclusion & Future Work

Chapter 3 presented state-of-the-art methods that deal with blockchain interop-
erability. We discussed atomic cross-chain swaps, off-chain payment networks
(Lightning and Raiden) and cross-blockchain tokens (Metronome and DeXTT).
While many of the concepts discussed use signatures from both parties that cannot
be used with smart-contracts because a private key cannot be stored in publicly vis-
ible storage, the concept of intermediaries and validators introduced by Metronome
and DeXTT was used as basis for our work.

2. How can smart contracts be called across blockchains?
In Chapter 4, we introduced our design for invoking smart contracts across
blockchains and described the concepts of our prototype implementation in Chap-
ter 5.

We split the design into two parts, the invocation of a smart contract and the
receiving of the result data. While in the invocation part the important concept
was to ensure the payment for the transaction and to select only one intermediary
that executes the transaction to reduce the gas cost, the main issue in receiving
the result was the verification of the correct execution.

3. How does the prototype perform in terms of cost and performance?
The evaluation in Chapter 6 shows an increase in terms of cost and performance.
While the cost increases by a factor of 40, the time in the given configurations
only increased by an average factor of 6. If set in absolute terms, a transaction
cost $3.24 and takes about 45 minutes (waitingBlocks=30 and blocksPerPhase=10)
compared to $0.10 and 7.5 minutes if invoked manually.

7.2 Future Work

This section reviews some of the issues that remain open for future research and highlights
possibilities to extend the prototype.

7.2.1 Game Theory: Voting and Offering Process

As has already been discussed in Chapter 4, the incentives to vote honestly are only
given due to the dPoS protocol and should be improved. For this purpose, multiple
scenarios can be developed and evaluated. For example, the consequences of hiding votes
before the end of the voting phase or the use of Merkle trees for valid votings, as used in
Metronome, may be discussed.

In addition, the incentives for receiving a fair and good offer may be evaluated as they
may vary according to the duration of the offer phase and the chosen algorithm to end
the offer phase, as discussed in Section 4.3.5.

96

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

7.2. Future Work

7.2.2 Adding Support for Other Blockchains

The implemented prototype is built for languages which use the EVM and support the
Solidity compiler. The prototype can be extended to support other blockchains such as
Eos by converting the smart contracts for these blockchains and by adding functional
support to the intermediaries and validators for the new blockchains. This involves
analyzing the properties of the added blockchain, like handling blockchains that do not
use gas as a concept for transaction cost.

7.2.3 Extending the Functionality

As stated in Section 5.6, the prototype has some limitations. One of them is the missing
implementation of token transfers that would allow callers to invoke functions that require
tokens.

Furthermore, the announcement and propagation of the return value of cross-blockchain
calls can be improved. Among other things, developers can be given the opportunity to
decide which cross-blockchain call they want to wait for instead of using the last call. In
addition, the necessary keyword can be omitted as return value.

Moreover, the party calling the finalization step can be chosen in an optimized way. For
example, it either should be limited to winning parties, or an additional reward could be
introduced for calling the finalize function.

7.2.4 Reduce the Cost of the Implementation

The evaluation of the costs resulted in a cost increase by a factor of 40. Since this might
be unsatisfactory and the costs can be considered too expensive for certain practical
scenarios, we are looking for a way to reduce the cost of cross-blockchain calls. Possible
options include the use of off-chain transactions or the optimization of the source code of
the implementation.

97

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Figures

2.1 Visualization of a Simplified Blockchain [TS16]. 8
2.2 Merkle Path [Aut19] . 9
2.3 Double Spending Attack [TS16]. 11
2.4 Example of a Bitcoin Script Execution [NBF+16]. 13

3.1 Atomic Swap Protocol [ato17] . 20
3.2 Metronome Cross-Chain Token Exchange [Aut18] 24
3.3 Cross-Chain Token Transfer Overview [Aut19] 25
3.4 Metronome Import Voting System [Aut19] 26

4.1 Execution Order of Two Blockchains . 35
4.2 Possible Sequence of Offer Phase . 42
4.3 Difference between a Valid and Fraudulent Execution 45
4.4 Chain of Smart Contract Calls . 51
4.5 Recursive Execution Attack . 52
4.6 Interactions between Caller, Distribution Contract, Intermediary, Invocation

Contract, Callee and Validator . 55

5.1 Execution Phases . 64

6.1 Visualization of the Chain of Scenario 7 82
6.2 Time Distribution per Phase for Scenario 1 (waitingBlocks=30, blocksPer-

Phase=5) . 93
6.3 Time Distribution per Phase for Scenario 7 (waitingBlocks=30, blocksPer-

Phase=5) . 94
6.4 Estimated Time-Cost Tradeoff for Scenario 1 (waitingBlocks=30, blocksPer-

Phase=5) . 94

99

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Tables

4.1 Methods Used for Calling Smart Contracts across Blockchains 56

6.1 Definition of Evaluation Blockchains . 74
6.2 Functions of the TestContract . 74
6.3 Required Steps per Transaction . 88
6.4 Time Consumption for Scenario 1 on Local Network (in Blocks) 92
6.5 Optimal Time Consumption for Scenario 1 on Rinkeby (in Blocks) 92
6.6 Average Time Consumption for Scenario 1 on Rinkeby (in Blocks) 92
6.7 Time Consumption for Scenario 6 (in Blocks) 92
6.8 Time Consumption for Scenario 7 (in Blocks) 92
6.9 Time Consumption for Scenario 8 (in Blocks) 93

101

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

Listings

2.1 Example Contract Code [Ethb] . 15
2.2 Example Contract ABI [Ethb] . 15
2.3 Vulnerable DAO code [Her19] . 16
2.4 DAO Hack [Her19] . 16
5.1 Example of a Register Call . 62
5.2 Example of a Register Call . 65
5.3 Example of a Callback Function . 67
5.4 Execution Validation . 69
6.1 Log Output Showing the Order of Transactions 76
6.2 Log Extraction Illustrating the correct Result on the Source Chain . . 76
6.3 Log of a Parallel Execution of Multiple Transactions 77
6.4 Log Extraction of a Offer Process with Multiple Intermediaries 79
6.5 Log Extraction Showing Different Winners in the Offer Process 79
6.6 Log Extraction of Two Different Voting Winners 80
6.7 Callback Function for Scenario 6 . 81
6.8 Log Output Showing a Successful Execution of a Callback Function . . 81
6.9 Log Illustrating a Recursive Cross-Blockchain Call 82
6.10 Log Extraction Illustrating Multiple Cross-Blockchain Calls 84
6.11 Log Extraction Illustrating the Non Execution of the Cross-Blockchain

Transaction . 85
6.13 Log Extraction Illustrating the Import of Wrong Gas Values 86
6.12 Log Extraction Illustrating the Import of a Wrong Result 86
6.14 Log of an Invalid Vote of a Single Validator 87

103

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

Acronyms

ABI Application Binary Interface. 14

DAO Decentralized Autonomous Organization. 16

DeXTT Deterministic Cross-Blockchain Token Transfers. 24, 26, 28, 30, 33, 34, 37, 39,
96

dPoS delegated Proof of Stake. 10, 17, 18, 44, 48, 96

EVM Ethereum virtual machine. 14, 17, 95, 97

HTLC hashed time-lock contract. 19, 23

PoA Proof of Authority. 10, 48, 89

PoI Proof of Intent. 26–28

PoS Proof of Stake. 10, 17, 18, 25

PoW Proof of Work. 10, 16, 17, 35

UTXO unspent transaction output. 8, 11–13, 21, 22

105

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[ABC17] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on
ethereum smart contracts (sok). In Matteo Maffei and Mark Ryan, editors,
Principles of Security and Trust, pages 164–186, Berlin, Heidelberg, 2017.
Springer Berlin Heidelberg.

[Ash18] Nathan Ashworth. Five examples of real-world uses for smart
contracts. https://cryptoinsider.com/examples-real-world-

uses-smart-contracts/, 2018. [Online; accessed 2019-04-13].

[ato17] Decred-compatible cross-chain atomic swapping. https://github.com/
decred/atomicswap, 2017. [Online; accessed 2019-03-24].

[Aut18] Autonomous Software. Metronome. https://www.metronome.io/

download/owners_manual.pdf, 2018. [Online; version 0.988; accessed
2019-02-24].

[Aut19] Autonomous Software. Metronome cross-chain token transfer.
https://github.com/autonomoussoftware/documentation/

blob/master/validatordocument/validatordocument.md, 2019.
[Online; version 0.905; accessed 2019-03-24].

[Ban18] Eric Banisadr. How $800k evaporated from the powh coin ponzi
scheme overnight. https://blog.goodaudience.com/how-800k-

evaporated-from-the-powh-coin-ponzi-scheme-overnight-

1b025c33b530, 2018. [Online; accessed 2019-04-13].

[bar17] barterdex - atomic swap decentralized exchange of native coins.
https://github.com/SuperNETorg/komodo/wiki/barterDEX-

Whitepaper-v2, 2017. White Paper. [Online; accessed 2019-02-24].

[BDJS17] Lorenz Breidenbach, Phil Daian, Ari Juels, and Emin Gün Sirer. An in-
depth look at the parity multisig bug. http://hackingdistributed.
com/2017/07/22/deep-dive-parity-bug/, 2017. [Online; accessed
2019-04-13].

107

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

[BFS+18] Michael Borkowski, Philipp Frauenthaler, Marten Sigwart, Taneli Hukkinen,
Oskar Hladký, and Stefan Schulte. Deterministic witnesses for claim-first
transactions. http://dsg.tuwien.ac.at/staff/mborkowski/pub/
tast/tast-white-paper-3.pdf, 2018. White Paper, Technische Uni-
versitat Wien. [Online; accessed 2019-02-24].

[bita] Atomic swap. https://en.bitcoin.it/wiki/Atomic_swap. [Online;
accessed 2019-04-13].

[bitb] Bitcoin cash. https://www.bitcoincash.org/index.html. [Online;
accessed 2019-03-27].

[blo18] block.one. Eos.io technical white paper v2. https://github.com/

EOSIO/Documentation/blob/master/TechnicalWhitePaper.md,
2018. White Paper. [Online; accessed 2019-03-23].

[BMM+20] Stefano Bistarelli, Gianmarco Mazzante, Matteo Micheletti, Leonardo
Mostarda, and Francesco Tiezzi. Analysis of ethereum smart contracts
and opcodes. In Advanced Information Networking and Applications, pages
546–558. Springer International Publishing, 2020.

[BRMS18a] Michael Borkowski, Christoph Ritzer, Daniel McDonald, and Stefan Schulte.
Caught in chains: Claim-first transactions for cross-blockchain asset trans-
fers. http://dsg.tuwien.ac.at/staff/mborkowski/pub/tast/

tast-white-paper-2.pdf, 2018. White Paper, Technische Universi-
tat Wien. [Online; accessed 2019-02-24].

[BRMS18b] Michael Borkowski, Christoph Ritzer, Daniel McDonald, and Stefan Schulte.
Towards atomic cross-chain token transfers: State of the art and open ques-
tions within tast. http://dsg.tuwien.ac.at/staff/mborkowski/
pub/tast/tast-white-paper-1.pdf, 2018. White Paper, Technische
Universitat Wien. [Online; accessed 2019-02-24].

[BSCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous
payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy,
pages 459–474, 2014.

[BXW19] Dilum Bandara, Xiwei Xu, and Ingo Weber. Patterns for blockchain migra-
tion, 06 2019.

[Car] Cardano Foundation. Cardano settlement layer documentation. https:

//cardanodocs.com/introduction/. [Online; accessed 2019-03-23].

[CD17] Ignacio Cascudo and Bernardo David. Scrape: Scalable randomness attested
by public entities. In Applied Cryptography and Network Security, pages
537–556. Springer International Publishing, 2017.

108

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

[Cle18] Clearmatics. Ion stage 2: Cross-chain smart contract development.
https://medium.com/clearmatics/ion-stage-2-cross-

chain-smart-contract-development-part-4-d9bcc5abe2ff,
2018. [Online; accessed 2019-06-10].

[CM18] Brad Chase and Ethan MacBrough. Analysis of the XRP ledger consensus
protocol. CoRR, abs/1802.07242, 2018.

[col] Colored coins. https://en.bitcoin.it/wiki/Colored_Coins. [On-
line; accessed 2019-03-27].

[Com18] Christina Comben. What are blockchain confirmations and why do they mat-
ter? https://coincentral.com/blockchain-confirmations/,
2018. [Online; accessed 2019-05-07].

[DD18] Evan Duffield and Daniel Diaz. Dash: A payments-focused cryptocur-
rency. https://github.com/dashpay/dash/wiki/Whitepaper,
2018. White Paper. [Online; accessed 2019-03-22].

[dex19] Dextt: Deterministic cross-blockchain token transfers. https://github.
com/pantos-io/dextt-prototype, 2019. [Online; accessed 2019-03-
25].

[DGHK17] Thomas Dickerson, Paul Gazzillo, Maurice Herlihy, and Eric Koskinen.
Adding concurrency to smart contracts. In ACM Symposium on Principles
of Distributed Computing, (PODC ’17), pages 303–312. ACM, 2017.

[Etha] Ethereum Foundation. Common patterns. https://solidity.

readthedocs.io/en/v0.5.6/common-patterns.html. [Online; ac-
cessed 2019-05-06].

[Ethb] Ethereum Foundation. Contracts. https://solidity.readthedocs.
io/en/v0.5.6/contracts.html. [Online; accessed 2019-03-21].

[Ethc] Ethereum Foundation. A next-generation smart contract and decentralized
application platform. https://github.com/ethereum/wiki/wiki/

White-Paper. White Paper. [Online; accessed 2019-02-24].

[Her18] Maurice Herlihy. Atomic cross-chain swaps. In ACM Symposium on Princi-
ples of Distributed Computing, (PODC ’18), pages 245–254. ACM, 2018.

[Her19] Maurice Herlihy. Blockchains from a distributed computing perspective.
Commun. ACM, 62(2):78–85, 2019.

[kin16] Post-mortem investigation. https://www.kingoftheether.com/

postmortem.html, 2016. [Online; accessed 2019-04-13].

109

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

[kom18] Komodo: advanced blockchain technology, focused on freedom.
https://komodoplatform.com/wp-content/uploads/2018/

06/Komodo-Whitepaper-June-3.pdf, 2018. White Paper. [Online;
accessed 2019-03-24].

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol, 2017.

[Lit] Litecoin Foundation. Litecoin. https://litecoin.org/. [Online; ac-
cessed 2019-03-22].

[LKKY05] Sung-Woon Lee, Hyun-Sung Kim, and Yoo Kee-Young. Efficient nonce-based
remote user authentication scheme using smart cards. Applied Mathematics
and Computation, 167:355–361, 2005.

[LXL+19] Qinghua Lu, Xiwei Xu, Yue Liu, Ingo Weber, Liming Zhu, and Weishan
Zhang. ubaas: A unified blockchain as a service platform. Future Generation
Computer Systems, 2019.

[Maz16] David Mazières. The stellar consensus protocol: A federated model
for internet-level consensus. https://www.stellar.org/papers/

stellar-consensus-protocol.pdf, 2016. [Online; accessed 2019-03-
23].

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http:
//bitcoin.org/bitcoin.pdf, 2008. [Online; accessed 2019-02-24].

[NBF+16] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and
Steven Goldfeder. Bitcoin and Cryptocurrency Technologies: A Comprehen-
sive Introduction. Princeton University Press, Princeton, NJ, USA, 2016.

[omn] Omni layer. https://www.omnilayer.org. [Online; accessed 2019-03-
27].

[PD16] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network:
Scalable off-chain instant payments. https://lightning.network/

lightning-network-paper.pdf, 2016. [Online; accessed 2019-03-26].

[raia] Raiden network specification. https://raiden-network-

specification.readthedocs.io/en/latest/. [Online; accessed
2019-03-26].

[raib] What is the raiden network? https://raiden.network/101.html.
[Online; accessed 2019-03-26].

[Reu18] Arseny Reutov. Predicting random numbers in ethereum smart contracts.
https://blog.positive.com/predicting-random-numbers-

in-ethereum-smart-contracts-e5358c6b8620, 2018. [Online;
accessed 2019-05-06].

110

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126,
1978.

[Sha] Gordon Shawn. What is ripple? https://bitcoinmagazine.com/

guides/what-ripple/. [Online; accessed 2019-03-23].

[SN17] Matthew Spoke and Nuco Engineering Team. Aion: Enabling the decentral-
ized internet. https://aion.network/media/en-aion-network-

technical-introduction.pdf, 2017. White Paper. [Online; accessed
2019-06-10].

[Sun18] Flora Sun. A survey of consensus algorithms in crypto.
https://medium.com/@sunflora98/a-survey-of-consensus-

algorithms-in-crypto-e2e954dc9218, 2018. [Online; accessed
2019-03-20].

[SYB] David Schwartz, Noah Youngs, and Arthur Britto. The ripple protocol consen-
sus algorithm. https://ripple.com/files/ripple_consensus_

whitepaper.pdf. White Paper. [Online; accessed 2019-03-23].

[Ten19] Tendermint Inc. Cosmos – a network of distributed ledgers. https:

//cosmos.network/resources/whitepaper, 2019. White Paper.
[Online; accessed 2019-06-10].

[Tik18] Sergei Tikhomirov. Ethereum: State of knowledge and research perspectives.
In Abdessamad Imine, José M. Fernandez, Jean-Yves Marion, Luigi Logrippo,
and Joaquin Garcia-Alfaro, editors, Foundations and Practice of Security,
pages 206–221, Cham, 2018. Springer International Publishing.

[TRO18] TRON Foundation. Tron: Advanced decentralized blockchain plat-
form 2.0. https://tron.network/static/doc/white_paper_v_

2_0.pdf, 2018. White Paper. [Online; accessed 2019-03-23].

[TS16] Florian Tschorsch and Björn Scheuermann. Bitcoin and beyond: A technical
survey on decentralized digital currencies. IEEE Communications Surveys
Tutorials, 18(3):2084–2123, 2016.

[VB15] Fabian Vogelsteller and Vitalik Buterin. Eip 20: Erc-20 token standard.
https://eips.ethereum.org/EIPS/eip-20, 2015. [Online; accessed
2019-03-20].

[Woo17] Gavin Wood. Polkadot: Vision for a heterogeneous multi-chain frame-
work, draft 1. https://polkadot.network/PolkaDotPaper.pdf,
2017. White Paper. [Online; accessed 2019-06-10].

111

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t i

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
at

 th
e

T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t i
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

at
 th

e
T

U
 W

ie
n

B
ib

lio
th

ek
.

[ZBZ11] Yunhui Zheng, Tao Bao, and Xiangyu Zhang. Statically locating web
application bugs caused by asynchronous calls. In Proceedings of the 20th
International Conference on World Wide Web, WWW ’11, pages 805–814,
New York, NY, USA, 2011. ACM.

[ZSJ+19] Alexei Zamyatin, Nicholas Stifter, Aljosha Judmayer, Philipp Schindler,
Edgar R. Weippl, and William J. Knottenbelt. A Wild Velvet Fork Appears!
Inclusive Blockchain Protocol Changes in Practice, volume 10958 of Lecture
Notes in Computer Science. Springer, 2019.

112

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivational Scenario
	Research Questions
	Methodology
	Structure

	Background
	Blockchain Fundamentals
	Smart Contracts
	Blockchain Technologies
	Summary

	State of the Art
	Atomic Cross-Chain Swaps
	Off-Chain Payment Networks
	Cross-Blockchain Tokens
	Further Concepts for Blockchain Interoperability
	Summary

	Design
	Blockchain Selection
	Use Cases
	Method Design
	Conceptual Architecture
	Discussion

	Implementation
	Technology Stack
	Invocation Contract
	Distribution Contract
	Intermediary
	Validator
	Limitations of the Prototype

	Evaluation
	Evaluation Setup
	Evaluation Scenarios

	Conclusion & Future Work
	Discussion of Research Questions
	Future Work

	List of Figures
	List of Tables
	Listings
	Listings
	Acronyms
	Bibliography

