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Kurzfassung

Ziel dieser Diplomarbeit ist es, die Martingaltheorie fiir o-endliche Mafirdiume
und o-integrierbare Funktionen zu erweitern und bekannte Doob’sche Unglei-
chungen zu verallgemeinern und zu verbessern. Zu Beginn wird eine schwéch-
ere Form der Integrierbarkeit, die o-Integrierbarkeit, vorgestellt, um die Exis-
tenz eines bedingten Erwartungswerts einer Funktion gegeben einem o-end-
lichen Maf sowie dessen Eigenschaften zu beweisen. Infolgedessen wird der
Begriff der o-integrierbaren (Sub-/Super-)Martingale, welcher dieser Arbeit
ihren Titel gibt, eingefiihrt.

Das Herzstiick der Arbeit behandelt Erweiterungen und Verbesserungen
der Doob’schen Maximalungleichungen sowie der Doob’schen LP-Ungleich-
ungen fiir o-integrierbare Submartingale auf o-endlichen Mafiriumen. Die
zugehorigen Beweise werden dabei mithilfe rein deterministischer Unglei-
chungen gefiihrt. Es wird weiters versucht, sich von der Notwendigkeit der
Adaptiertheit sowie jener eines Start- und Endpunktes der betrachteten Peri-
ode zu befreien. Anschliefend wird diskutiert, unter welchen Gegebenheiten
die unterschiedlichen Ungleichungen zu Gleichheiten werden konnen. Beispie-
le dienen hierbei der weiteren Veranschaulichung.

Das letzte Kapitel gibt Aufschluss dariiber, wie die verbesserten und er-
weiterten Doob’schen Ungleichungen PraktikerInnen bei ihrer Arbeit in der
Finanz- und Versicherungsmathematik unterstiitzen konnen. Beispielsweise
ergeben sich durch die Ungleichungen minimale obere Schranken fiir den Er-
wartungswert des essenziellen Supremums des diskontierten Preisprozesses,
welcher bekannterweise unter einem risikoneutralen Mafl zum Martingal wird.
Andererseits konnen die verbesserten Doob’schen Ungleichungen eingesetzt
werden, um den Verlust einer Versicherungspolizze abzuschéitzen. Die Beson-
derheit in beiden Fillen ist, dass das maximale Risiko zu jedem Zeitpunkt
innerhalb einer beobachteten Periode abgeschéitzt werden kann. Somit bie-
ten die Erkenntnissse dieser Arbeit Moglichkeiten Risiken intertemporér zu
kontrollieren.
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Abstract

The main goal of this thesis is to expand the theory of martingales to o-finite
measure spaces and o-integrable functions. First, we introduce a weakened
form of integrability, the o-integrability, in order to show the existence of
conditional expectations of functions w.r.t. o-finite measures and properties
thereof. Furthermore, we introduce the eponymous term of this thesis, o-
integrable (sub-/super-)martingales.

The core of this thesis consists of various generalisations and improve-
ments of Doob’s maximum and LP-inequalities for o-integrable submartin-
gales on o-finite measure spaces. For the proofs we rely on purely determinis-
tic inequalities. Furthermore, we free ourselves from the need for adaptedness
and the need for a period’s starting and endpoint. Last but not least, we dis-
cuss under what circumstances our improved inequalities hold with equality
and give examples thereof.

The final chapter gives an outlook on how our improved versions of Doob’s
LP-inequalities can help practitioners in the fields of financial and actuarial
mathematics. For example, the findings of this thesis enable practitioners
to determine upper bounds for the expectation of the essential supremum
of the discounted price process (which is a martingale given a risk neutral
measure). On the other hand, the findings of this thesis provide upper bounds
for the expected essential supremum of the loss random variable. This enables
practitioners to make informed statements concerning the expected loss of
a insurance contract. In particular, in both cases practitioners can estimate
the maximal risk at any time within a certain period, which may assist them
in intertemporal risk control.
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Chapter 1

Introduction

The theory of martingales was first introduced by Paul Lévy! in 1925. Around
30 years after its initial introduction, Joseph L. Doob? greatly contributed to
its expansion to the theory of stochastic processes. Today martingales play
a vital role in financial and actuarial mathematics and cannot be overlooked
in education either. However, the theory of martingales is often treated
solely on probability spaces (€2, F,P), where martingales are commonly de-
fined as integrable processes M := (M,);er that are adapted to a filtration
F := (F))ier, i.e. M, is F;-measurable for all ¢t in 7' C R, with values in K¢
such that

M, = E[M,|F,) (1.1)

for all s <tin T. M is called a submartingale, if K = R and

M, < E[M,|F)] (1.2)

for all s < t in T and supermartingale, if (1.2) is reversed®. The goal of
this thesis is to expand the theory of martingales by adapting it to o-finite
measure spaces. René Schilling laid out the groundwork thereof in 2005 but
focused on discrete time, whereas this thesis considers continuous time.
Chapter 2 first introduces the definition of o-integrable functions. We
use this generalisation of integrability to expand the theory of the condi-
tional expectation to o-finite measure spaces. We also show that many
well-known properties of the conditional expectation w.r.t. probability mea-
sures still hold when considering o-finite measures. Lastly, we define (sub-
/super-)martingales on o-finite measure spaces via the generalised version of

L% 15 September 1886 in Paris, 1 15 December 1971 in Paris
2% 27 February 1910 in Cincinnati, Ohio, t 7 June 2004 in Urbana, Illinois
3See [13, Definition 4.1 and Definition 4.49)
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the conditional expectation and introduce the eponymous term for this the-
sis, o-integrable (sub-/super-)martingales, before proving that finite optional
stopping also holds for our definition of submartingales.

Chapter 3 proves the central theorem of this thesis: Doob’s classical LP-
inequality for submartingales for p > 1 on o-finite measure spaces (see Theo-
rem 3.2). An important tool for the proof are Doob’s maximum inequalities,
which also hold true on our generalised setting, as we show in Theorem 3.1.
Moreover, Chapter 4 proves that Doob’s maximum inequalities can be gen-
eralised and improved even further by relying on quite simple deterministic
inequalities.

The core of this thesis is Chapter 5, which proves various improvements
to Doob’s classical LP-inequality for o-integrable submartingales on o-finite
measure spaces. Like in the previous chapter the proofs rely on rather basic
deterministic inequalities. Throughout the chapter we try to free ourselves
from the need of a starting and endpoint of a period within our time span T’
and prove sharper versions of Doob’s inequalities for p > 1 (see Theorem 5.2),
p =1 (see Theorem 5.8) and p € (0, 1) (see Theorem 5.14) on our generalised
setting. Last but not least, we will discuss under what circumstances our
improved inequalities hold with equality and give examples thereof.

The final chapter gives an outlook on how our improved versions of Doob’s
LP-inequalities can help practitioners in the fields of financial and actuarial
mathematics. For example, our findings provide upper bounds for the expec-
tation of the essential supremum of the discounted price process, which is a
martingale given a risk neutral measure. Furthermore, the newly developed
inequalities in this thesis can be used to find upper bounds for the expecta-
tion of the essential supremum of the loss random variable. Hence, they may
help practitioners to make informed statements concerning the expected loss
of a insurance contract. Finally, we summarise our findings and the novelties
of our work to conclude this thesis.
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Chapter 2

Martingales in o-Finite
Measure Spaces

2.1 The Conditional Expectation
in o-Finite Measure Spaces

This chapter introduces a generalised definition of the conditional expectation
on o-finite measure spaces based on the concept of o-integrable functions.
We will prove that the fundamental properties for the conditional expectation
for probability spaces and random variables can be adapted to this setting as
well. This newly developed theory will be essential in order to prove Doob’s
LP-inequality for submartingales.

For the entirety of this thesis (unless stated otherwise) let (2, F, u) be
a o-finite measure space. In general, within this thesis we will mainly look
at measurable functions that take values in K% d € N. Therefore — unless
indicated otherwise — let f € LO(Q, F, u; K¢) take values in either R? or C.
For d > 1 apply the newly developed theory to each K-valued function f;,
i=1,...,dsuch that f = (f1,..., fa)

For comparability reasons we wish to introduce a similar notation to the
expected value of random variables as the integral w.r.t. the o-finite measure
. First, let f take values in R and define [ fdu = [ ftdu— [ f~ dp for
f €L F, u;R) with f = f*— f~ such that min{ [ fTdy, [ f~ du} < oc.

NoraTION: E,[f] := [, fdu

If f takes values in C, we will use the same notation and apply the definition
above to the real and imaginary part of f. In the case of K¢ consider the
notation applied componentwise.
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Later on we shall use a similar notation when it comes to conditional
expectations. We will start off with introducing the definition of o-integrable
functions, which is a key aspect for this thesis.

2.1.1 o-Integrable Functions

The following definition and the newly developed theory thereafter are in-
spired by the work of [7], who introduced a generalised definition for the
conditional expectation w.r.t. probability measures and random variables.
Functions that satisfy the properties below will play a key role in proving
that the theory of the conditional expectation can be expanded to functions
on o-finite measure spaces.

Definition 2.1. Let f € L°(Q, F, u; K%) and G C F be a sub-c-algebra of
F. Then f is called o-integrable w.r.t. G, if there exists a sequence (£2,,)nen
in G with ©,,  Q as n — oo such that

flg, € LY, F,1;KY, neN.

Before we go any further we would like to give some examples for o-
integrable functions. For this purpose we will specifically look at functions
that are o-integrable, but not integrable, because it follows immediately that
integrable functions are also o-integrable. Furthermore, we would like to give
a quick overview of some properties of o-integrable functions, which will help
us later on.

Ezample 2.2. Consider the measurable space (N, P(N)) together with the
finite measure p({n}) := n=2. Then the identity function f : n — n for
n € N is not integrable, because [ fdu =Y~ #n = o0o. However, f is
o-integrable w.r.t. P(N), because we have with Q, := {1,...,n}, n € N, a
sequence as required in the definition above: simply note that €2, ~ N as

n— 00, Q, € P(N) and [ flo, du =37, i < oo for all n € N.

Ezample 2.3. Consider the measure space (R, Bg, A), where Bg refers to the
o-algebra of one-dimensional Borel sets on the topological space R and A to
the Lebesgue—Borel measure. The function f : R — R, where

Fa) = {(1) if 2 =0,

~  otherwise,

is not A-integrable on R, because the integral [, |f|dX is infinite for two
reasons: the singularity at 0 and the slow decay of |f(z)| as © — Zoc.
However, f is o-integrable w.r.t. Bg, since we have with 2, := (—n, —%] U

4
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{0} U [, n), for n € N, a sequence as required in Definition 2.1: simply note
that |f| is an even® function and that €, /R as n — oo, §, € B and

[io,ix= [ axez |
R {0} [+

for all n € N.

"1
|f|d/\:2/ —dr =4In(n) < o
7n) % x

Lemma 2.4. Let G C F be a sub-o-algebra of F and let all functions below
take values in K unless stated otherwise.

(1) Let a € K and f,g be o-integrable functions w.r.t. G. Then af + g is
again a K¢-valued o-integrable function w.r.t. G.

(2) If plg is o-finite and f G-measurable, then f is o-integrable w.r.t. G.

(3) Let f be o-integrable w.r.t. G. If g is a G-measurable function, then gf
s o-integrable w.r.t. G.

(4) f is o-integrable w.r.t. G if, and only if, |f| is o-integrable w.r.t. G.

(5) Let f be an F-measurable function. If |f| < g p-a.e., where g is an R-
valued o-integrable function w.r.t. G, then f is also o-integrable w.r.t.
G. Thus, if plg is o-finite and f is bounded, we can conclude that f is
also o-integrable w.r.t. G.

(6) If f,g are R-valued o-integrable functions w.r.t. G, then so are f V g
and f N g.

(7) Let (fn)nen be a sequence of o-integrable functions w.r.t. G such that
fn =g p-a.e. for all n € N and a o-integrable function g w.r.t. G. If
g is o-finite, the infimum inf,cy f, is also o-integrable w.r.t. G.

Proof. (1) Since f and g are o-integrable w.r.t. G, there exist sequences
(P)nen, (Up)nen in G with &, W, 7 Q as n — oo such that flg, and gly,
are p-integrable for all n € N. Define Q,, = ®, N V,,. Then (£2,),en is again
a sequence in G with €,  Q as n — oo. Furthermore, (af + g)lg, is
p-integrable and therefore a o-integrable function w.r.t. G.

(2) Since p|g is o-finite, there exists a sequence (2, )nen in G with u(Q,) <
oo for all n € N such that |,y Qs = Q. By setting Q, := Q, N {|f| < n}
for n € N we have found a sequence with 2, € G for all n € N (due to the
G-measurability of f) and Q,,  Q as n — co. Since

Eullf g, I] < np(€) < o0,

Y.e. g := | f| has the property that g(z) = g(—x)

b}
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it follows that flg € LY (2, F, p) for all n € N. Therefore, f is o-integrable
w.r.t. G.

(3) Let (£2,)nen in G be the corresponding sequence such that f is o-
integrable w.r.t. G and define Q, := Q, N {|g| < n} for n € N. Then it
follows that Q, € G for all n € N (due to the G-measurability of g), Q, , Q
as n — oo and gflg € L'(Q, F, p) for all n € N, because

Eullgflg,] < nEu[lf|lq,] < oo,

Thus, gf is o-integrable w.r.t. G.

(4) Let €2, be the sequence as required in Definition 2.1 such that f is
o-integrable w.r.t. G. Then flg, € L*(Q, F, u; K?) if, and only if, |flq, | €
LY, F, ;1; K?) by Lemma A.13. Therefore, |f| is also o-integrable w.r.t. G.

(5) Let ©Q,, be the sequence as required in Definition 2.1 such that g is o-
integrable w.r.t. G. Then the claim follows immediately, because E,[| f|1q,] <
E,llg|Lla,] < oo. For |f| < ¢ € R the o-integrability of f w.r.t. G follows
immediately by (2).

(6) Note that fV g and f A g are again measurable functions by Theorem
A5, Since |f Vg < |f| + |g] and [f A g| < |f] + |g|, both functions are
o-integrable w.r.t. G by (1), (4) and (5).

(7) Theorem A.5 shows that inf,cy f,, is again a measurable function.
Thus, the claim follows by (2) and (5), because g < inf,en f,, < f, for all
n € N. O

2.1.2 Generalisation of the Conditional Expectation

Using o-integrability, which can be viewed as a weaker form of integrability,
we wish to introduce a generalised version of the conditional expectation.
For this purpose we will need the following lemma for multiple claims and
proofs in the course of this thesis.

Lemma 2.5. Let G C F be a sub-c-algebra of F and f,g € L°(Q, G, u; R).

(1) If there exists a sequence (£2,)nen in G with Q, /' Q as n — oo such
that f]]-Qnagll-Qn € Ll(Qv g?#’) and

E.[(fla,)lc] < E,l(glo,)lc], GE€G, neN (2.1)

then f < g p-a.e.

(2) If f and g take values in K and (2.1) holds with equality, then f = g
p-a.e.
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Proof. (1) Consider A, :={f—g > <} forn € N. Then A, € G foralln € N
due to the G-measurability of f and g. Hence,

1 1
02 B,l(g10,)1,] 2 By | 1n, La,| = Lu( 0 4,)

which implies p(€2, N A,) = 0 for all n € N. Note that {f —¢g > 0} =
Unen(An N€y,). Hence,

u{f =g >0 = (AN Q) <D u(4 Q) =0

neN neN

by the o-subadditivity of measures. Thus, f < g p-a.e.

(2) We can now derive the claim for R-valued functions directly from
what we have just shown, by considering E,[(f1lqa,)1s] < E,[(gla,)Lls] and
E.[(fla,)1c] > E,[(9lq,)l¢] for all G € G and all n € N. If f and g take
values in C, simply apply the claim separately to the real and imaginary part
of the functions. The claim for the general case of K%valued functions now
follows directly by considering the components separately. This concludes
the proof. O

With Definition 2.1 and Definition 2.6 below we can now introduce a
generalised version of the conditional expectation w.r.t. a sub-o-algebra of
F. This concept is integral to the general topic of this thesis and is based on
the works of [7, § 1.4, p. 10-13] who introduced a similar generalisation of the
conditional expectation regarding probability spaces and random variables.

Definition 2.6. Let f be o-integrable w.r.t. a sub-o-algebra G C F, where
ilg is o-finite. We define the delta-ring of all sets in G such that f is u-

integrable by?
Rrg ={G € G E,[|f[Le] < oo} (2.2)

Theorem 2.7. EXISTENCE OF CONDITIONAL EXPECTATION

Let f be o-integrable w.r.t. a sub-o-algebra G C F, where p|g is o-finite.
Then there exists a pi-a.e. uniquely determined g € L°(Q, G, u; K9) such that
glg € LY, G, u; K% and

E#[f]lg] = Eu[gﬂg], G e Rﬁg. (23)

We call E,[f|G] := g the conditional expectation of f w.r.t. G.

ZNote that R¢g is a 6-ring for all G C F. See Definition A.6 for more information.
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Remark 2.8. Let f be o-integrable w.r.t. the sub-g-algebra G C F and define
R g like in the definition above. Then Ryg C Rg,[fg),¢ for the conditional
expectation of f w.r.t. G.

Indeed: This follows immediately from the definition of the conditional
expectation in Theorem 2.7. It is important to note, however, that R;g can
be a strict subset of Rg,[f|g),g, as the following example shows.

Ezample 2.9. Consider the setting of Example 2.3 and define By'™ = {B €
Bg : B={—x:2 € B}}. Since f is an odd function®, E,[f15] = 0 for all
B € By™. This, however, is also true for the function h = 0. By the a.e.-
uniqueness of the conditional expectation and (2.3) this implies E,[f|Bg™] =
0 A-a.e. and therefore, Rg,(szm) pom = BZ™. However, By := (—k,k) €
By™ is not an element of Ry gvm for all k € N, since [ |f[1p, d\ = oo.

Proof. Theorem 2.7
First, let f be an R, -valued o-integrable function w.r.t. G and (,,)pen in G
the corresponding sequence with p(€2,) < oo for all n € N and Q,, 7 Q as
n — oo such that [, |fdp < oo for alln € N.

First, define

V(G):/Gfdu, Ged.

Since f > 0 and by the monotone convergence theorem in Theorem A.18 it
follows that v is a o-finite measure on G (and even finite on Rfg). Further-
more, v < g on G due to the definition above. According to the Radon—
Nikodym theorem in Theorem A.14 there exists a p-a.e. uniquely determined
G-measurable function g : 2 — R such that

v(G) = /ngu, Geg. (2.4)

Now, let G € Ry g. It follows that g1g € L*(Q2, G, u) since

/ngZ/fdu<oo,
G G

and thus, for E,[f|G] := g we have (2.3) for this case.

To treat the R-valued case, consider f = f*— f~. Since f is o-integrable,
then so are its negative and positive part, as Lemma 2.4(4) shows. We
have just proved, that for f* and f~ Theorem 2.7 gives us the existence

of two p-a.e. uniquely determined G-measurable functions g, and g_ with
g+ : Q@ — R, such that g2 1g € LY(Q,G, p) and E,,[f*15] = E,[g+16] for all

3ie. —f(x) = f(—x).
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G € Ryg. Due to the additivity of the integral in Theorem A.12(2) it follows
that for g := g, — g we have glg € LY(Q,G, n) and E,[f1s] = E,[gls] for
all G € Ryg.

Finally, it remains to show that g is a.e. unique. In order to do so, let h
have the same properties as g. Then E,[h1g] = E,[¢gl¢] for all G € Ryg by
(2.3). This implies g = h p-a.e. by Lemma 2.5(2).

If f takes values in C, the claim still holds, because we can apply what we
have just proved to both the real and the imaginary part of f. The K%valued
case follows by considering the components separately. O

Remark 2.10. The assumption in Theorem 2.7 that p|g is o-finite is essential,
because otherwise we could not rely on the Radon-Nikodym theorem in (2.4).
For example, consider the measure space (R, Bg,A), where A denotes the
Borel-Lebesgue measure and G := {0, R}, which is a sub-c-algebra of Byg.
Then for f = ¢ € R the integral fR f d\ is infinite and there does not exist a
uniquely determined function g : R — R such that [, fd\ = [ gd.

There is, in fact, another way to prove Theorem 2.7 without the assump-
tion that p|g is o-finite, which relies on the Bayes’ formula (see Theorem
A.31). However, we decided to base our theory on the proof above with all
the necessary assumptions as it is more straightforward and similar to the
proof of the existence of the conditional expectation for random variables
and probability spaces. If interested in the alternative approach to proving
(2.3), please refer to page 92.

Remark 2.11. Generalisation of the conditional expectation. Let f be an

R-valued F-measurable function with decomposition f = f* — f~, where
f* :=max{0,+f}, and G C F a sub-o-algebra such that u|g is o-finite.

(1) For functions with o-integrable negative part: Assume that f~ is o-
integrable w.r.t. G, but f* might not be. Define f,, = min{n, f} and
note that f,, is bounded from above and therefore o-integrable w.r.t. G
for all n € N (see Lemma 2.4(5)). Then, by Theorem 2.7, the condi-
tional expectation E,,[f,|G] exists. As we will show in the next theorem,
it follows that E,[f,|G] < E,[f,+1]G] p-a.e. for all n € N due to the
monotonicity of the conditional expectation (see Theorem 2.12(3) and
its proof). Hence, we may conclude that

E,[f19] := lim E,[£,l0]
is p-a.e. pointwise well-defined with values in R U {+o00}.

(2) For functions with o-integrable positive part: Assume that fT is o-
integrable w.r.t. G, but f~ might not be. Define f, = max{—n, [}

9
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and note that f,, is bounded from below and therefore o-integrable
w.r.t. G for all n € N (see Lemma 2.4(5)). Then, by Theorem 2.7, the
conditional expectation E,[f,|G] exists. As we will show in the next
theorem, it follows that E,[f,|G] > E,[f.+1|G] p-a.e. for all n € N
due to the monotonicity of the conditional expectation (see Theorem
2.12(3) and its proof). Hence, we may conclude that

is p-a.e. pointwise well-defined with values in R U {—o0}.

We will use this generalisation of the conditional expectation w.r.t. a sub-
o-algebra of F in situations where we cannot ensure the o-integrability of
the function. Examples of its use can be found in Theorem 2.12(5) and (8).

The main goal of Chapter 4 and Chapter 5 is to prove generalised and
improved versions of Doob’s maximum and LP-inequalities for our newly de-
veloped understanding of the conditional expectation and o-integrable sub-
martingales, which we will introduce shortly. In order to do so, we need some
of the fundamental properties listed in the theorem below.

Theorem 2.12. LIST OF PROPERTIES

Let (2, F, 1) be a o-finite measure space and G a sub-o-algebra of F such
that p|g is o-finite. Unless stated otherwise, let f be a K%-valued o-integrable
function w.r.t. G. Then the following properties hold true:

(1) If f € L%Q, G, u; KY), then E,[f|G] = f p-a.e.
(2) Law of total expectation: If f is integrable, then E,[E,[f|G]] = E.[f].

(3) Monotonicity: Let K¢ = R and g be another R-valued o-integrable
function w.r.t. G. If f < g p-a.e., then E,[f|G] < E,[g|G] p-a.e.

(4) Linearity: Let a € K and g be another K%-valued o-integrable function
w.r.t. G. Then af + g is again a K -valued o-integrable function w.r.t.
G and
E.laf +g|G] = aE,[f|G] + EL[9|G] p-a.e.

(5) Conditional monotone convergence theorem: Let K = R and (f,)nen
be an increasing sequence of F-measurable functions with values in R,
which are not necessarily o-integrable w.r.t. G, such that f, > g p-
a.e. for all n € N and an R-valued o-integrable function g w.r.t. G. If

10
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fo 7 f p-a.ce. as n — oo for a F-measurable function f with values in
R, which is also not necessarily o-integrable w.r.t. G, then*

lim E,[f,|0] = E,[f16] p-a.c. (2.5)

(6) Take out what is known:

(a) If g € L°(Q, G, 11; K™Y, then fg is o-integrable w.r.t. G with val-
ues in K" and

E.l9f19] = gE.[fI9] p-a.e.

(b) If f is a positive F-measurable function, but not necessarily o-
integrable w.r.t. G, that takes values in R and g is a positive G-
measurable function with values in R, then

E.l9f|G] = gE.[fIG] p-a.e.

(7) Tower property: If H C G is a further sub-c-algebra of F and f is
o-integrable w.r.t. H (which implies the o-integrability w.r.t. G), then
E,[f|G] is o-integrable w.r.t. H and

E,[E, /1G] 1] = B (/] n-a.c.

(8) Conditional version of Fatou’s lemma: Let K¢ = R and (f,)nen be a
sequence of F-measurable functions with values in R, which are not
necessarily o-integrable w.r.t. G, such that f, > g p-a.e. for alln € N
and an R-valued o-integrable function g w.r.t. G. Then®

E, [liminf ,
n—o0

Q] <liminfE,[f,|G] p-a.e.
If f, < g p-a.e. for alln € N, then

E, [lim sup f

n—00

Q] > limsupE,[f,|G] p-a.e.

n—oo

“Please refer to Remark 2.11(1) for the generalised definition of the conditional expec-
tation of F-measurable functions, which are not necessarily o-integrable w.r.t. a sub-o-
algebra of F.

5Note that f := liminf, . f, might not be o-integrable w.r.t. G. In that case define
E,[f|G] according to Remark 2.11(1).

6The function f := limsup,,_, ., fn might not be o-integrable w.r.t. G. In that case
define E,, [£]G] according to Remark 2.11(2).

11
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(9) Conditional version of Jensen’s inequality: Let C' C R be an interval
or C C R? an open, convex set and assume that f takes values in C.
If p: C = R is a convex function such that o(f) is o-integrable w.r.t.
g, then

P(EL[f19]) < Eulp(H)IG] p-a.e. (2.6)

If v is concave, the inequality is reversed.

(10) Conditional dominated convergence theorem: Again, let (f,)nen be a
sequence of F-measurable functions with values in K such that | f,| < g
p-a.e. for all m € N and some R-valued o-integrable function g w.r.t.
G. If f, — f p-a.e. as n — oo for an F-measurable’ function f with
values in K%, then®

lim E,[£,10] = E,[fl9] po.c.

(11) Conditional version of Holder’s inequality: Let f and g be F-measurable
functions with values in K, which are not necessarily o-integrable w.r.t.
G. Furthermore, let p,q € (1,00) with 1/p+1/q=1. Then®

Eu[1(f, )| 1G] < (B FP1G) P (ELllg”IGD'* p-a.e., (2.7)

where (-,-) : K¢ x K? — R denotes the inner product defined on R? or
Cd. In (2.7) 0 times co as well as oo times 0 means 0 and oo times
a > 0 gives oco.

Proof. Similarly to Definition 2.6 define Ry, = {GNG : G € Rsg,G €
R,g}, where g is another o-integrable function w.r.t. G.

(1) This follows directly from Lemma 2.5(2) and the definition of the con-
ditional expectation in Theorem 2.7 by observing that G-measurable func-
tions are also o-integrable w.r.t G (see Lemma 2.4(2)).

(2) For integrable f we have Q € Rfg = G and thus, the claim follows
directly from the definition of the conditional expectation in Theorem 2.7.

(3) It follows for f < g p-a.e. that

E.[Eu[fIG]e] = Eu[fle] < Eulgle] = Eu[E,9]9]1a]

"The F-measurability of f is a necessary assumption, because the p-a.e.-limit of F-
measurable functions does not necessarily have to be F-measurable itself.

8Please refer to Remark 2.11 for the generalised definition of the conditional expectation
of F-measurable functions, which are not necessarily o-integrable w.r.t. a sub-o-algebra
of F.

9Please refer to Remark 2.11 for the generalised definition of the conditional expectation
of F-measurable functions, which are not necessarily o-integrable w.r.t. a sub-o-algebra
of F.
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for all G € R 4. Lemma 2.5(2) then implies the claim.

(4) We will prove the claim for K¢ = R, then it also holds for K¢ = C
by the same arguments applied to the real and imaginary part as well as the
general case K% by applying the arguments componentwise. The fact that
af + g is a o-integrable function w.r.t. G has already been shown in Lemma
2.4(1). Therefore, the claim holds true by Lemma 2.5(2) and the linearity of
the integral in Theorem A.12, since

E,[E.[(af + 9)|G)1c] £ E.[(af + g)1c]
=aE,[flg] + E.[91¢]

2 (B, [E,[fI0]16] + E,[E,[910]10]

forall G € {GNGNG: G ERg, G ERyg,G € Ruprgo}-

(5)19 Step 1: Let us first assume that f and f,, are o-integrable w.r.t. G
for all n € N. Note that'! R, " Rpg C Ry, g for all n € N. This is true,
since for R € Ryg N Ry g we have E,[|g|1g] < E,[|fu|1r] < E,[|f|1g] < oo,
which implies R € Ry, g. We will need this further on in order to apply
Theorem 2.7 to f,, n € N. Now, define h,, = E,[f,|G] for all n € N and note
that Ry N Rfg C Ry, g for all n € N by Remark 2.8, since h,, > g p-a.e.
due to the monotonicity of the conditional expectation in (3). Furthermore,
(hn)nen is a p-a.e. increasing sequence of functions. For h := limsup,,_, . hy
it follows by Theorem A.5 that h is G-measurable. Since h, , h p-a.e. as
n — oo we may now use the dominated convergence theorem as stated in
Theorem A.17 and deduce that

! = lim ndp = lim
E,[f|G] du X fdy 1 fd,ﬁﬁ h dp 2" | hdu
n—oo e

for all GeERygN Rf,g C Rpg. Thus, the claim follows by Lemma 2.5(2).

Step 2: In case f and f, are only F-measurable but not o-integrable
w.rt. G, define £i™ = f, Am for m € N. Then f™ > g A0 and £™ i
o-integrable w.r.t. G for all n € N and the same goes for f Am since both are
bounded from above (see Remark 2.11(1)). Also [ |Q] <E,[ ,Sm“)|g]
p-a.e. for all m,n € N by (3). Note that f{™ 7 (f Am) for n — oo and
(f Am) & f for m — oo. Thus,

2.11

lim lim E,[f"™)|G] = hm E.[f Am|G] = E,[f|G] p-ae.,

m—r00 N—r00

0This proof was inspired by [14, Section 9.8, Property (e), p. 89].

"Note that Ryg C Ry, g for all n € N on its own does not hold true. Consider the
measure space (R, B, A), where B is the Borel-o-algebra on R and A the Lebesgue—Borel
measure on R. Define a sequence of functions by f,(z) :== —X|z| for € R and n € N.
Then f,, converges to the constant function f = 0, for which R = B. However, since
fn is not integrable over open intervals, Ry 5 ¢ Ry, g for n € N.

13


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

where we used the conditional monotone convergence theorem proved for

Step 1 for the first equality and the generalised definition of the conditional

expectation in Remark 2.11(1) for the last one. Again, by applying the

conditional monotone convergence theorem proved for Step 1 it follows that
lim B,[f™|G] = E,[f.|G] p-ae.,ncN.

m—00

Now simply apply Theorem A.33, which gives
nh_{IOlo E.[falG] = Eu[f|G] prae.

(6a)The o-integrability of ¢gf w.r.t G follows immediately from Lemma
2.4(3). Therefore, it remains to show that for all G € Ry ;46 we have

Eulgflc] = EL[E,.[gf|G]1c] = Eulg E,[f]G]1c]- (2.8)

In order to do so we will treat different cases for g and assume that g takes
values in R. For the complex-valued case we simply need to apply the steps
below to the real- and the imaginary part of g. It remains to apply this to
each component in the case that g takes values in K"*? and we are done.

Step 1: g == 1y, H € Ryg. It follows immediately that (2.8) holds true
because

21 27 _
/G E,[g/10) du 2 / of du 2 /G Elf1g)dn = /G 9E,[fIG) du

for all G € Ryg due to the definition of the conditional expectation. Thus,
by Lemma 2.5(2) the claim follows for this case.

Step 2: g =3 1_ wle, fory, ..., m €RL, Gy,...,G, € Gandn € N.
Then (2.8) follows immediately from Step I and due to the linearity of the
integral as stated in Theorem A.12(1) and (2).

Step 3: 0 < g € LY(Q,G, ;R). By Lemma A.4 there exists a sequence of
monotonously increasing non-negative simple functions (see Definition A.3)
(gn)nen such that g = lim,,_,, g,. Thus, we may apply the conditional mono-
tone convergence theorem proven in Step 2, which yields (2.8) for this case.

Step 4: g € L°(Q, G, u;R). For this case consider ¢ = g™ — ¢g~. Then
(2.8) follows by Step & and the linearity of the integral.

(6b) In case f is only F-measurable but not o-integrable w.r.t. G, define
fn= fAntfor n € N and the conditional expectation of f w.r.t. G according
to Remark 2.11. Then by (6a) we can conclude that E,[¢gf,|G] = g E,[f.|F]
p-a.e. Since gf, > 0 and gf, ~ gf for n — oo, the conditional monotone
convergence theorem in (5) yields

9E.[f19] = g lim E,[f,|9] = Tim E,[¢f.|G] = Eu[gf|G] p-a.c.

14
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(7)'2 Since f is o-integrable w.r.t. H C G, there exists a sequence (£,,)nen
in H according to Definition 2.1. Due to (6) we then have that E,[f1q,|G] =
1, E,[f|G] p-a.e. for all n € N, which implies that E,[f|G] is also o-integrable
w.r.t. H.

Furthermore, it follows from the definition of the conditional expectation
in Theorem 2.7 that

E,[/1n] = E,[E,[/[H]L4] 29)
for all H € Ryy. Now note that Ryy C Ryg. Using (2.9) for E,[f|F]
instead of f it follows that

]Eu[f]lH] = Eu[Eu[f‘g]]lH] = Eu[Eu[Eu[ﬂg] ‘%HH]

for all H € Ry, [f6),%- Lemma 2.5(2) then implies the claim.

(8)!3 Step 1: Let us first assume that f, is o-integrable w.r.t. G for all
n € N and define h,, = infy>,, fi, » € N, which is again o-integrable w.r.t. G
by Lemma 2.4(7). Then h, > g p-a.e. for all n € N and h,, < fi, which by
(3) implies E, [h,|G] < E,[fx|G] p-a.e. for k > n. Hence,

E,[h,|G] < égEEu[ng] p-a.e.,n € N. (2.10)

Furthermore, we have

lim h, = lim inf f; = liminf f,.
n—00 n—oo k>n n—00

Thus, it follows by the conditional monotone convergence theorem in (5) that

o o) .. (2.10)
E, [lminf /, G| 2 lim Bylh,|g] < liminfE,[£,/G).

] =, tim o

which holds true p-a.e.
For the second part of Fatou’s lemma consider h, := —f,, n € N. We
may now apply the first part of the lemma, which gives us

E, |lim inf

n—o0

g] <liminfE,[h,|G] p-a.e.,
n—oo

which is

Eu[lim inf(~ £,)[G] < lim inf(~E,[£,|G]) p-ac.

by the definition of h,. We can rewrite this equation as

E, [lim sup fn,

n—oo

Q} > limsupE,[f,|G] p-a.e.

n—oo

12The idea for this proof was inspired by [7, Theorem 1.22, p. 12-13].
13This proof was inspired by [14, Section 5.4, p. 52-53] and [9, Satz 14.10, p. 230-231].
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due to the relation between the limit superior and limit inferior and are done
with this proof.

Step 2: In case f, is only F-measurable but not o-integrable w.r.t. G for
all n € N, define £{™ = f, Am for m € N. Then £i™ > g a0, f™ is
o-integrable w.r.t. G for all n € N (see Remark 2.11(1)) and Eu[fflm)\g] <
E,l (m+1) |G] p-a.e. for all m,n € N by (3). Now apply the conditional version
of Fatou’s lemma proved in Step 1, which gives us

E, [lim inf £ ‘g} < liminfE,[f(™|G] p-ae. (2.11)
n—0o0 n—oo

By definition it follows that qum) A fn for m — oco. Furthermore, note that
then lim inf,, fém) = (liminf, ., fn) Am /' liminf, . f, for m — oo and
that Eu[fém)|g] < E,[fn|G] p-a.e. by the monotonicity in (3). Now we can
apply the conditional monotone convergence theorem in (5) and arrive at

(2.11)
Q] ® tim E, [liminf fr(bm)’g] < lim liminfE,[f"™)|g]

n—00 m—oo n—oo
<liminfE,[f,|G] p-a.e.
n—oo

E, [lim inf f,,

For the second part of Fatou’s lemma define fT(Lm) = foV—m for m € N.
Then fflm) < gVao, fém) is o-integrable w.r.t. G for all n € N (see Remark
2.11(2)) and E,[f\™|G] > E,[f\"V|G] p-a.e. for all m,n € N by (3). Now
apply the second part of the conditional version of Fatou’s lemma proved in
Step 1 to —f™, n € N. By definition it follows that — f\™ # —#, for m —
oo. Furthermore, note that then liminf,, . (— flm)) = (liminf, oo (—fn)) A
m A liminf, e (— f,) for m — oo and that —E,[f\™|G] < —E,[f.|G] p-a.c.
by the monotonicity in (3). Now we can apply the conditional monotone
convergence theorem in (5) and Fatou’s lemma as shown in Step 1. This
yields

E, [lirrln inf(—f,)

—00

9] 2 tim B, [tim nt ()|
< lim liminf Eu[(—f(m)) 4

n
m—o0 N—0o0

< lirrl}inf(—]Eu[fn\g]) p-a.e.

Finally, we can rewrite this inequality using the relation between the limit
superior and limit inferior and arrive at

E, [lim sup fn

n—oo

g} > limsupE,[f,|G] p-ae.

n—oo
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(9) Step 1: First, let C' = [a,b] for a,b € R and assume ¢ is continuous
on C. Define the function l, g(z) :== az+ 8 for a, f € R and z € C. Lemma
A.32 tells us that p(x) = sup{las(z) : a, 5 € Rsatisty [, 3 < ¢}, z € C.
Thus, for a, 8 € R such that {, 3 < ¢ it follows that

los (Bulf16]) = aE,[£16] + 8 L E,llas(£)I0]) S Eulp(HIG] pene.

Hence,

P(ELf19]) < Eu[o(HIG] p-ae.

The reverse inequality for concave functions follows immediately from
what we have just shown by simply considering —¢.

Now, assume that ¢ no longer needs to be continuous on C'. W.lo.g.
assume that ¢ has a discontinuity at the outer left point a € C'. Consider a
sequence of continuous, convex functions ¢, : C' — R defined by

() = max{p(z), p(a) —n(z —a)}, z€CneN.

For this definition it follows that ¢, is continuous, convex and o-integrable
w.r.t. G for all n € N and therefore, we can apply the conditional version of
Jensen’s inequality to every ¢, as we have just shown. Thus, ¢, (E,[f|G]) <
E,lpn(f)|G] for all n € N. Since ¢,, \, ¢ pointwise on C' as n — 0o, we can
conclude that

P(ELf1G]) = lim (B, [f19)) < lim Eulen(£)IG] © Eulp()I9) p-ac.

by using the conditional dominated convergence theorem in (10).

Step 2: The claim for convex open sets C' C R follows via the definition of
the Fenchel conjugate (see Definition A.37) and the Fenchel-Moreau theorem
as stated in Theorem A.40. The Fenchel-Moreau theorem shows that we can
express the function f via its biconjugate, which in turn is the supremum of
affine and continuous functions. Therefore, we can reduce this case to what
we have showed in Step 1.

(10)* Note that since |f,| < g p-a.e., it follows that also the pointwise
limit |f| < g p-a.e. and thus, f and f, are o-integrable w.r.t. G. Now
observe that |f,, — f| < 2¢g p-a.e., therefore, we can apply the second part of
the conditional version of Fatou’s lemma in (8), which gives us

limsup E,[|f, — f]|G] < E, [limsup f — f|‘g} —0 pae.

n—oo n—oo

14This proof was inspired by [14, p. 54-55, Section 5.9] and [9, p. 231, Satz 14.11].
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Furthermore, by the linearity in (4) and the conditional version of Jensen’s
inequality in (9) applied to the function = — |z| we have

E.[fnlG] = EL[fIG]] = [Eulfo = FIG]l S Eu[lfn — fI1G] pace.

Therefore, the claim follows.

(11)'5 Step 1: Assume that (f,g), |f|? and |g|? are o-integrable w.r.t.
G. Define F = (E,[|f?|G])Y? and G = (E,[|g|?|G])"/? and note that
F,G € L%,G,u) according to the definition of the conditional expecta-
tion in Theorem 2.7. It follows that

B [(|fPLir=0y) 1r] = Eu[E,[|fPL(r=0}|G] 1R]

© E, [ﬂ{on} E.[l /1G] HR] =0

=FP p-a.e.

for all R € Rispg. Thus, |f| =0 p-a.e. on {F =0} NQ, for all n € N and
a sequence (2,)nen € Rysp,g such that Q, 7 Q as n — oo. However, since
{F =0} = Upen({F = 0} N Q,), we can conclude that |f| = 0 p-a.e. on
{F = 0}. It can be shown in a similar manner that |g| = 0 y-a.e. on {G = 0}.
Since |(f, g)| < |f]|g| by the Cauchy-Schwarz inequality in Theorem A.34,
this implies E,[|(f, 9)||G] = 0 p-a.e. on {F =0} U{G = 0} and hence, the
Holder inequality holds.

On {F = 00,G > 0} U{F > 0,G = oo} the right-hand side of (2.7)
equals co and the Holder inequality is vacuously true.

Finally, let us consider H := {0 < F' < 00,0 < G < oo}. It remains to
show

g, | L2 <y (212)

forall Re {RNRNR:RE€ Ry 4R ERuypw 5, RERigs ;} with R C H.
FG FD Gq

This is, of course, equivalent to showing (2.7) on H. By remembering the
G-measurability of F'; G and R (2.12) follows quite quickly, because

S o [ 2

By the Cauchy-Schwarz inequality in Theorem A.34 and the Holder inequal-
ity in its original form (see Theorem A.15) we arrive at

» 1/p q 1/q
w[l5gh]<x [ ] < ([0 (s )
(2.13)

15This proof was inspired by the proof for the conditional Hélder inequality for prob-
ability spaces and random variables in https://en.wikipedia.org/wiki/H%C3%B61lder?
27s_inequality#Conditional _HJ,C3%B6lder_inequality, Stand: 18.10.2019.
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Focusing on the first term on the right-hand side of (2.13) we can again use
the definition of the conditional expectation to prove that

(L) () " ()

=1p-a.e. onR
We can make the same observation for the second term on the right-hand
side of (2.13), which finally gives us

E, {WIR} < (EM[HR])I/p<Eu[ILR])1/q = E,[1g]

Therefore,
Eu[ (. 9)]19]
FG
by Lemma 2.5(1), which implies E,[|(f, ¢)||G] < FG p-a-e. on H.

Step 2: For the more general setting of F-measurable functions f and g
define f, = flys<n) and g, = glyg<n) for n € N and note that they are
both o-integrable w.r.t. G (see Lemma 2.4(5)). Then f, — f and g, — g as
n — oo. By applying the first part of the proof to f,, and g, for all n € N
we arrive at

]Eu[|<fnvgn>| G] < (Eu[|fn|p|g])l/p(Eu“9n|q|g])1/q H-a.e.

for all n € N. Since =z — |z|, x — aP for p > 1 and the inner prod-
uct are continuous functions, it follows that |f.|? 7 |f|P, |gal? 7 |g]|? and
[{furgn)] A 1{f,9)] as n — oco. By applying the conditional monotone con-
vergence theorem twice we can conclude that

B[ 1/ 9)116] 2 Tim E,[[{fn, g0)1 1]

< Jim (B[ fal71G]) 7 (Bullg0|71G])

©)
= (E,[IFPI9)" 7 (E,[lg|"IG)Y" p-a.e.
This concludes the proof. ]

<1 p-a-e. on H,

This chapter showed that the definition of the conditional expectation
can be generalised to hold on a o-finite measure space. There are two ways
in which this can be proved. Furthermore, the usual properties that hold
for the conditional expectation (see Theorem A.28) remain true on o-finite
measure space and thus, in a more general setting than when restricted to
random variables and probability measures. Our first steps in this chapter
play a vital role in generalising the martingale theory as can be seen in the
following chapters.
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2.2 o-Integrable Martingales

This chapter aims to introduce a generalised definition of martingales for o-
finite measures. Throughout this chapter, let (€2, F, 1) be a o-finite measure
space and T C R := R U {#o00} an arbitrary index set'6, unless stated
otherwise. Furthermore, define t* = sup7 and T = T U {t*}.

From now on, F := (F})ier shall refer to a filtration of F such that
Fs C Fy C F for all s,t € T with s < t and let (2, F,F, u) be a o-finite
filtered measure space, meaning y is o-finite on'” F; for all t € T'.

Theorem 2.7 and the generalised definition of the conditional expectation
will now help us to define martingales using the conditional expectation —
like it is usually the case when considering random variables and probability
measures.

Definition 2.13. MARTINGALES AS CONDITIONAL EXPECTATIONS

Let (Q, F,F, 1) be a o-finite filtered measure space and let (f)ier be a se-
quence of K%valued integrable functions such that f; is F,-measurable for all
t € T and'® p|z, is o-finite for all s < ¢ in T. We then call (f;);er martingale
(w.r.t. the filtration F) if for all s < ¢ in T

E,[fi|Fs] = fs p-ae. (2.14)

Similarly, if K¢ = R, (f)ier is called submartingale (w.r.t. the filtration F)
ifforalls<¢inT

E,u[ft|]:s] Z fs H-a.ce., (215)
and respectively supermartingale (w.r.t. the filtration F)
E,[fi|Fs| < fs p-ae. (2.16)

In [12, Definition 17.1] we can find a similar definition for a discrete setting
and K¢ = R. ‘We have adapted Schilling’s definition to using an arbitrary
index set 7' C R := RU {£o0} to make an important observation.

Remark 2.14. Definition 2.13 with K¢ = R is equivalent to the following.

Let (fi)ier be a sequence of p-integrable functions such that f; is Fi-
measurable for all ¢ € T. Then (f;)er is called martingale (w.r.t. the filtra-
tion IF), if for all s <¢in T

/Fﬂ dp = /Ffs du, F€F, (2.17)

16¢.g. for T think of N, Z, Q, Ry and [a,b] with a,b € R and a < b (we want for T to
be a totally ordered set so that we my add an upper bound if necessary)

I7If there is a smallest element in 7', it suffices to ask u to be o-finite on the o-algebra
connected to said smallest element.

181f there is a smallest element in T, it suffices to assume that y is finite on the sub-o-
algebra w.r.t. the smallest element of T'.
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We call (fi)ier submartingale (w.rt. (Fy)er), if for all s <t in T

/ft d > / fody, FeF. (2.18)
F F

or supermartingale (w.r.t. (F;)ier), if for all s <¢in T

/Fft dp < /Ffs dy, FeF. (2.19)

Indeed: For all F' € Ry, 5, = F; (see Definition 2.7) and s <t € T' we have

/ fo di = Eulfile) Z BB [ FLr] 2V B, [f. 1] = / J, dn.
F F

The defining properties of sub- and supermartingales in (2.18) and (2.19)
follow in the same manner.

The following definition is a generalisation of Definition 2.13, because it
remains meaningful even without the need for adaptedness and integrability.
Furthermore, this definition is eponymous for this thesis.

Definition 2.15. 0-INTEGRABLE (SUB-/SUPER-)MARTINGALES

Let (Q, F,F, ) be a o-finite filtered measure space and let f := (f;)wer be
a sequence of F := (F;);er-adapted functions with values in K¢ such that f;
is o-integrable w.r.t. Fy and'® p|z, is o-finite for all s <t in 7. We call f a
o-integrable martingale (w.r.t. the filtration ) if for all s <t in T

E.lft — fs|Fs) =0 p-ace. (2.20)

Now let K¢ = R. Then we call f a o-integrable submartingale (w.r.t. the
filtration IF) if for all s <t in T

E,[fi — fs|Fs] > 0 p-ae. (2.21)
or a o-integrable supermartingale (w.r.t. the filtration IF)
E,lfi — fs|Fs]) <0 p-ae. (2.22)

The conditions (2.20), (2.21) and (2.22) remain meaningful even without the
assumption that f is F-adapted.

19Tf there is a smallest element in T, it suffices to assume that y is finite on the sub-o-
algebra w.r.t. the smallest element of T
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We will continue to use the definition of o-integrable (sub-/super-) mar-
tingales for the remainder of the thesis and highlight passages which hold
specifically for (sub-/super-) martingales according to Definition 2.13. Based
on Definition 2.15 we can rewrite some well-known elementary relations be-
tween martingales, sub- and supermartingales. For this purpose, let
(Q, F,F, 1) be a o-finite filtered measure space.

Remark 2.16. Elemental properties and relations between o-integrable sub-,
super- and martingales.

(1) (fi)ier is a o-integrable martingale if, and only if, each of its compo-
nents is both a sub- and a supermartingale.

(2) (fi)ier is a o-integrable supermartingale if, and only if, (—f;)er is a
o-integrable submartingale.

(3) Consider the map k: T — R :t+— E,[f;]. Then x is

(a) a constant function, if f := (f;)ier is a martingale according to
Definition 2.13;

(b) an increasing function, if f is a submartingale according to Defi-
nition 2.13;

(c) a decreasing function, if f is a supermartingale according to Def-
inition 2.13.

Indeed: The first claim follows immediately by taking expectations
w.r.t. g in (2.14) and by Theorem 2.12(2), where we use the integra-
bility of martingales. Proving the claim for submartingales follows in
the same manner. The last claim then follows by (2) applied to sub-
martingales according to Definition 2.13.

(4) Let T'= N and (f,)nen be a sequence of o-integrable and real-valued
functions such that f,, is F,-measurable for all n € N. Define g, =
max{fi,..., fn} and h, = min{fi,..., f,}. Then (g,)nen is a o-
integrable submartingale and (h,),eny a o-integrable supermartingale
w.r.t. .

Indeed: The o-integrability of g, and h,, for all n € N follows by Lemma
2.4(6). Furthermore, for all m <n

2.12(3) 2.12(1)
Eu[gnU:M] > Eu[max{fh ceey fm}‘}—m] = gm M-a.e.,
and
2.12(3) ' 5 19(1
B[l Fr] < Eumin{fe, ..., fu}lFul "2 by peace.,
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because of the monotonicity of the conditional expectation and the
measurability assumption for f,, with m € N.

Let ( f;)ier be a o-integrable martingale with values in an interval I C R
and ¢ : I — R a convex function such that ¢, := ¢(f;) is Fi-measurable
for all t € T and o-integrable w.r.t. F, for all s <t in T. Then (g;)ser
is a o-integrable submartingale.

Indeed: Because of Jensen’s inequality in the conditional form and the
o-integrable martingale property it follows that

(2.20

2.12(9)
E (0l F = EJo()IF] 2 oEHIFD 2 o(f) = 6o pae.
forall s<telT.

Let (fi)ier be a o-integrable submartingale with values in an interval
I C Rand ¢ : I — R a convex and increasing function such that
gt = @(f) is Fi-measurable for all ¢ € T" and o-integrable w.r.t. Fy for
all s <t¢in T. Then (g;)er is also a o-integrable submartingale.

Indeed: Again, using the conditional version of Jensen’s inequality it
follows that

2.12(9)

Eulg| Fs] = Ee(f)lFs] = e(Bulfil 7)) = o(fs) = g5 prace.

> fs

for all s <t € T, where the last inequality holds due to the submartin-
gale property in (2.21) and the fact that ¢ is an increasing function.

When working with martingale theory, one cannot overlook their connec-

tion to stopping times. Thus, we would like to extend some well-known lem-
mata and theorems to our setting. In particular, we would like to prove that
finite optional stopping can be generalised to our definition of o-integrable
(sub-) martingales. This will be crucial for some of the proofs in Chapter
3. Please, refer to Definition A.20 as well as Theorem A.22 in the Appendix
if a revision of the definition of stopping times and some of their important
properties is needed.

Lemma 2.17. Let (2, F,F, 1) be a o-finite filtered measure space and f a
o-integrable function w.r.t. Fy for all t € T with values in R. Furthermore,
let 7 a T-valued stopping time w.r.t. F such that the image 7(£2) is countable.
Then

B (fIF] = > BulfIF) Ly pra.e.

teT ()
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Proof. Since (f >, cn Lir=t,}) < |f| we can apply the conditional dominated
convergence theorem and conclude that

2.12(10
]:T} 20 )ZE#[f]l{T:tnﬂfT] p-a.e. (2.23)

neN

E.[f|F:] =E, [f R N

neN

We will now look at each of the terms of the sum separately and prove that

Eulf L r=ty | Fr] = L Eulf[ Fr] p-ace.

for all n € N.

For this purpose let F' € Ry r, for n € N (see Definition 2.6). At this
point, let it be noted that the constant time and the pointwise minimum of
stopping times are both stopping times by A.22(1) and (2), which implies
that {r =t,} N F € Font, C Fr by A.22(4) and (8) for all F' € F;, . Hence,
by using that {r =t,} € F; it follows that

2.12(6)
EH[EH[fﬂ{T:tn}’fT]]lF] = EM[EH[f‘FT]H{T:tn}OF]-

By the definition of the conditional expectation (simply observe that {r =
tn} N F € Ry r ) we now have

EM [EM [f|‘FT]J]'{T=tn}ﬂF] - Eu[f]l{rztn}ﬁF]

We can now use the same tricks again, since we have chosen I' € Ry 7 and
deduce (from the fact that F' is also an element of Ry, _, | 7 ) that
2.12(6)
Eu[f]]-{rztn}ﬂF] = Eu[Eu[fﬂ{T:tn”En]]lF] = EM[]]'{T:tn}EM[fLEn]]]'F]’
where we used that {7 =t,} € F;, for the final equality. By plugging what
we have just proven into (2.23) we arrive at

Eu[fIF) =Y Bulf|F) Lirmry poae,

neN

which is what we wanted to show. O

The proofs of the following two lemmata are inspired by [13, Lemma
3.44(a) and Lemma 3.51(a)], who proves the statements for probability spaces
and stochastic processes.

Lemma 2.18. Let (S,S) be a measurable space and f := (fi)ier a sequence
of functions such that f; : Q@ — S for allt € T and let 7 : Q — T be a
stopping time w.r.t. F. Define fr : Q@ = S by fr(w) = frw)(w) for every
w € Q. Then f; is Fr-measurable, if T(Q2) C T is countable and if f; is
Fi-measurable for allt € T' (in this case f is called adapted to IF).
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Proof. The sets {7 =t} build a partition of {2 for ¢ € T, thus

= rwnfr=t= U M@an{r==4

ter(Q) ter(Q)

for all A € S. For every t € 7(Q2) we have f, {(A)N{r =t} € Fon C F, for
all t € 7(Q2) by Theorem A.22(8) and (4). This implies that f 1(A) € F,,
since 7(€2) is countable and F, a filtration, as Remark A.21 shows. O

Lemma 2.19. Let (S,p) be a metric space and f = (fi)ier a sequence of
functions such that f; : Q@ — S is F;-measurable for all t € T. Furthermore,
let 0 : Q — T be a stopping time w.r.t. F. For A € Bg define the first hitting
time of A after o (also called first entrance time) by

r=inf{teT: o<t f € A}, (2.24)

where we define inf () = t*. If T is countable and every non-empty subset,
which is bounded from below, contains its infimum (think of T finite, T C 7Z
orT ={k — % :k € Z,n € N}), then T is a stopping time w.r.t. F.

Proof. The conditions ensure that 7 takes values in 7. For t € T the set
{ueT:t<uo<u,f, €A} contains its infimum by assumption, which
cannot be t. Hence,

{r<ty={o<s ficAleF,

-
ey €EFCFi

where we used that o is a stopping time and that 7" is countable. O

Theorem 2.20. FINITE OPTIONAL STOPPING FOR SUBMARTINGALES

Let f := (fi)ier be a o-integrable submartingale and o, T stopping times w.r.t.
F such that 7 and o A T attain only finitely many values in T'. Then f. and
fornr are o-integrable, fonr is measurable w.r.t. F,nr and F, and

forr SELfr|Fs] p-ae. (2.25)

Remark 2.21. Consider the setting of Theorem 2.20, then (2.25) is equivalent
to
Eu[fr - fO’/\T“FO'] >0 H-a.ce. (226)

This inequality is, in fact, meaningful without the F,-measurability of f,,.
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Proof. Theorem 2.20

In the spirit of Definition 2.15 we will prove the more general version of finite
stopping for o-integrable submartingales in (2.26). For this purpose let f
fulfill the submartingale property as defined in (2.21), which means that f;
is o-integrable w.r.t. F; for all s <t in T and E,[f; — fs|Fs] > 0 p-a.e. for
all s <t¢in T.

Due to the assumptions we may assume that 7 and o A 7 attain values
in a finite set S := {tg,...,t,} with n € N, where t, < t; < ... <t, w.lo.g.
The o-integrability of f, w.r.t. F;, follows immediately from Lemma 2.4(1),
(4), (5) and (6), since |f-| < |fi,| + -+ + |fi,|. The o-integrability of f,rr
w.r.t. Fy, follows in the same manner. Note that f; and f,,, are then o-
integrable w.r.t. F;, for all i € {0,...,n}, since F is a filtration. Let us make
a redefinition of the supremum of 7', which we will only use in this proof for
ease of notation: t, . :=t* = supT. Furthermore, define S = SU {t,1}.

Step 1: Treating only 7. We want to show, that for all i € {0,...,n+ 1}
we have

E.[fr = fune|Fu] 20 p-ace. (2.27)

by using backward induction.

First, let ¢ € {n,n + 1}, then 7 = ¢t; A 7 < t;, which implies that f,
is Fi,-measurable by Theorem A.22(4). Thus, E,[f; — fia-|Fi,] = 0 p-ace.,
which proves (2.27) for this case.

Now suppose (2.27) holds for i+ 1 with ¢ € {0,...,n—1} and let us prove
it for i. By the tower property in Theorem 2.12(7) it follows that

EN[fT - fti+1/\T|Ei] 2 O ,u_a-e- (228)

Furthermore, by adding and subtracting f;, 1~ within the conditional ex-
pectation in (2.28) we arrive at

Eu[fr — Jure + frionr —fti+1/\7|fti] >0 p-ae.
——
=(ftip1 =Fe) L {r>e,)

This is, of course, equivalent to

EM[fT - fti+1/\T|Ei] > EM[(ftiJrl - fti)]]‘{T>ti}

fti] H-a.e.

Since {7 > t;} € F;, by Definition A.20 we can use (2.21) and conclude

2.12(6)

‘Fti] = ]1{T>t¢}EH[<fti+1 - ftz)

EN[(ftiJrl - fti)]l{7—>t¢} JT"tZ] 2 0 H-a.e.

Hence, we are done with this part.

26


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Step 2: Treating discretised o. Define
o=min{t; : i €{0,....,n+1},0 <t;}

to discretise . Then & is a T-valued stopping time w.r.t. F, since the same
goes for o and (see also Lemma 2.19)

{o<ty}=J{o=5sleF

ses
<t €EFs CFe

It follows that

n+1
]Eﬂ[fT - f&AT’fFT] 2é7 ZE,M[fT - f&/\T|fti]]l{5:ti} H-a.e.
=0

Since fonrLis=t,} = friarl{s=t,}, We can deduce that

E”[f'r o f&/\Tlﬂi]ﬂ{&:ti} = Eu[(f'r - f&/\q—)]l{&:ti}lﬂi]
= EEu[fT - fti/\7—|]:tilﬂ{&:ti} >0 p-a.e.

—~
>0 p-a.e. by (2.27)

by using that {¢ = t;} € F;, and Theorem 2.12(6) for each term in the sum.
Thus, Step 1 now gives the result

E.lfr — fonr|F5] > 0 p-ae.

Step 3: Removing the discretisation of o. It follows from the definition
of 7, that 0 < & and 0 A7 =6 A 7. This implies, forr = fs0- and F, C F;
by Theorem A.22(4). Finally, by Step 2 and the tower property as well as
the monotonicity of the conditional expectation we can conclude that

Eulfr — fore|Fol = BuBulfr — forelFs] | Fo] >0 p-ace.

>

> Ortr—a.e.
This concludes the proof. O

Remark 2.22. Inequality (2.25) is reversed for supermartingales, because of
Remark 2.16(2). Similarly, due to Remark 2.16(1), we have an equality in
(2.25) for martingales.

In this chapter we were able to introduce a generalised definition for
martingales using o-integrable functions and o-finite measure spaces that is
similar to the more commonly known definition for probability measures and
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random variables. [12] provided the groundwork for this newly developed
part of martingale theory, however, as he focused on a discrete setting, it
was our goal to extend his work to continuous time. Furthermore, we gen-
eralised the theory of stopping times in relation to o-integrable martingales
and were, thus, able to adapt the idea of finite optional stopping to our set-
ting. Everything we have proven will help us in the following chapters in
order to improve Doob’s classical LP-inequality for submartingales and p > 1
as stated in Chapter 3.
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Chapter 3

Doob’s Classical LP-Inequality
for Submartingales
on o-Finite Measure Spaces

Now it is time to introduce and prove the central theorem of this thesis:
Doob’s LP-inequality for submartingales and p > 1, since — as mentioned
before — we hope to prove stricter versions for a more general setting of
said inequality in Chapter 5. However, first we need to take note of other
important inequalities introduced by Doob, known as Doob’s maximum in-
equalities. [12, Lemma 19.11] proves these inequalities for his definition of
martingales (as can be found in Remark 2.14), but only treats the case " = N.
Therefore, we will adapt his version to our setting where 7" C R. For our
proof we use [13, Theorem 4.65] and proceed in a similar manner.

Let it be mentioned that there are various different approaches to prov-
ing Doob’s inequality for the traditional definition of martingales (w.r.t. a
random variable and the probability measure P). A rather new and straight-
forward approach relies on deterministic inequalities, as shown in [1]. We
will use this idea to improve Doob’s maximum as well as his L” inequalities
later on.

Theorem 3.1. DOOB’S MAXIMUM INEQUALITIES
Let (2, F,F, n) be a o-finite filtered measure space, [ := (fi)ier a submartin-
gale according to Definition 2.13 and T C R be non-empty such that

e T is countable or
e T is a non-degenerate interval and f is left- or right-continuous,

and T C [s,v] for s <wv inT. Then sup,ep fi and infier fi are R-valued and
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F-measurable. Moreover, for every A € R we have

Ae({sup fi 2 A}) < Bulfljup,p o] — Bul(fo = )]

teT (3.1)
< Eu[fvﬂ{supteq“ ftZ/\}] < Eﬂ[f’j_]

(where the upper bounds not involving s are valid without their existence),
and

AN({igjﬁft < —/\}> < Eulfolintier fis—ay) —Eu[fs V(=N)] < E“[f:]_E’z[fs])'
3.2

Furthermore,
Aa({suplfd = A}) < 2ELR] - E,[£] (33)

Proof. First, note that (fy — A\)™ > 0 and f; V (=A) > fiforallt € T. It
follows that E,[(fs—A)"] > 0and E,[f,V(—=A)] > E,[fs] by the monotonicity
of the integral in Theorem A.12(3). Also, flp < fTlp < fT for F € F
and thus, E,[f,Lsup,.r x>yl < Eu[f,] for all uw € T' by Theorem A.12(3).
Hence, the second and third inequality in (3.1) and the second inequality in
(3.2) follow immediately from what we have just observed and by combining
these inequalities we can deduce (3.3). Therefore, it suffices to show the first
inequality in (3.1) and (3.2).

We will start by proving (3.1) for non-empty finite sets T = {to,...,t,}
with s =ty <ty <...<t, =v for n € N. Define

T=ovAmin{t € T: f; > A},

where min () := ¢*. Then 7 is a stopping time w.r.t. F by Theorem A.22(2)
and Lemma 2.19. For

A= {%zmeftzA} - Ut =N

teT

it follows that A € F, (see (A.1) in Definition A.20), because AN {7 < u} =
Ut€T7t<u{ft > A} € F, for all uw € T, where we used that f; is F; C Fo-
measurable for ¢t < wu.

We claim that

Ma < frlla = (fo = Nipon (3.4)

:(f::,\)+

This can be proved by treating various cases.
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e On A% maxier fy < A= f <AVt €T = lys>x = 0. Thus, both
sides of (3.4) are zero.

e On {fs > A\} C A: 7 =5 = f, = fs, because s = t; and thus, both
sides of (3.4) equal A.

o On AN{f, <A}: LIyy,>x = 0. Hence, (3.4) reduces to f, > A, which
is true by definition of 7.

Therefore, by taking the expectation w.r.t. p on both sides of (3.4) and
applying finite stopping for submartingales we arrive at

2.20
)‘H(A) < ]Eu[fTﬂA] - Eu[(fs - )‘)+] < ]Eu[]Eu[fv|FT]1A] - ]Eu[(fs - /\)+]'
By using that 14 is F,-measurable we can observe that

2.12(6) 2.12(

)‘/L(A) < EM[EM[vaLA|~FTH - EM[(fs - )‘)+] :2) Eu[fvﬂA] - EM[(fs - )‘)+]7

which concludes the proof of (3.1) for finite 7.

Next, suppose T is countably infinite, then there exists an increasing
sequence (S, )nen of non-empty finite sets such that 7' = (J, oy Sn. Addition-
ally, let (A, )men be a sequence in (—oo, A) such that A,, X as m — oc.
Similarly to the first part of the proof let us make the following definitions:

Apn = {Erel%ffft > )\m}, Ay = nLgJNAmm and A = {Stggft > /\}.

Then, A = (,,ey Am- Note, that (A, )nen is an increasing sequence for
every m € N, whereas (A,,)men is decreasing. By applying the dominated
convergence theorem as stated in Theorem A.17 and using what we have just
proved for finite sets, it follows that

Am 1 Apy) = nh_{{.lo Am (An)
< li_)m Eu[fvﬂAmm] - Eu[(fs - )‘m)+]
Ail? ]Ep,[fful]-Am] - E,u[(fs - )‘m)+]

for every m € N. In the same manner we may apply the dominated conver-
gence theorem once more, which proves (3.1) for this case, because

< liin ]Eu[fvﬂAm] - ]Eu[(fs - /\m)+]

MUE (£,04] — E,[(f, — )]
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Finally, let T" be a non-degenerate interval and f left- or right-continuous
and define t° = inf 7T and t* = supT (note that t°,* € R). Then the set
T :=TnN(QU{t° t*}) is countable and sup,cr f; = sup,c7 f by the left- or
right-continuity of f. Hence, (3.1) follows and we are done with this part.

In the same manner as before, we will start with the finite non-empty set
T defined at the beginning of this proof and s := min7T" and v := maxT to
prove (3.2). Define the stopping time 0 = v Amin{t € T : f; < —\} (again,
see Theorem A.22(2) and Lemma 2.19) and B = {minser f; < —A}, which is
again an element of F, (see (A.1) in Definition A.20).

This time, we claim that

Mp < fo— folp — (fs V(=) (3.5)
This can be proved by treating various cases.
e On B® mingr f; > =\ = fs > —A. Thus, both sides of (3.5) are zero.

e On{f, < -\ ={o0=5s}CB: f,=f = fV(-A) = -\ Thus,
both sides of (3.5) equal A.

e On BN{fs > —A}: f, < =X, which is true by definition of o.

Therefore, by taking the expectation w.r.t. ;1 on both sides of (3.5) we arrive
at

A(B) S Eulfe] = Bulfols] = Eulfs V (=N)]. (3.6)

By applying finite stopping for submartingales and by using that 1g is F,-
measurable we can observe that

2.20 2.12(2)
Eulfs] < EJEL[fo| 7] ="Eulfo] = Eu[folp] + Eulfo1p]

Since

2.12(

F 222 B[]

j—y

2.20 2.13(6)
Eu[foﬂBc] S EM[EM[]CULFU]HBC] - EM[EM[vaLBC

by the F,-measurability of 1z, we can rewrite (3.6) by using the inequalities
above, which gives us

An(B) < Bl flp] — E,lfu v (~)].

This concludes the proof of (3.2) for finite T
Just like before, in the next step suppose T is countably infinite, then
there exists an increasing sequence (Sy)n,en of non-empty finite sets such
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that 7' = [J,,cny Sn- Again, let (Ap,)men be a sequence in (—oo, A) such that
Am A as m — oo and define

B = i o S s B = U B ond B = {inf fo< )

Then, B = (,,cy Bm- This time (B, ,)nen is a decreasing sequence for
every m € N, whereas (B, )men is increasing. By applying the dominated
convergence theorem as stated in Theorem A.17 twice and what we have just
proved for finite sets, it follows that

Ap(B) = lim A p(By)
m—0o0

— lim (hm A u(Bm,n))

< Tim (T By £, ] = Eulfs v (<))
1 lim (Bulflag] — Eulfs V (=A0)))
AT

- Eﬂ[fv]lB] - Eu[fs Vv <_>‘)]7

which proves (3.2) for this case.

Lastly we will treat the case of a non-degenerate interval T and a left-
or right-continuous submartingale f. Once more define t° = inf 7" and t* =
supT as the endpoints in R and note that the set T := T N (Q U {t°,t*})
is countable. In this case we have inf,cr f; = inf, 7 f; by the left- or right-
continuity of f and hence, (3.2) follows. [

Maximum inequalities play a vital role in studying fluctuations of random
processes. Theorem 3.1 is the key to proving Doob’s classical LP-inequality
for submartingales, as we will see shortly.

Theorem 3.2. DOOB’S CLASSICAL LP-INEQUALITY FOR SUBMARTINGALES
AND p > 1

Let (Q,F,F, p) be a o-finite filtered measure space and f := (fi)er be a
positive submartingale according to Definition 2.13. Define f* = sup,cr fi
and fi = Sup,er <, ft for everyu € T'.

o [fT is countable or
o if T' is a non-degenerate interval and f is left- or right-continuous,

we have for u € T and every 1 < p < 0o

B (727 < (527) Bulf) (3.7)
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Furthermore,

B < (525) sup A7) (3.8)

- teT

In order to prove Doob’s inequality in the above version, we first need to
take note of a few necessary lemmata which will help us later on. Please,
refer to [12, Theorem 13.8 and Corollary 13.13] for the proofs of Lemma 3.3

and Lemma 3.4.

Lemma 3.3. TONELLI’S THEOREM
Let (X, F,u) and (Q,G,v) be o-finite measure spaces and let f : X x Q —
[0,00] be a F ® G-measurable function. Then

(1) 0 — f(o,w) is G-measurable for all w € Q and w — f(o,w) is F-
measurable for all o € 3;

(2) 0= [, [f(o,w)v(dw) is G-measurable and w — [, f(o,w) p(do) is F-

measurable;

(3) and

[ ragen) = [ [ pew)ude)viae) = [ [ 0.0 v(do) ulao)
(3.9)

which s [0, oo]-valued.

Lemma 3.4. As usual, let (2, F,un) be a o-finite measure space and let
¢ :[0,00) = [0,00) be an increasing and continuously differentiable function
with (0) = 0. Then for all non-negative, real-valued and F-measurable
functions f we have

[eetan= [ d@ulisz o (3.10)

Particularly, for p(z) :=aP, p > 1, we have
[rau= [ pruls = ap e (3.11)
0
Now we have all the tools we need to prove Doob’s inequality as stated
in Theorem 3.2. [12, Theorem 19.12] proves the theorem for his definition of
martingales (see Remark 2.14) in o-finite measure spaces and time N. We
will use his approach and expand it to our definition of submartingales and

the conditional expectation. We use [13, Theorem 4.77] for our proof and
proceed in a similar manner.
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Proof. Theorem 3.2
Fix w € T and assume E,[f?] < oo since (3.7) and (3.8) are trivial otherwise.
Note that the function RT 5 2 +— 2P is increasing and convex. Thus, (f})er
is again a submartingale according to Remark 2.16(6), where the integrability
of f{ follows for all ¢ € T with ¢t < w, because E,[f{] < E,[E,[f?|F]] =
E,[f?] < oo by the submartingale property in (2.15) and the law of total
expectation in Theorem 2.12(2).

Now, let S C T'N [—o0,u] be finite and define f& = max,es fs. Again, it
follows that (f&)P is p-integrable, because

12(3) 129
0< Bl < B[Y 7] MY SR < oo

seS ses

since S is finite.

We further assume that E,[ff] > 0, since otherwise (3.7) holds for f§
in place of f; otherwise. With this and by using one of Doob’s maximal
inequalities (see Theorem 3.1) we have

E[(fo7] = / (2P dp

3.11 < .
[ e (g 2 o)) do
0

(3.1) © 1
< p/ z? —/ Judp) dz.
0 T J{fr>a}

Now we can use Tonelli’s theorem and integrate, which yields

[e%S) f&
[ [ e 21, (/xdx) dy
0 {fs>=x} 0
R T
T -1 ulls -

By using Holder’s inequality in Theorem A.15 we arrive at

1/p 1-1/p
L fairrans ([ ra)(fusra)

Dividing by ( J(f5)P du) P and raising the resulting inequality to the p-th
power finally gives us

B (5] < (525) Bul ) (3.12)
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which, of course, is (3.7) for f§ in place of f.

Now, let S C T N [—o0,u] be countably infinite, then there exists an
increasing sequence (Sy)nen of finite subsets of S such that S = J, oy Sn-
For these subsets we define f§ = maxges, fs. Then f& 7 f& = sup,cg fs
as n — oo. By applying the monotone convergence theorem as stated in
Theorem A.18 we have

o . « \p] A8 . o \py 512 p \” »

B = B, [Jim (75,7) 2 i B0 S (S2) B
which, again, is (3.7) for f§ in place of f.

In case T is an interval, define t° = inf7. Then S = {t € T|t <
u} N (QU {t°,u}) is countable and we can apply our former results to this
case since f,; = sup,cg fs due to the left- or right-continuity of f.

Now, (3.8) remains to be proven. First, note that (3.8) is in fact an upper
bound to (3.7). If t* =sup T is an element of T itself then we have (3.8) for
t* in place of u. Otherwise, let (u,)nen in T be an increasing sequence such
that u, /'t asn — oco. Then f; 7 f* pointwise on {2 as n — oo. Thus,
we may apply the monotone convergence theorem once again and it follows

B i B < (2 ) sl

n—0o0 p— teT
which concludes the proof. O

At the beginning of this chapter we generalised Doob’s maximum inequal-
ities to our new definition of martingales on o-finite measure spaces. Fur-
thermore, we proved that Doob’s classical LP-inequalities hold true as well
for o-finite measure spaces and submartingales as defined in Definition 2.13.
We chose to approach the proofs rather indirectly in order to use some of the
observations we have already introduced in the course of this thesis to extend
the martingale theory. As mentioned before, there is a more modern way to
go about proving Doob’s classical LP-inequality and also Doob’s maximum
inequalities by relying on purely deterministic inequalities. We will make
use of this approach in the following chapter and show that Doob’s inequal-
ities can be improved and generalised further by considering o-integrable
submartingales.
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Chapter 4

Improved Versions of Doob’s
Maximum Inequalities

Doob’s maximum inequalities can also be proven by relying on determinis-
tic inequalities. The proof of the classical maximum inequalities in Theo-
rem 3.1 relies on a theoretical approach using theory we have developed for
o-integrable submartingales. However, we wish to present further improve-
ments — or rather generalisations — of the inequalities in Theorem 3.1, by
using a simple deterministic inequality proved by [13].

Let it be noted that the proof of the following lemma is not of the author’s
making but will be presented here for the sake of completeness. Please refer
to [13, Proposition 4.70] for the original proposition and its proof if interested.

Lemma 4.1. Define Ty = max{xo,..., 2} and x, = min{z,...,xx} for
Zoy .., Tn € Rand k € {0,...,n} and Az = x40 — g for k € {0,...,n—
1} and n € N. Then we have for every A € R that

n—1

Ml{inZ/\} < Inl{inzx\} - Z l{ikzk}AﬂﬁkH - (950 - )‘>]]-{a:02>\}7 (4-1)
k=0

where (4.1) holds with equality if, and only if, T, < X\ or xg > X or the
smallest k € {1,...,n} such that xy > X\ satisfies x = \.

Furthermore,
n—1
Mg <) S @nligsny — O Mooy Aigr — (10 V (<)), (4.2)
k=0

where (4.2) holds with equality if, and only if, x,, > —X or xog < —\ or the
smallest k € {1,...,n} such that x;, < —\ satisfies x = —\.
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Proof. This proof will be done case-by-case depending of the first time the
numbers xg, ..., x, reach or cross a given threshold.

e T, < A\: This implies that T < A for all £ € {0,...,n} and both sides
of (4.1) equal zero.

e 1o > A: This implies that xy,...,T, > A and the right-hand side of
(4.1) is a telescopic sum, which equals \.

e rop < A and 7, > A: This implies the existence of a minimal k£ €

{1,...,n} with Ty, ..., Tx_1 < A and Ty, ..., T, > A. Therefore, z, > A
and thus, the right-hand side of (4.1) reduces to z; and the inequality
holds true.

Inequality (4.2) follows in the same manner.

e z, > —\: This implies that z;, > —A for all k£ € {0,...,n} and both
sides of (4.2) equal zero.

e o < —\: This implies that z,,...,z, < —X\ and both sides of (4.2)
equal A.

e 7o > —\ and z, < —A: This implies the existence of a minimal k €
{1,...,n} with zy,...,2,_; > —X and z,,...,z, < —A. Therefore,
x < —X and thus, the right-hand side of (4.2) reduces to —xj and the
inequality holds true.

This concludes the proof. O

We will use the deterministic inequalities above to prove more refined
versions of Doob’s maximum inequalities. The inequalities below focus on
o-integrable submartingales, hence, Theorem 4.2 also generalises the claims
of Theorem 3.1.

Theorem 4.2. Let (Q, F,F, j1) be a o-finite filtered measure space and T C R
with s,v € T such that s <wv and T C [s,v]. Assume that u|x, is o-finite and
let (fi)ier be a F-adapted sequence of functions such that f; is o-integrable
w.r.t. Fs for allt € T and f; < E,[fu|Fi] p-a.e. for allt <w inT. Then for
Joy = esssupyer fr and [, := essinfier f; and every A € R we have

S,

AE, [Lige ony | Fs) SEulfolge,on|Fs] = (fs =N

(4.3)
<E, [fvﬂ{f;‘,UZA}|fs} <EL[f.|Fs] p-ae
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and

AE, Lo, < 0| Fs] SEu[folgpe,>n|Fs] = (fs V (=X)

<ELf.S|1F) = fs peace. (4.4)

Define the function Yx(x) = (x — Nt + 2V (=A) for v € R. Then, by
combining the above inequalities,

AE, [Lesssuper 1720 | Fo] < Eulfo(Ligz,oar + Lige, <-xy) [ Fs] — o(fo)

s, v

<2E,[f]|\Fsl — fs p-ae.
(4.5)

Proof. First, note that (fs — A\)™ > 0 and f, V (—=\) > fs. Similarly, since
filp < ff1p < ff for F € Fandt €T, it follows that Eulfol sz >x ] Fs] <
E,[f./|Fs]. Hence, the second and third inequalities in (4.3) and (4.4) follow.
Therefore, it suffices to show the first inequalities in (4.3) and (4.4).

We will start by proving (4.3) for non-empty finite 7' = {to, ..., t,} with
s =1ty < ... <t, = v For this purpose let j € {0,...,n} and define

g; = max{ fy,..., fi,}, then

2.12(

6)
By [l{ng/\}Afth‘]:tj} = Lggi>n EEu[fth - ftj|ftjl >0 p-ae.  (4.6)

TV
>0 p-a.e.

by the F; -measurability of 15 >x;. The first inequality in Lemma 4.1 now
gives

n—1

M{%ZA} < ftnl{gnZA} - Z IL{?jZA}Afth - (fto - /\)+ p-a.e. (47)

J=0

By taking the conditional expectation w.r.t. F;, for k = n—1 of the inequality
above we arrive at

k—1

AE. [Ligon [ Fu) < BulfoLlgoon] Fol =D Eu[lgsnAfi.. | F]

J=0

- ]EH[(fto - >\>+|‘Ftk] H-a.e.,

where the last term of the sum for & is greater than zero by (4.6) and thus,
we have a further upper bound for AE,[15, >\ |F,] if we leave out the last
term. Taking conditional expectations iteratively for k = n — 2,...,0 and
using the tower property in Theorem 2.12(7) yields

)\EM[]I{%Z,\}}FS] <E, [fv]l{gnz,\}|~7:s} —E,[(fs = M| F] pae.
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Since (fs — A)* is Fs-measurable, we may rid ourselves from the conditional
expectation w.r.t. Fs in the last term of the right-hand side (see Theorem
2.12(1)). Hence,

)‘]Eu[]l{gnzx}p:s] <K, [fvl{gnzA}p:s} —(fs — >\)+ p-a.e.,

which is (4.3) for max,cr f; in place of f7,.

For the general case note that there exists a sequence (S, ),en of finite
subsets of 7" with s,v € S, for all n € N such that (J,.yS, = T. For
[s, = maxyeg, fi it follows that fs, ~ fi, as n — oo by Theorem A.24.
Furthermore, let (\,,)men be a sequence in (—oo, A) such that A, 7 A as
m — oo. Similarly to the proof of Theorem 3.2 let us make the following
definitions.

Am,n - {fSn Z )\m}a Am - U Am,n; A= {f;v Z >‘} (48)

neN

The sequence (A, »)nen is increasing for ever m € N, whereas (A,,)men is
decreasing. Moreover, A = (), .y Am. We now know that (4.3) holds for
every finite set S,, n € N and every \,,, m € N. Hence, we can apply the
conditional monotone convergence theorem in Theorem 2.12(5) to the posi-
tive sequence (1 4,,, Jnen and the conditional dominated convergence theorem
in Theorem 2.12(10) to the bounded sequence® (f,14,, ,)nen and conclude

)\mEp[ﬂAm|f5] = )\m 11_>1'I1 Eu[ﬂAm,n|Fs]
< 1 B[ fula, [P = (fs = An)*
=E,[fola,|Fs) = (fs — Am)" prace.

for every m € N. By applying the conditional monotone convergence theo-
rem and the conditional dominated convergence theorem once more we can
conclude that

A [La|F] = lim A, Ey[La, | F]
< lim Ey[fola,|F) = (fs = An)*
= Eu[folalF] = (fs = A" pae.

Now we will show (4.4) in the same manner. Again let 7" = {t¢,...,t,}
with s = ¢ty < ... < t,, = v be finite and define g9, = min{ fi,, ..., f, } for

!This is possible since f, is o-integrable w.r.t. F,, which is equivalent to |f,| being
o-integrable w.r.t. F, and because f,14,,, < |fy| for all m,n € N.
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j €{0,...,n}. Then

2.12(6)
EH [1{3]->—>\}Aftj+1 ‘EJ} = ]l{gj>—/\} EEM[ftj+1 - ftj ’E]]/ >0 H-a.e. (49)

~~
>0 p-a.e.

by the JF; -measurability of 1y, >n;. The second inequality in Lemma 4.1
9;2

now gives
n—1
Al <y < frulyg >-a — Z ﬂ{gj>f>\}Aftj+1 — (fr, V(=) p-a.e.
j=0

By taking the conditional expectation w.r.t. F;, for k = n—1 of the inequality
above we arrive at

k—1
AE, [l{gnS*A}l}—tk} <E, [ftn]l{gn>*)\}|ftk] - ZEM [l{gj>*)\}Aftj+1|‘Ftk}
=0

—Eufiy V (=N|F,] prae.,

where — just like in the first part of the proof — leaving out the last term
of the sum for k gives a further upper bound by (4.9). Taking conditional
expectations iteratively for k =n — 2,...,0 and using the tower property in
Theorem 2.12(7) yields

AE, [Ty < x| Fs) S Eu[folyg > x| Fs] = Eulfs V (=N)IF] p-ace.
Once more the Fs-measurability of fs vV (—\) gives the desired result:
AR, [Ty <y Fs] Byl folg > Fs] = 5V (2A) prace.,

which is (4.4) for minser f; in place of f¢,.

For the general case note there exists a sequence (S,)nen of finite sub-
sets of T with s,v € S, for all n € N such that |J,.yS. = T. For
isn = mingeg, f; it follows that isn /" fo, as m — oo by Theorem A.24.
Furthermore, let (A;,)men be a sequence in (—oo, A) such that \,, 7 \ as
m — oo (then —\,, \( —\ as m — 00). Similarly to the proof of Theorem
3.2 let us make the following definitions.

Bon=A{fg <=M}, Bu=JBun B={f5, <=2} (410)

neN

The sequence (B, )nen is decreasing for ever m € N, whereas (B,,)men is in-

creasing. Moreover, B = (), .y Bm. We now know that (4.3) holds for every
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finite set S,, n € N and every \,,, m € N. Hence, we can apply the con-
ditional monotone convergence theorem in Theorem 2.12(5) to the positive
sequence (1g,, , )nen and the conditional dominated convergence theorem in
Theorem 2.12(10) to the bounded sequence? (f,1pg,  Jnen and conclude

AnBulLp, | Fi] = A lim E,[1p, 7]
< li_>m E.[folpe, | Fs] = fs V (=Am)
=E,[folpe | Fs] = fs V(=An) p-ae.

for every m € N. By applying the conditional monotone convergence theo-
rem and the conditional dominated convergence theorem once more we can
conclude that

AE,[Lp| 7] = lim A E,[Lp, |7
< h_r}n Eu[fv]len’Fs] - fs \ (_)\m)
=E,[folpe|Fs] — fs V (=A) p-ae.

This concludes the proof. O

Remark 4.3. The claims of Theorem 4.2 can also be derived by similar meth-
ods like in the proof of Theorem 3.1 on page 30. For this purpose let T
satisfy one of the conditions in Theorem 3.1 and let (f;):er, which fulfills all
the assumptions in Theorem 4.2, be left- or right-continuous. Then (4.3),
(4.4) and (4.5) follow.

Indeed: Consider the setting and assumptions in Theorem 4.2 and define?
T=vAmin{t € T : f; > A}, where min () := ¢*. First, let T be a non-empty
finite set. Similarly to the proof of Theorem 3.1 on page 30 let us take the
conditional expectation of (3.4) w.r.t. F,, where? A := {maxier fi > A}
Then we immediately arrive at (4.3), when observing that

EM[fTILA|FS] < EM[EM[fv|fT]ILA|FS] = EM[EM[]CUILA|~FT]|~FS] = Eu[fv1A|~F8]
(4.11)
p-a.e. by Lemma 2.20 and Theorem 2.12(6) and (7).
When we consider B := {minger f; < —A} and® 0 := vAmin{t € T : f; <
—A} and look at the conditional expectation of (3.5) w.r.t. Fs, we arrive at

2This is possible since f, is o-integrable w.r.t. F,, which is equivalent to |f,| being
o-integrable w.r.t. F; and because f,1pe =< |[fy| for all m,n € N.

3Note that 7 is a stopping time w.r.t. F by Theorem A.22(2) and Lemma 2.19.

Note that A € Fr, since A = ,cp{fe > A} and AN{7 <u} = U,cr < {fi > A} € Fu
forall u e T.

®Note that o is also a stopping time w.r.t. F by Theorem A.22(2) and Lemma 2.19.
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(4.4) instead, since

fs S E,u[fo|]:s] = E,u[fcrﬂB|]:s] +EM[fUILBC

Fs] p-a.e. (4.12)

and®

2.12(6)

] <E [ M[fv|fa]]lB° fs] = EN[EM[fU]]'BC|“FO']|‘FS]
=E.[folpe|F] p-ae.

by Lemma 2.20 and the tower property.
The other cases of T" follow in the same manner as in the proof of Theorem
4.2. Therefore, please refer to the proof above for the final steps.

Corollary 4.4. Let (Q, F,F, u) be a o-finite filtered measure space and T C
R with v € T and define t° = infT. Assume that Yl 7. is o-finite with
Fio = (Ver Ft- Let (ft)ier be a F-adapted sequence of functions such that f,
is o-integrable w.r.t. Fo for allt € T and f, < E,[fu|F] p-a.e. for allt <u
inT'. Then for f} := esssup,er,<, ft and f; 1= essinficr i<, fi the following
inequalities hold" . -

[fO'I]-BC

ABu[Ligzon | Fee] < Bulfolgron|Fie] — essinf B,[(fi — A)*|Fe] 1
<Eu[folyzzn|Fe] <E [ I 1Fe] peace,
AE, [Lipocony|Fe] < Bl folres—y|Fee] — essinf B, (£ V (=)|Fee]
< Eu[folgse>—n|Fee] —essme ulfil Fe] (4.14)

< E,[f.]| Fe] —essmf]E [ft|]-"to] p-a.e.
Furthermore, for the function 1 deﬁned in Theorem 4.2 it follows that

AE, [Lesssupper 1203 | Fre ] < By [fo(Lgzezay + Ligos—ay) [Fee]
- estseiTnfEu[@b(ft)LEo] p-a.e. (4.15)

Note that B¢ € F,, since B = (V,ep{fi > =M} and BN {o < u} = ,cpc i fi >
- eF, forallueT.

"When dealing with probability spaces and martingales (M;);er (see (1.1) in the Intro-
duction) Doob’s backward convergence theorem as stated in [13, Theorem 7.49] gives con-
ditions for the existence of (Mo —A)™, hence there is no need to concern oneself with the es-
sential infimum. In particular, the theorem states that the term ess infer E[(M;— ) 1| Fio]
can be identified with the limit limse g ¢~ 4o (M — X)T for each countable subset F' C T
such that ¢° = inf F, if t° is not an element of T itself. Define X; = (M; — \)* for
t € T, which is a submartingale by the conditional Jensen inequality. Then Doob’s
backward convergence theorem gives the existence of limsep 0 X; a.s. and further
claims that there exists an a.s. unique F;.-measurable random variable X;. such that
Xio = limeep o X and Xyo < E[X¢|Fio] a.s. for all ¢ € T Similar observations can be
made for essinfier E[M; V (—A)|Fre] and essinfrer Etp (M) Fro].

43


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Proof. Again, it suffices to prove the first inequalities in (4.13) and (4.14).
If t° € T, simply take s := t° and (4.13) and (4.14) follow immediately
from (4.3) and (4.4), since f5 , = fi and fi, = f5. Otherwise, first take
the conditional expectation of (4.3) w.r.t. Fs and apply the tower property.
Now let (sy,)nen in 7" be an increasing sequence such that s, N\ t° as n — occ.
Then f; , — f, and fo , — fJ p-a.e. on  as n — oo. Furthermore, let
(Am)men be a sequence in (—oo, A) such that A, A as m — oco. We will
use the same trick as in the proof of Theorem 4.2 in order to show the proof
for any T C R. For this purpose define A,, ,, A,, and A similarly to (4.8) on
page 40 as well as B, ,, B,, and B similarly to (4.10) on page 41, namely

Am,n = {fs*n,v Z /\WL}7 Am = U Am’”’ A - {f: Z >\}

neN

and
B = {f;jn,v < _)‘m}: B, = U B, B= {fi < _)‘}'
neN
Note that (A,.)nen is an increasing sequence for every m € N, whereas
(Apn)men is decreasing and A = J,,cy Am- Moreover, (By,,)nen is a de-
creasing sequence for every m € N, whereas (B,,)men 1S increasing, and
B = ey Bm- We may now apply the conditional monotone convergence
theorem in Theorem 2.12(5) and the conditional dominated convergence the-
orem in Theorem 2.12(10), which together with (4.3) (note that using the
essential infimum just gives a further upper bound) yields
NE,[LalFe] = lim (Tim A B, [L4,, 1 Fe])

mM—00 \nN—00

< Jim (Jim Byl L, 17]) = essinfB((f = 017

= nlgnoo(E“[f”]lAm’fto]) — eS{tSeiTnfE“[(ft — N Fe]
= Eulfo1alFe] — essinf B [(fi = )*1Fe] prae.

The same arguments and (4.4) imply that

/\]EM[I]-BLFtO] = lim (hm )\m Eu[]]-Bm,n|‘Eo]>
—00

m—0o0 \n

< Jim (1 E, [/, | Fe]) — essinf B, [f, v (-3)| 7]

= ngnoo(Eu[fullBngto]) - e%seiTnfE“[ft V (=A)|Fie]
=E,[folpe|Fio] — estséi[nfEu[ft V (=\)|Fpe] prace.

Now we only need to combine the two inequalities above to deduce (4.15). [
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To make further improvements we would now like to free ourselves from
any endpoints. This is discussed in the following corollary.

Corollary 4.5. Let (Q, F,F, u) be a o-finite filtered measure space and T" C
R. Define t° = inf T and t* = supT and assume that Yl 7. is o-finite with
Fro 1= ﬂteT Fi. Let (fi)ier be a F-adapted sequence of functions such that f,
is o-integrable w.r.t. Fro and fi < E,[fu|F:] p-a.e. for allt <w in T. Then
for f* :=esssup,eq f; and f° := essinf,er fy the following inequalities hold®.

B (Lo ] < sssup, [ | ] - essint B0 — ) ]
te
< esssupE,[f, | Fe] —essinf E,[(f — A\)T|Fie]
teT teT
< esssupE,[f; | Fe] p-a.e.
teT
(4.16)
AL [Lijesn|Fie] < essSUPEL[filgosny| Fie] = essinf Eylfy v (=X)|Fie]
te
<esssupE,[f;'|Fe] — essinf E, [ f;| Fro] p-a.e.
teT teT

(4.17)
Again, with 1 as defined in Theorem /.2 the two inequalities above imply

AEu[Lesssup,cr 2 [ Fie] < esSUpEL[fe(Tggozn) + Liposny) [ Fie]
€
- estseiTnfEu[@b(ftﬂ.Eo] p-a.e. (4.18)

Proof. Once more it suffices to show the first inequality in (4.16) and (4.17).
If t* and t° are elements of 7' themselves then we immediately arrive at (4.16)
and (4.17), because f* = f . and f° = f5 .. Otherwise, let (v,)nen in T
be an increasing sequence such that v, , t* as n — oo. Then f; — f*
and f5 — f° p-a.e. on 2 as n — oo. Again, let (A,)men be a sequence in

8When dealing with probability spaces and submartingales (M;);er (see (1.2) in the
Introduction) Doob’s almost sure convergence theorem as stated in [13, Theorem 7.35]
gives conditions for the existence of M;«1(ps->yy, hence there is no need to concern
oneself with the essential supremum. In particular, the theorem states that the term
esssup; e BE[M-1p-> 23| Fio] can be identified with the limit limse gy« Mylpage>ay for
each countable subset F' C T such that t* = sup F, if t* is not an element of T itself. De-
fine Xy = My1{pr+>y) for ¢ € T, which is again a submartingale. Then Doob’s almost sure
convergence theorem gives the existence of limc g ¢\ 4+ X¢ a.s. and further claims that there
exists an a.s. unique J~-measurable random variable Xy« such that X = limicpy = Xy
a.s. Similar observations can be made for esssup;cq E[M;1{p+<—x}|Fie].
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(—o0, A) such that A, /' A as m — co. Once more, let us make the following
definitions:

Am,n = {f:n > Am}; Am = U Am,n7 A= {f* > )\};

neN

Bun ={f5, < =An}, Bu=|J Bmn, B={f"<-)\}.

neN

Note that (A, )nen 1S an increasing sequence for every m € N, whereas
(Am)men is decreasing and A = J,,cny Am. Moreover, (By,,)nen is a de-
creasing sequence for every m € N, whereas (B,)men is increasing, and
B =,,en Bm- Again, using the conditional monotone convergence theorem
and the conditional dominated convergence theorem it follows by (4.13) (note
that using the essential supremum just gives a further upper bound) that

AE,[14]Fe] = lim ( Tim Ay, EM[IIAMWU-}O])
< esssup lim ( lim Eu[ftILAan-}o]) —essinf E,,[(fi — \) | Fe]
teT ~ M—»00 \n—oo ’ tel
= esssup lim (E,[f,14,,|Fw]) — essinf E,[(f; — \)¥|Fee]
teT M—oo teT
= esssup E,[filalFee] — estseiTnf Eu[(fe = N) | Fe] p-ace.
Using the same arguments we can deduce the following by using (4.14):
AB[1p|Fe] = Jim (lin A B(1,.. | 7] )
< esssup lim (hm Eu[ftILB%mU-}o]) — ess iTnfEM[ft V (=)| Fie]
—»00 ' €

= €esssup lgnm(E”[ftﬂB%‘Eo]) - estse'%pnf Eulfe V (=A)|Fee]

teT ™

= esssupE,[fi 1 pe
teT

Fie] —essnf E,[f; V (= A)|Fee] p-ae.

]

This chapter proved a generalised versions of Doob’s maximum inequal-
ities by relying on purely deterministic inequalities. A more theoretical ap-
proach using measure theory was undertaken in Chapter 3. Furthermore, we
showed that it is possible to omit the need for a given interval; particularly,
we may rid ourselves from a starting and an endpoint by considering the
infimum and the supremum of our time span 7. We will proceed in a similar
manner in the following chapter as we strive to improve Doob’s well-known
LP-inequalities.
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Chapter 5

Improved Versions
of Doob’s LP-Inequality
for o-Finite Measure Spaces

In this chapter, which builds the core of this thesis, we will present three
versions of Doob’s classical LP-inequality for p > 1, p=1 and p € (0,1) and
prove that they hold true on a more general setting. In particular, there are
various new approaches here.

Firstly, by using deterministic inequalities proved by [13] it is possible to
find sharper upper bounds than those given by Doob. Secondly, the improved
inequalities hold true when considering submartingales according to Defini-
tion 2.13 on o-finite measure spaces (see Chapter 3). Thirdly, the need for
integrability can be omitted when considering o-integrable functions. Hence,
the improved inequalities hold for o-integrable submartingales. Finally, there
is no need for assumptions concerning the time span 7' € R when working
with the essential supremum.

As a first step we would like to refine and generalise (3.7) and (3.8) before
proving another LP-inequality for p € (0,1). We work along the lines of [13,
Theorem 4.81 and 4.86] as well as [10, Lemma 3.2(c) and Satz 3.3(b)| in
order to prove our claims.

5.1 Inequalities for p > 1
We will start out with a simple deterministic inequality proved by [13]. Let it
be noted that the proof of the following lemma is not of the author’s making

but will be presented here for the sake of completeness. Please refer to [13,
Proposition 4.80] for the original proposition and its proof if interested.
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Lemma 5.1. Define T, = max{xo,...,xx} for xo,...,z, € Ry and k €
{0,...,n} and Axpyy = xpyqg — xp for k € {0,...,n — 1}, n € N. Let
p,q € (1,00) such that 1/p+1/q=1 and ¢ > 1. Then

b <

n —

n—1
q e
- 15(0”/%5’1 —p E T Axpyy — :BS). (5.1)
k=0

Proof. 1t follows from the fundamental theorem of calculus (see Theorem
A.35 in the Appendix) that

= p/ NP2\, 50y AN
0
We can now plug in the estimate in (4.1), which gives us
oo n—1 00
fﬁ < p/ )\p72xn]1{§n2)\} dX\ — p Z/ )\p721{fk2)\}AfL‘k+l dA\
0 o /0

. / N2 (25— Nlposny dh (5.2)
0

We assumed p/(p — 1) = q. Hence, it follows by integration that

n—1
— —p—1 —p—1 —1
xﬁ S qxngjﬁ —q E xi A$k+1 - qilfoxg + l’g . (53)
—
k=0

=(g+1)zf

By using Young’s inequality for products in Theorem A.36 and (p — 1)g = p
we can see that

7p—1 7P

=1 _ e, Tn 4 plg,p . Tn
quaTy = g — < pcp b + - (5.4)
Plugging the inequality above into (5.3) and solving the resulting inequality
for P we arrive at the claimed result by using that ¢ — 1 = ¢/p. O

A proof of (5.1) for ¢ = ¢'/? can be found in [1, Proposition 2.1]. With the
help of the inequality above, it is now possible to improve Theorem 3.2 a little
further as well as generalise it to hold even for o-integrable submartingales
on o-finite measure spaces.

Theorem 5.2. IMPROVED VERSION OF DOOB’S CLASSICAL LP-INEQUALITY
FOR SUBMARTINGALES
Let (Q, F,F, n) be a o-finite filtered measure space and T C R with s,v € T
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such that s <wv and T C [s,v]. Assume that u|x, is o-finite and let (f;)er
be a F-adapted sequence of positive functions such that f; is o-integrable
w.r.t. Fs for allt € T and fi < E,[fu|Ft] p-a.e. for allt < win T (i.e.
(fi)ter is a o-integrable submartingale according to Definition 2.15). Then
for i, = esssup,er fi, ¢ > 1 and p,q € (1,00) such that 1/p+1/q =1 we
have!

c

SN CIBRIF] - EALIFLY) pae (55

Eu[(f)P1Fs] <

Remark 5.3. Since Definition 2.15 gives a generalisation of the submartingale
property, Theorem 5.2 certainly holds for submartingales defined according to
Definition 2.13. Furthermore, note that the right-hand side of (5.5) simplifies,
if f is a o-integrable martingale, because then E,[f,|F;] = fs; p-a.e. By
the submartingale property in w.r.t. o-integrable functions in (2.21) it is
possible to derive a further upper bound for (5.5) by subtracting f? instead

of (E,[fu]Fs])P-

Proof. Theorem 5.2
We will start by proving (5.5) for finite 7" and the o-integrable martlngale
(e with fy := B, [f,|F] fort € T. Since f7, < esssuper By [fol 7] = -,
p-a.e., the claim then follows.

It sufﬁces to prove that (5.5) holds true on every A; := {E,[f?|F,] <1} €
Fs for I € N, because it certainly does on {2 \ Ujen A= For this purpose, fix
[ € N and define g; = 14, ft for t € T. Then (g;)ier is a sequence of positive
functions. Consider a sequence (£2;);en in Fy with € 7 Q as | — oo such
that (€) < oo for all I € N (such a sequence exists, since p|z, is o-finite
by assumption). Then Q; := 4; N Q; is also in F, forall I € N, Q; " Q as
I — oo and () < oo for all | € N. Furthermore, g,1g € L'(Q, F, ) for
all [ € N by Lemma 2.4(3). Thus, g; is o-integrable w.r.t. F, for all t € T.
Moreover,

Eulgu — 9 F) “ 2 LA, fu — il F) = 0 prace. (5.6)

forall t <win T and

—

2.12(6

E,[0710] "2 E,[1a, B/ 7] 1o, < (@) < o0

SlOnAl

'For the conditional expectation of ( + )7 please refer to Remark 2.11.

4 ft)teT is in fact a martingale defined according to Definition 2.15, because
EL[E.[folFul|lFt] = Eulfo|Fe] prace. for all ¢ < w in T by the tower property in Theo-
rem 2.12(7).
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by the F -measurability of 1,,. Thus, ¢? is o-integrable w.r.t. Fj.

Suppose T' = {tg,...,t,} with s =ty <t; < ... <t, = v and define g; =
max{ gy, ..., g} forj € {0,...,n} andn € N. It follows that gf_l(gtjﬂ—gtj)
is also o-integrable w.r.t. 7, for all j € {0,...,n —1} by Lemma 2.4(1) and
(3). Hence,

_p—1 12(6) _p—1
Eu[gf (gtj+1 - )l‘Eg] = (I\Eu[gtjﬂ - gtj|"t;fjl) =0 p-a.e., (57)
:0u—a.e‘.,by (5.6)
where we used the F; -measurability of g;. Substituting zo,...,z, in (5.1)
with g4, ..., g, now gives us

gﬁﬁc_l (cp/q ngj A gto> ji-a.e.

Let us now take the conditional expectation w.r.t. F;, for k = n — 1 of the
inequality above. This gives

k—1
_ c g _p—
B 17 < g (B I -0 Y Bl Mgy P Bl 7))
=0

p-a.e., where the last term of the sum vanishes for k£ due to (5.7). Taking
conditional expectations iteratively for k =n —2,...,0 and using the tower
property in Theorem 2.12(7) yields

BLGHIF] < 2 (UEGIF] — ) prac

where we used that E,[¢?|F;] = ¢¢ p-a.e. by assumption of F-adaptedness
for the final term. By Theorem 2.12(1) the inequality above is (5.5) on A,
with fr := maxser f; in place of f , thus, we are done with this part.

For the general case note there ex1sts a sequence (S, )nen of finite subsets
of T' with s,v € S, for all n € N such that J,.Sn = T. For fg, =
maxes, fi it follows that fs, 7 fI, as n — oo by Theorem A.24. We then
know that (5.5) holds on A; for every finite set S,, and thus,

Eu(f2,01 7] = lim E,[(fs, )|

- CE 1;(07’/’11[3 [fp|‘/—-] ( M[fv|fs])p) H-a.e.

by the conditional monotone convergence theorem in Theorem 2.12(5).

[]
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We can weaken the assumptions in Theorem 5.2 a little bit further by
omitting the need for adaptedness. In the following corollary we will only
look at the increments of a sequence of functions, where we ask those to be
adapted instead of the sequence itself. In the spirit of Definition 2.15 this
then gives a generalisation of the theorem above.

Corollary 5.4. Let (2, F,F, 1) be a o-finite filtered measure space and T C
R with s,v € T such that T C [s,v]. Assume |z, is o-finite and let (f,)ier
be a sequence of functions such that f; — fs is F;-measurable and o-integrable
w.r.t. Fs forallt € T. If E,[f, — fi|Fi] =0 p-a.e. for allt < winT, it
follows for ¢ > 1 and p,q € (1,00) such that 1/p+1/q =1 that?

_ P € 9(»la _fPFE]— _ P
B | (essuw i £1)|72] < 5 LB~ LI Bl 21 1FD)

holds true ji-a.e.

Proof. Note that 0 = E,[f, — fi|Fi] = Eulfu — fs|Ft] — (fr — f5) p-ae. for
all t < w in T by the F;-measurability of the increment (f; — fs). This is
equivalent to f; — fs = E,[fu — fs|F:] p-a.e. Then by Theorem 2.12(9) it
follows that |f, — fs| = |Eulfu — fslF)l < Eullfu — fs||F) p-ae. Hence,
we can apply the improved version of Doob’s LP-inequality to the F-adapted
sequence of positive functions (|f; — fs|)ier, which immediately yields the
claim. O]

A starting point s € T might not always be readily available. Thus, it
can be helpful to consider the infimum of our time span 7' C R instead. The
following corollary gives an estimate for our sequence of functions without
the need of such a starting point.

Corollary 5.5. Let (Q, F,F, u) be a o-finite filtered measure space and T C
R with v € T and define t° = infT. Assume that Yl 7. is o-finite with
Firo = (g Ft- Let (fi)ier be an F-adapted sequence of positive functions
such that f, is o-integrable w.r.t. Fo for allt € T and f; < E,[fu|F:] pn-a.e.
forallt <w inT. Then for f; := esssupyer<, fr, ¢ > 1 and p,q € (1,00)
such that 1/p+1/q = 1 it follows that* -

B, [(f2)| Fre] < —

L RSIF - BRIFY) peae

3For the conditional expectation of esssup,cp | f: — fs|P please refer to Remark 2.11.
4For the conditional expectation of (f7)P please refer to Remark 2.11.
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Proof. If t°© € T, simply take s := t° and the claim follows immediately
from (5.5), since f , = f». Otherwise, consider the martingale (7'U {t°}) N
[—00,v] 3t = E,[fu|F] = f; and define T, = T'N [—o0,v]. Similarly to
the proof of Theorem 5.2 we can observe that

fr =esssup f; < ess sup fy < esssup f, p-a.e. (5.8)
teT<, teT<, teT<,U{t°}

Since T, U {t°} C [t°,v], we can apply Theorem 5.2 to esssupier._ oy i,
which gives us -

Eu{ €ss sup ft‘ftoj| < C_Ll]%(cp/q Eu[fﬂ}—ﬁ] - (Eu[fv‘ftc’])p) p-a.e.

teT-,U{to}
This implies the claim by (5.8) and Theorem 2.12(1). O

Note that Corollary 5.5 is in fact an improvement to (3.7). Finally, we
would like to prove that also (3.8) can be improved and adapted to our
setting.

Corollary 5.6. Let (2, F,F, 1) be a o-finite filtered measure space and T C
R. Define t° = inf T and assume that P F,. s o-finite with Fro = (Vep Fi-
Let (fi)ier be an F-adapted sequence of positive functions such that f, is o-
integrable w.r.t. Fio and f; < E,[fu|F:] p-a.e. for allt < w inT. Then for
¥ i=esssupyep fir, ¢ > 1 and p,q € (1,00) such that 1/p+1/q =1 we have®

Bu[(f)1Fe) < o= esssup (OB, (21Fe] - (B[l Fel)?) e
Proof. If t* = sup T is an element of T itself then we immediately arrive at
the claim, because f* = fj. Otherwise, let (v,)neny in 7' be an increasing
sequence such that v, ' t* as n — oo. Then f;  f* p-a.e. on Q as
n — 0o. Thus, we may apply the conditional monotone convergence theorem
in Theorem 2.12(5) and it follows that

EL[(f)|Fe] = lim B, [(f5, |7

5.5
< L sup (B[ 1) — (Bulfo | Fe)?)
C— 1P neN
< esssup(M B, [f11Fe] — (Bu[fol Fe])?) prace.,
C—1Dp  wer
which concludes the proof. O

°For the conditional expectation of (f*)? and f? please refer to Remark 2.11.
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5.2 Inequalities for p =1

In this section we will, once more, use a deterministic inequality to derive
an improved version of Doob’s L!-inequality for submartingales. For the
sake of completeness we provide the proof for said deterministic inequality
as presented and proven in [13, Proposition 4.85]. Therefore, let it be noted
that the proof for the following lemma is not of the author’s making. For
further reading and more information please refer to [13] if interested.

Lemma 5.7. Define T, = max{xg,..., 21} for k € {0,....,n} and
oy Tn € Ry with zg > 0. Furthermore, Axgyq := Ty — x for k €
{0,....,n—1}, neN, and let ¢ > 1. Then

n—1
_ & & _
Tp < — ] (:co +x, logg + 2, log x,, — xglog xg — ,;_0 Az log :ck) (5.9)
Proof. If a € Ry and b, c > 0, then®
b c
alogh < aloga+ - + alog —. (5.10)
c e

We will first prove (5.10) in order to derive the inequalities in Lemma 5.7.
If a = 0, (5.10) is trivial. To prove the inequality for a,b,c¢ > 0 note that
logz < x/c+log(c/e) for x > 0, because both sides and their first derivatives
agree at x = ¢ and the left-hand side is concave while the right-hand side
is linear on (0,00). (5.10) follows directly now by plugging in = b/a with
a,b > 0 and using the functional equation of the natural logarithm.

In order to prove (5.9) first note that zq > 0 implies Ty, ...,Z, > 0. By
using (4.1) and noting that the integral of 1>\ over A € [xo,00) vanishes,
we arrive at

En =29 + / ]].{fnz)\} d)\

zo

n—1
1 1
< n ~Lg>adi— > A — Lz, >x1 dA
Sx+ /IO ) {Zn>A} kz:% Ik+1/ h\ {ZTp>A}

zo

n—1 n—1
= x9 + x, log T, — x, log xg + g Az logxg — E Axyiqlog Ty
R k=0 k=0
=z log o

(5.11)

SNote that there is equality in (5.10) if, and only if, a,b > 0 and ¢ = b/a.

33


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Applying (5.10) to x,log®, and solving the inequality above for 7, finally
gives (5.9). O

A proof of (5.7) for ¢ = e can be found in [1, Proposition 2.1(II)]. We are
now ready to show that also a generalised and improved version of Doob’s
L'-inequality can be formulated for our specific setting.

Theorem 5.8. IMPROVED VERSION OF DOOB’S L!-INEQUALITY FOR SUB-
MARTINGALES
Consider the setting and assumption in Theorem 5.2 and define

xlogz if x>0,

0 if v = 0. (5.12)

0: Ry = R, go(x):{

Then for all ¢ > 1 it follows”

C

¥ <
Bulf2, ] < —

(1Og(c) ]Eu[fv|~'r5] + Eu[‘ﬁ(fvﬂfs] - @(Eu[fv|fs])) Hn-a.e.
(5.13)

Remark 5.9. Definition 2.15 generalises the submartingale property. Hence,
Theorem 5.8 certainly holds for submartingales defined according to Defini-
tion 2.13. Furthermore, note that the right-hand side of (5.13) simplifies,
if (fi)ier is a o-integrable martingale, because then E,[f,|F;] = f; p-a.e.
However, replacing o(E,[f,|Fs]) with ¢(fs) for positive o-integrable sub-
martingales can lead to a wrong inequality. This can be seen in [6, p. 3] for
¢ := e treating the case of random variables and probability spaces.

Proof. Theorem 5.8
Again, we will start by proving (5.13) for finite 7" and the o-integrable mar-
tingale (f,)ier with f, := E,[f,|F] for t € T (see Footnote number 2 on page
49). Since fr, < esssup,cr Eu[fol Fi] =: fs*v p-a.e., the claim then follows.
Again, it suffices to prove (5.13) on every A; := {B,[p(f,)|F.] <1} € F,
for I € N, which suffices, because it certainly does on Q\ |J,cy A;. For this
purpose, fix [ € N and define ¢, = ]1Alf~t for t € T. Then (g;)ier is a sequence
of positive functions and by the same arguments as in the proof of Theorem
5.2 (see page 49) it follows that g, is o-integrable w.r.t. F, for all ¢t € T.
Simply consider a sequence (£);en in Fs with €; 7 Q as [ — oo such that
w1(€2) < oo for all I € N (such a sequence exists, since p|z, is o-finite by
assumption). Then ©; := A; N is also in F, for all [ € N,  ~ Q as

"For the conditional expectation of f7, and ¢(f,) please refer to Remark 2.11.
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I = oo, u(Q) < oo for all I € N and g1 € L'(Q, F,p) for all t € T.
Moreover,

Eulg — 0t F) “ 2 10 Bufe — FilF] =0 prae. (5.14)

forallt <wuinT.
Note that ¢ as defined in (5.12) is a convex function and bounded from
below with ¢(0) = 0. Thus, ¢(g,) is o-integrable w.r.t. Fs, because

Eule(g0)10] “ 2% BulLy, Bulo(fo)lF] 1o < (@) < oo
N e’

SlOnAl

by the F,-measurability of 14,.

Suppose T' = {tg,...,t,} with s =ty < t; < ... < t, = v and define
gr = maxer g;. We want to prove (5.13) on A; with gr in place of f;,. For
this purpose, consider g,; := 1+ p(g; — 1) for p € (0,1) and all t € T". Note
that (g,¢)ier is o-integrable by Lemma 2.4(1) and (2). Moreover,

2.12(4) (5.14)
Eulgpu = 9ol Fe] =" p(Bulgu — gl F]) =70 prace. (5.15)

for all t < w in T. Furthermore, g,; > 1—p>0forallt € T and p € (0,1)
and g, — g for all t € T as p ' 1. Since ¢ is continuous, bounded below
and increasing on [1,00) and g,; < ¢ for all p € (0,1) on {g > 1}, we can
apply the conditional monotone convergence theorem in Theorem 2.12(5)
and conclude®

E.[0(gp) | Fs] = Eulo(ge)|Fe] p-ae. asp /1. (5.16)

Define g,; = max{g,sy,..- 954} for j € {0,...,n} and n € N. Since
log(1 — p) < log(g,,;) < log(gyn,) by the monotonicity of the logarithm and
’gprtj+1 - gﬂvtjl < maX{gp,tHl,gp,tj} < gpvm it follows that

gp,n IOg(l - p) < ‘gp,tjﬂ - gﬂ,tj| log(gPJ) < |(p(gp7n)‘ p-a.e.,
—— N——
<3p.n <|log(gp,n)l

which implies that (g, ., — gps;)10g(gp,;) is also o-integrable w.r.t. F, for
all j € {0,...,n—1}. Thus,

2.12(6)

EM[(gPJjH - gﬂ,tj) IOg(ng)‘th] lOg(gp,j)(Eu[gpyth - gp,tjl"t;fjl) =0

=0p-a.e. by (5.15)

(5.17)

8In case ¢(gp,+) is not o-integrable w.r.t. Fy, please refer to Remark 2.11 for a gener-
alised definition of the conditional expectation.
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p-a.e., where we used the F -measurability of log(g,, ;). Substituting zo, ...z,
in (5.9) with g,4y,- .-, gpt, (which we can do, since g ¢ > 1 — p > 0) now
yields

_ ¢ c
otn & 7 <9p,to + Yp.tn 108 (g) + 9ot 108(Gp,t.) = Gp.to 108(gp.ts)

n—1
- Z 10g(§pytk)Agp,tk+l) p-a.e.
k=0

Let us now take the conditional expectation w.r.t. F, for k = n — 1 of the
inequality above. This gives

_ C c
EulGp,ta | Fti] < c—1 (Eu [9p.201F1] + Bulgp,tn | Fr ] log (g) +E.[0(9pt.) [ F]

N
—

— Eul(Gpan)l Fi) = D Bullog (30, Mgy, 1))

.
Il
o

p-a.e., where the last term of the sum vanished for k& due to (5.17). Taking
conditional expectations iteratively for k =n —2,... 0 and using the tower
property in Theorem 2.12(7) yields

_ C
Eu[gp,vU:S] S CT(Eu[gp,s|Fs] + Eu[gp,v|fs] log(c/e)

1
+ Eu[@(ﬂp,v)’FS] - E/L[SO(QP,S)’FS]) p-a.e. (5.18)
Since E, [g,.s|Fs] = Eulg,0|Fs] p-a.e. by (5.15), we can deduce that

Eulgp.s|Fs] + Eulgpo| Fsllog(c/e) = log(c) Bulgp| Fs] p-ace.

and

Efo(go)lF] 2 GEnlgpel F) = o(Eplgpal Fi) peaee  (5.19)

where we used the conditional version of Jensen’s inequality. Therefore,

C (108(¢) Eulgpn Fol+Epl(9p0) | Fs] —0(Eulgpl Fo))) -

c—1

is another upper bound for (5.18). Finally, by sending p ,* 1 and using
(5.16) it follows that

“— (108(c) E, (9, F)] + B, [io(9,)| 7] = 9(B,[g|F) p-ae.

Epu[gp| Fs] <

EM[QTV:S] <

which is (5.13) on A; with f7 := maxer f; in place of f:,u by Theorem 2.12(1).
The rest of the proof for (5.13) goes along the same lines as the proof of
Theorem 5.2 and will be omitted at this point. O
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Just like it was the case for the LP-inequality in Chapter 5.1, we can
weaken the assumptions in Theorem 5.8 some more by omitting the need for
adaptedness. In the following corollary we will only look at the increments
of a sequence of functions, where we ask those to be adapted instead of the
sequence itself. In the spirit of Definition 2.15 this then gives a generalisation
of the theorem above.

Corollary 5.10. Consider the setting and assumptions in Corollary 5.4 and
define the function ¢ as in (5.12). Then®

]—"S}< ¢

< (108 Bull fo— | F)+ Bl (1o £DIF

— 0Bl fo — fIIF)) pae.

Proof. The claim follows in exactly the same manner as in the proof of Corol-
lary 5.4. Please refer to page 51 for more details. n

E, {ess sup | fi — f|
teT

Again we would like to free ourselves of the need for a starting point in
the time span T' C R. This can be done as follows.

Corollary 5.11. Consider the setting and assumptions in Corollary 5.5 and
define the function ¢ as in (5.12). Then'"

- (108() By ol Fi + Eulo(fo)|Fie] = @Bl Fe)) proae

Proof. With the same arguments as in the proof of Corollary 5.5 we can
deduce the claim from (5.13): If ¢° € T, simply take s := ¢° and the claim
follows immediately, because f , = f;. Otherwise, consider the martingale
(TU{t°}) N [—o0,v] >t — E,[f|F] = f; and define T, = T N [~00,v].
Again we can observe that

C

Eulfy|Fee] <

fr =esssup f; < ess sup f; < esssup f; p-ae. (5.20)
teT<, teT<, teT<,U{t°}

Since T, U {t°} C [t°,v], we can apply Theorem 5.8 to esssupier. ey fi,
which gives us :

~ C ~
B | oo || < S (ou(o B
teT<,U{t°} c—1
+ Eulo(f)l Fie] = 0(Bulfol Fie])) pace.
By (5.20) and Theorem 2.12(1) we are done. O

9For the conditional expectation of esssup,cr |f: — fs| and ¢(|f, — fs]) please refer to
Remark 2.11.
0For the conditional expectation of f; and ¢(f,) please refer to Remark 2.11.
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Corollary 5.12. Consider the setting and assumptions in Corollary 5.6 and
define the function ¢ as in (5.12). Then

C
E,['1Fe] < 7 ess sup(log(c) B[l 7
ve

+Eulo(fo)|Fee] — @(Bulfol Fel)) p-ace. (5.21)

Proof. If t* = supT is an element of T itself then we immediately arrive
at (5.21), because f* = f/. Otherwise, let (v,)nen in T be an increasing
sequence such that v, /' t* as n — oco. Then f; 7 f* pointwise on (2 as
n — 00. Thus, we may apply the conditional monotone convergence theorem
in Theorem 2.12(5) and it follows

E(fPIF] = lim B, )1 F]

R 7 5up(10g(c) Byl foo | Fie) + Bplp(fon) 7]

—P(Bulfo, | Fee]))

c
< oo esssup(log(Q) Bulful Fie] + Eylp(fo) 1 Fee)
- ve
_QD(EM[]CULFL“’D)?
which holds true p-a.e. [

5.3 Inequalities for p € (0,1)

The following extended versions of Doob’s LP-inequality for p € (0,1) are
generalisations of the corresponding textbook presentation in [10, Lemma
3.2(c) and Satz 3.3(b)]. In order to further develop our theory on inequalities
for o-integrable submartingales we will need the following lemma.

Lemma 5.13. Let (2, F, ) be a o-finite measure space and let G be a sub-o-
algebra of F such that lg is o-finite. Furthermore, let f be an F-measurable
and R, -valued function and g a positive G-measurable function. If

1
Eu[Liron|9] < Tygony + 5 9Tigery peaee (5.22)
for all X > 0, then it follows for every p € (0,1) that'
1
E.lf719] < — 9" p-a.e. (5.23)

HTn case fP is not o-integrable w.r.t. G refer to Remark 2.11 for the generalised definition

of E,[f?|G].
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Proof. Similarly to the proofs of the properties of the conditional expectation,
we will divide the proof into two parts. Then we can apply the generalised
definition of the conditional expectation in Remark 2.11.

Step 1: Let G € R, ¢ (see Definition 2.6) and define f,, = f An. Then
fn is o-integrable w.r.t. G and so is f?. Moreover,

p(f2 e = N) = p{fa 2 N} 0 G) = Bu[E,[1 (5, 00m|911c),
where
1
EM []l{fn2>\1/p}‘g] < EM [:H.{fz)\l/p} ‘g] < ]].{gzkl/p} + m g ]1{9<>\1/p} H-a.ce.

by (5.22). Therefore, it follows by Lemma 3.3 that

E, [E,[f7|0]1c] % B, [f71c] = / u(f? L > A dA

(0.00)
1
<E [JLG/ 1dA]+E [ﬂgg/ —d)\}
g (0,971 8 (g.00) AP
gp —1
sl 2]
wllc\ g + 1_pg

The claim follows by calculating the two integrals, because the steps above
yield

1
Eulf71e] = Eu[EL[f71G]1a] < pru[gpﬂa],
which implies (5.23) by Lemma 2.5(1).

Step 2: Now we can apply the conditional monotone convergence since
f2>0for alln € Nand f? 7 fP for n — oo. This yields

D
E,[f710] = lim E,[f1Ig) < ~— p-ace.
which is what we wanted to show O

Theorem 5.14. Let (2, F,F, 1) be a o-finite filtered measure space and T C
R with s,v € T such that s <v and T C [s,v]. Assume that u|z, is o-finite
and let (fi)ier be an F-adapted sequence of positive functions such that f; is
o-integrable w.r.t. Fs for allt € T and fy <E,[fu|F] p-a.e. for allt < wu in
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T. Then for f;, :=esssup;cr fi, A € R and p € (0,1) we have'

E“[(f:"))p’]:s] < %p(Eu [fvl{f;‘,v»}}}—s] —(fs — /\)+)p

_1 p

1= (B [fo iz, 50| F]) (5.24)
1

TP(EM[MFS])P p-a.e.

IN

IN

Proof. The second and the third inequality in (5.24) follow immediately be-
cause (fs — AT >0 and f,1p < f, for F € F. Theorem 4.2 implies that

1

Eu Lz, 50| Fs] < X(Eu folggz oy | Fe] = (fe = AN)T) prae. (525

Define g = E,,[f,1(f:,>x[Fs] = (fs—A)" and note that g is F-measurable due

to the definition of the conditional expectation w.r.t. F; and the adaptedness
of fs. Since we now have

1
By L 03] Fs) < Lggzay + Y9 Loy prace.

by 5.25, we may use Lemma 5.13, which immediately yields the desired result.
m

Again we may rid ourselves of the need for adaptedness by looking at the
increments of our sequence of functions instead.

Corollary 5.15. Consider the setting and assumptions in Corollary 5.4
but let p € (0,1) and define g, = |fy — fi| fort € T. Then for g;, =
esssupyer |fi — fs| and X € R it follows that"?

1
Eullgs 17 < lTp(E/‘ (901 gz o | Fs] = (=0)F)"
1
—1 — p(EM [gvﬂ-{g;v>)\}‘]:s] )p
1

< — P l-a.e.
< T Bl F)P o

IN

Proof. Note that the last term in (5.24) reduces to (—\)* by the definition of
gs- The rest of the proof works in the same manner as the proof of Corollary
5.4. Please refer to page 51 for more details. O

2For the conditional expectation of (f7,)? please refer to Remark 2.11.
For the conditional expectation of (g ,)? please refer to Remark 2.11.
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The following corollary gives a further improvement to Theorem 5.14 by
omitting the need for a starting point in our time span 7" C R.

Corollary 5.16. Consider the setting and assumptions in Corollary 5.5 but
let p € (0,1). Then'

E(f)" Vel < 77— p(E“ [follgpszay | Fee] — oss inf B, [(f; - A Fe])?
1 1
< T Bu[ ooy | Fe])” € T (Bulfol Feel)” p-ace.
—p L—=p
Proof. Again, it suffices to prove the first inequality. If t° € T, simply take
s :=t° and the claim follows immediately, since f% , = f,. Otherwise, note
that by Corollary 4.4
E.[Lisson|Fre] < 5 (Eulfoligzon|Fe] - essinf B, [(f, — NI Fe]) p-ace.
(5.26)
Define g = E,[fol{s:>x|Fie] — essinfycr E,[(fi — A)F|Fie] and note that g
is Fio-measurable due to the definition of the conditional expectation w.r.t.
Fio. Since we now have

> =

1
By (Lo |Fee] < Lggzny + 19 Lgon prae.

by 5.26, we may use Lemma 5.13, which immediately yields the desired result.
O

Corollary 5.17. Consider the setting and assumptions in Corollary 5.6 but
let p € (0,1). Then'®
1

-P

1
— (esssup B, [felggeony| Fee])”

EL[(f7) | Fie] <

—_

(esssupE,, [ fil{p=sx}|Fre| — essinf B, [(f; — A)T|Fe])”
teT teT

IN

IN

. (esssupE,[fi| Fe])® p-a.e.
— D ter

4The footnote in Corollary 4.4 explains that in the world of probability spaces and
random variables essinf;er E,[(fi — )\)+|]:to])p may be identified further using Doob’s
backward convergence theorem.

15The footnote in Corollary 4.5 explains that in the world of probability spaces and ran-
dom variables esssup,cr E,[fi1{p->x}[Fte] may be further identified using Doob’s almost
sure convergence theorem.
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Proof. Once more, it suffices to prove the first inequality. If ¢* = sup T is an
element of 7" itself then we immediately arrive at the claim, because f* = f}..
Otherwise, note that by Corollary 4.5

1
Eu[]l{f*z,\}’fto] < X(esssupIEu [ft]l{f*z)\}’].}o]
teT
_estseiTnf]Eu[(ft — N Fe]) p-ace. (5.27)

Define g = esssup,cp Eu[fil{pe>ay| Fie] —essinfier B, [(fi — A) | Fie] and note
that g is Fj.-measurable due to the definition of the conditional expectation
w.r.t. Fio. Since we now have

1
Eu[Lipon|Fie] < Lggon) + 7 9 1gger) prave.

by (5.27), we may use Lemma 5.13, which immediately yields the desired
result. O]

5.4 Examples For Equality and Sharp Inequal-
ities

In the proofs of the improved and generalised versions of Doob’s maximum
and LP-inequalities we rely on deterministic inequalities, which may hold with
equality given certain conditions. Lemma 4.1, for example, discusses under
what circumstances equality may hold in (4.1) and (4.2). As we discuss in
the Appendix, we may achieve equality in Young’s inequality as well if we
make the necessary assumptions outlined in Theorem A.36. For this reason
we decided to look into finding examples for processes and functions which
may yield equality in our newly developed inequalities.

The following example shows that there are, in fact, processes that imply
equality in (5.5). For this purpose let us return to the world of probability
spaces and stochastic processes.

Erample 5.18. Let (Q, F,P) be a probability space and 7' = R,. For a pos-
itive real-valued!® random variable 7 ~ Exp(1) define the indicator process
Y = (Yi)ier by Vi = 1};5)(t) and let F = (F;)ier be the filtration generated
by YV, ie!™ Fy=0({Y,: T > s < t}) for t € T. Furthermore, define the
process X := (X;)ier by'®

1 c
X0 = (1o (8) + T () exp(

16We want to ensure that P(1 < o) = 1.
I"Note that F is, in fact, the smallest filtration such that 7 is a stopping time w.r.t. F.
18Note that this process satisfies the conditions in Proposition 5.21 below.

(t A 7)), teT. (5.28)

c
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For ease of readability we will make us of the convention to denote the
exponential function using Euler’s number e. Define 7 = (¢ — 1)/c and note
that ¢(y — 1) = —1. We will show that X is, in fact, a martingale'®, which
we do by proving that the map 7" > t — E[X;] is constant and that X is
a submartingale. Example A.29 in the Appendix then implies, that X is a
martingale. Therefore, let ¢t € T'. Then

1 1 t
]E[Xt] = ]E[]l{7.>t}e’7t] + EE[H{TSt}e’YT] — ]P(T > t) e’Yt + E / es(fy—l) ds
—e-t \—0 —
= (0= D=1)/(y-1)
1 1

S e A o T

This also implies the integrability of X. Since X; < €™ /c for all t € T
the process is also uniformly integrable?® (see Definition A.19). Moreover, in
order to show that X is a martingale we will use that F, = ({7 < s} :s €
[0,¢]) for t € T equals the o-algebra?!

G={FeF:{r>t}CFor{r>t}CF}

forallt € T. Thisis true, since {r >t} € Fforallt € T, {7 >t} C {7 < s}°
for all s € [0, t], which implies that for all F' € F; we have either {r >t} C F'
or {T >t} C F°, hence, F; C G; (and clearly, G, C F;).

We will now prove the submartingale property by relying on the mem-
orylessness of the exponential distribution®?. For this purpose let s < t be
elements of T'.

a.s. 1 T
E[X;|Fs) = E[lgane™|Fy) + EE[]L{TSt}eV | F). (5.29)

Let us treat each summand on the right-hand side separately. Since 7 is
exponentially distributed we can use its memorylessness and deduce that
E[Lae!|F] = 1 B(r > fF,) 2 071,
—_———

=P(r>t—s) a.s.

(5.30)

We can rewrite the second summand on the right-hand side of (5.29) using
Lir<ty = Ir<sy + Lgs<r<yy and

]E[]l{’rgs}e’yq—lfs] — E[H{Tgs}ev(ﬂ\s) |fs] a.s. ]l{TSS}e'y(T/\s) (531)

19For the definition please refer to the corresponding paragraph in the Introduction on
page 1.

20For more information of uniformly integrable functions please refer to [13, Chapter
4.2, p. 85-91].

21The fact that G, is a o-algebra is easy to prove and will be left to the reader.

Zog P(r>s+tlr>s)=P(r>t) forall s,t >0
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TAS)

by applying Theorem A.28(5) to the F,-measurable function 1, <€
We claim that

E[L{scr<ty”|F] = LigaryeE[l{r<i—s3¢"7] (5.32)

For F' € F, we have
/]E[ﬂ{s<7§t}677|fs] dP = / 1{5<7§t}e’77 dP
F F

— / IL{S<T§t}eA’T d]P) + / I].{S<7—§t}e,y7— d]P)
Fn{r<s} Fn{r>s}

The first integral on the right-hand side reduces to zero because {7 < s} N
{s < 7 <t} = 0. Furthermore, we have shown before, every F' € F; is
also an element of G, hence, FF'N {r > s} = {7 > s}. Thus, by using
{s <7 <t} C{r > s} we arrive at

t
/ E[1(s<rcne’” | Fs] dP = / " dP = / e g
F a {s<r<t} s

= L(et(v—l) _ eS(W_l)).

v—1

Secondly, since

t—s 1
Ell{r<i-spe’"] = / "0V dr = —— (!0 Ves07 1)
; 0 v—1
and ”*P(s < 7) = 0~V it follows that
1
/ ]]-{S<T}678E[ﬂ{8<7<t—s}ew—] dP = —— (et('y—l) — 68(7_1)) .
F - v—1

Hence, (5.32) holds true a.s. Using (5.30), (5.31) and (5.32) and plugging
them into (5.29), we can deduce that

a.s. — 1 — — —
E[X|F] = 070+ 21 0@ — D e (07 Ve 070 — 1)
1
_ et('y—l)+s + Eﬂ{Tgs}e'y(T/\s) _ IL{T>5} (et(*y—l)—i-s - efys)
1
B (ﬂ{7>s} T E]l{TSs}>e’Y(TAS) + 0TI — T y).

Since et(”_l)“(l — I{r>5) > 0, we can conclude that

a.s.

1
E[Xt|]:s] > (:H-{T>S} + _:H-{T<s}>ev(7—/\8) = XS7
c <
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which means, X is a submartingale.
Finally, we would like to show that (5.5) holds with equality when applied
to X. Define the supremum process X; = sup,cjy Xs for ¢ € T As the

interval in question we wish to consider [s,v] := [0, 00] = T" and prove that
E[(GPIF) S 2y (PEIXIE] - BIXIE]Y).  (533)

In order to do so, note that Fy, = Fo = {0, R, }, hence, we can omit all
the conditions in the equality above. Calculating the left-hand side of (5.33)

then yields
c
E[(X*P —EleP| = ——— 5.34
(XY 1] =Bl = — (531)

by the representation of the moment-generating function of an exponentially
distributed random variable. Furthermore,

P _ l P = - c
E[X2|F] = CPIE[ ] = petp) (5.35)
and 1 1 1
(EXIF] = E) = Sy =1 (5.36)

Now, inserting (5.34), (5.35) and (5.36) into (5.33) and solving the equation
gives zero on both sides, so (5.33) yields a true result. Hence, (5.33) holds
true.

We aim to find families of functions and processes for which Theorems
5.2 and 5.8 hold with equality. Lemma 4.1 already hints towards which kind
of processes and functions could achieve the desired result: One of these
three different conditions needs to be satisfied in order for (4.1) to hold with
equality:

e the maximum of a sequence of real numbers xg,...,z, for n € N is
strictly smaller than a certain threshold A € R;

e 1 is greater or equal to \;

e or if for the smallest k£ € {1,...,n} such that the number x; is greater
or equal A, it is already equal A.

Furthermore, in the proof of (5.1) we use Young’s inequality, for which we
discuss conditions for equality in Theorem A.36. In particular, (5.4) holds
with equality, if cz,, = T, := max{zo,...,x,} for ¢ > 1. Therefore, we can
make the following observation:
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Proposition 5.19. Let A € R, ¢ > 1 and s < v inT C R such that
T C [s,v]. The improved version of Doob’s LP-inequality for p > 1 in (5.5)
holds with equality if, and only if, for f = (fi)ier fulfilling the assumptions
in Theorem 5.2 we have that c f, = esssup,cr fi and f satisfies one of the
following conditions.

(1) esssuper ft < A, i.e. f is bounded from above by .
(2) fs > A, d.e. fis bounded from below at the start of the period.

(3) If for t,u € T with t < w such that fy < X\ and f, > A, there ezists a
u €T such that fz = X\, i.e. if f crosses a certain threshold throughout
the period, f has to take a value at the mentioned threshold.

Another way to prove the improved version of Doob maximum inequalities
relies on stopping times, as Remark 4.3 shows. For this purpose let us review
(3.4), which is essential for deriving (3.1). In the first part of the proof of
Theorem 3.1 we require 7" to be finite and define 7 = v Amin{t € T': f; > A}
and A = {max;cr f; > A} and explain that (3.4), which states

Ma < frla—(fo =N,
holds with equality on
e A° (meaning maxer f; < A), since both sides are zero;
e {fs > A} C A, because both sides equal A.

Remark 4.3 explains that by taking the conditional expectation of (3.4) we
can deduce (4.3) in Theorem 4.2 by applying Theorem 2.20. Furthermore,
we attain equality in (4.11) if, and only if, our sequence of functions (f;)ier
is in fact a o-integrable martingale.

Finally, it follows from the proof of Lemma 5.1, where we apply Lemma
4.1 to the maximum of the sequences of real-numbers, that the sequence
(fo)uer With fF, := esssup;g(s,) [ needs to be continuous in order for (5.2)
applied to ( f;u)ueT to hold with equality. Hence, we can expect the inequality
in Theorem 5.2 to hold with equality for the following sequences of functions.

Conjecture 5.20. Let ¢ > 1 and T C R be non-empty such that T is
countable or a non-degenerate interval with T C [s,v] for s < v in T. If
= (fo)er is a positive, right-continuous o-integrable martingale such that
the supremum process (f7, )uer with f;, 1= esssup;s, fi is continuous and

cfo = fr,, then the improved version of Doob’s LP-inequality for p > 1 as

s,v7

stated in Theorem 5.2 applied to f holds with equality.
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We would need Doob’s optional stopping theorem adapted to o-finite
measure spaces and o-integrable martingales in order to prove this proposi-
tion. So far we can prove equality in (3.4) only for finite 7' (see Theorem
2.20) but would need optional stopping for continuous time to ensure the
martingale property remains true. This would exceed the scope of this the-
sis, hence, we cannot prove Conjecture 5.20 beyond a reasonable doubt at
this point in time. However, if we return to probability spaces, we can make
use of Doob’s optional stopping theorem (as stated in Theorem A.30) to
prove the following.

Proposition 5.21. Let (2, F,F,P) be a filtered probability space, ¢ > 1 and
T C R be non-empty such that T is countable or a non-degenerate interval
with T C [s,v] fors <wvinT. If X := (Xy)ier is a positive, right-continuous
martingale and if there ezists a continuous and F-adapted process (X ;:u)ueT

such that X3, = supyc(s, Xt a.s. and ¢ X, = X, then the improved version

of Doob’s LP-inequality for p > 1 as stated in Theorem 5.2 applied to X holds
with equality.

Proof. The right-continuity of X allows us to apply Doob’s optional stopping
theorem (see Theorem A.30) and deduce that (3.4) holds true for countable as
well as non-degenerate intervals T C R and A := {X +» > A}. Furthermore,
by Theorem A.30 it follows that

E[X, 14|F,] 2 EE[X,|F 14| F] = E[X,14|F]

for an F- or F*-stopping time 7 by the F,-measurability of 14 and the inte-
grability of martingales (see Theorem A.28(5) and (1)). As we have explained
above, we attain equality in (5.2) if the supremum process (X7, )uer is con-
tinuous. Since we assumed ¢ X, = X7, equality follows for (5.3). O

S,

Another example for a process that satisfies the conditions in Proposition
5.21 and therefore yields equality in the improved version of Doob’s LP-
inequality can be found in [1, proof of Theorems 3.1 and 1.2, p. 11]. We
would like to present this example here for further illustration.

Ezample 5.22. Let (2, F,P) be a probability space, T'= R and B := (By)er
a Brownian motion starting at By = 1. Consider the stopped process B™ :=
(Binr, )ter for ¢ > 1 together with the stopping time 7, := inf{t > 0 : B, <
B} /c}, where (B})ier is given by B} := supyc(g 4 Bs. Then B is uniformly
integrable?®. Furthermore, consider the process B := (Bt)te[o,v] defined by

BFor the proof please refer to [13, Lemma 7.10]. The lemma also proves that P(7. <
o0) = 1.
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B, = B, Jw—t)ar. for t < v in T. Then Bis a non-negative right-continuous
martingale, the supremum process (B;);c[) is continuous and ¢ B, = B} for
v € T. Hence, we may apply Proposition 5.21 and deduce that

BB F) S = (¢ BIBYF] - (E[BF)Y)

for p,q € (1,00) such that 1/p+1/¢g=1and 0 < s < wv.

We can make similar observations for Theorem 5.8 as the ones above.
Again, we need (5.10) in the proof of Lemma 5.7. This inequality holds with
equality if, and only if, a, b > 0 and ¢ = b/a as the footnote at the beginning of
the proof on page 53 mentions. We later apply (5.10) to xz, log T, therefore,
we achieve equality in (5.1) if, and only if, ¢ = logZ,/z,. Moreover, an
important step for deriving (5.13) is (5.19), where we use the conditional
version of Jensen’s inequality. We achieve equality in (5.19) if there exists an
F-measurable modification®® of the process. In a deterministic setting this
means that the sequence of functions has to be constant p-a.e. Therefore,
we need to assume that the submartingale attains a constant value at the
starting point. Considering all the arguments brought forth we can deduce
the following necessary assumptions for equality in the improved version of
Doob’s L'-inequality in Theorem 5.8.

Proposition 5.23. Let A € R, ¢ > 1 and s < v inT C R such that
T C [s,v]. The improved version of Doob’s L'-inequality in (5.13) holds with
equality if, and only if, for f = (f)wer fulfilling the assumptions in Theorem
5.8 we have that f; = k € R, ¢ f, = log(esssup,cr fi) and f satisfies one of
the three conditions in Proposition 5.19.

Since we also use Lemma 4.1 when proving Lemma 5.7 (in particular,
(5.11) is the key aspect here), the sequence (f7, )uer With 7, 1= esssup,c(s., fi

has to be continuous once again. Hence, we can expect (5.13) to hold with
equality for the following sequences of functions.

Conjecture 5.24. Let ¢ > 1 and T C R be non-empty such that T is
countable or a non-degenerate interval with T C [s,v] for s < v in T. Let
f = (fi)ier be a positive, right-continuous o-integrable martingale with f, =
k € R. If the supremum process (f,)uer, where f7, 1= ess SUDyes,) St 0

continuous and c f, = log(f:,), then the improved version of Doob’s L-
inequality as stated in Theorem 5.8 applied to f holds with equality.

24Let I be a non-empty index set and let f := (fi)ie; and (gi)ie; be sequences of
functions on a o-finite measure space (£, F, u) with values in a measurable space (5,S).
We call f and g modifications of one another, if the set {f; # g;} is contained in a p-null
set for every ¢ € I. (This definition was inspired by [13, Definition 2.83] focusing on
probability spaces and stochastic processes.)
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Again, without Doob’s optional stopping theorem adapted to o-finite
measure spaces and o-integrable martingales we cannot prove Conjecture
5.24 beyond a reasonable doubt at this point in time. However, if we return
to probability spaces, we can make use of Doob’s optional stopping theorem
(as stated in Theorem A.30) to prove the following.

Proposition 5.25. Let (2, F,F,P) be a filtered probability space, ¢ > 1 and
T C R be non-empty such that T is countable or a non-degenerate interval
with T C [s,v] for s <wv in T. Furthermore, let X := (X;)ier be a positive,
right-continuous martingale such that X, = k € R. If there exists a contin-
uous and F-adapted process (X7, )uer such that X7, = sup,ejs,) Xi a.s. and
c X, = log(X7,), then the improved version of Doob’s L'-inequality as stated
in Theorem 5.8 applied to X holds with equality.

Proof. The right-continuity of X allows us to apply Doob’s optional stopping
theorem (see Theorem A.30) and deduce that (3.4) holds true for countable as
well as non-degenerate intervals 7 C R and A := {X;, > A}. Furthermore,
by Theorem A.30 it follows that

E[X, 14| F,] & E[E[X,|F 14| F.] & E[X, 14| F]

for an IF- or F*-stopping time 7 by the F,-measurability of 14 and the inte-
grability of martingales (see Theorem A.28(5) and (1)). As we have explained
above, we attain equality in (5.2) if the supremum process (X7, )uer is con-
tinuous. Since we assumed ¢ X, = log(X},) and X, = k € R, equality follows
in (5.13). 0

Chapter 5 showed various generalisations and improvements to Doob’s LP-
inequalities for submartingales, as they hold true (slightly adapted) even
when dealing with o-integrable functions rather than random variables. Fur-
thermore, the need for adaptedness and integrability can be weakened such
that the inequalities hold for more general assumptions. As we have shown,
these inequalities may even hold with equality given certain conditions. All
this can be of great help in actuarial practice, as will be outlined in the next
chapter.
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Chapter 6

Practical Applications in
Intertemporal Risk Control

In this chapter we wish to give a short overview of possible applications of our
newly developed theory on (sub-)martingales within the fields of financial and
actuarial mathematics. We will see that especially the improved versions of
Doob’s LP-inequalities for p > 1 can provide practitioners with helpful means
to derive upper bounds for various key figures within their fields of expertise.

6.1 Mathematical Finance

A rather obvious application of our newly developed (sub-)martingale in-
equalities can be found in mathematical finance. According to the funda-
mental theorem of asset pricing in finite discrete time, the market does not
allow for arbitrage if, and only if, there exists a probability measure Q equiv-
alent to the original probability measure P such that the discounted price
process is a martingale under Q. The measure Q is then called a martingale
measure. This motivates to apply the findings of Chapter 5 to the filtered
probability space (€2, F, (F;)ier, Q) and the discounted price process denoted
by X := S® /50 given a model for a financial market with d € N assets
(SW, ..., 5@) a numeraire S and a time span T C R such that S de-
noting the price of the i-th asset at time ¢ € T is a non-negative random
variable on (§2, F,P).

Theorem 5.8 gives an upper bound for the conditional expectation of
the essential supremum of the discounted asset, whereas Theorem 5.2 yields
similar results for its second moment. Both might not be easily calculated,
thus, sharp inequalities may be good alternatives. As a possible scenario
think of X as the discounted price of a plain vanilla option in a short position.
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The asset then turns into a liability fraught with risk. Using our newly
developed inequalities it is possible to predict the worst case scenario, i.e.
the highest possible payment obligation, at any time during a given period.
Here lies the significance for intertemporal risk control. Let 7' C R with
s,v € T such that s < v and T C [s,v] and ¢ > 1. Then for p = ¢ = 2 (5.5)
reduces to

S

A\ 2 a.s.
E@Kesssuprl)) ‘}"5] <

teT

o (eBol(XOPIE] - (X)) ()

for i = 1,...,d by the martingale property of X®. If we assume that the
discounted price process is square-integrable, then taking the expectation
w.r.t. the probability measure Q in (6.1) yields

o (essup X{) | < - (CEol(XP)] ~ Bol(X0))  (62)

teT

Since Ry > z + 2% is convex and X is positive then a further upper
bound that does not need the starting point s € T' can be derived for (6.2)
using Jensen’s inequality (see Theorem A.16). This yields EQ[(XS@)Q] >
(Eg[X{"])? = (Bq[X:"))?, hence,

N 2 A .
IEQKesssupXt(’)) ] < ¢ 1VQ[X,EZ)] + ¢ (Eg[XV])2. (6.3)
teT c—

Minimising ¢?/(c—1) Vg [X,Ei)] +c (Eg [)(f,i)])2 yields that (6.3) is minimal for

V (ValX{1)2 = VolxP)BalX D)2

: 6.4
Eql(X)?] o4

c=1+

Thus, we need to make further assumptions for our discounted price process
in order to ensure the existence of ¢:

o Eg[(X")?] > 0;
o (Vo[Xi"))? > Vo[ XI)(Eq[X"))2.

Given these conditions it is possible to find a minimal upper bound for the
essential supremum of the discounted price process. As mentioned before, [1]
proves Theorem 5.2 for ¢ = e. By (6.4) it becomes clear now, that our gen-
eralised version of Doob’s LP-inequality for p > 1 is indeed an improvement
to both [1, Proposition 2.1Jand Theorem 3.2.
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On the other hand, (5.13) and the martingale property give us

Eq [ess sup Xt(i)
teT

F) %~ (1og() X0 + Belip (X7 - p(X1) (65

fori =1,...,d, where the function ¢ is defined as in (5.12). Let us assume
that go(Xt(Z)) is integrable for all ¢ € T. Then taking the expected value in
(6.5) yields

i c i i i
Eq [esssup X{7] < = (log(e) Eq[X [+ Eqlp (X)) ~Eq[(X{")]). (6.6)
i _
By Jensen’s inequality (see Theorem A.16) it follows that EQ[cp(Xéi))] >
Eg[p(X™)] for all s < v in T, because (o(X{)))er is a submartingale.
Again, we may look at minimal upper bounds. Minimising the right-hand
side of (6.6) for ¢ > 1, yields that the inequality is minimal for

¢—log(e) =1+ (6.7)

Again, we detect the need for further assumptions in order to ensure the
existence of a solution ¢ in (6.7):

[ ] ]EQ[XS(Z)] > O;

o Eglo(X)] > Eglp(X)].

Due to the intermediate value theorem (see Theorem A.41) it is always pos-
sible to solve (6.7) given the newly recognised assumptions. The solution is
given by the so-called Lambert W function®, which is defined as the inverse
function of f(W) := We". As we have shown, we are now able to estimate
the expected value of the essential supremum of the discounted price pro-
cess as well. This may give practitioners an edge on what maximal financial
obligation can be expected at any time during a certain period.

Finally, Theorem 5.8 can also provide us with an upper bound for the
maximal fluctuation of a financial instrument. The positive submartingale
Z = (Z)jer with T C R and Z; := (Y; — E[Y}])?, where Y := (Y})ser does
not necessarily need to be a positive process (e.g. think of a swap contract),
satisfies the assumptions of Theorem 5.8. Hence, for s < v in T with T C
[s,v] and ¢ > 1 it follows that

Eq[esssup Z|F,| 'S —— (log(c) Z + Ealp(Z,) 7] — ¢(2,))

teT

! This function is implemented in various technical computing systems. E.g. in Wolfram
Mathematica the function is called by ProductLogl[z].
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and

Eq |esssup Z,| < —— (log(c) EqlZ] + Eql¢(Z,)] - Eqlo(Z,)

teT

by assuming the integrability of Z and ¢(Z). We have just proven in the
paragraph above under which circumstances the upper bound can be minimal
for ¢ > 1. Since Egless sup,er(Y; — E[Y;])?] can be seen as a generalisation of
the variance of Y, the inequalities above provide information on the maximal
fluctuation of the process Y at any time during a certain period of time. Of
course, the applicability and usefulness of such an upper bound cannot be
overlooked.

In conclusion, the generalised versions of Doob’s L2-inequality and his
L'-inequality provide practitioners in the field of mathematical finance with
an outlook on the expectation of a financial risk (e.g. a payment obligation)
and gives upper bounds thereof. Particularly, the newly developed theory on
Doob’s LP-inequalities may aid in controlling intertemporal risks not just at
the beginning or the end of a period but at any point in time during a given
period. Here lie the novelty and the importance of the findings of this thesis,
as they provide practitioners with intertemporal risk constraints.

6.2 Actuarial Science

Besides the applications in financial mathematics, our improved versions of
Doob’s LP-inequalities provide estimates for the loss random variable over
the lifetime of an actuarial reserve. Hattendorft’s theorem, developed 1868
by K. Hattendorff, demonstrates that the variance in the present value of the
loss of an issued insurance policy can be allocated to the future years during
which the insured is still alive. This, in turn, facilitates the management
of risk prevalent in such insurance contracts over short periods of time. In
particular, the theorem states that the loss random variables for different
time periods are uncorrelated and the expected value is zero.

At the time of its development Hattendorff’s theorem was viewed as quite
controversial and came as a great surprise to many researchers and practi-
tioners in the field in actuarial science. Today it is an important part of the
standard curriculum for actuarial science. More than a century after the ini-
tial development, Bithlmann connected Hattendorft’s theorem to the theory
of martingales in 1976. In 1992 Norberg generalised Hattendorft’s theorem
further and connected it to modern martingale theory and showed that the
variance of the loss random variable can be properly calculated, if we as-
sume the state-space to satisfy the Markov property and take deterministic
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actuarial payment functions into consideration. A stochastic process has the
Markov property if the conditional probability distribution of future states of
the process (conditional on both past and present states) depends only upon
the present state, not on the sequence of events that preceded it. If we can-
not (or do not want to) make such assumptions, inequalities can be of great
help. In particular, the improved versions of Doob’s L!'- and L2-inequalities
for martingales will help us in deriving estimates for the expectation as well
as the second moment of the essential supremum of the loss random vari-
able. For more information on the history behind Hattendorff’s theorem the
interested reader is referred to [11, p. 489-491]

First, we would like to introduce Hattendorff’s theorem as formulated in
8, p. 85-87)%. Let (2, F, (F;)i>0, P) be a filtered probability space. Consider
a cash flow modeling the benefits for the insured by a stochastic process
B, which is discounted by another stochastic process v. The present value
at time ¢ > 0 is then given by V; = [ v(r)dB(r), where we assume the
Lebesgue—Stieltjes integral is well-defined and V; has finite expectation for all
t > 0. Assume that v and B are both adapted to the filtration F := (F}):>o.
Then the prospective actuarial reserve Vi (¢) at time ¢ > 0 is given by

a.s. ]- o
0 8| [T
v(t '

ft} |
)

The loss of the insurer in the time interval (s, ¢] with s <t discounted to the
time 0 of a cash flow B is now defined by

L(s,t) = / v(r) dB(r) + v(t)ViH () — v(s)Vi (s) B M(t) — M(s), (6.8)
where for ¢ > 0 we define
M(t) = B[Vy| Fy] 2 /0 o(r) dB(r) + v(t) Vi (8).

Based on (6.8) one can see that the loss is composed of payments in the
interval (s,t] (represented by f;v(r) dB(r)), the value of the policy at the
end of the period (denoted by v(¢)V;'(t)) as well as the value of the policy at
the beginning of the period (denoted by v(s)Vy (s)). Hattendorff’s theorem
now states the following.

2To be exact, [8] uses a decreasing sequence of stopping times for the definition. How-
ever, since the constant time is also a stopping time by A.22(1) it was decided to formulate
the theorem without the use of proper stopping times, because we work with constant times
when applying the improved versions of Doob’s LP-inequalities.
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Theorem 6.1. IfV € L*(Q, F,P), then

(1) E[L(s,t)] = 0 and Cov(L(s,t), L(u,v)) = 0 for all 0 < s < t and

0 <wu < v such that (s,t] N (u,v] = 0;
(2) E[L(s,t)|F.] =0 and Cov(L(s,t), L(u,v)|F,) =0 a.s. for allr > 0 and
0<s<tand0<u<wv such that (s,t] N (u,v] = 0.

The proof heavily relies on the fact that the stochastic process (M (%)):>o
is an F-martingale; in particular, it is used that the increments of martingales
have mean zero. We omit the proof, but interested readers may refer to |8,
Theorem 7.2.5] for the case of a countable infinite time span 7' C R, or to
[11, Satz 9.24] for the general setting.

As mentioned before, the improved versions of Doob’s LP-inequalities in
Chapter 5 now allow us to determine estimates for the conditional expecta-
tion of the essential supremum. Let 7' C R with s,v € T such that s < v
and T C [s,v]. Then (L(s,t)")ier (which describes the losses of an insurer)
satisfies the conditions in Theorem 5.2, thus, we may conclude that for ¢ > 1
and p = ¢ = 2 that

E[(esssupL (5,1) ) ’}"]

teT

— (cE[(L(s,0)*)*|F] — (E[L(s, 0)|R))?).

Furthermore, we can use Theorem 5.8 and conclude that

E[esssupL (s,t) ’]-"} S

teT

. f . (log(c) E[L(s,v)T|Fs] + E[p(L(s,v)")|F]
—QO(E[L(S,U)+|fs])), (6.10)

where the function ¢ is defined as in (5.12).

If we assume (L(s,t)");er to be square-integrable and (o(L(s,t)"))ier
to be integrable, we can make similar observations as those on the expected
value and its second moment of the discounted price process in the previous
chapter. Taking the expected value in (6.9) yields

]E[(esssup L(s,t)*)? < (cE[(L(s,v)")*] — (E[L(s,v)*)?).

teT c—1

Furthermore, we can deduce

E [ess sup L(s, t)*} <

teT

— (log(¢) E[L(s,0)*] + Efp(L(s, v)")

— ¢(E[L(s,v)"])
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by taking the expected value in (6.10). We could consider minimising the
inequalities above again, in order to come up with minimal bounds. As
we have discussed this at length in the previous chapter, we leave this to
the reader and will omit repetition at this point. However, once more, the
importance and applicability to real life cases becomes apparent.

All we have discussed in this chapter shows that an insurer can gain
control over intertemporal financial risks (e.g. the possible losses stemming
from an insurance contract within a given period). The the upper bounds for
the expectation and the second moment of the loss random variable provide
information on whether or not the insurer remains solvent w.r.t. a (life)
insurance policy at all times within a certain period. The novelty here is
that not only is the insurer able to give an outlook on their solvency at the
end of the period but the bounds allow them to assess their solvency at any
moment within the period. Hence, Theorem 5.2 and 5.8 provide the insurer
with means to control intertemporal risks.

6.3 Utility Maximasation

Theorem 5.14 may find applications in the fields of financial and actuarial
mathematics as well, because we can connect its findings to utility theory.
Define the function
P
u(z) =
(@) = 1

, pe(0,1),z >0.

Then v is a utility function®, because v/(x) = pzP~! /(1 —p) > 0 and v"(x) =
—paP™2 < 0 for all z > 0 and p € (0,1). By the definition of u, we can
rewrite the last inequality? in (5.24). Consider s < v in T, where T' C R,
such that 7" C [s,v]. Then

E[(fo)"1Fs] S u(BEL[fo] Fs]) prace.

Furthermore,

Eul(foo)"|Fs] = (1= p) Bplul(f3) 1 Fs] < w(Bu[fo] Fi) p-ae.

Since u(f;,) = esssup,er u(fi) we may deduce

1
E,,[esssup u(f;)]|Fs) <
teT 1-—

Cu(E,[fIFD) e (6.11)

3ie. v/(z) > 0 and v (z) < 0 for all z > 0

40f course, we could make similar statements as the ones below for the sharper bounds,
but since the last bound is easier calculated and more intuitive it was chosen as the focus
of this discussion.
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Utility theory tells us that for some risks it might make sense to focus on
the expected utility of a gamble rather than its expectation. Theorem 5.14
gives us an upper bound for the conditional expected utility of the essential
supremum of a sequence of functions.

If we go back to a probability space (€2, F,P) and a stochastic process
X = (X}i)ter describing a short position on a financial instrument, (6.11)
gives us the means to estimate the maximal utility of this contract. Hence,
we can weigh the expectation of the maximal value of such an instrument,
for which we have an upper bound with (6.6), against its expected utility
with an upper bound thereof given by (6.11). Again, (6.11) yields an upper
bound that gives information on the utility of the maximal amount at any
given time during a certain period. This may aid practitioners in deciding,
whether or not entering into such a contract would be worth the investment
and the possible risk stemming from an uncertain payment obligation.

As we have learned, the improved versions of Doob’s LP-inequalities can be
put to great use in the fields of both financial and actuarial mathematics.
Doob’s classical LP-inequalities for submartingales are certainly already of
value in those fields. However, as the upper bounds can be improved even
further, sharper inequalities can be derived. This may help practitioners
around the globe to derive rather sharp estimates for the essential supremum
of the loss random variable in case of application in life insurance mathemat-
ics or the essential supremum of the discounted price process when dealing
with financial markets. Both can be of great value in the applied world of
mathematics.
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Chapter 7

Conclusion

The goal of this thesis was to expand the theory of martingales by adapting
it to o-finite measure spaces and proving refined and generalised versions
of Doob’s maximum and LP-inequalities. Chapter 2 focused on expanding
the definition of the conditional expectation to o-integrable functions and o-
finite measure spaces. Proving the existence of a conditional expectation of a
o-integrable function under a o-finite measure heavily relied on the Radon—
Nikodym theorem. Theorem 2.12 was a fundamental finding within this
chapter, because it shows that many well-known properties of the conditional
expectation w.r.t. probability measures hold for o-finite measures as well.
Moreover, some of these properties may even hold for functions that have the
right measurability but are not o-integrable. We proved this by introducing
a further generalisation of the conditional expectation in Remark 2.11.

There are two different definitions for (sub-/super-)martingales on o-finite
measure spaces in this thesis. The first one (see Definition 2.13) is quite sim-
ilar to the definition of martingales in probability spaces, because we assume
integrability and adaptedness, and we proved Doob’s maximum inequalities
and his classical LP-inequality for submartingales and p > 1 for this setting.
In this section we relied on a theoretical approach using measure theory.
However, we could prove that the main theorems in this thesis do not need
integrability and may even make do without adaptedness. For this reason
we introduced the term o-integrable (sub-/super-)martingale (see Definition
2.15), which lies at the core of this thesis and its findings.

The main focus of this thesis was to prove various generalisations and
improvements of Doob’s maximum and LP-inequalities for o-integrable sub-
martingales. This can be found in Chapter 4 and 5. The proofs rely on
rather basic deterministic inequalities, which helped us to find sharper upper
bounds. In both chapters we start out with a given interval with a starting
and an endpoint. However, by considering the infimum and the supremum of
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our time span we proved that we may omit the need for such points. Hence,
we were able to expand the martingale theory by introducing (and proving)
sharper and more general versions of Doob’s maximum inequalities (see The-
orem 4.2), Doob’s inequalities for p > 1 (see Theorem 5.2) and p = 1 (see
Theorem 5.8) as well as p € (0,1) (see Theorem 5.14).

The deterministic inequalities we used to prove our refined inequalities
may hold with equality given certain conditions. For this reason an inves-
tigation into families of processes, where equality in the newly developed
theorems of Chapter 4 and 5 follows, was carried out. For this part we chose
to return to the world of probability spaces and stochastic processes and gave
examples to support our claims. Proposition 5.21 (resp. Proposition 5.25)
shows what kind of processes imply equality in Theorem 5.2 (resp. Theorem
5.8).

The final chapter gave an outlook on how our improved versions of Doob’s
LP-inequalities can be of help to practitioners in the fields of financial and
actuarial mathematics. For example, the findings in our thesis may provide
upper bounds for the expectation of the essential supremum of the discounted
price process. Another possible application of the newly developed inequal-
ities in this thesis can be found in the field of actuarial mathematics, since
they can be used to find upper bounds for the expectation of the essential
supremum of the loss random variable. In both cases, it is possible to deter-
mine minimal upper bounds. Furthermore, the improved version of Doob’s
LP-inequality for p € (0, 1) finds application in utility maximisation.

In conclusion, this thesis achieved its goal to expand the theory of mar-
tingales. The main findings are refined versions of Doob’s maximum and
LP-inequalities for o-integrable submartingales and o-finite measure spaces.
Other interesting topics within this setting would be Doob’s optional stopping
theorem and its implications as well as a generalised definition of local mar-
tingales and their connection to stochastic integrals. A complete discussion
of these topics would go beyond the scope of this thesis, however, this leaves
much room for further research into the matter. The author hopes that the
findings in this thesis ease the path for further projects as mathematicians
strive to delve further into the vast and open world of mathematics.
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Appendix

The following pages list various established results presented in well-known
literature concerning measure theory and the conditional expectation. Ex-
cept for Remark A.2, Lemma A.11, Remark A.21, Theorem A.22, Example
A .26, Example A.29, Lemma A.31, the alternative proof of Theorem 2.7 on
page 92 and Theorem A.36 non of the results presented here are of the au-
thor’s conception. Futhermore, we do not claim to have been the firsts to
prove the findings listed above (with the exception of the alternative proof
for Theorem 2.7). We proved them due to the lack of time to research corre-
sponding literature or due to the simple nature of the proofs. All definitions
and results below have been marked with the corresponding source material.

A.1 Some Measure Theory

Definition A.1. o-FINITE MEASURES
Let (€2, F) be a measurable space and p a measure on it. We call p o-finite,
if one of following three properties holds.

(1) 1 ©Q can be covered with at most countably many measurable sets of
finite measure, i.e. there exist 1,s,... € F with p(€,) < oo for all
n € N such that (J, . 2, = Q.

(2) 2 Q can be covered with at most countably many disjoint sets of finite
measure, i.e. there exist Q1,€s,... € F with u(9,) < oo for all n € N
and Q,, NQ,, = 0 for all m,n € N with m # n such that UneN Q, = Q.

(3) 3 Q can be covered with a monotone sequence of measurable sets of
finite measure, i.e. there exist 21,$,... € F with Q; C {25 C --- and
1(€2,) < oo for all n € N such that |,y 2, = 2.

!See [9, Definition 3.9].
2See https://en.wikipedia.org/wiki/%CE%A3-finite_measure.
3See [12, Definition 4.2].
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Remark A.2. The three properties in Definition A.1 are equivalent.

Indeed: For (1) = (2) consider the sequence (Q,)nen With Q; = Q; and
Qi1 = Qopr N (N7, ), where the (2,),en satisfies (1). Then (2,)nen
satisfies (2).

Of course, (2) = (1) and (3) = (1). This leaves us to show (1) = (3).
This follows, because the sequence (€, )nen defined by Q,, = Ui, €, where
the (2,)nen satisfies (1), satisfies (3).

Definition A.3. SIMPLE FUNCTION?

Let €2 be an arbitrary set. We call f : Q@ — R simple function, if there
exist 71, ...,7m € R and a finite partition Qy, ..., Q,, of Q such that f(w) =
> Ykl (w) for all w € Q.

Lemma A.4. Let (2, F) be a measurable space. For every non-negative JF-
measurable functions f there exists a sequence of non-negative monotonously
increasing simple functions (fy)nen such that f =lim, o frn-

Proof. For the proof please refer to [9, Satz 7.30]. ]

Theorem A.5. Let (Q,F) be a measurable space. If f, : @ — R are F-
measurable functions for all n € N, then so are

sup fn, inf f,, limsup f,, liminf f,.
neN neN n—00 n—00

The same holds for lim,,_,, f, whenever it exists pointwise.
Proof. For the proof please refer to [12, Corollary 8.9]. O]

Definition A.6. 0-RING®
Let S be a set and R C P(S) a non-empty collection of subsets of S. We
call R a d-ring, if

(1) ABeER=AUBETR,
(2) ABeR=A\BeR,and
(3) MNyen An € R for every countable collection {A,}nen in R.

Definition A.7. SIGNED MEASURE®
Let R be a d-ring on a set S. An Re-valued (or C%valued) measure on R is
amap p: R — R? (or p: R — C%) such that Y, #(An) = p(U,,ey An) for

4See [9, Definition 7.25].
®See [13, Definition 13.88].
6See [13, Definition 13.93].
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every sequence (Ay)nen of disjoint sets in R such that the union J, .y A, is
also in R. The convergence of the series ) _ u(A,) is part of the require-
ment. An R-valued (or C-valued) measure on R is called signed (or complez)
measure on R.

Definition A.8. SINGULAR MEASURE’

Let R be a é-ring on a set S. We call two R -valued (or signed or complex)
measures g and v on R singular on R, if for every A € R there exists a
partition B,C € R such that u(B) = 0 and v(C') = 0. This is denoted by
wluv.

Theorem A.9. JORDAN DECOMPOSITION

Let R be a 6-ring on a set S. For every signed measure v on R there exists
a unique decomposition with two R -valued measures vt and v~ that are
singular on R such that v = vt —v~. For every A € R we call these two
measures the positive and negative variation of v. They are given by vt (A) =
v(AT) and v~ (A) = —v(A™) (hence, they satisfy vH(A~™) = v (AT) = 0),
where (AT, A7) denotes any Hahn decomposition of A w.r.t. v on R.

Proof. For the proof please refer to [13, Theorem 13.101]. For the defini-
tion and the proof of existence of a Hahn decomposition please refer to [13,
Theorem 13.98]. O

Definition A.10. ABSOLUTELY CONTINUOUS AND EQUIVALENT MEASURES®
Let 1 and v be two (positive measures) on a measurable space (€2, F).

(1) We call p absolutely continuous w.r.t. von F, if u(F) =0forall F € F
with v(F) = 0. This is denoted by p < v.

(2) If p < v and v < p on F, then we call p and v equivalent on F and
write p ~ v.

Lemma A.11. Any non-zero o-finite measure p on a measurable space
(Q,F) is equivalent to a probability measure on (2, F).

Proof. Let (€,)nen be a sequence of disjoint sets in F such that 0 < u(Q,,) <
oo and Q = (J,, oy Q0 (which exists, because we require y to be o-finite) and
let (wp)nen be a sequence of strictly positive numbers (weights) such that
> ,w, = 1. Then the measure v defined by

- p(F N Q)
v(F) = w,————, F € F,
nzl £1(S20)
"See [13, Definition 13.100].
8See [13, Definition 7.15(a),(b)].
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is a probability measure on Q: Evidently, v(F) > 0 for all F' € F, v(0) =0
and v(2) = 1. The o-additivity of v follows by

<nL€JN > ;ZZI FﬂQ Zzwn FﬂQ ;ily

for a disjoint sequence (F, ) ey in F because all summands are positive, which
allows us to exchange the sums®. Since v(F) = 0 if, and only if, u(F) = 0
for F' € F it follows that p ~ v. O

Theorem A.12. BASIC PROPERTIES OF INTEGRALS
Let (Q, F, ) be a measure space, let f,g € L*(Q, F,;R) and o € R. Then
the following properties hold.

(1) Homogeneity: af € LY(Q, F,i;R) and [afdp= o [ fdu.

(2) Additivity: f+g€ L'(Q,F,i;R) and [ f+gdu= [ fdu+ [ gdpu.
(3) Monotonicity: f<g= [ fdu< [gdpu.

@) | [ fdul < [1fdp.

Proof. For the proofs please refer to [12, Theorem 10.4]. ]

Lemma A.13. Let (2, F, 1) be a measure space and f a measurable function.
Then f € LY(Q, F,u) if, and only if, | f| € L*(Q, F, p).

Proof. For the proof please refer to [9, Folgerung 9.25]. n

Theorem A.14. RADON—NIKODYM THEOREM
Let p and v be two measures of the measurable space (S, F). If u is o-finite,
then the following two statements are equivalent:

(1) v < p;
(2) v(F) = [, [du, for all F € F and some a.e. unique f € LY (Q, F, ).

Furthermore, f is real-valued p-a.e. if, and only if, v is o-finite. We call a
function with property (2) a density of v w.r.t. u and denote it by f = ¢

Proof. For the proof please refer to [9, Satz 11.19]. ]

9See [9, Satz A.16] for the proof here.
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Theorem A.15. HOLDER’S INEQUALITY
Let (2, F, 1) be a measure space and p,q € (1,00) such that 1/p+ 1/q =
1. Then we have for all measurable real- or complex-valued functions f €

LP(Q, F,p) and g € LI(Q, F, 1)

(fi) = (o) (fs)"

Proof. For the proof please refer to [12, Theorem 12.2]. H

Theorem A.16. JENSEN’S INEQUALITY

Let (92, F,P) be a probability space and X an integrable random variable with
values in an interval C' C R. If ¢ : C — R is a convex function, then ¢ o X
is integrable and p(E[X]) < E[p o X].

Proof. For the proof please refer to [9, Satz 13.1]. In the theorem C'is defined
as an interval (a,b), which may lead to the conclusion that the theorem only
holds for intervals (a,b) with a,b € R. In the proof, however, the cases where
a = —o0 and b = oo are treated as well. O]

Theorem A.17. DOMINATED CONVERGENCE THEOREM

Let (2, F, ) be a measure space and f : Q — R a measurable function. Let
(fn)nen be a sequence of measurable functions with f, : Q@ — R such that
fo— fasn — oo and |f,| < g for alln € N and some g € L' (2, F, ).
Then

/ fdp= lim [ f,du.
Q n—oo Q
Proof. For the proof please refer to [14, Section 5.9, p. 54-55]. O

Theorem A.18. MONOTONE CONVERGENCE THEOREM

Let (2, F, ) be a measure space and f : Q — [0,00] a measurable func-
tion. Let (fn)nen be a sequence of non-negative, measurable functions with
fn: Q —[0,00] such that f, /* f asn — oo. Then

/ fdp= lim [ f,du.
0 n—oo Q

Proof. For the proof please refer to [14, Section 5.3, p. 51-52, and Appendix
Ab5.4, p. 213]. O]

Definition A.19. UNIFORM INTEGRABILITY !’
Let ® be a non-empty set of measurable K%valued functions on a measure

19See [13, Definition 4.25].

84


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

space (Q, F, u). We call ® uniformly integrable, if for every € > 0 there exists
a p-integrable function w, : 2 — R, such that

sup / lolldu < e
Pe® J{||p||>we}

From now on let 7 C R. Furthermore, define t* = supT and Fp =
U(UteT ]:t)

Definition A.20. STOPPING TIME!M

Let (2, F) be a measurable space and F := (F;)er a filtration. A map
7:Q — T is called stopping time w.r.t. F, if {7 <t} € F, forallt € T. The
associated o-algebra is given by

.FT:{FE_B*

Fn{r <t} e FforallteT} (A.1)

Remark A.21. It can be easily shown that F, as defined in (A.1) is indeed a
o-algebra. For this purpose let t € T'.

e () € F,: This follows directly because Q N {r <t} = {r <t} € F,
since 7 is a stopping time w.r.t. .

o [' € F, = F° e F,: The properties of the compliment in set theory
imply that for all t € T we have

Fen{r<t}=(Fn{r<t})n{r <t} e F,
N e N e’
€ Fi e F

where we used that 7 is a stopping time w.r.t. [F.

o (Fy)nen with F, € F. Vn € N = J, .y F € F;: This follows by the
properties of o-algebras and stopping times, because

<UFn>ﬂ{T§t}:U(Fnﬂ{TSt})E]-"t,

neN neN cF

forallteT.

Theorem A.22. LIST OF PROPERTIES OF STOPPING TIMES
For allt € T and stopping times o and T w.r.t. F, we have

(1) the constant time n : Q — T : w > t is a stopping time w.r.t. F and
-Fn = ‘Ft;

See [13, Definition 3.7 and Definition 3.10].
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(2) the pointwise mazximum o V T and the pointwise minimum o A\ T are
stopping times w.r.t. F;

T s Fr-measurable;
if o <71 (pointwise), then F, C Fy;

F™ .= (Font)ier 18 a filtration;

Fn{o <t} € Fonr for all F € F,;

(3)

(4)

(5)

(6) Forr = Fo N Fy;
(7)

(8) FN{o =1} € Fonr for all F € F,;

(9) if (Ta)nen_is a sequence of stopping times and T := SUp,ey T, takes
values in T', then T is a stopping time, too.

Proof. (1) It is easy to see that 7 is a stopping time, since for all s € T" we
have that
0 t>s,

Q t<s.

Fsa{nﬁs}z{

Now, let us consider A € F,,. By (A.1) An{n <s} e FforallseT.
In particular, for the constant time we have AN{n <t} =ANQ=A¢c F,
which implies F, C F;.

Finally, let B € F;. Then for t > s € T we have BN {n < s} =0 € F..
Conversely, for t < s it follows that BN {n < s} = B € F; C F;, since F is
a filtration. Therefore, B € F, and thus, 7, C F,,.

(2) Let t € T. The claim follows directly due to the properties of o-
algebras, because

{ovr<t}={o<t}n{r <t} eF,
—_—— Y=

S €Ft
{onT <t} ={oc <t}u{r <t}eF.
—_— =
€Ft €Ft

(3) Define B = (a,b] for @ < b € T. Then it suffices to show that
771(B) € F,, because intervals like B generate the Borel o-algebra Bz. For
this purpose we will use the convention {7 € B} := 77!(B). Then

{reB}n{r<t}={r<a}’n{r<d}n{r <t} ={r <a}°n{r <bAt}.
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The set {r < bAt}isin F; for all t € T, because we have for b < t that
{r<bAt} e F C Frand {1 < bAt} € F for b >t by the definition of
stopping times and filtrations.

Furthermore, if a < b A t, then {7 < a}® € F, C Fpar C F;. Otherwise
{r>a}nN{r <bAt} =0 € F, because {7 > bAt}N{r <bAt} =0. Thus,
{re B}n{r <t} €F, forall t € T, which means 7~ *(B) € F,.

(4) For F € F, we have FN{oc <t} € F, forallt € T by (A.1). Since
o < 7 pointwise, it follows that {7 <t} C {o <t} for all ¢t € T which implies

Fn{r<t}=Fn{o<t}n{r <t} er,
N N——

cF cF

by the properties of o-algebras. Thus, F' € F..

(5) Because of (1) and (2) we know that 7 At is a stopping time w.r.t. F.
Using Remark A.21 we can conclude that F,,; is a o-algebra for all ¢t € T.
The fact that (F.a¢)eer is an increasing sequence of sub-o-algebras in ¢t then
follows directly from (4), because F,pn, C Frps for all t < s e T.

(6) Let us start with F' € F, N F,, which implies F' N {o <t} € F; and
Fn{r<t}eFforalteT by (A.1l). Then it follows immediately that

Fn{oAnT<t}=Fn{o <t}u{r <t})
=(Fn{o<thuFn{r<t}) e R

. / (. /

cF € F:
forall t € T. Thus, F € F,rr and F, N F; C Fonr-
The other inclusion follows immediately from (4), since 0 A 7 < ¢ and
o A1 < 7 which implies F,,, C F, and F, o, C F,. Therefore, for F' € F,n,
we have F' € F, N F, and thus, F o, C F, N F,.
(7)'? Note that, for every t € T, {oc < 7} N{oc A7 <t} C {o <t}. This
implies,

(F{o<thn{onr <t} = (Fn{o<t}))n{ont<7iN{onT <t} € F

.

VvV VvV Vv
S ={oAt<TAL} S

for every F' € F, and t € T. The above holds true, because o At is a stopping
time according to (1) and (2) and it is measurable w.r.t. F,,;, C F; by (3)
and (4); similarly 7 A ¢ is Fi-measurable and thus, {oc At < 7 At} € F; for
allt e T.

12The proof for this point can be found in [13, Lemma 3.11(g)], which we would like to

present here for the sake of completeness. Let it be noted, however, that all other proofs
are of the author’s making.
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(8) Note that {o =7} = {0 <7} \ {0 < 7}. We already know from (7)
that FFN{o < 7} C F,p for all F € F,. Since

t n—1

fo<min{r<ty={JUUlr=n}n{o=k}

n=0 k=0

for all ¢ € T, we have that {c < 7} € F,, because {17 = n} = {7 <
nfN{r <n} ={r<nin{r <n-1} € F, C F; since n <t and
similarly {0 = k} € F. Thus, {oc < 7}nN{r <t} € F forallt € T.
{o < 1}n{o <t} € F forall t € T follows in the same manner. Hence
{o <1} e FoNF; = Fonr by (6).

(9) This follows quite quickly due to the properties of o-algebras. Sim-
ply bear in mind that for a disjoint sequence (F},)nen in F, the countable
intersection (),,cy Fr is also in F, since (), o Fr = (U, en F)° € F.

Thus, for our case it follows that

{Tft}:{ilelngSt}:!El{Tngt}eﬂ

forallteT. O

The following lemma is similar to Lemma 2.19 but focuses on probability
spaces and stochastic processes. Moreover, the second part is a generalisation
of the first.

Lemma A.23. Let (Q, F,F,P) be a filtered probability space and (S, p) a
metric space. Furthermore, let X : T x Q — S be an F-adapted process and
o:Q =T a stopping time w.r.t. F. For A € Bg define the first hitting time
of A after o (also called first entrance time) by

r=inf{teT: o<t X, € A},

where we define inf ) = t*. Then 7 is an F-stopping time under each of these
conditions:

(1) T is countable and every non-empty subset, which is bounded below,
contains its infimum (think of T as finite, T CZ or T ={k—1:k €
Z,n € N});

(2) T is an interval in R, the set A is closed and X is continuous.

Proof. For the proof please refer to [13, Lemma 3.51(a) and (b)]. O
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Theorem A.24. EXISTENCE OF THE ESSENTIAL SUPREMUM
Let (2, F, 1) be a o-finite measure space and let ® be a collection of measur-
able functions ¢ : 2 — R.

(1) Then there exists a function p* € ® such that ©* > ¢ p-a.e. for all
€ ® and ¢* < Y p-a.e. for every function ¢ € ® with v > ¢ p-a.e.
forall p € ®.

(2) Additionally, assume that for p, @ € ® there exists a 1 € ® such that
W > @V . Then there exists an increasing sequence (@, )nen Such that

©* = lim,_ o @, p-a.e.

Proof. The claims are trivial for'®> ® = () and a zero measure, therefore, we
may assume P £ () and p # 0 for the proof. Note that p only appears in the
theorem above through its null sets, which do not change when passing to
an equivalent measure. Since any non-zero o-finite measure is equivalent to
a probability measure (see Theorem A.11), it suffices to prove the claim for
probability spaces and random variables. This can be found in [5, Theorem
A.33]. m

Definition A.25. ESSENTIAL SUPREMUM'
We call the function ¢* in Theorem A.24 the essential supremum of ® and
denote it by
esssup = esssup ¢ 1= ¢*.
ped

The essential infimum of ® is defined by

essinf @ = essinf p := —esssup(—p).
pED peD

Example A.26. The difference between the supremum and the essential supre-
mum can be made apparent by an easy example regarding the measure space
(R, Bgr, \), where A\ denotes the Borel-Lebesgue measure. Simply note that

sup 1y =1,
NeBg
A(N)=0
whereas
esssup Ly = 0.
NeBg
A(N)=0
13See [13, Remark 13.48(b)].
1See [5, Definition A.34].
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A.2 Some Theory on Conditional Expecta-
tion

Let (92, F,P) be a probability space.

Theorem A.27. EXISTENCE OF CONDITIONAL EXPECTATION

Let G C F be a sub-o-algebra of F and X € LY(Q, F,P) with values in K2
for d € N. Then there exists an almost surely unique K%-valued G-measurable
random vector Y with E[|Y'|] < oo such that

E[X1e] = E[Y1g]

for all G € G. We call E[X|G] :=Y the conditional expectation of X w.r.t.
g.
Proof. For the proof please refer to [14, Theorem 9.2] O

Theorem A.28. LIST OF PROPERTIES
Let G, H be sub-o-algebras of F and X,Y € LY(Q, F,P) with values in K2
for d € N. Then the following properties hold:

(1) E[E[X|G]] = E[X].
(2) If X is G-measurable, then E[X|G] ¥ X.

(3) Monotonicity: If X <Y a.s., then E[X|G] < E[Y|G] a.s. In particular,
if X 2°Y then E[X|G] Z E[Y]G].

(4) Linearity: Let a,b € K and X,Y be integrable K?-valued random vec-
tors. Then E[aX +bY|G] Z aE[X|G] + bE[Y]|G].

(5) Take out what is known: Let Y be a G-measurable. If XY is integrable,
then E[XY|G] & Y E[X]|G].

(6) Tower property: If H C G, then E[E[X|G]|H] = E[X|H].

(7) Conditional version of Jensen’s inequality: Let C' C R be an interval
or C C K¢ an open convexr set. Assume X take values in C and that
¢ : C — R is a convex function such that p(X) € L'(Q, F,P). Then
E[p(X)|9] < p(E[X]F]) a.s.

(8) Conditional dominated convergence theorem: Let (X, )nen be a se-
quence of K¢-valued random vectors in L' (Q, F,P) such that | X,| < X
for alln € N and X,, - X a.s. asn — oco. Then E[X,|G] — E[X|]]

a.S. as n — O0.
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(9) Conditional monotone convergence theorem: Again, let (X, )nen be a
sequence of R-valued random wvectors in L*(Q2, F,P) such that X, > 0

for alln € N and X,, /* X a.s. asn — oco. Then E[X,|G] / E[X|]]
a.s. asm — oo.

Proof. For the proof of the conditional version of Jensen’s inequality in (7)
in the vector valued case, see [3, Subsection 10.2.7, p. 349]. The remaining
properties follow from the one-dimensional real case treated in [14, Section
9.7 and 9.8, p. 88-90] by considering components and real and imaginary
part. ]

Ezample A.29. Let (Q, F,F,P) be a filtered measure space and X := (X;)ier
be a sub- or a supermartingale'®. If the map T' > t — E[X/] is constant, then
X is a martingale.

Indeed: Let X be a supermartingale and define M, = X, — E[X;|F;] for
s <t in T and note that this defines a non-negative process. Then E[M;] = 0
by assumption and the law of total expectation. Since a non-negative random
variable Y with expectation 0 is 0 almost everywhere (this follows because
P(Y > 27) < 2"E[Y] = 0 for all n € N), M, = 0 a.s., which implies the
claim.

In case X is a submartingale simply consider the non-negative process
E[X|Fs] — X, for s <t in T and the claim follows in the same manner as
before.

Theorem A.30. DOOB’S OPTIONAL STOPPING THEOREM
Let X := (X})ier be a submartingale w.r.t. F and o,7: Q — T, where

e T is countable and o, T are stopping times w.r.t. ¥, or

e T is a non-degenerate interval, X is right-continuous, T is an'S F*-
stopping time and o a stopping time w.r.t. either F+ or F.

If there exists an a € T such that a < o A 7, then the following holds:

(1) For every u € t the random variables X, p, and Xonrny are integrable
and e
XO'/\T/\U < ]EI:XT/\Ul‘FO'(—‘r)]'

(2) Ift* ¢ T and if { X1, } is uniformly integrable, then X, and X 5, are
a.s. well defined and integrable, and

XO'/\T S E[XTl]:a(—i-)]

5For the definition please refer to page 1 in the Introduction.
Y6F* is the filtration defined by Fyiy) = Fu for t € T\ {t*} and Fyy) = Fe-
ift*eT.

ueT,u>t
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Proof. For the proof please refer to [13, Theorem 4.89 and Remark 7.43]. O

As mentioned before, there is a different way to prove the existence of the
conditional expectation for o-integrable functions (see Theorem 2.7), which
will be listed here for further reading. For the proof we need the Bayes’
formula, where we rely on several properties of the conditional expectation
w.r.t. probability measures and random variables. A list of these properties
can be found above (see Theorem A.28).

Lemma A.31. BAYES’ FORMULA

Letn and v be probability measures on (2, F) withn < v on F, G C F a sub-
o-algebra and f € LY (0, F,n). Define p = % (this density exists according
to the Radon—Nikodym theorem in A.14). Then

E,[f16] Eu[plG] = E,[fp|G] v-a.c. (A.2)

Proof. First, let n < v on F. f € L}, F,n) implies that fp € L1(Q, F,v)
and that E,[fp] is well-defined since E, [|fp|] = E,[| f]] < oo.
Now, for all G € G the following holds true.

Eu[fp]lG] = En[f]lG] = EW[HGEn[f|gH = Eu[pﬂGEn[f‘g]L

where quietly we used the existence of the conditional expectation in The-
orem A.27 for the second equality. We can use the same tricks again and
deduce

E, [p16E, [f|G]] = B, [16E, [oE,[f|G]|G]] * £ E,[1cE, [0|G]E, [f|G]]

by the G-measurability of E,[f|G]. Since
E,[fplc] = B.[LcE, [fp|G]],
we can conclude
E,[16E, [fp|G]] = E.[1cE, [p|GIE,[f|G]],
which implies (A.2). O

Proof. Alternative proof of Theorem 2.7
To start off, let f be o-finite w.r.t. G with values in R and let f > 0 w.l.o.g.
(otherwise consider f = f* — f7). Define

sl i p(€,) > 0,
0 otherwise,

fin-) = (A.3)
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and

g = E;.[f1q,|G] on Q,,
" 0 otherwise.

With these definitions one has g, > 0 fi,-a.e. for all n € N.
Now, let m < n. We want to show

E;.[f1a,|9]1a,, = Ea,[fla,.|G] fim-ae.,
which is equivalent to
Inla,, = Gm [fm-a.e.

Due to the definition of f, in (A.3) we know for m < n that fi,, < fi, on G
and that a corresponding density is given by

PR LR (A.4)

1( Q)

Using that p,,, is G-measurable, it follows from Bayes’ formula (see Lemma
A.31) that

Ei, [omnlG) Epn [f10,.1G] = Ei, [f Lo, PmnlG] fum-a.c.

We can rewrite this equation by using that 1q,, pm» = Lo, Lla,, pm.» and that
E;i. [Pmn|G] = Pmn fin-a.e. Since L, P, is G-measurable, we now have

_ A.28(5) _ ~
pmynEﬁm [fI]‘Qm|g] = pmynlﬂmEﬂn [fII‘Qn|g] Hm-a.€.,

which is equivalent to

1o, 9m = 1o, 9n jim-a.c.

This proves what we wanted to show as stated in (A.2) on €,,. Since g,
is 0 elsewhere we are done with this part. Therefore, we can conclude that
gn g € L°(Q,G, ) for n — oo and glg, = g, p-a.e. for all n € N.

Now, note that with (A.3) we have fi,, < pon G. A corresponding density

is given by
1

pn = ——— 1. .
U(Qn) .
Let G € Ryg, then the following holds true by (A.2).

B[/ 10, 1] = ()8, | 5] — i@, )8, 1,1
= (2B, [0, 16) & u(Qu)Bz [0n1e]  (A5)
= N(Qn)EM _%] = Eﬂ[gnliﬂn ILG]’
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where we used the existence of the conditional expectation for probability
measures (see Theorem A.27). By using the monotone convergence theorem
in Theorem A.18 we can conclude that

A8 (A5)

E.[flg] =" lim E,[flo,1¢] =" lim E,[glq,1d] =

E#[QHG]J

which proves (2.3).

It remains to show that ¢ is a.e. unique. In order to do so, let h have the
same properties as g and consider an € > 0 such that for B := {g > h + ¢}
we have u(B) > 0 w.l.o.g. Then together with the definition BN Q, = B,
(note that B, € Ryg) for n € N we have

w(B) <> u(BNQ,) =Y Eulpna,] < % > Eul(g—h)1g,]

neN neN neN

1
==Y E,lglps,] —E,[hlp,] =0.
€ neN
=Eu[flp,] =E.[flp,]

This implies g = h p-a.e., thus the claim follows.

The general case of f taking values in K% follows by considering the
components separately (and splitting f into real and the imaginary part for
C-valued functions). O

A.3 Miscellaneous

Lemma A.32. Let ¢ : [a,b] — R be a conver and ¢ : [a,b] — R a concave
function. Then ¢ and 1) have a finite right-hand derivative ¢’ and ¥’ at
every point in the open interval (a,b) which fulfill

() > ¢\ (y)(x —y) +ey), z,y¢€ (ab),
and
P(x) <Y (y) (@ —y) +(y), =,y € (a,b).

In particular, ¢ is the upper envelope of all linear functions below its graph,
1.€.

p(z) =sup{l(z) : I(z) = az + B < ¢(2),Vz € (a,b),a, S € R}, x € (a,b),
and 1 1s the lower envelope of all linear functions above its graph, i.e.

Y(x) =inf{l(z) : {(2) = az+ B > (2),Vz € (a,b),o, € R}, z € (a,b).

94


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Proof. For the proof please refer to [12, Lemma 12.13]. m

Lemma A.33. Let (yém) :m € Nyn € N) be an array of numbers in R U
{+o0}, such that (yflm))meN 1s an increasing sequence for all n € N and
(y,(lm))neN 15 an increasing sequence for all m € N. Suppose that for fized
n €N yﬁlm) Ay = limy, oo yﬁlm) and yflm) Ay = limy, e yﬁm) for fized
m € N. Then

lim y, = lim lim yflm) = lim lim yflm) = lim y™.
n—oo n—oo Mm—0o0 mMm—r00 N—00 m—r00
Proof. For the proof please refer to [14, Section A5.1, p. 211]. O

Theorem A.34. CAUCHY-SCHWARZ INEQUALITY
Let (V,(-,-)) be an inner product space. Then

[z, ) < =l Iyl

for all z,y € V., where || - || is the norm induced by the inner product.
Proof. For the proof please refer to [15, Proposition 3.1.2(i)]. O]

Theorem A.35. FUNDAMENTAL THEOREM OF CALCULUS
Let a < b in R. Then the following two statements hold true.

(1) If f : [a,0] = R is continuous for all x € [a,b], then F(x) := [T f(t)dt
is differentiable and F' = f.

(2) If F : [a,b] — R is a continuously differentiable function, then
[P F'(t)dt = F(b) — F(a).
Proof. For the proof please refer to [4, Satz 7.24]. ]

Theorem A.36. YOUNG’S INEQUALITY FOR PRODUCTS
Let a,b € Ry and p,q € (1,00) such that 1/p+1/q=1. Then

I Xl

ab < =42

p q
with equality if, and only if, a? = b.
Proof. For a = b = 0 the claim is certainly true, since both sides equal zero.
Furthermore, for a = 0 and b > 0 the inequality holds true as well (of course,
the same goes for a > 0 and b = 0). Therefore, assume a,b > 0. Since the
logarithm is concave it follows for ¢ := 1/p that

In(ta? + (1 — t)b?) > tIn(a®) + (1 — t) In(b?) = In(a) + In(b) = In(ab)

with equality if, and only if, a? = b?. The claim now follows immediately by
exponentiating. O
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For the following definitions and theorem let E be an arbitrary Euclidean
space over the real numbers R equipped with the inner product (-,-). We
could also consider R? w.l.o.g., d € N, of real (column) d-dimensional vectors
together with its standard inner product.

Definition A.37. FENCHEL CONJUGATE'? B
Let f : E — R a function. Then the Fenchel conjugate f* : E — R is defined
by
J'(p) =sup{{p,z) — f(@)}, € E.
[AS

We call the Fenchel conjugate of f* the biconjugate and denote it by f**.
Remark A.38. The map E > ¢ — ¢(x) — f(z) € R is affine and continuous.

Definition A.39. CLOSED FUNCTIONS'
We call a function f : F — R closed if its epigraph, i.e. the set {(z,«a) €
E xR f(z) < a}, is a closed set.

Theorem A.40. FENCHEL-MOREAU THEOREM
Let f : E — R a function. Then the following three properties are equivalent.

1. f is closed and convex.
2. f=f*
3. For all x € E we have that*

f(z) = sup{a(z)|a is an affine minorant of f}.

Proof. For the proof please refer to [2, Theorem 4.2.1]. ]

Theorem A.41. INTERMEDIATE VALUE THEOREM
Let f : la,b] — R be a continuous real-valued function and a < b € R.

Then for all u € [f(a), f(b)] if f(a) < f(b) (respectively u € [f(D), f(a)] if
f(b) < f(a)) there exists a ¢ € [a,b] such that f(c) = u.

Proof. For the proof please refer to [4, Satz 5.47]. ]

17See [2, Chapter 3.3, p. 49].

18See [2, Chapter 4.2, p. 76].

9Hence, the conjugacy operation induces a bijection between proper (i.e. f(x) < +o0
for at least one xz € E and f(x) > —oo for every € E) closed convex functions.
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Abbreviations, Conventions
and Notation

List of Abbreviation

a.e. almost everywhere (with respect to a measure)
a.s. almost surely (with respect to a probability measure)
e.g. for example (lat. ezempli gratia)
ie. that is to say (lat. id est)
resp. respectively
w.l.o.g. without loss of generality
w.r.t. with respect to
Conventions

e We use increasing, decreasing, larger and smaller in the weak sense and
use strictly increasing, strictly decreasing, strictly larger and strictly
smaller, if we want to exclude equality.

e We may use positive in place of non-negative, and say strictly positive,
when we mean it.

e The subset relation C does not exclude equality of the two sets.

Symbols

< absolute continuity (between two measures)

|- absolute value on R and C, the Euclidean norm
on R? and C? (for d € N)

|- lpi=(f]-Pd¥  17-nom

()¢ complement of a set
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T > < W=

Z ~
\'. — N
< +

F® X ©

Notation

ess sup
essinf

Exp(a)

E[X] = fQ X dP
E[X|F]
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converges to

monotone increasing and converging to
monotone decreasing and converging to
defining equality

empty set

there exists, there is

for all, for every

maximum of two functions

minimum of two functions

negative part of a function of measure
positive part of a function of measure
inner product defined on K¢
distribution of random variable, equality between
measures

composition of maps

product of sets

product of o-algebras

singularity (between two measures)

o-algebra of the k-dimensional Borel sets

Borel g-algebra of the topological space S

the field of complex numbers

covariance matrix E[(X — E[z])(Y — E[Y])}]
Euler’s number 2,71828. .., also used for the ex-
ponential function

essential supremum

essential infimum

exponential distribution with parameter «
expected value of random variable

conditional expectation of random variable under
the o-algebra F

Jo fdu

conditional expectation of a function f under the
o-algebra F

o-algebra of the sample space €2

o-algebra associated with the stopping time 7
filtration of a o-algebra F

mostly a sub-o-algebra of F
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X: Q=R

X:TxQ—R
Z={.,-2,-1,01,2 .}

0
(Q,F, p)

(Q7 F? IF? /"L)
(2, F,P)
(Q,F,F,P)

={1,2,3,..}

R U {—o0, +o0}

indicator function of the set I

d-dimensional vector space of real or of complex
numbers (for d € N)

set of all measurable functions f who’s p-th power
is integrable (for p > 1)

quotient space of L? such that || ||, defines a norm
on it (for p > 1)

vector space of measurable functions w.r.t. F
the Borel-Lebesgue measure

mostly a o-finite measure

natural numbers (without zero)

power set, i.e. the set of all subsets of €2
probability measure on the measure space (2, F)
the field of rational numbers or a probability mea-
sure

the field of real numbers

set of extended real numbers

set of positive real numbers

set of extended positive real numbers

delta-ring of all sets in G such that f is integrable
can refer to a stopping time w.r.t. a filtration when
defined as such

a subset of R

the set T' with its supremum ¢* added

the infimum of T in R

the supremum of 7" in R

a stopping time w.r.t. a filtration

a utility function

first and second derivative of u

variance of a random variable w.r.t a probability
measure Q

a random variable

a stochastic process

the commutative ring of integers

sample space

mostly a o-finite measure space (unless stated oth-
erwise)

a filtered o-finite measure space

a probability space

a filtered o-finite measure space
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