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Kurzfassung

Ziel dieser Diplomarbeit ist es, die Martingaltheorie für σ-endliche Maßräume
und σ-integrierbare Funktionen zu erweitern und bekannte Doob’sche Unglei-
chungen zu verallgemeinern und zu verbessern. Zu Beginn wird eine schwäch-
ere Form der Integrierbarkeit, die σ-Integrierbarkeit, vorgestellt, um die Exis-
tenz eines bedingten Erwartungswerts einer Funktion gegeben einem σ-end-
lichen Maß sowie dessen Eigenschaften zu beweisen. Infolgedessen wird der
Begriff der σ-integrierbaren (Sub-/Super-)Martingale, welcher dieser Arbeit
ihren Titel gibt, eingeführt.

Das Herzstück der Arbeit behandelt Erweiterungen und Verbesserungen
der Doob’schen Maximalungleichungen sowie der Doob’schen Lp-Ungleich-
ungen für σ-integrierbare Submartingale auf σ-endlichen Maßräumen. Die
zugehörigen Beweise werden dabei mithilfe rein deterministischer Unglei-
chungen geführt. Es wird weiters versucht, sich von der Notwendigkeit der
Adaptiertheit sowie jener eines Start- und Endpunktes der betrachteten Peri-
ode zu befreien. Anschließend wird diskutiert, unter welchen Gegebenheiten
die unterschiedlichen Ungleichungen zu Gleichheiten werden können. Beispie-
le dienen hierbei der weiteren Veranschaulichung.

Das letzte Kapitel gibt Aufschluss darüber, wie die verbesserten und er-
weiterten Doob’schen Ungleichungen PraktikerInnen bei ihrer Arbeit in der
Finanz- und Versicherungsmathematik unterstützen können. Beispielsweise
ergeben sich durch die Ungleichungen minimale obere Schranken für den Er-
wartungswert des essenziellen Supremums des diskontierten Preisprozesses,
welcher bekannterweise unter einem risikoneutralen Maß zumMartingal wird.
Andererseits können die verbesserten Doob’schen Ungleichungen eingesetzt
werden, um den Verlust einer Versicherungspolizze abzuschätzen. Die Beson-
derheit in beiden Fällen ist, dass das maximale Risiko zu jedem Zeitpunkt
innerhalb einer beobachteten Periode abgeschätzt werden kann. Somit bie-
ten die Erkenntnissse dieser Arbeit Möglichkeiten Risiken intertemporär zu
kontrollieren.
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Abstract

The main goal of this thesis is to expand the theory of martingales to σ-finite
measure spaces and σ-integrable functions. First, we introduce a weakened
form of integrability, the σ-integrability, in order to show the existence of
conditional expectations of functions w.r.t. σ-finite measures and properties
thereof. Furthermore, we introduce the eponymous term of this thesis, σ-
integrable (sub-/super-)martingales.

The core of this thesis consists of various generalisations and improve-
ments of Doob’s maximum and Lp-inequalities for σ-integrable submartin-
gales on σ-finite measure spaces. For the proofs we rely on purely determinis-
tic inequalities. Furthermore, we free ourselves from the need for adaptedness
and the need for a period’s starting and endpoint. Last but not least, we dis-
cuss under what circumstances our improved inequalities hold with equality
and give examples thereof.

The final chapter gives an outlook on how our improved versions of Doob’s
Lp-inequalities can help practitioners in the fields of financial and actuarial
mathematics. For example, the findings of this thesis enable practitioners
to determine upper bounds for the expectation of the essential supremum
of the discounted price process (which is a martingale given a risk neutral
measure). On the other hand, the findings of this thesis provide upper bounds
for the expected essential supremum of the loss random variable. This enables
practitioners to make informed statements concerning the expected loss of
a insurance contract. In particular, in both cases practitioners can estimate
the maximal risk at any time within a certain period, which may assist them
in intertemporal risk control.
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und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und
Hilfsmittel nicht benutzt bzw. die wörtlich oder sinngemäß entnommenen
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Chapter 1

Introduction

The theory of martingales was first introduced by Paul Lévy1 in 1925. Around
30 years after its initial introduction, Joseph L. Doob2 greatly contributed to
its expansion to the theory of stochastic processes. Today martingales play
a vital role in financial and actuarial mathematics and cannot be overlooked
in education either. However, the theory of martingales is often treated
solely on probability spaces (Ω,F ,P), where martingales are commonly de-
fined as integrable processes M := (Mt)t∈T that are adapted to a filtration
F := (Ft)t∈T , i.e. Mt is Ft-measurable for all t in T ⊂ R, with values in Kd

such that
Ms

a.s.
= E[Mt|Fs] (1.1)

for all s ≤ t in T . M is called a submartingale, if Kd = R and

Ms

a.s.

≤ E[Mt|Fs] (1.2)

for all s ≤ t in T and supermartingale, if (1.2) is reversed3. The goal of
this thesis is to expand the theory of martingales by adapting it to σ-finite
measure spaces. René Schilling laid out the groundwork thereof in 2005 but
focused on discrete time, whereas this thesis considers continuous time.

Chapter 2 first introduces the definition of σ-integrable functions. We
use this generalisation of integrability to expand the theory of the condi-
tional expectation to σ-finite measure spaces. We also show that many
well-known properties of the conditional expectation w.r.t. probability mea-
sures still hold when considering σ-finite measures. Lastly, we define (sub-
/super-)martingales on σ-finite measure spaces via the generalised version of

1* 15 September 1886 in Paris, † 15 December 1971 in Paris
2* 27 February 1910 in Cincinnati, Ohio, † 7 June 2004 in Urbana, Illinois
3See [13, Definition 4.1 and Definition 4.49]
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the conditional expectation and introduce the eponymous term for this the-
sis, σ-integrable (sub-/super-)martingales, before proving that finite optional
stopping also holds for our definition of submartingales.

Chapter 3 proves the central theorem of this thesis: Doob’s classical Lp-
inequality for submartingales for p > 1 on σ-finite measure spaces (see Theo-
rem 3.2). An important tool for the proof are Doob’s maximum inequalities,
which also hold true on our generalised setting, as we show in Theorem 3.1.
Moreover, Chapter 4 proves that Doob’s maximum inequalities can be gen-
eralised and improved even further by relying on quite simple deterministic
inequalities.

The core of this thesis is Chapter 5, which proves various improvements
to Doob’s classical Lp-inequality for σ-integrable submartingales on σ-finite
measure spaces. Like in the previous chapter the proofs rely on rather basic
deterministic inequalities. Throughout the chapter we try to free ourselves
from the need of a starting and endpoint of a period within our time span T
and prove sharper versions of Doob’s inequalities for p > 1 (see Theorem 5.2),
p = 1 (see Theorem 5.8) and p ∈ (0, 1) (see Theorem 5.14) on our generalised
setting. Last but not least, we will discuss under what circumstances our
improved inequalities hold with equality and give examples thereof.

The final chapter gives an outlook on how our improved versions of Doob’s
Lp-inequalities can help practitioners in the fields of financial and actuarial
mathematics. For example, our findings provide upper bounds for the expec-
tation of the essential supremum of the discounted price process, which is a
martingale given a risk neutral measure. Furthermore, the newly developed
inequalities in this thesis can be used to find upper bounds for the expecta-
tion of the essential supremum of the loss random variable. Hence, they may
help practitioners to make informed statements concerning the expected loss
of a insurance contract. Finally, we summarise our findings and the novelties
of our work to conclude this thesis.
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Chapter 2

Martingales in σ-Finite
Measure Spaces

2.1 The Conditional Expectation

in σ-Finite Measure Spaces

This chapter introduces a generalised definition of the conditional expectation
on σ-finite measure spaces based on the concept of σ-integrable functions.
We will prove that the fundamental properties for the conditional expectation
for probability spaces and random variables can be adapted to this setting as
well. This newly developed theory will be essential in order to prove Doob’s
Lp-inequality for submartingales.

For the entirety of this thesis (unless stated otherwise) let (Ω,F , µ) be
a σ-finite measure space. In general, within this thesis we will mainly look
at measurable functions that take values in Kd, d ∈ N. Therefore – unless
indicated otherwise – let f ∈ L0(Ω,F , µ;Kd) take values in either Rd or Cd.
For d > 1 apply the newly developed theory to each K-valued function fi,
i = 1, . . . , d such that f = (f1, . . . , fd).

For comparability reasons we wish to introduce a similar notation to the
expected value of random variables as the integral w.r.t. the σ-finite measure
µ. First, let f take values in R and define

∫
f dµ =

∫
f+ dµ −

∫
f− dµ for

f ∈ L0(Ω,F , µ;R) with f = f+ − f− such that min{
∫
f+ dµ,

∫
f− dµ} <∞.

Notation: Eµ[f ] :=
∫

Ω
f dµ

If f takes values in C, we will use the same notation and apply the definition
above to the real and imaginary part of f . In the case of Kd consider the
notation applied componentwise.
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Later on we shall use a similar notation when it comes to conditional
expectations. We will start off with introducing the definition of σ-integrable
functions, which is a key aspect for this thesis.

2.1.1 σ-Integrable Functions

The following definition and the newly developed theory thereafter are in-
spired by the work of [7], who introduced a generalised definition for the
conditional expectation w.r.t. probability measures and random variables.
Functions that satisfy the properties below will play a key role in proving
that the theory of the conditional expectation can be expanded to functions
on σ-finite measure spaces.

Definition 2.1. Let f ∈ L0(Ω,F , µ;Kd) and G ⊂ F be a sub-σ-algebra of
F . Then f is called σ-integrable w.r.t. G, if there exists a sequence (Ωn)n∈N
in G with Ωn ր Ω as n→ ∞ such that

f✶Ωn ∈ L1(Ω,F , µ;Kd), n ∈ N.

Before we go any further we would like to give some examples for σ-
integrable functions. For this purpose we will specifically look at functions
that are σ-integrable, but not integrable, because it follows immediately that
integrable functions are also σ-integrable. Furthermore, we would like to give
a quick overview of some properties of σ-integrable functions, which will help
us later on.

Example 2.2. Consider the measurable space (N,P(N)) together with the
finite measure µ({n}) := n−2. Then the identity function f : n 7→ n for
n ∈ N is not integrable, because

∫
f dµ =

∑∞
n=1

1
n2n = ∞. However, f is

σ-integrable w.r.t. P(N), because we have with Ωn := {1, . . . , n}, n ∈ N, a
sequence as required in the definition above: simply note that Ωn ր N as
n→ ∞, Ωn ∈ P(N) and

∫
f✶Ωn dµ =

∑n
i=1

1
i2
i <∞ for all n ∈ N.

Example 2.3. Consider the measure space (R,BR, λ), where BR refers to the
σ-algebra of one-dimensional Borel sets on the topological space R and λ to
the Lebesgue–Borel measure. The function f : R → R, where

f(x) =

{

0 if x = 0,
1
x

otherwise,

is not λ-integrable on R, because the integral
∫

R
|f | dλ is infinite for two

reasons: the singularity at 0 and the slow decay of |f(x)| as x → ±∞.
However, f is σ-integrable w.r.t. BR, since we have with Ωn := (−n,− 1

n
] ∪

4
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{0}∪
[
1
n
, n
)
, for n ∈ N, a sequence as required in Definition 2.1: simply note

that |f | is an even1 function and that Ωn ր R as n→ ∞, Ωn ∈ BR and
∫

R

|f |✶Ωn dλ =

∫

{0}

|f | dλ+ 2

∫

[ 1
n
,n)

|f | dλ = 2

∫ n

1
n

1

x
dx = 4 ln(n) <∞

for all n ∈ N.

Lemma 2.4. Let G ⊂ F be a sub-σ-algebra of F and let all functions below
take values in Kd unless stated otherwise.

(1) Let a ∈ K and f, g be σ-integrable functions w.r.t. G. Then af + g is
again a Kd-valued σ-integrable function w.r.t. G.

(2) If µ|G is σ-finite and f G-measurable, then f is σ-integrable w.r.t. G.

(3) Let f be σ-integrable w.r.t. G. If g is a G-measurable function, then gf
is σ-integrable w.r.t. G.

(4) f is σ-integrable w.r.t. G if, and only if, |f | is σ-integrable w.r.t. G.

(5) Let f be an F-measurable function. If |f | ≤ g µ-a.e., where g is an R-
valued σ-integrable function w.r.t. G, then f is also σ-integrable w.r.t.
G. Thus, if µ|G is σ-finite and f is bounded, we can conclude that f is
also σ-integrable w.r.t. G.

(6) If f, g are R-valued σ-integrable functions w.r.t. G, then so are f ∨ g
and f ∧ g.

(7) Let (fn)n∈N be a sequence of σ-integrable functions w.r.t. G such that
fn ≥ g µ-a.e. for all n ∈ N and a σ-integrable function g w.r.t. G. If
µ|G is σ-finite, the infimum infn∈N fn is also σ-integrable w.r.t. G.

Proof. (1) Since f and g are σ-integrable w.r.t. G, there exist sequences
(Φn)n∈N, (Ψn)n∈N in G with Φn,Ψn ր Ω as n→ ∞ such that f✶Φn and g✶Ψn

are µ-integrable for all n ∈ N. Define Ωn = Φn ∩Ψn. Then (Ωn)n∈N is again
a sequence in G with Ωn ր Ω as n → ∞. Furthermore, (af + g)✶Ωn is
µ-integrable and therefore a σ-integrable function w.r.t. G.

(2) Since µ|G is σ-finite, there exists a sequence (Ωn)n∈N in G with µ(Ωn) <
∞ for all n ∈ N such that

⋃

n∈N Ωn = Ω. By setting Ωn := Ωn ∩ {|f | ≤ n}

for n ∈ N we have found a sequence with Ωn ∈ G for all n ∈ N (due to the
G-measurability of f) and Ωn ր Ω as n→ ∞. Since

Eµ[|f✶Ωn
|] ≤ nµ(Ωn) <∞,

1i.e. g := |f | has the property that g(x) = g(−x)
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it follows that f✶Ωn
∈ L1(Ω,F , µ) for all n ∈ N. Therefore, f is σ-integrable

w.r.t. G.
(3) Let (Ωn)n∈N in G be the corresponding sequence such that f is σ-

integrable w.r.t. G and define Ωn := Ωn ∩ {|g| ≤ n} for n ∈ N. Then it
follows that Ωn ∈ G for all n ∈ N (due to the G-measurability of g), Ωn ր Ω
as n→ ∞ and gf✶Ωn

∈ L1(Ω,F , µ) for all n ∈ N, because

Eµ[|gf |✶Ωn
] ≤ nEµ[|f |✶Ωn ] <∞.

Thus, gf is σ-integrable w.r.t. G.
(4) Let Ωn be the sequence as required in Definition 2.1 such that f is

σ-integrable w.r.t. G. Then f✶Ωn ∈ L1(Ω,F , µ;Kd) if, and only if, |f✶Ωn | ∈
L1(Ω,F , µ;Kd) by Lemma A.13. Therefore, |f | is also σ-integrable w.r.t. G.

(5) Let Ωn be the sequence as required in Definition 2.1 such that g is σ-
integrable w.r.t. G. Then the claim follows immediately, because Eµ[|f |✶Ωn ] ≤
Eµ[|g|✶Ωn ] < ∞. For |f | ≤ c ∈ R the σ-integrability of f w.r.t. G follows
immediately by (2).

(6) Note that f ∨ g and f ∧ g are again measurable functions by Theorem
A.5. Since |f ∨ g| ≤ |f | + |g| and |f ∧ g| ≤ |f | + |g|, both functions are
σ-integrable w.r.t. G by (1), (4) and (5).

(7) Theorem A.5 shows that infn∈N fn is again a measurable function.
Thus, the claim follows by (2) and (5), because g ≤ infn∈N fn ≤ fn for all
n ∈ N.

2.1.2 Generalisation of the Conditional Expectation

Using σ-integrability, which can be viewed as a weaker form of integrability,
we wish to introduce a generalised version of the conditional expectation.
For this purpose we will need the following lemma for multiple claims and
proofs in the course of this thesis.

Lemma 2.5. Let G ⊂ F be a sub-σ-algebra of F and f, g ∈ L0(Ω,G, µ;R).

(1) If there exists a sequence (Ωn)n∈N in G with Ωn ր Ω as n → ∞ such
that f✶Ωn , g✶Ωn ∈ L1(Ω,G, µ) and

Eµ[(f✶Ωn)✶G] ≤ Eµ[(g✶Ωn)✶G], G ∈ G, n ∈ N (2.1)

then f ≤ g µ-a.e.

(2) If f and g take values in Kd and (2.1) holds with equality, then f = g
µ-a.e.
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Proof. (1) Consider An := {f−g > 1
n
} for n ∈ N. Then An ∈ G for all n ∈ N

due to the G-measurability of f and g. Hence,

0 ≥ Eµ[(g✶Ωn)✶An ] ≥ Eµ

[
1

n
✶Ωn✶An

]

=
1

n
µ(Ωn ∩ An),

which implies µ(Ωn ∩ An) = 0 for all n ∈ N. Note that {f − g > 0} =
⋃

n∈N(An ∩ Ωn). Hence,

µ({f − g > 0}) = µ
(⋃

n∈N

(An ∩ Ωn)
)

≤
∑

n∈N

µ(An ∩ Ωn) = 0

by the σ-subadditivity of measures. Thus, f ≤ g µ-a.e.
(2) We can now derive the claim for R-valued functions directly from

what we have just shown, by considering Eµ[(f✶Ωn)✶G] ≤ Eµ[(g✶Ωn)✶G] and
Eµ[(f✶Ωn)✶G] ≥ Eµ[(g✶Ωn)✶G] for all G ∈ G and all n ∈ N. If f and g take
values in C, simply apply the claim separately to the real and imaginary part
of the functions. The claim for the general case of Kd-valued functions now
follows directly by considering the components separately. This concludes
the proof.

With Definition 2.1 and Definition 2.6 below we can now introduce a
generalised version of the conditional expectation w.r.t. a sub-σ-algebra of
F . This concept is integral to the general topic of this thesis and is based on
the works of [7, ➜ 1.4, p. 10–13] who introduced a similar generalisation of the
conditional expectation regarding probability spaces and random variables.

Definition 2.6. Let f be σ-integrable w.r.t. a sub-σ-algebra G ⊂ F , where
µ|G is σ-finite. We define the delta-ring of all sets in G such that f is µ-
integrable by2

Rf,G = {G ∈ G : Eµ[|f |✶G] <∞}. (2.2)

Theorem 2.7. Existence of conditional expectation
Let f be σ-integrable w.r.t. a sub-σ-algebra G ⊂ F , where µ|G is σ-finite.
Then there exists a µ-a.e. uniquely determined g ∈ L0(Ω,G, µ;Kd) such that
g✶G ∈ L1(Ω,G, µ;Kd) and

Eµ[f✶G] = Eµ[g✶G], G ∈ Rf,G. (2.3)

We call Eµ[f |G] := g the conditional expectation of f w.r.t. G.

2Note that Rf,G is a δ-ring for all G ⊂ F . See Definition A.6 for more information.
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Remark 2.8. Let f be σ-integrable w.r.t. the sub-σ-algebra G ⊂ F and define
Rf,G like in the definition above. Then Rf,G ⊂ REµ[f |G],G for the conditional
expectation of f w.r.t. G.

Indeed : This follows immediately from the definition of the conditional
expectation in Theorem 2.7. It is important to note, however, that Rf,G can
be a strict subset of REµ[f |G],G, as the following example shows.

Example 2.9. Consider the setting of Example 2.3 and define Bsym
R = {B ∈

BR : B = {−x : x ∈ B}}. Since f is an odd function3, Eµ[f✶B] = 0 for all
B ∈ Bsym

R . This, however, is also true for the function h ≡ 0. By the a.e.-
uniqueness of the conditional expectation and (2.3) this implies Eµ[f |B

sym
R ] =

0 λ-a.e. and therefore, REµ[f |B
sym
R

],Bsym
R

= Bsym
R . However, Bk := (−k, k) ∈

Bsym
R is not an element of Rf,Bsym

R

for all k ∈ N, since
∫
|f |✶Bk

dλ = ∞.

Proof. Theorem 2.7
First, let f be an R+-valued σ-integrable function w.r.t. G and (Ωn)n∈N in G
the corresponding sequence with µ(Ωn) < ∞ for all n ∈ N and Ωn ր Ω as
n→ ∞ such that

∫

Ωn
|f | dµ <∞ for all n ∈ N.

First, define

ν(G) =

∫

G

f dµ, G ∈ G.

Since f ≥ 0 and by the monotone convergence theorem in Theorem A.18 it
follows that ν is a σ-finite measure on G (and even finite on Rf,G). Further-
more, ν ≪ µ on G due to the definition above. According to the Radon–
Nikodým theorem in Theorem A.14 there exists a µ-a.e. uniquely determined
G-measurable function g : Ω → R+ such that

ν(G) =

∫

G

g dµ, G ∈ G. (2.4)

Now, let G ∈ Rf,G. It follows that g✶G ∈ L1(Ω,G, µ) since

∫

G

g dµ =

∫

G

f dµ <∞,

and thus, for Eµ[f |G] := g we have (2.3) for this case.
To treat the R-valued case, consider f = f+−f−. Since f is σ-integrable,

then so are its negative and positive part, as Lemma 2.4(4) shows. We
have just proved, that for f+ and f− Theorem 2.7 gives us the existence
of two µ-a.e. uniquely determined G-measurable functions g+ and g− with
g± : Ω → R+ such that g±✶G ∈ L1(Ω,G, µ) and Eµ[f

±
✶G] = Eµ[g±✶G] for all

3i.e. −f(x) = f(−x).
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G ∈ Rf,G. Due to the additivity of the integral in Theorem A.12(2) it follows
that for g := g+ − g− we have g✶G ∈ L1(Ω,G, µ) and Eµ[f✶G] = Eµ[g✶G] for
all G ∈ Rf,G.

Finally, it remains to show that g is a.e. unique. In order to do so, let h
have the same properties as g. Then Eµ[h✶G] = Eµ[g✶G] for all G ∈ Rf,G by
(2.3). This implies g = h µ-a.e. by Lemma 2.5(2).

If f takes values in C, the claim still holds, because we can apply what we
have just proved to both the real and the imaginary part of f . The Kd-valued
case follows by considering the components separately.

Remark 2.10. The assumption in Theorem 2.7 that µ|G is σ-finite is essential,
because otherwise we could not rely on the Radon–Nikodým theorem in (2.4).
For example, consider the measure space (R,BR, λ), where λ denotes the
Borel–Lebesgue measure and G := {∅,R}, which is a sub-σ-algebra of BR.
Then for f ≡ c ∈ R the integral

∫

R
f dλ is infinite and there does not exist a

uniquely determined function g : R → R+ such that
∫

R
f dλ =

∫

R
g dλ.

There is, in fact, another way to prove Theorem 2.7 without the assump-
tion that µ|G is σ-finite, which relies on the Bayes’ formula (see Theorem
A.31). However, we decided to base our theory on the proof above with all
the necessary assumptions as it is more straightforward and similar to the
proof of the existence of the conditional expectation for random variables
and probability spaces. If interested in the alternative approach to proving
(2.3), please refer to page 92.

Remark 2.11. Generalisation of the conditional expectation. Let f be an
R-valued F -measurable function with decomposition f = f+ − f−, where
f± := max{0,±f}, and G ⊂ F a sub-σ-algebra such that µ|G is σ-finite.

(1) For functions with σ-integrable negative part : Assume that f− is σ-
integrable w.r.t. G, but f+ might not be. Define fn = min{n, f} and
note that fn is bounded from above and therefore σ-integrable w.r.t. G
for all n ∈ N (see Lemma 2.4(5)). Then, by Theorem 2.7, the condi-
tional expectation Eµ[fn|G] exists. As we will show in the next theorem,
it follows that Eµ[fn|G] ≤ Eµ[fn+1|G] µ-a.e. for all n ∈ N due to the
monotonicity of the conditional expectation (see Theorem 2.12(3) and
its proof). Hence, we may conclude that

Eµ[f |G] := lim
n→∞

Eµ[fn|G]

is µ-a.e. pointwise well-defined with values in R ∪ {+∞}.

(2) For functions with σ-integrable positive part : Assume that f+ is σ-
integrable w.r.t. G, but f− might not be. Define fn = max{−n, f}
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and note that fn is bounded from below and therefore σ-integrable
w.r.t. G for all n ∈ N (see Lemma 2.4(5)). Then, by Theorem 2.7, the
conditional expectation Eµ[fn|G] exists. As we will show in the next
theorem, it follows that Eµ[fn|G] ≥ Eµ[fn+1|G] µ-a.e. for all n ∈ N

due to the monotonicity of the conditional expectation (see Theorem
2.12(3) and its proof). Hence, we may conclude that

Eµ[f |G] := lim
n→∞

Eµ[fn|G]

is µ-a.e. pointwise well-defined with values in R ∪ {−∞}.

We will use this generalisation of the conditional expectation w.r.t. a sub-
σ-algebra of F in situations where we cannot ensure the σ-integrability of
the function. Examples of its use can be found in Theorem 2.12(5) and (8).

The main goal of Chapter 4 and Chapter 5 is to prove generalised and
improved versions of Doob’s maximum and Lp-inequalities for our newly de-
veloped understanding of the conditional expectation and σ-integrable sub-
martingales, which we will introduce shortly. In order to do so, we need some
of the fundamental properties listed in the theorem below.

Theorem 2.12. List of properties
Let (Ω,F , µ) be a σ-finite measure space and G a sub-σ-algebra of F such
that µ|G is σ-finite. Unless stated otherwise, let f be a Kd-valued σ-integrable
function w.r.t. G. Then the following properties hold true:

(1) If f ∈ L0(Ω,G, µ;Kd), then Eµ[f |G] = f µ-a.e.

(2) Law of total expectation: If f is integrable, then Eµ[Eµ[f |G]] = Eµ[f ].

(3) Monotonicity: Let Kd = R and g be another R-valued σ-integrable
function w.r.t. G. If f ≤ g µ-a.e., then Eµ[f |G] ≤ Eµ[g|G] µ-a.e.

(4) Linearity: Let a ∈ K and g be another Kd-valued σ-integrable function
w.r.t. G. Then af + g is again a Kd-valued σ-integrable function w.r.t.
G and

Eµ[af + g|G] = aEµ[f |G] + Eµ[g|G] µ-a.e.

(5) Conditional monotone convergence theorem: Let Kd = R and (fn)n∈N
be an increasing sequence of F-measurable functions with values in R,
which are not necessarily σ-integrable w.r.t. G, such that fn ≥ g µ-
a.e. for all n ∈ N and an R-valued σ-integrable function g w.r.t. G. If
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fn ր f µ-a.e. as n→ ∞ for a F-measurable function f with values in
R, which is also not necessarily σ-integrable w.r.t. G, then4

lim
n→∞

Eµ[fn|G] = Eµ[f |G] µ-a.e. (2.5)

(6) Take out what is known:

(a) If g ∈ L0(Ω,G, µ;Kn×d), then fg is σ-integrable w.r.t. G with val-
ues in Kn and

Eµ[gf |G] = g Eµ[f |G] µ-a.e.

(b) If f is a positive F-measurable function, but not necessarily σ-
integrable w.r.t. G, that takes values in R and g is a positive G-
measurable function with values in R, then

Eµ[gf |G] = g Eµ[f |G] µ-a.e.

(7) Tower property: If H ⊂ G is a further sub-σ-algebra of F and f is
σ-integrable w.r.t. H (which implies the σ-integrability w.r.t. G), then
Eµ[f |G] is σ-integrable w.r.t. H and

Eµ[Eµ[f |G] |H] = Eµ[f |H] µ-a.e.

(8) Conditional version of Fatou’s lemma: Let Kd = R and (fn)n∈N be a
sequence of F-measurable functions with values in R, which are not
necessarily σ-integrable w.r.t. G, such that fn ≥ g µ-a.e. for all n ∈ N

and an R-valued σ-integrable function g w.r.t. G. Then5

Eµ

[

lim inf
n→∞

fn

∣
∣
∣G
]

≤ lim inf
n→∞

Eµ[fn|G] µ-a.e.

If fn ≤ g µ-a.e. for all n ∈ N, then6

Eµ

[

lim sup
n→∞

fn

∣
∣
∣G
]

≥ lim sup
n→∞

Eµ[fn|G] µ-a.e.

4Please refer to Remark 2.11(1) for the generalised definition of the conditional expec-
tation of F-measurable functions, which are not necessarily σ-integrable w.r.t. a sub-σ-
algebra of F .

5Note that f̃ := lim infn→∞ fn might not be σ-integrable w.r.t. G. In that case define
Eµ[f̃ |G] according to Remark 2.11(1).

6The function f̂ := lim supn→∞ fn might not be σ-integrable w.r.t. G. In that case

define Eµ[f̂ |G] according to Remark 2.11(2).
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(9) Conditional version of Jensen’s inequality: Let C ⊂ R be an interval
or C ⊂ Rd an open, convex set and assume that f takes values in C.
If ϕ : C → R is a convex function such that ϕ(f) is σ-integrable w.r.t.
G, then

ϕ(Eµ[f |G]) ≤ Eµ[ϕ(f)|G] µ-a.e. (2.6)

If ϕ is concave, the inequality is reversed.

(10) Conditional dominated convergence theorem: Again, let (fn)n∈N be a
sequence of F-measurable functions with values in Kd such that |fn| ≤ g
µ-a.e. for all n ∈ N and some R-valued σ-integrable function g w.r.t.
G. If fn → f µ-a.e. as n → ∞ for an F-measurable7 function f with
values in Kd, then8

lim
n→∞

Eµ[fn|G] = Eµ[f |G] µ-a.e.

(11) Conditional version of Hölder’s inequality: Let f and g be F-measurable
functions with values in Kd, which are not necessarily σ-integrable w.r.t.
G. Furthermore, let p, q ∈ (1,∞) with 1/p+ 1/q = 1. Then9

Eµ[ |〈f, g〉| |G] ≤ (Eµ[|f |
p|G])1/p(Eµ[|g|

q|G])1/q µ-a.e., (2.7)

where 〈·, ·〉 : Kd ×Kd → R denotes the inner product defined on Rd or
Cd. In (2.7) 0 times ∞ as well as ∞ times 0 means 0 and ∞ times
a > 0 gives ∞.

Proof. Similarly to Definition 2.6 define Rf,g,G = {G ∩ Ḡ : G ∈ Rf,G, Ḡ ∈
Rg,G}, where g is another σ-integrable function w.r.t. G.

(1) This follows directly from Lemma 2.5(2) and the definition of the con-
ditional expectation in Theorem 2.7 by observing that G-measurable func-
tions are also σ-integrable w.r.t G (see Lemma 2.4(2)).

(2) For integrable f we have Ω ∈ Rf,G = G and thus, the claim follows
directly from the definition of the conditional expectation in Theorem 2.7.

(3) It follows for f ≤ g µ-a.e. that

Eµ[Eµ[f |G]✶G] = Eµ[f✶G] ≤ Eµ[g✶G] = Eµ[Eµ[g|G]✶G]

7The F-measurability of f is a necessary assumption, because the µ-a.e.-limit of F-
measurable functions does not necessarily have to be F-measurable itself.

8Please refer to Remark 2.11 for the generalised definition of the conditional expectation
of F-measurable functions, which are not necessarily σ-integrable w.r.t. a sub-σ-algebra
of F .

9Please refer to Remark 2.11 for the generalised definition of the conditional expectation
of F-measurable functions, which are not necessarily σ-integrable w.r.t. a sub-σ-algebra
of F .
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for all G ∈ Rf,g,G. Lemma 2.5(2) then implies the claim.
(4) We will prove the claim for Kd = R, then it also holds for Kd = C

by the same arguments applied to the real and imaginary part as well as the
general case Kd by applying the arguments componentwise. The fact that
af + g is a σ-integrable function w.r.t. G has already been shown in Lemma
2.4(1). Therefore, the claim holds true by Lemma 2.5(2) and the linearity of
the integral in Theorem A.12, since

Eµ[Eµ[(af + g)|G]✶G]
2.7
= Eµ[(af + g)✶G]

= aEµ[f✶G] + Eµ[g✶G]
2.7
= aEµ[Eµ[f |G]✶G] + Eµ[Eµ[g|G]✶G]

for all G ∈ {G ∩ Ḡ ∩ G̃ : G ∈ Rf,G, Ḡ ∈ Rg,G, G̃ ∈ Raf+g,G}.
(5)10 Step 1 : Let us first assume that f and fn are σ-integrable w.r.t. G

for all n ∈ N. Note that11 Rg,G ∩ Rf,G ⊂ Rfn,G for all n ∈ N. This is true,
since for R ∈ Rg,G ∩ Rf,G we have Eµ[|g|✶R] ≤ Eµ[|fn|✶R] ≤ Eµ[|f |✶R] < ∞,
which implies R ∈ Rfn,G. We will need this further on in order to apply
Theorem 2.7 to fn, n ∈ N. Now, define hn = Eµ[fn|G] for all n ∈ N and note
that Rg,G ∩ Rf,G ⊂ Rhn,G for all n ∈ N by Remark 2.8, since hn ≥ g µ-a.e.
due to the monotonicity of the conditional expectation in (3). Furthermore,
(hn)n∈N is a µ-a.e. increasing sequence of functions. For h := lim supn→∞ hn
it follows by Theorem A.5 that h is G-measurable. Since hn ր h µ-a.e. as
n → ∞ we may now use the dominated convergence theorem as stated in
Theorem A.17 and deduce that
∫

G

Eµ[f |G] dµ
2.7
=

∫

G

f dµ
A.17
= lim

n→∞

∫

G

fn dµ
2.7
= lim

n→∞

∫

G

hn dµ
A.17
=

∫

G

h dµ

for all G ∈ Rg,G ∩Rf,G ⊂ Rh,G. Thus, the claim follows by Lemma 2.5(2).
Step 2 : In case f and fn are only F -measurable but not σ-integrable

w.r.t. G, define f
(m)
n = fn ∧ m for m ∈ N. Then f

(m)
n ≥ g ∧ 0 and f

(m)
n is

σ-integrable w.r.t. G for all n ∈ N and the same goes for f ∧m since both are
bounded from above (see Remark 2.11(1)). Also, Eµ[f

(m)
n |G] ≤ Eµ[f

(m+1)
n |G]

µ-a.e. for all m,n ∈ N by (3). Note that f
(m)
n ր (f ∧ m) for n → ∞ and

(f ∧m) ր f for m→ ∞. Thus,

lim
m→∞

lim
n→∞

Eµ[f
(m)
n |G] = lim

m→∞
Eµ[f ∧m|G]

2.11
= Eµ[f |G] µ-a.e.,

10This proof was inspired by [14, Section 9.8, Property (e), p. 89].
11Note that Rf,G ⊂ Rfn,G for all n ∈ N on its own does not hold true. Consider the

measure space (R,B, λ), where B is the Borel-σ-algebra on R and λ the Lebesgue–Borel
measure on R. Define a sequence of functions by fn(x) := − 1

n
|x| for x ∈ R and n ∈ N.

Then fn converges to the constant function f ≡ 0, for which Rf,B = B. However, since
fn is not integrable over open intervals, Rf,B 6⊂ Rfn,B for n ∈ N.
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where we used the conditional monotone convergence theorem proved for
Step 1 for the first equality and the generalised definition of the conditional
expectation in Remark 2.11(1) for the last one. Again, by applying the
conditional monotone convergence theorem proved for Step 1 it follows that

lim
m→∞

Eµ[f
(m)
n |G] = Eµ[fn|G] µ-a.e., n ∈ N.

Now simply apply Theorem A.33, which gives

lim
n→∞

Eµ[fn|G] = Eµ[f |G] µ-a.e.

(6a)The σ-integrability of gf w.r.t G follows immediately from Lemma
2.4(3). Therefore, it remains to show that for all G ∈ Rf,fg,G we have

Eµ[gf✶G] = Eµ[Eµ[gf |G]✶G] = Eµ[g Eµ[f |G]✶G]. (2.8)

In order to do so we will treat different cases for g and assume that g takes
values in R. For the complex-valued case we simply need to apply the steps
below to the real- and the imaginary part of g. It remains to apply this to
each component in the case that g takes values in Kn×d and we are done.

Step 1 : g := ✶H , H ∈ Rf,G. It follows immediately that (2.8) holds true
because

∫

G

Eµ[gf |G] dµ
2.7
=

∫

G

gf dµ
2.7
=

∫

G∩H

Eµ[f |G] dµ =

∫

G

g Eµ[f |G] dµ

for all G ∈ Rf,G due to the definition of the conditional expectation. Thus,
by Lemma 2.5(2) the claim follows for this case.

Step 2 : g :=
∑n

k=1 γk✶Gk
, for γ1, . . . , γn ∈ R+, G1, . . . , Gn ∈ G and n ∈ N.

Then (2.8) follows immediately from Step 1 and due to the linearity of the
integral as stated in Theorem A.12(1) and (2).

Step 3 : 0 ≤ g ∈ L0
+(Ω,G, µ;R). By Lemma A.4 there exists a sequence of

monotonously increasing non-negative simple functions (see Definition A.3)
(gn)n∈N such that g = limn→∞ gn. Thus, we may apply the conditional mono-
tone convergence theorem proven in Step 2, which yields (2.8) for this case.

Step 4 : g ∈ L0(Ω,G, µ;R). For this case consider g = g+ − g−. Then
(2.8) follows by Step 3 and the linearity of the integral.

(6b) In case f is only F -measurable but not σ-integrable w.r.t. G, define
fn = f ∧n for n ∈ N and the conditional expectation of f w.r.t. G according
to Remark 2.11. Then by (6a) we can conclude that Eµ[gfn|G] = g Eµ[fn|G]
µ-a.e. Since gfn ≥ 0 and gfn ր gf for n → ∞, the conditional monotone
convergence theorem in (5) yields

g Eµ[f |G] = g lim
n→∞

Eµ[fn|G] = lim
n→∞

Eµ[gfn|G] = Eµ[gf |G] µ-a.e.
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(7)12 Since f is σ-integrable w.r.t. H ⊂ G, there exists a sequence (Ωn)n∈N
in H according to Definition 2.1. Due to (6) we then have that Eµ[f✶Ωn |G] =
✶ΩnEµ[f |G] µ-a.e. for all n ∈ N, which implies that Eµ[f |G] is also σ-integrable
w.r.t. H.

Furthermore, it follows from the definition of the conditional expectation
in Theorem 2.7 that

Eµ[f✶H ] = Eµ[Eµ[f |H]✶H ] (2.9)

for all H ∈ Rf,H. Now note that Rf,H ⊂ Rf,G. Using (2.9) for Eµ[f |G]
instead of f it follows that

Eµ[f✶H ] = Eµ[Eµ[f |G]✶H ] = Eµ[Eµ[Eµ[f |G] |H]✶H ]

for all H ∈ Rf,Eµ[f |G],H. Lemma 2.5(2) then implies the claim.
(8)13 Step 1 : Let us first assume that fn is σ-integrable w.r.t. G for all

n ∈ N and define hn = infk≥n fk, n ∈ N, which is again σ-integrable w.r.t. G
by Lemma 2.4(7). Then hn ≥ g µ-a.e. for all n ∈ N and hn ≤ fk, which by
(3) implies Eµ[hn|G] ≤ Eµ[fk|G] µ-a.e. for k ≥ n. Hence,

Eµ[hn|G] ≤ inf
k≥n

Eµ[fk|G] µ-a.e., n ∈ N. (2.10)

Furthermore, we have

lim
n→∞

hn = lim
n→∞

inf
k≥n

fk = lim inf
n→∞

fn.

Thus, it follows by the conditional monotone convergence theorem in (5) that

Eµ

[

lim inf
n→∞

fn

∣
∣
∣G
]

= Eµ

[

lim
n→∞

hn

∣
∣
∣G
]

(5)
= lim

n→∞
Eµ[hn|G]

(2.10)

≤ lim inf
n→∞

Eµ[fn|G],

which holds true µ-a.e.
For the second part of Fatou’s lemma consider hn := −fn, n ∈ N. We

may now apply the first part of the lemma, which gives us

Eµ

[

lim inf
n→∞

hn

∣
∣
∣G
]

≤ lim inf
n→∞

Eµ[hn|G] µ-a.e.,

which is
Eµ

[

lim inf
n→∞

(−fn)
∣
∣
∣G
]

≤ lim inf
n→∞

(−Eµ[fn|G]) µ-a.e.

by the definition of hn. We can rewrite this equation as

Eµ

[

lim sup
n→∞

fn

∣
∣
∣G
]

≥ lim sup
n→∞

Eµ[fn|G] µ-a.e.

12The idea for this proof was inspired by [7, Theorem 1.22, p. 12–13].
13This proof was inspired by [14, Section 5.4, p. 52–53] and [9, Satz 14.10, p. 230–231].

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

due to the relation between the limit superior and limit inferior and are done
with this proof.

Step 2 : In case fn is only F -measurable but not σ-integrable w.r.t. G for
all n ∈ N, define f

(m)
n = fn ∧ m for m ∈ N. Then f

(m)
n ≥ g ∧ 0, f

(m)
n is

σ-integrable w.r.t. G for all n ∈ N (see Remark 2.11(1)) and Eµ[f
(m)
n |G] ≤

Eµ[f
(m+1)
n |G] µ-a.e. for allm,n ∈ N by (3). Now apply the conditional version

of Fatou’s lemma proved in Step 1, which gives us

Eµ

[

lim inf
n→∞

f (m)
n

∣
∣
∣G
]

≤ lim inf
n→∞

Eµ[f
(m)
n |G] µ-a.e. (2.11)

By definition it follows that f
(m)
n ր fn for m → ∞. Furthermore, note that

then lim infn→∞ f
(m)
n = (lim infn→∞ fn)∧mր lim infn→∞ fn for m→ ∞ and

that Eµ[f
(m)
n |G] ≤ Eµ[fn|G] µ-a.e. by the monotonicity in (3). Now we can

apply the conditional monotone convergence theorem in (5) and arrive at

Eµ

[

lim inf
n→∞

fn

∣
∣
∣G
]

(5)
= lim

m→∞
Eµ

[

lim inf
n→∞

f (m)
n

∣
∣
∣G
] (2.11)

≤ lim
m→∞

lim inf
n→∞

Eµ[f
(m)
n |G]

≤ lim inf
n→∞

Eµ[fn|G] µ-a.e.

For the second part of Fatou’s lemma define f
(m)
n = fn ∨ −m for m ∈ N.

Then f
(m)
n ≤ g ∨ 0, f

(m)
n is σ-integrable w.r.t. G for all n ∈ N (see Remark

2.11(2)) and Eµ[f
(m)
n |G] ≥ Eµ[f

(m+1)
n |G] µ-a.e. for all m,n ∈ N by (3). Now

apply the second part of the conditional version of Fatou’s lemma proved in
Step 1 to −f

(m)
n , n ∈ N. By definition it follows that −f

(m)
n ր −fn for m→

∞. Furthermore, note that then lim infn→∞(−f
(m)
n ) = (lim infn→∞(−fn)) ∧

mր lim infn→∞(−fn) for m→ ∞ and that −Eµ[f
(m)
n |G] ≤ −Eµ[fn|G] µ-a.e.

by the monotonicity in (3). Now we can apply the conditional monotone
convergence theorem in (5) and Fatou’s lemma as shown in Step 1. This
yields

Eµ

[

lim inf
n→∞

(−fn)
∣
∣
∣G
]

(5)
= lim

m→∞
Eµ

[

lim inf
n→∞

(−f (m)
n )

∣
∣
∣G
]

≤ lim
m→∞

lim inf
n→∞

Eµ[(−f
(m)
n )|G]

≤ lim inf
n→∞

(−Eµ[fn|G]) µ-a.e.

Finally, we can rewrite this inequality using the relation between the limit
superior and limit inferior and arrive at

Eµ

[

lim sup
n→∞

fn

∣
∣
∣G
]

≥ lim sup
n→∞

Eµ[fn|G] µ-a.e.
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(9) Step 1 : First, let C = [a, b] for a, b ∈ R and assume ϕ is continuous
on C. Define the function lα,β(z) := αz + β for α, β ∈ R and z ∈ C. Lemma
A.32 tells us that ϕ(x) = sup{lα,β(x) : α, β ∈ R satisfy lα,β ≤ ϕ}, x ∈ C.
Thus, for α, β ∈ R such that lα,β ≤ ϕ it follows that

lα,β(Eµ[f |G]) = αEµ[f |G] + β
(4)
= Eµ[lα,β(f)|G]

(3)

≤ Eµ[ϕ(f)|G] µ-a.e.

Hence,
ϕ(Eµ[f |G]) ≤ Eµ[ϕ(f)|G] µ-a.e.

The reverse inequality for concave functions follows immediately from
what we have just shown by simply considering −ϕ.

Now, assume that ϕ no longer needs to be continuous on C. W.l.o.g.
assume that ϕ has a discontinuity at the outer left point a ∈ C. Consider a
sequence of continuous, convex functions ϕn : C → R defined by

ϕn(x) := max{ϕ(x), ϕ(a)− n(x− a)}, x ∈ C, n ∈ N.

For this definition it follows that ϕn is continuous, convex and σ-integrable
w.r.t. G for all n ∈ N and therefore, we can apply the conditional version of
Jensen’s inequality to every ϕn as we have just shown. Thus, ϕn(Eµ[f |G]) ≤
Eµ[ϕn(f)|G] for all n ∈ N. Since ϕn ց ϕ pointwise on C as n → ∞, we can
conclude that

ϕ(Eµ[f |G]) = lim
n→∞

ϕn(Eµ[f |G]) ≤ lim
n→∞

Eµ[ϕn(f)|G]
(10)
= Eµ[ϕ(f)|G] µ-a.e.

by using the conditional dominated convergence theorem in (10).
Step 2 : The claim for convex open sets C ⊂ Rd follows via the definition of

the Fenchel conjugate (see Definition A.37) and the Fenchel–Moreau theorem
as stated in Theorem A.40. The Fenchel–Moreau theorem shows that we can
express the function f via its biconjugate, which in turn is the supremum of
affine and continuous functions. Therefore, we can reduce this case to what
we have showed in Step 1.

(10)14 Note that since |fn| ≤ g µ-a.e., it follows that also the pointwise
limit |f | ≤ g µ-a.e. and thus, f and fn are σ-integrable w.r.t. G. Now
observe that |fn − f | ≤ 2g µ-a.e., therefore, we can apply the second part of
the conditional version of Fatou’s lemma in (8), which gives us

lim sup
n→∞

Eµ[|fn − f | |G] ≤ Eµ

[

lim sup
n→∞

|fn − f |
∣
∣
∣G
]

= 0 µ-a.e.

14This proof was inspired by [14, p. 54–55, Section 5.9] and [9, p. 231, Satz 14.11].
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Furthermore, by the linearity in (4) and the conditional version of Jensen’s
inequality in (9) applied to the function x 7→ |x| we have

|Eµ[fn|G]− Eµ[f |G]| = |Eµ[fn − f |G]| ≤ Eµ[|fn − f | | G] µ-a.e.

Therefore, the claim follows.
(11)15 Step 1 : Assume that 〈f, g〉, |f |p and |g|q are σ-integrable w.r.t.

G. Define F = (Eµ[|f |
p | G])1/p and G = (Eµ[|g|

q | G])1/q and note that
F,G ∈ L0(Ω,G, µ) according to the definition of the conditional expecta-
tion in Theorem 2.7. It follows that

Eµ

[(
|f |p✶{F=0}

)
✶R

]
= Eµ

[
Eµ

[
|f |p✶{F=0}

∣
∣G
]
✶R

]

(6)
= Eµ

[
✶{F=0} Eµ[|f |

p|G]
︸ ︷︷ ︸

=F p µ-a.e.

✶R

]
= 0

for all R ∈ R|f |p,G. Thus, |f | = 0 µ-a.e. on {F = 0} ∩ Ωn for all n ∈ N and
a sequence (Ωn)n∈N ∈ R|f |p,G such that Ωn ր Ω as n → ∞. However, since
{F = 0} =

⋃

n∈N({F = 0} ∩ Ωn), we can conclude that |f | = 0 µ-a.e. on
{F = 0}. It can be shown in a similar manner that |g| = 0 µ-a.e. on {G = 0}.
Since |〈f, g〉| ≤ |f | |g| by the Cauchy-Schwarz inequality in Theorem A.34,
this implies Eµ[ |〈f, g〉| |G] = 0 µ-a.e. on {F = 0} ∪ {G = 0} and hence, the
Hölder inequality holds.

On {F = ∞, G > 0} ∪ {F > 0, G = ∞} the right-hand side of (2.7)
equals ∞ and the Hölder inequality is vacuously true.

Finally, let us consider H := {0 < F < ∞, 0 < G < ∞}. It remains to
show

Eµ

[
Eµ[ |〈f, g〉| |G]

FG
✶R

]

≤ Eµ[✶R] (2.12)

for all R ∈ {R ∩ R̄ ∩ R̃ : R ∈ R 〈f,g〉
FG

,G
, R̄ ∈ R |f |p

Fp ,G
, R̃ ∈ R |g|q

Gq ,G
} with R ⊂ H.

This is, of course, equivalent to showing (2.7) on H. By remembering the
G-measurability of F , G and R (2.12) follows quite quickly, because

Eµ

[
Eµ[ |〈f, g〉| |G]

FG
✶R

]
(6)
= Eµ

[

Eµ

[
|〈f, g〉|

FG

∣
∣
∣
∣
G

]

✶R

]

2.7
= Eµ

[
|〈f, g〉|

FG
✶R

]

By the Cauchy-Schwarz inequality in Theorem A.34 and the Hölder inequal-
ity in its original form (see Theorem A.15) we arrive at

Eµ

[
|〈f, g〉|

FG
✶R

]

≤ Eµ

[
|f |

F
✶R ·

|g|

G
✶R

]

≤

(

Eµ

[
|f |p

F p
✶R

])1/p(

Eµ

[
|g|q

Gq
✶R

])1/q

(2.13)

15This proof was inspired by the proof for the conditional Hölder inequality for prob-
ability spaces and random variables in https://en.wikipedia.org/wiki/H%C3%B6lder%

27s_inequality#Conditional_H%C3%B6lder_inequality, Stand: 18.10.2019.
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Focusing on the first term on the right-hand side of (2.13) we can again use
the definition of the conditional expectation to prove that
(

Eµ

[
|f |p

F p
✶R

])1/p
2.7
=

(

Eµ

[

Eµ

[
|f |p

F p

∣
∣
∣
∣
G

]

✶R

])1/p
(6)
=

(

Eµ

[
Eµ[|f |

p | G]

F p
︸ ︷︷ ︸

=1µ-a.e. onR

✶R

])1/p

We can make the same observation for the second term on the right-hand
side of (2.13), which finally gives us

Eµ

[
Eµ[|〈f, g〉| | G]

FG
✶R

]

≤ (Eµ[✶R])
1/p(Eµ[✶R])

1/q = Eµ[✶R].

Therefore,
Eµ[ |〈f, g〉| |G]

FG
≤ 1 µ-a-e. on H,

by Lemma 2.5(1), which implies Eµ[ |〈f, g〉| |G] ≤ FG µ-a-e. on H.
Step 2 : For the more general setting of F -measurable functions f and g

define fn = f✶{|f |≤n} and gn = g✶{|g|≤n} for n ∈ N and note that they are
both σ-integrable w.r.t. G (see Lemma 2.4(5)). Then fn → f and gn → g as
n → ∞. By applying the first part of the proof to fn and gn for all n ∈ N

we arrive at

Eµ[ |〈fn, gn〉| |G] ≤ (Eµ[|fn|
p|G])1/p(Eµ[|gn|

q|G])1/q µ-a.e.

for all n ∈ N. Since x 7→ |x|, x 7→ xp for p > 1 and the inner prod-
uct are continuous functions, it follows that |fn|

p ր |f |p, |gn|
q ր |g|q and

|〈fn, gn〉| ր |〈f, g〉| as n → ∞. By applying the conditional monotone con-
vergence theorem twice we can conclude that

Eµ[ |〈f, g〉| |G]
(5)
= lim

n→∞
Eµ[ |〈fn, gn〉| |G]

≤ lim
n→∞

(Eµ[|fn|
p|G])1/p(Eµ[|gn|

q|G])1/q

(5)
= (Eµ[|f |

p|G])1/p(Eµ[|g|
q|G])1/q µ-a.e.

This concludes the proof.

This chapter showed that the definition of the conditional expectation
can be generalised to hold on a σ-finite measure space. There are two ways
in which this can be proved. Furthermore, the usual properties that hold
for the conditional expectation (see Theorem A.28) remain true on σ-finite
measure space and thus, in a more general setting than when restricted to
random variables and probability measures. Our first steps in this chapter
play a vital role in generalising the martingale theory as can be seen in the
following chapters.
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2.2 σ-Integrable Martingales

This chapter aims to introduce a generalised definition of martingales for σ-
finite measures. Throughout this chapter, let (Ω,F , µ) be a σ-finite measure
space and T ⊂ R := R ∪ {±∞} an arbitrary index set16, unless stated
otherwise. Furthermore, define t∗ = supT and T = T ∪ {t∗}.

From now on, F := (Ft)t∈T shall refer to a filtration of F such that
Fs ⊂ Ft ⊂ F for all s, t ∈ T with s ≤ t and let (Ω,F ,F, µ) be a σ-finite
filtered measure space, meaning µ is σ-finite on17 Ft for all t ∈ T .

Theorem 2.7 and the generalised definition of the conditional expectation
will now help us to define martingales using the conditional expectation –
like it is usually the case when considering random variables and probability
measures.

Definition 2.13. Martingales as conditional expectations
Let (Ω,F ,F, µ) be a σ-finite filtered measure space and let (ft)t∈T be a se-
quence of Kd-valued integrable functions such that ft is Ft-measurable for all
t ∈ T and18 µ|Fs is σ-finite for all s ≤ t in T . We then call (ft)t∈T martingale
(w.r.t. the filtration F) if for all s ≤ t in T

Eµ[ft|Fs] = fs µ-a.e. (2.14)

Similarly, if Kd = R, (ft)t∈T is called submartingale (w.r.t. the filtration F)
if for all s ≤ t in T

Eµ[ft|Fs] ≥ fs µ-a.e., (2.15)

and respectively supermartingale (w.r.t. the filtration F)

Eµ[ft|Fs] ≤ fs µ-a.e. (2.16)

In [12, Definition 17.1] we can find a similar definition for a discrete setting
and Kd = R. We have adapted Schilling’s definition to using an arbitrary
index set T ⊂ R := R ∪ {±∞} to make an important observation.

Remark 2.14. Definition 2.13 with Kd = R is equivalent to the following.
Let (ft)t∈T be a sequence of µ-integrable functions such that ft is Ft-

measurable for all t ∈ T . Then (ft)t∈T is called martingale (w.r.t. the filtra-
tion F), if for all s ≤ t in T

∫

F

ft dµ =

∫

F

fs dµ, F ∈ Fs. (2.17)

16e.g. for T think of N, Z, Q, R+ and [a, b] with a, b ∈ R and a < b (we want for T to
be a totally ordered set so that we my add an upper bound if necessary)

17If there is a smallest element in T , it suffices to ask µ to be σ-finite on the σ-algebra
connected to said smallest element.

18If there is a smallest element in T , it suffices to assume that µ is finite on the sub-σ-
algebra w.r.t. the smallest element of T .
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We call (ft)t∈T submartingale (w.r.t. (Ft)t∈T ), if for all s ≤ t in T

∫

F

ft dµ ≥

∫

F

fs dµ, F ∈ Fs, (2.18)

or supermartingale (w.r.t. (Ft)t∈T ), if for all s ≤ t in T

∫

F

ft dµ ≤

∫

F

fs dµ, F ∈ Fs. (2.19)

Indeed : For all F ∈ Rft,Fs = Fs (see Definition 2.7) and s ≤ t ∈ T we have

∫

F

ft dµ = Eµ[ft✶F ]
2.7
= Eµ[Eµ[ft|Fs]✶F ]

(2.14)
= Eµ[fs✶F ] =

∫

F

fs dµ.

The defining properties of sub- and supermartingales in (2.18) and (2.19)
follow in the same manner.

The following definition is a generalisation of Definition 2.13, because it
remains meaningful even without the need for adaptedness and integrability.
Furthermore, this definition is eponymous for this thesis.

Definition 2.15. σ-integrable (sub-/super-)martingales
Let (Ω,F ,F, µ) be a σ-finite filtered measure space and let f := (ft)t∈T be
a sequence of F := (Ft)t∈T -adapted functions with values in Kd such that ft
is σ-integrable w.r.t. Fs and

19 µ|Fs is σ-finite for all s ≤ t in T . We call f a
σ-integrable martingale (w.r.t. the filtration F) if for all s ≤ t in T

Eµ[ft − fs|Fs] = 0 µ-a.e. (2.20)

Now let Kd = R. Then we call f a σ-integrable submartingale (w.r.t. the
filtration F) if for all s ≤ t in T

Eµ[ft − fs|Fs] ≥ 0 µ-a.e. (2.21)

or a σ-integrable supermartingale (w.r.t. the filtration F)

Eµ[ft − fs|Fs] ≤ 0 µ-a.e. (2.22)

The conditions (2.20), (2.21) and (2.22) remain meaningful even without the
assumption that f is F-adapted.

19If there is a smallest element in T , it suffices to assume that µ is finite on the sub-σ-
algebra w.r.t. the smallest element of T .
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We will continue to use the definition of σ-integrable (sub-/super-) mar-
tingales for the remainder of the thesis and highlight passages which hold
specifically for (sub-/super-) martingales according to Definition 2.13. Based
on Definition 2.15 we can rewrite some well-known elementary relations be-
tween martingales, sub- and supermartingales. For this purpose, let
(Ω,F ,F, µ) be a σ-finite filtered measure space.

Remark 2.16. Elemental properties and relations between σ-integrable sub-,
super- and martingales.

(1) (ft)t∈T is a σ-integrable martingale if, and only if, each of its compo-
nents is both a sub- and a supermartingale.

(2) (ft)t∈T is a σ-integrable supermartingale if, and only if, (−ft)t∈T is a
σ-integrable submartingale.

(3) Consider the map κ : T → R : t 7→ Eµ[ft]. Then κ is

(a) a constant function, if f := (ft)t∈T is a martingale according to
Definition 2.13;

(b) an increasing function, if f is a submartingale according to Defi-
nition 2.13;

(c) a decreasing function, if f is a supermartingale according to Def-
inition 2.13.

Indeed : The first claim follows immediately by taking expectations
w.r.t. µ in (2.14) and by Theorem 2.12(2), where we use the integra-
bility of martingales. Proving the claim for submartingales follows in
the same manner. The last claim then follows by (2) applied to sub-
martingales according to Definition 2.13.

(4) Let T = N and (fn)n∈N be a sequence of σ-integrable and real-valued
functions such that fn is Fn-measurable for all n ∈ N. Define gn =
max{f1, . . . , fn} and hn = min{f1, . . . , fn}. Then (gn)n∈N is a σ-
integrable submartingale and (hn)n∈N a σ-integrable supermartingale
w.r.t. F.

Indeed : The σ-integrability of gn and hn for all n ∈ N follows by Lemma
2.4(6). Furthermore, for all m ≤ n

Eµ[gn|Fm]
2.12(3)

≥ Eµ[max{f1, . . . , fm}|Fm]
2.12(1)
= gm µ-a.e.,

and

Eµ[hn|Fm]
2.12(3)

≤ Eµ[min{f1, . . . , fm}|Fm]
2.12(1)
= hm µ-a.e.,
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because of the monotonicity of the conditional expectation and the
measurability assumption for fm with m ∈ N.

(5) Let (ft)t∈T be a σ-integrable martingale with values in an interval I ⊂ R

and ϕ : I → R a convex function such that gt := ϕ(ft) is Ft-measurable
for all t ∈ T and σ-integrable w.r.t. Fs for all s ≤ t in T . Then (gt)t∈T
is a σ-integrable submartingale.

Indeed : Because of Jensen’s inequality in the conditional form and the
σ-integrable martingale property it follows that

Eµ[gt|Fs] = Eµ[ϕ(ft)|Fs]
2.12(9)

≥ ϕ(Eµ[ft|Fs])
(2.20)
= ϕ(fs) = gs µ-a.e.

for all s ≤ t ∈ T .

(6) Let (ft)t∈T be a σ-integrable submartingale with values in an interval
I ⊂ R and ϕ : I → R a convex and increasing function such that
gt := ϕ(ft) is Ft-measurable for all t ∈ T and σ-integrable w.r.t. Fs for
all s ≤ t in T . Then (gt)t∈T is also a σ-integrable submartingale.

Indeed : Again, using the conditional version of Jensen’s inequality it
follows that

Eµ[gt|Fs] = Eµ[ϕ(ft)|Fs]
2.12(9)

≥ ϕ(Eµ[ft|Fs]
︸ ︷︷ ︸

≥ fs

) ≥ ϕ(fs) = gs µ-a.e.

for all s ≤ t ∈ T , where the last inequality holds due to the submartin-
gale property in (2.21) and the fact that ϕ is an increasing function.

When working with martingale theory, one cannot overlook their connec-
tion to stopping times. Thus, we would like to extend some well-known lem-
mata and theorems to our setting. In particular, we would like to prove that
finite optional stopping can be generalised to our definition of σ-integrable
(sub-) martingales. This will be crucial for some of the proofs in Chapter
3. Please, refer to Definition A.20 as well as Theorem A.22 in the Appendix
if a revision of the definition of stopping times and some of their important
properties is needed.

Lemma 2.17. Let (Ω,F ,F, µ) be a σ-finite filtered measure space and f a
σ-integrable function w.r.t. Ft for all t ∈ T with values in R. Furthermore,
let τ a T -valued stopping time w.r.t. F such that the image τ(Ω) is countable.
Then

Eµ[f |Fτ ] =
∑

t∈τ(Ω)

Eµ[f |Ft]✶{τ=t} µ-a.e.
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Proof. Since (f
∑

n∈N ✶{τ=tn}) ≤ |f | we can apply the conditional dominated
convergence theorem and conclude that

Eµ[f |Fτ ] = Eµ

[

f
∑

n∈N

✶{τ=tn}

∣
∣
∣
∣
Fτ

]
2.12(10)
=

∑

n∈N

Eµ[f✶{τ=tn}|Fτ ] µ-a.e. (2.23)

We will now look at each of the terms of the sum separately and prove that

Eµ[f✶{τ=tn}|Fτ ] = ✶{τ=tn}Eµ[f |Ftn ] µ-a.e.

for all n ∈ N.
For this purpose let F ∈ Rf,Ftn

for n ∈ N (see Definition 2.6). At this
point, let it be noted that the constant time and the pointwise minimum of
stopping times are both stopping times by A.22(1) and (2), which implies
that {τ = tn} ∩ F ∈ Fτ∧tn ⊂ Fτ by A.22(4) and (8) for all F ∈ Ftn . Hence,
by using that {τ = tn} ∈ Fτ it follows that

Eµ[Eµ[f✶{τ=tn}|Fτ ]✶F ]
2.12(6)
= Eµ[Eµ[f |Fτ ]✶{τ=tn}∩F ].

By the definition of the conditional expectation (simply observe that {τ =
tn} ∩ F ∈ Rf,Fτ ) we now have

Eµ[Eµ[f |Fτ ]✶{τ=tn}∩F ] = Eµ[f✶{τ=tn}∩F ]

We can now use the same tricks again, since we have chosen F ∈ Rf,Ftn
and

deduce (from the fact that F is also an element of Rf✶{τ=tn},Ftn
) that

Eµ[f✶{τ=tn}∩F ] = Eµ[Eµ[f✶{τ=tn}|Ftn ]✶F ]
2.12(6)
= Eµ[✶{τ=tn}Eµ[f |Ftn ]✶F ],

where we used that {τ = tn} ∈ Ftn for the final equality. By plugging what
we have just proven into (2.23) we arrive at

Eµ[f |Fτ ] =
∑

n∈N

Eµ[f |Ftn ]✶{τ=tn} µ-a.e.,

which is what we wanted to show.

The proofs of the following two lemmata are inspired by [13, Lemma
3.44(a) and Lemma 3.51(a)], who proves the statements for probability spaces
and stochastic processes.

Lemma 2.18. Let (S,S) be a measurable space and f := (ft)t∈T a sequence
of functions such that ft : Ω → S for all t ∈ T and let τ : Ω → T be a
stopping time w.r.t. F. Define fτ : Ω → S by fτ (ω) = fτ(ω)(ω) for every
ω ∈ Ω. Then fτ is Fτ -measurable, if τ(Ω) ⊂ T is countable and if ft is
Ft-measurable for all t ∈ T (in this case f is called adapted to F).
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Proof. The sets {τ = t} build a partition of Ω for t ∈ T , thus

f−1
τ (A) =

⋃

t∈τ(Ω)

f−1
τ (A) ∩ {τ = t} =

⋃

t∈τ(Ω)

f−1
t (A) ∩ {τ = t}

for all A ∈ S. For every t ∈ τ(Ω) we have f−1
t (A)∩ {τ = t} ∈ Fτ∧t ⊂ Fτ for

all t ∈ τ(Ω) by Theorem A.22(8) and (4). This implies that f−1
τ (A) ∈ Fτ ,

since τ(Ω) is countable and Fτ a filtration, as Remark A.21 shows.

Lemma 2.19. Let (S, ρ) be a metric space and f := (ft)t∈T a sequence of
functions such that ft : Ω → S is Ft-measurable for all t ∈ T . Furthermore,
let σ : Ω → T be a stopping time w.r.t. F. For A ∈ BS define the first hitting
time of A after σ (also called first entrance time) by

τ = inf{t ∈ T : σ ≤ t, ft ∈ A}, (2.24)

where we define inf ∅ = t∗. If T is countable and every non-empty subset,
which is bounded from below, contains its infimum (think of T finite, T ⊂ Z

or T = {k − 1
n
: k ∈ Z, n ∈ N}), then τ is a stopping time w.r.t. F.

Proof. The conditions ensure that τ takes values in T . For t ∈ T the set
{u ∈ T : t < u, σ ≤ u, fu ∈ A} contains its infimum by assumption, which
cannot be t. Hence,

{τ ≤ t} =
⋃

s∈T
s≤t

{σ ≤ s, fs ∈ A}
︸ ︷︷ ︸

∈Fs ⊂Ft

∈ Ft,

where we used that σ is a stopping time and that T is countable.

Theorem 2.20. Finite optional stopping for submartingales
Let f := (ft)t∈T be a σ-integrable submartingale and σ, τ stopping times w.r.t.
F such that τ and σ ∧ τ attain only finitely many values in T . Then fτ and
fσ∧τ are σ-integrable, fσ∧τ is measurable w.r.t. Fσ∧τ and Fσ and

fσ∧τ ≤ Eµ[fτ |Fσ] µ-a.e. (2.25)

Remark 2.21. Consider the setting of Theorem 2.20, then (2.25) is equivalent
to

Eµ[fτ − fσ∧τ |Fσ] ≥ 0 µ-a.e. (2.26)

This inequality is, in fact, meaningful without the Fσ-measurability of fσ∧τ .
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Proof. Theorem 2.20
In the spirit of Definition 2.15 we will prove the more general version of finite
stopping for σ-integrable submartingales in (2.26). For this purpose let f
fulfill the submartingale property as defined in (2.21), which means that ft
is σ-integrable w.r.t. Fs for all s ≤ t in T and Eµ[ft − fs|Fs] ≥ 0 µ-a.e. for
all s ≤ t in T .

Due to the assumptions we may assume that τ and σ ∧ τ attain values
in a finite set S := {t0, . . . , tn} with n ∈ N, where t0 < t1 < . . . < tn w.l.o.g.
The σ-integrability of fτ w.r.t. Ft0 follows immediately from Lemma 2.4(1),
(4), (5) and (6), since |fτ | ≤ |ft0 | + · · · + |ftn |. The σ-integrability of fσ∧τ
w.r.t. Ft0 follows in the same manner. Note that fτ and fσ∧τ are then σ-
integrable w.r.t. Fti for all i ∈ {0, . . . , n}, since F is a filtration. Let us make
a redefinition of the supremum of T , which we will only use in this proof for
ease of notation: tn+1 := t∗ = supT . Furthermore, define S̄ = S ∪ {tn+1}.

Step 1 : Treating only τ . We want to show, that for all i ∈ {0, . . . , n+1}
we have

Eµ[fτ − fti∧τ |Fti ] ≥ 0 µ-a.e. (2.27)

by using backward induction.
First, let i ∈ {n, n + 1}, then τ = ti ∧ τ ≤ ti, which implies that fτ

is Fti-measurable by Theorem A.22(4). Thus, Eµ[fτ − fti∧τ |Fti ] ≥ 0 µ-a.e.,
which proves (2.27) for this case.

Now suppose (2.27) holds for i+1 with i ∈ {0, . . . , n−1} and let us prove
it for i. By the tower property in Theorem 2.12(7) it follows that

Eµ[fτ − fti+1∧τ |Fti ] ≥ 0 µ-a.e. (2.28)

Furthermore, by adding and subtracting fti+1∧τ within the conditional ex-
pectation in (2.28) we arrive at

Eµ[fτ − fti∧τ + fti+1∧τ
︸ ︷︷ ︸

=(fti+1−fti )✶{τ>ti}

−fti+1∧τ |Fti ] ≥ 0 µ-a.e.

This is, of course, equivalent to

Eµ[fτ − fti+1∧τ |Fti ] ≥ Eµ[(fti+1
− fti)✶{τ>ti}|Fti ] µ-a.e.

Since {τ > ti} ∈ Fti by Definition A.20 we can use (2.21) and conclude

Eµ[(fti+1
− fti)✶{τ>ti}|Fti ]

2.12(6)
= ✶{τ>ti}Eµ[(fti+1

− fti)|Fti ] ≥ 0 µ-a.e.

Hence, we are done with this part.
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Step 2 : Treating discretised σ. Define

σ̃ = min{ti : i ∈ {0, . . . , n+ 1}, σ ≤ ti}

to discretise σ. Then σ̃ is a T -valued stopping time w.r.t. F, since the same
goes for σ and (see also Lemma 2.19)

{σ̃ ≤ t} =
⋃

s∈S̄
s≤t

{σ = s}
︸ ︷︷ ︸

∈Fs ⊂Ft

∈ Ft.

It follows that

Eµ[fτ − fσ̃∧τ |Fσ̃]
2.17
=

n+1∑

i=0

Eµ[fτ − fσ̃∧τ |Fti ]✶{σ̃=ti} µ-a.e.

Since fσ̃∧τ✶{σ̃=ti} = fti∧τ✶{σ̃=ti}, we can deduce that

Eµ[fτ − fσ̃∧τ |Fti ]✶{σ̃=ti} = Eµ[(fτ − fσ̃∧τ )✶{σ̃=ti}|Fti ]

= Eµ[fτ − fti∧τ |Fti ]
︸ ︷︷ ︸

≥ 0µ-a.e. by (2.27)

✶{σ̃=ti} ≥ 0 µ-a.e.

by using that {σ̃ = ti} ∈ Fti and Theorem 2.12(6) for each term in the sum.
Thus, Step 1 now gives the result

Eµ[fτ − fσ̃∧τ |Fσ̃] ≥ 0 µ-a.e.

Step 3 : Removing the discretisation of σ. It follows from the definition
of σ̃, that σ ≤ σ̃ and σ ∧ τ = σ̃ ∧ τ . This implies, fσ∧τ = fσ̃∧τ and Fσ ⊂ Fσ̃

by Theorem A.22(4). Finally, by Step 2 and the tower property as well as
the monotonicity of the conditional expectation we can conclude that

Eµ[fτ − fσ∧τ |Fσ] = Eµ[Eµ[fτ − fσ∧τ |Fσ̃]
︸ ︷︷ ︸

≥ 0µ-a.e.

|Fσ] ≥ 0 µ-a.e.

This concludes the proof.

Remark 2.22. Inequality (2.25) is reversed for supermartingales, because of
Remark 2.16(2). Similarly, due to Remark 2.16(1), we have an equality in
(2.25) for martingales.

In this chapter we were able to introduce a generalised definition for
martingales using σ-integrable functions and σ-finite measure spaces that is
similar to the more commonly known definition for probability measures and
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random variables. [12] provided the groundwork for this newly developed
part of martingale theory, however, as he focused on a discrete setting, it
was our goal to extend his work to continuous time. Furthermore, we gen-
eralised the theory of stopping times in relation to σ-integrable martingales
and were, thus, able to adapt the idea of finite optional stopping to our set-
ting. Everything we have proven will help us in the following chapters in
order to improve Doob’s classical Lp-inequality for submartingales and p > 1
as stated in Chapter 3.
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Chapter 3

Doob’s Classical Lp-Inequality
for Submartingales

on σ-Finite Measure Spaces

Now it is time to introduce and prove the central theorem of this thesis:
Doob’s Lp-inequality for submartingales and p > 1, since – as mentioned
before – we hope to prove stricter versions for a more general setting of
said inequality in Chapter 5. However, first we need to take note of other
important inequalities introduced by Doob, known as Doob’s maximum in-
equalities. [12, Lemma 19.11] proves these inequalities for his definition of
martingales (as can be found in Remark 2.14), but only treats the case T = N.
Therefore, we will adapt his version to our setting where T ⊂ R. For our
proof we use [13, Theorem 4.65] and proceed in a similar manner.

Let it be mentioned that there are various different approaches to prov-
ing Doob’s inequality for the traditional definition of martingales (w.r.t. a
random variable and the probability measure P). A rather new and straight-
forward approach relies on deterministic inequalities, as shown in [1]. We
will use this idea to improve Doob’s maximum as well as his Lp inequalities
later on.

Theorem 3.1. Doob’s maximum inequalities
Let (Ω,F ,F, µ) be a σ-finite filtered measure space, f := (ft)t∈T a submartin-
gale according to Definition 2.13 and T ⊂ R be non-empty such that

❼ T is countable or

❼ T is a non-degenerate interval and f is left- or right-continuous,

and T ⊂ [s, v] for s ≤ v in T . Then supt∈T ft and inft∈T ft are R-valued and
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F-measurable. Moreover, for every λ ∈ R we have

λµ
({

sup
t∈T

ft ≥ λ
})

≤ Eµ[fv✶{supt∈T ft≥λ}]− Eµ[(fs − λ)+]

≤ Eµ[fv✶{supt∈T ft≥λ}] ≤ Eµ[f
+
v ]

(3.1)

(where the upper bounds not involving s are valid without their existence),
and

λµ
({

inf
t∈T

ft ≤ −λ
})

≤ Eµ[fv✶{inft∈T ft>−λ}]−Eµ[fs∨(−λ)] ≤ Eµ[f
+
v ]−Eµ[fs].

(3.2)
Furthermore,

λµ
({

sup
t∈T

|ft| ≥ λ
})

≤ 2Eµ[f
+
v ]− Eµ[fs]. (3.3)

Proof. First, note that (ft − λ)+ ≥ 0 and ft ∨ (−λ) ≥ ft for all t ∈ T . It
follows that Eµ[(fs−λ)

+] ≥ 0 and Eµ[fs∨(−λ)] ≥ Eµ[fs] by the monotonicity
of the integral in Theorem A.12(3). Also, f✶F ≤ f+

✶F ≤ f+ for F ∈ F
and thus, Eµ[fv✶{supt∈T ft≥λ}] ≤ Eµ[f

+
v ] for all u ∈ T by Theorem A.12(3).

Hence, the second and third inequality in (3.1) and the second inequality in
(3.2) follow immediately from what we have just observed and by combining
these inequalities we can deduce (3.3). Therefore, it suffices to show the first
inequality in (3.1) and (3.2).

We will start by proving (3.1) for non-empty finite sets T = {t0, . . . , tn}
with s = t0 < t1 < . . . < tn = v for n ∈ N. Define

τ = v ∧min{t ∈ T : ft ≥ λ},

where min ∅ := t∗. Then τ is a stopping time w.r.t. F by Theorem A.22(2)
and Lemma 2.19. For

A :=
{

max
t∈T

ft ≥ λ
}

=
⋃

t∈T

{ft ≥ λ}

it follows that A ∈ Fτ (see (A.1) in Definition A.20), because A∩{τ ≤ u} =
⋃

t∈T,t≤u{ft ≥ λ} ∈ Fu for all u ∈ T , where we used that ft is Ft ⊂ Fu-
measurable for t ≤ u.

We claim that
λ✶A ≤ fτ✶A − (fs − λ)✶{fs≥λ}

︸ ︷︷ ︸

=(fs−λ)+

. (3.4)

This can be proved by treating various cases.
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❼ On Ac: maxt∈T ft < λ ⇒ ft < λ ∀t ∈ T ⇒ ✶{fs≥λ} = 0. Thus, both
sides of (3.4) are zero.

❼ On {fs ≥ λ} ⊂ A: τ = s ⇒ fτ = fs, because s = t0 and thus, both
sides of (3.4) equal λ.

❼ On A ∩ {fs < λ}: ✶{fs≥λ} = 0. Hence, (3.4) reduces to fτ ≥ λ, which
is true by definition of τ .

Therefore, by taking the expectation w.r.t. µ on both sides of (3.4) and
applying finite stopping for submartingales we arrive at

λµ(A) ≤ Eµ[fτ✶A]− Eµ[(fs − λ)+]
2.20

≤ Eµ[Eµ[fv|Fτ ]✶A]− Eµ[(fs − λ)+].

By using that ✶A is Fτ -measurable we can observe that

λµ(A)
2.12(6)

≤ Eµ[Eµ[fv✶A|Fτ ]]−Eµ[(fs − λ)+]
2.12(2)
= Eµ[fv✶A]−Eµ[(fs − λ)+],

which concludes the proof of (3.1) for finite T .
Next, suppose T is countably infinite, then there exists an increasing

sequence (Sn)n∈N of non-empty finite sets such that T =
⋃

n∈N Sn. Addition-
ally, let (λm)m∈N be a sequence in (−∞, λ) such that λm ր λ as m → ∞.
Similarly to the first part of the proof let us make the following definitions:

Am,n =
{

max
t∈Sn

ft ≥ λm

}

, Am =
⋃

n∈N

Am,n and A =
{

sup
t∈T

ft ≥ λ
}

.

Then, A =
⋂

m∈NAm. Note, that (Am,n)n∈N is an increasing sequence for
every m ∈ N, whereas (Am)m∈N is decreasing. By applying the dominated
convergence theorem as stated in Theorem A.17 and using what we have just
proved for finite sets, it follows that

λm µ(Am) = lim
n→∞

λm µ(Am,n)

≤ lim
n→∞

Eµ[fv✶Am,n ]− Eµ[(fs − λm)
+]

A.17
= Eµ[fv✶Am ]− Eµ[(fs − λm)

+]

for every m ∈ N. In the same manner we may apply the dominated conver-
gence theorem once more, which proves (3.1) for this case, because

λµ(A) = lim
m→∞

λm µ(Am)

≤ lim
m→∞

Eµ[fv✶Am ]− Eµ[(fs − λm)
+]

A.17
= Eµ[fv✶A]− Eµ[(fs − λ)+].
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Finally, let T be a non-degenerate interval and f left- or right-continuous
and define t◦ = inf T and t∗ = supT (note that t◦, t∗ ∈ R). Then the set
T̃ := T ∩ (Q ∪ {t◦, t∗}) is countable and supt∈T ft = supt∈T̃ ft by the left- or
right-continuity of f . Hence, (3.1) follows and we are done with this part.

In the same manner as before, we will start with the finite non-empty set
T defined at the beginning of this proof and s := minT and v := maxT to
prove (3.2). Define the stopping time σ = v ∧min{t ∈ T : ft ≤ −λ} (again,
see Theorem A.22(2) and Lemma 2.19) and B = {mint∈T ft ≤ −λ}, which is
again an element of Fσ (see (A.1) in Definition A.20).

This time, we claim that

λ✶B ≤ fs − fσ✶B − (fs ∨ (−λ)). (3.5)

This can be proved by treating various cases.

❼ On Bc: mint∈T ft > −λ⇒ fs > −λ. Thus, both sides of (3.5) are zero.

❼ On {fs ≤ −λ} = {σ = s} ⊂ B: fσ = fs ⇒ fs ∨ (−λ) = −λ. Thus,
both sides of (3.5) equal λ.

❼ On B ∩ {fs > −λ}: fσ ≤ −λ, which is true by definition of σ.

Therefore, by taking the expectation w.r.t. µ on both sides of (3.5) we arrive
at

λµ(B) ≤ Eµ[fs]− Eµ[fσ✶B]− Eµ[fs ∨ (−λ)]. (3.6)

By applying finite stopping for submartingales and by using that ✶B is Fσ-
measurable we can observe that

Eµ[fs]
2.20

≤ Eµ[Eµ[fσ|Fs]]
2.12(2)
= Eµ[fσ] = Eµ[fσ✶B] + Eµ[fσ✶Bc ]

Since

Eµ[fσ✶Bc ]
2.20

≤ Eµ[Eµ[fv|Fσ]✶Bc ]
2.12(6)
= Eµ[Eµ[fv✶Bc |Fσ]]

2.12(2)
= Eµ[fv✶Bc ]

by the Fσ-measurability of ✶Bc , we can rewrite (3.6) by using the inequalities
above, which gives us

λµ(B) ≤ Eµ[fv✶Bc ]− Eµ[fs ∨ (−λ)].

This concludes the proof of (3.2) for finite T .
Just like before, in the next step suppose T is countably infinite, then

there exists an increasing sequence (Sn)n∈N of non-empty finite sets such
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that T =
⋃

n∈N Sn. Again, let (λm)m∈N be a sequence in (−∞, λ) such that
λm ր λ as m→ ∞ and define

Bm,n =
{

min
t∈Sn

ft ≤ −λm
}

, Bm =
⋃

n∈N

Bm,n and B =
{

inf
t∈T

ft ≤ −λ
}

.

Then, B =
⋂

m∈NBm. This time (Bm,n)n∈N is a decreasing sequence for
every m ∈ N, whereas (Bm)m∈N is increasing. By applying the dominated
convergence theorem as stated in Theorem A.17 twice and what we have just
proved for finite sets, it follows that

λµ(B) = lim
m→∞

λm µ(Bm)

= lim
m→∞

(

lim
n→∞

λm µ(Bm,n)
)

≤ lim
m→∞

(

lim
n→∞

Eµ[fv✶Bc
m,n

]− Eµ[fs ∨ (−λm)]
)

A.17
= lim

m→∞
(Eµ[fv✶Bc

m
]− Eµ[fs ∨ (−λm)])

A.17
= Eµ[fv✶B]− Eµ[fs ∨ (−λ)],

which proves (3.2) for this case.
Lastly we will treat the case of a non-degenerate interval T and a left-

or right-continuous submartingale f . Once more define t◦ = inf T and t∗ =
supT as the endpoints in R and note that the set T̃ := T ∩ (Q ∪ {t◦, t∗})
is countable. In this case we have inft∈T ft = inft∈T̃ ft by the left- or right-
continuity of f and hence, (3.2) follows.

Maximum inequalities play a vital role in studying fluctuations of random
processes. Theorem 3.1 is the key to proving Doob’s classical Lp-inequality
for submartingales, as we will see shortly.

Theorem 3.2. Doob’s classical Lp-inequality for submartingales
and p > 1
Let (Ω,F ,F, µ) be a σ-finite filtered measure space and f := (ft)t∈T be a
positive submartingale according to Definition 2.13. Define f ∗ = supt∈T ft
and f ∗

u = supt∈T,t≤u ft for every u ∈ T .

❼ If T is countable or

❼ if T is a non-degenerate interval and f is left- or right-continuous,

we have for u ∈ T and every 1 < p <∞

Eµ[(f
∗
u)

p] ≤
( p

p− 1

)p

Eµ[f
p
u ]. (3.7)
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Furthermore,

Eµ[(f
∗)p] ≤

( p

p− 1

)p

sup
t∈T

Eµ[f
p
t ]. (3.8)

In order to prove Doob’s inequality in the above version, we first need to
take note of a few necessary lemmata which will help us later on. Please,
refer to [12, Theorem 13.8 and Corollary 13.13] for the proofs of Lemma 3.3
and Lemma 3.4.

Lemma 3.3. Tonelli’s theorem
Let (Σ,F , µ) and (Ω,G, ν) be σ-finite measure spaces and let f : Σ × Ω →
[0,∞] be a F ⊗ G-measurable function. Then

(1) σ 7→ f(σ, ω) is G-measurable for all ω ∈ Ω and ω 7→ f(σ, ω) is F-
measurable for all σ ∈ Σ;

(2) σ 7→
∫

Ω
f(σ, ω) ν(dω) is G-measurable and ω 7→

∫

Σ
f(σ, ω)µ(dσ) is F-

measurable;

(3) and

∫

Σ×Ω

f d(µ⊗ν) =

∫

Σ

∫

Ω

f(σ, ω)µ(dσ) ν(dω) =

∫

Ω

∫

Σ

f(σ, ω) ν(dω)µ(dσ),

(3.9)
which is [0,∞]-valued.

Lemma 3.4. As usual, let (Ω,F , µ) be a σ-finite measure space and let
ϕ : [0,∞) → [0,∞) be an increasing and continuously differentiable function
with ϕ(0) = 0. Then for all non-negative, real-valued and F-measurable
functions f we have

∫

ϕ ◦ f dµ =

∫ ∞

0

ϕ′(x)µ({f ≥ x}) dx. (3.10)

Particularly, for ϕ(x) := xp, p ≥ 1, we have

∫

f p dµ =

∫ ∞

0

pxp−1µ({f ≥ x}) dx. (3.11)

Now we have all the tools we need to prove Doob’s inequality as stated
in Theorem 3.2. [12, Theorem 19.12] proves the theorem for his definition of
martingales (see Remark 2.14) in σ-finite measure spaces and time N. We
will use his approach and expand it to our definition of submartingales and
the conditional expectation. We use [13, Theorem 4.77] for our proof and
proceed in a similar manner.
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Proof. Theorem 3.2
Fix u ∈ T and assume Eµ[f

p
u ] <∞ since (3.7) and (3.8) are trivial otherwise.

Note that the function R+ ∋ x 7→ xp is increasing and convex. Thus, (f p
t )t∈T

is again a submartingale according to Remark 2.16(6), where the integrability
of f p

t follows for all t ∈ T with t ≤ u, because Eµ[f
p
t ] ≤ Eµ[Eµ[f

p
u |Ft]] =

Eµ[f
p
u ] < ∞ by the submartingale property in (2.15) and the law of total

expectation in Theorem 2.12(2).
Now, let S ⊂ T ∩ [−∞, u] be finite and define f ∗

S = maxs∈S fs. Again, it
follows that (f ∗

S)
p is µ-integrable, because

0 ≤ Eµ[(f
∗
S)

p]
A.12(3)

≤ Eµ

[∑

s∈S

f p
s

]
A.12(2)
=

∑

s∈S

Eµ[f
p
s ]

︸ ︷︷ ︸

<∞

<∞,

since S is finite.
We further assume that Eµ[f

p
S] > 0, since otherwise (3.7) holds for f ∗

S

in place of f ∗
u otherwise. With this and by using one of Doob’s maximal

inequalities (see Theorem 3.1) we have

Eµ[(f
∗
S)

p] =

∫

(f ∗
S)

p dµ

(3.11)
=

∫ ∞

0

pxp−1µ({f ∗
S ≥ x}) dx

(3.1)

≤ p

∫ ∞

0

xp−1

(

1

x

∫

{f∗
S≥x}

fu dµ

)

dx.

Now we can use Tonelli’s theorem and integrate, which yields

p

∫ ∞

0

∫

{f∗
S≥x}

xp−2fu dµ dx
3.3
= p

∫

fu

(∫ f∗
S

0

xp−2 dx

)

dµ

=
p

p− 1

∫

fu(f
∗
S)

p−1 dµ.

By using Hölder’s inequality in Theorem A.15 we arrive at

p

p− 1

∫

fu(f
∗
S)

p−1 dµ ≤
p

p− 1

(∫

f p
u dµ

)1/p(∫

(f ∗
S)

p dµ

)1−1/p

.

Dividing by
(∫

(f ∗
S)

p dµ
)1−1/p

and raising the resulting inequality to the p-th
power finally gives us

Eµ[(f
∗
S)

p] ≤
( p

p− 1

)p

Eµ[f
p
u ], (3.12)
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which, of course, is (3.7) for f ∗
S in place of f ∗

u .
Now, let S ⊂ T ∩ [−∞, u] be countably infinite, then there exists an

increasing sequence (Sn)n∈N of finite subsets of S such that S =
⋃

n∈N Sn.
For these subsets we define f ∗

Sn
= maxs∈Sn fs. Then f ∗

Sn
ր f ∗

S := sups∈S fs
as n → ∞. By applying the monotone convergence theorem as stated in
Theorem A.18 we have

Eµ[(f
∗
S)

p] = Eµ

[

lim
n→∞

(f ∗
Sn
)p
]

A.18
= lim

n→∞
Eµ[(f

∗
Sn
)p]

(3.12)

≤

(
p

p− 1

)p

Eµ[f
p
u ],

which, again, is (3.7) for f ∗
S in place of f ∗

u .
In case T is an interval, define t◦ = inf T . Then S := {t ∈ T |t ≤

u} ∩ (Q ∪ {t◦, u}) is countable and we can apply our former results to this
case since f ∗

u = sups∈S fs due to the left- or right-continuity of f .
Now, (3.8) remains to be proven. First, note that (3.8) is in fact an upper

bound to (3.7). If t∗ = supT is an element of T itself then we have (3.8) for
t∗ in place of u. Otherwise, let (un)n∈N in T be an increasing sequence such
that un ր t∗ as n → ∞. Then f ∗

un
ր f ∗ pointwise on Ω as n → ∞. Thus,

we may apply the monotone convergence theorem once again and it follows

Eµ[(f
∗)p]

A.18
= lim

n→∞
Eµ[(f

∗
un
)p] ≤

(
p

p− 1

)p

sup
t∈T

Eµ[f
p
t ],

which concludes the proof.

At the beginning of this chapter we generalised Doob’s maximum inequal-
ities to our new definition of martingales on σ-finite measure spaces. Fur-
thermore, we proved that Doob’s classical Lp-inequalities hold true as well
for σ-finite measure spaces and submartingales as defined in Definition 2.13.
We chose to approach the proofs rather indirectly in order to use some of the
observations we have already introduced in the course of this thesis to extend
the martingale theory. As mentioned before, there is a more modern way to
go about proving Doob’s classical Lp-inequality and also Doob’s maximum
inequalities by relying on purely deterministic inequalities. We will make
use of this approach in the following chapter and show that Doob’s inequal-
ities can be improved and generalised further by considering σ-integrable
submartingales.
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Chapter 4

Improved Versions of Doob’s

Maximum Inequalities

Doob’s maximum inequalities can also be proven by relying on determinis-
tic inequalities. The proof of the classical maximum inequalities in Theo-
rem 3.1 relies on a theoretical approach using theory we have developed for
σ-integrable submartingales. However, we wish to present further improve-
ments – or rather generalisations – of the inequalities in Theorem 3.1, by
using a simple deterministic inequality proved by [13].

Let it be noted that the proof of the following lemma is not of the author’s
making but will be presented here for the sake of completeness. Please refer
to [13, Proposition 4.70] for the original proposition and its proof if interested.

Lemma 4.1. Define xk = max{x0, . . . , xk} and xk = min{x0, . . . , xk} for
x0, . . . , xn ∈ R and k ∈ {0, . . . , n} and ∆xk+1 = xk+1−xk for k ∈ {0, . . . , n−
1} and n ∈ N. Then we have for every λ ∈ R that

λ✶{xn≥λ} ≤ xn✶{xn≥λ} −
n−1∑

k=0

✶{xk≥λ}∆xk+1 − (x0 − λ)✶{x0≥λ}, (4.1)

where (4.1) holds with equality if, and only if, xn < λ or x0 ≥ λ or the
smallest k ∈ {1, . . . , n} such that xk ≥ λ satisfies xk = λ.

Furthermore,

λ✶{xn≤−λ} ≤ xn✶{xn>−λ} −
n−1∑

k=0

✶{xk>−λ}∆xk+1 − (x0 ∨ (−λ)), (4.2)

where (4.2) holds with equality if, and only if, xn > −λ or x0 ≤ −λ or the
smallest k ∈ {1, . . . , n} such that xk ≤ −λ satisfies xk = −λ.
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Proof. This proof will be done case-by-case depending of the first time the
numbers x0, . . . , xn reach or cross a given threshold.

❼ xn < λ: This implies that xk < λ for all k ∈ {0, . . . , n} and both sides
of (4.1) equal zero.

❼ x0 ≥ λ: This implies that x0, . . . , xn ≥ λ and the right-hand side of
(4.1) is a telescopic sum, which equals λ.

❼ x0 < λ and xn ≥ λ: This implies the existence of a minimal k ∈
{1, . . . , n} with x0, . . . , xk−1 < λ and xk, . . . , xn ≥ λ. Therefore, xk ≥ λ
and thus, the right-hand side of (4.1) reduces to xk and the inequality
holds true.

Inequality (4.2) follows in the same manner.

❼ xn > −λ: This implies that xk > −λ for all k ∈ {0, . . . , n} and both
sides of (4.2) equal zero.

❼ x0 ≤ −λ: This implies that x0, . . . , xn ≤ −λ and both sides of (4.2)
equal λ.

❼ x0 > −λ and xn ≤ −λ: This implies the existence of a minimal k ∈
{1, . . . , n} with x0, . . . , xk−1 > −λ and xk, . . . , xn ≤ −λ. Therefore,
xk ≤ −λ and thus, the right-hand side of (4.2) reduces to −xk and the
inequality holds true.

This concludes the proof.

We will use the deterministic inequalities above to prove more refined
versions of Doob’s maximum inequalities. The inequalities below focus on
σ-integrable submartingales, hence, Theorem 4.2 also generalises the claims
of Theorem 3.1.

Theorem 4.2. Let (Ω,F ,F, µ) be a σ-finite filtered measure space and T ⊂ R

with s, v ∈ T such that s ≤ v and T ⊂ [s, v]. Assume that µ|Fs is σ-finite and
let (ft)t∈T be a F-adapted sequence of functions such that ft is σ-integrable
w.r.t. Fs for all t ∈ T and ft ≤ Eµ[fu|Ft] µ-a.e. for all t ≤ u in T . Then for
f ∗
s,v := ess supt∈T ft and f

◦
s,v := ess inft∈T ft and every λ ∈ R we have

λEµ

[
✶{f∗

s,v≥λ}

∣
∣Fs

]
≤ Eµ

[
fv✶{f∗

s,v≥λ}

∣
∣Fs

]
− (fs − λ)+

≤ Eµ

[
fv✶{f∗

s,v≥λ}

∣
∣Fs

]
≤ Eµ[f

+
v |Fs] µ-a.e.

(4.3)
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and

λEµ

[
✶{f◦

s,v≤−λ}

∣
∣Fs

]
≤ Eµ

[
fv✶{f◦

s,v>−λ}

∣
∣Fs

]
− (fs ∨ (−λ))

≤ Eµ[f
+
v |Fs]− fs µ-a.e.

(4.4)

Define the function ψλ(x) = (x − λ)+ + x ∨ (−λ) for x ∈ R. Then, by
combining the above inequalities,

λEµ

[
✶{ess supt∈T |ft|≥λ}

∣
∣Fs

]
≤ Eµ

[
fv
(
✶{f∗

s,v≥λ} + ✶{f◦
s,v≤−λ}

)∣
∣Fs

]
− ψ(fs)

≤ 2Eµ[f
+
v |Fs]− fs µ-a.e.

(4.5)

Proof. First, note that (fs − λ)+ ≥ 0 and fs ∨ (−λ) ≥ fs. Similarly, since
ft✶F ≤ f+

t ✶F ≤ f+
t for F ∈ F and t ∈ T , it follows that Eµ[fv✶{f∗

s,v≥λ}|Fs] ≤
Eµ[f

+
v |Fs]. Hence, the second and third inequalities in (4.3) and (4.4) follow.

Therefore, it suffices to show the first inequalities in (4.3) and (4.4).
We will start by proving (4.3) for non-empty finite T = {t0, . . . , tn} with

s = t0 < . . . < tn = v. For this purpose let j ∈ {0, . . . , n} and define
ḡj = max{ft0 , . . . , ftn}, then

Eµ

[
✶{ḡj≥λ}∆ftj+1

∣
∣Ftj

] 2.12(6)
= ✶{ḡj≥λ} Eµ[ftj+1

− ftj |Ftj ]
︸ ︷︷ ︸

≥ 0µ-a.e.

≥ 0 µ-a.e. (4.6)

by the Ftj -measurability of ✶{ḡj≥λ}. The first inequality in Lemma 4.1 now
gives

λ✶{ḡn≥λ} ≤ ftn✶{ḡn≥λ} −
n−1∑

j=0

✶{ḡj≥λ}∆ftj+1
− (ft0 − λ)+ µ-a.e. (4.7)

By taking the conditional expectation w.r.t. Ftk for k = n−1 of the inequality
above we arrive at

λEµ

[
✶{ḡn≥λ}

∣
∣Ftk

]
≤ Eµ

[
ftn✶{ḡn≥λ}

∣
∣Ftk

]
−

k−1∑

j=0

Eµ

[
✶{ḡj≥λ}∆ftj+1

∣
∣Ftk

]

− Eµ[(ft0 − λ)+|Ftk ] µ-a.e.,

where the last term of the sum for k is greater than zero by (4.6) and thus,
we have a further upper bound for λEµ[✶{ḡn≥λ}|Ftk ] if we leave out the last
term. Taking conditional expectations iteratively for k = n − 2, . . . , 0 and
using the tower property in Theorem 2.12(7) yields

λEµ

[
✶{ḡn≥λ}

∣
∣Fs

]
≤ Eµ

[
fv✶{ḡn≥λ}

∣
∣Fs

]
− Eµ[(fs − λ)+|Fs] µ-a.e.
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Since (fs − λ)+ is Fs-measurable, we may rid ourselves from the conditional
expectation w.r.t. Fs in the last term of the right-hand side (see Theorem
2.12(1)). Hence,

λEµ

[
✶{ḡn≥λ}

∣
∣Fs

]
≤ Eµ

[
fv✶{ḡn≥λ}

∣
∣Fs

]
− (fs − λ)+ µ-a.e.,

which is (4.3) for maxt∈T ft in place of f ∗
s,v.

For the general case note that there exists a sequence (Sn)n∈N of finite
subsets of T with s, v ∈ Sn for all n ∈ N such that

⋃

n∈N Sn = T . For
f̄Sn := maxt∈Sn ft it follows that f̄Sn ր f ∗

s,v as n → ∞ by Theorem A.24.
Furthermore, let (λm)m∈N be a sequence in (−∞, λ) such that λm ր λ as
m → ∞. Similarly to the proof of Theorem 3.2 let us make the following
definitions.

Am,n = {f̄Sn ≥ λm}, Am =
⋃

n∈N

Am,n, A = {f ∗
s,v ≥ λ}. (4.8)

The sequence (Am,n)n∈N is increasing for ever m ∈ N , whereas (Am)m∈N is
decreasing. Moreover, A =

⋂

m∈NAm. We now know that (4.3) holds for
every finite set Sn, n ∈ N and every λm, m ∈ N. Hence, we can apply the
conditional monotone convergence theorem in Theorem 2.12(5) to the posi-
tive sequence (✶Am,n)n∈N and the conditional dominated convergence theorem
in Theorem 2.12(10) to the bounded sequence1 (fv✶Am,n)n∈N and conclude

λmEµ[✶Am |Fs] = λm lim
n→∞

Eµ[✶Am,n |Fs]

≤ lim
n→∞

Eµ[fv✶Am,n |Fs]− (fs − λm)
+

= Eµ[fv✶Am |Fs]− (fs − λm)
+ µ-a.e.

for every m ∈ N. By applying the conditional monotone convergence theo-
rem and the conditional dominated convergence theorem once more we can
conclude that

λEµ[✶A|Fs] = lim
m→∞

λm Eµ[✶Am |Fs]

≤ lim
m→∞

Eµ[fv✶Am |Fs]− (fs − λm)
+

= Eµ[fv✶A|Fs]− (fs − λ)+ µ-a.e.

Now we will show (4.4) in the same manner. Again let T = {t0, . . . , tn}
with s = t0 < . . . < tn = v be finite and define g

j
= min{ft0 , . . . , ftn} for

1This is possible since fv is σ-integrable w.r.t. Fs, which is equivalent to |fv| being
σ-integrable w.r.t. Fs and because fv✶Am,n

≤ |fv| for all m,n ∈ N.
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j ∈ {0, . . . , n}. Then

Eµ

[
✶{g

j
>−λ}∆ftj+1

∣
∣Ftj

] 2.12(6)
= ✶{g

j
>−λ} Eµ[ftj+1

− ftj |Ftj ]
︸ ︷︷ ︸

≥ 0µ-a.e.

≥ 0 µ-a.e. (4.9)

by the Ftj -measurability of ✶{g
j
≥λ}. The second inequality in Lemma 4.1

now gives

λ✶{g
n
≤−λ} ≤ ftn✶{g

n
>−λ} −

n−1∑

j=0

✶{g
j
>−λ}∆ftj+1

− (ft0 ∨ (−λ)) µ-a.e.

By taking the conditional expectation w.r.t. Ftk for k = n−1 of the inequality
above we arrive at

λEµ

[
✶{g

n
≤−λ}

∣
∣Ftk

]
≤ Eµ

[
ftn✶{g

n
>−λ}|Ftk

]
−

k−1∑

j=0

Eµ

[
✶{g

j
>−λ}∆ftj+1

∣
∣Ftk

]

− Eµ[ft0 ∨ (−λ)|Ftk ] µ-a.e.,

where – just like in the first part of the proof – leaving out the last term
of the sum for k gives a further upper bound by (4.9). Taking conditional
expectations iteratively for k = n− 2, . . . , 0 and using the tower property in
Theorem 2.12(7) yields

λEµ

[
✶{g

n
≤−λ}

∣
∣Fs

]
≤ Eµ

[
fv✶{g

n
>−λ}

∣
∣Fs

]
− Eµ[fs ∨ (−λ)|Fs] µ-a.e.

Once more the Fs-measurability of fs ∨ (−λ) gives the desired result:

λEµ

[
✶{g

n
≤−λ}

∣
∣Fs

]
≤ Eµ

[
fv✶{g

n
>−λ}

∣
∣Fs

]
− fs ∨ (−λ) µ-a.e.,

which is (4.4) for mint∈T ft in place of f ◦
s,v.

For the general case note there exists a sequence (Sn)n∈N of finite sub-
sets of T with s, v ∈ Sn for all n ∈ N such that

⋃

n∈N Sn = T . For
f
Sn

:= mint∈Sn ft it follows that f
Sn

ր f ◦
s,v as n → ∞ by Theorem A.24.

Furthermore, let (λm)m∈N be a sequence in (−∞, λ) such that λm ր λ as
m → ∞ (then −λm ց −λ as m → ∞). Similarly to the proof of Theorem
3.2 let us make the following definitions.

Bm,n = {f
Sn

≤ −λm}, Bm =
⋃

n∈N

Bm,n, B = {f ◦
s,v ≤ −λ}. (4.10)

The sequence (Bm,n)n∈N is decreasing for ever m ∈ N, whereas (Bm)m∈N is in-
creasing. Moreover, B =

⋂

m∈NBm. We now know that (4.3) holds for every
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finite set Sn, n ∈ N and every λm, m ∈ N. Hence, we can apply the con-
ditional monotone convergence theorem in Theorem 2.12(5) to the positive
sequence (✶Bm,n)n∈N and the conditional dominated convergence theorem in
Theorem 2.12(10) to the bounded sequence2 (fv✶Bc

m,n
)n∈N and conclude

λmEµ[✶Bm |Fs] = λm lim
n→∞

Eµ[✶Bm,n |Fs]

≤ lim
n→∞

Eµ[fv✶Bc
m,n

|Fs]− fs ∨ (−λm)

= Eµ[fv✶Bc
m
|Fs]− fs ∨ (−λm) µ-a.e.

for every m ∈ N. By applying the conditional monotone convergence theo-
rem and the conditional dominated convergence theorem once more we can
conclude that

λEµ[✶B|Fs] = lim
m→∞

λm Eµ[✶Bm |Fs]

≤ lim
m→∞

Eµ[fv✶Bc
m
|Fs]− fs ∨ (−λm)

= Eµ[fv✶Bc |Fs]− fs ∨ (−λ) µ-a.e.

This concludes the proof.

Remark 4.3. The claims of Theorem 4.2 can also be derived by similar meth-
ods like in the proof of Theorem 3.1 on page 30. For this purpose let T
satisfy one of the conditions in Theorem 3.1 and let (ft)t∈T , which fulfills all
the assumptions in Theorem 4.2, be left- or right-continuous. Then (4.3),
(4.4) and (4.5) follow.

Indeed : Consider the setting and assumptions in Theorem 4.2 and define3

τ = v ∧min{t ∈ T : ft ≥ λ}, where min ∅ := t∗. First, let T be a non-empty
finite set. Similarly to the proof of Theorem 3.1 on page 30 let us take the
conditional expectation of (3.4) w.r.t. Fs, where

4 A := {maxt∈T ft ≥ λ}.
Then we immediately arrive at (4.3), when observing that

Eµ[fτ✶A|Fs] ≤ Eµ[Eµ[fv|Fτ ]✶A|Fs] = Eµ[Eµ[fv✶A|Fτ ]|Fs] = Eµ[fv✶A|Fs]
(4.11)

µ-a.e. by Lemma 2.20 and Theorem 2.12(6) and (7).
When we consider B := {mint∈T ft ≤ −λ} and5 σ := v∧min{t ∈ T : ft ≤

−λ} and look at the conditional expectation of (3.5) w.r.t. Fs, we arrive at

2This is possible since fv is σ-integrable w.r.t. Fs, which is equivalent to |fv| being
σ-integrable w.r.t. Fs and because fv✶Bc

m,n
≤ |fv| for all m,n ∈ N.

3Note that τ is a stopping time w.r.t. F by Theorem A.22(2) and Lemma 2.19.
4Note that A ∈ Fτ , since A =

⋃

t∈T {ft ≥ λ} and A∩{τ ≤ u} =
⋃

t∈T,t≤u{ft ≥ λ} ∈ Fu

for all u ∈ T .
5Note that σ is also a stopping time w.r.t. F by Theorem A.22(2) and Lemma 2.19.

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

(4.4) instead, since

fs ≤ Eµ[fσ|Fs] = Eµ[fσ✶B|Fs] + Eµ[fσ✶Bc |Fs] µ-a.e. (4.12)

and6

Eµ[fσ✶Bc |Fs] ≤ Eµ[Eµ[fv|Fσ]✶Bc |Fs]
2.12(6)
= Eµ[Eµ[fv✶Bc |Fσ]|Fs]

= Eµ[fv✶Bc |Fs] µ-a.e.

by Lemma 2.20 and the tower property.
The other cases of T follow in the same manner as in the proof of Theorem

4.2. Therefore, please refer to the proof above for the final steps.

Corollary 4.4. Let (Ω,F ,F, µ) be a σ-finite filtered measure space and T ⊂
R with v ∈ T and define t◦ = inf T . Assume that µ|Ft◦

is σ-finite with
Ft◦ :=

⋂

t∈T Ft. Let (ft)t∈T be a F-adapted sequence of functions such that fv
is σ-integrable w.r.t. Ft◦ for all t ∈ T and ft ≤ Eµ[fu|Ft] µ-a.e. for all t ≤ u
in T . Then for f ∗

v := ess supt∈T,t≤v ft and f
◦
v := ess inft∈T,t≤v ft the following

inequalities hold7.

λEµ

[
✶{f∗

v≥λ}

∣
∣Ft◦

]
≤ Eµ

[
fv✶{f∗

v≥λ}

∣
∣Ft◦

]
− ess inf

t∈T
Eµ[(ft − λ)+|Ft◦ ]

≤ Eµ

[
fv✶{f∗

v≥λ}

∣
∣Ft◦

]
≤ Eµ[f

+
v |Ft◦ ] µ-a.e.

(4.13)

λEµ

[
✶{f◦

v≤−λ}

∣
∣Ft◦

]
≤ Eµ

[
fv✶{f◦

v>−λ}

∣
∣Ft◦

]
− ess inf

t∈T
Eµ[ft ∨ (−λ)|Ft◦ ]

≤ Eµ

[
fv✶{f◦

v>−λ}

∣
∣Ft◦

]
− ess inf

t∈T
Eµ[ft|Ft◦ ]

≤ Eµ[f
+
v |Ft◦ ]− ess inf

t∈T
Eµ[ft|Ft◦ ] µ-a.e.

(4.14)

Furthermore, for the function ψ defined in Theorem 4.2 it follows that

λEµ

[
✶{ess supt∈T |ft|≥λ}

∣
∣Ft◦

]
≤ Eµ

[
fv
(
✶{f∗

v≥λ} + ✶{f◦
v>−λ}

)∣
∣Ft◦

]

− ess inf
t∈T

Eµ[ψ(ft)|Ft◦ ] µ-a.e. (4.15)

6Note that Bc ∈ Fσ, since B =
⋂

t∈T {ft > −λ} and B ∩ {σ ≤ u} =
⋂

t∈T,t≤u{ft >
−λ} ∈ Fu for all u ∈ T .

7When dealing with probability spaces and martingales (Mt)t∈T (see (1.1) in the Intro-
duction) Doob’s backward convergence theorem as stated in [13, Theorem 7.49] gives con-
ditions for the existence of (Mt◦−λ)

+, hence there is no need to concern oneself with the es-
sential infimum. In particular, the theorem states that the term ess inft∈T E[(Mt−λ)

+|Ft◦ ]
can be identified with the limit limt∈F,tցt◦(Mt − λ)+ for each countable subset F ⊂ T
such that t◦ = inf F , if t◦ is not an element of T itself. Define Xt = (Mt − λ)+ for
t ∈ T , which is a submartingale by the conditional Jensen inequality. Then Doob’s
backward convergence theorem gives the existence of limt∈F,tցt◦ Xt a.s. and further
claims that there exists an a.s. unique Ft◦ -measurable random variable Xt◦ such that
Xt◦ = limt∈F,tցt◦ Xt and Xt◦ ≤ E[Xt|Ft◦ ] a.s. for all t ∈ T . Similar observations can be
made for ess inft∈T E[Mt ∨ (−λ)|Ft◦ ] and ess inft∈T E[ψ(Mt)|Ft◦ ].
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Proof. Again, it suffices to prove the first inequalities in (4.13) and (4.14).
If t◦ ∈ T , simply take s := t◦ and (4.13) and (4.14) follow immediately
from (4.3) and (4.4), since f ∗

t◦,v = f ∗
v and f ◦

t◦,v = f ◦
v . Otherwise, first take

the conditional expectation of (4.3) w.r.t. Ft◦ and apply the tower property.
Now let (sn)n∈N in T be an increasing sequence such that sn ց t◦ as n→ ∞.
Then f ∗

sn,v → f ∗
v and f ◦

sn,v → f ◦
v µ-a.e. on Ω as n → ∞. Furthermore, let

(λm)m∈N be a sequence in (−∞, λ) such that λm ր λ as m → ∞. We will
use the same trick as in the proof of Theorem 4.2 in order to show the proof
for any T ⊂ R. For this purpose define Am,n, Am and A similarly to (4.8) on
page 40 as well as Bm,n, Bm and B similarly to (4.10) on page 41, namely

Am,n = {f ∗
sn,v ≥ λm}, Am =

⋃

n∈N

Am,n, A = {f ∗
v ≥ λ}

and
Bm,n = {f ◦

sn,v ≤ −λm}, Bm =
⋃

n∈N

Bm,n, B = {f ◦
v ≤ −λ}.

Note that (Am,n)n∈N is an increasing sequence for every m ∈ N, whereas
(Am)m∈N is decreasing and A =

⋃

m∈NAm. Moreover, (Bm,n)n∈N is a de-
creasing sequence for every m ∈ N, whereas (Bm)m∈N is increasing, and
B =

⋂

m∈NBm. We may now apply the conditional monotone convergence
theorem in Theorem 2.12(5) and the conditional dominated convergence the-
orem in Theorem 2.12(10), which together with (4.3) (note that using the
essential infimum just gives a further upper bound) yields

λEµ[✶A|Ft◦ ] = lim
m→∞

(

lim
n→∞

λm Eµ[✶Am,n |Ft◦ ]
)

≤ lim
m→∞

(

lim
n→∞

Eµ[fv✶Am,n |Ft◦ ]
)

− ess inf
t∈T

Eµ[(ft − λ)+|Ft◦ ]

= lim
m→∞

(
Eµ[fv✶Am |Ft◦ ]

)
− ess inf

t∈T
Eµ[(ft − λ)+|Ft◦ ]

= Eµ[fv✶A|Ft◦ ]− ess inf
t∈T

Eµ[(ft − λ)+|Ft◦ ] µ-a.e.

The same arguments and (4.4) imply that

λEµ[✶B|Ft◦ ] = lim
m→∞

(

lim
n→∞

λm Eµ[✶Bm,n |Ft◦ ]
)

≤ lim
m→∞

(

lim
n→∞

Eµ[fv✶Bc
m,n

|Ft◦ ]
)

− ess inf
t∈T

Eµ[ft ∨ (−λ)|Ft◦ ]

= lim
m→∞

(
Eµ[fv✶Bc

m
|Ft◦ ]

)
− ess inf

t∈T
Eµ[ft ∨ (−λ)|Ft◦ ]

= Eµ[fv✶Bc |Ft◦ ]− ess inf
t∈T

Eµ[ft ∨ (−λ)|Ft◦ ] µ-a.e.

Now we only need to combine the two inequalities above to deduce (4.15).
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To make further improvements we would now like to free ourselves from
any endpoints. This is discussed in the following corollary.

Corollary 4.5. Let (Ω,F ,F, µ) be a σ-finite filtered measure space and T ⊂
R. Define t◦ = inf T and t∗ = supT and assume that µ|Ft◦

is σ-finite with
Ft◦ :=

⋂

t∈T Ft. Let (ft)t∈T be a F-adapted sequence of functions such that fu
is σ-integrable w.r.t. Ft◦ and ft ≤ Eµ[fu|Ft] µ-a.e. for all t ≤ u in T . Then
for f ∗ := ess supt∈T ft and f

◦ := ess inft∈T ft the following inequalities hold8.

λEµ

[
✶{f∗≥λ}

∣
∣Ft◦

]
≤ ess sup

t∈T
Eµ

[
ft✶{f∗≥λ}

∣
∣Ft◦

]
− ess inf

t∈T
Eµ[(ft − λ)+|Ft◦ ]

≤ ess sup
t∈T

Eµ[f
+
t |Ft◦ ]− ess inf

t∈T
Eµ[(ft − λ)+|Ft◦ ]

≤ ess sup
t∈T

Eµ[f
+
t |Ft◦ ] µ-a.e.

(4.16)

λEµ

[
✶{f◦≤−λ}

∣
∣Ft◦

]
≤ ess sup

t∈T
Eµ

[
ft✶{f◦>−λ}

∣
∣Ft◦

]
− ess inf

t∈T
Eµ[ft ∨ (−λ)|Ft◦ ]

≤ ess sup
t∈T

Eµ[f
+
t |Ft◦ ]− ess inf

t∈T
Eµ[ft|Ft◦ ] µ-a.e.

(4.17)

Again, with ψ as defined in Theorem 4.2 the two inequalities above imply

λEµ

[
✶{ess supt∈T |ft|≥λ}

∣
∣Ft◦

]
≤ ess sup

t∈T
Eµ

[
ft
(
✶{f∗≥λ} + ✶{f◦>−λ}

)∣
∣Ft◦

]

− ess inf
t∈T

Eµ[ψ(ft)|Ft◦ ] µ-a.e. (4.18)

Proof. Once more it suffices to show the first inequality in (4.16) and (4.17).
If t∗ and t◦ are elements of T themselves then we immediately arrive at (4.16)
and (4.17), because f ∗ = f ∗

t◦,t∗ and f ◦ = f ◦
t◦,t∗ . Otherwise, let (vn)n∈N in T

be an increasing sequence such that vn ր t∗ as n → ∞. Then f ∗
vn → f ∗

and f ◦
vn → f ◦ µ-a.e. on Ω as n → ∞. Again, let (λm)m∈N be a sequence in

8When dealing with probability spaces and submartingales (Mt)t∈T (see (1.2) in the
Introduction) Doob’s almost sure convergence theorem as stated in [13, Theorem 7.35]
gives conditions for the existence of Mt∗✶{M∗≥λ}, hence there is no need to concern
oneself with the essential supremum. In particular, the theorem states that the term
ess supt∈T E[Mt∗✶{M∗≥λ}|Ft◦ ] can be identified with the limit limt∈F,tրt∗ Mt1{M∗≥λ} for
each countable subset F ⊂ T such that t∗ = supF , if t∗ is not an element of T itself. De-
fine Xt =Mt1{M∗≥λ} for t ∈ T , which is again a submartingale. Then Doob’s almost sure
convergence theorem gives the existence of limt∈F,tցt∗ Xt a.s. and further claims that there
exists an a.s. unique Ft∗ -measurable random variable Xt∗ such that Xt∗ = limt∈F,tրt∗ Xt

a.s. Similar observations can be made for ess supt∈T E[Mt✶{M∗≤−λ}|Ft◦ ].
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(−∞, λ) such that λm ր λ as m→ ∞. Once more, let us make the following
definitions:

Am,n = {f ∗
vn ≥ λm}, Am =

⋃

n∈N

Am,n, A = {f ∗ ≥ λ};

Bm,n = {f ◦
vn ≤ −λm}, Bm =

⋃

n∈N

Bm,n, B = {f ◦ ≤ −λ}.

Note that (Am,n)n∈N is an increasing sequence for every m ∈ N, whereas
(Am)m∈N is decreasing and A =

⋃

m∈NAm. Moreover, (Bm,n)n∈N is a de-
creasing sequence for every m ∈ N, whereas (Bm)m∈N is increasing, and
B =

⋂

m∈NBm. Again, using the conditional monotone convergence theorem
and the conditional dominated convergence theorem it follows by (4.13) (note
that using the essential supremum just gives a further upper bound) that

λEµ[✶A|Ft◦ ] = lim
m→∞

(

lim
n→∞

λm Eµ[✶Am,n |Ft◦ ]
)

≤ ess sup
t∈T

lim
m→∞

(

lim
n→∞

Eµ[ft✶Am,n |Ft◦ ]
)

− ess inf
t∈T

Eµ[(ft − λ)+|Ft◦ ]

= ess sup
t∈T

lim
m→∞

(
Eµ[ft✶Am |Ft◦ ]

)
− ess inf

t∈T
Eµ[(ft − λ)+|Ft◦ ]

= ess sup
t∈T

Eµ[ft✶A|Ft◦ ]− ess inf
t∈T

Eµ[(ft − λ)+|Ft◦ ] µ-a.e.

Using the same arguments we can deduce the following by using (4.14):

λEµ[✶B|Ft◦ ] = lim
m→∞

(

lim
n→∞

λm Eµ[✶Bm,n |Ft◦ ]
)

≤ ess sup
t∈T

lim
m→∞

(

lim
n→∞

Eµ[ft✶Bc
m,n

|Ft◦ ]
)

− ess inf
t∈T

Eµ[ft ∨ (−λ)|Ft◦ ]

= ess sup
t∈T

lim
m→∞

(
Eµ[ft✶Bc

m
|Ft◦ ]

)
− ess inf

t∈T
Eµ[ft ∨ (−λ)|Ft◦ ]

= ess sup
t∈T

Eµ[ft✶Bc |Ft◦ ]− ess inf
t∈T

Eµ[ft ∨ (−λ)|Ft◦ ] µ-a.e.

This chapter proved a generalised versions of Doob’s maximum inequal-
ities by relying on purely deterministic inequalities. A more theoretical ap-
proach using measure theory was undertaken in Chapter 3. Furthermore, we
showed that it is possible to omit the need for a given interval; particularly,
we may rid ourselves from a starting and an endpoint by considering the
infimum and the supremum of our time span T . We will proceed in a similar
manner in the following chapter as we strive to improve Doob’s well-known
Lp-inequalities.
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Chapter 5

Improved Versions

of Doob’s Lp-Inequality
for σ-Finite Measure Spaces

In this chapter, which builds the core of this thesis, we will present three
versions of Doob’s classical Lp-inequality for p > 1, p = 1 and p ∈ (0, 1) and
prove that they hold true on a more general setting. In particular, there are
various new approaches here.

Firstly, by using deterministic inequalities proved by [13] it is possible to
find sharper upper bounds than those given by Doob. Secondly, the improved
inequalities hold true when considering submartingales according to Defini-
tion 2.13 on σ-finite measure spaces (see Chapter 3). Thirdly, the need for
integrability can be omitted when considering σ-integrable functions. Hence,
the improved inequalities hold for σ-integrable submartingales. Finally, there
is no need for assumptions concerning the time span T ∈ R when working
with the essential supremum.

As a first step we would like to refine and generalise (3.7) and (3.8) before
proving another Lp-inequality for p ∈ (0, 1). We work along the lines of [13,
Theorem 4.81 and 4.86] as well as [10, Lemma 3.2(c) and Satz 3.3(b)] in
order to prove our claims.

5.1 Inequalities for p > 1

We will start out with a simple deterministic inequality proved by [13]. Let it
be noted that the proof of the following lemma is not of the author’s making
but will be presented here for the sake of completeness. Please refer to [13,
Proposition 4.80] for the original proposition and its proof if interested.
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Lemma 5.1. Define xk = max{x0, . . . , xk} for x0, . . . , xn ∈ R+ and k ∈
{0, . . . , n} and ∆xk+1 = xk+1 − xk for k ∈ {0, . . . , n − 1}, n ∈ N. Let
p, q ∈ (1,∞) such that 1/p+ 1/q = 1 and c > 1. Then

xpn ≤
c

c− 1

q

p

(

cp/qxpn − p
n−1∑

k=0

xp−1
k ∆xk+1 − xp0

)

. (5.1)

Proof. It follows from the fundamental theorem of calculus (see Theorem
A.35 in the Appendix) that

x̄pn = p

∫ ∞

0

λp−2λ✶{x̄n≥λ} dλ.

We can now plug in the estimate in (4.1), which gives us

xpn ≤ p

∫ ∞

0

λp−2xn✶{xn≥λ} dλ− p
n−1∑

k=0

∫ ∞

0

λp−2
✶{xk≥λ}∆xk+1 dλ

− p

∫ ∞

0

λp−2(x0 − λ)✶{x0≥λ} dλ. (5.2)

We assumed p/(p− 1) = q. Hence, it follows by integration that

xpn ≤ qxnx
p−1
n − q

n−1∑

k=0

xp−1
k ∆xk+1 − qx0x

p−1
0 + xp0

︸ ︷︷ ︸

=(q+1)xp
0

. (5.3)

By using Young’s inequality for products in Theorem A.36 and (p− 1)q = p
we can see that

qxnx
p−1
n = qc1/qxn

xp−1
n

c1/q
≤
q

p
cp/qxpn +

xpn
c
. (5.4)

Plugging the inequality above into (5.3) and solving the resulting inequality
for xpn we arrive at the claimed result by using that q − 1 = q/p.

A proof of (5.1) for c = q1/p can be found in [1, Proposition 2.1]. With the
help of the inequality above, it is now possible to improve Theorem 3.2 a little
further as well as generalise it to hold even for σ-integrable submartingales
on σ-finite measure spaces.

Theorem 5.2. Improved version of Doob’s classical Lp-inequality
for submartingales
Let (Ω,F ,F, µ) be a σ-finite filtered measure space and T ⊂ R with s, v ∈ T
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such that s ≤ v and T ⊂ [s, v]. Assume that µ|Fs is σ-finite and let (ft)t∈T
be a F-adapted sequence of positive functions such that ft is σ-integrable
w.r.t. Fs for all t ∈ T and ft ≤ Eµ[fu|Ft] µ-a.e. for all t ≤ u in T (i.e.
(ft)t∈T is a σ-integrable submartingale according to Definition 2.15). Then
for f ∗

s,v := ess supt∈T ft, c > 1 and p, q ∈ (1,∞) such that 1/p + 1/q = 1 we
have1

Eµ[(f
∗
s,v)

p|Fs] ≤
c

c− 1

q

p

(
cp/q Eµ[f

p
v |Fs]− (Eµ[fv|Fs])

p
)
µ-a.e. (5.5)

Remark 5.3. Since Definition 2.15 gives a generalisation of the submartingale
property, Theorem 5.2 certainly holds for submartingales defined according to
Definition 2.13. Furthermore, note that the right-hand side of (5.5) simplifies,
if f is a σ-integrable martingale, because then Eµ[fv|Fs] = fs µ-a.e. By
the submartingale property in w.r.t. σ-integrable functions in (2.21) it is
possible to derive a further upper bound for (5.5) by subtracting f p

s instead
of (Eµ[fv|Fs])

p.

Proof. Theorem 5.2
We will start by proving (5.5) for finite T and the σ-integrable martingale2

(f̃t)t∈T with f̃t := Eµ[fv|Ft] for t ∈ T . Since f ∗
s,v ≤ ess supt∈T Eµ[fv|Ft] =: f̃ ∗

s,v

µ-a.e., the claim then follows.
It suffices to prove that (5.5) holds true on every Al := {Eµ[f̃

p
v |Fs] ≤ l} ∈

Fs for l ∈ N, because it certainly does on Ω \
⋃

l∈NAl. For this purpose, fix

l ∈ N and define gt = ✶Al
f̃t for t ∈ T . Then (gt)t∈T is a sequence of positive

functions. Consider a sequence (Ωl)l∈N in Fs with Ωl ր Ω as l → ∞ such
that µ(Ωl) < ∞ for all l ∈ N (such a sequence exists, since µ|Fs is σ-finite
by assumption). Then Ωl := Al ∩ Ωl is also in Fs for all l ∈ N, Ωl ր Ω as
l → ∞ and µ(Ωl) < ∞ for all l ∈ N. Furthermore, gt✶Ωl

∈ L1(Ω,F , µ) for
all l ∈ N by Lemma 2.4(3). Thus, gt is σ-integrable w.r.t. Fs for all t ∈ T .
Moreover,

Eµ[gu − gt|Ft]
2.12(6)
= ✶Al

Eµ[f̃u − f̃t|Ft] = 0 µ-a.e. (5.6)

for all t ≤ u in T and

Eµ[g
p
v✶Ωl

]
2.12(6)
= Eµ[✶Al

Eµ[f̃
p
v |Fs]

︸ ︷︷ ︸

≤ l onAl

✶Ωl
] ≤ lµ(Ωl) <∞

1For the conditional expectation of (f∗s,v)
p please refer to Remark 2.11.

2(f̃t)t∈T is in fact a martingale defined according to Definition 2.15, because
Eµ[Eµ[fv|Fu]|Ft] = Eµ[fv|Ft] µ-a.e. for all t ≤ u in T by the tower property in Theo-
rem 2.12(7).
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by the Fs-measurability of ✶Al
. Thus, gpv is σ-integrable w.r.t. Fs.

Suppose T = {t0, . . . , tn} with s = t0 < t1 < . . . < tn = v and define ḡj =
max{gt0 , . . . , gtj} for j ∈ {0, . . . , n} and n ∈ N. It follows that ḡp−1

j (gtj+1
−gtj)

is also σ-integrable w.r.t. Ftj for all j ∈ {0, . . . , n− 1} by Lemma 2.4(1) and
(3). Hence,

Eµ[ḡ
p−1
j (gtj+1

− gtj)|Ftj ]
2.12(6)
= ḡp−1

j (Eµ[gtj+1
− gtj |Ftj ]

︸ ︷︷ ︸

=0µ-a.e. by (5.6)

) = 0 µ-a.e., (5.7)

where we used the Ftj -measurability of ḡj. Substituting x0, . . . , xn in (5.1)
with gt0 , . . . , gtn now gives us

ḡpn ≤
c

c− 1

q

p

(

cp/qgptn − p

n−1∑

j=0

ḡp−1
j ∆gtj+1

− gpt0

)

µ-a.e.

Let us now take the conditional expectation w.r.t. Ftk for k = n − 1 of the
inequality above. This gives

Eµ[ḡ
p
n|Ftk ] ≤

c

c− 1

q

p

(

cp/q Eµ[g
p
tn |Ftk ]−p

k−1∑

j=0

Eµ[ḡ
p−1
j ∆gtj+1

|Ftk ]−Eµ[g
p
t0 |Ftk ]

)

µ-a.e., where the last term of the sum vanishes for k due to (5.7). Taking
conditional expectations iteratively for k = n− 2, . . . , 0 and using the tower
property in Theorem 2.12(7) yields

Eµ[ḡ
p
n|Fs] ≤

c

c− 1

q

p
(cp/q Eµ[g

p
v |Fs]− gps) µ-a.e.,

where we used that Eµ[g
p
s |Fs] = gps µ-a.e. by assumption of F-adaptedness

for the final term. By Theorem 2.12(1) the inequality above is (5.5) on Al

with f̃T := maxt∈T f̃t in place of f̃ ∗
s,v, thus, we are done with this part.

For the general case note there exists a sequence (Sn)n∈N of finite subsets
of T with s, v ∈ Sn for all n ∈ N such that

⋃

n∈N Sn = T . For fSn :=
maxt∈Sn ft it follows that fSn ր f ∗

s,v as n → ∞ by Theorem A.24. We then
know that (5.5) holds on Al for every finite set Sn and thus,

Eµ[(f
∗
s,v)

p|Fs] = lim
n→∞

Eµ[(fSn)
p|Fs]

≤
c

c− 1

q

p

(
cp/q Eµ[f

p
v |Fs]− (Eµ[fv|Fs])

p
)
µ-a.e.

by the conditional monotone convergence theorem in Theorem 2.12(5).
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We can weaken the assumptions in Theorem 5.2 a little bit further by
omitting the need for adaptedness. In the following corollary we will only
look at the increments of a sequence of functions, where we ask those to be
adapted instead of the sequence itself. In the spirit of Definition 2.15 this
then gives a generalisation of the theorem above.

Corollary 5.4. Let (Ω,F ,F, µ) be a σ-finite filtered measure space and T ⊂
R with s, v ∈ T such that T ⊂ [s, v]. Assume µ|Fs is σ-finite and let (ft)t∈T
be a sequence of functions such that ft−fs is Ft-measurable and σ-integrable
w.r.t. Fs for all t ∈ T . If Eµ[fu − ft|Ft] = 0 µ-a.e. for all t ≤ u in T , it
follows for c > 1 and p, q ∈ (1,∞) such that 1/p+ 1/q = 1 that3

Eµ

[(

ess sup
t∈T

|ft−fs|
)p
∣
∣
∣
∣
Fs

]

≤
c

c− 1

q

p

(
cp/q Eµ[|fv−fs|

p|Fs]−(Eµ[|fv−fs| |Fs])
p
)

holds true µ-a.e.

Proof. Note that 0 = Eµ[fu − ft|Ft] = Eµ[fu − fs|Ft] − (ft − fs) µ-a.e. for
all t ≤ u in T by the Ft-measurability of the increment (ft − fs). This is
equivalent to ft − fs = Eµ[fu − fs|Ft] µ-a.e. Then by Theorem 2.12(9) it
follows that |ft − fs| = |Eµ[fu − fs|Ft]| ≤ Eµ[|fu − fs| |Ft] µ-a.e. Hence,
we can apply the improved version of Doob’s Lp-inequality to the F-adapted
sequence of positive functions (|ft − fs|)t∈T , which immediately yields the
claim.

A starting point s ∈ T might not always be readily available. Thus, it
can be helpful to consider the infimum of our time span T ⊂ R instead. The
following corollary gives an estimate for our sequence of functions without
the need of such a starting point.

Corollary 5.5. Let (Ω,F ,F, µ) be a σ-finite filtered measure space and T ⊂
R with v ∈ T and define t◦ = inf T . Assume that µ|Ft◦

is σ-finite with
Ft◦ :=

⋂

t∈T Ft. Let (ft)t∈T be an F-adapted sequence of positive functions
such that fv is σ-integrable w.r.t. Ft◦ for all t ∈ T and ft ≤ Eµ[fu|Ft] µ-a.e.
for all t ≤ u in T . Then for f ∗

v := ess supt∈T,t≤v ft, c > 1 and p, q ∈ (1,∞)
such that 1/p+ 1/q = 1 it follows that4

Eµ[(f
∗
v )

p|Ft◦ ] ≤
c

c− 1

q

p

(
cp/q Eµ[f

p
v |Ft◦ ]− (Eµ[fv|Ft◦ ])

p
)
µ-a.e.

3For the conditional expectation of ess supt∈T |ft − fs|
p please refer to Remark 2.11.

4For the conditional expectation of (f∗v )
p please refer to Remark 2.11.
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Proof. If t◦ ∈ T , simply take s := t◦ and the claim follows immediately
from (5.5), since f ∗

t◦,v = f ∗
v . Otherwise, consider the martingale (T ∪ {t◦}) ∩

[−∞, v] ∋ t → Eµ[fv|Ft] =: f̃t and define T≤v = T ∩ [−∞, v]. Similarly to
the proof of Theorem 5.2 we can observe that

f ∗
v = ess sup

t∈T≤v

ft ≤ ess sup
t∈T≤v

f̃t ≤ ess sup
t∈T≤v∪{t◦}

f̃t µ-a.e. (5.8)

Since T≤v ∪ {t◦} ⊂ [t◦, v], we can apply Theorem 5.2 to ess supt∈T≤v∪{t◦}
f̃t,

which gives us

Eµ

[

ess sup
t∈T≤v∪{t◦}

f̃t|Ft◦

]

≤
c

c− 1

q

p

(
cp/q Eµ[f̃

p
v |Ft◦ ]− (Eµ[f̃v|Ft◦ ])

p
)
µ-a.e.

This implies the claim by (5.8) and Theorem 2.12(1).

Note that Corollary 5.5 is in fact an improvement to (3.7). Finally, we
would like to prove that also (3.8) can be improved and adapted to our
setting.

Corollary 5.6. Let (Ω,F ,F, µ) be a σ-finite filtered measure space and T ⊂
R. Define t◦ = inf T and assume that µ|Ft◦

is σ-finite with Ft◦ :=
⋂

t∈T Ft.
Let (ft)t∈T be an F-adapted sequence of positive functions such that fu is σ-
integrable w.r.t. Ft◦ and ft ≤ Eµ[fu|Ft] µ-a.e. for all t ≤ u in T . Then for
f ∗ := ess supt∈T ft, c > 1 and p, q ∈ (1,∞) such that 1/p+ 1/q = 1 we have5

Eµ[(f
∗)p|Ft◦ ] ≤

c

c− 1

q

p
ess sup

v∈T

(
cp/q Eµ[f

p
v |Ft◦ ]− (Eµ[fv|Ft◦ ])

p
)
µ-a.e.

Proof. If t∗ = supT is an element of T itself then we immediately arrive at
the claim, because f ∗ = f ∗

t∗ . Otherwise, let (vn)n∈N in T be an increasing
sequence such that vn ր t∗ as n → ∞. Then f ∗

vn ր f ∗ µ-a.e. on Ω as
n→ ∞. Thus, we may apply the conditional monotone convergence theorem
in Theorem 2.12(5) and it follows that

Eµ[(f
∗)p|Ft◦ ] = lim

n→∞
Eµ[(f

∗
vn)

p|Ft◦ ]

5.5

≤
c

c− 1

q

p
sup
n∈N

(
cp/q Eµ[f

p
vn |Ft◦ ]− (Eµ[fvn |Ft◦ ])

p
)

≤
c

c− 1

q

p
ess sup

v∈T

(
cp/q Eµ[f

p
v |Ft◦ ]− (Eµ[fv|Ft◦ ])

p
)
µ-a.e.,

which concludes the proof.

5For the conditional expectation of (f∗)p and fpv please refer to Remark 2.11.
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5.2 Inequalities for p = 1

In this section we will, once more, use a deterministic inequality to derive
an improved version of Doob’s L1-inequality for submartingales. For the
sake of completeness we provide the proof for said deterministic inequality
as presented and proven in [13, Proposition 4.85]. Therefore, let it be noted
that the proof for the following lemma is not of the author’s making. For
further reading and more information please refer to [13] if interested.

Lemma 5.7. Define xk = max{x0, . . . , xk} for k ∈ {0, . . . , n} and
x0, . . . , xn ∈ R+ with x0 > 0. Furthermore, ∆xk+1 := xk+1 − xk for k ∈
{0, . . . , n− 1}, n ∈ N, and let c > 1. Then

xn ≤
c

c− 1

(

x0 + xn log
c

e
+ xn log xn − x0 log x0 −

n−1∑

k=0

∆xk+1 log xk

)

. (5.9)

Proof. If a ∈ R+ and b, c > 0, then6

a log b ≤ a log a+
b

c
+ a log

c

e
. (5.10)

We will first prove (5.10) in order to derive the inequalities in Lemma 5.7.
If a = 0, (5.10) is trivial. To prove the inequality for a, b, c > 0 note that
log x ≤ x/c+log(c/e) for x > 0, because both sides and their first derivatives
agree at x = c and the left-hand side is concave while the right-hand side
is linear on (0,∞). (5.10) follows directly now by plugging in x = b/a with
a, b > 0 and using the functional equation of the natural logarithm.

In order to prove (5.9) first note that x0 > 0 implies x0, . . . , xn > 0. By
using (4.1) and noting that the integral of ✶{x0≥λ} over λ ∈ [x0,∞) vanishes,
we arrive at

xn = x0 +

∫ ∞

x0

✶{xn≥λ} dλ

≤ x0 + xn

∫ ∞

x0

1

λ
✶{xn≥λ} dλ−

n−1∑

k=0

∆xk+1

∫ ∞

x0

1

λ
✶{xk≥λ} dλ

= x0 + xn log xn − xn log x0 +
n−1∑

k=0

∆xk+1 log x0

︸ ︷︷ ︸

=x0 log x0

−
n−1∑

k=0

∆xk+1 log xk

(5.11)

6Note that there is equality in (5.10) if, and only if, a, b > 0 and c = b/a.
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Applying (5.10) to xn log xn and solving the inequality above for xn finally
gives (5.9).

A proof of (5.7) for c = e can be found in [1, Proposition 2.1(II)]. We are
now ready to show that also a generalised and improved version of Doob’s
L1-inequality can be formulated for our specific setting.

Theorem 5.8. Improved version of Doob’s L1-inequality for sub-
martingales
Consider the setting and assumption in Theorem 5.2 and define

ϕ : R+ → R, ϕ(x) =

{

x log x if x > 0,

0 if x = 0.
(5.12)

Then for all c > 1 it follows7

Eµ[f
∗
s,v|Fs] ≤

c

c− 1

(
log(c)Eµ[fv|Fs] + Eµ[ϕ(fv)|Fs]− ϕ(Eµ[fv|Fs])

)
µ-a.e.

(5.13)

Remark 5.9. Definition 2.15 generalises the submartingale property. Hence,
Theorem 5.8 certainly holds for submartingales defined according to Defini-
tion 2.13. Furthermore, note that the right-hand side of (5.13) simplifies,
if (ft)t∈T is a σ-integrable martingale, because then Eµ[fv|Fs] = fs µ-a.e.
However, replacing ϕ(Eµ[fv|Fs]) with ϕ(fs) for positive σ-integrable sub-
martingales can lead to a wrong inequality. This can be seen in [6, p. 3] for
c := e treating the case of random variables and probability spaces.

Proof. Theorem 5.8
Again, we will start by proving (5.13) for finite T and the σ-integrable mar-
tingale (f̃t)t∈T with f̃t := Eµ[fv|Ft] for t ∈ T (see Footnote number 2 on page
49). Since f ∗

s,v ≤ ess supt∈T Eµ[fv|Ft] =: f̃ ∗
s,v µ-a.e., the claim then follows.

Again, it suffices to prove (5.13) on every Al := {Eµ[ϕ(f̃v)|Fs] ≤ l} ∈ Fs

for l ∈ N, which suffices, because it certainly does on Ω \
⋃

l∈NAl. For this

purpose, fix l ∈ N and define gt = ✶Al
f̃t for t ∈ T . Then (gt)t∈T is a sequence

of positive functions and by the same arguments as in the proof of Theorem
5.2 (see page 49) it follows that gt is σ-integrable w.r.t. Fs for all t ∈ T .
Simply consider a sequence (Ωl)l∈N in Fs with Ωl ր Ω as l → ∞ such that
µ(Ωl) < ∞ for all l ∈ N (such a sequence exists, since µ|Fs is σ-finite by
assumption). Then Ωl := Al ∩ Ωl is also in Fs for all l ∈ N, Ωl ր Ω as

7For the conditional expectation of f∗s,v and ϕ(fu) please refer to Remark 2.11.
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l → ∞, µ(Ωl) < ∞ for all l ∈ N and gt✶Ωl
∈ L1(Ω,F , µ) for all t ∈ T .

Moreover,

Eµ[gu − gt|Ft]
2.12(6)
= ✶Al

Eµ[f̃u − f̃t|Ft] = 0 µ-a.e. (5.14)

for all t ≤ u in T .
Note that ϕ as defined in (5.12) is a convex function and bounded from

below with ϕ(0) = 0. Thus, ϕ(gv) is σ-integrable w.r.t. Fs, because

Eµ[ϕ(gv)✶Ωl
]
2.12(6)
= Eµ[✶Al

Eµ[ϕ(fv)|Fs]
︸ ︷︷ ︸

≤ l onAl

✶Ωl
] ≤ lµ(Ωl) <∞

by the Fs-measurability of ✶Al
.

Suppose T = {t0, . . . , tn} with s = t0 < t1 < . . . < tn = v and define
gT = maxt∈T gt. We want to prove (5.13) on Al with gT in place of f ∗

s,v. For
this purpose, consider gρ,t := 1 + ρ(gt − 1) for ρ ∈ (0, 1) and all t ∈ T . Note
that (gρ,t)t∈T is σ-integrable by Lemma 2.4(1) and (2). Moreover,

Eµ[gρ,u − gρ,t|Ft]
2.12(4)
= ρ(Eµ[gu − gt|Ft])

(5.14)
= 0 µ-a.e. (5.15)

for all t ≤ u in T . Furthermore, gρ,t ≥ 1− ρ > 0 for all t ∈ T and ρ ∈ (0, 1)
and gρ,t → gt for all t ∈ T as ρ ր 1. Since ϕ is continuous, bounded below
and increasing on [1,∞) and gρ,t ≤ gt for all ρ ∈ (0, 1) on {gt ≥ 1}, we can
apply the conditional monotone convergence theorem in Theorem 2.12(5)
and conclude8

Eµ[ϕ(gρ,t)|Fs] → Eµ[ϕ(gt)|Fs] µ-a.e. as ρր 1. (5.16)

Define ḡρ,j = max{gρ,t0 , . . . , gρ,tj} for j ∈ {0, . . . , n} and n ∈ N. Since
log(1 − ρ) ≤ log(ḡρ,j) ≤ log(ḡρ,n) by the monotonicity of the logarithm and
|gρ,tj+1

− gρ,tj | ≤ max{gρ,tj+1
, gρ,tj} ≤ ḡρ,n, it follows that

ḡρ,n log(1− ρ) ≤ |gρ,tj+1
− gρ,tj |

︸ ︷︷ ︸

≤ ḡρ,n

log(ḡρ,j)
︸ ︷︷ ︸

≤ | log(ḡρ,n)|

≤ |ϕ(ḡρ,n)| µ-a.e.,

which implies that (gρ,tj+1
− gρ,tj) log(ḡρ,j) is also σ-integrable w.r.t. Ftj for

all j ∈ {0, . . . , n− 1}. Thus,

Eµ[(gρ,tj+1
− gρ,tj) log(ḡρ,j)|Ftj ]

2.12(6)
= log(ḡρ,j)(Eµ[gρ,tj+1

− gρ,tj |Ftj ]
︸ ︷︷ ︸

=0µ-a.e. by (5.15)

) = 0

(5.17)

8In case ϕ(gρ,t) is not σ-integrable w.r.t. Fs, please refer to Remark 2.11 for a gener-
alised definition of the conditional expectation.
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µ-a.e., where we used the Ftj -measurability of log(ḡρ,j). Substituting x0, . . . , xn
in (5.9) with gρ,t0 , . . . , gρ,tn (which we can do, since gρ,t0 ≥ 1 − ρ > 0) now
yields

ḡρ,tn ≤
c

c− 1

(

gρ,t0 + gρ,tn log
(c

e

)

+ gρ,tn log(gρ,tn)− gρ,t0 log(gρ,t0)

−
n−1∑

k=0

log(ḡρ,tk)∆gρ,tk+1

)

µ-a.e.

Let us now take the conditional expectation w.r.t. Ftk for k = n − 1 of the
inequality above. This gives

Eµ[ḡρ,tn |Ftk ] ≤
c

c− 1

(

Eµ[gρ,t0 |Ftk ] + Eµ[gρ,tn |Ftk ] log
(c

e

)

+ Eµ[ϕ(gρ,tn)|Ftk ]

− Eµ[ϕ(gρ,t0)|Ftk ]−
k−1∑

j=0

Eµ[log(ḡρ,tj)∆gρ,tj+1
|Ftk ]

)

µ-a.e., where the last term of the sum vanished for k due to (5.17). Taking
conditional expectations iteratively for k = n− 2, . . . , 0 and using the tower
property in Theorem 2.12(7) yields

Eµ[ḡρ,v|Fs] ≤
c

c− 1

(
Eµ[gρ,s|Fs] + Eµ[gρ,v|Fs] log(c/e)

+ Eµ[ϕ(gρ,v)|Fs]− Eµ[ϕ(gρ,s)|Fs]
)
µ-a.e. (5.18)

Since Eµ[gρ,s|Fs] = Eµ[gρ,v|Fs] µ-a.e. by (5.15), we can deduce that

Eµ[gρ,s|Fs] + Eµ[gρ,v|Fs] log(c/e) = log(c)Eµ[gρ,v|Fs] µ-a.e.

and

Eµ[ϕ(gρ,s)|Fs]
2.12(9)

≥ ϕ(Eµ[gρ,s|Fs]) = ϕ(Eµ[gρ,v|Fs]) µ-a.e., (5.19)

where we used the conditional version of Jensen’s inequality. Therefore,

Eµ[ḡρ,v|Fs] ≤
c

c− 1

(
log(c)Eµ[gρ,v|Fs]+Eµ[ϕ(gρ,v)|Fs]−ϕ(Eµ[gρ,v|Fs])

)
µ-a.e.

is another upper bound for (5.18). Finally, by sending ρ ր 1 and using
(5.16) it follows that

Eµ[gT |Fs] ≤
c

c− 1

(
log(c)Eµ[gv|Fs] + Eµ[ϕ(gv)|Fs]− ϕ(Eµ[gv|Fs])

)
µ-a.e.,

which is (5.13) on Al with f̃T := maxt∈T f̃t in place of f̃ ∗
s,v by Theorem 2.12(1).

The rest of the proof for (5.13) goes along the same lines as the proof of
Theorem 5.2 and will be omitted at this point.
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Just like it was the case for the Lp-inequality in Chapter 5.1, we can
weaken the assumptions in Theorem 5.8 some more by omitting the need for
adaptedness. In the following corollary we will only look at the increments
of a sequence of functions, where we ask those to be adapted instead of the
sequence itself. In the spirit of Definition 2.15 this then gives a generalisation
of the theorem above.

Corollary 5.10. Consider the setting and assumptions in Corollary 5.4 and
define the function ϕ as in (5.12). Then9

Eµ

[

ess sup
t∈T

|ft−fs|

∣
∣
∣
∣
Fs

]

≤
c

c− 1

(
log(c)Eµ[|fv−fs| |Fs]+Eµ[ϕ(|fv−fs|)|Fs]

− ϕ(Eµ[|fv − fs| |Fs])
)
µ-a.e.

Proof. The claim follows in exactly the same manner as in the proof of Corol-
lary 5.4. Please refer to page 51 for more details.

Again we would like to free ourselves of the need for a starting point in
the time span T ⊂ R. This can be done as follows.

Corollary 5.11. Consider the setting and assumptions in Corollary 5.5 and
define the function ϕ as in (5.12). Then10

Eµ[f
∗
v |Ft◦ ] ≤

c

c− 1

(
log(c)Eµ[fv|Ft◦ ] +Eµ[ϕ(fv)|Ft◦ ]− ϕ(Eµ[fv|Ft◦ ])

)
µ-a.e.

Proof. With the same arguments as in the proof of Corollary 5.5 we can
deduce the claim from (5.13): If t◦ ∈ T , simply take s := t◦ and the claim
follows immediately, because f ∗

t◦,v = f ∗
v . Otherwise, consider the martingale

(T ∪ {t◦}) ∩ [−∞, v] ∋ t → Eµ[fv|Ft] =: f̃t and define T≤v = T ∩ [−∞, v].
Again we can observe that

f ∗
v = ess sup

t∈T≤v

ft ≤ ess sup
t∈T≤v

f̃t ≤ ess sup
t∈T≤v∪{t◦}

f̃t µ-a.e. (5.20)

Since T≤v ∪ {t◦} ⊂ [t◦, v], we can apply Theorem 5.8 to ess supt∈T≤v∪{t◦}
f̃t,

which gives us

Eµ

[

ess sup
t∈T≤v∪{t◦}

f̃t

∣
∣
∣
∣
Ft◦

]

≤
c

c− 1

(
log(c)Eµ[f̃v|Ft◦ ]

+ Eµ[ϕ(f̃v)|Ft◦ ]− ϕ(Eµ[f̃v|Ft◦ ])
)
µ-a.e.

By (5.20) and Theorem 2.12(1) we are done.

9For the conditional expectation of ess supt∈T |ft − fs| and ϕ(|fv − fs|) please refer to
Remark 2.11.

10For the conditional expectation of f∗v and ϕ(fv) please refer to Remark 2.11.
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Corollary 5.12. Consider the setting and assumptions in Corollary 5.6 and
define the function ϕ as in (5.12). Then

Eµ[f
∗|Ft◦ ] ≤

c

c− 1
ess sup

v∈T

(
log(c)Eµ[fv|Ft◦ ]

+ Eµ[ϕ(fv)|Ft◦ ]− ϕ(Eµ[fv|Ft◦ ])
)
µ-a.e. (5.21)

Proof. If t∗ = supT is an element of T itself then we immediately arrive
at (5.21), because f ∗ = f ∗

t∗ . Otherwise, let (vn)n∈N in T be an increasing
sequence such that vn ր t∗ as n → ∞. Then f ∗

vn ր f ∗ pointwise on Ω as
n→ ∞. Thus, we may apply the conditional monotone convergence theorem
in Theorem 2.12(5) and it follows

Eµ[(f
∗)p|Ft◦ ] = lim

n→∞
Eµ[(f

∗
vn)

p|Ft◦ ]

5.11

≤
c

c− 1
sup
n∈N

(
log(c)Eµ[fvn |Ft◦ ] + Eµ[ϕ(fvn)|Ft◦ ]

−ϕ(Eµ[fvn |Ft◦ ])
)

≤
c

c− 1
ess sup

v∈T

(
log(c)Eµ[fv|Ft◦ ] + Eµ[ϕ(fv)|Ft◦ ]

−ϕ(Eµ[fv|Ft◦ ])
)
,

which holds true µ-a.e.

5.3 Inequalities for p ∈ (0, 1)

The following extended versions of Doob’s Lp-inequality for p ∈ (0, 1) are
generalisations of the corresponding textbook presentation in [10, Lemma
3.2(c) and Satz 3.3(b)]. In order to further develop our theory on inequalities
for σ-integrable submartingales we will need the following lemma.

Lemma 5.13. Let (Ω,F , µ) be a σ-finite measure space and let G be a sub-σ-
algebra of F such that µ|G is σ-finite. Furthermore, let f be an F-measurable
and R+-valued function and g a positive G-measurable function. If

Eµ

[
✶{f≥λ}

∣
∣G
]
≤ ✶{g≥λ} +

1

λ
g ✶{g<λ} µ-a.e. (5.22)

for all λ > 0, then it follows for every p ∈ (0, 1) that11

Eµ[f
p|G] ≤

1

1− p
gp µ-a.e. (5.23)

11In case fp is not σ-integrable w.r.t. G refer to Remark 2.11 for the generalised definition
of Eµ[f

p|G].
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Proof. Similarly to the proofs of the properties of the conditional expectation,
we will divide the proof into two parts. Then we can apply the generalised
definition of the conditional expectation in Remark 2.11.

Step 1 : Let G ∈ Rg,G (see Definition 2.6) and define fn = f ∧ n. Then
fn is σ-integrable w.r.t. G and so is f p

n. Moreover,

µ(f p
n ✶G ≥ λ) = µ({fn ≥ λ1/p} ∩G) = Eµ[Eµ[✶{fn≥λ1/p}|G]✶G],

where

Eµ

[
✶{fn≥λ1/p}

∣
∣G
]
≤ Eµ

[
✶{f≥λ1/p}

∣
∣G
]
≤ ✶{g≥λ1/p} +

1

λ1/p
g ✶{g<λ1/p} µ-a.e.

by (5.22). Therefore, it follows by Lemma 3.3 that

Eµ[Eµ[f
p
n|G]✶G]

2.7
= Eµ[f

p
n✶G] =

∫

(0,∞)

µ(f p
n ✶G > λ) dλ

≤ Eµ

[

✶G

∫

(0,gp]

1 dλ

]

+ Eµ

[

✶G g

∫

(gp,∞)

1

λ1/p
dλ

]

= Eµ

[

✶G

(

gp +
g p

1− p
gp−1

)]

.

The claim follows by calculating the two integrals, because the steps above
yield

Eµ[f
p
n✶G] = Eµ[Eµ[f

p
n|G]✶G] ≤

1

1− p
Eµ[g

p
✶G],

which implies (5.23) by Lemma 2.5(1).
Step 2 : Now we can apply the conditional monotone convergence since

f p
n ≥ 0 for all n ∈ N and f p

n ր f p for n→ ∞. This yields

Eµ[f
p|G] = lim

n→∞
Eµ[f

p
n|G] ≤

gp

1− p
µ-a.e.,

which is what we wanted to show

Theorem 5.14. Let (Ω,F ,F, µ) be a σ-finite filtered measure space and T ⊂
R with s, v ∈ T such that s ≤ v and T ⊂ [s, v]. Assume that µ|Fs is σ-finite
and let (ft)t∈T be an F-adapted sequence of positive functions such that ft is
σ-integrable w.r.t. Fs for all t ∈ T and ft ≤ Eµ[fu|Ft] µ-a.e. for all t ≤ u in
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T . Then for f ∗
s,v := ess supt∈T ft, λ ∈ R and p ∈ (0, 1) we have12

Eµ[(f
∗
s,v)

p|Fs] ≤
1

1− p

(
Eµ

[
fv✶{f∗

s,v>λ}

∣
∣Fs

]
− (fs − λ)+

)p

≤
1

1− p

(
Eµ

[
fv✶{f∗

s,v>λ}

∣
∣Fs

])p

≤
1

1− p
(Eµ[fv|Fs])

p µ-a.e.

(5.24)

Proof. The second and the third inequality in (5.24) follow immediately be-
cause (fs − λ)+ ≥ 0 and fv✶F ≤ fv for F ∈ F . Theorem 4.2 implies that

Eµ

[
✶{f∗

s,v≥λ}

∣
∣Fs

]
≤

1

λ

(
Eµ

[
fv✶{f∗

s,v≥λ}

∣
∣Fs

]
− (fs − λ)+

)
µ-a.e. (5.25)

Define g = Eµ[fv✶{f∗
s,v≥λ}|Fs]−(fs−λ)

+ and note that g is Fs-measurable due
to the definition of the conditional expectation w.r.t. Fs and the adaptedness
of fs. Since we now have

Eµ

[
✶{f∗

s,v≥λ}

∣
∣Fs

]
≤ ✶{g≥λ} +

1

λ
g ✶{g<λ} µ-a.e.

by 5.25, we may use Lemma 5.13, which immediately yields the desired result.

Again we may rid ourselves of the need for adaptedness by looking at the
increments of our sequence of functions instead.

Corollary 5.15. Consider the setting and assumptions in Corollary 5.4
but let p ∈ (0, 1) and define gt = |ft − fs| for t ∈ T . Then for g∗s,v :=
ess supt∈T |ft − fs| and λ ∈ R it follows that13

Eµ[(g
∗
s,v)

p|Fs] ≤
1

1− p

(
Eµ

[
gv✶{g∗s,v>λ}

∣
∣Fs

]
− (−λ)+

)p

≤
1

1− p

(
Eµ

[
gv✶{g∗s,v>λ}

∣
∣Fs

])p

≤
1

1− p
(Eµ[gv|Fs])

p µ-a.e.

Proof. Note that the last term in (5.24) reduces to (−λ)+ by the definition of
gs. The rest of the proof works in the same manner as the proof of Corollary
5.4. Please refer to page 51 for more details.

12For the conditional expectation of (f∗s,v)
p please refer to Remark 2.11.

13For the conditional expectation of (g∗s,v)
p please refer to Remark 2.11.
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The following corollary gives a further improvement to Theorem 5.14 by
omitting the need for a starting point in our time span T ⊂ R.

Corollary 5.16. Consider the setting and assumptions in Corollary 5.5 but
let p ∈ (0, 1). Then14

Eµ[(f
∗
v )

p|Ft◦ ] ≤
1

1− p

(
Eµ

[
fv✶{f∗

v≥λ}

∣
∣Ft◦

]
− ess inf

t∈T
Eµ[(ft − λ)+|Ft◦ ]

)p

≤
1

1− p

(
Eµ

[
fv✶{f∗

v≥λ}

∣
∣Ft◦

])p
≤

1

1− p
(Eµ[fv|Ft◦ ])

p µ-a.e.

Proof. Again, it suffices to prove the first inequality. If t◦ ∈ T , simply take
s := t◦ and the claim follows immediately, since f ∗

t◦,v = f ∗
v . Otherwise, note

that by Corollary 4.4

Eµ

[
✶{f∗

v≥λ}

∣
∣Ft◦

]
≤

1

λ

(
Eµ

[
fv✶{f∗

v≥λ}

∣
∣Ft◦

]
− ess inf

t∈T
Eµ[(ft − λ)+|Ft◦ ]

)
µ-a.e.

(5.26)
Define g = Eµ[fv✶{f∗

v≥λ}|Ft◦ ] − ess inft∈T Eµ[(ft − λ)+|Ft◦ ] and note that g
is Ft◦-measurable due to the definition of the conditional expectation w.r.t.
Ft◦ . Since we now have

Eµ

[
✶{f∗

v≥λ}

∣
∣Ft◦

]
≤ ✶{g≥λ} +

1

λ
g ✶{g<λ} µ-a.e.

by 5.26, we may use Lemma 5.13, which immediately yields the desired result.

Corollary 5.17. Consider the setting and assumptions in Corollary 5.6 but
let p ∈ (0, 1). Then15

Eµ[(f
∗)p|Ft◦ ] ≤

1

1− p

(
ess sup

t∈T
Eµ

[
ft✶{f∗≥λ}

∣
∣Ft◦

]
− ess inf

t∈T
Eµ[(ft − λ)+|Ft◦ ]

)p

≤
1

1− p

(
ess sup

t∈T
Eµ

[
ft✶{f∗≥λ}

∣
∣Ft◦

])p

≤
1

1− p

(
ess sup

t∈T
Eµ[ft|Ft◦ ]

)p
µ-a.e.

14The footnote in Corollary 4.4 explains that in the world of probability spaces and
random variables ess inft∈T Eµ[(ft − λ)+|Ft◦ ]

)p
may be identified further using Doob’s

backward convergence theorem.
15The footnote in Corollary 4.5 explains that in the world of probability spaces and ran-

dom variables ess supt∈T Eµ[ft✶{f∗≥λ}|Ft◦ ] may be further identified using Doob’s almost
sure convergence theorem.
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Proof. Once more, it suffices to prove the first inequality. If t∗ = supT is an
element of T itself then we immediately arrive at the claim, because f ∗ = f ∗

t∗ .
Otherwise, note that by Corollary 4.5

Eµ

[
✶{f∗≥λ}

∣
∣Ft◦

]
≤

1

λ

(
ess sup

t∈T
Eµ

[
ft✶{f∗≥λ}

∣
∣Ft◦

]

− ess inf
t∈T

Eµ[(ft − λ)+|Ft◦ ]
)
µ-a.e. (5.27)

Define g = ess supt∈T Eµ[ft✶{f∗≥λ}|Ft◦ ]− ess inft∈T Eµ[(ft−λ)+|Ft◦ ] and note
that g is Ft◦-measurable due to the definition of the conditional expectation
w.r.t. Ft◦ . Since we now have

Eµ

[
✶{f∗≥λ}

∣
∣Ft◦

]
≤ ✶{g≥λ} +

1

λ
g ✶{g<λ} µ-a.e.

by (5.27), we may use Lemma 5.13, which immediately yields the desired
result.

5.4 Examples For Equality and Sharp Inequal-

ities

In the proofs of the improved and generalised versions of Doob’s maximum
and Lp-inequalities we rely on deterministic inequalities, which may hold with
equality given certain conditions. Lemma 4.1, for example, discusses under
what circumstances equality may hold in (4.1) and (4.2). As we discuss in
the Appendix, we may achieve equality in Young’s inequality as well if we
make the necessary assumptions outlined in Theorem A.36. For this reason
we decided to look into finding examples for processes and functions which
may yield equality in our newly developed inequalities.

The following example shows that there are, in fact, processes that imply
equality in (5.5). For this purpose let us return to the world of probability
spaces and stochastic processes.

Example 5.18. Let (Ω,F ,P) be a probability space and T = R+. For a pos-
itive real-valued16 random variable τ ∼ Exp(1) define the indicator process
Y = (Yt)t∈T by Yt = ✶[τ,∞](t) and let F = (Ft)t∈T be the filtration generated
by Y , i.e.17 Ft = σ({Ys : T ∋ s ≤ t}) for t ∈ T . Furthermore, define the
process X := (Xt)t∈T by18

Xt =
(

✶[0,τ)(t) +
1

c
✶[τ,∞](t)

)

exp
(c− 1

c
(t ∧ τ)

)

, t ∈ T. (5.28)

16We want to ensure that P(τ <∞) = 1.
17Note that F is, in fact, the smallest filtration such that τ is a stopping time w.r.t. F.
18Note that this process satisfies the conditions in Proposition 5.21 below.
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For ease of readability we will make us of the convention to denote the
exponential function using Euler’s number e. Define γ = (c− 1)/c and note
that c(γ − 1) = −1. We will show that X is, in fact, a martingale19, which
we do by proving that the map T ∋ t 7→ E[Xt] is constant and that X is
a submartingale. Example A.29 in the Appendix then implies, that X is a
martingale. Therefore, let t ∈ T . Then

E[Xt] = E[✶{τ>t}e
γt] +

1

c
E[✶{τ≤t}e

γτ ] = P(τ > t)
︸ ︷︷ ︸

=e−t

eγt +
1

c

∫ t

0

es(γ−1) ds

︸ ︷︷ ︸

=(et(γ−1)−1)/(γ−1)

=

(

1 +
1

c(γ − 1)

)

et(γ−1) −
1

c(γ − 1)
= 1.

This also implies the integrability of X. Since Xt ≤ eτγ/c for all t ∈ T
the process is also uniformly integrable20 (see Definition A.19). Moreover, in
order to show that X is a martingale we will use that Ft = σ({τ ≤ s} : s ∈
[0, t]) for t ∈ T equals the σ-algebra21

Gt := {F ∈ Ft : {τ > t} ⊂ F or {τ > t} ⊂ F c}

for all t ∈ T . This is true, since {τ > t} ∈ Ft for all t ∈ T , {τ > t} ⊂ {τ ≤ s}c

for all s ∈ [0, t], which implies that for all F ∈ Ft we have either {τ > t} ⊂ F
or {τ > t} ⊂ F c, hence, Ft ⊂ Gt (and clearly, Gt ⊂ Ft).

We will now prove the submartingale property by relying on the mem-
orylessness of the exponential distribution22. For this purpose let s ≤ t be
elements of T .

E[Xt|Fs]
a.s.
= E[✶{τ>t}e

γt|Fs] +
1

c
E[✶{τ≤t}e

γτ |Fs]. (5.29)

Let us treat each summand on the right-hand side separately. Since τ is
exponentially distributed we can use its memorylessness and deduce that

E[✶{τ>t}e
γt|Fs] = eγt P(τ > t|Fs)

︸ ︷︷ ︸

=P(τ>t−s) a.s.

a.s.
= et(γ−1)+s.

(5.30)

We can rewrite the second summand on the right-hand side of (5.29) using
✶{τ≤t} = ✶{τ≤s} + ✶{s<τ≤t} and

E[✶{τ≤s}e
γτ |Fs] = E[✶{τ≤s}e

γ(τ∧s)|Fs]
a.s.
= ✶{τ≤s}e

γ(τ∧s) (5.31)

19For the definition please refer to the corresponding paragraph in the Introduction on
page 1.

20For more information of uniformly integrable functions please refer to [13, Chapter
4.2, p. 85–91].

21The fact that Gt is a σ-algebra is easy to prove and will be left to the reader.
22e.g. P(τ ≥ s+ t|τ ≥ s) = P(τ ≥ t) for all s, t ≥ 0
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by applying Theorem A.28(5) to the Fs-measurable function ✶{τ≤s}e
γ(τ∧s).

We claim that

E[✶{s<τ≤t}e
γτ |Fs]

a.s.
= ✶{s<τ}e

γsE[✶{τ≤t−s}e
γτ ] (5.32)

For F ∈ Fs we have
∫

F

E[✶{s<τ≤t}e
γτ |Fs] dP =

∫

F

✶{s<τ≤t}e
γτ dP

=

∫

F∩{τ≤s}

✶{s<τ≤t}e
γτ dP+

∫

F∩{τ>s}

✶{s<τ≤t}e
γτ dP.

The first integral on the right-hand side reduces to zero because {τ ≤ s} ∩
{s < τ ≤ t} = ∅. Furthermore, we have shown before, every F ∈ Fs is
also an element of Gs, hence, F ∩ {τ > s} = {τ > s}. Thus, by using
{s < τ ≤ t} ⊂ {τ > s} we arrive at

∫

F

E[✶{s<τ≤t}e
γτ |Fs] dP =

∫

{s<τ≤t}

eγτ dP =

∫ t

s

er(γ−1) dr

=
1

γ − 1

(
et(γ−1) − es(γ−1)

)
.

Secondly, since

E[✶{τ≤t−s}e
γτ ] =

∫ t−s

0

er(γ−1) dr =
1

γ − 1

(
et(γ−1)e−s(γ−1) − 1

)

and eγsP(s < τ) = es(γ−1), it follows that
∫

F

✶{s<τ}e
γsE[✶{s<τ≤t−s}e

γτ ] dP =
1

γ − 1

(
et(γ−1) − es(γ−1)

)
.

Hence, (5.32) holds true a.s. Using (5.30), (5.31) and (5.32) and plugging
them into (5.29), we can deduce that

E[Xt|Fs]
a.s.
= et(γ−1)+s +

1

c
✶{τ≤s}e

γ(τ∧s) − ✶{τ>s}e
γs
(
et(γ−1)e−s(γ−1) − 1

)

= et(γ−1)+s +
1

c
✶{τ≤s}e

γ(τ∧s) − ✶{τ>s}

(
et(γ−1)+s − eγs

)

=
(

✶{τ>s} +
1

c
✶{τ≤s}

)

eγ(τ∧s) + et(γ−1)+s(1− ✶{τ>s}).

Since et(γ−1)+s(1− ✶{τ>s}) ≥ 0, we can conclude that

E[Xt|Fs]
a.s.

≥
(

✶{τ>s} +
1

c
✶{τ≤s}

)

eγ(τ∧s) = Xs,
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which means, X is a submartingale.
Finally, we would like to show that (5.5) holds with equality when applied

to X. Define the supremum process Xt = sups∈[0,t]Xs for t ∈ T . As the
interval in question we wish to consider [s, v] := [0,∞] = T and prove that

E[(X∗
v )

p|Fs]
a.s.
=

c

c− 1

q

p

(
cp/qE[Xp

v |Fs]− (E[Xv|Fs])
p
)
. (5.33)

In order to do so, note that Fs = F0 = {∅,R+}, hence, we can omit all
the conditions in the equality above. Calculating the left-hand side of (5.33)
then yields

E[(X∗
v )

p|F0] = E[epγτ ] =
c

c− pc+ p
(5.34)

by the representation of the moment-generating function of an exponentially
distributed random variable. Furthermore,

E[Xp
v |Fs] =

1

cp
E[epγτ ] =

c

cp(c− pc+ p)
(5.35)

and

(E[Xv|Fs])
p =

1

cp
(E[eγτ ])p =

1

cp
1

(1− γ)p
= 1. (5.36)

Now, inserting (5.34), (5.35) and (5.36) into (5.33) and solving the equation
gives zero on both sides, so (5.33) yields a true result. Hence, (5.33) holds
true.

We aim to find families of functions and processes for which Theorems
5.2 and 5.8 hold with equality. Lemma 4.1 already hints towards which kind
of processes and functions could achieve the desired result: One of these
three different conditions needs to be satisfied in order for (4.1) to hold with
equality:

❼ the maximum of a sequence of real numbers x0, . . . , xn for n ∈ N is
strictly smaller than a certain threshold λ ∈ R;

❼ x0 is greater or equal to λ;

❼ or if for the smallest k ∈ {1, . . . , n} such that the number xk is greater
or equal λ, it is already equal λ.

Furthermore, in the proof of (5.1) we use Young’s inequality, for which we
discuss conditions for equality in Theorem A.36. In particular, (5.4) holds
with equality, if c xn = xn := max{x0, . . . , xn} for c > 1. Therefore, we can
make the following observation:
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Proposition 5.19. Let λ ∈ R, c > 1 and s ≤ v in T ⊂ R such that
T ⊂ [s, v]. The improved version of Doob’s Lp-inequality for p > 1 in (5.5)
holds with equality if, and only if, for f := (ft)t∈T fulfilling the assumptions
in Theorem 5.2 we have that c fv = ess supt∈T ft and f satisfies one of the
following conditions.

(1) ess supt∈T ft ≤ λ, i.e. f is bounded from above by λ.

(2) fs ≥ λ, i.e. f is bounded from below at the start of the period.

(3) If for t, u ∈ T with t ≤ u such that ft ≤ λ and fu ≥ λ, there exists a
ũ ∈ T such that fũ = λ, i.e. if f crosses a certain threshold throughout
the period, f has to take a value at the mentioned threshold.

Another way to prove the improved version of Doob maximum inequalities
relies on stopping times, as Remark 4.3 shows. For this purpose let us review
(3.4), which is essential for deriving (3.1). In the first part of the proof of
Theorem 3.1 we require T to be finite and define τ = v∧min{t ∈ T : ft ≥ λ}
and A = {maxt∈T ft ≥ λ} and explain that (3.4), which states

λ✶A ≤ fτ✶A − (fs − λ)+,

holds with equality on

❼ Ac (meaning maxt∈T ft < λ), since both sides are zero;

❼ {fs ≥ λ} ⊂ A, because both sides equal λ.

Remark 4.3 explains that by taking the conditional expectation of (3.4) we
can deduce (4.3) in Theorem 4.2 by applying Theorem 2.20. Furthermore,
we attain equality in (4.11) if, and only if, our sequence of functions (ft)t∈T
is in fact a σ-integrable martingale.

Finally, it follows from the proof of Lemma 5.1, where we apply Lemma
4.1 to the maximum of the sequences of real-numbers, that the sequence
(f ∗

s,u)u∈T with f ∗
s,u := ess supt∈[s,u] ft needs to be continuous in order for (5.2)

applied to (f ∗
s,u)u∈T to hold with equality. Hence, we can expect the inequality

in Theorem 5.2 to hold with equality for the following sequences of functions.

Conjecture 5.20. Let c > 1 and T ⊂ R be non-empty such that T is
countable or a non-degenerate interval with T ⊂ [s, v] for s ≤ v in T . If
f := (ft)t∈T is a positive, right-continuous σ-integrable martingale such that
the supremum process (f ∗

s,u)u∈T with f ∗
s,u := ess supt∈[s,u] ft is continuous and

c fv = f ∗
s,v, then the improved version of Doob’s Lp-inequality for p > 1 as

stated in Theorem 5.2 applied to f holds with equality.
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We would need Doob’s optional stopping theorem adapted to σ-finite
measure spaces and σ-integrable martingales in order to prove this proposi-
tion. So far we can prove equality in (3.4) only for finite T (see Theorem
2.20) but would need optional stopping for continuous time to ensure the
martingale property remains true. This would exceed the scope of this the-
sis, hence, we cannot prove Conjecture 5.20 beyond a reasonable doubt at
this point in time. However, if we return to probability spaces, we can make
use of Doob’s optional stopping theorem (as stated in Theorem A.30) to
prove the following.

Proposition 5.21. Let (Ω,F ,F,P) be a filtered probability space, c > 1 and
T ⊂ R be non-empty such that T is countable or a non-degenerate interval
with T ⊂ [s, v] for s ≤ v in T . If X := (Xt)t∈T is a positive, right-continuous
martingale and if there exists a continuous and F-adapted process (X∗

s,u)u∈T
such that X∗

s,u = supt∈[s,u]Xt a.s. and cXv = X∗
s,v, then the improved version

of Doob’s Lp-inequality for p > 1 as stated in Theorem 5.2 applied to X holds
with equality.

Proof. The right-continuity of X allows us to apply Doob’s optional stopping
theorem (see Theorem A.30) and deduce that (3.4) holds true for countable as
well as non-degenerate intervals T ⊂ R and A := {X∗

s,v ≥ λ}. Furthermore,
by Theorem A.30 it follows that

E[Xτ✶A|Fs]
a.s.
= E[E[Xv|Fτ ]✶A|Fs]

a.s.
= E[Xv✶A|Fs]

for an F- or F+-stopping time τ by the Fs-measurability of ✶A and the inte-
grability of martingales (see Theorem A.28(5) and (1)). As we have explained
above, we attain equality in (5.2) if the supremum process (X∗

s,u)u∈T is con-
tinuous. Since we assumed cXv = X∗

s,v, equality follows for (5.3).

Another example for a process that satisfies the conditions in Proposition
5.21 and therefore yields equality in the improved version of Doob’s Lp-
inequality can be found in [1, proof of Theorems 3.1 and 1.2, p. 11]. We
would like to present this example here for further illustration.

Example 5.22. Let (Ω,F ,P) be a probability space, T = R+ and B := (Bt)t∈T
a Brownian motion starting at B0 = 1. Consider the stopped process Bτc :=
(Bt∧τc)t∈T for c > 1 together with the stopping time τc := inf{t > 0 : Bt ≤
B∗

t /c}, where (B∗
t )t∈T is given by B∗

t := sups∈[0,t]Bs. Then Bτc is uniformly

integrable23. Furthermore, consider the process B̃ := (B̃t)t∈[0,v] defined by

23For the proof please refer to [13, Lemma 7.10]. The lemma also proves that P(τc <
∞) = 1.
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B̃t = Bt/(v−t)∧τc for t ≤ v in T . Then B̃ is a non-negative right-continuous

martingale, the supremum process (B̃∗
t )t∈[0,v] is continuous and c B̃v = B̃∗

v for
v ∈ T . Hence, we may apply Proposition 5.21 and deduce that

E[B̃∗
v |Fs]

a.s.
=

c

c− 1

q

p

(
cp/q E[B̃p

v |Fs]− (E[B̃v|Fs])
p
)

for p, q ∈ (1,∞) such that 1/p+ 1/q = 1 and 0 ≤ s ≤ v.

We can make similar observations for Theorem 5.8 as the ones above.
Again, we need (5.10) in the proof of Lemma 5.7. This inequality holds with
equality if, and only if, a, b > 0 and c = b/a as the footnote at the beginning of
the proof on page 53 mentions. We later apply (5.10) to xn log xn, therefore,
we achieve equality in (5.1) if, and only if, c = log xn/xn. Moreover, an
important step for deriving (5.13) is (5.19), where we use the conditional
version of Jensen’s inequality. We achieve equality in (5.19) if there exists an
F -measurable modification24 of the process. In a deterministic setting this
means that the sequence of functions has to be constant µ-a.e. Therefore,
we need to assume that the submartingale attains a constant value at the
starting point. Considering all the arguments brought forth we can deduce
the following necessary assumptions for equality in the improved version of
Doob’s L1-inequality in Theorem 5.8.

Proposition 5.23. Let λ ∈ R, c > 1 and s ≤ v in T ⊂ R such that
T ⊂ [s, v]. The improved version of Doob’s L1-inequality in (5.13) holds with
equality if, and only if, for f := (ft)t∈T fulfilling the assumptions in Theorem
5.8 we have that fs = k ∈ R, c fv = log(ess supt∈T ft) and f satisfies one of
the three conditions in Proposition 5.19.

Since we also use Lemma 4.1 when proving Lemma 5.7 (in particular,
(5.11) is the key aspect here), the sequence (f ∗

s,u)u∈T with f ∗
s,u := ess supt∈[s,u] ft

has to be continuous once again. Hence, we can expect (5.13) to hold with
equality for the following sequences of functions.

Conjecture 5.24. Let c > 1 and T ⊂ R be non-empty such that T is
countable or a non-degenerate interval with T ⊂ [s, v] for s ≤ v in T . Let
f := (ft)t∈T be a positive, right-continuous σ-integrable martingale with fs =
k ∈ R. If the supremum process (f ∗

s,u)u∈T , where f
∗
s,u := ess supt∈[s,u] ft, is

continuous and c fv = log(f ∗
s,v), then the improved version of Doob’s L1-

inequality as stated in Theorem 5.8 applied to f holds with equality.

24Let I be a non-empty index set and let f := (fi)i∈I and (gi)i∈I be sequences of
functions on a σ-finite measure space (Ω,F , µ) with values in a measurable space (S,S).
We call f and g modifications of one another, if the set {fi 6= gi} is contained in a µ-null
set for every i ∈ I. (This definition was inspired by [13, Definition 2.83] focusing on
probability spaces and stochastic processes.)
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Again, without Doob’s optional stopping theorem adapted to σ-finite
measure spaces and σ-integrable martingales we cannot prove Conjecture
5.24 beyond a reasonable doubt at this point in time. However, if we return
to probability spaces, we can make use of Doob’s optional stopping theorem
(as stated in Theorem A.30) to prove the following.

Proposition 5.25. Let (Ω,F ,F,P) be a filtered probability space, c > 1 and
T ⊂ R be non-empty such that T is countable or a non-degenerate interval
with T ⊂ [s, v] for s ≤ v in T . Furthermore, let X := (Xt)t∈T be a positive,
right-continuous martingale such that Xs = k ∈ R. If there exists a contin-
uous and F-adapted process (X∗

s,u)u∈T such that X∗
s,u = supt∈[s,u]Xt a.s. and

cXv = log(X∗
s,v), then the improved version of Doob’s L1-inequality as stated

in Theorem 5.8 applied to X holds with equality.

Proof. The right-continuity of X allows us to apply Doob’s optional stopping
theorem (see Theorem A.30) and deduce that (3.4) holds true for countable as
well as non-degenerate intervals T ⊂ R and A := {X∗

s,v ≥ λ}. Furthermore,
by Theorem A.30 it follows that

E[Xτ✶A|Fs]
a.s.
= E[E[Xv|Fτ ]✶A|Fs]

a.s.
= E[Xv✶A|Fs]

for an F- or F+-stopping time τ by the Fs-measurability of ✶A and the inte-
grability of martingales (see Theorem A.28(5) and (1)). As we have explained
above, we attain equality in (5.2) if the supremum process (X∗

s,u)u∈T is con-
tinuous. Since we assumed cXv = log(X∗

s,v) andXs = k ∈ R, equality follows
in (5.13).

Chapter 5 showed various generalisations and improvements to Doob’s Lp-
inequalities for submartingales, as they hold true (slightly adapted) even
when dealing with σ-integrable functions rather than random variables. Fur-
thermore, the need for adaptedness and integrability can be weakened such
that the inequalities hold for more general assumptions. As we have shown,
these inequalities may even hold with equality given certain conditions. All
this can be of great help in actuarial practice, as will be outlined in the next
chapter.
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Chapter 6

Practical Applications in

Intertemporal Risk Control

In this chapter we wish to give a short overview of possible applications of our
newly developed theory on (sub-)martingales within the fields of financial and
actuarial mathematics. We will see that especially the improved versions of
Doob’s Lp-inequalities for p ≥ 1 can provide practitioners with helpful means
to derive upper bounds for various key figures within their fields of expertise.

6.1 Mathematical Finance

A rather obvious application of our newly developed (sub-)martingale in-
equalities can be found in mathematical finance. According to the funda-
mental theorem of asset pricing in finite discrete time, the market does not
allow for arbitrage if, and only if, there exists a probability measure Q equiv-
alent to the original probability measure P such that the discounted price
process is a martingale under Q. The measure Q is then called a martingale
measure. This motivates to apply the findings of Chapter 5 to the filtered
probability space (Ω,F , (Ft)t∈T ,Q) and the discounted price process denoted
by X(i) := S(i)/S(0) given a model for a financial market with d ∈ N assets

(S(1), . . . , S(d)), a numeraire S(0) and a time span T ⊂ R such that S
(i)
t de-

noting the price of the i-th asset at time t ∈ T is a non-negative random
variable on (Ω,F ,P).

Theorem 5.8 gives an upper bound for the conditional expectation of
the essential supremum of the discounted asset, whereas Theorem 5.2 yields
similar results for its second moment. Both might not be easily calculated,
thus, sharp inequalities may be good alternatives. As a possible scenario
think ofX as the discounted price of a plain vanilla option in a short position.
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The asset then turns into a liability fraught with risk. Using our newly
developed inequalities it is possible to predict the worst case scenario, i.e.
the highest possible payment obligation, at any time during a given period.
Here lies the significance for intertemporal risk control. Let T ⊂ R with
s, v ∈ T such that s ≤ v and T ⊂ [s, v] and c > 1. Then for p = q = 2 (5.5)
reduces to

EQ

[(

ess sup
t∈T

X
(i)
t

)2∣
∣
∣Fs

] a.s.

≤
c

c− 1

(
cEQ[(X

(i)
v )2|Fs]− (X(i)

s )2
)

(6.1)

for i = 1, . . . , d by the martingale property of X(i). If we assume that the
discounted price process is square-integrable, then taking the expectation
w.r.t. the probability measure Q in (6.1) yields

EQ

[(

ess sup
t∈T

X
(i)
t

)2]

≤
c

c− 1

(
cEQ[(X

(i)
v )2]− EQ[(X

(i)
s )2]

)
(6.2)

Since R+ ∋ x 7→ x2 is convex and X is positive then a further upper
bound that does not need the starting point s ∈ T can be derived for (6.2)

using Jensen’s inequality (see Theorem A.16). This yields EQ[(X
(i)
s )2] ≥

(EQ[X
(i)
s ])2 = (EQ[X

(i)
v ])2, hence,

EQ

[(

ess sup
t∈T

X
(i)
t

)2]

≤
c2

c− 1
VQ[X

(i)
v ] + c (EQ[X

(i)
v ])2. (6.3)

Minimising c2/(c− 1)VQ[X
(i)
v ] + c (EQ[X

(i)
v ])2 yields that (6.3) is minimal for

ĉ = 1 +

√

(VQ[X
(i)
v ])2 − VQ[X

(i)
v ](EQ[X

(i)
v ])2

EQ[(X
(i)
v )2]

. (6.4)

Thus, we need to make further assumptions for our discounted price process
in order to ensure the existence of ĉ:

❼ EQ[(X
(i)
v )2] > 0;

❼ (VQ[X
(i)
v ])2 > VQ[X

(i)
v ](EQ[X

(i)
v ])2.

Given these conditions it is possible to find a minimal upper bound for the
essential supremum of the discounted price process. As mentioned before, [1]
proves Theorem 5.2 for c = e. By (6.4) it becomes clear now, that our gen-
eralised version of Doob’s Lp-inequality for p > 1 is indeed an improvement
to both [1, Proposition 2.1]and Theorem 3.2.
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On the other hand, (5.13) and the martingale property give us

EQ

[

ess sup
t∈T

X
(i)
t

∣
∣
∣Fs

] a.s.

≤
c

c− 1

(
log(c)X(i)

s + EQ[ϕ(X
(i)
v )|Fs]− ϕ(X(i)

s )
)

(6.5)

for i = 1, . . . , d, where the function ϕ is defined as in (5.12). Let us assume

that ϕ(X
(i)
t ) is integrable for all t ∈ T . Then taking the expected value in

(6.5) yields

EQ

[

ess sup
t∈T

X
(i)
t

]

≤
c

c− 1

(
log(c)EQ[X

(i)
s ]+EQ[ϕ(X

(i)
v )]−EQ[ϕ(X

(i)
s )]
)
. (6.6)

By Jensen’s inequality (see Theorem A.16) it follows that EQ[ϕ(X
(i)
v )] ≥

EQ[ϕ(X
(i)
s )] for all s ≤ v in T , because (ϕ(X

(i)
t ))t∈T is a submartingale.

Again, we may look at minimal upper bounds. Minimising the right-hand
side of (6.6) for c > 1, yields that the inequality is minimal for

ĉ− log(ĉ) = 1 +
EQ[ϕ(X

(i)
v )]− EQ[ϕ(X

(i)
s )]

EQ[X
(i)
s ]

. (6.7)

Again, we detect the need for further assumptions in order to ensure the
existence of a solution ĉ in (6.7):

❼ EQ[X
(i)
s ] > 0;

❼ EQ[ϕ(X
(i)
v )] > EQ[ϕ(X

(i)
s )].

Due to the intermediate value theorem (see Theorem A.41) it is always pos-
sible to solve (6.7) given the newly recognised assumptions. The solution is
given by the so-called Lambert W function1, which is defined as the inverse
function of f(W ) := W eW . As we have shown, we are now able to estimate
the expected value of the essential supremum of the discounted price pro-
cess as well. This may give practitioners an edge on what maximal financial
obligation can be expected at any time during a certain period.

Finally, Theorem 5.8 can also provide us with an upper bound for the
maximal fluctuation of a financial instrument. The positive submartingale
Z := (Zt)t∈T with T ⊂ R and Zt := (Yt − E[Yt])

2, where Y := (Yt)t∈T does
not necessarily need to be a positive process (e.g. think of a swap contract),
satisfies the assumptions of Theorem 5.8. Hence, for s ≤ v in T with T ⊂
[s, v] and c > 1 it follows that

EQ

[

ess sup
t∈T

Zt

∣
∣
∣Fs

] a.s.

≤
c

c− 1

(
log(c)Zs + EQ[ϕ(Zv)|Fs]− ϕ(Zs)

)

1This function is implemented in various technical computing systems. E.g. in Wolfram
Mathematica the function is called by ProductLog[z].
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and

EQ

[

ess sup
t∈T

Zt

]

≤
c

c− 1

(
log(c)EQ[Zs] + EQ[ϕ(Zv)]− EQ[ϕ(Zs)]

)

by assuming the integrability of Z and ϕ(Z). We have just proven in the
paragraph above under which circumstances the upper bound can be minimal
for c > 1. Since EQ[ess supt∈T (Yt −E[Yt])

2] can be seen as a generalisation of
the variance of Y , the inequalities above provide information on the maximal
fluctuation of the process Y at any time during a certain period of time. Of
course, the applicability and usefulness of such an upper bound cannot be
overlooked.

In conclusion, the generalised versions of Doob’s L2-inequality and his
L1-inequality provide practitioners in the field of mathematical finance with
an outlook on the expectation of a financial risk (e.g. a payment obligation)
and gives upper bounds thereof. Particularly, the newly developed theory on
Doob’s Lp-inequalities may aid in controlling intertemporal risks not just at
the beginning or the end of a period but at any point in time during a given
period. Here lie the novelty and the importance of the findings of this thesis,
as they provide practitioners with intertemporal risk constraints.

6.2 Actuarial Science

Besides the applications in financial mathematics, our improved versions of
Doob’s Lp-inequalities provide estimates for the loss random variable over
the lifetime of an actuarial reserve. Hattendorff’s theorem, developed 1868
by K. Hattendorff, demonstrates that the variance in the present value of the
loss of an issued insurance policy can be allocated to the future years during
which the insured is still alive. This, in turn, facilitates the management
of risk prevalent in such insurance contracts over short periods of time. In
particular, the theorem states that the loss random variables for different
time periods are uncorrelated and the expected value is zero.

At the time of its development Hattendorff’s theorem was viewed as quite
controversial and came as a great surprise to many researchers and practi-
tioners in the field in actuarial science. Today it is an important part of the
standard curriculum for actuarial science. More than a century after the ini-
tial development, Bühlmann connected Hattendorff’s theorem to the theory
of martingales in 1976. In 1992 Norberg generalised Hattendorff’s theorem
further and connected it to modern martingale theory and showed that the
variance of the loss random variable can be properly calculated, if we as-
sume the state-space to satisfy the Markov property and take deterministic
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actuarial payment functions into consideration. A stochastic process has the
Markov property if the conditional probability distribution of future states of
the process (conditional on both past and present states) depends only upon
the present state, not on the sequence of events that preceded it. If we can-
not (or do not want to) make such assumptions, inequalities can be of great
help. In particular, the improved versions of Doob’s L1- and L2-inequalities
for martingales will help us in deriving estimates for the expectation as well
as the second moment of the essential supremum of the loss random vari-
able. For more information on the history behind Hattendorff’s theorem the
interested reader is referred to [11, p. 489–491]

First, we would like to introduce Hattendorff’s theorem as formulated in
[8, p. 85–87]2. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. Consider
a cash flow modeling the benefits for the insured by a stochastic process
B, which is discounted by another stochastic process v. The present value
at time t ≥ 0 is then given by Vt =

∫∞

t
v(r) dB(r), where we assume the

Lebesgue–Stieltjes integral is well-defined and Vt has finite expectation for all
t ≥ 0. Assume that v and B are both adapted to the filtration F := (Ft)t≥0.
Then the prospective actuarial reserve V +

F (t) at time t ≥ 0 is given by

V +
F (t)

a.s.
=

1

v(t)
E

[ ∫ ∞

t

v(r) dB(r)

∣
∣
∣
∣
Ft

]

.

The loss of the insurer in the time interval (s, t] with s ≤ t discounted to the
time 0 of a cash flow B is now defined by

L(s, t) =

∫ t

s

v(r) dB(r) + v(t)V +
F (t)− v(s)V +

F (s)
a.s.
= M(t)−M(s), (6.8)

where for t ≥ 0 we define

M(t) = E[V0|Ft]
a.s.
=

∫ t

0

v(r) dB(r) + v(t)V +
F (t).

Based on (6.8) one can see that the loss is composed of payments in the
interval (s, t] (represented by

∫ t

s
v(r) dB(r)), the value of the policy at the

end of the period (denoted by v(t)V +
F (t)) as well as the value of the policy at

the beginning of the period (denoted by v(s)V +
F (s)). Hattendorff’s theorem

now states the following.

2To be exact, [8] uses a decreasing sequence of stopping times for the definition. How-
ever, since the constant time is also a stopping time by A.22(1) it was decided to formulate
the theorem without the use of proper stopping times, because we work with constant times
when applying the improved versions of Doob’s Lp-inequalities.
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Theorem 6.1. If V ∈ L2(Ω,F ,P), then

(1) E[L(s, t)] = 0 and Cov(L(s, t), L(u, v)) = 0 for all 0 ≤ s ≤ t and
0 ≤ u ≤ v such that (s, t] ∩ (u, v] = ∅;

(2) E[L(s, t)|Fr] = 0 and Cov(L(s, t), L(u, v)|Fr) = 0 a.s. for all r ≥ 0 and
0 ≤ s ≤ t and 0 ≤ u ≤ v such that (s, t] ∩ (u, v] = ∅.

The proof heavily relies on the fact that the stochastic process (M(t))t≥0

is an F-martingale; in particular, it is used that the increments of martingales
have mean zero. We omit the proof, but interested readers may refer to [8,
Theorem 7.2.5] for the case of a countable infinite time span T ⊂ R+ or to
[11, Satz 9.24] for the general setting.

As mentioned before, the improved versions of Doob’s Lp-inequalities in
Chapter 5 now allow us to determine estimates for the conditional expecta-
tion of the essential supremum. Let T ⊂ R with s, v ∈ T such that s ≤ v
and T ⊂ [s, v]. Then (L(s, t)+)t∈T (which describes the losses of an insurer)
satisfies the conditions in Theorem 5.2, thus, we may conclude that for c > 1
and p = q = 2 that

E

[(

ess sup
t∈T

L(s, t)+
)2∣
∣
∣Fs

] a.s.

≤
c

c− 1

(
cE[(L(s, v)+)2|Fs]− (E[L(s, v)+|Fs])

2
)
.

(6.9)
Furthermore, we can use Theorem 5.8 and conclude that

E

[

ess sup
t∈T

L(s, t)+
∣
∣
∣Fs

] a.s.

≤
c

c− 1

(
log(c)E[L(s, v)+|Fs] + E[ϕ(L(s, v)+)|Fs]

− ϕ(E[L(s, v)+|Fs])
)
, (6.10)

where the function ϕ is defined as in (5.12).
If we assume (L(s, t)+)t∈T to be square-integrable and (ϕ(L(s, t)+))t∈T

to be integrable, we can make similar observations as those on the expected
value and its second moment of the discounted price process in the previous
chapter. Taking the expected value in (6.9) yields

E

[(

ess sup
t∈T

L(s, t)+
)2]

≤
c

c− 1

(
cE[(L(s, v)+)2]− (E[L(s, v)+)2

)
.

Furthermore, we can deduce

E

[

ess sup
t∈T

L(s, t)+
]

≤
c

c− 1

(
log(c)E[L(s, v)+] + E[ϕ(L(s, v)+)]

− ϕ(E[L(s, v)+])
)
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by taking the expected value in (6.10). We could consider minimising the
inequalities above again, in order to come up with minimal bounds. As
we have discussed this at length in the previous chapter, we leave this to
the reader and will omit repetition at this point. However, once more, the
importance and applicability to real life cases becomes apparent.

All we have discussed in this chapter shows that an insurer can gain
control over intertemporal financial risks (e.g. the possible losses stemming
from an insurance contract within a given period). The the upper bounds for
the expectation and the second moment of the loss random variable provide
information on whether or not the insurer remains solvent w.r.t. a (life)
insurance policy at all times within a certain period. The novelty here is
that not only is the insurer able to give an outlook on their solvency at the
end of the period but the bounds allow them to assess their solvency at any
moment within the period. Hence, Theorem 5.2 and 5.8 provide the insurer
with means to control intertemporal risks.

6.3 Utility Maximasation

Theorem 5.14 may find applications in the fields of financial and actuarial
mathematics as well, because we can connect its findings to utility theory.
Define the function

u(x) =
xp

1− p
, p ∈ (0, 1), x > 0.

Then u is a utility function3, because u′(x) = pxp−1/(1− p) > 0 and u′′(x) =
−pxp−2 < 0 for all x > 0 and p ∈ (0, 1). By the definition of u, we can
rewrite the last inequality4 in (5.24). Consider s ≤ v in T , where T ⊂ R,
such that T ⊂ [s, v]. Then

Eµ[(f
∗
s,v)

p|Fs] ≤ u(Eµ[fv|Fs]) µ-a.e.

Furthermore,

Eµ[(f
∗
s,v)

p|Fs] = (1− p)Eµ[u(f
∗
s,v)|Fs] ≤ u(Eµ[fv|Fs]) µ-a.e.

Since u(f ∗
s,v) = ess supt∈T u(ft) we may deduce

Eµ[ess sup
t∈T

u(ft)|Fs] ≤
1

1− p
u(Eµ[fv|Fs]) µ-a.e. (6.11)

3i.e. u′(x) > 0 and u′′(x) < 0 for all x > 0
4Of course, we could make similar statements as the ones below for the sharper bounds,

but since the last bound is easier calculated and more intuitive it was chosen as the focus
of this discussion.
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Utility theory tells us that for some risks it might make sense to focus on
the expected utility of a gamble rather than its expectation. Theorem 5.14
gives us an upper bound for the conditional expected utility of the essential
supremum of a sequence of functions.

If we go back to a probability space (Ω,F ,P) and a stochastic process
X := (Xt)t∈T describing a short position on a financial instrument, (6.11)
gives us the means to estimate the maximal utility of this contract. Hence,
we can weigh the expectation of the maximal value of such an instrument,
for which we have an upper bound with (6.6), against its expected utility
with an upper bound thereof given by (6.11). Again, (6.11) yields an upper
bound that gives information on the utility of the maximal amount at any
given time during a certain period. This may aid practitioners in deciding,
whether or not entering into such a contract would be worth the investment
and the possible risk stemming from an uncertain payment obligation.

As we have learned, the improved versions of Doob’s Lp-inequalities can be
put to great use in the fields of both financial and actuarial mathematics.
Doob’s classical Lp-inequalities for submartingales are certainly already of
value in those fields. However, as the upper bounds can be improved even
further, sharper inequalities can be derived. This may help practitioners
around the globe to derive rather sharp estimates for the essential supremum
of the loss random variable in case of application in life insurance mathemat-
ics or the essential supremum of the discounted price process when dealing
with financial markets. Both can be of great value in the applied world of
mathematics.
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Chapter 7

Conclusion

The goal of this thesis was to expand the theory of martingales by adapting
it to σ-finite measure spaces and proving refined and generalised versions
of Doob’s maximum and Lp-inequalities. Chapter 2 focused on expanding
the definition of the conditional expectation to σ-integrable functions and σ-
finite measure spaces. Proving the existence of a conditional expectation of a
σ-integrable function under a σ-finite measure heavily relied on the Radon–
Nikodým theorem. Theorem 2.12 was a fundamental finding within this
chapter, because it shows that many well-known properties of the conditional
expectation w.r.t. probability measures hold for σ-finite measures as well.
Moreover, some of these properties may even hold for functions that have the
right measurability but are not σ-integrable. We proved this by introducing
a further generalisation of the conditional expectation in Remark 2.11.

There are two different definitions for (sub-/super-)martingales on σ-finite
measure spaces in this thesis. The first one (see Definition 2.13) is quite sim-
ilar to the definition of martingales in probability spaces, because we assume
integrability and adaptedness, and we proved Doob’s maximum inequalities
and his classical Lp-inequality for submartingales and p > 1 for this setting.
In this section we relied on a theoretical approach using measure theory.
However, we could prove that the main theorems in this thesis do not need
integrability and may even make do without adaptedness. For this reason
we introduced the term σ-integrable (sub-/super-)martingale (see Definition
2.15), which lies at the core of this thesis and its findings.

The main focus of this thesis was to prove various generalisations and
improvements of Doob’s maximum and Lp-inequalities for σ-integrable sub-
martingales. This can be found in Chapter 4 and 5. The proofs rely on
rather basic deterministic inequalities, which helped us to find sharper upper
bounds. In both chapters we start out with a given interval with a starting
and an endpoint. However, by considering the infimum and the supremum of
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our time span we proved that we may omit the need for such points. Hence,
we were able to expand the martingale theory by introducing (and proving)
sharper and more general versions of Doob’s maximum inequalities (see The-
orem 4.2), Doob’s inequalities for p > 1 (see Theorem 5.2) and p = 1 (see
Theorem 5.8) as well as p ∈ (0, 1) (see Theorem 5.14).

The deterministic inequalities we used to prove our refined inequalities
may hold with equality given certain conditions. For this reason an inves-
tigation into families of processes, where equality in the newly developed
theorems of Chapter 4 and 5 follows, was carried out. For this part we chose
to return to the world of probability spaces and stochastic processes and gave
examples to support our claims. Proposition 5.21 (resp. Proposition 5.25)
shows what kind of processes imply equality in Theorem 5.2 (resp. Theorem
5.8).

The final chapter gave an outlook on how our improved versions of Doob’s
Lp-inequalities can be of help to practitioners in the fields of financial and
actuarial mathematics. For example, the findings in our thesis may provide
upper bounds for the expectation of the essential supremum of the discounted
price process. Another possible application of the newly developed inequal-
ities in this thesis can be found in the field of actuarial mathematics, since
they can be used to find upper bounds for the expectation of the essential
supremum of the loss random variable. In both cases, it is possible to deter-
mine minimal upper bounds. Furthermore, the improved version of Doob’s
Lp-inequality for p ∈ (0, 1) finds application in utility maximisation.

In conclusion, this thesis achieved its goal to expand the theory of mar-
tingales. The main findings are refined versions of Doob’s maximum and
Lp-inequalities for σ-integrable submartingales and σ-finite measure spaces.
Other interesting topics within this setting would be Doob’s optional stopping
theorem and its implications as well as a generalised definition of local mar-
tingales and their connection to stochastic integrals. A complete discussion
of these topics would go beyond the scope of this thesis, however, this leaves
much room for further research into the matter. The author hopes that the
findings in this thesis ease the path for further projects as mathematicians
strive to delve further into the vast and open world of mathematics.
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Appendix

The following pages list various established results presented in well-known
literature concerning measure theory and the conditional expectation. Ex-
cept for Remark A.2, Lemma A.11, Remark A.21, Theorem A.22, Example
A.26, Example A.29, Lemma A.31, the alternative proof of Theorem 2.7 on
page 92 and Theorem A.36 non of the results presented here are of the au-
thor’s conception. Futhermore, we do not claim to have been the firsts to
prove the findings listed above (with the exception of the alternative proof
for Theorem 2.7). We proved them due to the lack of time to research corre-
sponding literature or due to the simple nature of the proofs. All definitions
and results below have been marked with the corresponding source material.

A.1 Some Measure Theory

Definition A.1. σ-finite measures
Let (Ω,F) be a measurable space and µ a measure on it. We call µ σ-finite,
if one of following three properties holds.

(1) 1 Ω can be covered with at most countably many measurable sets of
finite measure, i.e. there exist Ω1,Ω2, . . . ∈ F with µ(Ωn) < ∞ for all
n ∈ N such that

⋃

n∈N Ωn = Ω.

(2) 2 Ω can be covered with at most countably many disjoint sets of finite
measure, i.e. there exist Ω1,Ω2, . . . ∈ F with µ(Ωn) < ∞ for all n ∈ N

and Ωm ∩Ωn = ∅ for all m,n ∈ N with m 6= n such that
⋃

n∈N Ωn = Ω.

(3) 3 Ω can be covered with a monotone sequence of measurable sets of
finite measure, i.e. there exist Ω1,Ω2, . . . ∈ F with Ω1 ⊂ Ω2 ⊂ · · · and
µ(Ωn) <∞ for all n ∈ N such that

⋃

n∈N Ωn = Ω.

1See [9, Definition 3.9].
2See https://en.wikipedia.org/wiki/%CE%A3-finite_measure.
3See [12, Definition 4.2].
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Remark A.2. The three properties in Definition A.1 are equivalent.
Indeed : For (1) ⇒ (2) consider the sequence (Ω̄n)n∈N with Ω̄1 = Ω1 and

Ω̄n+1 = Ωn+1 ∩ (
⋂n

i=1 Ω
c
i ), where the (Ωn)n∈N satisfies (1). Then (Ω̄n)n∈N

satisfies (2).
Of course, (2) ⇒ (1) and (3) ⇒ (1). This leaves us to show (1) ⇒ (3).

This follows, because the sequence (Ω̃n)n∈N defined by Ω̃n =
⋃n

i=1 Ωi, where
the (Ωn)n∈N satisfies (1), satisfies (3).

Definition A.3. Simple function4

Let Ω be an arbitrary set. We call f : Ω → R simple function, if there
exist γ1, . . . , γm ∈ R and a finite partition Ω1, . . . ,Ωm of Ω such that f(ω) =
∑m

k=1 γk✶Ωk
(ω) for all ω ∈ Ω.

Lemma A.4. Let (Ω,F) be a measurable space. For every non-negative F-
measurable functions f there exists a sequence of non-negative monotonously
increasing simple functions (fn)n∈N such that f = limn→∞ fn.

Proof. For the proof please refer to [9, Satz 7.30].

Theorem A.5. Let (Ω,F) be a measurable space. If fn : Ω → R are F-
measurable functions for all n ∈ N, then so are

sup
n∈N

fn, inf
n∈N

fn, lim sup
n→∞

fn, lim inf
n→∞

fn.

The same holds for limn→∞ fn whenever it exists pointwise.

Proof. For the proof please refer to [12, Corollary 8.9].

Definition A.6. δ-ring5

Let S be a set and R ⊂ P(S) a non-empty collection of subsets of S. We
call R a δ-ring, if

(1) A,B ∈ R ⇒ A ∪ B ∈ R,

(2) A,B ∈ R ⇒ A \B ∈ R, and

(3)
⋂

n∈NAn ∈ R for every countable collection {An}n∈N in R.

Definition A.7. Signed measure6

Let R be a δ-ring on a set S. An Rd-valued (or Cd-valued) measure on R is
a map µ : R → Rd (or µ : R → Cd) such that

∑

n∈N µ(An) = µ(
⋃

n∈NAn) for

4See [9, Definition 7.25].
5See [13, Definition 13.88].
6See [13, Definition 13.93].
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every sequence (An)n∈N of disjoint sets in R such that the union
⋃

n∈NAn is
also in R. The convergence of the series

∑

n∈N µ(An) is part of the require-
ment. An R-valued (or C-valued) measure on R is called signed (or complex)
measure on R.

Definition A.8. Singular measure7

Let R be a δ-ring on a set S. We call two R+-valued (or signed or complex)
measures µ and ν on R singular on R, if for every A ∈ R there exists a
partition B,C ∈ R such that µ(B) = 0 and ν(C) = 0. This is denoted by
µ⊥ ν.

Theorem A.9. Jordan decomposition
Let R be a δ-ring on a set S. For every signed measure ν on R there exists
a unique decomposition with two R+-valued measures ν+ and ν− that are
singular on R such that ν = ν+ − ν−. For every A ∈ R we call these two
measures the positive and negative variation of ν. They are given by ν+(A) =
ν(A+) and ν−(A) = −ν(A−) (hence, they satisfy ν+(A−) = ν−(A+) = 0),
where (A+, A−) denotes any Hahn decomposition of A w.r.t. ν on R.

Proof. For the proof please refer to [13, Theorem 13.101]. For the defini-
tion and the proof of existence of a Hahn decomposition please refer to [13,
Theorem 13.98].

Definition A.10. Absolutely continuous and equivalent measures8

Let µ and ν be two (positive measures) on a measurable space (Ω,F).

(1) We call µ absolutely continuous w.r.t. ν on F , if µ(F ) = 0 for all F ∈ F
with ν(F ) = 0. This is denoted by µ≪ ν.

(2) If µ ≪ ν and ν ≪ µ on F , then we call µ and ν equivalent on F and
write µ ∼ ν.

Lemma A.11. Any non-zero σ-finite measure µ on a measurable space
(Ω,F) is equivalent to a probability measure on (Ω,F).

Proof. Let (Ωn)n∈N be a sequence of disjoint sets in F such that 0 < µ(Ωn) <
∞ and Ω =

⋃

n∈N Ωn (which exists, because we require µ to be σ-finite) and
let (wn)n∈N be a sequence of strictly positive numbers (weights) such that
∑∞

n=1wn = 1. Then the measure ν defined by

ν(F ) =
∞∑

n=1

wn
µ(F ∩ Ωn)

µ(Ωn)
, F ∈ F ,

7See [13, Definition 13.100].
8See [13, Definition 7.15(a),(b)].
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is a probability measure on Ω: Evidently, ν(F ) ≥ 0 for all F ∈ F , ν(∅) = 0
and ν(Ω) = 1. The σ-additivity of ν follows by

ν
(⋃

n∈N

Fn

)

=
∞∑

n=1

∞∑

i=1

wn
µ(Fi ∩ Ωn)

µ(Ωn)
=

∞∑

i=1

∞∑

n=1

wn
µ(Fi ∩ Ωn)

µ(Ωn)
=

∞∑

i=1

ν(Fi)

for a disjoint sequence (Fn)n∈N in F because all summands are positive, which
allows us to exchange the sums9. Since ν(F ) = 0 if, and only if, µ(F ) = 0
for F ∈ F it follows that µ ∼ ν.

Theorem A.12. Basic properties of integrals
Let (Ω,F , µ) be a measure space, let f, g ∈ L1(Ω,F , µ;R) and α ∈ R. Then
the following properties hold.

(1) Homogeneity: αf ∈ L1(Ω,F , µ;R) and
∫
αf dµ = α

∫
f dµ.

(2) Additivity: f + g ∈ L1(Ω,F , µ;R) and
∫
f + g dµ =

∫
f dµ+

∫
g dµ.

(3) Monotonicity: f ≤ g ⇒
∫
f dµ ≤

∫
g dµ.

(4) |
∫
f dµ| ≤

∫
|f | dµ.

Proof. For the proofs please refer to [12, Theorem 10.4].

Lemma A.13. Let (Ω,F , µ) be a measure space and f a measurable function.
Then f ∈ L1(Ω,F , µ) if, and only if, |f | ∈ L1(Ω,F , µ).

Proof. For the proof please refer to [9, Folgerung 9.25].

Theorem A.14. Radon–Nikodým theorem
Let µ and ν be two measures of the measurable space (Ω,F). If µ is σ-finite,
then the following two statements are equivalent:

(1) ν ≪ µ;

(2) ν(F ) =
∫

F
f dµ, for all F ∈ F and some a.e. unique f ∈ L0

+(Ω,F , µ).

Furthermore, f is real-valued µ-a.e. if, and only if, ν is σ-finite. We call a
function with property (2) a density of ν w.r.t. µ and denote it by f = dν

dµ
.

Proof. For the proof please refer to [9, Satz 11.19].

9See [9, Satz A.16] for the proof here.
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Theorem A.15. Hölder’s inequality
Let (Ω,F , µ) be a measure space and p, q ∈ (1,∞) such that 1/p + 1/q =
1. Then we have for all measurable real- or complex-valued functions f ∈
Lp(Ω,F , µ) and g ∈ Lq(Ω,F , µ)

(∫

|fg| dµ

)

≤

(∫

|f |p dµ

)1/p(∫

|g|q dµ

)1/q

.

Proof. For the proof please refer to [12, Theorem 12.2].

Theorem A.16. Jensen’s inequality
Let (Ω,F ,P) be a probability space and X an integrable random variable with
values in an interval C ⊂ R. If ϕ : C → R is a convex function, then ϕ ◦X
is integrable and ϕ(E[X]) ≤ E[ϕ ◦X].

Proof. For the proof please refer to [9, Satz 13.1]. In the theorem C is defined
as an interval (a, b), which may lead to the conclusion that the theorem only
holds for intervals (a, b) with a, b ∈ R. In the proof, however, the cases where
a = −∞ and b = ∞ are treated as well.

Theorem A.17. Dominated convergence theorem
Let (Ω,F , µ) be a measure space and f : Ω → R a measurable function. Let
(fn)n∈N be a sequence of measurable functions with fn : Ω → R such that
fn → f as n → ∞ and |fn| ≤ g for all n ∈ N and some g ∈ L1(Ω,F , µ).
Then ∫

Ω

f dµ = lim
n→∞

∫

Ω

fn dµ.

Proof. For the proof please refer to [14, Section 5.9, p. 54–55].

Theorem A.18. Monotone convergence theorem
Let (Ω,F , µ) be a measure space and f : Ω → [0,∞] a measurable func-
tion. Let (fn)n∈N be a sequence of non-negative, measurable functions with
fn : Ω → [0,∞] such that fn ր f as n→ ∞. Then

∫

Ω

f dµ = lim
n→∞

∫

Ω

fn dµ.

Proof. For the proof please refer to [14, Section 5.3, p. 51–52, and Appendix
A5.4, p. 213].

Definition A.19. Uniform integrability10

Let Φ be a non-empty set of measurable Kd-valued functions on a measure

10See [13, Definition 4.25].
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space (Ω,F , µ). We call Φ uniformly integrable, if for every ǫ > 0 there exists
a µ-integrable function ωǫ : Ω → R+ such that

sup
ϕ∈Φ

∫

{‖ϕ‖>ωǫ}

‖ϕ‖ dµ < ǫ.

From now on let T ⊂ R. Furthermore, define t∗ = supT and Ft∗ =
σ(
⋃

t∈T Ft).

Definition A.20. Stopping time11

Let (Ω,F) be a measurable space and F := (Ft)t∈T a filtration. A map
τ : Ω → T is called stopping time w.r.t. F, if {τ ≤ t} ∈ Ft for all t ∈ T . The
associated σ-algebra is given by

Fτ := {F ∈ Ft∗ |F ∩ {τ ≤ t} ∈ Ft for all t ∈ T}. (A.1)

Remark A.21. It can be easily shown that Fτ as defined in (A.1) is indeed a
σ-algebra. For this purpose let t ∈ T .

❼ Ω ∈ Fτ : This follows directly because Ω ∩ {τ ≤ t} = {τ ≤ t} ∈ Ft,
since τ is a stopping time w.r.t. F.

❼ F ∈ Fτ ⇒ F c ∈ Fτ : The properties of the compliment in set theory
imply that for all t ∈ T we have

F c ∩ {τ ≤ t} = (F ∩ {τ ≤ t})c
︸ ︷︷ ︸

∈Ft

∩{τ ≤ t}
︸ ︷︷ ︸

∈Ft

∈ Ft,

where we used that τ is a stopping time w.r.t. F.

❼ (Fn)n∈N with Fn ∈ Fτ ∀n ∈ N ⇒
⋃

n∈N Fn ∈ Fτ : This follows by the
properties of σ-algebras and stopping times, because

(⋃

n∈N

Fn

)

∩ {τ ≤ t} =
⋃

n∈N

(Fn ∩ {τ ≤ t})
︸ ︷︷ ︸

∈Ft

∈ Ft,

for all t ∈ T .

Theorem A.22. List of properties of stopping times
For all t ∈ T and stopping times σ and τ w.r.t. F, we have

(1) the constant time η : Ω → T : ω 7→ t is a stopping time w.r.t. F and
Fη = Ft;

11See [13, Definition 3.7 and Definition 3.10].
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(2) the pointwise maximum σ ∨ τ and the pointwise minimum σ ∧ τ are
stopping times w.r.t. F;

(3) τ is Fτ -measurable;

(4) if σ ≤ τ (pointwise), then Fσ ⊂ Fτ ;

(5) Fτ := (Fτ∧t)t∈T is a filtration;

(6) Fσ∧τ = Fσ ∩ Fτ ;

(7) F ∩ {σ ≤ τ} ∈ Fσ∧τ for all F ∈ Fσ;

(8) F ∩ {σ = τ} ∈ Fσ∧τ for all F ∈ Fσ;

(9) if (τn)n∈N is a sequence of stopping times and τ := supn∈N τn takes
values in T , then τ is a stopping time, too.

Proof. (1) It is easy to see that η is a stopping time, since for all s ∈ T we
have that

Fs ∋ {η ≤ s} =

{

∅ t > s,

Ω t ≤ s.

Now, let us consider A ∈ Fη. By (A.1) A ∩ {η ≤ s} ∈ Fs for all s ∈ T .
In particular, for the constant time we have A ∩ {η ≤ t} = A ∩ Ω = A ∈ Ft,
which implies Fη ⊂ Ft.

Finally, let B ∈ Ft. Then for t > s ∈ T we have B ∩ {η ≤ s} = ∅ ∈ Fs.
Conversely, for t ≤ s it follows that B ∩ {η ≤ s} = B ∈ Ft ⊂ Fs, since F is
a filtration. Therefore, B ∈ Fη and thus, Ft ⊂ Fη.

(2) Let t ∈ T . The claim follows directly due to the properties of σ-
algebras, because

{σ ∨ τ ≤ t} = {σ ≤ t}
︸ ︷︷ ︸

∈Ft

∩{τ ≤ t}
︸ ︷︷ ︸

∈Ft

∈ Ft,

{σ ∧ τ ≤ t} = {σ ≤ t}
︸ ︷︷ ︸

∈Ft

∪{τ ≤ t}
︸ ︷︷ ︸

∈Ft

∈ Ft.

(3) Define B = (a, b] for a ≤ b ∈ T . Then it suffices to show that
τ−1(B) ∈ Fτ , because intervals like B generate the Borel σ-algebra BT . For
this purpose we will use the convention {τ ∈ B} := τ−1(B). Then

{τ ∈ B} ∩ {τ ≤ t} = {τ ≤ a}c ∩ {τ ≤ b} ∩ {τ ≤ t} = {τ ≤ a}c ∩ {τ ≤ b∧ t}.
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The set {τ ≤ b ∧ t} is in Ft for all t ∈ T , because we have for b ≤ t that
{τ ≤ b ∧ t} ∈ Fb ⊂ Ft and {τ ≤ b ∧ t} ∈ Ft for b > t by the definition of
stopping times and filtrations.

Furthermore, if a < b ∧ t, then {τ ≤ a}c ∈ Fa ⊂ Fb∧t ⊂ Ft. Otherwise
{τ > a} ∩ {τ ≤ b∧ t} = ∅ ∈ Ft, because {τ > b∧ t} ∩ {τ ≤ b∧ t} = ∅. Thus,
{τ ∈ B} ∩ {τ ≤ t} ∈ Ft for all t ∈ T , which means τ−1(B) ∈ Fτ .

(4) For F ∈ Fσ we have F ∩ {σ ≤ t} ∈ Ft for all t ∈ T by (A.1). Since
σ ≤ τ pointwise, it follows that {τ ≤ t} ⊂ {σ ≤ t} for all t ∈ T which implies

F ∩ {τ ≤ t} = F ∩ {σ ≤ t}
︸ ︷︷ ︸

∈Ft

∩{τ ≤ t}
︸ ︷︷ ︸

∈Ft

∈ Ft,

by the properties of σ-algebras. Thus, F ∈ Fτ .
(5) Because of (1) and (2) we know that τ ∧ t is a stopping time w.r.t. F.

Using Remark A.21 we can conclude that Fτ∧t is a σ-algebra for all t ∈ T .
The fact that (Fτ∧t)t∈T is an increasing sequence of sub-σ-algebras in t then
follows directly from (4), because Fτ∧t ⊂ Fτ∧s for all t ≤ s ∈ T .

(6) Let us start with F ∈ Fσ ∩ Fτ , which implies F ∩ {σ ≤ t} ∈ Ft and
F ∩ {τ ≤ t} ∈ Ft for all t ∈ T by (A.1). Then it follows immediately that

F ∩ {σ ∧ τ ≤ t} = F ∩ ({σ ≤ t} ∪ {τ ≤ t})

= (F ∩ {σ ≤ t})
︸ ︷︷ ︸

∈Ft

∪ (F ∩ {τ ≤ t})
︸ ︷︷ ︸

∈Ft

∈ Ft

for all t ∈ T . Thus, F ∈ Fσ∧τ and Fσ ∩ Fτ ⊂ Fσ∧τ .
The other inclusion follows immediately from (4), since σ ∧ τ ≤ σ and

σ∧ τ ≤ τ which implies Fσ∧τ ⊂ Fσ and Fσ∧τ ⊂ Fτ . Therefore, for F ∈ Fσ∧τ

we have F ∈ Fσ ∩ Fτ and thus, Fσ∧τ ⊂ Fσ ∩ Fτ .
(7)12 Note that, for every t ∈ T , {σ ≤ τ} ∩ {σ ∧ τ ≤ t} ⊂ {σ ≤ t}. This

implies,

(F∩{σ ≤ τ})∩{σ∧τ ≤ t} = (F ∩ {σ ≤ t})
︸ ︷︷ ︸

∈Ft

∩{σ ∧ t ≤ τ}
︸ ︷︷ ︸

={σ∧t≤τ∧t}

∩{σ ∧ τ ≤ t}
︸ ︷︷ ︸

∈Ft

∈ Ft

for every F ∈ Fσ and t ∈ T . The above holds true, because σ∧t is a stopping
time according to (1) and (2) and it is measurable w.r.t. Fσ∧t ⊂ Ft by (3)
and (4); similarly τ ∧ t is Ft-measurable and thus, {σ ∧ t ≤ τ ∧ t} ∈ Ft for
all t ∈ T .

12The proof for this point can be found in [13, Lemma 3.11(g)], which we would like to
present here for the sake of completeness. Let it be noted, however, that all other proofs
are of the author’s making.
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(8) Note that {σ = τ} = {σ ≤ τ} \ {σ < τ}. We already know from (7)
that F ∩ {σ ≤ τ} ⊂ Fσ∧t for all F ∈ Fσ. Since

{σ < τ} ∩ {τ ≤ t} =
t⋃

n=0

n−1⋃

k=0

{τ = n} ∩ {σ = k}

for all t ∈ T , we have that {σ < τ} ∈ Fτ , because {τ = n} = {τ ≤
n} ∩ {τ < n}c = {τ ≤ n} ∩ {τ ≤ n − 1}c ∈ Fn ⊂ Ft since n ≤ t and
similarly {σ = k} ∈ Ft. Thus, {σ < τ} ∩ {τ ≤ t} ∈ Ft for all t ∈ T .
{σ < τ} ∩ {σ ≤ t} ∈ Ft for all t ∈ T follows in the same manner. Hence
{σ < τ} ∈ Fσ ∩ Fτ = Fσ∧τ by (6).

(9) This follows quite quickly due to the properties of σ-algebras. Sim-
ply bear in mind that for a disjoint sequence (Fn)n∈N in F , the countable
intersection

⋂

n∈N Fn is also in F , since
⋂

n∈N Fn = (
⋃

n∈N F
c
n)

c ∈ F .
Thus, for our case it follows that

{τ ≤ t} =
{

sup
n∈N

τn ≤ t
}

=
⋂

n∈N

{τn ≤ t} ∈ Ft

for all t ∈ T .

The following lemma is similar to Lemma 2.19 but focuses on probability
spaces and stochastic processes. Moreover, the second part is a generalisation
of the first.

Lemma A.23. Let (Ω,F ,F,P) be a filtered probability space and (S, ρ) a
metric space. Furthermore, let X : T × Ω → S be an F-adapted process and
σ : Ω → T a stopping time w.r.t. F. For A ∈ BS define the first hitting time
of A after σ (also called first entrance time) by

τ = inf{t ∈ T : σ ≤ t,Xt ∈ A},

where we define inf ∅ = t∗. Then τ is an F-stopping time under each of these
conditions:

(1) T is countable and every non-empty subset, which is bounded below,
contains its infimum (think of T as finite, T ⊂ Z or T = {k − 1

n
: k ∈

Z, n ∈ N});

(2) T is an interval in R, the set A is closed and X is continuous.

Proof. For the proof please refer to [13, Lemma 3.51(a) and (b)].
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Theorem A.24. Existence of the essential supremum
Let (Ω,F , µ) be a σ-finite measure space and let Φ be a collection of measur-
able functions ϕ : Ω → R.

(1) Then there exists a function ϕ∗ ∈ Φ such that ϕ∗ ≥ ϕ µ-a.e. for all
ϕ ∈ Φ and ϕ∗ ≤ ψ µ-a.e. for every function ψ ∈ Φ with ψ ≥ ϕ µ-a.e.
for all ϕ ∈ Φ.

(2) Additionally, assume that for ϕ, ϕ̃ ∈ Φ there exists a ψ ∈ Φ such that
ψ ≥ ϕ∨ ϕ̃. Then there exists an increasing sequence (ϕn)n∈N such that
ϕ∗ = limn→∞ ϕn µ-a.e.

Proof. The claims are trivial for13 Φ = ∅ and a zero measure, therefore, we
may assume Φ 6= ∅ and µ 6= 0 for the proof. Note that µ only appears in the
theorem above through its null sets, which do not change when passing to
an equivalent measure. Since any non-zero σ-finite measure is equivalent to
a probability measure (see Theorem A.11), it suffices to prove the claim for
probability spaces and random variables. This can be found in [5, Theorem
A.33].

Definition A.25. Essential supremum14

We call the function ϕ∗ in Theorem A.24 the essential supremum of Φ and
denote it by

ess supΦ = ess sup
ϕ∈Φ

ϕ := ϕ∗.

The essential infimum of Φ is defined by

ess inf Φ = ess inf
ϕ∈Φ

ϕ := − ess sup
ϕ∈Φ

(−ϕ).

Example A.26. The difference between the supremum and the essential supre-
mum can be made apparent by an easy example regarding the measure space
(R,BR, λ), where λ denotes the Borel–Lebesgue measure. Simply note that

sup
N∈BR

λ(N)=0

✶N = 1,

whereas
ess sup
N∈BR

λ(N)=0

✶N = 0.

13See [13, Remark 13.48(b)].
14See [5, Definition A.34].
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A.2 Some Theory on Conditional Expecta-

tion

Let (Ω,F ,P) be a probability space.

Theorem A.27. Existence of conditional expectation
Let G ⊂ F be a sub-σ-algebra of F and X ∈ L1(Ω,F ,P) with values in Kd

for d ∈ N. Then there exists an almost surely unique Kd-valued G-measurable
random vector Y with E[|Y |] <∞ such that

E[X✶G] = E[Y ✶G]

for all G ∈ G. We call E[X|G] := Y the conditional expectation of X w.r.t.
G.

Proof. For the proof please refer to [14, Theorem 9.2]

Theorem A.28. List of properties
Let G,H be sub-σ-algebras of F and X, Y ∈ L1(Ω,F ,P) with values in Kd

for d ∈ N. Then the following properties hold:

(1) E [E[X|G]] = E[X].

(2) If X is G-measurable, then E[X|G]
a.s.
= X.

(3) Monotonicity: If X ≤ Y a.s., then E[X|G] ≤ E[Y |G] a.s. In particular,
if X

a.s.
= Y then E[X|G]

a.s.
= E[Y |G].

(4) Linearity: Let a, b ∈ K and X, Y be integrable Kd-valued random vec-
tors. Then E[aX + bY |G]

a.s.
= aE[X|G] + bE[Y |G].

(5) Take out what is known: Let Y be a G-measurable. If XY is integrable,
then E[XY |G]

a.s.
= Y E[X|G].

(6) Tower property: If H ⊂ G, then E[E[X|G]|H]
a.s.
= E[X|H].

(7) Conditional version of Jensen’s inequality: Let C ⊂ R be an interval
or C ⊂ Kd an open convex set. Assume X take values in C and that
ϕ : C → R is a convex function such that ϕ(X) ∈ L1(Ω,F ,P). Then
E[ϕ(X)|G] ≤ ϕ(E[X|G]) a.s.

(8) Conditional dominated convergence theorem: Let (Xn)n∈N be a se-
quence of Kd-valued random vectors in L1(Ω,F ,P) such that |Xn| ≤ X
for all n ∈ N and Xn → X a.s. as n → ∞. Then E[Xn|G] → E[X|G]
a.s. as n→ ∞.
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(9) Conditional monotone convergence theorem: Again, let (Xn)n∈N be a
sequence of R-valued random vectors in L1(Ω,F ,P) such that Xn ≥ 0
for all n ∈ N and Xn ր X a.s. as n → ∞. Then E[Xn|G] ր E[X|G]
a.s. as n→ ∞.

Proof. For the proof of the conditional version of Jensen’s inequality in (7)
in the vector valued case, see [3, Subsection 10.2.7, p. 349]. The remaining
properties follow from the one-dimensional real case treated in [14, Section
9.7 and 9.8, p. 88–90] by considering components and real and imaginary
part.

Example A.29. Let (Ω,F ,F,P) be a filtered measure space and X := (Xt)t∈T
be a sub- or a supermartingale15. If the map T ∋ t 7→ E[Xt] is constant, then
X is a martingale.

Indeed : Let X be a supermartingale and define Ms = Xs − E[Xt|Fs] for
s ≤ t in T and note that this defines a non-negative process. Then E[Ms] = 0
by assumption and the law of total expectation. Since a non-negative random
variable Y with expectation 0 is 0 almost everywhere (this follows because
P(Y ≥ 2−n) ≤ 2nE[Y ] = 0 for all n ∈ N), Ms = 0 a.s., which implies the
claim.

In case X is a submartingale simply consider the non-negative process
E[Xt|Fs] − Xs for s ≤ t in T and the claim follows in the same manner as
before.

Theorem A.30. Doob’s optional stopping theorem
Let X := (Xt)t∈T be a submartingale w.r.t. F and σ, τ : Ω → T , where

❼ T is countable and σ, τ are stopping times w.r.t. F, or

❼ T is a non-degenerate interval, X is right-continuous, τ is an16 F+-
stopping time and σ a stopping time w.r.t. either F+ or F.

If there exists an a ∈ T such that a ≤ σ ∧ τ , then the following holds:

(1) For every u ∈ t the random variables Xτ∧u and Xσ∧τ∧u are integrable
and

Xσ∧τ∧u

a.s.

≤ E[Xτ∧u|Fσ(+)].

(2) If t∗ /∈ T and if {X+
τ∧u} is uniformly integrable, then Xτ and Xσ∧τ are

a.s. well defined and integrable, and

Xσ∧τ

a.s.

≤ E[Xτ |Fσ(+)].

15For the definition please refer to page 1 in the Introduction.
16F+ is the filtration defined by Ft(+) =

⋂

u∈T,u>t Fu for t ∈ T \ {t∗} and Ft(+) = Ft∗

if t∗ ∈ T .
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Proof. For the proof please refer to [13, Theorem 4.89 and Remark 7.43].

As mentioned before, there is a different way to prove the existence of the
conditional expectation for σ-integrable functions (see Theorem 2.7), which
will be listed here for further reading. For the proof we need the Bayes’
formula, where we rely on several properties of the conditional expectation
w.r.t. probability measures and random variables. A list of these properties
can be found above (see Theorem A.28).

Lemma A.31. Bayes’ formula
Let η and ν be probability measures on (Ω,F) with η ≪ ν on F , G ⊂ F a sub-
σ-algebra and f ∈ L1(Ω,F , η). Define ρ = dη

dν
(this density exists according

to the Radon–Nikodým theorem in A.14). Then

Eη[f |G] Eν [ρ|G] = Eν [fρ|G] ν-a.e. (A.2)

Proof. First, let η ≪ ν on F . f ∈ L1(Ω,F , η) implies that fρ ∈ L1(Ω,F , ν)
and that Eν [fρ] is well-defined since Eν [|fρ|] = Eη[|f |] <∞.

Now, for all G ∈ G the following holds true.

Eν [fρ✶G] = Eη[f✶G] = Eη[✶GEη[f |G]] = Eν [ρ✶GEη[f |G]],

where quietly we used the existence of the conditional expectation in The-
orem A.27 for the second equality. We can use the same tricks again and
deduce

Eν [ρ✶GEη[f |G]] = Eν [✶GEν [ρEη[f |G]|G]]
A.28(5)
= Eν [✶GEν [ρ|G]Eη[f |G]]

by the G-measurability of Eη[f |G]. Since

Eν [fρ✶G] = Eν [✶GEν [fρ|G]],

we can conclude

Eν [✶GEν [fρ|G]] = Eν [✶GEν [ρ|G]Eη[f |G]],

which implies (A.2).

Proof. Alternative proof of Theorem 2.7
To start off, let f be σ-finite w.r.t. G with values in R and let f ≥ 0 w.l.o.g.
(otherwise consider f = f+ − f−). Define

µ̃n(·) =

{
µ(· ∩ Ωn)
µ(Ωn)

if µ(Ωn) > 0,

0 otherwise,
(A.3)
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and

gn =

{

Eµ̃n [f✶Ωn |G] on Ωn,

0 otherwise.

With these definitions one has gn ≥ 0 µ̃n-a.e. for all n ∈ N.
Now, let m ≤ n. We want to show

Eµ̃n [f✶Ωn |G]✶Ωm = Eµ̃m [f✶Ωm |G] µ̃m-a.e.,

which is equivalent to
gn✶Ωm = gm µ̃m-a.e.

Due to the definition of µ̃n in (A.3) we know for m ≤ n that µ̃m ≪ µ̃n on G
and that a corresponding density is given by

ρ̄m,n :=
µ(Ωn)

µ(Ωm)
✶Ωm . (A.4)

Using that ρ̄m,n is G-measurable, it follows from Bayes’ formula (see Lemma
A.31) that

Eµ̃n [ρ̄m,n|G] Eµ̃m [f✶Ωm |G] = Eµ̃n [f✶Ωm ρ̄m,n|G] µ̃m-a.e.

We can rewrite this equation by using that ✶Ωm ρ̄m,n = ✶Ωn✶Ωm ρ̄m,n and that
Eµ̃n [ρ̄m,n|G] = ρ̄m,n µ̃n-a.e. Since ✶Ωm ρ̄m,n is G-measurable, we now have

ρ̄m,nEµ̃m [f✶Ωm |G]
A.28(5)
= ρ̄m,n✶ΩmEµ̃n [f✶Ωn |G] µ̃m-a.e.,

which is equivalent to

✶Ωmgm = ✶Ωmgn µ̃m-a.e.

This proves what we wanted to show as stated in (A.2) on Ωm. Since gm
is 0 elsewhere we are done with this part. Therefore, we can conclude that
gn ր g ∈ L0(Ω,G, µ) for n→ ∞ and g✶Ωn = gn µ-a.e. for all n ∈ N.

Now, note that with (A.3) we have µ̃n ≪ µ on G. A corresponding density
is given by

ρn :=
1

µ(Ωn)
✶Ωn .

Let G ∈ Rf,G, then the following holds true by (A.2).

Eµ[f✶Ωn✶G] = µ(Ωn)Eµ

[
f✶Ωn✶G

µ(Ωn)

]

= µ(Ωn)Eµ[fρn✶G]

= µ(Ωn)Eµ̃n [f✶Ωn✶G]
A.27
= µ(Ωn)Eµ̃n [gn✶G]

= µ(Ωn)Eµ

[
gn✶Ωn✶G

µ(Ωn)

]

= Eµ[gn✶Ωn
︸ ︷︷ ︸

=g✶Ωn

✶G],

(A.5)
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where we used the existence of the conditional expectation for probability
measures (see Theorem A.27). By using the monotone convergence theorem
in Theorem A.18 we can conclude that

Eµ[f✶G]
A.18
= lim

n→∞
Eµ[f✶Ωn✶G]

(A.5)
= lim

n→∞
Eµ[g✶Ωn✶G]

A.18
= Eµ[g✶G],

which proves (2.3).
It remains to show that g is a.e. unique. In order to do so, let h have the

same properties as g and consider an ǫ > 0 such that for B := {g ≥ h + ǫ}
we have µ(B) > 0 w.l.o.g. Then together with the definition B ∩ Ωn = Bn

(note that Bn ∈ Rf,G) for n ∈ N we have

µ(B) ≤
∑

n∈N

µ(B ∩ Ωn) =
∑

n∈N

Eµ[✶B∩Ωn ] ≤
1

ǫ

∑

n∈N

Eµ[(g − h)✶Bn ]

=
1

ǫ

∑

n∈N

Eµ[g✶Bn ]
︸ ︷︷ ︸

=Eµ[f✶Bn ]

−Eµ[h✶Bn ]
︸ ︷︷ ︸

=Eµ[f✶Bn ]

= 0.

This implies g = h µ-a.e., thus the claim follows.
The general case of f taking values in Kd follows by considering the

components separately (and splitting f into real and the imaginary part for
C-valued functions).

A.3 Miscellaneous

Lemma A.32. Let ϕ : [a, b] → R be a convex and ψ : [a, b] → R a concave
function. Then ϕ and ψ have a finite right-hand derivative ϕ′

+ and ψ′
+ at

every point in the open interval (a, b) which fulfill

ϕ(x) ≥ ϕ′
+(y)(x− y) + ϕ(y), x, y ∈ (a, b),

and

ψ(x) ≤ ψ′
+(y)(x− y) + ψ(y), x, y ∈ (a, b).

In particular, ϕ is the upper envelope of all linear functions below its graph,
i.e.

ϕ(x) = sup{l(x) : l(z) = αz + β ≤ ϕ(z), ∀z ∈ (a, b), α, β ∈ R}, x ∈ (a, b),

and ψ is the lower envelope of all linear functions above its graph, i.e.

ψ(x) = inf{l(x) : l(z) = αz + β ≥ ψ(z), ∀z ∈ (a, b), α, β ∈ R}, x ∈ (a, b).
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Proof. For the proof please refer to [12, Lemma 12.13].

Lemma A.33. Let (y
(m)
n : m ∈ N, n ∈ N) be an array of numbers in R ∪

{+∞}, such that (y
(m)
n )m∈N is an increasing sequence for all n ∈ N and

(y
(m)
n )n∈N is an increasing sequence for all m ∈ N. Suppose that for fixed

n ∈ N y
(m)
n ր yn := limm→∞ y

(m)
n and y

(m)
n ր y(m) := limn→∞ y

(m)
n for fixed

m ∈ N. Then

lim
n→∞

yn = lim
n→∞

lim
m→∞

y(m)
n = lim

m→∞
lim
n→∞

y(m)
n = lim

m→∞
y(m).

Proof. For the proof please refer to [14, Section A5.1, p. 211].

Theorem A.34. Cauchy–Schwarz inequality
Let (V, 〈·, ·〉) be an inner product space. Then

|〈x, y〉| ≤ ‖x‖ ‖y‖

for all x, y ∈ V , where ‖ · ‖ is the norm induced by the inner product.

Proof. For the proof please refer to [15, Proposition 3.1.2(i)].

Theorem A.35. Fundamental theorem of calculus
Let a < b in R. Then the following two statements hold true.

(1) If f : [a, b] → R is continuous for all x ∈ [a, b], then F (x) :=
∫ x

a
f(t) dt

is differentiable and F ′ = f .

(2) If F : [a, b] → R is a continuously differentiable function, then
∫ b

a
F ′(t) dt = F (b)− F (a).

Proof. For the proof please refer to [4, Satz 7.24].

Theorem A.36. Young’s inequality for products
Let a, b ∈ R+ and p, q ∈ (1,∞) such that 1/p+ 1/q = 1. Then

ab ≤
ap

p
+
bq

q

with equality if, and only if, ap = bq.

Proof. For a = b = 0 the claim is certainly true, since both sides equal zero.
Furthermore, for a = 0 and b > 0 the inequality holds true as well (of course,
the same goes for a > 0 and b = 0). Therefore, assume a, b > 0. Since the
logarithm is concave it follows for t := 1/p that

ln(tap + (1− t)bq) ≥ t ln(ap) + (1− t) ln(bq) = ln(a) + ln(b) = ln(ab)

with equality if, and only if, ap = bq. The claim now follows immediately by
exponentiating.
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For the following definitions and theorem let E be an arbitrary Euclidean
space over the real numbers R equipped with the inner product 〈·, ·〉. We
could also consider Rd w.l.o.g., d ∈ N, of real (column) d-dimensional vectors
together with its standard inner product.

Definition A.37. Fenchel conjugate17

Let f : E → R a function. Then the Fenchel conjugate f ∗ : E → R is defined
by

f ∗(ϕ) = sup
x∈E

{〈ϕ, x〉 − f(x)}, ϕ ∈ E.

We call the Fenchel conjugate of f ∗ the biconjugate and denote it by f ∗∗.

Remark A.38. The map E ∋ ϕ 7→ ϕ(x)− f(x) ∈ R is affine and continuous.

Definition A.39. Closed functions18

We call a function f : E → R closed if its epigraph, i.e. the set {(x, α) ∈
E × R | f(x) ≤ α}, is a closed set.

Theorem A.40. Fenchel–Moreau theorem
Let f : E → R a function. Then the following three properties are equivalent.

1. f is closed and convex.

2. f = f ∗∗

3. For all x ∈ E we have that19

f(x) = sup{α(x)|α is an affine minorant of f}.

Proof. For the proof please refer to [2, Theorem 4.2.1].

Theorem A.41. Intermediate value theorem
Let f : [a, b] → R be a continuous real-valued function and a < b ∈ R.
Then for all u ∈ [f(a), f(b)] if f(a) ≤ f(b) (respectively u ∈ [f(b), f(a)] if
f(b) < f(a)) there exists a c ∈ [a, b] such that f(c) = u.

Proof. For the proof please refer to [4, Satz 5.47].

17See [2, Chapter 3.3, p. 49].
18See [2, Chapter 4.2, p. 76].
19Hence, the conjugacy operation induces a bijection between proper (i.e. f(x) < +∞

for at least one x ∈ E and f(x) > −∞ for every x ∈ E) closed convex functions.
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Abbreviations, Conventions

and Notation

List of Abbreviation

a.e. almost everywhere (with respect to a measure)
a.s. almost surely (with respect to a probability measure)
e.g. for example (lat. exempli gratia)
i.e. that is to say (lat. id est)
resp. respectively
w.l.o.g. without loss of generality
w.r.t. with respect to

Conventions

❼ We use increasing, decreasing, larger and smaller in the weak sense and
use strictly increasing, strictly decreasing, strictly larger and strictly
smaller, if we want to exclude equality.

❼ We may use positive in place of non-negative, and say strictly positive,
when we mean it.

❼ The subset relation ⊂ does not exclude equality of the two sets.

Symbols

≪ absolute continuity (between two measures)
| · | absolute value on R and C, the Euclidean norm

on Rd and Cd (for d ∈ N)
‖ · ‖p := (

∫
| · |p dµ)1/p Lp-norm

(·)c complement of a set
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→ converges to
ր monotone increasing and converging to
ց monotone decreasing and converging to
:= defining equality
∅ empty set
∃ there exists, there is
∀ for all, for every
∨ maximum of two functions
∧ minimum of two functions
(·)− negative part of a function of measure
(·)+ positive part of a function of measure
〈·, ·〉 inner product defined on Kd

∼ distribution of random variable, equality between
measures

◦ composition of maps
× product of sets
⊗ product of σ-algebras
⊥ singularity (between two measures)

Notation

Bk σ-algebra of the k-dimensional Borel sets
BS Borel σ-algebra of the topological space S
C the field of complex numbers
Cov(X, Y ) covariance matrix E[(X − E[x])(Y − E[Y ])⊥]
e Euler’s number 2,71828. . . , also used for the ex-

ponential function
ess sup essential supremum
ess inf essential infimum
Exp(α) exponential distribution with parameter α
E[X] =

∫

Ω
X dP expected value of random variable

E[X|F ] conditional expectation of random variable under
the σ-algebra F

Eµ[f ]
∫

Ω
f dµ

Eµ[f |F ] conditional expectation of a function f under the
σ-algebra F

F σ-algebra of the sample space Ω
Fτ σ-algebra associated with the stopping time τ
F filtration of a σ-algebra F
G mostly a sub-σ-algebra of F
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✶F indicator function of the set F
Kd d-dimensional vector space of real or of complex

numbers (for d ∈ N)
Lp(Ω,F , µ) set of all measurable functions f who’s p-th power

is integrable (for p ≥ 1)
Lp(Ω,F , µ) quotient space of Lp such that ‖·‖p defines a norm

on it (for p ≥ 1)
L0(Ω,F , µ) vector space of measurable functions w.r.t. F
λ the Borel–Lebesgue measure
µ mostly a σ-finite measure
N = {1, 2, 3, ...} natural numbers (without zero)
P(Ω) power set, i.e. the set of all subsets of Ω
P probability measure on the measure space (Ω,F)
Q the field of rational numbers or a probability mea-

sure
R the field of real numbers

R = R ∪ {−∞,+∞} set of extended real numbers
R+ = [0,∞) set of positive real numbers

R+ = [0,∞] set of extended positive real numbers
Rf,G delta-ring of all sets in G such that f is integrable
σ can refer to a stopping time w.r.t. a filtration when

defined as such

T a subset of R
T the set T with its supremum t∗ added

t◦ the infimum of T in R

t∗ the supremum of T in R

τ a stopping time w.r.t. a filtration
u a utility function
u′, u′′ first and second derivative of u
VQ variance of a random variable w.r.t a probability

measure Q

X : Ω → R a random variable
X : T × Ω → R a stochastic process
Z = {...,−2,−1, 0, 1, 2, ...} the commutative ring of integers
Ω sample space
(Ω,F , µ) mostly a σ-finite measure space (unless stated oth-

erwise)
(Ω,F ,F, µ) a filtered σ-finite measure space
(Ω,F ,P) a probability space
(Ω,F ,F,P) a filtered σ-finite measure space
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