@ institute of
telecommunications

Classifying Encrypted Network Traffic based on
Deep Learning

Master Thesis
for obtaining the academic degree
Dipl. -ing.
as part of the study
Electrical Engineering and Information Technology

carried out by

Milos Crnjanski
student number: 01227434

Institute of Telecommunications
at TU Wien

Supervision:
Univ. Prof. Dipl.-Ing. Dr.techn. Tanja Zseby
Univ.Ass. Dott.mag. Maximilian Bachl

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Erklarung zur Verfassung der Arbeit

Hiermit erkldre ich, dass die vorliegende Arbeit gemal dem Code of Conduct — Regeln
zur Sicherung guter wissenschaftlicher Praxis (in der aktuellen Fassung des jeweiligen
Mitteilungsblattes der TU Wien), insbesondere ohne unzulassige Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Hilfsmittel, angefertigt wurde. Die aus anderen
Quellen direkt oder indirekt iibernommenen Daten und Konzepte sind unter Angabe
der Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In— noch im Ausland in
gleicher oder in dhnlicher Form in anderen Priifungsverfahren vorgelegt.

Vienna, November 2019

Author’s signature

Statement on Academic Integrity !

| hereby declare that this thesis is in accordance with the Code of Conduct rules for
good scientific practice (in the current version of the respective newsletter of the TU
Wien). In particular it was made without the unauthorized assistance of third parties
and without the use of other than the specified aids. Data and concepts directly or
indirectly acquired from other sources are marked with the source. The work has not
been submitted in the same or in a similar form to any other academic institutions.

Translation of the text above. The German version is the legally binding text.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Acknowledgements

First of all, | am grateful for the opportunity to study at Institute of Telecommunica-
tion, TU Vienna, and to all the professors for sharing a tremendous knowledge and
spreading our professional horizons in many ways.

| would like to express my special appreciation to my supervisor, Professor Tanja
Zseby, for giving me the opportunity to conduct a research on such an exciting topic,
as well as excellent support, guidance and the given knowledge. A special thanks goes
to my adviser Maximilian Bachl for continuous support, patience and all the helpful
hints.

Thanks to my colleagues for all the good times spent together and for the support in
a great number of situations when | thought that all was lost.

The biggest thanks goes to my family. Words cannot express how grateful | am for
all the sacrifices that you have made on my behalf. Finally, | would like to express
my deepest appreciation to my beloved wife Mirjana who spent sleepless nights by my
side and was always supportive in the moments when there was no one to answer my
queries.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

The only limit to Al is human imagination.”

Chris Duffey, Superhuman Innovation: Transforming Business with Artificial Intelligence

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg v_wr_ﬂo__ﬂ__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Abstract

An enormous IP traffic growth in the last decade has resulted in new requirements
regarding network security. With the traffic growth, the cybersecurity is also changing.It
is difficult to apply security measures because of the bigger traffic amount and new
applications and services. A large percentage of network traffic, as well as network
attacks, is encrypted, and it is important to recognize an attack quickly to prevent any
damage to the running system. With traditional methods of traffic classification, such
as the port-based traffic detection and deep packet inspection, it is very difficult to
follow the demand of the modern traffic classification.

In this thesis, machine learning is used as a solution to this problem. We developed a
machine learning model based on binary classification which is able to detect attacks in
encrypted network traffic. Our classification uses a new feature set, which consists of
the following: the frame length, the time between packets in the flow and the direction
of the flow. These are important features for us because their values do not change
in encrypted traffic. The results open new discussions and change the view on today’s
traffic classification.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

10
edge

b

now!

(]
I
rk

Zusammenfassung

Ein enormes Wachstum des IP-Verkehrs in den letzten zehn Jahren hat zu neuen An-
forderungen an die Netzwerksicherheit gefiihrt. Mit dem Netzwerkverkehrswachstum
andert sich auch die Cybersicherheit und es ist schwierig, Sicherheitsmalnahmen an-
zuwenden, da der Netzwerkverkehr groBer ist und neue Anwendungen und Dienste
hinzukommen. Ein groRer Teil des Netzwerkverkehrs sowie Netzwerkangriffe werden
verschliisselt, und es ist wichtig, einen Angriff schnell zu erkennen, um Schaden am
laufenden System zu vermeiden. Mit traditionellen Methoden der Verkehrsklassifizie-
rung, wie der Port-basierten Verkehrsdetektion und der Deep Packet Inspection, ist es
sehr schwierig, den Anforderungen der modernen Verkehrsklassifizierung zu genugen.
In dieser Arbeit wird maschinelles Lernen als Losung fiir dieses Problem eingesetzt.
Wir haben ein maschinelles Lernmodell auf Basis der bindren Klassifizierung entwi-
ckelt, das in der Lage ist, Angriffe im verschliisselten Netzwerkverkehr zu erkennen.
Unsere Klassifizierung verwendet ein neuartiges Feature-Set, das aus den folgenden
Features besteht: der Packetlinge, der Zeit zwischen den Paketen im Flow und der
Richtung des Flows. Dies sind fiir uns wichtige Features, da diese Werte auch bei ver-
schliisselten Daten noch verfligbar sind. Die Ergebnisse eréffnen neue Perspektiven und
verandern den Blick auf die heutige Verkehrsklassifizierung.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Contents

1

Introduction
1.1 Motivation
1.2 Amofthework
1.3 Structure
Background
2.1 AT Security
2.1.1 Basic Concepts of Network Security
2.1.2 Intrusion Detection
2.2 Traffic Encryption
2.2.1 Internet Protocol Security
2.2.2 Transport Layer Security
2.3 Network Traffic Classification
2.3.1 Flow-based Classification
2.4 Machine learning
241 Deeplearningo
2.4.2 Recurrent Neural Network and LSTM
State of the art

Research Methodology and Experiment

41 Concept

4.2 Preprocessing

43 Training L
431 Trainingthemodel

4.4 Evaluation

45 Normalization

Results

5.1 Setup
5.1.1 Deep learning framework

5.2 Performance evaluation
521 Model 1
522 Model 2
523 Model 3
524 Model 4

53 Summary

Conclusion

6.1 Future Work

31

33
33
38
40
40
43
46

51
51
52
53
54
59
62
64
66

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

71

7 References

75

A Appendix

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

qny a8pajmoud| INoA

Saylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

10
edge

b

now!

(]
I
rk

1 INTRODUCTION

1 Introduction

In this chapter, the overview of the thesis is given. It starts with the motivation and
demand for research in this field. The next part is the aim of our work, where we discuss
the key questions and goals of this thesis. In the final part we explain the structure of
the thesis.

1.1 Motivation

During the last few years, the Internet traffic has experienced a tremendous annual
growth rate of approximately 26 percent [19]. With the traffic growth, content of
traffic is changing and the number of new applications is exponentially rising [19]. The
philosophy of security threats is also changing as well. Cyberattacks are being directed
more towards smaller companies [18] , and they are encrypted and more difficult to
recognize.

That is why network traffic classification has become an important tool for rec-
ognizing the potential threats in traffic. It represents the foundation for important
network activities, such as network planning, network security, network management,
quality of service, accounting, etc. However, classification remains difficult because
of the fast development of technologies, new protocols, applications and attackers
hiding in those application, as well as because of our limited knowledge and technology.

There are different approaches towards network traffic classification. In [20], the
author is providing the overview of traffic classification challenges. The oldest, and
still very popular, approach is port-based classification, and it is based on the
fact that most applications have an assigned port number. It is simple and fast,
but not entirely reliable. New applications are using dynamic port assignment and
attackers can easily brake the pattern by using another port and different tunnelling
methods. A more reliable approach would be payload-based inspection, in which
the content of a packet header is analyzed, and well known signatures are used to
classify the traffic. This method is highly accurate but there are various downsides: it
is more computationally expensive, the classification is not possible if the signature
is unknown, it very difficult to perform in encrypted traffic, and, most importantly, it
violates the privacy principle.

For those and many other reasons it is important to change the approach regarding
the network traffic classification.

One new approach is to use machine learning. A huge growth of data collected
through our daily network activities has created demand for developing new methods
for analyzing data to recognize and learn about basic human behavior. The results of

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.2 Aim of the work 1 INTRODUCTION

the analysis would subsequently be used for commercial purposes. A subset of ML,
deep learning provides a simulation of the human neural system, which can be applied
to our problem.

Our research focuses on binary classification of the network traffic based on deep
learning techniques to distinguish attack traffic from benign traffic. The data that we
use contains normal and malicious traffic in the form of nine different cyberattack
families. The data was processed to retrieve the desired features of the traffic and it
was fed to a recurrent neural network. This specific method was used because it is
better applied to sequential data and it fits well to an online classification. Different
types of RNNs were tested, including long-short term memory cells, gated recurrent
unit cells and different regularization techniques. The result was an accurate and fast
network classification.

The contribution of our work is three-fold:

e a new feature set was tested. It consists of the packet length, packet inter-arrival
time and flow direction. The main advantage of this set is that the features are
available in both, encrypted and decrypted traffic

e an efficient machine learning model was developed, based on language process-
ing using a recurrent neural network and long-short term memory cells. These
techniques utilize specific cell structures which enable memorizing features of
given traffic.

e different regularization methods have been analyzed and implemented, such as
batch normalization and layer normalization which smooth the data input statis-
tics and help the model learn more efficiently.

1.2 Aim of the work

The research, in general, proposes the answer to three important questions:

e QI: Are recurrent neural networks efficient in trathic classification? By efficient
model, we define a model which could achieve more than 96% of accuracy and
90% j-statistic (details are provided:4.4). During a traffic analysis, we deal with
a huge amount of data. There are new and unknown attacks and threats, whose
outcome is very difficult to predict.

e Q2: Which features of data are most important for the encrypted traffic classifi-
cation? This research will introduce a new feature set based on the frame length,
inter-arrival packet time and direction of the traffic in the flow.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

1.3 Structure 1 INTRODUCTION

e Q3: What can we do to improve the process of deep learning? Different regular-

ization techniques, such as batch normalization and layer normalization, will be
proposed and evaluated.

1.3 Structure

This research is structured into 5 chapters:

Chapter 1 - Introduction - contains the motivation for researching the topic, the
description of the methodology and the structure of the research. Some related
work is described as well

Chapter 2 - Background - provides the overview of the theory behind this
research. It provides a short description of machine learning, statistical method
used for supporting it, IT security, etc.

Chapter 3 - The description of the experiment that was conducted. This part
describes the feature set, preprocessing of the data and development of the
recurrent neural network model.

Chapter 4 - Result - The outcome of the experiment, optimization and regular-
ization

Chapter 5 - Conclusion - The final discussion regarding the research, future
demand

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

10
edge

b

now!

(]
I
rk

2 BACKGROUND

2 Background

In this chapter, we are setting the theoretical background for this research. As we are
trying to detect the security attacks in encrypted network traffic, in the first part of
this chapter we are introducing the basic concepts of network security and network
traffic encryption. A short overview of Intrusion Detection System (IDS) is given, in
order to understand how the most used system for attack detection works and to
determine the limitations which could be overcome by using our system.

The second part represents an introduction to different types of traffic classification.
We will give a short overview of port-based, flow-based classification and deep packet
inspection (DPI). Flow-based classification is explained more in details since this type
is used in our research.

The third part of this chapter presents machine learning (ML). We are introducing
ML and all the concepts that are used in our research. A summary of ML is given
with the statistical concepts of the neural network and with the explanation of the
recurrent neural network (RNN). The summary is followed by a theoretical overview
of long-short term memory (LSTM) and gated recurrent unit (GRU) cells which are
part of the models that are trained in our experiment.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

IT Security 2 BACKGROUND

Availability

Figure 1: Network Security Principle

2.1 IT Security
2.1.1 Basic Concepts of Network Security

Network Security is a broad range of measurements and actions which are taken
in order to protect the network infrastructure and to prevent an unauthorized
access, misuse, modification and disruption of data, malfunction of the system, etc.
In other words, Network Security is used to protect our network and data, their
usability and integrity. The scope of network security covers software, hardware and
firmware, as well as the information which is processed, stored and communicated. [21].

There are three basic concepts which make the core of Network Security: Confiden-
tiality, Integrity and Availability, also known as the CIA principle. Those concepts
define the most important security objectives for data and information services.

Confidentiality refers to concealing information or resources to protect secrecy. It could
be interpreted as having 2 subsets, data confidentiality, which assures that the confi-
dential information is revealed only to an authorized person, and privacy, which assures
that the control or influence of the information is collected or stored only by the in-
tended person. [44]

The method which is widely used to provide confidentiality is cryptography. Using
a cryptographic key, encrypted data is scrambled in such a way that it cannnot be
deciphered by an unauthorized person without the appropriate key.

Integrity refers to preventing an improper modification and unauthorized change. It
can also be classified it into 2 subsets: data integrity assures that the information is

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.1

IT Security 2 BACKGROUND

manipulated only in an authorized manner, whereas system integrity assures that a
system performs intended functions, without any modification and biasing. [44]
The methods for preventing an information modification are:

e hashing - adds a number of bits, generated with secret key, to check if a message
is altered

e message authentication - uses the secret key to ensures that a message is altered
by an authorized person

e digital signature - ensures that the information is sent by a specific and authorized
source

Availability refers to the proper functioning of the system, which means intended
work of the system at a desired time. The loss of availability prevents us from using
the information at the desired time and decreases system reliability. The recent times
have seen the fast growing popularity of denial-of-service attack. As more and more
web sites offer denial-of-service(DoS) attack on demand, availability faces the fastest
growing vulnerability of all the concepts.

The order of importance of the concepts varies, depending on the purpose of a system
and the applications. For example, in mail applications, confidentiality and integrity
are the most important concepts. On the other hand, monitoring systems require
availability and integrity. We can agree, however, that all three concepts are crucial
for any network security application.

2.1.2 Intrusion Detection

Intrusion detection is a service which monitors and analyzes systems behavior in order
to detect and provide a real time warning about an attempt to access security sensitive
system in an unauthorized manner. [43] Intrusion detection represents second level
protection and it is usually placed after the firewall to collect any intrusion that passes
through the firewall.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

2.1

IT Security 2 BACKGROUND

hwewe

Awsnn

=

Hiewwe

[LEX T 23

Figure 2: Intrusion Detection System

There are two different approaches used to analyze network data in order to detect
intrusions:

e Anomaly detection - uses the collected data of a user’s behavior to compare
it with the set of expected values; it triggers a warning if it deviates too much

e Signature or Heuristic Detection, which uses a known malicious pattern for
a comparison with the current behavior

The first phase of anomaly detection is modeling of the non-compromised user
behavior by collecting and processing sensor data. This model is used afterwards for
the comparison with the observed behavior to detect malicious activities.

There are different approaches to creating the models:

e Statistical methods - collect the data from sensors and use models with dif-
ferent methods of classifying the data (univariate, multivariate, time-series). The
advantage of this approach is that it is simple and computationally efficient, but
it is difficult to choose a proper metric and not all behaviors can be modeled.

e Knowledge-based approach consists of 2 phases: the training phase, in which
the observed data is divided into different classes, and the classification phase,
where the user behavior is classified based on those predetermined classes. The
advantage is that this approach is robust and flexible, but it is difficult to deter-
mine an accurate model

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.1

IT Security 2 BACKGROUND

e Machine-learning approach uses labeled training data to automatically develop
the model. Developing the model requires some time and more computational
power, but once it is developed, the model is fairly efficient. Various statistical
methods used in this approach are: Bayesian networks, Markov models, neural
network, fuzzy logic, generic algorithm, clustering and outlier detection.

The main limitation with anomaly detection, especially in the machine-learning ap-
proach, is that it only uses legitimate data, without any anomalies which is difficult to
ensure for the modern network traffic.

We will try to address this issue in our research and propose different methods to
detect and classify anomalies in the traffic.

Signature or heuristic detection is based on already known patterns. The user behavior
is observed and compared with the existing signature database. It can be also con-
figured to detect known penetrations or exploits, that is more specific to the system
which is used. The advantage of this method is time efficiency and low computational
complexity, but it is not able to recognize new threats without updating the signature
database.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.2 Traffic Encryption

M

Unencrypted data transport Encrypted data transport
Initial Authenticationa and Encrypted Data
Handshake Key exchange Exchange

v

Figure 3: Data Encryption phases

2.2 Traffic Encryption

Encryption is used to provide confidentiality of the data, and most of those protocols
also bring some level of integrity protection and authentication to the users. Protocols
usually employ the secret key method of encryption, so the first phase is the initial
handshake, the authentication of a user and key exchange. Fig: 3 shows encryption
phases.

The protocols that are going to be described are: IPsec and TLS.

2.2.1 Internet Protocol Security

Internet Protocol Security (IPsec) [42] is a protocol that provides the authentication,
encryption and integrity of the data on the network layer. It most commonly consist
of two phases, the initiation phase, and the encryption phase. In the initial handshake
phase, the authentication and a shared secret are established over UDP port 500.
The main protocol used for the initial phase activities is the Internet Key Exchange
Version 2(IKEv2) [15]. In the second phase the encryption of the data begins. IPsec
uses Encapsulating Security Payload(ESP) to add header and trailer to each
transferred packet, and everything in between is encrypted. ESP works in 2 modes:
transport mode, where the original IP header is not encrypted, and tunnelling mode,
where the original header is encrypted, and a new IP header is added.

It is worth mentioning that there is also the Authentication Header(AH) protocol
which is used for authentication in IPsec. Since ESP also contains authentication

feature, AH is rarely used.

The advantage of the IPsec is that it requires no change on the application level, but
it is less flexible for applications which require some connection on TCP level.

10

2 BACKGROUND

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.2 Traffic Encryption

Encrypted N
P ESP ESP ESP
Header Header TCP Data Trailer Auth
< >
Authentication
P Encrypted .
Mew IP ESP IP Extension ESP ESP
Header Header Header Header TC P Data Trailer Auth

Authentication

Figure 4: IPsec (a)transport mode, (b) tunnel mode

2.2.2 Transport Layer Security

Transport Layer Security (TLS) provides confidentiality, integrity, non-repudiation,
replay protection and authentication with digital signatures. It is based on the Secure
Socket Layer version 3 (SSLv3) and it provides a security level on top of TCP. It is the
most commonly used protocol in network communication, especially in cooperation
with VPN, Voip, HTML, FTP, etc

Encrypted
P TCP TLS Application TLS TLS Application TLS
Header Header | Record Header MAC Padding Record Header Data MAC Padding
>
Authentication

Figure 5: Transport Layer Security packet format

The first phase consists of the TLS handshake, in which the authentication takes
place, and encryption and the session key are established. The encryption starts when
the cipher suite is negotiated and the user authenticated. After the encrypting pro-
cess, message authentication code (MAC) is added to provide data integrity protection.

Main advantage, that is important for our research is that in TLS the TCP header is
not encrypted, while in IPsec the header is encrypted.

11

2 BACKGROUND

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.2 Traffic Encryption

2 BACKGROUND

SYN

ACK

ClientHallo

ClientkeyExchange
CipherSpecification
Finish

Data Exchange

BAms

188ms

196ms

Ms

A 4 Y

SYN ACK

ServerHello

Certificate

ServerHalloDone

Cipheripecification
Finish

Data BExchange

Figure 6: TLS initial handshake - process of establishing the TLS encryption. In the
first phase, TCP handshake is established, then the version of TLS is exchanged and
ciphersuite negotiated. After ciphersuite negotiation, the key parameters are exchanged,
and after key has been proven, the encrypted data exchange can be started.

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.3 Network Traffic Classification

2.3 Network Traffic Classification

Network traffic classification plays a crucial role in network planning, network manage-
ment, network security, network flow, etc. In the last decade, the amount of encrypted
traffic has increased rapidly. More and more businesses are moving their services
on-line and users are becoming aware of network security threats. Computational
power of modern devices is much higher, which brings more users and applica-
tions to use encryption as a security measure. There has been a significant rise of
encrypted data in modern communication and it is evident that the trend will continue.

Encrypted traffic experiences the growth of 90% every year and there are predictions
that in 2019 around 80% of web traffic will be encrypted. Compared to the 2015 when
there was only 20% of the traffic encryption, we would agree that the encryption
experiences a big growth and it has tendency to continue growing. Due to an increasing
rise of encrypted traffic, traffic classification is gradually becoming more difficult. [18]

Challenges which are introduced to the network traffic classification are numerous.
There are difficulties to identify real-time applications such as P2P, Voip, online video
in order to fulfill the QoS requirements. Another challenge would be to recognize
and differentiate between malicious traffic and the regular network traffic. Nowadays,
malicious traffic is usually encrypted, which helps it get through the firewall and
IDS system undetected. For those reasons, there is a necessity for accurate traffic
classification in order to apply some restrictions and blockage of unwanted application
and services on the firewall.

In order to understand the difficulty which comes with encrypted traffic classification,
we need to dive deeply into the well-known classification technologies. Network Traffic
Classification is based on different features of traffic. The features change with encryp-
tion in various ways: namely content is moving from plaintext to ciphertext, statistics
are becoming more random, and statistical properties on packet and flow level changes.
[16]

The port-based classification relays on the fact that most applications have a known
TCP or UDP port, assigned by IANA. [30] This represents the simplest method, which
requires TCP/UDP port number from transport header to compare with port number
in IANA database. Nowadays, it is not recommended to use this method because
of a variety of reasons. First of all, some applications are using random or dynamic
port numbers. Secondly, it is easy to spoof the port number and to disguise under
known application. Furthermore, there are applications that do not have the num-
ber in the IANA database yet. Finally, due to encryption, port number could be hidden.

The payload-based classification method is also known as Deep Packet Inspec-

13

2 BACKGROUND

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.3 Network Traffic Classification

tion(DPI) and it is based on already known attack signatures and patterns. It analyses
the payload of a packet and compares the information retrieved with the database
of traffic signatures. This is a more efficient way of classification method in terms of
accuracy, but it is computationally very expensive and also not reliable. The reasons
for unreliability are: some of the signatures are not known, encrypting the payload
makes this method very difficult and, most importantly, it violates the privacy principle.

The statistical classification is based on statistical properties of the traffic, as
well as on the packet level and flow level. Different features are used in this method,
starting with packet length, inter-arrival time, direction, etc., as well as more specific
packet count, flow duration, packet ratio,etc. After the encryption, statistical features
do change, but there are other (unencrypted) characteristics of traffic that can reveal
information about the application, which makes this method very useful in modern
traffic classification and more suitable for our research.

The behaviour-based classification or host-based classification analyses differ-
ent application traffic based on host behavior. It analyses different connection patterns
and attempts to classify the traffic into different classes. This method is rarely used
since it gives very rough results, and the classification is impossible in the case of
encryption and the usage of NAT.

2.3.1 Flow-based Classification

"A flow is a sequence of packets sent from a particular source to a particular unicast,
anycast or multicast destination that the source desires to label as a flow. A flow
could consist of all packets in a specific transport connection or a media stream." [29]

In other words, a flow is a set of packets with some common properties which are
passing an observed point in some time period. Properties are varying based on the
intended use and could be based on packet header (source IP, destination IP, Port
Numbers,etc.), packet characteristics (mpls label, flag, TTL etc.) and packet treatment
(next hop, interface,etc.). [28]

A flow is, traditionally represented by a 5-tuple:

e Source IP

Destination IP

Source Port

Destination Port

Transport Protocol

14

2 BACKGROUND

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.3 Network Traffic Classification

Due to different network and encryption requirements, some features may not be
available so it often uses fewer parameters than usual.

The flow has its origin in circuit-switch communication. In this type of communication
the connection between two hosts is established over dedicated resources, and it is not
difficult to define the parameters of connection. In the packet-switch communication,
the situation is a bit different. A message is fragmented and sent thorough the same
communication resource, so, on the reception side, we have different packets from
different sources, and it is important to define a set of parameter to identify the
connection between users. Destination and Source IP are used for defining the end
users, Ports are used to identify the application and it is also important to identify
transport protocol.

Another important parameter is the direction of the flow, since most connections
between two users are bidirectional. Many different applications and protocols have
predetermined scenarios of exchanging the information between the sender and the
receiver. This means that even when it comes to encrypted traffic, we can predict
which application lies behind it, on the basis of the direction of traffic. A good example
for this would be the initial handshake.

Aside from direction and the main 5-tuple parameters, it appeared to us that there
are some statistical parameters in traffic flow which are unique for specific protocols
and services, and even in encrypted data, it show a strong correlation with the original
data. Some of these parameters are packet length, inter-arrival time, TTL, etc. The
same principle applies to security attacks. Most of the attacks has a well-defined
pattern of packets with specific length which are coming in specific time and are going
in well-defined direction. This is very useful for the malicious traffic classification, with
the help of machine learning algorithms. With a proper statistical method and a big
data set, it is possible to develop a model which is able to classify malicious traffic
based on its statistical characteristics and well-defined patterns, and with high accuracy.

In following figures, the attack patterns are presented. Those patterns are extracted
from used data set, and plots are made based on three data set features: packet length,
packet direction and packet inter-arrival time. All attacks in the same attack family
have the equivalent attack patterns.

15

2 BACKGROUND

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

2.3 Network Traffic Classification 2 BACKGROUND

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

1600
- . .
5004 1400 4
1200
400 .
5 5 1000
& . &
g g
2 e Direction of Flow -1 800 Direction of Flow
E e 1 E e 1
e 1 £ B 1
£ L £ e00 L
200
400 -
100 200
. . *) . . . - . . - = e o LI P
0
T T T T T T T T T T T —T —T T N — — T
0001 001 0027 0035 0043 0051 0076 0102 0328 0356 0.0010.0020.0040.014 0.0160.017 0.0210.023 0.0270.206 0.2150.367 0.79 0.842
Interarrival Time Interarrival Time
+lez
N 0.008
250 0,006
0,004
200
£ £ 0002
&
g §
il
o Direction of Flow = 0,000 . Direction of Flow
£ 150 £ * 1
&
£ L 2 —0.002 4
—0.004
100
—0.006
- - - - - -
wod ° . . —0.008 |
T T T T T T T T T
0001 0004 0005 0058 0078 0082 0258 0281 0o
Interarrival Time Interarrival Time
+2.24e2
250
0.008 -
225
0.006 -
.
0.004 - 200 4 .
= = 1
£ 00024 g us
g g
@
4 1
: 0.000 . Direction of Flow @ 150 Directian of Flow
E 1 E .
£ L] & e 1
£ -0.002 { & 1254
—0.004 100 o
—0.006 - 7
. . e e e . .
—0.008 S H . .
T T T T T T T T T T T T T T
00 0.005 0.015 0.023 0.025 0.028 0.033 0.066 0.097 0.14 0235 0237 0.818 0.877
Interarrival Time Interarrival Time

Figure 11: Shellcode Figure 12: Fuzzers

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

2 BACKGROUND

2.3 Network Traffic Classification

Direction of Flow
e -1
e 1

T
0472

0384

500

400

200

T
o
]
R

pbuaT awely

100

[%2]
. (S
b -
.
i 7. .
S o
EER —
L I
2 =
i 3
,op
8 [
“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay any a8pajmoun Jnoa

“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg AV_QF_H.O__B__M

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.4 Machine learning

2.4 Machine learning

Due to the fast developing technologies, such as computers, mobile phones, the
Internet, etc., the amount of data that we create is growing rapidly every day.
Everything that we do today leaves a digital footprint, whether it is using the GPS to
find a location, the communication with our friends, or interactions on social media.
On top of this, industrial machines are generating huge amounts of data. Big data
generation has brought the necessity of the fast and precise data processing, and the
solution came in the form of machine learning, which is part of the already developed
artificial intelligence.

We can describe machine learning with the following quote: " A computer program is
said to learn from experience E with respect to some class of tasks T and performance
measure P if its performance at tasks in T, as measured by P, improves with experience
E." [36]

In other words, machine learning is a set of machines or devices which have access to
a big amount of data, and which are able to learn from this data in some programmed
manner.

A machine learning algorithm can perform different tasks [23]. Some of them are:

e Classification: the process of assigning different input xz; to different classes k.
The algorithm produces the function f : R" — {1...k} and when on output
y = f(z), the input x; is assigned to class k.

e Regression: the prediction of the output for the given input. To solve this, the
algorithm produces the function f: R — R

e Transcription: the process of observing a relatively untrusted representation of
data in order to transcribe the data in textual format.

e Machine Translation: converts a sequence of symbols in one language into a
sequence of symbols in another language.

e Anomaly Detection: the process of going through some data and trying to find
an unusual or atypical behavior.

From the learning point of view, two main techniques can be distinguished unsuper-
vised and supervised learning.

Unsupervised learning uses data samples with many features in order to learn and

infer a structure from the data. The algorithm practically observes many samples of a
random vector X and learns the probability distribution p(X') or some other property

18

2 BACKGROUND

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.4 Machine learning

of the distribution.

Supervised learning uses labeled data samples and observes different features of data
and labels in order to learn. In other words, the algorithm observes many samples of
the random vector X and corresponding labels Y and learns according to conditional
probability p(XY").

Semi-supervised learning is a category which is in-between the supervised and
unsupervised data. It uses a small portion of labeled data and a bigger portion of
unlabeled data in the training process. This way the algorithm is able to produce
better accuracy then by using unsupervised learning.

Reinforcement learning is a different category of machine learning which is based on
the trial and error. The algorithm interacts with the environment and learns the ideal
behavior through producing an action and discovering error or reward.

2.4.1 Deep Learning

Deep learning is a subcategory of machine learning based on the neural network and
the conceptual brain model. This concept was presented by McCulloch in [34] for more
than 70 years ago, but due to the limitations of technology, it did not have any practical
application up to recently.

Neural Network

The brain uses million neurons structured in hierarchical networks and interconnected
via axons, which are transporting the electronic signals called synapses from one neuron
to another.

The same concept is represented by the neural network. It contains several layers with
a number of neurons. A network neuron has a similar structure as a biological neuron.

19

2 BACKGROUND

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.4 Machine learning

«—0

v
N

2

Cow

Figure 14: Neuron

Every neuron is fed with the input data 1, xs,xz,,. Each input data is multiplied
with weights w1y, ws, ...w, and summed all together. The bias b is added to the sum
of the weighted input data and on the output of the neuron we have:

)= F(O_ wiz:) +b) (2)

Weights and biases are playing a crucial role in supervised learning. They are random
numbers which are adjusted during the training in order to minimize the error between
the predicted values and real data. This process is called backpropagation, which we
are going to explain in more details.

Another very important part is the activation function. The main responsibility
of the activation function is to decide which information is important for learning
and up to what extent. The output of the activation function is used as the input
of another layer, so a carefully chosen activation function could change the accuracy
of our learning model. In order to be able to learn complex models, the activation
function needs to be non-linear.

Different activation functions that are usually used in machine learning are:

20

2 BACKGROUND

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.4 Machine learning

2 BACKGROUND

e sigmoid - smooth function and
continuously differentiable, non-linear
function. Values are between 0 and
1 and it has a S shape. Backprop-
agation is possible but it is not so
popular because of : the vanishing
gradient problem, output not zero
centered(hard to optimize), sigmoid
saturate and kill gradient, slow con-
vergence.

1

o =15

(3)

e hyperbolic tangent - scaled ver-
sion of sigmoid. Values between -1
and 1, which outputs zero centered
values.Non-linear function and error
are easily backpropagated.

fx) = 2sigmoid(2r) =1 = 2 —1

21

10

0.8

0.6

0.4

0.z

0.0

N

Figure 15: Sigmoid activation function

0.50

0.25

0.00

-0.25

—0.50

-0.75

=1.00

N

Figure 16: Tanh activation function

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.4 Machine learning

2 BACKGROUND

e rectified linear unit(ReLU) -

non-linear function which makes error
propagation easy, and it has multiple
layers of neurons being activated. It
improves the convergence by 6 times
and it avoids and rectifies the vanishing
gradient. Nowadays, this function is
the one of the most employed ones,
but it can only be used in hidden layers.

f(x) = max(0,) (5)

softmax - a type of sigmoid func-
tions, used in classification to output
the probability of the class. The out-
put of the sigmoid layer is probability
between 0 and 1 divided by the sum of
all outputs.

fla) = ZJ— (6)

ci=1...J

22

M

Figure 17: ReLU activation function

0010

0.008

0.006

0004

0.002

0.000

A

Figure 18: Softmax activation function

The neural network is represented by many connected neurons grouped in layers. We
can see the representation of the neural network on the figure 19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.4 Machine learning

2 BACKGROUND

©,
o

®
©,

Input Layer

- EE
&
W

(<>

O_,

Output Layer

Figure 19: Neural Network [40]

Every neural network has many layers, and they are divided into groups of 3 layers:
Input layers (leftmost,blue), Hidden layers (middle, orange), Output layers (right-
most, red). It is possible to have more than one hidden layer and they are connected
to each other, so that the output of a previous layer is the input of the current layer.

In the example on the Fig 19, we have zq, -,

2, which are passed to the hidden

layer. The layers are denoted as L; and for this example [= 1. Each input data z;
is connected to each neuron in the hidden layer L, and each data is weighted with
2t . and summed with the bias b;. The output is passed through activation function

0,
of layer [, a!, and in the end we have:

@) = f(21”) = flwiyes + wigzs + i)
ay” = f (=) = flwizy + wiyzs +w
ay) = F(257) = flwgion + wises +

a) = f() = flunien +we

(1)

373+ Wy T+ b(l))
x3+...+wénxn b(2))
373+ ..+ wélnxn b(3))

Vs + .+ w,(llzlxn + ™)

§(z) = a® = fwa? +wP)al) + 52 P old® @) (8)

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.4 Machine learning

We can represent the output in the vector-matrix form:

T

Input data: X" = [21 22 @3 .. @)
Wi Wiz W13 ... Wipn
Wo1 W22 W33 ... Waonp
Weights :Wlxn W31 W32 W33 ... W3np
wn,l wn,Q wn,3 wn,n

bias: BY" = [by by by .. by]"

- T
Activation: Alxz:[al as as ... al]

T
Neuron output: Z' = [21 20 23 ... z]
We can write in more convenient vector form:

a? = f(2@) = fWWX + BO) (9)

() = = (=) = FOVEIX? + B) (10)

and activation for next layer:

ot — f(z(l“)) _ f(W(l)A(l) + B(l)) (11)

The matrix representation allows to use linear algebra operations, which makes the
calculation much faster.

The calculation correspond to feedforward networks or the forward pass. In order to
optimize our network and to be able to perform learning, we need to backpropagate
the error and to adjust the weights and biases.

Backpropagation algorithm

As already explained, for supervised learning we need to provide the input data: X =
[ml Ty T3 ... mn}T, and the corresponding label pairs: Y = [yl Yo Y3 ... yn}T
Gradient descent is usually used for training the network.

Gradient descent is an iterative algorithm which is used to find the minimum of a
function. It starts with a random point on the graph and takes proportional steps in
the direction of the negative gradient to find the local minimum of the graph. This
basically means the following: if we have a function F'(z) which is differentiable in
neighborhood of a, the function decreases faster if we move in the direction of —AF(a).

Unr1 = a, — aAF(ay,) (12)

24

2 BACKGROUND

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.4

Machine learning 2 BACKGROUND

In machine learning terms, gradient descent is an optimization algorithm which takes
small steps, usually defined by the learning rate to minimize the cost.
For minimizing the cost, we often use mean square error cost function [40]

n s; s;+1

I
TV = L3 (660))]+ 5 33 S (13)
=1 =1 =1 =1

The first term of equation represents an average square error and the second term is
used for regularization, which tends to decrease the magnitude of weights in order to

prevent overfitting.
Firstly, we initalize WZ and bg , with a random value near 0, in order to minimize
the cost. It is important that the number is random, so that every layer can learn
independent functions, in order to achieve non-linearity. Our main goal is to minimize
the cost function J(W,b) as a function of W and b. One iteration, used to adjust

parameters, is stated below:

wl =wl — J(W,b)) (14)

aW(l)

0
@”zé”—a&@Jaum> (15)

In general, backpropagation is performed through the following steps:

1. for the input pairs (z,y), a forward pass is performed and we get the output

§(=?)

2. for each output unit 4, in the layer [we calculate error ¢!

Si+1

}jwﬁ&“ (2" (16)

3. computing the partial derivation of the error in the function of weights and biases:

B
o —Z = J(W,b) = a\ Vgl (17)
0 z+1 I+1

0 — 5 (W,b) = af ™5 (18)

Overall, the iterations of gradient descent in the vector-matrix form can be implemented
as follows:

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.4 Machine learning 2 BACKGROUND

1. set W =0 and BY =0 for all |

2. perform iteration for m steps

(a) use backwardpropagation to calculate the error derivation:
Aw(l) J(I/V, b) and Ab(z) J(VV, b)

(b) set:
AWD = AW + Ay J(W, b) (19)

(c) set:
ALY = AbD - Ay J(W, D) (20)

3. update weights and biases:

WO = AW — o] —(Ayw) + AW (21)

1
m
1
b(l) = Ab(l) - Oz[—Ab(z)] (22)
m

2.4.2 Recurrent Neural Network and LSTM

A recurrent neural network is based on the human memory and the basic principle of
understanding the context of something that we read or hear. This network differs
from other neural networks in neuron structure because each neuron has a loop which
allows the information to persist and to be transferred to the next step.

® © 0O O
L L1

ey

Figure 20: Recurrent Neural Network [41]

v

26

®

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.4 Machine learning

We can imagine a recurrent neural network as multiple copies of a same network,
each passing the information to another. This approach is very useful in processing
sequential data which requires some context, such as translation, speech recognition,
language modeling, etc. Unfortunately, a classical RNN is able to handle only a short
term dependency. The information that is passed to another layer, does not have much
influence on learning after few steps, and the recent information has the most impact
on learning. [13] This problem is solved by long-short term memory cells.

LSTM [24] cells are able to handle a long-term dependency by remembering the
information which is easy to learn and forget the difficult one. LSTM have a chain
structure, similar as RNN, and each cell in chain has four parts.

Y

Figure 21: Long-short Term Memory cell [41] - shows 4 gate structure described in
following text

The main part of the LSTM is the cell state. The cell state is running through the
cell and it is updated with new information through a structure called gates. Gates
are using sigmoid layers or different multiplicative operations in order to decide which
information is going to be passed to the cell state.

27

2 BACKGROUND

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

2.4 Machine learning 2 BACKGROUND

e the first layer is the forget gate layer and it decides which information should
be forgotten . The input z; and output of the last cell y;_; are passing through
sigmoid function and according to the output the call state will be updated.

fe = o(Wilyea] + by) (23)

e the second layer decides which information is going to update the cell
state 1. The sigmoid layer is used to determine which value i; is going to
be updated, and the tanh layer determines the candidate value C; for an update.

it = O'(Wi[yt_l, .7315] + bl) (24)

Cy = tanh(We[y—1, 24] + be) (25)

e the third layer updates the old cell state C;_; by multiplying it with f;, and
deciding what to forget. Then the new candidate value i; * C; is added

Ct = ft * Ct,1 + /it * CYt (26)

e the fourth layer decides what leads to the output of the cell y,. Cell state is
passing throughthe sigmoid layer to decide which part is going to the output.
The output of the cell state C; is passed through the tanh layer and multiplied
with the sigmoid gate output a; and then we get the filtered version of the
current cell state.

ar = o(Walyi—1, x] + ba) (27)

Y = a; * tanh(Cy) (28)

Different variations of an LSTM are present. The one that we are going to use in the
experiment is the gated recurrent unit(GRU). [17] This is a simpler version of LSTM
which combines the forget and update gates and merges hidden state and cell state.

Gated Recurrent Unit

GRU consists of two layers called: the update gate and forget gate, and they decide
what information would be passed to output. Similar as LSTM, this structure allows
the information to remain in the cell state and to influence learning for longer period
of time. This structure is used to successfully combat the vanishing gradient.

thele

(]
blio
nowledge

(]
I
rk

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.4 Machine learning 2 BACKGROUND

yt—1

(<)

hq/
i
~—>

o g tanh

Figure 22: Gated Recurrent Unit [41] - similar structure as the LSTM, described in
following paragraph

e firstly, we determine how much of the information should pass to the next step
by calculating the update gate for time t:

2t = U(Wz [Z/tfh l’t]) (29)

e secondly, we decide how much information from the previous layer is excluded
by calculating:

re = o(Wilye-1, z4]) (30)
e thirdly, we calculate the current memory state:
hjt = t&nh(W[rt * Yy, .Tt]) (31)

e finally, we calculate the output h;_; which contains the current memory state
and previous cell state:

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

2 BACKGROUND

2.4 Machine learning

(32)

Y= (1 —2) %1+ 2 % G

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

30

qny a8pajmoud| INoA

Saylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

10
edge

b

now!

(]
I
rk

3 STATE OF THE ART

3 State of the art

Machine learning is already successfully used in network traffic classification. Numerous
authors are proposing a variety of classification methods.

Moore et al. [37] used flow-based traffic and proposed supervised machine learning
for data classification. The data was hand-classified into categories and categorized
data sets were combined with other flow features(the flow length, port numbers, time
between consecutive flows) and it were used to train the classifier. The experiment
showed that, by using a naive Bayes classifier, it is possible to achieve a 65% accuracy
when combining the data from the same time period, and a 95% accuracy with a
number of refinements.

Zuev et al. [51] also used hand-classified data which was divided into flows with the
naive Bayes statistical method. The authors used classes of traffic which were defined
as common groups of users (bulk, database, interactive,attack,multimedia, etc). The
flow was defined with 249 different discriminators, such as: the flow duration statistics,
TCP port information, payload size statistics, Fourier transform of packet inter-arrival
time discriminators, etc. The result showed that the correct classification was 66.7% .
Some of the classes were classified with more success than others, e.g. services(DNS,
X11) and bulk traffics(FTP) with around 90% of correctly-predicted flows.

The problem which could appear in the last 2 research papers is that the flow features,
such as flow duration, time between flows, etc., are used. This implies that the flow
needs to be finished in order to apply the accurate classification. This is usually not
the case in real-time classification and it is difficult to handle, in case of long flows.
Most of these methods use flow traffic which requires the whole flow. It is difficult and
not suitable for on-line classification.

Our research tend to solve this problem problem by using packet based feature vector.
This approach helps learning process to be more independent of network flow, which
could be lengthy, and it is applicable in sequential and on-line data.

The possible solution for this problem was introduced by Bernaille et al. [14], with the
theory that the first few packets, which come after the TCP 3-way handshake and the
application negotiation phase, are good predictors of traffic classes. The researchers
used unsupervised clustering to find the natural clusters in an unlabeled data set. Only
the first five packets of the flow were considered, and this showed good performance
with more than 80% of all data identified.

This theory is the core of our work and we will try to implement it with a slightly
different feature set and modern Deep Learning framework.

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3 STATE OF THE ART

Some recently performed research suggests using new concepts in deep learning, such
as DNN, RNN, natural language processing (NLP), etc.

Tang et al. [45] proposed a flow based anomaly detection in Software Define Network
(SDN) environment by using deep neural network. The classification was based on 6
different features (duration, protocol, src_bytes, dst_bytes, count, srv_count), and
it performed with the accuracy of 75.75%. The performance was evaluated with other
machine learning algorithms(NB, SVM, DT), and it showed satisfactory results.

In the research paper [31], the authors introduced using NLP in a intrusion detection,
because the language model can learn the semantic meaning and interactions of each
system call which was not possible with the existing methods. They used a RNN-based
language model with LSTM units to enhance long-range dependencies. The result
showed that the LSTM model with several hundreds of units performed a lot better
than KNN and KMC algorithms. This method also proved to be more computationally
efficient than other methods, as it had a smaller training overhead because it required
no database to be built.

This work withdraw our attention, and we are trying to improve this idea on traffic
classification and malicious traffic detection. We use different packet based feature
vector in order to improve the model and provide efficient classification.

Another important research worth mentioning is [47]. The authors are used the
end-to-end encrypted traffic classification method. The method was based on deep
learning and it used a one-dimensional convolution neural network to learn the features
from the raw traffic. The result showed the accuracy greater than 80%, and the better
performance than the two-dimensional CNN.

Our research is also going in direction of this work, but tends to apply the traffic
classification model on TLS encrypted data, since this protocol is not encrypting TCP
header. Also, it is being assumed that since the traffic data is sequential, RNNs would
give meter performance.

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

10
edge

b

now!

(]
I
rk

4 RESEARCH METHODOLOGY AND EXPERIMENT

4 Research Methodology and Experiment

In this chapter we will discuss about the basic structure of the neural network model
and the main checkpoints during the experiment. The first part explains the concept
of the experiments with the main points of the research. The second part deals with
the data set, and it describes the history, properties and the content of the data sets.
The third part is dedicated to feature engineering, which represents the process of
extraction and transformation of the desired features in order to prepare the data for
the training process. The main technology of feature extraction, as well as the main
difficulties and possible problems regarding this specific set, are explained. The fourth
part deals with the training. A short overview of the technology is given and the models
used in this experiment are described. In the last part, we go through the evaluation
of our models and the methods used for this purpose.

4.1 Concept

The main objective of this research is to develop an efficient model which could rec-
ognize a security threat in encrypted network traffic. This is done by using recurrent
neural network with different models and a different number of layers and cells. The
layer number usually varies between 1 and 5 layers, and the cells used in the layers are
mostly long-short term memory cells and gated recurrent unit cells. For this purpose,
a labelled data set is used with a new feature set. Different models with different layer
configurations are presented, and different regularization techniques are implemented
in order to find the most efficient model with high accuracy and minimal loss.

The main checkpoints of the experiment are shown in Figure 23 :

preprocessing

feature protocol flow
extraction translation classification i e
model batch model data
training generation < design preprocessing
testing
mode]
testing — evaluation

Figure 23: Experiment diagram - shows main checkpoints during our research (explained
in details in: 4.2 and 4.3)

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.1

Concept 4 RESEARCH METHODOLOGY AND EXPERIMENT

Data set

In the process of machine learning, an important step is choosing the appropriate data
set and extracting the most important features from the data. For our experiment,
the crucial characteristic of the data set is that it is big enough and up to date. For
the network traffic classification and security threat recognition up-to-date means
that it contains traffic with new applications and recently developed protocols, as well
as current threats and attacks. There are a lot of possibilities of different data sets
available for this purpose.

DARPA98 [1] was made by the Lincoln laboratories at MIT University in 1998.
It represented a simulation of normal and malicious traffic in a military network
environment. The data set contains 9 weeks of raw tcpdump [10] data, which is
divided into seven weeks of training data with around 5 million connections, and
3 weeks of test data with around 2 million connections. KDDCup99 [5] data set
is an updated version of DARPA 98 with 41 features divided into three groups of
features: intrinsic features, content features and traffic features. The set also contains
22 attack types. According to significant research based on this data set, its three
main disadvantages are: TTL value does not correspond to the real world traffic
characteristics, probability distribution is different in the training set and test set and
the set is missing the recently reported low footprint attacks.

NSLKDD [46] data set is an updated version of KDDCup99, which endeavors to
solve certain problems which came with the old data set. Firstly, it removes duplicated
records in the training and data sets. Secondly, it randomizes data by picking up
records from different points in the data set, and it removes the unbalanced number
of records in the training and test set. The data set still does not include the modern
low footprint attack scenarios which makes this data set unsuitable for the training
models for the classification of modern network traffic.

UNSW-NB15 is a data set which is created by a cybersecurity research group at
the Australian Centre for Cyber Security (ACCS). The IXIA Perfect Storm tool [4]
was used to create normal and malicious network traffic, with an updated database of
new attacks from the CVE web-site [3]. Three virtual servers were set, two producing
normal and one producing malicious traffic. The generator architecture picture is as
following:

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.1 Concept 4 RESEARCH METHODOLOGY AND EXPERIMENT
10.40.85.30 N 1040.184.30 12
Server 1 Server 2 Server 3
: : (Malware) :
50.166.00 175.45.176.0 149.171.126.0
o [0 !] o
l:l - - ~ Router 1 Router 2 -7 — E
E e . A 11110401841 |:|
11:10.40.85.1 | AN /' 12:1040183.1
12:10.40.182.1 \\ /
- \ y
Peap files \\ I
11:10.40.182.3
12: 10.40.183.3

Figure 24: UNSW-NB15 data set generator architecture [38]

The traffic was captured with tcpdump, in duration of 16h on 22 January 2015, and
15h on 17 February 2015, and it contained around 100GB of data. It contains 49
features of traffic and 9 families of attack. The statistics of the data and attacks are

shown in table:

Statistical features 16 hours on 22.1.2015 | 15 hours on 17.2.2019
No. of flows 087,627 976,882
Src_ bytes 4,860,168,866 5,940,523,728
Des bytes 44,743,560,943 44,303,195,509
Src_ Pkts 41,168,425 41,129,810
Des Pkts 53,402,915 52,585,462
TCP 771,488 720,665
Protocol types UDP 301,528 688,616
ICMP 150 374
Others 150 374
Label Normal 1,064,987 1,153,774
Attack 22,215 299,068
. Src_ip 40 41
Unique Dst_ip a4 45

Table 1: UNSW-NB15 data set specifications

Compared to the previous data sets, UNSW-NB15 contains more data, more features,

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

10
edge

b

now!

(]
I
rk

4.1 Concept

more participants in communications, as well as different attack families which corre-
spond to modern low footprint attacks. There are 9 different attack families:

e Fuzzers

e Analysis

e Backdoors

e DoS

e Exploits

e Generic

e Reconnaissance
e Shellcode

e Worms

For all the previously stated reasons, we are using this data set for research.

Feature engineering

Data sets are usually too big and not properly scaled for an intended purpose. The
input that machine learning model uses is a numerical representation of data and it is
called features.

" Feature engineering is an act of extracting features from raw data and transforming
them into a format that is suitable for the machine learning model." [50]

It is an important step of machine learning because properly chosen feature sets have
a strong impact on the outcome of the experiment and could significantly improve the
quality of the result.

There has been plenty of research on the importance of features for network traffic
classification used for training various ML models. In research paper [35], author
analyses different feature vectors: UNSW Argus/Bro Vector [39], CAIA Vector [49],
Consensus Vector [22], TA Vector [25], AGM Vector [26]. The following table shows
the corresponding feature sets:

36

4 RESEARCH METHODOLOGY AND EXPERIMENT

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.1 Concept 4 RESEARCH METHODOLOGY AND EXPERIMENT
UNSW Argus/Bro Vector CAIA Vector Consensus Vector TA Vector AGM Vector
object: object: object: object: object:

flows (bidirectional)

Hows (bidirectional)

flows (bidirectional)

flows (unidirectional)

source hosts (unidirectional)

number of features:

number of features:

number of features:

number of features:

number of features:

45 (basic) 30 (basic) 19 (basic) 13 (basic) 8 (basic)/22 (aggregated inc.)
key: key: key: key: key:
srclP, dstlP, srcPort, dstPort, srclP, dstlP, srcPort, srclP, dstIF, srcPort, srclP, dstlP, srcPort, srclP
protocol dstPort, protocol dstPort, protocol dstPort, protocol
features: features: features: features: features:

srcPort, dstPort, protocol,
state, duration, srcBytes,
dstBytes, stcTTL, dstTTL,
srcloss, dstlLoss, service,
srcload, dstload, srcPkts,
dstPkts, stcWin, dstWin,
srclepb, dstTepb, stcMeansz,
dstMeansz, trans_depth,
res_bdy_len, src]it, dst]it,
Stime, Ltime, srcIntpkt,
dstIntpkt, tcprtt, synack,
ackdat, is_sm_ips_ports,
ct_state_TTL,
ct_flw_http_mthd,
is_ftp_login, ct_ftp_emd,
ct_srv_src, ct_srv_dst,
ct_dst_ltm, ct_src_ltm,
ct_src_dport_ltm,
ct_dst_sport_ltm,
ct_dst_src_ltm

protocol, duration,
srcPkts, srcBytes,
dstPkts, dstBytes,
min_srcPktLength,
mean_srcPktLength,
max_srcPktlength,
stdev_srcPktLength,
min_dstPktLength,
mean_dstPktLength,
max_dstPktLength,
stdev_dstPktlength,
min_srcPktIAT,
mean_srcPktIAT,
max_srcPktIAT,
stdev_srcPktIAT,
min_dstPktIAT,
mean_dstPkeIAT,
max_dstPktAT,
stdev_dstPktIAT,
#srcTCPflagisyn,
#src[CPflagack,
#src TCPflag:fin,
#srcTCPflagiowr,
#dstTCPflag:syn,
#dstTCPflag:ack,
#dstTCPfag:fin,
#dstTCPflag:cwr

srcBytes, srcPkts,
dstBytes, dstPkts,
srcPort, dstPort,
protocol, duration,
max_srcPktLength,
mode_srcPktLength,
median_srclktlength,
min_srcPktLength,
median_srcPktIAT,
variance_srcPKHAT
max_dstPktLength,
mode_dstPktLength,
median_dstPktLength,
min_dstPktLength,
median_dstPktIAT,
variance_dstPktIAT

srcPort, dstPort,
protocol, bytes, pkts,
seconds-active,
bytes_per_seconds-
active,
pkts_per_seconds-
active, maxton,
minton, maxtoff,
mintoff, interval

#dsHP, mode_dst P,
pkts_mode_dstIF, #srcPort,
mode_srcPort, pkts_mode_srcPort,
#dstPort, mode_dstPort,
pkts_mode_dstPort, #protocol,
mode_protocol,
pkts_mode_protocol, #TTL,
mode_TTL, pkts_mode_TTL,
#TCPflag, mode_TCPflag,
pkts_mode_TCPflag, #pktlength,
mode_pktLength,
pkts_mode_pktlength, pkts

Figure 25: Feature set comparison [35]

The feature sets which were the object of the research performed well with various
statistical methods such as: the naive Bayes classification, random forests, decision

trees, etc.

Since those classifiers are different to those that we intend to use, we assume
that those feature sets would perform poorly with a recurrent neural network. In
addition to that, used data are not sequential, so it would not be appropriate
for RNN use. Moreover, the feature sets are not suited for encrypted traffic clas-
sification, as there are many features from list there are not available due to encryption.

Due to those reasons, as well as some other ones, we decided to develop our own
feature vector, which is more packet based. This means that our feature vector do not
depend entirely on traffic flow. It contains packet length, time between packets
arrived in the current flow and the direction of a packet in flow. Most of the pro-
tocols (including encryption protocols) are connection based, and they start with the

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.2 Preprocessing

application negotiation phase. In this phase the flow direction and packet length of
the first few packets in the flow play a very important part, since the establishment of
the connection scenario between the users is predetermined. Our assumption is that
packet based feature vector would be a good feature to feed during model training in
order to achieve attack recognition in the early stage.

This would solve usual problem that most of the researchers have with the flow-based
classification, and it is the fact that the entire flow need to be finished in order to
classify the traffic.

4.2 Preprocessing

This subsection is dedicated to data preparation for feeding the RNN model in the
process of training.

The first step of this process represents feature extraction. The UNSW-NB15 data set
comes with different features sets (Argus/Bro), but since we were not using any of
those sets, we needed to develop a script which would extract desirable features.
After analysing the .pcap files which came with the UNSW-NB15 data set, by using
Wireshark [12], we have extracted following features:

e source P

destination IP

source port for TCP and UDP traffic

destination port for TCP and UDP traffic

protocol

packet length
e packet timestemp

The features were extracted as a .csv file, which was forwarded to next step.

The second step was protocol translation. Since the protocol was represented with
protocol numbers, we translated it to a string ("UDP","TCP",...), because it was
required for comparison in further steps (flow classification, labelling).

This was done by a Python script which compared the protocol number from the .csv
file with the protocol number list made by IANA [8].

During the translation, we noticed that a great portion of protocols in data set is
approximately as follows:

38

4 RESEARCH METHODOLOGY AND EXPERIMENT

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.2 Preprocessing

o TCP: 60%
e UDP: 39%
e others: < 1%

The third step was classifying the data set into a list of traffic flows. As the indicator
of the flow, a 5-tuple is used, as is usual: Source IP, Destination IP, Source Port,
Destination Port and Protocol.

Finding a good logic behind flow assignation was relatively tricky, since this part was
significantly time consuming. The first idea was to use a double loop structure, in
which the first packet was assigned to a new list and that was compared with all the
other entries in the .csv file, in order to find a match. When the match between packets
5-tuple was found, the flow features list (packet length, timestamp) was updated with
a new value and another feature, flow direction, was added. Since the .csv files are
enormous, with around 2 million entries, this process was not time efficient and we
needed to find another solution for this problem.

The solution came in the form of Python function dictionary. The 5-tuple was used as
dictionary key, and two features(packet length and timestamp) were used as dictionary
values. This decreased the time of processing because the script did not need to iterate
through the whole data file. It only needed to check the unique 5-tuple pairs, which
were not more then 30,000 per data file. When the 5-tuple match, the dictionary
values are updated with packet length, timestamp, and flow direction. Flow direction
was generated according to a source-destination relation, namely, if packet goes from
source to destination, number 1 is assigned, and if packet goes other way (destination
to source), -1 is assigned. Feature vector was created per packet and it contained
packet length, timestamp and direction of packet. After flow processing, the dictionary
values (list of flow vectors) had a 3-dimensional list structure which corresponded to
a tensor. This kind of output was the most suitable one for TensorFlow, a machine
learning framework, which will be explained in the next chapter. The flows were
exported as a dictionary file and handed to the next step.

The fourth step of preprocessing was labelling. The data set that we used is not
directly labelled. The set was coming with a separate Ground Truth(GT).csv file which
contained a list of attacks. The GT file contained: the source IP, destination IP, source
port, destination port, protocol, starting time, finishing time, attack name, attack
description.

We developed a Python script which compared GT file entries with a recently created
traffic flow dictionary. Since we already had problems with time consumption due to
the multiple iterations, we decided to use again the dictionary logic again. Firstly, the
GT file was converted to a dictionary, with the 5-tuple as the dictionary key and the

39

4 RESEARCH METHODOLOGY AND EXPERIMENT

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.3 Training

attack features (starting time, finishing time) as the dictionary value. The script was
iterated through the flow dictionary and GT dictionary in order to find the match.
When the match was found, another iteration was performed through the GT values
in order to find whether the time of the attack also matched. If the time matched, the
flow dictionary values were updated with the new value 1. If the two entries in the flow
and GT dictionaries did not match, the flow dictionary value was updated with 0.
The last step of the preprocessing phase was calculating the time between the packets
and exporting the data set into a .csv file. The calculation was done by subtracting the
timestamp of the two subsequent packets. This was very useful to us because it could
help us recognize a protocol connection pattern in network traffic. The idea came
from language processing, which was the main strength of neural network machine
learning. In language processing, the next word in a sentence or the next character in
word depends the most on the last word or character. A model learns dependencies
between various words and characters and tries to recognize some pattern how the
sentence is formed. As this worked very well on language processing, we decided to
apply this principle to our experiment. We find that the network traffic (as well as
malicious attacks) has similar structure as language sentence, because it also follows
some patters. The following experiment showed that this was a good idea.

After the time calculation, the data set was exported to a .csv file and the training
phase could begin.

4.3 Training

After the preprocessing phase, the data was fed to the training phase, in which we
developed the model by using TensorFlow. We used this model to learn from the data
to distinguish normal from malicious traffic.

4.3.1 Training the model

The first step in training the model was to prepare the input data to be suitable for
TensorFlow.

The input data was divided into x__data, which contained all the values and features
of traffic, and y label, which contained the labels of attack or non-attack traffic.
The relation between traffic features and labels were based on instance number. We
started with splitting the input data to the train set and test set. The train set contains
80% of the input data, and test set contained the remaining 20%. During the splitting,
additional shuffling of the flows was used to undermine the possibility of some connec-
tion between the subsequent flows. Necessity for shuffling comes from the fact that
the used data set was generate in laboratory, so, from our point of view, it is lacking
the randomness in traffic generation. During a learning process, there is a possibility
for model to recognize some pattern of generating the attacks, for example.

40

4 RESEARCH METHODOLOGY AND EXPERIMENT

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.3 Training 4 RESEARCH METHODOLOGY AND EXPERIMENT

The data set and its component size are described in Table 2

Dataset size \ Training data \ Test Data
1,806,468 | 1445174 | 361,294

Table 2: Data set

The next step was to create a suitable model for learning. Different models were
created to test different possibilities of deep learning within TensorFlow(table provided
in Appendix):

1. Basic LSTM model (BLSTM) - we selected this model because it was sim-
ple and fast, and therefore suitable for testing different parameters. During the
testing we trained this model with following parameters:

e 1,3 and 5 layers of basic LSTM
e different cell numbers in layer
e different learning rates

o different maximum batch sizes

2. Batch Normalization LSTM model (BNLSTM) - this model was selected
because, as explained in following paragraph, the batch training is used, so this
was logic step forward in terms of improvement of 1.model. We are expecting
some improvements in performance using this model. Tested parameters:

e 1 and 3 layers of basic LSTM

e batch normalization layer

3. Layer Normalization LSTM model (LNLSTM) - this model was selected to
test another similar normalization method. This method is more complex then
batch normalization so we are expecting some improvement, with increase in
training time compared to 2.model. Tested parametes:

e 1 and 3 layers of basic LSTM

4. Gated Recurrent Network model (GRU) this model was selected because the
cell structure is similar as LSTM cell in 1.model, so it is suitable for comparison
with this model. According to [41], there is some improvement in training time
and performance expected. Tested parameters:

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

4.3 Training

4 RESEARCH METHODOLOGY AND EXPERIMENT

e 1 and 3 basic GRU cells

There are different views on how to feed data into a model. The simplest way
is to feed single values to the model. This method requires much more time and
effort. A better solution lies behind the term batch training. It represents the
division of data into small sets and feeding small sets to the model. An important
parameter which could have more impact on the learning process is the batch size.
A bigger size of the batch training is time efficient, but there is a possibility of
overshooting or undershooting. The first idea was to use a fixed batch length, but it
created many questions regarding the learning process. It required padding if there
are not enough entries in the data set, which could probably confuse the training model.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek

thele

(]
blio
nowledge

(]
I
rk

COECEENSSRIN I KT, -1 162, 00085938245 23525781, -11..] 0.0 195581006401 TRTH, -1]...].

L [1068, DOTI00013264221 131, 1] E % 11
5

Sy (P e e . ¥

b |1nﬁ,0551numnaaa|m 1 unm:-:-:-:ns:snmng_q

o PRI IR, -1], [54, QU01E000D0A 24 24506758, 1] [t unlm;m;:m 1

2 St asrs o, 1 (i1 BpEOONNIS0734863 - b (6 haganin I
AT P, 1], Ig A i
ot b PR
64»0.013@024&!625 1L
CAA00OGaRAT] 004, -
,o]:;-c-m:msssas;a 10547, 1], IIﬁg. 0478945531 341 1L

8 o,
HErS i'.g'_{?'mﬂu.aassw.f, 1l

Batch_N | [Batc ' Batch_1

Figure 26: Batch Training example - different color rectangles represent variable size
batches. Inside the batches, flows represented by their feature vectors are shown with
different colors.

A possible solution to the problem, was to divide the data in the variable batches
with the flow length as a parameter for this division. In this way, the flows with same
characteristics would be fed into the model at the same time, which would, by our
opinion, improve the learning process.

It is important to point out that, regarding the variable batch training, we have intro-
duced another parameter, called Maximum Batch Size. As there is a lot of normal
traffic with the same flow length, this could result in consumption of the entire RAM
and crashing the model. The value that we are used was 1024 and it came from trial
and error experiments. This value was a perfect combination of time consumption and
model accuracy performance.

42

ATEVIEEITIA S, i
£at, -1l

RNN Layer

'

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

4.4 Evaluation

4.4 Evaluation

After the NN training, we move to the evaluation, where we use different methods to
measure the performance of our model. This process gives us useful information about
the performance of our models on unseen data.lt also gives us a strong indication about
which part of the model could be improved, and up to what extent the improvement
should be implemented.

For the evaluation, we usually split the data into 2 parts: the training set and test set.
The training set is used in the training process, in which the model uses the already
explained methods to learn the data features and structure by adjusting the weights
and biases. This set should be as large as possible and it usually takes more than 80%
of the data set. The remaining data belongs to the test set, which is used to evaluate
the classification of the model.

The next part of the evaluation regards the quantifying of the model performance.
We need to choose the proper metric for the classification in order to get an accurate
evaluation of the model. This is done by comparing the classified labels and the original
labels.

During the classification there are 4 different output states, which are represented with
a confusion matrix :

Actual attack

Figure 27: Confusion Matrix

Predicted attack

e True Positive - the positive classified label matches the original label, in our case:
the classified attack matches the attack in original data set

e True Negative - the classified no attack matches no attack in the original data

e False Positive - the classified attack does not match with no attack in the original
data

43

4 RESEARCH METHODOLOGY AND EXPERIMENT

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

4.4 Evaluation 4 RESEARCH METHODOLOGY AND EXPERIMENT

e False negative - the classified no attack does not match with no attack in the
original data

With a help of the confusion matrix, we can define different types of the metric that
we are going to use:

e Accuracy - the number of correct predictions divided by the total number of

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

predictions made:

True Positives + True Negatives

True Positives + True Negatives + False Positives + False Negatives
(33)

Accuracy =

Precision - the number of the correct positive predictions divided by the total
number of the positive predictions:

Precisi True Positives (34)
recision = — —
True Positives + False Positives

Sensitivity - the number of the correct positive predictions divided by the
number of the original true labels:

True Positives

Sensitivity = (35)

True Positives + False Negatives

Specificity - the number of the correct negative prediction divided by the total
number of the negative predictions:

True Negatives

Specificity = (36)

True Negatives + False Positives
F1 Score - the harmonic mean of Sensitivity and Precision. A higher number
represents a better score

2 2% Precision x Sensitivity

1 1
Precision Sensitivity

F1 score = (37)

Precision + Sensitivity

Youden'’s J statistic - the performance measure of a diagnostic test, where the
outputs are values between 0 and 1. The value 0 represents a useless test where
the classification gives the same results with or without a deep learning model,

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

4.4 Evaluation 4 RESEARCH METHODOLOGY AND EXPERIMENT

i.e the same as random guessing. The value 1 represents a perfect test without
false positives and false negatives.

. e . e P True Positives True Negatives
J = Sensitivi ty + Sp ecifici ty L= True Positives+False Negatives + True Negatives+False Positives
(38)

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.5 Normalization

4.5 Normalization

After training and evaluating, we are comparing our models and looking for the ways
to improve and optimize our code. The parameters that we considering for the opti-
mization are: training accuracy, j-statistics, training time, etc. Training accuracy shows
us how correct are our models classifying the traffic, and it is useful for comparison
with similar experiments, since it is mostly used metric. Unfortunately, accuracy alone
is not enough to evaluate performance of our model, since it uses sum of true positives
and true negatives in nominator. J-statistic is giving precise performance evaluation,
because it shows exact ratio of true positives and true negatives respectively. Training
time is also one of universal metrics for model efficiency. Most of the experiments
contain huge data sets and it is costly to lose time on training a not efficient models.
During the neural network training, the main problem that occurs is a strong variation
in input data distribution. This effect forces the optimization algorithm to adjust the
weights and biases for every input step. The level of adjustments can be very high.
High adjustments result in slow learning and a higher training error.

In order to avoid bad effects of input data distribution variation, we are using normal-
ization methods. Those methods are utilized for scaling the numerical input data to
a common range, which causes slight adjustments of parameters during the training
and allows faster training and better precision. We are implementing two widely used
methods for normalization: batch normalization and layer normalization

Batch Normalization

We are using batch training to achieve more efficiency in the training (more in the
subsection 4.3.1). Firstly, the calculated loss over the batch is an estimate of the loss
over the whole data set, and over time it improves with gradient descent. Secondly,
batch training improves training efficiency by dividing the training set in smaller
subsets and utilizing the parallelism of modern computing platforms.

46

4 RESEARCH METHODOLOGY AND EXPERIMENT

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.5 Normalization

H< T~

/"'

Batch_M

Figure 28: Batch Normalization

Although, the gradient is a simple and efficient way for training optimization, it
requires carefully selected model parameters. Each parameter can influence the change
of input distribution for each layer. Since the neural network adapts the weights
and biases of each layer during the training, the activation of each layer would also
change. Due to the change of input, each layer is forced to adapt constantly to new
input distribution, which results in error propagation. It has significant consequences
especially in case of more layers in the network.

The problem which occurs is called covariate shift, and it refers to a change of the
input data distribution to a layer. This represents a problem, because we know that
training converges faster if the input distribution is zero-mean and unit variance. [32]
[48]

The goal of batch normalization is to reduce covariate shift in order to accelerate the
training and improve precision. The reduction is achieved by normalizing the input
data to the small range of values. For layer with input data, which is at the same time
the output of activation function of the previous layer a = (aV),a®, ...a®) we need
to normalize each input: [27]

47

4 RESEARCH METHODOLOGY AND EXPERIMENT

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

4.5 Normalization

@) — Blg®
S a a
a' = ol — Bla®] ,] (39)
Vat[a®]
The shown normalization could change the expressiveness of the layer representation,
as non-linear activation could become linear. To address this issue, we are adding two

additional parameters v*) and 3(¥) for each activation a(¥:

y® = 4Bz 4 g (40)

The parameters scale the shifted values and represents the identity transform. Those
parameters are learned during the training and they restore the representation power
of the network.

Taking all the parameters into consideration, the batch normalization algorithm con-
tains few steps:

calculating the batch mean:

1 m
KB m;@ (41)

e calculating the batch variance:
0p = L zm:(az‘ — pp)? (42)
mai=

e normalization:

g =S8 (43)
V0% +e€

e scale and shift:

Yy =~ + B = BatchNormalization., g(a;) (44)

A problem can appear with a small batch size, since the variance is close to zero and
the estimates could be very noisy. There are also some problems with the recurrent
neural network, since the activation for each time step has different statistics and is
very sensitive to noise.

48

4 RESEARCH METHODOLOGY AND EXPERIMENT

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

4.5 Normalization 4 RESEARCH METHODOLOGY AND EXPERIMENT

Layer Normalization

Layer normalization is fairly similar to batch normalizatio. The only difference is
the object of normalization. In batch normalization we are performing normalizing
across the batch dimension, whereas layer normalization normalizes the input across
the features. This way of calculating allows the an independent calculation for each
sample of data, as well as the use of an arbitrary batch size. Figure 29 shows the
difference between the two normalization methods:

Y
Batch_1 _— - ‘\"“‘--..*
E

o

=

o

.— E

o

Batch_3

/-"

-
\ @__}

-

S

Batch_N

Figure 29: Layer Normalization
The mathematical representation is similar to batch normalization:[33]

1 m
H m ;:l:au (45)

m

1
2 2
0 = - ;(ai,j — 1) (46)
a;; = 2hd M (47)

Vo2 + €

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

4 RESEARCH METHODOLOGY AND EXPERIMENT

4.5 Normalization

The Difference is in the input activation function a; ;, where i represents a batch and

J represents a feature.

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

20

qny a8pajmoud| INoA

Saylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

10
edge

b

now!

(]
I
rk

5 RESULTS

5 Results

In this chapter, we are comparing the results that we got from the models that we
developed. In general, we have 4 different models and they differ in the number of layers
and number of cells in a layer. They also differ according to the kind of regularization
techniques and with respect to their different learning rates and maximal batch size
parameters.

In the first part of this chapter, we are introducing the hardware and software setups
that were used for our experiments, including all their components.

The second part of the chapter is a discussion about the performance evaluation.
We will compare different models in terms of the evaluating parameters, such as the
number of true positives and false positives, true negative, false negatives, accuracy,
precision, f1 score and j-statistics. This gives us an approximation of how good our
models are, and, as a result, we can see which model would be the best one. We will
discuss more about that in Chapter 5..

Aside from the common performance evaluation, we are also providing the probability
of recognizing different attack categories, which is very important in model evaluation.
The comparison between how different models recognize different attack categories is
shown as well.

We will discuss the influence of other parameters of the deep learning model that we
are using, such as the time of training, learning rate, max_batch size, etc. With this
comparison we are finishing the performance evaluation and are getting the complete
picture of our model, with the description of how good it is and what is it that we
should do to make it better.

All evaluation results stated in this chapter will be used in the next chapter to present
the best model for traffic classification by using deep learning. Future improvements
will also be suggested.

5.1 Setup

First of all we need to introduce the hardware and software that we used.
In terms of the hardware setup, one custom made PC with the with following perfor-
mances is used:

e AMD Ryzen R7 2700X with 16 cores
e 32GB RAM
e NVIDIA RTX 2060 with 1365 MHz, 6GB GDDR6, 1920 cores, 240 Tesor cores,

o1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.1 Setup

5.1.1 Deep learning framework

Nowadays, machine learning is one of the most talked about topic in data science.
A lot of research have been made in this field and it is commercially present in the
most industries. There are a lot of deep learning frameworks which could be used
for generating a deep learning model. Most of them are open-source and they are
supported by many programming languages, with Python, C++ and R at the top of
the list. We will describe the most popular frameworks.

TensorFlow [11] is a framework developed by Google's Al department. It was recently
launched as open-source platform, which has created a lot of attention in this field.
It is widely used because it supports multiple languages for creating a deep learning
model, such as Python, C++ and R and it is available on many platforms, even on iOS
and Android. TensorFlow allows us to use both the CPU and GPU processing powers,
and, with today's multicore processors and parallel computing GPUs, deep learning is
becoming more affordable and more available to everyone.

Tensors are multi-dimensional arrays which are used as the main core of the framework.
The input data is reshaped in the tensors and fed into a computational graph, which
allows us to take more features of the input data into account.

Pytorch [9] is the second most used framework, developed for Facebook, but it is also
used for Twitter and Salesforce, which provides more flexibility and adaptation during
computation. It uses Python as the backend, allowing for the GPU computation as
well. Similar to TensorFlow, Pytorch is using also Tensors for computations. The basic
advantage of TensorFlow is that this framework uses dynamic computational graphs,
which change during the training.

Keras [6] is a popular API, which uses TensorFlow, Theano or Congruent Toolkit
(described below) as the backend. It is very lightweight and applicable to any experi-
ment, which makes this the best framework for beginners and for short experiments.
It supports Convolutional and recurrent neural networks and it is able to run both
CPU and GPU processing. A drawback of Keras would be that it is not very prone to
complex models.

MXNet [7] is a highly scalable framework, developed by Apache and adopted by
Amazon Web Services. It supports a great amount of languages, such as Python,
C++, R, JavaScript, Julia, etc. The main advantage of this framework is that it
has special features for GPU processing, which support parallel processing and multi
GPU processing. It is very popular for speech and hand-writing recognition, natural
language processing and forecasting.

52

5 RESULTS

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

10
edge

b

now!

(]
I
rk

5.2 Performance evaluation

CNTK [2] is yet another open-source framework, developed by Microsoft Research. It
describes neural networks as series of computational steps through a directed graph.
This framework supports the most popular model types, such as a convolutional neural
network, Recurrent Neural Network, feed-forward DNN, etc.

For our experiment, we decided to use TensorFlow, since the 3-dimensional shape of
tensors fits the best for our intended feature set shape. It also offers more flexibility
in terms of the backend, API, etc.

The experiment is performed on Windows 10, using Anaconda to set the virtual
environment. TensorFlow GPU 13.1 is used to support graphical processing. The GPU
gives us the possibility of parallel computing, which is very popular among people who
work on deep learning because it drastically decreases the computing time. During
preprocessing, Pandas and NumPy are used for preparing the data for the training input.

5.2 Performance evaluation

In this part of the chapter, we are presenting an overview of the testing of our
models after training. As explained in Chapter 4.3, we are training 4 different models
with different layers and deep learning parameters in order to find the appropriate
combination for the traffic classification. The experiments contain changes of layer
number and cell number, learning rate, max_batch size, etc. The Main goal is to
reduce the cost and avoid overfitting, as well as to get a high j-statistic and accuracy
score for as little time as possible.

The design parameters for the models are the following:

e Activation function: RelL.U
e Optimizer: Adam Optimizer
e Classification engine: softmax cross entropy between logits and labels
e Weight initiation: Xavier uniform initializer
e Bias initiation: Xavier uniform initializer
The characteristics of test data are shown in Table 3

Number of data ‘ Number of attacks in test data ‘ Percentage of attack in data
361,294 | 13,550 | 3.75%

Table 3: Test data specification

93

5 RESULTS

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.2 Performance evaluation

5.2.1 Model 1

Model 1 is built from basic LSTM cells with variable parameters. We are going to train
5 different variations of Model 1, which differ in the number of hidden layers, number
of cells, learning rate, and max_ batch value. This will show us the influence of some
parameters on the deep learning model performance and lead us to the best model for
traffic classification.

Input

!

Dense Layer

L Y
Accuracy Loss

Figure 30: Model 1. BasicLSTM - consist of 1 layer of LSTM cells. The input data is
passed through 1 layer of LSTM cells and passed to dense layer. Dense layer is fully
connected layer which outputs single values per flow which is then used to compare
with input data and to calculate loss and accuracy(reduce mean)

Number of Layers

This subsection contains the results from varying the Number of Layers in Model 1.

54

5 RESULTS

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.2 Performance evaluation 5 RESULTS

Number of Layers | Number of cells in layer | Type of Cells | Epochs | Learning Rate | max_batch
135 | 128 T LSTM | 1 | 0001 | 1024

Table 4: Basic LSTM Number of layers - Basic parameters

Table 5 shows the result of training Model 1 with 1, 3 and 5 layers of basic LSTM
cells(128 units).

Evaluation metric | 1 BasicLSTM | 3 BasicLSTM | 5 BasicLSTM
True Positives 11912 12637 11197
False Positives 1759 1753 2553
True Negatives 345985 345991 345191
False Negatives 1638 913 2353

Accuracy 99.05% 99.26% 98.64%
Precision 87.13% 87.81% 81.43%
Sensitivity 99.49% 93.26% 82.63%
F1 score 87.52% 90.45% 82.02%
J-statistic 87.40% 92.75% 81.90%

Table 5: Basic LSTM Number of layers - Performance evaluation

From the results we can see that the best score is achieved with 3 layers of basic LSTM
cells. We can also see that, when using a 5 layer model, there is slight overfitting. Hence,
there is no need to train the model with more then 5 layers because overfitting would
be even worse.

In Table 6, the result of attack recognition accuracy are displayed. This can support
the results from Table 5, and shows that the 3 layer model achieves the best score
for any category of attacks. We can also noticed that the accuracy for some attack
families are zero. This is because of the low appearance of attack in data set, and the
model can not learn the pattern of attack.

95

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.2 Performance evaluation

5 RESULTS

Attacks 1 BasicLSTM | 3 BasicLSTM | 5 BasicLSTM
Generic 83.01% 88.49% 82.04%
DoS 87.35% 93.22% 81.87%
Exploits 01.06% 03.84% 81.46%
Fuzzers 86.46% 92.66% 83.41%
Reconnaissance 0% 0% 0%
Shellcode 0% 0% 0%
Backdoor 0% 0% 0%
Analysis 0% 0% 0%
Worms 0% 0% 0%

Table 6: Basic LSTM Number of layers - Accuracy of attack category classification

Learning rate

Another important parameter that we want to test is the learning rate. We are training
1 layer of basic LSTM cells(128), with learning rates of 0.01 and 0.001. The time of

training is also presented.

Number of Layers | Number of cells in layer | Type of Cells | Epochs | Learning Rate | max_batch

1

128

LSTM

1 [0.001,001 | 1024

Table 7: Basic LSTM learning rate - Basic parameters

The results are shown in Table 8

Evaluation metric

learning _rate = 0.001

learning _rate = 0.01

True Positives 11912 1482
False Positives 1759 1302
True Negatives 345985 346442
False Negatives 1638 12068
Accuracy 99.05% 96.29%
Precision 87.13% 53.23%
Sensitivity 99.49% 10.93%
F1 score 87.52% 99.62%
J-statistic 87.40% 18.14%

Table 8: Basic LSTM learning rate - Performance evaluation

From the results we can see that the best score is achieved with learning rate =
0.001. There is a major difference between the given training learning rates, so we are
not increasing the value of the parameter anymore. On the other hand, decreasing the

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.2 Performance evaluation

learning rate further would have a major impact on the time of the training, so we are
taking the 0.001 value as the most efficient one. We can notice that there is a big
difference in sensitivity and j-statistic between two compared experiments, while F1
score shows even improvements. This is due much worse value of true positives, which
made a strong impact on sensitivity and j-statistic respectively.
Table 9, shows the results of the attack classification accuracy.

Attacks learning _rate = 0.001 | learning rate = 0.01
Generic 83.01% 17.95%

DoS 87.35% 4.30%
Exploits 91.06% 2.46%
Fuzzers 86.46% 13.83%

Reconnaissance 0% 0%
Shellcode 0% 0%
Backdoor 0% 0%
Analysis 0% 0%

Worms 0% 0%

Table 9: Basic LSTM learning rate - Accuracy of attack category classification

Cell units

This subsection describes the results of training the model with 4 different numbers of
cells in one LSTM layer. The purpose of cell variation is to find out the perfect number
of the cells in the layer in order to avoid overfitting.

Number of Layers | Number of cells in layer | Type of Cells | Epochs | Learning Rate | max_batch
] 128,512, 1004, 1500 | LSTM | 1 | 0001 | 1024

Table 10: Basic LSTM cell units - Basic parameters

Results shown on Table: 11

a7

5 RESULTS

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

5.2 Performance evaluation

5 RESULTS

Evaluation metric | cell _num = 128 | cell _num = 512 | cell _num = 1024 | cell _num = 1500
True Positives 11912 12055 12108 11999
False Positives 1759 1604 1578 1630
True Negatives 345985 346140 346166 346114
False Negatives 1638 1495 1442 1551
Accuracy 99.05% 99.14% 99.16% 99.11%
Precision 87.13% 88.25% 88.47% 88.04%
Sensitivity 99.49% 88.96% 89.35% 88.55%
F1 score 87.52% 88.61% 88.91% 88.29%
J-statistic 87.40% 88.51% 88.90% 88.08%

Table 11: Basic LSTM cell units - Performance evaluation

If we look on the accuracy and j-statistic, the best results are achieved with cell num
= 1024. Overall results show that cell num = 128 is better solution for further exper-

iments.

Table 12 shows the results of the attack classification accuracy.

Evaluation metric | cell _num = 128 | cell _num = 512 | cell _num = 1024 | cell _num = 1500
Generic 83.01% 84.19% 84.83% 83.65%

DoS 87.35% 88.39% 89.43% 87.22%
Exploits 91.06% 92.46% 93.51% 92.13%
Fuzzers 86.46% 87.47% 86.99% 87.19%

Reconnaissance 0% 0% 0% 0%
Shellcode 0% 0% 0% 0%
Backdoor 0% 0% 0% 0%
Analysis 0% 0% 0% 0%
Worms 0% 0% 0% 0%

Table 12: Basic LSTM cell units - Accuracy of attack category classification

Max_batch

One of the deep learning parameters that we find very important is the maximum
number of flows in a batch. We are using the variable batch size, and every batch can
contain the flows with same length. It turns out that there is a huge amount of traffic
with an equal flow length. This results in a few hundred thousand flows in one batch,
which crash our model training because it requires an extreme amount of RAM. Aside
from that, a large batch size could result in overshooting the result.On the other hand,

a small number of batch size results in increasing the training time.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Number of Layers ‘ Number of cells in layer ‘ Type of Cells ‘ Epochs ‘ Learning Rate ‘

max__batch

1,35 \

128

LSTM ‘ 1

0.001 ‘ 512, 1024, 5000, 10000,15000

Table 13: Basic LSTM max_batch - Basic parameters

o8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.2 Performance evaluation

5 RESULTS

Evaluation metric | mb = 512 | mb = 1024 | mb = 5000 | mb = 10000 | mb = 15000
True Positives 11957 11912 11948 12314 12090
False Positives 1382 1759 1798 1450 1645
True Negatives 346584 345985 345946 346294 346099
False Negatives 1371 1638 1602 1236 1460

Accuracy 99.23% 99.05% 99.05% 99.25% 99.14%
Precision 89.63% 87.13% 86.91% 89.46% 88.02%
Sensitivity 89.71% 09.49% 88.17% 90.87% 89.22%
F1 score 89.67% 87.52% 87.54% 00.16% 88.62%
J-statistic 89.31% 87.40% 87.66% 00.46% 88.75%

Table 14: Basic LSTM max _batch - Performance evaluation

According to the results, the best score is achieved with max__batch = 10000. However
if we look at the accuracy, it is not possible to detect regular increasing patterns, so
we can assume that the model ends up overfitting. Table 15, shows the results of
the attack classification accuracy, and it also shows confusing patterns of increasing

accuracy values for different attack categories.

Evaluation metric | mb = 512 | mb = 1024 | mb = 5000 | mb = 10000 | mb = 15000
Generic 83.33% 83.01% 82.04% 85.05% 83.33%
DoS 01.58% 87.35% 88.52% 90.87% 89.70%
Exploits 93.81% 01.06% 01.40% 94.45% 93.07%
Fuzzers 83.67% 86.46% 86.49% 88.84% 87.40%
Reconnaissance 0% 0% 0% 0% 0%
Shellcode 0% 0% 0% 0% 0%
Backdoor 0% 0% 0% 0% 0%
Analysis 0% 0% 0% 0% 0%
Worms 0% 0% 0% 0% 0%

Table 15: Basic LSTM max_batch - Accuracy of attack category classification

5.2.2 Model 2

As we found a good combination of the parameters for the basic LSTM model, we are
trying to boost our results with the use of regularization techniques. Model 2 contains
batch normalization layers, which should increase the accuracy and precision of our
model, and will allow us to use higher learning rates the same or small amount of time.
In this section, the results of using batch normalization are shown. A comparison
between the basic LSTM model and model using batch normalization layer is given.
Besides that, another comparison is made between the models using LSTM and GRU
cells, and different learning rates are tested.

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

5.2 Performance evaluation 5 RESULTS

Ll
0SS &
I !
|

| Denselayer

v

Accuracy Loss

Figure 31: Model 2.Batch Normalization - consist of 1 layer of LSTM cells with one
batch normalization layer between LSTM and dense layer

LSTM with Batch Normalization

This subsection shows the comparison between the models with 1 and 3 layers of basic
LSTM cells(128), and the same models with a batch normalization layer. Results are
shown in Table 17

Number of Layers | Number of cells in layer | Type of Cells | Epochs | Learning Rate | max_batch
13 | 128 [BatchNorm LSTM| 1 | 0001 | 1024

Table 16: LSTM with Batch Normalization - Basic parameters

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.2 Performance evaluation 5 RESULTS

Evaluation metric | BatchNorm | LSTM | 3xBatchNorm | 3xLSTM
True Positives 12346 11912 12331 12637
False Positives 1716 1759 1572 1753
True Negatives 346028 345985 346172 345991
False Negatives 1204 1638 1219 913

Accuracy 99.19% | 99.05% 99.22% 99.26%
Precision 87.79% 87.13% 88.69% 87.81%
Sensitivity 01.11% 99.49% 91.00% 03.26%
F1 score 89.42% 87.52% 89.83% 90.45%
J-statistic 90.62% 87.40% 90.55% 92.75%

Table 17: LSTM with Batch Normalization - Performance evaluation

From the results, we can see that the best score is achieved with the Basic LSTM
cells with the batch normalization layer. There is a slight difference in accuracy and
using batch normalization showed success, which could be seen in first column. On
the other hand, using more LSTM layers with batch normalization showed slightly
worse performance then basic LSTM model with same number of layer, shown in third
column. This is probably due to complex connection between layers.

Table 18, shows the result of attack classification accuracy.

Evaluation metric | BatchNorm | LSTM | 3xBatchNorm | 3xLSTM

Generic 86.55% 83.01% 87.09% 88.49%

DoS 90.61% 87.35% 89.70% 93.22%

Exploits 93.94% 91.06% 94.77% 93.84%

Fuzzers 89.32% 86.46% 88.81% 92.66%
Reconnaissance 0% 0% 0% 0%
Shellcode 0% 0% 0% 0%
Backdoor 0% 0% 0% 0%
Analysis 0% 0% 0% 0%
Worms 0% 0% 0% 0%

Table 18: LSTM with and without Batch Normalization - Accuracy of attack category
classification

Learning rate

The main goal of this section is to show that by using Batch Normalization, learning
rate could be decreased without significant difference in results.
Results are shown in Table 20

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.2 Performance evaluation

5 RESULTS

Number of Layers | Number of cells in layer | Type of Cells | Epochs | Learning Rate | max_batch

1,3 |

128

| BatchNorm | 1

| 0.001, 0.001 |

1024

Table 19: Batch Normalization learning rate - Basic performance

Evaluation metric

BatchNorm(0.01)

3xBatchNorm(0.01)

BatchNorm(0.001)

3xBatchNorm(0.001)

True Positives 2920 1121 12346 12331
False Positives 1991 868 1716 1572
True Negatives 345753 346876 346028 346172
False Negatives 10630 12429 1204 1219
Accuracy 96.50% 96.31% 99.19% 99.22%
Precision 59.45% 56.36% 87.79% 88.69%
Sensitivity 21.54% 8.27% 91.11% 91.00%
F1 score 31.63% 14.42% 89.42% 89.83%
J-statistic 20.97% 8.02% 90.62% 90.55%

Table 20: Batch Normalization learning rate - Performance evaluation

Training the model with learning rate = 0.01 is resulting in much worse performance
then learning rate = 0.001. It showed even worse results than training model 1 with
learning _rate = 0.01. There is not any possibility to decrease the learning rate using
Batch Normalization Layer, according to the results.
The Table 21, shows the result of attack prediction accuracy. The results follow the
same trend like in previous table. It is also worth mentioning that the results for 3
layers of LSTM with batch normalization showed worse result, probably due to the

layer complexity.

Evaluation metric | BatchNorm(0.01) | 3xBatchNorm(0.01) | BatchNorm(0.001) | 3xBatchNorm(0.001)
Generic 25.91% 13.22% 86.55% 87.09%

DoS 17.73% 4.30% 90.61% 89.70%
Exploits 14.71% 0.98% 93.94% 94.77%
Fuzzers 24.23% 10.42% 89.32% 88.81%

Reconnaissance 0% 0% 0% 0%
Shellcode 0% 0% 0% 0%
Backdoor 0% 0% 0% 0%
Analysis 0% 0% 0% 0%

Worms 0% 0% 0% 0%

Table 21: Batch Normalization learning rate - Accuracy of attack category classification

5.2.3 Model 3

Another technique for regularization that we are using is Layer Normalization. As al-
ready mentioned in Chapter 4.5, Layer Normalization should provide us with additional

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

5.2 Performance evaluation 5 RESULTS

efficiency during the training. We are comparing models with Layer Normalization,
Batch Normalization layers and basic model.

@ @LFI’M Layer

]
A
| |

S
-

L 4

|
:

v

Accuracy Loss

Figure 32: Model 3.Layer Normalization - consist of 1 layer of LSTM cells followed by
layer normalization layer, which is connected to dense layer

Layer Normalization Layer vs Batch Normalization vs LSTM

Number of Layers ‘ Number of cells in layer ‘ Type of Cells ‘ Epochs ‘ Learning Rate ‘ max_ batch
1,3 | 128 | LayerNorm, BatchNorm , LSTM | 1 | 0.001 | 1024

Table 22: LSTM with Layer Normalization Layer and Batch Normalization - Basic
parameters

Results are shown in Table 23

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.2 Performance evaluation 5 RESULTS

Evaluation metric | LayerNorm | BatchNorm | LSTM
True Positives 11770 12346 11912
False Positives 5225 1716 1759
True Negatives 342519 346028 345985
False Negatives 1780 1204 1638

Accuracy 98.06% 99.19% | 99.05%
Precision 69.25% 87.79% 87.13%
Sensitivity 86.86% 91.11% 87.91%
F1 score 77.06% 89.42% 87.52%
J-statistic 85.36% 90.62% 87.40%

Table 23: LSTM with Layer Normalization Layer and Batch Normalization - Perfor-
mance evaluation

After comparing the results, we can conclude that using layer normalization did not
help us to provide better clasification performance to our model. We would not guide
our experiment in this direction any more since our results have not shown expected
improvement of performance.

Evaluation metric | LayerNorm | BatchNorm | LSTM
Generic 83.97% 86.55% 83.01%
DoS 87.22% 90.61% 87.35%
Exploits 89.15% 93.94% 91.06%
Fuzzers 84.49% 89.32% 86.46%
Reconnaissance 0% 0% 0%
Shellcode 0% 0% 0%
Backdoor 0% 0% 0%
Analysis 0% 0% 0%
Worms 0% 0% 0%

Table 24: LSTM with Layer Normalization Layer and Batch Normalization - Accuracy
of attack category classification

5.2.4 Model 4

The Last model that we are testing is made of GRU cells. We would like to test
performance efficiency of GRU cells in comparison with already proven LSTM model.
Since GRU has some improvements in cell design, we are expecting better efficiency.

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

5.2 Performance evaluation

N
900 ¢
Vv v
 Denselayer

Y Y
Accuracy Loss

Figure 33: Model 4. GRU cell Layer - consist of 1 layer of GRU cells instead LSTM
cells connected to dense layer

GRU vs LSTM

5 RESULTS

Number of Layers | Number of cells in layer | Type of Cells | Epochs | Learning Rate | max_batch
13 | 128 [ISTM,GRU | 1 | 0001 | 1024

Table 25: GRU vs. LSTM - Basic parameters

Results are shown in Table 26

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.3 Summary

5 RESULTS

Evaluation metric | LSTM GRU 3xLSTM | 3xGRU
True Positives 11912 12036 12637 11494
False Positives 1759 1516 1753 2646
True Negatives | 345085 | 346228 | 345991 | 345098
False Negatives 1638 1514 913 2056

Accuracy 99.05% | 99.16% | 99.26% | 98.69%
Precision 87.13% | 88.81% | 87.81% | 81.28%
Sensitivity 09.49% | 88.82% | 93.26% | 84.82%
F1 score 87.52% | 88.82% | 90.45% | 83.01%
J-statistic 87.40% | 88.39% | 92.75% | 84.06%

Table 26: GRU vs. LSTM - Performance evaluation

From the results we can see that GRU is giving better performance then LSTM. On
the other hand, increasing the number of layers of GRU cells ends up in overfitting and

in the long run, LSTM is a better choice.

The Table: 27, shows the result of attack prediction accuracy.

Evaluation metric | LSTM GRU | 3xLSTM | 3xGRU

Generic 83.01% | 84.30% | 88.49% | 82.47%

DoS 87.35% | 87.22% | 93.22% | 81.35%

Exploits 01.06% | 92.36% | 93.84% | 83.64%

Fuzzers 86.46% | 87.68% | 92.66% | 85.20%
Reconnaissance 0% 0% 0% 0%
Shellcode 0% 0% 0% 0%
Backdoor 0% 0% 0% 0%
Analysis 0% 0% 0% 0%
Worms 0% 0% 0% 0%

Table 27: GRU vs. LSTM - Accuracy of attack category classification

5.3 Summary

Based on the stated results in previous subsection, we can conclude that the best
performance is given by Model 1, the Basic LSTM model. Our experiments showed
that increasing the number of layers to 3 made an improvement in performance,
although increasing it more then 3 ended up in overfitting. Learning rate which showed
the best results with all the tested models was 0.001. Increasing the number of cells
in layer to 1024 by model 1 showed increase in accuracy, j-statistic and precision, but
overall the best score was achieved by cell number 128. Experimenting with maximal

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.3 Summary 5 RESULTS

batch size ended up in overfitting, so the optimal values would be 1024.

Testing a different regularization techniques, ended up worse then we expected. Layer
normalization technique was achieved worse result compare to the batch normalization
model and basic LSTM model. Batch normalization showed improvement in all
performance metric parameters. Moving towards using more LSTM layers with batch
normalization layer, showed worse performance than multi-layer LSTM without batch
normalization layer.

Another useful experiment using model 4 with GRU cells, showed grate improvement
compared to LSTM cell model. Unfortunately, increasing the number of layers it all
the performance metric parameters badly decreased.

The best model with efficient values of parameters:

Model ‘ Layer number ‘ Cell numbers ‘ Type of Cells ‘ Epochs ‘ Learning Rate ‘ max__ batch
Model 1 | 3 | 128 | LSTM | 1 | 0001 | 1024

Table 28: The most efficient model according to our experiments

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6 CONCLUSION

6 Conclusion

During the research, our main goal was to classify the encrypted network traffic
using deep learning methods. This was done by using a recurrent neural network
with long-short term memory cells and gated recurrent unit cells. The performance
evaluation was performed in order to prove that those methods, usually used in
language processing, are also suitable for traffic classification.

For that purpose, we used the UNSW-NB15 data set with more than 100GB data and
2 million flows for the training and around 350000 flows for testing. The deep learning
platform TensorFlow was used for model development. It was the right choice because
it suited the shape and configuration of data.

As stated in Section 1.2, we sought the answer to our main question Q1. During
the training phase, we employed 4 different models to find out the answer on this
question, which were built with LSTM and GRU cells. We used variable layer numbers,
cell numbers, learning rates, max_batch sizes, etc. The models were evaluated by
using different performance metric including accuracy, precision, sensitivity, f1 score,
as well as j-statictic. Our evaluation showed good results. All models displayed the
accuracy of more then 99% and a j-statistic of 88-90%. The final results showed
that the results with a higher number of cells in a layer and larger max_batch size
improved the performance of the model. The LSTM with 3 layers showed the best
results on smaller number of cells and max_batch size. A slight improvement in the
performance is noticeable on a single layer GRU, but overall, the multilayer LSTM
showed the best score. The LSTM showed a good performance especially for attacks
with a large number of packets. Some attacks(Reconnaissance, Shellcode, Backdoor,
Analysis, Worms) were not recognized because of low number of appearance in dataset.

The second important challenge was to focus on traffic features. We attempted to
discover the features of traffic that are not changing during the encryption. We also
tried to train the model with this data features. This model was expected to be able to
accurately classify the encrypted traffic and to differentiate between malicious traffic
and normal traffic. The first attempt included using the packet length, direction of
packet and time difference between the first and following packets in the flow. The
main idea behind using the time difference was to utilize the LSTM and to test the
depth of memory. This ended up with less than 96% accuracy, which is worse than
random guessing, because our data set contains less then 4% of attacks and even with
random guessing, we could achieve result which is more then 96%.

Another attempt included using the packet length, direction of packets and packet
inter-arrival time (time between the packets). The idea behind this approach came
from language processing. Different packets in flow represent words, and a whole flow

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.1

Future Work 6 CONCLUSION

represents the sentence. During the training, the model learns that a next packet
with specific features (packet length and direction) is coming after certain amount
of time (inter-arrival time). This concept was proven as a good approach. After
switching to a new feature set, our performance experienced a significant improvement.

The third important question that we needed to clarify in this research regarded
the implementation of different regularization techniques in order to improve the
performance of the models. The first method we used was batch normalization, which
showed a significant improvement in the performance on a single layer. However, when
the number of the layers increased, it resulted in overfitting and ended up behind
multi-layer LSTM. Layer normalization was a more complex technique that we used
for the regularization. It showed a noticeable increase in the time consumed for the
training and a decrease in accuracy and the j-statistic.

Therefore, we suggest to use the Basic LSTM model with 3 layers, 128 numbers of cells
in layer, maximum batch size with 1024 flows and to train with learning rate 0.001.

6.1 Future Work

After our research question were successfully answered, many new questions appeared.
There is a plenty of room for another types of testing which could improve efficiency
and performance of our model. This could be done by improving either the data or
the model.

A data improvement is the first and maybe the most important topic for future
work. The data set that we used was armed with new and up-to-date attacks, but
there were many deficiencies while traffic flow classification, there is small number
of attacks, attacks are generated in lab environment, etc. The next step could be
testing the model with the already known KDD data set, which is more used in this
type of experiments. The best way to proceed with the experiment would be to create
another data set with live data collected with darkspace or honeypot. These data
contains up-to-date network traffic,as well as known and unknown attacks. This kind
of data set could be used for supervised or unsupervised learning which could improve
intrusion detection systems.

Model improvements would be the next step. Firstly, unsupervised learning could rep-
resent another important topic for research, since it represent real intrusion detec-
tion system more closely. Secondly, implementing new machine learning models, such
autoencoders,as well as sequence-to-sequence models would be another logical step
forward. This models showed good results in other fields of research, so it would be
interesting to see how they performed on classifying the network data. Thirdly, mov-

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

6.1

Future Work 6 CONCLUSION

ing focus to a specific attack classification or unknown attack classification would be
also very useful. This topic should bring a many improvements to the network security
industry and to commercial use.

70

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

7
[1]

2]
[3]
[4]
[3]

[6]
[7]
[8]

[9]
[10]
[11]
[12]
[13]

[14]

[15]

[16]

References

1998 DARPA INTRUSION DETECTION EVALUATION
DATASET. https://www.1ll.mit.edu/r-d/datasets/
1998-darpa-intrusion-detection-evaluation-dataset.

CNTK. https://archive.fo/UWjbl.
CVE Mitre Web site. https://cve.mitre.org.
IXIA Perfect Storm. https://www.ixiacom.com/products/perfectstorm.

KDD Cup 1999 Data. http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99 .html.

Keras. https://keras.io/.
MXNet. https://mxnet.apache.org/.

protocolnumbers. https://www.iana.org/assignments/
protocol-numbers/protocol-numbers.xhtml.

PyTorch. https://pytorch.org/.

tcpdump. https://www.tcpdump.org/manpages/tcpdump.1.html.
Tensorflow. https://www.tensorflow.org/.

tshark. https://www.wireshark.org/docs/man-pages/tshark.html.

Yoshua Bengio, Patrice Simard, Paolo Frasconi, et al. Learning long-term depen-
dencies with gradient descent is difficult. /EEE transactions on neural networks,
5(2):157-166, 1994.

Laurent Bernaille, Renata Teixeira, Ismael Akodkenou, Augustin Soule, and Kave
Salamatian. Traffic classification on the fly. ACM SIGCOMM Computer Commu-
nication Review, 36(2):23-26, 2006.

Y. Nir P. Eronen T. Kivinen C. Kaufman, P. Hoffman. Internet Key Exchange
Protocol Version 2 (IKEv2). RFC 7296, October 2014.

Zigang Cao, Gang Xiong, Yong Zhao, Zhenzhen Li, and Li Guo. A survey on
encrypted traffic classification. In International Conference on Applications and
Techniques in Information Security, pages 73-81. Springer, 2014.

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using rnn encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014.

CISCO. Encrypted Traffic Analytics. https://
www.cisco.com/c/dam/en/us/solutions/collateral/
enterprise-networks/enterprise-network-security/
nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf, 2019.

VNI Cisco. Cisco visual networking index: Forecast and trends, 2017-2022. White
Paper, 1, 2018.

Alberto Dainotti, Antonio Pescape, and Kimberly C Claffy. Issues and future
directions in traffic classification. IEEE network, 26(1):35-40, 2012.

Computer Security Department. Glossary of key information security terms. NIST
Internal/Interagency Report NISTIR 7298, 2013.

Daniel C Ferreira, Félix Iglesias Vazquez, Gernot Vormayr, Maximilian Bachl, and
Tanja Zseby. A meta-analysis approach for feature selection in network traffic
research. In Proceedings of the Reproducibility Workshop, pages 17-20. ACM,
2017.

Jeff Heaton. lan goodfellow, yoshua bengio, and aaron courville: Deep learning,
2018.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735-1780, 1997.

Félix Iglesias and Tanja Zseby. Time-activity footprints in ip traffic. Computer
Networks, 107:64-75, 2016.

Félix Iglesias and Tanja Zseby. Pattern discovery in internet background radiation.
IEEE Transactions on Big Data, 2017.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167,
2015.

B. Claise J. Quittek, T. Zseby and S. Zander. Requirements for IP Flow Informa-
tion Export (IPFIX). RFC 3917, oct 2004

B. Carpenter J. Rajahalme, A. Conta and S. Deering. IPv6 Flow Label Specifica-
tion. RFC 3697, mar 2004.

72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Markku Kojo Kumiko Ono Martin Stiemerling Lars Eggert Alexey Mel-
nikov Wes Eddy Alexander Zimmermann Brian Trammell Joe Touch;
Eliot Lear, Allison Mankin and Jana lyengar. Service name and transport
protocol port number registry. https://www.iana.org/assignments/
service-names-port-numbers/service-names-port-numbers.xhtml,
2009.

Gyuwan Kim, Hayoon Yi, Jangho Lee, Yunheung Paek, and Sungroh Yoon. Lstm-
based system-call language modeling and robust ensemble method for designing
host-based intrusion detection systems. arXiv preprint arXiv:1611.01726, 2016.

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Miiller. Efficient
backprop. In Neural networks: Tricks of the trade, pages 9-48. Springer, 2012.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115-133, 1943.

Fares Meghdouri, Tanja Zseby, and Félix Iglesias. Analysis of lightweight feature
vectors for attack detection in network traffic. Applied Sciences, 8(11):2196,
2018.

Tom Michael Mitchell. The discipline of machine learning, volume 9. Carnegie
Mellon University, School of Computer Science, Machine Learning ..., 2006.

Andrew W Moore and Denis Zuev. Internet traffic classification using bayesian
analysis techniques. In ACM SIGMETRICS Performance Evaluation Review, vol-
ume 33, pages 50-60. ACM, 2005.

Nour Moustafa and Jill Slay. Unsw-nbl5: a comprehensive data set for net-
work intrusion detection systems (unsw-nb15 network data set). In 2015 military
communications and information systems conference (MilCIS), pages 1-6. IEEE,
2015.

Nour Moustafa and Jill Slay. The evaluation of network anomaly detection sys-
tems: Statistical analysis of the unsw-nb15 data set and the comparison with the
kdd99 data set. Information Security Journal: A Global Perspective, 25(1-3):18-
31, 2016.

Andrew Ng et al. Sparse autoencoder. CS294A Lecture notes, 72(2011):1-19,
2011.

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[41]

[42]

[43]
[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Christopher Olah. Understanding Istm networks—colah’s blog. Colah. github. io,
2015.

S. Krishnan S. Frankel. [P Security (IPsec) and Internet Key Exchange (IKE).
RFC 6071, February 2011.

R. Shirey. Internet Security Glossary. RFC 2828, May 2000.

William Stallings and Lawrie Brown. Computer security: principles and practice.
Pearson Education Upper Saddle River (NJ, 2018.

Tuan A Tang, Loth Mhamdi, Des McLernon, Syed Ali Raza Zaidi, and Mounir
Ghogho. Deep learning approach for network intrusion detection in software de-
fined networking. pages 258-263, 2016.

Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A Ghorbani. A detailed
analysis of the kdd cup 99 data set. In 2009 IEEE Symposium on Computational
Intelligence for Security and Defense Applications, pages 1-6. IEEE, 20009.

Wei Wang, Ming Zhu, Jinlin Wang, Xuewen Zeng, and Zhongzhen Yang. End-
to-end encrypted traffic classification with one-dimensional convolution neural
networks. In 2017 IEEE International Conference on Intelligence and Security
Informatics (ISI), pages 43-48. |EEE, 2017.

Simon Wiesler and Hermann Ney. A convergence analysis of log-linear training.
In Advances in Neural Information Processing Systems, pages 657-665, 2011.

Nigel Williams, Sebastian Zander, and Grenville Armitage. A preliminary perfor-
mance comparison of five machine learning algorithms for practical ip traffic flow
classification. ACM SIGCOMM Computer Communication Review, 36(5):5-16,
2006.

Alice Zheng and Amanda Casari. Feature Engineering for Machine Learning:
Principles and Techniques for Data Scientists. " O'Reilly Media, Inc.", 2018.

Denis Zuev and Andrew W Moore. Traffic classification using a statistical ap-
proach. In International workshop on passive and active network measurement,
pages 321-324. Springer, 2005.

74

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

A APPENDIX

A Appendix

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

75

qny a8pajmoud| INoA

Saylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

3ibliothek,

Your knowledge hub

9.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.
The approved original version of this thesis is available in print at TU Wien Bibliothek.

Models | Number of Layers | Number of cells in layer Type of Cells Epochs | Learning Rate max__batch

Model 1 1,3,5 128, 512, 1024, 1500 LSTM 1 0.001, 0.01 | 512, 1024, 5000, 10000, 15000
Model 2 1,3 128 BatchNorm, LSTM 1 0.001, 0.01 1024

Model 3 1,3 128 LayerNorm, BatchNorm, LSTM 1 0.001 1024

Model 4 1,3 128 GRU, LSTM 1 0.001 1024

Table 29: Training parameters

XIANAddV VvV

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

A APPENDIX

Table of Abbreviations

IDS
GPS
ML
DPI
DNN
KNN
NLP
RNN
LSTM
GRU
NB
SVM
DT
KNN
KMC
CIA
DoS

TCP
UDP
IANA
DoS
GT

Intrusion Detection System
Global Positioning System
Machine Learning

Deep Packet Inspection
Deep Neural Network
k-Nearest Neighbors
Natural Language Processing
Recurrent Neural Network
Long-Short Term Memory
Gated Recurrent Unit
Naive Bayes

Support Vector Machine
Decision Tree

K-Nearest Neighbor

K-Means Clustering

Confidentiality Integrity Availability

Denial of Service
Internet Protocol
Transport Control Protocol

User Datagram Protocol

Internet Assigned Numbers Authority

Denial of Service

Ground Truth

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

LIST OF FIGURES

LIST OF FIGURES

QoS Quality of Service

CoS Class of Service

SDN Software Define Network

SCADA System Control and Data Acquisition

TU Wien Vienna University of Technology

ACCS Australian Centre for Cyber Security

List of Figures

SOl WN -

10
11
12
13
14
15
16
17
18
19
20
21

Network Security Principle
Intrusion Detection System
Data Encryption phases
IPsec (a)transport mode, (b) tunnel mode
Transport Layer Security packet format
TLS initial handshake - process of establishing the TLS encryption. In

the first phase, TCP handshake is established, then the version of TLS

is exchanged and ciphersuite negotiated. After ciphersuite negotiation,

the key parameters are exchanged, and after key has been proven, the

encrypted data exchange can be started.
Exploits.
Generic
DoS . . .
Reconnaissance
Shellcode
Fuzzers
Worms
Neuron L
Sigmoid activation function
Tanh activation function
RelLU activation function
Softmax activation function
Neural Network [40]
Recurrent Neural Network [41]
Long-short Term Memory cell [41] - shows 4 gate structure described

in following text

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

LIST OF TABLES

22
23
24

25
26

27
28
29
30

31

32

33

Gated Recurrent Unit [41] - similar structure as the LSTM, described

in following paragraph o 29
Experiment diagram - shows main checkpoints during our research (ex-

plained in details in: 42and 4.3). 33
UNSW-NB15 data set generator architecture [38] 35
Feature set comparison [35] L., 37

Batch Training example - different color rectangles represent variable
size batches. Inside the batches, flows represented by their feature

vectors are shown with different colors. 42
Confusion Matrix 43
Batch Normalization 47
Layer Normalization 49

Model 1. BasicLSTM - consist of 1 layer of LSTM cells. The input
data is passed through 1 layer of LSTM cells and passed to dense layer.
Dense layer is fully connected layer which outputs single values per flow
which is then used to compare with input data and to calculate loss

and accuracy(reduce mean)o 54
Model 2.Batch Normalization - consist of 1 layer of LSTM cells with
one batch normalization layer between LSTM and dense layer 60
Model 3.Layer Normalization - consist of 1 layer of LSTM cells followed
by layer normalization layer, which is connected to dense layer 63
Model 4. GRU cell Layer - consist of 1 layer of GRU cells instead LSTM
cells connected to dense layer 65

List of Tables

SO WN -

10
11
12
13

UNSW-NB15 data set specifications 35
Dataset 41
Test data specification 53
Basic LSTM Number of layers - Basic parameters 55
Basic LSTM Number of layers - Performance evaluation 55
Basic LSTM Number of layers - Accuracy of attack category classifica-

tion . . L 56
Basic LSTM learning rate - Basic parameters 56
Basic LSTM learning rate - Performance evaluation 56
Basic LSTM learning rate - Accuracy of attack category classification . 57
Basic LSTM cell units - Basic parameters 57
Basic LSTM cell units - Performance evaluation 58
Basic LSTM cell units - Accuracy of attack category classification . . . 58
Basic LSTM max_batch - Basic parameters 58

79

LIST OF TABLES

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

LIST OF TABLES

LIST OF TABLES

14
15
16
17
18

19
20
21

22
23
24
25
26
27

28
29

Basic LSTM max_batch - Performance evaluation
Basic LSTM max_batch - Accuracy of attack category classification
LSTM with Batch Normalization - Basic parameters
LSTM with Batch Normalization - Performance evaluation
LSTM with and without Batch Normalization - Accuracy of attack
category classification
Batch Normalization learning rate - Basic performance
Batch Normalization learning rate - Performance evaluation
Batch Normalization learning rate - Accuracy of attack category clas-
sification
LSTM with Layer Normalization Layer and Batch Normalization - Basic
parameters Lo
LSTM with Layer Normalization Layer and Batch Normalization - Per-
formance evaluation L
LSTM with Layer Normalization Layer and Batch Normalization - Ac-
curacy of attack category classification
GRU vs. LSTM - Basic parameters
GRU vs. LSTM - Performance evaluation
GRU vs. LSTM - Accuracy of attack category classification
The most efficient model according to our experiments
Training parameters

80

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Introduction
	Motivation
	Aim of the work
	Structure

	Background
	IT Security
	Basic Concepts of Network Security
	Intrusion Detection

	Traffic Encryption
	Internet Protocol Security
	Transport Layer Security

	Network Traffic Classification
	Flow-based Classification

	Machine learning
	Deep Learning
	Recurrent Neural Network and LSTM

	State of the art
	Research Methodology and Experiment
	Concept
	Preprocessing
	Training
	Training the model

	Evaluation
	Normalization

	Results
	Setup
	Deep learning framework

	Performance evaluation
	Model 1
	Model 2
	Model 3
	Model 4

	Summary

	Conclusion
	Future Work

	References
	Appendix

