Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[institute of
telecommunications

MDCStream: A Stream Dataset Generator for
Testing and Evaluating Stream Data Analysis

Algorithms

Master Thesis
for obtaining the academic degree
Master of Science
as part of the study
Electrical Engineering and Information Technology

carried out by
Denis Ojdanic¢
student number: 01226704

Institute of Telecommunications
at TU Wien

Supervision:
Senior Scientist Dipl.-Ing. Dr.techn. Félix Iglesias
Univ. Prof. Dipl.-Ing. Dr.-Ing. Tanja Zseby

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Erklarung zur Verfassung der Arbeit

Hiermit erklare ich, dass die vorliegende Arbeit gemil dem Code of Conduct —
Regeln zur Sicherung guter wissenschaftlicher Praxis (in der aktuellen Fassung des
jeweiligen Mitteilungsblattes der TU Wien), insbesondere ohne unzulissige Hilfe
Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel, angefertigt
wurde. Die aus anderen Quellen direkt oder indirekt ibernommenen Daten und
Konzepte sind unter Angabe der Quelle gekennzeichnet. Die Arbeit wurde bisher
weder im In— noch im Ausland in gleicher oder in dhnlicher Form in anderen
Priifungsverfahren vorgelegt.

Vienna, November 2019

Author's signature

Statement on Academic Integrity !

| hereby declare that this thesis is in accordance with the Code of Conduct rules
for good scientific practice (in the current version of the respective newsletter
of the TU Wien). In particular it was made without the unauthorized assistance
of third parties and without the use of other than the specified aids. Data and
concepts directly or indirectly acquired from other sources are marked with the
source. The work has not been submitted in the same or in a similar form to any
other academic institutions.

Translation of the text above. The German version is the legally binding text.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Abstract

The importance of stream data analysis and in particular outlier detection is
constantly increasing in times where more and more data is generated. Machine
learning and data mining have classically assumed that patterns discovered in
datasets are stable and permanent, but real-life applications commonly show
that internal data structures change and evolve. Another challenge is the fact
that data comes in streams and needs to be analyzed on a timely basis. The
range of application for stream classification algorithms is large spanning from
IT security, industrial and financial applications to medical data analysis and
many more. To develop and enhance new or existing algorithms it is crucial to
have flexible environments to test, compare and evaluate such algorithms.
During this thesis, we developed MDCStream, a MATLAB tool to generate
multidimensional stream datasets for testing stream data analysis algorithms.
MDCStream focuses on implementing diverse types of nonstationarities. The
tool is based on MDCGen, a highly flexible static generator capable to produce
a broad variety of multi-dimensional data scenarios. We refined MDCGen, devel-
oped MDCStream, and used datasets generated with MDCStream to evaluate
state-of-the-art stream outlier detection algorithms when facing different kinds
of concept drift.

Experiments showed that algorithms performed similarly, being MCOD the most
remarkable in terms of accuracy and runtime. The tested algorithms, which
are all distance and sliding window-based, showed to be especially sensitive to
cluster inter-distances due to limitations when evaluating density differences
inside analysis windows.

MDCStream can strongly help the design and evaluation of future classification
algorithms. Researchers and experts in many different scientific and technical
fields can benefit from MDCStream using it to create datasets and special corner
cases to thoroughly test their algorithms. MDCStream ensures that data follow
specific design conditions, variations and geometries, which may not happen
naturally either in benchmark datasets captured from real applications, therefore
creating a perfect test and evaluation environment.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Zusammenfassung

Die Bedeutung der Datenstromanalyse, vor allem bei der Erkennung von Aus-
reiern - den sogenannten "Outliern" - nimmt in Zeiten, in denen stetig mehr
Daten generiert werden, konstant zu. Der klassische Ansatz bei maschinellem
Lernen und Data Mining geht davon aus, dass Muster, die in Datensitzen
erkannt werden, stabil im Verlauf der Zeit bleiben und sich nicht verandern.
Beispiele aus dem echten Leben zeigen jedoch hiufig ein anderes Verhalten,
wobei sich die interne Datenstruktur andert und weiterentwickelt. Eine weitere
Herausforderung besteht darin, dass Daten als Strome mit hohen Datenraten
empfangen und mdoglichst zeitnahe analysiert werden sollen. Die Anwendungs-
bereiche von Klassifizierungs-Algorithmen sind groRR und umfassen unter anderem
IT Sicherheit, industrielle und finanzielle Anwendungen, medizinische Datenanal-
yse und viele mehr. Um Algorithmen zu optimieren oder gar neue zu entwickeln,
braucht es flexible Umgebungen, um diese testen und vergleichen zu kénnen.
Im Verlauf dieser Masterarbeit entwickelten wir MDCStream, ein MATLAB Tool,
welches multidimensionale Test-Datenstréme generiert, um Algorithmen fiir die
Datenstromanalyse zu evaluieren. Der Fokus von MDCStream liegt auf der Im-
plementierung diverser Typen von Nicht-Stationaritdten. Das Tool basiert auf
MDCGen, einem hochst flexiblen statischen Daten-Generator, der verschieden-
ste Varianten von multidimensionalen Testszenarien produzieren kann. Im Zuge
der Arbeit optimierten wir MDCGen, entwickelten MDCStream und verwendeten
die von MDCStream generierten Datensdtze, um hochmoderne Outlier Detec-
tion Algorithmen fiir Datenstrome auf verschiedene Typen von Concept Drift zu
untersuchen.

Die Experimente zeigten, dass die Algorithmen dhnliche Resultate produzieren,
wobei MCOD, sowohl in der Genauigkeit als auch bei der Laufzeit, heraussticht.
Die getesteten Algorithmen, welche alle auf Distanzberechnungen und "Slid-
ing Windows" beruhen, sind sensitiv auf die Distanzen zwischen den Clustern.
Dieses Verhalten entsteht aufgrund von Limitierungen bei der Evaluierung unter-
schiedlicher Dichten innerhalb des Analyzefensters.

MDCStream kann bei dem Design und der Evaluierung von zukiinftigen
Klassifizierungs-Algorithmen eine immense Hilfe darstellen. Forscher und Ex-
perten in vielen verschiedenen wissenschaftlichen und technischen Gebieten
konnen von MDCStream profitieren. Mit MDCStream werden Testdaten und
Spezialfille einfach generiert, um Algorithmen griindlich zu testen. MDCStream
gewihrleistet, dass generierte Daten spezifische Anforderungen, Variationen und
Geometrien erfiillen, was nicht immer von Benchmark Datensatzen, die durch
reale Anwendungen erstellt worden sind, behauptet werden kann. Dadurch
stellt MDCStream eine perfekte Test- und Evaluierungsumgebung fiir Klassi-
fizierungsalgorithmen dar.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Acknowledgments

| would first like to thank my thesis supervisor Félix Iglesias from the Institute of
Telecommunications of the Technical University of Vienna who was my primary
advisor during the course of the master thesis. His door was always open and he
helped me with his expertise in the field of data analysis when | ran into trouble.
Many thanks to Tanja Zseby for the great lectures during of my master studies
which awakened my interest in the research conducted by her and her colleagues
at the Institute of Telecommunications and for accepting me to do my master
thesis under her supervision. Furthermore, | want to mention Alexander Hartl
who assisted the project which benefited the progress of my thesis.

Many thanks to my parents Aida Ojdani¢, Boris Ojdani¢ and my sister Andrea
Ojdani¢ for supporting me through the course of my studies. Moreover, | want
to express my gratitude to my girlfriend Sarina Haslinger for enduring my long
hours of work and listening to me talking about thesis related problems.

Finally, | want to mention my work colleagues at Frequentis who taught me a
lot about the correct approach to software development. Special thanks goes
to Thomas Ederer, Nicole Fruehwirth, Christian Haas and Gerhard Kalab. For
giving me additional tips for my master thesis | want to mention Maximilian
Hantsch-Kaller. They all contributed in some fashion, whether providing feedback
or valuable lessons in software engineering, to help me finish my master thesis.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Contents

1

Introduction

1.1
1.2
1.3
1.4
1.5

Background
Motivation
Goals
Methodology
Structure of the Thesis

State of the Art

2.1

2.2
2.3

Stream Data Analysis L
2.1.1 Datastreams.
2.1.2 Difficulties working with data streams
213 Conceptdrift.
2.1.4 How to deal with conceptdrift
2.1.5 Data stream analysisuse cases
2.1.6 Stream data analysis vs time series analysis
Stream Data Generators L.
Qutlier Detection
2.3.1 Stream classification requirements
2.3.2 Block vs online processing
2.3.3 Datamanagement L.
234 Evaluation
2.3.5 Types of outlier detection techniques

2.3.6 Stream outlier detection algorithms by MOA
Methodology
3.1 Description of MDCGen

3.2

3.3

3.4
3.5

3.1.1 MDCGen Requirements
3.1.2 MDCGen Architecture
3.1.3 MDCGen Configuration
3.1.4 Improvements done during Thesis
Description of MDCStream
3.2.1 MDCStream Requirements
3.2.2 MDCStream Architecture
3.2.3 MDCStream Configuration
Design of MDCStream-wrapper
3.3.1 Configuration of MDCStream-wrapper
The MOA Framework
Evaluation methods and metrics
35.1 MaxF1l

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

352 Precisionatn-POn
3.5.3 Averageprecision-Ap L.
354 RocAuc.
355 Processingtime L.

4 Experiments
4.1 Main focus of experiments
4.1.1 Stationarity
412 Inputspacesize
413 Movingclusters
4.2 Description of the datasets
4.3 MOA algorithms configuration
4.4 Results and Discussion

5 Conclusion
6 References

A Appendix
Al MDCGenexample
A.2 MDCGen and MDCStream example
A.3 MDCStream wrapper configuration

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1 Introduction

1.1 Background

In the present time we witness unseen amounts of data being produced and col-
lected. Nowadays, with the advances in technology almost any electronic device
may be capable to generate and collect data. A paramount example of stream
data environments is the Internet or, in a more general perspective, network com-
munications.

Since there is such a variety of data sources, the analysis of large volumes of data
becomes more and more challenging. Manifold machine learning algorithms exist
trying to interpret and extract valuable information from data and more algo-
rithms are in the process of being developed. Essential for the development and
performance analysis of such solutions are proper testing environments such as
real-life or synthetically generated data. However, due to numerous advantages
such as control-ability and data validity, high quality dataset generators prove
to be an indispensable tool for the development and analysis of classification
algorithms.

A selected data analysis topic we will focus our evaluation on are outlier detec-
tion algorithms. Outliers are data points that differ significantly from the usually
collected and observed data. A simple one dimensional example would be a sen-
sor measuring the height of the water in a river. Usually, the river contains a
balanced water level and the measurements are within certain boundaries. How-
ever, if there is a lot of rainfall, the water rises, perhaps a flood occurs and as
a consequence we get measurements that differ distinctively from the norm and
thus represent outliers.

Data analysis today is applied to much more complex scenarios than the one
dimensional example given above. A very popular field is network security and
intrusion detection. Monitoring IP packets received on a particular network offers
a scenario where huge amounts of multidimensional data needs to be analyzed
on a timely basis. The attack on a network resembles a small and distinct part
of the data monitored though is of utmost importance to be detected. Such at-
tacks usually manifest themselves as outliers in the datasets. Another example
is video surveillance e.g. the monitoring of a runway on an airport using a video
tracking algorithm. Any unusual data, such as animals or people on the runway,
need to be detected immediately to guarantee a save landing or take off. Other
fields of application are the financial sector, system health monitoring, detecting
ecosystem disturbances and many more.

The analysis of evolving data using classification algorithms is a common task
in many modern technology applications increasing the demand and importance
for high quality data set generators.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.2 Motivation

Numerous classification algorithms exist trying to interpret data in manifold
ways and many scientists work on improving or developing new algorithms. Novel
algorithms and methodologies need to be tested in a wide variety of scenarios
before being used in real applications. There are two approaches to face this
problem: a) using dataset collections captured from real applications or b) using
synthetic data created by dataset generators. As thoroughly explained in Section
2.2 there exist a variety of dataset generators. Even the MOA framework itself
offers some possibilities to generate own test data. However, most of these data
generators are either devised for very specific fields, like the SASE generator
[17], or they do not offer extensive control and configuration options to generate
a multitude of diverse and distinguishable datasets.

Hence, we propose MDCStream, a tool to generate multidimensional, time-
arranged data for testing stream data classification, clustering, and outlier
detection. MDCStream is highly configurable and offers maximum control
over the produced datasets. Additionally, to demonstrate the capabilities of
MDCStream, we selected the topic of outlier detection to test and evaluate a
set of relevant algorithms using our generated data sets.

1.3 Goals

The fundamental goals of this theses are:

e Develop a stream dataset generator: We developed MDCStream a
flexible tool to create test datasets for stream data analysis. MDCStream
is highly configurable enabling the user to create various scenarios for thor-
ough testing of clustering or outlier detection algorithms. The focus of
MDCStream lies on creating stream data test scenarios with different types
of concept drift. For more information refer to Sections 3.1, 3.2 and 3.3.

e Creating diverse test datasets: We created a collection of various
datasets implementing different types of concept drift and nonstationar-
ity challenges in order to analyze and compare stream outlier detection
algorithms. For more information refer to the Section 4.2.

e Evaluation of outlier detection algorithms: We used stream outlier
detection algorithms provided by MOA, a popular open source framework
for data stream mining and conducted tests with the datasets created by
MDCStream. The algorithms we analyzed are SimpleCOD, MCOD, Ap-
proxSTORM, ExactSTORM and AbstractC. The algorithms are explained

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.4

in more detail in Section 3.4. For the evaluation of the classification results
produced by MOA's algorithms we utilized various metrics. An overview of
the metrics is given in Section 3.5,

Methodology

To achieve our goals of developing a stream data generator and evaluating outlier
detection algorithms we did the following:

Refinement of MDCGen: MDCGen is an open-source tool to generate static
multidimensional clustering test data sets. Our first step was to refine MD-
CGen by fixing bugs, refactoring the code, improving configuration options
and increasing the overall user-friendliness.

Developing MDCStream: We created MDCStream, which is a highly con-
figurable tool, to generate multi-dimensional stream data sets with special
focus on nonstationarity and concept drift. MDCStream builds on MD-
CGen and takes static data generated by MDCGen and transforms it to
stream data by adding a time component to each instance.

MDCStream wrapper: We developed a wrapper for MDCStream to hide the
vast configuration possibilities behind an easy verbose configuration. The
wrapper simplified the task of generating data sets, as it automatically
generates multiple data sets using the verbose configuration as a basis.
Additionally, the wrapper supports transforming data to a format which is
necessary to run MOA's outlier detection algorithms.

Developing of MOA wrapper: To run experiments, we implemented a wrap-
per using MOA's public APl interface. The MOA wrapper enables us to
easily configure the classification algorithms and to automatically conduct
experiments using data generated with MDCStream.

Devising datasets: We designed a set of twelve different test scenarios
focusing on cluster movement, stationarity and inter cluster distances.

Automatic evaluation: Finally, we developed scripts for automatic analysis
of the classification results using a set of evaluation metrics proposed in
literature.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.5 Structure of the Thesis

A short overview of the thesis structure is given in the following list:

Section 1 gives an overall introduction and briefly summarizes the contents
of the thesis.

Section 2 gives a general introduction to the topic of stream data analysis
in Section 2.1. Then, an overview of state of the art dataset generators is
given in Section 2.2. Lastly, an introduction to the topic of outlier detection
is given in Section 2.3.

Section 3 gives a detailed description of what was done during the thesis
to achieve the above listed goals. First, all building blocks for MDCStream
are explained in the Sections 3.1, 3.2 and 3.3. Then the MOA framework
is described in Section 3.4 along with the configuration parameters for the
outlier detection algorithms we used to conduct our experiments. Finally,
the evaluation metrics we selected are explained in Section (3.5.

In the Section 4 the experiments are described in more detail. First the
datasets and their focus are presented in Section 4.2 and then the results
produced by MOA's algorithms are discussed in Section 4.4.

In Section 5 an overall conclusion for the thesis is given.
In Section 6 the references are listed.

Finally, in the appendix A some example Matlab scripts are provided.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2 State of the Art

Due to modern technologies and digitization more and more data gets gener-
ated and offers vast possibilities once it is analyzed and interpreted correctly.
Data analysis is becoming an increasingly important research field and topics like
stream data analysis, real-time analysis and big data are currently some of the
main challenges. In this section, we want to give a brief overview of the state of
the art of stream data analysis and the emerging topic of concept drift that is
gaining importance in recent times. Then, we will explore state of the art synthetic
dataset generators and real-life datasets in Section 2.2. Finally, we will focus our
attention on outlier detection algorithms and discuss various approaches to solve
this problem in Section 2.3.

2.1 Stream Data Analysis
2.1.1 Data streams

Definition of data streams:
A data stream is a potentially endless temporary ordered sequence of data points

cooy Pt—15 Pty P41y - (1)

whereas p represents a data point, object or instance and t the time stamp.
An object is a container holding various features. The number of features is
the dimension of the object and describe the properties of it. Data streams can
be characterized as a continuous flow of huge amounts of data points typically
incoming at a very high rate. A crucial characteristic of data streams is their
non-determinism or susceptibility to change. The overall distribution of incoming
data points may vary over time making classification more complex.

2.1.2 Difficulties working with data streams

Classifying data that arrives in an ever-changing stream is not an easy task. The
main reasons are [9]:

e Transient objects: Data points and their meaning concerning their current
state are transient. As time passes, data points become out of date and
need to be discarded. For the algorithm it is difficult to decide how long a
data point is relevant.

e Infinity of the stream: Incoming data streams are possibly infinitely long.
Many algorithms are developed that need the whole picture with all data

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

points before classifying the data. In stream data applications this prereq-
uisite cannot be met. Algorithms need to construct their proper model of
the data when not all data points have been analyzed. Using this model
algorithms are able to classify further data points.

e Arrival rate: Determining the nature of a data point, whether it is an
outlier or not, requires some computational effort and thus some time.
Depending on the arrival rate of the incoming data, computers running
the algorithms may be overloaded. Solutions using multiple workstations
to increase computational power may help, however additional effort needs
to be included in developing algorithms that support parallel computing.

e Concept drift: The overall image of the data may change over time. Old
and novel classes may emerge and clusters can change their shapes, place-
ment, and prominence, disappear slowly or abruptly, and also reappear.
The perception of outlierness during different time periods is also versatile.
Algorithms need to be able to assimilate the model of the data that they
create to overcome issues with concept drift. In the next Section 2.1.3
concept drift is more thoroughly explained.

e Uncertainty: A lot of data is available and produced that can be analyzed.
However, there is no guarantee that the data is complete and error-free.
Data may be missing, inconsistent or erroneous.

e Analysis cost: Both instance-based and model-based classification methods
face problems with analysis cost. Decisions and classifications need to be
provided on a timely basis requiring algorithms to quickly evaluate a large
amount of historical data.

2.1.3 Concept drift

During the task of stream data analysis there arises inevitably the problem that
one can never know the complete picture since the incoming data stream might
be infinitely long. A model has to be learned from a base dataset to be able to
make future predictions. The task of the analysis algorithm is the mapping of
the input data to a classified output value. Usually, this mapping is assumed
to be static, meaning that incoming data is always to be interpreted the same
way. However, in many cases this assumption is erroneous and the relationship
between input data and output value changes over time.

Concept drift refers to the changeability of the input data in unforeseen ways and
thus invoking the need to adapt the interpretation and mapping characteristics
of the classification algorithm. A major problem in many real-world examples

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

&
comets £ (0

is the so-called hidden context. Usually, there exists a hidden and indirect
dependency that may influence the distribution of the input data. A typical
example is weather prediction, where the season is not explicitly specified
in the temperature data, but may influence it. Another example is vacation
destinations over the years that are influenced by the safety statistics of countries
as hidden context. The cause of change is hidden and not known a priory to the
classification method making predictions much more complicated.

#8005 90088888
o | o8 B8 Se88888s

time
>

| coposseeoE88e8ss

reocurring 1 866886888688

time
3

r e

Figure 1: Types of concept drift. Image based on [36]

Through literature there are four main types of concept drift: sudden, gradual,
incremental and reoccuring contexts as depicted in Figure 1. Sudden concept
drift refers to an abrupt change in incoming data and this change remains. A real-
life example is a student who finishes his studies and starts to work and suddenly
his income increases abruptly. Gradual concept drift refers to changes in data that
are not abrupt but with a phase where both the old and new concept coexist.
An example would be the movement pattern of a student who starts working
part-time during his studies. After a while, the student increases the number of
hours in the company and finally starts working full time. Incremental drift is
similar to gradual whereas the two patterns do not coexist. There is a smooth
transition between the two phases. An industrial machine that slowly deteriorates
in performance and quality shows an incremental drift. Lastly, reoccuring drift
resembles contexts that alternate over time. Seasonal weather and temperature
with colder temperatures in winter and warmer in summer represent a valid
example. [41], [42]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.1.4 How to deal with concept drift

There are various possibilities to deal with concept drift and a brief overview is
given below [36] [37]:

Static model: Establishing a static model a priory and assuming that the
data stream is not changing. The static model may be used to detect
concept drift as the accuracy of the predictions drops.

Periodic re-fit: Periodically creating a new static model based on most
recent historic data.

Periodic update: Periodically updating the model using the static model as
a basis.

Instance weighting: Assigning a weight to data points depending e.g. on
the time stamp to be able to establish models considering the importance
and impact of data points. Older points have less ramification than more
recent ones for example.

Adaptive ensembles: Outputs of several models are compared and combined
to form an ultimate decision. The adaptivity is achieved through model
utilization, which rules from each model are considered for a decision at a
certain point in time.

Situational awareness: In some cases it may be possible for a system to
identify the type of incoming data and select one out of several predefined
models.

2.1.5 Data stream analysis use cases

In the following a list of examples for stream data analysis is given:

A web server that collects information about the visitors, the IP address,
date, time spent on the website and so on. Each visitor is a data point
and each information collected about them represents a dimension of the
dataset.

Sensors in various applications like transportation, vehicles or industrial
equipment collect and send data to a streaming application. The applica-
tion monitors performance, system health and various other matters and
invokes actions like informing personnel about failing equipment.

Network intrusion detection systems monitor the network traffic in pursuit
of unusual behavior.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

e Telecommunication companies monitor huge amounts of phone call data
which represent enormous sources of data that needs to be processed in
real-time.

e The stock exchange is a field where data analysis in real-time may come
in handy to be able to predict the market in the best possible manner.

e Solar power companies apply stream data analysis to monitor the panels,
schedule service time and minimize the periods of low power production.

e Online gaming companies collect stream data about player-game interac-
tion to enhance the gaming experience.

e In the field of health care, various applications are possible since patient
monitoring produces a vast amount of data which, if processed on a timely
basis, may produce alerts and save lives.

2.1.6 Stream data analysis vs time series analysis

Lastly, we want to mention the difference between stream data analysis and time
series analysis. A time series is a set of numerical measures of the same entity
taken at equally spaced intervals over time. The goal in time series analysis
is to detect and establish a pattern on which future trends can be predicted.
Stream data analysis, on the other hand, takes dataset features into account and
characterizes data based on shapes drawn in the input space. Data streams are
received over time and thus represent a time series in that sense. However, crucial
information in a data stream is not necessarily encoded as a time series but is
extracted by observing the correlation of dataset features. Furthermore, stream
data analysis is done while data is incoming, whereas in time series analysis
usually have the whole data set available for the evaluation.

2.2 Stream Data Generators

As described in the introduction, data stream generators are extremely im-
portant tools to help develop, test and evaluate classification algorithms. In
the following, we will give an overview of some existing stream dataset generators.

e MOA (Massive Online Analysis) is an open-source framework developed in
the University of Waikato, New Zealand, especially used for data mining
in evolving data stream scenarios. Among the outlier detection algorithms
that we use from MOA as described in Section 3.4, MOA also offers several

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

built-in data stream generators. RandomRBF generator is used to create
datasets containing clusters. A fixed number of clusters is created whereas
the center points get placed into the output space. Depending on weights
datapoints are assigned to a cluster center point with a certain deviation.
MOA offers additional functions like adding noise or creating concept drift
by merging two different streams. Additionally, MOA contains other data
stream generators to simulate various scenarios. A comprehensive list can
be found in [15]

SASE is an open-source system developed at the University of Mas-
sachusetts Amherst to perform pattern matching over data streams. For
their evaluation process, they implemented a simple stream data generator
mainly to simulate stock behavior. [17]

Ostinato is a network traffic generator useful for network load testing and
functional testing. Ostinato offers features to craft and send packets over
various protocols, rates and streams.

The AWS Kinesis Platform KDG (Kinesis Data Generator) generates data
streams for evaluating Amazons streaming device service Kinesis Streams or
Kinesis Firehouse. Kinesis collects log and event data from various sources
such as servers, desktops, and mobile devices and the test data generator
produces data containing such attributes. [19]

Similar to Amazons KDG faker.js is a generator of massive amounts of
realistic fake data in the browser and node.js. [20]

Anand Narasimhamurthy and Ludmila I. Kuncheva proposed a framework
to generate data simulating a changing environment in [21]. The algorithm
accommodates STAGGER and Moving Hyperplane generation strategies
and covers gradual changes, substitution, and systematic trends for data
generation. Unfortunately, we could not find any implementation online to
the data generator.

Huawei introduces an open software called streamDM for mining big data
streams. StreamDM includes various features and among them are some
stream dataset generators. The Hyper Plan Generator generates classifica-
tion problems based on rotating hyperplanes. The Random Tree Generator
generates data streams by splitting features randomly and constructing de-
cision trees. StreamDM offers a RandomRBF generator similar to the one
implemented by MOA and finally a Random RBF Events generator which
allows cluster movement and nonstationary behavior. [16]

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

e Patrick Lindstrom, Sarah Jane Delany, and Brian Mac Namee propose
an approach to generate real-life stream data with concept drift in [22].
They use a 3-D driving game to produce data on how to drive around a
track under various conditions. Classification algorithms learn the driving
technique of the driver.

e Different collections of datasets exist online and may be used for testing
and evaluating classification algorithms [23]. However, the quality and suit-
ability for testing dedicated algorithms are often questionable. For exam-
ple, testing outlier detection algorithms on labeled datasets may produce
faulty results because the dataset uses wrong features and therefore la-
beled outliers are no geometric outliers. Lets consider a dataset examining
documented cases of people having heart disease. Selecting features that
correlate and affect whether a patient has heart disease, e.g. age, diet,
alcohol abuse and so on would create a picture of the data where outliers
are visible geometrically, meaning a person who is young, has a healthy
diet and still suffers from heart disease would easily be spotted when the
dataset is plotted. However, the problem is that usually improper features
are added and outliers are no longer geometric outliers. Using the example
of heart disease, unsuitable features would be the patients eye color or the
patients height. Moreover, it may be difficult to find suitable datasets to
thoroughly stress test a proposed classification algorithm. Here a tool would
be more advantageous to device special corner cases to test the limits of
the algorithm.

There exist various dataset generators and datasets online. However, mostly those
generators are implemented for specific studies and not for general-purpose test-
ing. Most of the above-stated tools lack options to control the features of the
generated dataset like the number of dimensions, outliers or clusters, the abil-
ity to add concept drift, control cluster shape and overlap and so on. Likewise,
the suitability for evaluating classification algorithms using exclusively datasets
found online is questionable. Datasets might be faulty and not extensive enough
to thoroughly analyze a classification algorithm.

2.3 Qutlier Detection

Outlier detection is one of the most important research problems in data analy-
sis. It aims to find objects that are exceptional, dissimilar and inconsistent with
the rest of the dataset. A popular definition for outlier is given by Hawkins: "An
outlier is a data object that deviates significantly from the rest of the objects as
if it were generated by a different mechanism" [7].

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Outliers may appear in datasets due to various reasons, however, because of their
nature, they are very important to detect. Typically outliers will translate to some
kind of problem and applications range from intrusion detection, fraud detection,
system health monitoring, unauthorized access in computer networks, activity
monitoring, video surveillance, motion detection, medical condition monitoring,
and many more [8]. Furthermore, there are many different classes of outliers de-
pending on the context, e.g. local, global, contextual, collective, extreme values,
subspace to state a few. [9] [10].

First, we will first discuss requirements for a classification algorithm in Section
2.3.1 and give an overview of different solution strategies in Sections 2.3.2 and
2.3.3. Then, we will briefly discuss evaluation measures in Section 2.3.4 and focus
our attention to types of outlier detection algorithms in Section 2.3.5. Finally,
we will give an overview of MOA's stream outlier detection algorithms in Section
2.3.6.

2.3.1 Stream classification requirements

Before discussing some approaches to solve the task of classifying data streams,
we establish a set of requirements that classification algorithms need to fulfill
according to [43]

e Algorithms shall process one instance at a time
e Algorithms shall use a limited amount of memory
e Algorithms shall be capable to provide results and predictions at any time

e Algorithms shall be capable to react to concept drift and nonstationary
scenarios

2.3.2 Block vs online processing

Typically there are two approaches to deal with data streams: block and online
processing. Block processing processes groups of datapoints at a time as seen
in Figure 2. Online processing, on the other hand, updates the model and the
classification result after each data point see Figure 3.

Block processing is usually more memory efficient and online analysis allows
much faster reactions to change in data. Both methods have their advantages
and disadvantages, however, only the online processing fulfills the requirements
stated above and is suitable for analyzing data streams. [44]

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

000 000 000

Train model and Train model and Train model and
classify data classify data classify data

Figure 2: Block processing. Image based on [44]

Train and Train and Train and Train and Train and Train and
classify classify classify classify classify classify

Figure 3: Online processing. Image based on [44]

2.3.3 Data management

To manage memory consumption there are some approaches to reduce the
amount of data needed to establish a model. Additionally, for the analysis of data
streams typically older objects are less important than recent ones and should
contribute less to the evaluation. Most applications are interested in the most
recent behavior. Therefore, various models have been introduced to set relevant
data apart from outdated data. One approach is to decide based on each data
point whether it should be considered for the learning model or not. Depending
on the rules established, the learning model may be constructed e.g. based on
different importance of features. Data points with high score in some features
may be preferred to create a learning model. Another possibility may consider
the time stamp of the data points to construct the model. However, different
properties need to be implemented to decide whether a data point should be
considered or not and important data might be missed due to misconfiguration.

Probably the most common approach, which considers all data points, uses dif-
ferent types of windows. Data within a window is in some form relevant to the
classification algorithm. A window is a sequence of data points that are located
within the window boundaries which may be timestamps or simply a certain
number of most recent instances. The landmark window fixes different points in
the data stream and the analysis is only performed from the current data point
to the last landmark. In Figure 4 an illustrative example is given. The green
lines mark the landmarks and the rectangles are data points. The blue rectangles
mark data points that are considered for the current analysis. In the upper se-
quence, the algorithm performs the analysis for the three blue rectangles behind

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

the last landmark. The red rectangles mark data points that have not arrived
yet. As some time passes and the two red rectangles have arrived, the algorithm
performs another analysis as seen in the lower sequence in Figure 4. Only one
rectangle is considered for the analysis since it is the only data point behind the
last landmark.

Figure 4. Example of landmark window

In contrast to that the sliding window has a fixed size, either a time interval or
several data points and works on the principle of FIFO (first in first out). As new
data points arrive, the oldest ones are discarded as seen in Figure 5. The window
contains six data points and as the red rectangle arrives as a new point, the
oldest one gets discarded. To enhance the impact of the most recent instances
decay functions can be applied to the data inside the window. Most algorithms
use the step function as a decay function, whereas all instances located within the
window are of equal weight and the instances outside the window are ignored. [34]

|
Cl

Figure 5: Example of sliding window

2.3.4 Evaluation

There are some key measures to evaluate the quality of a classification algorithm,
namely:

e processing time,

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

e memory usage,
e prediction performance and
e capability to adjust to change in incoming data

The time to process an instance and the memory needed to do so should re-
main constant throughout the run time. Ideally, processing time and memory
usage should be minimized as much as possible to allow real-time usage of the
algorithm. However, those are simple measures to evaluate the performance of
a classification algorithm. Metrics used to evaluate the predictive performance
of classification algorithms are a bit more complicated to choose and evaluate.
A study on evaluation metrics for stream data algorithms can be found in [39].
Lastly, the ability to adapt to changes may be monitored by comparing the drift
reaction times of the algorithms. This is done by measuring the time between the
first occurrence of the drift to the change in the model. More elaborate methods
are discussed here [45]

2.3.5 Types of outlier detection techniques

Diverse techniques have been developed in the past years to detect outliers and
in this Section we are going to give a brief overview.

Statistical methods

Statistical outlier detection methods use probability or distribution models to
classify data [27]. Outliers are usually points with low probabilities. An example
would be a Gaussian distributed dataset. The standard deviation can be used as
a cut-off to identify outliers. Setting the cutoff to three standard deviations away
from the median encapsulates 99.7% of data, meaning that three outliers would
be expected in a dataset of 1000 datapoints that perfectly matched a Gaussian
distribution.

Statistical outlier detection distinguishes between two kinds of methods:

e parametric methods: assume the distribution mode a priory. The statistical
model can be build based on test datasets. In a stream data scenario, this
method is not reliable, since the underlying distribution of the data may
change over time.

e non-parametric methods: No assumptions are done and the model of the
data is learned from the input data. This method produces good results
when applied to data streams, although not for high dimensional datasets.

[9]

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Diverse statistical methods exist including approaches using distribution fitting
[28], plain statistics [29], regression techniques [30], histograms [31] and many
more.

Distance based methods

Distance-based methods detect outliers based on simple distance calculations
between the data points. Most commonly the distance is calculated to the k
nearest neighbors and outliers are data points with less than k neighbors within
a radius of R. [11]. In Figure 6 the black point in the middle of the circle is
considered an inlier if there are more than k neighbors within the circle indicated
as red points.

Figure 6: K-nearest neighbors

These methods offer good outlier detection and they do not need a priory knowl-
edge of the underlying dataset and are also applicable to data streams. For data
streams an additional parameter is introduced, the window size w. An outlier
is detected if less than k neighbors are located within a radius of R within the
current period w. [12].

However, these methods are not effective for high dimensional datasets as the
volume increases and the available data becomes sparse and dissimilar. This phe-
nomenon is referred to as the curse of dimensionality. [13].

A prominent example and one of the first distance-based outlier detection meth-
ods is DB(k,A)-Outlier. [24]

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Density based methods

Density-based outlier detection algorithms classify data points based on density
values which are obtained by k-nearest-neighbor queries. Hence, density-based
methods represent refined distance-based methods since densities are calculated
based on distances. For normal data points, the density values obtained are sim-
ilar while outliers produce significantly different results compared to its nearest
neighbors.

A popular density-based algorithm is the local outlier factor (LOF) which was
refined for data streams here [14]. Nowadays, many variants and improvements
exist for the LOF algorithm. [25], [26]

Density-based methods are more effective in detecting outliers, however, they
lack efficiency (are computationally expensive) and are more complicated than
distance-based methods. [9]. Both density and distance-based methods further-
more rely strongly on the initial configuration.

Clustering based methods

Clustering-based methods first discover clusters in the dataset and thereafter
extract outliers from the obtained result. Normal objects belong to clusters with
a defined density and are located in the proximity of the cluster centroid. Outliers
usually belong to sparse clusters far away from the determined cluster centroid.
[32] [33]

Clustering methods are used to group similar objects and therefore proposed
algorithms are not always suitable to detect outliers. Moreover, those algorithms
heavily rely on the configuration and may produce misleading outlier detection
results when analyzing datasets that do no fit cluster-like structures. [9]

2.3.6 Stream outlier detection algorithms by MOA

In the following an description of outlier detection algorithms provided by MOA
is given:

SimpleCOD

SimpleCOD [40] is a distance and sliding window based algorithm for continuous
outlier detection. The primary concern of this algorithm is to reduce the range
queries and storage consumption and thus improve the overall performance. To
achieve this, the framework takes advantage of the expiration time of objects
which are known during runtime since there is a fixed window size. Using these
predictions unnecessary computations and range queries are avoided.

SimpleCOD maintains two properties, a list containing all outliers and an event

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

queue, which schedules the necessary checks. The event queue holds all entries
of inliers which are not safe and thus may still change to become outliers.
Objects are put initially into this event queue with their corresponding expiration
time, meaning they will be checked when they expire.

Object arrival: When a new object arrives a range query is performed. For all
classified outliers that are found during this query, their respective succeeding
neighbor count gets increased by one and subsequently they are checked whether
they become inliers. In such a case that an outlier reaches the neighbor count
of k, it is inserted to the event queue with a respective event queue processing
time.

Furthermore, all inliers of the range query have their succeeding neighbor count
increased by one. Finally, the incoming object is either classified as an outlier
and is added to the outlier list, a safe inlier and is not added to any list or it is
a normal inlier and it is put into the event queue.

Object departure: When an object departs or expires the most recent instances
from the event queue are selected and checks are performed to see if their inlier
status has changed. During the check their parameters are updated and they are
classified as outliers or they remain inliers and are reinserted in the event queue.

To summarize, the event-based approach using the queue substantially reduces
the range queries and checks required and thus makes the algorithm more
efficient and applicable for stream data scenarios. Moreover, the event queue
may be optimized by selecting suitable types of queues.

The special novelty of SimpleCOD is that it takes into account varying k pa-
rameters while R remains fixed. Since R does not change, the neighbors of each
object remain the same and only the interpretation of whether an object is an
inlier or outlier changes with the k parameter. The algorithm is the same as de-
scribed above only multiple queries get performed with different k values. When
an object expires the check if an object is an outlier is performed throughout all
queries. Outliers are examined with a decreasing order of k and terminated as
soon as a query is found where the object is an inlier. When a new object arrives
again all queries are checked for a possible move of an outlier towards inlier set,
again with decreasing order of k.

MCOD

Micro-cluster-based Continuous Outlier Detection MCOD is an algorithm that
significantly reduces the amount of distance calculation for an arriving object.

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Inliers are grouped to form small clusters and the range queries do not need to
consider every data point but only cluster centroids. A micro cluster has to have a
minimum size of R/2 and a minimum amount of £+ 1 elements. Generally, there
are only dectszin—window \niero_clusters and an instance may have neighbors in

ot 1
various micro-clusters. The steps of the algorithm can be summarized as follows:

e Expired objects get discarded and the object counters of each microcluster
are updated.

e For each new object the closest micro cluster and all microclusters within
a range of 3R are detected.

e Depending on the distance of the closest microcluster there are two possible
steps:

— closer than }52: The new object gets assigned to the closest cluster
and the corresponding element count of the cluster gets increased.
Additionally, the distance between the new object and all data points
that are not contained in any cluster and have the microcluster of
the new data point within its %R distance is calculated. These points
may change to become inliers or stay outliers.

— farther than %: The object does not get assigned to a microcluster.
A range query is performed between the new object and all objects
that are not in microclusters and all objects that are within %R prox-
imity. If the number of neighbors exceeds a certain threshold a new
microcluster is formed with the new object as the center. Otherwise, if
none of the above is the case, an event queue queue-based algorithm

is applied.

e If the size of the microcluster shrinks below k+ 1 the cluster gets dissolved
and its objects are treated like the objects from the previous step.

Outliers are reported with the help of an event queue similar to SimpleCOD,
however, the event queue does not contain elements that are within microclusters
which significantly reduces the number of range queries.

ExactSTROM

The algorithm ExactSTORM consists basically of two procedures: the Stream and
the Query Manager. The Stream Manager receives incoming data and updates
the statistics and the Query Manager answers outlier queries.

ExactSTORM maintains the current window in an index structure called an I1SB,
the Indexed Stream Buffer. For more information about the ISB refer to section

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.4 of [4]. The ISB enables the query or the range query search to find neighbors
more efficient. Each node of the ISB represents a data object. Two parameters are
relevant for the algorithm, the counter neighAfter and the list neighBefore,
the former counting the succeeding data points within the radius of R and the
latter containing a list of preceding nodes that are still not expired.

The basic operation of ExactSTORM is described as follows:

e An incoming data point is associated with a node and a range query search
is performed in the radius R of the node. The search returns all preceding
neighbors of the current node and adds those nodes to neighBe fore. The
current node acts simultaneously as a succeeding neighbor to all neigh-
boring nodes already registered in the ISB and thus neighAfter of each
neighboring node gets incremented by one.

e Nodes that expire, are removed from the ISB. In other words, when the
ISB is full and contains w number of elements, a new incoming data points
is inserted while the oldest one is removed from the ISB.

e To determine if a data point is an inlier or outlier the sum of neighAfter
and not expired neighBefore has to be greater or equal to k.

ApproxSTORM

ExactSTORM keeps the whole ISB in the memory. Large window sizes may
exceed available memory resources making the algorithm not employable.
ApproxSTORM implements two approximations to reduce the amount of data
in the ISB and thus the amount of memory that needs to be allocated.

e Reducing ISB size: The nodes of the ISB can be categorized into inliers

and outliers. Among inliers are furthermore the so-called safe inliers which
will not belong to the group of outliers in any subsequent query. Safe inliers
are defined when the neighAfter count is larger than k.
In order to reduce the size of the ISB randomly selected safe inliers are
removed if the amount of safe inliers exceeds pI¥. The random selection
guarantees that safe inliers are distributed uniformly in the current window.
To answer queries outliers and non-safe inliers, which during the course of
the data stream might become outliers again, are maintained in the ISB.

e Reducing node size: Instead of storing a list of preceding neighbors for
each node, ApproxSTORM only stores a fraction consisting of the ratio
between the number of preceding neighbors of the current node in the ISB
which are safe inliers and the total number of safe inliers currently in the

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

ISB.

At query time the number or preceding neighbors has to be estimated.
This is done with the help of Equation 2, whereas the ratio is the fraction
described before, w is the window size, t is the query time and node Arrival
the arrival time of the data point.

neighBefore = ratio + (W — t 4+ node Arrival) (2)

To determine outliers the sum of neighBefore and neighAfter has to
be greater or equal to k.

More information about ApproxSTORM and ExactSTORM can be found in [4].

AbstractC

AbstractC works similar to ExactSTORM only that it does not keep the exact
indices of the preceding nodes, but a count of neighbors. Every data point that
is received has by default an expiration date which depends on the window size.
With this expiration date, it is possible to keep track of the exact neighbor count
for each data point without keeping lists of node indices and thus reducing the
amount of needed memory and range query searches.

Lets take a look at an example: Node A will expire within three increments and
its lifetime neighbor count look is It cnt = (Incl : 3/Inc2 : 2/Inc3 : 0). Node
A has currently 3 neighbors as stated at Incl. On the next increment, one of
node A’s neighbors will expire and thus node A will have only two neighbors
and so on. With the lifetime neighbor count, we have an exact overview of
whether a node is an outlier or not. Upon inserting a new node B that is a
neighbor of node A, the lifetime neighbor count of node A gets increased by 1
It _ent = (Incl : 4/Inc2 : 3/Inc3 : 1). Node B has its own It cnt which is
constructed based on the expiration dates of its neighbors upon insertion.

More information about AbstractC can be found in [5].

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3 Methodology

To perform thorough testing of classification algorithms allowing the developer to
investigate various corner cases and configurations, we developed MDCStream,
a tool capable to generate multidimensional stream datasets with special focus
on concept drift and nonstationarity. MDCStream builds on MDCGen, which is
a standalone tool to create static multidimensional clustering datasets and is de-
scribed in Section 3.1. MDCStream takes the output produced by MDCGen and
creates complex stream data test scenarios as described in Section 3.2. MDCGen
and MDCStream are two highly configurable modules that produce multidimen-
sional stream test datasets for classification algorithms. To hide the complexity of
the vast configuration possibilities offered, we built a wrapper that encapsulates
the two modules and offers easy configuration, see Section 3.3.

To conduct our experiments we used stream outlier detection algorithms provided
by the popular open-source framework MOA. An insight into how the algorithms
work was given in Section 2.3.6. An overview about the MOA wrapper and the
algorithm configuration parameters is given in Section 3.4. Finally, we chose dif-
ferent metrics to evaluate the performance of algorithms as described in Section
3.5.

3.1 Description of MDCGen

MDCGen or Multidimensional Dataset Generator for Clustering is a tool to gen-
erate multidimensional datasets to test and evaluate unsupervised classification
algorithms. It allows high-flexibility in configuration to create datasets with clus-
ters in different shapes using various underlying distributions. Some of the fea-
tures MDCGen offers are high configurability of cluster shapes, cluster separation,
overlap and compactness, cluster rotation, correlation and the addition of outliers
and noisy features.

During the course of the thesis, we developed MDCGen v2.0 based on the initial
version v1.0 [6]. The major goal was to increase user-friendliness and readabil-
ity of the code since it is open source and anyone should be able to use and
adapt it to their special needs. The first major improvement was to refactor the
whole code according to the Matlab Style Guide as proposed by Richard John-
son [1]. Furthermore, the code in v2.0 is modularized into separate functions
to enhance test-ability. The configuration of MDCGen has been improved to in-
crease user-friendliness as thoroughly explained in Section 3.1.2. During the code
overhaul, various bugs were detected and fixed, see Section 3.1.4. Finally, missing
requirements were added and written according to ANSI/IEEE Guide to Software
Requirements Std 830-1984 [2] in Section 3.1.1.

In this section we are going to discuss MDCGen v2.0 in more detail and the

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

improvements over v1.0 that were done during the course of the thesis.

3.1.1 MDCGen Requirements

The requirements for MDCGen were refactored according to ANSI/IEEE Guide
to Software Requirements Std 830-1984 [2]. Furthermore, they are grouped
based on different topics and are listed in the Tables from 1 to 5.

For clarification of vocabulary used a glossary is provided in the following:

e The tool: The tool refers to the MDCGen algorithm.

e Datapoint: Is a point in multidimensional space defined with its coordi-
nates.

e Dataset: Is a group of data points.
e Centroid: Reference point for cluster placement in the dataset.

e Cluster: Is a group of points whose distribution in the space is defined by
one or many distribution functions.

e Distribution function: |s a statistical function that describes the possible
likelihoods of data points being placed at a specified position.

e Noisy dimension: Dimension where data points are distributed uniformly
on a large scale.

e Qutlier: Point that does not belong to a cluster.

e Offline adaptable: Parameters for the program execution defined before
the execution of the program.

e Isometry: Is a distance preserving transformation of the given data. (ro-
tation)

e Multivariate: The distribution function is applied on data points indepen-
dently for each dimension.

e Radial based: The distribution function describes dataset positions in
regard to centroids.

e Space: Space is a region or scope consisting of all dimensions that are
configured.

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

e Subspace: Is a space with a selected number of dimensions less than the
total amount of dimensions configured.

Num Title Requirement

GEN-RO001 | Reproduce datasets Output datasets shall be reproducible
based on a random generator using a
configurable seed.

GEN-R002 | Dataset dimensions The tool shall generate output datasets
with 2 up to 200 dimensions. Note:
More dimensions are possible depend-
ing on the hardware.

GEN-R003 | Number of data points | The number of datapoints of the out-
put dataset shall be offline adaptable.

GEN-R004 | Number of outliers The tool shall be capable to add an

offline adaptable number of outliers to
the dataset.

Table 1: Requirements for the number of output datapoints

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Num Title Requirement

GEN-R005 | Number of clusters | The number of clusters in the output
dataset shall be offline adaptable.

GEN-R006 | Cluster mass The tool shall offer the possibility to spec-
ify an offline adaptable the number of dat-
apoints per cluster.

GEN-R007 | Cluster isometries | The tool shall offer functionality to gener-
ate isometries on selected clusters indepen-
dently.

GEN-R008 | Noisy dimensions The tool shall offer capability to incorpo-
rate an offline adaptable number of noisy
dimensions in the output datasets.

GEN-R009 | Cluster correlation | The user shall be able to adapt offline cor-
relation among cluster dimensions.

Table 2: Requirements for cluster properties

Num Title Requirement

GEN-R010 | Cluster shape distribution The tool shall offer the pos-
sibility to select between six
default distribution functions
that determine the shape of
clusters.

GEN-RO11 | User defined distribution The tool shall offer the pos-
sibility for user defined distri-
bution functions that deter-
mine the shape of clusters.

GEN-R012 | Mutivariate/Radial cluster shape | The user shall have the possi-
bility to select offline between
multivariate or radial based
cluster shapes.

GEN-R013 | Randomization for distributions | The tool shall be capable to

randomly select distribution
functions per cluster.

Table 3: Requirements for cluster shape

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Num

Title

Requirement

GEN-R014

Cluster overlap

The cluster overlap shall be of-
fline adaptable.

GEN-RO015

Cluster overlap in subspaces

The tool shall be capable to gen-
erate clusters that are indepen-
dent in overall space, but over-
lapping in subspaces.

GEN-R016

Cluster noisy in overall space

The tool shall be capable to gen-
erate clusters in subspaces that
appear noisy and non clustered
in overall space.

Table 4: Requirements for cluster overlap

Num

Title

Requirement

GEN-R017

Output dataset

The tool shall generate an output
dataset with datapoints represented
by their coordinates.

GEN-R018

Labeled cluster datapoints

The output datapoints belonging to
clusters shall be labeled according
to cluster membership.

GEN-R019

Labeled outlier datapoints

The output datapoints considered
as outliers shall be labeled as out-
liers.

GEN-R020

Validity check

The tool shall offer a validity check
containing performance indices for
the generated output dataset.

GEN-R021

Output file format

The tool shall save the output re-
sults in a .mat file format.

Table 5: Requirements describing the output

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

3.1.2 MDCGen Architecture

The principal structure of MDCGen is depicted in Figure 7. MDCGen takes a
dedicated user configuration as an input and creates an output dataset with
the desired properties. In the following paragraphs we will illustrate the steps
necessary more comprehensively.

user configuration B‘—__

[createMDCGenCcnfiguratiun)

insertCentroids

(insenclusterPnints)

insertOutliers

output dataset

Figure 7: MDCGen Architecture

Create MDCGen Configuration

The first step of MDCGen deals with the configuration provided by the
user. Consistency checks are performed and wrong input parameters generate
errors and exit the program with dedicated error messages. In addition to the
consistency checks, default values are assigned to configuration parameters
not provided by the user. Once finished the user configuration is translated
to a MDCGen configuration. This translation is necessary to enable an easier
and more user-friendly interface to configure the desired dataset to be generated.

During this first phase of MDCGen, a grid is calculated to act as an anchor to
place the clusters and outliers in later stages. Cluster and outlier placement is
a crucial task for the generation of datasets and has a big impact on classifier
performance. Distances between clusters need to be configurable and it must be
assured that outliers are not placed on spots already taken by clusters. To solve
this task a grid for every dimension is calculated based on Equation 3. Every

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

intersection of the grid acts as a possible spot to place a cluster or an outlier,
except for the intersections at the very border of the space. Every dimension is
divided by «; equidistant hyperplanes.

nClusters n nQutliers] (3)
In(nClusters) — In(nOutliers)

«; depends on both, the number of clusters nClusters and the number of out-
liers nOutliers to ensure enough grid intersections. C; represents a configurable
constant to enable the user a possibility of adjustment. Additionally, o;; may be
configured directly by the user to control exactly the number of possible positions
to place clusters or outliers.

a; =2+ C;*x[1+

1
09 -
08 -
0.7
06 -
05 | .
04 -
03 |
0.2 |

0.1 -

0

I I I I]
0 0.2 0.4 0.6 0.8 1

Figure 8: MDCGen cluster centroids on grid intersections

Insert Cluster Centroids

A cluster consists of a collection of data points that are close together concerning
their euclidean distance. Clusters are placed in the output space on a grid inter-
section which calculation was described before. To position the clusters, anchor
data points, the cluster centroids, are used, which represent the center of a clus-
ter. These centroids are placed at random on a grid intersection as seen in Figure
8. In this example nine clusters are placed directly on the grid intersections. In
the next step, the centroids are shifted by a random factor in the proximity of
the grid intersection to smooth the cluster alignment as seen in Figure 9. An
intersection may only contain one cluster centroid or one outlier, which in terms
assures that there is no cluster overlap and no grouping of outliers.

In scenarios using multidimensional spaces with a large number of dimensions,
an one-dimensional indexing to place clusters may become unfeasible. To avoid
performance issues, Equation 4 is performed before the actual insertion of cluster

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

centroids. Based on the number of clusters a subset of base dimensions is se-
lected containing enough intersections to place all centroids. Thus, in a subspace
of the final output space, no cluster overlap is guaranteed and the remaining
dimensions are filled at random.

.
09 |
08 |
07t
06 |
05 | : : .
04 |
03 |
02|

0.1

0

0 0.2 0.4 0.6 0.8 1

Figure 9: MDCGen cluster centroids deviated from grid

Outli
baseDimensions = 2 x nClusters + ntsutteers 4)
nClusters

Insert Cluster Points

After determining where the clusters ought to be placed, the next step is to
create the actual point cloud and put it on the desired location in the output
space. MDCGen offers various configuration possibilities for the shape of the final
cluster point cloud. The user may select one of six distribution functions or define
an individual distribution function. The six supported functions are:

e Uniform,

e Normal,

Logistic,

Triangular,

Gamma and

Ring shaped.

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

0.9

0.8 |

0.7 |

06 [

0.5 |

0.4

0.3 |

0.2 |

0.1 |

Figure 10: Various cluster shapes defined by distribution functions

09 -
08
07 -
06 |-
05 -
04
03 -

02

0.1

Figure 11: Multivariate vs radial cluster shape

These distribution functions define the allocation of data points in the point
cloud as seen in Figure 10. In addition to those functions, the cluster shape may
be multivariate or radial based. Multivariate meaning a distribution function is
applied to each dimension of the cluster independently.

A radial-based configuration allocates the data points based on the selected
distribution in the vicinity of the cluster centroid. MDCGen uses the following
steps to create a radial based distribution:

e Generate Gaussian distributed points per dimension.

e Normalize those points to the same distance to cluster centroid forming a
n-sphere.

e Apply the selected distribution function to shift each data point.

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

An example to illustrate the output of a radial based distribution using a uniform
distribution function for each dimension is shown in Figure 12. The expected
outcome is a circular cluster with a cone-shaped density distribution of data
points. In the center of the cluster the density is large decreasing constantly as
the radius increases.

Figure 12: Radial based uniform cluster from MDCGen v2.0

Further steps are done to transform the data during this phase depending on
the user configuration. The cluster point clouds might be rotated, a correlation
factor might be applied or noise added to certain dimensions. [6]

Finally, the cluster point clouds are inserted into the output space by a simple
vector addition between the cluster point cloud and the cluster centroid that was
already placed in the output space.

Insert QOutliers

The insertion of outliers works analogous to the insertion of cluster centroids.
Free grid intersections are selected at random and the outliers are placed and
shifted by a random amount.

3.1.3 MDCGen Configuration

MDCGen offers high-flexibility to configure the desired output dataset. In this
section we are discussing the features offered by MDCGen.

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Input configuration parameters

The configuration of MDCGen v2.0 was adapted to increase the user-friendliness.
A list of all parameters is provided below.

seed: [scalar] The seed for the random number generator to allow dataset
reproducibility.

nDimensions: [scalar] The number of dimensions in the output dataset.

nDatapoints: [scalar] The number of cluster data points in the output
dataset.

nOutliers: [scalar] The number of outliers to be added to the output
dataset. The total amount of output datapoints is the sum of nDatapoints
and nOutliers.

nClusters: [scalar] The number of clusters in the output dataset

clusterMass: [array] The number of data points per cluster. The length
of the clusterMass vector has to be equal to nClusters.

minimumClusterMass: [scalar] The minimum amount of points that will
be assigned to a cluster.

alphaFactor: [scalar, array] alphaFactor is the C; in Equation 3. If provided
as a scalar alphaFactor is applied to all dimensions and as an array for each
dimension independently.

alpha: [scalar, array] This property sets « from Equation 3 directly. As a
scalar it is applied to all dimensions and as an array for each dimension in-
dependently. If both alphaFactor and alpha are configured, alpha overwrites
the alphaFactor.

scale: [scalar, array| Scales the cluster compactness. As a scalar scale is
applied to all clusters and an array for each cluster independently.

distribution: [scalar, array, matrix] This property configures the distribu-
tion used to generate cluster data points. There are six default distribu-
tions available (1) Uniform; (2) Gaussian; (3) Logistic; (4) Triangular; (5)
Gamma; (6) Ring Shaped and additionally the user may provide own dis-
tributions.

Configured as a scalar the distribution is used for all clusters and dimen-
sions. Configured as an array the distribution will be used per cluster and

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

if provided as a matrix each cluster dimension may have an individual dis-
tribution. If this property is set to zero then MDCGen randomly chooses a
distribution function.

distributionFlag: [array] It is a flag to enable or disable distributions. The
length of the array has to be the same size as distributions are available.
Without any user distributions, the length is six. (1) enables a distribution
and (0) disables a distribution.

multivariate: [scalar, array] Setting multivariate to (-1) the distribution
will be applied to clusters radial based. Setting multivariate to (1) the
distribution will be applied to clusters in a multivariate way. (0) randomizes
this decision.

Configured as a scalar the value is valid for all clusters and as an array,
each cluster may have an individual configuration.

correlation: [scalar, array] Sets the correlation. Configured as a scalar
correlation is applied to all cluster dimensions and as an array for each
cluster dimension independently.

compactness: [scalar, array| This value determines the variance compo-
nent for the distribution functions. Configured as scalar compactness is
applied to all cluster dimensions and as an array for each cluster dimension
independently.

rotation: [scalar, array] Is a flag to enable or disable a rotation by a random
amount. Configured as a scalar all clusters are rotated and as an array, only
clusters with the rotation flag enabled are rotated.

nNoise: [scalar, array, matrix] This property adds noise to the dataset. If
configured as a scalar is determines how many dimensions will be noisy. If
configured as an array the values mark which dimension of the dataset will
be replaced by noise and if provided as a matrix the dimensions of each
cluster may be replaced by noise independently.

validity: [scalar] It is a flag to enable the validity check

Silhouette: [scalar] Enable Silhouette validity check

Gindices: [scalar] Enable Gindices validity check
userDistribution: Additional user distributions may be defined. UserDis-
tribution is a struct with two elements:

binProbability: [array] The probability that values lie within a certain
bin. The sum of these probabilities has to be equal to 1.

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

edges: [array] The edges of the bins in a range from -1 to 1. The
length of the edges vector needs to exceed the length of the binProbability
by one.

MDCGen Output

The MDCGen output is a Matlab struct object containing the following elements:

e dataPoints: [matrix] It contains all generated datapoints. Each row rep-
resents a datapoint and each column a dimension.

e label: [array| It contains the label for each datapoint. The label is either
zero if the datapoint is an outlier or a positive nonzero number indicating
that the datapoint belongs to a cluster. Clusters are randomly numbered
during creation and data points belonging to a cluster are given the corre-
sponding cluster number.

e perf: A struct containing the performance information.

3.1.4 Improvements done during Thesis

In this section we are going to list all the improvements and bug fixes done from
MDCGen v1.0 and their respective solution for v2.0.

Radial based distribution bug

MDCGen v1.0 generates radially based distributed clusters using the following
steps:

1. Generate uniformly distributed points per dimension.

2. Normalize those points to the same distance to cluster centroid forming a
n-sphere.

3. Apply the selected distribution function.

Selecting, for example, a uniform distribution the expected outcome should be a
cone-shaped cluster meaning many points in the middle and a decreasing sparsity
towards the cluster borders. V1.0 does not achieve this requirement as clearly
visible in Figure 13.

Using uniform distributions to generate points per dimension as proposed in
step one does not produce a n-sphere with points uniformly distributed along
the surface in step 2. At about 45 degrees there are more points located than
at 0 or 90 degree and therefore a cross-shaped distribution emerges as seen in

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

Figure 13: Radial based uniform cluster from MDCGen v1.0

Figure 13. To solve this issue the generation process had to be adapted slightly
as proposed by [3] using a Gaussian normal distribution to generate the points
in step 1 instead of a uniform distribution. Using this approach the points on
n-sphere produced in step 2 are uniformly distributed along its surface resulting
in a beautiful cone-shaped cluster as seen in Figure 14.

Figure 14: Radial based uniform cluster from MDCGen v2.0

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Number of Intersections bug

1. Outliers are grouping to form unwanted clusters:

In MDCGen v1.0 artificial clusters could be formed by configuring many outliers
as seen in Figure 15.

11 ¢

1k
09 r .:-:v-'. .
08 r
0.7 r
06 |
05 -
0.4

03 |

0.2 |

0.1

0 0“2 O.‘4 O.‘G 0,‘8 1‘ 1 .‘2
Figure 15: Outliers forming artificial clusters

To reproduce the problem using MDCGen v1.0 the following configuration should
be used:

p.M = 2000; // in v2.0 nDatapoints
p.-k = 2; // in v2.0 nClusters
p.out = 1000; // in v2.0 nOutliers

In MDCGen v1.0 for nintersections the name cmax is used. Cmax was calcu-
lated using the Equation 5 from [6] whereas k represents nClusters. The flaw
however is that this equation only depends on the number of clusters.

k
ln(k:)] (5)

A problem may arise if many outliers are configured. The resulting value for cmax
or nintersections would be too small to fit all outliers and "artificial" clusters may
form from these outliers grouping around those few available intersections as seen
in Figure 15.

To solve this problem Equation 5 was adapted to form Equation 3 as described
in Paragraph Insert Cluster Centroids 3.1.2. The new equation has a dependency
on both, number of clusters and the number of outliers. The output dataset

a; =2+ Cix[1+

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

09 |° J3a® Tes
DRI S
08 [, oF %
078 e
06 " "
05 .2
.
04 |
03 el
02 |7 ¢

01 Rt

Figure 16: Outliers do not form clusters

produced with the adapted equation is displayed in Figure 16. Outliers are spread
over the output space and do not form artificial clusters.
2. Problems with alphaN

The configuration options for alphaN were defined ambiguously in v1.0. Config-
uring alphaN as a positive number would set it to be the constant C' in Equation
5. Configuring a negative alphaN would set the value for « in Equation 5 directly.
Two different properties are mixed in one configuration value.

To solve this issue there are two configuration parameters in v2.0.

e alphaFactor: representing the C' constant from Equation 5.

e alpha: sets « directly from Equation 5.

Furthermore, the code calculating the number of intersections produced an error
using the following configuration in MDCGen v1.0:

p.k = 1; // in v2.0 nClusters
p.out = 1; // in v2.0 nOutliers
p.alphaN = 1; // in v2.0 alphaFactor

Setting the alphaN or the alphaFactor to 1 limits the number of intersections
and thus possible spots for clusters and outliers. In MDCGen v1.0 there was
no mechanism to resolve this issue. All these bugs were solved by adapting the
formula and making changes to the code. The new code solving this bugs is
located in the calculateN Intersections.m file.

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

MinimumClusterMass bug

In MDCGen v1.0 is a bug regarding the km which was renamed to minimum-
ClusterMass in MDCGen 2.0.

This property sets the minimum amount of data points allocated per
cluster.
To reproduce the bug set:

p-M = 200; // in v2.0 nDatapoints
p-k = 4; // in v2.0 nClusters
p-km = 50; // in v2.0 minimumClusterMass

In this example 4 clusters would each have 50 data points whereas exactly 200
data points are available to distribute. MDCGen v1.0 gets stuck in a endless loop
using this configuration trying to redistribute the data points. The bug was fixed
for v2.0 and the code is located in the file setClusterMass.m.

Rotation bug

According to the definition of configuration parameters in [6] rotation can be
configured as a scalar to be applied to all clusters or as an array to be applied to
each cluster individually. In MDCGen v1.0 the feature to configure rotations for
clusters individually did not work at all and was fixed for v2.0.

Ambiguous configuration for nClusters

The parameter k from MDCGen v1.0 was defined ambiguously. Configuring k as
a scalar defines how many clusters the dataset should contain and if defined as
array each value represents the datapoints per cluster. The number of clusters
was determined by the length of the array.

To increase user-friendliness for MDCGen v2.0 this ambiguity was split into the
following parameters:

e nClusters: [scalar] The number of clusters.
e clusterMass: [array| The number of datapoints per cluster. The length of
clusterMass has to match nClusters.
Correlation bug

MDCGen v1.0 throws an error when the correlation is configured. The bug arises
due to poor naming of variables using only single letters. In the code p gets over-
written by a function calculating the correlation. However p is used as the struct

40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

containing configuration. Therefore, the following code runs into an exception,
because the configuration is overwritten during the program execution.

In MDCGen v2.0 this bug is fixed using proper naming according to Matlab Style
Guidelines [1].

DistributionFlag bug

MDCGen v1.0 throws an error if the dFlag and d are set to zero. Setting d
to zero means that the distribution can be selected randomly by the algorithm.
However, by setting the dFlag to zero all available distributions are disabled and
an exception occurs.

In the new version 2.0 d is renamed distribution and dFlag is distribution-
Flag. The distributionFlag is configured only as an array and sets the availability
of distributions. The distributionFlag has to have the same size as the number
of available distributions. This property is only used if a distribution value is set
to randomization (0).

Noise Bug

nNoise can be configured as a scalar, array and a matrix. Configured as an array
each value represents a dimension to be replaced by noise. In v1.0 there was no
border check e.g. if 3 dimensions are configured for the dataset the noise could
add more unwanted dimensions if configured so.

In v2.0 noise is defined as follows:

e scalar: Depending on the value existing dimensions are replaced with noise.
The value has to be smaller than nDimensions.

e array: The values of the array explicitly state which dimension will be re-
placed with noise. The values have to be smaller than nDimensions.

e matrix: Same as an array but for each cluster independently.

Rotation overwritten by noise

Classified as a known issue for v2.0 rotation applied to clusters is overwritten
if noise is configured. Noise is added to the data after rotation is applied and
therefore noisy clusters are not rotated.

Adaptions

The renaming of the configuration variables increases the user-friendliness
drastically. Moreover, proper error messages are implemented in v2.0 to help the

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

user understand possible configuration errors.

3.2 Description of MDCStream

In order to create a stream dataset to test outlier detection algorithms we created
MDCStream as an extension to MDCGen. MDCStream takes the output data
created by MDCGen and adds a stream data label to each data point. In the
following sections, we will discuss the functionality of MDCStream in more detail.

3.2.1 MDCStream Requirements

The requirements for MDCStream are written according to ANSI/IEEE Guide
to Software Requirements Std 830-1984 [2]. Requirements are grouped based
on different topics and are listed in the Tables from 6 to 10.

For clarification of vocabulary used a glossary is provided:

e The tool: The tool refers to the MDCStream algorithm.

e datapoint: Is a point in multidimensional space defined with its coordi-
nates.

e dataset: Is a group of data points with their respective cluster membership
label.

e cluster: Is a group of points whose distribution in the space is defined by
one or many distribution functions.

e sampling time: Time value for each data point representing the absolute
point in time the data point occurs.

e time between samples: Time that passes between the occurrence of two
samples.

e distribution function: Is a statistical function that describes the possible
duration of time between samples.

e stationary process: The global drawing of clusters does not change over
time.

e nonstationary process: The global drawing of clusters changes over time.
Clusters might appear or disappear as time passes.

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

e stream data label: The label containing the sampling time of a data

point.

e stream dataset: A dataset consisting of data points represented by their
coordinates, labels for cluster membership and stream data labels.

Num

Title

Requirement

STR-R001

Stream data label

The tool shall add an integer
to every datapoint of an input
dataset to simulate a times-
tamp.

STR-R002

Constant time between sam-
ples

The tool shall be capable to
add constant time between
samples.

STR-R003

Distribution function

The tool shall offer the possi-
bility to select between five de-
fault distribution functions that
determine the amount of time
to pass between samples of the
dataset.

STR-R004

Distribution function per clus-
ter

The tool shall offer the possi-
bility to select between five de-
fault distribution functions that
determine the amount of time
to pass between samples of the
same cluster.

STR-R005

Simultaneous time samples

The tool shall generate an of-
fline adaptable percentage of
samples having the same times-
tamp.

STR-R006

Maximum number of simulta-
neous time samples

The user shall be able to con-
figure a maximum number of
consecutive samples having the
same timestamp.

Table 6: Requirements describing the time samples

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Num

Title

Requirement

STR-R007

Reproduce datasets

Output datasets shall be reproducible
based on a random generator using a
configurable seed.

STR-R008

Stationary

The tool shall allow stationary pro-
cesses. This means the global drawing
does not change over time. Clusters are
visible throughout the whole simulated
time.

STR-R009

Nonstationary

The tool shall allow nonstatoinary pro-
cesses. This means the global drawing
changes over time. Clusters may appear,
disappear or remain as the simulated
time advances.

STR-R010

Number of datapoints

The tool shall allow configuring number
of datapoints for the stream dataset.

STR-RO11

Refill clusters

The user shall be able to configure the
clusters used as datapoint source to re-
fill the dataset when number of samples
exceeds number of input datapoints.

STR-R012

Refill dataset

The user shall be able to configure all
clusters as a datapoint source to refill
the dataset when number of samples ex-
ceeds number of input datapoints.

Table 7: Requirements for dataset properties

Num

Title

Requirement

STR-R013

Cluster start time

The user shall be able to
configure a start time for
each cluster.

STR-R014

Start after another cluster finishes | The user shall be able to

configure cluster to start se-
quentially. This means the
cluster start time is set to
be equal to the cluster end
time of another cluster.

Table 8: Requirements for cluster start time

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Num Title Requirement
STR-R015 | Cluster movement | The tool shall be capable to change the co-
ordinates of the input dataset to allow clus-
ter movement over time.
STR-R016 | Movement speed | The user shall be able to configure how fast
the input clusters are moving over time.
STR-RO17 | Direction change | The tool shall allow changes in the direction
of the cluster movement.
Table 9: Requirements for cluster movement
Num Title Requirement
STR-R018 | Input dataset The input dataset shall consist of
e a matrix containing the data point co-
ordinates
e a vector containing the labels for each
datapoint indicating cluster member-
ship
STR-R019 | Output dataset The output dataset shall consist of:
e a matrix containing the data point co-
ordinates
e a vector containing the labels for each
datapoint indicating cluster member-
ship
e a vector containing the stream data
label
STR-R020 | Output file format | The tool shall save the output results in a

.mat file format.

Table 10: Requirements describing the input and output

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.2.2 MDCStream Architecture

The principal structure of MDCStream is depicted in Figure 19. MDCStream
takes as an input the user configuration and the output dataset generated by
MDCGen and produces a stream dataset.

user configuration B] ? mdcgen data set B}

(createMDCStreamCunfiguratiun)

¥

(calcuIateTimeBetweenSamples)

[addSimuItaneousSamples)

refillDataPoints

¥

[createMuuingClusters)

output stream data set D?é

Figure 17: MDCStream Architecture

Create MDCStream Configuration

Similar to MDCGen, MDCStream takes a user configuration, validates the in-
put parameters and outputs dedicated error messages to help the user correctly
configuring the system. After this parameter check, MDCStream initializes pa-
rameters not configured by the user with default values and translates the user
configuration into a MDCStream configuration.

Time Between Samples

The next step as per Figure 19 is to add time between samples to the data
points thus creating the time label. MDCStream offers five distribution functions
to create the time between samples:

e Uniform,

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Normal,

Logistic,

Triangular and

Ring shaped.

In addition to the distribution function, MDCStream differs between two types
of output datasets, namely stationary and nonstationary. Stationary time distri-
butions create an output dataset where the global drawing of the data does not
change over time. In other words considering the timestamp, clusters that are
visible at the beginning of a dataset, are visible throughout the whole duration of
the dataset. An example would be the network traffic observed on a node when
the communication is stable. Regarding the time to live of the packets, observed
time to live does not change as time passes. The distribution drawn by the time
to live values remains stationary.

Nonstationary time distribution creates datasets where the global drawing does
change over time. Thus, clusters might be appearing or dispersing in the course of
the simulated time. Regarding the example given above, a network attack might
trigger a nonstationary distribution, where suddenly a lot of traffic is received
from another source address.

In Listing 1 the pseudocode for creating time between samples for the nonsta-
tionary case is summarized. First, the time between samples is calculated for
each cluster independently. In the next step clusters are shifted in time, meaning
that certain clusters will not appear until the simulated time of the dataset has
reached a certain point. Another possibility for the nonstationary case is to shift
the cluster times in a way that they appear sequentially.

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

©O~NOOT WN -

FOR each cluster

randomly mix cluster points

calculate timeBetweenSamples based on distribution functions
END FOR
SET streamDatalabels as the cumulative sum of timeBetweenSamples
% shift time samples by a start time
SET ClustersToAdaptTimestamp TO first cluster
WHILE ClustersToAdaptTimestamp exists

SET currentCluster To ClustersToAdaptTimestamp

IF currentCluster has previousCluster

SET previousClusterEndTime TO end time of previousCluster
END

ADD StartTime AND previousClusterEndTime TO streamDatalabels of
currentCluster

SET ClustersToAdaptTimestamp TO next cluster in queue
END WHILE

SORT all data points per streamDatalabels

Listing 1: Non stationary time between samples

Simultaneous Time Samples

Another feature of MDCStream is the possibility to configure a percentage of
simultaneous timestamps to be able to test how classification algorithms cope
with simultaneously incoming data points. To generate simultaneous instances
MDCStream simply creates data points whose timestamps are identical. In the
Listing 2 the code is summarized that creates simultaneous timestamps. Two
configuration values determine the simultaneity, the percentage of simultaneous
data points in the dataset and the number of consecutive simultaneous data
points.

48

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

©O~NOOT WN -

SET timeBetweenSamples of random dataPoints to ZERO
SET consecutiveSimultaneousCount to ZERO

WHILE NOT done

SET done TO TRUE
FOR each dataPoint

IF timeBetweenSamples EQUALS ZERO
INCREMENT consecutiveSimultaneousCount
IF consecutiveCount BIGGER THAN maxConsecutiveSimultaneousAllowed
SET done TO FALSE
SWAP timeBetweenSample of current dataPoint with non zero
timeBetweenSample
END IF
ELSE
SET consecutiveSimultaneousCount TO ZERO
END IF

END FOR

END WHILE

Listing 2: Simultaneous time samples

Extend MDCGen data template

MDCStream allows extending the cardinality of the underlying MDCGen dataset
if desired by the user. To achieve this, MDCStream uses the MDCGen dataset
as a template and adds further data points while keeping the initial MDCGen
configuration. The pseudocode for extending the cardinality is presented in
Listing 3. New data points are created with the same features but with a
later timestamp than the template data points. Therefore, when simulating the
dataset, first the template data points are visible and afterward, the refilled
points appear. The user may also configure only certain clusters to be refilled to
extend the life of those clusters for example.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

~NO O~ WN -

10
11
12
13

15

IF desiredNumber SMALLER THAN numberOfDataPoints
RETURN first desiredNumber of dataPoints
ELSE
IF refill whole dataset
COPY dataPoints TO newDataPoints
APPEND newDataPoints to the end of dataPoints from the dataSet
ADD last StreamDatalabel TO newStreamDatalabels % shift stream data
label to the end
APPEND newStreamDatalabels to streamDatalabels of dataSet
ELSE % refill selected clusters
CREATE refillPoll from dataPoints of selected clusters
CREATE new dataPoints and streamDatalabel from refillPool
APPEND to dataSet and streamDatalabels
END IF
RETURN dataSet
END IF

Listing 3: Refill data points

Moving Clusters

An important feature of MDCStream is the cluster movement. The user may
configure the statically placed clusters to move at a given speed and direction
over time. This feature together with the nonstationarity simulates concept drift.
In Listing 4 the pseudocode for cluster movement is summarized. To create
cluster movement a displacement vector is added to the cluster data points. The
cluster data points are segmented according to their timestamp. For example,
if we have a cluster with 100 data points we can segment the data points into
five groups of 20 points. The first twenty points remain unchanged and for the
remaining points we add the displacement vector. Then the second segment
of points remains unchanged and we add again the displacement vector to the
remaining 60 points and so on. In the end, the first segment of data points was
shifted zero times, the second was shifted by one displacement vector, the third
by two displacement vectors and so on. A visual example of the functionality of
the displacement vector is given in Figure 18.

Figure 18: Displacement vector

50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

©O~NOOT WN -

FOR each cluster

IF displacement AND displacementRate configured for current cluster
calculate displacementVector
SET ShiftBy to ZERO
SET TimeForDisplacement

FOR each data point of current cluster
IF vectorChangeRate configured
IF time to calculate new displacement vector
calculate displacement vector
END IF
END IF

IF TimeForDisplacement passed
add displacement vector to current ShiftBy
SET new value for TimeForDisplacement

END IF

ADD ShiftBy to current cluster point
END FOR
END IF
END FOR

Listing 4: Create moving clusters

3.2.3 MDCStream Configuration

A list of all parameters for the configuration of MDCStream v1.0 is provided
below.

Input configuration parameters

e seed: [scalar] The seed for the random number generator to allow dataset
reproducibility.

e stationary: [scalar] Stationary is a flag (0) meaning nonstationary and (1)
meaning stationary.

e tbsDistribution: [scalar, array] This property configures the distribution
used to generate stream data label. There are six default distributions avail-
able (1) Uniform; (2) Gaussian; (3) Logistic; (4) Triangular; (5) Gamma;
(6) Ring Shaped. Specifying (0) the distribution is selected randomly.
Configured as a scalar the distribution is used for all clusters. Configured as
an array the distribution will be used per cluster if a nonstationary dataset
is configured.

e mu: [scalar, array] Represents the mean of the distribution. As a scalar it
is applied to all clusters and as an array it is being applied to each cluster
individually.

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

sigma: [scalar, array] Represents the variance of the distribution. As a
scalar it is applied to all clusters and as an array it is being applied to each
cluster individually.

Mu and Sigma should be configured to generate positive values. If a dis-
tribution is placed close to zero negative values might be generated. In
the implementation these values are simply multiplied by -1 meaning the
distribution configured is not valid anymore. To obtain consistent data it is
recommended to use a combination of mu and sigma that do not generate
negative values.

simultaneous: [scalar] The percentage of datapoints that should occur at
the same time thus have an equal stream data label.

maxSimultaneous: [scalar] The maximum number of time samples that
occur at the same time.

startTime: [scalar, array| Specifies a time offset for the beginning of a
cluster. As a scalar it is applied to all clusters and as an array it is being
applied to each cluster individually.

startAfterCluster: [array] Specifies a cluster to start after another cluster
has finished. By setting a value to zero a cluster does not start after another
cluster.

nTimeSamples: [scalar] number of points for the output dataset

refillClusters: [scalar, array] This property is used if nTimeSamples is
larger than the number of datapoints of the input dataset. It is a flag
deciding which clusters are used to fill the gap between input dataset points
and nTimeSamples. As a scalar it is applied to all clusters and as an array
it is being applied to each cluster individually.

displacement: [scalar, array| Displacement is a factor multiplied with a
random normalized displacement vector to create moving clusters. The
larger this value the farther the cluster will be displaced.

displacementRate: [scalar, array] This values represent the percentage
of data after which the displacement vector is applied to the remaining
datapoints. Setting it to 0.1 would mean that after each 10% of datapoints
the following datapoints are displaced by a displacement vector. As a scalar
it is applied to all clusters and as an array it is being applied to each cluster
individually.

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

e vectorChangeRate: [scalar, array] These values represent the percentage
of data after which a new displacement vector is calculated thus altering
the direction of the cluster movement. As a scalar it is applied to all clusters
and as an array it is being applied to each cluster individually.

MDCStream Output

The MDCStream output is a struct containing the following elements:

e dataPoints: [matrix] It contains all generated datapoints. Each row rep-
resents a datapoint and each column a dimension.

e label: [array] It contains the label for each datapoint. The label is either
zero if the datapoint is an outlier or a positive nonzero number indicating
that the datapoint belongs to a cluster.

e streamDatalabel: [array]| It contains the stream data label or timestamp
for each datapoint.

3.3 Design of MDCStream-wrapper

MDCStream is a tool that generates multi-dimensional stream datasets with
special focus on concept drift and nonstationarity that builds on MDCGen. MD-
CGen creates static multidimensional datasets containing clusters and outliers.
Both modules are highly configurable due to the vast features they offer. To hide
the complexity of the numerous configuration possibilities, we build a wrapper
to encapsulate the two modules. In Figure 19 the overall design of the wrapper
is visible.

The main advantage of the MDCStream-wrapper is that the user only has to
provide a simple verbose configuration without needing to have a deep knowl-
edge of the sub-modules encapsulated by it. This simple user configuration gets
translated to a MDCGen and MDCStream configuration and handed over to the
respective modules. The MDCStream-wrapper automatically saves the configu-
ration and the output dataset to the desired folder. Moreover, the output dataset
is saved in .mat and .arff format to allow running experiments with the MOA
framework.

3.3.1 Configuration of MDCStream-wrapper

MDCStream offers the following configuration options whereas words in brackets
surrounded with high commas are to be entered in the configuration file. The key
words in high commas are translated to MDCGen or MDCStream configuration

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

MDCStream-wrapper\

; MDCGen config
MDCStream-wrapper config Br\.-’ >
|

MDCStream
config

MDCStream

MDCGen

MOCGen data

output dataset

Figure 19: MDCStream-wrapper Architecture

values depending on default value ranges. E.g. ‘'many’ in the context of dimen-
sions means the number of dimensions will be set to a random value between 3
and 100.

The output produced by MDCStream-wrapper is equal to the output of MDC-
Stream and is described in Section 3.2.3.

scenarioName: [string] The name of the respective scenario

nOfDataSets: [scalar] The number of datasets to be generated from the
configuration under the current scenario name

dimensions: ['two’, 'many’] Sets the number of dimensions.

stationary: ['stationary’, 'sequential’, 'nonstationary’] Sets the stationarity
of the dataset. Either the overall image does not change over time, the
clusters appear in a sequential manner or the clusters appear and disappear
in a random fashion.

outliers: ['no’, 'few’, 'medium’, 'many’| Sets the number of outliers.
clusters: ['one’, 'few’, 'many’| Sets the number of clusters.

densityDiff: ['no’, 'few’, 'many’] Defines the whether the densities in the
dataset should be equal or differ. For instance the compactness, distribu-
tion, points per cluster or whether multivariate or radial based distributions
are used.

54

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

e space: ['tight’, 'extensive'] Specifies the characteristics of the output
space. A tight space meaning the clusters are close together and an exten-
sive meaning there is a lot of space between clusters.

e movingClusters: ['no’, 'few’, "all'] Specifies whether clusters should be
moving over time.

e overlap: ['no’, 'yes'] Specifies whether clusters should be overlapping or
not.

e validity: ['no’, 'Sil’, "GOI', "all'] This property activates the performance
checks for the dataset.

3.4 The MOA Framework

For the evaluation and comparison of stream data analysis algorithms we
chose the outlier detection algorithms implemented by MOA (Massive Online
Analysis), a framework for data stream mining. MOA is a free open-source
software project specifically developed for data stream mining and concept drift.
MOA includes a set of algorithms for testing and evaluation. For our special
needs, we created a MOA wrapper using the MOA APIl. The MOA wrapper
lets us select and configure the outlier detection algorithms to run experiments
using data created by MDCStream. The main advantage the MOA wrapper
offers is full automation of running test scenarios and creating test results on an
arbitrary amount of datasets.

The output obtained from the experiments is a simple list classifying each
data point as inlier or outlier and adding an outlierness weight. Using this
information combined with the metrics explained in Section 3.5 we can deduct
our conclusions about the performance of the algorithms.

All MOA outlier detection algorithms share the same configuration parameters:

e Window size w: corresponds to the number of data points kept in memory
for the classification of incoming data points.

e Count threshold k: The number of data points that have to be in the
range of a new instance to be considered as an inlier. (The number of
neighbors)

e Distance threshold R: The distance within which k neighbors have to
be located to consider an instance as an inlier. (The neighborhood radius)

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

ApproxSTORM and ExactSTORM add two more configuration parameters: the
query frequency f and the threshold to remove safe inliers p. An insight of which
values were used for the experiments is given in Table 12.

3.5 Evaluation methods and metrics

In this section, we will discuss the metrics we used to evaluate the performance
of the outlier detection algorithms. It is not part of the thesis to elaborate
which metric is best to analyze stream data algorithms as this would go beyond
the scope. We decided to choose common metrics as proposed in literature to
evaluate our results.[39], [38].

To explain the evaluation metrics we will first elaborate some terms needed for
better understanding. A classification system or algorithm returns results in four
different categories. We will define the terms referring to our use case of outlier
detection:

e True positive: Outliers correctly detected by the algorithm.
e True negative: Inliers correctly not detected as outliers by the algorithm.
e False positive: Inliers incorrectly detected as outliers by the algorithm.

e False negative: Outliers not detected as outliers by the algorithm.

True positive and true negative indicates that the prediction was correct, whereas
false positive and negative indicate that the prediction was incorrect.

Precision

Precision is the percentage of true positives contained within all retrieved results.
In other words, precision is the ratio between all correctly detected outliers and
all data points that the algorithm classified as an outlier. Referring to Figure 20
this means dividing the inner dark blue rectangle - the true positives - by the
inner rectangle - the true positives and true negatives.

. tp
precision = ——— 6
tp+ fp (©)

56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Recall

Recall is the percentage of true positives retrieved from all relevant results. Fol-
lowing our example recall is the percentage of outliers that the algorithm detects
regarding the total number of existing outliers in the dataset. Recall is the divi-
sion of the inner blue rectangle - the true positives - by the whole blue section -
true positives and false negatives - when referring to Figure 20.

recall =

tp

tp+ fn

.. @ True negative False negative
o000 00 ®
®eo o @ ®
®
False positive True positive
° e °
®g 9 ® ®
L) ®
o0® —
® @ ® ®
®
® ®
® o
[
® o0
® ©® ®

[] Inliers misclassified as inliers [] Outliers classified as outliers

[Inliers classified as inliers

Figure 20: Example for true and false positive and negative

[] Outliers misclassified as inliers

(7)

In the following sections we will discuss the metrics selected for our evaluation

in more detail.

3.56.1 MaxF1

F1 measure can be interpreted as a weighted average of the precision and recall
and the definition can be seen in Equation 8. F1 is the harmonic mean of precision
and recall and ranges between 0 and 1. F score can produce better results than
precision and recall alone.

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Pl 94 prec-zs.zon x recall (8)
precision + recall

3.5.2 Precision at n - POn

Precision at n also denoted as P@Q@n represents the proportion of relevant or
correct results from the total amount of results obtained. All data points get a
ranking assigned and the relevant data points are the top n instances that have
the highest ranking.

l t It
P@n — |relevant _results| 9)

7]

An example for the use of P@n would be a web search whereas the first page of
the search results holds 10 entries. A PQ@Qn with n set to 10 corresponds to the
number of correctly found pages by the search engine that are displayed on the
first page of the search results.

To obtain meaningful results it is very important to select a good value for
n. Setting n too high would produce a deceptively low outcome even though
all relevant results are found making the metric useless. For our case searching
outliers setting n too high would suggest that even though all outliers are found
in a dataset the P@n value would be low. On the other hand, if n is too small or
it the dataset contains too many outliers P@Qn would produce very high values
simply due to the fact that there are too few inliers to compare the result.

For our experiments, n has been set to the number of labeled outliers in the
corresponding dataset.

3.5.3 Average precision - Ap

Usually when characterizing a classification algorithm precision and recall are
observed simultaneously, since separately they would produce meaningless results.
Rather than comparing the two values, it is more convenient to have a single
number to evaluate the performance of an algorithm. The average precision
combines precision and recall to obtain one performance value by adapting the
threshold value n as seen in Equation 10. The average precision is basically the
area under the curve drawn by precision and recall.

N
AP = Z Pan x Arecall(n) (10)

n=1

P@n represents the precision at threshold n, N is the total number of data points
and Arecall(n) is the change in recall that happens between threshold n-1 and

58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

True Positive Rate

False Positive Rate

Figure 21: ROC AUC curve. Image based on [46]

3.5.4 RocAuc

The receiver operating characteristic curve is a two-dimensional plot that illus-
trates the performance of a classifier. The ROC curve is created by plotting the
recall for all possible n values, see Equation 7, over the false positive rate, see
Equation 11. In other words, it is a plot of correctly detected outliers versus the
inliers ranked among the top n results over various thresholds n. The red line in
Figure 21 shows the ROC curve.

Ip
i+ (1)

The ROC curve can be summarized by a single value namely the area under
curve AUC which ranges between 0 and 1. The AUC value is an aggregate
measure of the performance of the algorithm over all thresholds n. It is depicted
by the light blue area under the ROC curve in Figure (21). An outlier detec-
tion algorithm that does not detect any outliers would have an AUC value of
0 and an algorithm that detects all outliers correctly would have a AUC value of 1.

FPR =

3.6.5 Processing time

As described in Section 2.3.4 there are other evaluation measures besides the
prediction performance to analyze how algorithms are performing. In addition to

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

the metrics specified in the previous sections we selected the processing time as
another evaluation measure. We define the processing time for our experiments
as the time span between the start of the algorithm and moment when the
algorithm stops and gives us the final results.

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4 Experiments

To illustrate the potential of MDCStream and the datasets it is capable of gen-
erating we run MOA's outlier detection algorithms over 240 of our generated
datasets. In this section, we will first elaborate on what the major focus and
differences are between our generated test datasets in Section 4.1. Then, we will
give an overview of the configuration used for the MOA algorithms in Section
4.3 and finally, we present our results in Section 4.4.

4.1 Main focus of experiments

The datasets created for the experiments were grouped in three different types
of problems, namely: different types of stationarity, different input space size
relative to inter cluster distances and cluster movement.

4.1.1 Stationarity

Stationarity, together with moving clusters described in Section 4.1.3, simulate
concept drift. Stationarity describes the overall image created by the data distri-
bution and timestamps. For our experiments, we distinguish between three types
of stationarities as described in the following paragraphs.

08} * ' 08} .Q

06 Y 06} Y
v
. - .
04l 0.4}
L] -
0.2 - 0.2 -

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

Figure 22: Stationary space t = 1000 Figure 23: Stationary space t = 2000

Stationary

The overall image of the data distribution does not change over time. Clusters
are visible throughout the whole simulated time of the dataset. In Figures 22 and

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

23 two excerpts are visible of a two dimensional dataset showing two different
points in time. In both images five clusters are visible which remain stationary
throughout the simulated time.

Nonstationary

In the case of nonstationarity the overall image of the dataset distribution changes
over time. Clusters may appear or disappear at a certain point. From Figure 24
until 27 a dataset is displayed during various points in time. Figure 24 shows
five clusters at the timestamp ¢t = 1003. After a certain amount of time a sixth
cluster C(0.63,0.6) appears as visible in Figure 25 and in Figures 26 and 27
clusters previously visible disappear.

1.2 1.2

1 1

0.8 % ° 0.8 a °
0.6 . 0.6 » .
0.4 0.4

0.2} . 02h

of » 0 L]

0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 12
Figure 24: Nonstationary t=1003 Figure 25: Nonstationary t=1578
1.2 1.2

1r 1

0l - . 0.8 ™y

0.6 . . 0.6 .
041 0.4

0.2 . 0.2

0 - 0 o

0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2
Figure 26: Nonstationary t=2688 Figure 27: Nonstationary t=3102

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Sequential

Sequential is a special subset of nonstationary cases. The overall image of the
datasets changes and clusters appear and disappear sequentially. In Figures 28
to 31 a sequence of a sequential dataset is depicted in various moments of the
simulated time. Figure 28 shows one cluster C'1(0.4,0.2) and Figure 23 shows
how C1 is already disappearing while C2(0,0.6) emerges. The disappearing of a
cluster is implicitly shown by the fading blue points to visualize older data points.
In Figure 30 cluster C2 is fading while cluster C'3(1,0.9) emerges.

0.8 0.8

0.6 ' 0.6 -
0.4l 04}
0.2f » 0.2h -

0.2k L L -0.2E

Figure 28: Sequential clusters t=867 Figure 29: Sequential clusters t=1659

0.8+ 0.8

0.6 » . 0.6

0.2 0.2

-0.2 k& ! ! ! L L 02k

Figure 30: Sequential clusters t=2238 Figure 31: Sequential clusters t=3405

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.1.2 Input space size

Another configuration parameter around which we emphasize our experiments is
the type of input space. Figures 32 and 33 show the two available types, tight
and extensive. In a tight input space, clusters are much closer together and the
ratio between the cluster diameter and the distance to a neighboring cluster is
big. Visually space appears to be much more cluttered. On the other hand in
the case of an extensive space, clusters appear to be far away from each other.
In Figure 33 clusters are barely visible as they appear to be tiny since the ratio
between cluster diameter and cluster distance is very small.

1.4+ 141
1.2 1.2+
1 1
0.8t " K 08k
0.6 . 3 0.6
o e 04
0.2 - 02
0 0
007 0 o0z o4 o8 o8 1 12 14 o 0 02 04 05 08 1 12 14
Figure 32: Tight input space Figure 33: Extensive input space

4.1.3 Moving clusters

Lastly, we discuss the parameter to configure cluster movement. As stated before,
nonstationarity and cluster movement generate different scenarios of concept
drift.

An example for moving clusters is visible in the Figures 34 to 37. The cluster
centroids change their geometric location as time passes and thus the surrounding
distribution of cluster data points migrates with the centroid.

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

0.8 : 0.8
0.6F -0 06"

04l - ° : 04 -

0.2} ’ 02}

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

Figure 34: Moving clusters t=1000 Figure 35: Moving clusters t=2000

1 » 1 »
0.8 0.8F
0.6 0.6 .
b [N
. .
0.4F ¢ 0.4

0.2 0.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

Figure 36: Moving clusters t=3000 Figure 37: Moving clusters t=4000

4.2 Description of the datasets

Using the MDCStream wrapper as described in Section 3.3 we generated a set of
datasets to test and evaluate classification algorithms. In Table 11 an overview of
the configuration is listed for each scenario type. The three main parameters that
are being varied are written in bold letters, namely the stationarity, space and
moving clusters. The other configuration options remain consistent throughout
the datasets. To summarize shortly the common configuration options, each
scenario is created 20 times resulting in a total of 240 datasets. Each dataset
consists of 10.000 instances whereas the first 1.000 are considered as training
instances and are not part of the evaluation. Dimensions are randomly chosen
between 2 and 100, outliers between 5% to 15% and clusters between 3 and
10. The cluster shapes are selected randomly between radial and multivariate

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

(]
I
rk

using MDCGens distribution functions. Additionally, the cluster densities vary
and cluster overlap is avoided.

= <

1;,') %J %J 8] 9 ° 5 $ ~$‘ N N N

= = = 5 & 7 = = = 2 S Ee]

2 g E | & | & | & g £ g | & | & | @

A
Dataset name 1? & e f? & e g" & 2 ?? & e
stationarity stat. seq. nons. stat. seq. nons stat. seq. nons. stat. seq. nons
space tight tight tight ext. ext. ext. tight tight tight ext. ext. ext.
movingClus | no no no no no no all all all all all all
datasets 20 20 20 20 20 20 20 20 20 20 20 20
dimensions many | many | many | many | many | many | many | many | many | many | many | many
outliers med. med. med. med. med med. med. med. med. med. med. med.
clusters few few few few few few few few few few few few
densityDiff many | many | many | many | many | many | many | many | many | many | many | many
space tight tight tight ext. ext. ext. tight tight tight ext. ext. ext.
overlap no no no no no no no no no no no no

Table 11: MDCStream wrapper configuration for generating experimental

datasets

4.3 MOA algorithms configuration

The configuration used for the MOA algorithms can be seen in Table 12. The
values were held constant for all experiments conducted.

kK| R | W f p

SimpleCOD | 10 | 0.5 | 1000 | — | —
MCOD | 10 | 0.5 | 1000 | — | —
ExactSTORM | 10 | 0.5 | 1000 | 100 | —
ApproxSTORM | 10 | 0.5 | 1000 | 100 | 0.5
AbstractC | 10 | 0.5 | 1000 | — | —

Table 12: MOA Algorithm configuration used for the experiments.

4.4 Results and Discussion

The results obtained by the evaluation measures are depicted in the Figures 39
to 42 and a numeric overview may be seen in Table 13. The runtimes for each
algorithm can be seen in Figure 38.
From the experimental results the following conclusions are drawn:

e Classification performance: The tested algorithms create similar classi-
fication results with MCOD slightly outperforming the others. In terms of

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

06:00:00.00 06:00:00.00

04:48:00.00 04:48:00.00
03:36:00.00 03:36:00.00
02:24:00.00 02:24:00.00
B Runtimes
01:12:00.00 01:12:00.00

00:00:00.00

00:00:00.00 . —_—
9 < 9
& & S o J
c,}o <O & & W

& & &
& & &

Figure 38: Runtimes for each algorithm
12

1

0.8

0.8 approxSTORM

exactSTORM
0.4 | ! | | | | ! | | simpleCod
abstractC
mcod

F1

0.2

a4

& &8 es% as* O
%&e‘? c,é‘%\ & N\@@ @fb @0» S He®
; - Eod &

& S *&“"’f;ﬂ"\‘,&"@ &
Figure 39: F1 metric

runtime performance, MCOD is much faster than the other algorithms as
seen in Figure 38 which displays the runtimes for all 240 scenarios.

Similar classification performance results are expected since all the algo-
rithms use the same underlying approach to extract outliers, namely the
sliding window based approach using k-neighborhood. All algorithms have
their optimization strategies for the problem, whereas the approach by
MCOD stands out. MCOD groups points into micro clusters and reduces
the number of distance calculations as thoroughly explained in Section 3.4.
ApproxSTORM, the second-fastest algorithm, is about three times as fast
as ExactSTORM. ApproxSTORM has an advantage over ExactSTORM
by introducing two concepts to improve performance. a) reduction of the

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

approxSTORM
exactSTORM
04 { { { i { { { { { { SHTIpIE.‘chj
abstractC
mcod

Average Precision

- O S S U O P

q>‘ a\‘@ﬁ\"é& F PP

E- &F 7 F 5 F
S LS PTE

Figure 40: Average precision metric

ISB and b) reducing the node size as described in Section 3.4. Using these
abstractions the amount of memory and range queries are reduced com-
pared to ExactSTORM. Likewise, for the continuous outlier detectors COD,
MCOD outperforms SimpleCOD by substantially reducing the number of
range queries. The approach of AbstractC for k-nearest neighbor using
the lifetime neighbor count results in the worst execution times from the
examined algorithms.

Metrics: The used metrics show complementary results when comparing
the Figures 39 to 42. Metrics become redundant in this respect and there-
fore prove and solidify the results of our experiments.

Stationarity: From the results it can be inferred that scenarios using var-
ious stationarities as described in Section 4.1.1 are no particular challenge
for the algorithms under test. By taking a closer look the sequential scenario
slightly outperforms the stationary and nonstationary case. All the metrics
show slightly higher precision for the sequential case. This phenomenon
occurs since there is only one cluster visible during every moment in time
and therefore the input space appears less cluttered. Outliers are less likely
to be situated close to a cluster and thus are easier to be classified as such.

Moving clusters: The cluster movement from the test scenarios used did
not have any impact on the classification results. However, this conclusion
has to be drawn with care since it strongly depends on the configuration
used. The clusters from our test scenarios were moving slowly relative to
the used R value. Faster moving clusters would become a classification
problem since not enough data points would accumulate within a specific
radius to be classified as inliers.

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1.2
; N
08 | | | 1 | |

0.6

—_— approxSTORM
& — exactSTORM
8 0.4 simpleCod
= abstractC
0.2 — mcod
a4 1 I
cz‘“s‘“e““.‘“‘&eﬁ&\a\s\&
&Q ¢§= 6:3‘ .0'9: .QQ‘%(&QQ \‘\‘@ <i‘ @e\ ‘\.Q\Cb .@Cs 'o":’
&
S P
Figure 41: ROC metric
L2
— approxSTORM
= — exactSTORM
g 0.4 | ! | | | | ! | | simpleCod
= ahstractC
0.2 — mcod
(s B
CC es%es*&\es\es\es*
& & & *_ﬁa X-,@(O@pa @ @\ ﬁq o ¢S
=N T~ L
SN &S NS5

Figure 42: Precision at N metric

e Space: The most obvious factor influencing the classification results was
the type input space. The tested outlier detection algorithms performed
nearly perfect in extensive spaces while losing accuracy in tight spaces.
Similar to the stationarity argument from above this behavior can be in-
ferred due to the fact that a tight input space is more cluttered. Clusters
are much closer together and the outliers in between are much closer to
clusters. As consequence outliers are much more likely to be taken as inliers
and vice versa. In extensive space clusters and outliers are far away from
each other and within a specific radius R, algorithms are much more likely
to find only outliers or clusters.

e Algorithm configuration: As stated in Section 3.4 there are three main

70

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

configuration parameters for the algorithms, window size W, k& number
of neighbors and the radius R within which data points are classified as
neighbors. From the experimental evaluation and fine-tuning we inferred
that increasing the value of W leads to better results because there are
more data points in the currently observed window and thus more instances
to be taken as a reference. However, increasing W drastically impacts the
computational speed since more data points need to be kept in memory
and more distance calculations need to be carried out. k parameter shows
to be robust over a wider range though selecting too large values for k
leads to worse precision results as clusters contain too little data points
to be classified as such. The most important and noticeable changes dur-
ing experiments were obtained by adapting the value of R. In tight input
spaces larger R values produced better results while simultaneously reduc-
ing the quality of the results for extensive spaces. Generally speaking, the
configuration is a weak spot for the algorithms to be used for real-life clas-
sification problems. To be able to obtain good classification results some a
priory knowledge is needed to correctly configure the algorithms. Another
problem may arise due to the use of the sliding window which permits
the algorithms only a brief view of the data based on the total time of
the dataset. Certain applications might need the algorithms to consider a
global view on the data. Using the restricting window the cluster densi-
ties are artificially reduced by the algorithm which may lead to deceptive
results.

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Set Algorithm MaxF1 P@n AP ROC-AUC
sty-small-stc ~ ApproxSTORM 0.73 +0.24 0.64 £0.29 0.67 +0.28 0.92 4+ 0.10
ExactSTORM 0.73 £ 0.24 0.64 £0.28 0.67 +0.28 0.92 + 0.09
SimpleCOD 0.74 £ 0.23 0.65 + 0.28 0.68 + 0.28 0.93 4+ 0.09
AbstractC 0.73+£0.23 0.64 +£0.28 0.68+0.28 0.92 + 0.09
MCOD 0.83 £0.19 0.73+0.33 0.71 +£0.37 0.95 4+ 0.10
seg-small-stc ~ ApproxSTORM 0.78 + 0.23 0.72 +0.29 0.75 +0.30 0.93 £+ 0.08
ExactSTORM 0.79 £022 0.714+030 0.75+0.32 0.93+0.08
SimpleCOD 0.79 £ 022 0.72+0.29 0.76 +0.31 0.93 4+ 0.08
AbstractC 0.78 £ 0.22 0.70 + 0.30 0.74 +0.32 0.93 4+ 0.08
MCOD 0.84 £0.18 0.77 +£0.26 0.75+ 0.30 0.95 4+ 0.09
nos-small-stc ~ ApproxSTORM 0.69 + 0.25 0.58 +0.32 0.59 +0.33 0.90 £ 0.12
ExactSTORM 0.71 £ 025 0.59+0.33 059+ 0.34 0091 +0.11
SimpleCOD 0.71 £ 025 059+ 0.32 059+0.34 091 +0.11
AbstractC 0.70 £ 0.25 0.58 +0.32 057 +0.34 0.91 +0.11
MCOD 0.78 £0.22 0.67 +0.33 0.66 + 0.37 0.93 + 0.13
sty-big-stc ApproxSTORM 0.95 + 0.14 094 £ 0.15 0.97 £ 0.10 0.98 £ 0.06
ExactSTORM 0.96 +£ 0.10 0.95 + 0.13 0.99 + 0.04 0.98 4+ 0.04
SimpleCOD 0.96 + 0.10 0.95 4+ 0.13 0.99 + 0.04 0.98 + 0.04
AbstractC 0.96 £ 0.10 0.95 + 0.13 0.99 + 0.05 0.98 &+ 0.04
MCOD 0.99 +£0.05 0.98+0.09 1.00+ 0.02 1.00+ 0.02
seq-big-stc ApproxSTORM 0.97 £ 0.08 0.96 +£ 0.08 0.99 + 0.02 0.99 4+ 0.03
ExactSTORM 0.98 +£ 0.04 0.97 +0.07 1.00 +0.01 0.99 4+ 0.02
SimpleCOD 0.98 £ 0.05 0.97 £0.07 1.00+ 0.01 0.99 + 0.02
AbstractC 0.98 £ 0.05 0.96 + 0.07 0.99 + 0.01 0.99 4+ 0.02
MCOD 0.98 +£ 0.01 0.96 + 0.03 0.95 + 0.03 1.00 4+ 0.00
nos-big-stc ApproxSTORM 0.89 £ 0.21 0.88 £ 0.22 0.93 + 0.15 0.96 + 0.08
ExactSTORM 0.93 £0.14 0.92+0.15 0.96 +0.09 0.97 &+ 0.05
SimpleCOD 0.93 +£0.14 0.92+0.16 0.96 +0.10 0.97 4+ 0.05
AbstractC 0.92 +£0.14 091 +0.16 095+ 0.10 0.97 &+ 0.05
MCOD 0.97 £ 0.01 0.95+ 0.02 0.96 + 0.02 0.99 4+ 0.01
sty-small-dyn ~ ApproxSTORM 0.63 + 0.30 0.56 + 0.34 0.58 + 0.35 0.87 4+ 0.13
ExactSTORM 0.66 £ 0.29 0.57 +0.34 0.61 +0.35 0.88 + 0.13
SimpleCOD 0.66 £ 0.29 0.58 + 0.33 0.61 +0.35 0.88 4+ 0.13
AbstractC 0.66 £ 0.29 0.57 £0.33 0.61+0.35 0.88+0.13
MCOD 0.69 +£ 0.29 0.55+ 0.42 056+ 046 0.86 4+ 0.18
seg-small-dyn ~ ApproxSTORM 0.76 + 0.22 0.65 + 0.30 0.65 + 0.32 0.94 £+ 0.07
ExactSTORM 0.75 £ 0.22 0.64 £0.30 0.65+0.32 0.94 + 0.06
SimpleCOD 0.76 £ 0.22 0.66 + 0.31 0.67 + 0.33 0.94 £+ 0.06
AbstractC 0.74 £0.22 0.63+0.30 0.65+0.32 0.94 + 0.06
MCOD 0.78 £ 0.19 0.67 +£0.30 0.61 +0.33 0.93 &+ 0.09
nos-small-dyn ~ ApproxSTORM 0.68 + 0.20 0.49 +0.29 0.51 + 0.30 0.92 4+ 0.07
ExactSTORM 0.70 £ 0.19 0.51 +0.29 0.52 +0.31 0.93 4+ 0.07
SimpleCOD 0.71 £0.19 053 +0.29 053+0.32 093+ 0.07
AbstractC 0.70 £ 0.18 0.51 +0.28 0.51 +0.30 0.93 4+ 0.07
MCOD 0.74 £0.23 0.61 +0.34 0.57 +0.38 0.90 + 0.16
sty-big-dyn ~ ApproxSTORM 0.97 + 0.08 0.96 + 0.11 0.99 + 0.03 0.98 £ 0.05
ExactSTORM 0.97 £ 0.07 0.96 + 0.11 0.99 + 0.03 0.98 4+ 0.04
SimpleCOD 0.97 £0.08 0.96 + 0.11 0.99 + 0.03 0.98 + 0.04
AbstractC 0.97 £ 0.08 0.96 + 0.11 0.99 + 0.03 0.98 &+ 0.04
MCOD 1.00 +£ 0.00 1.00 +£0.00 1.00+ 0.00 1.00 + 0.00
seq-big-dyn ApproxSTORM 0.98 £+ 0.07 0.97 +0.08 0.99 + 0.02 0.99 + 0.04
ExactSTORM 0.98 +£ 0.05 0.97 +0.08 1.00 + 0.02 0.99 + 0.03
SimpleCOD 0.98 +£0.07 0.97 £0.08 0.99 +0.02 0.99 + 0.03
AbstractC 0.97 £ 0.07 0.97 +£0.08 0.99 + 0.02 0.99 4+ 0.03
MCOD 0.98 +£0.01 0.95+ 0.02 0.96 + 0.02 1.00 4+ 0.00
nos-big-dyn ~ ApproxSTORM 0.96 + 0.09 0.96 + 0.10 0.99 + 0.04 0.98 £ 0.05
ExactSTORM 0.97 £ 0.06 0.96 + 0.09 0.99 + 0.02 0.98 &+ 0.04
SimpleCOD 0.97 £ 0.06 0.96 + 0.09 0.99 + 0.02 0.98 4+ 0.04
AbstractC 0.97 £ 0.06 0.95+ 0.09 0.99 +0.02 0.98 &+ 0.04
MCOD 0.98 +£ 0.04 0.95+ 0.06 0.96+ 0.03 0.99 + 0.04

Table 13: Experiment results.

72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

5 Conclusion

This thesis aims to illustrate that a dataset generator able to produce dedicated
test data scenarios is indispensable for the evaluation of stream classification al-
gorithms. To do so we developed MDCStream, a highly configurable MATLAB
tool for the generation of artificial multi-dimensional stream data with a focus on
implementing different types of concept drift and nonstationarity. To show the
potential of our dataset generator we evaluated five outlier detection algorithms
contained in the popular open-source framework MOA. We tested the classifi-
cation algorithms on 240 generated datasets which cover twelve different test
scenarios focusing on stationarity, cluster movement and input space size with
respect to intra-cluster distances. All datasets were configured with a variable
number of dimensions and clusters, variable cluster shapes and densities and be-
tween 5% to 15% of outliers.

Referring back to the state of the art Section 2 we have summarized that it is
very difficult to find a suitable and dedicated general-purpose dataset generator.
At the same time artificially generated datasets are essential in the development
and evaluation of classification algorithms to allow exhaustive testing covering
even remote corner cases.

Using the generated datasets with MDCStream we did a comparative evaluation
on MOA's outlier detection algorithms concluding that MCOD is the most suit-
able for applications in real live stream data fields. MCOD outperformed the other
algorithms massively in terms of runtime performance and ever so slightly in the
prediction accuracy. In general, the algorithms predictive performance shows not
to be bothered by cluster movement given the limiting factor of a priory config-
uration. Most prominent deterioration proved to be witnessed during variations
in the input space size. Tight and more cluttered input spaces were more chal-
lenging for the algorithms due to smaller density differences in the data points
and the proximity of clusters and outliers. Scenarios using different stationarities
validated the input space size argument. In the sequential case clusters appear
one after the other and thus only one cluster is visible at a time. This arrange-
ment produced slightly better classification performances.

Returning to MDCStream, it would have been very hard to do this compara-
tive evaluation of MOA's algorithms, without the help of a highly configurable
dataset generator. Using MDCStream it was simple to define test cases and to
generate datasets for the analysis. The possibilities and advantages of having a
good dataset generator, not only for the evaluation but also for the development
of new classification algorithms, are immense. As the field of stream data analy-
sis evolves there are lots of open issues to be addressed in the future and many
possible features to be added to stream data generators like clusters with varying
densities over time, datasets with varying dimensionalities and many more. Tools

74

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

like the MDCStream generator will become invaluable in the future of stream

data analysis and evaluation of classification algorithms.

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

75

qny a8pajmoud| INoA

Saylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6 References

References

[1] Richard Johnson: Matlab Style Guidelines 2.0. March 2014

[2] IEEE Std 830-1993: IEEE Recomended Practice for Software Requirements
Specifications, Dec 1993

[3] John Poland: "Three Different Algorithms for Generating Uniformly Dis-
tributed Random Points on the N-Sphere" Oct 24, 2000

[4] Fabrizio Angiulli, Fabio Fassetti: Detecting Distance-Based Outliers in
Streams of Data

[5] DiYang, Elke A. Rundensteiner, Matthew O. Ward: Neighbor-Based Pattern
Detection for Windows Over Streaming Data

[6] Feélix Iglesias, Tanja Zseby, Daniel Ferreira, Arthur Zimek: "MDCGen: Mul-
tidimensional Dataset Generator for Clustering", April 2019

[7] D. M. Hawkins: "ldentification of outliers". Chapman and Hall London; New
York, 1980

[8] Hodge, V. J.; Austin, J. "A Survey of Outlier Detection Methodologies",
2004

[9] Pooja Thakkar, Jay Vala, Vishal Prajapati: "Survey on Outlier Detection in
Data Stream", February 2016

[10] Z. He, X. Xu, and S. Deng: “Discovering cluster-based local outliers”, Jun.
2003

[11] Fabrizio Angiulli, Fabio Fassetti: “Detecting Distance-Based Outliers in
Streams of Data”, 2007

[12] Charu C. Aggarwal: “Data Mining: The Textbook”, Springer, 2015

[13] Félix Iglesias Vasquez, Tanja Zesby, Arthur Zimek: "Outlier Detection Based
on Low Density Models", 2018

[14] Dragoljub Pokrajac, Aleksandar Lazarevic, Longin Jan Latecki: "Incremental
Local Outlier Detection for Data Streams", April 2007

76

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[15] Albert Bifet, Ricard Gavalda, Geoff Holmes, Bernhard Pfahringer: "Data
Stream Mining, A Practical Approach", May 2011

[16] Lab HNA. “streamDM." URL https://github.com/huawei-
noah/streamDM., 2015

[17] Zhang, Haopeng, Yanlei Diao, and Neil Immerman. "Recog-
nizing patterns in streams with imprecise timestamps." Pro-
ceedings of the VLDB Endowment 3.1-2 (2010): 244-255 URL
http://avid.cs.umass.edu/sase/index.php?page=home, 2014

[18] P. Srivats. extbf Ostinato Packet Generator. URL https://ostinato.org, Aug
2019

[19] “KDG (Kinesis Data Generator).” URL https://awslabs.github.io/amazon-
kinesis-data-generator/web/help.html, Jan 2019

[20] Squires M (2017). “fajer.js.” URL https://github.com/marak/Faker.js/, Jun
2019

[21] Anand Narasimhamurthy, Ludmila I. Kuncheva: "A framework for generating
data to simulate changing environments", 2007

[22] Patrick Lindstrom, Sarah Jane Delany, Brian Mac Namee: "Autopilot: Sim-
ulating Changing Concepts in Real Data"

[23] LMU Munich, On the Evaluation of Unsupervised Outlier Detection:
http://www.dbs.ifi.Imu.de/research /outlier-evaluation/DAMI/

[24] E. M. Knorr and R. T. Ng, “Algorithms for mining distance-based outliers
in large datasets,” 1998, pp. 392- 403.

[25] J. Tang, Z. Chen, A. W.-c. Fu, and D. W. Cheung, “Enhancing effectiveness
of outlier detections for low density patterns,” 2002, pp. 535-548.

[26] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos, “LOCI: fast
outlier detection using the local correlation integral,” 2003, pp. 315-326.

[27] V. Barnett and T. Lewis: "Outliers in statistical data" 2nd ed. John Wiley
& Sons Ltd, 1978

[28] G. Danuser and M. Stricker: “Parametric model fitting: from inlier charac-
terization to outlier detection,” vol. 20, no. 3, pp. 263-280, 1998.

77

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata: "Detecting outliers: Do
not use standard deviation around the mean, use absolute deviation around

the median,” Journal of Experimental Social Psychology, vol. 49, no. 4, pp.
764-766, Jul. 2013

P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier Detection.
New York, NY, USA: John Wiley & Sons, Inc., 1987.

M. Goldstein and A. Dengel, “Histogram-based outlier score (HBOS): A fast
unsupervised anomaly detection algorithm,” in KI-2012: Poster and Demo
Track, 2012, pp. 59-63.

Amardeep Kaur, Dr. M.P.S. Bhatia, Dr. S.M. Bhaskar: "State of the art of
outlier detection in streaming data", 2007

Ji Zhang: "Advancements of Outlier Detection: A Survey", 2013

Fabrizio Angiulli, Fabio Fassetti: "Distance-based outlier queries in data
streams:the novel task and algorithms", 2010

Leigh Metcalf, William Casey: "Cybersecurity and Applied Mathematics"
cap 2.10.1, 2016

Image based on: Indre Zliobaite: "Learning under Concept
Drift: an Overview". Section 2.2 page 7. Computing Research
Repository (arXiv: CoRR) abs/1010.4784. arXiv:1010.4784 URL
http://arxiv.org/abs/1010.4784, 2010

Gerhard Widmer, Miroslav Kubat: "Learning in the Presence of Concept
Drift and Hidden Contexts" 1996

David M W Powers: "Evaluation: From Precision, Recall and F-Factor to
ROC, Informedness, Markedness and Correlation", 2010

Guilherme O. Campos, Arthur Zimek, Jorg Sander, Ricardo J. G. B.
Campello, Barbora Micenkova, Erich Schubert, Ira Assent 4 Michael E.
Houle: "On the evaluation of unsupervised outlier detection: measures,
datasets, and an empirical study", 2016

Maria Kontaki, Anastasios Gounaris, Apostolos N. Papadopoulos, Kostas
Tsichlas, Yannis Manolopoulos: "Continuous Monitoring of Distance-Based
Outliers over Data Streams", 2011

78

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[41] Alexey Tsymbal: "The problem of concept drift: definitions and related
work" Department of Computer Science Trinity College Dublin, Ireland,
2004

[42] Indré Zliobaite, Mykola Pechenizkiy, Jodo Gama: "An overview of concept
drift applications"

[43] Bifet, A., Holmes, G., Kirkby, R., and Pfahringer: B. "Moa: Massive online
analysis. Journal of Machine Learning Research" 11:1601-1604, 2010

[44] Image based on: Stefanowski J., Brzezinski D. "Stream Classification" page
3 2017 In: Sammut C., Webb G.I. (eds) Encyclopedia of Machine Learning
and Data Mining. Springer, Boston, MA

[45] Krempl, G., Zliobaité, 1., Brzezinski, D., Hiillermeier, E., Last, M.,
Lemaire, V., Noack, T., Shaker, A., Sievi, S., Spiliopoulou, M., and Ste-
fanowski: "Open challenges for data stream mining research" Explorations,
16(1):1-10, 2014

[46] Image based on Fig.9 "ROC curve averaging" from Tom Fawcett: "An in-
troduction to ROC analysis" 2005

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

OO~NOOOCTHA WN -

A Appendix

A.1 MDCGen example

In this subsection an example of a MDCGen Matlab script is shown in Listing 5
and the respective result is depicted in Figure 43.

warning on

warning ('backtrace ', 'off');

addpath (genpath (' config_ build/src/"));
addpath(genpath (' mdcgen/src '));

config.seed = 3;

config.nDatapoints = 2000;
config.nDimensions = 3;
config.nClusters = 6;
config.nOutliers = 100;
config.compactness = 0.3;

config.rotation = 1;
config.distribution = [6 1 2 4 3 5];

[result] = mdcgen(config);

scatter3(result.dataPoints(:,1),
result.dataPoints(:,2),
result.dataPoints(:,3), ...
5, result.label ,'fill ");

grid on

axis([0 1 0 1 0 1])

Listing 5: MDCGen example Matlab script

0.8

0.6

0.4

0.2

Figure 43: MDCGen example

80

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

OO ~NOOT WN -

A.2 MDCGen and MDCStream example

In this subsection an example of a MDCGen and MDCStream Matlab script is
shown in Listing 6 and the respective result is depicted in the Figures 44 to 49.
The fading blue points illustrate older data points.

warning on
warning (' backtrace ', 'off’);

addpath (genpath (' config_build/src'));
addpath(genpath (' mdcstream/src '));
addpath(genpath ('display '));
addpath(genpath ('data provider '));

fprintf (' Creating MDCGen dataset ... \n');
p.seed = 1;
config.seed = 15;

config.nDatapoints = 2000;
config.nDimensions = 2;
config.nClusters = 5;
config.nOutliers = 100;

config.distribution = [1 6 2 6 1];
config.compactness = [0.7 0.3 0.5 0.5 0.6];
data = mdcgen(config);

fprintf (' Creating MDCStream dataset ... \n');
config.stationary = 0;

config.mu = [20 2 1 3 2 3];

config.startTime = [0 300 0 500 100 O];

data = mdcstream(data, config);
displayFade(data, 100);

Listing 6: MDCGen and MDCStream example Matlab script

12} 1.2

1 2 1

.
08} 0.8
’ of %
0.6 L¥. 0.6
.
0.4 0.4
.
02f . ? 02
.

0 * 0

02k ! 0.2
0 02 04 06 08 1 12 0

Figure 44: MDCStream t=552

81

0.2

0.4 0.6 0.8

1.2

Figure 45: MDCStream t=1084

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

1.2
1.2

1768
2887

)
A
.
.
0.8
.
]
0.8

0.6
0.6

0.4
0.4

0.2
0.2

1.2

Figure 47: MDCStream t
Figure 49: MDCStream t

1.2

1
0.8
0.6
0.4

0.8
0.6
0.4
0.2
-0.2
0.2
-0.2

1232
2009
82

-3
*
®

0.4 0.6

.
0.2
0.2

1.2

Figure 46: MDCStream t
Figure 48: MDCStream t

12+t
0.8
0.6 [
0.4
0.2
02+

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg V_QF_H.O__G__M

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

A.3 MDCStream wrapper configuration

In this subsection an example of a Matlab script for the MDCStream wrapper is
shown in Listing 7.

OO ~NOOT WN -

clear
addpath (genpath('src'));

p.seed = 15;

p.nDatapoints = 10000;

p.scenarioName = {’'scenarioA’' , ’'scenarioB' };
p.nOfDataSets = {20 , 20 };
p.stationary = {’'stationary ', ’'sequential ' };
p.space {'tight ' , 'extensive ' };
p. movingClusters = {"all’ . 'no’ s
p.dimensions {"two’ , 'many’ };
p.densityDiff = {'many’ , 'many’ I
p.outliers = {'few’ , 'many’ +;
p.clusters = {'few’ , 'many’ s
p.overlap = {'no’ , 'yes' 3

generateDataSets(p, 'dataRoot');

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Listing 7: MDCStream-wrapper Matlab script

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

List of Figures

O ~NOOoOT A~ WD

W W W WWWWWWWMNDDNPNDNMNDNNMNNMdDNNNNRFERFRERREFERRERERFERFREPFE 2O
OO ~NOOT P, WNNHRPROOWONOOPOWNREFRPRFOOOONOD Ol WNRHO

Types of concept drift 8
Block processing 14
Online processing 14
Landmark window example 15
Sliding window example L 15
K-nearest neighbors 17
MDCGen Architecture 29
Clusterson Grid 30
Clusters with deviation 31
Clusters with various distribution shapes 32
Multivariate vs Radial L. 32
Radial based distribution v2.0 33
Radial based distribution bug v1.0 37
Radial based distribution v2.0 37
Artificial clusters formed by outliersvl1.0 38
Outliers do not form clustersv2.0 39
MDCStream Architecture 46
Displacement vector explained 50
MDCStream Architecture 54
True and false positive and negative 57
ROCAUCcurve 59
Stationary spacet =1000 62
Stationary space t =2000 L. 62
Nonstationary t=1003 63
Nonstationary t=1578 63
Nonstationary t=2688, 63
Nonstationary t=3102 63
Sequential clusters t=867 64
Sequential clusters t=1659 64
Sequential clusters t=2238 64
Sequential clusters t=3405 64
Tight input space 65
Extensive input space L. 65
Moving clusters t=1000 66
Moving clusters t=2000 66
Moving clusters t=3000 66
Moving clusters t=4000 66
Runtimes 68
Flmetric. 68
84

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

40
41
42
43
44
45
46
47
48
49

Ap metric 69

ROC metric 70
PatN metric 70
MDCGen example 3d 80
MDCStream t=552 81
MDCStream t=1084 81
MDCStream t=1232 82
MDCStream t=1768 82
MDCStream t=2009 82
MDCStream t=2887 82

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

List of Tables

O© 00 ~NO 1 H~ WD

—_
= O

—
w N

Requirements for the number of output datapoints 26
Requirements for cluster properties 27
Requirements for cluster shape 27
Requirements for cluster overlap 28
Requirements describing the output 28
Requirements describing the time samples 43
Requirements for dataset properties 44
Requirements for cluster start time 44
Requirements for cluster movement 45
Requirements describing the input and output 45
MDCStream wrapper configuration for generating experimental

datasets 67
MOA Algorithm configuration used for the experiments. 67
Experiment results. 72

86

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Introduction
	Background
	Motivation
	Goals
	Methodology
	Structure of the Thesis

	State of the Art
	Stream Data Analysis
	Data streams
	Difficulties working with data streams
	Concept drift
	How to deal with concept drift
	Data stream analysis use cases
	Stream data analysis vs time series analysis

	Stream Data Generators
	Outlier Detection
	Stream classification requirements
	Block vs online processing
	Data management
	Evaluation
	Types of outlier detection techniques
	Stream outlier detection algorithms by MOA

	Methodology
	Description of MDCGen
	MDCGen Requirements
	MDCGen Architecture
	MDCGen Configuration
	Improvements done during Thesis

	Description of MDCStream
	MDCStream Requirements
	MDCStream Architecture
	MDCStream Configuration

	Design of MDCStream-wrapper
	Configuration of MDCStream-wrapper

	The MOA Framework
	Evaluation methods and metrics
	MaxF1
	Precision at n - P@n
	Average precision - Ap
	RocAuc
	Processing time

	Experiments
	Main focus of experiments
	Stationarity
	Input space size
	Moving clusters

	Description of the datasets
	MOA algorithms configuration
	Results and Discussion

	Conclusion
	References
	Appendix
	MDCGen example
	MDCGen and MDCStream example
	MDCStream wrapper configuration

