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Abstract

Mobile robots are becoming increasingly integrated into human environments.
Especially in households and for people in need the use of mobile robots helps to
improve everyday life. In order to interact with humans and to accomplish their
various tasks the robots have to be able to locate obstacles and entities that
are present in their working areas. Maps help to perform tasks like navigation
and locating objects. Special techniques are required to classify objects and
store additional information in the maps.

In this thesis the process of classifying, as well as locating objects and creating
a persistent object map is presented. The persistent object map permanently
stores the positions, sizes and shapes of detected objects and allows incremental
information to be added. One of the fastest available detection algorithms is
used and the gained information is transformed to create a three dimensional
representation of the detected objects. The representations are permanently
stored in a database and the stored information can be accessed even after a
restart of the robot. The stored information is updated by new detections and
multiple instances representing the same objects are replaced.

The process is implemented and tested on a human support robot from
Toyota. Objects can also be classified and stored while the robot as well as
some objects move and the locations of some representations are verified after
a restart of the robot. Performance evaluations show the efficiency of creating
the persistent object map in static and semi-dynamic environments.
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Kurzzusammenfassung

Mobile Roboter werden zunehmend in meschnlichem Umfeld eingesetzt. Be-
sonders in Haushalten und fiir Menschen mit besonderen Bediirfnissen konnen
diese Roboter den Alltag verbessern. Um mit Menschen interagieren und ihre
vielfaltigen Aufgaben erfiillen zu kdénnen, miissen diese Roboter in der Lage sein,
Hindernisse und Objekte in deren Arbeitsumfeld zu erkennen. Pléne helfen den
Robotern bei Aufgaben wie Navigation und Lokalisierung von Objekten. Spezi-
elle Methoden sind notwendig um die Objekte zu klassifizieren und zuséatzliche
Informationen zu speichern.

In dieser Arbeit wird ein Prozess zur Klassifizierung, sowie Lokalisierung
von Objekten und zur Erstellung eines Nachhaltigen Objektplans (persistent
object map) présentiert. Der Nachhaltige Objektplan speichert dauerhaft die
Positionen, Grossen und Formen von erkannten Objekten und ermoglicht die
Ergénzung zusatzlicher Informationen. FEiner der schnellsten Objekterken-
nungsprogramme wird verwendet und die erhaltenen Informationen werden
transformiert um eine dreidimensionale Darstellungen von den identifizierten
Objekten zu erzeugen. Diese Darstellungen werden dauerhaft in Datenbanken
gespeichert und auf die gespeicherten Informationen kann auch nach einem
Neustart des Roboters zugegriffen werden. Die gespeicherten Informationen
werden mit neu erfassten Reprasentationen erginzt und jene Représentationen,
die dasselbe Objekt darstellen, werden zu einer zusammengefiigt.

Der in dieser Arbeit priasentierte Prozess ist auf dem human support robot von
Toyota implementiert. Objekte werden erkannt und gespeichert wéahrend sich
der Roboter, sowie einige Objekte bewegen. Zuséatzlich werden die Positionen
einiger Repréasentationen nach einem Neustart des Roboters verifiziert. Eine
Leistungsbewertung zeigt die Effizienz mit der der Nachhaltige Objektplan in
statischen und semi-dynamischen Umgebungen erzeugt wird.
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1 Introduction

Robots have evolved beyond the limits of industrial applications and are
increasingly developed for usage among humans [1]. Apart from the well known
robotic vacuum cleaners [2], mobile robots have been developed to perform
different household tasks. Examples for these tasks are cleaning dishes [3],
retrieving objects[4], supporting elderly people [4] or providing health care [5].
Four robots that tackle these tasks are displayed in Figure 1.1. A significant
amount of companies, like Nvidia [6] or Temi [7], are currently developing
mobile robots for indoor environments. These robots are particularly relevant
in times of an increasingly ageing population that needs help for conducting
household tasks [8].

For robots the collection of information of their physical environment is
obligatory to accomplish their various tasks. The collected data is used to
create an abstract representation of the real world, called a map. This map
supports the robot to navigate in its environment and to access information
about existing obstacles and objects [13]. Furthermore the map helps the robot
to interact with the surrounding environment, manipulate present entities,

(a) Tiago, (b) Fetch, (c) Pepper, (d) HSR,
source: [9] source: [10] source: [11] source: [12]

Figure 1.1: Household Robots
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1 Introduction 1.1 Persistent object maps 2

accomplish user queries or to reduce the response time of the queries [14]. One
type is the object map, in which representations of detected objects are stored

[15].

1.1 Persistent object maps

There are various tasks for a robot to accomplish when operating among
humans. The success rate and response time for accomplishing these tasks can
be improved by using object maps [15]. Elderly people are often in need of
special objects and could relay on the service of robots to retrieve those objects.
The robot has to locate the object and navigate towards it. This process
requires a significant amount of computation time for the robot especially
if neither the map, nor the current vision, include sufficient information to
locate the requested object. The duration of locating and navigating towards
requested objects can be enabled or improved with the help of persistent object
maps, since persistent object maps provide the locations of all detected objects
and obstacles to the robot[15]. Some requests of elderly people are difficult to
accomplish with neither vision, nor prior knowledge of existing objects. For
example if the elderly human wants the robot to retrieve a special cup next to
a special bottle the relative position has to be calculated and the information
of all present objects is useful. With the help of persistent object maps, which
include the information of relevant objects, the success rate of accomplishing
these tasks can be substantially increased

1.2 Encountered problems

Human beings and even animals are performing object recognition tasks day in
and day out. They can, although not flawlessly, estimate the positions, sizes
and the purpose of present objects by looking at them and locate them later
if they want to use any of the seen objects [16]. To accomplish the same task
robots need special hardware and algorithms to detect objects and estimate
their locations, names, shapes and sizes. Special techniques are needed to
collect the relevant information, which is obligatory to increase the success
rate of correctly detecting the objects and making the correct assumptions [16].
The collected information needs to be saved and updated constantly by the
robot to create and maintain an up to date persistent object map. Therefore
the robot has to move through the room and constantly process images of the
currently viewed scene.

A difficulty that is encountered while creating persistent objects maps is that
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1 Introduction 1.3 Object mapping process 3

the location of the robot and the location of the present objects are assumed to
be static locations [17]. If the positions of either one changes the map has to
be adapted in order to maintain the currently correct locations of the present
objects, which have changed in relation to their prior locations.

False detection of objects or missing information represent additional chal-
lenges as they lead to false representations of present objects. This can happen
because of missing depth information of shiny objects, pixels close to the edges
of objects, or wrong assumptions leading to connections between pixels and
objects that are not related [18]. The detection algorithm may also wrongfully
name objects or create bounding boxes surrounding the objects, that are too
big, or too small [19].

1.3 Object mapping process

In this thesis several problems are approached. One challenge is to gather the
required information for estimating 3D bounding boxes out of 2D bounding
boxes. Another challenge is the ability to access and update the information
of relevant objects in the working area of the robot, even after restart or
movement of the robot. Furthermore storing and modifying information about
the relevant objects is approached. By the creation of a persistent object map
these challenges can be approached.

Object mapping starts with the visual input from a camera, in particular
from a camera that can detect color and distance to locate objects correctly
within the real world. One of these cameras is the RGB-D camera, that uses
the RGB camera and a depth camera which detect images consisting of the
same amount of pixels. By aligning the cameras correctly the color and depth
information of pixels can be obtained simultaneously.

Figure 1.2 displays the typical RGB images obtained by the RGB-D camera.
A detection algorithm detects entities within the RGB image. These detection
algorithms have improved over the last decades and there are some state of the
art detection algorithms detecting objects from the input frame of a camera in
real time, if the hardware specifications are sufficient. One of these algorithms,
You only look once (YOLO) is used for creating the bounding boxes displayed
in Figure 1.2. The bounding boxes in the 2D images are transformed to create
3D bounding boxes by processing the depth information from the depth camera.
The sizes, shapes and locations of these 3D bounding boxes are estimated based
on names, sizes and locations of the bounding boxes detected by YOLO.

After successfully detecting the present objects and creating 3D bounding
boxes, the information is stored in a database in the form of a message. The
stored messages are processed and filtered, for example to remove duplicate
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Figure 1.2: Creation of persistent object maps
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1 Introduction 1.4 Thesis overview 5

detections of the same object. One result of the fusion, processing and filtering
of stored messages in a database is displayed in Figure 1.2. The 3D bounding
boxes with their shapes, sizes and locations are the representations of the
detected objects within the working area of the robot. They are permanently
stored in the database even after the shutdown of the robot, or the connected
hardware. The processing and filtering of the 3D bounding boxes needs to be
restarted after a reboot of the robot, or the connected hardware.

Creating persistent object maps with the provided hardware is designed to
function properly for static environments, or slow movements of the robot or the
detected objects. The programmed process is able to detect and locate present
entities and visualize 3D bounding boxes, with basic shapes, surrounding the
detected objects. The detected objects are permanently stored, new detections
can be added and if only slow movements occur the process is able to replace
multiple detections with the latest detection.

1.4 Thesis overview

The next Chapters will explain the creation process of the persistent object
map thoroughly. Chapter 2 explains the already existing similar scientific
approaches. In Chapter 3 a more detailed system overview is provided. The
existing software which has been used is demonstrated in Chapter 4 and the
programmed modules implemented in the creation process of the persistent
object map are specified in Chapter 5. Chapter 6 describes the performed
experiments with the complete implemented process. Chapter 7 provides an
overview of the possible solutions for the encountered problems, as well as an
outlook for future work.
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2 Related Work

This Chapter outlines the differences of existing work related to the persistent
object mapping algorithm in this thesis. In the first Section alternative methods
for the object detection algorithm YOLO are elaborated. The second Section
explains the mapping components employed in this thesis. Different forms
of robotic maps and mapping processes are elaborated. The third Section
describes related work that creates object maps and can store detected objects.

2.1 Object detection

The evolution of object detection methods led from detection algorithms that
manually construct features to automatically feature constructing systems, the
Convolutional-Neural-Networks (CNNs). The evolution of CNNs, the most
relevant CNNs and the object detection methods before CNNs are elaborated
in this Section.

2.1.1 Manual feature construction

Object detection relies on the extraction of features, which are abstract rep-
resentations of the whole input images or areas within the input image. The
features are among others determined as global, when using the whole image
for feature construction and local when features are constructed using areas
of the image. Manually constructed features to describe the objects consumes
a significant amount of time for the programmer. The accuracy for detecting
objects correctly, same as the speed, is low in comparison to CNNs, especially
for data sets containing a high variety of different objects [21] [22].

Local features

Local feature detection algorithms like Scale invariant feature transform (SIFT)
[23] [24] [25], Histogram of oriented gradients (HOG) [26], or Speeded Up Robust
Features (SURF) [25] extract local regions, with predefined sizes, around
points of interest in the input image and transform every region into abstract
representations.
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2 Related Work 2.1 Object detection 7

reference image

SIFT Features

Figure 2.1: Local features with SIF'T, source: [20]

Points of interest can be chosen in the gradient image, which consists of values
that contain the directional change of the intensity or color of pixels compared
to its neighbour pixels. Small values in the gradient image are removed by
thresholds and the remaining values can form lines and when two lines are
crossed corners are formed. These corners can be one form that determines
points of interest. Further or other points can be chosen with different methods.
Regions with the chosen points of interest in the middle are transformed into
abstract representations. These abstract representations are local features and
are local because only regions are determined to construct the features.

The local features are then compared to local features of reference images.
The reference image can contain buildings, faces, or other forms that can be
compared. For object detection the reference images contain objects. If a
certain level of correlation between the input images and the reference image is
determined the reference object is detected in the input image and bounding
boxes with orientations can be constructed surrounding the detected objects in
the input image.

One object detection algorithm with local feature construction worth men-
tioning is the Scale Invariant Feature Transform (SIFT)[24] [27], as the SIFT
algorithm was widely used for local feature construction [28].
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2 Related Work 2.1 Object detection 8

SIFT

With the development in 1999 the Scale Invariant Feature Transform (SIFT)
algorithm used a form of local features that are invariant to image translation,
scaling, rotation, and are only slightly affected by illumination changes [24]
[27]. Reference features are constructed for a data set of objects and stored
in a reference data set. The reference features can be compared to detected
features. An example of correlating SIFT features in the reference image and in
the input image is displayed in Figure 2.1. Even in cluttered images and only
a few available features the algorithm is able to estimate positions, sizes and
orientations of reference objects within an image [23] [27]. However compared
to YOLO, SIFT and other feature extraction algorithms like SURF [25] or
HOG [26] have many disadvantages. The manual construction of features is
a time consuming and difficult process that can be done automatically by
CNNs. CNNs also outperform the SIF'T and other manual feature constructing
algorithms in terms of the object detection speed [29] [19] [30] [31].

Global features

Global feature construction methods describe global features that capture
the area of whole objects and not only predefined small regions, as the local
features. Most commonly the global features are used in 3D object detection,
geometric categorization and shape retrieval. Examples for manual global
feature construction methods are the Viewpoint Feature Histogram (VFH) [32] ,
the Shape Distribution on Vozel Surfaces (SDVS) [33], the Clustered Viewpoint
Feature Histogram (CVFH) [34] and the Ensemble of Shape Functions (ESF)
[35]. Global descriptors observe the whole geometry of the 3D representations
of the objects. 3D data, containing the objects, is obtained by depth cameras.
For the construction of global features usually a prior segmentation of the scene
has to be conducted where areas of possible object locations are obtained. The
whole cluster is then described by a global feature and these features are then
either classified as part of the object or of the background, which is not part of
the object. The obtained global features includes information of the shape and
texture of the detected objects. Creating global features can be unsuccessful
when the objects are occluded or cluttered but the computation time and the
memory expense is efficient [36] .

The manual construction of global features is, same as the manual local
features construction a time consuming process and with the evolution of CNNs
the manual construction of features can be performed automatically [37] [30]
[19].
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2 Related Work 2.1 Object detection 9
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Figure 2.2: Evolution of CNNs, source: [22]

2.1.2 Convolutional neural networks

CNNs are a Deep learning method that can train features automatically and
detect objects, speech, text and other recognisable information in a short period
of time. They were inspired by the human way of processing images and the
evolution of the CNNs is displayed in Figure 4.8. As displayed in Figure 2.2
during the evolution of the CNNs a number of algorithms using CNNs emerged
and the most relevant are described here.

Alexnet

One of the first algorithms that used the implementation of a CNN is AlezNet
[37]. Alexnet is used for classification of objects within RGB images. The
algorithm resizes and crops the RGB images to 256x256 pixels and then
randomly selects areas with fixed sizes to generate new smaller images. These
images are used as input images for the first layer of the CNN. Each layer
of the CNN filters the image with a predefined kernel and is, except for the
last one, followed by a Mazpool layer. The Maxpool layer uses another filter,
this time to determine the maximum value within the filter area. These layers
create the features that are used for the classification of objects. The creation
of features of reference objects takes days to complete and is called training
of the CNN. The layers after the last Maxpool layer are the Fully connected
layer and the Softmaz layer. These layers determine if the features in the input
image correlate to features of the reference objects. If there is a correlation the
reference objects can be classified in the input image [37].
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2 Related Work 2.1 Object detection 10

Regions with CNN features

The Regions with CNN features (R-CNN) algorithm is one of the first object
detection algorithms beside Alexnet that uses Deep learning for detecting
objects and is therefore mentioned here. The RCNN uses a CNN that has five
convolutional layers and two fully connected layers, it works with the same
pricinple as AlexNet. The difference between AlexNet and R-CNN is that
objects are not only classified but also localized and the input images are not
randomly determined but are rather obtained by a Selective search method.
The Selective search method groups pixels that have similar textures and then
combines these groups until regions are constructed. From these regions images
that define those regions are constructed and fed into the CNN. A typical
R-CNN creates about 2000 regions and constructs about 4096 features for every
input image. Then the class is determined and the bounding box is created by
using a Support Vector Machine classifier and a linear regressor [30].

The RCNN algorithm is more than six times slower than the YOLO algorithm.
YOLO already takes up to 8s to detect an image therefore RCNN could not be
used as a real time object detection algorithm. There are several new versions
of R-CNN as displayed in Figure 2.2. One improved version of the R-CNN
algorithm Faster R-CNN [38] and also its predecessor Fast R-CNN (FRCN)
[31] are still up to 6 times slower than the new version of YOLO and were
therefore also not considered.

New versions of RCNN, MaskRCCN [39] and R-FCN [40] have the advantage
of proposing segmentation masks for objects rather than only bounding boxes
where also background information, which is region that is not part to the
object, is included. The newer versions including FPN [41] can reach a very
high accuracy but still take an significant duration more time to compute as
displayed in Figure 2.3. Therefore the RCNN algorithms are not used and
an other type of algorithms is used These types of algorithms do not use the
region proposal stage, instead that are using their own approaches.

Single Shot MultiBox

The Single Shot MultiBoz (SSD) [43] algorithm evolved after the first version
of YOLO and had better overall performance in speed and detection confidence
than YOLO. Different to the YOLO algorithm the SSD algorithm uses multiple
CNNs and has a different approach for creating features. SSD uses different
layers of the CNN to create feature maps. Feature maps generated at lower
layers are used for detecting small objects and those generated at deeper layers
detect bigger objects [43]. The disadvantage of this method is that features
created in lower layers are not as high level as those created in deeper layers,
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2 Related Work 2.2 Robotic Mapping 11
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Figure 2.3: duration and accuracy of different detection algorithms, source:[42]

therefore detection of small objects with the SSD is worse that with other
detection algorithms like YOLO and other CNNs [42].

The second version of YOLO outperforms the SDD algorithm in terms of
speed and accuracy as displayed in Figure 2.3 and is therefore the chosen
detection algorithm for object detection.

2.2 Robotic Mapping

There are two major frameworks for representing robotic maps, which are
the metric and the topological framework. The metric framework saves the
detected entities in a 2D map and the topological framework is a graph that
can include the distances and other relations between entities and places. There
are many forms of automatically creating maps and some maps are already
created beforehand, like the metric map in Figure 2.4, especially for indoor
environments.

2.2.1 Navigation maps

In Figure 2.4 a navigation map in different forms is displayed in addition to a
semantic map and a topological map. A navigation map usually consists of two
or three dimensional grids, where every cell of the grids can either be full or
empty and it can be displayed in the metric framework and in the topological
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Figure 2.4: example for topological, semantic and metric map, source: [44]

framework. The grid map in Figure 2.4, with a two dimensional grid applied,
is a navigation map and the object map can also be in form of a navigation
map. Two forms of 3D navigation maps are the vozel grid with a fixed 3D grid
size and the cotomap where the grid size is determined by the objects located
in the grid cells [45].

The vozel grid map has a fixed gird size similar to the grid displayed in Figure
2.4, with the difference that voxel grid maps are usually three-dimensional. The
single cells are also called vozxels. Those that are containing whole objects, or
parts of it, are marked as occupied and those that are not occupied are marked
as free. The vozel grid has the disadvantage that the usage of the grids in not
dynamic and every vozel has to be determined as either occupied or free [45].

The octomap [45] approached the problem of the static size of the voxel grids
by including a dynamic form of size allocation. If an object is located in a
vozel, which results in marking the vozel as occupied, the grid is divided into
smaller vozels and the location of the object is determined again within the
newly created smaller vozels. This process is repeated until a defined threshold
is reached. More repetitions result in higher resolution of the objects but also
increased memory usage and computation time. The navigation map can also
be displayed as a topological graph, with for example occupied voxels marked
as black and free voxels marked as white. The voxel grid map and the octomap
are well suited for navigation, because the trajectory for robot movements can
be planned by avoiding occupied vozels and using only the space where the
vozels are not occupied [45].
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2 Related Work 2.3 Persistent object mapping 13

The duration for creating a persistent object map would have increased
by a significant amount of time if voxel grids were used, therefore these are
not implemented. Instead a database is chosen to store the detected entities,
because of the easy implementation into the ROS framework and because of
the dynamic storage of ROS messages leading to easy additions and queries
of stored entities. The SQL and NoSQL databases in addition to the used
database, mongoDB, are explained in Section 4.4.

A navigation map defining the surrounding environment already exists and
this map could be used in addition to the persistent object map, as the example
in Figure 2.4 shows. The location and orientation of the robot in space is,
due to internal location and orientation processes, not or only under certain
circumstances consistent with the metric map and the objects would be placed
at the wrong positions. Therefore the existing metric map is not used.

2.3 Persistent object mapping

Besides the navigation maps there are semantic maps that can be used for
creating an object map. The semantic map can make use of octomaps, vozel
grid maps or other grid maps. The occupied wvozxels can be grouped and a
semantic map can be created that includes 3D models of objects consisting of
occupied vozxels. These 3D models can be labeled and the created semantic map
results in a map consisting of labeled 3D models. An example of a semantic
map is displayed in Figure 2.4, but the labels are not displayed. There are
several forms of semantic maps, like semantic fusion [46], or fusion++ [47] but
same as the navigation maps the existing algorithms for creating these maps
take too much computational effort to be considered for implementation.

Other approaches introduce different forms of persistent object mapping,
which combine the detection of objects, as well as the mapping and the perma-
nent storage of these detections and maps.

The approach in KnowRob [48] uses the information of other detecting
algorithms and forms a persistent object map. RoboSherlock [49] uses the
information from KnowRob and improves the persistent object map. These
systems create a persistent object map but rely on an existing object detection
algorithm.

The approach of [50] constructs persistent object maps directly from the pcl
with self designed models. Constructing the models takes a significant amount
of effort and the detection duration is not able to achieve real time detection.
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3 System overview

In this Chapter a overview of the used hardware and the programmed algorithms
is described. Figure 3.1 shows the creation process of object maps in the form
of nodes. Nodes are programmed sub processes that receive incoming data
from other nodes, or sensors, process the incoming data and send out new data.
Which nodes are running on the robot and which are running on the computer
is marked in Figure 3.1. The computer and the robot communicate through a
wireless network.

The first Section of this Chapter describes the hardware specifications. The
second Section presents an overview of the object mapping process and the
implementations of the nodes displayed in Figure 3.1.

3.1 Hardaware

3.1.1 Robot

Toyota provides four main classes of robots as shown in Figure 3.2, which are
the Rehabilitation, the Social, the Human Support and the Innovation Robots
[51]. These robots are in development stage and only a limited number of each
has been produced. The Rehabilitation Robot should assist people to recover
after diseases or other circumstances that caused leg paralysis. The Social
Robot should improve the life of elderly people by engaging in conversation.
The Innovation Robot is the third generation of humanoid robots provided
by Toyota [51]. The robot used for the object mapping process is the Human
Support Robot (HSR). The HSR should help to promote the independence of
people in need, for example to retrieve objects or provide household support
[4]. The components of the HSR are described in Figure 3.3.

The HSR has an internal computer controlling the components displayed in
Figure 3.3 and additional sensors and actuators that are not displayed. The
operating system of the computer on the robot is Ubuntu 16.04 with ROS-
KINETIC. The CPU of this computer on the robot is the i7-4700EQ with 2.4
GHz and 8 GB of RAM are provided.

As displayed in Figure 3.1 the OM-N and the camera-Node run on the
robot. Due to the high calculation expanses of image processing for the object

14
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Figure 3.2: Human support robot, source:[12]

detection algorithm YOLO the computer needs a graphic processing unit to
work fast. The Jetson TX1 module is used as GPU and a second Ubuntu
system is installed, which uses the Jetson TX1 module. This system is the
14.04 Ubuntu system with CUDA 6.5 and ROS-INDIGO installed. On this
system only the YOLO node from the robot frame in Figure 3.1 is running.
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3 System overview 3.2 Software Implementation 17

For detecting the depth and RGB images the Xtion PRO LIVE camera
from ASUS is installed, this camera is marked as RGB-D camera in Figure
3.3. There are different RGB cameras available on the robot, for example the
Wide-Angle camera, the Stereo camera and for the detection of depth images
a Laser Range Sensor, but only the RGB-D camera provides a depth camera
and a RGB camera that are aligned to each other. The robot can move with a
maximum speed of 0.8 km/h, the Laser Range Sensor located at the bottom
can measure distances towards obstacles while moving and a bumper sensor at
the bottom can detect collisions.

11 actuators are installed to provide movements of parts of the robot. The
neck of the robot can move in two Degrees of Freedom (DoF'), the arm can pick
and place objects in 5 DoF with 1 DoF' from the gripper. With the camera
and the suction pads on the gripper the robot knows when it has grasped an
object and can lift objects like photographs that otherwise cannot be lifted.
The base has 3 DoF' and the Torso 1 DoF' which enables the robot to move
through the room and the body to reach a height of 135 cm.

An additional computer is used apart from the robot to outsource some
processes and store data.

3.1.2 Computer

As displayed in Figure 3.1 there are three nodes running on the robot and four
nodes running on the Computer. Any computer can be used to run those nodes
as long as its hardware specifications are sufficient. For the tests conducted in
Chapter 6 a computer with a 15-2500 CPU, the GeForce GTX 1050 Ti graphics
card and 8 GB of RAM has been used. The communication between the Robot
and the computer is established via the wireless LAN router Linksys EA 4500.

3.2 Software Implementation

The goal is to perceive the positions, names and sizes of the objects within
the working area of the robot and to store them into a database. In order to
get the correct positions of the objects a camera with the ability to measure
distances is mandatory, therefore a depth camera is used. The depth camera
uses an infrared pattern projected in the relevant area in combination with
an RGB-camera and creates a so called Point-Cloud (pcl). The pcl consists of
pixels and has, in addition to the RGB-values, information about the positions
within 3D space for each pixel.

As shown in Figure 3.1 in the first step the Object-Mapping-Node (OM-N)
receives the pcl data from the camera.The OM-N uses the 2D RGB image of
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3 System overview 3.2 Software Implementation 18

the pcl and sends it to the YOLO node. YOLO uses the 2D image to detect
objects within the image. The result of YOLO is represented by the bounding
boxes data which is sent back to the OM-N. By combining the pcl and the
bounding boxes data the positions, sizes and names of the present objects can
be estimated. The data from the detected objects is transformed and stored
into a database by the data-base-Node (db-N). The database permanently stores
the transformed data with the detected objects.

For the visualization of the stored objects a query of the database is impera-
tive, which is done by the visualization-Node (viz-N). Received data, from the
query of the database, is sorted and filtered by the viz-N and transformed into
a marker. A marker is a 3D representation of an object, with size, shape and
location.These markers can be visualized with a visualization program which
displays them in addition to the current camera view. After restart of the
robot, connected hardware or any movement of the robot the markers remain
at the same location defined within the database.With the permanent storage
of the locations of the detected objects the created object map can be classified
as persistent object map.

This overview of the process is separated into two parts and explained
thoroughly in Chapters 4 and 5. The first part in Chapter 4 explains the
existing software that is used for the process and the second part in Chapter 5
explains the programmed nodes.
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4 Supporting Framework

This chapter describes the existing software used for the creation of the object
map. In the first Section of the Chapter the ROS framework is explained.
The framework is used to program the existing nodes displayed in Figure
4.1. Figure 4.1 shows the same nodes as Figure 3.1 with the addition of the
separation between the existing software and the programmed software. The
ROS framework also provides the program RVIZ that is used to visualize 3D
environments. Visual input is the second Section which elaborates the methods
for creating (3D pcl) messages by the fusion of the RGB image and the depth
image input from the camera. The creation and transformation of point clouds
is also elaborated in this Section. The third Section explains the evolution
of the object detection, deep learning algorithms and the used deep learning
object detection algorithm YOLO . In the last Section the mongo-database
(mongoDB) is explained and SQL as well as NO-SQL databases are elaborated.

4.1 ROS Framework

This Section describes the nodes of Figure 3.1 and how the transportation of
messages is managed.

Robot Operation System, short ROS, is a framework established in 2007 [52].
ROS is, contrary to its name, not an operating system, but rather provides a
communication layer operating above the operating system [53].

There are four concepts implemented in ROS: nodes, messages, actions
and services. Nodes are programs written, most commonly, in the languages
Python and C++. Communication between the nodes is established by the
transmission of messages which can consist of standard types like integers,
floating point, boolean but they can also include arrays and other messages.
The way a message is transferred, from one node to another node, is through
topics. One node can publish messages to multiple topics and subscribe to
multiple topics. Also more than one node can publish messages to one topic or
receive the message from one topic. The service and client concept is another
way to transport information. The service node receives a call from a client
node in form of a service file. The service file includes the request and the
response data types. Once a service node receives a call with request data from

19
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Figure 4.1: Programmed Nodes and Existing Software
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a client node, it calculates the data required for the response once and then
sends the response data back to the client node. Multiple clients can call one
service node. The ROS action is another form of concept that is similar to the
ROS service. The action concept also consists of the server and client construct
with the difference that the request can be canceled and a feedback is added to
the definition of the communicated message. The feedback provides the client
with information about the progresses of a goal [52]. With these basic elements
complex systems can be constructed and displayed in form of a map by ROS.

4.1.1 Nodes and topics

If for example all the nodes and connections of a mobile robot are displayed,
the number of connections is too high to extract useable information by a
human. However by enabling only part of the nodes and topics, the graph can
be reduced to only the important entities. This reduction has been done for
the nodes used in this thesis, by excluding the nodes and topics that are not
relevant and then displaying the remaining, relevant nodes with ROS. Referring
to Figure 3.1, which is a created Figure for the overview, the overview can also
be generated automatically as a graph by ROS, as displayed in Figure 4.2. The
graph shows the topics where the messages are sent to and subscribed from,
which are displayed surrounded with a rectangular bounding box. The nodes
in the graph are displayed surrounded by an oval box.
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Figure 4.4: Communication of nodes with two operating systems, source:[54]

Unfortunately the database server, as well as the visualization program,
cannot be included with their connections and the workflow is not displayed
sufficiently enough, therefore Figure 3.1 was created for a better overview.
Additionally in Figure 4.2 the topics, rather than the transported messages,
are displayed which also reduces the overview. One more element though, that
is neither included in Figure 4.2, nor in Figure 3.1 is the transform topic. The
transform topic is used for transform function messages, which include relevant
reference coordinate systems of the robot. With the usage of these transform
function messages points and objects, detected within one coordinate system,
can be transformed to another coordinate system which is explained in Section
4.2.3.

4.1.2 Communication of nodes

If all the packages are built and executable, the architecture of ROS is important
to understand before the nodes displayed in Figure 4.2 can be started. All
nodes started with ROS have to be registered and named by the master node
as displayed in Figure 4.3. The master node tracks all available topics, as well
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Figure 4.5: RGB-D Camera

publishers, subscribers and services. With the master the nodes are able to
locate one another at run time and can then communicate peer-to-peer. The
peer-to-peer communication reduces the traffic flow across wireless links and
therefore increases the speed of communication [53]. The master node and the
nodes connected to the master node, can run on the same operating system,
but that is not mandatory. The master node does not have to run on the same
operating system as the other nodes, it can be exported from one operating
system to another, the only necessary condition is, that the operating system
must be connected to the same network. In Figure 4.4 an example for the
communication of two operating systems, one on the robot and the other on the
laptop, is displayed. The camera sends the collected data to the camera node,
which creates a message out of the incoming data and publishes it. Figure 4.4
also describes the basic way how the data of a camera is transformed into a
message and published. The created message and the visual input in general
are explained in the next Section.

4.2 Visual Input

In the 1970s the first attempts to recover the three dimensional structures of ob-
jects and surrounding environments were made. The first methods, that are still
partly used, gather information of the brightness of pixels within an image and
estimate the boundaries of objects by the change of the intensity of the bright-
ness. Positioning of objects within environments is made possible by the use
of range sensors that can locate the position of pixels in three dimensional space.
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Figure 4.6: RGB and pointcloud

4.2.1 ASUS RGB-D camera

In order to detect the positions and gather the color information of objects
the range information and color information has to be acquired by a RGB-D
camera. One example for a RGB-D camera is the Xtion PRO LIVE built by
the company ASUS, displayed in Figure 4.5a. The ASUS Xtion PRO LIVE is a
RGB-D camera that uses two cameras that can detect images with a resolution
of 640x480 and a frame rate of 30 frames per second(fps), or half the resolution
and double the frame rate. One of the two cameras of the RGB-D camera
from ASUS is a RGB camera that is similar to cameras on mobile phones or
digital cameras. This RGB camera detects the color values of every pixel. The
second camera is an infrared camera that uses infrared patterns, projected by
the infrared projector, to measure the distance from the camera to the pixels.
The infrared pattern of the infrared projector is displayed in Figure 4.5b. The
RGB camera is aligned with the infrared camera to create both color and depth
information of every pixel and the acquired data is stored in the form of a pcl.

4.2.2 Point cloud

The colored pcl is created from the RGB image captured by the RGB camera in
combination with the image from the infrared camera which are both displayed
in Figure 4.5a. Both cameras have to be aligned correctly to view the same
pixels when assigning the color and depth values to the pixels. The Point
cloud library(PCL) provides necessary algorithms required to process the input
images, with the depth and RGB values, in order to create a pcl message
The elements of the pcl message are points instead of pixels like in a RGB
image. This pcl message includes the color values red green and blue (RGB) for
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Figure 4.7: Frames of the Human Support Robot displayed in RVIZ

every point as well as the position in 3D space with the x,y and z coordinates.
Furthermore the message includes the information of the frame that took the
pcl and is used to transform the coordinates of the points from one frame into
another.

The name of the pcl originates in the points stored in the pcl that look like
a cloud created out of points if visualized [52] [57]. An example of a pcl taken
with the ASUS depth camera, as displayed in Figure 4.5a and visualized with
the program RVIZ, is displayed in Figure 4.6b. Figure 4.6a shows the RGB
image viewed by the RGB-camera used for creating this pcl. The camera looks
at the objects from above and partly from the side, therefore these sides of the
objects can also be captured by the infrared camera including the surrounding
floor. The bottom side of the objects is not viewed by the camera and therefore
cannot be visualized. The output pcl with the input RGB image is displayed
in Figure 4.6

4.2.3 Transformation

The pcl message has a reference coordinate system, also called a frame that
can be used for transforming the (xyz) values from one coordinate system into
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4 Supporting Framework 4.3 Object detection 26

another. The relations of these frames are provided by the transform message,
published by the camera node. The relations between the camera frame and
the map frame are displayed in Figure 4.7b. All available frames of the HSR
are displayed in Figure 4.7a.

The transformation of the coordinates is done with the rotatory and the
translatory information from the transform message entered into the transfor-
mation matrix. This matrix is then multiplied with the 3D coordinates of a
point of the pcl to receive the coordinates of this point within the desired frame

52).

4.3 Object detection

Object detection is a fundamental computer vision problem helping machines
and robots to understand their environment. The evolution towards deep
learning algorithms, with large data sets for the training of the programs and
increasing computation performance, enabled the processing of images in real
time with a high success rate of correctly detecting objects [22].

4.3.1 Machine learning

Over the last decades the main method for detecting objects is Machine
Learning which uses the data retrieved by cameras and other input methods
and transforms it into useful information. In this transformation the data is
processed to detect features represented by vectors or other forms which can be
used by a secondary system for further computing. The secondary system can
then detect certain features which, in combination with a pattern recognition,
enable the retrieval of information about the present objects [29].

For humans the capturing of three dimensional entities around them is a
everyday procedure. It is easy for humans to make the correct assumptions
about the positions, sizes, shapes and the designated names for the objects
that are present in the environment. Even if these object have never been seen
before the classification as a certain type is possible for humans. For example if
a mug, an apple and a plate are lying, or standing, on a table we can presume
the purpose of the table and the purpose of the objects. The table will most
likely be a diningtable, the apple will be eatable and the plate as well as the
mug will be used to be filled by other forms of objects or liquids. Although
there are some situations, for example optical illusions, where humans fail to
make the correct assumptions about length, size, or colour the assumptions of
humans about objects are correct and can be made with ease. The example
of detecting objects on a table is a everyday procedure for humans and they
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Figure 4.8: Convolutional neural networks, source: [59]

automatically train these scenes while growing up. Even for a young child
the counting of animals or exotic fruits within an image, and evaluating the
positions of the counted animals or fruits, can be solved, assuming the child
can count.Given the same tasks object detection algorithms have problems
with making even part of the same assumptions compared to humans [58].

A computer has to transform the incoming image to extract features out of
the image and compare it to other reference images to understand the scene
and detect present objects. Constructing robust features that allow a high
success rate for detecting objects in a short period of time is a complex process
that can be done automatically by so called deep learning networks [29].

4.3.2 Deep learning

Deep learning architectures, such as (CNNs) use multiple layers to extract high
level features that are used for object detection. Low level layers may consist
of basic elements like edges or corners and high level features may contain
abstract representation of objects [29].

One evolutionary step towards Deep Learning is Representation Learning.
Representation Learning can transform the input data from the cameras, or
other input methods directly into the information needed for detecting objects.
With multiple non linear transformation of the input image the deep learning
algorithm can retrieve information about present objects within the input image.
The main computing time for detecting objects with deep learning algorithms
is taken for the training of the algorithm. The success of object detection is
measured by a score that determines the correctly detected objects and during
training, a data-set of images is processed that results in certain parameters of
obtained high level features. The error of the achieved scores compared to the
detected scores must be reduced by adjusting the parameters. Training times
are measured in hours and can last for several days depending on the amount
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4 Supporting Framework 4.3 Object detection 28

of trained objects during that period [29]. After the training the algorithm can
work very fast and detect objects of incoming images in real time depending
on the hardware specifications of the computer and the rate of the incoming
images per second [19].

4.3.3 Convolutional Neural Network

CNNs are deep learning architectures and are structured as displayed in Figure
2.2. The input RGB image is filtered with a kernel that has a defined size and
a new layer is created. This is done to reduce the computing power required
to process every pixels of the image. This newly created layer can be and
is usually filtered again, this time with a pooling algorithm. This pooling
algorithm uses the filter to determine the maximum or the average value within
the processed filter. This process is repeated for a number of times, depending
on the algorithm and for every repetition a new layer is created. More layers
extract richer and higher level features that typically result in more successful
detection but require a higher computational effort and duration. There is a
certain limit for the number of layers after that newly added layer will not
improve the detection rate any more. These layers are used for training the deep
learning network, in other words to help the CNN algorithm to understand the
high level features that are obtained and to associate them to objects classes
[59].

The last layer of the feature learning layers is flattened into a vector. The
size of the vector depends on the size of the input image, the number of layers
and size of the filters. Usually the flattened layer is then connected to one Fully
Connected (FC) layer and one Softmax layer. These layers are responsible for
the detection and classification of objects by using the extracted features from
the convolutional layers [59].

4.3.4 You only look once

The CNN that is used for detecting objects in this thesis is YOLO and three
versions of YOLO currently exist [19] [60] [61] [62]. All versions of YOLO
use the Darknet [63] framework and are trained on the data set of ImageNet-
1000 [64] [65]. The first version of YOLO, YOLO v1, resizes the input image,
uses one CNN and a non-max suppression to detect objects present in the
input image. This process is displayed in Figure 4.9 [19]. YOLO vl uses 24
convolutional layers followed by two fully connected layers for the CNN. [19]
The main difference between the RCNNs and YOLO is the number of stages
used for extracting the features. RCNN uses two stages, the region proposal
stage and the detection stage, whereas YOLO only uses the detection stage
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Figure 4.9: Workflow of YOLO, source: [19]

with one CNN. YOLO divides the input image into grids and predicts class
properties for every grid. Every grid creates a number of bounding boxes and
the results are class specific scores for every bounding box. YOLO can reason
globally about detected objects and classes in the image, which the RCNN
algorithm does not, because the RCNN only uses areas of the image and not
the whole image for detecting objects. A major advantage of YOLO is the
high speed of the algorithm that achieves real time object detection and can,
besides for indoor households, be used in the field of autonomous driving and
other time critical environments [66].

With the second version of YOLO, YOLO v2, the speed of the algorithm
improved compared to YOLO v1 and is presently one of the fastest algorithms
in the object detection area [62] [60]. The major improvements of the second
version of YOLO, apart from the speed, were higher success in detecting small
objects and better overall detection rate of objects. The third version improves
the YOLO algorithm further, but due to the lack of achieving the minimal
hardware requirements YOLO v3 could not be used with the HSR, therefore
the YOLO v2 is used and referred to as YOLO in this thesis.

The resulting output created by all the versions of YOLO is a bounding box.

After the objects, present in the 2D image, are detected by the CNN and the
non max suppression has been applied a bounding box is constructed. This
bounding box is defined by its name, the confidence percentage, the coordinates
of the center point, the length and the width. The coordinates, as well as
length and width, are measured in pixels and can be displayed inside the
processed 2D image. One example for a detection of YOLO with the names
and bounding boxes surrounding the detected objects is displayed in Figure
4.10. All the bounding boxes of the detected objects are fused into one message
and published by YOLO as a bounding boxes message.
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diningtable

Figure 4.10: Detection sample of YOLO

4.4 Database

A database collects data and information in form of bits and bytes. This data
is updated and manipulated through the Data definition language and the data
manipulation language which are combined into one language. One example
of this combined language is the Structured Query Language (SQL), which
is the ANSI standard for manipulating and accessing information stored in a
relational databases. Data is stored in form of tables and is usually structured
in relational databases and named SQL-databases. SQL databases are tables
with n rows, are vertically scalable, which means that better hardware results in
better speed and they have a predefined schema. The non relational database
with the language Not only SQL (NoSQL) stores data in form of documents and
the stored data is usually non-, or semi-structured and called NoSQL database.
NoSQL databases can have a dynamic schema and store messages with key
value pairs, that means that data can be easily added and removed. Especially
for adding different information to the already stored data and constantly being
able to update and change stored data the NoSQL database is the preferred
database over the SQL database. Therefore the NoSQL database mongoDB
has been chosen, also due to the fact that an implementation of mongoDB into
the ROS environment already exists. An example of how data is stored in
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Figure 4.11: SQL and mongoDB data management, source:|[67]

form of documents in the mongoDB and in form of tables in a SQL database
is displayed in Figure 4.11. The lines are symbolic representations for stored
data.

4.4.1 MongoDB

The mongoDB uses the Binary JSON (BSON) structure for storing information
inside the database. The BSON is a simple representation of data and includes
only six datatypes, boolean, integer, float, date, string and binary types. There
is an implementation of the mongoDB called the mongodb_ store provided by
ROS [52]. This implementation can store predefined or newly created ROS
messages via a command into the database.

The node responsible for storing these messages is the database-Node (db-
N). The messages stored into the mongoDB have to include an id for unique
identification. All incoming messages from the db-N are collected by the db-N
and stored into the currently active mongoDB. The mongoDB is created in
a folder and has to be started with a command from ROS to be activated.
Different mongoDB databases can be created in different folders for example
to only store certain types of objects. The stored data can be accessed via a
query that can request all stored messages in the mongoDB and the objects
included in the messages. The query to access the information of the stored
objects is conducted by the viz-N.
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5 Persistent object mapping

This Chapter describes the programmed code, which, as seen in Figure 3.1, are
the OM-N the db-N and the viz-N, they are explained in Sections 5.1 through
5.3. These nodes are all programmed as part of the yolo store ROS package.
Figure 3.1 displays the workflow of the object mapping process, including all
the active nodes. At the beginning of the object detection process there is the
pcl-message, recorded by the depth camera described in Section 4.2. The pcl
message is published by the camera and subscribed by the OM-N.

5.1 Creation of 3D bounding boxes

The transformation of the 2D bounding box from YOLO into a 3D bounding
box is conducted with the object mapping node (OM-N).

This node is constantly subscribing to the topic of the 3D pcl message created
by the camera as displayed in Figure 4.1. The pcl message consists of points
that are created by combining the color information of the pixels from the RGB
camera and the depth information of the depth camera. These points have a
color value and a x,y,z value and all the points of one pcl message are called
colored pcl. This triggers the cloud callback function of the subscriber. Within
the callback function the highest index of the mongoDB is received from the
viz-N for the correct identification of messages. The index number, equal to
the number of elements stored within the mongoDB, will be increased by one
and given as identification number for the stored message sent to the db-N.
The points detected by the camera can only be located as relative positions to
the camera frame and have to be transformed into the map frame in order to
be able to locate them as absolute positions in the map. This is done by the
transform function message, also received by the OM-N. This message holds
the translatory and rotatory information needed to transform points from the
camera frame into the map frame as shown in Figure 4.7b.

5.1.1 Bounding box

For YOLO a 2D RGB image is needed, therefore the RGB image of the Asus
camera is used. This image is sent from the OM-N to YOLO node and the

32
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YOLO bounding box modified bounding box

Input image | ‘ bounding box ‘ points of modiefied
bounding box

Figure 5.1: Modfication of bounding box

OM-N stops computing. YOLO uses the 2D image as described in Chapter 4.3
and publishes the resulting bounding boxes message. The OM-N continues
computing once it receives the bounding boxes message.

Every bounding boxes message from YOLO includes one bounding box for
every detected object. The center point, width and height of the bounding
box is used to create the 3D bounding box. This is done by firstly using the
center point of the 2D bounding box within the 2D image to define the start
point. The position of the center point within the image is defined as a x and
a y value which is the same x and y value for the pcl. Since it is possible that
the pcl may not exist at this x and y position a nearest point search has to be
conducted.

A non existing pcl value is defined as a NaN value which can be displayed
by examining the pcl at the relevant [x,y] position. NaN values are created
because the depth information cannot be obtained. This can happen due to
shiny, transparent, very matt or absorbing surfaces [18]. If the center point is a
NaN value the nearest point search starts from the closest point north-west
of the center point as displayed in Figure 5.2b, which is the defined as the
first layer, and seeks for NaN values. The search for NaN values is displayed
in Figure 5.2b. The points in Figure 5.2b are representative for the pixels of
the detected image and are created as displayed in Figure 5.2a. Every pixel
includes, additionally to the RGB values displayed in Figure 5.2a, the depth
information which is detected by the ASUS depth camera. From the START
point the search for NaN values continues clockwise, rotating towards the
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Figure 5.2: Nearest point search for removing NaN values
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5 Persistent object mapping 5.1 Creation of 3D bounding boxes 35

beginning point. If the search would result in the start point of the first layer,
north-west of the START point, the search continues by adding one more layer
and therefore move one more point away from the START point, which results
in the point north west of the starting point of the first layer. For each layer
the point moves further away from the center point. The search is limited by a
number of maximum layers which can be changed and the search is displayed
in Figure 5.2.If the search would exceed the number of maximum layers the
processed image and pcl is ignored. If any point within the search, including
the start point, is properly defined, meaning there is no NaN value at the [x,y]
position of the pcl, a new bounding box is created.

The newly created modified bounding box consists of five points shaped as a
cross. This cross has a horizontal and a vertical line with the center point in
middle as displayed in the third image of Figure 5.1. The length and width of
the newly created bounding box are decreased. The proportions of the length
and width still remain the same as the proportions of the length and width
defined by the bounding boxes message of YOLO. It is created as a cross,
because the 4 points defining the cross are more likely belong to the same object
as the center point, rather than the four corners of any bounding box. If the
four points defining the bounding box would be chosen as corner points for the
reduced bounding box displayed in the third image of Figure 5.1, these chosen
points would just barely on the apple. As displayed in Figure 5.1 the points
defining the cross are already on the apple even for increased length and width
of the bounding box. This proves that especially for spherical shaped objects
the four points defining the bounding box should be created as a cross. The
same assumptions can be made for basic objects that are shaped as cylinder.
This is especially the case for bottles with a slim bottleneck where the cross is
perfectly fitted to the bottle while the corners of the bounding box are not part
of the object even for a big reduction of the length and width of the bounding
box.

5.1.2 Transformation of modified bounding box

All the four chosen points, same as the center point, are tested for NalN
values. If these four points are properly defined in the pcl the measuring of the
bounding box in 3D space can begin. The definition of the length and width
must not be in pixels any more, since this is no viable measurement in 3D
space, therefore the float values representing distances are used. In order to
determine the distances in 3D space the 5 points have to be transformed into
the map frame firstly by using the previously defined transform function. The
frame transformation from the camera to the map is displayed in Figure 4.7b
and the points that are transformed are displayed in Figure 5.3. The height is
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Figure 5.3: Transformation of bounding box for the creation of
modified bounding boxes, source: [52]

defined as the difference between the z value of the upper point of the cross
and the z value of the lower point of the cross. If only the difference of the x, or
y values are used for calculating the width of an object the value of the width
could be 0. This happens because the orientation of the object might be exactly
in the direction of one axis and the measured x or y values might then be 0 if
the camera looks at the object directly from one side, in the direction of one
axis. Therefore the width has to be calculated as an Fulerdistance between
the two y and the two x values of the left and right point of the cross. Figure
5.3 shows the transformed cross with the new length and width and displays
the transformed points of the bounding box. The additional two points are
added with the same distance as the distance between the left and right point.

If the height is smaller than the width by a factor, that is set by the user, the
object is presumed to be a table or lying on some level and therefore treated
differently than a standing object. Assuming the object is standing the height
and the width of the bounding box is already defined. Since the 3rd dimension
of the object cannot be assumed correctly for only one viewpoint, two additional
points are added to the five original points. The additional points displayed in
the third image of Figure 5.3 and the representation of the apple is shown as a
blue sphere, visualized in RVIZ, with the same size as the apple.

The center point from the initially created bounding box in 3D would appear
as part of the surface, or at least close to it, therefore it has to be moved in
the looking direction of the camera by the value of half the width of the object.
The third image of Figure 5.3 shows the new center point which is inside the
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5 Persistent object mapping 5.2 Data storage 37

object and the old center point, marked with a white point in the middle, which
would be part of the object if not moved.

For the lying object the same presumptions cannot be made, since moving
the center point in the looking direction of the camera by half the width and
creating a cuboid, would result in a false 3D representation of the object.
Therefore the center point is not moved and the height of the object is set to
a fixed value for displaying it properly. This fixed value of the height is used
in the viz-N in Section 5.3 for further computing. The width in x and in y is
computed the same way as the standing object. With the position of the center
point, the height and the width the 3D bounding box is defined.

The 5 points of the 3D bounding box as well as the label and the id are used
to create a custom messages, which is the representation of one object. An
array of custom messages is packed into one message and sent to the db-N after
processing all bounding boxes within the bounding bozxes message. There is
also the possibility that a bounding box is not used since NaN values appeared
during its transformation and thresholds are exceeded. In this case the object
is overwritten by the next processed object and the message sent to the db-N
only includes the properly defined 3D bounding boxes.

5.2 Data storage

Before it is possible to store messages into the mongoD B the database server
has to be stated. All the messages stored will be located in the defined path
and can be accessed from there. For every new environment a new database
has to be created, since it would make no sense to simply place objects detected
in one environment into another.

The message sent from the OM-N is recieved by the db-N and the callback
routine is started. The callback routine uses the received data with the type
of the incoming message and inserts it into the database with a command
provided by mongoDB. The stored message is displayed in Figure 5.4.

The persistent object mapping (pom) array includes the message id and an
array of stored pom messages and the standard header file of ROS with the
time stamp the frame id and the sequence number. Every pom message within
this message array has the information of one 3D bounding box representing
an object. This includes the height, width, length, and the coordinates of the
center point of the 3D bounding box. Furthermore the id of the element, the
label of the 3D bounding box and another standard ROS Header is defined.
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#Hpom_ Array
#standard ROS header

Header header
#message id

int32 message_id
#stored messages

pom_msg|] msgs

#H#pom__msg
#standard ROS header
Header header
#id of the element
uint32 element id
#label with name and confidence from YOLO
tmc_vision__msgs/Label label
#coordinates of center point
float64 x
float64 y
float64 z
#length width and height of 3D bounding box
float64 Ix
float64 ly
float64 1z

##tme_ vision__msgs/Label label
#name of the object
string name
#confidence for the detected object
float64 confidence

Figure 5.4: Message stored in the mongoDB

5.3 Data management and visualization

The mongoDB holds all the 3D bounding boxes of the detected objects and a
query has to be conducted to search for these bounding boxes. The gathered
data is filtered with some thresholds, multiple bounding boxes surrounding the
same object are replaced and shape estimations based on the name of the object
are made and the resulting modified bounding boxes are visualized. This bridge
between the stored bounding boxes in the mongoDB and the visualization of
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these bounding boxes with RVIZ is the viz-N.

The result of the mongoDB query, conducted in the viz-N, is an array of
messages. This array holds all stored messages within the mongoDB. The
number of stored messages is equal to the maximum id of the mongoDB which
is sent to the OM-N, after every conducted query, which is received by the
OM-N at the start of the callback routine explained in Section 5.1. Since
the viz-N has to compute all the messages from the beginning, it starts by
processing the first stored message, which is the oldest one and continues until
it has reached the newest message.

5.3.1 Moaodified bounding box

The bounding boxes in this Chapter are without exceptions 3D bounding boxes
and therefore simply named bounding boxes. A wizArray is created to store
the gathered data from the mongoDB in form of modfied bounding boxes. The
vizArray consist of a number of modified bounding boxes that are defined by
their geometric shape, position and name. Every message in the mongoDB
has stored at least one bounding box. A for-loop runs through all the stored
bounding boxes within the messages and creates modified bounding boxes.
Every new modified bounding box is filtered by thresholds, shape estimations
are made and the modified bounding box can replace other modified bounding
boxes within the vizArray. If the new modified bounding box does replace any
other modified bounding boxes the entries of the replaced modified bounding
boxes are removed from the vizArray. If it does not replace any other modified
bounding box a new entry in the vizArray is added.

The information of the name, coming from the message, is instantly stored
into the newly created modified bounding box and will not be changed, but
the modified bounding box might not be saved into the vizArray. One of the
reasons why this modified bounding box might not be stored into the vizArray
is that persons are not displayed, since they are usually moving fast without
a persistent position and therefore not suitable for a persistent object map.
Another possibility is that the classification confidence is below the confidence
threshold. The classification confidence is the confidence that the object was
detected correctly and is coming from YOLO and stored through the OM-N
and the db-N to the mongoDB. The confidence threshold is a fixed number
and is set for the results shown in Chapter 6. Every detected object with a
detection confidence lower than the threshold will neither be stored as modified
bounding box in the vizArray, nor processed by the viz-N.
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5.3.2 Replacing a modified bounding box

In order for a modified bounding box, of the currently processed object, to
replace an existing modified bounding box within the vizArray, the distance
between their center points has to be below a threshold. The threshold is set
to half the length of the currently processed object. This ensures that only
modified bounding boxes of the vizArray within the area of the new modified
bounding box are replaced by the new modified bounding box. Every modified
bounding box in the vizArray has a weight factor that determines the reliability
of the stored location of the modified bounding box. If a modified bounding
box of the vizArray is replaced the weight factor of this new modified bounding
box within the vizArray is a sum of the replaced modified bounding boxes’
weight factor added to the new modified bounding boxes’ weight factor because
the reliability that the location of the modified bounding box is correct has
increased. The reliability increases because when one modified bounding box
replaces another modified bounding box, the result is assumed to be an object
detected in multiple scenes viewed by the camera. Therefore the confidence
that the position and size of the object is correct increases with every new
replacement and therefore the weight factor is increased. The factor with which
the weight factor is increased can be modfied and is set in Chapter 6.

When replacing the old modified bounding box, the position of the old
modified bounding box is adjusted towards the position of the new modified
bounding box and the length and width is adjusted towards the length and
width of the new modified bounding boxes The adjustment only results in a
mean value of the two modified bounding boxes’ length, width and position,
if both modified bounding boxes have the same weight factor. Otherwise the
adjustment occurs by factor smaller, equal to the weight factor difference of the
two modified bounding boxes. If the new modified bounding boxes distance to
all the modified bounding boxes of the vizArray is measured and the possible
replacements occurred the modified bounding box is stored into the wvizArray
with its position, size, shape, name, location and id.

5.3.3 Shape estimation

While creating a new modified bounding box the name of the detected object
resulting in the creating of the modified bounding box is checked for indications
that could lead to the shape of the object. For example the apple, orange, or
ball will most likely be shaped as a sphere or at least close to it. Therefore
the 3D representation of these objects should also be a sphere instead of a
cuboid. If the name is one of the mentioned ones the shape of the object is set
to SPHERE. If the name equals cup, bottle or vase the shape of the modified
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5 Persistent object mapping 5.3 Data management and visualization 41

Figure 5.5: Basic markers displayed with RVIZ

bounding box is, with the same reasoning, set to CYLINDER. For all the other
objects the shape is set to CUBE.

The length and width of the created modified bounding boxes are slightly
changed by a constant factor depending on the shape of the modified bounding
boxes and left unchanged for cuboids, except if the modified bounding box
replaces another. If there is a modified bounding box within a certain distance to
the currently created modified bounding box within the vizArray this modified
bounding box will be replaced with the new modified bounding box and the
length, width as well as the position is newly calculated.

5.3.4 Marker creation

After all the bounding boxes of the currently processed message have been
computed, the vizArray is transformed into a markerArray, published and can
be viszualized by RVIZ. The markerArray has stored the same information of
the bounding boxes as the vizArray with the only difference that the stored
information is stored in form of markers and a color is added. Markers are
objects with a size, shape, name, color and location used by the program RVIZ
and some example markers are displayed in Figure 5.5. The transformation of
the vizArray to the markerArray is conducted by entering the parameters from
the vizArray into the markerArray accordingly and adding color information.
The colors of the markers are set in Chapter 6. If all messages, stored in
the mongoDB, are processed through with the vizArray, the markerArray is
constantly published.
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6 Experiments

This Chapter describes the conducted experiments for testing the implemented
algorithms. In the first experiment the a static environment is used to determine
the correct estimation and visualization of the 3D bounding boxes surrounding
the objects. In the second experiment an object is moved and the resulting
marker after the movement is displayed. This test is conducted to show the
correct replacement of objects when they are detected in multiple locations.
The third experiment is conducted while the robot is moving and viewing the
same area of objects. In this experiment the multiple views of the objects should
result in only one visualized 3D bounding box per object. The fourth experiment
is conducted to show the persistency of the stored objects by restarting the
robot and visualizing the same objects before and after the restart. In the last
Section the durations of the implemented modules and programs are measured
by processing 100 different scenes captured by the robot.

For conducting the experiments the robot and the additional Computer are
used as displayed in Figure 3.1 and explained in Chapter 3.1. RVIZ is used on
the additional Computer to display the markers published by viz-N and the
pcl published by the camera of the robot and an additional image visualization
program from ROS is used to display 2D images.

The parameters of the programmed nodes described in Section 5 have to
be set for the correct visualization of the 3D bounding boxes. Colors of the
markers, explained in Section 5.3 are set to green for cuboids, red for spheres
and blue for cylinders. The factor for determining tables and other lying objects
as described in Section 5.1 is set to seven and the confidence threshold for
YOLO is set to 35%. The maximum layers for the NaN search described in
Section 5.1 is set to three.

6.1 Static environment

In the first experiment the robot remains at one position and all the objects do
not move. As displayed in Figure 3.1 the RGB-D camera of the robot sends
the pcl image to the OM-N and the 2D RGB image of the camera is sent to
YOLO. The images displayed in Figure 6.1a, 6.1c and 6.1e are the combination
of the resulting bounding boxes message from YOLO and the 2D image coming

42
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diningtable

(a) Image from YOLO (b) Resulting markers

diningtable

(c) Image from YOLO (d) Resulting markers

(e) Image from YOLO (f) Resulting marker 3

Figure 6.1: Markers with static robot


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6 Experiments 6.2 Relocating objects 44

from the OM-N. They show the 2D image, as detected by the RGB-image of
the depth camera and the detected objects, which are surrounded by their
corresponding bounding boxes and names. The diningtable is surrounded
by a bounding box, but this bounding box is not suitable and will create a
representation of the diningtable, which is larger than the real diningtable.
Apart from this error all the present objects have been detected and will be
transformed into 3D bounding boxes.

As described in Chapter 4 and displayed in Figure 3.1 the message created
by the OM-N is sent to the db-N which stores it into the mongoDB. The viz-N
creates the corresponding markers out of the stored objects and sends them
to RVIZ which can display the pcl and the created 3D representations of the
detected objects. These representations and the detected pcl of the depth
camera are visualized in Figure 6.1b, 6.1d and 6.1f. With a small margin of
error the markers fit the bodies of the objects. As predicted the size of the
diningtable is too big, but the marker captures the form of the table correctly
which can be seen in Figure 6.1b. The presented markers are persistent, which
means that they will remain in the same position even after the camera looks
in a different direction or the robot is restarted.

To demonstrate the possibility of detecting object which are not only lying
on a table, the persistent object mapping algorithm is tested on an object that
is grasped by the HSR. The input image form YOLO is displayed in Figure 6.1e
and the result is displayed in Figure 6.1f. This test shows that the presented
algorithm can also detect objects that are grasped by the HSR.

6.2 Relocating objects

Now that the static representations of the objects have been tested and displayed
in Figure 6.1, the next test is conducted to see if moving objects are also
monitored correctly. This is shown by detecting and documenting the movement
of an object which is moved by hand. For the results displayed in Figure 6.2
the moving object is an apple, which has been selected because of the high
detection confidence from YOLO. Figures 6.2a and 6.2b display the apple,
detected by YOLO, in different positions. The apple has been moved from
the position displayed in Figure 6.2a to the position displayed in Figure 6.2b.
During the time of the movement the objects mapping process, as displayed
in Figure 3.1, constantly stores the detected objects into the mongoDB. The
representation of the object, which is detected latest, overwrites, as described
in Section 5.3, the former representation detected at a different time, which
results in a moving marker that follows the movement of the apple. Since the
viz-N only shows the resulting marker, which is the one detected latest, the
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diningtable

(b) End position
(d) Resulting markers without pcl

Figure 6.2: Moving object
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6 Experiments 6.3 Relocating robot 46

code has to be changed in order to display the marker at different times. This is
done by changing the display time of the marker to ten seconds and visualizing
all the objects stored within the mongoDB, which results in the visualization of
the marker during the movement of the apple for ten seconds each. Since the
viz-N takes about 50ms for displaying one marker the time taken for displaying
all the objects stored is negligible to the ten seconds displaying time. The result
of this setting is displayed in Figure 6.2c. The diningtable has not been moved,
the pcl is not necessary and the names would not be readable, therefore they
are not visualized in Figure 6.2c. The result displayed in Figure 6.2c shows
that the marker followed the movement of the apple correctly from the starting
to the end position. The resulting markers after the movement and without
the prolonged display time is displayed in Figure 6.2d.

6.3 Relocating robot

In the next test the robot is moved while looking at a diningtable with three
objects placed on it, an apple an orange and a bottle. The movement of the
robot is displayed in Figure 6.3 and the robot moves from the position displayed
in Figure 6.3a to the position displayed in Figure 6.3d. Figure 6.4 shows the
movement process of the robot, including the markers and the pcl at different
times of the movement.

Using the same settings of the code as it was used in the second experiment,
with the moving apple in Figure 6.2c, the movement of the markers is displayed
in Figure 6.3c. The result should ideally be only one marker that does not
move, but there is a problem with the positioning and orientation of the robot
in the room. The error caused by the repositioning and reorientation of the
robot is displayed in Figure 6.3c. The result in Figure 6.3d shows, that the
algorithm of the viz-N can adjust the positions of the markers even if the robot
moves and reorients itself during the movement. The resulting markers are
correctly positioned, with a small margin of error, which can be seen in Figure
6.3d. During the movement of the robot the orange was wrongfully detected
as apple in the first scene but was then detected correctly. This is due to the
detection program YOLO that makes slight mistakes when detecting objects.

6.4 Persistence

This experiment shows the detections of the robot before and after a restart
of the robot. These detections are stored and all detections combined are
displayed as 3D representations in Figure 6.5a.
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6 Experiments 6.5 System analysis 48

(a) Markers at different times (b) Resulting markers

Figure 6.4: Movement of robot

After the robot has detected all present objects and stored them into the
mongoDB the robot can reload its battery and shut down. This is tested by
detecting some objects, shutting the robot down, restart it again and viewing
the same objects. In Figure 6.5a all stored objects before and after the restart
are displayed together. These stored objects are transformed into markers by
the viz-N explained in Section 5.3 and the visualized objects are represented by
their corresponding markers in Figure 6.5a. The final result, after the restart
and the processing of the viz-N, is displayed in Figure 6.5b. As it is shown in
Figure 6.5, the robot can be restarted and will still detect the same objects
at the correct positions as before the restart. The conducted experiment only
works when the reorientation process of the robot after the restart is conducted
within a margin of error, meaning that the robot has to locate and orient itself
correctly in space to detect the objects at the same positions.

6.5 System analysis

In this Section the durations of the implemented modules and programs are
measured by processing 100 different images from the robot. The durations of
the single processes and nodes is displayed in form of two diagrams. The first
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diningtable

(a) Markers before and after restart (b) Final markers

Figure 6.5: Restart of robot

diagram shows the measured durations for every single image and the second
diagram displays an overview of the measured durations in form of a histogram.

Figure 6.6 shows the durations of the OM-N that creates the 3D bounding
boxes. It is separated into the durations of YOLO in Figure 6.6a, 6.6b and the
whole process of the OM-N in Figure 6.6¢, 6.6d. As it can be shown the process
for detecting objects with the program YOLO running on the Jetson TK1 of
the robot takes up to 8s to detect objects in a processed image. Although the
mean value of the durations for detecting objects is 4.4s, YOLO could run 200
times faster with a speed of 50 frames per second if the necessary hardware is
provided. Therefore the implemented algorithm can only detect new objects
with a delay of at least 1.67 seconds, which is the fastest duration for YOLO.
The additional mean value of 330 ms added to the 4.4 s from YOLO is due to
the transformation of the pcl message and the transportation of the information
via the wifi router, because only after the successful storage of the processed
data the OM-N can start to process new data.

The durations of the db-N are displayed in Figure 6.7. These durations
represent the time taken for storing the newly processed bounding boxes from
the OM-N into the mongoDB. The more data are stored in the database the
more time is taken to store new data. The duration of the db-N is growing but
still neglectable compared to the up to 8s duration of YOLO.

Figure 6.8 shows the durations of the viz-N that processes and publishes 3D
bounding boxes stored in the mongoDB. The average duration of 50 ms for the
viz-N, same as the duration of the db-N, is neglectable compared to YOLO.
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7 Conclusion

Development of robots interacting with humans is a vast growing sector in
mobile robotics. In order to integrate robots in human environments, detect-
ing objects and estimating their location and size and saving the gathered
information for further processing is a vital contribution.

In this thesis a process is presented that detects objects, creates 3D bounding
boxes surrounding the detected objects and stores, filters and visualizes the
3D bounding boxes. This process creates a persistent object map, a virtual
environment where the robot can access information about detected objects
and the calculation of absolute or relative distances can be conducted. By
using state-of-the-art object recognition algorithms, databases and sensors
the created persistent object map can detect and permanently store objects.
This process can improve the trajectory planning process of the robot towards
objects in order to interact with people more efficiently. The creation of 3D
bounding boxes out of 2D bounding boxes is made possible with the presented
process and these 3D bounding boxes are permanently stored in a database
where they can be accessed even after the restart of the robot or supporting
hardware. The locating process of requested objects is improved because the
positions of detected objects are already stored in the persistent object map
and can be accessed at any time. Also relative positions to other objects or
humans can be calculated by using the positions of the objects stored in the
persistent object map.

7.1 Supporting programs

The Robot Operating System Framework is used for the communication and
implementation of the process in form of nodes. Even if the nodes are not
running in the same operating system, or on the same hardware, the framework
can establish the connection and communication of the nodes. The HSR from
Toyota executes the implemented nodes and provides the necessary hardware
to accomplish the tasks of object detection and image processing. One of the
currently fastest detection algorithms, YOLO, is implemented to detect objects
in the images recorded by the camera of the HSR from Toyota. Representations
of objects are stored in the database mongoDB even after the camera of the
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robot does not view the objects any more. After a restart of the robot the
information of the detected objects is still present and the representations of
the objects can be reloaded.

7.2 Results

The conducted experiments present the persistent object mapping process
implemented on the Computer of the HSR and a second computer. The
results show the correct detection of objects and creation of 3D bounding
boxes surrounding the detected objects. The experiments demonstrate that
the algorithm can replace multiple views of the same object with one resulting
3D bounding box after and during the movement of objects or the robot.
The experiments also show that detected objects are permanently stored in
a database and their correct locations in space, and additional information,
can be accessed even after the restart of the robot. Time measurement tests
demonstrate that the duration of the persistent object mapping process without
the duration of the detection program takes only 330ms in average process one
image. The process filters and visualizes new detected objects within less than
70 ms.

All the experiments conclude that the implemented persistent object mapping
process can be used in static and slowly chaining environments for locating and
storing 3D representations of entities present in the working area of the robot.
The stored data includes shapes, sizes and locations of the detected objects
and further information can be added to the stored objects.

7.3 Limitations and future work

There are some limits mostly due to the timing problem of YOLO and the reori-
entation and relocation problem of the robot. The object detection algorithm
running on the Jetson TK1 GPU takes up to 8s to detect objects in the input
RGB image. Due to this fact the positioning and location of objects is difficult
to capture. Especially at fast movements of either the robot, or any object,
the object detection algorithm is not able to locate objects precisely any more
and creates multiple instances of markers representing the same object. This
could be solved by running the detection algorithm on the PC. Unfortunately
running YOLO on the PC would defy the purpose of the camera on this robot,
because the detected pcl image is very large and should not be transported,
but rather processed directly on the robot. Due to the speed limitations of
the network of the used router the transportation of the pcl would consume
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most of the bandwidth and the detection process would be slowed down rather
than accelerated. This could be improved by using better hardware. Either
the GPU can be replaced or the network or both which would tremendously
increase the detection speed. YOLO is capable of detecting objects with more
than 50 frames per seconds using sufficiently powerful hardware.

Even though the intended scenario for the persistent object mapping process
only considers static or slowly moving environments where the robot chooses
when to detect objects we would like to consider real dynamic environments
where objects and the robot can be moved and the detection process runs in real
time. The persistent object mapping algorithm provided with the mongoDB
does not delete any objects in the database but rather fuses the detections
stored in the mongoDB into markers. Due to this fact the database can grow
very large and if objects are replaced the algorithm still keeps the remnant of
the representational marker of the object. This could be solved by additional
algorithms with the ability to detect space information of present shapes. If no
entity is detected at the location where the object is assumed and the marker
is placed, the marker could be removed. Also the robot could be moved during
a restart and the relocation and reorientation process of the robot, which
currently is erroneous, would also be improved.

7.4 Outlook

Beyond what has been demonstrated in this thesis there are a number of possible
upgrades and usages of the described persistent object mapping process.

The presented algorithm is already partly implemented in a project that
should enable the HSR to automatically grasp objects. The object grasping
algorithm could be further improved by using the full persistent object map
including the locations of all detected objects. Trajectorys towards objects have
to be calculated and the persistent object map can help with the calculations.
Positions of the objects are already stored in the persistent object map and
trajectories to the most relevant objects could be calculated in advance when
the robot is not used.

With the help of a octomap [45] or other algorithms that are used with pcls
the orientations and shapes of some objects can be determined. This can work
by locating points or occupied space within the existing 3D bounding boxes
and then storing these points or the occupied space. The stored data can be
continually expanded with every new detection from different angles and the
orientation as well as a better model of the object can be obtained. Models of
specific objects can be created with the help of 3D cameras. These models can
be stored into a database of shapes and YOLO can be trained to detect these
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specific objects. These models can then be used instead of the basic shapes.

Objects stored in the persistent object map can improve the orientation and
localization process of the robot. This is done by using the locations of objects
as reference points in order to locate and orient the robot in the map. This
can improve the localisation process of new detections which then again can
be used to improve the localizing process of the robot. The more objects are
viewed by the robot the better the localization process of the robot can be
improved, under the condition that the objects have been localized correctly.
The algorithm can, with some modifications, also be implemented on a different
robot. If the robot has sufficient hardware specifications the persistent object
map can be created and updated in real time.
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