

Diplomarbeit

Analyse von Ermüdung und Verschleiß an Rohrturbinen- Komponenten bei Primärregelung

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Diplomingenieurs

unter der Leitung von

Univ.Prof. Dipl.-Ing. Dr.-Ing. Christian Bauer

Institut für Energietechnik und Thermodynamik

und

Dipl.-Ing. Erich Wurm

Andritz Hydro GmbH

eingereicht an der Technischen Universität Wien

Fakultät für Maschinenwesen und Betriebswissenschaften

durch

Georg HANSLAUER

Matr.Nr. 1127949

Unterteufenbach 22, 4782 Sankt Florian am Inn

Hanslow

eigenhändige Unterschrift

Wien, am 14.03.2016

Danksagung

Hiermit möchte ich allen Personen herzlich danken, deren Unterstützung, sowohl in direkter, als auch indirekter Form einen Beitrag zur Anfertigung der Diplomarbeit geleistet haben.

Besonderer Dank gilt Dipl.- Ing. Erich Wurm von Andritz Hydro GmbH, der überhaupt erst die Entstehung dieser Arbeit ermöglichte und als mein Betreuer jederzeit mit raschen Antworten auf Fragen aller Art zur Verfügung stand.

Ebenfalls gilt mein ausdrücklicher Dank Univ.Prof. Dipl.-Ing. Dr.-Ing. Christian Bauer vom Institut für Energietechnik und Thermodynamik der Technischen Universität Wien, der diese Diplomarbeit als Professor unterstützte und immer ein offenes Ohr für mich hatte.

Weiters bedanke ich mich bei allen Mitarbeitern von Andritz Hydro GmbH der Abteilung EM (Engineering Mechanical), besonders bei jenen, die in der Berechnung tätig waren/sind. Die positive Atmosphäre am Arbeitsplatz und die Hilfsbereitschaft jedes Einzelnen hat mich sehr inspiriert und die Verfassung der Diplomarbeit um ein Vielfaches erleichtert.

Kurzfassung

Der zur Energiewende notwendige Zuwachs erneuerbarer Energien in der Stromproduktion, bringt Änderungen der Anforderungen mit sich, welche in der Zeit vor der Etablierung von Wind-, Bio- und Solarenergie sekundär erschienen.

Immer mehr Wasserkraftwerke werden zur Erzeugung von Primärenergie eingesetzt. Das bedeutet, sie übernehmen eine ausgleichende Funktion für das Netz in Bezug auf Leistungsbzw. Nachfrageschwankungen und reagieren darauf in kürzester Zeit. Diese sind dazu grundsätzlich sehr gut geeignet, nur müssen die veränderten Rahmenbedingungen und deren Folgen für den Betrieb analysiert werden. Wichtigstes Merkmal dabei ist die Zunahme an Verstellbewegungen aufgrund der stark schwankenden Netzfrequenz.

Auf die dadurch implizierte Erhöhung der Belastung, die sich in einer Steigerung von Ermüdung und Verschleiß niederschlägt, reagierte "Andritz Hydro GmbH" mit der Entwicklung einer speziellen Reglerparametrisierung für Kaplanturbinen, welche die Stellbewegungen des Laufrads zur Leistungsänderung, also in weiterer Folge die Beanspruchung der einzelnen Komponenten reduzieren soll und gleichzeitig die Kriterien der Primärregelung erfüllt.

Die Diplomarbeit untersucht die Auswirkungen dieser "Laufradschonung" in Bezug auf Materialermüdung und Verschleiß der einzelnen Laufrad- und Leitapparatkomponenten.

Inhaltsverzeichnis

Danksagung				ii
Ku	rzfass	ung		iii
In	haltsvo	erzeicl	hnis	iv
No	omenk	latur		іх
1	Einle	itung		1
	1.1	Netzr	egelung	1
		1.1.1	Primärregelung	4
		1.1.2	Sekundärregelung	6
		1.1.3	Tertiärregelung (Minutenreserve)	6
		1.1.4	Interaktion der Regelungsarten	7
1.2 Die Kaplanturbine		aplanturbine	9	
		1.2.1	Geschichte	10
		1.2.2	Ausführungen	11
		1.2.3	Komponenten und Funktionsweise	
	1.3 Problemstellung		20	
	1.4	.4 Ziele der Arbeit		22
2	Grun	dlage	n	24
	2.1	Prinzi	ip der linearen Schadensakkumulation nach Palmgren und Miner	24
	2.2	Die R	ainflow- Zählung	28
	2.3	Grun	dlagen zur Methode der finiten Elemente	
	2.4	Softw	vare zur Betriebsfestigkeitsanalyse "nCode"	
	2.5	Analy	rtische Bewertung des Verschleißes der Gleitlager	37
	2.6	Bei de	er Messung aufgezeichnete Kanäle	
3	Anal	ytisch	e Berechnung der Restlebensdauer anhand der Lastkollektive	40

	3.1	Laufra	ıd	41
		3.1.1	Erstellung der Lastkollektive mittels Rainflow- Zählung	41
		3.1.2	Schadensakkumulation nach Miner und Palmgren (elementar)	43
	3.2	Leitap	parat	48
		3.2.1	Erstellung der Lastkollektive mittels Rainflow- Zählung	48
		3.2.2	Schadenakkumulation nach Miner und Palmgren (elementar)	52
4	Finite	e Elem	ente Berechnung	54
	4.1	Laufra	ad	54
		4.1.1	Aufbau und Komponenten	55
		4.1.2	Berechnung	56
	4.2	Leitap	parat	58
		4.2.1	Aufbau und Komponenten	58
		4.2.2	Berechnung	61
	4.3	Ergeb	nisse	63
		4.3.1	Laufrad	63
		4.3.2	Leitapparat	64
5	Lebe	nsdau	erberechnung nCode	65
	5.1	Ergeb	nisse	67
		5.1.1	Laufrad	68
		5.1.2	Leitapparat	72
6	Verso	hleißu	intersuchung	75
	6.1	Laufra	ıd	76
	6.2	Leitap	parat	83
7	Zusa	mmen	fassung und Ausblick	88
Α	Anha	ng FE I	Berechnung	89
В	Anha	ng Leb	ensdauerberechnung nCode	96
Lit	eratur	verzei	chnis	xv

Nomenklatur

Variablen

А	Fläche	[mm^2]
a ₁	Leitradöffnung	[mm]
b	Breite	[m]
с	Abstand Kolbenachse zu Kolbenauge	[mm]
с ₁	Konstante	[]
d	Durchmesser	[m]
D	Bauteilschädigung	[1/Zyklen]
E	Elastizitätsmatrix	[N/mm^2]
f	Frequenz	[Hz]
F	Kraft	[N]
f	Vektor der äußeren Kräfte	[N]
F_1	(2xKolbenkraft – Schließgewichtskraft) / Schaufelanzahl	[N]
н	Fallhöhe	[m]
К	Konstante	[]
К	materialspezifischer Exponent (Wöhlerkurve)	materialspezifi

К	Steifigkeitsmatrix	[N/mm]
I	Länge der Lasche (Laufradkinematik)	[mm]
L	Lebensdauer	[Zyklen]
Ν	Lastwechsel	[]
n	Lastwechsel	[]
р	Druck	[bar]
Ρ	Leistung	[MW]
Q	Durchfluss	[m^3/s]
r	Hebellänge Schaufelzapfenhebel	[mm]
R	Radius, Normalabstand	[mm]
S	Bauteilschädigung	[1/Zyklus]
u	Verschiebungsvektor	[mm]
v	Geschwindigkeit	[m/s]
w	Verschleiß	[µm]
x	zurückgelegter Weg	[mm]
٤	Verzerrungsvektor	0
σ	Spannungsvektor	[N/mm^2]

Indices

0	Ausgangspostion/Anfangsstellung
а	Amplitude
close	Schließen
D	Dauerfest
Diff	Differenz
dyn	dynamisch
К	Kolben
LA	Leitapparat
Lager	im Lager zurückgelegt
LR	Laufrad
m	Mittelwert
M1	Maschine 1
M2	Maschine 2
M3	Maschine 3
max	Maximalwert
min	Minimalwert
n	1,2,
ö	Öffnen

open	Öffnen
Pos	Position
R	Reibung
red	reduziert
rel	relativ
res	resultierend
S	Schließen
Servo	Servomotor Laufrad
т	Turbine
v	Verlust
wr	Wear Rate
zul	zulässig

Griechische Variablen

α	Von Gelenkhebel und Leitapparatstellring eingeschlossenser Winkel	[°]
β_1	Staffelungswinkel	[°]
γ	Winkel zwischen Lasche und Horizontalebene	[°]
Δ	Differenz	[]
η	Wirkungsgrad	[%]
ρ	Dichte	[kg/m^3]
σ	Spannung	[Mpa]
φ	Verstellwinkel Schaufelzapfenhebel	[°]

1 Einleitung

Bevor detailliert auf die Aufgabenstellung der Diplomarbeit eingegangen werden kann, ist es notwendig, die Wirkungsweise der Kaplanturbine und deren Aufbau, speziell die Kinematik der Verstellmechanismen von Laufrad und Leitapparat, zu verstehen.

Ein kurzer Einschub zum Thema Netzregelung und -stabilisierung in Österreich vervollständigt die Grundlagen dazu.

1.1 Netzregelung

Um die Netzfrequenz so nahe wie möglich dem europäischen Sollwert von 50 Hz zu halten und damit die Funktion aller verwendeten elektrischen Antriebe und Geräte zu gewährleisten, muss stets ein Gleichgewicht zwischen Nachfrage und Angebot in unserem Stromnetz vorherrschen.

Ein Leistungsüberschuss bzw. -unterschuss impliziert eine Zunahme bzw. Abnahme der Frequenz (Abbildung 1.1) bei einem Statikfaktor von ca. 19500 MW/Hz. Dies bedeutet, ein Leistungsüberschuss von 19500 MW würde die Netzfrequenz um 1 Hz erhöhen. [3]

Abbildung 1.1: Erzeugung und Verbrauch im Stromnetz [2]

Daher ist es notwendig, auf jegliche Änderungen in Nachfrage (Verbrauch) und Angebot (Ausfälle, Erzeugungsschwankungen) zu reagieren, um den Sollwert der Netzfrequenz von 50 Hz bestmöglich einzuhalten.

In Österreich ist dafür die Austrian Power Grid AG (APG), eine 100% Tochter der Verbund AG, verantwortlich.

Diese regelt auch den Austausch der elektrischen Energie mit den Nachbarländern. Die nachfolgende Abbildung 1.2 zeigt das österreichische Hochspannungsstromnetz, mit seinen Anbindungen zu den Nachbarländern.

Abbildung 1.2: geplante 380kV Ringleitung [6]

APG unterscheidet hierfür 3 verschiedene Regelleistungsarten, auf welche nachfolgend eingegangen wird:

- Primärregelleistung
- Sekundärregelleistung
- Tertiärregelleistung

Im Folgenden werden die Sekundär- und Tertiärregelung nur sehr kurz beschrieben, da diese für diese Diplomarbeit nicht von näherer Bedeutung sind.

3

1.1.1 Primärregelung

"Die Primärregelung wird dazu benötigt, ein auftretendes Ungleichgewicht zwischen Erzeugung und Verbrauch innerhalb weniger Sekunden automatisch durch entsprechende Aktivierung (Regelung) zu kompensieren und damit die Frequenz zu stabilisieren. Im Netz von Kontinentaleuropa wird eine Primärregelleistung von +/-3000 MW ständig bereitgehalten. Jede Regelzone trägt entsprechend ihrer Jahreserzeugung einen Anteil dazu bei. Die von der Regelzone APG vorzuhaltende Primärregelleistung beträgt größenordnungsmäßig etwa +/-70 MW." [5]

Die Abrufung der Primärregelungsreserve beginnt bei einer Frequenzabweichung von +/-20mHz, bei einer Abweichung von +/- 200mHz muss die bereitgestellte Reserve zur Gänze aktiviert sein. Dazwischen verläuft der Zusammenhang, welchen nachfolgende Abbildung zeigt, linear. [4]

Wie aus der Abbildung 1.3 ersichtlich ist, beginnt die Bereitstellung der Primärregelleistung ΔP bei einem Abfallen der Netzfrequenz auf 49,98 Hz. Dies entspricht einer Abweichung von 20mHz vom Sollwert (50Hz). Ab einer Abweichung von 200mHz (das entspricht einer Netzfrequenz von 49,8 Hz), muss die maximal verfügbare Primärregelleistung ΔP_{max} innerhalb von 30 Sekunden vom Kraftwerksbetreiber zur Verfügung gestellt werden.

Auf analoge Weise muss bei einem Anstieg der Netzfrequenz die Primärregelleistung ΔP zurück gehalten werden können. [4]

Wie viel maximale Primärregelleistung ΔP_{max} ein Kraftwerksbetreiber bereitstellt, liegt in dessen eigener Entscheidung. Der Preis pro Kilowatt Regelleistung wird durch das Angebot- Nachfrage-Prinzip, in regelmäßig stattfindenden Auktionen, bestimmt.

Das Mindestangebot beträgt +/- 2MW und bezieht sich somit auf größere Anbieter.

Nähere Informationen dazu sind auf der Website von "Austrian Power Grid" zu finden. (www.apg.at)

1.1.2 Sekundärregelung

"Die Sekundärregelung wird automatisch aktiviert, damit die Primärregelung entlastet und frei wird, um ihre Funktion zum Netzausgleich wieder erfüllen zu können. Die Sekundärregelung wird dann aktiviert, wenn die Beeinflussung des Netzes länger als 30 Sekunden dauert oder angenommen wird, dass sie länger als 30 Sekunden dauern wird. Davor wird ein Überschuss bzw. Defizit im Netz nur durch die Primärregelung ausgeglichen.Das erforderliche Ausmaß der Sekundärregelung ist abhängig von der Größe der Regelzone und der Verfügbarkeit von Kraftwerken in der Regelzone. Die Sekundärregelung muss in der Lage sein, den Ausfall des größten Kraftwerksblocks in der Regelzone auszugleichen. In der Regelzone APG wird der größte Kraftwerksblock durch die Sekundärregelung in Kombination mit der Tertiärregelung abgedeckt." [5]

1.1.3 Tertiärregelung (Minutenreserve)

"Sollte die Abweichung der Regelzone länger als 15 Minuten dauern, wird die sogenannte Tertiärregelleistung aktiviert. (Sie wird auch "Minutenreserve" genannt.) Die Tertiärregelung dient der Entlastung der Sekundärregelung, damit diese wieder frei wird, um im Bedarfsfall die Primärregelung zu unterstützen bzw. wieder verfügbar zu machen. Die Tertiärregelung kann automatisch oder manuell aktiviert werden. In der Regelzone APG erfolgt bei der Tertiärregelung ein manueller Abruf.

Die Vorhaltung von positiver Tertiärregelleistung dient in der Regelzone APG auch zur Unterstützung der Sekundärregelung, damit der größte Kraftwerksblock bei einem Ausfall kompensiert werden kann, ohne dass die Netzstabilität gefährdet wird." [5]

1.1.4 Interaktion der Regelungsarten

Die Wechselwirkung zwischen den einzelnen Regelungsarten, welche zuvor beschrieben wurden, sollen folgende Darstellungen (Abblidung 1.4, 1.5) näher veranschaulichen.

Abbildung 1.4 beschreibt die Wechselwirkung der Regelungsarten untereinander und deren Aktivierung, während Abbildung 1.5 den zeitlichen Ablauf der Aktivierung darstellt.

Die Primärregelung reagiert unmittelbar und wird nach kurzer Zeit von der Sekundärregelung entlastet, um wieder zur Verfügung zu stehen. Auf dieselbe Weise interagieren Sekundärregelung und Tertiärregelung.

Abbildung 1.4: Blockschaltbild der verschiedenen Regelungsarten [3]

Abbildung 1.5: Zeitlicher Verlauf und Aktivierung der verschiedenen Regelungen [3]

1.2 Die Kaplanturbine

Haupteinsatzgebiet der Kaplanturbine ist der Niederdruckbereich, also in Flusskraftwerken mit geringer Fallhöhe und großem Durchfluss. Diese Bedingungen herrschen an der Donau vor, weshalb alle österreichischen Kraftwerke an der Donaukette ausschließlich mit Kaplanturbinen ausgestattet sind.

Sie gehört zur Familie der Überdruckturbinen, was bedeutet, dass der Druck am Laufrad-Eintritt höher ist als am Laufrad-Austritt.

Die Turbine (Abbildung 1.6) ähnelt einem Propeller, jedoch sind die Flügel verstellbar. Durch die zusätzliche Verstellbarkeit des Leitapparat besitzt sie ein breites Betriebsspektrum und weist auch in Teillast noch akzeptable Wirkungsgrade auf. [7]

Abbildung 1.6: Schema einer horizontal angeströmten Kaplanturbine (Rohrturbine) [7]

1.2.1 Geschichte

Die Kaplan- Turbine wurde von Viktor Kaplan, einem österreichischen Ingenieur, aus der Francis- Turbine entwickelt und in den Jahren 1912 und 1913 in vier Schritten patentiert[18]:

- das Leitrad f
 ür Turbinen mit prim
 är axial angestr
 ömtem Laufrad; 28. Dezember 1912: ÖP Nr. 74388
- einstellbare Ausführung der Laufschaufeln; 7. August 1913: ÖP Nr. 74244
- die Gestaltung des schaufellosen Raums zwischen dem Leit- und Laufrad
- die kammerlose Ausführung der Laufschaufeln

Vorerst traf diese Neuheit auf großen Widerstand in der etablierten Branche, zusätzlich erschwerten der Erste Weltkrieg und einige Patentstreite den Bau der ersten Kaplan- Turbine.

Erst 1918 kam es durch die Fa. Storek in Brünn dazu. Sie fertigte eine Turbine mit einem Durchmesser von 60 cm und einer Leistung 26 kW, welche 1919 in der Börtel- und Strickgarnfabrik in Velm in Betrieb genommen wurde.[18]

Der Hauptunterschied zur Francis- Turbine besteht in der Richtung der Anströmung, diese erfolgt bei der Kaplanturbine in axialer Richtung, im Gegensatz zur Francis- Turbine, welche radial angeströmt wird.

1.2.2 Ausführungen

Anhand der Orientierung von Turbinen- bzw. Generatorwelle unterscheidet man bei Kaplanturbinen zwischen zwei Ausführungen:

vertikale Kaplanturbine

Wie der Name bereits verrät, ist hierbei die Welle in vertikaler Richtung verbaut, was den Vorteil der besseren Zugänglichkeit des Generators und der Turbine im Falle von Wartungsarbeiten mit sich bringt. (Abbildung 1.7)

Der Nachteil besteht allerdings im schlechteren Strömungsverhalten. Das Arbeitsmedium (Wasser) wird insgesamt stärker umgelenkt, wodurch wiederum höhere Strömungsverluste entstehen.

Abbildung 1.7: Schnitt durch eine Anlage mit vertikaler Kaplanturbine [16]

Horizontale Kaplanturbine (Rohrturbine)

Hierbei liegt die Welle in horizontaler Richtung parallel zur Fließrichtung des Arbeitsmediums. (Abbildung 1.8)

Die Vorteile der horizontaler Anwendung sind die Nachteile der vertikalen und umgekehrt.

Weniger Strömungsverluste stehen der erschwerten Zugänglichkeit von Generator und Laufrad gegenüber.

Abbildung 1.8: Schnitt durch eine Anlage mit horizontaler Kaplanturbine [16]

1.2.3 Komponenten und Funktionsweise

Die Funktionsweise und der Aufbau einer Kaplanturbine wird anhand der Abbildungen 1.9 und 1.10 näher gebracht.

Abbildung 1.9: Hauptkomponenten einer vertikalen Kaplanturbine: 1)Laufschaufel; 2)Leitschaufel; 3)Laufradnabe; 4)Stützschaufel; 5)Saugrohr; 6)Spirale [7]

Die Laufschaufeln (1) sitzen auf dem Laufrad und sind durch einen in der Laufradnabe (3) befindlichen Mechanismus verstellbar.

Die Leitschaufeln (2) sind ebenfalls verstellbar und bestimmen durch ihre Einstellung den Durchfluss maßgeblich. Die Gesamtheit der Leitschaufeln mit deren Verstelleinheit, wird als Leitapparat bezeichnet.

Das Arbeitsmedium (Wasser) gelangt durch die **Spirale (6)** in den **Leitapparat (2)**. Dabei wird durch die **Leitschaufeln (2)** die vorherrschende Druckenergie in kinetische Energie umgewandelt und das Arbeitsmedium in Drall versetzt.

Diese kinetische Energie wird durch das **Laufrad (1)** zu mechanischer Energie und in weiterer Folge durch den über die Welle mit dem Laufrad verbundenen Generator in elektrische Energie umgewandelt.

Im **Saugrohr (5)** wird ein Großteil der restlichen kinetischen Energie am Laufrad-Austritt abgebaut und somit der Wirkungsgrad erheblich verbessert.

Verstellmechanismus Laufrad:

Abbildung 1.10: Schnittdarstellung Kaplan LR [7]

Um die Flügel der Turbine um ihre Längsachse drehen zu können, ist ein Verstellmechanismus in der Nabe integriert. Die dazu erforderliche Verstellkraft wird durch einen hydraulischen Servomotor erzeugt und über eine Kinematik (Zugstange, Regelkreuz, Lenker) an die Flügel (über den Flügeldrehzapfen) weitergeleitet.

Der Flügelzapfen ist fix mit dem Flügel verschraubt.

Der Servomotor kann dabei auf unterschiedliche Weise positioniert sein [7]:

- in Wellenmitte zwischen Turbine und Generator: Verstellung der Schaufeln durch lange Gestänge in Hohlwelle
- Innerhalb der Generatornabe: hohle Ausführung der gesamten Welle des Maschinensatzes
- in Laufradnabe: größere Ausführung des Nabendurchmessers, kurze Verstellwege

Verstellmechanismus Leitapparat:

Abbildung 1.11: Leitapparat mit Verstellring und Anlenkhebel [8]

Die Position des Leitapparates erfolgt üblicherweise durch die Bewegung eines Stellrings, an welchem mittels Anlenkhebel alle Leitschaufeln synchron um ihre Längsachse gedreht werden.

Der Stellring wird durch einen oder mehrerer Hydraulikzylinder gedreht um die Rotationsachse des Laufrads gedreht. Abbildung 1.11 dient zur beispielhaften Veranschaulichung eines Leitapparates in der Praxis. Leistungsregelung:

Abbildung 1.12: Verstellbarkeit Leitapparat und Laufrad [7]

Bei der Kaplanturbine handelt es sich um eine doppelt regulierte Maschine, d.h. Leitapparat (1) und Laufrad (2) weisen Verstellmöglichkeiten auf. (Abbildung 1.12) Dadurch wird ein flacher Wirkungsgradverlauf in Abhängigkeit der Auslastung erzielt und somit ein wirtschaftlich effizienter Teillastbetrieb ermöglicht.

Für jede Laufrad-Position existiert eine zugehörige, optimale Leitapparat-Position, die den jeweiligen bestmöglichen Wirkungsgrad liefert.

Dadurch entsteht eine Zusammenhangskurve zwischen Laufrad- und Leitapparat-Position (Abbildung 1.13), welche durch Messversuche ermittelt und am Turbinenregler hinterlegt wird. Somit wird die Maschine stets mit optimalem Wirkungsgrad betrieben.

Abbildung 1.13: Wirkungsgrad einer doppelt geregelten Kaplanturbine [7]

Beschreibung Abbildung 1.13:

Der Winkel β gibt die Laufrad-Position (Verdrehwinkel des Flügels) an.

Die obere, einhüllende Kurve beschreibt den Wirkungsgrad im optimalen Zusammenhang zwischen Leitapparat und Laufrad.

Die Propellerkurven $\eta_{t'}\eta_{z'}\eta_{a'}\eta_{4}$ ergeben sich bei konstanter Laufrad-Position (β_i) durch Variation der Leitapparat-Position (a_i) und spannen mit ihren jeweiligen Bestpunkten (Maxima) die einhüllende Kurve auf.

Die Kurven a_1, a_2, a_3, a_4 beschreiben den Zusammenhang von Durchfluss Q und Leitradöffnung a_i bei konstanter Laufrad-Position.

Bei konstanter Leitapparat-Position a_0 und variabler Laufrad-Position ergibt sich die strichlierte Kurve η_{d} diese ist aber für den Betrieb weniger relevant.

Durch die Aufzeichnung der Leitapparat- und Laufrad- Positionen $(a_i \text{ und } \beta_i)$ in den Bestpunkten, können die Leitapparatkurve *a* und die Laufradkurve β gebildet werden.

1.3 Problemstellung

Üblicherweise dient bei Wasserkraftwerken der Durchfluss bzw. die Differenz der Pegelstandstände von Ober- zu Unterwasser als Regelgröße, dieser verhält sich im Laufe des Tages relativ stabil.

Wird eine Kaplanturbine jedoch zur Erzeugung von Primärregelleistung eingesetzt, wird die Netzfrequenz als Regelgröße herangezogen, welche starken Schwankungen unterliegt (im mHz Bereich). Abbildung 1.14 stellt einen Vergleich dieser Signale dar.

Abbildung 1.14: Frequenzsignal (oben) und Differenz der Pegelstände von Ober- zu Unterwasser während der Messdauer (42 h)

Aus diesen starken Schwankungen der Netzfrequenz resultiert bei Primärregelung eine zunehmende Beanspruchung der Verstellmechanismen von Laufrad und Leitapparat in Form eines Anstiegs der Lastwechselzahl und des zurückgelegten Verstellweges der Servomotore pro Zeitintervall.

Um diesem Anstieg der Beanspruchung entgegenzuwirken, entwickelte Andritz Hydro einen sogenannten "Laufradschongang". Es handelt sich um eine Regleroptimierung, die darauf abzielt, die Stellbewegungen des **Laufrades zu reduzieren**, aber trotzdem die Kriterien der Primärregelung (Kapitel 1.1.1) im Sinne der APG- Vorgaben zu erfüllen.

Dabei wird eine Steigerung der Leitapparat-Aktivität erwartet.

Diese wird durchaus in Kauf genommen, denn eine Reparatur am Laufrad ist aufgrund der erschwerten Zugänglichkeit um ein Vielfaches aufwändiger und kostenintensiver als am Leitapparat.

Weiters ist in der Regel der Verstellmechanismus des Laufrads aus Platzgründen (in Laufradnabe integriert) höheren Spannungen ausgesetzt als jener des Leitapparates.

Im Zuge der Diplomarbeit sollen nun die Auswirkungen dieser Regleroptimierung auf die Lebensdauer der Verstellmechanismus- Komponenten untersucht werden.

Die Grundlage für diese Untersuchung bildet eine Vergleichsmessung an einem Kraftwerk der Donaukette, durchgeführt von Andritz Hydro GmbH im Dezember 2014.

Dafür wurden 3 baugleiche Maschinen zu einem Vergleich herangezogen:

- Maschinensatz 1 (M1): Betrieb in Pegelregelung (Durchflussregelung)
- Maschinensatz 2 (M2): Betrieb in Primärregelung
- Maschinensatz 3 (M3): Betrieb in Primärregelung mit "Laufradschongang"

1.4 Ziele der Arbeit

Auf Basis dieser Messdaten werden die Auswirkungen der verschiedenen Betriebsarten auf Lebensdauer und Verschleiß näher untersucht.

Dazu werden folgende Methoden angewendet, welche im Kapitel 2 "Grundlagen" näher beschrieben werden:

- 1. Analytische Betrachtung der Restlebensdauer durch Anwendung des Prinzips der "Schadensakkumulation nach Miner und Palmgreen".
- 2. Berechnung der auftretenden Strukturspannungen in den Bauteilen anhand der "Finite Elemente Methode" mit dem Programm "ABAQUS"
- 3. Ermittlung der Restlebensdauer mit dem Programm "nCode"
- 4. Analytische Auswertung der zurückgelegten Reibwege in den Gleitlagern und des daraus folgenden Verschleiß

Den Ablauf bzw. die Interaktion der zuvor beschriebenen Berechnungsschritte veranschaulicht folgendes Prozessschaubild (Abbildung 1.15). Es zeigt wie die Ergebnisse (Verschleißzustand, Lebensdauer analytisch und rechnergestützt) durch die Anwendung diverser Verfahren und Vorgabe von Inputdaten (Materialeigenschaften, Messdaten und CAD Geometriedaten) zustande kommen. Auf die einzelnen Schritte und Verfahren wird ebenfalls im Kapitel 2 "Grundlagen näher eingegangen.

Abbildung 1.15: Ablauf der Berechnung

Zu diesem Thema existieren firmenintern bereits Untersuchungen an einer Messung aus der Vergangenheit. Dabei wurden lediglich die Messsignale miteinander verglichen und nicht näher hinsichtlich Bauteilschädigung untersucht. [1]

2 Grundlagen

2.1 Prinzip der linearen Schadensakkumulation nach Palmgren und Miner

Das bekannteste und am häufigsten angewandte Verfahren, nach dem die Lebensdauer eines Bauteils unter einer Schwingbeanspruchung mit veränderlicher Amplitude errechnet werden kann, ist die lineare Schädigungsakkumulations-Hypothese nach Palmgren und Miner. [9]

Als Eingansgrößen der Berechnung dienen die einwirkende Schwingbeanspruchung, beschrieben nach Größe und Häufigkeit durch das Kollektiv der Nennspannungsamplituden, und die Schwingfestigkeit des Bauteils, gekennzeichnet durch die ertragbaren Nennspannungsamplituden laut Wöhlerlinie. [9]

Die Schwingspiel wird dabei durch folgende, in Abbildung 2.1 dargestellten Variablen beschrieben:

ΔS	Peak to Peak Amplitude
(Range	e)
S _a	Amplitude
S _o	Oberspannung
S_{m}	Mittelspannung
$S_{_U}$	Unterspannung
R	Spannungsverhältnis

Abbildung 2.1: Kennwerte eines Schwingspiels [9]

Grundgedanke der linearen Schadensakkumulations-Hypothese ist, dass die schwingende Beanspruchung des Werkstoffs eine Schädigung bewirkt, die sich im Laufe ihrer Einwirkung akkumuliert, und zwar bis zum Erreichen eines kritischen Schädigungswertes, bei dem der Schwingbruch erfolgt. Die Maßzahl der Schädigung D ist definiert aus dem Schädigungsbeiwert ΔD_i eines Schwingspiels

$$\Delta D_i = 1/N_i \quad mit \quad N_i = N(S_{ai}, S_{mi})$$
(2.1)

Dabei bedeutet N_i die unter der Spannungsamplitude S_{ai} und der Mittelspannung S_{mi} des Schwingspiels *i* nach der Wöhlerkurve ertragbare Schwingspielzahl. Als kritischer Schädigungswert gilt in der Regel eine Schädigungssumme

$$D = \sum_{i} \Delta D_{i} = 1 \quad \text{für Bauteilversagen}$$
(2.2)

Die Wöhlerkurve (Abbildung 2.2) mit der Steigung k wird im Bereich der Zeitfestigkeit für ein konstantes Spannungsverhältnis R mathematisch wie folgt beschrieben: [9]

$$N = N_D \left(S_a / S_D \right)^{-k} \quad f \ddot{u} r \quad S_a \ge S_D \tag{2.3}$$

Abbildung 2.2: Kennwerte einer Wöhlerkurve und Abgrenzung der Bereiche (D,Z,K) [9]

Wird davon ausgegangen, dass alle auftretenden Schwingamplituden die Dauerfestigkeitsgrenze überschreiten und das gleiche Spannungsverhältnis *R* aufweisen, kann die Schädigung durch Umformung der Wöhlergleichung berechnet werden. [9]

$$N_{i} S_{ai}^{k} = N_{D} S_{D}^{k} = N_{0} S_{a0}^{k} = konst.$$
(2.4)

wobe
i $\textit{N}_{_{o}}$ und $\textit{S}_{_{ao}}$ einen beliebigen Punkt auf der Zeitfestigkeitsgerade angeben.

Umformen und einsetzen.

$$N_{i} = \left(N_{0} S_{a0}^{k}\right) S_{ai}^{-k}$$
(2.5)

Daraus berechnet sich die Teilschädigung pro Schwingspiel ΔD_{\cdot} .

$$\Delta D_{i} = 1/N_{i} = \frac{S_{ai}^{k}}{(N_{0} S_{a0}^{k})}$$
(2.6)
m

Multiplikation mit der Anzahl der auftretenden Schwingspiele n_i der dazugehörigen Amplitude S_{ai} ergibt die Teilschädigung D_i .

$$D_{i} = \frac{n_{i}}{N_{i}} = \frac{n_{i} S_{ai}^{k}}{N_{0} S_{a0}^{k}}$$
(2.7)

Die Summe der Teilschädigungen D_i ergibt die Gesamtschädigung D, übersteigt diese den Wert D = 1 so tritt Versagen ein. [9]

$$D = \frac{n_1}{N_1} + \frac{n_2}{N_2} + \frac{n_3}{N_3} + \dots = \sum_{i=1}^m \frac{n_i}{N_i} = \frac{\sum_{i=1}^m n_i S_{ai}^k}{N_0 S_{a0}^k} \le 1$$
(2.8)

Aus der dadurch erhaltenen Schädigung *D* kann nun die Anzahl der maximal ertragbaren Schwingspiele \overline{N} ermittelt werden.

$$\overline{N} = \frac{\sum_{i=1}^{m} n_i}{D}$$
(2.9)

2.2 Die Rainflow- Zählung

Da das Messsignal in der Regel aus mehreren, überlagerten, Schwingbeanspruchungen besteht, ist es notwendig ein Zählverfahren anzuwenden, welches aus dem Zeitsignal die zur Schädigungsbewertung notwendigen Lastkollektive erstellt.

In der Literatur sind mehrere Methoden zur digitalen Aufbereitung gemessener Beanspruchungs- Zeit- Funktionen (im Zeit-, Frequenz- oder Rainflowbereich) zu finden [9], wobei das Verfahren der Rainflowzählung im Zuge der Diplomarbeit angewendet wird.

Mit dem Rainflow-Zählverfahren in seinen verschiedenen programmtechnischen Realisierungen, wird eine Identifikation geschlossener Hystereseschleifen entsprechend den werkstoffmechanischen Gesetzmäßigkeiten erreicht.

Dabei wird jede Hystereseschleife durch ihre Umkehrpunkte gekennzeichnet. Die Umkehrpunkte werden als Ober- und Unterwert oder als Amplitude und Mittelwert ausgewiesen und in einer Rainflow- Matrix klassiert. Die Matrix-Elemente bezeichnen dann die Anzahl der geschlossenen Hystereseschleifen (in Abbildung 2.3 dargestellt). [9] Jede nicht geschlossene Hystereseschleife wird als Residuum abgelegt. [9]

Abbildung 2.3: Veranschaulichung des Rainflow-Zahlverfahrens; geschlossene Hystereseschleifen sind gekennzeichnet durch die nummerierten Dreiecke (1...7) und mit ihren Ober- und Unterwerten in der Matrix klassiert; nach ihrer Eliminierung aus dem Beanspruchungsablauf verbleibt das Residuum. [9]

Zur Veranschaulichung des Zusammenhangs zwischen Belastungsverlauf und Hystereseschleifen ist Abbildung 2.4 geeignet:

Abb. 2.4: Belastungsverlauf und Hystereseschleifen einer zeitabhängigen Beanspruchung [11]

In der Literatur sind verschiedene Algorithmen zur Erkennung geschlossener Hysteresen zu finden, sie unterscheiden sich hauptsächlich in der Behandlung von Residuen und von Anfangsund Endzuständen. [9]

Beispiel für das Ergebnis einer Rainflow- Zählung:

Abb. 2.5: Rainflow Histogramm (Beispiel) [13]

- X- Achse ... Amplitude (Range) der Hysteresen
- Y-AchseMittelspannung der jeweiligen Hysterese
- Z-AchseAnzahl der auftretenden Kombination aus X- und Y- Werten

Die Eingangsgrößen der "Schadensakkumulation nach Miner - elementar" sind nur die Amplituden und deren Häufigkeit. Dazu wird das Rainflow- Histogramm über die Y-Achse integriert. Dadurch geht der Einfluss der Mittelspannung jedoch verloren.

2.3 Grundlagen zur Methode der finiten Elemente

Zur Berechnung komplexer Zusammenhänge in realen Systemen reicht die klassische technische Mechanik nicht aus. In der Regel werden solche komplexe Probleme in vereinfachte Modelle übergeführt. Darunter leidet jedoch die Genauigkeit der Ergebnisse. Die Methode der finiten Elemente ermöglicht hingegen weitgehend realitätsnahe Aussagen und zählt seit vielen Jahren bereits zum Standard in Forschung und Entwicklung im Maschinen-, Fahrzeug-, Apparate- und Anlagenbau. [12]

"Der Software-Markt bietet hochwertige und überaus benutzerfreundliche Programm-Pakete an, welche in ihrer hohen Qualität und Komfortabilität manchmal den irreführenden Eindruck vermitteln, man bräuchte nur ein derartiges Programm und damit könne man bereits die Lösung der anstehenden Probleme als gesichert betrachten."

"Dem sei entgegen gehalten, dass trotz der wesentlichen und wertvollen Fortschritte in der Automatisierung der Simulationstechniken die Verwendung solcher Programme zu unsinnigen oder schlechten Ergebnissen führen, wenn der Benutzer die mathematischmechanischen Grundlagen der Methoden nicht zumindest in jenem Maße kennt, die er für eine sinnvolle Modellbildung und Bewertung der Ergebnisse benötigt." (Prof. Rammerstorfer) [14]

Folgende Beschreibung gibt nun kurz einen Überblick über Ablauf und Aufbau einer statischen, linearen FE- Analyse, so wie in Abbildung 2.6 dargestellt.

Abbildung 2.6: Rechnerunterstützte Bauteilanalyse im interaktiven Dialog [12]

CAD System -> FEM System

Ausgangspunkt für die FE- Analyse bildet zunächst ein CAD Modell, welches entweder direkt in der FE- Software erstellt wird (Direktkopplung), oder über ein Schnittstellenformat in die FE-Software über bestimmte Datenformate (IGES, STEP,...) importiert wird.

Ein importiertes CAD File muss bei der Modellübernahme unbedingt auf mögliche Fehler durch die Übernahme untersucht und aufbereitet werden. Dieser Schritt entfällt bei der Direktkopplung. Der Vorteil von der Erstellung der Geometrie mit einem externen Programm liegt meist darin, dass Programme, welche auf CAD spezialisiert sind, meist benutzerfreundlicher sind und vielfältigere Werkzeuge bereitstellen. Hingegen liegt das Problem von spezialisierten CAD Programmen mit integrierten FEM Werkzeugen meist darin, dass diese Werkzeuge nicht die Bandbreite besitzen wie jene einer spezialisierten FEM Software.

FEM System Pre-Processing

Nun wird ausgehend von der Geometrie des Bauteils das FE Netz erstellt (Mesh). Dafür kommen für die Vernetzung je nach Bauteilstruktur verschiedene Elementtypen zum Einsatz: [14]

- Stabelemente
- Balkenelemente
- 2D Elemente
- 3D Elemente
- Platten/Schalen Elemente

Wichtig ist in diesem Schritt die Definition der Genauigkeit des Netzes, ein feineres Netz liefert genauere Ergebnisse, jedoch wird auch die Rechenzeit maßgeblich davon beeinflusst. Daher sollte man das Netz nur so fein wie notwendig auszulegen. Dies liegt i.A im Auge des Anwenders. Grundsätzlich gilt: Je höher der zu erwartende lokale Spannungsgradient, desto feiner sollte das Netz an diesen Stellen gewählt werden. In der Praxis nutzt man dazu die Methode der adaptiven Netzverfeinerung, welche in [14] genauer beschrieben ist. Dabei wird das Netz an die lokalen Spannungsbegebenheiten derart angepasst, dass der Fehler gering gehalten wird und die Rechenzeit dennoch ein vertretbares Ausmaß annimmt.

Weiters werden im Pre-Processing physikalische Materialeigenschaften und sämtliche Anfangsund Randbedingungen (Belastungen und Verschiebungen/Einspannungen) definiert.

Aus der Gesamtheit der im Pre-Processing definierten Daten, wird nun das Eingabeprotokoll erstellt, welches die Informationen für den Solver bereitstellt. [12]

Der Solver - Lösung des Gleichungssystems

Nun erstellt der Solver Anhand der Informationen des Eingabeprotokolls, der Netztopologie und der Elementkennzeichnung die Elementsteifigkeitsmatrix *K*^(e) der Struktur und stellt für jedes Element folgende Gleichung auf:

$$K^{(e)} u^{(e)} = f^{(e)}$$
(2.10)

Dabei beschreibt $u^{(e)}$ den Vektor der Knotenpunktverschiebungen und $f^{(e)}$ den Vektor der äußeren Kräfte jeweils auf Elementebene. [14]

Aus den einzelnen Elementsteifigkeitsmatrizen $K^{(e)}$ wird nun unter Verwendung der Koinzidenztabelle [14] die Gesamtsteifigkeitmatrix K assembliert. Ebenso wird aus dem Elementlastvektoren $f^{(e)}$ der globalen Lastvektor f gebildet und schließlich das lineare Gleichungssystem

$$K u = f \tag{2.11}$$

gebildet, dessen Lösung den globalen Verschiebungsvektor u liefert. [14]

Durch zurückrechnen auf den örtlichen Verschiebungsvektor \overline{u} kann nun unter der Verwendung der Differentialoperatorenmatrix D der Verzerrungsvektor ε ermittelt werden. Im dreiachsigen Spannungszustand gilt: [14]

$$\begin{pmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{xy} \\ \gamma_{yz} \\ \gamma_{yz} \\ \gamma_{zx} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial x} & 0 & 0 \\ 0 & \frac{\partial}{\partial y} & 0 \\ 0 & 0 & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial x} & 0 \\ 0 & \frac{\partial}{\partial z} & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial x} \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix}$$
(2.12)

kurz:

$$\varepsilon = D \vec{u}$$
 (2.13)

Schließlich kann durch Zuhilfenahme der Elastizitätsmatrix E der Spannungsvektor σ errechnet werden:

$$\sigma = E \varepsilon \qquad (2.14)$$

Post-Processing

Der letzte Schritt einer FE- Analyse liegt im sogenannten Post-Processing, in dem die Ergebnisse ausgewertet werden. Dazu werden die berechneten Verschiebungen, Kräfte, Spannungen, etc. in den Postprozessor eingelesen und können dort (farblich) visualisiert werden. Ebenfalls können dabei Spannungen und Verschiebungen an bestimmten Knoten betrachtet werden. [15]

2.4 Software zur Betriebsfestigkeitsanalyse "nCode"

Die Software nCode von HBM bietet führende Lösungen für Betriebsfestigkeits-Engineering und beinhaltet nCode GlyphWorks für die grafische Datenverarbeitung, nCode DesignLife für CAE-Lebensdaueranalysen und nCode Automation für die automatisierte Datenanalyse. [10]

Im Zuge der Diplomarbeit wird für die Lebensdaueranalyse nCode DesignLife verwendet, um Betriebsfestigkeitsanalysen direkt am Output- File der FE-Analyse durchführen zu können. Die zeitliche veränderliche Belastung kann direkt durch das gemessene Zeitsignal eingebracht werden. Die Geometriedaten und Strukurspannungen übernimmt das Programm auf dem FE-File.

Zu beachten ist dabei der Übergang von der FE- Analyse zur Lebensdauerberechnung, dabei muss die Spannungsberechnung mit einer normierten Belastung erfolgen. In nCode muss ein Bezug zwischen Belastung und Zeitsignal hergestellt werden. D.h. wenn das Zeitsignal den Wert f(t)=1 besitzt, bringt nCode jene Belastung auf, welche bei der FE- Analyse auferlegt wurde. Diesen linearen Zusammenhang kann man jedoch durch einen Korrekturfaktor beliebig normieren.

Zu definieren ist in weiterer Folge noch das Material und dessen Beschaffenheit wie Oberflächenrauheit. Dafür existiert ein umfangreicher Katalog von Werkstoffen, aus dem das zu untersuchende Material ausgewählt und die bruchmechanischen Kennwerte übernommen werden.

Ebenso eignet sich nCode gut für die Bearbeitung von kontinuierlichen Messsignalen. Es kann auch sehr große Datenmengen gekonnt handeln und schnelle Ergebnisse liefern. Dazu ist eine riesige Palette an Instrumenten vorhanden, angefangen von mathematischen Operationen über Integration und Differentiation bis zum Rainflow- Zählungsverfahren.

Nach erfolgter Bearbeitung in nCode können die Ergebnisse unkompliziert nach MS Excel über diverse Datenformate exportiert werden.

36

2.5 Analytische Bewertung des Verschleißes der Gleitlager

In größeren Kaplanturbinen, wie jene, die an der Donaukette eingesetzt werden, sind zur Leitschaufel- und Laufradlagerung ausschließlich Gleitlager im Einsatz. [7] Da bei einer Wartung dieser Komponenten die Maschine außer Betrieb genommen werden muss, legt der Betreiber hohen Wert auf die Verschleißbeständigkeit seiner Anlage. Das spart einerseits direkte Wartungskosten für Material- und Personalaufwand sondern auch Opportunitätskosten für die entgangenen Gewinne in der Zeit, in der die Maschine keinen elektrischen Strom in das Netz liefert. Daher werden ebenfalls die Auswirkungen dieses "Laufradschonganges" auf den Lagerverschleiß untersucht.

Dieser ist maßgeblich von den Verstellbewegungen der Servos, der Lagerpressung sowie des Lagerwerkstoffes und des Lageraufbaues abhängig. Da dieses Thema der Tribologie das Ausmaß für mehrere weitere Diplomarbeiten bilden könnte, wird ein stark vereinfachter Zusammenhang für die Verschleißentwicklung verwendet: [1] [17]

$$w = k p_m x_{Lager} \tag{2.15}$$

Laut dieser Formel verhält sich der Lagerverschleiß w linear zur mittleren Lagerpressung p_m und zum zurückgelegten Reibweg x_{Lager} . Die Verschleißrate k ist dabei eine Konstante, die vom Lagerwerkstoff, den Umweltbedinungen und der Schmierung abhängen.

Zur Ermittlung des absolut zurückgelegten Reibweges aus dem Positionssignal des Servos bedarf es noch mathematischer Schritte:

$$x_{Servo} = \int_{t_1}^{t_2} \left(\left| \frac{d \left(Position_{Servo} \right)}{dt} \right| \right) dt$$
(2.16)

Erklärung zu Formel 2.16:

Die Ableitung des Positionssignals nach der Zeit ergibt die Kolbengeschwindigkeit.

Diese ist je nach Bewegungsrichtung entweder positiv oder negativ.

Da der absolute Reibweg gesucht ist, muss der Betrag dieses Signals gebildet werden. (Andernfalls würde eine Bewegung in negativer Richtung den Reibweg reduzieren!)

Eine erneute Integration des Betrags der Geschwindigkeit über die betrachtete Dauer ergibt schließlich den gesuchten absolut zurückgelegten Weg des Kolbens in kumulierter Form.

In einem weiteren Schritt muss noch der Einfluss der Geometrie beachtet werden und schließlich auf den tatsächlichen Reibweg im Lager x_{Lager} umgerechnet werden. Dies geschieht in Kapitel 6.

2.6 Bei der Messung aufgezeichnete Kanäle

Die Daten, auf denen die Bewertungen von Verschleiß und Ermüdung beruhen, wurden an einem Kraftwerk der Donaukette gemessen. Diese Messung wurde im Jahr 2014, von Andritz Hydro GmbH durchgeführt und dient als Grundlage dieser Diplomarbeit.

Es soll kurz ein Überblick über die gemessenen Kanäle geschaffen werden:

LA-Pos[%]	Leitapparat Position; über Winkelgeber an einer Leitschaufel in % des
	maximalen verstellweges angegeben
LA-p_ö[bar]	Leitapparat Servomotor Öffnungsdruck
LA-p_s[bar]	Leitapparat Servomotor Schließdruck
LR-Pos[%]	Laufrad Position; über Wegaufnehmer im Bereich der Drehdurchführung
	der Hydraulikleitung in die Turbinenwelle in % des maximalen Verstellweges
	angegeben
LR-p_ö[bar]	Laufrad Servomotor Öffnungsdruck
LR-p_s[bar]	Laufrad Servomotor Schließdruck
H[m]	Fallhöhe (Differenz aus Ober- und Unterwasser); aus Turbinenregler
P[MW]	dem Generator zugeführte Leistung; aus Turbinenregler
f[Hz]	Netzfrequenz; aus Turbinenregler

Diese Kanäle wurden an 3 baugleichen Maschinensätzen gemessen, wie in der Problemstellung (1.3) bereits erwähnt.

3 Analytische Berechnung der Restlebensdauer anhand der Lastkollektive

Aufbauend darauf erfolgt die analytische Betrachtung der Beanspruchung betroffener LR und LA Bauteile anhand dieser Messergebnisse. Eine Rainflowzählung der resultierenden Kolbenkraft liefert die notwendigen Ergebnisse, um die Lastkollektive von LR und LA zu erstellen und diese mithilfe der Methode der "Schadensakkumulation nach Miner" untereinander vergleichen zu können. Die Ergebnisse daraus dienen lediglich zum Vergleich der unterschiedlichen Betriebszustände zueinander, sie liefern keine Aussage über Absolutwerte jeglicher Art, sei es Lebensdauer oder Maximalspannung.

Eine Aussage über die absolute Lebensdauer bzw. Schädigung der Komponenten gibt nur eine detaillierte Berechnung unter Berücksichtigung der Bauteilstruktur, Materialdaten und des Belastungsverlaufes während der Messdauer. Für diese Auswertung wurde das Programm "nCode" von der Firma "HBM" verwendet.

3.1 Laufrad

3.1.1 Erstellung der Lastkollektive mittels Rainflow- Zählung

Die maßgebende Größe bei der Erstellung der Lastkollektive des Laufrades ist die resultierende Kraft des Servozylinders zur Verstellung der Flügel. Die auftretenden Spannungen in den Komponenten dieses Mechanismus sind bei Annahme kleiner Verstellwinkel direkt proportional zu dieser aufgebrachten Kraft.

Diese muss jedoch durch folgende Formel zuerst errechnet werden:

$$F_{Kres} = p_{\ddot{o}} A_{\ddot{O}} - p_{S} A_{S} \tag{3.1}$$

mit:

$$A_{\ddot{o}} = 824668 \, mm^2$$

$$A_{S} = 855217 \, mm^2$$
[1]

Ein großer Vorteil von nCode ist, wie in 2.5 bereits erwähnt, dass solche Berechnungen direkt und kontinuierlich am Zeitsignal durchgeführt werden können. Nach dieser Umrechnung erfolgt die Rainflow- Zählung, wie in 2.3 beschrieben, mit Amplitude und Mittelspannung auf der X-, bzw. Y- Achse aufgetragen.

Die nachfolgenden Abbildungen 3.1, 3.2, 3.3 beschreiben die Rainflow- Histogramme der 3 gemessen Maschinensätze und beziehen sich auf die resultierende Kolbenkraft des Laufrad-Servos.

Diese Histogramme dienen als Basis für die nachfolgende Schadensakkumulation wie in Kapitel 2 bereits beschrieben.

Analytische Berechnung der Restlebensdauer anhand der Lastkollektive

Abbildung 3.1: Rainflow- Histogramm der resultierenden Kolbenkraft vom Laufrad der Maschine 1 (Pegelregelung)

Abbildung 3.2: Rainflow- Histogramm der resultierenden Kolbenkraft vom Laufrad der Maschine 2 (Primärregelung)

Abbildung 3.3: Rainflow- Histogramm der resultierenden Kolbenkraft vom Laufrad der Maschine 3 (Primärregelung mit Laufrad- Schonung)

3.1.2 Schadensakkumulation nach Miner und Palmgren (elementar)

Nun werden die Daten über das Format .csv nach MS Excel ausgelesen um diese dort weiter verarbeiten zu können. Um sie in einem Diagramm untereinander zu vergleichen, und die Methode der Schadensakkumulation nach Miner und Palmgren darauf anzuwenden, wie in 2.1 beschrieben, werden die Lastwechsel gleicher Amplitude und unterschiedlicher Mittelspannung addiert. Dadurch erhält man die einzelnen Lastkollektive in 2 dimensionaler Form.

Nun, da die Kollektive dargestellt werden können, ist es noch notwendig, eine exemplarische Wöhler- Gerade zu erstellen, nach Formel (2.4) aus Kapitel 2.1:

$$N_0 S_{a0}^k = konst. \tag{2.4}$$

mit *k=5* [1]

Folgende Tabelle zeigt die Ermittlung der Teilschädigungen D_i der drei Betriebsarten wie in Kapitel 2 "Grundlagen" bereits beschrieben. Diese wird kumuliert um die gesamte Schädigung während eines Belastungszyklus zu erhalten.

Durch Aufsummierung der Teilschädigung erhält man die Gesamtschädigung der jeweiligen Maschine für einen Belastungszyklus.

Lastkollektive Laufrad

	Masch	nine 1 (Pege	elregelung)			Masch	ine 2 (Frequ	lenzregelun	g)	Maschin	e 3 (Freque	enzregelung	mit Laufrad	schongang)
S_ai(M1)	S_ai(M1)	n_i(M1)		D_i(M1)	S_ai(M2)	S_ai(M2)	n_i(M2)		D_i(M2)	S_ai(M3)	S_ai(M3)	n_i(M3)		D_i(M3)
Rate	F_Kres	Ν	kumuliert	Schädigung	Rate	F_Kres	Ν	kumuliert	Schädigung	Rate	F_Kres	Ν	kumuliert	Schädigung
0.007874	1,18E+04	23022	43657	5.28431E-011	0.007874	2,36E+04	19046	25957	1.379939E-009	0.007874	2,21E+04	47860	48959	2.5055E-009
0.023622	3,54E+04	11008	20635	6.13979E-009	0.023622	7,07E+04	1974	6911	3.475437E-008	0.023622	6,62E+04	517	1099	6.5769E-009
0.03937	5,90E+04	5392	9627	3.86756E-008	0.03937	1,18E+05	1167	4937	2.642324E-007	0.03937	1,10E+05	5 256	582	4.1882E-008
0.055118	8,27E+04	2374	4235	9.15815E-008	0.055118	1,65E+05	740	3770	9.011184E-007	0.055118	1,54E+05	5 133	326	0.000000117
0.070866	1,06E+05	860	1861	1.16561E-007	0.070866	2,12E+05	449	3030	1.920949E-006	0.070866	1,99E+05	67	193	2.0712E-007
0.086614	1,30E+05	321	1001	1.18659E-007	0.086614	2,59E+05	242	2581	2.823800E-006	0.086614	2,43E+05	5 42	126	3.5411E-007
0.102362	1,54E+05	5 153	680	1.30391E-007	0.102362	3,06E+05	173	2339	4.653896E-006	0.102362	2,87E+05	5 11	84	2.1381E-007
0.11811	1,77E+05	5 120	527	2.09156E-007	0.11811	3,53E+05	120	2166	6.602320E-006	0.11811	3,31E+05	5 14	73	5.5656E-007
0.133858	2,01E+05	93	407	3.03086E-007	0.133858	4,00E+05	133	2046	1.368213E-005	0.133858	3,75E+05	5 7	59	5.2032E-007
0.149606	2,24E+05	67	314	3.80782E-007	0.149606	4,47E+05	120	1913	2.152810E-005	0.149606	4,19E+05	5 2	52	2.5925E-007
0.165354	2,48E+05	50	247	4.68710E-007	0.165354	4,95E+05	116	1793	0.000034325	0.165354	4,63E+05	5 1	50	2.1381E-007
0.181102	2,72E+05	26	197	3.84109E-007	0.181102	5,42E+05	88	1677	4.103710E-005	0.181102	5,08E+05	5 2	49	6.7390E-007
0.19685	2,95E+05	33	171	7.39693E-007	0.196851	5,89E+05	74	1589	5.235879E-005	0.196851	5,52E+05	5 0	47	0
0.212598	3,19E+05	i 17	138	5.59898E-007	0.212599	6,36E+05	61	1515	0.000063417	0.212599	5,96E+05	5 0	47	0
0.228346	3,42E+05	20	121	9.41580E-007	0.228346	6,83E+05	48	1454	7.133251E-005	0.228346	6,40E+05	5 1	47	1.0738E-006
0.244094	3,66E+05	6	101	3.94276E-007	0.244094	7,30E+05	52	1406	0.0001078618	0.244094	6,84E+05	5 0	46	0
0.259842	3,90E+05	i 13	95	1.16775E-006	0.259842	7,77E+05	43	1354	0.0001219252	0.259843	7,28E+05	5 0	46	0
0.27559	4,13E+05	i 9	82	0.000001085	0.275591	8,24E+05	45	1311	0.0001712419	0.275591	7,72E+05	5 0	46	0
0.291338	4,37E+05	i 10	73	1.59164E-006	0.291339	8,71E+05	38	1266	0.0001909189	0.291339	8,17E+05	5 0	46	0
0.307086	4,61E+05	i 4	63	8.28366E-007	0.307087	9,18E+05	28	1228	0.0001830363	0.307087	8,61E+05	5 1	46	4.7234E-006
0.322834	4,84E+05	5 7	59	1.86146E-006	0.322835	9,66E+05	41	1200	0.0003441588	0.322835	9,05E+05	5 0	45	0
0.338582	5,08E+05	i 4	52	1.34971E-006	0.338584	1,01E+06	33	1159	0.0003514941	0.338583	9,49E+05	5 0	45	0
0.35433	5,31E+05	i 3	48	1.27063E-006	0.354331	1,06E+06	35	1126	0.0004679373	0.354331	9,93E+05	5 0	45	0
0.370078	5,55E+05	5 5	45	2.63207E-006	0.370078	1,11E+06	36	1091	0.0005981973	0.370079	1,04E+06	6 0	45	0
0.385825	5,79E+05	i 3	40	1.94508E-006	0.385825	1,15E+06	30	1055	0.0006139745	0.385828	1,08E+06	6 1	45	1.4788E-005
0.401574	6,02E+05	i 4	37	3.16774E-006	0.401576	1,20E+06	26	1025	0.0006499609	0.401576	1,13E+06	6 0	44	0
0.417321	6,26E+05	i 3	33	2.87963E-006	0.417323	1,25E+06	36	999	0.0010907891	0.417321	1,17E+06	6 0	44	0
0.43307	6,49E+05	i 3	30	3.46556E-006	0.433071	1,30E+06	21	963	0.0007657516	0.43307	1,21E+06	6 0	44	0
0.448817	6,73E+05	3	27	4.14316E-006	0.448818	1,34E+06	27	942	0.0011770358	0.448819	1,26E+06	6 0	44	0
0.464566	6,97E+05	5 1	24	0.000001641	0.464569	1,39E+06	22	915	0.0011395849	0.464567	1,30E+06	6 0	44	0
0.480314	7,20E+05	5 2	23	3.87720E-006	0.480316	1,44E+06	21	893	0.0012850761	0.480316	1,35E+06	6 0	44	0
0.496062	7,44E+05	5 4	21	9.11173E-006	0.496063	1,48E+06	24	872	0.0017257226	0.496065	1,39E+06	6 0	44	0
0.51181	7,68E+05	j 2	17	5.32643E-006	0.51181	1,53E+06	25	848	0.0021016512	0.51181	1,43E+06	6 0	44	0

Laufrad

	Fortsetzung Laufrad													
	Masch	nine 1 (Peg	gelregelung)	Maschine 2 (Frequenzregelung)						Maschine 3 (Frequenzregelung mit Laufradschongang)			
S_ai(M1)	S_ai(M1)	n_i(M1)		D_i(M1)	S_ai(M2)	S_ai(M2)	n_i(M2)		D_i(M2)	S_ai(M3)	S_ai(M3)	n_i(M3)		D_i(M3)
Rate	F_Kres	N	kumuliert	Schädigung	Rate	F_Kres	N	kumuliert	Schädigung	Rate	F_Kres	N	kumuliert	Schädigung
0.527558	7,91E+05	5	1 1	5 3.09893E-006	6 0.527558	1,58E+06	6 19	823	3 0.0018585682	0.527558	1,48E+06	6 () 44	. 0
0.543306	8,15E+05	5	0 1	4 (0.543308	1,63E+06	6 19	804	4 0.0021530817	0.543307	1,52E+06	6 () 44	. 0
0.559053	8,38E+05	5	2 1	4 8.28246E-006	6 0.559056	1,67E+06	6 28	3 785	5 0.0036602287	0.559056	1,57E+06	6 () 44	. 0
0.574802	8,62E+05	5	3 1	2 1.42749E-008	0.574803	1,72E+06	6 26	6 757	0.0039051997	0.574804	1,61E+06	6 () 44	. 0
0.590549	8,86E+05	5	1	9 5.44683E-006	6 0.59055	1,77E+06	6 18	3 73 ⁻	0.0030947939	0.590553	1,66E+06	6 () 44	. 0
0.606298	9,09E+05	5	1	8 6.21287E-006	6 0.606301	1,81E+06	6 27	713	3 0.0052951677	0.606298	1,70E+06	6 () 44	. 0
0.622045	9,33E+05	5	0	7 (0.622048	1,86E+06	6 24	686	6 0.005350647	0.622047	1,74E+06	6 () 44	. 0
0.637794	9,56E+05	5	0	7 (0.637796	1,91E+06	6 16	662	2 0.0040420537	0.637795	1,79E+06) ·	1 44	0.000182537
0.653541	9,80E+05	5	1	7 9.04124E-006	6 0.653543	1,95E+06	6 24	646	6 0.0068494586	0.653544	1,83E+06	6 () 43	0
0.66929	1,00E+06	6	1	6 1.01843E-008	0.66929	2,00E+06	6 24	622	2 0.0077153931	0.669293	1,88E+06	6 () 43	0
0.685041	1,03E+06	6	1	5 1.14405E-008	0.685041	2,05E+06	6 23	3 598	3 0.0083058606	0.685041	1,92E+06	6 () 43	0
0.700785	1,05E+06	6	0	4 (0.700788	2,10E+06	6 25	5 575	5 0.0101145881	0.700786	1,96E+06	6 2	2 43	0.00058466
0.716536	1,07E+06	6	0	4 (0.716535	2,14E+06	6 27	550	0.0122074965	0.716535	2,01E+06	6 () 41	0
0.73228	1,10E+06	6	0	4 (0.732283	2,19E+06	6 3 7	523	3 0.0186496278	0.732284	2,05E+06	6 () 41	0
0.748031	1,12E+06	6	1	4 1.77607E-008	0.74803	2,24E+06	6 36	6 486	6 0.020182369	0.748032	2,10E+06	· ·	1 41	0.000405086
0.763775	1,15E+06	5	0	3 (0.763781	2,28E+06	6 22	2 450	0.013688015	0.763781	2,14E+06	6 () 40	0
0.779526	1,17E+06	5	1 :	3 2.18281E-005	0.779528	2,33E+06	6 22	2 428	3 0.0151584802	0.77953	2,18E+06	6 () 40	0
0.795271	1,19E+06	5	0	2 (0.795275	2,38E+06	6 12	2 406	6 0.0091378304	0.795275	2,23E+06	6 () 40	0
0.811022	1,22E+06	;	0	2 (0.811022	2,43E+06	6 13	3 394	0.0109189909	0.811023	2,27E+06	6 2	2 40	0.001213785
0.826773	1,24E+06	5	0	2 (0.826773	2,47E+06	6 17	7 382	0.0157201017	0.826772	2,32E+06) <i>·</i>	1 38	0.00066815
0.842517	1,26E+06	5	0	2 (0.84252	2,52E+06	5 35	5 364	0.0355668086	0.842521	2,36E+06	6 2	2 37	0.001468513
0.858268	1,29E+06	5	0	2 (0.858268	2,57E+06	5 58	3 329	0.0646571489	0.858269	2,41E+06	6 3	3 35	0.002416485
0.874012	1,31E+06	5	0	2 (0.874015	2,61E+06	6 78	3 27 <i>°</i>	0.0952277964	0.874018	2,45E+06	6 4	1 32	0.003528635
0.889763	1,33E+06	;	0	2 (0.889762	2,66E+06	6 79	9 193	3 0.1054561186	0.889763	2,49E+06	6 4	1 28	0.00385813
0.905508	1,36E+06	;	0	2 (0.905513	2,71E+06	6 5 ⁻	114	0.0743221332	0.905512	2,54E+06	6 4	1 24	0.004211873
0.921258	1,38E+06	6	1 :	2 5.03234E-00	0.92126	2,76E+06	6 38	63	3 0.0603628744	0.92126	2,58E+06	6 t	5 20	0.005738877
0.937003	1,41E+06	6	0	1 (0.937007	2,80E+06	6 19) 25	5 0.0328506293	0.937009	2,63E+06	6 6	6 15	0.007495749
0.952754	1,43E+06	5	0	1 (0.952755	2,85E+06	6 2	26	6 0.0037584646	0.952758	2,67E+06	6 3	3 9	0.004073601
0.968498	1,45E+06	5	0	1 (0.968505	2,90E+06	6 2	2 4	0.0040795763	0.968503	2,71E+06	6 4	4 6	0.005895345
0.984249	1,48E+06	6	0	1 (0.984253	2,94E+06	· ·	2	2 0.0022110975	0.984251	2,76E+06	· ·	1 2	0.001597626
1	1,50E+06	6	1	1 7.58338E-005	5 1	2,99E+06	· ·	'	0.002393728	1	2,80E+06	; · ·	1 1	0.001729598
	Schädigung)		0,0002859556	5				0.6722955295					0.045092401

Laufrad

Analytische Berechnung der Restlebensdauer anhand der Lastkollektive

Nun lassen sich die Lastkollektive der 3 Maschinen in einem Diagramm darstellen und können der Wöhlerlinie gegenübergestellt werden:

Abbildung 3.4: Lastkollektive der resultierenden Kolbenkraft des Laufrades

Ergebnisse durch die Schadenakkumulation nach Miner und Palmgren für das Laufrad:

(n=13)	Maschine 1	Maschine 2	Maschine 3	
Schädigung	0.00029	0.67230	0.04509	1/Zyklus
relative Schädigung [%]	0.04%	100%	7%	
Abweichung zu M2 +/-%	-99.96%	+/-0%	-93%	
]
Restlebensdauer	3497.0	1.5	22.2	Zyklen
Realtive Restlebensdauer [%]	235105%	100%	1491%	
Abweichung zu M2 +/-%	+235005%	+/-0%	+1391%	

Dieses Ergebnis bedeutet eine Belastungsreduzierung der Verstellmechanismus-Komponenten des Laufrades um 93% durch die Implementierung des Laufradschonganges. Dieses Ergebnis ist wünschenswert und bestätigt die Wirkung des Laufradschonganges.

Anmerkungen:

Da es sich bei der Wöhlerkurve nur um eine exemplarische Kurve handelt und die Lastollektive keine tatsächliche Spannungen, sondern nur die Belastungen darstellen, kann keine Aussage über die absolute Schädigung bzw. Restlebensdauer getroffen werden. Dieses Ergebnis dient nur als Vergleich dieser Maschinen zueinander.

Weiters werden beim elementaren Verfahren der Schadensakkumulation nach Miner und Palmgren Dauerfestigkeitseffekte vernachlässigt.

Anmerkung zum Lastkollektiv von der pegelgeregelten Maschine 1:

Wie in Abbildung 3.4 zu erkennen ist, erreicht der Servoantrieb von Maschine 1 niemals die Kraft (Y-Achse in Abb.3.4) die notwendig ist um eine die Reibung zu überwinden und eine Bewegung zu erzeugen (Anmerkung: Reibband). Daraus lässt sich schließen, dass Maschine 1 keine Bewegung vollführte und so das Messergebnis von Maschine 1 für einen Vergleich mit frequenzgeregelten Maschinen (M2 und M3) unzureichend ist. Tatsächlich stellte sich nach einer näheren Untersuchung heraus, dass sich Maschine 1 in einem Betriebsmodus befand, in dem das Laufrad seine Position nicht ändert.

Somit ist die Vergleichbarkeit nicht gegeben und Maschine 1 wird bei den folgenden Berechnungen in den Ergebnissen zwar gelistet, jedoch nicht interpretiert und nicht mit den frequenzgeregelten Maschinen verglichen.

Anmerkung Reibband: Das Reibband beschreibt den nahezu waagrechten Belastungsverlauf der Lastkollektive von M2 und M3. D.h. dies ist die notwendige Verstellkraft im Laufradservo, um die Reibung zu überwinden und eine Verstellbewegung zu erzeugen.

3.2 Leitapparat

3.2.1 Erstellung der Lastkollektive mittels Rainflow- Zählung

Die Erstellung der Lastkollektive und Berechnung der Schädigung für den Leitapparat erfolgte analog zu der des Laufrades, mit der Vereinfachung, dass es sich beim Servozylinder des Leitapparates um einen Gleichlaufzylinder handelt, d.h dass die Kolbenflächen für Öffnungsund Schließvorgang gleich groß sind.

Dadurch können die Lastkollektive direkt aus dem Differenzdruck p_{Diff} erstellt werden, welcher sich aus der Differenz von Öffnungs- und Schließdruck errechnet:

$$p_{diff} = p_{\ddot{o}} - p_{S} \tag{3.2}$$

Ansonsten gelten die gleichen Annahmen wie bei der Auswertung des Laufrades.

Es folgen die Darstellung der Rainflow- Histogramme der 3 Maschinensätze.

Die darauf folgende Tabelle zeigt wieder die Ermittlung der Teilschädigungen D_i der drei Betriebsarten wie in Kapitel 2 "Grundlagen" bereits beschrieben. Diese wird kumuliert um die gesamte Schädigung während eines Belastungszyklus zu erhalten. Analytische Berechnung der Restlebensdauer anhand der Lastkollektive

Abbildung 3.6: Rainflow- Histogramm der resultierenden Kolbenkraft vom Leitapparat der Maschine 2 (Frequenzregelung)

Abbildung 3.7: Rainflow- Histogramm der resultierenden Kolbenkraft vom Leitapparat der Maschine 3 (Frequenzregelung mit Laufradschonung)

	Lastkollektive Leitapparat													
	Maso	hine 1 (Pe	gelregelung)			Masch	ine 2 (Fre	quenzregelu	ng)	Maschine 3 (Frequenzregelung mit Laufradschongang)				
S_ai(M1)	S_ai(M1)	n_i(M1)		D_i(M1)	S_ai(M2)	S_ai(M2)	n_i(M2)		D_i(M2)	S_ai(M3)	S_ai(M3) n	n_i(M3)		D_i(M3)
Rate	p_Diff	Ν	kumuliert	Schädigung	Rate	p_Diff	Ν	kumuliert	Schädigung	Rate	p_Diff N	١	kumuliert	Schädigung
0.007874	0.052169	5 447	7 46393	1.36E-12	0.007874	0.0546211	42	53094	· 1.29E-12	0.007874	0.0593199	5163	51304	1.56E-12
0.023622	0.15650	9 483	5 41916	3.56E-10	0.023622	0.163863	450	0 48842	3.31E-10	0.023622	0.17796	5362	46141	3.94E-10
0.03937	0.260848	3 471	2 37081	4.46E-09	0.03937	0.273105	44 ⁻	9 44342	4.18E-09	0.03937	0.2966	5351	40779	5.06E-09
0.055118	0.36518	7 444	8 32369	2.26E-08	0.055118	0.382348	449	9 39923	2.29E-08	0.055118	0.415239	5256	35428	2.67E-08
0.070866	0.469526	396 396	4 27921	7.08E-08	0.070866	0.49159	406	0 35424	7.26E-08	0.070866	0.533879	4802	30172	8.58E-08
0.086614	0.57386	5 364	7 23957	1.78E-07	0.086614	0.600832	362	20 31364	1.76E-07	0.086614	0.652519	4337	25370	2.11E-07
0.102362	0.678204	4 320	7 20310	3.60E-07	0.102362	0.710074	342	27744	3.85E-07	0.102362	0.771159	3629	21033	4.08E-07
0.11811	0.782543	3 274	4 17103	6.31E-07	0.11811	0.819316	293	30 24317	6.73E-07	0.11811	0.889799	2888	17404	6.64E-07
0.133858	0.886882	2 229	8 14359	9.88E-07	0.133858	0.928559	259	21387	1.11E-06	0.133858	1.00844	2191	14516	9.42E-07
0.149606	0.99122	1 198	1 12061	1.48E-06	0.149606	1.0378	214	2 18795	1.61E-06	0.149606	1.12708	1769	12325	1.33E-06
0.165354	1.09556	6 162	5 10080	2.01E-06	0.165354	1.14704	. 196	60 16653	2.42E-06	0.165355	1.24572	1381	10556	1.71E-06
0.181102	1.1999	9 140	7 8455	2.74E-06	0.181103	1.25629	16	14693	3.26E-06	0.181103	1.36436	1061	9175	2.07E-06
0.196851	1.30424	107	9 7048	3.19E-06	0.196851	1.36553	14	9 13022	4.37E-06	0.196851	1.483	862	8114	2.55E-06
0.212599	1.40858	3 92	1 5969	4.00E-06	0.212598	1.47477	′ 123	9 11543	5.38E-06	0.212599	1.60164	668	7252	2.90E-06
0.228347	1.51292	2 71	1 5048	4.41E-06	0.228346	1.58401	102	10304	6.35E-06	0.228347	1.72028	612	6584	3.80E-06
0.244095	1.61726	6 59	2 4337	5.13E-06	0.244094	1.69325	93	32 928 1	8.08E-06	0.244095	1.83892	544	5972	4.71E-06
0.259842	1.72159	9 46	4 3745	5.50E-06	0.259843	1.8025	5 7 [.]	5 8349	8.47E-06	0.259843	1.95756	463	5428	5.48E-06
0.27559	1.82593	3 38	6 3281	6.14E-06	0.275591	1.91174	- 63	34 7634	1.01E-05	0.275591	2.0762	383	4965	6.09E-06
0.291338	1.9302	7 31	0 2895	6.51E-06	0.291338	2.02098	52	28 7000	1.11E-05	0.291339	2.19484	327	4582	6.86E-06
0.307086	2.0346	1 28	3 2585	7.73E-06	0.307086	2.13022	. 50	01 6472	1.37E-05	0.307087	2.31348	303	4255	8.27E-06
0.322835	2.1389	5 26	0 2302	9.12E-06	0.322834	2.23946	39	6 5971	1.39E-05	0.322835	2.43212	237	3952	8.31E-06
0.338583	2.24329	9 20	8 2042	9.26E-06	0.338583	2.34871	3	3 5575	1.66E-05	0.338583	2.55076	189	3715	8.41E-06
0.354331	2.3476	3 17	1 1834	9.55E-06	0.354331	2.45795	33	6 5202	1.88E-05	0.354331	2.6694	157	3526	8.77E-06
0.370079	2.4519	7 16	0 1663	1.11E-05	0.370078	2.56719	2	7 4866	1.92E-05	0.370079	2.78804	122	3369	8.47E-06
0.385827	2.5563	I 13	2 1503	1.13E-05	0.385826	2.67643	23	4589	2.00E-05	0.385827	2.90668	109	3247	9.32E-06
0.401575	2.6606	5 11	7 1371	1.22E-05	0.401575	2.78568	1	68 4355	1.65E-05	0.401575	3.02532	73	3138	7.62E-06
0.417322	2.76498	3 10	2 1254	1.29E-05	0.417323	2.89492	: 17	2 4197	2.18E-05	0.417323	3.14396	85	3065	1.08E-05
0.43307	2.86932	28	8 1152	1.34E-05	0.433071	3.00416	i 1 [.]	4 4025	1.74E-05	0.433071	3.2626	78	2980	1.19E-05
0.448818	2.9736	67	5 1064	1.37E-05	0.448818	3.1134	· 12	25 3911	2.28E-05	0.448818	3.38123	69	2902	1.26E-05
0.464567	3.078	36	7 989	1.45E-05	0.464566	3.22264	· 1 [·]	3 3786	2.45E-05	0.464566	3.49987	60	2833	1.30E-05
0.480315	3.18234	4 4	5 922	1.15E-05	0.480315	3.33189	12	3673	3.25E-05	0.480314	3.61851	63	2773	1.61E-05
0.496063	3.28668	3 3	5 877	1.05E-05	0.496063	3.44113	5 10	3 3546	3.09E-05	0.496062	3.73715	51	2710	1.53E-05
0.511811	3.39102	2 4	1 842	1.44E-05	0.511811	3.55037	' 12	3 3443	4.32E-05	0.51181	3.85579	41	2659	1.44E-05

Analytische Berechnung der Restlebensdauer anhand der Lastkollektive

	Fortsetzung Leitapparat													
	Masc	hine 1 (Pe	gelregelung)		Masch	ine 2 (Freq	uenzregelu	ng)	Maschine 3 (Frequenzregelung mit Laufradschongang)				
S_ai(M1)	S_ai(M1)	n_i(M1)		D_i(M1)	S_ai(M2)	S_ai(M2)	n_i(M2)	-	D_i(M2)	S_ai(M3)	S_ai(M3)	n_i(M3)		D_i(M3)
Rate	p_Diff	Ν	kumuliert	Schädigung	Rate	p_Diff	Ν	kumuliert	Schädigung	Rate	p_Diff	Ν	kumuliert	Schädigung
0.527559	3.49536	; 4	-1 80 ⁻	1 1.68E-05	0.527558	3.6596	11:	3 3320) 4.62E-05	0.527558	3.97443	47	2618	1.92E-05
0.543307	3.5997	' 3	3 760	0 1.56E-05	0.543308	3.76886	5 11	2 3207	7 5.30E-05	0.543306	4.09307	39	2571	1.85E-05
0.559056	3.70404	. 3	4 72	7 1.86E-05	0.559055	5 3.878 ²	13	4 3095	5 7.32E-05	0.559055	6 4.21171	55	2532	3.00E-05
0.574802	3.80837	2	2 693	3 1.38E-05	0.574803	3.98734	14	3 2961	8.97E-05	0.574803	4.33035	64	2477	4.02E-05
0.59055	3.91271	2	.8 67 ⁻	1 2.01E-05	0.590551	4.09658	3 14	5 2818	3 1.05E-04	0.590551	4.44899	77	2413	5.53E-05
0.606299	4.01705	5 3	643	3 2.54E-05	0.606299	4.20582	2 18	6 2672	2 1.52E-04	0.606299	4.56763	70	2336	5.73E-05
0.622047	4.12139) 2	.7 612	2 2.51E-05	0.622048	4.31507	26	3 2486	6 2.45E-04	0.622047	4.68627	88	2266	8.20E-05
0.637795	4.22573	3 3	6 58	5 3.80E-05	0.637795	5 4.4243 <i>°</i>	284	4 2223	3.00E-04	0.637795	4.80491	111	2178	1.17E-04
0.653543	4.33007	· 4	3 549	9 5.13E-05	0.653543	4.53355	5 25	3 1939	3.02E-04	0.653543	4.92355	5 138	2067	1.65E-04
0.669291	4.43441	5	506	6.98E-05	0.669291	4.64279) 28	5 1686	3.83E-04	0.669291	5.04219	193	1929	2.59E-04
0.68504	4.53875	5 4	5 454	4 6.79E-05	0.68504	4.75204	27) 1401	4.07E-04	0.685039	5.16083	223	1736	3.36E-04
0.700788	4.64309) 4	3 409	9 7.27E-05	0.700788	4.86128	3 21	2 1131	3.58E-04	0.700787	5.27947	272	1513	4.60E-04
0.716536	4.74743	6 4	8 366	6 9.07E-05	0.716535	4.97052	2 18	2 919	3.44E-04	0.716535	5.39811	256	1241	4.84E-04
0.732284	4.85177	' 5	57 318	8 1.20E-04	0.732283	5.07976	6 17s	9 737	3.77E-04	0.732283	5.51675	232	985	4.89E-04
0.748031	4.9561	4	2 26'	1 9.84E-05	0.748031	5.189) 14	2 558	3.33E-04	0.748031	5.63539	170	753	3.98E-04
0.763779	5.06044	. 3	5 219	9 9.10E-05	0.76378	5.29825	5 10	3 416	6 2.81E-04	0.763779	5.75403	6 167	583	4.34E-04
0.779527	5.16478	5 4	0 184	4 1.15E-04	0.779528	5.40749	9 8	7 308	3 2.50E-04	0.779527	5.87267	' 130	416	3.74E-04
0.795275	5.26912	2 4	5 144	4 1.43E-04	0.795275	5.51673	B 6	1 221	1.94E-04	0.795275	5.99131	102	286	3.24E-04
0.811023	5.37346	; 2	4 99	9 8.42E-05	0.811023	5.62597	7 49	9 160) 1.72E-04	0.811023	6.10995	5 51	184	1.79E-04
0.826772	5.4778	8 2	4 7	5 9.27E-05	0.826772	2 5.73522	2 34	4 111	1.31E-04	0.826771	6.22859	57	133	2.20E-04
0.84252	5.58214	. 1	5 5 [°]	1 6.37E-05	0.84252	5.84446	6 2	3 77	7 1.19E-04	0.842519	6.34723	24	- 76	1.02E-04
0.858268	5.68648	3 1	2 30	6 5.59E-05	0.858268	5.9537	7 1:	5 49	6.99E-05	0.858268	6.46587	' 18	52	8.38E-05
0.874016	5.79082	! 1	1 24	4 5.61E-05	0.874015	6.06294	ŀ .	7 34	3.57E-05	0.874016	6.58451	15	34	7.65E-05
0.889764	5.89516	;	1 1:	3 5.58E-06	0.889763	6.17218	3	7 27	3.90E-05	0.889764	6.70315	5 7	' 19	3.90E-05
0.905511	5.99949)	4 12	2 2.44E-05	0.905512	6.28143	3	7 20) 4.26E-05	0.905512	6.82179	9 4	12	2.44E-05
0.921259	6.10383	6	3 8	8 1.99E-05	0.92126	6.39067	7	6 13	3.98E-05	0.92126	6.94043	5 5	8	3.32E-05
0.937007	6.20817	,	3 !	5 2.17E-05	0.937008	6.49992	4	4 7	2.89E-05	0.937008	7.05907	' 1	3	7.22E-06
0.952755	6.31251		1 2	2 7.85E-06	0.952755	6.60915	5 () 3	0.00E+00	0.952756	6 7.17771	1	2	7.85E-06
0.968504	6.41685	5	0 ·	1 0.00E+00	0.968503	6.71839)	1 3	8.52E-06	0.968504	7.29635	5 O) 1	0.00E+00
0.984252	6.52119)	0 ·	1 0.00E+00	0.984252	6.82764	ļ ·	1 2	9.24E-06	0.984252	2 7.41499	0) 1	0.00E+00
1	6.62553	5	1 '	1 1.00E-05	1	6.93688	3	1 1	1.00E-05	1	7.53363	6 1	1	1.00E-05
	Schädigun	g		1.74E-003					5.37E-003					5.12E-003

Leitapparat

3.2.2 Schadenakkumulation nach Miner und Palmgren (elementar)

Es werden erneut die 3 Lastkollektive in einem Diagramm mit der Wöhlerlinie verglichen und die relative Schädigung berechnet.

Abbildung 3.8: Lastkollektive des Differenzdruckes $p_{\scriptscriptstyle Diff}$ des Leitapparatservos

(n=13)	Maschine 1	Maschine 2	Maschine 3	
Schädigung	0.02169	0.08429	0.12130	1/Zyklus
relative Schädigung [%]	26%	100%	144%	
Abweichung zu M2 +/-%	-74%	+/-0%	+44%	
Restlebensdauer	46.1	11.9	8.2	Zyklen
Realtive Restlebensdauer [%]	389%	100%	69%	
Abweichung zu M2 +/-%	+289%	+/-0%	-31%	

Ergebnisse durch die Schadenakkumulation nach Miner und Palmgren für den Leitapparat:

Anmerkung:

Da es sich bei der Wöhlerkurve nur um eine exemplarische Kurve handelt, kann keine Aussage über die absolute Schädigung bzw. Restlebensdauer getroffen werden. Dieses Ergebnis dient nur als Vergleich dieser Maschinen zueinander, wie in Kapitel 3.1.2 bereits beschrieben.

Weiters werden beim elementaren Verfahren der Schadensakkumulation nach Miner und Palmgren Dauerfestigkeitseffekte vernachlässigt.

Dieses Ergebnis bedeutet eine Belastungserhöhung der Verstellmechanismus-Komponenten des Leitapparates um 44% durch die Implementierung des Laufradschonganges. Dieses Ergebnis war zu erwarten, da der Leitapparat vermehrte Aktivität bewältigen muss, um das Laufrad in seinen Stellbewegungen zu entlasten. Nur so kann ein ähnlicher Leistungsoutput gewährleistet werden, welcher auch die Kriterien der Primärregelung erfüllt (Kapitel 1).

4 Finite Elemente Berechnung

Die bei der FE- Analyse ermittelten Strukturspannungen dienen als Grundlage für die nachfolgende Lebensdauerberechnung in nCode, um die tatsächliche Restlebensdauer ermitteln zu können. Es ist dabei besonders darauf zu achten, mit welcher Last das Bauteil beaufschlagt wird, wie bereits in Kapitel 2.4 beschrieben. Zielführend ist eine Belastung, die nahe der maximal vorkommenden Betriebsbelastung liegt.

4.1 Laufrad

Da sich beim Laufradservo die Öffnungs- und Schließfläche des Kolbens unterscheiden, darf zur Berechnung nicht der Differenzdruck verwendet werden. Es muss für jedes Drucksignal eine eigene Last in einem separaten Step im FE-Modell angelegt werden.

Im Falle der Laufradkomponenten wurde eine wichtige Eigenschaft genutzt, um den Berechnungsaufwand einer FE-Analyse zu reduzieren; da es sich um punktsymmetrische Bauteile handelt, wurde das Modell geviertelt (4-schaufeliges-Laufrad).

4.1.1 Aufbau und Komponenten

Abbildung 4.1: Laufradquerschnitt mit beschrifteten Komponenten

Im Zuge der Diplomarbeit wurden folgende Laufrad- Komponenten untersucht:

- Zylinder
- Kolben
- Lasche
- Schaufelzapfen

Diese sind in Abbildung 4.1 übersichtlich dargestellt.

4.1.2 Berechnung

Als Belastung wird jeweils ein Öffnungsnenndruck von 20 bar und ein Schließnenndruck von 5 bar aufgebracht. Diese liegen nahe der maximal vorkommenden Drücke während des Betriebs. Der Öffnungsdruck ist aufgrund der Schließtendenz der Laufradflügel im Betrieb höher als der Schließdruck.

Abbildung 4.2: Spannungen in [MPa] (Von Mises) im Zylinder beim Schließvorgang, belastet mit Schließnenndruck von 5 bar

Abbildung 4.3: Spannungen in [MPa] (Von Mises) im Zylinder beim Öffnungsvorgang, belastet mit Öffnungsnenndruck von 20 bar

An Abbildung 4.2 und 4.3 lässt sich erkennen, dass die Maximalspannungen jeweils im Schaufelzapfenauge auftreten.

Dabei dürfen die Farbspektren der beiden Screenshots untereinander nicht verglichen werden, sie sind jeweils über eine andere Skala definiert. Die unterschiedliche Skalierung wurde aufgrund der sich stark unterscheidenden Spannungen verwendet; ansonsten würden in Abb. 4.2 keine Unterschiede erkennbar sein, da die Spannungen dort allgemein niedriger ausfallen. Dies gilt auch für die Abbildungen in den folgenden Kapiteln.

Die FE- Postprocessing-Screenshots der übrigen Laufrad-Komponenten befinden sich im Anhang A.

4.2 Leitapparat

4.2.1 Aufbau und Komponenten

Abbildung 4.4: Leitapparatquerschnitt und Darstellung der Komponenten

Der Leitapparat besteht aus den 18 Leitschaufeln, die über die Gelenkhebel an den Leitapparat-Stellring angelenkt sind. Zwei Servozylindern bewegen den Stellring, das Schließgewicht ermöglicht einen schnellen Schließvorgang.

Abbildung 4.5: Leitapparat-Ring mit Anlenkungen von Schließgewicht, Servos und Gelenkhebel

Die Wirkungslinien der Betätigungskräfte der 2 Servos und des Schließgewichts stehen jeweils tangential zum Leitapparat- Ring. (Abbildung 4.5)Bei einer mittleren Leitapparat-Position (50%) ergibt sich zwischen der Tangente des LA- Ring und des Gelenkhebel ein Winkel *α* von 28°. (Abbildung 4.6)

Abbildung 4.6: Leitapparat-Kegelabwicklung und Winkel *a* zwischen Stellring und Gelenkhebel

4.2.2 Berechnung

Beim Servozylinder des Leitapparetes handelt es sich um einen sogenannten Gleichlaufzylinder, d.h. Öffnungs- und Schließfläche sind gleich groß. Deshalb können Öffnungsdruck p_{δ} und Schließdruck p_s subtrahiert werden und die Berechnung mit dem Differenzdruck p_{diff} durchgeführt werden. Dazu wurde ein Nenndruck von 5 bar verwendet.

Das Schließgewicht wurde als statische Belastung berücksichtigt. Die Beschleunigungen sind sehr klein und die Trägheitskräfte können vernachlässigt werden.

Abbildung 4.7: Spannungen in [MPa] (Von Mises) im Gelenkhebel beim Öffnungsvorgang, belastet mit Nenndruck (Differenzdruck) von 5 bar

Anmerkung zu Abbildung 4.7:

Die maximale Spannung tritt hier beim Öffnungsvorgang am Übergang zwischen Schaft und Gelenkauge auf.

Es wurde hier keine eigene FE Analyse für den Schließvorgang durchgeführt, da es sich beim Verstellzylinder um einen Gleichlaufzylinder handelt, d.h. Öffnungs- und Schließfläche des Kolbens sind gleich groß und es kann der Differenzdruck zur Berechnung herangezogen werden.

Durch die Masse des Schließgewichts ändert sich die Orientierung der Belastung nicht, es muss immer ein Öffnungsdruck aufgebracht werden, um den Leitapparat in Position zu halten. Dieser Öffnungsdruck schwankt jedoch in seinem Betrag, wodurch die Leitapparatkomponenten eine schwellende Belastung erfahren.

Die FE- Postprocessing-Screenshots der übrigen Leitapparat-Komponenten befinden sich im Anhang A.

62
4.3 Ergebnisse

Die Ergebnisse für Laufrad und Leitapparat sind in folgenden Tabellen zusammengefasst: (Die Beschreibung erfolgt jeweils unmittelbar danach)

4.3.1 Laufrad

Bauteil	Step	Belastung	Maximalspannung (von Mises) [MPa]
Zylinder	open	20 bar	83,2
	close	5 bar	18,5
Kolben	open	20 bar	42,5
	close	5 bar	6,4
Schaufelzapfen	open	20 bar * 10^5 * A_ö[m^2] / 4	122,7
	close	5 bar * 10^5 * A_s[m^2] / 4	25,6
Lasche	open	20 bar * 10^5 * A_ö[m^2] / 4	107,2
	close	5 bar * 10^5 * A_s[m^2] / 4	34,2

Anmerkungen:

Spalte *"Bauteil"* bezieht sich auf die jeweilige Komponente, wie in Abbildung 4.1 dargestellt. *"Step"* gibt Aussage über den Vorgang (Schließ- oder Öffnungsvorgang)

"Belastung" muss bei *Schaufelzapfen* und *Lasche* auf einen Vektor umgerechnet werden, da sie bei diesen Komponenten nicht mehr als Druckkraft, sondern über den Bolzen aufgebracht wird. *"Maximalspannung"* bezeichnet die im jeweiligen Bauteil vorkommende Maximalspannung nach von Mises, bei der gegebenen Belastung und des betrachteten Vorganges.

Auffällig ist dabei, dass die maximale Spannung am Flügelzapfen unter Beaufschlagung mit Öffnungsdruck auftritt. Diese Ergebnisse erhalten aber erst ihre Aussagekraft nach erfolgter Lebensdauerberechnung in nCode.

4.3.2 Leitapparat

Bauteil	Step	Belastung	Maximalspannung (von Mises) [MPa]
Anlenkung Servozylinder	p_diff	5 bar * 10^5 * A_kolben [m^2]	50
Anlenkung Gelenkhebel	p_diff	5 bar * 10^5 * 2 * A_kolben / (18 * cos(28°))	243,5
Gelenkhebel	p_diff	5 bar * 10^5 * 2 * A_kolben / (18 * cos(28°))	27,1
Leitschaufel	p_diff	5 bar * 10^5 * 2 * A_kolben / (18 * cos(28°))	98,9

Anmerkungen:

Spalte *"Bauteil"* bezieht sich auf die jeweilige Komponente, wie in Abbildung 4.4 dargestellt. *"Step"* entfällt in diesem Fall, da jede Berechnung mit dem Differenzdruck durchgeführt wird. *"Belastung"* erfolgt bei *Anlenkung Servozylinder* direkt durch den Zylinder, es muss also keine Geometrie berücksichtigt werden. Bei *Anlenkung Gelenkhebel, Gelenkhebel* und *Leitschaufel* wird jeweils die Kraft im Gelenkhebel als Belastung herangezogen und muss somit über den Winkel zwischen Leitapparat-Ring und Gelenkhebel umgerechnet werden. Ebenso muss die Kraft der 2 Servozylinder auf die 18 Leitschaufeln aufgeteilt werden.

"Maximalspannung" bezeichnet die im jeweiligen Bauteil vorkommende Maximalspannung nach von Mises, bei der gegebenen Belastung und des betrachteten Vorganges.

Auffällig ist dabei, dass die maximale Spannung bei der *Anlenkung* am *Servozylinder* liegt. Diese Ergebnisse erhalten aber erst ihre Aussagekraft, analog zum Laufrad, nach erfolgter Lebensdauerberechnung in nCode.

5 Lebensdauerberechnung nCode

Für die Berechnung in nCode werden die Belastungen der FE Analyse mit den Signalen aus der Messung verknüpft. Besitzt das Signal den Wert 1, entspricht das genau der Kraft, die in der FE Analyse aufgebracht wurde. Das Messsignal hat die Einheit [bar], deshalb muss in nCode die FE Belastung auf 1 bar normiert werden. Das heißt, wurde die Berechnung z.B. mit Öffnungsdruck p_ö = 20 bar Nenndruck durchgeführt, muss nun in nCode das Signal durch den Faktor 20 dividiert werden.

Die einzelnen Komponenten wurden bereits ausführlich im Zuge der FE-Analyse in Kapitel 4.1.1 bzw. 4.2.1 erläutert. Auf diese wird hier nicht mehr näher eingegangen.

Stress Life without UTS correction

Abbildung 5.1: Verwendete Wöhlerlinie zur Berechnung der Restlebensdauer in nCode

Zur Berechnung wurde die in Abbildung 5.1 dargestellte Wöhlerlinie verwendet. Auf der X-Achse sind die Lastwechsel und auf der Y-Achse die Amplitude der Schwingspiele aufgetragen. Die genaue Materialzusammensetzung darf aufgrund der Geheimhaltungspflicht nicht beschrieben werden; jedoch besitzt das Material eine Bruchfestigkeit R_m von ca. 675 MPa und eine Steigung k=5 bis 10^{6} Lastwechsel, danach steigt der Exponent auf k=13,3. (Beschreibung des Exponenten in Kapitel 3.1)

66

5.1 Ergebnisse

Die Berechnung wurde für alle 3 Betriebsarten durchgeführt:

- Maschine 1 ...Pegelregelung
- Maschine 2 ...Frequenzregelung
- Maschine 3 ...Frequenzregelung mit Laufradtotband

Wie bereits zahlreich erläutert, wurde dazu das Messsignal als Belastungsverlauf verwendet, wobei die Dauer der Messung (= 1 Belastungszyklus) ca. 42 Stunden betrug. Dies gilt es bei der Auswertung der Restlebensdauer zu berücksichtigen, denn in nCode wird die Restlebensdauer als Vielfaches des Belastungszyklus angegeben.

Demonstrativ werden nun die Ergebnisse für Laufrad und Leitapparat Anhand jeweils einer Komponente von Laufrad und Leitapparat visuell abgebildet. Die restlichen Abbildungen befinden sich im Anhang B.

5.1.1 Laufrad

Abbildung 5.2: Restlebensdauer (in Anzahl der Zyklen) des Zylinders von Maschine 1 (Pegelregelung) nach einem Belastungszyklus

Abbildung 5.3: Restlebensdauer (in Anzahl der Zyklen) des Zylinders von Maschine 2 (Frequenzregelung) nach einem Belastungszyklus

Abbildung 5.4: Restlebensdauer (in Anzahl der Zyklen) des Zylinders von Maschine 3 (Frequenzregelung mit Laufradtotband) nach einem Belastungszyklus Die nCode- Postprocessing-Screenshots der übrigen Laufrad-Komponenten befinden sich im Anhang B.

Folgende Tabelle fasst die Ergebnisse der verschiedenen Laufrad-Komponenten unter den unterschiedlichen Betriebsarten zusammen.

		Schädigung	Lebensdauer	Relative Schädigung	Senkung der
Bauteil	Maschine	[1/Zyklus]	[Jahre]	(M2=100%)	Schädigung [%]
	M1	3,93E-014	1,21E+11	0,00%	99,9979%
Zylinder	M2	1,83E-009	2,60E+06	100,00%	-
	M3	1,35E-010	3,52E+07	7,38%	92,62%
	M1	0	4,77E+27	0,00%	100,00%
Kolben	M2	1,31E-014	3,63E+11	100,00%	-
	M3	1,06E-015	4,49E+12	8,08%	91,92%
	M1	7,01E-014	6,81E+10	0,00%	99,9979%
Schaufelzapfen	M2	3,38E-009	1,41E+06	100,00%	
	M3	2,47E-010	1,93E+07	7,31%	92,69%
	M1	1,13E-012	4,21E+09	0,00%	99,9979%
Lasche	M2	5,40E-008	8,84E+04	100,00%	-
	M3	3,97E-009	1,20E+06	7,36%	92,64%
Messdauer	150548,4	Sekunden			
	0,004771	Jahre			
	200 6176	Zuklon/ John			

209,6176 Zyklen/Jahr

Anmerkungen:

Die Spalte "*Bauteile"* ist analog zu Kapitel 4.3.1.

"Maschine" beschreibt um welche Betriebsart es sich handelt, wie in 5.1 beschrieben.

"Schädigung" bezeichnet die im Bauteil maximal vorkommende Schädigung.

Bei der "relativen Schädigung" wurden die Werte jedes Bauteils jeweils in Relation zu Maschine 2 (Frequenzregelung) gestellt, um eine Vergleichbarkeit herzustellen.

Die "Senkung der Schädigung" wurde noch berechnet, um eine bessere Vorstellung der Werte zu ermöglichen.

Kritisches Bauteil ist dabei die Lasche in der Betriebsart "Frequenzregelung". Jedoch kann durch die Aktivierung des Laufradtotbandes eine Reduzierung der Belastung um ca. 92% erreicht werden. Vergleicht man dies mit der analytischen Berechnung (Kapitel 3.1), bestätigt sich dieses Ergebnis. Das kann durchaus als erster Erfolg des Laufradschonganges verbucht werden. Auch bei den anderen Laufradkomponenten ist der Wert der Belastungsreduzierung nahezu ident.

Doch um eine aufschlussreiche Aussage über den Nutzen des Laufradtotbandes treffen zu können, ist es notwendig, die Anlage inklusive Leitapparat zu betrachten. Nur wenn sich der Belastungsanstieg des Leitapparates im Verhältnis gering hält, ist der Nutzen des Laufradtotbandes vorhanden.

Dies wird im folgenden Kapitel 5.1.2 untersucht.

Anmerkung:

Die absolute Restlebensdauer ist in diesem Fall sehr hoch, was bei anderen Maschinen gleichen Typs jedoch nicht der Fall sein muss.

Wichtig ist also stets der relative Vergleich , dieser lässt sich auch auf andere Maschinen übertragen, welche nicht so konservativ konstruiert wurden wie die hier betrachtete Anlage. Dabei ist es durchaus möglich, dass sich Komponenten anderer Maschinen im Zeitstandsfestigkeitsbereich wieder finden.

5.1.2 Leitapparat

Abbildung 5.5: Restlebensdauer (in Anzahl der Zyklen) des Gelenkhebels von Maschine 1 (Pegelregelung) nach einem Belastungszyklus.

Das Ergebnis in Abbildung 5.5 bedeutet, dass die Restlebensdauer über 10^30 Zyklen beträgt. nCode bricht danach die Berechnung ab.

Die nCode- Postprocessing-Screenshots der übrigen Laufrad-Komponenten befinden sich im Anhang B. Folgende Tabelle fasst die Ergebnisse der verschiedenen Leitapparat-Komponenten unter den unterschiedlichen Betriebsarten zusammen:

		Schädigung	Lebensdauer	Relative Schädigung	Senkung der
Bauteil	Maschine	[1/Zyklus]	[Jahre]	(M2=100%)	Schädigung [%]
	M1	0,00E+00	4,77E+27	keine Aussage	keine Aussage
Anlenkung Servozylinder	M2	0,00E+00	4,77E+27	keine Aussage	keine Aussage
	M3	0,00E+00	4,77E+27	keine Aussage	keine Aussage
	M1	4,46E-12	1,07E+09	25,13%	74,87%
Anlenkung Gelenkhebel	M2	1,78E-11	2,69E+08	100,00%	0,00%
	M3	5,93E-11	8,05E+07	333,67%	-233,67%
	M1	0,00E+00	0,00E+00	keine Aussage	keine Aussage
Gelenkhebel	M1 M2	0,00E+00 0,00E+00	0,00E+00 0,00E+00	keine Aussage keine Aussage	keine Aussage keine Aussage
Gelenkhebel	M1 M2 M3	0,00E+00 0,00E+00 0,00E+00	0,00E+00 0,00E+00 0,00E+00	keine Aussage keine Aussage keine Aussage	keine Aussage keine Aussage keine Aussage
Gelenkhebel	M1 M2 M3 M1	0,00E+00 0,00E+00 0,00E+00 1,05E-18	0,00E+00 0,00E+00 0,00E+00 4,55E+15	keine Aussage keine Aussage keine Aussage 26,09%	keine Aussage keine Aussage keine Aussage 73,91%
Gelenkhebel Leitschaufel	M1 M2 M3 M1 M2	0,00E+00 0,00E+00 0,00E+00 1,05E-18 4,02E-18	0,00E+00 0,00E+00 0,00E+00 4,55E+15 1,19E+15	keine Aussage keine Aussage keine Aussage 26,09% 100,00%	keine Aussage keine Aussage keine Aussage 73,91% 0,00%
Gelenkhebel Leitschaufel	M1 M2 M3 M1 M2 M3	0,00E+00 0,00E+00 0,00E+00 1,05E-18 4,02E-18 1,57E-17	0,00E+00 0,00E+00 0,00E+00 4,55E+15 1,19E+15 3,04E+14	keine Aussage keine Aussage keine Aussage 26,09% 100,00% 390,20%	keine Aussage keine Aussage keine Aussage 73,91% 0,00% -290,20%
Gelenkhebel Leitschaufel Messdauer	M1 M2 M3 M1 M2 M3 150548,4	0,00E+00 0,00E+00 1,05E-18 4,02E-18 1,57E-17 Sekunden	0,00E+00 0,00E+00 0,00E+00 4,55E+15 1,19E+15 3,04E+14	keine Aussage keine Aussage keine Aussage 26,09% 100,00% 390,20%	keine Aussage keine Aussage keine Aussage 73,91% 0,00% -290,20%

0,0047706 Jahre 209,61764 Zyklen/Jahr

Anmerkungen:

Die Spalte *"Bauteile"* ist analog zu Kapitel 4.3.2.

"Maschine" beschreibt um welche Betriebsart es sich handelt, wie in Kapitel 5.1 beschrieben.

"Schädigung" bezeichnet die im Bauteil maximal vorkommende Schädigung.

"keine Aussage" bedeutet, dass die Berechnung nach der Erreichung von 10^30 Lastwechsel abgebrochen wurde und die Komponente somit dauerfest ist.

Ein negatives Vorzeichen der "Senkung der Schädigung" bedeutet, dass die Schädigung nicht sinkt, sondern um den entsprechenden Wert steigt.

Wie bei der analytischen Berechnung, steigt die Belastung des Leitapparates von Maschine 3 (Frequenzregelung mit Laufradschongang) gegenüber Maschine 2 (Frequenzregelung). Dieses Verhalten wurde in Kapitel 3.2.2 bereits begründet und ist plausibel.

Einziger Unterschied ist das Ausmaß des Belastungsanstieges; beträgt er bei der analytischen Berechnung noch ca. 44%, erhöht sich dieser nun auf über 230%.

Dieses Verhalten kann durch Diskussion der eingesetzten Wöhlerkurve (Kapitel 5.1) argumentiert werden; liegen die vorkommenden Belastungen im niedrigen Bereich, ist stets der Materialexponent k=13,3 relevant für die Ermittlung der Lebensdauer, würden die Belastungen höher sein, würde k=5 relevant werden. In diesem Fall würden die Ergebnisse dann denen der analytischen Berechnung entsprechen.

Für den vorliegenden Fall können die Komponenten als dauerfest betrachtet werden, bei höherer Belastung (im Bereich der Zeitstandsfestigkeit) würde der Anstieg der Schädigung von Maschine 3 gegenüber Maschine 2 in etwa den 44% entsprechen, welche in der analytischen Berechnung ermittelt wurden.

6 Verschleißuntersuchung

Wie in den Grundlagen in Kapitel 2.5 beschrieben, wird zur Ermittlung des Verschleißes folgender, vereinfachter, Zusammenhang verwendet:

$$w = k p_m x_{Lager} \tag{6.1}$$

Um den Verschleiß w zu berechnen, müssen vorher die mittlere Lagerpressung p_m und der im Lager insgesamt zurückgelegte Reibweg ermittelt werden.

Ein in Excel programmiertes Berechnungsprogramm der Andritz Hydro GmbH lieferte dazu folgende Ergebnisse: [1]

 $p_{mLR} = 20 MPa$...mittlere Lagerpressung in den Gleitlagern des Schaufelzapfens (Laufrad) $p_{mLA} = 10 MPa$...mittlere Lagerpressung in den Gleitlagern der Leitschaufel (Leitapparat)

Die Berechnung von x_{ges} wurde in Kapitel 2.5 bereits beschrieben, lediglich der Zusammenhang zwischen dem im Servo zurückgelegten Weg x_{servo} und dem im Lager zurückgelegten Weg x_{Lager} muss noch über geometrische Beziehungen hergestellt werden.

Dies geschieht in den anschließenden Kapiteln für Laufrad und Leitapparat.

6.1 Laufrad

Zur Bestimmung des geometrischen Zusammenhangs des Laufrades, wurden folgende geometrische Größen eingeführt, welche in Abbildung 6.1 und 6.2 zur Veranschaulichung dargestellt sind:

x [mm]	Laufradposition
c [mm]	Normalabstand zwischen Laufrad-Rotationsachse und Achse des Schaufelzapfenauges
l [mm]	Länge der Lasche
r[mm]	Hebellänge des Schaufelzapfens
γ [°]	Winkel zwischen Lasche und Horizontalebene
φ [°]	Winkel zwischen Schaufelzapfenhebel und Horizontalebene

Verschleißuntersuchung

Laufrad

Abbildung 6.1: Laufradquerschnitt mit geometrischen Zusammenhang

Abbildung 6.2: Vergrößerter Ausschnitt aus Abbildung 6.1

Aufstellen von geometrischen Beziehungen:

$$x = r \sin(\varphi) + l \cos(\gamma)$$

$$r \cos(\varphi) = c + l \sin(\gamma) \qquad \rightarrow \sin(\gamma) = \frac{r \cos(\varphi) - c}{l} \qquad (6.2)$$

mit:

$$\cos(\gamma) = \sqrt{1 - \sin^2(\gamma)}$$

$$x = r \sin(\varphi) + l \sqrt{1 - \frac{(r \cos(\varphi) - c)^2}{l^2}}$$
(6.3)

Linearisieren um $\boldsymbol{\varphi}_{\scriptscriptstyle 0}$ durch Bildung des Taylorpolynoms 1. Grades:

$$x(\varphi;\varphi_{0}) = r \sin(\varphi_{0}) + l \sqrt{1 - \frac{(r \cos(\varphi_{0}) - c)^{2}}{l^{2}}} + [r \cos(\varphi_{0}) + \frac{r \sin(\varphi_{0})(r \cos(\varphi_{0}) - c)}{l \sqrt{1 - \frac{(r \cos(\varphi_{0}) - c)^{2}}{l^{2}}}}](\varphi - \varphi_{0})$$
(6.4)

Differenziert man diese Gleichung nach der Zeit, so entfällt der Konstante Term und man erhält den Zusammenhang von Kolbengeschwindigkeit zu Winkelgeschwindigkeit des Zapfens um den Winkel φ_{o} :

$$x'(\varphi';\varphi_0) = [r \cos(\varphi_0) + \frac{r \sin(\varphi_0)(r \cos(\varphi_0) - c)}{l \sqrt{1 - \frac{(r \cos(\varphi_0) - c)^2}{l^2}}}] \varphi'$$
(6.4)

Abbildung 6.3: Laufradposition der 3 Maschinensätze in geordneter Reihenfolge über der Messdauer aufgetragen

Der Mittelwert der Laufradposition während der Messdauer, wie in Abbildung 6.3 ersichtlich, beträgt ca. 38% (=> φ_0 = 14°), um diesen Wert wird linearisiert (mit *c* = 515mm, *l* = 676mm und *r* = 650mm):

$$x'(\varphi';\varphi_0) = [r\cos(\varphi_0) + \frac{r\sin(14^\circ)(r\cos(14^\circ) - c)}{l\sqrt{1 - \frac{(r\cos(14^\circ) - c)^2}{l^2}}}] \varphi'$$

$$x'(\varphi';\varphi_0) = r_{reduziert} \varphi'$$

$$\rightarrow \varphi'(x';\varphi_0) = \frac{x'}{r_{reduziert}}$$

$$r_{reduziert} = 658 \text{mm}$$
(6.5)

Die Konstante $r_{reduziert}$ dient dazu, die Gleichung zu vereinfachen und den Bruch nicht jedes Mal ausschreiben zu müssen.

Somit ergibt sich für das Laufrad (LR) mit:

$$K_{wr} = 2 \frac{\mu m}{MPa \ km}$$
 ..."Wear-Rate" für Bronze Lager [1]

und

$$w_{LR} = K_{wr} p_m x_{LRLager}$$
(6.6)

und

$$x'_{LRLager} = \varphi' \frac{d_{LRLager}}{2} = x' \frac{d_{LRLager}}{2 r_{reduziert}}$$
(6.7)

durch Integration und Nullsetzen der Integrationskonstante zum Zeitpunkt 0:

$$x_{LRLager} = x_{LRKolben} \frac{d_{LRLager}}{2 r_{reduziert}}$$
(6.8)

80

Dadurch kann aus dem zurückgelegten Weg des Servo der Reibweg im Lager ermittelt werden. Der zurückgelegte Weg im Servo ist in Abbildung 6.4 dargestelltund kann an der Ordinate abgelesen werden:

Abbildung 6.4: Darstellung des kumulierten zurückgelegten Weg des Laufrad Servos über der Messdauer in geordneter Reihenfolge. (Maschine 1 oben, Maschine 2 Mitte, Maschine 3 unten)

Durch Formel (6.8) wird dieser Weg auf den tatsächlichen Reibweg im Lager umgelegt:

festgelegt werden. [1].

Laufrad:

d_lager	950	mm	
r_red	658	mm	
K_wr	2	µm/(MPa km)	
p_mLR	20	Мра	
w_zul	0,5	mm	Anfängliches Lagerspiel * 2
	•	•	-

Messdauer	150548,4	S
	0,0047705909	Jahre

			Lagerverschleiß	Lagerverschleiß	Lebensdauer	Lagerverschleiß
Laufrad	x_Servo [mm]	x_Lager [mm]	w_LR [µm/Zyklus]	W_LR [µm/Jahr]	[Jahre]	Relativ zu M2
Maschine 1	51	36,8	0,0	0,3	1619,7	1,54%
Maschine 2	3308	2388,0	0,1	20,0	25,0	100,00%
Maschine 3	480	346,5	0,0	2,9	172,1	14,51%

Hier wird der Unterschied zwischen Frequenzregelung mit bzw. ohne Laufradschongang deutlich. Dieser sinkt dabei um ca. 85%, was heißt, dass sich die Lebensdauer um das ca. 7 fache erhöht. Dadurch können Wartungsintervalle verlängert, Ausfälle verhindert und somit die Kosten klar reduziert werden.

Auffällig ist auch die absolute Restlebensdauer von 25 Jahren bei Maschine 2, diese Werte sind nicht mehr so exorbitant hoch wie jene der Lebensdauerberechnung und könnten bei Maschinen mit höher beanspruchten Lagern durchaus zu ernsten Problemen führen.

6.2 Leitapparat

Analog zur Berechnung des Laufrades(LR) erfolgt nun die Berechnung zum Leitapparat(LA):

Abbildung 6.5: Kinematik des Leitapparates zwischen Stellring und Leitschaufel (der Gelenkhebel ist am anderen Ende mit dem Stellring verbunden.

Der Zylinder lenkt den Stellring tangential an (Abbildung 4.5), der mittlere Winkel zwischen Stellring und Gelenkhebel α beträgt 28° in der Tangentialebene des Kegelmantels. Der Hebel der Leitschaufel und der Gelenkhebel schließen zur Vereinfachung in etwa einen rechten Winkel ein.

Der Zusammenhang zwischen Gelenkhebelkraft und Kolbenkraft ist durch $\cos(\alpha=28^{\circ})$ vorhanden.

Mit dem Energieerhaltungssatz kann jetzt eine Beziehung der zurückgelegten Wege über die verrichtete Arbeit hergestellt werden:

Die vorkommenden Kräfte sind in Abbildung 6.5 beschrieben, die Kraft F_2 ist eine Stützkraft und verrichtet keine Arbeit.

$$F_{Gelenkhebel} = \frac{F_1}{\cos(28^\circ)} \tag{6.9}$$

Energieerhaltungssatz:

$$F_{Gelenkhebel} \ x_{Gelenkhebel} - F_1 \ x_{Kolben} = 0 \tag{6.10}$$

durch umformen:

$$F_{Gelenkhebel} \ x_{Gelenkhebel} = F_1 \ x_{Kolben} \tag{6.11}$$

•••

$$x_{Gelenkhebel} = \frac{F_1}{F_{Gelenkhebel}} x_{Kolben}$$
(6.12)

und einsetzen von (6.9):

$$\rightarrow x_{Gelenkhebel} = x_{Kolben} \cos(28^{\circ}) \tag{6.13}$$

Über den Weg des Gelenkhebels kann, unter Annahme einer tangentialen Anlenkung, der zurückgelegte Weg in dem Lager ermittelt werden.

Daraus folgt:

$$x_{LALager} = x_{Gelenkhebel} \frac{d_{LALager}}{2 l_{Hebel}}$$
(6.14)

durch Einsetzen der Werte:

$$\rightarrow x_{LALager} = x_{LAKolben} \cos(28^{\circ}) \frac{d_{LALager}}{2 l_{Hebel}} = 0.0864 x_{LAKolben}$$
(6.15)

Die Ermittlung des zurückgelegten Weges des Servos erfolgt Analog zu Kapitel 6.1 und wurde bereits in den Grundlagen in Kapitel 2.5 näher beschrieben und ist in Abbildung 6.6 beschrieben.

Abbildung 6.6: Darstellung des kumulierten zurückgelegten Weg des Leitapparat Servos über der Messdauer in geordneter Reihenfolge. (Maschine 1 oben, Maschine 2 Mitte, Maschine 3 unten)

In Abbildung 6.6 ist an der Ordinate der zurückgelegte Weg abzulesen. Diese Werte werden nachfolgend zusammengefasst und verglichen.

Somit ergibt sich für den Leitapparat (LA) mit:

$$K_{wr} = 2 \frac{\mu m}{MPa \ km}$$
 ..."Wear-Rate" für Bronze Lager [1]

und

$$w_{LA} = K_{wr} p_m x_{LALager}$$
(6.16)

Um eine Lebensdauer daraus zu errechnen, muss ein maximal zulässiges Maß an Verschleiß w_{zul} festgelegt werden. [1].

d_lager	180	mm	
I_hebel	920	mm	
α	28	0	
K_wr	2	µm/(MPa km)	
p_mLR	10	Мра	
w_zul	0,2	mm	Anfängliches Lagerspiel * 2
	·		-

Messdauer	150548,4	s
	0,0047705909	Jahre

			Lagerverschleiß	Lagerverschleiß	Lebensdauer	Lagerverschleiß
Leitapparat	x_Servo [mm]	x_Lager [mm]	W_LR [µm/Zyklus]	W_LR [µm/Jahr]	[Jahre]	Relativ zu M2
Maschine 1	570	49,2	0,0	0,4	484,5	1,53%
Maschine 2	37360	3227,0	0,1	27,1	7,4	100,00%
Maschine 3	41370	3573,3	0,1	30,0	6,7	110,73%

Der Lagerverschleiß an Maschine 3 mit Frequenzregelung und Laufschongang steigt über den von Maschine 2 (Frequenzregelung). Dies war zu erwarten und wurde in Kapitel 3.2.2 und Kapitel 4.3.2 bereits ausführlich diskutiert.

Betrachtet man das Maß des Anstieges, so wird diese Mehrbelastung gerne in Kauf genommen, denn im Gegenzug sinkt der Verschleiß der Laufradlagerung um ca. 85%. Die Mehrbelastung der Leitapparatlagerung um ca. 11%, ist in Relation zum doch sehr großen Nutzen für das Laufrad, gering.

7 Zusammenfassung und Ausblick

Die Ergebnisse zeigen, dass durch die Realisierung des Laufrad-Totbandes eine deutliche Verschleißreduktion am Laufrad erzielt wird. Die geringe Mehrbelastung des Leitapparates nimmt man dafür gerne in Kauf; zum Einen, da die Belastung von Laufrad und Leitapparat insgesamt sinkt und zum Anderen, weil Wartungsarbeiten am Leitapparat aufgrund der besseren Zugänglichkeit weniger zeit- und kostenintensiv sind.

Die Schädigung bzw. Restlebensdauer der Komponenten ist differenziert zu betrachten, denn üblicherweise sind die Komponenten dauerfest dimensioniert. Die maximalen Betätigungskräfte ändern sich durch die Umstellung auf Frequenzregelung nicht, sie werden durch den Betrag des Reibbandes, das ist jene Kraft, die notwendig ist, die Reibungskräfte zu überwinden und somit eine Bewegung zu erzeugen, bestimmt.

Deshalb ist die Reduzierung der Schädigung nur für jene Komponenten relevant, welche im Bereich der Zeitstandsfestigkeit dimensioniert sind. Aktueller Standard ist aber eine Dimensionierung auf Dauerfestigkeit, weshalb unter normalen Betriebsumständen, welcher Regelungsart auch immer, kein Bauteilversagen auftreten sollte.

Um eine weitere Verbesserung der Verschleißbeständigkeit bei Frequenzregelung zu erzielen, könnten tribologische Untersuchungen an verschiedenen Lagerwerkstoffen durchgeführt werden. Dadurch könnten Potenziale erschlossen werden, die Standzeiten von Laufrad und Leitapparat noch weiter zu erhöhen.

88

Abbildung A.1: Spannungen in [MPa] (von Mises) im Kolben beim Schließvorgang, belastet mit Schließnenndruck von 5 bar

A Anhang FE Berechnung

Abbildung A.3: Spannungen in [MPa] (von Mises) in der Lasche beim Schließvorgang, belastet mit Schließnenndruck von 5 bar

Abbildung A.4: Spannungen in [MPa] (von Mises) in der Lasche beim Öffnungsvorgang, belastet mit Öffnungsnenndruck von 20 bar

Abbildung A.5: Spannungen in [MPa] (von Mises) im Schaufelzapfen beim Schließvorgang, belastet mit Schließnenndruck von 5 bar

Abbildung A.6: Spannungen in [MPa] (von Mises) im Schaufelzapfen beim Öffnungsvorgang, belastet mit Öffnungsnenndruck von 20 bar

A Anhang FE Berechnung

Abbildung A.7: Spannungen in [MPa] (von Mises) in der Leitschaufel beim Öffnungsvorgang, belastet mit Nenndruck (Differenzdruck) von 5 bar

Abbildung A.8: Spannungen in [MPa] (von Mises) in der Anlenkung des Gelenkhebels beim Öffnungsvorgang, belastet mit Nenndruck (Differenzdruck) von 5 bar

Abbildung A.9: Spannungen in [MPa] (von Mises) in der Anlenkung des Servozylinders beim Öffnungsvorgang, belastet mit Nenndruck (Differenzdruck) von 5 bar

B Anhang Lebensdauerberechnung nCode

Abbildung B.1: Restlebensdauer (in Anzahl der Zyklen) der Kolbens von Maschine 1 (Pegelregelung) nach einem Belastungszyklus

Abbildung B.2: Restlebensdauer (in Anzahl der Zyklen) der Kolbens von Maschine 2 (Frequenzregelung) nach einem Belastungszyklus

Abbildung B.3: Restlebensdauer (in Anzahl der Zyklen) der Kolbens von Maschine 3 (Frequenzregelung mit Laufradtotband) nach einem Belastungszyklus

Abbildung B.4: Restlebensdauer (in Anzahl der Zyklen) der Lasche von Maschine 1 (Pegelregelung) nach einem Belastungszyklus

Abbildung B.5: Restlebensdauer (in Anzahl der Zyklen) der Lasche von Maschine 2 (Frequenzregelung) nach einem Belastungszyklus

Abbildung B.6: Restlebensdauer (in Anzahl der Zyklen) der Lasche von Maschine 3 (Frequenzregelung mit Laufradtotband) nach einem Belastungszyklus

Abbildung B.7: Restlebensdauer (in Anzahl der Zyklen) des Schaufelzapfens von Maschine 1 (Pegelregelung) nach einem Belastungszyklus

Abbildung B.8: Restlebensdauer (in Anzahl der Zyklen) des Schaufelzapfens von Maschine 2 (Frequenzregelung) nach einem Belastungszyklus

Abbildung B.9: Restlebensdauer (in Anzahl der Zyklen) des Schaufelzapfens von Maschine 3 (Frequenzregelung mit Laufradtotband) nach einem Belastungszyklus

Abbildung B.10: Restlebensdauer (in Anzahl der Zyklen) der Leitschaufel von Maschine 1 (Pegelregelung) nach einem Belastungszyklus

Abbildung B.11: Restlebensdauer (in Anzahl der Zyklen) der Leitschaufel von Maschine 2 (Frequenzregelung) nach einem Belastungszyklus

Abbildung B.12: Restlebensdauer (in Anzahl der Zyklen) der Leitschaufel von Maschine 3 (Frequenzregelung mit Laufradtotband) nach einem Belastungszyklus

B Anhang Lebensdauerberechnung nCode

B Anhang Lebensdauerberechnung nCode

Abbildung B.13: Restlebensdauer (in Anzahl der Zyklen) der Anlenkung des Gelenkhebels von Maschine 1 (Pegelregelung) nach einem Belastungszyklus

Abbildung B.14: Restlebensdauer (in Anzahl der Zyklen) der Anlenkung des Gelenkhebels von Maschine 2 (Frequenzregelung) nach einem Belastungszyklus

B Anhang Lebensdauerberechnung nCode

B Anhang Lebensdauerberechnung nCode

Abbildung B.15: Restlebensdauer (in Anzahl der Zyklen) der Anlenkung des Gelenkhebels von Maschine 3 (Frequenzregelung mit Laufradtotband) nach einem Belastungszyklus

B Anhang Lebensdauerberechnung nCode

B Anhang Lebensdauerberechnung nCode

Abbildung B.16: Restlebensdauer (in Anzahl der Zyklen) der Anlenkung des Servozylinders von Maschine 1,2 und 3 nach einem Belastungszyklus

Literaturverzeichnis

[1] Andritz Hydro GmbH, interne Dokumente, http://www.andritz.com/hydro.htm

[2] Austrian Poer Grid, http://www.apg.at/de/markt/2013/05/08/inc-eles

[3] Austrian Power Grid, P1 – Policy 1: Load-Frequency Control and Performance [C], A-D4.4, P1-6,

2009, https://www.entsoe.eu/fileadmin/user_upload/_library/publications/ce/oh/Policy1_final.pdf

[4] Austrian Power Grid, P1 – Policy 1: Load-Frequency Control and Performance [C], Appendix A1-E,

P1-32, 2009, https://www.entsoe.eu/fileadmin/user_upload/_library/publications/ce/oh/Policy1_final.pdf

[5] Austrian Power Grid, http://www.apg.at/de/markt/netzregelung/teilnahmebedingungen

[6] Austrian Power Grid, 380 kV Ring, http://www.apg.at/de/projekte/380-kV-salzburgleitung

[7] BAUER C.; Skriptum Hydraulische Maschinen und Anlagen 1&2, Auflage 4.0, TU Wien, März 2013

[8] EnBW Energie Baden-Württemberg AG,

https://www.enbw.com/media/konzern/images/energieerzeugung/bildergalerie-iffezheim/iffezheim-3_695x395_1433777559270.jpg

[9] Erwin Haibach, Betriebsfestigkeit - Verfahren und Daten zur Bauteilberechnung, 3., korrigierte und ergänzte Auflage, Springer Verlag, Herbst 2005

[10] HBM, nCode, http://www.ncode.com/de/produkte/

[11] John Waegter, Stress range histories and Rain Flow counting, S.11, June

2009, http://homes.civil.aau.dk/lda/Advanced%20Structural%20Engineering/Stress%20range%20histories %20and%20Rain%20Flowcounting.pdf

[12] KLEIN, B.: FEM - Grundlagen und Anwendungen der Finite-Element-Methode im Maschinen- und Fahrzeugbau, 7., verbesserte Auflage, vieweg Verlag, Juni 2007

[13] MATLAB CENTRAL, Rainflow counting algorithm, 2003,

http://www.mathworks.com/matlabcentral/fileexchange/3026-rainflow-counting-algorithm

[14] RAMMERSTORFER F.: Einführung in die Finite Elemente Methoden, Vorlesungsskriptum, ILSB, TUWien, 24. Februar 2014

[15] SMART FEM: FEM kurz erklärt, http://www.smart-fem.de/sonstiges/fem/

[16] Verbund AG, http://www.verbund.com/bg/de/blog/2011/11/27/kaplan-turbine-wasserkraft

[17] Weija Yang, Stationsdynamik–Wear and Tear on Hydro Power Turbines –Influence from Primary Frequency Control, Uppsala Universitet, 11.11.2014Division of Electricity,

[18] Wikipedia, Kaplan-Turbine, https://de.wikipedia.org/wiki/Kaplan-Turbine