
Simulation of Time-synchronized
Networks using IEEE 1588-2008

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Wolfgang Wallner
Matrikelnummer 0725458

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Peter Puschner
Mitwirkung: Univ.Ass. Dipl.-Ing. Dr.techn. Armin Wasicek

Wien, April 12, 2016
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Simulation of Time-synchronized
Networks using IEEE 1588-2008

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Engineering

by

Wolfgang Wallner
Registration Number 0725458

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Peter Puschner
Assistance: Univ.Ass. Dipl.-Ing. Dr.techn. Armin Wasicek

Vienna, April 12, 2016
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Wolfgang Wallner
Pischelsdorf 81, 5233 Pischelsdorf

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken
oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall
unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

The purpose of computing is insight, not numbers.

Richard Hamming

Acknowledgements

I would like to thankmy advisors for this thesis, Prof. Dr. Peter Puschner and Univ.Ass.
Dipl.-Ing. Dr.techn. Armin Wasicek.

The focus of this thesis is on the simulation of the Precision Time Protocol (PTP). Thus
it is a great honor for me that John C. Eidson, Ph.D., the chair of the PTP standards
committee, took the time and read a draft of my thesis. I am particularly grateful for his
helpful comments and suggestions.

My long-term friend, former classmate and fellow student, Oliver Hechinger, MSc con-
tributed to this thesis by giving constructive suggestions and technical proofreading.

I am deeply grateful to my parents, for continuously encouraging and supporting me
throughout the years.

iii

Abstract

A global time base is the foundation for any distributed Real-Time System (RTS). As
clock devices suffer from various noise effects, some kind of time synchronization is
necessary to establish a global time base of reasonable precision. Different technologies
have been developed to solve this task. The Precision Time Protocol (PTP), which is
standardized in [IEE08], presents one candidate that is widely deployed in the various
industries. Commercial off-the-shelf (COTS) devices start to have hardware support for
PTP. Having hardware timestamping available, PTP promises to be a good compro-
mise between costs and precision. Low-cost, high-precision hardware makes PTP an
interesting option for system designers and enables new distributed RTS applications.

When using PTP in an application, it is of interest to justify the expected precision
in advance. Especially as there are many options in how PTP can be implemented and
configured. The goal of this thesis was to develop a simulation framework for PTP,
which helps system designers carrying out Design Space Exploration (DSE).

To reach this goal, this thesis presents two software projects:

• LibPLN: a portable, efficient software library to generate realistic oscillator noise

• LibPTP: a simulation framework for PTP devices

Both of these components are implemented as generic, portable C++ libraries. This
enables users can customize them and to integrate them in their own design tool chains
in order to evaluate their hyotheses on the system under consideration.

v

Kurzfassung

Eine globale Zeitbasis ist die Grundlage für verteilte Echtzeitsyteme. Da einzelne
Uhren durch verschiedene Rauscheffekte voneinander abweichen, benötigt man eine
Art der Synchronisierung um eine globale Zeitbasis aufzubauen. Verschiedene Tech-
nologien wurden entwickelt um diese Aufgabe zu lösen. Mit dem Precision Time Pro-
tocol (PTP), welches in [IEE08] standardisiert wurde, steht ein weiterer Kandidat zur
Verfügung der in verschiedenen Industrien eingesetzt wird. Da mittlerweile auch nor-
male Verbrauchergeräte anfangen Hardwareunterstützung für PTP zu enthalten, wird
das Protokoll mehr und mehr zu einem interessanten Kompromiss zwischen Kosten
und Präzision. Die Verfügbarkeit von kostengünstiger, präziser Hardware macht PTP
zu einer interessanten Option für Systemdesigner and ermöglicht neue Applikationen
verteilter Echtzeitsysteme.

Wenn man PTP in einer Applikation einsetzen möchte, ist es von Interesse die zu
erwartende Präzision der Synchronisierung im Vorhinein abschätzen zu können. Im
Speziellen da PTP zahlreiche Optionen zur Verfügungen stellt wie es implementiert
und konfiguriert werden kann. Das Ziel dieser Arbeit ist es ein Simulations-Framework
für PTP zu entwickeln, welches einen Systemdesigner bei diesenDesignentscheidungen
unterstützt.

Um dieses Ziel zu erreichen, wurden für diese Arbeit zwei Softwareprojekte entwi-
ckelt:

• LibPLN: eine portable, effiziente Softwarebibliothek zum erstellen von realisti-
schem Oszillatorrauschen

• LibPTP: ein Simulations-Framework für PTP-Geräte

Beide Komponenten wurden als generische, portable C++ Bibliotheken implementiert.
Das ermöglicht es Anwendern sie für ihre Zwecke anzupassen und in eigenen Entwick-
lungswerkzeuge zu integrerieren, um damit die jeweils untersuchten Systeme simulie-
ren zu können.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 1
1.3 Focus of this Thesis . 2
1.4 Methodological Approach . 3
1.5 Related Work . 3
1.6 Structure of this Thesis . 4
1.7 Typographic Conventions . 4

2 Basic Terms and Concepts 5
2.1 General Terminology . 5
2.2 IEEE 1588 - Precision Time Protocol . 6
2.3 Clocks and Clock Noise . 16
2.4 Simulation Environment OMNeT++ . 29

3 Implementation 31
3.1 Efficient PLN generation library . 31
3.2 OMNeT++ simulation models . 50

4 Evaluation 63
4.1 Assumptions . 63
4.2 Experiments . 66
4.3 Result discussion . 75

5 Conclusion 77
5.1 Contributions of this Work . 77
5.2 Future Work . 78

A Acronyms 79

Bibliography 81

ix

CHAPTER 1
Introduction

This chapter will give a short overview over the purpose of this thesis.

1.1 Motivation

The implementation of distributed RTSs requires that the individual nodes of a network
establish a global time base of known precision. The Precision Time Protocol (PTP) as
specified in [IEE02] and later [IEE08] aims to provide high precision time synchroniza-
tion in packet switched networks. While PTP could be implemented as a pure software
solution, the addition of hardware support improves the reachable precision by several
orders of magnitude. Given that hardware support for PTP starts to becomes available
in COTS devices, it can be expected that the financial effort to establish a high precision
global time base with PTP will decrease in the coming years. This would enable the
use of PTP in domains where the economic pressure on individual nodes is high, e.g. in
industrial automation where networks often contain large numbers of low performance
nodes.

While these properties would make PTP an attractive technology for domains like
industrial automation, it is hard to predict how PTP behaves in large networks. As
especially the prices for PTP-aware network switches are currently quite high (> 1000
$), it is not feasible to test the behavior of large PTP networks. Additionally, PTP
provides a large range of optional features, and it might not be clear what the best
options for a specific implementation are. Therefore it would be useful to have a
simulation environment with PTP-aware network nodes.

1.2 Problem Statement

The aimof this thesis is the development and implementation of a simulation framework
for PTP networks. This problem can be divided into two main tasks:

1

• Simulation of oscillator noise
• Simulation of PTP to counter this oscillator noise

The resulting simulation should be able to provide realistic answers to research ques-
tions about the influence of different parameters of a PTP network. Examples of param-
eters of interest include:

• Synchronization interval
• Oscillator quality
• Line length
• PTP clock types (e.g Boundary Clocks (BCs)/Transparent Clocks (TCs))
• Delay mechanism

1.3 Focus of this Thesis

The simulation framework which is developed for this thesis should implement the
following features:

• A realistic and efficientmodel for oscillatorswith support for the inherent stochastic
noise processes

• APTP stackwith support for themost common IEEE 1588-2008 features, especially

– All PTP clock types:
∗ Ordinary Clock (OC)
∗ Boundary Clock (BC)
∗ Transparent Clock (TC)

– Both PTP delay mechanisms:
∗ End-to-End (E2E)
∗ Peer-to-Peer (P2P)

• Models for PTP transport over Ethernet (as specified in Annex F of [IEE08])
• Aservo control for slave clocks based on a proportional-integral (PI) controlmodel

The focus of this thesis is limited, and it only deals with a subsection of the overall
problem. Other areas of interest (e.g. temperature influence on oscillators) have been
spared out. However, the solutions that where developed for this thesis have been
kept flexible, so that the work can be extended and improved in future projects. Such
extensions would include:

• external influences on the oscillators (e.g. temperature, pressure, . . .)
• different servo control models
• different lower layers for packet transmission (e.g. User DatagramProtocol (UDP))

The simulationof thePTPspecificmodels is implemented inObjectiveModularNetwork
Testbed inC++ (OMNeT++)1. While there are several different simulation environments
thatmight be suitable for this task, the reasons for selectingOMNeT++ are the following:

1http://www.omnetpp.org/

2

http://www.omnetpp.org/

• OMNeT++ is simple (easy to learn) yet very expressive.
• It is available with an academic license free of charge.
• It is portable, and available for the usual desktop Operating Systems (OSs).
• The source code is available, which is important for debugging.
• OMNeT++ can be extendedwith additional models via libraries. One of the avail-

able libraries is the INET library, which already contains a lot of useful network
models.

• There is already existing literature that deals with the simulation of PTP in
OMNeT++ (see section 1.5 for details).

1.4 Methodological Approach

The following work items have been carried out for this thesis:

• Literature research on the relevant topics (simulation of oscillator noise, PTP clock
servo design, . . .)

• Study of available open-source PTP implementations (PTPd2, LinuxPTP3)
• Design and development of a a library for clock noise generation
• Design and development of a PTP simulation framework
• Study of data sheets to base hardware assumptions on realistic values
• Setup of simulated experiments to verify the plausibility of the implemented

components
• Analysis of the resulting data

1.5 Related Work

1.5.1 Simulation of PTP

A basic simulation of PTP in OMNeT++ has been described by Steinhauser in [Ste12].
Gaderer et al. have discussed the implementation of PTP and related topics such as
oscillator noise in OMNeT++ in several papers (e.g. [PGGS07], [GLN+07], [GNLK08],
[RGNL10], [GNLS11]). Another paper dealingwith PTP simulation inOMNeT++ is that
by Liu and Yang[LY11]. A paper by Depari et al.[DFF+07] deals with the simulation of
PTP in another simulation framework.

1.5.2 Simulation of oscillator noise

The simulation of oscillator noise has been an ongoing research topic for decades, and
it is well covered in the academic literature. The papers that were most relevant for this
thesis are those by Kasdin andWalter[KW92], [Wal94], [Kas95] and those by Gaderer et
al (as listed above, especially [GNLS11]).

2http://ptpd.sourceforge.net/
3http://linuxptp.sourceforge.net/

3

http://ptpd.sourceforge.net/
http://linuxptp.sourceforge.net/

1.6 Structure of this Thesis

To avoid ambiguity, chapter 2 introduces the basic terms and concepts which will be
used later. After that, chapter 3 will describe the developed simulation framework as
well as related tools in detail. Chapter 4 will discuss the experiments that were carried
out with the simulation framework, and their results. Finally, chapter 5 will give an
overview of the contribution of this thesis, and an outlook on possible future extensions.

1.7 Typographic Conventions

Quotations Exact quotes will be emphasized as follows: “Within a domain, an ordi-
nary or boundary clock with a port in the Slave state shall synchronize to its master in
the synchronization hierarchy established by the best master clock algorithm.”[IEE08]

Definitions Special termswill be emphasized when they are first used.

Source code A source code example4 is given in Listing 1.1.

int getRandomNumber(void)
{

return 4; // chosen by fair dice roll.
// guaranted to be random.

}

Listing 1.1: A sample source code listing which implements a random number
generator.

Keywords Keywords like variable names, states, etc. will be formated in amonospace
font: The function getRandomNumber() returns a truly random number.

Numbers Numbers are per default given in base 10. Hexadecimal numbers will be
prefixed with 0x, binary numbers with 0b. Exceptions are numerical IDs with a special
format, like e.g. Media Access Control (MAC) addresses (these consist of 6 pairs of each
2 hexadecimal digits, separated by colons).

Examples: 1337, 0b101010, 0xC0FFEE, 00:DE:AD:BE:EF:00

4Source code was taken from http://xkcd.com/221, which is licensed under CC-BY-NC 2.5

4

http://xkcd.com/221

CHAPTER 2
Basic Terms and Concepts

This chapter introduces the terminology and the theoretical concepts that are used in
the rest of this thesis. Several definitions are introduced, and an overview is given over
the Precision Time Protocol (PTP) and Powerlaw Noise (PLN) processes. The goal is
that a reader with a technical background, but who is not an expert in these fields, is
able to follow later discussions.

Section 2.1 introduces general terminology. A short introduction to PTP is given in
section 2.2. The clock model (especially the noise model) that is used for this thesis is
covered in section 2.3. Finally, section 2.4 gives a quick overview over the OMNeT++
simulation environment that is used later.

2.1 General Terminology

The topic of this thesis deals with time synchronization for a global time base, and thus
two important fields are Real-Time Systems (RTSs) and Frequency Stability Analysis
(FSA). The terms used in this thesis follow the established semantics given in the
respective literature of these fields: Terms relevant in the domain of RTSs follow the
definitions given by Kopetz [Kop11], terms used in the domain of FSA follow the
definitions of IEEE 1139 [IEE09], and terms relevant for PTP follow the definitions of
IEEE 1588 [IEE08].

Global time As in [Kop11], the concept of time in this thesis does not take into account
any relativistic effects. We assume that all nodes of our systems are subject to the
same progress of time. Thus, we may refer to this time as the single global time (or
real-time). For theoretical discussions, we might imagine an omniscient external
observer who knows the exact time at any instant, and with infinite precision.
However, none of the systems that we will model later will be assumed to know
the actual value of real-time, but just their local estimation.

5

Clock As in [Kop11]: “A (digital physical) clock is a device for measuring time. It con-
tains a counter and a physical oscillation mechanism that periodically generates
an event to increase the counter.” Only digital clocks are in the focus of this thesis.

Tick, tick length, offset1 A tick or clock tick refers to the increment of a clock’s counter.
For a perfect clock, these ticks occur at equal time intervals. We will refer to
this nominal time interval between two ticks as the tick length of a clock, or its
granularity. The difference of one clock’s counter value relative to another clock’s
counter value is referred to as the respective offset.

Clock synchronization For real life clocks, the lengths of their ticksmay vary over time,
and thus the measured progress of time of different clocks is different. Clock
synchronization is a general term for efforts to counter this effect. According to
[Lai12], the following types of clock synchronization may be distinguished:
Frequency synchronization means clocks running at the same rate. This also

referred to as syntonization, especially in [IEE08].
Phase synchronization refers to syntonized clocks, where the individual clocks

are additionally in phase. A real-life example for this would be multiple
people who clap in unison.

Time synchronization Clocks which agree in rate, phase and have the same
counter value are referred to as time synchronized.

If not otherwise noted, the term synchronization will be used in this thesis to refer
to time synchronization and the term syntonization will be used for frequency
synchronization.

Isochronous Events that happen periodically, with exactly the same timely distance to
each, other are referred to as being isochronous. As an example, the clock ticks of
a perfect clock are considered to be isochronous.

2.2 IEEE 1588 - Precision Time Protocol

This section gives a short introduction into the current revision of the Precision Time
Protocol (PTP), which is standardized in IEEE 1588 [IEE08]. The introduction here
is simplified, and only covers the topics that are important for later chapters. For a
detailed discussion, the reader is referred to the excellent book Measurement, Control,
and Communication Using IEEE 1588 [Eid06] by John Eidson, the initial inventor of PTP.
The only drawback of the book is that is was published in 2006 and thus only covers the
2002 revision of the PTP standard, but not the current revision from 2008.

The next revision of PTP is currently in preparation and is expected to be complete in
late 2017. It will feature several improvements including specifications for incorporat-
ing the White Rabbit2 technology for sub-nanoseconds synchronization [John Eidson,
personal communication, November 2015].

1These definitions as they are stated here are quite simplified compared to [Kop11], but they convey
the same ideas.

2http://www.ohwr.org/projects/white-rabbit

6

http://www.ohwr.org/projects/white-rabbit

2.2.1 Overview

PTP is a protocol for network based clock synchronization in the sub-microsecond range,
with moderate hardware effort. [Eid06] states its intentions as follows: “IEEE 1588 is
designed to fill a niche not well served by either of the two dominant protocols, NTP
and GPS. IEEE 1588 is designed for local systems requiring accuracies beyond those
attainable using NTP. It is also designed for applications that cannot bear the cost of a
GPS receiver at each node, or for which GPS signals are inaccessible.”

The Precision Time Protocol (PTP) is specified in the Institute of Electrical and Elec-
tronics Engineers (IEEE) standard documents IEEE 1588-2002 [IEE02] and IEEE 1588-
2008 [IEE08]. These two versions of the protocol are also referred to as PTPv1 and
PTPv2. This thesis does not deal with PTPv1, so whenever the general term PTP is used
in this thesis, it refers to PTPv2.

2.2.2 Principle of Operation

PTP provides mechanisms for network nodes to estimate the offset of their local clock
to a reference clock in the network via message exchange. This offset estimate can then
be used to synchronize the local clock.

A PTP network consists of a number of nodes which are connected in an arbitrary
topology. Which clock will synchronize to which other clock is determined by a dis-
tributed algorithm, called the Best Master Clock (BMC) algorithm: The attributes of the
local clock hardware (e.g. accuracy, clock class) are considered to be known to the node
(at least via upper bounds), and the network nodes compare their attributes to each
other. This information is then used to form a synchronization hierarchy with the best
clock on top.

In this hierarchy, neighboring nodes form amaster/slave relationship: amaster sends
timing information to its slaves, who will then try to synchronize their clocks to that of
the master. A node with connections to multiple neighbors might be a slave to one and
a master to another.
Remark: The PTP standard only specifies a method to estimate the offset of a slave clock,
and that this offset should be compensated. It does explicitly not specify how this should
be done: “The specific means for synchronization are out of the scope of this standard
but shall result in the minimization of the <offsetFromMaster> value computed by the
slave [. . .]” [IEE08]

2.2.3 Offset Estimation Principle

Basically, the offset estimation that is done by PTP consists of two parts:

• Periodic timestamp distribution (via so-called Syncmessages)
• Delay estimation (how long a Syncmessage needs to travel from the master to the

slave)

7

As an introduction to PTP, we assume a simple example network consisting of only
two nodes. Additionally, we assume that the left node is the master of the right node.
Figure 2.1 shows such a network.

Remark: PTP network graphs like fig. 2.1 follow a simple notation in this thesis: PTP
nodes are shown as large white rectangles, and their individual ports are shown as
smaller rectangles. The color of a port symbolizes its current state: green for MASTER,
blue for SLAVE and yellow for PASSIVE. Additionally, the links between ports corre-
spond to the relationships of adjacent nodes: a master/slave relationship is shownwith
an arrow, a relationship with a passive node with a dashed line.

Figure 2.1: Sketch of a simple PTP network consisting of two nodes.

Figure 2.2 shows a possible PTP communication between these two nodes3. The master
periodically sends Sync messages to the slave. In this example we assume that the
master is capable of timestampingmessages on-the-fly, and thus thesemessages already
contain their own egress timestamps. The slave registers the ingress timestamp when
a Sync message is received. To calculate its own offset in reference to the master
a slave additionally needs to estimate the time that Sync messages spend traveling
through the network. For this purpose, it periodically sends to themaster Delay_Requ
messages, for which it saves the egress timestamp locally. When the master receives
the Delay_Requ message, it registers the ingress timestamp and sends it back to the
slave in a Delay_Respmessage. The slave then knows how long its own Delay_Requ
needed to travel to the master4. Both of these communication parts are carried out
repeatedly, and the knowledge about these timestamps allows the slave to estimate the
offset of its local clock to that of the master.

2.2.4 PTP Concepts and Definitions

Whendealingwith aPTP related context, the following concepts and terms are assumed:

Clock [IEE08] defined the term clock to refer to nodes participating in a PTP network.
Unfortunately,wealreadydefined to termclock to refer to a timemeasuringdevice.
However, this ambiguity should not cause trouble as long as the reader is aware
of it, and the correct meaning should be clear from the context. Additionally, the
local timing hardware of a node will usually be referred to as the node’s local clock.

3The PTP communication shown in the figure could look quite different, depending on the actual PTP
configuration. The purpose of this diagram is to show a very simple example.

4A basic assumption of PTP (and other twoway time transfer protocols like e.g. Network Time Protocol
(NTP)) is that the delays on these two paths are symmetric. Asymmetry in the communication paths
results in unmeasurable (and thus uncorrected) synchronization offsets, and needs to be properly handled.
This is a known challenge, and discussed e.g. in [RMR14].

8

Figure 2.2: Visualization of the offset measurement principle. Rectangles symbolize
ingress and egrees time instants, circles symbolize information about such instants.

Port The interfaces via which a PTP clock is connected to the PTP network are called
ports. Each PTP node has at least one port. A PTP port is a logical access point,
thus a clock may provide several ports on a single physical interface.

Port state Each port has a port state, which is determined by a standardized state ma-
chine. The port’s state determines which PTP messages a node will send and
receive on this port, and how it will react on them.

Synchronization hierarchy Two connected nodes in a PTP network will either enter a
master/slave relationship or their connection will be disabled. This is handled by
the BMC algorithm. The resulting synchronization hierarchy will consist of one
(which is the typical case) or more rooted trees.

Timing loop This term describes a network state where the hierarchical synchroniza-
tion relationships of network nodes contain a loop. The BMC algorithm used by
PTP avoids such a network condition.

Grandmaster The top node of a synchronization tree is referred to as the grandmaster.
Data sets The local PTP-relevant information of a node is organized in data sets. This

covers all kinds of information, from static attributes like the clock identity to
highly dynamic values like the current time offset to the reference clock. Data sets
provide a standardized way to access this information.

Message types The clock offset estimation in PTP is done via message exchange. For
this purpose the standard specifies a number of message types. The different
types are described in section 2.2.5.

Message classes Message types may belong to one of two classes: they may either be
event messages or general messages. For event messages, it is important when they
are sent and received, thus they need to be timestamped. General messages do
not have this requirement.

Lower layer independence PTP is independent of the lower layer, and can be mapped
to various technologies. To be qualified as a lower layer, a technology must meet
certain assumptions (like a defined message timestamp point). The PTP standard
contains specifications for a number of commonly used protocols. This thesis
focuses on PTP over Ethernet, which is specified in Annex F of [IEE08].

Message timestamps The foundation of PTP time synchronization is the exchange of
timestamped messages. For this purpose, certain messages (event messages)

9

create a timestamp both when they are transmitted (egress timestamp) and received
(ingress timestamp).

One-step/two-step clocks If a clock is capable of inserting the egress timestamp of a
message into the message itself while it is being sent, it is referred to as a one-step
clock. This would be the preferred mode of operation, but it obviously requires
specific hardware support (e.g. on-the-fly checksum calculation). If a clock is
not one-step capable, it may send the timestamp in another message, called a
Follow_Upmessage. Such clocks are referred to as two-step clocks.

Residence time When a frame passes through network hardware (e.g. a switch), the
time between the frame’s ingress and egress is referred to as residence time. In case
of network devices with multiple output ports, a frame may experience different
residence times for each output port. As an example, suppose a 3 port network
switch receives a broadcast frame on port 1, and its port 2 already has a multiple
frames queued up for sending while its port 3 is idle. The residence time until the
framemay leave on the busy port 2 may be quite long, while it could be very short
for the idle port 3.

Delay mechanisms For synchronization with PTP, it is necessary to estimate the path
delay that a message needs to travel from a master port to a slave port. For this
purpose, the PTP standard provides two different methods, which are called delay
measurement mechanisms (or only delay mechanisms). These methods are referred to
as End-to-End (E2E) and Peer-to-Peer (P2P) delay mechanisms and are discussed
in more detail in section 2.2.9.

This section covers just the PTP terms needed for this thesis, a more complete list is
given in chapter 3 (Definitions, acronyms, and abbreviations) of [IEE08].

2.2.5 Message Types

PTP nodes carry out different tasks: they build a synchronization hierarchy, measure
path delays and distribute synchronization information. For these individual tasks,
they use different message types:

Announce messages Messages of type Announce are used by PTP nodes to inform
their neighbors about their attributes and their current knowledge of the synchroniza-
tion hierarchy. The information that is contained in these messages is then used to carry
out the BMC algorithm (see section 2.2.7 for details). Announce messages are general
messages, as this information is not time critical.

Synchronization messages A PTP port in MASTER state broadcasts its local time pe-
riodically to the network using Syncmessages. The egress and ingress timestamps for
Sync messages are important, thus they are event messages. Ideally, the egress times-
tamp of a Sync message should be contained in the message itself (one-step clock),
which requires special hardware support. If this support is not available, another mes-
sage is sent containing the egress time information. In contrast to Syncmessages, these
Follow_Upmessages are not time critical, and are thus general messages.

10

Delaymechanismmessages Depending on the used delaymechanism different types
of messages are used (see section 2.2.9 for details). The E2E delay mechanism that was
already defined in PTPv1 uses messages of the types Delay_Requ and Delay_Resp
to measure the delay between a slave and its master. PTPv2 introduced the P2P delay
mechanism, which measures the delay between neighboring nodes and using the three
message types PDelay_Requ, PDelay_Resp and PDelay_Resp_Follow_Up.

Other message types The PTP standard specifies further message types (Management
and Signaling), but these are not important for the discussions in this thesis, and thus
won’t be described here.

2.2.6 Port States

This section gives a short introduction to the port state machine that is used in PTP.
For a full description the reader is referred to chapter 9.2.5 (State machines) of [IEE08].
A sketch of the port state machine is shown in fig. 2.3. The standard distinguishes
between a full and a slave-only state machine. The description here covers the full port
state machine. The slave-only state machine is basically a subset of what is discussed
here (missing the green parts of fig. 2.3).

Remark: During normal operation (after the startup period and in the absence of
faults) all ports will be in one of the following three states: MASTER, SLAVE or PASSIVE.

Figure 2.3: Full state machine for the ports of a PTP node. The image is based on
Figure 23 in [IEE08], but it is simplified: trivial state transitions as well as transition
labels have been left out in this visualization.

INITIALIZING This is the first port state after a PTP device is turned on. A port may
stay in here as long as it needs to finish its own initialization. When it is done, the only
possible follow up state is LISTENING.

LISTENING A port in this state won’t actively participate in synchronization but only
listen to the network and wait for the reception of Announce messages. According to
the received information the node decides how to proceed further. The purpose of this
state is to ensure the orderly addition of PTP nodes to an already running network.

11

FAULTY If a fault occurs, a port moves to this state. Clearing the fault leads again to
the state INITIALIZING.

DISABLED Explicitly disabling a port leads to this state. After it is re-enabled, it
proceeds to INITIALIZING.

UNCALIBRATED Whenever a nodewants to become a slave of another node, the corre-
sponding port first enters the UNCALIBRATED state, and the node starts to synchronize
to its chosen master. If the node considers itself synchronized to the master within
configured bounds, the port will move on to the SLAVE state.

SLAVE In this state a slave is considered to be synchronized to its current master, and
it will try to keep this synchronization. If a synchronization error occurs or the slave
switches to another master connected to the same port, the port will move back to the
UNCALIBRATED state again.

PRE_MASTER If a port decides that it is the best suitable master among others, it
will enter the PRE_MASTER state before changing to MASTER. As stated in [IEE08] “an
additional mechanism to support more orderly reconfiguration of systems when clocks
are added or deleted, clock characteristics change, or connection topology changes is
embodied in the PRE_MASTER state.”

MASTER In this state, a port considers itself the master of the connected network and
it periodically broadcasts its locally available timing information. This state is either
entered via PRE_MASTER, or it is entered directly if the port thinks it is the only available
master (this happens if a port does not receive Announcemessages for a certain amount
of time).

PASSIVE APTP nodemight decide to not take part in the PTP synchronization on one
of its ports by moving it to the PASSIVE state. This might be the case for two reasons:

• If a node detects several paths to its grandmaster, it will only use the best path,
and deactivate the other ports by moving them to the PASSIVE state.

• A node that has access to a external clock synchronization that is assumed to be
superior to PTP (e.g. a connected Global Positioning System (GPS) receiver) won’t
become a slave of another node. If such a node detects better PTP clocks connected
to some of its ports, these ports would move to the PASSIVE state.

2.2.7 Best Master Clock Algorithm

PTP nodes execute what is called the Best Master Clock (BMC) algorithm to establish
and maintain a synchronization hierarchy. A port in MASTER state periodically sends
Announce messages to the network. These messages contain information about the

12

currently known grandmaster, and about the path to the grandmaster. On startup, a
nodemay only know about itself, and assume it is the grandmaster of the system. When
a node learns of a better grandmaster, or a better connection to the same grandmaster,
it will update its data sets and then broadcast the new information.

The BMC ensures the following properties:

• The decisions that two nodesmakewill always be eventually consistent (theremight
be short intervals of inconsistency as the state decision events for two neighboring
nodes are not synchronous). Thus, it won’t happen that two neighboring ports
both continue to stay in the MASTER state and try to synchronize to each other.

• A node with multiple ports will become a slave on at most one of its ports.
• The synchronization hierarchy will never contain a timing loop.

Two examples are shown in fig. 2.4. Both examples show the same physical network
topology, but the nodes are assumed to have different attributes. In fig. 2.4a the node
in the upper left has the best clock attributes, and becomes the grandmaster of the
remaining nodes. Timing loops in the synchronization hierarchy are avoided by ports
that switch to the PASSIVE state. The second example assumes that two nodes have
excellent attributes (e.g. maybe both of them have a GPS connection), so neither of
them will become a slave. Rather, both of them become masters of a small subnet.
Connections between these two synchronization networks are removed with passive
ports.

(a) Example network with 1 grandmaster (b) Example network with 2 grandmasters

Figure 2.4: Examples for different synchronization hierarchies resulting from the same
network, but with different clock attributes.

For a detailed discussion of several interesting cases the reader is referred to section
4.2.3. (The State Decision Algorithm and Data Set Updates) of [Eid06].

2.2.8 Clock Types

Depending on the number of ports and the PTP relevant behavior, different types of
clocks are distinguished:

Ordinary Clocks (OCs) A PTP device with only one port is referred to as Ordinary
Clock (OC). These are the most basic PTP devices, and in a typical PTP network,
the endpoints (i.e. the leaves of the synchronization hierarchy) would be of this type.

13

Application devices, like sensors or actors, would typically be connected to a clock of
this type.

Boundary Clocks (BCs) Multiple OCs could be connected via standard networking
hardware (e.g. COTS switches), but this would degrade the precision reachable by
PTP: the latencies for queuing frames inside standard network hardware would not be
compensated in such a setup, whichwould lead to both jitter and asymmetry in the path
measurement. To counter these effects, the first revision of the PTP standard [IEE02]
introduced the concept of Boundary Clocks (BCs): These are PTP clocks with multiple
ports, where each port has its own port state. This way, a clock might be a slave on one
port, and a master on the remaining nodes. As the name implies, a BC is a boundary
for PTP frames: no PTP frame that enters a BC may pass through it. This is in contrast
to the concept of a TC which will be explained next. As the ports of a BC act as the end
points for any PTP master-slave relationship, the internal frame handling of the switch
fabric is not critical for BCs. An example network with a BC is shown in fig. 2.5a.

Transparent Clocks (TCs) The initial concept of BCs showed drawbacks for certain
network topologies, especially daisy-chains, as stated in [Eid06]: “Weber and Jaspernite
note that in many industrial automation applications, the network will appear as a long
linear topology. The current IEEE 1588 protocol requires each node in the link to be
a boundary clock, which means that there will be a cascading of control loops and a
degradation in the time scale. The proposed solution is to introduce a new type of
clock, termed a Transparent Clock (TC), that overcomes this difficulty yet does not affect
the operation of the protocol for other nodes in the system.” These TCs where then
included in the 2008 revision of the PTP standard.

As described in the above citation, a TC interconnects multiple PTP clocks and tries
to not affect their communication in any way. This means that for event messages
which are supposed to traverse through a TC, the residence time must be corrected. An
example network with a TC is shown in fig. 2.5b. The node A is the grandmaster of
the network, and it synchronizes the slaves C and d. When A sends a Sync message,
the message is timestamped on the ingress port of B (the left port in the picture). The
message continues to traverse through the TC, and depending on the current network
traffic, leaves the clock at the egress ports to C and D at possibly different points in time.
The individual residence time that themessage has spent inside the TCwill be corrected
at each egress port.

2.2.9 Delay Mechanisms

As already stated, it is necessary to estimate the path delay that a Syncmessage encoun-
ters when it travels from a master to a slave. For this purpose, the 2002 revision of PTP
introduced the path delay measurement via Delay_Requ and Delay_Respmessages,
which later became known as the End-to-End (E2E) delay mechanism. With the 2008

14

(a) Node B is a Boundary Clock. Node B is
a slave of A, while C and D are slaves of B.

(b) Node B is a Transparent Clock. The
nodes C and D are slaves of A.

Figure 2.5: Visualization of BCs and TCs. The nodes A, C and D are OCs in both cases.

revision of the standard a second approach was added, called the Peer-to-Peer (P2P)
delay mechanism.

End-to-End (E2E) When using the E2E delay mechanism, a slave node periodically
sends Delay_Requmessages to themaster, which responds to themwith Delay_Resp
messages. This is what was shown in fig. 2.2. The path delay is estimated using the
egress and ingress timestamps of the Delay_Requ message. When the two nodes for
which the path is measured are interconnected via TCs, then this measurement method
measures from one end to the other, hence the name. A sketch of this case is shown in
fig. 2.6a. For E2E, the estimated delay is measured for the full path between a slave and
its master, and the delay is compensated by the slave. Figure 2.6a shows an example
network where a slave measures the delay to its master over a line of TCs. In this
example, the full delay that a Sync messages suffers when it travels from A to B is
corrected at B.

Peer-to-Peer (P2P) With theP2Pdelaymechanism, thepathdelay ismeasuredbetween
two neighboring PTP nodes, irrespective of whether they are BCs, TCs, or OCs. This is
a notable exception in the behavior of TCs: while they try their best to stay unnoticed
for any other traffic, they actively participate in P2P delay measurement. In contrast
to E2E delay measurement where the slave node estimates and corrects the full path
delay, each node in a P2P delay measurement line estimates the delay for its preceding
network link and applies correction for traversing eventmessages. An example network
with TCs and P2P delaymeasurement is shown in fig. 2.6b. When a Syncmessage from
A to B travels trough the TCs, each TC corrects the path delay for the preceding segment
of the path.

Comparison A visual comparison between E2E and P2P is sketched in fig. 2.6. Sup-
pose that in both cases node A is the master, while B is the slave. In the case of E2E, any
slave port measures the full distance to its master. On the other hand, P2P nodes only
measure their link to the next neighbor.

This different behavior becomes important especially in large networks. Imagine a
networkwhere a singlemaster synchronizesmany slaves connected via TCs. Measuring
each individual delay fromeach slave to themasterwouldmean that parts of thenetwork

15

are measured multiple times. This would waste network bandwidth and resources at
the master, as it needs to handle each individual delay request.

(a) End-to-End (E2E)

(b) Peer-to-Peer (P2P)

Figure 2.6: Comparison of the twodelaymechanism types in the case of a linear topology
with TCs.

2.3 Clocks and Clock Noise

This section gives a short introduction on the attributes of a clock, especially on how
they might deviate from the correct value, and how clocks are modeled in this thesis.

2.3.1 Clock Model

As the main goal of this thesis is the simulation of clock synchronization, we need a
theoretical model of the clocks that we would like to synchronize. The clock model that
is used in this thesis is based on the model described in [AAH00]: on an abstract level,
any digital clock may be considered to consist of two parts, an oscillating device and a
counter. The first part (also called the frequency standard) is responsible for measuring
the length of a given time interval by oscillating at a constant frequency. The second
part then has to count the number of oscillations. Figure 2.7a shows a sketch of this
clock model. Additionally, we use the following assumptions and definitions for our
clock model:

• Increments of the counter value are assumed tobe instantaneous. The time instants
when these increments happen are referred to as the ticks of the clock. In between
two ticks the counter value of a clock stays the same.

• The counter value of a clock is an estimate of howmany oscillations have occurred
since the clock started to count. This value is just an arbitrary integer number,
and it is not related to the value of any other clock, or to the global time. We will
later add an additional abstraction layer on top that can be used to establish such
a relationship through synchronization.

16

• A node may use its local clock to timestamp events by reading the current counter
value. Reading the current counter value is again assumed to be an instantaneous
operation. If two events happen between the same two clock ticks, they will be
assigned the same timestamp (even if they do not happen at the exact same time
instant).

• As themaximum counter value for any real clock has to be finite, it will overflow at
some point. However, for any real clock this problem can be solved in a trivial way
by providing another abstraction layer to increase the maximum possible counter
value. For example, an electronic clock circuit with a 16 bit wide counter value
could be easily extended to e.g. 64 bit or more in software. Thus, it is justified for
our model to assume that the digital counter of a clock won’t overflow at all but
just keeps increasing infinitely.

• We will assume that a clock can be used to trigger events on a local node. For
this purpose, it is assumed that a node can configure a future timestamp and its
clock will notify the node when that value is reached. In a real device, this would
correspond to some kind of interrupt mechanism.

(a) Basic model for a digital clock,
as given in [AAH00].

(b) Clock model as used in this thesis. Both the
oscillator and the counter are assumed to be perfect,
and the noise is added by an additional component.

Figure 2.7: Theoretical models for digital clocks. These images are based on an image
from [AAH00].

2.3.1.1 Deviation from the Correct Time

For a digital clock to be useful it would be desirable that the clock’s ticks occur in an
absolute isochronousway. Unfortunately, for any real clock, this is not the case, as stated
in [AAH00]: “In principle, if a clock were set perfectly and if its frequency remained
perfect, it would keep the correct time indefinitely. In practice, this is impossible for
several reasons: the clock cannot be set perfectly; random and systematic variations are
intrinsic to any oscillator, and when these random variations are averaged, the result is
often not well-behaved; time is a function of position and motion (relativistic effects);
and lastly and invariably, environmental changes cause the clock’s frequency to vary
from ideal.”
Thus, we need to specify how such deviations from the correct time are handled in our
clock model. For this reason, we will add the following conventions:

17

• Eachof the twoparts of our clockmodelmay introduce adeviation from the correct
time value. In the context of this thesis, we won’t distinguish where such a time
deviation is introduced, and just focus on the resulting error. For our theoretical
model, we assume that both the oscillator and the counterwork absolutely perfect,
and introduce a third component in between that is responsible for all noise. This
extended model is visualized in fig. 2.7b.

• The reasons for a deviation may be of different kinds, and we don’t include all of
them in our model:

– This thesis will especially focus on random noise processes that are inherent to
quartz-crystal oscillators [AAH00]. For this reason, section 2.3.2.2 will give
a detailed discussion on the properties of such noise, and section 3.1 will
present the details on how such noise can be simulated.

– Oscillators may suffer from systematic deviations from the correct time. Ex-
amples would be aging, frequency drift, or different kinds of external envi-
ronmental influences (e.g. temperature, pressure, electric fields,). While
such systematic deviations could be included in our clock model, they are
currently not part of it nor of the simulation described in chapter 3. However,
a future extension to this work could additionally include these influences.
Especially the addition of a temperature model would be worthwhile, as this
kind of influence presents a major challenge in real systems.

– Relativistic effects are not even part of our definition of time, nor of our clock
model, and are thus completely ignored in this thesis.

2.3.2 Frequency Stability Analysis

For the later chapters, we need to analyze and compare the frequency stability of
oscillators. The discipline that deals with these measures is referred to as Frequency
Stability Analysis (FSA). A very good introduction into this field is given in Riley’s
Handbook of Frequency Stability Analysis [Ril08], which describes it as follows: “The
objective of a frequency stability analysis is to characterize the phase and frequency
fluctuations of a frequency source in the time and frequency domains.” This section
gives a short overview of the topics that we need later.

2.3.2.1 Definitions and Terminology

IEEE 1139 [IEE09] defines a large set of useful definitions and terminology for the topics
of this thesis. A few of them will be used throughout the document, and for the sake of
completeness they are repeated here:

Oscillator Output The output of an oscillator can be expressed as

V(t) =
(
V0 + ε(t)

)
∗ sin

(
2πν0t+ φ(t)

)
(2.1)

where V0 is the nominal peak amplitude
ε(t) is the deviation from the nominal amplitude

18

ν0 is the nominal frequency
φ(t) is the phase deviation from the nominal phase 2πν0t.

As stated in [Ril08], for the analysis of frequency stability, we are concerned
primarily with the φ(t) term, thus we assume that ε(t) is negligible for the rest of
this thesis.

Time Deviation The instantaneous Time Deviation (TD) is given by the following defi-
nition:

x(t) =
φ(t)

2πν0
(2.2)

This value expresses how much the current time estimate of a given oscillator is
ahead or behind the nominal error-free case. The TD is measured in seconds. It is
also referred to as time fluctuation in the literature.

Fractional Frequency Deviation The instantaneous, normalized frequency deviation
from the nominal frequency of an oscillator is referred to as the Fractional Frequency
Deviation (FFD) and is defined as

y(t) =
ν(t) − ν0
ν0

=

φ(t)

2πν0
(2.3)

The value of y(t) expresses in a normalized way how much a given clock is too
slow or too fast at time t. The FFD is related to the TD via the following equations
[IEE09, All87]:

y(t) =
dx(t)

dt
x(t) =

∫t
0

y(t ′)dt ′ (2.4)

The value y(t) is only of theoretical interest, as it is impossible to measure instan-
taneous frequency [HAB81]. But it can be estimated using the average of y(t)
between two measurements of x(t) with a sampling interval of τ:

y(t) =
x(t+ τ) − x(t)

τ
(2.5)

In the literature y(t) is also referred to via several other, slightly different names,
e.g. normalized frequency deviation, fractional frequency offset, fractional frequency fluc-
tuations, etc.

Power Spectral Density The one-sided spectral density of the FFD is referred to as
Sy(f) [IEE09]. This is an important frequency domain characteristic of frequency
stability and is discussed in more detail in section 2.3.2.3.

Allan Variance The most important time-domain measurement for clock noise is the
so-called Allan Variance (AVAR) [IEE09, Ril08]. A more detailed description is
given in section 2.3.2.4.

19

Figure 2.8 illustrates the definition of TD in combination with our clock model that was
introduced in section 2.3.1. For simplicity, the values shown in this diagram are not
absolute values but normalizedwith respect to some nominal tick length. As explained,
our clockmodel consists of three stages: a perfect oscillator, a noise generator, andfinally
a perfect counter. Suppose we have a look at the output of the different stages of a noisy
example clock. If we would measure the progress of time that is given by the perfect
oscillator, it would be linear and at all times it would hold that Tperfect(t) = t. This is
visualized by the straight dashed line in fig. 2.8a. The noise generator stage adds noise
to the measured progress of time, and slows it down or speeds it up. The output after
this noise generator could look something like the bold line in fig. 2.8a: at first the local
time progresses too fast, while later it slows down until it is too slow, just to speed up
again. But no matter how much it slows down, it will always continue to rise (i.e. the
measured progress of time is strictly increasing). The TD of our example clock would
equal the difference between the bold and the dashed line in fig. 2.8a (in this example it
is assumed that TD(0) = 0).
Figure 2.8b andfig. 2.8c showwhat the counter values look like for a perfect clock (where
the noise generation stage is missing) and for our noisy example. For the perfect clock,
the counter value looks like fig. 2.8b, where all ticks are exactly isochronous. On the
other hand, when the noisy oscillation of our example clock is used to measure time’s
progress, the value of the counter behaves as shown in fig. 2.8c. The moments when
our example clock makes a tick are highlighted in fig. 2.8a as T1. . T5.

(a) Progress of time as measured by a noisy example clock.

(b) Counter value of a perfect reference digital clock.

(c) Counter value of a noisy digital clock.

Figure 2.8: Visualization of our clock model concepts. All time units are normalized.

20

2.3.2.2 Powerlaw Noise

The random noise that is intrinsic to common oscillators can be modeled as a stochastic
process, and it has some special characteristics. As stated in [Ril08], the random fre-
quency instabilities can be described by the shape of their spectral density: “It has been
found that the instability of most frequency sources can bemodeled by a combination of
Powerlaw Noises (PLNs) having a spectral density of their fractional frequency fluctua-
tions of the form Sy(f) ∝ fα, where f is the Fourier or sideband frequency in hertz, and
α is the power law exponent.” This means, that when the Power Spectral Density (PSD)
is plotted on a log-log scale, these noise processes will have the shape of a line. While
α could have any numerical value in theory, it has been found that for quartz-crystal
oscillators five special cases are of importance [AAH00]. In these five cases α has an
integer value in the interval [−2. . 2], and these cases are referred to by the following
names:

• α = 2: White Phase Modulation (WPM)
• α = 1: Flicker Phase Modulation (FPM)
• α = 0: White Frequency Modulation (WFM)
• α = −1: Flicker Frequency Modulation (FFM)
• α = −2: RandomWalk (RW)

Figure 2.9 shows an example of what these PLNs look like. Note that different parts
of the periodogram are dominated by different noise types. E.g. if they are present,
RW andWPM dominate the low and high frequency spectrum below and above certain
points. This is why the combined PSD diagram of an oscillator typically has a V or U
shape.

Figure 2.9: Example sketch showingwhat different kinds of PLNs look like. On a log-log
scale, PLNs have the shape of a line.

The TD that an oscillator experiences is a combination of these individual noise pro-
cesses. A measurement of such a TD might look like the example shown in fig. 2.10.
This figure again shows how different types of noise dominate different characteristics

21

of an oscillator’s behavior: For example, while the long term behavior is determined
by low frequency RW noise, the short term behavior is largely influenced by high fre-
quency noise, likeWPM or FPM. PLN can be analyzed in both the time domain and the
frequency domain, and the following sections will explain the basic concepts for each.

Figure 2.10: Example sketch showing the TD for a combination of PLN types.

2.3.2.3 Frequency Domain Analysis

In the frequency domain, we use the measure Sy(f), which [IEE09] specifies as the
“one-sided spectral density of the normalized frequency fluctuations”. For PLN, Sy(f)
can be assumed to have the form:

Sy(f) =

{∑+2
α=−2 hαf

α 0 < f < fh

0 f > fh
(2.6)

where Sy(f) is the one-sided PSD of the FFD y(t)
f is the Fourier or sideband frequency
hα is the intensity coefficient
α is the exponent of the PLN process
fh is the high-frequency cutoff of an infinitely sharp low-pass filter

Remark: Some publications (e.g. [Kas95]) assume Sy(f) ∝ 1/fα instead of Sy(f) ∝ fα.
While these two conventions only differ in the sign of the exponent and are thus easy
to convert to each other, care must be taken when combining formulas from different
literature sources. Any formulas from other publications that are used in this thesis
were converted to fit the conventions used in [IEE09].

22

There are also other frequency domain measures besides Sy(f), e.g. the PSDs of the
TD x(t) (Sx(f)) or the phase φ(t) (Sφ(f)). However, we won’t use them in this thesis, so
they won’t be discussed any further.

2.3.2.4 Time Domain Analysis

Several time domain measures are used for FSA, and a good overview of them is
given in [Ril08]. The most important measure is the so-called Allan Variance (AVAR)
(symbolized as σ2y(τ)), which was introduced by David W. Allan in 1966 [All66]. The
following paragraphs give an introduction to the AVAR and how to use it to analyze
PLN.

Motivation As PLNs are stochastic processes, one might assume that in the time
domain the standarddeviation (or the standardvariance)wouldbe anadequatemeasure
to describe them. However, it turned out that this is not the case for a number of reasons.
The most important one is that it does not converge for some kinds of PLN: “One can
show that the standard deviation is a function of the number of data points in the
set; it is also a function of the dead time and of the measurement system bandwidth.
For example, using flicker noise frequency modulation as a model, as the number of
data points increases, the standard deviation monotonically increases without limit.”
[HAB81]

To overcome the problems with standard variance, Allan introduced in [All66] a
better suited two-sample variance, which became to be known as the Allan Variance
(AVAR). The AVAR has since then become the standard time domain measure for
analyzing PLN noise [IEE09].

AllanDeviation (ADEV) TheAllan Deviation (ADEV) is the square root of the AVAR.
Both measures are commonly found in the literature. As they are strictly related and
imply each other, it does not really matter which one of them is used to describe PLN.
Throughout this thesis, both of them are used, depending on which better fits the
context (e.g. for comparisons with figures from other literature).

Interpretation The AVAR is a measure for the frequency stability of an oscillator over
intervals of a specified length τ. Usually it is not calculated for a single interval length,
but for a number of different interval lengths. These values are then visualized as a line
graph. An example is shown in fig. 2.11. In this example it can be seen that the given
oscillator is more unstable in the milliseconds range than in the seconds range. On the
other hand, after the seconds range the instability increases again for longer interval
lengths. As we will see later, the shape of this curve is related to the PSD shape of the
noise processes that are present.

Definition and Calculation [All87] defines the AVAR σ2y(τ) as follows:

23

Figure 2.11: Example AVAR plot for interval lengths τ in the range from microseconds
to 103 seconds. The dots represent the estimated AVAR for those values of τ.

σ2y(τ) =
1

2

〈(
M yτ

)2〉
, (2.7)

“where M yτ is the difference between adjacent fractional frequency measurements,
each sampled over an interval τ, and the brackets

〈 〉
indicate an infinite time average

or expectation value.” As it is not possible to sum over infinitely many measurements
in practice, the value of σ2y can only be estimated. For a dataset ofM FFD values, one
can estimate the AVAR using the formula given in [IEE09]:

σ2y(τ)
∼=

1

2(M− 1)

M−1∑
k=1

[
yk+1 − yk

]2
(2.8)

Its also possible to express the AVAR estimate in terms ofM+ 1 TD values:

σ2y(τ)
∼=

1

2(M− 1)τ2

M−1∑
k=1

[xk+2 − 2xk+1 + xk]
2, (2.9)

Equation (2.9) leads to same result as eq. (2.8), but it might be more efficient: usually
the result of a measurement is data in the form of TD values, and it would be more
computational effort to apply eq. (2.5) on the TD data and then estimate the AVAR via
eq. (2.8) than to directly apply eq. (2.9).

Usually, the AVAR values for different interval lengths are computed from the same
set of input data. In this case themeasurements are sampled at a frequency correspond-
ing to the smallest interval length of interest. AVAR calculations for longer intervals are
then done with the same input data, where intermediate values are left out. E.g. if the
input data was originally sampled with 1 kHz (τ0 = 1ms), the AVAR for τ = 2ms could
be estimated by using every second measurement (τ = 2 ∗ τ0). As longer intervals are

24

estimated with a smaller set of input values, this will of course decrease the confidence
of the estimate.

Confidence intervals The AVAR is defined as an infinitely large time average, but in
practice we estimate its value form a finite amount of data. It is a natural question to
ask for the confidence of such an approximation. [All87] states that “a data set of the
order of 100 points is more than adequate for convergence of σy(τ), though of course
the confidence of the estimate will typically improve as the data length increases.” To
estimate the confidence intervals for a givenAVAR result, [IEE09] describes twodifferent
approaches:

• A rather simple approach would be to assume a symmetric Gaussian distribution
and to estimate a 68% confidence interval σy(τ)± I for a data set of lengthMwith
the relation

I = Kα · σy(τ)/
√
M (2.10)

Kα depends on the type of the PLN. For the five typical α values Kα is in the range
of 0.75− 0.99, thus slightly looser bounds can be estimated by assuming Kα = 1:

I = σy(τ)/
√
M (2.11)

• A more sophisticated method would be to assume a χ2-distribution and to cal-
culate the equivalent number of degrees of freedom depending on the type of
noise. While this approach is more complex compared to the first one, it results
in tighter bounds for the AVAR estimation. However, this approach is not used
in this thesis, and thus the reader is referred to [IEE09, Ril08] for a more detailed
discussion.

Drawbacks A major drawback of the AVAR is that WPM and FPM both result in a
similar AVAR plot. While the other types of noise can be easily identified by looking at
the AVAR, this is not possible for these to types of PLN. This discussed in more detail
in section 2.3.2.5.

Improvements and Alternatives Since the introduction of the original AVAR in 1966
a large number of improvements have beenmade in the field of FSA. This includes both
improvements to the AVAR itself (e.g. using overlapping samples) and the invention of
new variances (e.g. Total Variance, Thêo Variance, . . .). Again, for a detailed overview
the reader is referred to [Ril08]. An important improvement to the classic AVAR that
should also be mentioned here is the Modified Allan Variance (MAVAR). In contrast to
the AVAR, the MAVAR is able to distinguish between to between WPM and FPM noise.
As the classic AVAR is still widely used in the literature, it is used as the basic time
domain measure in this thesis, even though other measures (like the MAVAR) would
have interesting advantages.

25

2.3.2.5 Powerlaw Noise Relationship between Time and Frequency Domain

The introduced time and frequency domainmeasures are related to each other. Remem-
ber that we introduced PLN as noise with a PSD shape of Sy(f) ∝ fα. The dominance
of PLN with an exponent of α in the time domain measure Sy(f) leads to an AVAR
shape of the corresponding time interval range of τµ, where µ directly depends on α.
Unfortunately, the mapping from α to µ is not bĳective5, as both WPM (α = −2) and
FPM (α = −1) noise lead to an AVAR shape of µ = −1. The basic relationship between
Sy(f) and the AVAR is sketched in fig. 2.12.

Figure 2.12: Relationship of AVAR and Sy. This plot is based on an image from [Rub05].

Table 2.1 gives a detailed overview of the Sy/AVAR relationship. Notice that the factors
D and E for FPM and WPM noise are not constants, but depend on fh and τ (fh is the
high frequency cutoff frequency as given in eq. (2.6)). This is important for later sections
when we want to generate PLN.

5In the case of the MAVAR the relationship would be bĳective.

26

Table 2.1: Relationship between σ2y and Sy. Source: [IEE09], Table B.2

Noise process Sy(f) = σ2y(τ) =

RandomWalk h−2 · f−2 A · h−2 · τ1
Flicker Frequency Modulation h−1 · f−1 B · h−1 · τ0
White Frequency Modulation h0 · f0 C · h0 · τ−1
Flicker Phase Modulation h1 · f1 D · h1 · τ−2
White Phase Modulation h2 · f2 E · h2 · τ−2

where A, B, C, D and E have the following values:

A =
2π2

3
B = 2 · ln2 C = 1/2

D =
1.038+ 3 · ln(2π · fh · τ)

4π2
E =

3 · fh
4π2

(2.12)

2.3.2.6 Tools for Frequency Stability Analysis

To analyze the frequency stability of measured or simulated data, it is convenient to
have software tools. For the work on this thesis, various Matlab scripts have proven to
be useful:

• To convert between x and y data, eq. (2.5) and its inverse can be implemented in a
straight forward way using the Matlab internal functions diff and cumsum.

• In the frequency domain, Sy(f), the PSD of y, is of interest. A commonmethod for
PSD estimation is Welch’s method, which is supported in Matlab via the pwelch
function. Using this method, the raw input data gets split into shorter intervals, to
which a window function is applied, and from which then the PSD is estimated.
The individual PSD estimates for the shorter segments are then averaged, to get
an estimate for the initial data. Figure 2.13 shows the effect of this averaging
procedure. It can be seen that for a larger number of averages the estimated PSD
is less noisy, but on the other hand the information about lower frequencies is
lost. The PSD visualizations in this thesis were made by using aHanningwindow
as the window function. This choice was made as it is recommended in several
publications (e.g. [Sch12]) as a good starting point.

• For FSA in the time domain, we are interested in the AVAR. Matlab does not
provide packages for AVAR calculation, but support for this measure is available
using third-party scripts:

– The function allan6 can be used to calculate the ADEV for a set of τ values
from a given input vector. The input data can be either FFD or TD values.
The script accepts either equally spaced samples with a specified sample rate,

6http://de.mathworks.com/matlabcentral/fileexchange/13246-allan

27

http://de.mathworks.com/matlabcentral/fileexchange/13246-allan

or arbitrary spaced samples with additional timestamp data. Support for the
estimation of error bars is implemented using the approach of eq. (2.11).

– The script Stability Analyzer 53230A7 provides a Graphical User In-
terface (GUI) to interact with a universal counter from Agilent. Its purpose
is to read data from a counter and provide various FSA measures, including
the ADEV. The script also supports an operational mode where no counter
is necessary and the data can be read from a Comma-separated values (CSV)
file. The data in the CSV file is assumed to be absolute frequency values
between equally spaced sampling points. This tool also provides support for
error bars, but in contrast to the other script it performs noise identification
and then uses the slightly more detailed formula that was given in eq. (2.10).

The allan function provides a convenient command line interface for ADEV
calculation, thus it was the main tool for ADEV plot generation used for this
thesis. The main purpose for which StabilityAnalyzer program was used
was to provide a counter-check for the allan routine. These two tools were
developed by different authors, and they expect their input in different formats,
however, their results agree for any input data tested by the thesis author. Thus,
it seems justified to expect both of them to work as expected.

Figure 2.13: Estimates of Sy(f) usingWelch’smethod for different numbers of segments.
NumSeg gives the number of segments into which the input data was split. The noise
sample used for this plot was 1 kHz FPM noise.

7http://de.mathworks.com/matlabcentral/fileexchange/31319-stability-
analyzer-53230a

28

http://de.mathworks.com/matlabcentral/fileexchange/31319-stability-analyzer-53230a
http://de.mathworks.com/matlabcentral/fileexchange/31319-stability-analyzer-53230a

2.4 Simulation Environment OMNeT++

As the goal of this thesis is the simulation of a network protocol, a suitable simulation
environment had to be found. The choice was made for OMNeT++ as it is easy to use,
well documented, free for academic use and already used in other publications dealing
with PTP simulation (e.g. [Ste12], [GNLS11]). As in all sections of this chapter, the
information here is only a short overview. A detailed introduction is provided by the
excellent user manual [Ope14].

Functional description OMNeT++ is a simulation library and framework for network
simulation. It has a generic architecture, and acts as a platform on which a user may
build custom simulations. When building a custom simulation, the typical workflow
includes:

• Specification of components: OMNeT++ provides a very generic way of how
components can be specified, connected and re-used.

• Simulation specification: Once all needed components are implemented, theymay
be connected to form simulation networks.

• Simulation configuration: It might be of interest to run the same simulation with
several different configurations to study the influence of individual parameters.
OMNeT++ provides a convenient configuration interface for simulations, includ-
ing the variation of sets of input parameters.

• Simulation execution: For debug simulation runs, OMNeT++ provides a conve-
nient GUI, while the final simulation runs are executed on the command line to
maximize performance.

• Result analysis: The collected simulation data can be analyzed in the GUI, or
exported in various formats for other tools.

Basic simulation model An important aspect of OMNeT++ is the fact that it is based
on the Discrete Event Simulation (DES) concept. This means that the simulation model
is based on a list of ordered events. Any calculation at such an event is assumed to
happen instantaneously, and may add more events to the list of future events. No state
change can happen between two consecutive events, and these time intervals are simply
skipped. This provides the huge advantage that the simulation speed scales inversely
to the number of events per simulated time. It is important that the simulation model
supports such a simulation concept, as otherwise the speed advantage of DES would
be lost. The design of the PLN simulation library that is introduced in section 3.1 was
mainly driven by these considerations.

Simulation architecture The building blocks for a simulation are modules which can
be connected in a hierarchical order to form more complex modules. The interface of
a module is specified in an OMNeT++-specific markup language, which is called the
Network Description (NED) language. If a module does not contain any submodule, it
is called a Simple Module (SM), and its behavior has to be encoded in C++. On the other

29

hand, if a module consists of one or more submodules, its behavior is fully specified
by the behavior of its submodules. Modules of this kind are called Compound Modules
(CMs). Any module may have gates which can be connected to other modules via
channels, and the individual modules can then communicate by exchanging messages.

Integrated Development Environment (IDE) OMNeT++ also provides an Eclipse-
based IDE, which is compatible with the common desktop platforms (Windows, Linux,
Mac OS X). A screenshot of the OMNeT++ IDE is shown in fig. 2.14. The IDE provides
support for all simulation relevant steps frommodel specification to result visualization.

Figure 2.14: Screenshot of OMNeT++ showing a compound model of a node (1), a
source code window (2), and some simulation results (3).

Libraries Additionally, many libraries with predefined OMNeT++ components are
available. These components can be customized or extended to fit the purpose for a
specific simulation. A popular example is the INET library8, which contains models for
common network components (e.g. switches, network stacks, hardware components,
. . .). It has been extensively used for the development of the PTP simulations in this
thesis.

8http://inet.omnetpp.org/

30

http://inet.omnetpp.org/

CHAPTER 3
Implementation

This chapter will describe the software projects that were implemented as part of this
thesis. Section 3.1 describes LibPLN, a library for PLN simulation. In section 3.2 we
introduce LibPTP, our simulation framework for PTP.

3.1 Efficient PLN generation library

To simulate oscillators, we need to simulate PLN. Remember that our clock model
(section 2.3.1) consists of three parts:

• A perfect oscillator
• A noise generator
• A perfect counter

Assuming that they are perfect makes the implementation of the first and third part
in OMNeT++ straight forward (this will be discussed later in section 3.2.3.1). What is
more difficult to implement is the second part (the noise generator): it is responsible
for the addition of PLN to the overall output. The library described in this section will
implement this second part of the clock model.

3.1.1 Implementation goals

We aim for the following attributes of our implementation:

• Realistic: The stochastic characteristics of the produced PLN should match that
of a given real oscillator. Of special interest for us are the PSD and the AVAR.

• Efficient: As stated in section 2.4, OMNeT++ simulations are based on the DES
concept. Thus, the needed simulation effort is directly proportional to the number
of events per simulated time, but it does not depend on the amount of simulated
time. To take advantage of this concept, our PLN implementation needs to provide

31

a similar scaling, and shoulddepend as less as possible on the amount of simulated
time.

• Flexible: While PLN generation is intended to be used as a component in an
OMNeT++ model, it turned out that it is also very valuable to have the same
functionality implemented as an independent command line tool. Thus the im-
plementation should be done as a library without any OMNeT++ dependencies,
so that the same code base can be used for different purposes.

• Portable: OMNeT++ supports the common desktop platforms, thus any simu-
lation implemented on it would be quite portable without any additional effort.
This is a huge advantage for our PTP simulation and it should not be limited by
the introduction of any platform dependencies in the PLN library.

3.1.2 Overview

The implementation presented here is heavily based on a publication by Kasdin and
Walter [KW92]. In their publication they discuss different simulation approaches for
PLN and their drawbacks. And they also propose another method, which they claim
to meet the needed criteria to generate realistic PLN. However, their method is a batch
method, and it produces PLN for a number of equally spaced sampling points. As such
it is not suitable for a DES environment, because it violates our efficiency criteria to not
directly depend on simulation time.

This challenge has already been discussed by other authors, e.g. by Gaderer et
al. in [GNLS11]. While they claim that they have improved the Kasdin/Walter PLN
generation method to fit the requirements of DES in [GNLS11], they unfortunately
only provide a coarse high level description of their modifications and not the required
details for reproducing their results.

The goal of this section is therefore to improve the simulation approach of Kasdin
and Walter to fit the needs of DES similarly as it is done in e.g. [GNLS11], and to give a
detailed description of the underlying theory and the actual implementation.

3.1.3 Generating Powerlaw Noise as proposed by Kasdin and Walter

The original PLN generation method proposed by Kasdin and Walter was introduced
in [KW92] and is further discussed in [Wal94] and [Kas95]. Its goal is to simulate an
array of equally spaced discrete FFD values, which have a PSD slope proportional to
fα. The principle operation of this method is to filter bandlimited white noise through
a specially crafted Finite Impulse Response (FIR) filter, so that the PSD gets the desired
shape. In detail, the algorithm consists of the following steps to simulate a PLN sample
of length N:

• An array of length N is initialized with bandlimited white noise. The original
description does not make any assumptions about the distribution of the input
noise, however their example implementation uses Gaussian white noise. The
amplitude of the resulting noise signal depends on Qd, the variance of the input

32

white noise. To generate PLN with Sy(f) = hα · fα and a simulated sampling
interval of τ0, the white noise variance can be selected as1

Qd =
hα

2(2π)ατα+10

(3.1)

• An FIR filter of length N is initialized using the following recurrence:

h0 = 1

hk = hk−1

(
k− 1− α

2

)
k

(3.2)

• To apply the FIR filter on the white input noise, the filter coefficients need to be
convoluted with the noise data. To save computational effort, the convolution
is replaced by a multiplication in the frequency domain using the Fast Fourier
transform (FFT) method.

Remark: The authors also provide an example implementation of this method in their
original publications [KW92, Kas95], which uses single-precision float variables as
the basic data type and is based onmathematical algorithms from [PTVF92]. While this
implementation works fine for small samples, it shows numerical insufficiencies when
it is used to generate larger samples, especially for RW noise. However, reimplementing
the same approach with double-precision variables and more modern libraries for the
numerical algorithms provides numerically stable results.

Numerical example To demonstrate the basic relationships between the PLN genera-
tion formulas given in [KW92] and the FSA formulas given in [IEE09] they will be used
in a short numerical example. The purpose of this exercise is to provide the reader with
an overview of how the individual formulas are related to each other.

• Consider an oscillator that is affected by FPM noise. This is the case α = 1, i.e.
Sy(f) increases linearly with the frequency. According to table 2.1, the expected
AVAR for this type of noise will be proportional to τ−2.

• Wewould like to generate noise that was sampled with a frequency of fs = 1 kHz.
This implies that the interval between two consecutive samples is τ0 = 1ms. The
Nyquist theorem tells us that the highest frequency in the resulting data can be at
most fh = fs/2 = 500Hz.

• Additionally, suppose we would like the PSD plot of the FFD (Sy(f)) to have a
value of −23 dB at f = 100Hz.

To generate noise with these attributes, we have to perform the following steps:

1The sign of the +1 in the exponent of τ0 has been inverted here, as it is assumed to be an error in the
original publication [KW92]. This modified version of the formula is then consistent with formulas from
[Wal94] and [Kas95].

33

• We know from eq. (2.6) that Sy(f) = hα · fα, which for our specific case means
that Sy(f) = h1 · f1 = h1 · f. The specified value of −23 dB for Sy(f) at f = 100Hz
implies that h1 ≈ 5.0119 · 10−5.

• Using the value of h1 together with eq. (3.1) lets us calculate the input variance
for the Gaussian white noise: Qd ≈ 3.9883.

We can now generate Gaussian white noise with the calculated variance, and apply
an FIR filter with coefficients as given by eq. (3.2). Analyzing the resulting PLN in
the frequency domain shows a plot as given fig. 3.1. We see that the estimated PSD
indeed has the desired shape, and that it passes through the selected point of −23 dB at
f = 100Hz.

Figure 3.1: PSD plot of our numerical example.

Of course, we might also want to analyze our generated noise sample in the time
domain. Table 2.1 gives us a formula for the AVAR of FPM noise: σ2y(τ) = D · h1 · τ−2.
We already know the value of h1, so what we need to do is to calculate the termD. The
value of D depends on the highest frequency present (fh = 500Hz), and the value of τ
for which we would like to calculate the AVAR. Suppose we would like to predict the
AVAR value at τ = 26ms. Using the formulas given by table 2.1 we can estimate that
σ2y(τ = 26ms) ≈ 26.75 ∗ 10−3. The actual AVAR results together with our estimation
are shown in fig. 3.2. As we can see, the estimation fits quite well with the actual result.

The method used in this short example to create PLNwith specified AVAR and PSD
characteristics will be the basis for the approach in the following sections.

34

Figure 3.2: AVAR plot of our numerical example.

3.1.4 Modifications of the Kasdin/Walter approach

The original PLN generation approach described in [KW92, Wal94, Kas95] provides a
method to simulate the sampling of PLN with a desired shape ∝ fα, but generates
N samples at once, separated by a fixed sampling interval of τ0. This implies two
challenges:

• Maximumsample size: Simulatingnoisedatawith a lengthofN samples requires
the application of a filter of length N to an input noise vector of length N. On the
author’s PC this becomes infeasible for N > 107. If we want to simulate noise in
the MHz region for more than just a few seconds, this becomes very inefficient.

• Effort depends on simulation time: Aswe have specified in our efficiency criteria,
wewould like anoise generationmethod that getsmore efficientwhen it is sampled
less often. Thus, the fixed sampling interval τ0 of the original approach needs to
be worked around.

The following sections will describe how the original Kasdin/Walter approach can be
modified to achieve these goals. The design of the implementation presented here took
inspiration from the description in [GNLS11], whereGaderer et al state that: “Therefore,
following this concept, the oscillator model has to be modified in a way that it is able
to simulate long periods of time efficiently and also to keep the fine granularity when
needed.” They describe that their modifications are based on using multiple sampling
frequencies, and we will follow a similar approach. The discussion that follows will be
split mainly in two parts:

• The first part will describe in a bottom-up fashion different low-level aspects of
PLN generation (section 3.1.5).

• The second part will describe in a top-down approach how these techniques were
used to implement a library for PLN generation (section 3.1.6).

3.1.5 Aspects of PLN generation

The following sections provide a discussion of various aspects of PLN generation.

35

Influence of a limited filter length One important aspect when applying the method
described in section 3.1.3 is the length of the applied filter. The length of the filter
directly implies a lower bound for the frequency range in which the PSD will have the
desired shape. This effect is described in [Kas95] as follows: “[. . .], the spectrum has
a 1/fα form down to a limiting frequency related to 1/N∆t, where N is the length of
the truncated coefficient series. Below this frequency the spectral density is flat - the
noise is stationary for all α.” Note that [Kas95] uses slightly different notation than this
thesis. In our notation, this means that the lower bound for the desired frequency shape
is fs/N (∆t in [Kas95] is what we call τ0 = 1/fs). This means that the frequency interval
for which we get the desired shape is given as

I(fs, N) =
[fs
N
,
fs

2

]
(3.3)

Implementationoptions The recursion for theFIRfilter coefficients is given in eq. (3.2).
A visualization of these recurrences is shown in fig. 3.3. For the values where α is even
(WPM, WFM and RW noise), these filter coefficients take on special values:

• WPM: Inserting α = 2 into eq. (3.2) leads to h0 = 1, h1 = −1 and h2 = 0. As
any hk is always some multiple of hk−1 for k > 1, this means that hk = 0 for all
k > 2. The resulting coefficients form the sequence [1,−1, 0, 0, 0, . . .]. These are
the coefficients of a discrete derivative filter [Smi97].

• WFM: Inserting α = 0 leads to h1 = 0, which implies hk = 0 for all k > 1. Thus,
the filter for WFM noise consists of a single 1 and is zero otherwise. The resulting
coefficients form the sequence [1, 0, 0, 0, . . .]. This is exactly what an identity filter
looks like. Of course, this is no big surprise, as the input noise is already WFM
noise and does not need to be changed.

• RW: For α = −2, it holds that hk = hk−1 for all k > 1, and thus hk = 1 for
all k > 0. A filter with these coefficients is better known as a running sum filter
[Smi97].

Figure 3.3: Discrete filter coefficients of the Kasdin/Walter method.

36

These observations are in perfect agreement to [Ril08], which states about the relation-
ship of PLNs: “Taking the first differences of a data set has the effect of making it less
divergent. In terms of its spectral density, the α value is increased by 2. For example,
flicker FM data (α = −1) is changed into flicker PM data (α = +1).”

These three filter types can be implemented efficiently as Infinite Impulse Response
(IIR) filters. Thus the same effect as applying the specified FIR filter for these noise
types can be achieved much cheaper by directly implementing the filter operations in
a recursive way (or no filter at all in the case of WFM). Using a recursive filter not
only provides a performance boost, it also gets rid of the lower bound limitation of the
resulting frequency interval for these noise types.

Combination of different noise types The PSD of a PLN has the shape of a line in
log-log scale. Thus it is easy to see, that in the presence of multiple types of PLNs,
there will be regions that are dominated by different kinds of noise. This was already
sketched in fig. 2.9. Suppose now there would be an oscillator that suffers from WPM
and RW noise, as it is shown in fig. 3.4. It can be seen that the high frequency part of
the PSD is completely dominated byWPM noise, and as a result also the corresponding
part of the ADEV plot (small values of τ) has a shape typical for WPM. The same holds
for the low frequency part of the PSD and the RW noise. Only in the center section
where both of them are in the same PSD range both have an influence on the result in
the ADEV plot.

An important consequence is that the shape of the PSD of a simulated noise sample
could as well be wrong in certain frequency regions if the noise gets dominated by
another one in the combined spectrum. Suppose for example that the shape of the
WPM noise would not continue its f2 slope for f < 103, but would become WFM noise
with a constant f0 shape. This would be the case if a shorter filter would have been used
to generate the noise, as explained earlier. The difference of the resulting combined PSD
would be negligible, and thus also the resulting ADEVwould be basically the same. But
we could have saved computational effort. We will make use of this observation later,
when we combine noise samples that are only correct in certain parts of the spectrum.

Cascading noise generators As already stated, an important part of our PLN gen-
eration approach is to simulate PLNs at different frequencies, and to combine them.
Figure 3.5 shows an example of the approach that we will apply. Suppose we want to
generate noise with a PSD as shown in the top picture (1). To generate it, we would
need a filter that is long enough that the PSD has the desired shape for the whole
interval, which would be computationally expensive. Thus we split the spectrum into
two sub-intervals. We generate the low frequency interval with a shorter filter, that
samples at a low frequency. This is shown in 2a . For the finally combined noise, the
low frequency part needs to be upscaled to the actually desired frequency. This will be
done with interpolation, and is discussed later. As sketched in 2b , the interpolation
will cause some unwanted noise in the PSD part of the high frequency interval. On
the other hand, the high frequency part of the PSD is also simulated with a shorter

37

(a) Sy(f) for WPM noise, RW noise, and a com-
bination of both.

(b) ADEV forWPMnoise, RW noise, and a com-
bination of both.

Figure 3.4: Combinations of different noise types.

filter. As the filter is actually too short for the whole interval, the lower part of the high
frequency spectrum will have the wrong shape (it will be WFM noise, as discussed in
section 3.1.5). This is shown in 3a , together with a cut line. The cut line symbolized
what we will do next: we get rid of the low frequency distortions with a high-pass filter,
to get a PSD as shown in 3b . When we finally combine the two PSD intervals (4),
the unwanted noise that was introduced by the interpolation will be dominated by the
correctly shaped noise of the higher frequency interval.

The same approach can be applied repeatedly, as sketched in fig. 3.5b. Using this
method, we arrive at a simulated noise sample with characteristics like we wanted, but
we have saved computational effort.

Upsampling noise When we simulate PLN at a lower frequency, but would like to
interpret it as if it would have been sampled at a higher frequency, it needs to be
upsampled. Suppose for example that we simulate noise that was sampled with a
frequency of fs,1 = 1 kHz and use it in the combined simulation of noise that was
sampled with fs,2 = 1MHz. We will need to interpolate the noise with the lower
sampling frequency to fit the higher frequency. Unfortunately, any kind of interpolation
will cause distortions in the frequency spectrum. Wewill thus have tomake compromise
between computational complexity and PSD distortions. A detailed discussion of this
topic is found in [Hor74]. In the implementation that is introduced later, we will use
either linear or cubic spline interpolation for the TD samples depending on the type of
PLN and its simulated sampling frequency.

A comparison of these two interpolation approaches is shown in fig. 3.6: noise that
was sampled with fs,1 = 1 kHz is interpolated to be sampled with fs,2 = 10 kHz. It
can be seen that both approaches influence the PSD, but the influence of cubic spline
interpolation is smaller. Additionally, the time domain plot of the simulated TD samples

38

(a) Basic approach how PSD pieces are com-
bined.

(b) Applying the approach in fig. 3.5a multiple
times to generate a continuous PSD. This in turn
also leads to the desired AVAR shape.

Figure 3.5: Sketch of how PLNs generated at different frequencies can be combined.

is rather smooth, as expected for cubic splines.

(a) TD of interpolated PLN. (b) PSD of the FFD of interpolated PLN.

Figure 3.6: The effects of linear and cubic spline interpolation in the time domain (TD
plot) and the frequency domain (Sy(f) plot).

High-pass filtering As stated before, we want to simulate separate intervals of the
PSD individually. Thus, we have to make sure that they do not influence each other
when they are combined. The challenge here is that the shape of the PSD flattens out
for the low frequencies when the used filter is too short. This is especially a problem for

39

noise types where the PSD increases with the frequency (e.g. WPM, FPM). To counter
this effect, we need to apply a high-pass filter for these types of noise. A simple yet
efficient filter for this purpose is e.g. the Blackman window[Smi97], which is used in the
implementation of our PLN generation library.

Skipping intervals Up to now we have already shown how the techniques of up-
sampling and high-pass filtering can be used to approximate a PSD that would need a
large filter with several small filters. Using these observations allows us to approximate
a PLN sample of any size. But the computational effort is still tied to the size of the
simulated sampling time. What we discuss next combining PLN of different length and
different simulated sampling frequency, where we only compute noise samples that are
needed for the actual simulation, and skip the rest.

Figure 3.7a shows an example of this approach: noise samples of different lengths
are generated at three different sample frequencies. Noise samples that are generated at
slower sample frequencies can cover longer intervals with the same filter length. This
is sketched in the figure by the larger rectangles of the lower frequencies.

An important assumptions for our later simulation is that we won’t need the infor-
mation of each sample. We will need to know the TD of a clock at irregular intervals,
and we would like our clock model to skip unneeded computations to increase the
simulation efficiency. The irregular nature of the clock requests is sketched in the plot
by the arrows at the times T1, T2, · · · , T5.

If two requests are very close to each other, like T1 and T2, we might need the
information of the complete frequency spectrum. However, if two requests are far from
each other, their respective values won’t be closely related, and it might be enough to
just simulate the noise contributions of the lower part of the frequency spectrum. For
a more specific example: Suppose we read the TD of a quartz oscillator two times with
an interval of 1µs. The difference between these two measurements will most likely
be dominated by high frequency noise like WPM. On the other hand, if we measure
the same oscillator with an interval of 100 s, high frequency noise probably won’t play
a role, but low frequency noise like RW will. The basic approach for skipping noise
intervals is sketched in fig. 3.7b.

3.1.6 LibPowerLawNoise (LibPLN)

The concepts that were developed in the previous sections can now be combined to
form an efficient PLN library, which we will call LibPLN. The goal is to have a portable
library that can efficiently simulate PLN. Themain target for this library is of course the
usage as part of an OMNeT++ simulation, but it is also possible to use it in any other
program.

In contrast to the previous low level descriptions, this section will introduce the
library design in a top-down approach.

40

(a) Combining noise vectors of different frequencies and lengths.

(b) Unneeded high frequency vectors are skipped to save computations.

Figure 3.7: Sketch of the basic approach to skip noise intervals.

3.1.6.1 Design decisions

To comply with our own requirements (section 3.1.1), the implementation follows the
following design decisions:

• It is implemented in C++, as the language is fast, flexible, and widely used.
OMNeT++ also uses C++ as the language to model component behavior, and the
usage in OMNeT++ is the primary use case for our library. This also favors our
language choice.

• The library should be useful on any platform supported by OMNeT++, and it
should be useful in applications other than OMNeT++. This implies that

– No OMNeT++ specific function should be used. In particular any time
values will be calculated as double, instead of the OMNeT++ specific type
simtime_t.

– Any used software library should be portable, and available on the typical
desktop platforms:

∗ Gaussian white noise: To generate Gaussian white noise in a platform
independent way, the Boost2 library is used.

∗ Fast Fourier transform: The implementation of the FFT algorithm is
based on the Fastest Fourier Transform in the West (FFTW)3 library.

2http://www.boost.org/
3http://www.fftw.org/

41

http://www.boost.org/
http://www.fftw.org/

∗ Spline interpolation: For the cubic spline interpolation an open source
implementation called Cubic Spline interpolation in C++ 4 is used.

3.1.6.2 Architecture

The main task of PLN generation has been divided into individual subtasks that are
implemented by different components. To reduce complexity, we follow the Name &
Conquer5 approach and introduce new notation to refer to these individual components.
These names are arbitrary, but hopefully chosen in a way so that they are easy to under-
stand and remember. The relationships between the individual components are shown
in fig. 3.8 as a Unified Modeling Language (UML) class diagram, and the following
paragraphs will discuss them in more detail.

TD Generator Our clock model consists of three parts, where the center part is re-
sponsible for noise generation. We measure the noise as the TD at time t. A component
that implements this relationship TD(t) is referred to as TD Generator (TDG). A TDG
can be asked at any time t1 for the TD at any other time t2, whether the requested time
is in the past or the future. Additionally, its answers to any former request will stay
valid forever.

TDOracle While a TDGenerator could be implemented, it would be computationally
very expensive. We will thus only use it as a theoretical concept, and introduce the
derived concept of a TD Oracle (TDO). A TDO behaves similar to a TDG, but its
requirements are relaxed:

• A TDO is allowed to forget. Thus, a request asking for the TD at any time in the
past may be rejected. This removes the burden of having either a deterministic
function for TD(t) or keeping every past request in memory.

• A TDO may estimate the TD instead of accurately calculating it if the requested
time is in the distant future. This enables us to skip unnecessary time intervals,
and thus become efficient for DES. What distant future means in this context will
be explained later.

• Requests to a TDO may become invalid when other requests are made before
the first requested time is reached. Example: at time t = 2 the TD at t = 10

is requested. However, later, at time t = 3 the TD at time t = 5 is requested.
This second request invalidates the first one. The purpose of this requirements
relaxation is that it allows our library to be inconsistent with previous answers.
This is needed in the case when a previous guess for a future TD would be
inconsistent with later necessary exact calculations. However, the consequences
are not severe: the original caller just has to request the TD at t = 10 again.

The purpose of a TDO is to be as exact as a TDG when it is necessary, and to be slightly
inaccurate but faster when it is possible.

4http://kluge.in-chemnitz.de/opensource/spline/
5The term Name & Conquer is adopted from [GKP94].

42

http://kluge.in-chemnitz.de/opensource/spline/

Figure 3.8: UML class diagram for LibPLN. Abstract classes are shown in light gray,
actual implementations in dark gray.

TD Estimator (TDE) Chain The returned TD value from a TDO contains the noise
contributions fromall five PLN types. Internally, each PLN type is handled by a separate
component. These components are called TDE Chains (TDECs).

As described in section 3.1.5, it is more efficient to split the generation of PLN into
several frequency intervals. The components that are responsible for the generation of
a single frequency interval are referred to as TD Estimators (TDEs). A TDEC contains
one or more TDEs, and forwards any TD requests to them and combines their results.

TD Estimator As already stated, we gain the efficiency of our implementation ap-
proach by skipping the calculation of unneeded time intervals. The TDEs are the
components which are responsible for generating the individual lines as shown in
fig. 3.7. The decision when a calculation is needed or may be skipped is handled in the
TDEs. Each TDE is responsible for the PLN generation in a specified frequency interval

43

of the PSD. Depending on the time for which a TD is requested, different cases are
distinguished:

• If the TD is requested for the distant future, the TDE decides that its own con-
tribution to the combined TD can be neglected. In this case, it will skip the
accurate calculation, and estimate the TD at the requested time. In the current
implementation, it as estimated as a single random number from the white-noise
generator.

• If the TD is requested for the present or the near future, the TDE will consider its
own contribution as valid, and compute it accurately.

• If the TD is requested for the past, it is rejected. This complies with our relaxed
requirements, and simplifies the implementation.

Up to now we have mentioned several times the terms near and distant future without
explicitly defining what we mean. These terms depend on the current state of a TDE,
and thus we need somemore notation related to this state to define them. A TDEworks
in a batch mode: it produces and stores arrays of TD samples. These sample arrays
are called TD Vectors (TDVs), and will be discussed later in detail. For now it is only
important that a sequence of TDVs forms a continuous TD function for the time interval
that is covered by this sequence. The sequence of currently knownTDVs changes during
the lifetime of a TDE: new samples will be calculated, while others that are already in
the past may be forgotten. The TDVs that are currently in the storage form the time
interval for which a TDE currently has detailed knowledge about the TD function. We
will call the first point in time that is contained in the current TDV sequence the begin
time, and refer to it is tbeg. Similarly, the last point in time in this sequence is called the
end time, or tend. The current time at which a request is made to a TDE is referred to
as tnow. Additionally, each TDE is configured with a time interval called Tval. This
interval provides us the threshold up to which a TDE would consider its contribution
to the combined TD as valid:

• The near future is now defined as the time interval tnow. . (tend + Tval).
• Anything beyond tend + Tval is called the distant future.

These terms and the different cases for requests are sketched in fig. 3.9. The choice for
the configured Tval is a compromise: shorter intervals will allow a TDE to skip more
calculations, longer intervals will cause the resulting PLN samples to be more correct.
To fulfill its purpose, a TDE relies on two internal components:

• The generation of continuous TDVs is handled by a TDV Generator (TDVG).
• The component that stores the currently knownTDVs and fromwhere TD requests

are actually answered is called the TDV Storage (TDVS). Thus, the current contents
of the TDVS are what determine the values for tbeg and tend.

When a request is made to a TDE, it will either decide to skip the calculation, or it will
use the TDVG to fill the contents of the TDVS until the requested time is contained in
the storage, i.e. until it holds that treq 6 tend. The decision handling and internal
interactions between those components are shown in fig. 3.10 as an UML sequence
diagram.

44

Figure 3.9: Basic case distinction in the request evaluation stage of a TDE. 1 is a request
for the distant future. 2 is for a time in the near future, which has not been calculated
yet. On the other hand, 3 is for an already calculated time in the near future. For the
decision logic, 2 and 3 are handled completely the same. 4 shows a request for the
past, which would be rejected.

Figure 3.10: UML sequence diagram showing the internal interactions of a TDE.

45

TD Vector A TDV is the basic entity that is used to handle PLN: it contains a se-
quence of sampled TD samples. Each TDV covers a certain time interval, and several
consecutive TDVs cover a continuous interval, i.e. the end time of one TDV equals the
beginning time of the next TDV. While TDVs are based on simulated TD samples with a
configured sampling frequency, they support the interpolation for any time inbetween
those samples. The current implementation supports two ways: linear and cubic spline
interpolation.

TDV Generator The TDVG are at the heart of our library: this is were the actual PLN
generation happens. Whenever a new TDV is requested, the TDVG will generate one.
How this is done depends on the type of noise and the chosen implementation option:

• Generic implementation: In its most generic form, a TDVG implements what is
described in the PLN generation approach by Kasdin and Walter[KW92]: White
noise is generated and filtered by a specially designed FIR filter. The generated
noise is additionally passed through a high-pass filter to avoid influence on lower
frequency intervals. The last stage is a conversion from FFD to TD values (using
eq. (2.5)).

• Recursive implementation: For generating PLN with an even value of α (WPM,
WFM and RW), the FIR filter is replaced by a recursive implementation.

Figure 3.11 shows a sketch of the generic TDV generation pipeline.

Figure 3.11: Generic TD vector generator pipeline: White noise generated with a stan-
dard variance of Qd, and shaped to be proportional to fα. After that, it is filtered to
drop contributions to the frequency spectrum below fHP. The relative FFD values are
then converted to absolute TD values.

TDV Storage The task of a TDVS is quite simple compared to that of the other compo-
nents: it stores TDVs and when a TD request is made, it finds the corresponding TDV
and forwards the request. The other tasks of the TDVS are just related to housekeeping:
it tries to find a compromise between memory usage and efficiency by deciding when
to free past TDVs and it performs basic plausibility checks on the TDVs it is handed,
e.g. if they indeed form a continuous time interval.

46

3.1.6.3 Evaluation

Remember the goals that we have set for our implementation in section 3.1.1: it should
be realistic, efficient, flexible and portable.

Portability, Flexibility Portability and flexibility are fulfilled by design: we have
avoided any OMNeT++- or platform-specific dependencies and only used libraries that
are available for the usual desktop platforms.

Efficiency To be efficient, we required that the computational effort should not de-
pend on the simulated time, but only on the density of requested TD values. This was
reached by the skipping behavior that is implemented in the TDEs. Figure 3.12 shows
an example of the resulting TD when our TDO is sampled at varying frequencies. At
larger sampling intervals, high frequency TDEs will decide to skip their calculations,
and save computational effort. This can be seen in fig. 3.13, which shows the simulation
speed at different sampling rates. It can be seen that for smaller sampling frequencies,
the computational effort decreases. The steps in this graph correspond to the thresh-
old where individual TDEs decide that their own contribution won’t be valid for the
combined result.

Figure 3.12: TD sampled with changing sampling rates.

Realism For the goal of realistic PLN generations, we wanted our library to generate
PLN as it would be generated by a real oscillator, both in the time and frequency
domain. As an example, a TDO has been implemented with a desired AVAR shape
as given in [GLN+07]. The example supposes that the oscillator ticks with 20MHz,
and the generated PLN is assumed to go up to this value. Thus the highest simulated

47

Figure 3.13: Simulation speed for different sampling rates, given in simulated seconds
per real seconds.

sampling frequency is set to 40MHz. An additional assumption was made about WPM
and FPM noise: from the AVAR plot it is not possible to deduce if both of these PLNs
are present, and what their ratio could be. It is assumed that they are both present
in this example, and that they contribute the same amount of noise to the AVAR. The
implemented TDO has been sampled at frequencies between 50MHz and 1Hz. For
every sampling frequency, 108 samples were taken6. Figure 3.14 and fig. 3.15 show the
results of this experiment. The PSD which is given in fig. 3.15 shows slight artifacts of
our approach: at 1MHz a step can be seen that is due to the necessary sharp high-pass
filter, and it is obvious that the TDEC for WFM noise does not start contributing until
a sampling frequency of 100Hz. However, the actual ADEV plots which are shown
in fig. 3.14 are basically indistinguishable from the specified plot (shown as a black
background plot) at any frequency below 20MHz, and for any given interval length.
Thus, the implementation approach presented in this section is also considered to be
realistic.

6On the author’s Personal computer (PC), this is the upper bound of what can be analyzed in a feasible
time.

48

Figure 3.14: Resulting ADEV for different sampling rates. The black line in the back-
ground was the configured ADEV. The oscillator was assumed to tick with 20MHz.

Figure 3.15: The PSD for the FFD corresponding to the measurements in fig. 3.14. It can
be seen that the PSD for high frequency WPM noise scales with the sampling rate. The
irregularities in the PSD plot stem from the imperfection of the used filters.

49

3.2 OMNeT++ simulation models

As already stated, this thesis deals with the simulation of PTP using the OMNeT++
network simulation framework. This chapter describes in more detail how this is done.

3.2.1 Project relationships

The task of simulating PTP networks is solved by a combination of different projects.
An overview over these projects and their relationships is given in fig. 3.16. Projects
shown in yellow are upstream projects, all other icons represent projects that were
established for this thesis. As described in section 3.1 the LibPLN library depends on
the FFTW, Boost and Spline libraries. Using LibPLN, several examples for ADEVs of
oscillators are implemented in another library called LibPLN_Examples. This example
library in turn is used by LibPTP, the main simulation library for PTP components. The
focus of this section will be the description of LibPTP. Additionally, LibPTP depends
on the Boost and INET libraries, and it makes use of a GNU General Public License
(GPL)-licensed Buttonized7 icon set. Several generic OMNeT++ components that were
developed for this thesis, but which are not PTP-specific are included in a library called
OMNeT_Utils. These utilities are distributed in a separate library in the hope that they
might be useful for other projects with no relationship to PTP. Finally, the components
in LibPTP are used to construct virtual PTP networks, in a project which is referred to
as PTP_Simulations. These simulations will be discussed in chapter 4.

Remark: All software projects which were developed for this thesis are available
under open-source licenses from the author’s Github account8.

Figure 3.16: Relationships of the projects involved for the PTP simulation. Arrows
symbolize a depends upon relationship.

7http://kde-look.org/content/show.php/?content=161553
8https://github.com/w-wallner/

50

http://kde-look.org/content/show.php/?content=161553
https://github.com/w-wallner/

3.2.2 PTP node architecture

At the core of the PTP simulation is the model for a PTP-capable network node. The
model used for this thesis is shown in fig. 3.17. The left side of the figure shows the
internal structure of a PTP_BasicNode. This model can be customized via a large set of
parameters, and can be used as either a Ordinary Clock, Boundary Clock or Transparent
Clock. Internally, it consists of several simulated software components, and a simulated
PTP-capableNetwork InterfaceCard (NIC). The internal structure of such aNIC is show
on the right side of fig. 3.17. We will first give the reader a coarse overview of these
components, and provide a detailed discussion of each component later in section 3.2.3.
The individual components shown in fig. 3.17 are as follows:

Figure 3.17: Architecture for a basic PTP-capable network node.

1 This is one of the most important components in our system: the simulated PTP
stack. Most parts of [IEE08] are implemented in this component. The PTP imple-

51

mentation is independent from the actual physical connections of the simulated
PTP ports.

2 A clock servo for correcting the measured time offsets.
3 In our case we are interested in the performance of PTP over Ethernet, which is

specified in Annex F of [IEE08]. This part of the standard is implemented in the
PTP/Ethernet-mapping component.

4 The network interface should not be exclusively used by the PTP stack, but should
be accessible by arbitrary applications. On the other hand, we need to make sure
that received PTP messages are forwarded to our software stack. In a real system,
a solution for this multiplex/demultiplex challenge would be implemented as
part of the Logical Link Control (LLC) layer of the OS or the system’s firmware.
Our LLC component simulates such a behavior.

5 The final component is a simulated PTP-capable NIC. The internal structure of
this NIC is shown on the right side of fig. 3.17.

6 The hardware on a PTP-capable NIC needs to be configured with certain PTP
relevant parameters, e.g. the currently measured path delay in a P2P network.
Such hardware support is simulated in a component called PTP_NIC_Ctrl.

7 The actual local hardware clock of our network nodes is simulated as part of the
NIC. This component is responsible for introducing realistic noise, to provide an
interface to correct such noise, and to schedule events.

8 The Encap component encapsulates generic PTP messages into Ethernet frames,
and also handles the decapsulation for received frames.

9 On a device with multiple ports, we need to decide to which ports a received
message has to be forwarded. This is done in the RelayUnit component.

10 To simulate delays inside the individual PTP nodes there are special delay com-
ponents on the paths between the relay unit and the output ports.

11 Each Ethernet port is connected with its own MAC. Besides the typical network
related functions provided by a MAC our simulated devices are supposed to be
PTP-aware and have additional responsibilities, e.g. timestamping PTP frames.

12 Real Ethernet physical layers (PHYs) tend to have different forwarding delays in
receive and transmit direction. The purpose of our simulated PHY components is
to introduce such delay asymmetry.

13 Several components inherit from parts of the INET library which have certain
assumptions about their neighborhood, e.g. that there has to be a component with
the name interfaceTable. The components marked with 13 are there to meet
these requirements.

3.2.3 Individual parts

This section provides a more detailed description of the individual parts in our model
of a PTP-capable network node.

52

3.2.3.1 Clock module

Our clock module needs to fulfill several tasks, and to reduce the overall complexity
these tasks are implemented in a hierarchy of different classes.

HwClock The most basic class is called HwClock. Its purpose is to implement our
three-part clock model, consisting of a perfect oscillator, a noise generator and a perfect
counter. Thus, this component will transform the perfect continuous real-time into the
noise afflicted discrete hardware time of our local clock.

A combination of only the first and the last part of our clock model can be im-
plemented in a simple way: OMNeT++ provides the Application Programming Inter-
face (API) call simTime(), which returns the current value of the simulated perfect
real-time. Using integer division, the remainder of the current simTime() and the tick
length of our simulated clock corresponds to the phase of the oscillator part. On the
other hand, the quotient corresponds to the number of completed oscillations, which
is the value that our simulated counter should currently have. The third component,
the noise generator, can be implemented by adding a TD value to the current real-time
before the division. For this purpose, our HwClock model is equipped with a compo-
nent called a TdGen9, as it generates TD values. The TdGen is an abstract concept, and
LibPTP provides several possible implementations:

• PerfectTdGen: A TdGen that returns always 0. The local time estimate of a
HwClock using this implementation will always be perfect.

• ConstantDriftTdGen: The TdGen provided by this implementation is a linear
function of real-time.

• SineTdGen: This implementation provides a TD that resembles a sine function,
depending on real-time.

• LibPLN_TdGen: While the first three implementations are mainly interesting
for developing and debugging purposes, this implementation actually provides
realistic TD values by using the LibPLN library which was described in section 3.1.
On the other side, this implementation is of course slower than the naive other
variants.

AdjustableClock Building atop HwClock is the AdjustableClock class, which
provides an API for other modules to change the current time value as well as to scale
the progress of measured time on the local clock. These adjustments make it possible
to establish a relationship between the otherwise arbitrary numerical values of several
clocks, and are thus the basis for any synchronization.

ScheduleClock The last remaining task for our clockmodel is that of event schedul-
ing, which is implemented in the ScheduleClock class. In simulations that are not as

9This should not be confused with the internal component of our PLN generation library called the TD
Generator (TDG). Both of these components generate TD values, thus the similar names, but they operate
on different levels of our simulation model.

53

time sensitive as ours, modules can schedule events using OMNeT++’s scheduleAt()
API. However, this would mean that scheduled events occur always at the correct real-
time, which is not what we need. We want that the scheduled local events suffer from
the noise of the local clock. For this purpose, the ScheduleClock class provides the
ScheduleRelativeEvent() and ScheduleAbsoluteEvent() API functions for
other modules to schedule their local events.

3.2.3.2 PHY

The PHY in our simulation is a very simple module: its only purpose is to provide a
configurable delay on both the receive and transmit paths. This can be used to simulate
the asymmetry characteristics that are often found in real network chips.

3.2.3.3 MAC

OurMACmodule is derived from theEtherMACmodulewhich is provided by the INET
library. The basic INET module already provides the generic network functionality of
a MAC, and our module only has to add PTP specific behavior on top of that. Our
PTP-aware MAC implements the following tasks:

• PTP frames are timestamped on ingress and egress.
• If needed, the residence time of a PTP frame is corrected on egress.
• In P2P networks, the ingress port’s peerMeanPathDelay is added to PTP frames on

egress.
• The configured asymmetry correction for the port is applied to the relevant frames

on ingress and egress.
• The MAC can also be configured to simulate a fault. The user may specify a

time when the fault should happen, and how long it should last. Until the MAC
recovers, it will drop any received frames. The node’s PTP stack will be notified
of both the fault and the recovery event to act accordingly.

To fulfill its tasks, the MAC relies on the help of a clock module for the timestamping
and a module of type PTP_NIC_Ctrl for PTP-related support.

3.2.3.4 Relay Unit

The task of a relay unit is to decide to which output ports the frame of an input
port should be forwarded. Our relay unit implementation is built on top of the
MACRelayUnit module of the INET library. Generic Ethernet frames are handled
completely by the INET implementation. The handling of Ethernet frames that contain
PTPmessages is done by our implementation. What happens to a certain framedepends
both on the message type as well as the PTP clock type of the current network node.
E.g. a Sync frame received by a TCwould have to be forwarded to all other ports, while
the same frame would be swallowed by a BC. On the other hand, a received P2P frame
may never be forwarded to another port and has to be swallowed in any case.

54

3.2.3.5 Delayer

On the receive and transmit paths between the relayunit and theMACmodules there are
Delayer modules. The components can be used to simulate path delays of messages
that pass through one of our network nodes (e.g. they influence the residence time in a
TC).

This delaymodel is a very simplified approach. The actual behavior of packet delays
in switches has not been researched as part of this thesis. Thus, this is the part of our
model that is probably the most unrealistic. Any user of our simulation model needs to
be aware of this restriction.

However, the influence of this simplification should be rather small: “What is impor-
tant is the precision of ingress and egress timestamps and how well the local clock rate
agrees with that of the grandmaster. If the residence time could be measured perfectly
the details of transit across the switch fabric are irrelevant.” [John Eidson, personal
communication, November 2015]

3.2.3.6 PTP_NIC_Ctrl

The PTP_NIC_Ctrl module supports the individual MACs with several PTP related
services:

• Configuration interface: the PTP stack needs to configure its logical PTP ports
with parameters (e.g. measured path delay, or asymmetry correction values).
However, the stack has no knowledge about the actual physical implementation of
its logical ports. The PTP_NIC_Ctrl acts as a generic interface that interacts with
the stack and forwards the configuration to the physical MAC modules.

• Request interface: In certain situations, the MACs need to request the creation
of new frames from the local PTP stack. An example would be a two-step TC
that receives a one-step Sync frame. It can’t correct the residence time of the
Syncmessage on-the-fly, thus it needs to add this time to the correction field of a
corresponding Follow_Up frame. But as the Sync frame is a one-step message,
the TC can’t expect a Follow_Up frame from the original sender. In this case,
it has to forward the Sync frame as a two-step message, and create its own
Follow_Up frame. In our simulation model, the egress MAC can in this case
request a Follow_Up message at the PTP_NIC_Ctrl module, which forwards
the request to the local PTP stack.

• Notify interface: Similar to requests, the MAC use the PTP_NIC_Ctrl module
to notify the PTP stack of certain events (e.g. faults).

• Message matching: The handling of certain messages by the MAC depends on
values of different messages. E.g. in a two-step TC the residence time correction
for a Sync frame needs to be written into the correction field of a matching
Follow_Up frame. TheMACs need a place to store and retrieve such time values,
and this is again supported by the PTP_NIC_Ctrl module.

55

3.2.3.7 Encap

The higher layers in our network nodes (everything above the NIC) deals only with PTP
messages, while all modules inside the NIC deal with Ethernet frames. The interface
provided by the NIC is the Encap module, which handles the translation between the
different message types. Our Encap module inherits from the EtherEncap module
that is provided by the INET library. It additionally provides PTP specific behavior,
which takes care of two things:

• It handles the routing information needed for PTP frames so that they are for-
warded to the correct port.

• To be visually more appealing, the PTP frames in our simulation have special
icons. The Encap module also assigns the Ethernet frames the corresponding
icons if they contain PTP frames.

Packages that are received from the higher layer are expected to have meta information
assigned, so that the Encap module knows what information has to be filled into the
Ethernet frame (e.g. the destination MAC address).

3.2.3.8 Logical Link Control

The purpose of the Logical Link Control (LLC) module is to provide access to the NIC
to different services. It has several connections for higher layers, but only a single
connection for a lower layer. Any package that is received on a higher layer input gate
will be forwarded to the single lower layer output gate. A package that is received on
the lower layer input gate will be forwarded to exactly one higher layer output gate. The
decision for the output gate is based on the EtherType of the received message in this
case.

3.2.3.9 PTP/Ethernet mapping

The PTP/EthernetMappingmodules handles two different tasks:

• The PTP standard specifies in its Annex F how PTP messages have to be en-
capsulated into Ethernet frames. It defines e.g. that the EtherType has to be
0x88F7, or that the destination MAC address for PDelay_Requmessages has to
be01:80:C2:00:00:0E. This information is added for PTPmessages in transmit
direction.

• The PTP stack is agnostic to the actual physical connection of its PTP ports, it
just sends and receives PTP messages on different gates. In our case, all of these
messages go through the same network stack, enter the same NIC, but leave the
node through different Ethernet ports. To support the routing decisions in the
relay unit, the PTP/EthernetMapping module adds meta information about the
designated output port to the PTP messages.

56

3.2.3.10 PTP Software stack

Most parts of [IEE08] are implemented inside the PTP_Stack module. The standard
describes different tasks that have to be implemented, and some of them are specific to
a certain PTP port while others apply to the whole network node. The structure of the
PTP_Stackmodule is designed to match these specifications. The main stack class has
an array of cPort class instances available, that cover the port specific handling of PTP.
The handling of individual PTP messages is implemented in service classes. E.g. the
sending and receiving of Syncmessages, as well as the handling of associated timeouts
is implemented in a class called SyncService. As this would be an example of a port
specific service, each instance of cPort has an instance of SyncService.

Main PTP stack class Only a minor part of PTP is implemented in the main stack
class. Most tasks are delegated to the ports, and from there further to the individual
service classes. The remaining tasks for the main PTP stack class are as follows:

• Datasets: The PTP standard specifies several data sets that are not port specific:
defaultDS, currentDS, parentDS and timePropertiesDS. These data sets are handled
by the main stack class.

• Gateway: Access to common resources is governed by the main stack class. E.g.
there is only one clock servo, and which port may currently steer it has to be
decided by the main PTP stack class depending on all port states.

• State decision support: The PTP standard specifies that in certain intervals every
port has to decide about its future state. For these state decisions, the individual
ports need knowledge from all other ports. The main PTP stack class collects the
needed information, and provides it to all ports.

• Message handling: Messages are received by the main stack class, and have to be
forwarded to the port corresponding to the receiver gate. On the other hand, ports
don’t have direct access to the gates of the stack module. Thus, if a port wants to
send a frame, it requests the transmission of a frame by the main stack class.

Ports As with the main PTP class, also the ports implement only a minor part of the
protocol. Most tasks are delegated to the service classes. The two relevant areas that
ports deal with are as follows:

• Port data set: According to the specification, each logical PTP port has to have an
associated port data set (portDS) with port specific information and configuration.

• State handling: The PTP standard specifies a state machine for each individual
port. Most of what is implemented in the port class deals with the manage-
ment of this state machine. Depending on the current state of a port, different
services are turned on or off. E.g. a port in MASTER state will have an active
AnnounceService to send Announce messages, while a port in SLAVE state
will have the same service disabled.

57

Services There are mainly two different classes of services: port-specific or generic.
All services except the state decision service are port-specific.

State Decision Service The state decision service is started when a node starts
up, and remains active independent of individual node states. Its task is to trigger
reoccurring state decisions for all ports. When the state decision service is activated, it
collects information from all ports about their best known foreign master node (called
Erbest in PTP terms). From this information it calculates information about the best
known foreign master, referred to as Ebest. Each port then decides based on the
common Ebest, its own Erbest and its current state what its next state should be, and
changes the state accordingly. This service is the implementation of the BMC algorithm.

Announce Service When active, this service broadcasts information about the best
known master on its associated port. The frequency of these Announce messages is
determined by the configured announce interval. If the port is in a state where it needs
a master (SLAVE and UNCALIBRATED), a timeout for missing Announce messages is
monitored. In case the master would fail, this would then trigger an error condition
and a reevaluation of the current state.

Sync Service A port in MASTER state will periodically broadcast its current time
to its neighboring PTP nodes. This is handled by the port’s SyncService. On nodes
in the SLAVE or UNCALIBRATED state the sync service is responsible for the handling
of received Sync and Follow_Up frames. This means it has to calculate the current
estimate for the offsetFromMaster value, and to steer the node’s clock servo accordingly.
Depending on the configuration, the sync service might apply a filter method on the
offsetFromMaster value before handing it to the clock servo. The clock servo has to decide
how the node should react on the current offset estimate (e.g. scale the clock, or carry
out a time jump), and the sync service is then responsible for carrying out the clock
servo’s decision.

Delay and PDelay Service The path delay associated with a given port is handled
by its DelayService or PDelayService, depending on which type of delay mechanisms is
supported by this node. In case of an E2E node, the measured meanPathDelay value
is stored in the nodes common currentDS data set. If the node simulates P2P delay
measurement, then themeasured peerMeanPathDelay value is stored in the port’s portDS
data set. Similar to the sync service, also the delay measurement services can apply a
filter on the estimated measurement values.

3.2.3.11 Filters

The PTP stack of a node estimates several parameters of its surrounding network:
offsetFromMaster, peerMeanPathDelay (P2P) and meanPathDelay (E2E). Instead of using
these estimates directly, they could be filtered, e.g. to improve the robustness of the

58

clock servo decisions. LibPTP provides the basic infrastructure to supply customized
filters for these measurements, as well as two very basic filter implementations:

• Identity filter: All measurements are used directly.
• Running average: The average of the last N values is used. This filter can op-

tionally discard the minimum and maximum of the last N measurements and
calculate the average using the remaining N − 2 values. The simple discarding
of these values improves the filter robustness quite well in the case of transient
spikes in the measurement.

Figure 3.18 shows an example of an offsetFromMaster measurement where a simple
running average filterwithN = 5 and discarding ofminimumandmaximum is applied.

Figure 3.18: Estimation for the offsetFromMaster measurement: raw (red) and filtered
(blue).

3.2.3.12 Clock servo

The PTP standard states that the estimated offset should be compensated, but it does
not state how this should be done. While there would be many possible choices for the
design of a clock servo, it seems rather common to use a PI-based servo type. This is
based on the following observations:

• [Eid06] states that “[. . .] most reported implementations use a simple propor-
tional-integral controller.”

• The two open source implementations LinuxPTP and PTPd use a PI-based clock
servo.

• The thesis author has personally asked manufacturers on fairs/conferences about
their clock servo implementations, and the most common answer was “PI-based”.

LibPTP provides a generic framework to implement custom clock servos, and provides
a simple implementation based on the clock servo design of the LinuxPTP project. The
clock servo performs a series of initialization steps, and finally behaves as a PI controller.
These steps are as follows:

59

• SYNTONIZE: In the first step, the clock servo approximates the relative frequency
of the local clock compared to the master clock over a configured number of
sampling intervals. This approximation is later used as the starting value for the
integral part of the PI clock servo.

• JUMP: Simply scaling the clock might take a long time to correct a large offset.
Thus, the second step performs a time jump: it directly sets the local clock to the
estimated time of the master clock.

• SCALE: Finally, the remaining clock offset is handled by a PI controller. In case the
offsetFromMaster reaches a certain preconfigured threshold, the clock servo restarts
the state machine to begin again with syntonizing.

3.2.3.13 Time Difference Observer

To analyze the results of a PTP simulation, one often wants to calculate the difference
between the local times of two nodes. Additionally, it is nice to have this information
available during the simulation run, especially when using the GUI. For this purpose,
LibPTP contains a special simulation component called the TimeDiffObserver. This
module gets configuredwith the relative paths to two clockmodules, and a time interval.
During the simulation it queries the two clocks in the specified interval, shows the
difference to the user in the GUI and traces it for later analysis. An example of such a
module in action is shown in fig. 4.4.

3.2.4 Configuration options

The individual components of our PTP-aware network can be configured in various
ways. The most interesting examples are listed here:

• Clock types: a PTP node may assume different roles:

– OC/BC: If the parameter PTP_Clock_Type is set to ORDINARY, the PTP
stack will behave as an OC or a BC, depending on the configured number of
ports. The boolean parameter slaveOnly further specifies if such a node
may become master on any of its ports or not.

– Standard conform TC: In case PTP_Clock_Type is set to TRANSPARENT
and slaveOnly is true, the PTP node will behave similar to a TC as de-
scribed in the PTP standard: it will only actively participate in the P2P delay
mechanisms, and otherwise try to be as transparent as possible.

– Active TC: LibPTP provides support to simulate a type of clock that is not
specified in the PTP standard: an active TC. This is a TC that may actively
take part in the BMC algorithm, and in case it is the best available clock also
become MASTER on its ports. For this clock type, PTP_Clock_Type needs
to be set to TRANSPARENT and slaveOnly to false. Remark: This is one of
the advantages of a simulation-based approach: it is easy to customize the
models and to try out non-standardized behavior.

60

• PTP options: To simulate a wide variety of PTP devices, LibPTP provides pa-
rameters to set many PTP options, e.g. clock attributes, delay mechanism, BMC
algorithm, two-step flag, and many more.

• PTP profiles: The PTP standard got extended by several domain specific profiles.
Basic support for PTP profiles is also implemented in LibPTP. In case a user
configures a node to use a certain profile, LibPTP ensures that all parameters
match the given ranges of the specified profile. In case the profile is specified
as CUSTOM, any combination of parameter values is allowed. Some PTP profiles
define rather complex additions to the PTP standard. Implementing these feature
would require more effort and is not covered by the basic profile support LibPTP
provides.

3.2.5 Simulation GUI

Once all components are implemented and the required simulations specified, they are
usually carried out on the command line in a batch fashion and analyzed once they
are done. However, during development, debugging and for instructional purposes it
is very valuable to have an intuitive GUI to see what is going on inside the individual
components. OMNeT++ provides several mechanisms to provide a convenient GUI to
the user, and LibPTP tries to make use of it where possible.

Node icons To spare the user from configuring the individual parameters of all nodes
in a simulation, LibPTP provides the most common network nodes as preconfigured
modules with special icons. The meaning of these icons is explained in fig. 3.19.

Figure 3.19: Explanation of the symbols used for the example nodes. The example
shown in the center would be a one-step BC, that supports P2P delay measurement and
is master capable (with average clock attributes).

Figure 3.20 shows an example network using these node symbols. On the left side is
a master-capable OC with a good clock, which will become the grand master of the

61

network. It is connected to a BC, which is in turn connected to two daisy chains ending
with OCs. The top chain consists of two slave-only TCs, while the bottom chain consists
of a slave-only TCs and another BC. All nodes are one-step clocks, except the second
TC in the top chain.

Figure 3.20: Example PTP network to show the individual node symbols.

Message icons As with the node types, it also helps to have different icons for the
individual PTP message types. The icons used by LibPTP are shown in fig. 3.21.

Figure 3.21: PTP message icons used by LibPTP.

OtherGUI tools In addition to the alreadymentionedGUI tools, LibPTP also supports:
• WATCH() macros: OMNeT++ provides macros to show the values of module-

internal variables in the GUI. These macros are available for member variables,
pointers and also for standard C++ containers like std::vector. Using these
macros it is possible to e.g. watch the current state of the PI controller during
runtime.

• Tool tips: Another useful GUI feature provided by OMNeT++ are tool tips that
are shown when the user hovers with the mouse cursor over a module. LibPTP
uses these tool tips to show the port states of a PTP node during runtime. An
example of this feature is shown in fig. 4.2b.

62

CHAPTER 4
Evaluation

This chapter describes several experiments that were carried out with LibPLN and
LibPTP. The parameter space for these simulations is huge, and it is clearly not possible
to cover all possible configurations. The experiments that are shown in this chapter
were chosen as they are representative to show what kind of insights can be gained
from the usage of LibPLN and LibPTP.

Section 4.1 will give an overview of the basic assumptions that were made for these
simulations, while section 4.2 deals with the actual experiments. Finally, section 4.3 will
discuss the results.

4.1 Assumptions

For each experiment, a huge amount of parameters that could influence the outcome of
the experiment has to be set. If not otherwise noted in the experiment descriptions, the
following assumptions will be used:

Clock frequency The oscillators in our simulated devices tick with a frequency of
20MHz. Higher frequencies would be interesting, but increase the computational
complexity for the noise generated by LibPLN. The chosen value is a compromise based
on the computational power of the author’s laptop.

ADEV for oscillators One of the most important parameters for the simulation of
clock synchronization is the actual noise of the oscillators. The example library of
LibPTP currently supports two oscillator models:

• In [GLN+07] a detailed formula for the ADEV of an oscillator is given. Thus, it
is an interesting candidate for an implementation in LibPLN. Unfortunately, the
publication does not describe in detail what kind of oscillator was measured. On

63

the other hand, [Eid06] contains an ADEV diagram with an oscillator referred to
as CTS CB3LV, which is described as “an inexpensive oscillator of the type found
on PCmotherboards”. When comparing the curves of these two oscillators, it can
be seen that they are in a similar range. Based on these observations it is assumed
that also the ADEV described in [GLN+07] can be used to represent an oscillator
as it would be expected in typical COTS devices. This example is referred to as
AvgOsc in LibPLN, and will be the default PLN noise model for our simulations.

• Another implemented example in LibPLN is that of an oscillator from a wrist
watch. It is based on the published ADEV curve given in [Lom08]. Compared
to the other oscillator, it suffers from a higher noise level. Additionally, it does
not suffer from WPM or FPM noise, and it has its ADEV minimum at intervals
several decades longer than the AvgOsc example. LibPLN refers to this oscillator
as WatchQuartz.

A comparison of the ADEVs of these two oscillator examples is given in fig. 4.1. The
figure additionally shows the ADEV of a precision oscillator1 as a reference.

Figure 4.1: Side-by-side comparison of the ADEVs of the AvgOsc and WatchQuartz
example oscillators. Additionally, theADEVof a precision oscillator is shown to provide
the reader a reference.

Clock servo control As stated in section 3.2.3.12, the implemented clock servo is based
on aPI controller, with additional logic to carry out time jumps. The actual configuration
for the proportional and integral parts will be based on a parameter study, which will
be discussed later in the respective experiment description.

1Pascall Oven Controlled Crystal Oscillator (OCXO) by Rohde & Schwarz, described in [Ram12]

64

Maximum clock scale factor If a clock device supports the scaling of its timemeasure-
ment, this option will have device specific limits. According to the data sheet of Intel’s
i210 network chip [Int12], its clock can be scaled by up to 32767999 ppb. This limit will
be used in our simulations.

Network switch delays The switching delay of the individual nodes is simulated
via special delayer components inside the NIC. As stated in section 3.2.3.5, a study
of the actual switching behavior of real devices was not part of this thesis, and the
implemented delay model is very simple. The experiments in this chapter are based
on the assumption that frames experience a uniformly distributed delay in the range
1µs. . 10µs between the MAC and the relay unit in both directions.

Simtime-scale The timely granularity for simulations in OMNeT++ can configured
via the simtime-scale parameter. This configuration is a compromise between simulation
precision and themaximum possible simulation time. The default setting in OMNeT++
is that thesimtime_tdata typehas a resolution of picoseconds,which implies anupper
bound for the simulation time of ≈ 100days. This configuration seems reasonable for
our experiments, and was thus used in all following simulations.

PHY delay The delay of PHYs depends on various parameters. The default behavior
in LibPTP, which is also used in these experiments, is modeled after the delays given in
the data sheet of an Ethernet PHY from Marvell [Mar06]. When used with a Reduced
GigabitMedia-Independent Interface (RGMII) interface for Gigabit Ethernet, the receive
and transmit delays are specified to be in the ranges 176. . 208ns and 76. . 84ns, with
steps of 8ns. The actual distribution of these delays is not mentioned in the data sheet.
For the sake of simplicity, these values are assumed to be uniformly distributed in our
experiments.

Initial conditions When the simulation of a PTP network starts, it is assumed that
individual nodes are powered up, and that they don’t have any preconfigured knowl-
edge about their environment. How long a node needs for its own initialization can be
configured, and for our simulations this value will be set to be uniformly distributed
between 10. . 100ms. The initial local time of the individual nodes could also be set to
any value. To keep the graphs simple, we apply the following convention: the eventual
grandmaster clock of a network will always start with a local time of 0s, and all other
clocks will start up with a local time in the range of 0. . 5ms.

Environmental conditions As already stated, our simulation does not take environ-
mental influences like temperature or pressure into account. Thus, our simulationsmay
be representative for laboratory conditions where such influences are stable, but not
for environments with harsh conditions like e.g. industrial automation. Users of our
simulation environment must be aware of these current limitations.

65

PTP intervals Various PTP services are handled periodically, and the interval length
is configured as the exponent of 2 s, e.g. setting the value of logAnnounceInterval to 2
wouldmean that Announcemessages are sent every 4 s. If not otherwisementioned, lo-
gAnnounceInterval, logSyncInterval, logMinDelayReqInterval and logMinPdelayReqInterval
will all be set to 0 (i.e. 20 = 1 s).

Network infrastructure If not otherwise mentioned, we assume that our nodes are
connected with Gigabit Ethernet hardware, and that CAT5 Ethernet cables with 2m
length are used. The OMNeT++ model for the Ethernet cables are based on the ones
provided by the INET library. The most important parameter is that the delay of such
a cable is modeled with a value of 5ns/m.

Warm up periods Each simulation will begin with a transient period where the BMC
algorithm establishes a synchronization hierarchy. For experiments where this is not
the main focus, but rather the performance of the clock synchronization in the stable
configuration, the initial startup period may be skipped. OMNeT++ provides a special
configuration parameter called warmup-period specifically for this purpose. Thus,
if graphs of the experiment results do not begin at time 0 s, this initial period has
deliberately been left out.

4.2 Experiments

The following experiments discuss different aspects of PTP, its implementation in
LibPTP, and the influence of various parameters on a PTP network. Section 4.2.1 deals
with the BMC algorithm, section 4.2.2 describes experiments within a simple PTP net-
work of two nodes and finally section 4.2.3 discusses experiments in networks with a
daisy-chain topology.

4.2.1 BMC Algorithm Evaluation

Before we carry out actual synchronization experiments, we would like to test our im-
plementation of the BMC algorithm. The following section will describe a test network
given in [Eid06], and discuss how LibPTP can be used to simulate the execution of the
BMC algorithm and how to gain insight in the individual steps of the algorithm.

4.2.1.1 Experiment 1: Test case 5 of [Eid06]

The book [Eid06] contains several theoretical test cases for the BMC algorithm. The
example given in test case 5 is the most interesting, as it is the most complex one. A
sketch of this network is shown in fig. 4.2a. The given network consists of OCs and BCs,
where the top left node is the best clock in the network, and some nodes are wired in
a ring. An execution of the BMC algorithm is expected to solve two challenges in this
network:

66

• OC 1 should be elected as the grandmaster of the network, as it is the best available
clock.

• The ring should be broken up. BC 8 is expected to move one of its ports which
are adjacent to BC 5 and BC 7 to the PASSIVE state. Which one of these ports is
selected to be PASSIVE does not really matter, and if all other attributes of the two
paths are equal the decision might depend on the clock identities. In the shown
example the port which is adjacent to BC 7 is chosen to be PASSIVE.

Figure 4.2b shows an actual execution of this network with LibPTP, and the screenshot
contains also a tool tip which shows the port states of BC 8. As expected, one of its
ports is in the SLAVE state, one is in PASSIVE state, and the two port which are adjacent
to OC 6 and OC 9 are in MASTER state. For the execution of this simulation, the clock
identities of the individual BCs have been chosen in a way so that indeed the port
adjacent to BC 7 is the one that moves to the PASSIVE state to break up the ring.

In complicatednetworks, itmight be interesting to trace the individual statedecisions
of nodes and how they reach these decisions. LibPTP provides the user with a variety of
trace signals like the currently knownErbestdata of each port or the individual port state
decisions. Additionally, the implementation of the BMC algorithm can be configured to
different levels of verbosity for individual nodes. In fig. 4.3 this information is shown for
port 2 of BC 8. On startup, it is in the INITIALIZING state, and moves to LISTENING
after that. At this point in time, all other nodes are also in LISTENING, and thus they
don’t broadcast Announce messages. Because of this, port 2 thinks it is alone in the
network, and wants to become grandmaster (state decision M2). Next, the BC 8 learns
about other masters, but port 2 still decides to be master (state decision M3). At time
0.5 s, port 2 learns about a path to the eventual grandmaster of the network, and becomes
a slave. When BC 8 finally receives information about a better path to the grandmaster,
port 2 decides to be passive (after time 0.6 s). Thus, in this experiment the observed
behavior matches the expectations.

4.2.2 Simple network with 2 nodes

A very basic test case for a PTP network is shown in fig. 4.4. The network consists only
of two OCs, where only one of them is master-capable. Additionally, the simulation
contains a TimeDiffObserver node to measure the time difference between these nodes.
The image shows the network at a point in time where the BMC algorithm has already
established a master-slave hierarchy and the left node is sending a Syncmessage to the
right node.

4.2.2.1 Experiment 2: Parameter study of clock servo parameters

Before we can start our synchronization experiments, we have to select a configuration
for our PI clock servo. As the servo design is based on that from the LinuxPTP project,
it would be natural to follow their parameter selection approach. The LinuxPTP project
uses a heuristic to calculate the servo parameters based on the sync interval.

67

(a) Test case 5 for the BMC algorithm as it
is given in [Eid06].

(b) Simulation of the test case 5 network. The tool tip
in the screenshot shows the port states of BC 8. Port 2
is the port which is adjacent to BC 7.

Figure 4.2: Theoreticalmodel of a test case for theBMCalgorithmandpractical execution
with our implementation.

(a) State decisions of port 2 of BC 8.

(b) Port states of port 2 of BC 8.

Figure 4.3: Plots of the state decisions and corresponding port states of port 2 of BC 8.

68

Figure 4.4: Simple PTP network with two OCs, where only one node is master-capable.
A TimeDiffObserver shows their current time difference. The image also shows a
Syncmessage that is in transit from the master to the slave.

Unfortunately, theLinuxPTPheuristicwith its default configuration leads tounstable
results when used in our simulation with long sync intervals (logSyncInterval > 0).

Fortunately, this thesis deals with a simulation framework for PTP which is capable
of carrying out parameter studies. We can thus simulate our networkwith various clock
servo configurations, and empirically search for a suitable one in the parameter space.
’Suitable’ here means minimizing the mean offset without introducing instabilities. To
find our heuristic for the PI clock servo, we will carry out the following steps:

1. Select a sync interval.
2. Set the integral parameter to 0, and carry out a parameter study for the propor-

tional parameter.
3. Select the most suitable proportional parameter from the previous steps.
4. Carry out another parameter study for the integral parameter and again select the

most suitable parameter.
5. Repeat steps 1− 4 for all sync intervals of interest.
6. Estimate a heuristic for both parameters.

Proportional parameter Figure 4.5a shows the result of the parameter study for the pro-
portional parameter in blue. The proportional parameter increases for decreasing
sync intervals, until it reaches a maximum of 10 for a logSyncInterval value of −6.

Integral parameter The measurement results for the integral parameter are shown in
fig. 4.5b in blue. For long sync intervals, the most suitable values are around
8. When the sync intervals get shorter, the integral parameter decreases until it
reaches a minimum of 0.005.

Bothparameters scale exponentiallywith the logSyncIntervalparameter in certain ranges,
and converge to upper and lower bounds otherwise. Thus our heuristic will follow the
same approach. The actual configuration values for our heuristic have been manually
chosen, so that the heuristic stays slightly below the measured values. Figure 4.5a
and fig. 4.5b show the resulting parameter heuristic (in orange) in comparison to the
measured values.

69

(a) Proportional parameter (b) Integral parameter

Figure 4.5: Measurements and heuristic for the proportional and integral parameters.

4.2.2.2 Experiment 3: Parameter study of the synchronization interval

One of the most important configuration options for a PTP network is the configured
synchronization interval. It thus seems natural to carry out a parameter study for
the logSyncInterval parameter. In this experiment, we will synchronize our slave with
different sync intervals while it is driven by either a WatchQuartz or an AvgOsc and
compare the results. The configured range for the logSyncInterval parameter will be in
the range of −10. . 8, which corresponds to ≈ 1ms. . 256 s.

Figure 4.6 shows the results of this simulation. To improve the confidence in the
results, each configuration has been simulated multiple times with different random
number seeds. The ADEV plot in fig. 4.6a is based on data from only the first repetition,
while the data shown in the mean and jitter plots (fig. 4.6b and fig. 4.6c) is the max-
imum over all repetitions respectively. Interpreting the results leads to the following
conclusions:

• Increasing the synchronization frequency decreases the low frequency noise, until
theADEV converges to an oscillator specific curve. The high frequency parts of the
ADEV plots basically stay unmodified. Figure 4.6a only shows the ADEV curves
for the fastest and slowest sync interval. The intermediate steps have been left out
to keep the figure simple. What is not shown in the figure is that the ADEV curves
for logSyncInterval 6 −6 already look like the ones for logSyncInterval = −10which
are shown in the graph as dashed lines.

• Figure 4.6b shows the maximum of the observed mean offset over several simu-
lation runs. As already expected after analyzing the ADEV plot, logSyncInterval
values below −6 lead all to similar results. Both oscillators converge to the same
mean value, which is in the range of the clock granularity (10−7 corresponds to
2 clock ticks for a 20MHz clock). Above this value it can be seen that decreasing
the sync interval also decreases the mean offset from the master. What is note-
worthy in this figure is that the WatchQuartz actually performs slightly better for
the mean offset than the AvgOsc.

70

• The measured jitter2 values of both oscillators are shown in fig. 4.6c. Increasing
the synchronization frequency decreases the jitter for both oscillators, until they
reach an oscillator specific minimum. The AvgOsc performs much better than the
WatchQuartz in this measurement, which is as expected, as it suffers from a lower
noise level (as shown in the ADEV plot).

As a final conclusion from this experiment, we can say that the clock characteristics
improve for shorter synchronization intervals up to a certain value. Further decreasing
the synchronization interval will only use more network bandwidth and computation
resources, without providing the corresponding synchronization benefits.

Remark: A similar parameter study is given in [GNLS11]. While our results agree
qualitatively, the actual numerical results don’t match. The reasons for this discrep-
ancy could be manifold, e.g. different clock granularity, filter configuration, clock servo
configuration, etc. But as their simulation description is rather coarse, and their imple-
mentation is not available to the best knowledge of the author, comparing the results
remains difficult.

4.2.2.3 Experiment 4: Path asymmetry

The offset estimation specified by PTP is based on the assumption that the path delay
between two nodes is identical in both directions. As this assumption does not always
hold in real networks, section 11.6 of [IEE08] specifies path asymmetry correction. The fol-
lowing experiment will show the effect of path asymmetry, path asymmetry correction,
and how these are handled by LibPTP. For this purpose, we simulate the network three
times:

1. Without any delay in both PHYs (and thus with a completely symmetric path).
2. With asymmetric delays3 in each PHY, but without asymmetry correction.
3. With asymmetric delays as in the previous case, but this time with asymmetry

correction in the slave.

The master will be configured with a receive delay of 400ns and a transmit delay
of 1400ns, which means the PHY of the master contributes 1000ns to the overall
asymmetry. The corresponding delays of the slave’s PHY will be configured as 1000ns
and 600ns, resulting in an asymmetry of 400ns. Adding these numbers, we get a total
asymmetry of 1400ns, and expect the offset estimate of the slave towrong by 700ns (half
of the path asymmetry). In the final simulation run, the slave’s asymmetry correction
value will be set to 700ns.

Figure 4.7a shows the offsetFromMaster measurements of the slave from these
three simulation runs. As the slave does not realize the path asymmetry, the estimated
offset from its perspective is equally low in all three configurations. The fact that the
actual offset is different can be seen in fig. 4.7b. The wrong path delay measurement

2Jitter in this context means absolute difference between maximum and minimum observed offset.
3The delay values in this experiment are purely for demonstration purposes, and are not based on any

real values from data sheets or similar sources.

71

(a) Comparison of ADEVs of both oscillators for different sync intervals. Bold lines correspond
to a slow sync interval (logSyncInterval = 8), dashed lines to a fast sync interval (logSyncInterval
= -10).

(b) Mean value of the measured offset from the master clock.

(c) Jitter of the measured offset from the master clock.

Figure 4.6: Different characteristics of both oscillators for various sync intervals.

72

in the second simulation run leads to a significant offset from the master. Setting the
slave’s asymmetry correction parameter to a suitable value in the third simulation run
leads to similar results as in the first run without any asymmetry.

(a) Measurements of the offsetFromMaster value.

(b) Measured clock differences between the master and the slave node.

Figure 4.7: Measurements for different asymmetry configurations.

4.2.3 Daisy chain

This section deals with PTP networks that form a daisy chain. The daisy chain topology
is interesting for several reasons:

• In certain domains, networks are often realized using this topology, e.g. in indus-
trial automation.

73

• Simulations of daisy chains allowus also to draw conclusions about related topolo-
gies like stars.

4.2.3.1 Experiment 5: Startup time of BCs

An interesting aspect of PTPnetworks is the timeneeded to reacha stable clockhierarchy.
If the default BMC algorithm is used in a daisy chain network with BCs, this timemight
become quite long, as the following experiment shows. If the state decision of a port
is M3, section 9.2.6.10 of [IEE08] states that the qualificationTimeoutInterval shall be the
announceInterval multiplied by the currentDS.stepsRemoved value plus 1. Thus, for each
node in a daisy chain the qualificationTimeoutInterval gets longer. Let us symbolize the
qualificationTimeoutInterval of a node n as Tqual,n and the announceInterval as Tann. It
holds then that the total time Ttot for these timeouts for N nodes is given as Ttot =∑N
n=1 Tqual,n =

∑N
n=1((n+1)∗Tann) =

∑N+1
n=2 (n∗Tann) = (

(N+1)(N+2)
2 −1)∗Tann =

O(N2).
Figure 4.8 shows the port states of a daisy chain consisting of 50 BCs, where the

LogAnnounceInterval is set to −2. It can be clearly seen that the time the nodes
spend in the the PRE_MASTER state increases with every hop. For 50 nodes, the above
formula leads to Ttot = 331.25 s. This value is only a lower bound, but it is a good
estimate for how long a given network needs to converge to the final clock hierarchy.
This estimate matches the actual result shown in fig. 4.8 quite well.

Figure 4.8: Port states of BCs in a daisy chain for the ports which face away from the
eventual grandmaster. A legend for this figure was purposely left out to keep the graph
simple.

Thus, if fast network convergence is of importance for a given application, the number
of BCs that can be placed in a row quickly becomes a limiting factor.

4.2.3.2 Experiment 6: Daisy chain configurations

Motivated by the experiment described in section 4.2.2.2, it would be natural to ask for
the influence of the sync interval in a daisy chain. Additionally, it would be interesting to
try different kinds of clocks. As already mentioned in section 2.2.8, [IEE08] introduced
the concept of TCs to avoid the cascading of control loops in a chain of BCs.

To test the influence of these two parameters, we simulate a daisy chain of 50 clocks
driven by an AvgOsc connected to a master clock with a perfect reference oscillator. The

74

network will consist either of only BCs or TCs. For this experiment, we will measure
the actual offset of every tenth clock from the master.

Figure 4.9 shows the measured jitter, similar to what was shown in fig. 4.6c for
a single node. This figure compares the jitter for BCs (blue) and TCs (green) with a
distance of 10. . 50hops to the master and for values of logSyncInterval in the range of
−6. . 4.

Figure 4.9: Jitter comparison for daisy chains of BCs and TCs for different sync intervals.

For all configurations it holds that a larger distance to the master leads to an increased
jitter. This is as one would expect. For long sync intervals (logSyncInterval > 0), the
comparison of BCs and TCs also behaves as expected: while the jitter increases for both
clock types with longer sync intervals, TCs performmuch better than BCs. A surprising
result is the jitter for values of logSyncInterval 6 −2: At−2, there is hardly any difference
between these two types of clocks, and for faster sync intervals BCs actually performed
slightly better in this experiment!

4.3 Result discussion

The experiments that were discussed in this section increased our confidence in both the
plausibility as well as the usefulness of our approach to gain insight in PTP networks.

LibPLN has proven to provide the needed infrastructure to simulate PLN as it is
commonly found in oscillators, and the simulation speed is impressive compared to
the unmodified batch simulation approach. On the other hand, the simulations with

75

LibPTP have provided results that were in line with the expectation in some cases, but
rather surprising in others:

• For the PI parameter study, simulations with LibPTP have proven to be useful as
an easy empirical approach to find an adequate heuristic to chose a clock servo
configuration.

• As already expected in advance, the jitter of network nodes decreases with an in-
crease in the synchronization frequency. Also expectedwas that at some oscillator
specific point further increasing the number of Syncmessages would not provide
a benefit any more. This was indeed the case for both simulated oscillators.

• One simulation result that was initially surprising, but completely expected in
retrospect was the quadratic runtime of the BMC algorithm of BCs in a daisy
chain. This could be easily overlooked when reading the specification given in
[IEE08], as happened to this author. The circumstance that this behavior showed
up in the simulation and turned out to be conforming to the specification speaks
again for the plausibility of our implementation.

• A rather unexpected simulation result was that BCs can keep up quite well with
TCs in daisy chains for short synchronization intervals. This result was really
surprising, and might need further investigation.

76

CHAPTER 5
Conclusion

Both LibPLN and LibPTP have shown to be useful, and to provide a way to gain insight
in the domains of clock noise and time synchronization via PTP.

5.1 Contributions of this Work

To the knowledge of the thesis author, there were no free software components available
to efficiently simulate oscillator noise as well as to simulate PTP networks at the begin-
ning of this thesis. Both of these challenges have been dealt with in the course of this
thesis, and the resulting components are publicly available under the terms of the GPL.
Thus, anyone interested in time synchronization via PTP can use these components to
gain insight into this technology. In particular, the contributions of our work can be
summed up as follows:

• LibPLN provides a portable and fast implementation of the original approach
for the simulation of Powerlaw Noise (PLN) as it was proposed by Kasdin and
Walter in [KW92]. In terms of numerical accuracy, it even surpasses the original
implementation, especially for RW noise and large sample sizes. LibPLN supports
different use cases:
Batch generation of PLN: The original PLN generation approach in [KW92] is a

batch method, which generates one large chunk of simulated noise at once.
Using various optimizations (as described in section 3.1.5), the noise gener-
ation can be made more efficient. By simulating and combining PLNs from
oscillators with different frequencies, limitations of the original approach
can be worked around. To show how the library can be used to cover this
use case, LibPLN comes with a small command line utility for batch PLN
generation in its Examples directory.

On-the-fly PLN generation for DES environments: By selectively skipping com-
putations when they won’t make a noticeable difference to the overall result

77

the original PLN generation approach can be made fit for Discrete Event
Simulation (DES) environments. This allows us to implement efficient clocks
with realistic noise in OMNeT++. The usage for OMNeT++ simulations was
the main motivation for the initial development of LibPLN.

• With LibPTP we have provided an OMNeT++-based simulation framework for
the Precision Time Protocol (PTP), as it is specified in IEEE 1588. IT is based
on standard network components from the INET library, and extends them with
PTP functionality. LibPTP implements most of the IEEE 1588 standard, and thus
it can already be used to simulate many different PTP use cases. Extendability
was a design goal, and thus LibPTP should be able to serve as a useful tool for
Design Space Exploration (DSE). Using LibPTP, systems designers can simulate
the impact of e.g. different PTP implementation options, clock servo designs,
network fault behavior, or other PTP relevant attributes.

5.2 Future Work

The contributions of this thesis only solve a part of the overall problem. The following
steps would further increase the usefulness of our software:

• Extending PTP options: LibPTP implements a subset of the possible PTP options.
Interesting extensions would be of unicast support, UDP as the transport layer as
well as Management and Signalingmessages.

• Mainlining LibPTP: Currently the LibPTP library depends on the INET library,
but is developed independently. If the internal structure of the referenced INET
models changes, these two libraries could become incompatible. Thus it would be
useful to try to mainline at least parts of the functionality back to INET.

• Extending LibPLN: At the moment LibPLN provides only a very limited set of
oscillator examples, and it is rather difficult to add additional models. It would be
beneficial for its users to simplify the library interface for oscillator specifications,
as well as to increase the number of readily available examples.

• Model additional noise sources: The current simulation model completely
ignores noise sources such as temperature or pressure. To gain more realistic
simulation results, it would of course be interesting to add these influences to the
simulation model.

78

APPENDIX A
Acronyms

ADEV Allan Deviation
API Application Programming Interface
AVAR Allan Variance
BC Boundary Clock
BMC Best Master Clock
COTS Commercial off-the-shelf
CM Compound Module
CSV Comma-separated values
DES Discrete Event Simulation
DSE Design Space Exploration
E2E End-to-End
FFM Flicker Frequency Modulation
FFD Fractional Frequency Deviation
FIR Finite Impulse Response
FPM Flicker Phase Modulation
FSA Frequency Stability Analysis
FFT Fast Fourier transform
FFTW Fastest Fourier Transform in the West
GPL GNU General Public License
GPS Global Positioning System
GUI Graphical User Interface
IDE Integrated Development Environment
IEEE Institute of Electrical and Electronics Engineers
IIR Infinite Impulse Response
LLC Logical Link Control
MAC Media Access Control
MAVAR Modified Allan Variance

79

NED Network Description
NIC Network Interface Card
NTP Network Time Protocol
OC Ordinary Clock
OCXO Oven Controlled Crystal Oscillator
OMNeT++ Objective Modular Network Testbed in C++
OS Operating System
P2P Peer-to-Peer
PC Personal computer
PHY physical layer
PI proportional-integral
PLN Powerlaw Noise
PSD Power Spectral Density
PTP Precision Time Protocol
RGMII Reduced Gigabit Media-Independent Interface
RTS Real-Time System
RW RandomWalk
SM Simple Module
TC Transparent Clock
TD Time Deviation
TDG TD Generator
TDO TD Oracle
TDV TD Vector
TDVG TDV Generator
TDVS TDV Storage
TDEC TDE Chain
TDE TD Estimator
UML Unified Modeling Language
UDP User Datagram Protocol
WFM White Frequency Modulation
WPM White Phase Modulation

80

Bibliography

[AAH00] David W. Allan, Neil Ashby, and Clifford C. Hodge. Application Note 1289:
The Science of Timekeeping. Agilent Technologies, 2000.

[All66] David W. Allan. Statistics of Atomic Frequency Standards. Proceedings of the
IEEE, 54(2):221–230, February 1966.

[All87] David W. Allan. Time and Frequency (Time-Domain) Characterization,
Estimation, and Prediction of Precision Clock Oscillators. IEEE Transac-
tions on Ultrasonics, Ferroelectrics, and Frequency Control, UFFC-34(6):647–654,
November 1987.

[DFF+07] Alessandro Depari, Paolo Ferrari, Alessandra Flamminni, Danielle Marioli,
and Andrea Taroni. Evaluation of Timing Characteristics of Industrial Eth-
ernet Networks Synchronized by means of IEEE 1588. Instrumentation and
Measurement Technology Conference Proceedings, May 2007.

[Eid06] John C. Eidson. Measurement, Control, and Communication Using IEEE 1588.
Springer, 2006.

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathe-
matics: A Foundation for Computer Science. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2nd edition, 1994.

[GLN+07] Georg Gaderer, Patrick Loschmidt, Anetta Nagy, Roman Beigelbeck, Jörgen
Mad, and Nikolaus Kerö. An Oscillator Model for High-Precision Synchro-
nization Protocol Discrete Event Simulation. Proceedings of the 39th Annual
Precise Time and Time Interval Meeting, pages 363–370, November 2007.

[GNLK08] Georg Gaderer, Anetta Nagy, Patrick Loschmidt, and Nikolaus Kerö. A
Novel, High Resolution Oscillator Model for DES Systems. Proceedings of the
Frequency Control Symposium, pages 178–183, May 2008.

[GNLS11] Georg Gaderer, Anetta Nagy, Patrick Loschmidt, and Thilo Sauter. Achiev-
ing a Realistic Notion of Time in Discrete Event Simulation. International
Journal of Distributed Sensor Networks, 2011, July 2011.

[HAB81] D.A. Howe, D.W. Allan, and J.A. Barnes. Properties of Signal Sources and
Measurement Methods. In Thirty Fifth Annual Frequency Control Symposium.
1981, pages 669–716, May 1981.

81

[Hor74] L.L. Horowitz. The effects of spline interpolation on power spectral density.
Acoustics, Speech and Signal Processing, IEEE Transactions on, 22(1):22–27, Feb
1974.

[IEE02] IEEE: The Institute of Electrical and Electronics Engineers, Inc., The Institute
of Electrical and Electronics Enginee, 3 Park Avenue, New York, NY 10016-
5997, USA. IEEE Std 1588-2002: IEEE Standard for a Precision Clock Synchro-
nization Protocol for Networked Measurement and Control Systems, November
2002.

[IEE08] IEEE: The Institute of Electrical and Electronics Engineers, Inc., The Insti-
tute of Electrical and Electronics Enginee, 3 Park Avenue, New York, NY
10016-5997, USA. IEEE Std 1588-2008: IEEE Standard for a Precision Clock
Synchronization Protocol for Networked Measurement and Control Systems, July
2008.

[IEE09] IEEE: The Institute of Electrical and Electronics Engineers, Inc., The Insti-
tute of Electrical and Electronics Enginee, 3 Park Avenue, New York, NY
10016-5997, USA. IEEE Std 1139-2008: IEEE Standard Definitions of Physical
Quantities for Fundamental Frequency and TimeMetrology – Random Instabilities,
February 2009.

[Int12] Intel Corporation. Intel Ethernet Controller I210 Datasheet, 2012.
[Kas95] N. Jeremy Kasdin. Discrete Simulation of Colored Noise and Stochastic

Processes and 1/fα Power Law Noise Generation. Proceedings of the IEEE,
83(5), May 1995.

[Kop11] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embed-
ded Applications. Springer Publishing Company, Incorporated, 2nd edition,
2011.

[KW92] N. JeremyKasdin and ToddWalter. Discrete Simulation of Power Law noise.
Proceedings of the 1992 IEEE Frequency Control Symposium, May 1992.

[Lai12] Jeff Laird. Clock Synchronization Terminology. InterOperability Labority, Uni-
versity of New Hampshire, June 2012.

[Lom08] Michael Lombardi. The Accuracy and Stability of Quartz Watches. Horolog-
ical Journal, February 2008.

[LY11] Yingshu Liu and Cheng Yang. OMNeT++ Based Modeling and Simulation
of the IEEE 1588 PTP Clock. Proceedings of the International Conference on
Electrical and Control Engineering, pages 4602–4605, September 2011.

[Mar06] Marvell Technology Group Ltd. 88E1111 Datasheet - Integrated 10/100/1000
Ultra Gigabit Ethernet Transceiver, October 2006.

[Ope14] OpenSim Ltd., Budapest, Hungary. OMNeT++ Manual, July 2014.
[PGGS07] Fritz Praus, Wolfgang Granzer, Georg Gaderer, and Thilo Sauter. A Sim-

ulation Framework for Fault-Tolerant Clock Synchronization in Industrial

82

Automation Networks . IEEE Conference on Emerging Technologies and Factory
Automation, pages 1465–1472, September 2007.

[PTVF92] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes in C (2Nd Ed.): The Art of Scientific Computing.
Cambridge University Press, New York, NY, USA, 1992.

[Ram12] F. Ramian. Application Note: Time Domain Oscillator Statiblity Measurement
Allan variance. Rohde & Schwarz, February 2012.

[RGNL10] Felix Ring, GeorgGaderer, AnettaNagy, and Patrick Loschmidt. Distributed
Clock Synchronization in Discrete Event Simulators for Wireless Factory
Automation. IEEE International Symposium on Precision Clock Synchronization
forMeasurement, Control and Communication, pages 103–108, September 2010.

[Ril08] William J. Riley. NIST Special Publication 1065: Handbook of Frequency Stability
Analysis. National Institute of Standards and Technology, U.S. Department
of Commerce, July 2008.

[RMR14] C. Riesch, C. Marinescu, and M. Rudigier. Experimental verification of
the egress and ingress latency correction in PTP clocks. In Precision Clock
Synchronization for Measurement, Control, and Communication (ISPCS), 2014
IEEE International Symposium on, pages 59–64, Sept 2014.

[Rub05] Enrico Rubiola. The Leeson effect - Phase noise in quasilinear oscillators.
ArXiv Physics e-prints, February 2005.

[Sch12] Hanspeter Schmid. How to use the FFT and Matlab’s pwelch function for signal
and noise simulations and measurements. Institute of Microelectronics, Univer-
sity of Applied Sciences Northwestern Switzerland, August 2012.

[Smi97] S.W. Smith. The Scientist and Engineer’s Guide to Digital Signal Processing.
California Technical Pub., 1997.

[Ste12] Jens Steinhauser. A PTP Implementation in OMNET++. Bachlor’s thesis,
Faculty of Informatics, Vienna University of Technology, 2012.

[Wal94] ToddWalter. Characterizing Frequency Stability: A Continuous Power-Law
Model with Discrete Sampling. IEEE Transactions on Instrumentation and
Measurement, 43(1):69–79, February 1994.

83

	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Focus of this Thesis
	1.4 Methodological Approach
	1.5 Related Work
	1.5.1 Simulation of PTP
	1.5.2 Simulation of oscillator noise

	1.6 Structure of this Thesis
	1.7 Typographic Conventions

	2 Basic Terms and Concepts
	2.1 General Terminology
	2.2 IEEE 1588 - Precision Time Protocol
	2.2.1 Overview
	2.2.2 Principle of Operation
	2.2.3 Offset Estimation Principle
	2.2.4 PTP Concepts and Definitions
	2.2.5 Message Types
	2.2.6 Port States
	2.2.7 Best Master Clock Algorithm
	2.2.8 Clock Types
	2.2.9 Delay Mechanisms

	2.3 Clocks and Clock Noise
	2.3.1 Clock Model
	2.3.1.1 Deviation from the Correct Time

	2.3.2 Frequency Stability Analysis
	2.3.2.1 Definitions and Terminology
	2.3.2.2 Powerlaw Noise
	2.3.2.3 Frequency Domain Analysis
	2.3.2.4 Time Domain Analysis
	2.3.2.5 Powerlaw Noise Relationship between Time and Frequency Domain
	2.3.2.6 Tools for Frequency Stability Analysis

	2.4 Simulation Environment OMNeT++

	3 Implementation
	3.1 Efficient PLN generation library
	3.1.1 Implementation goals
	3.1.2 Overview
	3.1.3 Generating Powerlaw Noise as proposed by Kasdin and Walter
	3.1.4 Modifications of the Kasdin/Walter approach
	3.1.5 Aspects of PLN generation
	3.1.6 LibPowerLawNoise (LibPLN)
	3.1.6.1 Design decisions
	3.1.6.2 Architecture
	3.1.6.3 Evaluation

	3.2 OMNeT++ simulation models
	3.2.1 Project relationships
	3.2.2 PTP node architecture
	3.2.3 Individual parts
	3.2.3.1 Clock module
	3.2.3.2 PHY
	3.2.3.3 MAC
	3.2.3.4 Relay Unit
	3.2.3.5 Delayer
	3.2.3.6 PTP_NIC_Ctrl
	3.2.3.7 Encap
	3.2.3.8 Logical Link Control
	3.2.3.9 PTP/Ethernet mapping
	3.2.3.10 PTP Software stack
	3.2.3.11 Filters
	3.2.3.12 Clock servo
	3.2.3.13 Time Difference Observer

	3.2.4 Configuration options
	3.2.5 Simulation GUI

	4 Evaluation
	4.1 Assumptions
	4.2 Experiments
	4.2.1 BMC Algorithm Evaluation
	4.2.1.1 Experiment 1: Test case 5 of BookEidson

	4.2.2 Simple network with 2 nodes
	4.2.2.1 Experiment 2: Parameter study of clock servo parameters
	4.2.2.2 Experiment 3: Parameter study of the synchronization interval
	4.2.2.3 Experiment 4: Path asymmetry

	4.2.3 Daisy chain
	4.2.3.1 Experiment 5: Startup time of BCs
	4.2.3.2 Experiment 6: Daisy chain configurations

	4.3 Result discussion

	5 Conclusion
	5.1 Contributions of this Work
	5.2 Future Work

	A Acronyms
	Bibliography

