
Comparison of Treatment Plan
Models

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Biomedical Engineering

by

Michaela Lehner BSc
Registration Number 0825832

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Mag. Dr. Horst Eidenberger
Assistance: Mag. Dr. Katharina Kaiser

Vienna, 15th April, 2016
Michaela Lehner Horst Eidenberger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Vergleich von Therapieplan
Modellen

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Biomedical Engineering

eingereicht von

Michaela Lehner BSc
Matrikelnummer 0825832

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Mag. Dr. Horst Eidenberger
Mitwirkung: Mag. Dr. Katharina Kaiser

Wien, 15. April 2016
Michaela Lehner Horst Eidenberger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Michaela Lehner BSc
Am langen Felde 22/1/9, 1220 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 15. April 2016
Michaela Lehner

v

Acknowledgements

I would like to deeply thank my parents Petra and Dietmar, who accompanied and
supported me all the years of my studies. Another thanks also goes to my grandparents
Christa and Kuno, who made my student life easier with some financial support.
I especially would like to thank my boyfriend Marco. With both his knowledge and his
patience and emotional support he was a great help for me.
Another thanks goes to my friends Jacqueline and Konstanze. I thank them for countless
hours of studying and preparing together. With them, my studies turned out a lot
funnier.
Last but not least, I thank my supervisors Katharina Kaiser and Horst Eidenberger.

This research was carried out as part of the ‘Support for development and transfor-
mation of CGPs’ project funded by the Austrian Science Fund (FWF), grant number
TRP71-N23.

vii

Danksagung

Ich möchte mich von ganzem Herzen bei meinen Eltern Petra und Dietmar bedanken,
die mich all die Jahre meines Studiums begleitet und unterstützt haben. Ein weiterer
Dank gilt auch meinen Großeltern Christa und Kuno, die mir mit manch finanzieller
Unterstützung das Studentenleben leichter gemacht haben.
Ganz besonders möchte ich meinem Freund Marco danken. Er war sowohl mit seinem
Wissen als auch mit seiner Geduld und seinem seelischen Beistand eine große Hilfe für
mich.
Ein weiterer Dank gilt meinen Freundinnen Jacqueline und Konstanze. Ich danke ihnen
für die unzähligen gemeinsamen Stunden des Lernens und Vorbereitens. Mit ihnen hat
sich mein Studium um einiges lustiger gestaltet.
Zu guter Letzt bedanke ich mich bei meinen Betreuern Katharina Kaiser und Horst
Eidenberger.

Diese Arbeit wurde im Rahmen des ‘Unterstützung für Entwicklung und Transfor-
mation von CGPs’ Projekts durchgeführt und finanziert von Fonds zur Förderung der
wissenschaftlichen Forschung (FWF), Fördernummer TRP71-N23.

ix

Abstract

To assist physicians with the treatment planning process so-called clinical practice
guidelines are created. They contain general information about a specific clinical condition
as well as rules and procedures to treat patients with this condition. As these guidelines
are represented in free text form they are difficult to handle for physicians in their daily
working process. Therefore the information in the guideline document is formalized to
create computerized guidelines. We work with the formalization language Asbru. The
creation of these computer-interpretable guidelines is either done manually which is a
great effort or automatically using methods of Information Extraction. The aim of this
thesis is to verify whether the automatically generated model of a guideline corresponds
to the manually generated model of the same guideline. Doing this manually would again
be a great effort and therefore I want to investigate methods to automatically evaluate
parts of these models. I focus on the procedural knowledge of the models.
To be able to compare two different models I investigated them. At first I developed
methods to compare two models. To make a statement about the similarity of two models
we started with comparing their activities using similarity metrics in order to identify
corresponding plans of two models. In a second step we furthermore looked into their
process structure using workflow patterns and tried to find similarities as well.
Then I implemented these methods prototypically and tested them using a ‘real-world’
example, a guideline for gestational diabetes mellitus. The example was based on the
output of the GESHER tool for manually creating computerized treatment plan models
and the tool LASSIE for automatically creating computerized treatment plan models.
Using this example we evaluated how much of the original guideline text is present in the
automatically generated model. Finally, it was evaluated if the automatically generated
model finds the same information as present in the manually generated model.

xi

Kurzfassung

Um Ärzte beim Prozess der Behandlungsplanung zu unterstützen werden so genannte
klinische Leitlinien erstellt. Diese enthalten allgemeine Informationen zu einem bestimm-
ten klinischen Zustand sowie Regeln und Verfahren um Patienten mit diesem Zustand zu
behandeln. Da diese Leitlinien in freiem Text dargestellt sind, ist es für Ärzte schwierig
sie bei der täglichen Arbeit zu verwenden. Deshalb wird die Information in dem Leitlinien-
Dokument formalisiert um computergestützte Leitlinien zu erstellen. Wir arbeiten mit der
Formalisierungssprache Asbru. Die Erstellung dieser computer-interpretierbaren Leilinien
geschieht entweder manuell, was ein großer Aufwand ist, oder automatisch mit Methoden
der Informationsextraktion. Das Ziel dieser Arbeit ist zu überprüfen, ob das automatisch
erstellte Model einer Leitlinie dem manuell erstellten Model der selben Leitlinie entspricht.
Dies manuell zu tun wäre wieder ein großer Aufwand und daher möchte ich Methoden
untersuchen, um automatisch Teile dieser Modelle zu evaluieren. Ich konzentriere mich
auf das prozedurale Wissen der Modelle.
Um zwei verschiedene Modelle vergleichen zu können habe ich sie untersucht. Zuerst
habe ich Methoden entwickelt, um zwei Modelle zu vergleichen. Um eine Aussage über
die Ähnlichkeit von zwei Modellen machen zu können, haben wir mit einem Vergleich
ihrer Aktivitäten mit Hilfe von Ähnlichkeitsmetriken begonnen, um übereinstimmende
Pläne der zwei Modelle zu identifizieren. In einem zweiten Schritt haben wir uns darüber
hinaus ihre Prozessstruktur unter Verwendung von Workflow-Mustern angeschaut und
versucht wieder Gemeinsamkeiten zu finden.
Dann habe ich diese Methoden prototypisch implementiert und mittels eines ‘real-world’
Beispiels, einer Leitlinie für Gestationsdiabetes Mellitus, getestet. Das Beispiel basierte
auf der Ausgabe des GESHER Tools für die manuelle Erstellung von computergestützten
Behandlungsplan-Modellen und des Tools LASSIE zum automatischen Erstellen von
computergestützten Behandlungsplan-Modellen.
Unter Verwendung dieses Beispiels haben wir evaluiert, wie viel von dem originalen
Leitlinien Text im automatisch erzeugten Modell vorkommt. Schließlich wurde evaluiert,
ob das automatisch erstellte Modell dieselbe Information findet, die im manuell erstellten
Modell vorkommt.

xiii

Contents

Acknowledgements vii

Danksagung ix

Abstract xi

Kurzfassung xiii

Contents xv

List of Figures xvi

List of Tables xvii

Listings xviii

1 Introduction 1
1.1 Presentation of the problem . 1
1.2 Approach to solving the problem . 3

2 Related Work 5
2.1 Clinical guideline modeling . 5

2.1.1 Model-centric approaches . 6
2.1.2 Document-centric approaches . 8
2.1.3 NLP approaches . 9

2.2 Evaluation of process models . 11

3 Method 17
3.1 Challenges . 17
3.2 Comparison of single activities of the models 19

3.2.1 Preprocessing . 20
3.2.2 The comparison . 22

3.3 Comparison of the process structure of the models 23
3.3.1 The Exclusive Choice pattern . 25
3.3.2 The comparison . 29

xv

4 Implementation 31
4.1 GESHER and LASSIE . 31

4.1.1 GESHER . 31
4.1.2 LASSIE . 33

4.2 Implementation of the method . 34
4.2.1 Comparison of single activities of the models 36
4.2.2 Comparison of the process structure of the models 37

4.3 Evaluation . 40
4.3.1 Evaluation of ‘activity’ and ‘condition’ information found by LASSIE 41
4.3.2 Evaluation of the plans . 42
4.3.3 Evaluation of the process structure 43

5 Conclusion 49

Bibliography 51

A GESHER 57

B LASSIE 61

C GDM guideline 65

Glossary 77

Acronyms 79

List of Figures

1.1 Part of a formal model. 2

2.1 PROforma task model [19]. 7
2.2 Example of a guideline for hepatitis in pregnancy using the Tallis tool. 7
2.3 Example of a guideline for hepatitis in pregnancy using the DELT/A tool [49]. 8
2.4 BPMN example of a pizza collaboration. 11

3.1 Overview of the comparison method. 17
3.2 Overview of the preprocessing. 20
3.3 Three dimensional view of a workflow [45]. 24

xvi

3.4 Sequence pattern (left) and Parallel Split pattern (right) (the patterns are
illustrated using the Coloured Petri-Net formalism [36]). 25

3.5 BPMN’s Exclusive Choice and Simple Merge. 26
3.6 Structure of procedural approach of the Exclusive Choice pattern. 26
3.7 Structure of declarative approach of the Exclusive Choice pattern. 27
3.8 Structure of declarative approach of the Exclusive Choice pattern in AsbruView. 28

4.1 GESHER user interface - procedural knowledge. 32
4.2 GESHER user interface - declarative knowledge. 32
4.3 Flow chart of LASSIE’s knowledge generation [3]. 33
4.4 Tree view of LASSIE’s plans of the GDM guideline. 34
4.5 GESHER’s plan hierarchy according to the GDM guideline. 35
4.6 Example of a WordNet database entry. 36
4.7 GESHER plan #19969 (with key on the right). 46

List of Tables

3.1 Example of preprocessing activity labels. 22
3.2 Adaptation of the procedural approach. 29

4.1 Scoring key for the evaluation [28, p. 5]. 41
4.2 Evaluation of LASSIE’s ‘activity’ markups. 41
4.3 Evaluation of LASSIE’s ‘condition’ markups. 41
4.4 LASSIE’s plans. 42
4.5 GESHER’s plans. 42
4.6 Evaluation of the plans. 42
4.7 GESHER’s plans without orphaned plans. 43
4.8 Evaluation of the plans without orphaned plans. 43
4.9 LASSIE filter-precondition vs. GESHER if-then-else. 44
4.10 Structure of two matching plans. 45
4.11 Structure of LASSIE plan #90689. 45
4.12 Structure of GESHER plan #19969 and subplans #19972 and #19973. . . . 46
4.13 Adapted GESHER plan matches LASSIE plan. 47

xvii

Listings

3.1 Example of the plan structure. 19
3.2 Example of if-then-else. 26
3.3 Example of filter-precondition. 28
3.4 Example of adapted procedural approach. 29
4.1 List of stop words. 36
4.2 Part of XSLT template to transform procedural to declarative Exclusive

Choice pattern. 37
4.3 Example of an input of the XSLT templates. 38
4.4 Example of an output of the XSLT templates. 39
A.1 GESHER plan #19922. 57
A.2 GESHER plan #19969. 58
A.3 GESHER plan #19973. 58
B.1 LASSIE plan #90689. 61
B.2 LASSIE plan #90697. 62

xviii

CHAPTER 1
Introduction

1.1 Presentation of the problem

Physicians are daily challenged with the complex task of choosing an appropriate therapy
for a patient. In complex and lengthy treatment processes, such as with chronic diseases
or cancer, the treatment planning may also be a challenge - for both the physician and
the patient.
In order to help the physicians with treatment planning clinical guidelines and protocols
are developed. A clinical practice guideline is a set of general rules and policies for the
management of patients who have a particular clinical condition. The information in a
guideline is in plain text form, in tables or in flow charts. Clinical practice guidelines
(CPGs) are statements that assist the physician and the patient in decision making. They
represent the best clinical practice. Computer-interpretable guidelines (CIGs) are also
very important for quality assurance; uniform standards are created thereby and they
are also used for education of physicians [24].
At first these guidelines only exist in free text form which is not very practicable for a
physician in the daily working process. That is why computerized treatment plans are
created out of clinical guidelines. To execute CPGs in a computer-supported way the
information in the guideline has to be formalized [24] (see Figure 1.1 for an example of
a formal representation of part of a guideline). In order to do this the computerized
guidelines have to be transformed into special CIG formalisms, e.g., Asbru, PROforma,
GLIF [11]. Usually treatment plans are created completely manually using special editors.
These editors can be divided into two main categories: model-centric and document-
centric (for more details see Chapter 2.1). At the moment, using these tools and methods
a guideline developer needs not only knowledge about the formal methods but also about
the corresponding medical domain [24].

1

Figure 1.1: Part of a formal model.

Besides creating them manually, which is very time-consuming and challenging, com-
puterized treatment plans or parts thereof can also be generated automatically with
complex tools that use Information Extraction (IE) methods [24, 39]. The automatically
generated models usually consist of text parts taken from the guideline document whereas
the manually created models are developed according to the modeler’s knowledge and
interpretation of the guideline text. In the area of Business Process Modeling there exist
certain rules the modeler has to stick to (e.g., rules about wording) [31]. Unfortunately,
in the medical domain such rules have not been adopted yet and therefore the comparison
of different models is a big challenge.
Comparing two models and checking which concepts in one model correspond to the
concepts in the other model is usually done completely manually, which is a great effort.
Therefore, it would be a big ease if some parts of this comparison as well as the evaluation
of the IE methods were done automatically. The goal of this project is to develop methods
to compare parts of process models automatically. The complete automation of the
comparison is nearly impossible due to the complexity of the models and the variety of
information dimensions.
Comparing an automatically generated model to a manually generated model is prob-
lematic due to the fact that the automatically generated model contains text from the
guideline document whereas the manually generated model is prone to errors made by
the modelers during the development.

2

1.2 Approach to solving the problem

An entire executable CPG model contains many different information aspects: The
most prominent ones are procedural knowledge (e.g., workflows) as well as declarative
knowledge (e.g., definition of clinically meaningful terms and temporal patterns) [20].
Procedural knowledge consists of actions, conditions controlling them and information
how to order actions (sequentially, parallel, etc.). Normally guideline documents contain
not only procedural and declarative knowledge, but also other kinds of information such
as effects or intentions of activities, evidence information, information about risks and
benefits of activities, etc. [3]. As the procedural model is an important part of a model,
I want to focus on it in my thesis.
The goal of this project is the development of methods and their prototypical implemen-
tation that allow for the evaluation of the automatically generated procedural model.
These methods should compare the automatically generated model with the manually
generated model of the same origin and identify similarities and differences between
these two models. The methods will be developed for the language Asbru [38]. Asbru
is a task-specific and intention-based plan representation language to embody clinical
guidelines and protocols as time-oriented skeletal plans [34].
The main objective is to find methods to compare automatically generated procedural
models of clinical practice guidelines with a manually generated gold standard in order
to evaluate the automatically generated models.
It is important to mention that usually a manually created model contains much more
information than that is actually available in the guideline text. Studies showed that
only about 50% of the knowledge in the final model comes from the guideline text.
Generating a model physicians create much of the knowledge when creating the consensus
and therefore it cannot be pinned down to a specific text in the guideline. Much of the
knowledge is implicit in the guideline and not made sufficiently explicit [20].
As a result, it is not possible to tell if the automatically generated model is as good as
the manually generated gold standard. It is only possible to evaluate if the concepts
of the automatically generated model have correspondences in the manually generated
model but not vice versa.

Comparing two models, a binary answer (two models are equivalent or not) is not
very helpful. But instead it is important to differentiate between slightly different models
and completely different models [46].
It also has to be considered when and how such an evaluation can be performed and
when it makes sense. For this evaluation a comparison model (i.e., a gold standard) is
definitely necessary. We probably have the need for such a comparison model during the
development of methods using IE. There it would be helpful to have a tool for testing
during the development. But such methods can also be applied when working with
several manually generated models. They could for example be compared or similarities
could be identified. The methods could also be helpful when studying (manual) modeling.
Another possible application might be with models represented in different formalisms:

3

e.g., having a model for a specific treatment in PROforma to be translated into Asbru or
integrating it into an existing Asbru model.

The research for this thesis was carried out in the context of the FWF project ‘Support
for development and transformation of CGPs’, grant number TRP71-N23.
The remainder of this thesis is structured as follows. Chapter 2 presents various approaches
with examples of clinical guideline modeling (model-centric approaches, document-centric
approaches and Natural Language Processing (NLP) approaches are considered) and the
evaluation of process models. In Chapter 3 the challenges and the theoretical steps of the
comparison of the activities and the process structure of the manually and automatically
generated models are introduced and explained. Chapter 4 introduces the two used tools
for creating computerized treatment plan models: GESHER for the manually created
model and LASSIE for the automatically created model. The methods of the previous
chapter are implemented prototypically and finally the evaluation of the obtained results
is performed. Chapter 5 concludes the thesis.

4

CHAPTER 2
Related Work

In this chapter I want to introduce several current approaches of clinical guideline
modeling as well as the evaluation of process models.
I will present an overview of the different ways to create CIGs and give examples. This
is important to understand that in the medical domain various methods exist to deal
with the problem of modeling clinical guidelines and that there does not exist one over
all solution that is applicable for every presentation of a problem.
Furthermore, I will take a closer look at the different aspects of process model evaluation
and explain why and how process models can be evaluated. Thereby I am trying to find
and compare approaches that are useful and applicable for my problem.

2.1 Clinical guideline modeling

In the last years different approaches to manage clinical guidelines and protocols were
introduced. To keep track of the diversity the concept of plan management was intro-
duced, where clinical guidelines are seen as (time-oriented) plans [5].
Plan management includes everything from designing a particular plan to the real-world
execution and evaluation of such plans. It consists of various tasks that can be dif-
ferentiated into tasks, which need to be performed mainly at design time (e.g., Plan
Generation, Plan Verification, Plan Validation, Plan Visualization) and those which are
done mainly during execution time of plans (e.g., Plan Selection, Plan Adaptation, Plan
Execution, Plan Modification / Alternatives). An outstanding task is Plan Modification
/ Alternatives: This covers, on the one hand, the maintaining of clinical guidelines when
new medical knowledge is discovered and needs to be included in the clinical guidelines
(in the sense of ‘living guidelines’). On the other hand, changes in health condition of
the patients or in the medical environment can force a modification of the therapeutic
activities [5].

5

Different frameworks have been developed to implement clinical guidelines in a
computer-interpretable format (cf. [34, 22]), such as Asbru, EON, GLIF, Guide, Prodigy
and PROforma. These frameworks are created for specific classes of guidelines, specific
users and specific organizations. Each framework supports specific guideline representation
languages. Various tools and techniques have been developed to ease the guideline
modeling and visualization process. They can be classified into model-centric and
document-centric approaches [5]. Furthermore some NLP approaches are also worth
mentioning.

2.1.1 Model-centric approaches

The model-centric approaches to author clinical guidelines focus on the creation of a
conceptual model of the original guideline. But they do not keep the direct connection
between these two representations. This category covers many approaches and is more
visual-oriented [5]:

• The most widely used visual representation of clinical guidelines are so-called
flowchart algorithms. But they were intended to be used on paper and have never
been implemented by programmers [5].

• Protégé is an open source ontology development and knowledge acquisition envi-
ronment. It assists users in the construction of large electronic knowledge bases.
Protégé implements various CIG-languages, such as EON, GLIF, PROforma [5, 24].

• AsbruView is a graphical user interface to support the development of guidelines
and protocols in Asbru. It is a tool to make Asbru accessible to physicians and
to provide a visual overview of the guideline hierarchy and other Asbru-specific
components [5, 24].

• Arezzo and the Tallis Toolset are based on the PROforma language for modeling
clinical processes (cf. Figures 2.1 and 2.2). They include software and training
materials to create, publish and illustrate clinical knowledge applications over the
web [5, 24].

• GLARE is a domain-independent system for acquiring, representing and executing
clinical guidelines. The flow of the guideline is represented similar to a flowchart
[5].

6

Figure 2.1: PROforma task model [19].

PROforma models a guideline as a set of tasks and data items. Figure 2.1 shows
the PROforma task model. The keystone is divided into four task types: Plans are the
basic building blocks and can contain any number of any task type. Decisions are taken
when options are presented. Actions are clinical procedures which have to be carried out.
Enquiries are requests for further information or data [19].

Figure 2.2: Example of a guideline for hepatitis in pregnancy using the Tallis tool.

Figure 2.2 shows an example of a guideline modeled with the Tallis tool. Tallis
consists of a composer to create, edit and visualize guidelines; a tester to test and debug
the application; and an engine to enact guidelines [19].

7

2.1.2 Document-centric approaches

The document-centric approach to author clinical guidelines preserves the connection of
the original guideline written in text and its semi-formal model. Markup-based tools are
used to systematically mark up the original guideline in order to generate a semi-formal
model of the marked text part. This approach is more text-based and only a few examples
exist [5]:

• The GEM Cutter transforms clinical guidelines into the Guideline Elements Model
(GEM), which is an XML-based guideline document model [5, 24].

• The Document Exploration and Linking Tool / Addons (DELT/A) (cf. Figure
2.3) supports the translation of HTML documents into an XML language, such
as Asbru or MHB. DELT/A allows the definition of links between the original
guideline and the target representation, which gives the user the possibility to find
out where a certain value in the XML-language notation comes from [5, 24].

Figure 2.3: Example of a guideline for hepatitis in pregnancy using the DELT/A tool
[49].

Figure 2.3 shows an example of a guideline using the DELT/A tool [49]. On the left
side we see the clinical guideline in free text form. The right side shows the corresponding
XML model which was created manually to support the generation of the model according
to the underlying schema of the guideline representation language.

8

2.1.3 NLP approaches

Medical documents are mostly unstructured free-text. Their extension and their huge
number makes them difficult and time-consuming to process manually. Medical NLP
tries to solve these problems by transforming natural language text into standardized
semantic structures to make data in written text accessible [14].
One approach is the use of IE. IE is an emerging NLP technology whose function is to
process unstructured, natural language text, to locate specific pieces of information in
the text and to use them to fill a database. The resulting output can then be processed
to yield refined representations, leading to the representation in a specific guideline
representation language [24].
A big challenge when authoring clinical guidelines is the detection of individual processes
and their relations and dependencies. In this section some approaches that use NLP
techniques to detect these processes are presented:

• One important IE approach is the LASSIE approach with the main goal being the
acquiring of treatment processes from clinical guidelines. It automates parts of the
modeling process, it provides a medical ontology, it structures the information of
the guideline and provides a basis for the following transformation of the process
information into any guideline representation language (e.g., MHB, Asbru) [24].
LASSIE’s rules to extract the process information are extraction patterns which
are based on syntactic and semantic restrictions as well as delimiters. Patterns are
defined on three levels: 1) Phrase level patterns are used to identify basic entities
(e.g., time, conditions) which build the attributes of actions. 2) Sentence level
patterns use phrase level patterns, medical terms and trigger words for medical
terms to identify actions and their attributes. The trigger words are mainly verbs
and indicate the application or the avoidance of a therapy. 3) Discourse level
patterns are based on sentence level patterns, but are extended to consider the
structure of the documents. They categorize sentences, merge them to actions and
find relationships between actions to structure them. Medical terms (i.e., drugs,
surgical procedures) are based on libraries provided by medical institutions [24].
The extraction of processes from clinical guidelines is done in two steps: 1) The
relevant sentences containing treatment instructions are extracted by marking-
up the original guideline document. 2) Several sentences are combined to one
action, the actions are structured and relations among them are detected. Thereby
a representation that is independent of the subsequent guideline representation
language is obtained [24].
LASSIE was extended in the context of the MobiGuide project: various machine
learning methods were used to identify clinical actions and the medical terminology
systems were extended (cf. Section 4.1.2) [3].

• The VeriCliG project [39] studied how to automatically extract CIGs from clinical
guidelines using NLP techniques. This project wants to develop biomedical NLP
techniques, especially automated CIG extraction methodologies. The goal is to
extract the main control flow structures emerging from the guideline text in order

9

to express them using known representation languages (e.g., the Business Process
Model and Notation (BPMN) standard). To realize this goal the VeriCliG project
builds on the work on clinical semantic and syntactic annotation as well as on
BPMN model extraction [42].
To describe processes the VeriCliG project uses the terminology coming from the
BPMN standard. In BPMN a process consists of five basic components. The
first three are static components: activities (e.g., controlling blood glucose levels),
actors (e.g., doctors, nurses, patients) and resources (e.g., drugs). The control flow
component (e.g., ‘if-then-else’) is dynamic and the last component is the message
flow. To identify these components MetaMap Unified Medical Language System
(UMLS) is used to find process evoking words. MetaMap maps biomedical text to
the UMLS Metathesaurus. The VeriCliG project wants to adapt BPMN techniques
to the clinical setting by combining them with biomedical annotations [42, 41].
The VeriCliG project’s CIG extraction methodology consists of: 1) combining
annotation resources to extract CIG resources, actors and activities; 2) analyzing
syntactic structures to extract CIG control structures; 3) resolving ambiguities and
detecting temporal relations to build a CIG [42, 40].
The project intends to help medical staff to save time and resources by developing
techniques and technologies to fully or partially assist and automate the task of
generating and repairing careflows [39].

• In [15] an approach that transforms sentences of a medical document into seman-
tic representations is presented. Therefore a multiaxial medical nomenclature, a
concept-based morpheme lexicon, a word segmentation algorithm and semantic
transformation rules for mapping syntactic information to semantic roles are used.
The strategy can also be used as a basis of IE [15].
At first a preparser finds sentence boundaries in the text and then each sentence
gets decomposed into segments by a syntactic analysis. The next step is to check
each sentence for special expressions (e.g., dates, quantities, dosages, etc.) which are
then tagged before the indexing process as they often require special interpretation.
Next, each word is tagged by decomposing it into its morphemes which are the
smallest units of a word. Furthermore the morphological features of each word are
determined: word category, language, gender, case, number. The indexing maps
every sentence to a set of indices of the Wingert Nomenclature. This nomenclature
‘comprises a complete multiaxial terminology of medical terms and allows encoding
different aspects of a diagnosis or procedure’ [15]. An index consists of a letter
representing the axis (topography (T), morphology (M), function (F), procedure
(P), diagnosis (D), job (J), information (G), treatment (V), agent (W), aetiology
(E)) and a six-digit number for identification. The tagged words are compared
with the tagged terms of the Wingert Nomenclature-Lexicon. If they match, the
corresponding indices are assigned to the morphemes of the input words. Next, the
algorithm checks if it is possible to combine various simple indices to one single
index. This step is repeated until a final set of indices is determined. The semantic
analysis starts by identifying the central information unit (leading index) and the

10

set of modifying information (non-leading indices) for each sentence and generates
the corresponding concepts. Then the non-leading concepts are linked to their
leading concept by relation. The type of the relation is determined from the concept
type of each non-leading concept [15, 14].
The method SeReMeD in [13] is a similar approach for the automatic generation
of semantic representations. The big difference to the above described approach
is the use of MetaMap to map natural language text to UMLS concepts. Contex-
tual relations are automatically identified. For additional semantic relations the
UMLS Semantic Network and relationships between concepts defined in the UMLS
Metathesaurus are used [13].

2.2 Evaluation of process models

A process model describes the activities of a process together with their execution
dependencies [8]. See Figure 2.4 for an example of a process model1.

Figure 2.4: BPMN example of a pizza collaboration.

Why evaluate process models?

One reason why process models need to be evaluated is process model matching. The
goal of process model matching is the creation of an alignment between process models,
i.e., finding similarities between their activities [8].
An important application is the management of large process model repositories which
requires effective search techniques. For example, before adding a new process model to
a repository, one needs to check that a similar model does not already exist in order to
prevent duplication. It is important to identify common or similar processes in order to
analyze their overlap and to identify areas for merging [17].
Process model matching is also useful when comparing a gold standard model to a newly

1from http://www.bpmn.org/, accessed: November 17, 2015

11

http://www.bpmn.org/

created model as it is the case in the presentation of the problem of this thesis.

Another important part of the evaluation of process models is to verify the model
itself and to check if it is consistent.

What can be evaluated?

A single process model can be evaluated in two ways: The model can be checked if it
represents the guideline (validation) or it can be checked if the model of the guideline is
correct (verification) [21].

When comparing two process models, common labels as well as the structure of the
models can be evaluated.

Challenges of evaluation

A big challenge when comparing process models is the wording of the labels. As mentioned
in the previous chapter, in the medical domain exist no rules when creating a model from
a guideline document. Therefore labels can be ambiguous or different labels can describe
the same process by using different phrases and/or grammatical styles.

Existing approaches

This section presents current approaches for the evaluation of process models divided by
their application area.

1. Validation of process models
Validation means checking if the model represents the guideline [21].
In [30] natural language text is used as a basis for model validation. It is investigated
how far a textual representation of the contents of a process model can help someone
to understand the content of a model. The objective is to find out how textual
information can be automatically provided if the process model is available. An
automatic approach is presented for generating natural language texts from Petri
nets [30].

2. Verification of process models
Verification means checking if the model of the guideline is correct [21].
In [32] a few studies that report results from applying verification techniques to
process models are compared. The comparison reveals that most of the samples
have error rates of 10% to 20% [32]. Soundness is the classical correctness criterion
for process models. ‘Soundness identifies all deadlocks and lack of synchronization
for process models with one start and one end node’ [32]. Further criteria are
relaxed soundness, interactive verification, EPC soundness, decomposition and
reduction (cf. [32]).

12

A limitation of soundness verification is that it covers only the control flow per-
spective of the process model. Therefore, soundness is a necessary but insufficient
condition for correctness [50].
In [50] four verification tasks are presented: precondition conflicts, effect conflicts,
reachability and executability. Based on this formalism, one can detect execution
problems in processes with sound control flow, hence enabling verification beyond
soundness [50].

Hommersom et al. use formal methods for the verification of clinical practice
guidelines. They focus on verification prior to execution. There are roughly two
verification approaches: model checking which explores a (finite) model and theorem
proving which explores logical derivations of a theory [21].
Interactive theorem proving systems do not construct proofs themselves, but rather
support the construction of a proof by a user. The main advantage is that it can
handle problems of random complexity, therefore it is especially suitable if the model
of the guideline is detailed and contains many complex constructs. By abstracting
parts of the guideline, more automated techniques such as automated theorem
proving or model checking become possible. Using model checking, temporal
properties can be automatically verified for a given state transition system. In
principle, model checking is automatic, but the application is limited to finite state
transition systems [21].
In [21] several other techniques for checking that a guideline model is internally
consistent are also presented.

3. Process model matching
Dijkman et al. present three similarity metrics that can be used to answer requests
on process repositories: 1) node matching similarity metrics that measure similarity
based on properties of process model elements (such as their labels and their other
attributes), 2) structural similarity metrics that measure similarity based on the
properties of process model elements as well as the relations between these elements
and 3) behavioral similarity metrics that measure similarity based on the intended
behavior of process models. These metrics all outperform text-based search en-
gines when it comes to searching through a repository for similar process models [17].

The Triple-S matching approach combines similarity scores of syntactic, semantic
and structural levels to match pairs of different process models. The syntactic
level consists of tokenization and stop word elimination. The Leveshtein distance
between each combination of tokens is calculated. The final syntactic score is the
minimum average distance between each token. For the semantic level the approach
of [54] is used to calculate the semantic similarity. The structural level compares
the ratio of in- and outgoing arcs and the relative position in the net. The three
scores are combined to a final score that represents how good two activities of
different process models match [8].

13

This approach is an adjustment of [18] where syntactic, linguistic and structural
measures are used to compute similarity degrees between process models. Ad-
ditionally, the linguistic similarity degree also determines synonyms by using a
dictionary and considers common synonyms. The structural similarity measures
detect homonyms and evaluate the context of the terms [18].
These two methods seem as a good basis to use for my problem. Especially the use
of synonyms is an interesting way to approach the problem.

Business process graph matching considers a process as a labeled graph where nodes
correspond to tasks or events and edges represent the control flow between nodes.
The mapping connects one node in a graph to at most one node in another graph.
Therefore the mapping generates a distance between two graphs by calculating
and adding 1) the number of inserted nodes (nodes that appear in one graph but
not in the other, i.e., nodes that are not part of the mapping), 2) the sum of the
distances between nodes that are part of the mapping, 3) the number of inserted
edges (edges that appear in one graph but not in the other). Each operation has a
cost defined by a cost function. The graph matching algorithm tries to find the
mapping with the smallest possible distance (called graph-edit distance which is
defined as the minimal cost to transform one graph into another graph) [8, 16]. In
[16] some algorithms to compute the graph edit distance of two process models are
presented, e.g., the greedy algorithm and the A-star heuristic algorithm.
The extended semantic greedy matching approach extends the greedy matching
approach. In this approach process models are matched pair-wise based on the
similarities of their transitions with the result being a set of complex transition
matches between two process models [8].
These strategies could be useful for me to compare the structure of the process
models.

The bag-of-words similarity with label pruning approach only considers activity
labels ignoring other information in the process model such as events or process
structure. This approach computes label similarity in various steps: 1) each label
is treated like a bag of words (a multi-set of words), 2) word stemming is applied
for better comparability (tokenization, stop words removal), 3) similarity scores are
computed for each pair of words, 4) the multi-sets for both activity labels are pruned
to be equal in the number of words, 5) for each activity pair an overall matching
score is computed, 6) all activity pairs with a score above a given threshold are
selected. It is interesting to mention that the bag-of-words similarity ignores the
grammatical structure of the label [8, 26].
This approach seems very promising to be applied for my problem. However, I
do not want to compute similarity scores for every single word but rather for the
whole activity label using certain similarity metrics.

14

Process matching using positional language model is a matching technique made for
process models that consist of textual descriptions of activities, i.e., the process
models are represented as documents. It adopts positional language models which
‘define a document as a sequence of terms with a probability for a term at a
document position’ [53] and passage-based models which capture ‘the probability
of a term in such a passage’ [53]. This approach uses the textual descriptions to
identify similarities between activities which are seen as ordered passages of the
documents. A similarity matrix between the activities is created and similarities
are derived from this matrix [8, 53].
This strategy is not useful for my problem because the models are not represented
as documents.

Another approach is n-ary semantic cluster matching. Clustering process model
nodes consists of the following four steps executed sequentially: 1) Semantic error
detection (errors of modeling are identified and handled) with the main function
being the identification of wrong modeled transition nodes. 2) All models are used
as input for an n-ary cluster matcher. 3) This cluster matcher uses a semantic
similarity measure which consists of three steps for pairwise node comparison.
First, node labels are split into single words, stop words and waste characters (e.g.,
additional spaces) are removed. Secondly, the stem of each word is generated and
then the stem sets of both labels are compared. The number of stem matchings
divided by the sum of all words yields the similarity value. Thirdly, if this resulting
value is above a defined threshold, the labels are checked for antonyms and the
occurrence of negation words. 4) Finally, the clusters containing nodes of all
considered models are extracted to binary complex matchings. For each pair of
models all clusters are searched for the occurrence of nodes from both models. The
result is a binary complex matching for each model pair [8].
The ICoP framework (Identification of Correspondences between Process Models)
focuses on complex correspondences between sets of activities (one activity can
be matched to a random number of other activities). The ICoP architecture uses
four different components for process model matching: Searchers identify possible
matches between two process models by applying different similarity metrics and
heuristics and return a set of possible correspondences with assigned scores resulting
from a scoring function. Next, boosters are used to aggregate matches, remove
matches and adapt their scores. Selectors select the best candidates from the set of
potential matches under the condition that matches are not overlapping. Either
the individual match scores are used to select the best matches or an evaluator is
used which returns a single mapping score for the quality of a mapping. When
the selection process is finished the selector presents the final mapping between
elements of the process models [8, 51].
These two approaches appear to be rather expensive and complex and therefore
not quite applicable for my problem.

15

CHAPTER 3
Method

In order to compare the procedural models we will use a two-step approach:
First, we start with the comparison of the plan names of the two models to identify
corresponding plans. When comparing an automatically created model with a manually
created one, we can make a statement if the automatically created model can be found in
the manually created model. Second, among these corresponding plans we then investigate
their process structure using workflow patterns to evaluate if the plans with the same
meaning also have a corresponding structure. See Figure 3.1 for a short overview.

Figure 3.1: Overview of the comparison method.

For the following approach I started with an analysis of existing work (cf. Chapter
2). I adapted some of those strategies for the requirements of this presentation of the
problem. However, first of all I want to address the challenges and problems that can
occur when dealing with CPG models.

3.1 Challenges
The ideal case in CPG modeling would be having standards and rules for modeling like
it is the case with Business Process Management (BPM) [31]. As already mentioned in
Section 1.1, there are no exact rules for modeling clinical guidelines as there are for BPM
guidelines. Unfortunately, those BPM standards still have not found their way into the
medical modeling domain. That is one of the reasons why the manually as well as the

17

automatically generated plans are quite difficult to process and to compare with each
other. Therefore I want to present various challenges and problems that are encountered
when dealing with manually and automatically generated models.

The names/labels of the plans of manually created models are prone to typing and
grammatical errors. Errors found in the plans include switched letters (e.g., ‘becuase’,
‘currentyl’), wrong letters (e.g., ‘geststional’, ‘measyre’, ‘katenuria’), missing letters
(e.g., ‘measurment’, ‘abnomal’) and too many letters (e.g., ‘posittive’, ‘possitives’, ‘car-
bohydorates’, ‘enought’).
Another difficulty are abbreviations (e.g., ‘pls’ for ‘please’, ‘u’ for ‘you’, ‘w’ for ‘with’,
‘r ’ for ‘are’) and strange word combinations (e.g., ‘GoodBP2Weeks’, ‘EVERY2DAYS ’).
Such word combinations with missing whitespaces are nearly impossible to handle for
the computer programs.
Sometimes information is left out and some very weird sentences are formed (e.g., ‘(’when
2 abnomal in a week= true’ from twice)’, ‘GOOD after BAD from once a week’). These
sentences are difficult to understand for the human reader, therefore they are also pretty
hard if not impossible to process for the computer programs.
Another problem with manually created models are plans that are not activated/called.
Those plans exist, but there is no plan-pointer pointing to them, hence those plans are
never used (e.g., from a total number of 223 plans, 128 plans are not activated - about
57,4%). This unactivated plans might be discarded or forgotten plans resulting from the
fact that various people worked on them without an agreement about the exact modeling
strategy. The plans were created manually, nothing was taken from the original guideline
text and therefore some plans got lost during the working process.

In contrast, all of the automatically generated model’s plans are activated and actually
used.
The automatically generated model consists of text chunks that are taken from the
original guideline text. Therefore these plans are sometimes very long and confusing, for
example:

‘Obstetric Delivery AND should undergo an oral glucose tolerance test 6 to
12 weeks after delivery, using a two-hour 75 gram oral glucose tolerance test
AND Those with prediabetes should be counseled about their subsequent risk
AND They should have yearly assessment of glycemic status AND should
receive appropriate education and treatment AND She should also be given
advice regarding contraception and the planning of future pregnancies AND
should be counseled regarding the importance of good metabolic control prior
to any future pregnancies AND should be counseled regarding their risk AND
Drug therapy’

However, these long text chunks are split up in different plan-pointers, which makes them
easier to handle. As these plans are taken from the original guideline text, all typing and
grammatical errors (there are hardly any) must originate from the original guideline text.

18

It is also possible that the automatically created model extracts too much information
from the guideline document (e.g., the beginning of the next sentence is erroneously
extracted with the previous sentence) or that it extracts too little information from the
text (e.g., a sentence is cut off in the middle). These erroneously split up sentences and
incomplete text chunks could also be seen as grammatical errors. Another option is that
the model simply extracts irrelevant information.

Looking at the process structure of different models also leads to problems. Processes
might have the same semantic meaning but they can be expressed differently. There are
various ways to model a single process. Without exact rules each modeler can choose
among a set of variants to model a certain process.

3.2 Comparison of single activities of the models

In this step we want to check if there are corresponding activities within two models. The
manually created model consists of much more activities than the automatically created
model. A lot of the manually created model’s activities are not originating from the
guideline text, but are created by the modeler due to physicians’ input. In contrast, the
automatically created model’s activities are text chunks taken directly from the guideline
text.

To fully understand a process model the ambiguity of activity labels is a significant
part that has to be considered. There are different grammatical styles used in models:
the verb-object style (‘examine patient’) and the action-noun style (‘patient examining’).
Studies showed that verb-object labels are considered significantly less ambiguous and
more useful than action-noun labels or labels that follow neither of these styles [31].

Generally, the plan names are used for the comparison. If the label structured-text
contains more information than the label name then this text is used for the comparison
instead of the plan name. See Listing 3.1 for a brief example of a plan and a subplan in
Asbru.

1 <hybrid−asbru−plan id=" 17513 " name=" Ketonuria ">
2 <plan−body> <!−− parent p lan wi th subp lans −−>
3 <semi−formal−plan−body>
4 <subplans type=" s e q u e n t i a l l y ">
5 <plan−a c t i v a t i o n>
6 <plan−schema>
7 <plan−po in t e r id=" 90686 " name=" Ketones " />
8 </plan−schema>
9 </plan−a c t i v a t i o n>

10 <plan−a c t i v a t i o n>
11 <plan−schema>
12 <plan−po in t e r id=" 90851 " name=" Ketonuria " />
13 </plan−schema>

19

14 </plan−a c t i v a t i o n>
15 <wait−f o r>
16 <a l l></ a l l>
17 </wait−f o r>
18 </ subplans>
19 </semi−formal−plan−body>
20 </plan−body>
21 </ hybrid−asbru−plan>
22
23 <hybrid−asbru−plan id=" 90851 " name=" Ketonuria "> <!−− subp lan −−>
24 <plan−body>
25 <structured −t ex t>The pat i en t measures ketonur ia</ st ructured −t ex t>
26 <semi−formal−plan−body>
27 <s i n g l e −ac t i on isMandatory=" f a l s e ">
28 <plan−a c t i v a t i o n>
29 <patientDataEntry answerType=" numeric " pat i ent −data−

entry−type=" phys i ca l −examination " name=" " glID=" "
concept−key=" 90962 " concept−name=" Ketonuria " />

30 </plan−a c t i v a t i o n>
31 </ s i n g l e −ac t i on>
32 </semi−formal−plan−body>
33 </plan−body>
34 </ hybrid−asbru−plan>

Listing 3.1: Example of the plan structure.

The comparison is done by a syntactic and semantic comparison of the two texts.
The syntax might be quite different because of the various grammatical styles described
above. The semantics of a word might also vary due to the context. Therefore we look
for example for the existence of semantically equivalent or similar verbs (i.e., synonyms).
It would also be a possibility to look for hyponyms and hypernyms of nouns but this
is too expensive and not very effective. A hyponym is the minor term of a word and a
hypernym is the generic term of a word, e.g., ‘finger’ is a hyponym of ‘hand’; ‘hand’ is a
hypernym of ‘finger’.

3.2.1 Preprocessing

This step is necessary because of the challenges and errors introduced in Section 3.1.
Figure 3.2 shows the individual steps.

Figure 3.2: Overview of the preprocessing.

20

1. Unification

For a better handling and easier comparison of the labels they need to be unified:

1. All words are written in lower case.

2. All special characters and multiple whitespaces are deleted.

3. Written-out numbers are replaced by actual figures (e.g., ‘one’ becomes ‘1’).

4. All abbreviations are spelled in full.

5. The word ‘woman’ is replaced by ‘patient’ to standardize the patient’s gender and
to be independent of the guideline text.

2. Stop words removal

In the next step so-called stop words are deleted. These are very frequent words which
are not so important for the comparison of the texts because they have little information
value, e.g., ‘and’, ‘for’, ‘in’ [6].

3. Stemming

Then each word gets stemmed which means that it is reduced to its word stem, e.g.,
‘examining’ becomes ‘examine’, ‘ketonuria’ becomes ‘ketonuria’. Stemming generally cuts
off the end of a word and removes derivational affixes. Another quite similar technique
would be lemmatization which uses a vocabulary and morphological analysis of a word.
It returns the base or dictionary form of a word (called the lemma), e.g., ‘examining’
becomes ‘examine’, ‘ketonuria’ becomes ‘ketonurium’ [29].

4. Spell-checking

If a word cannot be stemmed it is assumed that this word is misspelled. Therefore such
a word is spell-checked and then the corrected word gets stemmed.

5. Synonyms of verbs

Synonyms of verbs are also identified to be used for the subsequent comparison.

With these few steps the activity labels are standardized and better suitable for
comparison. See Table 3.1 for an example of the above described steps.

21

original label preprocessed label
If the patient was NOT COMPLIANT
with the prescribed diet the nurse insists
the patient on the importance of eating
enough carbohydrates

patient compliant prescribe diet nurse
insist patient importance eat enough car-
bohydrate

Table 3.1: Example of preprocessing activity labels.

3.2.2 The comparison

We only compare plan names that have the same level (e.g., hybrid-asbru-plan).
For the actual comparison of the names similarity metrics are used (Levenshtein distance,
Smith-Waterman edit distance and Jaccard similarity using n-grams). Because of the
challenges explained in Section 3.1 a simple string comparison is not suitable.

The Levenshtein distance (dislevenshtein) is defined as the minimum number of char-
acter insertions, deletions and substitutions needed to transform word 1 into word 2. It
works best for strings with (nearly) similar length [9].
The Smith-Waterman edit distance (dissmith−waterman) is a string comparison technique
originally developed to find the optimal alignment between biological sequences (e.g.,
DNA, protein sequences). It is similar to the Levenshtein edit distance with the addition
that it allows gaps and also character specific match scores and costs. The five basic
operations (exact match between two characters, approximate match between two similar
characters, mismatch between two different characters, gap start penalty, gap continua-
tion penalty) each have a different match score. The final best score is the highest value
in the dynamic programming score matrix and with this a similarity value is calculated.
The Smith-Waterman edit distance works very well for compound names that contain
initials or abbreviated names because it allows gaps [10].
Using n-grams, a string is split into short substrings of length n (usually n = 2 (Bigrams)
or n = 3 (Trigrams)). The Jaccard similarity using n-grams (simjaccard) is defined as the
number of common n-grams (intersection) divided by the number of all n-grams (union)
[6]:

simjaccard(word1, word2) = |ngrams(word1) ∩ ngrams(word2)|
|ngrams(word1) ∪ ngrams(word2)|

These three similarity metrics are combined. Two plan names are defined as similar
if the three similarity metrics reach certain thresholds. I figured out the thresholds by
experimenting and testing different values and looking at the resulting values of corre-
sponding plans of artificially generated and existing data (in the domain of Gestational
Diabetes Management [3]).
Further, I differentiate according to the plan name length. If the plan name is a single
word it has high thresholds and is only compared to short names (one to three words).
As mentioned above, I also use synonyms of verbs for the comparison of plan names.
When comparing a single word to one to three words I look for common synonyms. Even

22

if the two names are below the thresholds, I consider them as a match if they have a
synonym in common. For short names (one to three words) the thresholds are higher
than for middle (four to six words) and long (seven and more words) names.
The following list shows how the three similarity metrics are combined and what their
approximate thresholds are:

• single word: ((dislevenshtein ≥∼ 0, 4) AND (simjaccard ≥∼ 0, 4)) OR
(dissmith−waterman = 1)

• one to three words: ((dislevenshtein ≥∼ 0, 5) AND (simjaccard ≥∼ 0, 5)) OR
(dissmith−waterman = 1)

• four to six words: ((dislevenshtein ≥∼ 0, 2) AND (simjaccard ≥∼ 0, 2) AND
(dissmith−waterman ≥∼ 0, 4)) OR (dissmith−waterman ≥∼ 0, 6)

• seven and more words: ((dislevenshtein ≥∼ 0, 4) AND (simjaccard ≥∼ 0, 4)) OR
((dislevenshtein ≥∼ 0, 1) AND (dissmith−waterman ≥∼ 0, 5))

3.3 Comparison of the process structure of the models

After comparing the plan names, in the next step the process structure of the plans is
compared. It is examined whether plans that correspond due to their plan names also
correspond in their structure.
We will use workflow patterns [47] to describe the process structure of the models.
A pattern is the abstraction from a concrete form which keeps recurring in specific
nonarbitrary contexts [48].
Workflows are case-based, i.e., every piece of work is executed for a specific case. Examples
for cases are an examination, a specific medical test, an order or a request for information.
The goal of workflow management is to handle cases as efficiently and effectively as
possible. A workflow process is designed to handle similar cases. Cases are handled by
executing tasks in a specific order. The workflow process definition specifies which tasks
need to be executed and in what order. Since tasks are executed in a specific order, it
is useful to identify conditions which correspond to causal dependencies between tasks.
Each task has pre- and postconditions: the preconditions should hold before the task is
executed and the postconditions should hold after execution of the task. A task which
needs to be executed for a specific case is called a work item. Most work items are
executed by a resource. A resource is either a machine (e.g., a printer, an ECG, a CT or
X-ray) or a person (e.g., physician, nurse). A resource class is a group of resources with
similar characteristics. If a resource class is based on the capabilities (i.e., functional
requirements) of its members, it is called a role. If the classification is based on the
structure of the organization, such a resource class is called an organizational unit (e.g.,
team or department). A work item which is being executed by a specific resource is called
an activity. Work items link cases and tasks. Activities link cases, tasks and resources
[45].

23

Figure 3.3: Three dimensional view of a workflow [45].

Figure 3.3 shows that a workflow has three dimensions: The case dimension signifies
the fact that all cases are handled individually. Clearly the cases influence each other
indirectly via the sharing of resources and data. In the process dimension, the workflow
process, i.e., the tasks and the routing along these tasks, is specified. The process
dimension defines which tasks need to be executed and in what order. In the resource
dimension, the resources are grouped into roles and organizational units. A workflow
can be visualized as a number of dots in the three dimensional view shown in Figure
3.3. Each dot represents either a work item (case + task) or an activity (case + task +
resource) [45].
The ultimate goal of workflow management is to make sure that the proper activities are
executed by the right person at the right time [45].
In general, we can distinguish three fundamental relations between activities of a process
model. The execution of two activities might happen either in strict order, exclusively or
in interleaving order. These relations state potential dependencies [52].

Workflow patterns correspond to routing constructs encountered when modeling and
analyzing workflows. They are typically realized in a specific language using one or
more constructs available for this language. However, several patterns are difficult, if
not impossible, to realize because sometimes workflow constructs available for a given
language are not sufficient to realize a given pattern [48].

For example: Basic Control-Flow Patterns are a class of patterns that capture elemen-
tary aspects of process control: Sequence, Parallel Split (AND-split), Synchronization
(AND-join), Exclusive Choice (XOR-split), Simple Merge (XOR-join) (see Figure 3.4)
[36, 48].

24

Figure 3.4: Sequence pattern (left) and Parallel Split pattern (right) (the patterns are
illustrated using the Coloured Petri-Net formalism [36]).

Another series of patterns characterizes more complex branching and merging con-
cepts: Multi-choice (OR-split), Synchronizing Merge, Multi-merge, Discriminator [36, 48].
However, there exist many more kinds of patterns, cf. [36, 48].
For some of the above mentioned patterns Asbru provides more than one possibility for
modeling. This has to be taken into account when comparing models.

There are 8 basic patterns and many more complex patterns (43 patterns in total
according to [33]). However, just a few of these pattern types appear in clinical guidelines.
In general, only about half of the workflow patterns used in business process modeling lan-
guages are supported by CIG languages [33]. Furthermore, only about half of the workflow
patterns are applicable for modeling CPGs [25]. But usually there are a lot of patterns
(of the same type) present in a guideline. According to [43] the most frequent patterns
appearing in a guideline are Sequence and Exclusive Choice. I decided to exemplarily look
at the Exclusive Choice pattern because it is more complex as it is linked with a condition.

3.3.1 The Exclusive Choice pattern

First of all I want to give a brief overview on the Exclusive Choice pattern for better
understanding.
The Exclusive Choice pattern directs the control flow to a particular task. It depends
on a logical condition based on a value of specific data or on a user decision. ‘In the
medical domain, this pattern allows enabling a particular action under certain clinical
circumstances. It also allows the choice among alternative courses of action that is
common in CPGs’ [25]. The Exclusive Choice pattern is usually followed by a Simple
Merge joining the branches to the subsequent task [25]. Figure 3.5 presents the structure
of the two patterns combined in BPMN.

25

Figure 3.5: BPMN’s Exclusive Choice and Simple Merge.

In Asbru there exist two ways to model the Exclusive Choice pattern: the procedural
approach and the declarative approach [25].

• The procedural approach: The Exclusive Choice pattern is modeled using the
if-then-else construct [25]. Figure 3.6 shows the structure of this pattern and
Listing 3.2 presents an example of the Exclusive Choice in GESHER, a tool for
editing computerized CPGs.

Figure 3.6: Structure of procedural approach of the Exclusive Choice pattern.

1 <hybrid−asbru−plan name=" Exc lus ive Choice ">
2 <plan−body>
3 <semi−formal−plan−body>
4 <s i n g l e −ac t i on>
5 <i f −then−e l s e> <!−− i f −−>
6 <simple−e x p r e s s i o n name=" Condit ion 1 ">
7 <concept name=" Condit ion 1 " />
8 </ simple−e x p r e s s i o n>
9 <then−branch> <!−− then −−>

26

10 <plan−a c t i v a t i o n>
11 <plan−schema>
12 <plan−po in t e r name=" Subplan A" />
13 </plan−schema>
14 </plan−a c t i v a t i o n>
15 </then−branch>
16 <e l s e −branch> <!−− e l s e −−>
17 <plan−a c t i v a t i o n>
18 <plan−schema>
19 <plan−po in t e r name=" Subplan B" />
20 </plan−schema>
21 </plan−a c t i v a t i o n>
22 </ e l s e −branch>
23 </ i f −then−e l s e>
24 </ s i n g l e −ac t i on>
25 </semi−formal−plan−body>
26 </plan−body>
27 </ hybrid−asbru−plan>

Listing 3.2: Example of if-then-else.

• The declarative approach: In this case alternatives are modeled as subplans and
all subplans have mutually-exclusive filter-preconditions that ensure the
execution of only one subplan. When one subplan is executed the parent plan
completes and thereby prevents the execution of the remaining subplans. This is
achieved by using the expression wait-for=one in the parent plan [25]. Figure
3.7 shows the structure of this pattern and Figure 3.8 shows the representation in
AsbruView. Listing 3.3 presents an example of the Exclusive Choice in LASSIE, a
tool for modeling computerized CPGs.

Figure 3.7: Structure of declarative approach of the Exclusive Choice pattern.

27

Figure 3.8: Structure of declarative approach of the Exclusive Choice pattern in Asbru-
View.

1 <hybrid−asbru−plan name=" Exc lus ive Choice "> <!−− Parent p lan −−>
2 <plan−body>
3 <subplans type=" any−order ">
4 <plan−a c t i v a t i o n>
5 <plan−schema>
6 <plan−po in t e r name=" Subplan A" />
7 </plan−schema>
8 </plan−a c t i v a t i o n>
9 <plan−a c t i v a t i o n>

10 <plan−schema>
11 <plan−po in t e r name=" Subplan B" />
12 </plan−schema>
13 </plan−a c t i v a t i o n>
14 <wait−f o r>
15 <one/>
16 </wait−f o r>
17 </ subplans>
18 </plan−body>
19 </ hybrid−asbru−plan>
20
21 <hybrid−asbru−plan name=" Subplan A"> <!−− Subplan A −−>
22 <c o n d i t i o n s>
23 <f i l t e r −precond i t i on> <!−− f i l t e r −precond i t i on −−>
24 <concept name=" Condit ion 1 " />
25 </ f i l t e r −precond i t i on>
26 </ c o n d i t i o n s>
27 <plan−body>
28 <s i n g l e −ac t i on>
29 <plan−a c t i v a t i o n>
30 <drug−p r e s c r i p t i o n name="DO SOMETHING" />
31 </plan−a c t i v a t i o n>
32 </ s i n g l e −ac t i on>
33 </plan−body>
34 </ hybrid−asbru−plan>

Listing 3.3: Example of filter-precondition.

if-then-else and filter-precondition do not match linguistically, but they
mean the same.

28

3.3.2 The comparison

Based on the description of the two different approaches to model the Exclusive Choice
pattern in the previous section, one can see that the structure cannot be compared directly.
In the procedural approach the condition for a subplan is present in the respective parent
plan. In contrast, in the declarative approach the condition for a subplan is located
directly in the subplan and the respective parent plan only points to the subplan.
So in order to be able to compare the structure of two models that use these two different
approaches, the structure of the models has to be standardized.

The procedural approach can be adapted to be better comparable with the declarative
approach. The if label is the condition for the subplan with the then label. Conse-
quently, the negated if label is the condition for the subplan with the else label. See
Table 3.2 for a description of the adaptation of the procedural approach.

procedural apporach adapted procedural approach
if

Condition 1
then Subplan A

Subplan A Condition 1
else Subplan B

Subplan B NOT Condition 1

Table 3.2: Adaptation of the procedural approach.

So the plans using the procedural approach have to be rewritten in the way that
each subplan also contains the condition of the parent plan leading to this subplan. See
Listing 3.4 for an example of the adapted procedural approach.

1 <hybrid−asbru−plan name=" Exc lus ive Choice "> <!−− Parent p lan −−>
2 <plan−body>
3 <subplans>
4 <plan−a c t i v a t i o n>
5 <plan−schema>
6 <plan−po in t e r name=" Subplan A" />
7 </plan−schema>
8 </plan−a c t i v a t i o n>
9 <plan−a c t i v a t i o n>

10 <plan−schema>
11 <plan−po in t e r name=" Subplan B" />
12 </plan−schema>
13 </plan−a c t i v a t i o n>
14 </ subplans>
15 </plan−body>
16 </ hybrid−asbru−plan>
17
18 <hybrid−asbru−plan name=" Subplan A"> <!−− Subplan A −−>

29

19 <c o n d i t i o n s> <!−− cond i t i on −−>
20 <concept name=" Condit ion 1 " />
21 </ c o n d i t i o n s>
22 <plan−body>
23 <s i n g l e −ac t i on>
24 <plan−a c t i v a t i o n>
25 <drug−p r e s c r i p t i o n name="ACTION" />
26 </plan−a c t i v a t i o n>
27 </ s i n g l e −ac t i on>
28 </plan−body>
29 </ hybrid−asbru−plan>
30
31 <hybrid−asbru−plan name=" Subplan B"> <!−− Subplan B −−>
32 <c o n d i t i o n s> <!−− negated cond i t i on −−>
33 <concept name="NOT Condit ion 1 " />
34 </ c o n d i t i o n s>
35 <plan−body>
36 <s i n g l e −ac t i on>
37 <plan−a c t i v a t i o n>
38 <drug−p r e s c r i p t i o n name="ACTION" />
39 </plan−a c t i v a t i o n>
40 </ s i n g l e −ac t i on>
41 </plan−body>
42 </ hybrid−asbru−plan>

Listing 3.4: Example of adapted procedural approach.

Thereby the structure of the plans using the adapted procedural approach is similar
to the structure of the plans which use the declarative approach. This adaptation makes
it possible to compare the structure of two models.

30

CHAPTER 4
Implementation

In this chapter I introduce the two different tools that were used for generating comput-
erized treatment plan models: GESHER for manually creating models and LASSIE for
automatically creating models.
Next, I show how I implemented the methods described in Chapter 3 prototypically and
finally I present the evaluation of the obtained results.

4.1 GESHER and LASSIE
We work with two tools for creating computerized treatment plan models: GESHER and
LASSIE.

4.1.1 GESHER

GESHER is a client application developed in C#. Modeling a CIG with the GESHER tool
is based on the CPG document as well as on the expertise coming from medical experts
and knowledge engineers. The experts orientate by the guideline document and adapt it.
A lot of information does not have its origin in the original guideline document but is
created by the domain experts as a result of their expertise and experience. GESHER
has three important services: specification of procedural clinical knowledge, specification
of declarative clinical knowledge and exploration of the knowledge embodied by a given
clinical guideline [20]. In GESHER the procedural knowledge is directly modeled using a
model-centric approach (see Figure 4.1). A hybrid approach applying both document-
centric and model-centric techniques is used for modeling the declarative knowledge (see
Figure 4.2) [3].
Figure 4.1 shows the hierarchical plan builder in GESHER that is used for specifying the
procedural aspects of the guideline. The user selects plans from different types (upper
left box) and adds them to the hierarchical flow chart (center box). For each plan several
properties can be defined (middle right box) and for composite plans the procedural

31

aspects are specified (upper right box). The sub-plan hierarchy is shown in a tree-view
display (lower left box). A list of declarative concepts is defined (lower right box) [3, 20].
For examples of GESHER plans see Appendix A.

Figure 4.1: GESHER user interface - procedural knowledge.

Figure 4.2: GESHER user interface - declarative knowledge.

32

4.1.2 LASSIE

LASSIE is an acronym for ‘modeLing treAtment proceSSes using Information Extraction’.
LASSIE is developed in Java and uses the NLP framework GATE. It uses IE techniques
to automatically identify procedural information in medical natural language text (i.e.,
CPGs) and consists of manually generated rules using a medical dictionary to extract
information. LASSIE’s single source of information is the original guideline document
itself. In the first version LASSIE’s multi-step process uses intermediate representations to
transform clinical guidelines and protocols (CGPs) into a formal representation language.
The intermediate representations are XML-based documents that are only used to semi-
automatically generate a formal representation in any guideline representation language.
Therefore LASSIE automates parts of the modeling process and structures the guideline
information. LASSIE identifies text chunks in the guideline document that refer to
procedural knowledge (i.e., activities and associated conditions), structures them in a
hierarchy and transforms them into Asbru [3, 23].
Figure 4.3 describes the flow chart of LASSIE’s steps [3].

Figure 4.3: Flow chart of LASSIE’s knowledge generation [3].

Leveraging LASSIE independently of the clinical specialty machine learning models
for extracting parts of the procedural knowledge were trained and the UMLS is used to
provide an extensive set of clinical terminology systems [3].
For examples of LASSIE plans see Appendix B.

33

4.2 Implementation of the method

As a basis for the implementation of the method presented in Chapter 3 we used a
guideline for gestational diabetes mellitus as a proof of concept. In this guideline
gestational diabetes mellitus (GDM) ‘is defined as carbohydrate intolerance that begins
or is first recognized during pregnancy’ [35].
See Appendix C for more information about the GDM guideline and the text itself.
See Figure 4.4 for a tree visualization of LASSIE’s plans of the GDM guideline and
Figure 4.5 for a tree visualization of GESHER’s plans of the GDM guideline.

Figure 4.4: Tree view of LASSIE’s plans of the GDM guideline.

34

Figure 4.5: GESHER’s plan hierarchy according to the GDM guideline.
35

4.2.1 Comparison of single activities of the models

I used the well-known programming language Java to implement the various steps of the
comparison of single activities.

1. Preprocessing

For the stop word removal I used a list of common English words1, see Listing 4.1.
’ t i s ’ twas a a b le about a c r o s s a f t e r ain ’ t a l l almost a l s o am among an and any are
aren ’ t as at be because been but by can can ’ t cannot could could ’ ve couldn ’ t dear did
didn ’ t do does doesn ’ t don ’ t e i t h e r e l s e ever every f o r from get got had has hasn ’ t
have he he ’ d he ’ l l he ’ s her hers him h i s how how ’ d how ’ l l how ’ s however i i ’ d i ’ l l i ’m
i ’ ve i f in i n t o i s i sn ’ t i t i t ’ s i t s j u s t l e a s t l e t l i k e l i k e l y may me might might ’ ve
mightn ’ t most must must ’ ve mustn ’ t my n e i t h e r no nor not o f o f f o f t e n on only or other
our own r a t h e r s a i d say says shan ’ t she she ’ d she ’ l l she ’ s should should ’ ve shouldn ’ t
s i n c e so some than that that ’ l l that ’ s the t h e i r them then t h e r e there ’ s t h e s e they
they ’ d they ’ l l they ’ re they ’ ve t h i s t i s to too twas us wants was wasn ’ t we we ’ d we ’ l l
we ’ re were weren ’ t what what ’ d what ’ s when when when ’ d when ’ l l when ’ s where where ’ d
where ’ l l where ’ s which whi le who who ’ d who ’ l l who ’ s whom why why ’ d why ’ l l why ’ s w i l l
with won ’ t would would ’ ve wouldn ’ t yet you you ’ d you ’ l l you ’ re you ’ ve your

Listing 4.1: List of stop words.

Next, each word gets stemmed. I tried both stemming and lemmatization. However,
stemming yielded better results in the case of this presentation of the problem (cf. the
‘ketonuria’ example in Section 3.2.1) and it is also faster. I stemmed the words using
WordNet which is a lexical database of English words [44]. Figure 4.6 shows an example
of a WordNet database entry.

Figure 4.6: Example of a WordNet database entry.

The words that cannot be stemmed are spell-checked using an English medical
dictionary and then the program tries to stem the corrected word again. Spell-checking
all words at the beginning would be too expensive and time consuming.
I also look for synonyms of verbs to use them for the subsequent comparison. For that I
also used WordNet [44].

1from http://www.textfixer.com/resources/common-english-words.php, accessed:
April 5, 2016

36

http://www.textfixer.com/resources/common-english-words.php

2. The comparison

For the implementation of the similarity metrics introduced in Section 3.2.2 I used the
Java library SimMetrics2. It provides different kinds of similarity and distance metrics.

4.2.2 Comparison of the process structure of the models

The results from the activity comparison are the input for the structure comparison.
I used XSLT templates to unify the modelings to one general model pattern to enable
the comparison. As a proof of concept I implemented the unification of the Exclusive
Choice pattern that can be modeled in two different ways in Asbru (cf. Section 3.3.1).
I accomplished the unification by developing XSLT templates that take XML files as
input and can generate output files of different formats or languages (cf. [25]). In our
case the output is still XML, but the concepts of the underlying language are changed
by preserving the underlying semantics (see Listing 4.2). See Listing 4.3 for an exam-
ple of an input of the XSLT templates and Listing 4.4 for the respective output of the
XSLT templates. And then I compared the equivalent plans I received in the previous step.

1 <xsl:template match=" i f− then−e l se ">
2 <xsl:element name=" hybrid−asbru−plan ">
3 <xsl :attribute name=" id ">
4 <xsl:value−of s e l e c t=" . . / . . / . . / @id " />
5 </ xsl :attribute>
6 <xsl :attribute name="name">
7 <xsl:value−of s e l e c t=" . . / . . / . . / @name" />
8 </ xsl :attribute>
9 <xsl:element name=" plan−body ">

10 <xsl:element name=" semi−formal−plan−body ">
11 <xsl :attribute name=" type ">any−order</ xsl :attribute>
12 <xsl:element name=" wait− for ">
13 <xsl:element name=" one " />
14 </xsl:element>
15 <xsl:element name=" subplans ">
16 <xsl:for−each s e l e c t=" // then−branch/ p lan−act ivat ion /

plan−schema/ plan−pointer ">
17 <!−− s p e c i f y the c h i l d p lans −−>
18 <xsl:apply−templates s e l e c t=" . " mode=" p lan−act ivat ion " />
19 </xsl:for−each>
20 </xsl:element>
21 </xsl:element>
22 </xsl:element>
23 </xsl:element>
24 </xsl:template>

Listing 4.2: Part of XSLT template to transform procedural to declarative Exclusive
Choice pattern.

2from https://sourceforge.net/projects/simmetrics/, accessed: April 6, 2016

37

https://sourceforge.net/projects/simmetrics/

1 <hybrid−asbru−plan id=" 19969 " name=" i f pa t i en t ea t ing enought carbohydrates
=Yes ">

2 <plan−body>
3 <semi−formal−plan−body>
4 <s i n g l e −ac t i on>
5 <i f −then−e l s e>
6 <simple−e x p r e s s i o n name=" Eating enough carbohydorates=yes ">
7 <concept name=" Eating enough carbohydorates=yes " />
8 </ simple−e x p r e s s i o n>
9 <then−branch>

10 <plan−a c t i v a t i o n>
11 <plan−schema>
12 <plan−po in t e r id=" 19972 " name=" Cal l back pa t i en t

ea t ing enought carbohydrates=Yes " />
13 </plan−schema>
14 </plan−a c t i v a t i o n>
15 </then−branch>
16 <e l s e −branch>
17 <plan−a c t i v a t i o n>
18 <plan−schema>
19 <plan−po in t e r id=" 19973 " name=" I n s i s t on the

importance o f ea t ing the recommended amount o f
carbohydrates " />

20 </plan−schema>
21 </plan−a c t i v a t i o n>
22 </ e l s e −branch>
23 </ i f −then−e l s e>
24 </ s i n g l e −ac t i on>
25 </semi−formal−plan−body>
26 </plan−body>
27 </ hybrid−asbru−plan>
28
29 <hybrid−asbru−plan id=" 19972 " name=" Cal l back pa t i en t ea t ing enought

carbohydrates=Yes ">
30 <plan−body>
31 <semi−formal−plan−body>
32 <s i n g l e −ac t i on>
33 <plan−a c t i v a t i o n>
34 <procedure name=" Cal l back pa t i en t ea t ing enought

carbohydrates=Yes " />
35 </plan−a c t i v a t i o n>
36 </ s i n g l e −ac t i on>
37 </semi−formal−plan−body>
38 </plan−body>
39 </ hybrid−asbru−plan>
40
41 <hybrid−asbru−plan id=" 19973 " name=" I n s i s t on the importance o f ea t ing the

recommended amount o f carbohydrates ">
42 <plan−body>
43 <semi−formal−plan−body>
44 <s i n g l e −ac t i on>
45 <plan−a c t i v a t i o n>

38

46 <procedure name=" I n s i s t on the importance o f ea t ing the
recommended amount o f carbohydrates " />

47 </plan−a c t i v a t i o n>
48 </ s i n g l e −ac t i on>
49 </semi−formal−plan−body>
50 </plan−body>
51 </ hybrid−asbru−plan>

Listing 4.3: Example of an input of the XSLT templates.

1 <hybrid−asbru−plan id=" 19969 " name=" i f pa t i en t ea t ing enought carbohydrates
=Yes ">

2 <plan−body>
3 <semi−formal−plan−body>
4 <subplans type=" any−order ">
5 <wait−f o r>
6 <one/>
7 </wait−f o r>
8 <plan−a c t i v a t i o n>
9 <plan−schema>

10 <plan−po in t e r id=" 19972 " name=" Cal l back pa t i en t ea t ing
enought carbohydrates=Yes " />

11 </plan−schema>
12 </plan−a c t i v a t i o n>
13 <plan−a c t i v a t i o n>
14 <plan−schema>
15 <plan−po in t e r id=" 19973 " name=" I n s i s t on the importance

o f ea t ing the recommended amount o f carbohydrates " />
16 </plan−schema>
17 </plan−a c t i v a t i o n>
18 </ subplans>
19 </semi−formal−plan−body>
20 </plan−body>
21 </ hybrid−asbru−plan>
22
23 <hybrid−asbru−plan id=" 19972 " name=" Cal l back pa t i en t ea t ing enought

carbohydrates=Yes ">
24 <c o n d i t i o n s>
25 <f i l t e r −precond i t i on>
26 <concept name=" Eating enough carbohydorates=yes " />
27 </ f i l t e r −precond i t i on>
28 </ c o n d i t i o n s>
29 <plan−body>
30 <semi−formal−plan−body>
31 <s i n g l e −ac t i on>
32 <plan−a c t i v a t i o n>
33 <procedure name=" Cal l back pa t i en t ea t ing enought

carbohydrates=Yes " />
34 </plan−a c t i v a t i o n>
35 </ s i n g l e −ac t i on>
36 </semi−formal−plan−body>
37 </plan−body>

39

38 </ hybrid−asbru−plan>
39
40 <hybrid−asbru−plan id=" 19973 " name=" I n s i s t on the importance o f ea t ing the

recommended amount o f carbohydrates ">
41 <c o n d i t i o n s>
42 <f i l t e r −precond i t i on>
43 <concept name="NOT Eating enough carbohydorates=yes " />
44 </ f i l t e r −precond i t i on>
45 </ c o n d i t i o n s>
46 <plan−body>
47 <semi−formal−plan−body>
48 <s i n g l e −ac t i on>
49 <plan−a c t i v a t i o n>
50 <procedure name=" I n s i s t on the importance o f ea t ing the

recommended amount o f carbohydrates " />
51 </plan−a c t i v a t i o n>
52 </ s i n g l e −ac t i on>
53 </semi−formal−plan−body>
54 </plan−body>
55 </ hybrid−asbru−plan>

Listing 4.4: Example of an output of the XSLT templates.

4.3 Evaluation

For the evaluation we compare the GDM guideline modeled with GESHER and modeled
with LASSIE.
First, we evaluate the ‘activity’ and ‘condition’ information found by LASSIE to see
how much of the original guideline text is present in LASSIE. Second, we evaluate how
many of the GESHER plans and LASSIE plans correspond to know if and how good the
automatically generated model finds the same information as present in the manually
generated model. Finally, the process structure of matching plans is evaluated to examine
if corresponding plans also have a corresponding structure.
For the evaluation of the information found by LASSIE and the plans recall and precision
measures are used. However, these values cannot be used for the evaluation of the process
structure based on workflow patterns.
The recall score measures the ratio of correct information extracted from the text against
all the available information present in the text. The precision score measures the ratio of
correct information that was extracted against all the information that was extracted [24].

We evaluated our results according to Table 4.1 [28]:

40

actual (ACT) the number of slot fillers generated by the system
(= COR + PAR + INC)

correct (COR) the number of correct slot fillers generated by the system
partial (PAR) the number of partially correct slot fillers generated by the system

incorrect (INC) the number of incorrect slot fillers generated by the system
missing (MIS) the number of slot fillers erroneously not generated by the system
possible (POS) the number of slot fillers according to the key target templates
recall (REC) the ratio of COR plus 0,5*PAR slot fillers to POS slot fillers

precision (PRE) the ratio of COR plus 0,5*PAR slot fillers to ACT slot fillers

Table 4.1: Scoring key for the evaluation [28, p. 5].

The F-Measure combines recall and precision to get one value for the evaluation of a
system [27]:

F = (β2 + 1) ∗ precision ∗ recall
β2 ∗ precision+ recall

Here β is a weighting parameter. In the case of this evaluation, I chose β = 1 which is
the harmonic mean [27].

4.3.1 Evaluation of ‘activity’ and ‘condition’ information found by
LASSIE

LASSIE can identify ‘activity’ and ‘condition’ text chunks in guidelines, but also use
pre-annotated documents for improved processing output.
In this section we want to evaluate how many of the original manually created ‘activity’
and ‘condition’ markups are found by LASSIE. For the original manually created markups
see Appendix C. The results are displayed in Table 4.2 and 4.3.

actual (ACT) 39
correct (COR) 15
partial (PAR) 12

incorrect (INC) 12
missing (MIS) 22
possible (POS) 49
recall (REC) 0,4286

precision (PRE) 0,5385
F-Measure 0,4773

Table 4.2: Evaluation of LASSIE’s ‘activity’
markups.

actual (ACT) 27
correct (COR) 19
partial (PAR) 4

incorrect (INC) 4
missing (MIS) 17
possible (POS) 40
recall (REC) 0,525

precision (PRE) 0,7778
F-Measure 0,6269

Table 4.3: Evaluation of LASSIE’s ‘condi-
tion’ markups.

Originally there are 49 ‘activity’ and 40 ‘condition’ markups in the guideline document.
LASSIE finds 39 ‘activity’ and 27 ‘condition’ markups. Of these markups 15 ‘activity’ and

41

19 ‘condition’ markups are correctly identified, 12 ‘activity’ and 4 ‘condition’ markups
are partially correctly identified and 12 ‘activity’ and 4 ‘condition’ markups are wrongly
identified. 22 ‘activity’ and 17 ‘condition’ markups of the original markups are not
identified at all by LASSIE.
All in all precision (0,5385 and 0,7778) and recall (0,4286 and 0,525) as well as the
F-Measure (0,4773 and 0,6269) are very promising for both ‘activity’ and ‘condition’
markups.

4.3.2 Evaluation of the plans

The next step is to evaluate if or how much the plans of the automatically generated
model correspond to the plans of the manually generated model.
Each LASSIE plan name is compared to each GESHER plan name according to Section
3.2. This comparison yielded the results displayed in Table 4.4 and 4.5.

total number of plans 54
total number of matches 20

matches in % 37,037%
total number of mismatches 34

mismatches in % 62,963%

Table 4.4: LASSIE’s plans.

total number of plans 223
total number of matches 45

matches in % 20,179%
total number of mismatches 178

mismatches in % 79,821%

Table 4.5: GESHER’s plans.

The GDM guideline consists of 54 LASSIE and 223 GESHER plans including the
orphaned plans. Eventually, 20 of LASSIE’s plans could be matched to 45 of GESHER’s
plans.
These numbers led to the following evaluation results shown in Table 4.6:

recall 0,101
precision 0,37

F-Measure 0,159

Table 4.6: Evaluation of the plans.

Recall is a measure of the percentage of information available that is actually found.
It provides information about how good the system finds what is relevant. In this case
about 10% of correct information was found by the LASSIE system [12].
Precision is a measure of the percentage correctness of the information produced. It
tells how good the system sorts out what is irrelevant. So about 37% of the extracted
information by LASSIE was actually correct information [12].

At this point it is important to mention that 57,4% of GESHER’s plans (128 plans)
are never used in the model (orphaned plans). If we subtract these plans from to total

42

number of GESHER plans, LASSIE actually finds 28,57% of the GESHER plans (see
Table 4.7 and 4.8).

total number of plans 95
total number of matches 45

matches in % 47,368%
total number of mismatches 50

mismatches in % 52,632%

Table 4.7: GESHER’s plans without or-
phaned plans.

recall 0,2857
precision 0,37

F-Measure 0,323

Table 4.8: Evaluation of the plans without
orphaned plans.

These values do not seem to be that great. An attempt to explain these results are
the challenges presented in Section 3.1. Furthermore, it has to be considered that the
GESHER CIG contains additional concepts (see Hatsek et al. [20]: only about 50% of
the information comes from the original document) and therefore LASSIE can never find
these concepts as they are not present in the original guideline text. It is also often the
case that only parts of a guideline are used to generate the CIG model. It is common
that entire chapters are left out by the modeler because the information is considered
irrelevant. But in contrast LASSIE looks through the whole guideline document and
extracts information without leaving out any part of the guideline text.

4.3.3 Evaluation of the process structure

The input for the structure comparison are the matching plans resulting from the activity
comparison.
I identified and searched for the Exclusive Choice pattern manually in the models:

• GESHER uses the procedural approach.
19 GESHER plans of the GDM guideline with this pattern are found.
See Listing A.1 for an example of a GESHER plan.

• LASSIE uses the declarative approach.
21 LASSIE plans of the GDM guideline with this pattern are found.
See Listing B.2 for an example of a LASSIE plan.

The same amount of patterns and plans respectively were found by our automatic
identification method using XSLT templates.
Among these plans the matches resulting from the activity comparison were examined.
Table 4.9 shows all LASSIE plans with filter-precondition (first column) and
all GESHER plans with if-then-else (third column). The corresponding GESHER
matches to the LASSIE plans with filter-precondition are shown in the second
column. The corresponding LASSIE matches to the GESHER plans with if-then-else
are shown in the fourth column. There are three matches where both the LASSIE plan

43

has filter-precondition and the GESHER plan has if-then-else (highlighted
gray). In the other cases there is either no match to the plan or the matched plan does
not have the pattern. Some plans also have more than one matching plan.

LASSIE GESHER GESHER LASSIE
filter-precondition Match if-then-else Match

90681 19908 19908 17518
" 19916 " 90681

90685 no Match " 90854
90686 19860 19913 17518
90689 19972 19919 no Match

" 19973 19922 90697
" 19974 19958 no Match

90695 no Match 19969 no Match
90696 no Match 19980 no Match
90697 19922 19984 no Match
90699 no Match 20002 no Match
90700 no Match 20011 no Match
90701 no Match 20035 no Match
90705 no Match 20041 no Match
90712 no Match 20050 no Match
90846 no Match 20060 no Match
90849 20091 20134 no Match

" 20093 20137 no Match
" 20094 20191 no Match
" 20115 20193 no Match
" 20117 20210 no Match
" 20118

90850 no Match
90852 19975
90853 no Match
90854 19908
90855 no Match
90859 no Match
90860 no Match

21 19

Table 4.9: LASSIE filter-precondition vs. GESHER if-then-else.

There are only a few matching plans containing the selected pattern. I compared the
activities of the plans manually because the language of the conditions is too different. It
is difficult to identify the semantics of the conditions and to compare them as they often
use negations. But with the transformation introduced in Section 3.3.2 the plans have
the same structure and are easier to compare.

Comparing the process structure of the LASSIE and GESHER plans must be seen
critically. LASSIE looks for key words in the original guideline text such as ‘if...’:

‘ If the patient was NOT COMPLIANT with the prescribed diet︸ ︷︷ ︸
condition

,

the nurse insists the patient on the importance of eating enough carbohydrates︸ ︷︷ ︸
activity

.’

The first part of this sentence is identified as a condition because of the trigger word ‘if’.
As a consequence the second part after the comma must be the corresponding activity.
Whereas GESHER’s manually generated plans reflect the interpretation of the guideline

44

text by the modeler.

The LASSIE plan #90697 with the filter-precondition structure (Listing B.2
in Appendix B) and the GESHER plan #19922 with the if-then-else structure
(Listing A.1 in Appendix A) are a match (see Table 4.10).
These two plans match because their activity labels are very similar, especially the
filter-precondition and the if.

LASSIE plan #90697 GESHER plan #19922
filter-precondition if
If the patient was not compliant for three
or more different meals in a period of
one week

Patient not compliance for 3 or more
different (OR SAME) meals in PAST
week

plan-body then
insulin therapy should be started Reference: consider insulin notification

else
change nutritional prescription for pa-
tient

Table 4.10: Structure of two matching plans.

However, there are also matches where only the LASSIE plan has the filter-
precondition structure or only the GESHER plan has the if-then-else structure.
The LASSIE plan #90689 with the filter-precondition structure (Listing B.1 in
Appendix B) and the GESHER plan #19973 (Listing A.3 in Appendix A) are a match.
These plans do not share the same structure. However, the superior GESHER plan
#19969 (Listing A.2 in Appendix A) which calls the plan #19973 does in fact have the
if-then-else structure (see Tables 4.11 and 4.12).

LASSIE plan #90689
filter-precondition

If the patient was NOT COMPLIANT with the prescribed diet
plan-body

the nurse insists the patient on the importance of eating enough carbohydrates

Table 4.11: Structure of LASSIE plan #90689.

45

GESHER plan #19969 GESHER plan #19972 GESHER plan #19973
if
Eating enough carbohydo-
rates=yes
then (plan-pointer

ID=19972)
plan-body

Call back patient eat-
ing enought carbohy-
drates=Yes

else (plan-pointer

ID=19973)
plan-body

Insist on the importance
of eating the recommended
amount of carbohydrates

Table 4.12: Structure of GESHER plan #19969 and subplans #19972 and #19973.

Figure 4.7 visualizes the procedural knowledge of the GESHER plan #19969 and its
subplans.

Figure 4.7: GESHER plan #19969 (with key on the right).

The two structurally equivalent plans #90689 (LASSIE) and #19969 (GESHER) are
not a match because their activity labels are too different. The labels (especially the
filter-precondition and the if) do not so much differ in their meaning, but they
differ a lot in the words that are used to describe the condition. The subplan #19973 of
#19969 (GESHER) matches the plan #90689 (LASSIE), but has only a simple structure.
If we transform the plan #19973 (GESHER) according to 3.3.2, then we get an activity
and a structure match between the LASSIE plan #90689 and the adapted GESHER
plan #19973 (see Table 4.13).

46

LASSIE plan #90689 adapted GESHER plan #19973
filter-precondition condition
If the patient was NOT COMPLIANT
with the prescribed diet Eating enough carbohydorates=NO
plan-body plan-body
the nurse insists the patient on the im-
portance of eating enough carbohydrates

Insist on the importance of eating the
recommended amount of carbohydrates

Table 4.13: Adapted GESHER plan matches LASSIE plan.

47

CHAPTER 5
Conclusion

In order to compare two models of a CPG I developed methods for the comparison of the
activities and the process structure of the models and implemented them using Java and
XSLT templates. I evaluated these methods by testing them with a guideline for GDM.

At first the approach to solve the presented problem of evaluating automatically and
manually created treatment plan models seemed pretty straightforward and manageable.
However, while implementing the presented methods prototypically it turned out that
there might not exist ‘the’ one overall solution to this problem.
In summary, the automatic model generated with LASSIE finds 43% of the original
manually created ‘activity’ markups and 53% of the original manually created ‘condition’
markups. 37% of LASSIE’s plans match the manually created plans using the GESHER
tool. All in all LASSIE finds 10% of the GESHER plans. If we ignore the GESHER
plans that are never used, LASSIE actually finds 29% of the GESHER plans.
Looking at the process structure of the two different models shows that there are hardly
any matching plans that also have a corresponding structure.

A big challenge when comparing the two models appeared to be the two different
ways in which the automatical and manual model were created. This circumstance made
the comparison of the two models harder and could also be seen as one of the main
reasons why not more matches were found. Another reason for not obtaining better
results is the general lack of common rules for creating a CPG model such as [31].

All in all, it would be desirable to have standards and strict rules in the area of CPG
modeling. This would not only make the creation of a model and the comparison of two
different models easier, but also improve the readability and usability of the models in
the daily working process of medical staff.

49

Bibliography

[1] GATE general architecture for text engineering. c©The University of Sheffield,
1995-2015. https://gate.ac.uk/. Accessed: November 2, 2015.

[2] Gestational diabetes. From Wikipedia, the free encyclopedia, https://en.
wikipedia.org/wiki/Gestational_diabetes. Accessed: August 18, 2015.

[3] Deliverable 3.2: Knowledge Acquisition Tools Prototype Design Documents. Mo-
biGuide Guiding Patients Anytime Everywhere, 2013.

[4] Deliverable 4.1: CIGs KB. MobiGuide Guiding Patients Anytime Everywhere, 2014.

[5] Wolfgang Aigner, Katharina Kaiser, and Silvia Miksch. Visualization Methods to
Support Guideline-Based Care Management. In ten Teije et al. [37], chapter 8, pages
140–159. ISBN 978-1-58603-873-1.

[6] Abdulla Ali. Textual Similarity. Bachelor Thesis, Technical University of Denmark,
Informatics and Mathematical Modelling, 2011.

[7] Riccardo Bellazzi, Ameen Abu-Hanna, and Jim Hunter, editors. Artificial Intelligence
in Medicine, 11th Conference on Artificial Intelligence in Medicine, AIME 2007,
Amsterdam, The Netherlands, July 7-11, 2007, Proceedings, volume 4594 of Lecture
Notes in Computer Science. Springer, 2007. ISBN 978-3-540-73598-4.

[8] Ugur Cayoglu, Remco Dijkman, Marlon Dumas, Peter Fettke, Luciano García-
Bañuelos, Philip Hake, Christopher Klinkmüller, Henrik Leopold, André Lud-
wig, Peter Loos, Jan Mendling, Andreas Oberweis, Andreas Schoknecht, Eitam
Sheetrit, Tom Thaler, Meike Ullrich, Ingo Weber, and Matthias Weidlich. The
Process Model Matching Contest 2013. 4th Int. Workshop on Process Model Col-
lections (Management and Reuse), http://processcollections.org/past/
2013-2/matching-contest, 2013. Accessed: June 22, 2015.

[9] Hao Chen. String Metrics and Word Similarity applied to Information Retrieval.
Master Thesis, University of Eastern Finland, School of Computing, 2012.

[10] Peter Christen. Data Matching: Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Springer, 2012. ISBN 978-3-642-31163-5.

51

https://gate.ac.uk/
https://en.wikipedia.org/wiki/Gestational_diabetes
https://en.wikipedia.org/wiki/Gestational_diabetes
http://processcollections.org/past/2013-2/matching-contest
http://processcollections.org/past/2013-2/matching-contest

[11] Paul De Clercq, Katharina Kaiser, and Arie Hasman. Computer-interpretable
Guideline Formalisms. In ten Teije et al. [37], chapter 2, pages 22–43. ISBN
978-1-58603-873-1.

[12] Robert Dale, Hermann Moisl, and Harold Somers, editors. Handbook of Natural
Language Processing. CRC Press, 2000. ISBN 978-0824790004.

[13] Kerstin Denecke. Using Semantic Links for Information Extraction and Semantic
Representation.

[14] Kerstin Denecke and Jochen Bernauer. Extracting Specific Medical Data Using
Semantic Structures. In Bellazzi et al. [7], pages 257–264. ISBN 978-3-540-73598-4.

[15] Kerstin Denecke, Inga Kohlhof, and Jochen Bernauer. Use Of Multiaxial Indexing
for Information Extraction From Medical Texts.

[16] Remco Dijkman, Marlon Dumas, and Luciano García-Bañuelos. Graph Matching
Algorithms for Business Process Model Similarity Search. In Proceedings of the 7th
International Conference on Business Process Management. BPM ’09, pages 48–63.
Berlin, Heidelberg, Springer-Verlag, 2009.

[17] Remco Dijkman, Marlon Dumas, Boudewijn van Dongen, Reina Käärik, and Jan
Mendling. Similarity of business process models: Metrics and evaluation. Information
Systems (IS), 36(2):498–516, 2011. Elsevier B.V.

[18] Marc Ehrig, Agnes Koschmider, and Andreas Oberweis. Measuring Similarity
between Semantic Business Process Models. In Proceedings of the 4th Asia-Pacific
conference on Conceptual modelling, volume 67, pages 71–80. Australian Computer
Science Communications, 2007.

[19] John Fox and Robert Dunlop. OpenClinical knowledge management for medical care:
PROforma. c©Copyright OpenClinical 2002-2011, http://www.openclinical.
org/gmm_proforma.html. Accessed: October 28, 2015.

[20] Avner Hatsek, Yuval Shahar, Meirav Taieb-Maimon, Erez Shalom, Denis Klimov,
and Eitan Lunenfeld. A Scalable Architecture for Incremental Specification and
Maintenance of Procedural and Declarative Clinical Decision-Support Knowledge.
The Open Medical Informatics Journal, 4:255–277, 2010.

[21] Arjen Hommersom, Perry Groot, Michael Balser, and Peter Lucas. Formal Methods
for Verification of Clinical Practice Guidelines. In ten Teije et al. [37], chapter 4,
pages 63–80. ISBN 978-1-58603-873-1.

[22] David Isern and Antonio Moreno. Computer-based execution of clinical guidelines:
A review. International Journal of Medical Informatics, 77(12):787–808, 2008.

52

http://www.openclinical.org/gmm_proforma.html
http://www.openclinical.org/gmm_proforma.html

[23] Katharina Kaiser. LASSIE : Modeling Treatment Processes Using Information
Extraction. Doktorarbeit, Institute of Software Technology and Interactive Systems
[E188], Vienna University of Technology, Faculty of Informatics, October 28, 2005.

[24] Katharina Kaiser, Cem Akkaya, and Silvia Miksch. How can information extraction
ease formalizing treatment processes in clinical practice guidelines? A method and
its evaluation. Artificial Intelligence in Medicine, 39(2):151–163, February 2007.

[25] Katharina Kaiser and Mar Marcos. Leveraging workflow control patterns in the
domain of clinical practice guidelines. BMC Medical Informatics and Decision
Making, 16(20), 2016.

[26] Christopher Klinkmüller, Ingo Weber, Jan Mendling, Henrik Leopold, and André
Ludwig. Increasing Recall of Process Model Matching by Improved Activity Label
Matching. In Business Process Management, Lecture Notes in Computer Science,
volume 8094, pages 211–218, 2013.

[27] Christoph Kurek. Ein Vergleich der Methoden automatisierter Dublettenerken-
nung. Diplomarbeit, Universität Hamburg, Fachbereich Informatik, Arbeitsbereich
Softwaretechnik, 2011.

[28] W. Lehnert, C. Cardie, D. Fisher, J. McCarthy, E. Riloff, and S. Soderland. Eval-
uating an Information Extraction System. Journal of IntegratedComputer-Aided
Engineering, 1(6), 1994.

[29] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. An Introduction
to Information Retrieval. Online edition, Cambridge University Press, Cambridge,
England, http://www-nlp.stanford.edu/IR-book/, 2009. Accessed: Octo-
ber 14, 2015.

[30] Martin Meitz, Henrik Leopold, and Jan Mendling. An Approach to Support Process
Model Validation based on Text Generation. EMISA Forum, 33(2):7–21, August
2013.

[31] J. Mendling, H.A. Reijers, and W.M.P. van der Aalst. Seven Process Modeling
Guidelines (7PMG). Information and Software Technology, 52(2):127–136, 2010.

[32] Jan Mendling. Empirical Studies in Process Model Verification. LNCS Transactions
on Petri Nets and Other Models of Concurrency (ToPNoC). Special Issue on Con-
currency in Process-Aware Information Systems, 2:208–224, 2009. Springer-Verlag.

[33] Nataliya Mulyar, Wil M. P. van der Aalst, and Mor Peleg. Research Paper: A Pattern-
based Analysis of Clinical Computer-interpretable Guideline Modeling Languages.
Journal of the American Medical Informatics Association, 14(6):781–787, 2007.

[34] Mor Peleg, Samson Tu, Jonathan Bury, Paolo Ciccarese, John Fox, Robert A.
Greenes, Richard Hall, Peter D. Johnson, Neill Jones, Anand Kumar, Silvia Miksch,

53

http://www-nlp.stanford.edu/IR-book/

Silvana Quaglini, Andreas Seyfang, Edward H. Shortliffe, and Mario Stefanelli.
Comparing Computer-interpretable Guideline Models: A Case-study Approach.
Journal of the American Medical Informatics Association (JAMIA), 10(1):52–68,
Jan/Feb 2003.

[35] Mercedes Rigla, Raquel Tirado, Assumpta Caixàs, Belén Pons, and Jordi Costa.
Gestational Diabetes Guideline CSPT. MobiGuide Guiding Patients Anytime
Everywhere, 2012.

[36] Nick Russell, Arthur H.M. ter Hofstede, Wil M.P. van der Aalst, and Nataliya
Mulyar. WORKFLOW CONTROL-FLOW PATTERNS: A Revised View. BPM
Center Report BPM-06-22, BPMcenter.org, 2006.

[37] Annette ten Teije, Silvia Miksch, and Peter Lucas, editors. Computer-based Medical
Guidelines and Protocols: A Primer and Current Trends, volume 139 of Studies in
Health Technology and Informatics. IOS Press, 2008. ISBN 978-1-58603-873-1.

[38] Richard Thomson. OpenClinical knowledge management for medical care.
c©Copyright OpenClinical 2002-2011, OpenClinical project launched April 2001,
http://www.openclinical.org/home.html. Accessed: January 23, 2015.

[39] Camilo Thorne, Marco Montali, and Diego Calvanese. VeriCliG Automated Ex-
traction and Verification of Careflows from Clinical Practice Guidelines. The
VeriCliG project, c©Camilo Thorne, http://www.inf.unibz.it/~cathorne/
vericlig/, 2012-13. Accessed: January 21, 2015.

[40] Camilo Thorne, Marco Montali, and Diego Calvanese. The VeriCliG Project (2012
Report). Technical report, KRDB Centre for Knowledge and Data, 2013.

[41] Camilo Thorne, Marco Montali, and Diego Calvanese. The VeriCliG Project (2013
Report). Technical report, KRDB Centre for Knowledge and Data, 2014.

[42] Camilo Thorne, Marco Montali, Diego Calvanese, Claudio Eccher, and Elena Cardillo.
The VeriCliG Project: Extraction of Computer Interpretable Guidelines via Syntactic
and Semantic Annotation. In Proceedings of the 2013 Workshop on Computational
Semantics for Clinical Text (CSCT 2013), 2013.

[43] Thomas Tschach. Kontrollflusstransformation von BPMN zu Asbru. Diplomarbeit,
Fakultät für Informatik der Technischen Universität Wien, 2013.

[44] Princeton University. About WordNet. WordNet, Princeton University,
http://wordnet.princeton.edu/, 2010. Accessed: April 28, 2015.

[45] W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

54

http://www.openclinical.org/home.html
http://www.inf.unibz.it/~cathorne/vericlig/
http://www.inf.unibz.it/~cathorne/vericlig/
http://wordnet.princeton.edu/

[46] W.M.P. van der Aalst, A.K. Alves de Medeiros, and A.J.M.M. Weijters. Process
Equivalence: Comparing Two Process Models Based on Observed Behavior. In
S. Dustdar, J.L. Faideiro, and A. Sheth, editors, International Conference on Busi-
ness Process Management (BPM 2006), volume 4102 of Lecture Notes in Computer
Science, pages 129–144. Springer-Verlag, Berlin, 2006.

[47] W.M.P. van der Aalst and A.H.M. ter Hofstede. Workflow Patterns home page.
c©Workflow Patterns Initiative, http://www.workflowpatterns.com/, 2010-
2011. Accessed: January 6, 2015.

[48] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(3):5–51, July 2003.

[49] Peter Votruba. Document Exploration and Linking Tool (with Addons).
http://www.ifs.tuwien.ac.at/~votruba/DELTA/, 2006. Accessed: Jan-
uary 21, 2015.

[50] Ingo Weber, Jörg Hoffmann, and Jan Mendling. Beyond soundness: on the veri-
fication of semantic business process models. Distributed and Parallel Databases
(DPD), 27(3):271–343, 2010. Springer-Verlag.

[51] Matthias Weidlich, Remco Dijkman, and Jan Mendling. The ICoP Framework:
Identification of Correspondences between Process Models. In Proceedings of the 22nd
International Conference on Advanced Information Systems Engineering (CAiSE’10),
volume 6051 of Lecture Notes in Computer Science (LNCS), pages 483–498. Springer-
Verlag, 2010.

[52] Matthias Weidlich, Jan Mendling, and Mathias Weske. Efficient Consistency Mea-
surement based on Behavioural Profiles of Process Models. IEEE Transactions on
Software Engineering (TSE), 37(3):410–429, 2011.

[53] Matthias Weidlich, Eitam Sheetrit, Moisés C. Branco, and Avigdor Gal. Matching
Business Process Models Using Positional Passage-based Language Models. In
Proceedings of the 32nd International Conference on Conceptual Modeling (ER’13),
volume 8217 of Lecture Notes in Computer Science (LNCS), pages 130–137. Springer,
2013.

[54] Zhibiao Wu and Martha Palmer. Verb Semantics and Lexical Selection. In Proceedings
of the 32nd Annual Meeting of the Association for Computational Linguistics. Las
Cruces, New Mexico, 1994.

55

http://www.workflowpatterns.com/
http://www.ifs.tuwien.ac.at/~votruba/DELTA/

APPENDIX A
GESHER

Listing A.1: GESHER plan #19922.
1 <?xml version=" 1 .0 " encoding="UTF−8" standalone=" yes " ?>
2 <hybrid−asbru−plan id=" 19922 " name=" Pat ient not compliant f o r 3 or more

d i f f e r e n t (OR SAME) meals in PAST week " xsi :noNamespaceSchemaLocation="
C:\ Users \ e r ez sh \Documents\My Dropbox\ Aye letTra in ing \Asbru\schema\
Current \ hybrid−asbru−plan_revi sed . V4 . xsd " xmlns :x s i=" h t t p : //www. w3 . org
/2001/XMLSchema−i n s t a n c e ">

3 <plan−body>
4 −<semi−formal−plan−body>
5 −<s i n g l e −ac t i on isMandatory=" true " i s −p r o j e c t e d=" f a l s e ">
6 −<i f −then−e l s e comments=" ">
7 −<simple−e x p r e s s i o n name=" Pat ient not compliance f o r 3 or

more d i f f e r e n t (OR SAME) meals in PAST week ">
8 <concept vocabulary=" " name=" Pat ient not compliance f o r 3

or more d i f f e r e n t (OR SAME) meals in PAST week " key=
" 5238 " path=" " concept−type=" pattern " />

9 <text />
10 </ simple−e x p r e s s i o n>
11 −<then−branch>
12 −<plan−a c t i v a t i o n comments=" ">
13 −<plan−schema>
14 <plan−po in t e r id=" 19925 " name=" R e f e r e n c e : c o n s i d e r

i n s u l i n n o t i f i c a t i o n " DeGeLSite=" " />
15 </plan−schema>
16 </plan−a c t i v a t i o n>
17 </then−branch>
18 −<e l s e −branch>
19 −<plan−a c t i v a t i o n comments=" ">
20 −<plan−schema>
21 <plan−po in t e r id=" 20178 " name=" change n u t r i t i o n a l

p r e s c r i p t i o n f o r pa t i en t " DeGeLSite=" " />
22 </plan−schema>
23 </plan−a c t i v a t i o n>

57

24 </ e l s e −branch>
25 </ i f −then−e l s e>
26 </ s i n g l e −ac t i on>
27 </semi−formal−plan−body>
28 </plan−body>
29 </ hybrid−asbru−plan>

Listing A.2: GESHER plan #19969.
1 <?xml version=" 1 .0 " encoding="UTF−8" standalone=" yes " ?>
2 <hybrid−asbru−plan id=" 19969 " name=" i f pa t i en t ea t ing enought carbohydrates

=Yes " xsi :noNamespaceSchemaLocation=" C:\ Users \ e r e z sh \Documents\My
Dropbox\ Aye letTra in ing \Asbru\schema\ Current \ hybrid−asbru−plan_revi sed .
V4 . xsd " xmlns :x s i=" h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e ">

3 <plan−body>
4 −<semi−formal−plan−body>
5 −<s i n g l e −ac t i on isMandatory=" true " i s −p r o j e c t e d=" f a l s e ">
6 −<i f −then−e l s e comments=" ">
7 −<simple−e x p r e s s i o n name=" Eating enough carbohydorates=yes ">
8 <concept vocabulary=" " name=" Eating enough carbohydorates

=yes " key=" 5042 " path=" " concept−type=" pattern " />
9 <text />

10 </ simple−e x p r e s s i o n>
11 −<then−branch>
12 −<plan−a c t i v a t i o n comments=" ">
13 −<plan−schema>
14 <plan−po in t e r id=" 19972 " name=" Cal l back pa t i en t

ea t ing enought carbohydrates=Yes " DeGeLSite=" " /
>

15 </plan−schema>
16 </plan−a c t i v a t i o n>
17 </then−branch>
18 −<e l s e −branch>
19 −<plan−a c t i v a t i o n comments=" ">
20 −<plan−schema>
21 <plan−po in t e r id=" 19973 " name=" I n s i s t on the

importance o f ea t ing the recommended amount o f
carbohydrates " DeGeLSite=" " />

22 </plan−schema>
23 </plan−a c t i v a t i o n>
24 </ e l s e −branch>
25 </ i f −then−e l s e>
26 </ s i n g l e −ac t i on>
27 </semi−formal−plan−body>
28 </plan−body>
29 </ hybrid−asbru−plan>

Listing A.3: GESHER plan #19973.
1 <?xml version=" 1 .0 " encoding="UTF−8" standalone=" yes " ?>

58

2 <hybrid−asbru−plan id=" 19973 " name=" I n s i s t on the importance o f ea t ing the
recommended amount o f carbohydrates " xsi :noNamespaceSchemaLocation=" C:\
Users \ e r ez sh \Documents\My Dropbox\ Aye letTra in ing \Asbru\schema\ Current \
hybrid−asbru−plan_revi sed . V4 . xsd " xmlns :x s i=" h t t p : //www. w3 . org /2001/
XMLSchema−i n s t a n c e ">

3 <plan−body>
4 −<semi−formal−plan−body>
5 −<s i n g l e −ac t i on isMandatory=" true " i s −p r o j e c t e d=" f a l s e ">
6 −<plan−a c t i v a t i o n comments=" ">
7 −<procedure i s −p e r s o n a l i z e d=" f a l s e " t ex t=" " name=" I n s i s t on

the importance o f ea t ing the recommended amount o f
carbohydrates " l e v e l −of−ev idence=" " strength −of−
recommendation=" " comments=" " glID=" 19973 " concept−key="
5048 " concept−name=" i n s i s t on the importance o f
f o l l o w i n g d i e t p r e s c r i p t i o n ">

8 <opt iona l −term/>
9 </ procedure>

10 </plan−a c t i v a t i o n>
11 </ s i n g l e −ac t i on>
12 </semi−formal−plan−body>
13 </plan−body>
14 </ hybrid−asbru−plan>

59

APPENDIX B
LASSIE

Listing B.1: LASSIE plan #90689.
1 <?xml version=" 1 .0 " encoding="UTF−8" standalone=" yes " ?>
2 <hybrid−asbru−plan id=" 90689 " name=" the nurse i n s i s t s the pa t i en t on the

importance o f ea t ing enough carbohydrates "
xsi :noNamespaceSchemaLocation=" C:\ Users \ e r ez sh \Documents\My Dropbox\
Aye letTra in ing \Asbru\schema\ Current \ hybrid−asbru−plan_revi sed . V4 . xsd "
xmlns :x s i=" h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e ">

3 <s e t t i n g s>
4 <semi−formal−s e t t i n g s>
5 <a c t o r s>nurse</ a c t o r s>
6 <c l i n i c a l −s e t t i n g s></ c l i n i c a l −s e t t i n g s>
7 </semi−formal−s e t t i n g s>
8 </ s e t t i n g s>
9 <c o n d i t i o n s>

10 <f i l t e r −precond i t i on>
11 <structured −t ex t>I f the pa t i en t was NOT COMPLIANT with the

p r e s c r i b e d d i e t</ st ructured −t ex t>
12 <semi−formal− f i l t e r −precond i t i on conf i rmat ion −r equ i r ed=" f a l s e "

o v e r r i d a b l e=" f a l s e ">
13 <simple−e x p r e s s i o n name=" I f the pa t i en t was NOT COMPLIANT

with the p r e s c r i b e d d i e t ">
14 <concept concept−type=" s tate −parameter " vocabulary=" "

name=" I f the pa t i en t was NOT COMPLIANT with the
p r e s c r i b e d d i e t " key=" " />

15 <text>I f the pa t i en t was NOT COMPLIANT with the
p r e s c r i b e d d i e t</ text>

16 </ simple−e x p r e s s i o n>
17 </semi−formal− f i l t e r −precond i t i on>
18 </ f i l t e r −precond i t i on>
19 </ c o n d i t i o n s>
20 <plan−body>
21 <structured −t ex t>the nurse i n s i s t s the pa t i en t on the importance o f

ea t ing enough carbohydrates</ st ructured −t ex t>

61

22 <semi−formal−plan−body>
23 <s i n g l e −ac t i on isMandatory=" f a l s e ">
24 <plan−a c t i v a t i o n>
25 <n o t i f i c a t i o n name=" the nurse i n s i s t s the pa t i en t on

the importance o f ea t ing enough carbohydrates " glID
=" " concept−key=" " />

26 </plan−a c t i v a t i o n>
27 </ s i n g l e −ac t i on>
28 </semi−formal−plan−body>
29 </plan−body>
30 </ hybrid−asbru−plan>

Listing B.2: LASSIE plan #90697.
1 <?xml version=" 1 .0 " encoding="UTF−8" standalone=" yes " ?>
2 <hybrid−asbru−plan id=" 90697 " name=" i n s u l i n therapy "

xsi:noNamespaceSchemaLocation=" C:\ Users \ e r ez sh \Documents\My Dropbox\
Aye letTra in ing \Asbru\schema\ Current \ hybrid−asbru−plan_revi sed . V4 . xsd "
xmlns :x s i=" h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e ">

3 <s e t t i n g s>
4 <semi−formal−s e t t i n g s>
5 <a c t o r s>phys i c i an</ a c t o r s>
6 <c l i n i c a l −s e t t i n g s></ c l i n i c a l −s e t t i n g s>
7 </semi−formal−s e t t i n g s>
8 </ s e t t i n g s>
9 <c o n d i t i o n s>

10 <f i l t e r −precond i t i on>
11 <structured −t ex t>I f the pa t i en t was not compliant f o r three or

more d i f f e r e n t meals in a per iod o f one week</ st ructured −
t ex t>

12 <semi−formal− f i l t e r −precond i t i on conf i rmat ion −r equ i r ed=" f a l s e "
o v e r r i d a b l e=" f a l s e ">

13 <simple−e x p r e s s i o n name=" I f the pa t i en t was not compliant
f o r three or more d i f f e r e n t meals in a per iod o f one
week ">

14 <concept concept−type=" s tate −parameter " vocabulary=" "
name=" I f the pa t i en t was not compliant f o r three or

more d i f f e r e n t meals in a per iod o f one week " key=
" " />

15 <text>I f the pa t i en t was not compliant f o r three or
more d i f f e r e n t meals in a per iod o f one week</ text>

16 </ simple−e x p r e s s i o n>
17 </semi−formal− f i l t e r −precond i t i on>
18 </ f i l t e r −precond i t i on>
19 </ c o n d i t i o n s>
20 <plan−body>
21 <structured −t ex t>i n s u l i n therapy should be s t a r t e d</ structured −t ex t

>
22 <semi−formal−plan−body>
23 <s i n g l e −ac t i on isMandatory=" f a l s e ">
24 <plan−a c t i v a t i o n>

62

25 <drug−p r e s c r i p t i o n ac t i on=" s t a r t " name=" i n s u l i n therapy
should be s t a r t e d " glID=" " concept−key=" 90922 "

concept−name=" i n s u l i n therapy " />
26 </plan−a c t i v a t i o n>
27 </ s i n g l e −ac t i on>
28 </semi−formal−plan−body>
29 </plan−body>
30 </ hybrid−asbru−plan>

63

APPENDIX C
GDM guideline

The guideline for gestational diabetes mellitus is based on the consensus versions of three
guidelines (see References in [35]) and was adapted for Corporacio Sanitaria Parc Tauli
de Sabadell (CSPT) as part of the MobiGuide project [4].
The aim is to support patients outside the clinic. The GDM CIG is composed of five
parallel plans that monitor the patient for 1) blood glucose, 2) ketonuria, 3) diet, 4)
exercise and 5) blood pressure. The patient can be notified and asked questions. The
caregiver can also be notified when an intervention is required [4].
The GDM guideline [35] is presented on the following pages. The original manually
created markups ‘activity’ are displayed in yellow and ‘condition’ in blue.

65

66

67

68

69

70

71

72

73

74

75

Glossary

Asbru A task-specific and intention-based plan representation language to embody
clinical guidelines and protocols as time-oriented skeletal plans [34]. 1, 3, 4, 6, 8, 9,
19, 25, 26, 33, 37, 77

clinical practice guideline A set of general rules and policies for the management of
patients who have a particular clinical condition. 1

GATE General Architecture for Text Engineering - an open-source free software for
text processing [1, 3]. 33

GESHER A knowledge acquisition application for specifying procedural and declarative
knowledge of CPGs [3]. xvii, xviii, 4, 26, 31, 32, 34, 35, 40, 42–47, 49, 57, 58

gestational diabetes mellitus A condition in which women without previously diag-
nosed diabetes exhibit high blood glucose levels during pregnancy [2]. 34, 65

LASSIE A method using IE techniques to semi-automatically model parts of CIGs from
textual documents in a CIG formalism such as Asbru [3]. xvii, xviii, 4, 9, 27, 31,
33, 34, 40–47, 49, 61, 62

77

Acronyms

BPM Business Process Management. 17

BPMN Business Process Model and Notation. xvi, xvii, 10, 11, 25, 26

CGP clinical guideline and protocol. 33

CIG computer-interpretable guideline. 1, 5, 6, 9, 10, 25, 31, 43, 65, 77

CPG clinical practice guideline. 1, 3, 17, 25–27, 31, 33, 49, 77

GDM gestational diabetes mellitus. xvii, 34, 35, 40, 42, 43, 49, 65

IE Information Extraction. 2, 3, 9, 10, 33, 77

NLP Natural Language Processing. 4, 6, 9, 33

UMLS Unified Medical Language System. 10, 11, 33

XML Extensible Markup Language. 8, 33, 37

XSLT Extensible Stylesheet Language Transformation. xviii, 37, 39, 40, 43, 49

79

	Acknowledgements
	Danksagung
	Abstract
	Kurzfassung
	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Presentation of the problem
	Approach to solving the problem

	Related Work
	Clinical guideline modeling
	Model-centric approaches
	Document-centric approaches
	NLP approaches

	Evaluation of process models

	Method
	Challenges
	Comparison of single activities of the models
	Preprocessing
	The comparison

	Comparison of the process structure of the models
	The Exclusive Choice pattern
	The comparison

	Implementation
	GESHER and LASSIE
	GESHER
	LASSIE

	Implementation of the method
	Comparison of single activities of the models
	Comparison of the process structure of the models

	Evaluation
	Evaluation of `activity' and `condition' information found by LASSIE
	Evaluation of the plans
	Evaluation of the process structure

	Conclusion
	Bibliography
	GESHER
	LASSIE
	GDM guideline
	Glossary
	Acronyms

