
Mashup-based Linked Data
Integration

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Tuan-Dat Trinh
Matrikelnummer 1229761

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung:
O.Univ.Prof. Dipl.-Ing. Dr.techn. A Min Tjoa
Mag. Dr. Elmar Kiesling

Diese Dissertation haben begutachtet:

O.Univ.Prof. Dipl.-Ing. Dr.techn.
A Min Tjoa

Prof. Dr.
Hamideh Afsarmanesh

Wien, 3. März 2016
Tuan-Dat Trinh

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Mashup-based Linked Data
Integration

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Tuan-Dat Trinh
Registration Number 1229761

to the Faculty of Informatics
at the Vienna University of Technology

Advisor:
O.Univ.Prof. Dipl.-Ing. Dr.techn. A Min Tjoa
Mag. Dr. Elmar Kiesling

The dissertation has been reviewed by:

O.Univ.Prof. Dipl.-Ing. Dr.techn.
A Min Tjoa

Prof. Dr.
Hamideh Afsarmanesh

Vienna, 3rd March, 2016
Tuan-Dat Trinh

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Tuan-Dat Trinh
Donaufelderstrasse 54/3120, 1210 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 3. März 2016
Tuan-Dat Trinh

v

Acknowledgements

I would like to take this opportunity to express my sincere thanks to those who helped
me in one way or another on conducting research and the writing of this thesis.

I want to express my heartfelt thanks to my advisor, O.Univ.Prof. Dipl.-Ing. Dr.techn.
A Min Tjoa. The work presented in this thesis is not possible without his great support
and advice. I also want to thank Mag. Dr. Elmar Kiesling, and Mag. Dipl.-Ing. Dr.
Amin Anjomshoaa for participating on my Ph.D. committee and for their insightful
feedback, comments and suggestions. I want to sincerely thank them for providing me
the opportunity to participate in the Linked Data Lab, which enables me to get to know
a brand new field and learn a lot of knowledge and skills.

I would like to show my sincere thanks to my family for their endless support during
my 3-year stay at TU Wien University. Starting from the beginning of my study at TU
Wien, they kept encouraging and supporting me whenever I felt frustrated for my course
work, my research and my life. Without their love and support during the years, I would
not have come to where I am.

I thank my friends in the Linked Data Lab: Ba-Lam Do, Peter Wetz, Peb Ruswono
Aryan, and Bernhard Ortner for the stimulating discussions, the insightful comments,
and for all the fun we have had in the last three years

Last but not the least, I would like to thank all the people that have provided your
help and support to me during these years in Austria in the best way. All in all, thanks
everyone for your help, support, and love.

vii

Kurzfassung

Das so genannte Web der Daten wächst mit erstaunlicher Geschwindigkeit. Mittlerweile
ist eine große Menge an Datenquellen, APIs, Services, und Datenvisualisierungen öf-
fentlich verfügbar. Dennoch ist es nach wie vor eine große Herausforderung, komplexe
Informationsbedürfnisse von Anwendern mittels Integration und Verarbeitung von Daten
aus heterogenen Quellen zu befriedigen. Zur Lösung dieser Probleme gab es in den
letzten Jahren viele Forschungsarbeiten, die sich mit mashup-basierter Datenintegration
beschäftigten. Mashups ermöglichen Anwendern, Daten und Services zu integrieren und
rekombinieren, um so eigenständig Rich Web Applications zu erstellen. Trotzdem ist es
für Anwender ohne technische Expertise schwierig, solche Mashups effizient und effektiv
zu entwerfen.

Um dieses Problem zu lösen, stellen wir eine Methode vor, die es ermöglicht, Mashups
zu entwerfen, die heterogene Daten auf automatische, kollaborative, und verteilte Weise
integrieren. Wir folgen dabei dem Visual Programming Paradigma basierend auf drei
Grundsätzen: Offenheit, Vernetzung und Wiederverwendbarkeit. Die Methode fußt auf
Semantic Web Technologien und dem Konzept der Linked Widgets, d.h., web widgets, die
mit einem semantischen Modell ausgestattet sind. Linked Widgets sind konzipiert, um
Herausforderungen der Datenintegration wie folgt zu bewältigen: (i) Die Wiederverwend-
barkeit von Datenverarbeitungs-Prozessen wird unterstützt, (ii) Datenintegration mittels
einfacher Operationen wird erleichtert, (iii) Es wird Anwendern ermöglicht, relevante
Datenquellen auf Basis ihres Kontexts zu erforschen, (iv) Heterogeneität von Daten wird
überwunden und (v) automatische Datenintegration erleichtert.

Diese Arbeit stellt ein neues Konzept von semantischen, kollaborativen und verteilten
Mashups vor. Den Prinzipien des Semantic Web folgend, können die damit erstellten
ad-hoc Datenintegrations-Applikationen heterogene Daten verschiedener Teilnehmer
gleichzeitig verarbeiten und kombinieren. Dabei können die Daten von so verschiedenen
Geräten wie Sensoren, eingebetteten Systemen, Handys, Desktop Computern, oder
Web Servern stammen. Diese Vorgehensweise benötigt keine Server Infrastruktur, um
Daten hochzuladen, vielmehr behalten die Teilnehmer Kontrolle über ihre Daten und
stellen nur ein minimales Subset anderen Anwendern zur Verfügung. Verteilte Mashups
operieren persistent und sind somit ideal für Anwendungsfälle wie Echtzeit-Monitoring
oder Verarbeitung von Datenströmen.

ix

Abstract

The web of data is growing at a staggering pace. A large number of data sources,
APIs, services, and data visualizations are publicly available. Satisfying users’ complex
information needs by integrating and processing data from disparate sources, however,
remains challenging. In recent years, a large stream of research into mashup-based
data integration has emerged. These mashups foster combination and reuse of data
and services and thereby have the potential for rapid creation of rich web applications.
Nonetheless, users lacking technical expertise still face enormous barriers when trying to
develop such mashups efficiently and effectively.

To address this issue, we introduce an approach to compose mashups that integrate
heterogeneous data sources in an automatic, collaborative, and distributed manner. We
follow a visual programming paradigm and aim for three guiding principles: openness, con-
nectedness, and reusability. The approach is based on semantic web technologies and the
concept of Linked Widgets, i.e., web widgets backed by a semantic model. Linked Widgets
are designed to effectively tackle data integration challenges by (i) fostering reusability
of data processing tasks, (ii) easing data integration via simple operations, (iii) allowing
users to explore relevant data sources with regard to their context, (iv) tackling data
heterogeneity, and (v) facilitating automatic data integration.

This thesis introduces a new model of semantic, collaborative, and distributed mashups.
Following semantic web principles for data integration, these ad-hoc mashup-based data
integration applications can simultaneously process and combine heterogeneous data
contributed by multiple stakeholders. The data can come from various devices such as
sensors, embedded devices, mobile phones, desktops, or web servers. The approach does
not require server infrastructure to upload data, but rather allows each stakeholder to
keep control over their data and expose only relevant subsets to the collaborative group.
Distributed mashups can run persistently in the background and are hence ideal for
real-time data monitoring or data streaming use cases.

xi

Preface

Major content of this thesis is taken from our published contributions [1, 2, 3, 4, 5, 6, 7, 8]
in three recent years. The author of this thesis is also the lead author of these papers.

xiii

Contents

Kurzfassung ix

Abstract xi

Preface xiii

Contents xiv

List of Figures xvi

List of Tables xix

List of Algorithms xxi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description . 2
1.3 Research Questions . 3
1.4 Main Contributions . 3
1.5 Thesis Outline . 4

2 Background 7
2.1 Semantic Web . 7
2.2 Semantic Data Integration . 12
2.3 Open Data and Linked Data . 18
2.4 Mashups . 19
2.5 State of the Art in Mashup-based Data Integration 28
2.6 Research Gap . 34

3 Conceptual Framework 37
3.1 Modular Approach for Data Integration 37
3.2 Architecture . 39
3.3 Client and Server Linked Widgets . 42
3.4 Semantic Model for Linked Widgets . 45
3.5 Mashup Construction . 55

xiv

3.6 Mashup Execution Protocols . 58
3.7 Hybrid Mashup Patterns . 64
3.8 Mashup Encapsulation . 70
3.9 Automatic Data Integration . 70
3.10 Tag-based Automatic Mashup Composition 79

4 Computational Experiments 89
4.1 Terminal Matching . 89
4.2 Automatic Mashup Composition . 96

5 Prototype Implementation of the Framework 103
5.1 Architectural Design Considerations . 103
5.2 Key Components . 104
5.3 Implementation Details and Lessons Learned 108
5.4 Example Applications in the Geospatial Context 113
5.5 Hybrid Mashup Example Use Cases . 120

6 Related Work 127
6.1 Widget-based Mashups . 127
6.2 Semantic Mashups . 129
6.3 Embedded, Mobile, and Pervasive Mashups 134
6.4 Collaborative Mashups . 136
6.5 Automatic Mashups . 138
6.6 Natural Language-supported Mashups . 141
6.7 Programming-by-demonstration Mashups 143

7 Conclusions and Future Work 145
7.1 Conclusions . 145
7.2 Future Work . 147

Appendices 151
A Running Example of the Automatic Mashup Composition Algorithm . . . 151
B Box Plots of the Terminal Matching Experiment 153
C Box Plots of the Automatic Mashup Composition Experiment 160

Bibliography 165

List of Figures

2.1 Example of an RDF graph describing a person 9
2.2 Generic semantic data integration model . 13
2.3 Converted triple graph of dataset A . 16
2.4 Converted triple graph of dataset B . 16
2.5 Integrated graph of datasets A and B . 17
2.6 LOD cloud as of 2014 . 20
2.7 Growth of top ten web API categories in Programmable Web since 2009 . . . 23
2.8 Mashup classification dimensions . 24
2.9 Example of the AccuWeather web widget . 25
2.10 Example desktop widget (or “gadget”) from Window OS 7 26

3.1 Modular approach for open data integration 38
3.2 Linked Widgets framework architecture . 40
3.3 Client widget components . 43
3.4 Linked Widgets ontology . 48
3.5 Semantic model of Linked Widgets . 52
3.6 Semantic model of the POI Search widget . 53
3.7 Human-readable serialization of the POI Search widget model 55
3.8 Interfaces between Linked Widgets and the mashup coordinator 56
3.10 Local mashup communication protocol . 60
3.11 Remote mashup communication protocol . 62
3.12 Collaborative mashup pattern . 65
3.13 Delegating widget . 66
3.14 Persistent mashup pattern . 67
3.15 Distributed mashup pattern . 68
3.16 Streaming mashup pattern . 69
3.17 Nested mashup . 71
3.18 Terminal matching . 73
3.19 Example graph corresponds to a set of widgets 76
3.20 Processing flow of the tag-based composition module 80
3.21 Meta-tagging model of Linked Widgets . 82
3.22 Meta-tagging annotation of the POI Search widget 83
3.23 Tag completeness checking . 85

xvi

3.24 Example of tag-based automatic mashup composition 88

4.1 Experimental design of terminal matching . 90
4.2 Sample input and output models of synthetic widgets 91
4.3 Terminal matching: total CPU time as a function of number of widgets . . . 94
4.4 Terminal matching: total CPU time as a function of complexity of widget model 94
4.5 Terminal matching: total CPU time as a function of input-output matching rate 94
4.6 Terminal matching: memory consumption . 95
4.7 Example widget collection . 97
4.8 Experimental design of automatic mashup composition 97
4.9 Growth in the number of mashups . 98
4.10 Automatic mashup composition: total CPU time and memory consumption

for increasing input-output matching rate . 99
4.11 Automatic mashup composition: total CPU time as a function of number of

data widgets . 100
4.12 Automatic mashup composition: total CPU time as a function of number of

processing widgets . 100
4.13 Automatic mashup composition: total CPU time as a function of number of

visualization widgets . 100
4.14 Automatic mashup composition: memory consumption 101

5.1 Web-based collaborative mashup editor . 105
5.2 Visual model defined for the POI Search widget 107
5.3 Widget search that defines the input and output semantic models 109
5.4 Geospatial widget collection . 116
5.5 Use case 1: display famous Places detected from text on the map 118
5.6 Use case 2: display nearby Restaurants and Banks on the map 118
5.7 Use case 3: pick a park to visit at the weekend 119
5.8 Use case 4: transform geospatial data into Linked Open Data resources . . . 121
5.9 Combinations of available widgets . 122
5.10 Vienna and Bethlehem weather comparison 123
5.11 Collaborative mashup example for sales data integration 125

B.1 Terminal matching: CPU utilization as a function of number of widgets . . . 154
B.2 Terminal matching: total CPU time as a function of number of widgets . . . 155
B.3 Terminal matching: CPU utilization as a function of complexity of widget

model . 156
B.4 Terminal matching: total CPU time as a function of complexity of widget model157
B.5 Terminal matching: CPU utilization as a function of input-output matching

rate . 158
B.6 Terminal matching: total CPU time as a function of input-output matching rate159
C.1 Automatic mashup composition: CPU utilization and total CPU time for

increasing input-output matching rate . 160

C.2 Automatic mashup composition: CPU utilization and total CPU time for
increasing number of data widgets . 161

C.3 Automatic mashup composition: CPU utilization and total CPU time for
increasing number of processing widgets . 162

C.4 Automatic mashup composition: CPU utilization and total CPU time for
increasing number of visualization widgets . 163

List of Tables

2.1 Book table from dataset A . 14
2.2 Author table from dataset A . 14
2.3 Publisher table from dataset A . 14
2.4 Book table from dataset B . 15
2.5 Author table from dataset B . 15
2.6 Mashup tools and frameworks . 35

3.1 Classes of the Linked Widgets ontology . 49
3.2 Properties of the Linked Widgets ontology . 49
3.3 Description of mashup communication methods 57

5.1 List of used libraries and tools . 110

7.1 Answers to research questions . 146
A.1 Running example of the automatic mashup composition algorithm 153

xix

List of Algorithms

1 Automatic mashup composition . 77
2 Tag-based automatic mashup composition 86

xxi

List of Abbreviations

API Application Programming Interface

CSS Cascading Style Sheets

CSV Comma Separated Values

EUD End-User Development

GWT Google Web Toolkit

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

ISBN International Standard Book Number

JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation for Linked Data

LOD Linked Open Data

OWL Web Ontology Language

PDF Portable Document Format

POI Point of Interest

RDF Resource Description Framework

RDFS Resource Description Framework Schema

REST Representational State Transfer

RSS Rich Site Summary

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

xxiii

SPARQL Simple Protocol and RDF Query Language

TCM Tag-based Composition Module

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

UUID Universally Unique Identifier

W3C World Wide Web Consortium

WAMP Web Application Messaging Protocol

XML Extensible Markup Language

XSLT Extensible Stylesheet Language

List of Symbols

C The configuration model of a widget

EE The external edge set of the graph constructed from a given widget set

E The edge set of the graph constructed from a given widget set

G The graph constructed from a given widget set

IE The internal edge set of the graph constructed from a given widget set

I The finite set of graph-based input models of a widget

M The number of matched output terminals (vertices) for a input terminal (vertex)

Nd The total number of data widgets in a given widget collection

Np The total number of processing widgets in a given widget collection

Nv The total number of visualization widgets in a given widget collection

N The total number of widgets in a given widget collection

O The graph-based output model of a widget

P The processing function of a widget

R The rate of successful matches between input and output models of all widgets
in a given widget collection

V The vertex set of the graph constructed from a given widget set

W A given set of widgets

X The complexity of the input/output model of a widget

w A widget of a given widget set

xxv

CHAPTER 1
Introduction

1.1 Motivation

In recent years, organizations and governments have made large volumes of open data [9]
available on the web; the data covers a wide range of topics such as economy, currency,
geography, entertainment, weather, transportation, etc. Publishers frequently release
their data under a license that allows anyone to use, reuse and redistribute it. Such open
data, due to its abundant availability, plays an increasingly important role in everyday
life and can be used for various purposes [10]. It allows interested stakeholders to analyze
the data, put it in a new context, gain insights, and create innovative services.

Open data has the potential to support informed decisions; however, collecting relevant
data from various sources and extracting useful information from it has not become easier
as the quantity of data made available by organizations and governments has grown.
These providers publish their datasets without paying regard to how their data may be
used or how it may be combined with data provided by others [11]. Open data is still
largely a collection of raw, isolated, and heterogeneous datasets and making effective use
of them remains a major challenge [12, 13].

A lot of research has been conducted to facilitate data integration [14] by adding
semantics [15, 16] to open data. Linked Data – which refers to “a set of best practices
for publishing and connecting structured data on the Web so that it can be interlinked
and become more useful” [17] – has been adopted and applied by many data publishers
[18]. At the very beginning, there were only twelve published datasets, but the so-called
Linked Open Data cloud grew rapidly to more than 3,400 datasets with around 85 billion
triples by 20151. To be able to manipulate Linked Data, users are required to have
knowledge about semantic web technologies as well as the Simple Protocol and RDF
Query Language (SPARQL) query language.

1http://stats.lod2.eu/ (accessed Nov. 01, 2015)

1

http://stats.lod2.eu/

Although Linked Data is well-structured and includes millions of links among dis-
persed datasets, integrating Linked Data is still a challenging issue due to its inherently
distributed and inconsistent nature [19]. As of 2015, more than 2,900 vocabularies2 are
used in the Linked Open Data cloud. This shows that many data publishers develop their
own vocabularies rather than reusing already existing ones as the best practices would
suggest [20]. Linked Data is based on the Uniform Resource Identifier (URI) scheme to
globally identify resources by a single identifier; but in reality, many URIs are used for
the same concept or entity. Commercial or governmental organizations are unlikely to
make use of external URIs from other data sources, because such URIs can be potentially
changed or disappear [19].

To sum up, due to ongoing efforts of data publishers and researchers, vast amounts
of open data and Linked Open Data are available on the web. The value of this data
would dramatically increase if users were able to integrate it. However, they do not know
where to find relevant data sources, or they typically do not have the means and skills to
collect and process the data. Our motivation is to support non-expert users in obtaining,
integrating, and visualizing data from different datasets to gain insights and/or make
decisions.

Additionally, we conceive data exploration, integration, and analysis as a collabora-
tive process, as this creates strong potential for both simple ad-hoc data sharing and
sophisticated data-driven decision support. Many data integration and analysis tasks
are collaborative by nature [21]; they often require the sharing of data held privately by
various stakeholders, an – often geographically dispersed – team with a broad skill set,
and the agreement on a common interpretation in order to arrive at relevant insights.

1.2 Problem Description

For users to benefit from the value of openly available data, we need to tackle a number of
data integration challenges: (i) Data heterogeneity makes it difficult to integrate different
kinds of data that are in various formats such as Comma Separated Values (CSV),
Extensible Markup Language (XML), JavaScript Object Notation (JSON), Resource
Description Framework (RDF), or JavaScript Object Notation for Linked Data (JSON-
LD) and spread among various storage infrastructures (e.g., databases, files, cloud,
personal computers, mobile phones); (ii) Tedious manual data integration processes
that users perform to collect, clean, enrich, integrate and visualize data are typically
neither reproducible, nor reusable; (iii) Lack of support for exploration, as users often
rely on available domain-specific applications that do not allow for the integration of
arbitrary data sources; (iv) Lack of means for the identification of relevant data sources
and meaningful ways to automatically integrate them.

Gathering data from multiple sources and performing data analysis, integration, and
visualization tasks is hence a cumbersome process. End users cannot, yet, tap the full
potential of (linked) open data, but rather have to rely on applications built by others.

2http://stats.lod2.eu/vocabularies (accessed Nov. 01, 2015)

2

http://stats.lod2.eu/vocabularies

Most existing applications – with the exception of dedicated query and data integration
tools – make use of only a single or a limited number of particular open data sources.
As a consequence, open data is almost exclusively processed by custom applications
tailored to specific use cases or domains and remains inaccessible to end users with more
general information needs. This situation is not consistent with the vision of the future
web [22, 23], which promised to facilitate easy discovery, sharing, and reuse of highly
interconnected datasets across applications.

1.3 Research Questions
The research question addressed in this thesis is:

How can non-expert users be enabled to explore and integrate heterogeneous data
sources?

We require that users are able to easily add or remove a data source to facilitate
new data integration use cases. To this end, on the one hand, we need a generic and
versatile data integration framework that is not tailored towards particular datasets
and data formats. On the other hand, the framework must be simple and include
appropriate supporting mechanisms to help non-expert users to overcome the technical
barriers of complex data integration. Hence, we separate the research question into three
sub-questions as follows:

Research Question 1. How is it possible to support non-expert users in addressing
data heterogeneity?

Research Question 2. How can non-expert users be enabled to collaboratively
integrate data?

Research Question 3. How is it possible to automate the data exploration and
integration process?

1.4 Main Contributions
In this thesis we demonstrate that concepts of semantic web and mashups can be combined
to facilitate data integration for non-expert users in a flexible and efficient manner. We
separate complex data integration tasks into reusable modular functions, which are
encapsulated in high-level user interface blocks, i.e., the so-called Linked Widgets. Based
on that, users lacking programming skills can visually link widgets to create mashup-based
data integration applications. We lift non-semantic data to a semantic level on-the-fly
and add explicit semantics to the input and output data of Linked Widgets. Thus we
enable users to link disparate data sources, address data heterogeneity, and enrich data
from one source with data from other sources to foster new insights.

Semantic web principles allow us to ease and simplify the process of data integration for
users; among them are the back-end semantic model of Linked Widgets and mechanisms
that leverage the semantics enabling automatic data exploration and integration. We
introduce a matching algorithm to automatically discover valid connections between

3

Linked Widgets. This algorithm provides the foundation for the advanced composition
algorithm that creates meaningful mashups from a given set of Linked Widgets. Finally,
we develop a tag-based composition method that allows users to compose mashups by
specifying them in structured text.

An innovative aspect of our work is the new model of semantic, distributed, and
collaborative mashups. There is already a body of work related to semantic and collabo-
rative mashups; however, to the best of our knowledge, there is no research on mashups
assembled from components that are distributed among different nodes (e.g., sensors,
embedded devices, mobile phones, desktops, servers) to collect and integrate data. To
this end, mashup applications can be composed of both client and server Linked Widgets.
Client widgets are executed in the local context of a web browser environment. Server
widgets can be executed as native applications on various platforms, including personal
computers, cloud servers, mobile devices, or embedded systems. Server widgets may be
used to contribute data from the node they are deployed on to one or multiple mashups.
They may also be used to utilize the computing resources of the node to continuously
process data in the background. Such architecture allows stakeholders to expose their
private data selectively by contributing server widgets as functional black boxes. This
efficiently facilitates collaborative ad-hoc data integration involving multiple stakeholders
that contribute data and computing resources.

We have implemented our concepts in a prototype platform, which is available at
http://linkedwidgets.org. The data including mashups and semantic models of
all widgets is published into the Linked Open Data cloud. It can be accessed via the
http://ogd.ifs.tuwien.ac.at/sparql SPARQL endpoint.

1.5 Thesis Outline

This thesis is organized as follows:
In Chapter 2, we present the necessary research background on semantic web, open

data, Linked Open Data, semantic data integration, and mashups. We then present the
state of the art in mashup-based data integration and highlight the research gaps in
end-user Linked Data integration.

In Chapter 3, we present the main contribution of our research. We first introduce a
modular approach for open data integration that facilitates collaborative work among
data publishers, developers, and end-user communities. We then design the architecture
of a conceptual mashup-based data integration framework. Next, we present detailed
information on Linked Widgets, which constitute the basic element of the framework;
addressing Research Question 1, Linked Widgets always lift data to a semantic level. We
then outline how server and client Linked Widgets interact by means of our local, remote
and hybrid protocols. Based on these protocols, we discuss hybrid mashup patterns
(i.e., collaborative, persistent, distributed, streaming, and complex mashups) to address
Research Question 2. Finally, we present our mechanisms that leverage the semantic
model of Linked Widgets to (i) validate the links between widgets and discover all
widgets that can provide data to or consume data from input and output terminals of a

4

http://linkedwidgets.org
http://ogd.ifs.tuwien.ac.at/sparql

widget, (ii) automatically compose mashups from a given set of widgets, and (iii) create
auto-composed mashups from structured text. These mechanisms provide the answer to
Research Question 3.

Chapter 4 presents the results of our computational experiments on the terminal
matching and the automatic mashup composition algorithms.

In Chapter 5 we illustrate the prototype implementation of the conceptual framework.
We discuss the challenging implementation considerations we faced while developing the
prototype; these lessons can be useful for developers to build up applications on top of
(linked) open data. We then introduce key components of the prototype and demonstrate
its capabilities in the context of geospatial data. The prototype allows non-expert users
to explore spatial data from various sources (i.e., DBPedia, LinkedGeoData, Geo Names,
Wundergound, Nobel Laureate dataset, Flickr, Google Maps, Event Media, and a range
of statistical SPARQL endpoints) in heterogeneous formats. By composing a mashup of
available Linked Widgets, the users can integrate data in a flexible and effective manner.
Finally, we introduce two practical use cases of hybrid mashups.

In Chapter 6 we provide detailed information on a number of mashup tools and
frameworks related to our work. With regard to the topic of our research, we categorize the
mashup frameworks into widget-based mashups, semantic mashups, embedded mashups,
collaborative mashups, automatic mashups, and natural language-supported mashups.

Chapter 7 summarizes the results of this thesis and outlines directions for future
research.

5

CHAPTER 2
Background

In this chapter, we present the background knowledge in the context of our research. We
first provide a brief introduction to the semantic web and its potential for data integration
in Section 2.1. We then highlight the growth of open data and Linked Open Data in
Section 2.3. Next, in Section 2.4, we present the mashup approach to help non-expert
users without programming skills to overcome technological barriers and get in touch
with these data sources. We outline the state of the art in end-user mashup-based data
integration by introducing a number of surveys in Section 2.5. Based on that, Section 2.6
discusses the research gap and specifies our approach to bridge the gap between end users
and data integration.

2.1 Semantic Web

The web has considerably changed the way we disseminate, access, and retrieve informa-
tion. The web contains a lot of information, but the original structural information is
typically not available; much of the data on the web is delivered in the form of web pages,
which are HyperText Markup Language (HTML) documents generated from databases.

Most of the web content today is designed for human consumption. Typically, users
make use of keyword-based search engines, such as Yahoo1, Bing2, and Google3 to satisfy
their information needs. These keyword-based engines seek keywords in web pages rather
than extracting meaning from the web documents themselves. Consequently, the search
results have high recall but low precision [16]. Because the results are single web pages, if
the required information is spread over multiple documents, users first initiate a number
of queries to collect the relevant documents, and then they need to manually extract the
partial information and put it together [16].

1https://search.yahoo.com/ (accessed Nov. 01, 2015)
2https://www.bing.com/ (accessed Nov. 01, 2015)
3https://www.google.com (accessed Nov. 01, 2015)

7

https://search.yahoo.com/
https://www.bing.com/
https://www.google.com

The semantic web, which is [24] “the extension of the World Wide Web that enables
people to share content beyond the boundaries of applications and websites”, can address
these limitations. The term is comprised of techniques that are expected to [16] “dra-
matically improve the current World Wide Web and its use”. “The Semantic Web is
not a separate Web but an extension of the current one, in which information is given
well-defined meaning, better enabling computers and people to work in cooperation” [25].

The semantic web provides an easy way to disseminate, locate, access, share, exchange,
reuse, aggregate, and integrate information. It is based on standard formats such as
RDF4, Resource Description Framework Schema (RDFS)5, and Web Ontology Language
(OWL)6 to foster the interchange of data.

2.1.1 RDF

RDF [16] is a graph-based data model for describing resources and their relationships on
the web. It is inspired by the linking structure of the Web. It uses URIs (Uniform Resource
Identifiers) to name things and their mutual relationships. The data is represented as a
set of triples, each consisting of a subject, predicate and object in the form of <subject,
predicate, object>. RDF is commonly described as a directed and labeled graph. The
subject is the source of an edge; the predicate is its label; the object is its target.

The subject and predicate of a triple are always URIs, but the object can be either
a URI or a literal. URIs that appear as the subject in a triple can also be the object
in another triple. A literal is an atomic value such as number, date, string; it can be
either “plain” (without type) or “typed” literal, which is defined by using the XML
Datatypes7. An example of an RDF graph is shown in Figure 2.1. The graph comprises
four triples. One of them specifies that “Joe Smith”, who is identified by the URI
http://www.example.org/~joe/contact.rdf#joesmith, is an instance of the Person class
defined in the foaf 8 ontology. The remaining triples define his given name, family name
and his homepage. The RDF/XML serialization of the graph is presented in Listing 2.1.
RDF/XML is a normative syntax for serializing RDF; however, other serialization formats
such as Notation 3 (N3)9, TURTLE10, N-TRIPLES11, and N-QUADS12 are used as well.
These formats are more compacted compared to RDF/XML.

2.1.2 RDFS

RDF describes resources (i.e., subjects, predicates, and objects) with classes, properties,
and values. To define particular classes and properties used for an application, we can

4http://www.w3.org/TR/rdf11-primer/ (accessed Nov. 01, 2015)
5http://www.w3.org/TR/rdf-schema/ (accessed Nov. 01, 2015)
6http://www.w3.org/TR/owl-primer/ (accessed Nov. 01, 2015)
7http://www.w3.org/TR/xmlschema-2/ (accessed Nov. 01, 2015)
8http://xmlns.com/foaf/0.1 (accessed Nov. 01, 2015)
9http://www.w3.org/DesignIssues/Notation3.html (accessed Nov. 01, 2015)

10http://www.w3.org/TR/turtle/ (accessed Nov. 01, 2015)
11http://www.w3.org/2001/sw/RDFCore/ntriples/ (accessed Nov. 01, 2015)
12http://sw.deri.org/2008/07/n-quads/ (accessed Nov. 01, 2015)

8

http://www.w3.org/TR/rdf11-primer/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-primer/
http://www.w3.org/TR/xmlschema-2/
http://xmlns.com/foaf/0.1
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/TR/turtle/
http://www.w3.org/2001/sw/RDFCore/ntriples/
http://sw.deri.org/2008/07/n-quads/

http://www.example.org/~joe/contact.rdf#joesmith

http://xmlns.com/foaf/0.1/Person http://www.example.org/~joe/

Joe Smith

http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://xmlns.com/foaf/0.1/homepage

http://xmlns.com/foaf/0.1/givenname http://xmlns.com/foaf/0.1/family_name

Figure 2.1: Example of an RDF graph describing a person

Listing 2.1: The RDF/XML serialization of an RDF graph
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/">
<foaf:Person rdf:about= "http://www.example.org/~joe/contact.rdf#

joesmith">
<foaf:homepage rdf:resource="http://www.example.org/~joe/"/>
<foaf:family_name>Smith</foaf:family_name>
<foaf:givenname>Joe</foaf:givenname>

</foaf:Person>
</rdf:RDF>

use RDF Schema (RDFS), which is a semantic extension of the basic RDF vocabulary.
RDF Schema does not provide specific classes and properties, but rather the framework
to describe these resources. The classes and properties in RDF Schema are similar to the
respective concepts in object-oriented programming languages [16].

A class is defined as a sub-class of another class by using the rdfs:subclassOf property;
a property is defined as a sub-property of another one by using the rdfs:subpropertyOf
property. rdfs:domain and rdfs:range are used to define the domain and range of a
property, respectively. This allows us to “specify which properties apply to which kinds of
objects and what values they can take, and describe the relationships between objects” [16].

For example, we can use RDFS to define two classes Person and Dog as sub-classes of
the Animal class. The Animal class has the hasChild property. The Person class is linked
to the Dog class via the hasDog property. Three instances of these classes, i.e., a father,
a son, and a dog, are then instantiated; the defined vocabulary is used to specify their
relationships. The N3 serialization for all of these statements is shown in Listing 2.2.

9

Listing 2.2: Sample usage of RDFS vocabulary
@prefix : <http://www.example.org/sample.rdfs#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

:Dog rdfs:subClassOf :Animal.
:Person rdfs:subClassOf :Animal.

:hasChild rdfs:range :Animal;
rdfs:domain :Animal.

:hasDog rdfs:range :Dog;
rdfs:domain :Person.

:Max a :Dog.
:Abel a :Person.
:Adam a :Person;

:hasSon :Abel.
:hasDog :Max.

2.1.3 OWL

The expressivity of RDF and RDFS is very limited [16]; RDF is limited to binary ground
predicates while RDFS is limited to class and property hierarchies. OWL is “a semantic
web language designed to represent rich and complex knowledge about things, groups
of things, and relations between things”13. It is built on top of RDF; it has a larger
vocabulary and stronger syntax than RDF.

OWL comprises three sub-languages, i.e., OWL Lite (which offers simple constraints
and a classification hierarchy), OWL DL (which offers maximum expressiveness and retains
computational completeness), and OWL Full (which offers maximum expressiveness with
free RDF syntax but no computational guarantees). OWL documents are called OWL
ontologies; every legal OWL Lite ontology is a legal OWL DL ontology, and every legal
OWL DL ontology is a legal OWL Full ontology [16]. OWL 214 is the latest version of
OWL. It has a similar structure to OWL 1 and adds a number of new features such as
(i) richer datatypes, data ranges, (ii) property chains, or (iii) asymmetric, reflexive, and
disjoint properties.

Classes in OWL are defined using an owl:Class element; owl:Class is a sub-class of
rdfs:Class. There are two predefined classes: (i) owl:Thing, which is the most general
class and contains everything, and (ii) owl:Nothing, which is the empty class. Every class
is a super-class of owl:Nothing and a sub-class of owl:Thing. Equivalence of classes is
defined through the use of the owl:equivalentClass element. It is possible to define a new

13http://www.w3.org/TR/owl-primer/#Introduction (accessed Nov. 01, 2015)
14https://www.w3.org/TR/owl2-overview/ (accessed Nov. 01, 2015)

10

http://www.w3.org/TR/owl-primer/#Introduction
https://www.w3.org/TR/owl2-overview/

Listing 2.3: Sample SPARQL query
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?homepage ?age
WHERE {

?x foaf:givenname ?name .
OPTIONAL {?x foaf:homepage ?homepage.}
?x foaf:age ?age

} FILTER (?age < 30)

class as the boolean combinations (i.e., union, intersection, complement) of other classes
by using the owl:unionOf, owl:intersectionOf, and owl:complementOf elements.

There are two types of properties in OWL: (i) object properties, which relate objects
to other objects, and (ii) data type properties, which relate objects to datatype values.
owl:inverseOf element is used to specify the relationship between a property and its
inverse. Equivalence of properties can be defined by an owl:equivalentProperty element.
owl:TransitiveProperty and owl:SymmetricProperty are used to specify that an OWL
property is transitive and symmetric, respectively; owl:FunctionalProperty can be used
to define a property that has at most one value for each object.

2.1.4 SPARQL

SPARQL [15] can be used to retrieve and manipulate data stored in RDF format. It
is a semantic query language and a protocol that exploits the triple-based structure of
RDF to perform graph pattern matching and RDF triple assertion. There are other
RDF query languages, such as RDQL15 (RDF Data Query Language) and SeRQL16

(Sesame RDF Query Language), but SPARQL is the World Wide Web Consortium (W3C)
Recommendation.

SPARQL supports four different query forms: (i) SELECT, which “returns all, or
a subset of, the variables bound in a query pattern match” (ii) CONSTRUCT, which
“returns an RDF graph constructed by substituting variables in a set of triple templates”
(iii) ASK, which “returns a boolean indicating whether a query pattern matches or not”,
and (iv) DESCRIBE, which “returns an RDF graph that describes the resources found”.17

The TURTLE syntax is used to express the RDF graphs in the matching part of the
SPARQL query.

Listing 2.3 illustrates an example of a SELECT query. The first line defines a
namespace prefix so that the WHERE clause can use the defined prefix to express an
RDF graph to be matched. The WHERE clause can include OPTIONAL triples, which
are evaluated when they are present, but do not make the matching fail when they are
not present. The second line is the SELECT clause, where three identifiers are specified;

15http://www.w3.org/Submission/RDQL/ (accessed Nov. 01, 2015)
16https://www.w3.org/2001/sw/wiki/SeRQL (accessed Nov. 01, 2015)
17http://www.w3.org/TR/rdf-sparql-query/ (accessed Nov. 01, 2015)

11

http://www.w3.org/Submission/RDQL/
https://www.w3.org/2001/sw/wiki/SeRQL
http://www.w3.org/TR/rdf-sparql-query/

each begins with a question mark. The whole query is to get the name, the homepage
and the age of all persons in a data source. Constraints can be added for values using a
FILTER clause. FILTER (?age < 30) is an example of number value restriction to specify
that the age of the concerning persons must be less than 30. As an example of string
value restriction, FILTER regex(?name, “Peter”) can be used to return persons whose
name contains the string “Peter”. The query results can be controlled using the following
keywords with the similar meaning to SQL [15]: (i) ORDER BY, which establishes the
order of the result, (ii) DISTINCT, which eliminates duplicate results, (iii) OFFSET,
which returns the results start after a specified number, and (iv) LIMIT, which puts an
upper bound on the number of results returned.

2.2 Semantic Data Integration

In this section, we present a semantic data integration model and an example to illustrate
the potential of semantic web for data integration.

2.2.1 Semantic Data Integration Model

Semantic web technologies are useful for integrating heterogeneous data sources; a generic
data integration model [26] is illustrated in Figure 2.2. It consists of three main steps:
(i) Data in various formats (i.e., XML, JSON, or CSV) is converted into RDF. (ii) Based
on the triple graph model, in the second step, a SPARQL engine is used to collect, sort,
consolidate, aggregate data and finally convert it to XML format. (iii) In the third step,
an Extensible Stylesheet Language (XSLT)18 engine converts the XML data to HTML
and generates the final report or presentation of the integrated data.

In the model, non-RDF datasets are converted into RDF because, due to the triple
graph model and the SPARQL language, it is easy to add new nodes to RDF graphs,
link the nodes of different graphs to each other, and execute queries over multiple graphs.
Thus, disparate sets of RDF data are much easier to combine than disparate sets of data
in other common formats. Moreover, as more and more datasets are becoming publicly
available in the Linked Open Data cloud (cf. Section 2.3), we can use this external data
to enhance our locally stored data and make it richer and more interesting.

A main drawback of the model is that it requires the data integrator to have technical
and programming skills. Even though many semi-automatic and automatic RDF and
SPARQL tools for data integration have been developed, she should be familiar with
these RDF and SPARQL languages. Moreover, despite the simplicity of the model, to
practically implement it in a particular use case is not straightforward and takes a lot
of time and effort. This approach is hence not applicable for non-expert users that lack
technical expertise. To address this issue, as presented in Chapter 3, we modularize
and encapsulate the tasks of collecting, processing, integrating, and visualizing data into
high-level user interface blocks, i.e., the so-called Linked Widgets. By simply connecting

18http://www.w3.org/TR/xslt (accessed Nov. 01, 2015)

12

http://www.w3.org/TR/xslt

RDF Converter

Spreadsheet XML JSON CSV

{ ... }

SPARQL Engine

RDF

XSLT Engine

XML

HTML Report

<XML/> ; ; ; ;

Figure 2.2: Generic semantic data integration model

13

ID Author Title Publisher Year

ISBN 0-00-651409-X id_a1 The Glass Palace id_p1 2000

Table 2.1: Book table from dataset A

ID Name Home page

id_a1 Amitav Ghosh http://www.amitavghosh.com/

Table 2.2: Author table from dataset A

ID Publisher Name City

id_p1 Harper Collins London

Table 2.3: Publisher table from dataset A

these blocks, end users can create their application without an understanding of the
intricate details of queries and transformations executed behind the scenes.

2.2.2 Semantic Data Integration Example

To illustrate the data integration model and the usefulness of the RDF graph triple,
consider the following bookstore example, which is adapted from a presentation19 by
Ivan Herman.

In the example, there are two originally tabular datasets: A and B. Dataset A is
stored in a MySQL database, consisting of three tables, i.e., book table (cf. Table 2.1),
author table (cf. Table 2.2), and publisher table (cf. Table 2.3). This dataset is converted
to a set of RDF triples shown in Figure 2.3.

Another bookstore dataset, B, is stored in an Excel spreadsheet. The dataset consists
of a detail book table and an author table (cf. Tables 2.4 and 2.5, respectively). Dataset
B does not contain publisher information; it describes the book that is translated from
the original book in the dataset A. Dataset B is converted to a triple graph shown in
Figure 2.4.

Ideally, the A and B’s converted graphs should use the same vocabularies that are
commonly used by the semantic web community; to this end, the Linked Open Vocabulary
web site20 lists and visualizes the popularity of more than 500 vocabularies. However, in
our example, the two graphs use their own vocabularies. In spite of such inconsistency, it is
still easy to integrate two datasets by specifying the owl:sameAs relationship between two

19http://www.w3.org/People/Ivan/CorePresentations/IntroThroughExample/ (ac-
cessed Nov. 01, 2015)

20http://lov.okfn.org/dataset/lov/ (accessed Nov. 01, 2015)

14

http://www.w3.org/People/Ivan/CorePresentations/IntroThroughExample/
http://lov.okfn.org/dataset/lov/

ID Titre1 Auteur2 Traducteur3 Original

ISBN 2020386682 Le Palais des
miroirs4 i_abc i_rst ISBN 0-00-651409-X

1Title
2Author
3Translator
4The Glass Palace

Table 2.4: Book table from dataset B

ID Name

i_abc Amitav Ghosh
i_rst Christiane Besse

Table 2.5: Author table from dataset B

identical resources (i.e., properties and instances); the identical nodes (which represent
identical instances) in the two graphs are merged into a single node; the merged node
inherits all links of the two nodes.

Figure 2.5 shows a triple graph, which is the integration of dataset A, B, and DBpedia.
To construct the graph, the original book is first linked to the translated one based on
their International Standard Book Number (ISBN) number. The relations between the
subjects and objects of our triples “act as glue” to combine separate data sources. The
owl:sameAs property can be used to specify that the a:author property is the same as the
b:auteur property. Finally, extra information on the authors from the DBpedia SPARQL
endpoint21 is collected and added into the integrated graph.

After the two datasets are integrated, users of dataset B can ask queries as “What is
the title of the original book?”, or “What is the home page of the original author?”. Such
information is not available in dataset B, but can be automatically retrieved by being
merged with dataset A. The queries are performed on the relational graph, using the
SPARQL language.

To conclude this section, different datasets that (i) are disseminated on the web,
(ii) are in different formats (database dump, spreadsheet, etc.), and (iii) use different
vocabularies can be combined. The identical URIs (the ISBN in our case) are used to
combine the data. By transforming data into RDF graphs and linking them with Linked
Open Data (LOD) datasets such as DBpedia, Geonames22, Freebase23, etc., completely
new ways to execute various queries over a number of data repositories become possible.

21http://dbpedia.org/sparql (accessed Nov. 01, 2015)
22http://www.geonames.org/ (accessed Nov. 01, 2015)
23http://www.freebase.com/ (accessed Nov. 01, 2015)

15

http://dbpedia.org/sparql
http://www.geonames.org/
http://www.freebase.com/

The Glass Palace 2000

London Harper Collins

http://...//isbn/000651409X

Ghosh, Amitav http://www.amitavghosh.com

a:title a:y
ear

a:
ci
ty

a
:p
_
n
a
m
e

a:
pu
bl
ish
er a:author

a
:h
o
m
e
p
a
g
e

a:
na
m
e

Figure 2.3: Converted triple graph of dataset A

http://...//isbn/000651409X

http://...//isbn/2020386682

Le Palais des miroirs

Amitav Ghosh Christiane Besse

b
:a
u
te
u
r

b
:n
o
m

b:original b:t
itre

b:traducteur

b
:n
o
m

Figure 2.4: Converted triple graph of dataset B

16

The Glass Palace2000

London

Harper Collins

http://...//isbn/000651409X

Ghosh, Amitav http://www.amitavghosh.com

a:
tit
le

a:year

a:city

a:p
_n
am
e

a:
pu
bl
is
he
r b

:a
u
te
u
r

a
:a
u
th
o
r

a
:n
a
m
e

a
:h
o
m
e
p
a
g
e

http://...//isbn/2020386682

Le Palais des miroirs

Christiane Besse

b
:titre

b
:tra

d
u
c
te
u
r

b
:n
o
m

b:original

http://dbpedia.org/resource/Amitav_Ghosh

fo
a
f:
n
a
m
e

db
pe
di
a:
re
fe
re
nc
e

http://dbpedia.org/resource/The_Hungry_Tide

http://dbpedia.org/resource/The_Calcutta_Chromosome

http://dbpedia.org/resource/The_Glass_Palace

http://dbpedia.org/resource/Kolkata

d
b
p
e
d
ia
:a
u
th
o
r

dbpedia:author

d
b
p
e
d
ia
:is
b
n

dbpedia:place_of_birth

dbpedia:author

d
b
p
e
d
ia
:la
t

d
b
p
e
d
ia
:lo
n

Dataset A

Dataset B

DBpedia data

ow
l:s
am
eA
s

Figure 2.5: Integrated graph of datasets A and B

17

2.3 Open Data and Linked Data

In recent years, organizations and governments have made large volumes of Open Data
available on the web. This allows interested stakeholders to analyze the data, put it in a
new context, gain insights, and create innovative services. Publishers frequently release
the data under a license that allows anyone to use, reuse and redistribute it.

The inventor of the web and also the initiator of Linked Data, Tim Berners-Lee,
suggested a 5 star deployment scheme for Open Data.24

1. The first level (which is rated one star) is to make data available on the web under
an open license.

2. The second level is to make data available as structured data.
3. The third level is to use non-proprietary formats (e.g., CSV instead of Excel).
4. The forth level is to make use of URIs to denote things, so that people or applications

can dereference and get more information.
5. The fifth level is to link the data to other data sources to provide context.
Linked Data is a set of guidelines for publishing structured data. The metadata is

connected and enriched so that applications can find different representations of the same
content stored in multiple sources, and finally, establish links between related resources.
It is fundamentally about helping the web to transition from a web of documents to a
data web. An increasing number of data publishers (e.g., The New York Times25, the
BBC26, Thomson Reuters27, the Library of Congress28, BestBuy29, Getty30, the UK
government31, the US government32) have adopted Linked Data practices and published
a large number of datasets.

According to the formal definition of Linked Data [17], the term “describes a method
of publishing structured data so that it can be interlinked and become more useful. It
builds upon standard Web technologies such as Hypertext Transfer Protocol (HTTP) and
URIs, but rather than using them to serve web pages for human readers, it extends them
to share information in a way that can be read automatical ly by computers. This enables
data from different sources to be connected and queried.”

The publication of Linked Data on the web is based on the following four principles
[17]:

1. “Use URIs as names for things
2. Use HTTP URIs so that people can look up those names.
3. When someone looks up a URI, provide useful information, using the standards

(RDF, SPARQL).

24http://5stardata.info/ (accessed Nov. 01, 2015)
25http://data.nytimes.com/ (accessed Nov. 01, 2015)
26http://www.bbc.co.uk/things/ (accessed Nov. 01, 2015)
27https://permid.org/ (accessed Nov. 01, 2015)
28http://id.loc.gov/ (accessed Nov. 01, 2015)
29https://developer.bestbuy.com/ (accessed Nov. 01, 2015)
30http://www.getty.edu/research/tools/vocabularies/lod/ (accessed Nov. 01, 2015)
31https://data.gov.uk/ (accessed Nov. 01, 2015)
32https://usopendata.org/ (accessed Nov. 01, 2015)

18

http://5stardata.info/
http://data.nytimes.com/
http://www.bbc.co.uk/things/
https://permid.org/
http://id.loc.gov/
https://developer.bestbuy.com/
http://www.getty.edu/research/tools/vocabularies/lod/
https://data.gov.uk/
https://usopendata.org/

4. Include links to other URIs, so that they can discover more things”.
Due to simple principles and basic technologies, Linked Data has been adopted and

applied in the LOD project – a community project supported by the W3C – to facilitate
the publication of open datasets as RDF. As a result of ongoing efforts, the “Web of
Linked Data” today comprises of billions of RDF triples and millions of RDF links between
datasets. More specifically, at the very beginning, there were only twelve published
datasets, but the so-called LOD cloud grew rapidly to 928 datasets with 62 billion triples
by 201433. The current statistics34 are illustrated in the well-known Linked Open Data
cloud diagram shown in Figure 2.6. Using the CKAN Application Programming Interface
(API)35, the diagram is generated automatically. The size of a circle corresponds to the
number of triples in the respective dataset. If at least 50 links exist between two datasets,
there is an arrow; its thickness corresponds to the total number of links.

The datasets published in the LOD cloud now include data on various topics (e.g.,
music, movies, radio and television programs, books, scientific publications, reviews,
proteins, diseases, genes, medicine and clinical trials, people, geographic locations,
statistical and census data, companies, and many more other topics). All of the datasets
are publicly and openly available on the Web in standard and interoperable formats.
This opens up novel opportunities for the next generation of web-based applications; we
can aggregate data from different providers as well as integrate fragmentary information
from separate sources and hence achieve a complementary and more complete view.

2.4 Mashups

The term “mashup” originally comes from the music industry [27]; it is a new music song
that is made up from the vocal and instrumental tracks of existing songs.

Analogously, a mashup (application) is a lightweight web-based application that
combines data from multiple sources into an integrated and single graphical interface [28].
Mashups are typically based on the web architecture (i.e., HTTP, Representational State
Transfer (REST)) and web 2.0 technologies (e.g., AJAX, Rich Site Summary (RSS),
JSON). It allows for the fast creation of rich web applications.

There are many other extended definitions of mashups. Daniel and Matera [29] state
that mashups must not obligatorily live on the web environment and defined mashups
as: “a composite application developed starting from reusable data, application logic,
and/or user interfaces typically, but not mandatorily sourced from the Web”. Yee [30],
on the other hand, focuses on the data integration as the key value of mashups, and
defines mashups as web sites or web applications that “seamlessly combine content from
more than one source into an integrated experience”. Situational applications, rapid
development, and the focus on end users are considered as central concepts of mashups
as well [31].

33http://stats.lod2.eu (accessed Nov. 01, 2015)
34http://lod-cloud.net/ (accessed Nov. 01, 2015)
35http://docs.ckan.org/en/latest/api/ (accessed Nov. 01, 2015)

19

http://stats.lod2.eu
http://lod-cloud.net/
http://docs.ckan.org/en/latest/api/

Figure
2.6:

LO
D

cloud
as

of2014 a

aLinking
O

pen
D

ata
cloud

diagram
,by

M
ax

Schm
achtenberg,C

hristian
B

izer,A
nja

Jentzsch
and

R
ichard

C
yganiak.

http://lod-cloud.net

20

The term “mashup” includes both data mashups and presentation mashups [29].
An example of presentation-focused mashup is to view customer data36, stock prices37,
and latest news38 in a singly integrated interface. Data mashups focus on accessing,
transforming and combining different data sources.

Mashups are different from web services composition. While the latter focuses on
the composition of business services, the former goes further in that it provides more
functionalities and can compose a wide range of heterogeneous resources such as data
services, or user interface services [29].

Architecturally, a web-based mashup application is comprised of three elements:
(i) content providers, (ii) a web page, and (iii) the client’s web browser. Many content
providers expose their data through various web protocols (e.g., REST, web services,
RSS/Atom, and other web APIs) to facilitate data retrieval. After collecting and mashing
the available content from different providers, the mashup is hosted in a web page and
provides a new integrated service. Finally, the client’s web browser is the consumer of
the mashup; it renders the mashup application and allows users to interact with.

Mashups “come in all shapes and sizes, from the very simple to the complex” [28];
some combine search results from different search engines, some aggregate tabular data
from different sources and display in visual charts, and others integrate geographic data
with social news feeds (e.g., Foursquare39, Twitter40) and present all information in a
map. Mashup usage is growing rapidly on the web; this can be attributed to the following
main reasons [29]:

1. Many influential internet companies including Google, Yahoo, Facebook, Twitter,
and Amazon have opened up parts of their data to be combined with other data
sources without strict restrictions.

2. Many new tools (e.g., Damia [32], Yahoo! Pipes [33], Microsoft Popfly [34], Google
Mashup Editor [35], Exhibit [36], Apatar41, MashMaker [37], Marmite [38], Super
Stream Collider [39], DERI Pipes [40], MashQL [41], Information Workbench42,
ResEval Mash [42], Mashroom [43], Husky43, Intel Mash Maker [44], Vegemite
[45], Presto44, and mashArt [46]) – which strive to enable users to easily create
various types of mashups regardless of their lack of technical knowledge – have
been introduced in recent years.

The IT departments of many enterprises and organizations are starting to make use
of mashups as a quick, simple, and cost-effective solution to their data integration issues
[47]. No big investment is required due to the common technologies used in mashups;

36http://www.programmableweb.com/category/customer-service (accessed Nov. 01,
2015)

37http://www.programmableweb.com/category/stocks/mashup (accessed Nov. 01, 2015)
38http://www.programmableweb.com/category/news-services (accessed Nov. 01, 2015)
39https://foursquare.com/ (accessed Nov. 01, 2015)
40https://twitter.com (accessed Nov. 01, 2015)
41http://www.apatar.com/ (accessed Nov. 01, 2015)
42http://www.fluidops.com/en/portfolio/information_workbench/ (accessed Nov. 01,

2015)
43http://www.husky.fer.hr/ (accessed Nov. 01, 2015)
44http://mdc.jackbe.com/enterprise-mashup (accessed Nov. 01, 2015)

21

http://www.programmableweb.com/category/customer-service
http://www.programmableweb.com/category/stocks/mashup
http://www.programmableweb.com/category/news-services
https://foursquare.com/
https://twitter.com
http://www.apatar.com/
http://www.fluidops.com/en/portfolio/information_workbench/
http://www.husky.fer.hr/
http://mdc.jackbe.com/enterprise-mashup

mashups are designed to reduce the cost and development time of web applications. By
leveraging existing APIs, web services, and visualization technologies, the development
time of mashups can be measured in hours or days, rather than in weeks or months [47].

Programmable Web45 is a repository that provides latest information about internet-
based APIs and mashups. Figure 2.7 shows the growth of top ten web API categories in
Programmable Web since 2009. Mapping is now the most popular category with more
than four thousands available APIs.

Mashups can add new value to available data and APIs in an ad-hoc manner; however,
there are challenging issues as follows: (i) First, mashups heavily rely on one or multiple
third parties; if the API providers stop their services, the mashup would be immediately
unavailable as well. (ii) To use a web service of a company, developers always have to
check the “terms of service”. Many providers charge usage fees based on the number of
calls made to their server; most of them require developers to ask for permission before
using the APIs for the commercial purposes. (iii) Because mashups can add new value to
data, new issues such as “who owns the integrated data” and “who can profit from the
mashup” arise.

2.4.1 Mashup Types

Daniel and Matera [29] propose a cube-based mashup classification as illustrated in
Figure 2.8. Three perspectives are: composition, domain, and environment.

1. The composition perspective classifies mashups based on the layer where the mashup
integration is performed; in the typical three-tier architecture, applications are
divided and developed in three separate layers, i.e., a data layer, a logic layer, and
a presentation layer [48]. This development model makes it easier to implement
and maintain different parts of the applications, as these parts are independent but
capable of interoperability. Possible types of mashups in this perspective are data
mashups, logic mashups, User Interface (UI) mashups, and hybrid mashups that
span multiple layers of the application stack.

2. The domain perspective classifies mashups based on the functionalities that the
mashups provide, or in other words, the purpose of the mashups. Various categorized
domains of mashups are: mapping, social, tools, mobile, photos, financial, etc.46

3. The environment perspective classifies mashups based on their deployment context.
Web mashups and enterprise mashups are identified as the two types of mashups in
this perspective. Web mashups (which is also known as consumer mashups) are
for internet users. They focus on the functionalities rather than non-functional
requirements (e.g., security, compliance with laws and regulations) imposed in the
enterprise environment.

45http://www.programmableweb.com/ (accessed Nov. 01, 2015)
46http://www.programmableweb.com/category (accessed Nov. 01, 2015)

22

http://www.programmableweb.com/
http://www.programmableweb.com/category

11
8

89
50

79
60

39
2

57
15

63

51
8

50
8

47
4

36
9

34
8

33
8

33
3

31
5

31
2

29
8

34
48

14
76

15
58

44
97

22
08

11
12

69
9

15
69

87
8

11
85

20
09

20
13

20
15

So
ci
al

Fi
na

nc
ia
l

E
nt
er
pr
is
e

M
ap

pi
ng

E
-c
om

m
er
ce
G
ov

er
nm

en
t

Sc
ie
nc

e
M
es

sa
gi
ng

P
ay

m
en

t
Te

le
ph

on
y

0k1k2k3k4k5k

Fi
gu

re
2.
7:

G
ro
w
th

of
to
p
te
n
w
eb

A
PI

ca
te
go

rie
s
in

Pr
og

ra
m
m
ab

le
W
eb

sin
ce

20
09

a

a h
t
t
p
:
/
/
w
w
w
.
p
r
o
g
r
a
m
m
a
b
l
e
w
e
b
.
c
o
m
/
a
p
i
-
r
e
s
e
a
r
c
h

(a
cc

es
se

d
N

ov
.

01
,2

01
5)

23

http://www.programmableweb.com/api-research

Enterprise

Web
Environment

Social Mapping Mobile ...

UI

Logic

Data

Domain

Composition

Figure 2.8: Mashup classification dimensions [29]

2.4.2 Mashup Components

A mashup component is the atomic part that mashups are composed of. Daniel and
Matera [29] define that “A mashup component is any piece of data, application logic,
and/or user interface that can be reused and that is accessible either locally or remotely”.

Components can be built on top of very different technologies, from Simple Object
Access Protocol (SOAP) web services and RESTful services to web APIs, and from RSS
feeds to UI widgets. Mashup components are very heterogeneous with regard to their
behaviors within a mashup (e.g., sequential, asynchronous, or synchronous interactions)
as well as the access methods through which they are published (e.g., protocols). In order
to lower the barriers for general users by automating mashup development, we need an
abstract model of mashup components that can address such heterogeneity.

Mashup components can be created by wrapping existing resources. A wrapper can
be simple and easy to implement if the resource provider already provides all necessary
functionalities. The wrapper can be more complex if the resource provider exposes data
only and developers themselves have to process and visualize the data.

Components can be classified into three categories that cover the three layers of an
application: (i) data components which provide access to data, (ii) logic components
which provide access to business logic or functionalities, (iii) and user interface components
which present and visualize the data.

2.4.3 Web Widgets

A web widget is a piece of dynamic content that can be easily embedded into a web page.
Web widgets can encapsulate one or more APIs. An example of a web widget is shown

24

Figure 2.9: Example of the AccuWeather web widget

in Figure 2.9. Such web widgets can be placed in a blog to provide readers packaged
and intuitive information on common topics (e.g., weather information, blog’s statistics,
recent news, or stock quotes) in a single interface.

Different vendors use different terms for widgets: badges, gadgets, flakes, snippets,
minis, blocks, modules, and capsules [49]. Widgets can be as simple as a single HTML
fragment; they can be more complex if they are written in a server programming language
(e.g., Java, .NET, PHP). Some of them are “mashable” widgets, which can pass and
receive events, so that they can be combined to compose a mashup. Running on the
web browser environment, web widgets are independent of operating systems. There are
many catalogs of online widgets such as Deitel47, and Widgipedia48, which provide an
extensive catalog of widgets and gadgets for a variety of platforms.

W3C defines web widgets as “end-user’s conceptualization of an interactive single
purpose application for displaying and/or updating local data or data on the web, packaged
in a way to allow a single download and installation on a user’s machine or mobile

47http://www.deitel.com/ResourceCenters/Web20/Widgets/tabid/1993/Default.
aspx (accessed Nov. 01, 2015)

48http://www.widgipedia.com/ (accessed Nov. 01, 2015)

25

http://www.deitel.com/ResourceCenters/Web20/Widgets/tabid/1993/Default.aspx
http://www.deitel.com/ResourceCenters/Web20/Widgets/tabid/1993/Default.aspx
http://www.widgipedia.com/

Figure 2.10: Example desktop widget (or “gadget”) from Window OS 7

device. A widget may run as a standalone application (meaning it can run outside of a
web browser), or may be embedded into a web document”49. W3C also standardizes the
packaging format and configuration for web widgets.50

Web widgets are different from desktop or mobile widgets. The latter runs as a native
application while the former must be rendered within a web browser. Desktop and mobile
widgets cannot only present useful information at a glance but also allow for quick access
to frequently used tools or applications. For instance, we can use desktop widgets to
automatically display a slide show of pictures in our computer, or check continuously
updated headlines (cf. Figure 2.10).

Web widgets are used as mashup components in many frameworks (cf. Section 6.1).
They typically respond to or act upon data events and/or user interactions. They foster
reusability because a single widget can be reused in multiple mashups; each mashup is
one of numerous possible combinations of widgets.

2.4.4 Semantic Mashups

It is not easy to build up mashups without using any supporting tool or service, because de-
velopers need to locate relevant data sources and APIs, understand their structure as well
as their semantics, and finally combine all components into a single interface. Semantic
mashups can be used to ease such effort, and foster API discovery and integration.

A semantic mashup is “a data mashup using RDF(S) as data model and SPARQL
services to implement the behavior” [50]. It is the combination of the two visions of future
web, i.e., the semantic web and web 2.0 [51]. On the one hand, the vision of semantic web
is to give information well-defined meaning and “better enable computers and people to
work in cooperation” [25]. As illustrated in Section 2.2, if data is represented in semantic
format, we can use SPARQL to query over the triple graph models and easily integrate

49http://dev.w3.org/2006/waf/widgets-land/ (accessed Nov. 01, 2015)
50http://www.w3.org/TR/widgets/ (accessed Nov. 01, 2015)

26

http://dev.w3.org/2006/waf/widgets-land/
http://www.w3.org/TR/widgets/

multiple data sources [52, 53]. On the other hand, the vision of web 2.0 is to turn users
from “content consumers” into “content providers”, which can be partly fulfilled via the
mashup concepts and technologies [54, 55]. Research that focuses on semantic mashups
will be presented in Section 6.2 as our related work.

2.4.5 End-User Mashup Development

In the traditional software development process [56], we typically start with specifying
user requirements. Based on the requirements, we design and implement the overall
system, and finally we receive the users’ feedback to modify, maintain, and upgrade the
software. These steps can be performed differently in a variety of software models (e.g.,
Waterfall, Incremental, Spiral, or Agile model).

It is not easy to develop software that satisfies all user requirements. First, we can
hardly identify user requirements precisely as they are so diverse and complex. Many
users work on tasks that rapidly change on a monthly, weekly, or daily basis. Moreover, it
is difficult to meet all requirements when developers have limited domain knowledge [57].

To address these issues, an end-user approach in developing application software aims
to emancipate end users from the dependency on custom applications tailored to specific
use cases or domains. The approach is based on user-driven innovation, where a service
provider equips users with innovation toolkits so that users themselves can build a small
software product for their personal and situational purpose. Making use of these toolkits,
users are capable of carrying out the entire development process to realize their own
ideas with limited up-front learning time investment [58]. They themselves can also be
able to continuously adapt and upgrade the systems to their needs.

Lieberman et al. [57] define End-User Development (EUD) as a set of “methods,
techniques, and tools to allow users of software systems, who are acting as non-professional
software developers, at some point to create, modify or extend a software artifact”.
In particular, based on the traditional Human-Computer Interaction principles [59],
EUD particularly focuses on the capability of systems to empower users to create their
applications, or at least allow them to design and customize the functionality as well as
the user interface of software. This is necessary because end users themselves know their
context and requirements better than anyone else. An EUD system should be flexible to
support users in performing tasks to develop their own software. It should be easy to
understand, to use, to learn, and to teach.

By providing simple controls for people without formal programming training, EUD
shows considerable potential to make computers more useful in various contexts. It
can effectively reduce the time to complete a project [57]. EUD software system is now
becoming more popular, powerful and easier to use. The most widely adopted EUD
tool is the spreadsheet that can efficiently manipulate tabular data. Spreadsheet is most
commonly used in a business context; many companies require their employees to have
good spreadsheet skills.

End-User Mashup Development is a branch of End-User Development; its flexibility
and task variability are promising for users to create innovative solutions. From the
EUD perspective, a mashup appears as an “end user driven recombination of web-based

27

data and functionality” [60]. Due to the growing number of publicly available services
and APIs on the web, to quickly develop a new software, users can locate relevant
high-level services, “glue” them together, and create web user interfaces rather than
start from scratch as in the traditional programming model. The former method involves
less technical activities than the latter, and can be designed to fit with the restricted
capabilities of end users. Furthermore, because mashups are based on web technologies,
they can facilitate sharing.

Cappiello et al. [61] identify two scenarios where end users are involved in developing
mashups:

1. To quickly deliver ad-hoc applications, mashup templates (which are frequently
requested applications) first are created by expert developers. This means end users
are not directly involved in the mashup development process; however, they can
modify mashup parameters or adapt the mashup to their context. This approach is
not flexible; there is not much room for users’ creativity.

2. Expert developers implement and deploy a framework that allows anybody to
create their own mashups. In this scenario, end users are directly involved in the
creation of their mashups. Exemplified approaches are spreadsheets, programming
by demonstration, and visual programming.

2.5 State of the Art in Mashup-based Data Integration

To facilitate data integration, researchers have been developing mashup-based tools and
frameworks for years. Many of them are geared towards end users and allow them to
efficiently create applications by connecting simple and lightweight components. This
section presents various mashup surveys from different perspectives.

Fischer et al. [62] introduce three mashup development approaches, which are manual,
semi-automatic and automatic mashup creation. They categorize mashup frameworks as
follows:

1. programming paradigm (e.g., IBM WebSphere sMash51 and BungeeConnect52),
2. scripting languages (e.g., Web Mashup Scripting Language (WMSL) [63], Dynamic

Fusion of Web Data [64]),
3. spreadsheets (e.g., Extensio Excel Extender53),
4. wiring paradigm (e.g., Yahoo! Pipes [33], Marmite [38])
5. programming by demonstration (e.g., Karma [65] and Potluck mashup tool [66]),
6. and automatic creation of mashups (e.g., Composite Application Framework [67]

and Service Composition Framework [68]).
The authors identify three user types of such tools; they are casual users, power users
and developers. A casual user has basic skills; she is able to surf the web and uses
the functionality of the browser only. A power user cannot program, but has detailed

51http://www.ibm.com/developerworks/ibm/zero/ (accessed Nov. 01, 2015)
52http://www.bungeelabs.com/ (accessed Nov. 01, 2015)
53http://www.extensio.com/index.html (accessed Nov. 01, 2015)

28

http://www.ibm.com/developerworks/ibm/zero/
http://www.bungeelabs.com/
http://www.extensio.com/index.html

knowledge of a particular tool or a set of tools. By contrast, a developer is skilled at
programming and can work directly with web technologies and web APIs.

The authors give an overview of the introduced tools in the six categories and identify
their limitations. The “automatic creation of mashups” is ideal for non-programmers;
however, its problem lies in the high risk of composing irrelevant mashups based on given
requirements. By contrast, the others create a barrier to casual and power users because
they do not possess the necessary skills required by the respective tools to create mashups.

Grammel and Storey [60] analyze six mashup tools (i.e., Microsoft Popfly [34], Yahoo!
Pipes [33], IBM Mashup Center54, Google Mashup Editor [35], Serena Mashup Com-
poser55, Intel Mash Maker [44]) from the end user development perspective. The features
of the tools are compared across six criteria, i.e., levels of abstraction, learning support,
community support, searchability, UI design, and software engineering techniques.

The authors define three levels of abstraction – which are high, intermediate and
low levels – to measure how much computer programming knowledge is required. On
the high level, it is easy for users to learn and use the tool, but they are restricted to
parameterize and reuse mashups. By contrast, the low level offers users great flexibility.
The authors hence suggest to combine different levels of abstractions in a tool because it
allows users to select the relevant level to their skill and goal. This fosters reusability of
both low and high level software components.

Learning support helps users to get used to the mashup environment of the tool.
Common means are a help system, a tutorial, or a video screen capture. The authors
discuss the possibility to use context-specific suggestion feature. For example, it can
recommend users suitable mashup components based on their current mashup structure.

The authors note that community features were essential to the success of an end-
user-development mashup tool. These features include capabilities to share mashups,
and collaboratively categorize mashups (e.g., tagging, and rating). A discussion forum
and a social network system are proposed as a board to exchange the user experience
and their created mashups.

Text-based search is a common method to find and locate mashups or mashup
elements. Users can sort the result based on the rating of these artifacts. The authors
suggest using the structural information of a mashup. It helps users to easily find example
mashups that use one or several specified mashup components.

UI design is the feature to support users in creating appropriate UIs for their mashups.
It determines the usability of the mashups. The authors outline three mechanisms, i.e.,
automatically generating the UI, selecting and customizing the UI, and UI composition.

Finally, software engineering techniques consist of debugging, version control, and
testing. Even though the support for these techniques is very important in the EUD
research [69], it is still limited. Mashups can introduce new security threats, especially in
the enterprise environment. The debugging support can help users to avoid incorrect

54www.ibm.com/software/info/mashup-center/ (accessed Nov. 01, 2015)
55http://www.serena.com/index.php/en/ (accessed Nov. 01, 2015)

29

www.ibm.com/software/info/mashup-center/
http://www.serena.com/index.php/en/

and unsafe mashups.

Hendrik et al. [70] do a survey of semantic mashup frameworks from the perspective
of knowledge workers, who usually carry out data analyses but are not familiar with
technical details of data integration and big data. They consider semantic mashups as
the extension of traditional mashup approaches, where semantic web means play their
role to facilitate building mashups for novice users. Similar applications of semantic web
can be seen in the semantic service approach, which can automate service discovery and
service composition. Semantic web services target IT experts. By contrast, semantic
mashups are intended for non-expert users, who are incapable of working with raw data
and services, but still want to create situational applications on top of existing resources.

The authors define three requirements that a mashup tool should fulfill. An ideal
mashup tool should be general, powerful but simple; it should cover various application
domains and be able to tackle the complex logic of arbitrary problems, but should still be
easy for novice users. Based on these requirements, they classify Black Swan Events [71]
and Super Stream Collider [39] as data analytic tools, and DERI Pipes [40], MashQL [41],
and Information Workbench56 as generic tools. Whereas data analytic tools focus on
specific domain and make use of their own data processing patterns, generic tools offer
generic functions to be used in various problem solving.

Aghaee and Pautasso [72] provide a detailed overview of mashup approaches. Similar
to other surveys, based on the end-user programming technique that existing mashup
tools use, the authors classify them into spreadsheets (e.g., Mashroom [43], Husky57),
programming by demonstration (Intel Mash Maker [44], Vegemite [45]), domain-specific
language (e.g., Swashup [73]), visual programming (e.g., Yahoo! Pipes [33], Presto58),
and model-based automation [67, 74].

To enable end users to compose and develop mashups in a lightweight manner, the
simplicity and usability have priority over quality and completeness. However, it still
requires significant technical skills to develop mashups. The authors discuss open research
challenges for end-user mashup development as follows:

1. Simplicity and expressive power tradeoff. To be easy-of-use, most current mashup
tools focus on the simplicity feature. The tools hence are not powerful enough to
create complex mashups that involve various data sources in a complicated work
flow.

2. Mashup components heterogeneity. The challenge is to facilitate mashup composition
based on the abstraction of heterogeneous mashup components such as web APIs,
web data sources, and web widgets.

3. Mashup composition techniques. The challenge is to fully support three levels of
mashup development, which are process integration, data integration, and user

56http://www.fluidops.com/en/portfolio/information_workbench/ (accessed Nov. 01,
2015)

57http://www.husky.fer.hr/ (accessed Nov. 01, 2015)
58http://mdc.jackbe.com/enterprise-mashup (accessed Nov. 01, 2015)

30

http://www.fluidops.com/en/portfolio/information_workbench/
http://www.husky.fer.hr/
http://mdc.jackbe.com/enterprise-mashup

interface integration [47].
4. Mashup evolution. The challenge is to support users in maintaining a mashup, if

either the mashup components change or the mashup needs to be re-engineered
due to the update of user requirements.

5. Online communities. We can use online communities and social networks to foster
the sharing of mashups as well as technical problem discussion. Moreover, the
communities should be able to develop their mashups in a collaborative process.

Mashup components are heterogeneous and needed to be well modeled to lower
the barriers of developing mashups for end users. Aghaee and Pautasso [75] propose
a framework to evaluate mashup platforms with regard to the heterogeneous mashup
component support. The framework consists of six dimensions as follows:

1. Discovery. Initially, users search for relevant components that they may need before
starting to build up a mashup. A mashup tool should model the mashup components
in a manner that facilitates this discovery task; it can choose among three approaches,
that is semantic discovery, syntactic discovery, or keyword discovery.

2. Input/output data type. Components in a mashup interact in a work flow; they
transfer output and receive input into and from each other. The component model
hence needs to capture these input and output models. Their types can be either
primitive types (e.g., String, Integer, Boolean) or Multipurpose Internet Mail
Extensions (MIME) types (e.g., XML, JSON, RSS, or any standard formats found
on the web).

3. Access method. The dimension specifies the method to access mashup components.
Such methods are heterogeneous and can be categorized into language-dependent,
protocol-based, database, and non-standard.

4. Recursion. If a created mashup can recursively become a mashup component to
constitute a new mashup, it considerably reduce the effort to develop mashup and
foster reusability.

5. Output. A mashup component can return functional output which is delivered as a
service, data output, or visual output.

6. Behavior. During the mashup execution, the behavior of a mashup component
can be either event-based or task-based. A task-based component is passive; it
executes only when called, and given an input, it provides an output. By contrast,
an event-based component is more active. It is activated when a specific event
is fired. The component hence can trigger a sequence of tasks defined in other
components.

Based on these dimensions, the authors evaluate a number of mashup frameworks
and identify shortcomings of these approaches. Among these shortcomings are lacks of
support for (i) event-based behavior, (ii) component discovery features, and (iii) language-
dependent mashup components.

Another survey in mashup literature [76] reviews six different approaches and identifies
potential areas of improvement and future research. For instance, the authors suggest

31

that context-specific suggestions could support learning of how to build and find mashups.
Regarding user interface improvements, they note that designing mechanisms such as
automatic mashup generation to provide starting points to end users would enhance
usability drastically.

The authors propose using the model of six types of barriers in end user programming
systems [77] to identify typical issues users encounter when composing mashups. It helps
researchers to conduct a user study and locate the important area of end user mashup
development that needs to be improved first.

Di Lorenzo et al. [78] analyze the strengths and weaknesses of popular mashup tools,
i.e., Damia [32], Yahoo! Pipes [33], Microsoft Popfly [34], Google Mashup Editor [35],
Exhibit [36], Apatar59, MashMaker [37], with respect to data integration. The evaluation
is carried out based on eight dimensions covering various aspects of data integration, that
is (i) data format and access, (ii) internal data model, (iii) data mapping, (iv) data flow
operators, (v) data refresh, (vi) mashup output (vii) extensibility, (viii) and sharing.

A mashup tool is designed to handle and manage data available on the web. Despite
its usefulness, a disadvantage is that we cannot access and use desktop data in the same
way as web data. This is serious because users typically have a lot of data on their
desktop; they do not intend to publish it on the web to provide input data sources for
their mashup. The authors hence emphasize the need to support local data processing
on users’ desktops.

The authors summarize several notes at the end of their survey as follows: (i) Most of
the tools use internal XML data model. (ii) The available operators for data manipulation
and data integration are still limited; they are designed mainly based on the main goal
of a tool (e.g., visualization oriented or data processing oriented tool). (iii) The majority
of tools do not allow for the reuse of composed mashup. (iv) The corporation between
tools is impossible or limited.

All of the evaluated tools are server-side applications, meaning that mashups and
the data involved both are hosted on the server of the application provider. This may
result in problems due to communication overload when a mashup creates too many
requests to the servers. Most importantly, the survey claims that each tool requires a
considerable level of programming effort by the user to build a mashup even though the
tool is supposed to target “non-expert” users.

Daniel et al. [79] discuss the concept of process mashups by introducing three
dimensions, i.e., multi-user support, multi-page navigation, and workflow support. Multi-
user support enables users to collaboratively and concurrently build up the same mashup.
Multi-page navigation means organizing mashup components into a navigation structure
that are explored by users via hyperlinks. Finally, workflow support allows users to define
a control and data flow.

From that, the authors classify mashups into eight classes, based on combinations of
these dimensions. They are:

59http://www.apatar.com/ (accessed Nov. 01, 2015)

32

http://www.apatar.com/

1. simple mashups, which support single user, single page and no workflow
(e.g., mashArt [46], Yahoo! Pipes [33], MashMaker [37])

2. multi-page mashups, which support single user, multi-page, and no workflow
(e.g., EzWeb [80])

3. guided mashups, which support single user, single page and control-flow
(no tool exists)

4. page flow mashups, which support single user, multi-page, and control-flow
(e.g., ServFace Builder [81])

5. shared page mashups, which support multi-user, single page and no workflow
(no tool exists)

6. shared space mashups, which support multi-user, multi-page, and no workflow
(e.g., IBM Mashup Center60)

7. cooperative mashups, which support multi-user, single page and workflow
(e.g., Gravity61)

8. process mashups, which support multi-user, multi-page and workflow
(e.g., MarcoFlow [82]).

Blichmann et al. [83] present their vision of collaborative mashups by specifying three
challenges. They are:

1. to develop a mechanism for unified handling of (non)collaborative components,
which means all components should be connectable and synchronizable despite
their various implementation or built-in support for collaboration,

2. to synchronize differently implemented components with identical functionality,
which allows users to be able to select their preferred components and devices,

3. and to support fine-grained sharing of mashup composition parts, which allows for
unstructured collaboration.

They then present their preliminary solutions with their CRUISe platform. The platform
uses Semantic Mashup Component Description Language [84] (SMCDL) to uniformly
describe mashup components. It currently does not support either component synchro-
nization or individual sharing parts of a mashup.

Endres-Niggemeyer [85] introduces mashup applications for each of her mashup
classifications, i.e., media mashups, ubiquitous mashups, DBpedia mashups, web of things
mashups, mathematical mashups, speech mashups, urban mashups, travel mashups,
end-user mashups, and semantic mashups. Most applications are limited to specific
domains. Intelligent Book Mashup [86], RDF Book Mashup [87], Black Swan Events [71],
and DERI Pipes [40]) are introduced as semantic mashup applications. As ontologies
and mashups are respectively the pillars of the semantic web and web 2.0 [51], these
applications strive to foster mashups by combining them with inherent semantics of the
data. They collect and mashup the data, lift it to a semantic level, perform reasoning

60www.ibm.com/software/info/mashup-center/ (accessed Nov. 01, 2015)
61http://www.sdn.sap.com/irj/scn/weblogs?blog=/pub/wlg/17826 (accessed Nov. 01,

2015)

33

www.ibm.com/software/info/mashup-center/
http://www.sdn.sap.com/irj/scn/weblogs?blog= /pub/wlg/17826

and return appropriate data to users.
The author also lists a number of available languages and standards to model and

describe mashups as follows:
1. Enterprise Mashup Markup Language – EMML62

2. Mashup Component Description Language – MCDL [88]
3. Web Mashup Scripting Language – WMSL [63]
4. Universal model based on MetaObject Facility standards [89]
5. Universal model of components and composition [46]
6. ResEval Mash [42, 90] with a domain-specific description language
7. UML2 model for a set of integrated mashups [91]
For end user mashup development, the author identifies four possible types of mashup

interfaces. The interface can be based on a flow chart-model, follow a spreadsheet
approach, use a tree pattern, or be integrated into a browser as a plug-in. Mashups
become increasingly popular because of their attractive properties such as simplicity,
loose coupling, data resource reuse, user activity and creativity.

2.6 Research Gap
To sum up, various mashup-based data integration tools and frameworks have been
introduced by developers, researchers, and practitioners. Some of them have been
discontinued, many of them are domain specific. Based on the introduced surveys
[60, 62, 72, 76, 79], mashup tools and frameworks can be classified as shown in Table 2.6.

Mashup tools Classification

Damia [32], Apatar63, Mar-
mite [38]

Wiring paradigm [62]

Presto64 Wiring paradigm [62], Visual programming [72]

Microsoft Popfly [34] Wiring paradigm [62], Information mashups [60, 76]

Yahoo! Pipes [33] Wiring paradigm [62], Information mashups [60, 76],
Visual programming [72], Simple mashups [79]

IBM Mashup Center65 Wiring paradigm [62], Information mashups [60, 76],
Visual programming [72], Shared space mashups [79]

Google Mashup Editor [35] Information mashups [60, 76], Scripting Languages [62]

Serena Mashup Composer66 Process Mashups [60, 76]

62http://www.openmashup.org/omadocs/v1.0/index.html (accessed Nov. 01, 2015)
63http://www.apatar.com/ (accessed Nov. 01, 2015)
64http://mdc.jackbe.com/enterprise-mashup (accessed Nov. 01, 2015)
65www.ibm.com/software/info/mashup-center/ (accessed Nov. 01, 2015)
66http://www.serena.com/index.php/en/ (accessed Nov. 01, 2015)

34

http://www.openmashup.org/omadocs/v1.0/index.html
http://www.apatar.com/
http://mdc.jackbe.com/enterprise-mashup
www.ibm.com/software/info/mashup-center/
http://www.serena.com/index.php/en/

Intel MashMaker [44] Process Mashups [60, 76], Programming by demonstra-
tion [62], Simple mashups [79]

Black Swan [71], Super
Stream Collider [39]

Data analytics mashups [70]

Information Workbench67,
DERI Pipes [40], MashQL
[41]

Generic mashups [70]

Husky68, Mashroom [43] Spreadsheets[72]

Vegemite [45], Karma [65] Programming by demonstration [72]

ServFace [81] Visual programming [72], Page flow mashups [79]

Table 2.6: Mashup tools and frameworks

A limited number of frameworks such as Super Stream Collider [39], DERI Pipes [40],
and MashQL [41] aim at semantic data processing. Those frameworks, however, do not
leverage semantic web means to facilitate automatic data integration for non-expert users
[70], neither do they provide mechanisms to integrate semantic with non-semantic data.
Thus our objective is first to focus on semantic mashups and overcome such limitations.
We address the challenge to design the semantic models for mashup components and
leverage the semantics to foster mashup-based automatic data exploration and integration.
The input data of mashup components can be in different formats (e.g., CSV, XML,
JSON, or RDF), but the semantic models impose the semantic format on the output
data and hence can tackle data heterogeneity.

The surveys show that it is difficult for non-expert users to make use of the mashup
frameworks to compose mashups and integrate data. On the one hand, a high-level
and problem-oriented framework is easier to use than a low-level one, because it does
not require users to be familiar with special technological and programming concepts
to perform data integration tasks. On the other hand, we need a generic framework
that can tackle the increasing number of heterogeneous web resources rather than be
tailored towards specific problems and resources. These design objectives lead to a
trade-off [72]. A versatile mashup framework typically consists of a large number of
predefined components; users generally have a clear idea of what they are trying to
achieve, but they do not know which components they need and how to correctly combine
them in order to reach their goal. This “simplicity and expressive power” trade-off [72] is
a challenging issue that we need to address in this research.

The two surveys [60, 72] discuss the importance of the communities to the success of
end-user development tools. An open and collaborative model – which ties together three
stakeholders (i.e., data publishers, developers, and end users) – enables each stakeholder

67http://www.fluidops.com/en/portfolio/information_workbench/ (accessed Nov. 01,
2015)

68http://www.husky.fer.hr/ (accessed Nov. 01, 2015)

35

http://www.fluidops.com/en/portfolio/information_workbench/
http://www.husky.fer.hr/

to contribute and share their work to the open data community. Based on available data
sources provided by different data publishers, developers are encouraged to create and
deploy mashup components that are free to use or reuse. By combining such components,
users can create mashup applications to obtain, process, and visualize open data in a
dynamic and creative manner. The applications finally can be shared or reconfigured
among the user communities to foster reusability. However, to the best of our knowledge,
current research focuses on user communities only and allows them to share, comment,
or rank their mashups. There is no mashup-based data integration framework that can
facilitate collaborative work among users, data publishers and developers and encourage
widespread use of (linked) open data.

The survey [78] poses a challenge to integrate data that is stored in different devices
and not available on the web yet. In the literature so far, there is no research on mashups
assembled from components that are distributed among different nodes (e.g., sensors,
embedded devices, mobile phones, desktops, servers) to collect and integrate data. Such
distributed mashups can facilitate collaborative data integration in which each stakeholder
contributes their data and computing resources to the shared processing flow.

36

CHAPTER 3
Conceptual Framework

This chapter1presents the main contribution of our research, i.e., a conceptual framework
for exploring and integrating heterogeneous data sources. The framework is based on
the concept of Linked Widgets, which are semantic modules that allow non-expert users
to access, integrate, and visualize data in a creative, collaborative, distributed, and
automatic manner.

The chapter is organized as follows: In Section 3.1, we present the modular approach
for open data integration to facilitate collaborative work among the data publishers,
developers, and end-user communities. Section 3.2 discusses the architecture of our
conceptual framework. Section 3.3 provides detailed information on client and server
Linked Widgets. The semantic model of Linked Widgets is discussed in Section 3.4.
We present the message protocol to construct and execute mashups in Section 3.5 and
Section 3.6, respectively. Section 3.7 introduces five mashup patterns (i.e., collaborative,
persistent, distributed, streaming, and complex mashup pattern) that can be used for
various use cases. Section 3.8 presents the mechanism to encapsulate a mashup into a
new widget to foster reusability. We develop algorithms for automatic data exploration
and data integration via Linked Widgets in Section 3.9. Finally, in Section 3.10, we
develop a tag-based composition mechanism that enables non-expert users to compose
mashups by specifying them in structured text.

3.1 Modular Approach for Data Integration

The modular approach illustrated in Figure 3.1 combines Web Services and Service-
Oriented Architecture (SOA)[92] concepts. Whereas services target developers, we trans-
form them into blocks aimed at end users. To utilize data from different (linked) open
data sources, publishers and developers can create three types of blocks: (i) data blocks,

1Parts of this chapter also appear in [1, 3]. The author of this thesis is also the lead author of these
papers.

37

Data Publisher
Communities

B1 B2

B3 B4

B5 B6

Data Blocks

Processing Blocks

Visualization Blocks

B1 B5

B1 B3 B5

B1

B4 B5

B2

Developer Communites End Users Communites

- Composed
- Edited
- Published
- Shared

(Linked) open data consuming applications are

Define
Scenarios

Define
Compositions

(Linked) Open Data

Figure 3.1: Modular approach for open data integration

which collect data from one or multiple datasets; (ii) processing blocks, which process
and combine data in different ways through enrichment, transformation, and aggregation;
and (iii) visualization blocks, which display the final data. These blocks are organized
into three layers, i.e., data layer, business layer, and presentation layer.

These blocks can be used by end users to compose open data-consuming applications
in many ways and create a value chain between open data, developers and end users.
This model enhances the reusability of the developers’ work; it stimulates end users’
creativity to build up dynamic applications; and it inherits various benefits of SOA and
Software Component-Based approaches.

Blocks allow non-expert users to build ad-hoc applications rapidly. Each block can
receive input from other blocks to process and return its output which, in turn, can
serve as input for another block. To end users, blocks are “black boxes” with adjustable
parameters that control the execution function. Similar to functional programming or
web services, blocks can have multiple input terminals, but only a single output terminal.

Two mandatory components for a complete application are data blocks and visual-
ization blocks; processing blocks are optional. A data block does not have any inputs; it
collects data from an arbitrary data source to provide input for processing and visualiza-
tion blocks. Visualization blocks display output data of processing or data blocks. Inside
an application, more than one visualization block can be applied, because there can be
multiple ways to display the same data.

To compose an application, users simply select appropriate blocks and connect the

38

output of a block to the input of another one. The model checks whether the semantics
of the particular input and output data models match and only allows for connections
between compatible terminals. There are four types of links: (i) links between data blocks
and processing blocks, (ii) links between data blocks and visualization blocks, (iii) links
between two processing blocks, and (iv) links between processing blocks and visualization
blocks.

We identify three basic operations of data processing: enrichment, transformation,
and aggregation. Corresponding to the three operations, there are three sub-types of
processing blocks.

1. If blocks get additional data from other datasets and add it to the input, they are
called enrichment processing blocks. An example is a block in which its input – a
list of Locations, i.e., [Locations(lat, long, description)] – is enriched by sample
images for each Location, i.e., [Locations(lat, long, description, [Image])].

2. Transformation processing blocks transform input instances of an RDF class into
output instances of a different RDF class based on the relation between the two
classes. Hence those blocks are a crucial element which enables users to leverage
the key ideas of LOD, i.e., making use of links between resources from one or more
LOD datasets. For example, a block may receive Locations and output MusicEvents
organized at a place nearby.

3. The final type, aggregation processing blocks, aggregates data from its multiple
input terminals. Therefore, blocks of this type always have at least two input
terminals representing different entities of similar classes.

To sum up, major advantages of the block concept are (i) the flexibility in building
applications, starting from selecting data sources, applying various processing operations,
to visualizing the final data in multiple ways; and (ii) the effective use of links, i.e., inner
links and outer links, between LOD datasets.

3.2 Architecture

We define a number of design objectives as follows: First, blocks need to run on heteroge-
neous platforms and communicate with each other; the cost to develop blocks should be
low; anyone should be able to contribute blocks; and it should be easy to share complete
applications composed from disparate blocks.

Using modern web technologies, we decided to implement each block as a web widget
(cf. Section 2.4.3). Figure 3.2 illustrates the Linked Widgets framework architecture.
It serves three major groups of stakeholders: developers, mashup creators, and mashup
users.

Linked Widgets (or blocks) constitute the basic elements of the framework; they
extend the concept of standard web widgets2 with a semantic model. This semantic
model, which follows the Linked Data principles [17], is used to annotate the input and
output of widgets as well as their relations among each other.

2http://www.w3.org/TR/widgets/ (accessed Nov. 01, 2015)

39

http://www.w3.org/TR/widgets/

Databases Cloud services

Data widgets

Widget
Annotator

W
id
g
e
ts
,
M
a
s
h
u
p
s
 L
in
k
e
d
 D
a
ta

Web-based collaborative mashup editor

Semantic
Widget
Search

Terminal
Matching

Automatic
Mashup

Composition

Mashup
Execution
Coordinator

Mashup
Publication

WEB SERVER DEVICE NMOBILE DEVICE

Client Widget
Server Widget

Android/iOS

Server Widget

Java/C/Php/...

Client Widget

Client Widget
Server Widget

Android/iOS

Server Widget

Java/C/Php/...

Client Widget

Server Widget

Java/C/Php/...
Server Widget

Java/C/Php/...
Client Widget

Processing widgets

Visualization widget

Server Widget

Android/iOS

Linked Open Data

RAW DATA
- CSV
- XML
- RDF
- JSON

Data widgets

Processing widgets

PERSONAL
COMPUTER

Server Widget

Server Widget

Data widgets

Processing widgets

Java/C/Php/...

Java/C/Php/...

Tag-based
Automatic

Composition

Figure 3.2: Linked Widgets framework architecture

40

A Linked Widget is similar to a web service in that it has multiple inputs and a
single output. Important distinctions, however, include that (i) Widgets have a user
interface and are hence easier to handle than web services; (ii) Widgets are more versatile
than web services, e.g., they can visualize data; (iii) Widgets that are combined properly
can collaborate automatically by predefined communication protocols whereas web
service composition requires technically additional work, e.g., conformation of parameters;
(iv) Connected widget can interact with each other both ways, web service communication
is always sequential and unidirectional; (v) Widgets can be deployed on various devices
and in various environments whereas web services typically run on a server; and finally
(vi) Linked Widgets are associated with a semantic model.

To be able to connect widgets with each other, they have input and/or output
terminals. Connecting an input terminal of a widget with an output terminal of another,
means the former widget accepts and processes the output data of the latter as its input
data. We use JSON-LD3 for data transmission between widgets. Linked Widgets can
tackle the challenge of data heterogeneity. They standardize data and lift arbitrary data
sources to a semantic level. Thus the framework can integrate raw data in CSV, XML,
JSON, or HTML format; furthermore, data can be collected from databases, cloud/API
services, or the Linked Open Data cloud.

Depending on their execution mode, widgets may be classified as client or server
widgets. From a functional point of view, we can furthermore categorize Linked Widgets
into (i) data widgets, (ii) processing widgets, and (iii) visualization widgets. Those
widgets are highly reusable and can be parametrized per mashup.

Developers can contribute client widgets to the framework, run server widgets on
their own infrastructure, or provide them for deployment on personal computers, mobile
phones or other devices. They use the widget annotator module to semantically annotate
the widget’s input and output models and to provide provenance and license information.
The annotation is stored as Linked Data and is used by several modules of the framework.

The core of the data integration architecture is a web-based collaborative mashup
editor. Multiple mashup creators (or data integrators) and mashup users can compose
mashups simultaneously and collaboratively. This also allows users to create mashups
that integrate private data with publicly available data sources.

Using semantic widget search, mashup creators locate and group available widgets of
different developers into collections that are relevant for a particular application domain.
They then connect those widgets and build mashups. Because combining widgets does
not require any particular technical skills, average users can become mashup creators.
Moreover, as mashup users, they can adapt widget parameters of existing mashups to
their needs before executing them.

We classify mashups into three types: (i) local mashups that consist exclusively
of client widgets, (ii) hybrid mashups that make use of both client and server widgets,
(iii) and distributed mashups that consist entirely of server widgets, except for the final
visualization widget(s).

3http://www.w3.org/TR/json-ld/ (accessed Nov. 01, 2015)

41

http://www.w3.org/TR/json-ld/

A local mashup does not use any resources of the framework server, because it is
executed completely inside the client browser. This implies that intermediate and final
data are lost once the web browser is closed.

In contrast, widgets in distributed mashups are executed remotely as persistent
applications; their output can hence be accessed at any time. Hybrid and distributed
mashups can be executed in a distributed manner, which may involve multiple nodes that
each executes individual server widgets. This is highly useful, for instance, for streaming
data use cases where data must be collected and processed continuously.

The mashup execution coordinator is a critical component that enables widgets to
cooperate. It links client and server widgets that are executed in different environments,
e.g., browsers, Android, iOS smart phones, personal computers, or web servers. For each
type of mashups, the coordination mechanisms differ in order to conserve computing
resources. Details of the protocols and mechanisms are discussed in Section 3.6.

When mashup creators build a mashup, a common task is to connect an input terminal
of a widget to an output terminal of another widget. To enforce valid connections (i.e.,
ensure that the output terminal can provide all data required at the input terminal),
creators can use the terminal matching module (cf. Section 3.9.1); the module validates
connections using the semantic model. It helps creators to speed up the mashup creation
process.

The automatic mashup composition module (cf. Section 3.9.2) is designed to automat-
ically compose a complete mashup from a widget, or a complete branch that consumes
or provides data for a specific output or input terminal. “Complete” in this context
means that all terminals must be wired, i.e., have a valid connection. Built on top of the
automatic mashup composition module, the tag-based automatic composition module (cf.
Section 3.10) allows users to compose mashups by specifying them in structured text.

Mashup users can publish mashups on their website by means of themashup publication
module. A published mashup shows the final visualization widget only and hides all
previous data processing steps from the viewer. The mashup itself can also be saved as a
new data widget using this module. This encourages users’ creativity by allowing them
to reuse mashups without the need for programming skills.

3.3 Client and Server Linked Widgets

Developers can implement Linked Widgets as either client or server widgets. The following
two sections provide details on each of those types.

3.3.1 Client Widgets

Client widgets are executed on the client side, i.e., they use client memory and processor
resources; data is collected and processed on-the-fly in the browser. The server hosting
the client widgets is not necessarily the framework server, i.e., a mashup may combine
widgets hosted on various servers. This makes the framework flexible and allows external
parties to host widgets on their own infrastructure.

42

User interface implemented by developers

Drag and drop

Input terminal Output terminal

Widget List Mashup Editor

(Widget name, widget URI/URL)

Core interface (automatically generated)

<script type="text/javascript" src="http://linkedwidgets.org/widgets/WidgetHub.js"></script>

<script type="text/javascript">

var config = {

size: {width: 400, height: 250}, // the width, height of your widget (in pixels)

terminals: [// define the position of your terminals

{"name": "input", "position" : {"left": 0, "top": 1/2}, "type": "input"},

{"name": "output", "position" : {"left": 1, "top": 1/2}, "type": "output"}

],

resizable: true // decide whether your widget is resizable or not

};

function run(data) {...}

var hub = new WidgetHub(config, run);

</script>

Widget Item

Figure 3.3: Client widget components

Each client widget consists of (i) a semantic model, (ii) an execution function,
(iii) input and/or output terminals, (iv) a core widget interface which is automatically
generated for users to control the widget, e.g., to run, cache, view output data, resize,
or destroy the widget (cf. Figure 3.3), and (v) its custom user interface programmed
by developers. The execution function transforms the received input into an output
according to the parameters specified in the interface.

To implement a client widget, developers create a user interface in an arbitrary web
language and then follow three steps: (i) inject a JavaScript file4 to facilitate cooperation
with other widgets, (ii) define the input and/or output configuration, and (iii) implement
a JavaScript function run(data) that is invoked when the widget is executed in a mashup.
If a widget has no input, then the corresponding data object is null. Otherwise, upon
execution of a widget, output data from all relevant widgets is collected to build the data
object and pass it to run.

A client widget is instantiated when users drag and drop a widget item from the widget
list into the mashup editor. We associate each widget with an identifier to differentiate

4http://linkedwidgets.org/widgets/WidgetHub.js (accessed Nov. 01, 2015)

43

http://linkedwidgets.org/widgets/WidgetHub.js

widgets used in a mashup.
A widget item consists of the widget name, and the URI of the widget. If the widget

is already annotated and published, from its URI, we can retrieve its Uniform Resource
Locator (URL); and later, to execute advanced functions, such as terminal matching and
automatic mashup composition, we use the URI to retrieve the widgets’ model and other
metadata.

On the other hand, if the widget is still in the developing/testing stage, we use its
URL as follows: We first create the core widget interface with an HTML iframe inside.
After that, we use the widget URL to load its source code into the iframe and read the
input/output configuration to create the corresponding input/output terminals. At this
stage, the framework displays a complete widget interface as shown in Figure 3.3.

We decided to decouple input/output configuration from the widget annotation to
simplify the widget developing, testing, and maintenance processes. It allows a widget to
operate even before it is semantically annotated; however, users cannot use advanced
functions as long as semantic annotations are not complete.

3.3.2 Server Widgets

Client widgets are easy to develop and necessary for a lightweight and scalable mashup
framework. However, their capabilities are restricted by the web browser execution
environment. A web browser is inadequate for hosting mashups that process data from
embedded devices or subsystems that are not yet available on the web. Furthermore,
web browsers are not designed for heavy data processing tasks. Finally, as soon as a user
closes the browser, the mashup output data can no longer be accessed.

To overcome these limitations, server widgets shift the execution function from the
browser environment to standalone application environments. These server widgets
consist of two main parts: (i) a user web interface, which is the same as for client
widgets, but without the run function, and (ii) a remote executor. The client interface
is for users to set up the parameter and control the remote executor.

When users drag and drop a server widget into the mashup editor panel, a client user
interface of the server widget is instantiated. Next, a connection channel between this
client interface and the remote executor of the server widget is set up. It is therefore
necessary to keep the remote executor running persistently and reachable via the internet.

For each server widget, we have only a single remote executor, but potentially many
client user interfaces that are instantiated for each instance of the widget that is created
for various mashups. When an instance of a server widget is executed, the client interface
sends its parameters to the remote executor, which, in turn, creates a widget job to
process the data received from the predecessor widgets. Details of the communication
protocol between client and server widgets are covered in Section 3.6.

Server widgets introduce the concept of distributed mashups – a type of ad-hoc appli-
cation whose processing tasks are executed in a distributed manner on multiple devices.
Such mashups are particularly useful for streaming or real-time data processing applica-
tions. Users can close the browser at any time while the backend performs data collection
and processing tasks. This distinguishes our framework from previous approaches such

44

as Damia [32], Yahoo! Pipes [33], Microsoft Popfly [34], Google Mashup Editor [35],
Exhibit [36], Apatar5, MashMaker [37], Marmite [38], Super Stream Collider [39], DERI
Pipes [40], MashQL [41], Information Workbench6, ResEval Mash [42], Mashroom [43],
Husky7, Intel Mash Maker [44], Vegemite [45], Presto8, and mashArt [46].

Server widgets hence provide the following benefits: (i) They can act as a data
connector to obtain and provide data on different services, devices, or systems for a
mashup; (ii) they facilitate collaborative use cases where each participant contributes
data or processing widgets to a shared mashup; (iii) because their computing tasks are
performed within the hosting devices, similar to client widgets, they reduce the framework
server load; (iv) they can run persistently in the background to collect or process data for
data monitoring or data streaming applications; (v) server widgets deployed on powerful
servers are capable of processing large volumes of data over extended time periods.

There are two sub-types of server widgets, i.e., server data widgets and server
processing widgets; we always use visualization widgets as client widgets at present.
Although we can deploy (server) processing widgets on any kind of device, servers are
the most suitable targets, as they need to be consistently online; this also allows it to
offload computationally intense data processing tasks from mobile devices. Mobile devices,
however, can be the environment for (server) data widgets. They can, for instance, collect
and provide data from mobile devices for a mashup. For example, smartphones can act
as sensors that periodically provide GPS data, foot steps, temperature data etc.

3.4 Semantic Model for Linked Widgets

As the Linked Widgets framework is based on semantic web technologies, creating an
ontology is a requisite step after we have identified the architecture and the requirements
of the framework. It enables us to add semantics (cf. Section 2.1) to the model of
Linked Widgets, which aims to facilitate automatic operations such as automatic terminal
matching and automatic mashup composition. It also enhances the interoperability
between the Linked Widgets framework and other applications; for example, third party
applications can access widget annotations as Linked Open Data to implement custom
composition algorithms for particular data domains.

In this section, we define ontology requirements and design concepts and relations for
the semantic model of Linked Widgets. To this end, we follow the ontology development
guideline proposed by Noy and Mcguinness [93]. An ontology is “a formal and explicit
specification of a shared conceptualization”[94]. It [95]“defines (specifies) the concepts,
relationships, and other distinctions that are relevant for modeling a domain; the specifi-
cation takes the form of the definitions of representational vocabulary (classes, relations,

5http://www.apatar.com/ (accessed Nov. 01, 2015)
6http://www.fluidops.com/en/portfolio/information_workbench/ (accessed Nov. 01,

2015)
7http://www.husky.fer.hr/ (accessed Nov. 01, 2015)
8http://mdc.jackbe.com/enterprise-mashup (accessed Nov. 01, 2015)

45

http://www.apatar.com/
http://www.fluidops.com/en/portfolio/information_workbench/
http://www.husky.fer.hr/
http://mdc.jackbe.com/enterprise-mashup

and so forth), which provide meanings for the vocabulary and formal constraints on its
coherent use”.

3.4.1 Definition of Requirements

As a typical step that should be performed before designing an ontology [93], we identify
the requirements of the ontology for the Linked Widgets model in the data integration
context as follows:

R1 – Reuse of existing ontology This is the common requirement for ontologies
to enhance the interoperability among separate systems. To this end, if a concept or a
relation that is necessarily included in the Linked Widgets model already exists in some
Linked Open Data ontology, we reuse it rather than define the new one.

R2 – Reusability and extensibility It requires that the users of the ontology should
be able to easily reuse the defined vocabulary; they can reuse a part of the ontology, clarify
a particular concepts by adding one or more attribute, or extend the whole ontology in a
more general context. For example, they can create a new type of widgets, or annotate
the parameters defined in the user interface of widgets to add the detailed functionality
of widgets to the semantic model.

R3 – Lightweight We decide to follow a lightweight approach so that we facilitate our
automatic data integration algorithms (i.e., the automatic data model matching and the
automatic mashup composition algorithms presented in Section 3.9.1 and Section 3.9.2,
respectively). “Lightweight” in this context means that we use as few number of SPARQL
queries as possible for frequent tasks such as to load and construct the full input (output)
data model of a Linked Widget; the task is performed when we dereference a widget URI.
To this end, we use only a small number of concepts and relations, and do not specify
complex constraints on them; we mainly focus on the Linked Widget data model. Thus
we choose OWL-Lite (cf. Section 2.1.3) language to represent our ontology.

R4 – Change management Because many new APIs and data sources are contin-
uously introduced, developers can modify their widgets’ interfaces and functionalities.
This may be accompanied by the change in the respective Linked Widgets model (e.g.,
the change in the input and output data model), which causes the existing mashups to
stop working properly. To address this issue, the ontology needs to specify provenance
information so that we can track and appropriately react to the widget upgrade (cf.
Section 3.4.2). For example, as soon as a widget is modified, we can send an alert to the
creators of all mashups that make use of the widget; the mashups then can be reedited
and work properly again.

R5 – Interoperability with LOD vocabulary Widgets have input and output
terminals that can receive and process data extracted from various LOD datasets. We

46

require that the data model of these input and output terminals must be open, i.e., we
can reuse the LOD vocabulary in the input and output data model of Linked Widgets.

R6 – Connectivity The LOD cloud contains many incoming and outgoing links among
many LOD datasets. These links are the basis for combining separate sources published
by different data publishers. We require the Linked Widget model to be capable of
representing such links. To this end, we make use of the links between nodes in the input
and output tree model (cf. Section 3.4.3).

R7 – Support for automatic widget discovery and composition The ontology
needs to annotate widgets (mashups) in such a manner that we are capable of locating
the relevant widgets (mashups) in a particular context; for example, in addition to
conventional search methods which are based on keywords, categories, tags, we should be
able to search for a widget based on the data type of its input and output data, or the
relationship between them. Moreover, the annotated information must be rich enough
to allow for the automatic input-output data model matching as well as the automatic
mashup composition algorithm.

3.4.2 Basic Concepts and Relations

The basic concepts and relations of the Linked Widgets ontology are illustrated in
Figure 3.4 and listed in Tables 3.1 and 3.2. Two other main parts of the ontology, i.e.,
the Linked Widget data model and the Linked Widget meta-tagging model are presented
in Sections 3.4.3 and 3.10.3, respectively; while the Linked Widget data model focuses
on the expression of widget output and input data model to allow for widget discovery
and automatic mashup composition, the Linked Widget meta-tagging model offers extra
tag-based metadata and aims at mashup composition from structured text.

The central concepts of the ontology are lw:Widget and lw:Mashup; they are the most
important resources of the Linked Widgets framework. Each has a name, a description,
one or more licenses, and an address, which are respectively specified by the schema:name,
dct:description, dct:license, and dct:identifier properties. The address is a URL that we
can use to access the user interface of the widget or the mashup.

We use the owl:allValuesFrom and owl:oneOf properties to specify the restriction
on the ranges of the lw:environment and lw:type properties (which are properties of
the lw:Widget class). As a result, on the one hand, a lw:Widget must be either a
lw:clientWidget or lw:serverWidget; on the other hand, it must be a lw:dataWidget,
lw:processingWidget, or lw:visualizationWidget.

To describe additional information such as the URL of a data source used in a data
widget, the reference to a special algorithm implemented in a processing widget, or the
visualization library used in a visualization widget, we make use of the lw:referenceSource
property. Finally, using the dct:subject property, we define the categories (e.g., Social,
Financial, Science, Government, Enterprise) a widget falls into.

47

lw:Widget lw:WidgetModel
lw:hasWidgetModel

sch
e
m
a
:n
a
m
e

string

d
c
t:s
u
b
je
c
t

dct:license

d
c
t:
d
e
s
c
ri
p
ti
o
n

stringResource

dc
t:i
de
nt
ifi
er

lw:Mashup

lw:WidgetCollection prov:Activity

p
ro
v
:w
a
s
G
e
n
e
ra
te
d
B
y

lw:Developer

lw:MashupWidget

prov:wasAssociatedWith

prov:w
asAttributedTo

lw
:ty
pe

lw
:h
a
s
W
id
g
e
t

lw
:h
a
sW

id
g
e
t

prov:Activity

lw:MashupCreator

prov:wasAssociatedWith

p
ro
v
:w
a
s
G
e
n
e
ra
te
d
B
y

prov:w
asA

ttributedT
o

pr
o
v:
w
a
sD
e
riv
ed
F
ro
m

pr
ov
:w
as
Ge
ne
ra
te
dB
y

prov:wasAttributedTo

lw:Mashup
prov:wasDerivedFrom

dcterms:LicenseDocument

lw
:h
a
s
In
p
u
t

lw
:h
a
s
O
u
tp
u
t

...

...

lw:hasMetaAnnotation

lw http://linkedwidgets.org/ontologies/ prov http://www.w3.org/ns/prov#

dct http://purl.org/dc/terms/ foaf http://xmlns.com/foaf/0.1/

owl http://www.w3.org/2002/07/owl# schema http://schema.org/

rd
fs
:s
u
b
C
la
s
s
O
f

foaf:Person

rd
fs
:s
u
b
C
la
s
s
O
f

lw:clientWidget

lw:environm
ent

p
rov:w

asD
e
rive

dF
ro
m

lw:mashupConfiguration

string

lw:hasCollection

lw:Widget

string

lw
:re
fe
re
nc
eS
ou
rc
e

schema:URL

Linked Widgets
Data Model

Linked Widgets
Meta-tagging Model

rd
fs
:s
u
b
C
la
s
s
o
f

lw:serverWidget

lw:dataWidget

lw:processingWidget

lw:visualizationWidget

o
w
l:o
n
e
O
f

o
w
l:o
n
e
O
f

Figure 3.4: Linked Widgets ontology

48

Class Description

lw:Widget a “mashable” widget, which can pass or receive events so
that multiple widgets can be combined to build up a mashup

lw:WidgetCollection a group of widgets that are in the same domain
lw:Mashup a mashup of widgets
lw:MashupWidget a widget derived from a mashup to foster reusability
lw:WidgetModel range of the lw:hasWidgetModel property to associate a wid-

get with its semantic model
lw:Developer a developer, who creates and adds widgets to the framework
lw:MashupCreator the creator of a mashup

Table 3.1: Classes of the Linked Widgets ontology

Property Description

lw:referenceSource the link to additional information of a widget such as the data
source, the reference to an algorithm, or the visualization
library used in the widget

lw:environment the execution mode of a widget; widgets can be categorized
into client or server widgets

lw:type the functionality of a widget; widgets can be categorized into
data, processing, or visualization widgets

lw:hasWidgetModel the semantic model of a widget
lw:hasWidget a list of widgets included in a mashup or a collection
lw:hasCollection a list of widget collections used in a mashup
lw:mashupConfiguration the JSON configuration of a mashup such as the saved pa-

rameters and the position and size of each widget

Table 3.2: Properties of the Linked Widgets ontology

Widgets that are in the same domain or share the same features are grouped into
a lw:WidgetCollection. A lw:WidgetCollection is linked with a lw:Mashup via the
lw:hasCollection property. All widgets used in a lw:Mashup must be in the widget
collections of the mashup; the used widgets are listed by means of the lw:hasWidget
property.

In order to trace the change of both lw:Widget and lw:Mashup, we use the Provenance
ontology9. The ontology describes a set of classes, properties, and restrictions that can
present provenance information in a wide range of applications and domains (e.g., open

9http://www.w3.org/TR/prov-o/ (accessed Nov. 01, 2015)

49

http://www.w3.org/TR/prov-o/

information systems, science applications, news, or law). Detailed provenance can be
easily created or edited to express the origin of data and the full revision change of data.

We link a lw:Widget with a prov:Activity and link the prov:Activity with a lw:Developer
(which is a sub-class of the foaf:Person class) through the prov:wasGeneratedBy and
the prov:wasAssociatedWith properties, respectively. A new version of the lw:Widget
is linked with the previous version through the prov:wasDerivedFrom property. This
overall structure enables us to use SPARQL queries to load the information of the very
first to the latest version of the lw:Widget. In a similar manner, we link a lw:Mashup
with a prov:Activity and link the prov:Activity with a lw:MashupCreator to annotate the
provenance information of the mashup.

Two out of three stakeholders (i.e., lw:Developer and lw:MashupCreator) of the
framework are modeled in the ontology. We do not model end users (who are the third
stakeholder) and store their profile, because they are allowed to edit or run an existing
mashup in the framework only. To save a personal mashup, they need to register an
account and become a lw:MashupCreator.

The lw:mashupConfiguration property associates a mashup with a mashup configura-
tion, which is a JSON string. The configuration consists of the saved parameters, the
position and size of each widget, as well as the links between input and output terminals.
We do not semantically annotate such information because it is not semantically relevant
for the mashup; moreover, the simple structure of configuration allows for simple and
fast mashup loading.

To facilitate reusability, we enable a mashup creator to derive a lw:MashupWidget
from a lw:Mashup (cf. Section 3.8). The lw:MashupWidget class is a sub-class of the
lw:Widget class. Similar to what we have done with the lw:Widget and lw:Mashup classes,
we use the Provenance ontology to annotate different versions of a lw:MashupWidget.
This allows us to automatically detect which lw:MashupWidget are affected as soon as a
new version of a particular lw:Widget or lw:Mashup is released.

3.4.3 Linked Widget Data Model

We semantically annotate the input and/or output data model of Linked Widgets. These
semantic I/O models are essential for the subsequent search and composition processes.
Furthermore, they are crucial for the effective sharing of widgets. For example, even
when the number of widgets available is limited (e.g. 43 for Yahoo! Pipes [33] and 300+
for Microsoft Popfly10), finding appropriate widgets needed to build a particular mashup
is a difficult task. Many existing mashup frameworks employ a text-based approach for
widget search, which is typically ambiguous and hence not particularly helpful to explore
and locate widgets.

Client and server Linked Widgets have different execution environments, but they
share the same model. Due to similarities with web services, we initially considered to
describe Linked Widgets semantically using SAWSDL [96], OWL-S11, or WSMO12. These

10http://en.wikipedia.org/wiki/Microsoft_Popfly (accessed Nov. 01, 2015)
11http://www.w3.org/Submission/OWL-S/ (accessed Nov. 01, 2015)
12http://www.w3.org/Submission/WSMO/ (accessed Nov. 01, 2015)

50

http://en.wikipedia.org/wiki/Microsoft_Popfly
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/WSMO/

languages are well-suited for the formal specification of interfaces, such as Linked Widgets’
input and output terminals. They do not, however, allow to establish a well-defined
semantic relation between input and output data; they capture the functional semantics
and focus on input and output parameters.

As a precondition for advanced widget exploration and automatic mashup composition
algorithms, an explicit semantic link between input and output terminals is necessary.
To this end, several formal annotation methods using a graph-based model have been
developed in the literature [97, 98, 99].

To specify the semantic model of Linked Widgets, we adopt and adapt the Karma
model [98]. The idea of the model is to reuse the SWRL vocabulary13 to define the
semantic relation between two nodes in the input and output graphs. Because the model
is too complex to represent the links among nodes of the input and output graphs, we
decide to simplify it.

Figure 3.5 illustrates the semantic data model of Linked Widgets. Conceptually, both
the input and the output data models are trees. The root and intermediate nodes are single
objects or arrays of objects, whose dimension is specified by the lw:hasArrayDimension
property. Each object can have multiple properties. Data properties have leaf nodes with
primitive values; object properties consist of sub-trees.

The input and output data model defined in Karma are simply graphs. As graph
matching is much more complex than tree matching [100, 101], we decide to transform
the Karma graph model into a hybrid of graph and tree model. To this end, we identify
two types of links, which are (i) parent-child links, and (ii) links between two arbitrarily
related nodes. The former is represented by a single triple whereas the latter is represented
by three triples, using the SWRL vocabulary (cf. Figure 3.5). The Linked Widgets
model hence is a hybrid of tree and graph structure, which is capable of presenting rich
information as a graph, and facilitating model-matching as a tree.

Figure 3.6 illustrates the model of the Point of Interest (POI) Search widget that
will be used in our sample geospatial data integration use cases (see Section 5.4.4). The
widget takes an array of arbitrary objects containing the wgs84:location property as
input. The range of the property is the Point class with two literal properties, i.e., lat
and long. The widget output is an array of GeoNames14 features satisfying the distance
filter specified in the POI Search widget.

To specify that input/output is an array of objects, we use the literal property
hasArrayDimension (0: single element; n > 0: n-dimensional array). Because the input
of POI Search is an “arbitrary” object, we apply the owl:Thing class to represent it in
the data model.

Using the lw:hasSampleData property, we associate the input and output terminals
with descriptions that represent their full tree structures in JSON. The example of
such information is shown in Listing 3.1. The JSON description does not include the
relationships among nodes. It allows us to reconstruct the whole tree model instantly
and fosters model matching as presented in Section 3.9.1.

13http://www.w3.org/Submission/SWRL/ (accessed Nov. 01, 2015)
14http://www.geonames.org/ (accessed Nov. 01, 2015)

51

http://www.w3.org/Submission/SWRL/
http://www.geonames.org/

lw:Widget

lw:WidgetModel

lw:hasWidgetModel

lw:Outputlw:Input

lw:hasArrayDimension

swrl:IndividualPropertyAtom1

lw:h
asA

rrayD
imen

sion

Input tree model

Output tree model

lw http://linkedwidgets.org/ontologies/

swrl http://www.w3.org/2003/11/swrl/

xsd http://www.w3.org/2001/XMLSchema#

lw
:h
a
s
A
to
m

xsd:integer

xsd:integer

xsd:integer

xsd:integer

lw:hasName

xsd:stringlw:hasSampleData xsd:string

lw:ha
sNam

e

lw:ha
sSam

pleD
ata

xsd:string

xsd:string

swrl:argument1
swrl:argument2

lw:hasDataModel lw:hasDataModel

lw:hasInput lw:hasOutput

xsd:integer

LOD Class

LOD Class

LOD Class

LOD Class LOD Class

Literal

Literal Literal LiteralLOD Class

LOD property LOD property LOD property

LOD property

swrl:propertyPredicate

LOD property LOD property LOD property LOD property

LOD property

Figure 3.5: Semantic model of Linked Widgets

52

swrl:propertyPredicate

geo:nearby

lw:poiSearch lw:poiSearchModel

lw:hasWidgetModel

lw:output

wgs84:point1

lw:input

1
1

owl:thing geo:feature

swrl:IndividualPropertyAtom1

 s
w

rl:a
rg

u
m

e
n
t1 sw

rl
:a

rg
u
m

e
n
t2

xsd:float xsd:float

Input tree model

0 wgs84:point2

xsd:float xsd:float

Output tree model

0xsd:string

lw http://linkedwidgets.org/ontologies/ wgs84 http://www.w3.org/2003/01/geo/wgs84_pos#

swrl http://www.w3.org/2003/11/swrl/ xsd http://www.w3.org/2001/XMLSchema#

foaf http://xmlns.com/foaf/0.1/ geo http://www.geonames.org/ontology#

lw
:h

a
s
A

to
m

lw:hasInput lw:hasOutput

lw:hasDataModel lw:hasDataModel

wgs84:location

wgs84:long wgs84:lat wgs84:long wgs84:lat

wgs84:locationfoaf:name

lw:hasSampleData

lw:hasSampleData

"{...}"

"{...}"

lw:hasArrayDimension lw:hasArrayDimension

Figure 3.6: Semantic model of the POI Search widget

The point, location, lat and long terms are available in different vocabularies. However,
due to its widespread use, we chose wgs84. The widget annotator module (cf. Section 3.2),
which supports developers in annotating widgets, interactively recommends frequently
used terms of the most popular vocabularies to developers. This eases the annotation
process and fosters consistency by diminishing the use of different terms to describe the
same concepts.

Because we explicitly model the geo:nearby relation between the two instances
owl:thing and geo:feature (see Figure 3.6), we know that the output feature is nearby the
input location. If we had used SAWSDL, OWL-S, or WSMO, we would not have been
able to specify this input-output relation and hence could not distinguish between this
and other possible relations between two locations.

53

Listing 3.1: Sample JSON structure associated with the input and output models of the
POI Search widget
input = {

"input": {
"@context": {

"lat": "http://www.w3.org/2003/01/geo/wgs84_pos#lat",
"long": "http://www.w3.org/2003/01/geo/wgs84_pos#long",
"location": "http://www.w3.org/2003/01/geo/wgs84_pos#location"

},
"@graph": [

{
"@id": "http://example.com.sampleId",
"@type": "http://www.w3.org/2002/07/owl#Thing",
"location": {

"@id": "http://example.com.sampleId",
"@type": "http://www.w3.org/2003/01/geo/wgs84_pos#Point",
"lat": "float",
"long": "float"

}
}

]
}

}

output = {
"@context": {

"lat": "http://www.w3.org/2003/01/geo/wgs84_pos#lat",
"long": "http://www.w3.org/2003/01/geo/wgs84_pos#long",
"location": "http://www.w3.org/2003/01/geo/wgs84_pos#location"

},
"@graph": [

{
"@id": "http://example.com.sampleId",
"@type": "http://www.geonames.org/ontology#Feature",
"location": {

"@id": "http://example.com.sampleId",
"@type": "http://www.w3.org/2003/01/geo/wgs84_pos#Point",
"lat": "float",
"long": "float"

}
}

]
}

All widget models are published as LOD and can be accessed using the graph
http://linkedwidgets.org of the http://ogd.ifs.tuwien.ac.at/sparql SPARQL endpoint.
Figure 3.7 depicts the human-readable serialization of the POI Search widget model.

With SPARQL queries, we can find a widget that receives or outputs an object
containing, for instance, geographic information. This is done by means of the semantic
widget search method presented in Section 5.2.3. Moreover, based on an arbitrary terminal,
e.g., the input terminal of the POI Search widget, we can find all output terminals that
can be connected due to the semantic terminal matching method (cf. Section 3.9.1).

54

Figure 3.7: Human-readable serialization of the POI Search widget model

3.5 Mashup Construction

Technically, client widgets and the client interface of server widgets are HTML iframes.
Such iframes can trigger events, which contain messages. These messages are then
consumed by other iframes that have registered a listener for these events. Thus we can
implement a library to ease the communication between widgets. The library enables
either the mashup execution coordinator (which is a critical component that enables
widgets running in different environments to cooperate) or widgets to register a remote
procedure to be called by each other. Because web browsers do not allow for a direct call
from a widget to the other one, the coordinator plays the important role to facilitate the
information exchange between widgets.

We design the communication interfaces between Linked Widgets and the coordinator

55

Mashup
Execution
Coordinator

configure

getSubscriber

run

Linked
Widget

setup

getParameter

setParameter

setupInput

receiveInput

getOutput

clearInputData

runIfPossible

output

AbstractWidget

+ setup(String widgetId): void

+ getParameter(): JSON String

+ setParamter(String jsonStr):void

ClientWidget

+ setupInput(String jsonStr): void

+ clearInputData(): void

+ receiveInput(String jsonStr): void

+ getOutput(): JSON String

+ runIfPossible(): void

ServerWidgetUI

Coordinator

+ configure(String jsonStr): void

+ getSubscriber(String widgetId): JSON String

+ output(String widgetId, String jsonStr): void

+ run(String widgetId): void

Figure 3.8: Interfaces between Linked Widgets and the mashup coordinator

as shown in Figure 3.8 and explained in Table 3.3. The interfaces contribute to not only
the mashup construction process but also the mashup communication protocols presented
in the next section.

To build up a mashup, users drag and drop widgets to the mashup panel. Because
widgets are associated with URLs, we can create respective widget pages (which are
HTML iframes). When a widget page is completely loaded, the mashup coordinator calls
the setup method of the widget and sets an automatically generated identifier for the
widget; the identifier must be unique to differentiate the used widgets.

After receiving its assigned identifier, the widget calls the configure method of
the coordinator. Parameters passed to the method are (i) the widget’s input/output
configuration and (ii) automatically detected HTML inputs (and their current values) of
the widget page. Based on the former information, we can graphically create and display
the widget’s input/output terminals in the widget interface. The latter information is

56

Name Description

configure sends the configuration of a widget (e.g., input, output terminals, and
the widget’s default size) to the coordinator

getSubscriber asks the coordinator which widgets are waiting for the output of a
widget

run tells the coordinator a widget wants to run
output returns the output of a widget to the coordinator

setup sets an identifier for a widget
setupInput initializes the input data of a client widget, based on the current wires

among widgets
getParameter asks a client widget or the client interface of a server widget for their

current parameter settings
setParameter sets values of the parameters in a client widget or the client interface

of a server widget. The method is used when we load a saved mashup
receiveInput sends input data to a client widget. The input data is taken from the

output data of the preceding widget of the concerning client widget in
the mashup flow

getOutput asks a client widget for its current output data
clearInputData clears the input data object of a client widget
runIfPossible tells a client widget to run if it has no input terminals, or all of its

input terminals have been already received data

Table 3.3: Description of mashup communication methods

temporarily stored by the coordinator. Once the mashup is saved, the current setting
values of the HTML inputs are sent to the coordinator. The coordinator hence can
compare the initial values with the saved values of every single field of all widgets. It then
detects and saves the changing fields into the mashup configuration. Consequently, when
we load a saved mashup, rather than requiring users to re-enter the mashup parameters,
we can automatically set the saved parameters back into widgets, using the setParameter
method of the Linked Widgets.

As soon as widgets have been instantiated, we can link (or unlink) an input terminal
of a widget to the output terminal of another widget. Each time such a link is established
(or removed), the input object of the former widget is (re)initialized.

The input data of a widget is dynamic; it is generated based on the number of input
terminals of the widget, as well as the number of links of each input terminal to other
output terminals. For example, assume that a widget A has two input terminals, namely,
“input1” and “input2”. While the terminal “input1” is currently linked with two other
output terminals, the terminal “input2” is linked with only one output terminal. The

57

respective input object of A is then initialized with three empty sub-objects as shown in
Listing 3.2. When the mashup is executed, the data received from the output terminals
will be filled into these empty sub-objects as illustrated in Listing 3.3. The structure
allows us to count the number of input data objects the widget has received from other
widgets. If it equals the total number of required input data objects, we can execute the
widget.

3.6 Mashup Execution Protocols

This section discusses the communication protocol between widgets used during the
execution of a mashup. We design three respective protocols for the three types of
mashups, i.e., local, hybrid and distributed mashups. The protocols aim to facilitate
efficient communication between independently developed widgets executed on various
devices and minimize the framework server load.

3.6.1 Local protocol

Local mashups consist entirely of locally executed client widgets that communicate within
the client’s web browser.

As an example for how the protocol facilitates communication at runtime, consider a
mashup with three widgets A→B→C. To construct the mashup, we (i) drag and drop
three widgets A, B, and C to the mashup panel, and (ii) link the output terminals of the
widget A and B to the input terminals of the widget B and C, respectively.

Figure 3.10 shows all messages transferred between the coordinator and the three
widgets. The communication takes place entirely in the client’s browser. Because widgets
do not know of each other, they have to communicate with the coordinator to obtain their
tasks. The first eight messages are delivered during the mashup construction process;
they are the prerequisite preparation for the mashup execution.

The mashup execution is triggered as soon as we run the widget C. Typically, the
coordinator will clear the input data objects of the three widgets and tell them to execute.
A is the only widget that can run in the first phase, because it requires no input data.
As soon as its execution is completed, it sends the output to the coordinator, which, in
turn, delivers the output to widget B. B can now run as it already has its input data.
This process continues until the very last widget (i.e., widget C) receives its input and
finishes the execution. Data are transferred between widgets in a successive process.

The local protocol is based on messages and events. This offers a powerful approach
for various use cases with rich user interaction. For example, the control flow can be
reversed as follows. Assume that A is the Map Pointer widget, from which we can define
a point on a map. When an event is fired in A, (e.g. users add or delete a Point by
clicking on the map), we need to update the final result presented in the widget C. To
this end, once A updates its output data, it sends an event to the coordinator by calling
the output method, which, in turn, updates the input of widget B and informs it to

58

Listing (3.2) Empty JSON input object
input = {

"input1": [{}, {}],
"input2": {}

}

Listing (3.3) JSON input object when data is filled in
input={

"input1": [
{

"@context": {
"lat": "http://www.w3.org/2003/01/geo/wgs84_pos#lat",
"long": "http://www.w3.org/2003/01/geo/wgs84_pos#long"

},
"@type": "http://dbpedia.org/ontology/Place",
"location": {

"@type": "http://dbpedia.org/ontology/Point",
"lat": 48.2045,
"long": 16.3806

}
},
{

"@context": {
"lat": "http://www.w3.org/2003/01/geo/wgs84_pos#lat",
"long": "http://www.w3.org/2003/01/geo/wgs84_pos#long",
"location": "http://www.w3.org/2003/01/geo/wgs84_pos#location"

},
"@id": "http://linkedgeodata.org/triplify/node1526007218",
"label": "Alma Mahler-Werfel-Park",
"@type": [

"http://geovocab.org/spatial#Feature",
"http://linkedgeodata.org/meta/Node",
"http://linkedgeodata.org/ontology/Leisure",
"http://linkedgeodata.org/ontology/Park"

],
"location": {

"@type": "http://www.w3.org/2003/01/geo/wgs84_pos#Point",
"lat": 48.1966,
"long": 16.3951

}
}

],
"input2": {
"@context": {

"lat": "http://www.w3.org/2003/01/geo/wgs84_pos#lat",
"long": "http://www.w3.org/2003/01/geo/wgs84_pos#long"

},
"@type": "http://dbpedia.org/ontology/Place",
"location": {

"@type": "http://dbpedia.org/ontology/Point",
"lat": 48.2239,
"long": 16.34375

}
}

}

59

Coordinator A B C

1. setup

2. configure

3. setup

4. configure

5. setup

6. configure

7. setupInput

8. setupInput

9. clearInputData

10. clearInputData

11. clearInputData

12. runifPossible

12. runifPossible

13. runifPossible

M
a
s
h
u
p
 c
o
n
s
tr
u
c
ti
o
n

M
a
s
h
u
p
 e
x
e
c
u
ti
o
n

14. output

15. receiveInput

16. output

17. receiveInpput

18. output

Figure 3.10: Local mashup communication protocol

60

perform the execution function again. Similarly, C runs and finally visualizes the updated
data.

The client mashup coordinator is executed locally; this implies that after the mashup
has been constructed, the framework server is no longer needed since the coordinator
and widgets – which both reside in the client browser – compute the tasks. Framework
resources are only required to initiate mashups, but are not used during mashup execution.
A client widget can use third party services to collect and/or process data. This reduces
server load and improve the performance.

3.6.2 Remote protocol

In order to support distributed mashups, which consist of a local visualization widget and
a number of remote widgets that may be distributed among nodes, a remote protocol is
necessary.

Protocol Specification

For the remote mashup communication protocol, we use the publish/subscribe model
and a coordination server. To explain the protocol, consider a sample mashup with
four widgets (cf. Figure 3.11): (i) S1, a server data widget, which runs on a personal
computer to get data from a file; (ii) S2, another server data widget, which runs on
an Android phone to obtain its data, e.g., call logs; (iii) S3, a server processing widget,
which runs on a web server; (iv) and C1, a client visualization widget.

To differentiate multiple instances of a server widget used in multiple mashups, we
associate each mashup with a Universally Unique Identifier (UUID), e.g., id1 in our
example.

As soon as a user triggers the execution of a mashup, the framework collects the
parameters for all server widgets and forwards them to the coordinator (Step 1 in
Figure 3.11). These parameters are (i) the list of URIs of widgets used; (ii) the
configuration of the mashup, i.e., all connections between an output terminal of a widget
and an input terminal of another widget; (iii) the parameters set by the user in the
widget user interfaces (as parameter, value pairs).

Next, the coordinator sends run requests to the remote executors of S1, S2, and S3
(Step 2). Details on these executors are provided in Section 3.3.2. Each request contains
widget parameters and an identifier of the event the widget should subscribe to. Based
on this information, each executor can instantiate a widget job (Step 3).

In our example, we have three such jobs, i.e., Sid1
1 , Sid1

2 , and Sid1
3 for the mashup

identified by the UUID id1. Next, Sid1
3 needs to subscribe to the output event of Sid1

1
and Sid1

2 , because S3 requests the output data of S1 and S2 as its input data. Similarly,
C1 subscribes to the output event of Sid1

3 (Step 4).
Jobs Sid1

1 and Sid1
2 are executed immediately with the parameters sent from the

requests before, because S1 and S2 do not need input data from any other widget (Step
5).

61

Server Widget

Java/C/Php/...
Server Widget

Java/C/Php/...
Client Widget

Server Widget

Android/iOS

Mashup
Execution
Coordinator

S
1

S
2

S
3

C
1

Personal computer

Remote Executer S
1

Android phone

Mashup id1

... ...

Browser environment

3.33.1

5.1 4.1

6.2

3.2

5.2

6.1

7

4.2 8

2

1

Server

1. The editor sends mashup configuration and widget parameters

2. Coordinator requests S
1
, S

2
, S

3
to initialize widget instances for mashup id1

3.1 S
1
initinilizes S

1

id1

instance

3.2 S
2
initinilizes S

2

id1

instance

3.3 S
3
initinilizes S

3

id1

instance

4.1 S
3

id1

subscribes to S
1

id1

output and S
2

id1

output events

4.2 C
1
subscribes to S

3

id1

output event

5.1 S
1

id1

runs and publishes S
1

id1

output event

5.2 S
2

id1

runs and publishes S
2

id1

output event

6.1 Coordinator forwards the S
1

id1

output event to S
3

id1

S
3

id1

then has output of S
1

id1

6.2 Coordinator forwards the S
2

id1

output event to S
3

id1

S
3

id1

then has output of S
2

id1

7. S
3

id1

collects all input. It runs and publishes S
3

id1

output event

8. Coordinator forwards the S
3

id1

output event to C
1

C
1
then has output of S

3

id1

and visualizes it

Mashup Editor

Remote Executer S
3

Remote Executer S
2

Job S
2

id1

Job S
3

id1

Job S
1

id2

Job S
1

id1

Figure 3.11: Remote mashup communication protocol

62

When these jobs are finished, they publish output events to the coordinator. The
coordinator then sends the output to the jobs that have subscribed to the respective
output events, i.e., from Sid1

1 and Sid1
2 to Sid1

3 (Step 6). As soon as Sid1
3 has received

its two inputs, it is executed and publishes an output event to the coordinator (Step 7).
Finally, because C1 has subscribed to this event, it receives and visualizes the final data
in the browser (Step 8).

This protocol ensures that a user can close the browser and reopen a mashup that is
being executed remotely. Upon reopening a distributed mashup, the client visualization
widget immediately requests and displays the current output data of its predecessor
server widget(s). Furthermore, the visualization widget listens for output events and
updates its display immediately whenever new data arrives.

Protocol Implementation Consideration

We have identified two major architectural options for implementing the remote mashup
protocol. The first uses web services; the second is to implement it on top of a Web-
Socket [102] infrastructure. We will discuss each of these options in the following.

If we follow the web service approach, the coordinator is a collection of services that
server widgets use for communication. A remote executor that runs on a web server, can
provide an execution service and an output service. Therefore, we have a bi-directional
communication channel between the remote executor and the coordinator.

Based on that, the publish/subscribe model can be set up as follows: First, the
coordinator calls the execution service of S1 and the job Sid1

1 is performed. When this
job has been completed, it sends the coordinator the token used to receive its output
data. The coordinator, in turn, calls the execution service of S3 and sends this token as
a parameter to Sid1

3 . This job uses the token to call the output service of Sid1
1 to load

the data. Data, hence, is transferred between and processed inside the remote executors
themselves. This reduces the server load, because the task of the coordinator is to call
the execution services only. It does not perform any data processing tasks, neither does
it interact with the intermediate widget output data.

However, the web service-based approach is ill-suited for server widgets running in
environments such as mobile phones. We should not deploy web services on such devices
because of their restricted computing resources and the connectivity requirement (e.g., we
need to open a port). This would result in uni-directional communication channels. To
simulate bi-directional connections and the publish/subscribe model, we would have to
use polling or long-polling. However, this approach has unfavorable scaling characteristics
and generates large amounts of unnecessary network traffic when a large number of server
mashups are executed concurrently. Furthermore, the coordinator represents a bottleneck
in this scenario.

The second potential implementation approach is based on WebSockets. The approach
provides full-duplex communication channels over a single Transmission Control Protocol
connection. Although the technology was conceived as a communication channel between
web browsers and web servers, they can be natively implemented in various programming
environments and on various devices.

63

Once a WebSocket connection is established, data frames can be sent back and forth
between the client and the server in full-duplex mode. This eases interaction between
clients (e.g., browsers) and servers. A server can send content to the browser and allowing
for messages to be passed back and forth while keeping the connection open. As a result,
we have a two-way communication channel and can easily implement the protocol.

Following the WebSocket approach, the remote executors are essentially WebSocket
clients, and the coordinator is a WebSocket server. A potential disadvantage of this
architecture is that remote executors cannot directly transmit data to each other on
their own. All data needs to be passed through the WebSocket server. The coordinator
therefore is the bottleneck of the architecture. To tackle this problem, we can deploy
multiple WebSocket servers and make use of load balancing methods [103]. Furthermore,
server widgets that run on a web server may return the URL associated with a token
rather than the complete data to the coordinator; the coordinator then forwards the
URL to subsequent widgets which may use it to download the output data.

Overall, we opted for the WebSocket approach due to its advantages, which include
(i) lower latency compared to HTTP connections, (ii) lower amount of data transferred,
(iii) the wide range of supported languages, which provide the basis for various computing
environments for server widgets.

3.6.3 Hybrid protocol

Hybrid mashups are an extension of distributed mashups. Hybrid mashups do not require
that all data and processing widgets are server widgets, i.e., client widgets can be used
anywhere in a hybrid mashup.

The communication protocol for hybrid mashups is similar to the remote protocol. If
the predecessor of a client widget is a server widget, it needs to subscribe to the output
data event of the server widget. If its successor is a server widget and when it returns
output data to the coordinator, the coordinator will publish an output event so that the
server widget can receive the output data.

3.7 Hybrid Mashup Patterns

This section presents five combination patterns of client widgets and server widgets. Each
pattern is useful in particular data integration scenarios.

3.7.1 Collaborative Mashups

Definition

A collaborative mashup is a type of mashup application that is created and/or operated
by more than one user at the same time.

64

Server
Widget

User B

User A

User C

Server
Widget

User D

User E

W

W
1

W
2

Figure 3.12: Collaborative mashup pattern

Use Case

Collaborative mashups are useful for a group of users. As soon as they agree on a data
processing flow defined in a mashup, each participant can update her input data at any
time so that all can immediately get the live presentation of the combined data. Tedious
and repetitive manual data integration processes (e.g., data cleansing, data uploading,
change notifying) are encapsulated in widgets.

Consider, for example, the simple task of scheduling a meeting between users whose
calendars are spread among computers, mobile phones, Cloud services, etc. A widget-
based collaborative workflow would allow participants to selectively contribute their
calendar using server widgets such as locally executed Apps or Cloud-based calendar
widgets. They could then simply merge their calendar widgets in a collaborative mashup
to identify available timeslots.

Pattern

The Linked Widgets combination pattern of collaborative mashups is presented in
Figure 3.12. It involves at least one server widget (e.g., W) and two users; the two users
are responsible for their two widgets (e.g., W1 and W2), which can be either client or
server widgets.

To execute the collaborative mashup, in the first step, an arbitrary participant triggers
the run action in the visualization widget. This will also trigger the execution of all
preceding widgets (except W1 and W2), one after the other. The server widget W ,
however, cannot run yet because it still waits for the output data of W1 and W2.

In the next step, the two users set the values of widget parameters and run their
widgets. As soon as both widgets return output data, the server widget W performs

65

Figure 3.13: Delegating widget

the data integration task and returns the result to its succeeding widget. According to
the mashup execution protocol presented in Section 3.6, whenever W1 or W2 submits
its new output data, the final result is recalculated and immediately presented to every
participant in the synchronized visualization widget.

A participant can leave the collaborative mashup at any time. To this end, she
removes her widget from the mashup so that the input data of the server widget W
is reset, and her private data is removed from the mashup. On the other hand, a new
participant can easily join the collaborative mashup by entering the collaborative token
to load the mashup and adding her private widget into the collaborative mashup editor.

Moreover, we provide each participant with the delegating widget (cf. Figure 3.13)
that can be persistently connected with an instance of a server widget. When we run
this delegating widget, it subscribes to the “returning output” event of the server widget
instance whose token is specified in the input box. The delegating widget acts as an
agent for the server widget instance, meaning that as soon as the server widget returns
its new output data, the delegating widget receives the data and immediately returns
the same result. The delegating widget is designed for collaborative mashups as follows:

(i) It first allows a participant to prepare her own data for a collaborative mashup.
Rather than exposing a large volume of data, she can extract a relevant part of data only,
and perform some pre-processing task in a private mashup. She then contributes the data
of such mashup to the collaborative group by using a delegating widget. This not only
makes data integration more secure (as her data may contain sensitive data that should
be removed) but also speeds up the execution of the whole mashup (as the irrelevant
part of data is already removed in her private mashup). The private mashup is not a
part of the collaborative mashup, but its final output data is used in the collaborative
mashup via the delegating widget.

(ii) The delegating widget allows a participant to hide a branch of the collaborative
mashup. The Linked Widgets framework enables anybody to develop her own widget;
she then can contribute it to the public community or keep it private. A private widget
can be used in a collaborative mashup; it is visible to everyone in the shared mashup
screen. The hiding feature is hence useful if a participant does not want to expose her
private widget used in the collaborative mashup to others. Moreover, it simplifies the
overall mashup; each should only see the relevant part of the mashup rather than the
part that she can ignore or cannot control.

66

Server
Widget

Client
Widget

Run in the cloud

Figure 3.14: Persistent mashup pattern

3.7.2 Persistent Mashups

Definition

A persistent mashup is a type of mashup application that can continuously run in the
background and maintain its status and intermediate data.

Use Case

A persistent mashup can be used for data integration tasks that are typically time-
consuming (e.g., statistical analysis, data analysis, and data reporting). To this end, the
mashup creator composes a mashup, submits her input data, and does not have to care
about it any more. At any time, she can reopen the mashup to check the current status
and result. As she does not host and run the mashup on her device, she can manage a
mashup that performs heavy calculation tasks even with a slow client device. During the
waiting time for the calculation, she can turn off her device, or do other work.

Pattern

Figure 3.14 shows the Linked Widgets combination pattern of persistent mashups. It
contains a server widget placed before a visualization widget, which is a client widget.
Because the server widget performs the processing tasks in the respective server rather
than the browser environment, it can persistently maintain the calculation and the
intermediate mashup data.

As soon as the mashup is reopened, the client widget requests the latest output data
from the server widget and visualizes it. The browser hence acts as a front-end tool that
shows up-to-date data from the back-end processing.

67

Client
Widget

Device I

Device II

Device III

Device IV

Server
Widget

Server
Widget

Server
Widget

Figure 3.15: Distributed mashup pattern

3.7.3 Distributed Mashups

Definition

A distributed mashup is a type of mashup application in which the involved widgets are
hosted in distributed nodes and devices.

Use Case

Distributed mashups first can facilitate data integration of sensors and embedded devices.
The data collector tasks run pervasively among server widgets of distributed nodes. To
facilitate data integration, those server widgets can clean, formalize, and convert the
data into the semantic format before sending it to a central node (which is also a server
widget) where data is aggregated before finally being visualized in a client widget. The
distributed model typically involves three types of nodes: (i) embedded devices (which
provide input data), (ii) a powerful server (which processes data), and (iii) a personal
device such as a mobile phone, tablet, or laptop for visualization.

Distributed mashups, moreover, allow us to integrate data from different devices
without the necessity to upload the data into a data center. To enrich the data, we can
flexibly integrate our local data with open data and LOD datasets by adding widgets
into the mashup.

Pattern

Figure 3.15 depicts the widget combination pattern of distributed mashups. The involved
server widgets are placed in an arbitrary position of the mashup. Based on the available
programming language (e.g., Java, Python, Erlang, C++, etc.) of the hosting device,
we implement the respective versions of the server widgets. By adding (removing) a
widget into (from) a mashup, we can add (remove) the node into (from) the ad-hoc
architecture. It is required that the device is connected to the internet, so that widgets
can communicate in the remote protocol.

68

Client
Widget

Continuously run and return output data

Figure 3.16: Streaming mashup pattern

3.7.4 Streaming Mashups

Definition

A streaming mashup is a type of mashup application in which data flows continuously
from a widget to others in the mashup.

Use Case

Streaming mashups can be used for data monitoring use cases. While currently integrated
data is presented to users, new data is constantly generated, delivered, and aggregated for
presentation. Due to the variety of real-time and streaming data sources available on the
web (e.g., weather, public transportation, stock quotes) and the easy-customized feature
of mashups, each can build up her own application to process daily data and support
decision making. For example, she can compose a mashup that collects the temperature,
the pressure, and the wind speed in different places (e.g., her home, her work place) every
minute, based on the weather conditions of the nearest Wunderground stations (out of
140,000 stations all over the world). She then can visualize the aggregated data in a
chart, which is updated every minute. This example is presented in Section 5.5.1.

Pattern

The Linked Widgets’ streaming mashup pattern is illustrated in Figure 3.16. At least
one widget continuously runs and returns its output data. We use the term streaming
widget, which can be either a client or a server widget. A streaming client widget can
be used, but the streaming data flow of the mashup will be stopped once we close the
browser; a streaming server widget should be used if we intend to make our streaming
mashup persistent.

3.7.5 Complex mashups

The purpose of classifying hybrid mashup patterns is to clarify and emphasize different
aspects of mashups only; there is no clear boundary between collaborative, persistent,
distributed, and streaming mashups. We can combine these types in various ways. For

69

example, we can construct mashups that continuously integrate streaming data from
distributed sensors of multiple stakeholders.

3.8 Mashup Encapsulation
The basic idea of our approach is to foster reuse of functionality encapsulated inside
Linked Widgets. Moreover, we enable users to reuse a created mashup as a new widget
without programming. By using both client and server Linked Widgets, there are two
mechanisms as follows:

1. Making use of the delegating widget (cf. Section 3.7.1 and Figure 3.13), we can use
the output of an arbitrary sever widget of an existing mashup as the data source
for a new mashup. This not only serves well for collaborative use cases but also
simplifies complex mashup composition.

2. We can compose a mashup (which can be a client mashup, server mashup, or
hybrid mashup) and save it as a new widget. We name this special type of widget a
“mashup widget”. A mashup widget operates in the same way as an ordinary widget
does. The mashup widget also has an associated URI and a semantic model (which
is the same as the model of the last widget lying in the mashup flow).

To define the user interface of the mashup widget, in the first step, all HTML inputs
(and their labels) of every widget used in the mashup are automatically detected. Next,
the default value and the new label for the detected fields can be set; the unnecessary
fields can be hidden. These configurations are associated with the annotation of the
mashup widget, which is finally published as Linked Data.

When a mashup widget is dragged and dropped into the mashup panel, the widget
configurations are loaded to generate themashup widget’s interface. As soon as the mashup
(which contains the mashup widget) is finished editing and executed, the communication
process between ordinary widgets and the mashup widget should be performed as usual
(cf. Section 3.6). To this end, we define the execution function of a mashup widget as the
whole process of executing the mashup from which the mashup widget is derived. This
allows us to have multi-level nested mashups.

Figure 3.17 illustrates an example that uses a mashup widget. The execution of the
mashup widget starts with the execution of W1 and W2 and ends with the execution
of W4. Because W4 (which is the last widget of the internal mashup) is a visualization
widget, the output data of the mashup widget is the input data of W4; assume that W4
is a processing widget, the output data of the mashup widget would be the output data
of W4.

3.9 Automatic Data Integration
Today, a large and fast-growing number of ready-to-use open datasets and services are
available. For an individual application or a single developer, however, it is difficult to
make use of these resources; we need a collaborative environment to use the power of the
community.

70

Mashup Widget

W
1

W
2

W
3

W
4

W
5

W
6

W
7

Figure 3.17: Nested mashup

The framework is not tailored towards particular datasets, but integrates data from
arbitrary sources. Available widgets can also be combined with widgets that may become
available in the future; currently available data can be merged with future data without
modifying the existing applications. More importantly, the framework facilitates data
integration in a quick and flexible manner as we can simply add or remove a data source
to facilitate new use cases. In the following two subsections, we outline how the framework
supports data integrators in performing data exploration and automatic data integration
tasks.

3.9.1 Semantic Terminal Matching

Because widgets collect, process or visualize data from a source, we can consider widgets
as representations of the data itself. Once a widget has been added to a mashup, semantic
terminal matching allows the user to explore additional widgets that are relevant in a
given context. To this end, we query widgets that can be connected to the input and
output terminal(s) of a given widget. For instance, we can determine that we are able to
connect the output terminal of POI search with the input terminal of Weather Forecast
and hence integrate geospatial data from Linked Geo Data with weather data from
Wundergound.

Let i and o denote the root nodes of the input and output tree models (cf. Sec-
tion 3.4.3), respectively. There are three preconditions for matching input and output
models:

1. the RDF classes of i and o must be identical, or the RDF class of i must be a
sub-class of that of o;

2. any child of i must correspond to a child of o (i.e., the set of properties required by
the input must be a subset of properties provided by the output);

71

Listing 3.4: A SPARQL query for terminal matching
PREFIX lw: <http://linkedwidgets.org/ontology/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT DISTINCT ?iTerminalName ?iWidget ?iJSONData ?oJSONData WHERE {
<http://linkedwidgets.org/resource/WidgetPOISearch>

lw:hasWidgetModel ?oWModel.
?oWModel lw:hasOutput

[lw:hasName "output"^^xsd:string;
lw:hasDataModel ?oDataModel].

?oDataModel a ?type.
?oDataModel lw:hasArrayDimension ?dimension.
?oDataModel lw:hasSampleData ?oJSONData.

?iWidget lw:hasWidgetModel ?iWModel.
?iWModel lw:hasInput

[lw:hasName ?iTerminalName;
lw:hasDataModel ?iDataModel].

?iDataModel a [rdfs:subClassOf ?type].
?iDataModel lw:hasArrayDimension ?dimension.
?iDataModel lw:hasSampleData ?iJSONData.

FILTER NOT EXISTS{
?oDataModel ?property ?oValue.
FILTER NOT EXISTS {?iDataModel ?property ?iValue.}

}
}

3. recursively, the data model of the input object property must match with the data
model of the corresponding output object property.

The process of terminal matching comprises two steps: preliminary matching and
full matching (cf. Figure 3.18). Preliminary matching checks the first two requirements
via a single SPARQL query (cf. Listing 3.4).

The query, moreover, allows us to get the JSON sample data associated with the
input and output tree data model. Full matching hence can check the third requirement
by comparing the JSON sample data of the input with that of the output. This is efficient
because we do not have to recursively execute a large number of SPARQL queries to
build the input and output trees, which is typically time-consuming and inefficient. This
pragmatic approach, however, does not allow for semantic processing during the full
matching; for example, because we cannot use ontology alignment techniques to match
the class (property) of an input node with that of another output node, the classes and
properties must be exactly the same in a successful match.

As the example shown in Figure 3.18, the output data model of the POI Search is
matched with the input data model of the Weather Forecast because:

72

1. Preliminary

Matching
2. Full Matching

Perform a SPARQL query JSON data matching

output = {

"@context": {

"lat": "http://www.w3.org/2003/01/geo/wgs84_pos#lat",

"long": "http://www.w3.org/2003/01/geo/wgs84_pos#long",

"location": "http://www.w3.org/2003/01/geo/wgs84_pos#location"

},

"@graph": [

{

"@id": "http://example.com.sampleId",

"@type": "http://www.geonames.org/ontology#Feature",

"location": {

"@id": "http://example.com.sampleId",

"@type": "http://www.w3.org/2003/01/geo/wgs84_pos#Point",

"lat": "float",

"long": "float"

}

}

]

}

input = {

"@context": {

"lat": "http://www.w3.org/2003/01/geo/wgs84_pos#lat",

"long": "http://www.w3.org/2003/01/geo/wgs84_pos#long",

"location": "http://www.w3.org/2003/01/geo/wgs84_pos#location"

},

"@graph": [

{

"@id": "http://example.com.sampleId",

"@type": "http://www.w3.org/2002/07/owl#Thing",

"location": {

"@id": "http://example.com.sampleId",

"@type": "http://www.w3.org/2003/01/geo/wgs84_pos#Point",

"lat": "float",

"long": "float"

}

}

]

}

POI Search

Weather Forecast

output

input

Match

Output data model Input data model

Figure 3.18: Terminal matching

73

1. The output geo:Feature15 is a subclass of the input owl:Thing; both the output and
the input are a 1-dimensional array.

2. The output property set (which is {wgs84:location16}) is the same as the input
property set.

3. The input JSON data fits the output JSON data, as the values of the key “location”
of the two objects are the same.

3.9.2 Automatic Mashup Composition

A mashup, essentially, represents an integration of data from multiple sources; automatic
mashup composition hence can be seen as a type of automatic data integration. Despite
the similarities between mashup composition and service composition, we can automatize
the former more easily than the latter because every widget is associated with a semantic
model.

Leveraging the terminal matching mechanism, we know what widgets can be connected.
This allows us to design an algorithm to determine all possible ways to integrate data
based on a specified list of data sources and related Linked Widgets. To design an
algorithm for such a process, we first formalize Linked Widgets and related concepts.

Let W denote a set of available widgets.

W = {w1, . . . , wm} (3.1)

Each widget w ∈ W is represented by a quadruple (I, P , O, C) with a finite set of
input data models I for n input terminals, an output data model O, a configuration
model C where all widget parameters are defined, and a processing function P . We have
not added C to the semantic model of Linked Widgets yet and consider this as future
work.

I = {I1, . . . , In} (3.2)

P : I1 × . . .× In × C → O (3.3)

Whereas processing widgets require that all elements are non-empty (i.e., I, P , O, C 6=
∅), data widgets have no input (i.e., I = ∅) and visualization widgets have no output (i.e.,
P , O = ∅).

Next, nk denotes the number of input terminals for widget wk ∈ W . O∗ is a set of
output terminals of all widgets in W where ok denotes the output terminal of wk; and I∗
is the set of input terminals of all widgets in W .

O∗ = {o1, o2, . . . om} (3.4)

I∗ = {i1
1, i1

2, . . . , i1
n1} ∪ . . . ∪ {im

1 , im
2 , . . . , im

nm
} (3.5)

15http://www.geonames.org/ontology#Feature (accessed Nov. 01, 2015)
16http://www.w3.org/2003/01/geo/wgs84_pos#location (accessed Nov. 01, 2015)

74

http://www.geonames.org/ontology#Feature
http://www.w3.org/2003/01/geo/wgs84_pos#location

Let W
′ ⊆W denote a set of widgets used in a complete mashup composed from W .

Complete in this context means that all terminals must be wired. A complete mashup
is then a pair (W ′

, SE) where SE is a set of edges; each edge is in form of (ol, iq
k),

representing the link between output terminal of wl and input terminal k of wq.
We require ol ∈ O

′
∗, and iq

k ∈ I
′
∗ such that l 6= q, because the output terminal of a

widget cannot be connected to its own input terminal. Furthermore, for each iq
k ∈ I

′
∗,

there is exactly one corresponding pair in SE. In other words, each input terminal must
be connected to exactly a single output terminal.

To specify the automatic mashup algorithm, we perform a pre-processing step to
construct a weighted directed graph G = (V , E) for the set of available widgets W . The
vertex set V consists of all input and output terminals of all widgets.

V = O∗ ∪ I∗ (3.6)

E = IE ∪ EE (3.7)

IE = {(om, im
1 , 0), . . . , (om, im

nm
, 0), ∀wm ∈W} (3.8)

EE = {(ol, iq
k, 1), l 6= q,∀wl, wq ∈W such that Ol match Iq

k} (3.9)

The edge set E is the union of IE and EE where IE is the set of internal edges, and
EE is the set of external edges. Internal edges connect input and output terminals of the
same widget; external edges represent valid connections between the output and input
terminals of two widgets. To differentiate between these two types of edges, the weight
of internal edges is zero whereas the weight of external edge is one. We use the terminal
matching algorithm to populate EE.

The direction of external edges is from the input terminal to the output terminal;
the direction of internal edges is from the output terminal to input terminal. Due to
this directionality rule, widget connections are equivalent to paths in the graph, e.g., a
connection between w1 and w2 can be represented by the path o2→i2

1→o1 (where ok and
ik
m are the output terminal and the input terminal number m of widget wk, respectively).
Figure 3.19 shows an example graph of seven widgets.

We define a mashup branch as a part of a mashup that consumes (provides) data
for a specific output (input) terminal, respectively. Based on that definition, we propose
three types of the auto-composition algorithms from a given set W of available widgets:

1. list all complete mashups that contain a particular widget wm ∈W ,
2. construct all possible complete mashup branches for a particular input or output

terminal of wm ∈W , and
3. construct all complete branches for all input terminals of wm ∈W .

75

W
5

W
3

W
2

W
1

1

1

W
6

I

2

1

I

3

2

I

5

1

I

6

1

0

0

W
4

I

3

1

1

0

1

W
7

I

7

1

1

0

1

0

O

1

O

2

O

3

O

4

O

6

O

7

Figure 3.19: Example graph corresponds to a set of widgets

Algorithm 1 specifies the first variant, which is, without loss of generality17, limited
to mashups that use no more than a single instance of each widget.

The auto-composition of mashups is a graph search problem. The input is the pre-
constructed graph and a starting widget. We then need to identify all mashups that
contain this widget. This means we have to find complete paths starting from all output
and input terminals of the widget such that all involved input (output) terminals are
wired with other output (input) terminals.

The search algorithm traverses the graph in a depth-first manner. We build up
branches for input and output terminals in backward and forward search directions,
respectively. sbEdges and sfEdges are two linked lists that store all possible edges during
the backward and forward search. uiVertices saves all unvisited input vertices of visited
widgets; mashup stores all mashup edges during the construction process; isDead is a
flag that indicates dead ends, i.e., when we cannot build up a complete mashup from the
current selections.

The algorithm starts by storing all edges ending with output terminal om into sfEdges.
Next, we keep going forward until we find the input terminal of a visualization widget. We

17If we allow composed mashups to use a particular widget n > 1 times, we replicate all of its vertices
n times and adapt the algorithm to avoid duplicate mashups.

76

Algorithm 1 Automatic mashup composition
Input: G(V, E), im

1 , . . . , im
k , om

Output: The set of complete mashups
Global Variables: sbEdges , sfEdges , uiVertices , mashup , isDead

1: procedure autoCompose(G(V, E), im
1 , . . . , im

k , om)
2: isDead ← false
3: uiVertices ← im

1 , . . . , im
k

4: sfEdges ← edgesEndWith(om)
5: while sbEdges is not empty or sfEdges is not empty do
6: if sbEdges is not empty then
7: e ← last edge of sbEdges
8: backtrack(startVertex(e))
9: goBackward(endVertex(e))

10: else
11: e ← last edge of sfEdges
12: backtrack(endVertex(e))
13: goForward(startVertex(e))
14: end if
15: if isDead is false then
16: visitAllVertices
17: else
18: isDead ← false
19: end if
20: end while
21: end procedure

22: procedure goForward(Vertex v)
23: Mark v as visited
24: if we cannot go forward from v then
25: isDead ← true
26: else if v is input k of widget q (v ≡ iq

k) then
27: Add (oq, iq

k) to mashup . oq: output of widget q
28: goForward(oq)
29: else if v is output then
30: S ← {e ∈ E | e = (u, v) such that u is unvisited}
31: Add S to sfEdges to save all possibilities
32: for e ∈ S do
33: Remove e from sfEdges and add e to mashup
34: goForward(startVertex(e))
35: if isDead is true then
36: backtrack(v)
37: isDead ← false

77

Algorithm 1 Automatic mashup composition algorithm (continued)
38: end if
39: end for
40: end if
41: end procedure

42: procedure goBackward(Vertex v)
43: Mark v as visited
44: if we cannot go backward from v then
45: isDead ← true
46: else if v is output of widget q (v ≡ oq) then
47: I ← {iq

1, . . . , iq
nq
} . all inputs of widget q

48: Add I to uiVertices and add {(v, i) | i ∈ I} to mashup
49: else if v is input then
50: S ← {e ∈ E | e = (v, u) such that u is unvisited}
51: Add S to sbEdges to save all possibilities
52: for e ∈ S do
53: Remove e from sfEdges and add e to mashup
54: goBackward(endVertex(e))
55: if isDead is true then
56: backtrack(v)
57: isDead ← false
58: end if
59: end for
60: end if
61: end procedure

62: procedure visitAllVertices
63: for v ∈ uiVertices do
64: if v is not visited then
65: goBackward(v)
66: end if
67: if isDead is true then
68: break
69: end if
70: end for
71: if isDead is false then
72: one complete mashup is found, save it
73: end if
74: end procedure

78

Algorithm 1 Automatic mashup composition algorithm (continued)
75: procedure backtrack(Vertex v)
76: Remove all edges added to mashup since we visit the vertex v
77: Clear visited mark of corresponding visited vertices
78: end procedure

call visitAllVertices to form mashup branches for all input terminals of visited widgets.
For instance, assume that we need to compose complete mashups of w2 (cf. Fig-

ure 3.19). Starting with o2, we go forward to i3
2, and o3. From o3, we can go either to i5

1
or i6

1. We try to go to i5
1 first and temporarily finish going forward there, because i5

1 is
the input of a visualization widget. Next, we have to find connections for the two input
terminals i2

1 and i3
1. For i3

1, we go backward to o7, i7
1 and get stuck there. We backtrack

on i3
1, then go to o4 and finish going backward from i3

1. Next, we go backward from i2
1 to

o1. Now we have a complete mashup of w1, w2, w3, w4, w5; the mashup consists of six
edges (i.e., (i3

2, o2), (o3, i3
1), (o3, i3

2), (i5
1, o3), (i3

1, o4), and (i2
1, o1)).

To search for more mashups, we backtrack on o3 and try to go to i6
1, and then get

stuck at o6. The algorithm ends here because both sfEdges and sbEdges are empty; we
have no more options to try. The detail steps and the values of the uiVertices, sfEdges,
sbEdges, mashup in each step are presented in Appendix A.

3.10 Tag-based Automatic Mashup Composition

Automatic mashup composition is aimed at users who are already familiar with the
mashup composition environment, but need support in finding relevant combinations of
widgets. Its main drawback is that users must have all widgets they need at hand.

To simplify mashup development and ease data integration, we design a Tag-based
Composition Module (TCM). The TCM targets novices who have no or little experience in
mashup development; they do not know which widgets they need to compose the mashup,
but they can specify the data (e.g., Points of Interest, Weather, or Transportation data)
they want to collect and process. The TCM automatically locates relevant widgets
working with such data and composes mashups from those widgets.

The processing flow of the TCM is illustrated in Figure 3.20. Users enter text and
interactively select appropriate tags from LOD resources. The TCM can then identify the
mashup context and discover related widgets. It finally composes mashups over detected
widgets and displays them to users. We describe the process in the following.

3.10.1 Defining Mashup Context

There are several approaches (e.g., using a subset of natural language, using predefined
components, or using a dedicated mashup language) to enable users to define the
requirement or the context of their mashups (cf. Section 6.6). In our research, we follow
a light-weight approach that makes use of our semantic Linked Widget models and the

79

1. Define

mashup context

2. Locate

related widgets

3. Adapt and execute

auto-composition

algorithm

4. Rank & return

composed

mashups

- Linking text to the

Linked Open Data

resources

- Mapping to the

semantic models

of linked widgets

- Querying to the

linked data of widgets

- Querying to the

linked data

of mashups

Figure 3.20: Processing flow of the tag-based composition module

automatic mashup composition. We require that the TCM is responsive, i.e., it can
compose mashups based on the users’ input text in (near) real-time.

To this end, we combine named entity recognition with resource tagging approaches.
Users map their chosen words to available widgets through LOD resources. The mapping
is based on tagging; this means free text is tagged with resources from the LOD cloud.
These tags can then be used to identify corresponding widgets based on their data model.
To reduce sources of errors, we use auto-complete to suggest LOD resources for tagging.

Users enter a sequence of characters into an input field; once the users are confident
that the typed word defines the context of their information need, they invoke the TCM
by pressing Ctrl + Space. From the selected word, the TCM generates a query on
the LOD cloud. The entities and vocabularies (i.e., concepts and relations) discovered
through this query are then returned to the users, who choose the desired resources to
tag their word with. They can re-tag a word (or tag a new one) by selecting the word
and pressing Ctrl + Space.

When annotating widgets, we require developers to tie their widgets to LOD resources.
From these annotations and the users’ tags, we can perform a mapping to locate widgets
related to the user context. The resource-tagging approach removes ambiguities and
therefore is preferable over regular text-tagging approaches; each resource is mapped
with a URI and is hence unique. The approach can leverage the value of the owl:sameAs
property. Although the resource tagged to a widget (by developers) is different from the
resource tagged to a mashup context (by users), we can still precisely match the widget
to the context, if the resources are linked by owl:sameAs.

The tagging approach is a simplification of the dialog-based approach. It is simple,
because users interactively select their tags; they do not have to answer any questions –
which may be vague or difficult to understand – to define their context.

3.10.2 Tagging Techniques

We combine two tagging techniques, i.e., vocabulary tagging and entity tagging. The
former is for locating widgets with respect to their defined concepts and relations in the

80

semantic widget model. The latter is for restricting the context of mashups; it hence
filters the set of possible widgets (which are discovered via vocabulary tagging) needed to
compose users’ mashups.

We offer two options for users to enter text: (i) They can use syntax text to describe
the mashup, following two patterns: “Find A1”, and “A1 r1 A2”. A1 and A2 are ontology
concepts and ri is the relation between them. Practical examples are: “Find Park”,
“Find Swimming Pool’ ’, and “Park near Swimming Pool”. (ii) Free text is another option.
Users can type arbitrary words in arbitrary order, e.g., “A1 A2 A3 r1 r2” and tie these
words to LOD vocabularies.

The technique to tie Ai and ri to LOD vocabularies is called vocabulary tagging. If
syntax text is used, the TCM queries the Linked Data of widgets to locate widgets that
output objects of class A1 for the pattern “Find A1”. For pattern “A1 r1 A2”, it locates
widgets whose input consists of objects of class A1 and whose output consists of objects
of class A2; moreover, the input and output objects must be linked via r1 property. If
users follow the free text style, the TCM simply finds widgets whose output or input
consists of objects of class Ai or whose relations contained in widgets (i.e., widget –
hasIndivualAtom – relation) is ri. The free text option is easier to use, but is less precise
than the syntax text mechanism.

To associate widgets and mashups with a context, we make use of entity tagging along
four dimensions, i.e., where, when, who, and what. These dimensions refer to a place, a
time, a person, or an object, respectively.

We can apply multiple dimensions to tag a widget or mashup. To this end, we need
a common dataset for users and developers to tag to; DBpedia [104] – which may be
considered the central hub of the LOD cloud – is a suitable option. It extracts structured
information from Wikipedia and then stores and represents it as Linked Data. DBpedia
supports 125 languages. As of June 2015, the English version describes 4.58 million
things; it contains 1.45 million persons and 0.74 million places available for “where”
and “who” dimensions. Because these two classes (i.e., Person and Place) are the most
frequently used classes in DBpedia, “where” and “who” are typically more common than
“when” and “what”. We can reuse the publicly available DBpedia Spotlight service [105]
for named entity recognition of DBpedia knowledge.

When annotating widgets, developers tie them to DBpedia entities in order to define
the widget context; for instance, a widget that returns Nobel Prizes could be tied to
http://dbpedia.org/resource/Alfred_Nobel and http://dbpedia.org/resource/Nobel_Prize
for the “who” and “what” dimensions, respectively; a widget which returns POIs in
Vienna would be tied to the Vienna entity in DBpedia. Matching user tagging entities
with widget tagging entities makes mashup results more precise, as illustrated in the
example of Section 3.10.6.

3.10.3 Linked Widget Meta-Tagging Model

To implement the tagging techniques presented in the previous section, we add the
meta-tagging information (cf. Figure 3.21) to the Linked Widgets model.

81

lw:WidgetModellw:Widget lw:hasWigetModel

lw:MetaAnnotation

lw
:h

a
s
M

e
ta

A
n
n
o
ta

tio
n

lw:whoContext

LOD resources

lw:whatContext
LOD resources

lw
:w

he
nC

on
te

xt

lw
:w

h
e
re

C
o
n
te

x
t

lw:hasMetaInput

lw:hasMetaOutput

lw
:hasM

etaR
elation

1

n

1n

1

n

1

n

1

n

1 n

1

n

lw: http://linkedwidgets.org/ontologies/

LOD resources

LOD resources

LOD resources

LOD resourcesLOD resources

Figure 3.21: Meta-tagging model of Linked Widgets

Each widget model is linked to a lw:MetaAnnotation via the lw:hasMetaAnnotation
property. The lw:whoContext, lw:whatContext, lw:whenContext, and whereContext proper-
ties realize the entity tagging techniques. They associate the lw:MetaAnnotation with var-
ious LOD resources. For each property, the relationship between the lw:MetaAnnotation
and LOD resources is 1 : n. Similarly, the vocabulary tagging is implemented by using
the lw:hasMetaInput, lw:hasMetaOutput, and lw:hasMetaRelation properties.

As an example, consider the meta-tagging model of the POI Search widget illustrated
in Figure 3.22. The widget returns all points of interest in Vienna from the geospatial
input, which is an arbitrary object associated with the wgs84:location property. The
widget meta-model hence is tied to the dbpedia:Vienna18 resource via the lw:whereContext
property. Because there is no restriction on the who, what, and when dimension, all of
the respective properties link the widget meta-model to the owl:Thing resource. Finally,
we can add further meta-tagging annotation of the widget’s input, output, and relation
to the widget model. To this end, we link the widget meta-model to the dbpedia:Location,
dbpedia:Place, dbpedia:Venue, dbpedia:Point, geo:Feature, and geo:nearby resources.

18http://dbpedia.org/resource/Vienna (accessed Nov. 01, 2015)

82

http://dbpedia.org/resource/Vienna

lw:modelPOISearchlw:POISearch

lw:metaAnnotationPOISearch

lw
:h
a
s
M
e
ta
A
n
n
o
ta
tio
n

lw:whoContext

owl:Thing

lw:whatContext

lw
:w
he
nC
on
te
xt

lw
:w
h
e
re
C
o
n
te
x
t

dbpedia:Location

geo:nearby

lw
:h
a
s
M
e
ta
R
e
la
tio
n

owl:Thing

owl:Thing dbpedia:Vienna

dbpedia:Place

dbpedia:Location

dbpedia:Venue

dbpedia:Point

lw http://linkedwidgets.org/ontologies/ dbpedia http://dbpedia.org/resource/

owl http://www.w3.org/2002/07/owl# geo http://www.geonames.org/ontology#

lw:hasWigetModel

geo:Feature

lw
:h
a
s
M
e
ta
In
p
u
t

lw
:h
a
s
M
e
ta
O
u
tp
u
t

Figure 3.22: Meta-tagging annotation of the POI Search widget

3.10.4 Locating Widgets Based on the Mashup Context and the
Meta-tagging Model

Based on the user-defined mashup context and the Linked Data repository of widget
meta-tagging model, we need to search for relevant widgets and build up the input of the
automatic mashup composition algorithm.

To this end, (i) we first use a number of SPARQL queries to locate widgets for
each tagged relation in the input field. (ii) Similarly, we locate widgets that can output
instances of the tagged concepts; those widgets will take the responsibility to provide
necessary input data for the composing mashups. They can be either data widget or
transformation widget; the latter is a special type of processing widget that transforms
input instances into output instances of a different RDF class. Because the transformation
widget has input terminals, to be able to complete the mashups, we need further process
to search for additional data widgets that can provide input data for our transformation
widgets. This is done via the terminal matching.

An example SPARQL query to locate widgets that can provide information about
Swimming Pools in Vienna is shown in Listing 3.5. We put two restrictions on the

83

Listing 3.5: A SPARQL query to search for widgets that can provide information about
Swimming Pool in Vienna
PREFIX lw: <http://linkedwidgets.org/ontology/>
PREFIX dp: <http://dbpedia.org/resource/>
PREFIX schema: <http://schema.org/>
PREFIX dct: <http://purl.org/dc/terms/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT DISTINCT ?w ?adr ?n ?t WHERE
{
?w lw:hasWidgetModel [lw:hasMetaAnnotation ?m].
?w schema:name ?n.
?w lw:type ?t.
?w dct:identifier ?adr.
?m lw:hasMetaOutput dp:Swimming_pool.
?m lw:whoContext owl:Thing.
{?m lw:whereContext dp:Vienna. UNION ?m lw:whereContext owl:Thing}.
?m lw:whatContext owl:Thing.
?m lw:whenContext owl:Thing.
}

lw:hasMetaOutput and lw:whereContext properties. We use UNION operator for the
lw:whereContext restriction, because appropriate widgets are ones that can output
Swimming Pool for either Vienna only or every city in the world.

Finally, for each widget discovered by the tagging techniques, we use terminal matching
to find possible visualization widgets. If users follow the syntax text style, only widgets
that can visualize objects of class Ai (which is in a “Find Ai” pattern) are kept.

To sum up, we now finish building up a temporary widget collection that includes:
1. RW – widgets whose model contains the tagged relations,
2. DW – data widgets that can output instances of the tagged concepts,
3. TW – transformation widgets and ADW – their additional data widgets that should

be combined together to output instances of the tagged concepts, and
4. V W – visualization widgets that can visualize the output of the discovered widgets.

3.10.5 Composing and Ranking Mashups

We define T as the set of all user-defined tags.

T = {t1, . . . , tn} (3.10)

ti can be either a relation tag or a concept tag. Let Wi be the set of located widgets for
the tag ti.

Next, C is the set of all located widgets.

C = RW ∪DW ∪ TW ∪ADW ∪ V W (3.11)

84

w
1

w
2

w
3

w
4

w
5

W
1

W
2

W
3

W
4

W
5

w
6

6 widgets (w
1
... w

6
)

used in a mashup

Five sets of widget (W
1
... W

5
)

located for five tags (t
1
... t

5
)

Figure 3.23: Tag completeness checking

Based on the constructed widget collection C, as presented in Algorithm 2, we execute
the tag-based mashup composition. The algorithm relies on Algorithm 1. In the first
step, we construct the graph G(V , E) for the collection. Next, we need to determine the
starting terminals to prepare the other input of the Algorithm 1.

Because the composed mashups must contain at least one widget in every single set of
widgets Wi discovered for each tag ti (i.e., this ensures that all user tags are considered),
the starting terminal can be the output terminal of any widget w ∈Wi. As any w ∈Wi

can be a part of our mashups, to be able to compose every possible mashup, we have to
start with all of these output terminals, one after another. Therefore, to decrease the
number of calls to Algorithm 1 and hence increase the performance of the algorithm, we
need to find the tag tk such that the size of Wk reaches the minimum value.

Because a located transformation widget should always be linked with its respectively
additional data widget, we mark the input terminal of the former and the output terminal
of the latter as visited. This can considerably improve the efficiency of the automatic
composition algorithm. We later need to add the links between these two special types
of widgets into the composed mashups (Lines 15–19).

For each composed mashup, we need to perform further processing to ensure that all
tags are considered (Line 13). The requirement is illustrated in Figure 3.23. Suppose we
have five tags (t1 . . . t5), five respectively located widget sets (W1 . . . W5), and a mashup
that consists of six widgets (w1 . . . w6). Each widget wi can be the element of one or
multiple widget sets (e.g., w1 belongs to both W2 and W4).

The mashup is valid only if we can find a matching in the graph such that the number
of edges in the matching is five. A matching in a graph is “a set of pairwise non-adjacent
edges; that is, no two edges share a common vertex” [106]. In our example, the mashup
is valid due to the matching {(w1, W2), (w2, W1), (w3, W5), (w4, W3), (w5, W4)}. The tag

85

Algorithm 2 Tag-based automatic mashup composition
Input

RW , DW , (TW , ADW), V W
T = {t1, . . . , tn} ← the set of all defined tags
W = {W1, . . . , Wn} ← the map that matches each tag ti with the respective set of
located widgets Wi

Output
The set of complete mashups

1: procedure compose(RW , DW , (TW , ADW), V W , T , W)
2: C ← RW ∪DW ∪ TW ∪ADW ∪ V W
3: G = (V, E) ← the constructed graph for the widget collection C
4: mashups ← a list that stores all composed mashups
5: tk ← a tag of T such that the size of Wk reaches the minimum value
6: For every widget w ∈ TW , mark all of its input terminals as visited
7: For every widget w ∈ ADW , mark its output terminal as visited

8: for w ∈ Wk do
9: o ← the output terminal of w

10: tmpMashups ← autoCompose(G, o) . cf. Algorithm 1

11: for mashup ∈ tmpMashups do
12: W

′ ← the set of widgets used in mashup
13: completed ← check if for every single tag ti ∈ T , there always exists at

least one widget w
′ ∈ W

′ such that w
′ ∈ Wi

14: if completed is true then
15: for w

′ ∈ W
′ do

16: if w
′ is a transformation widget then

17: Add the respective data widget of w
′ to the mashup, and connect

the output of the data widget to the input of w
′

18: end if
19: end for
20: Add mashup to mashups
21: end if
22: end for
23: end for

24: Check and remove duplicated mashups . Post-processing
25: Rank mashups
26: return mashups
27: end procedure

86

completeness checking hence turns out to the maximum-cardinality matching problem;
the largest possible number of edges of a matching should be equal to the number of
defined tags. We hence can use the blossom algorithm [107] introduced by Jack Edmonds
to remove irrelevantly composed mashups.

Finally, we check and remove duplicated mashups. Because the algorithm can result
in a large number of composed mashups, it can be useful to rank the results as the
final step. The ranking score of a mashup is calculated as the average score of all input
and output links between member widgets; the score of a link is the total number of
occurrences of that link in all existing mashups of the framework. Mashups with a high
ranking score appear on top of the list returned to users. Because the framework is open
for anyone to compose mashups, the longer the framework operates, the more precise the
ranking algorithm will become.

3.10.6 Example

To illustrate our approach, consider a small set of widgets: (i) Map Pointer – a data
widget which returns one or multiple points defined by users on the map, (ii) Vienna POI
– a data widget which returns different types of POIs located in Vienna, (iii) Weather
Condition – a processing widget which adds weather conditions collected from Wunder-
ground19 to each of its input locations, (iv) Flickr Image – a processing widget which adds
sample Flickr Images for each of its input locations, (v) Air Quality – a processing widget
which adds an air quality index value for each of its input locations, (vi) Geo Merger – a
processing widget which combines the two input arrays of locations based on a distance
constraint, (vii) POI Search – a processing widget which queries LinkedGeoData20 for
POIs near the input locations, (viii) Map Viewer – a visualization widget which visualizes
locations and associated information (i.e., descriptions, images, charts).

As an example, consider the following query: “Park21 near22 Swimming Pool23”. The
TCM performs the resource matching task, and discovers Geo Merger and POI search
widgets for the relation near.

There are two widgets (i.e., Vienna POI, POI Search) that can output Park and
Swimming Pool. Suppose that the user has not used entity tagging to restrict the mashup
context, yet. This means that the Parks and Swimming Pools that the user is searching
for can be located in any city. Thus the Vienna POI is irrelevant.

At this point, we have Geo Merger, and POI Search. Because until now we have
processing widgets only, we use terminal matching to discover additional data widgets
(i.e., Vienna POI and Map Pointer) to provide input data, otherwise we cannot compose
a complete mashup. Since the Vienna POI is still irrelevant, we keep the Map Pointer
widget only. Finally, we take the Map Viewer for the visualization and have four widgets
to compose mashups.

19http://wunderground.org/ (accessed Nov. 01, 2015)
20http://linkedgeodata.org/ (accessed Nov. 01, 2015)
21http://dbpedia.org/resource/Park (accessed Nov. 01, 2015)
22http://www.geonames.org/ontology#nearby (accessed Nov. 01, 2015)
23http://dbpedia.org/resource/Swimming_pool (accessed Nov. 01, 2015)

87

http://wunderground.org/
http://linkedgeodata.org/
http://dbpedia.org/resource/Park
http://www.geonames.org/ontology#nearby
http://dbpedia.org/resource/Swimming_pool

Vienna POI Geo Merger

Vienna POI

Map Viewer

Geo Merger

POI Search

Map Viewer

Map Pointer

POI SearchMap Pointer

Geo Merger Map ViewerPOI SearchMap Pointer

Vienna POI
Mashup 3 Mashup 4

Mashup 2

Vienna POI Map Viewer

Mashup 1

POI Search

Figure 3.24: Example of tag-based automatic mashup composition

Assume the user now specifies the context like “in Vienna24” for the where dimension
of her desired mashup. Five relevant widgets are identified: Vienna POI, Map Pointer,
Geo Merger, POI Search, and Map Viewer. From this set, the TCM automatically
composes four meaningful mashups as shown in Figure 3.24. The fourth mashup is
displayed in full detail. It is used to integrate data from Google Maps, Vienna Open
Government Data, and LinkedGeoData. There are 29 pairs of parks and nearby swimming
pools shown in the map.

24http://dbpedia.org/resource/Vienna (accessed Nov. 01, 2015)

88

http://dbpedia.org/resource/Vienna

CHAPTER 4
Computational Experiments

In this chapter, we report on results of the computational evaluation of the terminal
matching (cf. Section 4.1) and the automatic mashup composition algorithms (cf. Sec-
tion 4.2) to study the performance characteristics of these algorithms and compare the
experimental results with the theoretical model.

We have not carried out computational experiments on the tag-based automatic
mashup composition, because the algorithm heavily relies on the automatic mashup
composition algorithm, and we need a real deployment of the framework with a large
number of mashups to rank the results. To produce the synthetic input data of the
algorithm is a challenging issue and we leave it for future work.

Testing environment To conduct the experiments, we use a 64-bit Window 7 En-
terprise computer with the Intel(R) Core(TM) i5-3470 CPU @ 3.20 Ghz processor and
8.00 GB of DDR3 RAM.

4.1 Terminal Matching

4.1.1 Goal of the Experiments

The process of terminal matching comprises two steps, i.e., preliminary matching and
full matching. Pérez et al. [108] show that the evaluation of general SPARQL queries
is a PSPACE-complete and NP-complete problem. Because partial matching is based
on a SPARQL query (cf. Listing 3.18) executed in the Apache Jena1 engine, it is an
exponential time and polynomial space algorithm.

Assume that after performing partial matching step, we obtain n candidate models
that need to be exactly matched with the querying model. To this end, in the full
matching, we align every property and class of each model with that of the querying

1https://jena.apache.org/ (accessed Nov. 01, 2015)

89

https://jena.apache.org/

N

X

R

Partial Matching

Full Matching

Parameters Measures

CPU Utilization

Memory Consumption

Total CPU Time

Figure 4.1: Experimental design of terminal matching

model, using string comparison (cf. Section 3.9.1). Full matching is a polynomial time
and space algorithm.

The purpose of our experiments is to analyze the runtime characteristics and resource
requirements of the terminal matching algorithm and compare the experimental results
with the theoretical complexity.

4.1.2 Experimental Setup

Factors that affect the performance of the terminal matching algorithm are: (i) the
total number N of available widgets, (ii) the rate R of successful matches between input
and output models, and (iii) the complexity X (which is defined in the following) of the
input and output model of widgets.

The complexity of the input/output tree model (cf. Section 3.4.3) can be specified
by the depth of the tree, the node branching factor (which is the number of children at
a node), and/or the total number of involved nodes and edges. In our experiment, we
define X (which is a natural number) as the complexity of a tree, if and only if (i) the
height of the tree is X, and (ii) the root node has exactly X children. Moreover, to
avoid the excessive expansion of the tree, the branching factor of every node but the root
is one.

As illustrated in Figure 4.1, we evaluate the effect of each parameter (i.e., N , X, and
R) on the terminal matching algorithm with respect to (i) CPU utilization, (ii) total
CPU time, and (iii) memory consumption. Because the amount of memory consumed
by the algorithm continuously changes during the execution, we observe the total amount
of used memory every 0.1 second.

We analyze the CPU utilization and the total CPU time of the partial matching and
the full matching separately and hence can evaluate the contribution of each step to the
overall process. For memory consumption, however, we have to combine the two steps
and observe the memory consumed by the whole process, because they share the same
allocated memory in the same thread.

To evaluate the effect of X and R on the performance of the algorithm, we require
that (i) every synthetic input/output model shares the same complexity X, and, (ii) for
a given input (output) model, there must be exactly M other matched output (input)

90

C
1

C
2

C
3

C
4

C5

C
6

C
7

C
8

C
9

p 1 p 2

p
3

p
4

p
5

p
6

p
7

p
8

C
10

C
11

C
12

C
13

p
9

p
1
0

p
1
1

p
1
2

C
14

C
15

C
16

C
17

p
1
3

p
1
4

p
1
5

p
1
6

Original output model

C
1

C
2

C
3

C
4

C5

C
6

C
7

C
8

C
9

p 1 p 2

p
3

p
4

p
5

p
6

p
7

p
8

C
10

C
12

C
13

p
9

p
1
1

p
1
2

C
14

C
16

C
17

p
1
3

p
1
5

p
1
6

C
1

C
2

C
3

C
4

C5

C
6

C
7

C
8

C
9

p 1 p 2

p
3

p
4

p
5

p
6

p
7

p
8

C
10

C
11

C
12

C
13

p
9

p
1
0

p
1
1

p
1
2

C
14

C
15

C
16

p
1
3

p
1
4

p
1
5

Two sample derived input models

(O) (I
1
) (I

2
)

Figure 4.2: Sample input and output models of synthetic widgets

models, where M = N ×R. These requirements ensure that all widgets are equal and
we can perform the terminal matching algorithm on arbitrary widget input/output model
without loss of generality.

During our terminal matching experiments, rather than working directly with widgets,
we try to match their terminal models only. The model can belong to a widget of an
arbitrary type without affecting the algorithm. Thus we do not have to differentiate
between data, processing, and visualization widgets and can synthetically generate
processing widgets only.

Based on the discussion above, we generate a synthetic test set of widgets – which is
specified by a triple (N , X, R) – as follows:

1. We do not generate widgets separately, but generate a set of (M + 1) processing
widgets simultaneously. Each input (output) model of a widget of this set will
match exactly M output (input) models of M other widgets. To this end, we
first generate an original output model with the complexity X, and take it as the
output model of all (M + 1) widgets; while constructing the output tree model,
we use different classes and properties for each node and edge. Next, we derive
(M + 1) input models from the output model by deleting a random node in a
random branch. This deleting method ensures that each derived input tree model
matches the output tree model. Figure 4.2 illustrates a sample output model O
and its two possibly derived input models, i.e., I1, and I2, which are generated by

91

deleting the node C11 and C17, respectively.
2. To generate N widgets, we perform the above step n times, where n = N/(M + 1).

Because the output model generated in each iteration step uses completely different
classes and properties, the arbitrary input model derived in an iteration step never
matches the output model generated in any other iteration step. This means the
input model of a widget matches exactly M output models of the M widgets
generated in the same iteration step.

3. When semantically annotating the generated widgets and their input and output
models, we also add extra information (e.g., the name and the address of the
widgets) to make the synthetic dataset more real. Finally, we store the data into a
local file that will be reloaded in the experiments to evaluate the algorithm. To
this end, we use the Jena library2 for semantic processing.

Parameter Values To carry out the experiments, we need to decide the values of
the triple (N , X, R) and generate the respective widget sets. To this end, we take a
snapshot of the current prototype implementation of the framework (cf. Chapter 5); as of
November, 01, 2015, there are 43 widgets; the average complexity of their input/output
models is around 5, and the model-matching rate is about 20%.

As the RAM of the testing PC is limited to 8 GB, we do not generate a set of more
than 10,000 widgets; the complexity of the input/output tree model X is limited to 20
and the matching rate R is limited to 0.5. The semantic models of all synthetic widgets
generated for (N, X, R) = (10000, 20, 0.5) already consist of more than 12 million triples.

We use the values of the three parameters as follows:

N ∈ {1000, 2000, 4000, 8000, 10000} (4.1)

X ∈ {1, 5, 10, 15, 20} (4.2)

R ∈ {0.1, 0.2, 0.3, 0.4, 0.5} (4.3)

We conduct three experiments, that is (i) N-experiment, (ii) X-experiment, and
(iii) R-experiment. In each experiment, we change the value of one parameter while
setting fixed value for other parameters. For example, in the N-experiment, we change
the value of N and use the fixed value of X and R.

To this end, we use (8000, 10, 0.2) as the standard values of (N , X, R). 8,000 widgets
is a reasonable number; it is not too large that the respective semantic models may use
all of the memory of the testing PC. We assume that 10 and 0.2 are respectively the
average values of X and R. For each value of the (N , X, R) triple, we run the algorithm
ten times and calculate the median to ensure the reliability of the experiment.

4.1.3 Results

The final results are presented as follows:
2https://jena.apache.org/ (accessed Nov. 01, 2015)

92

https://jena.apache.org/

1. N-experiment: Figure 4.3 presents the total CPU time of the preliminary match-
ing and full matching for each N ∈ {1000, 2000, 4000, 6000, 8000, 10000}. Figure 4.6a
visualizes the memory consumed by the whole process during the execution time.

2. X-experiment: Figure 4.4 presents the total CPU time of the preliminary match-
ing and full matching for each X ∈ {1, 5, 10, 15, 20}. Figure 4.6b visualizes the
memory consumed by the whole process during the execution time.

3. R-experiment: Figure 4.5 presents the total CPU time of the preliminary matching
and full matching for each R ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. Figure 4.6c visualizes the
memory consumed by the whole process during the execution time.

The box plots of the experiment data are presented in Appendix B. Based on the results,
in the following, we will draw a number of conclusions.

CPU utilization In every experiment, the algorithm always uses approximately 100%
of one core of the CPU. As there is no interesting insight, we provide the detailed box
plots in Appendix B.

Total CPU time The total CPU time of the full matching is roughly hundred times
smaller than that of the preliminary matching in every experiment. It is because the
preliminary matching has to process a large amount of data to achieve the list of potential
matched models for a given terminal; the full matching then performs further processing
tasks on these models to confirm the match only.

When we increase the number of widgets from 1,000 to 10,000, we witness the
exponential growth in the total CPU time of the preliminary matching and the linear
growth in the total CPU time of the full matching (cf. Figure 4.3). Reversely, we observe
the linear growth in the preliminary matching’s total CPU time and the polynomial
growth in the full matching’s total CPU time when we increase the complexity of the
widget model from 1 to 20 (cf. Figure 4.4). Meanwhile, the total CPU time of both
steps rises linearly when we increase the input-output matching rate from 0.1 to 0.5 (cf.
Figure 4.5).

With a large number of widgets, it can take a lot of time for the algorithm to complete
the task (e.g., approximate 200 seconds for N = 8000, X=10, R = 0.5, as shown in
Figure 4.5). To overcome this issue, we can use a caching mechanism. We associate
each terminal with a list of matched terminals. Each time a new widget is added to the
framework, we run the algorithm for the input (output) terminal of that widget, save the
result, and update the matching list of all other terminals. As this whole matching data
may be large, we can store it in a secondary storage.

Memory consumption In all experiments, the consumed memory periodically in-
creases and decreases between two thresholds during the execution time. When we
increase the number of widgets or the complexity of the widget model, the threshold
increases steadily (cf. Figures 4.6a and 4.6b). Meanwhile, as we increase the input-output
matching rate, the threshold seems stayed (cf. Figure 4.6c).

93

0

20

40

60

80

100

120

140

0 2000 4000 6000 8000 10000

To
ta

l C
P

U
 t

im
e

 (
se

co
n

d
s)

Number of widgets

(a) Preliminary matching

0

0.2

0.4

0.6

0.8

1

1.2

0 2000 4000 6000 8000 10000

To
ta

l C
P

U
 t

im
e

 (
se

co
n

d
s)

Number of widgets

(b) Full matching

Figure 4.3: Terminal matching: total CPU time as a function of number of widgets
(Matching rate R = 0.2 and model complexity X = 10)

78
80
82
84
86
88
90
92
94
96
98

0 5 10 15 20

To
ta

l C
P

U
 t

im
e

 (
se

co
n

d
s)

Complexity of widget model

(a) Preliminary matching

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20

To
ta

l C
P

U
 t

im
e

 (
se

co
n

d
s)

Complexity of widget model

(b) Full matching

Figure 4.4: Terminal matching: total CPU time as a function of complexity of widget
model (Number of widget N = 8000 and matching rate R = 0.2)

0

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5

To
ta

l C
P

U
 t

im
e

 (
se

co
n

d
s)

Input-output matching rate

(a) Preliminary matching

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5

To
ta

l C
P

U
 t

im
e

 (
se

co
n

d
s)

Input-output matching rate

(b) Full matching

Figure 4.5: Terminal matching: total CPU time as a function of input-output matching
rate (Number of widget N = 8000 and model complexity X = 10)

94

0

200

400

600

800

1000

1200

1400

1600

1800

2000
0

.1 5
9

.9
1

4
.8

1
9

.7
2

4
.6

2
9

.5
3

4
.4

3
9

.3
4

4
.2

4
9

.1 5
4

5
8

.9
6

3
.8

6
8

.7
7

3
.6

7
8

.5
8

3
.4

8
8

.3
9

3
.2

9
8

.1
1

0
3

1
0

7
.9

1
1

2
.8

1
1

7
.7

1
2

2
.6

1
2

7
.5

1
3

2
.4

1
3

7
.3

M
e

m
o

ry
 (

M
B

)

Experiment time (seconds)

10000 Widgets

8000 Widgets

6000 Widgets

4000 Widgets

2000 Widgets

1000 Widgets

(a) Memory consumption for increasing number of widgets (R = 0.2, X = 10)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0
.1

3
.5

6
.9

1
0

.3

1
3

.7

1
7

.1

2
0

.5

2
3

.9

2
7

.3

3
0

.7

3
4

.1

3
7

.5

4
0

.9

4
4

.3

4
7

.7

5
1

.1

5
4

.5

5
7

.9

6
1

.3

6
4

.7

6
8

.1

7
1

.5

7
4

.9

7
8

.3

8
1

.7

8
5

.1

8
8

.5

9
1

.9

9
5

.3

M
e

m
o

ry
 (

M
B

)

Experiment time (seconds)

Complexity 20

Complexity 15

Complexity 10

Complexity 5

Complexity 1

(b) Memory consumption for increasing complexity of widget model (N = 8000, R = 0.2)

800

900

1000

1100

1200

1300

1400

1500

1600

1700

0
.1

6
.8

1
3

.5

2
0

.2

2
6

.9

3
3

.6

4
0

.3 4
7

5
3

.7

6
0

.4

6
7

.1

7
3

.8

8
0

.5

8
7

.2

9
3

.9

1
0

0
.6

1
0

7
.3

1
1

4

1
2

0
.7

1
2

7
.4

1
3

4
.1

1
4

0
.8

1
4

7
.5

1
5

4
.2

1
6

0
.9

1
6

7
.6

1
7

4
.3

1
8

1

1
8

7
.7

1
9

4
.4

M
e

m
o

ry
 (

M
B

)

Experiment time (seconds)

RATE 0.5

RATE 0.4

RATE 0.3

RATE 0.2

RATE 0.1

(c) Memory consumption for increasing input-output matching rate (N = 8000, X = 10)

Figure 4.6: Terminal matching: memory consumption

95

To sum up, N contributes most to the total CPU time of the algorithm; N and X
have a significant effect on the memory consumption. The experiments shows results
as expected in the theoretical model (i.e., the preliminary matching is NP and the full
matching is P). To improve the algorithm, we need to focus on preliminary matching,
because its total CPU time is roughly hundred times longer than the total CPU time of
full matching in every experiment.

4.2 Automatic Mashup Composition

4.2.1 Goal of the experiments

To evaluate the complexity of the automatic mashup composition, consider a widget
collection that consists of one data widget, one visualization widget, and n processing
widgets. In this collection, we can link the data widget to all processing widgets, and link
an arbitrary processing widget to the visualization widget as well as any other processing
widget. Thus the total number of links is n + n + n(n− 1) = n(n + 1).

An example is illustrated in Figure 4.7 where n = 3. The total number N of mashups
that can be composed for this widget collection is calculated in Equation 4.4. Mashups are
categorized into n groups; the group k comprises mashups that use exactly k processing
widgets and hence has P (k, n) mashups, where P (k, n) is the number of k-permutations
of n (cf. Figure 4.7).

N = P (1, n) + P (2, n) + ... + P (n, n) where P (k, n) = n!
(n− k)! (4.4)

As P (n, n) = n!, the total number of composed mashups is greater than the factorial
of the size of the input data. To discover, store, and rank all of these mashups are hence
non-trivial and we need an exponential time and space algorithm.

In the worst case, the Algorithm 1 introduced in Section 3.9.2 is an EXPTIME and
EXPSPACE algorithm. In general, its performance depends on (i) Nd – the number
of data widgets (ii) Np – the number of processing widgets, (iii) Nv – the number of
visualization widgets, and (iv) R – the input-output matching rate (which decides the
density of the constructed graph).

The purpose of our experiments is to analyze the effect of each parameter (i.e., Nd,
Np, Nv, and R) on the runtime characteristics and resource requirements of the algorithm
(cf. Figure 4.8).

4.2.2 Experimental Setup

To generate the synthetic graph as the input of the automatic mashup composition, we
first generate a list of Nd data widgets, Np processing widgets, and Nv visualization
widgets. Next, we create one input vertex and one output vertex for each visualization
widget and data widget, respectively. Even though a processing widget can have multiple
input terminals, in practice, we usually create processing widgets with only one or two
input terminals, because an input terminal can accept multiple links from other output

96

d p
1

v

d p
2

v

d p
3

v

d p
1

vp
2

d p
2

vp
1

d p
1

vp
3

d p
3

vp
1

d p
2

vp
3

d p
3

vp
2

d p
1

vp
2

p
3

d p
1

vp
3

p
2

d p
2

vp
1

p
3

d p
2

vp
3

p
1

d p
3

vp
1

p
2

d p
3

vp
2

p
1

P(1, 3) mashups

P(2, 3) mashups

P(3, 3) mashups

d v

p
1

p
2

p
3

P(k, n): the number of k-permutations of n

d: data widget

v: visualization widget

p
i
: processing widget i

Figure 4.7: Example widget collection

N
d

R

CPU Utilization

Memory Consumption

Total CPU Time

Parameters Measures

N
p

N
v

Automatic
mashup

composition

Figure 4.8: Experimental design of automatic mashup composition

terminals. To this end, in a random manner, we create one or two input vertices for each
processing widget; we then create an output vertex and link it with the input vertex(es),
using the inner edge(s) (cf. Section 3.9.2).

In the next step, we establish the external links between input and output vertices
of different widgets, with respect to the parameter R. Because visualization widgets
do not have any output vertex, the total number of output vertices is (Np + Nd). To
achieve the rate R, for each generated input vertex, we randomly choose M out of
(Np + Nd) output vertices, where M = (Np + Nd)×R. Each output vertex has the same

97

1 15 80 487 4632 10064 45774 91695
217466

456875

1159108

0

200000

400000

600000

800000

1000000

1200000

1400000

1 2 3 4 5 6 7 8 9 10 11

N
u

m
b

er
 o

f
C

o
m

p
o

se
d

 m
as

h
u

p
s

Number of output vertexes that match each input vertex

Figure 4.9: Growth in the number of mashups (Nd = 5, Np = 10, Nv = 5)

probability to be included in the M chosen vertices. For example, assume we need to
take 3 out of 5 elements {o1, o2, o3, o4, o5}; if we take {o5, o3, o1} in the first turn, the
two remaining elements (i.e., o2 and o4) should take priority in the second turn. As we
need one more element, we can randomly select one of o5, o3, or o1. Suppose we select o3
and obtain {o2, o4, o3} for the second turn, we are only allowed to take 3 elements out of
{o1, o2, o4, o5} in the third turn.

To this end, we use the Colt project3, which provides a set of libraries for technical
computing in Java. It allows us to generate a deterministic and reproducible series of
random numbers based on a seed, using a large variety of probability distributions (e.g.,
Poisson, Gamma, Hyperbolic, or Uniform distribution).

We conduct four experiments to evaluate the effect of each parameter (i.e., Nd, Np,
Nv, or R) on the algorithm, with respect to CPU utilization, total CPU time, and
memory consumption. In each experiment (e.g., R-experiment), we change the value
of one parameter (e.g., R) and hold the other parameters constant.

Parameter Values Given a small set of widgets, the number of composed mashups can
be very large. Figure 4.9 illustrates the exponential growth in the number of composed
mashups for a set of 5 data widgets, 10 processing widgets, and 5 visualization widgets,
when we increase the number of matched output vertices for each input vertex.

Our assumption is that the number of processing widgets is typically twice the number
of data widgets (or visualization widgets). Thus we choose (5, 10, 5) as the values of
(Nd, Np, Nv) in the R-experiment. This small set of widgets allows us to observe the
behavior of the algorithm until it has completed, even if the input-output matching rate
is very high.

3https://dst.lbl.gov/ACSSoftware/colt/ (accessed Nov. 01, 2015)

98

https://dst.lbl.gov/ACSSoftware/colt/

0
20
40
60
80

100
120
140
160

0 1 2 3 4 5 6 7 8 9 10 11To
ta

l C
P

U
 t

im
e

 (
se

co
n

d
s)

Number of output vertices that match each
input vertex

(a) Total CPU time

0

500

1000

1500

2000

2500

3000

0
.1

1
.9

3
.7

5
.5

7
.3

9
.1

1
0

.9

1
2

.7

1
4

.5

1
6

.3

1
8

.1

1
9

.9

2
1

.7

2
3

.5

2
5

.3

2
7

.1

2
8

.9

3
0

.7

3
2

.5

3
4

.3

3
6

.1

3
7

.9

3
9

.7

4
1

.5

4
3

.3

4
5

.1

M
e

m
o

ry
 (

M
B

)

Experiment time (seconds)

10 Matches

8 Matches

6 Matches

(b) Memory consumption

Figure 4.10: Automatic mashup composition: total CPU time and memory consumption
for increasing input-output matching rate (Nd = 5, Np = 10, Nv = 5)

Meanwhile, in the Nd, Np, Nv experiments, because the running time is too long,
we only observe the algorithm until 20,000 mashups have been composed. It is reasonable
to stop the experiments there, because 20,000 is already a number too large for users to
manually try. In these experiments, the standard values of four parameters are as follows:
Nd = 50, Np = 100, Nv = 50, R = 0.2.

4.2.3 Results

In the following, we present the results of our four experiments and draw a number of
conclusions. The box plots of the experiment data are presented in Appendix C.

R-experiment: Figure 4.10 shows the total CPU time and the memory consumption
of the algorithm over increasing number M (M = (Np + Nd)×R = 15×R) of matched
output vertices for each input vertex.

Nd, Np, and Nv experiments: Figures 4.11, 4.12, and 4.13 illustrate the total
CPU time of the algorithm over increasing number of data, processing, and visualization
widgets, respectively. The total CPU time is measured until 20,000 mashups have been
composed. Figure 4.14 shows the memory consumption of the three experiments; the
memory is observed every 0.1 second.

99

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100
To

ta
l C

P
U

 t
im

e
 (

se
co

n
d

s)

Number of data widgets

Figure 4.11: Automatic mashup composition: total CPU time (which is measured until
20,000 mashups have been composed) as a function of number of data widgets (Np =
100, Nv = 50, R = 0.2)

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

To
ta

l C
P

U
 t

im
e

 (
se

co
n

d
s)

Number of processing widgets

Figure 4.12: Automatic mashup composition: total CPU time (which is measured until
20,000 mashups have been composed) as a function of number of processing widgets (Nd

= 50, Nv = 50, R = 0.2)

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

To
ta

l C
P

U
 t

im
e

 (
se

co
n

d
s)

Number of visualization widgets

Figure 4.13: Automatic mashup composition: total CPU time (which is measured until
20,000 mashups have been composed) as a function of number of visualization widgets
(Nd = 50, Np = 100, R = 0.2)

100

0

500

1000

1500

2000

2500
0

.1 1

1
.9

2
.8

3
.7

4
.6

5
.5

6
.4

7
.3

8
.2

9
.1 1
0

1
0

.9

1
1

.8

1
2

.7

1
3

.6

1
4

.5

1
5

.4

1
6

.3

1
7

.2

1
8

.1 1
9

1
9

.9

2
0

.8

2
1

.7

2
2

.6

M
e

m
o

ry
 (

M
B

)

Experiment time (seconds)

100 Data Widgets

60 Data Widgets

20 Data Widgets

(a) Memory consumption for increasing number of data widgets (Np = 100, Nv = 50, R = 0.2)

0

500

1000

1500

2000

2500

0
.1

2
.3

4
.5

6
.7

8
.9

1
1

.1

1
3

.3

1
5

.5

1
7

.7

1
9

.9

2
2

.1

2
4

.3

2
6

.5

2
8

.7

3
0

.9

3
3

.1

3
5

.3

3
7

.5

3
9

.7

4
1

.9

4
4

.1

4
6

.3

4
8

.5

5
0

.7

5
2

.9

M
e

m
o

ry
 (

M
B

)

Experiment time (seconds)

100 Processing widgets

60 Processing widgets

20 Processing widgets

(b) Memory consumption for increasing number of processing widgets (Nd = 50, Nv = 50, R =
0.2)

0

500

1000

1500

2000

2500

3000

0
.1

1
.1

2
.1

3
.1

4
.1

5
.1

6
.1

7
.1

8
.1

9
.1

1
0

.1

1
1

.1

1
2

.1

1
3

.1

1
4

.1

1
5

.1

1
6

.1

1
7

.1

1
8

.1

1
9

.1

2
0

.1

2
1

.1

2
2

.1

2
3

.1

M
e

m
o

ry
 (

M
B

)

Experiment time (seconds)

100 Visualization widgets

60 Visualization widgets

20 Visualization widgets

(c) Memory consumption for increasing number of visualization widgets (Nd = 50, Np = 100, R
= 0.2)

Figure 4.14: Automatic mashup composition: memory consumption (which is observed
until 20,000 mashups have been composed)

101

CPU utilization The CPU utilization of every experiment is around 100% most of the
time. As there is no interesting insight, we provide the detailed box plots in Appendix C.

Total CPU time The R-experiment shows that our automatic mashup composition
algorithm is an exponential time algorithm (cf. Figure 4.10). On the other hand, as we
increase the number of data, processing, or visualization widgets, the required time to
achieve 20,000 results will increase linearly. The line in the Np experiment is much
steeper than that in the Nd and Nv experiments. It is because we have to spend more
time searching in wrong routes and need to backtrack afterwards.

Memory consumption In each experiment (e.g., Np-experiment), when we change
the respective parameter (e.g., Np = 20, 60, or 100), the shape of memory consumption
over the time looks quite similar (cf. Figure 4.14). The memory mainly serves for storing
the sfEdges and sbEdges lists (cf. Algorithm 1); these lists can be empty or include a
large number of elements during the execution time. As a result, the consumed memory
can increase to 2,500 MB or drop down to nearly 0 MB as seen in the graph.

To sum up, until 20,000 mashups have been composed, the four parameters Nd, Np,
Nv, and R equally contribute to the memory consumption of the algorithm; on the other
hand, Np and R have a major effect on the total CPU time. As expected in the results,
the automatic mashup composition is an exponential time algorithm.

Summary of the Experiments The experiment results show that the automatic
terminal matching and the automatic mashup composition can be used in practice, with
regard to their total CPU time. We can further improve their performance by using
caching mechanisms.

The automatic mashup composition produces positive results with only a few number
of mashups returned, if the widget matching rate is low; it is easy for a user to locate
the mashup she needs. However, as the widget matching rate is getting higher, the
number of composed mashups will increase exponentially. Even though all mashups are
syntactically correct as all links among widgets in each mashup are valid, many mashups
can be meaningless. To address this issue, we can use heuristic search rather than the
depth-first search in the automatic mashup composition – which is a graph search problem
(cf. Section 3.9.2). From a terminal (which is represented by a vertex in the graph),
we choose the next terminal to visit in such a way that the link between them has the
highest score; the score of a link is the total number of occurrences of that link in all
existing mashups of the framework. We consider the heuristic technique as future work
to improve the algorithm because it requires a real deployment of the framework with a
large number of mashups.

102

CHAPTER 5
Prototype Implementation of the

Framework

In this chapter1, we present the prototype implementation of the conceptual framework,
which is available at http://linkedwidgets.org. We first discuss architectural design
considerations in Section 5.1. We outline the key components of the prototype in
Section 5.2. We then provide implementation details and reflect on the lessons learned
while implementing the framework in Section 5.3. Next, in Section 5.4, we show example
applications in the geospatial context. Finally, we illustrate the use of hybrid mashups
by means of two practical use cases in Section 5.5.

5.1 Architectural Design Considerations

When defining the architecture for our mashup framework, we set out to follow three
essential design principles, (i) openness, (ii)connectedness, and (iii) reusability.

First, the framework that fosters the widespread use of open data cannot tap its
full potential if it is not open. It should follow an open architecture that enables
arbitrary developers and end users to contribute and share their work with the open
data community. An example for the benefits of openness is LinkedGeoData,2 which uses
information collected by the OpenStreetMap3 project and makes it available as an RDF
knowledge base according to the Linked Data principles [17]. It allows users to directly
edit displayed resources in the map view, which simplifies the process of extending data
quantity and improving data quality. Similarly, we encourage developers to implement
and add new Linked Widgets to the framework to enable new combinations of open data

1Parts of this chapter also appear in [2, 3, 4, 6]. The author of this thesis is also the lead author of
these papers.

2http://linkedgeodata.org/About (accessed Nov. 01, 2015)
3http://www.openstreetmap.org/ (accessed Nov. 01, 2015)

103

http://linkedgeodata.org/About
http://www.openstreetmap.org/

sources. Even end users can create a new widget from composed mashup applications
without any programming and contribute it to the community.

Next, we design the architecture around the idea of connectedness, which is imple-
mented via two concepts, i.e., data connection and functionality connection. Because
there are a lot of related open data sources, applications should not restrict themselves
to a small number of data sources. Instead, combining two or more data sources and
enriching the data with additional value creates exciting opportunities.

From the openness feature we can derive the functionality connection and the reusabil-
ity feature. Anyone can contribute new functionality to an application, however, these
should not be separated from each other. It should be possible to connect and reuse
them in an effective and efficient manner. Our mashup framework supports reuse in four
ways: (i) To compose mashups and integrate data, users can creatively combine Linked
Widgets from different developers; (ii) they can reuse mashups from others, but change
the parameters of the constituted widgets; (iii) they can reuse a mashup as a new widget;
and (iv) based on available widgets, developers can implement new widgets to support
new use cases.

Another architectural design consideration for applications that integrate data from
multiple sources, is to decide where the data processing task should be performed. The
alternatives are to either do it locally at the client application or remotely at the server
side. Because a server of high quality datasets can easily become overloaded with too
many requests from clients, we should make use of client resources whenever possible. An
example is Linked Data Fragments [109] in which the client itself will execute complex
SPARQL queries after receiving the data fragments – corresponding to its defined triples –
from the server. In the Linked Widgets framework, data processing can be done on-the-fly
in the client’s browser. Moreover, to tackle additional types of data, i.e., stream data,
real-time data, big data, and long-time processing data, we consider widgets as a user
interface on the client and the actual data retrieval and processing tasks, instead, could
be performed at the server (cf. Section 3.3.2).

5.2 Key Components

The prototype implementation of the framework provides (i) a tool that supports
developers in creating and annotating widgets, (ii) a tool for users to locate relevant
widgets, and (iii) a drag-and-drop collaborative mashup editor. We describe each tool
in the following.

5.2.1 Collaborative Mashup Editor

The mashup editor (cf. Figure 5.1) is the core component of the framework; it allows
users to collaboratively compose, publish, and share their mashup applications. From a
selected widget collection placed at the left-hand side, they drag and drop a widget item
into the editor to create an instance of the widget. Users can then wire the input of a
widget to the output of another one and thus build up a data-processing flow.

104

W
ir

e

In
p

u
t

te
rm

in
al

O
u

tp
u

t
te

rm
in

al

C
lie

n
t

w
id

ge
t

Se
rv

er
 w

id
ge

t

D
ra

g
an

d
 d

ro
p

W
id

ge
t

Li
st

C
o

lla
b

o
ra

ti
ve

fe

at
u

re

Fi
gu

re
5.
1:

W
eb

-b
as
ed

co
lla

bo
ra
tiv

e
m
as
hu

p
ed

ito
r

105

Once a widget has been added to a mashup, semantic terminal matching allows users
to explore additional widgets that are relevant in the given context. Terminal matching
is available in the user interface via a click on the question mark symbol when hovering
a terminal. Making use of the widget semantic model, we query widgets that can be
connected to the input and output terminal(s) of a given widget.

The automatic mashup composition module is also included in the editor. It can use
all widgets in the current collection and discover all possible ways to construct complete
mashup branches starting from any input or output terminal of arbitrary widget.

Multiple users can collaboratively edit the same mashup. Each editing mashup is
assigned a UUID which a user can send to other people. This UUID can be used to
access and collaboratively create and edit the mashup.

All operations such as adding/removing a widget to/from the mashup, connecting
two widgets, resizing a widget are propagated and synchronized in all editors sharing the
same UUID. We make use of Web Application Messaging Protocol (WAMP) WebSocket
framework with the publish/subscribe model to implement this feature.

The combination of server widgets and the collaborative editor has great potential
for collaborative data integration across various devices. Each collaborator can use their
own widget collection that may contain private server widgets. These private widgets are
black boxes to others and work as a data collector; they can, for example, provide users’
private data from their mobile phones, databases, cloud services, etc. selectively for a
shared data integration task. This approach gives users full control over the output data
of their private widget. As soon as they stop the widget, their data is no longer shared.

5.2.2 Linked Widget Annotator

The widget annotator allows developers to create and annotate widgets correctly and
efficiently. Developers simply drag and drop and then configure three components called
Widget Model, Object, and Relation to visually define their widget models.

Figure 5.2 is an example that illustrates the definition of a semantic model for the
POI Search widget (cf. Figure 3.6). In the Widget Model, we declare input and output
terminals of the widget. Their data models – arrays of Thing and Feature objects – are
defined in the Object components. We request the wgs84:location property from the Thing
input and define its domain, using another Object component. Similarly, we define the
properties for the output of the widget. Finally, we make use of a Relation component to
specify the geo:nearby relation between the input Thing and the output Feature objects.

After that, the system automatically generates the OWL description file for the model
as well as the corresponding HTML widget file. The HTML file represents either the
source code of the client widget, or the client user interface of the server widget. It
includes the injected JavaScript code snippet required for the widget communication
protocol and sample JSON-LD input/output of the widget according to the defined
model. Based on that, developers can implement the widget’s processing function of
the client widget or the remote executor of the server widget, which receives input from
preceding and returns output to succeeding widgets.

106

Fi
gu

re
5.
2:

V
isu

al
m
od

el
de

fin
ed

fo
r
th
e
PO

I
Se

ar
ch

w
id
ge
t

107

Finally, as soon as they have deployed their widgets, developers can submit their work
to the framework where it will be listed and can be reused with other available widgets;
in particular, widget annotations are published into the LOD repository of widgets which
can be accessed via a SPARQL endpoint4.

5.2.3 Semantic Widget Search

In line with the growth of open data sources, the number of available widgets can also
be expected to grow rapidly. In this case, to ensure that users can find widgets on
the framework, we provide a semantic search feature in addition to conventional search
methods which are based on keywords, categories, tags, etc. This and the terminal
matching module are two effective data exploration tools.

Because the widgets’ RDF metadata is openly available via the SPARQL endpoint,
other third parties can also develop their own widget-search tool. The search we provide
is similar to the annotator tool, but it is simpler and directed at end users.

By defining the model constraints for input/output, they, for example, can find
widgets which receive and return objects associated with location properties as shown in
Figure 5.3. Based on the defined model, a SPARQL query (cf. Listing 5.1) is generated
and executed so that a list of located widgets is returned to users. Users can use short
names for classes and properties in their model. Moreover, we provide tolerant search for
users. Tolerant search uses ontology alignment methods [110] to return widgets that have
models similar to the specification. To this end, based on the LOD vocabulary statistics
offered by the Linked Open Vocabulary web site5, we collect a number of common
ontologies and make use of the Alignment API6 to identify equal LOD concepts and
properties. This allows us to modify the SPARQL query so that widgets whose models
use similar concepts or properties as the ones specified in the user-defined searching
model can be located.

5.3 Implementation Details and Lessons Learned

Table 5.1 shows the list of libraries and tools used to implement the Linked Widgets
framework.

As presented in Section 3.6.2, we decide to follow the WebSocket approach to im-
plement the server widget’s remote executor as a WebSocket client, and the mashup
execution coordinator as a WebSocket server. To this end, we make use of WAMP7.

WAMP is an open standard WebSocket subprotocol that provides two application
messaging patterns, i.e., remote procedure calls and publish/subscribe. It has client
implementations for many programming language such as JavaScript, Java, Python,
Erlang, C++, C#, Objective-C (for iOS), or PHP. As a result, it allows to develop

4http://ogd.ifs.tuwien.ac.at/sparql (accessed Nov. 01, 2015)
5http://lov.okfn.org/dataset/lov/ (accessed Nov. 01, 2015)
6http://alignapi.gforge.inria.fr/ (accessed Nov. 01, 2015)
7http://wamp.ws/ (accessed Nov. 01, 2015)

108

http://ogd.ifs.tuwien.ac.at/sparql
http://lov.okfn.org/dataset/lov/
http://alignapi.gforge.inria.fr/
http://wamp.ws/

Fi
gu

re
5.
3:

W
id
ge
t
se
ar
ch

th
at

de
fin

es
th
e
in
pu

t
an

d
ou

tp
ut

se
m
an

tic
m
od

el
s

109

P
urpose

Language,
library,

and
tool

U
R
L

Integrated
D
evelopm

ent
Environm

ent
Eclipse

Luna
h
t
t
p
s
:
/
/
w
w
w
.
e
c
l
i
p
s
e
.
o
r
g
/

M
ain

program
m
ing

language
Java

W
eb

server
A
pache

Tom
cat

7.0.65
h
t
t
p
:
/
/
t
o
m
c
a
t
.
a
p
a
c
h
e
.
o
r
g
/

O
ntology

language
O
W

L
Lite

h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
T
R
/
o
w
l
-
f
e
a
t
u
r
e
s
/

O
ntology

editor
Protégé

4.3
h
t
t
p
:
/
/
p
r
o
t
e
g
e
.
s
t
a
n
f
o
r
d
.
e
d
u
/

JavaScript
fram

ew
ork

for
interactive

w
eb

application
G
oogle

W
eb

Toolkit
(G

W
T
)
1.9.15

h
t
t
p
:
/
/
w
w
w
.
g
w
t
p
r
o
j
e
c
t
.
o
r
g
/

W
ebSocket

protocol
W
A
M
P

2.0
h
t
t
p
:
/
/
w
a
m
p
-
p
r
o
t
o
.
o
r
g
/
t
o

JavaScript
im

plem
entation

of
a

W
A
M
P

client
(w

hich
is

used
to

im
plem

ent
client

w
idgets)

A
utobahn

h
t
t
p
:
/
/
a
u
t
o
b
a
h
n
.
w
s
/
j
s
/

Java
im

plem
entation

of
a

W
A
M
P

client
(w

hich
is

used
to

im
plem

ent
server

w
idgets)

Jaw
am

pa
0.4.1

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
M
a
t
t
h
i
a
s
2
4
7
/
j
a
w
a
m
p
a

Java
im

plem
entation

of
a

W
A
M
P

server
(w

hich
is

used
to

im
plem

ent
the

m
ashup

ex-
ecution

coordinator
w
idgets)

Jaw
am

pa
0.4.1

W
eb

services
R
EST

Easy
3.0.5

h
t
t
p
:
/
/
r
e
s
t
e
a
s
y
.
j
b
o
s
s
.
o
r
g
/

W
idget

input
and

output
data

form
at

JSO
N
-LD

h
t
t
p
:
/
/
j
s
o
n
-
l
d
.
o
r
g
/

JSO
N

data
processing

gson
2.2.4

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
g
o
o
g
l
e
/
g
s
o
n

Sem
antic

processing
A
pache

Jena
4.2.3

h
t
t
p
s
:
/
/
j
e
n
a
.
a
p
a
c
h
e
.
o
r
g
/

Table
5.1:

List
ofused

libraries
and

tools

110

https://www.eclipse.org/
http://tomcat.apache.org/
http://www.w3.org/TR/owl-features/
http://protege.stanford.edu/
http://www.gwtproject.org/
http://wamp-proto.org/to
http://autobahn.ws/js/
https://github.com/Matthias247/jawampa
http://resteasy.jboss.org/
http://json-ld.org/
https://github.com/google/gson
https://jena.apache.org/

Listing 5.1: A SPARQL query to search for widgets based on a defined model
PREFIX lw: <http://linkedwidgets.org/ontology/>
PREFIX wgs84: <http://www.w3.org/2003/01/geo/wgs84_pos#>

SELECT DISTINCT ?widget WHERE
{
?widget lw:hasWidgetModel ?widgetModel.
?widgetModel a lw:WidgetModel.
?widgetModel lw:hasInput [lw:hasDataModel ?iDataModel].
?iDataModel wgs84:location

[
a wgs84:Point;
wgs84:lat [];
wgs84:long [];

]
?widgetModel lw:hasOutput [lw:hasDataModel ?oDataModel].
?oDataModel wgs84:location

[
a wgs84:Point;
wgs84:lat [];
wgs84:long [];

]
}

server widgets for various computing environments. We currently use Autobahn for the
JavaScript implementation of a WAMP client and Jawampa for the Java implementation
of a WAMP client and WAMP server.

As the main programming language is Java, we use Apache Jena for semantic
processing, and use gson for JSON data processing. Eclipse Luna, Apache Tomcat, and
Protégé are used as the integrated development environment, web server, and ontology
editor, respectively.

In the following, we discuss lessons learned while implementing the prototype of the
framework, which can be useful for developers of applications on top of open data.

5.3.1 Frameworks for Interactive Open Data Web Applications

Web platforms can provide an ideal environment for creating accessible, sharable, ex-
tensible, and maintainable applications. Interactive web applications typically rely on
JavaScript libraries to provide rich graphical user interfaces on the client side (e.g., drag
and drop). Choosing an appropriate library is crucial and may considerably reduce
development effort and improve results. This section sets up a guideline for novice
developers of open data web applications.

The are many free and open source JavaScript libraries/frameworks. For the imple-

111

mentation of our Linked Widget framework, we evaluate (i) YUI8 – a free, open source
JavaScript and Cascading Style Sheets (CSS) library for building rich interactive web
applications, (ii) WireIt9 – an open-source JavaScript library to create web graph editors
for dataflow applications, (iii) Sencha Ext JS10 – a JavaScript framework with a Model-
View-Controller architecture and modern widgets, (iv) GWT11 – a development toolkit
for building complex browser-based applications, and (v) SmartGWT12 – a GWT-based
framework featuring a rich palette of UI elements.

Before deciding to use a library, developers have to address a number of questions.
First, how much development time is available; is the result supposed to be a prototype
or a ready-to-use product? Next, are there any requirements regarding compatibility with
devices and browsers (e.g., touch devices and different browsers and versions)? What is
the maximum allowable size for the loaded web resources? Which UI elements will be
used in the application? Finally, developers have to read the documentation of potential
libraries/frameworks to select the most suitable one for their application.

If minimizing the size of the necessary web resource (i.e., images, CSS and JavaScript
code loaded for executing the application) is an important consideration, then YUI and
GWT are good options because they allow developers to select the modules they would
like to use on their page instead of the whole library. Other frameworks, e.g., SmartGWT,
will result in the client browser loading around 4 MB in total, even for a single and simple
feature.

After carefully evaluating the alternative libraries/frameworks, we found that GWT
meets most of our requirements. Essentially, GWT allows web developers to create and
maintain complex JavaScript front-end applications in Java. In addition to its basic
user interface elements, which can be inherited and extended easily, a large number of
advanced elements contributed by the GWT community are available. Developers write
their application in Java, which can then be compiled into optimized JavaScript by the
GWT Java-to-JavaScript compiler. The compiler itself ensures that web applications run
on different browsers.

Finally, making use of GWT helps developers to not only rapidly develop their
prototype applications, but also makes it straightforward to finalize it into a complete
product. Using other frameworks to extend already supported UI elements with new
features, e.g., maximizing/minimizing a window, developers have to read, understand,
and add their new source code to complicated and intricate JavaScript and CSS code
of the library, which is difficult and time consuming. GWT easily supports such tasks,
because its implementation language is Java – an object oriented programming language
in which the concept of inheritance is much clearer than in JavaScript – an object-based
language only.

8https://yuilibrary.com/ (accessed Nov. 01, 2015)
9http://neyric.github.io/wireit/docs/ (accessed Nov. 01, 2015)

10http://www.sencha.com/products/extjs/ (accessed Nov. 01, 2015)
11http://www.gwtproject.org/ (accessed Nov. 01, 2015)
12http://code.google.com/p/smartgwt/ (accessed Nov. 01, 2015)

112

https://yuilibrary.com/
http://neyric.github.io/wireit/docs/
http://www.sencha.com/products/extjs/
http://www.gwtproject.org/
http://code.google.com/p/smartgwt/

5.3.2 Data Format for Lightweight Semantic Applications

In lightweight semantic applications which include on-the-fly data processing and data
transmission, it is important to choose an appropriate data format. A good decision will
save a considerable amount of resources, i.e., CPU power, memory, and time.

We evaluated RDF, OWL, XML, JSON, and JSON-LD as potential data formats for
our mashup framework. Among those, we found that JSON-LD, which “combines the
simplicity, power, and web ubiquity of JSON with the concepts of Linked Data” [111] is
most appropriate for our needs. Since January 2014 it has been an official web standard
recommended by the W3C. Compared to RDF, JSON-LD is more human-readable and
takes less memory to present the same information. Additionally, in simple cases of
Linked Widget interaction, where the output data model of a widget fits the input data
model of another widget exactly (i.e., they have exactly the same structure or the output
is a subset of the input), due to the JSON format, widgets can directly receive data from
others without further processing tasks. In more complex cases, the output of a widget
needs to be modified to be compatible with the input of another widget. In these cases,
JSON-LD enables the framework to create a SPARQL query to perform this additional
data adaption task.

5.4 Example Applications in the Geospatial Context
Geospatial data plays an increasingly important role in planning and decision-making
processes across a broad range of industries and information sectors. The quantity and
variety of spatial data is increasing rapidly and there is an abundance of opportunities
to integrate them with other sources. The Linked Widgets mashup framework can
address data heterogeneity and allow for data exploration and integration in a flexible
and automatic manner. In this section, we demonstrate the capabilities of the framework
to facilitate integration and reuse of open data sources, in the context of geospatial data.
The framework is also applicable to a variety of other domains such as environmental,
streaming, statistical, or smart city data.

5.4.1 Introduction to Geospatial Data

Geospatial data is increasingly becoming an integral part of our everyday lives. The
amount and variety of such data available as well as the adoption of services that make use
of it is increasing rapidly. For instance, Google, Yahoo, and Apple have each developed
online GIS systems; various governments, e.g., the United Kingdom, Ireland, and Austria,
have published transportation network data, including, for example, the locations of
bus stops or metro stations. Location-based services such as Foursquare or Yelp also
rely heavily on geographic data and expose their functionalities to developers via APIs.
Flickr, as another example, provides APIs to search for photos taken nearby a specific
location.

As a result, we can today locate interesting holiday spots all over the world from our
desk. To plan a trip, we retrieve images and travel descriptions via search engines; we

113

may also obtain statistical information such as economic indicators, crime rates, traffic
accidents, etc., to decide the best places. Next, we check the weather conditions and
history to find out the best time for a trip. Finally, we search for points of interest to see
along our journey.

This example illustrates that geospatial information plays an important role in linking
and combining data through shared locations [112]. It can be a powerful “glue” to
integrate information across domains [113]. Realizing this vision, however, is still difficult
because data is typically heterogeneous and not well organized.

A lot of research has been conducted to facilitate integration by adding semantics to
geospatial data. As of January 2015, the LOD cloud diagram13 includes 24 published
geographical datasets. GeoNames14 is a central hub of those datasets. It contains
more than 10 million geographic names and 9 million unique features. Another dataset,
LinkedGeoData15, enriches the web of data with geospatial information. It publishes POI
data from Open Street Map in RDF format. Furthermore, many other LOD sources are
linked to these geographical datasets. DBpedia16 also includes a lot of geographic data,
as is highlighted by the fact that the Place class is the second most frequently used class
in DBpedia (the most widely used class is Person). Out of 4.58 million things described
in the English DBpedia version, 735,000 are places.

As a consequence, there are abundant opportunities to integrate the massive amounts
of available spatial and non-spatial data in innovative ways. To facilitate such integration,
however, we need to tackle a number of challenges in the design of an integration
framework: (i) to support widespread reuse of geospatial data, it should not be restricted
to particular datasets or problem domains, (ii) it should tackle the problem of data
heterogeneity, i.e., to connect a geospatial data source with other sources of geospatial or
arbitrary data, e.g., weather data, image data, statistics, transportation data irrespective
of the formats used – e.g., CSV, XML, JSON, RDF, JSON-LD, (iii) it should cope with
a variety of LOD vocabularies – i.e., different URIs for the same term/resource, (iv) it
should foster reusability of data processing tasks, e.g., to collect, clean, enrich, integrate
and visualize data, (v) it should allow users to dynamically explore, link, and integrate
multiple data sources via simple operations, and (vi) it should deliver data integration
applications to end users and allow them to explore, use, and share the applications. To
demonstrate how the Linked Widgets framework can address these challenges, consider a
number of data sources and respective widgets in the next sections.

5.4.2 Data Sources

Based on geographic objects with latitude and longitude properties, datasets in the LOD
cloud can be queried dynamically and linked to each other. We use five LOD datasets
and three other data sources in our examples:

13http://lod-cloud.net/ (accessed Nov. 01, 2015)
14http://www.geonames.org// (accessed Nov. 01, 2015)
15http://linkedgeodata.org/ (accessed Nov. 01, 2015)
16http://dbpedia.org/ (accessed Nov. 01, 2015)

114

http://lod-cloud.net/
http://www.geonames.org//
http://linkedgeodata.org/
http://dbpedia.org/

1. http://linkedgeodata.org – Publishes data collected by the Open Street
Map project as RDF data.

2. http://www.geonames.org – Contains more than 10 million geographical
names and consists of over 8 million unique features including 2.8 million populated
places and 5.5 million alternate names. GeoNames data are linked to DBpedia and
other RDF datasets.

3. http://spotlight.dbpedia.org – A service looking for approximately 3.5
million things of unknown or 320 known types in text and linking them to their
global unique identifiers in DBpedia.

4. http://eventmedia.eurecom.fr – A LOD dataset composed of events and
media descriptions associated with these events which are obtained from three large
public event directories, i.e., last.fm, eventful and upcoming.

5. http://data.nobelprize.org/snorql – Contains information about who
has been awarded the Nobel Prize, when, in what prize category and the motivation,
as well as basic information about the laureates.

6. https://flickr.com – An image and video hosting website. It provides a free
API to access 5 billion photos with valuable metadata such as tags, geolocation,
etc.

7. http://www.wunderground.com/ – A network of more than 140,000 personal
weather stations that allows for exact weather forecasts based on actual weather
data points. It exposes APIs for developers to access the current weather conditions
of every station as well as the weather forecast for every city in the world; the APIs
are free for 500 calls per day.

8. http://map.google.com – Offers satellite imagery, street maps, and street
view perspectives which can be accessed through its API services.

5.4.3 Sample Geospatial Widget Collection

In our example use cases, we use twelve widgets (cf. Figure 5.4) organized into three
layers, i.e., data, processing, and presentation layers.

1. Map Pointer – a data widget. Users can define a point on a map. The point’s
latitude and longitude is then returned as output.

2. Text Annotator – a data widget. This widget detects a list of Places from text,
using the DBpedia Spotlight service.

3. Point of Interest Search (POI Search) – a processing widget. This widget
leverages the LinkedGeoData repository to find semantically encoded POIs. Users
can influence the output by providing parameters. Users can select the type of POI
and the radius of retrieved POIs with respect to the incoming location, which is
any kind of objects with wgs84:lat and wgs84:long attributes.

4. Music Event Search – a processing widget. This widget receives any kind of
objects with wgs84:lat and wgs84:long attributes and transforms them into music
events that were (or will be) organized nearby.

5. Flickr Geo Image Search – a processing widget. By using the Flickr Image

115

http://linkedgeodata.org
http://www.geonames.org
http://spotlight.dbpedia.org
http://eventmedia.eurecom.fr
http://data.nobelprize.org/snorql
https://flickr.com
http://www.wunderground.com/
http://map.google.com

D
S

: h
ttp

://s
p

o
tlig

h
t.d

b
p
e

d
ia

.o
rg

O
: d

e
te

c
te

d
 [P

la
c
e

(la
t, lo

n
g

, ...)]

D
S

: h
ttp

://m
a

p
s
.g

o
o
g
le

.c
o

m

O
: [P

o
in

t(la
t, lo

n
g

)]

D
S

: h
ttp

://lin
k
e
d

g
e
o

d
a
ta

.o
rg

I: [T
h

in
g

(la
t, lo

n
g

)]

O
: [P

O
I(la

t, lo
n

g
, ...)]

T
y
p

e
: T

ra
n

s
fo

rm
a

tio
n

D
S

: h
ttp

://e
v
e
n

tm
e

d
ia

.e
u
re

c
o
m

.fr

I: [T
h

in
g

(la
t, lo

n
g

)]

O
: [E

v
e

n
t(la

t, lo
n

g
, ...)]

T
y
p

e
: T

ra
n

s
fo

rm
a

tio
n

D
S

: h
ttp

://w
w

w
.g

e
o

n
a

m
e

s
.o

rg

I: [T
h

in
g

(la
t, lo

n
g

)]

O
: [C

ity
(la

t, lo
n

g
, n

a
m

e
...)]

T
y
p
e
: T

ra
n
s
fo

rm
a
tio

n

D
S

: h
ttp

://d
a
ta

.n
o
b

e
lp

riz
e

.o
rg

I: [C
ity

(...)]

O
: [L

a
u

re
a

te
(n

a
m

e
, ...)]

T
y
p

e
: T

ra
n

s
fo

rm
a

tio
n

I: [T
h

in
g

(la
t, lo

n
g

)] o
r [[T

h
in

g
(la

t, lo
n

g
)]]

I: [T
h

in
g

]

I: [T
h

in
g

(la
t, lo

n
g

)]

O
: [[T

h
in

g
(la

t, lo
n

g
)]]

T
y
p

e
: A

g
g

re
g

a
tio

n

D
S

: h
ttp

s
://flic

k
r.c

o
m

I: [T
h

in
g

(la
t, lo

n
g

)]

O
: [T

h
in

g
(la

t, lo
n

g
, im

a
g

e
, ...)]

T
y
p

e
: E

n
ric

h
m

e
n

t

D
S

: h
ttp

://w
w

w
.w

u
n

d
e

rg
ro

u
n

d
.c

o
m

/

I: [T
h

in
g

(la
t, lo

n
g

)]

O
: [T

h
in

g
(la

t, lo
n

g
, w

e
a

th
e

r_
fo

re
c
a
s
t, ...)]

T
y
p

e
: E

n
ric

h
m

e
n

t

D
S

: h
ttp

://w
w

w
.w

u
n
d
e
rg

ro
u
n
d
.c

o
m

/

I: [T
h

in
g

(la
t, lo

n
g

)]

O
: [T

h
in

g
(la

t, lo
n

g
, w

e
a

th
e

r_
c
o

n
d

itio
n
, ...)]

T
y
p

e
: E

n
ric

h
m

e
n

t

V
is

u
a
liz

a
tio

n
 w

id
g

e
ts

P
ro

c
e
s
s
in

g
 w

id
g

e
ts

D
a
ta

 w
id

g
e
ts

Figure
5.4:

G
eospatialw

idget
collection

116

Search API17 this widget enriches location data with images.
6. Weather Forecast – a processing widget. This widget enriches the input locations

with the Wunderground weather forecasts.
7. Weather Conditions – a processing widget. This widget enriches the input

locations with the weather conditions of the nearest Wunderground station.
8. City Detection – a processing widget. This widget uses the GeoNames service

to find Cities that the input objects belong to and looks up extra information via
DBpedia, e.g., area or population.

9. Nobel Laureate – a processing widget. This widget takes Cities as input and
returns a list of Laureates born in those Cities.

10. Geo Merge – a processing widget. This widget merges two or more lists of point
data into a single list of pairs based on their distance. Users can specify a minimum
and a maximum distance between points. The Geo Merge widget therefore serves
two purposes, i.e., merging of two inputs into one output and filtering based on
distance constraints.

11. Map Viewer – a visualization widget. This widget displays points on a map. It
is typically used to display the final results of a geospatial mashup.

12. URI Browser – a visualization widget. This widget shows input objects one by
one and the objects’ corresponding URI-dereferenced page.

Detailed information about the widgets and their annotated input and output models
can be found on our prototype implementation18.

5.4.4 Sample Data Integration Use Cases

There are many ways to compose useful applications from the twelve widgets selected for
our examples. Assume, e.g., that we have a touristic text introducing different beautiful
spots in a city. The application depicted in Figure 5.5 then presents on overview for
those places. Next to detailed information from DBpedia, the locations and images are
displayed on the map. From a point specified by a user on the map, the combination in
Figure 5.6 finds all pairs of nearby restaurants and banks that are less than 100 meters
apart from each other.

As a more complex data integration use case, the example depicted in Figure 5.7
illustrates how a mashup can be used to choose a suitable park to spend time at in the
weekend. We start from a point on the map (e.g., our home location) and use the POI
Search widget to retrieve nearby parks via a SPARQL query to the Linked Geo Data
server.

Next, we add weather forecasts from Wunderground19 using the Weather Forecast and
Weather Condition widgets. We specify our preferred time period in Weather Forecast and
select the weather conditions we are interested in (e.g., temperature or pressure) in the
Weather Condition widget. For each park in the input, this widget obtains measurements

17https://flickr.com/services/api/ (accessed Nov. 01, 2015)
18http://linkedwidgets.org (accessed Nov. 01, 2015)
19http://www.wunderground.com/ (accessed Nov. 01, 2015)

117

https://flickr.com/services/api/
http://linkedwidgets.org
http://www.wunderground.com/

Figure 5.5: Use case 1: display famous Places detected from text on the map

Figure 5.6: Use case 2: display nearby Restaurants and Banks on the map

of the nearest station out of 140,000 Wunderground stations all over the world. We also
add Flickr images to the parks based on their location using the Flickr Geo Image widget.

Finally, we present the collected information in the generic Map Viewer visualization
widget. This widget accepts any kind of input with associated geographic information
and is hence useful in many spatial applications. It leverages the semantics of the input
to appropriately visualize the data. Location input data with wgs84:lat and wgs84:long
properties are displayed as pins on the map. If the foaf:depiction property of an input
is set, the respective images will be shown in an information window. In particular, if
the value of an input property is an instance of the W3C cube http://purl.org/linked-
data/cube#DataSet class, then the Map Viewer will automatically analyze the data and
visualize it in a chart.

In the mashup, we display charts of the weather forecast for each park. The validity

118

Fi
gu

re
5.
7:

U
se

ca
se

3:
pi
ck

a
pa

rk
to

vi
sit

at
th
e
w
ee
ke
nd

119

of all connections between widgets is enforced by the framework based on the underlying
semantic model. In this case, the mashup is valid because all widgets only require input
as instances of wgs84:Point with wgs84:lat and wgs84: long values.

The final example (Figure 5.8) makes use of the relations between locations and other
LOD resources. It collects and displays various types of information that are in some
way related to a particular location.

The Text Annotator widget uses the DBpedia spotlight service to retrieve a list of
recognized places based on the input text. At this point, we split the data flow to further
process the detected places. In the first flow, we use the Music Event Search widget to
send a SPARQL query to Event Media20 to get nearby music events and display them on
the Map Viewer. The second flow applies the City Detection widget, queries GeoNames21,
and retrieves DBpedia city entities corresponding to the locations. These entities are
then passed on as an input to the Nobel Laureate widget, which queries the Nobel Prize
dataset22 to obtain all Nobel Laureates born in the detected cities. The final data is
Linked Open Data with dereferenceable URIs, so we can browse them in the generic URI
Browser widget.

As shown in Figure 5.9, there are more ways to combine the example widgets. We
can create new applications by replacing two data/visualization widgets with each other.
Moreover, one or more processing widgets can be added between a data and a visualization
widget. By linking the widgets, the data from different LOD datasets are connected.
Furthermore, with different values of parameters inside a widget, new use cases can be
created. In Figure 5.6, we can replace “Bank” by “Park”, and add one more instance
of both POI Search and Geo Merger to find combinations of restaurant, park and book
shop near each other.

5.5 Hybrid Mashup Example Use Cases

In the following, we illustrate the use of hybrid mashups by means of two practical use
cases.

5.5.1 Streaming and Persistent Mashups

The example depicted in Figure 5.10 illustrates a practical use case of streaming and
persistent mashups. The mashup consists of two client widgets (i.e., the Map Pointer
and the Chart Viewer widget) and two server widgets (i.e., the Weather Observation and
Cube Merger widgets).

Using the two instances of the Map Pointer widget, we first obtain the latitude and
longitude of two arbitrary locations in the world (e.g., Vienna, Austria and Bethlehem,
Pennsylvania). Next, the two instances of the Weather Observation widget initiate two
back-end services that collect the temperature of the input locations every ten minutes;

20http://eventmedia.eurecom.fr/ (accessed Nov. 01, 2015)
21http://www.geonames.org/ (accessed Nov. 01, 2015)
22http://data.nobelprize.org/ (accessed Nov. 01, 2015)

120

http://eventmedia.eurecom.fr/
http://www.geonames.org/
http://data.nobelprize.org/

Fi
gu

re
5.
8:

U
se

ca
se

4:
tr
an

sf
or
m

ge
os
pa

tia
ld

at
a
in
to

Li
nk

ed
O
pe

n
D
at
a
re
so
ur
ce
s

121

Detect famous places from text and then show its detail information

Detect famous places from text and display it on the map

Find Flickr Images for specific points in the map

Detect Music Events organized near points in the map
Image Search is an optional widget to provide locations' images

Detect all/specific types of POI from points in the map
Image Search is an optional widget to provide locations' images

Display the City (and info from DBpedia) the Points belong to
Image Search is an optional widget to provide locations' images

Detect all famous places from text and
show pairs of places that are nearby each other

And more ...

Text
Annotator

URI
Browser

Text
Annotator

Map Viewer

Map
Pointer

Image
Search

Map Viewer

Map
Pointer

Music Event
Search

Image
Search

Map Viewer

Map
Pointer

POI
Search

Image
Search

Map Viewer

Map
Pointer

City
Detection

Image
Search

Map Viewer

Text
Annotator

Image
Search Map Viewer

Text
Annotator

Figure 5.9: Combinations of available widgets

122

Fi
gu

re
5.
10

:
V
ie
nn

a
an

d
B
et
hl
eh

em
w
ea
th
er

co
m
pa

ris
on

123

the temperature is taken from the nearest station (out of 140,000 Wunderground stations
all over the world). As soon as these two instances retrieve new temperature data, they
send the data in form of a W3C cube dataset (which has two dimensions, i.e., location
and observed time, and one measure, i.e., temperature in our example) to the Cube
Merger widget. The Cube Merger widget aggregates this new data with the data it has
collected since the mashup started. Finally, the Chart Viewer analyzes the aggregated
W3C cube dataset and visualizes the final result. Because the Weather Observation
continuously returns new output data every ten minutes, and because both the Weather
Observation and the Cube Merger are server widgets, the mashup is a streaming and
persistent mashup. The web page can be closed; the mashup still runs in the back-end
and presents to us the whole observations whenever the web page is opened again.

5.5.2 Collaborative Mashups

For the second example, consider the need to integrate data from several Excel and
Google spreadsheets in the enterprise context. The typical process to achieve this goal is
to download all of them, copy, delete columns, and create formulas to aggregate the data.
These tedious tasks may take a lot of time and have to be repeated whenever the source
data changes.

A mashup example that accomplishes such a task collaboratively is illustrated in
Figure 5.11. It combines and visualizes sales data for a series of retail points of sale (e.g.,
ice cream stores).

We have two types of spreadsheets: (i) a point of sale (POS) spreadsheet that
contains their respective id, name, latitude, longitude, city, country; and (ii) three sales
spreadsheets, each listing the number items per category sold per day at that point of sale.
Whereas the point of sale spreadsheet is on Google Drive, the three sale spreadsheets
of POS A, B, C are stored on personal computers of the local branch managers, who
update the data every day by adding new rows into the spreadsheet.

To integrate the data, the branch and headquarter managers may collaboratively
build their single shared mashup using our web based mashup editor as follows. They
first use the Google Sheet widget to load the shop spreadsheet from Google Drive and
convert it into datasets that follow the W3C data cube vocabulary23.

Next, each branch manager contributes their respective Excel Sheet widget (which is
a server widget) to load and convert her sales data into a cube dataset. To this end, they
installs the Excel Sheet server widget as a standalone application on their device; we
hence have multiple remote executors of this server widget. To differentiate between these
respective deployments of the server widget so that a client user interface can connect to
its respective counterpart (e.g., the client interface of POS A is connected to A’s Excel
Sheet server widget), each deployment is associated with a unique token.

Figure 5.11 is the mashup as seen by point of sale manager A; she has to enter the
token of her Excel Sheet server widget’s deployment into her client interface of the widget.
The tokens of other shops are filled out by the respective branch managers. To prepare

23http://www.w3.org/TR/vocab-data-cube/ (accessed Nov. 01, 2015)

124

http://www.w3.org/TR/vocab-data-cube/

Fi
gu

re
5.
11

:
C
ol
la
bo

ra
tiv

e
m
as
hu

p
ex
am

pl
e
fo
r
sa
le
s
da

ta
in
te
gr
at
io
n

125

the data for visualization, the datasets are merged in the Spread Sheet Merger widget,
and passed through a Filter and an Aggregation widget. The C3 Chart widget visualizes
the final data in a chart.

The options inside the Filter and Aggregation widgets are generated automatically
based on the data. They can be manipulate by all collaborators concurrently. Their
view of the mashup is synchronized, i.e., changes immediately become visible to all
participants.

By changing the automatically generated options inside the Filter and Aggregation
widgets, various analyses can be performed easily. For example, collaborators can
“compare all-time sales of all POS”, “compare sales of all POS in 2014”, “compare sales of
fruit, milk, and chocolate items of POS A in 2014”, “compare aggregate sales in different
countries or cities”, or “compare sales of fruit items in different cities in 2014” as shown
in Figure 5.11.

This is a hybrid and collaborative mashup where we use four server widgets (i.e.,
three Excel Sheet widgets and a Spread Sheet Merger widget) and four client widgets.
The data collecting tasks are performed on multiple devices. Because the Spread Sheet
Merger widget is a server widget, we can access its output data at any time. Points of
sale can easily be added to or removed from the mashup.

In this example, the spreadsheet data is converted into W3C cube datasets. To this
end, RDF Mapping Language24 or similar languages can be used; however, to do the
conversion, the Excel Sheet widget currently identifies the first and the last column of
a table as the dimension and measure of the cube dataset, respectively. Based on the
semantic format of the cube data, the generic widgets such as the Filter, Aggregation,
and C3 Chart widget can process and visualize the data automatically. Moreover, the
semantic format can facilitate data integration; for example, we can enrich the sales data
with the weather statistics to analyze the effect of the weather conditions on the ice
cream sales data.

24http://rml.io/ (accessed Nov. 01, 2015)

126

http://rml.io/

CHAPTER 6
Related Work

In this chapter1, we dive into a number of selected mashup tools. With regard to the topic
of this thesis, we categorize the tools into six main groups and present (i) widget-based
mashups in Section 6.1, (ii) semantic mashups in Section 6.2, (iii) embedded mashups
in Section 6.3, (iv) collaborative mashups in Section 6.4, (v) automatic mashups in
Section 6.5, and (vi) natural language-supported mashups in Section 6.6. Finally, because
the Linked Widgets framework does not follow the programming-by-demonstration
approach, we only present Vegemite as an exemplification of this approach in Section 6.7.

6.1 Widget-based Mashups

6.1.1 Yahoo! Pipes

Yahoo! Pipes [33] is one of the most well-known widget-based mashup tools, and is the
inspiration for the Linked Widgets framework and many other mashup frameworks. It
is an interactive web-based editor2 that uses the visual dataflow approach to enable
users to combine pre-configured modules into a mashup. Yue [114] conducts a pilot
experiment of Yahoo! Pipes and describes its positive results. Students, who are the
subjects of the experiment, find it to be useful and interesting; they gain expertise in
mashup development quickly, without any major difficulty.

Yahoo! Pipes provides 53 modules organized into nine categories, that is:
1. Data Sources modules, which collect data available on the web to further process

in the mashup;
2. User Input modules, which allow users to define parameters for their pipes;
3. Operator modules, which transform and filter data flowing;
4. URL modules, which manipulate URLs;
1Parts of this chapter also appear in [1, 2, 3, 4, 5, 6, 7, 8]. The author of this thesis is also the lead

author of these papers.
2https://pipes.yahoo.com/pipes/ (accessed Nov. 01, 2015)

127

https://pipes.yahoo.com/pipes/

5. String modules, which support users in manipulating and combining text strings;
6. Date modules, which define and format dates;
7. Location modules, which can convert text to geographic locations;
8. Number modules, which provide basic arithmetic operations;
9. Deprecated modules, which are not recommended to be used.
A module has one or multiple terminals, which are depicted as small circles in the

interface. Users create a mashup (which is also known as a pipe) by dragging available
modules to the editor canvas and linking their terminals. The pipe can aggregate and
transform data from various web services, pages and feeds. Pipes can be reused as new
operators for new pipes. The pipes’ final results are displayed in feeds, lists, or on maps,
based on the type of the output data.

Yahoo! Pipes makes use of the visual programming technique to hide the complexity
of developing a mashup; however, it requires users to be familiar with programming
concepts such as for loops, if conditions, and regular expressions. The further limitation
of Yahoo! Pipes is that it focuses on web feeds (i.e., RSS, Atoms, and RDF-feeds) and
hence is capable of representing news items only. Its main idea is to create new pages by
aggregating RSS feeds from various sources; it cannot manipulate other kinds of data in
XML or RDF formats.

6.1.2 Apache Rave

Apache Rave3 is a web and social mashup engine for data integration. It combines
pre-existing projects (i.e., Apache Shindig4 – which is an OpenSocial5 container to
host OpenSocial applications – and Apache Wookie6 – which is a Java-based server
application to upload and deploy widgets). Apache Rave, as an extendable, lightweight,
and open-standards based platform, intends to host and integrate OpenSocial features
with W3C web widgets7. It can provide collaborative and context-aware building blocks
for multi-side-oriented, content-driven and social-network-oriented websites, services and
platforms.

Apache Rave has implemented a lot of crucial features that a social mashup platform
should support. It allows for secure and single sign-on access control, which enables
users to easily personalize and share their web content via widgets and mashups. It can
make use of both OpenSocial and Wookie widgets to construct a widget repository with
life-cycle management (e.g., to install, update or remove widgets) and extended metadata
(e.g., the categories, comments, or ratings of widgets).

3https://rave.apache.org/ (accessed Nov. 01, 2015)
4https://shindig.apache.org/ (accessed Nov. 01, 2015)
5https://opensocial.atlassian.net/wiki/display/OSD/Specs (accessed Nov. 01, 2015)
6http://wookie.apache.org/ (accessed Nov. 01, 2015)
7http://www.w3.org/TR/widgets/ (accessed Nov. 01, 2015)

128

https://rave.apache.org/
https://shindig.apache.org/
https://opensocial.atlassian.net/wiki/display/OSD/Specs
http://wookie.apache.org/
http://www.w3.org/TR/widgets/

6.1.3 Presto

Presto8 is an enterprise application and mashup platform. It covers the entire application
life cycle, i.e., preparing mashable data, aggregating, transforming, integrating data in
mashups, and exposing the final result in various visualizations that are accessible from
either desktops or mobiles.

Presto provides users with a Presto Hub so that they can turn a wide variety of
internal, external, historical, transactional, and real-time sources into mashable artifacts.
These artifacts can be shared, tagged, rated, or commented among user communities.
The data can be collected from applications, systems, databases, or office documents due
to multiple types of Presto Add-Ons. Presto is capable of working with large datasets; it
offers support for data streaming and in-memory management.

Presto supports real-time access to data; it does not permanently save data to any
type of devices. Basic user authentication, secure connections and certificates, as well
as single sign-on solutions are all supported, which allows for secure access to both
information sources and created mashups.

Presto empowers users with various useful tools, i.e., App Maker, App Editor, Mash-
board, Wires, and Mashup Editor. (i) The App Maker is a visual wizard to build up basic
applications from mashable artifacts without programming; based on the data format,
users can choose one or multiple views such as table, map, or different kinds of charts.
(ii) The App Editor is a web-based tool for uploading and updating custom applications.
Custom applications can use common web resources such as HTML, JavaScript, and CSS.
The editor aims at developers only, allowing them to easily share or package their work.
(iii) The Mashboard is a visual, drag-and-drop designer to combine multiple applications
or views in a dashboard. A wide variety of layout such as simple columns, tables, drill
downs, desktop layouts, multiple tabs or multiple pages are available. (iv) The Wires is
a web-based and drag-and-drop tool to create visual mashups from available built-in
and power-packed action blocks. (v) Finally, the Mashup Editor is a web-based tool
for developers to write and design mashups in Enterprise Mashup Markup Language
(EMML) – which is a mashup language specified by the Open Mashup Alliance9.

6.2 Semantic Mashups
Super Stream Collider (SSC) [39], MashQL [41], and DERI Pipes [40] are three platforms
aimed at semantic data processing. Whereas SSC consumes live stream data only,
MashQL allows users to easily create a SPARQL query by means of its custom query-by-
diagram language. MashQL cannot aggregate data from different sources and its output
visualization only supports text and table formats. DERI Pipes requires users to be
familiar with semantic web technologies, SPARQL queries, and programming to perform
semantic data processing tasks from different data sources.

8http://mdc.jackbe.com/enterprise-mashup/content/about-presto (accessed Nov. 01,
2015)

9http://www.synteractive.com/News-Events/Pages/Open-Mashup-Alliance.aspx
(accessed Nov. 01, 2015)

129

http://mdc.jackbe.com/enterprise-mashup/content/about-presto
http://www.synteractive.com/News-Events/Pages/Open-Mashup-Alliance.aspx

Similar limitations apply to a Linked Data Integration Framework [115], a semantics-
enabled mashup of existing Web APIs [116], and a web-based method that integrates
static and dynamic sources for Linked-Data consuming applications [117]. In other words,
those are data integration frameworks aimed at developers, not end users. They can be
encapsulated in the processing widgets of our model to facilitate new usage scenarios.

The contributions [85] and [118] discuss useful semantic mashup systems, e.g., [87],
[71], but lack a systematic approach for all LOD datasets. Although each system can
effectively exploit only one or several datasets, they cannot be extended to more LOD
datasets and do not utilize LOD interconnections. Yokohama Art Spot [119], for example,
is a web mashup application that offers information on art in Yokohama by consuming
three LOD datasets (LODAC Museum, Yokohama Art LOD, and PinQA) and is hence a
domain-specific solution.

In general, there has so far been limited research on allowing end users to consume
data in a dynamic way. Typically, users are expected to use semantic browsers to explore
data and collect information by themselves. Alahmari et al. [120] evaluate fourteen
semantic browsers (such as Sigma, Marbles, Disco, etc.) with respect to consumption
of structured Linked Data. Those browsers do not offer means to combine data from
different sources.

6.2.1 Intelligent Book

Intelligent Book [86] is an application for mashing up Amazon and Half.com books. When
a user search for a book, a request is sent to these book stores. The result is stored
into an ontology. Based on the profile of the user with her interests and preferences, the
application can apply its rules and rank the result. It uses Pellet for reasoning.

6.2.2 RDF Book

RDF Book [87] intends to publish book information from multiple web APIs (e.g., Google,
Yahoo, Amazon and eBay) as semantic data. Books, bookstores, authors, reviews,
purchase offers each have dereferenceable URIs with RDF descriptions. To dereference a
URI, the mashup sends queries to the APIs, assembles the query results and returns to
client the description in RDF/XML syntax. The majority of vocabularies derive from
Dublin Core 10 and FOAF 11

The description contains outgoing owl:sameAs links from the book authors to paper
authors in the DBLP12 database. To generate an outgoing link, the application sends
a query to DBLP SPARQL endpoint13 and matches the full name of the author with
the query result. It also contains about 9000 incoming links from DBpedia; DBpedia
automatically generates these links based on the ISBN number found in Wikipedia.

10http://dublincore.org/documents/dces/ (accessed Nov. 01, 2015)
11http://xmlns.com/foaf/0.1/ (accessed Nov. 01, 2015)
12http://dblp.uni-trier.de/ (accessed Nov. 01, 2015)
13http://dblp.l3s.de/d2r/sparql/ (accessed Nov. 01, 2015)

130

http://dublincore.org/documents/dces/
http://xmlns.com/foaf/0.1/
http://dblp.uni-trier.de/
http://dblp.l3s.de/d2r/sparql/

6.2.3 Black Swan

Black Swan [71] allows users to find out about correlations between socioeconomic
developments and certain historical events. For instance, we can check how a war impacts
income per capita. Black Swan uses data from international organizations such as the
World Bank14, IMF15 and many other projects including DBpedia, Freebase16, NOAA17,
Correlates of War18, EM-DAT19 and BBC Timeline20. It can automatically detect the
outliers in global statistics together with the appropriately related events.

In the Black Swan system, an event is specified by a date, location, title, and event
category; a statistical data point is specified by the numerical value of the data point, the
year, location, and type of the statistic. The data is extracted from online data sources
in three steps: (i) parsing, (ii) schema matching, (iii) and data cleansing.

The system contains a number of flexible parsers to handle both structured (e.g.,
CSV, HTML/XML, RDF) and unstructured (i.e., plain text) formats. It uses Apache
Tika21 to parse structured sources and collects more than 43,000 distinct events. The
statistical data comprises 1,250,000 individual values of 200 countries over a time span of
200 years.

Black Swan combines information on events with statistical data to discover patterns
of the former’s influence over the latter. It decreases the number of candidate events that
may contribute to an outlier in a statistic. Black Swan uses association rule mining to
discover dependencies among variables in a large database.

6.2.4 DERI Pipes

DERI Pipes (or Semantic Web Pipes) [40] allows for the fast development of data-intensive
applications manipulating RDF data. It decomposes data integration and data processing
tasks into frequently used operators. Those operators foster reusability; they aim to
alleviate the repetition of cumbersome, error-prone, and resource-intensive processing
tasks in typically semantic systems.

A pipe, which is a set of instances of operators, defines two classical patterns of
workflows, that is split and merge. Two most important operators that can be used
in the pipe are merge and split. The input of the former is a number of RDF graphs
represented in RDF/XML, N322 or Turtle23 format; its output is a merged RDF graph
of input graphs. The split operator is designed to connect a single output to an arbitrary
number of inputs of other operators. Available operators are:

14http://data.worldbank.org/ (accessed Nov. 01, 2015)
15https://www.imf.org/external/data.htm (accessed Nov. 01, 2015)
16http://www.freebase.com (accessed Nov. 01, 2015)
17http://www.ngdc.noaa.gov (accessed Nov. 01, 2015)
18http://www.correlatesofwar.org (accessed Nov. 01, 2015)
19http://www.emdat.be (accessed Nov. 01, 2015)
20http://news.bbc.co.uk/2/hi/europe/country_profiles/ (accessed Nov. 01, 2015)
21http://tika.apache.org/ (accessed Nov. 01, 2015)
22http://www.w3.org/TeamSubmission/n3/ (accessed Nov. 01, 2015)
23http://www.w3.org/TeamSubmission/turtle/ (accessed Nov. 01, 2015)

131

http://data.worldbank.org/
https://www.imf.org/external/data.htm
http://www.freebase.com
http://www.ngdc.noaa.gov
http://www.correlatesofwar.org
http://www.emdat.be
http://news.bbc.co.uk/2/hi/europe/country_ profiles/
http://tika.apache.org/
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TeamSubmission/turtle/

1. the getRDF and getXML operators, which take a URL as input to convert the
respective resource into RDF and XML formats;

2. the XSLT operator, which performs a XSL transformation on a particular XML
input file;

3. the SPARQL CONSTRUCT and SELECT operators, which can extract relevant
part of a big graph, perform basic ontology mapping, or align two separated graphs;

4. the RDFS and OWL operators, which can apply RDFS or OWL inference rules on
the input graph.

All operators have exactly one output, and one or multiple inputs. The output of an
operator can link to the single input of another operator. Such links between input and
output must be acyclic. Input data should be string text, RDF, or other XML formats.

DERI Pipes invites developers to contribute their work to an open source project24.
Semantic web developers can implement new operators and add them to the project. The
contribution model of DERI Pipes hence is different from that of the Linked Widgets
framework. Our framework enables developers to freely develop and deploy widgets
on their own infrastructure. On the contrary, DERI operators must be on the same
deployment package to be able to cooperate with each other.

To create a DERI pipe, users make use of the pipe editor, which is a graphical
web-based application that supports drag-and-drop and wiring operations. DERI Pipes
intends to enable users to perform semantic data processing tasks from different RDF
data sources. However, potential users need knowledge of RDF, SPARQL query results,
XML, or HTML formats and how to process them algorithmically to make effective use
of the provided operators.

A created pipe can be serialized and stored in XML format; this XML configuration
can be loaded into the pipe editor. To execute a pipe, there is a server-side execution
engine that coordinates the processing tasks defined in each operator of the pipe. All
remote sources are fetched into the in-memory triple stores of the engine. The engine
allows for concurrent execution, as each operator can be performed in a separated task.
To avoid repetitive remote-resource fetching and hence enhance the performance, the
engine makes use of a caching mechanism.

A saved pipe is available via a stable URL and hence can be reused as an operator in
other pipes through a simple HTTP call. Pipes are based on common web standard and
can be deployed on any Java web application server. Because of these two features, the
DERI Pipes’ creators note that pipes can run on a single machine, or be distributed among
a number of nodes. Linked Widgets framework also enables these features. Moreover,
the base operators (which are Linked Widgets) can be distributed among nodes due to
our WebSocket-based remote protocol. By contrast, base DERI Pipes operators must be
on the same web application.

24http://sourceforge.net/projects/semanticwebpipe/ (accessed Nov. 01, 2015)

132

http://sourceforge.net/projects/semanticwebpipe/

6.2.5 Super Stream Collider

Super Stream Collider [39] is a web-based platform25 to develop mashups of semantically
annotated Linked Stream and Linked Data resources. It currently supports a number
of live data sources, which are Linked Stream Middleware sensors26, Twitter streams,
DBpedia, and Sindice data sources. Super Stream Collider consists of a drag-and-drop
mashup construction tool, a visual SPARQL/CQELS editor, and a visualization tool.

Super Stream Collider designs a set of streaming operators, which are categorized
into three classes as follows:

1. Data acquisition operators, which use either pull-based or push-based mechanism
to collect data from sources and gateways.

2. Stream processing operators, which use declarative language (e.g., CQELS) to
specify stream processing functionalities.

3. Streaming operators, which stream the final output of a mashup to the consuming
applications.

Each operator receives n input streams and returns exactly one output stream. While
the input format is quite arbitrary, the output format is always RDF.

Super Stream Collider mashups run in a cloud computing infrastructure, which
dynamically allocates relevant execution containers to execute every single operator in
the deployed mashup. A composed and published mashup can be reused as a data source
or an operator; it is assigned to a unique WebSocket URL where third party applications
can access to collect the streaming data.

6.2.6 MashQL

MashQL [41] is a query-by-diagram language and tool that supports people in developing
data mashups diagrammatically. The idea is to generalize Web 2.0 mashups and consider
the internet as a database, where mashup is seen as a query.

MashQL is a generalization and extension of query formulation approaches, i.e.,
query-by-form, query-by-example, and query-by-filter. A MashQL query is represented
as a tree. The root of the tree is the query subject. Each branch is a query restriction,
which specifies a filtering rule on the query subject. Users hence can query and mashup
web resources by building up such a tree in an interactive and intuitive process. The
tree or the MashQL query is translated into and executed as SPARQL queries in the
background by means of a MashQL-to-SPARQL translator written in Java. MashQL uses
Oracle’s SPARQL [121] rather than W3C’s SPARQL standard, as the former inherits all
SQL functionalities such as grouping or aggregating functions.

To formulate a MashQL query, users can use a web-based editor27; the UI of the editor
is inspired by Yahoo! Pipes. The editor executes background queries to dynamically
generate drop-down lists so that users can select and express their queries. For example,
when users select a dataset in the RDF input module, they can specify the query subject

25http://superstreamcollider.org/ (accessed Nov. 01, 2015)
26http://open-platforms.eu/library/deri-lsm/ (accessed Nov. 01, 2015)
27http://sina.birzeit.edu/mashql/ (accessed Nov. 01, 2015)

133

http://superstreamcollider.org/
http://open-platforms.eu/library/deri-lsm/
http://sina.birzeit.edu/mashql/

by choosing one item in the automatically generated list of all classes and instances of
the input source. From the chosen subject, users select one of its properties and define
relevant restrictions based on the domain and range of the selected property. To create a
query, they hence do not need to understand the schema, the structure, or the technical
details of the RDF data sources.

A MashQL pipe can be serialized into textual content, based on the MashQL markup
language. The language is based on XML and consists of three sections as follows:

1. Header, which defines the input sources, prefixes, and other metadata of the query;
2. Body, which mainly specifies query conditions;
3. Footer, which specifies the result modifiers, ordering preferences, and output styles.
MashQL currently intends to query RDF data sources, using SPARQL language. It

can be extended to query XML documents of relational databases, once a XSL stylesheet
to translate MashQL markups into XQuery and/or SQL content is developed.

6.3 Embedded, Mobile, and Pervasive Mashups

Salminen et al. [122] focus on mashups for embedded devices. They introduce two
environments for users to compose mashups in a procedural and declarative fashion. Both
aim at context-aware mashups on embedded devices and can use data of these devices
as input data for mashups. Similarly, Mikkonen and Salminen [123] present a runtime
environment for embedded devices. It is able to combine data from the web and from
the device peripherals and liberate the applications from the restriction of web browsers.
The environment is implemented based on Qt [124], which is a cross-platform application
framework that offers an extensive set of APIs in various embedded devices.

Chang et al. [125] present a development system for mobile mashups. They design
three development tools for PCs, mobile pads, and smartphones.

1. The PC tool targets experts with full functionalities for mashup development; it
consists of two main modules, i.e., block builder and webapp builder so that experts
can create blocks and mobile web applications. The block builder contains multiple
editors for different parts of a block (i.e., a metadata editor for the block’s general
information, a HTML editor for the block’s user interface, and a JavaScript editor
for the block’s execution logic). Blocks can be shared or modified among users.
To create a mobile application on top of available blocks, they have to edit the
layout and the workflow of the application, using the layout and workflow editor,
respectively.

2. The pad tool is similar to the PC tool with simplified UIs for the limited hardware
and user interactions; it does not support block creation.

3. The smartphone tool is mainly for non-expert users with considerably reduced
functionality and simplified UIs. They cannot directly edit the layout or the workflow
of the application, but use templates – which are a mobile mashup application
sample. To make a mashup, users search, select a template, and customize it by
replacing particular parts of the constituent blocks or changing their attributes.

134

The runtime environment for mashup execution is a web browser; the browser can be a
desktop browser (e.g., Chrome, Safari, Firefox) or a custom web browser for Android and
iOS devices. For the latter case, the mashup can access special functions of the mobile
devices such as camera, compass, microphone, gallery, or contacts.

Corvetta et al. [126] introduce CAMUS (Context-Aware Mobile mashUpS) as a
framework to design context-aware, mobile or web-based applications that collect and
integrate heterogeneous sources (e.g., data and services) in a context-aware fashion. To
hide the complexity, CAMUS makes use of high-level visual abstractions [127] for context
and mashup modeling. It then uses generative techniques to transform the model into
running code in various devices. The structure and content of the created mashup is
hence decided at the run time, and can be flexibly and personally adapted to users’
devices, needs and situations of use.

Ma et al. [128] propose the “Brick-based and State-driven Mobile Service Composition”
(BSMSC) framework as a mobile mashup approach. The framework serves three groups
of stakeholders as follows:

1. Composite RESTful Service Developer (CRSD) who develops composite RESTful
services and provides the respective models by means of JSON description,

2. Service Brick Developer (SBD) who develops Android-fragment-based service bricks
on top of the composite RESTful services,

3. Composite service brick developer (CSBD) – the end user of the framework – who
uses a visual tool to choose service bricks and design her own brick-based mobile
application.

A service brick is a UI component to hide the back-end composite service from the end
users. It is divided into two types: (i) web-based service brick, which is created using
HTML, CSS, and JavaScript, and (ii) native service brick, which is created using Android
native objects. The latter is able to access client-side local resources such as sensor data
or address book.

Service bricks can send (receive) events to (from) the event engine of the framework.
As the engine matches and forwards events to relevant service bricks, if offers a mechanism
to connect the front-end service bricks and the back-end RESTful services in a state-
driven fashion (i.e., there will be a session to maintain and manage shared resources
and states among composing services). To this end, the framework is based on the
service composition engine JOpera [129]. Because the output of a service needs to
be transformed into a valid JSON format before serving as input of another service,
the framework contains a service mediator as an intermediate layer between JOpera
and the service bricks. It offers four major functionalities when orchestrating services:
(i) One-Shot Service Flow Execution, (ii) Stateful Service Flow Execution, (iii) Service
Substitution, and (iv) Format Wrapping for Service Output.

135

6.4 Collaborative Mashups

6.4.1 PEUDOM

PEUDOM [130] is designed as a platform for multiple devices and collaborative mashups.
It allows users to create components on top of REST services and combine these com-
ponents to build mashups. Similar to the Linked Widgets framework, it creates a live
collaboration paradigm. However, a major difference is that the data processing tasks in
PEUDOM cannot be assigned to different devices. In fact, these tasks are REST services
that will be called in the corresponding components implemented for different devices.
PEUDOM hence can be seen as a service composition platform for end users on different
devices.

PEUDOM consists of two major environments, i.e., Component Editor in which users
can register their REST services to the platform, and Mashup Dashboard, which is a
web environment to create new mashups or modify the existing ones. PEUDOM uses
event-driven and publish-subscribe paradigm to coordinate various implementations of
components on different devices.

PEUDOM follows a client lightweight execution approach. REST services encapsu-
lated in components are called and processed at the client side. Meanwhile, the server
takes care of synchronous and asynchronous communication and manages the resources
shared by multiple users.

6.4.2 MoSaiC

MoSaiC [131] is a web-based mashup tool and platform for collaborative document
engineering. It models enterprise documents as mashups or situational applications of
content provision, transformation and publication. MoSaiC allows a team to consolidate
content from various sources; the team can collect and share data in the course of
collaborative work.

An example use case is from scientific publication; Alice (who is the initiator) first
creates a research paper mashup by dragging document elements (i.e., abstract, section,
text, figure, or bibliography) into the mashup canvas. She associates each element with a
meaningful task description. Alice can define further behavioral rules such as all sections
need to be delivered three days before the deadline.

Alice then adds two services to the mashup as follows: (i) a layout format service
that automatically generates a document from the mashup, (ii) and a submission service
that uploads the created document to a relevant server. Finally, Alice adds some people
in her research team to the paper mashup and assigns them particular tasks.

In the following weeks, when evolving the paper, the team can make changes to the
initial mashup. They can add new content to their assigned sections, as well as see other
work. The event-based reminding rule defined before will trigger a notification to related
authors who do not send the content on time, if it discovers that a content element is not
in “final” state. As soon as all elements are completed, the whole mashup is sent to the

136

layout service, and finally, a document is created and submitted due to the submission
service.

6.4.3 ContextGrid

ContextGrid [132] is a contextual mashup-based collaborative browsing platform. The
idea is to bring knowledge-sharing services to internet users; from various open APIs,
ContextGrid integrates heterogeneous information and assists users to collaboratively
navigate the web. To navigate means users interact with the web and find their relevant
information.

Each user has her bookmark set, which is represented in her personal ontology. A
user context is then defined by her ontology and her current web page. ContextGrid
matches and identifies the semantic relationships between the user’s current web page
and her set of bookmarks, and hence can recognize the context.

A user can get browsing information of another user if they are in similar context
and share the same preferences. They can exchange knowledge, resources, experiences
(e.g., heuristics and know-how) while searching for information. For example, three users
are related if one visits the Vienna Wikipedia page, one locates Vienna on a Google map,
and the other browses Flickr photos taken in Vienna. To this end, ContextGrid develops
a model that first recognizes current context of each user, and then compares those
contexts to detect the similarities. Finally, ContextGrid makes use of open API-based
mashups to integrate various types of web resources and recommend relevant resources
to users, based on their contexts.

6.4.4 Apache Rave Extension

Hertel et al. [133] introduce an extension of the open-source mashup platform Apache
Rave28 to add support for real-time collaboration among users when composing user
interface mashups (or widget-based mashups). As users can exchange knowledge and
experiences, the collaboration feature is expected to make mashup development more
social and encourage users to be more productive.

The challenge is to design a synchronization algorithm and a conflict-resolution
mechanism. To this end, the extension makes use of Operational Transformation algo-
rithm [134], which is a concurrency control mechanism that can maintain the consistency
of mashup models. To resolve conflict operations, it transforms them into previously
applied concurrent operations so that they satisfy the consistency model.

The extension defines six operations for the mashup synchronization as follows:
1. “Add Widget”, which adds a new widget to the building mashup,
2. “Move Widget”, which moves a widget to another position in the mashup canvas
3. “Remove Widget”, which removes a particular widget from the mashup
4. “Change View Mode”, which sets the display mode of a Apache Rave widget

28http://rave.apache.org/ (accessed Nov. 01, 2015)

137

http://rave.apache.org/

5. “Replace Widget Property”, which replaces the current value with the new value
for a property

6. “Change Connection Setting”, which changes the connection between widgets.
When users interact with Apache Rave platform, such operations are issued to the server.
The server may perform necessary transformations if there are concurrent operations. It
then updates its global mashup configuration and propagates the operations to other
collaborators.

6.5 Automatic Mashups

Due to the similarity of mashups with web services, we consider the rich stream of
research on web service composition closely related. Rao and Su [135] review research
efforts of automatic web service composition techniques both from the workflow and AI
planning research communities. Dustdar and Schreiner [136] present different composition
strategies based on existing platforms and frameworks. They argue that – amongst others
– specifications, interactions, and non-functional attributes need to be considered.

Fischer et al. [137] present an evolutionary algorithm to generate ad-hoc mashups
from semantic web services. The information retrieved from the invoked services is
transformed into a semantic representation. Feng et al. [138] propose a service-oriented
approach to integrate open data services. They semantically model data services and
transform the integration problem into a service composition problem. SMART [139] is
a platform for mashing up REST web services. It matches the users’ querying keywords
with REST web service descriptions in its ontology and allows users to build personalized
mashups. Common issues of service mashups lie in (i) the complexity of services to
users, and (ii) the high risk of generating irrelevant mashups due to uninformative
service descriptions. We hence encapsulate web services and other web resources into
Linked Widgets and associate our widgets with a semantic model to facilitate automatic
processing.

To be more precise, considerable research effort is directed at automatic mashup
composition. Wong and Hong [38] present Marmite, which uses syntactic similarity, such
as comparing output and input data types, to couple widgets. Goal-driven approaches such
as MARIO (Mashup Automation with Runtime Orchestration and Invocation) introduced
by Riabov et al. [140] automatically deduce compositions based on user-defined goals. Ngu
et al. [141] propose a semantic annotation technique to find sets of functionally equivalent
components that can be combined into composite applications. Hybrid approaches go
one step further and combine goal-driven and semantics-driven techniques. Elmeleegy
et al. [142] present MashupAdvisor, which recommends composition goals based on a
user’s current composition context. Deutch et al. [143] introduce so called glue-patterns
which are utilized after the user selects desired components. These glue patterns are used
to auto-complete partial mashups. Cappiello et al. [61] propose to incorporate quality
considerations when identifying adequate components for mashups. They introduce an
assisted composition process which does not require explicit models. Instead, quality
becomes a key indicator for recommending complete mashups to users. Our composition

138

technique uses a well-defined semantic model, which needs to be specified before widgets
are executed; this technique always ensures compatibility between widgets, and therefore
guarantees successful mashup execution. Adding goal-based characteristics to our current
approach may be useful in limiting the result space and respecting users’ information
needs.

Bai et al. [144] introduce mashlets (i.e., online resources including data, functions, and
presentations) according to user goals and combined them into new applications. They
follow the goal decomposition and refinement approach to fill the gap between low-level
mashlets and high-level user goals. Rodríguez et al. [145] implement a Firefox plugin
to recommend useful composition patterns to end users during mashup development in
Yahoo! Pipes. The composition knowledge is extracted from the repository of existing
mashups. Similar work can be found in [146, 147]. The former observes that mashups
developed by different users typically share common characteristics. It exploits these
similarities to predict potential mashup compositions, given a user mashup specification.
[147] is a hybrid recommendation approach, which leverages existing compositions and
component descriptions to provide continuous development support for end users.

In the following, we review two platforms that allow for automatic mashup composi-
tion.

OMELETTE
Roy Chowdhury et al. [148] introduce a mashup system called OMELETTE29. To
support users in designing mashups, it follows a hybrid approach, which combines the
goal-oriented solutions [149, 150] and the pattern-based development [141, 151]. The
former aims to automatically develop mashups that satisfy user-specified goals while the
latter recommends composition patterns to auto-complete a part of mashup.

OMELETTE identifies three main mashup challenges. (i) Users do not know which
widgets they need to their intended mashup. (ii) Provided that they are aware of necessary
widgets, they still cannot check if these widgets are available (iii) Users typically are
not skilled enough to define the data and the mashup control flow. To address these
challenges, it extends the widget-based mashup platform Apache Rave by two modules,
i.e., Automatic Composition Engine (ACE) and Pattern Recommender (PR).

ACE provides users with an interactively dialog-based agent that allows them to
specify the goal of their mashups. The knowledge base consists of a domain ontology and
a set of functions that define the agent’s behavior. There are four important functions as
follows:

1. Question Building, which is language-aware, to establish a conversation flow with
users;

2. Evidence Collection to collect user response and build a context model on top of
the domain ontology;

3. Widget Selection to select widgets by matching the collected evidences with the
widget registry;

29http://www.ict-omelette.eu/home (accessed Nov. 01, 2015)

139

http://www.ict-omelette.eu/home

4. Workspace Configuration to setup parameters for the workspace and involved
widgets.

PR is designed to support users in extending mashups created by ACE, and composing
mashups from the scratch. It extracts patterns from the knowledge base of all created
mashup models. Widget co-occurrence and multi-widget are two supported patterns.
During the composition process, PR reacts to user operations such as adding, selecting or
deleting a widget. It identifies the operation, calculates and generates relevantly ranked
recommendations, and returns them to users.

CRUISe
CRUISe [84, 152] is a platform for dynamic composition and execution of adaptive
composite applications. Its implementation is based on Eclipse Modeling Framework30,
where application models can be serialized into XML Metadata Interchange (XMI) format
and thus become exchangeable and tool-independent.

CRUISe uses services as input to compose a web-based user interface of service-
oriented composite components. The basic structure and interface of these components are
specified in component models. A component model is characterized by three parameters:
(i) configuration, which stores a set of component states specified by pairs of key and
value, (ii) event, which is issued by a component to publish to others that its state
has been changed, (iii) and operation, which is a method of a component triggered by
events. CRUISe identifies three component types, i.e., User Interface Component, Logic
Component, and Service Component.

CRUISe follows the semantic approach to represent its component models. To this
end, it defines Semantic Mashup Component Description Language (SMCDL), which
uses the principles of SAWSDL [96] and WSMO-Lite [153]. Annotation of components
is categorized into three types, i.e., (i) data semantics, which match properties and
parameters of events and operations to semantic concepts, (ii) functional semantics,
which combines operations, events, and the component as a whole to define the overall
functionality, (iii) and non-functional semantics, which describe metadata (e.g., author,
price, license) of a component.

Based on the defined component models, from a particular mashup template (which
is defined using SMCDL), CRUISe can automatically select and integrate components
at runtime, using a semantic discovery and ranking algorithm. The algorithm is based
on the semantic compatibility between components; it does not consider the compliance
between component templates and implementations. Therefore, CRUISe uses a semantic
mediation to tackle the heterogeneity between dynamically integrated components and
composition models. When necessary, the mediation can (i) rename operations, events,
parameters and properties of components, (ii) rearrange parameters of outgoing and
incoming events (iii) or perform a transformation to enforce data compatibility.

To sum up and to contrast the related work with the work discussed in this thesis
we would like to highlight that our contribution consists in (i) an automatic mashup

30http://www.eclipse.org/modeling/emf/ (accessed Nov. 01, 2015)

140

http://www.eclipse.org/modeling/emf/

composition algorithm to simplify mashup development, and (ii) the interactive tagging
module to compose mashups from text. The foundation of both approaches is the
semantic model of widgets. Whereas related work heavily relies on composition knowledge
to recommend widget connections, we can proactively discover all possible connections
by means of terminal matching, and compose all mashups from a set of widgets.

6.6 Natural Language-supported Mashups

There are several approaches to enable users to compose mashups by specifying them in
text:

1. Users type arbitrary sentences or questions in natural language. The text is then
processed to compose mashups for them. This is very simple and easy to use;
however, because of the variety in our language, the input text is likely to be
ambiguous. Thus it is difficult to build up precise mashups for users. An example
of a similar approach can be found in AutoSPARQL [154]. Using active supervised
machine learning to generate SPARQL queries, it can answer natural language
queries over RDF knowledge bases.

2. To address ambiguity, a subset of natural language can be used. This means the
syntax and vocabulary are restricted to specific patterns.

3. Some authors design and use a dedicated mashup language that can be based on
natural language (e.g., [155]). This creates, however, another barrier to end users,
as they have to learn the syntax of the new language.

4. Finally, dialog-based approaches (cf. [148]) are possible. We ask users questions;
based on the answers, we can ask further questions to narrow the context step-by-
step.

In the following, we review a number of frameworks that support automatic mashup
composition based on natural language.

6.6.1 NaturalMash

NaturalMash [156] is an end-user mashup development tool. It is the combination of
different techniques such as live programming, programming by demonstration, natural
language programming, and What You See Is What You Get.

From available web APIs such as LinkedIn, eBay, Last.fm, Google search, Google
map, BBC, Facebook, Youtube, NaturalMash enables users to enter a simple description
of their desired mashup and returns an automatically composed mashup to them. Its
interface contains a text field for describing the mashup integration logic, and a visual
field that is a WYSWYG interface to design and preview the mashup being created.

As an example (cf. [156]), users can type “Find songs titled mashup. When an item
is selected, search YouTube videos about title. When a video item is selected, post video
link to my wall” in the text field. The language used is a subset of English with restricted
vocabularies and grammars. Alternatively, users can drag and drop available APIs to the
visual field and design their mashup.

141

To this end, for each web API, NaturalMash creates an abstract component that
describes the functionality of the API by a Task and an Event. A Task is defined as a
“passive atomic operation” that takes input data, processes, and returns output. An Event
is defined as an “active source of control” that describes a condition; if the condition
is satisfied, it issues a message associated with parameters. In the example description
above, NaturalMash uses the Task behavior of Last.fm API to search for songs titled
“mashup” and returns a table of songs. An Event then can be the click action on a song.

In the next step, NaturalMash creates a natural language representation of the API;
All Tasks and Events are associated with particular natural language descriptions. Two
respective types of descriptions are “Imperative sentences” and “Causal sentences”. To
reduce sources of error, the text field supports advanced features such as autocompelete
text suggestion or restricting the possible input characters.

NaturalMash is a live mashup tool; it can compile and run textual mashup descriptions.
The descriptions are sent to a compilation pipeline and transformed into web service
compositions, which are executed by JOpera Engine [129] (i.e., a service composition tool
that provides a visual language to define control flows and data flows of service processes).
The compilation consists of six steps: (i) Natural Language Parsing, (ii) Constrained
Natural Language Parsing, (iii) API Binding, (iv) Data Flow Resolution, (v) Intermediate
Model, and (vi) Emitter.

6.6.2 Natural Mashups

Natural Mashups [157] is a web-based service composition tool that enables users to
create on-the-fly composite services from a descriptive request expressed in a restricted
form of natural language. The request is based on the vocabulary and syntax patterns
of all components in the users’ service catalog. This means users need to be aware of
available services, or their requests cannot be understood. Natural Mashups supports
two languages (i.e., English and French) and combines the usage of text and speech to
specify a request.

Similar to NaturalMash, for each supported web service, Natural Mashups creates an
abstract service, which is associated with natural language annotation. The annotation
consists of two elements, i.e., Activation terms and the Rules part. The former specifies
the possible terms that if matched, the natural language parser can activate the respective
service. The latter defines a set of patterns that can be recognized for the service and
the mechanism to obtain the parameters from the request.

To compile a textual request into a composite mashup, Natural Mashups analyzes
the text, using the annotation of abstract services; the result is a list of matched abstract
services and resolved arguments. From that, it creates a sequence of service calls in
the orchestration script. The script finally is translated into different executable code,
depending on the target framework. The default framework is SPATEL ENGINE [158],
which is a SOA oriented framework using UML interfaces and state machines to represent
services’ operations and behaviors. Alternatively, the code can be sent to the Open
Mashups tool [159] to build up a mashup, which can be automatically transformed into
an iPhone application.

142

For the example request “Send to mum Paris weather translated in Spanish” (cf.
[157]), Natural Mashups creates an orchestration of four services as follows: (i) resolving
the nick name (i.e., “mum”) in the user’s address book, (ii) accessing the weather forecast
in Paris, (iii) translating the given text into Spanish, and (iv) sending a SMS or an email.
To support users in being aware of good textual description that is understandable by
Natural Mashups, it makes use of both text auto-completion and contextual help menu
techniques.

6.6.3 EnglishMash

Aghaee and Pautasso [155] design EnglishMash, which is a natural mashup composition
environment based on their controlled natural language that supports users in devel-
oping mashups. The typical drawback of this approach is that users are required to
acquire special skills, i.e., component capabilities, algorithmic thinking, and the language
syntax. To address this issue, the environment interactively responses to users’ acts
such as correcting their mistakes, or displaying the live preview of their textual mashup
description.

EnglishMash associates its mashup components with natural language patterns. For
example, the pattern for the Twitter search component is “search tweets at [coordinate:
longitude, latitude]”. It hence allows users to express in natural language a number of
programming techniques such as conditional branches, event handling and iteration. An
example expression is “When the map is clicked, do as follows. Display a marker at the
location, and search for tweets at the location. Finally, show the tweets on the table” (cf.
[155])

EnglishMash requires users to have several basic skills and knowledge. (i) To be
able to build up mashups, users need to be aware of all available components as well
as their functionalities. (ii) Users should have problem-solving skills; they can think
algorithmically to orchestrate available services and create an added value. (iii) Users
should be able to restrict their English sentence so that it is understandable and executable
by EnglishMash.

The typical work flow to play with EnglishMash is: (i) having in mind the goal
of the mashup, (ii) identifying and adding necessary mashup components to the being
constructed mashup, (iii) developing the logic of the mashup in natural language, (iv) and
previewing the live execution of the mashup. During this process, users interactively
get feedback of their syntax and runtime error; they also receive the auto-completion
support by means of a drop-down menu containing suggestions.

6.7 Programming-by-demonstration Mashups

Since the Linked Widget framework does not follow the programming-by-demonstration
approach, in this section, we only presents Vegemite as an exemplification.

Vegemite [45] is the extension of the CoScripter web automation tool (which is an
end-user programming system presented in [160]) by a spreadsheet environment. It

143

uses programming-by-demonstration techniques to enable users to collect and process
information from various web sites and populate a table.

Starting with an empty table (which is the so-called Vegetable), users can manually
add new data or copy from other spreadsheet sources. Moreover, they can extract
data from a web page and add it to the table, using the direct-manipulation tool. By
performing a series of actions on the table and the web page, users can demonstrate and
instruct the manipulation tool to fill additional rows and columns to the Vegetable. To
this end, the user actions are recorded as scripts, which can be re-executed at any time
to complete or refresh data on the Vegetable.

Vegemite scripts cannot only collect data but also allow for low-level web actions
such as filling the values into HTML forms, or clicking on HTML links. Based on the
values collected in the Vegetable, users, in advanced, can perform further web actions,
e.g., sending an email that contains data in the table.

Vegemite is implemented as a Mozilla Firefox add-on. It consists of two main
components, i.e., (i) Vegetables, (ii) and CoScripter engine. The former is implemented
as a table editor whereas the latter is a sidebar borrowed from CoScripter to create, edit,
and save Vegemite scripts.

When editing scripts, users can copy and paste operations. The scripts resemble
English and are understandable to both humans and computers. A Vegetable is composed
of tabular data and Vegemite scripts. Both are permanently stored in a central server
so that users can access to their data on different machine with Firefox and the add-on
already installed.

Summary of Mashup Tools To sum up, the most apparent differences between the
Linked Widget framework and similar approaches are as follows: (i) We present a
high-level and problem-oriented data processing framework. Users do not have to be
familiar with special technological and programming concepts, e.g., conditional statements
or loops, to perform data integration tasks. They first define a goal, e.g., search for
POIs near a place, then can discover appropriate widgets, and finally arrange them
in a mashup. To ease this process, we organize widgets in domain-specific collections.
Additionally, we provide keyword and semantic search features based on the widget model.
(ii) We allow and encourage developers to contribute their widgets to the framework to
extend the number of data sources it can process. (iii) We use semantic web technologies
to model widgets and facilitate automatic data exploration and data integration via
widgets. This imposes the semantic format on widget output and helps the framework to
address data heterogeneity. (iv) We provide an environment for interactive collaborative
mashup creation and analysis. (v) We introduce and implement the concept of distributed
mashups.

144

CHAPTER 7
Conclusions and Future Work

7.1 Conclusions
The web of data is growing at a staggering pace; a large number of data sources, APIs,
services, and data visualizations are publicly available. In order to satisfy their information
needs, users increasingly have the opportunity to interact with and integrate information
from various sources.

However, end users are not able to directly access, explore, and combine different
sources due to a number of technological barriers: (i) Data is stored in heterogeneous
formats, e.g., XML, CSV, JSON, RDF, HTML, and Portable Document Format (PDF);
(ii) users do not know where to find required data sources; (iii) provided that they are
aware of appropriate sources, they frequently do not have the means and skills to access
them; and (iv) if users are capable of collecting raw data from various sources, they
typically cannot perform necessary data processing and data integration tasks.

In this thesis, we present our approach for dynamic and automatic exploration and
integration of heterogeneous data sources for non-expert users. We provide the answers
to the three research questions as explained in Table 7.1.

To foster reusability and creativity, we modularize functionality into Linked Widgets
that users can recombine in order to create new applications. We make use of both
client and server computing resources to create a powerful, extensible and scalable
data integration model. With server Linked Widgets, data processing tasks can be run
persistently and be distributed among various devices. This is particularly useful for
data streaming or data monitoring use cases.

We divide Linked Widgets into three categories, i.e., data, processing, and visualization
widgets which perform the data retrieval, data processing/data integration, and data
presentation tasks, respectively. The internal mechanics of these complicated tasks are
not visible to end users because they are encapsulated inside the widgets. Widgets have
input and output terminals and can be easily linked to each other by end users. When
combined, each widget can receive data and return its processed output data to another

145

Research Question Answer

RQ 1
Data Heterogeneity

We make use of LinkedWidgets, which are web widgets backed by
a semantic model, to lift data in different formats to a semantic
level (cf. Sections 3.3 and 3.4.3).

RQ 2
Collaborative Data
Integration

We categorize Linked Widgets into client and server widgets.
On the one hand, client widgets can collect data on the web and
process it in a web browser environment. On the other hand,
with server widgets, mashups can be assembled from components
that are distributed among various devices. This facilitates
collaborative data integration in which each stakeholder can
contribute their data and computing resources to the shared
data processing flow. To this end, we design local, remote, and
hybrid protocols (cf. Section 3.6) for widget interaction and
present mashup patterns for collaborative, persistent, distributed,
and streaming use cases (cf. Section 3.7).

RQ 3
Automatic Data
Integration

We present our mechanisms to (i) validate the links between
widgets and discover all widgets that can provide data to or
consume data from input and output terminals of a widget (cf.
Section 3.9.1), (ii) automatically compose mashups from a given
set of widgets (cf. Section 3.9.2), and (iii) create auto-composed
mashups from structured text (cf. Section 3.10).

Table 7.1: Answers to research questions

widget. This mechanism allows users to compose data-centric applications out of available
Linked Widgets. These ad-hoc mashup applications, in turn, are re-edited, used, and
shared among end user communities.

Based on the concept of Linked Widgets, we design a conceptual framework that aims
to (i) connect developers, data publishers, data integrators, and end users, (ii) provide
universal and practical advantages without restrictions on domain or data sources,
(iii) allow users to combine/integrate multiple (linked) open data sources and leverage
their joint value, (iv) allow novice users to easily analyze, integrate and visualize data,
and (v) allow users to perform data processing tasks in a collaborative and distributed
manner simultaneously on multiple devices.

The framework is built upon semantic web technologies and its design follows three
guiding principles: openness, connectedness, and reusability. Openness distinguishes
our approach from similar ones and is the key to tackle disparate data sources. It
means developers can implement and directly add their new widgets to the framework.
Connectedness means users can combine data from different sources by connecting widgets
of distinct developers. Finally, we foster reusability by allowing users to make use of the

146

same widget in a dynamic and creative manner to compose various applications.
We leverage the power of semantic mashups to help novice users to easily explore

and integrate available web resources by means of widgets. We encapsulate semantic,
graph-based models inside Linked Widgets and provide mechanisms to annotate their
input and output. Widgets can obtain and process both semantic and non-semantic
data. They lift non-semantic data to a semantic level and produce semantic output data
according to its predefined model.

Based on the widget models, we design novel mechanisms to ease the composition
process. Terminal matching and semantic widget search are aimed at users who are already
familiar with the composition environment, but need support in finding appropriate
widgets. Auto-composition targets novices who have no or little experience in mashup
development and need to be guided through the composition process. Finally, the tag-
based composition mechanism allows users to compose mashups from structured text and
hence considerably simplifies the mashup development process.

A prototype implementation1 of the framework is already available. We illustrate the
feasibility and effectiveness of the framework through location-based use cases combining
data from five LOD datasets and three other open data sources. These examples can easily
be extended by adding additional blocks for new datasets. Users do not have to manually
browse different URIs or write SPARQL queries to retrieve and aggregate data; our
approach provides a common framework to integrate and visualize the desired information.
It could also serve well as a rapid prototyping environment for data integration projects.

7.2 Future Work

7.2.1 Mobile Mashup Editor

A prototype web-based mashup editor2 is already available online. Even though users can
use this editor on a mobile browser to combine widgets, we plan to implement a separate
editor that is designed especially for mobile devices. Together with server widgets, the
mobile mashup editor completes our mobile mashup environment.

7.2.2 Publish Mashup Result as Linked Data

Linked Widgets lift data in arbitrary formats to semantic data. Because distributed
mashups can run persistently, we can access their semantic output data at any time.
Publishing a distributed mashup thereby means publishing a data source which can again
be consumed by other entities. To foster automatic data integration, we plan to transform
output data into Linked Data. To this end, the framework assigns each resource of the
output data a dereferenceable URI that can be looked up by people and user agents.

1http://linkedwidgets.org/ (accessed Nov. 01, 2015)
2http://linkedwidgets.org (accessed Nov. 01, 2015)

147

http://linkedwidgets.org/
http://linkedwidgets.org

7.2.3 Automatic Mashup Composition

Future research will also aim to improve our automatic mashup composition algorithm
by adding heuristics for the search and backtracking steps. Furthermore, we aim to
enable developers (who can already access widget annotations as Linked Open Data)
to implement custom composition algorithms for particular data domains and integrate
them into the framework as plugins.

7.2.4 Linked Widgets Semantic Model

At present, we annotate input and output models of widgets only; to also annotate
parameters in the user interface of widgets has not been considered, yet. This helps us
to have a light-weight semantic model, but the detailed functionality of widgets is not
well described. The Tag-based Composition Module hence cannot automatically set up
appropriate parameters for member widgets of composed mashups.

Another issue when modeling widgets is that some of them cannot be semantically
annotated in a meaningful manner. Generic widgets that perform filter or aggregation
tasks do not have fixed models; their interfaces and output depend on the input data
which the widget is only aware of at run time. Similarly, a data widget can output
different data models, depending on different parameters defined in its interface. We
intend to design a dynamic run time model for such widgets. As soon as users drag the
widget into a mashup and parameterize it, its semantic model is propagated to facilitate
automatic composition including widgets whose models may vary during run time.

7.2.5 Widget Change Management

Another research challenge is to tackle widgets that evolve over time. At present,
developers can change the widget source code at any time because it is decoupled from
the framework. Changing the widget model, however, would break existing mashups and
is hence problematic. To address this issue, we already store widget versions and use
our widget provenance ontology to keep track of them. Future research will focus on
leveraging such annotation to effectively manage and maintain the framework resources.

7.2.6 Natural Language-supported Mashups

We currently do not process un-tagged words input by users in the Tag-based Composition
Module; these strings can contain information to further clarify the user’s context and
help to make the composed mashup more precise. We plan to improve our approach and
analyze the whole input sentence – at least for sentences in frequent and useful patterns.

Moreover, if the mashup context given by users is not clear enough or there are no
mashups that can be automatically composed, we can follow the dialog-based approach.
We ask the user, receive their answer, and adapt the context step-by-step.

148

7.2.7 Widget Collections for Various Domains

Finally, as we are still in a preliminary stage, we plan to create more widgets for
different domains. This will allow users to work with different kinds of data sources (e.g.,
governmental, financial, environmental data etc.) and types of data (e.g., open, linked,
tabular data etc.), without technical barriers. From a data perspective, the vision is to
support users in their everyday decision-making. Another interesting direction for future
research is the automatic creation of new widgets able to handle dynamic web data as an
input source.

149

Appendix

A Running Example of the Automatic Mashup
Composition Algorithm

In the Table A.1, we present the detailed steps of the automatic mashup composition
algorithm to compose complete mashups of w2 in the graph of seven widgets illustrated
in Figure 3.19.

Step uiVertices1 sfEdges2 sbEdges3 mashup isDead

Start [] [] [] [] false

Initialize [i2
1] [(i3

2, o2)] [] [] false

goForward(i3
2) [i2

1, i3
1, i3

2] [] [] [(i3
2, o2), (o3,

i3
1), (o3, i3

2)]
false

goForward(o3) [i2
1, i3

1, i3
2] [(i6

1, o3),
(i5

1, o3)]
[] [(i3

2, o2), (o3,
i3
1), (o3, i3

2)]
false

[i2
1, i3

1, i3
2] [(i6

1, o3)] [] [(i3
2, o2), (o3,

i3
1), (o3, i3

2),
(i5

1, o3)]

false

goForward(i5
1) [i2

1, i3
1, i3

2] [(i6
1, o3)] [] [(i3

2, o2), (o3,
i3
1), (o3, i3

2),
(i5

1, o3)]

false

goBackward(i3
1)* [i2

1, i3
1, i3

2] [(i6
1, o3)] [(i3

1, o4),
(i3

1, o7)]
[(i3

2, o2), (o3,
i3
1), (o3, i3

2),
(i5

1, o3)]

false

[i2
1, i3

1, i3
2] [(i6

1, o3)] [(i3
1, o4)] [(i3

2, o2), (o3,
i3
1), (o3, i3

2),
(i5

1, o3), (i3
1,

o7)]

false

151

Step uiVertices1 sfEdges2 sbEdges3 mashup isDead

goBackward(o7) [i2
1, i3

1, i3
2,

i7
1]

[(i6
1, o3)] [(i3

1, o4)] [(i3
2, o2), (o3,

i3
1), (o3, i3

2),
(i5

1, o3), (i3
1,

o7), (o7, i7
1)]

false

goBackward(i7
1)* DEAD true

Backtrack [i2
1, i3

1, i3
2] [(i6

1, o3)] [(i3
1, o4)] [(i3

2, o2), (o3,
i3
1), (o3, i3

2),
(i5

1, o3)]

false

Try next edge of
sbEdges

[i2
1, i3

1, i3
2] [(i6

1, o3)] [] [(i3
2, o2), (o3,

i3
1), (o3, i3

2),
(i5

1, o3), (i3
1,

o4)]

false

goBackward(o4) [i2
1, i3

1, i3
2] [(i6

1, o3)] [] [(i3
2, o2), (o3,

i3
1), (o3, i3

2),
(i5

1, o3), (i3
1,

o4)]

false

goBackward(i2
1)* [i2

1, i3
1, i3

2] [(i6
1, o3)] [(i2

1, o1)] [(i3
2, o2), (o3,

i3
1), (o3, i3

2),
(i5

1, o3), (i3
1,

o4)]

false

[i2
1, i3

1, i3
2] [(i6

1, o3)] [] [(i3
2, o2), (o3,

i3
1), (o3, i3

2),
(i5

1, o3), (i3
1,

o4), (i2
1, o1)]

false

goBackward(o1) [i2
1, i3

1, i3
2] [(i6

1, o3)] [] [(i3
2, o2), (o3,

i3
1), (o3, i3

2),
(i5

1, o3), (i3
1,

o4), (i2
1, o1)]

false

A complete mashup is found
(All vertices of the uiVertices are visited) false

Backtrack [i2
1, i3

1, i3
2] [(i6

1, o3)] [] [(i3
2, o2), (o3,

i3
1), (o3, i3

2)]
false

152

Step uiVertices1 sfEdges2 sbEdges3 mashup isDead

Try next edge of
sfEdges

[i2
1, i3

1, i3
2] [] [] [(i3

2, o2), (o3,
i3
1), (o3, i3

2),
(i5

1, o3), (i3
1,

o4), (i2
1, o1)]

false

goForward(i6
1) [i2

1, i3
1, i3

2] [(o6, i6
1)] [] [(i3

2, o2), (o3,
i3
1), (o3, i3

2),
(i5

1, o3), (i3
1,

o4), (i2
1, o1)]

false

[i2
1, i3

1, i3
2] [] [] [(i3

2, o2), (o3,
i3
1), (o3, i3

2),
(i5

1, o3), (i3
1,

o4), (i2
1, o1),

(o6, i6
1)]

false

goForward(o6) DEAD true

Algorithm ends because both sbEdges and sfEdges are now empty.
*We need to visit all vertices of uiVertices
1Un-visited input vertices
2Saved forward edges
3Saved backward edges

Table A.1: Running example of the automatic mashup composition algorithm

B Box Plots of the Terminal Matching Experiment

In the following, we present the box plots of data from the terminal matching experiment.
1. N-experiment (X = 10 and R = 0.2): Figures B.1 and B.2, respectively, present

the CPU utilization and the total CPU time of the preliminary matching and full
matching for each N ∈ {1000, 2000, 4000, 6000, 8000, 10000}.

2. X-experiment (N = 8000 and R = 0.2): Figures B.3 and B.4, respectively, present
the CPU utilization and the total CPU time of the preliminary matching and full
matching for each X ∈ {1, 5, 10, 15, 20}.

3. R-experiment (N = 8000 and X = 10): Figures B.5 and B.6, respectively, present
the CPU utilization and the total CPU time of the preliminary matching and full
matching for each R ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

153

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

1000 2000 4000 6000 8000 10000

C
P

U
 U

ti
liz

a
ti
o
n

 (
%

)

Number of widgets

Min Outlier Max Outlier

(a) CPU utilization of the preliminary matching

82

84

86

88

90

92

94

96

98

100

1000 2000 4000 6000 8000 10000

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Number of widgets

Min Outlier Max Outlier

(b) CPU utilization of the full matching

Figure B.1: Terminal matching: CPU utilization as a function of number of widgets
(Matching rate R = 0.2 and model complexity X = 10)

154

0

20

40

60

80

100

120

140

160

1000 2000 4000 6000 8000 10000

T
o
ta

l
C

P
U

 t
im

e
 (

s
e
c
o
n
d

s
)

Number of widgets

Min Outlier Max Outlier

(a) Total CPU time of the preliminary matching

0

0.2

0.4

0.6

0.8

1

1.2

1000 2000 4000 6000 8000 10000

T
o

ta
l
C

P
U

 t
im

e
 (

s
e

c
o

n
d

s
)

Number of widgets

Min Outlier Max Outlier

(b) Total CPU time of the full matching

Figure B.2: Terminal matching: total CPU time as a function of number of widgets
(Matching rate R = 0.2 and model complexity X = 10)

155

98

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

1 5 10 15 20

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Complexity of widget model

Min Outlier Max Outlier

(a) CPU utilization of the preliminary matching

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

1 5 10 15 20

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Complexity of widget model

Min Outlier Max Outlier

(b) CPU utilization of the full matching

Figure B.3: Terminal matching: CPU utilization as a function of complexity of widget
model (Number of widget N = 8000 and matching rate R = 0.2)

156

75

80

85

90

95

100

1 5 10 15 20

T
o

ta
l
C

P
U

 t
im

e
 (

s
e

c
o

n
d

s
)

Complexity of widget model

Min Outlier Max Outlier

(a) Total CPU time of the preliminary matching

0

0.5

1

1.5

2

2.5

3

3.5

4

1 5 10 15 20

T
o
ta

l
C

P
U

 t
im

e
 (

s
e
c
o
n
d
s
)

Complexity of widget model

Min Outlier Max Outlier

(b) Total CPU time of the full matching

Figure B.4: Terminal matching: total CPU time as a function of complexity of widget
model (Number of widget N = 8000 and matching rate R = 0.2)

157

99

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100

0.1 0.2 0.3 0.4 0.5

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Input-output matching rate

Min Outlier Max Outlier

(a) CPU utilization of the preliminary matching

94

95

96

97

98

99

100

0.1 0.2 0.3 0.4 0.5

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Input-output matching rate

Min Outlier Max Outlier

(b) CPU utilization of the full matching

Figure B.5: Terminal matching: CPU utilization as a function of input-output matching
rate (Number of widget N = 8000 and model complexity X = 10)

158

40

60

80

100

120

140

160

180

200

0.1 0.2 0.3 0.4 0.5

T
o
ta

l
C

P
U

 t
im

e
 (

s
e
c
o

n
d

s
)

Input-output matching rate

Min Outlier Max Outlier

(a) Total CPU time of the preliminary matching

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

0.1 0.2 0.3 0.4 0.5

T
o

ta
l
C

P
U

 t
im

e
 (

s
e
c
o

n
d

s
)

Input-output matching rate

Min Outlier Max Outlier

(b) Total CPU time of the full matching

Figure B.6: Terminal matching: total CPU time as a function of input-output matching
rate (Number of widget N = 8000 and model complexity X = 10)

159

C Box Plots of the Automatic Mashup Composition
Experiment

In the following, we present the box plots of data from the automatic mashup composition
experiment.

R-experiment: Figure C.1 shows the CPU utilization and the total CPU time of
the algorithm over increasing number of matched output vertices for each input vertex.

Nd, Np, and Nv experiments: Figures C.2, C.3, and C.4 illustrate the CPU
utilization and the total CPU time of the algorithm over increasing number of data,
processing, and visualization widgets, respectively. The total CPU time is measured until
20,000 mashups have been composed.

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10 11

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Number of output vertexes that match each input vertex

Min Outlier Max Outlier

(a) CPU utilization

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11

T
o

ta
l
C

P
U

 t
im

e
 (

s
e

c
o

n
d

s
)

Number of output vertexes that match each input vertex

Min Outlier Max Outlier

(b) Total CPU time

Figure C.1: Automatic mashup composition: CPU utilization and total CPU time for
increasing input-output matching rate (Nd = 5, Np = 10, Nv = 5)

160

97

97.5

98

98.5

99

99.5

100

10 20 30 40 50 60 70 80 90 100

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Number of data widgets

Min Outlier Max Outlier

(a) CPU utilization

10

12

14

16

18

20

22

24

26

28

10 20 30 40 50 60 70 80 90 100

T
o

ta
l
C

P
U

 t
im

e
 (

s
e

c
o

n
d

s
)

Number of data widgets

Min Outlier Max Outlier

(b) Total CPU time

Figure C.2: Automatic mashup composition: CPU utilization and total CPU time (which
are observed until 20,000 mashups have been composed) for increasing number of data
widgets (Np = 100, Nv = 50, R = 0.2)

161

84

86

88

90

92

94

96

98

100

10 20 30 40 50 60 70 80 90 100

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Number of processing widgets

Min Outlier Max Outlier

(a) CPU utilization

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100

T
o

ta
l
C

P
U

 t
im

e
 (

s
e

c
o

n
d

s
)

Number of processing widgets

Min Outlier Max Outlier

(b) Total CPU time

Figure C.3: Automatic mashup composition: CPU utilization and total CPU time
(which are observed until 20,000 mashups have been composed) for increasing number of
processing widgets (Nd = 50, Nv = 50, R = 0.2)

162

96

96.5

97

97.5

98

98.5

99

99.5

100

10 20 30 40 50 60 70 80 90 100

C
P

U
 U

ti
liz

a
ti
o
n

 (
%

)

Number of visualization widgets

Min Outlier Max Outlier

(a) CPU utilization

14

15

16

17

18

19

20

21

22

23

24

10 20 30 40 50 60 70 80 90 100

T
o

ta
l
C

P
U

 t
im

e
 (

s
e

c
o

n
d

s
)

Number of visualization widgets

Min Outlier Max Outlier

(b) Total CPU time

Figure C.4: Automatic mashup composition: CPU utilization and total CPU time
(which are observed until 20,000 mashups have been composed) for increasing number of
visualization widgets (Nd = 50, Np = 100, R = 0.2)

163

Bibliography

[1] Tuan-Dat Trinh, Ba-Lam Do, Peter Wetz, Amin Anjomshoaa, Elmar Kiesling, and
A Min Tjoa. A Drag-and-block Approach for Linked Open Data Exploration. In
Proceedings of the 5th International Workshop on Consuming Linked Data (COLD
2014) co-located with the 13th International Semantic Web Conference (ISWC
2014), Riva del Garda, Italy, October 20, 2014., 2014. URL http://ceur-ws.
org/Vol-1264/cold2014_TrinhDWAKT.pdf.

[2] Tuan-Dat Trinh, Peter Wetz, Ba-Lam Do, Amin Anjomshoaa, Elmar Kiesling, and
A Min Tjoa. A Web-based Platform for Dynamic Integration of Heterogeneous Data.
In Proceedings of the 16th International Conference on Information Integration and
Web-based Applications & Services, Hanoi, Vietnam, December 4-6, 2014, pages
253–261, 2014. doi: 10.1145/2684200.2684291. URL http://doi.acm.org/10.
1145/2684200.2684291.

[3] Tuan-Dat Trinh, Peter Wetz, Ba-Lam Do, Elmar Kiesling, and A Min Tjoa.
Distributed Mashups: A Collaborative Approach to Data Integration. IJWIS,
11(3):370–396, 2015. doi: 10.1108/IJWIS-04-2015-0018. URL http://dx.doi.
org/10.1108/IJWIS-04-2015-0018.

[4] Tuan-Dat Trinh, Peter Wetz, Ba-Lam Do, Amin Anjomshoaa, Elmar Kiesling, and
A Min Tjoa. Implementing Linked Widgets: Lessons Learned for Linked Data
Developers. In Proceedings of the ISWC Developers Workshop 2014, co-located
with the 13th International Semantic Web Conference (ISWC 2014), Riva del
Garda, Italy, October 19, 2014., pages 25–30, 2014. URL http://ceur-ws.
org/Vol-1268/paper5.pdf.

[5] Tuan-Dat Trinh, Ba-Lam Do, Peter Wetz, Amin Anjomshoaa, and A Min Tjoa.
Linked Widgets: An Approach to Exploit Open Government Data. In The 15th
International Conference on Information Integration and Web-based Applications
& Services, IIWAS ’13, Vienna, Austria, December 2-4, 2013, page 438, 2013. doi:
10.1145/2539150.2539252. URL http://doi.acm.org/10.1145/2539150.
2539252.

[6] Tuan-Dat Trinh, Peter Wetz, Ba-Lam Do, Amin Anjomshoaa, Elmar Kiesling,
and A Min Tjoa. Linked Widgets Platform: Lowering the Barrier for Open Data

165

http://ceur-ws.org/Vol-1264/cold2014_TrinhDWAKT.pdf
http://ceur-ws.org/Vol-1264/cold2014_TrinhDWAKT.pdf
http://doi.acm.org/10.1145/2684200.2684291
http://doi.acm.org/10.1145/2684200.2684291
http://dx.doi.org/10.1108/IJWIS-04-2015-0018
http://dx.doi.org/10.1108/IJWIS-04-2015-0018
http://ceur-ws.org/Vol-1268/paper5.pdf
http://ceur-ws.org/Vol-1268/paper5.pdf
http://doi.acm.org/10.1145/2539150.2539252
http://doi.acm.org/10.1145/2539150.2539252

Exploration. In The Semantic Web: ESWC 2014 Satellite Events - ESWC 2014
Satellite Events, Anissaras, Crete, Greece, May 25-29, 2014, Revised Selected
Papers, pages 171–182, 2014. doi: 10.1007/978-3-319-11955-7_14. URL http:
//dx.doi.org/10.1007/978-3-319-11955-7_14.

[7] Tuan-Dat Trinh, Ba-Lam Do, Peter Wetz, Amin Anjomshoaa, Elmar Kiesling, and
A Min Tjoa. Open Mashup Platform - A Smart Data Exploration Environment. In
Proceedings of the ISWC 2014 Posters & Demonstrations Track a track within the
13th International Semantic Web Conference, ISWC 2014, Riva del Garda, Italy,
October 21, 2014., pages 53–56, 2014. URL http://ceur-ws.org/Vol-1272/
paper_45.pdf.

[8] Tuan-Dat Trinh, Peter Wetz, Ba-Lam Do, Amin Anjomshoaa, Elmar Kiesling, and
A Min Tjoa. Open Linked Widgets Mashup Platform. In Proceedings of the AI
Mashup Challenge 2014 co-located with 11th Extended Semantic Web Conference
(ESWC 2014), Crete, Greece, May 27, 2014., 2014. URL http://ceur-ws.org/
Vol-1200/paper2.pdf.

[9] Joel Gurin. Open Data Now: The Secret to Hot Startups, Smart Investing, Savvy
Marketing, and Fast Innovation. McGraw-Hill Education, 2014. ISBN 978-0-07-
182977-9.

[10] Marijn Janssen, Yannis Charalabidis, and Anneke Zuiderwijk. Benefits, Adoption
Barriers and Myths of Open Data and Open Government. Information Systems
Management, 29(4):258–268, 2012. doi: 10.1080/10580530.2012.716740. URL
http://dx.doi.org/10.1080/10580530.2012.716740.

[11] Katrin Braunschweig, Julian Eberius, Maik Thiele, and Wolfgang Lehner. The
State of Open Data - Limits of Current Open Data Platforms. In Proceedings of
the 21st World Wide Web Conference 2012, Web Science Track at WWW’12, Lyon,
France, April 16-20, 2012. ACM, 2012. ISBN 978-1-4503-1229-5.

[12] Hannu Jaakkola, Timo Mäkinen, and Anna Eteläaho. Open Data: Opportunities
and Challenges. In Proceedings of the 15th International Conference on Computer
Systems and Technologies, CompSysTech ’14, pages 25–39, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-2753-4. doi: 10.1145/2659532.2659594. URL http:
//doi.acm.org/10.1145/2659532.2659594.

[13] Norman W. Paton, Klitos Christodoulou, Alvaro A. A. Fernandes, Bijan Parsia, and
Cornelia Hedeler. Pay-as-you-go Data Integration for Linked Data: Opportunities,
Challenges and Architectures. In Proceedings of the 4th International Workshop on
Semantic Web Information Management, SWIM ’12, pages 3:1–3:8, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1446-6. doi: 10.1145/2237867.2237870. URL
http://doi.acm.org/10.1145/2237867.2237870.

[14] An-Hai Doan, Alon Halevy, and Zachary Ives. Principles of Data Integration.
Elsevier Science, 2012. ISBN 978-0-12-391479-8.

166

http://dx.doi.org/10.1007/978-3-319-11955-7_14
http://dx.doi.org/10.1007/978-3-319-11955-7_14
http://ceur-ws.org/Vol-1272/paper_45.pdf
http://ceur-ws.org/Vol-1272/paper_45.pdf
http://ceur-ws.org/Vol-1200/paper2.pdf
http://ceur-ws.org/Vol-1200/paper2.pdf
http://dx.doi.org/10.1080/10580530.2012.716740
http://doi.acm.org/10.1145/2659532.2659594
http://doi.acm.org/10.1145/2659532.2659594
http://doi.acm.org/10.1145/2237867.2237870

[15] John Hebeler. Semantic Web Programming. Timely. Practical. Reliable. Wiley,
Indianapolis, Ind, 2009. ISBN 978-0-470-41801-7.

[16] Grigoris Antoniou and Frank Van Harmelen. A Semantic Web Primer. Cooperative
information systems. MIT Press, Cambridge, Mass, 2004. ISBN 978-0-262-01210-2.

[17] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data – the Story so
Far. International journal on semantic web and information systems, 5(3):1–22,
2009. URL http://eprints.soton.ac.uk/271285/.

[18] Sören Auer, Volha Bryl, and Sebastian Tramp. Linked Open Data – Creating
Knowledge Out of Interlinked Data: Results of the LOD2 Project. Lecture Notes in
Computer Science. Springer International Publishing, 2014. ISBN 978-3-319-09846-
3.

[19] Ian Millard, Hugh Glaser, Manuel Salvadores, and Nigel Shadbolt. Consum-
ing Multiple Linked Data Sources: Challenges and Experiences. In Proceed-
ings of the First International Workshop on Consuming Linked Data, Shang-
hai, China, November 8, 2010, 2010. URL http://ceur-ws.org/Vol-665/
MillardEtAl_COLD2010.pdf.

[20] Andreas Harth, Katja Hose, and Ralf Schenkel. Linked Data Management. Emerging
directions in database systems and applications. CRC Press, 2014. ISBN 978-1-
4665-8241-5.

[21] Robert Lee McCann and University of Illinois at Urbana-Champaign. Efficient
Data Integration: Automation, Collaboration, and Relaxation. University of Illinois
at Urbana-Champaign, 2007. ISBN 978-0-549-34103-1.

[22] Rosen Publishing Group. The Future of the Web. Scientific American cutting-edge
science. Rosen Pub., 2007. ISBN 978-1-4042-0989-3.

[23] Tim Berners-Lee and Mark Fischetti. Weaving the Web: The Original Design and
Ultimate Destiny of the World Wide Web by Its Inventor. Paw Prints, 2008. ISBN
978-1-4395-0036-1.

[24] Keith DeWeese and Dan Segal. Libraries and the Semantic Web:An Introduc-
tion to Its Applications and Opportunities for Libraries. Morgan & Claypool,
2014. ISBN 978-1-62705-196-5. URL http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?arnumber=7007876.

[25] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
american, 284(5):28–37, 2001.

[26] Bob DuCharme. Integrate Disparate Data Sources with Semantic Web Technology.
Technical report, TopQuadrant, September 2010. URL http://www.ibm.com/
developerworks/library/x-disprdf/.

167

http://eprints.soton.ac.uk/271285/
http://ceur-ws.org/Vol-665/MillardEtAl_COLD2010.pdf
http://ceur-ws.org/Vol-665/MillardEtAl_COLD2010.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7007876
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7007876
http://www.ibm.com/developerworks/library/x-disprdf/
http://www.ibm.com/developerworks/library/x-disprdf/

[27] San Murugesan. Understanding Web 2.0. IT Professional, 9(4):34–41, July 2007.
ISSN 1520-9202. doi: 10.1109/MITP.2007.78. URL http://dx.doi.org/10.
1109/MITP.2007.78.

[28] Darlene Fichter. What is a Mashup. In Library Mashups: Exploring New Ways to
Deliver Library Data. Information Today, Incorporated, 2010.

[29] Florian Daniel and Maristella Matera. Mashups: Concepts, Models and Architec-
tures. Springer, Heidelberg, 2014. ISBN 978-3-642-55048-5.

[30] Raymond Yee. Pro Web 2.0 Mashups: Remixing Data and Web Services. Books
for professionals by professionals. Apress, 2008. ISBN 978-1-4302-0286-8.

[31] Anant Jhingran. Enterprise Information Mashups: Integrating Information, Simply.
In Proceedings of the 32Nd International Conference on Very Large Data Bases,
VLDB ’06, pages 3–4, Seoul, Korea, 2006. VLDB Endowment. URL http://dl.
acm.org/citation.cfm?id=1182635.1164128.

[32] David E. Simmen, Mehmet Altinel, Volker Markl, Sriram Padmanabhan, and
Ashutosh Singh. Damia: Data Mashups for Intranet Applications. In Proceedings
of the 2008 ACM SIGMOD international conference on Management of data,
pages 1171–1182. ACM, 2008. URL http://dl.acm.org/citation.cfm?
id=1376734.

[33] Mark Pruett. Yahoo! Pipes. O’Reilly, first edition, 2007. ISBN 978-0-596-51453-2.

[34] Eric Griffin. Foundations of Popfly: Rapid Mashup Development. Apress, 2008.
ISBN 978-1-4302-0568-5.

[35] Loton Tony. Creating Google Mashups with the Google Mashup Editor. Lotontech
Limited, 2008. ISBN 1-4404-5984-3.

[36] David F. Huynh, David R. Karger, and Robert C. Miller. Exhibit: Lightweight
Structured Data Publishing. In Proceedings of the 16th international conference
on World Wide Web, pages 737–746. ACM, 2007. URL http://dl.acm.org/
citation.cfm?id=1242672.

[37] Robert J. Ennals and Minos N. Garofalakis. MashMaker: Mashups for the Masses.
In Proceedings of the 2007 ACM SIGMOD international conference on Management
of data, pages 1116–1118. ACM, 2007. URL http://dl.acm.org/citation.
cfm?id=1247626.

[38] Jeffrey Wong and Jason I. Hong. Making Mashups with Marmite: Towards
End-User Programming for the Web. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 1435–1444. ACM, 2007. URL
http://dl.acm.org/citation.cfm?id=1240842.

168

http://dx.doi.org/10.1109/MITP.2007.78
http://dx.doi.org/10.1109/MITP.2007.78
http://dl.acm.org/citation.cfm?id=1182635.1164128
http://dl.acm.org/citation.cfm?id=1182635.1164128
http://dl.acm.org/citation.cfm?id=1376734
http://dl.acm.org/citation.cfm?id=1376734
http://dl.acm.org/citation.cfm?id=1242672
http://dl.acm.org/citation.cfm?id=1242672
http://dl.acm.org/citation.cfm?id=1247626
http://dl.acm.org/citation.cfm?id=1247626
http://dl.acm.org/citation.cfm?id=1240842

[39] Mau Quoc Hoan Nguyen, Martin Serrano, Danh Le-Phuoc, and Manfred Hauswirth.
Super Stream Collider–Linked Stream Mashups for Everyone. In Proceedings of
the Semantic Web Challenge co-located with ISWC 2012, Boston, US, 2012.

[40] Danh Le-Phuoc, Axel Polleres, Manfred Hauswirth, Giovanni Tummarello, and
Christian Morbidoni. Rapid Prototyping of Semantic Mash-Ups Through Semantic
Web Pipes. In Proceedings of the 18th international conference on World wide web,
pages 581–590. ACM, 2009. URL http://dl.acm.org/citation.cfm?id=
1526788.

[41] Mustafa Jarrar and Marios D. Dikaiakos. MashQL: a Query-by-diagram Topping
SPARQL. In Proceedings of the 2nd international workshop on Ontologies and
information systems for the semantic web, pages 89–96. ACM, 2008. URL http:
//dl.acm.org/citation.cfm?id=1458499.

[42] Muhammad Imran, Stefano Soi, Felix Kling, Florian Daniel, Fabio Casati, and
Maurizio Marchese. On the Systematic Development of Domain-specific Mashup
Tools for End Users. InWeb Engineering, pages 291–298. Springer, 2012. URL http:
//link.springer.com/chapter/10.1007/978-3-642-31753-8_22.

[43] Guiling Wang, Shaohua Yang, and Yanbo Han. Mashroom: End-user Mashup
Programming Using Nested Tables. In Proceedings of the 18th International
Conference on World Wide Web, WWW ’09, pages 861–870, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-487-4. doi: 10.1145/1526709.1526825. URL
http://doi.acm.org/10.1145/1526709.1526825.

[44] Rob Ennals, Eric Brewer, Minos Garofalakis, Michael Shadle, and Prashant Gandhi.
Intel Mash Maker: Join the Web. ACM SIGMOD Record, 36(4):27–33, 2007. URL
http://dl.acm.org/citation.cfm?id=1361355.

[45] James Lin, Jeffrey Wong, Jeffrey Nichols, Allen Cypher, and Tessa A. Lau. End-user
Programming of Mashups with Vegemite. In Proceedings of the 14th international
conference on Intelligent user interfaces, pages 97–106. ACM, 2009. URL http:
//dl.acm.org/citation.cfm?id=1502667.

[46] Florian Daniel, Fabio Casati, Boualem Benatallah, and Ming-Chien Shan. Hosted
Universal Composition: Models, Languages and Infrastructure in Mashart. In
Conceptual Modeling-ER 2009, pages 428–443. Springer, 2009. URL http://
link.springer.com/chapter/10.1007/978-3-642-04840-1_32.

[47] J. Jeffrey Hanson. Mashups: Strategies for the Modern Enterprise. Addison-Wesley
Professional, 1st edition, 2009. ISBN 0-321-59181-X 978-0-321-59181-4.

[48] Wolfgang Pree. Design Patterns for Object-oriented Software Development. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1995. ISBN 0-201-
42294-8.

169

http://dl.acm.org/citation.cfm?id=1526788
http://dl.acm.org/citation.cfm?id=1526788
http://dl.acm.org/citation.cfm?id=1458499
http://dl.acm.org/citation.cfm?id=1458499
http://link.springer.com/chapter/10.1007/978-3-642-31753-8_22
http://link.springer.com/chapter/10.1007/978-3-642-31753-8_22
http://doi.acm.org/10.1145/1526709.1526825
http://dl.acm.org/citation.cfm?id=1361355
http://dl.acm.org/citation.cfm?id=1502667
http://dl.acm.org/citation.cfm?id=1502667
http://link.springer.com/chapter/10.1007/978-3-642-04840-1_32
http://link.springer.com/chapter/10.1007/978-3-642-04840-1_32

[49] Vincent Balat. Client-server Web Applications Widgets. In Proceedings of the
22Nd International Conference on World Wide Web, WWW ’13 Companion, pages
19–22, Republic and Canton of Geneva, Switzerland, 2013. International World
Wide Web Conferences Steering Committee. ISBN 978-1-4503-2038-2. URL http:
//dl.acm.org/citation.cfm?id=2487788.2487795.

[50] Tom Heath and Christian Bizer. Linked Data: Evolving the Web Into a Global
Data Space. Synthesis Lectures on Web Engineering Series. Morgan & Claypool,
2011. ISBN 978-1-60845-430-3.

[51] Anupriya Ankolekar, Markus Krötzsch, Thanh Tran, and Denny Vrandecic. The
Two Cultures: Mashing up Web 2.0 and the Semantic Web. In Proceedings of
the 16th international conference on World Wide Web. 2007 may 7-8. ACM Press,
2007.

[52] Amit Sheth, Kunal Verma, and Karthik Gomadam. Semantics to Energize the
Full Services Spectrum. Communications of the ACM, 49(7):55–61, 2006. URL
http://dl.acm.org/citation.cfm?id=1139949.

[53] Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng. Semantic Web Services.
IEEE intelligent systems, 16(2):46–53, 2001. URL http://www.computer.org/
csdl/mags/ex/2001/02/x2046.pdf.

[54] Tim O’Reilly. What Is Web 2.0 - Design Patterns and Business Models for the Next
Generation of Software. Technical report, University Library of Munich, Germany,
2005. URL http://papers.ssrn.com/sol3/papers.cfm?abstract_id=
1008839.

[55] Luciano Floridi. Web 2.0 vs. the Semantic Web: A Philosophical Assessment.
Episteme, 6(01):25–37, 2009. ISSN 1750-0117. doi: 10.3366/E174236000800052X.
URL http://journals.cambridge.org/article_S1742360000001180.

[56] Roger Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill
higher education. McGraw-Hill Education, 2010. ISBN 978-0-07-337597-7.

[57] Henry Lieberman, Fabio Paternò, and Volker Wulf. End User Development. Hu-
man–Computer Interaction Series. Springer Netherlands, 2006. ISBN 978-1-4020-
5386-3.

[58] Bonnie A. Nardi. A Small Matter of Programming Perspectives on End User
Computing. MIT Press, Cambridge, MA, 1993. ISBN 0-585-32629-0 978-0-585-
32629-0 0-262-28040-X 978-0-262-28040-2.

[59] Claude Ghaoui. Encyclopedia of Human Computer Interaction. ITPro collection.
Idea Group Reference, 2005. ISBN 978-1-59140-798-0.

[60] Lars Grammel and Margaret-Anne Storey. An End User Perspective on Mashup
Makers. University of Victoria Technical Report DCS-324-IR, 2008.

170

http://dl.acm.org/citation.cfm?id=2487788.2487795
http://dl.acm.org/citation.cfm?id=2487788.2487795
http://dl.acm.org/citation.cfm?id=1139949
http://www.computer.org/csdl/mags/ex/2001/02/x2046.pdf
http://www.computer.org/csdl/mags/ex/2001/02/x2046.pdf
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1008839
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1008839
http://journals.cambridge.org/article_S1742360000001180

[61] Cinzia Cappiello, Florian Daniel, Maristella Matera, Matteo Picozzi, and Michael
Weiss. Enabling End User Development Through Mashups: Requirements,
Abstractions and Innovation Toolkits. In End-User Development, pages 9–
24. Springer, 2011. URL http://link.springer.com/chapter/10.1007/
978-3-642-21530-8_3.

[62] Thomas Fischer, Fedor Bakalov, and Andreas Nauerz. An Overview of Current
Approaches to Mashup Generation. In Proceedings of the International Work-
shop on Knowledge Services and Mashups (KSM09), pages 254–259. Citeseer,
2009. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.416.7684&rep=rep1&type=pdf#page=255.

[63] Marwan Sabbouh, Jeff Higginson, Salim Semy, and Danny Gagne. Web Mashup
Scripting Language. In Proceedings of the 16th international conference on World
Wide Web, pages 1305–1306. ACM, 2007. URL http://dl.acm.org/citation.
cfm?id=1242821.

[64] Erhard Rahm, Andreas Thor, and David Aumueller. Dynamic Fusion of Web Data.
In Database and XMLTechnologies, volume 4704 of Lecture Notes in Computer
Science, pages 14–16. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-75287-5.
URL http://dx.doi.org/10.1007/978-3-540-75288-2_2.

[65] Rattapoom Tuchinda, Pedro Szekely, and Craig A. Knoblock. Building Mashups
by Example. In Proceedings of the 13th international conference on Intelligent user
interfaces, pages 139–148. ACM, 2008. URL http://dl.acm.org/citation.
cfm?id=1378792.

[66] David F. Huynh, Robert C. Miller, and David R. Karger. Potluck: Data Mash-Up
Tool for Casual Users. In The Semantic Web, volume 4825 of Lecture Notes in
Computer Science, pages 239–252. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-
76297-3. URL http://dx.doi.org/10.1007/978-3-540-76298-0_18.

[67] Michael Pierre Carlson, Anne H.H. Ngu, Rodion Podorozhny, and Liangzhao Zeng.
Automatic Mash up of Composite Applications. In Service-Oriented Comput-
ing–ICSOC 2008, pages 317–330. Springer, 2008. URL http://link.springer.
com/chapter/10.1007/978-3-540-89652-4_25.

[68] Thomas Fischer, Fedor Bakalov, and Andreas Nauerz. Towards an Automatic
Service Composition for Generation of User-Sensitive Mashups. In LWA, pages
14–16. Citeseer, 2008. URL http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.142.9191&rep=rep1&type=pdf#page=20.

[69] Margaret Burnett, Curtis Cook, and Gregg Rothermel. End-User Software
Engineering. Communications of the ACM, 47(9):53–58, 2004. URL http:
//dl.acm.org/citation.cfm?id=1015889.

171

http://link.springer.com/chapter/10.1007/978-3-642-21530-8_3
http://link.springer.com/chapter/10.1007/978-3-642-21530-8_3
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.416.7684&rep=rep1&type=pdf#page=255
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.416.7684&rep=rep1&type=pdf#page=255
http://dl.acm.org/citation.cfm?id=1242821
http://dl.acm.org/citation.cfm?id=1242821
http://dx.doi.org/10.1007/978-3-540-75288-2_2
http://dl.acm.org/citation.cfm?id=1378792
http://dl.acm.org/citation.cfm?id=1378792
http://dx.doi.org/10.1007/978-3-540-76298-0_18
http://link.springer.com/chapter/10.1007/978-3-540-89652-4_25
http://link.springer.com/chapter/10.1007/978-3-540-89652-4_25
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.9191&rep=rep1&type=pdf#page=20
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.9191&rep=rep1&type=pdf#page=20
http://dl.acm.org/citation.cfm?id=1015889
http://dl.acm.org/citation.cfm?id=1015889

[70] Hendrik, Amin Anjomshoaa, and A Min Tjoa. Towards Semantic Mashup Tools
for Big Data Analysis. In Information and Communication Technology, volume
8407 of Lecture Notes in Computer Science, pages 129–138. Springer Berlin Hei-
delberg, 2014. ISBN 978-3-642-55031-7. URL http://dx.doi.org/10.1007/
978-3-642-55032-4_13.

[71] Johannes Lorey, Felix Naumann, Benedikt Forchhammer, Andrina Mascher, Peter
Retzlaff, and Armin ZamaniFarahani. Black Swan: Augmenting Statistics with
Event Data. In Proceedings of the 20th ACM Conference on Information and
Knowledge Management (CIKM 2011), pages 2517–2520, Glasgow, United Kingdom,
2011. doi: 10.1145/2063576.2064007. URL http://doi.acm.org/10.1145/
2063576.2064007.

[72] Saeed Aghaee and Cesare Pautasso. End-User Programming for Web Mashups:
Open Research Challenges. In Proceedings of the 11th International Con-
ference on Current Trends in Web Engineering, ICWE ’11, pages 347–351,
Paphos, Cyprus, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-27996-6.
doi: 10.1007/978-3-642-27997-3_38. URL http://dx.doi.org/10.1007/
978-3-642-27997-3_38.

[73] E.Michael Maximilien, Hernan Wilkinson, Nirmit Desai, and Stefan Tai. A Domain-
Specific Language for Web APIs and Services Mashups. In Service-Oriented
Computing – ICSOC 2007, volume 4749 of Lecture Notes in Computer Science,
pages 13–26. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-74973-8. URL
http://dx.doi.org/10.1007/978-3-540-74974-5_2.

[74] Fedor Bakalov, Birgitta König-Ries, Andreas Nauerz, and Martin Welsch. Ontology-
Based Multidimensional Personalization Modeling for the Automatic Generation
of Mashups in Next-Generation Portals. In First International Workshop on
Ontologies in Interactive Systems ONTORACT ’08, pages 75–82. IEEE, September
2008. ISBN 978-0-7695-3542-5 978-1-4244-3459-6. doi: 10.1109/ONTORACT.2008.
13. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=4756198.

[75] Saeed Aghaee and Cesare Pautasso. An Evaluation of Mashup Tools Based on
Support for Heterogeneous Mashup Components. In Current Trends in Web
Engineering, pages 1–12. Springer, 2012. URL http://link.springer.com/
chapter/10.1007/978-3-642-27997-3_1.

[76] Lars Grammel and Margaret-Anne Storey. A Survey of Mashup Development
Environments. In The smart internet, pages 137–151. Springer, 2010. URL http:
//link.springer.com/chapter/10.1007/978-3-642-16599-3_10.

[77] Andrew Ko, Brad Myers, and Htet Aung. Six Learning Barriers in End-User
Programming Systems. In Proceedings of the 2004 IEEE Symposium on Visual
Languages - Human Centric Computing, VLHCC ’04, pages 199–206, Washington,

172

http://dx.doi.org/10.1007/978-3-642-55032-4_13
http://dx.doi.org/10.1007/978-3-642-55032-4_13
http://doi.acm.org/10.1145/2063576.2064007
http://doi.acm.org/10.1145/2063576.2064007
http://dx.doi.org/10.1007/978-3-642-27997-3_38
http://dx.doi.org/10.1007/978-3-642-27997-3_38
http://dx.doi.org/10.1007/978-3-540-74974-5_2
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4756198
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4756198
http://link.springer.com/chapter/10.1007/978-3-642-27997-3_1
http://link.springer.com/chapter/10.1007/978-3-642-27997-3_1
http://link.springer.com/chapter/10.1007/978-3-642-16599-3_10
http://link.springer.com/chapter/10.1007/978-3-642-16599-3_10

DC, USA, 2004. IEEE Computer Society. ISBN 0-7803-8696-5. doi: 10.1109/
VLHCC.2004.47. URL http://dx.doi.org/10.1109/VLHCC.2004.47.

[78] Giusy Di Lorenzo, Hakim Hacid, Hye-young Paik, and Boualem Benatallah. Data
Integration in Mashups. ACM Sigmod Record, 38(1):59–66, 2009. URL http:
//dl.acm.org/citation.cfm?id=1558343.

[79] Florian Daniel, Agnes Koschmider, Tobias Nestler, Marcus Roy, and Abdallah
Namoun. Toward Process Mashups: Key Ingredients and Open Research Challenges.
In Proceedings of the 3rd and 4th International Workshop on Web APIs and Services
Mashups, page 9. ACM, 2010. URL http://dl.acm.org/citation.cfm?id=
1945008.

[80] David Lizcano, Javier Soriano, Marcos Reyes, and Juan J. Hierro. EzWeb/FAST:
Reporting on a Successful Mashup-Based Solution for Developing and Deploying
Composite Applications in the Upcoming "Ubiquitous SOA". In Mobile Ubiquitous
Computing, Systems, Services and Technologies, 2008. UBICOMM ’08., pages
488–495, Valencia, 2008. doi: 10.1109/UBICOMM.2008.61.

[81] Tobias Nestler, Marius Feldmann, Gerald Hübsch, André Preußner, and Uwe
Jugel. The ServFace Builder - A WYSIWYG Approach for Building Service-Based
Applications. In Web Engineering, volume 6189 of Lecture Notes in Computer
Science, pages 498–501. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-13910-9.
URL http://dx.doi.org/10.1007/978-3-642-13911-6_37.

[82] Florian Daniel, Stefano Soi, Stefano Tranquillini, Fabio Casati, Chang Heng, and
Li Yan. From People to Services to UI: Distributed Orchestration of User Interfaces.
In Business Process Management, volume 6336 of Lecture Notes in Computer
Science, pages 310–326. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-15617-5.
URL http://dx.doi.org/10.1007/978-3-642-15618-2_22.

[83] Gregor Blichmann, Carsten Radeck, and Klaus Meißner. Enabling End Users
to Build Situational Collaborative Mashups at Runtime. In ICIW 2013, The
Eighth International Conference on Internet and Web Applications and Services,
pages 120–123, 2013. URL http://www.thinkmind.org/index.php?view=
article&articleid=iciw_2013_5_40_20132.

[84] Stefan Pietschmann, Carsten Radeck, and Klaus Meißner. Semantics-Based Discov-
ery, Selection and Mediation for Presentation-Oriented Mashups. In Proceedings of
the 5th International Workshop on Web APIs and Service Mashups, page 7. ACM,
2011. URL http://dl.acm.org/citation.cfm?id=2076014.

[85] Brigitte Endres-Niggemeyer. Semantic Mashups. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013. ISBN 978-3-642-36402-0 978-3-642-36403-7. URL http:
//link.springer.com/10.1007/978-3-642-36403-7.

173

http://dx.doi.org/10.1109/VLHCC.2004.47
http://dl.acm.org/citation.cfm?id=1558343
http://dl.acm.org/citation.cfm?id=1558343
http://dl.acm.org/citation.cfm?id=1945008
http://dl.acm.org/citation.cfm?id=1945008
http://dx.doi.org/10.1007/978-3-642-13911-6_37
http://dx.doi.org/10.1007/978-3-642-15618-2_22
http://www.thinkmind.org/index.php?view=article&articleid=iciw_2013_5_40_20132
http://www.thinkmind.org/index.php?view=article&articleid=iciw_2013_5_40_20132
http://dl.acm.org/citation.cfm?id=2076014
http://link.springer.com/10.1007/978-3-642-36403-7
http://link.springer.com/10.1007/978-3-642-36403-7

[86] Aikaterini K. Kalou, Tzanetos Pomonis, Dimitrios A. Koutsomitropoulos, and
Theodore S. Papatheodorou. Intelligent Book Mashup: Using Semantic Web
Ontologies and Rules for User Personalisation. In Proceedings of the 4th IEEE
International Conference on Semantic Computing (ICSC 2010), September 22-24,
2010, Carnegie Mellon University, Pittsburgh, PA, USA, pages 536–541, 2010. doi:
10.1109/ICSC.2010.78. URL http://dx.doi.org/10.1109/ICSC.2010.78.

[87] Christian Bizer, Richard Cyganiak, and Tobias Gauss. The RDF Book Mashup:
From Web APIs to a Web of Data. In Proceedings of the ESWC’07 Workshop on
Scripting for the Semantic Web, SFSW 2007, Innsbruck, Austria, May 30, 2007,
2007. URL http://ceur-ws.org/Vol-248/paper4.pdf.

[88] D. Gagne, M. Sabbouh, S. Bennett, and S. Powers. Using Data Semantics to
Enable Automatic Composition of Web Services. In Services Computing, 2006.
SCC ’06. IEEE International Conference on, pages 438–444, September 2006. doi:
10.1109/SCC.2006.112.

[89] Stefan Pietschmann, Vincent Tietz, Jan Reimann, Christian Liebing, Michèl Pohle,
and Klaus Meißner. A Metamodel for Context-Aware Component-Based Mashup
Applications. In Proceedings of the 12th International Conference on Information
Integration and Web-based Applications & Services, pages 413–420. ACM, 2010.
URL http://dl.acm.org/citation.cfm?id=1967551.

[90] Muhammad Imran, Felix Kling, Stefano Soi, Florian Daniel, Fabio Casati, and
Maurizio Marchese. ResEval Mash: A Mashup Tool for Advanced Research
Evaluation. In Proceedings of the 21st international conference companion on World
Wide Web, pages 361–364. ACM, 2012. URL http://dl.acm.org/citation.
cfm?id=2188049.

[91] Patrick Gaubatz and Uwe Zdun. UML2 Profile and Model-Driven Approach
for Supporting System Integration and Adaptation of Web Data Mashups. In
Current Trends in Web Engineering, pages 81–92. Springer, 2012. URL http:
//link.springer.com/chapter/10.1007/978-3-642-35623-0_9.

[92] Dirk Krafzig, Karl Banke, and Dirk Slama. Enterprise SOA: Service-Oriented
Architecture Best Practices (The Coad Series). Prentice Hall PTR, Upper Sad-
dle River, NJ, USA, 2004. ISBN 0-13-146575-9. URL http://dl.acm.org/
citation.cfm?id=1096077.

[93] Natalya F. Noy and Deborah L. Mcguinness. Ontology Development 101: A Guide
to Creating Your First Ontology. Technical report, Stanford University, 2001.

[94] Thomas R. Gruber. Toward Principles for the Design of Ontologies Used for
Knowledge Sharing. International Journal of Human-Computer Studies, 43(5-6):
907–928, December 1995. ISSN 1071-5819. doi: 10.1006/ijhc.1995.1081. URL
http://dx.doi.org/10.1006/ijhc.1995.1081.

174

http://dx.doi.org/10.1109/ICSC.2010.78
http://ceur-ws.org/Vol-248/paper4.pdf
http://dl.acm.org/citation.cfm?id=1967551
http://dl.acm.org/citation.cfm?id=2188049
http://dl.acm.org/citation.cfm?id=2188049
http://link.springer.com/chapter/10.1007/978-3-642-35623-0_9
http://link.springer.com/chapter/10.1007/978-3-642-35623-0_9
http://dl.acm.org/citation.cfm?id=1096077
http://dl.acm.org/citation.cfm?id=1096077
http://dx.doi.org/10.1006/ijhc.1995.1081

[95] Tom Gruber. Ontology. In Encyclopedia of Database Systems, pages 1963–1965.
Springer US, 2009. ISBN 978-0-387-35544-3. URL http://dx.doi.org/10.
1007/978-0-387-39940-9_1318.

[96] Jacek Kopecky, Tomas Vitvar, Carine Bournez, and Joel Farrell. SAWSDL: Se-
mantic Annotations for WSDL and XML Schema. Internet Computing, IEEE, 11
(6):60–67, 2007. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=4376229.

[97] Mohsen Taheriyan, Craig A. Knoblock, Pedro Szekely, and José Luis Ambite.
Rapidly Integrating Services into the Linked Data Cloud. In The Semantic
Web–ISWC 2012, pages 559–574. Springer, 2012. URL http://link.springer.
com/chapter/10.1007/978-3-642-35176-1_35.

[98] Mohsen Taheriyan, Craig A. Knoblock, Pedro Szekely, and José Luis Ambite.
A Graph-Based Approach to Learn Semantic Descriptions of Data Sources. In
The Semantic Web–ISWC 2013, pages 607–623. Springer, 2013. URL http:
//link.springer.com/chapter/10.1007/978-3-642-41335-3_38.

[99] Ruben Verborgh, Thomas Steiner, Davy Van Deursen, Rik Van de Walle, and
Joaquim Gabarró Vallés. Efficient Runtime Service Discovery and Consumption
with Hyperlinked RESTdesc. In Proceedings of the 7th International Conference
on Next Generation Web Services Practices (2011), pages 373–379, October 2011.
doi: 10.1109/NWeSP.2011.6088208.

[100] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1990. ISBN 0-7167-1045-5.

[101] Rakesh M. Verma and Steven W. Reyner. An Analysis of a Good Algorithm for
the Subtree Problem, Correlated. SIAM Journal on Computing, 18(5):906–908,
October 1989. ISSN 0097-5397. doi: 10.1137/0218062. URL http://dx.doi.
org/10.1137/0218062.

[102] Wang Vanessa, Moskovits Peter, and Salim Frank. The Definitive Guide to HTML5
WebSocket. Apress, New York, NY, USA, 2013. ISBN 978-1-4302-4741-8.

[103] Tony Bourke. Server Load Balancing. Help for network administrators. O’Reilly
Media, Incorporated, 2001. ISBN 978-0-596-00050-9.

[104] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören
Auer, and Christian Bizer. DBpedia – A Large-Scale, Multilingual Knowledge
Base Extracted from Wikipedia. Semantic Web, 6(2):167–195, 2015. doi: 10.3233/
SW-140134. URL http://dx.doi.org/10.3233/SW-140134.

175

http://dx.doi.org/10.1007/978-0-387-39940-9_1318
http://dx.doi.org/10.1007/978-0-387-39940-9_1318
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4376229
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4376229
http://link.springer.com/chapter/10.1007/978-3-642-35176-1_35
http://link.springer.com/chapter/10.1007/978-3-642-35176-1_35
http://link.springer.com/chapter/10.1007/978-3-642-41335-3_38
http://link.springer.com/chapter/10.1007/978-3-642-41335-3_38
http://dx.doi.org/10.1137/0218062
http://dx.doi.org/10.1137/0218062
http://dx.doi.org/10.3233/SW-140134

[105] Pablo N. Mendes, Max Jakob, Andrés García-Silva, and Christian Bizer. DBpedia
Spotlight: Shedding Light on the Web of Documents. In Proceedings of the 7th
International Conference on Semantic Systems, pages 1–8. ACM, 2011. URL
http://dl.acm.org/citation.cfm?id=2063519.

[106] Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2 edition, September
2000. ISBN 0-13-014400-2.

[107] Jan Karel Lenstra, A.H.G Rinnooy Kan, and Alexander Schrijver. History of
Mathematical Programming: A Collection of Personal Reminiscences. CWI, 1991.
ISBN 978-0-444-88818-1.

[108] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and Complexity of
SPARQL. ACM Trans. Database Syst., 34(3):16:1–16:45, September 2009. ISSN
0362-5915. doi: 10.1145/1567274.1567278. URL http://doi.acm.org/10.
1145/1567274.1567278.

[109] Ruben Verborgh, Miel Vander Sande, Pieter Colpaert, Sam Coppens, Erik
Mannens, and Rik Van de Walle. Web-Scale Querying through Linked Data
Fragments. In Proceedings of the 7th Workshop on Linked Data on the Web,
April 2014. URL http://events.linkeddata.org/ldow2014/papers/
ldow2014_paper_04.pdf.

[110] Jérôme Euzenat and Pavel Shvaiko. Ontology Matching, Second Edition. Springer-
Verlag Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-38720-3.

[111] Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lanthaler, and Niklas Lind-
ström. JSON-LD 1.0, 2014. URL http://www.w3.org/TR/json-ld/.

[112] Glen Hart and Catherine Dolbear. Linked Data: A Geographic Perspective. CRC
Press, 2013.

[113] Werner Kuhn, Tomi Kauppinen, and Krzysztof Janowicz. Linked Data – A Paradigm
Shift for Geographic Information Science. In Geographic Information Science,
volume 8728 of Lecture Notes in Computer Science, pages 173–186. Springer
International Publishing, 2014. ISBN 978-3-319-11592-4. URL http://dx.doi.
org/10.1007/978-3-319-11593-1_12.

[114] Kwok-Bun Yue. Experience on Mashup Development with End User Programming
Environment. Journal of Information Systems Education, 21(1):111, 2010.
URL http://prtl.uhcl.edu/portal/page/portal/SCE/COMPUTING_
MATHMATICS_DIV/CM_Documents/YahooPipe_JISE_Paper_Published.
pdf.

[115] Andreas Schultz, Andrea Matteini, Robert Isele, Christian Bizer, and Christian
Becker. LDIF - Linked Data Integration Framework. In Proceedings of the Sec-
ond International Workshop on Consuming Linked Data (COLD2011), Bonn,

176

http://dl.acm.org/citation.cfm?id=2063519
http://doi.acm.org/10.1145/1567274.1567278
http://doi.acm.org/10.1145/1567274.1567278
http://events.linkeddata.org/ldow2014/papers/ldow2014_paper_04.pdf
http://events.linkeddata.org/ldow2014/papers/ldow2014_paper_04.pdf
http://www.w3.org/TR/json-ld/
http://dx.doi.org/10.1007/978-3-319-11593-1_12
http://dx.doi.org/10.1007/978-3-319-11593-1_12
http://prtl.uhcl.edu/portal/page/portal/SCE/COMPUTING_MATHMATICS_DIV/CM_Documents/YahooPipe_JISE_Paper_Published.pdf
http://prtl.uhcl.edu/portal/page/portal/SCE/COMPUTING_MATHMATICS_DIV/CM_Documents/YahooPipe_JISE_Paper_Published.pdf
http://prtl.uhcl.edu/portal/page/portal/SCE/COMPUTING_MATHMATICS_DIV/CM_Documents/YahooPipe_JISE_Paper_Published.pdf

Germany, October 23, 2011, 2011. URL http://ceur-ws.org/Vol-782/
SchultzEtAl_COLD2011.pdf.

[116] Devis Bianchini and Valeria De Antonellis. Linked Data Services and Semantics-
Enabled Mashup. In Semantic Search over the Web, Data-Centric Systems and
Applications, pages 283–307. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-
25007-1. URL http://dx.doi.org/10.1007/978-3-642-25008-8_11.

[117] Andreas Harth, Craig A. Knoblock, Steffen Stadtmüller, Rudi Studer, and
Pedro Szekely. On-the-fly Integration of Static and Dynamic Linked Data.
In Proceedings of the Fourth International Workshop on Consuming Linked
Data co-located with the 12th International Semantic Web Conference, pages
1613–0073, 2013. URL http://planet-data.org/sites/default/files/
publications/HarthEtAl_COLD2013.pdf.

[118] Tuan-Nhat Tran, Duy-Khanh Truong, Hanh-Huu Hoang, and Thanh-Manh Le.
Linked Data Mashups: A Review on Technologies, Applications and Challenges. In
Intelligent Information and Database Systems, volume 8398 of Lecture Notes in Com-
puter Science, pages 253–262. Springer International Publishing, 2014. ISBN 978-
3-319-05457-5. URL http://dx.doi.org/10.1007/978-3-319-05458-2_
27.

[119] Fuyuko Matsumura, Iwao Kobayashi, Fumihiro Kato, Tetsuro Kamura, Ikki
Ohmukai, and Hideaki Takeda. Producing and Consuming Linked Open Data on
Art with a Local Community. In COLD, 2012. URL http://ceur-ws.org/
Vol-905/MatsumuraEtAl_COLD2012.pdf.

[120] Fahad Alahmari, James A. Thom, Liam Magee, and Wilson Wong. Evaluating
Semantic Browsers for Consuming Linked Data. In Proceedings of the Twenty-
Third Australasian Database Conference - Volume 124, ADC ’12, pages 89–98,
Darlinghurst, Australia, Australia, 2012. Australian Computer Society, Inc. ISBN
978-1-921770-05-0. URL http://dl.acm.org/citation.cfm?id=2483739.
2483751.

[121] Eugene Inseok Chong, Souripriya Das, George Eadon, and Jagannathan Srini-
vasan. An Efficient SQL-based RDF Querying Scheme. In Proceedings of the
31st International Conference on Very Large Data Bases, VLDB ’05, pages 1216–
1227, Trondheim, Norway, 2005. VLDB Endowment. ISBN 1-59593-154-6. URL
http://dl.acm.org/citation.cfm?id=1083592.1083734.

[122] Arto Salminen and Tommi Mikkonen. Towards Pervasive Mashups in Embedded
Devices: Comparing Procedural and Declarative Approach. IJCNDS, 10(3):195–
215, 2013. doi: 10.1504/IJCNDS.2013.053077. URL http://dx.doi.org/10.
1504/IJCNDS.2013.053077.

177

http://ceur-ws.org/Vol-782/SchultzEtAl_COLD2011.pdf
http://ceur-ws.org/Vol-782/SchultzEtAl_COLD2011.pdf
http://dx.doi.org/10.1007/978-3-642-25008-8_11
http://planet-data.org/sites/default/files/publications/HarthEtAl_COLD2013.pdf
http://planet-data.org/sites/default/files/publications/HarthEtAl_COLD2013.pdf
http://dx.doi.org/10.1007/978-3-319-05458-2_27
http://dx.doi.org/10.1007/978-3-319-05458-2_27
http://ceur-ws.org/Vol-905/MatsumuraEtAl_COLD2012.pdf
http://ceur-ws.org/Vol-905/MatsumuraEtAl_COLD2012.pdf
http://dl.acm.org/citation.cfm?id=2483739.2483751
http://dl.acm.org/citation.cfm?id=2483739.2483751
http://dl.acm.org/citation.cfm?id=1083592.1083734
http://dx.doi.org/10.1504/IJCNDS.2013.053077
http://dx.doi.org/10.1504/IJCNDS.2013.053077

[123] Tommi Mikkonen and Arto Salminen. Towards Pervasive Mashups in Embedded
Devices. In IEEE 16th International Conference on Embedded and Real-Time Com-
puting Systems and Applications (RTCSA), pages 35–42. IEEE, August 2010. ISBN
978-1-4244-8480-5. doi: 10.1109/RTCSA.2010.16. URL http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5591281.

[124] Ray Rischpater and Daniel Zucker. Working with the Nokia Qt SDK. In Beginning
Nokia Apps Development, pages 39–57. Apress, 2010. ISBN 978-1-4302-3177-6.
URL http://dx.doi.org/10.1007/978-1-4302-3178-3_3.

[125] Yoon-Seop Chang, Seong-Ho Lee, Jae-Chul Kim, and Young-Jae Lim. Study on
Mobile Mashup Webapp Development Tools for Different Devices and User Groups.
In Information Networking (ICOIN), 2014 International Conference on, pages
433–438, February 2014. doi: 10.1109/ICOIN.2014.6799719.

[126] Fabio Corvetta, Maristella Matera, Riccardo Medana, Elisa Quintarelli, Vin-
cenzo Rizzo, and Letizia Tanca. Designing and Developing Context-Aware
Mobile Mashups: The CAMUS Approach. In Engineering the Web in the
Big Data Era, volume 9114 of Lecture Notes in Computer Science, pages 651–
654. Springer International Publishing, 2015. ISBN 978-3-319-19889-7. URL
http://dx.doi.org/10.1007/978-3-319-19890-3_49.

[127] Carmelo Ardito, Maria Francesca Costabile, Giuseppe Desolda, Rosa Lanzilotti,
Maristella Matera, Antonio Piccinno, and Matteo Picozzi. User-Driven Visual
Composition of Service-Based Interactive Spaces. Journal of Visual Languages &
Computing, 25(4):278 – 296, 2014. ISSN 1045-926X. doi: http://dx.doi.org/10.
1016/j.jvlc.2014.01.003. URL http://www.sciencedirect.com/science/
article/pii/S1045926X14000299.

[128] Shang-Pin Ma, Yang-Sheng Ma, and Wen-Tin Lee. State-Driven and Brick-Based
Mobile Mashup. In Mobile Services (MS), 2015 IEEE International Conference on,
pages 190–196, June 2015. doi: 10.1109/MobServ.2015.35.

[129] Cesare Pautasso and Gustavo Alonso. The JOpera Visual Composition Language.
J. Vis. Lang. Comput., 16(1-2):119–152, February 2005. ISSN 1045-926X. doi: 10.
1016/j.jvlc.2004.08.004. URL http://dx.doi.org/10.1016/j.jvlc.2004.
08.004.

[130] Matteo Picozzi. End User Development of Multidevice and Collaborative Mashups.
In CHItaly 2013 Doctoral Consortium, pages 55–65, Trento, 2013. Citeseer.

[131] Nelly Schuster, Raffael Stein, and Christian Zirpins. A Mashup Tool for Collab-
orative Engineering of Service-Oriented Enterprise Documents. In Information
Systems Evolution, volume 72 of Lecture Notes in Business Information Processing,
pages 166–173. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-17721-7. URL
http://dx.doi.org/10.1007/978-3-642-17722-4_12.

178

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5591281
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5591281
http://dx.doi.org/10.1007/978-1-4302-3178-3_3
http://dx.doi.org/10.1007/978-3-319-19890-3_49
http://www.sciencedirect.com/science/article/pii/S1045926X14000299
http://www.sciencedirect.com/science/article/pii/S1045926X14000299
http://dx.doi.org/10.1016/j.jvlc.2004.08.004
http://dx.doi.org/10.1016/j.jvlc.2004.08.004
http://dx.doi.org/10.1007/978-3-642-17722-4_12

[132] Jason J. Jung. ContextGrid: A Contextual Mashup-Based Collaborative Brows-
ing System. Information Systems Frontiers, 14(4):953–961, 2012. ISSN 1387-
3326. doi: 10.1007/s10796-011-9315-z. URL http://dx.doi.org/10.1007/
s10796-011-9315-z.

[133] Michael Hertel, Alexey Tschudnowsky, and Martin Gaedke. Conflict Resolution
in Collaborative User Interface Mashups. In Engineering the Web in the Big
Data Era, volume 9114 of Lecture Notes in Computer Science, pages 659–662.
Springer International Publishing, 2015. ISBN 978-3-319-19889-7. URL http:
//dx.doi.org/10.1007/978-3-319-19890-3_51.

[134] Yi Xu, Chengzheng Sun, and Mo Li. Achieving Convergence in Operational
Transformation: Conditions, Mechanisms and Systems. In Proceedings of the
17th ACM Conference on Computer Supported Cooperative Work & Social
Computing, CSCW ’14, pages 505–518, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-2540-0. doi: 10.1145/2531602.2531629. URL http://doi.acm.org/
10.1145/2531602.2531629.

[135] Jinghai Rao and Xiaomeng Su. A Survey of Automated Web Service Composition
Methods. In Semantic Web Services and Web Process Composition, pages 43–
54. Springer, 2005. URL http://link.springer.com/chapter/10.1007/
978-3-540-30581-1_5.

[136] Schahram Dustdar and Wolfgang Schreiner. A Survey on Web Services Composition.
International journal of web and grid services, 1(1):1–30, 2005. URL http://
inderscience.metapress.com/index/473epwhagp6hbeba.pdf.

[137] Thomas Fischer, Fedor Bakalov, Birgitta König-Ries, Andreas Nauerz, and Martin
Welsch. An Evolutionary Algorithm for Automatic Composition of Information-
gathering Web Services in Mashups. In Seventh IEEE European Conference on Web
Services ECOWS ’09, pages 39–48. IEEE, November 2009. ISBN 978-0-7695-3854-9.
doi: 10.1109/ECOWS.2009.9. URL http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=5341673.

[138] Yuzhang Feng, Anitha Veeramani, and Rajaraman Kanagasabai. Enabling On-
Demand Mashups of Open Data with Semantic Services. In 2013 International
Conference on Parallel and Distributed Systems, volume 0, pages 755–759, 2012.
doi: http://doi.ieeecomputersociety.org/10.1109/ICPADS.2012.122.

[139] Rima Kilany Chamoun. Smart: Semantically Mashup Rest Web Services. CoRR,
abs/1311.3078, 2013. URL http://arxiv.org/abs/1311.3078.

[140] Anton V. Riabov, Eric Boillet, Mark D. Feblowitz, Zhen Liu, and Anand Ran-
ganathan. Wishful Search: Interactive Composition of Data Mashups. In Proceedings
of the 17th international conference on World Wide Web, pages 775–784. ACM,
2008. URL http://dl.acm.org/citation.cfm?id=1367602.

179

http://dx.doi.org/10.1007/s10796-011-9315-z
http://dx.doi.org/10.1007/s10796-011-9315-z
http://dx.doi.org/10.1007/978-3-319-19890-3_51
http://dx.doi.org/10.1007/978-3-319-19890-3_51
http://doi.acm.org/10.1145/2531602.2531629
http://doi.acm.org/10.1145/2531602.2531629
http://link.springer.com/chapter/10.1007/978-3-540-30581-1_5
http://link.springer.com/chapter/10.1007/978-3-540-30581-1_5
http://inderscience.metapress.com/index/473epwhagp6hbeba.pdf
http://inderscience.metapress.com/index/473epwhagp6hbeba.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5341673
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5341673
http://arxiv.org/abs/1311.3078
http://dl.acm.org/citation.cfm?id=1367602

[141] Anne H.H. Ngu, Michael P. Carlson, Quan Z. Sheng, and Hye-young Paik.
Semantic-Based Mashup of Composite Applications. IEEE Transactions on Services
Computing, 3(1):2–15, January 2010. ISSN 1939-1374. doi: 10.1109/TSC.2010.
8. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=5432153.

[142] Hazem Elmeleegy, Anca Ivan, Rama Akkiraju, and Richard Goodwin. Mashup
Advisor: A Recommendation Tool for Mashup Development. In Web Services, 2008.
ICWS ’08, pages 337–344, Beijing, September 2008. IEEE. doi: 10.1109/ICWS.
2008.128. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=4670193.

[143] Daniel Deutch, Ohad Greenshpan, and Tova Milo. Navigating in Complex Mashed-
up Applications. Proceedings of the VLDB Endowment, 3(1-2):320–329, 2010. URL
http://dl.acm.org/citation.cfm?id=1920885.

[144] Lin Bai, Dan Ye, and Jun Wei. A Goal Decomposition Approach for Au-
tomatic Mashup Development. In Enterprise Interoperability, pages 20–33.
Springer, 2012. URL http://link.springer.com/chapter/10.1007/
978-3-642-33068-1_4.

[145] Carlos Rodríguez, Soudip Roy Chowdhury, Florian Daniel, Hamid R. Motahari
Nezhad, and Fabio Casati. Assisted Mashup Development: On the Discovery
and Recommendation of Mashup Composition Knowledge. In Web Services Foun-
dations, pages 683–708. Springer New York, New York, NY, 2014. ISBN 978-1-
4614-7517-0 978-1-4614-7518-7. URL http://link.springer.com/10.1007/
978-1-4614-7518-7_27.

[146] Serge Abiteboul, Ohad Greenshpan, Tova Milo, and Neoklis Polyzotis. MatchUp:
Autocompletion for Mashups. In Data Engineering, 2009. ICDE ’09, pages 1479–
1482, Shanghai, March 2009. IEEE. ISBN 978-1-4244-3422-0. doi: 10.1109/ICDE.
2009.47. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=4812552.

[147] Carsten Radeck, Alexander Lorz, Gregor Blichmann, and Klaus Meißner. Hybrid
Recommendation of Composition Knowledge for End User Development of Mashups.
In ICIW 2012, The Seventh International Conference on Internet and Web Appli-
cations and Services, pages 30–33, 2012. URL http://www.thinkmind.org/
index.php?view=article&articleid=iciw_2012_2_10_20180.

[148] Soudip Roy Chowdhury, Olexiy Chudnovskyy, Matthias Niederhausen, Stefan
Pietschmann, Paul Sharples, Florian Daniel, and Martin Gaedke. Complementary
Assistance Mechanisms for End User Mashup Composition. In Proceedings of
the 22nd international conference on World Wide Web companion, pages 269–272.
International World Wide Web Conferences Steering Committee, 2013. URL
http://dl.acm.org/citation.cfm?id=2487919.

180

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5432153
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5432153
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4670193
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4670193
http://dl.acm.org/citation.cfm?id=1920885
http://link.springer.com/chapter/10.1007/978-3-642-33068-1_4
http://link.springer.com/chapter/10.1007/978-3-642-33068-1_4
http://link.springer.com/10.1007/978-1-4614-7518-7_27
http://link.springer.com/10.1007/978-1-4614-7518-7_27
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4812552
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4812552
http://www.thinkmind.org/index.php?view=article&articleid=iciw_2012_2_10_20180
http://www.thinkmind.org/index.php?view=article&articleid=iciw_2012_2_10_20180
http://dl.acm.org/citation.cfm?id=2487919

[149] Matthias Henneberger, Bernd Heinrich, Florian Lautenbacher, and Bernhard Bauer.
Semantic-Based Planning of Process Models. Proceedings of the Multikonferenz
Wirtschaftsinformatik (MKWI) 2008, pages 1677–1689, 2008.

[150] Vincent Tietz, Gregor Blichmann, Stefan Pietschmann, and Klaus Meißner. Task-
Based Recommendation of Mashup Components. In Current Trends in Web
Engineering, pages 25–36. Springer, 2012. URL http://link.springer.com/
chapter/10.1007/978-3-642-27997-3_3.

[151] Ohad Greenshpan, Tova Milo, and Neoklis Polyzotis. Autocompletion for Mashups.
Proc. VLDB Endow., 2(1):538–549, August 2009. ISSN 2150-8097. doi: 10.14778/
1687627.1687689. URL http://dx.doi.org/10.14778/1687627.1687689.

[152] Stefan Pietschmann. A Model-Driven Development Process and Runtime Platform
for Adaptive Composite Web Applications. International Journal on Advances in
Internet Technology, 2(4):277–288, 2010. URL http://www.thinkmind.org/
index.php?view=article&articleid=inttech_v2_n4_2009_2.

[153] Tomas Vitvar, Jacek Kopecky, Maciej Zaremba, and Dieter Fensel. WSMO-Lite:
Lightweight Semantic Descriptions for Services on the Web. In Web Services, 2007.
ECOWS ’07. Fifth European Conference on, pages 77–86, November 2007. doi:
10.1109/ECOWS.2007.30.

[154] Jens Lehmann and Lorenz Bühmann. AutoSPARQL: Let Users Query Your
Knowledge Base. In The Semantic Web: Research and Applications, pages 63–
79. Springer, 2011. URL http://link.springer.com/chapter/10.1007/
978-3-642-21034-1_5.

[155] Saeed Aghaee and Cesare Pautasso. EnglishMash: Usability Design for a Natural
Mashup Composition Environment. In Current Trends in Web Engineering, pages
109–120. Springer, 2012. URL http://link.springer.com/chapter/10.
1007/978-3-642-35623-0_12.

[156] Saeed Aghaee, Cesare Pautasso, and Antonella De Angeli. Natural End-User
Development of Web Mashups. In Visual Languages and Human-Centric Computing
(VL/HCC), 2013 IEEE Symposium on, pages 111–118. IEEE, 2013. URL http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6645253.

[157] Mariano Belaunde and Slim Ben Hassen. Service Mashups Using Natural Lan-
guage and Context Awareness: A Pragmatic Architectural Design. In Enterprise
Distributed Object Computing Conference Workshops (EDOCW), 2011 15th IEEE
International, pages 404–411, Helsinki, August 2011.

[158] Mariano Belaunde and Paolo Falcarin. Realizing an MDA and SOA Marriage for
the Development of Mobile Services. In Model Driven Architecture – Foundations

181

http://link.springer.com/chapter/10.1007/978-3-642-27997-3_3
http://link.springer.com/chapter/10.1007/978-3-642-27997-3_3
http://dx.doi.org/10.14778/1687627.1687689
http://www.thinkmind.org/index.php?view=article&articleid=inttech_v2_n4_2009_2
http://www.thinkmind.org/index.php?view=article&articleid=inttech_v2_n4_2009_2
http://link.springer.com/chapter/10.1007/978-3-642-21034-1_5
http://link.springer.com/chapter/10.1007/978-3-642-21034-1_5
http://link.springer.com/chapter/10.1007/978-3-642-35623-0_12
http://link.springer.com/chapter/10.1007/978-3-642-35623-0_12
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6645253
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6645253

and Applications, volume 5095 of Lecture Notes in Computer Science, pages 393–
405. Springer Berlin Heidelberg, 2008. ISBN 978-3-540-69095-5. URL http:
//dx.doi.org/10.1007/978-3-540-69100-6_28.

[159] Fabrice Desre. Open Mashups: User Generated Applications for the Masses. Tech-
nical report, Orange Labs, 2009. URL http://www.archive.org/details/
Cubicgarden-SANY0010a666-2.

[160] Greg Little, Tessa A. Lau, Allen Cypher, James Lin, Eben M. Haber, and Eser
Kandogan. Koala: Capture, Share, Automate, Personalize Business Processes
on the Web. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’07, pages 943–946, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-593-9. doi: 10.1145/1240624.1240767. URL http://doi.acm.
org/10.1145/1240624.1240767.

182

http://dx.doi.org/10.1007/978-3-540-69100-6_28
http://dx.doi.org/10.1007/978-3-540-69100-6_28
http://www.archive.org/details/Cubicgarden-SANY0010a666-2
http://www.archive.org/details/Cubicgarden-SANY0010a666-2
http://doi.acm.org/10.1145/1240624.1240767
http://doi.acm.org/10.1145/1240624.1240767

	Kurzfassung
	Abstract
	Preface
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Problem Description
	Research Questions
	Main Contributions
	Thesis Outline

	Background
	Semantic Web
	Semantic Data Integration
	Open Data and Linked Data
	Mashups
	State of the Art in Mashup-based Data Integration
	Research Gap

	Conceptual Framework
	Modular Approach for Data Integration
	Architecture
	Client and Server Linked Widgets
	Semantic Model for Linked Widgets
	Mashup Construction
	Mashup Execution Protocols
	Hybrid Mashup Patterns
	Mashup Encapsulation
	Automatic Data Integration
	Tag-based Automatic Mashup Composition

	Computational Experiments
	Terminal Matching
	Automatic Mashup Composition

	Prototype Implementation of the Framework
	Architectural Design Considerations
	Key Components
	Implementation Details and Lessons Learned
	Example Applications in the Geospatial Context
	Hybrid Mashup Example Use Cases

	Related Work
	Widget-based Mashups
	Semantic Mashups
	Embedded, Mobile, and Pervasive Mashups
	Collaborative Mashups
	Automatic Mashups
	Natural Language-supported Mashups
	Programming-by-demonstration Mashups

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendices
	Running Example of the Automatic Mashup Composition Algorithm
	Box Plots of the Terminal Matching Experiment
	Box Plots of the Automatic Mashup Composition Experiment

	Bibliography

