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Kurzfassung
In dieser Arbeit wird das mechanische Verhalten von gewickelten faserverstärkten Roto-
ren analysiert, welche in Schwungradspeichern verwendet werden. Diese Art der Speiche-
rung von elektrischer Energie ist eine ökologisch und ökonomisch nachhaltige Technologie
für die dezentrale Energiespeicherung mit langen Lebenszyklen ohne Leistungseinbußen
durch zu hohe Entladungstiefe und einem Minimum an System-Wartung. Die Hauptkom-
ponente eines Schwungradspeichers ist der schnell drehende Rotor, bei dem die große
Herausforderung in der Maximierung der Energiedichte besteht, welche von den verwen-
deten Materialien, der Geometrie des Rotors und dem Entwurf abhängt. Der komplexe
Aufbau dieser Rotoren erfordert einen rechnergestützten Entwurfsprozess einschließlich
der Kenntnis der Materialparameter.
Der erste Teil der Arbeit befasst sich mit der Identifikation der Materialparameter,

welche für die weiteren Finite-Elemente (FE) Simulationen benötigt werden. Dafür müs-
sen die elastischen Materialparameter und die Festigkeiten bestimmt werden. Der Mess-
aufwand für faserverstärkte Materialien, vor allem für kohlefaserverstärkten Kunststoff
(CFK), ist wesentlich höher im Vergleich zu isotropen Materialien, weil durch das or-
thotrope Materialverhalten deutliche Unterschiede quer zur Faserrichtung auftreten. Die
Auswahl geeigneter Materialien für den entworfenen Rotor des Schwungradspeichers er-
folgt mit Hilfe einer neu entwickelten zerstörungsfreien Methode, bei der die elastischen
Materialparameter durch Modalanalyse von faserverstärkten Platten bestimmt werden.
Nach der Auswahl und der Definition von wiederholbaren Prozessparametern für die
Herstellung werden zerstörende Prüfungen, basierend auf Normen, an hochfestem und
hochsteifem CFK Material durchgeführt.
Zur Gewährleistung aller Sicherheitsaspekte befasst sich der zweite Teil der Arbeit

mit einem statischen Berstversuch für Rotoren von Schwungradspeichern. Das prä-
sentierte statische Testverfahren für eine kontrollierte Initiierung des Berstens von fa-
serverstärkten Rotoren zeigt nahezu die gleiche Spannungsverteilung wie im dynami-
schen Fall bei hoher Drehzahl. Das Versagen wird dabei mit unterschiedlichen Maximal-
Spannungskriterien und einem Sicherheitsfaktor bestimmt. Die Ergebnisse der statischen
FE-Simulation des statischen Berstversuchs stimmen gut mit den quasi-statischen FE-
Simulationsergebnissen des Rotors überein. Weiterhin wird gezeigt, dass das vorgestellte
Verfahren eine sehr gut steuerbare und beobachtbare Möglichkeit ist, um einen schnell
drehenden Rotor statisch zu testen. Dadurch ist es möglich, einen sehr viel teureren und
gefährlicheren dynamischen Berstversuch mit möglichen Unsicherheiten zu ersetzen.
Schließlich werden die Methoden und Erkenntnisse aus den zerstörenden Prüfungen

und dem Berstversuch an einem neuartigen Rotorentwurf angewandt. Dieser Entwurf
besteht aus einer CFK-Hohlwelle, verpresst in einer Multi-Ring CFK Schwungmasse,
bestehend aus drei verpressten Ringen, die einen H-förmigen Rotorquerschnitt bilden.
Mit dieser Konfiguration lässt sich die Energiedichte im Vergleich zu einem Rotorentwurf,
bestehend aus einer Aluminium Welle, verpresst in einer dickwandigen CFK Schwung-
masse, erhöhen. Darauffolgend werden Messungen zur Validierung der FE-Simulationen
des Rotors und zur Bestimmung der Charakteristik des Schwungradspeicher-Prototyps
durchgeführt.
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Abstract
In this thesis, the mechanical behavior of fiber reinforced filament wound rotors is an-
alyzed that are used for flywheel energy storage systems (FESS). This type of storing
electricity is an ecologically and economically sustainable technology for decentralized en-
ergy storage with long life cycles without performance degradation depending on depth
of discharge and a minimum of systematic maintenance. The main component of a
FESS is the high speed rotor, where the major challenge is the maximization of the
energy density which depends on the used materials, the geometry of the rotor and
the design concept. The complex construction of such rotors requires a computer-aided
design process including the knowledge of the material parameters.
The first part of the thesis deals with the material parameter identification used for

the ongoing finite element (FE) simulations. Therefore, the elastic and strength material
parameters are evaluated. The measurement effort for fiber reinforced materials, espe-
cially carbon fiber reinforced plastics (CFRP), is therefore sufficiently higher compared
to isotropic materials due to the orthotropic material behavior that differs significantly
transverse to the fiber direction. The materials, suitable for the designed FESS rotor,
are selected using a new developed nondestructive method, based on modal analysis, to
determine the elastic material parameters of fiber reinforced plates. After selection and
defining repeatable process parameters for manufacturing, destructive measurements ac-
cording to standards are performed on high strength and high modulus CFRP materials.
To ensure all safety aspects, the second part of the thesis is dedicated to a flywheel

static burst test (FSBT). The presented static test method used for a controlled initiation
of a burst event for composite flywheel rotors shows nearly the same stress distribution
as in the dynamic case, rotating with maximum speed. Therefore, failure prediction
is done using different maximum stress criteria and a safety factor. The static FE
simulation results of the FSBT compare well to the quasi-static FE simulation results
of the flywheel rotor. Furthermore, it is demonstrated that the presented method is a
very good controllable and observable possibility to test a high speed FESS rotor in a
static way. Thereby, a much more expensive and dangerous dynamic spin up test with
possible uncertainties can be substituted.
Finally, the methods and knowledge from the destructive tests and FSBT are applied

to a new FESS rotor design. This design consists of a CFRP hollow shaft that is press-
fitted into a multi-ring CFRP inertia mass where the three rings are also press-fitted
together forming a rotor with a H-shaped cross-section. With this configuration an
increase of the energy density can be achieved compared to an ordinary FESS rotor
design using an aluminium shaft press-fitted into a thick wound CFRP inertia mass.
Furthermore, measurements are performed on the FESS rotor as well as the built FESS
test rig to validate the FE simulations and to measure the FESS characteristics.
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1 Introduction

1.1 Motivation
Flywheel energy storage systems (FESS) represent an ecologically and economically sus-
tainable technology for decentralized energy storage. Long life cycles without perfor-
mance degradation depending on depth of discharge (DOD) and a minimum of system-
atic maintenance are key advantages of this technology. The FESS hardware contains
the following main parts:

• flywheel rotor consisting of shaft and inertia mass,

• bearings in axial and radial directions,

• motor/generator (M/G) machinery and

• the evacuated safety containment.

The FESS is a mechanical battery that converts electrical into kinetic energy and vice
versa. Therefore, if a surplus of electric energy exists, the torque of the motor starts
accelerating the flywheel rotor until charging is completed. Afterwards, the FESS stores
the kinetic energy of the high speed rotating flywheel rotor as long as self discharge
allows it. If there is a demand for electrical energy, the load torque of the generator
decelerates the flywheel rotor until the mechanical battery is fully discharged or until
the DOD.

The possible long term storage times of FESS depend on the energy needed for levita-
tion summarized by power-, control- and sensor electronics and the rotational losses due
to pressure and rotor geometry dependent air friction, the bearing losses and the braking
torque of M/G. Therefore, actual FESS show short storage times, typically minutes.
The use of active magnetic bearings (AMB) combined with the operation in an evacu-

ated safety containment reduces rotational losses and furthermore, high energy densities
(storage capacity per unit weight) can be achieve using fiber reinforced plastics (FRP).
Especially carbon fiber reinforced plastics (CFRP) show a high specific strength ratio,
which enable tip speeds up to supersonic speed. This makes this technology attractive
again.
The basic principals of FESS started at the early age of industrialization, where fly-

wheels were mostly used to minimize torque fluctuations of steam- and combustion
engines. The first idea of a mechanical battery was driven by NASA to power their
space missions. In the past decades until today, the need for alternative storage devices
becomes stronger and due to increasing climate awareness, decreasing resources and a
much more dynamic power grid, this type of technology gets interesting in future.
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1 Introduction

Research Goal The presented thesis was accomplished within the research project
“Optimum-Shape-Flywheel - cost reduction through new designs, rotor geometries and
manufacturing techniques” which focuses on the rotor geometry and design to reduce
investment costs of FESS. The few currently available flywheels have suboptimal mate-
rial utilization due to their complex structure and therefore high capital cost. As part
of Optimum-Shape-Flywheel research project, innovative approaches to optimal design
and the optimum material composition of the central component of any high-efficiency
flywheel, the rotor, including the optimal integration of all essential components (M/G,
AMB’s, etc.) and suitable manufacturing techniques will be developed within a coopera-
tion between the Vienna University of Technology and FWT COMPOSITES & ROLLS
GmbH. The much better utilization of strength (“fully-stressed design”) and the pro-
duction optimized structure can on the one hand significantly reduce investment costs
and on the other hand improve the overall efficiency, making high efficient flywheels
economically viable for a wide range of applications. Following research areas have been
studied for this purpose:

• Finite element (FE) based modeling for strength analysis of composite materials
with varying ply angle: preparation of complex models for the required prediction
of strength and natural frequencies of the Optimum-Shape-Flywheel geometry with
consideration of a varying ply angle within the laminate. Implementation of the
most suitable failure criterion for composite flywheels. Experimental acquisition
of all required material parameters and selecting the best approach.

• Innovative flywheel design with integrated shaft: a completely new flywheel ge-
ometry by topology optimization for the best strength utilization (“fully-stressed
design”) with respect to natural frequencies, thermal behavior and optimal inte-
gration of all necessary M/G- and suspension components.

• Manufacturing process for optimal composite topology: production of complex
composite structures, optimizing manufacturing precision over manufacturing time,
secure integration of metallic inserts, targeted fiber pretension and residual thermal
stresses to reduce mechanical stresses in the composite.

• Verification of research results: static test setup for the secure verification of the
FE stress calculations. Optimum-Shape-Flywheel measuring setup for total verifi-
cation of all models, the interaction of all components, the overall efficiency benefit,
and the implementation of balancing using AMB’s.

The Optimum-Shape-Flywheel technology is thus an essential contribution to the tran-
sition to sustainable energy supply with a high proportion of renewable energy.

2



1 Introduction

1.2 State of the Art
1.2.1 Nondestructive Material Parameter Identification
Accurate knowledge of material parameters is necessary to perform precise calculations,
especially for composite materials due to their orthotropy. The parameter identification
is usually done destructive but if only the elastic material parameters are of interest, a
nondestructive method is sufficient.
Within the problematic of modeling plates, there exist a lot of methods that are

mostly based on vibrational analysis focused on modal and forced vibration analysis
with analytical plate models. There, the boundary conditions define the vibrational
behavior of the plate, summarized by the free, simple and clamped supported boundary
condition.
The modeling of the mechanical behavior and plate vibration can be made by vari-

ous approaches including the formulation of the classical plate theory [1], the Reissner-
Mindlin plate theory [2, 3, 4], the first-order shear deformation theory [5], the formulation
of Hamilton’s principal [6] and semi-analytic solutions based on three-dimensional elas-
ticity theory [7]. Finite element simulations are also used to model the free vibrations.
In [8] the free vibration of composite cantilevers is studied and in [9] vibration analysis
is performed on homogeneous and composite plates. The effect of clamped boundary
conditions used for circular plates is studied in [10].
In [11] a nondestructive identification method for rectangular anisotropic plates is

discussed. Therein, the natural frequencies and mode shapes are used in combination
with the Rayleigh-Ritz method and weighting parameters, obtained by an optimization,
to determine the elastic constants. A similar procedure is shown in [12] for thick plates.
The direct way without weighting parameters is presented in [13, 14]. There, the modal
analysis results of composite plates are used in combination with the principle of vir-
tual displacement to identify the elastic constants. The method in [15] identifies the
parameters of quadratic composite plates using the measured natural frequencies and
the homogeneous solution of the plates equation of motion.
The elastic constants of anisotropic cantilevers with rectangular cross-section are de-

termined in [16]. In contrast to the already named methods, the elastic constants are
derived in a frequency dependent way. The same approach of a complex modulus is used
in [17]. Therein, a system identification technique is used in combination of strain data
from wave propagation experiments.
A combined experimental and simulation based method is presented in [18, 19, 20].

There, the elastic and damping properties of composite plates and sandwich structures
are identified using the results of the modal analysis. The iterative methods minimize the
discrepancy between the experimental and numerical modal data derived by higher-order
shear deformation theory or by a Rayleigh-Ritz method.
All mentioned methods use a precise measurement setup with an electro-dynamic

shaker or loudspeaker for acoustic excitation and a laser scanning vibrometer (LSV).
The plate specimen are suspended completely free in a frame by thin wires.
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1 Introduction

1.2.2 Rotor Analysis and Applications
Literature shows a broad range of analytical calculations for fiber reinforced filament
wound rotors used for optimization purpose in many different senses. These are mostly
performed quasi-static using an orthotropic linear elastic material model to study the
stress distributions of single or multiple material arrangements or combinations and are
further used for optimization of the strength ratio or energy density, especially for FESS
applications.
The integrated general formulation in [21] is used to study the stress distributions of

disc and cylinder like rotors with single and multilayer configuration. Therein, a strong
influence of the axial rotor length on stress distribution and moisture absorption was
observed. Another important parameter is the stiffness and density of the supporting
structure, called hub. The deformation and life analysis of disc like rotors is detailed
studied in [22]. The analytical model is capable to perform stress analysis with sub-
ject to pressure surface tractions, body forces and interfacial misfits. Furthermore, a
representative fatigue/life master curve is shown for a disc application.
A multi-ring composite rotor design to optimize the energy density is shown in [23].

Therein, the used modified generalized plain strain assumption is compared to a full 3D
FE simulation. The optimization of a directly wound and press-fitted hybrid composite
rotor made of multi-rims with interply and intraply hybrid material formulation as well
as the effect of varying winding angles is discussed in [24, 25]. Furthermore, [26] optimizes
a composite hub for a hybrid composite rotor. The advantage of press-fitted filament
wound flywheel rotors is also presented in [27].
Accurate prediction of the natural frequencies and mode shapes of the rotor are neces-

sary to prevent excessive bearing loss and even catastrophic failure [28]. In [29, 30, 31] the
FE method is used to calculate the change in natural frequencies and to perform stress
analysis at different rotor speeds. The complexity of general rotor assemblies requires
a computer-aided design process. A multi-disciplinary design-optimization procedure
for wind turbine blades is discussed in [32, 33]. The modeling of the ferro-magnetic
laminated core of motor components is studied in [34]. A detailed overview of several
influencing factors, e.g. bearing stiffness and damping, gyroscopic effect, support stiff-
ness, rotor stiffness, notches, unbalance and rotor weight, on the modal characteristics
and critical speeds are summarized in [35, 36, 37, 38, 39]. The rotordynamic analysis
in [40, 41] shows the modeling of a composite rotor and shaft made of orthotropic ma-
terial including material damping. In [42] the failure strengths of laminated composite
shafts are studied using both theoretical and experimental approaches. The effect of the
interference fit on the stiffness of a rotating shaft is discussed in [43].
Successful industrial realized concepts for FESS are depicted in Fig. 1.1, which use

an inrunner composite rotor concept that consists of a metal shaft, a filament wound
composite rim or ring and a metal hub. A multi- and single-rim composite in combination
with a flexible metal hub forming a H-shaped rotor geometry is used in [44, 45, 46]. In
contrast, [47, 48, 49] use a single rim composite with a more solid metal hub forming a
conventional rectangular rotor geometry.

4



1 Introduction

(a) (b)

(c) (d)

(e) (f)

Figure 1.1: State of the art composite rotors for flywheels: (a) Beacon Power Gen4 [44];
(b) PowerTHRU [45]; (c) EnWheel [46];. (d) Gyrodrive [47] ; (e) Flybrid
KERS [48]; (f) Flybus [49].

5



1 Introduction

(a) (b)

Figure 1.2: Dynamic burst test rigs with highest safety class D [50]: (a) intermediate
rotor test inside four steel safety containments; (b) heavy duty rotor test
inside a tunnel of 3m thick reinforced concrete.

1.2.3 Burst Tests for Rotor Applications
High rotational speeds cause high kinetic energy and so fragments of the rotor can do
serious damage to structures and people in case of a burst event. To compensate for
possible unknowns, e.g. the real fiber volume fraction, voids or manufacturing imper-
fections due to the filament winding process, a conservative safety factor for calculation
is usually used. The goal is to reduce this safety factor to use the full capability of the
material. Hence, a burst test under controlled conditions is necessary to ensure a safe
operation. A standard procedure to test the composite part of a rotor is a dynamic
spin up under operating conditions till a burst event occurs. On one hand this causes
immense costs for testing and on the other hand it is critical with regards to safety and
should be avoided.

Therefore, other methods for the burst test have been developed. In [50, 51, 52, 53, 54,
55], the composite rotor is mounted in a proper spin test system that is evacuated for the
purpose of dust explosions and to lower the driving power, see Fig. 1.2. The one-sided
bearing in [56] can be disadvantageous in case of large rotors, because of the changed
rotordynamic behavior and possible unbalance forces during spin up. A similar setup
can be used to test disk and cylinder like composite rotors [57, 24, 26]. In [58, 59] a test
method for the evaluation of CFRP materials is described. In both setups an elastic-
plastic hub is used to drive the CFRP rotor to the burst event. A main disadvantage
of a dynamic spin test is the reduced controllability and observability of the burst event
compared to a static burst test.
The major challenge of static testing is the application of loads sufficiently similar

to inertia loads arising due to the rotation, which is typically not possible. A test to
burst hoop filament wounded rings is presented in [60, 61, 62]. Similar tests to burst
hoop wounded and angle ply tubes are shown in [63, 64, 65, 66]. These hydroburst test
methods use pressure applied by temperature rise or explosive charge on the inside to
expand and thereby burst the rings or tubes.

6



1 Introduction

1.3 Structure of the Dissertation
The analysis of fiber reinforced filament wound rotors, presented hereinafter, starts hi-
erarchical from the material parameter identification, goes on with FE simulations and
optimizations for the rotor and ends with several experimental measurements to validate
FE simulations accomplished on a rotor application example for a FESS. The dissertation
is structured as follows:

• Chapter 2 covers the mechanical field equations needed for FE simulations and
some basic principles about fiber reinforced composites focused on material mod-
eling and failure analysis.

• Chapter 3 is devoted to the material parameter identification used for ongoing FE
simulations. Therefore, the elastic parameters used for the material model as well
as the strength parameters for the failure analysis are evaluated. This is firstly
performed experimentally by a nondestructive method (elastic parameters only)
using modal analysis of rectangular plates and secondly by a destructive method
using ordinary tension-, compression- and bending tests according to standards.

• Chapter 4 deals with a static burst test for composite flywheel rotors. This method
is developed to substitute a more dangerous and expensive dynamic spin up test
and is further applied to an optimized inertia mass followed by an analysis of the
burst fragments.

• Chapter 5 shows the design and optimization of a composite rotor for a FESS. The
main focus lies on the completely new design of the FESS rotor that consists of
a CFRP hollow shaft with sections of different winding angles and a hoop wound
hybrid multi-ring, press-fitted inertia mass with a H-shaped cross-section. Fur-
thermore, experiments using modal analysis and the FESS test rig were performed
to validate FE simulations.

7



2 Structural Mechanics

2.1 Mechanical Field
The mechanical field is derived using the idea of a solid body at its equilibrium. Now,
we cut a small part Ω out of this solid body and the so arising faces Γ are loaded by
mechanical stresses [σ] (force per unit area) to still guarantee equilibrium. These stresses
are introduced using the Cauchy stress tensor formulated as

[σ] =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 . (2.1)

The above defined stress state in combination with the acting volume forces fV establish
the state of equilibrium that is described firstly by the force balance∫

Ω
fV dΩ +

∮
Γ

[σ]T dΓ = 0 , (2.2)

and secondly by the moment balance∫
Ω

(r × fV ) dΩ +
∮

Γ

(
r × [σ]T

)
dΓ = 0 . (2.3)

Applying the divergence theorem and using the relation [σ] = [σ]T , detailed explained
in [67], results in the equilibrium equation

fV + ∇ [σ] = 0 , (2.4)

where the stress tensor [σ] is expressed in a more convenient form, called Voigt notation
to

σ = (σxx σyy σzz σyz σxz σxy)T . (2.5)

The use of the differential operator B

B =


∂
∂x 0 0 0 ∂

∂z
∂
∂y

0 ∂
∂y 0 ∂

∂z 0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x 0


T

, (2.6)
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Ω
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Ω

Ω 0
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dl
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Figure 2.1: Initial Ω0 and deformed configuration Ω of a body [67]: (a) vectors of material
point; (a) strain measurement.

rewrites the equilibrium equation to

fV + BTσ = 0 . (2.7)

In the non-static case, described by Newton’s second law, the inertial loads due to
acceleration a are equal to the sum of all body forces

fV + BTσ = ρa , (2.8)

where ρ is the density of the body. The relation between material point X of an initial
configuration Ω0 and the point x of the deformed configuration is given by the unique
map Φ to x = Φ(X, t), see Fig. 2.1(a). The difference of these points defines the
displacement vector

u(X, t) = x−X = Φ(X, t)−X . (2.9)

By using the deformation gradient [Fd], which maps a differential line element dX in
Ω0 to the corresponding differential line element dx in Ω

dx = [Fd] dX = ∂x

∂X
= ∇XΦ , (2.10)

and the above given displacement vector, the deformation gradient gets the form

[Fd] = ∇X (X + u) = I + ∇Xu = I +


∂ux
∂X

∂ux
∂Y

∂ux
∂Z

∂uy

∂X
∂uy

∂Y
∂uy

∂Z
∂uz
∂X

∂uz
∂Y

∂uz
∂Z

 . (2.11)
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The change of the line elements dl0 and dl between two arbitrarily points in the initial
(P0, Q0) and deformed (P , Q) configuration is used to derive the relation between the
mechanical strain and displacement, see Fig. 2.1(b). The difference of the square of
both differential line elements in combination with the deformation gradient expresses
as follows

dl2 − dl20 = dxTdx− dXTdX (2.12)
= dXT [Fd]T [Fd] dX − dXTdX

= dXT
(
[Fd]T [Fd]− I

)
dX

= dXT 2 [V ] dX ,

where [V ] denotes the Green-Lagrangian strain tensor that is further given by the rela-
tion [Fd] = I + ∇Xu

[V ] = 1
2
(
(I + ∇Xu)T (I + ∇Xu)− I

)
(2.13)

= 1
2
(
∇Xu+ (∇Xu)T

)
+ 1

2
(
(∇Xu)T ∇Xu

)
.

In case of small deflections only the linear part of [V ] is used that results in the tensor
of linear strains

[ε] = 1
2
(
∇Xu+ (∇Xu)T

)
, (2.14)

that is further introduced in Voigt vector notation using the shear deformation angle γ

ε =



∂ux
∂X
∂uy

∂Y
∂uz
∂Z(

∂uy

∂Z + ∂uz
∂Y

)(
∂uz
∂X + ∂ux

∂Z

)(
∂ux
∂Y + ∂uy

∂X

)


=



εxx
εyy
εzz
2εyz
2εxz
2εxy


=



εxx
εyy
εzz
γyz
γxz
γxy


. (2.15)

Hook’s law, the linear relation between stress and strain, is used for linear elasticity
computations which reads in Voigt notation as

σ = Eε , (2.16)

for a general anisotropic 4th order elasticity tensor E. Furthermore, using the relation
ε = Bu, Newton’s second law can be rewritten and the so called strong formulation,
without specified boundary conditions, for linear elasticity problems reads as

fV + BTEBu = ρ
∂2u

∂t2
. (2.17)

10
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2.2 Finite Element Formulation
Linear Elasticity The numerical computation is performed using the finite element
method (FEM) to solve the partial differential equation (2.17) for linear elasticity prob-
lems.
In first, the so called weak formulation is derived. Therefore, the strong formulation is

multiplied by an appropriate test function u′ and the second term is integrated by parts
[67]. The weak formulation for linear elasticity problems in the computational domain
Ω reads as ∫

Ω
ρu′ · ∂

2u

∂t2
dΩ +

∫
Ω

(
Bu′

)T
EBudΩ =

∫
Ω
u′ · fV dΩ . (2.18)

The continuous displacement u is now approximated by nodal finite elements to perform
the spatial discretization as follows

u ≈ uh =
nd∑
i=1

n′n∑
a=1

Nauiaei =
n′n∑
a=1

Naua , (2.19)

Na =

Na 0 0
0 Na 0
0 0 Na

 , (2.20)

where nd denotes the space dimension, Na appropriate basis functions for discretization
and n′n the number of finite element nodes with no Dirichlet boundary condition.
In second, the semidiscrete Galerkin formulation is derived. Therefore, the continuous

displacement as well as the test function u′ are approximated according to (2.19) and
substituted into (2.18), which results in

n′n∑
a=1

n′n∑
b=1

(∫
Ω
ρNT

a NbdΩ∂
2ub
∂t2

+
∫

Ω
(Bua)T EBub dΩub −

∫
Ω
NT
a fV (ra)dΩ

)
= 0 , (2.21)

with

Bua =


∂Na
∂x 0 0 0 ∂Na

∂z
∂Na
∂y

0 ∂Na
∂y 0 ∂Na

∂z 0 ∂Na
∂x

0 0 ∂Na
∂z

∂Na
∂y

∂Na
∂x 0


T

. (2.22)

The system of ordinary differential equations in time (2.21) is further written in matrix
form to

Muü+Kuu = f , (2.23)

with the mass matrixMu, the stiffness matrixKu, the vector of unknowns u, it’s second
time derivative ü and the load vector f that are all assembled from the element matrices
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source

destination

g

m(x)

x

(a)

gap g>0 penetration g<0 contact g=0

F F F

(b)

Figure 2.2: Multi-body contact: (a) gap definition [68]; (b) gap-, penetration- and con-
tact state.

and vectors calculated in the element volume Ωe by

Mu =
ne∧
e=1

me
u ; me

u = [mpq] ; mpq =
∫

Ωe
ρNT

p NqdΩ , (2.24)

Ku =
ne∧
e=1

keu ; keu = [kpq] ; kpq =
∫

Ωe

(
Bup
)T
EBuq dΩ , (2.25)

f =
ne∧
e=1

fe ; fe =
[
f
p

]
; f

p
=
∫

Ωe
NT
p fV (rp)dΩ . (2.26)

Furthermore, the damping Cu is introduced as Rayleigh damping [67]

Cu = αMu + βKu , (2.27)

where α denotes the mass proportional and β the stiffness proportional damping coeffi-
cient. The semidiscrecte Galerkin formulation including damping reads as

Muü+Cuu̇+Kuu = f . (2.28)

Non-linear Case: Contact Mechanical structures are often assembled by multiple parts
that are somehow fitted together. Hence, there are multi-body contacts present that
drive a linear system non-linear. Furthermore, also single body contact is possible that
is not further discussed. For contact modeling using a FE software, e.g. [68, 69] one
needs to distinguish between the source and the destination, see Fig. 2.2(a).
The contact formulation described in [68] uses an augmented Lagrangian method.

Therefore, the software needs to solve the multi-body contact in a segregated way. The
augmentation components are introduced as the contact pressure Tn and the not further
discussed components Tti of the friction traction vector Tt. Therefore, an additional
iteration level is added where the displacement variables are solved separately from the
contact pressure and traction variables. This procedure is repeated until a convergence
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t,3,Z

l,1,X

q,2,Ysymmetry planes

matrix fiber

Figure 2.3: A unidirectional fiber-reinforced composite layer.

criterion is fulfilled. This method needs more iterations compared to a pure penalty
method but is independent of contact stiffness and penetration depth.
The gap distance g between source and destination is used to derive the penalized

contact pressure Tnp that is defined on the destination boundary by

Tnp =
{
Tn − png if g ≤ 0
Tne

− png
Tn otherwise

, (2.29)

where pn is the defined normal penalty factor. During iterations, the contact states
open, penetration and closed are present, see Fig. 2.2(b).

2.3 Mechanics of Composite Materials
Composite materials are a combination of minimum two constituents on the macroscopic
scale such that the performance compared to conventional materials is graded. The most
common properties, essential for rotors, are the stiffness and strength as well as its weight
reduction.
The composite material we deal with is made of two materials: a reinforcement ma-

terial called fiber and a supporting material, called matrix. Furthermore, the composite
made from wet filament winding is of the type continuous fiber reinforced plastics, where
the used matrix is epoxy resin.
Composites are inherently heterogeneous from the microscopic point of view, but when

lamina or plies are treated from the macroscopic point of view, wherein the lamina is a
continuum with material properties derived from a weighted average of the constituents,
fiber and matrix, the assumption of a homogeneous material is valid. Hence, the gen-
eralized Hooke’s law (2.16) can be used to describe the mechanical properties of the
composite material.

Orthotropic Material Behavior The unidirectional, continuous fiber-reinforced lamina
is treated as an orthotropic material with symmetry planes parallel and transverse to
the fiber direction, see Fig. 2.3.
The micromechanics mean-field approach, the rules of mixture (ROM) by Voigt and
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Reuss or Mori-Tanaka’s theory [70, 71], to estimate the engineering constants of a lamina
is based on the following assumptions [72]:

• perfect bonding between fibers and matrix,

• parallel and uniformly distributed fibers,

• the matrix is free of voids, microcracks and pre-stresses,

• fibers and matrix are isotropic (false for carbon fibers but accepted) and

• the applied loads are either parallel or transverse to the fiber direction.

When using the ROM, the moduli and Poisson’s ratio of a continuous fiber reinforced
material can be estimated in terms of the moduli, Poisson’s ratios and volume fractions
of the constituents by

E1 = Efvf + Emvm , ν12 = νfvf + νmvm ,

E2 = EfEm
Efvm + Emvf

, G12 = GfGm
Gfvm +Gmvf

, (2.30)

where E1, E2, ν12 and G12 denote the longitudinal modulus, the transverse modulus,
the major Poissons’ ratio and the shear modulus with the parameter of the constituents

Ef = modulus of the fiber, Em = modulus of the matrix,
νf = Poisson’s ratio of the fiber, νm = Poisson’s ratio of the matrix,
vf = fiber volume fraction, vm = matrix volume fraction,

Gf = Ef
2(1 + νf ) , Gm = Em

2(1 + νm) . (2.31)

The engineering parameters E1, E2, E3, G12, G13, G23, ν12, ν13 and ν23 of an orthotropic
material need to be determined experimentally by tension-, compression- and bending
tests using appropriate test specimen made of several layers of the composite material.
With these parameters, the linear elastic orthotropic material model, described by the

elasticity tensor E

E =



1
E1

−ν12
E1

−ν13
E1

0 0 0
1
E2

−ν23
E2

0 0 0
1
E3

0 0 0
1
G23

0 0
sym. 1

G13
0
1
G12



−1

, (2.32)

is found, that is used in the semidiscrete Galerkin formulation (2.28) to calculate the
stiffness matrix Ku.
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Figure 2.4: Classical laminated plate theory: (a) local l,q- and global x,y-coordinate
system; (b) geometry of ply stack forming a laminate.

Classical Laminated Plate Theory The theory is an extension of the classical plate
theory to composite laminates where also the assumption of Kirchhoff’s hypothesis holds
[72]:

• straight lines perpendicular to the midsurface before deformation remain straight
after deformation,

• the transverse normals do not experience elongation and

• the transverse normals rotate such that they remain perpendicular to the midsur-
face after deformation.

The plain-stress theory starts defining Hooke’s law in the local l,q-coordinate system,
see Fig. 2.4(a)

iσL = iEL
iεL , (2.33)

where i denotes the ply number and L is the identifier for the local coordinate sys-
tem where the orthotropic elasticity tensor EL is defined. Since the further on defined
membrane forces and bending moments are linked with the global strains iε, the local
components, that can differ from ply to ply, need to be transformed in a uniformly global
x,y-coordinate system (identifier G). This is applied to the stress and strain [72]

iσL = iT iσG , iεL = iT−T iεG , (2.34)

using the transformation matrix iT with c = cos iα and s = sin iα

iT =

i c2 s2 2cs
s2 c2 −2cs
−sc sc c2 − s2

 , (2.35)
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that further results in Hooke’s law transformed into the global x,y-coordinate system

iσG = iEG
iεG = iT−1 iEL

iT−T iεG . (2.36)

The stacked laminate is depicted in Fig. 2.4(b). Therein, the membrane forces nkl and
bending moments mkl are shown that calculates to

nkl =
∫ ho

−hu

σkl(z)dz ≈
M∑
i=1

iσkl(iz − i−1z) ,

mkl = −
∫ ho

−hu

σkl(z)zdz ≈ −
M∑
i=1

iσkl(iz − i−1z)
iz + i−1z

2 ,

nG = (nxx, nyy, nxy)T =
M∑
i=1

iσG(iz − i−1z) , (2.37)

mG = (mxx, myy, mxy)T = −
M∑
i=1

iσG

i
z2 − i−1

z2

2 . (2.38)

with the distances from the reference surface ho and hu and M is the total number
of plies in the laminate. The Kirchhoff’s assumptions lead to the following kinematic
relations for the displacements (u, v, w)

u = ū− z ∂w
∂x

, v = v̄ − z ∂w
∂y

, εG = ε̄− zκ , (2.39)

where ε̄ and κ denote the strains in the reference surface and the curvatures defined by

ε̄ =
(
∂ū

∂x
,
∂v̄

∂y

∂ū

∂y
+ ∂v̄

∂x

)T
, κ =

(
∂2w

∂x2 ,
∂2w

∂y2 , 2 ∂
2w

∂x∂y

)T
. (2.40)

When combining the above given relations for the global strain εG with (2.37) and (2.38)
the following relations for the membrane forces

nG =
M∑
i=1

iEG(iz − i−1z)ε̄−
M∑
i=1

iEG

iz2 − i−1z2

2 κ = Aε̄+Bκ (2.41)

and the bending moments

mG = −
M∑
i=1

iEG

iz2 − i−1z2

2 ε̄+
M∑
i=1

iEG

iz3 − i−1z3

3 κ = Bε̄+Dκ (2.42)

result that are finally summarized in the linear elastic material law for a laminate[
nG
mG

]
=
[
A B
B D

] [
ε̄
κ

]
. (2.43)
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Failure Prediction In contrast to linear elastic isotropic materials, where failure is
predicted by e.g. von Mises or Tresca criterion, composite materials need special investi-
gation for failure prediction. Therefore, many failure criteria exist that are separated in
criteria that consider interactions between stress components (Hill, Tsai/Hill, Hoffman,
Tsai-Wu, etc.) and those who do not (maximum stress and maximum strain).

In the following, the maximum stress and Tsai-Wu [73] failure criteria are described for
failure prediction of an orthotropic composite material. In the maximum stress criterion,
failure occurs if any of the following conditions is satisfied

Rt1 = σll
Xt
≥ 1 , Rt2 = σqq

Yt
≥ 1 ,

Rt3 = σtt
Zt
≥ 1 , Rc1 =

∣∣∣∣−σllXc

∣∣∣∣ ≥ 1 ,

Rc2 =
∣∣∣∣−σqqYc

∣∣∣∣ ≥ 1 , Rc3 =
∣∣∣∣−σttZc

∣∣∣∣ ≥ 1 ,

R4 =
∣∣∣∣ σqtS23

∣∣∣∣ ≥ 1 , R5 =
∣∣∣∣ σltS13

∣∣∣∣ ≥ 1 , R6 =
∣∣∣∣ σlqS12

∣∣∣∣ ≥ 1 , (2.44)

where (Xt, Yt, Zt) are the lamina normal strength in tension (t) and (Xc, Yc, Zc) are
the normal strength in compression (c) along the (1, 2, 3) directions and (S12, S13, S23)
are the shear strengths in the (12, 13, 23) planes, respectively.
The Tsai-Wu criterion, where the failure is predicted using a scalar failure parameter

RTW , is derived as follows

RTW = F
T
σL + σTL F̃ σL ≥ 1 , (2.45)

with the stress state σL = (σll σqq σtt σqt σlt σlq)T = (σ11 σ22 σ33 σ23 σ13 σ12)T and the
second and fourth order tensor of the strength parameters given as follows

F̄ = (F1, F2, F3, F4, F5, F6)T , (2.46)

F̃ =



F11 F12 F13 F14 F15 F16
F22 F23 F24 F25 F26

F33 F34 F35 F36
F44 F45 F46

sym. F55 F56
F66


. (2.47)

Due to the orthotropic material behavior, no coupling between the normal and shear
stress terms and between the shear terms are assumed. This leads to

F4 = F5 = F6 = 0
F14 = F15 = F16 = F24 = F25 = F26 = 0
F34 = F35 = F36 = F45 = F46 = F56 = 0 . (2.48)
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Hence, (2.45) reads as

RTW =F1σ11 + F2σ22 + F3σ33 (2.49)
+F11σ

2
11 + F22σ

2
22 + F33σ

2
33 + 2F12σ11σ22 + 2F13σ11σ33

+2F23σ22σ33 + F44σ
2
23 + F55σ

2
13 + F66σ

2
13 ≥ 1 .

The strength parameters can be found by using the maximum strengths of the lamina
and considering it for each stress component

σ11 = Xt, F11X
2
t + F1Xt = 1

σ11 = Xc, F11X
2
c + F1Xc = 1

}
⇒ F11 =

∣∣∣∣ 1
XtXc

∣∣∣∣ , F1 = 1
Xt
−
∣∣∣∣ 1
Xc

∣∣∣∣ ,
σ22 = Yt, F22Y

2
t + F2Yt = 1

σ22 = Yc, F22Y
2
c + F2Yc = 1

}
⇒ F22 =

∣∣∣∣ 1
YtYc

∣∣∣∣ , F2 = 1
Yt
−
∣∣∣∣ 1
Yc

∣∣∣∣ ,
σ33 = Zt, F33Z

2
t + F3Zt = 1

σ33 = Zc, F33Z
2
c + F3Zc = 1

}
⇒ F33 =

∣∣∣∣ 1
ZtZc

∣∣∣∣ , F3 = 1
Zt
−
∣∣∣∣ 1
Zc

∣∣∣∣ ,
σ12 = S12, F44S

2
12 = 1⇒ F44 = 1

S2
23
,

σ13 = S13, F55S
2
13 = 1⇒ F55 = 1

S2
13
,

σ23 = S23, F66S
2
23 = 1⇒ F66 = 1

S2
12
. (2.50)

The strength parameters Fi and Fii are calculated with the experimental determined
normal, compressive and shear strengths. The interaction strength parameter F12, F13
and F23 are of the following form

Fij = F ∗ij

√
FiiFjj , (2.51)

that are also determinable through experimental tests using combined load cases. Due to
the fact, that these tests are rather costly, the F ∗ij are therefore empirically determined.
In [73], the use of F ∗ij = −0.5 is recommended for composites made of glass or carbon
fiber reinforced epoxy resin.
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3 Determination of Material Parameters of
Fiber Reinforced Plastics

3.1 Introduction
This chapter deals in general with the material parameter identification used for the on-
going finite element simulations. Therefore, the elastic parameters used for the elasticity
tensor as well as the strength parameters for the failure criteria have to be evaluated.
The measurement effort for FRP materials is therefore sufficiently higher compared to

materials with isotropic behavior due to the material behavior that differs significantly
transverse to the fiber direction.
For a better understanding of this effort it must be mentioned that for one specific

fiber/matrix combination at least a full set of 25 destructive measurements using a
universal tensile testing have to be performed ([74]). Therefore, the assumption of
transversely isotropic material behavior with a minimal statistical power of five for each
parameter was made. Furthermore, at the early design stage with FRP materials one has
to consider firstly, a large pool of possible fiber/matrix combinations and secondly, due
to manufacturing, each fiber/matrix combination itself can differ because of a possible
changing of the fiber volume fraction and also by different curing cycles.
To delimit this problematic and to stay within a given budget, a direct nondestructive

method ([75]) was developed to fast characterize different FRP materials suitable for
thick filament wound rotating structures, e.g. flywheel rotors.
In the following, the described methods are used to identify the in-plane stiffness

parameters of transversely isotropic plates that are manufactured in the same way as
thick filament wound structures. The results are used for characterization purpose only
because pre-simulations with assumed parameters, mostly out of [76], showed that a low
stiffness transverse to the fiber direction and density lead to a reduced stress distribution
in radial direction of rotating thick wound structures. This aspect is the key for success
and further used for material selection for thick wound structures using modal analysis
performed on thin rectangular unidirectional FRP plates.
After selection and defining repeatable process parameters for manufacturing, the full

sets of destructive measurements were performed in cooperation with the Institute of
Materials Science and Technology at Vienna University of Technology to measure the
material parameters.
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3 Determination of Material Parameters of Fiber Reinforced Plastics

3.2 Nondestructive Methods Based on Modal Analysis
Both nondestructive methods, explained in the following, need the results from a previous
experimental modal analysis, performed on thin rectangular plates, as input quantities.
The results are the mode shapes (the number of nodal lines separated in each direction)
and the undamped natural frequencies for each mode shape. Based on those, the elastic
material parameters are evaluated by a direct and an iterative numerical method.

3.2.1 Direct Identification Using Lagrange’s Equation of Motion
The basis of this method is similar to the single degree of freedom (displacement x)
spring-mass system. There, the knowledge of the mass m and the measured natural
frequency ω directly calculates the elastic spring constant k = ω2m. This can be seen
by using Lagrange’s equation of motion

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+ ∂V

∂qi
= 0, i = 1, 2, ..., n (3.1)

where q = x is the generalized coordinate. The total potential energy V = 1
2kq

2 in
combination with the kinetic energy T = 1

2mq̇
2 and by use of Lagrange’s equation

of motion directly shows up an expression for the natural frequency of this system
q̈ + k

mq = 0, whose solution for the natural frequency is already discussed above.

Direct Method By assuming, that the above procedure also holds for any structure
and furthermore for every mode shape, it is possible to calculate the natural frequency of
any mode shape. Vice versa, by knowing a sufficient number N of natural frequencies it
must be possible to calculate NP unknown elastic parameters of the structure by setting
up an overdetermined system of equations N > NP . This system can be solved e.g. by
a least squares fit.
As noted earlier, the method is applied to rectangular plates. Therefore, the classical

plate theory is used to calculate the total potential energy V and the kinetic energy T of
an ordinary plate summarized in [72]. Due to the Kirchhoff assumptions the equations
are given as follows

V = 1
2

∫
Ω

[Nxxεxx +Mxxκxx +Nyyεxx +Myyκyy +Nxyγxy +Mxyκxy] dxdy (3.2)

T = 1
2

∫
Ω

 ρh︸︷︷︸
I0

ẇ2 + ρ
h3

12︸︷︷︸
I2

((
∂ẇ

∂x

)2
+
(
∂ẇ

∂y

)2) dxdy , (3.3)

where the quantities (Nxx, Nyy, Nxy) are called the in-plane force resultants and (Mxx,
Myy, Mxy) are called the moment resultants. Furthermore, (εxx, εyy, γxy) are the
membrane strains and (κxx, κyy, κxy) are the curvatures depending on the deflection w
of the plate with thickness h and density ρ.
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Due to the further performed measurement, with the possibility to measure the deflection
w of the plate (the out of plane movement), the membrane strains are neglected and
therefore the curvature κ and moment resultants M are used

κ =

κxxκyy
κxy

 =


−∂2w
∂x2

−∂2w
∂y2

−2 ∂2w
∂x∂y

 (3.4)

M =

Mxx

Myy

Mxy

 = −


D11

∂2w
∂x2 +D12

∂2w
∂y2 + 2D16

∂2w
∂x∂y

D12
∂2w
∂x2 +D22

∂2w
∂y2 + 2D26

∂2w
∂x∂y

D16
∂2w
∂x2 +D26

∂2w
∂y2 + 2D66

∂2w
∂x∂y

 , (3.5)

where (D11, D22, D12, D16, D26, D66) are the components of the bending stiffness tensor
D. In combination with the generalized coordinate q = w(t, x, y) that can be separated
to q = Q(t)W (x, y), and the assumption of transversely isotropic material behavior
(D16 = D26 = 0) the total potential energy V and the kinetic energy T computes as

V = 1
2

∫
Ω

D11

(
∂2w

∂x2

)2

+ 2D12
∂2w

∂x2
∂2w

∂y2 +D22

(
∂2w

∂y2

)2

+ 4D66

(
∂2w

∂x∂y

)2
 dxdy

= Q2(t)
2

D11

∫
Ω

(
∂2W

∂x2

)2

dxdy︸ ︷︷ ︸
α

+2D12

∫
Ω
∂2W

∂x2
∂2W

∂y2 dxdy︸ ︷︷ ︸
β

+ D22

∫
Ω

(
∂2W

∂y2

)2

dxdy︸ ︷︷ ︸
γ

+4D66

∫
Ω

(
∂2W

∂x∂y

)2

dxdy︸ ︷︷ ︸
δ

 , (3.6)

T = 1
2

∫
Ω

[
I0q̇

2 + I2

((
∂q̇

∂x

)2
+
(
∂q̇

∂y

)2)]
dxdy

= 1
2Q̇

2(t)
∫

Ω

[
I0W

2(x, y) + I2

((
∂W (x, y)

∂x

)2
+
(
∂W (x, y)

∂y

)2)]
dxdy︸ ︷︷ ︸

ε

. (3.7)

By using the above given terms in Lagrange’s equation of motion (3.1), a second order
differential equation results

Q̈(t) + D11α+ 2D12β +D22γ + 4D66δ

ε︸ ︷︷ ︸
ω2

Q(t) = 0 . (3.8)
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Assuming that this relation holds for any mode shape with the natural frequency ωi
and deflection Wi(x, y) = Wi(x)Wi(y) the already mentioned overdetermined system of
equations can be set up

α1 2β1 γ1 4δ1
α2 2β2 γ2 4δ2
α3 2β3 γ3 4δ3
. . . .
αi 2βi γi 4δi
. . . .
αN 2βN γN 4δN


︸ ︷︷ ︸

A


D11
D12
D22
D66


︸ ︷︷ ︸
D∗

=



ω2
1ε1
ω2

2ε2
ω2

3ε3
.

ω2
i εi
.

ω2
N εN


︸ ︷︷ ︸

B

, (3.9)

to solve for the components of the bending stiffness tensor D by using a least squares
approximation

D∗ =


D11
D12
D22
D66

 = (ATA)−1ATB , D =

D11 D12 0
D12 D22 0

0 0 D66

 . (3.10)

Approximation of Mode Shape Deflection The mode shape deflection W (x, y) is ap-
proximated by the solution of the equation of motion of anisotropic plates given in [72].
The fourth order differential equation used for a plate with dimensions 0 ≤ x ≤ a,
0 ≤ y ≤ b and thickness h reads as

D11
∂4W

∂x4 + 2(D12 + 2D66) ∂4W

∂x2∂y2 +D22
∂4W

∂y4 = qf − I0Ẅ + I2(∂
2Ẅ

∂x2 + ∂2Ẅ

∂y2 ) ,

(3.11)

where the homogeneous solutions are directly related to the mode shapes using the
number of nodal lines m, n in each direction. Therefore, a separation approach

Wmn(x, y) = Wm(x)Wn(y) m = 1, 2, 3, ... n = 1, 2, 3... , (3.12)

is used and the general homogenous solution follows to

Wm(x) = A1m cos(αmx) +A2m sin(αmx) +A3m cosh(αmx) +A4m sinh(αmx)
Wn(y) = B1n cos(βny) +B2n sin(βny) +B3n cosh(βny) +B4n sinh(βny) . (3.13)

In addition, the deflections for the rigid body motions for the free supported plate
compute by

W0(x) = 1 , W0(y) = 1 , W1(x) = 1− 2x
a

, W1(y) = 1− 2y
b
, (3.14)
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x
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FS   free supported

CS   clamped supported

Figure 3.1: Rectangular plate and applied boundary conditions.

where the coefficients Aim, Bin, αm, βn depend on the applied boundary conditions
(see Fig. 3.1). The coefficients for the free (FS) and clamped (CS) supported solutions
are summarized in Table 3.1. The measured natural frequencies and the corresponding
approximated mode shapes are used to set up (3.9), to further solve for the elastic
material parameters in a direct way.

Table 3.1: Boundary conditions and coefficients for the free (FS) and clamped (CS) sup-
ported solutions.

Boundary conditions x = 0 x = a y = 0 y = b

FS
∂2Wm
∂x2 = 0 ∂2Wm

∂x2 = 0 ∂2Wn
∂y2 = 0 ∂2Wn

∂y2 = 0
∂3Wm
∂x3 = 0 ∂3Wm

∂x3 = 0 ∂3Wn
∂y3 = 0 ∂3Wn

∂y3 = 0

CS Wm = 0 Wm = 0 Wn = 0 Wn = 0
∂Wm
∂x = 0 ∂Wm

∂x = 0 ∂Wn
∂y = 0 ∂Wn

∂y = 0
Coefficients A1m = B1n A2m = B2n A3m = B3n A4m = B4n
FS −λi 1 −λi 1
CS −λi 1 λi -1

α1 = 4.730
a α2 = 7.853

a αm ≈ (2m+ 1) π2a
FS/CS β1 = 4.730

b β2 = 7.853
b βn ≈ (2n+ 1) π2b

λ1 = 1.0178 λ2 = 0.99922 λi = −1 i > 2
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3.2.2 Iterative Numerical Identification Using Genetic Algorithm
The method uses, similar to the above presented approach, the measured natural fre-
quencies and further an optimization procedure performed on a FE model to estimate
iteratively the elastic material parameters. The advantage of this method is the possi-
bility to identify any wanted number of parameters.

Iterative Numerical Method The optimization uses a function that minimizes the
discrepancies between the experimental measured and evaluated numerical modal data.
Therefore, the relative difference of the natural frequencies is used, computed as follows

ηωN
i = (ω̃i − ωi) /ωi i = 1, 2, ..., nmodes , (3.15)

where the ωi and ω̃i are the ith measured and simulated natural frequencies that are
summarized in a global error vector η

ηωN =
(
ηωN

1 , ηωN
2 , ..., ηωN

nmodes

)T
. (3.16)

In order to guarantee a defined order of the simulated mode shapes according to the
measured mode shapes, well defined lower and upper bounds for the material parameters
are necessary. This results in a constrained optimization for the objective function f ,
which reads as

min
x
{f(x)} = min

x

{
‖ηωN (x)‖22

}
, (3.17)

where x = (E1,E2,E3, ν12, ν13, ν23,G12,G13,G23)T is the vector of the optimization
variables, the full set of material parameters for a general orthotropic material and
‖.‖2 symbolizes the Euclidean vector norm. The optimization was performed with the
MATLAB built-in function ga(...) [77]. Therefore, the population size was set to 50 and
five elite individuals were used. Any other options where left default.

Finite Element Model of the Plate The simulated natural frequencies are evaluated
by a 3-dimensional orthotropic plate model built up in the FE software COMSOL ([68])
performing a modal analysis using the following semi-discrete Galerkin eigenvalue for-
mulation for an undamped structure[

Ku − ω̃2
iMu

]
Φi = 0 , (3.18)

where M and K denotes the mass and stiffness matrix of the plate. The mode shape
relates to the mass scaled eigenvector Φi for the corresponding natural frequency ω̃i.
The boundaries on each edge are FS or CS, depending on the study, see Fig. 3.1. The
geometry of the model is discretized by hexahedron finite elements with tri-cubic basis
functions, see Fig. 3.2(a). The elasticity tensor E for each element is given by the
optimization variables described above and results by using the relation E = C−1 with
the compliance tensor C to
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Figure 3.2: Numerical modal analysis of a rectangular plate: (a) plate model showing the
mesh, dimensions in mm; (b) sample mode shape for FS; (c) sample mode
shape for CS; (d) mesh study for FS; (e) mesh study for CS.

C =



1
E1

−ν12
E1

−ν13
E1

0 0 0
1
E2

−ν23
E2

0 0 0
1
E3

0 0 0
1
G23

0 0
sym. 1

G13
0
1
G12


. (3.19)

The optimization, especially with a genetic algorithm, performs a lot of function evalu-
ations. Therefore, a drastically reduction of degrees of freedom (DOF) to reduce simu-
lation effort and time is necessary. When performing a modal analysis one has to keep
in mind that depending on the DOF the mode shape differs and furthermore the value
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of the natural frequency changes. This effect is shown in Fig. 3.2(d) and Fig. 3.2(e) for
different boundary conditions and orders of basis functions. The hexahedron element
aspect ratio depends on the DOF and defines a coarse (6:6:1) or a fine (1:1:1) FE mesh,
where one is equal to the plate thickness.
In the following described simulations, a hexahedron element aspect ratio of 4:4:1 that

is equal to 18× 18× 4.5mm3 and cubic basis functions were used.

3.2.3 Numerical Test Case: Unidirectional CFRP Plate
Both methods were tested by use of the FE model described above. Therefore, an
example plate with 300 × 300 × 4.5mm3 with a mass density of 1470 kg/m3 was used.
The elastic parameters are chosen to E1 = 130GPa, E2 = E3 = 9GPa, ν12 = ν13 = 0.35,
ν23 = 0.3, G12 = G13 = 4.5GPa and G23 = 3.5GPa. The numerical modal analysis
results for the first 12 mode shapes and different boundary conditions (FS and CS) are
given in Table 3.2.
The presented methods were then applied to identify the elastic parameters for the

given numerical test case. At first, the direct method is carried out and the results can
be seen in Table 3.3 and Table 3.4. The FS condition shows a maximum relative error for
the poisson ratio ν12 that is about 69%. This large discrepancy is caused by the second
derivatives of the deflection shape and further the well underestimated bending stiffness
parameter D12 that results for mode shapes with m < 2 or n < 2. The CS condition
stays within a maximum relative error of about 16%. There, due to the fixed boundary
condition of the FE model, the mode shapes slightly differ to the analytic results that
leads to the overestimated results.

Table 3.2: Modal analysis results for the FS and CS boundary conditions.
FS CS

Mode m,n f in Hz m,n f in Hz
1 (1,1) 92.0 (2,2) 507.0
2 (0,2) 127.1 (2,3) 631.0
3 (1,2) 226.5 (2,4) 893.5
4 (0,3) 349.7 (2,5) 1294.3
5 (1,3) 447.7 (3,2) 1315.7
6 (2,0) 482.5 (3,3) 1400.2
7 (2,1) 516.7 (3,4) 1581.0
8 (2,2) 623.1 (2,6) 1819.4
9 (0,4) 687.3 (3,5) 1887.5
10 (1,4) 776.0 (3,6) 2329.8
11 (2,3) 822.2 (2,7) 2458.4
12 (2,4) 1124.1 (4,2) 2496.5
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Therefore, the direct identification method is modified by use of global weighting pa-
rameters gi resulting in the modified frequency expression

g1D11αi + g22D12βi + g3D22γi + g44D66δi = εiω
2
i . (3.20)

The weighting parameters are calculated by an unconstrained optimization using the
objective function

min
x
{f(x)} = min

x

{∥∥∥ηFE(x)
∥∥∥2

2

}
, (3.21)

where x = (g1, g2, g3, g4)T is the vector of the optimization variables and ηFE is the
vector of relative errors between the elastic parameters of the FE model and the direct
identified results. The results for the global weights and the modified direct identification
method are summarized in Table 3.3 and Table 3.4.
In contrast, the iterative method is able to determine the elastic parameters with a

numerical error, depending on the defined change in the error function. The obtained
parameters are the result of 1025 function evaluations that makes this method very time
consuming.

Table 3.3: Identification results for the numerical test case and FS boundary condition
by use of the modal analysis results of Table 3.2.

Elastic FE modal Direct Direct Iterative
parameter analysis method modified∗ method
E1, GPa 130 125.87 130.04 130.12
E2, GPa 9 8.82 8.99 8.99
ν12 0.35 0.5924 0.3499 0.3453
G12, GPa 4.5 3.88 4.50 4.49
∗ g1 = 0.984, and g2 = 1.688, g3 = 0.997 and g4 = 0.863.

Table 3.4: Identification results for the numerical test case and CS boundary condition
by use of the modal analysis results of Table 3.2.

Elastic FE modal Direct Direct Iterative
parameter analysis method modified∗ method
E1, GPa 130 136.12 130.35 128.29
E2, GPa 9 9.56 9.12 8.85
ν12 0.35 0.4053 0.3699 0.3664
G12, GPa 4.5 4.67 4.55 4.93
∗ g1 = 1.028, and g2 = 1.321, g3 = 1.010 and g4 = 1.032.
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Figure 3.3: Winding mandrel for plate specimen manufacturing.

3.2.4 Manufacturing of Test Specimens
The specimens investigated in the following material parameter identification are man-
ufactured by wet filament winding. Therefore, the impregnated and pre-tensioned fiber
roving is wound on an aluminium mandrel with rectangular cross-section to guarantee
flat specimens, see Fig. 3.3.
After winding operation, the largest front and back surfaces are further flattened by

using metal cover plates that are counter fixed with clamps. The finished cured part
was then pulled off the mandrel by a hydraulic cylinder and the specimen geometry was
machined using a saw and milling operation. This procedure was repeated for different
fiber/matrix combinations summarized in Table 3.5.

Table 3.5: Fiber/matrix combinations for test specimens. Unidirectional arranged fibers
with a volume fraction of 60%.

Fiber type Matrix type, weight ratio in %
Plate ID El Xt ρ E Xt Th

1 Torayca T800S 24K 705, epoxy A/B/hardener 25:25:50
294GPa 5880MPa 1800 kg/m3 3GPa 72MPa 160◦C

2 Dialead K13916 16K 705, epoxy A/B/hardener 25:25:50
725GPa 3000MPa 2110 kg/m3 3GPa 72MPa 160◦C

3 Torayca T800S 24K 704, epoxy/hardener 76.9:23.1
294GPa 5880MPa 1800 kg/m3 3GPa 59MPa 70◦C

4 Torayca T800S 24K 700, epoxy A/B/hardener 49.6:5:45.4
294GPa 5880MPa 1800 kg/m3 2.9GPa 67MPa 160◦C

5 Dialead K63712 12K 700, epoxy A/B/hardener 49.6:5:45.4
633GPa 2628MPa 2120 kg/m3 2.9GPa 67MPa 160◦C
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Figure 3.4: FVT scheme for the the FS and CS plates.

3.2.5 Measurement Setup - Modal Analysis of Rectangular Plates
The modal characteristics for the square plates with FS and CS boundary condition are
identified by forced vibration testing (FVT). Therefore, both setups were excited in a
fixed point i and the acceleration ak(t) is measured together with the forcing signal Fi(t),
see Fig. 3.4. After measurement, the time signals are Fourier transformed into frequency
domain and the peaks of the frequency response function H(jω) = a(jω)/F (jω) belong
to the vibrational modes of the plate. The structural response was measured in discrete
points by a PSV-500-H4 LSV in a non contact way, see Fig. 3.5(a).

Free Support The edge of the plate is directly mounted on the piezoelectric force sensor
which is fixed onto the electrodynamic shaker, see Fig. 3.5(b). This fulfills almost the
FS boundary condition as a compromise to the setup effort and possible number of
identifiable mode shapes, discussed in [75].

Clamped Support The plate is mounted inside a rigid support, where the plate is fully
clamped between a steel frame and a thick steel plate, see Fig. 3.5(c). The force input
was provided by a coupling rod, including a piezoelectric force sensor that was mounted
on an electrodynamic shaker, see Fig. 3.5(d).

Measurement Setup The out of plane movement of the plates was observed in n =
900 points. The excitation signal used was a periodic chirp (20Hz−2.5 kHz) for both
setups. The measurements were filtered and averaged (nAV G = 10). Afterwards, the
best measurable natural bending frequencies and the corresponding mode shapes were
extracted out of the average frequency response function (FRF) over all measured points,
see Fig. 3.6. The measured natural frequencies and corresponding mode shapes (nodal
lines m, n) were then used for the identification of the elastic parameters.
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(a) (b)

(c) (d)

Figure 3.5: Experimental modal analysis of rectangular plates: (a) PSV-500-H4 laser
scanning vibrometer; (b) FS plate and piezoelectric force sensor mounted on
shaker; (c) stiff modal test rig for CS plate; (d) piezoelectric force sensor
mounted on shaker used for CS plate excitation.
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Figure 3.6: Average FRF and identified peaks of the present mode shapes of plate 1.

3.2.6 Analysis of Results
Free Support (FS) The first measurement was performed on unidirectional carbon
fiber reinforced plastics (UDCFRP) square plates with different fiber/matrix combina-
tions and ply layups. The results of the modified direct (MDI) and iterative identification
(II) method are summarized in Table 3.6.

These identified elastic parameters are the results of the lowest ten and best measur-
able mode shapes. The peak-picking for the natural frequencies and nodal lines count-
ing for the corresponding mode shape was done fully manually, because interpreting the
modal data needs experimental modal analysis experience and can not be easy simplified

Table 3.6: Modified direct (MDI) and iterative (II) identification results for example FS
UDCFRP plates.

Plate ID E1, GPa E2, GPa ν12 G12, GPa
1 T800S/705 300× 300× 4.16mm3 MDI 125.2 7.3 0.458 4.1

9-ply [0◦]9, m = 0.588 kg II 122.8 6.4 0.275 5.4
2 K13916/705 300× 300× 3.75mm3 MDI 310.3 4.8 0.426 2.4

6-ply [0◦]6, m = 0.541 kg II 338.9 4.8 0.429 2.0
3 T800S/704 300× 300× 6.46mm3 MDI 153.3 10.5 0.404 4.9

16-ply [0◦]16, m = 0.905 kg II 123.6 8.2 0.283 6.9
4 T800S/700 300× 300× 6.38mm3 MDI 149.1 9.0 0.499 4.6

15-ply [0◦]15, m = 0.904 kg II 122.6 7.8 0.495 7.0
5 K63712/700 300× 300× 5.63mm3 MDI 244.3 4.8 0.499 3.8

12-ply [0◦]12, m = 0.834 kg II 250.8 5.4 0.337 3.6
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(a) (b)

Figure 3.7: Experimental modal analysis of plate 1 for FS boundary condition (nodal
lines in black, excitation point in cyan): (a) mode shape (0, 3) at f = 197Hz;
(b) mode shape (2, 5) at f = 1309Hz.

by trivial computations, e.g. modal assurance criterion. Some of the mode shapes are
not apparent, unrecognizable deformed or hardly detectable due to very low vibration
amplitudes. This can be improved by manufacturing thinner plates, but by use of wet
filament winding a minimum of eight plies is the limit to manufacture UDCFRP plates.
Sample mode shapes for plate 1 are depicted in Fig. 3.7(a) and Fig. 3.7(b).
The identified elastic parameter E1 showed firstly the discrepancy between the high

strength (T800S) and the high modulus (K13916 and K63712) fibers for both methods.
Secondly, it differs for the T800S fiber within the MDI-method that is the result of the
rather thick plate and therefore the parameter is underestimated due to less apparent
bending modes in fiber direction. This has no effect onto the II-method were the results
compare well among themselves.
The other elastic parameters are slightly influenced by the resin types (the mixtures

are optimized for processing times and hardening temperatures) but strongly influenced
by the resin fiber bond that is dependent on the PAN- or Pitch based fiber producing
method. The PAN based T800S fiber shows higher values for E2 and G12 in comparison
to the Pitch based K13916 and K63712 fibers for both identification methods. The
Poisson’s ratio ν12 depends on both above mentioned reasons due to the well known
relation E1ν21 = E2ν12.

Clamped (CS) and Partial Clamped Support (PCS) The already mentioned problem-
atic of low vibration amplitudes gets even worse by increasing the stiffness of a system by
applying more rigid boundary conditions. The MDI-method was not applicable because
a minimum of four measured modes is necessary that could not be clearly identified.
Furthermore, the measurement result is strongly dependent on the clamping force ap-
plied by the screws of the frame. It was observed, that increasing the applied torque
leads to a convergence of the natural frequencies. Due to this large pre-stressing, the
thinner plates 1 and 2 broke transverse to the fiber direction near the frame. Therefore,
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(a) (b)

Figure 3.8: Experimental modal analysis (nodal lines in black, excitation point in cyan):
(a) mode shape (3, 2) at f = 1949Hz of plate 3 for CS boundary condition;
(b) mode shape (2, 1) at f = 750Hz of plate 2 for PCS boundary condition.

the plates 1 and 2 were re-sized and partial clamped supported. Sample mode shapes
are depicted in Fig. 3.8(a) and Fig. 3.8(b). The PCS condition increased the flexibility
of the system, but now the excitation point is in any case too close to the nodal lines
that leads to unexcited mode shapes. Hence, the MDI-method is also not applicable.
Table 3.7 shows the results of the II-method performed on the measurement result

of three modes for each plate. It can be seen that the identified elastic parameter E1
differs well compared to the FS condition. This overestimation results due to the fact
that a fully clamped boundary condition is in reality not possible. Hence, due to this
uncertainties the FS condition is used for the material characterization.

Table 3.7: Iterative identification (II) results for example CS and PCS UDCFRP plates.
Plate ID E1, GPa E2, GPa ν12 G12, GPa
1 T800S/705 259× 198× 4.16mm3 II 153.1 8.9 0.498 5.9
9-ply [0◦]9, m = 0.335 kg PCS

2 K13916/705 259× 198× 3.75mm3 II 355.2 5.0 0.452 5.2
6-ply [0◦]6, m = 0.311 kg PCS

3 T800S/704 259× 259× 6.46mm3 II 144.3 8.4 0.475 5.7
16-ply [0◦]16, m = 0.682 kg CS

4 T800S/700 259× 259× 6.38mm3 II 155.3 8.6 0.441 5.9
15-ply [0◦]15, m = 0.678 kg CS

5 K63712/700 259× 259× 5.63mm3 II 263.1 5.1 0.489 6.0
12-ply [0◦]12, m = 0.623 kg CS
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3.3 Destructive Material Testing
In the following, the destructive determination of material parameters for the selected
UDCFRP material combinations is described. Therefore, many different standardized
test methods exist that are mostly covered within ASTM, ISO, EN and DIN standards
as well as standards of the aerospace industry (Airbus, Boeing, NASA).
Within this work the following test methods and adapted versions of them were used

and performed on unidirectional and hoop wound specimen to measure the five elastic
and six strength parameters:

• Tensile testing of flat coupon specimens DIN EN ISO 527-1&5 [78, 79], DIN EN
ISO2561 [80] and DIN EN ISO 14129 [81], Young’s modulus in fiber direction
E1, tensile strength in fiber direction Xt, Young’s modulus transverse to fiber
direction E2 = E3, tensile strength transverse to fiber direction Yt = Zt, Poisson’s
ratio ν12 = ν13, shear modulus G12 = G13 and shear strength S12 = S13.

• Compression testing of flat coupon specimens DIN EN ISO 14126 [82], compression
strength in fiber directionXc and compression strength transverse to fiber direction
Yc = Zc.

• 3-point bending tests on flat coupon specimens DIN EN ISO 14125 [83], bend-
ing Young’s modulus in fiber direction Eb1, bending strength in fiber direction
σb1, bending young’s modulus transverse to fiber direction Eb2, bending strength
transverse to fiber direction σb2.

• Split disc testing of hoop wound ring specimens, similar to ASTM D2290-12 [84],
tensile strength in fiber direction Xt.

3.3.1 Investigated Materials
The flat coupon and ring specimens were manufactured by wet filament winding using
the above mentioned aluminium mandrel with rectangular cross-section and an ordinary
cylindrical mandrel made of steel. The investigated materials are the high strength
CFRP T800S/705 and the high modulus CFRP K13916/705.
The flat coupon specimens were cut from the manufactured hoop and bidirectional

wound plates. The layup and size of the specimens with a fiber volume fraction of
60% used for the above mentioned standardized test methods are summarized in the
following:

• [0◦]4 250× 12× 2.5mm3 (unidirectional), tension

• [0◦]4 110× 10× 2.5mm3 (unidirectional), compression

• [0◦]14 300× 25× 6.5mm3 (unidirectional), bending

• [90◦]10 200× 25× 5.5mm3 (unidirectional), tension

• [90◦]10 110× 10× 5.5mm3 (unidirectional), compression

34



3 Determination of Material Parameters of Fiber Reinforced Plastics

• [90◦]14 300× 25× 6.5mm3 (unidirectional), bending

•
[
±45◦/+ 45◦

]
250× 25× 2.5mm3 (bidirectional), tension

• [0◦]5 ø250× 10× 2.5mm3 (unidirectional), tension of ring specimen

To guarantee successful tests, some of the thicknesses and widths of the specimens were
adapted due to the fact that by filament winding the quality of the specimens is much
worse compared to a hand layup produced plate by use of an autoclave.
Furthermore, stripes of the same material with the configuration

[
±45◦/+ 45◦

]
were

added to some specimen at the load transfer points to avoid unwanted damage of the
specimen in this area.

3.3.2 Testing of Flat Coupon Specimen
Tension Tests The above mentioned tension tests were performed using a Zwick Z250
Universal Testing System for the measurement of Xt and a Zwick Z50 Universal Testing
System for the other parameters, see Fig. 3.9. The pulling force F was transmitted via
wedge clamping jaws or ordinary clamping jaws depending on the maximum force. The
applied force was measured by a load cell and the velocity of the crosshead travel was
kept constant for all tests at 1mm/min.
The strains were measured using the extensometer of the testing system and digital

image correlation (DIC). Hence, by use of DIC, the non-contact measurement of the
Poisson’s ratios ν12, ν21 and ν23 was done using a white spray painted stochastic pattern
on the surface of the specimen.
Under the consideration of small strains that leads to the assumption of a constant

cross-section surface during the whole test, the uni-axial stress σ of the specimen is given
by the applied force F and the cross-section surface A0

σ = F

A0
. (3.22)

The engineering strain ε is expressed as the change in length ∆L per unit of the original
length L

ε = ∆L
L

. (3.23)

Poisson’s ratios can be calculated by measuring the strains in different directions

ν12 = −εq
εl
, ν21 = − εl

εq
, ν23 = − εt

εq
. (3.24)

The Young’s modulus E is calculated as secant modulus using the stress differences of
σ1 and σ2 and corresponding strain differences ε1 = 0.0005 and ε2 = 0.0025

E = σ2 − σ1
ε2 − ε1

. (3.25)
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Figure 3.9: Tension test setup using Zwick Z50 Universal Testing System: (a) unidirec-
tional 0◦; (b) unidirectional 0◦ strain measurement using DIC; (c) bidirec-
tional ±45◦ specimen showing the stochastic pattern; (d) unidirectional 90◦
and the two camera setup for strain measurement by DIC in two planes.

The shear stress τ12 and the shear deformation γ are calculated as follows

τ12 = F

2A0
, γ = εl − εq . (3.26)

The shear modulus G12 is calculated analogous to the Young’s modulus by use of shear
deformations γ1 = 0.001 and γ2 = 0.005.
The shear stress τ23 and the shear modulus G23 are calculated with the assumption
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(a) (b)

Figure 3.10: 3-point bending test setup using Zwick Z50 Universal Testing System: (a)
unidirectional 0◦; (b) unidirectional 90◦.

of transversely isotropic behavior using the shear deformation γ23 = ε2 − ε3

G23 = E2
2(1 + ν23) , (3.27)

τ23 = G23γ23 = E2
2(1 + ν23)(ε2 − ε3) . (3.28)

Compression Tests The compression tests were performed using a Zwick Z50 Universal
Testing System. The test conditions were different to the standardized test method due
to the unavailable Celanese-clamping jaws, used in [82]. Therefore, ordinary clamping
jaws with aiming position for zero slipping were used with no measurement of the strains.
Hence, only the compression strength can be found using the same above mentioned
assumptions for the tension test. During the test, the applied force F was measured
by a load cell and the velocity of the crosshead travel was kept constant for all tests at
1mm/min.

3-Point Bending Tests The 3-point bending test were performed using a Zwick Z50
Universal Testing System with a support length to thickness ratio L/h = 20 and the
radii of the contact points are R1 = R2 = 5mm, see Fig. 3.10. The applied force F was
measured by a load cell and the velocity of the crosshead travel was kept constant for
all tests at 1mm/min. During the test, the deflection s of the beam was recorded.
The maximum bending stress σ [83] in the extreme fiber can be calculated using

σ = 3FL
2bh2

(
1 + 6

(
s

L

)2
− 3

(
sh

L2

))
, (3.29)
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(a) (b)

Figure 3.11: Split disc test setup using Zwick Z250 Universal Testing System: (a) semi-
circular steel discs; (b) ring specimen.

where b is the width of the specimen. The corrected strain ε [83] for large deflections is
expressed as

ε = h

L

(
6 s
L
− 24.37

(
s

L

)3
+ 62.17

(
s

L

)5
)
. (3.30)

3.3.3 Testing of Ring Specimen
The split disc test was performed using a Zwick Z250 Universal Testing System, see
Fig. 3.11. The two semicircular steel discs were well centered within the load transfer
elements that transmit the pulling force F using steel bolts to guarantee a bending free
support.
The applied force was measured by a load cell and the velocity of the crosshead travel

was kept constant for all tests at 1mm/min. The hoop stress σ of the ring specimen is
given by the applied force F and the cross-section surface A0

σ = F

2A0
. (3.31)

Furthermore, the hoop strain ε was measured using Hottinger Baldwin Messtechnik
(HBM) strain gauges with a resistance of 120 Ω in quarter bridge operation that were
directly applied at the outer specimen surface. The sampling rate was set to fS = 5Hz.
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Figure 3.12: Tension stress-strain relation of the investigated materials: (a) unidirec-
tional 0◦; (b) unidirectional 90◦; (c) bidirectional ±45◦.

3.3.4 Analysis of Results
Tension Tests The results of the tension tests are depicted in Fig. 3.12. The unidirec-
tional 0◦ specimen were tested in two steps, firstly pure elastic with the Zwick Z50 to
measure the strain and Young’s modulus, see Fig. 3.12(a) and secondly with the Zwick
Z250 until failure to measure the ultimate strength without strain measurement.
In general, the expected high modulus and high strength characteristic of the investi-

gated materials was observed. Both materials show an ideal elastic behavior until failure
occurs. The T800S/705 specimen reaches the highest strength whereas the K13916/705
specimen reaches the highest stiffness. The failure of the specimen is for both materials
an explosive event. The T800S/705 specimen tend to splice in bundles with the thickness
of the used roving denoted as brittle failure with debonding and/or matrix cracking and
the K13916/705 specimen split in large pieces denoted as brittle failure, see Fig. 3.13.
The unidirectional 90◦ specimen show for both materials very low strengths compared

to the 0◦ specimen, see Fig. 3.12(b). In this configuration the material behavior is
matrix dominated that can also be observed for the stiffness. In fact, by knowing the
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(a)

(b)

(c)

Figure 3.13: Failure of unidirectional 0◦ tension tested specimen: (a) initial geometry;
(b) T800S/705; (c) K13916/705.

(a)

(b)

(c)

Figure 3.14: Failure of unidirectional 90◦ tension tested specimen: (a) initial geometry;
(b) T800S/705; (c) K13916/705.

matrix 705 strength of about 72MPa, the fiber matrix bond or the void content due to
manufacturing is the reason for 60% less strength compared to the pure matrix. The
investigated materials show the same failure mode that is identified as matrix cracking,
see Fig. 3.14.
The results for the bidirectional ±45◦ specimen are depicted in Fig. 3.12(c). At the

beginning both materials behave linear elastic followed by a non-linear rising due to
progressive damage of the material. This is a result of the irreversible reorientation of
the fibers. The failure mode in this case is delamination and inter-fiber failure for both
materials, see Fig. 3.15. The results of all tension tests are summarized in Table 3.8.
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(a)

(b)

(c)

Figure 3.15: Failure of bidirectional ±45◦ tension tested specimen: (a) initial geometry;
(b) T800S/705; (c) K13916/705.

Compression Tests The compression tests were performed without strain measure-
ment. The unidirectional 0◦ tests were unsuccessful due to the wrong clamping unit
resulting in a slipping of the specimen. Therefore, the 3-point bending test was used to
evaluate the compression strength in fiber direction, explained in the following.
The unidirectional 90◦ specimen show nearly the same compression strength for both

materials that is again matrix dominated. The failure mode of the specimen is shear
dominated resulting in a matrix crack under an slight angle, see Fig. 3.16. The results
of the compression tests are summarized in Table 3.9.

3-Point Bending Tests The unidirectional 0◦ specimen showed at the beginning an
ideal linear elastic behavior followed by a short non-linear region until failure occurs,

Table 3.8: Material parameters obtained by tension tests.
T800S/705 K13916/705

E1, GPa 139 290
E2, GPa 7.8 7.9
ν12 0.41 0.4
ν23 0.38 0.4
G12, GPa 3.4 3.3
Xt, MPa 2200 1300
Yt, MPa 24 19
S12, MPa 57 25
S23, MPa 14 14
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(a)

(b)

(c)

Figure 3.16: Failure of unidirectional 90◦ compression tested specimen: (a) initial geom-
etry; (b) T800S/705; (c) K13916/705.
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Figure 3.17: Bending stress-strain relation of investigated materials: (a) unidirectional
0◦; (b) unidirectional 90◦.

see Fig. 3.17(a). The failure starts at the load application point that is an indicator for
a failure because of compressive stress. Due to the nature of the 3-point bending test,
transverse forces are present at this point that lead to the assumption that the identified
compressive strengths are lower than to the pure bending case. Furthermore it could be
observed that the compressive strength is about 50% of the tensile strength. The brittle
failure of the investigated materials is depicted in Fig. 3.18.
The results for the unidirectional 90◦ specimen are depicted in Fig. 3.17(b). Both

materials behave linear with nearly identical stiffness. The failure occurs at the tension
side due to matrix cracking of the specimen resulting in a similar failure surface shown

Table 3.9: Material parameters obtained by compression tests.
T800S/705 K13916/705

Yc, MPa 113 105
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(a)

(b)

(c)

(d) (e)

Figure 3.18: Failure of 3-point bending unidirectional 0◦ specimen: (a) initial geom-
etry; (b) T800S/705; (c) K13916/705; (d) T800S/705 failure detail; (e)
K13916/705 failure detail.

in Fig. 3.14. The results for the tension strength compare well to the tension tests. The
identified material parameters are summarized in Table 3.10.

Split Disc Test The results of the split disc tests of the hoop wound specimen are de-
picted in Fig. 3.19. The non-linearity at the beginning is the result of an oval deformation
that leads to compression of the strain gauge due to bending. After the alignment with
the semicircular discs the expected high modulus and high strength characteristics of
the investigated materials can be seen. Both materials show an ideal elastic behavior
until the failure occurs. The T800S/705 specimen reaches the highest strength whereas
the K13916/705 specimen reaches the highest stiffness.

Table 3.10: Material parameters obtained by 3-point bending tests.
T800S/705 K13916/705

Xc, MPa 933 470
Yt, MPa 28 18
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Figure 3.19: Split disc test: (a) stress-strain relation of investigated materials; (b) ap-
plied force-crosshead travel relation of investigated materials.

(a) (b)

Figure 3.20: Failure of split disc test hoop wound ring specimen: (a) T800S/705; (b)
K13916/705.

The explosive failure characteristics is similar to the tension tests for all specimen. The
T800S/705 specimen tend to splice in bundles with the thickness of the used roving
denoted as brittle failure with debonding and/or matrix cracking and the K13916/705
specimen split in large pieces denoted as brittle failure, see Fig. 3.20. The identified
material parameters are summarized in Table 3.11 and compare well to the unidirectional
0◦ tension tests.

Table 3.11: Material parameters obtained by split disc tests.
T800S/705 K13916/705

E1, GPa 149 320
Xt, MPa 2250 1250
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3.4 Nondestructive vs. Destructive Material Parameter
Determination

The nondestructive material parameter identification is used to determine the elastic
material properties of UDCFRP plates, that is possible with one measurement, whereas
the destructive material testing is used to determine the elastic and strength material
properties of UDCFRP flat coupon specimen, but therefore at least 25 measurements are
needed. If the focus is only on the elastic parameters, the destructive material testing
needs 15 measurements. Both material parameter determinations have in common that
the test specimen have the same basic rectangular geometry that are manufactured in
the same way using filament winding.
In the following, the elastic parameters are compared for the high strength T800S/705

and the high modulus K13916/705 specimens. The results are summarized in Table 3.12.
There, the relative errors are in relation to the results of the destructive material testing
that are the true values with a statistical power of five. It can be seen that the discrep-
ancies are all larger than 6% for the MDI-method as well as the II-method. The most
problematic parameters are the Poisson’s ratio ν12 and the shear modulus G12 with a
relative error up to 74%.
The most obvious reason for these huge discrepancies lies in the quality of the mea-

surement using a LSV and due to the influence of the non-perfect applicable boundary
conditions. Anyway, both nondestructive methods are a good alternative to characterize
the material in relation to the stiffness in fiber and transverse to the fiber direction.

Table 3.12: Nondestructive vs. destructive material parameter determination.

T800S/705 Destructive MDI-method Relative II-method Relative
material testing FS error in % FS/PCS error in %

E1, GPa 139.0 125.2 -10 122.8/153.1 -12/10
E2, GPa 7.8 7.3 -6 6.4/8.9 -18/14
ν12 0.41 0.458 12 0.275/0.498 -33/22
G12, GPa 3.4 4.1 21 5.4/5.9 59/74

K13916/705 Destructive MDI-method Relative II-method Relative
material testing FS error in % FS/PCS error in %

E1, GPa 290.0 310.3 7 338.9/355.2 17/23
E2, GPa 7.9 4.8 -39 4.8/5.0 -39/-37
ν12 0.4 0.426 7 0.429/0.452 7/13
G12, GPa 3.3 2.4 -27 2.0/5.2 -39/58
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4.1 Introduction
Within this chapter a flywheel static burst test (FSBT) method for composite flywheel
rotors, already published in [85], is presented. This method is a safe alternative to
a dynamic spin test, and because of the quasi-static loading the burst event is better
controllable and observable. Another advantage is the better possibility to analyze
the burst fragments, e.g. by a scanning electron microscope (SEM). Thereby, a much
more dangerous and expensive dynamic spin up test with possible uncertainties can be
substituted.

4.2 Feasibility Study
The method is a result of many different approaches that have been analyzed through
static FE simulations compared to a previously optimized inertia mass geometry made
of CFRP as a starting point, as presented in [86, 87]. The optimized topology of this
inertia mass is depicted in Fig. 4.1.
In a first step, the starting point is analyzed to study the failure characteristics and

to find out the position of the burst event. Therefore, a FE model was built up in
the FE software COMSOL ([68]), (for details see [74]). There, the stress analysis was
carried out with the quadratic Tsai-Wu criterion [73] and the material parameters sum-
marized in [86]. The results showed a maximum of the Tsai-Wu parameter on the inner
radius between the shaft interface and the cantilever part of the CFRP inertia mass, see
Figure 4.2(i). The failure forcing component is the radial stress component due to the
inertial load. These results are the requirements for the FSBT: (1) quantitatively the
same stress state and deformation characteristics, (2) the predicted failure point has to
be identical.
In a second step, a feasibility study was performed using the given restrictions. Thereby,

the testing method must be feasible by applying external forces, which is in general not
possible due to volume forces given by the inertial load. Therefore, many possibilities
and also the use of similar geometries were studied to find an appropriate test method
that best reflects reality. Figure 4.2 shows the results that are further explained below.

• For rotating structures with low thickness to radius ratio, it is possible to simulate
the inertial load by use of pressure load applied onto the inner contour. Therefore,
the first approach uses high hydraulic pressure which models the internal high
pressure forming process. The problem with this method is a different failure
point, see Fig. 4.2(a).
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Figure 4.1: Flywheel rotor consisting of the CFRP inertia mass, shaft (aluminium), bear-
ing and motor components (soft magnetic iron) and a steel cylinder to opti-
mize the press-fitting process; dimensions in mm.

• This method uses force loading applied onto the top surface of the inertia mass.
Therefore, a huge force is needed that can be applied by heavy stamping or hy-
draulic presses. The deformation shows the expected behavior, but the failure
point is different, see Fig. 4.2(b).

• This method is similar to the previous explained, but now the inertia mass is
isotropic scaled by a factor of χ = 0.5 and so the needed force can be drastically
reduced by a factor of 0.25, see Fig. 4.2(c).

• Figure 4.2(d) shows a similar geometry where also a force load acts on the top
surface. The deformation characteristics and failure point are acceptable but the
manufacturing by filament winding is almost impossible.

• The geometry for the next method is further changed by varying the cantilever
part and radii to get a symmetric geometry. The advantage for this method is,
that only half of the inertia mass must be manufactured. The problem with this
method is also a different failure point, see Fig. 4.2(e).

• This method is similar to the previous explained, but now the thickness is further
reduced. The deformation characteristics and failure point are acceptable, but
applying of any measuring equipment inside is tricky, see Fig. 4.2(f).

• Figure 4.2(g) shows a well simplified geometry that covers all collected knowledge
of the above described methods. The problem with this configuration is the tricky
manufacturing of thin slices by wet filament winding.
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• The result of a completely reconsideration, by applying loads in hoop direction,
can be seen in Fig. 4.2(h). Here, an isotropic scaled (χ = 0.4) equivalent of the
inertia mass in Fig. 4.1 is cutted on the mid plane on one side to apply a force load
onto this surface. The resulting deformation characteristics and failure point are
nearly identical to the result in Fig. 4.2(i) and is therefore the chosen test method.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.2: Test methods out of [74], deformation scale = 5 and dimensions in m: (a)
pressure pi = 985 bar; (b) force F = 17.5MN; (c) force F = 4.3MN; (d)
force F = 3.3MN; (e) force F = 2.9MN; (f) force F = 9MN; (g) force
F = 1.2MN; (h) force F = 250 kN; (i) starting point result at ω = 2200 s−1 .
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CFRP inertia 
mass

load transfer element

load transfer element

Figure 4.3: FSBT geometry consisting of the load transfer elements (steel) and the CFRP
inertia mass; dimensions in mm.

4.3 Static Burst Test Approach
The developed FSBT uses the CFRP inertia mass of the optimized FESS rotor, as shown
in Fig. 4.3, to test exactly the same equivalent cutted geometry in a static way. To reduce
the required pulling force, e.g. provided by a tensile test machine, an isotropic geometry
scaling factor of χ = 0.4 for the CFRP inertia mass is used.

Therefore, a 250 kN universal tensile test machine can be used to burst the CFRP
rotor. A difference to the dynamic case is the absence of the whole shaft and steel
components. This can influence the results, but as prestressing due to thermal press-
fitting increases loading capability [88], the FSBT is a more conservative test method.

Design and Topology Optimization of Load Transfer Elements The design space for
applying the pulling force load F is limited due to the cut out and mounting space inside
the universal tensile test machine.
Furthermore, it is necessary to optimize the load transfer elements for maximum

stiffness in pulling direction to optimally transfer the applied load from the machine to
the test specimen. This optimization was carried out by using the FE software COMSOL
[68] performing the solid isotropic material with penalization (SIMP) method [89, 90].
The design space is discretized by quadrilateral N = 5500 finite elements with bilin-

ear basis functions, see Fig. 4.4(a). Thereby, each non-dimensional element density ρi
(running from 0 to 1) is a design variable forming the vector of optimization variables
x = (ρ1, ρ2, ..., ρN )t. For any continuum structure represented by finite elements includ-
ing boundary conditions, the topology optimization problem using the SIMP algorithm
for minimizing the total strain energy reads as
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(a) (b)

Figure 4.4: Topology optimization of the load transfer elements, dimensions in mm: (a)
design space; (b) resulting black/with topology for p = 4 and V0 = 20% of
Vdesign.

min
x

{
uTKu

}
= min

x


N∑
j=1
uTj Kjuj

 = min
x


N∑
j=1
uTj ρ

p
jKeuj

 , (4.1)

s.t.
N∑
j

ρjVj ≤ V0 ,

0 < ρmin ≤ ρ ≤ 1.0 ,

where u is the nodal displacements vector and Kj is the stiffness matrix of the jth
element formed by the initial element stiffness matrix Ke modulated by ρj and the
penalization power p, which can take any value greater than one. Therefore, the element
stiffness matrix can vary in magnitude from a minimum (void element) to a maximum
(solid element).
The topology optimization was performed using a plain strain FE simulation with

the load, boundaries, material parameter (steel) and design space, shown in Fig. 4.4(a).
The use of penalization powers p ≤ 3 results in a black/white (solid/void) topology
that is very desirable for further construction. Hence, differing penalization powers p
and maximum volumes V0 were studied and it showed up, that for decreasing maximum
volumes V0 the optimization starts to form local holes that is of no practical use for the
following manufacturing. Therefore, the limit configuration with p = 4 and V0 = 20% of
Vdesign , shown in Fig. 4.4(b), is simplified and a stress analysis is performed to select a
steel type with a suitable ultimate strength. The load transfer elements were cutted out
of steel plates using a waterjet and then welded together to achieve the required width
of 300mm. The milled finished elements are shown in Fig. 4.5.
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Figure 4.5: Welded and milled load transfer elements.

Modeling of the CFRP Inertia Mass In the following simulations a hoop wound struc-
ture using a filament winding process with a fiber angle of 90◦ between the fibers and
the axis of rotation is assumed. Hence, the stiffness tensor E and its entries, given in
Eqs. (4.2), (4.3) and (4.4), can be expressed by use of five independent constants, given
and described in Table 4.1.

E =



Eϕϕ Eϕr Eϕz 0 0 0
Err Erz 0 0 0

Ezz 0 0 0
Grz 0 0

sym. Gϕr 0
Gϕr


(4.2)

∆ = 1− 2νϕrνrϕ − 2νrϕνrzνϕr − ν2
rz

EϕE2
r

(4.3)

Grz = Er
2(1 + νrz)

,
νij
Ei

= νji
Ej
, i, j = ϕ, r, z ,

Eϕϕ = 1− ν2
rz

E2
r∆ , Eϕr = νrϕ + νrϕνrz

E2
r∆ ,

Err = 1− νϕrνrϕ
EϕEr∆

, Erz = νrz + νϕrνrϕ
EϕEr∆

,

Ezz = 1− νϕrνrϕ
EϕEr∆

, Eϕz = νrϕ + νrϕνrz
E2
r∆ . (4.4)
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Stress Analysis To investigate the failure of the following described models, several
failure criteria have been used. For simple evaluating of material failure the maximum
stress criteria expressed in Eq. (4.5) can be applied. Once the normal stress in prin-
cipal material directions (radial, hoop, rz-plane) reach their corresponding maximum
strengths (Xt, Yt, S23), material failure can be expected.

σr
Yt
≥ 1, σϕ

Xt
≥ 1, σrz

S23
≥ 1 . (4.5)

This criterion does not consider interactions between the stress components of the given
stress state. For a more reliable failure estimation with consideration of the inter-stress
effect, the generalized quadratic Tsai-Wu criterion [73] was considered, which reads as

F
T
σ + σT F̃ σ ≥ 1 . (4.6)

Table 4.1: Material data for T800S/705 specimens with a fiber volume fraction of 60 %
and metal material data used for simulation.

T800S/705
Elastic modulus radial r, GPa E∗r 7.8
Elastic modulus hoop ϕ, GPa E∗ϕ 139
Elastic modulus axial z, GPa Ez 7.8
Poissons ratio ν∗ϕr 0.41
Poissons ratio ν∗zr 0.38
Shear modulus ϕr, GPa G∗ϕr 3.4
Tensile strength ϕ, MPa X∗t 2200
Compressive strength ϕ, MPa X∗c 1000
Tensile strength r, z, MPa Y ∗t , Zt 24
Compressive strength r, z, MPa Y ∗c , Zc 113
Shear strength ϕr, MPa S∗12 57
Shear strength ϕz, MPa S13 57
Shear strength rz, MPa S23 14
Steel
Elastic modulus, GPa ESt 210
Poissons ratio νSt 0.3
Von Mises strength, MPa σV,St 690
Aluminium
Elastic modulus, GPa EAl 70
Poissons ratio νAl 0.3
Von Mises strength, MPa σV,Al 500
∗ obtained by measurements.
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The stress state vector σ and F , F̃ the second and fourth order tensor of the strength
parameters out of Table 4.1 are given as follows

σ =



σϕ
σr
σz
σrz
σϕz
σϕr


, F =



F1
F2
F3
0
0
0


, (4.7)

F̃ =



F11 F12 F13 0 0 0
F22 F23 0 0 0

F33 0 0 0
F44 0 0

F55 0
sym. F66


, (4.8)

F1 = 1
Xt
−
∣∣∣∣ 1
Xc

∣∣∣∣ , F2 = 1
Yt
−
∣∣∣∣ 1
Yc

∣∣∣∣ ,
F3 = 1

Zt
−
∣∣∣∣ 1
Zc

∣∣∣∣ , F11 =
∣∣∣∣ 1
XtXc

∣∣∣∣ ,
F22 =

∣∣∣∣ 1
YtYc

∣∣∣∣ , F33 =
∣∣∣∣ 1
ZtZc

∣∣∣∣ ,
F44 = 1

S2
23
, F55 = 1

S2
13
,

F66 = 1
S2

12
, F12 = −1

2
√
F11F22,

F13 = −1
2
√
F11F33, F23 = −1

2
√
F33F22 . (4.9)

Finite Element Models The axisymmetric geometry of the nonlinear quasi-static model
of the rotor is discretized by quadrilateral finite elements with bilinear basis functions and
using the rϕ-symmetry plane as roller boundary condition, see Fig. 4.6(a). The CFRP
inertia mass is assumed to be transversely isotropic in hoop direction. In Table 4.1
the used material parameters for the CFRP inertia mass and the shaft components are
summarized.
The stress state of this FESS rotor was calculated in two steps. In the first step the

thermal shrink fit of the shaft onto the rotor and in the second step the inertial loads
due to rotation was computed.
For static FE simulation of the FSBT, a 3-dimensional model of the isotropic scaled

(χ = 0.4) CFRP rotor (see Fig. 4.3) using two symmetry planes as roller boundary con-
dition to reduce simulation effort has been used. The model is discretized by quadratic
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tetragonal finite elements (see Fig. 4.6(c)) and the CFRP inertia mass is assumed to be
transversely isotropic in hoop direction. The material parameters for the scaled CFRP
inertia mass and load transfer elements made of steel are given in Table 4.1. Model-
ing of the contact between the load transfer elements and the rotor was neglected, as
the observed failure point is far away from the contact area and therefore has minimal
influence and so a linear simulation has been performed.

For both models a mesh convergence study has been performed to check for the in-
fluence of mesh type and size onto the Tsai-Wu criterion in the predicted failure point.
Furthermore, a safety factor S is introduced as a proportional factor as follows

σ∗ = Sσ . (4.10)

Thereby, S links the actual stress state σ and the stress state σ∗ that causes material
failure. Combining Eqs. (4.6) and (4.10) and defining σ∗ = σ results in a quadratic
equation with the following (positive) solution for the safety factor

S =
−F T

σ +
√

(F T
σ)2 + 4σT F̃ σ

2σT F̃ σ
. (4.11)

A safety factor of S ≤ 1 indicates material failure. In the following stress analysis the
maximum stress criteria and the inverse safety factor are used to study the burst event
and the failure mode.

Stress Distributions The simulation results of the FESS rotor without considering the
shaft region are shown in Fig. 4.6(a). The minimum safety factor (S = 1) appears on
the inner radius between the shaft interface and the cantilever part of the CFRP rotor
at a radial position of r = 69mm, see Fig. 4.6(b). The analysis of the maximum stress
criterion along the dashed line illustrates that the radial stress σr is the critical factor.

A failure occurs when the rotor speed is increased over the value which leads to a
safety factor of S = 1. This happens at a rotor speed of ω = 2590 s−1, where the radial
stress σr is equal to the maximum tensile strength Yt, see Fig. 4.6(b).

The FSBT simulation results are depicted in Fig. 4.6(c). The minimum safety factor
S = 1 can be found on the inner radius of the contour located at the used symmetry
plane. The radial position is r = 67mm, see Fig. 4.6(d). If the load is increased above
43 kN, a failure occurs due to the radial stress σr that reaches the maximum tensile
strength Yt, see Fig. 4.6(d).

The results of the FSBT and the FESS rotor simulation show very good agreement,
as shown in Fig. 4.6(b) and 4.6(d). The position, where the failure occurs, is nearly
identical and so the main restriction is respected. The inverse safety factor shows one
big difference at increasing radius. As one can see in Fig. 4.6(b), the curve is rising but is
still lower than at the predicted failure point. The analysis shows that the safety factor
can mainly be approximated by the combination of the radial- and hoop maximum stress
criteria.
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(a) (b)

(c) (d)

Figure 4.6: Simulation results: (a) FESS rotor, safety factor S evaluated at ω = 2590 s−1;
(b) FESS rotor, normalized stresses and inverse safety factor evaluated at
ω = 2590 s−1 on the upper boundary of the CFRP inertia mass, ra = 400mm;
(c) FSBT, safety factor S evaluated at F = 43 kN; (d) FSBT, normalized
stresses and inverse safety factor evaluated for F = 43kN on the upper
boundary of the CFRP inertia mass, ra = 160mm. Safety factors calculated
based on Eq. (4.11).
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4.4 Manufacturing of the Specimen
The hoop wound scaled specimen of the FESS inertia mass was manufactured using
the same wet filament winding technique with equal process parameters as used for the
manufacturing of the specimens for material parameter identification, given in Table 4.2.

In total, a set of six T800S 12K rovings were combined to achieve a band thickness
of about 12mm and a layer thickness of about 0.4mm. Winding was done using an
aluminium mandrel that has been CNC machined to get the inner rotor contour, see
Fig. 4.7(a). The slight pretension force was kept constant at 20N during the winding
operation until the whole mandrel was filled, see Fig. 4.7(b).
After the winding operation, the specimen together with the mandrel were then placed

into a temperature-controlled oven for curing, see Fig. 4.7(c). After curing and before
removing the specimen from the mandrel the outer contour has been CNC machined.
The specimen was then pulled off the mandrel by a hydraulic cylinder and cutted

through on one side to serve space for the load transfer elements, see Fig. 4.7(d).

4.5 Experimental Results
This section presents the results of a FSBT experiment on an isotropic scaled equivalent
of the FESS inertia mass described above. The experiments were done in cooperation
with the Institute of Materials Science and Technology at Vienna University of Technol-
ogy. The section closes with a discussion of the overall results from the experiments and
compares them to simulation results mentioned above.

Test procedure For tensile testing a Zwick Z250 Universal Testing System with a load
capacity of 250 kN was used. The specimen was placed between the two well centered
load transfer elements, see Fig. 4.8. During the tensile test, the test speed of the testing
machine was kept constant at a level of 1mm/min and the load and strain data were
measured until failure of the specimen.

Table 4.2: Material and process parameters of fiber and resin.
TORAY Torayca T800S Matrix 705

Fiber Resin
Tensile strength, MPa 5490 72
Tensile modulus, GPa 294 3.0
Elongation at break, % 1.9 4.9
Density, kg/m3 1810 1100
Filament diameter, µm 5 -
Tow size 12K -
Tex 445 -
Curing schedule 1st: 2h/80◦C, 2nd: 6h/120◦C, 3rd: 1h/60◦C
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(a) (b)

(c) (d)

Figure 4.7: Fabrication of the test specimen: (a) aluminium mandrel; (b) finished
winding operation; (c) temperature-controlled oven; (d) turned and milled
specimen.

Strain Measurement The strains in radial-, hoop- and axial direction where mea-
sured by strain gauges on one side of the specimen directly at the location of the pre-
dicted failure point and optically by digital image correlation using a region of about
50mm×30mm centered around the failure point on the other side of the specimen. Elec-
trical and optical measurements were synchronized by measuring the crosshead travel of
the testing machine.

Strain Gauge Measurement The used Hottinger Baldwin Messtechnik (HBM) 350 Ω
strain gauge was directly applied at the predicted failure point, see Fig. 4.9(a). To mea-
sure the correct strain in radial- and hoop direction a strain gauge rosette with three
measurement grids in 0◦/45◦/90◦ (strain εa, εb and εc) alignment, each in quarter bridge
operation mode, was used.
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(a) (b)

Figure 4.8: Test machine setup: (a) Zwick Z250 Universal Testing System; (b) load
transfer elements and the scaled CFRP rotor.

By combination of the three measured strains the main strain direction angle φ and the
main strain magnitudes εϕ, εr are obtained by

ε∆ =
√

2
√

(εa − εb)2 + (εb − εc)2 , (4.12)

φ = tan−1
(
εc − εa + ε∆
2εb − εa − εc

)
,

εϕ = εa + εc
2 + ε∆

2 ,

εr = εa + εc
2 − ε∆

2 .

The axial strain could not be measured at the predicted failure point. Instead, the 350 Ω
strain gauge in quarter bridge operation was applied to the closest point on the innerst
radius, as the simulation showed almost no difference between the analysis results of those
two points. For data acquisition two HBM Spider8 amplifier with eight channels and the
measurement software HBM Catman 3.0 were used, see Fig. 4.9(b). The crosshead travel
was measured using a IL-065 position sensor. The sampling rate was set to fS = 5Hz.
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(a) (b)

Figure 4.9: Three channel strain gauge at the predicted failure point: (a) measuring
radial- and hoop strain, strain gauge on the inner radius to measure the axial
strain; (b) HBM measurement equipment consisting of two eight channel
HBM Spider8 amplifier.

Optical Strain Measurement Digital image correlation (DIC) was used to perform
a non-contact deformation measurement. The DIC software used in this experimental
work was the ARAMIS DIC system, developed by Gesellschaft für optische Messtechnik
(GOM), see Fig.4.10(a).
The stereo vision system consists of two 1.3 mega pixel cameras located about 1m in

front of the universal tensile testing machine illuminated by two light sources to generate
a better contrast.
The maximum acquisition frequency is fS = 6Hz and the picture resolution is 445×371

pixels that results in a physical size of the pixel being of the order of 0.1mm. By use
of a white colored stochastic pattern spray painted on the specimen it was possible to
measure the deformation field in three dimensions after calibration.
The calibration was performed with a calibration plate in absence of the test specimen

while the midpoint of the calibration plate was positioned at the location of the predicted
failure point, see Fig. 4.10(b). The deformation images and the crosshead travel were
collected with a sampling rate of fS = 0.67Hz.
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(a) (b)

Figure 4.10: GOM ARAMIS measurement setup: (a) synchronized stereo cameras facing
one specimen failure surface; (b) 3D calibration of the camera image.

4.5.1 Maximum Load and Strain Measurement
The result of the load measurement is depicted in Fig. 4.11. As can be seen, the curve
is nonlinear with respect to the crosshead travel of the machine at the first 20%. This
is caused by the non-perfect contact surface between the load transfer elements and the
specimen. The system gets linear at an applied load of 10 kN.
The maximum load until failure occurs is about 45 kN. Figure 4.11 shows the measured

signals of the strain gauges. The radial strain reaches a maximum of 15300µm/m. The
hoop and axial strain reaches a magnitude of 1300µm/m and −3700µm/m, respectively.
Then the radial failure occurs and splits the strain gauge, which is an indicator for a
good failure point prediction. The optical strain measurement result for the expected
failure point on the other specimen side can be seen in Fig. 4.12.
The absolute difference between the two measurement methods for radial and hoop

strains is about 2000µm/m and 700µm/m. The optical measurement results of the
observed area are depicted in Fig. 4.13. The images shown were taken directly before
and directly after the critical load has been reached. This enables a perfect visualization
of the crack that splits the rotor into two pieces. As can be seen, the crack occurs in the
predicted area because of radial failure of the specimen.
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Figure 4.11: Flywheel static burst test experiment results: applied force to the load tran-
fer elements and strains in axial-, radial- and hoop direction as a function
of the crosshead travel of the universal tensile testing machine.
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Figure 4.12: Optically and strain gauge measured strains in radial- and hoop direction
as a function of the crosshead travel of the universal tensile testing machine.
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(a) (b)

(c) (d)

Figure 4.13: Optical strain measurement results: (a) radial direction, one time step be-
fore burst occurs; (b) radial direction, after failure at F = 45 kN; (c) hoop
direction, one time step before burst occurs; (d) hoop direction, after failure
at F = 45 kN.

4.5.2 Burst Fragment Analysis
The possibility of stopping the universal tensile testing machine directly after the burst
event makes it possible to analyze the burst fragment. In this case, the burst fragment
is the whole test specimen. At first, the crack on the surface is visualized to see its path
running through the specimen. Therefore, a special fluid and developer combination is
used to color the crack path in red, see Fig. 4.14(b).

Afterwards, a slice of 10mm thickness was cut out of the failure region of the test
specimen. This was done with a band saw machine using a very slow feedrate to avoid
any unwanted manipulation of the crack region, see Fig. 4.14(a). The resulting specimen
(Fig. 4.14(c)) was then trimmed and polished with changing granulation size of the
abrasive paper to clear the surface from tracks of the saw blade.
The first observation of the failure surface starts with following the crack from the

start to the end. This was performed by a stereo microscope with a magnification of
50×, see Fig. 4.14(d). The specimen showed two cracks running from the left and right
inner contour, both starting from the predicted failure point. The observation plan, as
well as the crack images are depicted in Fig. 4.15.
Due to the fact that the carbon fiber/matrix interaction has a strong effect on the

strength of the fiber reinforced materials, scanning electron microscope (SEM) observa-
tions of the interphase regions were done. Therefore, the specimen is further trimmed to
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(a) (b) (c)

(d) (e) (f)

Figure 4.14: Observation of the failure surface: (a) cutting out the specimen with a band
saw machine; (b) slice of 10mm thickness in the predicted failure plane;
(c) finished polished specimen for light microscope; (d) stereo microscope
Zeiss Stemi 2000-C (magnification range: 10× to 50×); (e) finished gilded
specimen for electron microscope; (f) SEM FEI Philips XL 30 (magnification
range: infinitely variable up to 1000000×).

fit inside the SEM, see Fig. 4.14(f). Furthermore, the specimen was gilded to make the
surface electrically conductive for use in the SEM, see Fig. 4.14(e). The interphase re-
gions near the crack on the right side is depicted in Fig. 4.16 with different magnifications
starting from 100× up to 4000×.
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Figure 4.15: Stereo microscope results of the failure surface (magnification range: 50×)
following the left (23 → 25) and right (48 → 57) crack starting from the
inner contour.
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Figure 4.16: SEM results of the failure surface (magnification range: 100× to 4000×).

4.5.3 Analysis of Results
The simulation was performed neglecting the contact between the load transfer elements
and the scaled CFRP inertia mass. This does not affect the result in the failure point
but the observed elastic deformation of the load transfer elements during the experi-
ment showed a major difference compared to the simulation. The simulation showed no
movement of the whole assembly transverse to the pulling direction that is caused by a
stick-slip effect in the contact area and the low stiffness of the clamping unit compared
to perfect boundary conditions in the simulation. In fact, the simulation result shows
a lower maximum load of F = 43 kN that is in very good coincidence with the FSBT
test procedure, where the rotor cracked at F = 45 kN. Furthermore, the failure point of
simulation and experimental result show very good agreement.

The images taken by the stereo microscope show that both cracks run inside the wound
layers due to lower strength than in pure epoxy matrix. Another visible result is the low
void content which is a result of the pretension force during winding operation.

The SEM results make it possible to further understand the failure. The crack runs al-
most everywhere between the fiber and the matrix. This is an indicator for a rather weak
resin fiber bond, resulting in interface cracks. For these structures possible uncertainties
like residual stresses [91] or imperfections on the surface [92] due to the manufacturing
process can be the reason. This causes a major decrease in radial direction strength
and should be considered when choosing the fiber/matrix combination. The difference
between weak and strong interfacial behavior was studied in [93, 94, 95].
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5 Application: FESS - Flywheel Energy
Storage System

5.1 Introduction
Within this chapter the achieved results of the previous ones are combined and applied
to a FESS. The main focus lies on the completely new design of the FESS rotor that
consists of a CFRP hollow shaft with sections of different winding angles and a hoop
wound hybrid multi-ring, press-fitted inertia mass with a H-shaped cross-section where
parts of it are presented in [96, 75, 97, 98].
The key design features of the FESS are the high energy efficiency and reliability. In

the following the main components are shown and quickly explained which are the result
of a major optimization procedure that covered hundreds of parameters that are detailed
described in [99, 100, 101, 87, 102, 86].

5.2 FESS Prototype
The developed FESS prototype is designed for household applications where several
charging and discharging cycles and storing periods of about one day can occur. The
prototype and the electronic rack are shown in Fig. 5.1(a).
The in-runner FESS concept is covered inside an evacuated containment that is also

used as supporting structure for the upper and lower stator where the axial and ra-
dial AMB’s, M/G, auxiliary bearings and the position sensors are located. The FESS
components are depicted in Fig. 5.1(b).

5.2.1 Electronic Rack
In Fig. 5.2(a) the front view of the electronic rack is shown. At the top the power
supply for the sensors, control electronic and the data acquisition (DAQ) system is
located. Underneath, the inverters for the AMB’s (four, including two H-bridges each),
the M/G (six H-bridges for the six coils of three phases A,B and C) and the used load
for discharging (three 400W lights on top of the electronic rack) are mounted.

Inverter The inverters for the AMB’s are designed for minimum losses at a maximum
continuous output current of 12A, whereas the inverter for the M/G can provide 30A
continuous at a linked voltage of the DC bus of 350V. Below the inverters, the three
power supplies for the linked voltages are located. The upper two are for the AMB
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Figure 5.1: Flywheel energy storage system (FESS): (a) prototype consisting of the elec-
tronic rack and the containment including the flywheel; (b) cut view of the
FESS.

inverters and the lower one is for the M/G inverters to be able to use different linked
voltages for testing and to avoid total failure in case of total power loss.

Control electronic The rear view of the electronic rack is depicted in Fig. 5.2(b). From
the left to the right one can see the power and sensor wires, the mainboard including
the five controllers (axial AMB, radial AMB, M/G phase A,B and C), several filters for
the sensor signals (positions, currents, voltages and temperatures) and the multichannel
DAQ system.

Data acquisition The DAQ was realized by using two National Instruments cRIO sys-
tems in master/slave configuration programmed in LabVIEW. In total 120 channels are
recorded at 62.5 kS/ch and handled by the integrated FPGA and realtime module before
the data is streamed galvanically isolated to the PC where the signals are visualized and
saved. The schematic is shown in Fig. 5.2(c).

The front panel (LabVIEW VI, see Fig. 5.2(d)) is designed for condition monitoring of
the following FESS groups: axial AMB (z-position, current and voltage), radial AMB’s
(x1, y1-position, x2, y2-position, currents and voltage), M/G (absolute angle position, in-
cremental angle pulse, currents and voltage) and system states (logic and temperatures).
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Figure 5.2: Electronic rack: (a) front view; (b) rear view showing the DAQ system, the
ARM controller cards and the mainboard; (c) schematic of the DAQ system;
(d) front panel of the LabView VI for condition monitoring.

5.2.2 Containment
High rotational speeds cause high kinetic energy and so fragments of the rotor can do
serious damage to structures and people in case of a burst event. The heavy and very
stiff designed steel construction is necessary in first to ensure a safe operation of the
FESS and in second to evacuate the chamber to reduce rotational losses due to air drag.
The containment and the support structure including the vacuum system is shown in
Fig. 5.1(a).

Inside the containment there is the top and bottom stator mounted. The top stator
consists of the axial and top radial AMB and the top auxiliary bearing, whereas the lower
stator consists of the bottom radial AMB, the M/G and the bottom auxiliary bearing. In
each stator, four radial position sensors are placed in differential mode and the angular
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(a) (b)

Figure 5.3: Stators of the FESS: (a) top stator with the calibration ring for the position
sensors; (b) bottom stator.

position sensors as well as the axial position sensor are integrated in the bottom stator.
The two finished assembled stators are shown in Fig. 5.3(a) and Fig. 5.3(b).

Active Magnetic Bearings The most important part of high efficient FESS are the
AMB’s due to lower losses compared to conventional roller bearings and for the possibility
to vary the stiffness and damping of the bearings by adapting the control parameters.
The radial AMB’s are separated into two planes with three magnets each in 120 ◦

configuration. The axial bearing is designed in a hybrid configuration consisting of an
AMB in combination with a permanent magnet to further reduce the power needed for
static levitation.

Switched Reluctance Motor The major advantage of a switched reluctance motor
(SRM) for FESS applications is the minimal holding torque in stand-by operation, one of
the most criticized facts in this topic. The M/G used is a 6/4-SRM with no permanent
magnets in the rotor part. The SRM serves also the possibility for compensation of
unbalance forces by separate control of the coils-current of one phase.

Rotor The main focus of the FESS lays on the rotor due to its high speed rotating
inertia mass that stores the kinetic energy. The aim of rotor design is to maximize the
energy density κ which is defined as the rotational kinetic energy per unit mass m

κ = 1
2
Jω2

max
m

, (5.1)

with the maximum angular velocity ωmax and the polar moment of inertia J of the rotor.
The design purpose is also strict to the following considerations:
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• especially for filament wound CFRP or other fiber reinforced materials it is neces-
sary to measure the material parameter from specimens that are manufactured in
the same way as the rotor is done,

• using a strength safety factor for all failure criteria, to ensure some clearance for
manufacturing imperfections or modeling uncertainties,

• if it’s possible, one should manufacture press-fitted multi-ring assemblies for the
inertia mass due to the advantages of pre-stressed structures,

• the dynamics of the rotor has to be taken into account, due to the fact, that fly-
wheel application use large moments of inertia and so a fast drive through natural
frequencies of the rotor is problematic because of resonances and existing unbal-
ances.

In the following section, a design of a FESS rotor is presented that uses the above
mentioned considerations.

5.3 Design and Optimization of a CFRP Flywheel Rotor
The starting point for the investigation on a new FESS rotor is a configuration with an
aluminium shaft that is thermally shrink-fitted into a CFRP hoop wound inertia mass
with a special patented geometry ([103, 86]). The shape of this CFRP inertia mass is
a result of a two-step energy density optimization. In the first step a genetic algorithm
is used to find the optimum shape of the inertia mass. Based on these results charac-
teristic parameters are derived and a combined strength safety factor and rotordynamic
optimization is carried out in the second step.

The stress state of this FESS rotor (aluminium shaft & inertia mass) is a linear
combination of the thermal press-fitting process and the inertial load due to rotation.
With a strength safety margin of two, an energy density of 5.5Wh/kg at a rotor speed of
ωsp = 860 s−1 can be reached with this setup, compared to 3.8Wh/kg for a conventional
H-shaped rotor geometry at a rotor speed of ωsp = 750 s−1.
This values are in fact theoretically, because the manufacturing by wet filament wind-

ing is rather complicated and uneconomical. The biggest problem is given by the exother-
mic reaction of the epoxy resin during the hardening process. This implies thermally
induced pre-stressing that has a negative influence on the applicable load by tension
stress.
The thermal pre-stresses are reduced by manufacturing rings with lower thicknesses

in radial direction that are press-fitted together. The feasibility study for a press-fitted
multi-ring assembly with rectangular cross-section was shown in [97]. Furthermore, the
energy density of a FESS rotor can be increased by using a CFRP hollow shaft instead
of a full aluminium shaft ([98]).
The new design of the FESS rotor consists of a CFRP hollow shaft and a press-fitted

hybrid multi-ring H-shaped inertia mass. The whole design had to be integrated into
the existing FESS test rig and therefore the following boundary conditions are present:
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• the outer geometry of the shaft is given to use the existing AMB and M/G parts,

• the inner geometry of the containment is the limit for the size of the inertia mass,

• a minimum core diameter of the hollow shaft due to a minimum mandrel diameter
for filament winding,

• a maximum of three rings for the inertia mass because of the high manufacturing
effort and

• the overall mass of the FESS rotor is restricted.

This hollow shaft design further increases the energy density and the pre-stressing of the
inertia mass reduces the radial stress component of the stress state compared to a full
inertia mass and so higher operational speeds can be achieved for this CFRP material
with a low radial strength.

Material Modeling The aluminium, steel and ferro-magnetic sections are assumed to
have isotropic mechanical behaviour. The hollow shaft is separated into three cylinders
with different but constant positive and negative winding angle αi. The rings for the
inertia mass are hoop wound (α = 0 ◦).
Hence, the cylinders can be obtained by several plies of embedded fibers and so each

ply has an orthotropic mechanical behavior, as shown in Fig. 5.4(a) and Fig. 5.4(b).
The generalized Hooke’s law is used to model the orthotropic material behavior in the
local ply l, q, t-frame with EL, the local material stiffness tensor. It’s components are
computed by the given relations

∆ = 1− 2ν12ν21 − 2ν21ν23ν12 − ν2
23

E1E2
2

, (5.2)

Gqt = E2
2(1 + ν23) ,

νij
Ei

= νji
Ej
, i, j = 1, 2, 3 ,

Ell = 1− ν2
23

E2
2∆

, Elq = ν21 + ν21ν23
E2

2∆
,

Eqq = 1− ν12ν21
E1E2∆ , Eqt = ν23 + ν12ν21

E1E2∆ ,

Ett = 1− ν12ν21
E1E2∆ , Elt = ν21 + ν21ν23

E2
2∆

. (5.3)

The overall mechanical behavior in the global frame (ϕ, r, z) is calculated by assuming
that the use of the classical lamination theory (CLT) is valid for the three sections with
high thickness to radius ratio and where only the membrane forces nG, the extensional
stiffness tensor A and the strains εG are taken into account. The bending momentsmG

and the bending stiffness tensor D are neglected.
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Figure 5.4: Composite cylinder sections in the global ϕ, r, z-coordinate system, and plan
of ply in the local l, q, t-coordinate system: (a) three sections of different
winding angles; (b) hoop wound cylinder.

Further, the assumption of a symmetric laminate with equal ply thicknesses h leads to
a zero coupling stiffness tensor B and therefore also the curvature κG must not be taken
into account. The overall global stiffness tensor EG can be described by transformation
of the local stiffness tensor EL of each ply into the global coordinate system. Due to the
positive and negative winding angle and the assumption of an even number of plies n in
each section, the global stiffness tensor EG(α) can be calculated as follows

nG =



nϕ
nr
nz
nrz
nϕz
nϕr


=

n∑
k=1

∫ rk

rk−1



σϕ
σr
σz
σrz
σϕz
σϕr


k

dr =
n∑
k=1

∫ rk

rk−1
(EG)k



εϕ
εr
εz
γrz
γϕz
γϕr


k

dr

=
n∑
k=1

∫ rk

rk−1
(T−1EL T

−T )k



εϕ
εr
εz
γrz
γϕz
γϕr


k

dr =
n∑
k=1

[
(T−1EL T

−T )k
∫ rk

rk−1
dr

]


εϕ
εr
εz
γrz
γϕz
γϕr


︸ ︷︷ ︸
εG

(5.4)

=
n∑
k=1

[
(T−1EL T

−T )k(rk − rk−1)
]
εG = A · εG ,
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nG =
[
h

n∑
k=1

(T−1EL T
−T )k

]
εG

= h

[
n

2 (T (α)−1EL T (α)−T ) + n

2 (T (−α)−1EL T (−α)−T )
]
εG , (5.5)

σG = nG/(n · h) =
[

(T (α)−1EL T (α)−T ) + (T (−α)−1EL T (−α)−T )
2

]
︸ ︷︷ ︸

EG

εG , (5.6)

σG = EG(α) · εG , (5.7)

EG(α) = (T (α)−1EL T (α)−T ) + (T (−α)−1EL T (−α)−T )
2 . (5.8)

Thereby, the transformation matrix T with c = cosα and s = sinα computes by

T (α) =



c2 0 s2 0 2cs 0
0 1 0 0 0 0
s2 0 c2 0 −2cs 0
0 0 0 c 0 s
−cs 0 cs 0 c2 − s2 0

0 0 0 −s 0 c


. (5.9)

Stress Analysis For stress analysis the rotor model was built up in the FE software
COMSOL [68] performing a quasi-static analysis with press-fit between the inertia mass
and the hollow shaft and press-fits between the three rings of the inertia mass. The
axisymmetric geometry of the nonlinear (contact between rings and shaft) model of the
rotor is discretized by quadrilateral finite elements with quadratic basis functions and
using the rϕ- symmetry plane as roller boundary condition, see Fig. 5.5. Each section of
the CFRP hollow shaft is modeled by using Eqn. (5.8). The CFRP rings of the inertia
mass are assumed to be transversely isotropic in hoop direction. For the CFRP rotor
and the shaft components the material parameters are listed in Table 5.1. The stress
state of this FESS rotor was calculated in two steps. In a first step the stress state due
to all existing interference-fits and in a second step the inertial loads due to rotation was
computed. The global stress state was transformed back into the local frame to perform
the failure estimation by the generalized quadratic Tsai-Wu criterion, which reads as
(see also section 4.3)

F
T
σL + σTL F̃ σL = 1 . (5.10)

The stress state vector σL and F , F̃ the second and fourth order tensor of the strength
parameters out of Table 5.1 and Table 5.2 are used to calculate a scalar strength safety
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Figure 5.5: Stress analysis, defined regions and model simplification by separating the
rotor into inertia mass and shaft including a link modeled with a pressure p
to reduce simulation effort for the two optimizations.

parameter S. A safety parameter 1/S ≥ 1 indicates material failure and for the following
optimization the strength safety factor SRT W

is used to avoid material failure.

Modal Analysis For modal analysis of the FESS rotor the FE software ANSYS [69] was
used with pre-stressing of the rotating structure using the following reduced semi-discrete
Galerkin formulation for structural mechanics in the stationary frame

Mu · ü+ (Gu +Cu) · u̇+Ku · u = fB , (5.11)

where Mu, Gu, Cu, Ku and fB denotes the mass, gyroscopic, damping and stiffness
matrix, and fB is the bearing force vector. The rotordynamic model consists of different
computational regions representing the components of the rotor, see Fig. 5.6. Each region
is meshed using SOLID273 generalized axisymmetric solid 8 node element to perform a
full 3D analysis with minimal simulation effort. Each section of the CFRP hollow shaft
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Figure 5.6: Rotordynamic analysis, defined areas and resulting sample mode shapes:
tilting, first bending and second bending mode.

is modeled by using Eqn. (5.8). The CFRP rings of the inertia mass are assumed to be
transversely isotropic in hoop direction. The whole configuration is pre-stressed, firstly
due to the initial configuration and secondly by the stress stiffening effect due to rotation.
The material parameters in Table 5.1 are used for all simulations. The characteristic of
the magnetic bearing was simplified using the COMBIN214 2D element at the location
of the radial bearings. These elements allow stiffness and damping characteristics in two
perpendicular directions defining the bearing plane. The bearing stiffness and damping
were set to 106 N/m and 2 · 104 Ns/m. Based on the maximum stored energy and the
given rotor geometry of the inertia mass, the maximum speed of rotation was used to
set up the Campbell diagram. In total, five incremental steps were used to calculate the
Campbell diagram to find the critical speed of the FESS that operates below the lowest
bending natural frequency, so called under-critical.

Optimization of the FESS Rotor At first the geometry and the material combination
for the rings of the inertia mass is optimized and afterwards the winding angles of the
CFRP hollow shaft are optimized. This separation is valid due to the fact, that the
optimization of the inertia mass is to maximize the energy density which is slightly
effected by the shaft due to the small radii and vice versa the bending natural frequency
maximization of the shaft is not effected by the inertia mass because firstly the overall
mass is restricted and secondly for all possible materials, used for the different rings,
the stiffness in axial direction is nearly the same which influences mostly the bending
natural frequencies.
The optimization variables for the inertia mass are the following parameter: inner

height hi, radius r1, r2 and ra and the interferences ∆1 and ∆2, see Fig. 5.5. The
interferences are bounded by a maximum of 0.4mm, the thickness of one ring is restricted
to a minimum of 30mm, the radius ra can reach a maximum of 330mm, the height hi
is able to reach ha = 200mm and the desired mass mdes should count 125± 5 kg.
The problem was solved using a genetic algorithm. The fitness function is to maximize
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the energy density κ

min
x
{−κ} = min

x

{
−1

2
Jω2

max
m

}
, (5.12)

Table 5.1: Measured material data for the T800S CFRP specimens with a fiber volume
fraction of 60 % and additional material data used for simulation.

T800S/705
Elastic modulus in direction l, GPa E∗1 139
Elastic modulus in direction q, GPa E∗2 7.8
Elastic modulus in direction t, GPa E∗3 7.8
Poissons ratio ν∗12 0.41
Poissons ratio ν∗23 0.38
Shear modulus in direction lq, GPa G∗12 3.4
Tensile strength in direction l, MPa X∗t 2200
Compressive strength in direction l, MPa X∗c 1000
Tensile strength in direction q, t, MPa Y ∗t , Z

∗
t 24

Compressive strength in direction q, t, MPa Y ∗c , Z
∗
c 113

Shear strength in direction lq, MPa S∗12 57
Shear strength in direction lt, MPa S∗13 57
Shear strength in direction qt, MPa S∗23 14
Density, kg/m3 ρ∗ 1617
Steel
Elastic modulus, GPa ESt 210
Poissons ratio νSt 0.3
Von mises strength, MPa σV,St 690
Density, kg/m3 ρ 7850
Aluminium
Elastic modulus, GPa EAl 70
Poissons ratio νAl 0.3
Von Mises strength, MPa σV,Al 500
Density, kg/m3 ρ 2700
Ferro-magnetic
Elastic modulus, GPa EFm 210
Poissons ratio νFm 0.3
Von Mises strength, MPa σV,Fm 600
Density, kg/m3 ρ 8150
∗ obtained by measurements
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where ωmax = ωsp
√

1/(SRT W
max(1/S1, 1/S2, 1/S3)) and is evaluated by a simplified

quasi-static FE model of the inertia mass calculating the safety parameters 1/S1,2,3 of
the three rings and using a strength safety factor against failure SRT W

, shown in the mid
of Fig. 5.5, where x = (hi, r1, r2, ra,∆1,∆2)T is the vector of the optimization variables.
The pressure at the inner radius is set to p = 5MPa and interference pressures at the
interfaces give the nonlinear constraint function

min
x

(p∆1 , p∆2) ≥ pmin , (5.13)

where pmin = 2MPa at full speed to guarantee no opening of the interfaces due to
manufacturing uncertainties. The optimization was done for different materials for each
ring. A set of four materials that differs in the stiffness in hoop direction, strength and
density were used and so 64 optimizations had to be carried out to find the optimum
configuration.

The optimization variables for the shaft are the three winding angles of the three
different sections: α1, α2 and α3. The step size of a winding angle is set to ∆α = 1 ◦,
due to the manufacturing constraints given by the filament winding process. This leads
to a genetic algorithm which can handle integer variables. The fitness function is to
maximize the lowest natural bending frequencies fB1 and fB2

min
x
{−min(fB1, fB2)} (5.14)

and is evaluated by the rotordynamic FE model of the FESS rotor, where x = (α1,α2,α3)T
is the vector of the optimization variables. Therefore, the Campbell diagram is evaluated
up to an angular velocity ωmax that is given by the result of the previous optimization
and the measured material properties. A simplified quasi-static FE model, shown in the
bottom of Fig. 5.5, of the rotor with the three different inverse safety parameters 1/S1,2,3
of each region gives the nonlinear constraint function

max
x

( 1
S1
,

1
S2
,

1
S3

)
≤ 1
SRT W

, (5.15)

where SRT W
denotes a strength safety factor against failure that is given by the input.

The static model was simplified to reduce simulation effort by replacing the contact
between the inertia mass and shaft with a constant pressure of p = 5MPa. Another
constraint is the maximum allowable winding angle of about 70 ◦ to guarantee a possible
manufacturing of the hollow shaft due to the pretension force.
The fitness functions as well as the constraints for both optimizations are shown in

Fig. 5.7 and the MATLAB ([77]) built-in function ga(...) has been used. The population
size was 200 and ten elite individuals were used. Any other options where left default.
The goal of the first optimization is to find the material combination and geometry

parameter that maximizes the energy density of the hybrid multi-ring inertia mass for the
given geometry boundaries, strength safety factor SRT W

= 2 for stress analysis and the
selectable materials for the rings that are listed in Table 5.2. The optimization resulted in
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Figure 5.7: Optimization schemes: (a) hybrid multi-ring inertia mass; (b) CFRP hollow
shaft.

a maximum energy density of κ = 16.2Wh/kg for an angular velocity ωmax = 1390 s−1.
Finding the winding angle triple, which maximizes the minimum of the first and the

second natural bending frequency for the given input of geometry, strength safety factor
SRT W

= 2 for stress analysis and the above given results is the goal of the second op-
timization. By fulfilling the nonlinear constraint function, a maximum angular velocity
ωmax can be calculated that leads to a maximum energy content Emax. Using the Camp-
bell diagram, a safety factor SfB against reaching the lowest natural bending frequency,
due to the optimal solution for the winding angles α1, α2 and α3, can be found. After 45
generations, a winding angle optimum combination of α1 = 19 ◦, α2 = 69 ◦ and α3 = 13 ◦
for an angular velocity ω = 1390 s−1 was found.
This leads to a lowest bending natural frequency of 284Hz for the second S-shaped

bending mode at this speed. The stress analysis at this speed results in a safety factor of
SRT W

= 2.21. Hence, the speed can still be increased to ω = 1460 s−1 until failure in the
hollow shaft occurs and that leads to an energy density of 11.9Wh/kg for the FESS rotor.
Towards the energy density, this is an increase of 38 % compared to the aluminium shaft
based FESS rotor with identical inertia mass. For this case the Campbell diagram has
to be enlarged and it can be found that the critical speed is far beyond the failure speed.
The safety factor against reaching the second backward bending mode is SfB

= 1.21, as
can be seen in Fig. 5.8.
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Figure 5.8: Campbell diagram of the FESS rotor: tilting mode (TM), first (1.BM) and
second (2.BM) bending mode and critical speed.

Table 5.2: Selectable material data for optimization.
1∗ 2∗ 3∗ 4

Fiber T800S K13916 K63916 S2-449 43.5k
Matrix 705 epoxy 705 epoxy 705 epoxy SP 381
E1, GPa 139 290 190 50
E2, GPa 7.8 7.8 10.7 13.3
E3, GPa 7.8 7.8 10.7 13.3
ν12 0.41 0.4 0.4 0.4
ν23 0.38 0.4 0.4 0.4
G12, GPa 3.4 3.9 3.9 4.7
Xt, MPa 2200 1300 2400 1700
Xc, MPa 1000 470 1100 1160
Yt, Zt, MPa 24 19 19 62
Yc, Zc, MPa 113 105 105 155
S12, MPa 57 25 25 97
S13, MPa 57 25 25 87
S23, MPa 14 14 14 21
ρ, kg/m3 1617 1815 1860 1940
∗ obtained by measurements, the rest is from [76].
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5.4 Manufacturing and Balancing of the CFRP Flywheel Rotor
The hollow shaft was manufactured using wet filament winding process. In total, a set
of six T800S 24K rovings were combined to achieve a band thickness of about 19mm
and a layer thickness of about 0.4mm. The different winding angles were applied using
different rotating and translational speeds of the CNC winding machine. The sections
including the lowest winding angles were manufactured using special winding-pins that
were mounted on the steel mandrel before winding operation to guarantee a slight pre-
tension force of 20N, see Fig. 5.9(a). After the winding operation, see Fig. 5.9(b), the
mandrel including the unmachined part was cured in an oven with an defined cycle of
1st: 2h/100◦C, 2nd: 6h/150◦C, 3rd: 1h/60◦C.

The finished cured part was then pulled off the mandrel by a hydraulic cylinder and
the contour including the tolerances where machined using a CNC turning operation,
see the finished shaft in Fig. 5.9(c).
The three rings where manufactured in the same way as the shaft but due to the hoop

winding operation the mandrel setup is different as shown in Fig. 5.9(d). For the inner
rings the T800S fiber, whereas for the outer ring the stiffer K13916 fiber was used. After
curing with the identical cycle as the shaft was cured, the rings where separated and
the conical contour including the interference-fit tolerances where machined. The three
rings where then assembled by press-fitting with a 4MN hydraulic press, see Fig. 5.9(e).
First the inner two rings where press-fitted followed by the outer ring. In Fig. 5.9(f) the
finished machined inertia mass is shown. In the meantime the hollow shaft was finished
by inserting liners for mounting of the AMB and M/G parts as well as by thermal fitting
of the aluminium sensor rings onto the shaft.
The shaft was then centric positioned inside the inertia mass, see Fig. 5.9(g) and

afterwards the two parts where press-fitted together by a steel pressure pad and the
4MN hydraulic press shown in Fig. 5.9(h). The assembling was then completed by
mounting the rotor components of the axial and radial AMB’s and the M/G parts, see
Fig. 5.9(i).
The advantage of the hollow shaft is the possibility to integrate a wireless measurement

system inside the core, see Fig. 5.10(a). This four channel system with a sampling
frequency of fs = 125Hz communicates via Bluetooth with the measurement PC. Three
of the four channels where used as quarter bridges for strain gauges applied onto the
inertia mass to online measure defined strains as well as the temperature of the shaft
with the fourth channel. The strain gauges applied on the inner and middle ring are
depicted in Fig. 5.10(b) and Fig. 5.10(c).
After inserting the measurement system, the FESS rotor was ready for balancing.

This was done by an automatic balancing machine that performs a dynamic unbalance
correction in two planes described in [104]. The corrective masses, for a run at ω =
180 s−1, of A = 4.84 g and B = 4.35 g made of CFRP where applied by epoxy resin
inside the circumference of the outer ring. With this a quality grade of G2.5mm/s,
defined in [105], was reached. The machine and the applied corrective masses are shown
in Fig. 5.11.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.9: Fabrication and assembling of the FESS rotor: (a) steel mandrel with sym-
metric mounted winding pins; (b) winding operation of the hollow shaft; (c)
finished machined shaft; (d) steel mandrel for hoop winding operation; (e)
press-fitting of the rings; (f) finished machined inertia mass; (g) centric po-
sitioning of the shaft; (h) press-fitting of the shaft and the inertia mass by
hydraulic press; (i) finished assembled rotor including the components of the
axial and radial AMB’s and the M/G.
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(a)

(b)

(c)

Figure 5.10: Wireless measurement system: (a) cylinder including the GSV-4BT system,
lithium ion battery and the interface for the sensors; (b) radial strain gauge
on middle ring; (c) radial strain gauge on inner ring.

(a) (b)

Figure 5.11: Automatic balancing of the FESS rotor: (a) balancing machine; (b) result-
ing corrective masses.
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Figure 5.12: FVT testing scheme for the assembled shaft and the FESS rotor.

5.5 Experimental Results
This section presents the results of the experiments conducted on the prototype FESS
system described above. At first the essential machine parameter that is directly mea-
surable is presented. The spinning experiments and the efficiency test are performed
with a maximum speed of ω = 440 s−1, due to power electronic restrictions and sensor
noise. The section closes with a discussion of the overall results from the experiments
and compares them to simulation results and design criteria mentioned above.

5.5.1 Prototype Machine Parameter: Rotor Natural Frequency
Accurate prediction of the natural frequencies and mode shapes of the rotor are nec-
essary to prevent excessive bearing loss and even catastrophic failure due to unwanted
excitations or normal operating conditions. For a successful operation of a FESS, the
knowledge of the natural frequencies of the rotor and its components is of major inter-
est. In the following the complete assembled shaft without the inertia mass and the
finished FESS rotor are experimentally analyzed and compared to simulations using
modal analysis.

Experimental Modal Analysis (EMA) Forced vibration testing (FVT) is performed to
identify the shafts and the FESS rotor modal characteristics. Therefore, both structures
were artificially excited in point i and its response yk(t) to this excitation is measured
together with the forcing signal xi(t). By transformation of these time signals into the
frequency domain, the frequency response matrix H(jω) can be found. By assuming
a linear system, H(jω) is diagonal and so the excitation point i can be kept constant
while measuring the response over the shaft in the n points, see Fig. 5.12. The structural
responses were measured in discrete points by a PSV-500-H4 laser scanning vibrometer
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(a) (b)

Figure 5.13: Free-free support: (a) assembled shaft including the motor-/bearing com-
ponents; (b) FESS rotor.

(a) (b)

Figure 5.14: Force excitation by electrodynamic shaker and force measurement by piezo-
electric sensor: (a) assembled shaft; (b) FESS rotor.

(LSV) in a non contact way. Therefore, the structures were supported by “free-free“
boundary conditions, with elastic bands hung up at a fixed support, see Fig. 5.13(a)
and Fig. 5.13(b). The force input was provided by a coupling rod, including a piezoelec-
tric force sensor that was mounted on an electrodynamic shaker, see Fig. 5.14(a) and
Fig. 5.14(b). The excitation signal used was a band limited white noise (0− 2 kHz and
0− 0.5 kHz).
The movement of the axis was observed in n = 70 points for the shaft and in n = 190

points for the rotor. The excitation point was kept constant in point i = 10 for the shaft
and in point i = 26 for the rotor. The measurements were filtered and averaged (nAV G =
20). Then the best measurable natural bending frequencies and the corresponding mode
shapes were extracted out of the average accelerance frequency response function (FRF)
over all measured points. The measured natural frequencies and damping ratios are listed
in Table 5.3 and the measured mode shapes are depicted in Fig. 5.15(a) and Fig. 5.15(b).
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(a) (b)

Figure 5.15: Out of plane deformation of measured mode shapes in nm: (a) assembled
shaft; (b) FESS rotor.

Finite Element Modal Analysis (FEMA) The bending natural frequencies for the FE
model of the shaft and rotor are then compared to the experimental measured data.
This was done in two ways. Firstly, a harmonic analysis without damping was carried
out over the same frequency range like in the EMA with a step size of ∆f = 2Hz.

Therefore, both models were excited in the same point i = 10 and i = 26 by a harmonic
load. The point accelerance FRF’s of point k = 1 and k = 35 for the shaft k = 1 and
k = 46 for the rotor where calculated and are then compared to the EMA results shown
in Fig. 5.16 and Fig. 5.17. The FEMA results of H1,10 and H35,10 agree well with the
EMA locations of the first two bending modes (1.BM and 2.BM) and the same can be
seen for the result of H1,26 and H46,26 for the first bending mode (1.BM) of the rotor.

Table 5.3: Experimental and simulated results.
EMA FEMA FEMA
(LSV) (harmonic, undamped) (modal, damped∗)

Mode shape f in Hz ζ in % f in Hz f in Hz ζ in %
Assembled shaft without inertia mass
1.BM “U-shape“ 368 1.01 398.98 398.96 1.23
2.BM “S-shape“ 874 1.45 870.31 870.23 1.35
3.BM “M-shape“ 1291 1.78 1212.3 1212.1 1.69
FESS rotor
1.BM “U-shape“ 270 1.11 300.46 300.44 1.15
2.BM “S-shape“ - - 360.08 360.06 1.05
∗ shaft:α = 30.96 and β = 0.000003895
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Figure 5.16: Shaft point accelerance FRF of finite element modal analysis (FEMA) and
experimental modal analysis (EMA) at two different locations: response in
point k = 1 and k = 35 and excitation in point i = 10.

Due to large damping of the material at higher frequencies, the EMA results show only
a well damped 3.BM and no more determinable modes in this frequency range for the
shaft. A similar EMA result shows the rotor measurement, where only the first bending
mode can be clearly identified. This is also because of the fact that due to the large
rotor mass it is hard to get enough energy into the system over this broad frequency
range. It can also be seen that each mode separates at it’s peak. This is caused by
non-perfect axisymmetric structures resulting in mode shapes that are not vibrating in
the measurement plane. The results of the harmonic analysis are also given in Table 5.3.
Secondly, a modal analysis including Rayleigh damping was performed to study the

effect of structural damping. Therefore, a least squares fit was performed to identify
the Rayleigh damping coefficients α and β by the given relation 2ζiωi = α + βω2

i . The
EMA modal parameter, the damping ratio ζi and the damped natural frequency ωi, of
all measurable shaft modes where used for the identification. For the FESS rotor the
Rayleigh damping coefficients of the shaft were used. The results are given in Table 5.3.
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Figure 5.17: Rotor point accelerance FRF of finite element modal analysis (FEMA) and
experimental modal analysis (EMA) at two different locations: response in
point k = 1 and k = 46 and excitation in point i = 26.

5.5.2 Static Levitation Test
The loops for all control planes are closed by eddy-current based displacement sensors.
The sensors for the radial AMB’s are working in differential mode to minimize errors due
to the high frequency switching inverters and to get double sensitivity. The zero position
is calibrated with a sensor calibration ring, see Fig. 5.3(a). The control algorithm used
is a decentralized control structure with PID control, detailed explained in [106]. The
step responses of both control planes from the start positions (mechanical contact with
auxiliary bearings) to operating positions are shown in Fig. 5.18(a) and Fig. 5.18(b).
The rotor moves strict into the center and stays stable within a circle of 0.07mm

radius. The axial position is feed back by a single displacement sensor but also a PID
control structure is used. The axial position was calibrated in a different way. Due to
the hybrid structure of the axial AMB the zero position was set exactly into the point
where the current for the AMB is zero to guarantee energy efficient operation.
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Figure 5.18: Static levitation of the rotor: (a) bottom radial bearing x1, y1-plane; (b)
top radial bearing x2, y2-plane; (c) axial, z-direction

The step response from the start position (mechanical contact with top auxiliary bearing)
to zero current position is shown in Fig. 5.18(c). The static levitation of the FESS rotor
with a mass of 209 kg requires a power consumption of PAMB = 25W.
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(a) (b)

Figure 5.19: Measurement of moment of inertia: (a) applied spring between the rotor
and containment; (b) displacement controlled spring constant measuring.

5.5.3 Measurement of Moment of Inertia
One advantage of FESS compared to e.g. batteries, is the accurate knowledge of the
actual energy content Eact = 1

2Jω
2 due to measuring the angular velocity ω of the

rotor. Therefore, the moment of inertia J has to be measured and this is performed by
an oscillation test, see Fig. 5.19(a). The levitated rotor is connected by a spring to the
containment. This results in a slightly damped free oscillating system with an undamped
natural frequency ω0 that can be calculated out of the systems response due to angular
deflection α of the rotor.

Furthermore, by knowing the spring constant k, the moment of inertia can be direct
calculated by the relation J = kr2/ω2

0, where r is the distance of the spring application
point to the axis of rotation. Figure 5.19(b) shows the measurement setup to calculate
the spring stiffness constant.
The free oscillation of the rotor is depicted in Fig. 5.20. The damped natural fre-

quency is given by ωd = 2π/(t2 − t1). The damping coefficient is calculated out of the
exponential envelope δ = log(α1/α2)/(t2 − t1) = 0.0486 1/s and then the undamped
natural frequency ω0 =

√
ω2
d + δ2 follows to ω0 = 5.76 1/s. A linear regression of the

spring force vs. deflection data results in a spring stiffness constant of k = 2170.6N/m.
In combination with the given distance r = 0.34m the moment of inertia J = 7.55 kgm2

can be calculated.

5.5.4 Vacuum Tests
The vacuum system used for this experiment is a TRIVAC B D25B with a rated power
of Pvac = 750W at an minimum pressure of pvac = 0.1mbar. The pressure was mea-
sured by a PENNINGVAC PTR90 sensor and observed by the data acquisition system
described above. The goal of the first test is to measure the energy needed to evacu-
ate the containment to provide operating condition that was defined by a pressure of
pvac,op = 0.1mbar. The second test is to observe the leakage of the containment over a
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Figure 5.20: Angular movement of the rotor due to initial deflection.
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Figure 5.21: Containment pressure starting from the initial to operating condition in-
cluding the leakage curve in red.

defined cycle of t = 24h and measure the energy needed to get back to operating condi-
tion. The initial condition takes approximately 15min to reach the operating pressure,
see Fig. 5.21. After that, the vacuum system is switched off and the vacuum loss due to
leakage of the sealings starts. The cyclic cycle of 24h is re-evacuated in about 10min
to reach the operating pressure of pvac = 0.1mbar again. This results in combination
with Fig. 5.22 in an energy loss of Evac,init = 180Wh for the initial evacuation and
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Figure 5.22: Power of the vacuum system for different containment pressure levels mea-
sured by a HEME ANALYST 2060 current probe.

Evac,op = 125Wh for a defined 24h operation cycle.

5.5.5 Maximum Speed Test
The test was performed starting from the static levitation to a maximum speed of ω =
440 s−1 and it’s main purpose is to measure well chosen radial strain points of interest
to validate the FE simulation used for stress analysis. This is usually performed by non-
contact measuring of the radial deformation of the inertia mass or using a special optical
pattern on the surface to perform Digital image correlation (DIC) during operation of
the FESS.
With the above discussed wireless DAQ system, it is possible to observe up to four

points by using quarter bridge operation mode. This implies a temperature compen-
sation and therefore the temperature of the shaft during operation was observed by a
PT1000 sensor by one measurement channel. In general the strains where measured by
Hottinger Baldwin Messtechnik (HBM) strain gauges with a resistance of 350 Ω that
were directly applied at the predicted maximum value point of the radial strain at the
inner two rings, see Fig. 5.10(b) and Fig. 5.10(c). A third strain gauge was applied in
hoop direction at the inside of the outer ring but unfortunately it was destroyed during
the assembling of the rotor and containment.
The measurement was recorded with a sampling frequency of fs = 6Hz after evacua-

tion of the containment and settling of the temperature of the shaft. During operation
almost no temperature change inside the containment and of the shaft was observed.
The relative strain changes due to inertial forces are depicted in Fig. 5.23. The depicted
strains are relative because the static levitation is the pre-stressed configuration.

5.5.6 Efficiency Measurements
The FESS efficiency was measured during a spin up (charging of the system) and spin
down cycles (discharging of the system) over a defined 2 : 1 speed range. The acceleration
starts at a speed of ω = 120 s−1 and is followed by deceleration from ω = 220 s−1.

91



5 Application: FESS - Flywheel Energy Storage System

0 50 100 150 200 250 300 350 400 440
0

25

50

75

100

125

150

re
la

tiv
e 

st
ra

in
 in

 µ
m

/m

angular velocity in s−1

 

 

measured maximum of inner ring
FEM maximum of inner ring
measured maximum of middle ring
FEM maximum of middle ring

Figure 5.23: Measured vs. FEM radial strains on the inner and middle ring.

At first it must be mentioned that the chosen range is not the designed operating speed
range of the presented FESS (ωmin = 460 s−1 to ωmax = 1460 s−1, 90% DOD) and so the
measurement will not represent the normal FESS operation mode. This measurement
is used to measure only the electrical losses, because the starting speed is equal to the
ending speed and so the mechanical power during the measurement is zero.
Therefore the integral of the output power Pout minus the power of the rotor loss Ploss

divided by the sum of the inputted power Pin,i over the test time is used to calculate the
average efficiency over the test cycles by

ηavg =
∫ T

0 (Pout − Ploss) dt∫ T
0 (
∑n
i=1 Pin,i) dt

, (5.16)

where the input powers Pin,i are separated in the electrical power of the axial- and the
two radial bearings, the motor/generator power, the sensor and controller power and the
power for the vacuum system, see Fig. 5.24.
By using Eqn. (5.16) the average efficiency can be calculated out of the directly mea-

sured currents and voltages of all linked voltage DC buses, where all electrical losses,
e.g. AMB, M/G, harmonic losses, etc., are included. The average efficiency for the test
cycles, shown in the top of Fig. 5.24, calculates to ηavg = 32.4%.
To calculate the actual efficiency of the FESS at any operating point it is necessary

to use the mechanical power PRotor by using the above measured moment of inertia J ,
the measured actual angular velocity ω and the angular acceleration ω̇ to calculate the
efficiency ηact for charging and discharging of the FESS.

PRotor = Jωω̇ , (5.17)
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Figure 5.24: Measured power of the AMB’s, M/G and the rotor for the defined speed
range and cycles. The measurement was performed by Tektronix, MSO
4054 oscilloscopes, TM502A current amplifiers and A6302 current probes.

ηactcharging = PRotor − Ploss
PM/G + PAMB + Pvac + Psense&control

, (5.18)

ηactdischarging = Pout − Ploss
| PRotor | +PM/G + PAMB + Pvac + Psense&control

. (5.19)

The actual efficiency for the three cycles as well as the power consumptions are shown
in Fig. 5.24 and also summarized in Table 5.4.
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5.5.7 Analysis of Results
The energy density of a flywheel rotor is a quantity to compare materials suitable for
FESS applications and to compare different storage technologies, see [21, 22, 107]. The
values for composite rotors are in all cases higher than their competitors promising the
advantage of FESS, see Table 5.5. There, the energy density κ is calculated with the
assumption of an infinite thin, hoop wound hollow cylinder, the ultimate strength in
fiber direction Xt and the density of the material ρ by

κ = 1
2
Jω2

max
m

= K
Xt

ρ
, (5.20)

with K defining the geometric shape factor. In fact, the above shown calculation is not
valid for any realizable FESS rotor. Therefore, one has to consider the stress component
in radial direction that is included in the, e.g. Tsai-Wu failure parameter RTW forming
the adapted shape factor K̄ depending on geometric and material attributes. The energy
density for a general rectangular geometry, shown in Fig. 5.25(a) with a radii ratio
χ = ri/ra is independent from the axial length h and defines as follows

κ = 1
2
J

m

Xt

ρr2
a

= 1 + χ4

4︸ ︷︷ ︸
K

1
SRT W

RTW︸ ︷︷ ︸
K̄(χ,mat)

Xt

ρ
. (5.21)

The geometric dependency of K̄ for T800S/705 in Table 5.2 is depicted in Fig. 5.25(b).
For the infinite thin hollow cylinder (χ = 1 ) the energy density results in (5.20). The
solid disc or cylinder (χ = 0) shows a 83% lower energy density, compared to χ = 1,
due to the low radial strength. It is also observed that for a small range of χ the energy
density rises up to 5% as a result of the perfect material utilization where the radial and
hoop stress are at their limits. Furthermore, implementing a safety factor SRT W

= 2
further reduces the energy density by 50%. Common in-runner FESS rotors need a shaft
and this negative arrangement (high mass, low radius) is also disadvantageous ending
up in a maximal achievable energy density of 11.9Wh/kg for the designed FESS rotor.

Table 5.4: FESS prototype efficiency test data.
Speed range, s−1 120:220
Pvac, W 5.2
Psense&control, W 11.4
PAMB, W ≈ 25 + 0.227ω
| PM/G |, W 500
PRotor, W = 7.55ωω̇
Ploss, W ≈ 12.7 · 10−5ω2 at pvac = 0.1mbar
ηavg, % 32.4
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Figure 5.25: Energy density of a FESS rotor: (a) geometry of the inertia mass; (b)
T800S/705 adapted shape factor K̄ (χ,mat) for SRT W

= 1.

The measurement of the natural frequencies is largely depending on the boundaries and
the nature of the structure. As a general rule it can be mentioned that, the stiffer and
lighter a structure is, the harder is the measurement due to low displacement amplitudes.
Both analyzed structures are stiff enough to see almost no difference in the output by
changing the material, geometry or length of the elastic bands for the “free-free“ support.
The measured and simulated results, summarized in Table 5.3, show a relative error of
11% for the first bending mode. The reasons for that can be explained from two different
point of views, firstly the modeling error that is always present due to assumptions that
make the mater easier to handle and secondly there are a lot of influencing factors that
show up from the manufacturing of the designed rotor.

Table 5.5: Energy storage types out of [21, 22, 107].
Storage type κ in Wh/kg
Electrochemical reaction
Lead-acid battery 30-50
NiMH battery 60-120
Li-ion battery 90-190
Kinetic energy, flywheel
Steel 67
Aluminium 83
Kevlar 213.8
CFRP (T300/2500) 562
CFRP (T800S/705) 189
Designed FESS rotor 11.9
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During the manufacturing, deviations from the simulated rotor occurred because of

• changing of the geometry (adding chamfers) to ensure a problem-free press-fit of
the components,

• changing of the geometry (diameters and interferences) due to tolerances and limits
of the available machinery,

• the pretension force as well as the winding diameter directly influence the material
parameter of the CFRP and even though if the material parameter are measured
correctly due to specimen that are manufactured in the same way as the rotor is,
the material parameter of the thick wound parts can differ easily in axial or radial
direction and

• the exothermic reaction during the hardening of the CFRP leads to thermal in-
duced pre-stresses that also influence the structural behavior.

The measurement of the moment of inertia and the true weight of the rotor show the
discrepancy. The simulation resulted in a total weight of msimu = 216 kg and a moment
of inertia of Jsimu = 8.75 kgm2. The real total weight of the rotor shown in the bal-
ancing protocol is mreal = 209 kg and the moment of inertia measurement resulted in
Jreal = 7.55 kgm2. The relation for the natural undamped frequency ω =

√
k/m leads

to the most causal explanation for the difference in the results that the stiffness (quanti-
tatively assumed as the stiffness parameter k) of the CFRP material is in real less than
the assumed parameters for simulation.

This effect is also visible in the strain measurement during operation. The measured
strain curves run underneath the simulated ones and this is an indicator for less stiffness
in the radial direction. Furthermore, both strain curves show the expected quadratic
dependency on the angular speed and also no hysteresis behavior was found in speeding
up or down. This makes the adoption of linear material behavior valid.

The start up of the FESS prototype begins with the evacuation of the containment fol-
lowed by the static levitation of the rotor. The evacuation moves quickly and the leakage
is much less than expected. This can further be improved by omitting the service win-
dows used for the prototype. Another factor is the relatively long lasting out-gas process
of the CFRP that increases pressure after shut down of the vacuum system.

The parameter tuning for the control algorithms of the AMB’s showed the large poten-
tial of this type of bearing. Thereby, it must be mentioned that the design strategy of
an AMB must be fixed from the beginning, because the power consumption and further
it’s efficiency is inversely proportional to the performance. This fact shows the compar-
ison between the static and dynamic power consumption. In the static case the stiffness
and damping of the AMB can be decreased so that the power consumption is a minimum.
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During operation a very stiff and fast acting AMB is needed to guarantee no contact with
the auxiliary bearings and this is directly related to a linear increase of the consumed
power depending on speed.

The M/G for charging and discharging is the most difficult component in this FESS pro-
totype. In first this type of motor is highly efficient but the control effort is enormous.
In fact, everything is dependent on the switch on/off angle and therefore a very accurate
angle measurement is necessary to be able to perform the needed force compensation,
speed and high efficient power control. Within this prototype, the angle at low speeds
is measured by an magnetic absolute angle position sensor with pulse width output, but
at higher speeds the actual angle is derived out of an incremental pulse that is highly
effected by noise produced by the high voltage driven inverters for the M/G.

In fact, the maximum speed reached is the result of a vicious circle, because to speed
up, high voltage to fast rise the current in a coil and an exact switch on/off angle is
needed, but increasing the voltage increases the sensor noise that leads to wrong cal-
culated angles that further decelerates the rotor and due to the generated high radial
forces also a fall down of the rotor is possible. Anyway, even for the measured speed
range discussed above, the basic working principle of a FESS could be well studied. The
measured efficiency is for this prototype, the lowest possible value.

In the following, an extrapolation for the designed operating speed range is given with
respect to the measured characteristics of the FESS prototype and some conservative
chosen assumptions based on the validation experiments in [87, 101] and the observed
results in Table 5.4. The dynamic characteristic of the FESS rotor can be described by
the momentum balance

Jω̇ + aω =


Mt charging
0 storing
−Mt discharging

, (5.22)

where a denotes the coefficient of air friction (≈ 12.7 · 10−5 at pvac = 0.1mbar) and
Mt is the assumed average torque of the designed M/G with a power of 5 kW and a
charging/discharging efficiency of 95% defining the upper limit for the efficiency of the
assumed cycle of the FESS prototype ηavg,max = 90.3%. The solution of the above given
first order differential equation defines the speed profile, shown in the top of Fig. 5.26.
With Mt ≈ 7Nm an ideal charging and discharging time of ≈ 30min can be achieved.

Due to the fact, that the applied vacuum can further be improved to 10−3 mbar the rotor
losses are a maximal value. Furthermore, the assumed linear dependency of the AMB
power consumption on speed is too conservative. Therefore, the minimum efficiency for
the assumed cycle, calculates by use of (5.16) and Table 5.4 to ηavg,min = 76.9%.
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Figure 5.26: Assumed FESS characteristics for the designed operating speed range.

The overall efficiency is the product of the charging/discharging efficiency ηavg and the
storing efficiency ηstore , derived by the total stored energy TSE = 1

2J
(
ω2

max − ω2
min
)
to

ηstore = TSE− [Pvac + Psense&control + PAMB(ω) + Ploss(ω)] t
TSE , (5.23)

where the solution of (5.22) for storing is used to calculate the speed dependent power
consumptions of the AMB’s and the rotor loss. The time dependent storing efficiency
is depicted in the bottom of Fig. 5.26 and shows a huge dependency on losses due to
air friction and AMB operation. Therefore, high quality vacuum and energy efficient
AMB’s (PAMB < 20W) or passive magnetic bearings are needed for a successful high
speed FESS used for long term storage.
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High speed fiber reinforced rotors are the key to success for efficient FESS. Precise FE
simulations are absolutely necessary to ensure safe and efficient operation of the FESS
rotor. Therefore, the knowledge of the mechanical behavior and the modeling of FRP
materials is essential. Within this thesis, the design of a fiber reinforced FESS rotor
is presented, starting from the beginning of the material selection until the validation
through experiments performed on test specimen or within the FESS test rig.

The optimization of the inertia mass showed the large potential of an assembled config-
uration using press-fits and different materials in radial direction compared to a thick
wound inertia mass. Therefore, a lot of elastic material parameters need to be mea-
sured, that is, if performed in a destructive way, a costly and very time consuming
task. Within this thesis some nondestructive methods based on modal analysis were
presented that only need one measurement for each material. With a sufficient accuracy
compared to destructive material tests, these methods are appropriate for material char-
acterization and selection. In contrast, for stress and rotordynamic analysis, especially
for the presented new CFRP hollow shaft design, the whole set of elastic and strength
material parameters must be determined through destructive material testing accord-
ing to standards that was performed on high strength and high modulus CFRP material.

High rotor speeds cause high kinetic energy that is explosively released in case of a burst
event. Therefore, burst tests must be performed for every new rotor design to know the
limits. These tests are dangerous and costly that leaded to a new idea of a FSBT method
to replace this dynamic burst test. The in this thesis presented FSBT was used to burst a
CFRP flywheel rotor with nearly the same stress distribution as in the dynamic case ro-
tating with maximum speed. Failure prediction was done using different maximum stress
criteria and a safety factor calculated using the Tsai-Wu criterion. Dynamic simulation
results of a FESS rotor and static simulation results of the FSBT are in very good agree-
ment including the failure point as well as the stress distribution and the maximum load.

Furthermore, the test procedure has been proved experimentally utilizing a universal
testing machine and a scaled flywheel rotor. The experiment proves the static simula-
tion of the FSBT. Furthermore, the quasi-static FE simulation results of the flywheel
rotor using inertia loads compare well to the experimental data of the static burst test.
The assumption of a linear system agrees very well with the measurement results. Also
the importance of the radial strength of the used material, especially for thick-walled
rotor geometries was found, which is of major relevance for choosing the correct material
and rotor geometry. Hence, the presented test method is a very good controllable and
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observable possibility to test a high speed FESS rotor in a static way instead of a much
more expensive and dangerous dynamic spin up test.

With the found knowledge it was possible to go one step forward to design a CFRP
rotor with a well defined strength safety factor. The in this thesis presented FESS ro-
tor design consists of a CFRP hollow shaft that is press-fitted into a multi-ring CFRP
inertia mass where the three rings are also press-fitted together forming a rotor with a
H-shaped cross-section. With this configuration an increase of the energy density was
achieved compared to an ordinary FESS rotor design using an aluminium shaft press-
fitted into a thick wound CFRP inertia mass. Furthermore, inside the core of the shaft
a wireless measurement system was integrated to online measure the mechanical strain
of specific points on the inertia mass used for the validation of the FE simulations. The
FE simulations compare well to the maximum speed test of the FESS as well as the
experimental modal analysis of the FESS rotor.

The FESS characteristics was measured by static and dynamic tests where the static
levitation experiments showed the huge potential of high efficient AMB’s. The dynamic
tests beyond a certain test speed failed due to power electronic restrictions. Therefore, all
performed efficiency tests were performed in a lower speed range that do not represent the
FESS normal operation. Furthermore, an extrapolation for the designed operating speed
range showed that the efficiency of the M/G is the upper maximum efficiency for a short
term storage FESS, typically ηavg,max ≈ 90% for switched reluctance machines, whereas
the long term storage efficiency is largely dependent on the quality of the vacuum and
the power consumption of the AMB’s. The discussed example showed that for a very low
power consuming AMB (PAMB < 20W) and a high quality vacuum (pvac ≤ 10−3 mbar)
a no-load loss of 2% per hour, based on the maximum energy content, is possible.

100



Bibliography

[1] P. V. Joshi, N. K. Jain, and G. D. Ramtekkar. Analytical modelling for vibration
analysis of partially cracked orthotropic rectangular plates. European Journal of
Mechanics A/Solids, 50:100–111, 2015.

[2] M. V. Quintana and L. G. Nallim. A variational approach to free vibration analysis
of shear deformable polygonal plates with variable thickness. Applied Acoustics,
71:393–401, 2010.

[3] D. S. Cho, B. H. Kim, J. Kim, N. Vladimir, and T. M. Choi. Forced vibration
analysis of arbitrarily constrained rectangular plates and stiffened panels using the
assumed mode method. Composites Science and Technology, 90:182–190, 2015.

[4] N. Kolarevic, M. Nefovska-Danilovic, and M. Petronijevic. Dynamic stiffness el-
ements for free vibration analysis of rectangular mindlin plate assemblies. Sound
and Vibration, 359:84–106, 2015.

[5] S. Su, G. Jin, and X. Wang. Free vibration analysis of laminated composite and
functionally graded sector plates with general boundary conditions. Composite
Structures, 132:720–736, 2015.

[6] M. V. Quintana and R. O. Grossi. Free vibrations of a generally restrained rect-
angular plate with an internal line hinge. Applied Acoustics, 73:356–365, 2012.

[7] L. Xin and Z. Hu. Free vibration of simply supported and multilayered magneto-
electro-elastic plates. Composite Structures, 121:344–350, 2015.

[8] D. H. Oh and L. Librescu. Free vibration and reliability of composite cantilevers
featuring uncertain properties. Reliability Engineering and System Safety, 56:265–
272, 1997.

[9] V. N. Burlayenko, H. Altenbach, and T. Sadowski. An evaluation of displacement-
based finite element models used for free vibration analysis of homogeneous and
composite plates. Sound and Vibration, 358:152–175, 2015.

[10] D. Matthews, H. Sun, K. Saltmarsh, and et al. A detailed experimental modal
analysis of a clamped circular plate. In 43rd International Congress on Noise
Control Engineering, 2014.

[11] K. G. Muthurajan, B. Sanakaranarayanasamy, and B. Nageswara Rao. Evalua-
tion of elastic constants of specially orthotropic plates through vibration testing.
Journal of Sound and Vibration, 272:413–424, 2004.

101



Bibliography

[12] E. O. Ayorinde and L. Yu. On the elastic characterization of composite plates with
vibration data. Sound and Vibration, 283:243–262, 2005.

[13] M. Grediac and P. A. Paris. Direct identification of the elastic constants of
anisotropic plates by modal analysis: Numerical aspects. Journal of Sound and
Vibration, 195(3):401–415, 1996.

[14] M. Grediac, N. Fournier, P. A. Paris, and Y. Surrel. Direct identification of the
elastic constants of anisotropic plates by modal analysis: Experimental results.
Journal of Sound and Vibration, 210(5):643–659, 1998.

[15] J. Caillet, J. C. Carmona, and D. Mazzoni. Estimation of plate elastic moduli
through vibration testing. Applied Acoustics, 68:334–349, 2007.

[16] V. Kostopoulos and D. T. Korontzis. A new method for the determination of
viscoelastic properties of composite laminates: a mixed analytical-experimental
approach. Journal of Composites Science and Technology, 63:1441–1452, 2003.

[17] T. Söderström and A. Rensfelt. Estimation od material functions using system
identification techniques. In Proc. of the International Symposium on Advanced
Control of Industrial Processes, Hangzhou, China, May 23-26 2011.

[18] J. De Visscher, H. Sol, W. P. De Wilde, and J. Vantomme. Identification of the
damping properties of orthotropic composite materials using a mixed numerical
experimental method. Applied Composite materials, 4:13–33, 1997.

[19] M. Matter, T. Gmür, J. Cugnoni, and A. Schorderet. Numerical-experimental
identification of the elastic and damping properties in composite plates. Composite
Structures, 90:180–187, 2009.

[20] M. Matter, T. Gmür, J. Cugnoni, and A. Schorderet. Identification of the elastic
and damping properties in sandwich structures with a low core-to-skin stiffness
ratio. Composite Structures, 93:331–341, 2011.

[21] J. L. Perez-Aparicio and L. Ripoll. Exact, integrated and complete solutions for
composite flywheels. Composite Structures, 93:1404–1415, 2011.

[22] S. M. Arnold, A. F. Saleeb, and N. R. Al-Zoubi. Deformation and life analysis of
composite flywheel disk systems. Composites: Part B, 33:433–459, 2002.

[23] S. K. Ha, D. J. Kim, and T. H. Sung. Optimum design of multi-ring composite
flywheel rotor using a modified generalized plane strain assumption. International
Journal of Mechanical Sciences, 43:993–1007, 2001.

[24] S. K. Ha, D. J. Kim, S. U. Nasir, and S. C. Han. Design optimization and fabri-
cation of a hybrid composite flywheel rotor. Composite Structures, 94:3290–3299,
2012.

102



Bibliography

[25] S. K. Ha and J. Y. Jeong. Effects of winding angles on through-thickness properties
and residual strains of thick filament wound composite rings. Composites Science
and Technology, 65:27–35, 2005.

[26] S. Kim, K. Hayat, S. Nasir, and S. Ha. Design and fabrication of hybrid composite
hubs for a multi-rim flywheel energy storage system. Composite Structures, 107:19–
29, 2014.

[27] A. C. Arvin and C. E. Bakis. Optimal design of press-fitted filament wound com-
posite flywheel rotors. Composite Structures, 72:47–57, 2006.

[28] B. Bai, L. Zhang, T. Guo, and C. Liu. Analysis of dynamic characteristics of
the main shaft system in a hydro-turbine based on ansys. Procedia Engineering,
31:654–658, 2012.

[29] Y. Fang and Y. Li. Dynamic responses of nickel-based single crystal superalloy
dd6 blade. Journal of Materials Engineering and Performance, 22(6):1565–1573,
2013.

[30] Z. Kai, D. Xingjian, and Z. Xiaozhang. Dynamic analysis and control of an energy
storage flywheel rotor with active magnetic bearings. In Proc. of the International
Conference on Digital Manufacturing & Automation, 2010.

[31] X. Dai, K. Zhang, and X. Zhang. Design and test of a 300wh composites fly-
wheel energy storage prototype with active magnetic bearings. In Proc. of the
International Conference on Renewable Energies and Power Quality, 2011.

[32] M. Grujicic, G. Arakere, B. Pandurangan, V. Sellappan, A. Vallejo, and M. Ozen.
Multidisciplinary design optimization for glass-fiber epoxy-matrix composite 5 mw
horizontal-axis wind-turbine blades. Journal of Materials Engineering and Perfor-
mance, 19(8):1116–1127, 2010.

[33] J. S. Park and J. H. Kim. Design and aeroelastic analysis of active twist rotor
blades incorporating single crystal macro fiber composite actuators. Composites
Part B: Engineering, 39(6):1011–1025, 2008.

[34] S. Singhal, K.V. Singh, and A. Hyder. Effect of laminated core on rotor mode
shape of large high speed induction motor. In Proc. of the International Electric
machines & Drives Conference, Niagara Falls, Canada, 2011.

[35] R. Mistry, B. Finley, S. Kreitzer, and R. Queen. Influencing factors on motor
vibration & rotor critical speed in design, test and field applications. In Proc.
of the International Petroleum and Chemical Industry Technical Conference, San
Francisco, USA, 2014.

[36] D. Combescure and A. Lazarus. Refined finite element modelling for the vibration
analysis of large rotating machines: Application to the gas turbine modular helium
reactor power conversion unit. Sound and Vibration, 318:1262–1280, 2008.

103



Bibliography

[37] A. L. Gyekenyesi, J. T. Sawicki, and W. C. Haase. Modeling disk cracks in rotors
by utilizing speed dependent eccentricity. Journal of Materials Engineering and
Performance, 19(2):207–212, 2010.

[38] C. R. Morrison, A. Provenza, A. Kurkov, G. Montague, K. Duffy, O. Mehmed,
D. Johnson, and R. Jansen. Fully suspended, five-axis, three-magnetic-bearing
dynamic spin rig with forced excitation. Experimental Mechanics, 45(3):226–237,
2005.

[39] J. J. Sinou. An experimental investigation of condition monitoring for notched
rotors through transient signals and wavelet transform. Experimental Mechanics,
49(5):683–695, 2009.

[40] R. Sino, T.N. Baranger, E. Chatelet, and G. Jacquet. Dynamic analysis of a
rotating composite shaft. Composite Science and Technology, 68:337–345, 2008.

[41] B. G. Choi and B. S. Yang. Optimum shape design of rotor shafts using genetic
algorithm. Journal of Vibration and Control, 6:207–222, 2000.

[42] R. R. Chang and J. M. Chu. Predictions of first-ply failure load of laminated
composite shafts. Experimental Mechanics, 43(2):183–193, 2003.

[43] S. Chen, C. Kung, T. Liao, and Y. Chen. Dynamic effects of the interference fit
of motor rotor on the stiffness of a high speed rotating shaft. Transactions of the
Canadian Society for Mechanical Engineering, 34(2):243–261, 2010.

[44] http://beaconpower.com/carbon-fiber-flywheels/ (last seen, 17.05.2016).

[45] http://www.power-thru.com/ (last seen, 17.05.2016).

[46] http://stornetic.com/. http://stornetic.com/ (last seen, 17.05.2016).

[47] http://www.gkn.com/landsystems/brands/hybrid-power/technology-and-
innovation/Pages/default.aspx (last seen, 17.05.2016).

[48] http://www.torotrak.com/products-partners/products/flybrid/
(last seen, 17.05.2016).

[49] http://www.ricardo.com/en-GB/News–Media/Press-releases/News-
releases1/2011/Breakthrough-in-Ricardo-Kinergy-second-generation-high-speed-
flywheel-technology/ (last seen, 17.05.2016).

[50] http://www.schenck-rotec.de/userFiles/library-PDF/RM1015d.pdf
(last seen, 17.05.2016).

[51] G. Genta. Spin tests on medium energy density flywheels. Composites, 13:38–46,
1982.

[52] H. E. Sonnichsen. Ensuring spin test safety. Mechanical Engineering, 115(5):72–77,
1993.

104



Bibliography

[53] E. D. Reedy and H. K. Street. Composite-rim flywheels: Spin tests. SAMPE
Quarterly, 10:36–41, 1979.

[54] A. D. Sapowith and W. E. Handy. A composite-flywheel burst-containment study.
Report No.AVSD-0350-81-RR, 1982.

[55] L. M. Trase. The evaluation and implementation of a water containment system
to support aerospace flywheel testing. In Proc. of the 37th Intersociety Energy
Conversion Engineering Conference, pages 234–238, 2002.

[56] M. Strasik, P. E. Johnson, A. C. Day, and et al. Design, fabrication, and test of a 5-
kwh/100-kw flywheel energy storage utilizing a high-temperature superconducting
bearing. IEEE Transactions on Applied Superconductivity, 17(2):2133–2137, 2007.

[57] D. H. Curtiss, P. P. Mongeau, and R. L. Puterbaugh. Advanced composite flywheel
structural design for a pulsed disk alternator. IEEE Transactions on Magnetics,
31:26–31, 1995.

[58] G. Nagy, S. Rosenwasser, and G. Mehle. The evaluation and testing of graphite
fiber composite materials for high speed rotors. IEEE Transactions on Magnetics,
31:289–293, 1999.

[59] G. Nagy and S. Rosenwasser. The evaluation of advanced composite material
performance in high speed pulsed power rotor applications. IEEE Transactions on
Magnetics, 37:314–317, 2001.

[60] V. Lelos, S. Manifold, and J. Granier. Structural properties and testing of a
composite banding used in high-speed rotors. IEEE Transactions on Magnetics,
43:250–253, 2007.

[61] J. Tzeng, R. Emerson, and P. Moy. Composite flywheels for energy storage. Com-
posites Science and Technology, 66:2520–2527, 2006.

[62] R. N. Headifen, S. Gupta, and D. Okey. Experimental testing of thick-walled
graphite fiber composite rings. Composites Science and Technology, 51(4):531–
536, 1994.

[63] R. Ahmad, F. A. R. Al-Salehi, S. T. S. Al-Hassani, and M. J. Hinton. Strength and
failure modes of hoop wound cfrp tubes under compressive high rates of loading.
Applied Composite Materials, 12(5):277–292, 2005.

[64] F. A. R. Al-Salehi, S. T. S. Al-Hassani, H. Haftchenari, and M. J. Hinton. Effect
of temperature on the tensile strength and failure modes of angle ply cfrp tubes
under hoop loading. Applied Composite Materials, 5(5):319–343, 1998.

[65] F. A. R. Al-Salehi, S. T. S. Al-Hassani, H. Haftchenari, and M. J. Hinton. Temper-
ature and rate effects on grp tubes under tensile hoop loading. Applied Composite
Materials, 8:1–24, 2001.

105



Bibliography

[66] H. Haftchenari, F. A. R. Al-Salehi, S. T. S. Al-Hassani, and M. J. Hinton. Effect
of temperature on the tensile strength and failure modes of angle ply aramid fibre
(krp) tubes under hoop loading. Applied Composite Materials, 9:99–115, 2002.

[67] M. Kaltenbacher. Numerical Simulation of Mechatronic Sensors and Actuators:
Finite Elements for Multiphysics. Springer, Berlin, Germany, 3rd edition, 2015.

[68] COMSOL MULTIPHYSICS R© Academic Research, Release 4.2b, Structural Me-
chanics Module Analysis Guide, COMSOL, Inc.

[69] ANSYS R© Academic Research, Release 13.0, Help System, Rotordynamic Analysis
Guide, ANSYS, Inc.

[70] T. Mori and K. Tanaka. Average stress in the matrix and average elastic energy
of materials with misfitting inclusions. Acta Metallurgica, 21:571–574, 1973.

[71] Y. Benveniste. A new approach to the application of mori-tanaka’s theory in
composite materials. Mechanics of Materials, 6:147–157, 1987.

[72] J. N. Reddy. Mechanics of laminated composite plates and shells: theory and
analysis. CRC Press, Boca Raton, USA, 2 edition, 2003.

[73] S. W. Tsai. Theory of Composites Design. Think Composites. Dayton, USA, 1992.

[74] S. Hartl. Metrological recording of load limits and identification of the material
parameters of composite flywheel rotors. Diploma thesis, TU–Wien, 2012.

[75] S. Hartl, A. Schulz, and M. Kaltenbacher. Direct estimation of the elastic constants
of cfrp plates by using lagrange’s equation. In Proc. of the International Conference
on Composite Structures, Lisbon, Portugal, June 15-18 2015.

[76] US Department Of Defense. Composite Materials Handbook-MIL 17, Volume 2:
Polymer Matrix Composites: Materials Properties. CRC Press, Boca Raton, USA,
2000.

[77] MATLAB. version 7.11.0 (R2010b). The MathWorks Inc., Natick, Massachusetts,
2010.

[78] DIN EN ISO 527-1:2012-06, Kunststoffe - Bestimmung der Zugeigenschaften -
Teil 1: Allgemeine Grundsätze (ISO 527-1:2012).

[79] DIN EN ISO 527-5:2010-01, Kunststoffe - Bestimmung der Zugeigenschaften - Teil
5: Prüfbedingungen für unidirektional faserverstärkte Kunststoffverbundwerkstoffe
(ISO 527-5:2009).

[80] DIN EN ISO 2561:1995, Kohlenstoffaserverstärkte Kunststoffe - Unidirektionale
Laminate, Zugprüfung parallel zur Faserrrichtung.

106



Bibliography

[81] DIN EN ISO 14129:1998-02, Faserverstärkte Kunststoffe - Zugversuch an 45-
Laminaten zur Bestimmung der Schubspannungs/Schubverformungs-Kurve des
Schubmoduls in der Lagenebene (ISO 14129:1997).

[82] DIN EN ISO 14126:2000-12, Faserverstärkte Kunststoffe - Bestimmung der Druck-
eigenschaften in der Laminatebene (ISO 14126:1999).

[83] DIN EN ISO 14125:1998, Faserverstärkte Kunststoffe - Bestimmung der
Biegeeigenschaften.

[84] ASTM D2290-12, Standard Test Method for Apparent Hoop Tensile Strength of
Plastic or Reinforced Plastic Pipe.

[85] S. Hartl, A. Schulz, H. Sima, T. Koch, and M. Kaltenbacher. A static burst test
for composite flywheel rotors. Applied Composite Materials, pages 1–18, 2015.

[86] T. Hinterdorfer, A. Schulz, H. Sima, S. Hartl, and J. Wassermann. Topology
optimization of a flywheel energy storage rotor using a genetic algorithm. In Proc.
of the International Symposium on Magnetic Bearings, Linz, Austria, August 11-14
2014. IEEE.

[87] T. Hinterdorfer. Effizienter Energietransfer und Steigerung der Energiedichte bei
magnetisch gelagerten Schwungradspeichern. Dissertation, TU–Wien, 2014.

[88] C. Millan, M. A. Jimenez, and A. Miravete. Finite element calculation of a press
fit joint between a composite materials tube and an aluminium cylinder. Applied
Composite Materials, 6(6):369–380, 2001.

[89] M. P. Bendsoe and O. Sigmund. Topology Optimization. Springer, Berlin, Ger-
many, 2nd edition, 2004.

[90] A. H. Gandomi, X. S. Yang, S. Talatahari, and A. H. Alavi. Metaheuristic Appli-
cations in Structures and Infrastructures. Elsevier, Oxford, GB, 2013.

[91] H. Sekine and E. Shin. Optimum design of thick-walled multi-layered cfrp pipes to
reduce process-induced residual stresses. Applied Composite Materials, 6(5):289–
307, 1999.

[92] P. A. Smith, L. Boniface, and N. F. C Glass. A comparison of transverse cracking
phenomena in (0/90)s and (90/0)s cfrp laminates. Applied Composite Materials,
5:11–23, 1998.

[93] W. Chen, Y. Yu, P. Li, C. Wang, T. Zhou, and X. Yang. Effect of new epoxy matrix
for t800 carbon fiber/epoxy filament wound composites. Composites Science and
Technology, 67:2261–2270, 2007.

[94] S. L. Gao, E. Mäder, and S. F. Zhandarov. Carbon fiber and composites with
epoxy resins: topography, fractography and interphases. Carbon, 42(3):515–529,
2004.

107



Bibliography

[95] I. Cerny and R. M. Mayer. Fatigue of selected grp composite components and
joints with damage evaluation. Composite Structures, 94(2):664–670, 2012.

[96] S. Hartl and M. Kaltenbacher. Design of a cfrp hollow shaft to increase the energy
density of a flywheel rotor. Composites Part B: Engineering, to be published 2016.

[97] S. Hartl, A. Schulz, and M. Kaltenbacher. Optimum design of a high energy density
composite flywheel rotor. In Proc. of the Vienna young Scientists Symposium,
Wien, Austria, June 25-26 2015. TU Wien.

[98] S. Hartl, A. Schulz, and M. Kaltenbacher. Design of a carbon fiber reinforced plas-
tic shaft for a high speed flywheel rotor. In Proc. of the International Conference
on Composite Materials, Cobenhagen, Denmark, July 19-24 2015.

[99] A. Schulz, S. Hartl, H. Sima, T. Hinterdorfer, and J. Wassermann. Innovative
flywheel energy storage system with high energy efficiency and reliability. e&i
Elektrotechnik und Informationstechnik, 132(8):481–490, 2015.

[100] A. Schulz. Entwicklung eines aktiven Magnetlagers mit hoher Betriebssicherheit.
Dissertation, TU–Wien, 2006.

[101] H. Sima. Erhöhung der erzielbaren Speicherzeit von magnetisch gelagerten Schwun-
gradspeichern. Dissertation, TU–Wien, 2014.

[102] T. Hinterdorfer, A. Schulz, H. Sima, S. Hartl, and J. Wassermann. Compensation
of unbalance forces of a switched reluctance machine with combined current and
fluxlinkage control. In Proc. of the International Symposium on Magnetic Bearings,
Linz, Austria, August 11-14 2014. IEEE.

[103] A. Schulz, T. Hinterdorfer, H. Sima, J. Wassermann, and M. Neumann. FLY-
WHEEL. WO Patent 2013170284 (A1). issued November 21, 2013.

[104] D. Norfield. Practical Balancing of Rotating Machinery. Elsevier, Amsterdam,
Netherland, 2 edition, 2006.

[105] DIN EN ISO 1940:1-2003, Mechanische Schwingungen Anforderungen an die
Auswuchtgüte von Rotoren in konstantem (starrem) Zustand Teil 1: Festlegung
und Nachprüfung der Unwuchttoleranz.

[106] G. Schweitzer and E.H. Maslen. Magnetic Bearings. Springer, Heidelberg, Ger-
many, 2009.

[107] http://www.epectec.com/batteries/cell-comparison.html (last seen, 17.05.2016).

108



Curriculum Vitae

Personal Data
• Name: Stefan Hartl

• Date of birth: March 12, 1987

• Place of birth: Amstetten, Austria

Education
• M.Sc., Master Program Mechanical Engineering focused on Mechatronics, Vienna
University of Technology, 2012, Master Thesis: Metrological recording of Load
Limits and Identification of the Material Parameters of Composite Flywheel Rotors

• B.Sc., Bachelor Program Mechanical Engineering, Vienna University of Technol-
ogy, Austria, Vienna, 2010, Bachelor Thesis: Extension of an existing Pump
Test Rig

• High School Diploma, Mechanical Engineering focused on Automation Tech-
nology, Federal Higher Technical Institute for Educating and Experimenting, Aus-
tria, Waidhofen/Y., 2006, Thesis: Fully automatic Sandblasting Machine for Saw
Blades

Professional Experience
• Project assistant, working within the nationally supported research project

“Optimum-Shape-Flywheel“, Vienna University of Technology, Institute of
Mechanics and Mechatronics, Austria, Vienna, February 2013 to February 2016.

• Project assistant, working within projects “ARGOS Rail“ and “ARGOS Road“,
Hottinger Baldwin Messtechnik, Austria, Vienna, August 2012 to January 2013.

• Teaching assistant, Vienna University of Technology, Institute of Mechanics and
Mechatronics, Austria, Vienna, 2008 to 2012.

• Summerjobs, DOKA Formwork Experts, Austria, Amstetten, 2003 to 2011.

109


	Introduction
	Motivation
	State of the Art
	Nondestructive Material Parameter Identification
	Rotor Analysis and Applications
	Burst Tests for Rotor Applications

	Structure of the Dissertation

	Structural Mechanics
	Mechanical Field
	Finite Element Formulation
	Mechanics of Composite Materials

	Determination of Material Parameters of Fiber Reinforced Plastics
	Introduction
	Nondestructive Methods Based on Modal Analysis
	Direct Identification Using Lagrange's Equation of Motion
	Iterative Numerical Identification Using Genetic Algorithm
	Numerical Test Case: Unidirectional CFRP Plate
	Manufacturing of Test Specimens
	Measurement Setup - Modal Analysis of Rectangular Plates
	Analysis of Results

	Destructive Material Testing
	Investigated Materials
	Testing of Flat Coupon Specimen
	Testing of Ring Specimen
	Analysis of Results

	Nondestructive vs. Destructive Material Parameter Determination

	Static Testing Of Rotating Structures
	Introduction
	Feasibility Study
	Static Burst Test Approach
	Manufacturing of the Specimen
	Experimental Results
	Maximum Load and Strain Measurement
	Burst Fragment Analysis
	Analysis of Results


	Application: FESS - Flywheel Energy Storage System
	Introduction
	FESS Prototype
	Electronic Rack
	Containment

	Design and Optimization of a CFRP Flywheel Rotor
	Manufacturing and Balancing of the CFRP Flywheel Rotor
	Experimental Results
	Prototype Machine Parameter: Rotor Natural Frequency
	Static Levitation Test
	Measurement of Moment of Inertia
	Vacuum Tests
	Maximum Speed Test
	Efficiency Measurements
	Analysis of Results


	Conclusion
	Bibliography

