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Abstract. Spatial interaction data, such as commuting flows, are important 
for many purposes but they often come expressed for a different set of spa-
tial units than required. This happens when comparing data from multiple 
censuses but especially when cell phone positioning data are involved. This 
study aims to develop a more accurate method to areally interpolate spatial 
interaction data to a different set of spatial units and test it on cell phone 
data-derived commuting flows for Estonia. 
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1. Introduction
Data about spatial interactions, such as counts of people commuting be-
tween given pairs of places, are important for almost any area of spatially 
related decision making – they are used to assess demand for social events 
(Calabrese et al., 2010), model transport network utilization (Bolla et al., 
2000), improve disaster response (Bengtsson et al., 2011), study social net-
works and segregation (Silm & Ahas, 2014) or delimit functional regions to 
inform administrative divisions (Martínez-Bernabeu et al., 2012). 

However, the most fruitful source of spatial interaction data today, cell 
phone networks, where real mobility behavior of their users is recorded 
through collection of network traffic data, do not yield data in a readily usa-
ble form – they are defined on an unsuitable support, namely that of mobile 
phone network coverage cells. These usually map poorly to the real settle-
ment network, sometimes with multiple cells covering parts of the same 
central place as well as outlying rural settlements (see Figure 1). To make 
use of the data, we need to solve the change of support problem (COSP) 
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and transfer to a different set of spatial units depending on the use case – 
e.g. administrative units of a chosen level or regular grids. 

 

 

 
Figure 1. Support mismatch between mobile network cells (red) and territorial communi-
ties (kandid; gray) around the Estonian town of Põlva. 

COSP is most often encountered for static (non-interaction) data (Gaughan 
et al., 2015) and solved by areal interpolation (Goodchild & Lam, 1980); an 
example for cell phone stay data was presented by Järv et al. (2017). For 
interaction data, some limited attempts were made for the purpose of tem-
poral comparison of commuting data across censuses (Boyle & Feng, 2002; 
Jang & Yao, 2011) due to administrative division changes; however, these 
methods were primarily suited to small area adjustments, whereas cell 
phone networks, completely different in both scale and extent of its units, 
have to the best of our knowledge not been studied in this regard yet. 

This article proposes to extend the method from the above studies to ac-
count for these differences and presents an example on the Estonian cell 
phone network. 

2. Methodology 

2.1. Static areal interpolation 
Areal interpolation is a method more widely applied for static quantities 
such as population densities or various demographic indices. They usually 
work by computing a transfer matrix 𝑇𝑇𝑖𝑖𝑖𝑖 which determines which fraction 

LBS 2019

Page 178



of the value for a given source area 𝑖𝑖 (in our case, a mobile phone network 
cell) is to be transferred to a given target area 𝛼𝛼 (in our case, an administra-
tive unit). The matrix is usually zero except for intersecting pairs of units, 
where the entry is given by a measure of their overlap. The values must be 
nonnegative and ∑ 𝑇𝑇𝑖𝑖𝑖𝑖𝛼𝛼 = 1 ∀𝑖𝑖 (the pycnophylactic property that ensures 
the sum of all interpolated values remains the same). 

In the elementary case (so-called areal weighting), the entries of the trans-
fer matrix are given by the fraction of area of the source unit covered by the 
given target unit. However, the method described below works with any 
valid transfer matrix, such as one generated by more sophisticated dasy-
metric mapping techniques, which weigh areas differently according to 
their properties, such as land cover (Gallego et al., 2011) or (more appropri-
ately for our purpose) population density (Monteiro et al., 2018). 

The values for the target units 𝑣𝑣𝛼𝛼 are computed using the transfer matrix 
𝑇𝑇𝑖𝑖𝑖𝑖 from the source values 𝑣𝑣𝑖𝑖: 

𝑣𝑣𝛼𝛼 = �𝑇𝑇𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖
𝑖𝑖

 

2.2. Spatial interpolation of interactions 
For interaction values 𝑟𝑟𝑖𝑖𝑖𝑖 (which represent e.g. the number of people com-
muting between source areas 𝑖𝑖 and 𝑗𝑗), the situation is a bit more complicat-
ed. The easiest solution would be to apply the transfer matrix twice, once 
for the origins 𝑖𝑖 and once for the destinations 𝑗𝑗 of the interactions: 

𝑟𝑟𝛼𝛼𝛼𝛼 = � � 𝑇𝑇𝑖𝑖𝑖𝑖𝑇𝑇𝑗𝑗𝑗𝑗𝑟𝑟𝑖𝑖𝑖𝑖
𝑗𝑗𝑖𝑖

 

This is the form used by Boyle and Feng (2002). Although Jang and Yao 
(2011) also investigated more sophisticated approaches such as gravity 
modeling, they found them less accurate than this one, supposedly because 
additional complexity brought by those models is already embedded in the 
data itself. 

The method is simple and seems to produce good results overall (provided 
the transfer matrix is accurate) except for the case of self-interactions 
(where 𝑖𝑖 = 𝑗𝑗 or 𝛼𝛼 = 𝛽𝛽). In the case of commuting, self-interactions repre-
sent non-commuters, people that live and work in the same spatial unit. 
Self-interactions tend to be generally underestimated when a source area is 
split into more target areas because the weighing equation assigns too much 
of the originally static activity (self-interactions) to interactions between the 
target areas, generating artificially high interactions between units covered 
by the same cell (see Figure 2). 
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Figure 2. A self-interaction of a source unit 𝑟𝑟𝑔𝑔𝑔𝑔 is to be redistributed to two target units, 
both to their self-interactions 𝑟𝑟11, 𝑟𝑟22 and to interactions between them 𝑟𝑟12, 𝑟𝑟21. 

2.3. Modification for self-interactions 
A slight modification to the above formula can cause it to have more source 
self-interactions redistributed into target self-interactions. This would be 
done using a self-interaction parameter 𝜂𝜂 ∈ [0; 1] that signifies the fraction 
of source self-interactions to be a-priori allocated only to target self-
interactions: 

𝑟𝑟𝛼𝛼𝛼𝛼 = � � 𝑇𝑇𝑖𝑖𝑖𝑖𝑇𝑇𝑗𝑗𝑗𝑗𝑟𝑟𝑖𝑖𝑖𝑖
𝑗𝑗≠𝑖𝑖𝑖𝑖

+ � 𝑇𝑇𝑖𝑖𝑖𝑖� 𝛿𝛿𝛼𝛼𝛼𝛼𝜂𝜂 + (1 − 𝜂𝜂) 𝑇𝑇𝑖𝑖𝑖𝑖�𝑟𝑟𝑖𝑖𝑖𝑖
𝑖𝑖

 

where 𝛿𝛿𝛼𝛼𝛼𝛼 = 1 ⇔ 𝛼𝛼 = 𝛽𝛽 (self-interaction) and 0 otherwise. 

The larger the value of the 𝜂𝜂 parameter, the more the target units will be 
isolated (more self-interactions of source units will be redistributed to self-
interactions of the target units and less to interactions between them). Set-
ting 𝜂𝜂 = 0 reduces the equation to the simple form from 2.2, 𝜂𝜂 = 1 means 
self-interactions will only be redistributed to self-interactions (not mutual 
interactions). To satisfy the pycnophylactic property, 𝜂𝜂 has to be constant 
across any given source area 𝑖𝑖. 

2.4. Estimating the self-interaction parameter 
The question is how to get to the value of 𝜂𝜂 that is appropriate for a given 
settlement system or its individual units (because its value can be varied 
across different source units according to their characteristics). 

A way to get to the value of 𝜂𝜂 using only the data to be interpolated is 
through simulated aggregation – we merge a few adjacent source units 𝑎𝑎 
(two or three as that is generally the amount of units significantly overlap-
ping one source unit) into one (𝑔𝑔) and measure what 𝜂𝜂 should be for that 
breakdown. For this, we use their actual interactions 𝑟𝑟𝑎𝑎𝑎𝑎 compared to the 
total aggregated self-interaction 𝑟𝑟𝑔𝑔𝑔𝑔 = ∑ ∑ 𝑟𝑟𝑎𝑎𝑎𝑎(𝑏𝑏)(𝑎𝑎) , using the relative mar-
ginal sums in place of transfer weights from (𝑇𝑇𝑎𝑎𝑎𝑎 = 𝑟𝑟𝑎𝑎𝑎𝑎/𝑟𝑟𝑔𝑔𝑔𝑔). The 𝜂𝜂𝑔𝑔 for the 
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grouping is then computed as a mean of values generated by the internal 
interaction matrix, weighted by the absolute interaction values: 

𝜂𝜂𝑔𝑔 = � �
𝑟𝑟𝑎𝑎𝑎𝑎

𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑔𝑔𝑔𝑔

𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑔𝑔𝑔𝑔 − 𝑟𝑟𝑔𝑔𝑔𝑔𝑟𝑟𝑎𝑎𝑎𝑎
𝛿𝛿𝑎𝑎𝑎𝑎𝑟𝑟𝑔𝑔𝑔𝑔 − 𝑟𝑟𝑔𝑔𝑔𝑔(𝑏𝑏)(𝑎𝑎)

 

Then, the question is how to compute 𝜂𝜂 for any set of source areas for which 
the areal interpolation is attempted. The simple approach undertaken here 
is to use a single value for 𝜂𝜂 across the whole system. We can obtain its val-
ue by a weighted global mean: 

𝜂𝜂 =
∑ 𝜂𝜂𝑔𝑔𝑟𝑟𝑔𝑔𝑔𝑔(𝑔𝑔)

∑ 𝑟𝑟𝑔𝑔𝑔𝑔(𝑔𝑔)
 

A more advanced approach would take into account distinctions across 
source areas. 

3. Validation 

3.1. Data 
We tested the proposed approach on areal interpolation of commuting in-
teraction data generated from the Estonian cell phone network, which pro-
vides information about the home and work anchor points (Ahas et al., 
2010) of each mobile network user; commuting interactions were then de-
rived by summing users having home and work anchors respectively in the 
given pair of mobile network cells. 

The interpolation was performed from the level of mobile network cells to 
that of Estonian municipalities and the results were compared to the cen-
sus-derived dataset for the comparable period, 2011, which were considered 
ground truth. For comparison, the interpolated commuting interactions 
were multiplied by a coefficient to match their overall sums to the census 
figures; this is necessitated by the fact that the mobile network data only 
capture a segment of the population according to the network operator's 
market share. 

3.2. Estimating the self-interaction parameter 
Using the approach in 2.4, we computed the 𝜂𝜂𝑔𝑔 values for all pairs of neigh-
boring cells. There seem to be significant differences between the 𝜂𝜂𝑔𝑔 in dif-
ferent areas as depicted in Figure 3. 
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Figure 3. Self-interaction parameter 𝜂𝜂𝑔𝑔 values across Estonian mobile network cells. The 
value for a given cell is a weighted mean of all its neighbor pairs. 

𝜂𝜂𝑔𝑔 is usually significantly larger in rural Estonian areas than in urban ones, 
hinting at a lower degree of interaction there. Lower 𝜂𝜂𝑔𝑔 can be found in cells 
with non-compact shapes that share long borders with neighboring cells 
whose centroids are close by. Also, lower 𝜂𝜂𝑔𝑔 is observed around mid-sized 
settlements. Using the global mean estimation method yielded 𝜂𝜂 = 0.865 
with a mean absolute error (MAE) of 0.102. 

3.3. Areal interpolation 
We examined the effect of different values of 𝜂𝜂 on the interpolated munici-
pal interactions, performing the interpolation with values varying across 
the [0; 1] range and comparing the result with the census-derived interac-
tions. The share of self-interaction volume in the result increased linearly 
from 70.2% at 𝜂𝜂 = 0 to 75.1% at 𝜂𝜂 = 1. Figure 4 shows the effect on the cor-
respondence of the interpolated interactions with the census-derived inter-
actions as measured by relative total absolute error (RTAE): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
∑ �𝑟𝑟𝛼𝛼𝛼𝛼 − 𝑐𝑐𝛼𝛼𝛼𝛼�(𝛼𝛼,𝛽𝛽)

∑ 𝑐𝑐𝛼𝛼𝛼𝛼(𝛼𝛼,𝛽𝛽)
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Figure 4. Correspondence of interactions interpolated from source self-interactions with 
census data, across different settlement classes and self-interaction parameter values. 

It seems that overall, greater correspondence with census interactions is 
achieved at a lower but non-zero value of 𝜂𝜂 in this case, although the differ-
ences are rather low. However, within different categories of settlements 
(rural settlements below 1 000 census commuters, large urban settlements 
over 20 000 and small urban between these bounds), very different values 
of 𝜂𝜂 might be appropriate. Therefore, the development of a model that 
would be able to estimate 𝜂𝜂 for each source area independently could in-
crease the interpolation accuracy further. The global mean value shows it-
self not to be a suitable estimator in this case, perhaps because it is comput-
ed on a higher level (source area aggregations) and therefore tends to min-
imize the error for larger areas. 

4. Conclusion 
We suggested an improvement to a commonly used method for areal inter-
polation of interaction data by Boyle and Feng (2002) with respect to self-
interactions that normally tend to produce interpolation artifacts. The 
method does not require additional data. Using a globally calibrated self-
interaction preference parameter 𝜂𝜂 to control self-interaction assignment, a 
small improvement in accuracy is achieved. An option to increase accuracy 
further by calibrating the parameter locally is proposed as a further re-
search direction. The method presented here works for spatially extensive 
variables such as counts of commuters, but it can be easily adapted to spa-
tially intensive variables such as modal split fractions by switching from 
sums to weighted means. 
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