
DIPLOMARBEIT

The shape of death
A brief discussion on the RRR transform and

multidimensional methods of pricing

mortality derivatives

ausgeführt am Institut für

Wirtschaftsmathematik

Forschungsgruppe Finanz- und Versicherungsmathematik

unter der Anleitung von

Univ.-Prof. Dipl.-Math. Dr. rer. nat. Thorsten Rheinländer

durch

Philip Rambauske BSc

e0826652

Matznergasse 44/6

A-1140 Wien

Wien, 9. Februar 2016

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





Affidavit

I hereby declare that this master thesis has been written only by the undersigned

and without any assistance from third parties.

Furthermore, I confirm that no sources have been used in the preparation of this

thesis other than those indicated in the thesis itself.

Vienna, January 29, 2016

ii



Kurzfassung

Derivative Finanzinstrumente existieren in den unterschiedlichsten Märkten, zum

Beispiel in Aktienmärkte, Energiemärkte sowie Öl- und Gasmärkte. Deren Under-

lying ist schon seit langem kein gewöhnlicher Stock mehr. Dennoch gibt es für

Mortalitätsderivate bis heute noch keinen liquiden Markt.

Diese Arbeit befasst sich mit der Modellierung der Sterblichkeitsintensität, welche

sowohl Korellationen über die Zeit als auch zwischen Altersgruppen zulässt. Dieser

Ansatz führt zu einer neuen Art von sterblichkeitsbezogenen Finanzinstrumenten,

welche mit diesem Modell bepreist werden können. Ein Beispiel eines Mortalitäts-

derivates wird vorgestellt und eine geschlossene Preisformel wird hergeleitet. Weiters

wird das Einbeziehen eines Sicherheitspolsters in die Modellierung der Sterblichkeits-

intensität diskutiert, sowie eine Transformation, welche diesen Ansatz approximiert,

vorgestellt.

Schlagwörter: Cox-Ingersoll-Ross Prozess, CIR-field, Correlation Bond, Mortality

Swap, Gompertz-Makeham Modell, Second Order Shift, Esscher Transformation,

RRR Transformation

Abstract

Derivative financial instruments occur in different types of markets, like stock mar-

kets, energy markets and oil and gas markets. Their underlying does not have to

be an ordinary stock any more. However, a liquid market for mortality derivatives

does not exist yet.

This thesis is about modelling the force of mortality by including correlations over

time and between age classes. This approach leads to a new kind of mortality

linked financial instrument which can be priced within this model. An example of a

mortality derivative will be given and a closed pricing formula will be established.

Furthermore, this thesis discusses including a safety margin for modelling the force of

mortality and introduces a transformation which aims to approximate this approach.

Keywords: Cox-Ingersoll-Ross process, CIR-field, Correlation bond, Mortality swap,

Gompertz-Makeham model, Second order shift, Esscher transform, RRR transform
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CHAPTER 1

Introduction

A mortality derivative is a financial instrument whose underlying is related to the

mortality of a certain cohort. Consider a derivative depending on interest rates. A

mortality derivative is a similar product. For example, a so called longevity swap is

a contract between two parties. The payment of one party depends on the mortality

of a cohort, e.g. the uncertain number of survivors at the maturity. This party

pays the floating leg against a predefined fixed leg. The underlying is the force of

mortality, which can be compared to ordinary swaps where the interest rate is the

underlying index. The upper example is a so called bespoken over the counter swap.

There are already some papers focusing on these products, for example Biffis et al.

[BBPS14]. However, a liquid market for mortality linked derivatives does not exist

yet. There are organisations such as the Life & Longevity Market Association who

want to establish a liquid market. For further information please visit their home-

page http://www.llma.org.

The aim of this thesis is to provide a pricing framework for mortality derivatives. In

contrast to existing frameworks this model includes correlations of the mortality rate

over time and between age classes. This is accomplished by shifted Cox-Ingersoll-

Ross processes which model the deviation of the mortality rate from a given deter-

ministic function. Since the correlation between age classes is taken into account,

it is possible to define new kinds of mortality linked instruments which depend on

these correlations. Furthermore, this model is able to provide a closed pricing for-

mula for such a product.

The structure of this thesis is as follows:

Chapter 2 gives an example of a mortality linked financial instrument which reflects

the correlation between different cohorts. This product, called correlation bond,

motivates the final model and can be priced within this model.

Chapter 3 introduces a deterministic model for the mortality rate, namely the

Gompertz-Makeham model. Furthermore, it discusses the so called second order

shifts. Insurance and reinsurance undertakings use second order shifts in order to

gain higher profits or to be more prudent within the calculation of best estimates of

future cash flows. These cash flows will only occur, if the insured person is alive at a

certain time. Therefore, the present value of this contract is linked to the probability

1
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1. INTRODUCTION 2

of death of this person. The second order shift simply shifts the persons age, e.g.

for two years; see figure 1.

This thesis tries to receive a similar output using a different approach, namely the

RRR transform. Consider the probability of a person with age x dying within the

next t years, i.e. tqx. These probabilities refer to the distribution function of a

random variable representing the remaining lifetime of a person with age x. This

paper will introduce a transformation of the random variable’s density function.

The transformation looks similar to the Esscher transform. However, the Esscher

transform is not the right choice to solve this problem, which will be discussed within

this chapter.

Chapter 4 adds a simple stochastic movement, i.e. the Brownian motion, to the

model. Some basic theorems of stochastic analysis will be stated. They are required

in order to derive the price of the correlation bond of chapter 2. This model includes

correlations over time, but has not implied correlations between age classes yet.

Chapter 5 is about the main model of this thesis. The shifted Cox-Ingersoll-Ross

process will be introduced and analysed which finally leads to the CIR-field, a model

for the force of mortality. It consists of a basic force of mortality, which does not

include stochastic movements and serves as trend function for the force of mortality.

For example, the Gompertz model with Makeham extension from chapter 3 can be

used for this part. The randomness is modelled by two shifted Cox-Ingersoll-Ross

processes which are driven by independent Brownian motions. One process models

the deviations over time and the other process reflects deviations over the person’s

age. The usage of a shifted CIR-process ensures a variation of the trend function,

which is bounded from below. Therefore, modelling a negative mortality rate can

be avoided. Furthermore, the correlation of the mortality between two age classes

is a decreasing function with respect to age differences. A rigorous proof of this

statement will be accomplished within this chapter.

Chapter 6 applies the prior defined model to financial products such as mortality

swaps and the correlation bond mentioned in chapter 2. The derivation of the price

requires results from term structure modelling. Moreover, the moment generating

function of the non-central chi-square distribution occurs. Finally a closed pricing

formula will be stated.



CHAPTER 2

Motivation

2.1. Setting

The financial product presented in this short chapter reflects correlations of the mor-

tality between certain cohorts and motivates the model, which will be introduced

in chapter 5. Clearly, this product is very simple. However, having a look at more

complex models shows that the calculation of such products leads to challenging but

solvable problems.

Consider a reference society, e.g. a large city, or a whole country, which is as-

sumed to be closed. The following uses a notation similar to Biffis et al. [BM].

Let I = {x1, . . . , xn} denote the society, where each xi refers to a cohort, e.g. people

of a certain age and gender. An individual j of cohort x ∈ I is linked to a random

variable τx,j which describes the residual lifetime.

Fix T > 0. The price at time t < T of a pure endowment contract, paying ST

to each individual who is alive at time T , is given by

PBt :=

∫
B
E
[
exp

(
−
∫ T

t
(rs + µs,x) ds

)
ST

]
Ψt(dx) (1)

where B is a subset of I, r denotes the interest rate, µ·,x is the force of mortality of

the cohort x ∈ I and

Ψt(B) :=

∫
B

|x|∑
j=1

I{τx,j>t} dx

describes the numbers of survivors at time t over all cohorts of interest.

2.2. Correlation bond - pricing formula

Since the force of mortality (µs,x)(s,x)∈[0,∞)×I is a mathematical surface, correlations

between the different cohorts can be implied. Let x̃ ∈ I be a specific cohort. Assume

a party named A offers derivative financial instruments whose underlying asset is

PBt /P
x̃
t . The corresponding prices are calculated by (1) with payment ST equal to

1. Furthermore, let B ⊂ I be a subset of I containing only the specific cohort x̃

and one other cohort y ∈ I. This leads to the definition of the correlation bond.

3



2.2. CORRELATION BOND - PRICING FORMULA 4

Definition 2.1. Let x̃, y ∈ I denote cohorts. The Correlation bond is defined via

P̃ yt :=
P x̃,yt

P x̃t
(2)

where P x̃,yt and P x̃t is defined by (1).

Remark: Assume all cohorts to have the same cardinality. If the mortality of the

cohort x̃ is perfectly positive correlated to the mortality of the cohort y, the value of

P̃ yt will be (omitting interest rates) constant. A pension fund trying to hedge this

kind of correlation would invest in an instrument, benefiting from a constant devel-

opment of (2), e.g. a short position in a barrier option. Therefore, P̃ yt serves as

some kind of measure for these correlations.

Assuming the term structure is independent of the force of mortality, the time zero

price of this product is equal to

P̃ y0 =
B(0, T )

∫
{x̃,y} E

[
exp

(
−
∫ T

0 µs,x ds
)]

Ψ0( dx)

B(0, T )
∫
{x̃} E

[
exp

(
−
∫ T

0 µs,x ds
)]

Ψ0(dx)
(3)

=
|x̃| E

[
exp

(
−
∫ T

0 µs,x̃ ds
)]

+ |y| E
[
exp

(
−
∫ T

0 µs,y ds
)]

|x̃| E
[
exp

(
−
∫ T

0 µs,x̃ ds
)] (4)

where B(t, T ) = E
[
e−

∫ T
t rs ds|Ft

]
denotes the time t-price of a zero coupon bond

using a filtration (Ft)t≥0 for this market. For further information on term structures

see Filipović [Fil09].

This serves as an example of a mortality linked financial product. The following

sections will provide different frameworks in order to compute the terms in expression

(4). Since this product is able to reflect the correlation between cohorts, the last

model introduced in chapter 5 will be the most suitable for pricing the correlation

bond.



CHAPTER 3

Gompertz-Makeham law of mortality

This chapter considers the Gompertz model and the Gompertz model with Make-

ham extension, short: the Gompertz-Makeham model, for the force of mortality.

The mortality is modelled by a deterministic function. Therefore, formula (4) can

be computed straightforward. However, this chapter discusses an important topic

for insurance and reinsurance undertakings, namely second order shifts which will

be described in section 3.1. How this method affects formula (4) is described below.

Furthermore, the results can be applied in extended stochastic models of the follow-

ing sections. First, focus on the Gompertz-Makeham model.

Applying the parametrisation similar to Wüthrich et al. [WM13] and Carriere [Car],

the force of mortality, following the Gompertz law of mortality, is given by

µ(x) =
e
x−m
ζ

ζ

and the Gompertz-Makeham law of mortality is given by

µ(x) = λ+
e
x−m
ζ

ζ
(5)

with location parameter m > 0, dispersion parameter ζ > 0 and an additional pa-

rameter λ > 0.

Wüthrich and Merz [WM13] use the Gompertz law of mortality which applies in

some examples of section 3.3.1. The Makeham extension of the Gomperz model

allows to include effects which are independent of a person’s age. For further infor-

mation, see Marshall et al. [MO07].

Since λ equal to zero leads to the Gompertz model, the following uses the Makeham

extension.

Consider a person with age x. The remaining lifetime is described by a positive

random variable τx. Under the Gompertz-Makeham law of mortality, a person with

age x is going to survive the next t years with probability

tpx = P [τx > t] = exp

(
−
∫ t

0
µ(x+ s) ds

)
= exp

{
−λt− e

x−m
ζ

(
e
t
ζ − 1

)}

5



3.1. SECOND ORDER PROBABILITY 6

Furthermore, the probability of death occurring within t years follows

tqx = 1− tpx = 1− exp
{
−λt− ξ

(
e
t
ζ − 1

)}
(6)

with

ξ := ξ(x,m, ζ) := e
x−m
ζ

If the input parameters of ξ are different from the model parameters x,m and ζ,

the more explicit notation ξ(·, ·, ·) will be used. This only occurs in section 3.1.

Otherwise the short notation ξ is sufficient.

3.1. Second order probability

The second order shift is a parallel shift of the probabilities of death. Figure 1 illus-

trates this approach with a shift of two years, i.e. instead of a person with age x,

the probabilities refer to a person with age x− 2. In general, the level of this shift

is denoted by k ∈ N.

As mentioned in chapter 1, insurance and reinsurance undertakings might be using

this approach to guarantee a prudent estimation for their future cash flows. For

example, consider an insurance contract paying a certain amount if the insured per-

son is alive at time T in the future, i.e. a pure endowment contract. This cash

flow needs to be discounted and weighted by probability of survival to obtain the

contract’s expected present value. Shifting the mortality by two years leads to a

reduction of the probability of death and therefore increases the present value of

the future payment. As a consequence this results in increasing technical provisions,

which insurance and reinsurance undertakings have to calculate in order to guaran-

tee and fulfil all contractual obligations.

Alternatively, technical provisions of a life insurance contracts will drop, if the mor-

tality drops. This occurs due to the fact that the event of paying money to the

insured person at a future date becomes less likely.

Remark: Choosing a value for k might look arbitrary. However, it is bounded by

two borders. On the one hand a company wants to maximise their profit and for

this purpose the company does not choose a very prudent second order shift. On the

other hand, due to solvency requirements, the company is committed to a certain

level of prudence.

This chapter studies parallel shifts, which reduce the mortality by reducing the

persons age x. Considering formula (6), the choice of level k for the second order

probability is equal to replacing parameter m by m+ = m+ k > m for k ∈ N. This

leads to the following definition.
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Definition 3.1. Let k ∈ N. The second order probabilities with level k for the

Gompertz-Makeham model are given by

tq
(k)
x = 1− exp

{
−λt− ξ(x,m+ k, ζ)

(
e
t
ζ − 1

)}
(7)

= 1− exp
{
−λt− ξe

−k
ζ

(
e
t
ζ − 1

)}
The notation used in the upper formula (7) is based on Wüthrich et al. [WM13].

Remark: ∂ tq
(k)
x
∂t = ξ

ζ exp
{
t−k
ζ − ξe

−k
ζ

(
e
t
ζ − 1

)}
The next section introduces an alternative transformation in order to approximate

the second order probabilities.

3.2. RRR transform

The RRR transform is a variation of the Esscher transform, see Gerber and Shiu

[GS94], in order to generate transformed probabilities of death. Similar to the

Esscher transform the RRR transformation is defined on density functions, i.e.

Definition 3.2. Let h ∈ C. The RRR transform of a density f is defined by

f(t;h) =
1

L{f}(h)
e−htf(t) (8)

where L{f}(h) is the Laplace transform of a random variable with density function

f , see Marshall et al. [MO07]

L{f}(h) =

∫ ∞
0

e−hsf(s) ds (9)

In order to apply this transformation to the probabilities of death, their density is

required.

The probability tqx to die within t years is a distribution function in t ∈ R+. The

corresponding density function, denoted by f(t), equals the derivation

f(t) : =
∂ tqx
∂t

=
∂

∂t

[
1− exp

{
−λt− ξ

(
e
t
ζ − 1

)}]
=

(
λ+

ξ

ζ
e
t
ζ

)
exp

{
−λt− ξ

(
e
t
ζ − 1

)}
(10)

To receive the transformed probability of death, the density function f(t;h) in def-

inition (8) needs to be integrated, i.e.

tqx(h) =

∫ t

0
f(s;h) ds (11)

Remark: Since the Laplace transform is defined for complex-valued parameters h

such that the integral in (9) exists, the value of h is allowed to be negative as long

as the integral exists.
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Using the Gompertz-Makeham law of mortality, the Laplace transform of (10) is

given by

L{f}(h) =

∫ ∞
0

e−hsf(s) ds

=

∫ ∞
0

e−hs
(
λ+

ξ

ζ
e
s
ζ

)
exp

{
−λs− ξ

(
e
s
ζ − 1

)}
ds

= eξξζ(λ+h)
[
λζΓ (−ζ (λ+ h) , ξ) + Γ (−ζ (λ+ h) + 1, ξ)

]
(12)

The function Γ (·, ·) denotes the upper incomplete gamma function, i.e.

Γ (a, x) :=

∫ ∞
x

ua−1e−u du (13)

where a is allowed to be negative as long as x is greater than zero.

According to definition (11), the transformed density of (10) follows

tqx(h) =

∫ t

0
f(s;h) ds

=
1

L{f}(h)

∫ t

0
e−hs

(
λ+

ξ

ζ
e
s
ζ

)
exp

{
−λs− ξ

(
e
s
ζ − 1

)}
ds

=
λζΓ

(
−ζ (λ+ h) , ξ, ξe

t
ζ

)
+ Γ

(
−ζ (λ+ h) + 1, ξ, ξe

t
ζ

)
λζΓ (−ζ (λ+ h) , ξ) + Γ (−ζ (λ+ h) + 1, ξ)

(14)

where in addition to the upper incomplete gamma function (13), the generalised

incomplete gamma function

Γ (a, x, y) :=

∫ y

x
ua−1e−u du (15)

appears. Note that the disparity in the notation between the incomplete and the

generalised incomplete gamma function is the number of input variables.

A rigorous computation of equations (12) and (14) is accomplished in appendix A.

Remark: Using the Gompertz law of mortality, which means to choose λ of def-

inition (5) equal to zero, simplifies the upper results. The Laplace transform in

equation (12) reduces to

L{f}(h) = eξξζhΓ (−ζh+ 1, ξ) (16)

and the transformed probability in equation (14) follows

tqx(h) =
Γ
(
−ζh+ 1, ξ, ξe

t
ζ

)
Γ (−ζh+ 1, ξ)

(17)
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3.3. Examples

The examples presented in this section shall visualise the application of the upper

results. The corresponding graphics can be found in appendix B. Numerical results

and graphics have been computed by programs which are stated and described in

appendix C.

3.3.1. Using the Gompertz law of mortality.

Female Population:

In the first example the fit using the RRR transform compared to the second order

probabilities is illustrated. For this purpose the parameter-values, similar to exam-

ple 8.19 of Marshall et al. [MO07], are taken from Carriere [Car]. These values have

been estimated to achieve the best fit for a certain female population.

In figure 3 the second order probabilities, with shift k equal to 2, are plotted. Fur-

thermore, the parameter h has been chosen to achieve the least minimum square

difference between the considered curves, which is received for h equal to -0.025.

This can be seen in figure 2. As mentioned in section 3.2, since the appearing inte-

grals exist, a negative value of h is appropriate. The program, which computes this

result, is illustrated in appendix C code C.2.

Male Population:

Similar to the previous example the parameter-values are given by Carriere [Car]

for a certain male population. Figure 4 shows that the least square difference for

the considered curves are given by h equal to -0.02. This leads to RRR transformed

probabilities plotted in figure 5.

3.3.2. Using the Gompertz Makeham law of mortality.

Danish population:

For the parametrisation of the Gompertz-Makeham model, a Danish dataset has

been used. The parameter-values are taken from Norberg [Nor02], section 3.2. which

correspond to the G82M mortality table. Figure 6 shows the 3D-plot. The level of h

archiving the least square difference is marked by the green plane. Figure 7 explicitly

shows the transformed probabilities with this specific value for h.

3.4. A brief discussion on the Esscher transform

Previous studies tried to accomplish similar results, using the Esscher transform in

order to achieve transformed probabilities. This section investigates the approach

using Esscher transformed probabilities. As a result, this choice of transformation

is not admissible.

Since Gerber and Shiu [GS94] used the Esscher transform for the price of options,



3.4. A BRIEF DISCUSSION ON THE ESSCHER TRANSFORM 10

it is an interesting tool in financial and actuarial mathematics. Similar to their

notation, the Esscher transform is given by

f(t;h) =
1

Mf (h)
ehtf(t) (18)

where Mf (h) is defined as the moment generating function of a random variable

with density function f , i.e.

Mf (h) =

∫ ∞
−∞

ehtf(t) dt (19)

The appearing random variable is, for this purpose, the remaining lifetime with

distribution function tqx. The probability tqx in the Gompertz-Makeham model is

given by formula (6), which is

tqx = 1− exp
{
−λt− ξ

(
e
t
ζ − 1

)}
This holds for t greater than zero.

Since tqx equals zero for t ≤ 0 , the function defined for t ∈ R is given by

tqx =

{
0 , t ≤ 0

1− exp
{
−λt− ξ

(
e
t
ζ − 1

)}
, t > 0

(20)

This function is non-decreasing, limt→−∞ tqx equals zero, limt→∞ tqx equals one

and since

lim
t→0+

tqx = lim
t→0+

[
1− exp

{
−λt− ξ

(
e
t
ζ − 1

)}]
= 0 = lim

t→0− tqx

the function is continuous in R. Therefore, tqx is a distribution function.

Trying to calculate the derivative of this function, which is necessary to calculate

the moment generating function (19), leads to

f(t) =

{
0 , t ≤ 0(
λ+ ξ

ζ e
t
ζ

)
exp

{
−λt− ξ

(
e
t
ζ − 1

)}
, t > 0

(21)

where the result for t > 0 has already been calculated in section 3.2. However, since

lim
t→0+

f(t) = lim
t→0+

[(
λ+

ξ

ζ
e
t
ζ

)
exp

{
−λt− ξ

(
e
t
ζ − 1

)}]
= λ+

ξ

ζ
(22)

6= 0 = lim
t→0−

f(t)

the density function is not continuous.

The Esscher transformation (18) requires a density function defined on R. Since in

the Gompertz-Makeham model the derivation of tqx does not exist in t equal to zero,

the Esscher transform can not be applied. This also concerns the Gompertz model,

because (22) is still non-zero even if λ equals zero .
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Note that the RRR transform (8) is defined on the positive half-line and therefore

this problem has been avoided.

3.5. Correlation bond - pricing formula

Second order shifts can be applied within the computation of the correlation bond’s

price of section 2.2. Since this financial instrument is provided by an insurance or

reinsurance undertaking, the price needs to be adjusted by a certain risk margin.

This assumption is realistic from an economical point of view, since a financial in-

stitution, selling this product, expects to make profit. Pricing this contract with

its true value has no financial incentive. Furthermore, a company’s business, that’s

only purpose is to sell these types of products, is going bankrupt with probability

equal to one. Therefore, second order shifts or the RRR tranform are appropriate

tools within pricing methods.

Consider the pricing formula (4) of section 2.2. Applying the second order shift

and the fact, that in this model everything is assumed to be deterministic, the

corresponding price is equal to

P̃ y0 =
|x̃| exp

(
−
∫ T

0 µs,x̃ ds
)

+ |y| exp
(
−
∫ T

0 µs,y ds
)

|x̃| exp
(
−
∫ T

0 µs,x̃ ds
)

with

exp

(
−
∫ T

0
µs,x ds

)
= exp

{
−λT − ξ(x,m+ k, ζ)

(
e
T
ζ − 1

)}
(23)

where x ∈ {x̃, y}.

Note that the formula consists of cardinalities of the initial cohorts weighted by

the probability of surviving the next T years. Thus, the expected numbers of sur-

vivors.

A similar result can be achieved by using survival probabilities corresponding to

formula (14).

The deterministic case might not be useful. Still the Gompertz-Makeham model

is used in practice, therefore the introduced methods of producing a safety mar-

gin for such pricing formulas can be applied. Furthermore, the following stochastic

mortality models will include a deterministic part. This deterministic function will

describe the trend of the mortality rate. Results of this section can be applied,

on the assumption that the mortality follows the Gompertz-Makeham law but has

further stochastic components.



CHAPTER 4

Added Brownian motion

In the previous chapter a deterministic way of modelling the force of mortality and

pricing the correlation bond of section 2.2 was introduced. This chapter focusses

on the Brownian motion in order to add a stochastic movement to the model. This

will happen in a very simple setting. Chapter 5 introduces a more complex model.

Still, this first approach of including randomness requires some results from Sto-

chastic Analysis like Nivikov’s condition for stochastic exponentials. Furthermore,

Ito’s integration by parts formula will be stated, which will also find application in

the following chapters. The source of randomness is reflected by a Brownian motion.

A standard Brownian motion, similar to Revuz et al. [RY99], is defined as a contin-

uous stochastic process (Wt)t≥0 with the following properties:

(1) W0 = 0, almost sure

(2) the process is almost surely continuous

(3) Wt has independent increments

(4) the increments are normally distributed, i.e. Wt −Ws ∼ N(0, t − s) for

s ≤ t

The force of mortality shall consist of a deterministic part δ and a Brownian motion:

µs,x = δ(s, x) +Ws (24)

For example, the deterministic function δ(s, x) can be equal to the force of mortality

under the Gompertz-Makeham law.

Formula (4) of section 2.2 contains expressions of the form E
[
exp

(
−
∫ T

0 µs,x ds
)]

.

In order to compute this expectation, several results of the theory on time continuous

stochastic integration are necessary. For details see Revuz et al. [RY99], Kazamaki

[Kaz94] and Øksendal [Øks03].

4.1. Stochastic exponential

Suppose (Mt)t≥0 is a continuous local martingale, then the stochastic exponential is

defined as the solution of

dYt = Yt dMt

12
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with initial condition Y0 = 1.

Applying Itō’s formula with f(x) = ex provides the expression

E (M)t = exp

(
Mt −

1

2
[M ]t

)
The stochastic exponential is again a continuous local martingale, since it is defined

as a stochastic integral. A sufficient condition to guarantee the martingale property

is the Novikov condition:

If

E
[
exp

(
1

2
[M ]t

)]
<∞ for all 0 ≤ t ≤ T (25)

holds, then the stochastic exponential (E(M)t)0≤t≤T is a true martingale.

4.2. Integration by parts

Referring to Øksendal [Øks03], let (Xt)t≥0 and (Yt)t≥0 be two continuous semi-

martingales. The integration by parts formula states

XtYt = X0Y0 +

∫ t

0
Xs dYs +

∫ t

0
Ys dXs + [X,Y ]t (26)

4.3. Correlation bond - pricing formula

The problem of computing expressions of the form E
[
exp

(
−
∫ T

0 µs,x ds
)]

can be

solved by applying the upper results. Using (24) leads to

E
[
e−

∫ T
0 µs,x ds

]
= e−

∫ T
0 δ(s,x) dsE

[
e−

∫ T
0 Ws ds

]
= e−

∫ T
0 δ(s,x) dsE

[
e
∫ T
0 sdWs−T ·WT

]
(27)

= e−
∫ T
0 δ(s,x) dsE

[
e
∫ T
0 (s−T ) dWs

]
= e−

∫ T
0 δ(s,x) dsE

[
e
∫ T
0 (s−T ) dWs− 1

2

∫ T
0 (s−T )2 ds

]
e

1
2

∫ T
0 (s−T )2 ds

= e
T3

6
−
∫ T
0 δ(s,x) dsE

[
E
(∫ •

0
(s− T ) dWs

)
T

]
= exp

(
T 3

6
−
∫ T

0
δ(s, x) ds

)
(28)

The integration by parts formula (26) yields to equality (27). Note that the covari-

ation term vanishes, since one argument has finite variation. For equation (28), the

Novikov condition (25) has been used. This step needs to be executed carefully since

T is part of the integrand as well as the upper bound.

Let T ≥ 0 be fixed. Consider a process (Mt)0≤t≤T defined by

Mt :=

∫ t

0
(s− T ) dWs for all 0 ≤ t ≤ T
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This process is a continuous martingale and by the Itō isometry, its variation process

is given by

[M ]t =

∫ t

0
(s− T )2 ds =

t3

3
− t2T + tT 2

Therefore, the Novikov condition (25) is fulfilled and
(
E
(∫ •

0 (s− T ) dWs

)
t

)
0≤t≤T is

a martingale. This leads to a constant expectation and since M0 equals zero

E
[
E
(∫ •

0
(s− T ) dWs

)
t

]
= 1 for all 0 ≤ t ≤ T

especially for t equal to T .

Applying (28) to formula (4) of section 2.2 leads to

P̃ y0 =
|x̃| E

[
exp

(
−
∫ T

0 µs,x̃ ds
)]

+ |y| E
[
exp

(
−
∫ T

0 µs,y ds
)]

|x̃| E
[
exp

(
−
∫ T

0 µs,x̃ ds
)]

=
|x̃| exp

(
T 3

6 −
∫ T

0 δ(s, x̃) ds
)

+ |y| exp
(
T 3

6 −
∫ T

0 δ(s, y) ds
)

+

|x̃| exp
(
T 3

6 −
∫ T

0 δ(s, x̃) ds
)

The upper expression P̃ y0 is just an example of a financial product. Important in

this setting was the calculation of the occurring terms E
[
exp

(
−
∫ T

0 µs,x ds
)]

. This

is the expected survival probability, which can be computed explicitly once the

deterministic function δ is chosen.

It is necessary to require properties for δ in order to achieve these results, e.g.

integrability such that (28) exists.



CHAPTER 5

Dependencies between cohorts

This chapter introduces the Cox-Ingersoll-Ross-process, which will be denoted by

the short notation CIR-process. The model in the previous section does not include

correlations between cohorts. The source of randomness, i.e. the Brownian motion,

was indexed by t, therefore only dependencies between different points in time have

been captured.

The following approach includes dependencies between cohorts. The idea simply

consists of using two CIR-processes driven by independent Brownian motions. One

process represents dependency between time, and the second one is capturing the

dependency between age classes. For this purpose the set I of cohorts is going to

be an interval of the form [0, w), where w denotes the final age.

In anticipation of the final model, the application of CIR-processes for the force of

mortality follows.

Consider the mortality modelled by:

µt,x = δ(t, x) + Yt + Zx (29)

where (Yt)t≥0 and (Zx)x∈I are both shifted CIR-processes.

Details on the modelling follow below. First, the CIR-process and its properties will

be introduced.

5.1. Cox-Ingersoll-Ross-process

For details on CIR-processes see Cox et al. [CIR85]. This section uses the notation

similar to Deelstra et al. [DP]. Furthermore, the idea of a shifted CIR-process has

been taken from Deelstra et al.

Definition 5.1. A Cox-Ingersoll-Ross-process (Y ∗t )t≥0 follows the stochastic differ-

ential equation

dY ∗t = κ(θ − Y ∗t ) dt+ σ
√
Y ∗t dWt

with initial condition Y ∗0 = y∗0 > 0 and κ, θ > 0, σ being real parameters.

A basic property of the CIR-process is its mean reversion. Furthermore, the condi-

tion 2κθ ≥ σ2 ensures that the process is strictly positive.

15
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For the purpose of definition (29) the CIR-process shall be shifted by its mean θ,

i.e. Yt := Y ∗t − θ. This leads to the stochastic differential equation

dYt = −κYt dt+ σ
√
Yt + θ dWt

Since the condition 2κθ ≥ σ2 is taken for granted, the process (Y ∗t )t≥0 is positive.

Therefore, the process (Yt)t≥0 can be negative, but its lower bound is equal to −θ
and its mean reverting level is zero. That means, if the process is negative the trend

will be positive such that the process will get positive again. Once the process is

positive, the trend-function will become negative in order to decrease the process.

Therefore, the process will fluctuate around zero.

These are appropriate properties, since the CIR-processes in (29) are intended to

reflect disturbance of the trend δ(t, x). The mean trend of this variation shall be

equal to zero and since a negative force of mortality should be avoided, a lower

bound for the shifted CIR-processes is suitable.

The solution of this SDE can be derived by applying the integration by parts formula

(26):

d
(
eκtYt

)
= eκt dYt + κeκtYt dt+ d [eκ •, Y ]t︸ ︷︷ ︸

=0

= −κeκtYt dt+ eκtσ
√
Yt + θ dWt + κeκtYt dt

= eκtσ
√
Yt + θ dWt

which leads to

eκtYt − Y0 = σ

∫ t

0
eκv
√
Yv + θ dWv ⇐⇒

Yt = e−κty0 + e−κtσ

∫ t

0
eκv
√
Yv + θ dWv

For further considerations the covariance of this process is needed.

Let s ≤ t,

Cov [Ys , Yt] = E [(Ys − EYs) (Yt − EYt)]

= E
[(
e−κsσ

∫ s

0
eκu
√
Yu + θ dWu

)(
e−κtσ

∫ t

0
eκv
√
Yv + θ dWv

)]
= σ2e−κ(s+t)E

[(∫ s

0
eκu
√
Yu + θ dWu

)(∫ s

0
eκv
√
Yv + θ dWv

)
+

(∫ s

0
eκu
√
Yu + θ dWu

)(∫ t

s
eκv
√
Yv + θ dWv

)]
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By Itō-isometry this equation reduces to

Cov [Ys , Yt] = σ2e−κ(s+t)E
[∫ s

0
e2κu (Yu + θ) du

]
= σ2e−κ(s+t)

∫ s

0
e2κu (EYu + θ) du

= σ2e−κ(s+t)

[
y0

∫ s

0
eκu du+ θ

∫ s

0
e2κu du

]
=
σ2e−κ(s+t)

2κ

[
2y0 (eκs − 1) + θ

(
e2κs − 1

)]
(30)

This expression will be used in the study of the correlation between cohorts using

the force of mortality (29). The purpose of this section was an introduction to CIR-

processes. Since the current mortality model (29) requires two CIR-processes, the

parameter-notation will be adapted.

5.2. CIR-field-model

The introduction of this chapter briefly mentioned a mortality model using two

CIR-processes. A rigorous definition follows.

Definition 5.2. For s ∈ [0,∞) and x ∈ I the force of mortality, called CIR-field, is

given by

µt,x = δ(t, x) + Yt + Zx

where

• δ : R+× I → R+ is a deterministic function

• (Yt)t≥0 is a shifted CIR process, following the SDE

dYt = −κ̃Yt dt+ σ̃

√
Yt + θ̃ dW̃t

with initial condition Y0 = y0 and positive constants κ̃, θ̃ and σ̃.

• (Zx)x∈I is a shifted CIR process, following the SDE

dZx = −κZx dx+ σ
√
Zx + θ dWx

with initial condition Z0 = z0 and positive constants κ, θ and σ.

• The appearing standard Brownian motions (W̃t)t≥0 and (Wx)x∈I are as-

sumed to be independent.

Remark: This model is named CIR-field-model, because it can be regarded as a sto-

chastic field (µt,x)(t,x)∈[0,∞)×I .

What now has been achieved is a mortality consisting of a trend function with

the ability of including disturbance over time and age classes. The function δ in

definition 5.2 describes the mean trend of the mortality. For example the Gompertz-

Makeham law of mortality might be a choice for δ, or the RRR transform can be

chosen. However, the describing function, which the mortality should follow, can be
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chosen separately. It is not necessary to choose a stochastic model and then fit the

trend part in order to describe mortality.

In this model the stochastic disturbance, i.e. the deviation from the function δ, is

modelled by Cox-Ingersoll-Ross processes. As described in the previous section, an

attribute of CIR-processes is the possibility of being strictly positive. This finds ap-

plication in term structure modelling. The modelling of mortality does not require

a strict positive disturbance function, since also negative deviations are possible and

need to be included. However, this property still can be used properly. Performing

a certain shift of the CIR-process, allows to gain negative values. Note that these

negative values correspond to the disturbance functions, not the final mortality pro-

cess. Nevertheless, due to the non-negativity of the non-shifted process, the shifted

one is bounded from below. This is an important property for mortality models in

order to avoid negative values for the mortality process. For this purpose the shift

levels θ and θ̃ have to be chosen properly such that the deterministic function δ

is able to catch the negative deviation. Otherwise a negative force of mortality is

possible.

The shift-level is exactly the same as the mean trend of the non-shifted process.

This leads to a new disturbing process, whose mean trend is zero, meaning that this

process will develop around zero. Since the trend of the mortality is fully captured

by the function δ, a mean trend equal to zero is appropriate. However, if a modeller

wants to include a certain trend in the variation of the mortality function, simply a

shift smaller or bigger than θ has to be performed. This might be the case if a more

prudent modelling is required and the modeller is expecting a general deviation.

Another way of including such prudent modelling assumptions has been discussed

in section 3.2.

The model uses shifted CIR-processes for the deviation over time as well as for devi-

ations over age classes. For this purpose independent Brownian motions have been

used, because disturbance over time is assumed to be independent of the disturbance

over age classes. Modelling the mortality with the capability of including correla-

tions between different ages leads to the following requirement. From a natural point

of view, the mortality of two ages with a small difference should be higher corre-

lated than very different ones. This means, that the correlation between two age

classes should be monotonically decreasing, as the age-difference becomes greater.

The following section provides a detailed proof of this property.

5.3. Proof of decreasing correlation

A goal in modelling dependencies between age classes is the following. The mortality

of people with similar ages should be stronger correlated compared to people with a

great difference in their ages. That means, that the correlation between two persons

with age x and x+ ∆ shall be a monotonically decreasing function in ∆.

This section proves, that the CIR-field-model fulfils this requirement. Some expres-

sions can be very large and hence will be evaluated separately.
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Definition 5.3. Let the correlation between µs,x and µt,y be denoted by

ρ ((s, x), (t, y)) : =
Cov [µs,x, µt,y]√

Vµs,xVµt,y

The requirement mentioned above means, in terms of this notation, that ρ((t, x), (t, x+

∆)) is a monotonically decreasing function in ∆.

The following theorem delivers a condition with which this can be achieved. This

condition is only necessary, since the framework does not want to exclude a starting

value of the CIR-process different from zero. If the process starts in zero, the condi-

tion will always be fulfilled. Nevertheless, if the modeller prefers a different starting

value, the following inequality has to be satisfied in order to achieve a decreasing

correlation.

Theorem 5.1. The correlation ρ((t, x), (t, x+ ∆)) is a decreasing function in ∆ if

either the initial value z0 equals zero, or, in the case of z0 6= 0, if the condition

κ <
ln (2 + θ/z0)

x+ ∆
(31)

holds.

For the proof of this statement some groundwork is necessary.

First, an expression for the correlation in terms of variance and covariance of the

CIR-processes will be derived. Therefore, the property of the covariance being bi-

linear will be used. Due to the independence of the Brownian motions the following

transformations hold.

ρ((t, x), (t, x+ ∆)) =
Cov [δ(t, x) + Yt + Zx; δ(t, x+ ∆) + Yt + Zx+∆]

(V (δ(t, x) + Yt + Zx)V (δ(t, x+ ∆) + Yt + Zx+∆))1/2

=
VYt + Cov[Zx;Zx+∆]

((VYt + VZx)(VYt + VZx+∆))1/2
(32)

In order to compute the deviation with respect to ∆, ∂
∂∆Cov[Zx;Zx+∆] and ∂

∂∆VZx+∆

are needed. These expressions have already been calculated in the previous section

and are given by formula (30). Adapting the parameters leads to:

Cov[Zx;Zx+∆] =
1

2κ
σ2e−κ(2x+∆)

[
2z0(eκx − 1) + θ(e2κx − 1)

]
(33)

VZx+∆ =
1

2κ
σ2e−2κ(x+∆)

[
2z0(eκ(x+∆) − 1) + θ(e2κ(x+∆) − 1)

]
(34)
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and therefore the deviations with respect to ∆ can be computed. Straight forward

calculations lead to:

∂

∂∆
Cov[Zx;Zx+∆] = −1

2
σ2e−κ(2x+∆)

[
2z0(eκx − 1) + θ(e2κx − 1)

]
(35)

∂

∂∆
VZx+∆ = −σ2e−2κ(x+∆)

[
2z0(eκ(x+∆) − 1) + θ(e2κ(x+∆) − 1)

]
+ σ2e−2κ(x+∆)

[
z0e

κ(x+∆) + θe2κ(x+∆)
]

= σ2e−2κ(x+∆)
[
θ − z0e

κ(x+∆) + 2z0

]
(36)

The final proof of theorem 5.1 includes a downward estimation provided by the

corollary below. This inequality shall be separately verified.

Corollary 5.1.1. The covariation (33) and variation (34) fulfil

Cov [Zx;Zx+∆] < VZx+∆

and

Cov [Zx;Zx+∆]

VZx+∆
<

VYt + Cov [Zx;Zx+∆]

VYt + VZx+∆
(37)

Proof. Since VYt and VZx+∆ are greater than zero, the second statement (37)

follows directly from the first inequality. This can be seen by the following.

Let a, b, c ∈ R and assume b and c are positive. Then the following transformations

hold:

a

b
<
a+ c

b+ c
⇐⇒

ab+ ac < ab+ bc ⇐⇒

a < b

The proof of the first inequality will be accomplished by straightforward computa-

tion. Inserting formulas (33) and (34) into Cov[Zx;Zx+∆] < VZx+∆ leads to an

equivalent inequality.

Cov[Zx;Zx+∆] < VZx+∆ ⇐⇒

2z0(eκx − 1) + θ(e2κx − 1) < e−κ∆
[
2z0(eκ(x+∆) − 1) + θ(e2κ(x+∆) − 1)

]
⇐⇒

0 < 2z0(1− e−κ∆︸ ︷︷ ︸
>0

) + θ(eκ(2x+∆) − e2κx︸ ︷︷ ︸
>0

+ 1− e−κ∆︸ ︷︷ ︸
>0

)

�

In order to apply this downward estimation, it is necessary that ∂
∂∆VZx+∆ is positive.

This required positivity is provided by the following corollary.

Corollary 5.1.2. Condition (31) is equivalent to ∂
∂∆VZx+∆ being positive.
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Proof. ∂
∂∆VZx+∆ being positive is equal to

0 < θ − z0e
κ(x+∆) + 2z0 ⇐⇒

eκ(x+∆) < 2 + θ/z0 ⇐⇒

κ <
ln (2 + θ/z0)

x+ ∆

�

Note that the first inequality in the upper proof holds, if z0 = 0. Therefore z0 = 0

is sufficient for ∂
∂∆VZx+∆ being positive.

Merging these results finally leads to the proof of theorem 5.1.

Proof of theorem 5.1. Equation (32) provides the following form of the cor-

relation’s derivation with respect to ∆

∂

∂∆
ρ((t, x), (t, x+ ∆)) = D−1

[
D1/2 ∂

∂∆
Cov[Zx;Zx+∆]

−1

2
(VYt + Cov[Zx;Zx+∆])D−1/2(VYt + VZx)

∂

∂∆
VZx+∆

]
where D := (VYt + VZx)(VYt + VZx+∆) denotes the squared denominator of the

correlation.

The statement, that needs to be proved is

∂

∂∆
ρ((t, x), (t, x+ ∆)) < 0

Multiplying this inequality by D1/2 leads to

∂

∂∆
Cov[Zx;Zx+∆] <

1

2
(VYt + Cov[Zx;Zx+∆])D−1(VYt + VZx)

∂

∂∆
VZx+∆

<
1

2
(VYt + Cov[Zx;Zx+∆])(VYt + VZx+∆)−1 ∂

∂∆
VZx+∆

Due to corollary 5.1.2, ∂
∂∆VZx+∆ is positive if either the condition (31) or z0 = 0 is

fulfilled. Therefore, applying corollary 5.1.1 is a downward estimation for the right

hand side. This leads to a stronger inequality

∂

∂∆
Cov[Zx;Zx+∆] <

1

2
Cov[Zx;Zx+∆](VZx+∆)−1 ∂

∂∆
VZx+∆

which implies the upper expression.

Furthermore, inserting (33), (34), (35) and (36) leads to

∂

∂∆
Cov[Zx;Zx+∆] <

1

2
Cov[Zx;Zx+∆](VZx+∆)−1 ∂

∂∆
VZx+∆ ⇐⇒

−1

2

[
2z0(eκx − 1) + θ(e2κx − 1)

]
<
[
2z0(eκx − 1) + θ(e2κx − 1)

]
· eκ∆

[
2z0(eκ(x+∆) − 1) + θ(e2κ(x+∆) − 1)

]−1

· e−κ∆
[
θ − z0e

κ(x+∆) + 2z0

]
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which is equivalent to

−1

2

[
2z0(eκ(x+∆) − 1) + θ(e2κ(x+∆) − 1)

]
< θ − z0e

κ(x+∆) + 2z0 ⇐⇒

z0 −
θ

2

(
e2κ(x+∆) − 1

)
< θ + 2z0 ⇐⇒

−z0 −
θ

2

(
e2κ(x+∆) + 1

)
< 0

which obviously holds and finishes the proof.

�

What has been shown, is that under condition (31) the goal of decreasing correla-

tions is achieved. This can also be guaranteed , if z0 is chosen equal to zero, which

is a proper assumption since there is no reason to start with a non-zero value of

disturbance. However, theorem 5.1 has been proved on a more general setting in

order to capture modelling preferences.

The most general setting for modelling mortality, which is provided in this paper,

has been accomplished. The following chapter discusses several applications of this

model in financial markets. Furthermore, the survival probability, which is necessary

for the price of the correlation bond, will be calculated.



CHAPTER 6

Application in financial markets

The mortality model of the previous section allows to discuss certain financial prod-

ucts which can be computed now. Since the CIR-field model is capturing the cor-

relation between time and age classes, new kinds of financial products are possi-

ble. This section will introduce simple products and their price calculation. Since

CIR-processes are used, some known results from interest rate modelling will find

application in this context.

Considering a zero coupon bond, which pays 1 at the maturity, and using continuous

interest rates allows, that the expected survival probability can be seen as the price

of a zero coupon bond. The Faynman-Kac formula will occur and the usage of an

exponential affine approach will lead to Riccati differential equations. This allows

to derive an explicit formula for the expected survival probability, which is highly

important to price several products.

6.1. Correlation future

Assuming a financial institution, denoted by party A, wants to reduce its risk of an

uncertain development of the correlation between two age classes. Party A would

like to hold a derivative financial product, which trades their uncertain correlation

of two ages with a predefined value, provided by party B.

This product equals a future contract, where the underlying stock is the correlation

between these ages and the strike is a predefined value. Similar to basic derivative

markets, the price of such an derivative is linked to the strike. Assuming that the

price equals zero, the fair strike equals the correlation given by the model.

Formula (30) provides all necessary terms of the correlation ρ((t, t), (x, y)). For

illustration purposes the starting value of the CIR-processes, describing disturbance

over time and age classes, y0 and z0 are set equal to zero.

The pay-off of this future contract, expiring at maturity T , is

P (µT,x, µT,y)−K

where P (µT,x, µT,y) denotes the correlation of µt,x and µt,y at time t = T , which is

not known before, and K denotes the strike, i.e. the constant correlation, which will

be traded against the floating leg.

As mentioned above, the fair strike, such that the contract has value zero at time

23
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t = 0, is given by formula (32)

ρ((T, x), (T, y)) =
VYT + Cov[Zx;Zy]

((VYT + VZx)(VYT + VZy))1/2

The occurring expressions can be computed using equation (30):

VYT =
σ̃2θ̃ exp(−2κ̃T )

2κ̃

(
e2κ̃T − 1

)
=
σ̃2θ̃

2κ̃

(
1− e−2κ̃T

)
VZx =

σ2θ

2κ

(
1− e−2κx

)
VZy =

σ2θ

2κ

(
1− e−2κy

)
Cov[Zx, Zy] =

σ2θ exp(−κ(x+ y))

2κ

(
e2κy − 1

)
This is not a highly exotic contract. However, this example shall illustrate that

this model provides computational background for new kinds of correlation linked

mortality derivatives. In general all well known derivatives like vanilla, barrier,

look-back, American or Asian options can be defined using the force of mortality as

underlying. Furthermore, the correlation between age classes is taken into account

and offers new possible products.

Another example of combining well-known products with these new possibilities is

the following.

6.2. Mortality swap and correlation bonds

Considering a mortality swap or, more precisely, a trade on the effective number of

survivors at time T against a predefined number. Assuming a group consists of N

individuals at time 0 and the whole group belongs to age class x.

The pay-off’s expectation of this swap equals:

N · E
[
e−

∫ T
0 µs,x ds

]
−N∗

where N∗ denotes the predefined number of survivors, i.e. the fixed leg. Similar to

the pricing formula (4) of section 2 an expression of the form E
[
exp

(
−
∫ T

0 µs,x ds
)]

needs to be computed. Therefore, this section delivers the price of a mortality swap

as well as the price for the product of section 2.

Due to

E
[
e−

∫ T
0 µs,x ds

]
= e−

∫ T
0 δ(s,x) ds︸ ︷︷ ︸

1©

E
[
e−

∫ T
0 Ys ds

]
︸ ︷︷ ︸

2©

E
[
e−TZx

]︸ ︷︷ ︸
3©

(38)

three parts fall into account. Expression 1© depends on the chosen trend function δ.

For example, in the case of the Gompertz-Makeham law of mortality, 1© has already

been computed in chapter 3 by equation (23) with k equal to zero.

Expression 3© is the moment generating function of the Cox-Ingersoll-Ross process.

Since the distribution of this process (conditionally on its initial value) follows a
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non-central chi-square distribution, its moment generating function can be derived

and evaluated.

The calculation of the term 2© requires results from term structure modelling, which

occur since the CIR-process finds application in modelling term structures. The rea-

son for this is its non-negativity and the possibility to derive explicit formulas for

bond prices. These properties will be used in modelling mortality.

The following calculations are mainly based on [Fil09].

6.2.1. Calculation via bond prices.

In order to compute E
[
exp

(
−
∫ T

0 Ys ds
)]

some calculations are required.

Let T > 0 be fixed and t ≤ T . Define

V (t, Yt) := E
[
e−

∫ T
t Ys ds|Ft

]
where the filtration (Ft)t≥0 is generated by a Brownian motion (W̃t)t≥0.

Consider

e−
∫ t
0 Ys dsV (t, Yt) = E

[
e−

∫ T
0 Ys ds|Ft

]
(39)

which obviously holds because e−
∫ t
0 Ys dsV (t, Yt) is Ft - measurably. Furthermore,

due to

E
[
e−

∫ T
0 Ys ds

]
≤ eθ̃T <∞ (40)

the process (
e−

∫ t
0 Ys dsV (t, Yt)

)
t≥0

is integrable and by (39) it is a martingale.

The following notation will be used:

V := V (t, Yt)

V (t) :=
∂

∂t
V (t, Yt)

V (y) :=
∂

∂y
V (t, Yt)

V (yy) :=
∂2

∂y2
V (t, Yt)
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Assume V is continuously differentiable, i.e. V ∈ C1,2. Applying the integration by

parts and the Itō formula leads to

d
(
e−

∫ t
0 Ys dsV (t, Yt)

)
= e−

∫ t
0 YsV ds (−Yt dt+ dV (t, Yt))

= e−
∫ t
0 Ys ds

(
−YtV dt+ V (t) dt+ V (y)dYt +

1

2
V (yy)d[Y ]t

)
= e−

∫ t
0 Ys ds

(
σ̃

√
Yt + θ̃V (y) dW̃t

+

(
−YtV + V (t) − κ̃YtV (y) +

1

2
σ̃2(Yt + θ̃)V (yy)

)
dt

)
Since

(
exp

(
−
∫ t

0 Ys ds
)
V (t, Yt)

)
t≥0

is a martingale, the dt term in the upper ex-

pression has to be equal to zero, which leads to the Feynman-Kac formula:

− YtV + V (t) − κ̃YtV (y) +
1

2
σ̃2(Yt + θ̃)V (yy) = 0 (41)

The next step relies on the theory of affine term structures. Assume V has some

exponential affine structure, i.e.

V (t, y) = exp (−A(t, T )−B(t, T )y)

Therefore, the partial derivations are

V (t) =
(
− ∂

∂t
A(t, T )︸ ︷︷ ︸

=:A(t)(t,T )

− ∂

∂t
B(t, T )︸ ︷︷ ︸

=:B(t)(t,T )

y
)
V

V (y) = −B(t, T )V

V (yy) = B(t, T )2V

Thus, equation (41) delivers

V

(
−y −A(t)(t, T )−B(t)(t, T )y + κ̃B(t, T )y +

1

2
σ̃2(y + θ̃)B(t, T )2

)
= 0

Applying affine matching, i.e. comparing terms of y and y0 leads to the system of

differential equations:

B(t)(t, T ) =
1

2
σ̃2B(t, T )2 + κ̃B(t, T )− 1 (42)

B(T, T ) = 0

A(t)(t, T ) =
1

2
σ̃2θ̃B(t, T )2 (43)

A(T, T ) = 0

These partial differential equations are called Riccati differential equations and can

be explicitly solved. The solution is given, for example by adapting the result from

[Fil09]:
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Theorem 6.1. The solution of (42) is given by

B(t, T ) =
2
(
eγ(T−t) − 1

)
(γ + κ̃)

(
eγ(T−t) − 1

)
+ 2γ

(44)

where γ :=
√
κ̃2 + 2σ̃2.

The formal derivation of the Riccati differential equations is not focus of this thesis.

Nevertheless, the solution shall be verified.

Proof. In order to proof the statement, the explicit solution (44) will be in-

serted in its differential equation (42). For this purpose let

N := (γ + κ̃)
(
eγ(T−t) − 1

)
+ 2γ

denote the denominator of B(t, T ). The left hand side of (42), i.e. the partial

derivation with respect to t, follows

B(t)(t, T ) =
∂

∂t

(
2
(
eγ(T−t) − 1

)
(γ + κ̃)

(
eγ(T−t) − 1

)
+ 2γ

)

=
1

N2

(
−2γeγ(T−t)

(
(γ + κ̃)

(
eγ(T−t) − 1

)
+ 2γ

)
+ 2γ(γ + κ̃)eγ(T−t)

(
eγ(T−t) − 1

))
=
−4γ2eγ(T−t)

N2

On the other hand, the right hand side of (42) follows

1

2
σ̃2B(t, T )2+κ̃B(t, T )− 1 =

=
1

N2

(
2σ̃2

(
eγ(T−t) − 1

)2
+ 2κ̃N

(
eγ(T−t) − 1

)
−N2

)
=

1

N2

((
eγ(T−t) − 1

)2 (
2σ̃2 + 2κ̃(γ + κ̃)− (γ + κ̃)2

)︸ ︷︷ ︸
= 2σ̃2+(γ+κ̃)(κ̃−γ) = 2σ̃2+κ̃2−γ2 = 0

+ 4κ̃γ
(
eγ(T−t) − 1

)
− 4γ(γ + κ̃)

(
eγ(T−t) − 1

)
− 4γ2

)

=
−4γ2

(
eγ(T−t) − 1

)
− 4γ2

N2

=
−4γ2eγ(T−t)

N2

Furthermore, the terminal condition B(T, T ) = 0 is fulfilled and therefore (44) is a

solution of (42). �

In the next step the solution of equation (43) A(t, T ) is derived. For some Riccati

differential equations straight forward integration of (43) is possible. In this case,

due to the term B(t, T )2, this might be more difficult. The following expression for
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A(t, T ) has been derived by the adapted solution in the case of a non-shifted CIR

processes. To proof the correctness, this solution is verified.

Theorem 6.2. The solution of (43) is given by

A(t, T ) = −2θ̃κ̃

σ̃2
ln

(
2γe(γ+κ̃)(T−t)/2

N

)
+ θ̃B(t, T )− θ̃(T − t) (45)

where again N = (γ + κ̃)
(
eγ(T−t) − 1

)
+ 2γ denotes the denominator of B(t, T ),

γ :=
√
κ̃2 + 2σ̃2 and B(t, T ) is given by (44).

Proof. In order to verify, that (45) is a solution of (43) the upper expression

is inserted into the differential equation. Using the differential equation (42), which

is satisfied for B(t, T ), equation (43) equals:

A(t)(t, T ) = −2θ̃κ̃

σ̃2

∂

∂t

(
ln(2γ) + (γ + κ̃)

T − t
2
− ln(N)

)
+ θ̃B(t)(t, T ) + θ̃

= −2θ̃κ̃

σ̃2

(
−1

2
(γ + κ̃)− 1

N

∂

∂t
N

)
+

1

2
σ̃2θ̃B(t, T )2︸ ︷︷ ︸
=A(t)(t,T )

+θ̃κ̃B(t, T )

Therefore, it is sufficient to show

θ̃κ̃B(t, T ) =
2θ̃κ̃

σ̃2

(
−1

2
(γ + κ̃)− 1

N

∂

∂t
N

)
=

θ̃κ̃

σ̃2N

(
−N(γ + κ̃) + 2γ(γ + κ̃)eγ(T−t)

)
=
θ̃κ̃(γ + κ̃)

σ̃2N

(
−(γ + κ̃)

(
eγ(T−t) − 1

)
− 2γ + 2γeγ(T−t)

)
=

θ̃κ̃

σ̃2N
(γ + κ̃)(γ − κ̃)︸ ︷︷ ︸

=2σ̃2

(
eγ(T−t) − 1

)

= θ̃κ̃
2
(
eγ(T−t) − 1

)
N

= θ̃κ̃B(t, T )

Furthermore, the terminal condition A(T, T ) = 0 is fulfilled, which completes this

proof. �

The upper calculations are very basic in the context of term structure modelling.

Applying a very common process of this theory, i.e. the CIR-process, enables to use

these results for the model.

As a final step in the calculation of (38), term 3©, i.e. the moment generating

function of the Cox-Ingersoll-Ross process, has to be derived.
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6.2.2. Calculation via the non-central chi-square distribution.

The last step in pricing mortality swaps, mentioned at the beginning of this section,

consists in calculating the moment generating function of the CIR-process. Thus,

3© in expression (38) can be computed, which is

E
[
e−TZx

]
(46)

The distribution of a CIR process conditioned on its initial value follows a non-

central chi-square distribution. The following shall briefly prove this statement and

derive the proper parameters of the non-central chi-square distribution. The deriva-

tion of the distribution of the CIR-process is adapted from [Cai04].

First, the non-central chi-square distribution is introduced. This definition is taken

from [MO07], where the notation has been adapted to this setting.

Let d denote the degrees of freedom and X1, ..., Xd independent normally distributed

random variables with mean µi and variance 1. Define

Rt :=

d∑
i=1

Xi(t)
2

Rt has a non-central chi-square distribution with d degrees of freedom and non-

centrality parameter λ =
∑d

i=1 µ
2
i .

Remark: It can be shown, that the distribution only depends on the squared sum

λ and not on the particular µi. Therefore, the distribution is given by two parame-

ters, the degrees of freedom d and by the non-centrality parameter λ.

Before the explicit representation of (46) can be computed, some prior calcula-

tions are required. Remember that Z denotes the shifted CIR-process. Therefore,

the basic CIR-process Z̃ will be studied. This process is given by the differential

equation

dZ̃x = κ
(
θ − Z̃x

)
dx+ σ

√
Z̃x dWx (47)

with initial value Z̃0 = z̃0.

Theorem 6.3. Assume that 4θκ
σ2 is an integer. The distribution of

4κ

σ2

1

1− e−κx
Z̃x
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conditionally on its initial value follows a non-central chi-square distribution with

parameters

d =
4θκ

σ2
degrees of freedom

λ =
4κ

σ2

e−κx

1− e−κx
z̃0 non-centrality parameter

Proof. Let d be an integer and consider X1, ..., Xd where for each i ∈ {1, ..., d}
Xi is given by the differential equation

dXi(t) = −1

2
κXi(t) dt+

√
κdWi(t)

with initial value Xi(0) = xi(0) and Wi being independent Brownian motions.

Note that this process is a special case of an Ornstein Uhlenbeck process. For fur-

ther information see Ornstein et al. [OU]. This differential equation can be solved

explicitly by the integration by parts formula introduced in chapter 4. Consider

d
(
e

1
2
κtXi(t)

)
= e

1
2
κt

(
1

2
κXi(t) dt+ dXi(t)

)
= e

1
2
κt√κdWi(t)

Therefore

e
1
2
κtXi(t)−Xi(0) =

∫ t

0
e

1
2
κs√κdWi(s) ⇐⇒

Xi(t) = e−
1
2
κtxi(0) +

∫ t

0
e−

1
2
κ(t−s)√κdWi(s)

Observe that Xi(t) is normally distributed with mean

E [Xi(t)] = e−
1
2
κtxi(0)

The variance can be computed using the Itō-isometry

V [Xi(t)] = E
[
(Xi(t)− E [Xi(t)])

2
]

= E

[(∫ t

0
e−

1
2
κ(t−s)√κdWi(s)

)2
]

= E
[∫ t

0
e−κ(t−s)κds

]
=

∫ t

0
e−κ(t−s)κds

= 1− e−κt

Note that all Xi have the same variance.

Let R be defined by

Rt :=

d∑
i=1

Xi(t)
2
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Therefore, Rt
1−e−κt is non-central chi-square distributed with d degrees of freedom

and non-centrality parameter

λ =
1

1− e−κt
d∑
i=1

e−κtx2
i (0) =

e−κt

1− e−κt
R(0)

Furthermore, applying Itō’s formula leads to the differential equation for R:

dRt = 2
d∑
i=1

Xi(t) dXi(t) +
d∑
i=1

d [Xi]t

= −
d∑
i=1

κX2
i (t) dt+ 2

d∑
i=1

√
κXi(t) dWi(t) + dκdt

= κ (d−Rt) dt+ 2
√
κ

d∑
i=1

Xi(t) dWi(t)

A new one-dimensional Brownian motion, defined by

dW (t) :=
1√∑d

i=1X
2
i (t)

d∑
i=1

Xi(t) dWi(t)

leads to

dRt = κ (d−Rt) dt+ 2
√
κ
√
Rt dW (t)

Remark: Note that R is a weak solution of the upper differential equation.

Replacing the index t by x and defining Z̃x := σ2

4κRx provides the differential equation

for Z̃:

dZx = κ
σ2

4κ
(d−Rx) dx+

σ2

2
√
κ

√
Rx︸ ︷︷ ︸

=σ

√
σ2

4κ
Rx

dW (x)

= κ

(
dσ2

4κ
− Z̃x

)
dx+ σ

√
Z̃x dW (x)

This differential equation is equal to equation (47) if

dσ2

4κ
= θ ⇐⇒

d =
4θκ

σ2

holds.

Furthermore, the non-centrality parameter λ equals

λ =
e−κx

1− e−κx
R(0) =

4κ

σ2

e−κx

1− e−κx
z̃0

which completes the proof. �



6.2. MORTALITY SWAP AND CORRELATION BONDS 32

Remark: The only additional restriction given by this theorem is the requirement of

d = 4θκ/σ2 being an integer. However, the definition of the non-central chi-square

distribution can be extended to non-integer values of d. Therefore, it is not neces-

sary, that 4θκ/σ2 is an integer.

Remark: Remember that the condition 2κθ ≥ σ2 is taken for granted in order to

receive a positive non-shifted CIR-process. This leads to the circumstance that the

degrees of freedom are greater or equal to two.

Returning to the main task of this subsection, it is now possible to calculate E
[
e−TZx

]
.

This can be accomplished by changing to the non-shifted process and extend it in

such a way that the upper theorem can be applied.

E
[
e−TZx

]
= eθTE

[
e−T Z̃x

]
= eθTE

[
exp

(
− T σ

2

4κ

(
1− e−κx

)(4κ

σ2

1

1− e−κx
Z̃x

)
︸ ︷︷ ︸

∼χ2(λ,d)

)]

= eθTM

(
−T σ

2

4κ

(
1− e−κx

))
where M(·) denotes the moment generating function of the non-central chi-square

distribution with parameters λ and d. Referring to Ravishanker et al. [RD01] the

function is given by

M(t) = (1− 2t)−
d
2 exp

(
λt

1− 2t

)
which is well defined for t ≤ 2. This condition is not violated in this framework

since the argument of the moment generating function is always negative. Putting

all results together finally leads to an explicit expression for E
[
e−TZx

]
.

Therefore, it is now possible to compute the expected probability of survival (38).

A closed expression is given in the following section.
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6.2.3. The probability of survival in the CIR-field.

The results of the last sections enable to state a closed formula of the probabil-

ity of survival (38). Summing up these results leads to

E
[
e−

∫ T
0 µs,x ds

]
= e−

∫ T
0 δ(s,x) dsE

[
e−

∫ T
0 Ys ds

]
E
[
e−TZx

]
= exp

(
−
∫ T

0
δ(s, x) ds−A(0, T )−B(0, T )y0

+θT +
−λT σ2

4κ (1− e−κx)

1 + 2T σ2

4κ (1− e−κx)

)(
1 + 2T

σ2

4κ

(
1− e−κx

))−d/2
with

γ =
√
κ̃2 + 2σ̃2

N = (γ + κ̃)
(
eγ(T−t) − 1

)
+ 2γ

B(t, T ) =
2
(
eγ(T−t) − 1

)
(γ + κ̃)

(
eγ(T−t) − 1

)
+ 2γ

A(t, T ) = −2θ̃κ̃

σ̃2
ln

(
2γe(γ+κ̃)(T−t)/2

N

)
+ θ̃B(t, T )− θ̃(T − t)

d =
4θκ

σ2

λ =
4κ

σ2

e−κx

1− e−κx
z̃0

One term depends on the predefined deterministic function δ which describes the

mortality without taking into account some disturbances over time and age classes.

For example, the Gompertz-Makeham model with second order shift is a possible

choice for δ. The expression exp
(
−
∫ T

0 µs,x ds
)

is provided by equation (23).

The second term has been calculated using results similar to bond prices related to

term structure models. The third term can be transformed in order to receive the

moment generating function of a non-central chi-square distribution. Additionally,

the needed parameters have been derived.

The examples of mortality derivatives require the expected probability of survival to

state the price of the product. Multiplied by the number of individuals of a cohort,

who are alive at time t = 0 delivers the expected number of survivors at time T .

The possibility to receive an explicit form of such expressions allows to work with

some mortality derivatives and is necessary for a theory that wants to provide a

sophisticated setting for pricing such derivatives.



CHAPTER 7

Conclusion

In this thesis the goal of developing a sophisticated framework for pricing mortal-

ity derivatives has been accomplished. The final model, namely the CIR-field, for

the force of mortality allows to include correlations between time and age classes.

Moreover, resulting properties of this model are suitable for practical use such as

a bounded disturbance from the trend function of the mortality in order to avoid

a negative mortality. The correlation itself is a decreasing function with respect to

the difference between the ages, which also reflects the reality and makes this model

more applicable for practical use. Additionally, the model allows to derive explicit

expressions for some mortality derivatives such as mortality swaps. A financial prod-

uct, which can be used to hedge the correlation between the mortality of different

cohorts, has been introduced. The model provides a closed pricing formula for this

product, which has been derived rigorously.

Due to the relation to term structures and the moment generating function of the

non-central chi squared distribution the model allows application and provides closed

pricing formulas for further derivatives.

In addition to this stochastic model, the Gompertz-Makeham model has been dis-

cussed. An alternative of second order shift, the RRR transform, has been intro-

duced and evaluated. These transformations lead to a more prudent consideration of

the mortality and might be obligatory due to regulatory requirements. Furthermore,

the stochastic CIR-field includes a deterministic function, for which the transformed

Gompertz-Makeham model can be chosen.

Further research could be a study on the occurring parameters of the CIR-field.

Detailed historical data could allow to fit this model to observed fluctuations on

the mortality. Moreover, numerical examples for prices under this model could be

evaluated. A study on the sensitivity of the price of a certain financial product with

respect to parameters might lead to further interesting properties of this model.

Another topic of interest is the application of this model to new kind of derivatives

which are linked to the correlation of age classes. The new way of modelling the

force of mortality might lead to financial products which have not been considered

yet.
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APPENDIX A

Details on the computations

The following computation summarises some calculations from previous chapters.∫ t

0
e−hs

(
λ+

ξ

ζ
e
s
ζ

)
exp

{
−λs− ξ

(
e
s
ζ − 1

)}
ds

= eξ
∫ t

0

(
λ+

ξ

ζ
e
s
ζ

)
exp

{
−s (λ+ h)− ξe

s
ζ

}
ds =

∣∣∣∣∣ ξe
s
ζ = u

ds = ζu−1 du

∣∣∣∣∣
= eξζ

∫ ξet/ζ

ξ

(
λ+

u

ζ

)
exp

{
− (λ+ h) ζ ln

(
u

ξ

)
− u
}
u−1 du

= eξζξζ(λ+h)

∫ ξet/ζ

ξ

(
λ+

u

ζ

)
u−ζ(λ+h)−1e−u du

= eξξζ(λ+h)
[
λζΓ

(
−ζ (λ+ h) , ξ, ξe

t
ζ

)
+ Γ

(
−ζ (λ+ h) + 1, ξ, ξe

t
ζ

)]
Since the incomplete gamma function appears, the following notation has been used:

Γ (a, x, y) :=

∫ y

x
ua−1e−u du

Γ (a, x) :=

∫ ∞
x

ua−1e−u du

with y ≥ x > 0. Note that a might be negative. However, this will not cause a

problem for the incomplete gamma function with x > 0.

This computation has been used in previous calculations. For example, choosing

λ equal to zero leads to the Gompertz model. Additional, t approaching infinity

will deliver the corresponding result for the calculation of the Laplace transform

in equation (16). The final RRR transformed probability in the Gompertz model,

see equation (17), is provided by the upper expression (with λ = 0) divided by the

Laplace transform, i.e.:

tqx(h) =
eξξζhΓ

(
−ζh+ 1, ξ, ξe

t
ζ

)
eξξζhΓ (−ζh+ 1, ξ)

=
Γ
(
−ζh+ 1, ξ, ξe

t
ζ

)
Γ (−ζh+ 1, ξ)
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APPENDIX B

Graphics

Figure 1. Probabilities of a person with age 65 to die within year

t for t ∈ {0, ..., 100− 65}, using Gompertz law of mortality with

m = 92.16 and ζ = 8.11 for a female population, compared to the

second order shift of the same curve.
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Figure 2. The difference of the second order probabilities and the

RRR transformed probabilities using Gompertz law of mortality

with age x = 65, m = 92.16 and ζ = 8.11 for a female popula-

tion. The x-axis represents the values of h and the y-axis the time

t ∈ {0, ..., 100− 65}. Furthermore, the green plain describes the level

for h where the least square differences are achieved. This level, as

well as the absolute value of the greatest difference over the time, for

this particular h are displayed in the graphic.
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Figure 3. Probabilities of a person with age 65 to die within year

t for t ∈ {0, ..., 100− 65}, using Gompertz law of mortality with

m = 92.16 and ζ = 8.11 for a female population.
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Figure 4. The difference of the second order probabilities and the

RRR transformed probabilities using Gompertz law of mortality with

age x = 65, m = 86.37 and ζ = 9.83 for a male population. The x-axis

represents the values of h and the y-axis the time t ∈ {0, ..., 100− 65}.
Furthermore, the green plain describes the level for h where the least

square differences are achieved. This level, as well as the absolute

value of the greatest difference over the time, for this particular h

are displayed in the graphic.
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Figure 5. Probabilities of a person with age 65 to die within year

t for t ∈ {0, ..., 100− 65}, using Gompertz law of mortality with

m = 86.37 and ζ = 9.83 for a male population.
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Figure 6. The difference of the second order probabilities and the

RRR transformed probabilities using Gompertz-Makeham law of

mortality with age x = 65, m = 80.58, ζ = 11.42 and λ = 5 ∗ 10−4

for a male population. The x-axis represents the values of h and the

y-axis the time t ∈ {0, ..., 100− 65}. Furthermore, the green plain de-

scribes the level for h where the least square differences are achieved.

This level, as well as the absolute value of the greatest difference over

the time, for this particular h are displayed in the graphic.
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Figure 7. Probabilities of a person with age 65 to die within year t

for t ∈ {0, ..., 100− 65}, using Gompertz-Makeham law of mortality

with m = 80.58, ζ = 11.42 and λ = 5 · 10−4 for a male population.



APPENDIX C

Description of R-codes

This section introduces the used codes in order to compute the graphics of appendix

B and therefore the results of the examples of section 3.3. For this purpose the

software R, see [R C13], has been used.

1 GcdfPlot <- function(x,m,zeta ,lam ,k,h,p){

2 xi<-exp((x-m)/zeta)

3 t<-seq(0,100-x,1)

4 q1<- 1-exp(- lam*t-xi*exp((-k)/zeta)*(exp(t/zeta) -1))

5 q2<-(lam*zeta*(gamma_inc(-zeta*(lam+h), xi) -gamma_inc(-zeta*(lam+h)

,xi*exp(t/zeta)))+(gamma_inc(-zeta*(lam+h)+1, xi) -gamma_inc(-

zeta*(lam+h)+1, xi*exp(t/zeta))))/(lam*zeta*gamma_inc(-zeta*(lam

+h), xi)+gamma_inc(-zeta*(lam+h)+1, xi))

6 if (p==1){

7 plot(seq(x,100 ,1),q1,type="l",col="blue",xlab="",ylab="")

8 lines(seq(x,100 ,1),q2 ,type="l",col="red")

9 legend("topleft",c(paste("Second order , k =",k), paste("RRR 

transform , h =",h)),text.col=c("blue","red"))

10 title("CDF")}}

Listing C.1. R-code for generating figures 3, 5 and 7.

The upper code computes the second order probabilities of section 3.1 and the RRR

transform defined in section 3.2. Furthermore, the code creates a plot of these two

probability functions, which has been applied to create figures 3, 5 and 7.

The input parameters are the current age x, the model parameters for the Gompertz-

Makeham model m, ζ and λ. The parameter k denotes the applied shift for the

second order probabilities and h is needed for the RRR transform, see definition

(8). The parameter p has been used for further studies and is not important for this

setting.

In line 2 ξ is calculated which will simplify the further calculation and has also been

used in the corresponding formulas of chapter 3. The vector t, which is declared

in line 3, denotes the remaining years. Note that the calculations and graphics are

generated till the person’s age reaches 100. In line 4 the second order probabilities

are computed. This code-line corresponds to formula (7). On the other hand the

RRR transform according to formula (14) is implied in line 5. In this formula the

generalised incomplete gamma function, see (15) appears. In order to imply this

function, the upper incomplete gamma function has been used. That is why the

implementation of this formula contains differences, e.g.
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gamma_inc(-zeta*(lam+h), xi) - gamma_inc(-zeta*(lam+h),xi*exp(t/zeta))

which equals

Γ
(
− ζ(λ+ h), ξ

)
− Γ

(
−ζ(λ+ h), ξe

t
ζ

)
=

∫ ∞
ξ

u−ζ(λ+h)−1e−u du

−
∫ ∞
ξet/ζ

u−ζ(λ+h)−1e−u du

=

∫ ξet/ζ

ξ
u−ζ(λ+h)−1e−u du

The further code generates the plot, which includes the computed probabilities for

the remaining years.

1 ApproxHdiff <- function(x,m,zeta ,k,lam) {

2 xi<-exp((x-m)/zeta)

3 h<-seq ( -0.1 ,0.1 ,0.001)

4 t<-seq(0,100-x,1)

5 transf <-matrix(0,nrow=length(h),ncol=length(t))

6 ls<-matrix(0,nrow=length(h) ,1)

7 SecOrder <-matrix(0,nrow=length(h),ncol=length(t))

8

9 for (i in 1: length(t)) {temp <-(lam*zeta*(gamma_inc(-zeta*(lam+h), xi

) -gamma_inc(-zeta*(lam+h),xi*exp(i/zeta)))+( gamma_inc(-zeta*(

lam+h)+1, xi) -gamma_inc(-zeta*(lam+h)+1, xi*exp(i/zeta))))/(lam

*zeta*gamma_inc(-zeta*(lam+h), xi)+gamma_inc(-zeta*(lam+h)+1, xi

))

10 transf[,i]<- temp

11 SecOrder[,i]<- 1-exp(- lam*i-xi*exp((-k)/

zeta)*(exp(i/zeta) -1)) }

12 uv<-max(transf -SecOrder)

13 lv<-min(transf -SecOrder)

14

15 persp3d(h,t,transf -SecOrder ,col = "lightblue",zlab="")->res

16 for (i in 1: length(h)) {ls[i]<-sum(( transf[i,]-SecOrder[i,]) ^2) }

17

18 h_min <-h[which(ls==min(ls))]

19 text3d(h_min ,0,-0.01,c(paste("h =",h_min)),col="red")

20 text3d(h[which(ls==min(ls))],0,-0.05,c(paste("maxDiff =",round(max(

abs(transf[which(h==h_min),]-SecOrder[which(h==h_min) ,])) ,6))),

col="red")

21

22 for (i in seq(lv ,uv ,(uv -lv)/50)){lines3d(h_min ,t,i,pmat=res ,col="

green")}

23 return(h_min) }

Listing C.2. R-code for generating
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The aim of the upper code is to calculate the parameter h of the RRR transform (8)

in order to fit the second order probabilities (7). This will be accomplished by least

square fitting. This particular h is the return of the code. Furthermore, a 3D-plot

will be generated which shows the difference between the second order probabilities

and the RRR transform, i.e. the error using the RRR transform. Additionally the

level h of the least square difference is highlighted. The code has been used within

the examples of section 3.3. Moreover, figures 2, 4 and 6 have been generated by

this code.

The input parameters are the persons age x and the model parameters for the

Gompertz-Makeham model m, ζ and λ. Furthermore, k describes the shift for the

second order probabilities (7). Line 2 computes ξ which has been used in the formulas

of chapter 3 and only serves as simplification. The vector h in line 3 describes the

range of values which will be tested in order to fit the RRR transform to the second

order probabilities. For the examples in this paper the occurring range was sufficient.

Otherwise the range has to be adapted.

Line 4 computes the vector t of calculated years. The resulting graphic as well as the

considered years for the least square fit are only going to include the years till the

person’s age reaches 100. The lines 5 to 7 are generating empty matrices which will

be used below. The matrix in line 5 will contain the RRR transformed probabilities

(14), where the dimensions of the matrix are the lengths of the vectors h and t.

Thus, the code computes for each value in h the transformed probabilities. The

matrix in line 6, which is only a vector, will be used to save the squared differences

between the second order probabilities and the RRR transform in order to evaluate

the least square difference. Analogous to the RRR transform, line 7 declares an

empty matrix for the second order probabilities.

The loop in line 9 computes the RRR transform for each value in t. The occurring

formula (14) is similar implied as in code C.1 and explained by an example. In the

next line the computed vector is added to the matrix. In line 11 the corresponding

vector of second order probabilities is calculated and saved. The values calculated

in lines 12 and 13 will be needed for the graphic below. These values describe the

range of the z-axis. In line 15 the basic graphic is generated. The x-axis is the

vector h, i.e. the range of tested parameters for the RRR transform. The y-axis is

the vector t of considered years and the z-axis is the difference between the RRR

transform and the second order probabilities. In order to receive the least squared

difference, line 16 computes the added up differences for each value of h and line 18

evaluates their minimum. The next two lines are inserting some text to the graphic,

i.e. the values of the particular h where the least squared difference can be achieved

and the least squared difference at this level. Furthermore, line 22 adds a surface to

the graphic, which is indicated by lines. This surface shall highlight the level of the

least squared difference and therefore makes the goodness of fit by using the RRR

transformed more visible. Finally, this value for h is the only output of this code,

which will be returned in line 23.
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