
ASCARTS
Design of an Asynchronous Processor using a

High-Level Specification Language

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Technische Informatik

eingereicht von

Claudia Hermann
Matrikelnummer 0125532

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Steininger
Mitwirkung: Dipl.-Ing. Dr.techn. Jakob Lechner

Wien, 21. Jänner 2016
Claudia Hermann Andreas Steininger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

ASCARTS
Design of an Asynchronous Processor using a

High-Level Specification Language

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Computer Engineering

by

Claudia Hermann
Registration Number 0125532

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Steininger
Assistance: Dipl.-Ing. Dr.techn. Jakob Lechner

Vienna, 21st January, 2016
Claudia Hermann Andreas Steininger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Claudia Hermann
Am Haanbaum 3/7, 3001 Mauerbach

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten Quel-

len und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich

Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder

dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich

gemacht habe.

Wien, 21. Jänner 2016
Claudia Hermann

v

Kurzfassung

Das Ziel dieser Arbeit ist die Entwicklung des asynchronen Prozessors ASCARTS basierend auf

dem Befehlssatz des synchronen Prozessors SCARTS. Für die Umsetzung des Prozessordesigns

wird das Open-Source Framework Balsa verwendet, welches die Modellierung asynchroner Schal-

tungen auf einer abstrakten Ebene durch Verbergen der eigentlichen Handshake-Implementierung

erlaubt. Die Benutzerfreundlichkeit der Balsa-Sprache sowie der zugehörigen Werkzeugkette für

einen komplexen Schaltungsaufbau ist zu bewerten. Ist das Balsa-Framework ausgereift genug

um einen ganzen asynchronen Prozessor zu entwerfen und zu synthetisieren? Ein weiteres Ziel

dieser Arbeit ist es, die Unterschiede in der Prozessorarchitektur von synchronen und asynchronen

Prozessoren mit identischen ISAs zu identifizieren. Daten- und Steuerkonflikte, die durch die asyn-

chrone Pipeline-Architektur verursacht werden, erfordern innovative Lösungen. Datenkonflikte

werden mithilfe eines asynchronen Weiterleitungsmechanismus, basierend auf gespeicherten

Informationen über vorhergehende Befehle, vermieden. Um Steuerkonflikte zu lösen wird ein

Farbalgorithmus, ähnlich zu den in AMULET1 und SAMIPS verwendeten, implementiert. Um

die Prozessorschnittstelle zu herkömmlichen synchronen Speichern zu verbinden, werden die

Handshake-Signale in synchrone Signale transformiert. Das Balsa-Design wird mit der quasi

delay-insensitive four-phase dual-rail Handshake-Implementierung synthetisiert. Die syntheti-

sierte Netzliste wird auf die UMC 90 nm Technologie abgebildet, auf der Timing-Simulationen

durchgeführt werden. Da Synchronisation über das Handshake-Protokoll erreicht wird, passt

sich das Design an die tatsächlich vorherrschenden Betriebsbedingungen an. Das führt zu va-

riablen Average-Case-Ausführungszeiten der einzelnen Befehle. Daher ist die Echtzeitfähigkeit

ohne genaue Worst-Case-Analyse nicht klar ersichtlich. Die Timing-Simulationsergebnisse von

ASCARTS mit Average-Case-Corner Synthese werden mit den Ergebnissen von SCARTS mit

Worst-Case-Corner Synthese verglichen. Ein zentrales Ergebnis der vorgestellten ASCARTS

Implementierung ist die Prozessorbeschreibung selbst, geschrieben in einer High-Level-HDL,

die unabhängig von der tatsächlichen Handshake-Implementierung ist. Daher könnte die Balsa-

Beschreibung von ASCARTS nützlich für zukünftige Forschungsarbeiten an unterschiedlichen

asynchronen Implementierungsstilen sein.

vii

Abstract

The purpose of this thesis is the development of the asynchronous processor ASCARTS based on

the instruction set of the synchronous processor SCARTS. For the realization of the processor

design the open-source framework Balsa, which allows modeling asynchronous circuits at an

abstract level by hiding the actual handshake implementation, is used. The usability of the Balsa

language as well as the associated toolchain for a complex circuit design is to be evaluated.

Is the Balsa framework sophisticated enough to design and synthesize an entire asynchronous

processor? A further objective of this thesis is to identify the differences in the processor

architecture between synchronous and asynchronous processors with identical ISAs. Data and

control hazards caused by the asynchronous pipeline architecture require innovative solutions.

Data hazards are avoided by an asynchronous forwarding mechanism based on information

stored about previous instructions. To resolve control hazards, a coloring algorithm, similar to

the one used for AMULET1 and SAMIPS, is implemented. To connect the processor interface

to conventional synchronous memory, the handshake signals are transformed to synchronous

signals. The Balsa design is synthesized using the quasi delay-insensitive four-phase dual-rail

handshake implementation. The synthesized netlist is mapped to UMC’s 90 nm technology on

which timing simulations are conducted. As synchronization is achieved via the handshake

protocol the design adapts to the actual prevailing operating conditions. This results in variable,

average-case execution time of individual instructions. Consequently, real-time capability is not

evident without an accurate worst-case analysis. The timing simulation results of ASCARTS with

Average-Case-Corner synthesis are compared to the results of SCARTS with Worst-Case-Corner

synthesis. A key outcome of the presented ASCARTS implementation is the processor description

itself, written in a high-level HDL, which is independent of the actual handshake implementation.

Therefore, the Balsa description of ASCARTS might be useful for future research of different

asynchronous implementation styles.

ix

Contents

Contents xi

1 Introduction 1
1.1 Motivation . 2

1.2 Contribution . 3

1.3 Outline . 4

2 Background 5
2.1 Fundamentals of Asynchronous Logic . 5

2.2 Balsa . 14

3 State of the Art 21
3.1 AMULET1 . 21

3.2 AMULET2 . 22

3.3 AMULET3 . 23

3.4 SAMIPS . 23

3.5 Asynchronous MIPS R3000 . 23

3.6 Lutonium . 24

4 SCARTS - Basis For The Asynchronous Processor 25
4.1 Processor Architecture . 25

4.2 Extension Modules . 28

4.3 Instruction Set Architecture . 31

5 ASCARTS - The Asynchronous Processor 33
5.1 Processor Interface . 34

5.2 Processor Architecture . 34

5.3 Extension Modules . 43

5.4 Instruction Set Architecture . 46

6 Design Flow 51
6.1 Behavioral Simulation . 51

6.2 Synthesis . 53

6.3 Structural Simulation . 54

xi

6.4 Design Implementation . 56

6.5 Timing Simulation . 57

7 Results 59
7.1 Resource Usage . 59

7.2 Performance . 60

8 Conclusion and Outlook 65

A Test Programs 67

B Instruction Set 71
B.1 Overview . 72

B.2 Notation . 76

B.3 Instructions . 76

Bibliography 103

CHAPTER 1
Introduction

Embedded systems play an important role nowadays. They can be found in many different

application fields solving different tasks like monitoring, controlling and processing signals. In the

last couple of years especially portable devices gained in importance. The powerful smartphones

and tablets are getting an every day part in our lives. The more powerful smartphones as well

as tablets are getting more and more popular. The processors of these devices are getting faster,

more efficient and more flexible to handle a major variety of tasks. At the same time they are

supposed to be more energy-efficient so that the run-time of the batteries does not decrease.

Current processor development is based on synchronous and asynchronous design principles.

Synchronous circuit designs rely on a global periodic signal, called clock, to synchronize the data

flow. With every clock pulse the results of the combinational logic of all components on the chip

are stored in registers, as illustrated in Figure 1.1.

D Q

Q

Latch

D Q

Q

Latch

in out

clock

Figure 1.1: Synchronous Circuit

The frequency of the clock has to be chosen in such a way that on all paths signal changes can be

propagated in one cycle. The maximum possible clock frequency is determined by the path with

the longest propagation delay, the critical path. To accomplish that in any environment, the chip

has to be designed for worst-case scenarios, such as worst-case temperature, low voltage supply

or process variations.

1

1. INTRODUCTION

Conversely asynchronous designs are self-timed. Clock signals are replaced by handshakes to

control the data flow between adjacent components. Each component signals a request once

there is new data to be processed. Likewise it sends an acknowledge signal once it has finished

processing the data and is ready to accept new one. See Figure 1.2 for an illustration.

D Q

Q

Latch

D Q

Q

Latch

in out

Ctrl Ctrl
req

ack

req

ack

Figure 1.2: Asynchronous Circuit

1.1 Motivation

Synchronous processors dominate the market nowadays. The reason for this dominance is that

synchronous designs are simple and well-understood. In addition, all industrial-strength computer

aided design tools for design and verification target clocked circuits. Both facts lead to fast

development and short design cycles of synchronous processors. In recent technologies, however,

the global time assumption becomes a performance and power limiting issue. The different

characteristics of asynchronous circuits can be exploited to design circuits which overcome the

problematic factors of synchronous circuits [18].

One big disadvantage of synchronous designs is the global clock network. On one hand the

network occupies a huge amount of area on the chip. On the other hand it takes a lot of effort

to distribute the clock in a way that the skew between different clock signals is minimal. The

faster the clocks are, the more difficult it is to route the wires properly, as the margin gets even

smaller. On each clock transition the clock network consumes a large amount of power, no

matter if the processor is performing useful computations or is in idle state. Furthermore, as all

computations start at the clock edge, the most current is drawn at this time and shortly thereafter.

This leads to high electromagnetic interferences at the clock frequency. However, in asynchronous

designs there is no global clock signal to be distributed. The local clock pulses, derived from

handshake signals, are only generated where and when they are needed. Hence, the power and

electromagnetic dissipation is lower and the current consumption is more uniformly distributed

without spikes, as the signal switching of the individual components is not correlated.

In synchronous designs the operating speed is determined by the critical path. Mapped to

processors the operating frequency is as slow as the slowest instruction or stage in pipelined

designs, respectively. In contrast, the asynchronous counterparts start immediately with a new

computation once the previous one is finished. So the speed of such processors varies over

2

1.2. Contribution

time and is only as slow as the current instruction or the slowest stage of the current instruction

in pipelined designs, respectively. For correct operation in all conditions worst-case timing

assumptions have to be made in synchronous designs. This leads to idle times in optimal

conditions. However, due to the fact that a handshake protocol is used for synchronization,

asynchronous designs adapt to the actual prevailing operating conditions. Because of their

insensitivity to delays and their simple handshake interface, asynchronous circuits are rather

modular and, hence, have a better composability.

Although replacing synchronous logic by asynchronous logic opens up ways to further improve

processor performance, omitting the clock has some drawbacks. The asynchronous control logic

induces overheads in area, which again leads to increased power consumption. Besides, the more

complex data paths of asynchronous logic have a negative impact on the operating speed.

The complex structures of asynchronous circuits make it more difficult to design and harder

to verify or debug them. As there are not any strategies to efficiently develop asynchronous

designs there is lack of computer aided design tools, and even the few available ones are not well

maintained. The missing tool chain and the extensive know-how required to design such circuits

lead to the fact that only few people exist who are able to develop asynchronous processors.

1.2 Contribution

The objective of this thesis is the development of the asynchronous processor ASCARTS. It is

based on the instruction set of the synchronous processor SCARTS [3]. So far only a design tool

was developed at Vienna University of Technology, Department of Computer Engineering, which

transforms a conventional synchronous circuit description into an asynchronous circuit [12]. How-

ever, the resulting asynchronous circuit, generated from the SCARTS design, is not satisfactory.

Hence, the manual design of an asynchronous counterpart was demanded.

The development of the processor without any tools implies the design of the underlying hand-

shake protocol as well. To be able to concentrate on the actual processor design, a tool which

hides the handshake circuits is used. The decision was made in favor of the open-source project

Balsa [4]. It is a high-level synthesis system for asynchronous circuits. A feature of Balsa is

that the development of asynchronous circuits is abstracted from the handshake implementation.

The actual handshake implementation can be selected during synthesis. This way, the design

can be synthesized with different realizations of the handshake protocol. Thus, the effects on

the performance with the individual protocols can be observed. Finally a gate-level netlist is

generated from the high-level description. This netlist is mapped to UMC’s 90 nm technology1.

In addition, by designing ASCARTS with the aid of Balsa the usability of such tools for developing

asynchronous circuits is to be evaluated.

1http://freelibrary.faraday-tech.com/

3

1. INTRODUCTION

1.3 Outline

The second chapter is divided into two parts. First the fundamentals of asynchronous logic

are explained. The focus lies on the different ways handshakes can be realized. The second

part covers an introduction to Balsa. In the third chapter important asynchronous processors

already developed are presented. In the fourth chapter the architecture of SCARTS is summarized.

Chapter five gives detailed information about the ASCARTS architecture. Implementation details

of the individual units are revealed as well. In chapter six the steps of the design flow are

described. Several stages are passed through to obtain the final design description of ASCARTS.

In the design process simulations at three different levels are performed. Results achieved from

simulations are presented in chapter seven. Finally the findings are summarized and an outlook to

future work is given.

4

CHAPTER 2
Background

2.1 Fundamentals of Asynchronous Logic

In synchronous circuits a global clock defines points in time where signals are valid and stable.

In asynchronous systems control signals have to be valid all the time. Each transition changes

the state of the circuit. To avoid hazards and races, additional control logic is needed for

synchronization, communication and sequencing of operations [18].

2.1.1 Handshake

Handshaking is used between neighboring components for synchronization or to agree on ex-

change of data. In general the active party of a handshake-channel initiates the handshake by a

request signal. The passive party completes the handshake by an acknowledge signal.

It can be distinguished between different types of channels depending on the direction of data or

if data is transmitted at all.

Push Channel

If the sender is the active party, the sender indicates the capture condition for the receiver with

the request signal. Likewise the receiver indicates the issue condition for the sender with the

acknowledge signal. The validity of the data is denoted by the request signal. A push channel is

illustrated in Figure 2.1a.

Pull Channel

If the receiver is the active party, the receiver indicates the issue condition for the sender with

the request signal. Likewise the sender indicates the capture condition for the receiver with

the acknowledge signal. The validity of the data is denoted by the acknowledge signal. A pull

channel is illustrated in Figure 2.1b.

5

2. BACKGROUND

Sync Channel

Channels without a data path can be used for synchronization. A sync channel is illustrated in

Figure 2.1c.

Bidirectional Channel

A channel where data is transmitted in both directions is illustrated in Figure 2.1d. The data

passing from the active party to the passive party acts as a push channel. Hence, the validity is

denoted by the request signal. The data passing from the passive party back to the active party

acts as a pull channel. Hence, the validity is denoted by the acknowledge signal.

req

ack

data

snd rec

(a) Push Channel

req

ack

data

rec snd

(b) Pull Channel

req

ack

(c) Sync Channel

req

ack

data

(d) Bidirectional Channel

Figure 2.1: Handshake Channels

The handshake establishes a closed loop control for the data flow between two parties. New data

is only issued if the previous data is acknowledged and, therefore, captured. On the one hand this

makes the circuit timing adaptive. On the other hand this is not fault tolerant as deadlocks occur

if data gets lost.

2.1.2 Handshake Styles

The request signal determines the start of one communication cycle, whereas the acknowledge

signal determines the end of one communication cycle. There are two approaches how to

implement the control protocol. These are presented on the basis of a push channel.

Four-Phase Protocol

The four-phase protocol uses Boolean levels on the request and acknowledge wires to encode the

state of the communication cycle. The term four-phase refers to the number of edge transitions

on the control wires during one protocol cycle. Figure 2.2a illustrates the four phases of the

four-phase protocol for a push channel.

6

2.1. Fundamentals of Asynchronous Logic

First the sender issues new data and sets request to high. Second the receiver captures the data and

sets acknowledge to high. This indicates that data is not needed anymore. In response the sender

sets request to low. Data might not be valid anymore. Finally the receiver sets acknowledge to

low. A new communication cycle can be initiated by the sender.

This protocol uses level signaling for the control signals. The state of the signals is always known

without knowledge of the history. However, the advantage of level signaling comes at the cost of

unnecessary time and energy for the return-to-zero transitions of the signals.

Two-Phase Protocol

In the two-phase protocol each transition on the request and acknowledge wires, irrespective if it

is a rising or falling edge, represents a signal event. The term two-phase refers to the number of

edge transitions on the control wires during one protocol cycle. Figure 2.2b illustrates the two

phases of the two-phase protocol for a push channel.

First the sender issues new data and sets request to high. Second the receiver captures the data

and sets acknowledge to high. This indicates that data is not needed anymore. At this point data

might become invalid. A new communication cycle can be initiated by the sender.

This protocol uses transition signaling for the control signals. The state of the signals is not

representative for the state of the handshake protocol. The disadvantage of transition signaling

is the more complex implementation as state-holding elements are needed to store the current

signal states.

req

ack

data

(a) Four-Phase Protocol

req

ack

data

(b) Two-Phase Protocol

Figure 2.2: Single-Rail Protocol (Push Channel)

2.1.3 Design Techniques

To build control circuits with transition signaling, logic elements that perform logical operations

on events are necessary.

Or Element

The Boolean xor gate acts as the or element for events. When either input of the xor gate

changes its state the output also changes its state. Thus, an event received on any input of the xor
gate triggers an event on the output. For more than two inputs the parity function acts as the or
element for events.

7

2. BACKGROUND

Muller C-Element

There is no Boolean function that performs an and operation on events. The and gate and the or
gate are asymmetric functions regarding the logical level. An or gate immediately propagates a

rising transition on a single input to its output, without waiting for a transition on its second input.

Likewise, the and gate immediately propagates a falling input transition. Thus, a gate is needed

that behaves like an and gate for rising transitions and like an or gate for falling transitions.

Building an and element of combinational gates is not an option. The Muller C-Element [16]

is a sequential gate and acts as the and element for events. The symbol and the truth table are

illustrated in Figure 2.3.

Ca
b

y

a b y

0 0 0
0 1 no change

1 0 no change

1 1 1

Figure 2.3: Muller C-Element

The Muller C-Element is designed in a way that the output only changes its level if both inputs

of the element have the same logical level. If the levels differ at the inputs, the element holds

the previous level on the output, which is stored internally. Thus, an event is only generated at

the output after an event took place on each input. The Muller C-Element can be generalized for

three or more inputs with the only requirement that all inputs must have the same logical level

before the output changes to that level.

This state-holding element is not a conventional gate but rather like a latch. It is an indispensable

component when designing asynchronous circuits.

Micropipeline

A Micropipeline [19, 18] is a circuit built of Muller C-Elements and inverters as depicted in

Figure 2.4. Request and acknowledge signals are passed between adjacent stages. Observing one

stage of the pipeline the request signal of the predecessor is only propagated if the acknowledge

signal of the successor is of the opposite level. In other words a stage can only pass the

predecessor’s request if the previous request is already acknowledged by the successor. Data

might also be passed between stages of the Micropipeline, but for clearness the data path is

omitted in this figure and only the control signals are shown.

The Micropipeline is an elastic event-driven pipeline. Without internal processing of data it acts

as a first-in first-out memory. Due to its modularity an arbitrary number of stages can be linked

together.

There are some remarkable facts about the Micropipeline due to its simplicity and symmetry. The

handshake style can be four-phase or two-phase. The difference is only in how the signals are

8

2.1. Fundamentals of Asynchronous Logic

C

C
C

req

ack

ack

req

Figure 2.4: Micropipeline

interpreted. The pipeline works from either side, only request and acknowledge signals have to

be swapped. The circuit works correctly regardless of the gate delays. It is delay-insensitive.

Because of its powerfulness a Micropipeline can be found in all asynchronous circuits as a control

circuit.

2.1.4 Timing Models

Asynchronous circuits can be categorized by the employed timing assumptions [11].

Bounded Delay

In this timing model the delays of all gates and wires must be known or at least bounded.

Obviously assumptions on the worst-case operating conditions have to be made. However,

constraints on the path delays decrease robustness of a circuit against variations within the

manufacturing process. Hence, circuits with bounded delay deliver worst-case performance.

With the use of Micropipelines for local handshaking the skew of the individual stages does not

add up. Thus, timing assumptions only need to be made locally.

Delay-Insensitive

In this timing model the delays of all gates and wires are finite but unbounded. As no assumptions

on the computation time are made it can handle arbitrary delay. Obviously this realization of a

circuit is robust to process variations and interconnect delays. Hence, delay-insensitive circuits

deliver average-case performance.

To achieve validity in delay-insensitive circuits, the state of the output of a gate has to be preserved

until all inputs are valid. For this purpose only Muller C-Gates and single input gates like inverters

and buffers are applicable. Thus, a Micropipeline is delay-insensitive but circuits with Boolean

logic gates are not.

Quasi Delay-Insensitive

In this timing model the delays of all gates are finite but unbounded. The delays of branches of

certain critical wire forks have identical wire delay. These forks are called isochronic forks [18].

The same coding techniques as for delay-insensitive circuits are applicable.

9

2. BACKGROUND

2.1.5 Data path Implementation Styles

The implementation and behavior of a handshake protocol depends on the encoding of the control

and data paths. Furthermore, the handshake style, i.e. four-phase or two-phase, has an effect

on the protocol. First techniques to achieve validity are described. Then the most common

handshake protocols are presented [18].

Validity

A bit at the output is valid if the inputs are valid and the output is stable. Validity is either

indicated by separate control signals or by codewords. In case of a data bus all bits at the input

have to be valid before the data is acknowledged.

Employing the bounded delay model delay elements have to be placed on the control path to

assure that the outputs of combinational logic and the inputs of the circuit have settled before

they are captured. Validity of datawords is guaranteed by adding an adequate amount of delay

elements to match worst-case computation times.

Employing the quasi delay-insensitive model correct circuit behavior is achieved by an appropriate

coding technique or data representation. To have an unambiguous valid state in quasi delay-

insensitive circuits, no intermediate valid codewords are allowed. To identify a new codeword,

successive codewords must be separated by at least one signal transition. Validity of datawords is

determined by a separate completion detection circuit.

Single-Rail

The term single-rail refers to all encodings where the individual data bits are encoded with

Boolean values, each on a single wire. All data wires are bundled together accompanied by a

separate request and acknowledge signal.

Figure 1.2 shows a circuit with a single-rail protocol. For circuits implementing the single-rail

protocol assumptions about the computation time of the combinational logic have to be made.

To maintain correct behavior, matching delays in the control path are needed to compensate the

delay of the data path in the combinational logic. Refer to Figure 2.5 for a Micropipeline with

delay elements on the control paths. The control path of the pipeline is quasi delay-insensitive,

whereas the data path follows the bounded delay model.

Waveforms that show the behavior of the data and control signals for both four-phase and

two-phase handshaking are depicted in Figure 2.2.

Four-Phase Single-Rail An implementation of a single-rail pipeline in combination with a

four-phase handshake is illustrated in Figure 2.5. The output signal of a Muller C-Element
controls the attached latch. When a new request arrives from the predecessor and the the previous

request is acknowledged by the successor the latch starts passing the data. Once this stage

acknowledges the request to the predecessor the latch is switched to capture mode.

10

2.1. Fundamentals of Asynchronous Logic

req Δ ack

C C

data

EN

Latch

EN

Latch

EN

Latch data

C

ack Δ req

Figure 2.5: Four-Phase Single-Rail Pipeline

Two-Phase Single-Rail As the two-phase handshake implementation is event-driven the latch

control must be event-driven as well. For this reason special latches are required. Figure 2.6

depicts a single-rail pipeline in combination with a two-phase handshake. This pipeline can be

distinguished from the one with a four-phase handshake by special capture-pass latches along the

data path. If an event triggers the C input of the latch it starts to output the captured data. On the

other hand if an event triggers the P input of the latch it starts passing the data.

req Δ ack

C C

data

C P

Latch

C P

Latch

C P

Latch data

C

ack Δ req

Figure 2.6: Two-Phase Single-Rail Pipeline

Multi-Rail

The term multi-rail refers to all protocols with combined encoding of data and the request signal

accompanied by a common acknowledge signal on push channels. To accomplish combined

encoding of data and request, more than two signal states per bit are required. Hence, more

than one wire per bit is needed. Likewise, the encoding of data and the acknowledge signal is

combined accompanied by a common request signal on pull channels. For convenience, only

push channels are explained in greater detail. Pull channels can be derived.

Figure 2.7 shows a 1-bit wide four-phase dual-rail pipeline without data processing. It can

11

2. BACKGROUND

be seen as two Micropipelines with a common acknowledge signal. The request wires of the

pipelines carry besides the request the data, encoded in a codeword. In this figure one wire is

used to represent a logical one, the other wire is used to represent a logical zero. The request is

acknowledged when either of the two wires is set to high.

C

C

C

C

C

C

data.t

data.f

ack

ack

data.t

data.f

Figure 2.7: Four-Phase Dual-Rail Pipeline

To ensure correct indication in combinational blocks for multi-rail protocols, state-holding

elements are required. With the combined encoding of data and the request signal a reliable

communication is achieved regardless of gate delays. Due to isochronic forks, which can usually

be found in these circuits, the control path as well as the data path of the pipeline are quasi

delay-insensitive.

Null Convention Logic (Four-Phase Dual-Rail) Null Convention Logic is a four-phase pro-

tocol using two wires per data bit [6]. One wire is used to represent a logic one, the other wire

is used to represent a logic zero. Valid datawords are always spaced with empty codewords.

Figure 2.8 illustrates the channel encoding for the Null Convention Logic protocol. In this example

the code 10 is transmitted.

data null valid null valid null

data.t

data.f

ack

data.t data.f

null 0 0
valid ‘0’ 0 1
valid ‘1’ 1 0

illegal 1 1

Figure 2.8: Null Convention Logic Protocol (Push Channel)

There is exactly one transition change for each bit between two valid codewords. For a switch

from the empty codeword to a dataword the corresponding wire changes from zero to one. For

a switch from a dataword to the empty codeword the corresponding wire changes back from

one to zero. Once the completion detector indicates a valid dataword the acknowledge signal

is asserted. Since this is a four-phase protocol the empty codeword resets all data wires before

another codeword can be transmitted. Hence, the acknowledge signal is only deasserted when all

bits are empty.

12

2.1. Fundamentals of Asynchronous Logic

Level-Encoded Two-Phase Dual-Rail (LEDR) LEDR is a two-phase dual-rail protocol with

level signaling [2]. In the Null Convention Logic protocol every second codeword does not carry

information. An alternative solution is to use two codewords for each logic value, each of them

belongs to a different phase. To distinguish consecutive datawords, the corresponding codewords

have alternating phases. Figure 2.9 illustrates the channel encoding for the LEDR protocol. In

this example the code 11000 is transmitted. As can be seen from the example the throughput of a

circuit with LEDR encoding is twice as high as for circuits with Null Convention Logic encoding.

data ϕ1 ϕ0 ϕ1 ϕ0 ϕ1

data.a

data.b

ack

data.a data.b

ϕ0 ‘0’ 0 0
ϕ1 ‘0’ 0 1
ϕ1 ‘1’ 1 0
ϕ0 ‘1’ 1 1

Figure 2.9: Level-Encoded Two-Phase Dual-Rail Protocol (Push Channel)

The codewords are chosen in a way that all codewords of the other phase are reached by exactly

one transition. An encoding for the LEDR protocol can be seen in Figure 2.9. Completion

detection works similarly as for Null Convention Logic.

Transition-Encoded Two-Phase Dual-Rail A two-phase dual-rail protocol can also be imple-

mented with transition signaling. Each transition represents a codeword. Figure 2.10 illustrates

the channel encoding for a Transition-Encoded Two-Phase Dual-Rail protocol. In this example

the code 1001 is transmitted.

data.t

data.f

ack

Figure 2.10: Transition-Encoded Two-Phase Dual-Rail Protocol (Push Channel)

The current state of a codeword depends on the previous transitions. Thus, it is not visible

but must rather be stored in state-holding elements. This is problematic for the identification

of consistent datawords. Likewise it is difficult to implement a transition-based completion

detection.

13

2. BACKGROUND

2.2 Balsa

For designing asynchronous circuits that are only synchronized by handshake communications a

special development environment is of advantage. Conventional tools for design and verification

are tailored to the clocked approach. As asynchronous development is not widely spread not many

design tools optimized for asynchronous circuits are available. The development environment of

choice for implementing ASCARTS is the open-source project Balsa, which was developed at

the APT group of the School of Computer Science, The University of Manchester. This section

gives an overview over Balsa. For a more detailed description see [4].

Balsa is a language for describing asynchronous hardware systems as well as a framework for

developing such systems. A key feature of the language is transparent compilation. There is

a one to one mapping between language constructs and intermediate handshake circuits. The

advantage of this approach is that incremental changes in the code result in predictable changes

in the generated circuits.

The Balsa framework comprises a collection of tools. The most important ones are listed in

Table 2.1.

balsa-c compiles Balsa files into intermediate Breeze description

breeze-sim behavioral simulator for Breeze files on handshake level

balsa-netlist produces a netlist from Breeze description

Table 2.1: Balsa Tools

Balsa is a strongly typed language, hence, all casts have to be explicit. The only exception to this

are implicit casts of numeric types to wider numeric types. Thus, special care has to be taken

with arithmetic operations.

The language supports modular compilation to realize a library mechanism. With the import
statement precompiled Balsa components, i.e. Breeze design files, can be included into the current

Balsa design file allowing component reuse.

2.2.1 Control Flow

In this section Balsa or rather asynchronous specific language constructs are explained in more

detail and are illustrated by examples. For conventional constructs, which might be familiar, refer

to [4].

Sync Control only handshake channels communicate via sync commands. Both ends have to

signal a sync request to successfully complete the handshake. In Listing 2.1 first the handshake

on the sync channel i is completed. Afterwards a handshake on the sync channel o is initialized.

14

2.2. Balsa

procedure sync_buffer (
sync i ;
sync o

)
is
begin
loop

sync i
;
sync o

end
end

Listing 2.1: Sync Buffer

Channel Assignment The operators → and ← are channel assignment operators implying a

handshake data transfer over that channel. → assigns the data read from the input channel to a

variable or an output channel and completes the handshake. ← assigns data to an output channel

from a variable or expression and initializes the handshake. Each channel has exactly one input

and one output port. Hence, passing a signal to several procedures is not possible as used to

from conventional languages. For each procedure a separate channel is needed with explicit

signal assignment. In Listing 2.2 first the data from the input channel i is assigned to x and

simultaneously the handshake on that channel is completed. Afterwards the data from x is written

to the output channel o and simultaneously a handshake on that channel is initialized.

The operator := assigns the result of an expression to a variable. In Listing 2.3 data of x is

transferred to y. The transfer is implicitly performed by a handshaking communication channel.

Hence, y := x can also be written as ch ← x ‖ ch → y.

import [balsa.types.basic]

procedure single_place_buffer (
input i : byte;
output o : byte

)
is

variable x : byte
begin

loop
i -> x
;
o <- x

end
end

Listing 2.2: Single-Place Buffer

import [balsa.types.basic]

procedure two_place_buffer (
input i : byte;
output o : byte

)
is

variable x, y : byte
begin

loop
i -> x
||
o <- y
;
y := x

end
end

Listing 2.3: Two-Place Buffer

15

2. BACKGROUND

Sequencing The ; operator connects two statements or blocks sequentially. A sequence operator

is used in Listing 2.2. First the input channel i is read. Once the handshake on that channel is

completed it is written to the output channel o.

Parallel Composition The || operator connects two statements or blocks concurrently and

independently. Both commands must be completed before processing the subsequent command

or commands. This operator has precedence to the sequence operator. A parallel composition

operator is used in Listing 2.3. Reading the input channel i and writing to the output channel

o occurs concurrently. Once the handshakes on both channels are completed the value of x is

copied to y.

Choice For situations where a handshake may occur only on one channel out of several a

multiplexer is needed. In the Balsa language self-selecting multiplexer is available for this

purpose. This operator waits for a handshake request on any of the channels. Once a handshake

initialization is detected the block associated with the selected channel is processed before the

handshake on that channel is acknowledged. This is a type of handshake enclosure which is

described in more detail in Section 2.2.3.

In Listing 2.4 the select operator is used to choose between input channel i and input channel

j. The system design must ensure that handshakes on the channels in a select statement never

occur simultaneously.

For truly independent channels another choice operator arbitrate is available. As with non-

deterministic choices the possibility of entering metastability arises, additional hardware is

needed to avoid or resolve that state. Due to this overhead arbiters are expensive in both area and

speed. Hence, the arbitrate statement should only be used if really necessary. In Listing 2.5

the arbitrate operator is used to choose between input channel i and input channel j. If a

handshake request arrives on both channels simultaneously the order in which the corresponding

blocks are processed is not deterministic.

Both choice operators can be used for control only channels as well as channels transferring data

or a mixture of both. In Listing 2.4 a choice operator is applied to data bearing channels, whereas

in Listing 2.5 a choice operator is applied to dataless channels.

2.2.2 Design Structure

A design consists of several files containing procedures, type and constant declarations. If several

procedures are defined in the top-level design file the bottom one is taken as main procedure.

Additionally, to the previous mentioned declarations a procedure can also have local variable and

channel declarations. The scope of each declaration starts at the point of declaration and ends at

the end of the enclosing block. If a declaration within an enclosed block uses the same name as a

previously made declaration in the enclosing context, the outer declaration is hidden until the end

of the enclosed block.

16

2.2. Balsa

import [balsa.types.basic]

procedure choice (
input i : byte;
input j : byte;
output o : byte

)
is
begin

loop
select i then

o <- i
| j then

o <- j
end

end
end

Listing 2.4: Non-Arbitrated Choice

procedure arbitrated_choice (
sync i;
sync j;
sync o

)
is
begin

loop
arbitrate i then

sync o
| j then

sync o
end

end
end

Listing 2.5: Arbitrated Choice

Shared Procedures Each instantiation of a procedure induces separate hardware. If the calls

to a procedure are mutually exclusive the individual instantiations can share their hardware.

For these cases Balsa provides shared procedures. Calls to such procedures access common

hardware, hence, multiplexers are needed to coordinate the access. In Listing 2.6 a counter with

the possibility to change the direction is implemented. In the design two adders are instantiated,

one used for incrementing the register and one used for decrementing the register. As the adders

are not used concurrently in Listing 2.7 the design is rewritten to share a single adder.

Parameterized Procedures Procedures can be parameterized to be used as generic library

components with varying parameter types. No hardware is generated for parameterized procedures

until it is instantiated with defined parameters. In Listing 2.8 a buffer definition with generic

input and output types is given. Aliasing of procedures with defined parameters, see last line of

Listing 2.8, is optional. Instead of calling the aliased procedure byte_buffer(i, o) a call to the

procedure could also be generic_buffer(byte, i, o).

2.2.3 Handshake Enclosure

With channel assignments in Balsa once the data is consumed the handshake is completed and the

data may be removed from the channel. Hence, if the data is required more than once it has to be

stored in a variable. Listing 2.9 shows a channel multiplier. The data of input channel i has to be

stored in a temporary variable as it is needed twice. To avoid temporary variables, Balsa provides

two constructs where the handshake is held open until a sequence of commands is processed.

One possibility is the select statement as used in Listing 2.4. If there is no choice necessary an

alternative command is provided as used in Listing 2.10. In this listing the → operator is used

to hold the handshake on input channel i open. Using these constructs the channel acts like a

variable in the enclosed block.

17

2. BACKGROUND

import [balsa.types.basic]

procedure counter (
input direction : bit;
output count : byte

)
is

variable tmp_direction : bit
variable reg : byte

begin
loop

direction -> tmp_direction ;
if tmp_direction then

reg := (reg + 1 as byte)
else

reg := (reg - 1 as byte)
end ;
count <- reg

end
end

Listing 2.6: Counter

import [balsa.types.basic]

procedure counter (
input direction : bit;
output count : byte

)
is

variable tmp_direction : bit
variable reg : byte
variable inc : 2 signed bits

shared adder is
begin

reg := (reg + inc as byte)
end

begin
loop

direction -> tmp_direction ;
if tmp_direction then

inc := 1 ;
adder()

else
inc := -1 ;
adder()

end ;
count <- reg

end
end

Listing 2.7: Counter with Shared Adder

import [balsa.types.basic]

procedure generic_buffer (
parameter X : type;
input i : X;
output o : X

)
is

variable x : X
begin

loop
i -> x ;
o <- x

end
end

procedure byte_buffer is generic_buffer(byte)

Listing 2.8: Generic Buffer

18

2.2. Balsa

Figure 2.11 shows the circuit behavior without handshake enclosure and the circuit behavior with

enclosed handshake. The waveform in the figure shows a four-phase protocol. Green logical

1 denotes an active request and red logical x denotes an active acknowledge. Green logical

0 represents a removed request and with blue logical z the acknowledge is removed as well.

Comparing the two traces reveals the difference in behavior for these two approaches. The

advantage of enclosed handshakes is that the channel can be read several times, even zero times,

without deadlocking and at the same time avoiding internal latches for storing the data. On the

other side the performance decreases because the handshake completion is delayed. Hence, the

data provider is locked and cannot continue processing independently.

import [balsa.types.basic]

procedure channel_multiplier (
input i : byte;
output o : byte;
output p : byte

)
is

variable x : byte
begin

loop
i -> x ;
o <- x ||
p <- x

end
end

Listing 2.9: Channel Multiplier

import [balsa.types.basic]

procedure channel_multiplier (
input i : byte;
output o : byte;
output p : byte

)
is
begin

loop
i -> then

o <- i ||
p <- i

end
end

end

Listing 2.10: Enclosed Channel Multiplier

Figure 2.11: Waveform of Channel Multipliers

2.2.4 Simulation

For simulation purposes additional built-in types and functions are available originally defined in

C. Built-in types represent pointers to BalsaObject structures, which can be used as parameters,

ports and variables. However, arithmetic functions cannot be applied to them.

Built-in functions for generating and manipulating String objects as well as for string conversion

are available. For file access the built-in object type File and associating functions which operate

on that type are provided. To simulate memory, a library with the built-in type BalsaMemory and

built-in functions for reading from and writing to that object exist. In addition, a Balsa procedure

19

2. BACKGROUND

with a read and write port implementing the memory access logic is provided by the library. An

in-depth description of the built-in library types and functions can be found in [4].

20

CHAPTER 3
State of the Art

This chapter gives an overview of the most important asynchronous processors.

At The University of Manchester three versions of an ARM-compatible microprocessor were

developed, AMULET1 [22], AMULET2 [8], AMULET3 [9]. Asynchronous implementations

of the MIPS R3000 processors were developed at The University of Birmingham [23] and at

California Institute of Technology [13], respectively. At the California Institute of Technology
Lutonium [14], an asynchronous 8051 microcontroller, was also developed. An asynchronous

80C51 microcontroller [20] was developed at Eindhoven University of Technology and Philips
Research Labs. This processor is, however, not presented in this chapter.

3.1 AMULET1

AMULET1 [22] is an asynchronous processor based on the ARMv3 microprocessor architecture.

It was developed using an approach derived from Sutherland’s Micropipelines [19]. Unusual

properties comprise non-deterministic, but bounded, prefetch depth beyond a branch instruction,

a data dependent throughput and a novel register locking mechanism.

The architecture consists of four major functional units, the Address Interface, Register Bank,

Execute unit and Data Interface. These operate concurrently and asynchronously, synchronizing

with each other only to exchange data. Instruction stream coloring is used for discarding an

uncertain number of prefetched instructions from the interrupted instruction stream. Whenever

the instruction stream terminates the color of the instruction is changed. By checking the color at

the decode stage and at the ALU result stage wrongly prefetched instructions and their results

can be identified and discarded. A failing memory access on instruction fetch only causes a trap

to be entered for instructions actually required, i.e. if the color matches. To handle read and

write operations correctly in an asynchronous environment, the register bank uses FIFO Lock
Registers [17] for pending write backs. Separate ones are used to lock registers subjected to

memory writes and ALU writes, respectively.

21

3. STATE OF THE ART

As implementation style the two-phase single-rail protocol was chosen. However, instead of

capture-pass latches conventional latches are used. Thus a conversion from two-phase protocol to

four-phase protocol as well as the back conversion is needed.

The chip was developed with the aid of conventional synchronous tools using a conventional

design flow. For high-level simulation a proprietary simulator from ARM Limited was used.

Transistor level simulation and all layout was performed with commercial VLSI CAD tools.

In addition software was developed, which checks the validity of data bundles of the single-

rail protocol between request and acknowledge signals. The components for the data path are

primarily fully customized, whereas for control logic the layout consists mostly of compiled

standard cell circuits.

3.2 AMULET2

AMULET2 [8] is an enhanced version of AMULET1. Analysis of AMULET1 revealed that

the pipeline depths are too large. Some stages hardly increase performance but cost area and

power dissipation. Others even decrease performance. With regard to these aspects the pipelines

were reorganized. To avoid pipeline stalls when a register dependency is detected, last result
registers are used to emulate register forwarding. The latter one is only reasonable in synchronous

design as it relies on pipeline synchronization. Separate last result registers are used for the

ALU, which is used when the result calculated by the ALU is required as an operand, and the

memory, which is used when the operand being loaded from the memory is required. Only the

results of instructions with the always guard, i.e. instructions that are unconditionally executed,

are forwarded to be sure that the value will become available. AMULET2 employs a Branch
Target Cache to predict the target of the next branch instruction. It is a static branch predictor that

caches the addresses and targets of the 20 recently taken branch instructions. AMULET2 detects

instructions that branch to themselves as halt instructions and triggers a mechanism to stall the

processor.

As implementation style the four-phase single-rail protocol was adopted. In AMULET1 many

two- to four-phase conversions were needed for pipeline registers and dynamic logic. Besides,

the implementation of two-phase control elements was inefficient.

The chip was developed with off-the-shelf commercial EDA tools and design libraries, which

are optimized for synchronous designs. For high-level simulation a proprietary simulator from

ARM Limited was used. Several potential deadlocks were found early in the design cycle by

varying the delays of gates within the asynchronous control paths. Many of the asynchronous

control circuits were synthesized using a specific asynchronous logic tool, Forcage. The data

path and most of the cache is fully customized. However, large amounts of the control logic were

compiled from standard cells supplemented with physically compatible cells.

22

3.3. AMULET3

3.3 AMULET3

AMULET3 [9, 10] is the third generation of asynchronous ARM-compatible microprocessors. It

is based on the ARMv4T microprocessor architecture including full compliance with the 16-bit

thumb instruction set.

The instruction port fetches 32-bit words unless it is known that only one half-word is needed

when operating in thumb mode. As the pipeline is elastic and units are only invoked when needed

by the instructions, the pipeline’s depth varies. Some instructions may be discarded already

before the execution stage. Others may be expanded into multiple cycles inside the pipeline.

Instruction stream coloring is used for discarding prefetched instructions in a similar way as in

earlier AMULET processors. However, in AMULET3 the instructions are already discarded in

the decode stage. This adaption leads to power reduction as registers are not read unnecessarily.

The instruction prefetch unit comprises some novel features. Instructions that branch to them-

selves are reinterpreted as halt instructions. On execution this causes the prefetch unit to stop,

which, in turn, stops the asynchronous subsystem. AMULET3 employs a Branch Target Buffer
with 16 entries. It provides all the information contained in the instruction. Therefore, instruction

fetch is suppressed. This leads to faster instruction delivery and less power consumption.

As the previous AMULET processors the implementation is based on an asynchronous mi-

cropipeline structure using four-phase control signals. Balsa was used to implement parts of the

DMA controller, which is included in the AMULET3i microprocessor subsystem.

3.4 SAMIPS

SAMIPS [23] is an asynchronous processor core based on the MIPS R3000 architecture. Its

pipeline consists of five stages, the Instruction Fetch, Instruction Decode, Execution, Memory
Access, Register Write Back. The control signals are generated in the instruction decode stage and

then bundled together with the data and passed through the pipeline. To avoid data hazards, an

asynchronous register forwarding mechanism was developed based on history information. An

extended version of the coloring mechanism of the one used in AMULET1 is used for discarding

prefetched instructions. The color of the instructions as well as of the processor change every

time a control hazard occurs. Instructions are only executed if the color matches that of the

processor.

SAMIPS was modeled in Balsa. For behavioral simulation LARD, a hardware description

language for describing asynchronous systems [5], was used. The memory model for the

simulation was also written in LARD. LARD is able to detect deadlocks by terminating the

simulator when a deadlock occurs with subsequent channel activity analysis.

3.5 Asynchronous MIPS R3000

An asynchronous MIPS R3000 processor [13] was developed to optimize the average cycle time

and the average energy per instruction. By minimizing Et2 both high speed at high voltage and

23

3. STATE OF THE ART

low power at low voltage can be achieved. MIPS R3000 was chosen because it is the archetype

of a commercial RISC microprocessor. However not the complete MIPS was implemented.

The processor consists of two distinct parts, the fetch loop, consisting of the PC unit, the Fetch and

the Decode, and the execution pipeline, consisting of the execution units, register unit and Write
Back. All execution units operate in parallel and can execute different instructions concurrently.

The whole design is very finely pipelined.

To determine the sequence of canceled instructions for precise exceptions, the decoder maintains

a queue of unit numbers that represent the order of the dispatched instructions. The central

mechanism for exception handling is the write back unit. It sends a discard message to the register

unit if the instruction was canceled. The PC unit generates a bit, which signals the write back

unit that the instruction stream is valid again. A pseudo-instruction is inserted into the instruction

stream before the first instruction of the exception handler, which requests to store the information

about the exception. The register unit has two result buses, which are used alternately to reduce

pipeline stalls. The processor has two caches. The cache core is pipelined internally allowing

two look-ups to proceed concurrently. When a cache miss occurs the handshake between the

cache and the main pipeline is stretched making the latency variations transparent to the rest of

the system.

This processor is quasi delay-insensitive using four-phase control signals. The data is encoded

using 1-of-N and dual-rail codes.

3.6 Lutonium

Lutonium [14] is an asynchronous 8051-architecture microcontroller. It is designed for low Et2,

the best trade-off between energy and cycle time. The choice of the 8051 ISA is justified by the

fact that it is the most popular microcontroller. On the other hand, though, it is a complex and

irregular instruction set that tends to increase the energy consumption.

For energy efficiency, switching activity is minimized. No register or execution unit receives

control unless it will process data. Nothing is computed or routed unless necessary. Thus the

pipeline is non-speculative. It is filled by the instruction fetch unit with instructions only if these

are definitely going to be executed. Therefore, cycles executing interrupt requests or branches are

stretched. For energy and time savings implicit operands and special registers have their own

channels. As instruction Fetch is the limiting part of the design two consecutive bytes of code are

fetched simultaneously. Even though that introduces some speculation if the last byte of a basic

block happens to fall on an even address, the speed advantage compensates the energy costs. To

not make the optimizations pointless, direction registers were added to the peripheral interfaces

so that passive pull-ups are not required.

Lutonium is quasi delay-insensitive using four-phase control signals. The processor description

is composed of concurrent Communicating Hardware Processes [15].

24

CHAPTER 4
SCARTS - Basis For The
Asynchronous Processor

SCARTS is an abbreviation for Scalable Computer Architecture for Real-Time Systems. It is a

synchronous processor developed and actively maintained at Vienna University of Technology,

Department of Computer Engineering. This processor was specifically designed as a soft-core

processor for embedded systems with real-time requirements. To fulfill these requirements, the

processor has to be adaptable and real-time capable [3]. Adaptability is accomplished by the

usage of extension modules to extend the functionality of the processor. Real-time capability is

achieved by constant execution time of all instructions, even if a conditional instruction is not

executed, and deterministic behavior of interrupt execution.

The features that are adopted for the implementation of ASCARTS are described in more detail.

For other information about SCARTS refer to [7, 21].

4.1 Processor Architecture

SCARTS is a RISC1 processor with a 16-bit address bus and a customizable data path. The

data path can be switched between 16-bit for small processor cores used for FPGAs with little

resources and 32-bit for improved performance and higher storage capacity due to 32-bit addresses.

Figure 4.1 shows the block diagram of SCARTS. The processor has four pipeline stages. These

are Instruction Fetch, Instruction Decode, Execute and Write Back. Data hazards are resolved

by the usage of a register forwarding unit. Control hazards are also resolved in hardware. These

mechanisms keep programs simple and worst-case execution times rather predictable.

The register file has 16 registers, whereof two are special purpose registers. In addition four frame

pointers are available.

1RISC, Reduced Instruction Set Computing, is a load/store architecture.

25

4. SCARTS - BASIS FOR THE ASYNCHRONOUS PROCESSOR

fetch decode execute write back

P
ip

el
in

e
R

eg
is

te
r

1
P

C

P
ip

el
in

e
R

eg
is

te
r

2
P

C

P
ip

el
in

e
R

eg
is

te
r

3

P
ip

el
in

e
R

eg
is

te
r

4

Instruction

Memory

PC Addr

Register

File

Exception

Vector

Table

Decode

Data

Memory

Proc Ctrl

Figure 4.1: Block Diagram of SCARTS

SCARTS supports 32 exceptions, 16 of which are hardware triggered interrupts and 16 are

software triggered traps. The exception vector table is stored in a separate memory. The

instruction set provides special instructions to build and to manipulate the exception vector table.

To get high flexibility, the processor can be extended by extension modules, which are mapped to

data memory address space. The processor status and the interrupt handling logic are controlled

by the processor control module. Therefore, it is obligatory to include that module for correct

processor operation. For a detailed description of extension modules see Section 4.2.

A sleep mode is provided for power saving. Once the processor is in sleep mode it only wakes up

if an interrupt is triggered.

4.1.1 Memory Architecture

The memory architecture of SCARTS is a Harvard Architecture, i.e. instruction memory and

data memory are two separate physical memories with independent signal buses. The instruction

memory uses word access since instructions are read as words. As far as the data memory

is concerned a byte access memory organization was implemented. The byte ordering of this

memory is little endian. Memory accesses have to be aligned.

The physical interface of extension modules is also mapped into data memory. Each module

allocates 32 bytes of the memory starting at the top of the memory. The size of the internal

dynamic memory is configurable as well as the address space reserved for extension modules.

The default memory mapping of SCARTS’ data memory with a 32-bit configuration can be seen

in Figure 4.2. The extension module interface is mapped to the top of the address space. The

processor control module is by default mapped to the slot with the base address of −32. All

frame pointers point to the top of the internal dynamic memory on program start-up.

Addressing modes of an architecture define how the physical instruction operand addresses in

the memory are calculated by a processor [21]. The memory addressing modes supported by

26

4.1. Processor Architecture

ffff ffe0 Processor Control Module −32

ffff ffc0
(free) −64

ffff ffa0
(free) −96

ffff 8000

SCARTS Extension Modules
(free)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

SCARTS

Extension Interface

0002 0000

unused

← Frame Pointer

0000 0000

Internal DRAM

Figure 4.2: Data Memory Address Space for 32-bit Configuration

SCARTS are presented in Table 4.1.

Mode Description Instruction
Memory

Data
Memory

Absolute address constants — —

Register Indirect address values in registers
√ √

FP-Relative displacement value added to frame

pointer

—
√

PC-Relative displacement value added to pro-

gram counter

√
—

Table 4.1: Memory Addressing Modes

4.1.2 Register File

The register file consists of 16 registers. All registers, r0 to r15, are accessible from all

instructions. Two registers, r14 and r15, additionally have special functionality. The return

address after a subroutine call is saved to the rts register, mapped to r14. The rte register,

mapped to r15, holds the return address in case of an interrupt. For nested subroutine calls and

interrupts the appropriate register has to be saved manually.

4.1.3 Frame Pointers

The SCARTS processor provides four frame pointers to control four different frames. Frames are

similar to stacks. The difference, however, is that data can be stored to and read from frames in

27

4. SCARTS - BASIS FOR THE ASYNCHRONOUS PROCESSOR

arbitrary order by specifying an offset to the frame pointer. Due to 6-bit offset values 64 words

can be addressed from one frame pointer as only word access is allowed.

With post-increment and post-decrement frame pointer access instructions auto-increment and

auto-decrement functionality is supported. As the address space of frames expands from the top

to the bottom by recommendation pop can be easily realized with a post-increment instruction

and an offset of 0. On the other hand, push needs pre-decrement functionality, which has to be

simulated by a post-decrement instruction with an offset of −1.

4.2 Extension Modules

SCARTS can be adapted for different requirements by integrating extension modules. To keep

the usage of different modules simple and consistent, a common interface was designed. Each

extension module is accessed through 32 bytes irrespective of the data path size. The interface is

mapped with the module’s base address into data memory. Thus, no additional instructions are

required as conventional memory instructions can be used.

The first two bytes of the interface define the status register, which is read-only. The subsequent

two bytes form the configuration register for the module. Each of these two registers is split into

a generic part and a custom part. The generic low byte of the status register and the generic low

byte of the configuration register define the common interface to the extension modules. The high

bytes of both registers as well as the other 28 bytes can be used module specific. In Figure 4.3 the

register interface specification of extension modules is depicted.

BaseAddress Config Register Status Register

+0x04 Data Register 0

+0x08 Data Register 1

+0x0c Data Register 2

+0x10 Data Register 3

+0x14 Data Register 4

+0x18 Data Register 5

+0x1c Data Register 6

0151631

Figure 4.3: Register Interface for Extension Modules

Figure 4.4 shows the generic parts of the status register and the configuration register. The register

description of these registers is listed in Table 4.2 and Table 4.3. The functionality for these bytes

has to be implemented together with the customized part for each module.

4.2.1 Processor Control Module

The processor control module is essential for the processor and, hence, cannot be omitted. It

contains the processor status register, the frame pointers, is responsible for controlling exceptions

28

4.2. Extension Modules

Generic Status Byte

LOOR − − FSS BUSY ERR RDY INT
07

Generic Config Byte

LOOW − − EFSS OUTD SRES ID INTA
07

Figure 4.4: Generic Status and Configuration Byte

INT The Interrupt bit is set if an interrupt was triggered by the module.

RDY The Ready bit indicates that the module is ready to operate.

ERR The Error bit is set if an error occurred.

BUSY The Busy bit indicates that the module is not ready for new tasks.

FSS The Fail-Safe-State bit can be set by the module or by the Enter-Fail-Safe-State bit

of the configuration register and indicates that the module is in the fail-safe-state.

LOOR The Loop-Read bit shows the Loop-Write bit of the configuration register with one

cycle delay. It is used to determine the presence of a module.

Table 4.2: Generic Status Byte

INTA The Interrupt Acknowledge bit acknowledges the interrupt and clears the Interrupt
bit in the status register.

ID If the Identify bit is set, manufacturer and version number can be read from data

register 0.

SRES The Soft-Reset bit triggers a software reset of the module.

OUTD The Output-Disable bit disables the module.

EFSS If the Enter-Fail-Safe-State bit is set, the module enters the fail safe state.

LOOW The Loop-Write bit is shown as Loop-Read bit of the status register with one cycle

delay. It is used to determine the presence of a module.

Table 4.3: Generic Configuration Byte

29

4. SCARTS - BASIS FOR THE ASYNCHRONOUS PROCESSOR

and activates the sleep mode. In Figure 4.5 the register interface of the processor control module

is depicted. Figure 4.6 shows the register description of the customized parts of the status register

and the configuration register.

BaseAddress Config Register Status Register

+0x04 Interrupt Mask Register Interrupt Protocol Register

+0x08 Frame Pointer W

+0x0C Frame Pointer X

+0x10 Frame Pointer Y

+0x14 Frame Pointer Z

+0x18 S. Cust. Status Byte

+0x1C

0151631

Figure 4.5: Register Interface for Processor Control Module

Customized Status Byte

− − − COND ZERO NEG CARRY OVER
07

Customized Config Byte

GIE SLEEP − − − − − −
07

Figure 4.6: Customized Status and Configuration Byte of Processor Control Module

The customized status byte comprises the status flags of ALU2 operations. These flags are

Overflow, Carry, Negative, Zero and Condition. The customized configuration byte provides the

Global Interrupt Enable bit and the Sleep bit to put the processor into sleep mode. The customized

status byte is saved to the Saved Customized Status Register upon an exception occurrence and

restored from it after the execution of the interrupt handler.

In case of a reduced-16-bit data path the upper 16 bits of the frame pointer registers are unused.

The frame pointer registers are described in Section 4.1.3.

Interrupts For enabling interrupts globally the GIE bit of the customized configuration register

has to be set. To disable interrupts individually, a mask bit for each of the 16 interrupts is provided

in the Interrupt Mask Register. The Interrupt Protocol Register captures incoming interrupts.

The corresponding bit number is set until the interrupt service routine is executed or it is cleared

by the programmer.

2The Arithmetic and Logic Unit is a component in a processor that performs arithmetic and logical operations.

30

4.3. Instruction Set Architecture

4.3 Instruction Set Architecture

The SCARTS instruction set comprises 122 instructions of which 48 are conditional. All instruc-

tions have a fixed length. They are encoded in 16-bit words, which reduces hardware complexity.

They have a constant execution time of one clock cycle per instruction, which is an important

feature for real-time capability. As only 16-bit instructions are used there was not enough scope

to design an instruction set with a consistent structure. Therefore, the length of opcodes and

immediate values vary.

4.3.1 Conditional Instructions

Besides conditional jumps, the instruction set also comes with conditional arithmetic and logic

instructions. These instructions test the condition flag in the status register, which is set or cleared

by compare and test instructions, respectively. If the condition applies the instruction is executed

else it is replaced by a nop instruction. Thus, with the support of conditional instructions the

execution time of programs is constant and independent of data. Hence, the worst-case execution

time can be calculated easier. For small conditional sequences the execution time is even shorter,

compared to conventional sequences, as no jumps and pipeline flushes are required.

31

CHAPTER 5
ASCARTS - The Asynchronous

Processor

The asynchronous processor was developed to be compatible with the toolchain used for the syn-

chronous counterpart. Hence, it is named ASCARTS, which stands for Asynchronous SCARTS.

In order to achieve this most of the just introduced features of SCARTS have been adopted for

the implementation of ASCARTS.

As the asynchronous design style is quite different from the synchronous one, differences in

the architecture are inevitable. Recall that in asynchronous designs the execution time varies

depending on the instruction and its operands. Thus, worst-case execution time has to be

calculated with greater expense, which in turn weakens the feature of real-time capability. The

design of this processor is platform-independent. The ASCARTS can be used as a soft-core

processor for FPGAs1, or the design is synthesized with a library for ASICs2. The latter will

result in a more efficient design in terms of area, power and performance as most of the FPGAs

are not designed for implementing asynchronous circuits.

Besides the asynchronous design-related modifications, other decisions are changed as well. The

customizable data path was not implemented in that way again. Only a 32-bit data path is available

anymore. The 16-bit version was omitted as experience showed that the performance gain is

disproportionate to the additional hardware resources used, especially because modern FPGAs

provide enough resources. However, the instructions are still 16-bit words. The instruction set

architecture was refined as well to facilitate the decoding process.

To keep the work within reasonable limits, the processor control module was slimmed down to the

indispensable parts for the processor. Besides the exceptions, the sleep mode, which is provided

for power saving in the synchronous processor, was omitted. The justification for implementing

1A Field Programmable Gate Array is an integrated circuit that can be programmed after manufacturing.
2A Application-Specific Integrated Circuit is an integrated circuit that is customized for a particular application.

33

5. ASCARTS - THE ASYNCHRONOUS PROCESSOR

the sleep mode in SCARTS is the high power consumption while the processor is idle. Due to

the asynchronous logic design this justification is no longer met in ASCARTS. The optional

extension modules have not yet been implemented either as their functionality is not sufficiently

relevant for an asynchronous prototype of SCARTS.

5.1 Processor Interface

The interface of ASCARTS basically consists of the interfaces to the instruction memory and data

memory, respectively. The data memory interface consists of the read data input signal and

the address and write data output signals. Additionally, it includes the two control signals

write enable and byte enable. The instruction memory interface has only the read data
input signal and the address output signal. As this memory is read only no write data and

write enable signals are needed. The byte enable signal can also be omitted as always the

whole instruction word is read in ASCARTS. The interface of ASCARTS is depicted in Figure 5.1.

ASCARTS
i. memory read data i. memory address

d. memory read data d. memory address

d. memory write data

d. memory write enable

d. memory byte enable

Figure 5.1: ASCARTS Interface

5.2 Processor Architecture

The ASCARTS coarse pipeline structure is identical to SCARTS. The processor’s pipeline is

four stages long. These comprise Instruction Fetch, Instruction Decode, Execution and Memory
Control and Write Back. Between these stages buffers latch the data and control signals. Otherwise

the first stage would have to wait until the last stage processed its data, which makes a pipelined

structure useless. The third stage combines the execution and memory access as the ALU is

barely used by memory access instructions. Only some need the adder for address calculations.

While executing one of these instructions the processor slows down a bit. On the other hand an

almost unnecessary stage can be omitted, which decreases required resources.

The asynchronous pipeline architecture causes complicated data and control hazards. Innovative

solutions are required to resolve these hazards. A data hazard occurs when an instruction depends

on a result of a preceding instruction that is still processed in the pipeline. In SCARTS the

instructions proceed in the pipeline simultaneously. Therefore, it is known if and from which

stage the result has to be forwarded. For ASCARTS an asynchronous forwarding method was

developed, which is based on information stored about previous instructions. As the order of

the instructions is preserved in the pipeline, a data hazard can be detected knowing the previous

operand registers. A more detailed explanation can be found in the description of the affected

34

5.2. Processor Architecture

units. A similar approach was already implemented for the asynchronous SAMIPS processor [23].

As the order of the instructions is preserved, i.e. instructions cannot overtake each other in the

pipeline, on a register read write-dependencies can be exposed with the stored information.

A control hazard occurs when an instruction or exception changes the control flow. In such a case

the pipeline has to be flushed and the results of prefetched instructions have to be discarded. In

SCARTS the exact number of prefetched instructions is known, and therefore, can be discarded

with a simple counter. To resolve control hazards in the asynchronous design, a coloring algorithm

similar to that was already used for AMULET1 [22] and SAMIPS [23] was implemented. The

current state of the processor and the instruction words in the pipeline are colored. The instruction

words have the color of the processor state at the time they were fetched. Every time a control

hazard occurs the color of the processor state changes. An instruction is only processed in the

execution stage if its color matches the color of the processor. Thus, instructions following a

control hazard are discarded until instructions with the new color arrive.

As memory access is clocked a controller is needed to transform handshakes into a clock signal.

The Balsa language does not support clocked logic, therefore, the memory is excluded from the

asynchronous design. The asynchronous processor design has two memory ports to feed the

separated external instruction memory and data memory of the Harvard Architecture.

The block diagram of ASCARTS is depicted in Figure 5.2.

fetch decode execute write back

B
u

ff
er

B
u

ff
er

B
u

ff
er

B
u

ff
erInstruction

Fetch

Instruction

Decode

Memory

Controller

Execute

Proc Ctrl

Write Back

Instruction

Memory

Data

Memory

Figure 5.2: Block Diagram of ASCARTS

5.2.1 Fetch Stage

The first pipeline stage is Instruction Fetch. In this stage the physical instruction memory address

for the next instruction is calculated. It can either be the current program counter plus one

35

5. ASCARTS - THE ASYNCHRONOUS PROCESSOR

or in case of a branch the branch address. In the second case the color, which is attached to

the instruction words, is updated as well. The actual address is selected by an arbiter. Due to

varying delays it is not predictable which of the possible new program addresses arrive first. As

handshakes are used for synchronization, the address that arrives first is taken. Hence, in contrast

to SCARTS, the behavior is non-deterministic and the number of prefetched instructions in the

pipeline is not predictable.

In Balsa to be able to distinguish between the next calculated program counter and a branch

address the former needs a sync pulse the arbiter can trigger on. Whenever the next program

counter is selected a new sync pulse is generated. See Listing 5.1 for the code snippet. Due to

handshake enclosure for choice operators, as described in Section 2.2.3, two sync buffers are

needed for the sync pulse. With only one sync buffer in the arbitrate statement the hand-

shake for next_pc_dly_sync would only be completed after the handshake for the subsequent

next_pc_sync was completed. But the sync buffer only completes a handshake for another

next_pc_sync once the handshake for the previous next_pc_dly_sync was completed. This

would result in a deadlock.

SyncBuffer(next_pc_sync, next_pc_dly_sync) ||
SyncBuffer(next_pc_dly_sync, next_pc_2dly_sync) ||

begin
sync next_pc_sync ;
loop

...

arbitrate next_pc_2dly_sync then
... ||
sync next_pc_sync

| branch_address_i then
...

end
end

end

Listing 5.1: Balsa Code for Arbiter

The calculated physical address is sent to the instruction memory. The received instruction word

is colored and forwarded along with the address of the subsequent instruction word to the decode

stage. Figure 5.3 shows the block diagram of this stage.

5.2.2 Decode Stage

The second pipeline stage is Instruction Decode. This stage decodes the highest bits of the

instructions as opcode. Based on the opcode operands or their addresses are extracted and control

signals for the subsequent stages are generated. Besides the decoding unit, the register file resides

in this stage. Thus, register access is carried out as well. The detection of data hazards is also

performed in a separate unit. The obtained signals from the latter unit are transferred to the

36

5.2. Processor Architecture

fetch

Arbiter

P
C

1
S

[ID] program counter

[EX] branch address

i.
m

em
o

ry
ad

d
re

ss

i.
m

em
o

ry
re

ad
d

at
a

[ID] instruction

Figure 5.3: Fetch Stage

forward control unit in the execution stage. The obtained operands and the generated control

signals of that stage, including the color attached to the current instruction, are forwarded to the

subsequent stages. Figure 5.3 shows the block diagram of this stage.

decode

Decoder
Register

File

Data

Hazard

Detection

instruction [IF]
program counter [IF]

[W
B]

re
g

is
te

r
ad

d
re

ss

[W
B]

re
g

is
te

r
d

at
a

[EX] color

[EX] register data A

[EX] register data B

[EX] forward control

[EX] result register address

[EX] immediate

[EX] program counter

[EX] frame pointer address

[EX] control data

[MC] control data

register addr A

register addr B

res register addr

Figure 5.4: Decode Stage

37

5. ASCARTS - THE ASYNCHRONOUS PROCESSOR

Decoder

In the decode unit the actual instruction decoding takes place. Register addresses, immediates

and frame pointer addresses are extracted. The program counter is forwarded in case it is needed

in the execution stage. Control signals indicating if a register is actually read or written back

are generated. These signals are forwarded to the register file as read enable and to the data

hazard detection control, respectively. Furthermore, control signals for the subsequent stages

are generated. These signals comprise the condition type, the function and the memory code,

which define the operation to be performed, for the execution and the memory control stage,

respectively, and a signal for arithmetic operations if it is with carry.

Due to a redesign of the instruction set some operands, operand addresses and control signals can

be generated without decoding the whole instruction. As the composition for the instructions is

structured the decoding can be split into conditional and non-conditional instructions. Within

these it can be further split into instructions with register operands and immediate operands. Most

of the instructions can be summarized in groups so that the whole group can be decoded together.

Because of the asynchronous nature signals are not sequentially transmitted and can arrive at

the next stage in a different order than they are issued. To avoid inconsistency, for the data

and control signal generation handshake enclosure is used. Only once the handshake of every

single signal is completed by the buffer the instruction is considered as decoded. The intention

was to forward signals only if they are actually needed. This, however, may induce hazards. In

particular, the execution stage may receive exclusive operands from consecutive instructions

simultaneously, which causes a race condition. Subsequently, the processor may malfunction

or deadlock. For example, instruction decode transmits a register value as second operand. For

the subsequent instruction an immediate as second operand has to be transmitted. As there is no

pending handshake on the immediate channel a new handshake can be started immediately. Once

the execution stage tries to read the second operand of the previous instruction two values are

available. For cases like this, additional control signals are generated, which specify the source

to overcome that problem. For each conflict the additional signal avoids an early issue of the

subsequent operand before the previous one is read.

Register File

The register file contains 16 registers, which are accessed by two read ports and one write port.

Register file reading addresses are directly passed from the decode unit. The register file writing

address is passed from the write back stage. Read and write accesses have to be serialized to

avoid invalid data. The type of access is selected by an arbiter. Due to varying delays it is not

predictable which of the accesses occur first. Hence, in contrast to SCARTS, the behavior is

non-deterministic. In case of a read access all ports to be read for the current instruction are read

concurrently. To indicate if a read port has to be actually read, in addition to the data and address

channels, the two read ports are each accompanied by a control channel.

38

5.2. Processor Architecture

Data Hazard Detection

To identify possible data hazards, a data hazard detection table is utilized. The stored information

about the preceding instructions is used to generate forward control signals for proper register

forwarding in the subsequent stages. As most of the instructions are conditional not all expected

results may be calculated. Hence, information of all instructions that may write back their results

has to be stored and passed to the forward control unit in the execution stage. Additionally,

the current values of all operand registers are passed on as well in case that the conditional

instructions are not executed.

All write back register addresses of the preceding instructions still being processed in the pipeline

are stored in the history table. As far as ASCARTS is concerned instructions being processed

in the execution and memory control stage and in the write back stage are affected. As at most

two instructions that may produce register results reside in those stages, the table only needs two

hold two entries, one for each stage. Each entry consists of two items. One bit indicates if the

instruction in the corresponding stage will write back its result provided that it is executed. The

second item specifies the address of the register written to. In Table 5.1 an example of a data

hazard detection table is illustrated.

Stage Pending Write Register
Address

Execution t 13
Write Back f /

Table 5.1: Example of Data Hazard Detection Table

The data hazard detection unit is called whenever a new register read request is issued. It consists

of two parts. For each register read the data hazard detection table is checked if it may be

overwritten by an instruction still in the pipeline. Along with the actual register data control

signals are passed to the forward control unit in the execution stage. One control signal specifies

if the data read from the register file is valid or if the forwarded result of one of the two stages has

to be taken. As in asynchronous logic every data transfer has to be acknowledged all forwarded

results have to be acknowledged as well, no matter if the current operation actually needs it or

not. Therefore, for each subsequent pipeline stage the other control signal is issued whenever

a forwarded result of that stage is expected. It specifies if that result has to be kept for further

usage or if it can be discarded. In the second part the entry at the first slot is shifted to the second

one in the table. Then the first slot is filled with the write back register information of the current

instruction.

The advantage of this mechanism is that the data hazard detection table does not need to be

updated on the actual register write back in the write back stage. By implementation only the

information of the instructions still in the pipeline is stored. Hence, the worst case that can happen

is that the forward control unit takes the forwarded results, even though the registers have already

been up-to-date.

39

5. ASCARTS - THE ASYNCHRONOUS PROCESSOR

5.2.3 Execution Stage

The third pipeline stage is Execution. The core of this stage is the ALU. Besides arithmetic and

logic operations, it calculates memory address and memory data as well as the branch target

address, which is passed to the instruction fetch stage. In the forward control unit the operand

values of the ALU are updated based on control signals from the decode stage and forwarded

results from the subsequent stages. In the control hazard detection unit the coloring algorithm is

implemented to handle control hazards, in particular branches. Additionally, this stage has an

interface to the memory control stage. Apart from the address and data channels a control signal

to enable the memory is part of the interface. As the frame pointer and status register reside in

the processor control module an interface to that module is available as well. Multiplexers and

de-multiplexers are used to select the ALU operands on the one hand and the memory address

and data on the other hand. Figure 5.5 shows the block diagram of this stage.

A special multiplexer, the result multiplexer, selects the result’s source between the execution and

memory control stage, which is then forwarded to the write back stage. Refer to Figure 5.2 for

the result multiplexer.

ALU

For each ALU operation the handshakes with common signals are established. These include

the function code, which defines the operation to be performed, the ALU enable signal from the

control hazard detection unit and the condition type. All other handshakes are only established

if they are needed for the specific operation. The condition type is evaluated and compared

with the condition flag in the status register. If the condition flag matches or the instruction is

non-conditional the operation is performed. If the operation is not performed the remaining

handshakes have to be acknowledged. These comprise the ALU operands and function specific

control signals. If those signals were not consumed no new ones could be generated. This would

lead to a deadlock.

For add and shift operations there is one shared procedure each, which is used for all func-

tions. However, there is a separate adder to generate the branch address of the jump immediate

instruction as the design of the generic adder does not fit for this addition.

The flags for the status register are also computed. For the arithmetic, shift and compare functions

all flags are generated. For logical functions the overflow and carry flags remain unmodified. The

compare and bit test functions additionally compute the condition flag.

In addition, signals for frame pointer access in the processor control module are generated. Once

the result, i.e. the frame pointer value, is available the memory address is calculated. As the frame

pointer can also be manipulated the ALU has to synchronize on the control signal indicating

the completion of the frame pointer manipulation. Refer to Section 5.3.1 for a more detailed

description of the frame pointer bank.

40

5.2. Processor Architecture

ex
ec

ut
e

F
o
rw

ar
d

C
o
n
tr

o
l

U
n
it

C
o
n
tr

o
l

H
az

ar
d

D
et

ec
ti

o
n

F

co
n

tr
o

l
d

at
a

[I
D]

fo
rw

ar
d

co
n

tr
o

l
[I

D]
re

g
is

te
r

d
at

a
A

[I
D]

re
g

is
te

r
d

at
a

B
[I

D]

im
m

ed
ia

te
[I

D]
p

ro
g

ra
m

co
u

n
te

r
[I

D]
fr

am
e

p
o

in
te

r
ad

d
re

ss
[I

D]

re
su

lt
re

g
is

te
r

ad
d

re
ss

[I
D]

co
lo

r
[I

D]

[W
B]

re
su

lt

[W
B]

re
su

lt
re

g
is

te
r

ad
d

re
ss

[P
C]

st
at

u
s

[P
C]

fr
am

e
p

o
in

te
r

ad
d

re
ss

[P
C]

fr
am

e
p

o
in

te
r

d
at

a

[P
C]

fr
am

e
p

o
in

te
r

co
n

tr
o

l

[EX]result

[WB]result

[ID]branchaddress

memorydata[MC]

memoryaddress[MC]

memoryenable[MC]

memoryresult[MC]

re
g

is
te

r
d

at
a

A

re
g

is
te

r
d

at
a

B

d
at

a
0

d
at

a
1

aluen

F
ig

u
re

5
.5

:
E

x
ec

u
ti

o
n

S
ta

g
e

41

5. ASCARTS - THE ASYNCHRONOUS PROCESSOR

Forward Control Unit

The forward control unit provides the operand values on the basis of control signals generated

in the data hazard detection unit. It consists of two phases. First, the forwarded results of each

subsequent pipeline stage are analyzed if they have to be forwarded as they update one of the

read registers of the current instruction. Otherwise the forwarded results are discarded. In the

second phase, starting with the read register values, the actual operand values are updated by

examining the forwarded results from the subsequent pipeline stages in reverse order, i.e. first

the result of the write back stage, then the one of the execution stage. If the instruction currently

processed in the pipeline stage under examination produces a valid result and that result was kept

in the preceding phase the value of the specific operand is updated. Once all pipeline stages are

examined the current operand values are returned.

The forwarded results have to be buffered before being processed to not cause any deadlocks in

this unit. On basis of the results of the preceding instructions this unit generates operands, which

in turn are used to generate the result of this instruction. Since the whole stage is enclosed in one

handshake the calculated result of the current instruction will not be latched before the result of

the previous one is released. But as the result of the previous instruction is looped back to this

stage as input, this input and, hence, the result of the previous instruction is only released once

the result of the current instruction is latched. Hence, a deadlock would occur without buffers.

Control Hazard Detection

The current state of the processor is stored as color in a register. Whenever a control hazard occurs

the color of the processor is updated. For each instruction the passed color is compared with

the stored color. If the instruction was fetched before the processor state changed the colors do

not match. Consequently, the instruction is discarded. In case of identical colors the instruction

is processed. The appropriate control signals to enable and disable ALU and memory for the

inspected instruction are generated.

Result Multiplexer

The result multiplexer selects the result’s source based on a control signal generated in the decode

stage. The signal specifies whether the result is taken from the execution stage or from the

memory control stage. Along with the result a control signal indicating the validity of the result

is passed to the write back stage. A result is denoted invalid if there is no result because the

instruction was not processed due to a failed condition or a control hazard. This signal is required

by the forward control unit. That unit issues a handshake request if a result is expected. With that

control signal the handshake can be acknowledged if no actual result exists. Additionally, the

register address is passed through this unit if the result is valid, otherwise it is discarded.

5.2.4 Memory Control Stage

The Memory Control is linked to the execution stage without a buffer. In this stage the signals of

the memory interface are generated. Write enable and byte enable signals are generated based on

42

5.3. Extension Modules

the type of memory access. Write data is aligned in accordance to the data access type. Read data

is converted to fit the signed or unsigned data access, depending on the instruction.

Depending on the memory address the internal dynamic memory or an extension module is

accessed as represented in Figure 4.2. If the memory address is valid and the instruction is

executed, indicated by the enable signal from the execution stage, handshakes to the selected

memory are established. If unused ranges are addressed or the instruction is not executed no

memory access signals are generated. In case of a write access the write data is discarded. In case

of a read access instead of the result a sync handshake is generated to signal that no result will be

generated for this instruction. With this control signal deadlocks are avoided as other stages do

not wait any longer for the result. Figure 5.6 shows the block diagram of this stage.

memory control

enable [EX]

control data [ID]
write data [EX]

address [EX]

read data [EX]

d. memory read data
d. memory write data
d. memory address
d. memory byte enable
d. memory write enable

[PC] write enable
[PC] byte enable
[PC] address
[PC] write data
[PC] read data

memory select

Figure 5.6: Memory Control Stage

5.2.5 Write Back Stage

The last pipeline stage is Write Back. If there is any result of this instruction, it is written back to

the dedicated register. The write back operation actually occurs in the register file unit.

5.3 Extension Modules

The modular interface for extension has not changed from SCARTS. For a detailed description

of extension modules refer to Section 4.2. In Figure 4.3 the register interface specification of

extension modules is depicted.

However, the generic parts of the status register and the configuration register are not yet

implemented. These bytes provide solely debug and status information, as well as functionality

which is not essential for the proper functioning of the asynchronous processor. Hence, the

generic bytes of extension modules are empty, see Figure 5.7.

5.3.1 Processor Control Module

The core functionality of the processor control module is the same as for SCARTS. It contains

the processor status register and the frame pointers. In Figure 5.8 the register interface of the

slimmed processor control module is depicted. Figure 5.9 shows the register description of the

customized parts of the status register and the configuration register.

43

5. ASCARTS - THE ASYNCHRONOUS PROCESSOR

Generic Status Byte

− − − − − − − −
07

Generic Config Byte

− − − − − − − −
07

Figure 5.7: Generic Status and Configuration Byte

BaseAddress Config Register Status Register

+0x04

+0x08 Frame Pointer W

+0x0C Frame Pointer X

+0x10 Frame Pointer Y

+0x14 Frame Pointer Z

+0x18

+0x1C

0151631

Figure 5.8: Register Interface for Processor Control Module

Customized Status Byte

− − − COND ZERO NEG CARRY OVER
07

Customized Config Byte

− − − − − − − −
07

Figure 5.9: Customized Status and Configuration Byte of Processor Control Module

44

5.3. Extension Modules

The customized part of the status register is identical to the one of SCARTS. As no exceptions are

implemented and the sleep mode was omitted the customized part of the configuration register is

empty. In SCARTS the customized status byte can be externally written by writing the new data

to the saved customized status register and calling the instruction rte afterwards. As exceptions

and, hence, rte were not implemented in ASCARTS this functionality is lost.

The processor control module contains individual units for each logical part of the processor

control. The status control unit handles the read and write access of the status flags of the

ALU. The frame pointer bank accesses and modifies the frame pointers. An additional unit, the

processor control unit, routes the signals from the data memory and from the ALU, respectively,

to service the individual units within this module. Figure 5.10 shows the block diagram of this

extension module.

proc.control

Status

Control

Frame

Pointer

Bank

Processor

Control

Unit

status [EX]
status control [EX]

frame pointer address [EX]
frame pointer data [EX]

frame pointer control [EX] [MC] write enable
[MC] byte enable
[MC] address
[MC] write data
[MC] read data

status

status control

status

status control

fp read byte en

fp read address

fp read data

fp read control

fp write byte en

fp write address

fp write data

fp read byte en

fp read address

fp read data

Figure 5.10: Processor Control Module

Processor Control Unit

As the status control unit and the frame pointer bank can both be manipulated via the data memory

as well as directly by the processor a control unit to route the handshake signals of these entities

is needed. This routing is the task of the processor control unit. In the actual processor control

unit the communications received on the channels from the data memory are split so that only the

information for a specific unit is provided to that unit. Based on the address offset the appropriate

unit is selected and the corresponding signals are generated. These signals are then multiplexed

with the signals received from the ALU. For each obtained signal to a unit the handshake signals

on the corresponding channels are initiated. The write port of the frame pointer bank is routed

directly since the ALU has only read access. Similarly, only the read port of the status control

unit has to be multiplexed as there is no write access from the processor control unit.

45

5. ASCARTS - THE ASYNCHRONOUS PROCESSOR

Frame Pointer Bank

In the frame pointer bank, besides read and write access, the frame pointers can be manipulated

after read. For this purpose, in addition to the conventional channels of the read port, a control

signal is transmitted. This signal indicates if a manipulation has to take place and whether

the frame pointer has to be incremented or decremented. To improve the performance, the

manipulation takes place after the read result is returned. With this optimized technique the ALU

can already use the frame pointer earlier. To avoid race conditions, a signal is generated after

the manipulation is completed. The ALU has to synchronize on this before another access to the

frame pointer bank is performed.

However, the implementation of the frame pointer bank differs in one corner case from the

synchronous implementation. If the manipulated frame pointer resides on the mapped memory

address as read by the frame pointer instruction, the frame pointer after manipulation is read.

However, in the synchronous design the frame pointer before manipulation is read. The reason

for that is that as the synchronous design is clocked the frame pointer is only updated with the

next clock pulse. However, in the asynchronous design the frame pointer is updated immediately.

Delaying the frame pointer update to after an optional access would cause a huge overhead.

5.4 Instruction Set Architecture

The instruction set architecture of SCARTS is quite efficient, however, the encoding of the

opcodes3 can be improved. The purpose of a revised instruction set architecture is to organize the

opcodes, so that not all bits have to be decoded to obtain the operation to be performed.

The formats of the instructions in the ASCARTS architecture remained unchanged solely the

encoding of the opcodes was redefined. Additionally, the explicit illegal operation instruction

was omitted as the processing of that one does not differ from any other illegal instruction,

i.e. instructions that are not defined in the instruction set. Thus, the resulting instruction set

architecture comprises 121 instructions of which 48 are conditional.

5.4.1 Instruction Format

The instructions with fixed length encoding of 16 bit can be distinguished into the formats

illustrated in Figure 5.11. Appendix B.1 lists all instructions sorted by their opcode. The most

significant bit of the opcode splits the instruction set into two groups, the conditional instructions

and the non-conditional instructions. The group of conditional instructions, however, also include

non-conditional instructions.

Conditional Instructions

The opcode for all conditional instructions is constructed identical as depicted in Figure 5.12 and

described in Table 5.2. Instructions with condition type of 01 are always the same as the ones

with condition type of 1x, only ignoring the condition flag. Instructions with condition type of 00,

3An opcode or operation code specifies the operation to be performed.

46

5.4. Instruction Set Architecture

Opc

Opc Reg

Opc Reg Reg

Opc UImm Reg

Opc UImm Reg

Opc SImm Reg

Opc SImm

Opc SImm Reg

Opc SImm Reg

Opc UImm Reg

Opc SImm Reg

07815

Figure 5.11: Instruction Formats

on the other hand, are independent, truly non-conditional, instructions residing in the conditional

instructions group.

Opc

COND IMM CTYPE FUNC
01234567

Figure 5.12: Opcode for Conditional Instructions

COND The Condition bit splits the instruction set in conditional and non-conditional

instructions. It is 0 for conditional instructions.

IMM The Immediate bit specifies if the instruction has one immediate operand.

CTYPE The two Condition Type bits define the circumstances under which the instruction

is executed.

0x The instruction is always executed.

10 The instruction is executed if condition flag is false.

10 The instruction is executed if condition flag is true.

FUNC The Function Code declares the actual operation which has to be processed. It

varies in length depending on the width of the operands.

Table 5.2: Opcode for Conditional Instructions

The function code encodes the basic function to be processed as well as additional parameters

47

5. ASCARTS - THE ASYNCHRONOUS PROCESSOR

needed the function. The encoding was constructed in a way to forward bits directly as parameters

to the ALU without decoding them. Arithmetic functions can be executed with or without carry

bit. Shift functions need the information if the shift is processed arithmetically or logically.

Comparison and memory access functions can be signed or unsigned. This information is always

stored in the least significant bit of the function code. For memory access functions another bit

specifies if it is a load or a store function so that the remaining bits only define the addressing

quantities of the function. Furthermore, the function code is chosen in a way so that for the same

function the same code is used, even if the type of operands or any other parameters differ.

5.4.2 Non-Conditional Instructions

The remaining non-conditional instructions all have one register operand and one immediate

operand. However, the length of the immediate varies. Most of these instructions address the data

memory relative to frame pointers. The composition of the opcodes for frame pointer instructions

is depicted in Figure 5.13 and described in Table 5.3.

Opc

COND FP MOD ACC ADDR DIR
0123456

Figure 5.13: Opcode for Frame Pointer Instructions

COND The Condition bit splits the instruction set in conditional and non-conditional

instructions. It is 1 for conditional instructions.

FP The Frame Pointer bit declares if the instruction addresses the data memory relative

to frame pointers. It is 1 for frame pointer instructions.

MOD The Modification bit specifies if the frame pointer is manipulated by auto-increment

or auto-decrement.

ACC The Access bit defines if it is a load or store instruction.

ADDR The two Address bits specify the frame pointer used.

DIR If the Modification bit is not set the Direction bit declares if the frame pointer

manipulation is auto-increment or auto-decrement. Otherwise that bit is used as an

additional bit for the immediate operand.

Table 5.3: Opcode for Frame Pointer Instructions

In addition to the modification of the encoding, instructions that load immediates were renamed

to more significant acronyms. The affected instructions are listed in Table 5.4.

Above all, the opcodes of all instructions in the instruction set are chosen so that the nop
instruction has the encoded value 0x0000, which is recommended practice. To stay compatible

48

5.4. Instruction Set Architecture

ASCARTS SCARTS

ldi ldi loads the sign-extended immediate into the register.

ldli ldliu loads the immediate into the low byte of the register.

ldhi ldhi Loads the sign-extended immediate into the high three bytes

of the register.

Table 5.4: Load Immediate Instructions for ASCARTS And SCARTS

with the SCARTS toolchain, a script is provided, which converts the object files from the SCARTS

Instruction Set Architecture to the ASCARTS Instruction Set Architecture.

Detailed information about the individual instructions can be found in Appendix B.

49

CHAPTER 6
Design Flow

Since most of the current FPGAs are designed and optimized for implementing synchronous

circuits, mapping delay-insensitive dual-rail designs for FPGA technology would result in high

overheads. To obtain more reasonable area and performance results, the ASCARTS processor

was implemented in UMC’s 90 nm technology with an industrial standard cell library from

Faraday1. Since a full layout was beyond the scope of this master thesis, all results are based

on the synthesized netlist and on pre-layout timing simulations, annotated with rough timing

estimates of the synthesis tool.

For design verification at different points of the development process three levels of simulation are

available. The Balsa description of ASCARTS is compiled to an intermediate Breeze description.

Based on the Breeze description behavioral simulation is done by the technology independent

simulator included in Balsa. The Balsa processes are synthesized using the four-phase dual-rail

protocol implementation style. The obtained register-transfer level netlist is verified by a structural

simulation. After the synthesized netlist has been mapped to UMC’s 90 nm technology a timing

simulation is performed on the obtained gate-level netlist. Figure 6.1 shows an overview of the

design flow for ASCARTS.

6.1 Behavioral Simulation

Behavioral simulation verifies syntax and functionality of a design containing high-level con-

structs. Neither timing information nor specifics on how the design will be implemented are

provided. During the design process functional errors are identified early with Balsa’s own

behavioral simulation system. A test harness, this is a procedure without parameters, has to be

generated. Test sequences are described in this procedure with Balsa. With breeze-sim the test

harness procedure is called and a textual appearance of the output is produced. Alternatively the

simulation can be run from the graphical interface balsa-mgr. Intermediate files are generated,

1http://freelibrary.faraday-tech.com/

51

6. DESIGN FLOW

Balsa description

Breeze description

register-transfer

level description

gate-level netlist

co
m

p
ilatio

n
sy

n
th

esis
im

p
lem

en
tatio

n

behavioral simulation

structural simulation

timing simulation

design refinement

Figure 6.1: Design Flow of ASCARTS

which can be used in the waveform viewer or for a representation of the handshake circuit graph.

At that stage the simulation is independent of the handshake protocol.

Balsa contains a built-in memory model, which can be included in the test harness for simulation

purposes. With the built-in function BalsaMemoryNew a memory object is instantiated, which is

interfaced by the procedure BalsaMemory. Additionally, the test harness comprises a separate

load memory procedure for initializing the instruction memory. To accomplish that, the built-in

function FileOpen is used to open an object file containing the program to be simulated. To

reflect the Harvard Architecture, two instances of Balsa memory are employed, one for instruction

memory and one for data memory. The instantiation of the memories is presented in Listing 6.1.

These built-in memories are only used for behavioral simulation.

52

6.2. Synthesis

inst_mem := BalsaMemoryNew () ||
data_mem := BalsaMemoryNew () ;

BalsaMemory({inst_mem_addr_width, inst_mem_data_width},
<- inst_mem,
inst_mem_addr_s,
inst_mem_write_enable_s,
inst_mem_write_data_s,
inst_mem_read_data_s) ||

BalsaMemory({data_mem_addr_width, 8},
<- data_mem,
data_mem_addr_s,
data_mem_write_enable_s,
data_mem_write_data_s,
data_mem_read_data_s) ||

begin
load_mem(<- "main.obj", inst_mem_addr_s, inst_mem_write_data_s,

inst_mem_write_enable_s) ;
loop inst_mem_write_enable_s <- 0 end ||
ascarts(inst_mem_addr_s, inst_mem_read_data_s, data_mem_addr_s,

data_mem_read_data_s, data_mem_write_data_s, data_mem_write_enable_s)
end

Listing 6.1: Balsa Memory Instantiation

6.1.1 Instruction Memory

The data width of the instruction memory instantiated is 16 bits as the memory to be simulated

holds 16-bit instruction words. This simplifies the memory access as only one word access for

each instruction fetch is needed.

6.1.2 Data Memory

A drawback of the built-in Balsa memory interface is that it does not contain byte-enable channels.

Hence, the data memory had to be instantiated with a data width of 8 bits. To provide word

and half-word access as well, a converter was written, which translates the word and half-word

accesses into byte accesses. This is done by serializing the corresponding number of byte accesses.

That approach leads to several cycles for one data memory access. However, this does not affect

the functionality of the design as logic has zero delay in behavioral simulations.

6.2 Synthesis

After the required functionality has been achieved the design is synthesized2 with the Balsa tools

to get a register-transfer level netlist. For synthesizing systems described in Balsa a technology and

2Synthesis converts the functional design description to low-level hardware primitives.

53

6. DESIGN FLOW

a back-end protocol for implementing the handshakes have to be chosen. Different technologies

and handshake implementation styles available in the Balsa framework are presented in Balsa: A
Tutorial Guide[4]. As far as ASCARTS is concerned the balsa-tech-example technology is

used to produce a Verilog netlist. This technology is adequate since it is based on a reasonable set

of example cells described in Verilog, which can easily be mapped to the gates of the targeted

UMC’s 90 nm technology standard cell library in the subsequent step. Thus, creating an own

Balsa technology back-end for the target library can be avoided. The selected handshake protocol

implementation is the dual_b style, a delay-insensitive four-phase dual-rail encoding.

6.3 Structural Simulation

Once the Balsa design is successfully synthesized it can be simulated like every other HDL

design. The simulator of choice is Mentor ModelSim3. The post-synthesis netlist is analyzed

by structural simulation revealing structural errors like initialization issues. Like behavioral

simulation structural simulation is accomplished without timing information.

6.3.1 Memory Access

The memory interface provided by the register-transfer level netlist incorporates asynchronous

ports, whereas memories are accessed in a synchronous way. Hence, the asynchronous handshake

signals have to be transformed to synchronous signals. Besides, a clock has to be generated

whose pulses trigger the start of memory operations.

Depending on the direction of the interface signals they are implemented as pull channels or as

push channels. Therefore, read data, which is an input to ASCARTS, is implemented as pull

channel. All other signals are outputs and push channels, respectively. For the request signals of

push channels completion detection circuits are needed, which generate control signals indicating

validity. Figure 6.2 shows a completion detection circuit for a 3-bit dataword. The data.valid
signal indicates that a valid dataword is available. Likewise, the data.invalid signal indicates

that all data wires are reset, representing the empty codeword. For each of the push channels this

completion detection circuit is adapted to fit the data width. For 1-bit datawords only one control

signal is needed, which is generated by a circuit consisting of only one or gate combining the

two wires.

The following source code snippet shows the generation of these signals for the data memory

address. As far as the encoding is concerned the second wires carry the actual dataword.

data_mem_addr_valid_s <= and_vector(data_mem_addr_s_0r0d or
data_mem_addr_s_0r1d);

data_mem_addr_invalid_s <= not or_vector(data_mem_addr_s_0r0d or
data_mem_addr_s_0r1d);

data_mem_address_s <= data_mem_addr_s_0r1d;

Once all required request signals are valid a pulse on the memory clock is generated to indicate

that datawords at the memory interface are valid and ready for being processed. In case of a

3http://www.model.com

54

6.3. Structural Simulation

data.0.t

data.0.f

data.1.t

data.1.f

data.2.t

data.2.f

data.invalid

data.valid

Figure 6.2: Completion Detection

memory write the write data has to be present and in case of a memory read a request for the read

data must have been placed. The pulse generation for clocking the data memory is presented in

the following source code snippet.

data_mem_clk_s <= data_mem_addr_valid_s and data_mem_write_enable_valid_s and
((not data_mem_write_enable_s and data_mem_read_data_s_0r) or
data_mem_write_data_valid_s) and data_mem_byte_enable_valid_s(0) and
data_mem_byte_enable_valid_s(1) and data_mem_byte_enable_valid_s(2) and
data_mem_byte_enable_valid_s(3);

Once the data is successfully written to or read from the memory, respectively, all request signals

are acknowledged. In case of a memory read the read request is acknowledged by a valid dataword.

Memory access completion is signaled by a rising edge of a second clock, which is actually the

memory clock delayed by the access time of the memory block. To achieve the delay, serially

linked buffers are placed behind the memory clock. The length of the delay can be easily adapted

by changing the amount of buffers linked together. For each channel the acknowledge signal is

deasserted once the associated request signal becomes invalid. Figure 6.3 shows the conversion

between the asynchronous handshake protocol and the synchronous memory access for the data

memory.

6.3.2 Instruction Memory

A synchronous RAM with a data width of 16 bits is used as instruction memory. The write port is

not in use as the instruction memory is read-only once it is initialized. The instruction memory is

preloaded by ModelSim as part of the simulation process. The initialization values are read from

the object file provided as a parameter.

6.3.3 Data Memory

To realize byte access, the data memory is implemented by four parallel synchronous RAMs of

8-bit words. Each byte of the 32-bit datawords is assigned to one specific memory block specified

by the two least significant bits of the memory address. The rest of the memory address is used

to index the bytes of the datawords within that memory. In ASCARTS all four memory blocks

55

6. DESIGN FLOW

asynchronous

synchronous

address req 0400 0C00

address ack

write_data req 5E

write_data ack

read_data req

read_data ack A9

write_en req 1 0

write_en ack

clk

delayed clk

address 0 0400 0 0C00 0

write_data 0 5E 0

read_data 0 A9

write_en

Figure 6.3: Synchronous Data Memory Access Conversion

have different clocks. For each clock there is only a pulse generated if that specific memory is

activated.

6.4 Design Implementation

To obtain a gate-level netlist, Synopsys Design Compiler4 is used to map the generic cells of the

register-transfer level netlist to cells of the UMC’s 90 nm technology library. For the mapping

process the UMC’s 90 nm technology standard cell library is extended with cells specific for

asynchronous circuits, like Muller C-Gates. To successfully translate the generic cells of the

balsa-tech-example technology, they first have to be modified to match the cells of the adapted

standard cell library. Primitives have to be replaced by descriptions consisting of cells available in

the library. In particular the affected cells are the Mutex cell and different variations of the Muller
C-Gate. Note that floorplanning and place and route of the resulting netlist is not performed. Thus,

the interconnections have zero delay and only the cell delay is taken into account in the timing

analysis. Nevertheless, the area and timing results, presented in chapter 7, can be considered

meaningful enough for rough area and timing estimates for the evaluation of ASCARTS and the

comparison with its synchronous version.

4http://www.synospys.com

56

6.5. Timing Simulation

6.5 Timing Simulation

Timing simulation verifies the operation of the design after the implementation process of the

design is accomplished. The timing simulation is done with ModelSim. To reveal any timing

violations in the design like race conditions or set-and-hold violations, the netlist used for this

simulation is back-annotated with timing information for gate delays provided in an SDF file5

generated during the implementation process.

For the simulation in ModelSim to work correctly a forced reset has to be done for all DRLatch
cells to initialize to a defined state.

6.5.1 Memory Delays

As no real memory blocks are synthesized for the targeted UMC’s 90 nm technology a memory

access delay of 1 ns is assumed. This is easily feasible within 90 nm technology as there was

already a static RAM developed with 320 ps memory access time for that technology [1]. Simu-

lation shows, that the fixed delay of the serially linked buffers, which delays the output of the

memory, is 24 ps and each buffer has an additional delay of 40 ps. Hence, 25 linked buffers have

a total access delay of 1024 ps, which satisfies the requirement.

5The Standard Delay Format file contains the cells and interconnections delays calculated during the place and

route process as well as timing constraints and technology parameters.

57

CHAPTER 7
Results

ASCARTS was realized in UMC’s 90 nm standard cell library with additional Muller C cells.

The asynchronous handshake protocol used for the measurements is the four-phase dual-rail

protocol. As layouting such a complex circuit is out of scope of this thesis this step was not

conducted for the asynchronous processor. A pre-layout design is only an inaccurate model of

an integrated circuit as real interconnection numbers are only available after layout. Hence, the

final post-layout area and performance results can differ quite significantly from the numbers

presented here. Nevertheless, for sake of comparing different circuit designs pre-layout results

can still provide meaningful insights.

The cell area and the MIPS performance of ASCARTS were measured and compared with

the synchronous version. SCARTS was realized in the same cell library. However, it provides

exception handling functionality in addition. The power consumption measurements were omitted

as they are only realistic for post-layout designs.

7.1 Resource Usage

Analyzing ASICs one relevant circuit characteristic is the area allocated by the processor design.

Synopsys is used to measure the cell area of ASCARTS as well as of SCARTS. As for both

processors only pre-layout designs exist, the interconnect area cannot be measured. Therefore,

the total area is not defined. The measurements for ASCARTS contain the transformation of

the memory signals, however, the actual memory is not included. In Table 7.1 the cell area of

ASCARTS and its subcomponents is listed. The total cell area of ASCARTS also includes buffers

and logic to link the subcomponents. For comparison the area of SCARTS is added to the table

as well. The size of the area is given in number of two-input drive-strength-one NAND gates. As

can be seen from the table SCARTS is approximately half the size of the asynchronous processor

implementation, even though exception handling was implemented. The reason for that is clear.

The dual-rail protocol needs twice the number of rails for each signal, which induces a higher

area overhead than was saved by omitting the clock network. In addition ASCARTS’ Balsa

59

7. RESULTS

description has not yet been optimized for area. Neither does balsa-netlist optimize when

generating a Verilog netlist out of the Breeze description.

Instruction Fetch 1647

Instruction Decode 22 668

Execution 42 323

Memory 5565

Processor Control 11 062

ASCARTS 94 344

SCARTS 43 728

Table 7.1: Cell Area in number of NAND Gates

7.2 Performance

As ASCARTS is based on the instruction set of SCARTS no separate timing analysis of the

instruction set itself has to be conducted. For measuring the performance of ASCARTS the

library fsd0ai_a_generic_core_tt1v25c.db was used for synthesis. This is a library for

Average-Case Corner synthesis with typical parameters, i.e. typical transistors, 1 V supply

voltage and 25 ◦C temperature. As delay-insensitive designs adapt to the actual prevailing

operating conditions average performance is more significant. For SCARTS, however, the

clock has to be adjusted for correct operation even in worst-case conditions. Hence, the library

fsd0a_a_generic_core_ss0p9v125c.db was used. This library is for Worst-Case Corner
synthesis, i.e. with slow transistors, low supply voltage of 0.9 V and high temperature of 125 ◦C.

For ASCARTS timing simulations of the netlist with the SDF file, generated by Synopsys, were

conducted by ModelSim. For SCARTS the performance was calculated with the frequency

obtained during synthesis and the executed instructions obtained by the ASCARTS simulations.

As mentioned before, only approximate interconnection delays are available for the timing

analyses of each of the processors.

Due to the asynchronous nature of ASCARTS the execution time of the individual instructions

varies. In Figure 7.1 part of a ModelSim simulation is shown. It can be seen clearly that the

individual instructions have different execution times.

Figure 7.1: Variable Instruction Execution Times

In Table 7.2 different instructions with their average throughput rates are listed. The given rates

are calculated assuming that the preceding instructions utilize the individual stages for the same

amount of time and there are not any dependencies. For other compositions these rates are not

60

7.2. Performance

significant. Depending on the preceding instructions and the stages utilized the execution times

can differ substantially from the given rates. For example if one instruction is a memory access,

whereas the succeeding instruction does an ALU operation, the throughput rate is higher. As

the memory stage and the execution stage can operate simultaneously the throughput rate is

limited by the fetch and decode stages. For each group of instructions one representative, which

is executed unconditionally, is listed in the table. Simulations showed that the execution time

does not depend on the type of operands, however, on the type of memory accessed. Conditional

instructions, when executed, are on average 1.71 ns slower than their unconditional counterparts.

Not executed conditional instructions have a throughput rate of 73.37 MIPS. The throughput

rates range from less than 40 MIPS to up to 126.81 MIPS for nop. With the difference of more

than the factor 3 the potential of asynchronous processors is shown.

nop 126.81 MIPS

add 48.19 MIPS

and 67.02 MIPS

mov 72.46 MIPS

sr 38.76 MIPS

not 67.75 MIPS

cmp_eq 49.09 MIPS

ldi 72.25 MIPS

ldw DRAM 57.66 MIPS

extension module 46.60 MIPS

stw DRAM 68.71 MIPS

extension module 62.29 MIPS

Table 7.2: Average Instruction Throughput Rates

The execution time of an instruction also heavily depends on the values of the operands. As an

example, compare Table 7.3 for the throughput rates of add and the corresponding operand pairs.

As can be seen, the execution time mainly correlates with the number of bits that differ between

the two operands and only marginal with the total number of 1s.

For obtaining the average performance of ASCARTS different programs were executed. Two

programs calculate the factorial of 12, where one was implemented using recursive function calls.

The emphasis of these programs lies on arithmetic operations. Quicksort was implemented as a

sorting algorithm of 64 values with numerous memory operations and rather few branches. The

primality test checks if 412 is a prime number. The emphasis of this program lies on comparison

operations. As no other logic besides the comparisons is performed, the program consists of

relatively many branches. The benchmark programs are listed in Appendix A.

On the basis of the execution time and the number of fetched and executed instructions, respec-

tively, the average processor frequency as well as the average number of executed instructions

per second are calculated for each test program. Table 7.4 compares the average performance of

ASCARTS and SCARTS for the different programs. The first column for each processor indicates

61

7. RESULTS

Operand 1 Operand 2

0x00000000 0x00000000 56.65 MIPS

0x000000ff 0x00000000 52.42 MIPS

0x0000ffff 0x00000000 48.38 MIPS

0x00ffffff 0x00000000 44.76 MIPS

0xffffffff 0x00000000 42.14 MIPS

0x00000000 0xffffffff 41.86 MIPS

0xffffffff 0xffffffff 46.66 MIPS

0xff00ff00 0x00ff00ff 41.99 MIPS

0xff00ff00 0xff00ff00 53.70 MIPS

Table 7.3: Different Instruction Throughput Rates For Add

the frequency at which instructions are fetched. The second column specifies the average number

of executed instructions per second. SCARTS data were calculated assuming that memory access

takes one clock cycle, which corresponds to about 3401 ps. By comparison, ASCARTS memory

access time is 1024 ps, see Section 6.5.

In case of ASCARTS the frequency numbers are not related to a periodic clock or to other

physical switching activities. They refer to average instruction fetch frequencies, which were

computed for analyzing the execution of the benchmark programs and for comparing to SCARTS.

For the synchronous processor version the instruction fetch frequency is always identical to the

processor’s clock frequency as it fetches one instruction per clock cycle.

ASCARTS SCARTS
Fetched Instr. Executed Instr. Fetched Instr. Executed Instr.

factorial 64.55 MHz 44.17 MIPS 294.00 MHz 226.83 MIPS

factorial recursive 63.67 MHz 43.91 MIPS 294.00 MHz 226.15 MIPS

quicksort 62.52 MHz 47.60 MIPS 294.00 MHz 243.18 MIPS

primality test 66.69 MHz 40.94 MIPS 294.00 MHz 207.14 MIPS

Table 7.4: Average Performance

Analyzing the table anomalies are conspicuous. First, running the different programs on

ASCARTS result in different processor frequencies. This is the characteristic of asynchronous pro-

cessors. As different instructions are processed at different speeds, depending on the instructions

executed in a program the frequency varies.

Besides, the relation between frequency and executed instructions differ between the asyn-

chronous and the synchronous processor. This is explained by the different number of prefetched

instructions in the pipeline, which have to be discarded after a taken branch. Depending on the

timing, ASCARTS fetches two to three additional instructions after a branch instruction before

62

7.2. Performance

loading the branch address. However, the number of prefetched instructions does not comprise

nop instructions. These are immediately discarded and, hence, do not occupy the pipeline.

Therefore, instructions are prefetched as long as the pipeline provides space. This results in an

undefined number of prefetched instructions in ASCARTS, if including nop instructions. Due to

the synchronous design SCARTS fetches exactly two instructions before switching to the branch

address.

Furthermore, the number of executed instructions varies over the different programs. This

anomaly, however, is processor-independent. The executed programs vary in the relative number

of taken branches. primality test has noticeable many branches and, hence, a lower MIPS rate,

whereas quicksort has noticeable few branches and, hence, a higher MIPS rate.

63

CHAPTER 8
Conclusion and Outlook

The objective of this thesis was the development of an asynchronous processor with Balsa,

an academic hardware description language, which allows modeling asynchronous circuits at

an abstract level and removes the burden to specify the implementation details of handshake

circuits. Furthermore, it was part of the thesis to evaluate the usability of the Balsa language

as well as the associated toolchain for a complex circuit design. As described in the previous

chapters, it was indeed possible to successfully design an entire asynchronous processor using

the Balsa framework for specification, behavioral simulation and asynchronous synthesis. Only

for technology mapping to produce a gate-level netlist and for timing simulations the commercial

tools Synopsys Design Compiler and Mentor ModelSim, respectively, had to be used.

Nevertheless, it has become evident during the project that Balsa has some weaknesses and, being

an academic tool, obviously cannot offer the same degree of maturity like commercial EDA tools.

The language itself is not fully developed and the Balsa synthesis framework is no longer under

active development. Even though the Balsa simulator is sufficiently mature for small designs,

while implementing ASCARTS its limits were revealed. Error messages are missing or are not

always meaningful as they mostly refer to internal names. Moreover, possible race conditions are

not always detected.

Developing asynchronous circuits in general demands for alternative development paradigms. It

requires a different mindset as the focus has to be on explicit synchronization of processes via

handshake signals. Asynchronous development is more complex than the synchronous one. One

first has to get used to that development process, especially if already familiar with synchronous

development. Besides, in-depth knowledge is advantageous.

As asynchronous processors use handshakes as synchronization, rather than a clock network, some

architectural differences between synchronous and asynchronous processors had to be considered.

Hazards require different solutions. Instruction stream coloring is used to handle control hazards.

For data hazards a dynamic history table along with certain control signals is utilized. Signals

between pipeline stages do not have constant delay, therefore, special synchronization signals are

65

8. CONCLUSION AND OUTLOOK

needed to preserve a valid state. In addition, arbiters are needed where it is not predictable which

signal arrives first.

Regarding real-time capability worst-case execution time has to be calculated with greater expense

as asynchronous designs induce non-determinism. Instruction execution time is not constant.

Also the number of fetched instructions varies depending on the timing. However, with more

effort upper bounds could be found. With a worst-case corner analysis the worst-case execution

times for instructions can be determined. The maximum number of prefetched instructions can

be analyzed as well.

Despite the remarkable results, the current processor still lacks of important features. To be

entirely compatible with SCARTS, exception handling has yet to be implemented, as well as

processor relevant extension modules have to be completed. Furthermore, the GNU Toolchain
needs to be adapted to the improved instruction set. There is also still enough potential for

optimizations. For example control signals can be combined to reduce the number of handshakes,

which in turn reduces the area on the chip. To assure real-time capability, a more accurate analysis

still has to be performed on ASCARTS.

66

APPENDIX A
Test Programs

int main(int argc, char *argv[]) {
int i;
int res = 1;

for (i = 2; i <= 12; i++) {
res *= i;

}

return res;
}

Listing A.1: Factorial

int factorial(int f) {
int res = 1;

if (f > 2) {
res = factorial(f - 1);

}
return res * f;

}

int main(int argc, char *argv[]) {
return factorial(12);

}

Listing A.2: Factorial Recursive

67

A. TEST PROGRAMS

#define MAXSTACK 64

static void exchange(int *a, int *b) {
int t = *a;

*a = *b;

*b = t;
}

void quicksort(int *base, int nmemb) {
void *lbStack[MAXSTACK], *ubStack[MAXSTACK];
int sp;
unsigned int offset;

/********************
* ANSI-C qsort() *
********************/

lbStack[0] = base;
ubStack[0] = base + nmemb - 1;

for (sp = 0; sp >= 0; sp--) {
int *lb, *ub, *m;
int *p, *i, *j;

lb = lbStack[sp];
ub = ubStack[sp];

while (lb < ub) {

/* select pivot and exchange with 1st element */
offset = (ub - lb) >> 1;
p = lb + offset;
exchange (lb, p);

/* partition into two segments */
i = lb + 1;
j = ub;
while (1) {

while (i < j && (*lb - *i) > 0) i += 1;
while (j >= i && (*j - *lb) > 0) j -= 1;
if (i >= j) break;
exchange (i, j);
j -= 1;
i += 1;

}

/* pivot belongs in A[j] */
exchange (lb, j);
m = j;

/* keep processing smallest segment, and stack largest */
if (m - lb <= ub - m) {
if (m + 1 < ub) {

68

lbStack[sp] = m + 1;
ubStack[sp++] = ub;

}
ub = m - 1;

}
else {

if (m - 1 > lb) {
lbStack[sp] = lb;
ubStack[sp++] = m - 1;

}
lb = m + 1;

}
}

}
}

int main(int argc, char *argv[]) {
int maxnum;
int *lb, *ub;
//int a[] = { 1804289383, 846930886, 1681692777, 1714636915, 1957747793,

424238335, 719885386, 1649760492, 596516649, 1189641421, 1025202362,
1350490027, 783368690, 1102520059, 2044897763, 1967513926, 1365180540,
1540383426, 304089172, 1303455736, 35005211, 521595368, 294702567,
1726956429, 336465782, 861021530, 278722862, 233665123, 2145174067,
468703135, 1101513929, 1801979802, 1315634022, 635723058, 1369133069,
1125898167, 1059961393, 2089018456, 628175011, 1656478042, 1131176229,
1653377373, 859484421, 1914544919, 608413784, 756898537, 1734575198,
1973594324, 149798315, 2038664370, 1129566413, 184803526, 412776091,
1424268980, 1911759956, 749241873, 137806862, 42999170, 982906996,
135497281, 511702305, 2084420925, 1937477084, 1827336327 };

int *a;
a = 0x0000;

maxnum = 64;
lb = a; ub = a + maxnum - 1;

quicksort(a, maxnum);
return 0;

}

Listing A.3: Quicksort

69

A. TEST PROGRAMS

int main(int argc, char *argv[]) {
int prime = 421;
int i;

for (i = 2; i <= prime / 2; i++) {
if (prime % i == 0) {
return 0;

}
}

return 1;
}

Listing A.4: Primality Test

70

APPENDIX B
Instruction Set

The notation used to describe the instructions as well as the description itself is taken from [21].

71

B. INSTRUCTION SET

B.1 Overview

nop 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

add 0 0 0 1 0 0 0 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

add_cf 0 0 1 0 0 0 0 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

add_ct 0 0 1 1 0 0 0 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

ldw 0 0 0 0 0 0 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

addc 0 0 0 1 0 0 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

addc_cf 0 0 1 0 0 0 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

addc_ct 0 0 1 1 0 0 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

stw 0 0 0 0 0 0 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

sub 0 0 0 1 0 0 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

sub_cf 0 0 1 0 0 0 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

sub_ct 0 0 1 1 0 0 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

cmp_eq 0 0 0 0 0 0 1 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

subc 0 0 0 1 0 0 1 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

subc_cf 0 0 1 0 0 0 1 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

subc_ct 0 0 1 1 0 0 1 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

cmp_lt 0 0 0 0 0 1 0 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

and 0 0 0 1 0 1 0 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

and_cf 0 0 1 0 0 1 0 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

and_ct 0 0 1 1 0 1 0 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

cmpu_lt 0 0 0 0 0 1 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

eor 0 0 0 1 0 1 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

eor_cf 0 0 1 0 0 1 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

eor_ct 0 0 1 1 0 1 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

cmp_gt 0 0 0 0 0 1 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

or 0 0 0 1 0 1 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

or_cf 0 0 1 0 0 1 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

or_ct 0 0 1 1 0 1 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

cmpu_gt 0 0 0 0 0 1 1 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

mov 0 0 0 1 0 1 1 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

mov_cf 0 0 1 0 0 1 1 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

mov_ct 0 0 1 1 0 1 1 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

72

B.1. Overview

ldh 0 0 0 0 1 0 0 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

sr 0 0 0 1 1 0 0 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

sr_cf 0 0 1 0 1 0 0 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

sr_ct 0 0 1 1 1 0 0 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

ldhu 0 0 0 0 1 0 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

sra 0 0 0 1 1 0 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

sra_cf 0 0 1 0 1 0 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

sra_ct 0 0 1 1 1 0 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

sth 0 0 0 0 1 0 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

sl 0 0 0 1 1 0 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

sl_cf 0 0 1 0 1 0 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

sl_ct 0 0 1 1 1 0 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

rts 0 0 0 0 1 0 1 1 0 0 0 0 1 1 1 0

rrc 0 0 0 1 1 0 1 1 0 0 0 0 X3 X2 X1 X0

rrc_cf 0 0 1 0 1 0 1 1 0 0 0 0 X3 X2 X1 X0

rrc_ct 0 0 1 1 1 0 1 1 0 0 0 0 X3 X2 X1 X0

ldb 0 0 0 0 1 1 0 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

not 0 0 0 1 1 1 0 0 0 0 0 0 X3 X2 X1 X0

not_cf 0 0 1 0 1 1 0 0 0 0 0 0 X3 X2 X1 X0

not_ct 0 0 1 1 1 1 0 0 0 0 0 0 X3 X2 X1 X0

ldbu 0 0 0 0 1 1 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

neg 0 0 0 1 1 1 0 1 0 0 0 0 X3 X2 X1 X0

neg_cf 0 0 1 0 1 1 0 1 0 0 0 0 X3 X2 X1 X0

neg_ct 0 0 1 1 1 1 0 1 0 0 0 0 X3 X2 X1 X0

stb 0 0 0 0 1 1 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

jsr 0 0 0 1 1 1 1 0 0 0 0 0 X3 X2 X1 X0

jsr_cf 0 0 1 0 1 1 1 0 0 0 0 0 X3 X2 X1 X0

jsr_ct 0 0 1 1 1 1 1 0 0 0 0 0 X3 X2 X1 X0

rte 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

jmp 0 0 0 1 1 1 1 1 0 0 0 0 X3 X2 X1 X0

jmp_cf 0 0 1 0 1 1 1 1 0 0 0 0 X3 X2 X1 X0

jmp_ct 0 0 1 1 1 1 1 1 0 0 0 0 X3 X2 X1 X0

73

B. INSTRUCTION SET

ldvec 0 1 0 0 0 0 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

stvec 0 1 0 0 0 0 1 I4 I3 I2 I1 I0 X3 X2 X1 X0

addi 0 1 0 1 0 0 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

addi_cf 0 1 1 0 0 0 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

addi_ct 0 1 1 1 0 0 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

btest 0 1 0 0 0 1 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

bclr 0 1 0 1 0 1 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

bclr_cf 0 1 1 0 0 1 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

bclr_ct 0 1 1 1 0 1 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

bset 0 1 0 1 0 1 1 I4 I3 I2 I1 I0 X3 X2 X1 X0

bset_cf 0 1 1 0 0 1 1 I4 I3 I2 I1 I0 X3 X2 X1 X0

bset_ct 0 1 1 1 0 1 1 I4 I3 I2 I1 I0 X3 X2 X1 X0

sri 0 1 0 1 1 0 0 0 I3 I2 I1 I0 X3 X2 X1 X0

sri_cf 0 1 1 0 1 0 0 0 I3 I2 I1 I0 X3 X2 X1 X0

sri_ct 0 1 1 1 1 0 0 0 I3 I2 I1 I0 X3 X2 X1 X0

srai 0 1 0 1 1 0 0 1 I3 I2 I1 I0 X3 X2 X1 X0

srai_cf 0 1 1 0 1 0 0 1 I3 I2 I1 I0 X3 X2 X1 X0

srai_ct 0 1 1 1 1 0 0 1 I3 I2 I1 I0 X3 X2 X1 X0

sli 0 1 0 1 1 0 1 0 I3 I2 I1 I0 X3 X2 X1 X0

sli_cf 0 1 1 0 1 0 1 0 I3 I2 I1 I0 X3 X2 X1 X0

sli_ct 0 1 1 1 1 0 1 0 I3 I2 I1 I0 X3 X2 X1 X0

trap 0 1 0 1 1 0 1 1 I3 I2 I1 I0 X3 X2 X1 X0

trap_cf 0 1 1 0 1 0 1 1 I3 I2 I1 I0 X3 X2 X1 X0

trap_ct 0 1 1 1 1 0 1 1 I3 I2 I1 I0 X3 X2 X1 X0

jmpi 0 1 0 1 1 1 I9 I8 I7 I6 I5 I4 I3 I2 I1 I0

jmpi_cf 0 1 1 0 1 1 I9 I8 I7 I6 I5 I4 I3 I2 I1 I0

jmpi_ct 0 1 1 1 1 1 I9 I8 I7 I6 I5 I4 I3 I2 I1 I0

cmpi_eq 0 1 0 0 1 I6 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

cmpi_lt 1 0 1 1 0 I6 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

cmpi_gt 1 0 1 1 1 I6 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

74

B.1. Overview

ldi 1 0 0 0 I7 I6 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

ldhi 1 0 0 1 I7 I6 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

ldli 1 0 1 0 I7 I6 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

ldfpw_inc 1 1 0 0 0 0 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

ldfpw_dec 1 1 0 0 0 0 1 I4 I3 I2 I1 I0 X3 X2 X1 X0

ldfpx_inc 1 1 0 0 0 1 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

ldfpx_dec 1 1 0 0 0 1 1 I4 I3 I2 I1 I0 X3 X2 X1 X0

ldfpy_inc 1 1 0 0 1 0 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

ldfpy_dec 1 1 0 0 1 0 1 I4 I3 I2 I1 I0 X3 X2 X1 X0

ldfpz_inc 1 1 0 0 1 1 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

ldfpz_dec 1 1 0 0 1 1 1 I4 I3 I2 I1 I0 X3 X2 X1 X0

stfpw_inc 1 1 0 1 0 0 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

stfpw_dec 1 1 0 1 0 0 1 I4 I3 I2 I1 I0 X3 X2 X1 X0

stfpx_inc 1 1 0 1 0 1 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

stfpx_dec 1 1 0 1 0 1 1 I4 I3 I2 I1 I0 X3 X2 X1 X0

stfpy_inc 1 1 0 1 1 0 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

stfpy_dec 1 1 0 1 1 0 1 I4 I3 I2 I1 I0 X3 X2 X1 X0

stfpz_inc 1 1 0 1 1 1 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

stfpz_dec 1 1 0 1 1 1 1 I4 I3 I2 I1 I0 X3 X2 X1 X0

ldfpw 1 1 1 0 0 0 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

ldfpx 1 1 1 0 0 1 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

ldfpy 1 1 1 0 1 0 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

ldfpz 1 1 1 0 1 1 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

stfpw 1 1 1 1 0 0 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

stfpx 1 1 1 1 0 1 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

stfpy 1 1 1 1 1 0 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

stfpz 1 1 1 1 1 1 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

75

B. INSTRUCTION SET

B.2 Notation

+ Addition operator

− Subtraction operator

> Greater than operator

< Less than operator

= Equality operator

:= Assignment operator

| Bitwise logical or operator

& Bitwise logical and operator

^ Bitwise exclusive or operator

~ Bitwise complement operator

« Bitwise shift left operator

» Bitwise shift right operator

(int) Casts the operand to a sign-extended integer of natural width

(intX) Casts the operand to a sign-extended integer of X bits in width

(uint) Casts the operand to a non sign-extended integer of natural width

(uintX) Casts the operand to a non sign-extended integer of X bits in width

cond, carry The cond-flag and the carry-flag, respectively

rX, rY A general purpose register operand

simmX A signed immediate operand of X bits in width

uimmX An unsigned immediate operand of X bits in width

mem(α) A memory access of address α of natural width

memX (α) A memory access of address α of X bits in width

B.3 Instructions

B.3.1 Arithmetic/Logical Instructions

add – Add

Opc Reg Reg

0 0 0 1 0 0 0 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

add rX, rY carry := ((int64) rX + (int64) rY) » 32

rX := rX + rY

76

B.3. Instructions

add_cf – Add if cond-flag false

Opc Reg Reg

0 0 1 0 0 0 0 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

add_cf rX, rY if (!cond)
carry := ((int64) rX + (int64) rY) » 32

rX := rX + rY

add_ct – Add if cond-flag true

Opc Reg Reg

0 0 1 1 0 0 0 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

add_ct rX, rY if (cond)
carry := ((int64) rX + (int64) rY) » 32

rX := rX + rY

addi – Add immediate

Opc SImm Reg

0 1 0 1 0 0 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

addi rX, simm6 carry := ((int64) rX + (int64) simm6) » 32

rX := rX + (int) simm6

addi_cf – Add immediate if cond-flag false

Opc SImm Reg

0 1 1 0 0 0 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

addi_cf rX, simm6 if (!cond)
carry := ((int64) rX + (int64) simm6) » 32

rX := rX + (int) simm6

77

B. INSTRUCTION SET

addi_ct – Add immediate if cond-flag true

Opc SImm Reg

0 1 1 1 0 0 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

addi_ct rX, simm6 if (cond)
carry := ((int64) rX + (int64) simm6) » 32

rX := rX + (int) simm6

addc – Add with carry

Opc Reg Reg

0 0 0 1 0 0 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

addc rX, rY carry′ := ((int64) rX + (int64) rY) » 32

rX := rX + rY + carry

carry := carry′

addc_cf – Add with carry if cond-flag false

Opc Reg Reg

0 0 1 0 0 0 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

addc_cf rX, rY if (!cond)
carry′ := ((int64) rX + (int64) rY) » 32

rX := rX + rY + carry

carry := carry′

addc_ct – Add with carry if cond-flag true

Opc Reg Reg

0 0 1 1 0 0 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

addc_ct rX, rY if (cond)
carry′ := ((int64) rX + (int64) rY) » 32

rX := rX + rY + carry

carry := carry′

78

B.3. Instructions

and – Bitwise logical and

Opc Reg Reg

0 0 0 1 0 1 0 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

and rX, rY rX := rX & rY

and_cf – Bitwise logical and if cond-flag false

Opc Reg Reg

0 0 1 0 0 1 0 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

and_cf rX, rY if (!cond)
rX := rX & rY

and_ct – Bitwise logical and if cond-flag true

Opc Reg Reg

0 0 1 1 0 1 0 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

and_ct rX, rY if (cond)
rX := rX & rY

bclr – Bit clear

Opc UImm Reg

0 1 0 1 0 1 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

bclr rX, uimm5 rX := rX & ~(1 « uimm5)

bclr_cf – Bit clear if cond-flag false

Opc UImm Reg

0 1 1 0 0 1 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

bclr_cf rX, uimm5 if (!cond)
rX := rX & ~(1 « uimm5)

79

B. INSTRUCTION SET

bclr_ct – Bit clear if cond-flag true

Opc UImm Reg

0 1 1 1 0 1 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

bclr_ct rX, uimm5 if (cond)
rX := rX & ~(1 « uimm5)

bset – Bit set

Opc UImm Reg

0 1 0 1 0 1 1 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

bset rX, uimm5 rX := rX | (1 « uimm5)

bset_cf – Bit set if cond-flag false

Opc UImm Reg

0 1 1 0 0 1 1 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

bset_cf rX, uimm5 if (!cond)
rX := rX | (1 « uimm5)

bset_ct – Bit set if cond-flag true

Opc UImm Reg

0 1 1 1 0 1 1 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

bset_ct rX, uimm5 if (cond)
rX := rX | (1 « uimm5)

btest – Bit test

Opc UImm Reg

0 1 0 0 0 1 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

btest rX, uimm5 cond := (rX & (1 « uimm5)) �= 0

80

B.3. Instructions

eor – Bitwise logical exclusive or

Opc Reg Reg

0 0 0 1 0 1 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

eor rX, rY rX := rX ^ rY

eor_cf – Bitwise logical exclusive or if cond-flag false

Opc Reg Reg

0 0 1 0 0 1 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

eor_cf rX, rY if (!cond)
rX := rX ^ rY

eor_ct – Bitwise logical exclusive or if cond-flag true

Opc Reg Reg

0 0 1 1 0 1 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

eor_ct rX, rY if (cond)
rX := rX ^ rY

neg – Negative

Opc Reg

0 0 0 1 1 1 0 1 0 0 0 0 X3 X2 X1 X0

07815

neg rX rX := ~rX + 1

neg_cf – Negative if cond-flag false

Opc Reg

0 0 1 0 1 1 0 1 0 0 0 0 X3 X2 X1 X0

07815

neg_cf rX if (!cond)
rX := ~rX + 1

81

B. INSTRUCTION SET

neg_ct – Negative if cond-flag true

Opc Reg

0 0 1 1 1 1 0 1 0 0 0 0 X3 X2 X1 X0

07815

neg_ct rX if (cond)
rX := ~rX + 1

not – Bitwise logical not

Opc Reg

0 0 0 1 1 1 0 0 0 0 0 0 X3 X2 X1 X0

07815

not rX rX := ~rX

not_cf – Bitwise logical not if cond-flag false

Opc Reg

0 0 1 0 1 1 0 0 0 0 0 0 X3 X2 X1 X0

07815

not_cf rX if (!cond)
rX := ~rX

not_ct – Bitwise logical not if cond-flag true

Opc Reg

0 0 1 1 1 1 0 0 0 0 0 0 X3 X2 X1 X0

07815

not_ct rX if (cond)
rX := ~rX

or – Bitwise logical or

Opc Reg Reg

0 0 0 1 0 1 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

or rX, rY rX := rX | rY

82

B.3. Instructions

or_cf – Bitwise logical or if cond-flag false

Opc Reg Reg

0 0 1 0 0 1 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

or_cf rX, rY if (!cond)
rX := rX | rY

or_ct – Bitwise logical or if cond-flag true

Opc Reg Reg

0 0 1 1 0 1 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

or_ct rX, rY if (cond)
rX := rX | rY

rrc – Rotate right with carry

Opc Reg

0 0 0 1 1 0 1 1 0 0 0 0 X3 X2 X1 X0

07815

rrc rX carry′ := rX & 1

rX := rX » 1

rX := rX | (carry « 31)
carry := carry′

rrc_cf – Rotate right with carry if cond-flag false

Opc Reg

0 0 1 0 1 0 1 1 0 0 0 0 X3 X2 X1 X0

07815

rrc_cf rX if (!cond)
carry′ := rX & 1

rX := rX » 1

rX := rX | (carry « 31)
carry := carry′

83

B. INSTRUCTION SET

rrc_ct – Rotate right with carry if cond-flag true

Opc Reg

0 0 1 1 1 0 1 1 0 0 0 0 X3 X2 X1 X0

07815

rrc_ct rX if (cond)
carry′ := rX & 1

rX := rX » 1

rX := rX | (carry « 31)
carry := carry′

sl – Shift left

Opc Reg Reg

0 0 0 1 1 0 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

sl rX, rY carry := (rX » (32 − (rY & 0x1F))) & 1

rX := rX « (rY & 0x1F)

sl_cf – Shift left if cond-flag false

Opc Reg Reg

0 0 1 0 1 0 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

sl_cf rX, rY if (!cond)
carry := (rX » (32 − (rY & 0x1F))) & 1

rX := rX « (rY & 0x1F)

sl_ct – Shift left if cond-flag true

Opc Reg Reg

0 0 1 1 1 0 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

sl_ct rX, rY if (cond)
carry := (rX » (32 − (rY & 0x1F))) & 1

rX := rX « (rY & 0x1F)

84

B.3. Instructions

sli – Shift left immediate

Opc UImm Reg

0 1 0 1 1 0 1 0 I3 I2 I1 I0 X3 X2 X1 X0

07815

sli rX, uimm4 carry := (rX » (32 − uimm4)) & 1

rX := rX « uimm4

sli_cf – Shift left immediate if cond-flag false

Opc UImm Reg

0 1 1 0 1 0 1 0 I3 I2 I1 I0 X3 X2 X1 X0

07815

sli_cf rX, uimm4 if (!cond)
carry := (rX » (32 − uimm4)) & 1

rX := rX « uimm4

sli_ct – Shift left immediate if cond-flag true

Opc UImm Reg

0 1 1 1 1 0 1 0 I3 I2 I1 I0 X3 X2 X1 X0

07815

sli_ct rX, uimm4 if (cond)
carry := (rX » (32 − uimm4)) & 1

rX := rX « uimm4

sr – Shift right

Opc Reg Reg

0 0 0 1 1 0 0 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

sr rX, rY carry := rX & (1 « ((rY & 0x1F) − 1))
rX := rX » (rY & 0x1F)

85

B. INSTRUCTION SET

sr_cf – Shift right if cond-flag false

Opc Reg Reg

0 0 1 0 1 0 0 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

sr_cf rX, rY if (!cond)
carry := rX & (1 « ((rY & 0x1F) − 1))
rX := rX » (rY & 0x1F)

sr_ct – Shift right if cond-flag true

Opc Reg Reg

0 0 1 1 1 0 0 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

sr_ct rX, rY if (cond)
carry := rX & (1 « ((rY & 0x1F) − 1))
rX := rX » (rY & 0x1F)

sra – Shift right arithmetic

Opc Reg Reg

0 0 0 1 1 0 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

sra rX, rY carry := rX & (1 « ((rY & 0x1F) − 1))
rX := (int) rX » (rY & 0x1F)

sra_cf – Shift right arithmetic if cond-flag false

Opc Reg Reg

0 0 1 0 1 0 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

sra_cf rX, rY if (!cond)
carry := rX & (1 « ((rY & 0x1F) − 1))
rX := (int) rX » (rY & 0x1F)

86

B.3. Instructions

sra_ct – Shift right arithmetic if cond-flag true

Opc Reg Reg

0 0 1 1 1 0 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

sra_ct rX, rY if (cond)
carry := rX & (1 « ((rY & 0x1F) − 1))
rX := (int) rX » (rY & 0x1F)

srai – Shift right arithmetic immediate

Opc UImm Reg

0 1 0 1 1 0 0 1 I3 I2 I1 I0 X3 X2 X1 X0

07815

srai rX, uimm4 carry := rX & (1 « (uimm4 − 1))
rX := (int) rX » uimm4

srai_cf – Shift right arithmetic immediate if cond-flag false

Opc UImm Reg

0 1 1 0 1 0 0 1 I3 I2 I1 I0 X3 X2 X1 X0

07815

srai_cf rX, uimm4 if (!cond)
carry := rX & (1 « (uimm4 − 1))
rX := (int) rX » uimm4

srai_ct – Shift right arithmetic immediate if cond-flag true

Opc UImm Reg

0 1 1 1 1 0 0 1 I3 I2 I1 I0 X3 X2 X1 X0

07815

srai_ct rX, uimm4 if (cond)
carry := rX & (1 « (uimm4 − 1))
rX := (int) rX » uimm4

87

B. INSTRUCTION SET

sri – Shift right immediate

Opc UImm Reg

0 1 0 1 1 0 0 0 I3 I2 I1 I0 X3 X2 X1 X0

07815

sri rX, uimm4 carry := rX & (1 « (uimm4 − 1))
rX := rX » uimm4

sri_cf – Shift right immediate if cond-flag false

Opc UImm Reg

0 1 1 0 1 0 0 0 I3 I2 I1 I0 X3 X2 X1 X0

07815

sri_cf rX, uimm4 if (!cond)
carry := rX & (1 « (uimm4 − 1))
rX := rX » uimm4

sri_ct – Shift right immediate if cond-flag true

Opc UImm Reg

0 1 1 1 1 0 0 0 I3 I2 I1 I0 X3 X2 X1 X0

07815

sri_ct rX, uimm4 if (cond)
carry := rX & (1 « (uimm4 − 1))
rX := rX » uimm4

sub – Subtract

Opc Reg Reg

0 0 0 1 0 0 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

sub rX, rY carry := ((int64) rX − (int64) rY) » 32

rX := rX − rY

88

B.3. Instructions

sub_cf – Subtract if cond-flag false

Opc Reg Reg

0 0 1 0 0 0 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

sub_cf rX, rY if (!cond)
carry := ((int64) rX − (int64) rY) » 32

rX := rX − rY

sub_ct – Subtract if cond-flag true

Opc Reg Reg

0 0 1 1 0 0 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

sub_ct rX, rY if (cond)
carry := ((int64) rX − (int64) rY) » 32

rX := rX − rY

subc – Subtract with carry

Opc Reg Reg

0 0 0 1 0 0 1 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

subc rX, rY carry′ := ((int64) rX − (int64) rY) » 32

rX := rX − rY + carry

carry := carry′

subc_cf – Subtract with carry if cond-flag false

Opc Reg Reg

0 0 1 0 0 0 1 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

subc_cf rX, rY if (!cond)
carry′ := ((int64) rX − (int64) rY) » 32

rX := rX − rY + carry

carry := carry′

89

B. INSTRUCTION SET

subc_ct – Subtract with carry if cond-flag true

Opc Reg Reg

0 0 1 1 0 0 1 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

subc_ct rX, rY if (cond)
carry′ := ((int64) rX − (int64) rY) » 32

rX := rX − rY + carry

carry := carry′

B.3.2 Comparison Instructions

cmp_eq – Compare equal

Opc Reg Reg

0 0 0 0 0 0 1 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

cmp_eq rX, rY cond := (int) rX = (int) rY

cmp_gt – Compare greater than

Opc Reg Reg

0 0 0 0 0 1 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

cmp_gt rX, rY cond := (int) rX > (int) rY

cmp_lt – Compare less than

Opc Reg Reg

0 0 0 0 0 1 0 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

cmp_lt rX, rY cond := (int) rX < (int) rY

cmpi_eq – Compare equal immediate

Opc SImm Reg

0 1 0 0 1 I6 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

cmpi_eq rX, simm7 cond := (int) rX = (int) simm7

90

B.3. Instructions

cmpi_gt – Compare greater than immediate

Opc SImm Reg

1 0 1 1 1 I6 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

cmpi_gt rX, simm7 cond := (int) rX > (int) simm7

cmpi_lt – Compare less than immediate

Opc SImm Reg

1 0 1 1 0 I6 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

cmpi_lt rX, simm7 cond := (int) rX < (int) simm7

cmpu_gt – Compare greater than unsigned

Opc Reg Reg

0 0 0 0 0 1 1 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

cmpu_gt rX, rY cond := (uint) rX > (uint) rY

cmpu_lt – Compare less than unsigned

Opc Reg Reg

0 0 0 0 0 1 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

cmpu_lt rX, rY cond := (uint) rX < (uint) rY

B.3.3 Constant Manipulating Instructions

ldhi – Load high byte immediate

Opc SImm Reg

1 0 0 1 I7 I6 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

ldhi rX, simm8 rX := rX & 0xFF

rX := rX | ((int) simm8 « 8)

91

B. INSTRUCTION SET

ldi – Load immediate

Opc SImm Reg

1 0 0 0 I7 I6 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

ldi rX, simm8 rX := (int) simm8

ldli – Load low byte immediate

Opc UImm Reg

1 0 1 0 I7 I6 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

ldli rX, uimm8 rX := rX & ~0xFF

rX := rX | uimm8

B.3.4 Control Transfer Instructions

jmp – Jump

Opc Reg

0 0 0 1 1 1 1 1 0 0 0 0 X3 X2 X1 X0

07815

jmp rX PC := rX

jmp_cf – Jump if cond-flag false

Opc Reg

0 0 1 0 1 1 1 1 0 0 0 0 X3 X2 X1 X0

07815

jmp_cf rX if (!cond)
PC := rX

jmp_ct – Jump if cond-flag true

Opc Reg

0 0 1 1 1 1 1 1 0 0 0 0 X3 X2 X1 X0

07815

jmp_ct rX if (cond)
PC := rX

92

B.3. Instructions

jmpi – Jump immediate

Opc SImm

0 1 0 1 1 1 I9 I8 I7 I6 I5 I4 I3 I2 I1 I0

07815

jmpi simm10 PC := PC + simm10

jmpi_cf – Jump immediate if cond-flag false

Opc SImm

0 1 1 0 1 1 I9 I8 I7 I6 I5 I4 I3 I2 I1 I0

07815

jmpi_cf simm10 if (!cond)
PC := PC + simm10

jmpi_ct – Jump immediate if cond-flag true

Opc SImm

0 1 1 1 1 1 I9 I8 I7 I6 I5 I4 I3 I2 I1 I0

07815

jmpi_ct simm10 if (cond)
PC := PC + simm10

jsr – Jump to subroutine

Opc Reg

0 0 0 1 1 1 1 0 0 0 0 0 X3 X2 X1 X0

07815

jsr rX r14 := PC

PC := rX

jsr_cf – Jump to subroutine if cond-flag false

Opc Reg

0 0 1 0 1 1 1 0 0 0 0 0 X3 X2 X1 X0

07815

jsr_cf rX if (!cond)
r14 := PC

PC := rX

93

B. INSTRUCTION SET

jsr_ct – Jump to subroutine if cond-flag true

Opc Reg

0 0 1 1 1 1 1 0 0 0 0 0 X3 X2 X1 X0

07815

jsr_ct rX if (cond)
r14 := PC

PC := rX

rts – Return from subroutine

Opc

0 0 0 0 1 0 1 1 0 0 0 0 1 1 1 0
07815

rts PC := r14

B.3.5 Data Movement Instructions

mov – Move

Opc Reg Reg

0 0 0 1 0 1 1 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

mov rX, rY rX := rY

mov_cf – Move if cond-flag false

Opc Reg Reg

0 0 1 0 0 1 1 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

mov_cf rX, rY if (!cond)
rX := rY

mov_ct – Move if cond-flag true

Opc Reg Reg

0 0 1 1 0 1 1 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

mov_ct rX, rY if (cond)
rX := rY

94

B.3. Instructions

B.3.6 Exception Instructions

ldvec – Load exception vector

Opc SImm Reg

0 1 0 0 0 0 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

ldvec rX, simm5 rX := EVT (simm5)

nop – No operation

Opc

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
07815

nop

rte – Return from exception

Opc

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
07815

rte status := status′

PC := r15

stvec – Store exception vector

Opc SImm Reg

0 1 0 0 0 0 1 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

stvec rX, simm5 EVT (simm5) := rX

trap – Trap

Opc Reg Reg

0 1 0 1 1 0 1 1 I3 I2 I1 I0 X3 X2 X1 X0

07815

trap rX, uimm4 status′ := status

r15 := PC

PC := EVT (uimm4)

95

B. INSTRUCTION SET

trap_cf – Trap if cond-flag false

Opc Reg Reg

0 1 1 0 1 0 1 1 I3 I2 I1 I0 X3 X2 X1 X0

07815

trap_cf rX, uimm4 if (!cond)
status′ := status

r15 := PC

PC := EVT (uimm4)

trap_ct – Trap if cond-flag true

Opc Reg Reg

0 1 1 1 1 0 1 1 I3 I2 I1 I0 X3 X2 X1 X0

07815

trap_ct rX, uimm4 if (cond)
status′ := status

r15 := PC

PC := EVT (uimm4)

B.3.7 Load/Store Instructions

ldb – Load byte

Opc Reg Reg

0 0 0 0 1 1 0 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

ldb rX, rY rX := (int) mem8 (rY)

ldbu – Load byte unsigned

Opc Reg Reg

0 0 0 0 1 1 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

ldbu rX, rY rX := (uint) mem8 (rY)

96

B.3. Instructions

ldfpw – Load word with frame pointer W

Opc SImm Reg

1 1 1 0 0 0 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

ldfpw rX, simm6 rX := mem (FPW + (int) simm6)

ldfpw_dec – Load word with frame pointer W and decrement W

Opc SImm Reg

1 1 0 0 0 0 1 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

ldfpw_dec rX, simm5 rX := mem (FPW + (int) simm5)
FPW := FPW − 4

ldfpw_inc – Load word with frame pointer W and increment W

Opc SImm Reg

1 1 0 0 0 0 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

ldfpw_inc rX, simm5 rX := mem (FPW + (int) simm5)
FPW := FPW + 4

ldfpx – Load word with frame pointer X

Opc SImm Reg

1 1 1 0 0 1 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

ldfpx rX, simm6 rX := mem (FPX + (int) simm6)

ldfpx_dec – Load word with frame pointer X and decrement X

Opc SImm Reg

1 1 0 0 0 1 1 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

ldfpx_dec rX, simm5 rX := mem (FPX + (int) simm5)
FPX := FPX − 4

97

B. INSTRUCTION SET

ldfpx_inc – Load word with frame pointer X and increment X

Opc SImm Reg

1 1 0 0 0 1 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

ldfpx_inc rX, simm5 rX := mem (FPX + (int) simm5)
FPX := FPX + 4

ldfpy – Load word with frame pointer Y

Opc SImm Reg

1 1 1 0 1 0 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

ldfpy rX, simm6 rX := mem (FPY + (int) simm6)

ldfpy_dec – Load word with frame pointer Y and decrement Y

Opc SImm Reg

1 1 0 0 1 0 1 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

ldfpy_dec rX, simm5 rX := mem (FPY + (int) simm5)
FPY := FPY − 4

ldfpy_inc – Load word with frame pointer Y and increment Y

Opc SImm Reg

1 1 0 0 1 0 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

ldfpy_inc rX, simm5 rX := mem (FPY + (int) simm5)
FPY := FPY + 4

ldfpz – Load word with frame pointer Z

Opc SImm Reg

1 1 1 0 1 1 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

ldfpz rX, simm6 rX := mem (FPZ + (int) simm6)

98

B.3. Instructions

ldfpz_dec – Load word with frame pointer Z and decrement Z

Opc SImm Reg

1 1 0 0 1 1 1 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

ldfpz_dec rX, simm5 rX := mem (FPZ + (int) simm5)
FPZ := FPZ − 4

ldfpz_inc – Load word with frame pointer Z and increment Z

Opc SImm Reg

1 1 0 0 1 1 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

ldfpz_inc rX, simm5 rX := mem (FPZ + (int) simm5)
FPZ := FPZ + 4

ldh – Load half-word

Opc Reg Reg

0 0 0 0 1 0 0 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

ldh rX, rY rX := (int) mem16 (rY)

ldhu – Load half-word unsigned

Opc Reg Reg

0 0 0 0 1 0 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

ldhu rX, rY rX := (uint) mem16 (rY)

ldw – Load word

Opc Reg Reg

0 0 0 0 0 0 0 1 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

ldw rX, rY rX := mem (rY)

99

B. INSTRUCTION SET

stb – Store byte

Opc Reg Reg

0 0 0 0 1 1 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

stb rX, rY mem8 (rY) := rX (7 : 0)

stfpw – Store word with frame pointer W

Opc SImm Reg

1 1 1 1 0 0 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

stfpw rX, simm6 mem (FPW + (int) simm6) := rX

stfpw_dec – Store word with frame pointer W and decrement W

Opc SImm Reg

1 1 0 1 0 0 1 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

stfpw_dec rX, simm5 mem (FPW + (int) simm5) := rX

FPW := FPW − 4

stfpw_inc – Store word with frame pointer W and increment W

Opc SImm Reg

1 1 0 1 0 0 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

stfpw_inc rX, simm5 mem (FPW + (int) simm5) := rX

FPW := FPW + 4

stfpx – Store word with frame pointer X

Opc SImm Reg

1 1 1 1 0 1 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

stfpx rX, simm6 mem (FPX + (int) simm6) := rX

100

B.3. Instructions

stfpx_dec – Store word with frame pointer X and decrement X

Opc SImm Reg

1 1 0 1 0 1 1 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

stfpx_dec rX, simm5 mem (FPX + (int) simm5) := rX

FPX := FPX − 4

stfpx_inc – Store word with frame pointer X and increment X

Opc SImm Reg

1 1 0 1 0 1 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

stfpx_inc rX, simm5 mem (FPX + (int) simm5) := rX

FPX := FPX + 4

stfpy – Store word with frame pointer Y

Opc SImm Reg

1 1 1 1 1 0 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

stfpy rX, simm6 mem (FPY + (int) simm6) := rX

stfpy_dec – Store word with frame pointer Y and decrement Y

Opc SImm Reg

1 1 0 1 1 0 1 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

stfpy_dec rX, simm5 mem (FPY + (int) simm5) := rX

FPY := FPY − 4

stfpy_inc – Store word with frame pointer Y and increment Y

Opc SImm Reg

1 1 0 1 1 0 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

stfpy_inc rX, simm5 mem (FPY + (int) simm5) := rX

FPY := FPY + 4

101

B. INSTRUCTION SET

stfpz – Store word with frame pointer Z

Opc SImm Reg

1 1 1 1 1 1 I5 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

stfpz rX, simm6 mem (FPZ + (int) simm6) := rX

stfpz_dec – Store word with frame pointer Z and decrement Z

Opc SImm Reg

1 1 0 1 1 1 1 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

stfpz_dec rX, simm5 mem (FPZ + (int) simm5) := rX

FPZ := FPZ − 4

stfpz_inc – Store word with frame pointer Z and increment Z

Opc SImm Reg

1 1 0 1 1 1 0 I4 I3 I2 I1 I0 X3 X2 X1 X0

07815

stfpz_inc rX, simm5 mem (FPZ + (int) simm5) := rX

FPZ := FPZ + 4

sth – Store half-word

Opc Reg Reg

0 0 0 0 1 0 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

sth rX, rY mem16 (rY) := rX (15 : 0)

stw – Store word

Opc Reg Reg

0 0 0 0 0 0 1 0 Y3 Y2 Y1 Y0 X3 X2 X1 X0

07815

stw rX, rY mem (rY) := rX

102

Bibliography

[1] H. Akiyoshi, H. Shimizu, T. Matsumoto, K. Kobayashi, and Y. Sambonsugi. A 320ps

access, 3ghz cycle, 144kb sram macro in 90nm cmos technology using an all-stage reset

control signal generator. In Solid-State Circuits Conference, 2003. Digest of Technical
Papers. ISSCC. 2003 IEEE International, pages 460–508 vol.1, Feb 2003.

[2] Mark E. Dean, Ted E. Williams, and David L. Dill. Efficient self-timing with level-encoded

2-phase dual-rail (ledr). In Proceedings of the 1991 University of California/Santa Cruz
Conference on Advanced Research in VLSI, pages 55–70, Cambridge, MA, USA, 1991.

MIT Press.

[3] Martin Delvai. Handbuch für spear (scalable processor for embedded applications in real-

time environments). Technical report, E182 - Institut für Technische Informatik; Technische

Universität Wien, 2002.

[4] Doug Edwards and Andrew Bardsley. Balsa : A Tutorial Guide. 2006.

[5] Philip Endecott and Stephen Furber. Modelling and simulation of asynchronous systems us-

ing the lard hardware description language. In Proceedings of the 12th European Simulation
Multiconference on Simulation - Past, Present and Future, pages 39–43. SCS Europe, 1998.

[6] K.M. Fant and S.A Brandt. Null convention logicTM: a complete and consistent logic for

asynchronous digital circuit synthesis. In Application Specific Systems, Architectures and
Processors, 1996. ASAP 96. Proceedings of International Conference on, pages 261–273,

Aug 1996.

[7] Martin Fletzer. Spear2 - an improved version of spear. Master’s thesis, Institut f. Technische

Informatik, Embedded Computing Systems Group, 2008.

[8] S.B. Furber, J.D. Garside, P. Riocreux, S. Temple, P. Day, Jianwei Liu, and N.C. Paver.

Amulet2e: an asynchronous embedded controller. Proceedings of the IEEE, 87(2):243–256,

Feb 1999.

[9] J.D. Garside, W.J. Bainbridge, A Bardsley, D.M. Clark, D.A Edwards, S.B. Furber, J. Liu,

D.W. Lloyd, S. Mohammadi, J.S. Pepper, O. Petlin, S. Temple, and J.V. Woods. Amulet3i-an

asynchronous system-on-chip. In Advanced Research in Asynchronous Circuits and Systems,
2000. (ASYNC 2000) Proceedings. Sixth International Symposium on, pages 162–175, 2000.

103

[10] J.D. Garside, S.B. Furber, and S.-H. Chung. Amulet3 revealed. In Advanced Research in
Asynchronous Circuits and Systems, 1999. Proceedings., Fifth International Symposium on,

pages 51–59, 1999.

[11] S. Hauck. Asynchronous design methodologies: an overview. Proceedings of the IEEE,

83(1):69–93, Jan 1995.

[12] Jakob Lechner. Fsl tool. Master’s thesis, Institut f. Technische Informatik, Embedded

Computing Systems Group, 2008.

[13] AJ. Martin, A Lines, R. Manohar, M. Nystrom, P. Penzes, R. Southworth, U. Cummings,

and Tak Kwan Lee. The design of an asynchronous mips r3000 microprocessor. In Advanced
Research in VLSI, 1997. Proceedings., Seventeenth Conference on, pages 164–181, Sep

1997.

[14] AJ. Martin, M. Nystrom, K. Papadantonakis, P.I Penzes, P. Prakash, C.G. Wong, J. Chang,

K.S. Ko, B. Lee, E. Ou, J. Pugh, E. Talvala, J.T. Tong, and A Tura. The lutonium: a

sub-nanojoule asynchronous 8051 microcontroller. In Asynchronous Circuits and Systems,
2003. Proceedings. Ninth International Symposium on, pages 14–23, May 2003.

[15] A.J. Martin, M. Nystrom, and C.G. Wong. Three generations of asynchronous microproces-

sors. Design Test of Computers, IEEE, 20(6):9–17, Nov 2003.

[16] D.E. Muller and W.S. Bartky. A Theory of Asynchronous Circuits. Number Bd. 1 in Report:

Digital Computer Laboratory. Univ., 1956.

[17] N.C. Paver, P. Day, S.B. Furber, J.D. Garside, and J.V. Woods. Register locking in an

asynchronous microprocessor. In Computer Design: VLSI in Computers and Processors,
1992. ICCD ’92. Proceedings, IEEE 1992 International Conference on, pages 351–355, Oct

1992.

[18] J. Sparsø. Asynchronous circuit design - a tutorial. In Chapters 1-8 in ”Principles of
asynchronous circuit design - A systems Perspective”, pages 1–152. Kluwer Academic

Publishers, Boston / Dordrecht / London, dec 2001.

[19] I. E. Sutherland. Micropipelines. Commun. ACM, 32(6):720–738, June 1989.

[20] H. van Gageldonk, K. Van Berkel, A Peeters, D. Baumann, D. Gloor, and G. Stegmann. An

asynchronous low-power 80c51 microcontroller. In Advanced Research in Asynchronous
Circuits and Systems, 1998. Proceedings. 1998 Fourth International Symposium on, pages

96–107, Mar 1998.

[21] Martin Walter. The SCARTS Hardware/Software Interface. 2nd ed. OSADL Academic

Works, 2011.

[22] J.V. Woods, P. Day, S.B. Furber, J.D. Garside, N.C. Paver, and S. Temple. Amulet1: an

asynchronous arm microprocessor. Computers, IEEE Transactions on, 46(4):385–398, Apr

1997.

104

[23] Q. Zhang and G. Theodoropoulos. Modelling samips: a synthesisable asynchronous mips

processor. In Simulation Symposium, 2004. Proceedings. 37th Annual, pages 205–212,

April 2004.

105

