
Lokale Rekonstruktion
mit Isotropisch Ausgeglichenen Nachbarschaften

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Daniel Prieler BSc
Matrikelnummer 0726319

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Mag.rer.soc.oec. Stefan Ohrhallinger PhD

Wien, 18. Jänner 2016
Daniel Prieler Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Local Reconstruction
Using Isotropically Fair Neighborhoods

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Media Informatics and Visual Computing

by

Daniel Prieler BSc
Registration Number 0726319

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Mag.rer.soc.oec. Stefan Ohrhallinger PhD

Vienna, 18th January, 2016
Daniel Prieler Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Daniel Prieler BSc
Zieglergasse 94/21, 1070 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 18. Jänner 2016
Daniel Prieler

v

Kurzfassung

Durch die stetig steigende Verfügbarkeit von 3D Scannern in der Industrie und der Un-
terhaltungsbranche, sind schnelle und zuverlässige Rekonstruktionsmethoden besonders
wichtig. Punktwolken, vor allem sogenannte “Range Images” aus 3D Scannern sind oft
nicht uniform abgetastet und haben auch variables Rauschverhalten. Aktuelle Metho-
den des Stands der Technik verlassen sich meist darauf, dass die Grö�e des Rauschens
über Parameter durch den Benutzer bestimmt wird. Dadurch wird ein, für das gesamte
Modell gültiger Rausch-Wert bestimmt, was bei variablen (nicht uniformen) Rausch-
Werten zu grö�eren Fehlern in der Rekonstruktion führt. In dieser Arbeit stellen wir
eine isotropisch ausgeglichene Nachbarschaftsdefinition vor, die speziell für nicht uni-
form abgetastete Punktwolken entworfen ist. Unser iterativer resampling-Ansatz schätzt
den Rauschanteil an jedem Punkt und passt sich diesem an. Dadurch wird die Qualität
der Rekonstruktion erhöht, ohne, dass der Benutzer Parameterwerte setzen muss. Die
Datenstrukturen, die während des resamplings erzeugt werden, sorgen für eine schnelle-
re, global konsistente Orientierung der Normalen der Punktwolke. Evaluierung unserer
Methode zeigt, dass sie bessere Ergebnisse bei verschieden gro�en Rauschanteilen und
nicht uniformer Abtastung liefert als Verfahren des aktuellen Stands der Technik. So-
wohl der resampling Vorgang als auch die konsistente Normalen Orientierung arbeiten
nur mit lokalen Daten und können daher effizient parallel implementiert werden. Unsere
GPU-Implementierung für die Kugel-Regression ist um den Faktor 20 schneller als der
gewöhnliche sequentielle Ansatz.

vii

Abstract

The increasing availability of 3D scanning devices in both industrial and entertainment
environments (e.g., Microsoft Kinect) creates a demand for fast and reliable resampling
and reconstruction techniques. Point clouds, especially raw range images, are often
non-uniformly sampled and subject to non-uniform noise levels. Current state-of-the-art
techniques often require user-provided parameters that estimate the noise level of the
point cloud. This produces sub-optimal results for point sets with varying noise extent.
We propose an isotropically fair neighborhood definition which is specifically designed
to address non-uniformly sampled point clouds. Our iterative point cloud resampling
method estimates and adapts to the local noise level at each sample. This increases
the reconstruction quality for point clouds with high noise levels while being completely
parameter free. The data structures built during the resampling process are reused to
speed up the process of creating a consistent normal orientation. Evaluation of the re-
sampling quality shows that our technique outperforms current state-of-the-art methods
for varying noise levels and non-uniform sampling. Both the resampling algorithm and
the subsequent consistent normal orientation operate locally and can be implemented
efficiently in parallel. Our GPU sphere regression implementation outperforms the stan-
dard sequential procedure by a factor of 20.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Motivation . 2
1.2 Problem description: Surface Resampling and Reconstruction 2
1.3 Contributions . 3
1.4 Structure of the Work . 4

2 Related Work 5
2.1 Resampling . 5
2.2 Surface Reconstruction . 12

3 Resampling on Global Manifold 19
3.1 Idea and Definition . 20
3.2 Construction in 2D space . 21
3.3 Discussion . 25

4 Local Resampling using Isotropically Fair Neighborhoods 29
4.1 Isotropically Fair Neighborhoods . 30
4.2 Local Surface Fitting . 37
4.3 Spherical Regression . 43

5 Globally Consistent Normal Orientation 47
5.1 Problem definition . 47
5.2 Improvements using local neighborhoods 51

6 Implementation Details 57
6.1 Regression Sphere Calculation . 57
6.2 Sphere Filtering . 59
6.3 Consistent Normal Orientation . 60

xi

6.4 Local Triangulation . 60

7 Results 63
7.1 Noise-Reduction Quality . 64
7.2 Consistent Normal Orientation . 73
7.3 Performance . 76

8 Conclusion 83
8.1 Synopsis . 83
8.2 Future Work . 83

Bibliography 85

CHAPTER 1
Introduction

3D models are used in different application domains. Industrial design, entertainment
(games and movies), education and many others need high-quality digital representations
of real-world objects. Scanners are used to generate 3D models of small-scale objects as
well as bigger entities like facades and whole landscapes. Besides sophisticated expensive
scanners for professional use, low-cost devices are available and used more and more often.
The output of scanning devices is not an already completed model of the surface but a
huge set of points – discretized positional values without any connectivity information.
Sometimes the normal vector of a surface point can also be measured by the scanning
device.

Models are commonly represented as a triangular mesh data structure: The surface
is piecewise linearly approximated by triangles. There are many algorithms and methods
in the literature to edit, process and render meshes. Transforming an unorganized point
cloud (points in R3 without normals or connectivity information) into a triangular mesh
therefore is an important operation.

1

1.1 Motivation

As with all measuring procedures, scanning a surface introduces errors. The process of
recovering the surface of the underlying object must account for this. State-of-the-art
techniques tackle this problem by modeling the noise and smoothing the point cloud.
Often, the user has to estimate the extent of the error by choosing the right parameters
of the method. An automatic method that can estimate the noise level of any given
point cloud would eliminate the need for user input.

Inaccurate point samples are not the only challenge. In general, the surface of an
object is sampled non-uniformly by the scanner. Depending on the angle of view of
the scanner, occlusion effects and different material properties, the resulting point cloud
covers the surface of the object unevenly. This is barely accounted for in the current
state-of-the-art. Extending reconstruction methods such that they can deal with the
non-uniformity of the sampling would increase the quality of the reconstructed surface.

One important step when reconstructing the global boundary of an object is to find
a globally consistent normal orientation. The normals of local patches determine the
direction of the patch but not its orientation in the global context. Normals have to be
flipped so that neighboring normals on the surface point in the same direction. As the
problem is global by definition, current techniques need to build global data structures,
which are expensive to compute for very large point clouds. Using the relation between
local points and propagating the orientation in a small vicinity may speed up this process.

1.2 Problem description: Surface Resampling and
Reconstruction

This thesis deals with the problem of surface reconstruction from unorganized point
clouds. The input only includes the positions of the samples (created for example with
a 3D scanner) P = {pi ∈ R3}. There is no additional information about the points or
the underlying surface available. In this thesis, we assume a Gaussian distributed noise
(equation 1.1):

pi = (xi, yi, zi), where xi = x̃i + ε yi = ỹi + δ zi = z̃i + γ (1.1)
The values x̃i, ỹi and z̃i are the real coordinates, ε, δ and γ are isotropic Gaussian

distributed random variables ∼ N (μ, σ2), where σ is the standard deviation and the
mean of the distribution μ is set to 0. Although the distribution of each single point is
assumed to be isotropic, no assumptions are made about the noise level (σ2) in general:
each single point may have a different noise extent σ2

i .
Sharp features like edges and corners cause discontinuities in the surface. Detecting

and handling such cases is an additional challenge. The surfaces of natural objects are
often smooth and lack sharp features. We specifically limit the problem domain to non
man-made objects without sharp features.

Resampling is the process of finding a new sampling for the underlying surface. The
input point cloud is transformed into a new set of points. This is often used to reduce

2

the number of samples (down-sampling) or increase it (up-sampling). In this thesis, the
term is also used for finding new positions for the points, i.e., projecting the points on
the approximated surface to reduce the noise.

The meaning of the term surface reconstruction ranges from finding a model for
the surface (e.g., implicit representation) to generating a triangular mesh of the input
points. We use the term local surface reconstruction for the process of finding the local
surface of each input point without setting all those surface patches in a global context.
Chapter 2 gives an overview of different methods for reconstruction and resampling.
Moving least squares (MLS) is a class of methods which find local approximations of the
underlying surface. One recent technique using this approach is called algebraic point
set surfaces (APSS) [GG07]. In this thesis, we use the general approach of APSS to
generate local surface patches and to resample the point clouds.

Most surface reconstruction and resampling methods are isotropically biased: In
general, the local surface of a point pi is not weighted fairly, because the sampling is
not uniform. Therefore, a region with more dense local sampling has more influence on
the reconstruction. Due to the fact that point clouds are not guaranteed to be sampled
uniformly, this can lead to reconstruction errors (see Chapter 4.1 for details). To address
this problem, we define a new isotropically fair neighborhood definition.

Another challenge for resampling and reconstruction methods is that the noise level
and the sampling density can vary drastically between different point clouds. Even in
the same point cloud, the accuracy of different points may differ. Most reconstruction
methods offer a set of parameters to adjust the behavior of the technique. Although this
enables high-quality reconstructions for different point clouds, it requires that the user
manually tunes the method for each individual point cloud. In this thesis, we discuss
an automatic method that adjusts its behavior to every single point to overcome the
requirement for user interaction.

1.3 Contributions

In this thesis a new approach to use isotropically fair neighborhoods is evaluated. It
extends the algebraic point set surfaces (APSS) method of [GG07]. The contributions
of this thesis are:

• Isotropically fair neighborhoods for local surface reconstruction are introduced.
An algorithm is proposed to build isotropically fair neighborhoods incrementally
in order to handle non-uniformly sampled point clouds. This type of neighborhood
is evaluated by comparison with a state-of-the-art technique that uses isotropically
biased neighborhoods.

• An iterative regression method for finding the optimal neighborhood size for each
point in the point cloud is proposed and evaluated. The overall spherical regression
approach is similar to the method used in [GG07]. Together with the isotropically
fair neighborhoods, this succeeds in reconstructing non-uniformly sampled points
with arbitrary noise levels without any parameter.

3

• We propose a local agreement scheme that determines areas of consensus of the
normal vector orientation. The computation of this step is very cheap and can be
done in parallel. It is integrated into a global approach after the principal idea of
[HDD+92] and [XWH+03].

• An alternative approach for noise estimation and reduction is presented. The
Medial Manifold is defined as the surface that is enclosed by the noise. A method
to efficiently calculate this manifold in 2D is presented.

1.4 Structure of the Work

The rest of the thesis is structured as follows: Previous work on the subject of resampling
and reconstruction of point clouds is summarized in Chapter 2. Also, the special topic
of sphere regression is addressed there.

In Chapter 3, a first approach to estimate the noise level is discussed. It operates
by first constructing a noise geometry that encloses the underlying manifold. Then the
medial manifold as an approximation for the original surface is found. This approach
was successfully implemented in 2D but was not feasible in 3D.

The main contribution is presented in Chapter 4: At first, isotropically fair neighbor-
hoods are motivated and the N-ring neighborhood is introduced. This is then used in an
adaptive regression method to estimate the noise level and approximate the surface at
each point individually. Finally, the chapter concludes with an explanation of the sphere
regression method, which is similar to APSS [GG07] with statistical improvements of
[AsC09].

Chapter 5 describes a way to reuse the neighborhood data structures for the global
normal orientation problem. A local normal agreement scheme is presented, which gener-
ates a local consensus of the normal orientation and is combined with a global approach
after [HDD+92] and [XWH+03].

The presented methods are evaluated in Chapter 7: First, the quality of the resam-
pling and the local reconstruction is compared with state-of-the-art techniques. Then,
results of the local normal orientation method are shown. Finally, the performance of
the individual stages of the reconstruction pipeline is evaluated.

The main findings of the thesis are summarized in Chapter 8. An outlook on im-
provements and future work concludes the thesis.

4

CHAPTER 2
Related Work

This chapter summarizes state-of-the-art methods and recent advances in mesh surface
reconstruction and point cloud resampling. In this thesis, the term surface reconstruc-
tion is used to describe the process of finding a representation – continuous or discrete –
of the whole surface. A resampling method generates a new set of points which lies on
the surface that was sampled to create the original point set. Resampling has to recon-
struct the local surface but does not produce global connectivity information. Therefore,
resampling with connectivity information between the points can be seen as (discrete)
surface reconstruction.

2.1 Resampling

The process of resampling a point cloud is used for up- and down-sampling and to “clean
up” a noisy point cloud, i.e., reducing the noise and generating a more uniform point
distribution across the surface.

2.1.1 LOP

One important approach is the locally optimal projection (LOP) [LCOLTE07]: Let I, J
be two index sets. A set of new points X = {xi}i∈I is generated and placed near the
original points P = {pj}j∈J. Then, attractive forces towards the original points pi and
repulsion forces between the new points xi result in a distribution of the points across the
surface. This dynamic behavior is defined by an iterative system: The initial positions
of the new points are set to the points in P and are denoted X0. Then the equation 2.1
is applied until convergence:

Xk+1 =
∑
i∈I

∑
j∈J

‖xi − pi‖ ∗ θ(‖ξk
ij‖) + λi

∑
i′∈I\{i}

η(‖xi − xk
i′‖) ∗ θ(‖δk

ii′‖) (2.1)

5

I and J are the index sets, θ(x) and η(x) are quickly decreasing functions. ξk
ij =

xk
i − pj are the difference vectors between the original points and the new points and

δk
ii′ = xk

i − xk
i′ denote the difference vectors among the new points. λi controls the

relation between the attraction and repulsion forces.
This procedure has the characteristics of the multivariate L1 median. It is therefore

not sensitive to outliers. In general it is a O(h2) approximation to the underlying surface,
where h is the radius of influence of the fast decreasing function θ(x). [LCOLTE07] A
drawback of the LOP method is that it is computationally expensive and that it is not
well-suited if the original points pi are distributed non-uniformly across the underlying
surface. Scanned point clouds often have this characteristic. [ABCO+01] [Bol10].

An extension of this method is WLOP or weighted LOP [HLZ+09]. New weights are
introduced that account for the distribution of the input points in space. The weighted
local densities are estimated and steer the iterative process. This results in a more even
distribution of the new points across the surface. Figure 2.1 shows the effect of the
distribution weights: the input points of a scanned surface are not uniformly distributed
across the surface. The additional weighting of WLOP ensures that the new points cover
the surface evenly.

Figure 2.1: Left sub-image shows the input point cloud, the middle point cloud was
generated with LOP, the right with WLOP which results in a more evenly distributed
point cloud across the surface. (image from [HLZ+09])

The major problem with the LOP approach is its performance. Although the support
of the individual points is local, it still requires many iterations and depends on the
number of input points. A further advancement of the LOP is CLOP or continuous
LOP [PMA+14]. The attraction and repulsion forces are not computed using the input
points, but by a Gaussian mixture model. At the beginning, each point is represented
as a Gaussian distribution. Then a hierarchical expectation maximization procedure
combines the individual distributions to create a continuous representation of the surface.
Figure 2.2 visualizes the resulting continuous model of the point cloud.

The mixture of Gaussians allows for a more compact representation and can be
implemented efficiently on the GPU, yielding a 7x better performance than WLOP
[PMA+14]. Apart from being faster, the method is also more accurate and produces
surface reconstructions with higher quality.

6

Figure 2.2: Continuous representation of a point cloud (left sub-image) with Gaussian
mixture model. (image from [PMA+14])

2.1.2 MLS

A different approach was introduced by [Lev01] and [ABCO+01]: MLS stands for moving
least-squares, moving local system or meshless surface [Lev01]. The basic approach is
to find a local reference frame and to define a projection on a local polynomial for each
input point. Figure 2.3 illustrates the MLS procedure: A planar approximation on a
point r is found by minimizing the equation 2.2.

N∑
i=1

(n · pi − D)2θ(‖pi − q‖) (2.2)

The plane is then defined by H = {x|n·x−D = 0, x ∈ R3}. θ is a decreasing function
and weights the distance from each point pi to q, which is the projection of the current
point r onto H. This reduces the influence of distant points and effectively defines an
isotropically biased neighborhood. The local reference frame is then centered at q and
the heights fi of the neighboring points to the plane H are calculated. In the next step,
a bivariate polynomial g is obtained by minimizing the function 2.3.

N∑
i=1

(g(xi, yi) − fi)2θ(‖pi − q‖) (2.3)

This polynomial approximates the height values relative to the planar reference frame
on the projection of point r (q). The final position of r is defined as the projection of
r onto the polynomial in regard to H by q + g(0, 0)n; i.e., the height of the final point
is obtained by evaluating the polynomial on position (0, 0) and extruding the projected
point q along the normal vector of H.

The choice of the weighting function θ has a major impact on the smoothing char-

acteristics of the algorithm. It is often set to the Gaussian function θ(x) = e
−x2
h2 , where

h denotes the window or feature size. A large value for h results in higher smoothing of
the surface.

One limitation of the MLS method is that it is targeted towards smooth surfaces
and therefore cannot reconstruct sharp features. The reason for this is the least-squares

7

Figure 2.3: Illustration of the MLS procedure in 2D: The local reference frame H is
found for a point r and is centered on q, which is the projection of r on H. Then, a
polynomial g is found which approximates the heights of the neighboring points pi to
the local reference frame H. Point r is then projected onto the polynomial g to obtain
the final position. (image from [ABCO+01])

approximation, which is also sensitive to outliers. The MLS technique can be extended to
reconstruct sharp features: In [FCOS05] instead of the least-squares operator, the least
median of squares (LMS) is used to obtain a robust approximation of the underlying
surface: argβ mini |fβ(xi) − yi|, where β is the parameter vector of the underlying model
f . The set of points in the neighborhood of a point r is partitioned into subsets which
each describe a local smooth and outlier free surface. The surfaces of each subset are
obtained with the LMS method. Outliers are thereby removed and a robust estimate
of the local surface is calculated. Then the point r is projected onto the closest local
surfaces with a special projection procedure. The drawbacks of this approach are the
high computational demand and the complex handling of special cases during the surface
classification and projection.

With RIMLS [OGG09], robust implicit MLS, a further extended MLS variant is
published, which is designed to handle sharp features. Instead of explicitly modeling
multiple surfaces and applying complicated projection operators on them, RIMLS defines
the minimization function as a robust local kernel regression problem. Instead of the
least squares estimator of MLS, a different objective function is minimized, which is also
differentiable but assigns a small weight to outliers. This results in better reconstruction
quality for objects with sharp edges and other non-differentiable features.

The original MLS first determines a local planar reference frame and then fits a
non-linear surface to the points relative to the local plane. This reduces the number of
variables of the non-linear polynomial to 2. APSS (algebraic point set surfaces) [GG07]
is an extension of the MLS idea to directly fit higher order surfaces to the underlying
points without the need of a planar reference frame. This improves the quality and

8

stability of low sampled point clouds and increases the reconstruction of geometry with
high curvature.

In this thesis an approach similar to APSS is presented. The key ingredient for this
method is the spherical regression of point sets. The next section will give an overview
of the state-of-the-art of robust spherical regression.

2.1.3 Circular and Spherical Regression

The goal of MLS methods like APSS [GG07] is to create an efficient and exact approx-
imation of the local surface at each input point. Fitting a geometric model to a set
of points is equivalent to regression in statistics. The simplest model is the plane (or
line in 2D) and can be calculated with principal component analysis. The planar ap-
proximation of the surface is often sufficient and is used in [HDD+92]. Higher order
models offer more flexibility but are more complex to compute: The effort for fitting m
points to a surface of order n is (m + n)n2 [Pra87]. Spheres (or circles in 2D) are used
quite often, since they have higher flexibility and offer a tighter fit to curved data, while
having reasonable computational cost. According to [AS13] there is no unambiguous
best-fitting quadric regression model but that it strongly depends on the local behavior
of the surface. Thus there is no single regression model which has a best fit for arbitrary
objects. Furthermore, quadrics behave similarly on a small scale (locally). Therefore
the rather simple sphere is preferable for general local surface regression.

Another advantage of spheres is that the radius is a good estimation of the curvature
of the local surface. This section gives an overview of circular and spherical regression.

Fitting a circle to a set of points is a well studied problem in statistics. (See e.g.,
in [Pra87], [AsC09]) The equivalent problem in R3 is fitting a sphere to a set of 3-
dimensional points. In general, there are two different approaches to the solution of this
problem: geometric fitting and algebraic fitting. Note that in both cases the noise is
assumed to be an isotropically distributed Gaussian function.

Both fitting algorithms minimize a specifically defined distance of the points to the
surface of the sphere.

Fr =
n∑

i=1
d2

i → min (2.4)

In equation 2.4 the general minimization problem is stated: Minimize the sum of all
squared distances d of every element in the set with n points.

In geometric fitting the geometric or Euclidean distance is used. The sphere is
represented by the equation 2.5:

(x − cx)2 + (y − cy)2 + (z − cz)2 = r2 (2.5)

Where cx, cy, cz are the coordinates of the center of the sphere and r denotes the
radius. For geometric fitting the distance function of the sphere is defined in equation
2.6:

9

di =
√

(xi − cx)2 + (yi − cy)2 + (zi − cz)2 − r (2.6)

Where xi, yi, zi are the coordinates of point pi of the point set.
If this geometric distance metric is used in equation 2.4, the resulting minimization

function is a non-linear least squares problem which has no closed form solution. It can
be approximated with iterative methods like Gauss-Newton. These are computational
expensive and may have bad convergence properties [AsC09]. The geometric fitting
process is particularly unstable if the points lie approximately in a plane.

The obvious advantage of geometric fits is that they are most accurate, which means
that they equal the maximum likelihood estimation of the sphere parameters (at least
for the assumption of Gaussian noise) [AsC09].

Algebraic fitting methods solve the problem for a different distance definition.
Although the chosen distance function approximates the geometric distance, it has better
algebraic properties. This leads to an elegant reformulation of the minimization problem
that can be transformed into an eigenvalue problem.

In [Pra87] the following parametrization of a sphere (as a replacement to equation
2.5) is chosen:

Aw + Bx + Cy + Dz + E = 0 where w = x2 + y2 + z2 (2.7)

In this representation a sphere is not defined by the 4-dimensional parameter vector
(x, y, z, r) but by the 5-tuple P = (A, B, C, D, E). If A = 0 the equation describes a line.
Therefore this representation can also handle collinear points.

The algebraic parameters can be transformed back into the “natural” representation
of the sphere with equation 2.8:

cx =
B

−2A
cy =

C

−2A
cz =

D

−2A
r2 =

B2 + C2 + D2 − 4AE

4A2 (2.8)

With this notation the general algebraic function to be minimized is stated as follows:

Fa =
n∑

i=1
[Awi + Bxi + Cyi + Dzi + E]2 → min (2.9)

Several algebraic spherical (or circular) fits have been proposed (see [CL05] for an
overview of different circular fits). All of them use the same minimization function
(equation 2.9) and sphere representation (equation 2.7). The important and distinctive
part is the constraint under which the function is to be minimized. One job of the
constraint is to rule out the trivial solution to the minimization problem (A = B =
C = D = E = 0). Other important properties of the constraint are to avoid degenerate
spheres (r=0) and to ensure that the solution of the algebraic problem is close to the
geometric solution (which is equal to the maximum likelihood estimation).

An example of a spherical fit is [Pra87], which is used in APSS ([GG07]). Equation
2.10 gives the constraint for this spherical fit. This constraint is derived directly from

10

the definition of the algebraic spheres and particularly its back-transformation (Equa-
tion 2.8): The algebraic sphere represents a “real” sphere if and only if the expression
B2 + C2 + D2 − 4AD > 0 holds true, since this value, the squared radius, has to be pos-
itive. Equation 2.10 by [Pra87] expresses this as an equality constraint: The algebraic
spherical representation is invariant under scalar multiplication, so the actual value is
not important (see Equations 4.13 and 4.14).

B2 + C2 + D2 − 4AD = 1 (2.10)

It is a convenient property of the algebraic sphere representation that the minimiza-
tion function can be written in concise matrix notation:

Z =

⎡
⎢⎣

w1 x1 y1 z1 1
...

...
...

...
...

wn xn yn zn 1

⎤
⎥⎦ M =

1
n

ZT Z N =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 −2
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

−2 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ (2.11)

The 5x5 Matrix M contains the moments of the matrix Z. The expression PTMP
represents the general algebraic minimization function (see equation 2.9). The constraint
2.10 by [Pra87] is contained in the matrix N.

The algebraic sphere regression problem can now be formulated as a constraint opti-
mization problem:

Fopt = PTMP → min (2.12)
s.t. PTNP = 1 (2.13)

The equality constraint can be included in the objective function with Lagrange
multipliers (introduction of the variable d in equation 2.14):

Fu = PTMP − d(PTNP − 1) (2.14)

Differentiating this equation with respect to P leads to the generalized eigenvalue
problem:

MP = dNP (2.15)

Which can be solved by the eigenvalue problem:

(N−1M)P = dP (2.16)

The columns of P are the eigenvectors of the matrix N−1M. Each eigenvector
contains the algebraic representation of a sphere (Pi = (Ai, Bi, Ci, Di, Ei)). The best
fitting sphere, i.e., the sphere minimizing the distance defined in equation 4.7, is the

11

eigenvector corresponding to the smallest positive eigenvalue [AsC09]. Since the matrix
M is symmetric and positive definite and N−1 is defined as in equation 2.11, the following
holds true: Four eigenvalues of N−1 are positive, one is negative. According to Sylvester’s
law of inertia, multiplication with a symmetric positive definite matrix does not change
the signs of the eigenvalues (see proof in [AsC09]). Therefore there are also four positive
and one negative eigenvalue in N−1M. If the eigenvectors are sorted according to the
ascending eigenvalues, the desired eigenvector is the second column of the matrix P.
This 5-dimensional vector Pi can then be transformed to the “natural” parameters of
the sphere with equation 2.8.

This approach reduces the spherical regression to an eigenvalue problem. In contrast
to the geometrical fitting process it does not require an iterative process with uncertain
convergence characteristics. There are several algebraic fits available, see [CL05] for an
overview of circular fits. They all use the same matrix structure and differ only in the
constraint matrix N in Equation 2.11.

In this thesis a circular fit “Hyper Fit” by [AsC09] is extended to 3D. A reformulation
of the minimization problem (Equation 2.15) makes it possible to solve a symmetric
eigenvalue problem instead of the general asymmetric problem. (See Chapter 4.3)

2.2 Surface Reconstruction

Surface reconstruction aims to obtain a representation of the complete surface of an
object. The most common representation of geometry in 3D graphics is the polygonal
mesh, which is a piecewise linear 2-dimensional surface embedded in R3. Methods which
directly produce meshes are called interpolating methods, since they work directly on
the input points and generate connectivity information for the point cloud. Implicit
methods build an implicit, continuous model of the surface of the object. This implicit
representation has to be discretized and turned into a triangular mesh. The following
sections cover the two categories of surface reconstruction methods.

2.2.1 Interpolating Methods

Interpolating methods find a piecewise interpolation of the input point set P. Starting
point of those methods is often the Delaunay triangulation and the Voronoi diagram,
where one is the dual of the other. The Voronoi cell of a point p ∈ P is defined as
Vp = {x ∈ R3 : ∀q ∈ P\{p}, ‖x−p‖ ≤ ‖x−q‖}. The facets and edges between the Voronoi
cells define the Voronoi diagram. The Delaunay triangulation DT (or tetrahedralization
in R3) is a subdivision of the space into cells (tetrahedrons) such that no point is in the
circumsphere of any other cell. This maximizes the minimum angle of the triangles in
DT .

Cocone and its extension, Tight Cocone [DG03] use these two definitions to find a
watertight surface triangulation of P. The Voronoi cells of a point p are in general
elongated in the direction of its normal vector np of the underlying local surface S. The
cocone of p Cp is then defined as the region between the two cones at the point p (see

12

Figure 2.4). The intersection between triangles in DT and Cp produces a set of candidate
triangles. The final surface is then determined in a manifold extraction step.

Figure 2.4: Left image shows the true surface S around a point p and its normal vector
np. The Voronoi cell of p is illustrated in the middle image. The most distant point
of the Voronoi cell to p is denoted p+. Notice how the elongation of the Voronoi cell
corresponds to the normal vector np. The right image shows the cocone of p: The area
between the two cones touching at p defines the cocone. (image from [DG03])

This approach only works if the sampling satisfies certain conditions which are often
not met in real world point clouds. A modified version of this algorithm [DG03] detects
under-sampled regions and leaves holes there, instead of adding wrong triangles to the
final surface. Then the erroneous parts of the triangulation are repaired to obtain a
water tight surface for the point cloud.

The Tight Cocone works well for evenly sampled objects and even for cases with local
sparse regions. In general, sparsely sampled point clouds are problematic and introduce
artifacts to the reconstructed triangulation. The method published by [OMW13] is
specifically designed to process point clouds of different sampling densities. The general
approach is to find the closed triangulation which minimizes a global minimization func-
tion. As a criterion for each triangle the maximum edge length is chosen. The minimum
boundary Bmin is defined in equation 2.17.

Bmin = arg min
B∈B

∑
t∈B

max
e∈t

‖e‖ (2.17)

B is the set of all non-self-intersecting closed triangulations of the input point set.
Since finding the minimum of equation 2.17 is NP-hard, an approximation of Bmin is
calculated instead, the boundary complex BCmin. BC is a subset of the Delaunay
triangulation of the point set such that every vertex in BC has at least one umbrella
in BC. An umbrella of a vertex v is defined as a closed triangle fan centered at v. So
instead of finding the minimum triangulation over all elements in B as in equation 2.17,

13

the best triangulation in BC is obtained. The choice of the Delaunay triangulation
for the BC is motivated by the minimizing criterion of equation 2.17: The Delaunay
triangulation also minimizes the maximum edge length.

The boundary complex BCmin can be approximated well and then is the starting
point for further topological operations: Artifact boundaries are determined and hull
holes are filled. An inflate step produces a manifold triangulation and a sculpturing step
is used to find the final interpolation of the point set. Figure 2.5 illustrates the process
of turning the boundary complex into the final triangulation in 2D.

Figure 2.5: Basic topological operations on the boundary complex in 2D to generate the
final interpolation of the point set: The inflate step turns the degenerated hull into a
manifold (center image). Sculpturing exposes the interior points to the boundary (right
image). (image from [OMW13])

The method proposed by [OMW13] produces good results even in the presence of
sparse sampled point clouds. One drawback of the technique is that it requires global
data structures (the Delaunay triangulation) to generate the boundary complex and is
therefore not suited for a fast parallel implementation.

Adamy et al. [AGJ02] describe an approach of choosing a manifold locally for each
vertex: The umbrella is defined as the triangles from the Delaunay triangulation which
are incident to a vertex and satisfy a certain criterion. This definition is then used by
[KA08] to circumvent the need to construct a global Delaunay triangulation: For each
vertex v of the input point cloud, a heuristic generates a set of candidate triangles Tv

incident to v based on the nearest neighbors. Then elements of Tv are removed until a
triangle fan centered at v remains – the umbrella. Under a certain sampling condition
this method succeeds in generating a triangulation covering the whole point cloud. The
advantage of this is that the computations are independent for each vertex and can
therefore be executed in parallel. The major shortcoming of this technique is that it
relies on the quality of the sampling of the input and also on a good estimate of the
spacing between the points.

14

2.2.2 Implicit Methods

In contrast to interpolating methods, implicit techniques do not produce a mesh by
generating connectivity information between the input points. In a first step, a functional
model of the underlying surface is defined based on the input point cloud. This analytic
representation then has to be discretized into a triangular mesh. The surface of the object
is described by an implicit function such that the zero-set of this function represents the
boundary of the object (the desired surface). The quality and performance of this class
of methods is dependent on the used functional model and the discretization method.

One class of methods of implicit surface reconstruction is RBF, radial basis functions
[CBC+01]. Techniques of this class require points with oriented normal vectors as input.
In a first step, the point cloud is expanded with additional points. For each point two
vertices are created along the normal vector: one in the positive direction, one in the
negative direction with a certain offset ε. Figure 2.6 illustrates the resulting extended
point cloud Pext, which forms a volume around the actual surface. The value of ε has to
be chosen s.t. the outer and inner boundary do not intersect with each other and with
the actual surface.

+
_ε

{
Figure 2.6: Extending the input point set (black) for RBF: creating inner (green) and
outer points (blue) along the normals. The value of ε has to be chosen such that no
intersections occur.

In the next step, a specific value is assigned to every point of Pext: 0 to the input
points, −1 and +1 to the outside and inside points, respectively. The most expensive
procedure of RBF reconstruction is to find an interpolating function f : R3 → R which
evaluates to the specific values for all points in Pext. This interpolant is composed of
multiple radial basis functions:

f(xi) =
N∑

j=1
ciφ(‖xi − xj‖) = yi xi ∈ Pext ∀i ∈ [1, .., N] (2.18)

Points xi and xj are from the extended input set Pext and yi are the respective
values ∈ {−1, 0, 1}. The function φ is a radial basis function, for example the Gaussian
function. The coefficients ci determine the interpolating function and are found by
solving a system of linear equations. In order to decrease the runtime of the method,

15

the number of basis functions can be reduced: Instead of using all input points as centers
for the basis functions, only a sub-set is used. (see [CBC+01] for details).

The main problem of this method is the computational effort: Solving the system of
equations requires O(N3) operations, where N is the number of basis functions. Solving
the system of equations in parallel using the GPU [CGGS13] can increase the perfor-
mance. Still, it requires a few hundred seconds to find the interpolating RBF repre-
sentation for even small (≈24000 vertices) point clouds [CGGS13]. Furthermore, this
technique relies on oriented normal vectors and multiple parameters: ε for the extended
point cloud, the amount of support of the radial basis function and the size of the
evaluation grid (discretization).

Poisson surface reconstruction [KBH06] has the same goal as RBF: defining
an indicator function that defines an inside, outside and the actual surface. Instead of
building an interpolating function with non-local support for each input point, the whole
problem is considered as a Poisson problem (partial differential equation): Δf = ∇V ,
where Δ is the divergence of the gradient field of a function and ∇ is the divergence of a
vector field. That means, the gradient of the scalar function f (f is the approximation
of the indicator function of the surface) is estimated by the vector field V , which is given
by the input points and their normal vectors. The inverse of the gradient of f is then the
approximation of the indicator function, which can then be used to extract the surface
of the object. The Poisson equation is used in physics and other domains and is well
researched.

One shortcoming of the Poisson reconstruction is that it tends to over-smooth the
data. Kazhdan et al. [KH13] published the screened Poisson reconstruction which in-
troduces an interpolation constraint. A point weight factor determines how closely the
surface passes through the input points. Figure 2.7 shows an example of this behavior
in 2D: The red graph shows the reconstruction with Poisson reconstruction, the blue
line was obtained with screened Poisson reconstruction. With the interpolation con-
straint, the method creates a better approximation of the input points and prevents
over-smoothing of the data. This approach allows the formulation as a sparse problem
and can be solved efficiently. Further optimizations by [KH13] result in a multi-threaded
implementation which scales linearly with the number of input points.

Setting the point weight (parameter of the interpolation constraints) to a high value
(≥ 16) results in a surface that goes through the input points. While this may not
be desirable in all cases, it can be used to simulate the behavior of an interpolating
technique. In this thesis, screened Poisson reconstruction is used to assess the quality of
our resampling and normal computation.

16

Figure 2.7: Comparison of points and the reconstructed surface projected on 2D: Left
sub-image: Poisson reconstruction tends to over-smooth the data-points. Right sub-
image: screened Poisson reconstruction has a better approximation of the underlying
surface due to the interpolation constraint. (images from [KH13])

17

CHAPTER 3
Resampling on Global Manifold

The problem of point-cloud resampling is a well-researched topic. See Chapter 2 for an
overview of state-of-the-art methods. In the context of this thesis, resampling describes
the process of denoising a point cloud, i.e., reducing the noise while preserving the details
and structure of the point data. In this thesis, two approaches are discussed: Chapter
4 describes a local, regression-based approach. In this chapter, we describe our first
attempt, a global approach:

The method starts by creating a global approximation of the surface, and then,
resampling is performed on this approximated manifold. This approach can then be
easily extended to a full surface-reconstruction method: Once the global connectivity of
the points is established, the resampled points constitute the reconstructed surface.

The challenging problem is to find a well-suited approximation of the original mani-
fold based on the set of input points P. If a sampling condition is fulfilled, the surface
can be reconstructed by computing local umbrellas (see Section 4.1.1 for the definition
and computation thereof). Umbrellas are basically local approximations of the global
surface. The union of all local umbrellas is then the reconstruction of the point cloud.
This works only under special conditions: a low noise level and uniform sampling are re-
quired. See [GKS01] for specific sampling conditions. In [KA08], a similar local-umbrella
reconstruction technique is described.

Point clouds which satisfy the specific sampling conditions can be reconstructed
and resampled efficiently with such local umbrella methods. This section describes a
unique approach to tackle the noise estimation and surface reconstruction problem for
those areas which cannot be reconstructed by local umbrellas. The basic idea is to
model the noise explicitly as geometry and reconstruct the surface by calculations on
the noise geometry. Section 3.1 gives an overview of the idea and lists the assumptions
and simplifications that were made. Also, a formal definition of the “medial manifold”
is given. The construction of this manifold surface in 2D is described in Section 3.2.
Finally, Section 3.3 gives reasons why this approach was not carried out in 3D and the
limitations of this idea.

19

3.1 Idea and Definition

p
s p

e

Bl

Bu

Figure 3.1: Visualization of the noise geometry in 2D: The dark blue line represents the
actual surface, the sample points are distributed around the original manifold. Connec-
tion of the outer points results in the light blue noise volume (noise area in 2D). Bu

represents the upper boundary, Bl the lower boundary of the noise geometry. The two
sets are connected by the start- and endpoint ps, pe.

The surface of a model is a 2D manifold embedded in the 3D space. Sampling the
surface (with 3D scanners) introduces errors or deviations from the actual surface. Under
the assumption of uniformly distributed Gaussian noise, the resulting samples are equally
distributed between the two half-spaces divided by the surface (i.e., in- and outside for
an unbounded manifold). The hull of these points forms a volume in which the actual
surface resides. Figure 3.1 illustrates this situation in 2D: Sampling the original surface
generates the point set, which is not exactly on the manifold but forms a “tube” around
it.

The goal of this method is to generate a noise volume, based solely on P, and then
define a manifold that lies within this volume. This manifold is called “medial manifold”
and represents the reconstructed surface. Intuitively speaking, it is the manifold that lies
in the middle of two outer manifolds. For the 2-dimensional space, the medial manifold
is an edge chain. It is defined as follows:

Definition 3.1.1. Let a closed piece-wise linear curve C decompose itself into two non-
empty subsets, the boundaries Bu and Bl, separated by the end points ps, pe. The
medial manifold MM of C is then the set of points inside the area enclosed by C for
which a maximum circle centered in the point touches both Bu and Bl. MM is a singly
connected piece-wise linear curve between ps and pe.

This definition is related to the medial axis: It is more restrictive than the medial
axis, since a point on MM has to be equidistant to the two distinct boundaries Bu and
Bl, instead of two arbitrary points on C. Therefore, the set MM is a subset of the

20

corresponding medial axis, in which the small branches of the medial axis, which refer
to the same boundary (Bu or Bl), are removed.

According to this definition, it is not required that the two sets Bu and Bl are disjoint.
Therefore, it is possible that they share points and collapse to one line. In those areas,
the noise is assumed to be 0 and Bu = Bl = MM . As an additional constraint, we state
that the two lines Bu and Bl must not cross each other.

Definition 3.1.1 assumes the knowledge of C and its decomposition into two curves
Bu and Bl. Section 3.2 gives a possible heuristic for their computation.

3.2 Construction in 2D space

In order to find the surface reconstruction of noisy and not uniformly sampled points,
we calculate the “medial manifold” (see definition 3.1.1). In a first step, a boundary C
and its partition into two sets Bu and Bl (see Figure 3.1) has to be found for the point
set P. We used a simple heuristic that relies on a dense and regular sampling.

Approximation of the outer boundaries Bu and Bl

The outer boundaries are closed, piecewise linear curves. Our approach first generates
a set of edges E connecting the points of P. The resulting graph is required to be
connected such that a closed, global boundary can be found. The boundary C is then
extracted from the edge set. A simple approach would be to connect each point of P
with its k-nearest neighbors (k-NN). This has the drawback that the resulting graph is
not guaranteed to be connected. Because of this limitation we do not use this approach.

Instead, we set E to be the edges of the Delaunay triangulation DT of the input
point set P. This is guaranteed to generate a connected graph. A drawback (for our
case) of the Delaunay triangulation is that it contains the convex hull of P. Its boundary
is in general not a suitable approximation for Bu and Bl. Figure 3.2 depicts the Delau-
nay triangulation of a sampled curve in 2D. It can be observed that many edges of the
Delaunay triangulation are well suited to approximate the outer boundaries of the man-
ifold. On the other hand, a few long edges connect far away points to obtain the convex
hull. In order to get a tight fit to the original surface and to avoid such connections, the
edges exceeding a certain length are removed. A possible threshold can be computed
with: tl = median(length(E)) ∗ c. The median is well suited for this purpose since it is
robust against outliers (long edges). The choice of the weight c defines the amount of
smoothing. In our experiments, a value between 8 and 15 works well for the parameter
c. Filtering the edges of DT(P) with threshold tl results in edge set E′. The right image
of Figure 3.2 shows the result of filtering the edges with a value of c = 10. This heuristic
assumes that the number of short edges is significantly higher than the number of long
edges. This requires a dense and regular sampling with respect to the feature size. With
sparse sampling, some of the long edges that are important connections (i.e., define a
feature of the geometry), would be removed. Also, it may fail for certain geometric

21

structures: If the underlying manifold touches itself on some positions (e.g., a loop), the
resulting edge set E′ cannot recover the connectivity of the manifold correctly.

Figure 3.2: Left: Delaunay triangulation of the samples. Right: Removing all edges,
that are longer than 10 ∗ median(length(E)), approximates the underlying manifold.

The extraction of C out of E′ is done by selecting one starting point ps. This point
has to be adjacent to the outside of P, i.e., a point outside of the convex hull of P can
be connected with ps with a line lps such that lps does not intersect any element of E′.
Starting at ps, the outer edges of E′ are traversed: At each point, all incident edges are
sorted according to their angle with respect to the direction of traversal. Then, the edge
with the smallest angle is added to C and the next point on the boundary is reached.
This procedure generates a closed line chain, which is the outer boundary of E′.

Finally, C is partitioned into its subsets Bu and Bl. These subsets are connected at
the point ps and pe. The endpoint pe is chosen in a way that both ps and pe divide the
set C into two subsets Bu and Bl of approximately the same length.

Calculation of the medial manifold

Since the outer boundaries are piecewise linear, the manifold itself is also composed of
linear pieces. Figure 3.3 illustrates the basic principle: Circles are fitted between the
two piecewise linear boundaries. Algorithm 3.1 finds the vertices of the medial manifold
MM by constructing circles based on the geometric relation between the boundary edges.
Consider the circles of MM as a function of a parameter u ∈ {1; 0}: S(u) = [m(u), r(u)],
where m(u), r(u) are the position of the center and the radius, respectively. As long as
the circle touches two lines (of both boundary sets Bu and Bl), the radius changes only
linearly with the position of the circle center on MM : Consider two distinct lines a, b: If
they are parallel, the enclosing circles between the lines have constant radius. If not, the
lines intersect at a point Pi. The centers of all circles that touch a and b lie on the angle
bisector of a and b that goes through Pi: For each point m(u) on the angle bisector, the
minimum distance to a is equal to the minimum distance to b, which equals the radius of
the corresponding circle r(u). Advancing on the angle bisector to a new point m(u ∗ μ)
increases the minimum distance to a and b by μ.

Both m(u) and r(u) are continuous, linear functions, as long as no additional line
intersects the corresponding circle. That means that only the vertices of the medial

22

Figure 3.3: Basic principle of manifold construction: Both boundaries are traversed, and
at each step a new circle is constructed between the corresponding lines

manifold, i.e., the discontinuities of S(u) = [m(u), r(u)], have to be obtained. The
vertices together with their connectivity define MM . The rough outline of the algorithm
for calculating the medial manifold can be seen in Algorithm 3.1. Its function 3.1 is stated
in Algorithm 3.2.

The basic principle of the algorithm is illustrated in Figure 3.4.
The boundary is traversed on both sides (Bu and Bl) while keeping track of the

current active edge on the upper (ui ∈ Bu) and lower (li ∈ Bl) side of the boundary.
In each step, the algorithm finds a circle (if possible) that fits between the two active
line segments. The center of the circle is a new point on the medial manifold and is
connected to the center of the previous circle.

If no previous circle is present (i.e., at the start point ps or if the two boundaries
touch at some point), the intersection between the boundaries is treated as the center
of a circle with a zero length radius.

The procedure of finding the next point on the medial manifold is divided into two
phases: The first phase is the construction of the initial circle Si, shown in sub-image (a)
of Figure 3.4: The orthogonal vector on the endpoint of edge u1 is intersected with the
bisector of the angle of the two edges u1 and l1. This circle is guaranteed to touch the
two lines (but not necessarily within the line segments of u1 and l1). This is done with
both active edges. The circle having a center closer to the previous computed medial
manifold circle (MMi in Figure 3.4(a)) is chosen to be the initial circle.

The second phase (Algorithm 3.2) deals with adapting the initial circle Si to the
edges succeeding the current edges (u1 and l1). To achieve this, the initial circle is first
intersected with the boundary belonging to the active edge (in this example u1). If it
intersects with the boundary, a new circle is formed using the current edges u1 and l1

23

u1
u1

l1 l2
l3

u3
u2

l1
Si

SSiMMii
MMi+1

MMi

a) b)

Figure 3.4: Medial manifold generation through circle fitting to two piecewise linear
boundaries.

and the intersecting edge. Due to the fact that the boundary consists of line pieces, the
limiting entity for a circle can be an edge or one of its end points.

This procedure is repeated until a circle is found which does not intersect the cur-
rent boundary. Afterwards, the same algorithm is applied using the other boundary
(belonging to edge l1) for intersection. In Figure 3.4(b), Si intersects the edges u2 and
u3. The new circle is constructed with edges u1, l1 (the current active edges) and u2
(the intersected edge). Function construct_circle of Algorithm 3.2 is a special case of
the Apollonius’ Problem [GR04]. Since we know the orientation of the edges and the
rough positioning of the solution circle, there exists a unique solution.

The newly found circle MMi+1 does not intersect any boundary edge and is added
to the set of medial manifold vertices. The connectivity between the generated circles
is stored and the active edges are updated: For each boundary set, the furthest edge
touching the new circle is the new active edge. If no new edge is intersected by Si, the
generating edge is set to the next edge on the boundary.

Figure 3.5: Result of the medial manifold calculation

An illustration of the overall construction process of the circles in the noise geometry
is shown in Figure 3.3. Examples of point clouds can be seen in Figures 3.5 and 3.6.

24

Algorithm 3.1: Piecewise linear computation of the medial manifold. fit_circle
is described in Algorithm 3.2.

Input: Boundary-sets Bu, Bl, starting point ps, end point pe

Output: Set MM containing the edges of the medial manifold in sorted order
1 MM.add([ps, epsilon]) ;
2 eu = adjacent_edge(ps, Bu) ;
3 el = adjacent_edge(ps, Bl) ;
4 while end_reached(eu) == false && end_reached(el) == false do
5 Su = initial_circle(eu, el) ;
6 Sl = initial_circle(el, eu) ;
7 if distance(Su, MM.last) < distance(Sl, MM.last) then
8 [Sf , eu, el] = fit_circle(Su, eu, el, Bu, Bl) ;
9 else

10 [Sf , el, eu] = fit_circle(Sl, el, eu, Bl, Bu) ;
11 end
12 MM.add(Sf) ;
13 end
14 return MM ;

3.3 Discussion

This section discusses the limitations and drawbacks of the proposed solution and ex-
plains why the implementation of Section 3.2 was not extended to 3D.

The prerequisites are non-trivial by themselves: The heuristic for the calculation
of the boundaries Bu and Bl of the noise geometry, presented in Section 3.2, has a
big influence on the quality of the medial manifold. If insufficiently many edges are
removed from the convex hull, important details of the geometry and the point cloud
cannot be reconstructed. The removal of too many edges results in a noisy geometry
that degenerates to line segments. Therefore, the noise level cannot be assessed and the
medial manifold reconstructs only the noise. The problem of finding the appropriate
noise level is thereby just shifted into the boundary extraction phase.

During construction of the medial manifold, points with smaller deviation from the
true geometry are likely to be ignored, because they are completely contained in the
hull, supported by neighbors with higher noise extent. This means that points with
bigger deviations have significantly more influence on the resulting medial manifold.
This procedure is not robust and very sensitive to outliers, as they can distort the noise
geometry arbitrarily – and therefore also the medial manifold.

There are multiple reasons why the extension of the present method to 3D is not easy:
The most obvious one is that the implementation of Section 3.2 relies on the notion of
direction. A curve AB in 2D has two directions: From A to B or vice versa. By defining
one of them to be the general direction (from ps to pe in Section 3.2) the connectivity
of the constructed circles, as well as the set of next active edges, is always clear. The

25

Algorithm 3.2: fit_circle of Algorithm 3.1. Calculating the best fitting circle
based on an initial circle Si, the generating edge ecis and its opposite etrans.

Input: Initial circle Si, generating edge ecis and its opposite etrans, boundary
edge sets Bcis and Btrans

Output: Fitting circle Sf , new active edge eactive and new opposite edge eopp
1 eactive = ecis ;
2 Icis = intersecting_edges(Si, Bcis) ;
3 for ei ∈ Icis do
4 eactive = ei ;
5 Si = construct_circle(ei, ecis, etrans) ;
6 Icis = intersecting_edges(Si, Bcis) ;
7 end
8 eopp = etrans ;
9 Itrans = intersecting_edges(Si, Btrans) ;

10 for ei ∈ Itrans do
11 eopp = ei ;
12 Si = construct_circle(ei, eactive, etrans) ;
13 Il = intersecting_edges(Si, Btrans) ;
14 end
15 Sf = Si ;
16 if eactive == eactive then
17 eactive = next_edge(eactive) ;
18 end
19 return Sf , eactive, eopp ;

equivalent simplex of a line in 3D is the triangle. Instead of having a start and an
endpoint, a circle of edge segments would be the starting set and the resulting manifold
would then be a disc (topologically). Since there are infinitely many possible directions
along the surface of a disc, there is no easy way to define a unique direction. Instead, an
advancing front mechanism would be needed. This, on the other hand, makes the whole
selection of the next facets (the 3D equivalent of line segments) hard.

Finding the appropriate spheres between two piecewise linear boundaries (triangle
sets) is also more complex: In two dimensions, circles are constrained by edges, i.e.,
the supporting lines or the respective endpoints. In 3D, spheres can be constrained by
points, edges (and their supporting lines) and facets (and their supporting planes). This
requires a far more complex code-path to cover all possible cases. Just consider a vertex
on one boundary: In 2D, exactly two boundary-edges are incident to the vertex, and
they can have a convex or a concave angle (in relation to the incident boundary). In 3D,
a vertex on the boundary can have an arbitrary number of incident boundary triangles
forming the umbrella of the vertex. The umbrella itself cannot be classified as convex or
concave easily.

The presented method, for both 2D and 3D, is a sequential approach. A local, easily

26

Figure 3.6: Example of the manifold generation of a different point set

parallelizable method is more favorable, because it can benefit from modern graphics
hardware and multiprocessor systems.

27

CHAPTER 4
Local Resampling using

Isotropically Fair Neighborhoods

In Chapter 3, a global approach to surface reconstruction and resampling was introduced.
This method works for certain assumptions (dense regular sampling) in 2D. Unfortu-
nately, a generalization into three dimensions proved to be difficult. In real-world appli-
cations, resampling (denoising of a point cloud) and reconstruction of three-dimensional
data is of great importance. The methodology of Chapter 3 is not well suited for this
purpose. Hence, a different approach was pursued, which does not suffer from these
limitations.

The overall goals for this new technique are that it should be well suited for 3D and
can be subdivided into local sub-problems, such that it is scalable for big data sets.

This chapter introduces such a new technique for point-cloud resampling. The un-
derlying principle of this method is based on “Algebraic Point Set Surfaces” (APSS)
[GG07]: The surface of the scanned object is locally approximated with sphere surfaces
which are fitted to the scanned points with non-linear regression. Projecting points on
the union of the sphere surfaces produces a resampling of the point cloud. See Chapter
2 for a more detailed explanation of this method.

In this thesis, APSS [GG07] is extended and improved by the following aspects:

• Isotropically fair neighborhood definition

• Adaptive local fitting scheme

• Slightly improved regression method

State-of-the-art surface reconstruction methods use the distance between points to de-
termine the influence (or weight) of a point to its neighbors (e.g., [LCOLTE07], [HLZ+09],
[ABCO+01], [GG07]). The most established and intuitive metric used is the Euclidean
distance. In APSS, for example, the distances are used as a weighting for calculating

29

the local regression spheres. For reasons of efficiency, the distances are not actually
calculated between all points. Each point has an associated set of points (or neighbor-
hood) which has an influence on the current point. This neighborhood is defined as
the k-nearest neighbors with a fixed number k. The parameter k has to be chosen by
the user and is used as a trade off between noise reduction and feature preservation. If
the noise level and the sampling density are uniform throughout the point cloud, this
approach works well. In general, surface patches of an object may have different levels of
sampling densities. This leads can lead to artifacts and reduces the overall quality of the
reconstruction or the resampling. In Section 4.1, Isotropically Fair neighborhoods are
introduced and motivated. They are designed to handle irregular and sparse sampling.

In reconstruction techniques like APSS [GG07], the surface is locally approximated
by fitting a (mostly non-linear) model to a set of points. The size of this set of points is
usually fixed. Common examples are k-nearest neighbors (k-NN) or a ball neighborhood
(include all points inside a ball of fixed radius). These fixed-sized neighborhoods define
the quality and the smoothing factor of the whole method. This works well for point
data sets with constant noise levels, but can lead to artifacts with scanned point clouds
of real-world objects, which often have varying noise levels (see [ABCO+01] [Bol10]). In
Section 4.2, an adaptive method to solve this problem is described. It estimates the
noise level at each point of the input data and increases the neighborhood accordingly.

The actual regression method, which uses an algebraic representation of spheres, is
very similar to APSS. The special algebraic form leads to a closed-form solution of the
non-linear regression problem but also introduces a statistical bias. A circle regression
method of Chernov [AsC09] is adapted in Section 4.3 to be used as a sphere estimation
method for the local reconstruction. This method has a smaller bias while still providing
a closed form solution to the problem.

4.1 Isotropically Fair Neighborhoods

Most methods of the state-of-the-art use a distance function to weight or rank relations
between points (mostly either the Euclidean distance or a function of it). All those
methods have in common that they apply equal importance to all directions. That
means, the distance increases in all directions with the same amount. If a neighborhood is
defined by such a function (e.g., k points with the smallest distance to a reference point),
we call it isotropically biased. The neighborhood is influenced by the sampling of the
points in this region, therefore it is biased. Our goal is to find a distance function (note
that it is not a real metric in the mathematical sense) and a corresponding neighborhood
that is less influenced by the sampling. We assume that the point cloud was obtained by
sampling a closed manifold surface. That means that we do not cover the case of holes
in the geometry.

30

k =5 k =5

p p

p p

n n

PCA PCA

(a) (b)

Figure 4.1: Sub-image (a): isotropically biased neighborhood, only distance is taken
into account. Sub-image (b): isotropically fair neighborhood classifies points according
to multiple parameters.

Figure 4.1 illustrates the overall problem in 2D: In the upper sub-images, the black
dots form the point cloud of a sampled line. Due to scanning artifacts there is a gap
in the middle of the point set. The usual approach (left sub image of Figure 4.1) takes
a fixed-size neighborhood (in this case k = 5) and calculates the regression line with
PCA (principal component analysis). The resulting normal vector is directed straight
up, although the gradient of the line – which was sampled in the beginning – would be
different. The right side of Figure 4.1 displays a different neighborhood, which adapts
to the local sampling. This neighborhood takes the same number of points and uses the
same model (PCA) but produces a regression line which is much closer to the original
geometry. Note that in 2D, we assume that the desired geometry is a closed curve

31

without holes.
In this thesis we use the term isotropically biased for the standard, Euclidean

distance-based neighborhoods.
Let’s consider a point on the reconstructed surface. The points in the vicinity of the

reference point are weighted by the distance between them and the reference point. If the
weights are not distributed evenly among all directions, the coverage of the weighting
is biased by the sampling of the surface. In contrast to this, an isotropically fair
neighborhood definition finds a set of points with a balanced or “fair” influence in all
directions (“isotropic”) of the reconstructed manifold.

One idea of implementing an isotropically fair neighborhood is to iteratively perform
PCA on increasing point sets and determine the best suited ellipse (or ellipsoid in 3D)
defining the neighborhood. This would also require a parameter defining the initial point
set size, which has a big influence on the result. This approach is also limited because it
assumes that the local neighborhood can be approximated well by an ellipse (or ellipsoid
in 3D).

In this thesis, a multi-ring (or multi-layer) approach is used. This divides the process
of finding an isotropically fair neighborhood into two phases: Finding a small immediate
neighborhood for each point and then merging the immediate neighborhoods to arbitrar-
ily large sets. This has the advantage that we do not make general assumptions about
the shape of the object and that we can also compute the first phase independently for
each point. For every point pi of the input point set, a zero ring (i.e., a set of immediate
neighbors) Zi is computed. The neighborhood is then defined recursively. The r-ring
neighborhood of point i, nhr(pi), is the union of all zero-rings of all points in nhr−1(pi)
(the current neighborhood). Then the final neighborhood NHi of point pi is composed
of all rings up to a specified number rmax. A possible implementation of this scheme is
defined in Algorithm 4.1.

The first loop, which constructs the set Z, is just used for memoization, i.e., creating
a look-up table. This way, the function zeroRing is called exactly once per input point.
Otherwise it would be called each time line 11 is executed. The choice of the zeroRing
is important for the properties of the resulting neighborhoods. The N-Ring construction
itself does not guarantee a isotropically fair neighborhood. The zeroRing itself must be
isotropically fair such that the whole N-Ring neighborhood has this property. In sections
4.1.1 and 4.1.2, two candidates for the zeroRing function are discussed.

Algorithm 4.1 produces a neighborhood for each input point. For certain tasks in
surface reconstruction (e.g., regression), a weighting function between a point and its
neighborhood is needed. The following weighting scheme of points pj in the (N-Ring)
neighborhood of point pi is proposed:

φpi(pj) =
wj

ri(pj)
wj =

1∣∣Zj

∣∣ ∑
pk∈Zj

‖pj − pk‖ (4.1)

Let wj be the average distance between point pj and the neighbors in its zero-ring
Zj . The quantity wj is computed for every point in the point cloud. This weight is

32

Algorithm 4.1: Accumulation of the N-Ring neighborhood
Input: Set P = {pi} of n points in R3, function zeroRing, number of rings rmax
Output: Set NH = {NHi} of neighbors for every point i

1 Z = {} ;
2 NH = {} ;
3 for pi in P do
4 Zi = zeroRing(pi);
5 end
6 for pi in P do
7 NHi = Zi ;
8 for 1 to rmax do
9 NHtmp = NHi ;

10 for pj in NHtmp do
11 NHi = NHi ∪ Zj ;
12 end
13 end
14 end
15 return NH ;

additionally divided by the index of the ring, ri(pj) (pj was found in the r-th ring in the
N-Ring neighborhood of point pi).

The rationale behind this formula is to favor points that have long connections in their
zero-ring neighborhood. The weighting of the zero-ring lengths (wj) is normalized over
all elements of the current neighborhood. Furthermore, points in higher-degree (bigger
values for ri(pj)) rings have less influence on the weighting. This favors near points
and reduces the smoothing effect. This weighting scheme is included in the spherical
regression presented in Section 4.3.

In our empirical tests, we only need up until r = 3 rings for all tested data sets and
noise levels. The total 3-ring neighborhoods consist of about 30 to 50 elements. Our
adaptive regression method (see Section 4.2) never chooses more than the points of the
3-ring neighborhood. Depending on the noise level, less rings suffice. Therefore, it is
not a necessity to compute all rings for all input points. During the adaptive iterations
presented in Section 4.2, the neighborhood is constructed and extended on the fly.

In the following two sections (4.1.2 and 4.1.1), two possible candidates for the zeroR-
ing function are presented.

4.1.1 Local Umbrella Zero Rings

Isotropically fair neighborhoods are designed to account for non-uniform sampling of a
surface. The multi layer approach, discussed in Section 4.1, requires a zero neighbor-
hood to iteratively find the set of points that make up the neighborhood. An important

33

requirement of the zero neighborhood is that it has an even coverage of the space sur-
rounding a point pi.

An umbrella of a point pi in a triangulation is defined as the set of points that are
directly connected to pi with an edge. An umbrella is well suited for a zero neighborhood
since it captures – by definition – the geometry around a point on the surface. In our case
we do not have a triangulation to extract the umbrellas from, but we can approximate
them. Umbrella approximations are also used in some surface reconstruction methods
(e.g., [AGJ02] and [KA08]). See Section 2.2.1 for more information about umbrellas and
their usage in surface reconstruction.

The local umbrella approximation method used in this thesis is motivated by the
findings in [OMW13]. The overall goal of this technique is to find for each point pi an
umbrella with low curvature (i.e., the angle between the facets is maximized) and with
minimal edge lengths. These properties are motivated by the Gestalt Principles. Figure
4.3 illustrates the basic outline of the approximation.

Figure 4.2: Optimization of the umbrella edges: the green point c is the center of the
umbrella. The current point pj is evaluated: the maximum distance to its neighbors and
to the center point is calculated. Since the direct connection of the neighboring points
pi, pk is shorter than the maximum of the incident edges of pj , it gets removed (together
with its edges).

Our approach first finds a set of candidate neighbor points C(pi) with a fixed isotropi-
cally biased neighborhood (k-nearest neighbors, with k = 16). Then the regression plane
Hi of C(pi) is computed with principal component analysis. Every point of C(pi) is then
projected onto Hi. The projected points p′

j are sorted according to the angle of the
vectors from p′

i to p′
j . The initial triangulation T (pi) is obtained by connecting all outer

points p′
j with the center point p′

i and connecting the outer points in a clockwise fashion
(see right sub-images of Figure 4.3).

T (pi) is then improved in a greedy manner (see Figure 4.2): For each point pj the

34

Figure 4.3: Left sub-images: points of neighborhood are projected onto common regres-
sion plane (line in 2D). Right sub-images: Points are sorted with respect to their angle
to the center point pi. Points get removed to reduce the total edge length until criterion
reached (e.g., number of points reached a threshold).

distances to the adjacent neighbors in the umbrella (pi, pk in Figure 4.2) and the center
point is calculated. If the maximum of those lengths is greater than the direct connection
of the neighbors, pj is removed from the umbrella along with its edges. This is done until
a threshold is reached (in our experiments 6 was an appropriate value) or if no further
flips are possible. Note, that in every step the overall edge length (sum of all lengths of
edges) is reduced.

The umbrella neighborhood for a point pi is then defined to be the set of points that
constitute the local umbrella T (pi). Tests carried out with this neighborhood showed
inferior results than with the neighborhood described in Section 4.1.2. Particularly in
regions with high curvature, the performance of the umbrella neighborhood is worse.
An explanation for this behavior is that during the umbrella construction process, the
points are projected onto the regression plane of the point set. This introduces artifacts
in neighborhoods with high curvature.

35

4.1.2 BSP-Neighborhood Zero-Rings

The incremental process of finding an isotropically fair neighborhood (see Section 4.1) re-
quires a method to create the immediate neighborhood of a point. The BSP-neighborhood
proved to be better suited than the aforementioned Umbrella Zero-Rings (Section 4.1.1).
The Binary-Space-Partitioning or BSP-neighborhood was proposed by [GG07]. In their
paper it is used for defining neighborhood relations for the propagation of normal orien-
tations. See Chapter 5 for a description of this problem.

The characteristics of the BSP-neighborhood are illustrated in Figure 4.4. Every
point ph in the neighborhood of pi defines a plane (a line in 2D) that goes through ph

and has a normal-vector of pi − ph. This plane creates two half-spaces. On the inside
(side of pi) and the outside. The definition of the BSP neighborhood demands that
every point in the BSP-neighborhood is in the inside space of every other point in the
BSP-neighborhood.

p p
h

i

pj

Figure 4.4: BSP-Neighborhood: Each point in the neighborhood restricts the available
space for new neighbors. The blue circle illustrates an isotropically biased neighborhood.
Image from [GG07].

Equation 4.2 gives a formal definition of this neighborhood.

BSP(pi) = {ph ∈ P \ {pi} : (pi − ph)T (pj − ph) > 0, ∀pj ∈ P} pi ∈ P (4.2)

To construct the neighborhood, a set of candidate points is created. In our experi-
ments, we used k nearest neighbors with k = 30. For every candidate neighbor pj of pi,
it must be checked if there exists a ph that is “in front” of pj , i.e., pj is in the outside
half-space of ph. (see Figure 4.4)

36

Informally, this neighborhood defines a set of points that are distributed fairly over
all directions. An “unfair” neighborhood would include all points of a cluster that is ap-
proximately in the same direction relatively to the point pi. With the BSP-neighborhood,
we only include one point “in each direction”. This property is desired by the generation
of the N-Ring neighborhood in Section 4.1. In this thesis we use the BSP-neighborhood
as the zeroRing function of Algorithm 4.1.

4.2 Local Surface Fitting

In Section 4.1, the term isotropically fair neighborhood was introduced to define a neigh-
borhood that does not only rely on the Euclidean distance but uses also information
about the structure and connectivity of the points. Such neighborhoods have the ben-
efit to better approximate points clouds with non-uniform sampling. The Section 4.1
explains how to build and increase an isotropically fair neighborhood. This section de-
scribes a method to select the best-fitting size for a neighborhood during local surface
reconstruction. Our technique uses isotropically fair neighborhoods, but can also be
applied with any other neighborhood definition.

Other state-of-the-art reconstruction and resampling methods (e.g., [HDD+92], [GKS01]
(both k-NN), [GG07], [HLZ+09] (common radius of neighborhood)) work with fixed-size
neighborhoods; i.e., a fixed number of neighbor points k or points in a ball neighbor-
hood with a fixed radius which are considered for the reconstruction at a certain point
on the manifold. This is a global property which is equal for all input points. It can
be automatically calculated or has to be set by the user. For models with different
noise levels and sample densities, the user has to guess the optimal parameter with a
trial-and-error approach. Another shortcoming of global fixed values is that they treat
every input point equally. The assumption that the noise level is uniform across all data
points is not always true. Especially range images of 3D scanners have different variance
in different image regions, depth ranges and for different surface angles ([ABCO+01],
[Bol10]).

The iterative scheme presented in this section does not require the user to set a
parameter for the input point clouds and adapts to the noise level for every point of the
input set. We assume Gaussian noise of the input data, the variance (σ2) being the noise
level. The general idea of this adaptive method is to find a fitting model for a small
neighborhood. If a heuristic detects that the noise is too high to find a good fit for the
particular neighborhood, the neighborhood is increased and the process is repeated. The
output of the algorithm is a set of noise spheres. The center of one sphere determines
the position of the resampled point, and the radius represents the estimated noise level
for the current sample. The general algorithm for the calculation of the noise spheres is
outlined in Algorithm 4.2.

For each point pi, the N-Ring neighborhood Q is calculated (see Section 4.1). It
is initialized with the zero ring of pi (in our case the BSP neighborhood). Note that
the point itself (pi) is also included in the neighborhood Q and used for the regression.
The crucial part of the iterative scheme is the neighborhood criterion: It increases the

37

Algorithm 4.2: CPU implementation of noise sphere calculation
Input: Set P = {pi} of n points in R3

Output: Set N = {ci, r2
i } of noise spheres

1 for pi in P do
2 Q = N-Ring_Nhood(pi, P) ∪ pi ;
3 while nhood_criterion(S, Q) == false do
4 Q.extend() ;
5 s = regressionSphere(Q) ;
6 end
7 ci = proj(pi, s) ;
8 D = distances(Q, s) ;
9 ri = max(D) ;

10 N = N ∪ {ci, r2
i } ;

11 end
12 return S ;

neighborhood until the regression sphere is a suitable fit for the local surface. The
criterion compares the extent of the neighborhood with the size of the regression sphere
s. Equation 4.3 gives an exact description thereof. In Line 4, the neighborhood Q is
extended, i.e., more points are added according to the neighborhood definition of Section
4.1. In our implementation, we added the next 3 points to the N-Ring neighborhood
in each iteration to reduce the number of invocations of the sphere regression function.
S denotes the regression sphere of the neighborhood Q. Its calculation is explained in
Section 4.3.

Function proj computes the projection of point pi onto the sphere s. The projected
point ci defines the center of the noise sphere. The radius of the noise sphere represents
the noise level (variance at the specific point). It is approximated with the maximum
distance of the neighboring points to the regression sphere s (line 9 in Algorithm 4.2).
Figure 4.5 shows an illustration of the projection, and Figure 4.7 visually explains the
iterative process.

If the regression sphere S (together with the neighborhood Q) does not meet the
neighborhood criterion, the neighborhood is increased and the process is repeated. In-
creasing Q is done on the fly according to Algorithm 4.1: A new ring is only calculated
when needed. The reasoning behind this approach is that a good approximation of the
underlying manifold has to be found. If the neighborhood is too small, the points of the
neighborhood are not a good representation of the local surface. Figures 4.7(a),(b) show
regression spheres that are not a good fit to the local surface. After extension of the
neighborhood, the regression sphere (or circle in 2D) is a reasonable model of the local
surface.

We fixed the maximum neighborhood size to the 3-ring neighborhood: On the one
hand, using bigger neighborhoods results in over-smoothing, and the resulting projected
points and their normals are not a good approximation of the local surface. On the

38

Figure 4.5: Projection of the point pi onto its regression sphere S produces the new
sample pproj.

other hand, the run time is also less predictable when arbitrarily large neighborhoods
are allowed. If no noise sphere was found after reaching the maximum neighborhood, the
heuristic could not find a good surface approximation at this specific position. Instead
of finding a bad fitting point, it is simply discarded; it is not projected, and no normal
vector is generated for this particular sample. This occurs particularly for noisy and
densely sampled point clouds. In our tests with different point clouds, discarding non-
fitting points did not introduce holes or other artifacts.

This method succeeds in finding noise spheres for almost all elements of noise-free
point clouds. (None discarded for simple models like the ellipsoid with small features in
Figure 7.6 and about 1% for complex models like the dragon in Figure 7.9).

Table 4.1 shows the average and maximum number of iterations used for a model
and different noise levels. Points that are discarded do not count into these values. On
average only between 1 and 2 iterations are needed: As long as the local neighborhood
is approximately planar, a small number of neighbors is sufficient. Some points (in noisy
and high-curvature areas) require up to 20 and more iterations.

The key element of this method is to find a well-suited criterion that decides if the
regression sphere is a good fit to the local neighborhood (with respect to the underlying
manifold) or if the neighborhood has to be enlarged. This is an ill-posed problem since

39

Figure 4.6: 2D equivalent of noise sphere: radius of the circle is the maximum distance
of the neighborhood to the green regression sphere.

(a) (b) (c)

Figure 4.7: Adaptive regression iteration for a circle in 2D

both the true manifold and the noise level are unknown. An exact solution to this
problem is therefore not possible. Instead, a heuristic is needed that fulfills the following
requirements:

• uses local information only

• no assumptions about noise level

• works well for most cases

A simple, yet effective heuristic is the following criterion (equation 4.3):

isFitting =
ri

exi
> c (4.3)

40

iterations # neighbors
max avg max avg

dragon (0.0008) 18 1.32 60 5.62
dragon (0.002) 22 1.89 73 7.51
dragon (0.0035) 26 2.63 89 9.92

Table 4.1: Number of iterations of the adaptive regression and the number of used
neighbors.

ri is the radius of the regression sphere Si, exi denotes the extent of the neighborhood
Q: exi = ‖pi − Qlast‖. Specifically, it is the distance between the input point pi and the
furthest point in the current neighborhood Q. The constant c was empirically determined
to be 2.1. Intuitively, this criterion ensures that the regression sphere is at least twice as
big as the point set. The radius of the regression sphere is also an approximation of the
local surface curvature [GG07]. The radii of the approximation spheres are visualized in
the left sub-image of Figure 4.8: Red denotes high curvature and small radius, green is
less curvature.

Figure 4.8: Left sub-image: Visualized radii of the regression spheres as an approxi-
mation of the curvature as suggested by [GG07]. Right sub-image: Radii of the noise
spheres of the samples are encoded in color: blue means small radius (small estimated
noise), lighter areas show bigger noise spheres.

Figure 4.7 illustrates this process in 2D: The regression circle in the left sub-image is
not representative for the local manifold. After some iterations the circle approximates
the underlying geometry well.

If a suitable regression sphere S is found, the noise level of the current point pi is
approximated. The distances of all samples in the neighborhood NHi to the regression
sphere are computed and the maximum is taken as an approximation of the noise level.

41

The reasoning behind this approach is the following: We assume that the manifold can
be approximated with parts of surfaces of spheres. The spheres are estimated with
spherical regression (Section 4.3) for every point (and its neighborhood) in the input
point-set. Since the assumption implies that all points in a specific neighborhood have
the regression sphere as the underlying model, the difference between the actual point
coordinates and the ideal position on the surface of the regression sphere is the deviation
from the true value.

Note that this is just a heuristic for estimating the noise level (variance σ2). The
assumption of a local spherical surface introduces (as every other model) model errors.
Depending on the actual geometry approximated by the point cloud and the noise extent,
this method under- or overestimates the actual noise level (which was created artificially
for the tests). Tests were conducted with three different models (ellipsoid with small
features, Armadillo and Bunny): Figure 4.9 shows the relation between the noise extent
approximated with the noise spheres and the actual noise level. Especially with low
noise extent, the estimation is too high. The approximation of the noise extent gets
better with higher noise levels.

An explanation for this observation is the number of points used for the estimation
of the noise level: In areas with low noise level, the neighborhoods are small therefore
the estimation relies on a small number of points. In areas with high noise level, many
points are used to determine the noise extent, therefore the estimate is more reliable.

0

0,002

0,004

1 2 3 4 5 6 7 8

0

0,0005

0,001

0,0015

0,002

0,0025

80%

90%

100%

110%

120%

130%

140%

150%

160%

0,0015 0,0030 0,0045 0,0060 0,0076 0,0091 0,0106 0,0121

de
vi

at
io

n
fr

om
 re

al
 n

oi
se

 e
xt

en
t

noise extent

ellipsoid

armadillo

bunny

Figure 4.9: Illustration of the relation estimated noise extent
true noise extent . At low noise levels the noise

extent is over-estimated, with higher noise it gets under-estimated. Tested models: el-
lipsoid with small features (see also Figure 7.6), Armadillo and Bunny (Figure 7.3)

42

4.3 Spherical Regression

The whole resampling process presented in Section 4.2 relies on a good and fast local
approximation of the surface surrounding a specific point. In this thesis, spherical regres-
sion is used as the local approximation method. The reason why spherical fitting was
chosen is a trade-off between model complexity – and therefore also computational effort
– and accuracy. A more complex model may be a better approximation for some local
patches, but it is also more prone to over-fitting and more costly. Empirically, the sphere
turned out to be well suited for planar regions with dense sampling and for high cur-
vature patches with lower sampling density. More complex models may produce better
results in some corner cases but are significantly slower. The computational complexity
increases with the cube of the order of the model. See [Pra87]: the effort for fitting m
points to a surface of order n is (m + n)n2.

In this section, a circle fit method is extended to obtain a spherical fitting technique.
A fast parallel implementation of this fitting is also presented here.

Algebraic sphere fitting offers a good closed-form spherical approximation while also
being able to handle planar cases [Pra87]. Section 2.1.3 gives an overview of this topic and
explains the difference between algebraic fitting and geometric fitting. It also explains
the regression with algebraic spheres used in [GG07], which uses the fitting technique
by Pratt [Pra87].

Two years after APSS ([GG07]), Chernov et al. published an algebraic circular
regression technique, which is called “Hyper-Fit” [AsC09]. This estimator has less bias
(difference between the actual value and the expected value of the regression) than
previous circle regression methods: In [AsC09], various circle regression methods – both
geometric and algebraic – are investigated concerning their statistical properties. In that
paper, the term essential bias is used for the bias of the leading order of O(σ2), which is
independent of the number of used samples (here, σ2 denotes the variance of the noise
of the input points). They argue that this square bias term has significant impact on
the mean squared error and is therefore essential for the quality of the estimator.

All methods researched in [AsC09] (including geometric fits) have non-zero essential
bias. The Hyper-Fit method of [AsC09] is specifically designed to have zero essential
bias. In this thesis, the circle regression Hyper-Fit is extended to 3D and used for
approximating the local surface in the adaptive regression method.

In [AsC09], the “Hyper-Fit” circle regression is defined with the constraint matrix in
Equation 4.4:

NH =

⎡
⎢⎢⎢⎣

8w 4x 4y 2
4x 1 0 0
4y 0 1 0
2 0 0 0

⎤
⎥⎥⎥⎦ , (4.4)

where x is the sample mean 1
n

∑n
i=0 xi and w = x2 + y2. Using this matrix NH in

the constraint in equation 2.13 results in equation 4.5:

43

8A2w + 8ABx + 8ACy + B2 + C2 + 4AD = 1 (4.5)

Extending it to 3D results in equation 4.6:

8A2w + 8ABx + 8ACy + 8ADz + B2 + C2 + D2 + 4AE = 1 (4.6)

This extension is based on similar relations between circular and spherical fits in
[Pra87]. The constraint 4.6 together with the objective function in Equation 2.9 trans-
lates to the minimization problem in Equation 4.7 in the “natural” parametrization of
spheres:

Fh =
∑n

i=1[(xi − cx)2 + (yi − cy)2 + (zi − cz)2 − r2]2∑n
i=1[2(xi − cx)2 + 2(yi − cy)2 + 2(zi − cz)2 − r2]

. (4.7)

The “Hyper-Fit” is a drop-in replacement for any other algebraic sphere-fitting
method, with superior statistical properties. The constraint 4.6 can be written in matrix
form in Equation 4.8:

N =

⎡
⎢⎢⎢⎢⎢⎣

8w 4x 4y 4z 2
4x 1 0 0 0
4y 0 1 0 0
4z 0 0 1 0
2 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ (4.8)

This matrix N can be used in equation 2.16 to solve the regression as an eigenvalue
problem. In addition to the standard spherical regression, the process can be extended
with a weighting scheme. This is useful if the input points for the regression should not
have the same influence on the resulting sphere. Section 4.1 (specifically equation 4.1)
proposes a weighting scheme used in the noise sphere generation.

In our tests, the inclusion of the weights into the minimization process improves
the quality of the resampling and the normal computation. Equation 4.9 describes the
calculation of the weighted matrix of moments Mw with the weight matrix W , which is
a diagonal matrix containing the weights wii for each point pi. Z is defined in equation
2.11 and contains the positional information of the points.

Mw = ZTWZ (4.9)

Profiling of the sphere regression process indicated that about 85% of the compu-
tation is spent calculating the eigenvectors. In the general formulation (equation 2.16),
an asymmetric eigenvalue problem has to be solved. It is possible to transform the
equation into a symmetric eigenvalue problem and transform the computed eigenvectors
back into the original problem domain. This reformulation was already published for a
similar setting by [STN88].

The constraint matrix N (see definition 4.8) is symmetric by definition, therefore N−1

is also symmetric. M = ZTZ is also symmetric and positive definite [AsC09]. Thus the

44

Cholesky-Decomposition is defined for M: RTR = M. R is a right upper triangular
matrix. Substituting M with RTR in equation 2.16 leads to:

(N−1RTR)P = dP (4.10)

Multiplying the equation with R from the left produces a different eigenvalue-problem:

(RN−1RT)(RP) = d(RP) (4.11)

The matrix RN−1RT is symmetric by definition, and RP are the corresponding
eigenvectors. The eigenvalues are the same as for N−1M. To obtain the eigenvectors for
the original problem, the resulting eigenvectors have to be multiplied with the inverse
of R.

P = R−1(RP) (4.12)

In general, the eigenvectors have to be normalized to unit length, since R−1 is not
an orthogonal matrix and therefore not length preserving. In the case of algebraic
spheres, this does not matter: The algebraic representation is invariant under a scalar
multiplication:

Pu = (Au, Bu, Cu, Du, Eu) ⇒ cx =
Bu

−2Au
=

B

−2A
(4.13)

r2 =
(Bu)2 + (Cu)2 + (Du)2 − 4AuEu

4(Au)2 =
u2[B2 + C2 + D2 − 4AE]

u24A2 (4.14)

This reformulation leads to a more efficient calculation of the eigenvectors and the
corresponding sphere (see Algorithm 4.3).

Algorithm 4.3: Fast Algebraic Sphere Regression
Input: Symmetric inverse constraint Matrix Ninv and symmetric and positive

definite matrix of moments M
Output: Sphere defined by center C and squared radius r2

1 R = CholeskyDecomposition(M) ;
2 (V, D) = SymmetricEVD(RNinvRT) ;
3 i = arg min{D > 0} ;
4 P = R−1Vi ;
5 C = 1

−2P1
P2:4 ;

6 r2 = 1
4P12 PT

2:4P2:4 − 4P1P5 ;
7 return (C, r2) ;

Notes: P1 is the first coordinate of vector P, P2:4 is a 3-dimensional sub-vector of P
of coordinates 2, 3, 4. “SymmetricEVD” returns the eigenvalues D and the eigenvectors

45

in the columns of V. If the eigenvectors are sorted corresponding to the ascending
eigenvalues, i = 2 for the regression method discussed in Section 4.3. The inversion of
R can be performed with back-substitution because it is a triangular matrix.

In cases where the input points of the spherical regression are approximately on
a plane or if only few points (between 4 and 8) are used, the matrix M can be badly
conditioned. In this case the matrix is not positive definite and the solution is not defined.
This can be checked during computation of the Cholesky decomposition. If the matrix
is not positive definite, the number of points has to be increased or a different regression
model has to be applied (e.g., planar regression with principal component analysis).
In our case, the neighborhood – i.e., the set of points for the spherical regression – is
increased if M behaves badly. Section 4.2 describes the process of selecting further points
for the neighborhood.

A different way of computing the spherical regression is also suggested in [AsC09]. It
uses the singular value decomposition, which is numerically more stable and covers the
case of a badly conditioned matrix, too. This implementation was not used here because
it is significantly slower, as it requires an additional SVD step for the data matrix Z of
equation 2.11.

The transformation of an asymmetric to a symmetric eigenproblem of Algorithm
4.3 requires more steps but is faster. A CPU implementation, including the Cholesky
decomposition and the back-transformation of the eigenvectors, is about twice as fast
as the general asymmetric eigenproblem. The GPU-implementation for the general QR-
algorithm (asymmetric eigenvalue solver) in double precision is not feasible on current
hardware. One reason for this could be that the asymmetric algorithm needs more
registers for the computation. If there are no more free registers, the local variables are
spilled into global memory, which significantly slows down the computation.

The symmetric problem can be implemented on the GPU. Section 6.1.1 gives an
outline thereof. Figure 7.14 compares the three different implementations for solving
the 5x5 eigenvector and algebraic sphere computation.

46

CHAPTER 5
Globally Consistent Normal

Orientation

Chapter 4 deals with a local problem: How can the the local surface of a point be
approximated? This estimated surface has a position and a direction – the normal
vector. Apart from their spatial relation, the single local surfaces are independent from
each other – there is no defined inside and outside consistent with all surface patches.
In order to obtain a globally oriented model, the orientation of the normal vectors has
to be determined. Global mesh-reconstruction methods (e.g., Poisson reconstruction
[KBH06],[KH13], RBF [CGGS13]) often require a set of oriented normals in addition to
the unorganized point cloud.

This chapter first describes the problem of normal orientation in the domain of mesh
reconstruction. Two classes of algorithms for solving this problem are identified, and a
brief overview of the state-of-the-art of one approach is given in Section 5.1. Section 5.2
improves state-of-the-art techniques regarding performance and quality (robustness) of
the consistent normal orientation. The neighborhood information generated during the
local reconstruction process (Section 4) is reused in this stage to achieve better results.

5.1 Problem definition

Various techniques exist to estimate the normal direction of the surface, based on a
surface model (e.g., [HDD+92], [MN03], [GG07], and Section 4 of this thesis). A local
surface Sl (based on a certain model) is fitted to the spatial positions of the input points
(or a subset thereof). Regardless of the surface model, the normal n of each point on the
modeled surface Sl can be computed. This vector n may be explicitly defined for the
local surface Sl, but its orientation on the global surface is not defined – at least not by
Sl. In a local context, there is no inside or outside of the object. The local neighborhood
represents a topological disc, whereas a closed mesh has a different topology. The union

47

of all local surfaces has to be set into a global context and the outside, and the inside
have to be defined.

Figure 5.1 illustrates the state after the local normal computations. The normal direc-
tion is computed for each point, but the global orientation is not yet defined. Therefore,
each point has a normal direction but no specific orientation. The problem definition
is illustrated with an example in Figure 5.2: The normal vectors of the model are cal-
culated locally, which results in a non-consistent global orientation (left sub-image of
Figure 5.2). After the orientation pass, the normals point from the inside to the outside
of the model.

Figure 5.1: Normal computation estimates the normal directions, not the global orien-
tations.

This chapter deals with the problem of finding a consistent global normal orientation
for the whole point cloud. In general, there are two types of algorithms for this problem
domain: Volumetric methods and so-called “surficial” propagation methods [KG09].

Volumetric methods classify the space around the sampled surface into an inside
and an outside region. If a correct labeling was established, the normals are flipped
in a way such that they point from the inside of the object to the outside. A major
drawback of this class of methods is that they need closed surfaces in general (see [KG09]).
The raw point cloud of scanned objects rarely represents a closed surface. Therefore,
these methods are not well suited for our purposes. Another disadvantage of volumetric
methods is that they require a spatial data structure (e.g., octree), which introduces
more complexity.

Surficial methods build a global connectivity structure of the points (with their
respective normals) and propagate the normal orientation of one or many seed points
across the whole surface. A comprehensive discussion and a state-of-the-art report is
available in [KG09].

The fundamental principle of surficial orientation propagation methods was intro-
duced by Hoppe et al [HDD+92]. The basis for most surficial methods is the Euclidean
minimum spanning tree (EMST). The EMST can be constructed by forming a complete

48

Figure 5.2: After the local normal computation the normal vectors have no consistent
global orientation. The left image shows the normal vector of the omotondo model. Blue
vectors have the correct orientation, red vectors point into the opposite direction. The
right image shows the same model after flipping the normal vectors to obtain a global
consistent orientation.

graph of the point set (all points are connected to all other points) and assigning the
Euclidean distance between the connecting points to each edge. Then the EMST is the
minimum spanning tree (MST) of this weighted complete graph. This is not an efficient
calculation of the EMST since it relies on O(n2) (where n is the number of points) dis-
tance computations. A more efficient way is to generate the Delaunay triangulation of
the edge set and calculate the MST of the edge set of the triangulation. This works
because the Delaunay triangulation is a superset of the EMST [HDD+92].

Hoppe et al. then use the so-called “Riemannian Graph” GR as the underlying data
structure. This is the union of the edge set of the EMST and auxiliary edges based
on the k-nearest neighbors of the points. The EMST ensures that the graph itself is
connected, otherwise a global propagation would be interrupted. The auxiliary edges
add connections to the graph, which increases the number of possibilities to propagate the
global orientation through the graph. As an improvement, the APSS-framework [GG07]
uses the BSP-neighborhood (see Section 4.1.2) instead of the k-nearest neighbors for
enriching GR.

Finally, the minimum spanning tree (MST) of GR is calculated, and the orientation
is propagated in depth-first search (DFS) order. The critical parts of methods using the
surficial approach are the weight function for the graph, and the decision function that
decides if a normal vector has to be flipped.

In [HDD+92], a zero- (or small) curvature assumption is used: The difference between
adjacent normals in GR is assumed to be minimal (near zero). The weight function 5.1
determines the weight of the edges of GR:

49

w(eij) = 1 − |(ni ∗ nj)|. (5.1)

This weighting penalizes edges that connect normals with different normal directions.
Orthogonal normals get the weight 1, and 0 is assigned to parallel normals. The absolute
value is taken so that the orientation of the vectors does not influence the weight.

The DFS of the MST of GR then is the path through the vertices of GR with minimum
variation of the (adjacent) normals. This works well for very densely sampled or low-
curvature regions, since adjacent normals will always have little deviations from their
neighbors. Adjacent normals in high-curvature parts of a point cloud tend to differ more
and violate the zero-curvature assumption. (see Figure 5.1)

To overcome this shortcoming, [XWH+03] proposed a different weighting scheme.
They make a constant curvature assumption: The curvature between adjacent normals
should be approximately constant. Instead of directly comparing the two normals, one
normal is reflected on the bisector of the edge eij connecting the two points. Then
the weight function 5.1 of [HDD+92] is used to calculate the weight of the edge. The
reflection is defined by equation 5.2:

P (ni, j) = ni − 2(e
′
ij ∗ ni)e

′
ij , (5.2)

where e
′
ij is the normalized vector from point pj to pi.

This reflection is visualized in Figure 5.3. If a constant curvature is assumed, both
points (with their normals) lie on a circle (in 2D). Formula 5.2 is then a measure for the
deviation from the constant curvature assumption.

Figure 5.3: Constant curvature assumption: The normal of the neighboring point is
reflected by the bisector of the edge between the points and then compared to the other
normal. (Illustration from [KG09])

This more elaborated weight function performs better on high-curvature surfaces
than the method of [HDD+92].

The actual propagation is bootstrapped at one or more seed points. A possible
choice is the point of minimum z-value. From this seed point, the orientation of the

50

corresponding normal is propagated along the DFS of GR. At each step in the graph,
a decision has to be made on each edge if the next normal has to be flipped. The
decision function is related to the weight function: In [HDD+92], a normal is flipped if
the condition ni ∗nj < 0 is true. The method proposed by [XWH+03] uses the condition
P (ni) ∗ nj < 0 (P () defined in Equation 5.2).

5.2 Improvements using local neighborhoods

In this section, it is shown how the neighborhood structures described in 4.1 can be used
to speed up the generation of the Riemannian Graph GR. An additional local operation
is used to make the whole process more robust.

The problem of consistent normal orientation across the whole mesh is global per
definition. Therefore, the data structure GR is computed in a global context. To ensure
connectedness of all nodes of the graph, the EMST is the base of GR. This MST can be
computed by first constructing the 3-dimensional Delaunay Triangulation of the point
set and adding all edges with the corresponding edge lengths to a weighted graph. The
EMST then equals the MST of the resulting weighted graph. The expected asymptotic
runtime of the 3D Delaunay Triangulation is near linear, although it has a worst-case
complexity of O(n2) [ABL03] (where n is the number of points).

Instead of constructing the EMST and enriching the graph with k-nearest neighbors
[HDD+92] or the BSP-Neighborhood [GG07], we propose to use N-Ring neighborhoods
(Section 4.1) instead. GR is replaced by GlR, the “Local Riemannian Graph”. It is the
union of the adaptive neighborhoods that were used to reconstruct the local surfaces and
the corresponding noise spheres (see Section 4.2). This approximation is not guaranteed
to be connected. Since the connectivity is determined based on local criteria, it cannot
be guaranteed (for all possible input point clouds) that the union of all local neighbors
results in a globally connected graph. Analysis of GlR shows that most (> 95%) points
are connected and form a big connected component. The other connected components
usually contain < 5 vertices. A simple heuristic to construct a globally connected graph
GlR is described in Algorithm 5.1:

The graph G is formed by generating the union of all points and all edges of the
local neighborhoods, such that it does not contain any duplicates. Then the connected
components of G are extracted and the biggest connected component main_comp iden-
tified. All other components are connected to main_comp by finding the k = 3 nearest
neigbors in main_comp. The edges connecting main_comp with the point in the other
component is added to G.

The complexity of obtaining the connected components of a graph is O(|V | + |E|),
for constructing the Kd-Tree of a set of 3D points it is O(n log(n)). Finding the nearest
neighbors in a Kd-Tree has the complexity of O(log(n)). Since the number of connected
components is small (< 200 for many point sets) and contain only few (< 5) vertices,
finding the edges to make the graph connected is a fast operation. The number k of
nearest neighbors was set to 3 in our experiments.

51

Algorithm 5.1: Heuristic to generate a connected graph from the N-Ring neigh-
borhoods of the point set. Nhoods contains the set of neighbors that were used
to approximate the local surface and calculate the noise spheres in Section 4.2.

Input: Set V of all points, set Nhoods = {nhi} contains neighborhoods ∀p ∈ V,
‖V‖ = n

Output: Set E of edges of GlR, a connected graph with n vertices
1 E = {} ;
2 for nhi in Nhoods do
3 E = E ∪ edges(nhi) ;
4 end
5 G = Graph(V, E) ;
6 C = connected_components(G) ;
7 main_comp = maxsize{C} ;
8 T = KdTree(main_comp) ;
9 for comp in {C \ main_comp} do

10 for i = 1 : k do
11 p = comp[i];
12 nn = kNearestNeighbors(p, T, 1) ;
13 E = E ∪ edges(p, nn) ;
14 end
15 end
16 return E ;

In some cases, the heuristic performs suboptimal. If the variance of the noise level is
very high, the assumption that there exists one main connected component (containing
most points) is false. In this case both the quality of the resulting graph, as well as
the actual runtime of the computation, suffer. This was not the case for the tested
models. One solution to this problem would be to detect the case of too many connected
components (percentage of vertices in the biggest connected component) and to fall
back to an EMST. Another failure case for Algorithm 5.1 occurs when there are other
disconnected components between the main component and other components. This
can happen for models with long and thin structures. In those cases, GlR offers only a
mediocre approximation to the Riemannian Graph.

It is rather hard to evaluate the methods for global orientation propagation. The
whole process is quite unstable: One bad decision (wrong flip) can influence many other
normals and degrade the overall quality of the normal orientation. Tiny differences of
the input point cloud can cause big differences of the result. The reason for this behavior
is that all propagation methods are approximations. The underlying problem of finding
the best orientation for all points can be reduced to the MAX-CUT problem, which is
NP-complete ([HDD+92]).

Increasing the complexity of the propagation has a decreasing return of investment.
[KG09] propose a rather complex method (which is also based on [HDD+92]). The

52

runtime is approximately 10 times higher than the methods of [HDD+92] or [XWH+03].
Still, it fails for some point sets and is only marginally better than [XWH+03]. For some
man-made objects, however, it outperforms the other methods regarding quality.

We propose an additional preprocessing step for the orientation propagation tech-
nique to increase the robustness of the solution. It is a local pass before the MST calcu-
lation and uses the N-Ring neighborhood structures of Section 4.1. The idea behind this
method is to analyze the local consensus of the orientations. The N-Ring neighborhood
of a point is only valid for itself, therefore an edge eij ∈ nhi is a valid relation between
points pi, pj for point pi. The same edge may not be present in neighborhood nhj of
point pj . In a first step, the bijective neighborhood binh (equation 5.3) is generated to
filter out edges that are not valid for both points.

binh = {eij : pj ∈ nhi ∧ pi ∈ nhj} ∀eij ∈ NH (5.3)

Algorithm 5.2 describes the iterative local process to find a local consensus and assess
its confidence.

Algorithm 5.2: Find the consensus orientation of each point and calculate a
confidence value.

Input: Set N of all normals, set binh of all bijective neighborhoods
Output: Array C of confidence values for each point, updated set N

1 C = {} ;
2 flipped = |N| ;
3 while flipped �= 0 do
4 flipped = 0 ;
5 for i = 1to|N| do
6 same_orientation = 0 ;
7 for nbind ∈ binhi

do
8 same_orientation += N(i) ∗ N(nbind) > 0 ;
9 end

10 agreement = same_orientation
|binhi

| ;
11 if agreement < 0.5 then
12 flip(N(i)) ;
13 agreement = 1 − agreement ;
14 flipped + + ;
15 end
16 C(i) = agreement ;
17 end
18 end
19 return N, C ;

In each iteration, the algorithm checks for every point whether the corresponding
normal points in the same direction as at least more than half of the bijective neighbors.

53

In case it differs from the “consensus” orientation, it is flipped. This is done as long as
normal flips are executed.

In the rare case that a point pi has an empty bijective neighborhood binhi
, the

agreement is set to 0. This fits with the rationale that only points with a high local
agreement are well-suited for propagating the orientation. Points that lack bijective
neighbors have no reliable partners to exchange the orientation.

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

nu
m

be
r o

f f
lip

pe
d

no
rm

al
s (

lo
ga

rit
hm

ic
 sc

al
e)

iterations

happy_buddha (543652 pts)

blade (882954 pts)

LIDAR campus (2163730 pts)

Figure 5.4: The flipping Algorithm 5.2 converges quickly for different models. (y-axis is
scaled logarithmically) Models: LIDAR and blade point cloud, Buddha statue (Figure
7.4)

The local agreement and flipping algorithm converges fast for every tested point cloud.
Figure 5.4 gives an overview of the convergence for three different models. The graph
also shows that the method does not converge monotonically. It decreases approximately
logarithmically for all tested models. In some cases, the function alternates between lower
values before finally converging to 0. In our implementation, we limited the number of
iterations to 40, since the solution does not change much after this iteration count. Figure
5.5 visualizes the result of the local agreement iterations: Blue encodes the maximum
agreement (= 1.0) whereas red denotes 0.5. The pattern emerges from the dynamic
behavior of the algorithm: Areas of non-optimal agreements (< 1.0) shrink and move
around the surface until they converge.

The local agreement, which is computed with Algorithm 5.2 and stored in array C,

54

Figure 5.5: Visualized local agreement after convergence: Blue = 1.0, red = 0.5.

is then integrated into the edge weight of GlR (equation 5.4):

weight(eij) = wij ∗ (1 − min[C(i), C(j)]), (5.4)

where wij denotes the weight assigned by the metric – either wh by [HDD+92] or
wx by [XWH+03] (see definitions in Section 5.1). This penalizes edges where at least
one node has a bad local agreement. The expected behavior of this approach is that
edges connecting “unreliable” vertices are in the leaf nodes of the DFS-tree during the
orientation propagation.

In summary, our global normal-orientation algorithm performs the following steps:

• Generate GlR with Algorithm 5.1

• Execute Algorithm 5.2 to obtain the agreement values

• Compute weights for the edges of GlR with equation 5.4

• Propagate orientations like in [XWH+03] or [HDD+92]

The MST and DFS calculations, as well as the actual orientation propagation, are
the same as in other state-of-the-art propagation techniques (e.g., [XWH+03]). A single-
threaded CPU implementation of this method is about 2-3 times faster than the standard
“Riemannian Graph” approach. Note that this can be further accelerated by computing
the bijective neighborhood structure and the local agreement in parallel. The DFS has

55

linear time complexity (O(|V |+|E|)), whereas the MST can be computed in linearithmic
time O(|E|log|V |) using Prim’s algorithm [CSRL01]. Section 7.2 presents results of our
tests and compares the performance between our local method and the global approach.

56

CHAPTER 6
Implementation Details

This chapter describes the implementation of the methods presented in Chapter 4 and
5. The implementation is divided into the following parts:

• Calculation of the noise spheres

• Optional sphere filtering pass

• Consistent Normal Orientation

• Experimental Triangulation

6.1 Regression Sphere Calculation

Two different implementations were created: One is executed purely on the CPU, the
second makes use of the GPU for performance-critical sections (see Section 6.1.1). On
the CPU, a straightforward implementation of Algorithm 4.2 is possible. It works inde-
pendently on each input point. Therefore, the order of execution is not determined and
the method is trivially parallelizable. The outer loop can be split up between arbitrarily
many threads on a CPU without any synchronization mechanisms.

The following optimizations and reformulations accelerate the implementation:
The implementation of spherical regression can be divided into two parts: Building

the matrices and calculating the Eigenproblem (see Section 4.3). The central element
is the matrix of moments, M = ZTZ (see equation 2.11). Instead of first constructing
matrix Z, it is faster and uses less memory to compute M directly (see equation 6.1),
particularly for increasing number of points n.

57

M =

⎡
⎢⎢⎢⎢⎢⎣

ww wx wy wz w
xw xx xy xz x
yw yx yy yz y
zw zx zy zz z
w x y z 1

⎤
⎥⎥⎥⎥⎥⎦ , (6.1)

where xw = 1
n

∑n
i=1 xw. In order to avoid unnecessary matrix inversions, N−1 can

be constructed directly (equation 6.2).

N−1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0.5
0 1 0 0 −2x
0 0 1 0 −2y
0 0 0 1 −2z

0.5 −2x −2y −2z −2w + 4x2 + 4y2 + 4z2

⎤
⎥⎥⎥⎥⎥⎦ (6.2)

6.1.1 GPU-Implementation of Spherical Regression

The most expensive part of the local surface fitting (see Section 4.2) is the spherical
regression. This is due to the fact that the regression function is invoked several times
for each input point (see Algorithm 4.2). A solution to this problem is transferring
these computations to the GPU. Since the problem of finding a regression sphere to each
neighborhood is local and independent, it can be executed in parallel.

A general asymmetric eigenvalue computation for 5x5 matrices in double precision is
infeasible on currently available graphics hardware (e.g., Geforce GTX770). The reason
is that the QR algorithm for solving the asymmetric case requires too much memory
for local variables. One reason for this is that the asymmetric problem has complex
eigenvalues in general, and therefore the computations are done using complex numbers.
In contrast to the CPU, the GPU cores do not have a powerful cache infrastructure,
which would alleviate the problem. Instead, all local variables that do not fit into the
registers are spilled into global memory. Therefore, the whole computation is slowed
down by several orders of magnitude. The symmetric eigenproblem, however, can be
computed on the GPU. Algorithm 4.3 was implemented in CUDA, using subroutines
from the JAMA Matrix Package (we ported it from Java to CUDA).

To reduce the traffic between the CPU and the GPU, all matrices of all points (and
their respective neighborhoods) are collected for each step of the iterative fitting process
(Algorithm 4.2). Then, all matrices are sent to the GPU, on which Algorithm 4.3 is
executed. The resulting spheres are then analyzed on the CPU. In the next iteration,
only those matrices are collected that require additional regression steps.

This approach succeeds in calculating 2.8 million spheres per second on a Geforce
GTX770. That is about 20 times faster than the same algorithm on a single CPU core.
Figure 7.14 gives a comparison of the calculation of the 5x5 eigenvalue problem.

The present implementations (both on the GPU and CPU) have further potential for
optimization. Ideas for a more efficient noise-sphere calculation can be found in Section
8.2.

58

6.2 Sphere Filtering

For the current approach in Section 4, a dense but noisy sampling may contain redun-
dancy. Consider a sample pj that is within the noise sphere of a sample pi. Since pj

is within the (estimated) noise extent of pi, it does not add additional information for
the underlying surface. An additional pass reduces the number of noise spheres with
Algorithm 6.1. One aim of this stage is to reduce the number of samples used in subse-
quent stages of the processing pipeline (e.g., consistent normal orientation) in order to
improve the runtime performance. This method should also reduce those noise spheres
that overestimate the actual noise level. Note that this is an experimental algorithm
that was not used for producing the results in this thesis.

Algorithm 6.1: Noise sphere filtering
Input: Set S of noise spheres
Output: Set Sf of filtered noise spheres

1 I = intersections(S) ;
2 GI = build_graph(I) ;
3 sort_edges(GI) ;
4 while has_edges(GI) do
5 s = biggest_sphere(GI) ;
6 remove_edges(s, GI) ;
7 end
8 Sf = nodes(GI) ;
9 return Sf ;

Computing the intersections between all spheres (Line 1) has a run time of O(n log3 n+
k), where n is the number of spheres and k is the number of actual intersections. It is
implemented by first determining the intersections of the bounding boxes of the spheres
using CGAL’s [CGA] box intersection algorithm. The actual sphere intersections are
then calculated by checking the bounding box intersections. The nodes of the undi-
rected intersection graph GI represent the noise spheres, edges eij denote that sphere si

intersects with sj .
Algorithm 6.1 removes the biggest noise sphere until there are no more intersections

between the spheres. The noise is often over-estimated, which produces too large spheres
(which intersect many neighboring spheres). Removing the biggest spheres first reduces
the number of deleted spheres. Figure 6.1 shows the effect of noise-sphere filtering.
The input of about 240k points (and their noise spheres) is filtered to 60k in 4 seconds
(example with much overlap).

We did not include the sphere filtering process in our tests for better comparability
with other methods. The filtering itself is only reasonable with very dense sampling and
high noise extent. On many test data sets, this method removes only a small number
of samples and has no positive effect on the reconstruction of the surface. One problem
is that the radius of the noise sphere is not a very accurate estimate of the actual noise

59

Figure 6.1: Left: dense overlapping noise spheres. Right: Filtering reduces overlap and
reduces the overall number of noise spheres.

level – see Figure 4.9. Therefore, the removal procedure falsely deletes many samples. A
better approach incorporates all samples and explicitly models the noise. For example,
in CLOP [PMA+14] points are not removed but clustered for the mixture of Gaussians
approach. This reduces the number of points and therefore also the computational
effort of the subsequent steps, while including the information of all samples. Another
disadvantage of this noise-sphere filtering is that it is a global approach that cannot be
executed in parallel easily.

6.3 Consistent Normal Orientation

The orientation of the normals is fixed with the method described in Chapter 5. The
bottleneck of this step is the calculation of the MST of the Riemannian graph. Cur-
rently, a single-threaded implementation of Prim’s algorithm is used. It is preferred
over Kruskal’s MST algorithm because of the better asymptotic complexity: Prim has
O(|E| log |V |), whereas Kruskal has O(|E| log |E|) (where |V |, |E| are the number of ver-
tices and edges, respectively). The constant factor of Prim’s algorithm is larger and
it is therefore slower for sparse graphs. In our case, the input graph is rather dense
(> 6 edges per vertex), so Prim’s algorithm has better performance: Kruskal’s MST
algorithm takes about twice the time for a Riemannian graph with 500k nodes.

6.4 Local Triangulation

For fast preview, an approximated local triangulation is implemented. It works similarly
to the method described in [KA08] (see also Section 2.2.1): The nearest neighbors of
each point pi are projected onto a regression plane and sorted according to their angle
with respect to pi (which is in the center of the neighbors). Then a heuristic is used
to choose those vertices from the projected neighbors s.t. the length of the maximum
edge is minimized. This generates an umbrella – a triangle fan centered at pi – for each
point. The left sub-image of Figure 6.2 shows the result of computing and displaying
the local umbrellas. It is sufficient for a fast preview of the triangulation but has clear

60

disadvantages: It is not water-tight and has several triangles that intersect other triangles
and many non-manifold triangles.

Figure 6.2: Left: Local umbrellas (94408 triangles) Right: 54146 consensus triangles

An additional global pass determines the consensus triangles. For each triangle, the
number of references is counted: If a triangle is referenced by all its 3 points, it is a
consensus triangle. The right sub-image of Figure 6.2 shows the consensus triangles of
the bunny. The umbrella generation is done on the GPU and is very fast. For example,
computing 3.5 million triangles (umbrella triangles) and 500k consensus triangles takes
0.3 seconds. Under certain sampling conditions (see [OMW13]) the consensus triangles
are sufficient to obtain a (near) water-tight triangulation of a point cloud. In practice
these sampling requirements are too strict and a further processing of the incomplete
triangulation (hole filling) has to be done.

61

CHAPTER 7
Results

In this chapter the results of the methods of Chapters 4 and 5 are presented. We show
that using isotropically fair neighborhoods can be beneficial for the reconstruction of the
local surface and therefore for the resampling and normal computation. Our presented
method reduces the noise of the input point cloud and generates a set of oriented normal
vectors for the underlying surface. The latter is an essential requirement for surface
reconstruction methods like [KH13]. Particularly non-uniform point clouds benefit from
our technique, since it does not assume any noise level but adapts at each point, without
requiring any user-defined parameters.

There is a large amount of techniques in the literature that aims at sharp edges and
features. We specifically target non man-made objects. Our method adapts locally to
reconstruct these sensing artifacts well and with some additional computational expense.
Nevertheless, the algorithm works only on local data and can be executed in parallel.
The additional data structures that are used for the noise-sphere calculation can then
be reused for the normal orientation step. Our normal-orientation approach with local
computations, which can be executed in parallel, results in a 2 − 3× speedup while
offering comparable quality and robustness.

We mainly compare our method to APSS [GG07], which also uses a spherical regres-
sion approach. Since the underlying approach is the same, this comparison is well suited
to highlight the effect of isotropically fair neighborhoods and the adaptive regression.
Two implementations for APSS are available: The reference implementation [GG07]
requires an oriented point cloud (point cloud with oriented normals) and generates a tri-
angular mesh using marching cubes. In this thesis, it is referred to as “reference APSS”.
The second implementation is provided by Meshlab [CCR08], whose APSS resampling
method also requires normal vectors but does not calculate a triangulation (only the
resampling). They can be computed by Meshlab, which uses an approach similar to
[HDD+92]. The combination of normal computation with Meshlab and its APSS imple-
mentation is referred to as “Meshlab APSS”. Our method is also compared to “CLOP”

63

[PMA+14]. For this thesis, the author of [PMA+14] provided the results using their
publicly available implementation.

7.1 Noise-Reduction Quality

In this section, the quality of the reconstruction of noisy point clouds is assessed. The
Hausdorff distance is a metric that can be used to determine the distance between two
surfaces. It is defined as:

dH(X, Y) = max
{

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)
}

, (7.1)

where X, Y are non-empty subsets and d is a metric between two points. It is the
maximum of the two one-sided Hausdorff-distances, which ensures that dH is symmet-
ric. This is required so that dH is actually a metric. The Hausdorff distance can be
approximated for point clouds and triangular meshes, which is described in [CRS96]:
Both meshes are sampled, and the nearest distances between the samples on mesh A to
samples on mesh B are stored. The maximum of those values is the one-sided Hausdorff
distance d(A, B). This algorithm is implemented in Meshlab [CCR08], which is used in
this chapter for the quality evaluations.

For our assessments, the distance from the resampled points to the original mesh
surface is calculated, and the one-sided Hausdorff distance and the root mean square
error (RMS) is compared. This way, the error of each resampled point is evaluated. The

RMS is defined as RMS =
√∑n

i=1 (pi−pt)2

n (where pi are the resampled points and pt the
corresponding nearest points of the ground truth). The RMS has the advantage that it
is less sensitive to outliers than the one-sided Hausdorff-distance.

7.1.1 Resampling

In this section, the quality of the resampling of Section 4 is evaluated. The input for a
resampling method is a point cloud, the output is the set of denoised samples. The virtual
scanner framework by Berger et al [BLN+13] was not used for testing the resampling
quality since it mainly measures the quality of the output mesh. Our method does
not output a triangular mesh but denoised points. The virtual scanner also requires a
triangulated reference model, which was not available for all tested point clouds (e.g.,
range images, Horse).

In order to determine the resampling quality, the following procedure is used: The
vertex data of a mesh is first extracted and perturbed with uniform isotropically dis-
tributed Gaussian noise. The resulting point cloud Pinput is then fed into our algorithm,
described in Section 4, to obtain a smoothed point cloud with oriented normal vectors
Pour. The same point cloud Pinput is processed by Meshlab APSS and CLOP. Afterwards,
the distance between the resulting point clouds Pour, PAPSS, PCLOP and the original mesh
surface is computed. The root mean square error (RMS) and maximum error (Hmax)

64

APSS [GG07] CLOP [PMA+14] our method
Hmax RMS Hmax RMS Hmax RMS

armadillo (0.00196) 0.8212 0.2111 1.2964 0.1875 1.5496 0.2221
armadillo (0.00328) 1.5703 0.3900 2.5830 0.2602 1.9191 0.3342
armadillo (0.0052) 2.6483 0.7587 3.117 0.358 2.1535 0.4826

blade (0.0004) 0.5529 0.0586 0.744 0.0879 1.3943 0.0792
blade (0.0016) 1.3305 0.2075 2.5478 0.185 1.5839 0.2050
blade (0.0031) 2.0449 0.5572 4.0604 0.251 1.7948 0.3453

buddha (0.0014) 3.7415 0.1964 3.846 0.2356 2.1344 0.2357
buddha (0.0034) 4.1494 0.5099 6.3544 0.44 2.7690 0.4666
buddha (0.0061) 4.9111 1.2711 7.166 0.759 3.6357 0.7323

bunny (0.0074) 7.0795 0.8101 7.0976 0.619 3.6464 0.7533
bunny (0.013) 9.3724 1.7300 13.372 0.853 6.3418 1.1436
bunny (0.0186) 11.6478 2.8843 12.813 1.201 8.4630 1.5101

dragon (0.0008) 0.5994 0.0974 0.597 0.168 1.5774 0.1049
dragon (0.002) 1.2132 0.2621 2.9002 0.19 1.3530 0.2323
dragon (0.0035) 2.3620 0.6054 5.1603 0.282 2.1741 0.3711

horse (0.0053) 3.2889 1.2722 3.662 0.368 3.3739 1.1759
horse (0.0074) 4.5887 1.7168 6.0798 0.746 4.8001 1.5816
horse (0.0105) 6.5765 2.3683 8.4267 1.021 6.2890 2.2368

Table 7.1: Comparison of different meshes with different noise levels (number in paren-
theses). The numbers in the table are scaled by a factor of 1000: Hmax denotes the
one sided Hausdorff distance (maximum) between the resampled points and the original
vertices. The RMS is the root mean square error of all distances between the resampled
points and the original surface. The points were resampled with Meshlab APSS [GG07]
[CCR08] and with a reference implementation of CLOP [PMA+14]. The parameters of
CLOP are manually adjusted for each model and noise level. Figure 7.1 visualizes the
RMS of this table.

are used for evaluation. The values are normalized by the diagonal of the bounding box
of the point cloud.

Table 7.1 gives an overview of different point clouds and compares our technique
to Meshlab APSS and CLOP. Each model has different average feature sizes so the
noise level is determined for each model individually. For each model 3 different noise
levels (low, medium, high) are chosen. The actual noise level (which corresponds to the
variance σ in equation 1.1) is determined by the formula ext = f ∗ median‖e‖∈T, where
e are the edges of the triangulation T of the model. The factor f is chosen visually to
create the three noise levels for each model.

Figure 7.1 visually compares the RMS values of Table 7.1.

65

0,0000

0,0005

0,0010

0,0015

0,0020

0,0025

0,0030

0,0035

APSS

CLOP

our

lo
w

lo
w

lo
w

lo
w

lo
w

lo
w

m
ed

iu
m

hi
gh

m
ed

iu
m

m
ed

iu
m

m
ed

iu
m

m
ed

iu
m

m
ed

iu
m

hi
gh

hi
gh

hi
gh

hi
gh

hi
ghnoise level:

armadillo horsedragonbunnybuddhablade

RM
S

er
ro

r

Figure 7.1: Visualization of the RMS of Table 7.1. Compares the RMS error of Meshlab
APSS [GG07] and CLOP [PMA+14] with our method.

Unlike conventional kernel-based projective methods that require setting an individ-
ual filter kernel (and possibly several other parameters) for an optimal reconstruction
result, our method automatically determines the optimal neighborhood for the primi-
tive fitting, and is thus more flexible for point sets of varying density or noise. CLOP
achieves a higher reconstruction quality than our method, but uses an L1 approach and
also requires to provide an optimal bandwidth parameter for each model. Our method
does not match the accuracy of complex L1 reconstruction methods like CLOP, but does
not require any parameter. Furthermore, our method performs considerably better than
APSS, which it is more related to.

In Figure 7.2, the distance between the resampled points and the original mesh is
visualized for the horse model of Table 7.1. The first row is resampled with Meshlab
APSS, the middle row with CLOP and the bottom row with our method. The noise levels
increase from left to right. Parameter settings for the techniques and the noise levels are
the same as in Table 7.1. Our method succeeds in adapting to the different sampling
conditions and produces better results. In the examples with CLOP, the adaptation is
done manually. The far better numerical values of CLOP result from the lower parts of
the horse, where the sampling is very irregular. Therefore, the visual difference in Figure
7.2, which shows the head of the horse, is not as dramatic as the numbers of Table 7.1
would suggest.

7.1.2 Reconstruction

In this section, the quality of the reconstruction of a raw point cloud (without normals)
is evaluated. This determines the quality of both the normal vector calculation, the
normal orientation and the resampling (denoising of the point cloud). Since the refer-

66

Figure 7.2: Visual example of the Horse of Table 7.1. The distance between the re-
sampled points and the original surface is color-coded. The first row is resampled with
Meshlab APSS [GG07], the second row with CLOP [PMA+14] and the bottom row with
our method. The columns correspond to the noise levels of the input meshes as in Table
7.1.

ence implementations of APSS and CLOP do not support this whole step, we compare
different reconstruction pipelines.

Besides resampling the vertices of the point set, our method reconstructs the normal
vector for each point, which means that it recovers the orientation of the local surface.
In order to compare the quality of both the normal vectors and the resampled points,
Screened Poisson surface reconstruction [KH13] is used to obtain a mesh of the the
point cloud. (In this thesis, the reference implementation published by the original
authors is used.) This surface reconstruction method, like many others (see Section 2),
relies on good normal vectors to recover the surface of a model. One advantage of this
reconstruction method is that it is flexible: By setting the point weight to a high value
(32 is used in this thesis), the resulting surface is nearly an interpolation of the data set.
This is needed as it does not alter the result by additional smoothing. We compare this
pipeline (resampling and normal calculation with our method + Screened Poisson) with

67

reference APSS [GG07]. Since Meshlab uses a different normal computation method, we
cannot use this tool to compare the reconstruction performance of APSS. Unfortunately
for our comparison, the reference implementation of APSS does not generate the normals
from the point set; instead, the normals are obtained from the triangulation of the input
mesh. That means, the APSS implementation does not compute the normals based
on the unorganized point cloud but derives them from the connectivity information
provided by the triangulated mesh. APSS then uses a marching cubes technique to find
the surficial mesh of the implicit APSS representation of the resampled surface.

Figure 7.3 compares the two resulting meshes: The left sub-image is the input model
(without / with noise), the middle sub-image is the APSS-reconstructed mesh, and the
right sub-image is the result of our method.

Figure 7.3: Comparison of the reconstruction quality: Left: input model bunny (without
and with noise; noise level: 0.013, see Table 7.1). Middle: reconstruction with reference
APSS [GG07] (reference implementation with marching cubes). Right: local reconstruc-
tion (positions+normals) with our method and Screened Poisson [KH13] to generate the
mesh.

Our technique reduces the noise better than APSS, while still preserving the features
of the input mesh. Figure 7.4 shows the result of the same reconstruction pipelines for
the Buddha model. Note how the reconstructed head is much smoother with our method
(right sub-image).

Figure 7.5 illustrates the difference in reconstruction quality between reference APSS
and our method with Screened Poisson reconstruction (in interpolating mode). In this
case, the input mesh is subjected to a big artificial Gaussian noise (0.0061, see Table 7.1).
The left part is generated with reference APSS [GG07], the right part of the image shows
the mesh created with our local reconstruction and screened Poisson reconstruction
[KH13] (for the mesh generation). The colors encode the distance to the surface of the
original model. It can be seen that our method adapts better to the high noise level
than the APSS method. The overall RMS for this noise level is 39% less for our method
than with reference APSS.

68

Figure 7.4: Left: input model buddha (noise: 0.0034, see Table 7.1). Middle: recon-
struction with reference APSS [GG07] (reference implementation with marching cubes).
Right: local reconstruction (positions+normals) with our method and Screened Poisson
[KH13] to generate the mesh.

The local, iterative characteristic of the method presented in this thesis is partic-
ularly well suited for non-uniformly sampled point clouds. Figures 7.6 and 7.7 give a
comparison with a non-uniformly sampled artificial object. It is basically an ellipsoid
with small features on the surface. This test object is well suited for assessing the ability
of the resampling method to preserve small features in the presence of noise. This point
cloud is resampled with Meshlab APSS and our technique. The resampled points are
then reconstructed with screened Poisson [KH13]. (The reason why the reference APSS
implementation with marching cubes is not used is that not all tested models provide
connectivity information (triangular mesh), which is needed by reference APSS). In Fig-
ure 7.6, the middle image shows the result of the APSS resampling, the lower image is
the result of our method. Note how in the lower image, the small features are recovered,
whereas the spherical structure of the features is destroyed in the middle sub-image.

In Figure 7.7, a difficult area is shown: The poles of the ellipsoid are densely sampled
but highly non-uniformly and noisy. The normal computation algorithm of Meshlab fails
to compute the correct vectors because it uses a fixed-size neighborhood. As a result,
the reconstruction method (screened Poisson reconstruction [KH13]) produces artifacts
that significantly degrade the quality of the surface. This results in a 4.02 times larger
Hausdorff distance (maximum) and a 2.26 times higher RMS than with our method.

Another case of non-uniform sampling is shown in Figure 7.8: The horse, provided by
[KH13], is a point set of 100k points that cover the surface of the horse irregularly. Figure
7.8 shows the effect of extreme noise on the reconstruction: The non-uniformly sampled
point cloud is resampled one time using Meshlab APSS [GG07] [CCR08] (left sub-image)
and one time using our method (right sub-image). Both are then reconstructed using

69

Figure 7.5: Comparison of the distance between the reconstructed mesh and the original
buddha mesh (added noise: 0.0061, see Table 7.1). Blue encodes small error, red the
maximum error. Left: reconstructed with reference APSS [GG07]. Right: resampled
+ normal calculation with our method + mesh generation with screened Poisson recon-
struction [KH13]. The histograms show the distributions of the error values: the values
are scaled from 0.0 to 0.0036 and mapped to a color scale.

screened Poisson reconstruction [KH13]. Even in this difficult situation, our technique is
able to reconstruct the rough geometry and the major features of the point cloud. Since
the other method cannot adapt to the very high noise level, the faulty normal vectors
produce artifacts during the Poisson reconstruction.

Raw point clouds produced by 3D scanners often suffer from non-uniform noise. In
contrast to state-of-the-art techniques for resampling the surface and calculating normal

70

Figure 7.6: Artificial ellipsoid with extended features (upper image) is sampled non-
uniformly, noise-extent: 0.0031. Middle: reconstruction with Meshlab APSS. Bottom:
reconstruction with our method. The small extruded features are preserved with our
method.

vectors, our method does not assume a global noise level. Figure 7.9 demonstrates the
comparison of our method to APSS resampling [GG07] and the state of the normal re-
construction of Meshlab. The virtual scanner [BLN+13] is used to produce a point cloud
by simulating the scanning process of the dragon model (Figure 7.9). The result shows
that our technique performs better: The RMS of the Hausdorff distance is 13% better
with our algorithm. The visualized Hausdorff distance in Figure 7.9 demonstrates the im-
provement of the adaptive isotropically fair neighborhoods against the fixed isotropically
biased neighborhood definition.

The raw range images of 3D scanners are even more challenging for reconstruction.
Although the sampling may be regular in screen space (of the scanner), the samples are
generally distributed unevenly among the geometry of the surface. ([ABCO+01], [Bol10])
Surface patches that are perpendicular to the scanning device are sampled differently
than surfaces with a steep angle towards the scanner. The noise level is also not uniform
for all points: depending on the 3D scanner, the accuracy may not be constant in all
directions and is additionally dependent on the geometry and the material of the scanned
object.

The Microsoft KinectTM is a low-cost consumer device capable of generating range
images. Figure 7.10 shows the result of the reconstruction of two range images. The
left sub-images are reconstructed using Meshlab’s normal reconstruction, the right sub-
images are generated by our method. The scanned object in both images is an open

71

Figure 7.7: Visualization of the distance between the resampled vertices and the original
surface. Object is a densely non-uniformly sampled ellipsoid with extruded features,
noise-extent: 0.0031 (left image). Our method (right image) adapts to the different
sampling condition and produces better normal vectors. This produces a significantly
better surface reconstruction. Middle: Meshlab APSS

Figure 7.8: Left image: original model without noise. Reconstruction of the vertices
with high noise (noise extent: 0.015). Middle: Meshlab APSS [GG07] and [CCR08],
right image: our method. The resampled point clouds of both methods are then fed into
the screened Poisson reconstruction to obtain the final mesh. The blob-like artifacts are
caused by wrong normal vectors.

computer case, with small details like cables and large flat surfaces. The blob-like ar-
tifacts are produced by incorrect normal computation: If the normals are wrong, the

72

Figure 7.9: Left sub-image: Dragon is scanned by the virtual scanner by [BLN+13]. The
middle image shows the resampling with Meshlab-APSS [GG07], the right image was
resampled with our method. Our method produces less artifacts, particularly at the
back foot and the mouth of the dragon.

reconstruction method [KH13] generates these artifacts in order to ensure a closed sur-
face. Notice how our method is able to significantly reduce the artifacts in both cases
while preserving fine structures.

7.2 Consistent Normal Orientation

This section will evaluate the performance of our method (see Section 5.2) for making
normals globally consistent. Our solution avoids building global data structures to calcu-
late the Riemannian graph, which is common in state-of-the-art methods (see Chapter 5
for details) Nevertheless, the results show that our method has comparable quality while
being significantly faster (about 2-3 times).

Table 7.2 depicts the results of the most interesting test cases. Figure 7.11 visualizes
this data in a diagram: It shows that our technique can compete with the slower global
algorithm. In some cases it even produces better quality. The table also shows that the
local agreement scheme (see Section 5.2) improves the robustness and quality of the local
approach. The numbers without the local agreement scheme are written in brackets.

One disadvantage of our technique is the unpredictable state of the convergence
of the global agreement. The final state (after convergence) of the local agreement is
visualized for the Bunny model in Figure 5.5. If the regions of smaller agreement (near
0.5, visualized as red color) completely encircle bigger regions with exact agreement,
the orientation cannot be transferred reliably between the encircled blue region and the
outside. Thus, one patch which is separated by an enclosing region of small agreement
may have the wrong normal orientation. This case occurs for example for the ellipsoid
in Table 7.2: Although the method manages to reduce the number of wrong normals for
the 0.0 noise model, it performs worse in relation to the global method for other noise

73

Figure 7.10: Reconstruction of KinectTM range scans of an open computer case. Left
images are generated by Meshlab APSS, right images are the result of our method. The
normal computation routine of Meshlab produces more faulty normal vectors because of
the non-uniform sampling and noise level. This produces the blob-like artifacts during
the surface reconstruction. Our method (right images) succeeds in producing more
correct oriented normal vectors and thereby reducing these artifacts.

levels. Section 8.2 gives an outlook on how to improve the local approach to alleviate
this problem.

A second drawback of the local technique is that the assumptions that are the base of
the heuristic for building a connected graph are sometimes violated. The resulting graph
then connects vertices that are not in the same vicinity on the actual surface. In these
cases, the affected normal is flipped in the wrong direction. However, such mistakes only
affect one or only a small number of vertices, since the local consensus prohibits the
propagation of the wrong orientation.

A particular failure case concerns elongated, thin structures. If the sampling is not
regular and the noise level exceeds a certain limit, the points form several connected

74

global graph technique local graph technique
wrong normals time (s) wrong normals time

bunny (0.0) 0 (0.0%) 1.16 2 [2] (0.0056%) 0.543
bunny (0.0019) 1 (0.0028%) 1.162 2 [2] (0.0056%) 0.492
bunny (0.0092) 432 (1.201%) 1.062 4 [4] (0.0111%) 0.501
bunny (0.0167) 239 (0.665%) 0.88 9 [23] (0.025%) 0.655

ellipsoid (0.0) 342 (0.3%) 3.42 75 [351] (0.06%) 1.38
ellipsoid (0.0007) 10 (0.009%) 3.38 93 [164] (0.08%) 1.52
ellipsoid (0.005) 13 (0.014%) 3.08 82 [97] (0.09%) 2.61

omotondo (0.0) 111 (0.022%) 16.6 111 [130] (0.022%) 5.9
omotondo (0.00002) 112 (0.023%) 17.2 113 [116] (0.023%) 5.7
omotondo (0.00006) 112 (0.023%) 16.9 112 [114] (0.023%) 5.9

Table 7.2: Comparison of the normal orientation using global vs. local data structures
for building the Riemannian graph (see Chapter 5). Different models with various noise
levels (in parentheses) are processed with the global and the local method. The time
denotes the total runtime of the orientation algorithm: building the data structures and
flipping the wrong normals. The number in square brackets [] is the number of wrong
normals using the local technique without the local agreement.

0,00

0,20

0,40

0,60

0,80

1,00

1,20

0 0,0007 0,005

%
 w

ro
ng

ly
 o

rie
nt

ed
 n

or
m

al
s

noise level

bunny (local)

bunny (global)

ellipsoid (local)

ellipsoid (global)

omotondo (local)

omotondo(global)

Figure 7.11: Diagram of Table 7.2: The colors encode the model (bunny: blue, ellipsoid
with features: green, omotondo: orange), dotted lines are the results of the global
method, continuous lines refer to our local technique. For these models our technique is
more stable than the method using a global EMST.

components. The simple heuristic used in Section 5.2 cannot combine them to the
biggest connected component without introducing edges that intersect other connected

75

components.
Figure 7.12 visually compares our local method with the standard global approach

without local agreement. Since the propagation works by traversing a tree in a depth-
first order, one wrong flipping decision can have a huge impact on the successive nodes
in the graph. The weighting scheme of [HDD+92] should minimize the probability that
a wrongly flipped normal (which is likely to have a big weight) has many successors and
that it will be a leaf node. Nevertheless, it is not guaranteed and can deteriorate the
result. Our local agreement scheme further reduces the probability of the propagation
of wrongly flipped normals. In the left sub-image of Figure 7.12, the failure case of the
global method without local agreement is shown. The right image shows a detail view
of the same area after being oriented by our local technique.

Figure 7.12: The normal vectors of the bunny model are shown: Blue vectors have the
correct orientation, red arrows depict normal vectors with a wrong global orientation.
Left sub-image: result of the global normal propagation after [HDD+92]. The ear of
the bunny, where the wrong orientation occurs, is shown in two detail images. Right
sub-image: ear of the same point cloud, where the normal orientation was determined
with our technique with local agreement.

7.3 Performance

In this section, the performance and the timings of the discussed algorithms are presented.
In general, the computational effort for generating the isotropically fair neighborhoods
is non-negligible and higher than if an isotropically biased neighborhood (e.g., k-nearest
neighbors) had been used. The effort is not only higher during initialization of the data
structure but also during the other stages of the algorithm: bigger memory consump-

76

tion and more complex memory access leads to a slightly slower execution speed of the
regression algorithm.

Table 7.3 lists the run-times of the different stages of our local reconstruction pipeline
implemented on the CPU. Figure 7.13 visualizes these times. The Armadillo model is
processed at three different noise levels. The majority of the run-time is spent in local
functions. Building the neighborhood structure, calculating the noise spheres and the
orientation agreement are computed independently and can be parallelized. Building
the kd-Tree and searching for the nearest neighbors at the beginning, building the graph
for normal orientation and flipping the wrong normals are currently done sequentially.
In our tests, the kd-tree of ANN [MA] is used to process the nearest-neighbor search.
Executing the neighborhood search in parallel would improve the performance of the
regression.

The main bottleneck of the computation is the calculation of the noise spheres. The
higher the noise level, the more computationally intensive is the task of generating the
noise spheres. The reason for this behavior is that the growing neighborhood scheme 4.2
takes more iterations to find the best suitable neighborhood for each input point.

0

2

4

6

8

10

12

14

0.00196 0.00328 0.0052

se
co

nd
s

noise level

armadillo (172974 pts)

kNN-search (global) nhood generation (local) noise spheres (local) Graph Aggregation from local nhoods (global)

local flipping (local) finding con comp + connect heuristic (global) Prim-MST (global) global orientation propagation (global)

Figure 7.13: CPU performance of the resampling and normal computation and orienta-
tion for the armadillo point cloud. See Table 7.3.

The advantage of our method (see Chapter 4) is that the expensive part is a pure
local function. That means that each noise sphere can be computed independently from
all other spheres, only the input points are needed and are not altered by the iterative
algorithm. Therefore, the critical part can be parallelized easily. The straight-forward
CPU implementation yielded an acceleration of 2 − 3× on an Intel Core 2 Quad using 4
threads.

The most expensive part of the noise-sphere calculation (about 85%) is the eigenvec-
tor computation of the regression. Section 6.1.1 describes an approach how to execute
these calculations on the GPU. The actual eigenvalue problem is thereby accelerated by

77

armadillo (172974 pts) noise level:
0.00196 0.00328 0.0052

kNN-search (global) 1.49809 1.53809 1.55809
nhood generation (local) 0.389 0.395 0.428
noise spheres (local) 3.68 4.7 7.7
Graph Aggregation from local nhoods (global) 0.39 0.475 0.628
local flipping (local) 0.235 0.273 0.303
finding con comp + connect heuristic (global) 0.563 0.632 0.68
Prim-MST (global) 0.414 0.483 0.56
global orientation propagation (global) 0,234 0,2254 0,193

Table 7.3: Run-time of various stages of our local reconstruction pipeline. Compares the
run-times in regard to increasing noise level. Point cloud is from the armadillo model.
Figure 7.13 illustrates this table.

size: 16283 60955 138799 187948 264051 372479 435545 498905 595358 882954

CPU (full) 0.226 0.82 1.908 2.257 2.972 5.1733 6.14 7.212 8.3 12.0357
CPU (symmetric) 0.122 0.45 1.035 1.227 1.61 2.77 3.18 3.64 4.42 6.38
GPU (symmetric) 0.008 0.024 0.053 0.063 0.084 0.143 0.54 0.366 0.228 0.556

Table 7.4: Run-times of different 5 × 5 eigenvalue solvers: CPU (full): asymmetric eigen-
problem, CPU (symmetric) and GPU (symmetric) solve the transformed symmetric
problem (Section 6.1.1).

a factor of 20. The graphs in Figure 7.14 compare different algorithms for the eigen-
vector computation of 5 × 5 matrices. The naive implementation (green) executes the
general eigenvalue algorithm on the matrices. The reformulation of Section 4.3 has the
benefit of only requiring the eigenvalues for a symmetric matrix, which has only real
eigenvalues. The performance of the CPU implementation of the symmetric approach
(red) has a speedup of about 1.88. The same method implemented on a GPU (NVidia
GTX770) has a speedup of about 18.4 compared with the symmetric CPU implementa-
tion (blue). This speedup already includes the transfer times between the host memory
and the device memory.

Although the eigenvalues can be calculated quickly, the overall performance gain
over the single threaded CPU implementation is slightly less than the multi-core CPU
implementation (on an Intel Core2 Quad). The whole pipeline of spherical regression
is changed (see Section 6.1.1 for details). This results in an efficient regression sphere
calculation, but the whole iterative function is slower. Handling the neighborhood (gen-
eration, enlargement) and calculating the matrices from the neighborhoods is still done
in a serial way on the CPU. Additionally, the data has to be transferred between the
CPU and the GPU. A pure GPU implementation, which would also handle the neigh-
borhoods, would not suffer from these shortcomings and would be significantly faster.

78

0

2

4

6

8

10

12

14

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

se
co

nd
s

number of matrices

Eigenvalue Calculation 5x5

GPU (symmetric)

CPU (symmetric)

CPU (full)

Figure 7.14: Comparison of eigenvector calculations for 5 × 5 matrices: The CPU im-
plementation of the symmetric algorithm (red) takes nearly 20× the time of the GPU
implementation (blue). The CPU implementation of the general eigenvalue algorithm is
nearly twice as slow as the symmetric CPU implementation. Also see Table 7.4

APSS CLOP Our Our Our
[GG07] [PMA+14] (CPU quad) (CPU single) (GPU)

bunny (35947 pts) 0.51 0.179 1.59 4.05 1.39
horse (99998 pts) 19.60 0.377 10.79 30.26 10.56
buddha (144647 pts) 8.53 0.351 3.48 7.69 3.51
armadillo (172974 pts) 18.33 0.374 7.80 21.91 6.71
dragon (435545 pts) 7.30 0.543 11.25 27.05 10.17
omotondo (498938 pts) 63.40 0.78 10.83 26.62 11.22
blade (882954 pts) 131.55 1.195 16.28 33.41 16.69

Table 7.5: Comparison of the run-times of different resampling implementations: The
normal computation and APSS implementation of Meshlab[CCR08], GPU implementa-
tion of CLOP [PMA+14] and our method: single and multi-threaded CPU implementa-
tion and a GPU implementation. See also Figure 7.15

Section 8.2 gives an outlook on how to further improve the resampling performance.
Figure 7.15 and Table 7.5 compare the runtime of resampling implementations: Our

method (CPU single-threaded, multi-threaded and GPU assisted) is compared to the
Meshlab implementation of APSS [GG07] (and normal vector computation) and a highly
optimized GPU implementation of CLOP [PMA+14]. The CPU implementations are
executed on an Intel Core2 Quad with 3GHz, the GPU assisted implementation of our

79

0

20

40

60

80

100

120

140

bunny (35947 pts) horse (99998 pts) buddha (144647 pts) armadillo (172974 pts) dragon (435545 pts) omotondo (498938 pts) blade (882954 pts)

se
co

nd
s

APSS [GG07] CLOP [PMA+14] Our (CPU quad) Our (CPU single) Our (GPU)

Figure 7.15: Run-time of various resampling implementations: Meshlab APSS : Using the
normal computation method + the APSS [GG07] projection. CLOP: Highly optimized
GPU implementation [PMA+14]; parameters are determined manually for each point
cloud. Our method is implemented in a single core, multi-threaded and GPU assisted
implementation.

method is run on an NVidia GTX770 GPU and CLOP is executed on an NVidia GTX
TITAN GPU. Concerning the run-times of the algorithms, the CLOP implementation
outperforms APSS and our method by one order of magnitude. However, this does not
account for the time spent for adjusting the parameters to gain a reasonable resampling.
Because Meshlab APSS is composed of two methods (calculating the normals + APSS
projection), the kd-tree is built twice.

The speed comparison in Figure 7.15 shows that our method has overall better perfor-
mance than Meshlab APSS. A direct resampling performance comparison with reference
APSS is not feasible, because the reference implementation of APSS [GG07] reconstructs
the global surface using marching cubes.

The global normal orientation procedure heavily relies on global data structures.
Usually, an Euclidean minimum spanning tree is required to ensure global connected-
ness of the input points. The results of our tests show that in many cases, this global
connectivity approach is not necessary. Instead, the aggregation of the local neighbor-
hoods is sufficient to model the global connectivity. The presented heuristic in Section
5.2 ensures that all points are connected and yields a better performance, especially for
bigger point clouds (> 100k points). Table 7.2 shows the timings of different models and
shows a median speedup of 2.24 between the traditional global approach and the local
method.

Figure 7.16 and Table 7.6 compare the performance of our method with the global,

80

od building EMST enriching graph MST

other orientation traversal

0

2

4

6

8

10

12

14

16

global method local method

se
co

nd
s

building EMST

enriching graph

MST of graph
orientation traversal

other

aggregating edges

local flipping

make connected

MST of graph

orientation traversal

other

Figure 7.16: Runtime comparison between the global technique (approach after
[HDD+92], [XWH+03]) and our technique (Section 5.2). The input point cloud is the
omotondo, noise: 0.0 (see Table 7.2), with 498905 vertices. Global: building the EMST
for generating the Riemannian graph, enriching it with further edges, calculating the
MST of the Riemannian graph and traversing the MST to orient the normals. Local:
Aggregate the edges of the local neighborhoods, determine the local agreement, heuristic
to ensure that the resulting graph is connected, build the MST of this graph and traverse
it to orient the normals. other are operations like determining the weights of the graph
and handling data structures.

EMST based approach ([HDD+92], [XWH+03]). The most expensive part of the global
technique is building the EMST (which is derived from a Delaunay triangulation in this
implementation). Enriching the graph – finding additional edges for the EMST – is also
a non-trivial part of the overall runtime.

Our technique’s runtime is primarily determined by the aggregation of the edges
to form a global set of unique edges, making the graph connected with our heuristic
and building the MST of the resulting graph. Those are inherently global operations
that cannot be accelerated easily by parallelization. The local flipping can be further
improved by executing it in parallel for each point.

81

global local

step seconds step seconds

building EMST 11.4400 aggregating edges 1.3000
enriching graph: 3.3862 local flipping 0.7420
MST of graph 0.7090 make connected 1.3000

other 0.1227 MST of graph 1.3040
orientation traversal 0.9091 other 0.3773

orientation traversal 0.9121

Table 7.6: Listing of the run times of the single steps of the normal orientation of the tex-
titomotondo point cloud, noise: 0.0. global uses an approach after[HDD+92],[XWH+03],
local denotes our technique using the local neighborhoods. Also see Figure 7.16

82

CHAPTER 8
Conclusion

8.1 Synopsis

The use of isotropically fair neighborhoods enhances the reconstruction quality of noisy
point clouds. Previous techniques use only the positions and the distances of neigh-
boring points. The proposed N-ring neighborhood (Section 4.1) succeeds in gathering
additional information about the spatial relation between the vertices of the unorganized
point cloud. This leads to improved surface reconstruction, particularly in non-uniform
sampling situations in which isotropically biased methods perform worse.

Our parameter-free regression method can roughly estimate the noise level at each
input point and adapts to the noise extent. This results in good reconstruction quality
without the need for user interaction or other additional data. This also makes the
method insensitive to non-uniform sampling conditions and varying noise levels across a
point cloud.

The local nature of the method allows for a fast parallel implementation. As the
most critical step, we have implemented the sphere regression (which is a 5×5 eigenvalue
problem) on the GPU. The data structures built for the isotropically fair neighborhoods
can be reused in later stages of the surface reconstruction. Determining a globally
consistent normal orientation requires a good approximation of the global connectivity
of the underlying surface. The union of all local isotropically fair neighborhoods is a
suitable and more efficient replacement for other data structures which have to be built
with global algorithms. Together with a local normal-orientation scheme, this results in
a faster generation of an oriented point cloud than with previous methods.

8.2 Future Work

The presented N-ring neighborhood in Section 4.1 is only one possible isotropically fair
neighborhood. A Voronoi-based neighborhood would be an interesting alternative: For

83

each point, a local Voronoi diagram (for example used in [DG03]) is calculated and
the points are then additionally weighted by the size of the corresponding Voronoi cell.
This would also include additional information about the spatial relation between the
adjoining points to the neighborhood.

Currently, our method treats input-points as samples which are subject to uniform
Gaussian noise. Modeling the surface as a continuous probability density function (sim-
ilar to the mixture of Gaussians approach in [PMA+14]) may increase the quality and
flexibility of the reconstruction. Information about the sensor noise (provided by the
3D scanner) can then be incorporated into the local regression, which may produce a
better approximation for the underlying surface – especially for range images. Normals
provided by the scanner – if available – may also be included in the regression. In
[GG07], the normal vector of a point is used as a normal constraint, which has the
benefit of turning the sphere regression into a system of linear equations (instead of an
eigenvalue problem). Future work could extend this method to include the normals as
fuzzy constraints. This could increase the accuracy of the reconstruction as well as the
performance (solving a system of linear equation instead of an eigenvalue-problem).

One drawback of the adaptive spherical regression method is that it is not well
suited for sharp features. An extension of the current method could tag sharp features
by using a local l1 kernel. The sharp features – edges and corners – could then be
handled separately for better reconstruction. A similar approach is suggested in [GG07].

Currently, the implementation does not use the GPU optimally. The generation of
the neighborhood structure, which is now done on the CPU, is also a local operation
that can be executed on the GPU. Furthermore, the whole adaptive regression can be
implemented on the GPU in parallel. This would exploit the local nature of the algorithm
and could significantly increase the performance of the method. The adaptive resampling
method 4.2 can be combined with an interpolating reconstruction method to complete
the reconstruction pipeline (from unorganized points to triangular mesh): creating local
consensus triangles (see Figure 6.2) out of the resampled points recovers large portions
of the surface. A post-processing step with an interpolating method similar to [OMW13]
would fill the holes and would create the final triangulation.

The local agreement approach for the normal-orientation step (Section 5.2) can be
used to segment the normals and generate connected patches: The normals are currently
locally flipped until convergence. Afterwards, the normals could be clustered into patches
with perfect agreement and regions with smaller agreement. Figure 5.5 visualizes the
converged agreement values. A global method then would find a consistent orientation
between all patches. This would significantly reduce the work of the global method
because the corresponding graph has only the size of the number of patches.

84

Bibliography

[ABCO+01] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David
Levin, and Claudio T. Silva. Point set surfaces. In Proceedings of the
Conference on Visualization ’01, VIS ’01, pages 21–28, Washington, DC,
USA, 2001. IEEE Computer Society.

[ABL03] Dominique Attali, Jean-Daniel Boissonnat, and André Lieutier. Complex-
ity of the delaunay triangulation of points on surfaces the smooth case.
In Proceedings of the Nineteenth Annual Symposium on Computational
Geometry, SCG ’03, pages 201–210, New York, NY, USA, 2003. ACM.

[AGJ02] Udo Adamy, Joachim Giesen, and Matthias John. Surface reconstruction
using umbrella filters. Computational Geometry, 21(1-2):63 – 86, 2002.
Sixteenth European Workshop on Computational Geometry - EUROCG-
2000.

[AS13] James Andrews and Carlo H. Séquin. Type-constrained direct fitting of
quadric surfaces. Computer Aided Design and Applications, 2013. To
appear. Will be presented at CAD’13.

[AsC09] A. Al-sharadqah and N. Chernov. Error analysis for circle fitting algo-
rithms. Electronic Journal of Statistics, pages 886–911, 2009.

[BLN+13] Matthew Berger, Joshua A. Levine, Luis Gustavo Nonato, Gabriel Taubin,
and Claudio T. Silva. A benchmark for surface reconstruction. ACM Trans.
Graph., 32(2):20:1–20:17, April 2013.

[Bol10] Matthew Grant Bolitho. The Reconstruction of Large Three-Dimensional
Meshes. PhD thesis, The Johns Hopkins University, 2010.

[CBC+01] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C.
McCallum, and T. R. Evans. Reconstruction and representation of 3d ob-
jects with radial basis functions. In Proceedings of the 28th Annual Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH
’01, pages 67–76, New York, NY, USA, 2001. ACM.

85

[CCR08] Paolo Cignoni, Massimiliano Corsini, and Guido Ranzuglia. Meshlab: an
open-source 3d mesh processing system. ERCIM News, (73):45–46, April
2008.

[CGA] Cgal, Computational Geometry Algorithms Library.
http://www.cgal.org.

[CGGS13] S. Cuomo, A. Galletti, G. Giunta, and A. Starace. Surface reconstruction
from scattered point via rbf interpolation on gpu. In Computer Science
and Information Systems (FedCSIS), 2013 Federated Conference on, pages
433–440, Sept 2013.

[CL05] N. Chernov and C. Lesort. Least squares fitting of circles. J. Math. Imaging
Vis., 23(3):239–252, November 2005.

[CRS96] Paolo Cignoni, Claudio Rocchini, and Roberto Scopigno. Metro: Measur-
ing error on simplified surfaces. Technical report, Centre National de la
Recherche Scientifique, Paris, France, France, 1996.

[CSRL01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leis-
erson. Introduction to Algorithms. McGraw-Hill Higher Education, 2nd
edition, 2001.

[DG03] Tamal K. Dey and Samrat Goswami. Tight cocone: A water-tight surface
reconstructor. In Proceedings of the Eighth ACM Symposium on Solid
Modeling and Applications, SM ’03, pages 127–134, New York, NY, USA,
2003. ACM.

[FCOS05] Shachar Fleishman, Daniel Cohen-Or, and Cláudio T. Silva. Robust mov-
ing least-squares fitting with sharp features. In ACM SIGGRAPH 2005
Papers, SIGGRAPH ’05, pages 544–552, New York, NY, USA, 2005. ACM.

[GG07] Gaël Guennebaud and Markus Gross. Algebraic point set surfaces. In
ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07, New York, NY, USA,
2007. ACM.

[GKS01] M Gopi, Shankar Krishnan, and Claudio T. Silva. Surface reconstruction
based on lower dimensional localized delaunay triangulation. Computer
Graphics Forum, 19(3):467–478, 2001.

[GR04] David Gisch and Jason M Ribando. Apollonius’ problem: A study of solu-
tions and their connections. American Journal of Undergraduate Research,
3(1), 2004.

[HDD+92] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and
Werner Stuetzle. Surface reconstruction from unorganized points. In Pro-
ceedings of the 19th Annual Conference on Computer Graphics and Inter-

86

active Techniques, SIGGRAPH ’92, pages 71–78, New York, NY, USA,
1992. ACM.

[HLZ+09] Hui Huang, Dan Li, Hao Zhang, Uri Ascher, and Daniel Cohen-Or. Con-
solidation of unorganized point clouds for surface reconstruction. In ACM
SIGGRAPH Asia 2009 Papers, SIGGRAPH Asia ’09, pages 176:1–176:7,
New York, NY, USA, 2009. ACM.

[KA08] Yong Joo Kil and Nina Amenta. Gpu-assisted surface reconstruction on
locally-uniform samples. In Proceedings of the 17th International Meshing
Roundtable, Pittsburgh, Pennsylvania, USA, October 12-15, 2008., pages
369–385, 2008.

[KBH06] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface
reconstruction. In Proceedings of the Fourth Eurographics Symposium on
Geometry Processing, SGP ’06, pages 61–70, Aire-la-Ville, Switzerland,
Switzerland, 2006. Eurographics Association.

[KG09] Sören König and Stefan Gumhold. Consistent propagation of normal ori-
entations in point clouds. In Marcus A. Magnor, Bodo Rosenhahn, and
Holger Theisel, editors, VMV, pages 83–92. DNB, 2009.

[KH13] Michael Kazhdan and Hugues Hoppe. Screened poisson surface reconstruc-
tion. ACM Trans. Graph., 32(3):29:1–29:13, July 2013.

[LCOLTE07] Yaron Lipman, Daniel Cohen-Or, David Levin, and Hillel Tal-Ezer.
Parameterization-free projection for geometry reconstruction. In ACM
SIGGRAPH 2007 Papers, SIGGRAPH ’07, New York, NY, USA, 2007.
ACM.

[Lev01] David Levin. Mesh-independent surface interpolation. In Advances in
Computational Mathematics. in press, 2001.

[MA] David M. Mount and Sunil Arya. ANN: A library for approximate nearest
neighbor searching. https://www.cs.umd.edu/ mount/ANN/.

[MN03] Niloy J. Mitra and An Nguyen. Estimating surface normals in noisy point
cloud data. In Proceedings of the Nineteenth Annual Symposium on Com-
putational Geometry, SCG ’03, pages 322–328, New York, NY, USA, 2003.
ACM.

[OGG09] Cengiz Oztireli, Gaël Guennebaud, and Markus Gross. Feature Preserving
Point Set Surfaces based on Non-Linear Kernel Regression. Computer
Graphics Forum, 28(2):493–501, 2009.

87

[OMW13] Stefan Ohrhallinger, Sudhir Mudur, and Michael Wimmer. Minimizing
edge length to connect sparsely sampled unorganized point sets. Com-
puters & Graphics (Proceedings of Shape Modeling International 2013),
37(6):645–658, Oct 2013.

[PMA+14] Reinhold Preiner, Oliver Mattausch, Murat Arikan, Renato Pajarola, and
Michael Wimmer. Continuous projection for fast l1 reconstruction. ACM
Transactions on Graphics (Proc. of ACM SIGGRAPH 2014), 33(4):47:1–
47:13, August 2014.

[Pra87] Vaughan Pratt. Direct least-squares fitting of algebraic surfaces. SIG-
GRAPH Comput. Graph., 21(4):145–152, August 1987.

[STN88] Knut Stamnes, Sfchee Tsay, and Teruyuki Nakajima. Computation of
eigenvalues and eigenvectors for the discrete ordinate and matrix operator
methods in radiative transfer, 1988.

[XWH+03] Hui Xie, J. Wang, Jing Hua, Hong Qin, and A. Kaufman. Piecewise c1
continuous surface reconstruction of noisy point clouds via local implicit
quadric regression. In Visualization, 2003. VIS 2003. IEEE, pages 91–98,
Oct 2003.

88

