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Abstract

Critical current densities of superconducting materials can either be measured by
direct current measurements, or indirectly by magnetic flux measurements. The dis-
advantage of the direct method is the much higher resistance of the measurement
contacts in comparison to the superconductors resistance. The indirect method on
the other hand measures the magnetic moment. In order to calculate the current
density, the geometry of the superconductor needs to be known. Additionally, de-
magnetizing effects modify the magnetic field in the sample. The purpose of this
thesis is to investigate the demagnetizing effects on the critical current densities in
type-II superconductors. The insights from this thesis are meant to help calculating
the demagnetizing effects, especially of magnesium diboride multifilament supercon-
ductors, in the future.

Regarding the theoretical calculations, formulas for the magnetic moment were de-
rived in great detail for several geometries, including cylinders, cuboids, hollow cylin-
ders and elliptic cylinders. Furthermore, the demagnetization factors for a cylinder
and an infinite long bar have been computed. Also, a new formula to calculate the
current density of the magnetic moment of cuboids and cylinders was proposed.

Niobium cylinders and cuboids of several lengths were measured by magnetic flux
measurements in order to compare the critical current densities and the magnetiza-
tion values with the theoretical calculations.

Depending on the regarded geometry, two formulas relating current density to mag-
netic moment are usually used. The first formula is used to calculate the magnetic
moment of geometries where one of two dimensions perpendicular to the applied
magnetic field, is much longer than the other one. The second formula is used for
geometries where both of the dimensions located perpendicular to the magnetic
field are almost equally long. In this thesis, these two formulas are compared and
the differences between them are discussed.
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1. Introduction
Superconductors have been discovered for over 100 years. They have been object to
many experiments, due to their interesting behaviour, especially if put into a mag-
netic field. The magnetization of superconductors is dependent on their geometric
shape and the current flowing through it. The relation between magnetization and
critical current density can be calculated easily with two formulas which are depen-
dent on the geometry of the superconductor. The first formula is used for geometries
where one of the dimensions which are perpendicular to the applied field is much
longer than the other one. The second formula is used for geometries where both
sides perpendicular to the magnetic field are almost equally long.

Additionally, the magnetic quantities vary in different geometric properties due to
demagnetizing effects. These demagnetizing factors have been studied since the 19th

century. Poisson, Thomson and Maxwell contributed to this topic [1]. For a long time
spheres and ellipsoids were the only geometries for superconductors with analytic
demagnetization factors until 1960. At this time T. T. Taylor [2, 3] calculated the
factor for cylinders parallel and perpendicular to a magnetic field. For infinite long
bars perpendicular to a magnetic field D. X. Chen et al. [4] calculated an analytic
expression for the demagnetizing factor for various values of the susceptibility.
In other geometries, there exist no analytic expressions for superconductors. This
field of research has been relying heavily on numerical approaches. The most recent
numerical calculations for square bars and various susceptibilities on demagnetizing
factors are by D. X. Chen et al. [5]. For type-II superconducting cylinders in axial
direction Alvaro Sanchez and Carles Navau [6] did numerical calculations.
Although not used in this thesis, there have been some articles describing approaches
with variational principles for calculating demagnetization factors. Here the method
using magnetization point poles was applied [7, 8, 9].

The necessary theory of superconductors and their magnetic properties is presented
in the second chapter of this thesis. Also, the differences between the two formulas
relating magnetic moment and critical current density to each other, are presented.
Next, the influence of the demagnetization effects are discussed. The last section of
the chapter contains some information about magnetic flux measurements.

In the third chapter of this thesis the methods used for the numerical calculations
of the demagnetizing factors for a cylinder with its main axis parallel and perpen-
dicular to the magnetic field, for a long bar with its long side perpendicular to the
magnetic field and for a general cuboid in the magnetic field are presented.

1



1. Introduction 2

In the fourth chapter theoretical calculations of the formulas connecting critical
current densities and magnetic moment to each other are described for various ge-
ometries in great detail. Also, the results of the numerical calculations of the de-
magnetizing factors for the cylinder and long bar are given. In the last section, the
results of the measurements are given. These contain the evaluation of the magnetic
susceptibility from the virgin magnetic curves of the samples and the calculation of
the magnetization and the critical current density. The results of the magnetization
and the critical current density are compared with the ones where the demagnetizing
effects have been taken into account.

The last chapter is a short conclusion about the results of this thesis.

The full program code used for numerical calculations can be found in appendix
A. The magnetic hysteresis curves measured are found in appendix B. Appendix C
contains the virgin magnetic moment curves while appendix D and E contain the
magnetization and the critical current density as a function of the internal and ap-
plied magnetic field.

A CD is attached which contains a digital copy of this thesis, all measured data, the
program code of appendix A, and the compiled programs.



2. General Concepts

2.1. Superconductors
2.1.1. Type I superconductors
Type I superconductors were first discovered by H. Kamerlingh Onnes in 1911. He
measured zero resistivity in several metals, when he cooled them down below a
certain temperature. Meissner and Ochsenfeld observed perfect diamagnetism of su-
perconductors in 1933. Appropriate theories to describe this effect emerged in the
sixties [10].

The superconducting state is defined by the material having no electric resistiv-
ity in theory and being perfectly diamagnetic. Experiments have proven that there
is no decrease in current in a closed superconducting circuit over years [10], which is
equivalent to having zero resistivity for practical purposes. Fig. 2.1 shows the relation
between the magnetic field and the magnetization in a type-I superconductor.

Figure 2.1.: The superconductor is perfectly diamagnetic until the applied field
reaches a certain strength 𝐻𝐶 . The material becomes immediately nor-
mal conducting at this point.

The London equations provide the theoretical background to describe the be-
haviour

𝐸⃗ = 𝜕

𝜕𝑡

(︁
Λ · 𝑗⃗

)︁
(2.1)

𝐵⃗ = ∇⃗ ×
(︁

Λ · 𝑗⃗
)︁

(2.2)

3



2. General Concepts 4

which relates the electric field 𝐸 and the magnetic induction 𝐵 to the current density
𝑗. The so called London length Λ is a material dependent factor.

2.1.2. Type-II superconductors
Type II superconductors do not show this perfect transition between conductivity
and superconductivity as presented in Fig. 2.2. Instead they show a mixed state, the
so called Shubnikov phase. Then the superconductor is no longer perfectly shielded.
The magnetic field can penetrate the material.

The material enters the Shubnikov phase at the applied critical field 𝐻𝐶1. At this
point, vortices appear near the surface of the superconductor. The vortices are mov-
ing inwards if the applied magnetic field is increased and new vortices appear near
the surface. With increasing field, the density of vortices increases, until they are so
dense, that the normal conducting regions overlap and superconductivity disappears.
This field is called upper critical field 𝐻𝐶2.

Figure 2.2.: The superconductor is perfectly diamagnetic until the applied field
reaches a certain strength 𝐻𝐶1. At this point the material is pene-
trated by the field until the vortices fill up the whole material. This
is the case when he field reaches 𝐻𝐶2, at which the material becomes
normal conducting.

2.1.3. The Bean model
In Beans critical state model [11] the current density 𝑗, inside a type-II supercon-
ductor is assumed to be a constant and independent of the internal magnetic field
𝐻𝑖. The internal field decreases linearly inside the sample. This behavior is due to
Ampère’s law which relates 𝑗 and 𝐻𝑖 in the following way:

∇⃗ × 𝐻⃗𝑖 = 𝑗⃗ (2.3)
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Figure 2.3.: The field penetrates the surface and decreases within the sample. The
field moves inward, as the field is increased as seen in Fig. a). The
critical current density is constant. It moves towards the inside of the
sample as the field is increased. From the point on where the field has
reached 𝐻𝑝, there is no change in the critical current density as seen in
Fig. b).

This leads to a magnetic field dependent penetration depth. As the magnetic field
increases, the magnetization does too, until a certain field 𝐻𝑝 is reached. The mag-
netization stays constant if the field is increased any further. The effects for the field
inside the sample and the current density as the field increases can be seen in Fig.
2.3. If the field is removed, the electromagnetic force due to Ampères law, has the
effect that the field decreases at the surface.

2.2. Magnetic moment
The derivation of the magnetic moment can be found in full length in the book
”Electromagnetism” by Pollack and Stump [12].

2.2.1. Two formulas
If the critical current density is known, one can calculate the magnetic moment of
a body, where one of the two sides perpendicular to the applied field is much longer
than the other one, by the relation:

d𝑚⃗𝑠 = 𝐹 d𝐼 (2.4)

𝐹 is the area that is enclosed by the electric current 𝐼 = 𝑗 · 𝐴 and the surface vector
of 𝐹 is perpendicular to current 𝐼. The surface vector of the area 𝐴 is parallel to
the current and current density 𝑗. If the sides perpendicular to the magnetic field
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are rather equally long, one uses the relation

𝑚⃗𝑝 = 1
2

∫︁
𝑉

𝑟⃗ × 𝑗⃗ (𝑟⃗) d𝑉 (2.5)

In this section, these two formulas are compared and, if applied correctly, both for-
mulas give the correct results for the magnetic moment. Two examples are illustrated
in the following.

Square bar with side 𝐿 parallel to a magnetic field

Figure 2.4.: Square bar with its length 𝐿 parallel to the applied field. The numbers
1 and 3 indicate the areas where the current flows parallel to the height
𝐻. In the areas 2 and 4 the current flows parallel to the width 𝐵.

As derived from chapter 4, the magnetic moment of a cuboid with length 𝐿, width
𝐵 and height 𝐻 for the magnetic field applied parallel to 𝐻 (Fig. 2.4) is according
to formula (2.5),

𝑚⃗𝑝 = 1
6𝑗𝐿𝐵3 𝑒⃗𝑧 (2.6)

Using formula (2.4) the magnetic moment calculates to,

𝑚⃗𝑠 = 𝑒⃗𝑧

𝐿∫︁
0

𝐵
2∫︁

0

42𝑥 · 𝑥

2⏟  ⏞  
𝐹

𝑗 d𝑥d𝑧⏟  ⏞  
d𝐼

= 4𝑗𝐿

[︂
𝑥3

3

]︂𝐵
2

0
𝑒⃗𝑧 = 𝑗𝐿

𝐵3

6 𝑒⃗𝑧 (2.7)

Both formulas give the same expression.
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Rectangular bar with side 𝐿 perpendicular to a magnetic field

Assuming that one side, in this case 𝐿, perpendicular to the magnetic field is much
longer than the other side perpendicular to the magnetic field (Fig. 2.5), the formula

𝑚⃗𝑠 = 1
4𝑗𝐿𝐻𝐵2 𝑒⃗𝑦 (2.8)

is used, which is also derived from chapter 4. Calculated with formula (2.5) the

Figure 2.5.: Square bar with its length 𝐿 perpendicular to the applied field. If the
length 𝐿 is much longer than the width 𝐵, it can be assumed that the
current density flows through the surface perpendicular to 𝐿.

magnetic moment gives

𝑚⃗𝑝 = 2
2

𝐿∫︁
0

𝐻∫︁
0

𝐵
2∫︁

0

𝑗𝑥 d𝑥d𝑧d𝑦 =
[︂
2𝑗𝐿𝐻𝑥2

2

]︂𝐵
2

0
= 𝑗𝐿𝐻𝐵2

4 𝑒⃗𝑦 (2.9)

A factor of two is necessary, to reach the correct result. In order to explain this
factor, we compare the two formulas (2.5) and (2.4)

𝑚⃗𝑝 = 1
2

∫︁
𝑉

𝑟⃗ × 𝑗⃗ d𝑉 (2.10)

d𝑚⃗𝑝 = 1
2 𝑟⃗ × 𝑗⃗ d𝑉 = 1

2 𝑟⃗ × 𝑗⃗d𝐴⏟ ⏞ 
d𝐼

d𝑧 = 1
2 𝑟⃗ × 𝑒⃗𝑦 d𝑧d𝐼 (2.11)

⇒ d𝑚⃗𝑝 = 1
2𝐿𝑥⏟ ⏞ 

𝐹

d𝐼 𝑒⃗𝑦 (2.12)

It can be seen that for the two formulas to be equivalent, the area 𝐹 in d𝑚𝑝 has
to be associated with 1

2𝐿𝑥, whereas in formula (2.4) 𝐹 = 𝐿𝑥. This results from the
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Figure 2.6.: The factor of one half in formula (2.5) is necessary for closed integration
paths because the cross product of 𝑟 × 𝑗 gives the dashed area and the
dotted area for 𝐹 . The correct value would be half of 𝐹 , as can be seen
in picture a) and b). If the integration path is open the cross product
would give the correct area 𝐹 , but the factor of one half subtracts the
dotted area in picture c).

fact that the formula (2.5) adds up infinitesimal triangles, which is necessary if the
integration path is closed. One can see in Fig. 2.6 that if the area 𝐹 is calculated
by a cross product as in formula (2.5), the factor 1

2 is necessary in order to gain the
correct result. If the integration path is open, the area 𝐹 needs to be rectangular
and therefore the factor 1

2 is not needed. So the formula (2.5) has to be multiplied
by a factor of two, as it was done in derivation (2.9).

The main difference between the formulas is that in the case of formula (2.4) it
is assumed that the current closes only at the edges. This assumption is only valid
if one of the two sides perpendicular to the magnetic field is much longer than the
other one.
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2.2.2. Parallel axis theorem
There is a useful formula for calculating complex geometries which are perpendicular
to the magnetic field. It is assumed that the dimension perpendicular to the field is
much longer than the other dimensions, therefore equation (2.4) is used. Additionally,
it is assumed that the cross section does not change along the length. The length of

Figure 2.7.: The magnetic moment of the body 𝐾 is evaluated with respect to the
location of the origin. Every dimension in 𝑥−direction can be written as
𝑥 = 𝑠 + 𝑥𝑠, where 𝑠 is the location of the center of mass in 𝑥−direction
of the body 𝐾.

the sample is 𝐿 with the cross section area being 𝐴. The idea is that the center of
mass projected on the 𝑥−axis (𝑠) does not change over the length of the sample. If
a new coordination system is imagined at the center of mass, with the coordinate
𝑥𝑠, every dimension in 𝑥−direction can be written as 𝑥 = 𝑠 + 𝑥𝑠 (Fig. 2.7). Since
𝑠 remains constant the magnetic moment with respect to the origin can easily be
evaluated by knowing the volume 𝑉 and 𝑠. This leads to the following relation

d𝑚⃗𝐾 = d𝐼 𝐹 = 𝐿𝑥⏟ ⏞ 
𝐹

· 𝑗 d𝑥d𝑦 𝑒⃗𝑦⏟  ⏞  
d𝐼

= 𝐿(𝑥𝑆 + 𝑠)𝑗 d𝑥d𝑦 𝑒⃗𝑦

𝑚𝐾 = 𝑗𝐿𝑒⃗𝑦

⎡⎣∫︁
𝐴

(𝑥𝑆 + 𝑠) d𝐴

⎤⎦ = 𝑗𝐿 𝑒⃗𝑦

∫︁
𝐴

𝑥𝑆 d𝐴

⏟  ⏞  
0

+ 𝑗𝐿𝑠 𝑒⃗𝑦

∫︁
𝐴

d𝐴 = 𝑗𝑠𝐿𝐴 𝑒⃗𝑦

⇒ 𝑚⃗𝐾 = 𝑗𝑠𝑉 𝑒⃗𝑦

As an example the magnetic moment of a rectangular bar is calculated using the
parallel axis theorem. A bar with length 𝐿 and width 𝐵 perpendicular to the applied
magnetic field is considered. The height 𝐻 is parallel to the field. The half of the
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cuboid that is in the positive 𝑥−region is cut into two prisms with a triangular cross
section as shown in Fig. 2.8. The magnetic moment of the lower prism is denoted
𝑚1 and the magnetic moment of the upper prism is denoted 𝑚2. To calculate these
magnetic moments, only the volumes and the centers of mass have to be evaluated
for both prisms, which can be done without integration.

Figure 2.8.: Cross section of the profile calculated with the parallel axis theorem.
𝑆𝑥1 and 𝑆𝑥2 are the centers of mass for section (1) and (2).

𝑚⃗1 = 2𝑗𝐿
𝐵
2 · 𝐻

2
𝐵

6 𝑒⃗𝑦 = 𝑗𝐿𝐵2𝐻

12 𝑒⃗𝑦

𝑚⃗2 = 2𝑗𝐿𝑒⃗𝑦

𝐵
2 · 𝐻

2
2𝐵

6 = 2𝑗𝐿𝐵2𝐻

12 𝑒⃗𝑦

𝑚⃗ = 𝑚⃗1 + 𝑚⃗2 = 𝑗𝐿𝐵2𝐻

4 𝑒⃗𝑦

This is the same solution as derived earlier. (Compare to equation (2.9)).

2.3. Demagnetizing effects
2.3.1. Magnetostatics
Exposing a magnetic material to a magnetic field, causes the material to become
magnetized. The relation between applied field, magnetic induction and magnetiza-
tion is given by

𝐵⃗ = 𝜇0(𝐻⃗ + 𝑀⃗) (2.13)

where 𝜇0 is the magnetic permeability of free space. Ampère’s law states that

∇⃗ × 𝐻⃗ = 𝑗⃗ (2.14)
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where 𝑗⃗ is the current density. Inserted into equation (2.13) one gets

∇⃗ × 𝐵⃗ = 𝜇0

(︁
𝑗𝑓 + 𝑗⃗𝑚

)︁
(2.15)

where 𝑗⃗𝑓 the free or applied current and 𝑗⃗𝑚 is the current which flows through the
material due to the applied magnetic field.

2.3.2. Magnetic scalar potential
In analogy to electrostatics, a magnetic scalar potential is introduced in this sub-
section. If there is no free current applied to the sample, equation (2.14) changes
to

∇⃗ × 𝐻⃗ = 0 (2.16)

The volume and surface magnetic pole densities for two materials (1) and (2), which
are connected by the surface, are defined as

𝜌𝑀 = −∇⃗ · 𝑀⃗ 𝜎𝑀 =
(︁

𝑀⃗1 − 𝑀⃗2

)︁
· 𝑒⃗𝑛 (2.17)

where 𝑀⃗1 and 𝑀⃗2 are the magnetization vectors of medium (1) and (2). 𝑒⃗𝑛 is the
surface unit vector pointing outwards of material (1). If medium (2) is vacuum the
surface pole density simplifies to

𝜎𝑀 = 𝑀⃗1 · 𝑒⃗𝑛 (2.18)

These potentials will later be used in chapter 3 for numerical calculations.

2.3.3. Demagnetizing effects
The geometry of the sample plays a vital role influencing the magnetic field. A
magnetic field can be produced by currents or by magnetic poles [13]. The demagne-
tizing field 𝐻𝑑 is caused by the magnetic poles. Therefore the magnetic field inside
the sample is

𝐻⃗𝑖 = 𝐻⃗𝑎 + 𝐻⃗𝑑 (2.19)
where 𝐻𝑎 is the applied magnetic field. The demagnetizing field points in the op-
posite direction as the applied field for 𝜒 > 0 and points in the same direction for
𝜒 < 0.

2.3.4. Demagnetizing factor
If the vector of the applied field and the magnetization vector are parallel, the vector
notation is not necessary. For the rest of the section only the scalar values parallel
to the field are considered. To account for the magnetizing effects the demagnetizing
factor is introduced by

𝐻𝑑 = −𝑁 · 𝑀 (2.20)
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This factor relates magnetization to the demagnetizing field. Inserted into equa-
tion (2.19) one obtains with 𝐵 = 𝜇0𝐻

𝐻𝑖 = 𝐵𝑎

𝜇0
− 𝑁 · 𝑀 (2.21)

This formula will be important in chapter 4, since the applied field and the magnetic
moment are measured. The measured moment relates to 𝐻𝑖 and not to 𝐻𝑎 and
therefore 𝐻𝑎 needs to be corrected [14].

2.3.5. Magnetic susceptibility
The material dependent factor 𝜒 relates the magnetic field to the magnetization.
In this thesis, it is assumed that the material is homogeneous and therefore 𝜒 is
constant. This is generally not true for all materials.
The susceptibility measured is not the true susceptibility due to demagnetizing ef-
fects. Like for the magnetic moment 𝑚 and the magnetization 𝑀 , 𝜒 also relates to
𝐻𝑖 and not 𝐻𝑎. Since the susceptibility 𝜒𝑚 calculated by

𝜒m = 𝑀

𝐻𝑎
(2.22)

does not use the correct field, 𝐻𝑎 needs to be exchanged by 𝐻𝑖 (equation (2.21)),
which gives the following relation between the measured susceptibility 𝜒m and the
real susceptibility 𝜒

𝜒m = 𝑀

𝐻𝑖 + 𝑁 · 𝑀
=

𝑀
𝐻𝑖

1 + 𝑁 · 𝑀
𝐻𝑖

= 𝜒

1 + 𝑁 · 𝜒
(2.23)

2.4. Approach to a realistic current density in type-II
superconductors

In this section a more realistic current density inside a cuboid shaped superconductor
will be derived. This is a two dimensional approach. The starting point are the
Maxwell equations with no electrical field

∇⃗ × 𝐵⃗ = 𝜇0

(︁
𝑗𝑓 + 𝑗⃗𝑚

)︁
(2.24)

𝐵⃗ = 𝜇0

(︁
𝐻⃗ + 𝑀⃗

)︁
(2.25)

⇒ ∇⃗ × 𝐻⃗ + ∇⃗ × 𝑀⃗ = 𝑗⃗𝑓 + 𝑗𝑚 (2.26)
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Since there is no applied current, 𝑗⃗𝑓 = 0. This together with formula (2.5) leads to
the following equations

∇⃗ × 𝑀⃗ = 𝑗⃗𝑚 (2.27)

𝑀⃗ = d𝑚⃗

d𝑉
(2.28)

𝑚⃗ = 1
2

∫︁
𝑉

𝑟⃗ × 𝑗⃗𝑚 d𝑉 (2.29)

If it is assumed that the field applied to the sample is pointing in 𝑧−direction
and that no current is flowing in direction of the applied field, one obtains from
equation (2.27) ⎛⎝𝜕𝑥

𝜕𝑦

𝜕𝑧

⎞⎠×

⎛⎝ 0
0

𝑀𝑧

⎞⎠ =

⎛⎝𝑓(𝑥, 𝑦)
𝑔(𝑥, 𝑦)

0

⎞⎠ (2.30)

𝑓 and 𝑔 are the 𝑥 and 𝑦 component of the current density and only functions of the
𝑥 and 𝑦 coordinates. Evaluating this equation leads to

𝜕𝑦 · 𝑀𝑧 = 𝑓(𝑥, 𝑦)
𝜕𝑥 · 𝑀𝑧 = −𝑔(𝑥, 𝑦)

}︃
→ 𝜕𝑥𝑓(𝑥, 𝑦) = −𝜕𝑦𝑔(𝑥, 𝑦) (2.31)

This relation will be used later. Next equations (2.28) and (2.29) are combined to

𝑀⃗ = 1
2

(︁
𝑟⃗ × 𝑗⃗𝑚

)︁
(2.32)

and inserted into equation (2.27):

∇⃗ ×
(︁

𝑟⃗ × 𝑗⃗𝑚

)︁
= −2⃗𝑗𝑚 (2.33)

This is a differential equation of first order. In order to simplify this expression the
cross products are rewritten to

𝑟⃗
(︁

∇⃗ · 𝑗⃗𝑚

)︁
+
(︁

𝑗𝑚 · ∇⃗
)︁

𝑟⃗ − 𝑗⃗𝑚

(︁
∇⃗ · 𝑟⃗

)︁
−
(︁

𝑟⃗ · ∇⃗
)︁

𝑗⃗𝑚 = −2⃗𝑗𝑚 (2.34)

𝑟⃗ · (𝜕𝑥𝑓(𝑥, 𝑦) + 𝜕𝑦𝑔(𝑥, 𝑦)) + 𝑗⃗𝑚 − 3⃗𝑗𝑚 − (𝑥𝜕𝑥 + 𝑦𝜕𝑦 + 𝑧𝜕𝑧 )⃗𝑗𝑚 = −2⃗𝑗𝑚 (2.35)

The insertion of equation (2.31) gives the final partial differential equations of first
order (PDEs)

𝑥 · 𝜕𝑥𝑓(𝑥, 𝑦) + 𝑦 · 𝜕𝑦𝑓(𝑥, 𝑦) = 0 (2.36)
𝑥 · 𝜕𝑥𝑔(𝑥, 𝑦) + 𝑦 · 𝜕𝑦𝑔(𝑥, 𝑦) = 0 (2.37)

𝜕𝑥𝑓(𝑥, 𝑦) + 𝜕𝑦𝑔(𝑥, 𝑦) = 0 (2.38)
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The last equation is equal to equation (2.31) which is not surprising since this
condition was demanded to derive the PDEs. The next step is to make an Ansatz
to solve these PDEs. The following Ansatz was found to satisfy the PDEs:

𝑓(𝑥, 𝑦) = −𝑦𝑘

(𝑥𝑚 + 𝑦𝑚)𝑙
𝑔(𝑥, 𝑦) = 𝑥𝑘

(𝑥𝑚 + 𝑦𝑚)𝑙
(2.39)

There are three unknown parameters 𝑘, 𝑙 and 𝑚, which have to be determined by
inserting the Ansatz into the PDE. Inserting into (2.38) gives

𝑚 · 𝑙 · 𝑥𝑚−1 · 𝑦𝑘

(𝑥𝑚 + 𝑦𝑚)𝑙+1 − 𝑚 · 𝑙 · 𝑥𝑘 · 𝑦𝑚−1

(𝑥𝑚 + 𝑦𝑚)𝑙+1 = 0 (2.40)

This expression can only be true for all 𝑥 and 𝑦 if 𝑘 = 𝑚 − 1. The second condition
can be obtained by inserting the Ansatz in either equation (2.36) or equation (2.37)

𝑚 · 𝑙 · 𝑥𝑚 · 𝑦𝑚−1

(𝑥𝑚 + 𝑦𝑚)𝑙+1 + 𝑚 · 𝑙 · 𝑦𝑚 · 𝑦𝑚−1

(𝑥𝑚 + 𝑦𝑚)𝑙+1 − (𝑚 − 1) · 𝑦𝑚−1

(𝑥𝑚 + 𝑦𝑚)𝑙
= 0 (2.41)

𝑚 · 𝑙 · 𝑦𝑚−1 · (𝑥𝑚 + 𝑦𝑚)
(𝑥𝑚 + 𝑦𝑚)𝑙+1 − (𝑚 − 1) · 𝑦𝑚−1

(𝑥𝑚 + 𝑦𝑚)𝑙
= 0 (2.42)

(𝑚 · 𝑙) − (𝑚 − 1) = 0 (2.43)

This leads to the condition of 𝑙 = 1 − 1
𝑚 . There is no condition to determine 𝑚.

Therefore it has to be chosen to fit the measurements. 𝑚 = 2 was found to be the
best value. The functions 𝑓 and 𝑔 become with this value for 𝑚 and the obtained
values for 𝑘 and 𝑙:

𝑓(𝑥, 𝑦) = −𝑦√︀
𝑥2 + 𝑦2

𝑔(𝑥, 𝑦) = 𝑥√︀
𝑥2 + 𝑦2

(2.44)

2.4.1. Cuboid
Based on the solution above, the current density induced by an external magnetic
field can be described using symmetry arguments for a cuboid with its cross section
perpendicular to the applied field (Fig. 2.9) as

𝑗𝑥 = − 𝑗

2

(︃
𝑦 − 𝑏√︀

(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2
+ 𝑦 + 𝑏√︀

(𝑥 − 𝑎)2 + (𝑦 + 𝑏)2
+

+ 𝑦 − 𝑏√︀
(𝑥 + 𝑎)2 + (𝑦 − 𝑏)2

+ 𝑦 + 𝑏√︀
(𝑥 + 𝑎)2 + (𝑦 + 𝑏)2

)︃
(2.45)

𝑗𝑦 = + 𝑗

2

(︃
𝑥 − 𝑎√︀

(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2
+ 𝑥 − 𝑎√︀

(𝑥 − 𝑎)2 + (𝑦 + 𝑏)2
+

+ 𝑥 + 𝑎√︀
(𝑥 + 𝑎)2 + (𝑦 − 𝑏)2

+ 𝑥 + 𝑎√︀
(𝑥 + 𝑎)2 + (𝑦 + 𝑏)2

)︃
(2.46)
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with half length 𝑎 and half width 𝑏. This current distribution is more of an approx-

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

x/a

y/b

Figure 2.9.: New current distribution for a cuboid of length 2 and width 2. The
applied magnetic field is perpendicular to the sheet.

imation than an exact solution, since the current leaves and enters the sample at
the border. One could argue that surface currents could compensate this effect, but
further analysis of this model needs to be done.
However, if this current distribution is inserted into formula (2.29) and integrated
over the length of 2𝑎 the width of 2𝑏 and the height of 𝐻 one obtains

𝑚(𝑗, 𝑎, 𝑏, 𝐻) = 𝑗𝐻

6 ·{︃
12𝑎2𝑏 + 12𝑎𝑏2 − 8𝑎𝑏

√︀
𝑎2 + 𝑏2 + 4𝑏3 ln

⎡⎣
(︁√

𝑎2 + 4𝑏2 + 𝑎
)︁(︁√

𝑎2 + 4𝑏2 − 𝑎
)︁

4𝑏
(︁√

𝑎2 + 𝑏2 + 𝑎
)︁

⎤⎦+

+ 3𝑎2𝑏 ln

⎡⎣ 𝑏2(︁√
𝑎2 + 𝑏2 − 𝑎

)︁(︁√
𝑎2 + 𝑏2 + 𝑎

)︁
⎤⎦+

+ 𝑎3 ln

⎡⎢⎣
(︁√

𝑎2 + 𝑏2 − 𝑏
)︁3 (︁√

4𝑎2 + 𝑏2 + 𝑏
)︁7 (︁√

4𝑎2 + 𝑏2 − 𝑏
)︁7

47𝑎16
(︁√

𝑎2 + 𝑏2 + 𝑏
)︁

⎤⎥⎦}︃ (2.47)

If we compare this expression to the formula of the magnetic moment of a cuboid
(2.48) and to the formula of an infinite long cuboid with its longest side perpendicular
to the magnetic field (2.49) and plot the ratio of 𝑚 to 𝑚𝑝 and 𝑚𝑠 as the function of
length to width ratio (𝐿/𝐵), it can be seen from graph (2.10) that the magnetization



2. General Concepts 16

is in perfect agreement for large values of 𝐿/𝐵. The formulas for 𝑚𝑝 and 𝑚𝑠 are
derived in section 4.

𝑚⃗𝑝 = 𝑗𝐻

12
(︀
𝐿2𝐵 + 𝐵2𝐿

)︀
𝑒⃗𝑧 (2.48)

𝑚⃗𝑠 = 𝑗𝐻

4 𝐵2𝐿 𝑒⃗𝑧 (2.49)

Also the formula takes correctly into account the values for square shaped cross

Figure 2.10.: The magnetic moment calculated by the adjusted current density 𝑚
and the magnetic moment of a cuboid with a square like cross section
perpendicular to the magnetic field 𝑚𝑝 do not match for low length
to width ratios 𝐿/𝐵 (left picture). The formula for 𝑚 adjusts 𝑚𝑝. On
the other hand is the magnetic moment calculated by the adjusted
current density 𝑚 and the magnetic moment calculated with the for-
mula for an infinitly long cuboid with its longest side perpendicular to
the magnetic field 𝑚𝑠 in perfect agreement for large 𝐿/𝐵 ratios (right
picture).

sections perpendicular to the magnetic field.

2.4.2. Cylinder
For a cylinder with its main axis perpendicular to the magnetic field, the current
distribution of the previous subsection can be applied. The only change is that 𝑏 is a
function of the radius. An analytic expression for the magnetic moment can not be
determined, but the values can be obtained by numerical integration. The magnetic
moment can be compared to the magnetic moment of a cylinder with its main axis
perpendicular to the magnetic field 𝑚𝑝 and to the magnetic moment of an infinitly
cylinder with its main axis perpendicular to the magnetic field 𝑚𝑠. Both formulas
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are derived in detail in chapter 4. (Compare to equations (4.5) and (4.7)).

𝑚⃗𝑝 = 𝑗𝐿𝑅2𝜋

32 (3𝐿 + 4𝑅) 𝑒⃗𝑧 (2.50)

𝑚⃗𝑠 = 4
3𝑗𝐿𝑅3 𝑒⃗𝑧 (2.51)

As for the cuboid perpendicular to the magnetic field the respective formula for the

Figure 2.11.: The magnetic moment calculated by the adjusted current density 𝑚
and the magnetic moment of a cylinder with a square like cross section
perpendicular to the magnetic field 𝑚𝑝 do not match for low length to
radius ratios 𝐿/𝑅 (left picture). The formula for 𝑚 adjusts 𝑚𝑝. On the
other hand the magnetic moment calculated by the adjusted current
density 𝑚 and the magnetic moment calculated with the formula for an
infinitly long cylinder with its main axis perpendicular to the magnetic
field 𝑚𝑠 is in perfect agreement for large 𝐿/𝑅 ratios (right picture).

corresponding magnetic moment of a cylinder adjusts the value of 𝑚𝑝 for low length
to radius ratios 𝐿/𝑅 as seen in Fig. 2.11. For higher 𝐿/𝑅 ratios the adjusted formula
agrees with the theoretical values of 𝑚𝑠, especially as 𝐿 goes towards infinity.

2.5. Vibrating Sample Magnetometer
For the magnetic measurements the vibrating sample magnetometer option of the
Physical Properties Measurements System (PPMS) of Quantum Design with a 9 T
superconducting coil was used (Fig. 2.12). The sample (4) is attached to a non
magnetic rod (2). This rod vibrates in direction of its axis. The frequency during the
experiments of this thesis was 40 Hz. The amplitude was 2 mm. A superconducting
solenoid (5) provides a homogeneous magnetic field. The vibrating sample induces an
alternating magnetic field in the measurement coil system (3). The voltage measured
is proportional to the magnetic moment of the sample [13]. The rate at that the field
changed during measurements was 1.1 · 10−4 T per second at a temperature of 5 K.
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Figure 2.12.: Schematic picture of a VSM measurement device.

The material was niobium, which was chosen because it is an element and a type-II
superconductor with high critical temperature. Cylinder samples, hollow cylinder
samples as well as cuboid shaped samples were measured with their longest side 𝐿
parallel and perpendicular to the magnetic field.



3. Implementation of the program code
for calculating demagnetizing factors

In this chapter, the implementation of the program code, in order to calculate the
demagnetizing factor numerically, is discussed for the case of a cylinder with its
main axis parallel and perpendicular to the magnetic field as well as of a rectangu-
lar infinite long bar with its main axis perpendicular to the magnetic field. The last
implementation of a general cuboid could not be finished since there was not enough
time to do so in this thesis.
In order to solve the linear systems of equations which will be presented in this chap-
ter, a lower upper (LU) decomposition routine [15] from the Lapack [16] package
was used. The code was written mainly in Fortran only the cylinders were imple-
mented in Mathematica too. There were special functions needed, particularly the
hypergeometric and gamma function. For these, the code written by Zhang and Jin
[17] was used.

3.1. Cylinder with its main axis parallel to the magnetic field
The mathematical background and idea for the calculation presented here can be
found in ”Electric Polarizability of a Short Right Circular Conducting Cylinder”
from T. T. Taylor [2] who analytically calculated the demagnetizing factor in 1960.
Originally Taylor calculated the electric polarizability of a short fully conducting
cylinder parallel and perpendicular to an electric field. It is later shown that the
transverse electric polarizability 𝛼𝑡𝑡 can be used to calculate the longitudal mag-
netic polarizability 𝛽𝑙𝑙. Fully conducting means that 𝜒 = −1.
As a first step he constructed a generalized system of orthogonal polynomials in
order to express the charge density at the side and on the top of the cylinder. Since
this whole derivation is too long and only important as theoretical background but
not for practical calculations it is not rewritten in this thesis, but can be found in
the article.

Finally, an expansion of the in the interior generated potential was obtained. The

19
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coefficients of this expansion have the following form[︃
𝑠𝑏𝑌

𝑠𝑏
0 +

𝑁𝑠−1∑︁
𝑚=0

𝑠𝑚𝑌 𝑠𝑚
0 + 𝑤𝑏𝑌

𝑙𝑏
0 +

𝑁𝑙−1∑︁
𝑚=0

𝑤𝑚𝑌 𝑙𝑚
0

]︃
= 1 (3.1)

∞∑︁
𝑝=1

[︃
𝑠𝑏𝑌

𝑠𝑏
𝑝 +

𝑁𝑠−1∑︁
𝑚=0

𝑠𝑚𝑌 𝑠𝑚
𝑝 + 𝑤𝑏𝑌

𝑙𝑏
𝑝 +

𝑁𝑙−1∑︁
𝑚=0

𝑤𝑚𝑌 𝑙𝑚
𝑝

]︃
= 0 (3.2)

𝑁𝑠−1∑︁
𝑚=0

𝑠𝑚 −
(︂

𝑏

𝑎

)︂𝜈 𝑁𝑙−1∑︁
𝑚=0

𝑤𝑚 = 0 (3.3)

where the 𝑌0 and 𝑌𝑝 are matrix coefficients, defined by equations (3.5) and (3.6)
below. This linear set of equations is solved in order to obtain the coefficients 𝑠𝑏,
𝑠𝑚, 𝑤𝑏 and 𝑤𝑚. In order to satisfy the interior potential the expression has to be 1
for 𝑝 = 0 and 0 for as many 𝑝 as possible. Although this may be true theoretically,
it was found, that for numerical calculations most accurate results were gained only
for a specific amount of equations [18]. The last equation assures that the side and
end densities match each other at the edges.

The set of equations has to be solved for 𝑠𝑏, 𝑠𝑚, 𝑤𝑝 and 𝑤𝑚. The minimum value for
𝑝, in order to be able to solve the linear system of equations, is defined by 𝑁𝑠 and
𝑁𝑙 as

𝑝𝑚𝑖𝑛 = 𝑁𝑠 + 𝑁𝑙 (3.4)

which is two less than the total number of equations. The coefficients 𝑌 𝑠𝑚
𝑝 and 𝑌 𝑙𝑚

𝑝

are defined as

𝑌 𝑠𝑚
𝑝 =

(−1)𝑝+𝑚22𝑝−𝜈Γ
(︀
𝑚 + 𝑝 + 3

2
)︀

Γ
(︀
𝑚 + 𝑝 + 1

2
)︀

Γ
(︀1

2
)︀

Γ (2𝑝 + 3) Γ
(︀
2𝑚 + 3

2 + 𝜈
)︀ (︂

𝑎2

𝑏𝑐

)︂(︂
𝑏

𝑐

)︂2𝑚+2
·

· 2𝐹 1

(︂
𝑚 + 𝑝 + 3

2 , 𝑚 − 𝑝 + 1 + 𝜈; 2𝑚 + 3
2 + 𝜈; 𝑏2

𝑐2

)︂
(3.5)

𝑌 𝑙𝑚
𝑝 =

(−1)𝑚22𝑝−𝜈Γ
(︀
𝑚 + 𝑝 + 3

2
)︀

Γ (𝑚 + 𝑝 + 2)
Γ
(︀1

2
)︀

Γ (2𝑝 + 3) Γ (2𝑚 + 3 + 𝜈)

(︁𝑎

𝑐

)︁(︁𝑎

𝑐

)︁2𝑚+2
·

· 2𝐹 1

(︂
𝑚 + 𝑝 + 3

2 , 𝑚 − 𝑝 + 1 + 𝜈; 2𝑚 + 3 + 𝜈; 𝑎2

𝑐2

)︂
(3.6)

The coefficients 𝑌 𝑠𝑏
𝑝 and 𝑌 𝑙𝑏

𝑝 are obtained from equations (3.6) and (3.5) by setting
𝜈 and 𝑚 to zero. The coefficients 𝑌 𝑠𝑚

0 and 𝑌 𝑙𝑚
0 are obtained from formula (3.5)

and (3.6) by setting 𝑚 to zero and 𝜈 to −1
3 . For 𝑌 𝑠𝑏

0 and 𝑌 𝑙𝑏
0 𝜈, 𝑚 and 𝑝 have to

be zero. The value of 𝜈 is −1
3 for equation (3.3), 𝑌 𝑠𝑚

𝑝 and 𝑌 𝑙𝑚
𝑝 . The function Γ(𝑥)

represents the gamma function and 2𝐹 1(𝑎, 𝑏; 𝑐; 𝑧) is the hypergeometric function. 𝑎
is the radius, 𝑏 is half the length of the cylinder and 𝑐 =

√
𝑎2 + 𝑏2.
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After having obtained 𝑠𝑏, 𝑠𝑚, 𝑤𝑏 and 𝑤𝑚 by solving the linear set of equations,
the electric polarizability can be calculated as

𝑎𝑡𝑡 = 𝛼𝑡𝑡

𝑉 𝜖0
=
[︃

𝑠𝑏 +
Γ
(︀1

2
)︀

2 2
3 Γ
(︀7

6
)︀𝑠0

]︃
+ 𝑎

𝑏

[︃
1
4𝑤𝑏 + 1

2 2
3 Γ
(︀8

3
)︀𝑤0

]︃
(3.7)

The magnetic polarizability can be calculated from this result, with 𝑉 the volume
of the cylinder [3].

𝜇0𝛽𝑙𝑙

𝑉
= −1

2
𝛼𝑡𝑡

𝜖0𝑉
= −1

2𝑎𝑡𝑡 (3.8)

With this polarizability it is possible to calculate the demagnetizing factor of the
cylinder. The relationship between longitudinal magnetic polarizability 𝛽𝑙𝑙 and de-
magnetization factor 𝑁𝑚𝑧 is

𝜇0𝛽𝑙𝑙

𝑉
= 1

𝑁𝑚𝑧 − 1 (3.9)

according to [19]. The expression for 𝑁𝑚𝑧 calculates to

𝑁𝑚𝑧 = 1 − 2
𝑎𝑡𝑡

(3.10)

The full program code can be found in appendix A.1, along with a short description
of how it is working.

3.2. Cylinder with its main axis perpendicular to the
magnetic field

This time the article ”Magnetic Polarizability of a Short Right Circular Conducting
Cylinder” by T. T. Taylor [3] is used to implement the code in Fortran. As for
the cylinder with its main axis parallel to the magnetic field, in this calculation also
𝜒 = −1 is necessary. The procedure is similar to the one explained in the previous
section. To obtain the perpendicular magnetic polarizability 𝛽𝑡𝑡 another system of
orthogonal polynomials is introduced with the correct asymptotic behaviour near the
edges. After building the expansion for the internal potential the following system
of equations is obtained[︃

𝑓𝑏𝑍
𝑠𝑏
0 +

𝑁𝑠−1∑︁
𝑚=0

𝑓𝑚𝑍𝑠𝑚
0 + 𝑓𝑏𝑍

𝑙𝑏
0 +

𝑁𝑙−1∑︁
𝑚=0

𝑔𝑚𝑍 𝑙𝑚
0

]︃
= 1 (3.11)

∞∑︁
𝑝=1

[︃
𝑓𝑏𝑍

𝑠𝑏
𝑝 +

𝑁𝑠−1∑︁
𝑚=0

𝑓𝑚𝑍𝑠𝑚
𝑝 + 𝑓𝑏𝑍

𝑙𝑏
𝑝 +

𝑁𝑙−1∑︁
𝑚=0

𝑔𝑚𝑍 𝑙𝑚
𝑝

]︃
= 0 (3.12)

𝑁𝑠−1∑︁
𝑚=0

𝑓𝑚 −
(︂

𝑏

𝑎

)︂𝜈′ 𝑁𝑙−1∑︁
𝑚=0

𝑔𝑚 = 0 (3.13)
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where 𝑍0 and 𝑍𝑝 are matrix coefficients defined by equations (3.15) and (3.16) below.
The linear system of equations is solved in order to obtain the coefficients 𝑓𝑏, 𝑓𝑚 and
𝑔𝑚 Analog to the parallel cylinder the second equation needs to be zero for as many
𝑝 as possible. As in the previous section the last equation is a boundary condition
and there is a specific number for 𝑝𝑚𝑖𝑛 to obtain most accurate results. Note that
𝑓𝑏 appears twice and that there is no 𝑔𝑏. Therefore one equation less is needed and
the minimum number for 𝑝 is:

𝑝𝑚𝑖𝑛 = 𝑁𝑠 + 𝑁𝑙 − 1 (3.14)

The coefficients 𝑍𝑠𝑚
𝑝 and 𝑍 𝑙𝑚

𝑝 are defined as

𝑍𝑠𝑚
𝑝 =

(−1)𝑝+𝑚22𝑝+1−𝜈′Γ
(︀
𝑚 + 𝑝 + 3

2
)︀

Γ
(︀
𝑚 + 𝑝 + 1

2
)︀

Γ
(︀1

2
)︀

Γ (2𝑝 + 3) Γ
(︀
2𝑚 + 3

2 + 𝜈 ′
)︀ (︂

𝑎2

𝑏𝑐

)︂(︂
𝑏

𝑐

)︂2𝑚+2
·

·
[︂(︂

𝑚 + 𝑝 + 1
2

)︂
2𝐹 1

(︂
𝑚 + 𝑝 + 3

2 , 𝑚 − 𝑝 + 𝜈 ′; 2𝑚 + 3
2 + 𝜈 ′; 𝑏2

𝑐2

)︂
+

+1
2 2𝐹 1

(︂
𝑚 + 𝑝 + 3

2 , 𝑚 − 𝑝 + 1 + 𝜈 ′; 2𝑚 + 3
2 + 𝜈 ′; 𝑏2

𝑐2

)︂]︂
(3.15)

𝑍 𝑙𝑚
𝑝 =

(−1)𝑚22𝑝+1−𝜈′Γ
(︀
𝑚 + 𝑝 + 5

2
)︀

Γ (𝑚 + 𝑝 + 2)
Γ
(︀1

2
)︀

Γ (2𝑝 + 3) Γ (2𝑚 + 3 + 𝜈 ′)

(︂
𝑏

𝑐

)︂(︁𝑎

𝑐

)︁2𝑚+4
·

· 2𝐹 1

(︂
𝑚 + 𝑝 + 5

2 , 𝑚 − 𝑝 + 1 + 𝜈 ′; 2𝑚 + 3 + 𝜈 ′; 𝑎2

𝑐2

)︂
(3.16)

The function Γ(𝑥) represents the gamma function and 2𝐹 1(𝑎, 𝑏; 𝑐; 𝑧) is the hypergeo-
metric function. 𝑎 is the radius, 𝑏 is half the length of the cylinder and 𝑐 =

√
𝑎2 + 𝑏2.

The value of 𝜈 is 2
3 for equation (3.3), 𝑍𝑠𝑚

𝑝 and 𝑍 𝑙𝑚
𝑝 . The coefficients 𝑍𝑠𝑚

0 and 𝑍 𝑙𝑚
0

are obtained, from 𝑍𝑠𝑚
𝑝 and 𝑍 𝑙𝑚

𝑝 , by setting 𝑝 to zero. The values of 𝑝, 𝑚 and 𝜈 are
zero, for the coefficients 𝑍𝑠𝑚

𝑝 and 𝑍 𝑙𝑚
𝑝 , to obtain 𝑍𝑠𝑏

0 and 𝑍 𝑙𝑏
0 . For 𝑍𝑠𝑏

𝑝 and 𝑍 𝑙𝑏
𝑝 the

value of 𝜈 and 𝑚 is zero.

After having obtained 𝑓𝑏, 𝑓𝑚 and 𝑔𝑚 by solving the linear set of equations, the
magnetic polarizability can be calculated as

𝜇0𝛽𝑡𝑡

𝑉
= −

[︃
𝑓𝑏 +

Γ
(︀1

2
)︀

2 5
3 Γ
(︀13

6
)︀𝑓0

]︃
(3.17)

where 𝑉 is the volume of the cylinder. The relationship between 𝑁𝑚𝑥 and 𝛽𝑡𝑡 is
directly calculatable due to

𝑏𝑡𝑡 = 𝜇0𝛽𝑡𝑡

𝑉
= 1

𝑁𝑚𝑥 − 1 (3.18)
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After rearranging this expression, the final result for the perpendicular demagnetiz-
ing factor is obtained

𝑁𝑚𝑥 = 1 + 1
𝑏𝑡𝑡

(3.19)

The full program code can be found in the appendix A.2, along with a short de-
scription of how it is working.

3.3. Infinite bar with its longest side perpendicular to the
magnetic field

Even though there exist analytical calculations for demagnetization factors for bars
of infinite length with their longest side perpendicular to the magnetic field [4], a
program is implemented for two reasons: First, the analytical calculations are only
true for 𝜒 = −1, 0 and ∞ and second, the program should help to implement the
much more complex program for a finite cuboid, which will be discussed in the next
section. For the program the method given by D. X. Chen et al. [20] and described
in the following, was used.

A scalar potential for the magnetic field 𝐻 is assumed. This potential 𝑉 fulfills
the following relations

−∇⃗𝑉 = 𝐻⃗ (3.20)
∇⃗2𝑉 = 0 (3.21)

For a rectangular cross section, according to Gauss law, the surface pole density 𝜎
is related to 𝑉 by

𝜇0
𝜕

𝜕𝑥
[𝑉1(𝑎, 𝑦) − 𝑉2(𝑎, 𝑦)] = 𝜎(𝑎, 𝑦) (3.22)

𝜇0
𝜕

𝜕𝑦
[𝑉1(𝑥, 𝑏) − 𝑉2(𝑥, 𝑏)] = 𝜎(𝑥, 𝑏) (3.23)

where 𝑉1 and 𝑉2 are the potentials in the sample and in free space respectively. The
magnetization can also be expressed in terms of the surface pole density by

𝑀𝑥
𝑣𝑜𝑙 = 1

𝜇0𝑎𝑏

⎡⎣ 𝑏∫︁
0

𝑎𝜎(𝑎, 𝑦) d𝑦 +
𝑎∫︁

0

𝑥𝜎(𝑥, 𝑏) d𝑥

⎤⎦ (3.24)

The easiest way to calculate the demagnetizing factor is by evaluating 𝑀 inside the
volume by

𝑁𝑚 = 𝐻𝑎

𝑀𝑣𝑜𝑙
− 1

𝜒
(3.25)
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In order to discretise the integral (3.24) the surface has to be divided in small
quadratic cells with length Δ𝑥 or Δ𝑦. The discretization is made in the following
way

𝑥(𝑖) = 𝑖 Δ𝑥 with Δ𝑥 = 𝑎

0.5 + 𝑛𝑥
(3.26)

𝑦(𝑗) = 2𝑗 − 1
2 Δ𝑦 with Δ𝑦 = 𝑏

𝑛𝑦
(3.27)

where 𝑛𝑥 and 𝑛𝑦 are the number of cells in the positive 𝑥−, 𝑦−quadrant. There is
no 𝑧−coordinate since it is assumed that the bar is infinitly long in that direction.
Therefore the magnetization does not change along the 𝑧−axis. The indices for the
surface area sections of the bar as seen in Fig. 3.1 are

𝑖 : 𝑥 > 0, 𝑦 = 𝑏 −𝑖 : 𝑥 < 0, 𝑦 = 𝑏 (3.28)
𝑖− : 𝑥 > 0, 𝑦 = −𝑏 −𝑖− : 𝑥 < 0, 𝑦 = −𝑏 (3.29)
𝑗 : 𝑥 = 𝑎, 𝑦 > 0 −𝑗 : 𝑥 = 𝑎, 𝑦 < 0 (3.30)

𝑗− : 𝑥 = −𝑎, 𝑦 > 0 −𝑗− : 𝑥 = −𝑎, 𝑦 < 0 (3.31)

This notation secures that the whole surface of the bar is mapped. With this division

Figure 3.1.: In this figure the indices for the different surface area sections of a bar
infinitly long along the 𝑧−axis, are shown.

the magnetization of the body, 𝑀𝑣𝑜𝑙, becomes

𝑀𝑣𝑜𝑙 = 1
𝜇0𝑎𝑏

⎡⎣ 𝑛𝑥∑︁
𝑖′=1

Δ𝑥𝑖′

⎛⎝1
2𝜎𝑖′Δ𝑥𝑖′ +

𝑖′−1∑︁
𝑖=1

𝜎𝑖′Δ𝑥𝑖 +
𝑛𝑦∑︁

𝑗=1
𝜎𝑗Δ𝑦𝑗

⎞⎠+ 1
2𝑀𝑚𝑖𝑑𝑏Δ𝑥0

⎤⎦
(3.32)

where 𝑀𝑚𝑖𝑑 is the magnetization of the mid plane at 𝑥 = 0. It is defined as

𝑀𝑚𝑖𝑑 = 1
𝜇0𝑏

⎡⎣ 𝑛𝑥∑︁
𝑖=1

𝜎𝑖Δ𝑥𝑖 +
𝑛𝑦∑︁

𝑗=1
𝜎𝑗Δ𝑥𝑗

⎤⎦ (3.33)
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where 𝜎𝑖 are the surface pole density elements with the center point at 𝑥(𝑖). In order
to derive 𝜎𝑖 a system of linear equations has to be solved. To be solvable there have
to be 𝑛𝑥 + 𝑛𝑦 equations for all 𝜎(𝑥(𝑖), 𝑦(𝑗)). The surface pole density 𝜎(𝑥(𝑖), 𝑦(𝑗))
interacts with the field produced by all surface pole densities

∑︀
𝜎(𝑥(𝑖′), 𝑦(𝑗′))

𝜎𝑗

𝜒
+

𝑛𝑥∑︁
𝑖′=1

(︁
𝑁 𝑗,𝑖′

𝑥 + 𝑁
𝑗,𝑖′

−
𝑥 − 𝑁 𝑗,−𝑖′

𝑥 − 𝑁
𝑗,−𝑖′

−
𝑥

)︁
𝜎𝑖′+

+
𝑛𝑦∑︁

𝑗′=1

(︁
𝑁 𝑗,𝑗′

𝑥 + 𝑁 𝑗,−𝑗′
𝑥 − 𝑁

𝑗,𝑗′
−

𝑥 − 𝑁
𝑗,−𝑗′

−
𝑥

)︁
𝜎𝑗′ = 𝜇0𝐻𝑎 (3.34)

𝜎𝑖

𝜒
+

𝑛𝑥∑︁
𝑖′=1

(︁
𝑁 𝑖,𝑖′

𝑦 + 𝑁
𝑖,𝑖′

−
𝑦 − 𝑁 𝑖,−𝑖′

𝑦 − 𝑁
𝑖,−𝑖′

−
𝑦

)︁
𝜎𝑖′+

+
𝑛𝑦∑︁

𝑗′=1

(︁
𝑁 𝑖,𝑗′

𝑦 + 𝑁 𝑖,−𝑗′
𝑦 − 𝑁

𝑖,𝑗′
−

𝑦 − 𝑁
𝑖,−𝑗′

−
𝑦

)︁
𝜎𝑗′ = 0 (3.35)

This holds true since 𝜎𝑖/𝜒 = 𝜇0𝑀 and 𝑁 𝑏
𝑎𝜎𝑐 = −𝜇0𝐻. The indices of the 𝑁𝑥 and

𝑁𝑦 indicate the location of the surface pole densities. The algebraic sign in front of
the 𝑁𝑥 and 𝑁𝑦 determines the direction of the field through this surface element.
The magnetic field is applied in 𝑥−direction. The last pieces to write out the linear
system of equations are the functions 𝑁𝑥 and 𝑁𝑦. To evaluate them the starting
point is an infinite straight wire. The field produced by it is equal to

𝐻⃗(𝑥, 𝑦) = 𝑥𝑒⃗𝑥 + 𝑦𝑒⃗𝑦

2𝜋 (𝑥2 + 𝑦2) (3.36)

In order to evaluate the fields of the bar an integration over the 𝑥− and 𝑦−coordinate
is necessary

𝐻⃗(𝑥, 𝑦) = 𝜎

2𝜋𝜇0

𝑡∫︁
−𝑡

(𝑥 − 𝑥′) 𝑒⃗𝑥 + 𝑦𝑒⃗𝑦

(𝑥 − 𝑥′)2 + 𝑦2
d𝑥′ (3.37)

𝐻⃗(𝑥, 𝑦) = 𝜎

2𝜋𝜇0

𝑡∫︁
−𝑡

𝑥𝑒⃗𝑥 + (𝑦 − 𝑦′) 𝑒⃗𝑦

𝑥2 + (𝑦 − 𝑦′)2 d𝑦′ (3.38)
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After the integration the field of an infinite long surface sheet with width 2𝑡 is the
result

𝐻𝑥(𝑥, 𝑦) = 𝜎

4𝜋𝜇0
𝐺𝑥(𝑥, 𝑦; 𝑡) = 𝜎

4𝜋𝜇0
𝐺𝑦(−𝑦, 𝑥; 𝑡) (3.39)

𝐻𝑦(𝑥, 𝑦) = 𝜎

4𝜋𝜇0
𝐺𝑦(𝑥, 𝑦; 𝑡) = − 𝜎

4𝜋𝜇0
𝐺𝑥(−𝑦, 𝑥; 𝑡) (3.40)

𝐺𝑥(𝑢, 𝑣; 𝑡) = ln
[︂

(𝑢 + 𝑡)2 + 𝑣2

(𝑢 − 𝑡)2 + 𝑣2

]︂
(3.41)

𝐺𝑦(𝑢, 𝑣; 𝑡) = 2
[︂
arctan

(︂
𝑢 + 𝑡

𝑣

)︂
− arctan

(︂
𝑢 − 𝑡

𝑣

)︂]︂
(3.42)

This ultimately leads to

𝑁⃗ 𝑖,±𝑖′
± = − 1

4𝜋
𝐺⃗

(︂
𝑥𝑖 ∓ 𝑥𝑖′ , 𝑏 ∓ 𝑏; Δ𝑥𝑖′

2

)︂
(3.43)

𝑁⃗ 𝑗,±𝑖′
± = − 1

4𝜋
𝐺⃗

(︂
𝑎 ∓ 𝑥𝑖′ , 𝑦𝑗 ∓ 𝑏; Δ𝑥𝑖′

2

)︂
(3.44)

𝑁⃗ 𝑖,±𝑗′
± = − 1

4𝜋
𝐺⃗

(︂
−𝑏 ∓ 𝑦𝑗′ , 𝑥𝑖 ∓ 𝑎; Δ𝑦𝑗′

2

)︂
× 𝑒⃗𝑧 (3.45)

𝑁⃗ 𝑗,±𝑗′
± = − 1

4𝜋
𝐺⃗

(︂
−𝑦𝑗 ∓ 𝑦𝑗′ , 𝑎 ∓ 𝑎; Δ𝑦𝑗′

2

)︂
× 𝑒⃗𝑧 (3.46)

The main program code can be found in the appendix A.3, along with a short
description of how it is working.

3.4. Square bar with its longest side perpendicular to the
magnetic field

This method is similar to the program in the previous section. It was implemented
using ”Demagnetizing Factors for Square Bars” [5]. It should be noted that this
program could not be finished due to the limited amount of time available for this
thesis. However the method and implementation is presented here.

The idea of calculating the demagnetizing factor is to cut the surface into tiles.
Every tile has his own surface pole density and produces its own field. The formula
to obtain the field of one tile is

𝐻⃗(𝑥, 𝑦, 𝑧) = 1
4𝜋𝜇0

𝑡𝑧∫︁
−𝑡𝑧

𝑡𝑦∫︁
−𝑡𝑦

𝑡𝑥∫︁
−𝑡𝑥

𝜎(𝑟⃗′) (𝑟⃗ − 𝑟⃗′)
|𝑟⃗ − 𝑟⃗′|3

d𝑥′d𝑦′d𝑧′ (3.47)

where 2𝑡𝑥, 2𝑡𝑦, 2𝑡𝑧 are the dimensions of the tiles. The field was averaged over one
tile in [5]. In this thesis this was not followed since the program did not return the
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correct results even for the non averaged approach. The indices for the different
surface area sections are defined as

𝑖𝑗 : 𝑥 > 0, 𝑦 > 0, 𝑧 = 𝑐 −𝑖𝑗 : 𝑥 < 0, 𝑦 > 0, 𝑧 = 𝑐

𝑖 − 𝑗 : 𝑥 > 0, 𝑦 < 0, 𝑧 = 𝑐 −𝑖 − 𝑗 : 𝑥 < 0, 𝑦 < 0, 𝑧 = 𝑐 (3.48)
(𝑖𝑗)− : 𝑥 > 0, 𝑦 > 0, 𝑧 = −𝑐 (−𝑖𝑗)− : 𝑥 < 0, 𝑦 > 0, 𝑧 = −𝑐

(𝑖 − 𝑗)− : 𝑥 > 0, 𝑦 < 0, 𝑧 = −𝑐 (−𝑖 − 𝑗)− : 𝑥 < 0, 𝑦 < 0, 𝑧 = −𝑐 (3.49)

𝑖𝑘 : 𝑥 > 0, 𝑧 > 0, 𝑦 = 𝑏 −𝑖𝑘 : 𝑥 < 0, 𝑧 > 0, 𝑦 = 𝑏

𝑖 − 𝑘 : 𝑥 > 0, 𝑧 < 0, 𝑦 = 𝑏 −𝑖 − 𝑘 : 𝑥 < 0, 𝑧 < 0, 𝑦 = 𝑏 (3.50)
(𝑖𝑘)− : 𝑥 > 0, 𝑧 > 0, 𝑦 = −𝑏 (−𝑖𝑘)− : 𝑥 < 0, 𝑧 > 0, 𝑦 = −𝑏

(𝑖 − 𝑘)− : 𝑥 > 0, 𝑧 < 0, 𝑦 = −𝑏 (−𝑖 − 𝑘)− : 𝑥 < 0, 𝑧 < 0, 𝑦 = −𝑏 (3.51)

𝑗𝑘 : 𝑦 > 0, 𝑧 > 0, 𝑥 = 𝑎 −𝑗𝑘 : 𝑦 < 0, 𝑧 > 0, 𝑥 = 𝑎

𝑗 − 𝑘 : 𝑦 > 0, 𝑧 < 0, 𝑥 = 𝑎 −𝑗 − 𝑘 : 𝑦 < 0, 𝑧 < 0, 𝑥 = 𝑎 (3.52)
(𝑗𝑘)− : 𝑦 > 0, 𝑧 > 0, 𝑥 = −𝑎 (−𝑗𝑘)− : 𝑦 < 0, 𝑧 > 0, 𝑥 = −𝑎

(𝑗 − 𝑘)− : 𝑦 > 0, 𝑧 < 0, 𝑥 = −𝑎 (−𝑗 − 𝑘)− : 𝑦 < 0, 𝑧 < 0, 𝑥 = −𝑎 (3.53)

In Fig. 3.2 the indexed surface areas of the cuboid can be seen. This notation secures
that the whole surface of the bar is mapped. The back side is indexed analog, of the
form (𝑙, 𝑚)−, as seen in formulas (3.48) to (3.53). The main equations to obtain the

Figure 3.2.: In this figure the indices for the different surface area sections of a
square bar are shown. The areas indexed of the form (𝑙, 𝑚)− are not
shown, but they lie on the surfaces at the back of the cuboid.
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𝜎𝑖 have the following form for a field pointing in 𝑧−direction.

𝜎𝑗𝑘

𝜒
+

𝑛1∑︁
𝑗′,𝑘′

(︁
𝑁 𝑗𝑘,𝑗′𝑘′

𝑥 − 𝑁 𝑗𝑘,𝑗′−𝑘′
𝑥 + 𝑁 𝑗𝑘,−𝑗′𝑘′

𝑥 − 𝑁 𝑗𝑘,−𝑗′−𝑘′
𝑥 +

+ 𝑁 𝑗𝑘,(𝑗′𝑘′)−
𝑥 − 𝑁 𝑗𝑘,(𝑗′−𝑘′)−

𝑥 + 𝑁 𝑗𝑘,(−𝑗′𝑘′)−
𝑥 − 𝑁 𝑗𝑘,(−𝑗′−𝑘′)−

𝑥

)︁
𝜎𝑗′𝑘′+

+
𝑛2∑︁

𝑖′,𝑘′

(︁
𝑁 𝑗𝑘,𝑖′𝑘′

𝑥 − 𝑁 𝑗𝑘,𝑖′−𝑘′
𝑥 + 𝑁 𝑗𝑘,−𝑖′𝑘′

𝑥 − 𝑁 𝑗𝑘,−𝑖′−𝑘′
𝑥 +

+ 𝑁 𝑗𝑘,(𝑖′𝑘′)−
𝑥 − 𝑁 𝑗𝑘,(𝑖′−𝑘′)−

𝑥 + 𝑁 𝑗𝑘,(−𝑖′𝑘′)−
𝑥 − 𝑁 𝑗𝑘,(−𝑖′−𝑘′)−

𝑥

)︁
𝜎𝑖′𝑘′+

+
𝑛3∑︁

𝑖′,𝑗′

(︁
𝑁 𝑗𝑘,𝑖′𝑗′

𝑥 + 𝑁 𝑗𝑘,𝑖′−𝑗′
𝑥 + 𝑁 𝑗𝑘,−𝑖′𝑗′

𝑥 + 𝑁 𝑗𝑘,−𝑖′−𝑗′
𝑥 +

− 𝑁 𝑗𝑘,(𝑖′𝑗′)−
𝑥 − 𝑁 𝑗𝑘,(𝑖′−𝑗′)−

𝑥 − 𝑁 𝑗𝑘,(−𝑖′𝑗′)−
𝑥 − 𝑁 𝑗𝑘,(−𝑖′−𝑗′)−

𝑥

)︁
𝜎𝑖′𝑗′ = 0

(3.54)

𝜎𝑖𝑘

𝜒
+

𝑛1∑︁
𝑗′,𝑘′

(︁
𝑁 𝑖𝑘,𝑗′𝑘′

𝑦 − 𝑁 𝑖𝑘,𝑗′−𝑘′
𝑦 + 𝑁 𝑖𝑘,−𝑗′𝑘′

𝑦 − 𝑁 𝑖𝑘,−𝑗′−𝑘′
𝑦 +

+ 𝑁 𝑖𝑘,(𝑗′𝑘′)−
𝑦 − 𝑁 𝑖𝑘,(𝑗′−𝑘′)−

𝑦 + 𝑁 𝑖𝑘,(−𝑗′𝑘′)−
𝑦 − 𝑁 𝑖𝑘,(−𝑗′−𝑘′)−

𝑦

)︁
𝜎𝑗′𝑘′+

+
𝑛2∑︁

𝑖′,𝑘′

(︁
𝑁 𝑖𝑘,𝑖′𝑘′

𝑦 − 𝑁 𝑖𝑘,𝑖′−𝑘′
𝑦 + 𝑁 𝑖𝑘,−𝑖′𝑘′

𝑦 − 𝑁 𝑖𝑘,−𝑖′−𝑘′
𝑦 +

+ 𝑁 𝑖𝑘,(𝑖′𝑘′)−
𝑦 − 𝑁 𝑖𝑘,(𝑖′−𝑘′)−

𝑦 + 𝑁 𝑖𝑘,(−𝑖′𝑘′)−
𝑦 − 𝑁 𝑖𝑘,(−𝑖′−𝑘′)−

𝑦

)︁
𝜎𝑖′𝑘′+

+
𝑛3∑︁

𝑖′,𝑗′

(︁
𝑁 𝑖𝑘,𝑖′𝑗′

𝑦 + 𝑁 𝑖𝑘,𝑖′−𝑗′
𝑦 + 𝑁 𝑖𝑘,−𝑖′𝑗′

𝑦 + 𝑁 𝑖𝑘,−𝑖′−𝑗′
𝑦 +

− 𝑁 𝑖𝑘,(𝑖′𝑗′)−
𝑦 − 𝑁 𝑖𝑘,(𝑖′−𝑗′)−

𝑦 − 𝑁 𝑖𝑘,(−𝑖′𝑗′)−
𝑦 − 𝑁 𝑖𝑘,(−𝑖′−𝑗′)−

𝑦

)︁
𝜎𝑖′𝑗′ = 0 (3.55)
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𝜎𝑖𝑗

𝜒
+

𝑛1∑︁
𝑗′,𝑘′

(︁
𝑁 𝑖𝑗,𝑗′𝑘′

𝑧 − 𝑁 𝑖𝑗,𝑗′−𝑘′
𝑧 + 𝑁 𝑖𝑗,−𝑗′𝑘′

𝑧 − 𝑁 𝑖𝑗,−𝑗′−𝑘′
𝑧 +

+ 𝑁 𝑖𝑗,(𝑗′𝑘′)−
𝑧 − 𝑁 𝑖𝑗,(𝑗′−𝑘′)−

𝑧 + 𝑁 𝑖𝑗,(−𝑗′𝑘′)−
𝑧 − 𝑁 𝑖𝑗,(−𝑗′−𝑘′)−

𝑧

)︁
𝜎𝑗′𝑘′+

+
𝑛2∑︁

𝑖′,𝑘′

(︁
𝑁 𝑖𝑗,𝑖′𝑘′

𝑧 − 𝑁 𝑖𝑗,𝑖′−𝑘′
𝑧 + 𝑁 𝑖𝑗,−𝑖′𝑘′

𝑧 − 𝑁 𝑖𝑗,−𝑖′−𝑘′
𝑧 +

+ 𝑁 𝑖𝑗,(𝑖′𝑘′)−
𝑧 − 𝑁 𝑖𝑗,(𝑖′−𝑘′)−

𝑧 + 𝑁 𝑖𝑗,(−𝑖′𝑘′)−
𝑧 − 𝑁 𝑖𝑗,(−𝑖′−𝑘′)−

𝑧

)︁
𝜎𝑖′𝑘′+

+
𝑛3∑︁

𝑖′,𝑗′

(︁
𝑁 𝑖𝑗,𝑖′𝑗′

𝑧 + 𝑁 𝑖𝑗,𝑖′−𝑗′
𝑧 + 𝑁 𝑖𝑗,−𝑖′𝑗′

𝑧 + 𝑁 𝑖𝑗,−𝑖′−𝑗′
𝑧 +

− 𝑁 𝑖𝑗,(𝑖′𝑗′)−
𝑧 − 𝑁 𝑖𝑗,(𝑖′−𝑗′)−

𝑧 − 𝑁 𝑖𝑗,(−𝑖′𝑗′)−
𝑧 − 𝑁 𝑖𝑗,(−𝑖′−𝑗′)−

𝑧

)︁
𝜎𝑖′𝑗′ = 𝜇0𝐻𝑎

(3.56)
It is obvious that there have to be 𝑛𝑝 = 𝑛1 + 𝑛2 + 𝑛3 equations in order to solve
this system of equations. The surface in the positive 𝑥−, 𝑦− and 𝑧−direction was
divided in 𝑛𝑝 elements. The coordinate for each direction is

𝑥(𝑖) = (2𝑖 − 1)Δ𝑥 with Δ𝑥 = 𝑎

2𝑛𝑥
(3.57)

𝑦(𝑗) = (2𝑗 − 1)Δ𝑦 with Δ𝑦 = 𝑏

2𝑛𝑦
(3.58)

𝑧(𝑘) = (2𝑘)Δ𝑧 with Δ𝑧 = 𝑐

1 + 2𝑛𝑧
(3.59)

The functions 𝑁 can be calculated with the following relations

𝑁
𝑗𝑘,±𝑗′±𝑘′

±
𝑥 = 1

4𝜋
𝐹2(𝑦𝑗 ∓ 𝑦𝑗′ , 𝑧𝑘 ∓ 𝑧𝑘′ , 𝑎 ∓ 𝑎, Δ𝑦, Δ𝑧) (3.60)

𝑁
𝑗𝑘,±𝑖′±𝑘′

±
𝑥 = 1

4𝜋
𝐹1(𝑎 ∓ 𝑥𝑖′ , 𝑧𝑘 ∓ 𝑧𝑘′ , 𝑦𝑗 ∓ 𝑏, Δ𝑥, Δ𝑧) (3.61)

𝑁
𝑗𝑘,±𝑖′±𝑗′

±
𝑥 = 1

4𝜋
𝐹1(𝑎 ∓ 𝑥𝑖′ , 𝑦𝑗 ∓ 𝑦𝑗′ , 𝑧𝑘 ∓ 𝑐, Δ𝑥, Δ𝑦) (3.62)

𝑁
𝑖𝑘,±𝑗′±𝑘′

±
𝑦 = 1

4𝜋
𝐹1(𝑏 ∓ 𝑦𝑗′ , 𝑧𝑘 ∓ 𝑧𝑘′ , 𝑥𝑖 ∓ 𝑎, Δ𝑦, Δ𝑧) (3.63)

𝑁
𝑖𝑘,±𝑖′±𝑘′

±
𝑦 = 1

4𝜋
𝐹2(𝑥𝑖 ∓ 𝑥𝑖′ , 𝑧𝑘 ∓ 𝑧𝑘′ , 𝑏 ∓ 𝑏, Δ𝑥, Δ𝑧) (3.64)

𝑁
𝑖𝑘,±𝑖′±𝑗′

±
𝑦 = 1

4𝜋
𝐹1(𝑏 ∓ 𝑦𝑗′ , 𝑥𝑖 ∓ 𝑥𝑖′ , 𝑧𝑘 ∓ 𝑐, Δ𝑦, Δ𝑥) (3.65)

𝑁
𝑖𝑗,±𝑗′±𝑘′

±
𝑧 = 1

4𝜋
𝐹1(𝑐 ∓ 𝑧𝑘′ , 𝑦𝑗 ∓ 𝑦𝑗′ , 𝑥𝑖 ∓ 𝑎, Δ𝑧, Δ𝑦) (3.66)

𝑁
𝑖𝑗,±𝑖′±𝑘′

±
𝑧 = 1

4𝜋
𝐹1(𝑐 ∓ 𝑧𝑘′ , 𝑥𝑖 ∓ 𝑥𝑖′ , 𝑦𝑗 ∓ 𝑏, Δ𝑧, Δ𝑥) (3.67)

𝑁
𝑖𝑗,±𝑖′±𝑗′

±
𝑧 = 1

4𝜋
𝐹2(𝑥𝑖 ∓ 𝑥𝑖′ , 𝑦𝑗 ∓ 𝑦𝑗′ , 𝑐 ∓ 𝑐, Δ𝑥, Δ𝑦) (3.68)
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𝐹1(𝑢, 𝑣, 𝑤; 𝑡, 𝑑) =𝑓1(𝑢 + 𝑡, 𝑣 − 𝑑, 𝑤) − 𝑓1(𝑢 + 𝑡, 𝑣 + 𝑑, 𝑤)+
+𝑓1(𝑢 − 𝑡, 𝑣 + 𝑑, 𝑤) − 𝑓1(𝑢 − 𝑡, 𝑣 − 𝑑, 𝑤) (3.69)

𝐹2(𝑢, 𝑣, 𝑤; 𝑡, 𝑑) =𝑓2(𝑡 − 𝑢, 𝑑 − 𝑣, 𝑤) + 𝑓2(𝑡 + 𝑢, 𝑑 − 𝑣, 𝑤)+
+𝑓2(𝑡 − 𝑢, 𝑣 + 𝑑, 𝑤) + 𝑓2(𝑢 + 𝑡, 𝑣 + 𝑑, 𝑤) (3.70)

𝑓1(𝑢′, 𝑣′, 𝑤′) = arcsinh
(︂

𝑣′
√

𝑢′2 + 𝑤′2

)︂
(3.71)

𝑓2(𝑢′, 𝑣′, 𝑤′) = arctan
(︂

𝑢′𝑣′

𝑤′
√

𝑢′2 + 𝑣′2 + 𝑤′2

)︂
(3.72)

The numbers 𝑛𝑥, 𝑛𝑦 and 𝑛𝑧 are the numbers of elements for each direction. They
are related to 𝑛𝑝 as 𝑛1 = 𝑛𝑦 · 𝑛𝑧, 𝑛2 = 𝑛𝑥 · 𝑛𝑧 and 𝑛3 = 𝑛𝑥 · 𝑛𝑦.
Once the 𝜎 are known the volume magnetization can be calculated.

𝑀𝑣𝑜𝑙 = 1
𝜇0𝑎𝑏𝑐

⎛⎝ 𝑛1∑︁
𝑗,𝑘

𝑧(𝑘)𝜎𝑗𝑘Δ𝑦Δ𝑧 +
𝑛2∑︁
𝑖,𝑘

𝑧(𝑘)𝜎𝑖𝑘Δ𝑥Δ𝑧 +
𝑛3∑︁
𝑖,𝑗

𝑐 𝜎𝑖𝑗Δ𝑥Δ𝑦

⎞⎠ (3.73)

This formula is similar to (3.24) given in the last section. After obtaining 𝑀𝑣𝑜𝑙 the
demagnetizing factor can be calculated by

𝑁𝑚 = 𝐻𝑎

𝑀𝑣𝑜𝑙
− 1

𝜒
(3.74)

The computer program was written in Fortran. The main parts of the program
can be found in appendix A.4, along with a short description of how it is working.
Unfortunately the program does not return correct values for the demagnetization
factor. There was not enough time to determine, why the program is not working
the way it should be. The correction of the code is left for future works.



4. Results

In the first part of this chapter, the theoretical calculations regarding the relation
between magnetic moment and critical current density are performed for various
geometries. The second part of the chapter deals with the results from the numerical
calculations of the demagnetizing factor. The last part contains the evaluation of
measurement data.

4.1. Formulas for magnetic moment
The relations between magnetic moment and current density are derived in the
following sections for various geometries.

4.1.1. Cylinder
Magnetic field parallel to the main axis

Figure 4.1.: A cylinder with its main axis parallel to the magnetic field. The critical
current density flows in the 𝑥𝑦−plane perpendicular to the length 𝐿 of
the cylinder.

The cylinder with its main axis parallel to the magnetic field, as seen in Fig. 4.1,

31
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is calculated by following formula

𝑚⃗ = 1
2

∫︁
𝑉

𝑟⃗ × 𝑗⃗(𝑟⃗)d𝑉 (4.1)

𝑚 = 1
2

𝑅∫︁
0

2𝜋∫︁
0

𝐿
2∫︁

− 𝐿
2

⎛⎝𝑟 · cos(𝜙)
𝑟 · sin(𝜙)

𝑧

⎞⎠×

⎛⎝−𝑗 · sin(𝜙)
𝑗 · cos(𝜙)

0

⎞⎠ · 𝑟 · d𝑟d𝜙d𝑧

= 𝑗

2

𝑅∫︁
0

2𝜋∫︁
0

𝐿
2∫︁

− 𝐿
2

⎛⎝−𝑧 · 𝑟 · cos(𝜙)
−𝑧 · 𝑟 · sin(𝜙)

𝑟2

⎞⎠d𝑟d𝜙d𝑧 = 𝑗𝜋

1

𝑅∫︁
0

𝐿
2∫︁

− 𝐿
2

⎛⎝ 0
0
𝑟2

⎞⎠d𝑟d𝑧

= 𝑗𝜋𝑅3

3

𝐿
2∫︁

− 𝐿
2

⎛⎝0
0
1

⎞⎠ d𝑧

𝑚⃗ = 𝑗𝜋𝐿𝑅3

3 𝑒⃗𝑧 (4.2)

Magnetic field perpendicular to main axis

This geometry is a bit more difficult than the cylinder with its main axis parallel to
the magnetic field. It has to be divided into two different parts in order to get the
full result for the magnetic moment. Formula (2.5) is applied, because it is assumed
that the diameter 2𝑅 and the height 𝐻 of the cylinder are almost equal in length.
The First section I, as seen in Fig. 4.2, is calculated:

𝑚⃗1 = 1
22

𝑅∫︁
𝑦=−𝑅

√︁
𝐻2

4 − 𝐻2
4𝑅2 𝑦2∫︁

𝑧=0

𝑅∫︁
𝑥= −2𝑅

𝐻
𝑧

⎛⎝𝑥
𝑦
𝑧

⎞⎠×

⎛⎝0
0
𝑗

⎞⎠ d𝑥d𝑧d𝑦 =

= 𝑗 𝑒⃗𝑦

𝑅∫︁
𝑦=−𝑅

√︁
𝐻2

4 − 𝐻2
4𝑅2 𝑦2∫︁

𝑧=0

𝑅∫︁
𝑥= −2𝑅

𝐻
𝑧

𝑥 d𝑥d𝑦d𝑧 =

= 𝑗 𝑒⃗𝑦

𝑅∫︁
𝑦=−𝑅

√︁
𝐻2

4 − 𝐻2
4𝑅2 𝑦2∫︁

𝑧=0

𝑅2 − 4𝑅2

𝐻2 𝑧2 d𝑧d𝑦 =

= 𝑗 𝑒⃗𝑦

𝑅∫︁
𝑦=−𝑅

𝑅2
√︂

𝐻2

4 − 𝐻2

4𝑅2 𝑦2 − 4𝑅2

3𝐻2

(︂
𝐻2

4 − 𝐻2

4𝑅2 𝑦2
)︂ 3

2
d𝑦
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Figure 4.2.: A cylinder with its main axis perpendicular to the magnetic field. The
critical current density flows in the 𝑥𝑧−plane. In order to calculate the
magnetic moment, the geometry has to be divided into two sections. In
section I, the critical current density flows parallel to the height 𝐻 of
the cylinder.

𝑦 = 𝑅 sin(𝜙) ⇒ d𝑦 = 𝑅 cos(𝜙)d𝜙 is substituted to obtain

𝑚⃗1 = 𝑗 𝑒⃗𝑦

𝜋
2∫︁

−𝜋
2

𝐻

2 𝑅3 cos(𝜙) − 4𝑅2

3𝐻2
𝐻3

8 𝑅 cos(𝜙)4 d𝜙 =

= 𝑗

[︃
𝐻𝑅3𝜋

4 − 4𝑅2

𝐻2

(︂
𝐻

2

)︂3 3𝑅𝜋

8

]︃
𝑒⃗𝑦 = 𝑗𝐻𝑅3𝜋

4

(︂
1 − 3

4

)︂
𝑒⃗𝑦

𝑚⃗1 = 𝑗𝐻𝑅3𝜋

16 𝑒⃗𝑦 (4.3)

After obtaining the result for the magnetic moment in section I, section II, as seen
in Fig. 4.3, is calculated.
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Figure 4.3.: A cylinder with its main axis perpendicular to the magnetic field. The
critical current density of section II flows in the 𝑥𝑧−plane perpendicular
to the height 𝐻 of the cylinder.

𝑚⃗2 = 1
22

𝑅∫︁
𝑦=−𝑅

√
𝑅2−𝑦2∫︁

𝑥=0

𝐻
2∫︁

𝑧= 𝐻
2𝑅

𝑥

⎛⎝𝑥
𝑦
𝑧

⎞⎠×

⎛⎝−𝑗
0
0

⎞⎠d𝑧d𝑥d𝑦 =

= 𝑗 𝑒⃗𝑦

𝑅∫︁
𝑦=−𝑅

√
𝑅2−𝑦2∫︁

𝑥=0

𝐻
2∫︁

𝑧= 𝐻
2𝑅

𝑥

𝑧 d𝑧d𝑥d𝑦 =

= 𝑗 𝑒⃗𝑦

𝑅∫︁
𝑦=−𝑅

√
𝑅2−𝑦2∫︁

𝑥=0

𝐻2

8 − 𝐻2

8𝑅2 𝑥2 d𝑥d𝑦 =

= 𝑗 𝑒⃗𝑦

𝑅∫︁
𝑦=−𝑅

𝐻2

8
√︀

𝑅2 − 𝑦2 − 𝐻2

24𝑅2
(︀
𝑅2 − 𝑦2)︀ 3

2 d𝑥d𝑦 =

As in section I, 𝑦 = 𝑅 sin(𝜙) ⇒ d𝑦 = 𝑅 cos(𝜙)d𝜙 is substituted and the magnetic
moment for section II, 𝑚⃗2, is calculated to

𝑚⃗2 = 𝑗 𝑒⃗𝑦

𝜋
2∫︁

−𝜋
2

𝐻2

8 𝑅2 cos(𝜙)2 − 𝐻2

24𝑅2 𝑅4 cos(𝜙)4d𝜙 =

= 𝑗

[︂
𝐻2

8
𝑅2𝜋

2 − 𝐻2

24𝑅2
3𝜋𝑅4

8

]︂
𝑒⃗𝑦 = 𝑗𝐻2𝑅2𝜋

16

(︂
1 − 3

12

)︂
𝑒⃗𝑦

𝑚⃗2 = 3𝑗𝜋𝐻2𝑅2

64 𝑒⃗𝑦 (4.4)
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is obtained. The total magnetization is calculated as the sum of all parts, where the
parts III and IV are equal to the parts I and II

𝑚⃗𝑔𝑒𝑠 = 𝑚⃗1 + 𝑚⃗2 + 𝑚⃗3 + 𝑚⃗4 = 2
(︂

𝑗𝐻𝑅3𝜋

16 + 3𝑗𝜋𝐻2𝑅2

64

)︂
𝑒⃗𝑦

𝑚⃗𝑔𝑒𝑠 = 𝑗𝜋𝐻𝑅2

32 (3𝐻 + 4𝑅) 𝑒⃗𝑦 (4.5)

This is the final result for a finite cylinder with its main axis perpendicular to the
magnetic field.

Infinitly long cylinder perpendicular to the magnetic field

For an infinitly long cylinder with its main axis that is perpendicular to the magnetic
field, as seen in Fig. 4.4, formula (2.4) is used:

Figure 4.4.: An infinitly long cylinder with its longest side perpendicular to the ma-
gentic field. The critical current density flows in the 𝑥𝑧−plane parallel
to the length 𝐿 of the cylinder. It is assumed that the current flows
through the surface perpendicular to 𝐿.

d𝑚⃗ = d𝐼𝐹 = 2𝑗𝐿𝑥d𝑥d𝑦 𝑒⃗𝑦 (4.6)

𝐼 denotes the current and 𝐹 is the area between the 𝑧𝑦−plane and the current.

𝑚⃗ = 2𝑗𝐿 𝑒⃗𝑦

𝑅∫︁
−𝑅

√
𝑅2−𝑦2∫︁
0

𝑥 d𝑥d𝑦 = 𝑗𝐿 𝑒⃗𝑦

𝑅∫︁
−𝑅

𝑅2 − 𝑦2 d𝑦 =

= 𝑗𝐿

[︂
𝑅2𝑦 − 𝑦3

3

]︂𝑅

−𝑅

𝑒⃗𝑦 = 𝑗𝐿

[︂
2𝑅3 − 2

3𝑅3
]︂

𝑒⃗𝑦
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𝑚⃗ = 4𝑗𝐿𝑅3

3 𝑒⃗𝑦 (4.7)

4.1.2. Cuboid
Finite Cuboid with length 𝐿 parallel to the magnetic field

Analog to the cylinder, this geometry is divided into 4 sections, as seen in Fig. 4.5.
First the magnetic moment in the sectors I and III is calculated. In order to apply
formula (2.5) to calculate the magnetic moment, it is assumed that the width 𝐵 and
the height 𝐻 are almost equal in length.

Figure 4.5.: A cuboid with its length 𝐿 parallel to the magnetic field. In section I
and III flows the critical current density parallel to the height 𝐻 of the
cuboid.

𝑚⃗𝐼.𝐼𝐼𝐼 = 1
2

𝐿
2∫︁

−𝐿
2

𝐵
2∫︁

0

𝐻
𝐵

𝑥∫︁
− 𝐻

𝐵
𝑥

⎛⎝𝑥
𝑦
𝑧

⎞⎠×

⎛⎝0
𝑗
0

⎞⎠ d𝑥d𝑦d𝑧 =

= 𝑗𝐿

2 𝑒⃗𝑧

𝐵
2∫︁

0

𝐻
𝐵

𝑥∫︁
−𝐻
𝐵

𝑥

𝑥 d𝑦d𝑥 = 𝑗𝐿

2 𝑒⃗𝑧

𝐵
2∫︁

0

2𝐻

𝐵
𝑥2 d𝑥 = 2𝑗𝐿𝐻

2𝐵

[︂
𝑥3

3

]︂𝐵
2

0
𝑒⃗𝑧 =

= 𝑗𝐿𝐻𝐵2

24 𝑒⃗𝑧

Next the magnetic moment in the sectors II and IV, as seen in Fig. 4.6, is calculated.
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Figure 4.6.: A cuboid with its length 𝐿 parallel to the magnetic field. In section II
and IV flows the critical current density parallel to the width 𝐵 of the
cuboid.

𝑚⃗𝐼𝐼.𝐼𝑉 = 21
2

𝐿
2∫︁

−𝐿
2

𝐵
2∫︁

0

𝐻
2∫︁

𝐻
𝐵

𝑥

⎛⎝𝑥
𝑦
𝑧

⎞⎠×

⎛⎝−𝑗
0
0

⎞⎠ d𝑧d𝑦d𝑥 =

= 𝑗𝐿 𝑒⃗𝑧

𝐵
2∫︁

0

𝐻
2∫︁

𝐻
𝐵

𝑥

𝑦 d𝑦d𝑥 = 𝑗𝐿 𝑒⃗𝑧

𝐵
2∫︁

0

𝐻2

8 − 𝐻2

2𝐵2 𝑥2 d𝑥 = 𝑗𝐿

[︂
𝐻2

8 − 𝐻2

6𝐵2 𝑥3
]︂𝐵

2

0
𝑒⃗𝑧 =

= 𝑗𝐿

[︂
𝐻2𝐵

16 − 𝐻2𝐵3

6𝐵28

]︂
𝑒⃗𝑧 = 𝑗𝐿𝐻2𝐵

24 𝑒⃗𝑧

The full magnetization of a finite cuboid is the sum of all four sections.

𝑚⃗ = 𝑚⃗1 + 𝑚⃗2 + 𝑚⃗3 + 𝑚⃗4 (4.8)

𝑚⃗ = 𝑗𝐿

12
(︀
𝐵2𝐻 + 𝐻2𝐵

)︀
𝑒⃗𝑧 (4.9)

Infinitly long bar with its longest side perpendicular to the magnetic field

In the case where the cuboid has one side which is much longer than the other
two sides and where this side is perpendicular to the magnetic field, as seen in Fig.
4.7, the same formula (2.4), like for the infinitly long cylinder perpendicular to the
magnetic field is used.

d𝑚⃗ = d𝐼𝐹 = 2𝐿𝑥𝑗d𝑥d𝑦 𝑒⃗𝑦 (4.10)
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Figure 4.7.: An infinitly long bar, with its longest side 𝐿 perpendicular to the mag-
netic field. The current density flows parallel to 𝐿. Since the bar is
infinitly long, it can be assumed that the current flows through the
surface perpendicular to 𝐿.

In this case the side 𝐿 is much longer than the others and located parallel to the 𝑧-
axis. 𝐼 denotes the current and 𝐹 is the area between the 𝑦𝑧−plane and the current.

𝑚⃗ = 2𝑗𝐿 𝑒⃗𝑦

𝐵
2∫︁

0

𝐻∫︁
0

𝑥 d𝑦d𝑥 = 2𝑗𝐿𝐻

[︂
𝑥2

2

]︂𝐵
2

0
𝑒⃗𝑦

Therefore the magnetic moment calculates to

𝑚⃗ = 1
4𝑗𝐿𝐵2𝐻 𝑒⃗𝑦 (4.11)

4.1.3. Hollow cylinder
Hollow cylinder with its main axis parallel to the field

This geometry is finite and has a closed integration curve, as seen in Fig. 4.8. It is
similar to the cylinder parallel to the magnetic field.

𝑚⃗ = 1
2

∫︁
𝑉

𝑟⃗ × 𝑗⃗ d𝑉 (4.12)

𝑚⃗ = 1
2

𝐿∫︁
0

2𝜋∫︁
0

𝑅∫︁
𝑟

⎛⎝𝜉 · cos(𝜙)
𝜉 · sin(𝜙)

𝑧

⎞⎠×

⎛⎝−𝑗 · sin(𝜙)
𝑗 · cos(𝜙)

0

⎞⎠ · 𝜉 · d𝜉d𝜙d𝑧 =

= 𝑗𝐿

2 𝑒⃗𝑧

𝑅∫︁
𝑟

2𝜋∫︁
0

𝜉2 [︀cos(𝜙)2 + sin(𝜙)2]︀ d𝜙d𝜉 = 𝑗𝐿𝜋𝑒⃗𝑧

𝑅∫︁
𝑟

𝜉2d𝜉
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Figure 4.8.: A hollow cylinder with its main axis parallel to the magnetic field. The
current flows in the 𝑥𝑦−plane in direction of 𝜙.

𝑚⃗ = 1
3𝑗𝐿𝜋(𝑅3 − 𝑟3) 𝑒⃗𝑧 (4.13)

Long hollow cylinder with its main axis perpendicular to the field

Since it is assumed that the length 𝐿 is much longer than the outer diameter 2𝑅 of
the hollow cylinder, as seen in Fig. 4.9, formula (2.4) is used. In this case a more
general formula is needed since the enclosed area by the current 𝐹 is a function of
the radius.

d𝑚⃗ = 𝐹 (𝜉)d𝐼(𝜉) (4.14)
d𝐼 = 𝑗𝜉d𝜙d𝜉 𝑒⃗𝑦 (4.15)

𝐹 = 2
𝐿∫︁

𝑧=0

𝜉 cos(𝜙)∫︁
𝑠=0

d𝑠d𝑧 (4.16)

The enclosed area and the current are both functions of 𝜉. Put together the magnetic
moment calculates as follows

𝑚⃗ = 2𝑗 𝑒⃗𝑦

𝑅∫︁
𝜉=𝑟

𝜋
2∫︁

𝜙= −𝜋
2

𝐿∫︁
𝑧=0

𝜉 cos(𝜙)∫︁
𝑠=0

d𝑠d𝑧 𝜉 d𝜙d𝜉 =

= 2𝑗𝐿 𝑒⃗𝑦

𝑅∫︁
𝜉=𝑟

𝜋
2∫︁

𝜙= −𝜋
2

𝜉2 cos(𝜙)d𝜙d𝜉 = 4𝑗𝐿 𝑒⃗𝑦

𝑅∫︁
𝜉=𝑟

𝜉2d𝜉 = 4
3𝑗𝐿(𝑅3 − 𝑟3) 𝑒⃗𝑦

𝑚⃗ = 4
3𝑗𝐿(𝑅3 − 𝑟3) 𝑒⃗𝑦 (4.17)
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Figure 4.9.: A hollow cylinder with its main axis perpendicular to the magnetic
field. The current flows in the 𝑥𝑧−plane parallel to the length 𝐿.

This result is in perfect analogy to the infinite cylinder perpendicular to the magnetic
field.

4.1.4. Elliptical cylinder
Elliptical cylinder with its main axis parallel to the field

In order to calculate the magnetic moment for elliptic geometries, elliptical coordi-
nates are chosen. The geometry of the elliptical cylinder can be seen in Fig. 4.10.
The calculation of the magnetic moment is analogue to the calculation of a cylinder
with its main axis parallel to the magnetic field.

𝑚⃗ = 1
2

𝐿∫︁
0

2𝜋∫︁
0

1∫︁
0

⎛⎝𝑟𝑏 cos(𝜙)
𝑟𝑎 sin(𝜙)

𝑧

⎞⎠×

⎛⎝−𝑗 sin(𝜙)
𝑗 cos(𝜙)

0

⎞⎠ 𝑎𝑏𝑟 d𝑟d𝜙d𝑧 =

= 𝑗𝐿𝑎𝑏

2 𝑒⃗𝑧

2𝜋∫︁
0

1∫︁
0

cos(𝜙)2𝑟2𝑏 + sin(𝜙)2𝑟2𝑎 d𝑟d𝜙 =

= 𝑗𝐿𝑎𝑏

6 𝑒⃗𝑧

2𝜋∫︁
0

cos(𝜙)2𝑏 + sin(𝜙)2𝑎 d𝜙 = 𝑗𝐿𝑎𝑏

6

[︂
𝑏𝜙

2 + 𝑎𝜙

2

]︂2𝜋

0
𝑒⃗𝑧

𝑚⃗ = 𝑗𝜋𝐿𝑎𝑏

6 (𝑎 + 𝑏) 𝑒⃗𝑧 (4.18)
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Figure 4.10.: An elliptical cylinder with its main axis parallel to the magnetic field.
The current flows in the 𝑥𝑦−plane in direction of 𝜙.

If 𝑎 = 𝑏 the result for the magnetic moment of a cylinder with its main axis parallel
to the magnetic field, is obtained.

Infinite Elliptical cylinder with its main axis perpendicular to the field

Assume an elliptical cylinder with its length 𝐿 much greater than its main axis, 2𝑎,
as seen in Fig .4.11. The length 𝐿 is perpendicular to the magnetic field, so formula
(2.4) can be used

Figure 4.11.: A hollow cylinder with its main axis perpendicular to the magnetic
field. The current flows in the 𝑥𝑧−plane. Since 𝐿 is much longer than
2𝑎, it can be assumed that the current only flows parallel to 𝐿.
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d𝑚⃗ = d𝐼𝐹 = 2𝑗𝐿𝑥d𝑥d𝑦 𝑒⃗𝑦

𝑚⃗ = 2𝑗𝐿 𝑒⃗𝑦

𝑎∫︁
−𝑎

𝑎
√︁

1− 𝑦2
𝑏2∫︁

0

𝑥 d𝑥d𝑦 = 𝑗𝐿 𝑒⃗𝑦

𝑎∫︁
−𝑎

𝑎2
(︂

1 − 𝑦2

𝑏2

)︂
d𝑦 =

= 𝑗𝐿𝑎2
[︂
𝑦 − 𝑦3

3𝑏2

]︂𝑎

−𝑎

𝑒⃗𝑦 = 𝑗𝐿𝑎2
[︂
2𝑏 − 2𝑏3

3𝑏2

]︂
𝑒⃗𝑦

𝑚⃗ = 4
3𝑗𝐿𝑎2𝑏 𝑒⃗𝑦 (4.19)

This result is analog to the magnetic moment of a long cylinder with its main axis
perpendicular to the magnetic field. If 𝑎 = 𝑏 the results are equal.

4.1.5. Hollow elliptical cylinder with its main axis parallel to the field
This calculation is analog to the calculation of the magnetic moment of a hollow
cylinder with its main axis parallel to the field. The geometry of the hollow elliptical
cylinder can be seen in Fig. 4.12. The total magnetic moment is equal to the magnetic
moment of a cylinder with radius 𝑅 minus the magnetic moment of a cylinder with
radius 𝑟, in the case of the hollow cylinder. Analog, the magnetic moment can be
calculated using the formula for a elliptical cylinder with its main axis parallel to
the magnetic field (2.5)

Figure 4.12.: A hollow elliptical cylinder with its main axis parallel to the magnetic
field. The current flows in the 𝑥𝑦−plane in direction of 𝜙.

𝑚⃗ = 𝑚⃗𝑎 − 𝑚⃗𝑖 = 𝑗𝜋𝐿𝐴𝐵

6 (𝐴 + 𝐵) 𝑒⃗𝑧 − 𝑗𝜋𝐿𝑎𝑏

6 (𝑎 + 𝑏) 𝑒⃗𝑧 (4.20)

𝑚⃗ = 𝑗𝐿𝜋

6 [𝐴𝐵(𝐴 + 𝐵) − 𝑎𝑏(𝑎 + 𝑏)] 𝑒⃗𝑧 (4.21)

4.1.6. Infinite hollow elliptical cylinder with its main axis perpendicular
to the field

A good example to use the parallel axis theorem, of section 2.2.2, is the case of a
hollow elliptical cylinder with its main axis perpendicular to the field. This geometry
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can be seen in Fig. 4.13. First the centroid of the right half of the hollow elliptical
cylinder is calculated

Figure 4.13.: Hollow elliptical cylinder with its main axis perpendicular to the mag-
netic field.

𝑠𝑥 = 2
𝐴𝐸

𝜋
2∫︁

−𝜋
2

𝑅(𝜙)∫︁
𝑟(𝜙)

𝜉2 cos(𝜙) d𝜉d𝜙 =

= 2
(𝐴𝐵 − 𝑎𝑏)𝜋

𝜋
2∫︁

−𝜋
2

[︀
𝑅3(𝜙) − 𝑟3(𝜙)

]︀
cos(𝜙)

3 d𝜙

In order to calculate 𝑠𝑥, the function 𝑟(𝜙) of an ellipse needs to be deducted. The
starting point is the elliptical equation

𝑥2

𝑎2 + 𝑦2

𝑏2 = 1 (4.22)

Next, polar coordinates are introduced: 𝑥 = 𝑟 cos(𝜙) and 𝑦 = 𝑟 cos(𝜙).

⇒ 𝑟2 cos(𝜙)2

𝑎2 + 𝑟2 sin(𝜙)2

𝑏2 = 1

𝑟2 [︀𝑏2 cos(𝜙)2 + 𝑎2 sin(𝜙)2]︀ = 𝑎2𝑏2

This leads to
𝑟(𝜙) = 𝑎𝑏√︀

𝑏2 cos(𝜙)2 + 𝑎2 sin(𝜙)2
(4.23)

𝑅(𝜙) is calculated analog. These relations are inserted into the calculation of 𝑠𝑥

𝑠𝑥 = 2
(𝐴𝐵 − 𝑎𝑏)𝜋

𝜋
2∫︁

−𝜋
2

𝐴3𝐵3 cos(𝜙)
3 [𝐵2 cos(𝜙)2 + 𝐴2 sin(𝜙)2]

3
2

− 𝑎3𝑏3 cos(𝜙)
3 [𝑏2 cos(𝜙)2 + 𝑎2 sin(𝜙)2]

3
2

d𝜙 =

= 2
(𝐴𝐵 − 𝑎𝑏)𝜋

𝜋
2∫︁

−𝜋
2

𝐴3𝐵3 cos(𝜙)
3 [𝐵2 + (𝐴2 − 𝐵2) sin(𝜙)2]

3
2

− 𝑎3𝑏3 cos(𝜙)
3 [𝑏2 + (𝑎2 − 𝑏2) sin(𝜙)2]

3
2

d𝜙
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The functions sin(𝑥) and cos(𝑥) are substituted with hypergeometric functions.√︀
𝐴2 − 𝐵2 sin(𝜙) = 𝐵 sinh(𝑢) ⇒ d𝜙 = 𝐵 cosh(𝑢)√

𝐴2 − 𝐵2 cos(𝜙)
d𝑢 (4.24)√︀

𝑎2 − 𝑏2 sin(𝜙) = 𝑏 sinh(𝑣) ⇒ d𝜙 = 𝑏 cosh(𝑣)√
𝑎2 − 𝑏2 cos(𝜙)

d𝑣 (4.25)

𝑠𝑥 = 2
(𝐴𝐵 − 𝑎𝑏)𝜋

𝑢2∫︁
𝑢1

𝐴3𝐵3 cos(𝜙)𝐵 cosh(𝑢)
3𝐵3

√
𝐴2 − 𝐵2 cos(𝜙) cosh(𝑢)3

d𝑢−

− 2
(𝐴𝐵 − 𝑎𝑏)𝜋

𝑣2∫︁
𝑣1

𝑎3𝑏3 cos(𝜙)𝑏 cosh(𝑣)
3𝑏3

√
𝑎2 − 𝑏2 cos(𝜙) cosh(𝑣)3

d𝑣 =

= 2
3𝜋(𝐴𝐵 − 𝑎𝑏)

⎡⎣ 𝑢2∫︁
𝑢1

𝐴3𝐵√
𝐴2 − 𝐵2 cosh(𝑢)2

d𝑢 −
𝑣2∫︁

𝑣1

𝑎3𝑏√
𝑎2 − 𝑏2 cosh(𝑣)2

d𝑣

⎤⎦ =

= 2
3𝜋(𝐴𝐵 − 𝑎𝑏)

[︂
𝐴3𝐵 tanh(𝑢)√

𝐴2 − 𝐵2
− 𝑎3𝑏 tanh(𝑣)√

𝑎2 − 𝑏2

]︂𝑢2.𝑣2

𝑢1.𝑣1

The expressions to reverse the substitution are

𝑢 = arcsinh
(︃√

𝐴2 − 𝐵2

𝐵
sin(𝜙)

)︃
(4.26)

𝑣 = arcsinh
(︃√

𝑎2 − 𝑏2

𝑏
sin(𝜙)

)︃
(4.27)

Furthermore following relation is used

tanh(arcsinh(𝑥)) = 𝑥√
1 + 𝑥2

(4.28)

After all above steps are made, 𝑠𝑥 becomes

𝑠𝑥 = 2
3𝜋(𝐴𝐵 − 𝑎𝑏)

⎡⎢⎢⎣ 𝐴3𝐵
√

𝐴2−𝐵2

𝐵 sin(𝜙)
√

𝐴2 − 𝐵2
√︂

1 +
(︁√

𝐴2−𝐵2

𝐵 sin(𝜙)
)︁2

⎤⎥⎥⎦
𝜋
2

−𝜋
2

−

− 2
3𝜋(𝐴𝐵 − 𝑎𝑏)

⎡⎢⎢⎣ 𝑎3𝑏
√

𝑎2−𝑏2

𝑏 sin(𝜙)
√

𝑎2 − 𝑏2
√︂

1 +
(︁√

𝑎2−𝑏2

𝑏 sin(𝜙)
)︁2

⎤⎥⎥⎦
𝜋
2

−𝜋
2

=

= 4
3𝜋(𝐴𝐵 − 𝑎𝑏)

⎡⎣ 𝐴3√︁
1 + 𝐴2

𝐵2 − 1
− 𝑎3√︁

1 + 𝑎2

𝑏2 − 1

⎤⎦ = 4
3𝜋(𝐴𝐵 − 𝑎𝑏)

[︀
𝐴2𝐵 − 𝑎2𝑏

]︀
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After having obtained the centroid in 𝑥−direction, it can be inserted into the main
formula of section 2.2.2

𝑚⃗ = 2𝑗𝑠𝑥𝑉 = 𝑗
4

3𝜋(𝐴𝐵 − 𝑎𝑏)
[︀
𝐴2𝐵 − 𝑎2𝑏

]︀
𝐿(𝐴𝐵 − 𝑎𝑏)𝜋 𝑒⃗𝑦 (4.29)

𝑚⃗ = 4𝑗𝐿

3
[︀
𝐴2𝐵 − 𝑎2𝑏

]︀
𝑒⃗𝑦 (4.30)

The solution is perfectly analog to the solution of the hollow cylinder perpendicular
to the magnetic field.
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4.2. Numerical calculations
In this section the results of the numerical calculations of the demagnetizing factors
of a cylinder with its main axis parallel and perpendicular to the magnetic field and
of an infinily long bar with its longest side perpendicular to the magnetic field are
presented.

4.2.1. Cylinder
The results given were evaluated with Mathematica since the Fortran program
did not give results with satisfying accuracy, although the implementation was sim-
ilar. A possible reason is that the LU decomposition routine or the pre written
functions are not accurate enough. Since the results obtained with Mathematica
were accurate enough, this was not investigated further.

For a cylinder with its main axis parallel to the magnetic field, the characteris-
tic number of segments in which the cylinder is cut is 𝑝𝑚𝑖𝑛 = 𝑁𝑠 + 𝑁𝑙. 𝑁𝑠 is the
number of segments in radial direction and 𝑁𝑙 is the number of segments in direc-
tion of the length, which was explained in section 3.1. For a cylinder with its main
axis perpendicular to the applied field, 𝑝𝑚𝑖𝑛 is defined as 𝑝𝑚𝑖𝑛 = 𝑁𝑠 + 𝑁𝑙 − 1. 𝑝𝑚𝑖𝑛

should be as big as possible in order to achieve most accurate results. However the
best number for practical purposes for 𝑁𝑠+𝑁𝑙 was determined to be 16. For different
values of the radius, 𝑎, to half length, 𝑏, ratios, 𝛾 (𝛾 = 𝑎

𝑏 ), 𝑁𝑠 and 𝑁𝑙 change their
value. In general the longer the cylinder is, the bigger 𝑁𝑠 has to be and the smaller
𝑁𝑙 has to be [2, 3]. For some ratios of 𝛾 the best values of 𝑁𝑠 and 𝑁𝑙 are given in
Tab. 4.1. The results of the demagnetizing factor if the applied field is parallel to the

Table 4.1.: The values for 𝑁𝑠 and 𝑁𝑙 give the number of segments in radial direc-
tion and in direction of the length respectively. For best accuracy these
numbers change with the radius to half length ratio 𝛾 = 𝑎

𝑏

.

Cylinder parallel Cylinder perpendicular
𝛾 𝑁𝑠 𝑁𝑙 𝑁𝑠 𝑁𝑙

1
4 2 14 3 13
1
2 5 11 6 10
1 8 8 10 6
2 11 5 13 3
4 14 2 14 2

main axis (𝑁𝑚𝑝) and perpendicular to the main axis (𝑁𝑚𝑠) are presented in Tab.
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4.2. The magnetic susceptibility for 𝑁𝑚𝑝 and 𝑁𝑚𝑠 is 𝜒 = −1. The values for 𝛾 = 0
and 𝛾 = ∞ could not be calculated since the program returned no results. If these
values are inserted into the program, there occurs a division by zero which either
blows up the values or just returns with an error. The rest of the 𝛼𝑡𝑡

𝑉 𝜖0
and 𝜇0𝛽𝑡𝑡

𝑉
values are in good agreement to the values already calculated by Taylor [21, 22].

Table 4.2.: In this table are the demagnetizing factors of a cylinder with its main
axis parallel (𝑁𝑚𝑝) and perpendicular (𝑁𝑚𝑠) to the field for different
radius to half length ratios 𝛾 = 𝑎

𝑏 listed. The factors are evaluated for
𝜒 = −1. If the calculated values are compared to those calculated by
Taylor [21, 22], they fit perfectly.

Cylinder parallel Cylinder perpendicular
𝛾 𝛼𝑡𝑡

𝑉 𝜖0
𝛼𝑡𝑡
𝑉 𝜖0

[21] 𝑁𝑚𝑝(−1) 𝜇0𝛽𝑡𝑡

𝑉
𝜇0𝛽𝑡𝑡

𝑉 [22] 𝑁𝑚𝑠(−1)

0 − 2.0000 0.0000 − −2.0000 0.6186
1
4 2.3151 2.3151 0.1361 −1.8506 −1.8506 0.4596
3
8 2.4653 − 0.1887 −1.7892 − 0.4411
3
7 2.5283 − 0.2090 −1.7650 − 0.4334
1
2 2.6115 2.6115 0.2342 −1.7351 −1.7351 0.4237
6
11 2.6639 − 0.2492 −1.7174 − 0.4177
3
5 2.7264 − 0.2664 −1.6973 − 0.4108
3
4 2.8956 − 0.3093 −1.6481 − 0.3932
6
7 3.0143 − 0.3365 −1.6165 − 0.3814
1 3.1707 3.1707 0.3692 −1.5795 −1.5795 0.3669
2 4.2173 4.2173 0.5258 −1.4140 −1.4140 0.2928
4 6.1814 6.1814 0.6764 −1.2716 −1.2716 0.2136
∞ − ∞ 1.0000 − −1.0000 0.0000
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4.2.2. Infinite slab perpendicular to the field
The demagnetizing factors 𝑁𝑚𝑠 for an infinite long bar with its longest side perpen-
dicular to the applied field were calculated. The bar has a rectangular cross section.
𝑎 is half of the width in 𝑥−direction and 𝑏 is half of the height in 𝑦−direction. The
magnetic field is applied in 𝑥−direction. The program for this problem was written
in Fortran. The implementation in Mathematica is not advisable, since the cal-
culation time and RAM needed for satisfying accuracy are much greater than for
Fortran.

The output of the calculations can be seen in Tab. 4.3. The demagnetizing fac-
tors were calculated for 𝜒 = −1. The first column is the width to height ratio 𝑎

𝑏 of
the bar. The second column contains the demagnetizing values numerically calcu-
lated in this thesis, compared to the values found in literature [23] at column three.
The fourth column gives the relative error between these two. The relative error to
the values of 𝑁𝑚𝑠 given in literature is below 1% for 𝑎/𝑏 > 5 and below 1‰ for
𝑎/𝑏 ≤ 5. For this calculation the accuracy is sufficient enough. The reason for the
discrepancy between the calculations is that in the above mentioned literature the
surface was not divided into equally long cells. They used such an optimization, that
a larger number of cells were located near the edge than in the middle. Regarding
the calculations, the number of cells 𝑛𝑥 + 𝑛𝑦 were between 8000 and 14000. In the
original calculation by Chen et al. [24] only around 400 cells were needed. For further
optimization of this program this has to be taken into account.
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Table 4.3.: The demagnetizing values 𝑁𝑚𝑠 calculated (column 2) of an infinitly long
bar with its longest side perpendicular to the magnetic field can be found
for some ratios of 𝑎

𝑏 (column 1) in this table. The values were calculated
for 𝜒 = −1 and compared to the values found in literature (column 3).
In column 4 is the relative error, between the calculated value and the
value found in literature, given [23].

𝑎/𝑏 𝑁𝑚𝑠(−1) 𝑁𝑚𝑠(−1) [23] rel. error

0.001 0.998 031 0.998 734 0.07%
0.002 0.996 860 0.997 478 0.06%
0.005 0.993 241 0.993 770 0.05%
0.01 0.987 275 0.987 752 0.05%
0.02 0.975 784 0.976 223 0.04%
0.05 0.944 297 0.944 731 0.05%
0.1 0.899 221 0.899 593 0.04%
0.2 0.826 669 0.826 972 0.04%
0.5 0.681 512 0.681 741 0.03%
1 0.542 767 0.543 053 0.05%
2 0.399 479 0.399 702 0.06%
5 0.237 051 0.237 276 0.09%
10 0.148 367 0.148 557 0.13%
20 0.088 442 0.088 647 0.23%
50 0.042 424 0.042 546 0.29%
100 0.023 692 0.023 778 0.36%
200 0.013 030 0.013 089 0.45%
500 0.005 802 0.005 848 0.79%
1000 0.003 120 0.003 150 0.95%
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4.3. Magnetic flux measurements
In order to examine the influence of demagnetizing effects on the magnetization and
the critical current density the magnetic moment of different samples were measured
using magnetic flux measurements. In Tab. 4.4 the geometries of all measured sam-

Table 4.4.: Table of all geometries and dimensions of the first test series. The length 𝑙
is the dimension parallel to the main axis of the geometry. All dimensions
are in mm.

Cuboid 𝑙x𝑏xℎ Cyl. 𝑙xØ H. Cyl. 𝑙xØ𝑎xØ𝑖

par. perp. par. perp. par. perp.

3x3x3 − 3x3 3x3 2.5x3x2 2.5x3x2
3.85x3x3 3.85x3x3 4x3 4x3 4x3x2 4x3x2
4.6x3x3 4.6x3x3 5x3 5x3 4.9x3x2 4.9x3x2
6x3x3 6x3x3 6x3 6x3 6x3x2 6x3x2
7x3x3 − 7x3 7x3 7x3x2 7x3x2
8x3x3 − 8x3 − 8x3x2 −

Table 4.5.: Table of all geometries and dimensions of the second test series. This
test series was made to get rid of the big flux jumps which occurred in
the magnetic moment hysteresis curves of the first test series. Also for
the second test series is the length 𝑙 the dimension parallel to the main
axis of the geometries. All dimensions are in mm.

Cuboid 𝑙x𝑏xℎ Cyl. 𝑙xØ
par. perp. par. perp.

3x3.3x3.3 − 3x3 3x3
3.5x3.3x3.3 3.5x3.3x3.3 3.5x3 3.5x3
4x3.3x3.3 4x3.3x3.3 4x3 4x3
5x3.3x3.3 5x3.3x3.3 5x3 5x3

5.5x3.3x3.3 5.5x3.3x3.3 5.5x3 5.5x3
6x3.3x3.3 6x3.3x3.3 6x3 6x3

ples are listed. The first test series had big discontinuities in the magnetic moment
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hysteresis curves. These discontinuities are assumed to be due to large flux jumps,
since they appeared randomly during measurements.

A second test series was made in order to try to avoid these discontinuities. The
samples were degased, at 1000°C and at a pressure of 10−5 bar, for 48 hours. This
second series consisted only of cylinders and cuboids which were measured parallel
and perpendicular to the field. The full set of all geometries measured in the second
test series can be found in Tab. 4.5. The main length 𝑙 is parallel to the main axis
for all geometries. The width 𝑏 and the height ℎ for the cuboid and the diameter
Ø for the cylinder are given in Tab. 4.4 and Tab. 4.5. Additionally, for the hollow
cylinder in Tab. 4.4, the outer (Ø𝑎) and the inner (Ø𝑖) diameter is given.

In figure Fig. 4.14 a typical hysteresis (blue) is shown. As it can be seen, the flux
jumps are too high to obtain any useful data for the width of the hysteresis necessary
to calculate the critical current density. A curve was approximated to smoothen the
graph and get rid of the flux jumps. Polynomials of order four to seven were used for
the smoothed curves. Now formula (2.21) could be applied to Fig. 4.14 for the mag-

Figure 4.14.: A cylinder of the first test series with its main axis parallel to the
magnetic field. The blue curve was measured, but since the flux jumps
were too big a curve was approximated to smoothen the graph (orange
line). The first digit of the label indicates the length of the dimension
parallel to the main axis.

netic moment no longer to be a function of the applied field, but to be a function of
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the internal field. The corresponding graph is shown in Fig. 4.15. The reason why the

Figure 4.15.: The magnetization curve of a cylinder parallel to the magnetic field as
function of the internal field. If demagnetizing effects are taken into
account the magnetic moment is no longer a function of the applied
field 𝐻𝑎, but a function of the internal field 𝐻𝑖. The first digit of the
label indicates the length of the dimension parallel to the main axis.

hysteresis curve in Fig. 4.15 looks so different compared to Fig. 4.14 is the influence
of the magnetization on the field 𝐻. The magnetization values which were at the
applied field 𝐻𝑎 shifted, due to formula (2.21), to another value of the internal field
𝐻𝑖. The difference of the magnetic moment (Δ𝑚 = 𝑚up − 𝑚down), between upper
and lower hysteresis curve, is big for a low absolute value of the applied field. There-
fore, the correction of the applied field is big and the corresponding internal field is
considerably different from the applied field. In contrary, magnetization values at a
high absolute value of the applied field have a smaller influence on the correction of
the applied field. The corresponding values of internal field, for those magnetization
values, are almost equal to the values of the applied field.

Some of the hysteresis curves have a negative slope at high absolute values of the
field which can be seen in appendix B. This physically impossible behavior occurs
most likely because the smoothed curve is an approximation. Since the magnetic
moment values at low absolute values of the internal field are more important in
this thesis, the non physical behavior is not harmful. The second, degased, test se-
ries did not show these non physical behavior.
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In case of the degased samples (2nd test series), the opening of the hysteresis loops is
more narrow, indicating a reduced superconducting volume. Only small reductions
of flux jumps could be reached under the chosen degasing conditions. All measured
magnetic moment hysteresis curves can be found in appendix B.

4.3.1. Magnetic susceptibility
The demagnetization factors in section 4.2 are all calculated for a susceptibility of
𝜒 = −1. It is important to know if the tested samples have susceptibilities close to
this value. The slopes of the virgin magnetic curves have been evaluated in order
to calculate the measured susceptibilities. In Fig. 4.16 a typical virgin magnetic
moment curve (blue) and the ideal slope (black) are illustrated. Tab. 4.6 shows the

Figure 4.16.: The blue curve is the virgin magnetic curve of the magnetic moment
of a hollow cylinder with its main axis perpendicular to the magnetic
field. The black cure is the ideal slope of the virgin magnetic moment
curve.
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susceptibilities of all measured geometries. The susceptibilities are varying, as it can

Table 4.6.: Table of susceptibilities for all measured geometries, parallel and per-
pendicular to the magnetic field. The values are smaller than −1, which
is due to demagnetizing effects.

length 1st test series 2nd test series
[mm] Cuboid Cylinder Hollow Cyl. Cuboid Cylinder

para. perp. para. perp. para. perp. para. perp. para. perp.

2.50 − − − − -3.04 -2.19 − − − −
3.00 -1.59 − -1.62 -1.61 − − -1.31 − -1.55 -1.36
3.50 − − − − − − -1.35 -1.39 -1.47 -1.62
3.85 -1.59 -1.84 − − − − − − − −
4.00 − − -1.51 -1.79 -2.56 -2.60 -1.30 -1.49 -1.37 -1.64
4.60 -1.46 -1.80 − − − − − − − −
4.90 − − − − -2.39 -2.77 − − − −
5.00 − − -1.39 -1.77 − − -1.24 -1.55 -1.32 -1.75
5.50 − − − − − − -1.21 -1.60 -1.29 -1.68
6.00 -1.37 -1.91 -1.30 -1.79 -2.21 -2.85 -1.15 -1.56 -1.21 -1.74
7.00 -1.28 − -1.24 -1.89 -2.14 -2.95 − − − −
8.00 -1.17 − -1.11 -1.85 -1.91 − − − − −

bee seen from this table and are all smaller than −1. This is not surprising, since
the susceptibility is object to the demagnetizing factor as mentioned in subsection
2.3.5. For the numerical calculations a 𝜒 of −1 was assumed. For the cylinder and the
cuboid are the values close enough to the assumed value. The magnetic susceptibility
of the hollow cylinder is far from the ideal value. All virgin magnetic moment curves
can be found in appendix C.
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4.3.2. Magnetization
Values for the magnetization as a function of applied and internal field have been
evaluated for cuboids and cylinders of various dimensions, for both test series. The
goal was to see if deviations between the obtained magnetization curves are smaller
if demagnetization factors are taken into account. As magnetization is an intrinsic
property of the material and all samples are made of the same niobium rod, the
obtained differences are due to not correctly considering the different geometries of
the samples.

Magnetization of the first test series

The magnetization values as functions of the applied field for cylinders of the first
test series with their main axes parallel and perpendicular to the magnetic field
are shown in Figs. 4.17 and 4.18. Tab. 4.7 shows the magnetization values, at zero
applied field, of the cuboids, cylinders and hollow cylinders with their main axes
parallel and perpendicular to the magnetic field.

Figure 4.17.: Magnetization curves versus the applied field of the cylinders of the
first test series with their main axes parallel to the magnetic field. The
first digit of every label indicates the length of the dimension parallel
to the main axis.

At zero field, differences between 7 and 16% are obtained for the magnetization of
the samples. No systematic concerning length of cylinder nor field direction is found.
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Figure 4.18.: Magnetization curves versus the applied field of the cylinders of the
first test series with their main axes perpendicular to the magnetic
field. The first digit of every label indicates the length of the dimension
parallel to the main axis.

Table 4.7.: Magnetization values of the first test series at zero applied field for differ-
ent values of the length, which also indicates the main axis. Magnetiza-
tion values are divided by a factor of 105. The unit of the magnetization
values is [A/m].

length Cuboid Cylinder H. Cylinder
[mm] para. perp. para. perp. para. perp.

2.50 − − − − 9.484 6.285
3.00 4.580 4.580 6.210 5.678 − −
3.85 5.824 6.191 − − − −
4.00 - − 6.356 6.755 9.501 7.365
4.60 5.447 6.194 − − − −
4.90 - − − − 9.123 8.045
5.00 - − 5.962 6.663 − −
6.00 5.447 6.748 5.156 6.761 9.061 8.876
7.00 5.116 − 4.672 6.543 8.548 9.294
8.00 4.908 − 4.495 − 7.831 −
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Magnetization of the first test series after demagnetization effects are
considered

The demagnetization effects could only be considered for the cylinders with their
main axes parallel and perpendicular to the magnetic field. If Fig. 4.17 is compared
with Fig. 4.19 and Fig. 4.18 is compared with Fig. 4.20, it can be seen that the
appliance of the demagnetization factor causes the magnetization curves at zero field
to lie closer to each other. Differences, at zero internal field, are now 9% instead of
15% for the field parallel to the cylinder axis and 3% instead of 7% for the field
perpendicular to the cylinder axis. The values of the magnetization of the first test
series with the magnetization factor applied can be found in Tab. 4.8.

Figure 4.19.: Magnetization curves, after demagnetization effects are considered,
versus the internal field of the cylinders of the first test series with
their main axes parallel to the magnetic field. The first digit of every
label indicates the length of the dimension parallel to the main axis.

The asymmetry of the magnetization curves with respect to the 𝑀−axis in Figs.
4.19 and 4.20 is due to the approximation of the magnetic hysteresis curves. The
smoothed curves were applied to the upper and lower part of the hysteresis curve
separately. As mentioned before, the non physical negative slopes of the magnetiza-
tion curves at high absolute values of the internal fields are due to the approximation
of the smoothed curves of the magnetic hysteresis curves.

The different values of the magnetization are averaged for every geometry, and the
standard deviation of this average is calculated. These statistic values are gathered
in Tab. 4.9. The average of the magnetization where the demagnetizing factor had
been applied scattered much less than the average of the magnetization without the
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Figure 4.20.: Magnetization curves, after demagnetization effects are considered,
versus the internal field of the cylinders of the first test series with
their main axes perpendicular to the magnetic field. The first digit of
every label indicates the length of the dimension parallel to the main
axis.

corrections of demagnetizing effects. This is at least true for the cylinders with their
main axes parallel and perpendicular to the magnetic field.

Table 4.8.: Magnetization values of the cylinders of the first test series with their
main axis parallel and perpendicular to the field. The demagnetization
factor has been applied. The magnetization values are divided by a factor
of 105. The unit of the magnetization values is [A/m].

length [mm] 3.00 4.00 5.00 6.00 7.00 8.00

parallel 4.282 4.653 4.584 4.055 3.860 3.728
perpendicular 4.062 4.341 4.284 4.285 4.073 −
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Table 4.9.: Comparison of the mean and the standard deviation of the magnetization
of the first test series. Values are divided by a factor of 105. The unit for
the magnetization values is [A/m].

1st test series - magnetization
field not corrected field corrected

Cylinder para. perp. para. perp.
𝜇 [𝐴/𝑚] 5.48 6.48 4.19 4.21
𝜎 [𝐴/𝑚] 0.81 0.46 0.38 0.13

Cuboid para. perp. para. perp.
𝜇 [𝐴/𝑚] 5.22 5.93 − −
𝜎 [𝐴/𝑚] 0.44 0.94 − −

H. Cylinder para. perp. para. perp.
𝜇 [𝐴/𝑚] 8.92 5.93 − −
𝜎 [𝐴/𝑚] 0.64 0.12 − −
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Magnetization of the second test series

The samples of the second test series were degased in order to get rid of the flux
jumps in the magnetic moment curves. The magnetization curves of the cylinders of
the second test series with their main axes parallel and perpendicular to the mag-
netic field are shown in Fig. 4.21 and Fig. 4.22.

At zero field, differences between 5% and 11% are obtained for the magnetization
of the samples. No systematic concerning length of cylinder nor field direction is
found. Tab. 4.10 shows the magnetization values of the second test series. In that
series only cuboids and cylinders with their main axes parallel and perpendicular to
the magnetic field were measured.

Figure 4.21.: Magnetization curves versus the applied field of the cylinders of the
second test series with their main axes parallel to the magnetic field.
The first digit of every label indicates the length of the dimension
parallel to the main axis.

Magnetization of the second test series after demagnetization effects are
considered

After the demagnetization factor is applied, the magnetization curves lie closer to
each other. This can be seen if Fig. 4.21 is compared with Fig. 4.23 and Fig. 4.22 is
compared with Fig. 4.24. The difference of magnetization curves is now 7% instead
of 9% for the field parallel to the cylinder axis. The percentual difference of the
magnetization curves at zero applied field of the cylinders perpendicular to the
magnetic field did not change. It is 11%. All magnetization values of the second test
series where the demagnetization factor has been applied can be found in Tab. 4.11.
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Figure 4.22.: Magnetization curves versus applied field of the cylinders of the second
test series with their main axes perpendicular to the magnetic field.
The first digit of every label indicates the length of the dimension
parallel to the main axis.

Table 4.10.: Magnetization values of cylinders and cuboids of the second test series
with their main axes parallel and perpendicular to the magnetic field,
at zero applied field. The magnetization values are divided by a factor
of 105. The unit of the magnetization values is [A/m].

length Cuboid Cylinder
[mm] para. perp. para. perp.

3.00 3.707 3.707 3.808 3.730
3.50 4.037 3.909 4.404 4.342
4.00 3.834 4.150 4.046 4.437
5.00 3.861 4.400 4.128 4.738
5.50 3.593 4.254 3.368 3.646
6.00 3.592 4.252 3.701 4.569

The different values of the magnetization are averaged for every geometry, and
the standard deviation from this average is calculated. These statistic values are
gathered in Tab. 4.12. The average of the magnetization where the demagnetizing
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Figure 4.23.: Magnetization curves, after demagnetization effects are considered,
versus the internal field of the cylinders of the second test series, with
their main axes parallel to the magnetic field. The first digit of every
label indicates the length of the dimension parallel to the main axis.

Figure 4.24.: Magnetization curves, after demagnetization effects are considered,
versus the internal field of the cylinders of the second test series, with
their main axes perpendicular to the magnetic field. The first digit of
every label indicates the length of the dimension parallel to the main
axis.
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Table 4.11.: Magnetization values of the cylinders of the second test series with their
main axes parallel and perpendicular to the field. The demagnetization
factor has been applied. The magnetization values are divided by a
factor of 105. The unit of the magnetization values is [A/m].

length [mm] 3.00 3.50 4.00 5.00 5.50 6.00

parallel 3.053 3.443 3.259 3.376 2.865 3.157
perpendicular 2.743 3.254 3.219 3.414 2.579 3.206

factor had been applied scattered less than the average of the magnetization without
the corrections of demagnetizing effects. This is true for both the cylinder with its
main axis parallel and perpendicular to the magnetic field. The negative slopes of the
magnetic curves are most likely due to the approximation made when the magnetic
hysteresis curves were smoothed. The improvement after the demagnetization factor
was applied, is not so big compared to the first test series. This is surprising, because
better material properties were expected from the degased niobium. It was found by
DeSorbo [25, 26] that sample impurities have great influence on the superconducting
properties of niobium.

Table 4.12.: Comparison of the mean and the standard deviation value of the mag-
netization of the second test series. Values are divided by a factor of
105.

2nd test series - magnetization
not field corrected field corrected

Cylinder para. perp. para. perp.
𝜇 [𝐴/𝑚] 3.91 4.24 3.19 3.07
𝜎 [𝐴/𝑚] 0.36 0.45 0.21 0.33

Cuboid para. perp. para. perp.
𝜇 [𝐴/𝑚] 3.76 4.11 − −
𝜎 [𝐴/𝑚] 0.19 0.26 − −
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4.3.3. Current density
More important than the magnetization is the critical current density 𝑗𝑐 which should
also be dimension independent. The 𝑗𝑐 values were corrected for demagnetization
effects of the cylinder samples in the same way as the magnetization values. The
corrected values of the current density did indeed show less scatter.

The problem with the current density is that the current flows, in rectangular cross
sections that are perpendicular to the magnetic field, only in circles if the cross sec-
tion is square like. In cross sections, perpendicular to the magnetic field, where one
of the two sides is much longer than the other one, the current flows parallel to the
longer side and closes only at the edges. The effects of the samples having a slightly
longer dimension in one direction, perpendicular to the magnetic field, seems to have
a big influence. That is especially true for the degased test series.

A calculation of the critical current densities according to the new approach from
section 2.4 gives an even better agreement for the cylinders. The values are approx-
imately 65% higher than in the case of calculations with formula (2.5). Details are
given in the following.

Critical current densities of the first test series

The critical current density was calculated from the magnetic moment by formula
(2.5) since the cross section perpendicular to the applied field of the geometries was
square like. The critical current densities have been calculated for cuboids, cylinders
and hollow cylinders with their main axes parallel and perpendicular to the magnetic
field. An example of the critical current density curves as functions of the applied
field can be seen in Fig. 4.25.

Furthermore, the theory developed in section 2.4 has been used to calculate the
critical current density in order to compare the 𝑗𝑐 values with those obtained by
formula (2.5). Fig. 4.26 shows the critical current density curves obtained by the
method from section 2.4 as a function of the applied field. Tab. 4.13 shows the eval-
uated values of the critical current density for all geometries measured.

At zero applied field, differences of the current densites are between 7% and 16% for
the different samples. With the method of section 2.4, the difference of the current
density of the cylinders perpendicular to the magnetic field is 6% instead of 16%.
Then, the average value of the current density is 65% higher compared to the average
of the current densities calculated by formula (2.5).
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Figure 4.25.: Critical current density curves calculated by formula (2.5) versus the
applied field of the cylinders of the first test series with their main
axes perpendicular to the magnetic field. The first digit of every label
indicates the length of the dimension parallel to the main axis.

Figure 4.26.: Critical current density calculated with the adjusted formula of section
2.4. The curves are plotted versus the applied field of the cylinders of
the first test series with their main axes perpendicular to the magnetic
field. The first digit of every label indicates the length of the dimension
parallel to the main axis.



4. Results 66

Table 4.13.: Critical current densities of the first test series at zero applied field.
Values are divided by a factor of 109. The current density values in
column ”adj.”, were calculated with the method introduced in section
2.4 for the cylinders with their main axes perpendicular to the magnetic
field. The unit of the current density is [A/m2]

Cuboid Cylinder Hollow Cyl.
length para. perp. para. perp. adj. para. perp.

2.50 − − − − − 1.499 0.779
3.00 0.916 0.916 1.242 1.211 1.777 − −
3.85 1.164 1.238 − − − − −
4.00 − − 1.269 1.211 1.870 1.513 0.913
4.60 1.089 1.239 − − − − −
4.90 − − − − − 1.440 0.998
5.00 − − 1.192 1.015 1.697 − −
6.00 1.086 1.235 1.032 0.920 1.655 1.432 1.100
7.00 1.023 − 0.934 0.824 1.595 1.348 1.140
8.00 0.982 − 0.899 − − 1.239 −

Critical current densities of the first test series after demagnetization effects
are considered

The demagnetization factor has been applied to the cylinders with their main axes
parallel and perpendicular to the magnetic field. Fig. 4.27 shows the critical current
density curves as a function of the internal field for the cylinders perpendicular to
the magnetic field. The adjustment method of the critical current density from sec-
tion 2.4 has been used and the resulting curves of the cylinders perpendicular to the
magnetic field can be seen in Fig. 4.28 as functions of the internal field. All values of
the critical current density of the first test series, after the demagnetization effects
have been applied, can be found in Tab. 4.14.

The averages of the critical current densities for every geometry were made and
the standard deviation was calculated. These values can be found in Tab. 4.15. At
zero applied field, differences of the current densites are now between 10%, for cylin-
ders parallel to the field, and 22%, for cylinders perpendicular to the field, instead of
15% and 16% for the different samples after demagnetization effects have been con-
sidered. With the method of section 2.4, the difference of the current density of the
cylinders perpendicular to the magnetic field is 12% instead of 22%. Then, the aver-
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age value of the current density is 66% higher compared to the average of the current
densities calculated by formula (2.5). It can be seen that after the demagnetization
effects were applied, the averages and standard deviations of the critical current
densities decreased for the cylinders parallel to the field. The adjusted formula for
the current density increased the current density and the standard deviation was
reduced for the cylinders perpendicular to the field. A negative slope in the critical

Figure 4.27.: Critical current density curves calculated according to formula (2.5)
versus the internal field of the cylinders of the first test series with their
main axes perpendicular to the magnetic field, after demagnetization
effects were considered. The first digit of every label indicates the
length of the dimension parallel to the main axis.

current density curves can be seen in Figs. 4.27 and 4.28 for high fields. This non
physical behavior is most likely due to the approximation made as the magnetic
hysteresis curves were smoothed.
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Figure 4.28.: Critical current density calculated with the adjusted formula of section
2.4. The curves are plotted versus the internal field of the cylinders of
the first test series with their main axes perpendicular to the magnetic
field, after demagnetization effects were considered. The first digit of
every label indicates the length of the dimension parallel to the main
axis.

Table 4.14.: Critical current densities of cylinders of various length at zero internal
field. Values are divided by a factor of 109. The current density values
in the row ”adjusted perp.” were calculated with the method introduced
in section 2.4. The unit of the current density is [A/m2].

length [mm] 3.00 4.00 5.00 6.00 7.00 8.00

parallel 0.856 0.929 0.916 0.811 0.772 0.744
perpendicular 0.867 0.772 0.653 0.576 0.496 −
adjusted perp. 1.275 1.201 1.091 1.036 0.960 −
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Table 4.15.: Comparison of the mean and the standard deviation value of the critical
current density of the first test series. Values are divided by a factor of
109. The current density values in columns ”adj.”, were calculated with
the method introduced in section 2.4 for the cylinders with their main
axes perpendicular to the magnetic field.

1st test series - current density
not field corrected field corrected

Cylinder para. perp. adj. para. perp. adj.
𝜇 [𝐴/𝑚2] 1.09 1.04 1.72 0.84 0.67 1.11
𝜎 [𝐴/𝑚2] 0.16 0.17 0.11 0.08 0.15 0.13

Cuboid para. perp. adj. para. perp. adj.
𝜇 [𝐴/𝑚2] 1.04 1.16 − − − −
𝜎 [𝐴/𝑚2] 0.09 0.16 − − − −

Hollow Cyl. para. perp. adj. para. perp. adj.
𝜇 [𝐴/𝑚2] 1.41 0.99 − − − −
𝜎 [𝐴/𝑚2] 0.10 0.15 − − − −
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Critical current densities of the second test series

Also for the second test series, which was degased, the critical current densities
were evaluated. They were calculated with formula (2.5) for cuboids and cylinders,
with their main axes parallel and perpendicular to the magnetic field. An example
for the critical current curves as functions of the applied field can be seen in Fig. 4.29.

A difference of 4% and 18% is found between calculated values by formula (2.5)
for both field directions in case of cuboids and cylinders. The scattering of the cylin-
ders parallel to the field dropped from 15% to 10%, compared to the first test series.
The difference of the cylinders perpendicular to the field increased from 16% to 18%,
compared to the first test series. The scattering of the cuboids dropped from 9% to
6%, in the case where the longest side is parallel to the applied field, and from 14%
to 4% in the case where the longest side is perpendicular to the applied field, com-
pared to the first test series.

Additionally, for the cylinders with their main axes perpendicular to the magnetic
field, the adjusted critical current approach from section 2.4 was used. These curves
as functions of the applied field are illustrated in Fig. 4.30. Analyses with the ap-
proach of section 2.4 give much higher 𝑗𝑐 values. They are 48% higher for the shortest
cylinder and increase systematically with cylinder length until they reach 90% for
6 mm length. The difference of the current densities of the cylinders perpendicular
to the field calculated by the method of section 2.4 is 10% instead of 18%. The whole
set of critical current values at zero applied field for all measured geometries of the
second test series can be found in Tab. 4.16.

Table 4.16.: Critical current densities of the second test series at zero applied field.
Values are divided by a factor of 109. The current density values in
column ”adj.” were calculated with the method introduced in section
2.4 for the cylinders, with their main axes perpendicular to the magnetic
field. The unit of the current density is [A/m2]

Cuboid Cylinder
length para. perp. para. perp. adj.

3.00 0.741 0.741 0.762 0.796 1.168
3.50 0.741 0.711 0.882 0.842 1.269
4.00 0.698 0.752 0.737 0.790 1.227
5.00 0.697 0.798 0.809 0.722 1.168
5.50 0.670 0.773 0.672 0.519 0.934
6.00 0.654 0.755 0.762 0.610 1.168
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Figure 4.29.: Critical current density determined by formula (2.5) versus the ap-
plied field of the cylinders of the second test series with their main
axes perpendicular to the magnetic field. The first digit of every label
indicates the length of the dimension parallel to the main axis.

Figure 4.30.: Critical current density calculated with the adjusted formula of section
2.4. The curves are plotted versus the applied field of the cylinders
of the second test series with their main axes perpendicular to the
magnetic field. The first digit of every label indicates the length of the
dimension parallel to the main axis.
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Critical current densities of the second test series after demagnetization effects
are considered

The demagnetization factor has been applied to the second test series. The resulting
curves of the cylinders, with their main axes perpendicular to the magnetic field as
functions of the internal field can be seen in Fig. 4.31. The critical current density
curves calculated with the alternative Ansatz from section 2.4 are illustrated in Fig.
4.32. The calculated values of the critical current densities at zero internal field for
all measured geometries can be seen in Tab. 4.17.

The average of the critical current densities for the cylinders was made and their
standard deviation was calculated. It can be seen from Tab. 4.18 that the critical
current density values and the standard deviation values decrease if demagnetiza-
tion effects are considered. This is analog to the cylinders parallel to the field of to
the first test series. The difference of the cylinders parallel to the field is 6% after
demagnetization effects are considered instead of 10%. The difference of the cylin-
ders perpendicular to the field is 19% after demagnetization effects are considered
instead of 18%. With the adjusted method of section 2.4, the difference of the cur-
rent densities is 13% instead of 19%. The adjusted formula for the critical current
density does not decrease the standard deviation, in the same amount, like for the
first test series, but also increased the values for the current densities. The average
value of the current densities is 66% higher compared to the average of the current
densities calculated by formula (2.5). No significant difference concerning deviation
between different field densities and different analysis methods is found compared
to the case where demagnetization effects are not taken into account.

Table 4.17.: Critical current densities of cylinders of various length calculated by
formula (2.5) at zero internal field. Values are divided by a factor of 109.
The current density values in the row ”adjusted perp.” were calculated
with the method introduced in section 2.4. The unit of the current
density is [A/m2].

length [mm] 3.00 3.50 4.00 5.00 5.50 6.00

parallel 0.611 0.685 0.648 0.675 0.573 0.631
perpendicular 0.585 0.622 0.579 0.523 0.367 0.429
adjusted perp. 0.858 0.937 0.900 0.874 0.636 0.775
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Figure 4.31.: Critical current density curves versus the internal field of the cylinders
of the second test series with their main axes perpendicular to the
magnetic field to the magnetic field. Demagnetization effects have been
considered. The first digit of every label indicates the length of the
dimension parallel to the main axis.

Figure 4.32.: Critical current density calculated with the adjusted formula of section
2.4, after demagnetization effects have been considered. The curves
are plotted versus the internal field of the cylinders of the second test
series with their main axes perpendicular to the magnetic field to the
magnetic field. The first digit of every label indicates the length of the
dimension parallel to the main axis.
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Table 4.18.: Comparison of the mean and the standard deviation value of the critical
current density of the second test series. The current density values in
column ”adj.” were calculated with the method introduced in section
2.4 for the cylinders with their main axes perpendicular to the magnetic
field. Values are divided by a factor of 109.

2nd test series - current density
not field corrected field corrected

Cylinder para. perp. adj. para. perp. adj.
𝜇 [𝐴/𝑚2] 0.77 0.71 1.16 0.64 0.52 0.83
𝜎 [𝐴/𝑚2] 0.07 0.13 0.12 0.04 0.10 0.11

Cuboid para. perp. adj. para. perp. adj.
𝜇 [𝐴/𝑚2] 0.70 0.76 − − − −
𝜎 [𝐴/𝑚2] 0.04 0.03 − − − −



5. Conclusion
For indirect critical current density measurements the geometry of the current flow,
which for a homogeneous superconductor should be identical with the sample geom-
etry, has to be known. The motivation for this thesis was to compare the theoretical
magnetization and critical current densities, obtained by formulas, with the real
magnetization and current densities for type-II superconductors. This is done in
order to help to estimate the error for indirect magnetic flux measurements, in par-
ticular for magnesium diboride wires.

On the theoretical side, detailed calculations of the magnetic moment as a func-
tion of the current density have been given for cuboids, cylinders, hollow cylinders,
elliptical and elliptical hollow cylinders parallel as well as perpendicular to the mag-
netic field. These calculations and the parallel axis theorem can provide a basis for
future calculations for much more complex profiles and geometries. Also the usually
used two formulas for calculating the magnetic moment from the critical current
density have been compared. The first formula is used to calculate profiles where
one side is much longer than the others and is located perpendicular to the applied
field. The other formula is used to calculate profiles with a cross section perpen-
dicular to the magnetic field that is rather squarish. It has been shown that these
formulas can also calculate the case of the other cross section if applied correctly.

The numerical calculations of the demagnetization factor for cylinders, with their
main axes parallel and perpendicular to the magnetic field have been done and are
complete for a susceptibility of minus one. Since the susceptibilities of type-II su-
perconductors are subject to demagnetizing effects, numerical calculations similar to
the calculations of the cuboid will be necessary in the future. A program calculating
the demagnetization factor of an infinitly long bar with its main axis perpendicular
to the magnetic field has been written. The program returns the correct values of
the demagnetization factors for all values of the susceptibility. The program could be
optimized through better subdivision of the sample surface. Finally, a program for
a general cuboid was written but, at the moment, it does not return correct values
of the demagnetization factor. This program has to be finished in the future.

The magnetic moment of two test series was measured. The first test series in-
cluded the geometries of cylinders, cuboids and hollow cylinders with their main
axes parallel and perpendicular to the magnetic field. A second test series was made
for cylinders and cuboids with their main axes parallel and perpendicular to the
magnetic field. The second test series was degased before measurement in order to

75



5. Conclusion 76

reduce the big flux jumps that appeared in the first test series. Unfortunately, there
was only a little reduction of flux jumps. The magnetization values have been calcu-
lated for all geometries measured. The results show that the standard deviation of
the average of the magnetization values of the cylinders was halved after demagne-
tization effects have been considered. The standard deviation of the average of the
magnetization of the second test series was also reduced but not as much as for the
first series.

Since the demagnetization factors have been computed for a susceptibility of mi-
nus one, the susceptibilities of the measured geometries have been evaluated. For
the cylinder and cuboid the approximation of the susceptibility with minus one can
be said to be rather good, whereas for the hollow cylinder this approximation is
rather bad.

The critical current densities for both test series have been calculated with the
classic formula from the magnetic moment and with a new approach for the cur-
rent densities of cylinders with their main axes perpendicular to the magnetic field.
It could be shown that for the first test series the application of demagnetization
effects reduced the percentual spreading of the critical current densities of the cylin-
ders parallel to the field. For the cylinder perpendicular to the field, the application
of the demagnetizing effects increased the percentual scattering. Although the new
approach to calculate the critical current density reduced the spreading, this effect
became smaller for the current densities where demagnetization effects have been
considered. In case of the second test series, the application of demagnetizing effects
reduced the percentual scattering of the cylinders parallel to the field and increased
the percentual scattering of the cylinders perpendicular to the field. The adjusted
approach for the cylinder perpendicular to the field reduced the percentual scatter-
ing, but increased the average values. This new approach needs more time to be
studied in greater detail in the future.



A. Program code

In chapter 3 the implementation methods of programs to calculate the demagnetiza-
tion factor were discussed. The program code regarding these methods can be found
in this appendix.

A.1. Cylinder parallel to the magnetic field
This program code calculates the demagnetization factor of a cylinder of susceptibil-
ity 𝜒 = −1 with its main axis parallel to the applied magnetic field. Lines (4) to (8)
initialize the program. In lines (10) to (20) parameters relevant for the calculations,
such as the length and the diameter, have to be given by the user in mm. 𝑁𝑠 and
𝑁𝑙 are the numbers of sections in which the cylinder is cut in radial direction and
in direction of the length respectively. In line (31) the subroutine Zylinder_parallel
is called, which initialises the linear set of equations given by formula (3.1) to (3.3).
After the initialising process has been finished the subroutine DGESV from the La-
pack [16] package is called, which solves the linear set of equations by using a lower
upper (LU) decomposition routine and returns a vector with the values for the solved
coefficients, solvec. The values for the coefficients are printed on the console (lines
(51)-(63)). With the solution vector and the function alpha_tt, the demagnetization
factor can be calculated in line (80)-(82). To calculate the error for the coefficients
the subroutine Testing is called in line (90).

Program Entmag_Zylinder_parallel1

implicit none2

3

integer :: N,i,j,mode,Nl,Ns,p,INFO4

integer,allocatable,dimension(:,:) :: IPIV5

real*8 :: a,b,length,diam,m,nu,alphatt6

real*8,allocatable,dimension(:) :: solvec7

real*8,allocatable,dimension(:,:) :: eqnarray8

9

Write(*,*) "Diameter of the cylinder [mm]:"10

Read(*,*) diam11

Write(*,*) "Length of the cylinder [mm]:"12

Read(*,*) length13

a=diam/2D014

b=length/2D015

16

write(*,*)"Number of coefficents for the length:"17

Read(*,*)Ns18

write(*,*)"Number of coefficents for the radius:"19
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Read(*,*)Nl20

21

Allocate(IPIV(0:Nl+Ns+1,0:Ns+Nl+1))22

Allocate(solvec(0:Nl+Ns+1))23

Allocate(eqnarray(0:Nl+Ns+1,0:Nl+Ns+1))24

25

IPIV=026

solvec=0D027

solvec(1)=1D028

eqnarray=0D029

30

Call Zylinder_parallel(a,b,Nl,Ns,eqnarray,solvec)31

32

write(*,*)"******************************************************************"33

write(*,*)"* DGESV OUTPUT: *"34

write(*,*)"******************************************************************"35

write(*,*)"* INFO = 0 , DGESV was successfull *"36

write(*,*)"* INFO = -i, the i-th argument had an illegal value *"37

write(*,*)"* INFO = i, U(i,i) is exactly zero. The factorization has *"38

write(*,*)"* been completed, but the factor U is exactly singular, *"39

write(*,*)"* so the solution could not be computed. *"40

write(*,*)"******************************************************************"41

42

Call DGESV( Ns+Nl+2, 1, eqnarray, Ns+Nl+2, IPIV,solvec, Ns+Nl+2, INFO )43

44

Write(*,*)"* INFO = ",INFO,"*"45

write(*,*)"***********************"46

write(*,*)""47

write(*,*)"*******************************"48

Write(*,*)"* Koeffizienten: *"49

write(*,*)"*******************************"50

51

write(*,'(A10,E20.12,A2)')"* sb = ",solvec(0)," *"52

Do i=2,Ns+153

Write(*,'(A4,I2,A4,E20.12,A2)')"* s[",i-2,"] = ",solvec(i)," *"54

End Do55

56

Write(*,*)"* * * * * *"57

write(*,'(A10,E20.12,A2)')"* wb = ",solvec(1)," *"58

59

Do i=Ns+2,Ns+Nl+160

Write(*,'(A4,I2,A4,E20.12,A2)')"* w[",i-Ns-2,"] = ",solvec(i)," *"61

End Do62

63

write(*,*)"*******************************"64

write(*,*)""65

write(*,*)"*******************************"66

write(*,*)"* Demagnetizing Factor *"67

write(*,*)"*******************************"68

write(*,'(A12,F15.12,A5)')"* att = ",&69

&alphatt(a,b,solvec(0),solvec(1),solvec(2),solvec(Ns+2))," *"70

write(*,'(A12,F15.12,A5)')"* Np = "&71

&,-(2D0-alphatt(a,b,solvec(0),solvec(1),solvec(2),solvec(Ns+2)))/&72
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&alphatt(a,b,solvec(0),solvec(1),solvec(2),solvec(Ns+2))," *"73

74

write(*,*)"*******************************"75

write(*,*)""76

write(*,*)"*********************************"77

write(*,*)"* Testing *"78

write(*,*)"*********************************"79

80

Call Testing(a,b,Ns,Nl,solvec,mode)81

82

write(*,*)"*********************************"83

84

Deallocate(IPIV)85

Deallocate(solvec)86

Deallocate(eqnarray)87

88

End Program89

90

!****************************************************************************************91

!****************************************************************************************92

!****************************************************************************************93

94

real*8 FUNCTION Gammaf(arg1)95

implicit none96

real*8 :: arg1, gammasol97

98

Call Gamma(arg1,gammasol)99

Gammaf = gammasol100

101

END FUNCTION Gammaf102

103

real*8 FUNCTION Hypergeometric2F1(arg1, arg2, arg3, arg4)104

implicit none105

real*8 :: arg1, arg2, arg3, arg4, hypersol106

107

call hygfx(arg1,arg2,arg3,arg4,hypersol)108

Hypergeometric2F1 = hypersol109

110

End FUNCTION Hypergeometric2F1111

112

!****************************************************************************************113

114

SUBROUTINE Zylinder_parallel(a,b,Nl,Ns,eqnarray,solvec)115

implicit none116

integer :: Nl,Ns,i,j117

real*8 :: a,b,eqnarray(0:Nl+Ns+1,0:Nl+Ns+1),solvec(0:Nl+Ns+1),Ypsm,Yplm,nu118

119

eqnarray(0,0)=0D0120

eqnarray(0,1)=0D0121

122

Do i=2,Ns+1123

eqnarray(0,i)=1D0124

End Do125
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126

Do i=Ns+2,Ns+Nl+1127

eqnarray(0,i)=-(a/b)**(0.33333333333333333D0)128

End Do129

130

Do i=1,Ns+Nl+1131

eqnarray(i,0)=Ypsm(a,b,DBLE(i-1),0D0,0D0)132

End Do133

134

Do i=1,Ns+Nl+1135

eqnarray(i,1)=Yplm(a,b,DBLE(i-1),0D0,0D0)136

End Do137

138

Do i=1,Ns+Nl+1139

Do j=2,Ns+1140

eqnarray(i,j)=Ypsm(a,b,DBLE(i-1),DBLE(j-2),-0.33333333333333333D0)141

End do142

End Do143

144

Do i=1,Ns+Nl+1145

Do j=Ns+2,Ns+Nl+1146

eqnarray(i,j)=Yplm(a,b,DBLE(i-1),DBLE(j-Ns-2),-0.33333333333333333D0)147

End do148

End Do149

150

End SUBROUTINE Zylinder_parallel151

152

!****************************************************************************************153

154

real*8 FUNCTION Ypsm(a,b,p,m,nu)155

implicit none156

real*8 :: m,p,nu,a,b157

real*8 :: gammaf,Hypergeometric2F1158

159

Ypsm=(-1)**(p+m)*2D0**(2D0*p-nu)*Gammaf(m+p+1.5D0)*Gammaf(m+p+0.5D0)*&160

&(a**2D0/(b*Sqrt(a**2D0+b**2D0)))*(b/Sqrt(a**2D0+b**2D0))**(2D0*m+2D0)*&161

&Hypergeometric2F1(m+p+1.5D0,m-p+1D0+nu,2D0*m+1.5D0+nu,b**2D0/(a**2D0+b**2D0))/&162

&(Gammaf(0.5D0)*Gammaf(2D0*p+3D0)*Gammaf(2D0*m+1.5D0+nu))163

164

End FUNCTION Ypsm165

166

real*8 FUNCTION Yplm(a,b,p,m,nu)167

implicit none168

real*8 :: m,p,nu,a,b169

real*8 :: gammaf,Hypergeometric2F1170

171

Yplm=(-1)**Int(m)*2D0**(2D0*p-nu)*Gammaf(m+p+1.5D0)*Gammaf(m+p+2)*&172

&(a/Sqrt(a**2D0+b**2D0))*(a/Sqrt(a**2D0+b**2D0))**(2D0*m+2D0)*&173

&Hypergeometric2F1(m+p+1.5D0,m-p+1D0+nu,2D0*m+3D0+nu,a**2D0/(a**2D0+b**2D0))/&174

&(Gammaf(0.5D0)*Gammaf(2D0*p+3D0)*Gammaf(a*m+3D0+nu))175

176

End FUNCTION Yplm177

178
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real*8 FUNCTION Ys(a,b,p,Ns,Nl,solvec)179

implicit none180

integer :: i,Ns,Nl181

real*8 :: a,b,p,nu,erg,Ypsm,solvec(0:INT(Ns+Nl+1))182

183

erg=0D0184

185

Do i=2,Ns+1186

erg=erg+solvec(i)*Ypsm(a,b,p,DBLE(i-2),-0.33333333333333333D0)187

End Do188

189

Ys=erg190

191

End FUNCTION Ys192

193

real*8 FUNCTION Yl(a,b,p,Ns,Nl,solvec)194

implicit none195

integer :: i,Ns,Nl196

real*8 :: a,b,p,nu,erg,Yplm,solvec(0:INT(Ns+Nl+1))197

198

erg=0D0199

200

Do i=Ns+2,Ns+Nl+1201

erg=erg+solvec(i)*Yplm(a,b,p,DBLE(i-Ns-2),-0.33333333333333333D0)202

End Do203

204

Yl=erg205

206

End FUNCTION Yl207

208

real*8 FUNCTION alphatt(a,b,sb,wb,s0,w0)209

implicit none210

real*8 :: a,b,sb,wb,s0,w0,Gammaf211

212

alphatt=(sb+Gammaf(0.5D0)/(2**0.66666666666666666D0*&213

&Gammaf(1.16666666666666666D0))*s0)+a/b*(0.25D0*wb+1D0/&214

&(2D0**0.66666666666666666D0*Gammaf(2.66666666666666666D0))*w0)215

216

End FUNCTION alphatt217

218

!****************************************************************************************219

220

SUBROUTINE Testing(a,b,Ns,Nl,solvec,mode)221

implicit none222

integer :: i,mode,Ns,Nl223

real*8 :: a,b,solp,Ypsm,Yplm,Ys,Yl,solvec(0:Ns+Nl+1),tol224

225

tol=0D0226

solp=0D0227

228

Do i=2,Ns+1229

solp=solp+solvec(i)230

End Do231
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232

Do i=Ns+2,Ns+Nl+1233

solp=solp-a/b**(0.33333333333333333D0)*solvec(i)234

End Do235

236

write(*,'(A11,F20.17,A3)')"* Edgek. : ",solp," *"237

238

Do i=1,Ns+Nl+1239

solp=0D0240

solp=solvec(0)*Ypsm(a,b,DBLE(i-1),0D0,0D0)+solvec(1)*Yplm(a,b,DBLE(i-1),0D0,0D0)+&241

&Ys(a,b,DBLE(i-1),Ns,Nl,solvec)+Yl(a,b,DBLE(i-1),Ns,Nl,solvec)242

243

write(*,'(A6,I2,A3,F20.17,A3)')"* p = ",i," : ",solp," *"244

End Do245

246

End SUBROUTINE Testing247

248

!****************************************************************************************249

!********************************** END *********************************************250

!****************************************************************************************251
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A.2. Cylinder perpendicular to the magnetic field
This program code calculates the demagnetization factor of a cylinder of suscepti-
bility 𝜒 = −1 with its main axis perpendicular to the applied magnetic field. Lines
(4) to (8) initialize the program. In lines (10) to (20) parameters relevant for the
calculations, such as the length and the diameter, both in mm, have to be given
by the user. 𝑁𝑠 and 𝑁𝑙 are the numbers of sections in which the cylinder is cut in
radial direction and in direction of the length respectively. In line (31) the subrou-
tine Zylinder_senkrecht is called, which initialises the linear set of equations given by
formula (3.11) to (3.13). After the initialising process has been finished the subrou-
tine DGESV from the Lapack [16] package is called, which solves the linear set of
equations by using a lower upper (LU) decomposition routine and returns a vector
with the values for the solved coefficients, solvec. The values for the coefficients are
printed on the console (lines (50)-(61)). With the solution vector and the function
beta_tt, the demagnetization factor can be calculated in line (68)-(69). To calculate
the error for the coefficients the subroutine Testing is called in line (77).

Program Entmag_Zylinder_senkrecht1

implicit none2

3

integer :: N,i,j,mode,Nl,Ns,p,INFO4

integer,allocatable,dimension(:,:) :: IPIV5

real*8 :: a,b,length,diam,m,nu,betatt6

real*8,allocatable,dimension(:) :: solvec7

real*8,allocatable,dimension(:,:) :: eqnarray8

9

Write(*,*) "Diameter of the cylinder [mm]:"10

Read(*,*) diam11

Write(*,*) "Length of the cylinder [mm]:"12

Read(*,*) length13

a=diam/2D014

b=length/2D015

16

write(*,*)"Number of coefficents for the length:"17

Read(*,*)Ns18

write(*,*)"Number of coefficents for the radius:"19

Read(*,*)Nl20

21

Allocate(IPIV(0:Nl+Ns,0:Ns+Nl))22

Allocate(solvec(0:Nl+Ns))23

Allocate(eqnarray(0:Nl+Ns,0:Nl+Ns))24

25

solvec=0D026

solvec(1)=1D027

eqnarray=0D028

29

Call Zylinder_senkrecht(a,b,Nl,Ns,eqnarray,solvec)30

31

write(*,*)"******************************************************************"32

write(*,*)"* DGESV OUTPUT: *"33
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write(*,*)"******************************************************************"34

write(*,*)"* INFO = 0 , DGESV was successfull *"35

write(*,*)"* INFO = -i, the i-th argument had an illegal value *"36

write(*,*)"* INFO = i, U(i,i) is exactly zero. The factorization has *"37

write(*,*)"* been completed, but the factor U is exactly singular, *"38

write(*,*)"* so the solution could not be computed. *"39

write(*,*)"******************************************************************"40

41

Call DGESV( Ns+Nl+1, 1, eqnarray, Ns+Nl+1, IPIV,solvec, Ns+Nl+1, INFO )42

43

Write(*,*)"* INFO = ",INFO,"*"44

write(*,*)"***********************"45

write(*,*)""46

write(*,*)"*******************************"47

Write(*,*)"* Koeffizienten: *"48

write(*,*)"*******************************"49

write(*,'(A10,E20.12,A2)')"* sb = ",solvec(0)," *"50

51

Do i=1,Ns52

Write(*,'(A4,I2,A4,E20.12,A2)')"* s[",i-1,"] = ",solvec(i)," *"53

End Do54

55

Write(*,*)"* * * * * *"56

57

Do i=Ns+1,Ns+Nl58

Write(*,'(A4,I2,A4,E20.12,A2)')"* w[",i-Ns-1,"] = ",solvec(i)," *"59

End Do60

61

write(*,*)"*******************************"62

write(*,*)""63

write(*,*)"*******************************"64

write(*,*)"* Demagnetizing Factor *"65

write(*,*)"*******************************"66

67

write(*,'(A12,F15.12,A5)')"* Ns = "&68

&,(betatt(a,b,solvec(0),solvec(1))+1)/betatt(a,b,solvec(0),solvec(1))," *"69

70

write(*,*)"*******************************"71

write(*,*)""72

write(*,*)"*********************************"73

write(*,*)"* Testing *"74

write(*,*)"*********************************"75

76

Call Testing(a,b,Ns,Nl,solvec)77

78

write(*,*)"*********************************"79

80

Deallocate(IPIV)81

Deallocate(solvec)82

Deallocate(eqnarray)83

84

End Program85

86
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!****************************************************************************************87

!****************************************************************************************88

!****************************************************************************************89

90

real*8 FUNCTION Gammaf(arg1)91

implicit none92

real*8 :: arg1, gammasol93

94

Call Gamma(arg1,gammasol)95

Gammaf = gammasol96

97

END FUNCTION Gammaf98

99

real*8 FUNCTION Hypergeometric2F1(arg1, arg2, arg3, arg4)100

implicit none101

real*8 :: arg1, arg2, arg3, arg4, hypersol102

103

call hygfx(arg1,arg2,arg3,arg4,hypersol)104

Hypergeometric2F1 = hypersol105

106

End FUNCTION Hypergeometric2F1107

108

!****************************************************************************************109

110

SUBROUTINE Zylinder_senkrecht(a,b,Nl,Ns,eqnarray,solvec)111

implicit none112

integer :: Nl,Ns,i,j113

real*8 :: a,b,eqnarray(0:Nl+Ns,0:Nl+Ns),solvec(0:Nl+Ns),Zpsm,Zplm,nu114

115

eqnarray(0,0)=0D0116

eqnarray(0,1)=0D0117

118

Do i=1,Ns119

eqnarray(0,i)=1D0120

End Do121

122

Do i=Ns+1,Ns+Nl123

eqnarray(0,i)=(b/a)**(0.66666666666666666D0)124

End Do125

126

Do i=1,Ns+Nl127

eqnarray(i,0)=Zpsm(a,b,DBLE(i-1),0D0,0D0)+Zplm(a,b,DBLE(i-1),0D0,0D0)128

End Do129

130

131

Do i=1,Ns+Nl132

Do j=1,Ns133

eqnarray(i,j)=Zpsm(a,b,DBLE(i-1),DBLE(j-1),0.66666666666666666D0)134

End do135

End Do136

137

Do i=1,Ns+Nl138

Do j=Ns+1,Ns+Nl139
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eqnarray(i,j)=Zplm(a,b,DBLE(i-1),DBLE(j-Ns-1),0.66666666666666666D0)140

End do141

End Do142

143

End SUBROUTINE Zylinder_senkrecht144

145

!****************************************************************************************146

147

real*8 FUNCTION Zs(a,b,p,Ns,Nl,solvec)148

implicit none149

integer :: i,Ns,Nl150

real*8 :: a,b,p,nu,erg,Zpsm,solvec(0:Ns+Nl)151

152

erg=0D0153

154

Do i=1,Ns155

erg=erg+solvec(i)*Zpsm(a,b,p,DBLE(i-1),0.66666666666666666D0)156

End Do157

158

Zs=erg159

160

End FUNCTION Zs161

162

real*8 FUNCTION Zl(a,b,p,Ns,Nl,solvec)163

implicit none164

integer :: i,Ns,Nl165

real*8 :: a,b,p,nu,erg,Zplm,solvec(0:Ns+Nl)166

167

erg=0D0168

169

Do i=Ns+1,Ns+Nl170

erg=erg+solvec(i)*Zplm(a,b,p,DBLE(i-Ns-1),0.66666666666666666D0)171

End Do172

173

Zl=erg174

175

End FUNCTION Zl176

177

real*8 FUNCTION betatt(a,b,sb,s0)178

implicit none179

real*8 :: a,b,sb,s0,Gammaf180

181

betatt=-(sb+Gammaf(0.5D0)/(2D0**1.66666666666666666D0*&182

&Gammaf(2.16666666666666666D0))*s0)183

184

End FUNCTION betatt185

186

!****************************************************************************************187

188

SUBROUTINE Testing(a,b,Ns,Nl,solvec)189

implicit none190

integer :: i,mode,Ns,Nl191

real*8 :: a,b,solp,Zpsm,Zplm,Zs,Zl,solvec(0:Ns+Nl),tol192
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193

tol=0D0194

solp=0D0195

196

Do i=1,Ns197

solp=solp+solvec(i)198

End Do199

200

Do i=Ns+1,Ns+Nl201

solp=solp+(b/a)**(0.66666666666666666D0)*solvec(i)202

End Do203

204

write(*,'(A11,F20.17,A3)')"* Edgek. : ",solp," *"205

206

Do i=1,Ns+Nl207

solp=0D0208

solp=solvec(0)*(Zpsm(a,b,DBLE(i-1),0D0,0D0)+Zplm(a,b,DBLE(i-1),0D0,0D0))+&209

&Zs(a,b,DBLE(i-1),Ns,Nl,solvec)+Zl(a,b,DBLE(i-1),Ns,Nl,solvec)210

211

write(*,'(A6,I2,A3,F20.17,A3)')"* p = ",i," : ",solp," *"212

End Do213

214

End SUBROUTINE Testing215

216

real*8 FUNCTION Zpsm(a,b,p,m,nu)217

implicit none218

real*8 :: m,p,nu,a,b219

real*8 :: gammaf,Hypergeometric2F1220

221

Zpsm=(-1)**(p+m)*2D0**(2D0*p+1D0-nu)*Gammaf(m+p+1.5D0)*Gammaf(m+p+0.5D0)*&222

&(a**2D0/(b*Sqrt(a**2D0+b**2D0)))*(b/Sqrt(a**2D0+b**2D0))**(2D0*m+2)*&223

&(0.5D0*Hypergeometric2F1(m+p+1.5D0,m-p+1D0+nu,2D0*m+1.5D0+nu,b**2D0/(a**2D0+b**2D0))&224

&+(m+p+0.5D0)*Hypergeometric2F1(m+p+1.5D0,m-p+nu,2D0*m+1.5D0+nu,b**2D0/(a**2+b**2)))/&225

&(Gammaf(0.5D0)*Gammaf(2D0*p+3D0)*Gammaf(2D0*m+1.5D0+nu))226

227

End FUNCTION Zpsm228

229

real*8 FUNCTION Zplm(a,b,p,m,nu)230

implicit none231

real*8 :: m,p,nu,a,b232

real*8 :: gammaf,Hypergeometric2F1233

234

Zplm=(-1)**Int(m)*2D0**(2D0*p+1D0-nu)*Gammaf(m+p+2.5D0)*Gammaf(m+p+2D0)*&235

&(b/Sqrt(a**2D0+b**2D0))*(a/Sqrt(a**2D0+b**2D0))**(2D0*m+4)*&236

&Hypergeometric2F1(m+p+2.5D0,m-p+1D0+nu,2D0*m+3D0+nu,a**2D0/(a**2D0+b**2D0))/&237

&(Gammaf(0.5D0)*Gammaf(2D0*p+3D0)*Gammaf(a*m+3D0+nu))238

239

End FUNCTION Zplm240

241

!****************************************************************************************242

!********************************** END *********************************************243

!****************************************************************************************244
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A.3. Infinite bar perpendicular to the magnetic field
This program calculates the demagnetization value for an infinite long bar with its
longest side perpendicular to the magnetic field. Lines (3) to (11) initialise the pro-
gram. In lines (13) to (34) parameters relevant for the calculations, such as width
and height of the cross section of the bar, all in mm, have to be given by the user.
The program only needs to know whether the width or the length is longer and the
number of sections in which the shorter side should be divided. The field is applied
in 𝑥−direction, parallel to side 𝑎. A maximum number of sections is defined, if the
ratio of longer to shorter side is to big. In line (63) the subroutine Quader is called,
which initialises the linear set of equation defined by formula (3.34) and (3.35). The
subroutine DGESV from the Lapack [16] package in line (75) solves the system of
linear equations by using a lower upper (LU) decomposition routine. The subroutine
returns the values for the solved coefficients in the vector solvec. The demagnetiza-
tion factor is calculated in line (87) by the subroutine calcNm with the formulas
(3.33), (3.32) and (3.25).

Not included in the program code are the definitions of the functions 𝑁
𝑙±𝑚′

±
𝑎 . In

the program code they appear for example as Nxipjm. This convention is equal to
the convention in formulas (3.43)-(3.46). The x denotes the direction of the field
(𝑥, 𝑦, 𝑧). p and m mean algebraic plus and minus respectively.

Program Entmag_Quader_parallel1

implicit none2

integer :: i,j,jp,ip,nx,ny,nz,INFO3

integer,allocatable,dimension(:,:) :: IPIV4

real*8 :: a,b,xs,ys,xp,yp,mu,chi,Ha,dx,dy,x,y5

real*8,allocatable,dimension(:) :: solvec,sigmax,sigmay6

real*8,allocatable,dimension(:,:) :: eqnarray7

8

nx=2009

ny=20010

Ha=1D011

12

Write(*,*)"Length parallel to the field [mm]"13

Read(*,*)b14

Write(*,*)"Shorter side perpendicular to the field [mm]"15

Read(*,*)a16

Write(*,*)"Magnetic suscebtibility"17

Read(*,*)chi18

19

If(b>a) Then20

Write(*,*)"Number of FEM elements for the shorter side [200+]"21

Read(*,*),nx22

ny=int(b/a)*nx23

End If24

25

If(a>b) Then26

Write(*,*)"Number of FEM elements for the shorter side [200+]"27
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Read(*,*),ny28

nx=int(a/b)*ny29

End if30

31

If(a==b) Then32

Write(*,*)"Number of FEM elements for the shorter side [200+]"33

Read(*,*),nx34

ny=nx35

End If36

37

If(nx>12000) Then38

nx=1200039

End If40

41

If(ny>12000) Then42

ny=1200043

End if44

45

write(*,*)"nx: ",nx46

write(*,*)"ny: ",ny47

48

dx=a/(0.5D0 + nx)49

dy=b/(ny)50

51

Allocate(IPIV(1:nx+ny,1:nx+ny))52

Allocate(solvec(1:nx+ny))53

Allocate(sigmax(1:ny))54

Allocate(sigmay(1:nx))55

Allocate(eqnarray(1:nx+ny,1:nx+ny))56

57

solvec=0D058

eqnarray=0D059

60

write(*,*)"******************************************************************"61

write(*,*)"* INITALISING SYSTEM: *"62

write(*,*)"******************************************************************"63

64

Call Quader(a,b,nx,ny,Ha,chi,eqnarray,solvec,dx,dy)65

66

write(*,*)"******************************************************************"67

write(*,*)"* DGESV OUTPUT: *"68

write(*,*)"******************************************************************"69

write(*,*)"* INFO = 0, DGESV was successfull *"70

write(*,*)"* INFO = -i, the i-th argument had an illegal value *"71

write(*,*)"* INFO = i, U(i,i) is exactly zero. Factorization has been *"72

write(*,*)"* completed, but the factor U is exactly singular *"73

write(*,*)"* so the solution could not be computed. *"74

write(*,*)"******************************************************************"75

Write(*,*)"SOLVING MATRIX..."76

Call DGESV( nx+ny, 1, eqnarray, nx+ny, IPIV, solvec, nx+ny, INFO )77

write(*,*)"INFO = ",INFO78

79

Do j=1,ny80
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sigmax(j)=solvec(j)81

End Do82

83

Do i=ny+1,nx+ny84

sigmay(i-ny)=solvec(i)85

End Do86

87

88

Call calcNm(a,b,nx,ny,Ha,chi,sigmax,sigmay,dx,dy)89

90

Deallocate(IPIV)91

Deallocate(solvec)92

Deallocate(eqnarray)93

94

End Program95

96

!****************************************************************************************97

!****************************************************************************************98

!****************************************************************************************99

100

SUBROUTINE calcNm(a,b,nx,ny,Ha,chi,sigmax,sigmay,dx,dy)101

implicit none102

integer :: i,j,jp,ip,nx,ny103

real*8 :: a,b,xs,ys,xp,yp,mu,chi,Ha,Nms,dx,dy,Md,Mvol104

real*8 :: sigmax(1:ny),sigmay(1:nx)105

106

Md=Mvol(sigmax,sigmay,a,b,nx,ny,dx,dy)107

108

Nms = Ha/(Md) - 1/chi109

110

Write(*,'(A,E25.17)')"Nms: ",Nms111

112

End SUBROUTINE113

114

!****************************************************************************************115

116

SUBROUTINE Quader(a,b,nx,ny,Ha,chi,eqnarray,solvec,dx,dy)117

implicit none118

integer :: i,j,jp,ip,nx,ny119

real*8 :: a,b,xs,ys,xp,yp,mu,chi,Ha,dx,dy120

real*8 :: Nxjpjp,Nxjpjm,Nxjmjp,Nxjmjm,Nxjpip,Nxjpim,Nxjmip,Nxjmim,Nxipip,Nxipim,Nximip,Nximim121

real*8 :: Nyipip,Nyipim,Nyimip,Nyimim,Nyipjp,Nyipjm,Nyimjp,Nyimjm,122

real*8 :: eqnarray(1:nx+ny,1:nx+ny),solvec(1:nx+ny)123

mu=0.0000012566370614D0124

125

Do j=1,ny126

solvec(j)=mu*Ha127

End Do128

129

Do,j=1,ny130

131

Do,jp=1,ny132

eqnarray(j,jp)=-(Nxjpjp(ys(j,dy),yp(jp,dy),a,dy)+Nxjmjp(ys(j,dy),yp(jp,dy),a,dy)&133



A. Program code 91

&-Nxjpjm(ys(j,dy),yp(jp,dy),a,dy)-Nxjmjm(ys(j,dy),yp(jp,dy),a,dy))134

135

If(j==jp) Then136

eqnarray(j,jp)=eqnarray(j,jp)+1D0/chi137

End If138

End Do139

140

Do,ip=ny+1,nx+ny141

eqnarray(j,ip)=-(Nxjpip(ys(j,dy),xp(ip-ny,dx),a,b,dx)+Nxjpim(ys(j,dy),xp(ip-ny,dx),a,b,dx)&142

&-Nxjmip(ys(j,dy),xp(ip-ny,dx),a,b,dx)-Nxjmim(ys(j,dy),xp(ip-ny,dx),a,b,dx))143

End Do144

145

End Do146

147

Do,i=ny+1,nx+ny148

149

Do,jp=1,ny150

eqnarray(i,jp)=-(Nyipjp(xs(i-ny,dx),yp(jp,dy),a,b,dy)+Nyimjp(xs(i-ny,dx),yp(jp,dy),a,b,dy)&151

&-Nyipjm(xs(i-ny,dx),yp(jp,dy),a,b,dy)-Nyimjm(xs(i-ny,dx),yp(jp,dy),a,b,dy))152

End Do153

154

Do,ip=ny+1,nx+ny155

eqnarray(i,ip)=-(Nyipip(xs(i-ny,dx),xp(ip-ny,dx),b,dx)+Nyipim(xs(i-ny,dx),xp(ip-ny,dx),b,dx)&156

&-Nyimip(xs(i-ny,dx),xp(ip-ny,dx),b,dx)-Nyimim(xs(i-ny,dx),xp(ip-ny,dx),b,dx))157

158

If(i==ip) Then159

eqnarray(i,ip)=eqnarray(i,ip)+1D0/chi160

End If161

End Do162

163

End Do164

165

166

End SUBROUTINE167

168

!****************************************************************************************169

170

real*8 FUNCTION Mmid(sigmax,sigmay,b,nx,ny,dx,dy)171

implicit none172

integer :: i,j,ny,nx173

real*8 :: b,dx,dy,summe,mu,sigmax(1:ny),sigmay(1:nx)174

mu=0.0000012566370614D0175

summe=0D0176

177

Do i=1,nx178

summe=summe+sigmay(i)*dx179

End Do180

181

Do j=1,ny182

summe=summe+sigmax(j)*dy183

End Do184

185

Mmid=1D0/(mu*b)*summe186
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187

End FUNCTION188

189

190

191

real*8 FUNCTION Mvol(sigmax,sigmay,a,b,nx,ny,dx,dy)192

implicit none193

integer :: i,ip,jp,j,ny,nx,perc194

real*8 :: a,b,dx,dy,sigmax(1:ny),sigmay(1:nx),summe1,summe2,summe3,mu,Mmid195

mu=0.0000012566370614D0196

summe1=0D0197

summe2=0D0198

summe3=0D0199

perc=0200

write(*,*)"CALCULATING Mvol:"201

Do ip=1,nx202

summe1=summe1+0.5D0*sigmay(ip)*dx*dx203

End Do204

205

Do ip=1,nx206

Do i=ip+1,nx207

If(i>nx) Then208

Goto 100209

End If210

summe2=summe2+sigmay(i)*dx*dx211

100 End Do212

perc=perc+1213

Write(*,'(A,I4,A)',advance="no")"\b\b\b\b\b\b",Int(Real(perc)/(nx+nx)*100)," %"214

End Do215

216

Do ip=1,nx217

Do j=1,ny218

summe3=summe3+sigmax(j)*dx*dy219

End Do220

perc=perc+1221

Write(*,'(A,I4,A)',advance="no")"\b\b\b\b\b\b",Int(Real(perc)/(nx+nx)*100)," %"222

End Do223

write(*,*)""224

write(*,*)"Mvol FINISHED!"225

Mvol=1D0/(mu*a*b)*(summe1+summe2+summe3+0.5D0*Mmid(sigmax,sigmay,b,nx,ny,dx,dy)*b*dx*mu)226

227

End FUNCTION228

229

!****************************************************************************************230

231

real*8 FUNCTION xs(i,dx)232

implicit none233

integer :: i234

real*8 :: dx235

xs=dx*DBLE(i)236

End FUNCTION237

238

real*8 FUNCTION ys(j,dy)239
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implicit none240

integer :: j241

real*8 :: dy242

ys=dy*(2D0*DBLE(j)-1)/2243

End FUNCTION244

245

real*8 FUNCTION xp(ip,dx)246

implicit none247

integer :: ip248

real*8 :: dx249

xp=dx*DBLE(ip)250

End FUNCTION251

252

real*8 FUNCTION yp(jp,dy)253

implicit none254

integer :: jp255

real*8 :: dy256

yp=dy*(2D0*DBLE(jp)-1)/2257

End FUNCTION258

259

!****************************************************************************************260

!********************************** END *********************************************261

!****************************************************************************************262
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A.4. Square bar
This program should calculate the demagnetization factor of a square bar. Unfortu-
nately the program does not return proper values. Nevertheless a short introduction
of the code is given. Lines (2) to (44) initialise the program. Values regrading the
length, height and width have to be in mm. The user has to give some data to
the program, which are important for the calculation. Length 𝑐 is parallel to the
magnetic field. 𝑛1, 𝑛2 and 𝑛3 are the number of segments in which each surface is
divided. The subroutine Quader initialises the linear set of equations in line (49),
defined by formula (3.54) to (3.56). The subroutine DGESV from the Lapack [16]
package in line (75) solves the linear system of equations by using a lower upper
(LU) decomposition routine. The subroutine returns the values for the solved coef-
ficients in the vector solvec. The demagnetization factor is calculated in line (92) by
the subroutine calcNm using formula (3.25) and (3.73).

Not included in the program code are the definitions of the functions 𝑁
𝑙𝑚,±𝑢′±𝑣′

±
𝑎 .

In the program code they appear for example as Nzijpipkm.This convention is equal
to the convention in formulas (3.60)-(3.68). The z denotes the direction of the field
(𝑥, 𝑦, 𝑧). p and m mean algebraic plus and minus respectively.

Program Entmag_Quader_parallel1

implicit none2

integer :: nx,ny,nz,n1,n2,n3,np,i,j,INFO3

integer,allocatable,dimension(:,:) :: IPIV4

real*8 :: Ha,chi,dx,dy,dz,a,b,c5

real*8,allocatable,dimension(:) :: solvec,sigmax,sigmay,sigmaz6

real*8,allocatable,dimension(:,:) :: eqnarray7

8

Ha=1D09

chi=-1D010

Write(*,*)"Length parallel to field (c) [mm]"11

read(*,*)c12

Write(*,*)"Length perpendicular to field (b) [mm]"13

read(*,*)b14

Write(*,*)"Length perpendicular to field (a) [mm]"15

read(*,*)a16

Write(*,*)"Magnetic susceptibility"17

read(*,*)chi18

Write(*,*)"Number of segments for (c)"19

read(*,*)nz20

Write(*,*)"Number of segments for (b)"21

read(*,*)ny22

Write(*,*)"Number of segments for (a)"23

read(*,*)nx24

25

dx=a/(2D0*nx)26

dy=b/(2D0*ny)27

dz=c/(1D0 + 2D0*nz)28

29

n1=ny*nz30
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n2=nx*nz31

n3=nx*ny32

np=n1+n2+n333

34

Allocate(IPIV(1:np,1:np))35

Allocate(solvec(1:np))36

Allocate(sigmax(1:n1))37

Allocate(sigmay(1:n2))38

Allocate(sigmaz(1:n3))39

Allocate(eqnarray(1:np,1:np))40

41

IPIV=042

solvec=0D043

eqnarray=0D044

45

write(*,*)"******************************************************************"46

write(*,*)"* INITALISING SYSTEM: *"47

write(*,*)"******************************************************************"48

Call Quader(a,b,c,dx,dy,dz,Ha,chi,nx,ny,nz,np,eqnarray,solvec)49

write(*,*)"******************************************************************"50

write(*,*)"* DGESV OUTPUT: *"51

write(*,*)"******************************************************************"52

write(*,*)"* INFO = 0, DGESV was successfull *"53

write(*,*)"* INFO = -i, the i-th argument had an illegal value *"54

write(*,*)"* INFO = i, U(i,i) is exactly zero. Factorization has been *"55

write(*,*)"* completed, but the factor U is exactly singular *"56

write(*,*)"* so the solution could not be computed. *"57

write(*,*)"******************************************************************"58

Write(*,*)"SOLVING MATRIX..."59

60

Call DGESV( np, 1, eqnarray, np, IPIV, solvec, np, INFO )61

Write(*,*)"INFO = ",INFO62

63

Do i=1,n164

sigmax(i)=solvec(i)65

End Do66

67

Do i=n1+1,n1+n268

sigmay(i-n1)=solvec(i)69

End Do70

71

Do i=n1+n2+1,np72

sigmaz(i-n1-n2)=solvec(i)73

End Do74

75

write(*,*)"******************************************************************"76

write(*,*)"* CALCULATING Nm: *"77

write(*,*)"******************************************************************"78

79

Call calcNm(sigmax,sigmay,sigmaz,a,b,c,Ha,chi,nx,ny,n1,n2,n3,dx,dy,dz)80

81

Deallocate(IPIV)82

Deallocate(solvec)83
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Deallocate(sigmax)84

Deallocate(sigmay)85

Deallocate(sigmaz)86

Deallocate(eqnarray)87

88

End Program89

90

!******************************************************************************************91

!******************************************************************************************92

!******************************************************************************************93

94

SUBROUTINE calcNm(sigmax,sigmay,sigmaz,a,b,c,Ha,chi,nx,ny,n1,n2,n3,dx,dy,dz)95

implicit none96

integer ::i,u,v,w,nx,ny,nz,n1,n2,n3,np,perc97

real*8 :: Ha,chi,a,b,c,ap,bp,cp,xi,yi,zi,Hd,mu,HxzV,HyzV,HzzV,HxzzV,HyzzV98

real*8 :: sigmax(1:n1),sigmay(1:n2),sigmaz(1:n3),Nmv,Nms,Mag99

real*8 :: Hxx,Hyx,Hzx,Hxy,Hyy,Hzy,Hxz,Hyz,Hzz,dx,dy,dz,yj,zk,Md,Mvol100

101

mu=0.0000012566370614D0102

103

Md=Mvol(sigmax,sigmay,sigmaz,a,b,c,nx,ny,n1,n2,n3,dx,dy,dz)104

Nms=Ha/Md-1/chi105

106

Write(*,'(A6,F20.17)')" Md= ",Md107

Write(*,*)""108

Write(*,'(A6,F20.17)')" Nms= ",Nms109

END SUBROUTINE110

111

!******************************************************************************************112

113

real*8 FUNCTION Mmid(sigmax,sigmay,sigmaz,a,b,n1,n2,n3,dx,dy,dz)114

implicit none115

integer :: i,n1,n2,n3116

real*8 :: a,b,dx,dy,dz,summe,mu,sigmax(1:n1),sigmay(1:n2),sigmaz(1:n3)117

118

mu=0.0000012566370614D0119

summe=0D0120

121

Do i=1,n1122

summe=summe+sigmax(i)*dy*dz123

End Do124

125

Do i=1,n2126

summe=summe+sigmay(i)*dx*dz127

End Do128

129

Do i=1,n3130

summe=summe+sigmaz(i)*dx*dy131

End Do132

133

Mmid=1D0/(mu*a*b)*summe134

135

End FUNCTION136
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137

real*8 FUNCTION Mvol(sigmax,sigmay,sigmaz,a,b,c,nx,ny,n1,n2,n3,dx,dy,dz)138

implicit none139

integer :: i,k,ny,nx,perc,n1,n2,n3,v,w140

real*8 :: a,b,c,dx,dy,dz,summe1,summe2,summe3,mu,Mmid,zk,xi,yj141

real*8 :: sigmax(1:n1),sigmay(1:n2),sigmaz(1:n3)142

143

mu=0.0000012566370614D0144

summe1=0D0145

summe2=0D0146

summe3=0D0147

perc=0148

149

write(*,*)"CALCULATING Mvol:"150

k=1151

Do i=1,n1152

summe1=summe1+zk(k,dz)*sigmax(i)*dy*dz153

154

If(mod(i,ny)==0)Then155

k=k+1156

End if157

158

perc=perc+1159

Write(*,'(A,I4,A)',advance="no")"\b\b\b\b\b\b",Int(Real(perc)/(n1+n2+n3)*100)," %"160

End Do161

162

k=1163

Do i=1,n2164

summe2=summe2+zk(k,dz)*sigmay(i)*dx*dz165

166

If(mod(i,nx)==0 )Then167

k=k+1168

End If169

170

perc=perc+1171

Write(*,'(A,I4,A)',advance="no")"\b\b\b\b\b\b",Int(Real(perc)/(n1+n2+n3)*100)," %"172

End Do173

174

Do i=1,n3175

summe3=summe3+c*sigmaz(i)*dx*dy176

177

perc=perc+1178

Write(*,'(A,I4,A)',advance="no")"\b\b\b\b\b\b",Int(Real(perc)/(n1+n2+n3)*100)," %"179

End Do180

181

write(*,*)""182

write(*,*)"Mvol FINISHED!"183

184

Mvol=1D0/(mu*a*b*c)*(summe1+summe2+summe3)185

186

End FUNCTION187

188

!******************************************************************************************189
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190

SUBROUTINE Quader(a,b,c,dx,dy,dz,Ha,chi,nx,ny,nz,np,eqnarray,solvec)191

implicit none192

integer :: i,j,u,v,w,nx,ny,nz,n1,n2,n3,np,up,vp,wp193

real*8 :: eqnarray(1:np,1:np),solvec(1:np)194

real*8 :: Ha,chi,mu,a,b,c,ap,bp,cp,xi,yi,zi,dx,dy,dz,yj,zk,xp,yp,zp195

real*8 :: Nxjkpjpkp,Nxjkpjmkp,Nxjkmjpkp,Nxjkmjmkp,Nxjkpjpkm,Nxjkpjmkm,Nxjkmjpkm,Nxjkmjmkm196

real*8 :: Nxjkpipkp,Nxjkpimkp,Nxjkmipkp,Nxjkmimkp,Nxjkpipkm,Nxjkpimkm,Nxjkmipkm,Nxjkmimkm197

real*8 :: Nxjkpipjp,Nxjkpimjp,Nxjkmipjp,Nxjkmimjp,Nxjkpipjm,Nxjkpimjm,Nxjkmipjm,Nxjkmimjm198

real*8 :: Nyikpjpkp,Nyikpjmkp,Nyikmjpkp,Nyikmjmkp,Nyikpjpkm,Nyikpjmkm,Nyikmjpkm,Nyikmjmkm199

real*8 :: Nyikpipkp,Nyikpimkp,Nyikmipkp,Nyikmimkp,Nyikpipkm,Nyikpimkm,Nyikmipkm,Nyikmimkm200

real*8 :: Nyikpipjp,Nyikpimjp,Nyikmipjp,Nyikmimjp,Nyikpipjm,Nyikpimjm,Nyikmipjm,Nyikmimjm201

real*8 :: Nzijpjpkp,Nzijpjmkp,Nzijmjpkp,Nzijmjmkp,Nzijpjpkm,Nzijpjmkm,Nzijmjpkm,Nzijmjmkm202

real*8 :: Nzijpipkp,Nzijpimkp,Nzijmipkp,Nzijmimkp,Nzijpipkm,Nzijpimkm,Nzijmipkm,Nzijmimkm203

real*8 :: Nzijpipjp,Nzijpimjp,Nzijmipjp,Nzijmimjp,Nzijpipjm,Nzijpimjm,Nzijmipjm,Nzijmimjm204

205

mu=0.0000012566370614D0206

207

n1=ny*nz208

n2=nx*nz209

n3=nx*ny210

211

Do i=n1+n2+1,np212

solvec(i)=mu*Ha213

End Do214

215

Write(*,*)"SOLUTION VECTOR INITIALISED!"216

Write(*,*)"INITALISING MATRIX..."217

218

u=1219

v=1220

w=1221

222

Do i=1,n1223

224

up=1225

vp=1226

wp=1227

228

Do j=1,n1229

230

eqnarray(i,j)=(Nxjkpjpkp(yj(v,dy),yp(vp,dy),zk(w,dz),zp(wp,dz),a,dy,dz)&231

&-Nxjkpjmkp(yj(v,dy),yp(vp,dy),zk(w,dz),zp(wp,dz),a,dy,dz)&232

&+Nxjkmjpkp(yj(v,dy),yp(vp,dy),zk(w,dz),zp(wp,dz),a,dy,dz)&233

&-Nxjkmjmkp(yj(v,dy),yp(vp,dy),zk(w,dz),zp(wp,dz),a,dy,dz)&234

&+Nxjkpjpkm(yj(v,dy),yp(vp,dy),zk(w,dz),zp(wp,dz),a,dy,dz)&235

&-Nxjkpjmkm(yj(v,dy),yp(vp,dy),zk(w,dz),zp(wp,dz),a,dy,dz)&236

&+Nxjkmjpkm(yj(v,dy),yp(vp,dy),zk(w,dz),zp(wp,dz),a,dy,dz)&237

&-Nxjkmjmkm(yj(v,dy),yp(vp,dy),zk(w,dz),zp(wp,dz),a,dy,dz))238

239

If(i==j)Then240

eqnarray(i,j)=eqnarray(i,j)+1D0/chi241

End If242
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243

vp=vp+1244

245

If(vp==ny+1)Then246

vp=1247

wp=wp+1248

End if249

End Do250

251

up=1252

vp=1253

wp=1254

255

Do j=n1+1,n1+n2256

257

eqnarray(i,j)=(Nxjkpipkp(xp(up,dx),zk(w,dz),zp(wp,dz),yj(v,dy),a,b,dx,dz)&258

&-Nxjkpimkp(xp(up,dx),zk(w,dz),zp(wp,dz),yj(v,dy),a,b,dx,dz)&259

&+Nxjkmipkp(xp(up,dx),zk(w,dz),zp(wp,dz),yj(v,dy),a,b,dx,dz)&260

&-Nxjkmimkp(xp(up,dx),zk(w,dz),zp(wp,dz),yj(v,dy),a,b,dx,dz)&261

&+Nxjkpipkm(xp(up,dx),zk(w,dz),zp(wp,dz),yj(v,dy),a,b,dx,dz)&262

&-Nxjkpimkm(xp(up,dx),zk(w,dz),zp(wp,dz),yj(v,dy),a,b,dx,dz)&263

&+Nxjkmipkm(xp(up,dx),zk(w,dz),zp(wp,dz),yj(v,dy),a,b,dx,dz)&264

&-Nxjkmimkm(xp(up,dx),zk(w,dz),zp(wp,dz),yj(v,dy),a,b,dx,dz))265

266

up=up+1267

268

If(up==nx+1)Then269

up=1270

wp=wp+1271

End if272

End Do273

274

up=1275

vp=1276

wp=1277

278

Do j=n1+n2+1,np279

280

eqnarray(i,j)=(Nxjkpipjp(xp(up,dx),yj(v,dy),yp(vp,dy),zk(w,dz),a,c,dx,dy)&281

&+Nxjkpimjp(xp(up,dx),yj(v,dy),yp(vp,dy),zk(w,dz),a,c,dx,dy)&282

&+Nxjkmipjp(xp(up,dx),yj(v,dy),yp(vp,dy),zk(w,dz),a,c,dx,dy)&283

&+Nxjkmimjp(xp(up,dx),yj(v,dy),yp(vp,dy),zk(w,dz),a,c,dx,dy)&284

&-Nxjkpipjm(xp(up,dx),yj(v,dy),yp(vp,dy),zk(w,dz),a,c,dx,dy)&285

&-Nxjkpimjm(xp(up,dx),yj(v,dy),yp(vp,dy),zk(w,dz),a,c,dx,dy)&286

&-Nxjkmipjm(xp(up,dx),yj(v,dy),yp(vp,dy),zk(w,dz),a,c,dx,dy)&287

&-Nxjkmimjm(xp(up,dx),yj(v,dy),yp(vp,dy),zk(w,dz),a,c,dx,dy))288

289

up=up+1290

291

If(up==nx+1)Then292

up=1293

vp=vp+1294

End if295
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End Do296

297

v=v+1298

299

If(v==ny+1)Then300

v=1301

w=w+1302

End if303

304

Write(*,'(A,I4,A2)',advance="no")"\b\b\b\b\b\b",Int(Real(i)/np*100)," %"305

End Do306

307

u=1308

v=1309

w=1310

311

Do i=n1+1,n1+n2312

313

up=1314

vp=1315

wp=1316

317

Do j=1,n1318

319

eqnarray(i,j)=(Nyikpjpkp(yp(vp,dy),zk(w,dz),zp(wp,dz),xi(u,dx),a,b,dy,dz)&320

&-Nyikpjmkp(yp(vp,dy),zk(w,dz),zp(wp,dz),xi(u,dx),a,b,dy,dz)&321

&+Nyikmjpkp(yp(vp,dy),zk(w,dz),zp(wp,dz),xi(u,dx),a,b,dy,dz)&322

&-Nyikmjmkp(yp(vp,dy),zk(w,dz),zp(wp,dz),xi(u,dx),a,b,dy,dz)&323

&+Nyikpjpkm(yp(vp,dy),zk(w,dz),zp(wp,dz),xi(u,dx),a,b,dy,dz)&324

&-Nyikpjmkm(yp(vp,dy),zk(w,dz),zp(wp,dz),xi(u,dx),a,b,dy,dz)&325

&+Nyikmjpkm(yp(vp,dy),zk(w,dz),zp(wp,dz),xi(u,dx),a,b,dy,dz)&326

&-Nyikmjmkm(yp(vp,dy),zk(w,dz),zp(wp,dz),xi(u,dx),a,b,dy,dz))327

328

vp=vp+1329

330

If(vp==ny+1)Then331

vp=1332

wp=wp+1333

End if334

End Do335

336

up=1337

vp=1338

wp=1339

340

Do j=n1+1,n1+n2341

342

eqnarray(i,j)=(Nyikpipkp(xi(u,dx),xp(up,dx),zk(w,dz),zp(wp,dz),b,dx,dz)&343

&-Nyikpimkp(xi(u,dx),xp(up,dx),zk(w,dz),zp(wp,dz),b,dx,dz)&344

&+Nyikmipkp(xi(u,dx),xp(up,dx),zk(w,dz),zp(wp,dz),b,dx,dz)&345

&-Nyikmimkp(xi(u,dx),xp(up,dx),zk(w,dz),zp(wp,dz),b,dx,dz)&346

&+Nyikpipkm(xi(u,dx),xp(up,dx),zk(w,dz),zp(wp,dz),b,dx,dz)&347

&-Nyikpimkm(xi(u,dx),xp(up,dx),zk(w,dz),zp(wp,dz),b,dx,dz)&348



A. Program code 101

&+Nyikmipkm(xi(u,dx),xp(up,dx),zk(w,dz),zp(wp,dz),b,dx,dz)&349

&-Nyikmimkm(xi(u,dx),xp(up,dx),zk(w,dz),zp(wp,dz),b,dx,dz))350

351

If(i==j)Then352

eqnarray(i,j)=eqnarray(i,j)+1D0/chi353

End If354

355

up=up+1356

357

If(up==nx+1)Then358

up=1359

wp=wp+1360

End if361

End Do362

363

up=1364

vp=1365

wp=1366

367

Do j=n1+n2+1,np368

369

eqnarray(i,j)=(Nyikpipjp(yp(vp,dy),xi(u,dx),xp(up,dx),zk(w,dz),b,c,dx,dy)&370

&+Nyikpimjp(yp(vp,dy),xi(u,dx),xp(up,dx),zk(w,dz),b,c,dx,dy)&371

&+Nyikmipjp(yp(vp,dy),xi(u,dx),xp(up,dx),zk(w,dz),b,c,dx,dy)&372

&+Nyikmimjp(yp(vp,dy),xi(u,dx),xp(up,dx),zk(w,dz),b,c,dx,dy)&373

&-Nyikpipjm(yp(vp,dy),xi(u,dx),xp(up,dx),zk(w,dz),b,c,dx,dy)&374

&-Nyikpimjm(yp(vp,dy),xi(u,dx),xp(up,dx),zk(w,dz),b,c,dx,dy)&375

&-Nyikmipjm(yp(vp,dy),xi(u,dx),xp(up,dx),zk(w,dz),b,c,dx,dy)&376

&-Nyikmimjm(yp(vp,dy),xi(u,dx),xp(up,dx),zk(w,dz),b,c,dx,dy))377

378

up=up+1379

380

If(up==nx+1)Then381

up=1382

vp=vp+1383

End if384

End Do385

386

u=u+1387

388

If(u==nx+1)Then389

u=1390

w=w+1391

End if392

393

Write(*,'(A,I4,A2)',advance="no") "\b\b\b\b\b\b",Int(Real(i)/np*100)," %"394

End Do395

396

u=1397

v=1398

w=1399

400

Do i=n1+n2+1,np401



A. Program code 102

402

up=1403

vp=1404

wp=1405

406

Do j=1,n1407

408

eqnarray(i,j)=(Nzijpjpkp(zp(wp,dz),yj(v,dy),yp(vp,dy),xi(u,dx),a,c,dy,dz)&409

&-Nzijpjmkp(zp(wp,dz),yj(v,dy),yp(vp,dy),xi(u,dx),a,c,dy,dz)&410

&+Nzijmjpkp(zp(wp,dz),yj(v,dy),yp(vp,dy),xi(u,dx),a,c,dy,dz)&411

&-Nzijmjmkp(zp(wp,dz),yj(v,dy),yp(vp,dy),xi(u,dx),a,c,dy,dz)&412

&+Nzijpjpkm(zp(wp,dz),yj(v,dy),yp(vp,dy),xi(u,dx),a,c,dy,dz)&413

&-Nzijpjmkm(zp(wp,dz),yj(v,dy),yp(vp,dy),xi(u,dx),a,c,dy,dz)&414

&+Nzijmjpkm(zp(wp,dz),yj(v,dy),yp(vp,dy),xi(u,dx),a,c,dy,dz)&415

&-Nzijmjmkm(zp(wp,dz),yj(v,dy),yp(vp,dy),xi(u,dx),a,c,dy,dz))416

417

vp=vp+1418

419

If(vp==ny+1)Then420

vp=1421

wp=wp+1422

End if423

End Do424

425

up=1426

vp=1427

wp=1428

429

Do j=n1+1,n1+n2430

431

eqnarray(i,j)=(Nzijpipkp(zp(wp,dz),xi(u,dx),xp(up,dx),yj(v,dy),b,c,dx,dz)&432

&-Nzijpimkp(zp(wp,dz),xi(u,dx),xp(up,dx),yj(v,dy),b,c,dx,dz)&433

&+Nzijmipkp(zp(wp,dz),xi(u,dx),xp(up,dx),yj(v,dy),b,c,dx,dz)&434

&-Nzijmimkp(zp(wp,dz),xi(u,dx),xp(up,dx),yj(v,dy),b,c,dx,dz)&435

&+Nzijpipkm(zp(wp,dz),xi(u,dx),xp(up,dx),yj(v,dy),b,c,dx,dz)&436

&-Nzijpimkm(zp(wp,dz),xi(u,dx),xp(up,dx),yj(v,dy),b,c,dx,dz)&437

&+Nzijmipkm(zp(wp,dz),xi(u,dx),xp(up,dx),yj(v,dy),b,c,dx,dz)&438

&-Nzijmimkm(zp(wp,dz),xi(u,dx),xp(up,dx),yj(v,dy),b,c,dx,dz))439

440

up=up+1441

442

If(up==nx+1)Then443

up=1444

wp=wp+1445

End if446

End Do447

448

up=1449

vp=1450

wp=1451

452

Do j=n1+n2+1,np453

454
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eqnarray(i,j)=(Nzijpipjp(xi(u,dx),xp(up,dx),yj(v,dy),yp(vp,dy),c,dx,dy)&455

&+Nzijpimjp(xi(u,dx),xp(up,dx),yj(v,dy),yp(vp,dy),c,dx,dy)&456

&+Nzijmipjp(xi(u,dx),xp(up,dx),yj(v,dy),yp(vp,dy),c,dx,dy)&457

&+Nzijmimjp(xi(u,dx),xp(up,dx),yj(v,dy),yp(vp,dy),c,dx,dy)&458

&-Nzijpipjm(xi(u,dx),xp(up,dx),yj(v,dy),yp(vp,dy),c,dx,dy)&459

&-Nzijpimjm(xi(u,dx),xp(up,dx),yj(v,dy),yp(vp,dy),c,dx,dy)&460

&-Nzijmipjm(xi(u,dx),xp(up,dx),yj(v,dy),yp(vp,dy),c,dx,dy)&461

&-Nzijmimjm(xi(u,dx),xp(up,dx),yj(v,dy),yp(vp,dy),c,dx,dy))462

463

If(i==j)Then464

eqnarray(i,j)=eqnarray(i,j)+1D0/chi465

End If466

467

up=up+1468

469

If(up==nx+1)Then470

up=1471

vp=vp+1472

End if473

End Do474

475

u=u+1476

477

If(u==nx+1)Then478

u=1479

v=v+1480

End if481

482

Write(*,'(A,I4,A2)',advance="no")"\b\b\b\b\b\b",Int(Real(i)/np*100)," %"483

End Do484

Write(*,*)""485

Write(*,*)"MATRIX INITIALISED!"486

END SUBROUTINE487

488

!******************************************************************************************489

490

real*8 FUNCTION xi(i,dx)491

implicit none492

real*8 :: dx493

integer :: i,nx494

xi=(2D0*i-1D0)*dx495

End FUNCTION xi496

497

real*8 FUNCTION yj(j,dy)498

implicit none499

real*8 :: dy500

integer :: j,ny501

yj=(2D0*j-1D0)*dy502

End FUNCTION yj503

504

real*8 FUNCTION zk(k,dz)505

implicit none506

real*8 :: dz507
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integer :: k,nz508

zk=2D0*dz*k509

End FUNCTION zk510

511

real*8 FUNCTION xp(i,dx)512

implicit none513

real*8 :: dx514

integer :: i,nix515

xp=(2D0*i-1D0)*dx516

End FUNCTION xp517

518

real*8 FUNCTION yp(j,dy)519

implicit none520

real*8 :: dy521

integer :: j,niy522

yp=(2D0*j-1D0)*dy523

End FUNCTION yp524

525

real*8 FUNCTION zp(k,dz)526

implicit none527

real*8 :: dz528

integer :: k,niz529

zp=2D0*dz*k530

End FUNCTION zp531

532

!******************************************************************************************533

!*********************************** END **********************************************534

!******************************************************************************************535
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Figure B.1.: Hysteresis curves of cuboids with different geometries with their longest side perpendicular to the
magnetic field. The first digit of every label indicates the length of the dimension perpendicular to the
field.
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Figure B.2.: Hysteresis curves of cuboids with different geometries with their longest side parallel to the magnetic
field. The first digit of every label indicates the length of the dimension parallel to the field.
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Figure B.3.: Hysteresis curves of degased cuboids with different geometries with their longest side parallel to the
magnetic field. The first digit of every label indicates the length of the dimension parallel to the field.
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Figure B.4.: Hysteresis curves of degased cuboids with different geometries with their longest side perpendicular to
the magnetic field. The first digit of every label indicates the length of the dimension perpendicular to
the field.
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Figure B.5.: Hysteresis curves of cylinders with different geometries with their main axes parallel to the magnetic
field, plotted against applied field. The first digit of every label indicates the length of the dimension
parallel to the main axis.
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Figure B.6.: Hysteresis curves of cylinders with different geometries with their main axes perpendicular to the mag-
netic field, plotted against applied field. The first digit of every label indicates the length of the dimension
parallel to the main axis.
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Figure B.7.: Hysteresis curves of degased cylinders with different geometries with their main axes parallel to the
magnetic field, plotted against applied field. The first digit of every label indicates the length of the
dimension parallel to the main axis.
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Figure B.8.: Hysteresis curves of degased cylinders with different geometries with their main axes perpendicular to
the magnetic field, plotted against applied field. The first digit of every label indicates the length of the
dimension parallel to the main axis.
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Figure B.9.: Hysteresis curves of cylinders with different geometries with their main axes parallel to the magnetic
field, plotted against internal field. The first digit of every label indicates the length of the dimension
parallel to the main axis.
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Figure B.10.: Hysteresis curves of cylinders with different geometries with their main axes perpendicular to the
magnetic field, plotted against internal field. The first digit of every label indicates the length of the
dimension parallel to the main axis.
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Figure B.11.: Hysteresis curves of degased cylinders with different geometries with their main axes parallel to the
magnetic field, plotted against internal field. The first digit of every label indicates the length of the
dimension parallel to the main axis.
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Figure B.12.: Hysteresis curves of degased cylinders with different geometries with their main axes perpendicular to
the magnetic field, plotted against internal field. The first digit of every label indicates the length of
the dimension parallel to the main axis.
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Figure B.13.: Hysteresis curves of hollow cylinders with different geometries with their main axes parallel to the
magnetic field, plotted against applied field. The first digit of every label indicates the length of the
dimension parallel to the main axis.
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Figure B.14.: Hysteresis curves of hollow cylinders with different geometries with their main axes perpendicular to
the magnetic field, plotted against applied field. The first digit of every label indicates the length of
the dimension parallel to the main axis.





C. Virgin magnetic moment curves

Figure C.1.: Virgin curves of the magnetic moment of cuboids with their longest
side perpendicular to the magnetic field. The first digit of every label
indicates the length of the dimension perpendicular to the field.
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Figure C.2.: Virgin curves of the magnetic moment of cuboids with their longest side
parallel to the magnetic field. The first digit of every label indicates
the length of the dimension parallel to the field.
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Figure C.3.: Virgin curves of the magnetic moment of degased cuboids with their
longest side parallel to the magnetic field. The first digit of every label
indicates the length of the dimension parallel to the field.
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Figure C.4.: Virgin curves of the magnetic moment of degased cuboids perpendic-
ular to the magnetic field. The first digit of every label indicates the
length of the dimension perpendicular to the field.
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Figure C.5.: Virgin curves of the magnetic moment of cylinders with their main axes
parallel to the magnetic field. The first digit of every label indicates
the length of the dimension parallel to the main axis.
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Figure C.6.: Virgin curves of the magnetic moment of cylinders with their main
axes perpendicular to the magnetic field. The first digit of every label
indicates the length of the dimension parallel to the main axis.
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Figure C.7.: Virgin curves of the magnetic moment of degased cylinders with their
main axes parallel to the magnetic field. The first digit of every label
indicates the length of the dimension parallel to the main axis.
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Figure C.8.: Virgin curves of the magnetic moment of degased cylinders with their
main axes perpendicular to the magnetic field. The first digit of every
label indicates the length of the dimension parallel to the main axis.
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Figure C.9.: Virgin curves of the magnetic moment of hollow cylinders with their
main axes parallel to the magnetic field. The first digit of every label
indicates the length of the dimension parallel to the main axis.
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Figure C.10.: Virgin curves of the magnetic moment of hollow cylinders with their
main axes perpendicular to the magnetic field. The first digit of every
label indicates the length of the dimension parallel to the main axis.



D. Magnetization curves

Figure D.1.: Magnetization curves versus applied field of the cuboids of the first
test series with their main axes parallel to the magnetic field. The first
digit of every label indicates the length of the dimension parallel to the
field.
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Figure D.2.: Magnetization curves versus applied field of the cuboids of the first
test series with their main axes perpendicular to the magnetic field.
The first digit of every label indicates the length of the dimension
perpendicular to the main axis.

Figure D.3.: Magnetization curves versus applied field of the cuboids of the second
test series with their main axes parallel to the magnetic field. The first
digit of every label indicates the length of the dimension parallel to the
main axis.
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Figure D.4.: Magnetization curves versus applied field of the cuboids of the second
test series with their main axes perpendicular to the magnetic field.
The first digit of every label indicates the length of the dimension
perpendicular to the field.

Figure D.5.: Magnetization curves versus applied field of the cylinders of the first
test series with their main axes parallel to the magnetic field. The first
digit of every label indicates the length of the dimension parallel to the
main axis.
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Figure D.6.: Magnetization curves versus internal field of the cylinders of the first
test series with their main axes parallel to the magnetic field. Demag-
netizing effects have been considered. The first digit of every label
indicates the length of the dimension parallel to the main axis.

Figure D.7.: Magnetization curves versus applied field of the cylinders of the first
test series with their main axes perpendicular to the magnetic field.
The first digit of every label indicates the length of the dimension
parallel to the main axis.
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Figure D.8.: Magnetization curves versus internal field of the cylinders of the first
test series with their main axes perpendicular to the magnetic field.
Demagnetizing effects have been considered. The first digit of every
label indicates the length of the dimension parallel to the main axis.

Figure D.9.: Magnetization curves versus applied field of the cylinders of the second
test series with their main axes parallel to the magnetic field. The first
digit of every label indicates the length of the dimension parallel to the
main axis.



D. Magnetization curves 136

Figure D.10.: Magnetization curves versus internal field of the cylinders of the sec-
ond test series with their main axes parallel to the magnetic field.
Demagnetizing effects have been considered. The first digit of every
label indicates the length of the dimension parallel to the main axis.

Figure D.11.: Magnetization curves versus applied field of the cylinders of the sec-
ond test series with their main axes perpendicular to the magnetic
field. The first digit of every label indicates the length of the dimen-
sion parallel to the main axis.
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Figure D.12.: Magnetization curves versus internal field of the cylinders of the sec-
ond test series with their main axes perpendicular to the magnetic
field. Demagnetizing effects have been considered. The first digit of
every label indicates the length of the dimension parallel to the main
axis.

Figure D.13.: Magnetization curves versus applied field of the hollow cylinders of
the first test series with their main axes parallel to the magnetic field.
The first digit of every label indicates the length of the dimension
parallel to the main axis.
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Figure D.14.: Magnetization curves versus applied field of the hollow cylinders of
the first test series with their main axes perpendicular to the magnetic
field. The first digit of every label indicates the length of the dimension
parallel to the main axis.



E. Critical current density curves

Figure E.1.: Critical current density curves versus applied field of the cuboids of the
first test series with their main axes parallel to the magnetic field. The
first digit of every label indicates the length of the dimension parallel
to the field.
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Figure E.2.: Critical current density curves versus applied field of the cuboids of
the first test series with their main axes perpendicular to the magnetic
field. The first digit of every label indicates the length of the dimension
perpendicular to the field.

Figure E.3.: Critical current density curves versus applied field of the cuboids of
the second test series with their main axes parallel to the magnetic
field. The first digit of every label indicates the length of the dimension
parallel to the field.
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Figure E.4.: Critical current density curves versus applied field of the cuboids of the
second test series with their main axes perpendicular to the magnetic
field. The first digit of every label indicates the length of the dimension
perpendicular to the field.

Figure E.5.: Critical current density curves versus applied field of the cylinders of the
first test series with their main axes parallel to the magnetic field. The
first digit of every label indicates the length of the dimension parallel
to the main axis.
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Figure E.6.: Critical current density curves versus applied field of the cylinders of
the first test series with their main axes perpendicular to the magnetic
field. The first digit of every label indicates the length of the dimension
parallel to the main axis.

Figure E.7.: Critical current density curves versus internal field of the cylinders of
the first test series with their main axes parallel to the magnetic field.
Demagnetizing effects have been considered. The first digit of every
label indicates the length of the dimension parallel to the main axis.
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Figure E.8.: Critical current density curves versus internal field of the cylinders of
the first test series with their main axes perpendicular to the magnetic
field. Demagnetizing effects have been considered. The first digit of
every label indicates the length of the dimension parallel to the main
axis.

Figure E.9.: Adjusted critical current density curves versus applied field of the cylin-
ders of the first test series with their main axes perpendicular to the
magnetic field. The current densities were evaluated using the method
from section 2.4 instead of formula (2.5). The first digit of every label
indicates the length of the dimension parallel to the main axis.
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Figure E.10.: Adjusted critical current density curves versus internal field of the
cylinders of the first test series with their main axes perpendicular
to the magnetic field. The current densities were evaluated using the
method from section 2.4 instead of formula (2.5). Demagnetizing ef-
fects have been considered. The first digit of every label indicates the
length of the dimension parallel to the main axis.

Figure E.11.: Critical current density curves versus applied field of the hollow cylin-
ders of the first test series with their main axes series parallel to the
magnetic field. The first digit of every label indicates the length of
the dimension parallel to the main axis.
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Figure E.12.: Critical current density curves versus applied field of the hollow cylin-
ders of the first test series with their main axes series perpendicular
to the magnetic field. The first digit of every label indicates the length
of the dimension parallel to the main axis.

Figure E.13.: Critical current density curves versus applied field of the cylinders of
the second test series with their main axes parallel to the magnetic
field. The first digit of every label indicates the length of the dimension
parallel to the main axis.
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Figure E.14.: Critical current density curves versus applied field of the cylinders
of the second test series with their main axes perpendicular to the
magnetic field. The first digit of every label indicates the length of
the dimension parallel to the main axis.

Figure E.15.: Critical current density curves versus internal field of the cylinders of
the second test series with their main axes parallel to the magnetic
field. Demagnetizing effects have been considered. The first digit of
every label indicates the length of the dimension parallel to the main
axis.
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Figure E.16.: Critical current density curves versus internal field of the cylinders
of the second test series with their main axes perpendicular to the
magnetic field. Demagnetizing effects have been considered. The first
digit of every label indicates the length of the dimension parallel to
the main axis.

Figure E.17.: Adjusted critical current density curves versus applied field of the
cylinders of the second test series with their main axes series perpen-
dicular to the magnetic field. The current densities were evaluated
using the method from section 2.4 instead of formula (2.5). The first
digit of every label indicates the length of the dimension parallel to
the main axis.
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Figure E.18.: Adjusted critical current density curves versus internal field of the
cylinders of the second test series with their main axes series per-
pendicular to the magnetic field. Demagnetizing effects have been
considered. The current densities were evaluated using the method
from section 2.4 instead of formula (2.5). The first digit of every label
indicates the length of the dimension parallel to the main axis.
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