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Abstract

The recent advent and rapid success of the smart city paradigm has led to its widespread adoption
in cities and their supporting ecosystems around the globe. Spear headed by multiple international
research initiatives more and more vital aspects of cities are becoming smart. This opens up a vast
array of new application possibilities, but also brings along several novel challenges. Various areas
like infrastructure, industry, government and most importantly citizens, of a smart city generate
large amounts of data and create sophisticated tangled interactions leading to ever increasing
complexity. Stakeholders in the smart city domain not only face the challenges of managing
these complex systems themselves, they also need to be able to make informed decisions based
on the massive amounts of data smart cities generate. In order for stakeholders to stay on top
of this emerging complexity, while still seeing the big picture in this dynamic environment, it is
essential to provide a holistic interdisciplinary view on the city. To enable stakeholders to build
applications that enable such a view, they need to be able to focus on their respective area of
expertise without the burden of dealing with underlying complexities that arise from the large
scale nature of smart cities. This calls for sensible abstractions that hide the complexities of
operating, managing, and running complex smart city applications in a similar way as today’s
mobile application ecosystems do.

In this thesis we present novel approaches for infrastructure, operations, and data manage-
ment for enabling such smart city applications ecosystems. First, we present an approach for
infrastructure-agnostic artifact deployment that allows easy integration of heterogenous smart
city infrastructures as well as the independent evolution of smart city applications and infrastruc-
tures. This enables a broader integration of, as well as an easy migration between, infrastructures
for smart city applications. To address the key challenge of data management, we present an
approach for modeling and management of data sources in the smart city domain. Our approach
allows for efficient, distributed data access for applications and introduces a simple technology-
agnostic description of data sources for stakeholders. This mechanism enables the exposure of
relevant data sources not only for other stakeholders in the same city, but also in other smart cities
around the globe significantly extending the application spectrum of smart city applications. In
the context of operation management, we present solutions to enable and improve the operation
as well as evolution of smart city applications, while respecting the complex security and com-
pliance constraints. We introduce a service mobility approach that can enable the execution, as
well as significantly improve the results of, distributed analytical environments. Additionally, we
present a method for continuous evolution of container application deployments, capable of inte-
grating security and compliance constraints. By doing so, we further enable the use of software
containers for building smart city applications, leading to a substantial increase in flexibility for
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developers and operations teams alike. We integrate these approaches into a comprehensive mid-
dleware toolkit, the Smart City Operating System (SCOS) that serves as the central element for a
Smart City Application Ecosystem (SCALE). We discuss the URBEM Smart City Application as
an example of such an smart city application utilizing SCOS to realize a holistic interdisciplinary
decision support system for smart cities. Finally, we evaluate our approach in the context of mul-
tiple scenarios and show that the contributions of this thesis significantly improve infrastructure,
operations and, data management in smart city application ecosystems.



Kurzfassung

Das Konzept intelligenter Städte und dessen rasanter Erfolg haben dazu geführt, dass immer mehr
Städte weltweit dieses Konzept aufnehmen und in ihre Ökosysteme integrieren. Unter dem Man-
tel internationaler Forschungsinitiativen werden immer mehr bedeutende Aspekte dieser Städte
intelligenter. Dies eröffnet einerseits eine Vielzahl neuer Anwendungsmöglichkeiten, bringt aber
andererseits auch zahlreiche neue Herausforderungen mit sich. Immer mehr Bereiche, wie Infra-
struktur, Industrie, Regierung und vor allem die Bürger, einer intelligenten Stadt erzeugen große
Datenmengen und schaffen anspruchsvolle komplizierte Interaktionen, die zu einem immer kom-
plexer werdenden System führen. Akteure im Umfeld von intelligenten Städten stehen nicht
nur vor der Herausforderung, diese komplexen Systeme selbst zu verwalten, sondern müssen
auch fundierte Entscheidungen treffen können, die auf den massiven Datenmengen basieren, die
intelligente Städte erzeugen. Damit sie sich in diesem dynamischen Umfeld den komplexen Her-
ausforderungen stellen können und dabei immer noch den Überblick behalten, ist es unerlässlich
ihnen eine ganzheitliche interdisziplinäre Sicht auf die Stadt zu ermöglichen. Um Akteuren die
Möglichkeit zu geben Anwendungen zu erstellen die eine solche Sicht ermöglichen, müssen
sie sich auf ihr jeweiliges Fachgebiet konzentrieren können, ohne dabei auf zugrunde liegende
Details der komplexen Smart City Struktur achten zu müssen. Dies erfordert sinnvolle Abstrak-
tionen, die die Komplexität des Betriebs, der Verwaltung und der Ausführung komplexer Smart
City Anwendungen in ähnlicher Weise verbergen wie heutige mobile Anwendungsökosysteme.

In dieser Arbeit stellen wir eine Reihe von neuen Ansätzen für Infrastruktur, Betriebs- und Da-
tenmanagement vor, um so die Schaffung von Ökosystemen für Smart City Anwendungen zu er-
möglichen. Zunächst präsentieren wir einen Ansatz zur infrastruktur-agnostischen Bereitstellung
von Artefakten, der eine einfache Integration heterogener physischer Smart City Infrastrukturen,
sowie die unabhängige Weiterentwicklung von Smart City Anwendungen und solcher physischer
Infrastrukturen ermöglicht. Dies erlaubt eine breitere Integration von Infrastrukturen, sowie die
einfache Migration von Smart City Anwendungen zwischen unterschiedlichen physischen Infra-
strukturen. Um die zentrale Herausforderung des Datenmanagements zu lösen, stellen wir einen
Ansatz zur Modellierung und Verwaltung von Datenquellen in intelligenten Städten vor. Unser
Ansatz ermöglicht effiziente, verteilte Datenzugriffe für Smart City Anwendungen und führt eine
einfache technologie-agnostische Beschreibung von Datenquellen für Akteure ein. Durch diesen
Mechanismus ermöglichen wir die einfache Bereitstellung von relevanten Datenquellen nicht
nur für andere Akteure in der gleichen Stadt, sondern auch in anderen intelligenten Städten rund
um den Globus, wodurch sich das Anwendungsspektrum von Smart City Anwendungen deutlich
erweitert. Weiters stellen wir Lösungen vor, die den Betrieb und die Entwicklung von Smart City
Anwendungen, unter Beachtung der komplexen Sicherheitseinschränkungen sowie in Überein-
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stimmung mit generellen Richtlinien, ermöglichen und verbessern. Wir stellen einen Ansatz zur
Servicemobiliät vor, der die Ausführung von sogenannten verteilten analytischen Umgebungen
ermöglicht und deren Ergebnisse deutlich verbessern kann. Darüber hinaus präsentieren wir ein
Verfahren zur kontinuierlichen Weiterentwicklung von Containeranwendungen unter Berück-
sichtigung von Sicherheitsstandards und allgemeiner Richtlinien. Dadurch ermöglichen wir den
Einsatz von Software-Containern für die Entwicklung von Smart City Anwendungen, was zu ei-
ner deutlichen Steigerung der Flexibilität für Entwickler und Betriebsteams führt. Wir integrieren
diese Ansätze in einem umfassenden Middleware-Toolkit, dem “Smart City Operating System“
(SCOS), das als zentrales Element für ein “Smart City Application Ecosystem“ (SCALE) dient.
Wir diskutieren die URBEM Smart City Anwendung als Beispiel für eine Smart City Anwendung
die auf dem SCOS basiert, um ein ganzheitliches interdisziplinäres System zur Entscheidungs-
unterstützung für intelligente Städte zu realisieren. Schließlich evaluieren wir unsere Ansätze
im Rahmen mehrerer Szenarien und zeigen, dass die Beiträge dieser Arbeit die Infrastruktur,
den Betrieb und das Datenmanagement in Ökosystemen für Smart City Anwendungen deutlich
verbessern.
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CHAPTER 1
Introduction

Todays cities are home to more than half of the world’s population, making them the primary
habitat of modern society. With urbanization still at rise, this number will continue to grow,
putting another staggering 2.5 billion people [27] into metropolis around the globe by the end of
2050. This massive strain on cities’ infrastructure and resources, is making it essential to become
smarter and more efficient in dealing with them. To tackle these challenges metropolises have
turned to information and communications technology (ICT), which under the umbrella term
smart city is transforming them to ever-evolving, complex cyber physical systems of systems.
While the first concept of a smart city focused on cities utilizing communication technologies to
deliver services to their citizens, it quickly evolved to using information technology to be smarter
and more efficient about the utilization of all of their resources. Initially, resources were limited to
fields that were tangible, mainly energy and mobility systems. In recent years, however, not only
what can be done with information technology has changed significantly, but also the resources
and areas addressable by a smart city have broadened significantly. They now cover areas like
smart buildings, smart traffic systems and roads, autonomous driving, energy hubs, electric car
utilization, water/waste and pollution management as well as concepts like urban farming. This
not only demonstrates the diversity of relevant, previously untapped areas, but also illustrates
the dynamics of this field and the importance to be able to incorporate new directions as they
emerge. Additionally, sophisticated tangled interdisciplinary interactions, combined with huge
heaps of data generated by various areas like infrastructure, industry, government and of course
the citizens, lead to an ever increasing complexity inherent to this domain. Stakeholders in the
smart city domain not only face the challenges of managing these complex systems themselves,
they also need to be able to make informed decisions based on the massive amounts of data smart
cities generate. In order for them to stay on top of this emerging complexity, while still seeing
the big picture in this dynamic environment, it is essential to provide a holistic interdisciplinary
view on the city.

In this thesis we draw a map to enable such a holistic interdisciplinary view overcoming not
only cognitive compartmentalization, but also paving the path for an Internet of Cities [89]. We
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draw this map based on recent research experience, as well as lessons learned during URBEM1,
a smart city initiative focusing on the city of Vienna. URBEM focuses on enabling the path to
a sustainable, supply-secure, affordable and livable smart city by providing holistic interdisci-
plinary views on the city based on real world scenarios in close cooperation with domain experts
and industry stakeholders. Based on this foundation we envisioned the Smart City Application
Ecosystem (SCALE) [91] a system for building holistic applications for the smart city domain
shown in Figure 1.1.
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Figure 1.1: Smart City Application Ecosystem Overview

SCALE enables practitioners and stakeholders in a smart city domain to focus on the devel-
opment of novel smart city applications without the necessity to concern themselves with the
specifics of infrastructure, data or application management, while still respecting vital aspects like
security and compliance. In this thesis, we present novel approaches for infrastructure, operations
and data management of smart city applications to enable SCALE.

1.1 Problem Statement
In order for stakeholders to build and operate smart city applications that enable holistic manage-
ment and planning for smart cities, they have to respect the characteristics of this domain. The
city itself emits massive amounts of data from a plethora of sources including Internet of Things
(IoT) networks, documents and citizens. This data is created by large scale infrastructures and
data providers, which need to be operated and managed. Additionally, the generated data itself
needs to be managed and made accessible so it can be used for analytics and planning purposes.
To understand this complex multifaceted data, stakeholders rely on domain experts, who provide
analytics and models about various aspects of the city which in turn are fueled by this data. The
analytics and models of these domain experts utilize complex tool chains and rely on dynamic

1http://urbem.tuwien.ac.at/
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emergent interactions to deliver their results. These results are the fundament for decision sup-
port relevant for industry and governance stakeholders as well as citizens to manage and plan
for the city. To enable stakeholders to address all these aspects when building applications they
need to be able to focus on their respective area of expertise without the burden of dealing with
underlying complexities. This calls for sensible abstractions that hide the complexities of operat-
ing, managing and running complex smart city applications in a similar way as today’s mobile
application ecosystems do. To enable such a smart city application ecosystem it is therefore
necessary to provide layers of abstraction for infrastructure, data, and application management
by addressing the following challenges.

First, such an application ecosystems needs to provide the ability to manage and operate a
large number of applications as well as data providers in a smart city. This not only calls for
means to stage, deploy, organize and evolve applications, but also requires abilities to adapt to
the diverse infrastructure landscape common in smart cities. Additionally, the enormous hetero-
geneity and large number of providers with different infrastructures along with the rapid pace
of infrastructure evolution, call for means to move applications and their respective deployment
topologies seamlessly between providers (e.g., from a dedicated server setup to a hosted cloud
and vice versa).

Second, in order to enable the distributed analytical models that provide the essential base-
line for informed planning in the smart city domain, it is vital to ensure that these models can
access and process the necessary data. This diverse and complex data, distributed over differ-
ent providers, combined with the dynamic, emergent interactions between these models, calls
for smart management mechanisms. Among other things, these mechanisms need to provide
the ability to easily expose heterogenous data as well as to enable such distributed analytical
environments, while still respecting the security and compliance constraints of this domain.

Finally, in addition to security concerns, the smart city domain requires mechanisms that ease
the enforcement of complex ownership and compliance constraints. Especially in the context
of this domain, there are unique security and compliance constraints. These constraints apply
on many different levels ranging from company regulations to governmental restrictions and
from city to state level. To enable smart city applications that can evolve along these changing
requirements it is therefore essential to provide mechanisms that are able to respect them.

1.2 Research Questions
The problems identified in Section 1.1 serve as motivation for the research conducted throughout
this thesis. Specifically, this work addresses the following research questions.

Research Question I:
How can smart city application topologies be deployed while specifically respecting the

heterogenous, evolving infrastructure landscape in smart city environments?

As discussed in Section 1.1, smart city environments consist of heterogeneous large scale
infrastructure landscapes that are a natural consequence of multi-provider environments. In order
for smart city applications to be operated and deployed in this context, they need to be able to
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respect the diverse infrastructure requirement that arise from these environments. Additionally,
they have to deal with the fact that these infrastructures evolve over time. On top of that, smart city
applications themselves are complex and dynamic artifacts with strict Quality of Service (QoS)
requirements, that change over time. Finally, the dependency on specific infrastructures (e.g.,
specific cloud providers) can be problematic due to volatility in offered services, availability and
pricing. While approaches like DevOps [44] and Infrastructure as Code [43] simplify application
provisioning by integrating deployment directives into the development process, infrastructure
evolution is currently not considered. Additionally, current approaches for software engineering
and lifecycle management do not sufficiently support the independent evolution of infrastructure
alongside an application. In order to enable broad deployment of smart city applications, we need
approaches that address these challenges by enabling independent evolution of infrastructure and
applications.

Research Question II:
How can complex, heterogenous smart city data sources be efficiently exposed in

distributed smart city environments?

The ability to access and process data is a crucial element to enable smart city applications.
In smart city environments data sources are complex, heterogenous, and scattered between a
magnitude of different stakeholders. This fact, combined with the inherently distributed nature
of smart city applications, alongside their strict QoS requirements, and emergent nature of data
access, poses several challenges. On the one hand smart city applications need a way to incorpo-
rate new data sources as they evolve, to either enhance the quality of their results or to be applied
to new cities or novel domains. They need to be able to do so, while still ensuring that QoS
requirements are met without major reengineering efforts. On the other hand the large number of
different stakeholders is mostly bound by the complex constraints of their specific environment.
This leads to situations where stakeholders are unable to expose the data because of their inability
to ensure constraint enforcement, especially in light of emergent access by smart city applica-
tions. To overcome these problems, we need mechanisms that enable ubiquitous data exposure
allowing efficient and transparent distributed access, while still respecting essential security and
compliance constraints.

Research Question III:
How can smart city applications be operated and evolved while respecting the complex

and changing compliance requirements in smart city environments?

The smart city domain consists of large number of different stakeholders leading to many
complex ownership and compliance constraints. In order to successfully operate and evolve smart
city applications it is essential to respect these constraints. The dynamic and complex nature of
smart city applications combined with these constraints however, leads to several challenges in
the context of operation and evolution management. The emergent interactions, common in smart
city applications, make it difficult to ensure constraint enforcement, potentially hindering essential
operation. Additionally, the heterogenous, large-scale nature of smart city applications has made
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operating system virtualization based on containers a natural fit to address this complexity. The
rapid adoption of this paradigm in combination with the introduction of new applications, new
application components, and updates to existing ones have led to a huge number of containers.
This has created fragmented large-scale container environments, which in combination with
the complex compliance constraints makes it challenging to adhere to all relevant security, and
regulatory requirements. These challenges call for novel approaches that ensure the operation
as well as evolution of smart city applications while ensuring the ability to respect and enforce
compliance constraints.

1.3 Scientific Contributions
The work conducted during the course of this thesis, guided by the research questions introduced
in Section 1.2, has led to the following contributions.

Contribution I:
An approach for infrastructure-agnostic artifact topology deployment of smart city

applications

To deploy smart city applications in smart city environments they need to be able to handle
the heterogenous infrastructure landscapes of this domain. These diverse infrastructures as well
as the applications deployed on them evolve over time, which leads to changing, potentially
conflicting requirements that make it necessary to separate applications and infrastructures from
each other. This calls for approaches that allow the seamless migration of application topologies
between deployment targets as well as the ability to enable independent, parallel evolution of
both, applications and underlying infrastructures. We present a methodology and toolset to enable
infrastructure-agnostic deployment of artifact topologies based on a declarative, constraint-based
specification of the required deployment infrastructure. Details are presented in Chapter 4. Con-
tribution I was originally presented in [88].

Contribution II:
An approach for modeling and management of usage-aware distributed datasets for

global smart city application ecosystems

Existing smart city application models assume that produced data is managed by and bound
to its original application. Such data silos have emerged, in part due to the complex security
and compliance constraints governing the potentially sensitive information produced by current
smart city applications. While it is essential to enforce security and privacy constraints, we have
observed that smart city data sources can often provide aggregated or anonymized data that can
be released for use by other stakeholders or third parties. This is especially promising, as such
data sources are not only relevant for other stakeholders in the same city, but also other smart
cities around the globe. We present a methodology and framework to enable transparent and
efficient distributed data access for data sources in smart city environments. Details are presented
in Chapter 5. Contribution II was originally presented in [92].
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Contribution III:
An approach for enabling distributed analytical service environments for the smart city

domain

Distributed Analytical Environments (DAEs) represent a core element when enabling holistic
smart city applications. To successfully operate, these DAEs rely on dynamic service composi-
tion, based on specific questions from stakeholders to deliver the desired results. The complex
compliance constraints in the smart city domain however, lead to situations where this com-
positions cannot be satisfied, severely impacting the quality of the DAE’s result. We deliver a
comprehensive problem formalization identifying service mobility as the core issue and present
a framework to significantly improve satisfiability and therefore result quality of DAEs. Details
are presented in Chapter 6. Contribution III was originally presented in [90].

Contribution IV:
An approach for continuous evolution of container application deployments in smart

city application ecosystems

The numerous benefits of container-based solutions for building smart city applications have
led to a rapid adoption of this paradigm in this domain. The ability to package application compo-
nents into self-contained artifacts has brought substantial flexibility to developers and operation
teams alike. However, to enable this flexibility, practitioners need to respect numerous dynamic
security and compliance constraints, as well as manage the rapidly growing number of container
images that arise from introducing new smart city applications. We present a framework enabling
continuous evolution of container application deployments, supporting traditional continuous
integration processes as well as custom, domain-relevant processes, to implement security and
compliance checks. Details are presented in Chapter 7. Contribution IV was originally presented
in [93]

1.4 Organization of this Thesis
The remainder of this thesis is structured as follows.

• Chapter 2 provides background information on basic concepts used in this thesis, specifi-
cally the smart city and cloud computing concepts.

• Chapter 3 introduces the URBEM scenario that will be used throughout this thesis to
motivate and evaluate our contributions.

• Chapter 4 discusses an approach for infrastructure-agnostic deployment of artifact topolo-
gies based on a declarative, constraint-based specification of the required deployment
infrastructure.

• Chapter 5 introduces an approach to enable transparent and efficient distributed data access
for data sources in smart city environments.
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• Chapter 6 introduces a framework that allows service mobility in constrained dynamic
composition contexts to enable distributed analytical environments.

• Chapter 7 presents an approach for continuous monitoring and evolution of container based
smart city applications.

• Chapter 8 details the smart city application ecosystem architecture along with its major
components.

• Chapter 9 introduces the URBEM smart city application for holistic decision support in
smart cities.

• Chapter 10 presents architectural blueprints for building future smart city applications.

• Chapter 11 concludes this thesis, discusses the presented contributions in light of the
identified research questions, and offers an outlook for ongoing and future research.
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CHAPTER 2
Background

In this chapter, we introduce several basic concepts that are used in the remainder of this thesis.
We start with illustrating the fundamental properties of the smart city concept, followed by an
introduction to cloud computing along with noteworthy facets of these concepts that are relevant
in the context of this thesis.

2.1 Smart City
The idea of a smart city started with integrating information and communication technologies
(ICT) [75] to deliver services to its citizens. While the initial concept was limited to areas like
energy and mobility, it soon gained momentum not only covering more and more vital areas of
a city, but also focusing on becoming smarter and more efficient about the general usage of a
cities’ resources. This led to a rapid rise of the smart city paradigm [38] around the globe, both in
industry and governance and brought along numerous smart city research initiatives like the IBM
Smarter Planet Initiative1, the MIT City Science program2 or Trinity’s Smart & Sustainable Cities
initiative3. Figure 2.1 shows a conceptual overview of a smart city along with abstract layers that
are integral in the evolution of modern cities towards smart cities. The rapid advancement of ICT
has brought along a plethora of enabling technologies, ranging from smart sensors and smart
meters to social media platforms and wearables to name only a few. These enabling technologies
are key elements in making more and more areas of a city smart. These areas are referred to as
verticals or vertical solutions and cover industry & manufacturing, building & traffic management,
energy management, and even urban mining & farming. Finally, in order to enable all these novel
vertical solutions, they need to be deployed and operated on heterogenous infrastructure stacks
ranging from legacy servers to novel cloud solutions.

The main goal of a smart city, however, remains the same as for a city in general: To increase
the quality of life of its citizens by providing them with all the services they need, while utilizing

1http://www.ibm.com/smarterplanet/us/en/
2http://cities.media.mit.edu/about/initiative
3https://www.tcd.ie/research/themes/smart-sustainable-cities/
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Figure 2.1: Smart City Overview (adapted from [106])

the available resources to achieve this in the most efficient and effective way. The key to enable
this, is to understand the citizens’ needs and to manage, decide and plan accordingly in a reactive
way. With the pervasive adoption of the smart city paradigm in conjunction with the rapid
evolution of ICT, the ability to do so has significantly improved through novel possibilities in
terms of available information and potential actions. Smart cities provide way more detailed and
accurate information about nearly every facet of a city ranging from smart buildings, smart traffic
systems and roads, energy management to water/waste and pollution management. Utilizing
this information in the right way enables a holistic management and planning approach, which
ensures a higher quality of life for a city’s citizens. Additionally, ICT enables a close interaction
between city officials and citizens allowing for user participation in the evolution of the city. In
the context of smart city this reactive system can be illustrated along the Smart City Loop [89]
shown in Figure 2.2.

The city itself emits massive amounts of data from a plethora of sources including Internet of
Things (IoT) networks, systems, documents, and citizens. This diverse static and dynamic data
needs to be managed and made accessible to provide the foundation for planning and decision
processes. The complexity of the city in turn makes it necessary to rely on the interaction of
domain experts to analyze and model different aspects of the city, based on this data in oder
to enable a holistic understanding. This in turn is the foundation of integrated planning and
decision processes for industry and governance stakeholders as well as citizen, which influences
and impacts the evolution of the city. To enable such a loop, smart cities face several challenges
[76], some of them have been outlined in Section 1.1. In addition to these challenges, it is vital
to respect the evolutionary nature of a city itself. It makes a smart city a large cluster of many
different stakeholders with different technologies, ICT infrastructures and requirements, leading
to significant fragmentation that makes the establishment of holistic approaches a challenging
task.

2.2 Cloud Computing
In recent years the cloud computing paradigm [63, 82] has become an established and successful
concept, both in industry and research. According to the US National Institute of Standards and
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Technology (NIST) cloud computing is defined as “a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction" [69]. The cloud computing model
has the following essential characteristics, which distinguish it from traditionally provisioned
data center infrastructures:

• On-demand self-service, allowing consumers to quickly and easily request an arbitrary,
seemingly unbound number of computing resources.

• Broad network access, which means that capabilities are provided over a network in order
to access them via standard mechanisms, promoting heterogenous use.

• Resource pooling, allowing to pool resources to serve multiple consumers using a multi-
tenant model, based on customer demand.

• Rapid elasticity, allowing the elastic provisioning and release of capabilities to enable rapid
outward and inward scaling based on demand.

• Measured Service, enabling transparency for providers and consumers through monitoring,
controlling, and reporting of resource usage.
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Based on these characteristics, it is possible to build elastic applications that are able to
dynamically adjust resources based on current demand. These services are offered by providers
in different granularities, ranging from low level infrastructure offerings, such as Virtual Machines
(VMs), to platforms that are partially managed by providers, up to services that are fully-managed
by providers and only consumed by customers. According to NIST these different levels of
granularity can be categorized into three different service models and are illustrated in Figure 2.3.

Infrastructure as a Service (IaaS) allows customers to provision computing resources than
can be used to deploy and run arbitrary software, such as operating systems and applications.
In this model the customer has full control over the instances and is responsible for managing
operating system and deployed applications, while the provider only controls the underlying
cloud infrastructure. This model brings a high degree of flexibility for the customer but also re-
quires them to have the necessary know-how, as well as human resources to actually manage the
instances. Popular examples of IaaS offerings are Amazon Elastic Compute Cloud EC24, Google
Compute Engine5 or Microsoft Windows Azure Compute6. The Platform as a Service (PaaS)
offerings were created to reduce the administration overhead of managing instances by provid-
ing pre-configured software environments for customers to develop and deploy applications. In
this model the provider manages the underlying infrastructure as well as the installed software,
while customers control the deployed applications and possibly configuration settings for the
application-hosting environment. With PaaS models customers sacrifice some of the flexibility of
IaaS for the simplicity and convenience of relying on provider-managed infrastructures. Notable
examples of PaaS offerings are Heroku7, Google App Engine8 or Amazon Elastic Beanstalk9.
Finally, the Software as a Service (SaaS) model allows customers to use applications, which are

4https://aws.amazon.com/ec2/
5https://cloud.google.com/compute/
6https://www.windowsazure.com/en-us/services/virtual-machines
7https://www.heroku.com
8https://cloud.google.com/appengine
9https://aws.amazon.com/de/elasticbeanstalk/
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offered by providers and running on their cloud infrastructure. In this model the provider man-
ages and controls the underlying infrastructure, software and applications, while the customer
only uses the application. In contrast to Iaas and PaaS, SaaS offerings are targeted at end users
as opposed to application developers or operators, and usually created to meet certain business
needs in specific domains. Examples of such SaaS offerings are Dropbox10, Google Drive11 or
services like Basecamp12. Additionally, three major deployment models can be distinguished
in the context of cloud computing, which are relevant in the smart city domain. Private Clouds,
where the cloud infrastructure is exclusively used by a single organization, managed by said
organization or any third party and either exists on or off premise. Public Clouds where the cloud
infrastructure is provisioned for open use by the general public and exists on the premises of the
cloud provider. Finally, so called Hybrid Clouds where the cloud infrastructure is a composition
of two or more distinct cloud infrastructures (e.g., public and private cloud).

In the context of smart city, due to the previously mentioned fragmentation, all of the previ-
ously mentioned service and deployment models can be found and need to be respected.

Virtualization plays a central role in providing cloud offerings. Traditionally this has been
based on the use of VMs. In recent years however, operating system virtualization based on
containers [102] as a mechanism to deploy and manage complex, large-scale software systems has
gained significant momentum. A comparison of these two approaches is illustrated in Figure 2.4.

In contrast to VMs, which include the application, binaries and libraries as well as the entire
guest operating system, the container approach is more light weight. Containers only include the

10https://www.dropbox.com/
11https://www.google.com/drive/
12https://basecamp.com/
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application along with its dependencies, but share the kernel with other containers, running as
isolated processes in user space on the host operating system. This leads to several benefits: con-
tainers use less ram, start instantly and are constructed from layered filesystems sharing common
files, which makes disk usage and image downloads more efficient. Additionally, they provide
several advantages for developers. Using containers, they can create self-contained images of
application components along with all dependencies that are then executed in isolation on top of
a container runtime (e.g., Docker13, rkt14, or Triton15). This packaging of application components
into self-contained artifacts ensures that the application runs everywhere the container runtime is
present. In the context of fragmented smart city environments, container based solutions are an
important valuable addition for the development and operation of smart city applications.

13https://www.docker.com/
14https://github.com/coreos/rkt
15https://www.joyent.com/
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CHAPTER 3
Motivating Scenario

In this chapter, we present the scenario as well as high-level requirements that we will use
throughout this thesis to motivate and evaluate the contributions of this work.

3.1 Urban Energy and Mobility System

The “Urban Energy and Mobility System” (URBEM1) is a doctoral program that was established
as a joint smart city research initiative between the Wiener Stadtwerke Holding AG (Vienna
Public Utilities Company) and the Vienna University of Technology. Its goal is to enable the
path to a sustainable, supply-secure, affordable, and liveable smart city based on the example
of the city of Vienna. It aims at creating an interactive analytical environment that enables the
understanding of the multidimensional aspects of the city and their interactions in the context
of diverse and complex scenarios. To achieve this goal the college follows an interdisciplinary
approach evolving around the integration of experts in different domains including mobility,
energy, building physics, sociology, economics, spacial planning, and information technology.
Specifically, certain aspects of the city are being analyzed via models and simulations, which
fueled by current data and visualized in an interactive 4D environment, should enable a holistic
insight. By doings so it aims to provide novel insights and approaches in the following areas:

• Analysis of energy consumption and mobility behavior.

• Optimizing choice of transport in urban areas, incorporating multi modal transportation
models.

• Developing sustainable methods for the renovation of existing building stock, as well as
for the construction of new buildings.

• Optimizing thermal, natural and electrical energy systems throughout the whole city.
1http://urbem.tuwien.ac.at
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• Advancing and planing ICT structures to control urban energy supply networks.

• Analyzing business and economic factors as well as managing the risk of urban energy
and mobility systems.

• Involvement and strong participation of various stakeholders in planning and decision
processes through virtual environments.

An ICT oriented view on this topic is shown in Figure 3.1. In order to provide the afore-
mentioned holistic view of the city the models of domain experts need to interact in a highly
dynamic fashion, based on specific questions of the stakeholders, enabled by current data about
the city, available in a plethora of different forms, formats and originating from different sources.
The problem space in URBEM can therefore be considered a Distributed interactive Analytical
Environment (DAE). Additionally, URBEM also covers the main elements in the previously
mentioned Smart City Loop (shown in Figure 2.2), which make it a representative example for
challenges in this context. URBEM specifically as well as DAE’s in an abstract sense pose a
plethora of new challenges and problems.
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Figure 3.1: ICT oriented URBEM Overview

This starts with the tasks of integrating and handling diverse, very large distributed datasets.
In order to build their models and simulations, domain experts rely on current and accurate data,
which they are able to process in the formats and forms common to their domain. This data can
either be low frequency static data like GIS and grid data or high frequency very dynamic IoT
sensor data. It is being emitted from a wide array of different devices, locations, sources and
entities including persons. This data needs to be accessed, managed, integrated, linked and trans-
formed on demand in order to provide a coherent basis for utilization in subsequent models and
simulations. This poses several challenges in the areas of efficient storage of heterogeneous data
and calls for novel unified approaches for data management. Additionally, the multi stakeholder
environment of the city itself leads to a fragmentation of relevant data between many different
stakeholders.
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Furthermore, data is not always available due the volatility of sources as well as security
and privacy concerns of participating stakeholders. Such cases require the ability to utilize data
from alternative sources (e.g., other cities) in order to ensure reliability of model building and
execution. Additionally, data sources from other cities can be valuable input for planning and
decision support when incorporated into models and analytics. Therefore, it is necessary to
investigate ways to efficiently use such data surrogates when other sources fail to deliver or
simply drop out. The massive amounts and diversity of data also makes it necessary to introduce
novel and easily graspable (if possible automatic) mechanisms for discovery of data as well as
format transformations in order to use them in models and simulations.

In the domain experts realm there needs to be support for dynamic interactions based on
variable requests. This makes it necessary to coordinate temporal diverse complex models with
a high variability of possible input and output formats to present coherent consumable results.
These models and simulations itself rely on different infrastructures and software stacks. In order
to support these dynamic elastic processes and infrastructures, on demand staging and scaling
mechanisms need to be enabled. Existing cloud computing and cloud analytics environments
allow for novel ways of efficient execution and management. Due to the highly dynamic nature,
the diverse software stacks for modeling, as well as the different runtime requirements call for
novel mechanisms to formulate and address these concerns on the infrastructure level.

Additionally, the DAE itself needs to be designed for evolution, as it is expected to remain in
service over longer periods of time. Stakeholder requirements, models and simulations, software
stacks or infrastructure constraints can change over time. This requires fundamental changes to
the application implementation, its architecture, and deployment topology. Application manage-
ment needs to account for these issues and assist stakeholders in this domain in creating reliable,
fault tolerant applications that are able to dynamically adapt to changes in their runtime environ-
ment, as well as support them in enabling evolutionary changes in the application structure and
environment.

Finally, such a system has to deal with several non functional aspects beyond QoS. Specifi-
cally these are concerns of compliance, provenance and security. The data itself, albeit necessary
to run a model or simulation, might underly certain constraints and might not be able to be ac-
cessed. This calls for abilities to enable data access respecting these constraints as well as for
means to transfer capabilities (e.g. models, services) on an infrastructure level so they can run
with the full data they need where they are allowed to. Another relevant aspect is the factor of
costs, since these models and simulations can be computationally very expensive. Therefore, the
allocation should try to minimize costs and optimize the utilization of resources.
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CHAPTER 4
An Infrastructure-Agnostic

Artifact Topology Deployment
Framework

In this chapter, we present Smart Fabric, a methodology and accompanying toolset for infrastructure-
agnostic deployment of application artifact topologies based on a constraint-based, declarative
specification of the required deployment infrastructure. Our framework allows for seamless mi-
gration of application topologies between deployment targets and enables independent, parallel
evolution of both, applications and underlying infrastructure. We discuss the feasibility of the
proposed methodology and prototype implementation using representative applications from the
Internet of Things and smart city domains.

4.1 Introduction
The recent emergence of the cloud computing paradigm [11] allows stakeholders to leverage a
utility-oriented, on-demand approach to create applications that elastically respond to changes
in request load, do not depend on dedicated operations teams on site, and can be managed and
evolved without upfront infrastructure investments. Despite the apparent benefits, companies and
government agencies are still hesitant to migrate business-critical applications to the cloud [49],
mainly due to concerns related to vendor lock-in [51, 99] and service availability. While cloud
services are designed to provide abstractions that shield stakeholders from the underlying physical
infrastructure, applications must nevertheless be specifically tailored to concrete cloud providers
to make use of the offered services.

This strong dependence on specific cloud providers is problematic for several reasons. While
cloud providers now usually offer service level agreements1 (SLAs) that provide certain guar-

1e.g., https://cloud.google.com/compute/sla, http://aws.amazon.com/ec2/sla/, http://azure.microsoft.com/en-us/
support/legal/sla/
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antees for service availability to customers, the terms governing customers’ use of the offered
services can still be unilaterally changed by providers. Changes in offered services or pricing can
occur at any time (e.g., retiring offerings, changing pricing structures, introducing new offerings
that better suit customers’ requirements) and customers may need to migrate their applications
to different services or providers as a result. Additionally, in the context of fragmented smart city
environments, smart city applications need the ability to run on, as well as to move between, het-
erogenous infrastructures in order to ensure pervasive deployment and utility. Current approaches
for software engineering and lifecycle management do not sufficiently support the independent
evolution of infrastructure alongside an application. While approaches like DevOps [44] and In-
frastructure as Code [43] simplify application provisioning by integrating deployment directives
into the development process, infrastructure evolution is not currently considered.

We argue that deployment infrastructure and application development must be clearly sep-
arated to allow for seamless, independent evolution of application components as well as the
underlying infrastructure. In this chapter, we present Smart Fabric, a methodology and toolset
for infrastructure-agnostic deployment of artifact topologies based on a declarative, constraint-
based specification of the required deployment infrastructure. Smart Fabric extends the MAD-
CAT [46] methodology with an abstraction layer that cleanly separates application artifacts from
the concrete deployment infrastructure, along with mechanisms to seamlessly migrate application
topologies between deployment targets. We illustrate the feasibility of the proposed framework
and prototype using representative applications from the Smart City and Internet of Things (IoT)
domain.

The remainder of this chapter is structured as follows. In Section 4.2 we discuss the founda-
tional system model underlying our approach. Section 4.3 presents the Smart Fabric framework
for infrastructure-agnostic deployment of artifact topologies, followed by a detailed discussion
and validation of the framework properties in Section 4.4. Related research is discussed in Sec-
tion 4.5 and we conclude the chapter with a comprehensive summary in Section 4.6.

4.2 System Model

In order to enable an infrastructure independent artifact deployment framework we introduce
an abstraction to model and describe the relevant entities in our domain. As foundation for the
abstraction we use the MADCAT [46] methodology, as it introduces several abstract concepts
suitable for describing application topologies independent of their deployment targets. Specifi-
cally, these are Technical Units (TU) to describe applications and their components, as well as
Deployment Units (DU) to describe how to deploy them on cloud infrastructure. This however is
not sufficient for complex, large-scale applications, such as in the Smart City domain, since we
need to cover a wider array of different infrastructures (e.g., legacy systems on premises, edge
devices, etc.) and deployment types (e.g., scaling across infrastructure boundaries).

To address this limitation we extend the existing concepts with Infrastructure Specifications
(IS) to capture infrastructure heterogeneity and Deployment Instances (DI) to represent the cur-
rent state of an application deployment topology during runtime. Additionally, we provide an
implementation of the abstract concepts along with the proposed extensions of the MADCAT
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Figure 4.1: Relations between TU, DU, IS and DI

methodology for the Smart Fabric framework. We choose JSON-LD2 as data format for our
concept description as a simple, both human and machine readable, pragmatic, and extensible
representation that also allows us to interlink the relevant concepts with each other. Figure 4.1
outlines the relations of the newly introduced IS and DI to MADCAT concepts TU and DU. In
the following, we discuss the introduced concepts in more detail.

4.2.1 Technical Unit

TUs describe applications as well as application components and focus on the technical aspects
of these artifacts. Listing 4.1 shows an example of such a TU for a citizen information system
based on the Ruby on Rails framework. As JSON-LD document, a TU can start with a context
to set up common namespaces. This is followed by a type and name to identify the unit. The
artifact-uri points to the necessary resource to build and execute the artifact, which in
turn is described in the build and execution sections. Both sections are composed of step
descriptions as a flexible and extensible way of describing build and execution processes that do
not depend on any specific technology. Each step is numbered to provide ordering, specifies a
tool mandatory to perform the step (later used in dependency resolution), as well as a command
(cmd) to be executed. The verification section follows the same step format and serves
to verify a successful build, deployment and execution of an artifact. By default, verification
steps follow the UNIX philosophy, considering commands that exit with a result code of 0
to be successful, whereas other result codes are interpreted as errors. It further augments the
previously introduced step elements with an expected-results element that allows each
step to specify an expected result in order to verify the successful execution. This allows the

2http://json-ld.org/
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verification to be as flexible as possible, covering traditional integration tests, custom scripts, or
service invocations. Additionally, TUs provide a configuration element with an extensible
key-value format that allows to provide additional configuration information. Furthermore, a
TU contains a dependency section to specify dependent artifacts (such as other application
components or required data stores), as well as a metainformation section to describe
additional relevant aspects like used framework, required runtime, as well as basic system
requirements, such as minimum amount of memory or desired cpu capacity. Additionally, TUs
as well as all other elements of the system model allow the use of variables that are evaluated by
the Smart Fabric framework. These variables are designated with the ‘@’ prefix.

Listing 4.1: Technical Unit - Structure
{

"@context": "http://smartfabric.dsg.tuwien.ac.at",
"@type": "TechnicalUnit",
"name": "CitizenInformationSystem",
"artifact-uri": "...",

"language": "ruby",
"build": {

"assembly": "/citizeninformationsystem",
"steps":[{"step":1,"tool":"bundler","cmd":"bundle install"},{"step":2,"

tool":"rake","cmd":"rake db:migrate"}, {"step":3,"tool":"rake","cmd":
"rake db:seed"}]

},

"execute":[{"step":1,"tool":"rails",
"cmd":"rails s"}],

"verification": {

"steps":[{"step":1,"tool":"curl","cmd":
"curl -i @destination_url/status",
"expected-result":"HTTP 200 OK"}]

}

"metainformation": {

"type": "standalone",
"framework": "Rails 4.0",

"runtime":"ruby 2.0, rails 4.0"

},

"dependencies": {

"datastore": {

"type":"relational",
"interface": "sql"

}

}

}

4.2.2 Infrastructure Specification

ISs are used to describe the capabilities of different infrastructure resources. This ranges from
legacy systems that are running on premises on cloud infrastructures including Infrastructure
as a Service (IaaS) and Platform as a Service (PaaS) providers. The IS contains a name and
version identifying specific infrastructures with the support for different versions of infras-
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tructure stacks as well as a kind to discriminate between infrastructure concepts like bare
metal systems, IaaS, and PaaS. This is followed by a server entry, which is used to describe
the computing capabilities of an infrastructure. For instance, in the case of a classical server
system this section contains the bare metal specifications of the machine itself, in the case of
Amazon the available compute instances and their respective properties. Processing capabil-
ities are specified using the compute_units array, where each entry specifies a name to
identify the entity as well as a capacity element. Similarly, other available services, such
as storage, network, or databases can be specified with each of them including name,
type, version, interface, as well as the previously introduced step notation to describe
how to use or access them. Listing 4.2 shows an example IS for an excerpt of the Amazon AWS
stack.

Listing 4.2: Infrastructure Specification - Structure
{

"@context": "http://smartfabric.dsg.tuwien.ac.at",
"@type": "InfrastructureSpecification",
"name": "Amazon AWS",
"version": "1.0",

"kind":"cloudprovider",
"server": {

"metainformation":{
"cpu":"Intel Xeon E5"

},

"compute_units":[{"name":"t2.micro","capacity":{"cpu":"1","memory":"1
GB","storage":"@EBS"}, ..., {"name":"m3.2xlarge","capacity":{"cpu":
"8","memory":"15 GB","storage":"80 GB"}}]

},

"storage": {...},

"network": {...},

"databases":[{"name": "RDS db.m3.medium","type": "relational","interface":
"sql/mysql"},...],

"services":[...]
}

4.2.3 Deployment Unit

DUs provide a mean to describe how to deploy a TU on a specific IS. They link one or more
TUs to exactly one specific IS by referencing their names. Additionally they allow to define
constraints that need to be met in terms of hardware and software. Hardware constraints,
for example, cover minimal machine requirements in terms of CPU and Memory, or, in the case
of IaaS or PaaS providers, the minimal provided compute units. Software constraints allow to
specify a priori requirements on the IS in order to be able to actually deploy the TU on it. This
includes programming languages, as well as runtime environments or framework requirements.
The last element of the DU is the previously introduced flexible step definition that outlines the
steps that are necessary to deploy the set of TUs to the specified IS.

Listing 4.4 shows an example of such a DU for the deployment of the TU Citizen Information
System on the IS dedicatedserver.
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Listing 4.3: Deployment Unit - Structure
{

"@context": "http://smartfabric.dsg.tuwien.ac.at",
"@type": "DeploymentUnit",
"name": "CitizenInformationSystem/DedicatedServer",

"technicalUnits":[{
"name":"citizeninformationsystem",
"id":"citizeninformationsystem.tu.json"}],

"infrastructureSpecification":{
"name":"dedicatedServer"

},

"constraints": [{"hardware":[{"memory": "4GB"}]}],
"steps": [{"step": 1,"tool": "git","cmd": "git clone @destination/

@citizeninformationsystem.artifcat-uri"},
{"step": 2,"tool": "bash","cmd": "cd @destination"},
{"step": 3,"cmd": "@citizeninformationsystem.@build"},{"step": 4,

"cmd":"@citizeninformationsystem.@execute"}
]

}

4.2.4 Deployment Instance

A DI represents a specific deployment of a TU to an IS based on a DU taking into account
all defined hardware and software constraints. There can be multiple DIs for a DU represent-
ing different specific deployments for example covering development, staging, or production
deployments of an application on specific infrastructure. A DI specifies context, type, and
name, as well as a deploymentUnit to reference the corresponding DU. This is followed by a
machine element that stores data about the specific machine or machines that are currently used
to execute the deployment. The application element that contains runtime information about
the TU stores name and version of the application component, as well as an environment
element that contains relevant environment information resolved by the framework. Finally, the
global element allows to store additional information about the specific deployment in an open
key value format that can later be used by the framework components to support deployment
decisions.

Listing 4.4: Deployment Instance - Structure
{

"@context": "http://smartfabric.dsg.tuwien.ac.at",
"@type": "DeploymentInstance",
"name": "....",

"deploymentUnit":"CitizenInformationSystem/DedicatedServer",
"machine": {"id":, ....},

"application":{"name":"...","environment":[{"key":"..."}]},
"global":{...}

}
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Figure 4.2: Smart Fabric Framework Overview

4.3 The Smart Fabric Framework

In this section we introduce the Smart Fabric framework for infrastructure-agnostic artifact topol-
ogy deployment that implements the system model presented above. We start with a framework
overview, followed by fundamental framework rationales, and conclude with a detailed descrip-
tion of all framework elements.

4.3.1 Framework Rationales

The Smart Fabric framework follows the microservice [78] architecture paradigm. An overview
of the main components is shown in Figure 4.2. The framework is logically organized into three
main facets which group areas of responsibility. Each of these facets is composed of multiple
components where each of these components is a microservice. The components in the Analyzer
and Handler Facet are managed as self-assembling components3 following a functional approach
based on the Command Pattern [33]. In this approach each component consists of multiple
processors, where each processor is able to accept multiple inputs and produces exactly one
output, resembling a classic functional approach, as illustrated in Figure 4.3. This allows for a
clean separation of concerns into distinct functional steps that can be as specific as necessary
in order to decompose complex problems into manageable units. Each of these processors in
turn announces which inputs it requires, as well as which output it produces. This enables a
straightforward auto assembly approach, where connecting previous outputs to desired inputs
leads to an automatically assembled complex system consisting of simple manageable processors.
It also eliminates the necessity of complex composition and organization mechanisms enabling
dynamic and elastic composition of desired functionality, where processors can be added on
demand and at runtime.

The second foundational framework rationale is that the components follow the principle of
Confidence Elasticity, which means that each component follows a confidence-based adaptation

3http://techblog.netflix.com/2014/06/building-netflix-playback-with-self.html
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Figure 4.3: Example of auto assembling processors within a component. A, L and M are initial
inputs for the component, Z the final output. Each processor is active and produces an output if
the expected inputs are available (e.g. L, M produces Y)

model. If a component or processor produces a result, it augments this result with confidence
value (c 2 R,0  c  1), with 0 representing no certainty and 1 representing absolute certainty
about the produced result. This convention allows the framework to configure certain confidence
intervals to augment the auto assembly mechanism. These confidence intervals are provided
as configuration elements for the framework. If these confidence thresholds are not met, the
framework follows an escalation model to find the next component or processor that is able
to provide results with higher confidence until it reaches the point where human interaction is
necessary to produce a satisfactory result. Each processor pi from the set of active processors Pa
provides a confidence value ci. We define the overall confidence value of all active processors
ca as ca = ’pi2Pa ci. The compensation stops when ca meets the specified confidence interval of
the framework or a processor represents a human interaction which has a confidence value of
(ci = 1). This mechanism is outlined in Figure 4.4 illustrating the process by trying to determine
if an artifact is a Ruby on Rails application or not. If it is not possible to determine this within the
specified confidence interval by utilizing fully automated configuration analyses, the framework
escalates until a result is produced, ultimately consulting human experts to determine the nature
of the artifact.
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4.3.2 Smart Fabric Manager

In order to initiate a concrete deployment of an artifact on an infrastructure a user invokes the
Smart Fabric API with the following parameters: (i) names of TUs to be deployed, (ii) name of
IS they should be deployed to, and (iii) any additional artifacts necessary that cannot be accessed
by the framework itself (e.g., private repositories or external executables). The Smart Fabric
Manager first tries to find the specified TU and IS by querying the Repository Manager. If both
are found it hands the TUs and IS over to the Dependency Manager, which in turn resolves all
dependencies between TUs and provides the corresponding DUs. All elements of the system
model are then forwarded to the Infrastructure Manager that verifies if all constraints can be
satisfied in order to deploy the TUs on the IS according to a DU via a DI. If this is the case the
Infrastructure Manager produces an augmented DI. The DU and DI are then forwarded to the
Deployment Handler, which actually deploys the TU on the IS using the contained deployment
directives. After successful deployment it updates the DI and returns it to the Smart Fabric
Manager that in turn persists it using the Repository Manager.

If in this process TUs, DUs or ISs cannot be found the Smart Fabric Manager utilizes the
components in the Analyzer Facet to derive or generate them.

4.3.3 Artifact Analyzer

The task of the Artifact Analyzer is to generate a TU based on a provided artifact. It is invoked
by the Smart Fabric Manager if no TU can be found for a given artifact. To accomplish this
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it relies on an open and extendable set of processors which follow the previously discussed
framework rationales to analyze provided artifacts. Possible processors in this component are:
(i) Configuration Processors that try to select a TU based on certain configuration files of the
artifacts, (ii) Similarity Processors that try to select a TU based on similarities in the TUs values
by performing actions like collaborative filtering, (iii) Convention Processors that try to derive
a TU based on certain conventions an artifact follows (e.g., folder or file naming conventions),
(iv) Behavior Processors that try to select a TU based on the behavior of an artifact (e.g., deriv-
ing a TU by sending specific requests and analyzing the responses), and (v) Human Provided
Processors, which are human experts that manually create a TU.

4.3.4 Deployment Analyzer

The Deployment Analyzer generates a DU based on provided TU and IS if no suitable DU could
be found by the Smart Fabric Manager. This component, like the Artifact Analyzer and the
Infrastructure Analyzer, relies on an open and extensible set of processors. Possible processors
are: (i) Similarity Processors that try to select a DU based on similar DUs that have been used
for similar TU and IS configurations, (ii) Convention Processors that try to derive a TU based
on certain conventions an infrastructure follows (e.g., to deploy to a PaaS like Heroku DUs
for specific TUs follow the same conventions), and (iii) Human Provided Processors, which are
human experts that manually create a DU.

4.3.5 Infrastructure Analyzer

The role of the Infrastructure Analyzer is to generate a IS if no suitable specification can be found
in the repository. Possible processors are: (i) Documentation Processors that try to generate an
IS based on the accessible documentation of the infrastructure. This can range from querying
machine readable linked data (e.g., service registries) about the infrastructure, to analysis of
electronic documentation using machine learning techniques, (ii) Behavior Processors that try to
derive an IS based on externally observable aspects of an infrastructure (e.g., log analytics, system
statistics etc.), and (iii) Human Provided Processors, which are human experts that manually
create an IS.

4.3.6 Dependency Manager

The Dependency Manager is responsible for resolving unit dependencies between the modeled
entities, as described in the system model above. To achieve this the dependencies between
entities in the system model are represented as a tree structure. Based on this tree structure the
Dependency Manager creates a root node for each TU. It then creates a corresponding leaf node
for each TU that is referenced in the dependency section of the TU. After this it checks the related
DUs and adds them as leaves. The final step is to add the referenced DIs to the respective DUs
as a leaf nodes. The final result is a complete tree structure that is sufficient for the Deployment
Handler to effectively deploy a TU to an IS.
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4.3.7 Infrastructure Manager

The role of the Infrastructure Manager is to handle all concerns regarding the infrastructure,
where a specific deployment represented as a DI takes place. Its main responsibility is to ensure
that all necessary resources described by the IS are accessible and available to successfully deploy
the TU. This also includes all issues of authentication and authorization by ensuring the relevant
credentials are provided. Additionally, it ensures that all constraints defined in TUs and DUs
are satisfied. The system model distinguishes between hardware constraints and software con-
straints. Hardware constraints cover all constraints related to machine-specific aspects, including
processors, memory, and disk space, as well as specific machine types in the context of IaaS
and PaaS providers. Software constraints cover programming languages, runtime environments,
or framework related aspects that need to be satisfied in order to ensure that an artifact can be
successfully deployed on a specific IS. The Infrastructure Manager augments the DI accordingly
and when finished hands it over to the Deployment Handler.

4.3.8 Repository Manager

The Repository Manager provides repositories for all units described in the system model and
acts as a distributed registry keeping track of deployments and participating entities. It is respon-
sible for system model storage and retrieval. It manages four distinct system model repositories
utilizing distributed key-value stores, which store the JSON-LD files that represent TU, DU, IS
and DIs in a structured way. The Repository Manager provides a service interface to store and
retrieve these files as well as a search interface to query TUs, DUs, ISs, and DIs based on specific
elements.

4.3.9 Deployment Handler

The Deployment Handler is responsible for effectively executing a deployment. It follows the
same processor-based principle as the previously introduced Analyzers. The Deployment Han-
dler receives the resolved dependency structure as a tree model from the Dependency Manager.
Each processor in the component is responsible for executing the deployment for specific in-
frastructure types. Processors can utilize different deployment mechanisms, including (i) Script
Processors that utilize simple script-oriented approaches to execute the deployment (e.g., a pro-
cessor using Bash scripts), (ii) Tool Processors that use more sophisticated tool-based approaches
(e.g., Chef4, LEONORE [108], or Capistrano5), and (iii) Human Interaction Processors to allow
for deployments that need human interaction (e.g., command line input or user interface based
approaches).

In order to ensure all credentials are available and all constraints are met the Deployment
Handler interacts with the Infrastructure Manager. After the Deployment Handler has executed
the deployment it invokes the Deployment Checker to verify that the deployment was successful.
In case of a successful deployment the Deployment Handler augments the DI with all values that
have been gathered during the deployment, such as specific service endpoints and IP addresses.

4https://www.chef.io/chef/
5http://capistranorb.com/
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In case of an unsuccessful deployment the Deployment Handler escalates to the Infrastructure
Manager.

4.3.10 Deployment Checker

The Deployment Checker is responsible for verifying if a completed deployment was successful
or not. To verify this the Deployment Checker retrieves the TU and DI from the Deployment
Handler and executes the steps in the verification section of the TU. As mentioned above,
verification steps default to following UNIX conventions, considering commands that exit with a
result code of 0 to be successful, whereas other result codes are interpreted as errors. Additionally,
Deployment Checker implementations can choose to use the expected-result element of
the given TU to perform custom validation steps, e.g., based on pattern matching.

4.4 Validation

4.4.1 Implementation

We implemented a preliminary prototype of the Smart Fabric framework in Ruby. To establish
the frameworks microservice architecture we rely on REST as message exchange and interface
technology. To serve the RESTful interfaces we use Sinatra6 as web server for each of the
implemented components.

The Repository Manager utilizes Redis7 as the key-value store for the repositories in order
to provide fast and efficient storage for all elements of the system model. To enable the auto
assembly mechanism for each processor within the framework we use RabbitMQ8 as a message
exchange middleware. Each implemented processor of every auto assembled component pub-
lishes its output and listens for its desired inputs on dedicated topics. This gives us the opportunity
to receive messages based on patterns and allows for finer grained control over processor input
values.

To implement the Dependency Manager we rely on the RubyTree library9 to create the
described tree structure. To enable system model entity augmentation and generation for the
Analyzer Processors as well as for all Deployment Handlers we use a simple generator mechanism.
This mechanism relies on predefined templates that are augmented with ruby code in order to
easily build and modify system model entities. To achieve this we rely on the eRuby templating
system provided by the Ruby standard library.

4.4.2 Validation Scenario

For validation purposes we use the Smart Fabric framework to deploy and redeploy different
sample applications. We demonstrate this based on two typical Smart City and IoT applications.
The first one is an exemplary Ruby on Rails based Web Application with a RESTful service

6http://www.sinatrarb.com/
7http://redis.io/
8https://www.rabbitmq.com/
9https://github.com/evolve75/RubyTree

30



interface that represents a Citizen Information System (CIS). The CIS is a common application
type in the Smart City domain, which provides open data access for various city aspects such as
traffic information and municipal energy usage. We chose this application type because on the
one hand it is not fragmented into several artifacts and on the other hand because this type of
application undergoes a natural infrastructure evolution due to increasing data and demand.

The second application is a sample IoT application based on a case study conducted in our
lab in cooperation with a business partner and represents a Building Management System (BMS).
The BMS is a Java application based on the Spring Boot framework and is built as a microservice
architecture with multiple artifact dependencies. We choose the BMS since it provides a good
contrast to the CIS due to its distributed nature with high artifact fragmentation, as well as its
inherently large scale. For both applications we created appropriate TUs.

We then select four different infrastructures to deploy them to. These infrastructure types
are a Dedicated Server hosted at our group, Amazon AWS10 as an IaaS, Heroku11 as a PaaS and
an OpenStack12 based private cloud hosted at our group. We chose this kind of infrastructure
fragmentation because it represents a good coverage of different heterogenous infrastructures
that are used to host todays application landscape. They also reflect the trend towards cloud based
platforms and provide a good baseline for application evolution challenges [96]. The selected
infrastructure types offer different services and capabilities, which leads to several challenges in
redeploying them. The Dedicated Server, for example, imposes no restriction on the choice of
databases (since deployed application packages must be managed by operators), whereas Heroku
or Amazon AWS offer a restricted set of database services that are managed by the provider. This is
the case for multiple aspects of these infrastructures and makes them an optimal testing scenario
to show the effects of infrastructure evolution and the challenges this brings to infrastructure-
agnostic application deployment.

For each of these infrastructures we create corresponding ISs as well as DUs. We then also
provide exemplary DIs representing different specific deployments of our two TUs to the ISs
based on the defined DUs. After this we test the following scenario. We initialize the Smart Fabric
framework and load all previously defined system model entities. In the first step of our test we
deploy the CIS and the BMS to the Dedicated Server by initiating two deployment requests to
the Smart Fabric framework with the according TUs and IS. After the successful deployment
notification by the framework we test the deployments with the information in the augmented
DIs. In the case of the CIS we query the REST interface of the Traffic Resource and log the
results. In the case of the BMS we query the REST interface of the Controller and log the results.

We then initiate two service requests to the Smart Fabric framework to transfer the CIS as
well as the BMS to Heroku. We wait for the successful framework deployment notification and
perform the previously described test again with the augmented information in the DIs and log
the results accordingly.

In the final step we execute two additional transfer requests to the Smart Fabric framework,
deploying the CIS to AWS and the BMS to our OpenStack cloud. After the successful framework
deployment notification, we again test both application as previously described and log the results.

10http://aws.amazon.com/
11http://www.heroku.com
12https://www.openstack.org/
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We then compare the logged results with each other and ensure that deployment was successful
on all infrastructures and produced the expected results.

In both sample applications we showed that Smart Fabric was able to successfully redeploy
artifacts on heterogenous infrastructures without modifying application artifacts. For instance,
Smart Fabric deployed the CIS on Amazon AWS with RDS as database backend whereas it
deployed on Heroku using Heroku Postgres.

4.5 Related Work

The migration of application topologies between different deployment targets has been studied at
various levels in the literature. With the adoption of the cloud paradigm, for instance, the problem
of developing applications for and migrating existing applications to the cloud emerged [51]. To
address this problems, Leymann et al. [58] present a meta model and tool that supports splitting
an existing application in several parts, such that these parts can be moved to the cloud. In order to
develop cloud infrastructure agnostic applications, Ardagna et al. [8] propose MODAClouds that
provides a model-driven solution. Kwon et al. [54] present refactoring techniques and automated
program transformations that help transitioning an application to use cloud-based services. In
contrast to our work, these approaches solely focus on the internal design and execution of
singular components of cloud-based applications, rather than providing a solution for overall
architecture of a such applications.

Next to the migration of applications to, and designing applications for the cloud, another
important area is the migration of an existing cloud application to a different cloud offering [39,
80, 122]. Binz et al. [13] present the Topology and Orchestration Specification for Cloud Ap-
plications (TOSCA), which aims for portable and standardized management of cloud services.
TOSCA provides means for describing portable application deployment topologies consisting
of nodes and their relationships. By specifying possible plans, TOSCA allows for governing the
complex workflow of provisioning and deploying an application on cloud infrastructure. Based
on TOSCA, Andrikopoulos et al. [6] propose the Generalized Topology Language (GENTL), an
application topology modeling language, which provides the foundation for possible optimiza-
tions of the distributed deployment of the application.

Additionally, recent work was done to address the problem of vendor lock-in in the cloud [99,
100]. Satzger et al. [86], for instance, propose the meta cloud concept that proposes both design
and run-time components to mitigate vendor lock-in by abstracting away technical incompatibil-
ities from existing offerings. This approach helps in finding the right amount of cloud services
that are needed for a specific use case, to support the initial deployment and runtime migration
of an application. Sellami et al. [95] present a unified description model that represents an appli-
cation and its requirements independently of the targeted PaaS. In addition, a generic application
provisioning and management API is proposed to abstract away PaaS-dependent functionality.
These two concepts combined, represent a PaaS-independent solution for the provisioning and
management of applications in the cloud to avoid vendor lock-in. The aforementioned approaches
have in common that they focus on deployment topologies of cloud applications, and therefore
are complementary to the methodology presented in this chapter. However, they do not provide a
constraint-based, declarative specification of the required deployment infrastructure in order to
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allow for an infrastructure-agnostic deployment. Furthermore, all approaches have in common
that they do not provide a mechanism and toolset that also deals with the seamless migration
between deployment targets, i.e., across infrastructure boundaries.

4.6 Summary
The emergence of the cloud computing paradigm enables applications to autonomously provision
and also release infrastructure resources in order to elastically respond to environmental changes
(e.g., increased request load). To fully leverage the potential of the cloud however, applications
need to be specifically designed and developed for a concrete cloud provider infrastructure,
which leads to a strong dependence on specific offerings provided by the cloud provider. As a
result, moving applications to the cloud or migrating an application between cloud providers
is a tedious task due to variations of provided services, interfaces and deployment tools among
providers. To address these problems, in this chapter we presented Smart Fabric, a methodology
and toolset to enable infrastructure-agnostic deployment of artifact topologies based on a declara-
tive, constraint-based specification of the required deployment infrastructure. Current approaches
do not sufficiently consider the specific, practical problems of dealing with evolving deploy-
ment infrastructure and closely tie application artifacts to their deployment targets. By extending
the MADCAT methodology with a dedicated abstraction layer to clearly separate deployment
infrastructure and application deployment, Smart Fabric allows for seamless, independent evo-
lution of both, application components, as well as the underlying infrastructure. Moreover, our
approach enables transparent application deployment and evolution between deployment targets,
i.e., across traditional infrastructure boundaries (e.g., migrating applications between on-premise
and PaaS offerings, or between PaaS and IaaS), without changes to application code. Smart Fab-
ric implements a confidence-based decision model that aims to automate application deployment
when possible, and will escalate to human operators when necessary. We discussed the feasibility
of the introduced methodology and developed a prototype by using representative applications
from the Smart City and IoT domains.
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CHAPTER 5
Modeling and Management of

Usage-Aware Distributed Datasets

In this chapter, we present a methodology and toolset to model smart city data sources and enable
efficient, distributed data access in smart city environments. We introduce a modeling abstraction
to describe the structure and relevant properties, such as security and compliance constraints,
of smart city data sources along with independently accessible subsets in a technology-agnostic
way. Based on this abstraction, we present a middleware toolset for efficient and seamless data
access through autonomous relocation of relevant subsets of available data sources to improve
Quality of Service for smart city applications based on a configurable mechanism. We evaluate
our approach using a case study in the context of a distributed city infrastructure decision support
system and show that selective relocation of data subsets can significantly reduce application
response times.

5.1 Introduction

Sparked by the rapid adoption of the smart city paradigm and fueled by the rise of the Internet
of Things, todays metropolises have become data behemoths. With every day that passes more
and more areas of cities around the globe start accumulating and producing data. These areas
cover building management, traffic and mobility systems, energy grids, water and pollution man-
agement, governance, social media, and many more. This plethora of heterogenous data about
various aspects of a city represents a vital foundation for decision and planning processes in
smart cities. The advent of more and more open data initiatives around the globe, covering cities
like London1, Vienna2, New York3, and many more underlines the importance of opening up
data to the public to inspire and support novel applications. Even though these initiatives are

1https://data.london.gov.uk/
2https://open.wien.gv.at/site/open-data/
3https://nycopendata.socrata.com/
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gaining momentum, they still only cover a fraction of the available data of a city, missing many
vital sources, especially when it comes to more sensitive areas like building management, energy
grids, or public transport guidance systems. Currently, this data is mostly isolated and restricted
to certain application areas, data centers, organizations, or only accessible in a specific city. This
isolation creates data silos, which lead to transitive restrictions that apply to the models and
applications that build upon them, confining them to their initial application domains. Todays
smart cities however, represent heterogeneous, dynamic, and complex environments that rely on
emerging interactions in order to operate effectively. These interactions are an essential element
of Smart City Applications [91] and not only important in an intracity context, but also a key
element to enable the future Internet of Cities [89], an interconnected system of systems that
spans multiple cities around the globe. To pave the way for such applications we need to break up
the traditional notion of data silos to enable ubiquitous access to the valuable data they contain. In
the context of smart cities, an approach is required that respects the complexities of this domain,
specifically the need to effectively describe a large variety of heterogenous data sources along
with relevant subsets. Additionally, it has to be able to capture important data set characteristics
(e.g., size, update frequency, costs), respect essential security and compliance constraints, as well
as ensure efficient and seamless data access.

In this chapter, we present Smart Distributed Datasets (SDD), a methodology and framework
to enable transparent and efficient distributed data access for data sources in smart city envi-
ronments. We introduce a system model that provides a simple abstraction for the technology-
agnostic description of data sources and their subsets with the ability to express varying data
granularities and specific characteristics common in the smart city domain. Based on this abstrac-
tion, we present the SDD framework, a middleware toolset that enables efficient and seamless
data access for smart city applications by autonomously relocating relevant subsets of available
data sources to improve Quality of Service (QoS) based on a configurable mechanism that consid-
ers request latency, as well as costs for data transfer, storage, and updates. We provide a proof of
concept implementation of the SDD framework and evaluate it using a case study in the context
of a the URBEM scenario (Section 3.1). For this case, we show that selective relocation of data
subsets using the SDD framework can significantly improve QoS by reducing response times by
66% on average.

The remainder of this chapter is structured as follows. In Section 5.2 we identify the associ-
ated key requirements in the context of our URBEM scenario. We introduce the system model
underlying SDD in Section 5.3 and present the SDD framework along with a detailed discussion
of its components in Section 5.4. In Section 5.5 we evaluate our approach using a case study
from the smart city domain. Related work is discussed in Section 5.6, followed by a conclusion
in Section 5.7.

5.2 Motivation

In this chapter, we base our discussion on the URBEM scenario, specifically we identify the
requirements based on the URBEM Smart City Application (USCA) presented in Chapter 9, a
holistic, interdisciplinary decision support system for the city of Vienna and a number of key
stakeholders. We argue that such applications will evolve to become composable, interchangeable
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abstractions of capabilities similar to the applications known from todays smart phones, but on
a much larger scale. This evolution in turn is an essential step towards the so-called Internet of
Cities [89], an open and dynamic market place where applications can seamlessly interact and
be exchanged between cities around the globe.

To enable these applications as well as this vital open exchange it is essential to provide
means to expose and access data in an efficient, secure, and predictable way. Currently, most of
the data in a smart city context is confined to certain application areas and stakeholder data centers
within a specific city. Open data initiatives around the globe, while crucial, still only expose a
certain fraction of the available data, missing out on many important domains, especially when
data is stored in legacy systems without openly accessible interfaces or underlies strict security
and compliance constraints. This data lies dormant beyond its initial use case even though it
could provide essential input for a wide range of smart city applications. The ability to benefit
from incorporating new data sources as they evolve, for example to enhance decision support
and planning, or to be applied to new cities or novel domains, is hindered by the inability of
these applications to access the necessary data. Developers of smart city applications, however,
need to be able to utilize and integrate as much relevant data as possible to generate maximum
user benefit as well as applicability in as many cities as possible. Stakeholders on the other hand,
as willing as they might be to expose this data, are mostly bound by the complex constraints
of their specific environment. The dynamic, emergent nature of interactions in and between
smart city applications means they are not a priori aware that their data sources might become
valuable assets if made accessible. This leads to a problematic stalemate between practitioners
and stakeholders in the smart city domain, hindering essential innovation and application.

To overcome this impasse, a mechanism is required that enables flexible, stable, and efficient
data access, while providing a simple and tailored way to make data sources available, which still
respects security and compliance constraints. Specifically, we identify the following requirements
in the context of our domain:

• The ability to describe data sources using an evolvable and technology-agnostic abstrac-
tion.

• The ability to describe subsets of these data sources along with relevant characteristics
in the context of security, compliance and costs (e.g., effort to generate, store, query, and
update particular subsets or the underlying data source as a whole).

• An efficient way to access this data in a transparent way, independent of geographic loca-
tion while still improving QoS.

5.3 System Model
In order to address the previously outlined requirements, we need an abstraction to model and
describe the relevant data entities in our domain. As foundation for said abstraction we use MAD-
CAT [46] and it’s extensions, which we introduced in Chapter 4. We presented an infrastructure
agnostic deployment model with the following abstract concepts: Technical Units (TUs) to de-
scribe applications as well as application components, Infrastructure Specifications (IS) describe
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Figure 5.1: Relations between Technical Unit, Deployment Unit, Infrastructure Specification and
Deployment Instance including the newly introduced Data Unit and Data Instance

infrastructure resources, Deployment Units (DUs) to describe how to deploy and TU on an IS
and an Deployment Instance (DI) represented such an actual deployment. In this chapter, we
extend this model with the ability to describe and incorporate data entities from the smart city
domain. Specifically we introduce the additional concepts of Data Units (DAUs) to model data
sources as well as Data Instances (DAIs) to describe specific deployments of DAUs on certain
DIs, along with the ability to link TU to DAUs. Additionally, we provide an implementation of
the abstract concepts along with the proposed methodology extensions for the SDD framework.
We again choose JSON-LD4 as data format for our concept description as a simple, both human
and machine readable, pragmatic, and extensible representation that also allows us to interlink
the relevant concepts with each other. Figure 1 shows an overview of all concepts, including
the relations of the newly introduced DAU and DAI (shown in blue) to the previously existing
concepts Deployment Instance (DI) and Technical Unit (TU). In the following, we discuss the
introduced concepts in more detail.

5.3.1 Data Unit

DAUs describe data sources including its subsets. Listing 5.1 shows an example of such a DAU
for a buildings data source in the URBEM domain. As JSON-LD document, a DAU can start with
a context to set up common namespaces. This is followed by the type attribute to identify
the corresponding kind of abstraction in our model space. The next attribute is the name as URN

4http://json-ld.org/

38



to identify the unit, along with a version attribute enabling versioning and therefore evolv-
able DAUs. The creationDate and the lastUpdate define when the unit description was
initially created respectively last updated. The next section is metainformation about the
described data source. It contains a type attribute that defines the type of the data source, types
can be REST, SOAP, any database, streaming data or file based. In our example listing it is used
to describe a document oriented MongoDB5 based data source. The schema attribute can link
to a corresponding schema, which based on the type and can be anything of the likes of a SQL
schema, JSON schema, WADL6 or WSDL7. The next attribute is securityConstraints
and in the context of this section it is used to define who is allowed to access the unit file. A
security constraint can be a link to an OAuth8 authority, LDAP distinguished name (DN) or any
other corresponding authentication and authorization scheme. This is a vital element to ensure the
compliance and security constraints of this domain can be met on any level of detail and is again
used when describing specific facets of a data source. The last element in the metainformation
section is the dataUnits attribute, which allows to link a DAU to other corresponding DAUs
enabling the description of linked data sources. The next section views allows to express multi-
ple facets of the data source enabling a fined grained level of control about its aspects. Each view
has a name attribute for identification as well a a link to express how to access it. In case of the
our example this is a URL to the corresponding rest resource. The next section within a view is
the updateFrequency. It allows to express how often a view is being updated (period,times),
how long such an update takes (updateTime) as well as how much of the resource this update
represents (fraction). The size attribute gives an indication of the expected size of the view.
This is followed by a securityConstraints attribute that again can be a set of links to
a corresponding authentication or authorization scheme supporting the previously mentioned
methods. In this section it is used to express security and compliance constraints for specific
fractions of a data source, which allows for a fine very grained level of control. The last attribute
in a view is the dataInstances attribute, which links the view and its corresponding DAU to one
or more Data Instance (DAI) by referencing their names.

Listing 5.1: Data Unit - Structure
{ "@context": "http://smartfabric.dsg.tuwien.ac.at",

"@type": "DataUnit",
"name": "urn:buildings:vienna",
"version": "1.0"

"creationDate": " 2017-01-07 13:04:03 +0100 ",

"lastUpdate": " 2017-01-07 13:04:03 +0100"

"metainformation": {

"type":"nosql:mongodb",
"schema": "http://sdd.dsg.tuwien.ac.at/urbem/vienna/buildings",
"securityConstraints":[{

"type":"ldap"
"url":"10.2.0.112"

5https://www.mongodb.com/
6https://www.w3.org/Submission/wadl/
7https://www.w3.org/TR/wsdl
8https://oauth.net/
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"dn":"CN=buildings-vienna",
...

}],

"dataUnits":[...]
}

"views":[{
"name":"urn:buildings:vienna:buildingblocks",
"link":"/buildingblocks/",
"updateFrequency":{

"period":"yearly",
"times": "1",

"fraction": "10"

"updateTime" : "2300"

},

"size":"10000303",
"securityConstraints":[...]
"dataInstances":[...]

},

"name":"urn:buildings:vienna:buildings",
"link":"/buildings/",
...]

}

5.3.2 Data Instance

A DAI represents a specific deployment of a DAU on a DI. There can be multiple DAIs for
a DAU representing different deployed views, where a specific DAI contains a subset of the
views specified in the DAU, i.e., DAI 2 P(DAU). A DAI specifies context, type, name and
version, as well as a dataUnit to reference the corresponding DAU. This is followed by
creationDate and updateDate to define when the instance was created as well as last
updated. The next attribute is deploymentInstance, which contains a DI name and is used
to link the DAI to a corresponding DI. Finally, the metainformation element allows to store
additional information about the specific data instance in an open key value format that can
later be used by the framework components to support transfer decisions, examples would be
accessFrequency of this specific DAI or other non functional characteristics.

Listing 5.2: Data Instance - Structure
{ "@context": "http://smartfabric.dsg.tuwien.ac.at",

"@type": "DataInstance",
"dataUnit":"urn:buildings:vienna"
"name": "urn:buildings:vienna:buildingblocks",
"version":"1.0",
"creationDate":"2017-01-07 13:04:03 +0100"

"lastUpdate":"2017-01-07 13:04:03 +0100"

"deploymentInstance":"CitizenInformationSystem/DedicatedServer"
"metainformation":{...}

}
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Figure 5.2: SDD Framework Overview

5.4 The SDD Framework

In this section, we introduce the SDD framework for enabling usage-aware distributed datasets, to
address the previously introduced requirements. We begin with a framework overview, followed
by a detailed description of all framework components and conclude with a comprehensive
description of our proof of concept implementation.

5.4.1 Framework Rationales

The Framework with an overview of its main components shown in Figure 5.2 follows the
microservice [78] architecture paradigm. It consists of eight main components where each of
these components represents a microservice. The components utilize both service based as well
as message-oriented communication to exchange information. Specifically we distinguish three
different queue types: an Analyzer Queue, a Handler Queue as well as an Update Queue, which
will be explained in more detail in the context of the corresponding components.

Additionally, the framework utilizes the principle of Confidence Elasticity, a concept we
introduced in Section 4.3.1 and successfully applied in our Smart Fabric (Chapter 4) and Smart
Brix (Chapter 7) frameworks. In this framework, we use the concept in the Update Manager
and Migration Manager components to select a suitable Update- and Migration Strategy for a
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specific data source. Each strategy is associated with a confidence value (c 2 R,0  c  1), with
0 representing no certainty and 1 representing absolute certainty about the produced result. This
convention allows the framework to configure certain confidence intervals to augment the process
of choosing an applicable strategy within these two components. These confidence intervals are
provided as configuration elements for the framework. If the confidence thresholds are not met,
the framework follows an escalation model to find the next strategy that is able to provide results
with higher confidence until it reaches the point where human interaction is necessary to produce
a satisfactory result. In the context of the Migration Manager and Update Manager components
this means if a migration or update of a data source cannot be performed with a satisfactory
confidence, the escalation model will prompt for human interaction to perform said migration or
update.

5.4.2 SDD Proxy

The SDD Proxy acts as a transparent proxy between clients and data sources (DAIs). The proxy
itself has two main responsibilities. First, it submits all incoming requests to a Analyzer Message
Queue before forwarding them to the requested data source. Second, it listens to the Handler
Message Queue for potential redirections to be taken for a specific request. If the Handler Mes-
sage Queue contains a message for the current request, it is processed by the SDD Proxy, the
request in question is redirected to the new data source, and the message gets removed from the
Handler Message Queue. To avoid bottlenecks there can be multiple proxies where each of them
is being managed via the SDD Proxy APIs by the SDD Manager.

5.4.3 SDD Manager

The SDD Manager acts as the central management component of the framework and provides
the SDD API for overall framework control. To activate the framework a user invokes the SDD
API with the following parameters: (i) a set of Triggers as well as a (ii) Confidence Interval to
configure the Confidence Elasticity of the framework. The SDD Manager then starts the first
SDD Proxy and starts monitoring the average request rates as well as the utilization of the proxy
via the SDD Proxy API. If the SDD Manager detects a potential bottleneck it starts another
proxy (additional ones if necessary based on the average request rate). The next task of the
SDD Manager is to submit the provided Triggers to the Analyzer Manager, which uses them
to invoke the corresponding request monitoring. A Trigger is used in the analyzer to decide
wether a request needs to be handled or not. Triggers can for example be time based, size based
or follow a customizable cost function and provide a threshold for triggering a handling action.
The Analyzer Manager uses different pluggable Analyzer Strategies in correspondence with
these submitted Triggers to determine if a request needs to be processed. If this is the case,
the Analyzer Manager invokes the Migration Manager via the Migration API and provides the
corresponding request including the results of its analysis. The Migration Manager is responsible
for determining the potential Migration Strategies for the data resource in question. To achieve
this it first contacts the Dependency Manager, which uses a dependency resolution mechanism
to determine the corresponding DAU for the DAI being requested by the current request. The
Dependency Manager in turn is tightly integrated with the Security Manager, which ensures
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all security constraints that are defined in the DAUs are satisfied before returning the results of
the resolution. Once the dependency resolution has provided the DAU it is being analyzed by
the Migration Manager. Specifically it checks the results provided by the Analyzer Manager
like request time, data size or a respective cost function against the attributes of the specific
view being requested. It analyzes the update frequency as well as update sizes to determine if a
migration should be performed as well as to to determine the fitting Migration Strategy and to
execute it if applicable. Once the migration is finished the Migration Manager executes two tasks.
First, it adds the request to the migrated data source to the Handler Queue including the new
target (DAI) after the migration. This in turn triggers the corresponding SDD proxies to execute
a redirection. Second, it registers the resource at the Update Manager, which in turn determines
the fitting Update Strategy for the migrated data source to ensure that the data stays up to date.
Once these steps are successfully finished the Migration Manager updates the DAIs and DAUs
to reflect the changes caused by the migration via the Repository Manager.

5.4.4 Analyzer Manager

The role of the Analyzer Manager is to determine if a request is a potential candidate for a
migration. It watches the Analyzer Queue for requests that correspond to any of the previously
provided Triggers. A Trigger is a threshold that matches an attribute that is the result of an
Analyzer Strategy. Analyzer Strategies in turn are pluggable mechanisms that analyze a specific
request based on the type of the request in question. Basically we distinguish three different
types of strategies: Time Analyzers, which determine the response time for a specific request, Size
Analyzers, which determine the size of a request and response as well as Frequency Analyzers,
which determine the frequency of a request to a certain source. Additionally, there is also the
ability to provide Cost Function Analyzers, which allow to integrate arbitrary cost functions
and enable a much greater analytical flexibility. Once a threshold is met the Analyzer Manager
submits the request in question including the results of the specific strategy to the Migration
Manager.

5.4.5 Migration Manager

The Migration Manager is responsible for deciding if a data resource should be migrated based
on the results of the Analyzer Manager. It is invoked via the Migration API with a specific
request augmented with the results from the corresponding Analyzer Strategy. The Migration
Manager then forwards this request to the Dependency Manager, which first determines the DAI
that belongs to the requested data resource. Based on this DAI the DAU is determined only if
all security constraints are being met, which in turn is ensured by the Security Manager. The re-
trieved DAU provides the foundation for deciding if a data source can and should be migrated. To
achieve this the Migration Manager relies on pluggable strategies that determine if a migration is
feasible and possible. Such a Migration Strategy receives the retrieved DAU as well as the results
from the Analyzer Manager. Based on this it does two things, first it determines if a migration is
possible by checking the results of the Analyzer Manager (e.g., response time, average transfer
size) against the updateFrequency elements of the DAU as well as the constraints of the current
infrastructure. If the result of this analysis leads to the conclusion that a migration is possible and
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feasible the Migration Strategy returns according results augmented with a confidence value. Sec-
ond, the Migration Strategy provides a method to execute the actual migration. The framework is
flexible regarding the specific migration mechanism and regards this as the responsibility of the
strategy itself. One possible variant is the utilization of the Smart Fabric Framework [88] since
its provides an optimal foundation for infrastructure agnostic deployments (hence migrations)
and supports the extended system model. In case of a Smart Fabric Strategy the Infrastructure
Specifications (IS) are taken into account when deciding if a migration is feasible. This means
the Migration Strategy can check which non functional characteristics apply and can incorporate
them in the decision to migrate. Additionally the execution of said migration is started by issuing
a transfer requests to the Smart Fabric Framework. Based on the previously introduced confi-
dence elasticity mechanism the Migration Manager then executes the corresponding Migration
Strategy or in case none is found relies on a human interaction to perform the migration. Once
the migration is finished the Migration Manager creates new corresponding DAIs to reflect the
migrations and updates the corresponding DAUs. Futhermore, it publishes a message to the Han-
dler Queue and by doings so prompts the SDD Proxy to execute a redirection to the migrated data
source. Once this is done the Migration Manager ensures the migrated data source is updated by
registering the DAIs at the Update Manager.

5.4.6 Update Manager

The role of the Update Manager is to ensure that migrated data sources stay up to date if the orig-
inal source is changed. To enable this it relies on pluggable Update Strategies and we basically
distinguish the following different types: Simple Copy Strategies, which copy either a fraction
or the entire data source, Script Update Strategies, which apply a more complex update strategy
based on a script (e.g., rsync, sql scripts), as well as Streaming Replication Strategies for contin-
uous updates. These strategies again utilize the Confidence Elasticity mechanism by providing
a confidence value. Based on the initially provided confidence interval of the framework the
escalation mechanism selects an applicable Update Strategy or in the case none is found relies
on a human interaction to perform the update. Once the update is finished the Update Manager
updates the corresponding DAI via the Repository Manager.

5.4.7 Dependency Manager

The Dependency Manager is responsible for resolving unit dependencies between the modeled
data entities, as described in the system model above. To achieve this the dependencies between
data entities in the system model are represented as a tree structure. Based on this tree structure
the Dependency Manager creates a root node for each DAU. It then creates a corresponding
leaf node for each DAI that is referenced in the dependency section of the DAU. After this it
checks the related DIs and adds them as leaves. For every step the Dependency Manager also
ensures that all security constraints are being met by checking the specific DAU with the Security
Manager. If access is not permitted the resolution is not successful.
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5.4.8 Security Manager

The Security Manager is responsible for ensuring that all security constraints that apply to
a given DAU are being met. To do so it checks to facets of a DAU. First, it ensures that a
DAU description can be accessed by checking the securityConstraints element in the
metainformation section. Second, it ensures that each view can be accessed as well as mi-
grated by checking the corresponding securityConstraints element in the view sections
of the DAU. To enable an open and evolvable security system the Security Manager relies on plug-
gable Security Strategies. Examples of such strategies are LDAP or OAuth or other approaches
like RBAC [42], but can be extended to any other suitable security mechanism.

5.4.9 Repository Manager

The Repository Manager provides repositories for DAUs and DAIs and acts as a distributed reg-
istry keeping track of specific deployments and participating entities. It is responsible for storing
and retrieving the system model. It manages two distinct system model repositories utilizing
distributed key value stores, which store the JSON-LD files that represent DAUs and DAIs in
a structured way. The Repository Manager provides a service interface to access these files as
well as a search interface to query DAUs and DAIs based on specific elements. Additionally,
it is responsible for managing dependencies between DAUs as well as DAIs and it seamlessly
integrates with Repository Managers of other SDD framework deployments ensuring a complete
DAU and DAI lookup.

5.4.10 Implementation

For evaluation purposes we created a proof of concept prototype of our framework based on a
set of RESTful microservices implemented in Ruby and packaged as Docker9 containers. Every
component that exposes a service interface relies on the Sinatra10 web framework. To enable
the message-based communication for the Analyzer, Handler and Update queues we used Rab-
bitMQ11 as message-oriented middleware.

The Repository Manager utilize MongoDB12 as its storage backend, which enables a dis-
tributed, open, and extendable key value store for the DAU and DAI repositories and provides the
foundation for the distributed registry. The SDD Proxy was implemented as WEBrick13 proxy
server. Additionally, we patched the default Ruby http class in our prototype implementation to
enable the transparent proxy behavior.

We implemented the Analyzer Manager with two Analyzer Strategies. Specifically, we imple-
mented a Web Request Response Time Analyzer as well as Web Request Response Size Analyzer,
which allowed us to analyze response times as well as average sizes of requests and responses.
The Migration Manager was implemented with two Migration Strategies. The first strategy was

9https://www.docker.com/
10http://www.sinatrarb.com/
11https://www.rabbitmq.com/
12https://www.mongodb.org/
13https://ruby-doc.org/stdlib-2.0.0/libdoc/webrick/rdoc/WEBrick.html
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a MongoDB Strategy and supports the migration of MongoDB databases and collections, the sec-
ond one was a Docker Strategy that enables a docker based container migration. For the Update
Manager we reused the MongoDB Strategy as MondoDB Database Copy Strategy and MondoDB
Collection Copy Strategy and additionally implemented a file based SCP Full Copy Strategy,
which transfers files via Secure Copy (scp).

5.5 Evaluation

5.5.1 Setup

As basis for our evaluation we used the URBEM Smart City Application (USCA) [94], a holistic
interdisciplinary decision support system detailed in Chapter 9, which has been used for city
infrastructure planning tasks especially in the context of energy and mobility systems. We choose
the USCA, because it represents an optimal candidate for our evaluation due to the following
characteristics: (i) It heavily relies on a diverse set of data sources, where most of them belong to
stakeholders and are under strict security and compliance regulations. (ii) It is an application that
has to deal with changing requirements that make it necessary to incorporate new data sources
dynamically. (iii) Due to the nature of the application as a planning tool for energy and mobility
systems it is a common case to incorporate data sources from other cities around the globe.

Due to the strict data security regulations we were not allowed to use the original data from the
URBEM domain for our evaluation scenario. To overcome this limitation we created anonymized
random samples of the most common data sources that are being used in the USCA. The specific
datasets we used included building data with different granularity levels, thermal and electrical
network data as well as mobility data. Based on these data sources we created Data Units (DAUs)
for each of them as well as exemplary data services as Technical Units (TUs). As a next step we
looked at the common request patterns for these types of data based on the request history of the
USCA. Since the USCA relies on user input via its graphical user interface, we created sample
clients, which tested these request patterns in order to enable automated testing. Based on these
foundations we created two different evaluation scenarios.

For the first scenario we provisioned two VM instances in our private OpenStack cloud, each
with 7.5GB of RAM and 4 virtual CPUs. These two instances represented Data Centers in the
cities of Vienna and Melbourne. In order to simulate realistic transfer times between these two
different regions we used Linux Advanced Traffic and Routing (tc) to simulate the average
delay between these regions including common instabilities. Each of these instances was running
Ubuntu 16.04 LTS with Docker.

For the second scenario we provisioned three VM instances in the Google Cloud Platform.
We used n1-standard-2 instance types each with 7.5GB of RAM and 2 virtual CPUs. In
order to get a realistic geographic distribution we started each of these instances in different cloud
regions. Specifically, we started one in the us-central representing the city of Berkeley, one
in the europe-west region representing the city of Vienna and one in the asia-east region
representing the city of Hongkong. Each of these instances was again running Ubuntu 16.04 LTS
with Docker.
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For monitoring purposes we used Datadog14 as monitoring platform. We submitted custom
metrics for request and response times, and monitored system metrics for bytes sent as well as
overall instance utilization to ensure over utilization had no impacts on our results.

5.5.2 Experiments

In this section we give a detailed overview of the conducted experiments within the two scenarios.

Scenario One

In the first scenario we wanted to evaluate the impact of SDD in the context of a simple scenario
using USCA for analytics of two cities. We simulated a case in which stakeholders use USCA to
compare the impact of city planning scenarios on the building stock, thermal network and public
transport between the city of Vienna and Melbourne.

To achieve this we generated 10 data services based on the DAU we defined for buildings,
networks and mobility as well as the corresponding DAIs and deployed them as docker containers
on the instance representing Melbourne. We did the same for the instance in Vienna. In the next
step we deployed 5 clients simulating the previously mentioned request patterns on the Vienna
instance. This setup of clients and sources represented a common sample size of clients and
services used in the current USCA context. As a last step we deployed the SDD framework,
specifically three containers: one for the SDD proxy, one for the Repository Manager and one
for the other components of the SDD Framework. An overview of this evaluation scenario can
be seen in Figure 5.3.

In the context of this scenario we distinguished 4 different request types to three different
kinds of DAUs. The first DAU, buildings represented a larger data source with low update fre-
quency (once a year). For this resource we had two request types on two views of this resource
specifically /buildings and /blocks representing two different levels of detail. The second DAU
was networks again representing a larger data source with low update frequency (once quarterly).
For this resource we had one request type on the only view of this resource namely /networks.
The last DAU was mobility representing a smaller data source with high update frequency in the
public transport context.

To establish a baseline we started our evaluation with the SDD Framework deactivated and
monitored the response times of each of these four request types, as well as the transferred bytes
from the Melbourne instance through custom Datadog monitors. After 5 minutes we started the
SDD Framework by submitting a request to the SDD Manager on the Vienna instance via the
SDD API with Triggers for response times longer than 3 seconds and a confidence value that
matched our automated Migrations Strategies since we wanted to test the automated capabilities
of the SDD Framework. After submitting the request we continued to monitor the results of the
Datadog monitors over a course of additional 5 minutes.

The results of our evaluation can be seen in Figure 5.4. In the figure, we see the different char-
acteristics of the response times for the 4 request types. Buildings, blocks as well as networks with
longer response times, mobility with a rather short response time. Given the submitted Triggers

14https://www.datadoghq.com/
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Vienna Melbourne

Figure 5.3: Evaluation Setup for Scenario One

as well as the implemented Migration Strategy in context with size and update characteristics
of the DAUs, Buildings, blocks and networks qualified for migration. We see that the framework
correctly identified these requests and starts migrating the corresponding DAIs, around minute
5. The total migration time for all three resources was 59.3 seconds during this time the SDD
proxy keeps forwarding the requests to the original DAI. After the migration has finished and the
SDD Proxy successfully started redirecting to the new DAIs, we see a significant reduction in the
average response times for all three request types. The mobility source was not migrated since
it didn’t qualify due to the fact that this resource had response times below the trigger. We also
see that the response time for this resource shows an increase, which is due to the specific proxy
implementation and caused by the overhead of redirection checks after the framework has been
activated and is present for all request types. The efficiency of the specific proxy implementation
was not focus of this work and does not influence the validity of the presented results, since
the introduced overhead affects all requests equally. Additionally, we see that in this scenario
the network transfer from the instance representing Melbourne was reduced by 97% after the
migrations finished. This is due to the fact that only the DAI for mobility remains active on this
instance and no other clients or framework components are actively sending data from Melbourne.
The aggregated overview in Table 5.1 shows that average and median response times along with
variance in response times for all migrated DAIs were reduced significantly.
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Figure 5.4: Evaluation Results for Scenario One

Request
Type

Status Average Response
Time

Median Response
Time

Standard Deviation Re-
sponse Time

Buildings inactive 14.561s 14.272s 1.857s
active 5.94s 5.848s 0.354s

Blocks inactive 3.833s 3.425s 1.316s
active 1.122s 1.154s 0.102s

Networks inactive 7.21s 6.843s 1.928s
active 2.298s 2.268s 0.257s

Mobility inactive 2.196s 1.982s 0.504s
active 2.727s 2.677s 0.212s

Table 5.1: Average, median and standard deviation for response times per request type in Scenario
One

Scenario Two

In the second scenario we wanted to evaluate the impact of SDD in the context of a larger and
more complex scenario using USCA for analytics in an internet of cities setup with cities in
different regions. We again simulated a case in which stakeholders use USCA to compare the im-
pact of city planning scenarios on the building stock, thermal network and public transport. This
time between the cities of Berkeley, Vienna and Hongkong, which were placed in the respective
regions of the Google Cloud platform as described in the setup section.
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Figure 5.5: Evaluation Setup for Scenario Two

To achieve this we again generated 10 data services based on the DAU we defined for build-
ings, networks and mobility as well as the corresponding DAIs and deployed them as Docker
containers on all three instances. In the next step we deployed 5 clients per city simulating the
previously mentioned request patterns. We then deployed the SDD framework, specifically three
containers: one for the SDD proxy, one for the Repository Manager and one for the other com-
ponents of the SDD Framework on every instance. An overview of this evaluation scenario is
depicted in Figure 5.5.

In this scenario we distinguished the same 4 request types as before. To establish a baseline
we started our evaluation with the SDD Framework deactivated and monitored the response times
of each of these four request types, as well as the transferred bytes from all participating instances
through custom Datadog monitors. After 5 minutes we started the SDD Framework by submitting
a request to the SDD Manager on each of the three instances via the SDD API with Triggers
for response times longer than 3 seconds and a confidence value that matched our automated
Migrations Strategies since our focus was again on testing the automated capabilities of the SDD
Framework. After submitting the requests we continued to monitor the results of the Datadog
monitors over a course of additional 5 minutes.

The results of our evaluation can be seen in Figure 5.6. By investigating the Figure, we
notice that the framework again correctly identified the three request types to buildings, blocks

50



�

�

�

����� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����
���� �������

������ ����� ���� ������ �������

�
�
�
� �������� ���� ���� ��������

�
�
�
�� �������� ���� ���� ��������

�

�

� �������� ���� ���� ������

�
��
��
�� �������� ���� ���� ���������

Figure 5.6: Evaluation Results for Scenario Two

and networks as candidates for migrations. The framework starts migrating the corresponding
DAIs around minute 5. In this more complex case the total migration time for all three resources
over all three instances was 112.32 seconds. After the migration has finished and the SDD Proxy
successfully started redirecting to the new DAIs we again see a significant reduction in the
average response times for all three request types. In terms of network transfer we don’t see a
significant reduction as opposed to Scenario One since in this setup there are active clients, as
well as framework components deployed on all instances that continue to issue requests, hence
sending data. The aggregated overview in Table 5.2 shows that average and median response
times for all migrated DAIs again were reduced significantly. In contrast to the lab environment
of Scenario One, a significant reduction in response time variance was not observed, which can
be attributed to the performance variability of cloud instances as well as the distribution over the
chosen regions.

Our experiments showed that we could significantly reduce the response times and hence the
QoS for the URBEM Smart City Application. Specifically we showed a reduction of the response
times by 66% on average over all three migrated request types. We also demonstrated that the
framework was able to correctly identify the DAIs to be migrated utilizing the views specified
in the corresponding DAUs. Finally we showed that we could produce these results both in a
laboratory setting as well as in a geographically dispersed cloud setup.

While the presented system model and framework fulfill the requirements set forth in the
context of the previously introduced URBEM Smart City Application, certain threats to the
general applicability of SDD remain. The initial evaluation setup for Scenario One used tc to
introduce the delays between the two instances representing Vienna and Melbourne. It could
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Request
Type

Status Average Response
Time

Median Response
Time

Standard Deviation Re-
sponse Time

Buildings inactive 14.214s 14.266s 0.98s
active 7.825s 7.613s 1.335s

Blocks inactive 3.203s 3.142s 0.246s
active 1.273s 1.161s 0.37s

Networks inactive 5.571s 5.548s 0.582s
active 2.594s 2.489s 0.578s

Mobility inactive 2.089s 2.088s 0.162s
active 2.562s 2.514s 0.156s

Table 5.2: Average, median and standard deviation for response times per request type in Scenario
Two

be argued that this simulated setup was not representative for the evaluation. The fact that the
experiments showed similar results in a globally distributed deployment refute this claim. Beyond
this, the current evaluation relied on simulated clients and data sources for the experiments. To
ensure that the used workloads and data sources are realistic and representative, we gathered
workload patterns and anonymized example records from the URBEM smart city application
used by domain experts.

5.6 Related Work

The recent trend in smart city research towards the introduction of smart city platforms and
reference models has been further fanned by the rise of the Internet of Things (IoT). While all
of these approaches mention the importance of data management in the context of the massive
amount of data, its heterogeneity and multitude of security and compliance constraints, it currently
either is not a framework element or they do not provide specific solutions for this problem.
Chourabi et al. [23] present a framework to understand the concepts of a smart city on a more
abstract level. The authors introduce a conceptual framework to comprehend the vital elements in
a smart city by identifying critical factors. In the context of ICT, they identify security, privacy as
well as accessibility as central elements for smart city applications. In a similar way, Naphade et
al. [76] present innovation challenges for smarter cities. The authors identify the management of
information across all cities’ information systems including the need for privacy and security as a
central challenge in the success of smart cities underlining the importance of a data management
approach like ours. On a more concrete level Bonino et al. [15] present ALMANAC, a smart city
platform with a focus on the integration of heterogenous services. They identify challenges smart
city applications face, also in terms of infrastructure and specifically mention the importance of
taking data ownership and exchange between the different smart city stakeholders into account.
Compared to our approach however, they do not provide a specific solution to address these
challenges, especially none applicable to legacy data.

In the context of IoT where more and more data sources emerge, data management plays
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a central role. Jin et al. [50] introduce a smart city IoT infrastructure blueprint. The authors
focus on the urban information system starting from the sensory level up to issues of data
management and cloud-based integrations. They identify key IoT building blocks for a smart city
infrastructure, one of them being the so called Data-centric IoT, in which data management is a
central factor. In a similar high level manner Petrolo et al. [81] introduce the VITAL platform as
an IoT integration platform to overcome the fragmentation issue in smart cities. They mention
data challenges that arise by introducing IoT and specifically underline the importance of privacy
and security in this context. The need for data management in order to integrate the produced
results also applies to a lot of other IoT platforms in order to make their results accessible
for further analytics. Examples of such frameworks are Chen et al. [21], who present a data
acquisition and integration platform for IoT. A central element in their architecture is a contextual
data platform that needs to integrate with multiple heterogenous data sources. Cheng et al. [22]
present CiDAP a city and data analytics platform based on SmartSantander [84] a large-scale
testbed that helps with issues arising from connecting and managing IoT infrastructure. They
name data management, especially the exchange of data as well as attached semantics as one
central challenge. Finally in the context of specific IoT smart city applications, Kyriazis et al. [55]
present two sustainable smart city applications in the transportation and energy domain. They
clearly identify security in the context of data as a specific challenge in enabling these applications
emphasizing the importance of approaches like ours. In the context of IoT platforms and IoT
smart city applications our approach provides the missing link for both security aware data
management within frameworks, tackling many of the identified challenges as well as providing
an ideal way to expose the collected data in a usage-aware distributed way.

A vital element to enable this kind of data management in an efficient way is the ability to
migrate data resources. In the context of said migration there are several approaches relevant in
the context of our work. Amoretti et al. [4] propose an approach that facilitates a code mobility
mechanism in the cloud. Based on this mechanism, services can be replicated to provide a highly
dynamic platform and increase the overall service availability. In a similar way, Hao et al. [37]
discus a cost model and a genetic decision algorithm that addresses the tradeoff on both service
selection and migration in terms of costs, to find an optimal service migration solution. They
introduce a framework for service migration based on this adaptive cost model. Opposed to our
approach, they focus on the service migration aspect without explicitly addressing the data aspect
and do not provide means for incorporating security and other characteristics on a more fine
grained data level. In the context of potential migration strategies there are several interesting
approaches. Agarwal et al. [1] presents Volley, an automated placement approach for distributed
cloud services. Their approach uses logs to derive access patterns and client locations as input
for optimization and hence migration. Ksentini et al. [53] introduce a service migration approach
for follow me clouds based on a Markov Decision Process (MDP). In a similar way, [117]
demonstrate a MDP as a framework to design optimal service migration policies. All these
approaches can be integrated as potential migration strategies in our approach.
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5.7 Summary
Current smart city application models assume that produced data is managed by and bound
to its original application. Such data silos have emerged, in part due to the complex security
and compliance constraints governing the potentially sensitive information produced by current
smart city applications. While it is essential to enforce security and privacy constraints, we have
observed that smart city data sources can often provide aggregated or anonymized data that
can be released for use by other stakeholders or third parties. This is especially promising, as
such data sources are not only relevant for other stakeholders in the same city, but also other
smart cities around the globe. We argue that future smart city applications will use integrated
data from multiple sources, gathered from different cities to significantly improve efficiency and
effectiveness of city operations, as well as citizen wellbeing. To allow for the creation of such
applications, a seamless and efficient mechanism for description and access of available smart
city data is required.

In this chapter, we presented Smart Distributed Datasets (SDD), a methodology and frame-
work to enable transparent and efficient distributed data access for data sources in smart city
environments. A system model that provides a simple abstraction for the technology-agnostic
description of available data sources and their subsets was introduced. Subsets can represent
different aspects and granularities of the original data source, along with relevant characteristics
common in the smart city domain. Based on this abstraction, we presented the SDD framework,
a middleware toolset that enables efficient and seamless data access for smart city applications by
autonomously relocating relevant subsets of available data sources to improve Quality of Service
(QoS) based on a configurable mechanism that considers request latency, as well as costs for
data transfer, storage, and updates. We evaluate the presented framework using a case study in
the context of a distributed city infrastructure decision support system and show that selective
relocation of data subsets using the SDD framework can improve QoS through significantly
reducing response times by 66% on average.
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CHAPTER 6
Enabling Distributed Analytical

Service Environments for the Smart
City domain

In this chapter we introduce Nomads, a framework that enables service mobility in Distributed
Analytical Environments (DAEs) while respecting security and compliance constraints. The
framework improves the overall satisfiability and therefore also the quality of constrained DAEs.
We outline the requirements of a representative DAE scenario, provide a detailed problem formu-
lation, and then discuss the service mobility framework along with our solution finding algorithm.
The evaluation demonstrates that the Nomads framework considerably increases the number of
successfully performed compositions even in highly constrained environments.

6.1 Introduction

In order to successfully make informed decisions and, more importantly, to plan in the Smart City
domain it is elementary to understand the massive amounts of data generated by modern cities.
In order to realize this in the smart city domain, stakeholders rely on analyses and models of
domain experts. This is accomplished using Distributed Analytical Environments (DAE). DAEs
can be considered an instance of Software-defined Elastic Systems for Big Data Analytics [105].
Such a DAE relies on dynamic analytical service compositions which are created based on spe-
cific questions from stakeholders to provide the desired results. However, these compositions
cannot always be executed due to compliance constraints between service providers. These con-
straints lead to satisfiability problems of service compositions resulting in the inability to answer
stakeholders’ questions. In this chapter we propose a framework to overcome this limitation by
enabling dynamic service migrations and by doing so delivering a strong quality improvement
for constrained DAEs.
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Figure 6.1: Example of an analytical process in URBEM

The remainder of this chapter is structured as follows: In Section 6.2 we present the scenario
and outline the specific problem as well as requirements. Section 6.3 introduces the NOMADS
framework as an approach to address these problems. This is followed by a validation and short
evaluation of our approach in Section 6.4, as well as a discussion of related work in Section 6.5.
The chapter concludes with a comprehensive summary in Section 6.6

6.2 Scenario

In this section we present a detailed analysis of the motivating scenario introduced in Chapter 3,
specifically the aspect of DAEs in the context of urban planning.Consider the following case
of urban planning: The stakeholders want to know the impact photovoltaics would have on the
energy grid if they would be installed on every housing area in a specific district. In order to
answer this question a plethora of different data needs to run through different models of various
domains experts in the areas of building-physics, energy grids and spatial visualization, forming
a DAE. Figure 6.1 shows the analytical process underlying such a DAE.

From a technical perspective the models provided by domain experts, as well as the data, are
exposed as abstract services, each of these services providing different capabilities. There are
services providing data about the spatial aspects of the city, about the thermal and electrical grids,
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Figure 6.2: Example of data exchange constraints between providers

services that compute the energy demands of buildings, services that provide mobility models and
many more. These abstract services are dynamically composed depending on the specific question
of the stakeholders. Each of these abstract services can have different specific implementations
called concrete services which again originate from multiple providers. In URBEM providers
include companies like energy providers and public transportation services, municipalities and
city administration, as well as third party solution providers. Due to the variety of data including
business critical sensitive information, as well as certain regulatory requirements with numerous
compliance aspects there are strict data exchange constraints between these providers, resulting
in a constrained DAE. These constraints usually apply to sensitive information (e.g., detailed
household energy usage, medical data, etc.), but do not apply to results of analyses that process
sensitive data and produce insights or aggregated results that cannot be used to infer the input
data from their results.

6.2.1 Problem Description

The first elementary characteristic of constrained DAEs is the fact that only if a concrete ser-
vice composition is possible the respective question of a stakeholder can be answered, making
satisfiability an essential quality metric. The major factor for determining satisfiability are the
constraints between providers of specific services. Figure 6.2 shows an example of the constraints
matrix between each provider in the URBEM domain.

These constraints can be bidirectional as well as unidirectional, for example since the lib-
eration of the Austrian energy market the regulatory agency prohibits data exchange from grid
infrastructure operators to energy providers. However an exchange in the opposite direction is
possible. In the exchange matrix this is represented by each row being the “from” and each col-
umn being the “to” provider. This also is important for a migration of a service. Even though the
grid operator is not allowed to exchange data with the energy provider, it would be possible for
the consuming service of the provider to migrate to infrastructure controlled by the grid operator
and successfully produce results while respecting all constraints.

The second elementary aspect of constrained DAEs is the highly dynamic nature of the service
composition. Since specific compositions of services are triggered by stakeholders’ questions
they are not known a priori. This leads to the need for a dynamic mechanism to move concrete
services between providers. However, the migration of certain services might not be possible
or feasible. An example for this case are certain sensitive data services or services dealing with
large amounts of data.
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Figure 6.3 shows an overview of the problem. A specific question of a stakeholder leads
to a service composition that is necessary to answer this question, as depicted at the top of the
figure. Due to the provider constraints it is however not possible to satisfy this question with the
current deployment of concrete services. This leads to a satisfiability problem of the DAE and
the inability to answer the question, therefore significantly impacting the quality. However with
the ability to migrate concrete services on demand the constraints can be satisfied and the desired
results can be produced.
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Figure 6.3: Composition Scenario with Exchange Constraints and Service Migration

We can therefore state the following essential requirements in context of the outlined problem.

• Constrained Distributed Analytical Environments depend on the satisfiability of concrete
service compositions under consideration of constraints. Service migration is an essential
factor to enable this satisfiability.

• Due to the dynamic nature of the service composition triggered by specific stakehold-
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Figure 6.4: Data exchange constraints matrix between providers

ers, which cannot be known a priori, a dynamic mechanism allowing service mobility is
required.

6.3 Nomads
In this section we introduce the Nomads framework as an enabling platform for executing com-
plex DAEs. We start by formalizing a system model followed by a detailed framework architec-
ture description.

6.3.1 System Model

This section introduces the system model considered in this chapter. Table 6.1 summarizes the
model symbols, and provides a brief example with reference to the scenario of Section 6.2. P(X)
denotes the power set of a given set X , and M[m,n] denotes the entry in row m and column n of a
matrix M.

Basic Model. A service composition in our problem domain consists of a multitude of
abstract services (A), whose functionality is implemented by one or more concrete services (S).
The function s : A !P(S) maps abstract to concrete services. The set of providers collaborating
within the composition is denoted as P, and each service s 2 S originates from one provider
o(s) 2 P. D denotes the set of pairwise data dependencies between abstract services. The abstract
services in A (as nodes) and the dependencies D (as edges) span up a directed acyclic graph
(DAG), which defines the execution flow of the service composition.

Constraints. The core motivation of this work is the fact that providers have constraints
concerning data exchange, which are expressed in our model using a matrix representation E. An
example of such a constraint matrix can be seen in Figure 6.4.

Migration and Instantiation. In order to instantiate the composition defined so far in this
section, we need to 1) select concrete services, and 2) determine the providers, which are needed
to execute the code of each service. That is, a valid instantiation i 2 I determines for each abstract
service the concrete service and executing provider, expressed by the mapping A ! S⇥P. Note
that, due to data exchange constraints in E, the instantiation may require to migrate the code of
some services from one provider to another. Given an instantiation i 2 I, any concrete service
s 2 S, which is supposed to be executed by a provider p 2 P but in fact originates from some
other provider, i.e., o(s) 6= p, needs to be migrated to p for execution (see definition of function
mi in Equation 6.1). Further details concerning the motivation and necessity of service migration
follow in Section 6.3.2.
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Symbol Description Example
A Set of abstract services A = {a1, ...,a4}
S Set of concrete services S = {s1, ...,s8}
P Set of service providers P = {p1, ..., p4}
s : A ! P(S) Maps abstract to concrete ser-

vices
s : a1 7! {s1,s2}, ...

o : S ! P Provider from which a con-
crete service originates

o : s1 7! p1,s2 7! p1, ...

D ✓ A⇥A Data dependencies between
pairs of abstract services

D = {(a1,a3), (a2,a3),
(a3,a4)}

E ✓ {0,1}|P|⇥|P| Data exchange constraint ma-
trix: E[x,y] = 1 if provider
px can exchange data with
provider py

E =

0

BBB@

1 0 · · · 1
1 1 · · · 0
...

...
. . .

...
1 0 · · · 1

1

CCCA

I = [A ! S⇥P] Set of possible runtime in-
stantiations (selection of con-
crete services and executing
providers)

(all instantiations which
satisfy the constraints in
E, see example below)

i 2 I Runtime instantiation i : a1 7! (s1, p1), a2 7!
(s3, p2), a3 7! (s6, p4),
a4 7! (s8, p2)

mi : S ! P Services to be migrated to dif-
ferent provider (for instantia-
tion i 2 I)

mi : s8 7! p2

p : S 7! {0,1} Migration policy (is a service
allowed to migrate)

p : s1 7! 0,s2 7! 1 . . .

Table 6.1: Model for Compositions with Constraints and Service Migration

8i 2 I : mi =
{(s, p) | 9a 2 A : i(a) = (s, p)^o(s) 6= p} (6.1)

6.3.2 Problem Formulation

Based on the system model introduced in Section 6.3.1 we now provide a detailed formulation
of the problem studied in this work.

Given the model of a service composition (A, S, P, D) and the matrix E, we seek for a valid
instantiation i 2 I such that all constraints in E are satisfied (see Equation 6.2).
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8(ax,ay) 2 D, i(ax) = (sx, px),
i(ay) = (sy, py) : E[px, py] = 1 (6.2)

The problem is that, without service migration, it may be infeasible to find a valid instantiation
under the information exchange constraints defined in E (see Section 6.3.1). Hence, the possibility
of migrating services is the central assumption of our approach. Assuming two abstract services
ax,ay 2 A connected via a data dependency, the concrete service sy for ay (i.e., sy = i(ay)) needs
to be migrated to the provider of ax (denoted px) if there is a constraint between the providers of
the two services and sy is allowed to migrate (i.e., p(sy) = 1) (see Equation 6.3).

9(ax,ay) 2 D,sy = i(ay),
px = o(i(ax)) : E[px,o(sy)] = 0
^ E[o(sy), px] = 1 ^ p(sy) = 1 =) (sy, px) 2 mi

(6.3)

Finding a valid instantiation i under the conditions in Equations 6.2 and 6.3 is a hard com-
putational problem. A complexity analysis of the problem is out of scope in this chapter, our
focus here is to provide a framework for finding valid instantiations and performing the necessary
service migrations. Details of our approach are discussed in Section 6.3.3.

6.3.3 Framework Architecture

In this section, we outline the architecture of our framework to address the need for service
mobility as discussed in Section 6.3.2. Every service composition to be instantiated is executed
within a network of containers to allow for necessary constraint enforcement and enable the
novel service migration mechanism. Each provider who is part of a composition instantiation
has an on-premise deployment of a Nomads container instance to handle constraints as well as
service migrations. Additionally there exist a number of Service containers able to execute local
and transfered services. A graphical overview of the Nomads container as well as the Service
container in the context of a provider is shown in Figure 6.5.

The coordination between all Nomads containers is handled via a distributed consistent key
value store. In our prototypical implementation of the framework we use etcd1 as key value
store which relies on the Raft consensus algorithm [3]. Each Nomads container, in the container
network, registers via a unique token per container network. Nomads Container can find and
interact with each other via this unique token. If a new provider joins the container network
the Nomads container in the provider deployment can register via this unique token. This not
only allows us to dynamically extend the Nomads container network if new providers are being
added it also enables multiple independent Nomads container networks by using different unique
tokens.

Stakeholder questions that need to be answered by a composition instantiation can arrive at
any request router (RR) in the container network. The RR then hands over the request to the
constraint manager (CM) component to determine if the potential instantiation is feasible based

1https://github.com/coreos/etcd
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on previous requests. If no information about prior executions is available, the CM invokes the
service migration manager (SMM) to find a valid instantiation in coordination with all known
partner containers. The container SMMs elect one master SMM to perform the search for a valid
instantiation. The SMM components share their provider’s information exchange constraints
with the elected master SMM. The master SMM then searches for a valid instantiation relying on
the modularly designed Solution Component (SC) within the SMM. The SC can utilize different
pluggable algorithms to find valid instantiations, for demonstration purposes we implemented a
very basic algorithm. The pseudo code of the algorithm that is used is depicted in Algorithm 1.
Here, we focus on finding valid solutions for previously infeasible composition instances. The
algorithm uses a depth-first search to find a possible solution, which is sufficient in the context
of this chapter since we focus on finding valid solutions for previously infeasible composition
instances. Figure 6.6 demonstrates a simplified traversal through the search space.

i(a1)

=

? ? ? ?

i(a2)

=

i(a3)

=

i(a4)

=

(s1,p1) ? ? ? (s1,p2) ? ? ? (s1,p2) ? ? ?. . . . . .

(s1,p1) (s3,p1) ? ? (s1,p1) (s3,p2) ? ? . . .. . .

(s1,p1) (s3,p1) (s4,p1) (s5,p3)

. . .. . .

First Detected Solution

... ... ... ...

Further Solutions
(with possibly less migrations)

. . .

... ... ... ...

. . .

Figure 6.6: Traversal of the search space
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Algorithm 1 Find a solution with migrations
1: function F I N D VA L I D S O L U T I O N( f ixedServices,abstractServices)
2: if abstractServices has elements left then
3: Take first service of abstractServices
4: for each concreteService from service do
5: for each provider from all providers do
6: Try assign concreteService to provider based on migration policy
7: Add concreteService to f ixedServices
8: if f ixedServices are valid based on constraints then
9: Recurse with f ixedServices and remaining abstractServices

10: end if
11: end for
12: end for
13: else
14: if f ixedServices are valid then
15: return solution
16: end if
17: end if
18: end function

First the number of Abstract Services is determined, which can vary depending on the service
composition. Then for each Abstract Service a possible Concrete Service and provider combina-
tion is assigned. This assignment respects possible migration policies. If the assignment is valid
according to the Data Constraints the Concrete Service provider pair is fixed and the algorithm
recurses over the remaining Abstract Services. This traverses the search space until a possible
solution is found.

The SC component can be extended to utilize more sophisticated optimizations like genetic
algorithms. This also allows to incorporate multiple objectives for optimizations enabling for
example, not just finding an instantiation but the optimal one, or one with minimal migrations
etc. When a suitable instantiation was found, the respective service migration managers request
all necessary service migrations from their partner containers to initiate a valid instantiation.
The migrations are performed by moving Service Containers between providers. The Nomads
framework offers a pluggable mechanism to implement different migration approaches. In the
current version of the prototype, services are relocated using application container migration,
providing an implementation-agnostic way for transferring service code, suitable for stateless
services. Control is subsequently returned to the CM, which forwards the request to the appro-
priate local or transferred service instances to answer the stakeholder’s question. An exemplary
sequence diagram illustrating request handling is shown in Figure 6.7.

All service requests performed during the execution of a composition instantiation are in-
tercepted by the RR to enforce all modeled constraints and ensure the sandboxed execution of
transferred services on “foreign” premises. The CM component is integrated with the SeCoS
(Secure Collaboration in service-based Systems) framework [41], but also allows the utilization
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of different constraint checking mechanisms.

6.4 Validation

For validation purposes we create three CoreOS2 based clusters representing different providers
from our URBEM scenario, each of them consisting of three CoreOS hosts. On each of these
hosts we deploy different Docker3 based service containers representing various concrete services.
Each of these concrete services represents an specific instance of an abstract service relevant to
satisfy the example process illustrated in Figure 6.1. Additionally to these service containers we
deploy service containers representing random services with varying loads and communication
patterns to simulate an environment closer to a real world setting. In each of these clusters we
further deploy one Nomads container. In each of these clusters there is a private Docker Registry
present. To demonstrate the actual migration of Service containers we transfer Docker images
between the private registries and start them accordingly in their new location. This sample
deployment is illustrated in Figure 6.8.

We then generate an exemplary exchange constraint matrix ensuring that several service
containers need to be transfered in order to satisfy the execution of our example process. Based

2https://coreos.com/
3https://www.docker.com/
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on these setting we execute the example process and show that the necessary service migrations
can be performed in order to satisfy the exchange constraint and successfully execute the process.

6.4.1 Evaluation

Additionally to our validation we perform an evaluation to test the claim that our framework
increases the satisfiability of a DAE. For the evaluation, we generate all directed acyclic graphs
representing an interaction of up to 7 Abstract Services, which represents the current maximum
of Abstract Services in URBEM. This amounts to 221 different graphs representing service
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(a) Evaluation Results with |A|= 2
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(b) Evaluation Results with |A|= 3
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(c) Evaluation Results with |A|= 5
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(d) Evaluation Results with |A|= 7

Figure 6.9: Evaluation Results

compositions to answer possible stakeholder questions. For these graphs we then generate a
random set of Concrete Services with random deployments distributed among the 6 providers
in the URBEM scenario. Based on this we create a data constraint matrix representing the
Interaction Constraints between the providers.

We start with a theoretical optimum that allows every provider to exchange data with every
other provider to determine the theoretical optimal baseline. To show the impact of data exchange
constraints on satisfiability of composition instantiations, we increase the number of active con-
straints in 10% increments up to a maximum of 90%, leading to a scenario where only 10%
of all possible provider interactions are allowed. For each constraint percentage and graph we
determine the number of possible solutions without and with migrations.

Figure 6.9 shows the results of our evaluation for |A| 2� 7. We see that with the increase
of Abstract Services the amount of possible solutions and therefore also the minimal possible
satisfiability increases. This also leads to a more linear decrease of satisfiability both with and
without migrations. In conclusion Figures 6.9a-6.9d clearly illustrate that our approach with
service migrations significantly improves satisfiability of composition instantiations.

6.5 Related Work

Due to the holistic nature of compliance constrained Distributed Analytical Environments rel-
evant related research areas cover the following topic like (i) compliance and constraint based
service compositions, (ii) constraint satisfaction and enforcement in Role Based Access Control
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(RBAC) systems, and (iii) service and code mobility mechanisms that can be used to deal with
constraints in terms of compliance or availability.

Daniel et al. present challenges in SOA-based compliance governance [26], by defining re-
search goals in compliance governance and a compliance management life cycle. One of the
goals, which is related to our scenario, is data outsourcing, where privacy constraints are en-
forced by combining data fragmentation with encryption. In addition to the definition of the basic
concepts of compliance, [79] proposes an approach that supports data in both service choreogra-
phy modeling and analysis. The authors present a model that uses data-aware interactions as the
basic event. Based on this model, choreographies can be analyzed with the focus on data compli-
ance, by avoiding state space explosion. Next to compliance another important aspect in service
compositions are constraints in general, therefore Zhao et al. present a service composition model
based on constraints [123], where requirements are defined as a group of constraints for an ab-
stract service workflow. On top of the defined constraints a concrete service workflow can be
generated by binding an activity with an appropriate service in terms of constraint satisfaction.
Although the authors present the overall approach, they do not consider the workflow verification
and validation at run time. Instead of just defining the overall model for creating constraint-aware
service compositions, [116] proposes a constraint-aware service composition method based on
two concepts, service intension and service extension. The authors use a graph-based search algo-
rithm to generate all feasible solutions for a general service composition problem. Aggarwal et al.
[2] present a constraint driven web service composition approach in the METEOR-S framework,
which enables the composition of web services, based on both business and process constraints.
The general idea of the authors is to transform the overall service composition problem in a
general constraint satisfaction problem. Our problem domain of data exchange constraints also
relates to the field of quality attributes and service level agreements (SLAs), where constraints
have been intensively studied, for instance in the recent work by Ivanovic et al. [47].

Another related field is the area of access constraints, including Role Based Access Control
(RBAC), in the context of web services. Hummer et al. [41] propose SeCoS, a framework for
model-driven definition of RBAC constraints in service-based business processes. The authors
present a runtime enforcement mechanism which intercepts service invocations and therefore
prevents the actual invocation in case of a policy violation. As the proposed approach is generic
and not limited to RBAC constraints, our framework builds on SeCoS and uses it as the foundation
for constraint enforcement. Memon et al. [70] present the SECTISSIMO framework, which
aims at modeling constraints in security-critical services. Faravelon et al. [30] propose access
restrictions in service compositions based on Computational Tree Logic. In contrast to our work,
none of the aforementioned works considers service mobility as a solution to resolve data access
and data exchange constraints. Since there are several techniques available that can be facilitated
to deal with constraints in service compositions, we focus on the concept of service migration.
Amoretti et al. [4] propose an approach that facilitates a code mobility mechanism in the cloud.
Based on this mechanism, services can be replicated to provide a highly dynamic platform and
increase the overall service availability. Rao et al. [83] provide an extensive survey of automated
web service composition methods, together with Sirin et al. [101] this provides a good point of
departure for potential composition implementations. Next to a framework for service migration,
[37] discusses a cost model and a genetic decision algorithm that addresses the tradeoff on both
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service selection and migration in terms of costs, to find a optimal service migration solution. As
the mobility of code plays an important role in the overall service migration process, Carzaniga et
al. [17, 18] provide a study of code mobility paradigms. The authors classify mobile systems into
three categories: remote evaluation, code on demand, and mobile agent. Based on these categories
the authors discuss abstractions that are related, to those in traditional architectural styles. The
work In addition to the aforementioned categories, [16] describes mobile code paradigms with
regard to network security vulnerabilities. Following these definitions and paradigms there are
several centralized [19, 67] and decentralized [9, 64] approaches available to implement code
mobility. Especially the approach proposed in [9], where Arden et al. describe a decentralized
computing platform for running mobile code, based on explicit policies for confidentiality and
integrity, will be further investigated in the context of our scenario and possibly applied as one
of the migration techniques.

In this chapter we focus on the specific challenges of holistic aspects of smart city analytical
environments. The approaches discussed above are orthogonal to our framework and can be
considered to implement framework aspects.

6.6 Summary
In this chapter we presented Nomads a framework for service mobility in Distributed Analytical
Environments. We described the URBEM scenario as an example of a constrained Distributed
Analytical Environment (DAE). Based on this scenario we outlined the main problem and re-
quirements of aforementioned DAEs and delivered a comprehensive problem formalization. We
introduced Nomads to address this problem, described its architecture as well as a solution
finding algorithm and concluded with an validation and evaluation that clearly showed that the
framework is feasible and that we could significantly increase satisfiability of constrained DAEs.

The problem of service mobility is a core issue in DAEs, and we anticipate that it will gain
increased momentum, also in the broader service research community and considering trends
like Big Data [98] or Microservices [57].
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CHAPTER 7
A Continuous Evolution Framework

for Container Application Deployments

In this chapter, we introduce Smart Brix, a framework for continuous evolution of container
application deployments. Smart Brix integrates and unifies concepts of continuous integration,
runtime monitoring, and operational analytics. Furthermore, it allows practitioners to define
generic analytics and compensation pipelines composed of self-assembling processing compo-
nents to autonomously validate and verify containers to be deployed. We illustrate the feasibility
of our approach by evaluating our framework using a case study from the smart city domain.
We show that Smart Brix is horizontally scalable and runtime of the implemented analysis and
compensation pipelines scales linearly with the number of container application packages.

7.1 Introduction

In recent years, we have seen widespread uptake of operating system virtualization based on
containers [102] as a mechanism to deploy and manage complex, large-scale software systems.
Using containers, developers create self-contained images of application components along with
all dependencies that are then executed in isolation on top of a container runtime (e.g., Docker1,
rkt2, or Triton3). By packaging application components into self-contained artifacts, developers
can ensure that the same artifact is consistently used throughout the complete software release
process, from initial testing to the final production deployment. This mechanism for applica-
tion deployment has become especially popular with practitioners executing projects following
DevOps [44] principles. Based on the convergence of development and operations, DevOps
advocates a high degree of automation throughout the software development lifecycle (e.g., to
implement continuous delivery [40]), along with an associated focus on deterministic creation,

1https://www.docker.com/
2https://github.com/coreos/rkt
3https://www.joyent.com/
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verification, and deployment of application artifacts using Infrastructure as Code (IaC) [77] tech-
niques, such as Dockerfiles4 for containerized applications.

These properties allow for straightforward implementation of immutable infrastructure de-
ployments, as advocated by IaC approaches. Application container images are usually created
using a layered structure so that common base functionality can be reused by multiple container
images. Application-specific artifacts are layered on top of a base file system so that for sub-
sequent updates only the modified layers need to be transferred among different deployment
environments. Container engine vendors such as Docker and CoreOS provide public repositories
where practitioners can share and consume container images, both base images for common Linux
distributions (e.g., Ubuntu, CoreOS, CentOS, or Alpine) to subsequently add custom functional-
ity, as well as prepared application images that can be directly used in a container deployment.
Once uploaded to a repository, a container image is assigned a unique, immutable identifier that
can subsequently be used to deterministically deploy the exact same application artifact through-
out multiple deployment stages. By deploying each application component in its own container5,
practitioners can reliably execute multiple component versions on the same machine without
introducing conflicts, as each component is executed in an isolated container.

However, since each container image must contain every runtime dependency of the packaged
application component, each of these dependency sets must be maintained separately. This leads
to several challenges for practitioners. Over time, the number of active container images grows
due to the introduction of new applications, new application components, and updates to existing
applications and their components. This growing number of container images inherently leads to
a fragmentation of deployed runtime dependencies, making it difficult for operators to ensure that
every deployed container continues to adhere to all relevant security, compliance, and regulatory
requirements. Whenever, for instance, a severe vulnerability is found in a common runtime
dependency, practitioners either have to manually determine if any active container images are
affected, or initiate a costly rebuild of all active containers, irrespective of the actual occurrence of
the vulnerability. We argue that practitioners need a largely automated way to perform arbitrary
analyses on all container images in their deployment infrastructure. Furthermore, a mechanism is
required that allows for the enactment of customizable corrective actions on containers that fail
to pass the performed analyses. Finally, in order to allow practitioners to deal with the possibly
large number of container images, the overall approach should be able to adapt it’s deployment
to scale out horizontally.

In this chapter, we present Smart Brix, a framework for continuous evolution of container
applications. Smart Brix integrates and unifies concepts of continuous integration, runtime moni-
toring, and operational analytics systems. Practitioners are able to define generic analytics and
compensation pipelines composed of self-assembling processing components to autonomously
validate and verify containers to be deployed. The framework supports both, traditional mecha-
nisms such as integration tests, as well as custom, business-relevant processes, e.g., to implement
security or compliance checks. Smart Brix not only manages the initial deployment of application
containers, but is also designed to continuously monitor the complete application deployment
topology to allow for timely reactions to changes (e.g., in regulatory frameworks or discovered

4https://docs.docker.com/engine/reference/builder/
5https://docs.docker.com/engine/articles/dockerfile_best-practices/
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application vulnerabilities). To enact such reactions to changes in the application environment,
developers define analytics and compensation pipelines that will autonomously mitigate prob-
lems if possible, but are designed with an escalation mechanism that will eventually request
human intervention if automated implementation of a change is not possible. To illustrate the
feasibility of our approach we evaluate the Smart Brix framework using a case study from the
smart city domain. We show that the runtime of the implemented analysis and compensation
pipelines scales linearly with the number of analyzed application packages, and that it adds little
overhead compared to container acquisition times.

The remainder of this chapter is structured as follows. In Section 7.2 we present a motivating
scenario and relevant design goals for our framework. We present the Smart Brix framework
in Section 7.3, along with a detailed discussion of the framework components. In Section 7.4
we evaluate our approach using a case study from the smart city domain followed by a detailed
discussion of the results in Section 7.5. Related work is discussed in Section 7.6, followed by a
comprehensive summary in Section 7.7.

7.2 Motivation

In this chapter, we base our discussion on a multi-domain expert network as presented within
the URBEM scenario (Section 3.1). The experts in this scenario rely on a multitude of different
models and analytical approaches to make informed decisions based on the massive amounts
of data that are available about the city. In turn, these models rely on a plethora of different
tools and environments that lead to complex requirements in terms of providing the right runtime
environment for them to operate. The used tools range from modern systems for data analytics
and stream processing like Cassandra and Spark, to proprietary tools developed by companies
and research institutes with a large variance in specific versions and requirements to run them.
Additionally, these domains have to deal with a broad range of different stakeholders and their
specific security and compliance requirements. Models sometimes need to tailor their runtime
environment to specific technology stacks to ensure compliance or to be able to access the data
they need. Managing and satisfying all these requirements is a non-trivial task and a significant
factor hindering broader adoption. Therefore, this environment offers an optimal case for the
advantages that come with the use of container-based approaches. Operations teams that need
to integrate these models no longer need to be concerned with runtime specifics. Experts sim-
ply build containers that can be deployed in the heterogenous infrastructures of participating
stakeholders.

However, several challenges remain. In URBEM the team of experts with their plethora
of different models created over 250 different images that serve as the foundation for running
containers. The models in these containers are fueled by data from several different stakeholders
in the scenario, ranging from research institutions in the City of Vienna to industry stakeholders
in the energy and mobility domain. Each of them mandates a very distinct set of security and
compliance requirements that need to be met in order to run them. These requirements in turn
are subject to frequent changes and the containers need to be able to evolve along with them.
Additionally, even though the container approach provides isolation from the host system it is
still vital to ensure that the containers themselves are not compromised. This calls for means to
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check the systems running inside the container for known vulnerabilities, an issue that is subject
to heavy and fast-paced change, again requiring according evolution. A recent study6 shows that
in the case of Docker, depending on the version of the images, more than 70% of the images
show potential vulnerabilities, with over 25% of them being severe. This also begs the question
of who is responsible for checking and fixing these vulnerabilities, the operations team or the
experts who created them? Despite these security and compliance constraints, the ever-changing
smart city domain itself makes it necessary for experts to stay on top of the novel toolsets that
emerge in order to handle requirements stemming from topics like Big Data or IoT. This leads
to a rapid creation and adaptation of models and their according containers, which in turn need
be checked against these constraints again. Last but not least, these containers need to comply
to certain non-functional requirements that arise from the specific situations they are applied in.
This calls for the ability to constantly check containers against certain runtime metrics that need
to be met in order to ensure that these systems are able to deliver their excepted results within
stakeholder-specific time and resource constraints.

All these factors lead to a complex environment that calls for an ability to easily adapt and
evolve containers to their ever-changing requirements. Specifically, we identify the following
requirements in the context of our domain:

• The ability to check a large amount of heterogenous containers against an open set of
evolving requirements. These requirements can be vulnerabilities, compliance constraints,
functional tests, or any other metric of interest for the domain.

• The ability to mitigate issues and evolve these containers based on the the results from the
previously mentioned checks.

• An approach that is applicable in the context of operations management, while still enabling
the participation of experts both for checking as well as evolution.

• An approach that can be applied to existing deployments as well as utilized to test new
ones.

7.3 The Smart Brix Framework

In this section, we introduce the Smart Brix framework for continuos evolution of container-
based deployments, which addresses the previously introduced requirements. We start with a
framework overview, followed by a detailed description of all framework elements, and conclude
with a comprehensive description of our proof of concept implementation including possible
deployment variants.

7.3.1 Framework Rationales

The Smart Brix framework follows the microservice [78] architecture paradigm and an overview
of the main framework components is shown in Figure 7.1. The framework is logically organized

6http://www.banyanops.com/blog/analyzing-docker-hub/
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Figure 7.1: Smart Brix Framework Overview

into four main facets, which group areas of responsibility. Each of these facets is composed of
multiple components where each of these components represents a microservice. The compo-
nents in the Analyzer and Compensation Facet are managed as self-assembling components7,
an approach we presented in Section 4.3.1 and successfully applied in our Smart Fabric frame-
work. Each of these components follows the Command Pattern [33] and consists of multiple
processors that are able to accept multiple inputs and produce exactly one output. This functional
approach enables a clean separation of concerns and allows us to decompose complex problems
into manageable units.

Figure 7.2 illustrates an example of auto-assembly within the Analyzer facet. We see a set
of processors, where each processor is waiting for a specific type of input and clearly specifies
the output it produces. The processors use a message-oriented approach to exchange input and
output data, where each output and input is persistently available in the message queue and
accessible by any processor. In this example we perform an analysis of a custom-built Debian-
based container that hosts the Apache HTTPD server. There are two potential processors for the
input Artifact, each of them able to handle a different container format. Since in our example
the Artifact is a Docker Container, only the Docker Analyzer reacts and produces as output a
Docker Image. In the next step there are two active processors, the Docker Base Image Analyzer
and the Docker Package System Analyzer, both taking Docker Images as input. Since the Docker
Base Image Analyzer cannot determine a base image for the given Docker Image, it produces no
output. However, the Docker Package System Analyzer is able to determine that the image uses
a DPKG-based package system and produces the according output. Now the DPKG Package
Analyzer reacts by taking two inputs, the original Artifact as well as the DPKG output and
inspects the Artifact via the DPKG command to produce a Package List. In the last step of this

7http://techblog.netflix.com/2014/06/building-netflix-playback-with-self.html
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Figure 7.2: Example of auto assembling processors within the analyzer facet.

auto-assembly example the Vulnerability Analyzer listens for a Package List and produces a
List of Vulnerabilities. This enables a straightforward auto-assembly approach, where connecting
previous outputs to desired inputs leads to an automatically assembled complex system consisting
of simple manageable processors. A processor itself can be anything and is not bound to any
specific functionality, so it can be created completely flexible depending on the task at hand. This
approach further eliminates the necessity of complex composition and organization mechanisms,
enabling dynamic and elastic compositions of desired functionality, where processors can be
added on demand at runtime. This enables the previously mentioned creation of open and flexible
analytics and compensation pipelines based on this principle.

Additionally, the components in the analyzer and compensation facets follow the principle
of Confidence Elasticity, which means that a component or processor produces a result that is
augmented with a confidence value (c 2 R,0  c  1), with 0 representing no certainty and 1
representing absolute certainty about the produced result. This allows for the specification of
acceptable confidence intervals for the framework, which augment the auto-assembly mechanism.
The confidence intervals are provided as optional configuration elements for the framework. In
case the provided confidence thresholds are not met, the framework follows an escalation model to
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Figure 7.3: Confidence Adaptation Model Escalation

find the next component or processor that is able to provide results with higher confidence until it
reaches the point where human interaction is necessary to produce a satisfactory result (illustrated
in Figure 7.3). Each processor pi from the set of active processors Pa provides a confidence
value ci. We define the overall confidence value of all active processors ca as ca = ’pi2Pa ci.
The compensation stops when ca meets the specified confidence interval of the framework or a
processor represents a human interaction which has a confidence value of (ci = 1).

7.3.2 Smart Brix Manager

In order to initiate a container evolution, the Smart Brix Manager is invoked via the Smart Brix
API with the following parameters: (i) a set of Containers to be inspected with (ii) the necessary
Credentials to analyze and evolve them, as well as an optional (iii) set of Artifacts necessary
to compensate or analyze the containers. In a first step the Smart Brix Manager queries the
Repository Manager to see if there are already known issues for the supplied containers. If any
known issues are found, the Smart Brix Manager creates a corresponding compensation topic via
the messaging infrastructure by publishing the container identifiers as well as the found issues.
This represents an input that will subsequently be consumed by the corresponding Compensation
Handlers and starts the previously described auto-assembly process in the Compensation Facet.

If no issues were found, the Smart Brix Manager hands off the supplied Containers, Cre-
dentials and Artifacts to the Dependency Manager that is responsible for storing them in the
Dependency Repository. As a next step, the Smart Brix Manager creates a corresponding ana-
lyzer topic via the messaging infrastructure and publishes the container identifiers to it. This
generates an input that will be consumed by the corresponding Analyzers and starts another
auto-assembly process in the Analyzer Facet. The Smart Brix Manager then listens to the created
topic and waits for a response from the Analyzer Facet. If any analyzer responds, the manager

75



Figure 7.4: Smart Brix Manager Sequence Diagram

checks the confidence value of the provided results against the configured confidence interval
of the framework. If the results satisfy the interval it uses the Repository API to store them in
the Analytics Repository. If the confidence intervals are not satisfied, it waits for a configured
timeout for additional results to emerge. If this fails the framework escalates according to the
principle of Confidence Elasticity and marks the containers as required for human interaction.
If the confidence interval was met, the Smart Brix Manager initiates the previously mentioned
auto-assembly process in the Compensation Facet. The Smart Brix Manager then listens to the
created topic and waits for a response from any compensation handler. In case of a response,
it checks the confidence values by applying the same approach as for the Analyzer Facet, and
stores them as compensations into the Analytics Repository. A corresponding sequence diagram
illustrating this is shown in Figure 7.4.

Furthermore, the Smart Brix Manager provides API endpoints to query the results of analytics
and compensation processes, as well as the current status via container identifiers.

7.3.3 Repository Manager

The Repository Manager provides a repository for storing analytics results of all analyzed contain-
ers as well as their corresponding compensations. The Analytics Repository itself is a distributed
key value store that enables Analyzers as well as Compensation Handlers to store information
without being bound to a fixed schema. In addition, this enables the previously mentioned open
extensibility of our auto-assembly approach by allowing every component to choose the required
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storage format. Finally, the Repository Manager provides a service interface to store and retrieve
analytics and compensation information as well as an interface for querying information based
on container identifiers or other attributes.

7.3.4 Dependency Manager

The Dependency Manager handles necessary credentials and artifacts that are needed for pro-
cessing containers. The Dependency Manager provides a service interface that allows the Smart
Brix Manager to store artifacts and credentials associated with specific containers. Additionally,
it provides a mechanism for components in the Analyzer and Compensation Facets to retrieve
the necessary credentials and artifacts for the corresponding container IDs. Finally, it acts as
service registry for components in the Utility Facet and exposes them to the Compensation and
Analyzer Facet. The Dependency Manager uses a distributed key value store for its Dependency
Repository in order to store the necessary information.

7.3.5 Utility Facet

The general role of the Utility Facet is to provide supporting services for Analyzers, Compen-
sation Handlers, and Managers of the framework. Components in the Utility Facet register their
offered services via the Dependency Manager. This provides an open and extensible approach
that allows to incorporate novel elements in order to address changing requirements of container
evolution. In our current architecture, the Utility Facet contains three components. First, a Vulner-
ability Hub, which represents a service interface that allows Analyzers as well as Compensation
Handlers to check artifacts for vulnerabilities. The Vulnerability Hub can either utilize public
repositories (e.g., the National Vulnerability Database8), or any other open or proprietary vul-
nerability repository. The second component is a Compliance Hub that allows to check for any
compliance violations in the same way the Vulnerability Hub does. This is an important element
in heterogenous multi-stakeholder environments, where compliance to all specified criteria must
be ensured at all times. The last element is a Metric Hub, which allows to check artifacts for
certain relevant metrics in order to ensure relevant Quality of Service constraints for containers.

7.3.6 Analyzers

The task of the components within the Analyzer Facet is to test containers for potential vulnerabil-
ities, compliance violations or any other metrics. The facet is invoked by the Smart Brix Manager,
which triggers an auto-assembly process for the given containers that should be analyzed. The
Analyzer Facet can contain components for the most prominent container formats like Docker or
Rkt, but due to the fact that we utilize the auto-assembly approach, we are able to integrate new
container formats as they emerge. For analyzing a container an analyzer follows three basic steps:
(i) Determine the base layer of the container in order to know how to access the package list.
(ii) Determine the list of installed packages including their current version. (iii) Match the list of
installed packages against a set of vulnerabilities, issues, or compliance constraints in order to
determine the set of problems.

8https://nvd.nist.gov/
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Every step can follow a different set of strategies to analyze a container represented as
different processors, each of them with a specific confidence value. Possible processors for these
steps are: (i) Base Image Processors, which try to determine the base layer of a container
by matching their history against known base image IDs. (ii) Similarity Processors that try to
select a base layer based on similarities in the history of the container with known containers
by performing actions like collaborative filtering and text mining. (iii) Convention Processors
that try to determine the base layer by trying common commands and checking their results.
(iv) Human Provided Processors, which are human experts that manually analyze a container.

In order to access the containers and to perform analytics, the components within the Analyzer
Facet interact with the Dependency Manager. The manager provides them with the necessary
credentials for processing containers. Once the analyzers have processed a container, they publish
the results, which are augmented with the confidence value, to the corresponding topic where the
Smart Brix Manager carries on as previously described.

7.3.7 Compensation Handlers

The components in the Compensation Facet generate potential compensations for containers that
have been previously identified by the Analyzers. Like the Analyzers, the Compensation Handlers
are invoked by the Smart Brix Manager, which starts an auto-assembly process for the containers
with problems that should be compensated. We provide components for the most prominent
container formats, with the ability to extend the list as new formats emerge. The compensation
handlers follow three basic steps: (i) Apply a compensation strategy for the container and the
identified problem; (ii) Verify if the compensation strategy could be applied by rebuilding or
restarting the container; (iii) Verify that the problems could be eliminated or reduced.

Again, every step can utilize a set of different processors, each of them with a specific con-
fidence value, which represent different strategies. Possible processors are: (i) Container Pro-
cessors, which try to use the base image’s package manager to upgrade packages with identified
vulnerabilities. (ii) Image Processors that try to build a new image without the vulnerabilities;
(iii) Similarity Processor that try to compensate via applying steps from similar containers that
do not show these vulnerabilities; (iv) Human Provided Processors, which are human experts
that manually compensate a container.

The Compensation Handlers interact with the Dependency Manager in a similar way like the
Analyzers to retrieve the necessary credentials to operate. As Image Processors and Similarity
Processors build new images in order to compensate, they can request the necessary artifacts
associated with an image to be able build them.

7.3.8 Implementation

We created a proof of concept prototype of our framework based on a set of RESTful microser-
vices implemented in Ruby. Each component that exposes a service interface relies on the Sinatra9

web framework. The Repository Manager and the Dependency Manager utilize MongoDB10 as

9http://www.sinatrarb.com/
10https://www.mongodb.org/
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their storage backend, which enables the previously described distributed, open, and extendable
key value store for their repositories. We implemented a Vulnerability Hub that uses a SQLite11

storage backend to persist vulnerabilities in a structured format. It holds the recent data from the
National Vulnerability Database12 (NVD), specifically the listed Common Vulnerabilities and
Exposures (CVEs). This CVE Hub allows to import the CVEs posted on NVD, stores them in its
repository, and allows to search for CVEs by vulnerable software name as well as version via its
Sinatra-based REST interface.

To enable the auto-assembly mechanism for each processor within each component in the
Analyzer and Compensation Facet, we use a message-oriented middleware. Specifically, we
utilize RabbitMQ’s13 topic and RPC concepts, by publishing each output and listening for its
potential inputs on dedicated topics. We implemented a Docker Analyzer component with a Base
Image Processor and a Convention Processor-based strategy. The Docker Analyzer first tries to
determine the operating system distribution of the container by analyzing its history. Specifically,
it uses the Docker API to generate the history for the container and selects the first layer’s ID,
which represents the base layer. It then matches this layer against a set of known layer IDs,
which matches corresponding operating system distributions to determine which command to
use for extracting the package list. If a match is found, it uses the corresponding commands to
determine the package list. If the determined operating system is Ubuntu or Debian, it will use
dpkg to determine the package list. If it was CentOS, yum is used, and if it was Alpine, apk.
After parsing the package command output into a processable list of packages, it checks each
package name and version by using the CVE Hub via its REST interface. When this step is
finished the Analyzer publishes the list of possible vulnerabilities, including analyzed packages
along with several runtime metrics. In case the base image strategy fails, the Docker Analyzer
tries to determine the base layer including the corresponding operating system via a convention
processor. Specifically, it test if the image contains any of the known package managers. Based
on the results the analyzer determines the distribution flavor and continues as described above.

We further implemented a Docker Compensation Handler with a Container Processor and
an Image Processor based compensation strategy. The Container Processor tries to upgrade
the container using the operating system distribution’s package manager. After this operation
succeeds, it checks if the number of vulnerabilities are reduced, by comparing the new version of
packages against the CVE Hub. If this was the case it augments the results with a confidence value
based on the percentage of fixed vulnerabilities and publishes the results. The Image Processor
tries to fix the container by generating a new container manifest (e.g., Dockerfile). More precisely,
it uses the Docker API to generate the image history and then derives a Dockerfile from this
history. After this step, the Image Processor exchanges the first layer of the Dockerfile with the
newest version of its base image. In cases where it cannot uniquely identify the correct Linux
flavor, it generates multiple Dockerfiles, for example one for Ubuntu and one for Debian. It then
checks the Dockerfiles’ structure for potential external artifacts. Specifically, it searches for any
COPY or ADD commands that are present in the Dockerfile. If this is the case, it contacts the
Dependency Manager and attempts to retrieve the missing artifacts. Once this is finished the

11https://www.sqlite.org/
12https://nvd.nist.gov/
13https://www.rabbitmq.com/
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Image Processor tries to rebuild the image based on the generated Dockerfile. After this step is
finished, the Image Processor again checks the new list of packages against the CVE Hub, and if
it could improve the state of the image it publishes the results with the corresponding confidence
value.

7.3.9 Deployment Modes

The Smart Brix Framework provides a container for each facet and therefore supports deployment
on heterogeneous infrastructures. The framework enables wiring of components and aspects via
setting the container’s environment variables, enabling dynamic setups. We distinguish between
two fundamental deployment modes, Inspection Mode and Introspection Mode.

Inspection Mode

The Inspection Mode allows the framework to run in a dedicated inspection and compensation
setting. In this mode the framework ideally runs exclusively without any other containers and
utilizes the full potential of the host systems. This means that the Smart Brix Managers wait until
they receive an explicit request to analyze and compensate an artifact.

Introspection Mode

The Introspection Mode allows the framework to run in an active container setup. In this mode the
framework constantly watches deployed containers via the Smart Brix Manager. The Manager
can be provided with a list of containers to watch via a configuration setting. This provided list
of containers is then analyzed and compensated. If no container lists are supplied, the Manager
watches all running containers on the platform. In this case it initiates a check whenever new
images are added, an image of a running container changes, or new vulnerabilities are listed in
the CVE Hub.

7.4 Evaluation

7.4.1 Setup

For our evaluation we used the following setup. We provisioned three instances in our private
OpenStack cloud, each with 7.5GB of RAM and 4 virtual CPUs. Each of these instances was run-
ning Ubuntu 14.04 LTS with Docker staged via docker-machine14. For our evaluation we choose
the inspection deployment variant of our framework in order to stress-test the system without
other interfering containers. We deployed one manager container representing the Management
Facet, as well as two utility containers containing the CVE Hub and the Messaging Infrastructure
on one instance. We then distributed 12 analyzer containers with 12 compensation containers
over the remaining two instances. Additionally, we deployed a cAdvisor15 container on every

14https://docs.docker.com/machine/install-machine/
15https://github.com/google/cadvisor
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Figure 7.5: Evaluation Setup of Smart Brix running in inspection mode

instance to monitor the resource usage and performance characteristics of the running containers.
Figure 7.5 shows an overview of the deployed evaluation setup.

7.4.2 Experiments

Since we currently only have around 250 images in our URBEM setting, we extended the num-
ber of images to be evaluated. In order to get a representative set of heterogenous images we
implemented a small service to crawl Docker Hub16. The Docker Hub is a public repository of
Docker container images of different flavors. These images range from base images, like Ubuntu
and CentOS etc., to more complex images like Cassandra and Apache Spark. We utilized the
search function of the Hub to collect a set of 4000 images ordered by their popularity (number of
pulls and number of stars), which ensures that we focus on a set with a certain impact. We then
extracted the name and the corresponding pull commands along with the latest tag to form the
URI of the image. This set of 4000 URIs represented the source for our experiments, which was
then split into 3 sets containing 250, 500, and 1000 images to be tested.

Analyzer Experiments

We started our experiments with a focus on the Analyzer Facet of the framework. First, we started
the analyzer containers on one instance and started our tests with the 250 image set. After the
run finished we repeated it with the 500 and 1000 image set. After the tests with one instance, we
repeated the experiments with two instances where each run was repeated 3 times. During the
tests we constantly monitored cAdvisor to ensure that the instances were not fully utilized in order
to ensure this would not skew results. The focus of our experiments were not the performance
characteristics of our framework, in terms of cpu, memory or disk usage, which is why we used
cAdvisor only as a monitor to rule out overloading our infrastructure. We also did not utilize any

16https://hub.docker.com/
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Figure 7.6: Comparison of runtime for analytics between one instance and two instances

storage backend for cAdvisor since this has shown to be a significant overhead which in turn
would have skewed our results.

After the runs had finished we evaluated the vulnerability results. The analyzers logged the
analyzed images, their base image flavor (e.g. Ubuntu, Debian etc.), processing time to analyze
the image, pull time to get the image from the DockerHub as well as the overall runtime, number
of packages, size of the image, and number of vulnerabilities.

Over all our experiments the analyzers showed that around 93% of the analyzed images
have vulnerabilities. This mainly stems from the fact that our implemented analyzers have a
very high sensitivity and check for any potentially vulnerable software with any potentially
vulnerable configuration. However, this does not necessarily mean that the specific combination
of software and configuration in place shows the detected vulnerability. If we only take a look at
the images with a high severity according to their CVSS17 score, around 40% show to be affected
which is conclusive with recent findings18. These results underline the importance to implement
the measures proposed by our framework. However, the focus of our work and the aim of our
experiments was not to demonstrate the accuracy of the implemented vulnerability detection, but
the overall characteristics of our framework, which we discuss in the remainder of this section.

We first compared the overall runtime of our analyzers, specifically the difference for one
instance vs two instance deployments, the results are shown in Figure 7.6. Based on the results
we see that our approach can be horizontally scaled over two nodes leading to a performance
improvement of around 40%. The fact that in our current evaluation setting we were not able to
halve the overall runtime using two instances stems from several factors. On the one hand, we
have a certain overhead in terms of management and coordination including the fact that we only
deployed one manager and storage asset. On the other hand, a lot of the runtime is caused by

17https://nvd.nist.gov/cvss.cfm
18http://www.banyanops.com/blog/analyzing-docker-hub/
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Figure 7.7: Comparison of processing time for analytics with two instances

Figure 7.8: Comparison of pulltime and processing time for compensation with two instances
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Figure 7.9: Comparison of processing time for compensation with two instances

the acquisition time, which is clearly bound by network and bandwidth. Since our infrastructure
is equipped with just one 100 Mbit uplink that is shared by all cloud resources, this is a clear
bottleneck. We also see that the majority of wall clock time is spent for acquisition and that the
actual processing time only amounts to approximately 3% of the overall runtime. The fact that
the acquisition time for the 1000 image set does not grow linearly like the runs with the 250
and 500 image set, stems from Docker’s image layer cache. In this case the overall acquisition
time grows slower, because a lot of images in the 1000 set share several layers, which, if already
pulled by another analyzer in a previous run, do not need to be pulled again, hence reducing the
acquisition time. Finally, we demonstrate that the average processing time of our framework is
stable, which is shown in Figure 7.7. We further notice a small increase in average processing
time for the 250 image set, which is caused by the fact that this set contains more images with
larger package numbers compared to the overall amount of images tested, resulting in a slightly
higher average processing time. As illustrated in Table 7.1, per-package processing times remain
stable throughout the performed experiments, with a median of 0.558s and a standard deviation
of 0.257s.

Set Median Processing
Time

Standard Deviation Processing
Time

No. of pack-
ages

250 0.620s 0.255s 153,275
500 0.564s 0.263s 303,483
1000 0.537s 0.252s 606,721
Overall 0.558s 0.257s 1,063,479

Table 7.1: Median and standard deviation for processing time per package over all runs with two
instances
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Compensation Experiments

In the the next part of our experiments we focused on the Compensation Facet of our framework.
In order to test the ability to automatically handle compensations of vulnerable images, we tested
the implemented Container Processor strategy. This strategy compensates found vulnerabilities
via automatic upgrades of existing images. It takes no human intervention, has a very high confi-
dence, keeps all artifacts within the images and is therefore optimal to test the auto-compensation
ability of our framework. In the process of compensation the Container Processor generates a
new image with the upgraded packages. In order to test this image for improvement we have
to store it. This means that for every tested image we have to hold the original image as well
as its compensated version. Specifically, we choose to test the most vulnerable images (images
with the most vulnerable packages) out of the 1000 image set we tested that are also the most
prominent images in our URBEM scenario. This left us with 150 images, which we split in three
sets with 50, 100, and 150 images and started our compensation tests. We then repeated each run
to demonstrate repeatability and to balance our results. Since the Compensation Facet follows
the same principle as the Analyzer Facet we omitted testing it on one instance and immediately
started with two instances. After the tests finished, we compared the newly created images to the
original ones and checked if the number of vulnerabilities could be reduced.

Overall our experiments showed that from the 150 images we were able to auto-compensate
34 images by reducing the number of vulnerabilities. This illustrates that even a rather simple
strategy leads to a significant improvement of around 22,6%, which makes this a very promising
approach. In a next step, we compared the overall runtime of our compensation handlers for
the three tested sets, and the results are shown in Figure 7.8. We again can clearly see that the
major amount of time is spent for acquisition, in this case pulling the images that need to be
compensated. The compensation itself only takes between 24% and 28% of the overall runtime
and shows linear characteristics correlating with the number of images to be compensated. The
comparatively low increase in acquisition time for the 150 image set again can be explained with
the specific characteristics we see in Docker’s layer handling.

In a next step, we compared the average processing time for each set, and the results are
shown in Figure 7.9. We again notice similar characteristics as we saw with our analyzers. The
average processing time as well as the median processing time are stable. The small increase for
the 50 image set is explained with a larger number of images that contain more packages. This
fact leads to relatively longer compensation times when upgrading them.

7.5 Discussion

Our experiments showed that our framework is able to scale horizontally. We further demon-
strated that the majority of the runtime, both when analyzing and compensating images is caused
by the image acquisition, which is bandwidth bound. Given the fact that in most application
scenarios of our framework the images will not necessarily reside on Docker Hub, but instead
in a local registry, this factor greatly relativizes. The processing time itself scales linearly with
the number of analyzed packages, and the same was shown for the compensation approach.
Furthermore, the processing time in our current evaluation setup is mostly constrained by the
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prototypical vulnerability checking mechanism and the chosen storage system, which both are
not the focus of our contribution. The implementation of different vulnerability checkers, along
with more efficient storage and caching of vulnerability data could lead to further reduction in
processing time and will be tackled in future work. An additional aspect we did not specifi-
cally address in this chapter is the fine-grained scale-out of components in all Smart Brix facets.
While the presented framework fulfills the requirements set forth in the previously introduced
URBEM project, certain threats to the general applicability of Smart Brix remain. Currently, the
auto-assembly mechanism introduced in Section 5.4.1 attempts to eagerly construct analysis and
compensation pipelines that are loosely structured along the level of specificity of the performed
analysis. Hence, the number of created pipelines can grow exponentially with the number of
candidate components in the worst case. If all components for a given level of specificity accept
all inputs produced in the previous level, and all subsequent components accept all produced
outputs in turn, the number of created pipelines would grow exponentially with the number of
components per level of specificity. This problem can be mitigated by introducing a transparent
consolidation mechanism that delays the propagation of produced outputs of a certain type for a
specified amount of time, orders them by the reported confidence values, and only submits one (or
a few) of the produced output values with the highest confidence values for further consumption
by other components.

7.6 Related Work

The rapid adoption of container-based execution environments for modern applications enables
increased flexibility and fast-paced evolution. Next to this fast-paced evolution of containers, new
containers are deployed whenever functionality has to be added, which leads to massive amounts
of containers that need to be maintained. While the container provides an abstraction on top of
the operating system, it is still vital that the underlying system complies to policies or regulations
to avoid vulnerabilities. However, checking the plethora of available environments and adapting
them accordingly, is not a trivial task.

Among several approaches stemming from the area of SOA like the works of Lowis et al. [66],
Yu et al. [120] which deal with classic service vulnerabilities as well as the work of Li et al. [60],
Lowis et al. [65] propose a novel method for analyzing cloud-based services for certain types of
vulnerabilities. Next to general models and methods for classifying and analyzing applications,
several approaches emerged that allow vulnerability testing. They range from service oriented
approaches for penetration and automated black box testing introduced by Bau et al. [12] and
Li et al. [61] to model based vulnerability testing like the work of [56] as well as automated
vulnerability and infrastructure testing methods (e.g. [43, 97]). Antunes and Vieira [7] introduce
SOA-Scanner, an extensible tool for testing service-based environments for vulnerabilities. Based
on an iterative approach the tool discovers and monitors existing resources, and automatically
applies specific testing approaches. More recently also large scale distributed vulnerability testing
approaches have been introduced (e.g. [29, 121]). In contrast to our approach, the aforementioned
tools solely concentrate on testing and identifying possible security threats, but do not provide
means for adapting the observed application or its environment accordingly.

More recently, container-based approaches are applied in the literature to ease develop-
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ment and operation of applications. Tosatto et al. [104] analyze different cloud orchestration
approaches based on containers, discuss ongoing research efforts as well as existing solutions.
Furthermore, the authors present a broad variety of challenges and issues that emerge in this
context. Wettinger et al. [118] present an approach that facilitates container virtualization in
order to provide an alternative deployment automation mechanism to convergent approaches
that are based on idempotent scripts. By applying action-level compensations, implemented as
fine-grained snapshots in the form of containers, the authors showed that this approach is more
efficient, more robust, and easier to implement as convergent approaches. However, compared to
our approach, the authors do not provide a framework for analyzing container application deploy-
ments, which based on identified issues triggers according compensation mechanisms. Gerlach
et al. [35] introduce Skyport, a container-based execution environment for multi-cloud scientific
workflows. By employing Docker containers, Skyport is able to address software deployment
challenges and deficiencies in resource utilization, which are inherent to existing platforms for
executing scientific workflows. In order to show the feasibility of their approach, the authors add
Skyport as an extension to an existing platform, and were able to reduce the complexities that
arise when providing a suitable execution environment for scientific workflows. In contrast to our
approach the authors solely focus on introducing a flexible execution environment, but do not pro-
vide a mechanism for continuously evolving container-based deployments. Li et al. [62] present
an approach that leverages Linux containers for achieving high availability of cloud applications.
The authors present a middleware that is comprised of agents to enable high availability of Linux
containers. In addition, application components are encapsulated inside containers, which makes
the deployment of components transparent to the application. This allows monitoring and adapt-
ing components deployed in containers without modifying the application itself. Although this
work shares similarities with our approach, the authors do not provide a framework for testing
container-based deployments, which also supports semi-automatic compensation of found issues.

Next to scientific approaches, also several industrial platforms emerged that deal with the
development and management of container-based applications, with the most prominent being
Tutum19 and Tectonic20. These cloud-based platforms allow building, deploying and managing
dockerized applications. They are specifically built to make it easy for users to develop and
operate the full spectrum of applications, reaching from single container apps, up to distributed
microservices stacks. Furthermore, these platforms allow keeping applications secure and up
to date, by providing easy patching mechanisms and holistic systems views. In contrast to our
approach, these platforms only focus on one specific container technology, and are not extensible.
IBM recently introduced the IBM Vulnerability Advisor21, a tool for discovering possible vul-
nerabilities and compliance policy problems in IBM containers. While IBM’s approach shares
similarities with our work, they are solely focusing on Docker containers that are hosted inside
their own Bluemix environment and therefore do not provide a generic approach. Furthermore,
their Vulnerability Advisor only provides guidance on how to improve the security of images,
but does not support mechanisms to evolve containers.

19https://www.tutum.co
20https://tectonic.com
21https://developer.ibm.com/bluemix/2015/07/02/vulnerability-advisor/
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7.7 Summary
The numerous benefits of container-based solutions have led to a rapid adoption of this paradigm
in recent years. The ability to package application components into self-contained artifacts has
brought substantial flexibility to developers and operation teams alike. However, to enable this
flexibility, practitioners need to respect numerous dynamic security and compliance constraints,
as well as manage the rapidly growing number of container images. In order to stay on top of this
complexity it is essential to provide means to evolve these containers accordingly. In this chapter
we presented Smart Brix, a framework enabling continuous evolution of container application
deployments. We provided a comprehensive description of URBEM’s requirements in terms
of container evolution. We introduced Smart Brix to address these requirements, described its
architecture, and the proof of concept implementation. Smart Brix supports both, traditional
continuous integration processes such as integration tests, as well as custom, business-relevant
processes, e.g., to implement security, compliance, or other regulatory checks. Furthermore, Smart
Brix not only enables the initial management of application container deployments, but is also
designed to continuously monitor the complete application deployment topology and allows
for timely reaction to changes (e.g., discovered application vulnerabilities). This is achieved
using analytics and compensation pipelines that will autonomously detect and mitigate problems
if possible, but are also designed with an escalation mechanism that will eventually request
human intervention if automated implementation of a change is not possible. We evaluated our
framework using a representative case study that clearly showed that the framework is feasible
and that we could provide an effective and efficient approach for container evolution.
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CHAPTER 8
A Smart-City Application Ecosystem

In this chapter we present SCALE, the Smart City Application Ecosystem. We outline the basic
architecture of SCALE, introduce the Smart City Operating System (SCOS), a core element in
enabling SCALE and detail how the previously presented contributions enable the SCOS.

8.1 Introduction

Based on our previous and ongoing research projects, industry collaborations and smart city
initiatives (e.g., URBEM) as well as the contributions presented in this thesis, we present a
high-level architecture of SCALE, a comprehensive smart city application ecosystem. SCALE is
based on a Smart City Operating System (SCOS) that addresses the requirements presented in
Section 1.1. Naturally, smart city applications reside in a dynamic environment serving multiple
stakeholders. Stakeholders do not only provide data for an application, but contribute functional-
ity, or impose (possibly conflicting) requirements. So far, the fundamental stakeholders in a smart
city are energy and transportation providers, as well as government agencies, which offer data
about certain aspects (e.g., public transportation) of a city and its citizens. Traditional smart city
applications are usually commissioned, operated by, and focused on single providers and their re-
quirements [59], leading to isolated vertical applications, resulting in a significant fragmentation
of smart city applications.

8.2 Smart City Application System Architecture

By introducing SCALE we aim to break this traditional notion of industry verticals and according
infrastructure silos to closely integrate requirements, functionality, and capabilities of multiple
stakeholders in a seamless and manageable way. First, we strive to align smart city application en-
gineering along the three pillars of methodology, modeling, and middleware, as presented in [89].
Second, a comprehensive modeling framework will allow stakeholders to express distinct system
capabilities in terms of declarative expectations and properties that allow for realistic simulations
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of real-world infrastructures, reducing the risks of developing against real systems, while at the
same time increasing developer productivity. The simulation of real-world infrastructures will
allow developers to plan ahead of time to develop and test applications for emerging, not yet avail-
able, infrastructures. Third, SCALE will serve as a comprehensive communication, integration,
and engineering tool throughout the complete application lifecycle, from requirements elicitation,
definition, and specification, to development, deployment, and management of application func-
tionality. Finally, by focusing on distinct, reusable units of functionality, SCALE allows for the
creation of application components that can easily be composed, coordinated, and tested using a
dynamic combination of simulated and real-world infrastructure. To achieve this, we will provide
a comprehensive middleware toolkit for engineering, executing, managing, and evolving smart
city applications. This middleware toolkit will act as a Smart City Operating System, as depicted
in Figure 8.1.
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Figure 8.1: Smart City Application Ecosystem – Architecture

8.3 Smart City Operating System (SCOS)
In order to build SCOS on top of a future-proof architectural principle that allows for clean sepa-
ration of concerns, easy extendability and high scalability, we chose a microservice architecture.
This architectural principle allows us to break out of traditional layered architectures, which gives
us the opportunity that each component of SCOS can interact with any other, leading to novel
ways of synergies between SCOS components. By enabling this flexible interaction model we
allow every component in SOS to benefit from any other component, leading to an evolvable and
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extensible system. In the following, we introduce the main components of SCOS and discuss
them in more detail.
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Figure 8.2: Smart City Operating System

8.3.1 Infrastructure Layer

The first and also bottom layer of SCOS is the Infrastructure Layer. Essentially, this layer man-
ages the underlying infrastructure resources, configures and provisions them, and constantly
monitors these resources.

Infrastructure Management

Since in a smart city we have various heterogeneous types of infrastructure resources like tradi-
tional servers, cloud computing resources [10], edge and emerging IoT devices [25], the infras-
tructure layer allows to integrate them using an Infrastructure Management subsystem. First, the
infrastructure management provides a mechanism that enables stakeholders of SCOS to locate
and identify their owned or leased resources. Second, after locating the necessary resources that
should be managed, these resources need to be accessible for SCOS in order to get integrated
into the overall system. Therefore, the infrastructure management provides a pre-built list of
drivers for communicating with the resources, as well as an access management component for
securely storing the necessary credentials or keys. Finally, to provide an extensible approach, the
infrastructure management subsystem provides APIs that enable stakeholders to build custom
drivers in order to integrate emerging types of resources that require new forms of interactions.

Configuration Management

Once the infrastructure resources are integrated into and are accessible for SCOS, it is necessary
to facilitate the processing power of these resources for e.g., running and executing applications.
In order to do this, the Configuration Management subsystem allows for provisioning, deploying,
and configuring these resources transparently and efficiently. Since the various types of infrastruc-
ture resources have different capabilities and environments, configuration management needs to
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respect these constraints. Hence, it provides a scalable and elastic provisioning solution that can
be specifically tailored for each type of infrastructure [111]. The overall provisioning approach
installs platform-specific software packages that allow leasing and releasing, monitoring, and
deploying of resources in a generic and uniform manner. Next, for tailoring the connected and
provisioned infrastructure to stakeholder requirements, the configuration management subsystem
provides interfaces that enable SCOS to configure several aspects (e.g., pull- vs. push-based
updates) via the provisioned software packages. Finally, the configuration management supports
the seamless deployment of single applications, complete application topologies, and additional
necessary packages onto connected infrastructure resources by considering both the computa-
tional capabilities as well as available execution environments [109]. Furthermore, since smart
city applications need the ability to evolve over time in order to react to changing requirements
or regulations, configuration management enables the seamless migration of application topolo-
gies among deployment targets as demonstrated in Chapter 4. Thus, allowing the independent
evolution of applications, their topologies, and infrastructure resources.

Operations Management

After the infrastructure is provisioned and ready for deployment, SCOS needs a mechanism that
enables monitoring and analyzing the performance of these resources. Thus, Operations Manage-
ment supports the constant monitoring and collection of information from connected resources,
by using available monitoring capabilities of the respective infrastructure (e.g., cloud monitor-
ing APIs1, commonly applied monitoring tools like Ganglia [68]), or by provisioning software
capabilities that allow gathering performance measurements (e.g., tailored profilers for edge de-
vices [111]). In addition to monitoring, operations management also provides mechanisms to
manage gathered logs, events, and faults. Based on collected information from the underlying
infrastructure resources, operations management is able to conduct performance analyses that
can be used for optimizing resource utilization or evolve the overall infrastructure deployment.
Furthermore, fine-grained analysis information can be used by other subsystems of SCOS to
adapt application topologies in order to react to defined requirements like SLAs. Additionally
it provides mechanisms for continuous evolution of applications and their components via the
approach presented in Chapter 7. Finally, operations management provides APIs that allow op-
erators of SCOS to define custom adaptation routines (e.g., scaling algorithms) to guarantee a
defined availability for infrastructure resources or deal with network outages [45].

8.3.2 Data Layer

The second and middle layer of SCOS is the Data Layer, which is responsible for on the one
hand storing and providing access for data that is residing in our ecosystem, and on the other
hand processing and analyzing data that can be further used by other layers of SCOS in order to
generate valuable insights.

1e.g., https://cloud.google.com/monitoring/api/
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Storage & Access

Since in modern smart cities running applications, infrastructure resources, and citizens produce
an ever growing amount of data, which is commonly referred to as big data [14], the data layer
provides the Storage & Access subsystem for managing and handling data. It allows stakeholders
of SCOS to store and consume large sets of diverse data by providing generic and extendable
APIs. For efficiently managing data in SCOS, the subsystem allows considering the plethora
of available data formats, the intrinsic diversity of data, and also enables respecting potentially
noisy data [103] that is produced by the underlying infrastructure with its millions of managed
resources. Additionally, the subsystem supports the ability for handling both, static data that is
not frequently accessed or processed, as well as dynamic data that is constantly and relentlessly
changing. To address the challenges that emerge from handling these different types of data, the
storage & access subsystem provides a flexible approach that supports various storage facilities
like traditional relational databases, document-oriented, and complex unstructured data stores.
Providing data storages in a Data as a Service (DaaS) fashion enables the seamless integration of
data facilities into SCOS, eases the integration of new data storages, and also allows for easy and
uniform data access as well as storage functionality for components inside and applications on
top of SCOS. Furthermore, the storage & access subsystem provides mechanisms for merging
and combining different types of data, which can be used as foundation for analysis and planning
operations in upper layers. Finally, since the ownership of data is an important concern in SCOS,
the storage & access subsystem incorporates novel concepts that protect data, but also allow open
data exchange where different levels of data owners can share data, by integrating the principle
of a Hub of all Things2 as well as the approach presented in Chapter 5. Following this approach
enables the clear concept of ownership and allows addressing emerging data compliance and
security requirements.

Processing & Analysis

After enabling the efficient access and storage of data in the data layer, the Processing & Analysis
subsystem allows stakeholders to efficiently transform, mediate, and analyze these large sets of
diverse data. In addition, since the processing of streaming data as well as historical data is an
important aspect in current smart cities, the processing & analysis subsystem provides an extensi-
ble set of drivers for integrating and supporting various processing engines (e.g., Apache Storm3,
Amazon IoT4, Google Cloud Dataflow5, or Esc [85]). On top of basic processing capabilities, the
processing & analysis subsystem provides a novel processing approach that is based on a lambda
architecture6. Employing lambda architectures allows SCOS to balance throughput, latency, and
fault-tolerance by simultaneously executing batch processing on batch data, and stream process-
ing on real-time data. Next to processing, the analysis of processed data is another vital aspect
in a smart city environment. Thus, the data layer provides data aggregation mechanisms, novel

2http://hubofallthings.com/
3http://storm.apache.org/index.html
4https://aws.amazon.com/iot/
5https://cloud.google.com/dataflow/
6http://lambda-architecture.net

93



querying capabilities [20], and a transparent environment for executing tailored processing and
analysis routines. For building and deploying executable routines, the subsystem provides on the
one hand a pre-built set of commonly applied processing and analysis logic, and on the other
hand a development kit for developers for building and deploying custom code.

8.3.3 Application Layer

The third and topmost layer of SCOS, the Application Layer, provides a comprehensive set of
methodologies and tools for efficient design, development, distribution, and operation of smart
city applications.

Design & Development

One of the main goals of the SCOS Application Layer is to enable practitioners to create smart
city applications in a simple, structured, and well-defined way. To accomplish this, the Design &
Development subsystem is built around a comprehensive methodology for architecting, develop-
ing, and operating cloud-native smart city applications based on the MADCAT [46] methodology.
The methodology provides actionable guidelines for iteratively architecting and implementing
smart city applications, both for new applications, as well as for migrating existing applications
to a cloud-native architecture [5] suitable for the SCOS smart city application ecosystem. Fur-
thermore, SCOS provides a unified mechanism for describing smart city applications and their
components along with deployment properties and requirements, similar to TOSCA [13]. This
mechanism allows for easy sharing of applications and application components between SCOS
deployments and provides a clear separation between application component dependencies and
infrastructure requirements to create infrastructure-agnostic application descriptions. Such appli-
cations can then be offered in a smart city application market [107], where users can buy and sell
applications and their components using an open self-service platform.

Runtime Environment

To allow for seamless execution of smart city applications, the SCOS Runtime Environment
provides a configurable and adaptive execution environment for cloud-based applications that is
independent of the underlying physical infrastructure. The execution environment incorporates a
pluggable, unifying infrastructure abstraction [88] to transparently support and manage multiple
application deployment mechanisms, such as container-based deployments (e.g., Docker7) and
virtual machine-based deployments that are provisioned using predominant cloud offerings (e.g.,
OpenStack8 or Amazon EC29). The runtime environment furthermore provides a service mobility
mechanism [90] that allows for seamless migration of application components between data
centers and stakeholder premises. By moving processing logic closer to data sources and/or data
sinks, network overhead and associated costs can be reduced. Additionally, component migration

7https://docker.com
8https://openstack.org
9https://aws.amazon.com/ec2
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allows for the execution of applications that could otherwise not be executed due to compliance
constraints.

Lifecycle Management

Closely integrated with the runtime environment, the Lifecycle Management subsystem is re-
sponsible for managing the complete lifecycle of smart city applications in SCOS. For appli-
cations developed using the SCOS methodology discussed above, the lifecycle management
subsystem provisions required resources according to the specified requirements as well as ap-
plicable constraints, and deploys all application components according to their deployment man-
ifests [88, 109]. Stakeholders can then start, stop, or pause applications. During runtime, the
lifecycle management subsystem will continuously monitor deployed smart city applications to
optimize application deployment topologies [113]. Furthermore, monitoring data is pushed to
the data layer, which enables consumption and further processing by applications. In addition to
monitoring the overall operations of executed application components, the lifecycle management
subsystem continuously monitors and verifies mandatory compliance criteria and enforces them
by initiating component migrations if possible as well as instructing the runtime environment to
deny access to critical resources if necessary.

8.3.4 Cross-Cutting Concerns

The final layer of SCOS represents cross-cutting concerns. Components or applications of SCOS
require common functionality (e.g., authentication) that span across several layers. Since such
functionality is affecting the overall system, it is centralized in one place in order to avoid updating
components throughout the system in case a certain behavior (e.g., logging) has to be changed.

Tenant Management

Smart city applications operate under complex compliance and security regulations. Furthermore,
since these applications have to operate at large scale, are maintained by varying stakeholders,
and provided in different possible facets, a plethora of constraints need to be efficiently managed.
Therefore, the Tenant Management subsystem supports the magnitude of participating stakehold-
ers and allows them to specify their own security and compliance guidelines. Next, in order to
allow large-scale interactions of stakeholders in a smart city environment, tenant management
supports a flexible interaction approach that allows expressing specific constraints that need to
be respected. For example, considering an interaction among stakeholders in this context, con-
straints that are valid for two stakeholder having direct interaction can become invalid if another
stakeholder joins the interaction, which is triggered by the complex data regulations in such
environments. Another important aspect of tenant management is enabling the clean separation
and isolation of any type of data, but especially for sensitive data. Thus, tenant management
enables each stakeholder of SCOS to clearly define the following constraints regarding its data.
First, tenants specify which data they provide and in which quality. Second, tenants can decide
which data can be shared or consumed. Third, tenants can describe with whom they want to
share data, or who is specifically allowed to consume provided data. Finally, tenants can specify
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which data and from whom they want to consume data. Based on this specification, the tenant
management subsystem derives a constraint matrix that clearly regulates data exchange in SCOS,
which avoids undesirable data transfer by respecting various forms of interactions (e.g., direct
or transitive). Nevertheless, this approach still empowers novel mechanisms that allow data pro-
cessing in highly constrained interaction scenarios by using capability migration like presented
in Chapter 6. In addition to data concerns, tenant management also manages a consolidated view
on resources that are consumed by and available to tenants of SCOS. Based on the underlying
transparent infrastructure layer, tenant management not only uniformly provides cloud resources
like virtual machines, but also offers other forms of infrastructure resources such as IoT devices.
This enables tenants and their respective applications to lease and release resources following a
consistent, but flexible and extensible model.

Security & Compliance

Stakeholders in smart city environments implicitly expect and demand services to be secure, as
well as to preserve their privacy. Thus, SCOS provides a Security & Compliance subsystem that
allows addressing both, basic and complex security aspects. First, since data in SCOS is con-
stantly flowing among different components or applications, which can reside inside or on top of
SCOS, the security & compliance subsystem provides mechanisms to protect data in transit by
using strong encryption mechanisms. In addition, components of SCOS that are dealing with sen-
sitive data are also provided with approaches for securely storing this data. Second, since SCOS
must be able to deal with a broad variety of stakeholders and users, the security & compliance
subsystem provides capabilities that facilitate strong authentication mechanisms (e.g., biometric
and multi-factor authentication) that can be used by components of SCOS to clearly specify who
can access a specific service. Third, next to authentication, SCOS also provides authorization
capabilities that allow enforcing permissions before accessing applications or manipulating data.
Fourth, in order to allow operators to manage SCOS more efficiently, the security & compliance
subsystem provides auditing and logging functionality on component level. Fifth, in order to
keep the overall stack of components in SCOS secure, the security & compliance subsystem
provides configuration management for automatically delivering software and security updates
for different layers of SCOS. Sixth, since applications in the smart city domain need the ability
to adapt to users, they come with various configuration alternatives that depend on the user’s
preferences. Thus, it is important for SCOS to allow applications to collect user-specific data in
order to characterize a specific user. However, this form of characterization, which comprises
both behavior and preferences, represents a possible threat for users. Therefore, the security &
compliance subsystem provides mechanisms that explicitly assure and preserve the user’s pri-
vacy. In addition to these common security capabilities, the security & compliance subsystem
also deals with security requirements that emerge from the underlying infrastructure layer. Given
the large number of resources that are available, SCOS provides security management that is able
to deal with the intrinsic scalability requirements. Next, since especially IoT resources embody a
vital aspect not only in enterprise systems, but also in consumer solutions, the security & com-
pliance subsystem enables flexible security models. Based on these models, SCOS can adapt to
and respect emerging complex security requirements from the various domains it is operating in.
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8.4 Related Work
The rapid adoption of the smart city paradigm and its broad coverage in research initiatives have
led to several approaches covering abstract concepts as well as specific tools to address emerging
complexities. SmartSantander [84] proposes a city-scale experimental research facility supports
applications and services in the smart city context. SmartSantander focuses primarily on the IoT
element of a smart city and aims to provide a large-scale testbed that helps with issues arising from
connecting and managing IoT infrastructure elements. Jin et al. [50] introduce an information
framework for creating smart cities through the IoT. The authors focus on the urban information
system as an omnibus volume starting from the sensory level up to issues of data management
and cloud-based integrations. In a similar way Mitton et al. [71] propose the combination of
cloud and sensors in a smart city environment. The focus of their work lies on the design of a
pervasive infrastructure, where services interact with their surrounding environment with a clear
focus on sensors in the IoT context. In a more abstract conceptual direction Chourabi et al. [23]
present a framework to understand the concepts of smart cities. The authors provide a conceptual
framework to comprehend the vital elements in a smart city by identifying critical factors. The
framework suggests research directions and outlines practical implications. In a similar way,
Nam et al. [74] try to identify how a city can be considered smart, by aligning strategic principles
in the context of technology, people, and institutions, which represent the main dimensions of a
smart city.
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CHAPTER 9
A Smart City Application to enable a

Holistic, Interdisciplinary Decision
Support System for Sustainable Smart

City Design

In this chapter, we present results from our ongoing efforts towards engineering next-generation
smart city applications to provide stakeholders with a holistic and tailored view on their problem
domain to support them in managing relevant aspects of the city, and furthermore provide effective
assistance for important decision processes. We introduce the URBEM Smart City Application
(USCA), an interdisciplinary decision support system, and present different views on its use by
involved experts from four central smart city domains in the context of a smart city research
initiative in the city of Vienna.

9.1 Introduction

Todays cities are evolving into complex behemoths consisting of a myriad of sophisticated en-
tangled systems. The recent advent and rapid adoption of the smart city paradigm that enables
vital new possibilities, also has significantly contributed to the intrinsic complexity [76] of such
systems. Complex systems and models from multiple domains, such as e-government, traffic and
transportation management, logistics, building management, smart health care, and smart grids,
have become essential drivers for sustained innovation and improvement of citizen wellbeing. In
order to enable sustainable, supply-secure, and future-proof planning that can keep up with to-
day’s rapid city growth and urbanization, it is vital to enable stakeholders to make well-informed
decisions. To achieve this they rely on the expertise of domain experts who in turn use complex
models for analyzing and simulating various aspects of a city ranging from building physics,
energy and mobility systems, to sociological and behavior models. The most vital part, however,

99



is the ability to effectively integrate these models, allowing them to stimulate each other, which
presents the enabling key for creating the foundation for sustainable and future-proof smart city
design.

In this chapter, we present results from our work in the context of the URBEM smart city
research initiative, specifically we introduce the USCA, a smart city application enabling the
scenario introduced in Section 3.1 by utilizing the SCOS. Specifically we emphasise the follow-
ing intrinsic requirements that need to be addressed to fully enable the crucial collaboration of
stakeholders and domain experts in URBEM. First, we need the ability to integrate heterogenous,
multidimensional data sources that are omnipresent when operating applications in smart city
ecosystems. Second, since in smart cities and especially in URBEM, there are various stake-
holders involved that enforce and must respect a plethora of different compliance and privacy
regulations, we need mechanisms that allow for respecting these constraints, without impeding
stakeholder interaction. Finally, to fully support domain experts in URBEM, we can not only
provide them with pre-built services and applications, but must allow them to integrate and facil-
itate their own established and well-known heterogenous tool stacks. Based on requirements, we
show how we achieve this vital integration by developing the URBEM Smart City Application
(USCA) and outline how this has benefited involved domain experts and stakeholders.

The remainder of this chapter is structured as follows. In Section 9.2, we present USCA, a
representative smart city application that emerged as a result of the URBEM research initiative,
and discuss how it tackles the identified challenges. In Section 9.3, we outline how domain
experts and stakeholders use and benefit from USCA, followed by a comprehensive summary in
Section 9.4.

9.2 The URBEM Smart City Application

In this section we present the URBEM Smart City Application (USCA). USCA allows for in-
tegrating models of multiple domain experts that operate in domains such as building physics,
electrical and thermal energy, energy demand modeling, as well as mobility and sociological
behavior modeling to provide an interactive, explorable, and dynamic visualization for stakehold-
ers. It is an application within the Smart City Application Ecosystem (SCALE), as introduced in
Chapter 8. Figure 9.1 shows an overview of USCA in the context of SCALE.

In USCA, stakeholders interact with a dynamic, web-based, geo-spatial Visualization that
allows them to freely explore the city as well as different evolving aspects in the context of
multiple scenarios with predictions up to the year 2050. Stakeholders can not only explore the
city as a whole, but also inspect it in varying levels of detail, from districts, over blocks, down
to individual buildings. They can enrich their view with the results of domain expert models by
dynamically adding and removing additional layers. This enables them to get a detailed look at
various aspects of the city in a dynamic and integrated fashion. Figure 9.2 shows an example
where specific natural gas uplinks for several building blocks in Vienna are explored.

Each of these model interactions spawns specific requests, which are handled by the Request
Router. The Request Router acts as a smart request proxy and is responsible for elastically scaling
up and down the necessary infrastructure resources based on the request patterns of USCA. To
achieve this it utilizes the capabilities provided by the Infrastructure & Resource Management
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Figure 9.1: URBEM Smart City Application Overview

Layer of the Smart City Operating System (SCOS) and the SYBL [24] language. This allows
USCA to maintain a small footprint as it can ensure that resources are only consumed when
needed. Additionally, the Infrastructure & Resource Management Layer enables infrastructure-
agnostic deployments via the approaches presented in Chapter 4 so that USCA can be executed
on a variety of different platforms, which is an important factor in the heterogeneous infrastruc-
ture landscape of current smart cities. It is further able to manage and operate edge infrastructure
resources using LEONORE [108] and DIANE [109]. The Request Router then passes each re-
quest to the Constraint Manager, which in turn is responsible for ensuring that USCA meets the
aforementioned complex compliance and privacy regulations. The Constraint Manager inspects
each request to check which data sources and domain experts’ models are needed to fulfill the
requests. Based on this information it ensures that no privacy or compliance constraints are vi-
olated and forwards the specific requests to the Model Container & Computation component.
If constraints are violated, the Constraint Manager can in turn utilize SCOS’s Security & Com-
pliance Layer to offer ad hoc compensations using capability migrations provided by Nomads
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Figure 9.2: Visualization of gas heating uplinks for building blocks in Vienna.

(Chapter 6). The Model Container & Computation component ensures that the domain experts’
models are correctly executed and are supplied with all necessary data. Along with the Storage
Service, these components represent the core elements of USCA and are key to enabling a holistic,
integrated city view. The Model Container & Computation component provides means for provi-
sioning and executing containers. We currently support two popular container formats, Docker1

and Rkt2. This allows domain experts to continue using their well-known and established tool
stacks without sacrificing the ability to integrate them into USCA. The containers are packaged
to include all necessary runtime artifacts. Additionally, they can be checked and verified to ensure
that compliance and privacy constraints are not violated by utilizing the Smart Brix framework
(Chapter 7). This vital feature is enabled via the Application Runtime & Management Layer of
SCOS. To give models access to required data, data containers are transparently integrated by
injecting necessary container links. This mechanism enables a minimally invasive approach that
allows domain experts to integrate provided capabilities into their own tools. Domain experts
then simply access data in the data container via the established link and store the results of
their models in the same container. In the background the Storage Service is used to provide
necessary data via these links, as well as to store the model results in the appropriate data store.
Additionally, the Constraint Manager can check at all times if data in transit can be consumed
by the respective domain expert, which ensures that all compliance and privacy constraints are
also met on the data level. The final element in empowering the Storage Service is the ability to
utilize the Data Management Layer of SCOS. It enables the Storage Service to access a wide
range of city data in various formats ranging from traditional relational data and documents, to
live streaming data from the Internet of Things. All this data in turn can be incorporated into

1https://www.docker.com
2https://github.com/coreos/rkt
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domain models as well as directly into the visualization.

9.3 Domain Expert Perspectives

In this section, we discuss the use of USCA by experts and their models from four different smart
city domains. We briefly outline the specifics of each model, how it utilizes and benefits from
USCA, and conclude with the observed benefits from the stakeholder’s perspective.

9.3.1 Building Models

One of the key elements in urban city planning is to develop a proper method that allows simulat-
ing the effects of different urban development strategies (e.g., for 2020, 2030, and 2050) focusing
on all buildings within a district or even an entire city. Therefore, different urban development
scenarios are used as initial parameters to run building simulations for the focused building stock.
Individual indicators (e.g., heating demand or refurbishment rates) are usually insufficient to
run commercial building simulation tools. In order to maintain good performance and a time-
efficient calculation period to simulate an entire urban environment, the simulation efforts for
single buildings must be as low as possible. This model generates scalable density functions
for both, residential and non-residential buildings by considering particular construction periods,
different HVAC3 technologies as well as individual occupancies in the course of a social milieu-
based approach. The result is a comprehensive matrix of simulated density functions consisting
of all possible combinations of the parameters mentioned above. The ability to expose this model
within USCA allows the electrical and thermal grid models to utilize generated results that enable
them to use hourly load profiles, which in turn are required for the technical simulations. In order
to generate high-resolution load profiles (both temporal and geographic) for each building, only
the input of the urban development scenarios generated within the energy demand model and
the number of buildings is needed. This significantly increases the possible level of detail for
planning decision support in this domain.

9.3.2 Energy Demand Models

The model concerning the perspectives of building energy demand and supply mainly handles
the long-term development of heating and cooling demands. Additionally, it is concerned with
the demand for domestic hot water (DHW) in buildings and the interactions with grid-bound
heating supply, specifically focusing on gas and district heating. Since the building stock causes
a large part of the energy demand of modern cities and the realization of the European energy
targets4require a decrease in this demand, a reduction of fossil fuels (e.g., gas and oil), as well
as the integration of renewable energy sources. This can be achieved by thermal refurbishments
of buildings, by changing the heating systems, and by using a different energy carrier. The used
model simulates the long-term investments in the building sector and optimizes the investments
in the expansion of the district heating and/or gas infrastructure. This model not only considers

3heating, ventilating, and air conditioning
4http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:178:0107:0108:EN:PDF
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the current legislative and policies, but also assumptions for the future development of them [32].
The emerging results are spatially resolved. As this analysis is from an economic point of view,
the integrated approach within USCA allows enriching the model with more technical details.
Based on a thermal grid analysis of the status quo for the base year, information about the spatial
heat losses or remaining capacities without expansion can be pointed out and are used as input for
the economic model. Subsequently, the long-term results regarding heating and cooling demand,
and the expansion of the district heating network for several years within the considered horizon,
are the basis for thermal grid analysis. The results of the analysis allow finding appropriate
measures regarding the grid to react to these changes.

9.3.3 Electrical Grid Models

The model of electric supply networks can predict reliability, overloads, and network utilization
considering the limits of operational equipment used inside the network. In addition, the model is
capable of making statements about which requirements will arise for future power grids through
increasing integration of decentralized energy resources, decentralized storage, and energy com-
bined supply networks (energy hubs), while considering demographic change. Modeling and
simulating an electric supply network for urban areas requires an approach that allows for incor-
porating large amounts of network data. Therefore, power flow studies [36] for distribution areas
fed by substations are performed. Transmission areas inside an urban area are neglected. Further-
more, energy and infrastructure (heat, gas, and electrical) combined systems are simulated by
direct current power flow calculations within an optimization using an energy hub approach [34].
Possible objective functions of the optimization are the minimization of CO2 emissions, or the
minimization of line utilization, with the explicit constraint that network capacities (electricity,
gas and district heating) should not be overloaded. Results from the energy demand and build-
ing models inside USCA form the framework conditions and input parameters for the electric
supply network model. Based on a technical analysis for a base year, scenarios with increasing
integration of renewables and cooling demand that are mainly covered by electric energy reveal
the limits of currently used network equipment (lines, transformers, etc.). The obtained results
affect future investment decisions in network utilities to address changing requirements within
the electric supply networks.

9.3.4 Thermal Grid Models

Current developments of the European energy market are influencing the operational strategy of
heat suppliers. Especially providers of district heating systems fed by conventional heat produc-
tion have to react with appropriate measures to these changes. The integration of thermal storages,
decentralization of heat production, changing heating technologies or adjusting the temperature
of district heating networks make it necessary to simulate and analyze existing and future designs
of district heating systems. In order to achieve comparable conclusions about operating behavior
of district heating systems, it is essential to create a corresponding model including main compo-
nents like pipes, pumps, storages, and valves. The basic idea of the created numerical model is the
combination of a steady state hydraulic and a transient thermal calculation of the district heating
network. The results of the iterative hydraulic calculation are the pressure and velocity distribu-
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Figure 9.3: Floor-space potentials for individual buildings up to the year 2030.

tion of the pipe network [114]. These results serve as input parameter for the thermal calculation.
To simulate the thermal behavior of the district heating network a discretized one-dimensional
pipe model is used. The discretization is done using the finite-volume method and the resulting
equation system can be solved explicitly or implicitly. A common way to define the topology
of networks is the usage of a node-edge matrix. This so-called incidence matrix is generated
automatically from given GIS data. The usage of the simulation model within USCA increases
the capability in terms of interactions with more detailed data provided by other models that are
integrated in USCA. The output of the model can be used to support economic analysis from a
technical point of view or serve as additional input for analysis of energy combined systems. The
possibility to link models of different disciplines extends the scope of the overall application.

9.3.5 Spatial Modeling and Visualization

The visualization aspect represents a vital instrument to communicate the results of, as well
as to interact with, the models of the domain experts via a simple and intuitive interface. The
ability to spatially resolve the results of the models and to evolve them over time is an essential
factor in understanding the impacts of complex systems on the city. USCA allows to seamlessly
incorporate and combine city data with the results of domain expert models, which enable novel
ways for illustrating vital elements for city design. In Figure 9.3 we see a spacial placement of
forecasted floor-space potentials for individual buildings in the year 2030. Through USCA it is
possible to incorporate various city data sources to get an accurate picture of specific development
potentials, which is an important factor for spatial modeling. We could also already demonstrate
the applicability and benefits of this approach in [31].

The development of smart cities requires the integration of multiple stakeholders from dif-
ferent fields. Therefore, USCA provides an easy to manage tool for displaying all relevant in-
formation, whereas the visualization enables all involved entities to get an overview about the
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Figure 9.4: Energy Demand Visualization for the the 11th district of Vienna

complexity of the system and to gain an understanding about the main influences and challenges
within other disciplines. The consequences of decisions (e.g., investment decisions, legislation,
definition of subsidies) within other fields and additional required measures can be highlighted
using the visualization. A representative example that illustrates these integration benefits can be
seen in Figure 9.4. Figure 9.5 illustrates detailed district heating demands of all blocks within
Vienna’s 11th district. The foundation for this is the energy demand model in combination with
city data enriched by the building models, which in turn provides detailed load profiles. These
high-resolution load profiles are then used by the electrical and thermal grid models to deliver
specific grid impacts, which can be visualized at varying spatial detail levels via simply zooming
in or out in the Visualization (Figure 9.5, Figure 9.6).

9.4 Summary

The smart city paradigm led to a transformation of today’s cities to complex systems of sys-
tems with a plethora of increasingly complex dependencies and interactions. A large number
of stakeholders from multiple different domains pose complex requirements on these systems
that might be conflicting and will change over time. Efficient design, engineering, and operation
of such systems is increasingly challenging but represents an essential ingredient in supporting
stakeholders to make well-informed decisions.

In this chapter, we presented results from our ongoing efforts towards engineering and op-
erating next-generation smart city applications that aim to provide stakeholders with a holistic
as well as customized view on their problem domain. Such smart city applications must be de-
signed to support stakeholders from different domains in managing and affecting relevant aspects
of the city and provide effective assistance for important decision processes. To address these
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Figure 9.5: Energy Grid High Level Overview for a district

Figure 9.6: Detailed Energy Grid for a specific set of buildings

challenges, we introduced USCA, an interdisciplinary decision support system for holistic city
planning and management. USCA is a cloud-based application built upon our recent work on
smart city application ecosystems that uses a smart city operating system as its foundation. The
application provides a holistic, integrated view on multiple complex domains based on models
provided by different domain experts to support complex decision processes, while rigorously
respecting relevant confidentiality and security constraints. We furthermore reported on the use
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of USCA by stakeholders from four central smart city domains in the context of a smart city
research initiative in the city of Vienna.
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CHAPTER 10
Application Architecture Blueprints
for Future Smart City Applications

In this chapter we present architectural blueprints for future smart city applications, based on the
previously presented Smart City AppLication Ecosystem (SCALE). We select three representative
types of smart city applications and indentify their key requirements along with architectural
guidelines to implement them based on our experience with SCALE.

10.1 Introduction

The rapid rise and pervasive adoption of the smart city paradigm in conjunction with the Internet
of Things (IoT) are reshaping the world’s metropolises. Today’s cities have evolved to become
behemoth of connected devices cutting through all vital domains, starting with building man-
agement and operations to smart grids and multi-modal traffic management up to social media
driven citizen participation processes. To stay on top of this increasing complexity it is essential
to enable experts and stakeholders alike to utilize this plethora of novel information in order to
ensure optimal city planning, operations, and management. It is vital to provide stakeholders with
capabilities to understand the massive amounts of data as well as support the efficient operation
and management of infrastructures that are getting increasingly complex. This new city concept
also comes with the ability to let citizens participate, which shows to be an integral element in
advancing the city as a whole. To provide citizens with a toolset that allows building novel kinds
of applications, we introduced the Smart City Application Ecosystem (SCALE) (Chapter 8) that
allows practitioners in a smart city environment to build applications that can utilize novel capa-
bilities emerging through the IoT as well as accessing the massive amounts of data in an efficient
way. These applications in turn become composable interchangeable abstractions of capabilities
much like the applications known from todays smart phones, but on a much larger scale. This
evolution also shows to be a vital stepping stone to reach the so called Internet of Cities [89],
an open market place where applications can interact and be exchanged between cities. This
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Internet of Cities allows practitioners to use best practices and solutions from other cities to solve
common problems in their own environment. In order for practitioners to understand where and
how to apply SCALE, we identified common application cases todays smart cities are currently
facing. In this chapter we present best practices (blueprints) for these common cases, show how
they can be addressed, and which elements of SCALE and more specifically its core the Smart
City Operating System (SCOS) have to be applied to enable them.

10.2 Blueprints for Smart City Applications

In this chapter we present blueprints for three different cases we identified as relevant throughout
our smart city research. We identify their integral requirements and present approaches for each
case, that demonstrate how best practices for each case should look like.

10.2.1 Smart City Planning

Case

Todays cities and their respective stakeholders want to provide their citizens with a sustainable
supply secure, affordable, and livable city. In order to provide stakeholders in a smart city envi-
ronment with the optimal foundations for a reflected planning and decision process to support
such a lasting evolution it is essential to enable a holistic view on the city. To achieve this it is
vital to integrate every important aspect of the city seen as a complex system as well as to provide
an understandable view for the stakeholders. This can be achieved by enabling domain experts
from relevant fields like energy, mobility, sociology or buildings, among others, to integrate their
findings and views with one another. Such an integration allows for novel views as well as more
meaningful integrated insights. For example understanding the social milieu of a district allows
deriving certain mobility patterns that in turn enable novel aspects of multi modal transport
planning and so on and so forth. The fuel for these integrated insights are the domains experts’
different models that express certain facets of their respective domains. In order to enable these
models it is vital to supply them with the most accurate and novel data about the city. This in turn
allows them to provide a more precise analysis of the current state as well as to support more
accurate forecast and prediction models.

Requirements

To enable the aforementioned case the following requirements need to be met. In order for the
domain experts to be able to use the most current and accurate data in their respective models,
they need to be able to access all the relevant data provided by the city. This massive amount
of data comes from a wide range of different sources ranging from the Internet of Things (IoT),
to open data sources up to old documents. This means that there needs to be a way to manage
massive amounts of diverse data as well as to integrate heterogeneous data sources. Since
the experts rely on proven tool stacks to implement their models, which in turn consist of a
number of legacy systems combined with older mature system stacks, it is vital to support legacy
systems and tool stacks for model building. Additionally, all these models need the computational
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capacity to provide their results in a reasonable amount of time, which calls for infrastructure
resource provisioning for efficient model execution. Finally, the smart city domain with its many
stakeholders and data providers has a very complex set of security and compliance constraints.
Therefore, to optimally use all the available data, it is essential to provide measures for compliance
and security enforcement.

Approach

To enable the presented case we need to address the outlined requirements. In this section we
introduce a blueprint, which accomplishes this by utilizing several components of the Smart City
Operating System (SCOS). This Smart City Planning Blueprint is depicted in Figure 10.1 and
consist of four main parts. In order to support the stakeholders in understanding and exploring
the complex aspect of the city in a holistic way, we introduce a Visualization Component. It
enables geospatial visualizations of different aspects of the city by integrating the results of
the domain experts’ models. The seconds component relevant for stakeholder interaction is
the Decision Support Component, which provides detailed analytics and statistics based on the
aforementioned integration of different domain model results. Both components rely on the SCOS
support in two main areas. First, they need Processing & Analysis’s pre-built services in order to
be able to effectively prepare the data for visualization and decision support. Additionally, they
rely on Infrastructure Management to provide them with the necessary infrastructure resources
to efficiently perform their tasks. Both components in turn rely on the Model Container &
Computation component, which is responsible for executing the domain experts models. This
component is tightly integrated with the Data Management component, which ensures that the
experts are able to access all the diverse city data that is in turn used as the basis for their models.
Additionally, it facilitates the standard and pre-built services provided by the SCOS’s Processing
& Analysis to support the model building when feasible. The Data Management component acts
as a domain-specific data managing entity and is used by all other components. It ensures that
the complex compliance and security requirements originating from the different data providers
are being met by utilizing SCOS’s Security & Compliance. Additionally, it utilizes the Storage &
Access as well as the Infrastructure Management to ensure efficient and effective data handling
of the massive amount of city data.

10.2.2 Smart City Infrastructure Management and Operation

Case

A city consists of a network of complex systems that interfuse all layers of its infrastructure.
From building and traffic management, up to grid management, and controlling all these systems
becomes more data-intensive and complex, but also more capable. This is increasingly the case
with the rise of the Internet of Things where more and more sensor and devices become critical
elements of said infrastructure. For stakeholders it is therefore of strong importance to have means
that enable the effective management and operation of these complex systems in a transparent
and efficient way. First and foremost, stakeholders need means to configure and control this
cyber-physical infrastructure so they can manage it in a logically centralized way, a vital factor
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Figure 10.1: Smart City Planning Blueprint

for cost efficiency. The second important facet is the distributed autonomous and timely control
of this infrastructure in order to be able to act and react to fast changing circumstances. This
is not only essential in areas like building management where systems like HVAC, lighting or
access control need to be managed, but becomes even more important in areas like traffic and
grid management. The ability to have fine grained instant control is crucial to enable multi
modal transport management or pave the way for the advent of autonomous cars where crossroad
management becomes a highly sophisticated task. The integration of smart metering allows the
smart management of grid utilizations and leads to significant cost reductions for operators and
consumers a like. Finally, all these information needs to be composed in a smart manner to allow
operators to control the systems as well as the physical infrastructure in an efficient way.

Requirements

In order to allow such smart infrastructure management and operation, several requirements need
to be met. First, there needs to be a way to provide IoT device lifecycle management. This in-
cludes ways for device provisioning, management, and integration. Next it is vital to provide IoT
cloud application lifecycle management, which calls for means to provide the necessary cloud
infrastructure resources to enable these IoT devices. Additionally, means for IoT Applications
lifecycle management need to be covered to ensure applications can be deployed and updated
including the vital element of fault handling. The large amounts of data these systems generate
call for a way to manage this massive amount of diverse date. Last but not least, these integra-
tions touch many security critical domains so it is essential to provide compliance and security
enforcement.
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Approach

To address the identified requirements for the presented case, we introduce the Smart City Infras-
tructure Management and Operation blueprint in Figure 10.2. In essence the blueprint consists
of four main parts, which are supported by various components of SCOS, to manage and operate
available smart city infrastructures like buildings, hard infrastructure (e.g., traffic lights, bridges,
roads), energy grids, or public transportation. First, to allow stakeholders to easily gain insights
of the managed smart city infrastructure, we introduce a Dashboard Component. Dashboards
support displaying both real-time, processed, and historical performance data (e.g., energy con-
sumption) of the infrastructure. Furthermore, dashboards are specifically built for non-technical
users, to avoid the need for custom programming, while supporting great flexibility by providing
visual designers that allow stakeholders to create visualizations that are tailored to the avail-
able data and demands. Second, next to dashboards, another important aspect in infrastructure
management and operation is the Statistics & Reporting Component. This component supports
stakeholders in creating customized reports and statistics about the managed infrastructure, which
can be used to deliver transparency into the gained performance data and furthermore promote
compliance. Third, to provide the required data for the first two components, we introduce an
Analysis Component. Based on the gathered and processed data that is provided by SCOS via
the Storage & Access, the analysis component is able conduct specific operations like examining
trends in collected infrastructure data (e.g., power conditions or temperature readings). Addi-
tionally, the Analysis component facilitates standard and pre-built services provided by SCOS’s
Processing & Analysis. The analysis results can the be used to identify problems in the future
or areas that require maintenance. Following this approach can increase uptime of the infrastruc-
ture by dealing with issues before they cause downtimes. Finally, to collect data from the actual
infrastructure and furthermore execute business logic, we facilitate a set of Domain-specific IoT
Apps. These domain-specific apps can either be executed in SCOS, or directly in the actual smart
city infrastructure. The apps gather data by facilitating the magnitude of IoT resources that are
residing in the smart city infrastructure and are managed by SCOS. Furthermore, next to data
collection, the domain-specific apps are able to control IoT resources to react to changes in
the environment or optimize energy consumption of the managed infrastructure. To discover
and communicate IoT resources, the applications are using the Infrastructure Management and
Configuration Management of SCOS. While the apps are executed by facilitating the Runtime
Environment of SCOS, SCOS also manages their complete application lifecycle via the Lifecy-
cle Management. Furthermore, since both the Dashboard and Statistics & Reporting component
require data and resources of multiple domains, SCOS handles and possibly restricts access to
shared resources via the Tenant Management.

10.2.3 Smart City Citizen Participation and Engagement

Case

Another core tenet of Smart Cities is the close integration of citizens with various aspects of the
city to increase citizen wellbeing and quality of living. Examples of such citizen participation
and engagement applications are smartphone-based city transport information systems that allow
users to quickly, efficiently, and ecologically travel through the city while anonymously providing
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Figure 10.2: Smart City Infrastructure Management and Operation Blueprint

data to transportation providers and city administrators. This data in turn can be used to more
accurately estimate upcoming demand, optimize city traffic by redirecting citizens away from
congestions in both, public and individual transports, as well as to guide infrastructure planning.
Another case is the integration of social media feeds to detect potential trends in citizen movement
or concentration points, to help first responders to prevent or shorten the detection time of disaster
scenarios. The utility of such applications is manifold and not only benefits providers and citizens
alike but also creates a better understanding of the city as an adaptive system which benefits
engagement. To enable the creation of such services it is essential to provide means for composing
and integrating data from multiple smart city applications ranging from transport management
and infrastructure management to grid control up to applications in the social media domains.
Based on these data fast feedback loops need to be able that allow citizens and providers alike to
act on new information as soon as possible.

Requirements

Such citizen participation and engagement applications are characterized by a number of require-
ments. Since these applications heavily rely on data from many different stakeholders in the
smart city, ranging from public transport providers, road traffic authority up to energy providers,
there must be a way to securely and efficiently access data from multiple other smart city appli-
cations in a unified way. Due to the integration and enrichment of information from multiple
sources, there must be a way to effectively manage large amounts of diverse data. Integration
of data about citizen movement and use of city infrastxructure further requires that compliance
and privacy regulations must be guaranteed and that relevant security policies as well as tenant
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requests are enforced. Additionally, the runtime infrastructure for the application must be elasti-
cally provisioned and, if possible, deployed on cloud and edge infrastructure to minimize latency
and communication costs while maximizing utility for citizens.

Approach
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Figure 10.3: Smart City Citizen Participation and Engagement Blueprint

The blueprint shown in Figure 10.3 serves as a guideline to successfully implement citizen
participation and engagement applications in Smart Cities based on four core building blocks.
Citizens access the application using either web-based Front Ends, or using native applications
deployed on smart phones or wearable devices (e.g., smart watches) that access the application
through a managed API, provided by the API Manager. These two components are deployed on
the SCOS utilizing the Runtime Environment and handle all citizen-facing interactions. Addition-
ally they rely on Security & Compliance to ensure the critical compliance and privacy regulations
are met as well as on Tenant Management to respect the various different tenant requests. Lastly
they rely on Infrastructure Management to provide the necessary resources for elastically running
them on cloud or edge infrastructures. The Data Management component provides a unified and
secure abstraction for access to data from multiple underlying smart city applications. To ensure
this it relies on Storage and Access for data integration smart city applications and city infrastruc-
ture. Additionally it utilizes Security & Compliance to ensure no data regulations are infringed as
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well as the Infrastructure Management to acquire the necessary resources. At the core of every
citizen participation and engagement application is the custom application logic that actually
provides added value and comfort to citizens. Applications can make use of a number of SCOS
components to ease provisioning and management as well as deployment and runtime.

10.3 Related Work
The broad coverage of the smart city paradigm in research initiatives around the globe has led
to several approaches to address the inherent complexities. The approaches itself mainly focus
either on the IoT aspect or on general complexity and integration issues surrounding smart
cities. SmartSantander [84] proposes a city-scale experimental research facility that supports
applications and services in the smart city context. The primary focus is the IoT element of
a smart city and SmartSantander aims to provide a large-scale testbed that helps with issues
arising from connecting and managing IoT infrastructure elements. Jin et al. [50] present a
framework for creating smart cities through IoT. Their work is primarily centered around the
IoT aspect of smart cities. Another approach in the context of IoT comes from Mitton et al. [71],
where the authors propose the combination of cloud and sensors in a smart city environment. In
their work they focus on pervasive infrastructures, where services interact with their surrounding
environment. In terms of integration Wan et al. [115] present an event based architecture for M2M
Communications for Smart Cities based on the SOFIA project with a case study in the vehicular
context. On a more abstract level Chourabi et al. [23] present a framework to understand the
concepts of smart cities. The authors introduce a conceptual framework to comprehend the vital
elements in a smart city by identifying critical factors. This approach is similar to Nam et al. [74]
who try to identify how a city can be considered smart, by aligning strategic principles in the
context of technology, people, and institutions, which represent the main dimensions of a smart
city. In this broader context Mulligan et al. [72] discuss the architectural implications of smart city
business models. The authors specifically discuss the architectural evolution required for ensuring
a smooth rollout and deployment of smart city technologies. In the context of citizen participation
Khan et. al. [52] introduce a cloud based architecture for context aware citizen services in smart
cities. The authors argue that cloud computing can provide a suitable computing infrastructure
for smart city applications and also emphasize the importance of security considerations in this
context. In a similar manner Jalali et. al [48] present a smart city architecture for community
level services through IoT. Their smart city architecture enables community service providers
and citizens alike to have access to real time data, which has been gathered through IoT as basis
for decision processes and future planning.

10.4 Summary
As Smart Cities evolve towards the Internet of Cities, an open market place where applications
can interact and be exchanged between cities shows to be an essential stepping stone. In order
to enable these applications and to encourage a rapid adoption and deployment, it is essential to
understand common problems and how to address them. In this chapter we outlined blueprints
for three representative types of smart city applications, we identified their key requirements
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along with architectural guidelines to implement them based on our experience with the Smart
City AppLication Ecosystem (SCALE). While smart city applications are diverse, there are
multiple common aspects that should be present in a smart city application platform, primarily
infrastructure and data management, security and compliance management, along with a lifecycle
and runtime environment for applications. An ecosystem like SCALE which incorporates these
elements does allow practitioners to efficiently and effectively implement complex smart city
applications that are secure, scalable, and resilient.
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CHAPTER 11
Conclusion and Future Research

In this chapter, we summarize the main results of this thesis. In Section 11.1 we discuss the core
outcomes of the conducted work and how the state of the art in research was advanced as part of
this work. Then, the research questions posited in Section 1.2 are revisited and critically analyzed
in Section 11.2. Finally, in Section 11.3 we present open topics for future research

11.1 Summary of Contributions
The rapid adoption of the smart city paradigm enabled a vast array of new possibilities to evolve
and enhance the cities around the globe. However, these new possibilities also significantly
increased the complexity, making it challenging to enable holistic approaches that allow stake-
holders to successfully manage and plan in this domain. To enable such approaches practitioners
and stakeholders need the ability to focus on the development of novel smart city applications,
without the necessity to concern themselves with the arising complexities, by relying on the
simplification capabilities of smart city application ecosystems.

In this thesis we presented novel approaches for infrastructure, operations and data manage-
ment in such smart city applications ecosystems. We integrated these novel approaches into a
comprehensive middleware toolkit, called the Smart City Operating System (SCOS) that serves
as the central element for enabling smart city application ecosystems. This SCOS provides the es-
sential simplifications to overcome the aforementioned complexities by introducing abstractions
for infrastructure, data management and operations management, while still respecting the vital
security and compliance aspects of the smart city domain. Specifically, our presented approach
for infrastructure-agnostic artifact deployment allows the easy integration of heterogenous smart
city infrastructures as well as the independent evolution of smart city applications and infrastruc-
tures. This enables a broader integration of, as well as an easy migration between, infrastructures
for smart city applications. To address the key challenge of data management, we presented an
approach for modeling and management of data sources in the smart city domain. Our approach
allows for efficient, distributed data access for applications and introduces a simple technology-
agnostic description of data sources for stakeholders. This mechanism enables the exposure of
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relevant data sources not only for other stakeholders in the same city, but also in other smart cities
around the globe significantly extending the application spectrum of smart city applications. Fi-
nally, in the context of operation management, we presented solutions to enable and improve the
operation as well as evolution of smart city applications, while respecting the complex security
and compliance constraints. We demonstrated that our service mobility approach can enable the
execution, as well as significantly improve the results of, distributed analytical environments. Ad-
ditionally, we presented a method for continuous evolution of container application deployments,
capable of integrating security and compliance constraints. By doing so, we further enabled the
use of software containers for building smart city applications, leading to a substantial increase
in flexibility for developers and operation teams alike.

We evaluated the results of our investigations in the context of multiple scenarios and showed
that the contributions of this thesis significantly improved infrastructure, operations, and data
management in smart city ecosystems. By further enabling such ecosystems through the integra-
tion of our approaches into the SCOS, we significantly eased the creation and management of
holistic interdisciplinary smart city applications. Furthermore, such an ecosystem represents an
essential step towards the creation of composable, interchangeable abstractions of capabilities
similar to the apps we know from todays smartphones, which will pave the way for an Internet
of Cities.

11.2 Research Questions Revisited

Research Question I:
How can smart city application topologies be deployed while specifically respecting the

heterogenous, evolving infrastructure landscape in smart city environments?

We have addressed this question with the contributions in Chapter 4. We introduced Smart
Fabric, a methodology and accompanying toolset for infrastructure-agnostic deployment of ap-
plication artifact topologies based on a constraint-based, declarative specification of the required
deployment infrastructure. Current approaches do not sufficiently consider the specific, practical
problems of dealing with evolving deployment infrastructure and closely tie application artifacts
to their deployment targets. Smart Fabric allows for seamless, independent evolution of both,
application components, as well as the underlying infrastructure. Moreover, our approach en-
ables transparent application deployment and evolution between deployment targets, i.e., across
traditional infrastructure boundaries (e.g., migrating applications between on-premise and PaaS
offerings, or between PaaS and IaaS), without changes to application code.

Research Question II:
How can complex, heterogenous smart city data sources be efficiently exposed in

distributed smart city environments?

We have addressed this question with the contributions in Chapter 5. We presented a method-
ology and toolset to model available smart city data sources and enable efficient, distributed
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data access in smart city environments. A system model that provides a simple abstraction for
the technology-agnostic description of available data sources and their subsets was introduced.
Subsets can represent different aspects and granularities of the original data source, along with
relevant characteristics common in the smart city domain. Based on this abstraction, we presented
the SDD framework, a middleware toolset that enables efficient and seamless data access for
smart city applications. It does so by autonomously relocating relevant subsets of available data
sources to improve Quality of Service (QoS) based on a configurable mechanism that considers
request latency, as well as costs for data transfer, storage, and updates.

Research Question III:
How can smart city applications be operated and evolved while respecting the complex

and changing compliance requirements in smart city environments?

We have addressed this question with the contributions in Chapters 6 and 7. First, we pre-
sented Nomads, a framework for service mobility in Distributed Analytical Environments (DAEs).
We showed that Nomads could significantly improve satisfiability of necessary service composi-
tions to operate DAEs in complex constrained environments. Second, we introduced Smart Brix,
a framework enabling continuous evolution of container application deployments, supporting
traditional continuous integration processes as well as custom, domain-relevant processes, to
implement security and compliance checks. Smart Brix not only enables the initial management
of large-scale smart city application container deployments, but is also designed to continuously
monitor the complete application deployment topology and allows for timely reaction to changes.
This, in combination with its support for domain-relevant processes, enables the operation and
evolution of large scale container based smart city applications under consideration of complex
compliance requirements.

11.3 Future Work

In this thesis we presented different approaches for infrastructure, operations and data manage-
ment in smart city application ecosystems. However, based on the discussion in Section 11.1, it is
apparent that a number of relevant challenges were out of scope for this thesis. In the following,
we outline some challenges and possibilities for future work.

• In the context of the presented approach in Chapter 4, we see the need to extend the pre-
sented framework with mechanisms to automatically gather entities of the system model.
Specifically infrastructure specifications from available cloud services, as well as deploy-
ment units and deployment instances from existing deployment directives to simplify
adoption of our approach. Furthermore, we aim to extend and integrate Smart Fabric with
our work on IoT cloud applications [108, 109].

• With respect to the migration approaches presented in Chapter 5, we will integrate addi-
tional optimization mechanisms to further improve framework performance. Furthermore
we will create additional smart city applications, covering different application areas in
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collaboration with domain experts from URBEM, as well as other smart city initiatives. In
the context of our research on the future Internet of Cities, we will extend the SDD frame-
work to support autonomous, ad-hoc coordination of globally distributed SDD proxies to
further optimize data instance placement in smart city application ecosystems.

• For the framework presented in Chapter 6, we plan to further minimize the number of
migrations by incorporating heuristic-based approaches and genetic algorithms. Addition-
ally, we plan to investigate the utility of Nomads in scenarios with less coordination, for
example in the context of decentralized service choreography.

• Finally, to broaden the applicability of our approach presented in Chapter 7, we will extend
the presented framework to incorporate more sophisticated checking and compensation
mechanisms. We plan to integrate mechanisms from machine learning, specifically focus-
ing on unsupervised learning techniques as a potential vector to advance the framework
with autonomous capabilities.
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