
Machine Learning for Interactive
Performance Prediction

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Data Science

eingereicht von

Markus Böck, BSc
Matrikelnummer 01634838

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assistant Prof. Dipl.-Ing. Dr.sc. Jürgen Cito, BSc

Wien, 21. Juni 2022
Markus Böck Jürgen Cito

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Machine Learning for Interactive
Performance Prediction

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Data Science

by

Markus Böck, BSc
Registration Number 01634838

to the Faculty of Informatics

at the TU Wien

Advisor: Assistant Prof. Dipl.-Ing. Dr.sc. Jürgen Cito, BSc

Vienna, 21st June, 2022
Markus Böck Jürgen Cito

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Markus Böck, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 21. Juni 2022
Markus Böck

v

Acknowledgements

First, I would like to express my gratitude to my supervisor, Jürgen Cito, who guided
me throughout this project. I have benefited greatly from your expertise and insightful
feedback. Thank you for taking me on as a student and for the opportunities created
beyond this thesis.

I wish to extend my special thanks to Marco Castelluccio and Dave Hunt from Mozilla
for providing me invaluable input about the Firefox project, without which the thesis
would not have been possible in this form. I also want to thank Moritz Beller for helping
with the bag-of-words approach.

I am grateful for my parents whose constant love and support keep me motivated. You
encouraged my interest in science and technology since primary school. I could not have
completed this dissertation without the support of my family!

Last, but not least, I would like to thank Caroline and Julian for always listening to my
rants as well as the fun distractions from work.

vii

Kurzfassung

Software Performance ist eine wichtige nicht-funktionelle Projektanforderung. Produkte
wie Webbrowser oder Videospiele müssen ihre Ladezeit niedrig und User-Interaktion flüssig
halten um am Markt kompetitiv zu bleiben. Weil vollständiges Testen und Benchmarking
für große Projekte nicht möglich ist, müssen andere Tools in den Softwareentwicklungs-
prozess integriert werden um ein performantes System zu garantieren.

In dieser Arbeit betrachten wir den Open-Source-Webbrowser Mozilla Firefox und konstru-
ieren ein Machine Learning Modell, das Programmcode identifizieren soll, der womöglich
Performance-Probleme verursacht. So ein Modell kann verwendet werden um Software-
entwicklern durch frühe Hinweise auf verdächtigen Programmcode interaktives Feedback
zu geben, oder etwa Code-Reviewern zu helfen ihre Aufmerksamkeit auf Programmcode
zu lenken, der wahrscheinlich ein festgestelltes Peformance-Problem ausgelöst hat.

Die entscheidende Herausforderung beim Erkennen von Performance-Problemen ist das
Data-Labeling - also zu bestimmen welcher Programmcode Probleme in der Vergan-
genheit verursacht hat. Da der SZZ Algorithmus, der häufig für diese Aufgabe bei der
Software-Defekt-Vorhersage verwendet wird, nur unzureichend präzise war, stellen wir
eine Labeling-Methode vor, die direkt auf Assoziationen von Bug-auslösenden und Bug-
behebenden Issues im Bug-Tracking-System basiert. Obwohl viel Arbeit in traditionelles
Feature-Engineering, wie das Berechnen von Programmkomplexitätsmetriken, gesteckt
wurde, funktioniert ein Bag-of-words-Modell am besten und erzielt eine 5.7 mal höhere
Genauigkeit als zufälliges Raten. Das finale Modell übertrifft das beste auf dem SZZ
Algorithmus basierende Modell dreimal mit einem F1-Score von 0.1745, Genauigkeit von
0.2022 und Sensitivität von 0.1535.

ix

Abstract

Software performance is an important non-functional project requirement. Products like
web browsers or video games have to keep their loading times low and user interaction
smooth to stay competitive in the market. Since exhaustive testing and benchmarking
is infeasible for large-scale projects, other tools have to be integrated in the software
development process to ensure a performant system.

In this thesis, we study the open source web browser Mozilla Firefox and build a machine
learning model to predict which source code changes are prone to cause performance
regressions. Such a model could be employed to give interactive feedback to developers
by raising early warnings for suspicious code, or could be used to help code reviewers
to focus their attention on code changes which are likely to have caused a detected
performance problem.

The key challenge of predicting performance regressions is the difficulty of data labeling,
i.e. determining which code change caused a regression in the past. After evaluating
the SZZ algorithm, commonly used in software defect prediction for this task, to be
insufficiently accurate, we present a labeling approach based directly on associations of
bug-introducing and bug-fixing issues in the bug-tracking-system. Even though a lot of
effort is put into traditional feature engineering, like computing source code complexity
metrics, a bag-of-words model performs best and scores a 5.7 times higher precision
than random guessing. The final model outperforms the best model based on the SZZ
algorithm three times with a F1-score of 0.1745, precision of 0.2022 and recall of 0.1535.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1

2 Background 5
2.1 Machine Learning for Defect Prediction 5
2.2 Feature Engineering for Software Projects 5
2.3 Machine Learning Models . 6
2.4 Interpretability . 8
2.5 SZZ Algorithm . 8

3 Related Work 11
3.1 Model-Based Performance Prediction . 11
3.2 Software Defect Prediction . 12
3.3 Software Engineering Research and Mozilla Firefox 13

4 Methodology 15
4.1 Experiment Setup . 15
4.2 Feature Engineering for Software Projects 18
4.3 Tackling Imbalanced Data . 22
4.4 Parameter Tuning and Model Selection 22

5 Data and Labeling 25
5.1 Mozilla Firefox . 25
5.2 Mozilla’s Bugzilla . 26
5.3 Mozilla’s Perfherder . 26
5.4 Data Selection and Labeling . 28
5.5 SZZ Labeling . 28
5.6 BugBug Labeling . 29

xiii

6 Results 33
6.1 SZZ Labeling . 33
6.2 BugBug Labeling . 35
6.3 Improving the Models with Feature Selection 37
6.4 Best Sampling Method . 40
6.5 Interpreting the Models . 41
6.6 Performance Regressions Versus General Bugs 44

7 Conclusion 49
7.1 Summary . 49
7.2 Contributions . 52
7.3 Limitations and Future Work . 53
7.4 Threats to Validity . 53

8 Appendix 55
8.1 SZZ Labeling . 56
8.2 BugBug Labeling . 57
8.3 BugBug Labeling - General Regressions 59
8.4 Best Hyper-Parameters . 60
8.5 Best Sampling Methods . 62

List of Figures 63

List of Tables 65

Bibliography 69

CHAPTER 1
Introduction

A large-scale software product undergoes many changes during its development and
lifetime. Faulty code changes may lead to a degradation in performance, e.g., longer
loading times for websites or a drop in frame rate in video games. Once a product is
released, it is critical to detect such defects as early as possible to ensure a satisfactory
user experience. Due to frequent changes, exhaustive benchmarking is often too expensive
and not a viable option.

A more feasible approach is to only selectively benchmark the product throughout its
versions and learn from the collected data which kind of code changes are prone to cause
performance regressions. For example, a code change consisting of hundreds of lines
spread among multiple files is more probable to be faulty than one that makes only small
changes in a single file.

The overall aim of this work is to create a machine learning model capable of detecting
code changes that may introduce performance regressions. This model could be employed
to give interactive feedback to developers by raising early warnings for suspicious code
changes and prevent performance regression in the production environment. Once a
performance regression has been detected, the model could also be used to help code
reviewers to focus their attention on code changes which may have caused the problem.
Therefore, a good model may help reduce software development effort and cost.

The central research question of this thesis is:

To what extent are machine learning models capable of detecting performance
regression inducing code changes from source code features in a just in time
manner, specifically at code edit or commit time?

To answer the question, we consider the open-source web browser project Firefox by
Mozilla. Web browsers are performance critical software products for various reasons.

1

1. Introduction

For example, to provide a good user experience, it is important how fast a website loads,
how smooth a video plays back, or how responsive the navigation of a website feels. The
open access of the Firefox project and the performance aspects of a web browser make
Firefox a perfect candidate for our research purposes.

In this work, we leverage the fact that large-scale software projects like Firefox are
organised in form of repositories in version-control-systems (VCS). Developers make their
edits in small chunks and commit their file and code changes to the repository with a
commit message. This allows us to look at a software project throughout its incremental
versions and extract the precise changes - the diffs - from one version to the next [Ott09].

In addition to version-control-systems, bug-tracking-systems (BTS) are used to organise
and track tasks that have to be completed in the project. The tasks include the
implementation of features, fix of software bugs, or other program enhancements [JPZ08].
Bug-tracking-systems are our primary source for collecting information about bugs of a
software project, in particular performance regressions.

However, a big challenge for defect prediction is the fact that benchmark and bug
data are separate from the source code changes. This means that to be able to fit a
machine learning model, first, performance regressions detected in the past have to be
carefully matched to the code changes which have introduced them. In the software
defect prediction research field, the SZZ algorithm [SZZ05] is an automated way to bridge
this gap. This leads to the question:

Is the SZZ algorithm suitable for labeling performance regression inducing
code changes correctly?

Another approach to the labeling problem is to make use of the fact, that since mid 2019,
once they have fixed a performance problem, Firefox developers link the bug number of
the issue in the bug-tracking-system which caused the problem. This number can be
directly mapped to the commits which worked on the issue. However, since there are in
general multiple commits per issue, we investigate:

Is a labeling based on bug numbers suitable for detecting performance regression
inducing code changes?

The labeling is not the only challenge for predicting performance regressions. Performance
regression inducing code changes occur only rarely in comparison to sane commits. This
leads to an extremely unbalanced data sets with only about 1% positive labels. We
employ common sampling techniques described in Section 4.3 to deal with this problem
and ask ourselves:

Which sampling technique is best for dealing with the imbalanced nature of
performance regression data sets?

2

Furthermore, we test a multitude of machine learning models and explore a large space
of models with automated machine learning methods to answer:

Which machine learning model is best at generalising to unseen data for the
task of performance regression prediction?

In view of advances in natural language processing techniques for source code [FGT+20,
ACRC21], one may ask whether it is better to manually engineer features that capture
source code metrics relevant to the task, or if it is better to simply take the raw source
code as input, as would be enough for human software engineers. Training a sophisticated
natural language processing model is beyond the scope of this work, but to get an indicator
to the full answer, we test a simple bag-of-words model, which was successfully used for
performance regressions prediction in research [SWAK12, BLN+22] and investigate:

How does a bag-of-words model compare to a model trained on hand-crafted
features?

Performance bug prediction can be considered as a specialised case of general software
defect prediction. Naturally, it is interesting whether the models trained on the perfor-
mance regression subset are fundamentally different or roughly the same as general defect
prediction models. By looking at the feature importance of the best models, we try to
answer:

How does a performance regression prediction model differ from a general
defect prediction model?

The thesis is structured as follows: Chapter 2 gives an overview of the machine learning
background for this thesis as well as an introduction to the SZZ algorithm. We list
related work in Chapter 3. After presenting our approach to predicting performance
regressions in Chapter 4, we describe our data labeling process in Chapter 5. Lastly,
we report our experiment results in Chapter 6 and answer the research questions posed
above in Chapter 7.

3

CHAPTER 2
Background

2.1 Machine Learning for Defect Prediction
Formally, in a supervised machine learning setting, we have observations in form of a
feature matrix X = [x1, . . . , xn]T œ Rn◊d and a target vector y œ {0, 1}n [Bis06]. In our
particular case, xi œ Rd represent code changes and yi = 1 if the corresponding code
changes are considered to have introduced a performance regression, otherwise yi = 0.
Methods for representing code changes with vectors œ Rd are discussed in the next section
and our approach is described in Section 4.2.

The goal of machine learning is to find a function ŷ(x) œ {0, 1}, which predicts whether a
new code change x is likely to introduce a performance regression. This prediction function
is constructed by considering different models, see Section 2.3, and optimising their
parameters - training them - on our observed data such that we minimise misclassification
on past data, ŷ(xi) ”= yi. The models also have so called hyper-parameters - parameters
which are fixed in the learning process, but also influence the performance of the model.
We will perform a hyper-parameter search to find the best values for these parameters to
obtain the best model for each model class.

2.2 Feature Engineering for Software Projects
2.2.1 Traditional Features
There are many different metrics used in the field of software fault prediction. They can
be broadly split up into following categories [RHTé13]:

• Traditional metrics: size (e.g. number of lines) and complexity metrics.

• Object-oriented metrics: coupling, cohesion and inheritance metrics at a class-level.

5

2. Background

• Process metrics: metrics extracted from the combination of source code and
repository information (e.g. developer experience).

In this work, we want to make predictions at commit or code edit time. This requires
the metrics to be fast to compute. For example, compiling the software project to
extract metrics is not feasible. Furthermore, the metrics should be applicable to many
programming languages.

2.2.2 Bag-Of-Words
As opposed to handcrafting features which capture source code and development charac-
teristics, in theory it should be enough to just look at the source code to figure out which
commits are susceptible to cause problems, just like a human software developer would
do. For this reason, natural language processing methods (NLP), taking raw source code
as input, have gained attention in recent software engineering research, for instance, large
transformer-based models like CodeBERT [FGT+20] or PLBART [ACRC21].

Such large models are beyond the scope of this work, but we test the applicability of
NLP methods with a simple bag-of-words model [MRS10], an approach which has been
successfully implemented in existing literature [SWAK12, BLN+22]. In a bag-of-words
model, text is represented as a list of words, so called tokens, ignoring the order or
grammar of the words. The tokens belong to a vocabulary of fixed size N and the feature
vector œ RN is computed by simply counting the occurrences of each token in the text.
The difficult part of this approach is to find an appropriate tokenization process for
source code, see Section 4.2.2.

2.3 Machine Learning Models
In the field of software defect prediction many machine learning techniques have been
applied [PMT21]. To be able to answer the central research question of this thesis, we
made a selection of machine learning models with different properties, which will be
briefly described in the following.

2.3.1 Logistic Regression
Recall that X = [x1, . . . , xn]T œ Rn◊d is the feature matrix, where n is the number of
samples and d is the number of features. The vector y œ {0, 1}n is the target representing
the true class labels. The logistic model is given by

pi := P (yi = 1|w, xi) = ‡(wT xi), where ‡(a) = 1
1 + exp(≠a) .

The model coefficients w œ Rd are found by minimising the regularised cross entropy loss,

≠ ln P (y|w, X) =
nÿ

i=1
yi ln(pi) + (1 ≠ yi) ln(1 ≠ pi) + C ÎwÎp

p , (2.1)

6

2.3. Machine Learning Models

where C and p are regularisation hyper-parameters. For more information see Bishop
Chapter 4 [Bis06].

2.3.2 Support Vector Machine
Like the logistic regression model, the support vector machine (SVM) classifier is also
linear in its parameters. However, the SVM maximises the margin of its decision
boundary - the smallest distance between the boundary and any data point - to improve
the separation of the classes. Data points lying on the margin are called support vectors.

Alongside the regularisation parameter C, the SVM allows us to specify a kernel to be used
to measure the similarity of data points. This is equivalent to transforming to a (often
higher dimensional) feature space and using the dot product k(xi, xj) = „(xi)T „(xj).
We will consider a radial basis function and a polynomial kernel as well as different values
for C in the parameter tuning. For more details see Bishop Chapter 7 [Bis06]. To make
the SVM work with our high dimensional data, we use the Nystroem approximation
technique [WS00].

2.3.3 Multi-Layer Perceptron
A multi-layer perceptron (MLP) can be seen as a generalisation of the logistic model.
Instead of only one coefficient vector, we now have multiple layers of weight matrices
W(l) œ Rnl◊nl≠1 , bias vectors b(l) œ Rnl , and a non-linear (element-wise) activation
function ‡ : R æ R, such that the input xi is passed through multiple linear and non-
linear transformations,

x(l)
i = ‡(W(l)x(l≠1)

i + b(l)), x(0)
i := xi.

Again, the cross entropy loss (2.1) is minimised where the output of the last layer is used
for pi.

For the handcrafted input features, the MLP does not have to extract features through
learning and thus, only one hidden layer is sufficient for the classification task. Due to
the high dimensionality the MLP is not feasible for the bag-of-words feature vectors. In
parameter tuning, we change the number of nodes in the hidden layer, consider different
activation functions (relu, logistic, tanh), as well as different regularisation parameters as
before. For a detailed overview of MLPs see Bishop Chapter 5 [Bis06].

2.3.4 Random Forest
The random forest classifier [Bre01] is an ensemble of decision trees, a machine learning
model where the feature space is divided by sequential decisions ordered in a tree-like
fashion. This means that the final prediction is based on the aggregation of predictions
from multiple decision trees trained on random subsets of features and bootstrap samples
of the data. This process called bagging mitigates the problem of high variance common
for decision trees.

7

2. Background

There are several hyper-parameters to control the generation of the decision trees like
the number of trees, maximum depth, or the minimum number of samples needed to
further split the feature space, all of which will be explored in the search.

2.3.5 XGBoost
Like random forests, the XGBoost model [CG16] is also based on decision trees. However,
it is a so called gradient tree boosting model. This means that in contrast to random
forests, the decision trees are not generated independently, but models are sequentially
added to correct the errors made by previous models via gradient descent methods.

Like before, there are also hyper-parameters for controlling the generation of decision
trees. Furthermore, there are regularisation parameters and parameters that help to deal
with imbalanced data.

2.4 Interpretability
Having a model that is capable of accurately predicting performance regressions is good,
but it is also important to understand why the model thinks a particular code change is
prone to cause problems. Telling a developer that their edit is likely to cause a regression
by itself is not helpful. It would be more productive to be able to to give the reason for
the decision, for example, that the code complexity increases significantly with their edit.

The SHAP (shapley additive explanations) method [LL17] takes a game theoretic approach
to explain the output of any machine learning model. For each data point x we can assign
a shapley value „j(x) to feature j, which can be interpreted as follows: The value of the
j-th feature contributed „j(x) to the prediction of this particular instance x compared
to the average prediction for the data set [Mol22].

Shapley values have the additive property that if we sum over all „j(x), we get the
predicted value for the data point x minus the average predicted value,

#featuresÿ
j=1

„j(x) = f̂(x) ≠ Ef̂(X).

This means that the prediction at a data point is distributed additively among all features.
To interpret and explain a model as a whole, we can plot the shapley values alongside
the feature values for all data points, which we will use extensively in Section 6.5.

2.5 SZZ Algorithm
In 2005, Sliwerski, Zimmermann, and Zeller (“SZZ”) proposed an algorithm for the
automatic identification of bug-introducing code changes [SZZ05]. Since its introduction,
the algorithm gained great popularity in the field of empirical software engineering and
plays a foundational role in many software defect prediction methods [RRGB18].

8

2.5. SZZ Algorithm

The first part of the algorithm is concerned with finding bug-fixing code changes, which
is done by syntactically analysing commit messages. For example, one may look for
keywords like “bug”, “fix”, “problem”, etc. But ideally, each commit message references
the bug number of the issue in the bug-tracking-system which was worked on in the code
change in a predefined format, e.g., “Bug #123456: Further comments...”, like in the
Firefox repository. This provides an exact mapping from bug-fix to the corresponding
code change and even allows more filtering options by making use of the information in
the bug-tracking-system. For example, this enables us to filter for performance regression
fixes.

Having identified bug-fixing code changes, the algorithm employs the diff functionality
of the version-control-system to find the source code lines that were modified in the fix
and then applies the annotate/blame functions to determine the commits which last
modified these particular lines. The commits detected this way are then filtered to match
the bug report timeline (e.g. commits made after a bug was reported could not have
caused the bug). The remaining commits are considered to be bug-introducing. The
rationale behind this procedure is that a bug-fix has to correct specific lines that were
previously added or modified and caused a problem. This is best explained with following
example.

Bug 1717171 in Mozilla’s Firefox repository was a small fix. In Figure 2.1 on the left,
you can see the code change of the fix, the diff, in the version-control format. By looking
at the deleted (red) and added lines (green) we can see that this particular performance
regression was solved by changing the way the variable currentTime is initialised. By
tracing back which commit added line 1.12 to 1.14 we find the code change in Figure 2.1
on the right, which we accordingly label as bug-introducing.

Figure 2.1: Example application of the SZZ algorithm in Mozilla’s Firefox repository
(Bug 1717171). Left: complete bug-fixing code change. Right: part of bug-introducing
code change.

2.5.1 Limitations
Unfortunately, the core idea of the algorithm does not hold for all software defects and
the procedure suffers from many limitations [CMS+16, RRGB18]. First, the mapping
from bug reports to commits may be wrong. For instance, the reference to the bug report

9

2. Background

may be missing in the commit message of the bug-fixing code change resulting in a false
negative, or the bug report may not describe a real performance problem resulting in a
false positive. These limitations can be largely avoided by carefully following the commit
message and bug-tracking guidelines.

Secondly, tracing back the modified lines of a bug-fixing commit may not lead to only true
bug-introducing commits. For example, modified lines in the fix could be just cosmetic
changes, like variable renaming or indentation, or they could change the surrounding
context of a regression and not the problematic lines themselves. Furthermore, the last
commit to change a line may not actually be the one introducing the problem or there
could be a change in a file which is not executed anymore but also traced back. All these
examples mislead the SZZ algorithm and result in false positives and false negatives
which are difficult to prevent. These limitations occur particularly often if the bug-fix
modifies a lot of lines.

10

CHAPTER 3
Related Work

Performance is one of the most influential non-functional requirements of software
products and research has addressed the importance of integrating quantitative validation
in the software development process to meet performance requirements [BMI04]. Such
requirements may be the throughput of databases [DCS17], system-level performance of
embedded systems [CP03], or the economical use of resources in client-server architectures
and computer networks [HHK02].

This work focuses on application performance, specifically the performance of the Firefox
web browser. It is closely related to the scientific fields of model-based performance
prediction and software defect prediction. In this chapter, we give a brief description of
these fields and name relevant publications. Lastly, we list research work on software
quality control based on the Firefox project.

3.1 Model-Based Performance Prediction
Software performance prediction can be defined as the the process of predicting and
evaluating, based on performance models, whether the software system satisfies the user
performance goals [BMI04]. In this work we do not directly predict the performance
of a system, but try to indirectly predict whether a source code change degrades the
performance. Nevertheless, there are a lot of parallels to the field of model-based
performance prediction, which is why we give a brief review in the following.

Performance models can be divided into two categories: classical models and machine
learning models. Classical models, also referred to as analytical models, are constructed
by making mathematically formalised assumptions about the software system and crafting
a model based on these assumptions. The most used performance models are queueing
networks [DCS17], stochastic Petri nets [KP00], stochastic process algebra [HHK02], and

11

3. Related Work

simulation models [AS00]. More approaches can be found in the survey of Balsamo et.
al. [BMI04].

More recent approaches belong to the second category, where machine learning and
other statistical modeling techniques are employed to predict system performance. These
models do not require assumptions about the software system and therefore, no deep
knowledge about the system is necessary. Examples of machine learning performance
models can be as simple as linear regression models [SHN+15], but also sophisticated
deep learning models [HZ19].

Note that there are also approaches which cannot be assigned to only one category as
they combine both analytical models and machine learning methods [DQRT15].

3.2 Software Defect Prediction
Software defect prediction techniques aim to reduce software development cost by learning
from the repository history and building models to predict whether or not changes to
the project (commits, modules, files, methods, etc.) contain defects [TSR+20]. Since
performance regressions are a a subset of general software defects, this work is best
compared to methods in software defect prediction which leverage machine learning
models to solve the prediction task within a project. It is worth mentioning that there
are also approaches for cross-project defect prediction [KFM+16] as opposed to within
project prediction.

Typically the predictions are based on software metrics [RHTé13]. There are source code
complexity metrics, like number of lines or McCabe’s cyclomatic complexity [McC76],
object-oriented metrics like class coupling or the MOOD metrics set [HCN98], or process
metrics like developer experience [KSA+12]. There is also progress on incorporating
natural language processing methods in defect prediction models. Several approaches
now use source code and commit message tokenization to compute bag-of-words fea-
tures [SWAK12, BLN+22]. One publication even leverages deep belief networks to learn
semantic source code features [WLNT18]. In the future, we might also see the power of
large transformer-based models like CodeBERT [FGT+20] or PLBART [ACRC21] be
successfully employed in defect prediction.

The range of machine learning methods in software defect prediction is also large. We have
logistic regression [KSA+12, CZ11, ACDG07], decision trees [CZ11, ACDG07], random
forests [NHL18, CZ11], naive Bayes [CZ11, SWAK12], support vector machines [SWAK12,
ACDG07], or convolutional neural nets [LHZL17], to name a few.

Lastly, many approaches in the software defect prediction field rely on the automated
labeling provided by the SZZ algorithm [SZZ05, KZP+06, SWAK12, KSA+12, TTDM15,
WLNT18, ACDG07]. However, as discussed in Section 2.5.1, the SZZ algorithm has
many limitations and in general there seems to be a lack of reproducibility for approaches
using this labeling method [RRGB18]. This makes a direct comparison of methods and
classification results difficult.

12

3.3. Software Engineering Research and Mozilla Firefox

3.3 Software Engineering Research and Mozilla Firefox
The open availability of both the source code repository and bug-tracking-system makes
the Firefox project attractive for research in software engineering. In this section we
briefly describe a selection of publications working with data from Mozilla.

In 2011, Zaman et. al. [ZAH11] conducted a case study on Firefox to answer how different
types of bugs differ from each other. By comparing security and performance bugs they
found that performance bugs take more time to fix, are fixed by more experienced devel-
opers and require larger code changes. In 2012, they followed up with a qualitative study
on performance bugs, where they concluded that developers face problems in reproducing
performance bugs, have to spend more time discussing them, and that performance
regressions are often tolerated as a trade-off to improve something else [ZAH12].

In 2015, An et. al [AKG18] built predictive models to help software developers detect
crash-prone code. Their models achieve a remarkable precision of 61.4% and recall of
95.0%. Additionally, they found that developers with less experience are more likely to
submit a crash-prone code change and that such changes are often larger in terms of
added and deleted lines.

Similarly, Chowdhury et. al. [CZ11] trained machine learning models to detect vulnerabil-
ity-prone files in 2010. Vulnerability in this context refers to weaknesses in the software
that may be exploited to cause a security failure. Their models were able to correctly
predict almost 75% of vulnerability-prone files with a false positive rate of below 30%.

There are also publications which do not focus exclusively on the Firefox project, but rather
use it among other repositories to test their approach [KSA+12, SWAK12, KFM+16].
Again, a direct comparison to these results is not possible because the data mining
process (extracting commits, labeling, computation of features) is not reproducible and
because of different experiment setups.

Lastly, Mozilla developed a platform for machine learning projects on software engineering
for Firefox [Moz22a]. For example, they built a model which helps triaging bugs by
automatically assigning a product and component for each new bug [CL19]. Furthermore,
they successfully use a model to figure out which of the around 85 000 unique test should
be run for a single push. Reducing the number of executed test by 70% compared to
previous heuristics makes continuous integration at the scale of Firefox possible [HC20].

13

CHAPTER 4
Methodology

4.1 Experiment Setup

4.1.1 Prediction Performance Measures
To evaluate and compare the various machine learning methods we use five common
classification metrics: precision, recall, F1-score, average precision, and area-under-the-
ROC-curve [HM15]. All of these metrics are derived from the following values:

• True Positive (TP): Performance regression correctly identified.

• False Positive (FP): Performance regression predicted when there is no regression.

• True Negative (TN): Non-regression correctly identified.

• False Negative (FN): Non-regression predicted when there is a performance regres-
sion.

Precision measures the efficiency of a prediction and is given by

Precision = TP
TP + FP .

A high precision means that the model produces few false positives in comparison to
true positives. This is desirable because a lot of false positives would waste time of
developers to check code changes which are not the cause of performance regressions.
This is especially important if the model is employed as a background monitoring tool.
When a lot of false alarms are given, then the predictions would not be trusted and most
likely ignored.

15

4. Methodology

Recall measures the effectiveness of a model and is given by

Recall = TP
TP + FN = TP

P .

A high recall indicates that the model is able to correctly identify most code changes
which caused a performance regression if it is presented one. If a developer is tasked with
finding the root cause of a detected performance regression and employs the model to
filter for candidate code changes, it is more important to not miss any culprits than to
get a few false positives. Thus, for this use case a model with high recall is desirable.

A good precision or recall alone are not meaningful as we can artificially get a perfect
recall by exclusively predicting “positive” and a perfect precision by only predicting
“positive” for a single data point where we are really sure about its label. Ideally, a model
would maximise both metrics. We can assess the overall prediction capabilities with the
F1-score given by

F1 = 2 · Precision · Recall
Precision + Recall ,

which is the harmonic mean of precision and recall.

Many machine learning models have the capability to predict at different confidence
levels, also called thresholds. For example, if we predict a regression only when we are
really certain about it, we have a higher precision, but we will miss many regressions and
have lower recall. The reverse is true if we predict at a low confidence level. Again, a
perfect recall at confidence level 0 is always possible. This allows a trade-off between
precision and recall, and consequently leads to different F1-scores at different confidence
thresholds. To assess the overall performance of models and to select the best ones, we
compare them by their average precision (AP),

average precision =
ÿ

tœthresholds
(Rt ≠ Rt≠1) · Pt,

an aggregate, where the precision at a threshold, Pt, is weighted by the gain in recall at
the threshold, Rt ≠ Rt≠1.

In addition to the average precision, we report a second commonly used aggregate metric
called area-under-the-ROC-curve (AUC). This curve is given by

ROC-curve = {(FPRt, TPRt) : t œ thresholds},

where FPRt = FPt/P and TPRt = TPt/P are the true positive and false positive rates
at threshold t, respectively. As the name suggests the area under this curve is computed,
where a value of 0.5 would be random guessing and a value of 1.0 would be a perfect
prediction score at every threshold.

16

4.1. Experiment Setup

4.1.2 Time Sensitive Evaluation
In the design of the experiments, particular care has to be given to the correct estimation
of the prediction capabilities of the models on unseen data. The standard cross-validation
approach with shuffled data [BB12], commonly used in machine learning, is not suitable
for software defect prediction, as argued by Lemaître et al. [TTDM15]. In spite of that,
this approach is employed in the field [KZWG11, SWAK12] and shuffling of the data
is even implicitly recommended in a popular survey of model validation techniques for
defect prediction models [TMHM16].

This approach is wrong, because software repositories are evolving over time and randomly
shuffling the data points, as it is standard in cross-validation, would induce a bias in our
performance estimate by allowing the model to make predictions on past events with
information from the future. For example, if we count the number of defects per file, the
model could infer that a file is particularly susceptible for problems before the regressions
even occurred in the project. The correct way to split the data for evaluation is by date
[TTDM15].

Therefore, in this work we split the data by date and use 90% of the commits for training
the models and 10% for testing them. Furthermore, the training set is further split
multiple times into two sets - one used for fitting the model and one for testing the model
on future commits. We refer to the second set as validation set and choose its size to
match the test set. In total, we split the training data five times and the performance is
averaged over the evaluation runs to determine the best hyper-parameters for each model.
Lastly, the final comparison is done on the test set from which no information was used
in the process of training and tuning the models. This experiment setup is similar to
cross-validation but with the difference that the validation sets are subsets of each other
and that predictions are only made into the future. This form of cross-validation is often
used for the evaluation of time series predictors [BB12]. For an overview of the setup see
Figure 4.1.

TLPe

TUaLQLQg

VaOLdaWLRQ

TeVWCRPPLWV

BXg UeSRUWV

3 PRQWKV

LabeOLQg

RXQ 1

RXQ 2

......

Figure 4.1: Overview of time-dependent data split in the experiments.

Furthermore, we have to keep in mind that it takes a bit of time to find and fix defects in
a software project. This is important when we extract data from projects which are still
under development. Because of this delay, there may be yet undiscovered bug-introducing

17

4. Methodology

code changes in the most recent commits. As we precisely use the most recent commits
to test the models, there would be a bias in the evaluation. To avoid this dilemma,
commits younger than three months are completely discarded from training and testing.
As performance regressions are critical bugs and usually fixed timely, three months leaves
a large enough gap to assume that the vast majority of bugs are identified and fixed
in this duration. Note that we do not discard any bug reports and use all of them to
identify bug-introducing commits which are older than three months.

4.2 Feature Engineering for Software Projects
4.2.1 Traditional Feature Engineering
Recall that in this work, we want to make predictions at commit or code edit time to be
able to give interactive feedback to developers. In this section we present our selection of
metrics that are fast to compute and hopefully provide a good signal for performance
regressions. These features are inspired by previous defect prediction models, e.g. Kamei
et. al. [KSA+12], and a case study on performance bugs in the Firefox repository by
Zaman et. al. [ZAH11], who found that performance bugs take more time to fix, are
fixed by more experienced developers and require larger code changes.

In Table 4.1, you can see a description of all process metrics extracted from single
commits. Since developers often modify multiple files in single commits, metrics that are
calculated for each file are aggregated by calculating the minimum, maximum, average,
and sum of the measures to get summary statistics. It is important to note that when
calculating the features we only use information available at the time the code change
was committed. For example, the number of unique changes to a file are only counted up
to the commit for which we extract the features. This ensures that we do not introduce
any bias by using information from the future we would not have at prediction time.

In addition to the process metrics, we also compute source code complexity metrics at
the file level with the open-source tool rust-code analysis [ABC+20]. A commit with
a higher associated complexity is more likely to cause regressions. An overview of the
complexity metrics is given in Table 4.2. Again we aggregate the statistics over all files
of a commit. Furthermore, we also compute the difference of the complexity metrics
of a file before and after the code change to measure the complexity of a commit. We
call these features “delta complexity metrics”. The (file) complexity metrics capture the
complexity of the files that are worked on, while the delta complexity metrics capture
the added or removed complexity by the commit.

After computing the feature matrix X œ Rn◊d, where n is the number of samples and d
is the number of features, we apply a min-max scaling given by

Xij ≠ miniœtrain Xij

maxiœtrain Xij ≠ miniœtrain Xij
œ [0, 1],

to map all features to the same value range.

18

4.2. Feature Engineering for Software Projects

Definition Description and Justification
Number of modified files Commits with many modified files are more likely

to cause regressions.
Number of modified directo-
ries

Directories are defined as folders containing the
files touched in the commit. Again, a high number
indicates an error prone commit.

Number of modified subsys-
tems

Subsystems are defined as root folders containing
the files touched in the commit. Again, a high
number indicates an error prone commit.

Entropy of all modified lines
across files

Measures the distribution of the code changes across
the modified files. High entropy indicates that the
change is scattered across many files and thus more
error prone.

Lines of code added Total number of lines added in the commit diff. A
higher number indicates a more complicated change.

Lines of code deleted Total number of lines deleted in the commit diff. A
higher number indicates a more complicated change.

Lines of code modified Sum of lines of code added and deleted.
Number of developers per file Files modified by many developers are more error

prone.
Number of commits since file
was last touched

If the last change of a file is a long time ago, a
developer is more likely to forget all details and
introduce an error.

Number of unique changes to
file

If the number of changes is high, the developers
have to keep track of many versions of the files and
are more likely to introduce errors.

(Recent) developer experience
(overall, directory, subsystem)

Less experienced developers are more likely to intro-
duce an error. To calculate the recent experience the
commits by the developer in the last three months
are counted.

Developer seniority in reposi-
tory

Number of commits since first commit of developer.
A high number indicates an experienced developer.

(Recent) number of reverted
changes (backouts) from devel-
oper

If a lot of code changes of a developer have to be
undone, their code changes are more likely to be
faulty.

(Recent) number of reverted
changes (backouts) in subsys-
tem/directory

Many code changes in a particular subsystem/di-
rectory that have to be undone indicate high code
complexity.

Comment length A high number of words in a commit message in-
dicate a complex code change, which may be error
prone.

Table 4.1: Summary of implemented process metrics, majority of which where adapted
from Kamei et. al. [KSA+12].

19

4. Methodology

Definition Description
Cyclomatic complexity McCabe’s cyclomatic complexity measures

the complexity as the number of linearly
independent paths through a piece of code
[McC76].

Number of lines of code Counts the total number of lines in a file, its
number of logical lines (statements), number
of comment lines, and number of blank lines.

Halstead measures A collection of metrics derived from the num-
ber of operators and operands in a piece of
code. These measures provide estimates for
the difficulty to understand, effort and time re-
quired to implement, and number of expected
bugs in the code [Hal77]

Maintainability index Measures the maintainability of a file as de-
scribed by Welker [Wel01].

Number of methods Number of methods in a file.
Number of arguments Number of arguments of each method in a

file.
Number of exits Number of possible exit points of each method

in a file.

Table 4.2: Summary of used source code complexity metrics obtained by the rust-code-
analysis tool [ABC+20].

20

4.2. Feature Engineering for Software Projects

4.2.2 Bag-Of-Words
The tokenization of commit diffs and source code in general is not straightforward. We
follow the approach of Beller et al. [BLN+22].

For each diff:

1. Disregard symbols not belonging to source code files.

2. Split the strings into words (consisting of letters, numbers, and underscores) and
other symbols (e.g. + or &).

3. Disregard numeric tokens (e.g. 123) or tokens consisting only of an operator symbol
(parenthesis, boolean logic operators, equal sign, etc.).

4. Split names written in camel- or snake case (e.g., camelCase æ camel and case;
and snake_case æ snake and case).

5. Only keep tokens longer than two characters.

6. Transform tokens to lower case characters.

7. Prefix tokens with added_, deleted_, and context_ if the token belongs to an
added, deleted, or other context line in the diff, respectively.

The tokenization process is best illustrated with an example. The diff given below
bool MediaDecoderStateMachine::HaveEnoughDecodedVideo() {
MOZ_ASSERT(OnTaskQueue());

- return VideoQueue().GetSize() >= GetAmpleVideoFrames() * mPlaybackRate + 1;
+ bool isVideoEnoughComparedWithAudio = true;
+ if (HasAudio()) {
+ isVideoEnoughComparedWithAudio =
+ VideoQueue().Duration() >= AudioQueue().Duration();
+ }
+ return VideoQueue().GetSize() >= GetAmpleVideoFrames() * mPlaybackRate + 1 &&
+ isVideoEnoughComparedWithAudio;
}

will be turned into following tokens:
context_ + bool media decoder state machine have enough decoded video
context_ + moz assert task queue
deleted_ + return video queue get size get ample video frames playback rate
added_ + bool video enough compared with audio true
added_ + has audio
added_ + video enough compared with audio
added_ + video queue duration audio queue duration
added_ + return video queue get size get ample video frames playback rate
added_ + video enough compared with audio

21

4. Methodology

After counting the tokens for all commits, the final vocabulary is restricted to the
50 000 most frequent tokens (about 5% of all unique tokens). Finally, the token counts
are transformed to the term frequency–inverse document frequency (TF-IDF) [MRS10]
statistic given by

TF-IDF = term frequency · log
3

N

document frequency

4
,

where N is the number of diffs, term frequency is the relative frequency of the token
within the diff, and the document frequency is the number of diffs containing the token.
With this statistic, diffs can be identified if they use some tokens more frequently then
other commits, or if they use tokens which are very rare in the entire code base. Lastly,
the TF-IDF vectors are divided by their L2 norm.

4.3 Tackling Imbalanced Data

Software engineers only rarely introduce performance regressions and consequently, the
vast majority of code changes are not bug-introducing. In fact, only approximately 1≠2%
of all commits in the Firefox repository will be labeled as regression inducing. This
means a model predicting that all commits are not faulty would score a high accuracy,
(TP + TN)/(P + N), but would be completely useless in practice. There are a lot of
methods to overcome the challenge of imbalanced data in machine learning, which have
also been applied in previous research in defect prediction [TTDM15]. In this work, the
following methods are tested:

1. Original data: use the imbalanced data set as is.

2. Under-sampling: randomly sample a subset of the majority class to match the size
of the minority class.

3. Over-sampling: randomly sample with replacement from the minority class to
match the size of the majority class.

4. SMOTE: synthetic minority over-sampling technique based on k-nearest neigh-
bours [CBHK02].

4.4 Parameter Tuning and Model Selection

As described in Sections 4.1.1 and 4.1.2, we want to find models that score the best
average precision on future data. To achieve this we employ two approaches which are
described in this section.

22

4.4. Parameter Tuning and Model Selection

4.4.1 Bayesian Optimisation
First, we tune the hyper-parameters of our selected models, see Section 2.3, and test
the different sampling techniques presented in the previous section. For the logistic
regression, support vector machine, random forest, and multi-layer perceptron, we use the
implementations of the open source library scikit-learn [PVG+11]. In addition, we use
the openly available XGBoost python package, which is compatible with the scikit-learn
interface. Furthermore, to integrate the sampling methods in our machine learning
pipeline, the open source scikit-learn extension imbalanced-learn [LNA17] is used. The
compatibility with the scikit-learn interfaces makes it particularly easy to optimise the
hyper-parameters and select the best sampling method with an unified approach.

We leverage a sequential model-based Bayesian optimisation algorithm from the scikit-
learn extension scikit-optimize [HML+18]. The advantage of this algorithm is the efficient
sampling of the parameter search space guided by a Bayesian model. Thus, we avoid an
exhaustive grid search or inefficient randomised search. The complete parameter search
space configuration can be seen in Table 4.3. For all models, we sample the search space
100 times.

4.4.2 Automated Machine Learning
In addition to the hyper-parameter optimisation of the selected models, we use the open
source tool TPOT [OM16], a tree-based pipeline optimisation tool for automated machine
learning. At its core, TPOT uses a genetic programming algorithm to find the best
machine learning pipeline of scikit-learn operators. The operators in consideration are:

• Classifiers: Prediction models like logistic regression, XGBoost, etc.

• Feature preprocessors: scaling, principal-component analysis, etc.

• Feature selectors: based on variance, recursive elimination, etc.

We let the algorithm run for 100 generations with a population size of 100.

Note that due to the high dimensionality of the bag-of-words feature vector, the TPOT
search as well as the multi-layer perceptron hyper-parameter search were not feasible.

23

4. Methodology

Parameter Search Space

Sampling No sampling, random under-sampling, random
over-sampling, SMOTE

Logistic Regression
Regularisation parameter C LogUniform([10≠4, 103])
Penalty L1, L2
Support Vector Machine

Regularisation parameter C LogUniform([10≠4, 103])
Kernel Linear, Radial Basis Functions, Polynomial
Polynomial Kernel Degree 3, 5
Multi-Layer Perceptron

Regularisation parameter – LogUniform([10≠4, 103])
Initial learning rate LogUniform([10≠4, 10≠1])
Hidden layer size 10, 20, 50, 100, 200
Activation function ReLU, Sigmoid, tanh

Random Forest
Maximum depth No bound, 3, 5, 10, 15, 20
Minimum samples to split leaf 2, 5
Number of estimators UniformInteger([5, 150])

XGBoost
Maximum depth UniformInteger([3, 10])
Minimum child weight 1, 2, 5
Maximum delta step 0, 1
Number of estimators UniformInteger([5, 150])
Regularisation parameter “ Uniform([0, 1])

Table 4.3: Search spaces for hyper-parameter optimisation.

24

CHAPTER 5
Data and Labeling

5.1 Mozilla Firefox
The Mozilla Project was founded in 1998 and the first major version of the browser was
released in 2002 with the goal of providing the best possible browsing experience to the
widest possible set of people. In 2004, Firefox 1.0 reached over 100 million downloads
in less than a year. In 2013, celebrating the 15th anniversary of the project, Firefox
was brought to smartphones [Moz22b]. The browser reached its peak market share in
November 2009 with almost 32%. Nowadays the desktop share hovers at 8% while the
share across all platforms is about 4% [Sta22].

Mozilla Firefox is free and open-source. The mercurial1 repository can be found at
https://hg.mozilla.org/mozilla-central/. As of March 2022, the code base
ranks up over 786 000 commits made by over 8 500 contributors. This amounts to almost
25 million lines of code which took an estimated 8 000 years of joint effort [Ope22].

A web browser is a performance critical software project. The developers of Firefox aim
to consistently improve the performance in the following points (among others) [Smy20]:

• Startup time: how quickly the browser launches.

• Page load time: how quickly websites load.

• Responsiveness: how smooth the interaction with a website feels.

• Resource usage: how much power the browser uses.

The open availability of source code and bug reports, as well as the performance aspects
of a web browser, make Firefox a perfect candidate for our research purposes.

1https://www.mercurial-scm.org

25

https://hg.mozilla.org/mozilla-central/
https://www.mercurial-scm.org

5. Data and Labeling

5.2 Mozilla’s Bugzilla

In Mozilla’s bug-tracking-system Bugzilla2 all software development tasks, like the
implementation of a new feature, refactoring of source code, or the fix of a defect, are
tracked with their unique bug number. Almost every code change in the Firefox repository
comes with a commit message that references the bug number that was worked on. This
makes it particularly easy to map from bug issue to commits and vice-versa. We can query
bug reports for their type (enhancement, defect, task), status (new, assigned, resolved,
etc) and resolution (fixed, won’t fix, invalid, etc). Additionally, the reports are tagged
with keywords to be able to categorise them. Examples for keywords are “memory-leak”,
“crash”, or “sec-critical” for a critical security bug. The keywords relevant to us are
“perf”, “topperf”, and “perf-alert”, which are all used for performance regressions.

Furthermore, in early 2019, Mozilla introduced the guideline for developers that whenever
they fix a problem they should link the bug number of the code change which caused
the defect in the regressed-by field of the issue-tracker. This provides important
information about performance regression inducing code changes which we would like
to predict. The fact that we have associations from bug-fixing to bug-introducing code
changes labeled by software engineers, who are experts on the code base, makes this
information especially valuable. But unfortunately, this information is not perfect. In
general, bug numbers map to multiple commits and not all of them may have necessarily
something to do with the problem. Nevertheless, in Section 5.6 we investigate if we can
leverage the bug number links of the regressed-by field in a meaningful way.

5.3 Mozilla’s Perfherder

In an effort to find and report performance regressions, Mozilla developed the interactive
dashboard Perfherder3 which allows monitoring and analysis of automated Firefox perfor-
mance benchmark tests [Moz19]. Whenever Perfherder detects changes in a performance
test series, it automatically sends alerts which are then further processed by the responsi-
ble software engineers. In each alert two revision hashes (commit identifiers) are given.
The first one corresponds to the commit, for which the benchmark still looked good,
while the second one corresponds to the commit, for which the benchmark already shows
a worse score. All commits in between are candidates for the bug-introducing commit.
Furthermore, if the alert is valid, a bug report is created and is given the “perf-alert”
keyword. Therefore, Perfherder provides yet another source of information which we can
use in the labeling process.

Since not all performance regressions are detected with Perfherder alerts and because the
revision ranges of alerts are only estimated in an automated way with insufficient accuracy,
we cannot use these commit intervals to directly label the code changes. However, we

2https://bugzilla.mozilla.org/
3https://treeherder.mozilla.org/perf.html

26

https://bugzilla.mozilla.org/
https://treeherder.mozilla.org/perf.html

5.3. Mozilla’s Perfherder

will use the information to evaluate our labeling approach based on the SZZ algorithm,
see Section 5.5.

For an overview of the bug report and alert system as described see Figure 5.1.

Y

Y

Y

bXg-nXmber:

statXs:

resolXtion:

regressed_b\:

ke\Zords:

BXg Report

1717171

[1692881]

UeVROYed

SeUf, SeUf-aOeUW, UeJUeVVLRQ

fL[ed

...

SZZ?

B
enchm

ark
A

lert

IntrodXcer
Fi[

t\pe: defecW

Perfherder

mercXrial repositor\

BXg]illa

Figure 5.1: Overview of information used in the labeling process categorised by source:
mercurial repository, Bugzilla, and Perfherder. Bug numbers are referenced in the commit
messages. Both the regressed-by field and performance alerts can be mapped to
commits and can be used to evaluate the SZZ algorithm.

27

5. Data and Labeling

5.4 Data Selection and Labeling
To be able to predict which code changes are likely to induce performance regressions in
the future, we first have to know which code changes have caused these kind of problems
in the past. In an ideal world, developers would document in the bug-tracking-system
which source code lines were the root cause of the problem once they have fixed it.
However, this is not the case and we have to carefully label the code changes. The
performance of a prediction model is highly dependent on the correctness of the labeling.
A model may do well with respect to statistical metrics, but if the labeling is wrong its
predictions may still be useless.

We present two approaches to the labeling problem. First, we examine the applicability
of the SZZ algorithm - the automated labeling tool commonly used in defect prediction,
see Section 2.5. Secondly, we try to leverage the regressed_by field of the bug-
tracking-system, where developers keep track of causes of bugs, on the bug-level, see
Section 5.2.

As we want to be able to compare these two approaches and because the regressed_by
field was only introduced in early 2019, we only consider commits from 2019/07/01 to
2021/11/01. We choose the start date to make sure that developers had enough time to
adapt the guideline and use the new bug report field. Again, we fetched bug reports up
to 2022/02/01 as discussed in Section 4.1.2. After excluding merge commits, commits
from side branches, and commits which could not be matched to a bug number, we are
left with 99 694 commits to be labeled.

5.5 SZZ Labeling
There have been various improvements to the SZZ algorithm to mitigate the limitations
discussed in Section 2.5.1. In this thesis, we use the open source implementation
called SZZ-Unleashed [BSBH19] for the automated labeling process. This version of the
algorithm is based on the enhancements proposed by Williams and Spacco [WS08], where
line number maps are built that track unique source lines as they change over the lifetime
of the software project. We modified the algorithm to only consider source code files, the
most prominent file types being .cpp, .js, .html, .c, .rs, and .py. We converted
the mercurial repository to a git4 repository with fast-export [Dre21] to be able to apply
the SZZ-Unleashed tool.

We select all bug reports, which are valid, have type “defect”, have resolution “fixed”,
and contain at least one of the the keywords “perf”, “perf-alert”, or “topperf”. The
resulting 961 performance bug reports are then mapped to the corresponding bug-fixing
commits by selecting all code changes which reference one of the 961 bug numbers in the
commit message. SZZ Unleashed finds 1544 bug-introducing commits from which only
589 (38%) belong to our selected commits. The vast majority of the other suspected

4https://git-scm.com/

28

https://git-scm.com/

5.6. BugBug Labeling

commits were made before 2019/07/01. This fact already sounds like bad news and thus,
a more rigorous evaluation of the results is called for.

5.5.1 Evaluation

From the regressed_by field and from Perfherder alerts we can reduce the candidate
bug-introducing commits for certain bugs. This allows us to evaluate the SZZUnleashed
results by checking whether the found commits are indeed among the candidate commits.
If a bug report has a bug number in the regressed_by field, we define the candidate
commits to be the ones which reference this number in the message. If there exists a
Perfherder alert for a bug, we define the candidate commits to be the ones given by the
range in which the benchmark score went bad (see Section 5.3). This evaluation approach
is illustrated in Figure 5.1.

Let n be the number of bug reports that have either a bug number in the regressed_by
field or a Perfherder alert. We call a bug-introducing commit identified by SZZUnleashed
true positive (TP) if it is among the corresponding candidate commits, false positive
(FP) otherwise. For this evaluation we consider all commits, not only those selected in
Section 5.4. Lastly, we count the number of bug reports for which SZZUnleashed did not
identify any bug-introducing commits. This number is a lower bound on the number of
false negative (FN) commits, if we assume that there exists at least one bug-introducing
commit for every bug report.

The results can be seen in Table 5.1. If the commits identified by SZZUnleashed are
accurate, we would see at least noticeable agreement with the candidates derived by the
bug report associations from developers and benchmark based alerts. Unfortunately, this
is not the case: true positives are greatly outnumbered by false positives and the number
of false negatives is also high. Nevertheless, in Section 6.1 we will investigate how our
machine learning models perform with this labeling approach anyways.

candidate source n TP FP FN
regressed_by field 371 134 576 Ø 207

Perfherder alerts 192 38 691 Ø 105

Table 5.1: SZZUnleashed evaluation results.

5.6 BugBug Labeling
Disappointed by the evaluation of the SZZUnleashed results, one may ask if we can
leverage the information from the regressed_by field or Perfherder field directly and
get better results. As already mentioned in Section 5.3, the Perfherder alerts cannot be
used to label the commits directly, because the given revision ranges of alerts are only
estimated in an automated way with insufficient accuracy.

29

5. Data and Labeling

In contrast, the regressed_by field can be used directly, because the information
comes from software engineers, who are experts on the code base and can be trusted to
establish correct associations between bug-introducing and bug-fixing code, and because
the regressed_by field is used consistently since 2019.

5.6.1 Labeling on the Commit-Level
The straightforward labeling process based on the regressed_by field consists of
following steps:

1. Collect bugs from the bug-tracking-system that have a non-empty regressed_by
field.

2. Get performance bugs by filtering for keywords “perf”, “perf-alert”, and “topperf”.

3. Collect all bug numbers from the regressed-by field of the selected bugs.

4. Label all commits which worked on a bug number from step 3 as performance
regression inducing.

5. Label all other commits as non-regression.

Again, this labeling approach should have less noise than the one produced with the SZZ
algorithm, because the bug-introducing and bug-fixing code links come directly from
developers. Note that Mozilla also uses a similar approach in their own machine learning
framework bugbug [Moz22a] and therefore, we call this labeling approach “bugbug”.
However, the approach has one major drawback: bug numbers can be mapped to multiple
(consecutive) commits. An example of this pattern in the Firefox repository can be seen
in Figure 5.2. And in fact, a quick analysis shows that about 60% of all performance
problems are split into more than one commit. This may not sound like a huge problem,
but it makes the labeling unusable in this form as we shall see.

Figure 5.2: Example of bug being split up into multiple commits.

These bug-introducing labeled groups of commits introduce a positional bias which may
be exploited by machine learning models. To investigate to what extent this effect takes
place, we train a XGBoost model on both a randomly shuffled data split (case 1) and a
time-based data split (case 2). If the model can pick up on the position of these groups,
then the model will be able to predict well in case 1, because it can match randomly left
out commits back to their group. On the other hand, the model will perform badly in

30

5.6. BugBug Labeling

case 2, because it can not extrapolate from the groups to future commit groups. This
line of reasoning is illustrated in Figure 5.3.

TiPe
? ? ?

RaQdRPO\ SeOecWed CRPPiWV

CRPPiWV LabeOed BXg-IQWURdXciQg

Figure 5.3: Illustration of positional bias from bug-number-based labeling.

And indeed, the model achieves a precision 0.94 and recall 0.38 in case 1 which vastly
outperforms the precision 0.07 and recall 0.01 in case 2. Furthermore, the most important
features are “developer seniority”, “developer experience”, and “number of overall backouts
of developer”, see Table 4.1. Looking at these features for the commit group of Figure 5.2
immediately shows how the model can exploit the positional bias, see Figure 5.4. As
the features either increment by one or stay the same for all commits in the group, the
model can use them as a proxy for the position in the version history.

Figure 5.4: Positional bias implicitly encoded through small set of features.

Pushing this experiment to absurdity, we train the model just on the commit id, an
integer enumerating all code changes. The fact that even in this ridiculous case the model
is able to achieve precision 0.96 and recall 0.12 confirms that this labeling approach is
not suitable for predicting performance defects on the commit level, because the model
just exploits the position of the commits. It also highlights the importance of the correct
evaluation setup. If we would not have used the correct time-based test split as discussed
in Section 4.1.2, we might have been happy with the good classification results and called
it a day.

5.6.2 Labeling on the Bug-Level
There is a way to work around the positional bias discovered in the previous section. By
changing the prediction level from single code changes to commit groups as entities, we
are able to still take advantage of the data manually labeled by the software engineers.
In other words, we aggregate the commit groups to single data points, which completely
eliminates the positional information exploited by the models.

31

5. Data and Labeling

The commits are grouped by the following rules:

• The commits have to appear consecutively in the repository.

• The commits have to reference the same bug number.

• The commits have to be created by the same author.

In essence, one commit group represents the work of a developer on a bug in one session
(consecutive commits). The grouping not only eliminates the positional bias, but it also
makes sense from a software engineering perspective. Bugs may be introduced not only
by single commits, but also by the interaction of multiple code changes.

Finally, we adapt our labeling process:

1. Collect bugs from the bug-tracking-system that have a non-empty regressed_by
field.

2. Get performance bugs by filtering for keywords “perf”, “perf-alert”, and “topperf”.

3. Collect all bug numbers from the regressed-by field of the selected bugs.

4. Group the commits according to the rules.

5. Label all commit groups which worked on a bug number from step 3 as performance
regression inducing.

6. Label all other commit groups as non-regression.

This reduces the 99 694 commits to 67 921 groups, where 1880 (2.77%) groups are labeled
as performance regression inducing. We adjust the computation of the traditional features
by aggregating (mean, max, min, sum) over all commits of the group. Additionally, we
introduce a feature counting the number of commits of the groups. For the bag-of-words
feature vectors, we count the occurrences of tokens in the diffs of all commits of the
group.

Note that the classification performance is still way better on a random data split with
this labeling approach. However, the reason for this cannot be the positional bias of
consecutive commits as previously. Instead, we think that as the features evolve over time
(e.g. developer seniority will go up for all software engineers over time), the model may
pick up on certain time frames (by remembering certain values of these evolving features)
where there was an unusual high amount of performance regressions. We emphasise that
this phenomenon cannot be reflected in our reported classification results, as we evaluate
on a time-dependent data split, see Section 4.1.2.

32

CHAPTER 6
Results

6.1 SZZ Labeling
In Table 6.1, you can see the results of the hyper-parameter tuning for the SZZ labeling
(Section 5.5) with traditional features (Section 4.2.1) in form of average precision (AP)
and area-under-the-ROC curve (AUC). We report these metrics on the training set and
test set, where the model is trained on the full training set. Additionally, we give the
average of the metrics on the five validation splits, Section 4.1.2, which were used to select
the best hyper-parameters for each model. To have a reference, we include a dummy
classifier , which predicts that all commits are performance regressions. By definition this
classifier achieves a perfect 1.0 recall, P

P+N (average) precision, and 0.5 AUC.

training validation test
AP AUC AP AUC AP AUC

Dummy Classifier 0.0063 0.5000 0.0060 0.5000 0.0022 0.5000
Logistic Regression 0.0208 0.7136 0.0304 0.7033 0.0049 0.5944
Support Vector Machine 0.0525 0.8128 0.0365 0.7482 0.0052 0.6750
Random Forest 0.9952 1.0000 0.0528 0.7621 0.0054 0.6335
XGBoost 0.3865 0.9817 0.0590 0.7453 0.0069 0.6767
Multi-Layer Perceptron 0.0402 0.7844 0.0376 0.7502 0.0071 0.6566
TPOT 0.0916 0.8420 0.0674 0.7969 0.0089 0.6714

Table 6.1: Results of hyper-parameter tuning for SZZ labeling with traditional features.

The first thing to notice is that all models perform significantly better on the training
set than on the test set. The overfitting is most pronounced with the tree-based models,
random forest and XGBoost. Despite this, the best model found by TPOT, and best
performing model on the validation splits, is a XGBoost model trained on the stacked
output of a naive Bayes [Bis06, Chapter 8] and decision tree classifier after removing
features of low variance.

33

6. Results

The aggregate metrics AP and AUC alone are not that meaningful for the final clas-
sification performance of the models. Therefore, we show the ROC-curve and the
precision-recall curve in Figure 6.1 to investigate the classification at different confi-
dence thresholds. A good ROC-curve is bent to the top-left corner of the plot, while a
precision-recall curve is good if it is far to the top-right of the origin (better F1 score).

Figure 6.1: ROC and precision-recall curves for the SZZ labeling with traditional features
on the test set. The y-axis for the precision-recall plot is scaled for better separation.

Even though the ROC-curves are clearly separated from the random guessing reference,
the precision at all confidence thresholds is very low. Note that we cannot simple read off
the best precision-recall trade-off in terms of F1-score from the plot, because this would
introduce a bias by selecting the best confidence threshold based on data in the test set.
Instead, we determine the best threshold on the training set and read the metrics for
this threshold on the test set. In fact, for all models, except the multi-layer perceptron,
perform very poorly with this threshold, see Appendix Table 8.1. However, the scores
with 0.0909 recall, 0.0177 precision, and 0.0292 F1 are still very bad, even though they
greatly outperform the dummy classifier with 1.0 recall, precision 0.0022, and 0.0044 F1
in terms of F1 score.

Interestingly, the simple bag-of-words approach worked better for the SZZ labeling
approach. Not only are almost all hyper-parameter test scores better than with traditional
features, see Table 6.2, but the ROC and precision-recall curves look better too, see
Figure 6.2. Remember that due to the high dimensionality of the bag-of-words feature
vector, parameter search for the multi-layer perceptron and TPOT model search were not
feasible. There is also an interesting spike to 0.25 precision for the logistic regression model,
which we cannot explain. But note that this precision is not achieved with the confidence
threshold determined on the training set, which demonstrates the aforementioned bias
when reading directly from the precision-recall curve. Furthermore, the models also all
have a greater F1 score on the test set compared to before. The best model is now the
support vector machine with 0.1818 recall, 0.0288 precision and 0.0497 F1, see Appendix
Table 8.3. This is an almost 2◊ improvement over the traditional features. To investigate
why the bag-of-words approach works better, we take a look at the most important tokens
in Section 6.5.

34

6.2. BugBug Labeling

training validation test
AP AUC AP AUC AP AUC

Dummy Classifier 0.0063 0.5000 0.0060 0.5000 0.0022 0.5000
Logistic Regression 0.3403 0.9535 0.0670 0.8227 0.0246 0.7134
Support Vector Machine 0.1086 0.8957 0.0563 0.8187 0.0172 0.7154
Random Forest 0.7216 0.9504 0.0627 0.7937 0.0058 0.6689
XGBoost 0.3491 0.8802 0.0765 0.8013 0.0077 0.6947

Table 6.2: Results of hyper-parameter tuning for SZZ labeling with bag-of-words features.

Figure 6.2: ROC and precision-recall curves for the SZZ labeling with bag-of-words
features on the test set. The y-axis for the precision-recall plot is scaled for better
separation.

In summary, even though the best model outperforms the dummy classifier and random
guessing by more than 10◊ in terms of precision and F1, it is safe to say that this model
is far from useful in application. Interestingly, the relative frequency of performance
regressions shrinks from 0.6% in training and validations sets to 0.2% in the test set.
This fact, together with the bad prediction scores and our estimates of high false positive
and false negative rates in the evaluation of the SZZ labeling, see Section 5.5.1, brings us
to the conclusion that this approach fails in predicting performance regressions.

6.2 BugBug Labeling
In this section we report the results for the bugbug labeling approach, see Section 5.6.
Remember that this labeling is now based on groups of commits rather than single
commits like the SZZ labeling. Again, we start by looking at the average precision
(AP) area-under-the-ROC-curve (AUC), see Table 6.3. While the logistic regression and
support vector machine models perform fairly equally on training, validation, and test
sets, the tree-based models still severely overfit on the training data. The best model
found with the automated machine learning tool TPOT is an extra trees classifier, a
model similar to random forests [GEW06], again with feature selection based on variance.
It achieves a near perfect score on the training set and the best average precision on the
test set, albeit far from a good score.

35

6. Results

training validation test
AP AUC AP AUC AP AUC

Dummy Classifier 0.0268 0.5000 0.0297 0.5000 0.0355 0.5000
Logistic Regression 0.0751 0.6966 0.0767 0.6375 0.0929 0.7015
Support Vector Machine 0.0853 0.7116 0.0804 0.6419 0.0929 0.6992
Random Forest 0.1844 0.7981 0.1055 0.6804 0.0972 0.6814
XGBoost 0.6059 0.9208 0.1088 0.6842 0.0860 0.6481
Multi-Layer Perceptron 0.1224 0.7568 0.0870 0.6404 0.0830 0.6934
TPOT 0.9640 0.9985 0.1163 0.6881 0.1131 0.6875

Table 6.3: Results of hyper-parameter tuning for bugbug labeling with traditional features.

Surprisingly, the good average precision and precision-recall curve, see Figure 6.3, of the
extra trees model do not carry over to a good F1 score based on the confidence threshold
determined on the training set. In fact, the logistic regression model performs best in this
regard with 0.2946 recall, 0.1084 precision, and 0.1585 F1. However, due to the increased
relative frequency of performance regression inducing commit groups of 2.77%, this is
now only about two times better than the dummy classifier in terms of F1, but more
than five times better in terms of precision. For the classification results of all models
see Appendix Table 8.4.

Figure 6.3: ROC and precision-recall curves for the bugbug labeling with traditional
features on the test set.

The results for the bag-of-words models look really similar to the models based on
traditional features but are slightly better, see Table 6.4 and Figure 6.4. While the
random forest model dominates in terms of the aggregate metrics AP and AUC, this
performance vanishes when evaluating at the best confidence threshold. In this case, it
was again the logistic regression model which performed best with 0.1535 recall, 0.2022
precision, 0.1745 F1, beating the logistic regression model based on the traditional
features by a small margin. Again, we investigate how the simple bag-of-words features
can seemingly encode the same information as carefully handcrafted source code metrics
in Section 6.5.

36

6.3. Improving the Models with Feature Selection

training validation test
AP AUC AP AUC AP AUC

Dummy Classifier 0.0268 0.5000 0.0297 0.5000 0.0355 0.5000
Logistic Regression 0.4549 0.8713 0.1249 0.7210 0.0958 0.6420
Support Vector Machine 0.2246 0.7901 0.1181 0.7099 0.0919 0.6351
Random Forest 0.7485 0.9492 0.1343 0.7233 0.1072 0.6839
XGBoost 0.5933 0.8530 0.1358 0.6795 0.0865 0.6441

Table 6.4: Results of hyper-parameter tuning for bugbug labeling with bag-of-words
features.

Figure 6.4: ROC and precision-recall curves for the bugbug labeling with bag-of-words
features on the test set.

Even though the prediction capabilities of the models are still far from usable, we are
happy to see that our approach to label based on coherent commit groups rather than
single commits is better suited than the labeling of the commonly used SZZ algorithm
and leads to a 3.5◊ improvement in terms of F1 score. We think there are several reasons
for this success: First, the main signal for linking bug-introducing code to bug-fixing
code comes directly from the Firefox software engineers. Second, the key assumptions
of the SZZ algorithm that bugs are fixed at the same code lines they were introduced
at seems to be wrong for performance regressions. Third, performance bugs may be
introduced by the interplay of code changes of several commits, which may be captured
by the representation of code changes in terms of our grouping method.

6.3 Improving the Models with Feature Selection
Previous research in software defect prediction has shown that removing unimportant
features can significantly improve the performance of the models [SWAK12]. We find
the most important features by looking at summary plots of shapley values. A shapley
value „j(x) is the value of the j-th feature contribution to the prediction of the instance
x compared to the average prediction for the data set, see Section 2.4. Unfortunately,
due to the high dimensionalty of our feature matrices, it was not feasible to compute
the shapley values for every model type. Therefore, we use the best logistic regression

37

6. Results

models for all plots. In Figure 6.5 you can see the summary plots for the traditional
features for both the SZZ and bugbug labeling. For each sample in the test set x, a point
is drawn for each feature with its value color coded (high value: red, low value: blue)
and with a horizontal offset according to the corresponding shapley value. Points far to
the right or left mean that there is sample for which the feature has a particularly strong
importance towards predicting regression or non-regression, respectively.

Figure 6.5: SHAP summary plots for traditional features. Left: SZZ labeling; right:
bugbug labeling.

We immediately see that there are contradictions in the feature importance. Recall
that we compute several metrics for each file in a commit (group) and then calculate
minimum, maximum, mean, and sum, to get summary statistics, see Section 4.2.1. For
example, this is done for the feature “File Age” and “Maintainability Index”. We see that
once each of the features has a positive impact on the prediction and once a negative
impact depending on the aggregation method. The reason may be that these features
correlate strongly which the model exploits. To avoid this, we select the mean as only
aggregation method. There are also no “delta complexity metrics” among the most
important features. This tells us that the change in complexity introduced by a commit
is not as important as the overall complexity of the files that were worked on. Thus,
we also remove the delta complexity metrics from the feature matrix. For the updated
shapley value summary plots refer to Section 6.5.

The hyper-parameter tuning results with the reduced features can be seen in Tables 6.5
and 6.6. Compared to Tables 6.1 and 6.3, we can see similar validation scores. The best
average precision for the SZZ labeling increased two-fold on the test set and decreased
slightly for the bugbug labeling. The best TPOT models are now a combination of
multi-layer perceptron and XGBoost for the SZZ labeling and a combination of naive
Bayes and extra trees classifier for the bugbug labeling. Interestingly, TPOT now omits
a feature selection step with the reduced features unlike before.

38

6.3. Improving the Models with Feature Selection

training validation test
AP AUC AP AUC AP AUC

Dummy Classifier 0.0063 0.5000 0.0060 0.5000 0.0022 0.5000
Logistic Regression 0.0196 0.7377 0.0278 0.7365 0.0066 0.6233
Support Vector Machine 0.0318 0.8001 0.0362 0.7753 0.0047 0.6731
Random Forest 0.9918 1.0000 0.0482 0.7652 0.0059 0.6715
XGBoost 0.1584 0.9513 0.0546 0.7772 0.0039 0.6624
Multi-Layer Perceptron 0.0469 0.8287 0.0368 0.7710 0.0035 0.6614
TPOT 0.3281 0.9408 0.0687 0.7922 0.0172 0.7076

Table 6.5: Results of hyper-parameter tuning for SZZ labeling with traditional features
after feature reduction.

training validation test
AP AUC AP AUC AP AUC

Dummy Classifier 0.0268 0.5000 0.0297 0.5000 0.0355 0.5000
Logistic Regression 0.0707 0.6940 0.0747 0.6403 0.0921 0.7027
Support Vector Machine 0.1233 0.7655 0.0880 0.6602 0.0873 0.6974
Random Forest 0.1798 0.7856 0.1044 0.6754 0.0934 0.6717
XGBoost 0.5541 0.9136 0.1037 0.6654 0.0814 0.6590
Multi-Layer Perceptron 0.2250 0.8584 0.1040 0.6560 0.0848 0.6693
TPOT 0.9877 0.9997 0.1228 0.6913 0.0942 0.6756

Table 6.6: Results of hyper-parameter tuning for bugbug labeling with traditional features
after feature reduction.

The biggest improvement of the models can be seen in terms of F1-score. In Table 6.7, you
can see the best models for each labeling and feature type configuration. With the feature
reduction the performance gap to the bag-of-words models has been closed. Still, the
models based on the bugbug labeling outperform the models based on the SZZ labeling
3◊ in terms of F1 score. We do not use further feature selection for the bag-of-words
model, because we already select only 5% of all unique tokens, see Section 4.2.2.

Labeling Feature Type Model Sampling Recall Precision F1
SZZ traditional Multi-Layer

Perceptron
No sampling 0.0909 0.0177 0.0296

traditional
+ reduction

TPOT
(MLP + XGBoost)

No sampling 0.1364 0.0326 0.0526

bag-of-words Support Vector
Machine

Over-Sampling 0.1818 0.0288 0.0497

bugbug traditional Logistic
Regression

SMOTE 0.2946 0.1084 0.1585

traditional
+ reduction

Logistic
Regression

SMOTE 0.2324 0.1383 0.1734

bag-of-words Logistic
Regression

No sampling 0.1535 0.2022 0.1745

Table 6.7: Comparison of best models for each labeling and feature type configuration.

Furthermore, from Table 6.7 and from the hyper-parameter search results in Tables 6.1-
6.6, we can see the general trend that the linear models logistic regression and support

39

6. Results

vector machine, as well as the multi-layer perceptron are the best at generalising to future
data in the sense that their classification scores for the validation and test set are often
close to the scores on the training data set. Even though the scores are still higher on the
training set for these models, the tree-based models random forest, XGBoost, and extra
trees, show much more overfitting with sometimes near perfect scores on the training set.
For the classification results in more detail see Appendix Sections 8.1 and 8.2. The best
hyper-parameters for all models can be found in Appendix Section 8.4.

6.4 Best Sampling Method
Until now we did not investigate the sampling techniques used in the machine learning
pipelines for the best models. In Table 6.7, you can see that for the best models all
sampling techniques except random under-sampling are present. However, this could just
be a coincidence and we will take a more quantitative look into finding the best sampling
method.

For each labeling, feature type (only reduced traditional features), and model, we select
the best validation score for each of the four sampling methods (Section 4.3) out of
the 100 investigated points of the hyper-parameter search. We then rank the sampling
techniques from 1 to 4 based on their best validation score and average the ranks over all
labeling, feature type, and model configurations (=18 combinations).

Sampling Method Average Rank
Random Over-Sampling 1.9444
No sampling 2.2778
Random Under-Sampling 2.7222
SMOTE 3.0556

Table 6.8: Average ranks of sampling methods taken over all labeling, feature type, and
model configurations.

From Table 6.8, it seems that the best way to tackle the problem of highly imbalanced
data in performance regression prediction is to either use over-sampling or to not tackle
it at all. It makes sense that these two methods are better than under-sampling, because
they do not throw away any data. We believe that no sampling is also at the top, because
it allows the models to learn the real class distribution, which may have an effect when
selecting the best confidence threshold for prediction. The synthetic data generation of
SMOTE seems to fail in general, but is surprisingly effective for the bugbug labeling
with traditional features.

For the best sampling technique of all labeling, feature type, and model configurations
see Appendix Table 8.14. Note that our result that sometimes no sampling is a viable
option and sometimes a sampling technique is better for defect prediction is in agreement
with the results of Tan et. al. [TTDM15].

40

6.5. Interpreting the Models

6.5 Interpreting the Models
As we have discussed in Section 2.4, having a good performance regression prediction
model is meaningless if we cannot communicate to the software engineer why the model
thinks a code change is suspicious. Disappointingly, our model results presented in
Section 6.1and 6.2 are not nearly as good as would be needed for a deployment in the
software development process. Nevertheless, it is still interesting to investigate what the
models learned to make their predictions, most importantly to answer the question why
the simple bag-of-words approach works so well.

Figure 6.6: SHAP summary plots for reduced traditional features. Left: SZZ labeling;
right: bugbug labeling.

First, in Figure 6.6 you can see the SHAP summary plots for the traditional features
for both the SZZ and bugbug labeling. Recall that points far to the right or left mean
that there is sample for which the feature has a particularly strong importance towards
predicting regression or non-regression, respectively. For example, we can see that if
the code entropy (distribution of source code among files) is high that the models will
predict on average towards regression, while a low number of operators in the source
code (Halstead n1) will bias the prediction towards non-regression.

While some interpretations make sense to us, like a high number of developers working
on the same file is bad (# Developers for SZZ labeling), others are beyond explanation,
like a high developer experience in the subsystem is bad while a high experience in the
directory is good (bugbug labeling). We have fixed the contradictions concerning the
different interpretation of metrics based on the aggregation method with feature selection,
see Section 6.3, but there are still contradictions regarding the number of backouts and
experience features as described before. Furthermore, there are disagreements between
the labelings: for the SZZ labeling high developer seniority is good while for the bugbug
labeling high seniority is bad.

41

6. Results

In summary, the models generally seem to use the features as they were intended, see
Section 4.2, however, there are many contradictions and counter-intuitive features, such
that we cannot conclude that the model learned a meaningful classification.

Figure 6.7: SHAP summary plots for bag-of-words features. Left: SZZ labeling; right:
bugbug labeling.

Now we turn our attention to the most important bag-of-words tokens for prediction,
see Figure 6.7. In this case a red point means that token is present in the commit code,
and a blue point means that the token is missing. It is immediately clear that it is more
important which tokens are present rather than missing for prediction. Also there are
more tokens which bias the prediction towards regression than towards non-regression.
There are mostly tokens from added and context lines, rather than from deleted lines.
However, the tokens themselves are rather generic. It would be ridiculous to tell a
developer that he should not use the return keyword, because it causes performance
regressions. Furthermore, it is rather weird that the await keyword in particular
indicates non-regression, because we associate this keyword with asynchronous programs,
which we would think are more susceptible to performance problems.

Just from the summary plots we cannot explain why the bag-of-words model can match
the performance of the handcrafted features. For this reason, we will now take a look at
a specific example and investigate the prediction of the models in more detail.

We consider bug 1718755, which fixed a problem regarding the customisation of the
graphical user interface, but caused a 20% degradation on a benchmark concerning load
times on the Wikipedia web page. It was fixed in a single commit with bug number
1722487 and revision hash 5235f051d952. For the sake of brevity we now will refer to the
models as traditional/bag-of-words SZZ/bugbug model, depending on the feature type
and labeling they are based on.

42

6.5. Interpreting the Models

This bug is interesting for many reasons:

• SZZUnleashed was able to correctly find the bug-introducing commit (revision hash
9ac290ec5884).

• The commit belongs to the test set (was not involved in the training of the models).

• The traditional SZZ model was not able to correctly predict regression, while the
bag-of-words model was able to correctly predict regression.

• There are four commits working on bug 1718755 (9ac290ec5884 among them), which
are grouped together in our bugbug labeling. Both the traditional and bag-of-words
bugbug models correctly predict regression.

Therefore, we hope that this data point gives insights into why the bag-of-words approach
works better, especially in the SZZ labeling case, and why the bugbug models outperform
the SZZ models.

Figure 6.8: SHAP waterfall plots for traditional features. Left: commit for revision
9ac290ec5884; right: commit group for bug 1718755.

We take a look at so called SHAP waterfall plots for both the traditional and bag-of-words
features, see Figure 6.8 and 6.9, respectively. These plots show which features pushed the
predictions towards regression (to the right and red) or non-regression (to the left and
blue) for a particular data point. The colors no longer encode the feature values, however,
their numeric value is given. From the plots we can see that for the SZZ model the
prediction was pushed towards regression but not far enough. On the other hand, for the
bugbug model the most important feature is the number of backouts from the developer,
which caused the model to predict regression in the end. Many developer experience
features move the prediction in different directions, which is hard to understand. It
makes no sense to us why the experience should have a positive and negative influence
on the prediction.

43

6. Results

Figure 6.9: SHAP waterfall plots for bag-of-words features. Left: commit for revision
9ac290ec5884; right: commit group for bug 1718755.

By taking a look at the bag-of-words feature importance in Figure 6.9, we confirm that
it is the presence of certain tokens that stir the prediction towards regression rather than
the absence. It seems that the tokens “theme”, “kind” and “changed”, whether they
appear in added, deleted, or context lines, are most important to the models for our data
point. These words make sense, as the commit was concerned with the customisation of
the user interface in form of browser themes.

In summary, while the handcrafted features are generally used in the intended way, we
have found many contradictions and counter-intuitive features, which makes it hard to
believe that the models learned a meaningful classification. They are certainly not good
enough to give pointers to developers on how to improve their code. By investigating
a particular prediction we could see that the most important tokens are fitting to the
corresponding software development task, but it is not clear why the bag-of-words model
works equally well.

6.6 Performance Regressions Versus General Bugs

In the last section we have seen that the interpretation of the models in terms of feature
importance is difficult to make sense of. Next we will compare the performance regression
prediction models to models trained for general bug prediction to investigate whether
there is a difference between the models in terms of prediction capability and feature
importance, or if the models look the same and there is no significant difference in the
learned classification.

As the SZZ labeling did not yield good results, see Section 5.5.1 and 6.1, we make the
comparison only on the bugbug labeling, see Section 5.6, which is readily adjusted for
general regressions:

44

6.6. Performance Regressions Versus General Bugs

1. Collect bugs from the bug-tracking-system that have a non-empty regressed_by
field.

2. Get performance bugs by filtering for keywords “perf”, “perf-alert”, and “topperf”.

3. Collect all bug numbers from the regressed-by field of the selected bugs.

4. Group the commits according to the rules.

5. Label all commit groups which worked on a bug number from step 3 as performance
regression inducing.

6. Label all other commit groups as non-regression.

This leaves us with 14287 out of 67921 (21.03%) positively labeled commit groups. By
definition this also contains the 1880 performance regression inducing commit groups.

Figure 6.10: Models trained on all regressions compared to models trained only on
performance regressions on the performance regression test set.

After a full hyper-parameter search (for results see Appendix Table 8.7 and 8.8), we
compare the best model trained on all regressions, in this case a random forest model for
the reduced traditional features and a XGBoost model for the bag-of-words features, on
the performance regression test set. It seems like there is a good transfer of prediction
capabilities, and for some recall ranges even better precision, see Figure 6.10. However,
if we compare the scores at the best confidence level determined on the training set, we
see that the models trained specifically on performance regressions have a slight edge
over the models trained on all regressions, see Table 6.9. For the traditional features the
F1 score decreased from 0.1734 only to 0.1396 and for the bag-of-words features from
0.1745 to 0.1417. It is interesting that in both cases the recall remains higher at the cost
of precision.

Now one may wonder what happens if we reverse the roles and evaluate the performance
regression model on all regressions. In Figure 6.11 we can see that in this case the
prediction capabilities are significantly worse. For the traditional features the F1 score
decreased from 0.4307 only to 0.2030 and for the bag-of-words features from 0.4114 to

45

6. Results

Figure 6.11: Models trained on all regressions compared to models trained only on
performance regressions on the all regression test set.

0.1062. Interestingly, this is only due to a drop in recall, whereas the precision even
increases a bit, see Table 6.9. However, at least for the traditional features the F1 score
remains relatively high. This means that a model trained on performance regressions is
capable to predict at least some general regressions. The same conclusion is not true for
the bag-of-words feature type.

Feature Type Trained on Evaluated on Recall Precision F1
traditional perf. regressions perf. regressions 0.2324 0.1383 0.1734

all regressions perf. regressions 0.5643 0.0797 0.1396
bag-of-words perf. regressions perf. regressions 0.1535 0.2022 0.1745

all regressions perf. regressions 0.4772 0.0832 0.1417
traditional perf. regressions all regressions 0.1305 0.4568 0.2030

all regressions all regressions 0.4746 0.3943 0.4307
bag-of-words perf. regressions all regressions 0.0599 0.4645 0.1062

all regressions all regressions 0.4062 0.4168 0.4114

Table 6.9: Comparison of best models trained and evaluated on performance regressions
and general regressions.

Lastly, we take a look at the most important features to see if there is a significant
difference between a model trained on performance regressions and a model trained on
all regressions. Like before, we show the the SHAP summary plot and the waterfall plot
for the performance bug 1718755 described in Section 6.5, which is correctly predicted
by both models trained on all regressions.

In Figure 6.12, you can see the SHAP plots for the best logistic regression model trained
on all regressions with traditional features. While the features code entropy, number
of backouts, and developer experience, also appear among the most important features,
it seems that the complexity metrics like the Halstead measures and maintainability
index are now missing, compare Figure 6.6. Once again we can see contradictions in the
interpretation of the features: one time high developer experience pushes the prediction
towards regression, one time towards non-regression. By comparing the waterfall plot

46

6.6. Performance Regressions Versus General Bugs

Figure 6.12: SHAP summary plot and waterfall plot of bug 1718755 for model trained
on all regressions with traditional features.

of bug 1718755 to the one of the performance regression model, Figure 6.8, we see that
while previously the number of backouts of the developer was the biggest push towards
regression, now the number of subsystems touched, code entropy and developer experience
are important.

Figure 6.13: SHAP summary plot and waterfall plot of bug 1718755 for model trained
on all regressions with bag-of-words features.

In Figure 6.13, you can see that the most important tokens for the bag-of-words model
are once again very generic words. In particular, it is odd that the token “the” is on top
of the list as we would assume that it should not hold any significant information for

47

6. Results

predicting regressions. We could filter out words like these, but a good model should be
able to tell that these words are only noise and focus on more important tokens.

Comparing the waterfall plot to Figure 6.9, we are happy to see that there is at least
some consistency in the sense that the tokens “theme”, “kind”, and “change” are once
again present. However, there are also new tokens like “context” or “refresh” which we
did not see before. Furthermore, the overall behavior of bag-of-words model to mainly
evaluate the presence rather than absence of tokens as an indicator for a regression still
holds for the general defect prediction models.

In summary, a model trained on general regressions can transfer its prediction capabilities
to the subset of performance regressions with classification scores just a bit shy of the
scores of a model trained specifically on this subset (approximately -20%). The reverse is
not true: a performance regression model cannot successfully predict general regressions.
Although there is some transfer with traditional features, there is almost none for bag-of-
words features. We conclude that there is a significant difference between the models for
performance regressions and general defects. The performance regression model seems to
value complexity metrics higher than the general regression model. The most important
bag-of-words tokens stay similar to the performance regression model.

48

CHAPTER 7
Conclusion

7.1 Summary
We summarise the key findings of this thesis by revisiting the research questions posed in
the introduction, see Chapter 1.

Is the SZZ algorithm suitable for labeling performance regression inducing
code changes correctly?

Although the SZZ algorithm is commonly used in the field of software defect pre-
diction [RRGB18], we could not successfully leverage the improved version SZZUn-
leashed [BSBH19] to label performance regressions correctly. In Section 5.5.1, we used
information from the benchmark monitoring tool Perfherder and manually reported links
from bug-fixing to bug-introducing code changes to estimate the number of true positives
and false positives of the labeling obtained by SZZUnleashed to be very high. In addition,
the highest achieved F1-score of the machine learning models is 0.0526, see Table 6.7.
This makes us conclude that the SZZ algorithm is not suitable for predicting performance
regressions in the Firefox repository.

Is a labeling based on bug numbers suitable for detecting performance regression
inducing code changes?

Since 2019, Mozilla software engineers provide associations of bug-introducing and bug-
fixing source code by linking the bug number of a commit which caused a regression
to their bug-fix issue in the bug-tracking-system. As a bug number maps to multiple
consecutive commits in general, we showed that labeling singular commits based on bug

49

7. Conclusion

numbers is not appropriate, because this introduces a positional bias in the data, see
Section 5.6.

However, we presented an approach to collect commits into groups, which essentially
represent the work of a developer on a particular issue in one session. In addition to
removing the positional bias, the grouping also makes sense from a software engineering
perspective: bugs may be introduced not only by single commits, but also by the
interaction of multiple code changes. The best model trained on this labeling achieved a
0.1745 F1-score, a 3◊ improvement over the SZZ algorithm, see Table 6.7.

We gave three reasons which may explain why this approach works better than the SZZ
algorithm: First, the main signal for linking bug-introducing code to bug-fixing code
comes directly from the Firefox software engineers. Second, the key assumptions of the
SZZ algorithm that bugs are fixed at the same code lines they were introduced at seems
to be wrong for performance regressions. Third, performance bugs may be introduced
by the interplay of code changes of several commits, which may be captured by the
representation of code changes in terms of our grouping method.

Even though the classification scores are far from perfect, we conclude that our la-
beling approach, which we call bugbug in homage to the Mozilla machine learning
framework [Moz22a], is suitable for performance regression prediction. It outperforms
the automatic labeling of the SZZ algorithm, makes sense from a software engineering
perspective, and is based directly on expert knowledge, namely the bug number links
made by Mozilla developers.

Which sampling technique is best for dealing with the imbalanced nature of
performance regression data sets?

In Section 6.4, we took a quantitative approach to finding the best sampling technique
by ranking the best models for each of following methods: no sampling, over-sampling,
under-sampling, and SMOTE. After averaging the ranks over multiple labeling and
feature type configurations, we found that no sampling and over-sampling perform the
best. These results seem reasonable as these methods work with all the original data.
They do not throw away any data or synthetically generate new data, like under-sampling
or SMOTE, respectively. However, note that the best model with hand-crafted features
based on the bugbug labeling uses SMOTE, see Table 6.7.

Which machine learning model is best at generalising to unseen data for the
task of performance regression prediction?

By looking at the best models after hyper-parameter tuning for both labeling approaches
(SZZ and bugbug) and feature types (traditional and bag-of-words), we observed the
general trend that the classification scores of the linear models logistic regression and
support vector machine are the most similar on training, validation, and test data splits,

50

7.1. Summary

indicating the best generalisation capability, see Section 6.1, 6.2, and 6.3. On the other
hand, tree-based models like random forest, XGBoost, or the extra trees classifier overfit
severely on the training data. Nonetheless, they sometimes still outperform the linear
models on the test set. The multi-layer perceptron lies somewhere between both extremes
in terms of overfitting.

How does a bag-of-words model compare to a model trained on hand-crafted
features?

Surprisingly, the simple bag-of-words approach described in Section 4.2.2 produced models
on par to the models trained on hand-crafted features for both the SZZ and bugbug
labeling. In fact, it was a bag-of-words logistic regression model that achieved the best
F1-score of 0.1745 closely followed by a logistic regression model based on traditional
features with a F1-score of 0.1734. In our efforts to understand how the bag-of-words
models work so well, we found that the overall most important tokens are just generic
programming words like “return” or “get”. However, by looking at a specific data point,
we saw that the tokens, which contributed the most to the prediction, were fitting to
the corresponding software engineering task. A final explanation for the performance
of bag-of-words models in the context of performance regression prediction remains for
future research.

How does a performance regression prediction model differ from a general
defect prediction model?

In Section 6.6, we concluded that models trained for general regression prediction can
transfer their capabilities to the subset of performance regressions with classification
scores just 20% shy of the scores of a model trained specifically for performance regressions.
This is true for both traditional and bag-of-words features. The transfer of prediction
capability in the reverse direction fails. There are more complexity metrics, like the
Halstead metrics, among the most important features for the performance regression
model than for the general regression model, where more general features like developer
experience or number of reverted changes dominate. We could not find significant
differences between the most important tokens of the bag-of-words models.

To what extent are machine learning models capable of detecting performance
regression inducing code changes from source code features in a just in time
manner, specifically at code edit or commit time?

Building a machine learning pipeline for performance regression prediction is particularly
difficult, because there is uncertainty in the correctness of the data labeling and the
suitability of the selected modeling methods. In Section 5.6, we have seen that if we are

51

7. Conclusion

not careful when labeling the data and with choosing the correct evaluation setup, it is
easy to produce misleading good classification scores. Furthermore, there is constantly
the question if the constructed features provide a good signal for performance regressions
or if there can even exist such a signal. In summary, there is a permanent concern that
either the labeling is bad or the model is bad, see Figure 7.1.

Is the model
bad?

Is the labeling
bad?

Figure 7.1: The dilemma of performance regression prediction.

Nevertheless, we were able to build a model that can predict performance regression 5.7◊
more precisely than random guessing. With our approach we were able to improve the
labeling which led to an increase of precision to 0.2022 and recall to 0.1535, which makes
a 0.1745 F1-score for our best model. Still, there is room for improvement and we list
ideas worth pursuing in future work in Section 7.3, for example, an in-depth investigation
of natural language processing methods for predicting performance regressions.

7.2 Contributions
The main contributions of this thesis to the research field of software defect prediction
are as follows:

• An open source implementation of a full machine learning pipeline for perfor-
mance regression prediction from data labeling, to feature extraction and model
training. All experiments are reproducible at https://github.com/ipa-lab/
firefox-performance-regressions.

• An evaluation of the applicability of the SZZ algorithm for performance regressions
in the Firefox repository.

• An approach to labeling based on grouping of coherent commits, which makes sense
from a software engineering perspective, is based directly on expert knowledge, and
improves the performance of models significantly.

• A discussion on the correct evaluation setup for defect prediction and an example
where the standard cross-validation approach produced highly misleading results.

• An in-depth investigation of feature importance of performance regression prediction
models in comparison to general defect prediction model both for hand-crafted
features and bag-of-words tokens.

52

https://github.com/ipa-lab/firefox-performance-regressions
https://github.com/ipa-lab/firefox-performance-regressions

7.3. Limitations and Future Work

7.3 Limitations and Future Work
A shortcoming of this work is that we only considered performance regression prediction
for Mozilla Firefox. However, this allowed us to put a lot of effort in evaluating and
adjusting the labeling process specifically for Firefox, testing several machine learning
methods, as well as interpreting the final models in detail. Still, extending our approach
to other performance critical software projects will be necessary for future work. In
particular, it would be interesting to test whether the bugbug labeling can be translated
to other repositories.

Furthermore, the surprising predictive capabilities of the bag-of-words models make
natural language processing methods look very promising for the task of software defect
prediction. It remains for future work to find the reasons why this approach works so
well, for example, with counterfactual explanations [CDMC21]. Also, more sophisticated
natural language processing methods, like large transformer-based models or methods
that take the semantics of source code into account, should be considered for performance
regression prediction.

Lastly, it could be fruitful to consult software engineers to find new insights into how
performance bugs happen and how they are fixed to build a model following their expertise.
From our perspective it would also be interesting to conduct an experiment where the
root cause of performance problems is recorded accurately either on the commit or even
on the source code line level. This would remove the uncertainty in the labeling which
would allow us to focus on the machine learning part of the prediction task.

7.4 Threats to Validity
External Validity is the extent to which the findings of this work can be generalised.
In this thesis we only considered one performance critical software project, namely the
Mozilla Firefox web browser. Therefore, it is possible that our results and conclusions
may not transfer to other repositories. However, Firefox is a very large project, comprised
of many modules covering several aspects of software engineering (graphical interfaces,
networking, etc.) which are written in multiple programming languages. This makes us
confident that our conclusions are likely to hold for other software projects.

Internal Validity is the extend to which the findings of this work are indeed explained
by the presented data and not by other factors. The biggest uncertainty in our results
comes from the labeling process. In Section 2.5.1, we described the limitations of the SZZ
algorithm and in Section 5.5.1, we demonstrated a high false positive and false negative
rates of the labeling produced by the SZZ algorithm. Even though our bugbug labeling
directly leverages the knowledge of Mozilla developers, see Section 5.6, there is still the
possibility of inaccurate or insufficient bug reporting leading to an incorrect data labeling,
which directly influences the experiment results. Furthermore, while particular care was
taken to not include any future information about the source code in the prediction,
this was not possible for the bug reports. As we do not have the exact state of the

53

7. Conclusion

bug-tracking-system at each time step, we extracted all information from the system, but
only consider commits older than three months, see Section 4.1.2. This way we ensure
consistent and (almost) complete bug reporting for all considered commits, however, the
most recent state of the repository is slightly different due to undetected bugs. Lastly,
we decided to use the SHAP framework for model interpretation, however, there are also
other methods that could lead to slightly different conclusions [Mol22].

54

CHAPTER 8
Appendix

In Section 8.1, 8.2, and 8.3, you can find the classification scores for the best machine
learning models for the SZZ labeling, bugbug labeling, and bugbug labeling for general
regressions, respectively. The best models are chosen based on their average precision on
the validation splits in the hyper-parameter search. We report recall, precision, and F1
score on training and test set with the confidence threshold determined on the training
data. Additionally, we report these three metrics on the test set with the confidence
threshold determined on the test data, which can be found in the “test pareto” column.
By comparing these scores to the unbiased test scores, we can estimate the extend of
overfitting present in the models.

In Section 8.4, we report the best hyper-parameters for all combinations of labeling,
model, and feature type. The traditional features refer to the reduced features described
in Section 6.3.

In Section 8.5, we report the best sampling method for all combinations of labeling,
model, and feature type with the corresponding average precision on the validation splits.
Again, the traditional features refer to the reduced features described in Section 6.3.

55

8.
A

ppendix

8.1 SZZ Labeling
training test test pareto
recall precision F1 recall precision F1 recall precision F1

Dummy
Classifier

regression 1.0000 0.0063 0.0126 1.0000 0.0022 0.0044 1.0000 0.0022 0.0044
non-regression 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Logistic
Regression

regression 0.0723 0.0401 0.0516 0.0455 0.0066 0.0116 0.0455 0.0179 0.0256
non-regression 0.9890 0.9941 0.9915 0.9849 0.9979 0.9913 0.9945 0.9979 0.9962

Support Vector
Machine

regression 0.1411 0.0963 0.1144 0.0000 0.0000 0.0000 0.1364 0.0102 0.0189
non-regression 0.9916 0.9945 0.9930 0.9903 0.9978 0.9940 0.9706 0.9980 0.9842

Random Forest regression 0.9965 0.9843 0.9904 0.0000 0.0000 0.0000 0.0455 0.0182 0.0260
non-regression 0.9999 1.0000 0.9999 1.0000 0.9978 0.9989 0.9946 0.9979 0.9962

XGBoost regression 0.5009 0.3994 0.4444 0.0000 0.0000 0.0000 0.0909 0.0256 0.0400
non-regression 0.9952 0.9968 0.9960 0.9974 0.9978 0.9976 0.9924 0.9980 0.9952

Multi-Layer
Perceptron

regression 0.1217 0.0752 0.0930 0.0909 0.0177 0.0296 0.0909 0.0194 0.0320
non-regression 0.9905 0.9944 0.9924 0.9888 0.9980 0.9934 0.9898 0.9980 0.9939

TPOT regression 0.1958 0.1512 0.1706 0.0455 0.0116 0.0185 0.3182 0.0191 0.0361
non-regression 0.9930 0.9949 0.9939 0.9915 0.9979 0.9947 0.9639 0.9984 0.9809

Table 8.1: Classification scores of all models for SZZ labeling with traditional features.

training test test pareto
recall precision F1 recall precision F1 recall precision F1

Dummy
Classifier

regression 1.0000 0.0063 0.0126 1.0000 0.0022 0.0044 1.0000 0.0022 0.0044
non-regression 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Logistic
Regression

regression 0.0476 0.0374 0.0419 0.0455 0.0078 0.0133 0.1818 0.0221 0.0394
non-regression 0.9922 0.9939 0.9931 0.9872 0.9979 0.9925 0.9822 0.9982 0.9901

Support Vector
Machine

regression 0.1429 0.0502 0.0743 0.0455 0.0068 0.0118 0.0455 0.0137 0.0211
non-regression 0.9828 0.9945 0.9886 0.9853 0.9979 0.9916 0.9928 0.9979 0.9953

Random Forest regression 0.9877 0.9672 0.9773 0.0000 0.0000 0.0000 0.0909 0.0215 0.0348
non-regression 0.9998 0.9999 0.9999 1.0000 0.9978 0.9989 0.9909 0.9980 0.9944

XGBoost regression 0.2769 0.2240 0.2476 0.0000 0.0000 0.0000 0.3182 0.0054 0.0107
non-regression 0.9939 0.9954 0.9946 0.9959 0.9978 0.9968 0.8709 0.9983 0.9303

Multi-Layer
Perceptron

regression 0.1499 0.0928 0.1146 0.0000 0.0000 0.0000 0.4545 0.0046 0.0091
non-regression 0.9907 0.9946 0.9926 0.9910 0.9978 0.9944 0.7817 0.9985 0.8769

TPOT regression 0.3686 0.3821 0.3752 0.1364 0.0326 0.0526 0.0909 0.0714 0.0800
non-regression 0.9962 0.9960 0.9961 0.9911 0.9981 0.9946 0.9974 0.9980 0.9977

Table 8.2: Classification scores of all models for SZZ labeling with traditional features after feature reduction.

56

8.2.
BugBug

Labeling
training test test pareto
recall precision F1 recall precision F1 recall precision F1

Dummy
Classifier

regression 1.0000 0.0063 0.0126 1.0000 0.0022 0.0044 1.0000 0.0022 0.0044
non-regression 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Logistic
Regression

regression 0.4339 0.3739 0.4016 0.0455 0.0204 0.0282 0.0455 0.2500 0.0769
non-regression 0.9954 0.9964 0.9959 0.9952 0.9979 0.9965 0.9997 0.9979 0.9988

Support Vector
Machine

regression 0.3563 0.1563 0.2173 0.1818 0.0288 0.0497 0.0909 0.0645 0.0755
non-regression 0.9878 0.9959 0.9918 0.9864 0.9982 0.9923 0.9971 0.9980 0.9975

Random Forest regression 0.7637 0.6541 0.7046 0.0455 0.0095 0.0157 0.0909 0.0156 0.0267
non-regression 0.9974 0.9985 0.9980 0.9895 0.9979 0.9937 0.9873 0.9980 0.9926

XGBoost regression 0.3122 0.5822 0.4064 0.0455 0.0312 0.0370 0.0455 0.0370 0.0408
non-regression 0.9986 0.9956 0.9971 0.9969 0.9979 0.9974 0.9974 0.9979 0.9976

Table 8.3: Classification scores of all models for SZZ labeling with bag-of-words features.

8.2 BugBug Labeling

training test test pareto
recall precision F1 recall precision F1 recall precision F1

Dummy
Classifier

regression 1.0000 0.0268 0.0522 1.0000 0.0355 0.0685 1.0000 0.0355 0.0685
non-regression 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Logistic
Regression

regression 0.2465 0.0916 0.1336 0.2946 0.1084 0.1585 0.3402 0.1107 0.1670
non-regression 0.9326 0.9782 0.9549 0.9109 0.9723 0.9406 0.8994 0.9737 0.9351

Support Vector
Machine

regression 0.1916 0.1188 0.1467 0.2199 0.1183 0.1538 0.2075 0.1401 0.1672
non-regression 0.9608 0.9773 0.9690 0.9397 0.9704 0.9548 0.9531 0.9703 0.9617

Random Forest regression 0.1891 0.2967 0.2310 0.0539 0.1354 0.0772 0.4274 0.0891 0.1475
non-regression 0.9876 0.9779 0.9827 0.9873 0.9660 0.9765 0.8393 0.9755 0.9023

XGBoost regression 0.4802 0.7560 0.5873 0.0788 0.1959 0.1124 0.2158 0.1313 0.1633
non-regression 0.9957 0.9858 0.9908 0.9881 0.9668 0.9774 0.9475 0.9705 0.9588

Multi-Layer
Perceptron

regression 0.2245 0.1518 0.1811 0.1618 0.1071 0.1289 0.2448 0.1180 0.1592
non-regression 0.9654 0.9783 0.9719 0.9504 0.9686 0.9594 0.9327 0.9711 0.9515

TPOT regression 0.8566 0.9784 0.9135 0.0581 0.5000 0.1041 0.1950 0.1483 0.1685
non-regression 0.9995 0.9961 0.9978 0.9979 0.9664 0.9819 0.9588 0.9700 0.9644

Table 8.4: Classification scores of all models for bugbug labeling with traditional features.

57

8.
A

ppendix

training test test pareto
recall precision F1 recall precision F1 recall precision F1

Dummy
Classifier

regression 1.0000 0.0268 0.0522 1.0000 0.0355 0.0685 1.0000 0.0355 0.0685
non-regression 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Logistic
Regression

regression 0.1696 0.1100 0.1334 0.2324 0.1383 0.1734 0.2407 0.1404 0.1774
non-regression 0.9622 0.9768 0.9694 0.9467 0.9710 0.9587 0.9458 0.9713 0.9584

Support Vector
Machine

regression 0.2965 0.1454 0.1951 0.2822 0.1151 0.1635 0.3029 0.1199 0.1718
non-regression 0.9520 0.9800 0.9658 0.9202 0.9721 0.9454 0.9182 0.9728 0.9447

Random Forest regression 0.3087 0.1719 0.2208 0.1037 0.0806 0.0907 0.3942 0.0946 0.1526
non-regression 0.9590 0.9805 0.9697 0.9565 0.9667 0.9616 0.8613 0.9748 0.9145

XGBoost regression 0.4790 0.6250 0.5423 0.0830 0.1550 0.1081 0.1826 0.1155 0.1415
non-regression 0.9921 0.9857 0.9889 0.9834 0.9668 0.9750 0.9486 0.9693 0.9588

Multi-Layer
Perceptron

regression 0.3008 0.2490 0.2725 0.1494 0.1053 0.1235 0.3237 0.1022 0.1554
non-regression 0.9750 0.9806 0.9778 0.9533 0.9682 0.9607 0.8955 0.9730 0.9326

TPOT regression 0.9811 0.9110 0.9448 0.0373 0.2000 0.0629 0.1909 0.1407 0.1620
non-regression 0.9974 0.9995 0.9984 0.9945 0.9656 0.9798 0.9571 0.9698 0.9634

Table 8.5: Classification scores of all models for bugbug labeling with traditional features after feature reduction.

training test test pareto
recall precision F1 recall precision F1 recall precision F1

Dummy
Classifier

regression 1.0000 0.0268 0.0522 1.0000 0.0355 0.0685 1.0000 0.0355 0.0685
non-regression 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Logistic
Regression

regression 0.4875 0.4719 0.4796 0.1535 0.2022 0.1745 0.1618 0.1980 0.1781
non-regression 0.9850 0.9859 0.9854 0.9777 0.9691 0.9734 0.9759 0.9694 0.9726

Support Vector
Machine

regression 0.2849 0.3029 0.2936 0.1203 0.1768 0.1432 0.1743 0.1687 0.1714
non-regression 0.9819 0.9803 0.9811 0.9794 0.9680 0.9737 0.9684 0.9696 0.9690

Random Forest regression 0.6919 0.7354 0.7130 0.0830 0.2174 0.1201 0.3320 0.1423 0.1993
non-regression 0.9931 0.9915 0.9923 0.9890 0.9670 0.9779 0.9264 0.9742 0.9497

XGBoost regression 0.5308 0.7311 0.6151 0.0871 0.1795 0.1173 0.2324 0.1244 0.1621
non-regression 0.9946 0.9872 0.9909 0.9853 0.9670 0.9761 0.9399 0.9708 0.9551

Table 8.6: Classification scores of all models for bugbug labeling with bag-of-words features.

58

8.3.
BugBug

Labeling
-G

eneralR
egressions

8.3 BugBug Labeling - General Regressions
training test test pareto
recall precision F1 recall precision F1 recall precision F1

Dummy
Classifier

regression 1.0000 0.2105 0.3478 1.0000 0.2087 0.3454 1.0000 0.2087 0.3454
non-regression 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Logistic
Regression

regression 0.5852 0.3277 0.4201 0.5515 0.3001 0.3887 0.4492 0.3517 0.3945
non-regression 0.6798 0.8601 0.7594 0.6607 0.8481 0.7427 0.7816 0.8432 0.8112

Support Vector
Machine

regression 0.5620 0.3636 0.4415 0.5071 0.3243 0.3956 0.6551 0.2916 0.4036
non-regression 0.7377 0.8633 0.7956 0.7213 0.8472 0.7792 0.5801 0.8644 0.6943

Random Forest regression 0.7458 0.8729 0.8044 0.4746 0.3943 0.4307 0.5402 0.3683 0.4380
non-regression 0.9710 0.9348 0.9525 0.8076 0.8535 0.8299 0.7555 0.8617 0.8051

XGBoost regression 0.5659 0.4592 0.5070 0.4986 0.3652 0.4216 0.6333 0.3234 0.4281
non-regression 0.8223 0.8766 0.8486 0.7713 0.8536 0.8104 0.6504 0.8705 0.7445

Multi-Layer
Perceptron

regression 0.5785 0.3594 0.4434 0.5635 0.3339 0.4193 0.5395 0.3476 0.4228
non-regression 0.7250 0.8658 0.7892 0.7034 0.8593 0.7736 0.7328 0.8578 0.7904

TPOT regression 0.6020 0.4745 0.5307 0.5099 0.3611 0.4228 0.5550 0.3493 0.4288
non-regression 0.8222 0.8857 0.8527 0.7620 0.8549 0.8058 0.7273 0.8610 0.7885

Table 8.7: Classification scores of all models for bugbug labeling for all regressions with traditional features after feature
reduction.

training test test pareto
recall precision F1 recall precision F1 recall precision F1

Dummy
Classifier

regression 1.0000 0.2105 0.3478 1.0000 0.2087 0.3454 1.0000 0.2087 0.3454
non-regression 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Logistic
Regression

regression 0.5814 0.4424 0.5024 0.4140 0.3164 0.3587 0.6206 0.2807 0.3866
non-regression 0.8046 0.8782 0.8397 0.7641 0.8317 0.7965 0.5805 0.8529 0.6908

Support Vector
Machine

regression 0.5606 0.3484 0.4298 0.4908 0.3053 0.3764 0.5409 0.2989 0.3850
non-regression 0.7204 0.8601 0.7841 0.7053 0.8400 0.7668 0.6653 0.8460 0.7448

Random Forest regression 0.8535 0.9987 0.9204 0.1368 0.5791 0.2213 0.5402 0.3477 0.4231
non-regression 0.9997 0.9624 0.9807 0.9738 0.8105 0.8846 0.7327 0.8580 0.7904

XGBoost regression 0.4752 0.5032 0.4888 0.4062 0.4168 0.4114 0.4386 0.3952 0.4158
non-regression 0.8749 0.8621 0.8685 0.8500 0.8444 0.8472 0.8229 0.8475 0.8350

Table 8.8: Classification scores of all models for bugbug labeling for all regressions with bag-of-words features.

59

8.
A

ppendix

8.4 Best Hyper-Parameters

C Penalty Sampling
Data Target Feature Type

SZZ perf. regressions traditional 0.0167 l2 Random Over-Sampling
bag-of-words 2.3731 l2 No sampling

bugbug perf. regressions traditional 0.6689 l2 SMOTE
bag-of-words 0.7420 l2 No sampling

all regressions traditional 0.2075 l1 SMOTE
bag-of-words 0.1658 l2 No sampling

Table 8.9: Best hyper-parameters for the logistic regression model.

Degree Kernel C Sampling
Data Target Feature Type

SZZ perf. regressions traditional 3 rbf 6.2824 SMOTE
bag-of-words 3 poly 593.4792 Random Over-Sampling

bugbug perf. regressions traditional 3 rbf 98.3742 Random Over-Sampling
bag-of-words 5 linear 0.1330 Random Under-Sampling

all regressions traditional 3 rbf 95.2045 SMOTE
bag-of-words 5 poly 97.9066 Random Over-Sampling

Table 8.10: Best hyper-parameters for the support vector machine model.

Max_depth Min_samples_split N_estimators Sampling
Data Target Feature Type

SZZ perf. regressions traditional 20.0000 5 37 Random Over-Sampling
bag-of-words 15.0000 2 150 No sampling

bugbug perf. regressions traditional 5.0000 5 121 Random Over-Sampling
bag-of-words None 5 150 Random Under-Sampling

all regressions traditional 15.0000 5 150 No sampling
bag-of-words None 5 150 No sampling

Table 8.11: Best hyper-parameters for the random forest model.

60

8.4.
Best

H
yper-Param

eters
Gamma Maximum

delta step
Max_depth Minimum

child weight
N_estimators Sampling

Data Target Feature Type

SZZ perf. regressions traditional 0.0052 1 3 1 78 Over-Sampling
bag-of-words 0.5270 1 3 1 40 No sampling

bugbug perf. regressions traditional 0.2433 1 5 1 42 No sampling
bag-of-words 1.0000 0 3 1 56 No sampling

all regressions traditional 0.0000 0 4 5 44 No sampling
bag-of-words 1.0000 1 3 5 53 No sampling

Table 8.12: Best hyper-parameters for the XGBoost model.

Activation Alpha Hidden_layer_sizes Learning_rate_init Sampling
Data Target Feature Type

SZZ perf. regressions traditional tanh 0.0003 50 0.0001 SMOTE
bugbug perf. regressions traditional relu 0.0001 200 0.0001 Random Over-Sampling

all regressions traditional relu 0.0001 10 0.0015 No sampling

Table 8.13: Best hyper-parameters for the multi-layer perceptron model.

61

8.
A

ppendix

8.5 Best Sampling Methods

Model Sampling AP (val.)
Data Target Feature Type

SZZ perf. regressions traditional Logistic Regression Over-Sampling 0.0278
traditional Support Vector Machine SMOTE 0.0362
traditional Random Forest Over-Sampling 0.0482
traditional XGBoost Over-Sampling 0.0546
traditional Multi-Layer Perceptron SMOTE 0.0368
bag-of-words Logistic Regression No sampling 0.0670
bag-of-words Support Vector Machine Over-Sampling 0.0563
bag-of-words Random Forest No sampling 0.0627
bag-of-words XGBoost No sampling 0.0765

bugbug perf. regressions traditional Logistic Regression SMOTE 0.0747
traditional Support Vector Machine Over-Sampling 0.0880
traditional Random Forest Over-Sampling 0.1044
traditional XGBoost No sampling 0.1037
traditional Multi-Layer Perceptron Over-Sampling 0.1040
bag-of-words Logistic Regression No sampling 0.1249
bag-of-words Support Vector Machine Under-Sampling 0.1181
bag-of-words Random Forest Under-Sampling 0.1343
bag-of-words XGBoost No sampling 0.1358

all regressions traditional Logistic Regression SMOTE 0.3551
traditional Support Vector Machine SMOTE 0.3820
traditional Random Forest No sampling 0.4187
traditional XGBoost No sampling 0.4144
traditional Multi-Layer Perceptron No sampling 0.3935
bag-of-words Logistic Regression No sampling 0.3753
bag-of-words Support Vector Machine Over-Sampling 0.3666
bag-of-words Random Forest No sampling 0.4155
bag-of-words XGBoost No sampling 0.4027

Table 8.14: Best sampling method for every data and model configuration.

62

List of Figures

2.1 Example application of the SZZ algorithm in Mozilla’s Firefox repository
(Bug 1717171). Left: complete bug-fixing code change. Right: part of
bug-introducing code change. 9

4.1 Overview of time-dependent data split in the experiments. 17

5.1 Overview of information used in the labeling process categorised by source:
mercurial repository, Bugzilla, and Perfherder. Bug numbers are referenced in
the commit messages. Both the regressed-by field and performance alerts
can be mapped to commits and can be used to evaluate the SZZ algorithm. 27

5.2 Example of bug being split up into multiple commits. 30
5.3 Illustration of positional bias from bug-number-based labeling. 31
5.4 Positional bias implicitly encoded through small set of features. 31

6.1 ROC and precision-recall curves for the SZZ labeling with traditional features
on the test set. The y-axis for the precision-recall plot is scaled for better
separation. 34

6.2 ROC and precision-recall curves for the SZZ labeling with bag-of-words
features on the test set. The y-axis for the precision-recall plot is scaled for
better separation. 35

6.3 ROC and precision-recall curves for the bugbug labeling with traditional
features on the test set. 36

6.4 ROC and precision-recall curves for the bugbug labeling with bag-of-words
features on the test set. 37

6.5 SHAP summary plots for traditional features. Left: SZZ labeling; right:
bugbug labeling. 38

6.6 SHAP summary plots for reduced traditional features. Left: SZZ labeling;
right: bugbug labeling. 41

6.7 SHAP summary plots for bag-of-words features. Left: SZZ labeling; right:
bugbug labeling. 42

6.8 SHAP waterfall plots for traditional features. Left: commit for revision
9ac290ec5884; right: commit group for bug 1718755. 43

6.9 SHAP waterfall plots for bag-of-words features. Left: commit for revision
9ac290ec5884; right: commit group for bug 1718755. 44

63

6.10 Models trained on all regressions compared to models trained only on perfor-
mance regressions on the performance regression test set. 45

6.11 Models trained on all regressions compared to models trained only on perfor-
mance regressions on the all regression test set. 46

6.12 SHAP summary plot and waterfall plot of bug 1718755 for model trained on
all regressions with traditional features. 47

6.13 SHAP summary plot and waterfall plot of bug 1718755 for model trained on
all regressions with bag-of-words features. 47

7.1 The dilemma of performance regression prediction. 52

64

List of Tables

4.1 Summary of implemented process metrics, majority of which where adapted
from Kamei et. al. [KSA+12]. 19

4.2 Summary of used source code complexity metrics obtained by the rust-code-
analysis tool [ABC+20]. 20

4.3 Search spaces for hyper-parameter optimisation. 24

5.1 SZZUnleashed evaluation results. 29

6.1 Results of hyper-parameter tuning for SZZ labeling with traditional features. 33
6.2 Results of hyper-parameter tuning for SZZ labeling with bag-of-words features. 35
6.3 Results of hyper-parameter tuning for bugbug labeling with traditional fea-

tures. 36
6.4 Results of hyper-parameter tuning for bugbug labeling with bag-of-words

features. 37
6.5 Results of hyper-parameter tuning for SZZ labeling with traditional features

after feature reduction. 39
6.6 Results of hyper-parameter tuning for bugbug labeling with traditional features

after feature reduction. 39
6.7 Comparison of best models for each labeling and feature type configuration. 39
6.8 Average ranks of sampling methods taken over all labeling, feature type, and

model configurations. 40
6.9 Comparison of best models trained and evaluated on performance regressions

and general regressions. 46

8.1 Classification scores of all models for SZZ labeling with traditional features. 56
8.2 Classification scores of all models for SZZ labeling with traditional features

after feature reduction. 56
8.3 Classification scores of all models for SZZ labeling with bag-of-words features. 57
8.4 Classification scores of all models for bugbug labeling with traditional features. 57
8.5 Classification scores of all models for bugbug labeling with traditional features

after feature reduction. 58
8.6 Classification scores of all models for bugbug labeling with bag-of-words

features. 58

65

8.7 Classification scores of all models for bugbug labeling for all regressions with
traditional features after feature reduction. 59

8.8 Classification scores of all models for bugbug labeling for all regressions with
bag-of-words features. 59

8.9 Best hyper-parameters for the logistic regression model. 60
8.10 Best hyper-parameters for the support vector machine model. 60
8.11 Best hyper-parameters for the random forest model. 60
8.12 Best hyper-parameters for the XGBoost model. 61
8.13 Best hyper-parameters for the multi-layer perceptron model. 61
8.14 Best sampling method for every data and model configuration. 62

66

Index

regressed-by field, 26

added, deleted, context line of code, 21
AP, 16
area under the ROC-curve, 16
AUC, 16
average precision, 16

backouts, 19
bug number, 26
bug-tracking-system, 2

commit, 2
complexity metrics, 18, 20
confidence threshold, 16

delta complexity metrics, 18
diff, 2, 9
dummy classifier, 33

F1-score, 16
feature matrix, 5

hyper-parameter tuning, 5, 17, 23

logistic regression, 6

machine learning, 5
multi-layer perceptron, 7

natural language processing, 6

over-sampling, 22

precision, 15
precision-recall curve, 34
process metrics, 19

random forest, 7
recall, 16
ROC-curve, 16, 34

SHAP summary plot, 37
SHAP waterfall plots, 43
SMOTE, 22
support vector machine, 7

TF-IDF, 22
time sensitive evaluation, 17
tokenization, 21
tokens, 6, 21
TPOT, 23
training, validation, test set, 17

under-sampling, 22

version-control-system, 2

XGBoost, 8

67

Bibliography

[ABC+20] Luca Ardito, Luca Barbato, Marco Castelluccio, Riccardo Coppola, Calixte
Denizet, Sylvestre Ledru, and Michele Valsesia. rust-code-analysis: A rust
library to analyze and extract maintainability information from source codes.
SoftwareX, 12:100635, 2020.

[ACDG07] Lerina Aversano, Luigi Cerulo, and Concettina Del Grosso. Learning from
bug-introducing changes to prevent fault prone code. In Ninth international
workshop on Principles of software evolution: in conjunction with the 6th
ESEC/FSE joint meeting, pages 19–26, 2007.

[ACRC21] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei
Chang. Unified pre-training for program understanding and generation.
arXiv preprint arXiv:2103.06333, 2021.

[AKG18] Le An, Foutse Khomh, and Yann-Gaël Guéhéneuc. An empirical study
of crash-inducing commits in mozilla firefox. Software Quality Journal,
26(2):553–584, 2018.

[AS00] L. Arief and Neil Speirs. A uml tool for an automatic generation of simulation
programs. pages 71–76, 01 2000.

[BB12] Christoph Bergmeir and José M Benítez. On the use of cross-validation for
time series predictor evaluation. Information Sciences, 191:192–213, 2012.

[Bis06] Christopher M Bishop. Pattern recognition. Machine learning, 128(9), 2006.

[BLN+22] Moritz Beller, Hongyu Li, Vivek Nair, Vijayaraghavan Murali, Imad Ahmad,
Jürgen Cito, Drew Carlson, Ari Aye, and Wes Dyer. Learning to learn to
predict performance regressions in production at meta (experience paper).
2022.

[BMI04] Simonetta Balsamo, Antinisca Marco, and Paola Inverardi. Model-based
performance prediction in software development: A survey. Software Engi-
neering, IEEE Transactions on, 30:295 – 310, 06 2004.

[Bre01] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

69

[BSBH19] Markus Borg, Oscar Svensson, Kristian Berg, and Daniel Hansson. Szz
unleashed: An open implementation of the szz algorithm-featuring example
usage in a study of just-in-time bug prediction for the jenkins project. In
Proceedings of the 3rd ACM SIGSOFT International Workshop on Machine
Learning Techniques for Software Quality Evaluation, pages 7–12, 2019.

[CBHK02] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip
Kegelmeyer. Smote: synthetic minority over-sampling technique. Jour-
nal of artificial intelligence research, 16:321–357, 2002.

[CDMC21] Jürgen Cito, Isil Dillig, Vijayaraghavan Murali, and Satish Chandra. Coun-
terfactual explanations for models of code. arXiv preprint arXiv:2111.05711,
2021.

[CG16] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, pages 785–794, 2016.

[CL19] Marco Castelluccio and Sylvestre Ledru. Teaching machines to
triage firefox bugs. https://hacks.mozilla.org/2019/04/
teaching-machines-to-triage-firefox-bugs/, 2019. Accessed:
2022-03-32.

[CMS+16] Daniel Costa, Shane McIntosh, Weiyi Shang, Uirá Kulesza, Roberta Coelho,
and Ahmed E. Hassan. A framework for evaluating the results of the szz
approach for identifying bug-introducing changes. IEEE Transactions on
Software Engineering, PP:1–1, 10 2016.

[CP03] Joseph E Coffland and Andy D Pimentel. A software framework for efficient
system-level performance evaluation of embedded systems. In Proceedings of
the 2003 ACM symposium on Applied computing, pages 666–671, 2003.

[CZ11] Istehad Chowdhury and Mohammad Zulkernine. Using complexity, coupling,
and cohesion metrics as early indicators of vulnerabilities. Journal of Systems
Architecture, 57(3):294–313, 2011.

[DCS17] Salvatore Dipietro, Giuliano Casale, and Giuseppe Serazzi. A queueing
network model for performance prediction of apache cassandra. 01 2017.

[DQRT15] Diego Didona, Francesco Quaglia, Paolo Romano, and Ennio Torre. Enhanc-
ing performance prediction robustness by combining analytical modeling and
machine learning. 01 2015.

[Dre21] Frej Drejhammar. fast-export. https://github.com/frej/
fast-export, 2021.

70

https://hacks.mozilla.org/2019/04/teaching-machines-to-triage-firefox-bugs/
https://hacks.mozilla.org/2019/04/teaching-machines-to-triage-firefox-bugs/
https://github.com/frej/fast-export
https://github.com/frej/fast-export

[FGT+20] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming
Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A
pre-trained model for programming and natural languages. arXiv preprint
arXiv:2002.08155, 2020.

[GEW06] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized
trees. Machine learning, 63(1):3–42, 2006.

[Hal77] Maurice H Halstead. Elements of Software Science (Operating and program-
ming systems series). Elsevier Science Inc., 1977.

[HC20] Andrew Halberstadt and Marco Castelluccio. Testing firefox more efficiently
with machine learning. https://hacks.mozilla.org/2020/07/
testing-firefox-more-efficiently-with-machine-learning/,
2020. Accessed: 2022-03-32.

[HCN98] Rachel Harrison, Steve J Counsell, and Reuben V Nithi. An evaluation of
the mood set of object-oriented software metrics. IEEE Transactions on
Software Engineering, 24(6):491–496, 1998.

[HHK02] Holger Hermanns, Ulrich Herzog, and Joost-Pieter Katoen. Process algebra
for performance evaluation. Theor. Comput. Sci., 274:43–87, 2002.

[HM15] Mohammad Hossin and Sulaiman M.N. A review on evaluation metrics
for data classification evaluations. International Journal of Data Mining &
Knowledge Management Process, 5:01–11, 03 2015.

[HML+18] Tim Head, MechCoder, Gilles Louppe, Iaroslav Shcherbatyi, fcharras, Zé Viní-
cius, cmmalone, Christopher Schröder, nel215, Nuno Campos, Todd Young,
Stefano Cereda, Thomas Fan, rene rex, Kejia (KJ) Shi, Justus Schwabedal,
carlosdanielcsantos, Hvass-Labs, Mikhail Pak, SoManyUsernamesTaken, Fred
Callaway, Loïc Estève, Lilian Besson, Mehdi Cherti, Karlson Pfannschmidt,
Fabian Linzberger, Christophe Cauet, Anna Gut, Andreas Mueller, and
Alexander Fabisch. scikit-optimize/scikit-optimize: v0.5.2, March 2018.

[HZ19] Huong Ha and Hongyu Zhang. Deepperf: Performance prediction for config-
urable software with deep sparse neural network. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), pages 1095–1106,
2019.

[JPZ08] Sascha Just, Rahul Premraj, and Thomas Zimmermann. Towards the next
generation of bug tracking systems. In 2008 IEEE symposium on visual
languages and human-centric computing, pages 82–85. IEEE, 2008.

[KFM+16] Yasutaka Kamei, Takafumi Fukushima, Shane McIntosh, Kazuhiro Ya-
mashita, Naoyasu Ubayashi, and Ahmed E Hassan. Studying just-in-time
defect prediction using cross-project models. Empirical Software Engineering,
21(5):2072–2106, 2016.

71

https://hacks.mozilla.org/2020/07/testing-firefox-more-efficiently-with-machine-learning/
https://hacks.mozilla.org/2020/07/testing-firefox-more-efficiently-with-machine-learning/

[KP00] Peter King and Rob Pooley. Derivation of petri net performance models from
uml specifications of communications software. In International Conference
on Modelling Techniques and Tools for Computer Performance Evaluation,
pages 262–276. Springer, 2000.

[KSA+12] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E Hassan, Audris
Mockus, Anand Sinha, and Naoyasu Ubayashi. A large-scale empirical
study of just-in-time quality assurance. IEEE Transactions on Software
Engineering, 39(6):757–773, 2012.

[KZP+06] Sunghun Kim, Thomas Zimmermann, Kai Pan, E James Jr, et al. Automatic
identification of bug-introducing changes. In 21st IEEE/ACM international
conference on automated software engineering (ASE’06), pages 81–90. IEEE,
2006.

[KZWG11] Sunghun Kim, Hongyu Zhang, Rongxin Wu, and Liang Gong. Dealing with
noise in defect prediction. In 2011 33rd International Conference on Software
Engineering (ICSE), pages 481–490. IEEE, 2011.

[LHZL17] Jian Li, Pinjia He, Jieming Zhu, and Michael R Lyu. Software defect
prediction via convolutional neural network. In 2017 IEEE International
Conference on Software Quality, Reliability and Security (QRS), pages 318–
328. IEEE, 2017.

[LL17] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model
predictions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 4765–4774. Curran Associates, Inc., 2017.

[LNA17] Guillaume Lemaître, Fernando Nogueira, and Christos K. Aridas. Imbalanced-
learn: A python toolbox to tackle the curse of imbalanced datasets in machine
learning. Journal of Machine Learning Research, 18(17):1–5, 2017.

[McC76] Thomas J McCabe. A complexity measure. IEEE Transactions on software
Engineering, (4):308–320, 1976.

[Mol22] Christoph Molnar. Interpretable Machine Learning. 2 edition, 2022.

[Moz19] MozillaWiki. Engineeringproductivity/projects/perfherder. https:
//wiki.mozilla.org/EngineeringProductivity/Projects/
Perfherder, 2019. Accessed: 2022-03-03.

[Moz22a] Mozilla. bugbug. https://github.com/mozilla/bugbug, 2022.

[Moz22b] Mozilla. History of the mozilla project. https://www.mozilla.org/
en-US/about/history/, 2022. Accessed: 2022-03-02.

72

https://wiki.mozilla.org/EngineeringProductivity/Projects/Perfherder
https://wiki.mozilla.org/EngineeringProductivity/Projects/Perfherder
https://wiki.mozilla.org/EngineeringProductivity/Projects/Perfherder
https://github.com/mozilla/bugbug
https://www.mozilla.org/en-US/about/history/
https://www.mozilla.org/en-US/about/history/

[MRS10] Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduc-
tion to information retrieval. Natural Language Engineering, 16(1):100–103,
2010.

[NHL18] Mathieu Nayrolles and Abdelwahab Hamou-Lhadj. Clever: Combining code
metrics with clone detection for just-in-time fault prevention and resolution in
large industrial projects. In 2018 IEEE/ACM 15th International Conference
on Mining Software Repositories (MSR), pages 153–164, 2018.

[OM16] Randal S Olson and Jason H Moore. Tpot: A tree-based pipeline optimization
tool for automating machine learning. In Workshop on automatic machine
learning, pages 66–74. PMLR, 2016.

[Ope22] OpenHub. Mozilla Firefox: Project summary. https://www.openhub.
net/p/firefox, 2022. Accessed: 2022-03-02.

[Ott09] Stefan Otte. Version control systems. Computer Systems and Telematics,
pages 11–13, 2009.

[PMT21] Sushant Kumar Pandey, Ravi Bhushan Mishra, and Anil Kumar Tripathi.
Machine learning based methods for software fault prediction: A survey.
Expert Systems with Applications, 172:114595, 2021.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[RHTé13] Danijel RadjenoviÊ, Marjan Heričko, Richard Torkar, and Aleö éivkovič.
Software fault prediction metrics: A systematic literature review. Information
and software technology, 55(8):1397–1418, 2013.

[RRGB18] Gema Rodriguez, Gregorio Robles, and Jesus Gonzalez-Barahona. Repro-
ducibility and credibility in empirical software engineering: A case study
based on a systematic literature review of the use of the szz algorithm.
Information and Software Technology, 99, 03 2018.

[SHN+15] Weiyi Shang, Ahmed E. Hassan, Mohamed Nasser, Parminder Flora, Black-
berry Waterloo, and Canada Ontario. Automated detection of performance
regressions using regression models on clustered performance counters. 01
2015.

[Smy20] Eric Smyth. Our year in review: How we’ve made firefox faster
in 2020. https://blog.mozilla.org/performance/2020/12/15/
2020-year-in-review/, 2020. Accessed: 2022-03-02.

73

https://www.openhub.net/p/firefox
https://www.openhub.net/p/firefox
https://blog.mozilla.org/performance/2020/12/15/2020-year-in-review/
https://blog.mozilla.org/performance/2020/12/15/2020-year-in-review/

[Sta22] StatCounter Global Stats. Browser market share worldwide.
https://gs.statcounter.com/browser-market-share#
monthly-200901-202111, 2022. Accessed: 2022-03-02.

[SWAK12] Shivkumar Shivaji, E James Whitehead, Ram Akella, and Sunghun Kim.
Reducing features to improve code change-based bug prediction. IEEE
Transactions on Software Engineering, 39(4):552–569, 2012.

[SZZ05] Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. When do changes
induce fixes? volume 30, 07 2005.

[TMHM16] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi
Matsumoto. An empirical comparison of model validation techniques for
defect prediction models. IEEE Transactions on Software Engineering,
43(1):1–18, 2016.

[TSR+20] Mahesh Kumar Thota, Francis H Shajin, P Rajesh, et al. Survey on software
defect prediction techniques. International Journal of Applied Science and
Engineering, 17(4):331–344, 2020.

[TTDM15] Ming Tan, Lin Tan, Sashank Dara, and Caleb Mayeux. Online defect
prediction for imbalanced data. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, volume 2, pages 99–108, 2015.

[Wel01] Kurt D Welker. The software maintainability index revisited. CrossTalk,
14:18–21, 2001.

[WLNT18] Song Wang, Taiyue Liu, Jaechang Nam, and Lin Tan. Deep semantic feature
learning for software defect prediction. IEEE Transactions on Software
Engineering, 46(12):1267–1293, 2018.

[WS00] Christopher Williams and Matthias Seeger. Using the nyström method
to speed up kernel machines. Advances in neural information processing
systems, 13, 2000.

[WS08] Chadd Williams and Jaime Spacco. Szz revisited: Verifying when changes
induce fixes. In Proceedings of the 2008 workshop on Defects in large software
systems, pages 32–36, 2008.

[ZAH11] Shahed Zaman, Bram Adams, and Ahmed E Hassan. Security versus per-
formance bugs: a case study on firefox. In Proceedings of the 8th working
conference on mining software repositories, pages 93–102, 2011.

[ZAH12] Shahed Zaman, Bram Adams, and Ahmed E Hassan. A qualitative study on
performance bugs. In 2012 9th IEEE working conference on mining software
repositories (MSR), pages 199–208. IEEE, 2012.

74

https://gs.statcounter.com/browser-market-share%23monthly-200901-202111
https://gs.statcounter.com/browser-market-share%23monthly-200901-202111

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background
	Machine Learning for Defect Prediction
	Feature Engineering for Software Projects
	Machine Learning Models
	Interpretability
	SZZ Algorithm

	Related Work
	Model-Based Performance Prediction
	Software Defect Prediction
	Software Engineering Research and Mozilla Firefox

	Methodology
	Experiment Setup
	Feature Engineering for Software Projects
	Tackling Imbalanced Data
	Parameter Tuning and Model Selection

	Data and Labeling
	Mozilla Firefox
	Mozilla's Bugzilla
	Mozilla's Perfherder
	Data Selection and Labeling
	SZZ Labeling
	BugBug Labeling

	Results
	SZZ Labeling
	BugBug Labeling
	Improving the Models with Feature Selection
	Best Sampling Method
	Interpreting the Models
	Performance Regressions Versus General Bugs

	Conclusion
	Summary
	Contributions
	Limitations and Future Work
	Threats to Validity

	Appendix
	SZZ Labeling
	BugBug Labeling
	BugBug Labeling - General Regressions
	Best Hyper-Parameters
	Best Sampling Methods

	List of Figures
	List of Tables
	Bibliography

