

Diplomarbeit

Vergleich von Normen zur Tragfähigkeitsberechnung von Kegelrädern ohne Achsversetzung mit Hilfe von Berechnungsprogrammen

Ein Vergleich der ISO 10300:2001, der DIN 3991:1988 und der AGMA 2003-C10 mit Hilfe von KISSsoft 03/2016 und FVA Workbench 4.0

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines

Diplom-Ingenieurs

unter der Leitung von

Univ. Prof. Dipl.-Ing. Dr.-Ing. Michael Weigand

(E307 - Institut für Konstruktionswissenschaften und Technische Logistik)

Ass. Prof. Dipl.-Ing. Dr. techn. Peter Kral

(E307 - Institut für Konstruktionswissenschaften und Technische Logistik)

eingereicht an der Technischen Universität Wien

Fakultät für Maschinenwesen und Betriebswissenschaften

von

Florentine Huber-Dangl, BSc

0925324 (066 445)

Florentine Huber-Dangl

Wien, im Juni 2017

Ich habe zur Kenntnis genommen, dass ich zur Drucklegung meiner Arbeit unter der Bezeichnung

Diplomarbeit

nur mit Bewilligung der Prüfungskommission berechtigt bin.

Ich erkläre weiters Eides statt, dass ich meine Diplomarbeit nach den anerkannten Grundsätzen für wissenschaftliche Abhandlungen selbstständig ausgeführt habe und alle verwendeten Hilfsmittel, insbesondere die zugrunde gelegte Literatur, genannt habe.

Weiters erkläre ich, dass ich dieses Diplomarbeitsthema bisher weder im In- noch Ausland (einer Beurteilerin/einem Beurteiler zur Begutachtung) in irgendeiner Form als Prüfungsarbeit vorgelegt habe und dass diese Arbeit mit der vom Begutachter beurteilten Arbeit übereinstimmt.

Wien, im Juni 2017		
•		

Florentine Huber-Dangl

1

Für meine Großmutter,

die mir jeden Tag aufs Neue vorlebt was es heißt

mit Herz und Seele Diplom-Ingenieurin zu sein.

Kurzfassung

Diese Arbeit beschäftigt sich mit dem Vergleich der ISO 10300:2001, der DIN 3991:1988 und der AGMA 2003-C10 zur Tragfähigkeitsberechnung von Kegelrädern ohne Achsversetzung. Dieser findet mit Hilfe der beiden Berechnungsprogramme FVA Workbech 4.0 und KISSsoft 03/2016 statt. Als Vergleichs-Kegelradgetriebe wird das Heckrotorgetriebe einer Hubschrauber-Drohne herangezogen. Da eine Berechnung mit FVA Workbench 4.0 trotz Anfrage beim Support-Team, auf Grund von Problemen mit der Werkstoffdatenbank nicht durchgeführt werden konnte, wurde die Berechnung ausschließlich mit KISSsoft 03/2016 durchgeführt. Für den theoretischen Vergleich zum Umgang der Programme mit den Normen wurde FVA Workbench 4.0 mit herangezogen, da im zugehörigen Handbuch sehr genaue Angaben zur Arbeitsweise gemacht werden. Unterschiede zwischen den verschiedenen Berechnungsergebnissen wurden je nach Bedarf durch Anpassung des ursprünglichen Modellgetriebes genauer untersucht.

Abstract

This thesis deals with the comparison of ISO 10300:2001, DIN 3991:1988 and AGMA 2003-C10 which are used to calculate the load capacity of bevel gears without center axle offset. This process is assisted by the calculation software FVA Workbench 4.0 and KISSsoft 03/2016. The tail rotor bevel gear of an unmanned aerial vehicle is used as illustration. Due to problems with the material database, which could not be solved by the support team, a calculation with FVA Workbench 4.0 was not possible. Therefore the calculation was only conducted with KISSsoft 03/2016. For the theoretical analysis of how the standards are implemented by the software, FVA Workbench was still considered, because of its very detailed manual. Potential differences in results were further investigated.

Einleitung 1

Inhaltsverzeichnis

L	Einleitu	ıng	4
2	Theoret	tische Grundlagen	5
	2.1 Keg	gelräder	5
	2.1.1	Allgemeines	5
	2.1.2	Einsatzgebiet	
	2.1.3	Herstellung	
	2.1.4	Auslegung	
		rechnung der Tragfähigkeit von Kegelrädern	
	2.2.1	Allgemeines	
	2.2.2	Grübchentragfähigkeit	18
	2.2.3	Zahnfußtragfähigkeit	19
	2.3 No	rmen zur Tragfähigkeitsberechnung von Kegelrädern	20
	2.3.1	Allgemeines	20
	2.3.2	Allgemeiner Vergleich	32
	2.3.3	Lastfaktoren	37
	2.3.4	Faktoren der Grübchentragfähigkeit	48
	2.3.5	Faktoren der Zahnfußtragfähigkeit	
		rechnungsprogramme	
	2.4.1	Allgemeines	
	2.4.1	FVA Workbench 4.0	
	2.4.2	KISSSOFT 03/2016	85
3	Zielsetz	rung	90
1	Method	den	91
	4.1 Ge	triebe zur Vergleichsberechnung	91
	4.2 Var	riation der Daton	02

Einleitung 2

5	Ber	echn	nungsergebnisse	94
	5.1	Мо	dellgetriebe - KISSsoft	94
	5.1.	.1	Berechnete Werte	94
	5.1.	.2	Sicherheiten der Grübchentragfähigkeit	95
	5.1.	.1	Sicherheiten der Zahnfußtragfähigkeit	98
	5.2	Мо	dellgetriebe mit Schrägverzahnung	.101
	5.3	Мо	dellgetriebe mit veränderter Breite	.104
	5.4	Мо	dellgetriebe mit verändertem Werkstoff	.105
	5.5	Мо	dellgetriebe mit veränderter gemittelter Rauhtiefe	.106
	5.6	Мо	dellgetriebe mit veränderter Temperatur	.107
	5.7	Мо	dellgetriebe mit veränderter Drehzahl	.107
	5.8	Мо	dellgetriebe mit veränderter Lebensdauer	.109
	5.9	Мо	dellgetriebe mit verändertem Zuverlässigkeitsfaktor	.110
6	Disl	kussi	on der Ergebnisse	.111
	6.1	Ver	änderungen in der ISO gegenüber der DIN	.111
	6.2	AGI	MA	.117
	6.3	Ung	genaue Angaben in den Normen und Umsetzung in den	
	Berec	hnur	ngsprogrammen	.119
	6.4	Ber	echnungssoftware	.122
	6.4	.1	Allgemeines	.122
	6.4	.2	KISSsoft 03/2016	.123
	6.5	Sich	nerheiten	.127
7	Res	üme	e	.130
8	Lite	ratu	rverzeichnis	.131
	8.1	Büc	her	.131
	8.2	Nor	rmen	.131
	8.3	We	bsites	.132

Einleitung	2
FINICITINS	4
Limertang	9

9	Abbildungsverzeichnis	.133
10	Formelverzeichnis	.134
11	Tabellenverzeichnis	.135
12	Anhang	.137

Einleitung 4

1 Einleitung

Seit vielen Jahren bilden Normen eine fundierte Grundlage bei der vereinheitlichten Auslegung von Maschinenelementen. Die Gründung der International Organization for Standardization (ISO) im Jahr 1947 hat diesen gemeinsamen Konsens sogar über nationale Grenzen hinaus möglich gemacht. Inzwischen umfasst die ISO Mitglieder aus 162 Ländern. Trotzdem sind auch nationale Normen, die von den ISO Normen abweichen können, weiterhin von großer Bedeutung. So existieren für die Tragfähigkeitsberechnung von Kegelrädern ohne Achsversetzung neben der ISO 10300:2001 unter anderem auch die AGMA 2003-C10 und die DIN 3991:1988.

Diese Arbeit beschäftigt sich mit dem Vergleich der drei genannten Normen mit Hilfe der beiden Berechnungsprogramme FVA Workbech 4.0 und KISSsoft 03/2016. Als Vergleichs-Kegelradgetriebe wird das Heckrotorgetriebe einer Hubschrauber-Drohne herangezogen.

Zuerst wird die Theorie zu Kegelrädern und deren Auslegung erläutert. Anschließend werden die verwendeten Berechnungsprogramme und Normen betrachtet. Danach werden das Vergleichsgetriebe und die methodische Vorgehensweise beschrieben. Anschließend werden die Normen mit Hilfe der Berechnungsprogramme analysiert. Dafür wird zuerst das Modellgetriebe verglichen. Unterschiede zwischen den verschiedenen Berechnungsergebnissen werden genau dokumentiert und je nach Bedarf tiefergehend untersucht. Danach werden Abwandlungen des Modellgetriebes vorgenommen, welche einzelne Unterschiede in den Normen verdeutlichen sollen. Am Ende der Arbeit werden die Ergebnisse diskutiert.

_

¹ Vgl. http://www.iso.org/iso/home/about.htm, 15.4.2016 19:01

2 Theoretische Grundlagen

2.1 Kegelräder

2.1.1 Allgemeines

Abbildung 1 - Kegelradpaar (Quelle: DIN 868:1976 S.5)

Laut DIN 868 - 'Allgemeine Begriffe und Bestimmungsgrößen für Zahnräder, Zahnradpaare und Zahnradgetriebe' ist 'ein Kegelrad [...] ein Zahnrad, dessen Bezugsfläche (Teilfläche) ein Kreiskegel mit dem halben Kegelwinkel δ ist und Teilkegel heißt. Die Paarung zweier Kegelräder gibt ein Kegelradpaar (siehe Abbildung 1). Ihre Radachsen schneiden sich im Achsenschnittpunkt und schließen miteinander den Achsenwinkel Σ ein.' ²

Unterscheidungsmerkmale

Kegelräder bei denen sich die Achsen kreuzen, aber nicht schneiden, nennt man Hypoidräder (Kegelschraubräder). Bei diesen unterscheidet man zwischen positivem und negativem Achsversatz. Bei Paarungen mit positivem Achsversatz ist die Ritzelachse in Spiralrichtung des Tellerrades verschoben. Außerdem ist der mittlere Spiralwinkel des Ritzels größer als der des Tellerrades. Der Durchmesser des Ritzels nimmt gegenüber einem nichtachsversetzten zu. Bei einem Getriebe mit negativem Achsversatz verhält es sich genau umgekehrt.³ In der folgenden Arbeit werden Hypoidräder nicht behandelt.

Ein weiteres Merkmal, nach dem Kegelräder unterschieden werden können, ist der Verlauf der Zahnhöhe entlang der Zahnbreite. Bei Kegelrädern mit veränderlicher Zahnhöhe weichen der Kopf- und der Fußkegelwinkel voneinander ab. Die Zahnhöhe unterliegt dadurch einer über die Zahnbreite proportionalen Veränderung. Als Sonderfall davon kann die kon-

² Vgl. Norm 868, 1976, S. 11

³ Vgl. Klingelnberg, 2008, S. 14f

stante Zahnhöhe angesehen werden, bei der der Kopf- und der Fußwinkel gleich groß sind.⁴ Abbildung 2 zeigt beide Varianten.

Abbildung 2 - Veränderliche (links) und konstante (rechts) Zahnhöhe (Quelle: Klingelnberg, 2008, S.12)

Kegelräder können außerdem anhand der Form ihrer Flankenlängslinie unterschieden werden. Man unterscheidet geradverzahnte, schrägverzahnte und spiralverzahnte Kegelräder (siehe Abbildung 3). Bei geradverzahnten Kegelrädern beginnt und endet jeder Zahneingriff gleichzeitig auf der vollen Zahnbreite. Sie kommen wegen des ungünstigen Geräuschverhal-

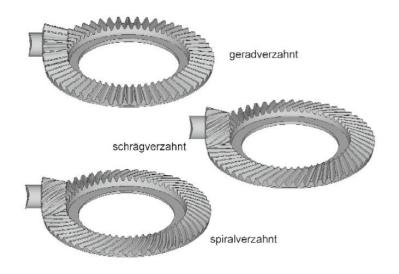


Abbildung 3 - Zahnformen (Quelle: Klingelnberg, 2008, S. 14)

tens vorwiegend bei kleineren Drehzahlen oder kleinen Leistungen zum Einsatz. Schrägverzahnte Kegelräder werden hingegen bei höheren Drehzahlen und Leistungen verwendet. Bei ihnen kommen die Zähne allmählich in und außer Eingriff. Bei spiralverzahnten Kegelrädern sind die Flankenlinien gekrümmt, sodass eine konkave Flanke mit einer konvexen kämmt. Sie werden immer dann eingesetzt, wenn besondere Anforderungen an Laufruhe oder Zahnfußtragfähigkeit gestellt werden. Bei spiralverzahnten Kegelrädern kann außerdem in Hinblick

⁴ Vgl. Klingelnberg, 2008, S. 12

auf die Form der Flankenlängslinie in Kreisbogen, verlängerte Epizykloide, Evolvente und verlängerte Hypozykloide unterschieden werden. 5,6,7

Auf die Unterscheidung hinsichtlich der Herstellungsverfahren wird in Kapitel 2.1.3 näher eingegangen.

Verzahnungsgeometrie

Bei der Betrachtung der Verzahnungsgeometrie wird zwischen Makro- und Mikrogeometrie unterschieden. Der Makrogeometrie können alle typischen Zahnradgrößen, wie Zähnezahl, Zahnbreite, Teilkegel-Durchmesser, Achsversatz, Zahnhöhe, Profilverschiebungen, Spiral-

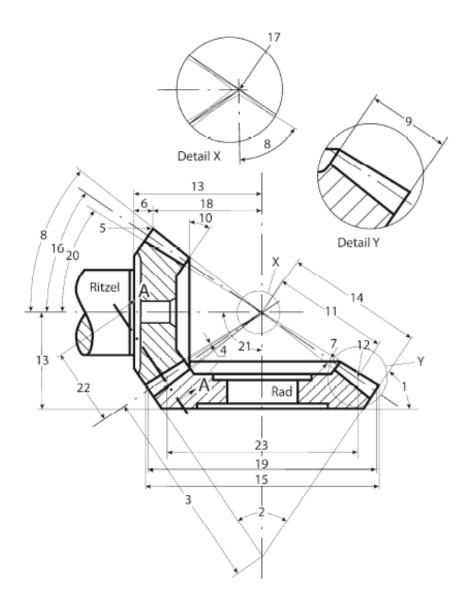


Abbildung 4 - Definition der Kegelradgeometrie im Achsschnitt (Quelle: ISO 23509:2006)

⁵ Vgl. Klingelnberg, 2008, S. 14

⁶ Vgl. Haberhauer, 2014, S. 533

⁷ Vgl. Schlecht, 2010, S. 936

und Eingriffswinkel sowie der Werkzeugradius zugeordnet werden.⁸ Die Mikrogeometrie befasst sich hingegen mit dem Zahnkontakt.⁹

Die ISO 23509 - Bevel and Hypoid Gear Geometry befasst sich mit der Benennung und der Geometrieberechnung von Kegelrädern. Abbildung 4 zeigt ein Kegelradpaar. In Tabelle 1

Nr		Nı	
1	Winkel der Fersenkante	13	Einbaumaß t_{B1} , t_{B2}
2	Rückenkegelwinkel	14	äußere Teilkegellänge, R.
3	Rückenkegellänge	15	äußerer Durchmesser, d_{ne1} , d_{ne2}
4	Kopfgrundspiel, c	16	Teilkegelwinkel, δ_1 , δ_2
5	Kopfkonturpunkt Ferse	17	Berührungspunkt der Teilkegelspitzen
б	Abstand äußere Kopfkegelkante zur Einbaufläche	18	Abstand äußere Kopfkegelkante zum Kreuzungspunkt, t _{ko1} , t ₂₀₂
7	Zahnfußwinkel, θ_{f1}, θ_{f2}	19	äußerer Teilkreisdurchmesser, d_{e1}, d_{e2}
8	Kopfkegelwinkel δ _{al} , δ _{a2}	20	Fußkegelwinkel, δ_{fl} , δ_{f2}
9	Zahnbreite, b	21	Achswinkel, Σ
10	Winkel der Zehenkante	22	äquivalenter Teilkreisradius
11	mittlere Teilkegellänge, R_m	23	mittlerer Teilkegel-Durchmesser, d_{m1} , d_{m2}
12	Auslegungspunkt		

Tabelle 1 - Erläuterungen zu Abbildung 4 (Quelle: Klingelnberg, 2008, S. 26)

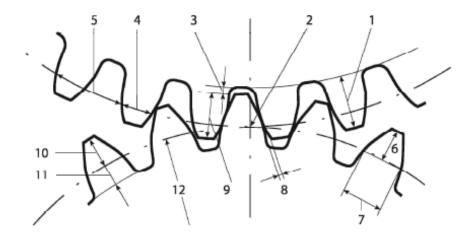


Abbildung 5 - Schnitt A-A (Quelle: ISO 23509:2006)

⁸ Vgl. Klingelnberg, 2008, S. 87
⁹ Vgl. Klingelnberg, 2008, S. 23

finden sich die Benennungen zur gezeigten Nummerierung.

Schnitt A-A ist in diesem Fall kein ebener Schnitt, sondern ein Stirnschnitt, der immer senkrecht zum Teilkegel verläuft. Für die Darstellung ist der so genannte Ergänzungskegel in die Bildebene abgewickelt. 10 Die Erläuterung zu Abbildung 5 findet sich in Tabelle 2.

Nr		Nı	
1	Zahnhöhe, h _m	7	Zahndicke s_c (Sehnenmaß)
2	Wälzpunkt	8	Verdrehflankenspiel
3	Kopfgrundspiel, c	9	Eingriffstiefe, h _{mw}
4	Zahndicke, & (im Bogen gemessen)	10	Zahnkopfhöhe, h _{um}
5	Kreisteilung	11	Zahnfußhöhe, h _{fm}
б	Zahnkopfhöhe h $_{max}$ (Sehnenmaß)	12	äquivalenter Teilkreisradius

Tabelle 2- Erläuterung zu Schnitt A-A (Quelle: Klingelnberg, 2008, S. 26)

Rollt man ein nicht achsversetztes Kegelrad auf dem feststehenden Gegenrad ab, so bewegt sich ein beliebiger Punkt der Zahnflanke auf einer Kugeloberfläche, die den Achsenschnittpunkt als Mittelpunkt hat. Aus dem Schnitt der Kegelradverzahnung mit der Kugeloberfläche erhält man das zugehörige Zahnprofil. Dieses kann auch hinreichend genau aus dem abgewickelten Ergänzungskegel gewonnen werden. 11

Um ein Kegelrad mit einer Kugelevolventenverzahnung herstellen zu können, müsste das erzeugende Planrad gekrümmte Flanken besitzen, deren Krümmung in der Wälzebene wechselt. Dies macht die Herstellung sehr schwierig und die Kugelevolventenverzahnung spielt aus diesem Grund eine untergeordnete Rolle. Wie auch bei Stirnrädern wird bei Kegelrädern ein Trapezprofil als Bezugsprofil, also als Zahnprofil der Planverzahnung, bevorzugt. Das bedeutet, dass das Planrad im Normalschnitt gerade Flanken besitzt. Die daraus erzeugte Verzahnung nennt man Oktoidenverzahnung. Die Erzeugung der Oktoidenverzahnung entspricht der Erzeugung der Evolventen-Zahnflanke bei Stirnrädern. Die Eingriffslinie (siehe E in Abbildung 6) der Oktoidenverzahnung weicht in der Projektion geringfügig von der Ge-

 $^{^{10}}$ Vgl. Klingelnberg, 2008, S. 25 11 Vgl. Klingelnberg, 2008, S. 28

raden ab. Auf der Kugeloberfläche erscheint die Kurve in der Form einer 8. Trotz der von der Geraden abweichenden Eingriffslinie, ist die Oktoidenverzahnung kinematisch exakt. 12,13,14

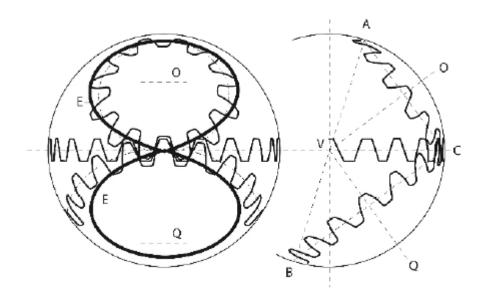


Abbildung 6 - Definition einer Oktoidenverzahnung (Quelle: Klingelnberg, 2008, S. 28)

Der Zahnkontakt wird auf Mikrogeometrie-Ebene betrachtet. Hier spielen unter anderem der Ease-Off, die Wälzabweichung und das Tragbild eine Rolle. Bei Stirnrädern ist es üblich Zahnflankenmodifikationen über die Abweichung von Bezugsprofilen zu beschreiben. Dies ist bei Kegelrädern nicht möglich. Hier muss eine Beschreibung des Zahnkontaktes mittels der Eingriffsverhältnisse des Zahnradpaares von Rad und Ritzel erfolgen. Die Balligkeit der Zahnflanken bezieht sich auf den Zahnkontakt zwischen Tellerradflanke und zugehöriger Ritzelflanke des Kegelradpaares. Als Balligkeit bezeichnet man kontinuierliche Verzahnungskorrekturen, die von der Flankenmitte aus in alle Richtungen vorgenommen werden (siehe Abbildung 7). Lässt man nun das Zahnpaar lastfrei aneinander abwälzen, so kann man für jede berücksichtigte Eingriffsstellung bestimmte Abstände zwischen den gepaarten Zahnflanken ermitteln. Es liegt für jede festgelegte Stelle der Bogenabstand zwischen der Tellerflanke und der Ritzelflanke vor. Die pro Eingriffsstellung ermittelte Funktion zwischen Ort und Abstand nennt man (momentane) Ease-Off-Funktion. Die Hüllfläche all dieser Funktionen stellt

¹² Vgl. Weigand, 2012, S. 289

¹³ Vgl. Klingelnberg, 2008, S. 28f

¹⁴ Vgl. Niemann, 2005, S. 26f

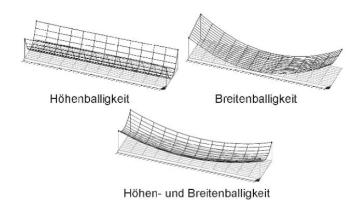


Abbildung 7 - Balligkeit (Quelle: Klingelnberg, 2008, S. 75)

schließlich das Minimum aller, während eines kompletten Durchlaufs eines Zahnpaares durch die Eingriffsfläche, vorliegenden Klaffmaße dar. Dieser Abstand wird als Klaffmaß oder Ease-Off bezeichnet. Als Tragbild bezeichnet man die Darstellung aller Traglinien während eines vollständigen Durchwälzens eines Zahnpaares. 15,16,17

Die Ermittlung der Tragbildlage ist experimentell möglich. Dafür werden die Flanken des Rades oder des Ritzels an einem montierten Getriebe mit Tragbildlack dünn bestrichen. Wird nun das Getriebe hin und her bewegt entsteht durch verdrängen des Lacks das Tragbild. Da dieses je nach Belastung anders ausfällt, wird zwischen Kontakt-, Teillast- und Volllasttrag-

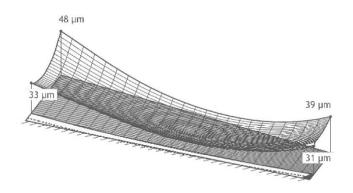


Abbildung 8 - Ease-Off eines Kegelradflankenpaares (Quelle: Klingelnberg, 2008, S. 89)

¹⁵ Vgl. Klingelnberg, 2008, S. 90

¹⁶ Vgl. Haberhauer, 2014, S. 116

¹⁷ Vgl. Klingelnberg, 2008, S. 87

bild unterschieden. Das Tragbild gibt jedoch keine Auskunft über die Höhe der Beanspruchung. Neben der Möglichkeit das Tragbild experimentell zu ermitteln gibt es auch Berechnungsprogramme, die diese Aufgabe erledigen. ¹⁸

Unterschiede zu Stirnrädern

Kegelräder unterscheiden sich in verschiedenen Punkten von Stirnrädern. Als Stirnrad bezeichnet man Zahnräder, bei denen die Radachsen parallel stehen. Der Wirkungsgrad von Kegelrädern ist geringfügig kleiner als bei Stirnrädern, aber größer als bei Schneckengetrieben. Bedingt durch die Kegelradgeometrie treten bei dieser Getriebeart Axialkräfte auf. Im Vergleich zu Stirnradpaarungen gibt es zusätzliche Fehlermöglichkeiten. So kann es zu einseitigem Tragen, unruhigem Lauf oder Klemmen durch Aufhebung des Flankenspiels kommen. Um diese Fehler zu vermeiden ist neben einer hohen Fertigungsgenauigkeit auch eine Beschränkung der Zahnbreite notwendig und die Verzahnung mit einer Breitenballigkeit auszuführen. 19 Im Gegensatz zu Stirnrädern sind Kegelräder Verzahnungen, bei denen sich das Zahnprofil entlang der Zahnbreite laufend ändert. Hier ist das Zahnhöhenprofil keine Evolvente, was dazu führt, dass eine Verlagerung der Zahnhöhenrichtung stets zu anderen Eingriffsverhältnissen führt. Durch die Verformung des Gehäuses, der Radkörper und der Zähne durch die übertragenen Drehmomente ergibt sich für jeden Lastfall eine unterschiedliche Relativposition zwischen Rad und Ritzel. Aus diesem Grund werden Kegelräder nie mit konjugierten Zahnflanken hergestellt, um stets einen brauchbaren Zahnkontakt sicherstellen zu können. Als konjungiert bezeichnet man eine Verzahnung, wenn sich ihre Zahnflanken in jeder Wälzstellung auf einer Linie berühren. 20 Das Tragbild von Kegelrädern lässt sich durch axiale Lageänderungen von Ritzel oder Rad beeinflussen. Für Kegelräder wird meist eine V-Null Verzahnung mit $x_1 + x_2 = 0$ bevorzugt, da die Zahnform fast immer eine Oktoide und keine Kugel-Evolvente ist. Deshalb würde eine Profilverschiebung mit $x_1 + x_2 \neq 0$ zu einer Eingriffsabweichung führen. Beim Übersetzungsverhältnis sind Größenordnungen wie bei Stirnradpaarungen möglich.²¹

¹⁸ Vgl. Schlecht, 2010, S. 969ff

¹⁹ Vgl. Schlecht, 2010, S. 934

²⁰ Vgl. Klingelnberg, 2008, S.86

²¹ Vgl. Schlecht, 2010, S. 934

2.1.2 Einsatzgebiet

Mit der steigenden Bedeutung der Automobilindustrie zu Beginn des 20. Jahrhunderts gewannen Kegelräder wesentlich an Wichtigkeit.²² Der Fahrzeugbau ist auch heutzutage noch der Hauptanwendungsfall für Kegelradgetriebe. Bei Fahrzeugen mit Längsmotor und Heckantrieb bzw. mit Längsmotor und Frontantrieb werden Kegelräder benötigt, um die Drehbewegung auf die quer dazu stehenden Räder zu übertragen.²³ Außerdem finden Kegelräder in Luftfahrtgetrieben, in Schiffsgetrieben und in Industriegetrieben Verwendung.²⁴

In der Luftfahrt werden Kegelradgetriebe zum Beispiel als Haupt- und Heckrotorantrieb für Helikopter, als Starter- und Hydraulikantriebe für Flugzeugturbinen oder als Klappenantriebe für Tragflächen eingesetzt. Helikopter verfügen, so wie auch Flugzeuge, häufig über eine Gasturbine als Triebwerk. Über diese wird der Haupt- und Heckrotor des Hubschraubers angetrieben. Da die Gasturbine stets horizontal angeordnet ist, wird ein Winkelgetriebe benötigt, um den Rotor bewegen zu können (siehe Abbildung 9). Der Heckrotor wird benötigt um das dadurch erzeugte Gegenmoment um die Hochachse des Helikopters auszugleichen. Weiters dient das Getriebe der Drehzahlanpassung. Die hohen Drehzahlunterschiede zwischen Rotor (bis 500 min⁻¹) und der Antriebsturbine (größer 8.000 min⁻¹) machen dies notwendig. Technologie

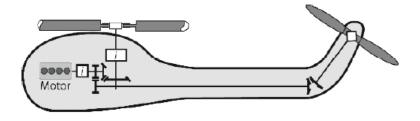


Abbildung 9 - Prinzipskizze eines Helikopterantriebes (Quelle: Klingelnberg, 2008 S.6)

Durch die unterschiedlichen Einsatzgebiete sind auch die Anforderungen an die Auslegung einer Kegelradverzahnung sehr verschieden. So ist beispielsweise bei Kraftfahrzeugen aus

²² Vgl. Klingelnberg, 2008, S. 1

²³ Vgl. Stadtfeld, 1993, S. 3

²⁴ Vgl. Klingelnberg, 2008, S. 1ff

²⁵ Vgl. Klingelnberg, 2008, S. 5

²⁶ Vgl. Klingelnberg, 2008, S. 6

²⁷ Vgl. Schlecht, 2010, S. 932

Komfortgründen die Minimierung der Geräuschentwicklung vordergründig. Industrie- und Schiffsantriebe müssen über einen langen Nutzungszeitraum eine ausreichende Festigkeit bei hoher Zuverlässigkeit aufweisen. Die Nebenantriebe in Gasturbinen sind zwar vergleichsweise geringen Drehmomentenbelastungen ausgesetzt, unterliegen dafür aber hohen Drehzahlanforderungen. Gerade bei einmotorigen Hubschrauberantrieben sind die Anforderungen an das Antriebssystem besonders hoch, da ein Ausfall in der Regel einen Totalverlust des Hubschraubers, und damit oft auch der Besatzung, bedeutet.²⁸

2.1.3 Herstellung

Bei der Betrachtung von Kegelrädern spielen die verwendeten Herstellverfahren eine große Rolle, da sich die letztendlich erzeugten Flanken- und Fußgeometrien je nach benutztem Verfahren unterscheiden. So ist beispielsweise der Verlauf der Zahnhöhe über die Zahnbreite und die Rohteilgeometrie von der Herstellmethode abhängig. Es ist also nicht möglich ein

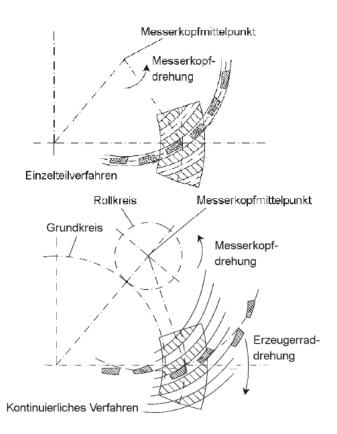


Abbildung 10 - Einzelteilverfahren und kontinuierliches Herstellverfahren (Quelle: Klingelnberg, 2008, S. 16)

im Spiroflex-Verfahren gefertigtes Tellerrad mit einem im Zyklo-Palloid-Verfahren erzeugten

²⁸ Vgl. Schlecht, 2010, S. 933

Ritzel zu paaren, obwohl beide in einem kontinuierlichen Wälzverfahren hergestellt wurden und die gleiche Zahnmakrogeometrie besitzen.²⁹

Man unterscheidet bei den Herstellverfahren für Kegelräder spanlose und spanende Verfahren. Spanlose Verfahren (Gießen, Sintern, Fließpressen, Gesenkschmieden und Taumelschmieden) haben den großen Nachteil, dass die notwendige Entformbarkeit des Werkstücks die Gestaltung der Kegelradverzahnung erheblich einschränkt oder unmöglich macht. Bei spanenden Verfahren (Hobeln, Fräsen, Hartschälen, Schleifen, Läppen und Honen) unterscheidet man die Herstellung im Einzelverfahren (im englischsprachigen Raum auch Face Milling genannt) oder im kontinuierlichen Verfahren (Face Hobbing) (siehe Abbildung 10). 30,31

Je nachdem, ob ein kontinuierliches oder ein Einzelteilverfahren verwendet wird, unterscheidet sich die Form der Flankenlängslinie. Bei Einzelteilen wird jede Lücke vollständig gefertigt und das Werkstück dann weiter gedreht, um die nächste Lücke zu erzeugen. Durch die kreisförmig angeordneten Schneiden des Werkzeugs hat die Flankenlängslinie hier die Form eines Kreisbogens. Beim kontinuierlichen Teilverfahren ist dies anders. Hier sind die Drehung des Messerkopfes und die des zu bearbeitenden Kegelrades gekoppelt. Dadurch werden quasi alle Lücken gleichzeitig erzeugt. Die Flankenlängslinie hat hier die Form einer Epizykloide.³²

2.1.4 Auslegung

Am Beginn der Kegelradauslegung steht die Geometrieauslegung. Diese Auslegung wird unter Einfluss der Startwerte Übersetzungsverhältnis, Achswinkel, Achsversatz, Drehmoment und Bauraum durchgeführt.³³

Der vorhandene Bauraum gibt den maximalen äußeren Teilkegel-Durchmesser vor. Für die Wahl der Zahnbreite und der Zähnezahl existieren Überschlagsformeln. Handelt es sich um ein Kegelradpaar ohne Achsversatz wird meist ein Spiralwinkel von 35° gewählt. Die Wahl des Werkzeugradius ist vom gewählten Verzahnungstyp abhängig. Da der Werkzeugradius

²⁹ Vgl. Klingelnberg, 2008, S. 17 und S. 271

³⁰ Vgl. Klingelnberg, 2008, S. 15f und S. 271f

³¹ Vgl. Schlecht, 2010, S. 963

³² Vgl. Klingelnberg, 2008, S. 15

³³ Vgl. Klingelberg, 2008, S. 67

den Krümmungsradius der Flankenlängslinie bestimmt, hat er großen Einfluss auf das Verlagerungsverhalten der Kegelradverzahnung.³⁴

Wie bereits in Kapitel 2.1.1 erwähnt, werden Kegelradverzahnungen immer als so genannte V-Null-Verzahnungen ausgelegt. Ob der Nenneingriffswinkel frei gewählt werden kann, oder Vorgaben unterliegt, hängt vom verwendeten Herstellverfahren ab. Der Zahnkopfhöhenfaktor, welcher die mittlere Zahnhöhe bestimmt, kann frei gewählt werden und weist normalerweise den Wert 1,0 auf. Als Kopfgrundspiel bezeichnet man den minimalen Abstand zwischen dem Zahnkopf und dem Zahngrund bei Projektion in den Axialschnitt. Das tatsächliche Kopfspiel hängt jedoch von der Herstellung ab. ³⁵

Da Verzahnungen in der Praxis immer mit Abweichungen behaftet sind, ist das Verdrehflankenspiel notwendig um diese lauffähig zu machen. Ist dieses zu gering bemessen besteht die Gefahr des Klemmens. Wird es jedoch zu groß gewählt, wird die Zahndicke unnötig geschwächt und der Leerweg beim Lastwechsel wird erhöht. Die Größe des Werkzeug-Kopfrundungsradius beeinflusst direkt die erzeugte Fußausrundung am Kegelrad. Dadurch wird auch die Spannungskonzentration am Zahnfuß beeinflusst. Außerdem wird die Standzeit des Werkzeugs davon beeinflusst. Bei Verfahren mit standardisierten Werkzeugen ist der Werkzeug-Kopfrundungsradius fest vorgegeben. Bei anderen Verfahren kann er frei gewählt werden. ³⁶

Die Wahl der Balligkeit entscheidet mit über das Tragbild und die Verlagerungsempfindlichkeit. Außerdem werden die Lastkonzentration, die Flankenpressung und die Zahnfußspannung beeinflusst. Um die Kegelradflanke optimal zu modifizieren, werden Berechnungsprogramme eingesetzt. Spitze Zähne und Unterschnitt stellen die Grenzen der Herstellbarkeit dar. Diese können mit Hilfe einer Ersatz-Stirnradverzahnung berechnet werden.³⁷

Ein wichtiges Werkzeug zur Auslegung, Bewertung und Optimierung von Kegelrädern stellt die Zahnkontaktanalyse dar. Außerdem wird diese als Grundlage für genauere Verfahren zur Berechnung der Beanspruchung herangezogen. So kann die Ermittlung des Ease-Off, der Wälzabweichung und des Tragbildes erfolgen.³⁸

³⁵ Vgl. Klingelnberg, 2008, S. 67f

³⁴ Vgl. Klingelnberg, 2008, S. 67f

³⁶ Vgl. Klingelnberg, 2008, S. 67f

³⁷ Vgl. Klingelnberg, 2008, S. 67f

³⁸ Vgl. Klingelnberg, 2008, S. 85

Ein weiteres wichtiges Merkmal in der Auslegung von Kegelradgetrieben ist das Verlagerungsverhalten. Hier wird zwischen Horizontal- und Vertikal-Verlagerungen, zahnkraftbedingten Verlagerungen und Tragbildverlagerungen unterschieden.³⁹

Die Wahl des Werkstoffs und der anschließenden Wärmebehandlung folgt für Kegelräder grundsätzlich den gleichen Prinzipien wie bei Stirnrädern. Für hoch beanspruchte oder schnell laufende Getriebe des allgemeinen Maschinen-, Fahrzeug- und Flugzeugbaus sowie für Industriegetriebe werden überwiegend Einsatzstähle und Einsatzhärtungen verwendet.⁴⁰

Die Hauptaufgabe des Schmierstoffs ist, wie beim Stirnradgetriebe auch, Reibung und Verschleiß zu mindern und die im Eingriff erzeugte Wärme abzuführen. Außerdem werden die Bauteile durch ihn vor Korrosion geschützt. Zusätzlich können dem Schmierstoff Zusätze beigemengt werden, welche die Öleigenschaften verbessern und der Vermeidung von Zahnradschäden dienen.⁴¹

2.2 Berechnung der Tragfähigkeit von Kegelrädern

2.2.1 Allgemeines

Um eine Tragfähigkeitsberechnung für ein Kegelrad durchführen zu können, werden seine Makrogeometrie, die Betriebsbedingungen Last und Drehzahl sowie die Werkstoff- und Schmierstoffspezifikationen benötigt. Mit Hilfe dieser Eingangswerte errechnet sich ein Verhältnis aus der zulässigen Festigkeit und der tatsächlich auftretenden Beanspruchung. Dieses Verhältnis wird durch Sicherheitsfaktoren dargestellt. 12 Ist die auftretende Beanspruchung größer als die maximal zulässige, kommt es zu einem Schaden. Bei der Art der schädigenden Beanspruchung wird zwischen einer kurzzeitigen, maximalen Überlastung und einer ständigen Überschreitung der dauerhaft ertragbaren Schwingbeanspruchung unterschieden. Schäden durch die erste Art der Beanspruchung nennt man Gewaltbruch, zweitere Dauerbruch. Außerdem kann es durch ein Überschreiten der örtlichen Kontaktfestigkeit zu Fressen an der Zahnflanke kommen.

Die Versagensformen können auch nach dem Ort ihres Auftretens unterschieden werden. So treten Grübchenbildung, Graufleckigkeit, Flankenbruch, Zahneckbruch, Fressen und Ver-

³⁹ Vgl. Klingelnberg, 2008, S. 95ff

⁴⁰ Vgl. Schlecht, 2010, S. 963

⁴¹ Vgl. Klingelnberg, 2008, S. 112

⁴² Vgl. Klingelnberg, 2008, S. 130

schleiß an der Zahnflanke auf.⁴³ Am Zahnfuß kommt es sowohl zu Ermüdungsbrüchen, als auch zu Schäden durch Gewaltbruch oder durch Überschreiten der Verformungs- oder Anrissgrenze.⁴⁴ Je nach Werkstoff und Betriebsgeschwindigkeit unterscheiden sich die am häufigsten auftretenden Schadensformen. Wichtige Sicherheitsfaktoren sind jene für die Grübchentragfähigkeit und die Zahnfußfestigkeit.⁴⁵

Die Berechnung der Zahnfuß- und der Grübchentragfähigkeit ist mit allen in dieser Arbeit betrachteten Normen möglich. Die DIN 3991-4:1988 bietet darüber hinaus noch eine Berechnung der Fresstragfähigkeit an. Auf diese wird im Zuge dieser Arbeit nicht näher eingegangen.⁴⁶

2.2.2 Grübchentragfähigkeit

Die Bildung von Grübchen gehört zu den Ermüdungsschäden. Die Grübchen entstehen durch ein Überschreiten der ertragbaren Pressung an den Zahnflanken der miteinander in Eingriff kommenden Zähne. Zuerst bilden sich feine Risse, in die Schmierstoff eindringt. Wälzen Rad und Ritzel nun weiter aufeinander ab, kann der eingeschlossene Schmierstoff durch den Überdruck die Oberfläche aufsprengen und so Grübchen erzeugen. Im Englischen spricht

Abbildung 11 - Grübchen (Quelle: Klingelnberg, 2008, S. 124)

⁴³ Vgl. Schlecht, 2010, S. 583f

⁴⁴ Vgl. Schlecht, 2010, S. 590

⁴⁵ Vgl. Schlecht, 2010, S. 593

⁴⁶ Vgl. DIN 3991-4:1988

man von "Pitting". 47,48,49

Um die Grübchentragfähigkeit zu beurteilen wird die Hertzsche Pressung genutzt. 50

In Abbildung 11 ist ein Zahnrad mit Grübchen zu sehen.

2.2.3 Zahnfußtragfähigkeit

Im Gegensatz zur Grübchenbildung handelt es sich bei einem Zahnbruch nicht immer um einen Ermüdungsschaden. Zu den unterschiedlichen Ursachen zählen unter anderem starke momentane Überlastungen, übermäßige Grübchenbildung, Härteschichteinbrüche und Biegeermüdung.⁵¹ Zahnfußbrüche gehen fast immer von der Zugseite aus.⁵² Deshalb stellt in

Abbildung 12 - Zahnfußbruch (Quelle: Klingelnberg, 2008, S. 121)

den meisten Fällen die größte Zugspannung am Zahnfuß ein gutes Kriterium für die Zahnfuß-Biegebeanspruchung dar. Da der Bruch eines Zahnes meist den Komplettausfall des Getriebes bedeutet, wird der Sicherheitsfaktor gegen Zahnbruch meist größer gewählt als der Sicherheitsfaktor gegen Schäden durch Grübchenbildung.⁵³

In Abbildung 12 ist ein Zahnrad mit Zahnfußbruch zu sehen.

⁴⁸ Vgl. Schlecht, 2010, S. 584

⁴⁷ Vgl. Muhs, 2005, S. 698

⁴⁹ Vgl. Klingelnberg, 2008, S. 123f

⁵⁰ Vgl. DIN 3991-2:1988 S.1

⁵¹ Vgl. ISO 10300-3:2001, S.5

⁵² Vgl. Schlecht, 2010, S. 674

⁵³ Vgl. ISO 10300-3:2001, S.5

2.3 Normen zur Tragfähigkeitsberechnung von Kegelrädern

2.3.1 Allgemeines

Die AGMA gibt es prinzipiell am längsten. Sie wurde zuletzt 2010 überarbeitet. Für die ISO gibt es bereits eine Version von 2014, diese ist aber nur auf Englisch erhältlich. Die DIN existiert seit 1988 in unveränderter Form.

Diese Arbeit beschäftigt sich mit drei verschiedenen Normen zur Tragfähigkeitsberechnung von Kegelrädern. Es handelt sich um ISO 10300:2001, DIN 3991:1988 und AGMA 2003-C10.

Schon lange gibt es das Bestreben Berechnungsverfahren zu normen, um sie vergleichbar zu machen. Dies ist auch bei der Tragfähigkeitsberechnung von Kegelrädern der Fall. Erste Entwürfe der AGMA 2003-A86 entstanden bereits im Mai 1980. Im Mai 1986 wurde dieser Entwurf als American National Standard angenommen und am Beginn des Jahres 1987 publiziert. Später wurde diese Norm von der AGMA 2003-B97 ersetzt, welche wiederum von der aktuell gültigen AGMA 2003-C10 abgelöst wurde. Mit der Überarbeitung der Versionen wurde unter anderem versucht die AGMA der ISO 10300 anzunähern.⁵⁴

Die DIN 3991:1988 existiert am längsten von den drei betrachteten Normen in unveränderter Form. Laut dem DIN-Institut werden Normen spätestens alle 5 Jahre auf ihre Aktualität überprüft und für den Fall, dass sie nicht mehr dem aktuellen Stand der Technik entsprechen, überarbeitet oder gestrichen. Im Fall von DIN 3991:1988 entspricht dies zum momentanen Zeitpunkt (Herbst 2016) mindestens 6 Überprüfungen.

Eine erste gültige ISO-Norm entstand erst vergleichsweise spät im Jahr 2001. Die ISO 10300:2001 wurde inzwischen durch die ISO 10300:2014 ersetzt. FVA Workbench rechnet mit der Ausgabe von 2001. KISSsoft 03/2016 ermöglicht die Berechnung mit beiden Ausgaben. Die Ausgabe aus 2001 ist Gegensatz zur Ausgabe von 2014 auch auf Deutsch erhältlich. Die wichtigste Neuerung in Ausgabe 2014 ist die neu geschaffene Möglichkeit der Berechnung von Hypoidrädern. Die generelle Struktur der Berechnung wurde beibehalten. 57

⁵⁴ Vgl. AGMA 2003-C10, S. V

⁵⁵ Vgl. http://www.din.de/de/ueber-normen-und-standards/din-norm 15.10.2016 19:56

⁵⁶ Vgl. Klein, 2008, S.106

⁵⁷ Vgl. ISO 10300-1:2014, S. V

Gültigkeitsbereich der Normen

Wie bei allen Normen ist es auch hier wichtig zu beachten, welche Voraussetzungen für die Anwendbarkeit gelten. Alle drei Normen gelten in der betrachteten Fassung nicht für Räder mit Hypoidverzahnung. Die neue Ausgabe der ISO 10300 aus dem Jahr 2014 inkludiert Hypoidverzahnungen. Die DIN gilt nur für Null- oder V-Null-Verzahnungen. Außerdem darf sie nur für Kegelradverzahnungen verwendet werden deren Ersatz-Stirnradverzahnung Profilüberdeckungen $\epsilon_{v\alpha}$ < 2 aufweisen. Dies ist bedeutend für die Faktoren Y_{Fa} und Y_{ϵ} . Außerdem muss δ_1 , δ_2 < 90° sein, das heißt, die Ersatz-Stirnradverzahnung ist eine Außenverzahnung. Die letzten beiden genannten Voraussetzungen gelten in genau dieser Weise auch für die ISO.

In der ISO und in der AGMA ist angegeben, dass die Normen für gerad- und schrägverzahnte, zerol- und spiralverzahnte Kegelräder und auf gleiche Weise auch auf Kegelräder mit sich verjüngender und mit gleich bleibender Zahnhöhe anwendbar sind. In der ISO steht, dass die angegebenen Verhältnisse für Zahnradpaare mit einer Profilverschiebungssumme von 0 gilt, was bedeutet, dass der Normal-Betriebseingriffswinkel gleich dem Normaleingriffswinkel des Bezugsprofils ist ($\alpha_{wn} = \alpha_P = \alpha_n$). In der ISO wird außerdem darauf hingewiesen, dass für Kegelräder mit großem Spiral- und Eingriffswinkel und großen Zahnbreiten b > $10 \cdot m_{mn}$ die Ergebnisse durch Erfahrungswerte bestätigt werden sollten.

Während die DIN und ISO angeben welche Bedingungen erfüllt werden müssen, gibt die AGMA an, welche Bedingungen eine Berechnung ausschließen. Der Ausschluss von Hypoidrädern wurde bereits erwähnt. Außerdem sind gerad- und schrägverzahnte Kegelräder mit einer Profilüberdeckung $\epsilon_{\alpha} < 1,0$, Kegelräder mit einer modifizierten Profilüberdeckung $\epsilon_{0} < 1,0$ und Kegelräder mit einem schlechten Kontaktbild ausgeschlossen. Auch spitze Zähne, ein Zahnflankenspiel von Null oder Verzahnungen, die durch Schmieden, Gießen oder Sintern fertiggestellt werden, sind ein Ausschlussgrund. Eine Interferenz zwischen dem Zahnkopf und dem Zahnfuß darf ebenfalls nicht vorhanden sein. 58,59,60

⁵⁸ Vgl. ISO 10300-1:2001, S. 6

⁵⁹ Vgl. DIN 3991-1:1988, S. 1

⁶⁰ Vgl. AGMA 2003-C10, S. ii und S. 1

Grundprinzip der Auslegung

Für die Tragfähigkeitsberechnung wird in allen drei Normen ein Vergleich zwischen Beanspruchbarkeit und Beanspruchung durchgeführt.

Alle drei Normen verfolgen das gleiche Grundprinzip in der Auslegung. Durch den Vergleich von Beanspruchbarkeit und Beanspruchung wird ein Sicherheitsfaktor ermittelt, der eine Beurteilung ermöglichen soll. Die Beanspruchbarkeit σ_{HG} (Grübchen-Grenzfestigkeit) beziehungsweise σ_{FG} (Zahnfuß-Grenzfestigkeit) wird hierbei durch eine Multiplikation der Dauerfestigkeit für Flankenpressung $\sigma_{H\,lim}$ beziehungsweise für Zahnfuß-Biegebeanspruchung $\sigma_{F\,lim}$ für den jeweiligen Zahnradwerkstoff mit verschiedenen betrieblichen Einflussfaktoren ermittelt. Die Beanspruchung σ_{H} (Flankenpressung) beziehunsgweise σ_{F} (Zahnfußspannung) wird durch Multiplikation der auftretenden Belastung mit Lastfaktoren und Faktoren, die Zahngeometrie und Werkstoff berücksichtigen, berechnet.

Als Grundlage für die Berechnung der Flankenpressung, und damit Grübchentragfähigkeit, dient die Theorie der Hertz'schen Kontaktpressung. Diese wurde von Heinrich Hertz, einem deutschen Physiker, ursprünglich für den Fall der Kontaktpressung zwischen zwei gekrümmten Flächen entwickelt. Diese Grundgleichung wurde modifiziert, um die Lastbeteiligung zwischen benachbarten Zähnen, die Lage des Pressungszentrums, die Form des momentan Kontaktgebietes und die sich aus den Fertigungsunsicherheiten ergebenden Belastungskonzentrationen zu berücksichtigen. Die auftretenden Zahnflächen-Druckspannungen sind proportional zur Quadratwurzel der Zahnbelastung. Die Hertz'sche Pressung kann als eine Art Modelltheorie verstanden werden, die der Umrechnung von Prüfraddaten auf Zahnräder anderer Abmessungen und Betriebsbedingungen dient. Dies führt für den Fall, dass die Anhaltspunkte im Gebiet des Anwendungsbereiches liegen, zu befriedigenden Ergebnissen, da die Grenzen der Hertz'sche Pressung für einen gegebenen Werkstoff meist durch Laufradprüfungen bestimmt werden. Dadurch sind zusätzliche Einflussgrößen bereits in den ermittelten Grenzwerten enthalten. 62,63,64,65

⁶¹ Vgl. Schlecht, 2010, S. 983

⁶² Vgl. DIN 3990-2:1987, S. 1

⁶³ Vgl. DIN 3991-2:1988, S. 1

⁶⁴ Vgl. ISO 10300-2:2001, S. 5

⁶⁵ Vgl. AGMA 2003-C10, S. 7

Grundgleichungen der Normen

Die Gleichungen zur Bestimmung der Zahnfußtragfähigkeit werden für eine Belastungsbeurteilung zur Vermeidung eines Bruches in der Fußrundung verwendet. Die Zahnfußbelastung wird über die maximale Zugspannung am Zahnfuß beurteilt. Die Zugspannung aus der Zahnfußbiegung tritt auf der Flankenseite des Zahnes auf, an der die Kraft angreift und ist direkt proportional zu dieser. Für die Berechnung wird von einem Zahnangriff am Zahnkopf ausgegangen. Mit Hilfe eines Faktors kann der Kraftangriffspunkt umgerechnet werden. 66,67,68

Im Folgenden sind die Berechnungsformeln der ISO 10300:2001, der DIN 3991:1988 und der AGMA 2003-C10 angegeben. Die AGMA bietet sowohl eine nicht-metrische als auch eine metrische Version der Formeln. Die hier gezeigte Form entspricht der metrischen.

Formel 1 – ISO 10300-2:2001 – Grübchentragfähigkeit ⁶⁹

$$S_{H} = \frac{\sigma_{HG}}{\sigma_{H}} = \frac{\sigma_{H \, lim} * Z_{NT} * (Z_{L} * Z_{V} * Z_{R}) * Z_{X} * Z_{W}}{Z_{M-B} * Z_{H} * Z_{E} * Z_{LS} * Z_{\beta} * Z_{K} * \sqrt{\frac{F_{mt}}{d_{v1} * l_{bm}} * \frac{u_{v} + 1}{u_{v}}} * \sqrt{K_{A} * K_{V} * K_{H\beta} * K_{H\alpha}}}$$

Formel 2 – ISO 10300-3:2001 – Zahnfußtragfähigkeit ⁷⁰

$$S_{F} = \frac{\sigma_{FG}}{\sigma_{F}} = \frac{\sigma_{F \, lim} * Y_{ST} * Y_{NT} * Y_{\delta \, rel \, T} * Y_{R \, rel \, T} * Y_{X}}{Y_{Fa} * Y_{Sa} * Y_{\epsilon} * Y_{LS} * Y_{K} * \frac{F_{mt}}{b * m_{mn}} * K_{A} * K_{V} * K_{F\beta} * K_{F\alpha}}$$

Formel 3 – DIN 3991-2:1988 – Grübchentragfähigkeit ⁷¹

$$S_{H} = \frac{\sigma_{HG}}{\sigma_{H}} = \frac{\sigma_{HIim} * (Z_{L} * Z_{V} * Z_{R}) * Z_{X}}{Z_{B,D} * Z_{H} * Z_{E} * Z_{E} * Z_{\beta} * Z_{K} * \sqrt{\frac{F_{mt}}{d_{v1} * b_{eH}} * \frac{u_{v} + 1}{u_{v}}} * \sqrt{K_{A} * K_{V} * K_{H\beta} * K_{H\alpha}}}$$

Formel 4 – DIN 3991-3:1988 – Zahnfußtragfähigkeit ⁷²

$$S_{F} = \frac{\sigma_{FG}}{\sigma_{F}} = \frac{\sigma_{F \, lim} * Y_{ST} * Y_{\delta \, rel \, T} * Y_{R \, rel \, T} * Y_{X}}{Y_{Fa} * Y_{Sa} * Y_{\epsilon} * Y_{\beta} * Y_{K} * \frac{F_{mt}}{b_{eF} * m_{mn}} * K_{A} * K_{V} * K_{F\beta} * K_{F\alpha}}$$

⁶⁶ Vgl. ISO 10300-3:2001, S. 5

⁶⁷ Vgl. DIN 3991-3:1988, S. 1

⁶⁸ Vgl. AGMA 2003-C10, S. 8

⁶⁹ Vgl. ISO 10300-2:2001, S. 8

⁷⁰ Vgl. ISO 10300-3:2001, S. 7ff

⁷¹ Vgl. DIN 3991-2:1988, S. 2f

⁷² Vgl. DIN 3991-3:1988, S. 2f

Formel 5 – AGMA 2003-C10 – Grübchentragfähigkeit ⁷³

$$S_{H} = \frac{\sigma_{HG}}{\sigma_{H}} = \frac{\sigma_{H \, lim} * Z_{NT} * Z_{W}}{K_{\theta} * Z_{E} * Z_{Z} * \sqrt{\frac{2000 * T_{1}}{b * d_{e1}^{2} * Z_{I}}} * \sqrt{K_{A} * K_{V} * K_{H\beta} * Z_{x} * Z_{xc}}}$$

Formel 6 – AGMA 2003-C10 – Zahnfußtragfähigkeit ⁷⁴

$$S_F = \frac{\sigma_{FG}}{\sigma_F} = \frac{\sigma_{F \, lim} * Y_{NT} * Y_{\beta} * Y_{J}}{K_{\theta} * Y_{Z} * Y_{X} * \frac{2000 * T_{1}}{b * d_{e1} * m_{et}} * K_{A} * K_{V} * K_{H\beta}}$$

Betrachtet man die unterschiedlichen Berechnungsformeln, fallen einige Parallelen auf. Bevor ein genauer Vergleich der Formeln durchgeführt wird, sollen die Faktoren und ihre Aufgabe für die einzelnen Normen erläutert werden. Die Faktoren werden in der Reihenfolge ihres Auftretens angeführt.

⁷³ Vgl. AGMA 2003-C10, S. 9 ⁷⁴ Vgl. AGMA 2003-C10, S. 9f

Faktoren ISO 10300:2001

Festigkeit, Belastung und Geometrie

$\sigma_{H \ lim}$	Dauerfestigkeitswert für die Flankenpressung
$\sigma_{\text{F lim}}$	Dauerfestigkeitswert für Zahnfuß-Biegespannung
F _{mt}	Nennumfangskraft am Teilkegel an der mittleren Teilkegellänge
d _v	Teilkreisdurchmesser des Ersatz-Zylinderrades
I _{bm}	Länge der mittleren Berührungslinie
u _v	Zähnezahlverhältnis der Ersatz-Verzahnung
b	Zahnbreite
m _{mn}	Modul an der mittleren Teilkegellänge

Tabelle 3 – Festigkeit, Belastung und Geometrie ISO 10300:2001

Lastfaktoren

K _A	Anwendungsfaktor	Berücksichtigt kurzfristige Spitzenmomente, die wesentlich größer
		sind als jene, die durch die Nennleistung der Antriebs- oder Arbeits-
		maschine bedingt sind.
Κ _ν	Dynamikfaktor	Berücksichtigt die Wirkung von Verzahnungsqualität bezüglich der
		Drehzahl und der Belastung, und sonstige angeführte Einflussgrößen
		(Herstellung, Übertragungsfehler, dynamische Reaktion, Resonanz).
		Bringt die gesamte Zahnbelastung, einschließlich der inneren dyna-
		mischen Wirkungen, mit der übertragenen Umfangskraft in Bezie-
		hung. K _v ist definiert als die Summe der inneren verursachten dyna-
		mischen Kraft und der übertragenen Umfangskraft, geteilt durch die
		übertragene Umfangskraft.
K _{Hβ}	Lastverteilungsfaktor	Berücksichtigen die ungleichmäßige Lastverteilung über die Zahn-
$K_{F\beta}$		breite.
		K _{Hβ} wird definiert als das Verhältnis der maximalen Kraft je Einheit
		der Zahnbreite zur durchschnittlichen Kraft je Einheit der Zahnbrei-
		te.
		$K_{F\beta}$ wird definiert als das Verhältnis der maximalen Zahnfußspannung
		zur durchschnittlichen Zahnfußspannung über die Zahnbreite.
$K_{H\alpha}$	Lastaufteilungsfaktor	$K_{H\alpha}$ berücksichtigt die Wirkung der Lastaufteilung auf die Flanken-
$K_{F\alpha}$		pressung.
		$K_{F\alpha}$ berücksichtigt die Wirkung der Lastaufteilung auf die Zahnfuß-
		spannung.

Tabelle 4 - Lastfaktoren ISO 10300:2001

Faktoren der Grübchentragfähigkeit

Zonenfaktor	Erfasst den Einfluss der Flankenkrümmung im Wälzpunkt auf die
	Hertz'sche Pressung.
Mittelzonenfaktor	Formt den Faktor Z _H , und dabei die Flankenpressung im Wälzpunkt,
	auf die im bestimmenden Lastangriffspunkt um.
Elastizitätsfaktor	Berücksichtigt den Einfluss der werkstoffspezifischen Größen E (Elas-
	tizitätsmodul) und v (Poisson-Konstante) auf die Flankenpressung.
Lastanteilfaktor	Berücksichtigt die Lastbeteiligung von zwei und mehreren Zahnpaa-
	ren.
Spiralwinkelfaktor	Berücksichtigt, unabhängig vom Einfluss des Spiralwinkels auf die
	Länge der Berührungslinien, den Einfluss des Spiralwinkels auf die
	Flankenpressung bezüglich Grübchenbildung, wobei Einflüsse wie
	Kraftverteilung entlang der Berührungslinien berücksichtigt werden.
Kegelradfaktor	Ist ein empirischer Faktor, um den Unterschied zwischen der Kegel-
	rad- und der Zylinderradbelastung mit der praktischen Erfahrung in
	Übereinstimmung zu bringen.
Größenfaktor	Berücksichtigt den statistischen, den festigkeitstheoretischen und
	den technologischen Größeneinfluss auf die Grübchentragfähigkeit.
Einflussfaktoren für	Z _L – Schmierstofffaktor (berücksichtigt Schmierstoffart und Viskosi-
die Schmierfilm-	tät)
bildung	Z _V – Geschwindigkeitsfaktor (berücksichtigt die Umfangsgeschwin-
	digkeit)
	Z _R – Rauheitsfaktor (berücksichtigt Oberflächenbeschaffenheit der
	Zahnflanke)
Werkstoff-	(Aufhärtungsfaktor), berücksichtigt die Zunahme der
Paarungsfaktor	Grübchentragfähigkeit aufgrund der Paarung eines Zahnrades aus
	Baustahl oder Vergütungsstahl mit einem randschichtgehärteten
	Ritzel mit glatten Zahnflanken (R _z ≤ 6 μm).
Lebensdauerfaktor	Berücksichtigt die höhere Grübchentragfähigkeit bei begrenzter
	Lebensdauer inklusive der statischen Festigkeit gegenüber der Dau-
	erfestigkeit bei 5 x 10 ⁷ Lastwechseln.
	Mittelzonenfaktor Elastizitätsfaktor Lastanteilfaktor Spiralwinkelfaktor Kegelradfaktor Größenfaktor Einflussfaktoren für die Schmierfilmbildung Werkstoff- Paarungsfaktor

Tabelle 5 - Faktoren der Grübchentragfähigkeit ISO 10300:2001

Faktoren der Zahnfußtragfähigkeit

Y _{ST}	Spannungskorrektur- faktor	Berücksichtigt die Spannungskorrektur für sie Abmessungen des Standardprüfrades; Es gilt $Y_{ST} = 2$ und $\sigma_{FE} = \sigma_{Flim} \cdot Y_{ST}$
Y _{Fa}	Formfaktor	Berücksichtigt den Einfluss der Zahnform auf die Biege- Nennspannung bei Kraftangriff am Zahnkopf (getrennt für Ritzel und Rad).
Y _{Sa}	Spannungs- korrekturfaktor	Berücksichtigt die Umrechnung der Biege-Nennspannung bei Kraftangriff am Zahnkopf auf die entsprechende örtliche Zahnfußspannung. Erfasst die spannungserhöhende Wirkung der Kerbe (die Fußrundung) und die Tatsache, dass im kritischen Fußquerschnitt ein komplexerer Spannungszustand herrscht, berücksichtigt jedoch nicht den Einfluss des Biegehebelarms.
Υε	Überdeckungsfaktor	Berücksichtigt die Umrechnung der für Kraftangriff am Zahnkopf ermittelten örtlichen Spannung auf die bestimmende Lage.
Y _K	Kegelradfaktor	Berücksichtigt die Unterschiede zwischen Kegelrad- und Zylinder- radverzahnung -> kleinere Werte von I _b ' im Vergleich zur Gesamt- zahnbreite b und geneigter Verlauf der Berührungslinie.
Y _{LS}	Lastanteilfaktor	Berücksichtigt die Lastaufteilung zwischen zwei und mehreren Zahnpaaren.
Y _P	Kombinierter Geo- metriefaktor für Biegebeanspruchung	Ersetzt Y_{Fa} , Y_{Sa} , Y_{ϵ} , Y_{K} und Y_{LS} für Methode B.
Y _A	Kegelrad- Anpassungsfaktor	Passt die Ergebnisse der Methode B2 an die Ergebnisse der Methode B1 an.
Yı	Geometriefaktor für Biegebeanspruchung	Bewertet die Form des Zahnes, die Lage in der die am meisten schädigende Kraft angreift, die Spannungskonzentration infolge der geometrischen Form der Fußrundung, die Kraftaufteilung zwischen benachbarten Zahnpaaren, die wirksame Zahnbreite infolge Breitenballigkeit der Zähne und die Stützwirkung, wenn die Zahnbreite eines der Räder des Paares größer als das des anderen ist. Beide Komponenten der Zahnkraft (tangential – Biegung, radial – Druck) werden erfasst.
$Y_{\delta relT}$	Relative Stützziffer für die Dauerfestig- keit	Gibt an, um welchen Betrag die theoretische Spannungsspitze bei Auftreten eines Dauerbruches über der Dauerfestigkeit liegt.
Y _{RrelT}	Relativer Oberflä- chenfaktor	Berücksichtigt die Abhängigkeit der Zahnfuß-Dauerfestigkeit von der Oberflächenbeschaffenheit im Zahngrund (vorwiegend abhängig von der Rauheit in der Fußrundung), bezogen auf die Verhältnisse am Standardprüfrad mit $R_Z=10~\mu m$.
Y _X	Größenfaktor	Berücksichtigt die abnehmende Festigkeit mit zunehmender Baugröße (Größenwirkung).
Y _{NT}	Lebensdauerfaktor	Berücksichtigt die höhere Zahnfuß-Tragfähigkeit bei begrenzter Lebensdauer (Zeitfestigkeit für die Anzahl der Lastwechsel)

Tabelle 6 - Faktoren der Zahfußtragfähigkeit ISO 10300:2001

Faktoren DIN 3991:1988

Festigkeit, Belastung und Geometrie

$\sigma_{H \ lim}$	Dauerfestigkeitswert für die Flankenpressung
$\sigma_{\text{F lim}}$	Dauerfestigkeitswert für Zahnfuß-Biegespannung
F _{mt}	Nennumfangskraft am Teilkegel an der mittleren Teilkegellänge
d _v	Teilkreisdurchmesser der Ersatz-Stirnradverzahnung
b _{eH}	Effektive Zahnbreite bezüglich Flankenbeanspruchung
b _{eF}	Effektive Zahnbreite bezüglich Fußbeanspruchung
u _v	Zähnezahlverhältnis der Ersatz-Stirnradverzahnung
m _{mn}	Normalmodul in Mitte Zahnbreite

Tabelle 7 - Festigkeit Belastung und Geometrie DIN 3991:1988

Lastfaktoren

K _A	Anwendungsfaktor	Berücksichtigt Zusatzkräfte, die – über die Nenn-Umfangskraft hin-
		aus - von außen auf das Getriebe wirken.
K _v	Dynamikfaktor	Erfasst die inneren dynamischen Kräfte, die durch Schwingungen
		von Ritzel und Rad gegeneinander bzw. durch Schwingungen der
		Radpaare anderer Stufen des Getriebes hervorgerufen werden.
		Definiert als Verhältnis der am Zahneingriff eines Radpaares auftre-
		tenden maximalen Kraft zur entsprechenden, von außen aufge-
		brachten Kraft.
Кнв	Breitenfaktoren	Berücksichtigt die Auswirkungen ungleichmäßiger Kraftverteilung
$K_{F\beta}$		über die Zahnbreite auf Grübchen- ($K_{H\beta}$) und Zahnfußbeanspru-
		chung $(K_{F\beta})$ infolge eines etwa elliptischen Tragbildes bei breitballig
		ausgeführten und zweckmäßig eingestellten Kegelrädern.
K _{Hα}	Stirnfaktoren	Berücksichtigt die Auswirkungen der Kraftverteilung auf mehrere im
$K_{F\alpha}$		Eingriff befindliche Zahnpaare auf die Grübchen- ($K_{H\alpha}$) und Zahnfuß-
		beanspruchung $(K_{F\alpha})$.

Tabelle 8 - Lastfaktoren DIN 3991:1988

Faktoren der Grübchentragfähigkeit

Z _K	Kegelradfaktor	Berücksichtigt den Einfluss des von der Evolvente abweichenden
		Zahnprofils und der über die Breite veränderlichen Zahnfedersteif-
		igkeit auf die Grübchenbildung.
Z _H	Zonenfaktor	Erfasst den Einfluss der Zahnflankenkrümmung in Zahnhöhenrich-
		tung und im Wälzpunkt auf die Flankenpressung.
Z _B	Eingriffseinzelfaktor	Z _B - Ritzel, Z _D - Rad, dient bei Geradverzahnung der Umrechnung
Z_D		der Flankenpressung im Wälzpunkt auf die Flankenpressung im
		inneren Einzeleingriffspunkt.
Z _E	Elastizitätsfaktor	Berücksichtigt den Einfluss der werkstoffspezifischen Größen E
		(E-Modul) und ν (Poisson-Konstante) auf die Flankenpressung.
Zε	Überdeckungsfaktor	Flanke, berücksichtigt den Einfluss der Profil- und Sprungüberde-

		ckung auf die Flankenpressung.
Z _β	Schrägenfaktor	Flanke, unabhängig vom Einfluss des Schrägungswinkels auf die
		Berührlinienlänge berücksichtigt der Faktor Z_{β} den Einfluss des
		Schrägungswinkels auf die Flankenpressung, wobei Einflüsse wie
		zum Beispiel die Kraftverteilung entlang der Berührlinie berücksich-
		tigt werden.
Z _X	Größenfaktor	Flanke, berücksichtigt den statistischen, den festigkeitstheoreti-
		schen und den technologischen Größeneinfluss auf die
		Grübchentragfähigkeit (getrennt für Ritzel und Rad zu bestimmen).
Z _L	Einflussgrößen der	Z _L – Schmierstofffaktor (berücksichtigt die Schmierstoffart und die
Z_{v}	Schmierfilmbildung	Viskosität)
Z_R		Z _V – Geschwindigkeitsfaktor (berücksichtigt die Umfangsgeschwin-
		digkeit)
		Z _R – Rauheitsfaktor (berücksichtigt die Oberflächenbeschaffenheit
		der Zahnflanke).

Tabelle 9 - Faktoren der Grübchentragfähigkeit DIN 3991:1988

Faktoren der Zahnfußtragfähigkeit

Y _{ST}	Spannungskorrektur-	Berücksichtigt die Spannungskorrektur für die Abmessungen des
	faktor	Standardprüfrades; Es gilt Y _{ST} = 2
Y _{FS}	Kopffaktor	Berücksichtigt den Einfluss der Zahngeometrie auf die wirkliche
		Zahnfußspannung bei Kraftangriff am Zahnkopf $Y_{FS} = Y_{Fa} * Y_{Sa}$.
Y _{Fa}	Formfaktor	Berücksichtigt den Einfluss der Zahnform auf die Biegenennspan-
		nung für Kraftangriff am Zahnkopf (für Ritzel und Rad getrennt zu
		bestimmen).
Y _{Sa}	Spannungskorrektur-	Berücksichtigt die Umrechnung der Biegenennspannung bei Kraft-
	faktor	angriff am Zahnkopf auf die entsprechende örtliche Zahnfußspan-
		nung.
Υε	Überdeckungsfaktor	Zahnfuß, rechnet die Zahnfußspannung vom Fall "Kraftangriff am
		Zahnkopf" auf die entsprechende örtliche Zahnfußspannung um.
Υ _β	Schrägenfaktor	Zahnfuß, berücksichtigt den Einfluss des Schrägungswinkels und
		damit auch den Einfluss der schräg über die Flanke verlaufenden
		Berührlinie auf die Zahnfußbeanspruchung bei Schräg- und Bogen-
		verzahnung.
$Y_{\delta relT}$	Relative Stützziffer	Gibt an, um welchen Betrag die theoretische Spannungsspitze beim
	für die Dauerfestig-	Auftreten des Dauerbruchs über der Dauerfestigkeit liegt. Sie ist
	keit	abhängig vom Werkstoff und vom bezogenen Spannungsgefälle.
Y _{RrelT}	Relativer Oberflä-	Berücksichtigt die Abhängigkeit der Zahnfuß-Dauerfestigkeit von der
	chenfaktor	Oberflächenbeschaffenheit um Zahngrund (vorwiegend die Abhän-
		gigkeit von der Rauheit in der Fußrundung), bezogen auf die Ver-
		hältnisse am Standardprüfrad mit R_{ZT} = 10 μ m.
Y _X	Größenfaktor	Zahnfuß, berücksichtigt den statistischen, den festigkeitstheoreti-
		schen und den technologischen Größeneinfluss (für Ritzel und Rad
		getrennt zu bestimmen).
	•	

Tabelle 10 - Faktoren der Zahnfußtragfähigkeit DIN 3991:1988

Faktoren AGMA 2003-C10

Festigkeit, Belastung und Geometrie

S _{ac}	Allowable contact stress number
$\sigma_{H lim}$	Dauerfestigkeitswert für die Flankenpressung
S _{at}	Allowable bending stress number
$\sigma_{F lim}$	Dauerfestigkeitswert für die Zahnfuß-Biegespannung
T _P	Operating pinion torque
T_1	betriebliches Ritzeldrehmoment
d	Outer pitch diameters of gear and pinion, respectively
d_{e1}	Außendurchmesser des Ritzels
F	Net face width
b	Zahnbreite
-	Outer transverse modul
m_{et}	Äußerer Modul im Achsnormalschnitt

Tabelle 11 - Festigkeit, Belastung und Geometrie AGMA 2003-C10

Lastfaktoren

Ko	Overload factor	Makes allowance for any externally applied loads in excess of the
		nominal tangential load.
K_A	Anwendungsfaktor	Berücksichtigt Fremdbelastungen, die die nominale Tangentialbe-
		lastung übersteigen.
K _V	Dynamic factor	Makes allowance for the effects of gear tooth quality as related to
		speed and load.
K_V	Dynamikfaktor	Berücksichtigt die Auswirkung der Zahnradqualität in Zusammen-
		hang mit der Geschwindigkeit und der Last.
K _m	Load distribution fac-	Modifies the rating formulas to reflect the non-uniform distribu-
	tor	tion of the load along the tooth length.
K _{Hβ}	Lastverteilungsfaktor	Ändert die Bewertungsformeln, um die ungleichmäßige Verteilung
		der Last entlang der Zahnlänge widerzuspiegeln.
K _T	Temperature factor	Considers the influence of temperatures below 0°C or above
		120°C.
K_{Θ}	Temperaturfaktor	Berücksichtigt den Einfluss von Temperaturen unter 0°C oder über
		120°C.

Tabelle 12 - Lastfaktoren AGMA 2003-C10

Faktoren der Grübchentragfähigkeit

C _P	Elastic coefficient for pitting resistance	Depends upon Young's modulus of elasticity and Poisson's ratio.
Z_E	Elastizitätsfaktor	Abhängig von den werkstoffspezifischen Größen E (Elastizitätsmodul) und v (Poisson-Konstante).
Cs	Size factor	Reflects non-uniformity of material properties.
Z_X	Größenfaktor	Berücksichtigt die Ungleichmäßigkeit der Materialeigenschaften.

Сн	Hardness ratio factor	Depends on the gear ratio and the relative material hardness of
	for pitting resistance	pinion and gear.
Z_W	Werkstoff-	Abhängig von der Übersetzung und der relativen Materialhärte von
	Paarungsfaktor	Ritzel und Rad.
C _L	Stress cycle factor	Adjusts the allowable stress to comply with the required number
		of cycles during the total design life of the gears as reflected in the
		value of the permissible contact stress.
Z_{NT}	Lebensdauerfaktor	Passt die zulässige Spannung so an, dass die erforderliche Anzahl
		von Zyklen während der gesamten Lebensdauer der Zahnräder
		eingehalten wird, was sich im Wert der zulässigen Kontaktspan-
		nung zeigt.
C_R	Reliability factor	Accounts for the effect of the normal statistical distribution of fail-
		ures found in testing material.
Z_Z	Zuverlässigkeitsfaktor	Dient der Erfassung der Normalverteilung von Fehlern, die im
		Testmaterial gefunden wurden.
ı	Geometry factor	Evaluates the effects of gear geometry on the gear tooth stresses.
Z_{l}	Geometriefaktor	Ermittelt den Effekt der Zahnradgeometrie auf die Zahnbelastung.
C_{xc}	Crowning factor for	Makes allowance for the variation in the contact pattern due to
	pitting	crowning.
Z_{xc}	Balligkeitsfaktor für	Berücksichtigt die Unterschiede im Tragbild auf Grund von Ballig-
	Pitting	keit.

Tabelle 13 - Faktoren der Grübchentragfähigkeit AGMA 2003-C10

Faktoren der Zahnfußtragfähigkeit

K _X	Lengthwise curvature factor for bending strength	The lengthwise curvature factor depends on the spiral angle and the lengthwise tooth curvature.
Y_{β}	Schrägenfaktor	Der Schrägenfaktor ist abhängig vom Spiralwinkel und der Längs- krümmung des Zahnes.
J	Geometry factor	Evaluates the effects of gear geometry on the gear tooth stresses.
Y_J	Geometriefaktor	Ermittelt den Effekt der Zahnradgeometrie auf die Zahnbelastung.
K _R	Reliability factor	Accounts for the effect of the normal statistical distribution of failures found in testing material.
Y_Z	Zuverlässigkeitsfaktor	Dient der Berücksichtigung der Normalverteilung von Fehlern, die im Testmaterial gefunden wurden.
K _L	Stress cycle factor	Adjusts the allowable stress to comply with the required number of cycles during the total design life of the gears as reflected in the value of the permissible contact stress.
Y _{NT}	Lebensdauerfaktor	Passt die zulässige Spannung so an, dass die erforderliche Anzahl von Zyklen während der gesamten Lebensdauer der Zahnräder eingehalten wird, was sich im Wert der zulässigen Kontaktspannung zeigt.
Ks	Size factor	Reflects non-uniformity of material properties.
Y_X	Größenfaktor	Berücksichtigt die Ungleichmäßigkeit der Materialeigenschaften.

Tabelle 14 - Faktoren der Zahnfußtragfähigkeit AGMA 2003-C10

2.3.2 Allgemeiner Vergleich

Für die Tragfähigkeitsberechnung ist es notwendig, die Kegelräder durch virtuelle Ersatz-Stirnräder mit Evolventenverzahnung darzustellen. Obwohl es inzwischen genauere Berechnungsverfahren zur Ermittlung der Beanspruchung gibt, ist das Näherungsverfahren nach Tredgold immer noch die Grundlage aller gängigen Normen zur Berechnung von Kegelradverzahnungen. Da das Verfahren nach Tredgold in allen drei betrachteten Normen in der gleichen Form zur Anwendung kommt und schon seit Jahren eine gut bekannte Grundlage darstellt, wird dieses nur kurz erläutert.⁷⁵

Näherungsverfahren nach Tredgold

Thomas Tredgold, ein englischer Ingenieur, entwickelte ein Näherungsverfahren zur Erzeugung eines virtuellen Ersatzstirnrades. Dabei wird ein Ergänzungskegel mit seiner Verzahnung, die sich durch den Schnitt mit dem Kegel ergibt, in eine Ebene abgewickelt. Das virtuelle Ersatzstirnrad verfügt über eine Evolventenverzahnung. Alle drei betrachteten Normen nutzen diese Ersatzverzahnung zur Tragfähigkeitsberechnung. Im Allgemeinen werden die Verhältnisse in der Mitte der Zahnbreite der Kegelräder in den Berechnungen genutzt⁷⁶⁷⁷.

In Abbildung 13 sind die geometrischen Verhältnisse der Ersatzverzahnung dargestellt.

⁷⁵ Vgl. Schlecht, 2010, S. 951

⁷⁶ Vgl. Schlecht,

⁷⁷ Vgl. DIN

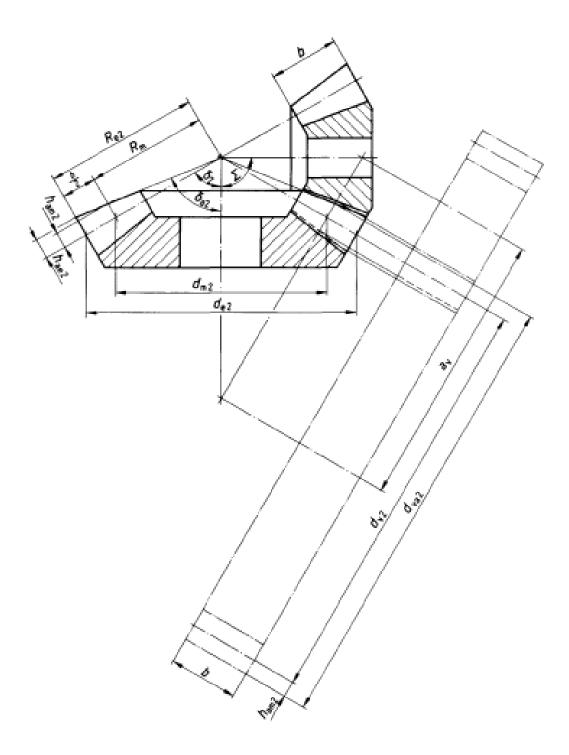


Abbildung 13 - Ersatzverzahnung nach Tredgold (Quelle: DIN 3991-1:1988, S. 17)

Berechnungsmethoden^{78,79}

In der ISO und in der DIN werden zur Berechnung jener Faktoren, deren Einflüsse vielfältig und voneinander abhängig sind, mehrere Methoden angeboten. Diese Methoden bieten einen unterschiedlichen Genauigkeitsgrad der Berechnung an. In der DIN werden die Methoden A bis E angeboten, in der ISO A bis C. Die Kennzeichnung der Methoden gibt auch Auskunft über die Genauigkeit des Verfahrens.

Methode A

Methode A stellt sowohl in der DIN als auch in der ISO jene Methode dar, die die höchste Genauigkeit liefert. Die Faktoren werden hier über genaue Messungen und/oder umfassende mathematische Analysen des zu betrachtenden Übertragungssystems ermittelt. Die ISO weist außerdem darauf hin, dass die Werte bei ausreichender Erfahrung aus dem Betrieb mit anderen, ähnlichen Konstruktionen durch Extrapolation verwandter Prüfergebnisse oder Faktoren ermittelt werden können. Für die Anwendung der Methode A müssen alle Getriebe- und Belastungsdaten bekannt sein. Es ist außerdem wichtig die Genauigkeit und Zuverlässigkeit der Methode nachzuweisen. Zusätzlich ist darauf zu achten mit dem Käufer beziehungsweise dem Anwender die Anerkennung der Methode zu vereinbaren.

Methode B

In der ISO wird Methode B als Methode beschrieben, die wie Methode A auf der Extrapolation aus Prüfergebnissen oder Sachdaten ähnlicher Konstruktionen basiert. Im Unterschied zu Methode A wird jedoch die Anwendung der Berechnungsmethoden zum Vergleich der Konstruktionen empfohlen. Außerdem wird für einige Faktoren eine Näherungsmethode angegeben. Die DIN gibt an, dass die Bestimmung der Faktoren nach Methode B für die meisten Anwendungsfälle ausreichend genau ist. Es ist genau darauf zu achten, dass die Bedingungen für die Anwendbarkeit für die Vereinfachung in der Berechnung eingehalten werden.

Methode C

Die ISO beschreibt Methode C als ein Verfahren, das zur Anwendung kommt, wenn passende Prüfergebnisse oder Erfahrungen aus ähnlichen Konstruktionen zur Bewertung fehlen. In

⁷⁸ Vgl. DIN 3991-1:1988, S. 2

⁷⁹ Vgl. ISO 10300-1:2001, S 12f

diesem Fall müssen die Berechnungsverfahren noch stärker vereinfacht werden. Auch diese Methode unterliegt bestimmten Auflagen. In der DIN wird Methode C ebenso als vereinfachtes Näherungsverfahren beschrieben, das bestimmten Annahmen unterliegt.

Weitere Methoden

Die DIN bietet zusätzlich zu diesen Methoden noch die Methoden D und E an, die für einige Faktoren noch ein zusätzliches Sonderverfahren zur Ermittlung der Faktoren liefern. Auch für sie gelten Einschränkungen bezüglich des Anwendungsbereichs und der Voraussetzungen. Für Vorauslegungen werden in der ISO üblicherweise die Methoden B und C und in der DIN zusätzlich zu diesen noch die Methoden D und E benutzt. Sollte Unklarheit darüber bestehen welche Methode angewandt wurde, so ist es notwendig diese am berechneten Faktor zu vermerken. Dies geschieht durch einen Bindestrich und der Nennung des Buchstabens. Also zum Beispiel K_{V-B}.

Noch genauer als alle genannten Methoden ist ein Volllasttest einer bestimmten Getriebekonstruktion in Originalbaugröße, um deren Tragfähigkeit zu ermitteln. Sowohl der Volllasttest als auch Methode A unterliegen einem hohen Aufwand und werden deshalb nur eingesetzt, wenn sie wirklich notwendig sind.

Die AGMA bietet immer nur eine Methode zur Berechnung der Faktoren an.

Festigkeit, Belastung und Geometrie

Die ISO verwendet bei der Berechnung der Grübchentragfähigkeit die Länge der mittleren Berührungslinie I_{bm} und bei der Zahnfußtragfähigkeit die Zahnbreite b. Die DIN nutzt für die Grübchentragfähigkeit die effektive Zahnbreite bezüglich Flankenbeanspruchung b_{eH} und für die Zahnfußtragfähigkeit die effektive Zahnbreite bezüglich Fußbeanspruchung b_{eF} .

Die Belastbarkeit des Zahnrad-Materials wird in allen drei Normen durch $\sigma_{\rm Hlim}$ beziehungsweise $\sigma_{\rm Flim}$ in der Berechnung berücksichtigt. Bei DIN und ISO fließt die Belastung mit der Nennumfangskraft am Teilkegel an der mittleren Teilkegellänge $F_{\rm mt}$ ein. In der Formel der AGMA scheint hingegen das Moment auf. Kraft und Moment können mittels $F_{mt} = \frac{2 \cdot 1000 \cdot T_{1,2}}{d_{m1,2}}$ leicht ineinander umgerechnet werden. Der Faktor 1000 ergibt sich durch

die unterschiedlichen Einheiten mit denen in der Norm gearbeitet wird. T_{1,2} wird in Nm eingesetzt und $d_{m1,2}$ in mm. 80,81,82,83,84,85,86

Ein Unterschied zwischen den Berechnungsformeln der ISO und der DIN ist der Einfluss der Geometrie. Während in der ISO bei der Berechnung für die Grübchentragfähigkeit mit der Länge der mittleren Berührungslinie l_{bm} und bei der Zahnfußtragfähigkeit mit der Zahnbreite b gerechnet wird, nutzt die DIN für die Grübchentragfähigkeit die effektive Zahnbreite bezüglich Flankenbeanspruchung beh und für die Zahnfußtragfähigkeit die effektive Zahnbreite bezüglich Fußbeanspruchung bef. Ansonsten unterscheiden sich die Berechnungsformeln nur durch einzelne Einflussfaktoren. Die AGMA verwendet hingegen bei beiden Formeln die Zahnbreite b. Während in DIN und ISO mit dem Normalmodul in Mitte der Zahnbreite m_{mn} und dem Teilkreisdurchmesser der Ersatz-Stirnradverzahnung d_v gerechnet wird, verwendet die AGMA den Stirnmodul am äußeren Zahnende met und den dazugehörigen äußeren Teilkreisdurchmesser d_{e1}. 87,88,89,90,91

⁸⁰ Vgl. ISO 10300-1:2001, S. 16

⁸¹ Vgl. ISO 10300-2:2001, S. 8f

⁸² Vgl. ISO 10300-3:2001, S. 7ff

⁸³ Vgl. DIN 3991-1:1988, S. 4

⁸⁴ Vgl. DIN 3991-2:1988, S. 2f

⁸⁵ Vgl. DIN 3991-3:1988, S.2f

⁸⁶ Vgl. AGMA 2003-C10, S. 2ff

⁸⁷ Vgl. ISO 10300-2:2001, S. 8f

⁸⁸ Vgl. ISO 10300-3:2001, S. 7ff

⁸⁹ Vgl. DIN 3991-2:1988, S. 2f

⁹⁰ Vgl. DIN 3991-3:1988, S. 7ff

⁹¹ Vgl. AGMA 2003-C10, S. 9f

2.3.3 Lastfaktoren

Anwendungsfaktor KA

Die Ermittlungstabelle für einen Näherungswert des Anwendungsfaktor K_A ist in allen 3 Normen gleich.

Der Anwendungsfaktor K_A dient der Berücksichtigung äußerer dynamischer Zusatzkräfte. Viele Antriebs- oder Arbeitsmaschinen entwickeln kurzfristige Spitzenmomente, die wesentlich höher als ihre Nennleistung sind. Diese können zum Beispiel durch System-Schwingungen, Bremsvorgänge oder plötzliche Änderungen in der Systemarbeitsweise entstehen. ^{92,93,94,95}

Anwendungsfaktor K _A – ISO 10300-1:2001, DIN 3991:1988, AGMA 2003-C10				
Arbeitsweise der Antriebsmaschine	Arbeitsweise der getriebenen Maschine			
	gleichmäßig (uniform)	leichte Stöße	mäßige Stöße (moderate)	starke Stöße (heavy)
gleichmäßig (uniform)	1,00	1,25	1,50	1,75
leichte Stöße	1,10	1,35	1,60	1,85
mäßige Stöße (moderate)	1,25	1,50	1,75	2,0
starke Stöße (heavy)	1,50	1,75	2,0	2,25 oder höher

Tabelle 15 – Näherungswerte für Anwendungsfaktor K_A laut DIN 3991:1988, ISO 10300:2001 und AGMA 2003-C10

Auch das Erreichen einer kritischen Drehzahl, bei welcher es zu Schwingungsresonanzen kommt, kann zu großen Zusatzbelastungen führen. Generell sollte jedes Antriebssystem darauf hin untersucht werden, ob es im Betriebsbereich zu kritischen Drehzahlen kommt. Für den Fall, dass sich diese nicht vermeiden lassen, sollte eine Systemdämpfung zur Minimierung der Schwingungen von Rad und Welle vorgesehen werden. Der Anwendungsfaktor K_A

⁹³ Vgl. ISO 10300-1:2001, S. 16f

⁹² Vgl. DIN 3991-1:1988, S. 4

⁹⁴ Vgl. AGMA 2003-C10, S. 10

⁹⁵ Vgl. Schlecht, 2010, S. 605ff

wird nur dann verwendet, wenn es nicht möglich ist, auf abgesicherte Erfahrungswerte oder zuverlässige, durch Betriebsmessungen oder durch Systemanalyse ermittelte, Lastkollektive zurückzugreifen. Ist keines der genaueren Verfahren anwendbar, wird auf einen Näherungswert für K_A zurückgegriffen. Dieser wird mit der Nenn-Umfangskraft F_{mt} oder dem Betriebs-Nennmoment T₁ multipliziert, um die äußeren dynamischen Zusatzkräfte zu berücksichtigen. In allen drei betrachteten Normen findet sich die gleiche Überschlagstabelle für die näherungsweise Ermittlung von K_A. Diese ist in Tabelle 15 dargestellt. 96,97,98,99

$Dynamik faktor \ {\rm K_V}^{100,101,102,103,104,105,106} \\$

Die Ermittlung des Dynamikfaktors nach Methode B ist in DIN und ISO fast gleich. Der kritische Bereich unterscheidet sich allerdings. Dies ist vor allem in Grenzfällen zu beachten. Die Ermittlungsmethode in der AGMA ähnelt der Methode C der ISO.

Der Dynamikfaktor K_V berücksichtigt die inneren dynamischen Zusatzkräfte. Schwingungsanregung erfolgt mit jedem Zahneingriff und tritt damit als Dauerbelastung auf. Diese Schwingungsanregungen treten besonders bei hohen Drehzahlen auf. Die Gründe für die Entstehung von inneren dynamischen Zusatzkräften sind vielfältig. Sie können durch konstruktionsbedingte Effekte, Herstellungseffekte, Übertragungsfehler, dynamische Responsen und Resonanzen entstehen. Konstruktionsparameter können zum Beispiel Zahnkräfte, die Umfangsgeschwindigkeit am Teilkreis, Schwankungen der Zahnsteifigkeit, Schmierstoffeigenschaften, Steifigkeit der Lager und der Gehäusekonstruktion und kritische Drehzahlen innerhalb des Getriebes sein. Unter die Herstellungsparameter fallen beispielsweise die Zahnspielschwankungen, der Rundlauf der Bezugsflächen zur Drehachse, die Zahnflanken-Abweichungen, die Auswuchtung und die Verträglichkeit der gepaarten Verzahnungselemente.

⁹⁶ Vgl. DIN 3991-1:1988, S. 4

⁹⁷ Vgl. ISO 10300-1:2001, S. 16f

⁹⁸ Vgl. AGMA 2003-C10, S. 10

⁹⁹ Vgl. Schlecht, 2010, S. 605ff

¹⁰⁰ Vgl. Schlecht, 2010, S. 613 f und 983

¹⁰¹ Vgl. AGMA 2003-C10, S. 12f

 $^{^{\}rm 102}$ Vgl. ISO 10300-1:2001, S. 17 ff

¹⁰³ Vgl. DIN 3991-1:1988, S. 4ff

¹⁰⁴ Vgl. Klein, 2008, S. 16

¹⁰⁵ Vgl. ISO 6336-1:2006, S. 24f

¹⁰⁶ Vgl. DIN 3990-1:1987, S. 9f

Den Übertragungsfehler definiert man als die Abweichung von der gleichförmigen relativen Winkelbewegung des im Eingriff befindlichen Radpaares. Sämtliche Abweichungen von der idealen Zahnform, das Fertigungsverfahren und die Betriebsbedingungen beeinflussen seinen Wert. Dynamische Reaktionen werden durch die Masse, die Steifigkeit und die Dämpfungseigenschaften aller beteiligten Teile beeinflusst. Resonanzschwingungen entstehen, sobald die Erregerfrequenz mit der Eigenfrequenz des Getriebes genau oder nahezu übereinstimmt. Resonanzen können dynamische Zahnbelastungen herbeiführen.

Dynamikfaktor K _v – ISO 10300-1:2001				
Methode A	Methode B	Methode C		
Benötigt: umfassende Analyse , die durch Erfahrung mit ähnlichen Konstruktionen bestätigt wird	Benötigt: Genauigkeit des Zahnradpaares (Teilungs-Einzelabweichung), Massenträgheitsmoment des Ritzels und des Rades (Abmessungen und Dichte des Werkstoffes), Zahnfedersteifigkeit (Einzelfedersteifigkeit und Eingriffsfedersteifigkeit), übertragene Umfangskraft	Benötigt: Verzahnungsqualität, Umfangsgeschwindigkeit, z ₁ , z ₂ , mittlerer Normalmodul, Einzel- Teilungsabweichung		
Allgemeines Verfahren: (a) mathematisches Modell des gesamten Leistungsübertragungs- Schwingungssystems, inklusive Getriebegehäuse (b) Übertragungsfehler der Kegelräder unter Last wird gemessen oder mit einem verlässlichen Simulationsprogramm berechnet (c) dynamische Belastungsreaktion wird mit dem Systemmodell (a) analysiert, das durch den Übertragungsfehler (b) erregt wird	Arbeitet mit der vereinfachten Annahme, dass das Zahnradpaar ein einziges, elementares Mas- sen- und Federsystem bildet, welches die kombinierten Mas- sen des Rades und des Ritzels umfasst, wobei die Federsteifig- keit gleich der Eingriffssteifigkeit der im Eingriff stehenden Zähne ist. Somit sind Belastungen aus den Drehschwingungen der Welle und der gekoppelten Masse nicht in K _{V-B} enthalten	Grafische Methode die auf empirischen Daten beruht; bei Ermangelung besonderer Kenntnis der dynamischen Belastung; Berücksichtigt keine Resonanz		

Tabelle 16 - Dynamikfaktor K_V - Methoden nach ISO 10300:2001

<u>Berechnungsmethoden</u>

In der ISO werden 3 verschiedene Methoden angeboten um den Dynamikfaktor zu berechnen. Die DIN bietet hingegen 4 Methoden an. Die verschiedenen Methoden werden in Tabelle 16 und Tabelle 17 gezeigt und erläutert. Die AGMA bietet nur eine Berechnungsmethode.

In DIN und ISO wird der Dynamikfaktor K_V als Verhältnis der im Zahneingriff eines Radpaares auftretenden maximalen Kraft zur entsprechenden Zahnkraft desselben Radpaares definiert. Es ist sehr schwierig, das komplizierte Schwingungssystem eines Kegelradtriebes zu bestimmen. Die Betrachtung alleine reicht nicht aus, da sich die Ritzelwellenausrichtung erheblich verändern kann, je nachdem wie genau der Zusammenbau erfolgt ist. Aber auch das Flankenspiel und die elastische Verformung der Radwelle, der Lager oder des Gehäuses haben einen Einfluss.

Dynamikfaktor K _v – DIN 3991-1:1988				
Methode A	Methode B	Methode C	Methode D	
Benötigt:	Benötigt: Hauptab-	Benötigt: Umfangsge-	Benötigt: Umfangsge-	
umfassende Analyse	messungen, Verzah-	schwindigkeit, z ₁ des	schwindigkeit, z ₁ des	
des Schwingungs-	nungsdaten,	Ritzels,	Ritzels,	
verhaltens der	Umfangsge-	Zähnezahlverhältnis,	Zähnezahlverhältnis,	
Radpaare eines Ge-	schwindigkeit, Genau-	Belastung des Radpaa-	Verzahnungsqualität	
triebes	igkeit des Getriebes,	res		
	Werkstoff, Belastung			
	des Getriebes			
In vielen Fällen ist eine	Gleiche vereinfachen-	Grafische Methode für	Grafische Methode	
derartige umfassende	de Annahme wie bei	den unterkritischen	nach Methode C, je-	
Analyse nicht durch-	ISO 10300:2001 Me-	Drehzahlbereich;	doch unter Vernach-	
führbar, da die not-	thode B	Für $v_{mt} \cdot \frac{z_1}{100} \cdot \sqrt{\frac{u^2}{1+u^2}} \le 10 \frac{m}{s}$	lässigung des Lastein-	
wendigen Daten nicht		ausreichend genau	flusses;	
zur Verfügung stehen.		audi didirenta geniaa	wird für Entwurfsrech-	
Auch eine Messung			nung eingesetzt.	
der Zahnkräfte im Be-				
trieb ist nur in wenigen				
Fällen möglich. Des-				
halb wird gewöhnlich				
eine der folgenden				
Methoden gewählt.				

Tabelle 17 - Dynamikfaktor K_V - Methoden nach DIN 3991:1988

Für die Anwendbarkeit von Methode A ist laut DIN und ISO eine umfassende Analyse des Systems notwendig. Die Methode B ist für computergestützte Berechnungen besonders relevant und gut umsetzbar, deshalb wird sie in dieser Arbeit genauer betrachtet. In einigen Quellen wird nicht zwischen der Methode B der DIN und der ISO unterschieden, es bestehen aber durchaus Unterschiede. Die Übereinstimmungen und Unterschiede werden in einem späteren Teil der Arbeit näher erläutert.

Die Methode C der ISO kommt zur Anwendung, wenn besondere Kenntnisse der dynamischen Belastungen fehlen. Sie basiert auf Kurven, die mit empirischen Daten ermittelt wurden und berücksichtigt keine Resonanzen. Es werden 4 verschiedene Kurven für die unterschiedlichen Genauigkeitsklassen nach ISO 1328-1 angeboten. Mit Hilfe der Umfangsgeschwindigkeit am Rückenkegel $v_{\rm et}$ wird dann der Dynamikfaktor $K_{\rm V-C}$ abgelesen. Um eine computerbasierte Auswertung zu ermöglichen sind die Funktionen zu den Kurven angegeben. Die Methode C der DIN ist eine grafische Methode für den unterkritischen Drehzahlbereich. Sie ist für $v_{mt} \cdot \frac{z_1}{100} \cdot \sqrt{\frac{u^2}{1+u^2}} \le 10 \frac{m}{s}$ ausreichend genau. Für die Ermittlung des Dynamikfaktors wird die Zähnezahl der Kegelräder, die Umfangsgeschwindigkeit $v_{\rm mt}$, die Linienbelastung und die Verzahnungsqualität nach DIN 3965 benötigt.

In der DIN werden noch einige weitere Kriterien genannt, die erfüllt sein müssen um die Methode anwenden zu dürfen. Die Methode D der DIN ist ebenfalls eine grafische Methode und basiert auf der Methode C, jedoch unter Vernachlässigung des Lasteinflusses.

Die Berechnungsmethode in der AGMA ähnelt in ihrer Struktur der Methode C der ISO. Auch hier gibt es Kurven, die durch empirische Daten ermittelt wurden. Die Methode darf nicht im Resonanzfall verwendet werden. Mit Hilfe der Genauigkeitsklassen und der Teilkreisgeschwindigkeit kann der Wert für K_V von einer der 7 Kurven, Q_5 bis Q_{11} , abgelesen werden. Die Kurven sollten nach dem Übertragungsfehler ausgewählt werden. Wenn der Übertragungsfehler nicht bekannt ist, kann die Steigungsgenauigkeit und unter Umständen auch die Profilgenauigkeit als repräsentativer Wert für die Ermittlung des Dynamikfaktors herangezogen werden. Q_V ist vom Übertragungsfehler abhängig. Betrachtet man die gegebenen Funktionen zu den Kurven fällt auf, dass große Ähnlichkeiten zu den Funktionen der ISO bestehen. Einzig die Berechnung der Potenz erfolgt auf eine andere Weise.

Methode B in DIN und ISO

Methode B basiert sowohl in der DIN als auch in der ISO auf der gleichen vereinfachenden Annahme. Bei dieser Annahme wird das Zahnradpaar als einziges, elementares Massen- und Federsystem betrachtet, welches die kombinierten Massen von Ritzel und Rad umfasst. Dabei ist die Zahnfedersteifigkeit gleich der Eingriffsfedersteifigkeit der im Eingriff stehenden Zähne. Dies bedeutet, dass die Belastungen aus den Drehschwingungen der Welle und der gekoppelten Massen, sowie der Einfluss der Federerregung der anderen Stufen des Getriebes, nicht in K_{V-B} enthalten sind. Laut ISO ist diese Annahme dann realistisch, wenn weitere Massen durch Wellen mit vergleichsweise geringer Drehsteifigkeit angeschlossen sind. Laut DIN müssen die nicht berücksichtigten Einflüsse im Ansatz der äußeren Belastungen oder im Ansatz des Sicherheitsfaktors berücksichtigt werden.

Wie bereits erläutert hängt der Betrag der inneren dynamischen Zusatzkräfte unter anderem von der Verzahnungsqualität, also von der Flanken-Formabweichung und den Teilungsabweichungen, ab. Da die Flankenform bei Kegelrädern nicht der Evolventenform entspricht, ist die Ermittlung der Flankenform-Abweichung sehr schwierig. Entsprechende ISO- oder DIN-Toleranzen liegen nicht vor. Aus diesem Grund wird die deutlich einfacher zu ermittelnde Teilungsabweichung als repräsentativer Wert für den Übertragungsfehler zur Ermittlung des Dynamikfaktors verwendet. Die benötigten Angaben zur Berechnung finden sich in Tabelle 16 und Tabelle 17.

<u>Drehzahlbereiche bei Methode B</u>

Sowohl in der DIN als auch der ISO wird bei Methode B zur Ermittlung von K_V das Verfahren in 4 unterschiedliche Drehzahlbereiche aufgeteilt. Als Einteilungsmerkmal dient die dimensionslose Bezugsdrehzahl $N=\frac{n_1}{n_{E1}}$, mit n_{E1} – Resonanzdrehzahl und n_1 – Drehzahl des Ritzels. Die vier Teilbereiche sind der unterkritische Bereich, der Bereich der Hauptresonanz, der Zwischenbereich und der überkritische Bereich. Die Resonanzdrehzahl n_{E1} hängt von den Massen der Zahnräder ab, wobei diese als reduzierte Massen je Einheit der Zahnbreite, bezogen auf die Eingriffslinie, in die Berechnung eingehen. Falls eine genaue Bestimmung dieser reduzierten Massen nicht möglich ist, wird in den Normen eine annähernde Berechnung angeboten. In der Formel für die Berechnung der Resonanzdrehzahl ist außerdem die Eingriffsfedersteifigkeit enthalten.

Sowohl in DIN 3991, als auch in ISO 10300 wird für weitere Grundlagen auf die jeweiligen Normen zur Berechnung von Stirnradgetrieben, DIN 3990-1 und ISO 6336-1, verwiesen. In diesen findet sich eine Aufteilung in 3 Bereiche, die angesichts der Definition von N nahelie-

gend und deshalb auch in beiden Normen gleich ist. Es wird unterschieden in den unterkritischen Bereich (N < 1), den Bereich der Hauptresonanz (N = 1) und den überkritischen Bereich (N > 1). Im unterkritischen Bereich kann es zu Resonanzen kommen, wenn die Zahneingriffsfrequenz mit N = $\frac{1}{2}$ oder N = $\frac{1}{3}$ zusammen fällt. Laut DIN und ISO ist das Risiko dafür bei genauen Schräg- oder Geradverzahnungen, wobei letztere über eine angemessene Profilkorrektur verfügen müssen, gering. Ist allerding die Verzahnungsqualität grob oder handelt es sich um Geradstirnräder kleiner Überdeckung, kann K_V so groß werden wie im Bereich der Hauptresonanz. In diesem Fall sollten Konstruktions- oder Betriebsparameter geändert werden.

Resonanzen bei $N = \frac{1}{5}$, $\frac{1}{5}$, ... haben meist geringe Schwingungsausschläge und sind deshalb selten von Bedeutung. Der Betrieb im Bereich der Hauptresonanz sollte im Allgemeinen vermieden werden. Bei Betrieb im überkritischen Bereich gelten dieselben Risiken wie im unterkritischen Bereich. Die Resonanzspitzen liegen hier bei N = 2, 3, Da Erregerkräfte mit kleineren Frequenzen als der Eingriffsfrequenz meist klein sind, sind die Schwingungsausschläge meist nicht hoch. Für manche Zahnräder ist es notwendig in diesem Bereich die durch Querschwingungen hervorgerufenen dynamischen Kräfte zu berücksichtigen.

Für die Berechnung von K_V wird aus Sicherheitsgründen ein größerer Resonanzbereich gewählt. Die Bereiche sind in Tabelle 18 angegeben. DIN 3990 und DIN 3991 stimmen in ihren Bereichen überein. In der ISO 6336 ist für die Ermittlung der unteren Grenze des kritischen Bereichs eine Berechnungsformel angegeben. Diese enthält Abhängigkeiten von F_t , K_A und b. Für Belastungen $(F_t \cdot K_A / b) \ge 100$ N/mm wird die untere Grenze mit N = 0.85 definiert. In ISO 10300 sind hingegen andere Bereiche definiert. Außerdem liegt die untere Grenze des Hauptresonanzbereiches immer bei N = 0.75. Über den Grund für die unterschiedliche Wahl der Grenzen geben die Normen keine Auskunft.

	DIN 3990/DIN 3991	ISO 6336	ISO 10300
Unterkritischer Bereich	N ≤ 0,85	$N \leq N_S$	N ≤ 0,75
Bereich der Hauptresonanz	0,85 < N ≤ 1,15	$N_{S} < N \le 1,15$	0,75 < N < 1,25
Zwischenbereich	1,15 < N < 1,5	1,15 < N < 1,5	1,25 < N < 1,5
Überkritischer Bereich	N ≥ 1,5	N ≥ 1,5	N ≥ 1,5

Tabelle 18 - Drehzahlbereich bei der Ermittlung von K_v

Für alle 4 Bereiche wird eine eigene Ermittlungsformel für K_V angeboten. Diese Formeln hängen in allen 4 Bereichen von der effektiven Teilungs-Einzelabweichung f_{peff} , der Einzelfedersteifigkeit c' für mittlere Verhältnisse bei Kegelrädern, dem Anwendungsfaktor K_A , der Nenn-Umfangskraft F_{mt} am Teilkegel in der Mitte der Zahnbreite und der Breite des Zahnrades ab. Die DIN und die ISO unterscheiden sich hier nur dahingehend, dass die DIN mit der effektiven Zahnbreite bezüglich der Flankenbeanspruchung und die ISO mit der Zahnbreite b rechnet. In der DIN ist im Kapitel für die Ermittlung des Breitenfaktors angegeben, dass unter üblichen Bedingungen $b_{eH} = 0.85 \cdot b$ angenommen werden kann, wobei b der kleinere Wert von Ritzel oder Rad ist. Die Breite wird im Fußkegel ermittelt, ohne Berücksichtigung sinnvoll ausgeführter Stirnkantenbrüche oder Stirnkantenabrundungen. Weder die DIN noch die ISO geben näher Auskunft über den Grund für die unterschiedliche Wahl der Breite.

In der ISO findet sich eine Tabelle zur Ermittlung jener Faktoren, die für die Berechnung von K_V notwendig sind. Sie sind abhängig von der Gesamtüberdeckung. In der DIN findet sich die gleiche Tabelle. Es wird jedoch zusätzlich noch eine weitere Tabelle zur Ermittlung angegeben. In der Erklärung der Abschnitte findet man den Hinweis, die Werte sollen entweder aus der einen oder der anderen Tabelle gewählt werden. Eine Erläuterung, wonach entschieden werden soll, nach welcher Tabelle vorzugehen ist, wird nicht angeboten.

Lastverteilungsfaktor $K_{H\beta}$ und $K_{F\beta}^{107,108}$

Der Lastverteilungsfaktor hat in allen drei Normen die gleichen Aufgaben. Die Ermittlung des Faktors unterscheidet sich jedoch. Die Verfahren in DIN und ISO stimmen bis auf wenige Details überein. Die Methode in der AGMA unterscheidet sich deutlich.

Sowohl in der ISO, als auch in DIN und AGMA wird angegeben, dass die Faktoren $K_{H\beta}$ und $K_{F\beta}$ die ungleichmäßige Lastverteilung über die Zahnbreite berücksichtigen. In DIN und ISO tut $K_{H\beta}$ dies bei der Berechnung der Grübchentragfähigkeit und $K_{F\beta}$ bei der Berechnung der Zahnfußtragfähigkeit. Die AGMA verfügt nur über einen Faktor $K_{H\beta}$, der sowohl bei der Berechnung für die Grübchentragfähigkeit, als auch bei der Berechnung der Zahnfußtragfähigkeit zum Einsatz kommt.

¹⁰⁷ Vgl. ISO 10300-1:2001, S. 25f

¹⁰⁸ Vgl. DIN 3991-1:1988, S. 11

Laut ISO wird $K_{H\beta}$ als das Verhältnis der maximalen Kraft je Einheit der Zahnbreite zur durchschnittlichen Kraft je Einheit der Zahnbreite definiert und $K_{F\beta}$ als das Verhältnis der maximalen Zahnfußspannung zur durchschnittlichen Zahnfußspannung über die Zahnbreite. Außerdem geben sowohl die ISO, als auch die AGMA an, dass der Betrag der ungleichmäßig verteilten Kraft unter anderem von der Fertigungsgenauigkeit, dem Tragbild, dem Spiel, der Ausrichtung der Zahnräder in ihren Lagerungen und verschiedenen Verformungen beeinflusst wird.

Die DIN verweist für die näheren Einflüsse auf die Grundlagen in DIN 3990 und gibt dort sehr ähnliche Einflussfaktoren an. Die ISO gibt an, dass für die Anwendbarkeit von Methode A eine umfassende Analyse aller Einflussfaktoren, sowie die Kenntnis der Zahnfußspannung im Betrieb, vorausgesetzt werden. Da dieses Verfahren sehr kostenintensiv ist, wird es in der Praxis nur sehr beschränkt eingesetzt. Ein Näherungsverfahren für Kegelräder nach Methode B ist noch nicht ausgewertet und steht deshalb nicht zur Verfügung. Somit ist in der ISO Methode C das einzige zur Verfügung stehende Berechnungsverfahren.

Wie bei der ISO wird auch bei der DIN für die Anwendbarkeit von Methode A eine umfassende Analyse aller Einflussgrößen gefordert. Auch hier wird auf den hohen Aufwand der Methode verwiesen. Die DIN kann zum jetzigen Zeitpunkt noch keine Methode B und C zur Berechnung anbieten, da es momentan keine ausreichenden Forschungsergebnisse und Betriebserfahrungen für die Entwicklung eines solchen Verfahrens gibt. Somit ist die Methode D in der DIN das einzige angebotene Berechnungsverfahren zur Ermittlung von $K_{H\beta}$ und $K_{F\beta}$.

Methode C der ISO

Die Methode C der ISO zur Ermittlung des Lastverteilungsfaktors $K_{H\beta}$ basiert auf der Überlegung, dass die Lastverteilung bei Kegelrädern hauptsächlich durch die Breitenballigkeit der Zähne und durch die Verformungen im Betrieb beeinflusst wird. Um die Breitenballigkeit zu berücksichtigen, wird die rechteckige Kontaktfläche durch eine eingeschriebene Ellipse ersetzt. Die Hauptachse dieser Ellipse ist gleich der gemeinsamen Zahnbreite b, und die kleinere Achse ist gleich der Eingriffs-Strecke im Normalschnitt des Ersatz-Zylinderrades. Bei Radpaaren mit zufriedenstellendem Tragbild wird dies durch den Faktor 1,5 in der Berechnung der Lastverteilung berücksichtigt. Abhängig von der wirksamen Zahnbreite wird dieser Faktor entweder nur mit dem Lagerungsfaktor $K_{H\beta-be}$, oder mit einem zusätzlichen Faktor zur Berücksichtigung einer sehr geringen wirksamen Zahnbreite multipliziert. Der Lagerungsfaktor

 $K_{H\beta\text{-be}}$ berücksichtigt den Einfluss der Verformung und folglich der Lageranordnung. Für die Ermittlung des Lastverteilungsfaktor $K_{F\beta}$ wird der zuvor ermittelte Faktor $K_{H\beta}$ durch den Breitenkrümmungsfaktor für Zahnfußbeanspruchung K_{F0} dividiert. Der Faktor K_{F0} hängt vom Spiralwinkel und von der Längskrümmung des Zahnes ab.

Methode D der DIN

Die Methode D der DIN zur Ermittlung des Lastverteilungsfaktors $K_{H\beta}$ basiert auf den gleichen theoretischen Überlegungen wie die Methode C der ISO. Im Unterschied zu dieser wird in der DIN aber von einem fixen Wert $b_{eh} = 0.85 \cdot b$ für die wirksame Breite ausgegangen, sofern keine anderen Angaben gemacht werden. Die Tabelle zur Ermittlung von $K_{H\beta-be}$ unterscheidet sich geringfügig von jener in der ISO. So wird zwar bei beiden nach der Art der Lagerung unterschieden, die DIN unterscheidet aber nach dem Anwendungsgebiet und die ISO nach der Prüflast. Dadurch ergeben sich unterschiedliche Werte für $K_{H\beta-be}$. In der DIN wird $K_{H\beta} = K_{F\beta}$ gesetzt. Das heißt, es gibt keinen Faktor K_{F0} , der den Spiralwinkel und die Längskrümmung des Zahnes berücksichtigt. 110

AGMA

Die AGMA bietet für die Ermittlung des Lastverteilungsfaktors $K_{H\beta}$ drei Kurven, welche die verschiedenen Lagerungsverhältnisse repräsentieren. Mit Hilfe der Zahnbreite kann durch diese der Lastverteilungsfaktor $K_{H\beta}$ ermittelt werden. Die Kurven sind nicht für Radpaarungen mit einem schlechten Tragbild geeignet. ¹¹¹

Lastaufteilungsfaktoren $K_{H\alpha}$ und $K_{F\alpha}^{112,113}$

Die DIN berechnet den Faktor mit der effektiven Zahnbreite bezüglich Flankenbeanspruchung b_{eH} und die ISO mit der Zahnbreite b. Deshalb unterscheiden sich auch die zulässigen Grenzwerte für den Faktor. Dies kann zu deutlichen Unterschieden zwischen den Berechnungsergebnissen führen.

Der Lastaufteilungsfaktor $K_{H\alpha}$ beziehungsweise $K_{F\alpha}$ scheint nur in der ISO und in der DIN auf. Er berücksichtigt die Aufteilung der Gesamt-Umfangskraft auf mehrere im Eingriff befindli-

¹⁰⁹ Vgl. ISO 10300-1:2001, S. 26f

¹¹⁰ Vgl. DIN 3991-1:1988, S. 11

¹¹¹ Vgl. AGMA 2003-C10, S. 16f

¹¹² Vgl. ISO 10300-1:2001, S. 27f

¹¹³ Vgl. DIN 3991-1:1988, S. 12f

che Zahnpaare. $K_{H\alpha}$ tut dies bei der Berechnung der Grübchentragfähigkeit und $K_{F\alpha}$ bei der Berechnung der Zahnfußtragfähigkeit.

Die Aufteilung der Gesamt-Umfangskraft auf mehrere Zahnpaare hängt bei gegebenen Verzahnungsmaßen und Werkstoffen von der Verzahnungsgenauigkeit und der Höhe der Gesamt-Umfangskraft ab. Wie schon bei den vorigen Faktoren erfordert auch hier die Anwendbarkeit der Methode A sowohl in der DIN und in der ISO eine umfassende Analyse und verursacht einen hohen Aufwand. Die Methoden B und C bieten meist hinreichend genaue Näherungen.

Methode B

Das Grundprinzip, auf dem die Methode B beruht, ist in DIN und ISO gleich. Es wird eine übliche Verteilung der Verzahnungsabweichungen über den Umfang von Ritzel und Rad angenommen, wobei die ungünstigsten Kombinationen nur selten auftreten. Die Gesamtwirkung aller Verzahnungsabweichungen die den Stirnfaktor beeinflussen, wird durch die Teilungs-Einzelabweichung repräsentiert.

Die Berechnungsformeln für den Lastaufteilungsfaktor gleichen sich in DIN und ISO bis auf wenige Details. So wird in der ISO mit der Zahnbreite b gerechnet, während die DIN die effektive Zahnbreite bezüglich Flankenbeanspruchung b_{eH} verwendet. Das Diagramm zur grafischen Darstellung ist in DIN und ISO dennoch gleich. Auch die Grenzbedingungen, ab wann der Lastaufteilungsfaktor gleich einem fixen Wert zu setzen ist, unterscheiden sich. So nutzt die ISO in der Berechnungsformel für den Grenzwert von $K_{H\alpha}$ den Faktor Z_{LS} , während die DIN Z_{ϵ} verwendet. Auf diese beiden Faktoren wird zu einem späteren Zeitpunkt dieser Arbeit eingegangen. Auch bei der Grenzwertermittlung von $K_{F\alpha}$ weisen DIN und ISO Unterschiede auf. So wird in der ISO der gleiche Wert als Schwellwert verwendet, der dann auch als Grenzwert gilt, wohingegen die DIN ϵ_{VV} als Schwellwert nutzt und den Grenzwert mit derselben Formel berechnet wie die ISO.

Methode C

Die Methode C der beiden Normen ist in ihren Grundprinzipien wiederum für beide Normen gleich. Laut DIN wurde die Methode C aus einer Vereinfachung der Methode B entwickelt. Die ISO gibt an, dass diese Methode im Allgemeinen für Industriegetriebe hinreichend genau ist. Für ihre Anwendung müssen Genauigkeitsklasse, Linienlast, Radtype und Einlaufverhal-

ten bekannt sein. Es gelten Einschränkungen für den Anwendungsbereich. In beiden Normen stimmen die Voraussetzungen zur Profilüberdeckung, zur Federsteifigkeit, zur Verzahnungsqualität und zur Linienbelastung überein. Die DIN enthält zusätzlich eine Voraussetzung für die Gesamtüberdeckung der Ersatz-Stirnradverzahnung ϵ_{vy} . Ansonsten unterscheiden sich DIN und ISO nur im Einsatz des Faktors Z_{LS} beziehungsweise Z_{ϵ} bei der Ermittlung von $K_{H\alpha}$.

Temperaturfaktor K_⊕

Der Temperaturfaktor kommt nur in der AGMA zur Anwendung und berücksichtigt den Einfluss von Temperaturen unter 0°C und über 120°C.

In DIN und ISO wird auf Temperatureinflüsse nicht näher eingegangen. Die AGMA gibt an, dass Temperaturen in diesen extremen Bereichen auch Auswirkungen auf die Materialeigenschaften und die zulässige Spannung haben können. Für Getriebe die bei Temperaturen über 120°C betrieben werden, wird eine Berechnungsformel zur Ermittlung des Temperaturfaktors angeboten. Für Temperaturen unter 0°C bietet die AGMA nur theoretische Überlegungen und keine konkreten Zahlenwerte für Korrekturfaktoren. 114

2.3.4 Faktoren der Grübchentragfähigkeit

	Faktor	ISO 10300-2	DIN 3991-2	AGMA 2003-C10
Z _H	Zonenfaktor	Х	Х	
Zı	Geometriefaktor			X
Z _{XC}	Balligkeitsfaktor für Pitting			Х
Z _{M-B}	Mittelzonenfaktor	Х		
Z _B , Z _D	Einzeleingriffsfaktor		Х	
Z _E	Elastizitätsfaktor	Х	Х	Х
Z _{LS}	Lastanteilfaktor	Х		
Zε	Überdeckungsfaktor		Х	
Z _β	Spiralwinkelfaktor	Х	Х	
Z _K	Kegelradfaktor	Χ	Х	
Z _X	Größenfaktor	Х	Х	Х
7 7 7	Einflussfaktoren der	Х	X	
Z_L , Z_V , Z_R	Schmierfilmbildung	^		
Z _W	Werkstoffpaarungsfaktor	Χ		X
Z _{NT}	Lebensdauerfaktor	X		X
Z _z	Zuverlässigkeitsfaktor			Х

Tabelle 19 - Faktoren der Grübchentragfähigkeit

¹¹⁴ Vgl. AGMA 2003-C10, S. 22f

Zonenfaktor Z_H (ISO, DIN)

Laut ISO 10300-2 erfasst der Zonenfaktor den Einfluss der Flankenkrümmung im Wälzpunkt auf die Hertz'sche Pressung. Die Formel zur Ermittlung des Zonenfaktors ist in der DIN 3991-2 und in der ISO 10300-2 genau gleich. Diese gilt unter der Annahme eines evolventischen Zahnprofils und für Kegelräder mit Null- oder V-Null-Verzahnung.^{115,116}

Geometriefaktor Z_I (AGMA)

Der Geometriefaktor berücksichtigt in der AGMA den Effekt der Zahnradgeometrie auf die Zahnfußspannung. Er evaluiert den Kurvenradius der aufeinandertreffenden Zahnoberflächen und die Lastverteilung zwischen benachbarten Zahnpaaren an dem Punkt der Zahnoberfläche, an dem der errechnete Kontaktdruck sein Maximum erreicht. Im Anhang der Norm sind die Berechnungsformeln für die benötigten Geometrie-Einflussgrößen zu finden.¹¹⁷

Balligkeitsfaktor für Pitting Z_{XC} (AGMA)

Die Angaben in der AGMA zur Auswahl des Wertes für den Balligkeitsfaktor sind ungenau.

Die AGMA erklärt die Notwendigkeit eines Balligkeitsfaktors damit, dass die Zähne der meisten Kegelräder während des Fertigungsprozesses in Längsrichtung ballig ausgeführt werden, um Ungenauigkeiten beim Einbau auszugleichen. Dadurch entsteht ein lokalisiertes Tragbild während Rolltests unter leichter Last. Im Normalbetrieb sollte das Tragbild sich über die ganze Zahnflanke ausbreiten, ohne dass es zu Konzentrationen des Tragbilds an den Kanten kommt. Der Balligkeitsfaktor berücksichtigt diese mögliche Variation des Tragbildes. Für Zahnräder mit einer ordnungsgemäßen Balligkeit wird $Z_{XC} = 1,5$ gesetzt und für nichtballige Zahnräder 2 oder größer. 118

Mittelzonenfaktor Z_{M-B} (ISO)

Der Mittelzonenfaktor wird in der ISO 10300-2 dazu genutzt, um den Zonenfaktor Z_H und damit die Flankenpressung im Wälzpunkt auf die Flankenpressung im Lastangriffspunkt umzurechnen. In der ISO hängt dieser Wert von verschiedenen Geometriegrößen ab. Außerdem

¹¹⁵ Vgl. ISO 10300-2:2001, S. 9

¹¹⁶ Vgl. DIN 3991-2:1988, S. 3

¹¹⁷ Vgl. AGMA 2003-C10, S. 18

¹¹⁸ Vgl. AGMA 2003-C10, S. 17

enthält die Formel zwei Hilfsfaktoren, welche über den Wert der Sprungüberdeckung der Ersatz-Zylinderradverzahnung im Achsnormalschnitt $\epsilon_{\nu\beta}$ ermittelt werden. ¹¹⁹

Die geforderten Krümmungsradien für die Berechnung finden sich in Abbildung 14.

Einzeleingriffsfaktor Z_B, Z_D (DIN)

Der Einzeleingriffsfaktor erfüllt den gleichen Zweck wie der Mittelzonenfaktor. Er berücksichtigt im Gegensatz zu diesem aber nicht den Einfluss der Sprungüberdeckung der Ersatz-Zylinderradverzahnung im Achsnormalschnitt $\epsilon_{\nu\beta}$.

Der Einzeleingriffsfaktor erfüllt in der DIN die gleiche Aufgabe wie der Mittelzonenfaktor in der ISO. Die Ermittlung unterscheidet sich jedoch von jener in der ISO dadurch, dass anstatt der berechneten Hilfsfaktoren immer jener Wert eingesetzt wird, der in der ISO für Verzahnungen mit $\epsilon_{\nu\beta}$ = 0 genutzt wird. In der DIN gibt es außerdem eine eigene Ermittlungsformel für Ritzel und Rad, während in der ISO immer mit der Formel für das Ritzel gerechnet wird. Die DIN gibt an, dass die eigenständige Ermittlung des Einzeleingriffsfaktors für das Rad nur für Radpaare mit einem u < 1,5 notwendig ist. Ansonsten ist der Einzeleingriffsfaktor für das Rad gleich Eins zu setzen. Die in der DIN gezeigte Abbildung zu den Krümmungsradien stimmt mit jener in der ISO, bis auf die Tatsache, dass es in ihr keinen Punkt M gibt, überein. 120

¹¹⁹ Vgl. ISO 10300-2:2001, S. 10

¹²⁰ Vgl. DIN 3991-2:1988, S. 3

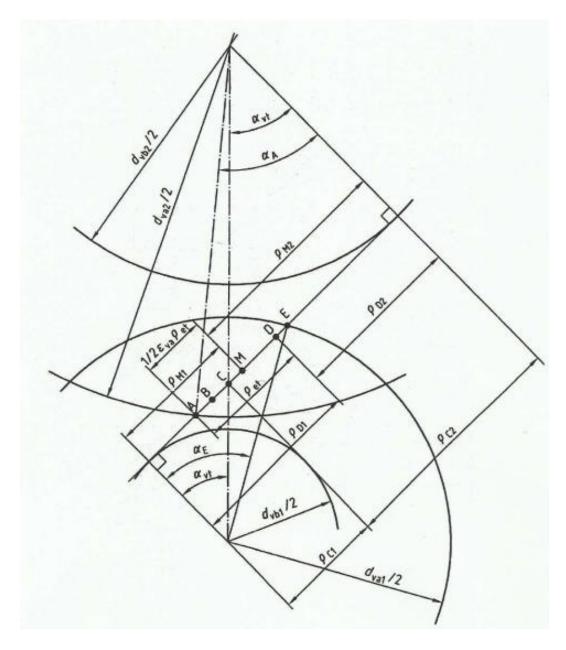


Abbildung 14 - Krümmungsradien zur Ermittlung des Mittelzonenfaktors $Z_{\text{M-B}}$ (Quelle: ISO 10300-2:2001, S. 10)

Elastizitätsfaktor Z_E (ISO, DIN, AGMA)

Die Berechnung des Elastizitätsfaktors erfolgt in allen drei Normen genau gleich. Er berücksichtigt den Einfluss von unterschiedlichen Elastizitätsmodulen und Poisson-Konstanten. 121,122,123

Lastanteilfaktor Z_{LS} (ISO)

Der Lastanteilfaktor berücksichtigt in der ISO 10300-2 die Lastbeteiligung von zwei oder mehreren Zahnpaaren. Für $\epsilon_{v\gamma} \leq 2$ wird $Z_{LS} = 2$ gesetzt und für $\epsilon_{v\gamma} > 2$ und $\epsilon_{v\beta} > 1$ wird eine Berechnungsformel angeboten, die von $\epsilon_{v\gamma}$ abhängt. Für andere Fälle wird auf den Anhang verwiesen. Im Anhang wird erläutert, dass die Lastverteilung entlang der Berührungslinie als elliptisch angenommen wird. Die Verteilung der Spitzenlasten wird als Parabel angenommen. Der Lastanteilfaktor kann dann als die Fläche über der mittleren Berührungslinie bezogen auf die Summe aller Flächen, also der Fläche über der Kopf-Berührungslinie, der Fläche über der mittleren Berührungslinie und der Fläche über der Fuß-Berührungslinie, definiert werden. Die Lastverteilung ist in Abbildung 15 zu sehen. 124

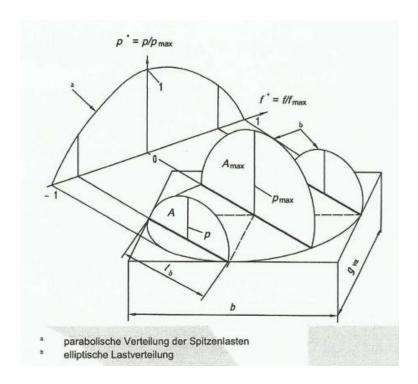


Abbildung 15 - Lastverteilung im Kontaktgebiet (Quelle: ISO 10300-2:2001, S. 19)

¹²¹ Vgl. ISO 10300-2:2001, S. 11

¹²² Vgl. DIN 3991-2:1988, S. 3

¹²³ Vgl. AGMA 2003-C10, S. 23

¹²⁴ Vgl. ISO 10300-2:2001, S. 11 und S. 19

Überdeckungsfaktor Ζ_ε (DIN)

In der DIN berücksichtigt der Überdeckungsfaktor den Einfluss der Profil- und Sprungüberdeckung auf die Flankenpressung. Es werden unterschiedliche Berechnungsformeln für geradverzahnte beziehungsweise schräg- und bogenverzahnte Zahnräder angeboten. Bei den schräg- und bogenverzahnten Zahnrädern wird zwischen Verzahnungen mit $\epsilon_{v\beta} < 1$ und $\epsilon_{v\beta} \ge 1$ unterschieden. Für geradverzahnte Zahnräder und schräg- und bogenverzahnte Zahnräder mit $\epsilon_{v\beta} \le 1$ hängt Z_{ϵ} nur von $\epsilon_{v\alpha}$ ab. Für schräg- und bogenverzahnte Zahnräder mit $\epsilon_{v\beta} < 1$ hängt Z_{ϵ} zusätzlich von $\epsilon_{v\beta}$ ab. $\epsilon_{v\beta}$

Spiralwinkelfaktor Z_β (ISO, DIN)

Der Spiralwinkelfaktor berücksichtigt den Einfluss des Spiralwinkels auf die Flankenpressung bezüglich Grübchenbildung. Einflüsse wie die Kraftverteilung entlang der Berührungslinie werden berücksichtigt. Vom Einfluss des Spiralwinkels auf die Länge der Berührungslinien ist der Spiralwinkelfaktor unabhängig. Laut ISO ist der Spiralwinkelfaktor eine Funktion des Spiralwinkels β_m . Für die praktische Anwendung wird eine empirische Beziehung genutzt, die gut mit Versuchen und praktischen Erfahrungen übereinstimmt. Die Erläuterungen und die Formel für den Spiralwinkelfaktor sind in der DIN genau gleich wie in der ISO, lediglich der Name unterscheidet sich. So wird der Spiralwinkelfaktor in der DIN Schrägenfaktor genannt. 126,127

Kegelradfaktor Z_K (ISO, DIN)

Der Kegelradfaktor hat in der ISO den fixen Wert 0,8, während er in der DIN mit dem Wert 0,85 angenommen wird.

Die ISO 10300-2 gibt den Kegelradfaktor als einen empirischen Faktor an, der den Unterschied zwischen der Kegelrad- und der Zylinderradbelastung mit der praktischen Erfahrung in Übereinstimmung bringt. Laut ISO 10300-2 kann er in Ermangelung genauer Kenntnisse gleich 0,8 gesetzt werden. In der DIN 3991-2 wird dem Kegelradfaktor kein eigener Abschnitt gewidmet. Es ist lediglich im Abschnitt der Grundgleichungen vermerkt, dass Z_K bei geeigneter und angepasster Höhenballigkeit gleich 0,85 gesetzt werden kann. Laut DIN 3991 berück-

¹²⁵ Vgl. DIN 3991-2:1988, S. 4

¹²⁶ Vgl. ISO 10300-2:2001, S. 11

¹²⁷ Vgl. DIN 3991-2:1988, S. 5

sichtigt der Kegelradfaktor den Einfluss des von der Evolvente abweichenden Zahnprofils und der über die Breite veränderlichen Zahnfedersteifigkeit auf die Grübchenbildung. 128,129

Größenfaktor Z_x (ISO, DIN, AGMA)

Der Größenfaktor dient der Berücksichtigung des statistischen, des festigkeitstheoretischen und des technologischen Größeneinflusses. Ersterer entsteht infolge der Verteilung von Schwachstellen im Gefüge, zweiterer wird durch den kleineren Spannungsgradienten bei größeren Abmessungen verursacht und letzterer entsteht durch den Grad der Verschmiedung, den Ungleichmäßigkeitsfaktor des Gefüges und ähnliches. Der Größenfaktor unterliegt verschiedenen Einflussgrößen. Diese sind zum Beispiel die Werkstoffqualität, die Wärmebehandlung, die Härtetiefe, die Flankenkrümmungsradien und der Modul der Randschichthärtung. In der ISO 10300-2 wird der Größenfaktor gleich Eins gesetzt.

In der DIN sind drei verschiedene Berechnungsformeln gegeben, die für verschiedene Werkstoffe verwendet werden. Diese Formeln sind vom Normalmodul in der Mitte der Zahnbreite abhängig. Für Bau- und Vergütungsstähle, Grauguss, Kugelgraphitguss und Temperguss wird der Größenfaktor in der DIN gleich Eins gesetzt. Die in der AGMA gegebene Formel zur Berechnung des Größenfaktors hängt nur von der Zahnbreite ab. Für eine Zahnbreite unter 12,7 mm wird Z_X gleich 0,5 gesetzt und für eine Zahnbreite über 79,8 mm gleich 0,83. Die Werte dazwischen folgen einer linearen Verteilung. Somit wird der Größenfaktor Z_X in der AGMA niemals Eins. 130,131,132

Einflussfaktoren für die Schmierfilmbildung Z_L, Z_V, Z_R (ISO, DIN) ^{133,134,135,136}

Die Schmierstofffaktoren Z_L und Z_V werden in DIN und ISO genau gleich ermittelt. Beim Rauheitsfaktor Z_R kommt es zu Unterschieden.

Die Einflussfaktoren für die Schmierfilmbildung zwischen den Zahnflanken sind in der DIN und in der ISO in drei Faktoren aufgeteilt. Diese sind der Faktor Z_L für die Berücksichtigung

¹²⁸ Vgl. ISO 10300-2:2001, S. 11

¹²⁹ Vgl. DIN 3991-2:1988, S. 2

¹³⁰ Vgl. ISO 10300-2:2001, S. 12

¹³¹ Vgl. DIN 3991-2:1988, S. 5

¹³² Vgl. AGMA 2003-C10, S. 15f

¹³³ Vgl. ISO 10300-2:2001, S. 12ff

 $^{^{134}}$ Vgl. DIN 3991-2:1988, S 7ff

 $^{^{\}rm 135}$ Vgl. ISO 6336-2:2006, S. 18ff

¹³⁶ Vgl. DIN 3990-2:1987, S. 11ff

der Nenn-Viskosität des Schmierstoffes, der Faktor Z_V für die Berücksichtigung der Umfangsgeschwindigkeit und der Faktor Z_R für die Berücksichtigung der Flankenrauheit. Für alle drei Werte gibt es Einflüsse die im Berechnungsansatz nicht berücksichtigt werden. Dies zeigt sich in der Streuung der gezeigten grafischen Werte.

Sowohl die DIN als auch die ISO verweisen für die Grundlagen zur Ermittlung der Faktoren auf die jeweiligen Normen zur Tragfähigkeitsberechnung von Stirnrädern. In diesen Normen ist übereinstimmend angegeben, dass die Viskosität des Schmiermittels im Schmierspalt, die Summe der momentanen Geschwindigkeiten der beiden Zahnflächen, die Belastung, der Ersatzkrümmungsradius und die Rauhtiefe der Zahnflanke wichtige Einflussfaktoren sind. Bis auf die Rauhtiefe der Zahnflanke haben diese Faktoren nach der Elastohydrodynamik-Theorie auch maßgeblichen Einfluss auf die Mindestschmierfilmdicke zwischen zwei gekrümmten Flächen. Neben den genannten Einflussfaktoren haben auch die Art des Schmierstoffes, seine Herkunft und sein Alterungszustand einen großen Einfluss auf die Grübchentragfähigkeit.

In den Normen zur Kegelradberechnung ist angegeben, dass die Methode A zu wählen ist, wenn umfassend belegte Erfahrungen oder Versuchsergebnisse zur Verfügung stehen. Ist dies nicht der Fall, kann man die Faktoren Z_L , Z_V und Z_R getrennt nach Methode B berechnen. In vielen Fällen kann auf die verkürzte Methode C zurückgegriffen werden. Die Methode B stimmt in der und in der ISO weitgehend überein.

Methode B

Die Ermittlung des Schmierstofffaktors Z_L erfolgt völlig deckungsgleich. Beide Normen merken an, dass an dieser Stelle keine Empfehlungen für die Wahl der Ölviskosität abgegeben wird und verweisen dafür auf Veröffentlichungen über Getriebeschmierungen. Neben einer grafischen Ermittlungsmethode wird auch eine Berechnungsgleichung angeboten, die in computergestützten Programmen verwendet werden kann. In ihr enthalten sind die kinematische Viskosität des Öles bei 40°C und 50°C und die Dauerfestigkeit für Flankenpressung.

Auch der Geschwindigkeitsfaktor Z_V wird in der DIN und in der ISO auf die gleiche Weise ermittelt. Abermals werden eine grafische Methode und eine Berechnungsformel angeboten. Die Formel enthält wiederum die Dauerfestigkeit für Flankenpressung und zusätzlich dazu die Umfangsgeschwindigkeit am Teilkegel in der Mitte der Zahnbreite.

Bei der Ermittlung des Rauheitsfaktors Z_R bestehen Unterschiede zwischen der ISO und der DIN. In der ISO hängen die Ermittlungsgleichungen und grafischen Methoden von der mittleren relativen Rauheit Rz₁₀ und dem Dauerfestigkeitswert für die Flankenpressung des weicheren Rades der Paarung ab. Hierbei bezeichnet R_{Z10} die gemittelte Rauhtiefe des Radpaares, bezogen auf einen Ersatzkrümmungsradius im Wälzpunkt von 10 mm. Sie hängt folglich von der mittleren Rauhtiefe des Ritzels und des Rades und vom relativen Krümmungsradius im Wälzpunkt ab. Für den relativen Krümmungsradius wird in der ISO eine Berechnungsforangeboten, die wiederum vom Achsabstand der Ersatzverzahnung, Zähnezahlverhältnis der Ersatzverzahnung, vom Eingriffswinkel der Ersatzverzahnung im Achsnormalschnitt und vom Grundkreis-Schrägungswinkel der Ersatzverzahnung abhängt. In der DIN hängen die Ermittlungsgleichungen und grafischen Methoden im Unterschied dazu von der mittleren relativen Rauheit R_{z100}, aber auch wieder vom Dauerfestigkeitswert für die Flankenpressung des weicheren Rades der Paarung, ab. R_{z100} ist in diesem Fall die mittlere relative Rauhtiefe für Zahnradpaare mit Achsabstand a = 100 mm. Diese hängt nun wieder von der mittleren Rauhtiefe des Ritzels und des Rades ab und, im Gegensatz zur ISO, vom virtuellen Achsabstand der Ersatz-Stirnverzahnung.

<u>Methode C</u>

Die Methode C ist eine vereinfachende Methode die voraussetzt, dass eine an die Betriebsbedingungen angepasste Schmierstoffviskosität gewählt wurde. Ist dies nicht der Fall müssen die Faktoren einzeln berechnet werden. Laut DIN kann Z_R nach den Werten der Methode C gewählt werden, die ISO empfiehlt alle Faktoren getrennt nach Methode B zu bestimmen. Ist die Anwendung der Methode C erlaubt, so bieten DIN und ISO für verschiedene Oberflächenbearbeitungen Werte für das Produkt aus $Z_L \cdot Z_V \cdot Z_R$ an. Diese stimmen in beiden Normen überein. Ein Unterschied besteht einzig darin, dass die ISO bei nach dem Härten geschliffenen oder hartmetallgefrästen Radpaaren nach dem Rz₁₀-Wert unterscheidet und die DIN nach dem Rz₁₀₀-Wert.

In der ISO ist im allgemeinen Teil erwähnt, dass für Radpaare aus unterschiedlich harten Werkstoffen die Faktoren für das Zahnrad mit dem weicheren Werkstoff zu bestimmen sind.

Werkstoffpaarungsfaktor Z_W (ISO, AGMA) 137,138

<u>ISO</u>

Die ISO 10300-2 gibt an, dass der Werkstoffpaarungsfaktor die Zunahme der Grübchentragfähigkeit bei Paarung eines Zahnrades aus Baustahl oder Vergütungsstahl mit einem randschichtgehärteten Ritzel mit glatten Zahnflanken berücksichtigt. Bei der in der ISO 10300-2 angebotenen Methode B hängt die Ermittlung von Z_W nur von der Brinell-Härte des weicheren Rades ab. Die Methode B beruht auf Prüfungen mit verschiedenen Werkstoffen unter Verwendung von Standard-Referenz-Prüfrädern, sowie auf Erfahrungen mit ausgeführten Getrieben. Es wird darauf verwiesen, dass der Berechnungsansatz nicht alle Einflüsse erfasst. Vielmehr ist der ermittelte Z_W -Wert als empirische Größe anzusehen. Er wird für die Dauer-, die Zeit-, und die statische Festigkeit gleich groß angesetzt. Für HB < 120 wird Z_W = 1,2 gesetzt und für HB > 470 wird Z_W = 1 gesetzt. Letzteres ist auch der Fall, wenn Ritzel und Rad die gleiche Härte besitzen.

AGMA

Laut AGMA hängt der Werkstoffpaarungsfaktor vom Übersetzungsverhältnis und der relativen Materialhärte von Ritzel und Rad ab. Die AGMA unterscheidet bei der Berechnung des Werkstoffpaarungsfaktors 3 Untergruppen: Durchgehärtete Zahnräder, oberflächengehärtete bzw. durchgehärtete Stähle und Materialien mit gleicher Härte.

Bei Zahnrädern bei denen Ritzel und Rad die gleiche Härte haben wird der Werkstoffpaarungsfaktor wie auch in der ISO gleich Eins gesetzt. Für die Gruppe der durchgehärteten Zahnräder erklärt die AGMA, dass der Effekt der Kaltverfestigung die Belastbarkeit des Zahnradpaares erhöht, wenn das Ritzel deutlich härter ist als das Rad. Die im Graphen gezeigten Werte gelten nur für das Rad, nicht für das Ritzel. Die Berechnung des Werkstoffpaarungsfaktors beinhaltet in dieser Gruppe das Übersetzungsverhältnis und das Verhältnis der minimalen Brinell-Härte zwischen Ritzel und Rad.

Für die Gruppe der oberflächengehärteten beziehungsweise durchgehärteten Stähle gibt es die Erläuterung, dass der Effekt der Kaltverfestigung entsteht wenn ein oberflächengehärte-

¹³⁷ Vgl. ISO 10300-2:2001, S. 15f

¹³⁸ Vgl. AGMA 2003-C10, S. 21f

tes Ritzel mit einem durchgehärteten Rad betrieben wird. Die Berechnung erfolgt dann unter Einfluss der Oberflächenrauheit des Ritzels und der minimalen Brinell-Härte des Rades.

Lebensdauerfaktor Z_{NT} (ISO, AGMA)

Im Gegensatz zu ISO und AGMA verfügt die DIN über keinen Lebensdauerfaktor. Die Angaben in der ISO zur Auswirkung des Lebensdauerfaktors auf andere Faktoren sind unzureichend. Die AGMA ermöglicht den Einsatz eines Lebensdauerfaktors nur für Stähle.

<u>ISO</u>

Laut ISO berücksichtigt der Lebensdauerfaktor die höhere Grübchentragfähigkeit bei begrenzter Lebensdauer. Weiters erläutert die ISO, dass der Werkstoff, die Wärmebehandlung, die Anzahl der Lastwechsel, das Schmiersystem, die Schadenskriterien, die geforderte Sanftheit des Betriebes, die Umfangsgeschwindigkeit, die Reinheit des Zahnrad-Werkstoffes, die Werkstoffdehnung und Bruchzähigkeit und die Restspannung zu den Haupteinflüssen auf den Lebensdauerfaktor gehören. Die Lastwechselzahl N_L wird definiert als die Anzahl der Eingriffsberührungen, die am untersuchten Zahn unter Last auftreten. Die ISO bietet zwei Methoden zur Ermittlung des Lebensdauerfaktors.

Die Methode A ermittelt Z_{NT} über die so genannte Wöhlerlinie. Die Wöhlerlinie gilt für ein aktuelles Radpaar. Sie berücksichtigt somit die Einflüsse der Werkstoffe der beiden Räder, der Wärmebehandlung, der betreffenden Durchmesser und Module, der betreffenden Flankenrauheit, der Umfangsgeschwindigkeit und des verwendeten Schmierstoffes. Da die Einflüssfaktoren Z_L , Z_V , Z_R , Z_W und Z_X somit in der Wöhlerlinie bereits enthalten sind, werden sie in der Berechnungsgleichung gleich 1 gesetzt.

Bei der Methode B wird die zulässige Spannung bei begrenzter Lebensdauer oder der Sicherheitsfaktor im Zeitfestigkeitsgebiet mit Hilfe des Lebensdauerfaktors Z_{NT} des Standard-Referenz-Prüfrades bestimmt. Hier werden die Faktoren Z_L, Z_V, Z_R und Z_W nicht erfasst. Was jedoch berücksichtigt wird, ist die modifizierte Wirkung dieser Faktoren auf die Zeitfestigkeit. In der ISO werden keine weiteren Angaben dazu gemacht in welcher Art diese Berücksichtigung erfolgt. Für die Ermittlung von Z_{NT} nach Methode B werden eine Tabelle und ein Graph

angeboten. Soll Z_{NT} für die Zeitfestigkeit ermittelt werden, so ist eine Interpolation zwischen den Werten für die Dauerfestigkeit und für die statische Festigkeit durchzuführen. 139

<u>AGMA</u>

Die AGMA gibt an, dass der Lebensdauerfaktor dazu dient, die zulässige Spannung an die notwendige Anzahl an Arbeitszyklen während der Entwurfslebensdauer anzugleichen. Wie hoch die Anzahl an zu erwartenden Arbeitszyklen ist, kann man am besten auf Basis von Erfahrungswerten ermitteln. Ist dies nicht möglich, sollte man bei der Wahl sehr vorsichtig vorgehen. Die in der AGMA gegebene Kurve für die Wahl von Z_{NT} gilt nicht für Spannungsniveaus oberhalb derjenigen, die für 10³ Arbeitszyklen zulässig sind. Spannungen in diesem Bereich können die Elastizitätsgrenze des Zahnes bezüglich der Biegung und der Flächenpressung übersteigen. Je nach Material und Belastung kann schon ein einzelner Lastzyklus oberhalb der 10³-Zyklengrenze zu einer plastischen Verformung führen. Die Fläche unter der Kurve der 10³-Zyklengrenze stellt eine klassische Ermüdung auf Grund von wiederkehrenden Spannungen dar.

Die AGMA bietet zur Auswahl des Lebensdauerfaktors eine grafische Methode. Im Gegensatz zur ISO ist der Knick in der Geraden in der AGMA bei 10⁴ Arbeitszyklen angesetzt. In der ISO findet sich dieser Knick bei 10⁵ Arbeitszyklen. In der AGMA ist Z_{NT} konstant 2, wenn die Anzahl der Arbeitszyklen unter 10⁴ liegt. Zur Kurve ist auch eine Berechnungsformel gegeben, um eine Kalkulation mit dem Computer zu ermöglichen. Die gegebene Kurve basiert auf ausführlichen experimentellen Tests mit Kegelrädern aus einsatzgehärteten Stählen und einsatzgehärteten Stahlwalzen, die genutzt werden, um die Pitting-Ermüdungslebensdauer zu simulieren. Bei diesen Tests sind sowohl die Walzen, als auch die Zähne des Kegelrades mit einer Längsballigkeit der Kontaktflächen ausgeführt. Da die Flächenpressung für das Rad und das Ritzel gleich groß sein sollte, hängt der Lebensdauerfaktor von der geforderten Lebensdauer für das Ritzel ab, sofern beide aus dem gleichen Material und von gleicher Qualität sind. Für den Fall, dass die Belastung nicht konstant ist, bietet die AGMA im Anhang eine Berechnungsmöglichkeit für die äquivalente Lebensdauer. Der Lebensdauerfaktor kann in der AGMA nur für karbonisierte Stähle verwendet werden. 140

 $^{^{139}}$ Vgl. ISO 10300-2:2001, S. 16ff 140 Vgl. AGMA 2003-C10, S. 19

Zuverlässigkeitsfaktor Z_z (AGMA)

Die DIN gibt an, dass die Werkstoffwerte immer für eine Versagenswahrscheinlichkeit von 1% gelten. Die ISO macht keine Angaben dazu. Die AGMA bietet für Stähle die Möglichkeit auch andere Versagenswahrscheinlichkeiten zu berücksichtigen.

Der Zuverlässigkeitsfaktor berücksichtigt die Normalverteilung von Fehlern, die bei Materialtests gefunden wurden. Die zulässigen Spannungen, die in der Norm gegeben sind gelten für eine statistische Wahrscheinlichkeit von 1 Fehler in 100 Fällen bei gleichem Lebensdauerfaktor. Ist von einer anderen Versagenswahrscheinlichkeit auszugehen, kann dies durch die passende Wahl eines der angebotenen Zuverlässigkeitsfaktoren berücksichtigt werden. Die Tabelle zur Auswahl eines Zuverlässigkeitsfaktors gilt für Zahnräder aus Stahl. Laut AGMA ist die Datenlage zur Zuverlässigkeit anderer Materialien zum momentanen Zeitpunkt nicht ausreichend, um Zuverlässigkeitsfaktoren für diese anbieten zu können.¹⁴¹

¹⁴¹ Vgl. AGMA 2003-C10, S. 23

2.3.5 Faktoren der Zahnfußtragfähigkeit

Bei der Ermittlung der Faktoren für die Zahnfußtragfähigkeit gibt es bei der ISO eine Besonderheit, denn sie bietet eine Methode B1 und eine Methode B2. Die folgenden Faktoren beziehen sich auf die Methode B1. Die Methode B2 wird am Ende dieses Abschnitts behandelt.

	Faktor	ISO 10300-2	DIN 3991-2	AGMA 2003-C10
Y _{ST}	Spannungskorrekturfaktor	Х	Х	
Y _{Fa}	Formfaktor	Х	Х	
Y _{Sa}	Spannungskorrekturfaktor	Х	Х	
Y _{FS}	Kopffaktor		Х	
Υε	Überdeckungsfaktor	Х	Х	
Y _K	Kegelradfaktor	Х	Х	
Y _{LS}	Lastanteilfaktor	Х		
Υ _β	Schrägenfaktor		Х	Х
$Y_{\delta relT}$	Relative Stützziffer	Х	Х	
Y _{RrelT}	Relativer Oberflächenfaktor	Х	Х	
Y _X	Größenfaktor	Х	Х	Х
Y _{NT}	Lebensdauerfaktor	Х		Х
Y _Z	Zuverlässigkeitsfaktor			Х
Y _P	Kombinierter Geometrie- faktor	X (B2)		
Y _A	Kegelrad-Anpassungsfaktor	X (B2)		
YJ	Geometriefaktor	X (B2)		Х

Tabelle 20 - Faktoren der Zahnfußtragfähigkeit

Spannungskorrekturfaktor Y_{ST} (ISO, DIN)

In der DIN und in der ISO wird mit Y_{ST} der Spannungskorrekturfaktor für die Abmessungen des Standardprüfrades bezeichnet. Er wird in DIN und ISO immer gleich 2 gesetzt. 142,143

Formfaktor Y_{Fa} (ISO, DIN)

Die Berechnung erfolgt in DIN und ISO prizipiell gleich. In der ISO geht die Geometrie teilweise über die Geometrie des Werkzeugs und nicht direkt über jene des Kegelrads ein.

¹⁴² Vgl. DIN 3991-3:1988, S. 3

¹⁴³ Vgl. ISO 10300-3:2001, S. 9

In der DIN und in der ISO wird übereinstimmend erläutert, dass der Formfaktor Y_{Fa} die Einflüsse der Zahnform auf die Biege-Nennspannung bei Kraftangriff am Zahnkopf erfasst. Er wird für Ritzel und Rad getrennt bestimmt. In der ISO ist angegeben, dass Kegelräder im Allgemeinen oktiodförmige Zähne aufweisen. Die Abweichungen vom Evolventenprofil sind allerdings so gering, dass sie bei der Berechnung des Formfaktors vernachlässigt werden. In der DIN und in der ISO wird als Berechnungsquerschnitt der Abstand zwischen den Berührungspunkten der 30°-Tangenten an den Fußrundungen des Zahnprofils des Ersatz-Zylinderrades herangezogen. Die Lage des Berechnungsquerschnitts ist in Abbildung 16 zu sehen.

In der ISO ist angegeben, dass der Formfaktor für die Nenn-Verzahnung ohne Toleranzen bestimmt wird. Die Verminderung der Zahndicke ist nur dann zu berücksichtigen, wenn das äußere Zahndickenabmaß $> 0.05 \cdot m_{mn}$ ist. Die DIN gibt an, dass von der Nenn-Zahnform mit dem Profilverschiebungsfaktor x_{hm} und dem Zahndickenänderungsfaktor x_{sm} ausgegangen wird. In beiden Normen wird bei der Bestimmung des Formfaktors zwischen Verzahnungen, die im Wälzverfahren erzeugt werden, und solchen, die mit Formschneideverfahren erzeugt werden, unterschieden. Die Berechnung des Formfaktors für Verzahnungen, die im Wälzverfahren hergestellt wurden, erfolgt in der ISO und in der DIN fast deckungsgleich und unterscheidet sich durch Details. So geben beide Normen als Voraussetzung für die Anwendung der gegeben Formel an, dass der Berührungspunkt der 30°-Tangente auf der Zahnfußkurve liegen muss, die von der Werkzeug-Kopfabrundung erzeugt wird. Außerdem muss das Werkzeug mit einer endlichen Kopfabrundung ausgeführt sein. Die DIN gibt zusätzlich dazu an, dass die Formel nur für Profilüberdeckungen ε_{να} ≤ 2 gültig ist. Die Ermittlungsformel für Y_{Fa} stimmt in der DIN und der ISO überein und enthält verschiedene geometrische Größen, unter anderem die Zahnfußsehne s_{Fn} und den Biegehebelsarm h_{Fa} . Die Lage beider Größen kann Abbildung 16 entnommen werden. 144,145

¹⁴⁴ Vgl. ISO 10300-3:2001, S. 9ff

¹⁴⁵ Vgl. DIN 3991-3:1988, S. 3ff

Die Ermittlung dieser beiden Faktoren unterscheidet sich in DIN und ISO geringfügig. So rechnet die ISO mit den Größen h_{a0} – Werkzeug Zahnkopfhöhe und ρ_{a0} – Werkzeug-Kopfrundungsradius, während die DIN die Größen h_{fP} – Fußhöhe des Bezugsprofils der Verzahnung und ρ_{fP} – Fußrundungsradius am Bezugsprofil der Verzahnung nutzt. In der Formel für die Ermittlung des Biegehebelarms kommt es zu weiteren Unterschieden bei der Berücksichtigung der Geometrie. Für Verzahnungen, die im Formschneideverfahren erzeugt werden, stimmen die Formeln in der DIN und der ISO bis auf die oben genannten Faktoren überein. Tellerräder werden teilweise im Formschneideverfahren hergestellt. Das Profil der Zahndicke des Werkrades ist dann identisch mit dem Werkzeugprofil. Aus diesem Grund

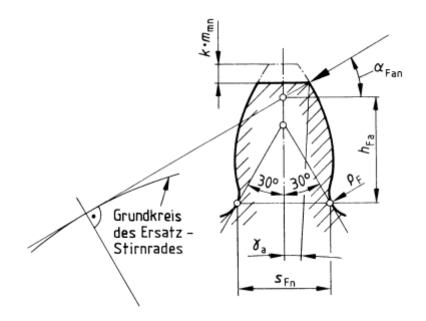


Abbildung 16 – Zahnprofil des Ersatz-Zylinderrades (Quelle: ISO 10300-3:2001, S.10)

kann der Zahnformfaktor direkt aus dem Werkzeugprofil bestimmt werden. Beide Normen bieten auch eine grafische Ermittlungsmethode für den Formfaktor. 146,147

Spannungskorrekturfaktor Y_{Sa} (ISO, DIN)

Die Berechnung erfolgt in DIN und ISO komplett gleich.

Die DIN und die ISO verwenden den Spannungskorrekturfaktor, um die Biege-Nennspannung bei Kraftangriff am Zahnkopf auf die örtliche Zahnfußspannung umzurechnen. Der Spannungskorrekturfaktor erfasst also die spannungserhöhende Wirkung der Fußrundung, die

¹⁴⁶ Vgl. ISO 10300-3:2001, S. 9ff

¹⁴⁷ Vgl. DIN 3991-3:1988, S. 3ff

auch als Kerbe verstanden werden kann. Er berücksichtigt außerdem, dass am Zahnfuß neben der Biegespannung auch andere Spannungskomponenten auftreten. Die Ermittlungsformel für den Faktor stimmt in ISO und DIN völlig überein. Die DIN gibt außerdem an, dass bei Schräg- und Bogenverzahnungen von der Ersatz-Geradverzahnung im Normalschnitt auszugehen ist. Beide Normen verweisen für weitere Hinweise auf ihre jeweiligen Normen zur Zahnfuß-Tragfähigkeitsberechnung von Stirnrädern. Die gegebene Berechnungsformel für den Spannungskorrekturfaktor enthält Abhängigkeiten vom Kerbparameter q_s und einem Faktor La, der als Division der Zahnfußdickensehne im Berechnungsquerschnitt mit dem Biegehebelarm angegeben ist. Der Gültigkeitsbereich der Ermittlungsformel für den Spannungskorrekturfaktor wird mit $1 \le q_s < 8$ angegeben. In beiden Normen wird auch eine grafische Methode zur Bestimmung angeboten. Diese Werte gelten für ein bestimmtes angegebenes Bezugsprofil. Abgelesen wird mit Hilfe der virtuellen Zähnezahl und mit dem Profilverschiebungsfaktor in der Mitte der Zahnbreite. Die DIN gibt an, dass für formgeschnittene Tellerräder die virtuelle Zähnezahl mit unendlich angenommen wird. Die ISO gibt außerdem an, dass der Einfluss von Schleifkerben der Norm zur Zahnfuß-Tragfähigkeit für Stirnräder zu entnehmen ist. 148,149

Kopffaktor Y_{FS} (DIN)

Die ISO bietet zwar die gleichen Ermittlungsdiagramme für die Auswahl des Kopffaktors wie die DIN, gibt aber im Gegensatz zu dieser keinerlei Auskunft darüber was der Faktor bedeutet oder wie er eingesetzt werden kann.

In der DIN wird zusätzlich zum Formfaktor und zum Spannungskorrekturfaktor ein Kopffaktor angegeben, der das Produkt aus den beiden vorher genannten darstellt. Er dient der Berücksichtigung des Einflusses der Zahngeometrie auf die wirkliche Zahnfußspannung bei Kraftangriff am Zahnkopf. Es wird darauf verwiesen, dass bei höhenballig ausgeführten Verzahnungen der tatsächliche Biegehebelarm geringfügig geringer ist. Die Berechnung liegt also auf der sicheren Seite. Da die Gleichungen zur Bestimmung des Formfaktors und des Spannungskorrekturfaktors ausschließlich von den Bestimmungsgrößen des Zahnprofils abhängen, kann der Kopffaktor für jedes Bezugsprofil in Abhängigkeit von der Zähnezahl im Normalschnitt und der Profilverschiebung berechnet werden. In der DIN werden Diagramme für

¹⁴⁸ Vgl. ISO 10300-3:2001, S. 17f

¹⁴⁹ Vgl. DIN 3991-3:1988, S. 5ff

die Bestimmung von Y_{FS} angeboten. Diese Diagramme können für eine schnelle Spannungsberechnung herangezogen werden. Da der Spannungskorrekturfaktor für die Ermittlung der Stützziffer Y_{δ} benötigt wird, wird in der Norm die getrennte Ermittlung des Formfaktors und des Spannungskorrekturfaktors beibehalten. Die ISO bietet zwar keine Erklärung zum Kopffaktor, bietet aber genauso wie die DIN Diagramme aus denen er abgelesen werden kann. 150,151

Überdeckungsfaktor Y_{ϵ} (ISO, DIN)

Die ISO unterscheidet bei der Berechnung in verschiedene Bereiche für die der Sprungüberdeckung der Ersatzverzahnung im Normalschnitt $\epsilon_{\nu\beta}$. Die DIN nutzt immer jene Formel, die in der ISO für $\epsilon_{\nu\beta}$ = 0 vorgesehen ist. Die graphische und die rechnerische Ermittlungsmethode in der DIN weisen große Unterschiede auf.

Der Überdeckungsfaktor ist dafür zuständig, den Lastangriff am Zahnkopf auf die maßgebliche Lastangriffsstelle umzurechnen. Der Überdeckungsfaktor Y_{ϵ} wird außerdem, sowohl in ISO 10300-1 als auch in DIN 3991-1, für die Ermittlung des Lastaufteilungsfaktors $K_{F\alpha}$ genutzt. Die DIN bietet im Gegensatz zur ISO zusätzlich zu den Berechnungsformeln auch eine grafische Methode zur Ermittlung des Überdeckungsfaktors an. Die grafische Bestimmung erfolgt über die Profilüberdeckung $\epsilon_{v\alpha}$ und den Schrägungswinkel β_m . Die Formel für die rechnerische Bestimmung hängt in der DIN nur von der Profilüberdeckung der Ersatzstirnradverzahnung im Normalschnitt ab. Für $\epsilon_{v\alpha n} \geq 2$ wird $Y_{\epsilon} = 0,625$ gesetzt. In der ISO wird bei der Ermittlung des Überdeckungsfaktors in 3 Bereiche unterschieden, die durch den Wert der Sprungüberdeckung der Ersatzverzahnung im Normalschnitt $\epsilon_{v\beta}$ definiert werden. Ist $\epsilon_{v\beta} > 1$ wird $Y_{\epsilon} = 0,625$ gesetzt. Für $\epsilon_{v\beta} = 0$ und den Bereich $0 < \epsilon_{v\beta} \leq 1$ werden jeweils eigene Ermittlungsformeln geboten, die Werte für Y_{ϵ} liefern, die größer oder gleich 0,625 sind. 152,153

Die in der DIN gegebene Formel für den Überdeckungsfaktor Y_{ϵ} hängt, im Gegensatz zur grafischen Methode, nicht von β ab. Die Werte, die sich bei einer grafischen Ermittlung ergeben würden, unterscheiden sich deutlich von jenen der rechnerischen Methode. Dadurch hat die

¹⁵⁰ Vgl. DIN 3991-3:1988, S. 3ff

¹⁵¹ Vgl. ISO 10300-3:2001, S. 14ff

¹⁵² Vgl. ISO 10300-3:2001, S. 18

¹⁵³ Vgl. DIN 3991-3:1988, S. 11

Entscheidung, ob die grafische oder rechnerische Methode genutzt wird, vor allem für Schrägverzahnungen mit großem Schrägungswinkel weitreichende Folgen auf das Ergebnis.

Kegelradfaktor Y_K (ISO,DIN)

Der Kegelradfaktor hat in der DIN den Wert 1, in der ISO gibt es eine Berechnungsformel.

Der Kegelradfaktor dient der Berücksichtigung der Unterschiede zwischen Kegelrad- und Zylinderradverzahnungen. Konkret bedeutet das kleinere Werte der projizierten Länge der mittleren Berührungslinie wegen der geneigten Berührungslinie. Die Ermittlungsformel enthält deshalb die projizierte Länge der mittleren Berührungslinie und die Zahnbreite als Einflussfaktoren. In der DIN wird der Kegelradfaktor Y_K immer gleich 1 gesetzt. 154,155

Lastanteilfaktor Y_{LS} (ISO)

In der ISO 10300-3 findet sich der Hinweis, dass der Lastanteilfaktor für die Zahnfußtragfähigkeit durch Quadrieren des Lastanteilfaktors für die Grübchentragfähigkeit Z_{LS} ermittelt wird. Für weitere Grundlagen wird auf ISO 10300-2 verwiesen. ¹⁵⁶

Schrägenfaktor Y_β (DIN, AGMA)

In der DIN wird für die Bestimmung des Schrägenfaktors eine grafische und eine rechnerische Methode angeboten. Die grafische Methode erlaubt die Bestimmung mithilfe der Sprungüberdeckung $\epsilon_{\nu\alpha}$ und des Schrägungswinkels β , die rechnerische Formel stellt die gezeigten Linien mathematisch dar. ¹⁵⁷

Die AGMA gibt für den Schrägenfaktor eine Berechnungsformel an, die vom Schrägungswinkel β_m , dem Flugkreisradius des Messerkopfes und der Teilkegellänge in der Mitte abhängt. Für errechnete Werte über 1,15 wird der Faktor 1,15 gesetzt, für solche unter 1 wird der Faktor 1 gesetzt. Die AGMA gibt an, dass für geradverzahnte Zahnräder, Zerol Kegelräder und "skew bevel gears" der Faktor gleich 1 gesetzt werden soll. 158

¹⁵⁴ Vgl. ISO 10300-3:2001, S. 19

¹⁵⁵ Vgl. DIN 3991-3:1988, S. 3

¹⁵⁶ Vgl. ISO 10300-3:2001, S. 19

¹⁵⁷ Vgl. DIN 3991-3:1988, S. 11

¹⁵⁸ Vgl. AGMA 2003-C10, S. 17f

Relative Stützziffer für die Dauerfestigkeit $Y_{\delta relT}$ (ISO, DIN) 159,160

Die Ermittlung der relativen Stützziffer erfolgt in der DIN und in der ISO deckungsgleich. Es ist angegeben, dass die dynamische Stützziffer Y_{δ} angibt, um welchen Betrag die theoretische Spannungsspitze bei Auftreten eines Dauerbruchs über der Dauerfestigkeit liegt. Die dynamische Stützziffer ist eine Funktion des bezogenen Spannungsgefälles und des Werkstoffes. Die Bewertung der Stützziffer erfolgt auf Basis der an ungekerbten und gekerbten Proben oder der an Prüfrädern ermittelten Festigkeit. Liegen keine genauen Versuchsergebnisse vor, welche die Anwendbarkeit von Methode A ermöglichen, so können die in den Normen angebotenen Verfahren verwendet werden. Dafür wird jeweils eine Methode B1 und eine Methode B2 angeboten.

Methode B1

Die Methode B1 ermittelt die relative Stützziffer $Y_{\delta \, rel \, T}$ über das Verhältnis der Stützziffer des zu berechnenden Zahnrades Y_{δ} zu jener des Standardprüfrades $Y_{\delta T}$. Es wird jeweils ein Diagramm für die grafische Bestimmung und eine Berechnungsformel angeboten. Die Wahl des Wertes im Diagramm erfolgt mit Hilfe des Kerbparameters und des Werkstoffes. Die rechnerische Ermittlung erfolgt mit der Gleitschichtbreite, welche abhängig vom Werkstoff einer Tabelle entnommen wird, und dem bezogenen Spannungsgefälle im Kerbgrund. Die Ermittlungsformel für das bezogene Spannungsgefälle im Kerbgrund enthält den Kerbparameter und gilt für Modul $m_{mn} = 5$ mm. Der Größeneinfluss wird bei dieser Berechnungsmethode durch den später ermittelten Größenfaktor Y_X berücksichtigt. In der ISO findet sich im Diagramm ein kleiner Fehler, da die Zugfestigkeit für den härteren Grauguss mit 330 N/mm² angegeben wird, obwohl diese im Diagramm und in der DIN in Diagramm und Tabelle mit 300 N/mm² angegeben wird.

Relativer Oberflächenfaktor Y_{RrelT} (ISO, DIN) 161,162

In DIN und ISO wird übereinstimmend angegeben, dass der relative Oberflächenfaktor die Abhängigkeit der Zahnfuß-Dauerfestigkeit von der Oberflächenbeschaffenheit im Zahngrund, bezogen auf die Verhältnisse am Standardprüfrad mit der gemittelten Rauhtiefe R_z = 10 μ m,

 $^{^{159}}$ Vgl. ISO 10300-3:2001, S. 23ff

¹⁶⁰ Vgl. DIN 3991-3:1988, S. 11f

¹⁶¹ Vgl. ISO 10300-3:2001, S. 25f

¹⁶² Vgl. DIN 3991-3:1988, S. 12ff

berücksichtigt. Die in den Normen angegebenen Methoden sind zu nutzen, wenn keine genaueren Analysen aller Einflüsse zur Verfügung stehen. Beide Normen bieten eine Berechnung nach Methode B1 und B2. Die DIN verweist für eine Berechnung nach den Methoden C und D auf die DIN 3990-3 für die Tragfähigkeitsberechnung von Stirnrädern. In der ISO ist außerdem die Warnung angegeben, dass die beschriebenen Methoden nur angewendet werden dürfen, wenn keine Kratzer oder ähnliche Defekte tiefer als $2 \cdot R_Z$ an der Oberfläche vorhanden sind.

Methode B1

Zur Methode B1 ist in der ISO angegeben, dass die gegebenen Werte durch Untersuchungen von Proben bestimmt wurden. Die Methode B1 ist in der DIN und in der ISO deckungsgleich. Für Methode B1 besteht die Möglichkeit sowohl der grafischen Bestimmung, als auch die der Ermittlung des Faktors anhand von Berechnungsgleichungen. Die Auswahl des relativen Oberflächenfaktors mit der grafischen Methode erfolgt mittels des Werkstoffs und der Rauhtiefe. Bei der Ermittlung mit Hilfe der Berechnungsformeln wird in die Bereiche $R_Z < 1~\mu m$ und $1~\mu m \le R_Z \le 40~\mu m$ unterschieden. In diesem jeweiligen Bereich wählt man nun den passenden Werkstoff und erhält dadurch entweder schon einen festen Wert für den relativen Oberflächenfaktor oder eine von der Rauhtiefe abhängige Berechnungsformel.

Methode B2

Für Methode B2 ist in DIN und ISO angegeben, dass für Verzahnungen mit einer Rauhtiefe im Zahngrund von $R_Z \le 16~\mu m$ der relative Oberflächenfaktor gleich 1 angenommen werden kann. In der ISO ist angegeben, dass die Minderung der Dauerfestigkeit im Bereich $10~\mu m < R_Z \le 16~\mu m$ gering ausfällt. Ist $R_Z < 10~\mu m$ liegt man mit dem relativen Oberflächenfaktor von 1 auf der sicheren Seite. In der DIN findet sich hingegen der Hinweis, dass man für $R_Z < 10~\mu m$ mit einem relativen Oberflächenfaktor von 0,9 auf der sicheren Seite liegt. Dieser Wert wird in der DIN für Verzahnungen mit einer Rauhtiefe im Zahngrund von $R_Z > 16~R_Z < 10~\mu m$ empfohlen.

Größenfaktor Y_X (ISO, DIN, AGMA)

Die Werkstoffkategorien sind in der DIN deutlich besser erläutert als in der ISO. In der ISO können sich ungenaue Zuordnungen ergeben.

Laut ISO berücksichtigt der Größenfaktor die abnehmende Festigkeit mit zunehmender Baugröße. Zu den Haupteinflüssen zählt man die Zahngröße, die Raddurchmesser, das Verhältnis der Zahngröße zum Raddurchmesser, den Bereich des Lasttragbildes, den Werkstoff, die Wärmebehandlung und das Verhältnis der Einsatzhärte-Tiefe zur Zahndicke. Die ISO liefert eine näherungsweise Methode zur Ermittlung des Größenfaktors in Abhängigkeit vom Normalmodul in der Mitte der Zahnbreite m_{mn} und dem Werkstoff. Das gegebene Diagramm und die Berechnungsformeln, die auf den gegebenen Kurven basieren, stimmen in der ISO und in der DIN überein. Es wird in drei Werkstoffkategorien unterschieden. Für jede dieser Kategorien ist jeweils ein oberer und unterer Grenzwert für den Größenfaktor gegeben. Die Werte dazwischen beruhen auf einer linearen Verbindungslinie dieser Grenzwerte. Der Größenfaktor nimmt immer Werte ≤ 1 an.

In der AGMA ist der Text zur Erklärung der Grundlagen für Z_X und Y_x gleich. Für die theoretischen Erläuterungen siehe Kapitel 2.3.4. Für die Ermittlung des Größenfaktors ist in der AGMA eine vom äußeren Modul im Achsnormalschnitt abhängige Berechnungsformel gegeben, die für einen Bereich von $1,6 \le m_{\rm et} \le 50$ gültig ist. Für Zahnräder mit einem Modul < 1,6 wird der Größenfaktor auf 0,5 gesetzt. 163,164,165

Lebensdauerfaktor Y_{NT} (ISO, AGMA) ^{166,167}

Im Gegensatz zu ISO und AGMA verfügt die DIN über keinen Lebensdauerfaktor. Die Angaben in der ISO zur Auswirkung des Lebensdauerfaktors auf andere Faktoren sind unzureichend. Die AGMA ermöglicht den Einsatz eines Lebensdauerfaktors nur für Stähle.

<u>ISO</u>

Laut ISO berücksichtigt der Lebensdauerfaktor die höhere Zahnfuß-Tragfähigkeit bei begrenzter Lebensdauer gegenüber der Dauerfestigkeit bei 3 x 10⁶ Lastwechseln. Die Haupteinflussfaktoren stimmen in vielen Punkten mit den Haupteinflüssen des Lebensdauerfaktors für Grübchenfestigkeit überein. So geben ISO 10300-2 und ISO 10300-3 übereinstimmend an, dass der Werkstoff und die Wärmebehandlung, die Anzahl der Lastwechsel, die geforder-

¹⁶³ Vgl. ISO 10300-3:2001, S. 27

¹⁶⁴ Vgl. DIN 3991-3:1988, S. 14f

¹⁶⁵ Vgl. AGMA 2003-C10, S. 15f

¹⁶⁶ Vgl. ISO 10300-3:2001, S. 28f

¹⁶⁷ Vgl. AGMA 2003-C10, S. 19ff

te Sanftheit des Betriebes, die Reinheit der Zahnrad-Werkstoffe, die Werkstoffzähigkeit und Bruchfestigkeit und die Restspannungen, zu den Haupteinflussfaktoren zählen. In einigen Punkten kommt es zu Unterschieden. In ISO 10300-2 ist von Schadenskriterien die Rede, in ISO 10300-3 hingegen von Schadensmerkmalen. Außerdem fehlen in ISO 10300-3 das Schmiersystem und die Umfangsgeschwindigkeit als Einflussfaktoren, welche in ISO 10300-2 angeführt sind. Wie schon in ISO 10300-2 wird die Lastwechselzahl N_T als Anzahl der Eingriffsberührungen des analysierten Zahnes unter Last definiert. Für die Dauerfestigkeitswerte ist angegeben, dass sie für 3 x 10^6 Lastwechsel und 99 % Überlebenswahrscheinlichkeit gelten. Außerdem ist vermerkt, dass ein Wert von $Y_{NT} = 1$ für über 3×10^6 Lastwechsel verwendet werden darf, wenn er durch die Erfahrung gerechtfertigt ist. Weiters wird darauf hingewiesen, dass auf optimale Voraussetzungen für Werkstoffqualität und Herstellung und einen angemessenen Sicherheitsfaktor zu achten ist. Die ISO bietet auch hier eine Methode A und eine Methode B zur Ermittlung.

Methode A der ISO

Die Methode A beruht auf der Wöhlerlinie, die von genauen Nachbildungen des aktuellen Zahnrades hergeleitet ist. Die Faktoren $Y_{\delta \, rel \, T}$, $Y_{R \, rel \, T}$ und Y_X sind bereits in der Wöhler-Schadenslinie enthalten und werden deshalb in der Berechnung der zulässigen Spannung gleich 1 gesetzt. Bei der Methode B wird die zulässige Spannung für die begrenzte Lebensdauer oder die Zuverlässigkeit mit Hilfe des Lebensdauerfaktors Y_{NT} des Standard-Referenz-Prüfrades bestimmt. Hierbei sind die Faktoren $Y_{\delta \, rel \, T}$, $Y_{R \, rel \, T}$ und Y_X nicht eingeschlossen und dementsprechend müssen die modifizierten Wirkungen dieser Faktoren auf die begrenzte Lebensdauer beachtet werden. Auch hier erklärt die ISO nicht in welcher Form die Werte zu modifizieren sind.

Methode B der ISO

Für die Methode B wird sowohl eine grafische, als auch eine rechnerische Ermittlung angeboten. Die grafische Methode liefert ein Diagramm, in welchem die Werte für Y_{NT} für die statische Festigkeit und die Dauerfestigkeit, abhängig von Werkstoff und Wärmebehandlung abgebildet sind. Für die rechnerische Bestimmung ist eine Tabelle gegeben, aus welcher der Lebensdauerfaktor für statische Festigkeit und Dauerfestigkeit entnommen werden kann. Möchte man Werte für Zeitfestigkeit ermitteln, so ist eine Interpolation zwischen den Werten für die Dauerfestigkeit und jenen für die statische Festigkeit durchzuführen.

<u>AGMA</u>

Die AGMA gibt für die Ermittlung des Lebensdauerfaktors ein Diagramm an, welches für karbonisierte Stähle gilt. Für die dargestellte Kurve ist auch eine Funktion gegeben, welche eine computergestützte Ermittlung ermöglicht. Nach Angabe der AGMA entstand diese Kurve durch ausgiebige Tests. Der Lebensdauerfaktor für das Rad und das Ritzel ist unterschiedlich. Im rechten Bereich der Kurve befindet sich ein grau markierter Bereich. Dieser repräsentiert den Einfluss von Faktoren wie zum Beispiel die Teilkreisgeschwindigkeiten, Materialsauberkeit, Zähigkeit und Bruchzähigkeit. Der obere Rand des eingeschlossenen Bereichs ist für allgemeine Anwendungen vorgesehen, der untere wird meist für kritische Bedingungen genutzt. Laut AGMA kommt es bei hochbelasteten Zahnrädern selten zu lokalem Fließen, da diese Zahnräder meist aus karbonisierten Stählen hergestellt werden. Werden allerdings Materialen benutzt, die weniger hart sind, so muss bei Belastungsspitzen auf die Fließgrenze geachtet werden.

Zuverlässigkeitsfaktor Y_z (AGMA)

Die DIN gibt an, dass die Werkstoffwerte immer für eine Versagenswahrscheinlichkeit von 1% gelten. Die ISO macht keine Angaben dazu. Die AGMA bietet für Stähle die Möglichkeit auch andere Versagenswahrscheinlichkeiten zu berücksichtigen.

Für den Zuverlässigkeitsfaktor der Zahnfußtragfähigkeit gelten dieselben Erklärungen wie für den Zuverlässigkeitsfaktor der Grübchentragfähigkeit. Für Z_Z und Y_Z wird jeweils eine eigene Auswahltabelle angeboten. Für den Zuverlässigkeitsfaktor der Grübchentragfähigkeit ist in der AGMA angegeben, dass Zahnbruch manchmal als größere Gefahr angesehen wird als Grübchenbildung. Ist diesem Fall ist für Biegung ein größerer Wert für Y_Z zu wählen. Die AGMA gibt nicht an wie genau die Auswahl zu erfolgen hat. 168

Methode B2

Die Methode B2, die von der ISO 10300-3 angeboten wird, stellt eine Vereinfachung der Methode B1 dar.

Die Faktoren Y_{Fa} , Y_{Sa} , Y_{E} , Y_{LS} und Y_{K} werden dabei durch den kombinierten Geometriefaktor Y_{P} ersetzt. Laut ISO liegt der Hauptunterschied zwischen den Methoden B1 und B2 darin, dass

¹⁶⁸ Vgl. AGMA 2003-C10, S. 23

die Methode B2 nicht nur Biegespannungen, sondern auch Druckspannungen enthält. Dadurch kann der Zahnformfaktor nach Methode B2 als der Unterschied zwischen dem Biegespannungsfaktor Y_B und dem Druckspannungsfaktor Y_C gesehen werden. Außerdem wird angegeben, dass ein weiterer Unterschied zwischen den Methoden im Zugang zum Spannungskorrekturfaktor besteht. Die ISO gibt eine Näherungsformel zur Umrechnung zwischen dem Spannungskorrekturfaktor Ysa der Methode B1 und dem Spannungskonzentrationsund -Korrekturfaktor Yf der Methode B2 an. Außer dem Ersatz der vorher erwähnten Faktoren erfolgt die Berechnung nach Methode B2 gleich. Das heißt, der relative Oberflächenfaktor, die relative Stützziffer für die Dauerfestigkeit, der Größenfaktor und der Lebensdauerfaktor werden auf die gleiche Weise ermittelt wie bisher. 169

Kombinierter Geometriefaktor für Biegebeanspruchung Y_P (ISO)

Der Geometriefaktor Y_P wird über die Formel $Y_P = \frac{Y_A}{Y_J} \cdot \frac{m_{mt} \cdot m_{mn}}{m_{et}^2}$ berechnet. Das heißt, die Formel enthält den mittleren Modul im Achsnormalschnitt m_{mt}, den mittleren Modul im Flankennormalschnitt m_{mn}, den äußeren Modul im Achsnormalschnitt m_{et}, den Kegelrad-Anpassungsfaktor Y_A und den Geometriefaktor für Biegebeanspruchung Y_J. Y_A und Y_P werden im folgenden Abschnitt näher beleuchtet. 170

Kegelrad-Anpassungsfaktor Y_A (ISO)

Die Erklärung und die Ermittlung des Kegelrad-Anpassungsfaktors findet sich im Anhang der ISO 10300-3. Hier erläutert die ISO, dass es zwei Möglichkeiten für die Anwendung des Kegelrad-Anpassungsfaktors gibt. Mit Hilfe des Faktors ist es möglich, die Ergebnisse der Methode B2 an die Ergebnisse der Methode B1 anzupassen. Diese Anpassung ist nötig, damit die Biegenenn-Dauerfestigkeiten der Prüfräder nach ISO 6336-5 verwendet werden können. Die ISO weist darauf hin, dass der Anwender der Methode B2 die benutzte Herleitung von YA angeben soll. Die ISO gibt einen vorläufigen Wert für YA an, der für eine Beispielverzahnung ermittelt wurde. Außerdem wird eine komplexere Gleichung für die Ermittlung angeboten. Diese Formel basiert darauf, dass der Zahnformfaktor nach Methode B2 als der Unterschied

 $^{^{169}}$ Vgl. ISO 10300-3:2001, S. 6 und S. 30 170 Vgl. ISO 10300-3:2001, S. 8

zwischen dem Biegespannungsfaktor und dem Druckspannungsfaktor angesehen werden kann. 171

Geometriefaktor für Biegebeanspruchung Y_J (ISO, AGMA) ^{172,173}

In der Methode B2 der ISO wird der Geometriefaktor für die Biegebeanspruchung genutzt, um die Form des Zahnes, die Lage, in der die am meisten schädigende Kraft angreift, die Spannungskonzentration infolge der geometrischen Form der Fußrundung, die Kraftaufteilung zwischen benachbarten Zahnpaaren, die wirksame Zahnbreite infolge Breitenballigkeit der Zähne und die Stützwirkung, wenn die Zahnbreite eines der Räder des Paares größer als der des anderen ist, zu bewerten. Hierbei werden sowohl die tangentiale als auf die radiale Komponente der Zahnkraft erfasst.

Die Formel zur Berechnung des Geometriefaktors für Biegebeanspruchung enthält unter anderem den Kegelradfaktor, der den Spannungskonzentrationsfaktor von Ritzel bzw. Rad erfasst. Dieser unterscheidet sich vom Kegelradfaktor, der in der Methode B1 ermittelt wird. In der Methode B2 wird der Kegelradfaktor als Division der Kombination des Zahnformfaktors $Y_{1,2}$ und des Spannungskonzentrations- und Spannungskorrekturfaktors $Y_{1,2}$ angegeben.

Der Zahnformfaktor vereinigt die Radial- und Tangentialkomponenten der Normalkraft. Der Spannungskonzentrations- und Spannungskorrekturfaktor, der in der ISO angeführt ist, hängt von der Wirkspannungskonzentration und der Lage der Kraft ab. Er ist abgeleitet von Dolan und Broghamer.

Die Formel zur Ermittlung des Geometriefaktors enthält außerdem das Lastanteilverhältnis ϵ_N . Dieses wird genutzt, um jenen Anteil an der Gesamtbelastung, der auf den analysierten Zahn übertragen wird, zu berechnen.

Ein weiterer Faktor, der in der Bestimmungsformel für den Geometriefaktor enthalten ist, ist der Trägheitsfaktor für Verzahnungen mit kleiner Gesamtüberdeckung Y_i. Dieser Faktor berücksichtigt den Mangel an sanftem Lauf der Verzahnung bei dynamisch belasteten Verzahnungen mit relativ kleiner Gesamtüberdeckung. Er kommt nur für eine Gesamtüberdeckung

¹⁷¹ Vgl. ISO 10300-3:2001, S. 30

 $^{^{\}rm 172}$ Vgl. ISO 10300-3:2001, S. 19

¹⁷³ Vgl. AGMA 2003-C10, S. 18f

der Ersatzverzahnung im Achsnormalschnitt von $\epsilon_{v\gamma}$ < 2 zu tragen. Für statisch belastete Verzahnungen ist Y_i auch dann 1, wenn $\epsilon_{v\gamma}$ < 2 ist.

Eine weitere Größe in der Berechnungsformel für den Geometriefaktor ist der mittlere Radius im Achsnormalschnitt zum Lastangriffspunkt für Ritzel beziehungsweise Rad. Die Ermittlung dieses Faktors ist notwendig, da der Lastangriffspunkt für gewöhnlich nicht im Mittenschnitt des Zahnes liegt.

Neben den bereits bekannten Faktoren Zahnbreite $b_{1,2}$, Teilkreisdurchmesser der Ersatzverzahnung $d_{v1,2}$, mittlerer Modul im Achsnormalschnitt m_{mt} und äußerer Modul im Achsnormalschnitt m_{et} enthält die Formel für den Geometriefaktor schlussendlich auch noch die rechnerisch wirksame Zahnbreite von Ritzel beziehungsweise Rad in mm. Diese bewertet die Wirksamkeit des Zahnes in der Belastungsverteilung über den Fußquerschnitt, da sich die momentane Berührungslinie oft nicht über die ganze Zahnbreite erstreckt.

Neben der Berechnungsformel bietet die ISO auch grafische Darstellungen des kombinierten Geometriefaktors für Biegebeanspruchung. Diese grafischen Darstellungen gelten für gerad-, zerol- und spiralverzahnte Kegelräder für eine Reihe von Verzahnungsausführungen, die auf der kleineren der Zahnbreiten b = $0.3 \cdot R_e$ oder $10 \cdot m_{et}$ beruhen. Um die grafischen Darstellungen nutzen zu dürfen, müssen die Zahnproportionen, Zahndicke, Zahnbreite, Werkzeug-Kopfabrundungsradien, Eingriffs- und Spiralwinkel, der Ausführung mit jenen in den Schaubildern übereinstimmen. Zu Beachten ist dabei, dass die konkave Seite die treibende ist.

Bei Verwendung der Gleichung wird die Nutzung eines Computers empfohlen, da die Berechnung sehr kompliziert ist.

In der AGMA wird der Geometriefaktor für die reguläre Berechnungsmethode verwendet. Die Berechnungsformel stimmt mit der in der ISO angegebenen überein.

2.4 Berechnungsprogramme

2.4.1 Allgemeines

Die Auslegung von Maschinenelementen mit Hilfe von Normen kann durch ihre Komplexität sehr aufwendig und fehleranfällig sein, besonders wenn sie händisch erfolgt. Um dem stetig wachsenden Zeitdruck gerecht zu werden und um Flüchtigkeitsfehler zu vermeiden, wurden Berechnungsprogramme entwickelt, die eine einfache Anwendung und schnelle Ergebnisse versprechen. Dabei ist wichtig zu bedenken, dass zur korrekten Anwendung dieser Programme eine fundierte Kenntnis der zugrunde liegenden Theorie von großer Wichtigkeit ist. So sollte es dem Anwender möglich sein, Ergebnisse auf Plausibilität zu prüfen und die Grenzen der verwendeten Software zu kennen. Eine solche Software soll einen erfahrenen Ingenieur nicht ersetzen, sondern ihn in seiner Tätigkeit unterstützen.

2.4.1 FVA Workbench 4.0

FVA Workbench 4.0 wurde von der FVA GmbH entwickelt. Diese ist ein Gemeinschaftsunternehmen des VDMA - Verband Deutscher Maschinen- und Anlagenbau e.V. und der FVA - Forschungsvereinigung Antriebstechnik e.V..¹⁷⁴ Mit FVA Workbench 4.0 ist nach Angaben des Herstellers eine Tragfähigkeitsberechnung von Kegelrändern mit und ohne Achsversetzung nach allen aktuellen nationalen und internationalen Normen möglich.¹⁷⁵ Im Handbuch ist angegeben, dass von den Normen folgende Versionen zum Einsatz kommen: AGMA 2003-B97, ISO 10300:2001 und DIN 3991:1988.¹⁷⁶ In der Software FVA Workbench werden für die verschiedenen Teilprogramme Benutzeranleitungen angeboten. So auch für das Kegelradnormprogramm KNplus. Das hier beschriebene Handbuch entspricht der Version 2.2 vom 15.07.2008.¹⁷⁷

¹⁷⁴ Vgl. https://www.fva-service.de/de/unternehmen/ueber-uns/, 15.4.2016 20:52

¹⁷⁵ Vgl. https://www.fva-service.de/de/software/fva-workbench-40, 17.4.2016 18:34

¹⁷⁶ Vgl. Klein, 2008, S. 15 und S. 24

¹⁷⁷ Vgl. Klein, 2008, S. 1

In Abbildung 17 ist der prinzipielle Berechnungsablauf von KNplus abgebildet.

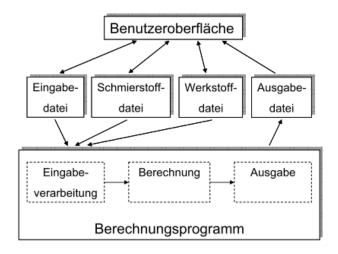


Abbildung 17 - Aufbau des Kegelrad-Normprogramms KNplus (Quelle: Klein, 2008, S. 2)

Die Software bietet laut Handbuch zwei Wege für die Eingabe der Feingeometrie. Der eine Eingabeweg ist auf die Angaben der Klingelnberg- und Oerlikon-Datenblätter ausgelegt und der andere auf die Gleason-Dimensionierungsblätter. Laut Benutzerhandbuch ist das Ziel der Geometrieeingabe, die Verzahnung im Mittenschnitt zu beschreiben, da in diesem auch die Tragfähigkeitsberechnung durchgeführt wird. Ein wichtiger im Benutzerhandbuch angeführter Hinweis ist, dass die Berechnungsvorschriften nicht zwischen den verschiedenen Herstellverfahren und Zahnformen unterscheidet.¹⁷⁸

Eine Auswahl des treibenden Rades ist notwendig. Außerdem wird die Art der Längskrümmung der anliegenden Ritzelflanke bestimmt. Laut Benutzerhandbuch müssen von den drei Größen Drehzahl, Nenndrehmoment und Nennleistung, nur zwei angegeben werden. Für die Berechnung mit ISO und AGMA ist eine Angabe der geforderten Lebensdauer in Stunden notwendig. Laut Benutzerhandbuch werden bei fehlender Eingabe der Lebensdauer die Lebensdauerfaktoren gleich 1,0 gesetzt. Der verwendete Schmierstoff ist aus einer Liste auszuwählen. Die hinterlegten Daten können im Bedarfsfall bearbeitet werden. Gleiches gilt für den Werkstoff von Ritzel und Rad. Laut Handbuch wird der Wechsellastfaktor genutzt, um die reduzierte Beanspruchung einer Verzahnung bei wechselnder Belastung zu berücksichti-

_

¹⁷⁸ Vgl. Klein, 2008, S. 7ff

gen. Wird für die relative Tragbildbreite b_{eH}/b kein Wert angegeben, so wird diese mit dem Wert 0,85 vorbelegt.

Die Eingabe der Verzahnungsqualität ist laut Benutzerhandbuch nach DIN 3965 oder AGMA 2005 möglich. In der Software ist eine Umrechnungsformel zwischen diesen beiden Qualitäten angegeben. Diese Formel lautet: AGMA-Qualität = 17 – DIN-Qualität. Prinzipiell besteht laut Benutzerhandbuch kein verbindlicher Zusammenhang zwischen der AGMA- und der DIN-Qualität. Wird kein Wert eingegeben, so erfolgt eine Vorbelegung mit DIN-Qualität 7. Für die Berechnung mit DIN 3991 und ISO 10300 ist eine Eingabe der Teilungs-Einzelabweichung f_P und des Einlaufbetrags y_α notwendig. Wird diese Eingabe nicht vorgenommen, so wird, laut Handbuch, die Teilungs-Einzelabweichung f_P aus der Verzahnungsqualität und der Einlaufbetrag y_α aus den Werkstoff-, Geometrie- und Betriebsdaten ermittelt. Im Benutzerhandbuch ist nur angegeben, dass diese Berechnung programmintern erfolgt. Nähere Details zur Berechnung werden nicht angeführt. 179

Eine weitere notwendige Angabe betrifft das Schneideverfahren. Es ist auszuwählen, ob es sich um ein gewälztes oder formgeschnittenes Tellerrad handelt. Laut Handbuch hat diese Eingabe Einfluss auf die Tragfähigkeitsberechnung nach DIN 3991 und ISO 10300, da sie sich auf die Berechnung der Zahnfußsehne und des Biegehebelarms auswirkt. Weiters ist die Fertigbearbeitung anzugeben. Bei dieser kann in "gefräst", "geläppt" und "geschliffen" unterschieden werden. Diese Eingabe bezüglich der erzeugten Oberflächenstruktur hat Einfluss auf die Teilungs-Einzelabweichung f_P und den Einlaufbetrag y_α . Laut Handbuch kann alternativ dazu die gemittelte Rauhtiefe R_Z oder der arithmetische Mittenrauhwert R_a angegeben werden. Das Programm rechnet mit der gemittelten Rauhtiefe. Sollte der arithmetische Mittenrauhwert R_a angegeben worden sein, so wird dieser programmintern mit der Formel $R_Z = 6 \cdot R_a$ umgerechnet. Diese Formel entstammt der DIN 3991. Auch für den Zahnfuß ist laut Handbuch eine gemittelte Rauhtiefe anzugeben. Das Programm nimmt bei fehlender Eingabe für Fuß und Flanke eine Belegung mit $R_Z = 20~\mu m$ vor. Für die AGMA ist es notwendig anzugeben, ob eine Verzahnung breitballig oder nicht breitballig ist. Außerdem können Lastkollektive eingegeben werden. 180

¹⁷⁹ Vgl. Klein, 2008, S. 12ff

¹⁸⁰ Vgl. Klein, 2008, S. 12ff

DIN und ISO

In der Benutzungsanleitung für FVA Workbench werden die DIN 3991 und die ISO 10300 im gleichen Kapitel behandelt, da ihre Berechnungsvorschriften die gleichen Eingabegrößen benötigen. Aus diesem Grund werden diese Werte auch im gleichen Fenster eingegeben.

Laut FVA Workbench liegt der wichtigste Unterschied der beiden Normen für den Anwender im Übergang vom rechteckigen zum elliptischen Eingriffsfeld und in der Einführung von Lebensdauerfaktoren im Zeitfestigkeitsgebiet.

Die Software bietet die Möglichkeit die zu verwendende Methode zu wählen. Für die Nutzung von Methode A muss der Zahlenwert direkt eingegeben werden. FVA rät dazu Methode B, die sehr hochwertig ist, nicht unbegründet gegen ungenauere Methoden auszutauschen. Wie bereits in den vorherigen Kapiteln beleuchtet gibt es für manche Faktoren nur eine Methode, für die ausreichend Daten zur Verfügung stehen und die somit für eine Berechnung genutzt werden kann.

Das Handbuch gibt für die Auswahl des **Anwendungsfaktors** K_A eine Tabelle vor, die laut FVA aus DIN 3990-1 bzw. aus ISO 10300-1 stammt. Die gegebene Tabelle stimmt allerdings nicht mit der in den Normen gezeigten Tabelle überein.

Die von FVA Workbench angegebenen Daten finden sich in Tabelle 21, die in den Normen gegebenen Daten sind in Tabelle 15 auf Seite 37 zu finden. Ohne Vorbelegung wird vom Programm der Wert 1,0 für den Anwendungsfaktor K_A festgelegt.¹⁸¹

Anwendungsfaktor K _A – FVA Workbench für DIN 3991:1988 und ISO 10300:2001									
Arbeitsweise der An-	Arbeits	weise der getriebenen Ma	aschine						
triebsmaschine	gleichmäßig	mäßige Stöße	starke Stöße						
gleichmäßig	1,00	1,25	1,75						
leichte Stöße	1,25	1,50	2,00						
mittlere Stöße	1,50	1,75	2,25						

Tabelle 21 - Anwendungsfaktor K_A in FVA Workbench für DIN 3991:1988 und ISO 10300:2001

¹⁸¹ Vgl. Klein, 2008, S. 15

Bei der Berechnung des **Dynamikfaktors K**_V nach Methode B geht aus dem Erklärungstext nicht hervor, ob korrekt zwischen DIN und ISO unterschieden wird. Da die Unterschiede nicht sehr groß sind, wird in der Literatur manchmal fälschlicherweise angenommen, dass es sich um die gleiche Methode handelt. Wie bereits in Kapitel 0 erwähnt, stellt dies eine Vereinfachung dar. Die DIN und die ISO unterscheiden sich unter anderem darin in welche Drehzahlbereiche die Berechnung bei der Ermittlung von K_V eingeteilt wird. Diese Bereiche sind in Tabelle 18 auf Seite 43 dargestellt. Bei den Ermittlungsformeln innerhalb der Bereiche unterscheiden sich DIN und ISO ebenfalls. So rechnet die ISO mit der Zahnbreite b, und die DIN mit der effektiven Zahnbreite bezüglich der Flankenbeanspruchung b_{eH} , welche üblicherweise mit $b_{eH} = 0.85 \cdot b$ angenommen wird. Im Benutzerhandbuch von FVA Workbench findet sich kein Hinweis darauf, mit welcher der beiden Methoden gerechnet wird oder ob korrekt unterschieden wird. 182

In der DIN existieren zwei verschiede Tabellen zur Auswahl der Einflussfaktoren für die Berechnung des Dynamikfaktors.. Wie bereits in Kapitel 2.3.3 erwähnt, klärt die Norm nicht darüber auf wonach die passende Tabelle ausgewählt werden sollen. Das Benutzerhandbuch von FVA Workbench liefert dazu ebenfalls keine nähere Erklärung.

Die Methode D der DIN wird im Handbuch nicht erwähnt. 183

Zu den Lastverteilungsfaktoren $K_{H\beta}$ und $K_{F\beta}$, die auch Breitenfaktoren genannt werden, gibt die Benutzungsanleitung an, dass bei Eingabe nur eines der Faktoren, der andere mit dem gleichen Wert belegt wird.

Ansonsten wird nach Methode C der ISO beziehungsweise Methode D der DIN verfahren. In der DIN sind die beiden Lastverteilungsfaktoren immer gleich groß. Sie werden über den Lagerungsfaktor $K_{H\beta\text{-be}}$ berechnet. Ohne Eingabe eines Wertes wird dieser mit 1,1 vorbelegt. Im Betriebshandbuch wird für die Auswahl des Lagerungsfaktors auf die Onlinehilfe verwiesen. 184

¹⁸² Vgl. Klein, 2008, S. 16

¹⁸³ Vgl. Klein, 2008, S. 16

¹⁸⁴ Vgl. Klein, 2008, S. 16f

Für die **Lastaufteilungsfaktoren** (auch Stirnfaktor genannt) gilt, so wie auch für die Lastverteilungsfaktoren, dass bei Eingabe nur eines der Faktoren, der Wert des anderen gleich angenommen wird. 185

Bezüglich der **mittleren Eingriffsfedersteifigkeit c** $_{V}$ und der **Einzelfedersteifigkeit c**' ist angegeben, dass sie auf die Zahnbreite bezogen sind und ohne Eingabe mit den Werten $c_{V0} = 20 \text{ N/mm} \cdot \mu \text{m}$ und $c' = 14 \text{ N/mm} \cdot \mu \text{m}$ belegt werden. Sollte es zu geringen Belastungen und / oder einer relativen effektiven Tragbildbreite unter 85% kommen, so werden diese Werte nach Norm abgemindert. Werden Werte eingegeben, so werden diese direkt übernommen. 186

Die **geforderte Sicherheit** gegen **Grübchen S**_{Hmin} beziehungsweise gegen **Fußbruch S**_{Fmin} wird genutzt, um die zulässige Flankenpressung beziehungsweise Fußspannung abzusenken. Wird kein Faktor eingegeben, so wird mit dem Wert 1,0 gerechnet. ¹⁸⁷

Die **Lebensdauerfaktoren Z**_{NT} und Y_{NT} werden ohne Eingabe programmintern ermittelt.

Für diese Ermittlung ist der Verlauf der Lebensdauerfaktoren über der geforderten Lastspielzahl nach ISO 10300 hinterlegt. Hierfür ist angegeben, dass Z_{NT} oberhalb von $5\cdot10^7$ Lastspielen und Y_{NT} oberhalb von $3\cdot10^6$ Lastspielen gleich 1 gesetzt wird.

FVA gibt an, dass mit einem waagrechten Verlauf der Wöhlerlinie im Dauerfestigkeitsbereich gerechnet wird. Dies stellt eine Vereinfachung im Gegensatz zur Norm dar. Außerdem unterscheidet sich in der Norm die Lage der Knicke für $Z_{\rm NT}$ je nach Werkstoff.

Im Benutzungshandbuch wird allerdings nicht auf eine unterschiedliche Behandlung der verschiedenen Werkstoffe eingegangen. In der Norm ist erwähnt, dass bei Verwendung von Methode A (welche die Wöhlerlinie nutzt) die Faktoren Z_L , Z_V , Z_R , Z_W und Z_X beziehungsweise $Y_{\delta \, \text{rel} \, \text{T}}$, $Y_{R \, \text{rel} \, \text{T}}$ und Y_X in der Wöhlerlinie schon berücksichtigt sind und deshalb in der weiteren Berechnung gleich 1 gesetzt werden. Das Benutzerhandbuch von FVA Workbench gibt keinerlei Auskunft darüber, ob dies auch umgesetzt wird.

Erfolgt in FVA Workbench keine Eingabe der Lebensdauerfaktoren oder der geforderten Lebensdauer, werden die Lebensdauerfaktoren mit dem Wert 1 vorbelegt. Für Methode B

¹⁸⁵ Vgl. Klein, 2008, S. 16f

¹⁸⁶ Vgl. Klein, 2008, S. 17

¹⁸⁷ Vgl. Klein, 2008, S. 17

sieht die Norm vor, dass der Einfluss auf die oben genannten Faktoren durch die veränderte Lebensdauer berücksichtigt werden soll. Auch hier gibt das Handbuch von FVA Workbench keine nähere Auskunft darüber wie diese Berücksichtigung konkret erfolgt. 188,189

Übereinstimmend mit der Norm wird der **Größenfaktor Z**_X laut Benutzungshandbuch bei Berechnung mit der ISO 10300-2 generell 1 gesetzt. Ohne Eingabe fixer Werte wird Z_X laut FVA Workbench nach der DIN und Y_X nach DIN beziehungsweise ISO berechnet. ¹⁹⁰

Für die **Schmierstofffaktoren Z**_L, **Z**_V, **Z**_R ist angegeben, dass diese als Produkt programmintern berechnet werden. Das Benutzungshandbuch von FVA Workbench gibt keine weitere Auskunft darüber, wie diese Berechnung erfolgt. 191

Zur **relativen Stützziffer Y** $_{\delta relT}$ wird erläutert, dass diese sowohl für die DIN als auch für die ISO nach Methode B1 berechnet wird. ¹⁹²

Auch der **relative Oberflächenfaktor Y**_{RrelT} wird laut Benutzungshandbuch nach Methode B1 berechnet. ¹⁹³

AGMA

Wie bereits erwähnt, rechnet FVA Workbench mit der bereits überholten AGMA 2003-B97.

Laut AGMA 2003-C10 unterscheidet sich diese von ihrer Vorgängerversion durch einzelne Details. So wurde die Ermittlung des Größenfaktors für die Berechnung zur Grübchentragfähigkeit überarbeitet und die Erfahrungen, die durch die Nutzung der alten Norm gemacht wurden, eingearbeitet. Außerdem wurden einzelne Formeln und Bilder redaktionell überarbeitet (Formel 10M und C103M, Bild 3). Ansonsten stimmen die alte und die neue Norm überein. Für die AGMA 2003-B97 bietet das Benutzungshandbuch der FVA Workbench ein eigenes Kapitel. Die Tabelle zur Annäherung des Überlastfaktors K_A entspricht Tabelle 15. Zusätzlich ist angegeben, dass diese Werte für Übersetzungen u>1 gelten. Liegt die Übersetzung unter 1, so sind die Werte um $0,01\cdot u^2$ zu erhöhen. u0.

¹⁸⁹ Vgl. ISO 10300-2:2001, S. 16ff und S. 28f

¹⁸⁸ Vgl. Klein, 2008, S. 17

¹⁹⁰ Vgl. Klein, 2008, S. 17

¹⁹¹ Vgl. Klein, 2008, S. 18

¹⁹² Vgl. Klein, 2008, S. 18

¹⁹³ Vgl. Klein, 2008, S. 18

¹⁹⁴ Vgl. Klein, 2008, S. 24

Der **Dynamikfaktor** K_V kann durch eine ausführliche Analyse oder aus Betriebsmessungen ermittelt werden. In diesem Fall wird der Wert direkt bei FVA Workbench eingegeben.

Im Benutzungshandbuch ist angegeben, dass der Dynamikfaktor, bei fehlender Eingabe, programmintern aus der Verzahnungsqualität berechnet wird. In der AGMA hängt der Dynamikfaktor außerdem von der Teilkreisgeschwindigkeit ab. Das Benutzerhandbuch gibt keine Auskunft darüber, ob dieser Einflussfaktor nur nicht erwähnt, oder auch in der Berechnung nicht berücksichtigt wird.

Der Dynamikfaktor K_V ist 1 zu setzen, falls eine bekannte dynamische Lasterhöhung bereits in die nominelle Belastung eingeht. 196,197

Für den **Breitenlastverteilungsfaktor** $K_{H\beta}$ ist angegeben, dass dieser entweder händisch eingegeben oder programmintern aus der Lagerungsart berechnet werden kann. Wird keine Lagerungsart eingegeben, ist das Feld mit der Einstellung 'ein Rad fliegend, ein Rad beidseitig gelagert' hinterlegt. Dies entspricht der mittleren der drei gegebenen Ermittlungskurven für $K_{H\beta}$. 198,199

Die Ermittlung des **Temperaturfaktors** K_{Θ} erfordert die Eingabe der maximalen Massentemperatur Θ_{T} . Wird diese nicht angegeben, so wählt das Programm automatisch die Ölsumpfbzw. Einspritztemperatur als Massentemperatur. Liegt der Wert für die maximale Massentemperatur oberhalb von 120°C, so wird durch den Temperaturfaktor die Flanken- und Fußfestigkeit abgemindert. Unterhalb von 0°C findet sich in der Norm, wie schon bereits erläutert, keine Korrekturformel, sondern nur Ratschläge für den Umgang mit diesen Temperaturen. Laut Benutzungshandbuch gibt FVA Workbench bei Eingabe für Temperaturen unter 0°C einen Warnhinweis aus. 200,201

Zum **Balligkeitsfaktor Z**_{XC} ist im Benutzungshandbuch, wie in der Norm auch, angegeben, dass dieser Faktor für Verzahnungen mit passender Breitenballigkeit gleich 1,5 gewählt wird. Ist dies nicht der Fall, so ist der Faktor 2 oder höher anzusetzen. Das Handbuch gibt an, dass ohne Eingabe der Wert aus dem Feld 'Balligkeitsverhältnis treibende Flanke' aus dem Einga-

¹⁹⁵ Vgl. AGMA 2003-C10, S. vi und S. 34

¹⁹⁶ Vgl. Klein, 2008, S. 24

¹⁹⁷ Vgl. AGMA 2003-C10, S. 14

¹⁹⁸ Vgl. Klein, 2008, S. 24

¹⁹⁹ Vgl. AGMA 2003-C10, S. 17

²⁰⁰ Vgl. Klein, 2008, S. 25

²⁰¹ Vgl. AGMA 2003-C10, S. 22f

befenster 'Tragfähigkeit allgemein' zu einer Beurteilung herangezogen wird und der Balligkeitsfaktor Z_{XC} entsprechend mit 1,5 oder 2 belegt wird. 202

Im Benutzungshandbuch wird nicht angegeben für welche Werte welche Belegung für den Balligkeitsfaktor Z_{XC} erfolgt. Es scheint auch nicht zu einer Belegung mit Werten über 2 zu kommen, obwohl diese in der Norm durchaus vorgesehen sind.

Wird der **Lebensdauerfaktor Z**_{NT} nicht direkt bei FVA Workbench eingegeben, so wird dieser aus der geforderten Lebensdauer und der Drehzahl berechnet. Ist auch dies, auf Grund einer fehlenden Eingabe der geforderten Lebensdauer, nicht möglich, wird der Lebensdauerfaktor von FVA Workbench mit dem Faktor 1 belegt.^{203,204}

Der Lebensdauerfaktor Z_{NT} ist, laut Manual, für Übersetzungen ungleich 1, für Ritzel und Rad getrennt zu bestimmen, da es zu unterschiedlichen Lastspielzahlen kommt. In der AG-MA 2003-C10 findet sich jedoch der Hinweis, dass der Lebensdauerfaktor nur bei unterschiedlichem Material und Qualität getrennt berechnet werden muss, um zu ermitteln ob Ritzel oder Rad die kritische Komponente darstellt. Ansonsten ist laut Norm die Lebensdauer des Ritzels für die Ermittlung des Lebensdauerfaktors entscheidend.

Für den **Härteverhältnisfaktor Z**_w ist im Benutzungshandbuch angegeben, dass es bei einer Paarung eines Rades mit deutlich niedrigerer Oberflächenhärte als der des Ritzels, im Betrieb zu einer Steigerung der Randschichthärte kommt. Dadurch erhöht sich die Grübchentragfähigkeit. Zu diesem Effekt kommt es nur bei vergüteten Tellerrädern. Die Ermittlungsformel des Härteverhältnisfaktors unterscheidet sich je nachdem welche Räder miteinander gepaart sind. Die Angaben im Benutzerhandbuch stimmen hier mit jenen der Norm überein. Außerdem ist angegeben, dass bei fehlender Eingabe der Flankenhärte bei unterschiedlicher Oberflächenhärte, diese aus der Vickershärte aus der Eingabe zu den Eigenschaften des Werkstoffs umgerechnet wird.²⁰⁵

²⁰³ Vgl. Klein, 2008, S. 25

²⁰² Vgl. Klein, 2008, S. 25

²⁰⁴ Vgl. AGMA 2003-C10, S. 19

²⁰⁵ Vgl. Klein, 2008, S. 25

Der **Zuverlässigkeitsfaktor** Z_z wird dafür genutzt, die statistische Ausfallwahrscheinlichkeit in der Berechnung zu berücksichtigen. Im Benutzungshandbuch von FVA sind Werte für die Belegung dieses Faktors angegeben, die mit den Werten der in der Norm gegebenen Tabelle übereinstimmen. Die gegebenen Spannungswerte beziehen sich auf eine Ausfallwahrscheinlichkeit von 1%. In diesem Fall ist der Zuverlässigkeitsfaktor $Z_z = 1$.

Der **geforderte Sicherheitsfaktor gegen Grübchen S**_H senkt die zulässige Flankenpressung ab. Erfolgt keine Eingabe des Wertes, so wird der Faktor mit 1,0 vorbelegt.²⁰⁸

Der Lebendauerfaktor Y_{NT} für Zahnfußfestigkeit weist die Besonderheit auf, dass die Ermittlungskurve sich ab 3 Millionen Lastspielen aufteilt. Laut Benutzerhandbuch kann zwischen diesen beiden Kurven gewählt werden. Die AGMA 2003-C10 gibt an, dass die obere Kurve für allgemeine Anwendungen auszuwählen ist und die untere Kurve typischerweise für kritische Anwendungen eingesetzt wird. Die Auswahl sollte laut Norm mit Hilfe der Teilkreisgeschwindigkeit, der Materialreinheit, der Duktilität und der Bruchzähigkeit getroffen werden. Wie bereits beim Lebensdauerfaktor für die Berechnung der Grübchentragfähigkeit, ist auch hier im Benutzerhandbuch angegeben, dass der Lebensdauerfaktor an Hand der geforderten Lebensdauer und der Drehzahl ermittelt wird. Wird keine geforderte Lebensdauer angegeben, wird der Faktor von FVA Workbench gleich 1 gesetzt.

Auch für Y_{NT} gibt das Benutzerhandbuch an, dass der Lebensdauerfaktor für Übersetzungen ungleich 1 für Ritzel und Rad getrennt zu ermitteln ist, da es zu unterschiedlichen Lastspielzahlen kommt. In der AGMA findet sich der Hinweis, dass der Lebensdauerfaktor von der geforderten Lastspielzahl abhängt.

Für Zahnräder mit mehr als einem Kontaktpartner ist die Anzahl der geforderten Lastwechsel durch eine Multiplikation der Drehzahl mit der Anzahl an Kontaktpartnern zu multiplizieren. ^{209,210}

Für den **Zuverlässigkeitsfaktor Y**_z finden sich im Benutzerhandbuch wieder Werte, die mit jenen die in der passenden Tabelle in der Norm angegeben sind, übereinstimmen. In der Norm finden sich allerdings zu einigen der Werte Hinweise, dass bei der Nutzung Vorsicht

²⁰⁷ Vgl. AGMA 2003-C10, S. 23

²⁰⁶ Vgl. Klein, 2008, S. 25

²⁰⁸ Vgl. Klein, 2008, S. 25

²⁰⁹ Vgl. Klein, 2008, S. 25f

²¹⁰ Vgl. AGMA 2003-C10, S. 19ff

geboten ist, da es in manchen Fällen dazu kommen kann, dass ein Zahnbruch die größere Gefahr darstellt als Pitting.^{211,212}

Der **geforderte Sicherheitsfaktor gegen Zahnbruch S** $_{\rm F}$ senkt die zulässige Zahnfußspannung ab. Erfolgt keine Eingabe des Wertes, so wird der Faktor mit 1,0 vorbelegt. ²¹³

Unter dem Abschnitt "sonstige Hinweise" erläutert das Benutzerhandbuch Besonderheiten zum Trägheitsfaktor Z_i. Dieser fließt in die Berechnung des Geometriefaktors Z_i ein. Bei der Ermittlung des Trägheitsfaktors gibt die Norm vor, dass zwischen statischer und dynamischer Belastung der Verzahnung zu unterscheiden ist. Die Norm gibt nicht vor, wie genau diese Unterscheidung erfolgen soll. Im Benutzerhandbuch von FVA Workbench ist angegeben, dass das Programm als Unterscheidungskriterium die Anzahl der geforderten Lastspiele heranzieht. So wird bei über 1000 Lastspielen dynamisch gerechnet und darunter statisch. Wird die geforderte Lebensdauer nicht angegeben, so wird eine Vorbelegung mit 1 Million Stunden vorgenommen. Dadurch wird für Drehzahlen ≠ 0 ohne Vorbelegung mit der Berechnungsformel für dynamische Verzahnungen gearbeitet. Im Benutzerhandbuch ist nicht angegeben, ob die Vorbelegung mit 1 Million Betriebsstunden nur für die Ermittlung des Trägheitsfaktors gilt, oder auch für alle Bereiche angenommen wird.^{214,215}

2.4.2 KISSSOFT 03/2016

Das Benutzungshandbuch von KISSSOFT macht fast keine konkreten Angaben zur genauen Umsetzung der Normen.

Die Software KISSsoft ist ein Produkt der KISSsoft AG und dient der Berechnung von Maschinenelementen. Ein großer Schwerpunkt liegt auf der Berechnung von Zahnrädern, da diese das zentrale Element von Getrieben darstellen. Aber auch die Berechnung von Wellen, Lagern, Verbindungselementen, Federn und Ketten ist möglich. Zahnräder können nicht nur auf Basis von Normen berechnet, sondern auch ausgelegt und optimiert werden. Ein weite-

²¹² Vgl. AGMA 2003-C10, S. 23

²¹¹ Vgl. Klein, 2008, S. 26

²¹³ Vgl. Klein, 2008, S. 26

²¹⁴ Vgl. AGMA 2003-C10, S. 53

²¹⁵ Vgl. Klein, 2008, S. 26

res mächtiges Tool der Software ist die CAD Schnittstelle, die es ermöglicht, berechnete Zahnräder in vielen gängigen CAD-Formaten auszugeben.²¹⁶

KISSsoft bietet seinen Anwendern einerseits ein allgemeines Handbuch und andererseits ein Tutorial zur Kegelradberechnung. Im allgemeinen Handbuch findet sich der Hinweis, dass das Programm sowohl mit Einheiten aus dem metrischen System, als auch mit solchen aus dem Imperialen System rechnen kann. 217 Außerdem ist angeführt, dass KISSsoft die Möglichkeit bietet, sogenannte "Regeln" vorzugeben. Diese haben die Aufgabe firmeninterne Vorschriften für die Gültigkeitsbereiche von Parametern festzulegen. Meist sind damit Maximal- oder Minimalwerte von Eingabewerten oder berechneten Werten gemeint. ²¹⁸ Die Protokollierung der Ergebnisse erfolgt unterteilt in ein Standardprotokoll und Protokolle zu speziellen Berechnungen. Standardprotokolle werden für jene Teile angelegt, die für die Berechnung essenziell sind. Die Protokolle zu den speziellen Berechnungen werden für jene Teile der Berechnung ausgegeben, die der Nutzer optional auswählen kann. Hierbei handelt es sich zum Beispiel um die Berechnung der Eingriffslinie eines Stirnradpaares unter Last.²¹⁹ Sollte es notwendig sein, gibt das Programm Meldungen aus, die Informationen, Warnungen und Fehler enthalten können. 220 Für jede Berechnung gibt es die Möglichkeit ein Protokoll auszugeben. Dafür steht eine Protokollvorlage zur Verfügung, in der Inhalt und Form festgelegt sind. KISSsoft erlaubt es dem Anwender außerdem, die ausgegebenen Protokolle an die eigenen Bedürfnisse anzupassen. Desweiteren hat der Nutzer die Möglichkeit die Ausführlichkeit des Protokolls zu bestimmen. Hierfür gibt es in den Einstellungen eine Skala von 1 - kurzes Protokoll bis 9 – vollständiges Protokoll. 221

Laut Handbuch für KISSsoft ermöglicht das Programm unter anderem die Berechnung der Geometrie und Festigkeit von gerade-, schräg- und bogenverzahnten Kegelrädern mit sich schneidenden Radachsen und ohne Achsversatz. Die Geometrieberechnung erfolgt wahlweise nach ISO 10300, ISO 23509 und DIN 3971. Die Festigkeitsberechnung ist nach ISO 10300:2001, AGMA 2003-C10, DIN 3991:1988 und Klingelnberg Werksnorm KN3030 möglich. Die Berechnung erfolgt grundsätzlich nach Methode B, außer es wird Methode C

²¹⁶ Vgl. http://kisssoft.ch/deutsch/products/kisssoft.php, 10.04.2017, 18:49

²¹⁷ Vgl. KISSsoft, 2016, S. I-11

²¹⁸ Vgl. KISSsoft, 2016, S. I-26

²¹⁹ Vgl. KISSsoft, 2016, S. I-53

²²⁰ Vgl. KISSsoft, 2016, S. I-54

²²¹ Vgl. KISSsoft, 2016, S. I-78f

gewählt. Laut Handbuch beinhaltet die Berechnung die Geometrie von Kegelrädern nur soweit, als diese unabhängig von der Herstellungsart und für die Festigkeitsberechnung notwendig ist. 222,223

Das Handbuch bietet Empfehlungen zur Zähnezahl des Ritzels, zur Zahnbreite, zum Profilverschiebungsfaktor und zum Zahndickenänderungsfaktor. Zur Qualität findet sich der Hinweis, dass die Verzahnungsqualität nach ISO 17485 ungefähr der Qualität nach DIN 3965 entspricht.²²⁴ Im Handbuch werden die verschiedenen Bauformen mit Bildern und Erklärungstexten erläutert. 225 KISSsoft bietet die Möglichkeit die Lebensdauer auszulegen. Hierbei wird, basierend auf der Mindestsicherheit für Zahnfuß- und Flankenfestigkeit, für alle Zahnräder und die eingegebene Belastung die Lebensdauer in Stunden berechnet.²²⁶

Für die Lebensdauerfaktoren Y_{NT} und Z_{NT} nach ISO 10300 wählt man in KISSsoft zwischen drei verschiedenen Werten ab 10¹⁰ Zyklen. Die erste Auswahlmöglichkeit nennt sich "normal" und beinhaltet eine Reduktion auf den Wert 0,85 bei über 10¹⁰ Zyklen. Die zweite trägt den Namen "erhöht bei besserer Qualität" was bedeutet, dass die Lebensdauerfaktoren bei über 10¹⁰ Zyklen auf 0,92 gesetzt werden. Die dritte Option 'bei optimaler Qualität und Erfahrung' bedeutet, dass die Lebendauerfaktoren mit 1,0 belegt werden. 227

Bei der Berechnung nach ISO 10300 bietet KISSsoft die Möglichkeit statt der eigentlich verwendeten Länge der Konktaktlinie mit einer modifizierten Breite zu rechnen. Es ist angegeben, dass diese modifizierte Breite üblicherweise mit 0,85 · Zahnbreite ermittelt wird. Dies entspricht auch dem in der DIN 3991 verwendeten Wert.²²⁸

Für die Auswahl des Anwendungsfaktors KA liefert das Handbuch dieselbe Auswahltabelle wie die Normen. 229

Das Handbuch zu KISSsoft liefert zusätzlich Erklärungen zur Kontaktanalyse und zur Eingabe möglicher Korrekturen. 230 Die Software erlaubt außerdem eine Grobauslegung von Kegel-

²²² Vgl. KISSsoft, 2016, S. II-215

²²³ Vgl. KISSsoft, 2016, S. II-239

²²⁴ Vgl. KISSsoft, 2016, S. II-223f

²²⁵ Vgl. KISSsoft, 2016, S. II-230ff

²²⁶ Vgl. KISSsoft, 2016, S. II-240

²²⁷ Vgl. KISSsoft, 2016, S. II-33f ²²⁸ Vgl. KISSsoft, 2016, S. II-242f

²²⁹ Vgl. KISSsoft, 2016, S. II-243

²³⁰ Vgl. KISSsoft, 2016, S. II-245ff

radpaaren. Dafür werden unter anderem das Übersetzungsverhältnis, das Verhältnis der Zahnbreite zum Normalmodul, das Verhältnis der Teilkegellänge zur Zahnbreite und der Schrägungswinkel eingegeben und nach den Vorschlägen der Fachliteratur eine geometrisch vernünftige Zahnpaarung ermittelt. Rechnet man diese Verzahnungen nach, so liegen die ermittelten Sicherheiten mit gewisser Abweichung zu den angestrebten Sicherheiten. Dies ergibt sich, da die Auslegung auf recht allgemeinen Erfahrungswerten beruht. Auch eine Feinauslegung ist möglich. Für diese sind genauere Eingaben erforderlich.²³¹ Für die Berechnung nach Klingelnberg liefert das Handbuch von KISSsoft ein genaues Erklärungskapiteln mit Hinweisen.²³²

Im Kapitel zu den Einstellungen befinden sich auch Hinweise zu den verschiedenen Faktoren. So wird für ISO 10300, DIN 3991 und die AGMA 2003 eine Tabelle zum Lagerungsfaktor angeführt. Die Tabelle die für die Berechnung nach ISO 10300 angegeben ist, stimmt mit jener aus der Norm überein, ist allerdings mit vertauschten Zeilen und Spalten angegeben, was für Missverständnisse sorgen könnte. Für die DIN sind nur die Werte für Industrie- und Schiffgetriebe gegeben. In der Norm finden sich zusätzlich Werte für Kraftfahrzeuge und Flugzeuge. Diese gelten laut Hinweis aber nur für ein optimales Tragbild unter Betriebsbedingungen. Bei den Werten für die AGMA stimmen zwei Werte mit der Norm überein, der Wert für "beide beidseitig" liegt im Handbuch allerdings bei 1,10 und in der Norm bei 1,00.

Im Handbuch ist angegeben, dass 1,5 · Lagerungsfaktor den Lastverteilungsfaktor ergibt. Dies ist allerdings nur für die DIN richtig.

Für den Kegelradfaktor der ISO 10300 ist angegeben, dass Z_K immer mit 0,8 angegeben wird und Y_K nach der Norm berechnet wird. Dies stimmt mit der Norm überein.²³³ Weitere Hinweise zu Faktoren finden sich nicht im Handbuch.

Neben dem Handbuch bietet KISSsoft noch ein eigenes Tutorial für den Umgang mit Kegelrädern an. In diesem finden sich allgemeine Hinweise zum Umgang mit der Lizenz und dem Programm.²³⁴ Im Tutorial wird darauf hingewiesen, dass die verschiedenen Bauformen von Kegelrädern Besonderheiten aufweisen, die bei der Berechnung berücksichtigt werden müs-

²³¹ Vgl. KISSsoft, 2016, S. II-250ff

²³² Vgl. KISSsoft, 2016, S. II-262

²³³ Vgl. KISSsoft, 2016, S. II-268ff

²³⁴ Vgl. KISSsoft Tutorial, 2016, S. 3

sen. Das Tutorial soll Aufschluss darüber geben, wie mit diesen Besonderheiten in KISSsoft umzugehen ist. Es werden unter anderem Hinweise zum Umgang mit Differentialkegelrädern, zur Grob- und Feinauslegung von Kegelradsätzen und zu Rädern nach Gleason und Klingelnberg gegeben. Außerdem wird erläutert wie ein 3D Modell eines bogenverzahnten Kegelrades erstellt wird und wie die Kontaktanalyse unter Last durchzuführen ist.²³⁵

²³⁵ Vgl. KISSsoft Tutorial, 2016, S. 4ff

Zielsetzung 90

3 Zielsetzung

Ziel der Diplomarbeit war eine Auseinandersetzung mit den Unterschieden zwischen den Berechnungsnormen – ISO 10300:2001, DIN 3991:1988 und AGMA 2003-C10 - zur Tragfähigkeitsberechnung von Kegelrädern ohne Achsversetzung. Um diese Unterschiede zu veranschaulichen wurden KISSsoft 03/2016 und FVA Workbench 4.0 genutzt. Der Vergleich wurde anhand einer Beispielberechnung des Kegelradgetriebes des Heckrotors einer Hubschrauber-Drohne numerisch veranschaulicht. Um die Unterschiede der Normen darzustellen wurden verschiedene Eingangsparameter verändert und die Ergebnisse dieser Tragfähigkeitsberechnung mit jenen des ursprünglichen Modells verglichen.

Methoden 91

4 Methoden

4.1 Getriebe zur Vergleichsberechnung

Für den Vergleich der Normen wurde das Kegelradgetriebe des Heckrotors einer Hubschrauber-Drohne herangezogen. Es handelt sich hierbei um ein geradverzahntes Kegelradgetriebe ohne Achsversatz. Die Geometriedaten wurden der Diplomarbeit von Herrn DI Glaser (Optimierung des Drivetrains eines UAV, TU Wien, 2012) entnommen und teilweise vereinfacht. Die verwendeten Daten sind in Tabelle 22, beziehungsweise im Berechnungsprotokoll im Anhang, zu finden. Die Aufzählung der Daten orientiert sich in ihrer Reihenfolge an den Eingabefenstern für die Berechnung mit KISSsoft.

Abbildung 18 – Heckrotorgetriebe (Quelle: Screenshot KISSsoft 03/2016)

Das Heckrotorgetriebe wurde gewählt um eine möglichst praxisnahe Berechnung zu ermöglichen. Im weiteren Verlauf wird das Getriebe mit unveränderten Parametern als Modellgetriebe bezeichnet. Das Modellgetriebe wurde mit KISSsoft mit allen betrachteten Normen berechnet. Da die Berechnung mit FVA Workbench 4.0 durch Probleme mit der Werkstoffdatenbank, trotz Anfrage beim Supportteam, nicht durchgeführt werden konnte, wurde ausschließlich mit KISSsoft gerechnet. Das Handbuch von FVA Workbench wurde trotzdem für die theoretischen Erläuterungen verwendet, da es sehr detailliert Aufschluss über den Umgang mit den verschiedenen Normen gibt. Zusätzlich zum Modellgetriebe wurden Variationen der Daten vorgesehen, um Unterschiede in und zwischen den verschiedenen Normen zu veranschaulichen. Diese Werte finden sich in der rechten Spalte von Tabelle 22. Für die Berechnung der AGMA wurden die gleichen Werkstoffdaten, wie für die DIN und die ISO verwendet, um eine bessere Vergleichbarkeit zu ermöglichen.

Methoden 92

		Rad	Ritzel	Varianten
Bauform		•	ußkegel-Spitze in	
			Punkt	
Normalmodul Mitte (mm)	[m _n]	1	1	
Eingriffswinkel im Normalschnitt (°)	[α _n]	20	20	
Schrägungswinkel Mitte (°)	[β _m]	0	0	[1] 15°, 35°
Schrägungsrichtung		Geradverzahnt	Geradverzahnt	[1] links
Zähnezahl	[z]	25	25	
Breite (mm)	[b]	7	7	[2] 5,95
Qualität nach DIN 3965		6	6	
Achsversatz (mm)	[a]	0	0	
Achsenwinkel (°)	[σ]	90	90	
Werkstoff		18CrNiMo7-6 einsatzgehärtet	18CrNiMo7-6 einsatzgehärtet	[3] 34CrNiMo 6 brenn/ind. gehär- tet [3] EN-GJS-700-2 (GGG70), unbe- handelt
Verfahren		geläppt	geläppt	
Herstellart		gewälzt	gewälzt gewälzt	
Bearbeitung		Fertig- bearbeitung	Fertig- bearbeitung	
Gemittelte Rauhtiefe, Flanke (μm)	[R _{ZH}]	4,8	4,8	[4] 9,6
Gemittelte Rauhtiefe, Fuß (μm)	[R _{ZF}]	20,00	20,00	[4] 30,00
Schmieröl		ISO-VG 220	ISO-VG 220	[5] Klübersynth GEM 4-220 N
Temperatur (°C)	[θ]	70	70	[5] 140
Schmierungsart		Öl - Tauchs	schmierung	
Werkzeugauswahl		Bezugspro	fil Zahnrad	
Eingabe		Fakt	oren	
Bezugsprofil			ISO 53.2:1997 fil B	
Rad treibend (+)		+	-	
Arbeitsflanke Rad 1		Rechte	Flanke	
Leistung (kW)	[P]	2,08		
Drehzahl (1/min)	[n]	5500	5500	[6] 7500, 9500
Drehmoment (Nm)	[T]	3,5 3,5		
Geforderte Lebensdauer	[H]	5000 5000		[7] 50, 1
Anwendungsfaktor	[K _A]	1,2	1,2	
Lagerungsfaktor	[K _{Hbe}]	1,	25	
Zuverlässigkeitsfaktor	[Z _z]	-	1	[8] 1,12
Zuverlässigkeitsfaktor	[Y _Z]	-	1	[8] 1,25

Tabelle 22 – Modellgetriebe

Methoden 93

4.2 Variation der Daten

Mit der Variation der Daten wurde versucht einen möglichst breiten Überblick über die verschiedenen speziellen "Eigenschaften" der unterschiedlichen Normen zu geben.

- [1] Die unterschiedlichen Schrägungswinkel wurden gewählt um zu zeigen wie die ISO mit einem Schrägungswinkel umgeht, auch wenn in dieser kein Schrägenfaktor Y_{β} vorgesehen ist. Auch andere Faktoren werden durch die Ausführung als Schrägverzahnung beeinflusst.
- [2] Die Variation der Breite wurde zur Veranschaulichung der unterschiedlichen Nutzung der Zahnbreite (ISO, AGMA) beziehungsweise der effektiven Zahnbreite (DIN) eingesetzt.
- [3] Um den Einfluss verschiedener Werkstoffe auf die Auswahl der Faktoren zu ermitteln wurde statt dem ursprünglich verwendeten Einsatzstahl ein Vergütungsstahl herangezogen. Der Werkstoff wurde danach ausgesucht, dass er ähnliche zulässige Spannungen aufweist (σ_{Flim} = 430 N/mm², σ_{Hlim} = 1500 N/mm² alt und σ_{Flim} = 370 N/mm², σ_{Hlim} = 1180 N/mm² neu). Die Rauhtiefe im Zahnfuß und an der Zahnflanke wurde gleich zum alten Werkstoff angenommen. Um die Einflüsse des Werkstoffs bei niedrigeren zulässigen Spannungen zu erläutern wurde außerdem ein Beispiel mit einem Grauguss (σ_{Flim} = 220 N/mm², σ_{Hlim} = 620 N/mm²) berechnet. Auch hier wurden die gleichen Rauhtiefen vorgegeben.
- [4] Durch die Verdopplung der gemittelten Rauhtiefe in der Zahnflanke und die Erhöhung um die Hälfte im Zahnfuß sollen die Einflüsse auf den relativen Oberflächenfaktor Y_{RrelT} und den Rauheitsfaktor Z_R gezeigt werden.
- [5] Da das ursprünglich gewählte Schmieröl nur bis 120°C eingesetzt werden darf, wurde für die Variante mit 140°C ein anderes Schmieröl ausgewählt. Dieses verfügt über die gleiche Viskosität wie das ursprünglich verwendete Öl.
- [6] Mit der Wahl unterschiedlicher Drehzahlen wird gleichzeitig auch die Umfangsgeschwindigkeit geändert, die Einfluss auf verschiedene Faktoren hat.
- [7] Im Gegensatz zu ISO und AGMA erlaubt die DIN nur eine Berechnung im Bereich der Dauerfestigkeit. Unterschiedliche geforderte Lebensdauern veranschaulichen dies.
- [8] Im Gegensatz zu den anderen Normen verfügt die AGMA über Zuverlässigkeitsfaktoren. Durch die Änderung der Fehlerwahrscheinlichkeit können diese Unterschiede gezeigt werden.

5 Berechnungsergebnisse

5.1 Modellgetriebe - KISSsoft

5.1.1 Berechnete Werte

KISSsoft	Faktor	ISO 10300:2001	DIN 3991:1988	AGMA 2003-C10
K _A	Anwendungsfaktor	1,2 (gewählt)	1,2 (gewählt)	1,2 (gewählt)
K _V	Dynamikfaktor	1,19	1,14	1,097
Кнβ	Lastverteilungsfaktor	1,88	1,88	1,25
$K_{F\beta}$	Lastverteilungsfaktor	1,88	1,88	1,25
K _{Hα}	Lastaufteilungsfaktor	1,00	1,02	-
K _{Fα}	Lastaufteilungsfaktor	1,12	1,02	-
K _θ	Temperaturfaktor	-	-	1,00

Tabelle 23 - Lastfaktoren Modellgetriebe mit KISSsoft

KISSsoft	Faktor	ISO 10300:2001	DIN 3991:1988	AGMA 2003-C10
Z _H	Zonenfaktor	2,49	2,49	-
Zı	Geometriefaktor	-	-	0,0653
Z _{XC}	Balligkeitsfaktor für Pitting	-	-	2,00
Z _{M-B}	Mittelzonenfaktor	1,003	-	-
Z _B , Z _D	Einzeleingriffsfaktor	-	1,00	-
Z _E	Elastizitätsfaktor	189,81	189,81	189,81
Z _{LS}	Lastanteilfaktor	1,000	-	-
Zε	Überdeckungsfaktor	-	0,878	-
Z_{β}	Spiralwinkelfaktor	1,000	1,000	-
Z _K	Kegelradfaktor	0,800	0,850	-
Z _X	Größenfaktor	1,000	1,000	0,500
Z_L, Z_V, Z_R	Einflussfaktoren der Schmierfilmbildung	1,020,0,991,0,933	1,020,0,991,0,937	-
Z _W	Werkstoffpaarungsfaktor	1,000	-	1,00
Z _{NT}	Lebensdauerfaktor	0,898	-	0,970
Z _Z	Zuverlässigkeitsfaktor	-	-	1,00

Tabelle 24 - Faktoren Grübchentragfähigkeit Modellgetriebe mit KISSsoft

KISSsoft	Faktor ISO 10300:2001 D		DIN 3991:1988	AGMA 2003-C10
Y _{ST}	Spannungskorrekturfaktor	2,00	2,00	-
Y _{Fa}	Formfaktor	2,49	2,49	-
Y _{Sa}	Spannungskorrekturfaktor	1,70	1,70	-
Yε	Überdeckungsfaktor	0,69	0,69	-
Y _K	Kegelradfaktor	1,000	1,000	-
Y _{LS}	Lastanteilfaktor	1,000	-	-

Y_{β}	Schrägenfaktor	-	1,00	1,000	
$Y_{\delta relT}$	Relative Stützziffer	0,997	0,997	-	
Y_{RrelT}	Relativer Oberflächenfak-	0,957	0,957		
T RrelT	tor	0,937	0,937	-	
Y _X	Größenfaktor	1,000	1,000	0,5001	
Y _{NT}	Lebensdauerfaktor	0,881	-	0,929	
Yz	Zuverlässigkeitsfaktor	-	-	1,00	
YJ	Geometriefaktor	-	-	0,243	

Tabelle 25 - Faktoren Zahnfußtragfähigkeit Modellgetriebe mit KISSsoft

V0	ISO 10300:2001	DIN 3991:1988	AGMA-B97	AGMA-C10
Grübchentragfähigkeit S _H	1,35	1,52	1,45	1,45
Zahnfußtragfähigkeit S _F	2,05	2,27	4,23	4,23

Tabelle 26 - Sicherheiten Modellgetriebe mit KISSsoft

5.1.2 Sicherheiten der Grübchentragfähigkeit

Formel 7 - ISO 10300-2:2001 – Grübchentragfähigkeit, Modellgetriebe ²³⁶

$$\begin{split} S_{H} &= \frac{\sigma_{H \, lim} * \boxed{Z_{NT} * (Z_{L} * Z_{V} * Z_{R}) * Z_{X} * Z_{W}}}{\boxed{Z_{M-B} * Z_{H} * Z_{E} * Z_{LS} * Z_{\beta} * Z_{K}} * \boxed{\sqrt{\frac{F_{mt}}{d_{v1} * l_{bm}} * \frac{u_{v} + 1}{u_{v}}}} * \boxed{\sqrt{K_{A} * K_{V} * K_{H\beta} * K_{H\alpha}}} \\ &= \frac{\sigma_{H \, lim} * A_{ISO}}{B_{ISO} * C_{ISO} * D_{ISO}} = \frac{1500 * 0,847}{379,236 * 1,517 * 1,638} = 1,35 \end{split}$$

Formel 8 - DIN 3991-2:1988 – Grübchentragfähigkeit, Modellgetriebe ²³⁷

$$\begin{split} S_{H} &= \frac{\sigma_{H \text{ lim}} * \boxed{(Z_{L} * Z_{V} * Z_{R}) * Z_{X}}}{\boxed{Z_{B,D} * Z_{H} * Z_{E} * Z_{E} * Z_{\beta} * Z_{K}} * \boxed{\sqrt{\frac{F_{mt}}{d_{v1} * b_{eH}} * \frac{u_{v} + 1}{u_{v}}}} * \boxed{\sqrt{K_{A} * K_{V} * K_{H\beta} * K_{H\alpha}}} \\ &= \frac{\sigma_{H \text{ lim}} * A_{DIN}}{B_{DIN} * C_{DIN} * D_{DIN}} = \frac{1500 * 0,947}{352,721 * 1,632 * 1,6197} = 1,52 \end{split}$$

Formel 9 - AGMA 2003-C10 - Grübchentragfähigkeit, Modellgetriebe ²³⁸

$$\begin{split} S_{H} = & \frac{\sigma_{H \ lim} * \boxed{Z_{NT} * Z_{W} * \sqrt{Z_{I}}}}{\boxed{Z_{E} * Z_{Z} * \sqrt{Z_{X} * Z_{xC}}} * \boxed{\sqrt{\frac{2000 * T_{1}}{b * d_{e1}^{2}}}} * \boxed{K_{\theta} * \sqrt{K_{A} * K_{V} * K_{H\beta}}} \\ = & \frac{\sigma_{H \ lim} * A_{AGMA}}{B_{AGMA} * C_{AGMA} * D_{AGMA}} = \frac{1500 * 0.248}{189.81 * 1.056 * 1.283} = 1.45 \end{split}$$

²³⁶ Vgl. ISO 10300-2:2001, S. 8

²³⁷ Vgl. DIN 3991-2:1988, S. 2f

²³⁸ Vgl. AGMA 2003-C10, S. 9

Teil A

Betrachtet und vergleicht man die Faktoren, die unter dem Buchstaben A zusammengefasst sind, so fällt auf, dass in dem hier gewählten Beispiel einige Faktoren 1 sind und demnach keinen Einfluss auf die errechneten Sicherheiten haben. In der ISO sind dies die Faktoren Z_X und Z_w. Der Größenfaktor wird in der ISO immer gleich 1 gesetzt und der Werkstoffpaarungsfaktor ist 1, da beide Räder aus dem gleichen Werkstoff sind. In der DIN ist der Größenfaktor 1. Dieser Faktor kann für einsatz- und randschichtgehärtete Stähle sowie für nitrierte Vergütungs- und Einsatzstähle beziehungsweise nitrokarburierte Stähle Werte kleiner 1 annehmen. Dies ist allerdings erst bei Normalmodulen größer 10 beziehungsweise größer 7,27 der Fall. Mit einem Normalmodul von 1 liegt dieser Wert deutlich darunter. In der AGMA ist der Werkstoffpaarungsfaktor 1. Auch hier liegt dies am gleichen Werkstoff beider Räder. In der ISO und in der DIN sind der Schmierstofffaktor und der Geschwindigkeitsfaktor, wie erwartet, gleich groß. Der Rauheitsfaktor der DIN ist geringfügig höher, als jener der ISO. Die ISO enthält im Teil A zusätzlich den Lebensdauerfaktor, der die Sicherheit des betrachteten Radpaares um ungefähr 10% reduziert. Auch in der AGMA ist ein Lebensdauerfaktor enthalten, dieser ist allerdings deutlich niedriger als jener in der ISO und verringert die Sicherheit um ungefähr 3%. In der AGMA findet sich in der hier gewählten Zuordnung außerdem der Geometriefaktor in Teil A. Mit einem Wert deutlich unter 1 reduziert dieser Faktor die Sicherheit.

Teil B

Sowohl in der ISO, als auch in der DIN ist der Schrägenfaktor Z_{β} erwartungsgemäß 1. Da die Gesamtüberdeckung kleiner 2 ist, ist in der ISO der Lastanteilfaktor Z_{LS} gleich 1. In der DIN ist der Einzeleingriffsfaktor $Z_{B,D}$ für Ritzel und Rad 1. Für Zahnräder mit Geradverzahnung sollte laut Norm der Einzeleingriffsfaktor $Z_{B,D}$ der DIN gleich groß sein wie der Mittelzonenfaktor Z_{M} der ISO. Durch die unterschiedliche Anzahl an Nachkommastellen bei der Anzeige der Ergebnisse in KISSsoft für die beiden Faktoren lässt sich nicht überprüfen, ob dies bei der Berechnung mit KISSsoft zutrifft. Der Zonenfaktor Z_{H} und der Elastizitätsfaktor Z_{E} nehmen wie erwartet in DIN und ISO den gleichen Wert an. Der Kegelradfaktor Z_{K} hat sowohl in der DIN, als auch in der ISO einen fixen Wert, wobei sich diese Fixwerte voneinander unterscheiden. In der DIN ist der Kegelradfaktor 0,85, in der ISO 0,8. In der DIN verringert der Faktor die Sicherheit also mehr. Es handelt sich um einen empirisch ermittelten Wert. In der DIN befindet

sich in Teil B auch noch der Überdeckungsfaktor Z_{β} , der mit einem Wert kleiner 1 die Sicherheit erhöht. Für die AGMA wurde Teil B ebenfalls der Elastizitätsfaktor Z_E zugeordnet, der den gleichen Wert hat wie in der DIN und in der ISO. Der Zuverlässigkeitsfaktor Z_Z ist 1, da die zulässige Fehlerzahl mit jener übereinstimmt, die den Werkstoffdaten zu Grunde liegt. Der Balligkeitsfaktor Z_{XC} kann nur 2 verschiedene Werte annehmen und nimmt in diesem Beispiel den Wert 2 an, der für nichtballige Zähne vorgesehen ist. Durch die Multiplikation mit dem Größenfaktor Z_X , der für Zahnbreiten unter 12,7mm immer 0,5 ist, ergibt sich ein Wert von 1.

Teil C

In Teil C befinden sich die Belastung, geometrische Abmessungen und in DIN und ISO die Übersetzung. In DIN und ISO unterscheidet sich dieser Teil der Formel nur durch die unterschiedlichen Breiten, die eingesetzt werden. In der ISO wird die Länge der mittleren Berührungslinie I_{bm} eingesetzt, in der DIN die effektive Zahnbreite bezüglich Flankenbeanspruchung b_{eH}. In der DIN wird die effektive Zahnbreite im Allgemeinen mit 85% der Zahnbreite angegeben. In der ISO ist der Wert der mittleren Berührungslinie von der Zahnbreite, der Profilüberdeckung, der Sprungüberdeckung, der Gesamtüberdeckung und dem Schrägungswinkel am Teilkreis abhängig. Im hier gewählten Beispiel ergibt das für DIN und ISO einen Unterschied für Teil C von ungefähr 7%. Der Wert für Teil C der ISO liegt niedriger als jener der DIN. Durch die größere Länge in der ISO wird die Sicherheit stärker erhöht als in der DIN. In der AGMA wird die Last durch das Drehmoment berücksichtigt. Die Geometrie geht über die Zahnbreite und den Teilkreisdurchmesser ein. Der Faktor 2000 und die Quadratur vom Teilkreisdurchmesser dienen der Umrechnung vom Moment in Nm auf die Kraft.

Teil D

Teil D enthält die Lastfaktoren. Der Wert für K_A wurde mit 1,2 für alle drei Normen vorgegeben. Für die DIN und die ISO liegt der Ermittlungsbereich für den Dynamikfaktor K_V im unterkritischen Bereich. Die Ermittlungsformel unterscheidet sich wieder durch die unterschiedliche Berücksichtigung der Zahnbreite. In der DIN wird die effektive Zahnbreite b_{eH} verwendet, in der ISO die Zahnbreite b. Dadurch ergibt sich ein geringerer Dynamikfaktor für die DIN. In der AGMA hängt der Dynamikfaktor von der Umfangsgeschwindigkeit v_{et} und der Qualität des Rades ab. Der so ermittelte Dynamikfaktor ist der kleinste der drei Normen und vermindert den Sicherheitsfaktor damit am geringsten. Da der Breitenfaktor $K_{H\beta}$ in der DIN und der

ISO durch die Multiplikation von 1,5 mit K_{Hβbe} ermittelt wird und dieser Wert in KISSsoft händisch vorgegeben wird, erhält man für DIN und ISO das gleiche Ergebnis, obwohl die Ermittlung von K_{Hβbe} in diesen beiden Normen teilweise nicht deckungsgleich erfolgt. In der AGMA wird der Wert durch eine andere Formel ermittelt und ist deutlich kleiner als in der DIN und ISO. Der Lastaufteilungsfaktor $K_{H\alpha}$ kommt nur in ISO und DIN vor. Die Ermittlungsformeln unterscheiden sich wieder dahingehend, dass in der ISO mit der Zahnbreite b gerechnet wird und in der DIN mit der effektiven Zahnbreite. Der Lastaufteilungsfaktor in der ISO liegt bei 1. Der errechnete Wert für $K_{H\alpha}$ wäre in der ISO der gleiche wie für $K_{F\alpha}$, doch durch die Definition des Grenzwertes für K_{Hα}, muss der ursprüngliche Wert auf den Grenzwert zurückgesetzt werden. In der DIN ist einerseits der Grenzwert anders definiert, andererseits werden die Werte nicht so hoch wie in der ISO. Die AGMA enthält im Unterschied zur DIN und zur ISO zusätzlich einen Temperaturfaktor, der in diesem Modellbeispiel jedoch 1 ist.

5.1.1 Sicherheiten der Zahnfußtragfähigkeit

Formel 10 - ISO 10300-3:2001 – Zahnfußtragfähigkeit, Modellgetriebe ²³⁹

$$S_{F} = \frac{\sigma_{FG}}{\sigma_{F}} = \frac{\sigma_{F \, lim} * \boxed{Y_{ST} * Y_{NT} * Y_{\delta \, rel \, T} * Y_{R \, rel \, T} * Y_{X}}}{\boxed{Y_{Fa} * Y_{Sa} * Y_{\epsilon} * Y_{LS} * Y_{K}} * \boxed{\frac{F_{mt}}{b * m_{mn}}} * \boxed{K_{A} * K_{V} * K_{F\beta} * K_{F\alpha}}}$$

$$= \frac{\sigma_{F \, lim} * E_{ISO}}{F_{ISO} * G_{ISO} * H_{ISO}} = \frac{430 * 1,681}{2,921 * 40 * 3,007} = 2,05$$

Formel 11 - DIN 3991-3:1988 – Zahnfußtragfähigkeit, Modellgetriebe ²⁴⁰

$$\begin{split} S_{F} &= \frac{\sigma_{FG}}{\sigma_{F}} = \frac{\sigma_{F \, lim} * \boxed{Y_{ST} * Y_{\delta \, rel \, T} * Y_{R \, rel \, T} * Y_{X}}}{\boxed{Y_{Fa} * Y_{Sa} * Y_{\epsilon} * Y_{\beta} * Y_{K}} * \boxed{\frac{F_{mt}}{b_{eF} * m_{mn}}} * \boxed{K_{A} * K_{V} * K_{F\beta} * K_{F\alpha}}} \\ &= \frac{\sigma_{F \, lim} * E_{DIN}}{F_{DIN} * G_{DIN} * H_{DIN}} = \frac{430 * 1,908}{2,921 * 47,059 * 2,623} = 2,27 \end{split}$$

²³⁹ Vgl. ISO 10300-3:2001, S. 7ff ²⁴⁰ Vgl. DIN 3991-3:1988, S. 2f

Formel 12 - AGMA 2003-C10 – Zahnfußtragfähigkeit, Modellgetriebe ²⁴¹

$$\begin{split} S_{F} &= \frac{\sigma_{FG}}{\sigma_{F}} = \frac{\sigma_{F \, lim} * \boxed{Y_{NT} * Y_{\beta} * Y_{J}}}{\boxed{Y_{Z} * Y_{X}} * \boxed{\frac{2000 * T_{1}}{b * d_{e1} * m_{et}}} * \boxed{K_{A} * K_{V} * K_{H\beta} * K_{\theta}}} \\ &= \frac{\sigma_{F \, lim} * E_{AGMA}}{F_{AGMA} * G_{AGMA} * H_{AGMA}} = \frac{430 * 0,226}{0,5001 * 27,871 * 1,646} = 4,23 \end{split}$$

Teil E

In DIN und ISO befindet sich in Teil F der Spannungskorrekturfaktor für die Abmessungen des Standardprüfrades Y_{ST} , der immer 2 ist. Der Größenfaktor Y_X ist in DIN und ISO gleich 1, was auf den kleinen Normalmodul des Modellgetriebes zurückzuführen ist. Die relative Stützziffer $Y_{\delta relT}$ und der relative Oberflächenfaktor Y_{RrelT} werden in DIN und ISO gleichermaßen ermittelt und sind dementsprechend in beiden Normen gleich groß. Beide verringern mit Werten knapp unter 1 die Sicherheit. Im Unterschied zur DIN gibt es in ISO und AGMA einen Lebensdauerfaktor Y_{NT} . Der Wert des Lebensdauerfaktors in der ISO verringert die Sicherheit deutlich stärker, als jener in der AGMA. In der AGMA befindet sich außerdem der Schrägenfaktor Y_{β} in Teil E. Dieser ist aufgrund der Geradverzahnung gleich 1. Außerdem findet sich der Geometriefaktor Y_{γ} in Teil E. Mit einem Wert von 0,243 hat dieser einen stark mindernden Einfluss auf die Sicherheit.

Teil F

In der DIN befindet sich, wie auch bei der Sicherheit gegen Grübchenbildung, im Teil F ein Schrägenfaktor Y_{β} . Dieser ist in der ISO nicht vorhanden. Die ISO verfügt über einen Lastanteilfaktor Y_{LS} , der wiederum in der DIN nicht vorkommt. Beide Faktoren sind im gewählten Modellgetriebe 1. Der Kegelradfaktor Y_{K} ist in DIN und ISO vorhanden und in beiden Fällen 1. In der DIN ist dies immer der Fall, in der ISO kann der Faktor auch andere Werte annehmen. Der Formfaktor Y_{Fa} , der Spannungskorrekturfaktor Y_{Sa} und der Überdeckungsfaktor Y_{ϵ} sind in DIN und ISO gleich groß. In der ISO ist die Berechnung des Überdeckungsfaktors im Gegensatz zur DIN von $\epsilon_{V\beta}$ abhängig. Da dieser Wert 0 ist und die Berechnung für diesen Fall gleich erfolgt, kommt es zu keinem Unterschied zwischen DIN und ISO. In der AGMA befindet sich in Teil F der Größenfaktor Y_{X} , der für Räder mit einem äußeren Stirnmodul kleiner 1,6 mit 0,5

²⁴¹ Vgl. AGMA 2003-C10, S. 9f

festgelegt ist. KISSsoft definiert den Wert mit 0,5001. Der Zuverlässigkeitsfaktor Y_Z liegt wie bei der Sicherheit gegen Grübchenbildung bei 1.

Teil G

Die Werte für die Belastung und Geometrie stehen bei der Berechnung der Sicherheit gegen Grübchenbildung nicht mehr unter einer Wurzel. Außerdem sind die Übersetzung und der Zahnraddurchmesser nicht direkt Teil der Berechnungsformel. Stattdessen geht nun der Modul m_{mn} direkt in die Berechnung ein. Wieder unterscheiden sich DIN und ISO nur durch den unterschiedlichen Einsatz der Breite. Die ISO nutzt die Zahnbreite b, die DIN die effektive Zahnbreite b_{eF} . Diese beträgt 85% der gesamten Zahnbreite. Teil G erhöht in der ISO die Sicherheit somit um 15% gegenüber der DIN. Die AGMA nutzt den Stirnmodul m_{et} statt dem Normalmodul m_{mn} für die Berechnung.

Teil H

Die Faktoren für Teil H werden genauso berechnet wie bei der Sicherheit gegen Zahnfußfestigkeit. Da die Werte hier allerdings nicht unter einer Wurzel stehen, ist das Gesamtprodukt von Teil H deutlich niedriger und verringert die Sicherheit deutlich weniger als Teil D bei der Berechnung der Zahnfußfestigkeit.

5.2 Modellgetriebe mit Schrägverzahnung

In den folgenden Tabellen befinden sich die Ergebnisse des Modellgetriebes (0°, links) im Vergleich mit den Ergebnissen des Getriebes mit Schrägverzahnung (15°, Mitte und 35°, rechts). Die Wahl der Winkel erfolgte so, dass die Sprungüberdeckung $\epsilon_{\nu\beta}$ einmal unter und einmal über 1 liegt. Es werden nur jene Werte dargestellt, bei denen es zu Veränderungen kommt.

KISSsoft	Faktor	ISO 10300:2001		DIN 3991:1988			AGMA 2003-C10			
K _V	Dynamikfaktor	1,19	1,2	1,25	1,14	1,14	1,16	1,097	1,098	1,104
K _{Hα}	Lastaufteilungsfaktor	1,00	1,06	1,18	1,02	1,22	1,23	-	-	-
K _{Fα}	Lastaufteilungsfaktor	1,12	1,13	1,18	1,02	1,22	1,23	-	-	-

Tabelle 27 - Lastfaktoren Modellgetriebe schrägverzahnt mit KISSsoft

K	Faktor	ISO 10300:2001		DIN 3991:1988			AGMA 2003-C10			
Z _H	Zonenfaktor	2,49	2,42	2,13	2,49	2,42	2,13	-	-	-
Zı	Geometriefaktor	-	-	-	-	-	-	0,0653	0,0672	0,0733
Z _{M-B}	Mittelzonenfaktor	1,003	1,001	1,000	-	-	-	-	-	-
Zε	Überdeckungsfaktor	-	-	-	0,878	0,843	0,886	-	-	-
Z _β	Spiralwinkelfaktor	1,000	0,983	0,905	1,000	0,983	0,905	-	-	-
Z _L , Z _V , Z _R	Einflussfaktoren der Schmierfilmbildung	1,020 0,991 0,933	1,020 0,992 0,935	1,020 0,996 0,946	1,020 0,991 0,937	1,020 0,992 0,938	1,020 0,996 0,942	-	-	-

Tabelle 28 - Faktoren Grübchentragfähigkeit schrägverzahnt mit KISSsoft

К	Faktor	ISO 10300:2001			DIN 3991:1988			AGMA 2003-C10		
Y _{Fa}	Formfaktor	2,49	2,45	2,30	2,49	2,45	2,30	-	-	-
Y _{Sa}	Spannungskorrekturfaktor	1,70	1,71	1,80	1,70	1,71	1,80	-	-	-
Υε	Überdeckungsfaktor	0,69	0,63	0,63	0,69	0,69	0,67	-	-	-
Y _K	Kegelradfaktor	1,000	1,001	1,031	1,000	1,000	1,000	-	-	-
Y_{β}	Schrägenfaktor	-	-	-	1,00	0,94	0,75	1,000	1,000	1,000
$Y_{\delta relT}$	Relative Stützziffer	0,997	0,997	1,000	0,997	0,997	1,000	-	-	-
YJ	Geometriefaktor	-	-	-	-	-	-	0,243	0,247	0,235

Tabelle 29 - Faktoren Zahnfußfestigkeit schrägverzahnt mit KISSsoft

KISSsoft	ISO 10300:2001			DIN 3991:1988			AGMA-C10		
Grübchentragfähigkeit S _H	1,35	1,41 (+ 4,4%)	1,80 (+ 33%)	1,52	1,57 (+ 3,3%)	2,18 (+ 43%)	1,45	1,51 (+ 4%)	1,81 (+ 25%)
Zahnfußtragfähigkeit S _F	2,05	2,33 (+ 14%)	2,50 (+ 22%)	2,27	2,13 (- 6%)	3,23 (+ 42%)	4,23	4,56 (+ 7,8%)	5,71 (+ 35%)

Tabelle 30 - Sicherheiten schrägverzahnt mit KISSsoft

Die Ausführung des Modellgetriebes als schrägverzahntes Modell hat auf sehr viele Faktoren einen Einfluss. Dieser Einfluss ergibt sich oft nicht dadurch, dass β direkt in den Formeln enthalten ist, sondern durch die Veränderung der Geometrie, der Lastverteilung oder der Um-

fangsgeschwindigkeit. In DIN und ISO werden weit mehr Faktoren beeinflusst als in der AGMA. In der AGMA hängt der Dynamikfaktor K_V von der Geschwindigkeit am Teilkegel v_{et} ab, die durch die veränderte Geometrie beeinflusst wird. In DIN und ISO hat die Änderung des Dynamikfaktors im Vergleich mit den anderen veränderten Faktoren einen eher geringen Einfluss auf das Gesamtergebnis. Der Einfluss der Lastaufteilungsfaktoren $K_{H\alpha}$ und $K_{F\alpha}$ auf die Sicherheiten ist hier deutlich größer. Dies ist einerseits auf die Änderung der Gesamtüberdeckung ϵ_{vv} zurückzuführen, aber auch auf die veränderte Nennumfangskraft am Teilkreis F_{mt} . Die Unterschiede in den Absolutwerten kommen durch die Nutzung von b in der ISO und b_{eH} in der DIN zustande. Betrachtet man die Lastaufteilungsfaktoren genauer, so fällt auf, dass $K_{H\alpha}$ bei Berechnung nach ISO einen anderen Wert annimmt als $K_{F\alpha}$. Dies ist darauf zurückzuführen, dass der errechnete Wert über dem zulässigen Grenzwert liegt und deshalb mit diesem gleich gesetzt werden muss. Die Grenzwertermittlung erfolgt in der DIN unter anderem mit dem Überdeckungsfaktor Z_{E} , in der ISO im Gegensatz dazu jedoch mit dem Lastanteilfaktor Z_{LS} . Dadurch erhöht sich der Lastaufteilungsfaktor $K_{H\alpha}$ in der ISO bei $\beta=15^\circ$ um lediglich 6%, während er sich für die DIN um fast 20% erhöht.

Der Einfluss der Winkeländerung auf den Zonenfaktor Z_H ist in DIN und ISO gleich. Der Schrägungswinkel geht direkt in die Berechnung des Zonenfaktors ein. In den Geometriefaktor Z_I der AGMA geht der Schrägungswinkel direkt, durch die veränderten geometrischen Verhältnisse aber auch indirekt ein. In der ISO kommt der Mittelzonenfaktor Z_{M-B} zur Anwendung. Im Gegensatz zum Einzeleingriffsfaktor Z_{B,D} in der DIN variiert dieser je nach Sprungüberdeckung. Die Unterschiede der ermittelten Werte sind für das hier gewählte Beispiel allerdings sehr gering. Die DIN verfügt im Gegensatz zu den beiden anderen Normen über einen Überdeckungsfaktor Z_ε. Die Ermittlungsformel für diesen hängt von der Sprungüberdeckung ab. Da die Sprungüberdeckung für β = 15° kleiner 1 ist und für β = 35° größer 1 kommen zwei unterschiedliche Ermittlungsformeln zum Einsatz. Dadurch steigt der Wert für den Überdeckungsfaktor bei einem Schrägungswinkel β = 15°, aber sinkt bei β = 35°. Der Spiralwinkelfaktor Z_{β} enthält den Schrägungswinkel β direkt und unterliegt bei einem Winkel von β = 35° einer Erhöhung um 10%. Die Veränderung der Einflussfaktoren der Schmierfilmbildung ist gering. Z_V ist von der Umfangsgeschwindigkeit v_{mt} abhängig, die sich durch die neue Geometrie geringfügig ändert. Bei der Ermittlung von Z_R verändert sich der relative Krümmungsradius.

Der Formfaktor Y_{Fa} und der Spannungskorrekturfaktor Y_{Sa} verändern sich in DIN und ISO gleichermaßen. Die Zahnfußdicke verändert sich dabei stärker als der Biegehebelsarm und hat damit mehr Einfluss auf die Veränderung der beiden Faktoren. Bei Ermittlung des Überdeckungsfaktors Y_ε wird in der ISO in verschiedene Bereiche unterschieden, die durch den Wert der Sprungüberdeckung $\varepsilon_{\nu\beta}$ definiert sind. Für die DIN ist dies nicht der Fall, sie verwendet immer die gleiche Formel. Der Faktor verringert sich in der ISO um ungefähr 8,5%, in der DIN jedoch nur um ungefähr 3%. In der DIN wird der Kegelradfaktor Y_k immer mit 1 angenommen, die ISO gibt hingegen eine Berechnungsformel an. Für den Schrägenwinkel β = 15° ist die Veränderung der projektierten mittleren Berührlinienlänge I'bm noch gering, während diese bei β = 35° sehr deutlich abnimmt, was sich auch in einem höheren Kegelradfaktor Y_K in der ISO wiederspiegelt. Die Veränderung entspricht einer Verringerung des Faktors um 3%. Die DIN verfügt wie die AGMA auch über einen Schrägenfaktor Y_β. Die Ermittlung unterscheidet sich allerdings deutlich. Der Schrägenfaktor Y_{β} der AGMA wird 1 gesetzt, weil der eigentlich errechnete Wert kleiner als 1 ist. Das heißt, der Schrägenfaktor Y_β wird in der AG-MA ausschließlich zur Erhöhung der Sicherheit eingesetzt. In der DIN ist dies auch der Fall. Da hier der Faktor jedoch unter dem Bruch steht wird vorausgesetzt, dass dieser einen Wert \leq 1 annimmt. In der DIN ist vorgegeben, dass die Sprungüberdeckung $\epsilon_{\nu\beta}$ 1 zu setzen ist, falls der Wert des zu berechnenden Getriebes größer ist. Auch der Winkel β geht mit maximal 30° ein. Im hier gewählten Beispiel liegen sowohl Sprungüberdeckung als auch der Winkel β über den maximal berücksichtigten Werten. Der Schrägenfaktor Y_{β} nimmt mit 0,75 also der kleinstmögliche Wert an. Dieser Faktor verringert sich um 15% gegenüber dem Modellgetriebe. Der Wert für die relative Stützziffer YorelT erhöht sich nur geringfügig, die Werte sind für DIN und ISO gleich. Der Geometriefaktor Y_J der AGMA wird bei β = 15° größer und bei β = 35° geringer.

Für die unterschiedlichen Schrägungswinkel ergeben sich deutliche Unterschiede für die Sicherheiten der verschiedenen Normen. Dies ist auch darauf zurückzuführen, dass β direkt und indirekt in viele verschiedene Faktoren eingeht. Interessant ist, dass die Sicherheit der Zahnfußtragfähigkeit für die DIN für β = 15° um 6% sinkt und diese damit die einzige Norm ist, die in diesem Fall eine negative Auswirkung des Schrägungswinkels auf die Sicherheit sieht. Für β = 35° ergibt sich im Normenvergleich für die DIN wiederum die stärkste Erhöhung der Sicherheit. In der AGMA ist deutlich zu sehen, dass die Veränderung der Sicherheit maßgeblich auf die Veränderung des Geometriefaktors zurückzuführen ist. Der

Schrägenfaktor Y_{β} hat keinen Einfluss auf die Sicherheit. Die ISO bewertet den positiven Einfluss des Schrägungswinkels β = 35° auf die Sicherheit der Grübchentragfähigkeit deutlich stärker als auf die Sicherheit der Zahnfußtragfähigkeit. Für β = 15° ist dies noch umgekehrt.

5.3 Modellgetriebe mit veränderter Breite

In den folgenden Tabellen befinden sich die Ergebnisse des Modellgetriebes (7mm, links) im Vergleich mit den Ergebnissen des Getriebes mit verringerter Breite b (5,95mm, rechts). Dieser Wert wurde gewählt, da er 85% des ursprünglichen Wertes darstellt. In der DIN wird mit der effektiven Breite b_{eH} gerechnet, diese beträgt im Modellgetriebe 85% der Zahnbreite b. Es werden nur jene Werte dargestellt, bei denen es zu Veränderungen kommt.

KISSsoft	Faktor	ISO 103	00:2001	DIN 39	91:1988	AGMA 2003-C10		
K _V	Dynamikfaktor	1,19	1,17	1,14	1,13	1,097	1,096	
$K_{H\alpha}$	Lastaufteilungsfaktor	1,00	1,00	1,02	1,03	-	-	
$K_{F\alpha}$	Lastaufteilungsfaktor	1,12	1,13	1,02	1,03	-	-	

Tabelle 31 - Lastfaktoren mit veränderter Breite mit KISSsoft

KISSsoft	Faktor	ISO 103	00:2001	DIN 399	91:1988	AGMA 2	003-C10
Zı	Geometriefaktor	-	-	-	-	0,0653	0,0687

Tabelle 32 – Faktoren Grübchentragfähigkeit mit veränderter Breite mit KISSsoft

KISSsoft	Faktor	ISO 103	00:2001	DIN 399	91:1988	AGMA 2	003-C10
YJ	Geometriefaktor	-	-	-	-	0,243	0,256

Tabelle 33 - Faktoren Zahnfußtragfähigkeit mit veränderter Breite mit KISSsoft

KISSsoft	ISO 103	00:2001	DIN 39	91:1988	AGMA-C10		
Grübchentragfähigkeit S _H	1,35	1,25 (-7,5 %)	1,52	1,4 (-7,9 %)	1,45	1,33 (-8,3 %)	
Zahnfußtragfähigkeit S _F	2,05	1,76 (-14 %)	2,27	1,94 (-14,5 %)	4,23	3,6 (-14,9%)	

Tabelle 34 – Sicherheiten mit veränderter Breite mit KISSsoft

Eine Verringerung der Zahnbreite um 15% sorgt bei den Sicherheiten der Zahnfußtragfähigkeit zu einer annähernd gleich großen Reduktion eben dieser. Die Sicherheiten gegen Grübchentragfähigkeit werden deutlich weniger vermindert. In der AGMA verändern sich durch eine modifizierte Breite die Geometriefaktoren und der Dynamikfaktor K_V. In DIN und ISO kommt die Breite neben dem direkten Eingang in die Formel nur in den Lastfaktoren zum Tragen. Hier haben sie einen Einfluss auf den Dynamikfaktor und die Lastaufteilungsfaktoren. Diese Einflüsse sind jedoch deutlich geringer als der direkte Einfluss durch die Breite in der Ermittlungsformel.

5.4 Modellgetriebe mit verändertem Werkstoff

In den folgenden Tabellen befinden sich die Ergebnisse des Modellgetriebes (18CrNiMo7-6 einsatzgehärtet, links) im Vergleich mit den Ergebnissen des Getriebes mit geänderten Werkstoffen (34CrNiMo-6 brenn/ind. gehärtet, Mitte und EN-GJS-700-2 (GGG 70), unbehandelt rechts). Die ersten beiden Werkstoffe verfügen über ähnliche zulässige Spannungen (σ_{Flim} = 430 N/mm², σ_{Hlim} = 1500 N/mm² links und σ_{Flim} = 370 N/mm², σ_{Hlim} = 1180 N/mm² Mitte) und über die gleiche gemittelte Rauhtiefe im Zahnfuß und an der Zahnflanke. Die zulässigen Spannungen des dritten Werkstoffes liegen unter den anderen beiden (σ_{Flim} = 220 N/mm², σ_{Hlim} = 620 N/mm² rechts). Die gemittelte Rauhtiefe in Zahnfuß und Zahnflanke wurde für die bessere Vergleichbarkeit als gleich angenommen. Es werden nur jene Werte dargestellt, bei denen es zu Veränderungen kommt.

KISSsoft	Faktor	IS	0 10300	0-2	D	IN 3991	L- 2	AGN	1A 2003	3-C10
K _V	Dynamikfaktor	1,19	1,19	1,15	1,14	1,14	1,11	1,097	1,097	1,097
$K_{H\alpha}$	Lastaufteilungsfaktor	1,00	1,00	1,00	1,02	1,02	1,00	-	-	-
$K_{F\alpha}$	Lastaufteilungsfaktor	1,12	1,12	1,06	1,02	1,02	1,00	-	-	-

Tabelle 35 - Lastfaktoren mit verändertem Werkstoff mit KISSsoft

К	Faktor	IS	O 10300	-2	D	IN 3991	-2	AGN	1A 2003	-C10
Z_{E}	Elastizitätsfaktor	189,81	189,81	174,08	189,81	189,81	174,08	189,81	189,81	174,08
Z_L Z_V Z_R	Einflussfaktoren der Schmierfilmbildung	1,020 0,991 0,933	1,020 0,991 0,930	1,038 0,981 0,878	1,020 0,991 0,937	1,020 0,991 0,934	1,038 0,981 0,885	-	-	-

Tabelle 36 - Faktoren Grübchentragfähigkeit mit verändertem Werkstoff mit KISSsoft

К	Faktor	IS	ISO 10300-2		D	DIN 3991-2			AGMA 2003-C10		
$Y_{\delta relT}$	Relative Stützziffer	0,997	0,997	0,990	0,997	0,997	0,990	-	-	-	

Tabelle 37 - Faktoren Zahnfußtragfähigkeit mit verändertem Werkstoff mit KISSsoft

KISSsoft	ISO 10300:2001			DI	DIN 3991:1988			AGMA-C10	
Grübchentragfähigkeit S _H	1,35	1,06 (-21,5%)	0,58 (- 57%)	1,52	1,19 (-21,7%)	0,67 (- 56%)	1,45	1,14 (-21%)	0,65 (- 55%)
Zahnfußtragfähigkeit S _F	2,05	1,77 (-14%)	1,14 (- 44%)	2,27	1,95 (-14,1%)	1,21 (-47%)	4,23	3,64 (-14%)	2,17 (- 49%)

Tabelle 38 – Sicherheiten mit verändertem Werkstoff mit KISSsoft

Die Reduktion der Sicherheiten des zweiten Werkstoffes gegenüber dem ersten Werkstoff entspricht fast genau der Reduktion der zulässigen Spannungen. So wird σ_{Flim} um 14% verringert und σ_{Hlim} um 21,3%. Von den Einflussfaktoren ändert sich lediglich der Rauheitsfaktor Z_R . Betrachtet man die Reduktion der zulässigen Spannungen vom dritten gegenüber dem

ersten Werkstoff so sieht man, dass σ_{Flim} um 48,8% und σ_{Hlim} um 58,7% verringert wurde. In der AGMA wurde bei Berechnung der Zahnfußtragfähigkeit kein Faktor verändert. Die Änderung der Sicherheit entspricht dadurch fast der Verringerung der zulässigen Zahnfußpannung σ_{Flim} . Da es in DIN und ISO neben einer Änderung der relativen Stützziffe $Y_{\delta relT}$, auch zu Änderungen bei den Lastfaktoren kommt, stimmen die prozentuellen Veränderungen der Sicherheiten der Zahnfußtragfähigkeit nicht genau überein. Gleiches gilt für die Sicherheiten der Grübchentragfähigkeit. In der AGMA verändert sich bei der Berechnung der Grübchentragfähigkeit nur der Elastizitätsfaktor. Dadurch stimmt auch hier die prozentuelle Änderung der zulässigen Flankenspannung nicht genau mit der prozentuellen Änderung der Grübchentragfähigkeit überein.

5.5 Modellgetriebe mit veränderter gemittelter Rauhtiefe

In der folgenden Tabelle befinden sich die Ergebnisse des Modellgetriebes (R_{ZH} = 4,8 μ m und R_{ZF} = 20 μ m, links) im Vergleich mit den Ergebnisses eines Getriebes mit geänderte Rauhtiefe (R_{ZH} = 9,6 μ m und R_{ZF} = 30 μ m, rechts). Die Rauhtiefe an der Flanke wurde verdoppelt, jene im Fuß um die Hälfte erhöht.

KISSsoft	Faktor	ISO 10	0300-2	DIN 3991-2		AGMA 2003-C10	
	Cinfluentalitaran dar	1,020	1,020	1,020	1,020		
Z_L, Z_V, Z_R	Einflussfaktoren der	0,991	0,991	0,991	0,991	-	-
Schmierfilmbildung	0,933	0,883	0,937	0,886			

Tabelle 39 - Faktoren Grübchentragfähigkeit mit veränderter gemittelter Rauhtiefe mit KISSsoft

К	Faktor	ISO 103	300:2001	DIN 399	1:1988	AGMA 2	003-C10
Y _{RrelT}	Relativer Oberflächenfaktor	0,957	0,928	0,957	0,928	-	-

Tabelle 40 – Faktoren Zahnfußtragfähigkeit mit veränderter gemittelter Rauhtiefe mit KISSsoft

KISSsoft	ISO 103	00:2001	DIN 3991:1988		38 AGMA-C10	
Grübchentragfähigkeit S _H	1,35	1,28 (- 5,2 %)	1,52	1,43 (- 5,9 %)	1,45	1,45
Zahnfußtragfähigkeit S _F	2,05	1,99 (- 3 %)	2,27	2,2 (- 3 %)	4,23	4,23

Tabelle 41 – Sicherheiten mit veränderter gemittelter Rauhtiefe mit KISSsoft

Betrachtet man die Sicherheiten fällt sofort auf, dass sich die Sicherheiten für die AGMA nicht verändern. Es wird auch keiner der Faktoren beeinflusst. Die Reduktion der Sicherheiten für die Berechnung nach DIN und ISO bewegt sich jeweils in ähnlichen Größenordnungen. Für die Zahnfußtragfähigkeit ist die prozentuelle Änderung genau gleich groß, da auch die Änderung des relativen Oberflächenfaktors Y_{RrelT} in der DIN und der ISO gleich groß ist.

Der Rauheitsfaktor Z_R unterliegt bei der Berechnung Unterschieden. Dadurch sind auch die prozentuellen Änderungen der Grübchentragfähigkeit geringfügig anders.

5.6 Modellgetriebe mit veränderter Temperatur

In den folgenden Tabellen befinden sich die Ergebnisse des Modellgetriebes (70°C, links) im Vergleich mit den Ergebnissen des Getriebes mit erhöhter Öltemperatur (140°C, rechts). Es werden nur jene Werte dargestellt, bei denen es zu Veränderungen kommt.

KISSsoft	Faktor	ISO 103	00:2001	DIN 39	91:1988	AGMA 2	2003-C10
K _θ	Temperaturfaktor	1	-	ı	-	1,00	1,05

Tabelle 42 - Lastfaktoren mit geänderter Temperatur mit KISSsoft

KISSsoft	ISO 10300:2001		DIN 399	91:1988	AGMA-C10	
Grübchentragfähigkeit S _H	1,35	1,35	1,52	1,52	1,45	1,38 (- 4,8 %)
Zahnfußtragfähigkeit S _F	2,05	2,05	2,27	2,27	4,23	4,03 (- 4,7 %)

Tabelle 43 – Sicherheiten mit geänderter Temperatur mit KISSsoft

Die AGMA verfügt im Gegensatz zu DIN und ISO über einen Temperaturfaktor, der es ermöglicht, den Einfluss von Temperaturen über 120°C zu berücksichtigen. Eine Verdoppelung der Temperatur führt zu einer Verringerung der Sicherheiten um ungefähr 5% gegenüber dem Modellgetriebe. DIN und ISO machen keine Angaben dazu in welchem Temperaturbereich die Normen benutzt werden dürfen.

5.7 Modellgetriebe mit veränderter Drehzahl

In den folgenden Tabellen befinden sich die Ergebnisse des Modellgetriebes (5500 U/min, links) im Vergleich mit den Ergebnissen des Getriebes mit erhöhten Drehzahlen (7500 U/min, Mitte und 9500 U/min, rechts). Es werden nur jene Werte dargestellt, bei denen es zu Veränderungen kommt.

KISSsoft	Faktor	ISO 10300-2		DIN 3991-2			AGMA 2003-C10			
K _V	Dynamikfaktor	1,19	1,26	1,33	1,14	1,19	1,24	1,097	1,111	1,123
$K_{H\alpha}$	Lastaufteilungsfaktor	1,00	1,00	1,00	1,02	1,01	1,00	-	-	-
$K_{F\alpha}$	Lastaufteilungsfaktor	1,12	1,10	1,09	1,02	1,01	1,00	-	-	-

Tabelle 44- Lastfaktoren mit veränderter Drehzahl mit KISSsoft

KISSsoft	Faktor	ISO 10300-2		DIN 3991-2			AGMA 2003-C10			
Z _L , Z _V , Z _R	Einflussfaktoren der Schmierfilmbildung	1,020 0,991 0,933	1,020 0,999 0,933	1,020 1,006 0,933	1,020 0,991 0,937	1,020 0,999 0,937	1,020 1,006 0,937	-	-	-
Z _{NT}	Lebensdauerfaktor	0,898	0,890	0,883	-	-	-	0,970	0,952	0,939

Tabelle 45 - Faktoren Grübchentragfähigkeit mit veränderte Drehzahl mit KISSsoft

KISSsoft	Faktor	ISO 10300-2		D	IN 3991	-2	AGMA 2003-C10			
Y _{NT}	Lebensdauerfaktor	0,881	0,876	0,872	-	-	-	0,929	0,924	0,924

Tabelle 46 - Faktoren Zahnfußtragfähigkeit mit veränderter Drehzahl mit KISSsoft

KISSsoft	ISO 10300:2001		DIN	3991:1	988	AGMA-C10			
Grübchentragfähigkeit S _H	1,35	1,31 (-3%)	1,27 (-6%)	1,52	1,50 (-1%)	1,49 (- 2%)	1,45	1,41 (-3 %)	1,38 (- 4,8%)
Zahnfußtragfähigkeit S _F	2,05	1,96 (-4%)	1,88 (-8%)	2,27	2,19 (-3,5%)	2,12 (- 6,6%)	4,23	4,16 (-2%)	4,10 (- 3%)

Tabelle 47 - Sicherheiten mit veränderter Drehzahl mit KISSsoft

Durch die erhöhte Drehzahl ändert sich die Umfangsgeschwindigkeit und dadurch unter anderem der Dynamikfaktor K_V . Erhöht man die Drehzahl auf n=9500 U/min, so gibt KISSsoft für die Berechnung nach ISO 10300 eine Warnung aus, dass K_V sehr hoch ist und die Formeln der Norm deshalb vermutlich ungeeignet sind. Bei Berechnung nach DIN und AGMA ist dies nicht der Fall. In der ISO selbst findet sich kein Hinweis zu den zulässigen Werten des Dynamikfaktors K_V .

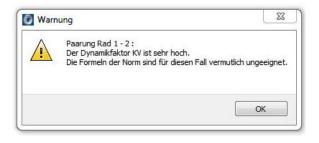


Abbildung 19 - Warnung K_V zu hoch (Quelle: Screenshot KISSsoft 03/2016)

Durch den veränderten Dynamikfaktor kommt es auch zu einer Erhöhung der Lastaufteilungsfaktoren $K_{H\alpha}$ und $K_{F\alpha}$. In der ISO stimmen die Lastaufteilungsfaktoren $K_{H\alpha}$ und $K_{F\alpha}$ nicht überein. Da der berechnete Wert für $K_{H\alpha}$ größer ist als sein zulässiger Grenzwert, wird $K_{H\alpha}$ zu diesem gesetzt. In der DIN wird der Grenzwert nur über die Gesamtüberdeckung $\epsilon_{V\gamma}$ ermittelt. Der Lastaufteilungsfaktor $K_{H\alpha}$ liegt in diesem Fall nicht über dem Grenzwert. Dadurch ergeben sich die gleichen Werte für $K_{H\alpha}$ und $K_{F\alpha}$. Durch die veränderte Drehzahl, ändert sich

auch die Lebensdauer und damit in AGMA und ISO die Lebensdauerfaktoren Z_{NT} und Y_{NT} . Der Geschwindigkeitsfaktor Z_V ändert sich in DIN und ISO in gleicher Weise.

Betrachtet man die ermittelten Sicherheiten, so fällt auf, dass sich diese prozentuell gesehen im Vergleich zur Änderung der Drehzahl wenig verändern. Die Erhöhung der Drehzahl von 5500 U/min auf 9500 U/min, entspricht einer prozentuellen Erhöhung von ungefähr 73%. Die Sicherheiten verringern sich jedoch maximal um 8%. DIN und ISO sehen hier einen größeren Einfluss auf die Sicherheit der Zahnfußtragfähigkeit als die AGMA. Für die Sicherheit der Grübchentragfähigkeit sieht die DIN den geringsten Einfluss durch die veränderte Drehzahl. AGMA und ISO liefern für 7500 U/min den gleichen prozentuellen Einfluss. Bei noch höheren Drehzahlen bewertet die ISO den negativen Effekt auf die Sicherheit der Grübchentragfähigkeit prozentuell höher als die AGMA.

5.8 Modellgetriebe mit veränderter Lebensdauer

In den folgenden Tabellen befinden sich die Ergebnisse des Modellgetriebes (5000h, links) im Vergleich mit den Ergebnissen des Getriebes mit verringerter geforderter Lebensdauer (500h, Mitte und 1h rechts). Es werden nur jene Faktoren dargestellt, bei denen es zu Veränderungen kommt.

KISSsoft	Faktor	ISO 10300:2001		DIN	DIN 3991:1988			AGMA 2003-C10		
Z _{NT}	Lebensdauerfaktor	0,898	0,964	1,462	-	-	1,462	0,970	1,115	1,620

Tabelle 48 – Faktoren Grübchentragfähigkeit mit veränderter Lebensdauer mit KISSsoft

KISSsoft	Faktor	ISO	10300:2	2001	DIN	3991:1	988	AGN	1A 2003	-C10
Y_{NT}	Lebensdauerfaktor	0,881	0,923	1,287	-	-	1,287	0,929	0,968	1,353

Tabelle 49 - Faktoren Zahnfußtragfähigkeit mit veränderter Lebensdauer mit KISSsoft

KISSsoft	ISO 10300:2001			DIN	N 3991:1	988	AGMA-C10		
Grübchentragfähigkeit S _H	1,35	1,45 (+ 7,4%)	2,19 (+ 62%)	1,52	1,52	2,22 (+ 46%)	1,45	1,66 (+ 15%)	2,42 (+ 67%)
Zahnfußtragfähigkeit S _F	2,05	2,15 (+ 4,9%)	3,00 (+ 46%)	2,27	2,27	2,92 (+ 29%)	4,23	4,41 (+ 4,3%)	6,16 (+ 46%)

Tabelle 50 – Sicherheiten mit veränderter Lebensdauer mit KISSsoft

Obwohl in der DIN kein Lebensdauerfaktor vorgesehen ist, gibt KISSsoft für die extrem geringe geforderte Lebensdauer von einer Stunde einen solchen vor. Im Handbuch von KISSsoft und im Berechnungsprotokoll findet sich kein Hinweis auf dieses Vorgehen. Die Veränderung der Lebensdauer wirkt sich nur auf die Lebensdauerfaktoren aus. Hierbei fällt auf, dass der Unterschied zur DIN ohne Lebensdauerfaktor bei extrem niedriger geforderter Lebensdauer

sehr stark ist. Eine Reduktion der geforderten Lebensdauer um 10% erhöht die Sicherheiten um 4,3% - 15%. Die Sicherheit der Grübchentragfähigkeit wird dabei stärker erhöht als jene der Zahnfußtragfähigkeit.

5.9 Modellgetriebe mit verändertem Zuverlässigkeitsfaktor

Der veränderte Zuverlässigkeitsfaktor wurde gewählt, um den Unterschied durch diesen nur in der AGMA vorhandenen Faktor gegenüber den anderen beiden Normen aufzuzeigen. Da KISSsoft keine Möglichkeit bot den Zuverlässigkeitsfaktor zu ändern erfolgte die Berechnung händisch. Es wurden die Werte für eine Zulässigkeit von weniger als einem Fehler in 1000 Fällen gewählt.

KISSsoft	Faktor	ISO 103	00:2001	DIN 399	91:1988	AGMA 2	003-C10
Z _z	Zuverlässigkeitsfaktor	-	-	-	-	-	1,12

Tabelle 51 - Faktoren Grübchentragfähigkeit mit verändertem Zuverlässigkeitsfaktor

KISSsoft	Faktor	ISO 103	00:2001	DIN 399	91:1988	AGMA 2	003-C10
Yz	Zuverlässigkeitsfaktor	-	-	-	-	-	1,25

Tabelle 52 - Faktoren Zahnfußtragfähigkeit mit verändertem Zuverlässigkeitsfaktor

	ISO 10300:2001		DIN 399	91:1988	AGMA-C10	
Grübchentragfähigkeit S _H	1,35	1,35	1,52	1,52	1,45	1,295 (- 10,7 %)
Zahnfußtragfähigkeit S _F	2,05	2,05	2,27	2,27	4,23	3,384 (- 20 %)

Tabelle 53 – Sicherheiten mit verändertem Zuverlässigkeitsfaktor

Da ISO und DIN den Einsatz eines Zuverlässigkeitsfaktors nicht vorsehen kann für diese eine Änderung der Versagenswahrscheinlichkeit nur über die Werkstoffeigenschaften berücksichtigt werden. In der AGMA verringert sich die Sicherheit der Grübchentragfähigkeit um ungefähr 10% und die Sicherheit der Zahnfußtragfähigkeit um 20%.

6 Diskussion der Ergebnisse

6.1 Veränderungen in der ISO gegenüber der DIN

Die Unterschiede zwischen DIN und ISO sind im europäischen Raum wesentlich öfter von Bedeutung als jene zur AGMA. Die AGMA variiert so deutlich von den beiden anderen Normen, dass ein Vergleich schwer möglich ist. Dies könnte ein Grund dafür sein, dass der AGMA 2003-C10 im europäischen Raum so wenig Bedeutung beigemessen wird. Dies zeigt sich schon allein daran, dass FVA Workbench immer noch mit der alten Version AGMA 2003-B97 rechnet und KISSsoft keine Möglichkeit anbietet, den Zuverlässigkeitsfaktor, der ausschließlich in der AGMA vorgesehen ist, zu verändern.

Auf Grund der großen Relevanz der Unterschiede zwischen DIN und ISO werden diese hier noch einmal zusammenfassend diskutiert.

Die DIN und die ISO erscheinen gerade auf den ersten Blick sehr ähnlich, sie unterscheiden sich allerdings in einigen wesentlichen Details. In vielen Punkten kann die ISO als Verbesserung gegenüber der deutlich älteren DIN gesehen werden.

Die unterschiedliche Berücksichtigung der **Zahnbreite** ist wohl jene Abweichung zwischen DIN und ISO, die als erstes ins Auge sticht. Betrachtet man die Berechnungsformeln so zeigt sich, dass der unterschiedliche Eingang der Breite bei der Berechnung der Grübchentragfähigkeit einen geringeren Einfluss hat, als bei der Berechnung der Zahnfußtragfähigkeit.

Analysiert man die Ermittlung des **Dynamikfaktors K**_V, so ist interessant, dass DIN und ISO den Bereich der Hauptresonanz unterschiedlich definieren. In der ISO wird der kritische Bereich größer eingeschätzt als in der DIN. Da die ISO neuer ist als die DIN und in vielen Punkten auf ihr basiert, ist davon auszugehen, dass eine Ausweitung des kritischen Bereichs aktuellen Erfahrungwerten besser entspricht. Ein weiterer Grund könnte der numerischer Unterschied sein, der sich durch den unterschiedlichen Eingang der Zahnbreite ergibt.

Die **Teilungseinzelabweichung** wird in der DIN f_p genannt, während sie in der ISO mit f_{pt} bezeichnet wird. Betrachtet man die Werte in KISSsoft, so fällt auf, dass diese für die Berechnung mit DIN und ISO nicht gleich groß sind. In beiden Normen ist nicht angegeben, wie die

Ermittlung der Teilungseinzelabweichung erfolgt. Diese fehlende Angabe macht eine Abschätzung und Beurteilung der Ursachen des Unterschieds nicht möglich.

Betrachtetet man die Ergebnisse zur Berechnung der Lastaufteilungsfaktoren $K_{H\alpha}$ und $K_{F\alpha}$, so zeigt sich, wie die Wahl von unterschiedlichen Grenzwerten das Ergebnis beeinflussen kann. In der ISO ergeben sich andere Zwischenwerte als in der DIN, da mit der effektiven Zahnbreite gerechnet wird. Darauf wurde auch bei der Definition der maximalen Werte der Lastaufteilungsfaktoren für eine bestimmte Verzahnung Rücksicht genommen. Die in der ISO gewählten Grenzwerte schwächen den sicherheitsmindernden Effekt des Lastaufteilungsfaktors ab. In den verschiedenen Modellvarianten konnten diese Unterschiede numerisch gezeigt werden.

Analysiert man die berechneten Lastaufteilungsfaktoren $K_{H\alpha}$ und $K_{F\alpha}$ genauer, so zeigt sich, dass die Unterschiede dieser Werte im hier gewählten Beispiel maßgeblich von der Teilungs-Einzelabweichung f_{pt} und dem **Einlaufbetrag für die Teilungsabweichung y_{\alpha}** abhängen. Die Teilungs-Einzelabweichung unterscheidet sich in DIN und ISO, verändert sich aber für die unterschiedlichen Werkstoffe nicht. Der Einlaufbetrag für die Teilungsabweichung y_{α} wird für die im Modellgetriebe gewählten Werkstoffe unterschiedlich berechnet. Analysiert man die berechneten Faktoren und ermittelt darüber die verwendete Werkstoffkategorie, findet sich ein Ergebnis, dem man Beachtung schenken sollte. Zum besseren Verständnis sei vorausgeschickt, dass die DIN die Kategorienzuordnungen der Werkstoffe ausführlicher erläutert als die ISO. Die ISO nennt die Kategorien schlicht: 'Vergütungsstähle', 'Grauguss' und 'Einsatzgehärtete und nitrierte Stähle'. Die ersten beiden Werkstoffe, 18CrNiMo7-6 einsatzgehärtet und 34CrNiMo-6 brenn/ind. gehärtet, werden von KISSsoft bei der Ermittlung der Berechnungsformel jeweils in die dritte Kategorie eingeordnet, obwohl der zweite Werkstoff in der Werkstoffdatenbank in der Kategorie Vergütungsstahl geführt wird. Die Zuordnug der Berechnungsformel widerspricht somit den Angaben in der Norm und jenen in KISSsofts eigener Werkstoffdatenbank, da es sich bei 34CrNiMo-6 eindeutig um einen Vergütungsstahl handelt. Der dritte Werkstoff, EN-GJS-700-2 (GGG 70), wird von KISSsoft der ersten Kategorie zugeordnet. Liest man nur in der ISO nach, ist diese Auswahl nicht nachvollziehbar, da es eine eigene Kategorie für Grauguss gibt. In der DIN ist jedoch angeführt, dass die zweite Kategorie für ferritischen Kugelgraphitguss gedacht ist und perlitischer Kugelgraphitguss der

²⁴² Vgl. ISO 10300-1:2001, S. 27ff

²⁴³ Vgl. DIN 3991-1:1988, S. 12ff

ersten Kategorie zuzuordnen ist. Die Normen sind hier uneindeutig, und die Vorgehensweise von KISSsoft ist nicht voll nachvollziehbar. Eine klarere Erläuterung der Kategorisierung wäre hier wünschenswert.^{244,245}

Faktoren der Grübchentragfähigkeit

	Faktor	ISO 10300-2	DIN 3991-2	
Z _H	Zonenfaktor	Х	Х	gleich
Z _{M-B}	Mittelzonenfaktor	Х		Mittelzonenfaktor be-
Z _B , Z _D	Einzeleingriffsfaktor		Х	inhaltet zusätzlich $\epsilon_{ ueta}$
Z _E	Elastizitätsfaktor	Х	Х	gleich
Z _{LS}	Lastanteilfaktor	Х		
Z_{ϵ}	Überdeckungsfaktor		Х	
Z _β	Spiralwinkelfaktor	Х	Х	gleich
Z _K	Kegelradfaktor	X	X	DIN 0,85; ISO 0,8
Z _X	Größenfaktor	Х	Х	ISO fix 1, DIN Formel
Z_L, Z_V, Z_R	Einflussfaktoren der Schmierfilmbildung	Х	Х	Z _R unterscheidet sich
Z _W	Werkstoffpaarungsfaktor	Х		
Z _{NT}	Lebensdauerfaktor	Х		

Tabelle 54 – Zusammenfassung Faktoren Grübchentragfähigkeit ISO und DIN

Der **Mittelzonenfaktor** Z_{M-B} in der ISO und der **Einzeleingriffsfaktor** $Z_{D,B}$ in der DIN erfüllen in der Berechnung grundsätzlich den gleichen Zweck und unterscheiden sich lediglich darin, dass der Mittelzonenfaktor auch den Einfluss der Sprungüberdeckung der Ersatzverzahnung $\varepsilon_{V\beta}$ erfasst. Für die Berechnung mit Geradverzahnung stimmen die Formeln für Z_{M-B} und $Z_{D,B}$ überein. Für das berechnete schrägverzahnte Modellgetriebe zeigt sich, dass der Unterschied zwischen dem Mittelzonenfaktor Z_{M-B} und dem Einzelzonenfaktor $Z_{D,B}$ bei β = 35° mit nur 0,3% sehr gering ausfällt. Die ISO bewertet die Erweiterung des Faktors offensichtlich als eine bessere Abbildung des realen Zustands. Im hier gezeigten schrägverzahnten Beispiel war der Einfluss vernachlässigbar gering.

Die DIN enthält im Gegensatz zur ISO einen **Überdeckungsfaktor Z**_ε. Dieser unterliegt bei der Berechnung der beiden verschiedenen schrägverzahnten Modellgetriebe starken Schwan-

²⁴⁴ Vgl. ISO 10300-1:2001, S. 31ff

²⁴⁵ Vgl. DIN 3991-1:1988, S. 13ff

²⁴⁶ Vgl. ISO 10300-2:2001, S. 10f

²⁴⁷ Vgl. DIN 3991-2:1988, S. 3

kungen. Dies legt nahe, dass dieser Faktor einen schwer abschätzbaren Einfluss haben kann, wenn man verschiedene Getriebe nach beiden Normen auslegen will.²⁴⁸

Für den **Kegelradfaktor Z**_K gibt die DIN an, dass bei geeigneter und angepasster Höhenballigkeit ein Wert von 0,85 gewählt werden soll. In der ISO ist ein Wert von 0,8 vorgesehen, eine geeignete und angepasste Höhenballigkeit ist nicht mehr gefordert. Es wird lediglich darauf verwiesen, dass der Faktor in Ermangelung genauerer Kenntnisse auf diesen Wert gesetzt werden soll. Da in der ISO angegeben ist, dass der Wert 0,8 empirisch ermittelt wurde und diese Norm die neuere darstellt, ist davon auszugehen, dass die Erfahrung gezeigt hat, dass auch ein Faktor mit geringerem Wert zulässig ist. Beide Normen geben keine nähere Auskunft darüber, in welchem Fall und in welcher Art diese Faktoren abzuändern sind. ^{249,250}

Der **Größenfaktor Z**_X wird in der ISO immer gleich 1 gesetzt, somit hat dieser Faktor auf die errechnete Sicherheit keinen Einfluss. Dies ist insofern erstaunlich, da die Norm kurz vor dieser Definition noch angibt, dass der Faktor für Ritzel und Rad getrennt zu bestimmen ist. Außerdem erläutert eine Aufzählung die Haupteinflussgrößen auf den Größenfaktor. Es entsteht der Eindruck, dass der genaue numerische Einfluss verschiedener Faktoren auf den Größenfaktor noch nicht ausreichend erforscht ist, um eine konkrete Berechnungsformel angeben zu können. In der DIN ist die Gewichtung und Größe des Faktors vom Werkstoff abhängig. Der Faktor nimmt nur Werte zwischen 0,75 und 1 an und hat damit ausschließlich einen erhöhenden Einfluss auf die Sicherheit. Die ISO rechnet also auf der sicheren Seite, indem der erhöhende Einfluss auf die Sicherheit vernachlässigt wird. Es hat den Anschein, dass die Ermittlung des Faktors in der DIN sich nicht bewährt hat und die Norm es nicht schafft, die reale Verhältnisse zufriedenstellend zu beschreiben. ^{251,252}

Bei den **Schmierstofffaktoren** ist vor allem eine genauere Betrachtung des **Rauheitsfaktor Z**_R aufschlussreich. DIN und ISO gehen hier bei der Berechnung unterschiedlich vor. Interessant ist dabei, dass die DIN für die Ermittlung des relativen Krümmungsradius eine vereinfachende Annahme trifft und angibt, dass diese dem aktuellen Stand der Wissenschaft entspricht. Die ISO nimmt diese Vereinfachung nicht vor und liefert ein leicht verändertes Berechnungs-

²⁴⁸ Vgl. DIN 3991-2:1988, S. 4

²⁴⁹ Vgl. ISO 10300-2:2001, S. 10

²⁵⁰ Vgl. DIN 3991-2:1988, S. 2

²⁵¹ Vgl. ISO 10300-2:2001, S. 12

²⁵² Vgl. DIN 3991-2:1988, S. 5

verfahren. Es hat den Anschein, dass der aktuelle Wissensstand sich inzwischen verändert hat. Für die DIN wurde die alte Berechnungsmethode dennoch beibehalten. ^{253,254}

Im Gegensatz zur DIN verfügt die ISO über einen **Werkstoffpaarungsfaktor Z**_w. Dieser ermöglicht die Berücksichtigung des tragfähigkeitserhöhenden Einflusses eines deutlich härteren Rades auf ein weicheres Rad mit Randschichthärtung. Die ISO gibt auch an, dass noch nicht alle Einflüsse im Berechnungsansatz erfasst werden können, deshalb kommt es zu einer großen Streuung des möglichen Wertebereichs bei Auswahl mithilfe des Diagramms. Hier zeigt sich wieder der große Nachteil von Berechnungssoftware. Diese kann nur mit eindeutigen Formeln rechnen. Hier besteht die Gefahr, dass Anwender, die Berechnungssoftware nutzen, den Hinweis aus der Norm, dass die Gerade nicht als unveränderlicher Absolutwert gesehen werden sollte, nicht kennen und nicht berücksichtigen können. Diese Information geht im Falle mangelnder Kenntnis der Norm bei der Implementierung verloren, falls die Entwickler nicht mit einem Hinweis daran erinnern. ²⁵⁵

Die Tatsache, dass die DIN keine **Lebensdauerfaktoren Z**_{NT} und **Y**_{NT} anbietet, stellt einen der größten Unterschiede zwischen den Normen dar. Die DIN gibt zu Beginn der Berechnung an, dass sie nur für Berechnungen im Dauerfestigkeitsbereich konzipiert ist. Für eine Berechnung im Zeitfestigkeitsbereich wird auf die Vorschriften in DIN 3990 Teil 1 bis 4 verwiesen. Es wird allerdings nicht weiter angegeben, wie diese Berechnungsvorschriften auf Kegelräder umgelegt werden können.²⁵⁶ ISO und AGMA erlauben Berechnungen im Zeitfestigkeitsbereich. Der Lebensdauerfaktor ist primär dazu da, die Sicherheit im Zeitfestigkeitsbereich zu erhöhen. Es kommt aber auch zu einem reduzierenden Einfluss auf die Sicherheit bei sehr hohen Lastwechselzahlen. Dieser Einfluss fällt jedoch geringer aus als der erhöhende Einfluss im Bereich der Zeitfestigkeit. Der fehlende Lebensdauerfaktor stellt in der DIN also meist eine Rechnung auf der sicheren Seite dar. Doch auch negative Einflüsse werden dadurch nicht berücksichtigt. Die großen Graubereiche in den Diagrammen der ISO legen nahe, dass in den Bereichen in denen sich der Lebensdauerfaktor mindernd auf die Sicherheit auswirkt, diesem nur schwer eindeutige Werten zugewiesen werden können. Es scheint eine Frage des Forschungsstandes zu sein, ob und wie genau ein Lebensdauerfaktor angeboten werden kann. Durch die fehlende Möglichkeit im Zeitfestigkeitsbereich zu rechnen, schließt die DIN

²⁵³ Vgl. ISO 10300-2:2001, S. 12ff

²⁵⁴ Vgl. DIN 3991-2:1988, S. 7ff

²⁵⁵ Vgl. ISO 10300-2:2001, S. 15

²⁵⁶ Vgl. DIN 3991-1:1988, S. 1

für ihre Anwender ein breites Feld an Berechnungen aus, die in der Realität jedoch benötigt werden. Es ist durchaus möglich, dass es inzwischen genügend Forschungsergebnisse für die Anwendung eines Lebensdauerfaktors gäbe. Die DIN existiert schon sehr lange in unveränderter Form. Dies lässt den Schluss zu, dass es von den Entwicklern vorgezogen wird die Norm unverändert bestehen zu lassen, anstatt neue Erkenntnisse in eine aktuellere Version einfließen zu lassen. Im Modellgetriebe hat der Lebensdauerfaktor in der ISO einen durchaus beachtlichen Einfluss, denn er reduziert die Sicherheiten um ungefähr 10%. Der Einfluss in der AGMA ist deutlich geringer. 257,258

Faktoren der Zahnfußtragfähigkeit

	Faktor	ISO 10300-2	DIN 3991-2	AGMA 2003-C10
V	Formfaktor	V	Х	fast gleich, ISO Geo-
Y_{Fa}	FORTITIAKLOF	X	^	metrie Werkzeug
Y_{Sa}	Spannungskorrekturfaktor	Х	Х	gleich
Υε	Überdeckungsfaktor	Х	Х	ISO beinhaltet
Iε	Oberdeckungstaktor	^	^	zusätzlich $\epsilon_{v\beta}$
Y _K	Kegelradfaktor	Х	Х	DIN = 1, ISO Formel
Y_{LS}	Lastanteilfaktor	Х		
Υ _β	Schrägenfaktor		Х	
$Y_{\delta relT}$	Relative Stützziffer	Х	Х	gleich
Y _{RrelT}	Relativer Oberflächenfaktor	Х	Х	Methode B1 gleich
Y _X	Größenfaktor	Х	X	gleich
Y _{NT}	Lebensdauerfaktor	Х		

Tabelle 55 – Zusammenfassung Faktoren Zahnfußtragfähigkeit ISO und DIN

Die Berechnung des **Formfaktors Y**_{Fa} erfolgt fast deckungsgleich. Es fällt einzig auf, dass die ISO für die Berücksichtigung der Geometrie die Daten des erzeugenden Werkzeugs nutzt, während die DIN auf die Daten des Zahnes zurückgreift. 259,260

Die Formel für den **Überdeckungsfaktor** Y_{ϵ} in der DIN entspricht jener Formel in der ISO, die für $\epsilon_{\nu\beta}$ = 0 angegeben ist. Während die ISO in verschiedene Teilbereiche unterscheidet und eine Berücksichtigung von $\epsilon_{\nu\beta}$ ermöglicht, ist dies bei der rechnerischen Methode in der DIN nicht gegeben. Dies ist insofern interessant, als das Diagramm der grafischen Methode sehr wohl die Möglichkeit bietet, verschiedene Winkel β auszuwählen. Dadurch gehen in der

²⁵⁷ Vgl. ISO 10300-2:2001, S. 16f

²⁵⁸ Vgl. ISO 10300-3:2001, S. 28

²⁵⁹ Vgl. ISO 10300-3:2001, S. 9ff

²⁶⁰ Vgl. DIN 3991-3:1988, S. 3ff

rechnerischen Methode Einflüsse verloren, die mit der grafischen Methode berücksichtigt werden können. Die Werte, die sich bei einer grafischen Ermittlung ergeben, unterscheiden sich vor allem bei kleinen Werten für die Profilüberdeckung $\epsilon_{\nu\alpha}$ deutlich von jenen, die mit der Berechnungsformel ermittelt werden. In der DIN ist in der Ermittlungsformel eine Abhängigkeit von $\epsilon_{\nu\alpha}$ angegeben, während in der Graphik die Auswahl mit Hilfe von $\epsilon_{\nu\alpha}$ erfolgt. Die Umsetzung der Berechnung dieses Faktors wirkt in der ISO deutlich stimmiger und eindeutiger als in der DIN. 261,262

Während die DIN noch angibt, dass der **Kegelradfaktor Y**_K nach 'heutigem Stand' gleich 1,0 gesetzt werden kann, gibt es in der ISO dafür eine Berechnungsformel. Hier zeigt sich wieder, dass eine Überarbeitung der Normen es erlaubt, einen erweiterten Wissensstand zu berücksichtigen. Für geradverzahnte Kegelräder ergibt sich in der ISO der Wert 1,0 für den Kegelradfaktor, die Änderung ist also nur für Schrägverzahnungen relevant. 263,264

Die Berechnung des **Größenfaktors Y**_X unterscheidet sich prinzipiell nicht in DIN und ISO. Es unterscheidet sich jedoch, wie ausführlich die Zuordnung der verschiedenen Werkstoffe zu den Berechnungskategorien beschrieben wird. Die ISO macht hier genauere Angaben als die DIN. Es scheint so, als wäre hier eine Uneindeutigkeit festgestellt und überarbeitet worden. 265,266

Lebensdauerfaktor Y_{NT}: siehe Diskussion zu den Lebensdauerfaktoren im Abschnitt Faktoren der Grübchentragfähigkeit.

6.2 AGMA

Die AGMA lässt sich nur schwer mit den beiden anderen Normen vergleichen. Sie hat einen anderen historischen Ursprung und weist deshalb zum Teil große Unterschiede auf. Gerade die Ergebnisse für die Zahnfußsicherheit unterscheiden sich im gewählten Modellgetriebe deutlich von jenen der anderen Normen. Die prozentuellen Änderungen der Sicherheiten bei Variation der Eingabedaten sind hingegen oft ähnlich zu jenen, die mit DIN und ISO errechnet werden. Bei näherer Betrachtung der AGMA zeigt sich, dass viele Berechnungswege gro-

²⁶¹ Vgl. ISO 10300-3:2001, S. 18

²⁶² Vgl. DIN 3991-3:1988, S. 11

²⁶³ Vgl. ISO 10300-3:2001, S. 19

²⁶⁴ Vgl. DIN 3991-3:1988, S. 3

²⁶⁵ Vgl. ISO 10300-3:2001, S. 27

²⁶⁶ Vgl. DIN 3991-3:1988, S. 14f

ße Ähnlichkeiten zu den vereinfachten Ermittlungsmethoden, die in DIN und ISO für verschiedene Faktoren angeboten werden, aufweisen. Als Beispiel seien hier die Ermittlung des Geometriefaktors Y_J und jene des Dynamikfaktors K_V genannt.

Die AGMA stellt die neueste der betrachteten Normen dar und wirkt am kompatibelsten im Umgang mit Berechnungssoftware. Es gibt für alle Berechnungen nur eine Methode und es werden nur wenige uneindeutige Aussagen getroffen.

Ein auffälliger Unterschied der AGMA gegenüber der ISO und der DIN ist, dass bei der Berechnung der Sicherheit der Grübchentragfähigkeit die Übersetzung in der AGMA nicht direkt in die Formel eingeht.

Im Unterschied zu DIN und ISO bietet die AGMA einen **Temperaturfaktor K**₀ an. Durch den Temperaturfaktor ermöglicht die AGMA die Berücksichtigung extremer Temperaturbedingungen. Es gibt allerdings einige Details, die den Faktor wenig praktikabel erscheinen lassen. So ist davon auszugehen, dass bei Öltemperaturen über 120°C die Temperatur im Zahneingriff noch höher ist. Bei diesen Temperaturen kann es jedoch bereits zu Veränderungen der Werkstoffeigenschaften kommen. Darauf weist die AGMA auch ausdrücklich hin. Für Temperaturen unter 0°C bietet die AGMA lediglich Hinweise zur Nutzung, aber keine konkreten Faktoren. Dadurch ist eine Verarbeitung mit dem Computer für diesen Bereich nicht möglich. In ISO 10300 und DIN 3991 werden keine Angaben zu zulässigen Temperaturbereichen gemacht. Es ist davon auszugehen, dass die Angabe der zulässigen Temperaturen für die Werkstoffe und Schmierstoffe in den jeweiligen Normen als ausreichend empfunden wird. Im Modellgetriebe ist der Temperaturfaktor 1, da eine Betriebstemperatur von 70°C für das Öl gewählt wurde.²⁶⁷

Die AGMA verfügt über **keine Schmierstofffaktoren Z_V, Z_L** und **Z**_R. Sie weist lediglich darauf hin, dass die Berechnungsformeln nur gültig sind, wenn das Getriebe ausreichend geschmiert ist. Auf die Verwendung von Faktoren, die den Einfluss verschiedener Schmierungszustände berücksichtigen, wird hier gänzlich verzichtet. Betrachtet man die ermittelten Werte in DIN und ISO, so zeigt sich, dass die Schmierstofffaktoren die Sicherheit um bis zu 15% verringern. Da die AGMA auch nicht angibt, was unter 'ausreichend geschmiert' zu verstehen

²⁶⁷ Vgl. AGMA 2003-C10, S. 22

ist, wird der Nutzer mit diesem Problem allein gelassen. Die Sicherheiten könnten hier trügerisch hoch liegen. ²⁶⁸

Die AGMA bietet die **Lebensdauerfaktoren Z_{NT} und Y_{NT}** nur für karbonisierte Stähle an und verweist darauf, dass diese Daten durch intensive Tests ermittelt wurden. Durch das Fehlen der Möglichkeit der Berechnung mit anderen Werkstoffen, schließt die AGMA eine große Gruppe von Getrieben von einer Betrachtung im Zeitfestigkeitsgebiet aus.²⁶⁹

Die AGMA ermöglicht mit den **Zuverlässigkeitsfaktoren Z**_z und Y_z die Berücksichtigung anderer Versagenswahrscheinlichkeiten als 1% für den Werkstoff. Die DIN definiert von Anfang an, dass die gegebenen Materialwerte für eine Wahrscheinlichkeit von 1% ausgelegt sind. In der ISO 10300 werden keine Aussagen über die Versagenswahrscheinlichkeit der Werkstoffe getroffen. Wie schon für die Lebensdauerfaktoren bietet die AGMA die Nutzung dieses Faktors nur für Stähle an. Es zeigt sich, dass der Fokus der AGMA klar auf Stähle ausgerichtet ist. Dies stellt eine Einschränkung der Nutzbarkeit dar.^{270,271}

6.3 Ungenaue Angaben in den Normen und Umsetzung in den Berechnungsprogrammen

Die Ersteller von Normen sind stets darum bemüht, eindeutige Angaben zu machen. Dennoch finden sich in den Normen immer wieder uneindeutige Aussagen oder sogar Fehler. Die DIN existiert schon sehr lange in unveränderter Form. Dennoch enthält sie Stellen, die definitiv eine Überarbeitung benötigen. Als Beispiel seien hier die großen Unterschiede zwischen der grafischen und der rechnerischen Ermittlung des Überdeckungsfaktors Y_{ϵ} und die uneindeutigen Angaben zur Nutzung der Auswahltabellen für die Nebenfaktoren bei Berechnung des Dynamikfaktors K_V genannt. Auch in den neueren Normen ISO und AGMA gibt es uneindeutigen Aussagen und Fehler. Die Herausgeber von Normen müssen abschätzen, wann der Nutzen einer Erneuerung der Norm die Kosten einer solchen übersteigt.

²⁶⁹ Vgl. AGMA 2003-C10, S. 19ff

²⁶⁸ Vgl. AGMA 2003-C10, S 6

²⁷⁰ Vgl. DIN 3991-1:1988, S. 1

²⁷¹ Vgl. AGMA 2003-C10, S. 23

Die lange unveränderte Existenz einer Norm sorgt dafür, dass viele Erfahrungswerte im Umgang mit ihr existieren. Auch bereits bestehende Berechnungsprogramme müssten bei einer Überarbeitung der Norm verändert werden. ISO und AGMA wurden schon deutlich häufiger erneuert als die DIN. Dadurch konnten Fehler ausgebessert und neue Erkenntnisse der Wissenschaft berücksichtigt werden. Im Umgang mit der DIN existieren dafür sehr viele Erfahrungswerte. Langfristig wäre es erstrebenswert, sich auf eine gemeinsame gültige internationale Norm zu einigen, wie dies schon in vielen Bereichen des Maschinenbaus der Fall ist.

Ungenauigkeiten in der ISO

In DIN und ISO ist kein unterschiedlicher Name für die **gemittelte Rauhtiefe** von Flanke und Fuß vorgesehen, beide werden R_Z genannt. Durch schrittweise Veränderung der Werte zeigt sich, dass KISSsoft wie erwartet bei der Ermittlung des relativen Oberflächenfaktors Y_{RrelT} die Rauhtiefe im Zahnfuß, und bei der Berechnung des Rauheitsfaktors Z_R jenen an der Flanke heranzieht. Um Missverständnisse und Verwechslungen zu vermeiden, wäre eine eindeutige Bezeichnung der geforderten Werte in den Normen vorteilhaft.

Wie bereits in Kapitel 6.1 erläutert, sind die Werkstoffkategorien für die Ermittlung des **Einlaufbetrages für die Teilungsabweichung y** $_{\alpha}$ ungenau erläutert. Die Handbücher von KISSsoft und FVA Workbench geben keinen Hinweis darauf, wie damit umgegangen wird.

In der ISO ist angegeben, dass die Faktoren $Y_{\delta relT}$, Y_{RrelT} und Y_X für Methode B nicht in die Berechnung von Y_{NT} eingeschlossen sind und demgemäß die modifizierten Wirkungen dieser Faktoren auf die begrenzte Lebensdauer beachtet werden müssen. Für Z_{NT} sind die Faktoren Z_L , Z_V , Z_R und Z_W angegeben. In der Berechnung mit KISSsoft zeigt sich, dass sich bei einer Änderung der Lebensdauer ausschließlich die **Lebensdauerfaktoren** ändern. Dies ist besonders deshalb interessant, weil KISSsoft im Berechnungsprotokoll angibt, dass die Werte für die oben genannten Faktoren an die Lastwechselzahl angepasst werden. Die Bemerkung findet sich in Abbildung 20. 272,273

 Bei den Faktoren ZL, ZV, ZR, ZW, ZX, YdrelT, YRrelT, YX wird der aus den Werten f
 ür die Dauerfestigkeit und die statische Festigkeit auf Grund der Lastwechselzahl logarithmisch interpolierte Wert angegeben.

Abbildung 20 - Bemerkung von KISSsoft (Quelle: Screenshot von KISSsoft 03/2016)

²⁷² Vgl. ISO 10300-2:2001, S. 16ff

²⁷³ Vgl. ISO 10300-3:2001, S. 28ff

Ungenauigkeiten in der DIN

Die DIN liefert bei der Ermittlung des **Dynamikfaktors K** $_{V}$ ungenaue Angaben, da zwei verschiedene Auswahltabellen für Nebenfaktoren angeboten werden, aber nicht angegeben ist, wonach entschieden werden soll, welche zu verwenden ist. In der ISO ist hingegen nur eine Tabelle vorhanden. Dies könnte darauf hinweisen, dass hier eine Ungenauigkeit erkannt und überarbeitet wurde.

Die in der DIN gegebene Formel für den Überdeckungsfaktor Y_{ϵ} hängt, im Gegensatz zur grafischen Methode, nicht von β ab. Die Werte, die sich bei einer grafischen Ermittlung ergeben würden, unterscheiden sich deutlich von jenen der rechnerischen Methode. Dadurch hat die Entscheidung, ob die grafische oder rechnerische Methode genutzt wird, vor allem für Schrägverzahnungen mit großem Schrägungswinkel, weitreichende Folgen auf das Ergebnis. Die ISO bietet hier 3 verschiedene Formeln an, die von der Sprungüberdeckung und damit indirekt vom Schrägungswinkel, abhängen. Die Formel für Getriebe ohne Sprungüberdeckung in der ISO stimmt mit der Formel in der DIN fast überein. Die DIN gibt im Erklärungstext an, dass der Überdeckungsfaktor Y_ϵ von $\epsilon_{\nu\alpha}$ und β abhängt. In der Grafik und in der Formel wird allerdings eine Abhängigkeit von $\epsilon_{v\alpha n}$ angegeben, und in der Formel findet sich gar keine Abhängigkeit von β . Die ISO rechnet mit $\epsilon_{v\alpha}$. Das von KISSsoft ermittelte Ergebnis für den Überdeckungsfaktor Y_{ϵ} für das Modellgetriebe ist in DIN und ISO gleich. Es sollte für die Ermittlung der Sicherheiten keine große Rolle spielen, ob die grafische oder rechnerische Methode für die Ermittlung eines Faktors genutzt wurde. Auf Grund der langen Existenz der DIN und ihrer oftmaligen Anwendung ist davon auszugehen, dass diese Unstimmigkeit dem deutschen Normungsinstitut bekannt ist. Trotzdem wurde keine Überarbeitung der DIN vorgenommen. 275,276

Ungenauigkeiten in der AGMA

Bei der Ermittlung des **Geometriefaktors Z**_I, der in der AGMA zum Einsatz kommt, wird zwischen statischer und dynamischer Belastung unterschieden. Die Norm macht allerdings keine Angaben dazu, wie genau zwischen diesen beiden Belastungsarten unterschieden werden soll. Dadurch ergibt sich die Situation, dass die Entwickler von Berechnungssoftware eigene

²⁷⁴ Vgl. DIN 3991-1:1988, S. 8

 $^{^{\}rm 275}$ Vgl. ISO 10300-3:2001, S. 18

²⁷⁶ Vgl. DIN 3991-3:1988, S. 11

Berechnungsregeln einführen müssen. In der Betriebsanleitung zu FVA Workbench befindet sich eine Erklärung wie diese Unterscheidung erfolgt. Das Handbuch von KISSsoft liefert diesbezüglich keine Erläuterung. Für den Nutzer ist also nicht nachvollziehbar, wie mit dieser Tatsache umgegangen wird. 277,278

Bei der Ermittlung des **Balligkeitsfaktors für Pitting Z**xc sind die Angaben in der AGMA ungenau. So wird nicht angegeben wonach entschieden werden soll, wann ein Zahnrad als ausreichend ballig anzusehen ist. Für ungenügend ballige Zähne ist angegeben, dass Zxc 2 oder größer gewählt werden sollte. Es werden keine genaueren Angaben dazu gemacht, wonach die genauen Werte für diesen Fall ausgewählt werden sollen. Bei FVA Workbench führt dies dazu, dass nur zwischen den Werten 1,5 und 2 unterschieden wird. Diese Unterscheidung wird anhand der Angaben des Nutzers getroffen. Für die Ergebnisse des Modellgetriebes zeigt sich, dass der Balligkeitsfaktor für Pitting von KISSsoft mit 2,00 angenommen wird. Der Anwender der Norm wird hier sich selbst überlassen. Gerade für Ingenieure mit wenig Erfahrung stellen solche mangelnden Leitlinien ein Problem dar. Berechnungsprogramme nehmen hier eine Vereinfachung vor, um die ungenauen Angaben zu umgehen. Dies kann nicht im Sinne der Normenersteller sein.^{279,280}

6.4 Berechnungssoftware

6.4.1 Allgemeines

Die Arbeit mit den Normen gemeinsam mit Berechnungssoftware zeigt, dass sich die Anforderungen an Normen verändert haben. Vor der verbreiteten Nutzung von Computern waren Normen darauf ausgelegt, dass ein erfahrener Ingenieur innerhalb einer gewissen Variationsbreite durch seine Erfahrung aus Werten wählen konnte. Durch den Einsatz von Berechnungssoftware hat sich das Anforderungsprofil an die Normen verändert, und es ist essenziell geworden, dass es fixe Berechnungsformeln für die Ermittlung der Faktoren gibt. Die Auswahl aus einem Bereich stellt für Software ein Problem dar. Ungenaue Aussagen in der Norm führen dazu, dass die Entwickler von Software selbst entscheiden müssen, wie diese in Berechnungsregeln umgesetzt werden sollen. Werden diese Entscheidungen in den Handbü-

²⁷⁷ Vgl. AGMA 2003-C10, S. 43

²⁷⁸ Vgl. Klein, 2008, S. 26

²⁷⁹ Vgl. AGMA 2003-C10, S. 17

²⁸⁰ Vgl. Klein, 2008, S. 25

chern nicht genau erläutert oder vom Anwender übersehen, kann dies weitreichende Folgen für den Nutzer haben. Die Ergebnisse werden dadurch intransparent. Durch die Nutzung von Software ist außerdem zu befürchten, dass Ingenieure mit den Originaltexten der Norm weniger vertraut sind und es für sie schwieriger wird, die vom Programm generierten Werte auf Plausibilität zu prüfen.

Von Seiten der Entwickler von Berechnungssoftware sollte darauf geachtet werden, dass in den Berechnungsprotokollen eindeutig erklärt wird, wo Vereinfachungen oder Änderungen gegenüber den Normen vorgenommen wurden. Sind diese nur im Handbuch erläutert, können sie leicht übersehen werden und sind für Ingenieure, die nur das Berechnungsprotokoll erhalten, ohne das zugehörige Programm genauer zu kennen, nicht nachvollziehbar. Es ist schwierig von einem Vorgehen nach einer bestimmten Norm zu sprechen, wenn diese durch ungenaue Angaben verschiedene Ergebnisse ermöglicht. Speziell wenn diese Ungenauigkeiten höhere Sicherheiten ergeben als von der Norm eigentlich vorgesehen sind, kann dieses Vorgehen für den Anwender gefährlich werden. Es liegt in der Verantwortung des Nutzers, darauf zu achten, dass die theoretischen Hintergründe zu den Normen insoweit bekannt sind, dass die Vorgehensweise der Berechnungssoftware auch hinterfragt werden kann. Ist dies der Fall, sind diese ein sehr nützliches Hilfsmittel im Umgang mit Normen.

Dass eine Berechnung mit FVA Workbench nicht möglich war zeigt, wie schwierig es ist, Normen in funktionierende und zuverlässige Programme zu übersetzen.

6.4.2 KISSsoft 03/2016

Mit KISSsoft war eine Berechnung des Modellgetriebes möglich. Es zeigten sich jedoch auch hier einige Unstimmigkeiten und Schwierigkeiten. An einigen Stellen war es sehr aufwändig diese nachzuvollziehen, da die Angaben im Berechnungsprotokoll für manche Bereiche unzureichend waren.

Größenfaktor in der AGMA

KISSsoft macht keine Angaben dazu, warum bei Berechnung nach AGMA laut Protokoll der **Größenfaktor Y**_X = 0,5001 gesetzt wird, obwohl in der Norm der Faktor 0,5 vorgesehen ist. 281

²⁸¹ Vgl. AGMA 2003-C10, S.15

Umgang mit Werkstoffen in KISSsoft

Wie bereits in Kapitel 6.1 erläutert, nimmt KISSsoft bei der Ermittlung des **Einlaufbetrags für die Teilungsabweichung y** $_{\alpha}$ falsche Zuordnungen der Werkstoffkategorie vor. Im Berechnungsprotokoll werden keine Angaben zu den Zuordnungen gemacht. Dies stellt ein großes Problem dar. Es kann nicht erwartet werden, dass jeder Nutzer die Ergebnisse bis ins kleinste Detail nachprüft um herauszufinden, ob die Zuordnung korrekt vorgenommen wurde. Gerade die korrekte Angabe der Werkstoffkategorie in der Werkstoffdatenbank und die spätere abweichende falsche Einordnung sind sehr irreführend. Hier zeigt sich, wie stark die Ergebnisse der Norm mit den Angaben zu den Werkstoffen verknüpft sind. Werkstoffdatenbanken vermitteln hier eine trügerische Sicherheit. Dem Anwender sollte stets bewusst sein, dass dieser Teil der Eingangsdaten nicht nachlässig behandelt werden darf.

Bei der Berechnung der Faktoren der Zahnfußtragfähigkeit mit verschiedenen Werkstoffen ändert sich im Modell nur die **relativen Stützziffer Y**_{6relT}. Ein Unterschied zeigt sich nur für Werkstoff 3. Da der Kerbparameter für alle Werkstoffe gleich groß angegeben wird, ist der Unterschied im Wert der **Gleitschichtbreite \rho'** zu suchen. KISSsoft gibt im Berechnungsprotokoll nicht an, mit welchem Wert gerechnet wurde. Eine Analyse der Ergebnisse zeigt, dass KISSsoft für Werkstoff 1 und 2 mit der gleichen Gleitschichtbreite ρ' rechnet, obwohl es in den Auswahltabellen der DIN und der ISO unterschiedliche Werte für Einsatzstähle und Vergütungsstähle gibt. Der rückgerechnete Wert für die Gleichschichtbreite ρ' liegt zwischen dem Wert der für einsatzgehärtete Stähle angegeben ist und jenem, der für Vergütungsstähle mit $\sigma_{0,2}$ = 1000 N/mm² vermerkt ist. Auch der für Werkstoff 3 gewählte Wert der Gleitschichtbreite ρ' befindet sich nicht in der in den Normen gegebenen Tabelle. KISSsoft gibt keine Auskunft darüber, wie die Ermittlung dieses Wertes erfolgt. Dadurch wird die Nachvollziehbarkeit der Ergebnisse eingeschränkt und die Zuverlässigkeit des Programmes deutlich reduziert. Auch eine Ausgabe des Wertes im Berechnungsprotokoll würde die Transparenz der Ergebnisse erhöhen. ^{282,283}

Die Berechnung des Modellgetriebes mit verschiedenen Werkstoffen nach ISO zeigt, dass KISSsoft für alle drei Werkstoffe die gleichen **Lebensdauerfaktoren** annimmt, obwohl die ISO eindeutig angibt, dass der Wert je nach Werkstoff unterschiedlich zu ermitteln ist.

²⁸² Vgl. ISO 10300-3:2001, S. 23ff

²⁸³ Vgl. DIN 3991-3:1988, S. 11f

Warnung Dynamikfaktor K_V

Für eine Drehzahl von 9500 U/min gibt KISSsoft bei der Berechnung mit der ISO eine Warnung aus, die besagt, dass der Wert für den Dynamikfaktor sehr hoch ist und die Formeln der Norm für diesen Fall vermutlich ungeeignet sind. Die Warnung ist in Abbildung 21 zu sehen. Für die anderen beiden Normen nimmt der Dynamikfaktor niedrigere Werte an und es wird keine Warnung ausgegeben. Die Sicherheiten liegen bei allen 3 Normen im zulässigen Bereich. Ein und dasselbe Getriebe ist somit laut KISSsoft bei der Berechnung nach ISO in der Form nicht zulässig, während es für die DIN und die AGMA keinerlei Probleme gibt. Interessant ist dies insofern, als in der ISO keinerlei Angaben darüber gemacht werden, wie hoch der Dynamikfaktor sein darf. KISSsoft nimmt also einen Eingriff in die Norm vor und weist nicht darauf hin, dass es sich hier um einen programminternen Grenzwert handelt. Hier zeigt sich, dass die Wahl von fixen Grenzwerten durch die Programmentwickler zu unstimmigen Ergebnissen führen kann. Nähere Erklärungen im Berechnungsprotokoll, warum dieser Schritt gewählt wurde, wären hier neben einem Hinweise, dass es sich um einen von KISSsoft gewählten Grenzwert handelt, sehr wünschenswert.

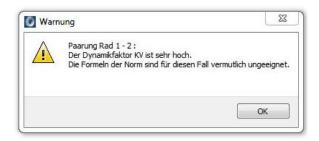


Abbildung 21 - Warnung K_V zu hoch (Quelle: Screenshot KISSsoft 03/2016)

<u>Lebensdauerfaktoren Z_{NT} und Y_{NT}</u>

Verringert man die geforderte Lebensdauer im Modellgetriebe schrittweise, wird immer deutlicher, wie groß der Unterschied der ermittelten Sicherheiten in der DIN zu jenen in ISO und AGMA ist. Die Unterschiede werden für sehr geringe geforderte Lebensdauern so eklatant, dass KISSsoft für die **DIN** einen Lebensdauerfaktor einführt, obwohl dieser in der DIN nicht angegeben oder vorgesehen ist. Daran sieht man deutlich, dass die DIN hier an den real

²⁸⁴ Vgl. ISO 10300-1:2001, S. 17ff

²⁸⁵ Vgl. DIN 3991-1:1988, S. 4ff

²⁸⁶ Vgl. AGMA 2003-C10, S. 12ff

auftretenden Verhältnissen so stark vorbei geht, dass die Entwickler des Programmes Bedarf sahen, in die Berechnung radikal einzugreifen. Das Programm gibt darüber jedoch weder in seinem Handbuch, noch in den Berechnungsprotokollen Auskunft. KISSsoft gibt also an, nach DIN 3991:1988 zu rechnen, obwohl dies nicht der Fall ist. Da es sich hierbei um einen Fall handelt, der die Sicherheit erhöht, ist dieses Vorgehen zusätzlich kritisch zu sehen. Streng genommen müsste eine Fehlermeldung ausgegeben werden, dass eine Berechnung für eine so niedrige Lebensdauer in der DIN nicht vorgesehen ist. Die DIN gibt zwar an, dass für die Berechnung im Zeitfestigkeitsbereich die Berechnungsvorschriften aus der DIN 3990 herangezogen werden können, wie genau diese Implementierung zu erfolgen hat, wird jedoch nicht angegeben.²⁸⁷

Wie bereits erwähnt ist in der ISO ist angegeben, dass die Faktoren $Y_{\delta relT}$, Y_{RrelT} und Y_X für Methode B nicht in die Berechnung von Y_{NT} eingeschlossen sind und demgemäß die modifizierten Wirkungen dieser Faktoren auf die begrenzte Lebensdauer beachtet werden müssen. Für Z_{NT} sind die Faktoren Z_L , Z_V , Z_R und Z_W angegeben. Die ISO gibt aber keine Auskunft darüber wie diese Modifizierung erfolgen soll. KISSsoft gibt im Berechnungsprotokoll zwar an, dass die Werte an die Lastwechselzahl angepasst wurden, die Ergebnisse des Modellgetriebes mit veränderten Lebensdauern zeigen allerdings, dass alle Faktoren bis auf die Lebensdauerfaktoren unverändert bleiben. 288,289

AGMA

Bei der Berechnung nach AGMA gab KISSsoft eine Warnung aus, dass die Werkstoffdaten möglicherweise nicht jenen entsprechen, die in der Norm angegeben sind. Die Warnung ist in Abbildung 22 zu sehen. Um die Vergleichbarkeit der Ergebnisse zu gewährleisten, wurden trotzdem für alle drei Berechnungen dieselben Werkstoffdaten gewählt.

²⁸⁷ Vgl. DIN 3991-1:1988, S. 1

²⁸⁸ Vgl. ISO 10300-2:2001, S. 16ff

²⁸⁹ Vgl. ISO 10300-3:2001, S. 28ff

Wichtiger Hinweis: Bei der Berechnung sind Warnungen aufgetreten:

1-> Rad 1:

Die Werkstoffdaten sat und sac entsprechen möglicherweise nicht den Angaben in AGMA 2001 oder 2101.

2-> Rad 2:

Die Werkstoffdaten sat und sac entsprechen möglicherweise nicht den Angaben in AGMA 2001 oder 2101.

3-> Werkstoffe der KISSsoft-Datenbank entsprechen den Empfehlungen der AGMA2001 (Stimräder). Die Angaben für sat und sac nach AGMA2003 (Kegelräder) sind teilweise unterschiedlich.

Sie können die Werte korrigieren, indem die Werkstoffdaten durch 'Eigene Eingabe' angepasst werden.

Abbildung 22 - Warnung Werkstoff AGMA (Quelle: Screenshot KISSsoft 03/2016)

KISSsoft gibt im Berechnungsprotokoll einen Hinweis aus, dass Z_{NT} nur für karbonisierte Stähle dokumentiert ist. Dieser findet sich in Abbildung 23. Interessant ist dieser Hinweis deshalb, weil diese Tatsache auch für Y_{NT} zutrifft. Für diesen Faktor gibt KISSsoft allerdings keinen Hinweis aus

3-> AGMA2003:

The stress cycle factors CL(ZNT) is documented only for case carburized steels.

The value for case carburized steels is applied here also.

Abbildung 23 - Hinweis AGMA Werkstoff (Quelle: Screenshot von KISSsoft 03/2016)

6.5 Sicherheiten

Zahnfußtragfähigkeit in der AGMA

Betrachtet man die errechneten Sicherheiten für das **Modellgetriebe**, fällt vor allem die hohe Zahnfußtragfähigkeit bei der Berechnung nach AGMA auf. Die Unterschiede der Sicherheiten der Zahnfußtragfähigkeit bei Berechnung nach AGMA zu jenen bei Berechnung nach DIN und ISO sind alarmierend hoch. Diese Ergebnisse bedeuten im Grunde, dass ein und dasselbe Getriebe im amerikanischen Raum völlig überdimensioniert ist, während es nach DIN und ISO gerade 2fache Sicherheit erreicht. Für Getriebehersteller, die international agieren, stellt dies ein großes Problem dar. Außerdem lässt es schwer an der Zuverlässigkeit der AGMA zweifeln. Von einer möglichst genauen Abbildung der Realität kann bei so großen Unterschieden zwischen den Normen nicht die Rede sein. Durch die schwere Vergleichbarkeit zwischen der AGMA und den anderen beiden Normen ist es zusätzlich problematisch, die Gründe für diese unterschiedlichen Ergebnisse abzuschätzen. Die Hauptursache ist vermutlich im Geometriefaktor zu sehen. Die in der AGMA angegebene Formel zur Ermittlung

von Y_J stimmt mit jener überein, die für den gleichnamigen Faktor für die vereinfachte Berechnung nach Methode B2 in ISO 10300-3 angeboten wird. Eine weitere Untersuchung dieser speziellen Ergebnisse wäre ratsam.^{290,291}

Genereller Trend bei Variation

Betrachtet man die Ergebnisse der **variierten Getriebe**, so fällt auf, dass der prozentuelle Unterschied zwischen den berechneten Sicherheiten bei Berechnung nach AGMA meist in einem ähnlichen Bereich liegt wie bei DIN und ISO. Dies trifft nicht auf die Variation bei Ausführung als Schrägverzahnung zu.

Schrägverzahnung

Die AGMA wählt bei der Berücksichtigung des Einflusses des Schrägungswinkels einen völlig anderen Weg als die beiden anderen Normen. Hier verändert sich vor allem der Geometriefaktor. Für die Faktoren der Zahnfußtragfähigkeit fällt auf, dass der **Schrägenfaktor Y** $_{\beta}$ gleich 1 bleibt. Der Schrägenfaktor kann in der AGMA nur Werte größer 1 annehmen, da die Berechnung aber einen Wert darunter ergeben würde, wird der Faktor 1 gesetzt. Die AGMA sieht also für das vorliegende Beispiel keinen sicherheitserhöhenden Effekt durch den Schrägenfaktor. Dies ist ein völlig anderer Ansatz als in der DIN, in der der Schrägenfaktor für β = 35° sogar seinen maximalen Wert annimmt. Die AGMA sieht den sicherheitserhöhenden Effekt durch den Schrägenfaktor Y $_{\beta}$ erst ab einem gewissen Größenunterschied zwischen dem Flugkreisradius des Messerkopfes und der Teilkegellänge. Dieser wird im hier gewählten Beispiel nicht erreicht. 292,293

Generell fällt auf, dass die Änderung der Sicherheiten sowohl innerhalb der Normen als auch zwischen den Normen bei den Varianten mit Schrägverzahnung sehr inhomogen ausfällt. Die DIN sieht für die Sicherheit der Zahnfußtragfähigkeit sogar einen negativen Einfluss des Schrägungswinkels β = 15°. Aus den Ergebnissen kann geschlossen werden, dass eine Ausführung mit Schrägverzahnung tendenziell eher einer Sicherheitserhöhung dienen kann. Durch die vielen verschiedenen Einflüsse auf die Faktoren ist es allerdings schwierig, diese

²⁹⁰ Vgl. AGMA 2003-C10, S. 18f

²⁹¹ Vgl. ISO 10300-3:2001, S. 19

²⁹² Vgl. AGMA 2003-C10, S. 17f

²⁹³Vgl. DIN 3991-3:1988, S. 11

Erhöhung im Vorhinein numerisch abzuschätzen, insbesondere wenn ein Getriebe nach mehreren verschiedenen Normen ausgelegt werden soll.

<u>Variation der Werkstoffe</u>

Bei Veränderung des Werkstoffs entsprechen die prozentuellen Änderungen der Sicherheiten annähernd den prozentuellen Änderungen der zulässigen Spannungen. Die Werkstoffwahl bietet dem Anwender also eine sehr genaue und nachvollziehbare Möglichkeit, die Sicherheiten in die gewünschte Richtung zu verändern. Die Änderung der zulässigen Spannungen hat einen weit größeren Einfluss auf die Sicherheiten, als die sich im Vergleich nur gering verändernden Einflussaktoren. Dies erklärt auch warum die ungenauen Angaben zur Werkstoffkategorisierung und die falsche Zuordnung ebendieser oft unentdeckt bleiben.

Resümee 130

7 Resümee

Der sichere Umgang mit einer Norm und die Einordnung der erzielten Ergebnisse erfordert viel Erfahrung. Eine Norm stellt immer nur einen Versuch dar, reale Verhältnisse mathematisch abzubilden. Dies sollte den Nutzern von Normen stets bewusst sein. Gerade durch den Einsatz von Berechnungssoftware geht bei mangelnder Kenntnis der Grundlagen viel Wissen verloren. Ingenieure, die mit dem Umgang der Norm sehr vertraut sind, wissen an welchen Stellen sie ihr skeptisch gegenüber stehen sollten.

Alle drei betrachteten Normen verfolgen das Ziel einer möglichst zuverlässigen Abschätzung der Tragfähigkeit von Kegelrädern. Dabei hat jede Norm ihre Stärken und Schwächen. Während die DIN den großen Nachteil hat, dass sie keine Berechnung im Zeitfestigkeitsbereich ermöglicht, hat sie den Vorteil, dass sie an vielen Stellen deutlich genauere Angaben macht als die ISO. Die ISO und AGMA wiederum führen Lebensdauerfaktoren ein, die die Berechnung im Zeitfestigkeitsbereich ermöglichen. Die ISO hat jedoch den Nachteil, dass es zu uneindeutigen Aussagen zur Nutzung dieser Faktoren kommt. Die AGMA gibt an, dass nur für karbonisierte Stähle experimentell belegte Lebensdauerfaktoren ausgegeben werden können. Dies schränkt die Anwendung sehr ein. Ein großer Vorteil der AGMA liegt darin, dass sie an die Verarbeitung mit Computern angepasst ist. Die stark abweichenden Ergebnisse der AGMA für die Zahnfußtragfähigkeit lassen allerdings sehr an ihrer Zuverlässigkeit zweifeln.

Bei der Überarbeitung und Aktualisierung von Normen sollte darauf geachtet werden, dass die Berechnungsvorschriften für die Verarbeitung mit Computern eindeutig ausgelegt sind. Trotzdem darf nicht darauf vergessen werden, bei der Ausbildung zukünftiger Ingenieure und Ingenieurinnen darauf zu achten, diesen beizubringen, Normen zu hinterfragen und auf ihre Zuverlässigkeit genau zu prüfen. Ein Berechnungsprogramm sollte immer nur eine Hilfestellung darstellen und nicht dazu dienen, mangelnde Kenntnisse der Grundlagen zu kompensieren.

Literaturverzeichnis 131

8 Literaturverzeichnis

8.1 Bücher

Haberhauer, Bodenstein. Maschinenelemente. Springer-Verlag, Berlin, Heidelberg: 2014

KISSsoft. KISSsoft Release 03/2016 Benutzerhandbuch. KISSsoft AG, Bubikon: 2016

KISSsoft Tutorial. KISSsoft 03/2016 – Tutorial 15 Kegelräder. KISSsoft AG, Bubikon:2016

Klein. FVA Kegelradprogramm KNplus, Benutzeranleitung und Programmdokumentation

für die Benutzung von KNplus in der FVA-Workbench. FVA-Heft Nr. 233. Technische Universi-

tät München, München: 2008

Klingelnberg, Jan. Kegelräder. Springer-Verlag, Berlin, Heidelberg: 2008

Muhs, Wittel, Jannasch, Voßiek. Roloff/Matek Maschinenelemente. Vieweg, Wiesbaden.

2005

Niemann, Winter. Maschinenelemente Band 2. Springer-Verlag, Berlin: 1989

Niemann, Winter. Maschinenelemente Band 3. Springer-Verlag, Berlin: 2005

Schlecht, Berthold. Maschinenelemente 2. Pearson Studium, München: 2010

Stadtfeld, Hermann J., Theorie und Praxis der Spiralkegelräder. im Eigenverlag, New York:

1993

Weigand, Kral, Dencsi. Maschinenelemente. TU Wien, Wien: 2012

8.2 Normen

AGMA 2003-C10:2010, Rating the Pitting Resistance and Bending Strength of Generated Straight Bevel, Zerol Bevel and Spiral Bevel Gear Teeth

DIN 868:1976-12, Allgemeine Begriffe und Bestimmungsgrößen für Zahnräder, Zahnradpaare und Zahnradgetriebe (DIN 868:1976-12)

DIN 3971:1980, Verzahnungen; Bestimmungsgrößen und Fehler an Kegelrädern; Grundbegriffe

DIN 3990:1987, Tragfähigkeitsberechnung von Stirnrädern

Literaturverzeichnis 132

DIN 3991:1988, Tragfähigkeitsberechnung von Kegelrädern ohne Achsversetzung

ISO 6336:2006, Calculation of load capacity of spur and helical gears

ISO 10300:2001, Berechnung der Tragfähigkeit von Kegelrädern

ISO 10300:2014, der Tragfähigkeit von Kegelrädern

ISO 23509:2006 – Bevel and Hypoid Gear Geometry

8.3 Websites

FVA Workbench 4.0 - https://www.fva-service.de/de/software/fva-workbench-40/

KISSsoft 03/2016 - http://kisssoft.ch/deutsch/products/kisssoft.php

ISO Standard - http://www.iso.org/iso/home.html

DIN Normen - http://www.din.de/de/ueber-normen-und-standards/din-norm

9 Abbildungsverzeichnis

Abbildung 1 - Kegelradpaar (Quelle: DIN 868:1976 S.5)5
Abbildung 2 - Veränderliche (links) und konstante (rechts) Zahnhöhe (Quelle: Klingelnberg,
2008, S.12)6
Abbildung 3 - Zahnformen (Quelle: Klingelnberg, 2008, S. 14)6
Abbildung 4 - Definition der Kegelradgeometrie im Achsschnitt (Quelle: ISO 23509:2006)7
Abbildung 5 - Schnitt A-A (Quelle: ISO 23509:2006)8
Abbildung 6 - Definition einer Oktoidenverzahnung (Quelle: Klingelnberg, 2008, S. 28)10
Abbildung 7 – Balligkeit (Quelle: Klingelnberg, 2008, S. 75)11
Abbildung 8 - Ease-Off eines Kegelradflankenpaares (Quelle: Klingelnberg, 2008, S. 89)11
Abbildung 9 - Prinzipskizze eines Helikopterantriebes (Quelle: Klingelnberg, 2008 S.6)13
Abbildung 10 - Einzelteilverfahren und kontinuierliches Herstellverfahren (Quelle:
Klingelnberg, 2008, S. 16)14
Abbildung 11 - Grübchen (Quelle: Klingelnberg, 2008, S. 124)18
Abbildung 12 – Zahnfußbruch (Quelle: Klingelnberg, 2008, S. 121)19
Abbildung 13 - Ersatzverzahnung nach Tredgold (Quelle: DIN 3991-1:1988, S. 17)33
Abbildung 14 - Krümmungsradien zur Ermittlung des Mittelzonenfaktors Z_{M-B} (Quelle: ISO
10300-2:2001, S. 10)51
Abbildung 15 - Lastverteilung im Kontaktgebiet (Quelle: ISO 10300-2:2001, S. 19)52
Abbildung 16 – Zahnprofil des Ersatz-Zylinderrades (Quelle: ISO 10300-3:2001, S.10)63
Abbildung 17 - Aufbau des Kegelrad-Normprogramms KNplus (Quelle: Klein, 2008, S. 2)76
Abbildung 18 – Heckrotorgetriebe (Quelle: Screenshot KISSsoft 03/2016)91
Abbildung 19 - Warnung K _V zu hoch (Quelle: Screenshot KISSsoft 03/2016)108
Abbildung 20 - Bemerkung von KISSsoft (Quelle: Screenshot von KISSsoft 03/2016)120
Abbildung 21 - Warnung K _V zu hoch (Quelle: Screenshot KISSsoft 03/2016)125
Abbildung 22 - Warnung Werkstoff AGMA (Quelle: Screenshot KISSsoft 03/2016)127
Abbildung 23 - Hinweis AGMA Werkstoff (Quelle: Screenshot von KISSsoft 03/2016)127

Formelverzeichnis 134

10 Formelverzeichnis

Formel 1 – ISO 10300-2:2001 – Grübchentragfähigkeit	.23
Formel 2 – ISO 10300-3:2001 – Zahnfußtragfähigkeit	.23
Formel 3 – DIN 3991-2:1988 – Grübchentragfähigkeit	.23
Formel 4 – DIN 3991-3:1988 – Zahnfußtragfähigkeit	.23
Formel 5 – AGMA 2003-C10 – Grübchentragfähigkeit	.24
Formel 6 – AGMA 2003-C10 – Zahnfußtragfähigkeit	.24
Formel 7 - ISO 10300-2:2001 – Grübchentragfähigkeit, Modellgetriebe	.95
Formel 8 - DIN 3991-2:1988 – Grübchentragfähigkeit, Modellgetriebe	.95
Formel 9 - AGMA 2003-C10 – Grübchentragfähigkeit, Modellgetriebe	.95
Formel 10 - ISO 10300-3:2001 – Zahnfußtragfähigkeit, Modellgetriebe	.98
Formel 11 - DIN 3991-3:1988 – Zahnfußtragfähigkeit, Modellgetriebe	.98
Formel 12 - AGMA 2003-C10 – Zahnfußtragfähigkeit, Modellgetriebe	.99

Tabellenverzeichnis 135

11 Tabellenverzeichnis

Tabelle 1 - Erlauterungen zu Abbildung 4 (Quelle: Klingeinberg, 2008, S. 26)	8
Tabelle 2- Erläuterung zu Schnitt A-A (Quelle: Klingelnberg, 2008, S. 26)	9
Tabelle 3 – Festigkeit, Belastung und Geometrie ISO 10300:2001	25
Tabelle 4 - Lastfaktoren ISO 10300:2001	25
Tabelle 5 - Faktoren der Grübchentragfähigkeit ISO 10300:2001	26
Tabelle 6 - Faktoren der Zahfußtragfähigkeit ISO 10300:2001	27
Tabelle 7 - Festigkeit Belastung und Geometrie DIN 3991:1988	28
Tabelle 8 - Lastfaktoren DIN 3991:1988	28
Tabelle 9 - Faktoren der Grübchentragfähigkeit DIN 3991:1988	29
Tabelle 10 - Faktoren der Zahnfußtragfähigkeit DIN 3991:1988	29
Tabelle 11 - Festigkeit, Belastung und Geometrie AGMA 2003-C10	30
Tabelle 12 - Lastfaktoren AGMA 2003-C10	30
Tabelle 13 - Faktoren der Grübchentragfähigkeit AGMA 2003-C10	31
Tabelle 14 - Faktoren der Zahnfußtragfähigkeit AGMA 2003-C10	31
Tabelle 15 – Näherungswerte für Anwendungsfaktor K _A laut DIN 3991:1988, ISO 10	300:2001
und AGMA 2003-C10	37
Tabelle 16 - Dynamikfaktor K _V - Methoden nach ISO 10300:2001	39
Tabelle 17 - Dynamikfaktor K _v - Methoden nach DIN 3991:1988	40
Tabelle 18 - Drehzahlbereich bei der Ermittlung von K _v	43
Tabelle 19 - Faktoren der Grübchentragfähigkeit	48
Tabelle 20 - Faktoren der Zahnfußtragfähigkeit	61
Tabelle 21 - Anwendungsfaktor K_A in FVA Workbench für DIN 3991:1988 und ISO 10	300:2001
	78
Tabelle 22 – Modellgetriebe	92
Tabelle 23 - Lastfaktoren Modellgetriebe mit KISSsoft	94
Tabelle 24 - Faktoren Grübchentragfähigkeit Modellgetriebe mit KISSsoft	94
Tabelle 25 - Faktoren Zahnfußtragfähigkeit Modellgetriebe mit KISSsoft	95
Tabelle 26 - Sicherheiten Modellgetriebe mit KISSsoft	95
Tabelle 27 - Lastfaktoren Modellgetriebe schrägverzahnt mit KISSsoft	101
Tahelle 28 - Faktoren Grühchentragfähigkeit schrägverzahnt mit KISSsoft	101

Tabellenverzeichnis 136

Tabelle 29 - Faktoren Zahnfußfestigkeit schrägverzahnt mit KISSsoft	.101
Tabelle 30 - Sicherheiten schrägverzahnt mit KISSsoft	.101
Tabelle 31 - Lastfaktoren mit veränderter Breite mit KISSsoft	.104
Tabelle 32 – Faktoren Grübchentragfähigkeit mit veränderter Breite mit KISSsoft	.104
Tabelle 33 - Faktoren Zahnfußtragfähigkeit mit veränderter Breite mit KISSsoft	.104
Tabelle 34 – Sicherheiten mit veränderter Breite mit KISSsoft	.104
Tabelle 35 – Lastfaktoren mit verändertem Werkstoff mit KISSsoft	.105
Tabelle 36 - Faktoren Grübchentragfähigkeit mit verändertem Werkstoff mit KISSsoft	.105
Tabelle 37 - Faktoren Zahnfußtragfähigkeit mit verändertem Werkstoff mit KISSsoft	.105
Tabelle 38 – Sicherheiten mit verändertem Werkstoff mit KISSsoft	.105
Tabelle 39 - Faktoren Grübchentragfähigkeit mit veränderter gemittelter Rauhtiefe	mit
KISSsoft	.106
Tabelle 40 – Faktoren Zahnfußtragfähigkeit mit veränderter gemittelter Rauhtiefe	mit
KISSsoft	.106
Tabelle 41 – Sicherheiten mit veränderter gemittelter Rauhtiefe mit KISSsoft	.106
Tabelle 42 - Lastfaktoren mit geänderter Temperatur mit KISSsoft	.107
Tabelle 43 – Sicherheiten mit geänderter Temperatur mit KISSsoft	.107
Tabelle 44- Lastfaktoren mit veränderter Drehzahl mit KISSsoft	.107
Tabelle 45 - Faktoren Grübchentragfähigkeit mit veränderte Drehzahl mit KISSsoft	.108
Tabelle 46 - Faktoren Zahnfußtragfähigkeit mit veränderter Drehzahl mit KISSsoft	.108
Tabelle 47 - Sicherheiten mit veränderter Drehzahl mit KISSsoft	.108
Tabelle 48 – Faktoren Grübchentragfähigkeit mit veränderter Lebensdauer mit KISSsoft	.109
Tabelle 49 - Faktoren Zahnfußtragfähigkeit mit veränderter Lebensdauer mit KISSsoft	.109
Tabelle 50 – Sicherheiten mit veränderter Lebensdauer mit KISSsoft	.109
Tabelle 51 - Faktoren Grübchentragfähigkeit mit verändertem Zuverlässigkeitsfaktor	.110
Tabelle 52 - Faktoren Zahnfußtragfähigkeit mit verändertem Zuverlässigkeitsfaktor	.110
Tabelle 53 – Sicherheiten mit verändertem Zuverlässigkeitsfaktor	.110
Tabelle 54 – Zusammenfassung Faktoren Grübchentragfähigkeit ISO und DIN	.113
Tabelle 55 – Zusammenfassung Faktoren Zahnfußtragfähigkeit ISO und DIN	.116

12 Anhang

| KISSsoft - Release 03/2016 A | KISSsoft - Release 03/2016 A | KISSsoft Academic License - Technische Universität Wien | Datei | Datei | Name | KISSsoft_v0_1 | Geändert von: e0925324 | am: 11.04.2017 | um: 08:42:23

Wichtiger Hinweis: Bei der Berechnung sind Warnungen aufgetreten:

1-> Berechnung des Fressens:

Die eingegebenen Zahnradparameter liegen ausserhalb der Randbedingungen der Rechenmethodel

Für die Anwendung der ISO/TR 13989-2 geltenfolgende Einschränkungen: wBt (=141.3 N/mm) >= 150.0 N/mm

KEGELRAD-BERECHNUNG (KEGELRAD-PAAR)

Zeichnungs- oder Artikelnummer: Rad 1: 0.000.0 Rad 2: 0.000.0

Rechenmethode Kegelräder ISO 10300:2001, Methode B

Geometrieberechnung nach ISO 23509.2006, Methode 0

Standard, Bild 1 (Kopf-, Teil- und Fusskegel-Spitze in einem Punkt)

Bestimmung Kopf- und Fusskegelwinkel entsprechend DIN 3971:1980-fig.1 (abweichend von ISO 23509:2006).

(ISO 10300-1,-2,-3:2001)

Herstellverfahren: geläppt

Keine Bogerwerzahnung

Hinweis: Die Berechnung der Schrägungswinkel aussen und innen entspricht nicht der ISO 23509:2006.

----- RAD 1 ------ RAD 2 -----

Leistung (kW) [P] 2.016 5500.0 Drehzahl (1/min) 5500.0 Drehrichtung Rad 1 auf Kegelspitze gesehen: rechts Drehmoment (Nm) 3.5 3.5 1.20 Anwendungsfaktor **IKAI** Leistungsverteilungsfaktor [Kgam] 1.00 5000.00 Geforderte Lebensdauer [H] Rad treibend (+) / getrieben (-)

Arbeitsflanke Rad 1: Rechte Flanke

1. ZAHNGE OMETRIE UND WERKSTOFF

----- RAD 1 ----- RAD 2 -----Achsversatz (mm) 0.000 [a] Achsenwinkel (°) 90.0000 [Sigma] 1.0000 Normalmodul Mitte (mm) [mmn] Messermodul (mm) 1.00 [m0] 20.0000 Eingriffswinkel im Normalschnitt (*) [alfn] Schrägungswinkel Mitte (*) [betm] 0.0000 Schrägungsrichtung Geradverzahnt Zähnezahl 25 [z] Zahnbreite (mm) [b] 7.00 7.00

Angenommene oder gemessene Tragbildbre	eite (mm)	[be]	5.95	5.95
be/b = 0.850		10.1004	74051 6	
Verzahnungsqualität		[Q-IS01]	7485] 6	6
Innendurchmesser Radkörper (mm)		[di]	0.000	0.000
Teilkegelspitze zu Innenseite Rohling (mm)		[yi]	11.372	11.372
Teilkegelspitze zu Aussenseite Rohling (mm)	[yo]	16.987	16.987
V-Verlagerung (E) (µm)	[DeltaV]		0.000	
H-Verlagerung (P) (µm)	[DeltaH]		0.000	
J-Verlagerung (G) (µm)	[DeltaJ]		0.000	
Werkstoff				
Rad 1: 180	rNiMo7-6. Eir	nsatzstahl e	einsatzgehärtet	
			있는 경영 - (2011년) 이번 - 기원	5HRC Jominy J=12mm <hrc28< td=""></hrc28<>
Rad 2: 180	rNiMo7-6, Eir	nsatzstahl, e	einsatzgehärtet	
	5336-5 Bild 9.	/10 (MQ), Ke		5HRC Jominy J=12mm <hrc28< td=""></hrc28<>
Oberflächen-Härte			HRC 61	HRC 61
Werkstoff-Behandlung nach ISO 6336:2006:	0.00	100000A - 176	sfaktoren ZNT un	
Dauerfestigk. Zahnfussspannung (N/mm²)	[σ	Flim]	430.00	430.00
Dauerfestig. Hertzsche Pressung (N/mm²)	[σ	Hlim]	1500.00	1500.00
Bruchfestigkeit (N/mm²)	[σ	B]	1200.00	1200.00
Streckgrenze (N/mm²)	[σ	S]	850.00	850.00
Elastizitätsmodul (N/mm²)	ĮΕ	I	206000	206000
Poissonzahl	[v]	Š.	0.300	0.300
Mittenrauhwert Ra, Flanke (µm)	0.707	AH]	0.60	0.60
Mittenrauhwert Ra, Fuss (µm)		AF]	3.00	3.00
Gemittelte Rauhtiefe Rz, Flanke (µm)		ZH]	4.80	4.80
Gemittelte Rauhtiefe Rz, Fuss (µm)		ZF]	20.00	20.00
		Date:		
Bezugsprofil von Rad 1:				
Bezugsprofil 1.25 / 0.30 / 1.0 I	80 53.2:1997	Profil B		
Fusshöhenfaktor		[hfP*]		1.250
Fussradiusfaktor		[rhofP*]		0.300 (rhofPmax*=0.472)
Kopfhöhenfaktor		[haP*]		1.000
Kopfradiusfaktor		[rhoaP*]		0.000
Protuberanzhöhenfaktor		[hprP*]		0.000
Protuberanzwinkel		[alfprP]		0.000
Kopfformhöhenfaktor		[hFaP*]		0.000
Kantenbrechflankenwinkel		[alfKP]		0.000
Kantenbrechlankenwinker		[allKe]	nicht überschr	
Bezugsprofil von Rad 2 :				
Bezugsprofil 1.25 / 0.30 / 1.0 II	80 53 2 1997	Profil B		
Fusshöhenfaktor	00 00.2.1001	[hfP*]		1.250
Fussradiusfaktor		[rhofP*]		0.300 (rhofPmax*=0.472)
				1.000
Kopfhöhenfaktor		[haP*]		0.000
Kopfradiusfaktor		[rhoaP*]		
Protuberanzhöhenfaktor		[hprP*]		0.000
Protuberanzwinkel		[alfprP]		0.000
Kopfformhöhenfaktor		[hFaP*]		0.000
Kantenbrechflankenwinkel		[alfKP]	nicht überschr	0.000 neidend
Turammenfanering Damier and Jan 7. hand	dor			
Zusammenfassung Bezugsprofil der Zahnrä		:D+1	4.050	4.050
Fusshöhe Bezugsprofil		P*]	1.250	1.250
Fussradius Bezugsprofil		(P*)	0.300	0.300
Kopfhöhe Bezugsprofil	[ha	P*]	1.000	1.000

rotuberanzhöhenfaktor	DDet	0.000		0.000
	[hprP*]	0.000		0.000
rotuberanzwinkel (°)	[alfprP]	0.000		0.000
opfformhöhenfaktor antenbrechflankenwinkel (°)	[hFaP*]	0.000		0.000
antenbrechhankenwinker ()	[alfKP]	0.000		0.000
rt der Profilkorrektur: keine (nur Einlaufbetrag)				
opfrücknahme (µm) (durch Einlaufen)	[Ca]	2.0		2.0
Keine Kopfhöhen-Änderung				
chmierungsart	Öl-Taucl	hschmierun	g	
Isorte	Öl: ISO-1	VG 220		
chmierstoff-Basis	Mineralö	l-Basis		
inem. Nennvisko. Öl bei 40 Grad (mm²/s)	[nu40]		220.00	
inem. Nennvisko. Öl bei 100 Grad (mm²/s)	[nu100]		17.50	
pez. Dichte bei 15 Grad (kg/dm²)	[roOil]		0.895	
ltemperatur (°C)	[TS]		70.000	
	***	RAD 1	RAD	2
esamtübersetzung	[itot]		-1.000	
ähnezahlverhältnis	[u]		1.000	
chrägungswinkel Aussen (°)	[bete]	0.0000		0.0000
chrägungswinkel Mitte (°)	[betm]	0.0000		0.0000
chrägungswinkel Innen (°)	[beti]	0.0000		0.0000
chsversetzungswinkel Ritzel-Achsebene (°)	[zetm]		0.0000	
chsversetzungswinkel Teil-Ebene (°)	[zetmp]		0.0000	
chsversatz Teil-Ebene (mm)	[ap]		0.000	
ormalmodul Aussen (mm)	[men]		1.1980	
tirnmodul Aussen (mm)	[met]	1.1980		1.1980
ormalmodul Mitte (mm)	[mmn]		1.0000	
tirnmodul Mitte (mm)	[mmt]	1.0000		1.0000
ormalmodul Innen (mm)	[min]		0.8020	
tirnmodul Innen (mm)	[mit]	0.8020		0.8020
rofilverschiebungsfaktorsumme	[xhm1+xhr	n2]	0.0000	
rofilverschiebungsfaktor	[xhm]	0.0000		0.0000
nterschnittgrenze	[xhmmin]	-0.9679		-0.9679
ahndickenänderungsfaktor	[xsmn]	0.0000		-0.0000
eilkreisdurchmesser Aussen (mm)	[de]	29.950		29.950
opfkreisdurchmesser Aussen (mm)	[dae]	31.644		31.644
usskreisdurchmesser Aussen (mm)	[dfe]	27.832		27.832
eilkreisdurchmesser Mitte (mm)	[dm]	25.000		25.000
opfkreisdurchmesser Mitte (mm)	[dam]	26.414		26.414
usskreisdurchmesser Mitte (mm)	[dfm]	23.232		23.232
eilkreisdurchmesser Innen (mm)	[di]	20.050		20.050
opfkreisdurchmesser Innen (mm)	[dai]	21.184		21.184
usskreisdurchmesser Innen (mm)	[dfi]	18.632		18.632
ddendum (mm)	[hae]	1.198		1.198
(mm)	[ham]	1.000		1.000
(mm)	[hai]	0.802		0.802
edendum (mm)	[hfe]	1.497		1.497
(mm)	[hfm]	1.250		1.250
(mm)	[hfi]	1.003		1.003
ahnhöhe (mm)	[he]	2.695		2.695
(mm)	[hm]	2.250		2.250
(mm)	[hi]	1.805		1.805

Gemeinsame Zahnhöhe (mm) (mm)		[whe] [whm]		2.396 2.000
(mm)		[whi]		1.604
Kopfspiel (mm)		[ce]	0.299	0.299
(mm)		[cm]	0.250	0.250
(mm)		[ci]	0.201	0.201
Teilkegellänge Aussen (mm)		[Re]	21.178	21.178
Teilkegellänge Mitte (mm)		[Rm]	17.678	17.678
Teilkegellänge Innen (mm)		[Ri]	14.178	14.178
Teilkegelwinkel (°)		[delta]	45.0000	45.0000
Kopfkegelwinkel (*)		[dela]	48.2377	48.2377
Kopfwinkel (°)	[th		lelta] 3.2377	3.2377
Fusskegelwinkel (°)	Les	[delf]	40.9553	40.9553
Fusswinkel (°)	[th		lelf] 4.0447	4.0447
Distanz in Achsrichtung zum Kreuzungspunkt	(mm)	[txo]	14.128	14.128
	(mm)	[txi]	9.458	9.458
Distanz Kegelspitze zu Kreuzungspunkt	(mm)	[tz]	0.000	0.000
Distant regement to recording spenie	(mm)	[tzF]	0.000	0.000
	(mm)	[tzR]	0.000	0.000
Distanz in Achsrichtung zur Teilkegelspitze	(mm)	[ye]	14.975	14.975
Distanz in Mensionang zur Fenkegeisphize	(mm)	[yae]	14.128	14.128
	(mm)	[yae]	9.458	9.458
	(min)	[yai]	5.450	5.450
Kopfspiel theoretisch (mm)		[c]	0.250	0.250
Kopfspiel effektiv (mm)		[c.e/i]	0.250 / 0.26	
Sprungüberdeckung, ISO 23509:2006 (B.8)	[ep	shl Oí	000	
oprangaveraeckang, 100 20000.2000 (b.0)	feb	0.0	300	
harristan protesta and the manufacture and the control of the state of				
CANADA CA				
Normalmodul (mm)		[mn]		1.0000
Normalmodul (mm) Stirnmodul (mm)		[mtv]		1.0000
Normalmodul (mm) Stirnmodul (mm) Eingriffswinkel im Normalschnitt (°)		[mtv] [alfvn]		1.0000 20.0000
Normalmodul (mm) Stirnmodul (mm) Eingriffswinkel im Normalschnitt (°) Eingriffswinkel am Teilkreis (°)		[mtv] [alfvn] [alfvt]		1.0000 20.0000 20.0000
Normalmodul (mm) Stirnmodul (mm) Eingriffswinkel im Normalschnitt (°) Eingriffswinkel am Teilkreis (°) Schrägungswinkel am Teilkreis (°)		[mtv] [alfvn] [alfvt] [betv]		1.0000 20.0000 20.0000 0.0000
Normalmodul (mm) Stirnmodul (mm) Eingriffswinkel im Normalschnitt (°) Eingriffswinkel am Teilkreis (°) Schrägungswinkel am Teilkreis (°) Grundschrägungswinkel (°)		[mtv] [alfvn] [alfvt] [betv]		1.0000 20.0000 20.0000 0.0000 0.0000
Normalmodul (mm) Stirnmodul (mm) Eingriffswinkel im Normalschnitt (°) Eingriffswinkel am Teilkreis (°) Schrägungswinkel am Teilkreis (°) Grundschrägungswinkel (°) Ersatz-Achsabstand (mm)		[mtv] [alfvn] [alfvt] [betv] [betvb] [av]		1.0000 20.0000 20.0000 0.0000 0.0000 35.355
Normalmodul (mm) Stirnmodul (mm) Eingriffswinkel im Normalschnitt (°) Eingriffswinkel am Teilkreis (°) Schrägungswinkel am Teilkreis (°) Grundschrägungswinkel (°) Ersatz-Achsabstand (mm) Betriebseingriffswinkel (°)		[mtv] [alfvn] [alfvt] [betv] [betvb] [av] [alfvwt]		1.0000 20.0000 20.0000 0.0000 0.0000 35.355 20.0000
Normalmodul (mm) Stirnmodul (mm) Eingriffswinkel im Normalschnitt (°) Eingriffswinkel am Teilkreis (°) Errägungswinkel am Teilkreis (°) Grundschrägungswinkel (°) Ersatz-Achsabstand (mm) Betriebseingriffswinkel (°) Zähnezahl		[mtv] [alfvn] [alfvt] [betv] [betvb] [av] [alfvwt]		1.0000 20.0000 20.0000 0.0000 0.0000 35.355 20.0000
Normalmodul (mm) Stirnmodul (mm) Eingriffswinkel im Normalschnitt (°) Eingriffswinkel am Teilkreis (°) Errägungswinkel am Teilkreis (°) Grundschrägungswinkel (°) Ersatz-Achsabstand (mm) Betriebseingriffswinkel (°) Zähnezahl		[mtv] [alfvn] [alfvt] [betv] [betvb] [av] [alfvwt]		1.0000 20.0000 20.0000 0.0000 0.0000 35.355 20.0000
Normalmodul (mm) Stirnmodul (mm) Eingriffswinkel im Normalschnitt (°) Eingriffswinkel am Teilkreis (°) Schrägungswinkel am Teilkreis (°) Grundschrägungswinkel (°) Ersatz-Achsabstand (mm) Betriebseingriffswinkel (°) Zähnezahl Zähnezahlverhältnis		[mtv] [alfvn] [alfvt] [betv] [betvb] [av] [alfvwt] [zv] [uv]		1.0000 20.0000 0.0000 0.0000 35.355 20.0000 35.355
Normalmodul (mm) Stirnmodul (mm) Eingriffswinkel im Normalschnitt (°) Eingriffswinkel am Teilkreis (°) Schrägungswinkel am Teilkreis (°) Grundschrägungswinkel (°) Ersatz-Achsabstand (mm) Betriebseingriffswinkel (°) Zähnezahl Zähnezahlverhältnis		[mtv] [alfvn] [alfvt] [betv] [betvb] [av] [alfvwt] [zv] [uv]	35.355	1.0000 20.0000 0.0000 0.0000 35.355 20.0000 35.355 1.000
Normalmodul (mm) Stirnmodul (mm) Eingriffswinkel im Normalschnitt (°) Eingriffswinkel am Teilkreis (°) Schrägungswinkel am Teilkreis (°) Grundschrägungswinkel (°) Ersatz-Achsabstand (mm) Betriebseingriffswinkel (°) Zähnezahl Zähnezahlverhältnis Erzeugungsprofilverschiebungsfaktor Kopfspiel theoretisch (mm)		[mtv] [alfvn] [alfvt] [betv] [betvb] [av] [alfvwt] [zv] [uv] [xvE.e/i]	35.355 10.0000 <i>1</i> 0.0000	1.0000 20.0000 20.0000 0.0000 0.0000 35.355 20.0000 35.355 1.000 0.0000 / 0.0000 0.250
Normalmodul (mm) Stirnmodul (mm) Eingriffswinkel im Normalschnitt (°) Eingriffswinkel am Teilkreis (°) Schrägungswinkel am Teilkreis (°) Grundschrägungswinkel (°) Ersatz-Achsabstand (mm) Betriebseingriffswinkel (°) Zähnezahl Zähnezahlverhältnis Erzeugungsprofilverschiebungsfaktor Kopfspiel theoretisch (mm)		[mtv] [alfvn] [alfvt] [betv] [betvb] [av] [alfvwt] [zv] [uv] [xvE.e/i]	35.355 10.0000 /0.0000 0.250	1.0000 20.0000 20.0000 0.0000 0.0000 35.355 20.0000 35.355 1.000 0.0000 / 0.0000 0.250
Normalmodul (mm) Stirnmodul (mm) Eingriffswinkel im Normalschnitt (°) Eingriffswinkel am Teilkreis (°) Schrägungswinkel am Teilkreis (°) Grundschrägungswinkel (°) Ersatz-Achsabstand (mm) Betriebseingriffswinkel (°) Zähnezahl Zähnezahlverhältnis Erzeugungsprofilverschiebungsfaktor Kopfspiel theoretisch (mm) Kopfspiel effektiv (mm) Teilkreisdurchmesser (mm)		[mtv] [alfvn] [alfvt] [betv] [betvb] [av] [alfvwt] [zv] [uv] [xvE.e/i] [c] [c.e/i]	35.355 10.0000 /0.0000 0.250 0.250 / 0.260	1.0000 20.0000 0.0000 0.0000 35.355 20.0000 35.355 1.000 0.0000 / 0.0000 0.250
Normalmodul (mm) Stirnmodul (mm) Eingriffswinkel im Normalschnitt (°) Eingriffswinkel am Teilkreis (°) Schrägungswinkel am Teilkreis (°) Grundschrägungswinkel (°) Ersatz-Achsabstand (mm) Betriebseingriffswinkel (°) Zähnezahl Zähnezahlverhältnis Erzeugungsprofilverschiebungsfaktor Kopfspiel theoretisch (mm) Kopfspiel effektiv (mm) Teilkreisdurchmesser (mm) Grundkreisdurchmesser (mm)		[mtv] [alfvn] [alfvt] [betv] [betvb] [av] [alfvwt] [zv] [uv] [xvE.e/i] [c] [c.e/i]	35.355 p.0000 /0.0000 0.250 0.250 / 0.260 35.355	1.0000 20.0000 20.0000 0.0000 35.355 20.0000 35.355 1.000 0.0000 / 0.0000 0.250 0.250 / 0.260 35.355
Normalmodul (mm) Stirnmodul (mm) Eingriffswinkel im Normalschnitt (°) Eingriffswinkel am Teilkreis (°) Schrägungswinkel am Teilkreis (°) Grundschrägungswinkel (°) Ersatz-Achsabstand (mm) Betriebseingriffswinkel (°) Zähnezahl Zähnezahlverhältnis Erzeugungsprofilverschiebungsfaktor Kopfspiel theoretisch (mm) Kopfspiel effektiv (mm) Teilkreisdurchmesser (mm) Kopfkreisdurchmesser (mm)		[mtv] [alfvn] [alfvt] [betv] [betvb] [av] [alfvwt] [zv] [uv] [xvE.e/i] [c] [dv] [dvb]	35.355 0.0000 /0.0000 0.250 0.250 / 0.260 35.355 33.223	1.0000 20.0000 20.0000 0.0000 35.355 20.0000 35.355 1.000 0.0000 / 0.0000 0.250 0.250 / 0.260 35.355 33.223
Normalmodul (mm) Stirnmodul (mm) Eingriffswinkel im Normalschnitt (°) Eingriffswinkel am Teilkreis (°) Schrägungswinkel am Teilkreis (°) Grundschrägungswinkel (°) Ersatz-Achsabstand (mm) Betriebseingriffswinkel (°) Zähnezahl Zähnezahlverhältnis Erzeugungsprofilverschiebungsfaktor Kopfspiel theoretisch (mm) Kopfspiel effektiv (mm) Teilkreisdurchmesser (mm) Kopfkreisdurchmesser (mm) Kopfkreisdurchmesser (mm)		[mtv] [alfvt] [alfvt] [betv] [betvb] [av] [alfvwt] [zv] [uv] [xvE.e/i] [c] [c.e/i] [dvb] [dva]	35.355 0.0000 /0.0000 0.250 0.250 / 0.260 35.355 33.223 37.355	1.0000 20.0000 20.0000 0.0000 35.355 20.0000 35.355 1.000 0.0000 / 0.0000 0.250 0.250 / 0.260 35.355 33.223 37.355
Normalmodul (mm) Stirnmodul (mm) Eingriffswinkel im Normalschnitt (°) Eingriffswinkel am Teilkreis (°) Schrägungswinkel am Teilkreis (°) Grundschrägungswinkel (°) Ersatz-Achsabstand (mm) Betriebseingriffswinkel (°) Zähnezahl Zähnezahlverhältnis Erzeugungsprofilverschiebungsfaktor Kopfspiel theoretisch (mm) Kopfspiel effektiv (mm) Teilkreisdurchmesser (mm) Kopfkreisdurchmesser (mm) Kopfkreisdurchmesser (mm) Kopfformkreisdurchmesser (mm) Kopfformkreisdurchmesser (mm)		[mtv] [alfvn] [alfvt] [betv] [betvb] [av] [alfvwt] [zv] [uv] [xvE.e/i] [c] [c.e/i] [dvb] [dva] [dvFa]	35.355 0.0000 /0.0000 0.250 0.250 / 0.260 35.355 33.223 37.355 37.355	1.0000 20.0000 20.0000 0.0000 35.355 20.0000 35.355 1.000 0.0000 / 0.0000 0.250 0.250 / 0.260 35.355 33.223 37.355 37.356
Normalmodul (mm) Stirnmodul (mm) Eingriffswinkel im Normalschnitt (°) Eingriffswinkel am Teilkreis (°) Schrägungswinkel am Teilkreis (°) Grundschrägungswinkel (°) Ersatz-Achsabstand (mm) Betriebseingriffswinkel (°) Zähnezahl Zähnezahlverhältnis Erzeugungsprofilverschiebungsfaktor Kopfspiel theoretisch (mm) Kopfspiel effektiv (mm) Teilkreisdurchmesser (mm) Kopfkreisdurchmesser (mm) Kopfformkreisdurchmesser (mm) Kopfformkreisdurchmesser (mm) Kopfnutzkreisdurchmesser (mm) Wälzkreisdurchmesser (mm)		[mtv] [alfvn] [alfvt] [betv] [betvb] [av] [alfvwt] [zv] [uv] [xvE.e/i] [c] [c.e/i] [dvb] [dva] [dvFa] [dvNa]	35.355 0.0000 /0.0000 0.250 0.250 / 0.260 35.355 33.223 37.355 37.355 37.355	1.0000 20.0000 20.0000 0.0000 35.355 20.0000 35.355 1.000 0.0000 / 0.0000 0.250 0.250 / 0.260 35.355 33.223 37.355 37.355 37.355
Normalmodul (mm) Stirnmodul (mm) Eingriffswinkel im Normalschnitt (°) Eingriffswinkel am Teilkreis (°) Schrägungswinkel am Teilkreis (°) Grundschrägungswinkel (°) Ersatz-Achsabstand (mm) Betriebseingriffswinkel (°) Zähnezahl Zähnezahlverhältnis Erzeugungsprofilverschiebungsfaktor Kopfspiel theoretisch (mm) Kopfspiel effektiv (mm) Teilkreisdurchmesser (mm) Kopfkreisdurchmesser (mm) Kopfkreisdurchmesser (mm) Kopfformkreisdurchmesser (mm) Kopfnutzkreisdurchmesser (mm) Wälzkreisdurchmesser (mm) Fusskreisdurchmesser (mm)		[mtv] [alfv n] [alfv t] [betv] [betvb] [av] [alfv wt] [zv] [uv] [xvE.e/i] [c] [c.e/i] [dvb] [dva] [dvFa] [dvNa] [dvw]	35.355 0.0000 /0.0000 0.250 0.250 / 0.260 35.355 33.223 37.355 37.355 37.355 37.355 35.355	1.0000 20.0000 20.0000 0.0000 0.0000 35.355 20.0000 35.355 1.000 0.0000 / 0.0000 0.250 0.0250 / 0.260 35.355 37.355 37.355 37.355 37.355 37.355
Normalmodul (mm) Stirnmodul (mm) Eingriffswinkel im Normalschnitt (°) Eingriffswinkel am Teilkreis (°) Schrägungswinkel am Teilkreis (°) Grundschrägungswinkel (°) Ersatz-Achsabstand (mm) Betriebseingriffswinkel (°) Zähnezahl Zähnezahlverhältnis Erzeugungsprofilverschiebungsfaktor Kopfspiel theoretisch (mm) Kopfspiel effektiv (mm) Teilkreisdurchmesser (mm) Kopfkreisdurchmesser (mm) Kopfkreisdurchmesser (mm) Kopfnutzkreisdurchmesser (mm) Wälzkreisdurchmesser (mm) Fusskreisdurchmesser (mm) Fusskreisdurchmesser (mm) Fusskreisdurchmesser (mm)		[mtv] [alfv n] [alfv t] [betv] [betvb] [av] [alfv wt] [zv] [uv] [xvE.e/i] [dv] [dvb] [dva] [dvFa] [dvNa] [dvW] [dvf]	35.355 0.0000 /0.0000 0.250 0.250 / 0.260 35.355 33.223 37.355 37.355 37.355 37.355 35.355 32.855	1.0000 20.0000 20.0000 0.0000 0.0000 35.355 20.0000 35.355 1.000 0.0000 / 0.0000 0.250 0.0250 / 0.260 36.356 33.223 37.355 37.355 37.355 37.355 37.355 37.355 32.856
Normalmodul (mm) Stirnmodul (mm) Eingriffswinkel im Normalschnitt (°) Eingriffswinkel am Teilkreis (°) Schrägungswinkel am Teilkreis (°) Schrägungswinkel am Teilkreis (°) Grundschrägungswinkel (°) Ersatz-Achsabstand (mm) Betriebseingriffswinkel (°) Zähnezahl Zähnezahl Zähnezahlverhältnis Erzeugungsprofilverschiebungsfaktor Kopfspiel theoretisch (mm) Kopfspiel effektiv (mm) Teilkreisdurchmesser (mm) Grundkreisdurchmesser (mm) Kopfkreisdurchmesser (mm) Kopfnutzkreisdurchmesser (mm) Fusskreisdurchmesser (mm) Fusskreisdurchmesser (mm) Fusskreisdurchmesser (mm) Fussformkreisdurchmesser (mm) Fussformkreisdurchmesser (mm) Fussformkreisdurchmesser (mm)		[mtv] [alfv n] [alfv t] [betv] [betvb] [av] [alfv wt] [zv] [uv] [xvE.e/i] [dv] [dvB] [dvB] [dvFa] [dvNa] [dvW] [dvf] [dvFf]	35.355 10.0000 /0.0000 0.250 0.250 / 0.260 35.355 37.355 37.355 37.355 37.355 37.355 37.355 37.355 37.355	1.0000 20.0000 20.0000 0.0000 0.0000 35.355 20.0000 35.355 1.000 0.0000 / 0.0000 0.250 0.0250 / 0.260 35.355 37.355 37.355 37.355 37.355 35.355 32.855 32.855 33.749
Normalmodul (mm) Stirnmodul (mm) Eingriffswinkel im Normalschnitt (*) Eingriffswinkel am Teilkreis (*) Schrägungswinkel am Teilkreis (*) Grundschrägungswinkel (*) Ersatz-Achsabstand (mm) Betriebseingriffswinkel (*) Zähnezahl Zähnezahl Zähnezahlverhältnis Erzeugungsprofilverschiebungsfaktor Kopfspiel theoretisch (mm) Kopfspiel effektiv (mm) Teilkreisdurchmesser (mm) Grundkreisdurchmesser (mm) Kopfkreisdurchmesser (mm) Kopfnutzkreisdurchmesser (mm) Wälzkreisdurchmesser (mm) Fusskreisdurchmesser (mm) Fusskreisdurchmesser (mm) Fusskreisdurchmesser (mm) Fusstormkreisdurchmesser (mm) Fusstormkreisdurchmesser (mm) Fusstormkreisdurchmesser (mm) Fusstormkreisdurchmesser (mm) Reserve (dNf-dFf)/2 (mm)		[mtv] [alfvn] [alfvt] [betv] [betvb] [av] [alfvwt] [zv] [uv] [xvE.e/i] [dv] [dva] [dva] [dvFa] [dvW] [dvf] [dvFf] [dvRf]	35.355 0.0000 /0.0000 0.250 0.250 / 0.260 35.355 37.355 37.355 37.355 35.355 32.855 32.855 33.749 33.975	1.0000 20.0000 0.0000 0.0000 35.355 20.0000 35.355 1.000 0.250 0.250 / 0.260 35.355 37.355 37.355 37.355 37.355 37.355 37.355 37.355 37.355 37.355 37.355 37.355 37.355 37.355 37.355 37.355
Normalmodul (mm) Stirnmodul (mm) Eingriffswinkel im Normalschnitt (*) Eingriffswinkel am Teilkreis (*) Schrägungswinkel am Teilkreis (*) Schrägungswinkel am Teilkreis (*) Grundschrägungswinkel (*) Ersatz-Achsabstand (mm) Betriebseingriffswinkel (*) Zähnezahl Zähnezahl Zähnezahlverhältnis Erzeugungsprofilverschiebungsfaktor Kopfspiel theoretisch (mm) Kopfspiel effektiv (mm) Teilkreisdurchmesser (mm) Grundkreisdurchmesser (mm) Kopfkreisdurchmesser (mm) Kopfnutzkreisdurchmesser (mm) Fusskreisdurchmesser (mm) Fusskreisdurchmesser (mm) Fusskreisdurchmesser (mm) Fusskreisdurchmesser (mm) Fusskreisdurchmesser (mm) Fusstreisdurchmesser (mm) Reserve (dNf-dFf)/2 (mm) Normal-Zahndicke am Kopfkreis (mm)		[mtv] [alfvn] [alfvt] [betv] [betvb] [av] [alfvwt] [zv] [uv] [xvE.e/i] [dv] [dva] [dva] [dvFa] [dvW] [dvf] [dvFf] [dvNf] [cF]	35.355 0.0000 /0.0000 0.250 0.250 / 0.260 35.355 37.355 37.355 37.355 35.355 32.855 32.855 33.749 33.975 0.113 0.751	1.0000 20.0000 0.0000 0.0000 35.355 20.0000 35.355 1.000 0.250 0.250 / 0.260 35.355 37.355 37.355 37.355 37.355 37.355 32.855 32.855 33.749 33.975 0.113
Normalmodul (mm) Stirnmodul (mm) Eingriffswinkel im Normalschnitt (°) Eingriffswinkel am Teilkreis (°) Schrägungswinkel am Teilkreis (°) Schrägungswinkel am Teilkreis (°) Grundschrägungswinkel (°) Ersatz-Achsabstand (mm) Betriebseingriffswinkel (°) Zähnezahl Zähnezahl Zähnezahlverhältnis Erzeugungsprofilverschiebungsfaktor Kopfspiel theoretisch (mm) Kopfspiel effektiv (mm) Teilkreisdurchmesser (mm) Grundkreisdurchmesser (mm) Kopfkreisdurchmesser (mm) Kopfnutzkreisdurchmesser (mm) Fusskreisdurchmesser (mm) Fusskreisdurchmesser (mm) Fusskreisdurchmesser (mm) Fussformkreisdurchmesser (mm) Fussformkreisdurchmesser (mm) Reserve (dNf-dFf)/2 (mm) Normal-Zahndicke am Kopfformkreis (mm)		[mtv] [alfvn] [alfvt] [betv] [betvb] [av] [alfvwt] [zv] [uv] [xvE.e/i] [dv] [dvB] [dvB] [dvB] [dvW] [dvW] [dvFf] [dvNf] [cFf] [svan]	35.355 0.0000 /0.0000 0.250 0.250 / 0.260 35.355 37.355 37.355 37.355 35.355 32.855 32.855 33.749 33.975 0.113 0.751	1.0000 20.0000 0.0000 0.0000 35.355 20.0000 36.356 1.000 0.250 0.250 / 0.260 35.356 37.356
Normalmodul (mm) Stirmmodul (mm) Stirmmodul (mm) Eingriffswinkel im Normalschnitt (°) Eingriffswinkel am Teilkreis (°) Schrägungswinkel am Teilkreis (°) Grundschrägungswinkel (°) Ersatz-Achsabstand (mm) Betriebseingriffswinkel (°) Zähnezahl Zähnezahlverhältnis Erzeugungsprofilverschiebungsfaktor Kopfspiel theoretisch (mm) Kopfspiel effektiv (mm) Teilkreisdurchmesser (mm) Grundkreisdurchmesser (mm) Kopfnutzkreisdurchmesser (mm) Kopfnutzkreisdurchmesser (mm) Fusskreisdurchmesser (mm) Fusskreisdurchmesser (mm) Fusskreisdurchmesser (mm) Fussformkreisdurchmesser (mm) Fussformkreisdurchmesser (mm) Fussformkreisdurchmesser (mm) Fussformkreisdurchmesser (mm) Fussformkreisdurchmesser (mm) Fussnutzkreisdurchmesser (mm) Reserve (dNf-dFf)/2 (mm) Normal-Zahndicke am Kopfformkreis (mm) Ersatz-Zähnezahl Maximale Gleitgeschwindigkeit am Kopf (m/s)		[mtv] [alfvn] [alfvt] [betv] [betvb] [av] [alfvwt] [zv] [uv] [xvE.e/i] [dv] [dva] [dva] [dvFa] [dvW] [dvFf] [dvNf] [cF] [svan] [svFan]	35.355 10.0000 /0.0000 0.250 0.250 / 0.260 35.355 37.355 37.355 37.355 35.355 32.855 33.749 33.975 0.113 0.751	1.0000 20.0000 0.0000 0.0000 35.355 20.0000 35.355 1.000 0.0000 / 0.0000 0.250 0.250 / 0.260 35.355 33.223 37.355

1925 (170 age of 40 page 170 age 170 ag	65/45/42	00000000	
Grundkreisteilung (mm)	[pvbt]	2.952	
Stirneingriffsteilung (mm)	[pvet]	2.952	
Länge der Eingriffsstrecke (mm)	[gva]	4.985	
Ersatz-Stirnradverzahnung (ISO 10300:2001, Annex A):			
Bezogen auf Zahnbreite	[bveff]	7.000	
Profilüberdeckung	[epsva]	1.689	
Sprungüberdeckung	[epsvb]	0.000	
Gesamtüberdeckung	[epsvg]	1.689	
Hilfswerte für die Zahnflanke			
Abstand vom Zentrum (mm)	[ft,fm,fr]	2.493 -0.459	-2.493
Länge der Berührlinie (mm)	[lbt,lbm,lbr]	0.000 6.880	0.000
Kontaktfläche (mm²)	[At,Am,Ar]	0.000 4.976	
Linienlast-Anteile (%)	[flet,flem,fler]	0.000 100.000	
Hilf swerte für den Zahnfuss:	[net,net1,net]	0.000 100.000	0.000
Abstand vom Zentrum (mm)	[ft,fm,fr]	3.412 0.459	-2.493
Länge der Berührlinie (mm)	[lbt,lbm,lbr]	0.000 6.880	0.000
Berührlinien-Winkel (*)	[betB]	0.0000	0.000
Auslegungs-Kenngrössen	[Re2/b2]	3.025	
	[b2/mmn]	7.000	
2. ALLGEMEINE EINFLUSSFAKTOREN			
	RAD 1	RAD 2	
Nennumfangskraft im Teilkreis (N)	[Fmt]	280.0	280.0
		Zugbetrieb	
Axialkraft (N)	[Fa]	72.1	72.1
Radialkraft (N)	[Fr]	72.1	72.1
Normalkraft (N)	[Fnorm]	298.0	298.0
Axialkraft (%)	[Fa/Ft]	25.737	25.737
Radialkraft (%)	[Fr/Ft]	25.737	25.737
Hinweise:			
Kräfte bei Drehung in Gegenrichtung (Schubbetrieb):			
Axialkraft (N)	[Fa]	72.1	72.1
Radialkraft (N)	[Fr]	72.1	72.1
Normalkraft (N)	[Fnorm]	298.0	298.0
Axialkraft (%)	[Fa/Ft]	25.737	25.737
Radialkraft (%)	[Fr/Ft]	25.737	25.737
Nennumfangskraft Teilk, pro mm (N/mm)	[w]	47.06	
Umfangsgeschwindigkeit Teilkreis (m/s)	[v]	7.20	7.20
Einzelfedersteifigkeit (N/mm*µm)	[c']	7.91	
Eingriffsfedersteifigkeit (N/mm*µm)	[cg]	11.29	
Teilungs-Einzelabweichung (µm)	[fp]	11.00	11.00
Einlaufbetrag y.a (µm)	[ya]	0.82	
Reduzierte Masse (kg/mm)	[mRed]	0.001	
Resonanzdrehzahl (min-1)	[nE1]	38914	
Bezugsdrehzahl (-)	[N]	0.141	
Unterkritischer Bereich			
Dynamikfaktor	[KV]	1.1	Э
Flugkreisradius Messerkopf (mm)	[rc0]	100.0)
Faktor	[KFO]	1.0)

Lagerungsfaktor		[KHbbe]	1.25
Breitenfaktoren	- Flanke	[KHb]	1.88
	- Zahnfuss	[KFb]	1.88
	- Fressen	[KBb]	1.88
Stirnfaktoren	- Flanke	[KHa]	1.00
	- Zahnfuss	[KFa]	1.12
	- Fressen	[KBa]	1.12
Schrägungsfakt	or Fressen	[Kbg]	1.00
Lastwechselzah	(in Mio.)	INL1 1650.0	00 1650.000

3. ZAHNFUSS-TRAGFÄHIGKEIT

		RAD 1	RAD 2	
Rechnung der Zahnformfaktoren nach Methode	: B1 (ISO 10300:2001, P	art 3)		
Herstellverfahren: gewälzt				
Berechnet mit Profilverschiebung	[x]	0.00		0.00
Zahnformfaktor	[YF]	2.49		2.49
Spannungskorrekturfaktor	[YS]	1.70		1.70
Biegehebelarm (mm)	[hF]	1.92		1.92
Kraftangriffswinkel (grd)	[alfh]	26.05	2	6.05
Zahnfussdicke (mm)	[sFn]	2.11		2.11
Zahnfussradius (mm)	[roF]	0.49		0.49
(hF*=1.922/1.922 sFn*=2.105/2.105 roF*=	0.485/0.485)			
Überdeckungsfaktor	[Yeps]		0.69	
Lastv erteilungsfaktor	[YLS]		1.00	
Massgebende Zahnbreite (mm)	[b]	7.00		7.00
Kegelradfaktor (Fuss)	[YK]		1.000	
Zahnfuss-Nennspannung (N/mm²)	[sigF0]	117.16	11	7.16
Zahnfussspannung (N/mm²)	[sigF]	351.83	35	1.83
Zulässige Zahnfussspannung von Prüf-Zahnrad	Î.			
Stützziffer	[Y drefT]	0.997	0.99	7
Oberflächenfaktor	[YRreIT]	0.957	0.95	7
Grössenfaktor (Zahnfuss)	[YX]	1.000	1.00	0
Zeitfestigkeitsfaktor	[YNT]	0.881	0.88	1
[YdreIT*YRr	reIT*YX*YNT]	0.840	0.84	0
Wechselbiegungsfaktor (Mittelspannungseinflus	ssfaktor) [YM]	1.000	1.00	0
Spannungskorrekturfaktor	[Y st]		2.00	
Yst*sigFlim (N/mm²)	[sigFE]	860.00	860.	00
Zulässige Zahnfussspannung (N/mm²)	[sigFP]	722.76	722.	76
Sollsicherheit	[SFmin]	1.20		1.20
Sicherheitsfaktor für Zahnfussspannung	[SF=sigFP/sigF	2.05		2.05

4. FLANKENSICHERHEIT

	RAD 1	RAD 2
Zonenfaktor	[ZH]	2.49
Elastizitätsfaktor (√N/mm)	[ZE]	189.81
Lastverteilungsfaktor	[ZLS]	1.000
Schrägenfaktor	[Zbet]	1.000
Kegelradfaktor (Flanke)	[ZK]	0.800
Mittlere Berührlinienlänge (mm)	[lbm]	6.88

Projektierte m. Berührlinienlänge (mm)	[lbm']		6.88	
Massgebende Zahnbreite (mm)	[b=lbm]		6.88	
Mid-zone Faktor	[ZM-B]		1.003	
Nominelle Flankenpressung (N/mm²)	[sigHO]		576.42	
Effektive Flankenpressung (N/mm²)	[sigH]		942.74	
Schmierstoff-Faktor (bei NL)	[ZL]	1.020	1.020	
Geschwindigkeits-Faktor (bei NL)	[ZV]	0.991	0.991	
Rauhigkeitsfaktor (bei NL)	[ZR]	0.933	0.933	
Werkstoffpaarungs-Faktor (bei NL)	[ZW]	1.000	1.000	
Zeitfestigkeitsfaktor	[ZNT]	0.898	0.898	
	[ZL*ZV*ZR*ZNT	0.847	0.847	
Kleine Anzahl Grübchen zulässig:	nein			
Grössenfaktor (Flanke)	[ZX]	1.000	1.000	
Zulässige Flankenpressung (N/mm²)	[sigHP]	1270.75	1270.75	
Sollsicherheit	[SHmin]	0.90	0.90	
Sicherheit für Flankenpressung	[SH=sigHF	/sigH] 1.35	1.35	

5. FRESSTRAGFÄHIGKEIT

Planet and a state of a search	100 TD 42000-2000	
Rechenmethode nach	ISO TR 13989:2000	

Schmierungsfaktor (für Schmierungsart)	[XS]	1.000		
Fresstest und Laststufe	[FZGtest]	FZG - Test A / 8.3 / 90 (ISO 14635 - 1)		12
Mehrfacheingrifffaktor	[Xmp]	1.000		
Relativer Gefügefaktor (Fressen)	[XWreIT]	1.000		
Therm. Kontaktkoeffizient (N/mm/s^.5/K)	[BM]	13.780	13.780	
Massgebende Kopfrücknahme (µm)	[Ca]	2.00	2.00	
Optimale Kopfrücknahme (µm)	[Ceff]	6.07		
Ca als optimal angenommen in der Rechnung (0=n	nein, 1=ja)	0	0	
Massgebende Zahnbreite (mm)	[beff]	5.950		
Massgebende Umfangskraft/Zahnbreite (N/mm)	[wBt]	141.319		
Kbg = 1.000, wBt*Kbg = 141.319				
Winkelfaktor	[Xalfbet]	0.978		
(ε1:0.844, ε2:0.844)				
Blitztemperatur-Kriterium				
Schmierstofffaktor	[XL]	0.830		
Massentemperatur (°C)	[theMi]	75.15		
theMi = theoil + XS*0.47*Xmp*theflm	[thefim]	10.97		
Fresstemperatur (°C)	[theS]	348.80		
Koordinate Gamma (Ort der höchsten Temp.)	[Gamma]	-0.321		
[Gamma.A]=-0.412 [Gamma.E]=0.412				
Höchste Kontakttemp. (°C)	[theB]	90.58		
Blitzfaktor ("K*N^75*s^.5*m^5*mm)	[XM]	50.058		
Eingriffsbeginnfaktor	[X1]	1.005		
Kraftaufteilungsfaktor	[XGam]	0.400		
Dynamische Viskosität (mPa*s)	[etaM]	41.90	(70.0 °C)	
Reibungszahl	[m ym]	0.060		
Sollsicherheit	[SBmin]	2.000		
Sicherheitsfaktor für Fressen (Blitz-Temperatur)	[SB]	13.550		
Integraltemperatur-Kriterium				
Schmierstofffaktor	[XL]	1.000		
Massentemperatur (°C)	[theMC]	76.24		

theMC = theoil + XS*0.70*theflaint	[theflaint]	8.92
Fress-Integraltemperatur (°C)	[theSint]	360.78
Blitzfaktor (°K*N^75*s^.5*m^5*mm)	[XM]	50.058
Einlauffaktor (voll eingelaufen)	[XE]	1.000
Überdeckungsfaktor	[Xeps]	0.252
Dynamische Viskosität (mPa*s)	[etaOil]	41.90 (70.0 °C)
Gemittelte Reibungszahl	[m ym]	0.086
Geometriefaktor	[XBE]	0.319
Eingriffsfaktor	[XQ]	1.000
Kopfrücknahmefaktor	[XCa]	1.709
Integral-Flankentemperatur (°C)	[theint]	89.63
Sollsicherheit	[SSmin]	1.800
Sicherheitsfaktor für Fressen (IntT.)	[SSint]	4.025
Sicherh. f. übertragenes Moment (IntT.)	[SSL]	14.816

6. ABMASSE FÜR DIE ZAHNDICKE

	RAD 1 RAD 2			
Zahndickentoleranz	Spielfrei	Spielfrei		
Zahndickenabmass im Normalschnitt (mm)	[As.e/i] 0.	000 / 0.000	0 0	.000 / 0.000
Die folgenden Angaben gelten für die Mitte der Zahnb	reite (ISO23509)	¢.		
Zahndicke (Sehne) im Teilkreis (mm)	[smnc]	1.570		1.570
(mm)	[smnc.e/i	1.570 / 1.57	70	1.570 / 1.570
Höhe über der Sehne ab dam (mm)	[hamc]	1.012		1.012
Die folgenden Angaben gelten für das äussere Ende	der Zahnbreite:			
Zahndicke (Sehne) im Teilkreis (mm)	[senc]	1.881		1.881
(mm)	[senc.e/i]	1.881 / 1.88	31	1.881 / 1.881
Höhe über der Sehne ab dae (mm)	[haec]	1.213		1.213
Verdrehflankenspiel (mm)	[jmt]	-0.000 /	-0.000	
(mm)	[jet]	-0.000 /	-0.000	
Normalflankenspiel (mm)	[jm n]	-0.000 /	-0.000	
(mm)	[jen]	-0.000 /	-0.000	

7. VERZAHNUNGS-TOLERANZEN

			RA	AD 1 RAD	2
Nach	ISO 17485:2	2006:			
Verzahnur	gsqualität		[Q-IS017485]	6	6
(Durchmes	sser (mm)		[dT]	25.00	25.00)
Teilungs-Einzelabweichung (µm)		[fpT]	11.00	11.00	
Teilungs-Gesamtabweichung (µm)		[FpT]	40.00	40.00	
Rundlaufa	bweichung (µm)		[FrT]	32.00	32.00
Einflanken	-Wälzsprung (µn	n)	[fisTmax/fisTmin]	14.00/ 0.00	14.00/0.00
(fisTmax, f	isTmin:	ISO 17485:2	006, Table B1, q=2)		
Einflanken-Wälzabweichung (µm)		[FisT]	54.00	54.00	

9. ZAHNFORM-BESTIMMUNG

Daten zur Zahnformberechnung: Daten nicht vorhanden.

10. ERGÄNZENDE DATEN

Eingabedaten für die Berechnung der Zahnradabmessungen nach ISO 23509:2006

Daten von Typ 1 (nach Tabelle 3, ISO 23509:2006): xhm1= 0.0000 khap= 1.0000 khfp= 1.2500 xsmn= 0.0000 Daten von Typ 2 (nach Tabelle 3, ISO 23509:2006): cham= 0.5000 kd= 2.0000 kc= 0.1250 kt= 0.0000

Berechnung nach Wech

 Reibungszahl
 [mum]
 0.083

 Summengeschwindigkeit (m/s)
 [vSigm]
 4.925

 Verlustfaktor
 [HV]
 0.109

 Zahnverlustleistung aus Zahnbelastung (kW)
 [PVZ]
 0.018

 Verzahnungswirkungsgrad (%)
 [etaz]
 99.099

Wech-Data: VR = 1.372 VS = 0.920 VZ = 0.931

XL = 1.000 Kgm = 0.000 (0.200)

ronC = 3.02 mm (7.00 mm) Fn*Cos(betb2)/b2 = 42.57 N/mm (150.00 N/mm)

etaOil(Oil) = 41.90 mPa*s VSigm = 4.92 m/s

Gewicht - berechnet mit da (g) [Mass] 21.52 21.52

11. LEBENSDAUER, SCHÄDIGUNG

 Sollsicherheit Zahnfuss
 [SFmin]
 1.20

 Sollsicherheit Zahnflanke
 [SHmin]
 0.90

Lebensdauer (berechnet mit Sollsicherheiten):

Lebensdauer System (h) [Hatt] > 1000000

 Lebensdauer Zahnfuss (h)
 [HFatt]
 1e+006
 1e+006

 Lebensdauer Zahnflanke (h)
 [HHatt]
 1e+006
 1e+006

Hinweis: Die Angabe 1e+006 h bedeutet, dass die Lebensdauer > 1 000 000 h ist.

Schädigung, bezogen auf die Soll-Lebensdauer [H] (5000.0 h)

F1% F2% H1% H2% 0.00 0.00 0.00 0.00

BEMERKUNGEN:

 Angaben mit [.e/i] bedeuten: Maximal- [e] und Minimalwert [i] bei Berücksichtigung aller Toleranzen

Angaben mit [.m] bedeuten: Mittelwert in der Toleranz

- Positives Vorzeichen der Kegelspitzen (tzF,tzR) bedeutet: Kegelspitze vor der Mittellinie. Nach ISO 23509.
- KV, KHa, KFa nach Methode B
- KHb, KFb nach Methode C
- Ydrel, YR nach Methode B1
- ZL, ZV, ZR nach Methode B
- Bei den Faktoren ZL, ZV, ZR, ZW, ZX, YdrelT, YRrelT, YX wird der aus den Werten für die Dauerfestigkeit und die statische Festigkeit auf Grund der Lastwechselzahl logarithmisch interpolierte Wert angegeben.

Ende Protokoll Zeilen: 502