
Inconsistency Management for Traffic

Regulations

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Harald Beck, BSc
Matrikelnummer 0303187

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: O.Univ.Prof. Dipl.-Ing. Dr.techn. Thomas Eiter
Mitwirkung: Univ.Ass. Dipl.-Ing. Thomas Krennwallner

Wien, 01.10.2013
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Meinen Eltern gewidmet

Erklärung zur Verfassung der Arbeit

Harald Beck, BSc
Preßgasse 1-3/10, 1040 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

Abstract

Road Traffic Regulations (Straßenverkehrsordnung; StVO) define legal road use on public
streets. In particular, they describe the meaning and appropriation of traffic signs by
means of which road use restrictions can be adopted. Traffic regulation orders become
legally binding when they are announced by according traffic signs. This may lead to
inconsistencies with existing regulations. In order to invalidate outdated, contradictory
regulations, respective traffic signs need to be removed.

Currently, road and traffic management officials in Vienna and Lower Austria are
supported by a web application that allows editing and visualizing traffic regulations
on a digital street map. However, tools are lacking that help to ensure the compliance
of such restrictions with the Road Traffic Regulations and with supplementary criteria.
The goal of this thesis is to develop such tools based on intuitively readable, flexibly
extendable formal specifications.

To this end, we first analyze the kind of information, which is expressed by traffic
signs and traffic measures in a domain analysis. We develop a formal model which allows
an examination of high-level relations between measures and signs and their compliance
with a formal specification, without neither being bound to specific street maps, traffic
signs, regulations, nor to data models of existing implementations.

We identify practically relevant tasks related to the correctness of traffic regulations
and develop methods to solve them. First, we show how to evaluate a given scenario
based on rules that declare the meaning of traffic signs and traffic measures. In case
of an error, we can recognize which conflicts exist and where they occur. We provide
diagnoses which determine the causes of conflicts. Furthermore, we show how correc-
tions for inconsistent scenarios can be obtained by the specification itself. In addition
to ensuring the correctness of measures and signs with respect to the rules, these re-
pairs guarantee that the restrictions as announced by traffic signs correspond with the
intended restrictions as expressed by traffic measures.

We define these use cases in form of reasoning tasks and analyze the computational
complexity of associated decision problems. Finally, we present in detail a prototypical
solution of the defined problems with Answer Set Programming (ASP), which is a rule-
based programming paradigm. By exploiting the purely declarative semantics of ASP,
we obtain a modular, highly flexible and maintainable implementation, which is crucial
to this intrinsically complex domain.

Kurzfassung

Die Straßenverkehrsordnung (StVO) ist das Bundesgesetz, welches den Verkehr auf
öffentlichen Straßen regelt. Insbesondere wird darin die Bedeutung und Anwendbarkeit
von Verkehrszeichen bestimmt, mittels derer die Straßenbenutzung reguliert werden
kann. Verordnungen verkehrlicher Maßnahmen werden rechtlich wirksam, indem sie
durch entsprechende Verkehrszeichen kundgemacht werden. Dies kann zu Widersprüchen
mit bestehenden Vorschriften führen, die dann durch die Entfernung der entsprechenden
Verkehrszeichen außer Kraft gesetzt werden müssen.

Derzeit werden Beamte der Straßen- und Verkehrsverwaltung in Wien und Nieder-
österreich durch eine Webanwendung unterstützt, welche die Editierung und Visualisie-
rung von verkehrlichen Maßnahmen und Verkehrszeichen auf einer digitalen Straßen-
karte ermöglicht. Allerdings fehlt es noch an Werkzeugen, um die Konformität solcher
Vorschriften bezüglich der StVO und weiterer Kriterien sicherzustellen. Das Ziel dieser
Arbeit ist es, Methoden zu entwicklen, um dies auf Basis einer intuitiv lesbaren, flexibel
erweiterbaren Spezifikation zu ermöglichen.

Dazu analysieren wir zunächst in einer Domänenanalyse, welche Informationen durch
Verkehrszeichen und verkehrliche Maßnahmen ausgedrückt werden. Wir entwickeln ein
formales Modell, das erlaubt, Beziehungen zwischen Maßnahmen und Verkehrszeichen
und deren Konformität bezüglich einer formalen Spezifikation zu untersuchen, ohne an
bestimmte Straßenkarten, Verkehrszeichen oder Vorschriften, beziehungsweise an Daten-
modelle konkreter Umsetzungen gebunden zu sein.

Wir identifizieren praxisrelevante Aufgabenstellungen, die im Zusammenhang mit
der Korrektheit von Verkehrsvorschriften stehen, und entwickeln Methoden zu deren
Lösung. Zunächst wird gezeigt, wie Verkehrszeichen, die einer digitalen Straßenkarte zu-
geordnet sind, aufgrund von Regelsätzen evaluiert werden können. Im Fehlerfall wird
erkannt, welche Konflikte existieren, wo diese auftreten und wodurch sie zustande kom-
men. Danach erläutern wir, wie Korrekturvorschläge direkt aus der Spezifikation erzeugt
werden können. Diese Reparaturen stellen zum einen die Gültigkeit von Maßnahmen
und Verkehrszeichen gemäß der Spezifikation sicher, und zum anderen, dass die mittels
Verkehrszeichen kundgemachten Vorschriften den verordneten Maßnahmen entsprechen.

Wir definieren diese Anwendungsfälle in Form von logischen Problemen (reasoning
tasks) und bestimmen die Komplexität von zugehörigen Entscheidungsproblemen. Ab-
schließend präsentieren wir im Detail eine prototypische Lösung der beschriebenen Auf-
gabenstellungen mithilfe eines regelbasierten Systems (Answer Set Programming; ASP).
Unterstützt durch die rein deklarative Semantik von ASP erzielen wir dabei eine modu-
lare Implementierung, die sich durch hohe Flexiblität und Wartbarkeit auszeichnet. Dies
erweist sich als besonders wichtig auf diesem inhärent komplexen Gebiet.

Danksagung

Ich möchte mich herzlich bei meinen Betreuern Prof. Thomas Eiter und Ass. Thomas
Krennwallner bedanken, deren Einsatz weit über das hinaus ging, was zur Ausführung
einer Diplomarbeit nötig oder zu erwarten gewesen wäre. Die zahlreichen, intensiven und
lehrreichen Besprechungen haben es möglich gemacht, die zunächst vagen Ideen schritt-
weise zu entwickeln, zu präzisieren und schließlich auch in klarer Form darzustellen.
Insbesondere danke ich Thomas Eiter für seine Beiträge zu den zwei wissenschaftlichen
Artikeln, die im Rahmen dieser Arbeit veröffentlicht wurden. Dazu gehören auch die
Komplexitätsresultate, die mithilfe seines Engagements eingearbeitet werden konnten.
Nicht zuletzt möchte ich mich auch für die Möglichkeit bedanken, den gemeinsamen
Konferenz-Artikel bei der letztjährigen JELIA (13th European Conference on Logics in
Artificial Intelligence) präsentieren zu können.

Mein besonderer Dank gilt Stefan Kollarits, meinem ehemaligen Arbeitgeber bei
Prisma Solutions, der mir die Arbeit an diesem Thema ermöglicht hat, sowie meinen
Projektleitern Torsten Schönberg und Marlene Handschuh. Meinem Kollegen Christoph
Hillinger danke ich für seine Geduld während der Domänenanalyse, und dafür, dass
er mir eine detailliertere Auseinandersetzung mit der StVO erspart hat. Weiters hat
mich bei Prisma Solutions Roman Steiner in der Frühphase der Arbeit unterstützt, die
Aufgabenstellung zu definieren und von anderen Themen abzugrenzen.

Da auch das Studium mit dem Abschluss dieser Arbeit zu Ende geht, möchte ich
die Gelegenheit nutzen, mich bei weiteren Personen zu bedanken, die nicht direkt mit
dieser Arbeit in Verbindung stehen, ohne die das Studium aber einen anderen Verlauf
genommen hätte. Hier möchte ich Michael Reiter und Hans Tompits nennen, die mir
die Möglichkeit gegeben haben, in unterschiedlichen Lehrveranstaltungen als Tutor tätig
zu werden. Ein Seminar bei Hans Tompits war es auch, welches früh im Studium mein
Interesse an Answer Set Programming, bzw. an der Logik im Allgemeinen, geweckt hat.

Meinen Eltern, Stephanie und Franz Beck, möchte ich danken, dass sie mich von
klein auf ermutigt haben, meine eigenen Entscheidungen zu treffen, und dass sie mich
stets in meiner Entwicklung, sowie bei der Erreichung meiner Ziele unterstützt haben.

Schließlich danke ich Mirjam Moser für all ihre Liebe und Geduld.

Contents

1 Introduction 1

1.1 Motivation . 4

1.2 Goals and Scope . 5

1.3 Contributions . 6

1.4 Thesis Organization . 7

2 Preliminaries 9

2.1 Diagnosis . 9

2.2 Answer Set Programming . 12

2.2.1 Declarative Programming . 12

2.2.2 Logic Programming under the Answer Set Semantics 13

2.2.3 Restrictions . 16

2.3 Computational Complexity . 16

3 Domain Analysis 19

3.1 Street Maps . 19

3.2 Traffic Measures and Traffic Signs . 20

3.3 Inconsistencies . 25

3.4 Use Cases . 26

3.4.1 Consistency Evaluation . 26

3.4.2 Diagnosis . 27

3.4.3 Repair . 28

3.4.4 Correspondence and Strict Repair 28

3.5 Technical Approach . 29

3.5.1 Challenges . 29

3.5.2 Answer Set Programming . 31

4 Formal Model 33

4.1 Street Graph . 33

4.2 Traffic Measures and Traffic Signs . 35

4.3 Effects and Conflicts . 37

4.4 Effect Mapping . 39

4.5 Conflict Specification . 45

xi

5 Reasoning Tasks 51
5.1 Consistency Evaluation . 52
5.2 Diagnosis . 52
5.3 Repair . 59
5.4 Correspondence . 66
5.5 Strict Repair . 67
5.6 Adjustment and Generation . 70

6 Computational Complexity 73
6.1 Entailment . 74
6.2 Consistency . 75
6.3 Unique Minimal Diagnosis . 79
6.4 Correspondence . 80
6.5 Repair . 82
6.6 Summary . 84

7 Implementation 87
7.1 Answer Set Programming . 87

7.1.1 Answer Set Programming as Logic 87
7.1.2 Answer Set Programming as Implementation Language 88
7.1.3 The DLV System . 89

7.2 Uniform Approach for Reasoning Tasks 91
7.2.1 Consistency Evaluation . 93
7.2.2 Correspondence . 94
7.2.3 Diagnosis . 95
7.2.4 Repair . 95
7.2.5 Strict Repairs . 97
7.2.6 Adjustment & Generation . 97

7.3 Executable Realization . 98
7.3.1 Pool . 98
7.3.2 Formal Model . 98
7.3.3 Reasoning Tasks . 103

8 Conclusion 121
8.1 Future Work . 122

Bibliography 127

A Appendix 131
A.1 Source Code . 131
A.2 Translation . 136

CHAPTER 1
Introduction

In recent years, digital street maps such as Google Maps1 and the OpenStreetMap2 have
become standard software products for geospatial applications and transport related use
cases. The Graph Integration Platform (GIP), developed by PRISMA solutions, is such
a street graph specifically designed for the integration of existing transport networks.3

The topology provided by the GIP is used by different web applications for data man-
agement tasks in the field of road and traffic administration. One of these systems
is SKAT,4 which assists road operators and traffic authorities with the management of
road use restrictions by traffic signs and related traffic regulation data.5 Officials from
Lower Austria and Vienna already use this software to collect, store and visualize such
information on top of the GIP.6

A typical use case is the introduction of a new restriction of a certain type, for
instance, a maximum speed limit. In order for this so-called traffic measure to become
legally binding, according traffic signs must be posted. Then, the question is which traffic
signs are required and where these signs must be posted. In general, many options are
possible, depending on the street topology and on the context, i.e., existing traffic signs
for other restrictions. Furthermore, outdated measures and signs can be in conflict with
the new restriction and must then be retracted. However, these updates in turn may
have context-dependent side effects.

So far, SKAT can propose correct traffic signs for a certain set of frequently enacted
measures. That is, if a new traffic measure is created in the software by selecting an
according type and drawing its shape onto the street graph, the options for according
traffic sign posting are listed. The user can choose one option and then the software

1
http://maps.google.com

2
http://www.openstreetmap.org

3
http://www.prisma-solutions.at/index.php/en/solutions/gip-multimodal-graphintegrationplatform

4SKAT abbreviates “Straßen-Kartographie und Administrations-Tools”
5
http://www.prisma-solutions.at/index.php/en/solutions/skat

6
http://www.prisma-solutions.at/index.php/en/references/skat-province-of-lower-austria

1

http://maps.google.com
http://www.openstreetmap.org
http://www.prisma-solutions.at/index.php/en/solutions/gip-multimodal-graphintegrationplatform
http://www.prisma-solutions.at/index.php/en/solutions/skat
http://www.prisma-solutions.at/index.php/en/references/skat-province-of-lower-austria

a b
A B

C

Figure 1.1: Intended extent of a 30 km/h speed limit restriction at a T-junction

a b
A B

C

30 30 30

Figure 1.2: Correct sign posting to announce the 30 km/h speed limit measure

automatically adds the respective signs to the database, relates it with the measure and
visualizes the posting position based on the GIP.

Example 1 Figure 1.1 schematically depicts a T-junction, i.e., a junction with three
arms. Imagine a new speed limit restriction of 30 km/h shall be enacted on the horizontal
street in direction from A to B as indicated by the blue line from point a to point b. To
make such a traffic measure legally binding, a start sign needs to be posted at point a,
and an end sign at point b. Now, consider the road users who turn right from arm C
into arm B. To inform those drivers about the speed limit, a further start sign is needed
directly after the junction. The correct announcement of the 30 km/h speed limit is
shown in Figure 1.2. �

Currently, the generation of such announcement proposals by SKAT only takes the
street topology into account but ignores existing traffic regulation data. To ensure logical
consistency and compliance with the Road Traffic Regulations (Straßenverkehrsordnung;
StVO)7 during update processes, we need a new methodology that can deal with the

7
http://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10011336

2

http://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10011336

a b

c

A B

C

30 30

Figure 1.3: Two restrictions at a T-junction: A 30 km/h speed limit from a to b and a
No Right Turn from arm C to arm B

a b′ b
A B

C

30 40 40

Figure 1.4: Correct sign posting for two consecutive speed limit restrictions

meaning of arbitrary combinations of traffic measures and traffic signs.

Example 2 In the previous example, the repeated start sign was necessary to inform
traffic turning from arm C to arm B about the speed limit. However, if this driving
direction is prohibited, like in the scenario shown in Figure 1.3, this repeated start sign
is not necessary.

Now, imagine an update of the speed limit of the previous example, where the
30 km/h restriction is shortened and replaced by a 40 km/h restriction on arm B. The
correct sign posting for these restriction shown in Figure 1.4. The current mechanism
cannot recognize that the start sign for the 40 km/h limit at b′ implicitly ends the former
restriction. Thus, it would incorrectly add an explicit end sign for the 30 km/h limit at
point b′ in addition to the 40 km/h start sign. �

An older desktop version of SKAT provided tailored tests for a fixed set of conflicts
which were implemented by ad-hoc checks. For instance, the software could detect
simple data faults like wrong posting positions (e.g., with respective to street side), one-
way streets assigned to opposing directions, or start signs not having according end signs.

3

However, we are not aware of any implemented or formal system that allows reasoning
over the complex semantics (i.e., the logic) of arbitrary combinations of traffic measures
and traffic signs in a systematic, reliable way. In particular, we are not aware of any
work that deals with the meaning of both kinds of information at the same time.

1.1 Motivation

To further motivate this work, we will exemplify different usage scenarios of envisaged
software tools that allow to evaluate traffic regulation data against a specification like
the Road Traffic Regulations. Moreover, if this specification can be flexibly adapted
to capture other correctness criteria, problems of various traffic related domains can be
tackled based on a uniform approach.

Road administration. Inconsistent traffic regulations create problems in daily traffic.
For instance, officials are confronted with legal issues like challenging of speeding tickets
when ambiguous or contradicting speed limits are announced. Even more problematic is
the aspect of legal responsibility in case of accidents caused by wrong traffic sign posting.
Different from that, errors in the data acquisition in traffic sign software may lead to
wrong assumptions on the state of traffic regulations which in turn may lead to bad
decision making in planning scenarios. Legal traffic management procedures, such as the
introduction of new traffic measures, are already supported by storage and visualization
tools that help to keep track of current traffic regulations and their announcements.
However, mechanisms that ensure the correctness of the involved data are still in need.

Intelligent transport systems. The automatization efforts in urban infrastructures
further illustrate the usefulness of tool support to ensure consistency of the data. Within
the broader trend towards smart cities,8 intelligent transport systems seek to improve
the collective use of transport networks by technological aids. Our approach is based
on static data but shall also provide a first step towards dynamic environments with
streaming real-time traffic and traffic regulation data.

For instance, in so-called active traffic management, variable-message signs on mo-
torways help smoothing traffic flows by varying speed limits based on events like traffic
congestions, or weather conditions like fog or black ice. Without consistency evaluation,
contradicting speed limits may be posted by operators of such message signs, leading to
aforementioned legal issues.

Urban planning. Apart from legal issues, we emphasize the utility of software support
in urban traffic planning, which also involves safety considerations. For instance, one
wants to avoid constructing major roads near schools or parks. Likewise, heavy trucks
should be banned from small roads in densely populated residential areas, if possible.
A traffic planner, using a software like SKAT, may then want to inspect the effects of

8See, e.g., http://www.ibm.com/smarterplanet/us/en/traffic_congestion/ideas/index.html

4

http://www.ibm.com/smarterplanet/us/en/traffic_congestion/ideas/index.html

such restrictions; potentially during a large-scale restructuring of urban areas, adaptions
of one-way systems and the like. For these usage scenarios, it is desirable for domain
experts to have an editable specification against which the database is evaluated. Then,
a virtually set up scenario can also be tested against local, use case specific criteria.

Open data and crowdsourcing. Open data initiatives, such as open government
data, and crowdsourced databases like the OpenStreetMap provide freely available data
sets, which will very likely contain different kinds of errors for various reasons. For
instance, geotagged user data may be noisy, imprecise, or incomplete. In particular,
the records of different users may contradict each other. With a tool that can detect,
diagnose and semi-automatically repair inconsistencies, the quality of such databases
might be drastically improved.

1.2 Goals and Scope

To the best of our knowledge, systematic inconsistency management for traffic regula-
tions has been an entirely unexplored domain prior to this thesis. As a result, tools
that help to ensure the correctness of traffic measure data and corresponding traffic sign
posting (beyond simple ad-hoc checks) are lacking. The aim of this thesis is to lay the
foundation for an extension of SKAT such that the stored data can be guaranteed to
comply with a flexibly editable specification. In addition to the Road Traffic Regula-
tions this specification may include expert knowledge such as traffic planning experience,
safety requirements and also common sense.

Central to our understanding of inconsistency is the notion of a conflict, which occurs
whenever a set of traffic measures or traffic signs (on a digital street map) contradict the
given specification. We intend to provide automated assistance for the following major
use cases.

1. Evaluation. Determine whether the database is consistent, i.e., whether the stored
traffic signs and traffic measures are compliant with the specification. In case of
inconsistencies we want to know which conflicts occur, and where.

2. Correspondence. Traffic measures and traffic signs are two ways to express restric-
tions on road use. We need to ensure that given data of both kinds express the
same restrictions.

3. Diagnosis. In order to resolve inconsistencies, we need an understanding of their
causes. Thus, we want to determine those signs and measures that lead to conflicts.

4. Repair. The system should suggest repairs for inconsistent scenarios, i.e., additions
and removals of measures and signs such that the updated database is consistent.

Due to the complex nature of traffic regulations we cannot expect any specification
to be sufficient for all scenarios. Consequently, a systematic way must be found for
an implementation such that the underlying specification can be flexibly adapted and
extended, potentially even by domain experts at runtime.

5

1.3 Contributions

In this thesis, we lay the groundwork for software support in advanced use cases of
inconsistency management for traffic regulations, with the following main contributions.

Domain Analysis. Towards a model of the traffic regulation domain, we first discern
in a comprehensive domain analysis relevant aspects in traffic measure and traffic sign
information. We categorize different classes of errors and identify major use cases to deal
with them: consistency evaluation, diagnosis, repair, correspondence and strict repair.

Formal Model for Traffic Regulations. Based on this study, we develop a logic-
based model, where we regard traffic signs and traffic measures as two input languages
expressing road use restrictions in form of so-called effects. We abstract away from
specific street maps by considering directed graphs. We also generalize the discussed
measures and signs by employing edge and node labels to reflect them, as well as their
intended effects and potential conflicts. We assume that the traffic regulation and sup-
plementary specifications are encoded as mappings between these labels by means of
formulas in a predicate logic.

As a result, we can focus on high-level relations between measures and signs and
their compliance with a formal specification without being bound to specific kinds of
input, legal interpretations, particular data representations of available street maps, or
the expressiveness required to describe certain properties. We also present an exemplary
instantiation of this model using Answer Set Programming [5, 23] as underlying logic.

Reasoning Tasks. On top of the formal model, we define the intended use cases in
form of reasoning tasks and investigate several practically relevant special cases of so-
called strict repairs, where traffic measures and traffic signs can be repaired at the same
time. We define and characterize contexts due to which conflicts arise and examine
relations between diagnoses and repairs. This leads to the observation of challenges for
an implementation of the defined tasks.

Computational Complexity. We present in more detail the complexity results es-
tablished in [3]. For our reasoning tasks, we study first-order logic under domain closure
and three classes of Answer Set Programs, namely stratified programs, normal programs,
and disjunctive programs [17]. For ASP, the complexity increases in that order.

Implementation. We present in detail a prototypical, elegant implementation for our
reasoning tasks with Answer Set Programming, using the solver DLV.9 We explain and
demonstrate the benefits of automated reasoning and the high readability which comes
with a rule-based implementation for a logic-oriented domain. Moreover, we show how
the fully declarative semantics of ASP assists modular composition and thus enables a
high degree of flexibility, which is crucial in this intrinsically complex domain.

9http://www.dlvsystem.com

6

http://www.dlvsystem.com

1.4 Thesis Organization

After reviewing some technical background in Chapter 2, we first analyze the traffic
regulation domain in Chapter 3. We can then build a formal model in Chapter 4 to
lay the foundation towards a systematic solution of the intended use cases which we
define in form of reasoning tasks in Chapter 5. After investigating the computational
complexity of according decision problems in Chapter 6, we then explain in Chapter 7
in detail how the reasoning tasks can be implemented with Answer Set Programming.
Finally, in Chapter 8 we will draw conclusions and point towards future work. The
Appendix contains the source code of the presented implementation and a translation
table for relevant domain vocabulary.

Parts of the result of this thesis have been presented, in preliminary form, at the
AAAI 2012 Workshop on Semantic Cities [2] and at the 13th European Conference on
Logics in Artificial Intelligence [3].

7

CHAPTER 2
Preliminaries

In this chapter, we review the two main approaches to diagnosis in the context of
knowledge-based systems, namely consistency-based diagnosis and abductive diagno-
sis. Then, we give a brief introduction to declarative programming and Answer Set
Programming. Finally, we review basic definitions of computational complexity theory.

2.1 Diagnosis

Diagnosis is the task to determine reasons for the unexpected behaviour of a system.
Given exceptional or abnormal findings, one wants to explain them based on background
knowledge. For instance, in medical diagnosis, the problem is to identify diseases by
their symptoms. The result of this inference from effects to their causes is also called a
diagnosis, i.e., a set of assumptions that account for the observations. Within the field of
logic in artificial intelligence, diagnosis is usually understood as the task to infer reasons
for abnormal behaviour of a fixed system as described by a formal model. Model-based
diagnosis [9,35] is traditionally divided into two (related [8,27]) categories, consistency-
based diagnosis [11,44] and abductive diagnosis [6,7,39,41,42]. Informally, in consistency-
based diagnosis one wants to determine those hypotheses (causes) that are logically
consistent with the background knowledge and the observations (effects) that indicate
a discrepancy between the expected and the actual behaviour of the system. Abductive
diagnosis is a stronger concept which additionally requires that the observations logically
follow from the assumptions being made. We will review the respective definitions in
line with [15] and assume that some version of predicate logic with negation is fixed.

Definition 1 (Diagnostic problem) A diagnostic problem P is a triple 〈H,T,O〉,
where H is a set of ground atoms, called the hypotheses, T is a set of formulas, called
the theory, and O is a set of ground literals, called the observations.

The consistency-based approach to diagnosis is usually presented in the context of a
fixed, well-defined system consisting of components, where each one hypothetically works

9

abnormally. Typically, the following assumptions are made. The logical theory describes
the normal behaviour of these components. Observations, such as the input and output
values of its components, are used to reason about the system’s state. In the presence of
abnormal behaviour of any of the components, these observations shall give insight into
which components work abnormally. A set of components is defined to be a consistency-
based diagnosis, if the assumption of their abnormal behaviour is logically consistent
with the theory and the observations. Therefore, the set of hypotheses usually consists
of an abnormality assumption ab(c) for each component c (represented as constant) of
the system. Here, ab is a designated predicate symbol.

Definition 2 (Consistency-based diagnosis) Let P = 〈H,T,O〉 be a diagnostic prob-
lem. A consistency-based diagnosis for O (in P) is a set of assumptions ∆ ⊆ H, s.t.

T ∪O ∪∆ ∪ {¬h | h ∈ H \∆} 6|= ⊥. (2.1)

The set ∆ represents those components which are assumed to function abnormally. The
negated complement {¬h | h ∈ H \∆} completes this assumption by explicitly stipulat-
ing that all other components work correctly. If this assumption is consistent with the
theory and the observations, then ∆ is a consistency-based diagnosis for O. Normally,
one is not interested in arbitrary diagnoses, but plausible ones. Following Occam’s razor,
one is typically looking for minimal diagnoses, e.g., with respect to subset inclusion.

Consistency-based diagnosis is usually defined towards the localization of malfunc-
tioning components in a fixed system. We presented a more general definition, which
emphasizes the applicability for other domains.

Example 3 Suppose we are given the following domain knowledge, structurally resem-
bling an example in [40].

(i) To prove theorems, one must work at university or at a big tech corporation.

(ii) To make money, one must work at a big tech corporation or pursue some other
career in industry.

This can be formalized propositionally in a straightforward way:

T1 = { theorems → uni ∨ big-corp
dollars → industry ∨ big-corp }

Let our goal be to prove theorems, i.e., O = {theorems}. The hypotheses are

H = { uni , industry , big-corp }.

The set {uni} is a consistency-based diagnosis for O, as ∆ ∪ {¬industry ,¬big-corp} is
consistent with T1 ∪O. Similarly, {big-corp} satisfies the criterion. However, {industry}
is not consistent with {theorems}, i.e., T1 ∪O ∪ {industry} ∪ {¬uni ,¬big-corp} |= ⊥.

Note that the entire set of hypotheses H is itself a consistency-based diagnosis for all
observations {theorems}, {dollars}, and {theorems, dollars}; albeit not an informative
one. Thus, we are normally interested in ⊆-minimal diagnoses. Furthermore, we note
that the empty set is not a consistency-based diagnosis for any of these observations. �

10

The fact that we spoke of goals rather than observations brings us to the relation between
a diagnostic task and the kind of knowledge being modelled.

Example 4 We rephrase the above example as follows.

(i) At universities people prove theorems.

(ii) In industrial careers people make money.

(iii) In big tech corporations people prove theorems and make money.

This presentation suggests a different way of modelling.

T2 = { uni → theorems
industry → dollars
big-corp → theorems ∧ dollars }

Let us consider O = {theorems} and H as before. Again, {uni} and {big-corp} are
consistency-based diagnoses for O. However, {industry} and the empty set are also
diagnoses now, which is not intended. �

The problem with T2 in the above example are the implications from hypotheses to
observations; in other words, from causes to effects. Such causal models do not (auto-
matically) fit the consistency-based approach. However, a theory like T2 is suitable if
we are looking for hypotheses which are not only consistent with the observations (or
goals), but which also entail them. This requirement that observations must logically
follow from the assumptions is the idea behind abductive diagnosis.

Definition 3 (Abductive diagnosis) Let P = 〈H,T,O〉 be a diagnostic problem. An
abductive diagnosis for O (in P) is a set of assumptions ∆ ⊆ H, such that

T ∪∆ 6|= ⊥, and (2.2)

T ∪∆ |= O. (2.3)

Abductive diagnoses are also often called explanations since they give sufficient reasons
to infer the observations.

Example 5 (cont’d) Consider again the diagnostic problem 〈H,T2, O〉 of Example 4.
As intended, the empty set is not an abductive diagnosis for O = {theorems}, but {uni}
and {big-corp} are. In fact, all consistency-based diagnoses for O in 〈H,T1, O〉, i.e.,
all subsets of H including at least uni or big-corp, are also abductive diagnoses for O
in 〈H,T2, O〉. On the other hand, {uni} and {big-corp} are not abductive diagnoses
for O in 〈H,T1, O〉. �

What we see in these examples is that the domain model and the diagnostic task cannot
be viewed separately. The choice which diagnostic approach to use depends on the
kind of knowledge which it requires [35, 40]. Consistency-based diagnosis is usually the
right choice when the normal behaviour of a system can be specified, and if there is
no explicit fault model relating malfunctioning components to observable effects. If the

11

relation between causes and effects (or diseases and symptoms) can be directly modelled,
or when the notion of goals is more natural than observations, the domain usually fits
abductive diagnosis.

Note that domain knowledge can be encoded in different ways, regardless of its
nature. The theory T1 in Example 3 is also a causal model, only encoded in such a way
that it works for consistency-based diagnosis in the intended way.

2.2 Answer Set Programming

Answer Set Programming (ASP) [24] is a modern logic-oriented programming paradigm,
gaining increasing popularity [5] due to the availability of efficient solvers like DLV [30]
and the Potassco suite [21]. We first put ASP in context by contrasting it with more
prominent programming languages and paradigms. Then, we review its formal definition.
A general introduction into Answer Set Programming, various extensions and prominent
solvers can be found in [17].

2.2.1 Declarative Programming

Programming languages can be categorized in different ways. Prominent paradigms in-
clude object-oriented programming (Java, C++, C#), functional programming (Haskell,
LISP), and logic-oriented programming (Prolog). Many languages combine aspects of
different paradigms. For instance, C# and Scala combine object-oriented programming
with functional programming.

The relevant distinction for our considerations is whether a language is imperative
or declarative. In imperative languages, the programmer states how the computation is
carried out by defining control flow and sequences of statements altering the program’s
state. In Kowalski’s terms, where “Algorithm = Logic + Control” [28], imperative pro-
gramming focuses on the control. By contrast, declarative languages abstract from con-
trol flow and instead allow the programmer to directly specify what shall be computed.
Declarative languages thus focus on the logic of programs.

Similar to other distinctions, there is no sharp line between imperative and declar-
ative languages. However, functional and logic-oriented languages are typically largely
declarative. Answer Set Programming is a logic-oriented approach which is purely declar-
ative in the sense that it is free from side effects and features no notion of control flow
or means to direct how the computation shall be done.

Example 6 Consider the following imperatively written function in Python, which de-
termines whether the argument x represents a bird.

def bird(x):

if x == ’tweety’: return True

elif x == ’sam’: return True

elif penguin(x): return True

else: return False

12

The function has no assignments but explicitly defines the control flow: First it tests
whether x is a string ’tweety’. If this check fails, then x is tested for equality with
’sam’, and so on.

The following Clojure expression is functional and directly specifies the intended
meaning that x is a bird, if it is "tweety", "sam" or a penguin. It is evaluated by
function applications1 from inside out.

(defn bird? [x]

(or (= "tweety" x)

(= "sam" x)

(penguin? x)))

The corresponding answer set program comprises the following three rules in arbitrary
order. We have no strings, but constants tweety and sam and unary predicate sym-
bols bird and penguin. The uppercase X denotes a variable.

bird(tweety).

bird(sam).

bird(X) :- penguin(X).

The first two lines are so-called facts. The third rule says that if something is a penguin,
then it is a bird. The order in which these three lines are specified does not play a
role. This set-oriented approach assists modular composition. Suppose we hear that
“Larry” and “Charlie P” are also (certain kinds of) birds, as well as subjects of ornithol-
ogists’ study. With Answer Set Programming, we would leave the previous specifications
untouched and simply add new rules. Clearly, it depends on the context whether some-
thing is referred to as “bird”. Later, we will encounter such flexibility issues where we
demonstrate the usefulness of ASP in this regard. �

Next, we formally introduce Answer Set Programming.

2.2.2 Logic Programming under the Answer Set Semantics

Logic-oriented programming under the answer set semantics [23], or Answer Set Pro-
gramming, for short, is formally defined as follows.

Syntax

We use three disjoint sets of symbols over a first-order vocabulary Φ; predicates P
(countable), constants C (countable), and variables V (infinite). Members of C and V
are called terms. If p is a predicate and t1, . . . , tk are terms, then p(t1, . . . , tk) is an atom

1To be precise, or is implemented as macro in Clojure, but it could be a function.

13

Name Restriction

disjunctive (none)
positive n = m
normal k ≤ 1
definite k = 1
horn k ≤ 1, n = m
definite horn k = 1, n = m
unary k = 1, n = m ≤ 1
fact k = 1, n = m = 0
constraint k = 0

Table 2.1: Different classes of rules, resp. programs

with arity k. If k = 0, we speak of propositional atoms. Variable-free atoms are called
ground atoms. A (classical) literal ` is an atom a or a classically negated atom ¬a. The
complement of a literal a is ¬a, and vice versa. A negation as failure (NAF) literal is
either a literal `, or a default negated literal not `, which evaluates to true if ` is not
provably true, i.e., if the truth of ` cannot be concluded.

A rule r is an expression of the form

a1 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1, . . . , not bn, (2.4)

where k,m, n ≥ 0, and all ai and bj are literals. The set of literals a1, . . . , ak is called
the head of r, denoted H(r). The body B(r) = B+(r) ∪ B−(r) of r is the union of
the positive body B+(r) = {b1, . . . , bm} and the negative body B−(r) = {bm+1, . . . , bn}.
Table 2.1 defines different classes of rules.

An (extended disjunctive logic) program (EDLP) P is a finite set of rules of the
form (2.4). Extended logic programs do not allow disjunctive heads, i.e., k ≤ 1. Nor-
mal logic programs additionally disallow the use of classical negation. Generalized logic
programs are also free of classical negation but allow default negation in the heads of
rules. If a certain restriction applies to all rules of a program, the rule name of Table 2.1
extends to the respective program name. For instance, an EDLP is called positive, if all
rules are positive.

Example 7 Let P be the program consisting of the following two rules r1 and r2:

a ∨ b ← c, not d. (r1)
c. (r2)

The program is propositional and thus ground. The head of the first rule consists of
the (propositional) atoms a and b, i.e., H(r1) = {a, b}. The positive body contains
only c, the negative body consists of the default negated literal d. That is, B+(r1) = {c}
and B−(r1) = {d}. Rule r2 consists only of a head, i.e., H(r2) = {c} and B(r2) = ∅ and
thus is a fact. We write facts without “←” as usual. �

14

Semantics

Similar to atoms, rules and programs are called ground, if they are variable-free, re-
spectively. The semantics of Answer Set Programs is defined for variable-free programs.
Therefore, we first define the ground instantiation of a program.

Let P be an EDLP. The Herbrand universe of P , denoted HUP , is the set of constant
symbols appearing in P . If P does not contain a constant symbol, HUP comprises a
single arbitrary constant from C. The Herbrand base of P , denoted HBP , is defined as
the set of all ground literals that can be constructed using predicate symbols that appear
in P and constant symbols that appear in HUP . If r ∈ P is a rule, then replacing every
variable of r by some constant of HUP yields a ground instance of r. By ground(P) we
denote the set of all ground instances of rules in P .

We now define the semantics of positive ground EDLPs. An interpretation I ⊆ HBP

is called consistent iff {p,¬p} 6⊆ I for every atom p ∈ HBP . We say I satisfies a
rule r ∈ P , written I |= r, if H(r) ∩ I 6= ∅ whenever B+ ⊆ I and B− ∩ I = ∅. That is,
if no default negated atom of the rule occurs in I and all literals of the positive body
occur in I, then some head literal must occur in I. If I satisfies all rules of a positive
program P , we say I is a model of P , and also write I |= P . If a model exists, the least
one with respect to set inclusion is called the answer set of P .

This definition is extended to programs with negation as failure, as follows. The
(Gelfond-Lifschitz) reduct [23] of an EDLP P relative to an interpretation I ⊆ HBP ,
denoted P I , is the positive program obtained from P by (i) deleting every rule r
where B−(r) ∩ I 6= ∅, and (ii) deleting the negative body from the remaining rules.
An answer set of an extended disjunctive logic program P is an interpretation I ⊆ HBP

such that I is an answer set of P I .

Example 8 (cont’d) We consider for program P of Example 7 the following three
interpretations: Ia = {a}, Ic = {c}, and Iac = {a, c}. Since B+(r1) = {c} 6⊆ Ia, Ia |= r1

holds. However, Ic 6|= r1, since B+(r1) ⊆ Ic and B−(r1) ∩ Ic = ∅, but H(r1) ∩ Ic = ∅.
Finally, Iac |= r1, since B+(r1) ⊆ Iac and B−(r1) ∩ Iac = ∅, and H(r1) ∩ Iac = {a} 6= ∅.

The reduct for Iac is P Iac = {a ∨ b← c; c}. The negative body from r1 is deleted,
since it does not occur in Iac. (Otherwise, the entire rule would have been deleted.) The
interpretation satisfies both rules of the reduct, and therefore it is a model of the reduct,
i.e., Iac |= P Iac . To see that it is also the least model, we test the subsets ∅, Ia and Ic.
The latter does not satisfy a ∨ b← c, the other interpretations both do not satisfy the
fact c. We conclude that Iac is a ⊆-minimal model of P Iac and therefore is an answer
set of P . Similarly, Ibc = {b, c} is the program’s second answer set. �

Orthogonal to the ASP variants as defined by Table 2.1, other restrictions and properties
of Answer Set Programs have been studied in the literature. We review some of them
next.

15

2.2.3 Restrictions

The dependency graph D(P) of an EDLP P is a directed graph (V,E+∪E−), where the
set of nodes V comprises the predicates occurring in P , denoted pred(P). The edges are
obtained as follows. For every rule r ∈ P , where p ∈ H(r),

(i) (p, q) ∈ E+, if q ∈ B+, and

(ii) (p, q) ∈ E−, if q ∈ B−.

Let D(P) = (V,E+ ∪ E−) be the dependency graph of a program P . A predicate cy-
cle p1, . . . , pn, p1 with edges (pi, pi+1), where 1 ≤ i ≤ n, and (pn, p1) in E+ is called a
head-cycle, if two (or more) of its predicates pi occur in the head of some rule r ∈ P . If
a program does not have a head-cycle, it is called head-cycle free [4].

A stratification of P is a set partition Σ =
⋃

i≥1 Pi of pred(P), such that for
each p ∈ Pi and q ∈ Pj ,

(i) (p, q) ∈ E+ implies i ≥ j, and

(ii) (p, q) ∈ E− implies i > j.

If such a stratification Σ exists we call P a stratified program. The subsets Pi are
called the strata of P (with respect to Σ). Stratified programs allow for a more efficient
evaluation. In the absence of integrity constraints and strong negation, they have at
least one answer set.

2.3 Computational Complexity

We will now recall some important concepts of computational complexity theory [1,38].
A string is a sequence of symbols over some alphabet and a language L is a set of

strings. We usually consider binary strings, i.e., the alphabet {0, 1}. Given a string S,
the decision problem for a language L asks whether the language contains the string,
i.e., “S ∈ L?”. The complexity class P (respectively NP) contains all decision problems
solvable on a deterministic (respectively nondeterministic) Turing machine in polynomial
time. That is, the number of steps carried out by the respective Turing machine to decide
whether a given string S is in L is bounded by a polynomial in the size of S.

The complement L of a language L is the set of strings over the same alphabet not
contained in L. Given a complexity class C, we define the class co-C = {L | L ∈ C}.
We recall that P ⊆ NP ∩ co-NP.

Furthermore, we obtain classes by employing subroutines, so called oracle queries.
By PO (respectively NPO) we denote the class of decision problems computable in (non-
deterministic) polynomial time, provided a subroutine for deciding a problem in a class
of languages O is available. (If O has complete problems the particular problem is not
of interest.) A subroutine call to an oracle is considered to take constant time. Addi-
tionally, PO

‖ is the restriction of PO that all oracle queries are independent of each other,

16

i.e., they are evaluable in parallel. By PO
‖[k] we denote the restriction on PO

‖ such that
the parallel oracle calls can be limited to k consecutive rounds.

The Polynomial Hierarchy is defined as PH =
⋃

k≥0 Σp
k, where

• Σp
0 = Πp

0 = ∆p
0 = P, and for k ≥ 1

• Σp
k = NPΣp

k−1

• Πp
k = co-Σp

k, and

• ∆p
k = PΣp

k−1 .

It is easily seen that Σp
1 = NP, Πp

1 = co-NP and ∆p
2 = PNP.

The class EXP consists of problems which are computable on a deterministic Turing
Machine in exponential time. Similarly, NEXP is the exponential analog of NP. We
have P ⊆ NP ⊆ PH ⊆ PSPACE ⊆ NEXP and it is believed that these inclusions are strict.
We note that PSPACE is equivalent to its nondeterministic analog NPSPACE.

17

CHAPTER 3
Domain Analysis

In this chapter we analyze the problem domain of traffic regulations. After introducing
our vocabulary for relevant street attributes we investigate the meaning of frequently
used traffic signs1 and corresponding traffic measures, and we point out potential con-
flicts which may arise from their application. Based on these observations, we will out-
line inconsistency management tasks and derive criteria towards their implementation.
Finally, we argue why Answer Set Programming is a suitable choice.

3.1 Street Maps

A street (or road) typically consists of one or more lanes, each of which is associated with
a unique direction. Main roads often have more than one lane per direction. Additional
lanes, not available for regular traffic, are frontage roads, which are usually physically
separated from the outermost lane. Streets cross at junctions (or crossroads), where
one can turn into other arms. The incoming streets of a junction are those arms ending
there. Roundabouts can be viewed as special types of junctions. Different from these
physical properties are legal distinctions, i.e., whether a street is a normal road, within
a residential area, a motorway, etc. We will discuss such regulatory attributes later.

When writing software, one must design based on the intended use cases. Conse-
quently, well-known digital street maps focus on different aspects. The OpenStreetMap,
for instance, is designed for flexible, crowdsourced editing and generic data collection.
In this thesis, we are interested in a light-weight street model that allows to locate traffic
signs and related information. To keep things as simple as possible, we will not consider
roundabouts or frontage roads and assume that every street consists of exactly two lanes;
one per direction. These restriction will allow us to focus on the knowledge-based tasks
around inconsistency management.

1Figure source: http://de.wikipedia.org/wiki/Bildtafel_der_Verkehrszeichen_in_%C3%96sterreich

19

http://de.wikipedia.org/wiki/Bildtafel_der_Verkehrszeichen_in_%C3%96sterreich

(a) Start sign (b) End sign (c) Zone start sign (d) Zone end sign

Figure 3.1: Traffic signs for 30 km/h maximum speed limits

3.2 Traffic Measures and Traffic Signs

A Road Traffic Regulations is a federal law describing how road users can use the street
and how these usages can be restricted by means of traffic signs. The legal act to change
such restrictions by means of adding new traffic signs, or by removing existing ones,
is called a traffic regulation order, which comes in form of a document describing (in
natural language) a traffic measure that has to be taken to reach a desired effect. This
measure needs to be announced by means of traffic signs and becomes legally binding
as soon as the corresponding signs are posted on the street. We view road markings as
special cases of traffic signs.

By a measure type, respectively sign type, we understand the name of its category,
e.g., highway, residential area, speed limit, No Right Turn, one-way streets, etc. Each
measure type is associated with a topological extent or shape, which can be either a
point, a line or a zone. By the word traffic regulation we usually mean the specific
restrictions as expressed by traffic signs or traffic measures.

Example 9 Figure 1.2 (page 2) showed the correct announcement for a 30 km/h speed
limit measure across a T-junction. The Road Traffic Regulations state the according
rules of sign posting, e.g., the necessity for the repeated start sign. The respective
measure type is “speed limit of 30 km/h,” and has a linear shape. The depicted sign
types are “start (respectively end) sign for a 30 km/h speed limit.” �

This work is based on the Austrian Road Traffic Regulations and its potential measures
and signs. However, we aim to provide a more general solution and thus focus on
principles that are not bound to regional differences.

We will now investigate frequently used Austrian traffic signs and describe their
meaning and implications, i.e., the restrictions they impose on road use. This will also
reveal inconsistencies that might occur due to certain combinations.

Speed limits. Speed limits can come in two forms, normal (or linear) speed limits
(Figures 3.1a, 3.1b), and speed limit zones (Figures 3.1c, 3.1d). There are two main
differences. First, the announcement of a normal speed limit needs to be repeated after
every junction. In other words, without a repeated start sign at the begin of another
road’s arm, the speed limit restriction ends after turning. This is not the case for speed
limit zones, which take effect until a sign is reached that ends the according restriction.

20

(a) Highway (b) Motorway

Figure 3.2: Announcements for major roads

The second difference lies in the default character of speed limit zone. When arriving
at a start sign like in Figure 3.1a, the previous speed limit is overruled. However, if the
according speed ends (Figure 3.1b), then the default speed limit takes effect again. That
is, if a normal start sign is placed within a speed limit zone, it only temporarily overrules
the latter. If the end of the normal limit is reached, the zone limit is active again.
However, it is good practice to remind road users of that by another zone start sign.

Like for most signs, the validity of speed limits can be restricted by additional panels
below the main sign, stating the conditions or the road users the restriction applies for.
A typical validity restriction of speed limits is on heavy trucks which usually are assigned
a lower maximum speed then other vehicles. Similarly, speed limits are often bound to
weather conditions, particularly on major roads.

Since a start sign of a speed limit overrules the previous speed limit (permanently
or temporarily), the maximum speed limit is unique for every path. However, as argued
earlier, the speed limit must be unique on every position regardless of the taken path.
In case of insufficient announcements, this might not be the case, as we have seen in
Example 2 (page 3). Further, in accumulated traffic measure information there might
as well be contradicting speed limits at the same position, if a traffic regulation order
does not explicitly overturn a previous one that is in conflict with it.

Highways and motorways. On highways (Figure 3.2a) there is an obligatory min-
imum speed of 60 km/h, implying that only vehicles with a maximum design speed
exceeding 60 km/h are allowed for traffic. For different vehicle types, different default
speed limits are valid. Motorcycles and passenger cars are permitted a driving speed of
130 km/h, unless they have a gross vehicle weight greater than 3.5t (tons), are draw-
ing a trailer, or using studs. In these cases, the maximum allowed speed is reduced to
100 km/h, which is also the limit for omnibuses. For passenger cars with a gross vehicle
weight of at most 3.5t drawing heavy trailers, or if the total weight of car and trailer
exceeds 3.5t, the limit is 80 km/h. This is also the maximum speed limit for all vehicles
with gross vehicle weight greater than 3.5t, except omnibuses. These default restrictions
implied by highways may be overruled by explicit speed limits as explained above.

Likewise, motorways (Figure 3.2b) allow traffic only for motor vehicles and define a
default speed limit of 100 km/h, respectively 80 km/h, for similar groups as for highways.
Obviously, highway and motorway are mutually exclusive measure types. That is, no
street can be both a highway and a motorway.

21

(a) Residential area (b) Pedestrian zone (c) Home zone

Figure 3.3: Traffic signs related to inhabited areas

(a) Stop (b) Give Way (c) Priority road

Figure 3.4: Traffic signs that regulate the right of way

Residential areas, pedestrian zones and home zones. Residential areas imply
a default speed limit of 50 km/h, unless there is an explicit different speed limit. The
start sign of a residential area (Figure 3.3a) does not overrule an existing speed limit,
except for the default speed limit in non-residential areas, which is 100 km/h.

Pedestrian zones (Figure 3.3b) can only be announced within residential areas and
prohibit use for all road participants except pedestrians, public service vehicles and
emergency vehicles. For allowed vehicles there is a maximum speed limit of 5 km/h. For
home zones (Figure 3.3c) similar conditions hold.

We observe that some traffic measures require others. There cannot be a pedestrian
zone (or home zone) without a residential area at the same place. Also, pedestrian zones
and home zones are mutually exclusive. In Austria, a highway or a motorway must
not lead through a residential area. (And thus, as a logical consequence, highways and
motorways cannot cross pedestrian zones or home zones.)

Stop, Give Way and priority road. The next group of traffic signs deals with the
right of way. When arriving at a Stop sign (Figure 3.4a), usually before a junction, one
must stop the car before continuing to drive in either direction. By stopping, one always
gives way to other road users. A weaker form of signalling lower priority is done by the
Give Way (or Yield) sign (Figure 3.4b). Here, road users do not necessarily have to stop
the car but must give way to crossing traffic.

In contrast to this, by the traffic sign shown in Figure 3.4c one is informed about
driving on a priority road. That is, when crossing other streets, road users of the other
arms must give way. As a consequence, all incoming streets must have a Stop sign or
a Give Way sign right before the junction. This example illustrates that traffic signs
might imply the necessity of other traffic signs on other roads.

22

(a) One-way street (b) No Entry (c) No Bicycles

Figure 3.5: Traffic signs prohibiting traffic

(a) No Left Turn (b) No Right Turn (c) No U-turn

Figure 3.6: Turning bans

(a) Mandatory Left Turn (b) Mandatory Straight
or Right Turn

(c) Mandatory U-turn

Figure 3.7: Mandatory driving directions

One-way streets, No Entry and driving bans. One-way streets allow traffic in
only one direction. After every junction, the according direction must be indicated by
the sign shown in Figure 3.5a. The other direction needs to be banned for traffic, usually
by a No Entry sign (Figure 3.5b) at the other end of the arm.

A round, white traffic sign with a red border, called No Vehicles, indicates a driving
ban in both directions. This sign is often restricted to certain vehicles, properties of
vehicles (like height or weight), or combinations thereof, by an according symbol within
the main sign. Figure 3.5c shows the example of a driving ban for bicycles.

Note that highways are implicit one-way streets and must not be announced as such.
Further, they also imply a driving ban for bicycles and other means of transport as
mentioned earlier. Thus, we can view traffic signs as groups of restrictions, which in
general could also be expressed by other signs. For instance, having a No Entry sign at
all entry points to a street essentially yields the same restriction as posting a general
driving ban. Thus, we distinguish between the traffic sign and its effects, which depend
on the context, i.e., the street topology and the other signs.

23

Category Examples

Vehicle passenger car, truck, bicycle, motor vehicles

Attribute gross vehicle weight, height, length, trailer

Owner doctor on duty, supplier

Role taxi, public service, emergency vehicle, school bus

Activity access, loading, boarding

Time Mondays, workdays, 9:00 a.m. – 5:00 p.m.

Weather rain, snow, slippery road

Table 3.1: Categories of validity restrictions

Turning bans and mandatory driving directions. In a similar way as the former
signs prohibit traffic for entire streets, turning bans (Figure 3.6) restrict the allowed
driving directions at junctions. Their validity can also be restricted for specific road
users by an according additional panel, e.g., “except bicycles” in addition to a No Entry
sign. Dually, mandatory driving directions, as shown in Figure 3.7, indicate which
directions are allowed for traffic.

Combinations with the aforementioned traffic signs can lead to logical inconsistencies.
Imagine, for instance, the Mandatory Left Turn (Figure 3.7a) pointing to a street where
a No Entry sign is posted. Furthermore, in areas with many one-way streets, one could
easily create a loop, or at least complicated routes, by posting additional restrictions
on driving directions. Moreover, one might be interested in higher-level goals associated
with the flow of traffic, e.g., noise reduction in populated areas by means of permanent
diversions for trucks. We aim to target such common sense and optimization issues,
which will not be defined in legal texts, as well.

Validity restrictions. The validity of most regulations can be restricted to certain
subsets of road users and conditions by adding an additional panel below the traffic sign.
For common validity restrictions there exist designated traffic signs which symbolize the
validity in the main sign, like noted before (Figure 3.5c). However, such traffic signs
might also be restricted further by additional panels. Table 3.1 lists categories from
which such restrictions are composed. Note that the applicability of these categories
depend on the kind of traffic restriction. Speed limits, for instance, will be bound to
vehicle types and attributes, or weather conditions, but not vehicle owners, roles or
activities. Parking bans, on the other hand, are usually bound to weekdays and time
intervals but will not refer to weather conditions.

The investigation of highways and motorways revealed that dealing with validity
restrictions introduces a considerable source of additional complexity. In fact, even a
formal model to represent which aspects of Table 3.1 may or may not be combined, or in
which ways, is a challenging task on its own. To develop a systematic approach towards
advanced inconsistency management tasks, we will for the purpose of this work assume

24

a single modality of traffic. Validity restrictions are beyond the scope of this thesis and
remain to be done in future work.

As a consequence, we do not model traffic regulations that require validity restric-
tions, such as “No Entry except bicycles,” or different speed limits for different road
users on the same position, as implied e.g. by highways.

3.3 Inconsistencies

In the previous section we already pointed out potential inconsistencies which might
arise due to bad traffic sign posting, respectively traffic measure combinations. We will
now categorize different classes of errors.

Data faults. The simplest conflict is when a single traffic sign or traffic measure is
faulty. First, the data assigned to the street map can contain errors. This occurs when a
traffic sign or traffic measure has a bad position or a wrong extent. For instance, a Give
Way sign must be posted directly before a junction and the shape of a residential area
cannot be a point. Second, the relation between the input and the street graph can be
flawed. As an example, imagine a No Left Turn before a junction that has no outgoing
arm on the left-hand side.

Missing required restrictions. We mentioned above that pedestrian zones cannot
occur outside residential areas. Similarly, a priority road requires that all incoming
traffic is informed about the right of way. Consequently, before a junction where a
priority road is crossed, there must be posted a Give Way sign or a Stop sign. Also,
we cannot announce a one-way street in one direction without banning the opposing
direction for traffic.

Overlap of mutually exclusive types. Certain kinds of restrictions or measure types
(respectively sign types) cannot occur on the same position. For instance, in Austria it
is not allowed that a highway leads through a residential area. Technically, a similar case
is the overlap of a parking ban and a halting ban. Likewise, there cannot be a parking
ban on a highway. Furthermore, on every lane, the maximum allowed speed must be
unique. This may not be the case in traffic regulation databases, since a street might be
wrongly associated with two speed limit measures of different values.

In Example 2 we have seen a similar case where the speed limit after a junction
is ambiguous due to a missing repeated start sign. However, an explicit overlap of
contradicting speed limits can only be expressed by traffic signs if two start signs for
different speed limits are posted at the same location. Otherwise, the latter sign in
driving direction always overrules the former.

Contradictory driving permission. A special case of mutually exclusive informa-
tion is the logical contradiction between driving bans and driving permissions, partic-
ularly interesting at junctions. The traffic signs shown in Figures 3.6 and 3.7 give an

25

instruction which turning directions are prohibited, respectively available. Each arm
which is pointed to by a mandatory driving direction sign to must also be available for
traffic, i.e., not prohibited by other signs, like No Entry. Besides such pairwise clashes,
there is the more subtle case where all turning directions are banned due to multiple
traffic signs. For instance, a No Left Turn sign also prohibits U-turns. Then, if the
outgoing arms (other than the left one) are also banned for traffic by other signs, there
is a (literal) dead-end.

Correspondence. We noted earlier that traffic signs materialize the intended restric-
tions of traffic measures. Thus, we can view traffic measures and traffic signs as two lan-
guages which shall describe the same restrictions, i.e., the same meaning. Consequently,
an application in which both languages are administrated should provide assistance to
ensure their correspondence. That is, whenever there is a traffic measure, there must
be traffic signs expressing the same restrictions, and vice versa. Traffic measures for
which no according signs are posted are not legally binding. We call such measures
unannounced. Dually, there might be posted traffic signs which do not (or no longer)
have a legal backing by according traffic measures. These unjustified traffic signs should
also be detected.

Common sense and flexible criteria. Apart from strictly illegal cases, we have
already discussed some common sense issues, like preventing loops. In practice, we also
have many soft criteria, like aiming for low speed limits and driving bans for heavy
trucks in streets with kindergartens.

As another example, imagine a traffic planner who wants to evaluate different traffic
flow related properties or examine the implications of hypothetical new restrictions on
road use. To avoid complicated routes, for instance, she could test before every junc-
tion the number of turns required to reach the street on the left-hand side. Without
restrictions, this number is 1, but in urban areas with many one-way streets it might
be 3 (right turns). However, any larger number is suspicious.

3.4 Use Cases

We introduced the meaning of prominent traffic signs and illustrated which problems
might arise from their combined application on streets. We now identify different use
cases around such inconsistencies from a user perspective.

3.4.1 Consistency Evaluation

Given an application for the administration of traffic measures and traffic signs, the first
question is whether the database complies with a fixed specification like the Road Traffic
Regulations. In case of conflicts, one wants to know which kinds of problems occur, and
where.

26

a b′ b
A B

C

30 30

Figure 3.8: Insufficiently announced 30 km/h speed limit yields two conflicts

Example 10 Figure 3.8 shows the start sign and the end sign of a maximum speed
limit of 30 km/h like in the examples of the previous chapter. However, the repeated
start sign after the junction is missing. This leads to two conflicts as indicated by the
red dots at points b′ and b. As explained in Example 1 (page 2), traffic from arm C,
turning right into arm B, is not informed about a speed limit. Since a speeding ticket
could be challenged with this argument, the legally effective speed limit ends after the
junction. However, speed limits cannot end without any explicit or implicit end sign.
Thus, we have a conflict at point b′. Second, we have a conflict at point b, where no
open restrictions exists to be ended by the posted end sign. �

In this case, an expert will immediately recognize the problem. In real-world scenarios,
however, which comprise a large number of traffic signs, it is not always apparent which
traffic signs cause which conflicts. Hence, a diagnostic mechanism needs to be provided,
relating inconsistencies with their causes.

3.4.2 Diagnosis

Given inconsistent traffic regulations, a government official shall be assisted in finding
the causes for detected problems. What we view as explanations for according conflicts
is inspired by the literature in the field of knowledge-based systems. In Chapter 2 we
distinguished between consistency-based diagnosis and abductive diagnosis. We noted
that abductive diagnosis is the stronger notion, in which we require that observable
findings are a logical consequence of the diagnosis.

Moreover, we argued that abductive diagnosis fits domain knowledge with explicit
fault models, or models where causes and effects are directly related. This meets our
domain, where we aim to explicitly specify the conditions of illegal or undesirable situa-
tions. What we understand as a diagnosis (or explanation) for a set of conflicts is a set
of traffic signs or measures causing it.

Example 11 (cont’d) In Figure 3.8, we have two conflicts. The problem at point b′,
that a restriction ends with an end sign, is caused by the start sign at point a. By

27

removing only the start sign, this conflict is resolved. Independent of that, the other
conflict at point b can be explained by the end sign alone. �

Diagnosis is useful as a preparatory step for a manual repair. However, we want to be
able to provide a mechanism for generating repair proposals. In particular, diagnosis
can only help to find data to be removed. As the example suggests, additions of new
traffic signs shall also be considered.

3.4.3 Repair

Given an inconsistent traffic regulation scenario, it would be convenient to have an
automatic repair mechanism, or to get a list of repair proposals to choose from. By a
repair we mean (a preferably small number of) changes to the data base such that the
result is consistent with the specification, i.e., free of conflicts.

Example 12 (cont’d) In Figure 1.2 (page 2) we have seen the correct sign posting for
the 30 km/h speed limit from point a to point b. However, by banning the right turn
from arm C to arm B with a No Right Turn sign, as shown previously in Figure 1.3,
the scenario is also repaired. This alternative repair is also minimal in the sense that
only a single traffic sign needs to be added to establish compliance with the Road Traffic
Regulations. �

It is not intuitive to repair an inconsistency arising from speed limit signs by imposing
a traffic ban. In order to avoid such unnatural repairs, we must also take into account
the legal intentions behind traffic sign posting, which are captured by traffic measures.
This brings us to our fourth major use case.

3.4.4 Correspondence and Strict Repair

Since we deal with both traffic measures and traffic signs, we must ensure that inputs
in these two description languages correspond, i.e., that they express the same traffic
restrictions. We get a stronger notion of repair, called strict repair, by requiring that
traffic sign and traffic measure data are not only free of conflicts, but also correspond.

Example 13 (cont’d) Introducing a No Right Turn sign on arm C, like in Figure 1.3,
is not a strict repair for the conflicts shown in Figure 3.8. If a speed limit measure
(from a to b) is stored in the database, only the addition of the repeated start sign
after the junction is a strict repair (Figure 1.2). The introduction of the No Right Turn
sign on arm C would also require the addition of a corresponding measure. However, a
suggestion service for repairs should not list such unintuitive, arbitrary modifications. �

We have investigated traffic regulations, inconsistencies and use cases how to deal with
them. Next, we informally introduce the technical approach towards their realization.

28

3.5 Technical Approach

To tackle our logic-oriented problems in the presented traffic regulation domain, we first
need a street model based on which we can express measures and signs. Generally,
the data model should focus on the inconsistency management tasks and not be bound
to specific software solutions or street maps. Therefore, we will view streets in a very
general way as directed graphs, where edges represent the potential direction of traffic.
Each edge will get a unique label to discern whether it represents a part of a lane, a turn
over a junction or a U-turn.

To reflect measures and signs of a given scenario, we add further labels to the graph.
For measures we use its type to label every edge it is associated with. Likewise, sign types
are used to label nodes where according traffic signs are posted. During this domain
analysis, we observed that measures and signs ought to represent the same restrictions.
Hence, we introduce a third language of effects, which we likewise represented as edge
labels. For instance, a Mandatory Left Turn sign has the effect that the outgoing edge
with label left must be necessarily available for traffic, and all other outgoing edges from
that node, including the U-turn, are prohibited for traffic. By labelling the left edge
with nec, and the other ones with ban, we can encode the local meaning of the sign.

After an effect mapping, which creates such effect labels from measures and signs, we
derive in a second mapping step the conflict labels (on nodes), which represent incon-
sistencies relative to a fixed conflict specification. The conflict labels may then be used
to visualize inconsistencies on the respective street map, followed by user interaction
related to diagnosis and repair.

3.5.1 Challenges

Given an inconsistent traffic regulation scenario, the computation of reasonably filtered
and ranked repair proposals can be very difficult due to the evolved and context-sensitive
nature of traffic regulations. An intelligent decision often depends on special conditions
or needs common sense reasoning. Generic rules may likely fail to produce intuitive
results. According to our experience, the development of suitable abstractions towards
reliable and robust rules often requires many examples. Sometimes, the investigation of
a new situation puts previous rules into question.

Example 14 Consider the traffic signs dealing with driving permissions and driving
bans, such as mandatory driving directions, prohibited turns like No Right Turn, one-
way street, No Entry, and so on. An effect mapping can intuitively label edges with
a label ban, in case traffic is prohibited there, or nec, if the edge must be necessarily
available for traffic due to a mandatory driving direction. A conflict specification will
specify that no edge can be labelled both with ban and nec.

Now, consider that we wish to model home zones. In Austria it is not prohibited to
drive within home zones, but to drive through them. Consider the case that we have
a Mandatory Left Turn sign pointing towards a home zone, which shall be considered as
conflict, for our consideration. If we use the ban label to reflect the special prohibition

29

implied by the home zone, we can detect the conflict by the edge which gets labelled both
with ban (for the implied restriction of the home zone) and with nec (for the mandatory
turn). However, we may as well have mandatory driving direction signs within a home
zone, for which the same conflict would then wrongly be reported. �

The example showed that there is a subtle but relevant difference between two kinds
of driving bans, which have to be accounted for by the model. That is, we cannot use
the same labels to model the effects of the driving restriction implied by home zones, as
we would for turning restrictions and the like. However, naively using new effect types
may not always work. On the other hand, working backwards from potential conflicts
of interest turned out to be more fruitful.

Example 15 (cont’d) A closer look at the home zone example reveals that, without a
clear use case, no reasonable choice can be made on how to deal with its special nature.
In order to model the intended prohibition of the home zone, we need an unambiguous
specification of what it means to drive through a certain zone. Is entering a zone and
leaving it at the same junction also driving “through” it? Is leaving a home zone at a
different street allowed if the car was parked intermediately? That is, do we need to
model stops, i.e., time?

We see that there are different kinds of reachability issues and problems we may be
interested in. A standard routing application should not propose a sequence of edges
involving home zones, unless the start or the end node of such a query is within the
zone. For this use case, the labelling approach above with ban and nec would work,
since the question whether traffic is allowed along a given sequence of edges reduces to
asking whether none of these edges is assigned a ban label.

For our inconsistency tasks, however, we may deal with the special nature of home
zones with designated rules. That is, we can detect clashes, as exemplified above, with
special tests for home zones, leaving the other generic rules untouched. �

To clarify such considerations, an implementation language which allows for rapid pro-
totyping is useful. We can expect new traffic signs to be included over time and, more
importantly, new consistency criteria to be tested for. These changes in the specifications
should be possible in a flexible, modular way.

In Section 1.1, we pointed out different usage scenarios of an inconsistency man-
agement tool in the field of traffic regulations. Moreover, we listed different categories
of inconsistencies in Section 3.3. This suggests that we will want to maintain differ-
ent effect mappings, and different conflict specifications sharing a common, simple data
model, which may then be applied flexibly based on the use case. Further, such conflict
specifications should ideally be adaptable at runtime by domain experts.

Example 16 Imagine a government official observes a street with 30 km/h and 70 km/h
speed limits in opposing directions. While this is not illegal, and probably not tested for
by a standard implementation, she might wish to evaluate whether such a situation also
occurs elsewhere. If the system can be extended, an expert might then add according
rules to the application which are considered in forthcoming evaluations. In this case,

30

it would be the check whether the difference in speed limits of parallel lanes exceeds a
certain constant. �

The implementation should allow for an intuitive encoding of the domain knowledge.
This suggests using a declarative language, and in particular, a rule-based, logic-oriented
language. This will give a readable code by allowing to directly express the logic itself,
rather than control flow and instructions to compute it. Further, direct support for
non-monotonic reasoning, especially default reasoning [43], is desirable for a natural
representation of default cases that hold unless specific conditions apply. For instance,
a speed limit of 50 km/h is implied by a residential area unless it is explicitly overruled.
Similarly, traffic is generally permitted along a lane or turning direction unless it is
explicitly prohibited.

These observations suggest that Answer Set Programming is a suitable choice for an
implementation of our inconsistency management tasks.

3.5.2 Answer Set Programming

We now review the observed desiderata for an implementation language and argue how
Answer Set Programming meets the requirements.

Automated reasoning. Our inconsistency management tasks deal with the logical
implications of traffic signs and traffic measures on a digital street map. Hence, a logic-
oriented language is a natural choice in the first place. That is, instead of writing
algorithms to compute the logic, we want to encode rules as such, and let a solver
interpret the meaning of input data according to these rules.

Prolog, being the most prominent logical programming language, however, has a sig-
nificant drawback in this regard since it has no fully declarative semantics. This implies
limitations on both modularity and readability, two major dimensions of maintainable
software, which we discuss in more detail below.

Answer Set Programming, on the other hand, is purely declarative and allows for
model building, instead of proof search. In particular, the stable model semantics [23]
fits our problem domain well, which we will see in detail in forthcoming chapters. For
instance, to compute diagnoses or repairs for conflicts, we will declare simple conditions
and constraints in addition to the specification and immediately get the solutions as
answer sets of the extended program. ASP is a powerful paradigm allowing to solve
search and constraint satisfaction problems without writing algorithms, but only by
specifying the properties of their solutions. For knowledge representation purposes, ASP
has clear advantages over SAT solving in terms of expressivity; allowing for predicates,
non-monotonic reasoning, defaults, and transitive closures.

Modularity. We have seen the importance of a highly flexible (i.e. modular) specifi-
cation based on which consistency of traffic regulations is defined. The effect definitions
of new measure and traffic sign types should, were possible in principle, not affect the
rest of the implementation. Moreover, the conflict specification is supposed to evolve

31

over time. Consequently, the introduction of new traffic signs, measures, or conflict def-
initions should in most cases only require to add new rules. There should be no need to
change the system at large.

Such modularity can only be achieved by careful design, which will be the topic of
the next chapter. However, modularity of software is supported to different degrees by
the language being used. The semantics of Answer Set Programming assists modular
composition, since programs are sets of rules. That is, if we have an existing program P ,
and the meaning of a new traffic sign is modelled in a new, independent set of rules Q, we
get the extended program by taking the union P ∪Q. Likewise, new consistency criteria
can be added and removed, provided a robust formal model for conceptual clarity.

Readability. We argued that the implementation should be declarative since a typical
imperative way of programming rules will quickly lead to deeply nested conditionals with
intransparent dependencies between various variables.

Further, imagine an object-oriented approach towards this traffic regulation logic,
where rules and conditions would be modelled as objects of different classes. Any test will
be composed of multiple such objects involving complicated references and considerable
amounts of imperative boilerplate code. The central logical pattern “if X and not Y ,
then Z” will not be naturally reflected by the syntax of such programs.

This might be provided by functional languages and languages with macro features,
in which domain specific languages can be created towards a syntax that fits the problem
domain. However, by following this strategy, the computation of the logic must still be
programmed manually.

Answer Set Programming, on the other hand, directly provides a natural syntax
for expressing logic-oriented programs. With readily available solvers like DLV [30]
and the Potassco suite [21], we get executable implementations by purely declarative
specifications.

32

CHAPTER 4
Formal Model

In the previous chapter we analyzed the traffic regulation domain and discussed consis-
tency related questions which arise in the context of traffic measures and traffic signs. In
order to reason over such traffic regulation problems, we first need an underlying formal
model, which we will describe next. First, we present a tailored street model based on
which we can reflect measures and signs. We then show how the meaning of this traf-
fic regulation data is captured by means of effects and discuss how they are obtained.
Towards our central interest of inconsistency, we will introduce the notion of conflicts,
which are explicit representations of undesired situations as defined by the considered
traffic regulation.

4.1 Street Graph

In this section we formalize the data model representing streets. We model street maps
as directed graphs, where edges represent potential flow of traffic. To reflect topological
information, e.g., whether some edge is part of a lane or a turn over a junction, edges get
according labels. Certain restrictions on the structure of these graphs and their labels
then yield our street model, as we describe in the following.

Definition 4 (Street graph) A street graph, or graph for short, is a connected, la-
belled, directed graph G = (V,E, `) of nodes V , edges E ⊆ V ×V , and labelling function `
that assigns each edge (v, w) ∈ E a unique label `(v, w) ∈ {left , right , straight , lane, uturn},
called the street labels.

Towards our logic-oriented use cases and forthcoming definitions, we identify the street
labels with a set T of constants and a street graph G = (V,E, `) with the set a atoms of
form e(t, v, w). Every edge (v, w) ∈ E is associated with such an atom, where t ∈ T is
the street label `(v, w). Throughout, we assume that a version of predicate logic L with
negation is fixed, in which the desired specifications can be expressed (e.g., first-order
logic or Answer Set Programming).

33

x1 x2

w2

w1 v1

v2

y1 y2

u1 u2 z1 z2

Figure 4.1: Street graph of a T-junction

A street graph has to satisfy certain structural requirements as described next.

Scope. All nodes must have an incoming edge and an outgoing edge with label uturn.
A node which has only one outgoing edge, thus necessarily labelled uturn, is called
out-node. Similarly, a node with only one incoming edge is called in-node. These two
kinds of nodes model the end of the scope and are thus called border nodes, which form
the starting points and end points for reachability considerations. In the T-junction of
Figure 4.1, the edges (xi, ui), (yi, zi), (wi, vi) (with i ∈ {1, 2}, resp.) and their symmetric
counterparts are U-turns, modelled with atoms of form e(uturn, X, Y). The nodes u1, w1

and y2 are out-nodes, and x1, v1 and z2 are in-nodes.
The following restrictions on different kinds of nodes partially do not apply in case

they are border nodes.

Junctions. We model junctions by means of edges with labels left , right and straight ,
referred to as junction labels, the edges are referred to as junction edges. Additional turn-
ing directions like “half left” could be introduced analogously. In Figure 4.1, these edges
are given by e(right , x2, w2), e(straight , x2, y1), e(left , v2, u2), e(right , v2, y1), e(left , z1, w2),
and e(straight , z1, u2).

Lanes. Each node is either a lane start, a lane end, or within a lane. A node is said
to be a lane start, or a node after a junction, if there exists an incoming junction edge.
Such a node cannot have an incoming edge labelled lane and must have exactly two
outgoing edges, one labelled uturn and one labelled lane. In the example, u2, w2 and y1

are lane starts.
A node is said to be a lane end, or a node before a junction, if it has at least one

outgoing edge with a junction label. Such a node must have exactly one incoming edge
with label lane, must not have any incoming edge with a junction label and must not
have an outgoing edge labelled lane. Nodes x2, v2 and z1 are lane ends.

A node is said to be within a lane, if there exists both an incoming and an outgoing
edge with label lane, which must be unique, respectively. Such a node can have neither
an incoming nor an outgoing edge with a junction label. In general, nodes within a lane
are not modelled. We remain agnostic about the nature of border nodes in this regard.
For instance, we do not care whether x1 and u1 are nodes after (resp. before) a junction,
or whether they are nodes within a lane.

34

x1 p x2

w2

w1 v1

v2

y1 y2

u1 p′ u2 z1 z2

30

Figure 4.2: Street graph of a T-junction with split lanes in the left arm

Symmetry. We say two nodes are parallel, if they are connected by a U-turn. For
each pair of parallel nodes, we require a U-turn in both directions. We say two edges are
parallel if the respective pairs of start and end node are parallel. For instance, (x1, x2)
and (u2, u1) are parallel edges, since x1 and u1 are parallel nodes, as well as x2 and u2.
We require the graph to be set up in such a way that parallel edges represent street parts
of equal lengths. The lengths themselves do not play a role in our application and are
therefore not modelled. Similarly, we are not interested in the angle between crossing
streets, the width of lanes, or any other metrics.

If some point of interest p needs to be modelled within a lane, say, between x1

and x2, the lane must be given in (at least) two parts, i.e., edges (x1, p) and (p, x2)
with label lane. Then, also the opposite direction must consist of two lane edges with
respective parallel points with according U-turns. Figure 4.2 shows such split lanes with
new parallel nodes p and p′ in order to allow the modelling of a traffic sign along the
lane (x1, x2).

Unless we need to model traffic signs, or starts or ends of measures somewhere
between junctions, i.e., not directly before or after junctions, we need only one edge with
label lane per direction to connect two junctions. U-turns can only connect parallel edges
both of type lane or straight , i.e., edges modelling opposite directions of non-turning
traffic. Every street has to be modelled with edges for both directions. In case only one
direction is allowed for traffic, the other one has to be explicitly prohibited for traffic by
means of traffic signs and measures.

Our data model is designed for inconsistency management and is less concerned with
accuracy of street modelling. Aiming for simplicity, we do not deal with more complex
streets involving multiple lanes per driving direction, or roundabouts. However, our
definitions may be adapted to suit more sophisticated graphs, if needed.

4.2 Traffic Measures and Traffic Signs

In the formulation of measures in traffic regulation orders, concepts like street names,
addresses and cardinal points are used in natural language descriptions to specify the
intended topological dimensions. We assume that for the description at hand, a prepro-

35

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 30 30

Figure 4.3: Correct traffic sign posting for a 30 km/h speed limit measure

cessing maps this scope to edges of a graph meeting the requirements above.
To describe traffic measures and traffic signs we build upon sets of ground terms M,

called the measure types, and S, called the sign types. These types are used to label the
edges, resp. nodes, on which measures, resp. signs, occur. For instance, M may contain a
set of terms spl(k) for each speed limit value k that is needed, e.g., spl(10) up to spl(130)
in Austria. The set S includes constants like no-entry , and the terms start(t) and end(t)
for all measure types t ∈ M that have explicit start and end points, i.e., types that have
a topological stretch in form of lines or zones.

Definition 5 (Measures, Signs, Input) Given a street graph G = (V,E, `), and sets
of ground terms M (measure types) and S (sign types), we define the following sets of
atoms:

• Measures MG = {m(t, v, w) | t ∈ M, (v, w) ∈ E}

• Signs SG = {s(t, v) | t ∈ S, v ∈ V }

• Input IG = MG ∪ SG

It is thus our aim to associate traffic measures with edges and traffic signs with nodes.
That is, to reflect a measure of type t ∈ M, all respective edges (v, w) must be labelled
with t. To distinguish between the original measure information and its representation,
we also call the atoms in MG atomic measures. Likewise, to represent a traffic sign of
type t ∈ S posted at a node v, the latter must be labelled with t. Similar to street labels,
these labels are encoded as ground atoms of form m(t, v, w) and s(t, v), respectively.

Example 17 In Figure 4.3, the dashed blue path from x2 to y2 symbolizes a 30 km/h
speed limit measure which we formalize as a set of the following atomic measures:

M = {m(spl(30), x2, x3),m(spl(30), x3, y1),m(spl(30), y1, y2)} ⊆MG

The traffic signs are defined similarly:

S = {s(start(spl(30)), x2), s(start(spl(30)), y1), s(end(spl(30)), y2)} ⊆ SG �

36

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

Figure 4.4: Intended max -speed(30) effect of measures and signs in Figure 4.3

Sets of measures and signs on a street graph form the syntax for our investigations.

Definition 6 (Scenario) Let G be a street graph, M ⊆MG be a set of measures on G,
and S ⊆ SG be a set of signs on G. Then, a scenario is a tuple Sc = (G,M,S).

We note that such node and edge labels may be similarly used to model potentially
further input languages. In particular, we do not explicitly cover road markings, which
can informally be seen as traffic signs but may be represented along edges like measures.
Finally, we note that any data source, from which a scenario can be generated, can serve
as basis for inconsistency management as described in the sequel.

4.3 Effects and Conflicts

The meaning of both measures and signs on a given street graph is captured by a mapping
of the according languages to a common target language of effects, which will in turn
be used to define conflicts. We use the constants `m and `s to represent the measure
language and the sign language, respectively. Similar to Definition 5, we introduce
another two sets of labels, ground terms F and C, called the effect types and conflict
types, respectively.

Definition 7 (Effects, Conflicts) Let G = (V,E, `) be a street graph and F (effect
types) and C (conflict types) be sets of ground terms. We define the following sets of
atoms:

• Effects FG = {f(t, v, w) | t ∈ F, (v, w) ∈ E}

• Conflicts CG = {c(t, v) | t ∈ C, v ∈ V }

Atoms not covered by Definition 4, 5 and 7, i.e., those with a predicate symbol not
included in {e,m, s, f, c}, are called helper atoms or helper predicates.

In their form, effects and conflicts resemble measures and signs. Before we explain
how they are obtained, we consider a few examples.

37

Example 18 (cont’d) In Example 17 we considered a 30 km/h speed limit measure
with an according traffic sign posting. Both kinds of input express the same road use
restrictions, i.e., the same effects, which are depicted in Figure 4.4. To express the
meaning of both measure and sign data, the respective edges must be assigned the
effect type max -speed(30) ∈ F. This is represented by atoms f(max -speed(30), V,W),
where (V,W) ∈ {(x2, x3), (x3, y1), (y1, y2)}.

We will deal with different kinds of conflicts, which we do not need to distinguish
formally. Some conflicts will arise from measures only, some can be caused only by traffic
signs, and some may be caused by both languages.

For the latter case, we use the respective constant `m or `s, to reflect where the
problem originates. For instance, to represent potential (prohibited) overlaps of mo-
torways and residential areas, we might include overlap(L,motorway , residential -area)
in C for L ∈ {`m, `s}. To detect that this conflict occurs on a node v due to traffic
sign data, the atom c(overlap(`s,motorway , residential -area), v) ∈ CG will then be used.
Similarly, c(no-way-out(`m), v) expresses the fact that one is caught in a dead end or
loop at node v due to measure information. �

The following two definitions will assist establishing a two-stage mapping approach.

Definition 8 (Closed world operator) Let Y be a set of ground atoms and X ⊆ Y .
We define

XY = X ∪ {¬x | x ∈ Y \X}

as the closed world operator applied to X relative to the base set Y .

We always use the according base set of Definitions 5 and 7, and thus omit the subscript.
For instance, for a set measures M on G, M abbreviates MMG

. The base set assumed
for the completion G of any graph G is the set of all atoms e(t, v, w). We introduce
another operator CnG that maps between atoms on a graph G. In the first step, it will
be used to associate measure and sign atoms with effect atoms. Then, those effect atoms
will be related with conflict atoms.

Definition 9 (CnG) Let X and Y be sets of atoms on G and let T be a set of formulas
in a fixed predicate logic L. The Y -consequences of T and X (on G) is the set of atoms

CnG(T,X, Y) = {y ∈ Y | T ∪G ∪X |= y}.

Here, |= is the consequence relation in the underlying logic L. Informally, the Y -
consequences of T and X are the set of atoms in Y entailed by a description or theory T ,
given a graph G and some additional facts X. The closed world operator makes sure
that atoms that are not explicitly given are set to false and thus ensure that valuations
of atoms in Y are unique. When using answer set programming, which employs closed
world reasoning, we will not need this operator. However, we will leave open the exact
logic used, so this restriction will enable a general two-stage approach computing graph
labels, as described next.

38

4.4 Effect Mapping

Now we introduce the mechanism by which the meaning of both traffic measures and
traffic signs are computed.

Definition 10 (Effect mapping) An effect mapping relative to a street graph G is a
set P of formulas in L that associates with each input I ⊆ IG the set

FP
G (I) = CnG(P, I, FG)

of atoms, called effects of I (on G).

That is, given a scenario Sc = (G,M,S) and I = M ∪S, an effect mapping P determines
a set FP

G (I) ⊆ FG of effects that captures the meaning of I. We implicitly assume that
effect mappings are well-designed, i.e., they do not add new graph elements or new input
and that the ranges of terms are used appropriately.

When using answer set programs, |= will denote cautious consequence, unless stated
otherwise. That is to say, P |= q holds if q is true in all answer sets of P , i.e., q ∈ ∩AS(P).
The notation AS ∩Q(P) abbreviates ∩AS(P) ∩Q, i.e., the set {q ∈ Q | P |= q}. Conse-
quently, when using answer set programs, CnG(T,X, Y) = AS ∩Y (T ∪G ∪X).

Example 19 The first-order sentence

∀k, x, y (m(spl(k), x, y) ⊃ f(max -speed(k), x, y)) (4.1)

of an effect mapping captures the meaning of (atomic) speed limit (spl) measures. Sim-
ilarly, we can model the effect of a speed limit with ASP in a single rule:

f(max -speed(K), X, Y) ← m(spl(K), X, Y) (4.2)

Note that in this case, the ASP rule closely resembles the first-order formula. All vari-
ables, written in upper case letters, are implicitly universally quantified.

To represent that some effect type F is the consequence of some measure type T
on a given edge, we can take a more generic approach, using helper predicates with
symbol m2f . Second, in order to keep track which effects stem from the language
of measures (`m), and which from the language of signs (`s), we will employ a helper
predicate symbol f ′. We use the following ASP rules plus a set of helper atoms speed(K)
for K ∈ {5,10, 20, . . . , 130} as effect mapping P .

f(F,X, Y) ← f ′(L,F,X, Y). (4.3)

f ′(`m, F,X, Y) ← m(T,X, Y),m2f (T, F). (4.4)

m2f (spl(K),max -speed(K)) ← speed(K). (4.5)

The first rule says that every measure effect (L = `m) and every sign effect (L = `s)
is an effect. The second rule directly translates from measure labels to effect labels on
the same edge, as defined by m2f . The third rule specifies that a speed limit measure
of value K translates to a maximum speed restriction of value K. �

39

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30

Figure 4.5: Effect of the 30 km/h restriction start sign at x2

We will now examine how a speed limit is determined by means of traffic signs.

Example 20 Whenever a road user passes a start sign of a speed limit, the according
effect holds as long as she does not reach an end sign. The start of another speed limit
implicitly ends the former. In non-zonal speed limits, which we consider here, the effect
also automatically ends when the driver leaves the street on which it was announced
(by turning left or right into a different one). That is, a linear speed limit effect is only
propagated in direction of traffic. In our data model, these directions are captured by
the edge labels lane and straight . We specify some additional information in the effect
mapping P :

in-dir(X,Y) ← e(lane, X, Y) (4.6)

in-dir(X,Y) ← e(straight , X, Y) (4.7)

In Figure 4.5, consider road users coming from node v2, turning right into the arm
starting at y1. Those drivers would not know about the speed limit expressed at x2.
Therefore, if a node after a junction is reachable from a different arm, there has to be
another start sign to inform incoming traffic about the restriction. (U-turns are ignored
for practical reasons.) We formalize these observations and extend P , describing how
the max -speed(K) effect labels are obtained by means of traffic signs.

If, at a node X, the start of the effect type F is expressed (expr -start(F,X)) then
the effect holds on the next edge in direction of traffic (in-dir(X,Y)).

f ′(`s, F,X, Y) ← expr -start(F,X), in-dir(X,Y) (4.8)

If there are two consecutive edges in direction of traffic (in-dir(X,Y), in-dir(Y,Z)),
where the first is labelled with effect type F , then the effect also holds on the second,
unless propagation of F is blocked at node Y . We note that such transitive effect
propagation cannot be expressed in first-order logic.

f ′(`s, F, Y, Z) ← f ′(`s, F,X, Y), in-dir(X,Y), in-dir(Y,Z), (4.9)

not block -prop(F, Y)

40

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 30

Figure 4.6: 30 km/h restriction from y1 to y2

An effect type F is blocked for propagation at node Y , if the end of F is expressed there.

block -prop(F, Y) ← f ′(`s, F,X, Y), in-dir(Y,Z), expr -end(F, Y) (4.10)

The effect propagation is also blocked at a note Y after a junction (e(straight , X, Y)),
if Y is permitted for incoming traffic according to signs (has-perm-inc(`s, Y)) but the
(repeated) start of the effect is not expressed there (not expr -start(F, Y)).

block -prop(F, Y) ← f ′(`s, F,X, Y), e(straight , X, Y), (4.11)

has-perm-inc(`s, Y), not expr -start(F, Y)

A node Y is permitted for incoming traffic according to a language L, if there is an
edge e(T,X, Y) with label left or right , for which a traffic ban cannot be derived. We
express this by atoms lang(`s) and lang(`m) plus two rules:

has-perm-inc(L, Y) ← lang(L), e(left , X, Y), not f ′(L, ban, X, Y) (4.12)

has-perm-inc(L, Y) ← lang(L), e(right , X, Y), not f ′(L, ban, X, Y) (4.13)

So far we have not said anything about the predicates expr -start and expr -end . The
start (resp. end) of an effect of type F is expressed at node X, if a traffic sign is posted
there, whose type T is defined to start (resp. end) the effect type F .

expr -start(F,X) ← s(T,X), start-of (T, F) (4.14)

expr -end(F,X) ← s(T,X), end -of (T, F) (4.15)

The effect type F is started by a start sign of the according measure type T .

start-of (start(T), F) ← m2f (T, F) (4.16)

In general, the end of an effect can be expressed explicitly or implicitly. We will see the
need for this distinction below.

end -of (T, F) ← expl -end -of (T, F) (4.17)

end -of (T, F) ← impl -end -of (T, F) (4.18)

41

a1

a2

a3 a4

a5

a6

a7a8

b1

b2

b3 b4

b5

b6

b7b8

Figure 4.7: Signs that ban traffic along certain edges

An end sign for a measure type T explicitly ends the associated effect F .

expl -end -of (end(T), F) ← m2f (T, F) (4.19)

The start sign for a speed limit restriction of K km/h implicitly ends the effect of any
other speed limit J .

impl -end -of (start(spl(K)),max -speed(J)) ← speed(K), speed(J), (4.20)

K 6= J.

We use the graph G of the running example as set of edge facts and as input only the
start sign of Figure 4.5, i.e., I = {s(start(spl(30)), x2)}. With the effect mapping P , the
program P ∪G ∪ I has a unique answer set, and we get as effects

FP
G (I) = AS ∩FG

(P ∪G ∪ I) = {f(max -speed(30), x2, x3), f(max -speed(30), x3, y1}.

Using the second start sign I ′ = {s(start(spl(30)), y1)}, we get an effect labelling for
the next two edges: FP

G (I ′) = {f(max -speed(30), y1, y2), f(max -speed(30), y2, y3}. If we
additionally use the end sign at y2, i.e. I ′ ∪ {s(end(spl(30)), y2)}, we get only the ef-
fect f(max -speed(30), y1, y2), as shown in Figure 4.6. �

Measures and signs that restrict potential driving directions are of special interest. We
present an example including mandatory driving directions and No Entry signs.

Example 21 Consider the graph of Figure 4.7, where two junctions are connected by
a street with parallel lanes from a5 to b2 and b1 to a6. There is a Mandatory Left
Turn at node a4 and a No Entry sign at b7, which we reflect as s(mand -turn(left), a4)
and s(no-entry , b7), respectively. The effect of a Mandatory T Turn at a node X is that
the edge in direction T must be necessarily available for traffic (nec) and all other edges
are banned (ban).

f ′(`s,nec, X, Y) ← s(mand -turn(T), X), e(T,X, Y) (4.21)

f ′(`s, ban, X, Y) ← s(mand -turn(T), X), e(E,X, Y), T 6= E (4.22)

42

a1

a2

a3 a4

a5

a6

a7a8

b1

b2

b3 b4

b5

b6

b7b8

Figure 4.8: The effects of No Left Turn and No Right Turn signs

Recall that in rule (4.9) a general effect propagation was defined. Since we do not want
a propagation of these effects, we explicitly prohibit their propagation.

node(X) ← e(T,X, Y) (4.23)

node(Y) ← e(T,X, Y) (4.24)

block -prop(ban, X) ← node(X) (4.25)

block -prop(nec, X) ← node(X) (4.26)

We omit dealing with mandatory turn signs allowing for multiple directions. In rule (4.22)
we would need to additionally test whether T is an edge label. In addition, further rules
are required for signs of type mand -turn(T), where T does not is not an edge label.
For instance, mand -turn(left-or -straight) would require to label both left and straight
as necessarily available, and ban directions right and uturn.

The (unique) answer set for the set of edge atoms G and an effect mapping P in-
cluding rules (4.21), (4.22) and (4.3) gives us exactly four effects for the Mandatory Left
Turn, I1 = {s(mand -turn(left), a4)}, as depicted.

FP
G (I1) = {f(ban, a4, a3), f(ban, a4, a5), f(ban, a4, a7), f(nec, a4, a1)}

The meaning of a No Entry sign at a node Y can be captured by banning all incoming
edges to Y .

f ′(`s, ban, X, Y) ← s(no-entry , Y), e(T,X, Y) (4.27)

Adding this rule to program P and using the No Entry sign at b7, I2 = {s(no-entry , b7)},
leads to the expected effects:

FP
G (I2) = {f(ban, b2, b7), f(ban, b4, b7), f(ban, b6, b7), f(ban, b8, b7)} �

The effect of turning bans can be represented in a similar way by labelling the prohibited
edges with ban.

43

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30

Figure 4.9: Propagation of a speed limit restriction due to a No Right Turn

Example 22 Figure 4.8 shows a No Left Turn at node a4 and a No Right Turn at b4.
In case of No Left Turns, the U-turn is also banned.

f ′(`s, ban, X, Y) ← s(no-turn(T), X), e(T,X, Y) (4.28)

f ′(`s, ban, X, Y) ← s(no-turn(left), X), e(uturn, X, Y) (4.29)

With these rules in P input I = {s(no-turn(left), a4), s(no-turn(right), b4)} yields

FP
G (I) = {f(ban, a4, a1), f(ban, a4, a3), f(ban, b4, b5)}. �

To describe corresponding measures for these signs we will pragmatically use only two
measure types, traffic and no-traffic. These labels shall be directly assigned to edges
which are necessarily available, resp. banned for traffic.

Example 23 A corresponding measure information for the Mandatory Left Turn in
Figure 4.7 is given by the following atoms.

I = {m(traffic, a4, a1)} ∪ {m(no-traffic, a4, α) | α ∈ {a3, a5, a7}}

With the general rule (4.4), we can extend the effect mapping P simply by two new
facts: m2f (traffic,nec) and m2f (no-traffic, ban). �

Note that nothing opposes using other measure types than traffic and no-traffic and
more complex rules to derive nec and ban labels. Without a specific data source in
mind it is not useful to speculate about various data modelling possibilities. Here, we
want to focus more on high-level principles for which it suffices to use simple measure
representations as shown. While the interpretation of traffic measures can be assumed
to be given in some form of direct mapping between measure types and effect types, the
meaning of traffic signs is intrinsically context dependent.

Example 24 Figure 4.9 depicts the situation in which the speed limit restriction is
propagated after a junction without another start sign. The No Right Turn at node v2

now bans incoming traffic from the only incoming street. Since U-turns are ignored for
practical reasons, all (considered) drivers arriving at node y1 are aware of the speed

44

I

MG ∪ SG

operator

labels

base set

FP
G

FP
G (I)

FG

CP,SpG

CP,SpG (I)

CG

Figure 4.10: Illustration of the two-stage label mapping approach

limit restriction expressed by the start sign at x2. A ban effect will be derived for
edge (v2, y1) by rule (4.28), and so has-perm-inc(`s, y1) can no longer be concluded. As
a consequence, the propagation is not blocked anymore and continues through y1. The
effects of I = {s(start(spl(30)), x2), s(no-turn(right), v2)} thus are

FP
G (I) = {f(ban, v2, y1), f(max -speed(30), x2, x3), f(max -speed(30), x3, y1),

f(max -speed(30), y1, y2), f(max -speed(30), y2, y3)}.

Now we can describe and derive the meaning of measures and signs. What remains to
be done is to capture traffic regulations for such scenarios, i.e., specifications by which
we can distinguish consistent scenarios from inconsistent ones.

4.5 Conflict Specification

Similar to an effect mapping, defining the meaning of traffic measures and traffic signs,
we will use another mapping to interpret effect labels.

Definition 11 (Conflict specification) Let P be an effect mapping relative to a street
graph G. A conflict specification over P is a set Sp of formulas in L that associates with
each input I ⊆ IG the set

CP,SpG (I) = CnG(Sp,FP
G (I), CG)

of atoms, called the conflicts of I (on G).

We assume that Sp is designed in such a way that an empty scenario (G, ∅, ∅) is free of
conflicts, i.e., that CP,SpG (I) 6= ∅ implies I 6= ∅.

The setup to compute conflicts based on effects, given a conflict specification Sp, is
the same as computing effects from measures and signs, given an effect mapping P . The
first stage builds a context-dependent model of the input, the second stage establishes
the basis for reasoning tasks. Figure 4.10 illustrates the composition of those mappings.
However, when using ASP, we can conveniently compute these two stages in one step.

Example 25 Figure 4.11 shows the speed limit restriction scenario, where only the first
start sign at x2 and the end sign at y2 are given, and no measure information.

I = {s(start(spl(30)), x2), s(end(spl(30)), y2)}

45

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 30

Figure 4.11: Conflicts arising from missing start sign of a 30 km/h speed limit

The red dots at y1 and y2 indicate two conflicts. The problem at y1 is that an effect ends
without any traffic sign expressing this end. We label nodes with this kind of conflict
with type bad -end . (Note that a dual conflict bad -start cannot exist, since a start sign
always expresses its own first effect label.) At node y2 there is an (explicit) end sign for
an effect that does not exist on the previous edge in direction of traffic. In such a case
we want to derive the conflict type cant-end . We specify these undesired situations in a
new answer set program Sp as follows.

c(bad -end(F), Y) ← in-dir(X,Y), in-dir(Y,Z), (4.30)

f ′(`s, F,X, Y), not f ′(`s, F, Y, Z),

needs-expr -end(F),not expr -end(F, Y)

c(cant-end(F), Y) ← s(T, Y), expl -end -of (T, F), in-dir(X,Y), (4.31)

not f ′(`s, F,X, Y)

Since some effects automatically end, e.g., at the next junction, we use the predi-
cate needs-expr -end(F) to test whether the effect F needs to be ended by a traffic
sign. This is the case for speed limits, so we additionally add the following rule.

needs-expr -end(max -speed(K)) ← speed(K) (4.32)

These rules specify errors in traffic sign posting, so we explicitly test for sign effects.
If we were to test for “not f(F,X, Y)” instead of “not f ′(`s, F,X, Y)” in rule (4.30),
also a measure’s effect of type F might prevent the rule from firing. In our example,
addingm(spl(30), y1, y2) would lead to an effect f(max -speed(30), y1, y2) and the bad -end
conflict could not be derived. The example makes clear that we want to separately test
the consistency of traffic measures and traffic signs. For this reason, we use the helper
predicate symbol f ′.

Again, we use the graph as a set of edge atoms G and the effect mapping P developed
in the previous examples. For the input I = {s(start(spl(30), x2)), s(end(spl(30)), y2)}
we get the following effects.

FP
G (I) = {f(max -speed(30), x2, x3), f(max -speed(30), x3, y1)}

46

We recall that, in case of Answer Set Programming, computing CnG(T,X, Y) amounts
to filtering atoms of the cautious consequence of the program T ∪ G ∪ X which are
in Y , i.e., AS ∩Y (T ∪G ∪X). Hence, we get the conflicts CP,SpG (I) = CnG(Sp,FP

G (I), CG)
as AS ∩CG

(Sp ∪G ∪ FP
G (I)). The effect mapping leads to a unique answer set and since P

is well-designed in the sense that no effect is dependent on conflicts, the latter amounts
to AS ∩CG

(Sp ∪ P ∪G ∪ I). The fact that we can put Sp and P together allows us to
use input atoms and helper predicates from P also in rules of Sp, making the conflict
specification more readable and intuitive. The program Sp ∪ P ∪G ∪ I also has a single
answer set, including only the expected conflicts:

CP,SpG (I) = {c(bad -end(max -speed(30)), y1), c(cant-end(max -speed(30)), y2)}

Now we also see why it is necessary to ask for an explicit end in rule (4.31). Since
a start sign for a speed limit K is also an (implicit) end sign for all other speed lim-
its J 6= K, every speed limit start sign would lead to incorrect conflicts. That is, if we
replace expl -end -of (T, F) by end -of (T, F) in rule (4.31), i.e., using instead rule

c(cant-end(F), Y) ← s(T, Y), end -of (T, F), in-dir(X,Y),

not f ′(`s, F,X, Y) ,

every start sign for a speed limit K on a node x would result in a conflict predi-
cate c(cant-end(max -speed(J)), x) for each speed J that was not the maximum speed
on the previous edge. �

To support query answering on top of conflicts, aspects of interest may be encoded in
the conflict specification, using designated conflicts and formulas defining them in Sp,
or using a separate conflict specification Q instead.

Given an input I on a graph G, querying for a certain conflict type (or aspect of
interest) t ∈ C amounts to computing the set {c(t, v) ∈ CP,SpG (I) | v ∈ V }, resp. CP,QG (I).
In our Answer Set Programming setting, the first approach with Sp amounts to com-
puting AS ∩C t

G
(Sp ∪ P ∪G ∪ I), where C t

G is the subset of CG with conflict type t. With

a separate specification Q, we get the intended query result by AS ∩CG
(Q ∪ P ∪G ∪ I).

Example 26 Figure 4.12 shows inadmissible combinations of traffic signs. First, ob-
serve the Mandatory Left Turn at node a4, which requires the edge (a4, a1) to be traf-
ficable and bans all other outgoing edges. Due to the No Entry sign posted at a1, we
have a contradiction since it bans all incoming edges, including (a4, a1). To detect such
contradictory labels we add to the conflict specification Sp the following rules.

c(overlap(L,F1, F2), X) ← f ′(L,F1, X, Y), f ′(L,F2, X, Y), contr(F1, F2) (4.33)

contr(ban,nec) (4.34)

The first rule says two contradicting effect types F1 and F2 overlap at a node X due
to the language L, if L expresses effects of both types on some edge starting at X. We

47

a1

a2

a3 a4

a5

a6

a7a8

b1

b2

b3 b4

b5

b6

b7b8

Figure 4.12: Contradicting traffic bans

can specify other such contradictions, like ambiguous speed limits or motorways leading
through residential areas.

contr(max -speed(K),max -speed(J)) ← speed(K), speed(J),K < J (4.35)

contr(motorway ,residential -area) (4.36)

The discussed traffic signs are given by I = {s(no-entry , a1), s(mand -turn(left), a4)}.

CP,SpG (I) = {c(overlap(`s, ban,nec), a4)} .

However, there is a second problem at a4, which also occurs at b4. If a driver arrives at
any of these nodes, she cannot drive any further, since all outgoing edges are banned.
More general, whenever there is a sign at a node X, there must be a way out, i.e., some
out-node must be reachable.

c(no-way-out(`m), X) ← m(T,X, Y),not way-out(`m, X) (4.37)

c(no-way-out(`s), X) ← s(T,X),not way-out(`s, X) (4.38)

way-out(L,X) ← lang(L), out-node(X) (4.39)

way-out(L,X) ← lang(L), reach(L,X, Y),way-out(L, Y) (4.40)

reach(L,X, Y) ← lang(L), e(T,X, Y), not f ′(L, ban, X, Y) (4.41)

reach(L,X,Z) ← reach(L,X, Y), reach(L, Y, Z) (4.42)

In our example, a1, a3, a7, and b3, b5, b7 are out-nodes. None of these are (`s-)reachable
from a4 and b4. With I ′ = I ∪ {s(no-turn(left), b4), s(no-entry , b5), s(no-entry , b7)}:

CP,SpG (I ′) = {c(no-way-out(`s), a4), c(no-way-out(`s), b4), c(overlap(`s,nec, ban), a4)}

Suppose we are interested only in the conflict of type no-way-out(`s). A query for this
kind of problem amounts to AS ∩C (Sp ∪ P ∪G ∪ I), where C is the subset of CG with
conflict type no-way-out(`s). Alternatively, we may use a new program Q including
rules (4.38)-(4.42) and get the conflicts of interest:

CP,QG (I ′) = {c(no-way-out(`s), a4), c(no-way-out(`s), b4)} �

48

a1

a2

a3 a4

a5

a6

a7a8

b1

b2

b3 b4

b5

b6

b7b8

c1

c2

c3 c4

c5

c6

c7c8

d1

d2

d3 d4

d5

d6

d7d8

Figure 4.13: Loop caused by four Mandatory Left Turns

The following example demonstrates that formally plausible rules are not necessarily
practicable. With experience, such specifications may often be refined, which can con-
veniently be done with ASP rules.

Example 27 Figure 4.13 shows another scenario with different kinds of dead ends. In
this case, the four Mandatory Left Turn signs create a loop. Note that in principle, a
driver can escape this loop by using a U-turn after a junction, e.g. (a3, a4), or in reality, at
any point along the lanes where we do not model U-turns, unless needed. Nevertheless,
if such a situation occurs, it is certainly not intended and worth detecting. Therefore,
we pragmatically replace rule (4.41) by the following two:

reach(L,X, Y) ← lang(L), e(T,X, Y),not f ′(L, ban, X, Y), T 6= uturn (4.43)

reach(L,X, Y) ← e(uturn, X, Y), f ′(L,nec, X, Y) (4.44)

�

The first rule disregards U-turns as part of reachable ways. However, this is neither
intuitive nor practical for Mandatory U-turns. The second rule accounts for this case.

Note that if we replace in the second rule the constant uturn by a variable, the
conflict c(no-way-out(`s), a4) of the previous example will not be derivable anymore. It is
a matter of taste how to interpret such a case of contradicting permissions on some edge,
so both variants can be argued for. For the loop example we use again according edges G

49

to represent the graph and the input I = {s(mand -turn(left), α) | α ∈ {a6, b8, c2, d4}}.
We get the following conflicts.

CP,SpG (I) = {c(no-way-out(`s), a6), c(no-way-out(`s), b8),

c(no-way-out(`s), c2), c(no-way-out(`s), d4)}

Given an effect mapping and a conflict specification, a traffic regulation as viewed in
this work is sufficiently defined.

Definition 12 (Traffic regulation problem) Let Sc = (G,M,S) be a scenario, P an
effect mapping relative to G and let Sp be a conflict specification over P . Then, the
pair Π = (P, Sp) is called a traffic regulation and the pair (Π, Sc) a traffic regulation
problem.

Technically, a conflict specification Sp is not limited to the traffic regulation in the
narrow sense of the word. Already the loop example showed the usefulness to include
additional aspects which may not be found in legal documents. Moreover, our high-level
approach is suitable to detect any point of interest which arises due to the constellation
of traffic regulation data on a street map, as discussed in Chapter 3. In this chapter
we have developed a specific effect mapping P and a conflict specification Sp, which
gives us a traffic regulation Π = (P, Sp). Thus, all presented examples of this chapter
yield a traffic regulation problem by the according scenario Sc = (G,M,S). We are now
prepared to discuss inconsistency management in form of reasoning tasks based on these
examples in the next chapter.

50

CHAPTER 5
Reasoning Tasks

In the previous chapter we developed a formal model of street graphs, the two considered
input languages of traffic measures and traffic signs, and a logic-based traffic regulation
in form of an effect mapping and a conflict specification. On top of this, we will now
present different practically relevant reasoning tasks to inspect data inconsistencies and
define mechanisms to eliminate them. In particular, we will investigate the following
problems, given a traffic regulation problem T .

• Consistency Evaluation. Determine whether T is inconsistent w.r.t. the traffic
regulation, i.e., whether it has any conflicts.

• Diagnoses. For a given set of conflicts C of T , find explanations, i.e., parts of
the input that causes C.

• Correspondence. Determine whether measures and signs in T express the same
restrictions on road use, i.e., the same effects.

In case we have an inconsistent traffic regulation problem T , the most important ques-
tion is how to establish consistency by modifications to the input. We distinguish four
different kinds of such data updates.

• Repairs. Which measures and signs must be added or deleted such that the
resulting traffic regulation problem has no conflicts?

• Strict Repairs. For an inconsistent T comprising both measure and sign data,
find a repair that also ensures correspondence.

• Adjustment. If among the two languages, measures and signs, data of only one
kind is consistent, find a strict repair that adapts the other language’s data towards
correspondence.

51

• Generation. Given consistent data of only one language, generate corresponding
data of the other language from scratch.

Throughout this chapter, T we will always denote a traffic regulation problem (Π, Sc)
with the traffic regulation Π = (P, Sp) developed throughout the examples of the pre-
vious chapter. We will use different scenarios, always denoted by Sc = (G,M,S) with
traffic measures M and traffic signs S on a graph G, and again call the respective
set I = M ∪S the scenario’s input. Depending on context, the notion input will also be
used for subsets J ⊆ IG of arbitrary measures and signs on the graph.

5.1 Consistency Evaluation

The first reasoning task is central to our approach of inconsistency management. In
Chapter 4 we introduced conflicts, which are entailed whenever the input I = M ∪ S
contains illegal constellations as formalized by the conflict specification Sp (over an
effect mapping P). We define inconsistency as the existence of conflicts.

Definition 13 (Inconsistency) The conflicts of a traffic regulation problem T with
input I are given by C(T) = CP,SpG (I). If C(T) 6= ∅, we call T , its scenario Sc, and I
inconsistent (w.r.t. Π).

We define the first reasoning task by requiring the computation of C(T).

Problem: Consistency Evaluation (ConsEval)
Instance: A traffic regulation problem T
Output: The set of conflicts C(T)

Accordingly, we also write ConsEval(T) or C(T). In the previous chapter we have al-
ready seen examples of inconsistent traffic regulation problems. Note that the presented
ASP-based definition of Π gave a declarative implementation for ConsEval. That is,
by instantiating the formal model with formulas in ASP we already have the means to
determine the conflicts of a traffic regulation problem.

In this chapter, we deal with two major questions concerning the conflicts of an
inconsistent T : how they are explained and how they can be removed.

5.2 Diagnosis

Given an inconsistent traffic regulation problem T , we are interested in the part of the
input that causes its conflicts. In terms of abductive diagnosis [39, 42], the input serves
as set of hypotheses from which we need to explain the observed conflicts based on the
traffic regulation and the street graph as underlying theory.

Definition 14 (Diagnosis) Let T be an inconsistent traffic regulation problem with
input I. A diagnosis for a (non-empty) set of conflicts C ⊆C(T) is a set J ⊆ I, such
that C ⊆CP,SpG (J). The set of all diagnoses for C (with fixed T) is denoted by DT (C).

52

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 30

Figure 5.1: Traffic signs causing conflicts due to a missing repeated start sign at y1

We assume that Sp is defined such that CP,SpG (∅) = ∅. Consequently, each diagnosis
(for C 6= ∅) is non-empty. The respective reasoning task is defined as follows.

Problem: Diagnoses
Instance: A traffic regulation problem T and a set of conflicts C ⊆ C(T)
Output: The set of all diagnoses DT (C) for C

We also write Diagnoses(T , C) for DT (C). For a single conflict c ∈ C(T), we abbrevi-
ate DT ({c}) by DT (c). In particular, we are interested in minimal diagnoses with respect

to cardinality or subset inclusion. The sets of these diagnoses are denoted by D#
T (C)

and D⊆T (C), respectively. If we speak only of minimal diagnoses, we mean ⊆-minimal.

Example 28 Recall the traffic regulation problem T with the speed limit scenario de-
picted again in Figure 5.1, where the missing repeated start sign for the 30 km/h re-
striction leads to C(T) = C1 ∪ C2, where

C1 = {c(bad -end(max -speed(30)), y1)}, and

C2 = {c(cant-end(max -speed(30)), y2)}.

The entire input I is the only diagnosis for C(T), i.e., {I} = D#
T (C(T)) = D⊆T (C(T)).

The single minimal diagnosis for C1 is {s(start(spl(30)), x2)}, since the incorrectly
ended max -speed(30) effect stems from this sign. Independently, the end sign at y2

leads to the other conflict, i.e., C2 is minimally explained by {s(end(spl(30)), y2)}. �

We formalize this idea of independence between sets of conflicts and subsets of the input.

Definition 15 (Independence) Let T be an inconsistent traffic regulation problem
with input I. We say a set of conflicts C ⊆ C(T) is independent of a set Y ⊆ I, if for
each diagnosis J for C and each Y ′ ⊆ Y , the set J \ Y ′ is also a diagnosis for C.

The notion of independence captures which part of the input is irrelevant with respect
to the explanation for a given set of conflicts.

53

a1

a2

a3 a4

a5

a6

a7a8

b1

b2

b3 b4

b5

b6

b7b8

Figure 5.2: Conflicts caused by sets of two, respectively three traffic signs

Example 29 The input I of the scenario depicted in Figure 5.2 is given by the union
of the following sets of signs:

Ia = {s(no-entry , a1), s(mand -turn(left), a4)}
Ib = {s(no-turn(left), b4), s(no-entry , b5), s(no-entry , b7)}

This traffic regulation problem has the set of conflicts C(T) = Ca ∪ Cb, where

Ca = {c(no-way-out(`s), a4), c(overlap(`s, ban, nec), a4)}, and

Cb = {c(no-way-out(`s), b4)}.

By a set Ixn ⊆ I we denote the singleton comprising the sign posted at node xn. The
diagnoses for each non-empty set of conflicts C ′a ⊆ Ca are then given as follows:

D1
a = Ia ∪ Ib4 ∪ Ib5 ∪ Ib7

D2
a = Ia ∪ Ib4 ∪ Ib5

D3
a = Ia ∪ Ib4 ∪ Ib7

D4
a = Ia ∪ Ib5 ∪ Ib7

D5
a = Ia ∪ Ib4

D6
a = Ia ∪ Ib5

D7
a = Ia ∪ Ib7

D8
a = Ia

Hence, each C ′a is independent of Ib. Likewise, Cb is independent of Ia, as we see by
enumerating the diagnoses for Cb:

D1
b = Ib ∪ Ia1 ∪ Ia4

D2
b = Ib ∪ Ia1

D3
b = Ib ∪ Ia4

D4
b = Ib

54

We get a dual view on independence by the observation that a set of conflicts C occurs
due to a context, i.e., a maximal subset X ⊆ I, such that C is not independent of X.

Definition 16 (Context) A subset X ⊆ I of the input is called a context of a set of
conflicts C, if the following conditions hold:

(i) C is independent of I \X, and

(ii) C is not independent of any non-empty X ′ ⊆ X.

Using the scenario with the speed limit signs shown in Figure 5.1, and the notation of
Example 28, {s(start(spl(30)), x2)} is a context of C1, and {s(end(spl(30)), y2)} is a
context of C2. In Example 29, we get a context Ia for Ca, and Ib is a context for Cb. As
these examples suggest, the context of a set of conflicts is always unique.

Proposition 1 Each set C ⊆ C(T) of conflicts has a unique context.

Proof. Let I be the input of a traffic regulation problem T and let X,Y be two contexts
of a set C ⊆ C(T) of conflicts. For the sake of contradiction, we assume that X 6= Y .
Without loss of generality, we can assume some y ∈ Y , such that y 6∈ X. Since X
is a context, by Definition 16 (i), C is independent of I \X and thus in particular,
independent of {y}. However, since Y is a context, by Definition 16 (ii), C is not
independent of any non-empty Y ′ ⊆ Y , and thus in particular, not independent of {y},
which gives the contradiction. 2

In the sequel, the context for a set C of conflicts is denoted by ctx (C). The ⊆-minimal
parts capture the essence of a diagnosis. In a similar way, the ⊆-minimal diagnoses
themselves capture the essence of a context.

Proposition 2 Let C ⊆ C(T) be a set of conflicts. Then all ⊆-minimal diagnoses are
contained in the context, i.e., ∪D⊆T (C) ⊆ ctx (C).

Proof. Let C ⊆ C(T) be a set of conflicts and let j ∈ ∪D⊆T (C). Towards a contra-
diction, assume that j 6∈ ctx (C). Since C is independent of I \ ctx (C) it must hold
that, whenever J is a diagnosis for C and Y ⊆ I \ ctx (C), then J \ Y is also a diagnosis
for C. Let J be any ⊆-minimal diagnosis containing j. By assumption, {j} ⊆ I \ ctx (C),
but J \ {j} is not a diagnosis for C, which yields the contradiction. 2

Examples 28 and 29 suggest that the context of a set of conflicts is determined by its
minimal diagnoses. Our next example shows that this is not always the case. Thus, in
general, the converse of Proposition 2 does not hold.

Example 30 Figure 5.3 shows the correct announcement of a 30 km/h speed limit
restriction from x2 to x3. However, at x4 there is another end sign, causing a single

55

x3 x4 x5x2x1

y2y1 y3 y4 y5

30 30 30

Figure 5.3: A repeated end sign causes a conflict at x4

conflict C = {c(bad -end(max -speed(30)), x4)}. To list its diagnoses, we denote by sn the
respective traffic sign at node xn.

D1 = {s4}
D2 = {s3, s4}
D3 = {s2, s3, s4}

We observe that s4 must be in the context due the ⊆-minimality of D1. The only
diagnosis in which s2 appears is D3. Since D3 \ {s2} is also a diagnosis for C, C is
independent of {s2}. However, if we remove s3 from D3, we do not obtain a diagnosis.
Consequently, the context contains s3, which is not part of a minimal diagnosis. �

In the previous example we saw that the context may contain more elements than those
contained in minimal diagnoses. Towards a full characterization of a context, we intro-
duce intervals and the notion of convexity.

Definition 17 (Interval) Let S and S′ be two sets such that S ⊆ S′. The interval
from S to S′ is defined as [S, S′] = {S′′ | S ⊆ S′′ ⊆ S′}.

By this distinguishing property of a collection of sets we define convexity.

Definition 18 (Convexity) Let X be a collection of sets and let S and S′ be two
sets such that S ⊆ S′. The pair (S, S′) is called convex in X if [S, S′] ⊆ X . A pair of
sets (S, S′) is maximal convex in X if (S, S′) is convex in X , and for every pair (T, T ′)
where T ⊂ S or T ′ ⊃ S′, (T, T ′) is not convex in X . By ♦X we denote the collection of
maximal convex pairs of sets in X .

In Example 30, the set of diagnoses for C was DT (C) = {D1, D2, D3}. The set of maxi-
mal convex pairs of sets of this collection is given by ♦DT (C) = {(D1, D2), (D2, D3)}.

If there are two different diagnoses J and J \ {x} for C and (J, J ′) is maximal convex
in DT (C), then J 6= J ′, i.e., the interval [J, J ′] contains at least two sets.

Lemma 3 Let (J, J ′) be maximal convex in a set of diagnoses DT (C) and let x ∈ J .
If J \ {x} ∈ DT (C), then J is a proper subset of J ′, i.e., J ⊂ J ′.

56

Proof. Let (J, J ′) ∈ ♦DT (C), x ∈ J and suppose that J \ {x} ∈ DT (C). For the sake
of contradiction, assume J 6⊂ J ′, i.e., J = J ′. That is, (J, J) is maximal convex in DT (C).
However, both J and J \ {x} are diagnoses for C and thus (J \ {x}, J) is convex inDT (C).
Consequently, (J, J) cannot be maximal convex in DT (C), giving the contradiction. 2

We now characterize the context of a set of conflicts by the union of all ⊆-minimal sets
in maximal convex pairs of its diagnoses.

Theorem 4 Let T be an inconsistent traffic regulation problem and let C ⊆ C(T) be a
set of conflicts. Then, ctx (C) =∪{J | (J, J ′) ∈ ♦DT (C)}.

Proof. Let I be the input of a traffic regulation problem T , C ⊆ C(T) be a set of conflicts
and let ♦DT (C) be the collection of maximal convex pairs (J, J ′) in DT (C). That is,
given a pair (J, J ′) of diagnoses in ♦DT (C) and a set J ′′ for C such that J ⊆ J ′′ ⊆ J ′
holds, then J ′′ ∈ DT (C), i.e., J ′′ is also a diagnosis for C.

Let X =∪{J | (J, J ′) ∈ ♦DT (C)}. We show that X is the context of C. To see that
condition (i) in Definition 16 holds, we assume for the sake of contradiction that C is
not independent of I \X. That is, there exists a diagnosis J for C and some Y ⊆ I \X
such that J \Y is not a diagnosis for C. Let (J1, J2) ∈ ♦DT (C) such that J1 ⊆ J ⊆ J2.
Since Y ∩X = ∅ and J1 ⊆ X, we have J1 ⊆ J \ Y and thus J1 ⊆ J \ Y ⊆ J ⊆ J2. By
convexity of (J1, J2) in DT (C), we conclude that J \ Y ∈ DT (C). Consequently, J \ Y
is a diagnosis, which yields the contradiction.

To prove condition (ii), we must show that for each non-empty X ′ ⊆ X there ex-
ists a diagnosis J for C and some X ′′ ⊆ X ′ such that J \X ′′ is not a diagnosis for C.
Let X ′ ⊆ X be non-empty. We take some pair of diagnoses (J1, J2) ∈ ♦DT (C) such
that J1 ∩X ′ 6= ∅. Let x ∈ J1 ∩X ′. If J1 \ {x} is not a diagnosis, we are done. Hence,
we suppose that D = J1 \ {x} is a diagnosis for C. By Lemma 3, we have J1 ⊂ J2.
Since J1 = D∪{x} is minimal in [J1, J2], every J in [J1, J2] contains x. We can write J2

as D ∪ {x} ∪ Y , where Y =∪n
i=1{yi} for some set of atoms y1, . . . , yn, n ≥ 1, such

that (D ∪ {x}) ∩ Y = ∅. Thus, for each Y ′ ⊆ Y it holds that D ∪ {x} ∪ Y ′ ∈ [J1, J2].
Since (J1, J2) is maximal convex in DT (C), there exists a set S ∈ [J1 \ {x}, J2] = [D,J2]
that is not a diagnosis for C. We conclude that S must be of formD ∪ Y ′ for some Y ′ ⊆ Y .
Consequently, we get a diagnosis J = S ∪ {x} such that J \ {x} is not a diagnosis. 2

Consider a pair of diagnoses (J1, J2) ∈ ♦DT (C). By Theorem 4, J1 ⊆ ctx (C). Then,
any (J ′1, J

′
2) ∈ ♦DT (C), where J ′1 ⊆ J1, will not introduce further elements to ctx (C).

Thus, to determine the context for C, it suffices to consider those (J1, J2) ∈ ♦DT (C)
where J1 is maximal in the sense that for all pairs (J, J ′) ∈ ♦DT (C) it holds that J 6⊃ J1.

Example 31 (cont’d) To illustrate this characterization, we recall the scenario of Ex-
ample 30. We had two maximal convex pairs of diagnoses given by ♦DT (C) = {D1,D2},

57

where D1 = ({s4}, {s3, s4}) and D2 = ({s3, s4}, {s2, s3, s4}). By Theorem 4,

ctx (C) = ∪{J | (J, J ′) ∈ {({s4}, {s3, s4}), ({s3, s4}, {s2, s3, s4})}}
= {s4} ∪ {s3, s4}
= {s3, s4}.

According to the note above, D1 is redundant in the characterization of ctx (C) in the
sense that D2 implies the inclusion of s3 and s4 in ctx (C) and D1 requires only s4. �

We call a collection X of sets convex, if for all S, S′ ∈ X , S ⊆ S′ implies that (S, S′) is
convex in X . If the entire set of diagnoses DT (C) for a set C of conflicts is convex,
then (J, J ′) ∈ ♦DT (C) implies that J is a ⊆-minimal diagnosis for C. As a consequence,
we get the following corollary.

Corollary 5 Let C ⊆ C(T) be a set of conflicts. If DT (C) is convex, then the context
is given by the union of ⊆-minimal diagnoses, i.e., ctx (C) =∪D⊆T (C).

In particular, DT (C) is always convex if the employed logic is monotonic, i.e., the prop-
erty that for all sets of formulas T and T ′ and atoms α, T |= α implies T ∪ T ′ |= α.
Then, for subsets J and J ′ of the input I, J ⊆ J ′ implies that CP,SpG (J) ⊆ CP,SpG (J ′). As
a consequence, if J is a diagnosis for C, then every J ′ such that J ⊆ J ′ ⊆ I holds is also
a diagnosis for C.

Example 32 In Example 29, we named two conflict sets Ca and Cb and listed their
respective diagnoses. Both DT (Ca) and DT (Cb) are convex, and as a consequence, the ⊆-
minimal diagnoses determine the respective context. There, the entire context ctx (Ck) is
required to diagnose the respective set Ck (k ∈ {a, b}). Later, we will see examples with
convex sets of diagnoses where ⊆-minimal diagnoses are proper subsets of the context. �

To see the relation of diagnosis with the usual notion of abductive diagnosis [35], we
adjust the definition of the latter, taking into account the closed world operator. A
complete abductive diagnosis (CAD) for a diagnostic problem 〈H,T,O〉 is a set of as-
sumptions ∆ ⊆ H, such that T ∪∆ 6|= ⊥ and T ∪∆ |= O. We immediately obtain the
following proposition.

Proposition 6 Let C ⊆ C(T) be the conflicts of an inconsistent traffic regulation prob-
lem T with input I and J ⊆ I. Then, J is a CAD for 〈I, P ∪G,FP

G (J)〉 and FP
G (J) is

a CAD for 〈FG, Sp ∪G, CP,SpG (J)〉.

By definition, a set of measures and signs determines effects given P , which in turn
determine conflicts given Sp. Thus, we can conclude the following relation between our
notion of diagnosis and complete abductive diagnosis.

Corollary 7 J ⊆ I is a diagnosis for C ⊆ C(T) iff FP
G (J) is a CAD for 〈FG, Sp ∪G,C〉.

A system that explains the cause of conflicts is useful if a user wants to correct traf-
fic regulation data faults manually. However, we also want to provide semi-automatic
support for repairing inconsistent traffic regulation problems.

58

5.3 Repair

Complementary to diagnoses explaining the cause of inconsistency, an important ques-
tion is how to repair an inconsistent traffic regulation problem, i.e., by means of which
deletions and additions of measures and signs consistency can be established.

Definition 19 (Update) An update for T with input I is a pair (I−, I+), where I− ⊆ I
and I+ ⊆ IG \ I, called the deletions and additions, respectively. The updated traffic
regulation problem (due to (I−, I+)), denoted by T [I−, I+], is obtained by replacing I
with I ′ = (I \ I−) ∪ I+ in T .

When applying an update (I−, I+) to T , we say I− is deleted from T and I+ is added
to T to obtain T [I−, I+]. In general, we might delete and add both measures and signs.

Definition 20 (Repair) An update (I−, I+) for an inconsistent T is a (local) repair
for conflicts C ⊆ C(T) (in T), if C ∩C(T [I−, I+]) = ∅, i.e., if none of these conflicts can
be derived in the updated traffic regulation problem due to (I−, I+). An update (I−, I+)
is a repair for T , if C(T [I−, I+]) = ∅.

We observe that a repair for C(T) is not necessarily a repair for T , since updates (I−, I+)
may introduce new conflicts. Second, we note that an update which deletes the entire
input, i.e. (I, ∅), is always a trivial, but rarely desired repair. Further, it seems imprac-
tical to compute all possible repairs analogous to Diagnoses. Suppose we are given an
intuitive repair (I−, I+) for T . As long as the updated traffic regulation problem remains
consistent, we can remove further items from I \ I− and add arbitrary additional ones
from IG \ (I ∪ I+) and get a lot of repairs involving unnecessary modifications. In fact,
Definition 20 allows the addition of random elements from IG, as long as the resulting T ′
is consistent.

Example 33 One repair for the traffic regulation problem T of Figure 5.1 is the addition
of another 30 km/h start sign at y1, i.e., (∅, I+), where I+ = {s(start(spl(30)), y1)}.
However, every random addition to I+ which does not introduce new conflicts, is also a
repair for T . For instance, we could additionally augment the scenario by a No Entry sign
at u3, which is totally unrelated to the problem. �

This observation suggests that a reasoning task for repairs shall compute only a subset
of all possible repairs as defined by an adequacy criterion.

Problem: Repairs (for T under adq)
Instance: An inconsistent traffic regulation problem T and

an adequacy criterion adq for updates (I−, I+)
Output: The set of repairs (I−, I+) for T such that adq(I−, I+) holds

By Repairs(T , adq) we denote the set of repairs for T under adq . Similarly, for a fixed
set C ⊆ C(T), Repairs(T , C, adq) is the set of (local) repairs for C (in T under adq).
Usually, we are interested in establishing consistency by as few modifications as possible,

59

i.e., by minimal repairs according to some preference. Without further domain knowl-
edge, we will simply count the number of changes to the input I− ∪ I+ as the (unit)
cost of repairs, i.e., |I− ∪ I+|. We define an adequacy criterion ucost which holds for a
repair (I−, I+) for T , if no repair for T has lower unit cost, i.e., |I− ∪ I+| ≤ |J− ∪ J+|
for each repair (J−, J+) for T .

Example 34 (cont’d) We apply ucost as adequacy criterion on Repairs for the traffic
regulation problem T of Figure 5.1. The minimal update (∅, I+) adds only one sign,
hence ucost(∅, I+) holds. Any repair (J−, J+) for T , where |J−| > 1 or |J+| > 1, shall
not to be computed by Repairs for T under ucost . Since no repair (J−, ∅) for T such
that |J−| = 1 exists, none of the two given traffic signs will be deleted. �

Next, we deal with overconstrained scenarios in the sense that some input needs to be
deleted to establish consistency.

Example 35 The loop example of Figure 4.13 represents a traffic regulation problem T
with too many driving bans. In principle, we could repair this scenario by adding a
Mandatory U-turn somewhere along a lane, e.g., between nodes d1 and a6. However,
this would require to introduce two new nodes and two new edges (labelled uturn) to
the graph. To avoid such unintuitive repairs, we only consider fixed graphs comprising
only those nodes which are necessary to describe the initial input I. In this example, for
every non-empty J ⊆ I, the update (J, ∅) is a repair for T , but J ∈ Repairs(T , ucost)
only if |J | = 1. Thus, the reasoning task Repairs for this T under ucost will suggest
only those repairs which delete exactly one of the four Mandatory Left Turn signs. �

The theory of consistency-based diagnosis by Reiter [44] deals with fault observations
for a fixed system of components, where each component can behave normally or abnor-
mally. Given a set of observations, a conflict set denotes a subset of the components that
cannot all be assumed to be behave normally without contradicting the system descrip-
tion. Theorem 4.4 in [44] states that minimal consistency-based diagnoses (of according
diagnostic problems) can be identified with minimal hitting sets for the collection of
conflict sets.

Definition 21 (Hitting set) Let S be a collection of sets X1, . . . , Xn. Then, a sub-
set H ⊆ ∪n

i=1Xi is a hitting set for S, if H meets every set in S, i.e., H ∩X 6= ∅ for
each X ∈ S. A hitting set H is minimal, if no H ′ ⊂ H is a hitting set.

We draw upon this idea to investigate the connection between diagnoses and delete-only
repairs, i.e., repairs of form (I−, ∅). Assume we are given some set of conflicts C ⊆ C(T).
If we delete a subset J ⊆ I that meets every diagnosis of C, then all causes of C will be
eliminated.

Proposition 8 Let C ⊆ C(T) be a set of conflicts and DT (C) be the set of its diagnoses.
If a subset J ⊆ I of the input is a hitting set for DT (C), then C 6⊆ C(T [J, ∅]).

60

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

Figure 5.4: Contradictory information for mandatory driving directions

Proof. Let C ⊆ C(T) be a set of conflicts and let J ⊆ I be a hitting set for DT (C),
i.e., J ∩D 6= ∅ for each diagnosis D for C in T . Towards a contradiction, further assume
that C ⊆ C(T [J, ∅]), i.e., C ⊆ CP,SpG (I \ J). Consequently, I \ J is a diagnosis for C,
i.e., (I \ J) ∈ DT (C). Since J ∩ (I \ J) = ∅, J cannot be a hitting set for DT (C). It
follows that C 6⊆ C(T [J, ∅]). 2

In general, this hitting set condition of an input’s subset J w.r.t. the diagnoses of a set of
conflicts C is not enough to guarantee that (J, ∅) is a repair for C, i.e., C ∩ C(T [J, ∅]) = ∅.

Example 36 Consider Figure 5.4, where mandatory driving directions point towards a
No Entry sign. The input I is given by the following parts.

Iu3 = {s(no-entry , u3)}
Iv2 = {s(mand -turn(left), v2)}
Iz1 = {s(mand -turn(straight), z1)}

The set of conflicts C(T) comprises the following sets:

Cv2 = {c(overlap(`s, ban, nec), v2), c(no-way-out(`s), v2)}
Cz1 = {c(overlap(`s, ban, nec), z1), c(no-way-out(`s), z1)}

The⊆-minimal diagnoses for Cv2 and Cz1 are Iu3∪Iv2 and Iu3∪Iz1 , respectively. The only
diagnosis for C = C(T) is I, i.e., DT (C) = {I}. Consequently, each non-empty J ⊆ I
is a hitting set for DT (C). The update (Iu3 , ∅) to delete only the No Entry sign is a
minimal repair for C, but for J = Iv2 (respectively J = Iz1), (J, ∅) is not a repair for C,
since C ∩ C(T [J, ∅]) equals Cz1 (respectively Cv2). �

In order to get a delete-only repair for a set of conflicts C from its diagnoses, we need
to ensure that no conflict in C can be derived in the updated traffic regulation problem.
To this end, we observe the following special case of Proposition 8 for single conflicts.

61

Corollary 9 Let c ∈ C(T) be a single conflict. If J ⊆ I is a hitting set for DT (c),
then {c} 6⊆ C(T [J, ∅]), i.e., (J, ∅) is a repair for {c}.

Consequently, given a set C of conflicts, if J ⊆ I meets all diagnoses of all conflicts in C,
we get a delete-only repair (J, ∅) for C.

Corollary 10 Let C ⊆ C(T) be a set of conflicts. If J ⊆ I is a hitting set for DT (c)
for each c ∈ C, then C ∩ C(T [J, ∅]) = ∅, i.e., (J, ∅) is a repair for C.

Proof. Let C ⊆ C(T) be a set of conflicts and let J ⊆ I be a hitting set for DT (c) for
each c ∈ C. By Corollary 9, {c}∩C(T [J, ∅]) = ∅ for each c ∈ C. Thus, C∩C(T [J, ∅]) = ∅,
and therefore, (J, ∅) is a repair for C. 2

We will now emphasize two special cases of Corollary 9, which will be illustrated below.
For a collection S of sets, ∩S = ∩X∈SX denotes its intersection. The respective set
differences, ∆S = {X \ ∩S | X ∈ S}, are called the non-shared parts (of S). For
instance, if S = {{a, b}, {b, c}, {b}}, then ∩S = {b} and ∆S = {{a}, {c}, ∅}. Note that
a non-empty ∩S is a special case of a hitting set for S.

Corollary 11 Let c ∈ C(T) and J ⊆ I be non-empty. Then (J, ∅) is a repair for {c},
(i) if J ⊇ ∩DT (c); or (ii) if J ⊆ I \∩DT (c) is a hitting set for ∆DT (c).

By this corollary, we can obtain different intuitive classes of delete-only repairs by di-
agnoses for single conflicts, as we show in the next example. In particular, given a
conflict c ∈ C(T), by item (i) we get a minimal repair ({j}, ∅) for each j ∈ ∩DT (c).

Example 37 Figure 5.5 shows a traffic regulation problem T which adds to the former
loop example three additional No Entry signs at nodes a1, d5 and d7, and another
Mandatory Left Turn at a4. We partition the input I as follows:

Ia14 = {s(no-entry , a1), s(mand -turn(left), a4)}
I3ml = {s(mand -turn(left), α) | α ∈ {a6, b8, c2}}
Iml
d4

= {s(mand -turn(left), d4)}
Ined5

= {s(no-entry , d5)}
Ined7

= {s(no-entry , d7)}

This traffic regulation problem has conflicts C(T) = Ca ∪ C`, where

Ca = {c(no-way-out(`s), a4), c(overlap(`s, ban, nec), a4)}, and

C` = {c(no-way-out(`s), α) | α ∈ {a6, b8, c2, d4}}.

For each c ∈ Ca, the diagnoses for {c} are

DT (c) = {Ia14 ∪X | X ⊆ I \ Ia14}.

62

a1

a2

a3 a4

a5

a6

a7a8

b1

b2

b3 b4

b5

b6

b7b8

c1

c2

c3 c4

c5

c6

c7c8

d1

d2

d3 d4

d5

d6

d7d8

Figure 5.5: Scenario with independent conflicts and repair variants

In particular, ∩DT (c) = Ia14 and thus Ia14 is the unique minimal diagnosis for each of
these conflicts. Since each set of respective diagnoses DT (c) is convex, we have

ctx ({c(no-way-out(`s), a4)}) = ctx ({c(overlap(`s, ban, nec), a4)}) = ctx (Ca) = Ia14 .

By Corollary 11, we get two minimal repairs for these {c} ⊆ Ca: ({s(no-entry , a1)}, ∅)
and ({s(mand -turn(left), a4)}, ∅).

Complementary, for each non-empty C ⊆ C` it holds that Ia14 is independent of C,
since for each c ∈ C`, the diagnoses for {c} are given by

DT (c) =
⋃

1≤k≤5

{Dk ∪ Y | Y ⊆ Ia14}, where

D1 = I3ml ∪ Iml
d4
∪ Ined5

∪ Ined7

D2 = I3ml ∪ Iml
d4
∪ Ined5

D3 = I3ml ∪ Iml
d4
∪ Ined7

D4 = I3ml ∪ Iml
d4

D5 = I3ml ∪ Ined5
∪ Ined7

.

Each of these conflict sets C ⊆ C` has two ⊆-minimal diagnoses, namely D4 and D5.
Since DT (C) is convex, we get ctx (C) = I3ml ∪ Iml

d4
∪ Ined5

∪ Ined7
= I \ Ia14 . Thus, Ca

63

and C` are maximal independent sets of conflicts. The intersection of the diagnoses for
each conflict in C` is I3ml, i.e., ∩DT (c) = I3ml for each c ∈ C`. Hence, by Corollary 11,
we get a repair (J, ∅) for each non-empty J ⊆ I3ml. That is to say, deleting at least one
Mandatory Left Turn sign at nodes a6, b8 and c2 gives a repair for C`, and if we delete
exactly one, i.e. |J | = 1, we get a minimal repair.

If we do not delete any of these three signs in I3ml = ∩DT (C`), we certainly have
to delete the fourth Mandatory Left Turn at d4. By removing only this sign, the loop
would still exist due to the No Entry signs at d5 and d7, from which at least one has to
be deleted. These observations are expressed by the ⊆-minimality of the diagnoses D4

and D5. Corollary 11 also captures these plausible repairs. In contrast to Ca, the set of
non-shared parts of diagnoses for C` does not contain the empty set, i.e. ∅ 6∈ ∆DT (C`).
For each c ∈ C`, the non-shared parts of DT (c) are

∆DT (c) =
⋃

1≤k≤5

{D∆
k ∪ Y | Y ⊆ Ia14}, where

D∆
1 = Iml

d4
∪ Ined5

∪ Ined7

D∆
2 = Iml

d4
∪ Ined5

D∆
3 = Iml

d4
∪ Ined7

D∆
4 = Iml

d4

D∆
5 = Ined5

∪ Ined7
.

We can find sets J ⊆ I \∩DT (c) that are hitting sets for ∆DT (c). By picking J = Iml
d4

,

we have a hitting set for D∆
k , where 1 ≤ k ≤ 4. In order to meet also D∆

5 , we must
add Ined5

or Ined7
(or both). We get the additional repairs (Iml

d4
∪ Ined5

, ∅) and (Iml
d4
∪ Ined7

, ∅)
for all c ∈ C` (and those delete-only repairs with according supersets).

For k ∈ {a, `}, and c ∈ Ck, a repair (Rc
k, ∅) for {c} is also a repair for any C ′k ⊆ Ck.

If (Rk, ∅) is a repair for the respective set of conflicts Ck, then (Ra ∪ R`, ∅) is also a
repair for T . �

In the previous example, we could repair the traffic regulation problem by combining
local repairs for independent sets of conflicts. In general, however, local repairs may
have side effects, i.e., introduce new conflicts.

Example 38 Figure 5.6 shows the T-junction with speed limit signs as seen in the
previous chapter. Similar as in Figure 5.4, the Mandatory Left Turn sign at v2 and
the No Entry sign at u3 express contradictory permissions. The input I of this traffic
regulation problem T is given as the union of the following sets:

I1 = {s(start(spl(30)), x2), s(end(spl(30)), y2)},
I2 = {s(mand -turn(left), v2), s(no-entry , u3)}.

The set I2 is the unique minimal diagnosis (and thus the context) of the traffic regula-
tion problem’s conflicts C(T) = {c(no-way-out(`s), v2), c(overlap(`s, ban, nec), v2)}. For

64

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 30

Figure 5.6: Mandatory Left Turn sign pointing in an impossible direction

each c ∈ C(T), Corollary 11 suggests two minimal repairs:

R1 = ({s(no-entry , u3)}, ∅)
R2 = ({s(mand -turn(left), v2)}, ∅)

Since R1 does not have side effects it is also a repair for T . However, removing (only)
the Mandatory Left Turn from the input introduces new conflicts

{c(bad -end(max -speed(30)), y1), c(cant-end(max -speed(30)), y2)},

as discussed in Example 25. As a consequence, R2 not a repair for T . �

To see why in the last example the update R2 has side effects, we analyze the specification
of the involved conflicts. The according rules (4.30) and (4.31) (page 46) test for the
absence of an effect; the sign effect f ′(`s,max -speed(30), y1, y2) in this case. Since we
remove the Mandatory Left Turn in R2, this effect is not derived anymore by the effect
mapping and therefore both rules fire.

In the examples before, where local repairs did not introduce new conflicts, the
involved rules in the conflict specification test only for positive occurrences of effects. In
principle, however, the removal of signs or measures may also lead to additional effects.
Therefore, a detailed analysis under which circumstances local repairs (and merged local
repairs) are free of side effects, is a topic on its own.

We return to the original speed limit example to discuss its repairs.

Example 39 To repair the speed limit scenario of Figure 4.11, we have several options,
other than deleting both signs. One option would be to move the end sign from node y2

to y1, as shown in Figure 5.7, i.e., the repair ({s(end(spl(30)), y2)}, {s(end(spl(30)), y1)}).
Similarly, we could move the start sign from x2 to y1, as shown earlier in Figure 4.6.
A repair with unit cost 1 is (∅, {s(mand -turn(left), v2)}), i.e., adding a Mandatory Left
Turn at node v2 as presented in the previous example. Likewise, the addition of a No
Right Turn at v2, as depicted in Figure 4.9 is a minimal repair.

65

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 30

Figure 5.7: Repair variant for Figure 4.3: Moving the end sign from y2 to y1

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 30 30

Figure 5.8: Result of the only reasonable repair variant for Figure 4.3, if a speed limit
measure information is given from x2 to y2

Finally, putting another 30 km/h start sign at y1, i.e. (∅, {s(start(spl(30)), y1)}), is
also a minimal repair, leading to the scenario shown in Figure 5.8. If we also consider
the according speed limit measure from x2 to y2, as in the initial example of Figure 4.3,
then only this repair is reasonable. �

This example suggests that we need a stronger variant of repair in case we are given
input of both languages.

5.4 Correspondence

Given a traffic regulation problem which includes both measures and signs, consistency
is not a sufficient criterion for data correctness. Additionally, we are interested in the
following condition.

Definition 22 (Correspondence) A set of measures M and a set of signs S corre-
spond with respect to an effect mapping P and a street graph G, if they express the same
effects, i.e., FP

G (M) = FP
G (S).

We naturally get an according decision problem.

66

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 30

Figure 5.9: Missing repeated start sign for a speed limit measure from x2 to y2

Problem: Correspondence (Corr)
Instance: A traffic regulation problem T with measures M and signs S
Output: Decide whether M and S correspond

We call a measure unannounced, if no sign expresses one of its effects. Likewise, a sign
is called unjustified, if some effect expressed by it is not expressed by any measure.
We extend these two notions to unannounced effects, given by FP

G (M) \ FP
G (S), and

unjustified effects, given by FP
G (S) \ FP

G (M).

Example 40 Assume we are given the scenario Sc = (G,M,S) of Figure 5.9, where

M = {m(spl(30), x2, x3),m(spl(30), x3, y1),m(spl(30), y1, y2)}, and

S = {s(start(spl(30)), x2), s(end(spl(30)), y2)},

and the graph G is given as set of atoms of form e(T,X, Y), representing edges, as usual.
As explained before, S is not consistent. However, M is consistent, and consequently, S
and M cannot correspond. We have

FP
G (S) \ FP

G (M) = ∅ ,
FP
G (M) \ FP

G (S) = {f(max -speed(30), y1, y2)}.

We see that there are no unjustified signs, but the max -speed(30) effect on edge (y1, y2)
is unannounced. �

The correspondence criterion is the key to obtain a suitable repair task for traffic regu-
lation problems that contain both measure and sign data.

5.5 Strict Repair

By requiring correspondence in addition to consistency, we get a strengthened notion of
repair, suitable for scenarios (G,M,S), where both M and S are non-empty.

Definition 23 (Strict repair) A repair (I−, I+) for T is called a strict repair, if
the set of measures M ′ and the set of signs S′ in the updated traffic regulation prob-
lem T [I−, I+] correspond.

67

In analogy to Repairs, we define an according reasoning task. Again, we are not inter-
ested in all possible strict repairs, but only a relevant subset as defined by a predicate adq
on strict repairs.

Problem: Strict Repairs (StrRepairs) (for T under adq)
Instance: An inconsistent traffic regulation problem T and

an adequacy criterion adq for updates (I−, I+)
Output: The set of strict repairs (I−, I+) for T such that adq(I−, I+) holds

By StrRepairs(T , adq) we denote the set of strict repairs for T under adq . We omit a
discussion of local strict repairs for sets of conflicts.

Example 41 (cont’d) All repairs for the scenario of Figure 4.11 as listed in Example 39
are also repairs for the scenario of Example 40 (Figure 5.9), but only the addition of the
repeating start sign at y1, i.e. (∅, {s(start(spl(30)), y1)}), is a strict repair, which is the
only strict repair for T under ucost .

Moving the start sign or the end sign would leave some measures unannounced. In
order to get a strict repair from these variants, the according measure would need to
be deleted as well, leading to unit cost 2. Adding the No Right Turn at v2 would
introduce an unjustified ban effect on edge (v2, y1). Likewise, putting a Mandatory Left
Turn at v2 would ban traffic along the edges (v2, u3) and (v2, w2) without justification
by a measure. To obtain a strict repair from these sign additions, at least one measure
needs to be added, causing a non-optimal unit cost of at least 2. �

For Strict Repairs, a good choice for the minimality (adequacy) criterion is context
dependent. Since a strict repair potentially deletes and adds measures and signs, and
moreover, of different respective types, there are many ways to define a preference rela-
tion over strict repairs. So far, we have only considered unit cost, i.e., a simple count of
changes to the input regardless of language or type. In practice, there is no adequacy
condition which equally applies to every situation.

For instance, consider the case that measures were imported from an unreliable data
source, or via some heuristic algorithm. Then we might prefer to change measures before
adding or deleting traffic signs. However, if measures are collected manually, the opposite
preference is plausible. Traffic measures reflect the legal intention, are supposed to be
deliberately enacted and undergo official authorization. Traffic signs, on the other hand,
may be sloppily placed or forgotten to be removed. If authorized government officials
manually create traffic measure data, we will prefer changes of traffic signs.

Example 42 Figure 5.10 depicts a 30 km/h speed limit measure from x2 to y2 plus its
start sign at x2, and a 40 km/h measure from y1 to y3 plus its end sign at y3.

M = {m(spl(30), x2, x3),m(spl(30), x3, y1),m(spl(30), y1, y2),

m(spl(40), y1, y2),m(spl(40), y2, y3)}
S = {s(start(spl(30)), x2), s(end(spl(40)), y3)}

68

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 40

Figure 5.10: Overlapping speed limit measures, 30 km/h and 40 km/h, on edge (y1, y2)

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 40 40

Figure 5.11: Strict repair for Figure 5.10 in favour of the 40 km/h restriction

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 30 40 40

Figure 5.12: Strict repair for Figure 5.10 in favour of the 30 km/h restriction

We have have three conflicts with respective unique minimal diagnoses:

k conflict singleton Ck ⊆-minimal diagnosis Jk

1 {c(bad -end(max -speed(30)), y1)} {s(start(spl(30)), x2)}
2 {c(cant-end(max -speed(40)), y3)} {s(end(spl(40)), y3)}
3 {c(overlap(`m,max -speed(30),max -speed(40)), y1)} {m(spl(30), y1, y2),

m(spl(40), y1, y2)}

69

Three effects are unannounced:

FP
G (M) \ FP

G (S) = {f(max -speed(30), y1, y2), f(max -speed(40), y1, y2),

f(max -speed(40), y2, y3)}

Let us first examine only the traffic sign information. Again, there is a bad end of a
30 km/h restriction after the junction. According to signs, a speed limit of 40 km/h is
supposed to end along this lane. Hence, we can repair the sign information by adding a
40 km/h start sign at y1.

Concerning measures, we have contradictory information on the edge (y1, y2). We
need to delete one of the atomic measures {m(spl(K), y1, y2) | K ∈ {30, 40}} to establish
consistency of the measure information. Thus, we get two minimal repairs

({m(spl(K), y1, y2)}, {s(start(spl(40)), y1)}),

where K ∈ {30, 40}. However, only the repair with K = 30 is also a strict repair. The
updated traffic regulation problem due to this repair is shown in Figure 5.11. In order to
get a strict repair where the 40 km/h measure on (y1, y2) is deleted, we need to add two
signs as shown in Figure 5.12: in addition to the 40 km/h start sign at y1, a repeated
30 km/h start at y1 is required. Hence, this variant, which is equally plausible, is not
minimal with respect to unit cost, since one more sign needs to be added. �

We conclude that it is desirable to have flexibility in the adequacy condition applied to
(strict) repairs. In the demonstrated case, we might want to count only modifications of
measures, regardless of how many traffic signs need to be changed as a consequence of
minimal measure changes.

Two specific constraints on strict repairs are discussed next, where only measures or
signs can be updated, but not both.

5.6 Adjustment and Generation

Motivated by data import settings and data correction of only one language, we will
investigate two practically relevant special cases of strict repairs. We say a repair (I−, I+)
is X-based, if I− ∪ I+ ⊆ X.

Definition 24 (Adjustment) Let T be a traffic regulation problem with measures M
and signs S. If M is consistent, a sign adjustment for T is an SG-based strict re-
pair (S−, S+) for T . Similarly, if S is consistent, a measure adjustment for T is
an MG-based strict repair (M−,M+) for T .

That is, whenever only signs (respectively measures) are changed, we speak of a sign
(respectively measure) adjustment. Adjustment is useful if one kind of information shall
serve as basis for the repair of the other.

70

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

40 40

Figure 5.13: Consecutive 30 km/h and 40 km/h speed limit measures

Problem: Sign Adjustment (S-Adj) (for T under adq)
Instance: An inconsistent traffic regulation problem T with consistent M and

an adequacy criterion adq for updates (I−, I+)
Output: The set of sign adjustments (I−, I+) for T such that adq(I−, I+) holds

The task Measure Adjustment (M-Adj) is similarly defined.

Example 43 Consider Figure 5.13, in which a 30 km/h speed limit measure ranges
from x2 to y1, immediately followed by a 40 km/h speed limit measure until node y2.
While the latter is correctly announced and the 40 km/h start sign is a proper (implicit)
end for the previous measure, the start sign at x2 is missing. The sets M and S are
consistent but do not correspond, since

FP
G (M) \ FP

G (S) = {f(max -speed(30), x2, x3), f(max -speed(30), x3, y1)}.

A minimal strict repair for this scenario is (∅, {s(start(spl(30)), x2)}), which is also a
sign adjustment. If we know that the traffic sign data is complete, the proper task is
Measure Adjustment, which is unique: (∅, {m(spl(30), x2, x3),m(spl(30), x3, y1)}). �

Another relevant restriction related to data import is the generation of measures or signs,
given consistent data of the other kind.

Definition 25 (Generation) Let T be a traffic regulation problem with measures M
and signs S. If M is consistent and S = ∅, an SG-based strict repair (∅, S+) is called
a sign generation for T . Similarly, if S is consistent and M = ∅, an MG-based strict
repair (∅,M+) for T is called a measure generation for T .

Adjustment requires one of the two languages in the scenario, measures or signs, to
be consistent and furthermore constrains the strict repair to suggest updates only for
the other language. Generation imposes the additional restriction on the scenario to
comprise consistent data of only one language.

Problem: Sign Generation (S-Gen) (for T under adq)
Instance: A consistent traffic regulation problem T with empty S and

an adequacy criterion adq for updates (∅, S+)
Output: The set of sign generations (∅, S+) for T such that adq(∅, S+) holds

71

Again, the dual task Measure Generation (M-Gen) is similarly defined.

Example 44 The 30 km/h speed limit scenario (G, ∅, S) of Figure 5.8 has three unjus-
tified effects:

FP
G (S) \ FP

G (M) = {f(max -speed(30), x2, x3), f(max -speed(30), x3, y1),

f(max -speed(30), y1, y2)}

There are two minimal strict repairs: Either all of these three signs are deleted, or three
atomic spl(30) measures along these edges are added. To force the latter solution, we can
apply Measure Generation. In a dual scenario (G,M, ∅), comprising only these three
speed limit measures, we can similarly use Sign Generation to prevent the measure
labels from being removed. �

Summary. In this chapter we have defined major goals in inconsistency management
for traffic regulations based on explicit conflicts. We have extensively studied diagnoses
and repairs and investigated independence between conflicts and subsets of the input,
and dually, unique contexts due to which inconsistencies arise. We gave a full char-
acterization of contexts by means of diagnoses. For repairs, we have studied several
practically relevant variants and pointed out some difficulties arising from the problem
domain. In particular, we illustrated some challenges for an implementation regarding
its maintainability and flexibility.

If the programming language or methodology allows to modularly add (or activate
and deactivate) constraints, we need no separate implementation of adjustment and gen-
eration (or other such restrictions), given one exists for the strict repair task. Moreover,
if correspondence checking (Corr) is reduced to ConsEval, one can uniformly ap-
proach repairs and strict repairs. In Chapter 7 we will take these conceptual ideas even
further and present an implementation with Answer Set Programming that realizes all
presented reasoning tasks as slight variations on top of a uniform approach. Before that,
we will now investigate the computational complexity of decision problems associated
with our reasoning tasks.

72

CHAPTER 6
Computational Complexity

In this chapter, we analyze the computational complexity of decision problems associated
with the reasoning tasks of Chapter 5, by presenting in more detail the results established
in [3]. In particular, we consider for a given traffic regulation problem T = (Π, Sc),
with traffic regulation Π = (P, Sp) and scenario Sc = (G,M,S), the following decision
problems:

• Cons: Decide whether T is consistent, i.e., C(T) = CP,SpG (I) = ∅.

• UMinDiag: Decide, given a set C ⊆ C(T) of conflicts, whether C has a unique ⊆-
minimal diagnosis, i.e., a single minimal J ⊆ I such that C ⊆ CP,SpG (J).

• Corr: Decide whether M and S correspond, i.e., FP
G (M) = FP

G (S).

• Repair: Decide, given that T is inconsistent, whether some admissible repair
exists, i.e., some I−, I+ ⊆ IG such that CP,SpG ((I \ I−)∪ I+) = ∅ and a polynomial-
time admissibility predicate A(I−, I+) holds.

We consider different logics L for the traffic regulation Π and assume that the same logic
is used for the effect mapping P and the conflict specification Sp over it. In particular,
we consider

(i) first-order logic under domain closure (FOL+DCA), i.e., an axiom ∀x.
∨n

i=1(x = ci),
where c1, . . . , cn is the finite set of constant symbols; and

(ii) Answer Set Programs.

Here, we consider different syntactic classes of function-free programs. Function symbols
were used in the previous chapters for convenient presentation of P and Sp, but are not
essential for the domain.

73

Logic L general case BPA

FOL+DCA co-NEXP PSPACE

ASP¬s EXP PNP

ASP¬ co-NEXP Πp
2

ASP∨,¬ co-NEXPNP Πp
3

Table 6.1: Complexity classes for Impl in different logics: completeness results for the
general case and with bounded predicate arities (BPA)

The classes of interest are the following.

• Stratified programs (ASP¬s)

• Normal programs (ASP¬)

• Disjunctive programs (ASP∨,¬)

We recall that disjunctive programs are sets of rules of form

a1 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1, . . . , not bn ,

where k,m, n ≥ 0, and all ai and bj are literals. Normal programs disallow disjunctive
heads, i.e. k = 1, but still allow arbitrary negation. Stratified programs constrain normal
programs by allowing only stratified negation, i.e., no recursion through negation.

To obtain the complexity results for the listed decision problems, we make use of
results for the entailment problem, which is reviewed next.

6.1 Entailment

The entailment problem is defined as follows.

Problem: Entailment (Impl)
Instance: A set T of formulas (or rules) and an atom α in a fixed logic L
Output: Decide whether T |= α holds

For the ASP cases, we are interested in cautious consequence, i.e., whether α is true
in all answer sets of T . Table 6.1 summarizes complexity results for Impl of first-order
theories under domain closure (FOL+DCA), respectively ASP, for the general case, and
when the predicate arities are bounded by some constant.

For the FOL+DCA case, a countermodel of T |= α (of at most exponential size)
can be guessed and verified in polynomial space (in the size of T and α). This puts the
problem into co-NEXP. Hardness follows, e.g., from the complexity of satisfiability of the
Bernays-Schönfinkel fragment of FOL [31]. Under the assumption of bounded predicate
arities (BPA), the model guess has polynomial size, and thus the whole countermodel

74

check is feasible in polynomial space. PSPACE-hardness is inherited from the evaluation
of a given FOL formula over a finite structure, which is PSPACE-hard already for monadic
predicates. This can be shown by encodings of quantified boolean formulas (QBFs). For
the ASPX languages mentioned above, we refer to [10,13].

Throughout this chapter, we will refer to the complexity classes for Impl by

CImpl = {EXP,PSPACE,PNP, co-NEXP, co-NEXPNP,Πp
2,Π

p
3} . (6.1)

6.2 Consistency

We recall the definitions how effects are established by means of an effect mapping P
and how conflicts are derived by the conflict specification Sp. By employing the closed
world operator, we will always get a unique model. We assume that both P and Sp are
well-defined in the sense that a model always exists.

FP
G (I) = CnG(P, I, FG) = {f(t, v, w) ∈ FG | P ∪G ∪ I |= f(t, v, w)}
CP,SpG (I) = CnG(Sp,FP

G (I), CG) = {c(t, v) ∈ CG | Sp ∪G ∪ FP
G (I) |= c(t, v)}

We define Consistency as the problem to decide whether conflicts exist.

Problem: Consistency (Cons)
Instance: A traffic regulation problem T
Output: Decide whether C(T) is empty

Proposition 12 For a given logic, let O ∈ CImpl be the complexity of Impl. Then, the
problem Cons is in PO

‖[2], i.e., the class of polynomial time computations with 2 rounds
of parallel oracle calls for Impl.

Proof. To decide Cons, we must determine whether some conflict atom c(t, v) ∈ CG is
derivable on a street graph G = (V,E). Recall that C is the fixed set of conflict types.
Thus, there are at most |CG| = |V | · |C| such atoms to test. Likewise, we have poly-
nomially many possible effects, since |FG| = |E| · |F|, where F are the effect types. For
each f(t, v, w) ∈ FG, we can test whether f(t, v, w) ∈ FP

G (I) with an oracle for Impl,

and then likewise decide for each c(t, v) ∈ CG, whether c(t, v) ∈ CP,SpG (I). This is a poly-
nomial time computation with two consecutive rounds of parallel evaluation of oracle
queries with respective Impl complexity O. This puts the problem Cons in the com-
plexity classes PO

‖[2]. 2

Lemma 13 For complexity classes O ∈ {EXP,PSPACE,PNP}, it holds that PO
‖[2] = O.

Proof (Sketch). Oracle calls in the computation of an PO
‖[2] machine can be simulated

by the machine for O ∈ {EXP,PSPACE}, so no oracle is needed; for O = PNP, they can
be calculated with an NP oracle in polynomial time. 2

75

The next lemma shows that, for the remaining classes of Impl, multiple consecutive
parallel oracle queries can be reduced to one.

Lemma 14 For complexity classes O ∈ {NEXP,NEXPNP} ∪ {Σp
i | i ≥ 1}, and constant k,

it holds that PO
‖[k] = PO

‖[1] = PO
‖ .

Proof (Sketch). By definition PO
‖[1] = PO

‖ , and thus it remains to consider PO
‖[k] = PO

‖[1].

(For O = Σp
i , this was shown by Wagner [46].) We prove the result by induction on k.

For the induction step, we assume that PO
‖[k−1] = PO

‖[1] holds, i.e., k − 1 consecutive
rounds of parallel oracle queries can be compiled into into 1 round. We observe that
every polynomial computation with k rounds of queries can be seen as one with k − 1
rounds, which produces for a fixed k in polynomial time an input for a computation with
one round of queries. Thus, we have 2 rounds of queries which can be reduced to 1 by
the result for k = 2.

To see that PO
‖[2] = PO

‖[1] holds, suppose we are given a Turing machine M solving
a problem A that works on input I in polynomial time with two consecutive rounds
of parallel queries. For this PO

‖[2]-machine M , we construct a Turing machine M ′ that

works as follows. M ′ constructs (in polynomial time) the queries Q1
1, . . . , Q

1
m1

of the
first round of m1 parallel queries that M makes on input I. Let b = b1, . . . , bm1 be the
query result of the first round, where each bi is the answer of the query Q1

i . Further-
more, suppose that Q2

1(b), . . . , Q2
m2

(b) are the queries that M would construct for the
second round of queries, given b. Then, M ′ constructs queries Q2

1,1, . . . , Q
2
i,j , . . . , Q

2
m2,m1

,

where Q2
i,j is the following query: “Are there j queries Q1

h1
, . . . , Q1

hj
among Q1

1, . . . , Q
1
m1

such that the query Q2
i (b), where b = b1, . . . , bm1 is the answer string such that b` = ‘yes’

iff ` ∈ {h1, . . . , hj}, and all queries Q1
h1
, . . . , Q1

hj
have the answer ‘yes’.”

Proper queries Q1
h1
, . . . , Q1

hj
, along with “proofs” for a ‘yes’ answer, can be non-

deterministically generated and then be checked in polynomial time, using an available
oracle in case of O = NEXPNP or O = Σp

i , i > 1. Thus, for the considered complexity
classes O, answering query Q2

i,j is itself in class O. After constructing and evaluating

all queries Q1
i , Q

2
i,j in one round, M ′ counts the number n1 of ‘yes’ answers among the

queries Q1
i , i.e., the correct answer string b of M of the first round of queries. It then

constructs the answer string b′ = b′1, . . . , b
′
m2

for the second round of queries by letting b′i
be the answer to Q2

i,n1
. After that, M ′ simulates M and uses the precalculated answer

strings for the first and second round of queries.
Overall, M ′ makes a polynomial number of queries in one round, and runs in polyno-

mial time in the size of the input I. Thus, the problem A is solvable in PO
‖[1]. Note that

the degree of the polynomial bounding the number of oracle queries and the running
time of M ′ grows, and only for a constant number of times this reduction of the number
of rounds stay within overall polynomial time. 2

We recall that for every class C, PC = Pco-C , where co-C is the complementary class
of C, and thus PΣp

i = PΠp
i , Pco-NEXP = PNEXP and Pco-NEXPNP

= PNEXPNP
. Hence, for the

classes O ∈ {co-NEXP, co-NEXPNP,Πp
2,Π

p
3} of considered Impl complexities, we obtain

by Lemma 14, PO
‖[2] = PO

‖ .

76

To derive PO
‖ -hardness of Cons, we reduce the following PO

‖ -complete problem Even
to Cons.

Problem: Even
Instance: Complexity class O and instances I0, . . . , Im (m ≥ 0)

of a fixed O-complete decision problem D
Output: Decide whether the number of yes-instances is even

Lemma 15 Problem Even is PO
‖ -complete, for O ∈ {NPΣp

i ,NEXPΣp
i | i ≥ 0}. Further-

more, the problem is PO
‖ -hard even if the instances I0, . . . , Im are ordered such that Ii is

a no-instance only if Ii+1 is a no instance, for all i ≥ 0, i.e., all yes-instances precede
all no-instances.

Proof (Sketch). For O = NPΣp
0 = NP, this has been shown by Wagner [46], and using

techniques by Krentel [29], we can give a short proof sketch here for all classes O that
we consider.

For the membership part, we observe that all queries Ii can be evaluated in parallel
and the result is then easily calculated from the answers.

For the hardness part, we exploit that PO
‖ = PO[log n], i.e., the class where at most

an (order of) logarithmically many oracle queries in the size |I| of the input can be
made. (For “⊇” the proof is easy, as only polynomially many queries exist in all possible
runs of a PO[log n] machine in input I; for the “⊆” direction, one uses standard census
techniques (cf. [46]) to compute in binary search the number of the parallel queries that
have a ‘yes’ answer, and uses then this information to decide the problem with one
further call to an oracle in O).

So let M be an PO[log n] machine that decides the input I with queries Q1, . . . , Qf(n),
where n = |I|. Without loss of generality, the answer to the last query Qf(n) is the
result of the computation, i.e., accept or reject. Call any bit string w = w1, . . . , wf(n),
where wi ∈ {0, 1}, an answer string for M on I. We say w is compatible on I, if the
computation of M on I, in which the answer to Qi (i.e., the i-th query constructed) is
replaced by wi, is such that for each query Qi where wi = 1 the answer is ‘yes’. Let int(w)
be the integer encoded by binary string w. Then it holds that the correct computation
of M on I is reflected in the answer string wopt such that the number int(wopt) is
maximal among all compatible answer strings w. That is, wopt = arg maxw∈cmp(I) int(w),
where cmp(I) is the set of all compatible strings w on I.

Now consider the following problem Comp, whose instances are (M, I, k), where M
is a PO[log n] machine as described, I is an input of M , and k ≥ 0 is an integer.
The instance is a yes-instance iff M has on I some compatible answer string w such
that int(w) ≥ k. The problem Comp is in the complexity class O (and in fact complete
for O). Now we construct instances Ii = (M, I, i), i = 0, . . . , 2|I| + 1. Clearly, here a
no-instance I can be followed only by no-instances, and the maximal i such that Ii is a
yes-instance gives us the result of the computation of M on input I; if I is a yes-instance,
the last oracle query Qf(n) has answer ‘yes’ (i.e., wf(n) = 1), so i is odd; as we start from

77

index 0, we thus have an even number of yes-instances among all Ii; if I is a no-instance,
then i is even and thus we have an odd number of yes-instances among the instances Ii.

The result for the particular O-complete problem Comp follows from this. We can
transform the instances Ii of Comp to instances of an arbitrary O-complete problem D in
polynomial time, and so obtain hardness for an arbitrary D-complete problem. 2

Proposition 16 Let O ∈ CImpl be the complexity of Impl. Then, the problem of de-
ciding Cons is PO

‖ -hard.

Proof. We show this by a reduction for the problem Even, where we can assume, by
Lemma 15, that the instances Ij are ordered such that all yes-instances precede all no-
instances, and w.l.o.g m = 2n + 1 and I0 is a yes-instance. That is, there exists an
index k, where 0 ≤ k ≤ 2n+ 1, such that Ij is a yes-instance iff j < k. We use Impl as
the decision problem D with according complexity O and associate with each instance Ij
an effect φj , such that Ij is a yes-instance iff P |= φj for a given effect mapping P . Thus,
we can consider Impl instances Ij : T (j) |= αj such that their answers amount to P |= φj .

Then, we design the conflict specification Sp such that for a distinguished conflict χ
it holds that χ ∈ CP,SpG (I) if and only if the maximum index of a yes-instance is even.
For the ASP cases we use the following set of rules:

{χ← φ2j , notφ2j+1 | 1 ≤ j ≤ n} (6.2)

If the maximum index k of a yes-instance Ik is even, i.e., k = 2j for some 0 ≤ j ≤ n,
then φk is derivable, but φk+1 is not. Consequently, the rule

χ← φk, not φk+1 (6.3)

fires and χ is derived. Contrary, if the maximum index k of yes-instance Ik is odd,
i.e., k = 2j + 1 for some 0 ≤ j ≤ n, then no rule in (6.2) can fire, since for all derivable
effects φ` with even ` < k, also the effect φ`+1 is entailed.

For the first-order case, we use the following formula:

χ↔
n∨

j=0

φ2j ∧ ¬φ2j+1 (6.4)

Similarly as in the ASP case, χ holds iff for some even index k = 2j the effect φk is
derivable and φk+1 is not, i.e., iff the maximum index of yes-instances Ik is even. 2

From these results, we obtain the following theorem.

Theorem 17 For Cons, the complexity results in Table 6.2 hold.

Next, we investigate minimal diagnoses.

78

Logic L general case BPA

FOL+DCA PNEXP
‖ PSPACE

ASP¬s EXP PNP

ASP¬ PNEXP
‖ P

Σp
2

‖

ASP∨,¬ PNEXPNP

‖ P
Σp

3

‖

Table 6.2: Complexity results for Cons (completeness results)

6.3 Unique Minimal Diagnosis

We now study the complexity of deciding whether a unique minimal diagnosis exists.

Problem: UMinDiag
Instance: A traffic regulation problem T and a set of conflicts C ⊆ C(T)
Output: Decide whether C has a unique ⊆-minimal diagnosis

Lemma 18 For given J ⊆ I, deciding whether C ⊆ CP,SpG (J) holds is in PO
‖ for respec-

tive Impl classes O ∈ CImpl.

Proof (Sketch). To decide this problem, we must determine whether each conflict in C
is derivable by J . Similarly as for Cons, we can test in a first round of parallel oracles
queries for each f(t, v, w) ∈ FG whether f(t, v, w,) ∈ FP

G (J) with an oracle for Impl.

Then, in the second round, we check for each c(t, v) ∈ C whether c(t, v) ∈ CP,SpG (J). The
machine answers ‘yes’ iff every query of the second round answers ‘yes’. This puts this
problem in the complexity classes PO

‖[2], and by Lemmas 13 and 14, in the classes PO
‖ ,

for respective Impl complexity classes O. 2

Proposition 19 Suppose that Impl is in class O ∈ CImpl. Then, deciding UMinDiag
is in PO

‖ in the general case. With bounded predicate arities, UMinDiag is decidable

in PSPACE for FOL+DCA, and in PNPO

‖ for the ASP classes.

Proof (Sketch). Let C ⊆ CP,SpG (I) be a set of conflicts. By definition, there always exists
a diagnosis. For O ∈ {EXP,PSPACE}, an algorithm can cycle through all J ⊆ I and
compute two minimal diagnoses in exponential time (respectively polynomial space),
provided two exist.

For the other Impl complexity classes O ∈ {co-NEXP, co-NEXPNP,PNP,Πp
2,Π

p
3}, the

following more involved method works. Like for Cons, we first compute with a round
of parallel O oracle calls the effects FP

G (I). Every cardinality-minimal diagnosis is a ⊆-
minimal diagnosis. Therefore, in a second round, we ask oracles for k = 0, . . . , |I|,
whether for all J ⊆ I of size |J | = k, it holds that C 6⊆ CP,SpG (J). For the consid-
ered O ∈ {co-NEXP, co-NEXPNP}, each oracle call is in O, since exponentially many
subsets J of I can be considered without complexity increase, while for the other

79

classes O ∈ {PNP,Πp
2,Π

p
3} it is in NPO. The smallest k for which the oracle answers

“no” is the size k∗ of a smallest (in terms of cardinality) diagnosis, and thus of some ⊆-
minimal diagnosis.

In a further round, we ask an oracle whether for all J1, J2 ⊆ I such that |J1| = k∗

and J1 6⊆ J2 it holds that not both sets are diagnoses for C, i.e., either (i) C 6⊆ CP,SpG (J1)

or (ii) C 6⊆ CP,SpG (J2). The answer will be ‘yes’ if and only if a unique minimal diagnosis
exists. Overall, the method uses three rounds of O (respectively NPO) oracle calls, which

puts the problem in the class PO
‖[3] (resp. PNPO

‖[3]). By Lemma 14, this class coincides

with PO
‖ (resp. PNPO

‖), and for O = PNP we have NPPNP
= NPNP, thus PNPPNP

‖ = P
Σp

2

‖ . 2

Proposition 20 Let O ∈ CImpl the complexity of Impl. Then, deciding UMinDiag
is PO

‖ -hard in the general case. With bounded predicate arities, UMinDiag is PSPACE-

hard for FOL+DCA, and co-NPO-hard for the ASP classes.

Proof (Sketch). The hardness results for O ∈ {co-NEXP, co-NEXPNP} are obtained by
a reduction of the complement of the Even problem (which is also PO

‖ -hard) that is a
variant of the reduction for the Cons problem. The conflict rules are extended to

{χ← φ2j , notφ2j+1, in1 | 1 ≤ j ≤ n} , (6.5)

and a further rule is added:

χ← in0 . (6.6)

Here, in0 and in1 are fresh input facts. Then, J = {in0} is a minimal diagnosis, and it
is the single one iff J = {in1} is not a diagnosis, which is the case iff the Even instance
is a no-instance.

For O ∈ {EXP,PSPACE}, hardness follows directly from Impl, which is already hard
for these classes. For the remaining cases, i.e. O ∈ {PNP,Πp

2,Π
p
3}, one can show hardness

for co-NPO by a reduction from evaluation of suitable QBFs. Hardness for NPO, let
alone for PNPO

‖ , however, is not apparent. 2

Theorem 21 For UMinDiag, the complexity results in Table 6.3 hold.

Next, we study the complexity of deciding correspondence.

6.4 Correspondence

Our next problem is to decide whether measures and signs express the same effects, i.e.,
whether FP

G (M) = FP
G (S) holds.

Problem: Correspondence (Corr)
Instance: A traffic regulation problem T with measures M and signs S
Output: Decide whether M and S correspond

80

Logic L general case BPA

FOL+DCA PNEXP
‖ PSPACE

ASP¬s EXP in P
Σp

2

‖ , Πp
2-hard

ASP¬ PNEXP
‖ in P

Σp
3

‖ , Πp
3-hard

ASP∨,¬ PNEXPNP

‖ in P
Σp

4

‖ , Πp
4-hard

Table 6.3: Complexity results for UMinDiag (completeness results by default)

Proposition 22 Let O ∈ CImpl be the complexity class of Impl. Then, deciding Corr
is in PO

‖ .

Proof (Sketch). Without loss of generality, we assume separate effect mappings PM , PS

for measures and signs, respectively. With an oracle for Impl of complexity O in the
underlying logic, we can then determine in the first round of parallel oracle queries
the effects f(t, v, w) ∈ FG for which “f(t, v, w) ∈ FP

G (I)?” holds, where P = PM . This
computes the effects of the measures. Then, in a second round, we likewise compute the
effects of the signs by taking P = PS . We compare the answers of these two consecutive
rounds of oracle queries in polynomial time, which yields membership in PO

‖[2]. This

coincides with PO
‖ , for O ∈ {PNP,EXP,PSPACE} by Lemma 13; and for the remaining

classes of Impl, i.e. O ∈ {co-NEXP, co-NEXPNP,Πp
2,Π

p
3}, by Lemma 14.

Proposition 23 Let O ∈ CImpl be the complexity of Impl. Then, the problem of de-
ciding Corr is PO

‖ -hard.

Proof (Sketch). The hardness results for O ∈ {EXP,PSPACE} again follow from O-
hardness of Impl. For the other classes O ∈ {PNP, co-NEXP, co-NEXPNP,Πp

2,Π
p
3}, hard-

ness for PO
‖ is shown similarly as for problem Cons by a reduction from the Even prob-

lem. We use effect mappings PM and PS , which consist of P from there with additional
rules (respectively implications for FOL+DCA) as follows: PM contains

φ′j ← φ0, . . . , φ2j+1 (6.7)

and PS contains
φ′j ← φ0, . . . , φ2j , (6.8)

for 0 ≤ j ≤ m where φ′j are new effect atoms. Again, P |= φj indicates that Ij is a
yes-instance of Impl. If the maximum index k of a yes-instance is even, i.e., k = 2j for
some 0 ≤ j ≤ n, then both FPM

G (I) and FPS

G (I) contain all atoms φ′0, . . . , φ
′
2j . If k is odd,

i.e., k = 2j+1, then FPM

G (I) will include φ′k = φ′2j+1, but FPS

G (I) will not. Assuming,
without loss of generality, that I2n+1 is a no-instance, the specifications will correspond,
i.e., FPM

G (I) = FPS

G (I), iff the number of yes-instances among I0, . . . , I2n+1 is even. 2

81

Logic L general case BPA

FOL+DCA PNEXP
‖ PSPACE

ASP¬s EXP PNP

ASP¬ PNEXP
‖ P

Σp
2

‖

ASP∨,¬ PNEXPNP

‖ P
Σp

3

‖

Table 6.4: Complexity results for Corr (completeness results)

By the previous two propositions, we get the following results for Correspondence.

Theorem 24 For Corr, the complexity results in Table 6.4 hold.

Among our major reasoning tasks, repair remains to be investigated.

6.5 Repair

Finally, we investigate the complexity of the related decision problem for the Repairs
reasoning task as defined in Section 5.3. There, we made use of a generic adequacy crite-
rion adq on (sets of) updates (I−, I+) to sort out irrelevant repairs. Here, we restrict to
a subclass of such criteria which can determine the adequacy of a (single) repair (I−, I+)
in polynomial time. We call according predicates A on repairs admissibility predicates.
For instance, such a predicate A might test whether I− = M ∪ S, i.e., whether the entire
input is to be deleted. We define the following decision problem.

Problem: Repair
Instance: An inconsistent traffic regulation problem T and

a polynomial-time admissibility predicate A for repairs
Output: Decide whether a repair (I−, I+) exists such that A(I−, I+) holds

Proposition 25 Let S = {EXP,PSPACE}. For Impl classes O ∈ S, deciding Repair
is in O. For the other Impl classes O ∈ CImpl\ S, deciding Repair is in NPO.

Proof (Sketch). We observe that, given an input I, each subset J ⊆ IG gives a unique
update (I−, I+) by I− = I \ J and I+ = J \ I. Thus, to solve Repair, we can first guess
an update by some J ⊆ IG and then check in polynomial time whether A(I \ J, J \ I)
holds. Further, no conflicts may be derivable by J . For Impl classesO ∈ {EXP,PSPACE},
this test stays within O, as one can cycle through all exponentially many J ⊆ IG.

For the other Impl complexity classes O ∈ {co-NEXP, co-NEXPNP,PNP,Πp
2,Π

p
3}, one

can decide this with an oracle for Cons. This puts the problem in class NPC , where C
is the complexity of Cons. For the considered classes O, we have by Theorem 17 Cons

complexity C = PO
‖ . Thus, the problem is decidable in NPO, as NP

PO
‖ ⊆ NPPO ⊆ NPO. 2

82

Proposition 26 Let S = {EXP,PSPACE}. For Impl classes O ∈ S, deciding Repair
is hard for O. For the other Impl classes O ∈ CImpl\ S, deciding Repair is NPO-hard.

Proof (Sketch). For O ∈ {EXP,PSPACE}, the result is obtained by a reduction from
Cons, which is O-complete. Hardness for Σp

i , where i ∈ {2, 3, 4}, for respective Cons

complexities O ∈ {PNP,P
Σp

2

‖ ,P
Σp

3

‖ } can be shown with extensions of the QBF-encodings

in [13]. For the remaining Repair classes O ∈ {NPNEXP,NPNEXPNP
}, hardness can be

shown by encodings of respective machines as logic programs, using ASP¬ and ASP∨,¬,
respectively. For FOL+DCA, one can exploit a negation free encoding of an accord-
ing co-NEXP complete problem in ASP¬, where minimal model inference and classical
inference of a designated atom coincide.

Finally, we observe that the results for Repair remain unchanged if only strict repairs
are considered since Corr has lower complexity. 2

We present some more observations.

Lemma 27 The following containment holds: PNEXP ⊆ NPNEXP
‖

Proof (Sketch). Let Q1, . . . , Qp(n) be the polynomially many oracle queries the PNEXP

machine M makes. Without loss of generality, we assume that Qp(n), i.e., the answer

of the last query, is the result of the overall computation. The NPNEXP
‖ machine M ′

works as follows. First, it guesses the computation path of M along with query an-
swers g = g1, . . . , gp(n), where gi ∈ {yes, no}. Let Qg

i be the query that M will construct
if the answers to the queries Q1, . . . , Qi−1 are g1, . . . , gi−1, respectively. Machine M ′ con-
structs queries Qg

i , where 1 ≤ i ≤ p(n), and solves them in parallel. Finally, M ′ checks
whether the answers to Qg

i coincide with gi and accepts if Qg
p(n) is ‘yes’. 2

Hemachandra [25] showed that the classes for deterministic and non-deterministic com-
putations that use a NEXP oracle coincide, i.e., PNEXP = NPNEXP. Thus, by Lemma 27,
we have the following equation:

PNEXP = NPNEXP = NPNEXP
‖ (6.9)

With a census technique as applied in [25], it can be shown that PNEXPΣ
p
i = NPNEXPΣ

p
i

holds for i ≥ 0. Furthermore, with a similar argument as for Lemma 27, one shows

that PNEXPΣ
p
i ⊆ NPNEXPΣ

p
i

‖ also holds for i ≥ 0. Consequently, we obtain the following
generalization of equation (6.9).

Lemma 28 For all i ≥ 0, it holds that PNEXPΣ
p
i = NPNEXPΣ

p
i = NPNEXPΣ

p
i

‖ .

For the logics with Impl complexity classes O ∈ {co-NEXP, co-NEXPNP,PNP,Πp
2,Π

p
3}, we

obtained completeness for NPO for Repair. By Lemma 28, the obtained Repair com-
plexity classes NPC , where C ∈ {NEXP,NEXPNP}, for FOL+DCA, ASP¬ and ASP∨,¬

83

Logic L general case BPA

FOL+DCA NPNEXP
‖ = PNEXP PSPACE

ASP¬s EXP NPPNP
= Σp

2

ASP¬ NPNEXP
‖ = PNEXP NP

P
Σ
p
2
‖ = Σp

3

ASP∨,¬ NPNEXPNP

‖ = PNEXPNP
NP

P
Σ
p
3
‖ = Σp

4

Table 6.5: Complexity results for Repair (completeness results)

Logic L Impl Cons Corr UMinDiag Repair

general FOL+DCA co-NEXP PNEXP
‖ PNEXP

ASP¬s EXP EXP EXP

ASP¬ co-NEXP PNEXP
‖ PNEXP

ASP∨,¬ co-NEXPNP PNEXPNP

‖ PNEXPNP

BPA FOL+DCA PSPACE PSPACE PSPACE

ASP¬s PNP PNP in P
Σp

2

‖ , Πp
2-hard Σp

2

ASP¬ Πp
2 P

Σp
2

‖ in P
Σp

3

‖ , Πp
3-hard Σp

3

ASP∨,¬ Πp
3 P

Σp
3

‖ in P
Σp

4

‖ , Πp
4-hard Σp

4

Table 6.6: Complexity of reasoning tasks. Top: General case. Bottom: With bounded
predicate arities (BPA). Unless stated otherwise, entries are completeness results.

(general case, respectively), thus coincide with PC and NPC
‖ . The latter emphasizes the

additional guess step required before consistency evaluation, which can also be carried
out in parallel given a non-deterministic machine. Interestingly, Repair can be decided
in PC as well for these C, however, not with the restriction of parallel oracle queries as
in Cons, Corr and UMinDiag.

Theorem 29 For Repair, the complexity results in Table 6.5 hold.

6.6 Summary

In this chapter we have analyzed the complexity of decision problems associated with our
major reasoning tasks: checking consistency for a traffic regulation problem, existence of
a unique minimal diagnosis for a set of conflicts, correspondence of measures and signs,
and existence of an admissible repair. Table 6.6 summarizes all complexity results.

84

Our examination shows the high computational cost of solving of the presented rea-
soning tasks. Even with stratified answer set programs, deciding Cons takes exponential
time in the general case. On the other hand, if predicate arities are bounded, checking
consistency of a traffic regulation problem is PNP-complete with ASP¬s , and Repair
is Σp

2-complete. Across all tasks, complexity increases for normal programs and dis-
junctive programs, respectively. This suggests that stratified programs should be used
to model the traffic regulation, whenever possible. Towards inconsistency management
tasks of lower complexity, it would be interesting to study similar reasoning tasks at a
less generic level, where further properties may be exploited.

85

CHAPTER 7
Implementation

In this thesis, we deal with logic-oriented problems on traffic regulation data. To imple-
ment programs solving the reasoning tasks defined in Chapter 5, we may in principle use
any programming language or paradigm. In this chapter, we will first recall why Answer
Set Programming (ASP) is a suitable choice both as underlying logic for the formal
model itself, as well as an actual implementation language. We then proceed by review-
ing the reasoning tasks and identify their common pattern. Based on this, we present
a uniform approach for the implementation of all reasoning tasks by means of ASP. We
then show in detail an executable realization for these tasks, using the solver DLV [30],
and demonstrate the implementation based on examples.

7.1 Answer Set Programming

In Chapter 2 we recalled the definition of Answer Set Programming [17]. We will now
review ASP both as logic and as implementation language in light of previous chapters.

7.1.1 Answer Set Programming as Logic

In Chapter 4 (page 38) we defined CnG(T,X, Y) = {y ∈ Y | T ∪G ∪X |= y}, which
served as core for the definitions of an effect mapping P and a conflict specification Sp.
The underlying logic was left open. We defined a two-stage mapping approach from
measures and signs to effects, and then from effects to conflicts and observed that, when
using Answer Set Programming, we can compute both stages at once. Given a traffic
regulation problem T with input I we obtain the conflicts of I in T by

CP,SpG (I) = CnG(Sp ∪ P, I, CG) = AS ∩CG
(Sp ∪ P ∪G ∪ I) (7.1)

Recall that the latter expression abbreviates∩AS(Sp ∪ P ∪G ∪ I) ∩ CG, i.e., the inter-
section of according answer sets filtered for conflict atoms. The closed-world operator

87

on G and X in the definition of CnG(T,X, Y) is implicitly given with ASP’s closed
world assumption. That is, everything that is not derivable is assumed to be false (with
respect to default negation). Following the intuition that the meaning of each config-
uration of measures and signs on a street graph should be unambiguous (but possibly
illegal), we assumed that the traffic regulation Sp∪P is designed in a way such that for
every (proper) input I the program Sp ∪ P ∪G ∪ I has exactly one answer set. Thus,
brave and cautious consequence (in terms of truth in any, respectively all answer sets)
coincide and

CnG(Sp ∪ P, I, CG) = A ∩ CG, (7.2)

where A is the answer set of Sp ∪ P ∪G ∪ I. As discussed in detail before, the re-
strictions of some traffic signs take effect unless certain conditions apply. Therefore,
default negation allows for intuitive knowledge representation within our domain. Non-
monotonic reasoning, which comes with it, then enables defeasible inferences, i.e., the
potential retraction of previous effects and conflicts in the presence of additional input.

Using ASP, we can directly instantiate our formal model with according rules and
obtain a readable, executable specification, as we discuss next.

7.1.2 Answer Set Programming as Implementation Language

In Section 3.5.2 we highlighted the benefits of automated reasoning, modular program-
ming and readability of a declarative program. With ASP, automation of reasoning is
achieved since our sets of rules, i.e., effect mapping and conflict specification, immedi-
ately give an executable program when provided an according solver like DLV [30], the
Potassco suite [21], SModels [45], Cmodels [32], GnT [26], or ASSAT [34]. Given
these tools, no separate algorithms need to be developed to solve the specified reasoning
tasks. With according knowledge representation, we obtain implementations for these
tasks simply by specifying the properties of their solutions.

By separating logic and control of a program [28], any rule-based language improves
the readability of the implementation, and in particular, the maintainability of the ex-
pressed domain semantics. Prolog is probably still the most prominent logic-oriented
language. However, as discussed earlier, Prolog is not fully declarative, which imposes
restrictions on modular composition of partial programs, e.g., different conflict specifi-
cations for different use cases.

Modularity plays a crucial role in our domain, since we must provide adaptability of
rules without complicated redeployments. Changes in legal specifications and interpre-
tations must be accounted for by the possibility to add and remove rules while leaving
the rest of the implementation untouched. Indeed, we aim for a solution that allows for
modifications of the rule set even while the overall system keeps running. Moreover, we
will see below how we can solve all reasoning tasks by little additions to a core program.
That is, given a fixed module to enumerate effects and conflicts for a range of inputs, we
will obtain each reasoning task by the addition of respective modules, each containing
only a small number of intuitive rules. A declaratively written, highly modular imple-

88

mentation of a program’s logic significantly improves readability and maintainability,
particularly in such sophisticated domains of knowledge representation and reasoning.

Beyond that, we are not interested in proof search (as in Prolog), but model building.
With Answer Set Programming, we can easily encode our domain knowledge in such a
way that solutions to reasoning tasks correspond with answer sets of according programs.
An instance of a search problem is solved in ASP by (i) encoding it as logic program,
(ii) compute the models of the program by an ASP solver and (iii) extract a solution
for each model. In our case, the extraction will be a simple filtering for according target
atoms that represent the defined solution set. Such atoms can then be processed further
within typical software stacks towards user interaction and persistence, where other
paradigms are more appropriate.

In this thesis, we focus on the logical core and present according command line scripts,
i.e., logic programs to be interpreted by an ASP solver. On the mere engineering side,
an integration of these scripts within the existing web application (or similar software)
remains to be done.

7.1.3 The DLV System

Using ASP, we benefit from an easy transition from formal model to implementation.
That is, little syntactic changes to the formal definitions immediately give executable
programs. In this work we make use of the mature ASP solver DLV [30]. DLV replaces
the symbol← by :- and ¬ (strong negation) by - (minus). Terms, where the first letter
is in uppercase, are variables.

Example 45 Consider the following program.

T = {a(X) ∨ ¬a(X) ← b(c(X), Y), not d(X);

b(c(x1), x2)}

We can encode T in a DLV file T.lp in a straightforward way. (The extension .lp stands
for “logic program” but may be chosen arbitrarily.)

a(X) v -a(X) :- b(c(X),Y), not d(X).

b(c(x1),x2).

Since in the first rule the variable Y occurs only once, it is not of interest. Hence, we
may replace it by an anonymous variable, written as _ (underscore), i.e., the expres-
sion b(c(X),). We compute the answer sets of T by a command line call to dlv.1

$ dlv T.lp

DLV [build BEN/Dec 17 2012 gcc 4.6.1]

{c(d(x1),x2), -a(x1)}

{c(d(x1),x2), a(x1)}
1The DLV system is available for download at http://www.dlvsystem.com/.

89

http://www.dlvsystem.com/

DLV offers a convenient output filter. By invoking the program with the additional pa-
rameter -filter=a, only atoms with predicate symbol a are reported, giving the filtered
answer sets {-a(x1)} and {a(x1)}. Similarly, -pfilter limits the output to positive
occurrences of according predicate symbols. Here, -pfilter=a yields {} and {a(x1)}. �

Answer Set Programming can be seen as rule-based methodology for constraint satisfac-
tion problems. The guess and check paradigm [14] suggests program composition of two
parts. One subprogram guesses solution candidates by enumerating them as answer sets.
This is achieved by employing disjunction in form of disjunctive rule heads or according
default negated atoms in rule bodies. Then, another subprogram checks the properties
of these solutions candidates and eliminates illegal ones by means of constraints (rules
with empty heads).

In addition to this, DLV provides an optimization feature by means of so-called weak
constraints, which are rules of form

:~ B. [W:L] ,

where B is any valid rule body and W and L are integers. Here, W is called the weight
and L is called the level of the weak constraint. If the optional cost declaration [W:L] is
omitted, it defaults to [1:1]. If such a body B of a weak constraint holds, the answer
set is not discarded, but assigned a cost according to the values W and L. That is, each
level is aggregated its own weight sum. Whenever a weak constraint with cost [W:L]

fires, the number W is added to the sum on level L. All answer sets that do not have a
minimal sum of weights on the highest level are discarded. Among the remaining ones,
those are discarded that are not minimal on the next lower level, and so on. Only those
answer sets that are indistinguishable after this evaluation are reported as best models.
A formal definition of DLV’s weak constraint semantics can be found in [30].

Example 46 (cont’d) Consider the DLV program W.lp containing the following two
weak constraints:

:~ a(X). [5:1]

:~ -a(X). [1:2]

The first rule assigns a penalty of weight 5 on level 1 for every atom of form a(X) in an
answer set. Similarly, the second rule adds a weight of 1 on level 2 for every atom -a(X).
Accordingly, in combination with program T.lp of Example 45, we obtain a single best
model. (The -silent flag suppresses the version info.)

$ dlv -silent T.lp W.lp

Best model: c(d(x1),x2), a(x1)

Cost ([Weight:Level]): <[5:1],[0:2]>

The answer set {c(d(x1),x2), a(x1)} contains an atom of form a(X) which causes
the first weak constraint in W.lp to fire. There are no further atoms with predicate
symbol a. Therefore, the answer set is assigned a total weight of 5 on level 1. The body
of the second weak constraint in W.lp does not hold. Thus, we have sum 0 at level 2.

90

Evaluate fixed input I ⊆ IG Enumeration of restricted J ⊆ IG
Consistency Evaluation Diagnoses

Correspondence Repairs

Strict Repairs

Adjustment

Generation

Table 7.1: Two groups of reasoning tasks

In contrast, the other answer set {c(d(x1),x2), -a(x1)} yields a weight sum of 1 at
level 2. Hence, it is of higher cost and thus not reported as best model. �

Weak constraints will allow us to elegantly encode the search for answer sets containing
sets of atoms that are minimal with respect to cardinality as we show in detail below.

7.2 Uniform Approach for Reasoning Tasks

We discussed above that Consistency Evaluation, i.e., the computation of conflicts is
solved by CnG(Sp ∪ P, I, CG), implemented by the answer set program Sp ∪ P ∪G ∪ I,
where we have to filter the resulting answer set by conflict atoms c(t, v) ∈ CG. For
Correspondence, we can compute CnG(Sp ∪ P, I ′, FG) for I ′ ∈ {M,S}, and check
whether the respective effects coincide. Alternatively, we can define an additional conflict
specification SpCr which entails a conflict whenever an effect is a consequence of a
measure, but not any sign, or vice versa. Then, we get Correspondence by checking
whether CnG(SpCr ∪ P, I, CG) is empty.

In Diagnoses, we want to find those J ⊆ I such that all given conflicts are entailed.
Dually, in Repairs, we want to list J ⊆ IG (close to I) such that none of the given
conflicts are inferred. Hence, we can view these reasoning tasks as enumeration of J ⊆ IG
such that certain conditions on J and their implied conflicts CnG(Sp ∪ P, J,CG) hold.
The remaining reasoning tasks, i.e., Strict Repairs, Adjustment and Generation
are then additional restrictions on the Repairs task, as we will show in detail below.
We observe that the reasoning tasks fall into two groups, as shown in Table 7.1. Towards
a uniform encoding for all reasoning tasks (in answer set programming alone) we must
therefore modify our traffic regulation Π = Sp ∪ P such that an enumeration of sets of
measures and signs J ⊆ IG becomes possible.

Definition 26 (Reification) Let p be a predicate symbol, T a program (respectively
set of atoms) and let Q be a set of predicate symbols. We define the p-reification of Q
in T as the program (resp. set) obtained by replacing in every rule (resp. atom) of T
every occurrence of an atom x with predicate symbol in Q by an atom p(x). We call p
is the reification symbol.

91

On a set of rules or atoms T , let use(T) (resp. input(T)) denote the use-reification
(resp. input-reification) of {m, s} in T , i.e., all measure and sign atoms become terms
of new atoms with predicate symbol use (resp. input).

Throughout, we assume that the reification symbols are fresh symbols. That is, when
we employ use(T) or input(T), we assume the symbols use and input do not appear
in T , respectively.

We observe that A is an answer set of Π ∪G ∪ I if and only if use(A) is an answer
set of use(Π) ∪G ∪ use(I).

Example 47 Let Π consist only of rule (4.27) (page 43) which defines the effect of
a No Entry sign, i.e., Π = {f ′(`s, ban, X, Y) ← s(no-entry , Y), e(T,X, Y)}. More-
over, let G = {e(straight , a, b)} and I = {s(no-entry , b)}. We obtain the reified pro-
gram use(Π) ∪G ∪ use(I) as

{ f ′(`s, ban, X, Y)← use(s(no-entry , Y)), e(T,X, Y);

e(straight , a, b);

use(s(no-entry , b)) } .

The set A = {s(no-entry , b), e(straight , a, b), f ′(`s, ban, a, b)} is the unique answer set of
program Π ∪G ∪ I, and use(A) = {use(s(no-entry , b)), e(straight , a, b), f ′(`s, ban, a, b)}
is the single answer set of use(Π) ∪G ∪ use(I). �

The predicate symbol use resembles the distinguished predicate symbol ab in the
standard presentation of consistency-based diagnosis [11,44]. There, the normal behavior
of a component comp is modelled with implications of form A ⊃ B, where B shall only
be concluded if comp is not assumed to be faulty. Such an abnormality assumption
for comp is represented as atom ab(comp). To this end, the antecedent A is a conjunction
including the atom ¬ab(comp). Similarly, we will compute effects (and conflicts) of a
measure or sign i only if use(i) holds.

In order to find suitable J ⊆ IG in the reasoning tasks listed in the right column
of Table 7.1, we will make use of the aforementioned guess and check paradigm. The
following program Pool establishes the guess:

pool(I) ← input(I) (7.3)

use(I) ∨ ¬use(I) ← pool(I) (7.4)

Observation 30 Let input(I) be the input-reification of {m, s} in input set I. Then,
for any given J ⊆ I, if A is the answer set of Π ∪G ∪ J , then use(A) is an answer set
of use(Π) ∪G ∪ input(I) ∪ Pool .

Based on this observation, we formalize the guess program for a traffic regulation prob-
lem, which will serve as core for the computation of all reasoning tasks.

92

Definition 27 (Guess) Let T = (Π, Sc) be a traffic regulation problem with traffic reg-
ulation Π = Sp ∪ P and scenario Sc = (G,M,S), I = M ∪ S and let Pool be a program
containing rules (7.3) and (7.4).2 The guess (program) for T is defined as

guess(T) = use(Π) ∪G ∪ input(I) ∪ Pool . (7.5)

Consequently, guess(T) evaluates the conflicts (and effects) of all subsets of J ⊆ I; one
per answer set. To account for measures and signs J ⊆ IG \ I, we will later add further
elements to the “pool”, i.e., atoms pool(x) where x 6∈ I. To enable the distinction
whether an element of the pool stems from the input I or not, we have rule (7.3) in Pool
and employ in guess(T) the set input(I) instead of an according reification pool(I).

Example 48 (cont’d) Let Π, G and I be as in Example 47. The guess program for T
has two answer sets:

AS(guess(T)) =
{
S ∪ {use(s(no-entry , b)), f ′(`s, ban, a, b)},
S ∪ {¬use(s(no-entry , b))}

}
,

where S = {e(straight , a, b), input(s(no-entry , b)), pool(s(no-entry , b))}. The first an-
swer set evaluates J = {s(no-entry , b)}, hence use(J) = {use(s(no-entry , b))} is a sub-
set. The second answer set is the evaluation of J = ∅. Since the No Entry sign on node b
is not used in this case, the ban effect for edge (a, b) is not inferred. �

Given according sets of constraints X that establish the check of solution candidates,
we obtain all reasoning tasks by programs of form guess(T) ∪X, as we show next.

7.2.1 Consistency Evaluation

For Consistency Evaluation, we need to avoid a search of J ⊆ IG by fixing J = I,
i.e., only the measures and signs from the input shall be evaluated. There are no further
constraints. To this end, we use the following program Eval :

use(X) ← input(X) (7.6)

¬use(X) ← pool(X), not input(X) (7.7)

The first rule forces every input element to be used for computation of effects and
conflicts. The second rule accounts for potential additions to the Pool which we have
not discussed so far. We get Consistency Evaluation as follows.

Proposition 31 Let T be a traffic regulation problem. If A is the answer set of the
program guess(T) ∪ Eval, then C(T) = A ∩ CG.

2We assume that Π does no make use of any predicate symbol occurring in Pool .

93

Proof. Let T be a traffic regulation problem with traffic regulation Π, graph G and
input I. Recall that Π ∪G ∪ I is assumed to have exactly one answer set. We have

C(T) = AS ∩CG
(Π ∪G ∪ I)

=∩AS(Π ∪G ∪ I) ∩ CG

=∩{A ∩ CG | A ∈ AS(Π ∪G ∪ I)}
=∩{A ∩ CG | A ∈ AS(use(Π) ∪G ∪ use(I))}
=∩{A ∩ CG | A ∈ AS(use(Π) ∪G ∪ input(I) ∪ Pool ∪ Eval)}
=∩{A ∩ CG | A ∈ AS(guess(T) ∪ Eval)}
= A ∩ CG where A is the single answer set of guess(T) ∪ Eval . 2

Thus, we obtain the conflicts C(T) of the traffic regulation problem T by the answer set
of the program

guess(T) ∪ Eval , (7.8)

filtered for conflict atoms CG.

7.2.2 Correspondence

Consider the following conflict specification SpCr that entails a conflict whenever there
exists an unjustified traffic sign or an unannounced measure:

c(unjustified(F), X) ← f ′(`s, F,X, Y),not f ′(`m, F,X, Y) (7.9)

c(unannounced(F), X) ← f ′(`m, F,X, Y), not f ′(`s, F,X, Y) (7.10)

Rule (7.9) will infer a conflict whenever on some edge (X,Y) an effect of type F is con-
cluded by means of a sign (language symbol `s), but not by means of any measure (`m).
Dually, rule (7.10) captures the other case. We define the set of correspondence conflicts
as C(T Cr), where T Cr is obtained by replacing in T the conflict specification Sp by SpCr .

Corollary 32 Let T Cr be a traffic regulation with SpCr as conflict specification. If A is
the answer set of the program guess(T Cr) ∪ Eval, then C(T Cr) = A ∩ CG.

Thus, we obtain the correspondence conflicts C(T Cr) of the traffic regulation problem T
by the answer set of the program

guess(T Cr) ∪ Eval , (7.11)

filtered for conflict atoms CG. Consequently, Correspondence amounts to Consis-
tency Evaluation, applied with the designated conflict specification SpCr .

94

7.2.3 Diagnosis

Assume we are given a set of conflicts C ⊆ C(T). Then, J ⊆ IG is a diagnosis for C
if (i) J ⊆ I and (ii) J suffices to entail all given conflicts, i.e., every γ ∈ C is con-
tained in AS ∩CG

(Π ∪G ∪ J). That is, we have to (i) disallow additions to the pool and
(ii) eliminate those subsets of I where any of the given conflicts is not entailed. Towards
a convenient representation, we extend Pool by the following two rules. Here, we assume
that the symbols add and del do not appear in Π.

del(I) ← ¬use(I), input(I) (7.12)

add(I) ← use(I), not input(I) (7.13)

For a given set C of conflicts, we define the program

DiagC = {← add(X)} ∪ {← not γ | γ ∈ C} . (7.14)

Proposition 33 Let C ⊆ C(T) be a set of conflicts of a traffic regulation problem T .
Then, J is a diagnosis for C iff there is an answer set S of the program guess(T) ∪DiagC
such that J = {i | use(i) ∈ S}.

Proof. Let T be a traffic regulation problem with traffic regulation Π, graph G and
input I. Let use−1(S) = {i | use(i) ∈ S}. We have

Diagnoses(T , C) = {J ⊆ I | Π ∪G ∪ J |= γ, ∀γ ∈ C}
= {J ⊆ I | use(Π) ∪G ∪ use(J) |= γ, ∀γ ∈ C}
= {J ⊆ IG | use(Π) ∪G ∪ use(J) ∪DiagC 6|= ⊥}
= {A ∩ IG | use(A) ∈ AS(use(Π) ∪G ∪ input(I) ∪ Pool ∪DiagC)}
= {A ∩ IG | use(A) ∈ AS(guess(T) ∪DiagC)}
= {use−1(S) | S ∈ AS(guess(T) ∪DiagC)} . 2

Thus, we obtain the diagnoses for C by filtering the answer sets of the program

guess(T) ∪DiagC (7.15)

for atoms with predicate symbols use. Note that the subprogram {← add(X)} of DiagC

is only needed when the pool is extended beyond the input, i.e., when there are atoms
of form pool(x) where x 6∈ I. We will need such additions now for Repairs.

7.2.4 Repair

Given an input I, we can identify a set of measures or signs J ⊆ IG with an up-
date (I−, I+) given by I− = I \ J and I+ = J \ I. For an adequacy criterion adq , we
may likewise write adq(J) instead of adq(I−, I+). We assume that this criterion can be
expressed by an answer set program ADQ .

95

Practically, we are not interested in arbitrary repairs, but sets J ⊆ IG close to I.
Based on domain knowledge, we will thus include further rules in Pool that allow ad-
ditional pool -atoms to be considered for evaluation, increasing the search space beyond
elements in I. We will create a flexible pool IP ⊆ IG of measures and signs based on
which the guess program for T enumerates solution candidates. Then, a set J ⊆ IP is a
repair for C under adq if no conflict in C can be derived by J , and adq(J) holds. Let C

be a set of conflicts. We define Repadq
C = RepC ∪ADQ, where

RepC = {← γ | γ ∈ C} . (7.16)

For the following proposition, we assume that Pool generates all potential measures and
signs on an input graph, i.e., the set {pool(x) | x ∈ IG}. Practically, we will limit the
search space to some set IP , I ⊆ IP ⊆ IG, close to I.

Proposition 34 Let C ⊆ C(T) be a set of conflicts of a traffic regulation problem T ,
and let J ⊆ IG. Then, (I \ J, J \ I) is a repair for C in T under adq iff there is an

answer set S of the program guess(T) ∪ Repadq
C such that J = {i | use(i) ∈ S}.

Proof. Let T be a traffic regulation problem with traffic regulation Π, graph G and
input I. Let use−1(S) = {i | use(i) ∈ S}. We have

Repairs(T , C, adq) = {J ⊆ IG | Π ∪G ∪ J 6|= γ,∀γ ∈ C and adq(J) holds}
= {J ⊆ IG | use(Π) ∪G ∪ use(J) 6|= γ,∀γ ∈ C and adq(J) holds}

= {J ⊆ IG | use(Π) ∪G ∪ use(J) ∪ Repadq
C 6|= ⊥}

= {A ∩ IG | use(A) ∈ AS(use(Π) ∪G ∪ input(I) ∪ Pool ∪ Repadq
C)}

= {A ∩ IG | use(A) ∈ AS(guess(T) ∪ Repadq
C)}

= {use−1(S) | S ∈ AS(guess(T) ∪ Repadq
C)} . 2

Consequently, we obtain the repairs for C in T under adq by the answer sets of the
program

guess(T) ∪ Repadq
C , (7.17)

filtered for atoms with predicate symbols use. However, by rules (7.12) and (7.13)
in Pool we can extract repairs in a more intuitive way. Let S be an answer set of the
program guess(T) ∪ Repadq

C , I− =
⋃
{i | del(i) ∈ S}, and I+ =

⋃
{i | add(i) ∈ S}. Then,

the update (I−, I+) is a repair for C under adq .

Repairs for T . In Chapter 5, we noted that, in general, the repairs for a traffic
regulation problem T do not equal the repairs for C(T). While answer sets of the pro-

gram guess(T) ∪ Repadq
C are guaranteed not to contain any conflict γ ∈ C(T), they may

contain new conflict atoms γ ∈ CG \ C(T) due to side effects of the respective update.
Therefore, to obtain repairs for T , we employ in addition to the guess program for T

the program Repadq = Rep ∪ADQ, where

Rep = {← c(T, V)} . (7.18)

96

Proposition 35 Let T be an inconsistent traffic regulation problem. The update (I−, I+)
is a repair for T under adq if and only if there exists an answer set S of the pro-
gram guess(T) ∪ Repadq such that I− = {i | del(i) ∈ S} and I+ = {i | add(i) ∈ S}.

Thus, we obtain the repairs for T under adq by the answer sets of the program

guess(T) ∪ Repadq , (7.19)

filtered for atoms with predicate symbols del and add .

7.2.5 Strict Repairs

For strict repairs, we require in addition to consistency that the effects of measures and
signs correspond in the updated traffic regulation problem. We can elegantly define the
set of strict repairs by adding SpCr as second specification to the definition of Repairs.
If for a set J ⊆ IG, which we can view as update (I−, I+) for a traffic regulation prob-
lem T , no conflict will be derived by Sp ∪ SpCr , then we have a consistent scenario
where Correspondence holds. We assume that potential correspondence conflicts are
included in CG. Let T ′ be the traffic regulation problem obtained by T , replacing its
traffic regulation Π by Π′ = Sp ∪ SpCr and let Repadq be defined as before. Then, we
obtain strict repairs for T under adq by the answer sets of the program

guess(T ′) ∪ Repadq , (7.20)

filtered for atoms with predicate symbols del and add . With further restrictions on Strict
Repairs we naturally get the remaining tasks.

7.2.6 Adjustment & Generation

In Section 5.6 we defined the adjustment and generation tasks for signs and measures
as special cases of strict repair. The respective restrictions on the scenarios can be seen
as preconditions, which we do not discuss here. We focus on the additional conditions
on the updates. For instance, Sign Adjustment allows only for updates (I−, I+)
where I− ∪ I+ ⊆ SG, i.e., the sets of deletions and additions can only contain traffic
signs. This additional restriction is simply expressed by another two constraints in a
program SAdj , stating that modifications of measures are not allowed.

← del(m(T, V,W)) (7.21)

← add(m(T, V,W)) (7.22)

Let T ′ and Repadq be as in program (7.20), and SAdj adq = Repadq ∪ SAdj . Then, we
obtain the sign adjustments for T under adq by the answer sets of the program

guess(T ′) ∪ SAdj adq , (7.23)

filtered for atoms with predicate symbols del and add . We get measure adjustment,
as well as sign/measure generation by adding similar sets of constraints (MAdj , SGen,
and MGen, respectively) to Repadq .

97

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 30

Figure 7.1: Running speed limit announcement example

7.3 Executable Realization

We will now show how to implement the reasoning tasks as executable answer set pro-
grams. Following the conceptual approach as developed in the previous section, we work
out in detail a prototypical solution using DLV [30] as solver. We demonstrate how to
invoke such programs from the command line but do not deal with engineering questions
of how to integrate these ASP files within typical Java or C# software stacks. We will
comment on the software engineering side of ASP in the final chapter.

7.3.1 Pool

First, we give the implementation that enables the guess step. We write a file pool.lp

as follows.

pool(I) :- input(I).

use(I) v -use(I) :- pool(I).

del(I) :- -use(I), input(I).

add(I) :- use(I), not input(I).

keep(I) :- use(I), input(I).

In addition to program Pool above, we include the last rule for a more convenient
representation of input measures and signs that are kept for evaluation, i.e., not deleted.
We will later add further rules to pool.lp. As noted earlier, the DLV syntax closely
resembles the usual mathematical notation of Answer Set Programs. The only difference
here is the symbol :-, replacing ←, to separate a rule’s head from its body.

7.3.2 Formal Model

We continue by illustrating a realization of the formal model. Based on a running exam-
ple, we first show how a scenario is encoded. Then, we will turn to the implementation
of the effect mapping and the conflict specification, as discussed in Chapter 4.

98

Example 49 Consider the scenario Sc = (G,M,S) shown in Figure 7.1, which we use
as running example. First, we create a file G.lp to represent the graph G.

e(lane,x1,x2). e(lane,x2,x3). e(straight,x3,y1). e(lane,y1,y2).

e(lane,y2,y3). e(lane,z3,z2). e(lane,z2,z1). e(straight,z1,u3).

e(lane,u3,u2). e(lane,u2,u1). e(lane,w2,w1). e(lane,v1,v2).

e(right,x3,w2). e(right,v2,y1). e(left,v2,u3). e(left,z1,w2).

e(uturn,x1,u1). e(uturn,u1,x1). e(uturn,x2,u2). e(uturn,u2,x2).

e(uturn,x3,u3). e(uturn,u3,x3). e(uturn,y1,z1). e(uturn,z1,y1).

e(uturn,y2,z2). e(uturn,z2,y2). e(uturn,y3,z3). e(uturn,z3,y3).

e(uturn,w2,v2). e(uturn,v2,w2). e(uturn,w1,v1). e(uturn,v1,w1).

in_node(x1). in_node(v1). in_node(z3).

out_node(u1). out_node(w1). out_node(y3).

The input I = {s(start(spl(30)), x2), s(end(spl(30)), y2)} of the depicted scenario, re-
flected as according input atoms input(I) = {input(i) | i ∈ I}, comprises no traffic
measures, but two traffic signs. We save these facts as I1.lp.

input(s(start(spl(30)),x2)).

input(s(end(spl(30)),y2)).

By these atoms of G.lp and I1.lp we have fully represented the given scenario. �

In Chapter 4 we discussed scenarios and assumptions on street graphs in detail. We also
presented an effect mapping which we will adapt now to the new use atoms.

Effect Mapping

The meaning of a measure or sign i shall only be evaluated if an atom use(i) can be
derived, i.e., if use(i) is guessed by the disjunctive rule in pool.lp. As explained above,
we have to adapt the effect mapping P . That is, instead of testing for measures m(t,v,w)
and signs s(t,v) (which are not modelled as atoms in the implementation), we must
base rules on atoms of form use(m(t,v,w)) and use(s(t,v)), respectively.

Example 50 (cont’d) We reify the effect mapping P of Chapter 4 and save it into a
file P.lp. First, we collect all auxiliary facts and rules.

node(X) :- e(_,X,_).

node(Y) :- e(_,_,Y).

indir(X,Y) :- e(lane,X,Y).

indir(X,Y) :- e(straight,X,Y).

99

speed(5). speed(10). speed(20). speed(30).

speed(40). speed(50). speed(60). speed(70).

speed(80). speed(90). speed(100). speed(110).

speed(120). speed(130).

lang(ls). lang(lm).

Note that instead of the speed facts for the values 10 to 130 we could also write in
DLV specific syntax the rule

speed(K) :- #int(K), #int(N), N>=1, N<=13, K=10*N.

DLV does not support floating numbers. Therefore, any model on continuous data must
undergo a discretisation step. Here, the speed limit steps suffice for our purposes. There
is no use in modelling potential driving speeds within these 10 km/h intervals.

The following are the essential rules, as explained in Chapter 4. The only difference
is the replacement of every measure or sign i by use(i). The predicate symbol f ′,
reflecting language specific effects, is encoded as fl, the percentage sign % starts a
single-line comment, and != is DLV syntax for 6=, i.e., inequality.

f(F,X,Y) :- fl(L,F,X,Y).

% direct mapping for measures

fl(lm,F,X,Y) :- use(m(T,X,Y)), m2f(T,F).

m2f(spl(K),maxspeed(K)) :- speed(K).

m2f(traffic,nec).

m2f(no_traffic,ban).

% sign effect: start/end expression

expr_start(F,X) :- use(s(T,X)), start_of(T,F).

expr_end(F,X) :- use(s(T,X)), end_of(T,F).

end_of(T,F) :- expl_end_of(T,F).

end_of(T,F) :- impl_end_of(T,F).

start_of(start(T),F) :- m2f(T,F).

expl_end_of(end(T),F) :- m2f(T,F).

impl_end_of(start(spl(K)),maxspeed(J)) :- speed(K), speed(J), K!=J.

% base case and propagation

fl(ls,F,X,Y) :- expr_start(F,X), indir(X,Y).

fl(ls,F,Y,Z) :- fl(ls,F,X,Y), indir(X,Y), indir(Y,Z),

not block_prop(F,Y).

block_prop(F,Y) :- fl(ls,F,X,Y), indir(Y,Z), expr_end(F,Y).

block_prop(F,Y) :- fl(ls,F,X,Y), e(straight,X,Y), has_perm_inc(ls,Y),

not expr_start(F,Y).

has_perm_inc(L,Y) :- e(left,X,Y), lang(L), not fl(L,ban,X,Y).

100

has_perm_inc(L,Y) :- e(right,X,Y), lang(L), not fl(L,ban,X,Y).

% non-extending types

block_prop(ban,X) :- node(X).

block_prop(nec,X) :- node(X).

% no_turn

fl(ls,ban,X,Y) :- use(s(no_turn(T),X)), e(T,X,Y).

fl(ls,ban,X,Y) :- use(s(no_turn(left),X)), e(uturn,X,Y).

% mand_turn (omitted compound ones like left_or_straight)

fl(ls,nec,X,Y) :- use(s(mand_turn(T),X)), e(T,X,Y).

fl(ls,ban,X,Y) :- use(s(mand_turn(T),X)), e(ET,X,Y), T!=ET.

% no_entry

fl(ls,ban,X,Y) :- use(s(no_entry,Y)), e(_,X,Y).

This effect mapping expresses the meaning of all potential combinations of traffic signs
for linear speed limits of 14 different values, 3 different prohibited driving directions
(left, right, uturn), 4 different mandatory driving directions (additionally straight),
and No Entry signs, and their corresponding measure types in only 27 rules and 18
facts (or 28 rules and 5 additional facts if the above rule for speed limit values was used
instead). �

In this effect mapping P.lp we assume that correct data is provided. Otherwise, non-
existent traffic signs like s(no_turn(straight),X) or s(mand_turn(lane),X) would
also be assigned effects. Such non-combinatorial data correctness checks can be seen as
basic inconsistency management tasks which are flexibly implemented by a designated
(or augmented) conflict specification.

In order to evaluate the input, we need to fix the considered pool of measures and
signs to comprise exactly I. Therefore, we write a new program eval.lp containing the
following two rules.

use(I) :- input(I).

-use(I) :- pool(I), not input(I).

That is, everything that is given as input by the scenario is evaluated, and nothing else.
So far, there is nothing in the pool that is not part of the input, but we will later add
further measures and signs to the pool to allow additions in the repair tasks. By the
rules presented so far we can compute the effects of a set of measures and signs.

Example 51 (cont’d) In Chapter 4, Example 20, we argued that the effects of an
input I are given by the (single) answer set of P ∪G∪ I, i.e., FP

G (I) = AS ∩FG
(P ∪G∪ I).

In Section 7.2 we explained that I needs to be replaced by input(I) ∪ Pool ∪ Eval , such
that the same traffic regulation Π = (P, Sp) can be used for the other reasoning tasks

101

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 30

Figure 7.2: Expressed maxspeed(30) effect by start sign at x2

as well. The solver DLV allows to filter the output of the computed answer sets for
specified predicate symbols. Since FG is the set of atoms with predicate symbol f , we
get FP

G (I) by the unique answer set of the programs developed so far, filtered by f .

$ dlv P.lp G.lp I1.lp pool.lp eval.lp -filter=f

DLV [build BEN/Dec 17 2012 gcc 4.6.1]

{f(maxspeed(30),x2,x3), f(maxspeed(30),x3,y1)}

These two atoms represent the dashed lines from x2 to y1 in Figure 7.2. As explained
earlier, the effect propagation ends at y1, since there is no repeated start sign, and y1 is
reachable from an incoming street via edge (v2, y1). �

By an analogous adaption of the conflict specification, we will be able to determine
whether a traffic regulation problem is inconsistent.

Conflict Specification

Now we are going to modify the conflict specification Sp developed throughout the
previous chapters, employing the use atoms for the uniform approach. We discussed
three classes of conflicts which we group into three blocks with an according comment.
We write a file Sp.lp consisting of the following rules.

% bad announcement ends

c(bad_end(F),Y) :- indir(X,Y), indir(Y,Z),

fl(ls,F,X,Y), not fl(ls,F,Y,Z),

needs_expr_end(F), not expr_end(F,Y).

c(cant_end(F),Y) :- use(s(T,Y)), expl_end_of(T,F), indir(X,Y),

not fl(ls,F,X,Y).

needs_expr_end(maxspeed(K)) :- speed(K).

% overlap

c(overlap(L,F1,F2),X) :- fl(L,F1,X,Y), fl(L,F2,X,Y), contr(F1,F2).

102

contr(motorway,residential_area).

contr(maxspeed(K),maxspeed(J)) :- speed(K), speed(J), K<J.

contr(ban,nec).

% no way out

c(no_way_out(lm),X) :- use(m(_,X,_)), not way_out(lm,X).

c(no_way_out(ls),X) :- use(s(_,X)), not way_out(ls,X).

way_out(L,X) :- lang(L), out_node(X).

way_out(L,X) :- lang(L), reachable(L,X,Y), way_out(L,Y).

reachable(L,X,Y) :- lang(L), e(T,X,Y), not fl(L,ban,X,Y), T!=uturn.

reachable(L,X,Y) :- e(uturn,X,Y), fl(L,nec,X,Y).

reachable(L,X,Z) :- reachable(L,X,Y), reachable(L,Y,Z).

We concluded Chapter 4 by the definition of a traffic regulation problem T = (Sc,Π),
where Sc = (G,M,S) is a scenario and Π = (P, Sp) is a traffic regulation. We have
presented an exemplary implementation for these concepts, allowing us to deal with
inconsistency management tasks next.

7.3.3 Reasoning Tasks

We will now present a concrete realization for the presented reasoning tasks following
the uniform approach developed in Section 7.2. Recall the guess program for a traffic
regulation problem T , which was given by

guess(T) = use(Π) ∪G ∪ input(I) ∪ Pool .

With an according file I.lp formalizing the reification input(I) for the input I in T , we
get an implementation for guess(T) by the files

Sp.lp P.lp G.lp I.lp pool.lp.

We showed how to obtain all reasoning tasks essentially by (i) adding further constraints
to the guess program and (ii) filtering the resulting answer sets for specific target atoms
in the extraction step. This filtering is easily achieved by DLV’s parameters -filter,
respectively -pfilter.

Consistency Evaluation

We explained in Section 7.2.1 that guess(T) ∪ Eval computes the conflicts for a traffic
regulation problem T . Thus, we have all ingredients for Consistency Evaluation.

Example 52 (cont’d) To compute the conflicts C(T) or our example problem T , we
invoke the implementation of the guess program for T , extended by the constraints for
the evaluation of the input, and filter for conflict atoms.

103

$ dlv -silent Sp.lp P.lp G.lp I1.lp pool.lp eval.lp -filter=c

{c(cant_end(maxspeed(30)),y2), c(bad_end(maxspeed(30)),y1)}

The option -silent prevents the display of DLV’s version info. In the forthcoming
examples, we will always use this flag but omit printing it for better readability. �

With the constraints of eval.lp we can evaluate the input, since every set J ⊆ I
where J 6= I is discarded.

Diagnosis

Given a set C ⊆ C(T) of conflicts, we are interested in finding the diagnoses for C. In
contrast to consistency evaluation, where we evaluate (only) the entire input, we are now
interested in finding all subsets J ⊆ I of the input, such that each conflict c ∈ C can be
derived. We observed above that we can compute the diagnoses for a set of conflicts C
by extending the general guess program by constraints DiagC that (i) disallow additions
to the pool, and (ii) ensure entailment of every conflict in C. That is, we must provide
a program containing a rule

:- not c(t,v).

for every c(t, v) ∈ C. By these constraints, those J ⊆ I are discarded where some conflict
in C cannot be derived. These constraints are problem-specific and thus not saved.

Example 53 (cont’d) In the speed limit scenario, let us consider only the conflict
caused by the start sign, i.e., c(bad_end(maxspeed(30)),y1). We can include addi-
tional rules and facts via the command line (after --), which we use to specify the
conflict constraint. To see which subsets of the input suffice to entail all conflicts, we
will filter for positive occurrences of use by -pfilter=use.

$ dlv Sp.lp P.lp G.lp I1.lp pool.lp -pfilter=use --

:- not c(bad_end(maxspeed(30)),y1).

{use(s(start(spl(30)),x2)), use(s(end(spl(30)),y2))}

{use(s(start(spl(30)),x2))}

We have two answer sets. If S is an answer set of this program, then a diagnosis for C
is given by {i | use(i) ∈ S}. Note that we also could filter for keep instead of use. The
first one is the trivial diagnosis, consisting of the entire input. The second one is the
minimal diagnosis, i.e., the interesting one. That is, using only s(start(spl(30)),x2)

is enough to satisfy the constraint. �

Later, input pool will contain more than the scenario’s input, so we must prohibit guesses
where measures or signs are added to I. Second, we are usually not interested in the list
of all diagnoses, but only in minimal diagnoses.

To this end, we use DLV’s weak constraints to compute minimal diagnoses with
respect to cardinality. Therefore, we count the number of elements of the input that are
used to derive the respective conflicts. By having a weak constraint that fires whenever

104

an input atoms is used, i.e. kept, we count measures and signs needed to entail the
conflicts and thus receive cardinality-minimal diagnoses by the answer sets. We write a
new file diagnosis.lp comprising a constraint on additions and a weak constraint on
elements from the input being kept for evaluation.

:- add(I).

:~ keep(I).

The weak constraint :~ keep(I). abbreviates :~ keep(I). [1:1]. We make use of
these restrictions in the next example.

Example 54 (cont’d) Applying diagnosis.lp instead of eval.lp, and a constraint
for every conflict to be diagnosed, only the minimal diagnoses with respect to cardinality
are reported.

$ dlv Sp.lp P.lp G.lp I1.lp pool.lp diagnosis.lp -filter=keep --

:- not c(bad_end(maxspeed(30)),y1).

Best model: {keep(s(start(spl(30)),x2))}

Cost ([Weight:Level]): <[1:1]>

DLV reports only one model as the best model under the specified weak constraints.
The last line says that on level 1 there was a total weight of 1 caused by weak con-
straints. This cost stems from the single firing of the rule :~ keep(I) where I matched
with s(start(spl(30)),x2). In general, the best model is not unique.

In this example, the other diagnosis, which is the entire input, would lead to two rule
firings of the weak constraint, causing higher cost <[2:1]> and is therefore not being
reported as best model. Consequently, {s(start(spl(30)), x2)} is the minimal diagnosis
for C = {c(bad -end(max -speed(30)), y1)}. Similarly, the other traffic sign is a minimal
explanation for the other conflict, as illustrated by Figure 5.1 in the Chapter 5.

$ dlv Sp.lp P.lp G.lp I1.lp pool.lp diagnosis.lp -filter=keep --

:- not c(cant_end(maxspeed(30)),y2).

Best model: {keep(s(end(spl(30)),y2))}

Cost ([Weight:Level]): <[1:1]>

Since none of these signs cause both conflicts, the trivial diagnosis is also the minimal
one for C(T). We compute this diagnosis by declaring a constraint for each conflict.

$ dlv Sp.lp P.lp G.lp I1.lp pool.lp diagnosis.lp -filter=keep --

:- not c(bad_end(maxspeed(30)),y1).

:- not c(cant_end(maxspeed(30)),y2).

Best model: {keep(s(start(spl(30)),x2)), keep(s(end(spl(30)),y2))}

Cost ([Weight:Level]): <[2:1]>

Now we have the aforementioned case of two firings of the weak constraint, resulting in
a total weight of 2 on level 1. �

105

We have seen how adding certain constraints to the common guess program guess(T)
leads to the implementation of two different reasoning tasks. We illustrate this principle
now also for Repairs.

Repair

To repair a set of conflicts C ⊆ C(T), we are looking for an update (I−, I+) for T such
that no conflict c ∈ C can be derived in the updated traffic regulation problem T [I−, I+].
Dually to diagnosis, we thus utilize a constraint

:- c(t,v).

for every c(t, v) ∈ C. To repair the entire traffic regulation problem T rather than any
subset of its conflicts, we will constrain answer sets such that the entailment of any
conflict is prohibited. We observe that the unit cost of an update (I−, I+) (as defined on
page 60) is given by counting the number of changes to the input, i.e. |I−∪ I+|. That is,
repairs under the adequacy criterion of minimal unit cost are reflected by answer sets S
where the set

{i | del(i) ∈ S} ∪ {i | add(i) ∈ S}
has minimal cardinality. Again, we take advantage of DLV’s optimization feature. In a
file repair.lp we specify a constraint on the entailment of any conflict (for repairs of
traffic regulation problems) and the adequacy criterion of minimal unit cost by means
of weak constraints on del and add.

:- c(_,_).

:~ del(I).

:~ add(I).

With these rules, only interpretations with J ⊆ I that do not lead to any conflict can
be answer sets. By the weak constraints, DLV will only report those answer sets with a
minimal number of distinct atoms with predicate symbol del or add.

Example 55 (cont’d) We first consider all repairs for the bad -end conflict at node y1.
Since we have not stated any rules yet that may add further elements to the pool
(beyond measures and signs given as input), we will not derive any atoms with predicate
symbol add. That is, only repairs of form (I−, ∅) can be reported. Therefore, we will
only filter for del.

$ dlv Sp.lp P.lp G.lp I1.lp pool.lp -filter=del --

:- c(bad_end(maxspeed(30)),y1).

{del(s(start(spl(30)),x2))}

{del(s(start(spl(30)),x2)), del(s(end(spl(30)),y2))}

Similarly as in the diagnosis task, we have a trivial and a minimal case. Here, the bad -end
conflict ceases to exist if we delete at least the start sign at node x2. We omit the similar
repairs for the other conflict and turn to the repair for the traffic regulation problem by
means of the constraints expressed in repair.lp.

106

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 30

Figure 7.3: Questionable minimal repair

$ dlv Sp.lp P.lp G.lp I1.lp pool.lp repair.lp -filter=del

Best model: {del(s(start(spl(30)),x2)), del(s(end(spl(30)),y2))}

Cost ([Weight:Level]): <[2:1]>

We obtain the repair ({s(start(spl(30)), x2), s(end(spl(30)), y2)}, ∅) by reading from this
answer set the atoms with predicate symbol del. �

In order to enable additions in repairs, we must add new elements to the pool. To keep
the search space small, we need a practical approach. The question is which measure
types and which sign types to consider for which edges and nodes, respectively.

If we have a measure at some edge (X,Y), we certainly want to allow for a start
sign at X and an explicit end sign at Y . Likewise, if we have such traffic signs, we want
to consider the corresponding measure. In order to get some flexibility concerning the
extent of represented measures, we associate the measure type with the remaining edges
in direction of traffic. We extend pool.lp as follows.

pool(s(TS,X)) :- pool(m(TM,X,Y)), m2f(TM,F), start_of(TS,F). % (1)

pool(s(TS,Y)) :- pool(m(TM,X,Y)), m2f(TM,F), expl_end_of(TS,F). % (2)

pool(m(T,X,Y)) :- pool(s(start(T),X)), indir(X,Y). % (3)

pool(m(T,X,Y)) :- pool(s(end(T),Y)), indir(X,Y). % (4)

pool(m(T,X,Y)) :- pool(m(T,Z,X)), indir(Z,X), indir(X,Y). % (5)

Whenever we have a measure type associated with some edge (X,Y), rules (1) and (2)

add according start and end signs to the pool. Thus, if these signs were missing in the
input, they are now available. Similarly, if we have a start or end sign, rules (3) and (4)

make sure that the corresponding measure is considered as well. Rule (5) stretches the
potential extent of a measure in direction of traffic.

Example 56 (cont’d) DLV supports the evaluation of conjunctive queries, which we
use to test what has become available in the pool in addition to the scenario’s input.
Queries are evaluated bravely or cautiously. Since the pool atoms are a deterministic
consequence of the input atoms, there is no difference. In fact, towards our intention,
the pool must be the same in each answer set.

107

$ dlv Sp.lp P.lp G.lp I1.lp pool.lp -cautious --

pool(X), not input(X)?

m(spl(30),x2,x3)

m(spl(30),x3,y1)

m(spl(30),y1,y2)

m(spl(30),y2,y3)

s(start(spl(30)),x3)

s(start(spl(30)),y1)

s(start(spl(30)),y2)

s(end(spl(30)),x3)

s(end(spl(30)),y1)

s(end(spl(30)),y3)

For better readability, DLV’s original output was reordered here. By rule (3), the start
sign at node x2 leads to the introduction of a speed limit measure on edge (x2, x3), which
gets propagated until node y3 due to rule (5). Due to the rules (1) and (2), we also
introduce start and end signs for the involved nodes. This augmented pool allows us to
derive the intended repair.

$ dlv Sp.lp P.lp G.lp I1.lp pool.lp repair.lp -filter=del,add

Best model: {add(s(start(spl(30)),y1))}

Cost ([Weight:Level]): <[1:1]>

The update (∅, s(start(spl(30)), y1)), i.e., the addition of the repeated start sign after
the junction, is now the only minimal repair. In Chapter 5 we discussed other minimal
repairs, such as the addition of a No Right Turn sign on node v2, as shown again in
Figure 7.3. Since the scenario does not contain any measure data, and in particular, no
information about a traffic ban along edge (v2, y1), there is no reasonable argument why
this repair should be proposed. However, suppose the user of the application explicitly
requires this sign to be added. Then, the repair task reports that nothing else remains
to be changed.

$ dlv Sp.lp P.lp G.lp I1.lp pool.lp repair.lp -filter=del,add --

use(s(no_turn(right),v2)).

Best model: {add(s(no_turn(right),v2))}

Cost ([Weight:Level]): <[1:1]>

According to our criterion of minimal unit cost, the addition of a No Right Turn sign
at v2 (instead of a start sign for a 30 km/h speed limit at y1) is formally an equally good
repair, albeit not a proposed one due to our limited pool. �

The discussion of what should to be included in the pool brings us to the issue of
correspondence between measures and signs.

108

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 30 30

Figure 7.4: Correct sign posting for a 30 km/h speed limit measure from x2 to y2

Correspondence

In Section 7.2.2 we argued that Correspondence can be solved by applying Consis-
tency Evaluation with a designated specification of correspondence conflicts. To this
end, we write the following file Corr.lp:

c(unjustified(F),X) :- fl(ls,F,X,Y), not fl(lm,F,X,Y).

c(unannounced(F),X) :- fl(lm,F,X,Y), not fl(ls,F,X,Y).

Whenever a sign effect of type F is derived for an edge from X to Y, for which no according
measure effect F can be derived, the first rule will lead to conflict of type unjustified(F)
on node X. Similarly, by the second rule the label unannounced(F) will be associated
with X in the reverse case.

With these rules, correspondence checking amounts to consistency evaluation, ap-
plying Corr.lp instead of Sp.lp as conflict specification.

Example 57 (cont’d) Since our scenario’s input contains only signs, we must have
unjustified effects.

$ dlv Corr.lp P.lp G.lp I1.lp pool.lp eval.lp -filter=c

{c(unjustified(maxspeed(30)),x2), c(unjustified(maxspeed(30)),x3)}

For both edges (x2, x3) and (x3, y1), there exists a sign effect of type maxspeed(30), but
no such measure effect can be derived. Hence, the effects are unjustified. �

In case of inconsistency of either language, the question of correspondence is secondary.
However, due to our approach we can evaluate and also establish consistency and corre-
spondence in one step, which we demonstrate next.

Strict Repair

The repair task (for traffic regulation problems T) ensures that no answer set contains a
conflict. Consequently, if we include Corr.lp in the repair task, we automatically obtain
strict repairs.

109

Example 58 (cont’d) A strict repair under minimal unit cost for our speed limit sce-
nario leads to the deletion of both traffic signs.

$ dlv Sp.lp Corr.lp P.lp G.lp I1.lp pool.lp repair.lp -filter=del,add

Best model: {del(s(start(spl(30)),x2)), del(s(end(spl(30)),y2))}

Cost ([Weight:Level]): <[2:1]>

In this setting, we can further explore the flexibility which comes with an ASP-based
implementation. Suppose a user knows that all existing signs are correct, but some
may be missing. She is surprised by the repair proposal and explicitly states via the
user interface, that these two signs (or all signs) must not be deleted. Such flexible
restrictions can always be added directly via additional constraints. For instance, a
user may be provided the option to prevent all signs from being deleted, which can be
instantly translated to a constraint ← del(s(T, V)). Likewise, she might click on single
traffic sign symbols and manually decide whether it should be kept or deleted. Here, we
present a variant which expresses the choice to use both given signs.

$ dlv Sp.lp Corr.lp P.lp G.lp I1.lp pool.lp repair.lp -filter=del,add --

use(s(start(spl(30)),x2)).

use(s(end(spl(30)),y2)).

Best model: {add(m(spl(30),x2,x3)), add(m(spl(30),y1,y2)),

add(s(start(spl(30)),y1)), add(m(spl(30),x3,y1))}

Cost ([Weight:Level]): <[4:1]>

Best model: {add(m(spl(30),x2,x3)), add(m(spl(30),y1,y2)),

add(s(start(spl(30)),y1)), add(s(end(spl(30)),x3))}

Cost ([Weight:Level]): <[4:1]>

Now we have two optimal strict repairs which both require 4 changes to the input. Both
repairs add the missing start sign at y1. The first repair then adds the corresponding
measure type to the three edges from x2 to y2. The update traffic regulation problem
due to this update is shown in Figure 7.4. The second repair spares the measure on
edge (x3, y1) and instead adds an end sign before the junction. �

We will now review another example of the previous chapter which contained inconsistent
information in both languages, measures and signs.

Example 59 In Example 42, we presented a scenario where two speed limit measures
of 30 km/h and 40 km/h, respectively, overlap along the edge (y1, y2) of the T-junction
graph. Additionally, there is a start sign at x2 for the 30 km/h measure, and an end
sign for the other measure at y3. Figure 7.5 shows this scenario again. The according
input I2.lp is given as follows.

input(m(spl(30),x2,x3)). input(m(spl(30),x3,y1)). input(m(spl(30),y1,y2)).

input(m(spl(40),y1,y2)). input(m(spl(40),y2,y3)).

input(s(start(spl(30)),x2)). input(s(end(spl(40)),y3)).

110

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 40

Figure 7.5: Scenario where both measures and signs are inconsistent. On edge (y1, y2),
two speed limit measures of 30 km/h and 40 km/h overlap.

We apply a variant of consistency evaluation and correspondence check in one step in
form of a query for all conflicts. We have results for nodes y1, y2 and y3, as indicated in
the figure.

$ dlv Sp.lp Corr.lp P.lp G.lp I2.lp pool.lp eval.lp -cautious --

c(T,V)?

overlap(lm,maxspeed(30),maxspeed(40)), y1

cant_end(maxspeed(40)), y3

bad_end(maxspeed(30)), y1

unannounced(maxspeed(40)), y1

unannounced(maxspeed(40)), y2

unannounced(maxspeed(30)), y1

The strict repair under minimal unit cost suggests the following update.

$ dlv Sp.lp Corr.lp P.lp G.lp I2.lp pool.lp repair.lp -filter=del,add

Best model: {del(m(spl(30),y1,y2)), add(s(start(spl(40)),y1))}

Cost ([Weight:Level]): <[2:1]>

The updated traffic regulation problem T [{m(spl(30), y1, y2)}, {s(start(spl(40)), y1)}]
due to this strict repair was shown in Figure 5.11 (page 69). It favours the 40 km/h
measure on edge (y1, y2) based on the fact that retaining the label spl(30) on that edge
would require one more change:

$ dlv Sp.lp Corr.lp P.lp G.lp I2.lp pool.lp repair.lp -filter=del,add --

use(m(spl(30),y1,y2)).

Best model: {del(m(spl(40),y1,y2)), add(s(start(spl(30)),y1)),

add(s(start(spl(40)),y2))}

Cost ([Weight:Level]): <[3:1]>

That is, by forcing the use of the 30 km/h measure on edge (y1, y2) via the additional
axiom use(m(spl(30),y1,y2)), we obtain the other (non-minimal) repair, as shown in
Figure 5.12.

111

We illustrated that ad-hoc restrictions can be easily added with ASP. Apart from that,
we will use predefined sets of restrictions to specify practically relevant subclasses of
strict repairs. Two of these specific repair use cases have been introduced in Chapter 5.
We will describe their realization next.

Adjustment

The implementation presented so far was based on a common set of rules from which we
obtained different reasoning tasks by small extensions. Likewise, we get sign and measure
adjustment by further constraining strict repairs. We write a new file s-adj.lp for sign
adjustment, which can be used instead of (or in fact, also in addition to) repair.lp.

:- c(_,_).

:~ del(s(T,X)).

:~ add(s(T,X)).

:- del(m(T,X,Y)).

:- add(m(T,X,Y)).

The difference to repair.lp is that only modifications of signs are allowed (but penal-
ized). Any answer set that suggests a deletion or an addition of a measure is discarded.

Example 60 In Example 43 we presented a scenario which is shown again in Figure 7.6.
The following set of atoms reflects the input of this scenario, saved as I3.lp.

input(m(spl(30),x2,x3)). input(m(spl(30),x3,y1)).

input(m(spl(40),y1,y2)).

input(s(start(spl(40)),y1)). input(s(end(spl(40)),y2)).

Evaluating the scenario with a program including Corr.lp, we have no conflicts other
than two correspondence conflicts at nodes x2 and x3, since the 30 km/h speed limit
measure is unannounced.

$ dlv Sp.lp Corr.lp P.lp G.lp I3.lp pool.lp eval.lp -filter=c

{c(unannounced(maxspeed(30)),x2), c(unannounced(maxspeed(30)),x3)}

The sign adjustment gives the same result as strict repair in a single best model proposing
the addition of a 30 km/h start sign at x2.

$ dlv Sp.lp Corr.lp P.lp G.lp I3.lp pool.lp s-adj.lp -filter=del,add

Best model: {add(s(start(spl(30)),x2))}

Cost ([Weight:Level]): <[1:1]>

As we conclude by consistency evaluation, the traffic sign data (viewed in isolation) is
consistent. Suppose an expert user knows that this traffic sign data is complete but
that measure information may be flawed. Then the proper task is measure adjustment,
which we similarly compute by prohibiting changes of signs and penalizing changes of
measures (m-adj.lp).

112

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

40 40

Figure 7.6: Consecutive 30 km/h and 40 km/h speed limit measures with correspondence
conflicts at x2 and x3

$ dlv Sp.lp Corr.lp P.lp G.lp I3.lp pool.lp m-adj.lp -filter=del,add

Best model: {del(m(spl(30),x2,x3)), del(m(spl(30),x3,y1))}

Cost ([Weight:Level]): <[2:1]>

Applying measure adjustment to this scenario, the unannounced measures along the
edges (x2, x3) and (x3, y1) are proposed to be deleted. This is not suggested by the strict
repair, since it has higher unit cost than adding a single sign. �

Next, we discuss the similar generation task, in which consistent input of only one
language shall be used to generate information of the other language from scratch. This
task is realized by another restriction on strict repairs.

Generation

In sign (respectively measure) generation, we deal with a scenario (G,M, ∅) (respec-
tively (G, ∅, S)), where M (respectively S) is consistent. We do not check these precon-
ditions here. In fact, the following constraints for generations of either signs or measures
may also be applied for scenarios which already contain elements of the respective lan-
guage. If we apply sign (respectively measure) generation on scenarios where the set of
measures (respectively signs) is non-empty, we get a variant of adjustment where only
additions are allowed. These are the rules for measure generation, saved as m-gen.lp:

:- c(_,_).

:- del(s(T,X)).

:- add(s(T,X)).

:- del(m(T,X,Y)).

:~ add(m(T,X,Y)).

By this set of rules, only the addition of measures is allowed (and penalized), all other
modifications are prohibited. Likewise, for sign generation (s-gen.lp), we prohibit all
changes but the addition of signs.

113

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 30

Figure 7.7: Result of an unintuitive strict repair given a correct sign posting for a
missing speed limit measure from x2 to y2, which can be avoided by measure generation
or measure adjustment

Example 61 Figure 7.4 depicts the scenario for a 30 km/h measure from x2 to y2 with
a consistent, corresponding sign posting. Suppose we are given (in a file I4.lp) a the
partial scenario which does not include the measure information, i.e. (G, ∅, S). If we
apply strict repair (under minimal unit cost), we obtain a unique best model, which
suggests to add a 30 km/h measure along the edge (y1, y2) and the deletion of the start
sign at x2, leading to the scenario shown in Figure 7.7.

$ dlv Sp.lp Corr.lp P.lp G.lp I4.lp pool.lp repair.lp -filter=del,add

Best model: {del(s(start(spl(30)),x2)), add(m(spl(30),y1,y2))}

Cost ([Weight:Level]): <[2:1]>

The expected generation of three measures has higher unit cost and is therefore not
reported. However, we note that it is only due to our data model that the addition of
a measure from x2 to y2 counts as modification of cost 3, rather than 1. In order to
generate the atoms reflecting measure labels, we apply the designated reasoning task
and get the desired result, regardless of the number of parts the measure is split into.
This is done by replacing repair.lp with m-gen.lp in the previous call.

$ dlv Sp.lp Corr.lp P.lp G.lp I4.lp pool.lp m-gen.lp -filter=del,add

Best model: {add(m(spl(30),x2,x3)), add(m(spl(30),y1,y2)),

add(m(spl(30),x3,y1))}

Cost ([Weight:Level]): <[3:1]>

In the dual scenario (G,M, ∅), where only these three measures are given as input (I5.lp),
we can likewise force the generation of the corresponding traffic signs.

$ dlv Sp.lp Corr.lp P.lp G.lp I5.lp pool.lp s-gen.lp -filter=del,add

Best model: {add(s(start(spl(30)),x2)), add(s(start(spl(30)),y1)),

add(s(end(spl(30)),y2))}

Cost ([Weight:Level]): <[3:1]>

114

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 30

Figure 7.8: Result of an unintuitive strict repair for an unannounced 30 km/h measure
from x2 to y2, which can be avoided by sign generation or sign adjustment

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 30

Figure 7.9: Result of another unintuitive strict repair for consistent measure data where
sign adjustment is appropriate

Here, the strict repair would also list unintuitive updates which are also minimal accord-
ing to unit cost. These variants include the deletion of the entire input (fourth answer
set) and updates towards the scenarios depicted in Figures 7.8 (first answer set) and 7.9
(third answer set).

$ dlv Sp.lp Corr.lp P.lp G.lp I5.lp pool.lp repair.lp -filter=del,add

Best model: {add(s(start(spl(30)),x2)), add(s(start(spl(30)),y1)),

add(m(spl(30),y2,y3))}

Cost ([Weight:Level]): <[3:1]>

Best model: {add(s(start(spl(30)),x2)), add(s(start(spl(30)),y1)),

add(s(end(spl(30)),y2))}

Cost ([Weight:Level]): <[3:1]>

Best model: {del(m(spl(30),y1,y2)), add(s(start(spl(30)),x2)),

add(s(end(spl(30)),y1))}

Cost ([Weight:Level]): <[3:1]>

Best model: {del(m(spl(30),x2,x3)), del(m(spl(30),x3,y1)),

del(m(spl(30),y1,y2))}

Cost ([Weight:Level]): <[3:1]>

115

Hence, in a data adjustment setting, where only one kind of information is given, measure
or sign generation is the appropriate variant of the strict repair task. �

With Answer Set Programming we can easily provide even more flexible support for
constraints and preferences. Here, the penalization control for DLV’s weak constraints
by weights and levels are especially helpful to encode different adequacy criteria, as we
show next.

Flexible Preferences

In the sections on adjustment and generation, we discussed special settings in which
restricted forms of strict repairs are generally preferable. Both cases illustrated the need
for flexibility concerning constraint and preference handling on top of a common core,
essentially realized by the effect mapping P (P.lp), the conflict specification Sp (Sp.lp),
and the additional correspondence conflict specification SpCr (Corr.lp).

From a conceptual point of view, it does not matter whether additional rules are pre-
defined as files or generated on the fly following user interaction. As demonstrated, our
framework allows for a modular choice concerning the addition of any new information,
including constraints and optimization criteria. With this, we can overcome a natural
mismatch between a very formal approach and complex systems like traffic regulations,
which include many special cases and context-dependent situations.

There is a trade-off between closeness to reality and the simplicity of rules. If a
formal treatment shall remain understandable, it necessarily has to hide subtle aspects
implicit in common sense reasoning. With increasing experience, we can incorporate new
knowledge by adding further conditions to rules, introducing new rules to the conflict
specification, or applying a different adequacy criterion. For the latter option, DLV’s
weight/level control in weak constraints is particularly useful.

For instance, we may assume that in a given data source traffic measure information
is more reliable than traffic sign data. If the measures are inconsistent, sign adjustment
cannot be applied. However, we may prefer to change as few measures as possible. In
terms of DLV’s weak constraints, this amounts to putting measure changes on a higher
level than sign changes. Among the equally good solutions concerning measures, we
can then minimize the changes of traffic signs. We express this repair variant in a new
file m-high.lp, which prohibits the entailment of any conflict atom and makes use of
explicit cost control for weak constraints.

:- c(_,_).

:~ del(m(T,X,Y)). [1:2]

:~ add(m(T,X,Y)). [1:2]

:~ del(s(T,X)). [1:1]

:~ add(s(T,X)). [1:1]

Example 62 Consider the scenario shown in Figure 7.10, where both measures and
signs are inconsistent. The input is given by the following atoms, written to I6.lp.

116

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 30

Figure 7.10: Ambiguous speed limit information. In addition to a 30 km/h measure
from x2 to y1, a 40 km/h measure is given on edges (x2, x3) and (y1, y2)

input(m(spl(30),x2,x3)). input(m(spl(40),x2,x3)).

input(m(spl(30),x3,y1)). input(m(spl(40),y1,y2)).

input(s(start(spl(30)),x2)). input(s(start(spl(30)),y1)).

The two measures associated with edge (x2, x3) must not overlap, and the start signs do
not correspond with the 40 km/h measures. Note that we also have a correspondence
conflict at node y2, since there is a max -speed(30) effect on edge (y2, y3) according to
the start sign at note y1.

$ dlv Sp.lp Corr.lp P.lp G.lp I6.lp pool.lp eval.lp -cautious --

c(T,V)?

overlap(lm,maxspeed(30),maxspeed(40)), x2

unjustified(maxspeed(30)), y1

unjustified(maxspeed(30)), y2

unannounced(maxspeed(40)), x2

unannounced(maxspeed(40)), y1

Despite the small size of the scenario, five minimal strict repairs under unit cost are
reported due to the ambiguous information.

$ dlv Sp.lp Corr.lp P.lp G.lp I6.lp pool.lp repair.lp |

> grep -c "Best model"

5

All of these repairs suggest to resolve the conflict at x2 by deleting the 40 km/h measure.
This is reasonable, since the maximum speed effect for 30 km/h is also supported by a
traffic sign.

$ dlv Sp.lp Corr.lp P.lp G.lp I6.lp pool.lp repair.lp -cautious --

del(X)?

m(spl(40),x2,x3)

117

x1 x2 x3

w2

w1 v1

v2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 40 40

Figure 7.11: Scenario of Figure 7.10 after the unique strict repair, where measures have
higher priority than signs

Suppose we consider the measure information to be more trustworthy. Using the con-
straint and the adequacy criterion defined by m-high.lp above, we have only one strict
repair, which leads to the scenario shown in Figure 7.11.

$ dlv Sp.lp Corr.lp P.lp G.lp I6.lp pool.lp m-high.lp -filter=del,add

Best model: {del(m(spl(40),x2,x3)), del(s(start(spl(30)),y1)),

add(s(start(spl(40)),y1)), add(s(end(spl(40)),y2))}

Cost ([Weight:Level]): <[3:1],[1:2]>

Since in this update only one measure is deleted (on edge (x2, x3)), weight sum on level 2
is 1. On level 1, we have a weight of 3 since this repair replaces the end signs at y2 and
adds at y1 the corresponding start sign for the 40 km/h measure. �

Summary. We have demonstrated how Answer Set Programming allows for a purely
declarative approach towards the realization of the advanced reasoning tasks defined in
Chapter 5. By instantiating the formal model with according programs, we immediately
get consistency evaluation, which is the central task. With little modification, we obtain
a uniform, modular approach for all reasoning tasks, including correspondence checking,
diagnosis, various predefined, practically relevant repair tasks, as well as a basis for
flexible preference handling beyond a robust strict repair that can handle traffic measure
and traffic sign data at the same time.

We illustrated some difficulties which arise due to the highly complex nature of
traffic regulations and observed some consequences of design choices. In particular,
we decided to reduce measures to single edge labels and base the minimality criterion
in diagnosis and repairs on counting measure and sign labels. We note that different
such criteria might be considered. For instance, we could disallow for the decrease
or increase of measure extents by operating on identifiers, which group sets of labels
that can only be used (and deleted) together. As another alternative, we might count
the changes in effects, rather than measures and signs. Furthermore, we might discern
different layers of priorities regarding measure, sign, or effect types and even define
special treatment of frequently occurring regulations. For example, we would regard

118

motorways and residential areas as least likely to be incorrect measure data. Contrary,
end signs for non-open speed limits might be a special case of particularly untrustworthy
input data.

We have demonstrated a conceptual framework into which such domain knowledge
and expert judgement can be flexibly encoded. Integration of this logic-based core within
a larger application, investigation of practical scalability issues, and evaluation on sets
of real-world data remain to be done in future work.

119

CHAPTER 8
Conclusion

To the best of our knowledge, systematic inconsistency management for traffic regula-
tions has been an entirely unexplored domain prior to this thesis. The presented work
was done in cooperation with PRISMA solutions1 to advance their road management
web application SKAT, in which traffic measures and traffic signs can be stored and
visualized on top of a digital street map.

Government officials in Lower Austria and Vienna are supported in their traffic
regulation maintenance tasks by the existing tool. For instance, when a new measure
is enacted, it is stored and visualized in the application and the variants for according
traffic sign posting are computed. However, the rules for this simple announcement logic
do not take into account the context of existing measures or signs. Moreover, there are
no methods to evaluate the lawfulness and logical correctness of such data.

At this point the work on this thesis started with a vague goal to find inconsisten-
cies in traffic measure data with respect to the Road Traffic Regulations. Traffic signs
were thought of as secondary information to be derived more or less directly from their
respective traffic measures. In a comprehensive domain analysis involving around 150
scenarios and 30 traffic measures we found that traffic signs need to be accounted for
on the same level as traffic measures, for several reasons. First, combinations of traffic
measures influence correct traffic sign posting options and traffic signs can serve as an-
nouncement of multiple measures. Moreover, some inconsistencies concern only traffic
sign posting and cannot be detected on the level of their associated traffic measures. Fi-
nally, a practically important question is whether the current state of traffic sign posting
corresponds with the intended restrictions as expressed by active traffic measures.

Based on these observations it became apparent that a mechanism is needed that
allows for both separate and combined evaluations of measures and signs. We developed
a formal model where these two kinds of inputs are viewed as different languages which
both express road use restrictions. Accordingly, we captured the meaning of measures

1http://www.prisma-solutions.at

121

http://www.prisma-solutions.at

and signs in a uniform way by a mapping to so-called effects which allowed for their
comparison on a semantic level.

Moreover, we introduced the notion of a conflict which represents an illegal or unde-
sired situation as defined by the Road Traffic Regulations and supplementary documents,
expert knowledge and common sense. The specifications to derive effects from measures
and signs, and then conflicts from effects, are assumed to be defined by means of for-
mulas in some form of predicate logic. Throughout this work, we presented examples
using Answer Set Programming as underlying logic. We argued in detail why ASP is a
suitable choice both theoretically and practically.

On top of the formal model, we defined relevant use cases in form of reasoning tasks.
First, consistency evaluation was established by the two-step mapping from measures
and signs to conflicts. Next, we examined diagnosis, i.e., finding the causes for derived
conflicts. We studied the relation between conflicts and their related input and gave
a characterization of according contexts by means of diagnoses. We then defined and
investigated in detail the repair task to compute updates of inconsistent scenarios such
that the result is free of conflicts. There, we also examined relations between diagnoses
and repairs. Furthermore, by additionally requiring correspondence of the restrictions
expressed by measures and signs, we introduced so-called strict repairs. Additionally,
the practically important use cases of sign/measure adjustment and generation were ob-
tained as special cases of strict repairs, which may be parameterized in a flexible way
to derive further uses cases. In particular, the previously existing solution to generate
announcement proposals for single measures is now given as special case of sign gener-
ation. Notably, all repair and strict repair mechanisms are inherently context-sensitive
and can be easily extended.

For our major reasoning tasks we characterized the computational complexity of as-
sociated decision problems for different logics. Towards an implementation, we demon-
strated how the formal model can be directly instantiated with Answer Set Program-
ming, giving an executable specification. Finally, we developed a systematic approach in
which all reasoning tasks are obtained by augmenting the encoded traffic regulation by
few additional rules. As a result, we realized an elegant, easily adjustable solution for the
logical core of envisaged traffic regulation administration tools that support advanced
inconsistency management.

8.1 Future Work

We have developed methods to ensure the correctness of traffic regulation data on a
digital street map with respect to flexible criteria. In conclusion, we point towards
future work both at the practical and the theoretical side.

Deployment and Evaluation

As a first step, the presented ASP implementation needs to be integrated in an extended
version of the existing web application. A mapping must be established that translates

122

between the object-relational models of the actual street and traffic regulation data and
the presented formal model. Traffic measures and signs are currently being captured by
users of the existing web application. When sufficient data has become available, we can
then start to develop an algorithm that generates a street graph due to our definitions
based on the street map as stored in the existing database. This involves a discretisation
step, since we do not deal with any metrics. We will have to deal with thresholds and
approximations to reliably map quantitative and potentially noisy data to our discrete,
qualitative model, which is essential for our purposes. For instance, we need to decide
how many meters a traffic sign may be posted after a junction to still consider it as being
posted directly after the junction. However, with according conflict specifications, we
assume that the presented work will be of aid in evaluating such assumptions. Moreover,
the flexibly adaptable variants of the strict repair task should be useful to automatically
fill the gaps of missing data, possibly even in the presence of errors.

Based on this integration we will be able to evaluate our system with real-world
data. Furthermore, the user interface must be adapted to the new use cases. Then, a
first version of the application can be delivered.

Complex Street Graphs

To focus on the development of inconsistency management tasks, we assumed a minimal-
istic street graph with a single lane per direction, no roundabouts and no frontage roads.
In real-world applications it is important to capture all physical aspects of streets that
relate to traffic regulatory information. Since we did not deal with validity restrictions,
we also had to omit a discussion of lanes for buses, taxis or bicycles.

Scaling and Contexts

We analyzed the computational complexity of decision problems for our reasoning tasks
which are defined on a very abstract level. In real-world data, however, we will often
encounter similar situations which may be tackled in a less generic way in order to
improve performance.

One notable source of complexity is the search space in the repair task. Thus, it
will be important to limit the possibilities which signs and measures are considered for
addition. How this can be achieved with intuitive rules is practically challenging. We
may try an alternative generation of repairs, however, where the search space is increased
stepwise, if needed.

Furthermore, one could study restricted classes of traffic regulation problems or con-
flicts to investigate lower complexity variants of our reasoning tasks. For instance, the
minimal repairs for a pairwise contradiction of two traffic signs are immediate. More
generally, to repair overconstrained scenarios we know that additions of new traffic signs
need not be considered. Along these lines, it seems appealing to further develop the
connection between diagnosis and repair under additional assumptions stemming from
practical examples. That is, we could isolate reoccurring conditions from frequent prob-
lems of real-world road management scenarios and examine whether it is possible to

123

derive delete-only repairs directly from diagnoses given additional properties of the re-
spective scenario.

This is related with contexts, respectively independent sets of conflicts, as introduced
and investigated in Chapter 5. It would be valuable to work out conditions under which
local repairs can be merged to obtain global repairs. In reality, geographically distant
conflicts will always be independent and their local repairs will also be independent
in the sense that their intersections are empty. Suppose there exist two such sets of
repairs R1 and R2 for respective unrelated sets of conflicts C1 and C2. So far, if a user
requests repairs for C1 ∪ C2, we can only present the list obtained by the Cartesian
product R1 ×R2. Both from a usability perspective and for improved performance of
the repair task we should aim at identifying the unrelated sub-problems first. To this
end, we defined the notion of a context as the subset of the input that is relevant for a
set of conflicts. Along these lines, we may study under which conditions local repairs,
operating on different contexts, can be merged without introducing new conflicts. We
also characterized contexts by means of diagnoses. How to efficiently compute contexts,
or similar such concepts that allow for parallel inconsistency management, are intriguing
theoretical issues of practical relevance.

Validity Restrictions

Validity restrictions, or validities for short, are a practically important topic but techni-
cally challenging. By adding a validity restriction to a traffic sign, the set of conditions
or road users the effects apply for is narrowed down. If we allow for different categories
of validities as shown in Table 3.1 (page 24), we introduce a complex ontology. How to
model the involved relations is not straightforward, in particular, if we want to detect
implausible combinations of classes. For instance, a driving ban might be restricted
to “trucks above 3.5 tons of weight, except school buses.” This expression is formed
along three independent dimensions: vehicle type, weight and a role in road participa-
tion. However, consider the similar restriction “school buses below 3.5 tons of weight,
except trucks.” It requires a very sophisticated domain model to reliably detect such
implausible validity restrictions.

Moreover, all reasoning tasks increase in complexity along these new dimensions.
First, we would need to redefine our building blocks of measures, signs, effects and con-
flicts, where the respective validity restriction is added as further component. Then,
a conflict must be derived if an illegal situation occurs for any road user or condition.
Taking into account validity restrictions thus requires to significantly revise the effect
mapping and the conflict specification. As an example, consider two consecutive speed
limit start signs along a lane, where the first one imposes a (general) 80 km/h restriction
and the second one announces a 60 km/h limit for trucks. This is not a contradiction,
since the new announcement overrules the former restriction only for trucks. On the
other hand, if a general 60 km/h speed limit is followed by a 80 km/h limit for trucks, it
practically has to be detected as conflict since trucks shall not be allowed to drive faster
than, e.g., passenger cars. Besides the highly combinatorial nature of validity restric-
tions, such subtle issues make their modelling for automated reasoning even harder.

124

Advancement of Answer Set Programming Tools

As a paradigm, Answer Set Programming has been around for over two decades. In re-
cent years, efficient solvers have become available, including DLV [30], Potassco [21],
and Cmodels [32]. Yet, ASP has rarely been used outside academia. For wider adop-
tion in industry it has been recognized that better tools, frameworks and libraries are in
need to integrate ASP with mainstream programming paradigms and environments [12].
Promising steps in this direction include IDE Support [20, 37] and debugging tech-
niques [22, 36], ASP with external computation sources as provided by dlvhex [16, 18],
or including ASP rules within Java code [19].

Our application demonstrates the usefulness of ASP as a declarative paradigm for
logic-oriented applications and constraint satisfaction problems. Towards an extension
of SKAT, we will need to call an ASP solver from a Java program that will provide
additional input atoms. Then, the answer sets (computing conflicts, diagnoses and
repairs) must be translated back to Java objects for further processing. To this end,
we would benefit from a Java library that (i) allows to target different ASP solvers and
(ii) reduces the integration overhead to a minimum by automating the mapping between
Java objects and logic predicates representing them.

The current version of SKAT is a successful showcase for this approach to externalize
the logic into rule files. Here, the rule engine of the semantic web framework Apache
Jena2 was used for the aforementioned generation of traffic sign proposals for new
measures. By annotations of involved Java classes the translation between objects and
their RDF representation was defined. Based on these declarations, the jenabean3

library automated the mapping of according input objects to triples which were then
supplied to the engine in addition to a fixed set of custom rules. Finally, objects of
designated target classes were likewise created automatically for associated inferred facts.

Given these frameworks, the rule-based encoding of a simple logic gave an advantage
over previous Java implementations in terms of readability and automated reasoning. We
also made use of a built-in mechanism which allows to call external Java computations.
However, as a general rule engine, Jena has two major shortcomings. First, due to its
design for semantic web applications, the rule syntax is restricted to triples. Second, the
engine provides no mode of reasoning under purely declarative semantics. On the one
hand, the order in which rules may fire cannot be controlled. On the other hand, when
using the negation built-in, the order of rule firing matters in general. Thus, the meaning
of a set of rules which include negation is undefined and the output of computations is
unpredictable. This limits the applicability of Jena for advanced reasoning tasks as
presented in this thesis.

Here, the answer set semantics provide clear benefits. Negation as failure for non-
monotonic reasoning and disjunction to model choices are two attractive features of
Answer Set Programming. With increasing availability of tool support and frameworks
for software integration ASP may significantly gain traction in industrial applications.

2
http://jena.apache.org/

3
https://code.google.com/p/jenabean/

125

http://jena.apache.org/
https://code.google.com/p/jenabean/

Bibliography

[1] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.
Cambridge University Press, 2009.

[2] Harald Beck, Thomas Eiter, and Thomas Krennwallner. Inconsistency Management
for Traffic Regulations. In Biplav Srivastava, Freddy Lécué, and Anupam Joshi,
editors, AAAI 2012 Workshop on Semantic Cities, pages 2–8. AAAI Press, July
2012.

[3] Harald Beck, Thomas Eiter, and Thomas Krennwallner. Inconsistency Management
for Traffic Regulations: Formalization and Complexity Results. In Luis Fariñas del
Cerro, Andreas Herzig, and Jérôme Mengin, editors, 13th European Conference on
Logics in Artificial Intelligence (JELIA 2012), September 26-28, 2012, Toulouse,
France, volume 7519 of LNCS. Springer, September 2012.

[4] Rachel Ben-Eliyahu and Rina Dechter. Propositional semantics for disjunctive logic
programs. Ann. Math. Artif. Intell., 12(1-2):53–87, 1994.

[5] Gerd Brewka, Thomas Eiter, and Miroslaw Truszczyński. Answer set programming
at a glance. Communications of the ACM, 54(12):92–103, 2011.

[6] Luca Console, Daniele Theseider Dupré, and Pietro Torasso. A theory of diag-
nosis for incomplete causal models. In Proceedings of the 11th international joint
conference on Artificial intelligence - Volume 2, IJCAI’89, pages 1311–1317, San
Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

[7] Luca Console and Pietro Torasso. Hypothetical reasoning in causal models. Inter-
national Journal of Intelligent Systems, 5(1):83–124, 1990.

[8] Luca Console and Pietro Torasso. A spectrum of logical definitions of model-based
diagnosis. Computational Intelligence, 7:133–141, 1991.

[9] Luca Console and Pietro Torasso. Automated diagnosis. Intelligenza Artificiale,
3(1-2):42–48, 2006.

[10] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity
and Expressive Power of Logic Programming. ACM Computing Surveys, 33(3):374–
425, 2001.

127

[11] Johan de Kleer and James Kurien. Fundamentals of model-based diagnosis. In
IFAC Symposium SAFEPROCESS 2003, pages 25–36. Elsevier, 2003.

[12] Thomas Eiter. SMS and ASP: Hype or TST? In Maria Garcia de la Banda and
Enrico Pontelli, editors, ICLP, volume 5366 of Lecture Notes in Computer Science,
pages 77–82. Springer, 2008.

[13] Thomas Eiter, Wolfgang Faber, Michael Fink, and Stefan Woltran. Complexity
Results for Answer Set Programming with Bounded Predicate Arities. Annals of
Mathematics and Artificial Intelligence, 51(2-4):123–165, 2007.

[14] Thomas Eiter, Wolfgang Faber, Christoph Koch, Nicola Leone, and Gerald Pfeifer.
DLV - a system for declarative problem solving. CoRR, cs.AI/0003036, 2000.

[15] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. The diagnosis
frontend of the dlv system. AI Communications, 12:12–1, 1999.

[16] Thomas Eiter, Michael Fink, Thomas Krennwallner, and Christoph Redl. Conflict-
driven ASP solving with external sources. TPLP, 12(4-5):659–679, 2012.

[17] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer set pro-
gramming: A primer. In Sergio Tessaris, Enrico Franconi, Thomas Eiter, Claudio
Gutierrez, Siegfried Handschuh, Marie-Christine Rousset, and Renate A. Schmidt,
editors, Reasoning Web, volume 5689 of Lecture Notes in Computer Science, pages
40–110. Springer, 2009.

[18] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. A
uniform integration of higher-order reasoning and external evaluations in answer-set
programming. In Leslie Pack Kaelbling and Alessandro Saffiotti, editors, IJCAI,
pages 90–96. Professional Book Center, 2005.

[19] Onofrio Febbraro, Nicola Leone, Giovanni Grasso, and Francesco Ricca. JASP: A
framework for integrating answer set programming with java. In Gerhard Brewka,
Thomas Eiter, and Sheila A. McIlraith, editors, KR. AAAI Press, 2012.

[20] Onofrio Febbraro, Kristian Reale, and Francesco Ricca. ASPIDE: Integrated de-
velopment environment for answer set programming. In James P. Delgrande and
Wolfgang Faber, editors, LPNMR, volume 6645 of Lecture Notes in Computer Sci-
ence, pages 317–330. Springer, 2011.

[21] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten
Schaub, and Marius Thomas Schneider. Potassco: The Potsdam answer set solving
collection. AI Commun., 24(2):107–124, 2011.

[22] Martin Gebser, Jörg Pührer, Torsten Schaub, and Hans Tompits. A meta-
programming technique for debugging answer-set programs. In Dieter Fox and
Carla P. Gomes, editors, AAAI, pages 448–453. AAAI Press, 2008.

128

[23] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic pro-
gramming. In R. Kowalski and K. Bowen, editors, 5th Conference on Logic Pro-
gramming, pages 1070–1080. MIT Press, 1988.

[24] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and
disjunctive databases. Next Generat. Comput., 9(3–4):365–386, 1991.

[25] Lane A. Hemachandra. The strong exponential hierarchy collapses. J. Comput.
Syst. Sci., 39(3):299–322, 1989.

[26] Tomi Janhunen and Ilkka Niemelä. Gnt - a solver for disjunctive logic programs.
In Lifschitz and Niemelä [33], pages 331–335.

[27] Kurt Konolige. Abduction versus closure in causal theories. Artif. Intell., 53(2-
3):255–272, 1992.

[28] Robert A. Kowalski. Algorithm = logic + control. Commun. ACM, 22(7):424–436,
1979.

[29] M. W. Krentel. The complexity of optimization problems. Journal of Computer
and System Sciences, 36(3):490–509, 1988.

[30] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Si-
mona Perri, and Francesco Scarcello. The DLV system for knowledge representation
and reasoning. ACM Transactions on Computational Logic, 7:499–562, 2002.

[31] Harry R. Lewis. Complexity results for classes of quantificational formulas. J. Com-
put. Syst. Sci., 21(3):317–353, 1980.

[32] Yuliya Lierler and Marco Maratea. Cmodels-2: SAT-based answer set solver en-
hanced to non-tight programs. In Lifschitz and Niemelä [33], pages 346–350.

[33] Vladimir Lifschitz and Ilkka Niemelä, editors. Logic Programming and Nonmono-
tonic Reasoning, 7th International Conference, LPNMR 2004, Fort Lauderdale, FL,
USA, January 6-8, 2004, Proceedings, volume 2923 of Lecture Notes in Computer
Science. Springer, 2004.

[34] Fangzhen Lin and Yuting Zhao. Assat: Computing answer sets of a logic program
by sat solvers. In Rina Dechter and Richard S. Sutton, editors, AAAI/IAAI, pages
112–118. AAAI Press / The MIT Press, 2002.

[35] Peter Lucas. Symbolic diagnosis and its formalisation. The Knowledge Engineering
Review, 12:109–146, 1997.

[36] Johannes Oetsch, Jörg Pührer, and Hans Tompits. Catching the ouroboros: On
debugging non-ground answer-set programs. TPLP, 10(4-6):513–529, 2010.

[37] Johannes Oetsch, Jörg Pührer, and Hans Tompits. The sealion has landed: An IDE
for answer-set programming—preliminary report. CoRR, abs/1109.3989, 2011.

129

[38] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[39] David Poole. A logical framework for default reasoning. Artif. Intell., 36(1):27–47,
1988.

[40] David Poole. Representing knowledge for logic-based diagnosis. In FGCS, pages
1282–1290, 1988.

[41] David Poole. Normality and faults in logic-based diagnosis. In IJCAI, pages 1304–
1310, 1989.

[42] Harry E. Pople. On the mechanization of abductive logic. In Nils J. Nilsson, editor,
IJCAI, pages 147–152. William Kaufmann, 1973.

[43] Raymond Reiter. A logic for default reasoning. Artif. Intell., 13(1-2):81–132, 1980.

[44] Raymond Reiter. A theory of diagnosis from first principles. Artif. Intell., 32(1):57–
95, 1987.

[45] Tommi Syrjänen and Ilkka Niemelä. The Smodels system. In Thomas Eiter, Wolf-
gang Faber, and Miroslaw Truszczynski, editors, LPNMR, volume 2173 of Lecture
Notes in Computer Science, pages 434–438. Springer, 2001.

[46] Klaus W. Wagner. Bounded query classes. SIAM J. Comput., 19(5):833–846, 1990.

130

APPENDIX A
Appendix

A.1 Source Code

This section contains the entire DLV source code developed in Chapter 7.

Effect Mapping

%%% P.lp (Section 7.3.2, page 99) %%%

node(X) :- e(_,X,_).

node(Y) :- e(_,_,Y).

indir(X,Y) :- e(lane,X,Y).

indir(X,Y) :- e(straight,X,Y).

speed(5). speed(10). speed(20). speed(30).

speed(40). speed(50). speed(60). speed(70).

speed(80). speed(90). speed(100). speed(110).

speed(120). speed(130).

lang(ls). lang(lm).

f(F,X,Y) :- fl(L,F,X,Y).

% direct mapping for measure

fl(lm,F,X,Y) :- use(m(T,X,Y)), m2f(T,F).

m2f(spl(K),maxspeed(K)) :- speed(K).

m2f(traffic,nec).

m2f(no_traffic,ban).

131

% sign effect: start/end expression

expr_start(F,X) :- use(s(T,X)), start_of(T,F).

expr_end(F,X) :- use(s(T,X)), end_of(T,F).

end_of(T,F) :- expl_end_of(T,F).

end_of(T,F) :- impl_end_of(T,F).

start_of(start(T),F) :- m2f(T,F).

expl_end_of(end(T),F) :- m2f(T,F).

impl_end_of(start(spl(K)),maxspeed(J)) :- speed(K), speed(J), K!=J.

% base case and propagation

fl(ls,F,X,Y) :- expr_start(F,X), indir(X,Y).

fl(ls,F,Y,Z) :- fl(ls,F,X,Y), indir(X,Y), indir(Y,Z),

not block_prop(F,Y).

block_prop(F,Y) :- fl(ls,F,X,Y), indir(Y,Z), expr_end(F,Y).

block_prop(F,Y) :- fl(ls,F,X,Y), e(straight,X,Y), has_perm_inc(ls,Y),

not expr_start(F,Y).

has_perm_inc(L,Y) :- e(left,X,Y), lang(L), not fl(L,ban,X,Y).

has_perm_inc(L,Y) :- e(right,X,Y), lang(L), not fl(L,ban,X,Y).

% non-extending types

block_prop(ban,X) :- node(X).

block_prop(nec,X) :- node(X).

% no_turn

fl(ls,ban,X,Y) :- use(s(no_turn(T),X)), e(T,X,Y).

fl(ls,ban,X,Y) :- use(s(no_turn(left),X)), e(uturn,X,Y).

% mand_turn (omitted compound ones like left_straight)

fl(ls,nec,X,Y) :- use(s(mand_turn(T),X)), e(T,X,Y).

fl(ls,ban,X,Y) :- use(s(mand_turn(T),X)), e(ET,X,Y), T!=ET.

% no_entry

fl(ls,ban,X,Y) :- use(s(no_entry,Y)), e(_,X,Y).

Conflict Specification

%%% Sp.lp (Section 7.3.2, page 102) %%%

% bad announcement ends

c(bad_end(F),Y) :- indir(X,Y), indir(Y,Z),

fl(ls,F,X,Y), not fl(ls,F,Y,Z),

needs_expr_end(F), not expr_end(F,Y).

c(cant_end(F),Y) :- use(s(T,Y)), expl_end_of(T,F), indir(X,Y),

132

not fl(ls,F,X,Y).

needs_expr_end(maxspeed(K)) :- speed(K).

% overlap

c(overlap(L,F1,F2),X) :- fl(L,F1,X,Y), fl(L,F2,X,Y), contr(F1,F2).

contr(motorway,residential_area).

contr(maxspeed(K),maxspeed(J)) :- speed(K), speed(J), K<J.

contr(ban,nec).

% no way out

c(no_way_out(lm),X) :- use(m(_,X,_)), not way_out(lm,X).

c(no_way_out(ls),X) :- use(s(_,X)), not way_out(ls,X).

way_out(L,X) :- lang(L), out_node(X).

way_out(L,X) :- lang(L), reachable(L,X,Y), way_out(L,Y).

reachable(L,X,Y) :- lang(L), e(T,X,Y), not fl(L,ban,X,Y), T!=uturn.

reachable(L,X,Y) :- e(uturn,X,Y), fl(L,nec,X,Y).

reachable(L,X,Z) :- reachable(L,X,Y), reachable(L,Y,Z).

Correspondence Conflicts

%%% Corr.lp (Section 7.3.3, page 109) %%%

c(unjustified(F),X) :- fl(ls,F,X,Y), not fl(lm,F,X,Y).

c(unannounced(F),X) :- fl(lm,F,X,Y), not fl(ls,F,X,Y).

Pool

%%% pool.lp (Section 7.3.1, page 98, and Section 7.3.3, page 107) %%%

pool(I) :- input(I).

use(I) v -use(I) :- pool(I).

del(I) :- -use(I), input(I).

add(I) :- use(I), not input(I).

keep(I) :- use(I), input(I).

% proposal of additional signs and measures

pool(s(TS,X)) :- pool(m(TM,X,Y)), m2f(TM,F), start_of(TS,F).

pool(s(TS,Y)) :- pool(m(TM,X,Y)), m2f(TM,F), expl_end_of(TS,F).

pool(m(T,X,Y)) :- pool(s(start(T),X)), indir(X,Y).

pool(m(T,X,Y)) :- pool(s(end(T),Y)), indir(X,Y).

pool(m(T,X,Y)) :- pool(m(T,Z,X)), indir(Z,X), indir(X,Y).

133

Eval

%%% eval.lp (Section 7.3.2, page 101) %%%

use(I) :- input(I).

-use(I) :- pool(I), not input(I).

Diagnosis

%%% diagnosis.lp (Section 7.3.3, page 105) %%%

:- add(I).

:~ keep(I).

Repair

%%% repair.lp (Section 7.3.3, page 106) %%%

:- c(_,_).

:~ del(I).

:~ add(I).

Adjustment

%%% s-adj.lp (Section 7.3.3, page 112) %%%

:- c(_,_).

:~ del(s(T,X)).

:~ add(s(T,X)).

:- del(m(T,X,Y)).

:- add(m(T,X,Y)).

%%% m-adj.lp (Section 7.3.3, page 112) %%%

:- c(_,_).

:- del(s(T,X)).

:- add(s(T,X)).

:~ del(m(T,X,Y)).

:~ add(m(T,X,Y)).

Generation

%%% s-gen.lp (Section 7.3.3, page 113) %%%

:- c(_,_).

134

:- del(s(T,X)).

:~ add(s(T,X)).

:- del(m(T,X,Y)).

:- add(m(T,X,Y)).

%%% m-gen.lp (Section 7.3.3, page 114) %%%

:- c(_,_).

:- del(s(T,X)).

:- add(s(T,X)).

:- del(m(T,X,Y)).

:~ add(m(T,X,Y)).

Flexible Preferences

%%% m-high.lp (Section 7.3.3, page 116) %%%

:- c(_,_).

:~ del(m(T,X,Y)). [1:2]

:~ add(m(T,X,Y)). [1:2]

:~ del(s(T,X)). [1:1]

:~ add(s(T,X)). [1:1]

Graph

%%% G.lp (Section 7.3.2, page 99) %%%

e(lane,x1,x2). e(lane,x2,x3). e(straight,x3,y1). e(lane,y1,y2).

e(lane,y2,y3). e(lane,z3,z2). e(lane,z2,z1). e(straight,z1,u3).

e(lane,u3,u2). e(lane,u2,u1). e(lane,w2,w1). e(lane,v1,v2).

e(right,x3,w2). e(right,v2,y1). e(left,v2,u3). e(left,z1,w2).

e(uturn,x1,u1). e(uturn,u1,x1). e(uturn,x2,u2). e(uturn,u2,x2).

e(uturn,x3,u3). e(uturn,u3,x3). e(uturn,y1,z1). e(uturn,z1,y1).

e(uturn,y2,z2). e(uturn,z2,y2). e(uturn,y3,z3). e(uturn,z3,y3).

e(uturn,w2,v2). e(uturn,v2,w2). e(uturn,w1,v1). e(uturn,v1,w1).

in_node(x1). in_node(v1). in_node(z3).

out_node(u1). out_node(w1). out_node(y3).

Input

%%% I1.lp (Section 7.3.2, page 99) %%%

135

input(s(start(spl(30)),x2)).

input(s(end(spl(30)),y2)).

%%% I2.lp (Section 7.3.3, page 110) %%%

input(m(spl(30),x2,x3)).

input(m(spl(30),x3,y1)).

input(m(spl(30),y1,y2)).

input(m(spl(40),y1,y2)).

input(m(spl(40),y2,y3)).

input(s(start(spl(30)),x2)).

input(s(end(spl(40)),y3)).

%%% I3.lp (Section 7.3.3, page 112) %%%

input(s(start(spl(40)),y1)).

input(s(end(spl(40)),y2)).

input(m(spl(30),x2,x3)).

input(m(spl(30),x3,y1)).

input(m(spl(40),y1,y2)).

%%% I4.lp (Section 7.3.3, page 114) %%%

input(s(start(spl(30)),x2)).

input(s(start(spl(30)),y1)).

input(s(end(spl(30)),y2)).

%%% I5.lp (Section 7.3.3, page 114) %%%

input(m(spl(30),x2,x3)).

input(m(spl(30),x3,y1)).

input(m(spl(30),y1,y2)).

%%% I6.lp (Section 7.3.3, page 116) %%%

input(m(spl(30),x2,x3)).

input(m(spl(40),x2,x3)).

input(m(spl(30),x3,y1)).

input(m(spl(40),y1,y2)).

input(s(start(spl(30)),x2)).

input(s(start(spl(30)),y1)).

A.2 Translation

Across different countries, similar traffic signs and traffic measures are applied. However,
there are usually significant differences in the exact meaning of comparable concepts,
which makes direct translations impossible. We made use of pragmatic, approximate
translations as listed in Table A.1.

136

Translation Original Austrian term

additional panel Zusatztafel

design speed Bauartgeschwindigkeit

frontage road Nebenfahrbahn

Give Way Vorrang geben

gross vehicle weight (GVW) (höchst-) zulässiges Gesamtgewicht

halting ban Halteverbot

highway Autobahn

Road Traffic Regulations Straßenverkehrsordnung (StVO)

home zone Wohnstraße

lane Fahrpur

(driving) direction, direction of travel Fahrtrichtung

motorway Autostraße

parking ban Parkverbot

passenger car Personenkraftwagen (PKW)

pedestrian zone Fußgängerzone

one-way (street) Einbahn

Mandatory Left Turn Vorgeschriebe Fahrtrichtung nach links

Mandatory U-turn Umkehrgebot

No Entry Einfahrt verboten

No Left Turn Abbiegeverbot nach links

No U-turn Umkehrverbot

No Vehicles Fahrverbot

residential area Ortsgebiet

roundabout Kreisverkehr

traffic measure Verkehrliche Maßnahme

traffic regulation Verkehrsvorschrift

traffic regulation order Verkehrliche Verordnung

traffic sign Verkehrszeichen

vehicle owner Fahrzeughalter

Table A.1: Used translations of the original Autrian traffic regulation terms

137

	Introduction
	Motivation
	Goals and Scope
	Contributions
	Thesis Organization

	Preliminaries
	Diagnosis
	Answer Set Programming
	Declarative Programming
	Logic Programming under the Answer Set Semantics
	Restrictions

	Computational Complexity

	Domain Analysis
	Street Maps
	Traffic Measures and Traffic Signs
	Inconsistencies
	Use Cases
	Consistency Evaluation
	Diagnosis
	Repair
	Correspondence and Strict Repair

	Technical Approach
	Challenges
	Answer Set Programming

	Formal Model
	Street Graph
	Traffic Measures and Traffic Signs
	Effects and Conflicts
	Effect Mapping
	Conflict Specification

	Reasoning Tasks
	Consistency Evaluation
	Diagnosis
	Repair
	Correspondence
	Strict Repair
	Adjustment and Generation

	Computational Complexity
	Entailment
	Consistency
	Unique Minimal Diagnosis
	Correspondence
	Repair
	Summary

	Implementation
	Answer Set Programming
	Answer Set Programming as Logic
	Answer Set Programming as Implementation Language
	The DLV System

	Uniform Approach for Reasoning Tasks
	Consistency Evaluation
	Correspondence
	Diagnosis
	Repair
	Strict Repairs
	Adjustment & Generation

	Executable Realization
	Pool
	Formal Model
	Reasoning Tasks

	Conclusion
	Future Work

	Bibliography
	Appendix
	Source Code
	Translation

