
Planning in Graph Databases
under Description Logic

Constraints
DIPLOMARBEIT

zur Erlangung des akademischen Grades

Master of Science (M.Sc.)

im Rahmen des Erasmus-Mundus-Studiums

Computational Logic

eingereicht von

Shqiponja Ahmetaj
Matrikelnummer 1228388

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: O.Univ.-Prof. Dr.techn. Thomas Eiter
Mitwirkung: Prof.Dr. Diego Calvanese, Univ.-Ass. Dr.techn. Mantas Šimkus

Wien, 16.09.2013
(Unterschrift Verfasserin) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Planning in Graph Databases
under Description Logic

Constraints
MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science (M.Sc.)

in

Computational Logic

by

Shqiponja Ahmetaj
Registration Number 1228388

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: O.Univ.-Prof. Dr.techn. Thomas Eiter
Assistance: Prof.Dr. Diego Calvanese, Univ.-Ass. Dr.techn. Mantas Šimkus

Vienna, 16.09.2013
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Shqiponja Ahmetaj
Grornergasse 3, 1060 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Acknowledgements

I would like to take this chance to express gratitude towards all those people who made this
thesis possible.

I would like to thank my supervisor Prof. Diego Calvanese for his discussions, suggestions
and ideas. I am very grateful to Prof. Thomas Eiter for his useful advices, support, guidance and
for being ready to offer his help when is needed.

I also want to sincerely thank Mantas Simkus, for his feedback and comments. I am grate-
ful for all he has taught me, for the time he has devoted for this thesis, for all his patience,
encouragement and guidance. Without his support and trust, this thesis would have not been
possible.

My thanks extend to my parents Mereme and Shemun for everything they have given me.
To my brother and sisters, for being such an important and wonderful part of my life. My thanks
also go to my family and especially to my uncle Isa and uncle Imer, for their support and for
believing in me.

Finally, I would like to thank my love Bojken, for all his patience, love, support and for his
effort for remaining close despite the distance.

iii

Abstract

Graph databases are gaining increasing importance and they are fundamental for storing, for ex-
ample, web data in RDF form, but also other forms of semi-structured data. Given the very large
amount of data currently available in these stores, efficient management of these data becomes
harder and harder. In addition, the development of automated management tools for them is be-
coming a pressing problem. As in traditional databases, integrity constraints on graph databases
are important to capture the semantics of domain of interest. One of the tools to modify this data
are transactions. A transaction encapsulates a sequence of modifications to the data which are
executed and committed as a unit. Description Logics (DLs) are decidable languages that have
been strongly advocated for managing data repositories, for expressing integrity constraints and
they are particularly natural for talking about graph databases, as argued in some recent work.
A challenging topic is planning in such context. Planning is a classical topic and has been an
important problem in Artificial Intelligence for over five decades.

In this thesis, we propose a framework for planning in graph databases. To the best of our
knowledge, this is the first attempt to formally define planning in such setting. We use an ex-
pressive action language that is already defined by an earlier work. This language is expressed
through a DL that has the feature to introduce new values to the data. Graph databases are
seen as finite DL interpretations. We identify some interesting reasoning tasks, relevant for the
setting we consider. The standard one is plan-existence, which corresponds in trying to find
a plan for a given instance of a planning problem. We investigate two variants of the prob-
lem. The difference between them is that in one of them we do not allow the transactions to
introduce fresh constants. We prove that deciding plan-existence for the variation without fresh
constants is PSpace-complete. After applying several syntactic restrictions, we are able to deter-
mine NlogSpace and NP-hard cases. We are also able to provide several polynomial algorithms
for some other cases. In addition, to get some insights to the relationship between our formal-
ism and STRIPS, which is a classical approach to planning, we investigate whether planning
in our setting can be reduced to STRIPS. We show that such encoding is possible under some
syntactical restrictions. In this way, STRIPS planners can be exploited to solve our planning
problem.

Furthermore, we study the variation, where the transactions are allowed to introduce fresh
constants. Intuitively, this makes planning more involved. We are able to single out some cases
in this setting that can be reduced to planning without fresh constants. In this way we prove that
those cases are in PSpace.

v

Kurzfassung

Graph-Datenbanken gewinnen zunehmends aufgrund ihrer Verwendung für RDF Daten an Be-
deutung. Sie sind beispielsweise fundamental für die Speicherung von Web-Daten in RDF Form,
aber auch für andere Arten von semi-strukturierten Daten. Anbetrachts der sehr großen Daten-
menge, die in Speichern dieses Formats derzeit vorhanden ist, wird effizientes Management der
Daten immer schwieriger. Zusätzlich wird die Entwicklung von automatisierten Management-
Tools für die Daten ein dringliches Problem. Wie in traditionellen Datenbanken sind Integritäts-
bedingungen für Graph-Datenbanken wichtig um die Semantik einer Domäne zu erfassen. Eines
der Werkzeuge zur Modifikation der Daten sind Transaktionen. Eine Transaktion kapselt eine
Folge von Datenmodifikationen, die als Einheit ausgeführt und abgeschlossen werden. Beschrei-
bungslogiken (engl. Description Logics, DLs) sind entscheidbare Sprachen, deren Verwendung
für Datenmanagement nachdrücklich befoürwortet worden ist um Integritätsbedingungen auszu-
drücken; diese Sprachen eignen sich in natürlicher Weise für Aussagen über Graph-Datenbanken
wie vor kurzem in einer Arbeit aufgezeigt wurde. Eine Herausforderung ist Planen in diesem
Kontext. Planen ist ein klassisches Gebiet und seit mehr als 50 Jahren ein wichtiges Problem in
der künstlichen Intelligenz.

In dieser Arbeit schlagen wir ein Rahmenwerk für Planen in Graph-Datenbanken vor. Nach
unserem Wissen ist dies der erste Versuch, Planen in diesem Bereich formal zu definieren. Wir
verwenden dazu eine ausdrucksstarke Aktionssprache, die bereits in einer vorliegenden Arbeit
definiert worden ist. Sie wird in einer DL formuliert, die neue Werte für Daten einführen kann;
Graph-Datenbanken werden als endliche Interpretationen dieser DL gesehen. Wir identifizieren
einige Schluss-Probleme, die in diesem Zusammenhang relevant sind. Das Standardproblem ist
Plan-Existenz, welches darin besteht, die Existenz eines Plans, d.h. einer Lösung für ein Pla-
nungsproblem, zu entscheiden. Wir untersuchen dabei zwei Varianten dieses Problems, wobei
der Unterschied darin besteht, dass in der einen Variante Transaktionen keine neuen Daten-
werte einführen dürfen. Wir zeigen dass Plan-Existenz für die Variante ohne neue Konstan-
ten PSPACE-vollständig ist. Unter der Verwendung von einigen syntaktischen Einschränkungen
können wir Fälle gewinnen, in denen einerseits das Problem in NLOGSPACE bzw. in polyno-
mieller Zeit lösbar ist, wobei wir Algorithmen angeben, auf der anderen Seite aber auch NP-hart
ist. Um zusätzlich eine besseres Verständnis des Verhältnisses von unserem Formalismus zum
STRIPS Ansatz zu erhalten, der einen klassischer Planungsansatz darstellt, untersuchen wir, ob
Planen in unserem Modell auf STRIPS-Planen reduziert werden kann. Wir zeigen dass eine sol-
che Transformation unter bestimmten syntaktischen Einschränkungen möglich ist. Auf diesem
Wege können STRIPS-Planner zur Lösung unseres Planungsproblems genutzt werden.

vii

Wir untersuchen weiters die Variante des Problems in der es Transaktionen erlaubt ist, neue
Werte einzuführen. Intuitiv gesehen wird macht dies das Planen schwieriger. Es gelingt uns,
bei diesem Ausgang einige Fälle zu ermitteln, in denen das Planungsproblem auf den Fall des
Planens ohne neue Werte reduziert werden kann. Auf diesem Wege zeigen wir, dass diese Fälle
in PSPACE liegen; es bleibt offen, ob dieses Resultat verbessert werden kann. Wir zeigen dabei
auch Merkmale auf, die nach unserer Meinung die Transaktionen dazu anhalten, neue Werte
einzuführen.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 3
1.3 Structure of the Thesis . 8

2 Preliminaries 11
2.1 The Description Logic ALCHOIQ . 11

2.1.1 Syntax . 12
2.1.2 Semantics . 13

2.2 Automated Planning . 15
2.2.1 Abstract Planning . 15
2.2.2 Reasoning Problems . 16

2.3 STRIPS Planning . 19
2.3.1 Propositional STRIPS Planning . 19
2.3.2 Complexity results . 21
2.3.3 Extensions . 21

2.4 Turing Machines . 22

3 Description Logic For Database Manipulation 25
3.1 ALCHOIQbr for Database Manipulation . 25

3.1.1 ALCHOIQbr Syntax . 26
3.1.2 ALCHOIQbr Semantics . 27

3.2 Action Language . 27
3.3 Interpretation Updates . 28

3.3.1 Examples . 30

4 Planning in Graph Databases 33
4.1 Planning language . 34

4.1.1 Graph Database Planning Problem . 34
4.1.2 Examples . 36

4.2 Reasoning Problems For GDPP . 40

5 Deciding Fixed Domain Plan-Existence 41

ix

5.1 PSPACE Upper-Bound . 42
5.1.1 Intuition . 43
5.1.2 FDPE Algorithm . 44
5.1.3 Complexity of FDPE . 45

5.2 PSPACE-Hardness . 46
5.2.1 DTM Encoding to Fixed Domain Planning Problem 46
5.2.2 Correctness of the Encoding . 47

5.3 Fixed Domain Plan Existence with Syntactic Restrictions 49
5.3.1 NP-Hardness for the Case of Atomic Actions with Concept Names . . . 49
5.3.2 The Case of Positive Goals . 54
5.3.3 The Case of Negative Goals . 63
5.3.4 Analysis of Subcases . 68

5.4 Encoding to Propositional STRIPS Planning 83
5.4.1 Reduction . 83
5.4.2 Correctness of the Encoding . 85
5.4.3 Analysis . 86

6 Deciding General Plan-Existence 89
6.1 Triggers For New Constants . 89
6.2 General Plan Existence With Syntactic Restrictions 93

7 State of the Art 103
7.1 Automated Planning . 103
7.2 Graph Databases . 105
7.3 ABox Updates and Planning in Description Logics 105

8 Conclusions 107
8.1 Results . 107
8.2 Further Research . 108

Bibliography 111

x

CHAPTER 1
Introduction

Databases are collections of data that model relevant aspects of reality. Many different database
models have been presented and used since they first emerged [45]. One of them, gaining popu-
larity recently are graph databases.

There is an interesting history of development of graph databases, presented in the paper of
Angles et al. [1], according to which graph databases took off in the eighties and flourished by
the first half of the nineties. But then the attention moved toward semi-structured data which did
not have links to the graph database work in the nineties, and the emergence of XML became
the main focus of those working on hypertext. Moreover, since the tree-like structure became
sufficient for most applications, people working on graph databases moved to particular applica-
tions like spatial data, Web, and documents. Thus, according to Angels et al. [1], the influence
of graph databases gradually died and this topic almost disappeared. Only recently, the need to
manage information with graph-like nature has reestablished the relevance of this area leading
to the renaissance of graph data and graph thinking.

In contrast planning has been an important problem in Artificial Intelligence, ever. Several
planning approaches have been developed in extensive work over the last decades. Planning can
be considered as the process that involves thinking ahead for providing a sequence of actions,
ordered in a way to satisfy some pre-defined requirements and to achieve some pre-stated objec-
tives [40]. Intuitively, thinking in advance in planning would require not only action selection,
but also action sequencing by anticipating their expected effects. In planning, actions are viewed
as means to change and update states of the world. They are arranged and organized with the aim
to satisfy some requirements on the evolution of these states. These requirements, in planning
terminology, are called goals and the combinations of actions to achieve these goals are called
plans. A planning problem is then to find a plan given actions and a goal [21]. An example of a
requirement for a robot is that of carrying a container and move it from one location to another.
A large variety of approaches to planning have been developed over the last decades. One of
them, a prototypical logic-based planning approach is STRIPS-planning [18], which will also
be considered in this thesis.

1

For more information about graph databases and planning, we refer the reader to Chapter 7,
which reviews the ‘State of the Art’,.

1.1 Motivation

Currently, there exists a wide variety of formal representations of collections of data. They
are typically organized to model relevant aspects of reality (for example, storing the project
database of some research institute), in a way that supports processes requiring this information
(for example, finding the employees that work for some specific project). One of several ways
to organize these data is through relational databases, first proposed by Codd [10] in 1970.
They are represented as collections of tables of data items, formally described and organized
according to the relational model. Another form of organizing collections of data is through
graph databases, which have gained a particular importance recently. The latter in comparison
to relational databases has some differences and in some aspects also advantages. For example,
as stated by Angles et al. [1], the relational model is geared towards simple record-type data,
where the data structure is known in advance (airline reservations, accounting, inventories, etc.).
Furthermore, it is difficult to extend these databases, since the schema is fixed and it is not
easy to integrate different schemas. The query language cannot explore the underlying graph of
relationships among the data, such as paths, neighborhoods, patterns [1].

Even though graph databases re-emerged only in the last few years, graph databases have
helped to solve important problems in the areas of social networking, master data management,
and more. They are gaining increasing importance and are fundamental for storing, for example,
web data in the form of RDF [5], and other forms of semi-structured data.

In addition, given the very large amount and complexity of data currently available in the
stores of this format, managing these data becomes harder and harder. Also, graph databases may
evolve as a result of operations carried out by users or applications. Therefore, the development
of automated management tools for them is becoming a pressing problem. A basic classical
management tool are transactions. A transaction encapsulates a sequence of modifications to the
data, which are executed and committed as a unit. The acronym ACID [25] describes some ideal
properties of a database transaction: Atomicity, Consistency, Isolation, and Durability.

There is a recent work by Calvanese et al. [8], on transactions in graph databases using
Description Logics (DLs). The transactions are expressed through Description Logics (DLs) [2].
They have the property of being decidable languages. Furthermore, they have been strongly
advocated for managing data repositories [30], and they are particularly natural for talking about
graph databases [8]. In turn, graph databases can be naturally seen as finite DL interpretations. In
[8], Calvanese et al. prove that verifying whether the constraints are still satisfied in the database
state resulting from the execution of a given action, for every possible initial state satisfying
them, is decidable. This is essentially the consistency property of database transactions. A
transaction is consistent if its execution over a legal database state never leads to an illegal one.

Inspired by the positive decidability results for transaction verification, in this thesis we ex-
plore planning in graph databases with sequences of transactions. Planning, which is considered
a key ability for intelligent agents, has been an important problem in Artificial Intelligence for
over five decades. A large variety of techniques has been developed during this period. Planning

2

consists in determining future sequences of actions for achieving certain goals and automated
planning studies this process computationally. In addition, planning involves the representation
of actions and world models, reasoning about the effects of actions, and evolving strategies for
efficiently searching the space of possible sequences that lead to one of the goal states.

This thesis is, to our best knowledge, the first attempt to formally define and investigate the
planning problem in graph databases. Not only, we will propose a framework for planning in
graph databases, but we also will outline several reasoning tasks for this setting and provide a
deep analysis of one of them.

In the following section, we will give a brief description of our contributions in this thesis.

1.2 Contributions

Our main contributions in this thesis are the following.

1. Framework for Planning in Graph Databases. We propose a framework for planning
in graph databases as follows.

• Graph databases will be seen as finite DL interpretations. When convenient, for
representation reasons, we view an interpretation as a finite set I of atoms. An
example of a (part of) project database of some research institute is:

I ={ActiveProject(P20840), ActiveProject(P24090),

P roject(P20840), P roject(P24090),

Employee(E01), Employee(E03), Employee(E04), Employee(E07),

P rojectEmployee(E01), P rojectEmployee(E03), P rojectEmployee(E07),

P ermanentEmployee(E04),

worksFor(E01 ,P20840), worksFor(E03 ,P20840),

worksFor(E07 ,P24090)}.

• To express the changes to the databases, we consider an action language suitable for
our setting, adapted to compute insertions and deletions on these interpretations. It
is expressed through a DL called ALCHOIQbr. The action language consists of
atomic actions and transactions. Transactions are sequences of atomic actions com-
puted as a unit. We also define transactions with preconditions, expressed through
ALCHOIQbr formulas. This offers high expressibility. In particular, it has the
feature of allowing to introduce fresh constants through variables. We present an
example for each type of actions allowed in our language.
The following is an atomic action, which intuitively deletes from ProjectEmployee
all the employees that occur to a workfor link with some object in Project.

ρtr1 = ProjectEmployee	 ∃worksFor.Project

3

The following transaction is a sequence of three atomic actions. x is a variable that
can be instantiated by any constant.

ρtr2 = ActiveProject	 {x}◦
ConcludedProject⊕ {x}◦
ProjectEmployee	 ∃worksFor.{x}

Intuitively, the grounded ρtr2 , removes some project from ActiveProject, adds it to
ConcludedProject and removes from ProjectEmployee all employees that occur in a
workFor link with this project.

The following transaction ρtr3 with variables x, y, z transfers the employee x from
project y to project z:

ρtr3 = (x : Employee ∧ y : Project ∧ z : Project ∧ (x, y) : worksFor) ?
worksFor 	 {(x, y)} ◦ worksFor ⊕ {(x, z)} : ε

It first checks whether x is an employee, y and z are projects, and x works for y.
If yes, it removes the worksFor link between x and y and creates a worksFor link
between x and z. If any of the checks fails, it does nothing, which is described by ε.

• We formally define the updates on databases through a mappingMρtr from interpre-
tations to interpretations. It captures the result of application of a finite sequence of
transactions to an interpretation.
For instance, the interpretation I ′ = Mρtr1

(I) that reflects the status of the database
after transaction ρtr2 , where x is instantiated with P20840 looks as follows.

I ′ = Mρtr1
(I) ={ActiveProject(P24090),

P roject(P20840), P roject(P24090),

ConcludedProject(P20840),

Employee(E01), Employee(E03), Employee(E04),

Employee(E07),

P rojectEmployee(E07),

P ermanentEmployee(E04),

worksFor(E01 ,P20840), worksFor(E03 ,P20840),

worksFor(E07 ,P24090)},

Intuitively, ρtr2 applied to I , removes ActiveProject(P20840), ProjectEmployee(E01),
ProjectEmployee(E03), and adds ConcludedProject(P20840). The resulting inter-
pretation is I ′.

• Finally, we formally define what is a planning problem for the setting of graph
databases. An instance of a graph database planning problem is (I, Act,G), where
I is the initial state (a graph database), Act is a set of predefined transactions and G
is a goal formula. Intuitively, a plan for a planning problem is a sequence of actions

4

from the set of predefined transactions such that after applying to the initial state,
a state that satisfies the goal is produced. States are finite DL interpretations repre-
sented as sets of atoms.

E.g. assume I is given as above, Act is 〈ρtr1 , ρtr2 , ρtr3 〉, where each of them are given
as above and G is ConcludedProject(P20840). This planning instance requires
that the initial graph database is updated such that the new one contains the atom
ConcludedProject(P20840). Intuitively, a plan for this instance is 〈ρ2〉, where
x is instantiated with P20840 . It is obvious that the state produced by the plan
is I ′ = Mρtr1

(I), and I ′ satisfies ConcludedProject(P20840). In addition, no-
tice that for P20840 to be a ConcludedProject, the ρtr2 takes care that P20840 is
no longer an ActiveProject and no ProjectEmployee is working on this project any
more.

2. • We identify interesting reasoning problems that are suitable for our setting.

• We study one of them in depth, namely the plan-existence problem. Plan-existence
is the decision problem of checking whether there exists a plan for a given instance.
We formally state and analyze two variations of this problem for graph databases.

– Deciding Fixed Domain Plan-Existence. We will study in depth the plan-
existence decision problem for planning when only constants occurring the
initial instances are allowed. We prove that it is decidable and it is PSpace-
complete.

– Deciding General Plan-Existence. We will analyze the variation where fresh
constants are considered. We notice that the complexity increases. But is gen-
eral plan-existence decidable?

To get a better intuition on the difference between a fixed domain planning problem
and a general planning problem, we will illustrate with a simple example from the
project database of some research institute.

Example 1.1. Assume a graph database planning problem (I, Act,G) is given as
follows.

I ={Project(P20840),

Employee(E01), Employee(E03),

P rojectEmployee(E01),

worksFor(E01 ,P20840)},

Act = {ρtr1 , ρtr2 , ρtr3 },

where:
ρtr1 = (x : Project ∧ ¬(x : Employee)) ? worksFor ⊕ {(E03 , x)} : ε,
ρtr2 = (x : Project∧¬(x : Employee)) ? ProjectEmployee⊕∃worksFor.{x} :
ε,

5

ρtr3 = Project⊕ {x},

G = ProjectEmployee(E03) ∧ ¬worksFor(E03 ,P20840).

This example of a graph database planning problem asks for computing a sequence
of actions that reaches a state that contains ProjectEmployee(E03). Meanwhile, it
requires that no atom worksFor(E03 ,P20840) is added. In addition, the set of pre-
defined actions contains just two transactions with preconditions and a third atomic
action. The precondition in both of them is that the instantiation of variable x should
be a project and not an employee. Clearly, I satisfies ¬worksFor(E03 ,P20840).
To achieve a state that satisfies ProjectEmployee(E03), in the plan there should
be ρtr2 , since it is responsible for modifications to ProjectEmployee. By the pre-
condition, x cannot be instantiated in ρtr2 neither with E01 and nor with E03 . In
addition, by instantiating x with P20840 in ρtr2 , then worksFor(E03 ,P20840)
would be added by ρtr1 . It follows that there is no plan for this instance considering
the fixed domain planning problem.
But, by instantiating x with any fresh constant, there exists a plan. Indeed, a plan
might be as follows.

P = 〈(Project⊕ {P11111}),

(P11111 : Project∧¬(P11111 : Employee)) ? worksFor⊕{(E03 ,P11111)} : ε,

(P11111 : Project ∧ ¬(P11111 : Employee)) ?

ProjectEmployee⊕ ∃worksFor.{P11111} : ε〉.

A new project P11111 is initially added by the atomic action ρtr3 . Clearly, x instan-
tiated with P11111 satisfies the preconditions in ρtr1 and ρtr2 . Then by applying ρtr1
and ρtr2 , a desired plan for the general planning problem, is obtained. Clearly, there
are infinite possibilities of instantiations, hence infinite number of plans.

Intuitively, allowing new constants makes planning more difficult as this creates in-
finite search space.

3. Complexity Results for Fixed Domain Plan-Existence. We perform a thorough study
of the complexity of plan-existence over a fixed domain for the setting of graph databases.
The only constants allowed to be used by the actions, are the ones that occur in the initial
instance.

• By a reduction from a deterministic Turing machine, we are able to show that this
problem is PSpace-hard for the general setting.

• By giving a procedure that runs in non-deterministic polynomial space, we show that
plan-existence is also in PSpace, and thus we obtain PSpace-completeness.

• Next, we impose several syntactic restrictions on the type of transactions and goals
allowed as input. We are able to find by a reduction from 3-colorability that a rela-
tively basic case is already NP-hard. The case is defined as follows.

6

– The goal formula is a conjunction of ground positive and negative atoms ex-
pressed through atomic concepts, e.g.

ActiveProject(P20840) ∧ ¬Employee(E01) ∧ ¬ProjectEmployee(E03)

– The set of predefined actions is limited to atomic actions with atomic concepts
only, e.g. (ActiveProject⊕ Project).

In addition, we are able to encode this case to propositional STRIPS. When building
the reduction, we noticed that more then one atom in the pre-condition and negative
atoms in post-conditions are required.

• Further, we are interested in providing fine lines between tractable and intractable
cases. We consider several cases with different type of goal formulas. Here, we will
give an appetizer of some results.

– If goal formula is a conjunction of only positive atoms e.g.

Project(P20840)∧∃worksFor(E01 ,P20940)∧worksFor−(E01 ,P20840),

and actions are limited to concepts, roles, variables, existential quantification
and inversion, by reduction to reachability in graphs, we show that these cases
belong in NlogSpace. We call this: the positive case.

– If a goal requires the removal of several atoms over the same atomic concept,
e.g.

¬Project(P20840) ∧ ¬Project(P20040) ∧ ¬Project(P29840),

and actions are limited to atomic concepts only, we show by a reduction to the
positive case, that the complexity remains in NlogSpace.

– If goals are conjunctions of 2 atoms e.g. ¬ActiveProject(E01)∧Project(E01),
or ¬ActiveProject(E01)∧¬Project(E01), and actions are as above, we pro-
vide several algorithms that check plan-existence for these cases in Ptime. We
illustrate with examples the intuitions for each of them.

– Moreover, we investigate some relatively hard cases that seem to cause the NP-
hardness.

4. We investigate whether planning in our setting can be reduced to STRIPS planning. Con-
sidering such possible encoding one can get some insights about the relationships between
our formalism and the STRIPS formalism, which represents a classical approach to plan-
ning. In addition, in this way STRIPS planners can be exploited to solve our planning
problem. Since planning STRIPS is PSpace-complete, then theoretically there exists a
polynomial time reduction of fixed domain planning problem to STRIPS. In turn, when
trying to encode to STRIPS, we encountered several obstacles. Since STRIPS operators
are limited to only conjunctions of literals, it seems hard to express DL complex con-
cepts and roles to STRIPS. In addition, also disjunction seems not well supported by the

7

STRIPS language. Furthermore, since STRIPS operates on a fixed domain, it seems diffi-
cult to encode the general planning problem.

Actually, we are able to encode to STRIPS the NP-hard case, which we described above.
When translating the actions, we notice that negative atoms in post-conditions of operators
in STRIPS seem necessary. Thus, we observe that our translation maps to a PSpace-
complete STRIPS fragment. For the other low-complexity cases, we observe that a naive
translation to STRIPS leads to planning instances with negative atoms in post-conditions.
Such instances are PSpace-hard in STRIPS. For this reason, it seems difficult to infer
optimal upper-bound complexity results from such an encoding.

5. Complexity Results for General Plan-Existence. We study also the general planning
problem for the setting of graph databases, where variables hav e infinite possibilities of
instantiations.

• We aim at finding expressive settings, whose plans don’t require fresh constants.
Toward this aim, we are able to find a reduction to fixed domain plan-existence for
some cases, showing that they belong in PSpace. For instance assume the actions
are atomic and allow complex concepts and roles (except for universal restriction,
qualified number restrictions and negation) like the action:

ActiveProject⊕ ∃worksFor.(ConcludedProject t ∃worksFor−.{x})

and the goal formula is a conjunction of positive atoms e.g.

ActiveProject(E01) ∧ Project(E01) ∧ Employee(E01).

Then for every plan, there is a plan that reaches the goal using no fresh constants.

• We provide some examples of triggers that enforce the use of fresh constants by the
transactions. We illustrate with examples the intuition for each of them.

1.3 Structure of the Thesis

The rest of the thesis is structured as follows. We start with the formal definitions of the syntax
and semantics of the expressive description logicALCHOIQ in Chapter 2. Then, we give some
general background on planning defining the notion of a plan and a trajectory, followed by some
main reasoning tasks. In addition, in Chapter 2, we also provide an introduction to propositional
STRIPS planning and recall some definitions for deterministic Turing machines. Then, in Chap-
ter 3, we define an extension of ALCHOIQ called ALCHOIQbr, which is a DL adopted to
express updates in graph databases. Graph databases are seen as finite DL interpretations. We
continue by introducing a transaction language followed by definitions describing the way up-
dates of these interpretations occur. We conclude Chapter 3 by an example that illustrates these
updates. In Chapter 4, we define the planning language we adopt for our setting of planning
in graph databases. We instantiate the planning problem defined abstractly in Chapter 2 for a
graph database planning problem and we specify two variations of this problem, namely the

8

general planning problem and the fixed domain planning problem. We illustrate each of them
with an example and we outline some of the main reasoning tasks for them. One of these rea-
soning tasks is the decision problem that we will be analyzing during the rest of the thesis, called
plan-existence. Finally, with the framework ready, we are prepared to embark to the complexity
of fixed domain plan-existence in Chapter 6. We start by thoroughly studying the upper-bound
and lower-bound complexity of this problem, followed by investigating several subcases along
with their complexity. At the end of this chapter, for some cases, we also provide a reduction to
STRIPS-planning. Chapter 6 continues in the same line but for the general plan-existence deci-
sion problem. We start this chapter by giving some intuition about the behavior of this variation
along with several examples showing the main triggers that enforce the necessity for a fresh
constant in a plan. Further, we impose some restrictions and study some particular cases. In
Chapter 7, we present the state of the art by focusing on planning, graph databases and related
works. Lastly, in Chapter 8, we draw our conclusions and suggest some directions for further
research.

9

CHAPTER 2
Preliminaries

In this chapter, we recall the formal definitions of the syntax and semantics of the expres-
sive description logic ALCHOIQ, which is the basic description logic ALC extended with
role hierarchies (H), nominals (O), inverse properties (I) and qualified number restrictions
(Q). ALCHOIQ will serve as basis for defining, in Chapter 3, a new description logic,
ALCHOIQbr, extended with some properties, suitable for manipulation of graph databases.
Further, we give some general background on planning, in particular we define planning and
the notion of a trajectory in an abstract level. We instantiate it for a graph database planning
problem in Chapter 4. Next, some main reasoning tasks related to planning are introduced an
briefly discussed, since they represent very interesting decision problems for our setting. We will
focus our analysis and study only on the Plan-Existence decision problem in Chapter 6. Further,
we provide an introduction to propositional STRIPS planning, as the prototypical logic-based
approach to planning, which will be used in Section 5.4. We recall its basic definitions, syntax,
semantics followed by a brief overview of its complexity results and main extensions. In the last
section, we define Turing machines, which will serve as basis for showing a PSPACE-hardness
in Section 5.2.

2.1 The Description Logic ALCHOIQ

In this section, we recall some basic definitions about one of the most expressive description
logics, ALCHOIQ. Description logics (DLs) are a family of knowledge representation for-
malisms, often used to reason about various application domains in a structured and formally
well-understood way. The main ingredients of a DL are concepts, roles and individuals, which
intuitively represent classes of objects that share some properties, relations between objects and
specific domain objects respectively. Description logic knowledge bases usually consist of two
components: a TBox and an ABox. The TBox contains intensional knowledge in a terminological
form. It expresses general relations between the different concepts and roles in the knowledge
base through the subsumption (and/or equivalence) relation. The ABox contains extensional

11

knowledge in the form of assertions (also called Assertional knowledge), which describes con-
crete individual objects of the domain of discourse, and the relation between these objects and
the concepts and roles in the knowledge base.

The description logicALC [2] is a prototypical logic which is at the basis of most expressive
description logics. In fact, the expressive logic ALCHOIQ, which is the one we consider in
this thesis, is the extension of ALC with role hierarchy (H), nominals (O), inverse properties
(I) and qualified number restrictions (Q). What makes description logics particularly useful for
these purposes (especially ALCHOIQ) is that they are very expressive decidable languages
and particularly natural for talking about graph databases. We give a formal definition of the
syntax and semantics of ALCHOIQ.

2.1.1 Syntax

Definition 2.1. (ALCHOIQ-syntax). Let NC , NR, NI be pairwise-disjoint countably infinite
sets of atomic concepts (concept names), atomic roles (role names) and individual names re-
spectively.

Roles⇒ Roles are defined as follows:

• if r ∈ NR, then r and r− (the inverse of r) are ALCHOIQ roles.

Concepts⇒ The set of ALCHOIQ concepts is the smallest set such that:

• every concept name C ∈ NC is an ALCHOIQ concept,

• >, ⊥ are ALCHOIQ concepts,

• if o ∈ NI then {o} is an ALHOIQ concept (called nominal),

• if C and D are ALCHOIQ concepts and r is a ALCHOIQ role, then C uD, C tD,
¬C, ∀r.C, and ∃r.C are alsoALCHOIQ concepts (the last two are called universal and
existential restrictions, respectively), and

• if C is a ALCHOIQ concept, R an ALCHOIQ role and n ∈ N, then (≤ nr.C) and
(≥ nr.C) are alsoALCHOIQ concepts (called at-most and at-leat number restrictions).

The concepts ⊥, (C tD), (∀r.C), and (≤ nr.C) can be seen as abbreviations of ¬>, ¬(¬C u
¬D), ¬(∃r.¬C) and ¬(≥ (n+ 1)r.C).

Inclusion Axioms ⇒ Let C and D be ALCHOIQ concepts, A ∈ NC and let r1 and r2 be
ALCHOIQ roles.

• A concept inclusion axiom has form C v D. A concept equivalence has form C ≡ D
which is an abbreviation for C v D and D v C. A concept definition is a concept
equivalence A ≡ C.

• A role inclusion axiom has form r1 v r2.

12

Assertions⇒ Let C be an ALCHOIQ concept, r an ALCHOIQ role, and {o, o1, o2} ⊆ NI

be individual names. An assertion has form o : C or (o1, o2) : r.

TBoxes⇒ A TBox axiom is either a concept inclusion axiom or a role inclusion axiom. A TBox
T is a finite set of TBox axioms.

ABoxes ⇒ An ABox is a finite set of assertions. An ABox is normalized if it contains only
assertions of the form o : A or (o1, o2) : r where A and r are atomic concepts and atomic roles
respectively.

Axioms⇒ An Axiom is either an inclusion axiom or an assertion.

Knowledge Bases⇒ A knowledge base K consists of a TBox and an ABox.

2.1.2 Semantics

The semantics of ALCHOIQ is based on First-Order Logic interpretations. Intuitively, an in-
terpretation is a function that assigns to every concept a set of objects from a given interpretation
domain, to every role a binary relation over the domain, and to every individual a domain ele-
ment. Moreover, for the rest of the thesis, we will adopt the standard name assumption. Hence,
we may assume that 4I contains the set of individuals, and that for each interpretation I, we
have that oI = o, where oI ∈ 4I .

Below, we define it formally.

Definition 2.2. (ALCHOIQ Semantics) An interpretation I is a pair I = (4I , ·I) where
4I 6= ∅ is the domain and ·I is the interpretation function that assigns:

• to every concept name A ∈ NC a set AI ⊆ 4I ,

• to every role name r ∈ NR a set of pairs rI ⊆ 4I ×4I and

• to every individual name o ∈ NI an element oI = o ∈ 4I ,

The function ·I is extended to roles and concepts as follows:

• (r−)I = {〈o, o′〉 | 〈o′, o〉 ∈ rI},

• >I = 4I , ⊥I = ∅

• (C uD)I = CI ∩DI ,

• (C tD)I = CI ∪DI ,

• (¬C)I = 4I \ CI ,

• (∃r.C)I = {o ∈ 4I |∃o′.(o, o′) ∈ rI ∧ o′ ∈ CI},

• (∀r.C)I = {o ∈ 4I |∀o′.(o, o′) ∈ rI → o′ ∈ CI},

13

• (≥ nr.C)I = {o ∈ 4I |]{o′|(o, o′) ∈ rI ∧ o′ ∈ CI} ≥ n},

• (≤ nr.C)I = {o ∈ 4I |]{o′|(o, o′) ∈ rI ∧ o′ ∈ CI} ≤ n} and

• every nominal {o} ∈ NC is mapped to the singleton set {oI}, hence {o}I = {oI}.

We have denoted the cardinality of a set M by]M . Also notice that ∃r.C is semantically
equivalent to (≥ 1r.C).

Satisfaction of axioms in an interpretation is defined as follows:

• I |= C v D iff CI ⊆ DI ,

• I |= r1 v r2 iff rI1 ⊆ rI2 ,

• I |= o : C iff oI ∈ CI ,

• I |= (o1, o2) : r iff (oI1 , o
I
2) ∈ rI .

Moreover, an interpretation I satisfies an ABox if and only if I satisfies every axiom of the
ABox. I satisfies a TBox if and only if I satisfies every axiom of the TBox and I satisfies a
knowledge base K, if and only if I satisfies it’s ABox and TBox.

Above, we described the main features of this description logic that we will be using in the
thesis. We do not specify some of the main reasoning problems regarding different terminolog-
ical knowledge that may be present (e.g., acyclic TBox, general TBox). Therefore, for more
details about the expressive description logic ALCHOIQ see [2]. In most papers and books
about DLs, one would notice the description logic SHOIQ, which is ALCHOIQ extended
with a constructor allowing transitivity of roles (cf. [26]).

Furthermore, for convenience, we will view an interpretation I as a set of atoms I as follows.

1. o ∈ AI iff A(o) ∈ I , for each o ∈ 4I and A ∈ NC ,

2. (o1, o2) ∈ rI iff r(o1, o2) ∈ I , for each (o1, o2) ∈ 4I ×4I and r ∈ NR.

We give a simple example for illustrating the idea.

Example 2.1. Assume the following interpretation I:

ActiveProjectI = {P20840},
P rojectI = {P20840 ,P24090},

ConcludedProjectI = {},
EmployeeI = {E01 ,E03},

P rojectEmployeeI = {E01},
P ermanentEmployeeI = {E04},
worksForI = {(E01 ,P20840)}.

14

Analogously, we may view this interpretation as follows.

I ={
ActiveProject(P20840),

P roject(P20840), P roject(P24090),

Employee(E01), Employee(E03),

P rojectEmployee(E01),

P ermanentEmployee(E04),

worksFor(E01 ,P20840)}.

Note: When viewing an interpretation as a set of atoms, we assume that all atoms of form
{c}(c) and {c1, c2}(c1, c2) are included, even though we do not specifically write them.

2.2 Automated Planning

In this section, we recall basic definitions of planning at an abstract level, which will be then
used and instantiated in the next chapters for our purposes. Further, we discuss some of the
main reasoning problems, involving some decision problems related to planing, which might be
interesting also for the framework that we will introduce later in the thesis.

The material here is based on the existing literature; in particular, we follow the excellent
book (cf. [21]).

2.2.1 Abstract Planning

Definition 2.3. (Planning Problem) A Planning Problem is a 5-tuple AP = (S, i,G,Act, T),
where:

1. S is a set of states,

2. i ∈ S represents the initial state,

3. G ⊆ S represents a set of goal states,

4. Act is a set of actions,

5. T ⊆ S ×Act× S is a transition relation. Each triple t ∈ T is called a state transition.

As it is seen, we do not give specifications on the type of initial states, goals or actions al-
lowed in the planning problem. The use of the planning problem, presented in such an abstract
form, will become more clear later in the next chapters when instantiated for the setting that we
consider.

Further, we specify the notion of a trajectory for the Abstract Planning Problem.

15

Definition 2.4. (Trajectory) Assume a planning problem AP = (S, i,G,Act, T). A trajectory
T for AP is a sequence of state transitions

〈〈s0, act1, s1〉, 〈s1, act2, s2〉, ...〈sn−1, actn, sn〉〉,

where {s0, ..., sn} ⊆ S, {act1, ..., actn} ⊆ Act and ti = 〈si−1, acti, si〉 ∈ T , ∀i 1 ≤ i ≤ n.

The above definition states that a trajectory is a sequence of state transitions, where actions
play a crucial role in changing a state and producing a new state as effect. The new state serves
as basis of further modification in the next state transition. This proceeds until some effect state
is also the ending point of the trajectory (no new state transition is available).

Now, after we prepared the right environment, we can introduce the definition of a plan for
an AP as suitable sequences of actions which lead from an initial state to some success state
which satisfies a given goal.

Definition 2.5. (Plan) Given a planning problem AP = (S, i,G,Act, T), a plan P for AP is
a finite sequence of actions 〈act1, ..., actn〉,{act1, ..., actn} ⊆ Act, 0 ≤ n s.t. there exists a
trajectory:

TP = 〈〈s0, act1, s1〉, 〈s1, act2, s2〉, ...〈sn−1, actn, sn〉〉

for AP where:

• {s0, ..., sn} ⊆ S,

• s0 = i (s0 is the initial state),

• sn ∈ G (sn is a goal state).

In this definition, it can be noticed that in case for a givenAP , i ∈ G, then the plan would be
of length 0. In this case, it basically means that the initial state already reaches the goal before
the application of any action, thus it is already a goal state. Hence, there would be an empty
trajectory T = 〈〉, and the plan would be of length 0.

Furthermore, it can be easily seen that we do not give any specifications regarding the first
state in the trajectory that is a goal state. The main reason, is that in general for this thesis, our
intention is determining the existence of a plan for a given instance along with the complexity
of this problem, and the precise optimized length of a plan is not of interest for us.

W.l.o.g., for proof purposes, we will often assume that a plan stops as soon as, it reaches a
goal state.

2.2.2 Reasoning Problems

Depending on the types of properties various planning problems have in various dimensions, a
large variety of classes of problems can be identified. Changing the quantity and appearance of
the parameters allowed as input, several reasoning problems may be distinguished.

In this section, we point out some of the main ones. Not all of them are in the focus of this
thesis, but we state them as they represent interesting problems which might be basis for further
research for the setting of graph databases.

16

2.2.2.1 Plan-Existence

Defining strategies and algorithms for achieving a certain goal in a given instance, is surely, the
main focus of planners. In contrast, often it might happen that a plan does not exist and the
planner might be subject to exhaustive search, with intention of generating an executable plan.
Therefore, to prevent time and space exhaustion, several current analysis have focussed on the
plan existence problem, which consists in determining if there exists a plan for a given instance.
Next, we give a definition of this planing problem and we call it Plan-Existence.

Definition 2.6. (Plan-Existence)

Instance: A planning problem AP .
Question: Does there exist a plan P for AP?

This is the planning problem that we will study most. Unfortunately, it is well known that
deciding plan existence is intractable [9]. However, putting severe restrictions in the type of
actions and goals allowed as input, one might find clear dividing lines between tractable and
intractable cases.

2.2.2.2 Bounded Plan-Existence

In practice, generally planners are not interested in plans of arbitrary length, because in many
cases it would require large amounts of computations, since the search would proceed until all
alternatives have been exhausted (which often may be infinite). Instead, putting a bound on the
length of the plan, would restrict the search space to only the possible paths not exceeding this
bound.

Therefore, a very interesting and well known planning problem is deciding if there exists
a plan for a given instance, whose length is bounded by an integer n. We call this planning
problem Bounded-Plan-Existence, which we define as follows:

Definition 2.7. (Bounded-Plan-Existence)

Instance: (AP, n), where AP is a planning problem and n is a non-negative integer.
Question:Does AP have a plan P of length at most n?

By this definition, the Bounded-Plan-Existence problem consists in deciding if there exists
a plan of a bounded length for a given AP .

2.2.2.3 Conformant Planning

Sometimes one would need an initial state to be given as input for an the planning problem and
sometimes one might want to have a plan that is independent of the initial state. Therefore, we
consider the decision problem defined as follows:

Definition 2.8. (Conformant Planning)

Instance: (S,G,Act, T), where Act is a set of actions, G is a set of goal states, S is a set of
states and T is a transition relation.
Question: Does (S, s,G,Act, T) have a plan for every s ∈ S?

17

By the above definition, one would search for a universal plan which reaches the goal inde-
pendently of the initial database.

Next we distinguish between two more decision problems of planning that have the same given
instance, which contains a sequence of actions and a goal. It would be interesting to verify if
there exists an initial state such that the given sequence of actions is a plan for the instance. The
other decision problem is to verify if this sequence of actions is such that it is a plan for every
possible initial states. We call them ‘SynVerif∃’ and ‘SynVerif∀’, respectively.

Below, we give a more detailed description of those two decision problems.

2.2.2.4 SynVerif∃

Definition 2.9. (SynVerif∃)

Instance: (S, 〈act1, ..., actn〉, G, T), where 〈act1, ..., actn〉 is a sequence of actions, G is a set
of goal states, S is a set of states and T is a transition relation.
Question: Does there exist an initial state i ∈ S s.t. the sequence of actions 〈act1, ..., actn〉 is a
plan for (S, i, Act,G, T), where Act = {act1, ..., actn}?

It is not hard to see, that in this case one would need to check if there exists an initial state
i ∈ S, s.t. there exists a trajectory

T = 〈〈i, act1, s1〉, 〈s1, act2, s2〉, ...〈sn−1, actn, sn〉〉

with the properties:

• {s1, ..., sn} ⊆ S,

• sn ∈ G.

2.2.2.5 SynVerif∀

Definition 2.10. (SynVerif∀)

Instance: (S, 〈act1, ..., actn〉, G, T), where 〈act1, ..., actn〉 is a sequence of actions, G is a set
of goal states, S is a set of states and T is the transition relation.
Question: Is 〈act1, ..., actn〉 a plan for (S, s,G,Act, T) for every s ∈ S?

This problem is similar to the Conformant Planning problem, but the way the question is
imposed in both of them and the answers required are different. In Conformant Planning, a
set of predefined actions Act is given as input, and one is asked to arrange these actions (or a
part of them) in a sequence that serves as a universal plan (if there exists one) for the abstract
planning problem formed from the instance for every possible initial state. In contrast, a Syn-
Verif∀ instance consists of a specific sequence of actions (apart from the other three parameters,
which SynVerif∀ and Conformant Planning have in common). The reasoning problem consists
in checking if this sequence of actions serves as a universal plan. Hence the plan does no depend

18

on the possible initial states. In other words, Conformant Planning is the reasoning problem of
finding a universal plan for any initial state, and SynVerif∀ is the reasoning problem of checking
if a given sequence of actions is a universal plan independently of the initial state.

2.3 STRIPS Planning

STRIPS planning is a planning language, considered as a mixture between logic and procedural
computation. It is one of the very few logic-related planning systems. One distinguishes be-
tween different versions of STRIPS planning. The prototypical one is the Propositional version.
Meanwhile, different extensions such as First Order STRIPS Planning or Extended Proposi-
tional STRIPS Planning (cf. [40]) have been extensively studied.

In the following sections, we describe only the first one, which will be used further in the
thesis. Later, we give some complexity results regarding the decision problem of checking if
there exists a plan for Propositional STRIPS Planning problems.

The material here is based on the existing literature; in particular, we follow the excellent
paper [6].

2.3.1 Propositional STRIPS Planning

We provide the basic definitions about Propositional STRIPS Planning. The components of a
STRIPS language are:

1. an initial state,

2. a set of goal states,

3. a set of actions. For each action, the following are included:

• preconditions which must hold before the action can be executed.

• postconditions which describe how the state of the environment changes when the
action is executed.

We introduce a simple example, which describes the action of moving a box from location l1 to
location l2:

Action : MoveBox(l1, l2),
P recondition : LocAtBox(l1),
Postcondition : LocAtBox(l2),¬BoxAtLoc(l1)

To formalize the above description, we give the following definition:

Definition 2.11. (Propositional STRIPS Planning) An instance of Propositional STRIPS Plan-
ning is given by a quadruple SP = 〈P,O, I,G〉, where:

• P represents a finite set of propositional variables, called the conditions.

• O is a finite set of actions (operators). Each action has form Pre⇒Post.

19

– Pre (precondition) is a satisfiable conjunction of positive and negative atomic for-
mulas (from P). (o+) and (o−) are used to denote the positive preconditions and
negative preconditions, respectively.

– Post (postcondition) is a satisfiable conjunction of positive and negative atomic for-
mulas (from P). (o+) and (o−) are used to denote the positive postconditions and
negative postconditions, respectively.

• I ⊆ P is the initial state

• G, is called the goals. It is a satisfiable conjunction of positive and negative conditions,
respectively called the positive goals (G+) and the negative goals (G−)

The set P is the set of conditions that are relevant. A state S is a subset of P . Hence p ∈ P is
true at state S if p ∈ S, otherwise it is said to be false. O is the set of operators (actions), which
change a state to another state if it satisfies some preconditions. I is the initial state. It contains
exactly the conditions that are true in the initial state. Any operator, whose preconditions are in
the initial state, can be applied to I. Every p ∈ P that is in I is initially true. G is a formula,
which specifies a set of states, called the goal states. That is, every S ⊆ P that S |= G is a goal
state. Intuitively, it can be understood as follows: G+ ⊆ S and G− ∩ S = ∅.

Next, we define the semantics of an application of an action to a state:

Definition 2.12. (Action Application) Let o+, o−, o+, o− be defined as above. The result of
applying a finite sequence of actions (operators) (o1, o2, ..., on) on a state S is inductively defined
as follows:

• Result(S, ()) = S,

• Result(S, (o))=

{
(S ∪o+) \ o−, if o+ ⊆ S and o− ∩ S = ∅,
S, otherwise,

• Result(S, (o1, o2, ..., on)) = Result(Result(S, (o1)), (o2, ..., on)).

According to the above definition, any action can be applied at any state if the state satisfies
its preconditions. If these preconditions are satisfied at a state S ⊆ P , then the positive postcon-
ditions are added to S and the negative postconditions that occur in S are deleted from it. The
new obtained state might contain the necessary preconditions for application of other actions.
Also, an action might be applied several times in a sequence of actions.

We also define what is a plan for STRIPS planning:

Definition 2.13. (Plan) Let 〈o1, o2, ..., on〉 be a finite sequence of actions. This sequence is a
plan for an instance of propositional planning SP = 〈P,O, I,G〉 if Result(I, (o1, o2, ...on))
is a goal state.

20

2.3.2 Complexity results

In this section, we introduce some complexity results for the decision problem of checking if
there exists a plan for a propositional STRIPS planning problem. As stated earlier, it is de-
fined as a decision problem of determining whether there exists a plan or not for an instance of
propositional STRIPS planning.

Deciding if there exists a plan for the unrestricted case of propositional STRIPS planning
is PSPACE-complete. Depending on the number and type of preconditions, postconditions and
goals, several interesting results are obtained. We introduce some of the results below. For
proofs for each of the cases see [6].

• Checking if exists a plan for cases where actions are limited to only positive postconditions
is NP-complete.

• Checking if exists a plan for cases where actions are limited to only one positive postcon-
dition and one precondition is also NP-complete.

• Checking if exists a plan for cases where actions are limited to positive preconditions only
and one postcondition is polynomial.

• Checking if exists a plan for cases limited to only a constant number of facts in the goal
and one precondition is polynomial.

2.3.3 Extensions

There have been defined several extensions of STRIPS planning like First-Order STRIPS plan-
ning, Extended STRIPS planning and others. First-Order STRIPS planning can be reduced to
propositional STRIPS planning [16] in polynomial time under some restrictions as follows:

• the initial state and goal state should be ground, preconditions and postcondition should
be literals,

• each variable in an action should have only a polynomial number of values and

• each operator is limited to a constant number of values.

In turn, Extended STRIPS planning contains other parameters like Σ which is the domain
theory. It puts constraints on the states and actions, which should be consistent with Σ. Fur-
thermore, D, called the default preference ordering is also a parameter of Extended STRIPS
planning. It specifies an order to the literals that are preferred to be true after applying an action.
Hence, the definition of application of an action for this case is different since it depends also
one those two parameters.

21

2.4 Turing Machines

In this section we define Turing machines, which form the basic model of computation in Com-
plexity Theory, since by the widely accepted Church-Turing thesis, they seem able to simulate
all physically realizable computational methods. In particular, we consider deterministic Turing
machines (abbreviated DTM).

The material here is based on the existing literature; in particular, we follow the excellent
book [39], to which we refer the reader for a more extensive exposition.

Definition 2.14. (DTM) A deterministic Turing machine is given by the 5-tuple T = (Q,Σ, s0, δ),
where

• Q is a finite set of states which contains the accepting state saccept,

• Σ is a finite set of symbols (the tape alphabet) that contains the blank symbol t,

• s0 ∈ Q is the initial state,

• δ : (Q× Σ)→ (Q× Σ× {−1, 0,+1}) is the transition function (or program).

Intuitively, a deterministic Turing machine (DTM) T = (Q,Σ, s0, δ) works as follows. An
input to T is simply a string W of symbols that is written on a tape, which consists of cells each
storing one character. T has a read/write (R/W) head that can move along the tape, reading and
modifying the contents of the cell it is currently on. In particular, −1 means one symbol to the
left, +1 means one symbol to the right, while 0 means staying in the current position. At each
time instant, T is in some state s ∈ Q, the tape contains some string w1, ..., wn, and the head
is positioned at some cell p ≤ n. This description is called a configuration, and is described
by the triple (s, w1...wp−1, wp...wn). A run of T starts in the initial state s0 and with the head
over the first character of W (if any) and the tape is all blank otherwise. Then it executes the
program δ. In particular, if the current configuration is (q, v, u) and the first symbol of u is d,
and δ(s, d) = (s′, d′, D), it overwrites d with d′, changes its state to s′ and moves the R/W
head +1 or −1 or 0 based on D . T has a run over W (T accepts W), if T reaches the state
saccept on input W .

Next, we formalize the above intuitions:

Definition 2.15. (Configuration, yields). Assume a DTM T = (Q,Σ, s0, δ). A configuration for
T is a tuple (s, v, u), where s ∈ Q and v, u ∈ Σ+. Assume a configuration C = (q, v · c, d · u),
where v, u ∈ Σ+ and c, d ∈ Σ, and suppose δ(s, d) = (s′, d′, D). Then C yields the following
configuration C ′:

1. if D = 0, then C ′ = (s′, v · c, d′ · u);

2. if D = +1, them C ′ = (s′, v · c · d′, u′), where u′ = u if u 6= ε and u′ = t otherwise:

3. if D = −1, them C ′ = (s′, v′, c · d′ · u′), where v′ = v if v 6= ε and v′ = t otherwise;

22

We can now formally define the computation of a DTM on a given input word.

Definition 2.16. (Computation, accepting a word). Let T = (Q,Σ, s0, δ) be a DTM and v ∈
(Σ\{t})∗ be a word. The computation of T on v is the (possibly infinite) sequenceC0, C1, C2, ...
of configurations of T such that:

1. C0 = (s0,t, w);

2. for each i > 0, Ci−1 yields Ci;

3. for any i > 0, if Ci = (saccept, v
′, u′), then Ci is the last element in the sequence.

We say that T accepts v if the computation of T on v if finite and the state in the last configuration
is saccept.

23

CHAPTER 3
Description Logic For Database

Manipulation

In this thesis, the environment considered for planning is the one of graph databases. The
language adopted to express the updates on these databases, is an extension of ALCHOIQ,
defined in Chapter 2 (see Section 2.1) as a highly expressive description logic allowing nom-
inal concepts, qualified number restrictions and several other constructors. The extension to
ALCHOIQbr (cf. [8]), presented in Section 3.1 resulted to be important for fully capturing the
changes in databases.

In Section 3.2, we introduce a simple transaction language, expressed through Description
Logics (DLs) [2]. Transactions are finite sequences of insertions and deletions performed on
unary and binary predicates (concepts and roles, in DL jargon). As usual in DLs, the semantics of
the DL knowledge bases is defined in terms of interpretations. Further, we provide a descriptions
of the way updates of these graph databases occur. At last, we illustrate with an example, to get
a better intuition of what will follow in the thesis.

Note: Graph databases using concept names and role names can be naturally seen as finite DL
interpretations.

3.1 ALCHOIQbr for Database Manipulation

As mentioned earlier, description logics are decidable languages which are particularly natural
for talking about graph databases. In turn, even thoughALCHOIQ is a very expressive descrip-
tion logic, it is still not very suitable for the planning in these graph databases. Instead, there is
an extension of this DL, introduced in the paper Evolving Graph Databases under Description
Logic Constraints (see [8]) that we use as a query language for manipulating graph databases.
It is called ALCHOIQbr, which is the standard ALCHOIQ (see Section 2.1) extended with
Boolean combinations of axioms and a constructor for a singleton role. This particular descrip-

25

tion language, is able to almost fully capture the changes that might occur in a graph database. It
offers high expressibility by allowing formulas as boolean combinations of assertions and inclu-
sions, and permitting singleton concepts and roles through variables allowing different possible
instantiations.

Below, we formalize the syntax and semantics of ALCHOIQbr.

3.1.1 ALCHOIQbr Syntax

Intuitively, the syntax of ALCHOIQbr is similar to the ALCHOIQ language, but extended.
Hence, we consider a countably infinite set NV of variables apart from the usual countably
infinite sets NR of role names, NC of concept names, NI of individual names.

Definition 3.1. (ALCHOIQbr Syntax) Let NV , NR, NC , NI be countably infinite sets of
variables, role names, concept names, and individual names respectively.

ALCHOIQbr Roles are defined inductively as follows:

1. if r ∈ NR, then r and r− (the inverse of r) are roles;

2. if {t, t′} ⊆ NI ∪NV , then {(t1, t2)} is also a role;

3. if r1, r2 are roles, then r1 ∪ r2, and r1\r2 are also roles.

The set of ALCHOIQbr Concepts is the smallest set such that:

1. if A ∈ NC , then A is an ALCHOIQbr concept;

2. if t ∈ NI ∪NV , then {t} is an ALCHOIQbr concept (called nominal);

3. if C1, C2 are concepts, then C1uC2, C1tC2, and ¬C1 are alsoALCHOIQbr concepts;

4. if r is a ALCHOIQbr role, C is an ALCHOIQbr concept, and n is a non-negative
integer, then ∃r.C, ∀r.C, 6 nr.C, and > nr.C are also ALCHOIQbr concepts.

Expressions of the form t : C and (t, t′) : r, where {t, t′} ⊆ NI ∪ NV , C is a concept, and r
is a role, are called ALCHOIQbr concept assertions and ALCHOIQbr role assertions, re-
spectively. Concepts, roles, inclusions and assertions that have no variables are called ordinary
(corresponding to ALCHOIQ concepts, roles, inclusions and assertions respectively).

(ALCHOIQbr-)formulae are inductively defined as follow:

1. every inclusion and assertion is a formula;

2. if K1,K2 are formulas, then so are K1 ∧ K2, K1 ∨ K2 and ¬K1.

If a formula K has no variables, it is called a knowledge base (KB).

Next, we will define a new set which we call the set of basic concepts as follows.

26

Definition 3.2. (Basic Concepts). The set of basic concepts is defined as follows:

• if A ∈ NC , then A is a basic concept;

• if t ∈ NI ∪NV , then {t} is a basic concept;

• if r is an ALCHOIQbr role then ∃r, ∃r− are basic concepts.

3.1.2 ALCHOIQbr Semantics

As usual, semantics of a description logic is given through interpretations. An interpretation is
a pair I = (4I , ·I) where4I 6= ∅ is the domain, AI ⊆ 4I for each A ∈ NC , rI ⊆ 4I ×4I
for each r ∈ NR, and oI ∈ 4I for each o ∈ NI . For the ordinary roles of the form {(o1, o2)},
we let {(o1, o2)}I = {(oI1 , oI2)}. The function ·I is extended to the remaining ordinary concepts
and roles in the usual way (see Section 2.1).

Assume an interpretation I. For an ordinary inclusion α1 v α2, I satisfies α1 v α2 (in symbols,
I |= α1 v α2) if αI1 ⊆ αI2 . For an ordinary assertion β = o : C (resp., β = (o1, o2) : r), I
satisfies β (in symbols, I |= β) if oI ∈ CI (resp., (oI1 , o

I
2) ∈ rI). The notion of satisfaction is

extended to knowledge bases as follows:

1. I |= K1 ∧ K2 if I |= K1 and I |= K2;

2. I |= K1 ∨ K2 if I |= K1 or I |= K2;

3. I |= ¬K if I 6|= K.

If I |= K, then I is a model of K.

3.2 Action Language

We now define an action language Lact that allows us to express finite sequences of operations
on interpretations (i.e. graph databases). Lact is expressed via operations on ALCHOIQbr
roles, ALCHOIQbr concepts and ALCHOIQbr formulae as follows:

Definition 3.3. (Atomic action). An atomic action ρ ∈ Lact is given by the following grammar:

ρ→ (A⊕ C)|(A	 C)|(r ⊕ p)|(r 	 p)

where A ∈ NC , r ∈ NR, C is an ALCHOIQbr concept, p is an ALCHOIQbr role.

Next we define the notion of a basic action, which will be used often throughout the thesis.

Definition 3.4. (Basic action). A basic action is given by the following grammar:

(A⊕ C)|(A	 C)|(r ⊕ p)|(r 	 p)

where A ∈ NC , r ∈ NR and C is an basic concept and p is an ALCHOIQbr role.

27

Note: It is easy to see from the above two definitions that every basic action is a atomic
action.

Definition 3.5. (Transaction) Transactions (complex action) ρtr ∈ Lact are defined inductively.

• An atomic action is a transaction ρtr.

• If ρtr1 and ρtr2 are transactions then

(ρ ◦ ρtr1)|(K?ρtr1 : ρtr2)|ε,

where ρ is an atomic action, K is an arbitrary ALCHOIQbr- formula, are transactions.

A transaction ρtr is ground if it has no variables. A transaction ρtr
′

is called a ground
instance of a transaction ρtr if ρtr

′
is ground and it can be obtained from ρtr by replacing each

variable by an individual name from NI . For a transaction ρtr, we will sometimes write ρtr(x),
where x is a tuple containing exactly the variables of ρtr.

Intuitively, an application of an atomic action (A⊕ C) on an interpretation I stands for the
addition of the content of CI to AI . The deletion of CI from AI can be done by applying
(A 	 C) on I. The two operations can be also performed on extensions of roles. In addition,
transactions allow for composing basic actions and for conditional action execution.

In order to formally define the semantics of actions, we first introduce the notion of interpretation
updates. Furthermore, we call positive actions the actions that perform addition and negative
actions the ones that perform deletion.

3.3 Interpretation Updates

Below, we formally define how updates on interpretation occur.

Definition 3.6. (Interpretation Updates) Assume an interpretation I and let σ be a concept
or role name. If σ is a concept, let W ⊆ 4I be a unary relation, otherwise, if σ is a role,
let W ⊆ 4I × 4I be a binary relation. Then we let I ⊕σ W (resp., I 	σ W) denote the
interpretation I ′ such that:

• 4I′ = 4I

• σI′1 = σI1 for all symbols σ1 6= σ and

• σI′ = σI ∪W (resp. σI
′

= σI\W)

Now we can define the semantics of ground transactions inductively as follows.

Definition 3.7. Given a ground transaction ρtr, we define a mapping Mρtr from interpretations
to interpretations as follows:

M(A⊕C)·ρtr(I) = Mρtr(I ⊕A CI)

28

M(A	C)·ρtr(I) = Mρtr(I 	A CI)

M(r⊕p)·ρtr(I) = Mρtr(I ⊕r pI)

M(r	p)·ρtr(I) = Mρtr(I 	r pI)

Mε(I) = I

MK?ρtr1 :ρtr2
(I) =

{
Mρtr1

(I), if I |= K
Mρtr2

(I), if I 2 K

Note: Throughout the thesis, when convenient, we will view an interpretation I as a set of
literals I (see Example 2.1). The corresponding definition of updates on interpretations viewed
as sets of atoms, would intuitively be as follows:

Given a ground transaction ρtr, we define a mapping Mρtr from interpretations as sets of atoms
to sets of atoms as follows:

M(A⊕C)·ρtr(I) = Mρtr(I ∪ {A(c) | I |= C(c)})

M(A	C)·ρtr(I) = Mρtr(I \ {A(c) | I |= C(c)})

M(r⊕p)·ρtr(I) = Mρtr(I ∪ {r(c1, c2) | I |= p(c1, c2)})

M(r	p)·ρtr(I) = Mρtr(I \ {r(c1, c2) | I |= p(c1, c2)})

Mε(I) = I

MK?ρtr1 :ρtr2
(I) =

{
Mρtr1

(I), if I |= K,
Mρtr2

(I), if I 2 K.

Intuitively, each time an update of an interpretation occurs, depending on the transaction ap-
plied, literals are added or deleted by making the set bigger or smaller, respectively. Surely, to
perform the updates, the transactions should be ground. Hence, the variables (if there exists any)
should be instantiated before application of the action. Furthermore, it is easy to see that if no
action is applied, the interpretation will remain unchanged. The last mapping in the Definition
3.7 defines the semantics of application of a conditional transaction on an interpretation. Thus,
if the current interpretation satisfies theALCHOIQbr formulaeK, then the first transaction ρtr1
is applied, otherwise ρtr2 is applied.

Next, we give some examples to better illustrate the notion of an interpretation update and trans-
actions. Interpretations will be viewed as sets of literals.

29

3.3.1 Examples

Example 3.1. The following interpretation I represents (part of) the project database of some
research institute. There are two active projects, and there are four employees of which three
work in the active projects.

I ={ActiveProject(P20840), ActiveProject(P24090),

P roject(P20840), P roject(P24090),

ConcludedProject(),

Employee(E01), Employee(E03), Employee(E04), Employee(E07),

P rojectEmployee(E01), P rojectEmployee(E03), P rojectEmployee(E07),

P ermanentEmployee(E04),

worksFor(E01 ,P20840), worksFor(E03 ,P20840), worksFor(E07 ,P24090)},

The following transaction captures the termination of project P20840 , which is removed from
the active projects and added to the concluded ones. The employees working for this project are
removed from the project employees.

ρtr1 = ActiveProject	 {P20840}◦
ConcludedProject⊕ {P20840}◦
ProjectEmployee	 ∃worksFor.{P20840}

The interpretation Mρtr1
(I1) that reflects the status of the database after transaction ρtr1 looks

as follows:

Mρtr1
(I) ={ActiveProject(P24090),

P roject(P20840), P roject(P24090),

ConcludedProject(P20840),

Employee(E01), Employee(E03), Employee(E04), Employee(E07),

P rojectEmployee(E07),

P ermanentEmployee(E04),

worksFor(E01 ,P20840), worksFor(E03 ,P20840),

worksFor(E07 ,P24090)},

In our approach, all the individual variables of a transaction are seen as parameters, whose
values are given before executing a transaction.

Example 3.2. The following transaction ρtr2 with variables x, y, z transfers the employee x from
project y to project z:

ρtr2 = (x : Employee ∧ y : Project ∧ z : Project ∧ (x, y) : worksFor) ?
worksFor 	 {(x, y)} · worksFor ⊕ {(x, z)} : ε

30

The transaction ρtr2 first checks whether x is an employee, y and z are projects, and x works for
y. If yes, it removes the worksFor link between x and y and creates a worksFor link between x
and z. If any of the checks fails, it does nothing.

31

CHAPTER 4
Planning in Graph Databases

Planning as a reasoning task in Artificial Intelligence, has been studied extensively for different
settings like robots, agents, etc. In turn, DLs are particularly natural for talking about graph
databases, which may be updated and changed by users or applications. Therefore, different
planning problems regarding the achievement of a certain goal (addition/deletion of information
in the database) are important for the automated reasoning.

In this thesis, we view planning in the setting of graph-structured data where actions are
expressed through the DL ALCHOIQbr, which is already defined in Section 3.1. Below we
give a simple example for illustrating the idea.

Example Consider the previous database of some research institute with one active project, four
employees of which two work in this project and assume at a certain moment a new project
needs to become active. Therefore, the database needs to be changed by adding this new project
to active projects. But, this is not such an easy task to accomplish, since some ‘external’ con-
straints might be present. E.g. there might be a constraint that imposes a project to become
active if there exists a certain amount of employees who can work on that, depending on the
difficulty and amount of time required to finish the project. Moreover, these employees might
need to be currently not working on other projects or it might be necessary for them to have a
certain background compatible with the requirements of the project. All these constraints must
be accomplished and before adding the intended project to active ones the database should be
updated to this new state containing all the information needed in a suitable shape.

To sum up, the way information is added/deleted from a certain database, very much depends
on the constraints imposed by the user and changes that the database needs to submit to, prior to
the final intended update to happen.

In Chapter 3, we have already introduced a simple action language for insertions and dele-
tions performed on literals represented as unary and binary atoms (concepts and roles, in DL
jargon). This language is suitable for capturing changes on graph databases. Thus, in this thesis,
we consider the planning problem for the setting of graph databases under DL constraints. It

33

consists in finding a suitable sequence of transactions so that the goal is achieved. As usual
in DLs, the semantics of DL knowledge bases expressing the constraints is defined in terms of
interpretations. In turn, graph databases can be naturally seen as finite DL interpretations. Fur-
thermore, the updates provided by the transaction language are similar in spirit to the knowledge
base (more concretely, ABox) updates studied in other works, e.g. [36], but are done directly to
states of the world (which can be seen as states of complete knowledge) rather than on states of
knowledge.

4.1 Planning language

In Preliminaries, we have already defined the notion of an planning problem as a tuple AP =
(S, i, g, Act, T), where S is a set of states, i is the initial state, g is a set of goal states, Act is
a finite set of actions and T is ternary transition relation capturing all the possible transitions
between states.

Furthermore, in the previous chapter, we introduced the environment we will be basing our
work, which is the one of graph databases under description logic constrains. Later, we also
defined the transaction language adopted for describing changes in this setting.

In this section we define the planning language we adopt for our setting. We instantiate
the planning problem with the setting of graph databases and then we consider two different
planning problems related to it: the general planning problem and the fixed domain planning
problem.

4.1.1 Graph Database Planning Problem

Next, we will give a definition for a graph database planning problem and two problems corre-
sponding to it.

Definition 4.1. (Graph Database Planning Problem (GDPP)) A GDPP is a tuple GP =
(I ′, Act′, G′) s.t.

• I ′ is an interpretation representing the initial database,

• Act′ ⊂ Lact is a set of predefined transactions (Lact is the transaction language defined
in the previous chapter), and

• G′ is a satisfiable ALCHOIQbr formula, called the goal.

The goal is an ALCHOIQbr formula, which needs to be satisfiable and the actions are the
transactions that update the databases.

Below we will define two planning problems p(GP) and fp(GP) corresponding toGP . The
difference between them is in the interpretation domain. While p(GP) is the general planning
problem, fp(GP) is a planning problem under a fixed domain.

More formally we introduce the following definitions:

34

Definition 4.2. (General Planning Problem) Assume a GDPP GP = (I ′, Act′, G′). The gen-
eral planning problem p corresponding to GP is:

p(GP) = (S, I,G,Γact, T),

where S, I,G,Γact, T are defined as follows:

• S is the set of all interpretations,

• I = I ′,

• G = {s ∈ S | s |= G′},

• Γact = Act′, and

• T = {(s, ρtr, s′) | {s, s′} ⊆ S ∧ ρtr ∈ Γact ∧ s′ = Mρtr(s)}.

This planning problem p(GP) represents the general planning problem where interpretations
are defined as usual (see 3.1.2).

Before we define the fp(GP) planning problem, we need to formally define the notion
of a fixed domain with respect to a graph database planning problem GDPP, which we call
dom(GP).

Definition 4.3. (dom(GP)) Let GP = (I ′, Act′, G′) be a GDPP. dom(GP) is defined as follows:

(o ∈ dom(GP)) iff

o ∈ NI and o occurs in some atom inI ′ or o occurs in Act′ or o occurs in G′

dom(GP) is the interpretation domain restricted to only the individuals, which occur in the
given GP instance. Since we have adopted the standard name assumption, every individual, for
all interpretations, will be interpreted by itself. Now, we are prepared to define the fixed domain
planning problem which corresponds to GP .

Definition 4.4. (Fixed Domain Planning Problem) Assume a GDPP GP = (I ′, G′, Act′). The
fixed domain planning problem corresponding to GP is:

fp(GP) = (S, I,G,Γact, T),

where S, I,G,Γact, T are defined as follows.

• S is the (finite) set of all interpretations I with domain4I = dom(GP),

• I = I ′,

• G = {s ∈ S | s |= G′},

• Γact = Act′, and

35

• T = {(s, ρtr, s′) | {s, s′} ⊆∈ S ∧ ρtr ∈ Γact ∧ s′ = Mρtr(s)}.

The fixed domain planning problem is defined over dom(GP). Intuitively, no new constants
(constants that do not appear in dom(GP)) can be introduced by the application of transactions.
Only the constants that occur in the initial instance can happen in any possible constructible
trajectory T for fp(GP).

Definition 4.5. Assume AP = (S, i,G,Act, T). We denote sC ⊆ s ∈ S, the set of atoms that
satisfy C, where C is an ALCHOIQbr concept or role.

Note: Sometimes, during the rest of the thesis, we will say thatG is a conjunction of positive
and negative literals expressed via ALCHOIQbr roles and basic concepts. This will be an
abbreviation for assertions as follows.

• If o : C, ¬(o : C), then C(o), resp. ¬C(o) are positive, resp. negative literal, where C is
a basic concept.

• If (o1, o2) : R, ¬((o1, o2) : R), then R(o1, o2), resp. ¬R(o1, o2) are positive, resp.
negative literals, where R is an ACLHOIQbr role.

If C is a concept name and R is a role name, we will say that G is a conjunction of positive and
negative literals expressed via role names and concept names.

4.1.2 Examples

Now that we have defined the planning language in the setting of graph databases under descrip-
tion logic constraints, we illustrate with the following example.

Example 4.1. We consider again the previous ’project’ example. Let GP = (I, Act,G) be as
follows.

I ={ActiveProject(P20840), ActiveProject(P24090),

P roject(P20840), P roject(P24090),

ConcludedProject(),

Employee(E01), Employee(E03), Employee(E04), Employee(E07),

P rojectEmployee(E01), P rojectEmployee(E03),

P rojectEmployee(E07),

P ermanentEmployee(E04),

worksFor(E01 ,P20840), worksFor(E03 ,P20840),

worksFor(E07 ,P24090)}.

The initial database of this research institute contains two active projects, four employees of
which three work in the active projects.

36

Assume, the goal G is a conjunction of one negative atom and a positive atom as follows.

G = ¬ActiveProject(P20840) ∧ PermanentEmployee(E03)

Thus, the initial database needs to be updated so that it reaches a state that does not contain
ActiveProject(P20840) but contains PermanentEmployee(E03).
The set of predefined transactions Act consists of one transaction and one atomic action as
follows:

Act = {ρtr1 , ρ2},

where:
ρtr1 = (ActiveProject 	X) ◦ (ConcludedProject ⊕X) ◦ (ProjectEmployee	∃worksFor.X),
and
ρ2 = PermanentEmployee ⊕X .

ρtr1 is a transaction consisting of a sequence of three atomic actions. It captures the termination
of some project, which in the second action is added to ConcludedProjects and the employees
working in that project are taken out of ProjectEmployee. Thus, every time ρtr1 is applied, each
of these three atomic actions will be applied in the order they appear in the transaction. The
second transaction ρ2 is an atomic action which captures the addition of some employee to
concept PermanentEmployee.

Example 4.2. We view the general planning problem and the fixed domain planning problem
corresponding to GP separately.

• GivenGP as above, we extract dom(GP) = {P20840 ,P24090 ,E01 ,E03 ,E04 ,E07}.
Now, we consider the planning problem over dom(GP). Hence, the variable X can be
instantiated only with elements from dom(GP). After we ground ρtr1 and ρ2 by instanti-
ating the variable X in the ρtr1 with P20840 and X in ρ2 with E03 , a plan that would
satisfy the goal G is:

P = 〈ρtr1 , ρ2〉 =

〈(ActiveProject	 {P20840}) ◦ (ConcludedProject⊕ {P20840})◦

(ProjectEmployee	 ∃worksFor.{P20840}), (PermanentEmployee⊕ {E03})〉

To show that P is a plan for this instance we need to show that the trajectory

TP = 〈〈s1, ρtr1 , s2〉, 〈s2, ρ2, s3〉〉,

where s2 = Mρtr1
(s1) and s3 = Mρ2(s2) is such that s3 |= G.

We construct s2 and s3 as follows.

37

s2 = Mρtr1
(I) ={ActiveProject(P24090),

P roject(P20840), P roject(P24090),

ConcludedProject(P20840),

Employee(E01), Employee(E03), Employee(E04),

Employee(E07),

P rojectEmployee(E01),

P ermanentEmployee(E04)

worksFor(E01 ,P20840), worksFor(E03 ,P20840),

worksFor(E07 ,P24090)}
Now, we construct s3.

s3 = Mρ2(s2) ={ActiveProject(P24090),

P roject(P20840), P roject(P24090),

ConcludedProject(P20840),

Employee(E01), Employee(E03), Employee(E04),

Employee(E07),

P rojectEmployee(E01),

P ermanentEmployee(E04), P ermanentEmployee(E03)

worksFor(E01 ,P20840), worksFor(E03 ,P20840),

worksFor(E07 ,P24090)}

It is easily seen that s3 |= ¬ActiveProject(P20840) and s3 |= PermanentEmployee(E03).
Hence, P is a plan for this instance.

• Next, let’s consider p(GP). We are free to instantiate X with any fresh constant that
does not appear in the given instance. Thus, we have infinite possibilities of instanti-
ations for a single atomic action. An possibility of grounding the second action is by
instantiating X in ρ2 with a new employee that does not appear in the instance, i.e.
ρ2 = (PermanentEmployee⊕ E10).

In turn, for this instance, it is easy to see that a plan does not require fresh constants
to achieve the plan. Furthermore, any possible grounding of a transaction with a new
constant is redundant. Intuitively, a sequence of transactions to be a plan for p(GP),
requires ρtr1 to be grounded by instantiating X with P20840 and ρ2 with E03 . Any other
transaction can be deleted.

But, there are cases that enforce the use of a fresh individual so that a plan for a given
instance exists. We show this in the example below:

38

Example 4.3. Let GP = (I, Act,G) be as follows:

I ={worksFor(E01 ,P20840)}.

Act = {ρtr1 },

where:
ρtr1 = (Project⊕{X})◦(worksFor⊕(E03 , {X}))◦(ProjectEmployee⊕∃worksFor.{X}),
and

G = ¬Project(E01) ∧ ¬Project(E03)∧

ProjectEmployee(E03) ∧ ¬worksFor(E03 ,P20840).

The goal formula to be satisfied, requires a state which does not contain Project(P20840),
Project(E01 andProject(E03 . In addition, this state should containProjectEmployee(E03)
and does not contain worksFor(E03 ,P20840). dom(GP) = {P20840 ,E01 ,E01}. Also,
I |= ¬worksFor(E03 ,P20840).

It is not hard to notice that there is no plan for fp(GP), since X cannot be instantiated by
any of the constants from dom(GP).

Instead, p(GP) has an infinite number of plans, since there can be infinite possible instan-
tiations of X such that a goal state can be reached. E.g. grounding ρtr1 by instantiating X with
P10000 and grounding ρ2, instantiating X with P201840 , the following sequence of ground
transactions is indeed a plan for p(GP).

P = 〈(Project⊕ {P10000}) ◦ (worksFor ⊕ (E03 , {P10000}))◦

(ProjectEmployee⊕ ∃worksFor.{P10000})〉

The final state of the trajectory TP is the following:

s ={Project(P10000),

P rojectEmployee(E03)

worksFor(E01 ,P20840), worksFor(E03 ,P10000)}.

Clearly, the following holds.
s |= G.

Thus, s ∈ S is a goal state for p(GP).

The above two examples show that it is not the case that whenever there is a plan for p(GP),
there will also be a plan for fp(GP). We will study plan existence for those two problems as
separate decision problems.

39

4.2 Reasoning Problems For GDPP

The space problem, in our setting, involves several dimensions, depending on the parameters
given as input, whose different variations lead to different planning problems. We have already
given an overview of different decision problems in Section 2.2.2. For the planning in the setting
of graph databases under description logic constraints, some of them become very interesting.

One of the main reasoning tasks for planning, is determining the existence of a plan (that we
call plan-existence). It consists in deciding if there exists a plan for a given planning problem.
For the setting of graph databases, we have distinguishes between two cases in Section 4.1.1.

• The first case is deciding plan-existence, where the use of constants that do not appear in
dom(GP) is not allowed. We call it fixed domain plan-existence.

• The second case is deciding plan-existence where there is no specification of a dom(GP).
We call it the general plan-existence.

Deciding fixed domain plan-existence will be our main focus for the rest of the thesis. Allowing
the use of constants that do not appear in dom(GP), seems to increase the complexity for dif-
ferent cases. But, one might try answering questions like: Which is the most expressive setting
that uses fresh constants s.t. we have the property that for all plans that use fresh constants, for
the same given instance, there exists a plan that does not use fresh constants? This coincides
with deciding the least expressive setting that enforces the use of fresh constants.

Another interesting problem for planning in graph databases is Conformant Planning. The
idea is that given a sequence of transactions and a goal as input, one might ask if these sequence
represents a universal plan for any planning problem containing this goal. In practice, these are
the kind of procedures that consist in manipulation of databases. One would want to create a
program that reaches the goal. The actions would be like small program building blocks and G
would be a goal. The task would be to compose these modules into a big program which would
achieve the goal for any initial database.

40

CHAPTER 5
Deciding Fixed Domain Plan-Existence

In this chapter, we study the plan-existence decision problem for our setting of graph databases
under description logic constraints. Plan-existence is the decision problem which consists in
determining the existence of a plan for a given planning instance (see 4.2), which in general is
known to be intractable [9]. Fortunately, by enforcing some restrictions on different parameters
allowed as input, several tractable cases can be distinguished. Therefore, in addition to analyzing
the complexity for plan-existence in the general setting, we try to define the fine lines between
complexity classes for different restricted cases of this problem.

In our framework, we distinguish between two types of cases of plan-existence depending
on the allowance or not of instantiations of variables with fresh constants by the transactions:
the general plan-existence and fixed domain plan-existence (see Section 4.1.1).

In Section 3.2, we have defined the action language Lact using the DL ALCHOIQbr. The
variables, complex concepts with existential quantifications and negative atoms in the goal for-
mula seem to be the main triggers that might enforce the use of fresh constants in a transaction.
We will give a proof of the PSPACE-completeness of deciding fixed domain plan-existence.
Further, we study this case in detail, trying to reach tractable cases, by restricting the types of
transactions, and goal formulas allowed as input. We are able to extract nlogpsace and polyno-
mial cases when allowing basic actions combined with several types of goals. We also notice
that even for cases with basic actions that contain only concept names and role names, deciding
fixed domain plan-existence is already intractable. Indeed, it is already NP-hard.

Regarding the general case, intuitively even basic actions with variables performing addi-
tions or deletions on concepts or roles of the form (Student ⊕ X) have infinite number of
possible instantiations. But, are these instantiations necessary or there might exist a plan also
with constants from dom(GP)? Does this create any problem when studying the complexity?
We will investigate this problem deeper in Chapter 6.

Now, we will illustrate with an example to clarify the distinction between the two cases
stated above.

41

Example 5.1. Let GP = (I, Act,G) be given as follows.

I ={ActiveProject(P24090),
P roject(P20840), P roject(P24090),
ConcludedProject(P20840),
Employee(E01), worksFor(E07 ,P24090)}.

Act = {ρ1, ρ2, ρ3, ρ4},

where:
ρ1 = ActiveProject⊕ Project,
ρ2 = (ActiveProject	X) ◦ (ConcludedProject⊕X),
ρ3 = ConcludedProject	X ,
ρ4 = ProjectEmployee⊕ ∃worksFor.X

G = ¬ActiveProject(P24090)∧ConcludedProject(P24090)∧PermanentEmployee(E01).

If we restrict the interpretation domain to dom(GP) = {P24090 ,P20840 ,E01} then for ev-
ery possible trajectory over fp(GP), X will be instantiated only with elements from dom(GP).
If this restriction is not imposed, then X has infinite possibilities of instantiations. This corre-
sponds to the General Planning Problem.

In this chapter, we will study the fixed domain plan-existence decision problem. We prove
that it is PSPACE-complete. Further, we analyze different cases with syntactic restrictions on
the set of predefined actions and the goal. We prove NP-hardness for a basic case and outline
several tractable cases.

5.1 PSPACE Upper-Bound

It is well-known that planning is intractable in general and that severe obstacles stand in the
way [9]. In our case, fixed domain plan-existence is in PSPACE. In this section we give an
algorithm for deciding plan existence over a fixed domain, which runs in polynomial space, but
before we introduce the following three sets.

Assume a GDPP GP = (I,G,Act). Let IGP , CGP , RGP be finite sets of individuals,
concept names and role names w.r.t. GP defined as follows:

• IGP =dom(GP),

• CGP is a set of all concept names that occur in GP ,

• RGP is a set of all role names that occur in GP .

Next, we introduce a non-deterministic algorithm for checking if there exists a plan for a given
planning problem over a fixed domain. We prove that the algorithm runs in polynomial space.

42

5.1.1 Intuition

Let GP = (I, Act,G) be a graph database planning problem and let IGP , CGP , RGP be the
extracted sets defined as in 5.1. It is easily seen that S(GP) = |RGP |× |IGP |2 + |CGP |× |IGP |
is the biggest number of different facts that can be in the largest database that can be built for
an arbitrary planning problem over a fixed domain. Indeed, a set of atoms of this size would
represent the largest state that can be reached from any constructible trajectory over fp(GP).

In turn, 2S(GP) is the largest number of different databases that can be constructed for a
given planning problem over a fixed domain. It is easily seen that there is an exponential num-
ber of states that can be reached depending on the size of the given instance. If there exists a
plan for a given fp(GP), then there exists another plan s.t. the corresponding trajectory, would
be less than 2S(GP). Intuitively, any trajectory of length 2S(GP) or larger must have ’loops‘, i.e.
there must be some state that it visits at least twice. Therefore, we would end up in redundancies,
which can be avoided by removing these transitions that produce the same state, resulting in a
plan of length less than 2S(GP).

To define this intuition more formally, we give the following theorem.

Theorem 5.1. Let GP = (I, Act,G) be a GDPP. For every plan P of fp(GP) there exist a
plan P ′ whose length is bounded by 2S(GP).

To prove this theorem, it is sufficient to prove the following lemma.

Lemma 5.1.1. Let P be a plan for fp(GP) and let s ∈ S be a state which is repeated k times
in the trajectory TP . Then there exists plan P ′ with k − 1 repetitions of s ∈ S in TP ′ .

Proof. W.l.o.g assume that P = 〈ρtr1 , ..., ρtrn 〉 has length n and the kth repetition of s ∈ S occurs
at position l ≤ n and the (k − 1)th repetition occurs at position m < l. Hence, the trajectory
has the following form:

TP = 〈〈s0, ρtr1 , s1〉, ..., 〈sm−1, ρtrm, s〉, 〈s, ρtrm+1, sm+1〉, ...,

〈sl−1, ρtrl , s〉, 〈s, ρtrl+1, sl+1〉, ..., 〈sn−1, ρtrn , sn〉〉,

where {s0, ..., sn} ⊆ S, sn is the goal state, I = s0 is the initial database corresponding to the
initial state.

It is easily seen that the sequence of transactions ρtrm+1, ..., ρ
tr
l is redundant since the goal

state can still be reached even after deleting this sequence from P . The new plan P ′ will still be
a plan for fp(GP). The new trajectory is as follows:

TP ′ = 〈〈s0, ρtr1 , s1〉, .., 〈sm−1, ρtrm, s〉, 〈s, ρtrl+1, sl+1〉, .., 〈sn−1, ρtrn , sn〉〉.

Intuitively, applying this lemma for every state and for every repetition, the resulting plan
would be bounded by 2S(GP).

43

5.1.2 FDPE Algorithm

Now, we give the pseudo-code describing a non-deterministic algorithm for checking the exis-
tence of a plan for a planning problem over a fixed domain. It takes as input an instance of a
fixed domain planning problem. We call it FDPE (Fixed Domain Plan-Existence).

Input: An instance of a graph database planning problem GP = (I, Act,G).
Output: The algorithm returns true if it finds a plan for fp(GP), false otherwise.

1 if I |= G then
2 return true
3 end
4 s← I;
5 count← 0 ;
6 while count < 2S(GP) do
7 Select an arbitrary ρtr from Act;
8 s←Mρtr(s);
9 if s |= G then

10 return true;
11 break;
12 else
13 count← count +1;
14 end
15 end
16 return false;

Algorithm 5.1: Fixed Domain Plan-Existence (FDPE)

The above FDPE algorithm uses a counter, which counts the number of non-deterministically
chosen transactions. The algorithm starts by checking if the initial database given as input, is
already a goal state. In that case, it stops and returns true. If not, it initializes by mapping
s, which represents the states s ∈ S, to the initial database I , and by setting the counter to 0.
The counter, which counts the length of the plan, is bounded in the algorithm by 2S(GP) (see
Theorem 5.1). Next, it non-deterministically selects a transaction from the set Act and applies
it to the initial database. This is accomplished by applying the mapping function Mρtr (see Def-
inition 3.7), whose application results in a new database. It checks if the new database is a goal
state; if yes then it returns true and stops. Otherwise, it increases the counter by one and checks
if the counter has reached the limit. In case it hasn’t reached the limit, it continues by selecting
a new transaction and repeating the same procedure again until it reaches true. If the counter
has reached the limit 2S(GP) then the algorithm returns false, which means that it didn’t find a
plan. Note that the algorithm does not store in memory all the transactions applied. In contrast,
it stores only one transaction at a time, the current database, the counter and the goal formula.

44

Next, we introduce the following theorem, which states that the algorithm is sound and
complete.

Theorem 5.2. Let GP = (I,G,Act) be a GDPP. Then fp(GP) has a plan iff the FDPE
algorithm has a run that returns true on fp(GP).

Proof. ‘⇒’ Assume there exists a plan for fp(GP). By Theorem 5.1, if there exists a plan then
there is a plan P whose the length cannot exceed 2S(GP). By Definition 2.5, there exists a finite
sequence of transactions 〈ρtr1 , ..., ρtrn〉, where {ρtr1 , ..., ρtrn} ⊆ Act, n ≥ 1 s.t. there exists a
trajectory TP :

TP = 〈〈s0, ρtr1 , s1〉, 〈s1, ρtr2 , s2〉, ...〈sn−1, ρtrn , sn〉〉, n ≥ 0

for fp(GP) where: {s0, ..., sn} ⊆ S, s0 = I and sn |= G. Also by Definition 4.4, a transition
relation for a fixed domain planning problem would be:

T = {(s, ρtr, s′) | {s, s′} ⊆∈ S ∧ ρtr ∈ Γact ∧ s′ = Mρtr(s)}.

Combining those two definitions, it is easily seen that the above algorithm is correct. For each
transaction in P and corresponding transition relation in the trajectory, the algorithm will com-
pute the necessary checks in the while loop. Therefore, if TP , which leads to a goal state exists,
it means that there exists a sequence of transactions s.t. the algorithm FDPE reaches a state s
s.t. s |= G before reaching the limit of the counter. Hence, there exists a run of the algorithm,
which returns true.

‘⇐’ Assume FDPE algorithm has a run over fp(GP). One case would be when I |= G
which corresponds to a plan of length 0. If not, it follows that for a count ≤ 2S(GP), after
non-deterministically selecting transactions ρtr1 , ..., ρ

tr
n , the algorithm obtains states I, s1, ..., sn,

reaches a state sn |= G and returns true. It is easily seen that this sequence of transactions is a
plan for fp(GP), whose trajectory starts from the initial database and each time the algorithm
goes through the while loop a new transition in the trajectory is created until it reaches sn which
is a goal state.

5.1.3 Complexity of FDPE

In this section, we will show that deciding plan-existence for a fixed domain planning problem
is feasible in polynomial space.

Lemma 5.1. Let GP = (I, Act,G) be a GDPP. Deciding whether fp(GP) has a plan, is in
PSPACE.

Proof. We just need to prove that the FDPE algorithm runs in non-deterministic polynomial
space. This is the case, because a sequence of transactions can be non-deterministically chosen,
and the size of a state is bounded by S(GP) = |Rn| × |In|2 + |Cn| × |In|. That is, a state is
bounded by the number of all possible literals that can be constructed from all possible combi-
nations of role names and concept names with constants from dom(GP). Also, the length of a

45

plan is bounded by 2S(GP) (see Theorem 5.1). Hence, no more than 2S(GP) non-deterministic
choices are required. The algorithm requires non-deterministic polynomial space, because it
chooses non-deterministically the transactions and at each step, the algorithm stores in memory
only the current state, the goal formula, the counter and the current transaction. It does not store
in memory the whole plan P , but the plan can be extracted by the transactions stored at each
step. Furthermore, all the checks it needs to compute throughout the algorithm do not exceed
this bound. In particular, it checks if s |= G, where G is an ALCHOIQbr formula (hence,
a First Order Logic formula). This check can be done in polynomial space. (Model Check-
ing is PSPACE-complete, see [15]). Hence, this algorithm requires a polynomial amount of
memory in the size of the input. Therefore, this is a non-deterministic algorithm which runs in
non-deterministic polynomial space.

Using Savitch’s theorem, NPSPACE = PSPACE (cf. [42]). Therefore, determining plan
existence for a given planning instance using the above algorithm is in PSPACE.

5.2 PSPACE-Hardness

We have proved that deciding plan existence for a fixed domain planning problem is in PSPACE.
In this section we will prove that it is also PSPACE-hard.

We will prove the PSPACE-hardness by a non-deterministic Turing machine simulation.
Let L be a language in PSPACE and let T be a deterministic Turing machine (DTM) T =
(Q,Σ, s0, δ) which decides whether a given finite word w is in L within space polynomial in w.
We assume |w| = m and w.l.o.g. we assume that the R/W-head does not move outside of the
mth position. Now, we must construct a GDPP GPT = (I, Act,G) s.t. T accepts w if and only
if fp(GPT) has a plan. Before we introduce the encoding, we will first state the symbols that
we will be using, providing some intuition for each of them:

• There is a new concept name Aσi , 1 ≤ i ≤ m, each of which encodes the symbol σ at
position i.

• There is a new concept name Bsk , sk ∈ Q for each state of the DTM T .

• There is a new concept name Posi, 1 ≤ i ≤ m for each position of the R/W-head.

5.2.1 DTM Encoding to Fixed Domain Planning Problem

Based on these symbols, we now define the encoding of T to a fixed domain planning problem
as follows:

• The initial database encodes the initial configuration (s0,t, w1...wm) of T :

I = {Aσ11 (c), ..., Aσmm (c), Pos1(c), B
s0(c)},

where each Aσii (c), for 1 ≤ i ≤ m encodes the symbol σi at position i of the word w s.t.
σ1...σm = w, Pos1(c) encodes the initial position of the R/W-head and Bs0(c) encodes
the initial state.

46

• The goal formula is given as follows:

G = Bsaccept(c)

where Bsaccept(c) encodes the final (accepted) state.

• The set of predefined transactions Act is given by a unique transaction as follows:

ρtr = α1 ◦ ... ◦ αm

– where each αi, 1 ≤ i ≤ m, encodes all possible configurations at position i as fol-
lows:

αi = βiσ1,s1 ◦ ... ◦ β
i
σm,sn ,

where {(σ1, s1),, (σm, sn)} = Σ×Q.

– Each βiσj ,sk is a conditional action defined as follows:

βiσj ,sk = c : A
σj
i ∧ c : Bsk?

(Bsk	{c})◦(Bsl⊕{c})◦(Aσji 	{c})◦(A
σf
i ⊕{c})◦(Posi	{c})◦(Pos(i+d)⊕{c}) : ε.

where βiσj ,sk encodes the transition function δ(σj , sk) = (σf , sl, d) at position i, for
{sk, sl} ⊆ Q, d ∈ {−1, 0,+1} and σj , σf are symbols of w.

The intuition of an application of a transaction βiσj ,sk is the following: if the R/W-
head at position i is reading the symbol σj of the word w and is at state sk ∈ Q then
delete from the current state Bsk(c), Aσji and Posi(c). In turn, add Bsl(c), Aσli (c)
and Pos(i+d)(c) to the new state.

It is easy to see that the encoding is feasible in polynomial time, O(n × m2), where n is the
number of states and m is the length of w.

5.2.2 Correctness of the Encoding

We are now prepared to show the correctness of the above encoding through the following the-
orem:

Theorem 5.3. For every DTM T , one can compute in polynomial time a GPT = (I, Act,G)
such that: T accepts w if and only if fp(GPT) has a plan.

Proof. We prove both directions separately:

‘⇒’ Assume T accepts w. Then, by Definition 2.16, there is a finite sequence of configurations
C0, C1, ...Cn of T s.t. the initial configuration is C0 = (s0,t, w), for each i > 0, Ci−1 yields
Ci and Cn = (saccept, w

′, u′) is the last element of the sequence (accepting state). By construc-
tion, it is easily seen that ρtr encodes all possible configurations for a given w. Furthermore, for
each transition between these configurations there is exactly one transaction in ρtr that satisfies

47

the precondition c : A
σj
i ∧ c : Bsk and computes the necessary changes to the states of the

trajectory. For each configuration Ci = (s, w0...wn, wn+1...wm), Ci ∈ {C0, ..., Cn} the corre-
sponding state in the trajectory is Ii = {Aσ11 (c), ..., Aσmm (c), Posn+1(c), B

s(c)}. Hence, a plan
for fp(GPT) would be P = ρtr ◦1 ... ◦n ρtr and the trajectory is

TP = 〈I, ρtr, I1〉, 〈I1, ρtr, I2〉, ..., 〈In−1, ρtr, In〉,

where I is the initial database, representing the initial state, {I, I1, ..., In} ∈ S. It is easy to see
that the last repetition of the transaction ρtr produces a state In that adds Bsaccept(c) to In ∈ S.

‘⇐’ Assume there is a plan P for fp(GPT). Hence, the trajectory over P has the follow-
ing form: TP = 〈I, ρtr, I1〉, 〈I1, ρtr, I2〉, ..., 〈In−1, ρtr, In〉, where In ∈ S is a goal state for
fp(I, Act, Bsaccept(c)). It follows that Bsaccept(c) ∈ In. By construction, it is easily seen that
the initial database corresponds to the initial configuration C0 = (s0,t, w0...wn). Furthermore,
there is exactly one transaction β1σ1,s0 occurring in ρtr whose precondition satisfies the initial
state corresponding to the initial configuration of T . The idea is that each state will satisfy ex-
actly one conditional transaction as well. It corresponds to exactly one transition which yields
a new configuration. Hence, every state produced in the trajectory corresponds to exactly the
respective configuration in the sequence. The sequence is as follows:

C0, C1, ..., Cn,

where C0 corresponds to the initial state, Ci to Ii, 1 ≤ i ≤ n. Using the same idea, the last
repetition of ρtr which addsBsaccept(c) to In, would yield the configurationCn = (saccept, w,t)
where saccept is the accepting state.

From the above reduction from DTM, one can notice that the goal formula is the most basic
one (consists only of one positive fact). Hence, PSPACE-hardness is caused by the complex
action allowed as input. This is a very nice result since later in the thesis, we will show NP-
hardness for the case where actions are atomic with only concept names and role names and the
goal formula is the typical conjunction of arbitrary positive and negative facts.

Lemma 5.2. Deciding whether a fp(GP) has a plan, is PSPACE-hard.

In the previous sections we introduced the FPDE algorithm 5.1.2 for checking plan-existence
for a fixed domain planning problem and we showed that it runs in PSPACE in the Lemma 5.1.
By a PSPACE-complete deterministic Turing machine simulation in Section 5.2, we also showed
the PSPACE-hardness. Thus, now we can formally define the following theorem:

Theorem 5.4. Let GP = (I, Act,G) be a GDPP. Deciding whether a fp(GP) has a plan, is
PSPACE-complete.

48

5.3 Fixed Domain Plan Existence with Syntactic Restrictions

We have shown above that fixed domain plan-existence is PSPACE-complete. Applying severe
restrictions on the type of goal formulas and transactions allowed as input, one might extract
different cases to be analyzed, which offer better complexity results.

We will start by analyzing plan-existence over a fixed domain planning problem with atomic
actions that consist only of concept names. Unfortunately, for this basic case, we will prove by
reduction from 3-colorability, that deciding plan existence is already intractable. Further, we are
interested in identifying the largest setting, whose plan-existence can be decided in polynomial
time. In addition, we identify the cases that ’cause’ the above problem to be NP-hard. We will
increase the syntactic restrictions on the type of goal formulas allowed as input, and we try to
define a fine line between tractable and intractable planning for these cases.

To get a better intuition about the relation between the complexity and the parameters of
the planning problem, we initiate our search by investigating the case of positive goals, where
the goal formula is a conjunction of only positive atoms. We will show that for this interesting
case, for every plan, there exists a plan with only positive actions. The intuition is that for the
setting we will consider, where no universal restriction is allowed neither in the actions, neither
in the goal formula, the goal states are always a superset of the initial database. Since there is no
action that performs deletion, the states monotonically grow throughout each trajectory that can
be constructed. This is a very nice property which ensures nice complexity results. Indeed, we
will prove that it is in Nlogspace.

Next, attempting to find the ’causes’ of the NP-hardness, we start by considering the case
where goal formulas are conjunctions of only negative literals. We call it the case of negative
goals. One would expect the same behavior in the opposite direction as for the positive case,
meaning that a plan for this type of goal formulas would require only actions with negation. But
surprisingly, some of the cases are even reduced to the positive one.

We continue by considering several possible combinations of positive and negative facts in
the goal formula. We provide algorithms for checking the existence of a plan for some of these
cases. We distinguish some specific types of goal formulas, that seem to be the triggers that
increase the complexity to NP.

Note: For the rest of the thesis, for a GDPP GP = (I, Act,G), instead of viewing the goal for-
mula G as a general ALCHOIQbr-formulae (see Definition 4.1 and Section 3.1.1), we restrict
it by only considering G as a conjunction of positive and negative literals (as usual literals are
represented by ground concept names and role names in DL-jargon). Also, we call a positive
goal, a goal formula which is a conjunction of only positive literals and a negative goal a goal
formula which is a conjunction of only negative literals.

5.3.1 NP-Hardness for the Case of Atomic Actions with Concept Names

Let GP = (I, Act,G) be a GDPP, where Act is a set of atomic actions with only concept
names. We prove that deciding plan existence for fp(GP) under these conditions is already
NP-hard. The proof is done by reduction from 3-colorability, which is known to be an NP-
complete problem.

49

We start by giving a definition for the problem of 3-colorability of graphs.

Definition 5.1. (3-Colorability of Graphs)

Instance: A graph G = (V,E), where V is a set of vertices and E is a set of edges.

Question: Can G be colored with the three colors {r, g, b} in such a way that two adjacent
vertices have a distinct color?

The intuition is the following: given a graph and three colors red, green, blue, the idea is to
check if it is possible to color this graph in such a way that each two neighbor vertices that are
connected by an edge have different colors. If this is the case, the graph is said to be 3-colorable.

Below, we built the reduction, but before we list the concept names that we will use along
with their intuitive meaning.

• There are new concept names A ∈ NC , for each vertice of the graph G. Each of these
concept names is expected to simulate the color of the corresponding vertice in the 3-
colored graph.

• There are three new concept names F1, F2, F3 ∈ NC . Each of them will encode exactly
two different colors and an auxiliary constant f . They will be used as auxiliary atoms so
that each edge is forced to have exactly two different colors and that the vertices, expressed
via concept name A do not have more than one color.

• For each edge eij = (vi, vj) of the graph G there will be a new concept name Eij .

5.3.1.1 Reduction from 3-Colorability of Graphs

We, now can introduce the reduction. Assume a graph G = (V,E), where :

• V = {v1, ..., vn} and

• E = {eij = (vi, vj) | eij ∈ E}

We construct an instance of GP3col = (I, Act,G) as follows:

• The initial database is given as follows:

I ={A1(r), A1(b), A1(g), A1(f),

...,

An(r), An(b), An(g), An(f),

F1(r), F1(b), F1(f),

F2(b), F2(g), F2(f),

F3(r), F3(g), F3(f)},

where r, b, g ∈ NI are new constants for red, blue, green, respectively. Each Ai ∈
{A1, ..., An} has four atoms of the formAi(r), Ai(b), Ai(g), Ai(f) where each of the first

50

three encode the three possibilities of coloring of vertices vi and the last is an auxiliary
atom. Also, as stated earlier, each of the three concept names Fl, 1 ≤ l ≤ 3, represents
the different possibilities of coloring of the edges.

I contains (4n+ 9) atoms, where n is the number of vertices in G.

• The set of predefined actions for each edge eij ∈ E is given as follows:

Act = {ρ11, ρ21, ρ31, ..., ρ1n, ρ2n, ρ3n} ∪
⋃
eij∈E Actij ,

where:
ρ11 = A1 	 F1, ρ

2
1 = A1 	 F2, ρ31 = A1 	 F3,

...,
ρ1n = An 	 F1, ρ

2
n = An 	 F2, ρ3n = An 	 F3,

and each Actij is as follows:

Actij = {ρ1ij , ρ2ij , ρ3ij , ρ4ij , ρ5ij},

where:
ρ1ij = Eij ⊕ F1,

ρ2ij = Eij ⊕ F2,

ρ3ij = Eij ⊕ F3,

ρ4ij = Eij 	Ai,
ρ5ij = Eij 	Aj .

Each Eij encodes the edge eij ∈ E. Each application of an action ρli, 1 ≤ l ≤ 3, 1 ≤ i ≤
n at a state ensures a new state that contains at most one of the atoms Ai(g), Ai(r), Ai(b).
Furthermore, each application of an action ρlij , 1 ≤ i, j ≤ n, 1 ≤ l ≤ 3 at a state ensures
that the new state obtained, contains at most two of the atoms Eij(r), Eij(b), Eij(g). The
last two types of actions are necessary for checking that the edges contain the same colors
as the respective vertices.

Hence, there are 3n actions for the n vertices and 5×m actions for the edges where m is
the number of edges in the graph.

• The goal formula is given as follows:

G =
n∧
k=1

¬Ak(f) ∧
∧
eij∈E

(Eij(f) ∧ ¬Eij(r) ∧ ¬Eij(b) ∧ ¬Eij(g)).

So that the goal formula can be satisfied, it requires a sequence of actions, s.t. the trajec-
tory over these sequence reaches a state s ∈ S where each Eij(f) ∈ s, for all concept
names representing the vertices Ak(f) /∈ s. Finally for all edges represented by Eij it

51

should hold that Eij(r) /∈ s, Eij(b) /∈ s, Eij(g) /∈ s. It is easy to see that to satisfy the
goal, a sequence of actions to be a plan should contain for each 1 ≤ k ≤ n an action
Ak 	 Fl for some l ∈ {1, 2, 3}, for each eij ∈ E an action (Eij ⊕ Fl), l ∈ {1, 2, 3} and
we will also prove that it needs actions (Eij 	Ai) and (Eij 	Aj).

The goal formula contains (n+ 4m) atoms.

It is easy to see that the reduction can be built in linear time,O(8n+9m+9), where n is the
number of vertices andm is the number of edges in G. Next, we need to prove that this reduction
from 3-colorability of graphs to an instance of fixed domain planning problem is correct.

5.3.1.2 Correctness of Reduction

We introduce the following theorem that states that if there is a 3-colorable graph, then there
exists a plan for the corresponding fp(GP3col). The other direction also holds. More formally:

Theorem 5.5. For every finite graph G one can compute in linear time a graph database plan-
ning problem GP3col such that:

G is 3-colorable if and only if there exists a plan for fp(GP3col).

Proof. We prove both directions as follows:

‘=⇒’ Assume a graph G = (V,E) with n vertices and m edges and let G be 3-colorable. We
need to prove that fp(GP3col) has a plan.

Since G is 3-colorable, it means that each of the vertices of the graph can be labeled by one
of the colors red, blue, green s.t. every edge of the graph is labeled by two different colors. We
construct three sequences of actions for fp(GP3col) as follows.

1. For each eij ∈ E, 1 ≤ i, j ≤ m, there is exactly one action of form ρlij = (Eij ⊕ Fl),
1 ≤ l ≤ 3, s.t. if eij is labeled with the colors {x, y} ⊂ {r, b, g} then Fl(x) ∈ I and
Fl(y) ∈ I . Intuitively, since the initial database contains for each l ∈ {1, 2, 3} exactly
three atoms, one of which is Fl(f) and the two others1 represent two different colors, we
add only atoms Eij with the constants occurring in Fl that correspond to the colors of the
edge eij . Let s′ be this sequence.

2. For each A′k = vk ∈ V , 1 ≤ k ≤ n, there is exactly one action of the form ρlk = Ak 	 Fl
for 1 ≤ l ≤ 3, such that if A′k is labeled with color x ∈ {r, b, g} then Fl(x) /∈ I . Since
the initial database contains for each Ak, 1 ≤ k ≤ n contains atoms for each color and
an atom Ak(f), the intuition is that we for each Ak we chose an action that leaves exactly
the atom that has the constant corresponding to the color of the node vk ∈ V . This is done
by deleting the Fl that has the constants that correspond to the other two colors. Let s′′ be
this sequence.

3. For each edge eij ∈ E there are two actions of the form ρ1ij = Eij	Ai and ρ2ij = Eij	Aj .
We populated the atoms Eij with constants corresponding to the colors of nodes of the
corresponding edges in the graph and the same with the atoms Ak. Hence, these two

52

actions will produce a state where for each Eij there will be just one atom Eij(f). Let s′′′

be this sequence.

Now, it just remains to prove that applying 1, 2, 3 in a sequence results in a planP for fp(GP3col).
Thus we claim that:

P = 〈s′s′′s′′′〉

is a plan for fp(GP3col). The proof is almost straightforward. The last state sn ∈ S of the
trajectory TP has the following properties:

• By s′, for each Eij that corresponds to an edge eij ∈ E, Eij(f) ∈ sn.

• By s′′, for each Ak that corresponds to a node vk ∈ V , Ak(f) /∈ sn.

• By 1 and 2, the states will be updated such that the colors of the atoms of Eij will be com-
patible to the colors of Ai and Aj . Hence applying the sequence s′′′ of actions, enforces
that for each Eij the following holds: Eij(r) /∈ sn, Eij(b) /∈ sn, Eij(g) /∈ sn. By 2 no
Ak(f) ∈ sn, hence Eij(f) ∈ sn for each Eij .

Hence, P is indeed a plan for fp(GP3col).

‘⇐=’ Assume P is a plan for fp(GP3col). We need to prove that G is 3-colorable.
By assumption there exists a plan P s.t. TP is a trajectory that reaches a goal state sn ∈ S,

i.e. sn |= G.

We claim that for each Ak corresponding to a vertice in G, sn contains exactly one atom Ak(x),
x ∈ {r, g, b}, where x corresponds to the color of the respective vertice in G, s.t. each edge of G
is labeled by two different colors.

We prove the claim considering the properties the trajectory TP should have so that a final goal
state sn |= G is achieved.

1. For each Eij s.t. eij ∈ E, it holds that Eij(f) ∈ sn. It follows that in P there are actions
of the form (Eij ⊕ Fl) for each Eij . Hence, for each of them at least 2 different atoms of
the form Eij(x), Eij(y) (in addition to adding Eij(f)), where x, y ∈ {r, b, g} are added
by these actions to some state in the trajectory. Hence, at this point, each edge in the graph
has at least two colors.

2. For each Ak, s.t. vk ∈ V , it holds that Ak(f) /∈ sn. It follows that, for each of them, there
are actions in P of the form (Ak 	 Fl). Hence, there remains at most 1 atom of the form
Ak(x), x ∈ {r, b, g}. At this point, each vertice in the graph has at most one color.

3. For each Eij , s.t. eij ∈ E, it should hold that Eij(r) /∈ sn, Eij(b) /∈ sn, Eij(g) /∈ sn.
The latter, and by 1 and 2 (of this page) it is easily seen the following.

• For each Eij , exactly one action (Eij ⊕ Fl), for some Fl ∈ {F1, F2, F3} and for
each Ak exactly one action (Ak 	 Fl), for some Fl ∈ {F1, F2, F3} should occur in
TP . We show this claim by contradiction.

53

– To show the first, assume for some Eij actions (Eij ⊕ Fl′) and (Eij ⊕ Fl′′),
{Fl′ , Fl′′} ⊆ {F1, F2, F3} occur in TP . Hence, there is a state s′ ∈ S s.t.
{Eij(r), Eij(g), Eij(b), Eij(f)} ⊆ s′. In this case, so that a goal state is
reached, in TP should be actions that delete these three atoms. The only ac-
tions responsible for deleting from Eij are (Eij 	 Ai) and (Eij 	 Aj). To
preserve that Eij(f) ∈ sn, some action (Ai 	 Fl) and (Aj 	 Fl) should occur.
But then, by 2 at most one atom will be remained for each of them. It follows,
that applying (Eij 	 Ai) and (Eij 	 Aj) there is no possibility to delete the
three desired atoms. Hence, exactly one action (Eij ⊕Fl) should be applied for
each Eij , so that exactly two atoms representing two different colors are added.

– Next, we claim that for each Ak, there is exactly one action (Ak 	Fl) for some
Fl ∈ {F1, F2, F3} occurs in TP . Considering that for each Eij , exactly one
action (Eij ⊕ Fl) exists in TP , using the same argument as in previous case, it
is easy to see that so that a state that satisfies the goal formula is reached, the
claim should hold.

Thus, until now we have proved that there is a state s′n in TP , where for each Ak
there is exactly one atom Ak(z), where z ∈ {r, b, g}. Also for each Eij , s′n contains
exactly three atoms. One of these three atoms is Eij(f) and the two others are
Eij(x), Eij(y), s.t. {x, y} ⊂ {(r, b), (b, g), (r, g)}.
• Next, the goal state of TP should be s.t. Eij(r) /∈ sn, Eij(b) /∈ sn, Eij(g) /∈ sn. The

only actions in Act responsible for deleting atoms Eij from a state are (Eij 	 Ai)
and (Eij	Aj). So that sn is reached, s′n should contain exactlyAi(x) andAj(y) for
Eij(x), Eij(y), for {x, y} ⊆ {r, b, , g}. Thus sn will contain atoms Ak(z) for each
vertice of the graph with colors s.t. the corresponding edge in the graph is labeled
by two different colors.

Thus the claim is shown.

It is known that the 3-colorability problem is an NP-complete problem. Thus, we can intro-
duce the following theorem.

Theorem 5.6. Deciding whether there exists a plan for fp(I, Act,G), where Act is a set of
atomic actions with only concept names, is NP-hard.

Next, we analyze different subcases, by restricting the syntax of the goal formula.

5.3.2 The Case of Positive Goals

We start by considering a graph database planning problem GP = (I, Act,G), where Act is a
set of basic actions and G is a conjunction of positive atoms expressed via ALCHOIQbr basic
concepts and roles. We do not put any restrictions on the initial database.

In this section, we will prove that for each plan of fp(GP), there exists a plan that contains
no negative actions. Thus deleting all the negative actions from a plan P , it will still be a plan

54

for fp(GP). The latter entails that only positive actions can be responsible for the necessary
changes to the states of the trajectory TP so that a goal state is reached. Indeed, this is a very
nice property which ensures nice complexity results. The intuition behind this interesting case is
that considering only positive actions, states produced after each step will monotonically grow.
Thus, for each possible trajectory, the states obtained after each application of an action, are a
superset of the previous one. To get a better intuition, we give an example to illustrate this case:

Example 5.2. We consider the usual example with the project database of some research insti-
tute. Assume the following graph database planning problem GP = (I, Act,G).

I ={ActiveProject(P20840),

P roject(P20840), ,

ConcludedProject(),

Employee(E01), Employee(E03),

P rojectEmployee(E01),

P ermanentEmployee(E04),

worksFor(E01 ,P20840)}.

Act = {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ7},

where:
ρ1 = ActiveProject⊕ Project,
ρ2 = ActiveProject	 Project,
ρ3 = Project⊕X,
ρ4 = PermanentEmployee⊕ ProjectEmployee,
ρ5 = PermanentEmployee	 ProjectEmployee,
ρ6 = worksFor ⊕ (X,Y),
ρ7 = worksFor 	 (X,Y).

G = ActiveProject(P24090) ∧ PermanentEmployee(E01) ∧ worksFor(E03 ,P24090).

In this example, Act consists of a set of seven predefined basic actions and the goal G is a
conjunction of three positive literals, which intends the addition of some new project P24090 to
ActiveProject, E03 to work for this specific project and lastly, it requires E01 to be a Permanen-
tEmployee. A state that satisfies the goal s ∈ S should be such that {ActiveProject(P24090),
PermanentEmployee(E01), worksFor(E03 ,P24090)} ⊆ s. It is easily seen that, by instanti-
ating X in ρ3 with P24090 and (X,Y) in ρ7 with (E03 ,P24090), a plan P for fp(GP) can
be the following:

P = 〈(Project⊕ P24090), (ActiveProject⊕ Project),

(PermanentEmployee⊕ ProjectEmployee), (worksFor ⊕ (E03 ,P24090))〉.

Now, let’s consider the following sequence:

P ′ = 〈(Project⊕ P24090), (ActiveProject	 Project), (ActiveProject⊕ Project),

55

(PermanentEmployee⊕ ProjectEmployee), (worksFor ⊕ (E03 ,P24090))〉.

P ′ is still a plan for the above instance, since ρ2 is applied before ρ1. Thus considering the first
three state transitions of the trajectory TP ′ ,

〈I, (Project⊕ P24090), s1〉〈s1, (ActiveProject	 Project), s2〉

〈s2, (ActiveProject⊕ Project), s3〉,

it is easily seen that s2 2 ActiveProject(P24090), but s3 |= ActiveProject(P24090). Fur-
thermore, no action with deletion is there further in the sequence, hence the last state of the
trajectory models ActiveProject(P24090) as well. So ρ2 can be deleted from the sequence
and the sequence will still be a plan. But, if ρ2 is performed after ρ1, then P ′ will not be a plan
anymore. Hence, every negative action that can be added to this sequence either is redundant,
since it would only delete facts from some state, or it will cause the sequence not to be a plan
anymore. Thus, each of the actions ρ2, ρ5 and ρ7 can be forgotten and not considered for every
goal formula with only positive literals for the above given I and Act.

Hence, for every plan of a given fp(GP) with a positive goal formula, there exists a plan
that contains only positive actions. Surely, some of them might still be redundant, but intuitively
no positive actions can harm the property of being a plan, for some sequence of actions. Indeed,
applying to a state an action that performs addition, only produces a state, which is a superset of
the state it was applied to. It follows that, the cardinality of the states after each application of a
positive action only grows (or stays the same). We will prove that these nice properties of fixed
domain planning problems with positive goals, ensure nice complexity results when deciding
plan-existence.

To formally define this intuition, we introduce the following theorem and lemma.

Theorem 5.7. Let GP = (I, Act,G) be a GDPP, where G is a conjunction of positive literals,
Act is a set of basic actions. For every plan P of fp(GP), there exist a plan P ′ of fp(GP) with
only positive actions.

To prove this theorem it is sufficient to prove the following lemma:

Lemma 5.7.1. If P is a plan for fp(GP) with k negative actions, then there exists a plan P ′ for
fp(GP) with (k − 1) negative actions.

Proof. Assume P is a plan of fp(GP) which contains k negative actions. By Definition 2.5,
there exists a finite sequence of actions 〈ρ1, ..., ρn〉 where {ρ1, ..., ρn} ⊆ Act, n ≥ 1 s.t. for
some {I, s1, ..., sn} ⊆ S, there exists a trajectory TP :

TP = 〈〈I, ρ1, s1〉, 〈s1, ρ2, s2〉, ...〈sn−1, ρn, sn〉〉, n ≥ 0

where I is the initial database, and sn |= G. W.l.o.g assume that the last negative action appears
at position l ≤ n and has the form ρl = (A 	 C) ∈ Act, where A is a concept name or a
role name and C is an ALCHOIQbr basic concept or an ALCHOIQbr role. Let the state
transition at position l be tl = 〈sl−1, (A	C), sl)〉 s.t. sl = M(A	C)(sl−1) (see Definition 4.4).

56

By Definition 3.7, M(A	C)(sl−1) = sl−1 \ {A(c) | sl−1 |= C(c)}. Hence, sl ⊆ sl−1. Since C
can be a basic concept or an ALCHOIQbr role, it is easily seen that, if sl−1 2 G then sl 2 G
as well. It follows, that eliminating the action ρl from the plan, does not have any impact on the
plan.

Note: For a more extended proof see the proof of Lemma 6.6.

Next, we will investigate the complexity of the positive case. To get a better intuition about
its complexity, we start by analyzing the complexity of the least expressive subcase by enforcing
even more severe restrictions on the goal formula, where in the beginning we will consider a
goal formula with a single positive literal. By a reduction to reachability in graphs, we will
show that deciding plan-existence for this case can be done in Nlogspace. Further, we view the
goal formula as a conjunction of two or more positive literals and analyze its complexity.

Note: In the following we consider only basic actions and the goal formula as a conjunction
of literals expressed via ALCHOIQbr basic concepts and ALCHOIQbr roles. Furthermore,
w.l.o.g. due to Theorem 5.7, for cases with goals with only positive literals, we will consider
only plans with positive actions.

5.3.2.1 Encoding to Reachability in Graphs

Now, we consider again a GDPP GP = (I, Act,G), where Act is a finite set of basic ac-
tions and G is a conjunction positive literals expressed via ALCHOIQbr basic concepts and
ALCHOIQbr roles. We prove that deciding plan existence for fp(GP), under this conditions,
can be done in non-deterministic logarithmic space. We start by encoding the fp(GP) planning
problem for the case with G as a single positive literal to reachability in graphs.

For the case of the general positive goal formula of the form C1(c) ∧ ... ∧ Cn(c) where C
is an ALCHOIQbr basic concept or role and c is a constant or a tuple, it is not hard to see that
the complexity does not change. One can find a plan for each literal Cj(c), 1 ≤ j ≤ n, in a
sequence, as if they were goals with a single literal, and then concatenate the plans. This would
mean that after finding a plan for the first literal in the goal, the resulting goal state is an initial
state for the plan of the second literal, and so on. This holds based on the fact that the trajectory
of a plan for fp(I, Act, C1(c)) results in a goal state s ∈ S s.t. s |= C1. Moreover, since
w.l.o.g. we consider only plans with positive actions, s ⊇ I . Hence, if there exists a plan for
fp(I, Act, C2(c)), then there is a plan also for fp(s,Act, C2(c)). The argument is the same for
the case of a goal with more than two positive literals. Further in this section, we will formally
prove this intuition.

Below we give the reduction for fp(GP) where the goal is a ground atomic formula, but
before we introduce the following lemma:

Lemma 5.3. Let GP = (I, Act,G) be a GDPP and T be a trajectory for fp(GP) of the form
T = 〈〈s0, act1, s1〉, 〈s1, act2, s2〉, ...〈sn−1, actn, sn〉〉, n ≥ 0. If {act1, ..., actn} are positive
actions then s0 ⊆ s1 ⊆ ... ⊆ sn.

57

Proof. It is easily seen that if {act1, ..., actn} are positive actions, thus they perform only addi-
tions, then a fact can never be deleted from some state. Hence, each application of one of these
actions to a state cannot result in a state with smaller cardinality.

Next, we will provide the encoding to reachability of graphs.
Assume a GDPPGP = (I, Act,G), whereAct is a set of basic actions andG is a single positive
literal that has one of the following forms:

• C(c), where C is a basic concept and c ∈ NI ,

• R(c, d), where R is an ALCHOIQbr role and {c, d} ⊆ NI .

Let dom(G) ⊆ dom(GP) be the set of all constants that appear inG. Corresponding to fp(GP)
we construct a graph g(GP) = (V,E), where V is a set of vertices and E is a set of edges
defined as follows:

• V = {C(c) | C is a basic concept that occurs in I , Act or G, where c ∈ dom(G)} ∪
{R(c, d) | R is an ALCHOIQbr role that occurs in I , Act or G s.t. {c, d} ⊆ dom(G) ∪
{b}, where b ∈ dom(GP)}.

• (v1, v2) ∈ E iff v1, v2 ∈ V and one of the following holds:

1. v1 = C(c), v2 = A(c) and (A⊕C) ∈ Act, where A ∈ NC and C is a concept name
or a concept ∃R, or ∃R−, where R ∈ NR,

2. v1 = t, v2 = A(c) and (A⊕ t) ∈ Act where A ∈ NC and {t} ∈ Nv ∪ {c},
3. v1 = P (c, d), v2 = R(c, d) and (R⊕ P) ∈ Act, where R ∈ NR and P ∈ NR,

4. v1 = (t1, t2), v2 = R(c, d) and (R⊕ (t1, t2)) ∈ Act, where R ∈ NR and {t1, t2} ⊆
NV ∪ {c, d},

5. v1 = P (d, c), v2 = R(c, d) and (R⊕ P−) ∈ Act,
6. v1 = R(c, d), v2 = P−(d, c) and P = R,

7. v1 = R(c, d), v2 = ∃P (c) and P = R,

8. v1 = R(d, c), v2 = ∃P−(c) and P = R.

Note: W.l.o.g. we can assume that for any plan, its last actions is the first one that reaches the
goal.

Next, for convenience, we introduce a new set of atoms as follows.

Definition 5.2. Let ΣV be a new set ΣV ⊆ V defined as follows:

• if t ∈ V and t is a variable or a constant from dom(G), then (t) ∈ ΣV ,

• if (t1, t2) ∈ V is a tuple, and t1, t2 are variables or constants from dom(G) ∪ b, where
b ∈ dom(GP), then (t1, t2) ∈ ΣV , and

• I ⊆ ΣV .

58

Now, we are ready to introduce the following theorem.

Theorem 5.8. Assume GP = (I, Act,G), where Act is a finite set of basic actions and G is a
single literal. fp(GP) has a plan iff there exists a path from some L s.t. L ∈ ΣV to G.

Proof. ‘⇐=’(Soundness) Let P = 〈(v1, v2), (v2, v3), ..., (vn−1, vn)〉 be a path from some v1 =
L to vn = G, where L ∈ ΣV . We need to prove that there exists a plan for fp(GP).

To prove this claim it suffices to prove the following lemma.

Lemma 5.8.1. If P is a path from some L ∈ ΣV to G, then each fp(I, Act, vi) has a plan, for
all vi that occur in P .

Proof. We prove the claim by induction on i.

Base case. i = 1. Thus, v1 = L ∈ ΣV . We distinguish between two cases:

1. L is a variable t, or a tuple of variables (t1, t2) or constants from dom(G) ∪ b, where
b ∈ dom(GP). Then it is trivial that fp(I, Act, L), viewing I as an interpretation, for
every instantiation of variables with elements of dom(G), has a plan of length 0.

2. L ∈ I then I |= L, thus I is already a goal state for fp(I, Act, L).

Induction Hypothesis. ∀i, i ≤ k, fp(I, Act, vi) has a plan.

Induction Step. Now we prove the claim for fp(I, Act, vk+1). Let (vk, vk+1) be the correspond-
ing edge in the path P that leads to vk+1. By hypothesis, there exists a plan for fp(I, Act, vk).
Let P be this plan and s ∈ S the final state of the trajectory TP . Then, one of the following
cases holds:

• vk = C(c) and vk+1 = A(c) and (A⊕C) ∈ Act, where C is a concept name or a concept
∃R, or ∃R−, where R ∈ NR. We claim that 〈P, (A⊕ C)〉 is a plan for fp(I, Act, A(c)).
The last state trajectory is 〈s, (A⊕C), s′〉. By Definition 3.7, s′ = s∪{A(c) | s |= C(c)}.
By the hypothesis, it is easy to see that s′ |= A(c).

• vk = P (c, d), vk+1 = R(c, d) and (R ⊕ P) ∈ Act, where R ∈ NR and P ∈ NR.
Reasoning as in the previous case 〈P, (R⊕P)〉 is the required plan for fp(I, Act, vk+1),
.

• vk = t, vk+1 = A(c) and (A ⊕ t) ∈ Act where A ∈ NC and {t} ∈ Nv ∪ c. It is easy to
see that A(c) can be reached immediately by substituting t with c or just adding A(c) if
vk = c.

• vk = (t1, t2), vk+1 = R(c, d) and (R⊕ (t1, t2)) ∈ Act, where R ∈ NR. This is identical
to the previous case considering {t1, t2} ⊆ NV ∪ {c, d}.

• vk = P (d, c), vk+1 = R(c, d) and (R⊕ P−) ∈ Act. By the hypothesis fp(I, A, P (d, c))
has plan P with final state s ∈ S. Applying (R ⊕ P−) to s, a new state s′ is obtained
s.t. by Definition 3.7, s′ = s ∪ {R(c, d) | P (d, c) ∈ s}. Thus, s′ |= R(c, d). Hence
〈P, (R⊕ P−)〉 is a plan for fp(I, Act, R(c, d)).

59

• vk = R(c, d), vk+1 = P−(d, c) and P = R. It is not hard to see that if s |= R(d, c), then
s |= P−(d, c), since R = P and (P−(d, c))I = R(c, d). It follows that P is a plan for
fp(I, Act, R(c, d)).

• vk = R(c, d), vk+1 = ∃P (c) and P = R. By the semantics of ∃R(c) and by the hypothe-
sis, it is easy to see that P is also a plan for fp(I, Act,∃P (c)).

• vk = R(d, c), vk+1 = ∃P−(c) and P = R. By the semantics of ∃R−(c) and the hypoth-
esis, it is easy to see that P is also a plan for fp(I, Act, ∃P−(c)).

Thus, by induction we showed that for all nodes of the path P , fp(I, Act, vi) has a plan.
Since, vn = G is also a node of this path, it also holds that fp(I, Act,G) has a plan.

‘=⇒’ (Completeness) Let P be a plan for fp(I, Act,G). We need to prove that there exists a
path from some L ∈ ΣV to G.
We prove the claim by induction on the length l of a plan. W.l.o.g we assume that the last action
of the plan reaches the goal.

Base Case. The length of the plan is l=0. By definition of a plan it means that I |= G. We
distinguish between two cases as follows:

• G is a literal of the form A(c) or r(c1, c2), A ∈ NC , r ∈ NR or a constant c or a tuple of
constants (c1, c2). It follows that they should be in I . By construction, they should be in
ΣV . Hence, G ∈ ΣV , thus the path is of length 0.

• G is of form ∃R(c) or ∃R−(c) or P−(c, d). We analyze each case separately.

– I |= ∃R(c) or I |= ∃R−(c). By Definition 2.2, there exists some atom of the form
R(c, f) ∈ I , (respectively R(f, c) ∈ I). By Definition 5.2, R(c, b) ∈ I ⊆ ΣV .
Thus, there are nodes ∃R(c) ∈ V and R(c, b) ∈ V . Hence by construction, 7 (resp.
8) in encoding of edges, there is an edge between those two nodes.

– Also for the case whenG = P−(c, d), since I |= P−(c, d) it means that P (d, c) ∈ I .
It follows that P (d, c) ∈ ΣV . Hence, by 8 in the encoding of edges, there is a path
of length 1 between those two nodes.

Induction Hypothesis. For any plan of length ≤ l there exists a path P from L ∈ ΣV to G.

Induction Step. We prove the claim for plans of length l + 1. We distinguish between different
cases of the last (hence (l + 1)th) basic action that appears in the plan.

1. G = A(c) and A ∈ NR. The (l + 1)th action can have one of the following forms.

a) (A⊕ C) is the (l + 1)th action in the plan where C is a concept name or a concept
of the form ∃R or ∃R−. Let the last state transition in TP be 〈s′, (A⊕C), s〉. Under
the assumption that (A ⊕ C) is the first action that reaches the goal state, then by
Definition 3.7, it holds that s′ |= A(c) and s |= C(c). By the hypothesis, there

60

exists a path from some L ∈ ΣV to C(c). Since C(c) ∈ V , also A(c) ∈ V being a
goal literal, and (A⊕ C) ∈ Act, by 1 in the encoding of edges, there exists an edge
between C(c), A(c). Hence 〈P, (C(c), A(c))〉 is the desired path.

b) (A ⊕ t), where t ∈ NV ∪ {c}. By 2 in the encoding of edges, it is easy to see that
there is a path of length 1.

2. G = r(c, d). Then one of the following actions that updates R can happen as the last and
(l + 1)th action in P .

a) (r ⊕ P) where r, P ∈ NR. Let the last state transition in TP be of the form 〈s, (r ⊕
P), s′〉. By assumption and by Definition 3.7, s′ |= r(c, d) and s |= P (c, d). Hence,
there is a plan of length ≤ l for fp(I, Act, P (c, d)). By hypothesis and by 3 in the
encoding of edges, there is an edge between some L ∈ ΣV to r(c, d).

b) (r ⊕ (t1, t2)), where {t1, t2} ∈ NV ∪ {c, d}. By 4 in the construction of edges, it is
easy to see that there is a path of length 1.

c) (r ⊕ P−) where r, P ∈ NR. Let the last state transition in TP be of the form
〈s, (r⊕P), s′〉. By assumption and Definition 3.7, and by Definition 2.2 s′ |= r(c, d)
and s |= P (d, c). Hence, there is a plan of length ≤ l for fp(I, Act, P (d, c)). By
hypothesis and by 5 in the encoding of edges, there is an edge between someL ∈ ΣV

to r(c, d).

3. G = r−(c, d), where r ∈ NR. Clearly a plan for fp(I, Act, r−(c, d)) is a plan for
fp(I, Act, r(d, c)). By 6 in the encoding of edges there is an edge (r(d, c), r−(c, d). To
show that there is a path from some L ∈ ΣV to r(c, d), the argument then is the same as
in 2.

4. G = ∃r(c), where r ∈ NR. Let s ∈ S be the last state of TP , s.t. s |= ∃r(c). By
Definition 2.2, s |= r(c, d), where d ∈ dom(GP). By 7 in the construction of edges there
is an edge (r(c, d), R(c)). To show that there is a path from some L ∈ ΣV to r(c, d), the
argument then is the same as in 2.

5. G = ∃r−(c), where r ∈ NR. Let s ∈ S be the last state of TP , s.t. s |= ∃r(c). By
Definition 2.2, s |= r(d, c), where d ∈ dom(GP). By 8 in the construction of edges there
is an edge (r(d, c), R(c)). To show that there is a path from some L ∈ ΣV to r(c, d), the
argument then is the same as in 2.

Thus, by encoding plan existence for fp(GP) into reachability in graphs, which can be
decided in Nlogspace, we showed that also deciding plan existence for a fixed domain planning
problem with basic actions and goal formulas with one positive literal is also Nlogspace. More
formally:

Theorem 5.9. Let GP = (I, Act,G) be a GDPP, where Act is a finite set of basic actions
and G is a positive atom expressed viaALCHOIQbr basic concepts andALCHOIQbr roles.
Deciding plan existence for fp(GP) can be done in Nlogspace.

61

Proof. The above encoding to reachability, whose correctness is proved by Theorem 5.8, proves
that plan existence for fp(GP) can be decided in Nlogspace.

Thus, we have shown that the case where the goal formula is a single positive literal, deciding
plan-existence for a fixed domain planning problem with basic actions is Nlogspace. Next, we
will show that the complexity of the case where the goal formula is a conjunction of an arbitrary
number of positive literals is still the same.

5.3.2.2 Complexity of the Case with Positive Goals

Below, we show that the case where the goal formula is a conjunction of positive literals ex-
pressed via ALCHOIQbr basic concepts and ALCHOIQbr roles does not increase the com-
plexity.

Firstly, we give the following lemma, which states that one can decide plan-existence, con-
sidering each conjunct of the goal formula separately.

Lemma 5.9.1. Let GP = (I, Act,G) be a GDPP, where G = g1 ∧ ... ∧ gn s.t. each gi is a
positive literal as above. fp(GP) has a plan iff each fp(I, Act, gi), 1 ≤ i ≤ n has a plan.

Proof. We prove both directions separately:

‘=⇒’ This directions is straightforward. Let P be a plan for fp(GP) and let s ∈ S be the final
state of the trajectory TP s.t. s |= G. It follows that s |= gi, ∀1 ≤ i ≤ n. Hence, P is a plan for
each fp(I, Act, gi), 1 ≤ i ≤ n.

‘⇐=’ Let Pi be a plan for fp(I, Act, gi), ∀1 ≤ i ≤ n, and si ∈ S be the final states (resp. goal
states, si |= gi) of the trajectories TPi . We claim that

P = 〈P1,P2, ...,Pn〉

is a plan for fp(GP). The proof is also straightforward. Let s′i ∈ S be the new states obtained
after applying sequence Pi in the trajectory TP . We need to show that s′n |= G. By Lemma 5.3
I ⊆ s′1 ⊆ s′2 ⊆ ... ⊆ s′n. It is also easy to notice that if si |= gi then s′i |= gi since intuitively,
each s′i ⊇ si. Hence, the final state will be a superset of all previous states and will satisfy each
goal formula that the previous states do. It follows that s′n |= g1 ∧ ...∧ gn. Thus, P is a plan for
fp(GP).

Now, we are prepared to introduce the following theorem.

Theorem 5.10. Let GP = (I, Act,G) be a GDPP, where Act is a finite set of basic actions
and G is a conjunction of positive literals expressed via ALCHOIQbr basic concepts and
ALCHOIQbr roles. Deciding plan existence for fp(GP) can be done in Nlogspace.

Proof. By Theorem 5.9, each check can be done in Nlogspace.

To sum up, in this section, we showed that deciding fixed domain plan-existence for a finite
set of basic actions and a positive goal formula with literals expressed via basic concepts and
ALCHOIQbr roles is Nlogspace.

62

Next, we study the case where the atoms in the goal formula are negated. We study their
impact to the complexity of deciding plan-existence.

5.3.3 The Case of Negative Goals

Now, we assume a graph database planning problem GP = (I, Act,G) which consists only of
negative goalsG andAct is a finite set of basic actions. As before, we do not put any restrictions
on the initial database.

Intuitively, being the opposite of the positive case, one expects that a plan for this case needs
only actions that perform deletion, and that positive actions are redundant since they add atoms.
But, surprisingly this is not how it works.

To get a better intuition, we give an example to illustrate this case:

Example 5.3. Assume GP = (I, Act,G) if given as follows.

I ={Project(P20840), P roject(P24090)}.

Act = {ρ1, ρ2, ρ3}.

where:

ρ1 = ConcludedProject⊕X,
ρ2 = ConcludedProject	X,
ρ3 = Project	 ConcludedProject.

G = ¬Project(P24090)).

It can be easily seen from this example that there doesn’t exist a plan with only negative actions
for fp(GP). Therefore, for achieving a state with no atom Project(P24090) there is just one ac-
tion, namely ρ3, but it can be easily noticed that there is no atom ConcludedProject(P20490) in
the initial database. Hence, another earlier action to the initial database needs to be performed
so that ConcludedProject(P24090) is added. This can be done by the action ρ1, by substituting
X with (P24090). Thus, a plan for this instance is:

〈ρ1, ρ3〉.

By the very basic Example 5.3, it was shown that for the case with negative goals one may
need plans with not only negative actions. In turn, positive actions are often needed to capture
the necessary changes to the states s.t. a goal state is reached. Indeed, we will show that the case
where the goal formula is a single negative literal can be treated as the case of positive goals.

To sum up, the negative case with only one negative atom, can be reduced to the positive
case. In the next section, we formally define and prove the reduction.

63

5.3.3.1 Reducing Singleton Negative Goals Case to Positive Goals Case

To get a better intuition, we start by analyzing the basic subcase with a single negative literal in
the goal formula. Thus, we will consider a GP = (I, Act,G) with G as one of the following
forms: ¬A(c), ¬R(c1, c2) or ¬R−(c1, c2), where A ∈ NC and R ∈ NR. As in the positive
case, Act is a finite set of basic actions. Surprisingly, if the initial database is not already a goal
state and if there exists a plan, then there is always a plan with a (possibly empty) sequence
of positive actions followed by a single negative action. E.g. to delete A(c), where A ∈ NC ,
from the initial database there should exist some action of the form (A 	 Cj), where Cj is an
ALCHOIQbr basic concept. There are two cases to be distinguished; (A 	 Cj) reaches the
goal state or it doesn’t. If it’s the first case, then there is a plan with a single action, namely
(A 	 Cj). The latter means that Cj(c) is not satisfied by the initial database. Hence, the next
goal is fp(I, Act, Cj(c)), which is a positive goal and checking plan existence for this case is
done as in the positive case (see Theorem 5.8).

Note: It is obvious that if I |= G then I is already a goal state, but for this section, w.l.o.g. we
assume that I 2 G and that the length of the plan is n, where the n-th action is the first one that
reaches the goal.

Theorem 5.11. Assume GP = (I, Act,G), where Act is a finite set of basic actions and G
is a single negative atom of the form ¬A(c), ¬R(c1, c2) or ¬R−(c1, c2), where A ∈ NC and
R ∈ NR. For every plan of fp(GP), there exist a plan with only positive actions and a last
negative action.

To prove this theorem it is sufficient to prove the following lemma:

Lemma 5.11.1. fp(I, Act,G) has a plan iff one of the following cases holds.

• G = ¬A(c), where A ∈ NC and c ∈ NI and there is an action ρj = (A 	 Cj) ∈ Act,
where C is an ALCHOIQbr basic concept, s.t. fp(I, Act, Cj(c)) has a plan.

• G = ¬R(c1, c2), where R ∈ NR and {c1, c2} ⊆ NI and there is an action ρj = (R 	
P) ∈ Act, where P is an ALCHOIQbr role s.t. fp(I, Act, P (c1, c2)) has a plan.

• G = ¬R−(c2, c1), where R ∈ NR and {c1, c2} ⊆ NI and there is an action ρj =
(R	 P) ∈ Act, where P is an ALCHOIQbr role s.t. fp(I, Act, P (c1, c2)) has a plan.

Proof. We prove both directions as follows:
‘⇐=’ (Soundness.) This direction is straightforward. We prove each case separately.

• Let G = ¬A(c), ρj = (A 	 Cj) ∈ Act and P be a plan for fp(I, Act, Cj(c)), where
A ∈ NC , c ∈ NI andC anALCHOIQbr basic concept. IfCj is a variable t or a constant
c, then it is easy to see that the plan is of length 0. Otherwise, there exists a trajectory TP ,
whose last state s ∈ S is such that s |= Cj(c). Next, applying 〈s, (A 	 Cj), s

′〉, by
Definition 4.4 and by Definition 3.7, s′ = M(A	Cj)(s) = s \ {A(c) | s |= Cj(c)},
{s′, s} ⊆ S. The latter and by assumption that s |= Cj(c), it follows that s′ |= ¬A(c).
Hence, 〈P, (A	 Cj)〉 is a plan for fp(GP).

64

• Let G = ¬R(c1, c2), ρj = (R 	 P) ∈ Act, and P be a plan for fp(I, Act, P (c1, c2)),
where R ∈ NR, {c1, c2} ⊆ NI and P a ALCHOIQbr role. If P is a tuple of variables
(t1, t2) or a tuple of constants (c1, c2), then it is easy to see that the plan is of length 0.
Otherwise, using the same arguments as in the previous case, the last state s ∈ S of the
trajectory TP , is s.t. s |= P (c1, c2). Applying (R 	 P) to s, results in a state s′ ∈ S s.t.
s′ |= ¬R(c1, c2). Thus 〈P, (R	 P)〉 is a plan for fp(GP).

• Let G = ¬R−(c2, c1), ρj = (R 	 P) ∈ Act, and P be a plan for fp(I, Act, P (c1, c2)),
where R ∈ NR, {c1, c2} ⊆ NI and P is an ALCHOIQbr role. If P is a tuple of
variables (t1, t2) or a tuple of constants (c1, c2), then the plan is of length 0. Otherwise,
the last state s ∈ S of TP is s.t. s |= P (c1, c2). Applying (R 	 P) to s results in a state
s′ ∈ S, s.t. s′ |= ¬R(c1, c2). It follows that s′ |= ¬R−(c2, c1). Thus 〈P, (R 	 P)〉 is a
plan for fp(GP).

‘=⇒’ (Completeness.) We distinguish between different types of the goal formula.

• Let G = ¬A(c) and P be a plan for fp(I, Act,¬A(c)), where A ∈ NC . By assumption
the last action is the first that reaches the goal and has the form (A 	 Cj) where Cj is a
basic concept. If Cj is a variable t or a constant c, then it is obvious that there is a plan of
length 0, since by assumption avery state models a constant. Otherwise, let s ∈ S be the
last state of TP s.t. s |= ¬A(c). Let the last state transition have form 〈s′, (A	Cj), s〉. By
Definition 4.4 and by Definition 3.7, s = M(A	Cj)(s

′) = s′ \ {A(c) | s′ |= Cj(c)}. The
latter and by assumption that I 2 ¬A(c) (hence, A(c) ∈ I) it follows that s′ |= Cj(c).
Hence, there exists a plan for fp(I, Act, Cj(c)), namely P without the last action is a plan
for fp(I, Act, Cj(c)).

• LetG = ¬R(c1, c2) and P be a plan for fp(I, Act,¬R(c1, c2)), whereR ∈ NR. Reason-
ing as in the previous case the last action has form (R	P), where P is anALCHOIQbr
role. If P has form (t1, t2), {t1, t2} ⊆ NV or (c1, c2) constants, then obviously the claim
holds. Otherwise, let s ∈ S be the last state of TP s.t. s |= ¬R(c1, c2), and the last
state transition 〈s′, (R 	 P), s〉. By Definition 3.7, by Definition 4.4, and by assump-
tion that I 2 ¬R(c1, c2), it holds that s′ |= P (c1, c2). Hence, there exists a plan for
fp(I, Act, P (c1, c2)), namely P without the last action.

• Let G = ¬R−(c1, c2) and P be a plan for fp(I, Act,¬R−(c2, c1)), where R ∈ NR. The
last action has form (R 	 P), where P is an ALCHOIQbr role. If P has form (t1, t2),
{t1, t2} ⊆ NV or (c1, c2) constants, then the claim holds. Otherwise, let s ∈ S be the last
state of TP s.t. s |= ¬R(c1, c2), and the last state transition 〈s′, (R	P), s〉. By Definition
3.7 and by Definition 4.4, and by assumption that I 2 ¬R−(c2, c1), hence I 2 ¬R(c1, c2),
it holds that s′ |= P (c1, c2). Hence, there exists a plan for fp(I, Act, P (c1, c2)), namely
P without the last action.

The above theorem and proof shows that the complexity bound is still Nlogspace.

65

Theorem 5.12. Assume GP = (I, Act,G), where Act is a finite set of basic actions and G is
a single atom of form ¬A(c), ¬R(c1, c2) or ¬R−(c1, c2), where A ∈ NC and R ∈ NR. Then,
deciding plan existence for fp(GP) is in Nlogspace.

Thus, we showed that one can turn a planning instance with an atomic negative goal of the
form ¬A(c), ¬R(c1, c2) or ¬R−(c1, c2), where A ∈ NC and R ∈ NR into a positive planning
instance, preserving the same complexity. It can be noticed that goal atoms of the form ¬∃R(c)
and ¬∃R−(c) are not considered. Indeed, Theorem 5.11 does not apply for cases where the
goal atom is existentially quantified. The intuition is that a state that satisfies ¬∃R(c), should
contain no atom of the form R(c, d), where d might be any constant from dom(GP). If the
initial database contains two atoms R(c, d) and R(c, f), it might be the case that a plan for
fp(I, Act,¬∃R(c) might require more than just one negative action. We illustrate this intuition
with a simple example.

Example 5.4. Let GP = (I, Act,G) be given as follows.

I ={Project(P20840), P roject(P24090)

Employee(E01), Employee(E03),

P rojectEmployee(E01),

worksFor(E01 ,P20840),

worksFor(E01 ,P24090)}.

Act = {ρ = worksFor 	 (t1, t2)},

G = ¬∃worksFor(E01).

This is a very simple example, where given an initial database and a single action, it is required
that E01 should not work for any project. Thus, there should exist a state where no relation
worksFor with E01 appears. A plan for this instance is

P = 〈(worksFor 	 (E01 ,P20840)), (worksFor 	 (E01 ,P24090))〉.

Hence, applying ρ twice, by instantiating (t1, t2), the desired state is reached.

Until now we have considered only cases where the goal formula is a single negative lit-
eral. The same idea is expected to apply also to instances with negative goals, expressed as
conjunction of two ore more negative literals. Thus, plans for these cases would be expected to
be a sequence of positive actions followed by negative actions. The cardinality of these negative
actions would be equal to the cardinality of the goal formula. Unfortunately, even for a goal for-
mula with two negative literals, checking plan-existence becomes more complicated. A simple
counterexample is the following:

Example 5.5. Assume GP = (I, Act,G) is given as follows.

I ={ActiveProject(P20840),

OldProject(P20840), OldProject(P24090),

ReviewProject(P20840), ReviewProject(P24090)}.

66

Act = {ρ1, ρ2, ρ3, ρ4},

where:
ρ1 = ActiveProject	 ConcludedProject,
ρ2 = ConcludedProject⊕OldProject,
ρ3 = ConcludedProject	 UpdateProject,
ρ4 = UpdateProject⊕ReviewProject.

G = ¬ActiveProject(P20840) ∧ ¬ConcludedProject(P24090).

Thus, it is easy to see that I is already a goal state for fp(I, Act,¬ConcludedProject(P24090),
but the same does not hold for fp(I, Act,¬ActiveProject((P20840)). The only way to achieve
a goal state for the latter is by applying ρ2 to I and then ρ1. But, then this state is not any more a
goal state for fp(I, Act,¬ConcludedProject(P24090). It is not hard to notice that adding ρ4
and then ρ3 to the sequence, the desired goal state for fp(I, Act, negActiveProject(P20840)∧
¬ConcludedProject(P24090)) can be achieved. The plan is the following:

P = 〈ρ2, ρ1, ρ4, ρ3〉.

We showed that for the case with a goal formula with two negative literals, deciding plan-
existence cannot be encoded to a positive case. Basically, through Example 6.6, we just showed
that it cannot be the case that always in a plan we would have a sequence of positive actions
followed by negative actions. Actually, carefully observing it, we can deduce that treating the
goal formula as two atomic negative goals, two plans as for the basic case can be concatenated,
and deciding plan-existence can be still done in Nlogspace. But, making the previous example a
little more complicated and less intuitive, one could show that the above claim does not hold.

Example 5.6. Assume a GDPP GP = (I, Act,G) given as follows.

I ={ConcludedProject(P24090),

OldProject(P20840), OldProject(P24090),

ReviewProject(P20840), ReviewProject(P24090)

NewProject(P20840)}.

Act = {ρ1, ρ2, ρ3, ρ4},

where:
ρ1 = ConcludedProject	 UpdateProject,
ρ2 = UpdateProject⊕ActiveProject,
ρ3 = ActiveProject⊕ReviewProject,
ρ4 = ReviewProject	NewProject.

G = ¬ActiveProject(P20840) ∧ ¬ConcludedProject(P24090).

Thus, I |= ¬ActiveProject(P20840), but I 2 ¬ConcludedProject(P24090). Intuitively,
we must look for a plan for fp(I, Act,¬ConcludedProject(P24090)). Now, in order to

67

achieve a state that doesn’t contain ConcludedProject(P24090), it is sufficient to apply the
sequence

l = 〈ρ3, ρ2, ρ1〉.

The last state s ∈ S of Tl is surely a goal state for fp(I, Act,¬ConcludedProject(P24090).
But it is easily seen that s 2 ¬ActiveProject(P20840). It follows that applying the ρ4 before
l is a solution. Hence,

P = 〈ρ4, ρ3, ρ2, ρ1〉

is the required plan for the corresponding fp(GP).

But does this already increase the complexity? Does this already make the problem harder?
Well, we will show that some cases with a goal formula with two or more negative literals,
deciding plan existence is still tractable. For other cases with negative literals or even with com-
bination of negative and positive literals in the goal formula, the complexity seems to increase.
Next, we provide a deeper analysis of there different combinations.

5.3.4 Analysis of Subcases

In this section, we consider a GDPP GP = (I, Act,G), where Act is a finite set of atomic
actions expressed using concept names only. We will analyze different subcases by imposing
syntactic restrictions on the goal formula. Most of these cases will be still tractable. Our purpose
is to reach the most expressive setting, whose complexity does not exceed polynomial time.

5.3.4.1 Subcase of Negative Goals ¬ A(c1) ∧...∧ ¬A(cn)

Firstly, we consider the case where there is given a GDPPGP = (I, Act,¬A(c1)∧...∧¬A(cn)),
where A ∈ NC and {c1, ..., cn} ⊆ NI . We show that checking if there exists a plan for this case
can be done still in Nlogspace. This can be achieved by reduction to the the case of atomic
negative goals. To formally define this intuition, we introduce the following theorem.

Theorem 5.13. Assume a GDPP GP = (I, Act,¬A(c1) ∧ ... ∧ ¬A(cn)) and let GPj =
(I, Act,¬A(cj)), 1 ≤ j ≤ n. Then fp(GP) has a plan iff each fp(GPj) 1 ≤ j ≤ n has
a plan.

Proof. We prove both directions separately:

‘⇒’ This direction is trivial. Assume there exists a plan P for fp(GP). This would mean that
there is a sequence of actions and set of states s.t. the trajectory obtained reaches a state s ∈ S
that satisfies the goal, s |= G. Hence, s |= ¬A(cj) for each ¬A(cj) that occurs in G. P is the
desired plan for each fp(GPj).

‘⇐’ Now, let’s assume that there exist a plan for each fp(GPj). By Theorem 5.11 and Lemma
5.11.1, for each of these plans there exists a plan Pj , whose last action has form ρj = A 	 Cj ,
such that there is a plan P ′j for fp(I, Act, Cj(cj)). Hence, Pj = 〈P ′j , 〉ρj , 1 ≤ j ≤ m. We
argue that the following sequence of actions:

P = 〈P ′1, ...,P ′n, ρ1, ..., ρn〉

68

is a plan for fp(GP).
Actually the proof is almost straightforward. One would need to show that the last state

obtained by the trajectory over these sequence of actions would be a a goal state s2n ∈ S s.t.
s2n |= ¬A(c1)∧ ...∧¬A(cn). By theorem 5.7, each P ′j consists only of positive actions. Hence,
the states obtained after each application of each action in each P ′j will only grow. The state
sn ⊇ sj , where sn is the last state in the trajectory over P ′1, ...P ′n, and sj is the state of the
trajectory of each P ′j . By assumption, each Cj(cj) is in the last state of the trajectory of each
P ′j , hence eachCj(cj) ∈ sn, 1 ≤ j ≤ m. Using this and the above assumption, the last sequence
of actions 〈ρ1, ..., ρn〉 would delete each Cj(cj) from sn and would produce a state s2n |= G.

We proved that the negative case, where the goal formula is a conjunction of literals, (repre-
sented as the same concept over different individuals in DL- jargon) can be reduced to the neg-
ative case with the singleton goal formula. This shows that the complexity is still in Nlogspace.

Thus, we can now introduce the following theorem.

Theorem 5.14. Deciding whether there exists a plan for fp(I, Act,¬A(c1) ∧ ... ∧ ¬A(cn)),
where A ∈ NC and {c1, ..., cn} ⊆ NI , can be done in Nlogspace.

5.3.4.2 Subcase of Goal A(c) ∧¬ B(c)

Next, we consider the GDPP GP = (I, Act, A(c)∧¬B(c)), where {A,B} ⊆ NC and A 6= B.
We will introduce an algorithm for checking plan-existence for this case. To get a better intuition,
let’s consider the following example.

Example 5.7. Assume a GDPP GP = (I, Act,G) is given as follows.

I ={C(c), C(d)}.

Act = {ρ1, ρ2, ρ3, ρ4},

where:
ρ1 = A⊕B,
ρ2 = B ⊕ C,
ρ3 = B 	D,
ρ4 = D ⊕A.

G = A(c) ∧ ¬B(c).

This example is given in an abstract level so that one can better understanding the intuition
behind it. I 2 A(c) and I |= ¬B(c). Hence, we look firstly for a plan for fp(I, Act, A(c)).
The only possible plan is P ′ = 〈(B ⊕ C), (A ⊕ B)〉. It is not hard to notice that the last state
s ∈ S of TP ′ is s.t. s 2 ¬B(c). But only after applying ρ4 and ρ3, the result is a goal state for
fp(GP). The plan is as follows:

P = 〈ρ2, ρ1, ρ4, ρ3〉.

69

In general for this type of instances, where I |= ¬B(c) and I 2 A(c), it is best to search for
a plan not considering actions with B on the left side. If there is a plan of this form, then we are
done. If not, then a plan P for fp(I, Act, A(c)) would necessarily add B(c) to the goal state.
The intuition is that by Lemma 5.8.1, B(c) will be a vertice of the path from some F (c) ∈ I
to with A(c). Next, we need to get rid of B(c). It is not hard to see that if there is a plan for
fp(I ∪ B(c), Act,¬B(c)), by Theorem 5.11 there is a plan P ′ which consists of a sequence of
positive actions followed by a single negative action with B in the right side. Clearly, adding
P ′ after P , the result would still be a plan for fp(I, Act, A(c) ∧ ¬B(c)). The idea is that the
resulting plan is still a sequence of positive actions with a last negative action deleting atoms of
the form B(d), where d ∈ dom(GP). On the other hand, if I |= A(c), one only needs to check
if there exists a plan for fp(I, Act,¬B(c)). It will certainly not do any ‘harm’ to the positive
literal, since for every plan there exists a plan with only positive actions and one last negative
action.

The algorithm below should make everything more clear, but before we introduce the fol-
lowing two lemmas:

Lemma 5.4. Let GP = (I, Act, A(c) ∧ ¬B(c)) be a graph database planning problem where
A 6= B and B(c) ∈ I . There exists a plan for fp(I, Act, A(c)) and there exists a plan for
fp(I, Act,¬B(c)) if and only if there exists a plan for fp(I, Act, A(c) ∧ ¬B(c)).

Proof. ‘=⇒’Assume P1 is a plan for fp(I, Act, A(c)) and P2 is a plan for fp(I, Act,¬B(c)).
SinceB(c) ∈ I then the plan should have at least one action of the form (B	Ci), thus |P2| ≥ 1.
We need to show that there exists a plan P for fp(I, Act, A(c) ∧ ¬B(c)).

By Theorem 5.11 and Lemma 5.11.1 there exists a plan 〈P ′2, (B	Cj)〉 for fp(I, Act,¬B(c)),
where P ′2 has only positive actions and a final negative action of form (B	Ci). Assume, s2 ∈ S
is a goal state and the final state of the trajectory T〈P ′

2,(B	Ci)〉. The last state transition has form
〈s2′ , (B 	 Ci), s2〉. Also, by Theorem 5.7 there exist a plan P ′1 for fp(I, Act, A(c)) with only
positive actions. Assume, s1 ∈ S is a goal state and the final state of the trajectory TP ′

1
.

We claim that P = 〈P ′1,P ′2, (B	Ci)〉 is a plan for fp(I, Act, A(c)∧¬B(c)). Assume, s ∈
S is the final state of the trajectory TP , where the last state transition has form 〈s′, (B 	Ci), s〉.

By assumption, s1 |= A(c). By Lemma 5.3, s′ |= A(c) as well. Since the last action would
just delete facts of form B(c), then s |= A(c) as well. Furthermore, since B(c) ∈ I , again using
Lemma 5.3, s′ |= B(c). Also since s2 |= ¬B(c) then s2′ |= Ci(c). Using this and Lemma 5.3,
s′ ⊇ s2′ , hence s′ |= Ci(c). It follows that s |= ¬B(c) as well. Thus, s |= A(c)∧¬B(c), which
shows the claim.

‘⇐=’ This direction is straightforward. Let P be a plan for fp(I, Act, A(c) ∧ ¬B(c)) and let
s ∈ S the be the goal state produced by TP . By assumption s |= A(c) ∧ ¬B(c). By entailment
properties, it holds that s |= A(c) and s |= ¬B(c). Thus, P is a plan for fp(I, Act, A(c)) and a
plan for fp(I, Act,¬B(c)).

Now we are ready to introduce the following algorithm, which we call posnegGoal.

70

Input: GP = (I, Act, A(c) ∧ ¬B(c)).
Output: The algorithm returns true iff fp(GP) has a plan.
begin
case 1:

1 if B(c) ∈ I and A(c) ∈ I then
2 if ∃ a plan for fp(I, Act,¬B(c)) then
3 return true
4 else
5 return false
6 end
7 end

case 2:
1 if B(c) ∈ I and A(c) /∈ I then
2 if ∃ a plan P for fp(I, Act, A(c)) then
3 if ∃ a plan for fp(I, Act,¬B(c)) then
4 return true
5 end
6 else
7 return false
8 end
9 end

case 3:
1 if B(c) /∈ I and A(c) ∈ I then
2 return true
3 end

case 4:
1 if B(c) /∈ I and A(c) /∈ I then
2 if ∃ a plan for fp(I, Act′, A(c)) where

Act′ = Act \ {(B ⊕ Ci) | ∃Ci : (B ⊕ Ci) ∈ Act} then
3 return true
4 else
5 if ∃ a plan P for fp(I, Act, A(c)) then
6 if ∃ a plan for fp(I ∪B(c), Act,¬B(c)) then
7 return true
8 else
9 return false

10 end
11 end
12 end
13 end

Algorithm 5.2: posnegGoal

We will give an intuition of the posnegGoal algorithm. It takes as input a graph database

71

planning instance GP = (I, Act, A(c) ∧ ¬B(c)). It does four main checks.

• At first, if B(c) ∈ I and if A(c) ∈ I , it checks if there is a plan for fp(I, Act,¬B(c)).
If yes, then by a plan for fp(I, Act, A(c) ∧ (c)) exists. The argument is that by Theorem
5.11, there exists a plan consisting of a sequence of positive actions followed by only one
negative action of the form (B	Ci) ∈ Act. Hence, A(c) would surely still be in the goal
state of fp(I, Act,¬B(c)).

• Secondly, the algorithm checks if B(c) ∈ I and if A(c) /∈ I , hence none of these facts is
satisfied by the initial database. In this case, we start by checking if there exists a plan for
fp(I, Act, A(c)). If yes, then it checks if there is a plan for GP = (sj , Act,¬B(c)). If
this is the case than the algorithm returns true. This case is proven in Lemma 5.4.

• The third case is if B(c) /∈ I and if A(c) ∈ I . Clearly, the initial database is already the
goal state for this case.

• Lastly, if it is the case that B(c) /∈ I and A(c) /∈ I , is a bit more complicated. Since
B(c) /∈ I , we would want not to add this fact for all states until a goal state is reached for
fp(I, Act, A(c)). Hence for this case we do two sub-checks.

– Firstly, the algorithm checks if there exists a plan for fp(I, Act, A(c)), not consid-
ering any action from Act, where B appears in the right hand side i.e. no action of
form (B⊕Ci). Hence, there is no chance of adding B(c) to some state. If this is the
case, then the algorithm returns true.

– Otherwise, intuitively, it means that B(c) is in the goal state (see proof of Theorem
5.18). Next, we need to search for a plan considering for fp(I ∪B(c), Act,¬B(c)).
If a plan exists the algorithm returns true.

Next, we prove the correctness of the algorithm.

Theorem 5.15. Assume GP = (I, Act, A(c) ∧ ¬B(c)). There exists a plan for fp(GP) if and
only if the algorithm PosNegGoal returns true.

Proof. We prove both directions as follows:

‘=⇒’(Completeness.) Assume P is a plan for fp(I, Act, A(c)∧¬B(c)). It follows that the final
state sn ∈ S of the trajectory TP is a goal state sn |= A(c) ∧ ¬B(c). Hence, since sn |= A(c)
and sn |= ¬B(c) then P is a plan for fp(I, Act, A(c)) and also a plan for fp(I, Act,¬B(c)).
Thus, depending on the initial database, the algorithm for the first 3 cases, will return true. We
consider the fourth case separately. Thus, for the case when B(c) /∈ I and A(c) /∈ I then one
distinguishes between two cases.

• P does not contain any action (B ⊕ Ci) or it contains, but after deleting them, it is still a
plan for fp(I, Act, A(c) ∧ ¬B(c)). Then our algorithm will return true through the first
check of case 4 of the PosNegGoal algorithm .

72

• P contains an action (B ⊕ Ci), that cannot be removed without losing the property of
being a plan for fp(I, Act, A(c) ∧ ¬B(c)). Clearly, B(c) will be added at some state
in the trajectory TP . By assumption P is a plan for fp(I, Act, A(c)) and also a plan for
fp(I, Act,¬B(c)). It is easy to see that P is also a plan for fp(I ∪B(c), Act, A(c)). By
checks 4, 5, 6 of the PosNegGoal algorithm, it will return true.

‘⇐=’(Soundness.) This direction is also straightforward by construction and by Lemma 5.3 and
Lemma 5.4. Assume the algorithm PosNegGoal returns true. Hence one of the following 4
cases might happen.

1. B(c) ∈ I and A(c) ∈ I and there exists a plan P for fp(I, Act,¬B(c)). Clearly, there
is a plan of length 0 for fp(I, Act, A(c)). Hence, by Lemma 5.3, there exists a plan for
fp(I, Act, A(c) ∧ ¬B(c)).

2. B(c) ∈ I and A(c) /∈ I and there ∃ a plan for fp(I, Act, A(cj)) and there ∃ a plan P ′′,
by Lemma 5.3, there exists a plan for fp(I, Act, A(c) ∧ ¬B(c)).

3. B(ci) /∈ I and A(cj) ∈ I , then I is automatically a goal state.

4. B(ci) /∈ I and A(cj) /∈ I and if one of the following subcases happens.

• There exists a planP for fp(I, Act′, A(c)) whereAct′ = Act\ρi for all actions ρi =
(B⊕Ci) ∈ Act. It is easy to see thatP is a plan also for fp(I, Act, A(cj)∧¬B(ci)).

• All plans for fp(I, Act′, A(c)) contain at least one action of form ρi = (B ⊕ Ci).
Let P ′ be one of them whose trajectory TP ′ contains s ∈ S as final state. By Lemma
5.3, s |= B(c). Now, assume there exists a plan for fp(I∪B(c), Act,¬B(c)) and let
P ′′ be this plan. Using the same reasoning as in proof of Lemma 5.4 and by Lemma
5.3, it is not hard to see that at 〈P ′,P ′′〉 is a plan for fp(I, Act, A(cj) ∧ ¬B(ci)).

The above algorithm runs in polynomial time. We are now ready to formally define the
following theorem.

Theorem 5.16. Deciding whether there exists a plan for fp(I, Act, A(c)∧¬B(c), whereA,B ∈
NC and c ∈ NI , can be done in polynomial time.

5.3.4.3 The Subcase of the Goal ¬A(c) ∧¬B(c)

Now, we will consider the case where there is given a GDPP of the formGP = (I, Act,¬A(c)∧
¬B(c)), where A 6= B. This case seems even more complicated. To get an intuition about the
complexity of this case we introduce the following examples.

Example 5.8. Assume a GDPP GP = (I, Act,G) where:

I = {A(c), D(c)},

Act = {ρ1, ρ2, ρ3, ρ4},

73

where:
ρ1 = A	B,
ρ2 = B ⊕D,
ρ3 = B 	A,
ρ4 = A⊕D.

G = ¬A(c) ∧ ¬B(c).

The example given is in an abstract level so that one can better understanding the intuition be-
hind it. It is not hard to notice that there is no plan for this fp(GP). Every possible combination
of these actions would fail to achieve a plan, since finding a plan for deleting A(c), necessarily
will add B(c) too. Trying to delete B(c), A(c) will be added again. A sequence for achieving
the goal would look as follows:

P = 〈ρ2, ρ1, ρ4, ρ3, ρ2, ρ1, ρ4, ρ3, ...〉

Therefore every machine would run forever to find a plan for this case. But by definition the plan
must be finite. Hence, there is no plan.

Now, we introduce another similar example, which has a plan.

Example 5.9. Assume a GDPP GP = (I, Act,G) is given as follows.

I = {A(c), D(c)},

Act = {ρ1, ρ2, ρ3, ρ4, ρ5}.

where:
ρ1 = A	 C,
ρ2 = C ⊕B,
ρ3 = B ⊕D,
ρ4 = B 	A,
ρ5 = A⊕D.

G = ¬A(c) ∧ ¬B(c).

In this example, we changed the first action and added a new action by adding a new intermedi-
ate concept C. A plan would be as follows:

P = 〈ρ3, ρ2, ρ1, ρ5, ρ4, ρ1〉

It is not hard to see that at first we tried to reach a state that does not contain A(c). The only
way to achieve this is by adding to this state B(c) and C(c). Next, we tried to achieve a new
state without B(c), but inevitably A(c) was added again to this state. Notice that C(c) was not
deleted. Hence, after applying again ρ1, finally a plan is reached.

74

But as it is easily seen that collecting the positive actions and then applying the two negative
actions would still result in a shorter plan

P ′ = 〈ρ3, ρ2, ρ4, ρ1〉.

ρ5 is not used in this case, and there is no need to apply ρ1 twice. ρ4 also needs to be applied
earlier, since it depends on A which at the respective state contains A(c). At last, applying ρ1
would delete A(c) and obtain a state that models both ¬A(c) ∧ ¬B(c).

Below, we will introduce an algorithm for checking plan existence for this case of fixed
domain planning problem, but before we introduce the following lemmas and theorem.

Lemma 5.5. Assume a GDPP GP = (I, Act,¬A(c) ∧ ¬B(c)) s.t. {A(c), B(c)} ⊆ I and
A 6= B. fp(GP) has a plan if and only if fp(I, Act,¬A(c)) has a plan and fp(I, Act,¬B(c))
has a plan s.t. at least for one of them, there exist a plan that does not contain an action (A	B),
(B 	A), respectively.

Proof. ‘=⇒’ (Completeness.) LetP be a plan for fp(GP). P is also a plan for fp(I, Act,¬A(c))
and a plan for fp(I, Act,¬B(c)). Now, assume all plans for fp(I, Act,¬A(c)) and all plans
for fp(I, Act,¬B(c)) contain (A 	 B) and (B 	 A). It follows that P should contain both
actions (A 	 B) and (B 	 A). W.l.o.g. assume that an occurrence of (A 	 B) is at length l in
the trajectory TP , and assume that the last occurrence of one of those two actions is (B 	 A) at
position n > l. Let the state transition at position n be tn = 〈sn−1, (B 	A), sn〉. By Definition
3.7, {A(c), B(c)} ⊆ sn−1, otherwise this action would be redundant and can be deleted without
affecting the plan. Now let the state transition at position l be tl = 〈sl−1, (A 	 B), sl〉. Using
the same reasoning and by Definition 3.7, A(c) /∈ sl, where l < (n − 1). It follows that A(c)
was added again at some state between sl and sn−1. Hence, (A 	 B) can be deleted without
affecting the plan. Using the same argument, all actions of form (A	B) are redundant. This is
a contradiction to our assumption that P contains both actions (A	B) and (B 	A).

‘⇐=’ (Soundness.) LetP ′ be a plan for fp(I, Act,¬A(c)) andP ′′ be a plan for fp(I, Act,¬B(c)).
We distinguish between two cases.

1. P ′ and P ′′ do not contain (A	B), (B	A). We can consistently assume by Theorem 5.7
that P ′ is a sequence of positive actions (possibly empty) P ′1 followed by a single negative
action (A 	 Ci), where Ci ∈ NC . Also P ′′, is as a sequence of positive actions P ′′1 with
last negative action (B 	 Cj), where Cj ∈ NC . Also, let s′ and s′′ be the final states of
the TP ′

1
and TP ′′

1
, respectively. We claim that

P = 〈P ′1,P ′′1 , (A	 Ci), (B 	 Cj)〉

is a plan for fp(GP). Let s′′1 be the final state of TP ′
1◦P ′′

1
and s the final state of TP .

By assumption, by Definition 3.7 and by Definition 4.4, P ′1 is a plan for fp(I, Act, Ci(c))
and P ′′1 is a plan for fp(I, Act, Cj(c)). Notice that there is no restriction that Ci and Cj
should be different. By Lemma 5.3 s′ ⊆ s′′1 , so s′′1 |= Ci(c). In addition, s′′1 |= Cj(c) since

75

s′′ |= Cj(c) and by Lemma 5.3 s′′ ⊆ s′′1 . Hence, s′′1 |= Cj(c) ∧ Ci(c). Applying the last
two actions, by Definition 3.7, it is easy to see that s |= ¬A(c) ∧ ¬B(c).

Note: If 〈P ′1,P ′′1 〉 is empty, then it means that {Ci(c), Cj(c)} ⊆ I . Also, notice that since
{A(c), B(c)} ⊆ I and by Theorem 5.7, P will contain exactly two negative actions. A
plan for this case is as follows.

〈(A	 Ci), (B 	 Cj)〉,

where Ci, Cj are possibly the same concept name.

2. W.l.o.g. assume that P ′′ = P ′′1 ◦ (B	A) and P ′ is defined as above. We claim that a plan
for fp(GP) is as follows:

P = 〈P ′1,P ′′1 , (B 	A), (A	 Ci)〉

It is easy to notice that the negative action (B 	A) is put before deleting A(c) by the last
action. Using the same arguments as above, P is a plan for fp(GP).

Lemma 5.6. Assume GP = (I, Act,¬A(c) ∧ ¬B(c)) s.t. A(c) ∈ I , B(c) /∈ I . fp(GP) has a
plan if and only if one of the following holds.

1. There exists a plan for fp(I, Act,¬A(c)) where Act does not contain any action with B
in the right hand side.

2. There exists a plan for fp(I, Act,¬A(c)) and exists a plan for fp(I ∪B(c), Act,¬B(c))
s.t. at least for one of them, there exist a plan that does not contain an action (A 	 B),
(B 	A), respectively.

Note: W.l.o.g we assumed that A(c) ∈ I and B(c) /∈ I .

Proof. ‘=⇒’ Let P be a plan for fp(GP). Thus P is a plan for fp(I, Act,¬A(c)) and is also a
plan for fp(I, Act,¬B(c)). We distinguish between two cases.

• P is still a plan for fp(GP) after deleting (if there exist) from P all positive actions with
B in the right hand side. The latter and the fact that P is also a plan for fp(I, Act,¬A(c))
proves 1.

• P contains at least an action of the form B ⊕ Ci that can not be deleted without harming
the property of P of being a plan for fp(GP). It is easily seen that B(c) will be added
to some state (otherwise the action is redundant and can be deleted). So that P is also
a plan for fp(I, Act,¬B(c)), there should exist an action (B 	 Cj) in the plan as well
computed after B ⊕ Ci. Thus, P is also a plan for fp(I ∪ B(c)), Act,¬B(c). Using the
same arguments as in the proof (completeness) of Lemma 5.5, P needs at most one action
of the form (A	B), (B 	A).

76

‘⇐=’ We consider each case separately.

• Assume P is a plan for fp(I, Act,¬A(c)) where Act does not contain any action with B
in the right hand side. Let the final state of TP be s ∈ S, s.t. s |= ¬A(c). Clearly, B(c) is
not added to any state of the trajectory TP . Thus, s |= ¬B(c) as well. It follows that P is
a plan for fp(GP).

• The proof for the second case is identical to the proof (soundness) of Lemma 5.5.

Now that we defined the above two lemmas, we are prepared to introduce the following
theorem.

Theorem 5.17. Let GP = (I, Act,¬A(c)∧¬B(c)). fp(GP) has a plan if and only if fp(GP)
has a plan with a (possibly empty) sequence of positive actions followed by at most two negative
actions.

Proof. We prove by cases.

• Assume A(c) /∈ I and B(c) /∈ I . It is trivial. The plan will be of length 0 and the theorem
holds immediately.

• Assume A(c) ∈ I and B(c) ∈ I . Using Lemma 5.5 and in particular the soundness, it
is shown that fp(GP) for this case has a plan if and only if fp(GP) has a plan, which
contains a (possibly empty) sequence of positive actions, followed by at most two negative
actions.

• Assume A(c) /∈ I and B(c) ∈ I (A(c) ∈ I and B(c) /∈ I). Using Lemma 5.6, the
theorem follows immediately.

Now, we have all the means to introduce an algorithm that checks whether there exists a plan
for fp(I, Act,¬A(c)∧¬B(c)). The algorithm runs in polynomial time. By means of the above

77

lemmas and theorem, we will show the correctness of the algorithm. We call it negnegGoal.

1 Input: Given GP = (I, Act,¬A(c) ∧ ¬B(c)).
2 Output: The algorithm returns true if it finds a plan for fp(GP), false otherwise.
3 begin
4 case 1: if B(c) ∈ I and A(c) ∈ I then
5 if ∃ a plan for fp(I, Act′,¬A(c)), where Act′ = Act \ {(A	B)} and ∃ a plan for

fp(I, Act,¬B(c)) then
6 return true
7 else
8 if ∃ a plan for fp(I, Act,¬A(c)) and ∃ a plan for fp(I, Act′,¬B(c)), where

Act′ = Act \ {(B 	A)} then
9 return true

10 else
11 return false
12 end
13 end
14 end

case 2:
1 if B(c) /∈ I and A(c) /∈ I then
2 return true
3 end

case 3:
1 if B(c) ∈ I and A(c) /∈ I then
2 if ∃ a plan for fp(I, Act′,¬B(c)), where

Act′ = Act \ {(A⊕ Cj) | ∃Cj : (A⊕ Cj) ∈ Act} then
3 return true
4 else
5 if ∃ a plan for fp(I, Act′,¬B(c)), where Act′ = Act \ {(B 	A)} and ∃ a plan

for fp(I ∪A(c), Act,¬A(c)) then
6 return true
7 else
8 if ∃ a plan for fp(I, Act,¬B(c)) and ∃ a plan for fp(I, Act′,¬A(c)), where

Act′ = Act \ {(A	B)} then
9 return true

10 else
11 return false
12 end
13 end
14 end
15 end

78

case 4:
1 if B(c) /∈ I and A(c) ∈ I then
2 if ∃ a plan for fp(I, Act′,¬A(c)), where

Act′ = Act \ {(B ⊕ Cj) | ∃Cj : (B ⊕ Cj) ∈ Act} then
3 return true
4 else
5 if ∃ a plan for fp(I, Act′,¬A(c)), where Act′ = Act \ {(A	B)} and ∃ a plan

for fp(I ∪A(c), Act,¬B(c)) then
6 return true
7 else
8 if ∃ a plan for fp(I, Act,¬A(c)) and ∃ a plan for fp(I, Act′,¬B(c)), where

Act′ = Act \ {(B 	A)} then
9 return true

10 else
11 return false
12 end
13 end
14 end
15 end

Algorithm 5.3: negnegGoal
The negnegGoal algorithm takes as input GP = (I, Act,¬A(c) ∧ ¬B(c)). It does four

main checks depending whether A(c) and/or B(c) occur in the initial database. The algorithm
returns true if there exists a plan, and false otherwise. It is easy to see that the algorithm runs in
polynomial time, since basically the main checks that it does, we have proved to be in Nlogspace.

Theorem 5.18. AssumeGP = (I, Act,¬A(c)∧¬B(c)). There exists a plan for fp(GP) if and
only if the algorithm negnegGoal returns true.

Proof. Depending on whether A(c) and B(c) are in I , we consider each case separately.

• Assume A(c) /∈ I and B(c) /∈ I . The plan for fp(GP) in this case, is of length 0. The
algorithm, through case 2, returns true.

• Assume A(c) ∈ I and B(c) ∈ I . By Lemma 5.5 the above theorem holds.

• AssumeA(c) ∈ I andB(c) /∈ I (orA(c) /∈ I andB(c) ∈ I). By Lemma 5.6, this theorem
holds.

Now, we are prepared to formally introduce the following theorem:

Theorem 5.19. Deciding whether there exists a plan for fp(I, Act,¬A(c) ∧ ¬B(c), where
{A,B} ⊆ NC and c ∈ NI , can be done in polynomial time.

79

5.3.4.4 Other Subcases

For all the cases that we have analyzed until now, we were able to conclude that if there exists
a plan, then there is one with at most two negative actions. Furthermore, these deletions are
performed only on the concept name that occurs in the negative literal of the goal. For each of
the above problems, checking plan existence for the respective cases, was basically reduced to
checking plan existence, considering each literal in a goal as a separate goal formula.

Next, we will investigate three problematic cases which seem not to have an algorithm that
runs in polynomial time. The cases are the following.

• GP = (I, Act, A(c) ∧ ¬B(d)) where A 6= B and c 6= d.

• GP = (I, Act, A(c) ∧ ¬A(d)) where A 6= B and c 6= d.

• GP = (I, Act,¬A(c) ∧ ¬B(d)) where A 6= B and c 6= d.

These three cases of fixed domain plan existence with basic actions, often require plans with
more than just two negative actions. Moreover, their plans might require nested negative actions
performed on atoms, other than the ones in the goal formula. Hence, checking plan existence
considering each literal of the goal formula as a separate goal formula, does not ensure com-
pleteness. To get a better intuition, we give some examples:

• For GP = (I, Act, A(c) ∧ ¬B(d)), the problematic case is when A(c) /∈ I and B(c) /∈ I .
The intuition is that trying checking plan existence for fp(I, Act, A(c)∧¬B(d)) does not
necessarily mean to just check plan existence for fp(I, Act, A(c)), since the latter might
have a plan, but it might add B(d) and there might be no plan for fp(I, Act,¬B(d)).
Hence, one might be forced to check for a plan for the whole fp(GP). The other cases
can be easily solves as in the posnegGoal algorithm.

Example 5.10. Assume a GDPP GP = (I, Act, A(c) ∧ ¬B(d)) is given as follows.

I = {D(c), D(d), C(d)},

Act = {ρ1, ρ2, ρ3, ρ4, ρ5},

where:
ρ1 = A⊕B,
ρ2 = B ⊕D,
ρ3 = D 	 C,
ρ4 = B 	 F,
ρ5 = F ⊕ C.

In this example, I |= ¬B(c) and I 2 A(c). It is not hard to notice, that a plan for
fp(I, Act, A(c)) is:

P = 〈ρ2, ρ1〉

The final state of the trajectory TP contains B(d). A way to transform P to a plan for
fp(GP) is by adding the sequence 〈ρ5, ρ4〉. But, if ρ4 and ρ5 are not given in the set Act,
then the only way to achieve a plan is the following:

P = 〈ρ3, ρ2, ρ1〉.

80

Hence, while checking plan existence for fp(I, Act, A(c)), there needs to be a check at
each step, if it is possible to avoid adding the constant d.

Even though, considering the plan-existence decision problem for this case, seems harder
than for the cases analyzed until now, we are able to extract a subcase that can still be
checked in polynomial time.

Lemma 5.7. Let GP = (I, Act, A(c) ∧ ¬B(d)) be a graph database planning problem
where B(d) ∈ I . fp(GP) has a plan if and only if fp(I, Act, A(c)) has a plan and
fp(I, Act,¬B(d)) has a plan.

Proof. The proof to this lemma is identical to the proof of Lemma 5.4.

The intuition is that when B(d) ∈ I , there is no need to do any checks when finding
a plan for fp(I, Act, A(c)). Thus, if there is a plan for fp(I, Act, A(c)) and a plan for
fp(I, Act,¬B(d)), a concatenation of the two plans (in this order) is a plan also for
fp(GP).

• The second case is when GP = (I, Act, A(c) ∧ ¬A(d)). Except for the case where the
initial database is already a goal state, plans for fp(GP) might contain several negative
actions, even though a single negative atoms is in the goal formula.

Example 5.11. Assume a GDPP GP = (I, Act, A(c) ∧ ¬A(d)) is given as follows.

I = {D(c), D(d), C(c)}.

and
Act = {ρ1, ρ2, ρ3, ρ4, ρ5},

where:
ρ1 = A⊕B,
ρ2 = B ⊕D,
ρ3 = A	 F,
ρ4 = F ⊕A,
ρ5 = F 	 C.

In this instance, A(c) /∈ I and A(d) /∈ I . This is a very basic example with just 5 actions
and 3 atoms in the initial database. Indeed, it is not hard to notice that the only plan for
fp(I, Act, A(c) ∧ ¬A(d)) involves all actions and is as follows:

P = 〈ρ2, ρ1, ρ4, ρ5, ρ3〉

The first two actions add A(c), but also A(d) to the respective state. Adding ρ4 and then
ρ5 would delete both of these atoms and it would not be a plan still. But, applying (F 	C)
after action (F ⊕ A), a state that contains F (d) doesn’t contain F (c). The last action
(A	 F) deletes A(d), producing a goal state for fp(I, Act, A(c) ∧ ¬A(d)).

81

As the above example shows, for a very simple example with a goal formula that contains
a positive and a negative literal, a plan might require more than one negative action.
Now, consider Act = {ρtr1 ,tr2 }, where ρtr1 and ρtr2 are as above. Clearly, there exists a
plan for fp(I, Act, A(c)), namely 〈ρtr2 , ρtr1 〉. In addition, there is a plan of length 0 for
fp(I, Act,¬A(d)) since I |= ¬A(d). In contrast there is no plan for fp(I, Act, A(c) ∧
¬A(d)). Thus, checking if there is a plan considering each conjunct of G separately can
not ensure the existence of a plan for G.
Next, we consider a case when a single negative action is needed, but it should be embed-
ded in the plan for fp(I, Act, A(c)). Let us give the following example.

Example 5.12. Assume a GDPP GP = (I, Act, A(c) ∧ ¬A(d)) is given as follows.

I = {D(c), D(d), C(c)}.

and
Act = {ρ1, ρ2, ρ3, ρ4, ρ5},

where:
ρ1 = A⊕B,
ρ2 = B ⊕D,
ρ3 = D 	 C.

Comparing this example to the previous one, it is easily seen that there is an action (D	C).
Clearly, applying ρtr3 before 〈ρtr2 , ρtr1 〉 to I results in a state that does not containA(d) and
contains A(c). Hence, instance.

P = 〈ρ3, ρ2, ρ1〉

is a plan for fp(GP).

• The last case we consider is whenGP = (I, Act,¬A(c)∧¬B(d)). The intuition is similar
to the previous cases. We will illustrate this case with an example.

Example 5.13. Assume a GDPP GP = (I, Act,¬A(c) ∧ ¬B(d)) is given as follows.

I = {D(c), D(d), C(d), A(c), B(d), F (c)}.

Act = {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ7},

where:
ρ1 = A	 C,
ρ2 = C ⊕B,
ρ3 = B ⊕D,
ρ4 = D 	 C,
ρ5 = B 	A,
ρ6 = A⊕ C,
ρ7 = C 	 F.

82

A plan for this very simple example is:

P = 〈ρ3, ρ2, ρ1, ρ7, ρ6, ρ5〉.

For this example, it can be seen that one can not construct a plan for fp(I, Act,¬A(c))
and a plan for fp(I, Act,¬B(d)) and combine those two. The intuition is that trying to
find a plan for one of them, other negative actions are necessary for preserving the other.
Now, assume that B(d) /∈ I . P is still a plan for fp(I, Act,¬A(c) ∧ ¬B(d)). But, it is
easy to see that a shorter plan exists. A simple plan involves ρ4, which needs to be applied
first so that B(d) is not added to some state. The plan is as follows:

P = 〈ρ4, ρ3, ρ2, ρ1〉.

These nested negations have in their right hand side atoms, other than the ones that appear
in the goal formula. To assure completeness, we would need to come up with an algorithm
that keeps track at each step for constant c and d and checks for plans to delete one or the
other depending on the goal.

In Section 5.3.1, we proved that deciding if there exists a plan for a fixed domain planning
problem with atomic actions that contain only concept names is NP-hard. Each of the three
above problematic cases occurs in the goal formula of the instance built by the reduction from
3-colorability.

5.4 Encoding to Propositional STRIPS Planning

In this section, we encode a planning problem over a fixed domain fp(I, Act,G) where Act is
a finite set of atomic actions with only concept names to an instance of propositional STRIPS
planning. We encode each action as a set of Pre⇒Post operators. There are two of these opera-
tors for each constant in dom(GP) and for each action in Act. Each of these operators checks if
an atom is at the respective state, and if yes, it adds or deletes an atom to the next state and jumps
to the next operator. Otherwise, it jumps to the next operator without changing the state. When
encoding to STRIPS, new literals for each action, with indexes that are bound by the size of
dom(GP) are added. These literals enforce the jumps to all possible operators of an action. The
intuition behind it is that we want each action to be encoded such that the state that is obtained
after applying an action for fp(GP) satisfies the same formulas that the state that is obtained by
applying the respective translated action to STRIPS.

Below, we build the reduction and we show its correctness.

5.4.1 Reduction

Let GP = (I, Act,G) be a graph database planning problem, where Act is a set of atomic
actions with only concept names. Let dom(GP) = {c1, c2, ..., cn}. For simplicity, assume that
{A,B, r, p} are the only concept names and role names occurring in GP , where A,B ∈ NI

and r, p ∈ NR. Finally, let Act be a set of 2 actions as follows: Act = {ρ1 = (A ⊕ B), ρ2 =
(A	B)}.

83

Next we built the reduction to propositional STRIPS planning SPGP = (P,O, I,G), but before
we state the atoms that we will be using in this reduction as follows:

• There are new atoms in(ci, A), in(ci, B), 1 ≤ i ≤ n for each A(ci), B(ci) that might
occur at some state s ∈ S of fp(GP).

• There are new auxiliary atoms N1, N
ρ1
2 , ..., Nρ1

n , N
ρ2
2 , ..., Nρ2

n which will be used to cap-
ture the whole result of actions ρ1 and ρ2 in STRIPS.

Now, we are prepared to introduce the following reduction.

• The set of conditions is defined as follows.

P ={in(c1, A), in(c2, A), ..., in(cn, A),

in(c1, B), in(c2, B), ..., in(cn, B),

N1, N
ρ1
2 , ..., Nρ1

n ,

Nρ2
2 , ..., Nρ2

n },

where facts over all possible combinations of concept names and individual names are
contained. Moreover, the auxiliary literals Nρj

i for 2 ≤ i ≤ n and 1 ≤ j ≤ 2 and N1 will
be used when constructing actions.

The size of it is |P| = 4× n− 1.

• The set of actions {ρ1, ρ2} is encoded into STRIPS as follows.

ρ′1 ={N1 ∧ in(c1, B)⇒ in(c1, A) ∧Nρ1
2 ∧ ¬N1

N1 ∧ ¬in(c1, B)⇒ Nρ1
2 ∧ ¬N1,

Nρ1
2 ∧ in(c2, B)⇒ in(c2, A) ∧Nρ1

3 ∧ ¬N
ρ1
2 ,

Nρ1
2 ∧ ¬in(c2, B)⇒ Nρ1

3 ∧ ¬N
ρ1
2 ,

...,

Nρ1
n ∧ in(cn, B)⇒ in(cn, A) ∧N1 ∧ ¬Nρ1

n ,

Nn ∧ ¬in(cn, B)⇒ N1 ∧ ¬Nρ1
n },

ρ′2 ={N1 ∧ in(c1, B)⇒ ¬in(c1, A) ∧Nρ2
2 ∧ ¬N1,

N1 ∧ ¬in(c1, B)⇒ Nρ2
2 ∧ ¬N1,

Nρ2
2 ∧ in(c2, B)⇒ ¬in(c2, A) ∧Nρ2

3 ∧ ¬N
ρ2
2 ,

Nρ2
2 ∧ ¬in(c2, B)⇒ Nρ2

3 ∧ ¬N
ρ2
2 ,

...,

Nρ2
n ∧ in(cn, B)⇒ ¬in(cn, A) ∧N1 ∧ ¬Nρ2

n ,

Nn ∧ ¬in(cn, B)⇒ N1 ∧ ¬Nρ2
n }.

Each action has 2n Pre⇒Post operators, where n is the number of constants that occur in
dom(GP). For each action, for each constant cj , there are two operators. Each of them
checks if the state s ∈ S, it is applied to, is such that s |= B(cj) or s 2 B(cj). In each
case, it makes the necessary updates to the states.

84

Notice that there are 4n Pre⇒Post operators.

• The initial state I is encoded as follows.

in(ci, A) ∈ I iff A(ci) ∈ I, and in(ci, B) ∈ I iff B(ci) ∈ I, and N1 ∈ I.

The initial state contains all literals in(ci, A), resp. in(ci, B) s.t. the respective A(ci),
B(ci) is in the initial database of fp(GP). Moreover, to initialize the checks through the
Pre⇒Post operators, we add N1 to I.

The size of the initial state is |I| = |I|+ 1.

• The goal formula G is such that

A(cj) ∈ G iff in(cj , A) ∈ G

for all positive facts in G and

¬A(cj) ∈ G iff ¬in(cj , A) ∈ G

for all negative facts in G.

The size is |G| = G.

It is easy to see that the reduction can be built in polynomial time in the size of constants that
belong to dom(GP) and concepts that occur in GP . For n constants and n concepts and 2
actions, it is O(4n2).

5.4.2 Correctness of the Encoding

Now we prove that the above encoding is correct. We introduce the following lemma and theo-
rem.

Lemma 5.8. Let P = 〈ρ1, ..., ρn〉 be a finite sequence of actions from Act.
Let TP = 〈〈I, ρ1, s1〉, ..., 〈sn−1, ρn, sn〉〉, {I, s1, ..., sn} ⊆ S and let Result(I, (ρ′1, ..., ρ′n)) =
s′n, where {I, s′n} ⊆ P . A(ci) ∈ sn if and only if in(ci, A) ∈ s′n.

Proof. We prove the claim by induction on the length of a sequence of actions:

Induction base.
n=0. Result(I, ()) = I and I = T〈〉. By construction the claim holds for I and I.

n=1. We distinguish between two cases.

• ρ1 = A⊕B.
Tρ1 = 〈I, ρ1, s1〉, where s1 = I ∪ {A(ci) | B(ci) ∈ I}.
By construction and by definition using N1, N

ρ1
2 , ..., Nρ1

n , ..., N
ρ1
n , ..., N

ρn
n ,, there will be

checked all Pre⇒Post of ρ1. Only the ones such that in(ci, B) ∈ I will add an atom
in(ci, A) to I and also add Nρ1

i . For each N rho1
i there will be two Pre⇒Post. Either

in(ci, A) ∈ I , or it is not. In the first case add in(ci, B) ∈ I, add N rho1
i+1 ∈ I and delete

85

N rho1
i , 1 < i ≤ n. The idea will be repeated until all individuals are checked (if they

belong or do not belong in B). In the last step N1 is added to the set, so that other actions
can be initialized. Thus, Result(I, (A ⊕ B)) = I ∪ {in(ci, A) | in(ci, B) ∈ I} ∪ N1.
Hence, the claim is true.

• ρ1 = A	B.
Tρ1 = 〈I, ρ1, s1〉, where s1 = I \ {A(ci) | B(ci) ∈ I}.
Using the same arguments as above all literals in(ci, A) such that in(ci, B) ∈ I will be
deleted from I. That is, Result(I, (A 	 B)) = I ∪ NI \ {in(ci, A) | in(ci, B) ∈ I}.
Hence, the claim is true.

Induction Hypothesis. The claim holds for a sequence of length ≤ n.
Induction Step. We prove the claim for length n + 1. By hypothesis up to length n the claim
is true, hence A(ci) ∈ sn if and only if in(ci, A) ∈ s′n. Using the same arguments as in the
induction base, the claim is true also for state sn+1 ∈ S and s′n+1 ∈ P .

Theorem 5.20. Assume GP = (I, Act,G), where Act is a set of atomic actions with only
concept names. One can build in polynomial time an instance of propositional STRIPS planning
SPGP s.t. fp(GP) has a plan if and only if SPGP has a plan.

Proof. By Lemma 5.8, we proved that applying a sequence of actions to a database and applying
the corresponding STRIPS sequence to the corresponding STRIPS state, results in states s.t.
sn |= A(ci) iff s′n |= in(ci, A). The latter and by construction, immediately follows that there
is a plan for fp(GP) with a goal state sn |= G produced by the trajectory if and only it is a plan
for SPGP with a goal state s′n |= G.

By the above theorem, we showed that the presented encoding into STRIPS is correct. Next,
we perform a short analysis of some of the problems we encountered, when trying to encode
more expressive actions.

5.4.3 Analysis

We investigated whether planning in our setting can be reduced to STRIPS planning. Consid-
ering such possible encoding one can get some insights about the relationships between our
formalism and the STRIPS formalism, which represents a classical approach to planning. In
addition, in this way STRIPS planners can be exploited to solve our planning problem.

We have encoded into propositional STRIPS only the already proven NP-hard case with a
general goal formula and atomic actions with only concept names. By construction, it is obvious
that negative actions require negated literals in the post-conditions of the operators. Deciding if
there exists a plan for a planning problem where operators have negative post-conditions, it is
known to be PSPACE-complete in propositional STRIPS. Therefore, the above reduction shows
a PSPACE upper-bound complexity, which was already shown in Section 5.1.

In turn, it seems not so possible to encode arbitrary concepts and roles, which correspond to
first order formulas. The latter are often with a complex structure with disjunction. It follows that
the limited expressibility of Pre⇒Post operators as only conjunction of literals can not capture
the actions with more complex concepts and roles. Variables, on the other hand, can be encoded

86

using literals in(ci, ci), for all constants of dom(GP). There would be n operators for an action
of the form (A⊕X), if |dom(GP)| = n. The operators would have form in(ci, ci)⇒ in(ci, A)
and there would be n such operators for the n constants. Since we assume that the actions are
grounded when a performing a plan, it follows that if X is instantiated by ci, then exactly one
of the operators will satisfy the pre-condition, namely only the operator having in(ci, ci) in Pre.
Then the postcondition is in(ci, A), hence the respective state is updated by adding this literal.
Roles can also be encoded similarly to concept names, as described above. The only difference
is that for a role and n constants, there would be n× n tuples in P . Hence, for each action with
a role, there would be exactly n2 Pre⇒Post corresponding operators.

In addition, STRIPS operates on a closed domain. The set of conditions should be specified
in advance. Thus, fresh constants cannot be introduced by the operators. This excludes the
possibility of an encoding of the general planning problem to propositional STRIPS.

87

CHAPTER 6
Deciding General Plan-Existence

Until now, we have considered only planning problems over a fixed domain. It was shown
in Chapter 4 that deciding fixed domain plan-existence is PSPACE-complete. We showed the
upper-bound by introducing an algorithm that runs in non-deterministic polynomial space. At
each step, it non-deterministically chooses the transactions and its memory is polynomially
bounded by the size of the maximal state that can be constructed over the signature of GP .

Unfortunately, for the general planning problem where the interpretation domain is infinite,
the deciding the plan-existence problem seems to be more complicated. A plan for a given
instance might require the use of constants that do not occur in dom(GP) (see Example 6.4).
Furthermore, it seems hardly possible that one needs a polynomial amount of fresh constants,
i.e. constants that do not occur in dom(GP). Only if this is the case, a polynomial bound on the
maximal state can be ensured. Then deciding plan-existence is in PSPACE. In turn, our intuition
is that it already is EXPTIME-hard.

Instead, under some syntactic restrictions on the set of predefined actions and the goal
formula allowed as input, we could find cases whose plan-existence can be still decided in
PSPACE. We will formally introduce and prove this intuition in Section 6.2.

We will start this chapter by providing the main features that enforce the use of constants
that do not occur in dom(GP). We call these constants, new (fresh) constants, and present them
in Section 6.1.

Note: For any given GDPP, GP , the set of plans for fp(GP) is contained in the set of plans for
p(GP). The intuition is that fp(GP) is a special case of p(GP) where no fresh constants are
considered. Hence, if fp(GP) has a plan, then p(GP) has a plan. Since this is trivial, we will
not formally prove this.

6.1 Triggers For New Constants

Let p(I, Act,G) be a general planning problem corresponding to a graph database planning
problem. Following our intuition, the main triggers that might enforce the use of new constants

89

in a plan, are transactions with preconditions, transactions with occurrences of negation in con-
cepts/roles, the existence of negative atoms in the goal formula combined with concepts that
contain existential/universal restrictions.

In this section we will consider each case separately, by illustrating the respective intuition
with an example.

• Firstly we will give a simple example from the database of some research institute. We will
see through this example that having a negative literal in the goal formula and a concept
with existential quantification in a plan along with positive preconditions, might require a
plan that uses some fresh constant.

Example 6.1. Let GP = (I, Act,G) be as follows:

I ={Project(P20840),

Employee(E01), Employee(E03),

P rojectEmployee(E01),

worksFor(E01 ,P20840)},

Act = {ρtr1 , ρtr2 , ρtr3 },

where:
ρtr1 = (X : Project ∧ ¬(X : Employee)) ? worksFor ⊕ {(E03 , X)} : ε,
ρtr2 = (X : Project ¬(X : Employee)) ? ProjectEmployee⊕ ∃worksFor.X : ε,
ρtr3 = (Project⊕ {X}),

G = ProjectEmployee(E03) ∧ ¬worksFor(E03 ,P20840).

This example of a graph database planning problem asks for computing a sequence of
actions that reaches a state that contains ProjectEmployee(E03). Meanwhile, it requires
that no atom worksFor(E03 ,P20840) is added. Furthermore, the set of predefined trans-
actions contains just two transactions with preconditions. The precondition in both of
them is that the instantiation of variable X should be a Project and not an Employee.
Obviously, by instantiating X ins ρtr2 with P20840 , one obtains immediately a plan for
p(I, Act, ProjectEmployee(E03)). But, it is easily seen that this can not be a plan for
for p(I, Act,¬worksFor(E03 ,P20840)), since automaticallyworksFor(E03 ,P20840)
will be added.
Observe that a plan for p(I, Act,G) is as follows.

P = 〈(Project⊕ P11111), (P11111 : Project ∧ ¬(P11111 : Employee)) ?

worksFor ⊕ {(E03 ,P11111)} : ε, (P11111 : Project ∧ ¬(P11111 : Employee)) ?

ProjectEmployee⊕ ∃worksFor.P11111 : ε〉

Thus, a new project is initially added by the atomic action ρtr3 . Then by applying ρtr1 and
ρtr2 where X is instantiated with this new project, a desired plan is obtained.

90

Observe thatX can be instantiated with any project constant other then P20840 . It follows
that there are infinite possibilities of instantiations, hence infinitely many plans for this
instance.

• Next, we give an example, where the initial database is empty and the set of predefined
transactions contains a single transaction with no preconditions. The goal formula has a
negative and a positive literal. We will see that in order to have a plan for this instance, a
new constant will be needed.

Example 6.2. Assume GP = (I, Act,G) is given as follows.

I ={},

Act = {ρtr1 },

where:
ρtr1 = Project⊕{X}◦worksFor⊕{(E03 , X)}◦ProjectEmployee⊕∃worksFor.X .

G = ¬Project(P20840) ∧ ¬Project(E03) ∧ ProjectEmployee(E03).

For this instance, it can be seen that X cannot be instantiated neither with P20840 , nor
with E03 . A new constant is needed for a plan to exist. E.g. by instantiating X with
P11111 , a plan for this instance is:

P = 〈Project⊕ P11111 ◦ worksFor ⊕ {(E03 ,P11111)}◦

ProjectEmployee⊕ ∃worksFor.P11111 〉.

Note that the role of precondition here was played by having a transaction as a sequence
of atomic actions. Thus, X , which is the same variable repeated in the transaction, should
be a project.

• Now, we will consider the case where the set of predefined transactions contain transac-
tions with negative preconditions. It seems that the main triggers that enforce using fresh
constants are exactly preconditions with negation. Even, for an instance with a positive
goal formula and transactions that compute only addition, it seems hardly possible.

Example 6.3. Assume a GP = (I, Act,G) is given as follows.

I ={Project(P20840),

Employee(E01), Employee(E03),

P rojectEmployee(E01),

P ermanentEmployee(E04),

worksFor(E01 ,P20840)},

Act = {ρtr},

where:
ρtr = (¬(X : Project) ∧ ¬((Y,X) : worksFor) ∧ ¬(X : PermanentEmployee) ∧

91

¬(X : Employee)) ? worksFor⊕{(E03, X)} ◦ProjectEmployee⊕∃worksFor.X :
ε.

G = ProjectEmployee(E03).

The precondition of the transaction ρtr does not allow X to be neither P20840 , nor E01 ,
nor E03 , and nor E04 . No element from dom(GP) can be used to instantiate X , since
none of them satisfies the precondition. We are forced to introduce a fresh constants. Let’s
use the same constant P1111 as before. It is easy to see that this constant satisfies the
precondition. Hence, a plan for this planning instance is the following:

P = 〈(¬(P1111 : Project) ∧ ¬((E03 ,P1111) : worksFor)∧

¬(P1111 : PermanentEmployee) ∧ ¬(X : Employee)) ?

worksFor ⊕ {(E03,P1111)} ◦ ProjectEmployee⊕ ∃worksFor.P1111 : ε〉.

Note that this example was a basic example with a single positive literal in the goal formula
and a transaction with two positive atomic actions. Thus, negative preconditions might
negate all constants that belong to a concept name or role name in a state. This way they
might enforce the use of a fresh constant each time they are applied. This might be the case,
since when the same transaction is reapplied at some point in the plan, the fresh constant
previously used, will be possibly negated by the precondition.
To understand better this intuition, let’s consider again Example 6.3. Assume G is such
that it requires a plan where ρtr will be reused and assume worksFor(E03,P1111) will
not be deleted further in the plan. Now, it is not hard to see that the second time ρtr will
be applied, P1111 will not satisfy the precondition because of worksFor(E03,P1111).
Hence, the second conjunct of the precondition will not allow the first fresh constant to be
reused. This means that another new constant should be introduced.
Observe that if one cannot find a bound on the length of the plan for the general planning
problem, and transactions with preconditions that contain negation are allowed, it is hardly
possible that one can find a polynomial bound on the number of fresh constants that will be
added. Basically, it seems that allowing negative preconditions, increases the complexity
for the decision problem of checking plan-existence, making it unlikely to be in PSPACE.

• At last, negative concepts in the transactions can also be viewed as an important trigger for
fresh constants, because they behave in a similar way to negative preconditions. This will
be seen clearly in the following example.

Example 6.4. Let GP = (I, Act,G) be as follows:

I ={Project(P20840),

Employee(E01), Employee(E03),

P rojectEmployee(E01),

P ermanentEmployee(E04),

worksFor(E01 ,P20840)}.

92

Act = {ρtr1 , ρtr2 },

where:
ρtr1 = ProjectEmployee⊕∃worksFor.(¬Employee u ¬PermanentEmployeeu¬Project),
ρtr2 = worksFor ⊕ {(X,Y)}.

G = ProjectEmployee(E03).

No transaction with precondition is contained in Act, but the negative concept names in
the concept (¬Employee u ¬PermanentEmployee u ¬Project) in ρtr act like one.
They do not allow the second element of worksFor to be a constant that is used in the
concept names Employee, PermanentEmployee, Project. It follows that none of the
constants from dom(GP) can instantiate Y . Only a fresh constants e.g. P1111 can be
used so that a plan exists. The following sequence

P = 〈(worksFor ⊕ {(E03 ,P1111)}),

(ProjectEmployee⊕∃worksFor.(¬Employee u ¬PermanentEmployeeu¬Project))〉

is a plan for this instance.

The above examples show that if some features are allowed, then deciding plan-existence
might be more complex than PSPACE. But, fortunately, in the previous chapter we showed
that fixed domain plan-existence can be decided in PSPACE. An interesting direction to
consider is searching for the most expressive setting that uses fresh constants s.t. we have
the property that for all plans that use fresh constants, for the same given instance, there
exists a plan that does not use fresh constants. Hence, in the next section we impose
some syntactic restrictions, and analyze the use of fresh constants, trying to find the most
expressive setting that can be reduced to fixed domain plan-existence.

6.2 General Plan Existence With Syntactic Restrictions

In this section we will consider a special case of a graph database planning problem by
imposing several syntactic restrictions on Act and G. We will be able to prove that de-
ciding general plan-existence for this case can be turned into deciding fixed domain plan-
existence. Since the latter, by Theorem 5.4, is shown to be PSPACE-complete, we will
show that deciding plan-existence for the case under these restrictions is in PSPACE.

Note: During this section, we will viewG as a conjunction of atoms expressed via concept
names and role names.

We will start by showing that having fresh constants in a state will not increase its expres-
sivity w.r.t to modeling the goal formula. In turn, we will show that a state is a goal state if
and only if the state obtained by deleting the atoms, where some fresh constant occurs, is
a goal state.

93

Lemma 6.1. Assume p(I, Act,G) is a GDPP. For all s ∈ S the following holds: s |= G
iff s′ |= G, where s′ is obtained by removing from s all atoms that contain a constant c s.t.
c /∈ dom(GP).

Proof. We prove both directions separately:

⇐ Assume s′ |= G. By assumption s′ ⊆ s. In addition, by assumption G is a conjunction
of positive and negative literals expressed via role names and concept names. Also s,
s′ are interpretations viewed as a set of atoms expressed the same way. Let G+ be the
set of positive literals in G and G− the set of negative literals in G. Clearly, if s′ |= G
then it holds that G− ∩ s′ = ∅ and G+ ⊆ s′. The latter holds also for s since s′ ⊆ s,
hence G+ ⊆ s. Now we need to prove that G− ∩ s = ∅. Since G− ∩ s′ = ∅, and by
assumption s extends s′ only with atoms that contain fresh constants, it is easy to see that
(s\ s′)∩G− = ∅. The latter shows that G−∩ s = ∅. It follows that if s′ |= G then s |= G.

⇒ Assume s |= G. If s |= G then it holds that G+ ⊆ s and G− ∩ s = ∅. The latter
holds also for s′, thus G− ∩ s′ = ∅ since s′ ⊆ s. Now we need to prove that G+ ⊆ s′. By
Definition 4.3, it is not hard to see that (s\ s′)∩G+ = ∅. The latter and by the assumption
that s′ ⊆ s shows G+ ⊆ s′. The latter and G− ∩ s′ = ∅ prove that s′ |= G.

Next, we will show that for every plan of some p(GP) with only positive actions with no
negation, no universal restrictions and no qualified number restrictions, there exists a plan
with only constants from dom(GP). We will star by showing that for any plan with k fresh
constants, there is a plan with k − 1 fresh constants. Intuitively, if this holds then a plan
with no fresh constants exists.
But before we must prove an auxiliary lemma that will be needed in the proof.

Definition 6.1. Let GP = (I, Act,G). We denote sak→a to express that every ak that
occurs in s is substituted by a, where ak /∈ dom(GP), a is an arbitrary constant from
dom(GP) and s is a state or an atom.

Lemma 6.2. Assume p(I, Act,G). Let {s, s′} ⊆ S be s.t. sak→a ⊆ s′, where ak ∈ NI ,
ak /∈ dom(GP), ak doesn’t occur in s′, and a ∈ dom(GP). For all o ∈ NI that occur in
s, it holds that: if s |= C(o) then s′ |= C(o)ak→a, where C is anALCHOIQbr role or an
ALCHOIQbr concept with no negation, universal quantification and qualified number
restrictions.

Proof. We prove the claim by induction on the structure of C.

Induction base. As base case, we consider the cases where C is a concept name A, a
variable X , a role name r, a tuple of variables (X,Y) and an inverse role r−.

– Assume that for some o that occurs in s, s |= A(o), where A is a concept name. It
means that A(o) ∈ s. We consider two cases.

∗ Assume o 6= ak. Then by assumption A(o) ∈ s′. It follows that s′ |= A(o)

∗ Assume o = ak. By assumption A(a) ∈ s′, hence s′ |= A(ak)ak→a.

94

– AssumeC is a variable. Clearly for every instantiation, the claim holds automatically.
The argument is that we have assumed that states are interpretations, viewed as sets of
atoms, where all constants and tuples are included, even though we do not specifically
write them.

– Assume C is a tuple of variables expressing an ALCHOIQbr role. Also here, for
every instantiation the claim holds.

– Assume that for some tuple of constants c that occur in s, s |= r(c), where r is a role
name. It means that r(c) ∈ s. We consider two cases.

∗ Assume ak does not occur in c. Then by assumption r(c) ∈ s′. Hence, s′ |= r(c)

∗ Assume ak occurs in c. By assumption r(c)ak→a ∈ s′, hence s′ |= r(c)ak→a.

– Assume that for some tuple of constants (c1, c2) that occur in s, s |= p(c1, c2), where
p is an inverse role of the form r−, and r is a role name. It means that r(c2, c1) ∈ s.
Arguing as above, r(c2, c1)ak→a ∈ s′. Hence, s′ |= p(c1, c2)ak→a.

Induction hypothesis. The claim holds for R, R1, C, C1, where R,R1 are ALCHOIQbr
roles and C,C1 areACLHOIQbr concepts, where no negation, universal restrictions and
qualified number restrictions occur.

Induction step. We prove that the claim holds for the following concept constructors: ∃R,
∃R.C, R uR1, R tR1, C u C1, C t C1.

– Assume that for some o that occurs in s, s |= ∃R(o). By semantics of ∃R and
by Definition 2.2, it means that there exists a constant b that occurs in s, s.t. s |=
R(o, b) or s |= R(b, o), depending on whether R is a role name or an inverse role,
respectively. By hypothesis s′ |= R(o, b)ak→a, resp. s′ |= R(b, o)ak→a. It follows
that s′ |= ∃R(o)ak→a.

– Assume that s |= ∃R.C(o), for some o that occurs in s, . By semantics of ∃R.C
and by Definition 2.2, it means that there exists a constant b that occurs in s, s.t.
s |= R(o, b) ∧ C(b) or s |= R(b, o) ∧ C(o), depending on whether R is a role name
or an inverse role, respectively. By hypothesis s′ |= R(o, b)ak→a ∧ C(b)ak→a, resp.
s′ |= R(b, o)ak→a ∧ C(o)ak→a. It follows that s′ |= ∃R.C(o)ak→a.

– Assume that s |= (R u R1)(c), for some tuple of constants c that occur in s. By
semantics of entailment, s |= R(c) and s |= R1(c). Now, by hypothesis s′ |=
R(c)ak→a and s′ |= R1(c)ak→a. It follows that s′ |= (R uR1)(c)ak→a.

– Assume that s |= (R t R1)(c), for some tuple of constants c that occur in s. By
semantics of entailment, s |= R(c) or s |= R1(c). W.l.o.g. assume that s |= R(c).
Now, by hypothesis s′ |= R(c)ak→a. It follows that s′ |= (R tR1)(c)ak→a.

– Assume that s |= (C u C1)(c) and s |= (C t C1)(c). The argument for these two
cases is the same as for ALCHOIQbr roles.

Now, we are prepared to introduce the following lemma, which makes use of Lemma 6.2.

95

Note: During the rest of the section, instead of writing ALCHOIQbr concept, resp. role
with no negation, universal restrictions and qualified number restrictions, we will just write
ALCHOIQbr concept, resp. role. We will implicitly assume the above, but not explicitly
write the above restrictions. The same holds for Act.

Lemma 6.3. AssumeGP = (I, Act,G), whereAct is a finite set of positive atomic actions
and G is a conjunction of positive atoms. For every plan of p(GP) with k new constants,
there exists a plan with (k − 1) new constants.

Proof. Let P be a plan for p(GP) and let TP be the corresponding trajectory with last state
sn ∈ S, s.t sn |= G as follows:

TP = 〈〈I, ρ1, s1〉〈s1, ρ2, s2〉...〈sl−1, ρl, sl〉〈sl, ρl+1, sl+1〉...〈sn−1, ρn, sn〉〉,

where {s1, ..., sn} ⊆ S. Hence, the plan is of length n. W.l.o.g. assume that sn is the first
goal state in TP . Consider the first action of the plan that introduces the k-th new constant.
It will have one of the following forms:

1. (A⊕ {X}), or

2. (r ⊕ {(X,Y)}).

Clearly, if actions of the form (A	{X}), (r	{(X,Y)}) introduce new constants they are
redundant w.r.t the state they are applied to, since the state will not change. Also actions
(A ⊕ ∃r.X) or (A ⊕ ∀r.X) cannot introduce new constants, because they do not change
the state they are applied at. We will analyze each case separately.

Let (A⊕{X}), or (r⊕{(X,Y)}) occur at position l < n in the plan s.t. they introduce ak,
the k-th fresh constant. Let a be an arbitrary constant from dom(GP). We substitute each
occurrence of ak in the plan with some a ∈ dom(GP), hence everywhere in the actions
from length l to length n. Let T ′P be the new trajectory

T ′P = 〈〈I, ρ1, s1〉〈s1, ρ2, s2〉...〈sl−1, ρ′l, s′l〉〈s′l, ρ′l+1, s
′
l+1〉...〈s′n−1, ρ′n, s′n〉〉,

with the last state s′n.

Claim 6.3.1. We claim that s′n |= G.

To prove the above claim we first prove the following lemma.

Lemma 6.4. ∀l′, l ≤ l′ ≤ n it holds that: (sl′)ak→a ⊆ (s′l′), where (sl′)ak→a means that
every ak that occurs in atoms in sl′ is substituted by a.

Proof. We prove the Lemma 6.4 by induction on l′.
Induction base. Assume l′ = l. We distinguish between two cases:

– The corresponding state transition in TP is 〈sl−1, (A⊕{ak}), sl〉 and the correspond-
ing state transition in T ′P is 〈sl−1, (A⊕{a}), s′l〉. By Definition 3.7, sl = sl−1∪A(ak)
and s′l = sl−1 ∪A(a). Clearly, (sl)ak→a = s′l.

96

– The corresponding state transition in TP is 〈sl−1, (r ⊕ c), sl〉, where c is a tuple
of constants where ak might occur. The corresponding state transition in T ′P is
〈sl−1, (r⊕cak→a), s′l〉. By Definition 3.7, sl = sl−1∪r(c) and s′l = sl−1∪r(c)ak→a.
Clearly, (sl)ak→a = s′l.

Induction hypothesis. The Lemma 6.4 holds for ∀l′′, l ≤ l′′ ≤ l′. Hence, (sl′′)ak→a ⊆
(s′l′′).

Induction step. We prove now that the claim holds for length (l′ + 1). We consider all
possible actions that might happen at length (l′ + 1). The corresponding state transition in
TP , resp. T ′P is 〈sl′ , ρl′+1, sl′+1〉, resp. 〈s′l′ , ρ′l′+1, s

′
l′+1〉. We need to prove that the claim

holds for sl′+1 and s′l′+1.

– Assume ρl′+1 = ρ′l′+1 = (A⊕ C), where A ∈ NC , C is an ALCHOIQbr concept.
By Definition 3.7, sl′+1 = sl′∪{A(c) | sl′ |= C(c)}, where c is a constant that occurs
in sl′ and s′l′+1 = s′l′ ∪ {A(c′) | s′l′ |= C(c′)}, where c′ is a constant that occurs in
s′l′ . W.l.o.g. assume A(c) is added to sl′ . Hence, sl′ |= C(c). By hypothesis the
claim holds for sl′ and s′l′ . The latter and by Lemma 6.2 it follows that, if sl′ |=
C(c) then s′l′ |= C(c)ak→a. Hence, A(c)ak→a will be added to s′l′ . It follows that
(sl′+1)ak→a ⊆ s′l′+1.

– Assume ρl′+1 = ρ′l′+1 = (r ⊕ R), where r ∈ NR, R is an ALCHOIQbr role. By
Definition 3.7, sl′+1 = sl′ ∪ {r(c) | sl′ |= R(c)}, where c is a tuple of constants
that occurs in sl′ and s′l′+1 = s′l′ ∪ {r(c′) | s′l′ |= R(c′)}, where c′ is a tuple of
constants that occur in s′l′ . W.l.o.g. assume r(c) is added to sl′ . Hence, sl′ |= R(c).
By hypothesis the claim holds for sl′ and s′l′ . The latter and by Lemma 6.2 it follows
that, if sl′ |= R(c) then s′l′ |= R(c)ak→a. Hence, r(c)ak→a will be added to s′l′ . It
follows that (sl′+1)ak→a ⊆ s′l′+1.

We proved Lemma 6.4, which describes that substituting the last fresh constant by an
arbitrary constant from dom(GP), will never decrease the states produced after each state
transition. By Lemma 6.1 (it is obvious that this lemma works also when deleting all atoms
where a fixed new constant occurs), and by assumption that sn |= G, it holds that the state
s′′n obtained by deleting from sn all atoms where ak occurs, is s.t. s′′n |= G. By Lemma 6.4,
(sn)ak→a ⊆ s′n. Hence, it is obvious that s′′n ⊆ s′n. Since G is a conjunction of positive
atoms, it is easy to see that if s′′n |= G and s′′n ⊂ s′n, then s′n |= G, which is what we wanted
to show.

Now, we are prepared to introduce the following theorem.

Theorem 6.1. Assume GP = (I, Act,G), where Act is a finite set of positive atomic
actions with no negation, universal restrictions, qualified number restrictions and G is a
conjunction of positive literals. If p(GP) has a plan, then fp(GP) has a plan.

Proof. By Lemma 6.3, we proved that for every plan for p(GP) with k fresh constants,
there is a plan with k − 1 fresh constants. Let P be a plan for p(GP). Hence, it is easy to

97

see that repeating the same procedure k times, a plan without fresh constants can be found.
It follows, that also a plan with only constants from dom(GP) exists. Thus, a plan P ′ for
fp(GP) exists.

In turn, Theorem 6.1 does not apply for G with some negative literal. The following
example is a contradiction that shows this claim.

Example 6.5. Assume a GDPP GP = (I, Act,G) where:

I = {}.

Act = {ρ1 = r ⊕ {(X,Y)},
ρ2 = C ⊕ {X},
ρ3 = A⊕ ∃r.C}.

G = A(c) ∧ ¬C(c).

A plan for p(GP) is the following:

P = 〈(r ⊕ {(c, a)}), (C ⊕ {a}), (A⊕ ∃r.C)〉.

It is easy to see that there is no plan that uses only constants from dom(GP). Hence, the
new constant a is necessary for having a plan.

Next, assume a GDPP GP = (I, Act,G), where Act is a finite set of atomic actions and
G is a conjunction of positive literals. We prove that for every plan of p(GP), there exists
a plan with no negative actions. But, before showing this, we introduce another lemma,
identical to Lemma 6.2 without the restriction on some fresh constant ak.

Lemma 6.5. Assume p(I, Act,G), where {s, s′} ⊆ S and s ⊆ s′. It holds that: if s |=
C(o) then s′ |= C(o), where C is an ALCHOIQbr role or an ALCHOIQbr concept
and o is a constant occurring in s.

Proof. The proof is by induction on C, C is an ALCHOIQbr role or an ALCHOIQbr
concept with no negation, universal quantification and qualified number restrictions. It
is identical to parts of the proof of Lemma 6.2, when not considering the restriction on
ak.

Now, we are prepared to introduce the following lemma, which states that from a plan for
p(I, Act,G) with a positive goal and some restrictions on the types of actions allowed, one
can delete the negative actions, without affecting the reachability of the goal state.

Lemma 6.6. Assume GP = (I, Act,G), Act is a finite set of atomic actions with no
negation, universal restrictions, qualified number restrictions and G is a conjunction of
positive literals. If p(GP) has a plan with k negative actions, then p(GP) has a plan with
k − 1 negative actions.

98

Proof. Let P be a plan for p(GP) and let TP be its corresponding trajectory

TP = 〈〈I, ρ1, s1〉〈s1, ρ2, s2〉...〈sl−1, ρl, sl〉〈sl, ρl+1, sl+1〉...〈sn−1, ρn, sn〉〉,

where {s1, ..., sn} ⊆ S and sn |= G. Since G is a conjunction of only positive atoms
expressed via concept names and role names, we can equivalently write the following
gi ∈ sn, ∀gi that occur in G. Furthermore, let the k-th negative action be ρl and occur at
length l in TP . Now, let TP ′ be the new trajectory without ρl as follows

TP ′ = 〈〈I, ρ1, s1〉〈s1, ρ2, s2〉...〈s′l, ρl+1, s
′
l+1〉...〈s′n−1, ρn, s′n〉〉,

where s′l = sl−1. Thus, we need to prove the following claim:

Claim 6.6.1. s′n |= G, hence gi ∈ s′n, for all gi that occur in G.

To prove this, it is sufficient to prove that sn ⊆ s′n. Hence we introduce the following
lemma.

Lemma 6.7. For all l′, l ≤ l′ ≤ n it holds that sl′ ⊆ s′l′ .

Proof. We prove this lemma, by induction on l′.

Induction base. l′ = l Since ρl is a negative action, by Definition 3.7, it is easy to see that
sl ⊆ sl−1 = s′l.

Induction hypothesis. For all l′, l ≤ l′ ≤ n, sl′ ⊆ s′l′ .

Induction step. We prove that the claim holds for states at length l′ + 1. Thus, we need
to prove that sl′+1 ⊆ s′l′+1. We distinguish between different actions that might occur at
length l′ + 1 in TP .

Note: By assumption, the last negative action occurs at length l − 1. Hence, all actions
from length l to n are positive actions.

– Assume ρl′+1 = (A ⊕ C), where A ∈ NC and C is an ALCHOIQbr concept. By
Definition 3.7, sl′+1 = sl′ ∪ {A(c) | sl′ |= C(c)}, where c is a constant that occurs in
s. Let A(c) be added to sl′ . It means that sl′ |= C(c). By hypothesis and by Lemma
6.5, if sl′ |= C(c) then s′l′ |= C(c). Hence, A(c) will also be added to s′l′ . It follows
that sl′+1 ⊆ s′l′+1.

– Assume ρl′+1 = (r ⊕ R), where r ∈ NR and R is an ALCHOIQbr role. By
Definition 3.7, sl′+1 = sl′ ∪ {r(c) | sl′ |= R(c)}, where c is a tuple of constants that
occurs in s. Let r(c) be added to sl′ . It means that sl′ |= R(c). By hypothesis and by
Lemma 6.5, if sl′ |= R(c) then s′l′ |= R(c). Hence, r(c) will also be added to s′l′ . It
follows that sl′+1 ⊆ s′l′+1.

Thus, we proved Lemma 6.7, which states that for all states of TP from length l, each state
of TP is contained in the respective states in TP ′ . Hence, sn ⊆ s′n. Remember that G is a
conjunction of positive literals only. It follows that s′n |= G.

99

Now, we generalize Lemma 6.6 with the following theorem.

Theorem 6.2. Assume GP = (I, Act,G), where Act is a finite set of atomic actions with
no negation, universal restrictions, qualified number restrictions and G is a conjunction of
positive literals. If p(GP) has a plan, then p(GP) has a plan with only positive actions.

Proof. Let P be a plan for p(GP) with k negative actions. By Lemma 6.6, there is a plan
with k − 1 negative actions. Repeating the same argument k times, it is easy to see that
there exists a plan P ′ for p(GP) with only positive actions. Namely, the plan P ′ can be
obtained by deleting from P all negative actions.

The above theorem does not hold for actions that allow universal restrictions. Instead,
often a negative action with concepts that use universal restriction might be necessary for
reaching a goal state. The intuition is that the semantics of ∀r.Aw.r.t to some interpretation
is monotonic w.r.t to A and anti-monotonic w.r.t r. Thus, deleting some tuple of r from
some state, and then applying some action (B ⊕ ∀r.A) to some state s′, might result in a
bigger state then if the deletion would not have happen.
We illustrate this intuition with a simple example.

Example 6.6. Assume a GDPP, GP = (I, Act,G) where:

I = {r(c, a), r(c, b),

B(b)}.

Act = {ρ1 = r 	 {(X,Y)},
ρ2 = A⊕ ∀r.B}.

G = A(c).

The plan for p(GP) is the following:

P = 〈(r 	 {(c, a)}), (A⊕ ∀r.B)〉.

It is easy to see that without considering ρ1, one could never find a plan for p(I, Act, A(c)).

Indeed, c has two r-successors and only one of them is in an atom A(c) ∈ I . The only
two possibilities for having a plan, would be to increase I by adding A(a), but there is no
action in Act that can compute this. The other possibility is to delete r(c, a) from I , and
this can be easily done by applying ρ1 before ρ2.
The same idea applies to actions that have in their right side a concept with qualified
number restrictions.

Now we are prepared to introduce the following theorem.

Theorem 6.3. Assume GP = (I, Act,G), where Act is a finite set of atomic actions
with no negation, universal restrictions, and qualified number restrictions, and G is a
conjunction of positive literals. p(GP) has a plan if and only if fp(GP) has a plan.

100

Proof. We prove both directions separately:

⇒ Let P be a plan for p(GP). By Theorem 6.2, there exists a plan P ′ for p(GP) with only
positive actions. By Theorem 6.1, there exists a plan P ′′ for fp(GP). Hence, P ′′ contains
no negative actions and no constants that do not belong to dom(GP).

⇐ This direction is straight forward. If P is a plan for fp(GP), it is obvious that P is also
a plan for p(GP).

Theorem 6.4. Assume GP = (I, Act,G), where Act is a finite set of atomic actions with
no negation, universal restrictions, and qualified number restrictions, and G is a conjunc-
tion of positive literals. Deciding whether p(GP) has a plan can be done in PSPACE.

Proof. By Theorem 6.3, it can be seen that under the above restrictions on Act and G,
deciding plan-existence for a general planning problem, can be turned into deciding plan-
existence for a fixed domain planning problem. The latter, by Theorem 5.4 is proved
to be PSPACE-complete. Hence, deciding plan-existence for p(GP) can be achieved in
PSPACE.

Actually, we even think that this case in fixed domain plan-existence has a lower complex-
ity. It might even be polynomial.

101

CHAPTER 7
State of the Art

To our best knowledge, this is the first attempt to formally define the planning problem in
graph databases. However, there is a huge body of literature on planning and a considerable
one on graph databases, a part of which will be presented in this chapter. Furthermore,
we discuss the relationship between planning in graph databases expressed using DL as
investigated in this thesis and existing literature on ABox updates and planning in DLs.

7.1 Automated Planning

An important problem in the main focus of current planning researchers is improving effi-
ciency by reducing the size of the search space. As described in Artificial Intelligence [40],
the perfect planning language would be one that offers high expressivity as to describe a
large variety of problems, but, at the same time, is restrictive enough to allow efficient
algorithms to operate over it.
As a problem in logic, planning was first introduced in the 1950s by J. McCarthy and then
different methods have been developed over the last decades. One approach to planning
was deductive planning as in the well-known situation calculus (cf. [37]), which through
time was left aside because of defects such as the frame problem. Later on, planners would
require representation of plans in a less rigid way, focusing more on flexible plans, able
to be adapted to changing and unforeseen circumstances. An early attempt in providing
a planning language toward this aim is STRIPS planning, which can be considered as a
mixture between logic and procedural computation. For a long period then, fairly no other
logic-related planning systems were explored [13].
STRIPS (Stanford Research Institute Problem Solver) was developed in 1971 by R. Fikes
and N. Nilsson [18] and also used to name the language providing input to the planner. It is
an automated planner, which still remains a prototypical approach, and provided the foun-
dational basis of many modern day planning representation techniques. One distinguishes
between different versions of STRIPS planning. The prototypical one is the propositional

103

version. Meanwhile, different extensions have been extensively studied, such as first order
STRIPS Planning [31] or extended propositional STRIPS Planning, which is most closely
related to Ginsberg and Smith’s [24] possible world approach to reasoning about actions.
Determining if a given planning instance has any solution for propositional and extended
propositional STRIPS planning, restricted to ground formulas is PSPACE-complete [6].
Under several restrictions, first order STRIPS planning can be reduced to propositional
STRIPS planning [16].

In 1997, Blum and Furst [4] introduced Graphplan, a sound and complete partial order
planner that plans in STRIPS-like domains by constructing and analyzing a special data
structure called a planning graph. Graphplan always returns a shortest possible partial order
plan if one exists, given a planning problem. Planning graphs work only for propositional
planning problems. Once they are constructed, they represent a rich source of information
about the problem. Furthermore, they can be constructed in polynomial time and they can
also help organize and maintain search information so as to guide the search for a plan [4].
As a tool for generating accurate heuristics, the planning graph is viewed as a relaxed prob-
lem that is efficiently solvable [40]. Because of its backward constraint-directed search and
important features like soundness, completeness and termination, Graphplan brought a sig-
nificant speed-up and contributed to the scalability of planning. Evidently, Graphplan does
not change the PSPACE-complete complexity of planning in the set-theoretic representa-
tion [21].

Another classical planning approach is SATPLAN, a satisfiability based planner, firstly
introduced by Kautz and Selman in 1992 [27] and subsequently incorporated into a planner
called BlackBox [28], which unites SAT-based and Graph-based planning. SATPLAN
models planning as Boolean satisfiability, exploiting advances made in SAT solvers. In
this approach, a planning problem is encoded into a set of axioms in propositional logic
such that any model of the axioms amounts to a valid plan. The sat-based planners have
dominated several optimal tracks of International Planning Competitions. Graphplan has
also been used to efficiently generate the SAT encoding [29].

A relatively new approach to planning, was proposed by Lifschitz in influential papers
[32], [33]. It was considered even earlier by Dimopoulos et al. [11] and others. This
approach consists in mapping planning problems, formulated in a domain-independent
planning language, into an extended logic program whose answer sets give the solutions
of the planning problem (cf. [19, 34]). Following this approach, a new and effective action
description language, for planning under incomplete knowledge, was introduced by Eiter
et al. in the paper ‘A logic programming approach to knowledge-state planning: semantics
and complexity’ [13]. It was named K with the purpose to emphasize that it describes
transitions between states of knowledge rather than between states of the world. Reasoning
under incomplete knowledge, planning agents usually don’t have a complete view of the
world. Therefore, languageK adopts a three-valued view of fluents, in which fluents might
be true, false or unknown. This language resulted to be very flexible and optimized for
capturing transitions between states of complete knowledge. Furthermore, it allows the
use of default negation since it is closer in spirit to answer set semantics, which has the
ability to deal with incomplete knowledge [20].

104

In a later paper, Eiter et al. [12] present a declarative logic-programming based planning
system DLV K, which implements K on top of the DLV answer set programming system
[14, 17]. It allows solving ΣP

2 - hard planning problems, like planning under incomplete
initial states.

7.2 Graph Databases

Graph databases can be defined as databases in which data structures for the schema and
instances are presented as graphs or generalizations of them. Also data manipulation is
expressed by graph-oriented operations and type constructors. A graph bases approach
was proposed already in the 1960s, when the first language specifications for the network
database model which became generally known as the CODASYL Data Model [44] was
published. It builds on a generalized graph, which comprises both the data (records) and
the schema (class model). With the emergence of the relational database model in prac-
tice, graph oriented databases lost their attention for a long time. In turn, recently, the
need to manage information with graph-like nature has led to the development of several
approaches. Some of them have to do with metadata representation models like RDF [5].
The Resource Description Framework (RDF) is a World Wide Web Consortium (W3C)
recommended standard, originally designed to represent metadata. It models information
with graph-like structure, where basic notions of graph theory like node, edge, path, neigh-
borhood, connectivity, distance, degree play a very crucial role. The nodes are called
resources that are interlinked. One of the main advantages of the RDF model is its abil-
ity to interconnect resources in an extensible way, using a variety of syntax notations and
data serialization formats [1]. Statements about resources (in particular web resources) are
subject-predicate-object (the resource being described, the traits or aspects of the resource
and the property value, respectively) expressions, which are known as triples in RDF ter-
minology. In addition, several languages for querying RDF data have been proposed and
implemented. One of them is SPARQL [43], which is a W3C recommended standard query
language in a SQL-like style designed for easy access to RDF stores.
For more information about the work that has been conducted in the area of graph database
modeling, we refer the reader to [1].

7.3 ABox Updates and Planning in Description Logics

In this thesis, we express a graph database through atomic concepts and roles, which seem
suitable to capture integrity constraints. We have considered the planning problem for this
setting.
The update, revision and evolution of DL Aboxes has recently received considerable atten-
tion. Calvanese et al. [7, 22, 46] investigated the problem of updating a DL-Lite ABox by
ground literals. Milicic et al. in [35] and also in a later paper [36] consider the problem of
updating ABoxes in a DL context, where no compound concepts are admitted in the ABox
and no TBoxes are present. The update information is described at an atomic level, i.e.,

105

in terms of possibly negated ABox assertions that involve only atomic concepts and roles.
Even though, they don’t consider planning, the similarity to our work is that we both do not
consider TBoxes and that our actions perform updates on DL interpretations. The crucial
difference is that we are updating DL interpretations, which are complete graph databases
and they update ABoxes, which can be viewed as incomplete graph databases.
There is also existing literature on planning in DLs. An action formalisms based in DLs
has been proposed by Baader et al. in [3]. Then the work is carried over by Milicic in [38].
Planning with DLs and syntactic updates has been investigated in [41]. Finally, a nice
survey on DLs and planning can be found in [23].
The relationship between planning in graph databases as investigated in this thesis, and the
above works is the use of DLs. However, a central property of DLs is that they work with
the Open World Assumption (OWA) and ABoxes store an incomplete view of the world.
In contrast, since graph databases store complete knowledge, we consider the closed world
perspective. Beside the fact that we do not consider TBoxes, this states the crucial differ-
ence that clearly separates their approach from ours. Thus, even though these approaches
are similar in spirit to ours, they are very different.

106

CHAPTER 8
Conclusions

8.1 Results

In this thesis, we have presented a new framework for planning, namely planning for graph
databases. Graph databases are seen as finite Description Logic (DL) interpretations. To
manipulate the databases, we have introduced an action language. This language is con-
structed over a new DL calledACLHOIQbr, which is the standardALCHOIQ extended
with Boolean combinations of axioms and a constructor for a singleton role. This partic-
ular DL, is able to capture the changes that might occur in a graph database. It offers
nice expressive features by allowing formulas as boolean combinations of assertions and
inclusions, and permitting singleton concepts and roles through variables. The latter allow
to introduce fresh constants in a plan. Furthermore, we have outlined the main reason-
ing tasks that are suitable for the setting we have considered. We then have thoroughly
analyzed the computational complexity of the plan-existence decision problem for two
planning problems corresponding to a graph database planning problem.
As we have seen, operating on a fixed domain offers better complexity results. We proved
that fixed domain plan-existence is PSpace-complete. Under various restrictions on the
type of goal formulas and transactions allowed as input, we have shown that different cases
range in complexity from NlogSpace for the positive case with only positive goals to NP-
hard for a goal formula with positive and negative atoms. In addition, we have introduced
several polynomial algorithms for several fragments. We have also analyzed the features
of the goal formula that seem to cause the NP-hardness. The intuition for each of these
cases is illustrated by examples.
We have related our work to a classical planning approach, namely propositional STRIPS-
planning. Planning in STRIPS is PSpace-complete. That means that our fixed domain
planning problem can be polynomially encoded to STRIPS. We are able to encode to
STRIPS the already proven NP-hard case with a general goal formula and atomic actions
with only concept names. When translating the actions, we notice that negative atoms in

107

post-conditions of operators in STRIPS seem necessary. Thus, we observe that our trans-
lation maps to a PSpace-complete STRIPS fragment. For the other low-complexity cases,
we observe that a naive translation to STRIPS leads to planning instances with negative
atoms in post-conditions. Such instances are PSpace-hard in STRIPS. For this reason, it
seems difficult to infer optimal upper-bound complexity results from such an encoding.
One needs to further investigate whether there is a more suitable translation.
In addition, since arbitrary concepts and roles correspond to first order formulas, which
have a complex structure and allow disjunction, it seems hard to encode atomic actions
without any restrictions into STRIPS. The latter is argued by the limited expressibility of
Pre⇒Post operators, which are expressed in STRIPS as only conjunction of literals. In
addition, STRIPS operates on a closed domain. The set of conditions should be specified
in advance. Thus, fresh constants cannot be introduced by the operators. This makes it
difficult to have an encoding of the general planning problem to propositional STRIPS.
Finally, we have investigated the general plan-existence problem. The question if it is de-
cidable, still remains a problem to be solved. We have thoroughly studied the features that
enforce the use of fresh constants and have carefully outlined each of them, by illustrating
the corresponding intuitions with several examples. Then, we were interested in finding
expressive settings that have the following property: for every plan there is a plan that does
not require fresh constants. To achieve this we have imposed several restrictions on the
goal and actions that are allowed to be given as input. We were finally able to show that
for the case where the goal formula is a conjunction of positive atoms and the actions are
atomic (where no qualified number restriction, universal restriction and negation appears)
can be encoded to the fixed domain case. Thus, we showed a PSpace upper bound for this
setting, which we think might not be tight.

8.2 Further Research

We propose several directions for further work.

Possibly the most important direction of further research is to investigate to what extent
the theoretical results obtained in this thesis can be used in practical settings. We have
shown that some cases can be encoded into propositional STRIPS in Section 5.4. It would
be interesting to provide an encoding into the DLVK planning system.
Additional further research includes filling the complexity gaps that are left. For instance,
in Section 5.3.1, we proved only the NP-hardness for the fixed domain case of the general
goal with atomic actions that use only concept names. An NP upper bound, if it exists,
is missing. Also, an important open question is whether the general plan-existence is
decidable. If yes, it would be interesting to define the upper bound complexity. We suspect
that the problem is already EXPTime-hard, which can be shown by a reduction from an
alternating Turing machine with an exponentially bounded space.

108

During the thesis, we have also proposed several interesting reasoning tasks for planning in
graph databases such as Plan-Existence, Bounded Plan-Existence, Conformant Planning,
SynVerif∃, SynVerif∀ (see Section 2.2.2). We have investigated only one of them, namely
Plan-Existence. Another line of further research would be to study the remaining ones.
In addition one can try to to define new reasoning problems, that might be relevant for
practical reasons.

109

Bibliography

[1] Renzo Angles and Claudio Gutiérrez. Survey of graph database models. ACM Com-
put. Surv., 40(1), 2008.

[2] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation,
and Applications. Cambridge University Press, 2003.

[3] Franz Baader, Carsten Lutz, Maja Milicic, Ulrike Sattler, and Frank Wolter. Integrat-
ing description logics and action formalisms: First results. In Manuela M. Veloso
and Subbarao Kambhampati, editors, AAAI, pages 572–577. Association for the Ad-
vancement of Artificial Intelligence (AAAI) Press / The MIT Press, 2005.

[4] Avrim Blum and Merrick L. Furst. Fast planning through planning graph analysis.
Artif. Intell., 90(1-2):281–300, 1997.

[5] Tim Bray, Jean Paoli, C. Michael Sperberg-McQueen, Eve Maler, and François
Yergeau. Extensible markup language (xml) 1.0 (fifth edition). World Wide Web
Consortium, Recommendation REC-xml-20081126, November 2008.

[6] Tom Bylander. The computational complexity of propositional strips planning. Artif.
Intell., 69(1-2):165–204, 1994.

[7] Diego Calvanese, Evgeny Kharlamov, Werner Nutt, and Dmitriy Zheleznyakov. Up-
dating aboxes in DL-Lite. In Alberto H. F. Laender and Laks V. S. Lakshmanan,
editors, AMW, volume 619 of CEUR Workshop Proceedings. CEUR-WS.org, 2010.

[8] Diego Calvanese, Magdalena Ortiz, and Mantas Simkus. Evolving graph databases
under description logic constraints. In Thomas Eiter, Birte Glimm, Yevgeny Kazakov,
and Markus Krötzsch, editors, Description Logics, volume 1014 of CEUR Workshop
Proceedings, pages 120–131. CEUR-WS.org, 2013.

[9] David Chapman. Planning for conjunctive goals. Artif. Intell., 32(3):333–377, 1987.

[10] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,
13(6):377–387, 1970.

[11] Yannis Dimopoulos, Bernhard Nebel, and Jana Koehler. Encoding planning problems
in nonmonotonic logic programs. In Sam Steel and Rachid Alami, editors, ECP,
volume 1348 of Lecture Notes in Computer Science, pages 169–181. Springer, 1997.

111

[12] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel Polleres. A
logic programming approach to knowledge-state planning, II: The dlvk system. Artif.
Intell., 144(1-2):157–211, 2003.

[13] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel Polleres. A
logic programming approach to knowledge-state planning: Semantics and complex-
ity. ACM Trans. Comput. Log., 5(2):206–263, 2004.

[14] Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scar-
cello. The kr system dlv: Progress report, comparisons and benchmarks. In An-
thony G. Cohn, Lenhart K. Schubert, and Stuart C. Shapiro, editors, KR, pages 406–
417. Morgan Kaufmann, 1998.

[15] E. Allen Emerson and Edmund M. Clarke. Characterizing correctness properties of
parallel programs using fixpoints. In J. W. de Bakker and Jan van Leeuwen, editors,
ICALP, volume 85 of Lecture Notes in Computer Science, pages 169–181. Springer,
1980.

[16] Kutluhan Erol, Dana S. Nau, and V. S. Subrahmanian. Complexity, decidability and
undecidability results for domain-independent planning. Artif. Intell., 76(1-2):75–88,
1995.

[17] Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Pushing goal derivation in dlp
computations. In Gelfond et al. [19], pages 177–191.

[18] Richard Fikes and Nils J. Nilsson. Strips: A new approach to the application of
theorem proving to problem solving. Artif. Intell., 2(3/4):189–208, 1971.

[19] Michael Gelfond, Nicola Leone, and Gerald Pfeifer, editors. Logic Programming and
Nonmonotonic Reasoning, 5th International Conference, LPNMR’99, El Paso, Texas,
USA, December 2-4, 1999, Proceedings, volume 1730 of Lecture Notes in Computer
Science. Springer, 1999.

[20] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and
disjunctive databases. New Generation Comput., 9(3/4):365–386, 1991.

[21] Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated planning - theory and
practice. Elsevier, 2004.

[22] Giuseppe De Giacomo, Maurizio Lenzerini, Antonella Poggi, and Riccardo Rosati.
On instance-level update and erasure in description logic ontologies. J. Log. Comput.,
19(5):745–770, 2009.

[23] Yolanda Gil. Description logics and planning. AI Magazine, 26(2):73–84, 2005.

[24] Matthew L. Ginsberg. Computational considerations in reasoning about action. In
James F. Allen, Richard Fikes, and Erik Sandewall, editors, KR, pages 250–261.
Morgan Kaufmann, 1991.

112

[25] Jim Gray. The transaction concept: Virtues and limitations (invited paper). In VLDB,
pages 144–154. The Institute of Electrical and Electronics Engineers (IEEE) Com-
puter Society, 1981.

[26] Ian Horrocks and Ulrike Sattler. A tableaux decision procedure for SHOIQ. In Inter-
national Joint Conference on Artificial Intelligence (IJCAI), pages 448–453, 2005.

[27] Henry A. Kautz and Bart Selman. Pushing the envelope: Planning, propositional
logic and stochastic search. In William J. Clancey and Daniel S. Weld, editors, As-
sociation for the Advancement of Artificial Intelligence (AAAI/IAAI), Vol. 2, pages
1194–1201. AAAI Press / The MIT Press, 1996.

[28] Henry A. Kautz and Bart Selman. The role of domain-specific knowledge in the
planning as satisfiability framework. In Reid G. Simmons, Manuela M. Veloso, and
Stephen F. Smith, editors, AIPS, pages 181–189. AAAI, 1998.

[29] Henry A. Kautz and Bart Selman. Unifying sat-based and graph-based planning. In
Thomas Dean, editor, International Joint Conference on Artificial Intelligence (IJ-
CAI), pages 318–325. Morgan Kaufmann, 1999.

[30] Maurizio Lenzerini. Ontology-based data management. pages 5–6, 2011.

[31] V. Lifschitz. On the semantics of STRIPS. In Reasoning About Actions and Plans
— Proceedings of the 1986 Workshop, pages 1–9, San Mateo, CA, 1987. Morgan
Kaufmann Publishers.

[32] Vladimir Lifschitz. On the logic of causal explanation. Artificial Intelligence, 96:96–
451, 1997.

[33] Vladimir Lifschitz. Action languages, answer sets and planning. In In The Logic
Programming Paradigm: a 25-Year Perspective, pages 357–373. Springer Verlag,
1999.

[34] Vladimir Lifschitz and Hudson Turner. Representing transition systems by logic
programs. In Gelfond et al. [19], pages 92–106.

[35] Hongkai Liu, Carsten Lutz, Maja Milicic, and Frank Wolter. Updating description
logic aboxes. In Patrick Doherty, John Mylopoulos, and Christopher A. Welty, ed-
itors, KR, pages 46–56. Association for the Advancement of Artificial Intelligence
(AAAI) Press, 2006.

[36] Hongkai Liu, Carsten Lutz, Maja Milicic, and Frank Wolter. Foundations of in-
stance level updates in expressive description logics. Artif. Intell., 175(18):2170–
2197, 2011.

[37] John McCarthy and Patrick J. Hayes. Some philosophical problems from the stand-
point of artificial intelligence. In Machine Intelligence, pages 463–502. Edinburgh
University Press, 1969.

113

[38] Maja Milicic. Complexity of planning in action formalisms based on description
logics. In Nachum Dershowitz and Andrei Voronkov, editors, LPAR, volume 4790 of
Lecture Notes in Computer Science, pages 408–422. Springer, 2007.

[39] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[40] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach (3.
internat. ed.). Pearson Education, 2010.

[41] Antonio A. Sánchez-Ruiz, Pedro A. González-Calero, and Belén Díaz-Agudo. Plan-
ning with description logics and syntactic updates. In M. A. Salido and J. Fdez-
Olivares, editors, Planning, Scheduling and Constraint Satisfaction (CAEPIA 2007
Workshop), pages 140–150. Universidad de Salamanca, 2007.

[42] Walter J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. J. Comput. Syst. Sci., 4(2):177–192, 1970.

[43] Andy Seaborne and Eric Prud’hommeaux. SPARQL query language for RDF. W3C
recommendation, W3C, January 2008. http://www.w3.org/TR/2008/REC-rdf-sparql-
query-20080115/.

[44] Robert W. Taylor and Randall L. Frank. Codasyl data-base management systems.
ACM Comput. Surv., 8(1):67–103, 1976.

[45] Jeffrey D. Ullman and Jennifer Widom. A first course in database systems (2. ed.).
Prentice Hall, 2002.

[46] Dmitriy Zheleznyakov, Diego Calvanese, Evgeny Kharlamov, and Werner Nutt. Up-
dating tboxes in DL-Lite. In Volker Haarslev, David Toman, and Grant E. Weddell,
editors, Description Logics, volume 573 of CEUR Workshop Proceedings. CEUR-
WS.org, 2010.

114

	Introduction
	Motivation
	Contributions
	Structure of the Thesis

	Preliminaries
	The Description Logic ALCHOIQ
	Syntax
	Semantics

	Automated Planning
	Abstract Planning
	Reasoning Problems

	STRIPS Planning
	Propositional STRIPS Planning
	Complexity results
	Extensions

	Turing Machines

	Description Logic For Database Manipulation
	ALCHOIQbr for Database Manipulation
	ALCHOIQbr Syntax
	ALCHOIQbr Semantics

	Action Language
	Interpretation Updates
	Examples

	Planning in Graph Databases
	Planning language
	Graph Database Planning Problem
	Examples

	Reasoning Problems For GDPP

	Deciding Fixed Domain Plan-Existence
	PSPACE Upper-Bound
	Intuition
	FDPE Algorithm
	Complexity of FDPE

	 PSPACE-Hardness
	DTM Encoding to Fixed Domain Planning Problem
	Correctness of the Encoding

	Fixed Domain Plan Existence with Syntactic Restrictions
	NP-Hardness for the Case of Atomic Actions with Concept Names
	The Case of Positive Goals
	The Case of Negative Goals
	Analysis of Subcases

	Encoding to Propositional STRIPS Planning
	Reduction
	Correctness of the Encoding
	Analysis

	Deciding General Plan-Existence
	Triggers For New Constants
	General Plan Existence With Syntactic Restrictions

	State of the Art
	Automated Planning
	Graph Databases
	ABox Updates and Planning in Description Logics

	Conclusions
	Results
	Further Research

	Bibliography

